从此走进深度人生 Deepoo net, deep life.

作者: deepoo

  • 李辉:列入“重大科学问题”的古人类研究

    中国科协发布了2024年重大科学问题,其中之一是“中国境内发现的古人类是否为现代中国人的祖先”。

    中国科协将这一问题列入“2024年重大科学问题”,主要原因是什么?

    这个问题可能已经不只是一个科学研究的问题,也是一个科学认识和宣传的问题了。比如科学上我们拿出了很强的证据、很多的事实,把问题解答得很清楚,逻辑也很严密了,猿人不是我们的祖先,早期智人有微小贡献,晚期智人主要是外来的。但有的时候不同领域的人思考的逻辑不一样,不一定能够得到同样的认知。在论文投稿的时候,不同领域的审稿专家可能会提出异议,会认为证据上面还不“完善”,无论提供的证据多么硬。

    问题是科学研究的结论很难做到100%的完全准确。所以基本上只要结果拥有95%以上的置信区间,我们就认为结论是可靠的了,不能因为没有检测完“最后一个中国人”的基因就否认现在的结论。因为这种可能性小到几乎为零。

    “中国境内发现的古人类是否为现代中国人祖先”,包括“非洲起源说”、“多地演化说”,以及“附带杂交说”之间的争论,其实学术上也已经有了明确的结论?

    是的,在我看来从生物人类学,特别是分子人类学的角度,这个问题已经有了一个明确的答案,几乎可以确定地说,这中间不存在什么科学上还未解释清楚的地方。现代中国人可以很明确地说就是主要起源于非洲,主要是指97%以上的成分。从自然科学的角度,这是以99.999999999%以上的置信区间确认了的成果。

    从科学逻辑上讲,任何的生物类群都有演化的谱系,有物种形成的规律。我们的祖先跟哪些古人类是同一个物种的?跟哪些不是同一个物种的?如果都不是同一个物种,那怎么可能是我们的基因来源呢?我们不可能跟其他物种有基因交流、基因传播,与猫、狗不能,与猴子、猩猩、猿人也不能。像人类这样的高等动物,跨物种的基因交流是不可能存在的。

    物种内的基因交流是合理的,物种内可能有亚种、地理种,这种基因交流是合理的。所以有基因交流的类群就属于同一个物种。那么根据这些概念,谁是我们演化的主线,谁不是我们主线,实际上已经很清楚了。从生物学意义上,在东亚大地上演化的人类一共是两个物种:猿人(也叫直立人)和智人。

    但是有些人不想承认,在分类上改了好多不同的名字,比如“古老型人类”之类,把学术界这个水搅浑了。实际上“古老型人类”,我们以前叫早期智人,它属于智人这个物种。现代人也是智人物种,叫作晚期智人,那么物种内可以交流吗?当然可以。

    2022年获得诺贝尔奖的帕博就做了相关研究,他的结论证明非洲以外的全世界人类都跟尼安德特人发生过基因交流,现代人的基因中有2%尼安德特人的基因。所以尼安德特人是我们的祖先吗?是的,之一,但是只有非常非常微弱的2%。

    中国的早期智人,属于丹尼索瓦人。丹人对我们的基因有贡献吗?很遗憾,当构成当代中国人大部分基因库的这一波现代人到中国的时候,丹尼索瓦人已经灭绝了。但是在我们之前还存在一波现代人迁徙到东亚,跟丹尼索瓦人发生了基因交流,而我们则跟这支现代人发生了交流,相当于我们依靠一波“接力棒”融合了部分丹尼索瓦人的基因,那这个比例经检测只有千分之二。

    从这些结论出发,我们确实能够确认存在“附带杂交”,但这个比例很低,所以仍然是“非洲起源,附带杂交”。

    中国这片土地上的现代人类起源,比较合理的结论就是非洲起源,只是过程中可能有少量的附带杂交?

    李辉教授:是的,现在从基因组来看,结论是很清楚的,这种附带杂交只出现在早期智人中,跨智人种跟猿人杂交是不可能的,然后看看中国发现的古人类中哪些是智人,哪些是猿人不就清楚了吗。

    有人说我们没有检测过,猿人的DNA超过了50万年根本检测不出来的,但是现代人基因库中根本找不到那种完全不同来源的部分,其差异大到属于猿人来源的,也就是说我们体内没有猿人的成分。所以就没有必要去检测猿人的化石,增加这种不合逻辑的检测了。这是科学逻辑很清楚的事情,再进一步去探讨它是个“未解难题”就没这个必要了。

    当然,古老化石的基因检测也是个难题,怎么让大家都认知到,都理解这些科学逻辑也是个难题。现在在公众宣传上经常有人在这个问题上浑水摸鱼,媒体宣传也好,科学界内部也好,都有人想这么做,在关键问题和科学概念上模糊化,比如有些人就将现代人和早期智人完全割裂开,当作不同的物种。

    进一步讲,如果全世界的人类都是各自分开演化的,那何来人类命运共同体?又何来中华民族共同体?我之前在《中国社会科学院大学学报》上发过文章,专门讲过这个问题,没有基因图谱这一实证构建出的中华民族共同体是很虚的,而从基因谱系里看,中华民族共同体那是紧密得不得了,是很清晰的一个构架。

    最近关于古人类学和人类演化国内有哪些比较重要的成果和进展,接下来要做的工作有哪些?

    实际上最近有很多成果,但是如果说重大的创新性成果,说实在的很少,现在大部分的学者都在证明已知的东西,做一篇大文章发nature或者science,数据做得很全很完美,工作做得很漂亮,但结论都是已知的,不做也知道是什么结果。

    当然,探索未知的、创新的东西很难发表了,因为创新的东西大家理解能力有限,可能理论的完善程度也不够,创新性的理论也不可能一下子就完善了,审稿人就会提出很多意见,就会不容易发表,这是现在科学界的同行评审中的一个通病,一个难以解决的缺陷。

    现在分子人类学领域做了好多工作,就比如说测了很多人类的基因,证明了整个全基因组层面,古代的人类包括旧石器时代、新石器时代在中国、东亚是怎么演变的。不同地区的古代人群对中国现代人有贡献,各占百分之几,分别从南方、北方怎么演化过来的,目前这个数据做得很漂亮。

    但是还有个大的问题,就是能够依据的早期样本是非常少的,很多来自较寒冷的地区。根据早期样本能够得出一个结果,但如果以这个结果为结论的话,中国人绝大多数来自西伯利亚,就很荒谬了。

    比如南方人群的某些基因演化,东南亚样本没有,对应的只有一个西伯利亚样本,因为西伯利亚气候冷样本保存好啊,然后数据分析的时候说有百分之多少成分,跟西伯利亚样本是一致的。这没错,但是你不能判断演化的源头来自这个样本,只不过与这个样本是同类。现在很多论文都有这个问题,就是把结果当结论,这是很有误导性的。

    第二就是对古人类的研究,从直接或者间接证据的可靠性上也存在漏洞,特别是测年的数据。我们前年发了一篇文章,讲福岩洞内部地层颠倒的问题。因为不同地层坚硬程度不一样,比如说冰川期地层比较板结,热的时期地层比较松,有时候洞穴里面水流的冲击会把松的一层冲掉,然后上面的岩层坍塌沉积,结果上下地层就会颠倒混乱,找到的“十几万年前”的地层里面的化石,有可能只是一万年前的。

    当时,考古勘测从“十几万年前”的福岩洞里,找到一枚有“现代人”特征的牙齿,从地层的分析来说,好像都很对。结果我们重新去测年,发现同一个地层里有十几万年前的样本,有几万年前的样本,有几千年前的样本混在一起,而同一地层的人牙齿化石直接去测年,连一万年都不到。

    我们以往的研究中也会存在着这样一些,可能因为技术原因,也可能因为人为原因导致的谬误,我们的学术界还是应该重新回到追求真理的科研初心上,重新纠正之前研究中的问题和错误,才能走得更远

    观察者网:您刚才提到了牙齿,很容易让人想到东亚人群常见的“铲形门齿”,北京猿人也有这样的特征。但是,分子生物学的证据已经揭示,猿人和现代人并无基因交流,那么如何科学地解释“铲形门齿”看上去似乎“流传有序”的现象?

    李辉教授:基因之外的特征叫做表型,表型是非常复杂的,在同一部位的相似表型可能是完全不同的基因类型所产生的。铲形门齿就是这样一种复杂表型。

    东亚猿人门齿的浅浅的铲槽,与现代中国人普遍的深深的铲槽,是完全不同的基因突变造成的。现代的深槽基因,根据金力教授发表于Cell的一篇封面论文揭示,其出现历史仅仅不到4万年,与猿人毫无关系。而浅槽这种表型,则是全世界都存在的一种普遍特征,非洲人中都超过10%。所以东亚的铲形门齿“流传有序”恐怕是一种误读。

    对现代人类起源问题的研究,将可能为我国的遗传学、考古学、人类学,以及更大范围的生物进化领域带来哪些新的进展?未来会出现什么新的研究角度?

    如果能够对“我们从哪里来”这样一个问题给出一个定论,那么我们将会发现“人类命运共同体”不只是一个政治概念,而是真正成为一个科学认识,全世界的人类都有一个共同的源头,因而全世界人类的命运也自然紧密联系在一起。

    当我们解决了“我们从哪里来”这样一个问题后,随之而来的就是“我们为什么成为我们”。这个问题其实是考古学的核心问题。当我们发掘出新的古代文明遗迹的时候,我们都是以发现地来命名的,比如“红山文化”“马家窑文化”等等,不知道是人群记忆中的哪一段历史。考古学诞生之初,发现一个考古文化,有限的材料无法确定它是哪一段传说中的历史,只好用发现地来“临时命名”,但是重构历史始终是考古研究的初心。这个是考古学终极目标,相关研究应该朝这个方向去。

    这些存在于口口相传中的历史记忆,与我们发现的古文化遗址之间能否实现对应,这既要依靠考古学的发现,也要依靠分子人类学提供的科学论证,才能最终解决“我们为什么成为我们”的问题,也能够真正从科学视角论证“中华民族共同体”。这才是考古学研究的初心,才有助于“建设中国特色、中国风格、中国气派的考古学”。

  • 韩福涛,张新惠,郝哲琳:罐车运输乱象调查:卸完煤制油直接装运食用大豆油

    本文来自新京报网2024年7月2日

    5月21日上午十点,一辆罐车缓缓驶入河北燕郊一家粮油公司。一个小时后,这辆罐车满载三十多吨大豆油驶出厂区。

    5月21日,一辆卸完煤制油的罐车,在未洗罐的情况下,司机就驾车进入一家粮油公司装载大豆油。 新京报记者韩福涛摄

    鲜为人知的是,这辆满载食用大豆油的罐车,三天前刚将一车煤制油从宁夏运到河北秦皇岛,卸完后并未清洗储存罐,就直接来装上食用大豆油继续运输。

    煤制油,那是一种由煤炭加工而来的化工液体,如液蜡、白油等。有罐车司机向新京报记者透露,食品类液体和化工液体运输混用且不清洗,已是罐车运输行业里公开的秘密。

    今年五月份,新京报记者对此进行了长时间的追踪调查,发现国内许多普货罐车运输的液体并不固定,既承接糖浆、大豆油等可食用液体,也运送煤制油等化工类液体。为了节省开支,不少罐车在换货运输过程中不清洗罐体,有些食用油厂家也没有严格把关,不按规定去检查罐体是否洁净,造成食用油被残留的化工液体污染。

    事实上,目前我国在食用油运输方面,没有强制性国家标准,只有一部推荐性的《食用植物油散装运输规范》,其中提到运输散装食用植物油应使用专用车辆。由于是推荐性的国家标准,这意味着对厂家约束力有限。

    江南大学食品学院王兴国教授告诉记者,目前推行的运输规范虽然为推荐性国家标准,但也具有一定的强制性。他指出,“它也是一项国家标准,相关企业在制订企业标准时,要以这个为依据,企业标准可以比这个标准更严格,一般来说不能低于这个标准。”

    “混用又不清洗,残留物势必会对食用油造成一定的污染,运输食用油应该专车专用。”中国农业大学食品学院副教授朱毅告诉新京报记者,煤制油主要是碳氢化合物,其中含有的不饱和烃、芳香族烃、硫化物等成分影响人体健康,可能导致中毒。

    罐车混用:食用油混入化工液体

    很多罐车扎堆在宁东能源化工基地停车场,等待装货启运。

    该基地位于宁夏回族自治区灵武市,拥有我国最大的煤制油项目,在占地数千亩的煤制油厂区,乌黑的煤炭经过多道高温高压等复杂工序,便能实现“化煤成油”,生产出液蜡、白油等产品。

    公开资料显示,隶属于宁夏煤业的这个“煤制油”项目目前年产能达到400万吨,居全国首位。这里产出的煤制油,大多被运往东部沿海等经济发达的地区,可以用作化工产品原料,也可作为燃料使用。

    宁煤煤制油分公司的物流中心,每天都有络绎不绝的罐车驶入这里,准备装载煤制油。 新京报记者 韩福涛 摄

    一名罐车司机告诉记者,罐车一般分为危化品罐车和普货罐车,危化品罐车运输的一般是汽油、柴油等易燃易爆的液体,而普货罐车顾名思义就是运输危化品以外的普通液体,“煤制油产品,比如像液蜡、白油这些,它们明火点不着(使用专用灶具气化后可燃烧),不属于危化品,普货罐车就能运。”

    今年五月中旬,记者在宁夏煤业煤制油厂区周边看到,道路两侧停满了各种类型的罐车,其中不乏运送煤制油的普货罐车,这些罐车的罐体外侧都喷涂了容积和介质等信息,一名罐车司机解释说,介质通常是指罐车所运输的物质,运输煤制油一般是把介质标注为“普通液体”。

    “现在算是淡季,罐车还算少的,旺季这一个停车场能停一百多辆。”一名正在停车场休息的罐车司机告诉记者,这些罐车平时大多停在附近,一旦接到运输订单,就会进入厂区排队装油,之后按照买家的需求将煤制油运到目的地,“这里许多罐车常年就靠这个煤制油厂拉油赚钱。”

    5月16日,一辆车牌号为冀E5465Z的罐车从宁东煤制油厂区出发,两天之后到达了一千多公里外的河北省秦皇岛市。这辆罐车开进郊区的一处小院,一个多小时后开了出来。新京报记者注意到,这辆罐车并没有立即离开,而是在附近的马路边停了下来,司机也打开车门在车内休息。

    新京报记者假借咨询行情与司机攀谈,司机透露,他此次从宁夏到秦皇岛运送的正是煤制油,刚在小院里卸完货,“这边要煤制油是用来烧火,当作厨房燃料用的。”这位司机告诉记者,这辆罐车隶属于一个车队,他是专职司机,车队另外还有十几辆罐车,这次卸完煤制油后还未接到新的运输任务,就先停在路边休息,“一般都要在卸货地附近配货,不能空车跑回去。”

    之后,新京报记者一直在附近观察这辆罐车的动向。5月20日下午,这辆罐车重新发动,在傍晚时分行驶到河北省三河市燕郊镇,开进了一家粮油公司所属的停车场,据门卫介绍,该停车场隶属于汇福粮油集团,在这里停放的罐车都是准备进厂运输食用油的。

    第二天上午十点,这辆罐车顺利驶入了汇福粮油集团的生产厂区。直到此时,自从卸完煤制油后这辆罐车都没有去洗罐。一个小时后,这辆罐车满载货物从厂区驶出。厂区门卫留存的运输单据显示,这辆罐车进厂装载的货物是一级豆油,货物净重为31.86吨。

    5月24日,在天津滨海新区的一处停车场内,一辆车牌号为冀E5476W的罐车,也在等待运输食用油。等待间隙,记者从罐车司机口中得知,这辆罐车同样刚从宁夏运送煤制油到河北,前一天在石家庄将煤制油卸货后,连夜从石家庄赶到天津。司机透露,自从卸完煤制油后,这辆罐车也未洗罐,对于是否会担心被食用油厂家拒之门外,这名司机并不在意,“能装就装,不能装就算了”。

    5月24日,在天津一家生产食用油的公司门口,一名罐车司机正在擦拭卸油口。许多罐车不洗罐的话,司机都会通过擦拭卸油口来应付检查。 新京报记者 韩福涛 摄

    当天下午,新京报记者看到这辆罐车驶入了一家名为中储粮油脂(天津)有限公司的厂区。厂区保安介绍,包括这辆罐车在内,进厂装载的都是大豆油。由于距离不远,记者在厂区外能清晰看到罐车装油的全过程,自始至终这辆罐车没有遇到任何阻碍,也没有人检查罐体内干净与否。大约四十分钟后,这辆罐车就装满了油,出厂区的地磅显示,这辆罐车装了35吨大豆油。

    这意味着,这辆刚刚卸完煤制油的罐车,在并未洗罐的情况下,也顺利装上了食用油。

    节省成本:混用不清洗渐成常态

    运输煤制油到沿海地区的罐车,返程配货多为食用油的原因,主要在于这里集中了很多生产食用油的厂家。

    记者在采访中了解到,目前我国生产食用油的厂家主要集中在沿海地区。以大豆油为例,一般需要依靠远洋货轮从国外进口大豆,生产大豆油的工厂通常设在港口周边,天津滨海新区就聚集了多个食用油生产厂家。

    一名食用油业内人士告诉新京报记者,食用油在出厂时并不都是常见的小包装,还有许多是以散油的形式往外销售,“有些设在港口附近的食用油厂家,不做终端零售,他们会把食用油卖给其他厂家,由其他厂家灌装成小包装对外销售,也会有一些食品企业采购散装食用油作为原料。”

    食用油厂家对外销售散油,同样依靠罐车运输,很多运输车辆来自邢台。

    多位业内人士表示,河北省邢台市南和区是业内有名的“罐车之乡”,“南和干这个的比较多,最少有3000台罐车。”这与记者在多地采访时观察到的现象一致,不管是在宁夏的煤制油厂区周边,还是在一些食用油厂家附近,车牌号为“冀E(河北邢台)”开头的罐车数量最多。

    5月14日,河北省邢台市南和区的一处停车场里停了多辆罐车。新京报记者了解到,当地许多人从事罐车运输行业。 新京报记者 韩福涛 摄

    南和当地多位罐车司机称,刚开始当地罐车都是只运食用油,后来开始运输其他液体货物,最近几年很多罐车开始去宁夏拉煤制油。

    “以前运食用油的罐车一般空车返回,以天津到西安为例,最早单程运费报价都在每吨400元以上,现在降到200元左右。”一名罐车司机告诉记者,由于近两年罐车增多,竞争加剧,罐车运输价格也降了不少,这就逼迫许多罐车不得不在返程时想办法配货,在这样的情况下,许多罐车就将目光放到了煤制油上,“卸货地周边很难配货,一般有什么就装什么,这几年宁夏那边煤制油运输需求也大。”

    与此同时,在运费逐步降低的大背景下,运输食用油的罐车不仅做不到专车专用,许多罐车为了节省成本,甚至连罐体都不清洗。“单次洗罐的成本少则三五百,多则八九百。”一名罐车司机透露,由于普货罐车经常换货运输,每次洗罐也是一笔不小的开支,因而许多罐车在换货运输时,选择能省则省。

    在调查中新京报记者了解到,绝大多数的罐车都是隶属于车队,规模大的车队有上百辆罐车,小规模的车队只有几辆罐车,个体罐车占比很少,而对于隶属于车队的罐车,有司机告诉记者,尽管他们司机有时想洗罐,但也要听从车队老板的安排,“老板让清就清,老板不让清就不清,老板的事。”

    把关不严:食用油厂家验罐成走过场

    在不少罐车司机看来,车队老板之所以不安排洗罐,更多是因为有些食用油厂家把关不严,他们通常不会检查罐体是否干净,“要是验罐就得洗,不验罐就不用洗。”

    在河北邢台,一名罐车司机说,由于经常跟各个食用油厂家打交道,对于每个厂家的验罐情况,车队老板早已了然于胸,“一般都不下到罐里去验,就看看两个口,我们就把这两个口擦一下就行。”

    今年6月初,新京报记者以运输食用油的名义致电汇福粮油集团,一名工作人员称他们不要求食用油专用罐车,只要求罐车前三次所运的货物也为食用油,“罐体需要保持干净整洁,工人在装油前会验罐。”不过,多名罐车司机却透露,这家粮油公司验罐时并不严格,“他们一般先看看泄油口,把那里擦干净就行,如果是熟人经常来运油那就更好办了。”对于载货单上需要填写之前所运货物的信息,司机也可以随意编造。

    5月21日,一辆卸完煤制油的罐车,在未洗罐的情况下进入一家粮油公司装载大豆油。  新京报记者 韩福涛 摄

    记者同样致电了中储粮油脂(天津)有限公司,一名销售经理表示原则上运输食用油需要专用罐车,但随后他补充说,罐体只要有“食用油专用”字样就行,“其实我们也不验罐,是不是食用油专用罐车我们也没办法去分辨。”他强调,销售食用油的合同里约定的都是买家自提,罐车也是由买家雇来,食用油装上车之后,其品质他们不负责。

    同样位于天津滨海新区的另一家生产食用油的公司,在验罐时也不严格。

    5月24日,一名等待进厂装油的罐车司机告诉记者,这家公司验罐也是走过场,只需司机上传几张照片,“自己拍摄的泄油口、罐口照片,另外罐体有‘食用油’字样就行。”他透露使用手机里存储的早前照片也能应付过去,“你就找几张干净照片给他瞅一眼就完事了,不管是不是今天的照片都行。”

    至于有些食用油厂家要求在罐体外侧喷涂“食用油”字样,司机说也非常容易应付,只需要将之前罐体标注的“普通液体”字样擦掉重新喷上食用油字样即可,“现在有清漆剂,涂改很方便。”

    五月下旬,记者在这家公司门口观察发现,不少进厂运输食用油的罐车罐体上喷涂的介质信息都有明显的涂改痕迹,有一些罐车只是用贴纸将“普通液体”字样遮盖住,再重新张贴一张写有“食用油”字样的贴纸。

    即便存在如此明显的涂改痕迹,也没有影响那些罐车运输食用油。

    一辆等待进厂运输食用油的罐车,罐体外侧喷涂的介质信息被一张白纸遮盖住,司机重新张贴了一张写有“食用油”字样的纸条。 新京报记者韩福涛摄

    运输规范:散装食用油运输应专车专用

    事实上,我国于2014年开始实施的《GB/T30354-2013食用植物油散装运输规范》(以下简称《运输规范》)中提到,运输散装食用植物油应使用专用车辆,不得使用非食用植物油罐车或容器运输。该《运输规范》中还提到,装入油脂之前,应认真检查运输容器是否为专用容器以及容器是否清洁、干燥。

    不过该《运输规范》只是推荐性的国家标准,不是强制性的国家标准,对食用油厂家约束力有限。

    江南大学食品学院王兴国教授告诉记者,该《运输规范》虽然为推荐性国家标准,但也具有一定的强制性。他指出,“它也是一项国家标准,相关企业在制订企业标准时,要以这个为依据,企业标准可以比这个标准更严格,一般来说不能低于这个标准。”

    就散装植物油运输来说,王兴国教授认为相关企业应参照《运输规范》执行,使用专用运输车辆,否则食用油在运输过程中就存在被污染的风险。

    5月24日,一辆刚卸完煤制油的罐车,驶入中储粮油脂(天津)有限公司,司机爬上罐顶正准备装运食用油。 新京报记者 韩福涛 摄

    邱健(化名)是一名从业十余年的罐车司机,他告诉记者,如果卸完煤制油不洗罐的话,通常罐内会残留几千克到十几千克不等的煤制油,“洗罐的话一般都要用碱水,洗完再高温蒸罐这样才能洗得相对很干净,如果只是普通的水洗也会有一些残留。”邱健说,多数情况下,残留的煤制油会与食用油相混,“像煤制油中的白油液蜡,本身是无色的,颜色比较透明,也不容易看出来。”

    他说,像工业废水、塑化剂、废机油、减水剂这样的非危化品液体,普货罐车都可以运,煤制油只是属于目前运量比较大的种类,“煤制油厂家除宁煤外还有好几家,再加上其他一些生产化工液体的厂家,都可能与食用油厂家共用罐车运输。”

    邱健告诉记者,尽管卸货时食用油收货方会取样检验,可是由于检验项目有限,即便食用油中掺入其他杂质,普通的检验也检不出来,“检验水分和酸价这两个项目的比较多。”

    邱健认为,散装食用油在长距离运输过程中其实属于半脱管的状态,“卖油的厂家不怎么管,买油的公司不知情,让运输公司钻了空子。”邱健透露,许多运输订单普遍经过层层转包,转来转去买卖双方对最终承运的罐车都无从了解。

    作为一名罐车司机,邱健非常无奈,他呼吁重视这样的行业乱象,因为食用油关系到千家万户。他说:“煤制油可能还算干净的,其他一些不常见的化工液体,污染食用油的话,可能危害更大。”

    在邱健看来,运输公司是以食用油厂家的标准为导向,只需要食用油厂家严格把关就能避免这一行业乱象的发生,“食用油厂家仔细验罐应该最有效果,能解决99%的问题。”

    中国农业大学食品学院副教授朱毅告诉记者,煤制油主要就是碳氢化合物,其中含有的不饱和烃、芳香族烃、硫化物等成分对人体有健康风险,长期食用可能导致中毒,“吃得越多则毒性越大,苯或氨基苯成分较多时,还可能影响造血功能。”

    朱毅认为,如果运输食用油的罐车还去运输其他化工液体,其风险更是难以预料,“如果都不知道这个油里面有什么样的污染物,更是防不胜防,如果毒性大的化工液体残留在里面,直接接触或者吸入都可能对人体产生危害,比如说有机溶剂、酸、碱、重金属等等,有可能对呼吸系统、消化系统都会造成损伤。”

  • 张天祁:高考志愿选大学还是选专业?他们的研究给出了答案

    高考结束后,又到了为报志愿争论不休的时节。每年总有一些问题被反复提及,但从来没有答案,比如,选大学还是选专业?

    理想答案当然是,名校的热门专业,但是实际情况是,多数人只能二选一。

    强势专业和好大学都会给人未来的发展,尤其是职业发展带来助益。但到底哪一方能带来更大的助益,一直是个报志愿方面的难题。这个问题当然没有标准答案,即使是指导报考的老师,往往也建议综合考虑学生的兴趣、能力特质等方面。这样的说法当然中肯,但没有给出一个明确的参考标准,等于把难题又丢回给了考生。

    今年一项美国的研究中,作者们尝试回答学校和专业哪个对收入影响更大这个问题[1]。他们发现,专业学科对毕业生的未来收入有着更为显著的影响,超过了大学本身的品牌效应。收入差异中由大学造成的比例约为21%-22%,而由学科造成的比例约为60%。

    也就是说,不考虑个人兴趣、城市发展等更复杂的选择条件,单从工作收入来看,专业比大学更重要。

    尤其是STEM(科学、技术、工程和数学)专业,带来的经济回报尤为突出。在毕业后偿还学生贷款的第一年,STEM专业的毕业生比非STEM专业的同学平均多挣31%,相当于年薪多了大约1万美元;到了第二年,这个差距进一步扩大到32%,STEM毕业生的中位数薪资达到4万3千多美元,而非STEM专业的同学只有3万多一点。

    另外,在偿还贷款的第一年,加州理工学院(Caltech)位列大学中预期薪资榜首,其毕业生的中位数薪资为64,123美元。然而,如果将视角转向具体专业,电气、电子和通信工程专业的毕业生薪资表现更为亮眼,他们的第一年平均中位数薪资已经超越了加州理工学院的水平,达到64,546美元,而它只是期望薪资第三高的专业。足见专业选择对于起薪的重要性。

    当然,专业比学校更影响未来的收入这个说法还是太过于笼统了。这项研究还表明,读STEM专业带来的收益是因学校而异的,在收入中位数偏低的学校,STEM专业和其他专业的起薪差距能达到60%。在收入中位数偏高的学校,比如佛罗里达州迈阿密大学,STEM专业的起薪和其他专业的差距没有那么夸张,在18%左右。

    而对非STEM专业来说,大学的水平可能对未来的发展更重要。大学录取率如果提高10%(入学标准放宽),就读非STEM专业的学生起薪将会有0.5%的下降,而STEM专业学生则只有0.1%的下降。

    根据这篇论文的结论,选择专业和大学应依据不同情况来定。如果主要考虑收入,选择一个收入潜力高的专业可能比进入一所顶尖大学更为关键。对于STEM领域的专业来说,由于名校所带来的额外收入溢价相对较小,所以在分数有限的情况下,不必过分追求名牌大学。

    对于其他专业的学生而言,大学的品牌和水平可能对收入有更大的影响。
    不过,西北大学普利兹克法学院的黛博拉·韦斯(Deborah M. Weiss)觉得,一端是高收入、数学含量高、对职业有用的 STEM 领域,另一端是低收入的人文学科领域,这种分类过于简化,数学训练并不是拉开专业之间收入的唯一因素。她与合作者们的一项研究提供了更为详细的分类[2]。

    例如,在整体收入溢价比较高的商科中,会计学的收入溢价是所有专业中最高的,可以单列一档。金融/营销提供的溢价相对高,工商管理、人力资源管理、旅游管理之类的专业,和社会科学大类中的公关管理专业差不多,可以说会计拉高了整个商科的溢价水平。而在整体溢价比较低的社会科学中,经济学仍然能带来高收入。
    在STEM领域里,也能分出理科与工科的区别。作者把STEM进一步区分为工程(计算机工程、电气和电子工程、机械工程等),物理科学(物理、化学),数学和计算机科学,以及平均收入相对低的其他STEM专业。其中,工程类专业的溢价最为突出,仅次于会计专业。也就是说,工科比理科溢价更多。

    其中的差距,一方面来自技能。作者团队使用了超过2200万份简历数据,从中创建了精细的专业分组,并基于这些分组计算出不同专业在数学推理和书面表达这两项技能上的重要性得分,进而分析了这些技能与专业收益的关系。他们发现,书面表达和数学推理是大学培养的两种主要职业技能,与需要书面技能的工作的专业相比,需要数学技能的工作的专业从选择性中获益更大。

    影响专业和收入的另一方面,则是专业的职业特异程度,简单来说就是“专业对口”的程度。职业特异程度高,意味着这个专业专注于某一特定职业领域,提供高度专业化培训,直接与特定行业或职位相匹配。溢价最高的专业,比如会计、工程、护理都属于对口程度高的一类。这些专业不仅需要在课堂上学习,也需要实习经验或者考取相关证书获得资质。

    作者们发现,对于收入潜力相对低的专业(人文类、艺术类、商科中的管理类、经济学/国际关系以外的社科类、社会服务类),学校名气对收入的影响一直比专业更重要。对于数学和计算机、物理、经济学、金融/营销、生物等收入溢价比较高的专业,如果就读的学校能从中等提升到名校,那还是选大学对收入的帮助更大。至于学会计、护理和工程类专业的学生,对大学的要求最低,哪怕学校提升两档,也是专业对收入的帮助更大。

    当然,这两个研究都是基于美国数据的研究,不可能直接套用在国内的情形上,但是一些原则还是可以借鉴。

    即使同是STEM领域,选择工科专业时相比理科可以更看重专业。如果选择人文或者社科专业,那就需要更看重学校。作为211大学的两财一贸(中央财经大学、上海财经大学、对外经济贸易大学)部分专业录取分数线连续多年超过多所985大学,也说明在财会领域,学生和家长心中选专业要重于选大学。

    高薪的代价会40岁之后显现

    学科差异之所以能对工资有如此大的影响,是因为不同专业直接关联到特定行业和职业路径,这些行业和职业的薪酬结构差异很大。在某种程度上,选择专业也就是在选择职业。起薪高或低的职业差距不仅在钱上,而是整个职业生涯的轨迹和形态都会有不同。了解到两条职业道路的区别 ,应该比单纯考虑行业薪资要更有参考价值。

    哈佛大学的两位学者利用2007年至2019年间来自在线招聘信息的详细职位描述,开发了一个模型,探讨了工作经验回报与技能过时的关系。他们发现计算机、工程和商业等应用专业的大学毕业生,虽然起薪更高,但是收入溢价相比其他专业也下降的更快。

    计算机和其他工程类专业能带来更高的起薪,主要是因为在本科四年的学习中学到能用在工作中的知识,进入相关领域的工作后可以快速获得回报。比如58%的计算机毕业生从事与计算机相关的工作,相比之下,生命科学和社会科学专业就业很分散,没有一个方向超过10%。

    然而,程序员、工程师、技术员之类的工作,本身就是技能更新比较频繁的工作。于是随着时间推移和技能过时,毕业生收入溢价会迅速下降,这是这类工作本身的特点。

    作者发现,即使并非相关专业的毕业生,从事计算机相关工作或者工程类起薪溢价达到40%左右,但在十年内下降至 20%。比如计算机专业58%的人从事与计算机相关的工作,相比之下,从事其他行业的计算机或者工程专业毕业生,收入溢价会随着时间提升,因为他们的行业 经验能够积累下来。

    不止是STEM专业,偏于应用的商科专业往往也有这个趋势。相反,那些学习基础学科比如生物学、文学的学生,收入溢价会随着年龄的上升而上升。计算机科学、工程和商科专业的学生在 20 多岁时的收入远高于生命/物理科学和社会科学专业的学生,但这种优势在 40 岁时就大大减弱了。

    根据2009年至2017年美国社区调查(Integrated Public Use Microdata Series,IPUMS)的人口加权平均年薪数据,23岁时工程和计算机科学毕业生起薪超过4万美元,而社科毕业生只有不到3万美元。但到40岁,双方的年薪都来到了10万美元上下,其后也没有再拉开差距,尽管工程和计算机科学类的工资一直要高一些。

    起薪高的代价是总要学习新技能,哪怕是人到中年也不能避免。在计算机以及工程领域的工作中,需要新技能的技术密集型工作所占比例基本稳定在41%左右,无论是最初级的岗位还是需要12年经验以上的岗位。这意味着,有四成STEM方向的工作者在求职时,很可能面对已经工作了几年甚至十几年还要从零学起的情况。相比之下,其他工作只有20%多的岗位需要更新技能。

    这导致了更高的退出率。26岁时有58%的计算机和工程专业的毕业生从事相关工作,但50岁的时候有18%左右的人已经转向了非STEM的管理工作。社科专业的毕业生则没有经历这样的波动。

    高薪但有更多挑战,更早赚到大钱,中年时更可能面对转型的问题,这是读热门应用专业的毕业生更可能出现的职业轨迹。其他专业的职业道路则更平稳,一步一步逐渐积累经验提高薪资。在国内,那些所谓弱势专业的毕业生还有自己的特殊优势。

    俄亥俄州立大学社会学系和香港中文大学社会学系的两位学者,利用中国综合社会调查(CGSS)2003到2018年三次调查的数据,考察了哪些大学专业的毕业生更倾向于进入体制内。

    研究发现,那些职业特异性较低且盈利性较弱(人文、社科,数学、物理、生物等基础学科)的专业毕业生,更容易端起铁饭碗,进入政府机关、事业单位和国有企业工作。而且随着市场化的深入,这些专业毕业生进入体制内的比例更大。作者认为这和毕业生的意愿有关,因为在市场上缺乏竞争力,所以这些毕业生更愿意追求体制内的工作。

    不过,这也可能和体制内的招考要求有关。2023年的国考中,法学、计算机、统计学、经济学、审计学、数学、新闻传播学、会计学、金融学和财政学占到了招录最多职位的专业前十,其中七个都是社科或者文科专业[5]。

    对于选择了名校,没有选择热门专业的学生,选调进入体制内也是一条可能的路。选调生不限专业,基本都是面对“双一流”中的世界一流大学建设高校,这无疑利好名校学生。

    另外,各地有时会进行限定专业的定向选调,有时会选中一些相对冷门的专业。比如海南曾经定向选调文化旅游类专业毕业生,包括社会体育指导、文物与博物馆、数字人文、艺术与设计学、艺术学、文化产业、民族学、中国少数民族艺术等等[6]。

    追求高薪还是追求稳定,也可以看作是另一种形式的选专业还是选大学。热门专业往往能够带来较高的薪酬,特别是诱人的起薪。而对于有意向进入体制内工作的学生来说,如果能进入名校,可能还是选学校更加重要一些。

    1.Muse, W. B., & Muse, I. (2024). College Selectivity, Choice of Major, and Post-College Earnings. Journal of Economic Analysis, 3(2), 33-51.
    2.Weiss, D. M., Spitzer, M. L., Cronin, C., & Chin, N. (2024). Why college majors and selectivity matter: Major groupings, occupation specificity, and job skills. Contemporary Economic Policy, 42(2), 278-304.
    3.Deming, D. J., & Noray, K. (2020). Earnings dynamics, changing job skills, and STEM careers. The Quarterly Journal of Economics, 135(4), 1965-2005.
    4.Yao, M., & Han, S. (2024). Who earns the iron rice bowl? Major marketability and state sector jobs among college-educated workers in urban China. Chinese Journal of Sociology, 10(2), 167-191.
    5.何书瑶,连俊翔,熊程心子(2023).不同专业考公“上岸”难度数据揭秘,这些专业机会为何较多. 上观新闻
    6.海南省2024年度定向选调应届优秀大学毕业生公告. (2024, April 22).

  • 王锡锌:政务数据汇集的风险及其法律控制

    一、政务数据汇集及其风险认知的必要性

    在国家治理中,面对空间、人口的巨大规模和事务的复杂性,政府治理始终面临“能力赤字”挑战。相应地,补强治理能力的渴望构成行政权力运作及转型的重要指引。当新的技术出现时,通过“技术赋能”便成为补强治理能力的重要选项。当下,在新一轮技术革命风起云涌的背景下,将数字技术引入政府治理,成为治理变革的一个潮流。我国的数字政府建设就是这种技术赋能逻辑的实践展开。

    在数字政府建设中,政务数据汇集是一项基础工程。当下,“一网通办”“多码协同”“跨省通办”等政务数据共享实践层出迭生,《全国一体化政务大数据体系建设指南》明确强调,通过全国一体化的数据共享架构规制社会风险、提升公共服务质量。在数字行政背景下,机构之间的数据传输不再是个别、零散、偶尔为之的互动,而是呈现为大规模、持续化、自动化的数据共享集聚样态。基于大数据的政治与经济效益,各类数据资源的汇聚成为“数字赋能”乃至“数据赋财”的基础性要素,一个个大型的专门数据库与信息共享平台逐步建立,且具有实时更新、持续扩容的能力,不断将汇集后的大数据转化为治理绩效与财政资源。

    政务数据汇集(aggregation),指各行政机关或部门将其收集的数据在不同行政机关之间传递、移转、汇集,使数据资源从分到合,构成整体性的政务数据。对此,一些政策性文件使用的概念是“共享”;我国《个人信息保护法》使用的概念是“传输”和“提供”;国外一些法律文件使用的概念是“转移”(transfer)。本文主要采用“汇集”这一概念,目的在于突出这种传递、移转背后从分散化到整体化的结果特征。在具体阐述中,出于行文方便和讨论语境的考虑,不与其他近似概念作严格区分。此外,本文不区分“政务数据”和“政务信息”两个概念,亦不区分“个人数据”与“个人信息”子概念。

    数据的汇集、共享和应用在对行政权进行赋能的同时,也塑造了日益庞大的数字技术系统。数据汇集活动虽然打破了数据孤岛,但也带来了数字化权力在不同机构间的复制、延伸和重组,改变了行政权运行的逻辑,很可能导致大数据的无节制使用乃至滥用。对此,已经有一些研究关注到了政务数据汇集的法律风险,对政务数据共享表达了担忧。不过,既有讨论仍存在一定的不足:第一,研究的精细化程度不够,往往将政务数据汇集活动作为一个宽泛的研究对象进行讨论,没有结合不同的组织法构造进行精准的类型化分析。第二,研究的全面性不够,主要关注政务数据汇集中的部分个人信息保护问题,对数据汇集活动带来的权责法定、权责一致等行政法问题缺乏关注。第三,分析框架的体系化不够,缺乏概念清晰、结构完整、体系融贯的法治分析框架,无法针对当下复杂的数据汇集实践制定有效的风险规制方案。

    本文尝试为政务数据汇集活动的风险控制和法治约束提供一个规范性、整体性的分析框架。首先,从数据提供机关与数据利用机关的法律关系出发,对政务数据汇集的基本类型和实践特征进行梳理。其次,在类型化基础上,分析政务数据汇集活动的法律风险,总结政务数据汇集给行政法治带来的现实挑战。最后,针对数据汇集活动的风险,进一步探讨相应的风险控制方案。

    二、政务数据汇集的主要场景及模式

    促进政务数据汇集活动的规范化和法治化,首先要厘清一个关键性问题:政务数据汇集的权力基础到底是什么?相较于单个机关自行处理数据的行为,政务数据汇集行为具备多主体、交互性的特征。参与数据汇集的机关之间的法律关系不同,对应的职权依据和基础也存在差异。基于数据汇集的行政权基础,可以将政务数据汇集活动分为三种模式:一是“模块式”汇集,即多个行政机关基于任务履行上的相通性,在业务协同过程中展开数据汇集;二是“旋涡式”汇集,即在特定管理目标的驱动下,职能上并不交叉的多个行政机关围绕某项数据整合需求而进行数据资源的汇集,汇集后的大数据成为数据利用机关履职的资源;三是“枢纽式”汇集,即基于组织法上的层级关系,上级机关可以调整、分配下级机关数据资源的流向与利用,尤其是通过特定的指挥枢纽机构来控制前两种汇集模式的具体运作。以下分别对不同模式数据汇集的运行逻辑及实践样态进行简要分析。

    (一)基于业务协同关系的模块式汇集

    随着社会生活的复杂化,在特定行政任务的驱动下,由多个行政机关参与、由多个分阶段行为组合而成的行政活动流程,已是现代行政的常态。这种多阶段的流程内含业务合作、权力制约、效果承接等行政协作关系。然而,组织的分散化设置在一定程度上导致了公共管理的碎片化、管辖权的叠床架屋和部门中心主义,削弱了公共部门的协同联动能力。当下“整体政府”建设的核心理念便在于:面向特定的行政任务和现实治理需求,对分散于不同部门和行政组织的职权进行统合,形成业务协作模块,使相关组织的政策产出保持一致。在这一过程中,政务数据汇集成为推动部门协作的关键因素。任务相通、职权关联的行政机关依照特定管理流程彼此协力、先后参与行政任务,各组织便可被视为一个整体性、一体化的模块的组成部分,此种场景下组织之间的数据传输便属于模块式汇集。此时,提供机关的数据处理活动与利用机关的数据处理活动具有高度的职责关联性,数据汇集可有效消除提供机关与利用机关间信息不对称、零散化等困境。

    公共服务一体化改革是政务数据模块式汇集的典型场景。以解决问题为出发点,将政府组织的重点放在解决问题上,而不是划清部门分工上,必然要求以行政任务为导向的业务归口、职能整合与数据汇集。例如,在福利行政领域,以公众需求而非政府管理为中心的理念越发凸显,组织间数据流通模式亦发生变革。福利行政覆盖生活的方方面面,具有广泛性和复杂性。几乎所有社会保障项目都需要运用自然人个人信息,如项目开始时需要大量信息作为启动基础,项目运行中也要对个人信息进行整理分析。不过,同一社会保障事项往往涉及多个机关的权责,这可能带来组织分散化引发的分割、隔离和烦琐问题。又如,退休待遇的认定可能涉及疾病情况、工伤认定、户籍身份等方面的行政专业判断,保障性住房的审批涉及房管、民政、工会等多个部门。在传统业务工作流程下,公共服务部门各自的信息系统既不兼容,也不共享,申请人针对同一事项,往往需要请求不同机关进行调查核实、开具证明,这不仅低效,而且容易诱发不同机关间相互抵触的风险。

    鉴于此,福利行政的一体化目标需要以机关间职能整合与数据汇集为手段。通过数据汇集和分析可以更精准地测算申请人的基本情况,帮助相关的行政机关作出更客观、理性的行政决定。在比较法上,德国《社会法典》(Das Sozialgesetzbuch)第十编第69条针对关联行政机关之间共同协力、先后阶段完成社会行政任务过程中的信息共享行为,进行了宽泛的授权。其背后的原理在于:虽然这些行政机关彼此之间不具有隶属关系,但其履行的社会任务具有相通性,相互之间的信息联通有助于提升公共服务质量、节约行政成本。因此,应当将履行社会行政任务的不同机关作为一个整体来看待,消除因为组织的零散化引发的信息碎片化。某一社会行政机关依照其法定职责收集储存的信息,若有助于其他行政机关的社会保障任务之达成,则不妨将信息收集与后续信息共享理解为整体目的之下而进行的处理活动,进而可避免个人信息保护法中目的限定原则的限制。从历史上看,20世纪80年代,德国联邦宪法法院曾提出“信息分立”的要求,强调政府不是由一个统一的“信息单位”而是由不同的部门组成的,应当强调信息权力划分的重要性,要求各个部门只能在自身权责范围内,基于特定的目的处理信息,从而约束政府的信息权力。但随着公共服务一体化与数字化进程的推进,“信息分立”不再是形式化地强调部门间的信息流通约束,而是允许跨部门、跨地域的行政机关基于相同的行政任务进行组织模块内的信息共享,以提高行政效率。

    类似地,在风险规制领域也出现了模块式汇集的现象。在风险社会中,政府面临对“整体性风险”进行规制的任务。传统的行政管理以各职能部门为中心,官员倾向于在各自管辖范围内处理问题,很难以整体视角解决易于诱发连锁反应的风险,在治理方法上缺乏系统性和全局性。以零散的行政机关应对越发复杂的风险治理需求,必然造成越来越多的管理缝隙被忽略或者无法被填充,形成“有组织的不负责任”。这对行政系统的协调性、灵活性提出了更高要求。风险行政法涉及复杂的事实和利益关系网络,相关行政决定必然需要具备“跨部门协作”和“综合”的特性。以重大风险设施选址为例,行政任务的履行是以选址为中心的规划、建设、运营、维护、监督等环节构成的过程,这可能涉及规划、土地管理、环保、电力多个部门的审批与监管,需要各部门协同作出综合性的决策,由此也形成了相应的行为流程与数据汇集。

    (二)基于资源共享目标的旋涡式汇集

    “行政一体”本身就蕴含了相互协助的理念。为了提升整体的行政效能,不同行政机关之间在必要的范围内共享资源,这符合效能原则。在数字化时代,政务数据越来越被认为是一种行政资源,而数据资源的非竞争性和非排他性,使不同行政机关可重复利用同一数据集。这一过程可以在整体上节约行政活动的数据收集成本。在此意义上,即便数据提供机关与数据利用机关并不存在直接的业务协同关系,基于行政资源共享和效率考量,也存在打破组织间数据壁垒的驱动。在行政实践中,这种汇集往往受到以实现特定管理目标为中心的任务驱动,将所有的相关数据尽可能汇集,以实现数字赋能目标。在这种数据汇集模式中,不同组织围绕作为中心的特定行政任务而“旋转”,不同组织的数据在模块式汇集基础上,可能出现跨模块传输,以服务于中心任务。相比于临时性、一事一议的行政协助场景中的信息分享,当下的旋涡式数据汇集呈现出整体化、日常化、规模化的数据传输样态。

    例如,在大数据警务中,为了获取关于涉嫌从事非法活动的特定个人信息,警务部门被授权从税收、福利、市场监管等不同部门的数据库中调取数据,并对汇集后的数据进行分析挖掘,得到精准的个人画像,以提升执法的回应性。类似地,社会信用监管以公民个人身份证号码和组织机构代码为单元,建立统一的社会信用代码和数字化信用档案,通过数据汇集来降低监管者与被监管者之间的信息不对称性,提高风险规制效率。除此之外,通过在不同数据库之间建立自动比对程序,社会管控也变得更加精确与高效。一旦管制对象在某项行政活动中登记了其信息,自动比对程序便可以进行相应的风险提示与预警。在欧盟,《关于在边境和签证领域建立欧盟信息系统之间互操作性框架的条例》授权签证、旅游管理、犯罪记录等不同数据库之间可进行数据比对,并设置了搜索门户、生物识别信息比对服务等互操作性组件。在欧盟立法者看来,即便不同数据库设置的最初目标并不相同,但基于识别特定管制对象的需要,可以打破数据库之间的壁垒,实现数据库之间的互联互通。

    又如,在行政许可领域,为了减轻相对人的负担、避免重复收集数据,很多职能上不存在交叉的行政机关之间也被明确要求进行数据传输。此类资源互助行为将原本散置于各处之政务数据迅速复制、移转、利用,提高了行政效率,同时减少了相对人数据提供之负担。我国很多的地方实践中,“一网统管”“最多跑一次”的管理和服务模式都隐含了政务数据汇集。以“一网通办”中的“无人秒批”系统为例,系统实现秒批的关键就是数据联通,可联通所有相关数据库,进行数据自动比对。各个部门虽然法定职责并不相通,但是仍通过数据汇集的方式进行协作。国外也存在此种数据汇集的趋势,例如,日本于2019年出台的《数字公共管理促进法》第2条第2项规定:“对于私营企业经营者和其他人员向行政机关等提供的信息,应通过相互合作,利用信息系统共享,不需要申请者提供与上述信息内容相同的信息。”

    (三)基于“统筹—指挥”关系的枢纽式汇集

    在前述两种汇集模式中,数据提供机关与利用机关之间并不存在层级隶属关系,政务数据汇集的目的是使数据利用机关更好地对外进行管理。然而,为了进行行政组织系统内部的管理和监督,实现行政内部系统的整体性和一贯性,也出现了政务数据汇集驱动力。这种情形下的政务数据汇集依赖于特定的指挥枢纽而展开,可称之为“枢纽式汇集”。

    一方面,基于行政上下级之间的层级关系,上级机关可以要求下级机关向其提供数据,以便于上级机关的决策、指挥和监督。此时,上级机关直接对下级机关享有“数据汇集请求权”,下级机关则负有数据提供义务。例如,为了监督下级交通管理部门,上级交通管理部门可要求其实时或定期提供数据。又如,新冠疫情期间多个地方实现了“县—市—省”三级数据汇集,上级政府分析数据后进行指挥和监督。另一方面,对于上级机关下辖的多个下级机关,上级机关可以设定下级机关之间数据汇集和利用的权利义务关系。此时,上级机关享有“数据汇集形成权”。如果数据提供机关基于部门利益、安全隐患、无明确法律依据等考量拒绝向其他部门提供数据,上级机关可以通过命令、绩效考核、问责等方式进行督促。如果提供机关与利用机关对数据汇集的范围、方式、频率、技术标准等事项产生争议,上级机关可享有裁决权。

    这种政务数据的枢纽式汇集,正成为各国关注的数字政府建设的“基础设施”。包括我国在内的很多国家都建立了专门负责政务数据治理的组织或机制,如数据局、大数据中心等,由这些组织作为权威的专责机构主导建立数据汇集技术标准,依法在政务平台上汇集、加工、管理各个渠道的政务数据。这些组织被赋予数据汇集事项上的考核权、裁决权,成为上级机关行使数据汇集指挥权的重要组织工具。在我国,各地区均在探索政务数据管理模式,建设政务数据平台,统一归集、统一治理辖区内的政务数据。通过政务数据枢纽式汇集,可以更好地实现政务数据“模块式汇集”“旋涡式汇集”的目标。就“模块式汇集”而言,通过“一网统管”的枢纽平台,在整合各业务关联部门数据基础上,上级机关可更好地确定处理跨部门复杂事件的负责部门(主办机关与协办机关),构建相应的操作流程,并发出处置指令。例如,针对群租房内食品经营的联合整治行动通常涉及城管、公安、市场监管、住建、市容绿化、卫生等多个专业职能部门的共同参与,以及街道、社区等基层工作队伍的配合,由“一网统管”在实时数据监测的基础上进行指挥和监督,有利于优化整体的流程衔接和部门协同。对“旋涡式汇集”而言,一些地方的“城市大脑”指挥中心要求各职能部门把数据接入指挥中心的信息共享平台,在此基础上,指挥中心对城市治理各方面大数据进行归集和整合,以特定的管理对象为中心建立相应的应用场景。例如,针对精神病患者底数难摸清、动态管理难、出事预警难等问题,一些地方的城市大脑指挥中心汇集卫健委、残联、民政、医保等部门的数据,形成个人画像后向警务部门发送预警信息,促进警务部门合理分配警务资源,排除安全隐患。当前,我国数字政府建设将政务大数据平台的建设作为重要任务,政务数据枢纽式汇集已成为数字政府建设中的一个基本趋势。

    三、政务数据汇集的法律风险

    政务数据汇集以及在此基础上的数字化行政,将对行政带来巨大的“数字赋能”效应。但我们也应当充分意识到,作为一种新技术驱动下的行政活动,政务数据汇集对行政法治原则及其要求也带来了很多挑战,隐含着不可忽视的法律风险。这些风险主要表现在以下四个方面:首先,政务数据汇集可能会削弱组织法上的权责法定原则,对行政活动权限合法性与行政内部权责配置框架产生冲击,引发“权责数定”的越权风险;其次,数据汇集可放大行政组织的权力,导致行政权与相对人权利之间的关系进一步失衡,放大权力滥用风险;再次,数据汇集过程中,原本分散化的个人信息被整合与集中,可能加剧隐私风险以及过度监控风险;最后,不同部门的数据汇集,可能导致行政活动的责任的模糊化,冲击原有的权责统一机制,甚至引发“数字避责”的风险。以下对上述问题进行简要分析。

    (一)越权风险:数据汇集可能冲击权责法定

    政务数据汇集对行政组织法上的权责法定原则带来了很大挑战,可能引发组织法上的越权风险。第一,组织超越管辖权获取数据的风险。依法行政原则首先强调的便是组织的权责法定,每一个职能部门享有特定的级别、地域、事务管辖权,组织的职权行使具有明确的边界。其中,“法定职责”既是对行政机关利用数据的授权,也是对行政机关如何收集和利用数据的法律控制。也就是说,行政机关只有基于“法定职责”,才能收集和利用数据。例如,《个人信息保护法》第34条规定:“国家机关为履行法定职责处理个人信息,应当依照法律、行政法规规定的权限、程序进行,不得超出履行法定职责所必需的范围和限度。”一些地方性法规,如《浙江省公共数据条例》明确规定:“公共管理和服务机构收集数据应当遵循合法、正当、必要的原则,按照法定权限、范围、程序和标准规范收集。”然而,受技术赋能与绩效激励等因素驱动,政府部门对数据汇集的需求和冲动与日俱增,超越“履行法定职责所必需”这一正当、必要目的而进行数据收集和处理的行为并不少见。学术界也有观点认为,政务大数据的管理和运营本身,很难说存在什么特定的行政目的。为将来可能的行政目的服务,似乎成为数据汇集行为的目的;但如果对每一个具体的信息管理行为预先设定目的限制,这不仅不现实,也将阻碍数字技术扩展优势的发挥。此种理念在实务中更为常见。一些地方和部门推动政府数据“应归尽归”“全面归集”,不同部门对归集后的大数据享有几乎不受限制的访问权和调用权限。在“模块式汇集”的场景中,行政机关可能仅以业务协同与配合为由,就进行数据汇集;在“旋涡式汇集”场景中,行政机关可能基于宽泛的风险防范和增进服务质量等理由而进行数据汇集。这些做法在很大程度上超越了部门法定职责的边界,冲击了权责法定原则。

    第二,借由数据汇集,行政机关可能变相地越权作出决定。不同的行政机关有法定的事务管辖权,即便在行政协作关系中,也需要严格遵循权责法定原则。政务数据汇集不能改变行政管理权和管辖权配置。但在技术操作层面,由于数据汇集与算法行政往往是一体的,数据的提供事实上对算法决策产生影响,有时甚至是决定性的影响,这意味着数据提供机关对自动化决策拥有了事实上的决定权。例如,在以“健康码”为代表的“码治理”场景中,行政机关依靠算法技术对多方提供的数据进行处理,并将计算处理结果直接转化为行政决定,便存在这种越权决策的风险。具体而言,虽然基于《传染病防治法》第9条的规定,居民委员会、村民委员会等基层自治组织可参与疫情防控管理,并基于联防联控的任务要求提供数据,但它们并不享有行政强制措施的决定权。然而,在决策流程被算法高度控制的情况下,基层自治组织向疾控部门提供的数据,如个人行程轨迹、核酸检测、人员交互等信息,可成为影响算法决策的关键变量,直接影响到算法决策的结果。在这种情况下,居委会是否实际上拥有了在法律上并不享有的决定权,这在组织法上值得关注。

    同样,在纵向关系上,上级机关或政务数据治理机构也存在超越指挥监督权边界,过度干预乃至取代受指挥机关的决定权的法律风险。行政一体下的层级分工,意味着上级机关的指挥监督并不能替代法定部门作出决策,而应通过制定工作流程、发布一般性指示、绩效考核等方式优化职能部门的行政决定,需要保留一线职能部门进行个案考虑和能动权衡的空间。然而,实践中的数据汇集机制在一定程度上制约了一线行政人员的情景化操作,束缚了行政人员依照法定权责分配而进行自由裁量的能力。例如,在城市大脑运行中,受指挥机关可能需要严格按照指挥中心事先设定的流程、标准和操作时限完成执法数据的共享与汇集,但由于前者提供的数据与后者设定的职权行使流程等直接挂钩,后者对数据汇集的指令本质上就可能成为指挥前者的具体行为,这在很大程度上会限制甚至剥夺前者的裁量权。由此可见,政务数据治理机构越过原有组织流程中裁量基准、执法指导性文件而制定的流程,可能将职能部门的决策权转移到自身,可能带来“名实不符”“权责不对应”等问题。

    第三,就宏观层面的国家治理而言,数据汇集机制也可能对央地关系产生结构性影响。例如,美国学者罗伯特?米科斯(Robert A. Mikos)指出,州政府向联邦政府汇集数据,这对联邦与州的关系产生了很大冲击,带来了很高的政治成本。联邦政府借助数据汇集机制将原属于联邦政府的数据处理成本转嫁给地方政府,违背了原本的财政分权架构。同时,数据汇集机制实际上要求州变相地贯彻联邦的政策而非州的政策,这将冲击州的自主权,也可能导致问责对象的模糊化。而且,向联邦汇集数据超出了被收集信息的主体的预期。州根据自身的权限收集数据之后,超出原有目的向上汇集,将会削弱公民对州的信任。布里奇特?法黑(Bridget A. Fahey)指出,这种“数据联邦主义”(Data Federalism)理念下联邦与州政府之间的数据合作,面临法治与民主的双重拷问。州与联邦之间成立了大量协调机构以推进数据共享,但对这些机构的控制机制存在缺位;虽然数据本身是非竞争性的,但数据汇集制度存在一定的竞争性,将会与既有行政管理体系产生冲突,改变原有的权力配置关系。

    虽然我国并非联邦制国家,但是宪法上和政府治理实践中同样存在此种央地关系,故应当考虑数据汇集机制对原有央地权责分配结构的影响。目前,《全国一体化政务大数据体系建设指南》《关于开展垂管对接数据落地使用情况统计工作的通知》都要求地方在纵向层面积极与中央数据库对接,以促进央地的数据联通。应当注意的是,基于权责法定原理,在组织法框架没有改变的情况下,上级政府既不应将自身事权单方面交由下级,也不应对下级政府的法定事权进行上收。虽然,在我国的单一制结构中,下级政府受上级政府领导,负有执行上级政府决定的相应职责,但对属于本地方的行政事务,上级政府的领导主要应体现为基于法定方式的督导,避免以直接方式干预。需要指出的是,全国政务数据一体化建设,可能对此种“地方政府双重负责”的宪法机制造成冲击。

    (二)滥用风险:数据汇集可能导致行政权聚合

    作为治理技术的“大数据”和“算法”,对传统的行政权具有明显的赋能效应。数据聚合不仅增加了行政权可利用数据的“量”,也提升了数据的“质”。在此意义上,在行政系统内部进行规模化、日常化、系统化的政务数据汇集,使原本分散在各个部门的数据进入一个个“大数据池”,这将极大地放大行政权的效能,将放大原本存在的行政权—相对人权利之间的失衡,并诱发行政权滥用的风险。

    首先,数据汇集机制存在数据污染和数据操控风险。在数据汇集机制中,如果数据利用部门可访问、获取与其职责无关的数据,那么其对可能影响其利益的数据就存在篡改、操控的冲动。尤其是,在目前比较普遍的政务数据枢纽式汇集场景中,存在可以管理所有政务数据的大数据机构,数据操控的风险具有转化为现实危险的可能性。由单一机构对政府治理方方面面的聚合数据进行管控,将放大数据操控等滥用风险,甚至诱发数字行政的系统性风险。例如,在“郑州部分村镇银行储户被赋红码”事件中,疫情防控部门之所以能够对储户赋红码,正是因为与疫情防控事务无关的金融管理领域的储户信息被汇集并且被滥用。

    其次,数据汇集可诱发程序违法风险。政务数据汇集后形成政务大数据,行政部门对大数据进行深度挖掘,并可能针对特定当事人采取监管和处罚措施,但当事人对这一过程难以获得知情权、参与权、监督权,这可能对传统的行政程序机制造成巨大冲击。政务数据汇集将极大地扩展行政机关进行监控和管理的能力,甚至无须通过传统的调查、检查等程序即可以获取监管和执法所需要的信息。在这种情况下,传统行政程序针对行政调查所设计的制约机制,例如表明身份、说明理由、听取陈述、申辩等正当程序机制,在很大程度上被淡化甚至虚置。这意味着,在数字行政的场景中,将存在“数据专断”和“数据懒政”并存的双重风险。程序违法的风险与数据质量风险相叠加,将导致决策失误越发难以纠偏,大数据中潜藏的结构性偏见也将不断固化。

    最后,数据汇集将放大数据隐私和安全风险。这首先表现为数据库受外部攻击的风险。政务数据汇集形成的大数据,往往也是网络攻击的目标。数据量越大,数据内容越重要、越敏感,就越可能成为攻击目标。事实上,所有的数据库都面临着“防御—攻击”螺旋式的技术较量。尤其是,一旦含有巨量个人敏感数据的政务数据集被泄露,直接会被外部不法分子滥用,其波及的受害者可数以千万计,随之发生的身份盗窃与人身伤害等问题造成的严重影响不可估量,由此,人身安全和财产安全乃至国家安全等利益极易受到侵害或威胁。另外,安全风险也存在于行政系统内部,比如对数据库的违规访问、违法下载、传输、泄露等。在数字赋能驱动下,当下的社会治理越发重视全域数据乃至跨区域的智能化管理,强调积极预防潜在风险,这在一定程度上形成“先分析数据,再寻找治理需求与治理方案”的“目的—手段”倒置。在此背景下,对公务人员调取和访问数据的制度约束较为薄弱。宽泛的数据访问权很可能诱发未经许可分析、泄露数据等现象。例如,公共场所监控数据、明星隐私信息等数据时有泄露,反映出数据滥用和隐私风险。

    (三)过度监控风险:妨碍公民人格自由发展

    数据汇集与数据分析技术相结合,将显著增强国家对个人的监控能力,进而有助于国家治理能力的提升。在政务数据汇集机制的实践运作过程中,原本基于特定法定职责和处理目的而收集的、分散的个人信息被跨部门、跨层级传输,存储在不同行政机关的个人片段生活记录被集中起来加以辨识、分类与整合。例如,在福利行政中,基于模块式汇集形成的全国个人社会信息数据库与特定的算法相结合,可用于判断申请者后续的行为模式与领取福利的效益,从而促进合理给付。这种人格画像还可以进一步被运用于税务与警务领域,服务于对个人的精准管控。

    不过,应当特别注意的是,大数据技术同时也带来对社会和个人过度监控的风险,从而对公民的社会人格带来深远影响。传统的人格和隐私以私人生活安宁与自治为中心,强调“独处式”“排他式”“秘密式”的隐私观;但当代的信息隐私观越发重视隐私的社会关系网络,强调个人在数据流动中免于被操控、窥探、歧视,不因数据处理活动而导致其人格发展受阻碍。在数字化时代,应当重视人格的“社会属性”。社会人格不仅有利于个体人格发展,而且对构建社会信任、维系数字化时代公共讨论的质量和公共理性具有重要意义。

    如果缺乏有效的约束机制,数据整合和数据挖掘技术带来的行政赋能效应可能导致个人成为“透明人”,个人将不断丧失免于受到窥探、监控的防御能力。这种状态会进一步产生社会心理层面的焦虑,引发“寒蝉效应”或个人的“自我审查”机制,甚至导致技术与权力融合而形成数字压迫。事实上,正是基于类似的担忧,美国1974年《隐私权法》(Privacy Act)原则上禁止行政机关间共享个人信息。但即便在美国,受到技术赋能驱动,行政机关规避隐私权法的规定而不断扩大数据共享范围的现象越发普遍。

    尤其需要注意的是,随着大数据技术的迭代更新,即便对个人数据进行匿名化处理,也不意味着可以避免上述风险。只要匿名化的数据足够精细和全面,通过分析比对,数据利用机关还是可以通过一定的反向工程来识别特定个人。对此,日本《个人信息保护法》第38条专门规定,行政机关对匿名信息的处理不得以识别此人身份为目的,也不得将匿名信息与其他信息进行比较。即便匿名化技术使得个人免于被识别,利用算法技术仍然可以对具有相同背景的人群进行分类化调控。其实,对大数据算法模型来说,最为看重的往往是个人数据聚合成的群体画像以及相应的群体分类管理。这意味着,当代数字化管理造成的隐私风险正从个体风险转变为群体风险。例如,荷兰政府曾经从互联互通的匿名化数据中分析出高风险违法群体,形成适用于该群体的管控对策。又如,在智慧城市建设中,物联网的使用使得个人手机上形成的位置、社交等数据与放置在城市空间的传感器的数据连接起来,这使得数字化管理系统可基于匿名化数据来进行管理和决策,在不需要识别个人的前提下,引导、管控具有某些类型行为特征的市民群体配合政府治理目标的实现。

    (四)避责风险:责任归属的模糊化危机

    政务数据汇集活动还将导致法律责任归属的模糊化,冲击原有的行政问责与监督机制,引发“数字避责”风险。行政法治关注针对特定机构及决策主体的“授权—归责”逻辑,强调权责对应,有权必有责。如果单个或少数部门违法或错误地处理了数据,责任追究链条相对清晰;但数据汇集涉及多地域、多层级、多部门,并且大数据与算法决策相结合,这将导致数字化行政决定的权责链条变得非常复杂,甚至模糊化,一旦行政活动出现违法并造成危害,责任追究将变得非常困难。

    首先,数据准确性问题的责任模糊化。对于数据的准确性,是数据提供机关负责还是数据利用机关应负责?如果社会主体基础数据(如户籍、社会信用)记载错误,则该错误将影响到多重法律关系,引发多重错误结果。进一步,政务数据共享后可能产生衍生数据,例如,数据利用部门对原数据进行标记与评注、与其他数据进行综合、处理并导出相应结论性数据,这些衍生数据与结论性数据将会诱发“马赛克效应”。相应地,对数据错误导致的行政决定错误进行问责将非常困难。比如,当通过多个传感器收集汇总后的大数据出现错误,并导致算法提供错误输出时,应由哪个主体来承担责任?

    其次,数据合法性问题责任模糊化。在模块式汇集与旋涡式汇集中,数据提供机关是否需要监督数据利用机关获取数据的合法性?监督需要做到何种程度?在枢纽式汇集中,基于统筹指挥关系,会出现原责任单位与政务数据治理机构间的责任重叠以及由谁承担主要责任等问题。

    最后,数据安全性责任模糊化。在多个部门都享有宽泛数据访问权的情况下,一旦出现数据泄露、毁损、篡改等问题,往往难以找到事故源头;即便找到,由于多主体都可处理数据,这将使责任因果关系变得非常复杂。同时,负责监督数据合规的部门越多,安全责任链条中的模糊地带和缝隙也就越多,数据安全风险就会相应地增加。

    综上可见,由于数据汇集涉及多部门、多层级数据的聚合,这将大大增加界定不同主体权责的难度,并使责任追究变得复杂化。这也意味着,在数据汇集场景中,权利救济的难度增大。传统隐私和个人信息侵权责任聚焦于特定的侵害,因此对侵害主体进行追责较为容易;但政务数据汇集发生在行政系统内部的多主体之间,侵权行为在哪个环节发生、由谁实施,这些侵权责任基本问题都变得复杂起来,更不要说因果关系分析了。事实上,数据汇集是一种由多重行为聚合的系统性、整体性活动,最终的侵害往往很难回溯和归因。例如,在数据枢纽式汇集中,如果政务数字平台接入的数据资源和部门机构越来越多,个人信息在众多部门间持续流动,多个部门持续的数据处理活动将不断提高对侵害行为进行问责的难度。

    四、政务数据汇集风险控制的进路

    面对政务数据汇集带来的风险,发展有针对性的风险控制机制已成为数字法治政府建设的当务之急。如果不对数据汇集的合法性风险、安全风险、隐私风险、责任风险等进行有效控制,则数据共享和汇集就可能背离法治原则,导致公众对数字政府建设的信任危机。

    数据汇集活动本质上是行政权的行使,因此应受到行政法治原则和制度的约束。对数据汇集活动进行法律控制,需要遵循法治价值的指引,针对数据汇集的各环节、各节点,提供相应的规制策略和技术,实现“数治—法治”的协同演化。

    (一)建立数据汇集活动的合法性评价机制

    在传统框架下,通常认为行政机关之间的信息流通并不具有支配性与外部性,只是一种权力行使的媒介,因而主要通过公文管理制度和职务协助制度进行管理,数据汇集所涉及的“媒介控制权”问题没有得到应有的重视。然而,在政务数据汇集场景中,数据汇集已成为一种重要的权力行使方式,可以实质性地影响其他组织的执法和决策,从而具有了外部性和支配性。在这个意义上,有必要将行政组织基于数据汇集衍生出的“媒介控制权”纳入职权法定框架。其核心理念是:数据汇集是服务于行政组织行使法定权力、完成法定任务的手段,但手段不应背离目的,更不能将手段当作目的。遵循这一逻辑,政务数据汇集活动的合法性控制应聚焦数据采集的合法性、数据共享的合法性、数据汇集程序的合法性,以及数据共享权责合法性四个方面展开。

    首先是数据采集合法性控制。从源头控制的角度看,应确保数据提供机关具有采集数据的职权依据,即采集行为只能在其履行法定职责所必需的范围内,不能宽泛地将组织负责的具体事务范围作为采集数据的职权依据。例如,仅仅为“维护社会秩序”“传染病防治”“提升城市治理智慧化水平”等宽泛目的采集数据,便存在采集数据必要性模糊的问题。

    其次是数据共享的合法性控制。一方面,应控制数据共享的必要性。在数据汇集场景中,应当明确共享数据的必需性,也就是对数据共享之目的、共享范围、所需数据的必要性进行说明。从目的看,数据的共享汇集须基于现实的、具体的目的,服务于特定的行政任务,不得漫无目的地汇集数据或是宽泛地访问数据。值得指出的是,当前以《政务信息资源共享管理暂行办法》《贵州省政府数据共享开放条例》为代表的中央和地方立法强调“以共享为原则,不共享为例外”,并将数据分为无条件共享、有条件共享、禁止共享的做法,值得进一步探讨。

    另一方面,应控制共享方式的妥当性,即明确数据共享、传输、汇集应当以安全和隐私风险最小化的方式进行。例如,在一些行政场景中,掌握数据的各政府部门只需使用专属接口,按标准流程回复相关信息、提供查询结果即可,不必和其他部门共享原始数据。由此,通过“数据可用不可见,原始数据不出域”的技术,只共享结论性信息,降低隐私风险与安全风险。又如,数据汇集是通过合并部门数据库还是实现不同数据库互操作性的方式进行,也值得斟酌。在模块式汇集中,由于数据提供机关与利用机关的业务联系较为紧密,统一建立专题数据库的需求较强;而在旋涡式汇集中,除了人口、法人信息等基础数据库的建设,应当审慎进行数据库合并,代之以分布式存储基础上单次比对、调取的方案,以降低数据隐私与安全风险。

    对数据共享汇集之目的、理由、方式的合法性要求,需要通过相应的立法性规则进行具体化,方可确保数据汇集纳入法治框架。对一些风险较高的数据汇集活动,应当具备法规范的明确授权。例如,对于大型数据库的建立与合并,应由较高层次的法律规范进行授权。在立法难以及时跟进的情况下,应采用完善共享协定(目录)、强化对共享必要性的理由说明等方式,促进数据汇集的合法化。

    再次是数据汇集程序合法性控制。政务数据汇集应遵循公开、透明、参与原则。政务数据汇集涉及数字政府的底层架构,无论是对数字行政风险控制还是信任构建而言,公民的知情、参与、监督都至关重要。例如,欧洲议会发布的数据治理的研究报告指出:应将对人工智能系统及其所依赖的数据生态的监督权授予公民社会和民主机构。这种分布式、与领域相关的监督基础设施,将是对目前集中式但负担过重的方式的补充。为了落实告知义务、提升透明度,对共享流程的公布应建立公告层次,通过类型化的、友好的公告机制,促进持续的社会参与和公众监督,为社会组织提起的公益诉讼与检察公益诉讼、公共领域的商谈提供基础。此外,行政机关确立共享架构中重要的组织、技术、管理流程,如“一码治理”“一网通办”系统中的信息处理流程与技术环节时,应当充分征询相关公众与专家的意见,避免行政机关在共享系统构建中对话语与权力的垄断结构。

    数据汇集程序中一个值得关注的问题是风险影响评估。对于数据汇集可能产生的滥用风险、安全风险、隐私风险等,应结合数据汇集的行为目的、数据范围、应用场景等具体指标,进行数据汇集风险影响评估,并根据评估的风险等级采取相应的风险控制措施。风险影响评估应该是动态的、持续的。对数据风险评估,立法层面已开始关注。例如,我国《个人信息保护法》第55条规定:“有下列情形之一的,个人信息处理者应当事前进行个人信息保护影响评估,并对处理情况进行记录:……(三)委托处理个人信息、向其他个人信息处理者提供个人信息、公开个人信息……”一些地方立法也对数据汇集中的风险评估进行了初步规定。

    最后是数据共享汇集的权责匹配。应防止数据共享汇集突破法定权责配置,避免数据赋能的工具有效性冲击权责法定的法治政府要求。政务数据汇集应当在既有的组织法框架中遵循权责法定原则进行,不能破坏法定职权的配置结构。对此,在模块式汇集与旋涡式汇集中,应当完善对算法模型的内部审计流程和决策应用程序,避免数据提供机关通过输入和编辑数据影响甚至直接决定另一个组织具体决定权的情形。在枢纽式汇集中,需要注意对政务数据治理机构所享有的“数据汇集形成权”的控制。虽然基于“整体政府”的功能主义视角,权责配置逻辑或许可根据治理任务的需要在政府各部门间进行合理重组,但这一流程仍然不能突破组织法的明确规定。换言之,数据汇集只是更有效地落实组织法权责的工具,不能反过来成为改变组织法上法定权责配置的手段。

    同理,在上下级之间的数据共享汇集的纵向维度,数据汇集应符合央地分工的权责配置框架。日本《地方政府信息系统标准化法》将数字政府建设基本政策法定化,要求地方政府使用的信息处理系统的标准原则上应由中央统一设定,从而便于跨地域数据汇集,相应的决策权则集中于中央政务数据治理机构。不过,这种做法给地方自治带来很大威胁,因此,该法同时规定,地方政府在保证有效利用信息及系统兼容性的情况下,可将自己因地制宜设计的业务流程和数据规范作为其政务信息系统的标准。日本经验表明,遵循宪法上的央地分权关系,应当将政务信息系统的标准化作为重要的影响因素。这对我国纵向关系中的数据汇集具有启发意义。从我国立法中“地方性事务”的内涵出发,政务数据汇集及政务信息系统的标准化建设应考虑地方的治理需求,使数据汇集和政务信息系统建设与央地关系的权责配置结构相匹配,防止政务数据汇集成为变相的“向上集权”手段。

    (二)完善数据汇集活动的监督与救济机制

    在对政务数据汇集法律风险进行控制的基础上,还需要进一步考虑完善政务数据汇集活动的监督和救济机制。前端的风险控制与末端的监督救济相结合,方可建立针对数据汇集活动全流程、全链条的法律控制。监督救济机制主要包括归责机制、监督机制、救济机制三个方面。

    1.归责机制

    为控制“数字避责”风险,需要明确数据汇集活动中的问责对象和问责标准。这需要根据权责统一原则,结合数据汇集的基本要素,如数据真实性、准确性、合法性、安全性等要素,来设定归责的条件,并界定责任承担主体。考虑到数据汇集活动的特点,启动追责的条件并不需要出现直接、具体、可见的损害,而是看数据汇集活动中是否出现了不应有的风险。换言之,问责的条件应从传统行政责任法所强调的“损害结果导向”转变为“风险规制导向”。

    具体而言,对数据汇集合法性问题的问责,可基于数据提供机关与数据利用机关之间的关系模式而进行类型化的归责。例如,德国《联邦数据保护法》对政务数据汇集区分了义务型汇集与请求型汇集。如果数据提供机关基于法律的规定而负有直接的数据传输义务,其应负责传输的合法性;如果数据是应数据利用机关的请求而传输,则数据利用机关应负责该行为的合法性,数据提供机关只需在形式上核实请求行为是否属于数据利用机关的权责范围,无须对共享的必要性进行判断。但是,如果转移的数据涉及重要的个人社会保障信息,则数据提供机关应该全面审查转移的合法性,包括必要性。与此同时,数据提供机关与数据利用机关之间应制定程序,对数据的二次共享进行控制。比如,数据利用机关应定期证明其已审查有关数据二次共享的做法。

    对数据汇集准确性问题的问责,一般认为数据提供机关负有更新和保障数据准确性的义务。例如,《广东省公共数据管理办法》规定,一项数据有且只有一个法定数源部门,数据提供机关需承担核实责任。不过,对于涉及数据主体重大权益的数据,不能完全免除数据利用机关的核实和核查责任。例如,在旋涡式汇集中,美国《隐私权法》规定,由于机构间共享的信息可能会被用于拒绝、减少个人福利或以其他方式对个人福利产生不利影响,因此数据接收机构必须制定合理程序来确保共享数据的准确性;如接收机构根据数据汇集比对而产生的结论对个人采取不利行动,其必须独立核实该信息,除非相关的数据完整性委员会认定该信息具有很高的可信度。而在模块式汇集中,如果多个部门处理数据的目标相同,则多个部门应被视为数据的“联合控制者”,共同负有数据准确性义务。

    对数据汇集安全性问题的问责,数据提供机关与利用机关间应设定既有条件下安全的个人信息传输方式,通过签订共享协议等方式明确个人信息保护和数据安全义务。在实践中,行政机关处理本部门数据往往以履行其自身法定职责为导向,数据处理也可以借助第三方技术,所用的技术标准未必统一,因此利用机关从提供机关处获取数据面临着比较大的数据质量与安全风险。此时,数据跨部门传输需要对技术、标准等问题进行统筹协同,强化政务数据治理机构的作用,完善适应共享传输方式的数据质量和安全保障机制。在数据传输后,数据利用部门应当采取必要的技术和组织措施,对个人信息进行特别保护和及时删除,防止非法访问、破坏、更改或未经授权的披露。数据汇集后,应由数据利用部门承担使用过程中的数据安全管理义务,但数据安全责任事故与数据提供部门或者提供基础设施的政务数据治理机构存在直接关联的除外。如果多部门归集建成的数据库发生了数据泄漏事故,则数据利用部门应承担责任,其他参与数据汇集的部门仅负有合理的注意义务。

    2.监督架构

    在政务数据汇集体制中,如何设计内部监督的结构、如何配置监督权,这是促进政务数据汇集活动规范化、法治化、理性化的关键性问题。目前,监督结构和权力配置问题都亟须探讨。从规范层面看,目前只有一些零散的规则。例如,《个人信息保护法》第68条规定了国家机关及其工作人员不履行个人信息保护义务时,由上级机关或者履行个人信息保护职责的部门责令改正。《数据安全法》则赋予各行业、各地区主管部门对数据安全事项的监管权。一些地方性法规或政府规章规定由“大数据主管部门”来承担政府数据治理的主管责任。应该注意的是,如果监督权过于分散,则会政出多门,也会导致权责不清、责任分散等问题。无论是数据分类分级管理,还是监管体制建构,都须处理好监管机构的内在权责关系,落实监督体制的公正性和连贯性。

    从保障监督体制的公正性要求看,需要贯彻职能分离原则,由专门的、权威的风险规制机构负责监督和问责。公共数据运营、数据产业发展,以及数据风险管控这些职能,不能过度集中于同一个公共机构,而应当适度分离,以确保风险规制机构的中立性。如果将推动数据汇集、强化数字赋能职责的大数据发展部门同时作为监督问责主体,可能会影响问责的动力及公正性。从保障监督体制一致性要求看,应当重点考虑将系统性理念和风险规制逻辑融入数据汇集系统。具体而言,可先由高级别、专门化的政务数据管理机构对各项业务制定规范和指引,进而在行政机关内设置专业职位,由专业人员对政务数据合规、合法汇集进行评估审查,最后通过负责数据汇集统筹管理的议事协调机构形成统一的风险管理标准。例如,在美国,《2018年循证决策基础法》建立了政府首席数据官的协调网络,由管理和预算办公室(OMB)设立首席数据官委员会,确立数据共享的最佳实践,促进各机构之间达成妥善的共享协议,不断评估技术解决方案,促进不同部门之间首席数据官进行沟通、交流和协调。

    3.救济机制

    政务数据汇集可能对隐私和个人信息权益造成侵害。从行政效能与个人权益保障相平衡的要求看,数据汇集法律制度应当充分关注救济机制建设。数据汇集包含了一系列行政机关处理个人信息的活动,应当根据不同情况将这些行政活动纳入行政救济法体系,完善相应的行政复议、行政诉讼和国家赔偿机制。第一,应当基于便利原则确定复议被申请人或诉讼被告。例如:在行政诉讼中,可允许个人选择数据提供机关、数据利用机关或政务数据治理机构之一作为被告;如果数据处理机关之间签订了共享协议,则可根据共享协议确定被告。法院可以根据审理需要,将其他的机构作为第三人。第二,应当促成内部监督机制与外部司法监督的衔接,缓解法院不了解内部共享结构及专业知识匮乏等困难。例如,针对机关间数据共享行为的司法审查,美国《隐私权法》规定了穷尽行政救济原则,先由行政系统内部的监督机构进行审查,明确案件争议焦点、技术细节等问题,便于后续法院进行法律层面的司法审查。

    五、结 语

    政务数据共享汇集制度是数字政府建设的基础设施和底层架构。随着我国数字政府建设全面推进,政务数据共享汇集在行政系统的横向和纵向维度已全面展开。与此同时,政务数据汇集活动对行政组织法、行为法、救济法等都提出了新的问题和挑战。数字政府建设应与法治政府建设深度融合,这需要我们对数字政府建设中的政务数据共享汇集制度的法律风险进行全方位认识,并发展相应的法律控制技术。

    数字技术与行政权力相结合催生的“数治”,是一种新的国家治理技术。数字技术本质上遵循工具理性的逻辑,这与传统的法治逻辑存在潜在的竞争和冲突,但数字法治政府建设的命题蕴含了将数字技术纳入法治轨道的规范要求。大数据赋能行政并非技术的免费午餐,其中涉及行政组织管辖权、数据处理合法性与安全性、人格和隐私、行政问责等众多法律制度的“再组织化”。在数字行政的新场景中,传统行政法的制度和控制技术需要随着行政的变化而相应地改进和调整。这需要在行政法治价值理念指引下,针对政务数据汇集活动的具体场景和新问题,改进相应的行政法控制手段和机制,建立针对数据汇集活动的合法性分析框架,并辅以有效的归责机制、监督架构与救济途径,从而将数字行政纳入行政法治框架,推进数字政府与法治政府建设的深度融合。

    本文原刊载于《华东政法大学学报》2024年第3期

  • 河南叶县:打零工的农村女人们

      “出事了”

      “下班了没?今天留着加班了?”2024年6月15日晚上约8点,河南省平顶山市叶县洪庄杨镇洪东村,49岁的村民杨广权给妻子发去信息。那天早上6点50分,张秀华像往常一样骑着电动车前往附近加油站,再和其他妇女一起坐车前往14公里外的昊锐牛肉厂打零工。下班后,她们将再一起坐车回到加油站,然后骑上电动车回家。

      张秀华通常在傍晚六点下班,有时也会加班到八点,甚至十点。她的儿子杨辉告诉本刊,每天下班母亲都会给父亲说一声下班了,有时父亲还会骑电动车去加油站接她。出事那天,一直到晚上十点多,母亲都没消息。杨广权又发消息叮嘱妻子骑电动车时注意安全,“电车上左边开关向下大灯就会亮。”依旧没有回复,电话也无人接听。直到夜里11点多,张秀华的电话才打通,接电话的是一个陌生人,说“出事了”。

      张秀华是在加油站被发现出事的。河南叶县联合调查组6月16日晚发布的情况通报显示,6月15日22时许,一辆车牌号为豫DJ103F的轻型厢式冷藏货车违规乘人,行驶至叶县洪庄杨镇境内一加油站时,司机发现车厢内8人窒息昏迷,不幸遇难。杨广权赶到加油站时,人已经被送往医院。“没人告诉我爸人在哪里,当时我爸也不知道人在哪里,他就开着车到处去医院找人,先去跑到了市里没有找到,又去跑到县里人民医院才找到。”杨辉说,那已经是凌晨1点。

      另一位出事妇女的叔叔告诉本刊,他从现场目击者处获悉,冷藏车有4.2米长,因为空间狭小,八个妇女回家时都是站着挤在车里。到达加油站后,车门打开,八人已经晕倒,嘴唇发紫。对方说,车里装着牛肉和大量保鲜的干冰,“可能是干冰泄漏导致中毒”。车上除司机外,总共有10名去务工的妇女,有两名坐在副驾驶座上,幸免遇难。出事后,她们和司机一起把后车厢的人抬到地上。

      事发加油站位于兰南高速平顶山站出站口西500米处,濒临建设路省道,两侧是洪庄杨镇下辖的多个村庄,八名遇难者最小的41岁,最大的53岁,分别来自北侧的曹李村、白庄村、石王村,东侧的洪东村、洪西村,家距离加油站最近的约1公里,最远的也就3公里。附近的一位村民孙兵告诉本刊,洪庄杨镇属于漯河市、平顶山市、许昌市三市交界,距离平顶山郊区也有十四五公里,但镇上一直没有公交,居民去市区,必须先骑车去距离洪庄杨镇5公里的公交站,转坐公交。因此对于去周边城区打工的女人来讲,能够解决交通问题是她们选择一个工作的重要考量条件。

    女人们去的昊锐牛肉厂,位于平顶山市高新区。昊锐牛肉厂创办于2020年,老板是朱永昊,公司主要负责熟牛肉、鸡肉等肉制品的批发、零售。一位常从朱永昊处进货的熟食摊老板告诉本刊,昊锐牛肉的价格在40元-60元之间浮动,同等质量下,常常比别人每斤便宜一两元。一位认识朱永昊的人告诉本刊,朱永昊家住平顶山市区,原先是大学生,头脑灵活。通过线上直播、线下批发零售兼顾的销售模式,他勤勤恳恳一步步扩大销售量,这两年眼看着越做越好,“出事肯定不是有意的”。

      洪东村村民李华告诉本刊,去年,昊锐牛肉厂负责接送工人的车辆是一辆七座面包车。司机是洪东村一位在牛肉厂打零工的妇女,牛肉厂老板付给她一天50元,让她早晚拉着六七个工人往返厂里。今年春节前后,该女工开车在上下班途中发生剐蹭,但老板拒绝赔付,“一气之下她就不干了”。之后,女工们就开始乘坐牛肉厂的冷藏车上下班。杨辉告诉本刊,母亲以前也坐过冷藏车回家,但都是空车,而那天的车里拉有牛肉,使用干冰保鲜。

      负担重的家庭

      51岁的张秀华在八名出事的妇女中年纪算大的,她两周前才去牛肉厂干活。在之前,她在离家一两百米的一家鞋面加工厂打零工。儿子杨辉去过那家鞋面加工厂,厂里有三十多个工人,每人一台缝纫机,旁边堆放着布料。空气中弥漫着一股浓重的塑料味,几十台缝纫机同时开动,噪音很大,母亲一坐一天,手常被扎破。他记得有时六点下班后,母亲还会带回来一大包手工活。杨辉说,缝纫机缝制的鞋面都是链接在一起,中间全是线,需要一个一个剪开,然后按照顺序摆放、装好,第二天给厂里带回去,一包几十块钱,一个月挣一两千块钱。

      牛肉厂的工作是熟人介绍的,说“工资更高”。牛肉厂采用计时工资,从早上七点工作到晚上六点,一天100元,加班一小时给20元,如果加班到10点,一天能拿180元,抵得上在鞋面加工厂干两天。杨辉的母亲想多赚点钱。

      杨辉父母原本住在洪庄杨镇下面的农村,一直在镇上给人安装门窗,杨辉读初中时他们才搬到镇上租房住。前几年,家里攒了点钱,在镇上买了一套一百多平的两层楼房,一楼改成一大一小两间门面房卖门窗,二楼居住。买房花了50多万,首付25万,需要还房贷。杨辉22岁,还有一个妹妹,两个人这些年读书也花了不少钱。他过两年就要跟女友结婚了,按照本地习俗,彩礼在二三十万之间。

      安装一个窗户,要用绳子绑住窗户从窗口处徒手拉上去,若安装门,则需要爬楼抬上去,有时是二三楼,有时是八楼,“顶着大太阳干活,汗都是从脸上往下滴的,衣服全湿完”。虽然辛苦,对于这个能维持一家人的生计,杨辉的父母很知足。但疫情之后,生意惨淡,家里的收入减少了很多,母亲开始频繁打零工。

      洪东村41岁的刘英可能是此次遇难者中年纪最小的,负担却很重。村民李华告诉本刊,刘英的家境在村里属于中下,绝大多数村民早在十年前就盖了楼房。直到去年年初,刘英家才推倒了一直住着的三四间瓦房,盖上了两层小楼,总花费估计三四十万。李华听说,其中不少是向亲戚借的。

      刘英家里两个孩子,都在读书,丈夫常年在外地打工,有十几年李华都没见过对方。去年,因为工厂效益不好,工资减低,刘英丈夫回来了。今年他花两三万买了一台二手收割机,想着去南阳、驻马店帮忙收割麦子赚点钱,但一个收割季下来,“一万块钱都没赚到”。李华在村里收购粮食,他说,今年许多村民跟刘英丈夫一样想开收割机赚钱,“地里到处都是收割机,以前一台收割机下到一个村里,至少能干个一两天,收割三百亩左右,但现在二三十亩的地里,有三四台收割机在收。”而且,今年小麦受到热干风影响,不是整片成熟,而是这一块那一块,面积小而分散,“费油”,收割机师傅需要不停地找活干,“原先一天能收割一百多亩,现在一天五十亩都难。”

      从城市回来的女工们

      孙兵是洪庄杨镇的一个村民,他告诉本刊,十多年前,洪庄杨镇的女人们基本都还在外打工,他的老婆李娟是个例外。2008年,因为婆婆偏瘫在床,李娟从工作了四年的中山市某玩具厂辞职回家照顾,从此开启了打零工的生涯。那时洪庄杨镇附近几乎没有企业。李娟在村里一家私人木板厂干活,厂子里只有七八个人,木板厂的活耗费体力,要把切割好的木板,一块块搬到架子上晾晒,晒干后收回、打包,挣得不多,李娟咬牙干了一年,后来去平顶山市区一家饭店当起服务员,最终因为交通不便作罢。

      2010年以后,洪庄杨镇开始有不少企业入驻。企查查显示,2012年,两家小型制帽厂落地洪庄杨镇观上村和石王村,2015年,5家鞋面加工厂在镇上开业,规模从二三十人到上百人不等。2018年后,在当地政府返乡创业政策激励下,更多企业落地洪庄杨镇,其中包括王凯的鞋面加工厂。王凯早年间一直在广东鞋厂打工,后来升为主管。2018年,在洪庄杨镇,他建立了700平米的厂房。王凯说,他建厂时,镇里已经有了三十多家工厂,现在已经有五十多家,主要承接来自郑州、江浙和广东等地的鞋面、服装、帽子、玩具等代加工。

      随着工厂陆续落地,越来越多女性回到老家。王凯的厂里,几乎所有的工人都是附近村庄的妇女,四五十岁的妇女是主力,占比超过一半。一位在村里开小卖部的居民说,这跟村里人对孩子更加重视也有关系。以前孩子都是自己走路、骑单车去学校,现在都流行接送,爷爷奶奶骑三轮车不安全,母亲只好回家照看。王凯说,很多母亲会在家陪读至孩子高中毕业,再想出去,年纪已经超过45岁,外地大工厂也不要了。

    李华说,除了进工厂外,四五十岁的妇女们也很难找到其他赚钱的路子。以洪东村,洪西村为例,两村有约4000口人,人均9分地,一个家庭约4亩地,且多数土地已经流转出去,种植西瓜、草莓、桃子、小麦等,剩下的一点点土地基本是家里的老人在种。老人也去农田里帮忙摘西瓜、浇水、除草、打药、掐苗、梳果,一天60元-70元,收入低,年轻点的人也不愿意去。

      去加工厂是四五十岁的女人们最好的选择。她们很能吃苦,去哪个厂主要是看谁家工资高,很多人会辗转于不同的加工厂。在去牛肉厂前,这次出事的白庄村的一个妇女曾在王凯那里干了一年多,王凯告诉本刊,今年42岁的她非常踏实能干,“给她什么活就干什么,从不挑活”。20天前,有熟人劝她去牛肉厂上班时,王凯还曾极力挽留。

      6月16日,在外地工作的杨辉是凌晨三点半赶到医院的。一张白被单从头到脚将母亲盖住,他不敢也不忍看母亲最后的样子。他从小到大没见过父亲哭过一次,那天,父亲“哭了好多好多次”。父亲不断地絮叨,要是出点车祸,落个终身残疾,他也愿意一直照顾着,“他觉得那样都是高兴的。”他也想念母亲,回忆着关于母亲的点点滴滴。小时候,晚上睡觉怕吵醒孩子,母亲都是光脚给他们盖被子;母亲吃饭做了一大桌也都只挑菜吃,一给她夹肉就说牙疼。干活受伤,她也从不谈起。杨辉去年刚毕业,在健身房找到一份工作,收入不稳定,手里没钱。5月11日的母亲节,他没钱买礼物,他跟母亲说,“等到下一个母亲节,一定把礼物补上。”

    文章来源:三联生活周刊;文中人物均为化名

  • 甘绍平:现代伦理学中利他主义的地位

    用理性科学地观察世界的方式取代基于宗教政治权威的观察方式,构成了启蒙运动呈现的全新学术光谱上的重要亮点。作为启蒙运动的重要代表,与现代自然科学理解的奠基者培根、笛卡尔、伽利略保持着私人关系的霍布斯,用自然科学的立场看待哲学,基于一种自然科学的视角来解释作为人际共同生活普遍规则的道德,便是一件顺理成章的事情。在霍布斯的眼里,自保的欲求构成人性的基础,所有的人均寻求快乐并恐惧死亡。他人对于自己则是危险者,自然状态中每一个人都生活在相互的恐惧之中。在自利主义构成所有人类行为原始动机的背景之下,利他主义倾向对人们而言仅仅是从属性的,是从自利主义中导引出来的现象。对他人困苦的同情源自对自己也可能遭受同样困苦的想象,行善取决于对行善者本身带来的好处,所有自愿善意的行为都有自利的目的。总之,一种对同胞自然的善意无法作为人类社会的基础。自利主义是人类行为的唯一原始动机,如同石头滚动的力量那样自然而然。

    作为近代伦理思想的一位开拓者,霍布斯的理论受到来自各个方向的抨击。一是洛克批评他对君主绝对地位的推崇。在霍布斯看来,人们建立社会的动机并不在于相互的善意,而是在于互相的恐惧。由于强调社会稳定对人的生命保障以及有创造力活动机会的重要性,霍布斯赋予君主以绝对的权威,从而限制了个体的行为空间。而洛克及后来的诺奇克则有别于霍布斯,他们特别重视个体所拥有的前社会的权利,自然权利构成国家权威的基础与保护对象。二是剑桥学派反对霍布斯的物质主义。作为一种神学—哲学思想传统,剑桥学派奉行柏拉图主义,试图将道德原则证明为是一种永恒的、根植于人与神的精神之统一体中的理念,如同数学公理那样普遍适用。三是人们批评霍布斯的契约论排除了对弱势群体的道德顾及。霍布斯是伦理学四大理论流派之一的契约论的开拓者,契约论为近代以来人际道德规范的论证奠立了崭新的基础,它将所有人类合作行为视为一种契约,而道德归根到底就是一种合作行为,故是一种契约道德。“十七和十八世纪的经典契约论关涉到的是国家。国家是作为一种原始的契约被构想出来的。与此相对应的是新近的契约理论,将所有的集体行为设想进契约,即自愿合作的范式里,不论关涉到的是国家、合作社或社团。”[1](P33)契约论的出发点首先是自身的利益,其次是对与他人之间相互利益的认同。在这里对等性是最重要的,任何一种援助的义务都是基于对等的行为主体间的关系之上的。“对于一位契约主义者而言,相互性是重要的。对于他来说,只有借助于放弃某物而同时赢得某物,才是理性的。有关援助的合约只能与在需要时也能提供援助者签订。对于契约主义者而言,单方面的援助承诺简直就是非理性的。”[2](P21)在契约论看来,道德义务仅存在于契约订立者之间。这里便呈现出契约论的优点,即道德义务由于背靠相互性便拥有一种可靠的支点。“契约主义者认为缺乏现实的相互性可能的援助之承诺完全是错误的。”[2](P29)但契约论所坚持主张的援助的义务须以对等性为根基的立场却也暴露出其缺点,即那些不能提供对等贡献因而无法进入契约签订的人——老弱病残,便得不到道德的顾及,被排除在受援者的范围之外。

    这样一种批评使人们有机会对霍布斯的契约论伦理形成一种更加整全的理解与把握。契约论的确是近代伦理学的一个巨大推进,它通过将道德义务奠立在自利的基础之上,因而对宏大的陌生人社会人际道德关系的底层逻辑提供了极有说服力的论证。以自利主义为基础的对利他主义的说明,也拥有令人信服的力量。但是,霍布斯式的人的图景显然并非完善,人与人之间本质上并非仅仅是相互对立的,人类既有生存竞争之本能,亦有相互帮助的现象存在。人的行为动机中当然有自利的基底,但也不乏人道善意的倾向和公共精神。利他主义既可以从自利主义、对等性、相互性中得到论证,也可以从人际其他联系因素里获得说明,且这种奠立于人际其他联系因素之上的自利主义,特别适用在那些无法进入契约签订的弱势群体身上,他们也可以且应当受到利他主义的道德顾及。这种所谓的人际其他联系因素,就是人类的同情能力,对他人境遇的怜悯、共情与感同身受,它们与自利的权衡一起构成了人的行为的一种驱动力。“恰恰是同情能力或如同叔本华所言的怜悯,才使得联系以及人类共同生活成为可能。”[3](P83)他人并非像霍布斯所讲仅仅是敌人或竞争者,在如休谟、亚当·斯密、叔本华这些人看来,他人反而有一种积极的作用。“因为通过他人所唤起的情感起着行为激发的作用,除外他人拥有一种对自我视点进行道德校正的功能。”[3](P83)正是这样一种认知,使英格兰、苏格兰在霍布斯之后出现了一大批道德哲学家,他们从同情之感中引出道德义务,坚持主张情感在道德判断中处于一种重要的地位。一个完整的人的图景,不仅有理性自利的色调,也有情感善意的闪光。他们试图用一种奠立在同情之感基础上的利他主义取代或超越霍布斯的自利主义以及建构在自利根基上的契约论式的利他主义。

    一、情感伦理基础上的利他主义

    感觉伦理的真正起源是坎布兰,他指出道德的基础来自感觉与经验。在他看来,霍布斯有关自然状态的构想是荒谬的。人从本性上讲是群居性的、有善意能力的生物。“人性法则要求每个人应当既促进自身的福利,也应促进共同的福祉。两者不可分割地联系在一起。而人的具体的心灵状态产生于其自利与善意倾向间的冲突之中。”[4](P16)沙夫茨伯里认为,人性基础由三组自然情感构成:自利情感(自保本能)中产生自利主义,社会情感(族群保持之冲动)中产生有利于公共福祉的行为,非自然情感(狭义上的激情)中产生出的行为无益于个体和社会。道德上好的行为基于自利与社会情感间的平衡,且抗击非自然情感。与坎布兰类似,巴特勒也认为人的心灵生活中除了针对个体的自爱之外,也存在着针对社会的善意。故人的心灵生活是一个有机系统,其中不同的倾向和原则可以有区别,它们存在于一个等级性的关系之中。因此,“玄想性的谬论在于认为,我们在行动中没有对他人的关照与顾及,我们是个体性和独立的,我们在本性中没有对我们同胞的尊重,这种尊重转变成行为与实践。同样的谬论在于认为,一只手或随便某种肢体对其他肢体或整个身体没有自然的尊重”[4](P17)。承袭了沙夫茨伯里的立场并通过提出“最大多数最大幸福”公式从而影响了功利主义的哈奇森,既反对霍布斯自利主义的道德心理学,亦反对洛克的理性主义,而是建构了一种独有的道德感理论。在他看来,人除了味觉、听觉等尽人周知的感觉之外还存在着另外的感觉,即美感与道德感。所谓道德感,是人们所拥有的一种与生俱来的对道德与不道德行为的判断能力,正如与生俱来的审美价值感一样。道德感关涉人性原则,是人拥有利他主义动机和素质并阻止敌视他人之倾向的根源。哈奇森从道德感中导引出道德行为,坚信情感构成道德判断的基础,而理性在道德判断中仅起次要的、支持性的作用。

    休谟明显受到哈奇森的影响,并阐发了自己的道德感理论。与霍布斯类似,休谟也是基于自然科学的视角来看待社会现象。他认为人的行为与自然界发生的其他现象没有根本的界线。道德根植于我们的感觉,快乐与痛苦感觉具有一种重要的价值,它们强烈地影响了行为的愿望。所谓拥有德性意识,只不过是某种感受的满足。因而道德感并不能归溯于自爱原则,而是体现为一种普遍适用的倾向,因其本身而值得,就如同天体运动那样无可改变。道德来自情感,而非从理性理由中得到导引。理性仅是感觉的奴隶。但休谟也承认,同情作为一种心理机制,其发生作用取决于时空及情感远近等复杂因素。这就决定了同情因对象的不同而有所差异。对特别亲近者的同情体现为深度的偏爱,对陌生人则表现为一般的善意,对当事人的行为约束性要弱得多。休谟本人可能没有意识到,这种体认动摇着人们对同情作为必然的道德义务的信念,由于缺乏普遍适用性,同情便难以构成伦理学之基础。休谟的学生亚当·斯密的道德哲学存在着复杂的面相。一方面,他承认自利主义本身拥有很高的道德价值,因为它驱动了有益的经济行为,通过一只看不见的手在无需知晓个体意图的前提下便使整体的福祉得以推进,使社会的繁荣得以实现。另一方面,在《道德情操论》中,同情又奠定了其利他主义伦理学体系的基础。“在斯密的道德观念中同情构成了人的一种自然的与他人感同身受的能力。”[3](P83)这种与自利主义原则毫无关联的同情为道德行为提供了动力,因而发挥着重大的社会功能。

    德国最著名的情感主义伦理学家是叔本华。但与休谟、亚当·斯密使用的中心概念同情(Sympath‐ie)相异,叔本华的中心概念是怜悯(Mitleid)。叔本华认为,霍布斯没有注意到除自利主义之外人类也被赋予了另一项原则,即天生的视其同类之痛苦后的不适,这项原则目的在于使自爱、贪婪在某种情况下得以弱化,使建立在自利之基上的激情得到遏制。怜悯根植于人的本性,是每一个人对世界认知的直接体验,构成全部伦理学最高原则的基础。自利的动机没有道德价值,而怜悯则是自然状态下超越了所有道德、德性的普遍法则,构成了道德行为的根本动力。在他看来,人类拥有两种根本德性:一是自由的正义(不伤害任何人),二是可敬的仁爱(帮助所有的人,只要你能够)。所有其他德性,不论理论上还是实践上,均导源于此。这两种德性均根植于人的自然的怜悯之情。尽管人的行为也有其他的动机,如自利主义或恶意,但只有怜悯才是具有道德价值行为的唯一源泉。对叔本华怜悯之情感伦理学最激烈的批评来自尼采。他认为把他人痛苦加在自己身上只能会增加自己的痛苦。怜悯导致当事人的病态及抑郁,因而对个体及个性的发展是一种阻碍与威胁。

    尽管受到尼采的猛烈抨击,情感伦理在后来并没有停止发展的脚步,特别是建立在情感之基的对利他主义的探究。孔德号称是“利他主义”概念之现代含义的首创者,他认为利他主义即为他人而活,未来社会应建立在一种普遍的利他主义的基础之上,而不应仅由理性支配,倡导“感觉生活的机制化”,以“人性之宗教”为形式。这一观点得到费尔巴哈的支持。费尔巴哈特别强调爱的情感,倡导用人类之爱取代上帝之爱。以感觉为基来建构利他主义也是冯特道德理论的特色。冯特认为对同类的同情感受是人类共同生存的基础,没有相互理解、相互牺牲、相互强烈持久的约束,人类社会便无法存在。就此而言,只要有社会便会有利他主义,每个社会都是一种道德社会。同时,冯特也不否认自利主义存在的事实,并没有把道德与善意及对同胞的同情完全等同起来。“最合宜的利他主义的福利道德,既不是在纯粹善意的倾向中,亦不是在纯粹的自私的倾向中,而是在双方和谐的平衡中看到道德的本质。”[4](P61)利他主义与自利主义,“严格说来,这两种行为驱动从一开始便存在于每个人的意识中”[4](P64)。

    以上我们依照时间线,梳理了霍布斯奠立在自利主义基础之上的契约论伦理思想提出之后,情感道德理论在英格兰、苏格兰及德国的大致发展。这种情感道德学说建构的目的在于为人类的一种利他主义立场和倾向作出论证。在情感道德理论的阐述过程中,我们发现有三个概念处于贯穿始终的突出地位,这就是怜悯、同情和善意(Wohlwollen)。怜悯与同情具有很大的相似性,都有表达对他人痛苦的感同身受之意。但与同情相比,怜悯更具自然性、直觉性,而同情的内涵则更丰富,适用范围也更广。亚当·斯密对怜悯与同情之间的差别作了一个区分:“怜悯与体恤(Erbarmen)是适用于描绘我们对他人痛苦的同感的词汇。而同情,尽管其含义最初或许是一样的,今天却可以无需巨大违背语言使用地运用于,标识出我们与任何种类情绪的同感。”[4](P29)

    与怜悯仅在叔本华道德思想中是一个占主导地位的概念不同,同情则构成了霍布斯之后情感伦理学派普遍重视的范畴,或者说是这些代表人物情感理论中的核心。同情是对他人状态的设身处地式的体验,是一种与自利主义、理性主义立场无关的、对他人苦乐之感同身受的善意的情感。同情有如下特点:第一,按照达尔文的观点,同情是人类社会性直觉的本质性部分,在进化中构成起决定性作用的基石。第二,按照沃德的观点,同情是人的道德本性的基础,在此基础上承载着为今人称为人道的所有的人的德性,如真诚、善意与正义。故同情构成道德体系的中心,使一种客观的道德判断得以实现。第三,按照休谟、亚当·斯密的观点,同情与自利主义无关,而是一种原初的无我之感受。第四,按照孔德的观点,同情与普遍的爱、善意、人性甚至是同义的,同情构成人的情感系列中的最高阶段。第五,按照沃德的观点,同情在不同的对象里存在着程度级差,人们的同情感首先是针对其孩子、近亲,然后扩展到氏族、种族,最后到其他动物。

    善意是一个比怜悯、同情更为普遍适用的概念。早在古希腊,亚里士多德就把善意定义为一种为了他人本身之缘故而期待他人之好的态度。善意与爱情相类似又有所不同。爱情伴随着心灵的波动与感性的欲望,且也仅是在可信的交往中才可能产生;而善意却没有这种心灵的波动,它完全可以突然出现且针对陌生人。在基督教伦理中,善意体现在对普遍的近爱之要求上,也包含有团结的意识和怜悯的情感。到了近代,霍布斯挑起的有关善意问题的争论构成了英国道德哲学的一个焦点。霍布斯道德理论的全部基础就在于人的自利的本性,所有人类其他情感都是从自利推导出来的,善意也不例外。它属于一种以自利主义为底层逻辑的从属性的感觉,目标在于在他人面前提升自己的力量与荣耀。故善意不可能成为人类社会的道德基础。霍布斯的这种立场理所当然遭到休谟等情感道德哲学家们的坚决反对。休谟视善意与同情为意义等价物,同情是人性中固有的存在因素,善意亦是如此。同情与善意构成其道德理论体系中的基本概念。在休谟看来,善意分普遍与特殊两类。普遍善意由对一般的人的苦乐的感同身受所激发,这种善意亦被称为仁爱与同情,是基于一种无需证明的普遍体验,关涉的是人类的利益。特殊的善意则是针对特殊的人际关系,关注的是相关方的利益。与休谟相类似,叔本华也是将善意与怜悯等量齐观。“在他看来怜悯是‘人类行为的基本驱动’,该驱动以异在的福祉为意向。”[4](P98)情感伦理学家的两大巨头休谟和叔本华均将善意与同情或怜悯完全画上等号,这体现出情感道德学说中比较普遍的一种认知:即布坎兰认为的善意作为以人的共同福祉为指向的情感构成了人的一种基础本性;巴特勒所说的善意是人性的一种普遍原则,它促使当事人在无关个体自身及情感的前提下,极大化普遍的幸福;以及哈奇森的善意是一种以普遍利益为依归的“安静的欲望”,从中导出无私的行为。

    以上,我们对作为情感道德哲学主要概念的怜悯、同情与善意进行了简要的阐释和分析。怜悯与同情具有很大的相似性,同情与怜悯又可与善意等量齐观。就此而言,这三个概念在含义上存在着明显的贯通性。当然,其中的同情与其他两者相比则处于更为核心的地位,被普遍视为一个具有广谱适用性并体现情感伦理之精要的概念。“同情”概念的崛起与霍布斯提出契约论之后普遍受到反对的形势相关。人们反对霍布斯,是因为霍布斯把道德奠立在自利主义基础上之后,利他主义便失去了得以强有力辩护的支撑。而情感哲学家们坚信,利他主义之所以存在是由情感激发的,同情构成利他主义的核心动因;正是对他人痛苦的感同身受,才促使当事人唤起对他人困境的责任感并倾向于作出援助的举动。因而利他主义道德行为并非来自利己的动机,而是取决于对他人的情感。“情感对于道德行为并非是无关紧要的,而是建构一种道德判断重要的组成部分。”[3](P84)

    众所周知,情感伦理的产生与发展对整个道德哲学的演进具有很大的促进作用。一方面,它激发了康德义务论的建立,康德正是在与情感伦理的争论中阐发出自己的道德理论的;另一方面,它也有益于边沁和密尔功利主义的兴起。当然,情感伦理最大的贡献还在于它特别适用于对近亲社会道德关系的理解与解释。生活在近亲社会,即生活在所谓小组结构属于人的无可改变的状态,谁也离不开家庭、友人、同事关系。在这种关系中,道德呈现出非对等性与非对称性,奠立在情感之基上的行为主体的利他主义、亲社会的内在动机发挥着主导的作用。父母与子女的关系最清晰地反映出了这一点。父母基于强大的自主性并怀着巨大的善意生儿育女,当然他们期待着后者未来会有的回报。子女基于强大的义务感也理应不辜负父母之恩。但所有这一切均建立在当事人内在的情感之上,包括良心、善意、仁慈、报恩等复杂的感受,在理论上独立于任何外在的行为制裁。作为情感的内在动机对某些人构成巨大牢靠的行为驱力,对另一些人则是随情境波动的可变因素。故父母的期待若仅仅是建基于子女回报的责任感之上,就会面临不可预知的风险。

    由此可见,以同情之感对利他主义作出论证与辩护,虽有其明显的力度和优势,但也显露出量与质上的缺陷。从量的层面来看,基于同情之上的利他主义论证仅适用于近亲社会,而不大适用于宏大的陌生人世界。情感的强度随着距离的加大而递减,就像水的波纹那样四散变弱。假如道德行为不是靠对原则的遵循,而是靠具体的感受,则行为的质量就完全取决于个人关系的远近而呈现出不可靠的状态。从质的层面看,若利他主义基于同情得以论证,那么这种道德行为便难以坚定持久。因为情感的弱项在于太强的主观性,无法提供一种普遍适用的人类道德相处的稳定标准。这一点康德最有体会。他一开始也深受哈奇森的影响,将道德从内容上奠基在道德感觉之上,后来却成为这种立场最激烈的反对者。康德认为,将道德意识从情感中导引出来是一种主观性的自然主义,因为他发觉感觉是多变的、难以掌控的对象,从感觉出发的行为没有可靠性;我们无法选择和控制自己的感觉,故也就无法对感觉负责。感觉,特别是善意往往只是针对特定场合中的特定人物,因而感觉无法给出道德行为的客观尺度,无法提供道德判断所需要的普遍性与必然性。因此,康德致力于理性对感觉的统治,在伦理学中祛除人的偶然倾向与偏好,将道德回归到一种具有客观性的、理性的基准之上。这种见识主张无疑是对感觉伦理的一种超越。至于康德为了道德的纯粹客观性,不仅摒除了人的希冀偏好,而且把道德与利益分开,将之建基在所谓人的纯粹先验的理性结构之上,从而倒向了空泛偏激的独断主义,其所谓无条件的、与任何利益奖惩无关的义务论甚至被叔本华称为完全是根源于基督教道德,便是后话了。

    总之,情感伦理的崛起是对霍布斯契约论伦理的一种反叛,因为在情感伦理学家们看来,在霍布斯以自利主义为基础的道德哲学里,利他主义难以获得有效的论证。但问题在于,建立在同情之上的利他主义固然有其辩护优势,但这种利他主义往往仅适用于小范围的人际关系,且这种利他主义的坚定性、稳定性和可靠度由于情感本身的不确定性而无法得到可预期的保障。因此,一种适用于广博的陌生人社会、对每一个人都平等有效且不受空间或情感距离影响的稳定持久的利他主义,即能够体现道德原则普遍性特质的利他主义,就必须离开情感主义土壤而寻找新的依托和论证来源。

    当然,在伦理学界的一般意识中,对一种成熟的道德判断的形成,情感的体悟能力与理性的规范认知必须结合在一起,并且同等重要。道德论证不能仅仅依赖建立在对等性正义之基上的理性的理由和对后果的分析,而且也要顾及同情、同感等非对等的尊重和关怀的因素。紧急状态下救人之时,为何我们不由自主地首先会去救朋友而非陌生人?这是普遍适用的道德原则无法解释的。救亲朋好友不是基于纯粹伦理规范,而是基于个体道德情感。“像正义性的权衡这一维度对于道德行为是重要的,但在其他情况下个人关系也能够构成道德行为的好的理由。不偏不倚是一个方面,它首先是在社会框架条件的建构上是必需的。但不偏不倚不能排除一种对特殊行为的理由的后续论证。”[3](P153)现代社会中,以抽象性、理性、平等的交互主体之间权利与义务对等的道德关系为基础的契约论的道德论证模式,在宏大的陌生社会里占据着主导的地位。这种道德关系因具备相互制裁性约束而可以稳定持久地存在,我们称之为普遍的道德关系。但社会中也不排除有建立在非对等主体之间、以良心责任及善意的情感为支撑的特殊的道德关系,这种关系不是以对等制裁而是以道德期待为约束纽带,故存在着不稳定、未必持久的弱点。例如,对无其他旁人在场可以作证的某人的临终嘱托,受托人是否对遗嘱的要求切实履行,这就完全取决于当事人的责任感和善良之心。现实生活中这种单方面行使道德义务的特殊的道德关系是普遍存在的,这反映出我们道德世界复杂与多维的样态。因此,理性与情感不可或缺,“在对规范的论证与应用时,认知功能与情感立场的整合,标识出了任何一种成熟的道德判断能力”[4](P299)。

    二、制度与激励支撑的利他主义

    人离不开面对面的微型生活世界里的培育成长,当然更离不开在陌生人社会中的奋斗打拼。在小范围里利他主义依赖道德情感的支撑,而在宏大的匿名环境中情感的力量极为有限微弱。善意、仁爱、团结的利他主义倾向往往并不呈现在作为个体的行为主体直接的行为动机上,而是渗透在作为社会框架性条件的有控制系统及制裁机制的制度设计里,体现在能够使善好的道德意图转化成对逐利的战略性举措的行为激励上。一般而言,在宏大的陌生人社会,如果离开了制度与激励,比较可靠的利他主义道德行为便难以预期。正如霍曼所言,“每一种道德,每一种道德的自我义务,都需要有来自于益处与制裁的支撑”[1](P260)。

    我们先看利他主义在制度框架里的渗透之层面。众所周知,德性论是前现代社会经济与文化状态的产物。在这种社会里个体的德性品格培育受到极大的重视。人们生活在透明可视的族群、村落里,从生到死均扮演着简单固定的角色,与持久的交往伙伴一起经受着直接、有效、廉价、无所不在、无可逃脱的社会控制和制裁。由于实施的是自给自足的自然经济,财富的唯一源泉是难以增量的土地,故出现若一个人多得则必然导致他人少得、此人赢则他人输的所谓零和游戏局面。因此,盈利、增长、繁荣、增值在道德上便不被看好,个体对利益的追逐就要受到极大限制甚至否定。这也就决定了古代伦理学的基本样态与范式。自柏拉图起就有了使人真正成为人的教育方案:道德是先在的,其基本范畴是仁爱、利他、团结、德性,它们指挥着人们的行为。人可以通过道德来改善其动机与偏好,达到更好的心灵状态,从自利主义转变成利他主义,从个体主义转变为共同意识,从自爱转变为近爱,从自利转变为团结。面对经济并不富裕的总体处境,亚里士多德特别强调中庸适度,将德性确定为太多与太少之间的中道。古代的这种伦理立场与中世纪基督教伦理一脉相承,同时也影响到了康德的义务论说教,甚至是当代共同体主义者。

    现代化的进程开启于欧洲。这不仅与近代自然科学和技术的发展在这里出现有关,也与欧洲政治文化环境的特点相系。与亚洲大国相比,欧洲的政治共同体在规模上都比较小,国家面积越大,臣民逃脱的可能性越低;欧洲富有的商人可以躲避特别残暴的统治者,这迫使了欧洲君主对臣民财产的某种认可;再加上皇帝与教皇的竞争,基督教教派的分化与血腥战争,也导致统治者权力的分散化。并非欧洲的君主多么有德性,而是由于其力量相对有限,导致其对臣民利益及其权利的某种顾及。传统社会建立在统一世界观基础之上的价值共识最终解体,为作为现代性之特征的社会功能的分化创造了前提。社会开始分化为政治、经济、法律、科学、教育等子系统,依照各自特有的法则运行并分别取得高效的业绩。

    这就意味着人类行为的结构性条件发生了巨变。随着社会的功能性分化,人们不再是生活在同一环境空间里,而是在不同的系统中起作用。这种状态导致个体流动性的明显增长,这体现在所有可以想象的层面:地理、社会、经济、职业、精神、文化、世界观,等等。与此同时,由于个体在不同的系统里扮演着各自不同的角色,他就必然需要在不同的时空环境中拥有多重的归属性,并在其个体性来自不同归属性的过程中保持自我认同。此时传统的归属单位如家庭、村落、族群等便失去了整合性纽带的作用。“每位个体都必须将其生活从最不同的对于他敞开的选项中搭建起来,借此每个人都变成了一种不可混淆的个体性。”[1](P8)这就是作为现代性之本质特征的所谓个体化的进程与趋势。

    在从传统到现代社会的历史性巨变条件下,在经济市场化的残酷竞争面前,在只有通过竞争才能导致社会繁荣以及所有个体生活改善的情形下,以前那种放弃、适度、节制、中庸的美德就不再拥有强大的吸引力,奠立在同情之基础上的利他主义倾向在宏大的陌生人社会里也丧失了强有力的辩护依据。是否和怎样践行利他主义完全取决于个体化的当事人自己。

    所谓个体化,从本质上讲意味着现代社会的人之个体是摆脱了传统人身依附关系的、独立自主的、顶天立地的、大写的人之存在。这种现代性时代背景下的个体拥有两个鲜明的特点。

    首先,人是自由的个体。对自由的呼唤与人类历史一样悠久,经过启蒙运动的洗礼以及两次世界大战的考验,自由已经被人类价值共同体确立为一种绝对的、无可争辩且不可动摇的牢固信念。每个人都赋有自由意志和自主地进行生活规划的权利,恰恰是自主性赋予了每个人以自我价值感、平等的道德地位以及作为人所特有的人格尊严。动物没有自由,我们可以看到海燕在天空中、海面上翱翔,但这种自我操控自身飞行方向的举动早就是通过其本能先在地确定了的。醉酒者没有自由,醉酒状态下当事人自我决定的能力极大受限。而自由不仅与免于异在胁迫和非法暴力相关,也与人的理性思考相关。理性思考意味着对情感、偏好、意欲保持距离,基于目标并针对机会、阻力、资源、手段等因素进行权衡,理由的内在关联使行为具有自由的性质,因而没有思考就没有自由。如上,动物没有自由,人的自然状态不是自由,没有理性的思考就不存在自由;进而没有规则就没有自由。自由奠基于对自我行为的约束和限制,这种限制是为了防备“绝对的自由”对他人的危害,是为了维护健康的人际互动的畅行。人们自主地通过设置规则规范对行为进行约束,目的在于自己的从人际互动中赢得更大自由的实现。于是,规则绝非外在于自由的异在因素,而是自由得以产生的媒介或前提。“我们必须把自由理解为规则的产物:个体自由是一种文化产品,是从合宜的社会秩序中产生出来的。经典表述是:自然状态中没有自由,只有在拥有法律和道德的社会状态中才有自由。”[1](P129)“个体自由——并非如同洛克立场所假定的——在前社会的自然状态里便已存在,它只有在由法律所调节的且以宪法为前提的社会状态中才出现。自由是社会发展的结果并且系统地依赖于集体性的前提条件。”[1](P148-149)

    其次,人是脆弱的个体。人不仅是自由的个体,同时也由于身心的局限性是脆弱的个体。正是人的这种可伤害性决定了个体对人际关系的依赖,决定了个体作为社会动物这一身份构成了人的一种本质性的特征。基于自由的能力,人成为行为的主体;基于脆弱性的状态,人成为需求的主体。在这一点上人与人之间不会因为时空差别而有所区别。正如德国哲学家卡西尔所言:“因为归根结底,我们在文化发展的上千暴露与上千面具中相遇的总是‘同样的人’。”[5](P199)这就决定了人类共同体中所有成员都会依据自身的需求与同等的他人一起来自主地建构行为规范与社会秩序。这种建构独立于传统的宗教形而上学的信念以及理论预设,是完全基于得到良好论证的理由、获得普遍认可的正义的价值、对所有当事人利益的关切以及对相互间平等的权利诉求的保护。与传统社会的理解不同,现代社会里道德是建构出来的,它不再是由先圣确定的无私的爱的伦理,而是平等的行为主体间自主契约的伦理,目的在于对所有人合法权益的认可,相互间权责均衡的维持,从而在交往中保持有益的合作,在竞争中谋求最大的利益。这种建构很好地阐释了现代社会的规范性秩序如何形成以及现代社会怎样在新的基础上得以整合。

    如上,个体之人均有满足需求和保护利益的本性,基于对利益的维护才建构起了道德法则,从而结束没有规范性的自然状态。不论是确立行为规范还是自觉遵守之,均是出自行为主体自利的动机以及对益处的期待。道德来自利益,有道德比没有道德更能够给当事人带来益处,这一点构成了现代伦理学的一个中心议题。当然,道德规范并非是单个的人独立确立的,而是取决于与所有其他人的合作。这表明道德规范不仅是行为主体之间共同建构的,而且也是共同遵守的。“个体遵守能够给所有的人带来合作收益的规范之前提条件在于,他能(足够地)确定,(几乎)所有的其他人同样也遵守这些规范。”[1](P189)道德规范是否成为空洞的呼吁与无力的说教,取决于它在所有人那里的普遍践行。

    现代伦理学之所以没有把关注点放在个体德性的体悟与养成,而是特别重视道德规范在人际的普遍遵守从而形成一种集体性的行为约束,就是因为只有这样才能产生出一种人际互相的行为期待的可靠性,这种可信的行为期待对于人类社会有效的合作与成功的交往是至关重要的。不仅如此,“相互的行为期待上的可靠性是个体在越来越高水准上的自我实现的独立前提。这种可靠性通过规则和规范,通过一种社会秩序得以建构和发展”[1](P129)。

    这样就导出了现代伦理学的一条启示:道德规范的运行不仅取决于行为主体的意图,更依赖于社会的基本结构。伦理要求也只有在这种社会结构的基础上才能得到实现。现代社会的特点在于所谓困境结构的出现。困境结构是指行为主体的行为与他人之间存在不着对称性,我本着善良意图自觉守规,别人并不跟进反而利用我对自己行为的约束限制来牟取眼前更大的利益,这便使相互的行为合作落空。可见自己的行为归根到底取决于他人的反应,任何人的守德行为都无法系统长期地被他人所利用,谁也无法被要求独善其身。这说明没有任何一个单独的个体可以独自带来道德上期待的结果。由于困境结构的存在,现代社会的伦理道德不再是意图驱动,而是依赖主体间的互动。对互动主体间可预期的行为保障来自一种共同的刚性的制度框架。对现代社会困境结构的克服要依靠具有统一约束力的机制伦理。机制伦理意味着道德要求体现为明确的制度约束,它对所有人,不论是否内怀良心,均具有共同的统摄力。“在市场经济中系统的、并非唯一的道德之地盘,就是框架秩序。对于个体而言,人们只能期待这种行为,即他为了此行为不会因条件而系统地受到损害。如果诚实者总是蠢货,则社会马上就不再会有真诚了。”[1](P9)

    机制伦理呈现出现代市场经济竞争环境下道德规范的运行逻辑:道德不在于个体单方面的善良意图,而在于对所有竞争参与者行为的共同制约,从而排除守规者受损、违规者牟利的可能性;并且通过守规有益这一点,从每一位个体出于自利的意图行为中,恰恰产生出当事人非故意的但在道德上得到普遍期待的整体的结果。“得到期待的社会结果——如更多的共同意识、更多的团结——必须是作为有意行为之非故意的结果导引出来的:行为者完全是有意向地行动,即以自利为意向,但社会的结果——共同意识、团结——却是作为这些无数个体行为的结果而出现的,且社会结果不是为无数的行为者所直接意愿的。得到期待或非期待的社会结果是行为者们以自身目标为导向的行为的副产品。故它们并非系统地依赖于行为者的目标与价值,而是依赖于秩序、框架秩序,此秩序的任务在于把公民自利的或仍旧自利的行为朝着所有的人的共同福祉,即团结的方向引导。”[6](P71)一句话,行为者不必强迫自己以团结为目标,而是自然而然地追逐自己的自利。但机制的制约作用却能够使大家的行为共同达到团结、仁爱的总体效果。不仅如此,机制伦理体现出一种可信的集体行为约束,从而建构起相互的行为期待的可靠性,同时也给每一位守规者带来比不守规更大的益处。

    机制伦理不看重行为主体的意图、动机,不否认当事人追逐自利的立场并把守规、自我约束理解为一种投资,而是强调道德行为的实现条件,这样就把道德诉求从个体的意图层面推向有群体约束性的规则制度的层面。机制伦理作为一种文化发明,通过将道德要求寓寄于框架条件之中,使伦理学中的行为规范转变成为系统或制度范畴。于是,道德上不受待见的甚至是令人愤怒的状态,便不再归咎为行为者恶劣的动机与品德缺陷,而是要归因于行为主体自己也无法掌控的行为的外在条件。这就决定了与传统伦理学注重行为主体的动机和目标的方式不同,现代伦理学把社会秩序、操作程序和体制机制的道德性的建设作为自身的首要任务。

    按照机制伦理,不仅自主、不伤害、公正等道德范畴,而且团结、仁爱、善意等利他主义的价值导向,都不能仅仅作为行为主体的个人意图内容及直接的行为指令,而是应经过一定的民主商谈的程序,基于每一个人都有可能落难而需要社会及时援助的合理预设,作为某种权利诉求沉淀和渗透到具有普遍适用性的道德的制度框架之中,成为让每一位潜在的弱势者均受益的共同的伦理要求以及一种正义且人性化的社会必有的价值导引,包括利他主义精神在内的“这些规范性的主导理念从某种意义上是作为北极星来服务的,人们在寻求合宜的机制性的配备时依此来确定方位”[6](P10)。当团结、仁爱等利他主义道德要求成为刚性的制度规定,弱势者在落难时从社会获得援助便具有了机制性的保障。“当他知道他所得以保障的确定的权利,当他因此而知道他不必依赖于某位对他必须慷慨对待的第三者的善意,从而使他赢得了必然性,则对于他而言自然便是一种巨大的负荷减除。我们当然更乐于生活在一种社会里,其中我们可以得以保障地获得属于我们的东西。”[7](P30)

    我们再看利他主义在个体行为层面是如何得到激励的。如前所述,现代化的社会以竞争为巨大的驱动力量,造就了普遍的经济繁荣、科技发展、生活改善、健康增进、寿命延长等文明进步的局面。在这样的时代里,道德要求不是呈现为行为主体的主观意图,而是体现在具有普遍约束力的制度框架里以及对于个体行为的激励功能上。这就是说意图伦理要为机制伦理和激励伦理所取代,特别是善意、仁爱、援助、团结等利他主义倾向,在伦理学中属于不完全义务,不是对个体行为者具有严格约束力的合法要求,故当事人是否践行这种道德完全取决于其自主的决定。于是激励便更是成为道德行为的一种具有重大价值的驱动手段。

    在宗教、世界观及价值立场日趋多元化的时代,很难有一种共同的奋斗目标和共同意识把所有的人整合在一起。社会问题的乱象也不能简单地归咎为价值的崩溃、意志的衰落、自利主义的盛行。能够支撑起现代社会复杂结构的唯一基础只能在体现人本性的“逐利欲求”上寻找,因为只有这一基础才具备最大的包容性和开放性,能够作为最大公约数容纳顾及所有人的不同立场、诉求与偏好。在激烈竞争的市场经济条件下,单次的纯粹出于良心和善意等内在动因的行为或许可以作出,但不能让行为主体永远处于无利可图的状态。个体逐利的努力不能再被视为恶的、摧毁性的、需要借由道德来遏制的原始冲动,而应看成是多元价值时代复杂动机背景下人们维系在一起的唯一着力点。就此而言,自利构成了现代社会市场经济激烈竞争条件下道德规范之践行的核心要素。当然,这里利益的内涵是丰富复杂的,不仅体现在物质财产或金钱收入上,也包括健康、好生活、理性的生命规划与实践。“利益”概念在很大程度上取决于当事人自己的设定,取决于行为者自己视为“益处”的所有事物。

    这样就把我们引导到对现代社会“道德”概念的内涵本身的探讨上来了,从本质上讲,即是道德与利益关系的探讨。道德是一种规范性要求,这种要求来自当事人的意愿,而意愿又根植于其对利益的考量。这就是说,“利益”早于并先于“道德”概念。道德作为一种集体性的自我约束,是个体与其他人为了自己以及所有人更大的、整体及长远利益的实现自主设立起来的。换言之,道德必须是在人的利益这一基础之上才能得到论证;它不能给当事人带来严重不利的体验,任何伦理学都不可能要求个体系统持续地违背自己的利益来行动。一句话,“所有道德的核心与基础是且一直都是个体对利益的追逐,个体追求幸福、满足、消费与享受。道德包含有非形式规则的复合体,以帮助这些利益持续地得以实现。道德是为人而存在的,不是人为道德而存在”[1](P83)。道德与利益的关系类似于交通规则与行者方向的关系。规则是行者达到目的地的手段与工具,“就如各个交通参与者追逐完全不同的目标那样,人们也致力于完全不同偏好的实现。他们所唯一需要的,是一种街道交通秩序,使得这种个体努力活动得以规范,从而让所有的人都可以尽可能快和安全地达到其确定的地点”[1](P83)。

    有关道德与利益之间关系的正确认知,使我们对道德与不道德的分界线有了恰适的把握。我们不能简单地说道德就是利他主义,不道德就是自利主义,而应该讲不道德就在于只顾自己利益的增进并以他人利益的损害为代价;道德并不在于放弃自己的利益,而是在于自己追逐利益的活动也能够使他人获益,在于致力于自己与他人利益的相互改善和增进。由于当事人自己益处的获得完全取决于与他人的关系,于是道德就必然反对极端的、以牺牲他人和破坏规则为前提的自利,而是表现为一种对短期的、局部利益的限制,这种限制带来的代价完全是可以承受的;它不是对利益的放弃,而是一种对长远的持久利益目标的投资。这里的关键点就在于,道德作为一种工具和手段,通过给他人带来益处而反过来使当事人自己也获得更大的、长远和总体上的益处。

    在合乎道德要求的前提下,追求己利不仅不会以他人益处的牺牲为代价,反而会导致他人利益的增进,这种对己利的追逐本身便成为一项新的道德律令。这种新的道德律令中包含强大的利他主义意蕴。

    这种现代社会的利他主义失去了前现代社会零和游戏背景下放弃己利、自我牺牲、节制适度等特点,而是体现在通过自己逐利行为使社会财富获得增长,从而惠及所有的人。利他主义、对他人的益处,并非是借由行为者对他人直接的给予、慷慨捐赠、无私奉献,而是通过市场经济互动过程的系统运作,依赖劳动交换的途径,最终表现为物美价廉的产品、劳动岗位、员工收入和国家税收。由此而来,人逐利不仅使自己获益,而且也使他人及社会更好。对益处的追逐便构成团结之道德的引擎,市场与竞争成为善意与仁爱的有效途径。在以正和游戏为特征的现代市场经济条件下,利己主义与利他主义是相容的。“伦理学获得了一种投资伦理的特点,这种伦理使得投资者和其他人借由竞争性市场经济,而同时变得更好。个体利益的追逐不需要受到限制、支配,就像在传统伦理学里那样。它反倒需受到鼓励与推动,从而使得所有的人变得更好。”[1](P18)

    于是,现代社会人的道德的利他主义行为便不再如同前现代社会那样通过价值与理想来导引,而是通过激励来支撑。所谓“激励是一种与情境相涉的对行为起确定作用的获益的期待”[8](P64)。激励是对益处的追逐和对制裁的避免,得到激励就等于得到好处,有好处人们才会守德。“在世界史上没有任何规范系统可以不通过益处与制裁,即不通过激励得到支撑而能够长存的”[6](P122),故“道德呈现为激励的形式,它实现在激励的风影之下,不能没有激励,更不能反对激励。现代社会唯一合宜的道德形式是激励道德”[6](P151)。而“‘激励道德’被理解为形式的或非形式的激励条件之总体。这些激励条件控制着个体行为朝着一个道德上所期待的方向。这里包括有制裁能力的法律、对益处和收益及社会认可的获得以及内在约束和外在偏好”[6](P152)。例如,减少能源消耗固然取决于人们环保意识的提高,但起决定作用的则在于包括征税在内的激励措施。居民的善良动机仅属于期望的对象,但真正可以指望的则在于其追求自利的行为基底。从自利主义立场出发,却可以达到道德利他主义的可喜效果。这便体现了激励道德的成功逻辑。

    如上,对个体行为者而言,利他主义之道德在现代社会不是取决于内在的善良动机,而是取决于益处上的激励。“利益”概念不与伦理学相冲突,而是处于激励伦理的核心。于是道德激励便与经济激励相通相融,因为经济逻辑恰恰体现在对益处的权衡上,它擅长用价格因素来调节人的行为。这样一来伦理学与经济学便进入一种密切的互动关系。一方面,伦理上的意图必须依靠经济激励手段才能得到实现,“道德只有顺从经济上的激励逻辑才能贯彻下去,而非背离之”[8](P96);另一方面,经济学通过践行道德应当而行使了一种哲学的功能,“经济学是伦理学运用其他的、现代的、契合时代的手段之继续”[1](P84)。一句话,“伦理学没有经济学是空的,经济学没有伦理学是盲的”[6](P263)。

    激励伦理呈示了现代社会伦理学的一大特点,即个体行为主要不是以善意、仁爱、团结的动机为导向,而是以这些道德要素的施行结果为目标。亚当·斯密将行为者的动机与道德上所期待的结果区分开来,揭示了出于自然的自私自利的动机之行为可以导引出有益于社会大众的结果。现代社会公民的道德观念作为动机对其行为的指导作用固然不可或缺,但道德行为的持续进行不仅取决于当事人单方面的动机,而且也取决于交往伙伴是否跟进,取决于能否在社会出现符合道德期待的总体效果。在激烈的市场竞争条件下,唯一能够保障其他交往伙伴也能在行为上跟进并且社会最终出现符合道德期待的总体效果的,是所有人对益处的追求,即利益上的激励。“个体对益处的追逐,在现代性中成为所有的人团结的引擎。”[1](P185)霍曼将人的道德动机与行为激励的关系比作为一座冰山:“冰山的七分之六处于水面之下不可看见,这从某种意义上便是刚性的经济激励,只有七分之一高于水面可以看见,这便是公民头脑与心中的价值及道德观念。”[1](P77)在正和游戏范式取代零和游戏范式的背景下,道德价值发生了重大的性质改变:不是放弃、牺牲、给予,而是投资;不是再分配,而是交换;不是对自利的制约,而是令其解放;不是无私的援助,而是有回报的救济;不是单方面的利他,而是相互益处的合作。因为只有对个人益处追逐的认可,才构成利他主义道德最大的动力,才能够赢得实现所有人团结的最佳结果。就此而言,“在竞争的市场经济里逐利冲动具有一种伦理上的论证。……逐利冲动服务于所有人的团结。竞争和投资比分配更有团结性”[6](P51)。总之,在现代社会谈利他主义道德,不能从行为动机上看,而是要从对他人的总体结果上看。达到这样的结果,就要靠将善良的意图和动机转换成当事人战略性的行为激励,从而使道德理念在没有现实的道德动机的情况下尽可能出于纯粹的对经济利益的权衡而得以贯彻。于是,利他主义之道德意图,“规范上所期待的结果是作为有意行为的无意后果,作为自利行为的‘副产品’而出现的”[6](P177)。

    综上,霍布斯将自利作为道德行为动机引入伦理学的讨论之后,立刻受到情感伦理学派的批评。他们认为同情才真正构成了人类道德行为的重要动因。问题在于,同情的确可以阻止当事人作恶,却无法在市场经济激烈竞争的宏大陌生人社会里激发利他主义的施行。利他主义道德需要更强大的动力支撑。叔本华说道德不在于呼吁而在于论证,康德致力于道德的论证却疏于道德的践行。造成这种缺陷的一个重要原因就是康德承袭了从柏拉图到19世纪西方的一个长期传统:鄙视利益,抨击经济活动与商业行为。康德将道德性与机智行为进行了严格的区分,于是便走进理论与实践脱节的死胡同。他忽视了道德规范的可践行性才是该规范有效性的前提条件。在现代社会我们再不能简单地从道德观念和目标中直接导引出行为指南,必须顾及道德行为的施行取决于非常复杂的历史背景的预设。在以深度劳动分工、匿名交往过程为特征的现代社会环境下,利他主义道德要求的落实就不能仅依靠行为主体善良的道德动机和主观意图,而是要借由对具有普遍约束力的制度框架的深度渗透,通过个体对自身益处的期待这样一种激励。道德的机制与对益处的激励使所有行为主体在根本无需顾及其真实动机的情况下朝着有益于整体团结的方向努力,从而让道德的规范性依靠制度与激励走入现实并发挥其应有的效力。

    三、对等性的利他主义与先行道德

    如上所述,在一种宏大的竞争激烈的市场经济的陌生社会里,一种利他主义的道德只有依靠对制度框架的渗透和对个体在益处上的激励才是现实可预期的。但这种利他主义呈示为一种所谓有偿的利他主义,它通过行为主体守规的满足感和对益处的期待得以支撑,故显然与传统对利他主义的理解不同。利他主义作为人的行为动机以及行为性质的对错标准,构成了欧洲自古代以来伦理反思的一个中心议题。在以康德为代表的理性主义道德流派看来,如果道德规范从人的自利动机里导出,便是与伦理学的基础理念背道而驰,因为道德规范与道德现象具有一种远离人的意欲、偏好、利益的独特的性质。利兹在20世纪60年代曾经给利他主义下了一个定义:“第一,一位给予的人,视此行为为‘本身有价值’并且并不期待除了服务于他人福祉带来的快乐之外其他的奖赏。第二,此人自愿给予,他并非出于义务并且并非基于确定的角色义务。第三,此人被援助的接受者以及行为观察者视为是在做‘某种善事’。满足这三项标准的行为便是利他主义。”[4](P352)这一定义体现了得到极端理解的利他主义,它与无私的爱的给予没有区别。首先,极端的利他主义没有利益算计的意涵以及好处交换的目的。它并非是出自义务的行为,也不是严格守规的结果,而是一种自愿的付出与牺牲,将受惠的他者视为原本和唯一的行为动机。其次,极端利他主义是无法事先确定的、偶发的、惊喜之物,具有直接自发的特点;对于行为主体是快乐的理由,对于行为对象是感激的源泉。这种道德价值不呈示普遍性,除了一种善意表达之外没有别的目的,故根植于一种非对等性。得益者不得索取、要求或控告,给予者也尽无回报的期待。再次,极端利他主义不能以相关联的物质价值来衡量,而是把他人作为有价值者、他人具有不可取代与置换之地位的一种珍贵的认可的表达。利他主义是将行为主体与他人联系在一起的方式,是与他人交往的工具,是达到他人的一种桥梁。极端利他主义使给者与受者处于一种深沉的情感体验之中。“在此方面最纯粹的给予肯定就是爱。”[7](P33)德里达是极端利他主义坚定的捍卫者。利他主义在他那里体现为给予。德里达甚至认为真正的给予都不能作为给予表达出来,受者感觉不到这是给予,给者也没有此意识。但我们认为问题在于,作为一种重要的道德价值,利他主义如果极端化为无私的爱的倾向,则马上会陷入本文前面阐述过的情感主义伦理仅适用于近亲的巨大局限性里了。显然,无私的爱在宏大的竞争激烈的市场经济的陌生社会里,不可能体现为一种普遍的道德要求。

    有人从社会生物学的角度来理解利他主义,但结果同样证明“人际‘纯粹的利他主义’绝大多数仅发生在最近亲之间”[4](P155)。社会生物学研究成果表明,一个群体若存在个体为了群体或后代的维护而自我牺牲的机制,则其自身遗传物质续存和扩展的机会就比无此机制的群体要大,拥有合作与利他主义能力的群体能够进入更高的组织阶段。这便是一种生物学的利他主义。这一理论展现了个体为整体幸存而自我牺牲,是由基因决定的一种利他主义。汉密尔顿详细描绘了社会行为与自然选择原则的关系:自然选择的原则便是基因能够得到不断的代际复制。基因设置并操纵有机体所有的行为,决定了有机体不会损害基因得到复制的要求,而繁殖则意味着自身基因转移续存的机会。故父母如此多的付出与投入来繁殖与哺育后代,便是一种基因决定的利他主义行为。在此基础上,特里弗斯阐发了一种可以超出近亲范围的所谓“对等性的利他主义”[4](P164)。在某种条件下自然选择鼓励这种由基因操控的对等性的付出与收获,因为它能够大大提高群体与个体有机体生存的能力,使两者获得长远的益处。当然,对等性利他主义也取决于一系列的前提条件:个体生命预期要长,则互动的机会才大;人数要少,相互依存度要高,且大体上处于势均力敌的状态。在特里弗斯看来,进化中的对等性利他主义以及从中发展出来的复杂的心理系统,对人的智力发展产生了决定性的影响,也为人类更高的社会与文化成就的取得奠定了可能性基础。毋须赘言,对等性利他主义的说法无疑提示了利他主义建立在人际对等性之上的重要性,但是与父母无私地繁殖哺育后代的情形不同,对等性利他主义无法在究竟是基因驱动还是理性使然之间画出一条明确的界线,因而把对等性利他主义归因为基因设置的做法存在着理据不足的缺点。

    社会学家西美尔对利他主义也倾向于极端理解的立场。在他看来,作为利他主义的“给予本身就是最强的社会学的功能之一。社会中如果没有持续的并且是交换之外的给予与获取,则社会根本就不可能出现”[7](P9)。换言之,如果只有交换而无利他主义则整个社会就根本无法作为社会而存在。就这个意义而言,伯肯弗德指出:“社会之生存有赖于其自身无法创造的前提。”[7](P184)社会是由人组成的,社会如果依靠其自己不能够创造的前提生存,则说明人也是如此。也就是说,人的生存依赖于他自己无法创造的条件,即他人的给予,利他主义构成了他的存在的前提。“人在其自我意识中总是关联着某种已经存在的东西。”[7](P160)人的自我意识结构的塑造并非无中生有,而是已经包含着利他主义意识对其的影响。但是,正如在伯肯弗德那里,社会生存所依赖的是其自身无法创造的前提——家庭——那样,人的生存所依赖的则是其自身无法创造的条件——父母的关爱。这样就又回到了前面提到过的基因所决定的父母对子女无私的爱的情感上了。尽管受到关护是每一个人最原始、最基本的人生体验,而且父母对子女的爱甚至有可能构成后者仁爱的伦理行为的原型,构成这种无助的、脆弱的当事人以后激发自身道德义务的起点,但从父母那里承袭下来的无条件的利他主义意识与后来在宏大的陌生人社会里出现的以自由自主为出发点的利他主义从根本上讲并不是一回事。我们只能说,由于受到过父母的关爱,利他主义肯定已经沉淀在每一个享受过母子关系的人的道德意识里并成为其中的原始因素,但它在随后的人生中究竟能够发生怎样的作用,与陌生人社会里建构起来的“对等性利他主义”处于怎样的关系,则还是一个完全开放的问题。

    对这个问题,腾尼斯看得就比较清楚了。他区分了共同体与社会,认为给予体现出来的极端利他主义主要发生在以家庭为基本类型的共同体领域;支撑社会的并非是利他主义,而是交换关系,只是社会的运行离不开一定程度的利他主义素质,如真诚、预先付出、仁爱,等等,这些素质又来源于共同体。从腾尼斯这里我们就可以体会到,传统理解的极端利他主义无法直接移植到广博的陌生人社会领域,如果利他主义道德在新的土壤上继续生存,就必须建立在交换关系的对等性基础之上,从而转变为前面说过的特里弗斯的所谓“对等性的利他主义”。

    极端理解的利他主义行为主体单方面的主动付出是一种无私的爱的表现,在这里不讲利益交换也不讲所谓的人际对等性。但事实上,利他主义的践行一定会建立起施益者与受益者之间的某种相互关系。从正面的角度讲,具备利他主义之性质的给予的实现取决于双方的努力:给予者出于对他人之好自愿付出,从而使获得者产生巨大的幸福感;接受者也通过自己的接受行为使给予者达到了目的,从而获得给予行为带来的幸福体验。从这个意义上说接受者也对给予者作出了某种善好。从负面的角度看,给予的实现不仅给给予者与接受者造成光鲜亮丽的幸福关系,同时也使给予者有了展示权力的机会并导致接受者处于一种由于债务感所形成的依附关系,他很难从必须作出回报的重压下解脱出来,也很难避免受约束感与贬低感,在权力落差面前他不得不表现出忠诚、屈从、顺服与虚伪。这一点不论是在古代还是现代社会都是如此。

    克服这种极端利他主义弊端的途径在于建构一种以对利益交换的认可为基础的、在陌生人构成的宏大现代社会通行的对等性的利他主义。在这种利他主义中,给予绝非是无私的举动,而是激发回馈并且引起给予与回报之对等性组成的循环。故此,利他主义并不是无条件的,而是与市场中的相互交换关系无本质的区别。“在一种相互性的给予关系中,也就是交换关系中,给予并非是白给的,无目的性的、无私的,而是其合法的交换服务于这种交易参与者们的需求和利益。”[7](P73)对等性利他主义体现了契约伦理的价值精髓。现代社会就是建立在平等的行为主体为自身的利益保障所自主签订的对等性的契约之上的,以利益维护为宗旨的契约关系确立了整个现代文明的基石。这样一来,利他主义就并非排斥自利主义,而是以合乎人性的自利作为支撑。“对等性利他主义证明自己是‘启蒙了的自利’,是一种特殊形式的自利主义。……在特里弗斯看来,人类的利他主义的绝大部分都是这种类型。”[4](P165)

    如前所述,利他主义在现代社会并不是无条件的,而是建立在对等性基础之上的。而对等性的利他主义本身也并非是无前提的,良性互动关系不仅取决于对等双方的善意态度,更是取决于双方的行动。这里关键就在于双方中必须至少有一方率先付出,首先向对方预付一种好意或一点利益,从而使互信的关系得以建立。这也可以理解为是对互动合作关系的一种启动性投资。它一方面是当事人对对方示好的表达,另一方面是当事人以更高收益为目的的投入。“通过一种须是单方面有风险的启动性的给予,他者得到认同、接受和尊重。对启动性给予的回馈并不构成简单的反应,而是接受者对给予者的一种认可。”[7](P448)尽管任何通过率先付出启动互动合作关系的一方都希望自己的善意不会被拒绝,但他也必须甘冒一种白白付出、最终得不到对方友好的反馈的风险。由于先行付出仅是一种以未知为前提的互动尝试,故失败之风险不应造成当事人很大的损失。先行付出贵在“先”,它是建立合作关系的先决条件,但失败时不应有太大的代价。若先行者的善举得不到反应,则相互性的循环便无从谈起。若得到对方的积极反馈,则对等性基础上的合作便开始进行,大家享受着所有人行为的可确定性,双方从持续性的互动中均可获益。“这种一报还一报的战略包含着友谊、合作以及制裁、惩罚的某种完全确定的混合。”[6](P39)这样一种带着合作的希望却又充满失落之风险的先行付出,被称为先行道德。

    我们知道,对广博的经济、政治、社会结构起支撑作用的不可能是极端理解的利他主义,而只能是对等性基础上的利他主义。但任何对等性利他主义之践行都要以这种先行道德的存在为前提。从先行付出需承担风险的意义上看,先行道德最为接近极端理解利他主义的立场。但从先行付出实际上是一种投资的角度来说,先行道德又与极端理解的利他主义保持了距离。完全脱离自我考量的利他主义只是一种极其例外的情况,为他人的付出多多少少是与我们维护自我形象、保持自尊、自我价值得以实现、保护自己后代的发展权益等需求相关。一句话,所有能够激发利他行为的动机对行为者均潜在地有着自我奖赏的作用。

    当利他主义与仁爱等量齐观的时候,仁爱、给予便常常被与正义、公正放在一起观察,有人得出结论:“正义的主要目标在于结构与机制的层面,给予和接受的焦点则在于德性伦理的领域,即作为个体的态度问题。”[7](P149)也就是说,利他主义、仁爱、给予是好生活的问题,而公平正义则是制度建构的问题。这或许反映出公正作为一种完全义务而仁爱作为一种不完全义务的特点。例如,早在古希腊,正义被视为最高的德性,在医疗实践中不会考虑对重症患者的住院治疗。直到早期中世纪仁慈的价值观念占支配地位,住院治疗才得以机制化[7](P14)。到了现代社会,尽管利他主义的人格、对他人痛苦的感同身受的情感伦理、自尊与诚实守信的道德素质以及关心社会福祉的责任感仍然需要加以大力倡导,但科技进步、经济繁荣、社会发展已经为一种利他主义的仁爱道德要素从不完全义务转变成为完全的义务创造了有利的条件。这表现在利他主义道德通过对制度框架的渗透和规则条例的塑造,通过个体在益处上的激励而得到了普遍的预期乃至确切的落实。以前纯粹的非对等的善良观念,现在成了对等性的、可控告的权利秩序。这也意味着,传统的极端理解的单方面的利他主义向着自由平等、负有责任心的交往伙伴之间对等性的利他主义实现了历史性的转型。

    【参考文献】

    [1] Karl Homann. Anreize und Moral. Muenster:LIT Verlag, 2003.

    [2] Walter Pfannkuche. Verfolgung, Hunger, Krieg. Information Philosophie, 2016,(2).

    [3] Franziska Krause. Sorge in Beziehungen. Stuttgart-Bad Cannstadt:Frommann-holzboog, 2017.

    [4] Heinz Harbach. Altruismus und Moral. Opladen:Westdeutscher Verlag, 1992.

    [5] Robert&Edward Skidelsky. Wie Viel ist Genug? Vom Wachstumswahn zu Einer Oekonomie des Guten Lebens. Muenchen:Kunstmann, 2014.

    [6] Karl Homann. Vorteile und Anreize. Tuebingen:Mohr Siebeck, 2002.

    [7] Giovanni Maio. Ethik der Gabe. Freiburg im Breisgau:Herder, 2004.

    [8] Karl Homann. Sollen und K?ennen. Wien:Ibera Verlag, European University Press, 2014.

  • 太原市文物保护研究院:太原乱石滩唐代壁画墓发掘简报

    2018年8月,太原市文物考古研究所与晋源区文物局组成考古队对该墓进行了抢救发掘。墓葬编号为2018TJLSTM1,位置图如下:

    一 墓葬形制

    墓葬为斜坡墓道单室砖室墓,坐北向南,方向204°,由墓道、墓门、甬道、墓室四部分组成。墓室平面呈弧边方形,墓葬开口被破坏,墓室地面距现地表约5.7米。

    墓道  位于墓葬最南端,斜坡式,平面呈南北向长方形,南端被破坏,残长2.2米、宽1.4米、深0.3-1.7米,坡度30度。

     墓门  北连墓道,南接甬道。墓门为砖券过洞式,进深0.36米、宽1.06米、通高1.49米,两壁大约至0.98米高处起券。墓门内以条砖封门,单砖丁向砌成倾斜人字形。封门砖为单面绳纹砖,尺寸约为长0.36米、宽0.18米、厚0.06米。

     甬道  南接墓门,北连墓室。甬道为砖券过洞式,地面未铺砖,仅在北端靠近墓室处横铺一排条砖,是墓室地面的延伸。甬道进深0.8米、宽0.74米、通高1.2米,甬道两壁大约至0.94米高处起券。

     墓室  墓室南北长2.46米、东西宽2.6米、通高3.66米,四壁大约至1.13米高处起券,墓顶为四角攒尖顶。墓室门为券顶式,位于墓室南壁略偏东,宽0.7米、通高1.13米。棺床位于墓室北部,东西长2.6米、南北宽1.58米、高0.29米。

    二 葬式、葬具 

    棺床上有两具人骨,均为仰身直肢,人骨腐朽严重,棺床上没有发现棺木和棺钉,疑无葬具。

    三 墓葬壁画 

    墓门、甬道及墓室四壁、墓顶、棺床均满绘壁画,保存比较完好。壁画绘制前未施地仗,先在砖室壁面涂抹一层白灰面,压抹光滑后在白灰面上直接作画。先以墨线起稿,绘出轮廓,然后填色。现将墓门、甬道及墓室壁画简介如下:

    (一) 墓门壁画 

    墓门外侧门框及门头以牡丹纹装饰,墓门东西壁各绘有门吏一名。东壁门吏头戴黑色幞头,身穿杏黄色圆领窄袖长袍,脚着乌皮靴,双手执珪,置于面前,面向南躬身作揖。西壁门吏头戴黑色幞头,身穿杏黄色圆领窄袖长袍,脚着乌皮靴,双手执珪,置于胸前,面向东躬身站立。

    (二) 甬道壁画 

    甬道外侧门框以火焰纹装饰,甬道东西壁各绘有侍卫图一幅。东壁画幅高0.87米、宽0.7米、人物高0.8米,侍卫为胡人形象,连鬓胡,头戴黑色幞头,身穿杏黄色圆领窄袖长袍,脚着乌皮靴,腰佩唐刀,双手抱拳置于胸前,面向南躬身而立。西壁画幅高0.75米、宽0.65米、人物高0.7米,侍卫为汉人形象,头戴黑色幞头,身穿杏黄色圆领窄袖长袍,脚着乌皮靴,右手弯曲置于胸前,左手向身体左后方伸直,面向东躬身站立。

    (三) 墓室壁画 

    墓室顶部绘有幔帐,墓顶四壁分绘四神,四神周边点缀有云气,又绘以空心圆圈,代表星象。东壁青龙画幅内还绘有一轮红日,红日内影影绰绰绘有一只金乌。西壁白虎画幅内绘有一轮弯月,弯月内也有墨绘,较为潦草,不易辨识。南壁为朱雀、北壁为玄武。

    墓室四壁用赭红色颜料绘建筑图案,四角各绘一根角柱,北、东、西壁另绘一根中柱,影作为进深二间、面阔二间的木构空间,柱头均为一斗三升斗栱,四壁在阑额与柱头枋之间绘二朵补间人字栱,栱脚起翘出尖。

    墓室南壁在墓室门东、西两侧各绘侍卫图一幅,东侧画幅高0.86米、宽0.71米,侍卫高0.76米、西侧画幅高0.82米、宽0.8米,侍卫高0.8米。两侍卫均为汉人形象,东侧侍卫头戴黑色幞头,身穿杏黄色圆领窄袖长袍,腰系黑带,斜挂唐刀,脚着乌皮靴,右手置于胸前,左手扶刀柄,面向西站立。侍卫身后躬身站立一人,仅高0.4米,身着黄袍,双手抱拳,置于胸前。西侧侍卫与东侧侍卫样貌、服饰、动作基本相同。西侧侍卫身前站立一人,高0.43米,身着黄袍,向后扬袖。侍卫身边的人物较小且色彩浅淡。

    东壁南部为生活作坊图,画幅高0.84米、宽0.94米。左上部绘一男子推碾,碾是为谷物脱壳的工具;其右边为一妇人推石磨,石磨可将小麦磨成面粉。最右边绘一男子在制作面食,面板前放置一口支起的铁鏊,下面生火。面板和铁鏊下方还有一竖长形的大罐,罐内盛物。左下部绘一男子踩碓,碓是用木石制成的舂米工具,碓旁还放有篾条编制的箩筐和簸箕。右边绘一口水井,井上架有桔槔,桔槔为汲水工具,一妇人在取水。最右边为灶,灶上有一大锅,锅上冒着蒸汽。灶边地上有一架子,架上放有大盆,有人在盆内淘洗,地上还放有相同纹饰的大盆。淘洗者身后绘一三足锅,似在煮食。

    西壁南部为驼马图,画幅高0.84米、宽0.94米。远处绘有山和树,近处一妇女身着长裙,面向北,双手捧一方盒于胸前,身后一胡人身着黄袍,右手执缰绳,左手持马策。

    墓室东、西壁的北半部及北壁是围绕棺床的一组屏风画,共计八幅,其中北壁四幅,东、西壁北半部分各两幅。自西壁起为第一二幅,至东壁止为第七八幅,以此为序简要介绍如下:

    第一幅:画幅高0.735米、宽0.5米,绘有一株植物,画幅正中一朵六瓣红花盛开,上方还有三个花骨朵含苞待放,周围还点缀有五个叶片。

    第二幅:画幅高0.75米、宽0.635米。一老翁头扎方巾,身着阔袖长袍,黄白相间竖条纹,脚穿黑色高齿首履。老翁执珪恭立,向南作揖。周边还点缀有树、山和燕子。

    第三幅:画幅高0.77米、宽0.53米。老翁双手抱起一石块至胸前,面向东边的一座坟墓,老翁形象略同于前,只是头上所戴似为冠。

    第四幅:画幅高0.77米、宽0.48米。老翁面向西,弯身将手伸向前方的蛇,蛇口中含宝珠,老翁形象略同于前。

    第五幅:画幅高0.75米、宽0.495米,老翁面向东,肩扛斧头,背负薪柴,老翁形象略同于前。

    第六幅:画幅高0.72米、宽0.57米,老翁面向西,左手持杯,右手指向旁边的大树,老翁形象略同于前。此处壁画残缺,但此题材在太原地区唐代壁画墓中常见,应该在右手指尖处向上出有一股云气。

    第七幅:画幅高0.73米、宽0.62米,老翁执珪恭立,向南作揖,老翁形象略同于前。

    第八幅:画幅高0.73米、宽0.51米,绘有一株植物,两个花朵似已枯萎。

    棺床满绘壁画,但保存较差。棺床上面绘有忍冬纹,正立面东、西两端和中部绘有床脚。

     随葬器物 

    墓葬共出土随葬器物17件(组),有陶罐、木俑、石俑、铁犁、砖质墓志等。除石俑在甬道靠西壁斜立外,其余均发现于墓室内。介绍如下:

     1.陶罐  2件。编号M1:16,位于棺床以南、靠近墓室西壁,发掘时为堆放的碎片,修复后为一陶罐。陶罐为泥质灰陶,轮制。圆唇,敞口,溜肩,下腹斜收,素面。口径10.5厘米、腹径18.9厘米、底径8.4厘米、高18.6厘米。

    编号M1:1,位于棺床以南、M1:16以东。陶罐为泥质灰陶,轮制。圆唇,敞口,溜肩,下腹斜收,肩部饰有凹弦纹两组,上组弦纹由5道组成,下组弦纹由4道组成,两组弦纹之间有一周间断刻划纹。口径16.5厘米、腹径29.1厘米、底径14.1厘米、高30.3厘米。

    2.石俑  1件,编号M1:2,砂石,风化严重。高髻带风帽,帽帔覆耳披肩背。双手隐于袖内,合揖于胸前,插手侍立。高26厘米、宽8.2厘米。

    3.木俑  3件,编号M1:3-5,正在修复中。

     4.铁犁  1件,编号M1:6,保存完整且锈蚀较少,尖部呈三角形,中部为半圆形,高20厘米、宽23.7厘米。

     5.马鞍  1件,编号M1:7,正在修复中。

    6.木器  1件,编号M1:8,正在修复中。

    7.漆器  1件,编号M1:9,正在修复中。

     8.铜钱  6枚,编号M1:10-15,均为开元通宝,五枚保存较好,一枚残损严重。钱文书迹基本一致。

    9.墓志  1合,编号M1:17,砖质,志盖为方形盝顶状,底边长43.5厘米,顶部长28厘米、宽29厘米、厚7厘米。墓志高44.5厘米、广43.5厘米、厚7厘米。志盖上绘有白色的十字界格,应有四字,但文字不可辨识。

    墓志上有朱砂书写的志文,凡12行,满行14字左右。志文多有漫漶,抄录如下:

    唐故□君墓志铭
    君讳范,字珍,太原府太原人也。/
    因清流引□,□□□荣,令德作腾,□/
    □有则,详诸古代,可略言焉。□□/
    □,□等并得,乘轩出抚;志逸乾坤,/
    □秀仁林,朝天补国。君居身孝□,/
    □性温良。光同照丕之珍,仙□东城/
    □□,春秋六十有三,开元廿四年冬□/
    月廿八日于私第;即以其年十一/
    月廿一日与夫人郭氏合葬于府/
    □□里平原,礼也。恐年月深远,陵/
    □□□,石勒铭传,□□记词。/

     结 语  

    该墓葬位于唐代太原府城以西的山前坡地,此区域为城西重要的墓葬区,已发现唐代墓葬数百座,较为重要的有赫连山墓、赫连简墓和温神智墓等。

    据墓志记载,墓主□范,字珍,太原人。开元二十四年(736)卒于私第,卒年六十三岁,同年与夫人郭氏合葬于晋阳城西。

    □范墓是目前太原地区有纪年的唐代“树下人物图”壁画墓中最晚的一座,对研究太原地区唐代“树下人物图”流行时间具有重要意义。

    该墓中的“树下人物图”壁画是太原地区非常流行的题材,在已发掘的唐墓中出现频次较高。但屏风画的一头一尾由两幅花卉填补,比较少见。目前,仅有龙山火葬场唐墓与之相似。花卉从西壁的含苞待放和盛开到东壁的凋谢、枯萎,似乎体现了屏风画的浏览次序。从绘画风格来看,□范墓与温神智墓极为相似,可能出自同一画师。屏风画中的树下人物无论是相貌还是衣着都一致,应该是同一个人,推测其可能是墓主人。屏风画的内容有可能是以墓主人的形象代入到著名的典故中,以表达墓主人的德行。此外,六幅“树下人物图”中均以树木和飞鸟作为点缀,第二、四、六幅树木相同,第三、五、七幅树木相同,应是为避免画面雷同而刻意区别。

    该墓从墓门、甬道到墓室门两侧均绘有成对人物。墓门两侧人物手中执珪,应为门吏;甬道两壁人物似作迎宾状;墓室门两侧人物腰间佩刀,应为侍卫。三组人物应有不同作用,似乎有先文后武的味道。墓室门两侧的侍卫身旁还各绘有一个较小的人物,动作与甬道壁画人物类似。

    □范墓虽然等级不高,但壁画保存较好,且有许多细节值得深入研究,对太原唐墓壁画的研究具有重要价值。

    参加考古发掘的有裴静蓉、龙真、姬凌飞、张怀平、晁代良、李爱民;发掘中的文物保护由刘晚香、刘俊完成;绘图、摄影为金晓彤、原江;文物修复由王晋清完成。执笔:龙真、原江、姬凌飞。
    刊于《故宫博物院院刊》2023年第5期

  • 陈云良:非法行医行政执法与刑事司法衔接机制研究

    2023年医疗领域的强力反腐暴露了医疗领域的腐败和大量非法行医乱象,知名公立医院医生随意诊断、侵害患者权利事件触目惊心。2023年12月27日,最高人民法院发布了涉及妇产、医疗美容、辅助生殖、口腔等不同领域的非法行医类犯罪典型案例,让人们看到非法行医犯罪的触角已经延伸到了关乎群众健康生活的各行各业。非法行医严重现实让人们不禁反思,为何非法行医问题屡禁不止?现行行政执法与刑事司法双重治理机制为何在医疗卫生领域难以发挥作用?非法行医案件行政制裁与刑事制裁不能有效衔接是其重要原因之一,一些具有严重危害性、涉嫌刑事犯罪的非法行医行为难以进入刑事司法程序,严重削弱了对非法行医的打击力度。

    行政法上的非法行医是指违反法律规定从事医疗活动的行为,主要包括无证行医、非医师行医、超范围行医、违规出租、承包和出借证件行医等类型。刑法上的非法行医罪是典型的行政犯,行为人构成非法行医罪的前提是违反了行政法,未取得医生执业资格而从事医疗活动,且达到了情节严重的情形。非法行医的双重违法性决定了其处罚与治理必须在两种法律体系和两种责任机制中考察,并要合理注意这两种法律体系与责任机制之间的衔接,实现法秩序的统一。非法行医行政执法与刑事司法的衔接,具有行刑衔接机制的普遍性,又有其专属于非法行医领域的特殊性。非法行医领域的行刑衔接机制是一种双向移送机制,既包括行政执法机关在调查违法行为时,发现涉嫌犯罪移送司法机关的情形,也包括公安、司法机关在对案件进行刑事立案后,经审查不符合刑事入罪条件、不予追究刑事责任但需给予行政处罚的,移送相关行政主管机关的情形。同时,由于医疗卫生行业的专业性与生命健康利益的重要性以及行政执法体制的不同,非法行医行刑衔接机制中存在着区别于其他行刑衔接机制的特定问题。一方面,医疗与刑法之间的专业知识壁垒,使得卫生行政部门与公安机关均面临非法行医行为行政违法与刑事违法的区别判断难题。另一方面,在权力配置上,由于卫生健康监督机构的执法权属于委托执法,因此其在开展非法行医执法工作时,缺乏查封、扣押、没收、控制违法者人身自由等强制执法权,执法手段不足,执法效果大打折扣,行刑衔接执法能力欠缺;在资源供给上,卫生行政执法机构人员、资金、执法工作车辆、设备、调查取证工具等均配备不足,导致了卫生行政执法机构开展非法行医行刑衔接工作的技术能力不足。据国家卫健委2022年的统计数据显示,我国现有卫生监督机构2944个,人数7万人,而非法行医现象较常出没的医院与基层医疗卫生机构分别为36976个与979768 个,还存在数量众多的美容机构、牙科诊所及不少黑诊所,执法力量与执法需求比重严重失衡。

    一、非法行医行刑衔接制度的演进

    一般来说,行政犯的构造主要采用前置法定性与刑事法定量二元统一的立法模式结构,即:一个行为是否构成行政犯,需首先根据行政法规范,判别该行为是否构成行政违法;然后,根据刑事法规范,判别该行为是否符合刑事法的定量要求。但是,具体的司法适用中这一立法模式则有不同的表现形态。我国非法行医行刑衔接机制的司法适用表现形态经历了由行政前置法定性向刑事法定量的变迁。

    1997年,我国刑法全面修订时增设非法行医罪,从而使得非法行医行为具有了行政违法与刑事违法的双重属性,非法行医由此进入了行刑双重治理时代。1997年以前,我国的非法行医行为主要由行政管理手段来规制,如果发生就诊人较大财产损失,一般以诈骗罪定罪处罚,如果发生致就诊人重伤、死亡的结果时,则以过失致人重伤罪、过失致人死亡罪定罪处罚,不存在行刑衔接的问题。1999年,《中华人民共和国执业医师法》出台,其中明确规定了非法行医行为构成犯罪的,应依法追究刑事责任,行政前置法定性与刑事法定量二元统一的立法模式结构被确立。但这一时期,行政执法与刑事司法衔接问题在法律界与实务界均不受重视,更遑论行刑衔接机制的建设,非法行医案件很少移送刑事司法处理。根据卫生计生委提供的数据,2005年4月至2005年7月20日,全国开展了打击非法行医专项行动,取缔无证行医3.4万余户次,查处聘用非卫生技术人员行医的医疗机构、计生机构9394户,但移送追究刑事责任的仅33人。因此,这一时期非法行医的司法适用形态主要体现为行政前置法定性。

    “行政执法与刑事司法衔接”作为一个重要问题被关注,是从国务院2000年10月开展的打假联合行动开始。2001年4月,《国务院关于整顿和规范市场经济秩序的决定》中提出,要“加强行政执法与刑事执法的衔接”。同年7月,国务院制定了《行政执法机关移送涉嫌犯罪案件的规定》,对行刑如何衔接做出了具体的规定。该规定的出台为有关部门开展行政执法与刑事司法衔接工作提供了指引,行政执法机关向公安机关移送涉嫌犯罪案件工作得到加强。2009年,卫生部、公安部联合印发了《关于在严厉打击非法行医和非法采供血工作中加强衔接配合的暂行规定》,提出要实现非法行医行刑的有机衔接,加强卫生行政部门和公安机关的协作与配合,规范涉嫌非法行医犯罪案件的移送工作。该规定的出台为非法行医领域行刑衔接工作提供了规范与指引,加大了非法行医的行刑衔接力度。自此,非法行医行刑衔接机制的司法适用形态开始向刑事法定量转变。官方数据显示,2010年至2012年,三年来我国共取缔无证行医14.1万余次,移送无证行医涉嫌犯罪案件4188件,2013年10月至2014年12月,全国一年来共查处无证行医案件4.4万件,罚没款2.2亿元,刑事拘留1373人,非法行医案件移送刑事程序处理的占比有了显著提升。

    行政权的扩张性与刑法的谦抑性决定了非法行医行刑衔接中行政法先行立法模式的科学性。行政法先行的立法模式既符合行政法广泛性、易变性、方针政策性的特点,亦契合刑法最后保障法的特征。对实践中出现的非法行医行为先以行政立法方式予以规制,对于情节严重、单靠行政法规之力难以有效规制的非法行医行政违法行为,以刑事立法的方式予以跟进。这样既能发挥刑法保障法的功能,同时又能确保刑法不越位代为行使行政管理权,对意图保护的法益进行“有效”又“有限”的刑法保障。行政法先行、刑法补充的立法技术,有利于以行政责任和刑事责任的双重责任机制合力治理非法行医行为,保护公民的生命健康权益,恢复被破坏的医疗管理秩序。这是非法行医行刑衔接机制的设计初衷与目标追求,也是行政执法与刑事司法如何衔接的双重法律保障。

    然而,非法行医行刑衔接的司法适用形态转变并没有消解司法适用上的难题。实践中,非法行医领域的行刑衔接程序运转依然问题重重,非法行医行政违法与刑事犯罪标准的认定、行转刑时机的把握、案件材料的制作与移送依然存在缺乏适用指引难题。2016年,国家卫生计生委、国家中医药管理局又出台了《无证行医查处工作规范》,规定在无证行医查处中,发现有涉嫌非法行医犯罪情形的,应当在依法查处的同时制作《涉嫌犯罪案件移送书》,按照规定及时将案件移送属地公安机关,并将《涉嫌犯罪案件移送书》抄送同级人民检察院。非法行医行刑衔接立法的逐步完善,为行刑的有效衔接搭建了制度框架,提供了适用前提。但上述法律规范仍缺乏具体可操作的规定,难以对非法行医行刑衔接实践提供充足指引,有案不移、有案难移、以罚代刑的问题在非法行医治理领域依然较为突出。

    二、非法行医治理保护法益的重新定位

    上述非法行医行刑衔接司法适用上的困境主要是因为非法行医治理保护法益界定不清而导致,必须在行刑衔接机制视角下厘清非法行医治理所保护的法益。法益是一切犯罪构成要件的出发点,也是解释犯罪的指导思想。每个法律条文的出台与实施都以特定的法益保护为目的,应当根据法条的法益保护目的来阐释、适用法条。行政法关注的是社会管理功能,行为只要违反了有关行政管理法规,通常就可以认定为行政违法。而刑法则以确认和限制刑罚权的方式实现保护法益目的,注重行为是否对法益造成了实质侵害。对非法行医行政违法与刑事违法如何衔接的研究,如果局限于对二者构成要件的形式化解释,缺乏对非法行医保护行政法益与刑事法益不同的考量,将行政违法和刑事违法的区别简单归纳为“数量累积”的关系,会导致非法行医罪的过分扩张与行刑衔接的混乱,造成本应止步于行政处罚阶段的行为被错误升格为刑事犯罪,本应以非法行医罪进行刑事制裁的行为被停留在了行政处罚阶段。因此,有必要在非法行医罪构成要件的解释中充分发挥法益的合理限缩功能,对行政违法和刑事违法之间的界限进行实质性界分,实现非法行医行刑的有效衔接。

    非法行医的刑法保护法益即非法行医罪保护的法益,存在“生命健康权利说”“公共卫生安全法益说”和“医疗管理秩序与生命健康权利双重利益说”等不同见解。“生命健康权利说”认为,非法行医罪保护的法益是个人的生命、身体健康,“公共卫生安全法益说”认为非法行医罪保护的是公共卫生安全这一单一法益。“医疗管理秩序与生命健康权利双重利益说”认为,国家医疗管理秩序与就诊人的生命健康权利都是非法行医的保护法益。从非法行医罪在《刑法》条文中的布局上看,其被分布在第六章“妨害社会管理秩序罪”中,可知其采取的是“医疗管理秩序与生命健康权利双重利益说”,保护的法益包括了患者的生命健康权与医疗活动的管理秩序。非法行医罪属于行政犯,其保护的患者生命健康权属于个人法益;医疗管理秩序属于公共法益,在衔接行政违法与刑事违法时,如何平衡取舍这二元利益是非法行医行刑衔接的“难题之眼”。由此也产生了实质二元论与形式二元论之争:实质二元论认为非法行医罪保护的医疗管理秩序公共利益与个人生命健康法益并行;形式二元论主张区分个人生命健康法益与医疗管理秩序公共法益,但在认定医疗管理秩序公共法益时仍需回溯至个人法益,以个人生命健康法益是否遭受侵害作为构成犯罪的依据。

    从非法行医行政处罚与刑事规制保护法益的覆盖范围来看,二者都囊括了对医疗管理秩序与公民生命健康权的保护。然而,从规范保护目的出发,行政法与刑法的规范保护目的不一样,保护法益的侧重点亦有不同。行政法以行政管理为目标,行政执法的目的在于确立与维护行政管理秩序,行为人只要破坏了医疗管理秩序就可以行政违法为由对其非法行医行为进行处罚。刑法以法益保护为目的,刑事司法一方面通过惩罚犯罪来实现对公民权利的保护,同时又以刑法的谦抑原则限制刑罚的滥用,保障公民不受国家刑罚权的非法侵害。非法行医罪保护的“双重法益”虽分属公共利益与个人利益,然而公共利益包含个人利益,对公共利益的保护最终也要还原到个人利益的保障。医疗管理秩序是非法行医罪保护的抽象法益,对医疗管理秩序法益的保护应回溯至具体的个人生命健康法益,生命健康权益才是非法行医罪所保护的实质法益。因此,对非法行医罪犯罪构成要件内容的解释,应着重考量非法行医行为是否对患者的生命健康权益造成损害、形成危险。着重于处罚严重侵害公民生命健康利益的行为,对于无法还原至个人生命健康法益的纯医疗管理秩序法益,应将其排除在非法行医罪保护法益之外。若行为人的非法行医行为仅侵犯了医疗活动的管理秩序,而没有产生侵害公民生命健康法益的结果或危险可能性,则可止步于行政处罚,不必升格为刑事犯罪。

    实践中,许多名老中医具有深厚的医学知识与医疗能力,却由于文化水平以及年龄的限制未能通过从医资格考试与考核而获得从医资格证,其无从医资格证行医行为虽然违反了医疗管理规范,但却未对患者的生命健康权益造成侵害,反而治愈了患者的疾病。从可罚违法性的角度出发,对于此种非法行医行为止步于行政处罚即可,即使符合了非法行医罪中“非法行医被卫生行政部门行政处罚两次以后,再次非法行医”的入罪门槛,也可不必将其升级为刑事处罚。这也是刑法作为最严厉制裁手段与最后保障原则的体现。刑法的最后保障原则与刑罚后果的严重性,决定了对刑事处罚的适用必须谨而慎之,不能将刑罚的“手”伸得过长“以刑代罚”,更不能将刑法作为行政管理的日常手段。在判断对非法行医行为适用行政处罚还是刑事处罚时,要在法益保护的基础之上,慎重考量刑罚严厉性与行为危害性之间的匹配度问题,给行政处罚留下空间。因此,要以非法行医治理保护法益在行政执法与刑事司法中的不同定位为判断“指向标”,明晰非法行医中行医主体、医疗行为、行医情节等实体要件在行政法与刑事法中的界定,确定非法行医行刑衔接中程序适用、证据转化、主体衔接等衔接规则,破除因对二者保护法益的认识差距而产生的衔接难题,扫除非法行医行刑衔接障碍。

    三、非法行医行刑衔接实体机制的建构

    行政执法与刑事司法均属于公法制裁,清晰划定二者的实体边界是实现非法行医行刑有效衔接的关键。刑法对非法行医罪采取“主体要件+行为要件+情节要件”的设置方式,从是否取得医生执业资格、是否属于医疗行为以及是否具有严重情节角度出发对升格为刑事犯罪的非法行医行为进行筛选。该种条文设置方式虽然有利于维护法秩序的统一性与协调性,符合刑法最后保障法的特征,但对非法行医行政违法行为与刑事犯罪行为的界分不够精准,在主体要件、行为要件与情节要件方面均存在界定模糊、转化阻滞的困境,导致实践中非法行医行政执法与刑事司法难以有效衔接。

    (一)主体要件——行医主体

    医师是医疗行为的行为主体,非医师行为主体行使的医疗行为是非法行医行为。刑法在增设非法行医罪时,正是认识到了行为主体对于医疗行为的重要性,而将不具有国家认可的专业医学知识和技术的行为人设置为该罪的主体要件。因此,行为主体就成为了是否属于非法行医的判断关键。行政法与刑法对于非法行医行为的主体认定并不一致,特别是对于何种主体的非法行医行为才能上升为刑事犯罪行为存在着困扰与争议,由此导致了非法行医行刑衔接的主体认定难题。

    行政法规范中的非法行医主体分为“无证行医”行为和“非医师行医”行为。关于“无证行医”行为,《中华人民共和国基本医疗与健康促进法》将其规定为“未取得医疗机构执业许可证擅自执业”的行为。修改后的《医疗机构管理条例》将其规定为“未取得《医疗机构执业许可证》或者未经备案”的行为。《无证行医查处工作规范》中以列举的方式对无证行医情形进行了较为具体的规定,主要包括:未取得或者使用伪造、变造的《医疗机构执业许可证》开展诊疗活动;《医疗机构执业许可证》被撤销、吊销、已经办理注销登记,而继续开展诊疗活动;《医疗机构执业许可证》有效期届满后未按规定申请延续或者卫生计生行政部门不予受理延续或者不批准延续而继续开展诊疗活动,以及法律、法规、规章规定的其他无证行医行为。关于“非医师行医”行为,1999年施行的《中华人民共和国执业医师法》采用了“执业医师资格”的概念表述并确立了执业注册制度,规定从事医师执业活动应当首先参加医师资格考试,取得执业医师资格,然后进行注册取得执业证书才能被认定为执业医师。2022年施行的《中华人民共和国医师法》中将医师定义为依法取得医师资格,经注册在医疗卫生机构中执业的专业医务人员。由此可知,行政法意义上的非法行医行为可概括为三种情形:第一,个人未取得医师资格证书而非法行医的行为;第二,个人已经取得医师资格证书,但未进行注册或未注册成功从而未取得医师执业证书而非法行医的行为;第三,个人已经依法取得医师资格,也经注册取得了医生执业证书但其执业的医疗机构未依法取得合格的《医疗机构执业许可证》而非法行医的行为。行为人只要具备上述三种情形之一,卫生行政执法机关就可将其行为认定为非法行医行为,对其处以行政处罚。

    刑事法规范对于非法行医行为主体的界定历经了“三证说”“双证说”“单证说”之争,争论的分歧主要集中于如何认定非法行医罪中“未取得医生执业资格”的标准。针对此问题,最高人民法院曾于2001年向原卫生部发函征询意见,原卫生部出具了《关于非法行医罪犯罪条件征询意见的复函》,该函认为取得医生执业资格应包括取得《医师资格证》与《医师执业证书》,由此应属“双证说”,然而该函又认定在未取得《医疗机构执业许可证》的场所行医属于非法行医,由此该属”三证说”。因此,该复函虽特别针对非法行医罪犯罪主体作了答复,但未能统一对非法行医罪行为主体的认定,引发了非法行医罪主体“三证说”与“双证说”之争。2004年,最高人民法院在《刑事审判参考》发布的指导案例“周兆钧被控非法行医案”中认定,“虽未经注册,未取得医疗机构执业许可证,但获得医师证书,具有一定的医学知识和医疗技术”的个人行医行为,不属于非法行医罪中“未取得医生执业资格的人”。据此可知,该案例对非法行医罪的主体采取“单证说”,即行为人具有一定的医学知识和医疗技术后只需取得《医师资格证》“一证”,就不属于非法行医罪中的“未取得医生执业资格”。2008年,最高人民法院发布的《关于审理非法行医刑事案件具体应用法律若干问题的解释》中,将“未取得医生执业资格的人非法行医”规定为五种情形,其中第一种情形要求行为人取得《医师资格证》,第二种情形要求行为人取得《医疗机构执业许可证》,第三种情形要求行为人取得有效的《医师执业证书》。据此,最高人民法院此时对非法行医罪的行为主体认定采取的是“三证说”,即行为人要从事医疗行为必须取得《医师资格证》《医师执业证书》《医疗机构执业许可证》三证,否则将成为非法行医罪的行为主体。“三证说”的盛行导致了当时司法实践中,大量拥有《医师资格证》《医师执业证书》但未取得《医疗机构执业许可证》,或者取得的《医疗机构执业许可证》不合规的行为人被以非法行医罪判处刑罚。以肖国送非法行医案为例,被告人肖国送具有武宣县卫生行政部门颁发的《医疗机构执业许可证》《个体医师执业证书》,但在未取得象州县卫生局颁发的《医疗机构执业许可证》的情况下,在象州县非法开办个体诊所,从事口腔诊疗活动。法院以被告人虽具有医生执业资格,但在未取得象州县卫生行政部门颁发的《医疗机构执业许可证》情况下,在象州县辖区内开办医疗机构从事口腔诊疗活动,属于在“未被批准的行医场所”的非法行医。其在象州县辖区内因非法行医被卫生行政部门行政处罚两次后,仍继续从事该活动,情节严重,因此以非法行医罪判处被告人肖国送有期徒刑一年。2016年,最高人民法院发布的《关于修改(关于审理非法行医刑事案件具体应用法律若于问题的解释〉的决定》中删除了2008年《审理非法行医刑事案件解释》中“个人未取得《医疗机构执业许可证》开办医疗机构的”非法行医情形,明确将《医疗机构执业许可证》排除出了非法行医刑事犯罪的制裁范围,“三证说”由此退出了非法行医罪主体之战。然而,2016年司法解释对于何为“未取得医生执业资格”仍未有明确的定义,对于已取得医师资格但未获医师执业证书的人,是否属于非法行医罪中的“未取得医生执业资格”仍持模糊态度,“单证说”“双证说”仍然存在争论。

    实践中,非法行医行刑衔接的主体认定难题就在于,卫生行政机构认为这些已取得医师资格但未经注册取得执业医生资格证书的行为主体,符合非法行医罪的主体构成要件,而试图将他们的非法行医行为通过行刑衔接程序移送刑事诉讼程序进行处理。然而,在刑事司法阶段,“双证说”与“单证说”对此有完全不同的处理。持“双证说”的刑事司法机关办案人员认为,此种情形符合非法行医罪的主体构成要件,予以刑事立案。而持“单证说”的刑事司法机关办案人员则认为,这些行为主体实质上具有行医能力且取得了医师资格,其未履行注册手续只属于不影响实质行医资格的“形式瑕疵”,不符合非法行医罪的主体构成要件,不需要以非法行医罪追究其刑事责任,因而对卫生行政执法机关移送的该类案件不予接收。由此导致了非法行医行刑衔接实践中的同案不同处理乱象,阻滞了非法行医行刑的有效衔接。

    刑法的谦抑原则和刑事制裁的严厉性决定了不是所有的非法行医行为都必须由刑法进行规制,刑法中的非法行医主体范围应窄于前置行政法规范中的非法行医主体,否则难以避免非法行医罪处罚范围的不当扩大。行政法规范中的非法行医主体可包括未取得医师资格、已取得医师资格但未经注册取得医师执业证书以及已取得执业医师执业证书但未取得医疗机构执业许可证三种行为主体,这三种非法行医主体中哪种可以成为非法行医罪的行为主体,要结合非法行医罪的规范保护目的来认定。现代刑法具有规范刑法的属性,由显性的规范语言表达和隐性的规范保护目的组成,当规范语言表达不够明确时,规范保护目的便可发挥界定文义范围之作用,从而确保刑法评价的准确性。规范保护目的意在探寻立法者在制定法规范时所欲保护的目的。就非法行医罪而言,刑法当初增设非法行医罪时,立法者就是出于对医疗行业的专业性与关乎人民健康的切身性的考量,而将具有“情节严重”的非法行医行为纳入刑法规范范畴。医疗卫生行业具有极强的专业性,从业人员只有具有国家认可的专业医学知识和技术,才能更好地使就医人员得到专业可靠的治疗。必须从行医主体资格出发对行医行为进行规制,确保从事医疗行为的行为人都具有国家认可的专业医学知识和技术,以保障人民群众的生命健康权。执业资格是国家建立的,用来检验行为人是否具备国家认可的专业医学知识和技术的准入制度。通过全国统一的执业医师资格考试和执业助理医师资格考试后,行为人取得《医师资格证》,即表明国家认可其具有法律规定的独立从事医疗活动的技术和能力。《医师执业证书》是一种行政许可,行为人从取得执业医师资格到实际执业,只缺乏向相关机构履行注册手续这一行政管理步骤,行为人在未取得医师执业证书的情况下替他人诊疗,只是违反了有关医疗行政管理规定,是一种行政违法行为,以行政法规规制即可,不需要纳入非法行医罪的制裁范畴。可见,行为人是否具备专业医学知识与能力才是非法行医罪规范的目的所在,不具有专业医学知识与能力而从事医疗活动的行为人才是制定非法行医罪所欲规制的犯罪主体。因此,那些实质上具有行医能力、取得执业资格,而只是未履行注册手续、形式上违反医疗行政管理规定的人员,不属于非法行医罪的主体范围。卫生行政执法机构在处理此类非法行医主体的非法行医行为时,只能依法给予行政处罚,不应将其以非法行医罪移送刑事诉讼程序,刑事司法机关亦不能以非法行医罪追究此类非法行医主体的刑事责任,对于造成严重危害后果构成犯罪的,可依照《刑法》规定的其他犯罪追究其刑事责任。

    (二)行为要件——医疗行为

    非法行医是违反法律规定从事医疗活动的行为,无论是对其进行行政处罚还是刑事制裁,都避不开要对行为人的行为是否属于医疗行为进行判定,因此医疗行为是非法行医行刑衔接机制中必须明确的核心概念。关于什么是“医疗行为”,学界尚未形成通说,法律法规也尚未作出统一规定。目前学界对医疗行为的界定存在“诊疗目的说”“主体限定说”“业务限定说”“职业标准说”“业务行为危险说”等不同学说,也由此对应了不同的医疗行为界定范围。“诊疗目的说”认为,疾病诊治或某些医疗活动需要有治疗目的方可称之为“医疗行为”,台湾地区对医疗行为的界定即采该说。“主体限定说”是从医疗主体出发,认为医疗行为是指取得相关医学资格或以诊疗服务为职业的自然人或单位,以人体形态、构造和生理机能的优化、变更或恢复为目的,以适当的现代医学理论和技术手段为准则,对医疗需求者进行具有损伤性的医学过程。“业务行为危险说”认为,如果不是医师根据其医学专业知识与技能实施,可能对人体造成危险的业务行为。这种业务行为系基于国家法令而给予的排他性权利,是可以反复、继续实施的具有危险性的行为。在“业务限定说”中,医疗行为是以医学知识和技能为根据而从事诊断、治疗、医务护理工作的行为。该说认为行医是指从事医疗业务、以实施医疗行为为业的活动。行为人没有以反复、继续实施的意思将医疗、预防、保健作为业务时,不构成非法行医罪。

    刑法规范中对于何为非法行医罪中“医疗行为”的认定具有对前置行政法的相对从属性和依附性,其没有在刑法条文与司法解释中予以具体明确,而是采取参照《医疗机构管理条例实施细则》(以下简称“《细则》”)中的“诊疗活动”“医疗美容”认定的方式来明确,将诊疗活动与医疗美容都纳入医疗行为的概念之中。《细则》中将诊疗活动定义为通过各种检查,使用药物、器械及手术等方法,对疾病作出判断和消除疾病、缓解病情、减轻痛苦、改善功能、延长生命、帮助患者恢复健康的活动。将医疗美容定义为使用药物以及手术、物理和其他损伤性或者侵入性手段进行的美容。《细则》对“医疗行为”的特征进行了相对具体的描述,对实践具有一定参考价值,但随着技术的更迭,医疗行业的发展日新月异,该规定对于“医疗行为”的定义与现代医学技术的发展之间出现了缝隙。如非医学需要的胎儿性别鉴定、为健康捐卵者穿刺取卵等活动里运用了相关医学方法。但其目的却不是为了治疗疾病、促进健康,不属于该定义中列举的“对疾病作出判断和消除疾病、缓解病情、减轻痛苦、改善功能、延长生命、帮助患者恢复健康的活动”,难以被现行关于医疗行为的规定所囊括。模糊不清的概念与不断发展变化的医疗现实情境,给卫生行政执法人员与司法人员带来识别与判断何种非法行医行为构成刑事犯罪的压力。将《细则》对“医疗行为”的规定完全照搬进现实,不仅会造成医疗领域新兴出现的非法问题难以覆盖的尴尬境地,也易致“医疗行为”概念被不当扩大,出现非法行医规制越界,将中医推拿、按摩和出于日常健康管理需要的量血压等行为不当纳入行政处罚甚至刑事制裁的范畴,造成“过罚失当”,阻碍我国健康事业的发展。

    医疗行为的认定应以同时具备医疗要素、业务要素、专业要素以及危险要素为标准。首先,医疗行为应当是职业行为。非法行医语境下的医疗行为是以反复实施医疗行为为目的的一种职业活动。要从业务的角度,根据行为人在实施相关医疗活动时所采取的医疗技术、行医的场所等,综合判断其是否将行医作为一种业务。只有以职业目的开展的医疗行为,才属于非法行医规制的范畴。这就将偶然为之的救助性质的短暂行为,如非医师人员在紧急情况下偶然对他人实施自动体外除颤器急救排除在了非法行医之外。其次,医疗行为必须具有一定的专业要素与危险要素。即该行为如果不由拥有公认医学知识与技能的医师实施,则有可能导致卫生保健上的危险。如果一行为的行使不需要以专业医学知识与能力为基础,即使其具有诊疗目的,也不能认定为医疗行为,如单纯的测量血压行为即使发生在医院、诊所等医疗场所,也不能认定为非法行医行为。危险要素的考量可具体参考国家中医药管理局发布的《国家中医药管理局办公室关于非医疗机构开展“火疗”项目的复函》进行判断。该复函的规范对象虽然是中医技术,但其中关于禁止使用针刺等微创类技术以及其他具有创伤性、侵入性或者危险性的技术方法的规定,可作为医疗行为危险要素判断的参考认定标准。综上所述,只有同时具备医疗要素、业务要素、专业要素以及危险要素的行为才能被认定为医疗行为,此种界分方式才能既不遗漏危害人民群众生命健康安全的新型医疗行为,又不过分扩大非法行医管制的范围,阻碍医疗卫生事业的健康发展。

    (三)情节要件——情节严重

    根据《刑法》第336条的规定,未取得医生执业资格的人非法行医只有达到情节严重的才能构成非法行医罪,因此“情节严重”是非法行医整体的评价要素,是非法行医行为跨越行政处罚边界转为刑事犯罪的关键因素。关于非法行医罪中的“情节严重”,最高人民法院《审理非法行医刑事案件解释》作了类型化列举,将造成就诊人轻度残疾、器官组织损伤导致一般功能障碍的;造成甲类传染病传播、流行或者有传播、流行危险的;使用假药、劣药或不符合国家规定标准的卫生材料、医疗器械,足以严重危害人体健康的;非法行医被卫生行政部门行政处罚两次以后,再次非法行医等情形认定为非法行医罪中的“情节严重”。该规定是司法实践区分非法行医行政违法与刑事违法的量化依据,一定程度上抑制了“以罚代刑”乱象的滋生。然而,该解释以列举式方法对现实多发案件类型予以总结,属于直接对事实进行提炼,缺乏对规范的本质分析,会使解释结论因缺乏有力的理论支撑而与刑法基本理论相冲突。该解释将“非法行医被卫生行政部门行政处罚两次以后,再次非法行医”作为入罪门槛,在刑法的价值维度上面临将行政管理规范径直作为刑事定罪依据,有刑法新工具主义嫌疑,面临违反刑法谦抑性与补充性原则、造成刑罚犯罪圈的不当扩大等质疑。

    在“二次行政处罚后再次行政处罚”的行转刑情节中,卫生行政执法机关只需出具两份行政处罚决定书就可以将行为人之后的非法行医行为纳入刑罚范畴,这既违背刑法的立法精神,造成非法行医刑罚犯罪圈的不当扩大,也削弱了行政执法在社会管理中的主导作用,陷入滥用刑罚作为社会管理手段之泥淖。行政处罚是卫生行政机关在对医疗秩序进行日常监督管理时惯常使用的行政管理手段,对于卫生行政执法人员而言,行政处罚是其熟悉的工作领域,便于操作。同时,出于对二次行政处罚后再次非法行医的行为人“屡教不改”的“惩罚”心理,卫生行政执法部门在处理此种“多次犯”时,容易产生将其升级为刑事处罚进行“严惩”的冲动,更愿意将此类案件移送司法机关,由此也造成此类情形在非法行医行刑衔接实践中的滥用之殇。实践中,自“二次行政处罚后再次非法行医”被列为非法行医罪的入罪条件之一后,该款的适用呈现出了“唯次数论”的倾向,忽视案涉行为对就诊人是否构成实质损害或严重威胁,模糊了非法行为违法行为与刑事犯罪的边界,引发了该入罪情形的适用泛滥。此现象在最高法近期公布的非法行医典型案例“许某越非法行医案”中可见一斑。该案例中,被告人第一次被判处非法行医罪的入罪门槛是曾因非法行医多次被卫生行政部门行政处罚,第二次被判处非法行医罪的入罪门槛是因犯非法行医罪被刑事处罚,在缓刑考验期间及期满后仍无证行医。

    非法行医作为行政犯,具有行政违法性和刑事违法性的双重性。行政犯表现为对行政管理秩序的违反,但能否构成犯罪并非仅取决于行政不法“量”的多寡,而要看行为是否侵犯了秩序背后的法益。严重的法益侵害性是界分行政违法行为与刑事犯罪行为的标准,行为人的非法行医行为遭受两次行政处罚只能体现其具有再犯可能性,是一种人身危险性的要素,而非不法侵害性,与案件本身的不法与罪责程度无关。在“二次行政处罚后再次行政处罚”的行转刑情形下,行为人非法行医行为的行政违法性是构成非法行医罪的必要条件,但并不是能直接推导出非法行医罪的充分条件。行政违法行为与刑事犯罪行为存在质的差异,不能简单以“次数”为标准进行“一刀切”,认为只要行为人被处以行政处罚的“次数”达标,就直接将其转化为刑事犯罪。在司法实践中,很多以“二次行政处罚后再次行政处罚”情形被判处非法行医罪的案例中,行为人前二次非法行医行为大多被处以警告等轻微行政处罚,没有达到足以严重侵害他人身体健康的危险程度。此种情形下,该非法行医行为的法益侵犯性并不会因为次数的简单叠加而改变其轻微违法的性质,该种行为并不具有刑事处罚必要性。

    刑法作为社会保障的最后一道防线,只处罚严重的法益侵害行为,刑法的谦抑与补充原则要求,如果对某种不法行为采取行政措施便足以保护法益,就不应当将这种行为当作犯罪处理。因此,在判断非法行医行为能否由行政处罚转化为刑事处罚时,要对该行为的刑事违法性进行实质上的独立判断,避免陷入 “宁信度, 无自信也” 的机械司法陷阱。不能因为行为人曾因非法行医受过二次行政处罚就径直认定其构成情节严重,对其课以刑事处罚,必须以实质的严重法益侵犯性为衡量标准,对行为进行罪质与罪量的筛选,只有通过刑法的两次定量筛选,才能成为刑法上的犯罪行为。具体到“二次行政处罚后再次行政处罚”入罪情形判断时,要对行为人的每“次”行政处罚进行实质审查。先以非法行医罪条文规定的规范用语文义为基础进行形式解释,然后从规范保护目的和法益保护立场出发进行实质解释,将三次非法行医行为作为一个整体进行考量,重点考察行为人的非法行医行为是否具有实质法益侵害性和刑法处罚必要性,避免将只是形式符合但缺乏实质法益侵害性与刑事处罚必要性的行为认定为非法行医罪的犯罪行为,实现刑事司法适用解释的形式正义与实质正义相统一。

    根据同类解释规则,“二次行政处罚后再次行政处罚”中的“一次”,应当与司法解释中所列另三种“情节严重”情形具有相当的社会危害性和刑事处罚必要性。应发挥同类解释规则的实质限缩功能,以相当的危害性作为判断标准,将该类入罪情形限制在合理范围之内。只有明确该非法医疗行为足以产生严重危害人体健康的结果或危险时,才能将该行为认定为非法行医“二次行政处罚后再次行政处罚”中的“一次”。其次,要着重审查前二次行政处罚的具体类型,要以非法行医者开展非法行医行为时的客观事实作为“次”严重程度的判断基础,综合考量非法行医者是否具备相应的医学专业背景与医疗技术水平,其开展诊疗的时间、范围,非法行医时所处的医疗环境、所采用的诊疗手段、开具的药品是否合格、是否采用了相应的医疗设备与器械等事实内容,再依据因果关系来判断该非法行医的医疗行为可能发生的实害结果的应然性大小。最后,应根据比例原则对是否上升为刑事处罚进行综合考量。比例原则要求对非法行医行为的处罚,要在追求的目的与采取的手段之间进行是否符合比例的衡量,如果行政处罚足以达到维持医疗管理秩序的有效性与目的性,则不应直接适用刑罚规范。要将形式上虽符合这种“2+1”模式的入罪情形,但实质上不值得科处刑罚的轻微法益侵害行为排除在犯罪之外。如此,诸如司法实践中存在的某些轻微非法行医行为即使被行政处罚两次后,再次进行轻微非法行医的情形,因没有严重侵害公民的生命健康权益,不具有实质的严重法益侵害,不应以非法行医罪定罪处罚。

    四、非法行医行刑衔接程序机制的建构

    非法行医领域的行刑衔接是行政权与司法权共同参与社会治理的一项制度,涉及多部门、多种权力交织的权力运行体系,非法行医行刑无缝衔接的最终实现必须依靠程序机制,通过合理化程序保障非法行医行刑的有效运转。

    (一)行政程序优先适用

    非法行医行刑衔接程序的运行存在“刑事优先”亦或“行政优先”的争议。在传统的行政犯“两法衔接”过程中,“刑事优先”原则是行刑衔接程序的主流。行政机关普遍认为在违法行为涉嫌刑事犯罪时,应坚持刑事程序优先,在刑事诉讼程序终结后行政机关方能作出行政处理。然而,随着社会治理的进一步深入与行业分工日益专业化,学界开始反思“刑事优先”在行政犯行刑衔接程序中是否合适的问题。有学者认为,“两法”衔接的目的不是为了“优先”追究刑事责任,坚持刑事优先原则的必要性值得反思;有学者认为,对于行政犯的刑事追诉,“刑事在先”原则会滋生诸多弊端,应予以调整,通常情况下应实行“先行后刑”;有学者提出应以行政优先为原则、刑事先理为例外。

    非法行医作为典型的行政犯,“刑事优先”原则在其行刑衔接过程中存在适配度不足的问题。首先,非法行医的违法性专业证据只能由卫生行政执法机关调查。认定行为是否属于医疗行为涉及到医学、生物等专业知识,而随着基因编辑、脑机接口等技术在医疗领域的运用,医疗违法行为的判断呈现出了愈加专业化的趋势,与刑事司法机关的专业壁垒也日益加深,必须由卫生行政执法机关对与医疗卫生相关的专业性证据进行收集、固定与判断。其次,是否属于医疗行为等专业难题只能由医疗卫生相关行政机关进行认定。医疗卫生领域法规众多,截止2020年,医疗卫生领域已经制定法律14部,行政法规近40部,部门规章90多部。而且,由于生物医学技术日新月异的发展,医疗卫生领域的法规修订也日益频繁。因此,对于行为是否属于医疗行为等专业判断难题,刑事司法机关往往是心有余而力不足。再次,“刑事在先”容易导致大量的非法行医行政违法行为被错误升格为刑事犯罪。司法权的终局性与刑事制裁的严厉性,要求刑事立案程序的启动必须谨而慎之。刑事诉讼的启动牵一发而动全身,刑事案件的侦查过程对行为人的人身权利与财产权利都会造成一定的影响,特别是审前羁押的适用限制了行为人的人身自由,因此更应慎重启动。然而,实践中一旦启动了刑事诉讼程序,部分刑事司法人员出于“结案”压力,在认定前置行政违法性时,往往会从众多的行政法规中有倾向性地选择能够将行为人定罪的条款予以适用,由此一些本可止步于行政处罚的非法行医行为被强硬错误套上刑事处罚的外衣。最后,“刑事优先”易致程序的拖沓,影响行政执法效率。《刑事诉讼法》规定,在进行刑事立案前要对案件线索材料所反映的事实进行必要的调查,以确定是否符合立案条件。非法行医类案件涉及到医疗行为认定等专业问题,是否存在构成非法行医罪的犯罪事实认定,需要一定的时间去调查才能作出是否刑事立案的决定,而非法行医关乎人民群众的生命健康利益,不及时处理将造成损害后果的进一步扩大。因此,非法行医行刑衔接程序如果以“刑事先行”为主,易致刑事诉讼程序囿于专业难题而进程缓慢,既可能造成行为人面临被长期羁押的风险,也让医疗管理秩序难以及时恢复。

    因此,在非法行医的行刑衔接程序中应采取行政优先模式。先由卫生行政执法机关在行政执法程序中,对是否属于医疗行为等专业问题进行相关证据的收集与专业性的认定,然后再在认定涉嫌犯罪的基础上,将案件移送公安机关进行刑事立案,这既是畅通行刑衔接程序的良策,也是防止将非医疗行为错误认定为非法行医罪的关键。具体而言,先由卫生行政执法机关以行政调查程序依法对非法行医行为进行查处,发现非法行医违法事实涉及情节、后果等涉嫌犯罪,依法需要追究刑事责任的,才移送公安机关启动刑事立案进行刑事侦查。如此,既能发挥卫生行政执法机关的专业调查职能,及时收集、固定、保全专业性证据,防止关键证据流失,又能通过刑事司法机关的依法提前介入,借助刑事侦查机关的立案前审查手段和力量,解决行政执法办案手段有限、威慑力不足以及取证固证难等难题,为行刑衔接程序的运转奠定证据基础。同时,以“行政优先”为主的行刑衔接程序设计,行政执法程序的运行过程也是对非法行医行为刑事立案前的调查过程,属于“一程序二用”,有助于借助卫生行政执法机关在医疗领域的专业优势,及时解决医疗行为判断等专业疑难问题。

    (二)明确证据转化规则

    证据是程序运转的基础,非法行医行刑程序能否有效衔接,其关键在于证据能否在行政执法程序与刑事司法程序之间进行流畅转化。我国《刑事诉讼法》第54条第2款规定了行政机关在行政程序中收集的部分证据可以进入刑事诉讼活动,《中华人民共和国行政处罚法》第27条第2款明确了行政执法机关和司法机关之间应当加强证据移交、接收衔接,这为行刑衔接机制中的证据转化提供了法律依据。但刑事诉讼对证据的要求不同于行政处罚程序,行政执法和刑事司法的取证程序和证据标准存在规范性差异, 导致行刑衔接过程中证据转化和衔接机制不健全。如何有效实现证据在非法行医行政执法与刑事司法程序中的合法转化,不仅关乎行刑衔接程序的畅通,亦关乎司法成本与司法效率的平衡,这种情形在非法行医案件中尤为突出。

    在收集非法行医案件证据的主体上,行政执法机关与刑事司法机关在职能定位、价值目标及运行方式上区别明显,由此导致了双方证据转化的阻滞。刑事诉讼程序与行政执法程序相比,对证据的来源、形式、证明力以及证据链的要求更为严格。行政执法人员证据意识较为薄弱,其在打击非法行医行政执法过程中收集证据时可能面临证据收集不全,证据存在瑕疵等问题。同时,在查处非法行医的执法过程中,囿于委托执法的限制,卫生行政执法人员没有查封、扣押、没收、控制违法者人身自由等强制权,其收集证据的手段和措施都很有限。实践中部分案件特别是非法行医致人伤亡的案件,其核心证据的收集通常需要借助公安机关的介入才能取得与固定。

    行政证据转化为刑事证据的标准模糊造成了行刑衔接司法适用的困境。2012年修订的《刑事诉讼法》虽然对行刑证据可转化的类型作了规定,规定行政机关在行政执法和查办案件过程中收集的物证、书证、视听资料、电子数据等证据材料可以作为刑事案件的证据使用, 但对证据的具体转化条件及“等”的范围界定缺乏明确规定,引发了实践适用争议。随后,2012年的《最高人民法院关于适用<中华人民共和国刑事诉讼法>的解释》中对行转刑可转化证据的类型与《刑事诉讼法》保持一致,并规定了证据的审查标准,即必须经法庭查证属实,且收集程序符合有关法律、行政法规规定才可转化为刑事诉讼中的定案证据。《人民检察院刑事诉讼规则》中对《刑事诉讼法》规定的证据范围作了扩大解释,新增了鉴定意见、勘验、检查笔录三种可以行转刑的证据类型。《公安机关办理刑事案件程序规定》对行刑转化证据类型经历了先增加至鉴定意见、勘验、检查笔录、检验报告四种后又删减为鉴定意见、勘验、检查笔录的修改历程。2021年修改的《最高人民法院关于适用〈中华人民共和国刑事诉讼法〉的解释》中又将行政机关制作的事故调查报告纳入了刑事证据使用范围。然而,上述司法解释与相关规定仍然没有明确未列举的证据是否可以进行行刑转化以及如何转化的问题,导致了实践中经常出现卫生行政执法人员认为案件的证据已达移送标准而公安机关不予认可、拒绝接收案件的现象,造成了非法行医案件证据衔接的滞阻。

    不同种类证据的来源、客观性、收集难度均有所不同,不能以同一标准进行转化审查,而要根据该证据的特性实行差异化转化审查认定。首先,关于物证、书证、视听资料等实物证据的转化审查认定。实物证据往往伴随案件发生而形成,以客观存在的实物形状、性能或者其记载、反映的内容来证明案件事实,具有客观性、稳定性,不易失真的特质,但同时实物证据具有灭失的不可替代性,一旦某一特定实物证据被损害或灭失之后,就无法再恢复,也无法以其他证据来取代。因此,对于卫生行政部门在行政执法过程中依法收集的物证、书证、视听资料等实物证据应予以优先转化。物证、书证等客观证据的收集主要依靠勘验、检查、搜查和扣押等方法,刑事司法机关对行政执法机关提供的此类实物证据审查时,应着重审查卫生行政部门在行政执法过程中的收集程序是否合法,勘验、检查是否及时、科学、真实、全面。如果确认收集程序合法,确保该实物证据来源客观合法、可排除该证据系伪造的可能性,则该类证据可直接转化为刑事证据。其次,证人证言、被害人陈述、被告人供述和辩解等言词证据的转化审查认定。言词证据具有主观性强、可重复收集的特点,原则上应由刑事司法机关重新收集,不得进行证据转化,但确实由不可抗力导致刑事司法机关无法再行收集的,进行审查后也可作为证据使用。刑事司法机关对言词证据的审查标准应着重从行政执法主体的取证程序合法的基础上审查该言词证据的真实性、客观性,从该言词证据能否与其他证据相互印证形成完整证据链的角度审查其关联性,只有与客观证据能相互印证并形成证据链的言词证据才可以转化为刑事证据。

    (三)破除鉴定启动难题

    鉴定意见是处理非法行医案件的关键证据,也是实践中行刑衔接的堵点。在非法行医案件中,特别是非法行医致人重伤、死亡的案件,鉴定意见是认定因果关系的关键,也是启动刑事立案程序的“敲门砖”。但是,在非法行医行刑衔接中,现行法律法规对非法行医行为造成就诊人身体健康受损或死亡的鉴定由谁负责启动并组织实施的规定不足,实践中公安部门与卫生行政部门对此问题亦是争执不休、互相推诿。

    现行法律规定中,只有部分地区对非法行医造成人身损害的司法鉴定问题作出了具体规定。如山东省卫生厅、山东省公安厅联合印发的《关于在打击非法行医和非法采供血工作中进一步加强行刑衔接工作的通知》中明确“非法行医造成的人身伤害由公安机关法医鉴定部门负责进行司法鉴定”。宁夏回族自治区吴忠市人民政府办公室在2015年发布的《关于加强非法行医涉嫌犯罪案件移送工作的通知》中亦提到“非法行医造成人身损害但未造成死亡的,由卫生计生行政部门或公安机关委托有资质的司法医学鉴定机构进行鉴定。非法行医造成死亡并需要确定死因的,由公安机关依法进行尸体解剖”。国家层面对谁负责组织非法行医人身伤害鉴定的规制空白,导致了实践中非法行医致人重伤、死亡案件的鉴定难题,阻碍了非法行医行刑的有效衔接。

    虽然《行政执法机关移送涉嫌犯罪案件的规定》中规定行政执法机关向公安机关移送涉嫌犯罪案件,应当附有有关检验报告或者鉴定结论,这也是公安部门主张由卫生行政部门负责组织鉴定的主要依据。然而,由卫生行政部门来组织鉴定工作在实践中往往是心有余而力不足。卫生行政执法部门组织鉴定主要有两种方式:一种是需要进行医疗事故技术鉴定的,交由负责医疗事故技术鉴定工作的医学会组织鉴定;另一种是双方协商解决医疗争议但需要进行鉴定的,则由双方当事人共同委托相关鉴定机构组织鉴定。但是,这两种方式在非法行医造成人身损害特别是致人死亡的鉴定情形中难以适用。首先,《医疗事故处理条例》第61条规定“非法行医,造成患者人身损害,不属于医疗事故”;《医疗事故技术鉴定暂行办法》第13条也规定了医学会不予受理非法行医造成患者身体健康损害的医疗事故技术鉴定。由此,非法行医造成人身损害或死亡的鉴定被排除在了医疗事故技术鉴定的范围之外。其次,双方共同委托鉴定在实践中难以实现。鉴定意见是决定非法行医行为与就诊人的伤残或死亡结果之间是否存在因果关系的关键证据,也是启动非法行医刑事诉讼程序的“敲门”证据,一旦鉴定意见确认非法行医行为与伤残或死亡的损害后果存在因果关系,那么就意味着非法行医行为人有被追究刑事责任的风险。实践中,很多非法行医行为人出于逃避刑事责任心理,对鉴定往往呈躲避状态,不愿配合鉴定工作,更遑论与就诊人或家属达成一致意见共同委托鉴定。非法行医行刑衔接鉴定难题在于:公安机关要求卫生行政部门提供认定非法行医行为与伤残、死亡结果之间存在因果关系,且非法行医行为是造成就诊人死亡的直接、主要原因的鉴定意见后,才肯接受案件的移送,进行刑事立案受理。而现实情况是,如果当事人双方不能达成一致意见,共同委托鉴定机构对因果关系进行鉴定,那么卫生健康部门则面临无法完成鉴定工作的难题,从而导致大量案件无法移送,或者违背“罪责刑相适应”原则,对于明显属于非法行医致人伤残死亡的案件,因为证据缺乏而不能适用“严重损害就诊人身体健康”与“造成就诊人死亡”的加重量刑情节。

    鉴定意见虽然客观上属于鉴定人对诉讼中涉及的专门性问题的个人认识和判断,但由于其兼具科学性与相对客观性,因而在实践中深受刑事司法机关的偏爱。实践中,卫生行政执法机关与公安机关对于非法行医鉴定由谁负责启动与组织实施问题争议较大,因此应明确非法行医的鉴定分两种情形处理。第一,在刑事立案之前,先由卫生行政机构负责组织实施。由卫生行政执法机关协调第三方鉴定机构出具检验、鉴定意见,在卫生行政机构难以完成相关鉴定工作时,可请求公安机关予以协助,公安机关应当予以协助并组织开展鉴定工作。第二,在刑事立案后,由公安机关负责组织司法鉴定。非法行医因果关系的鉴定涉及到医疗卫生行业的专业知识,需要卫生行政机关协助的,卫生行政机关应当予以协助,配合公安机关或受托开展鉴定的第三方鉴定机构完成鉴定工作。

    (四)强化衔接主体协同

    从非法行医行刑衔接程序全流程流转的角度而言,我国非法行医行刑衔接的责任主体包括卫生监督执法机关、公安机关、人民法院、卫健委、检察机关与监察机关。尽管目前关于非法行医行刑衔接的责任主体已经确定,也确立了卫健委在行刑衔接过程中的统筹协调地位,但各责任主体如何在行刑程序中进行衔接,卫健委统筹协调地位的具体内涵是什么,如何在行刑衔接机制中予以贯彻落实,都缺乏相关规定的进一步细化。

    非法行医领域至今仍未在国家层面专门制定关于非法行医行刑衔接的法规规定,主体衔接规定更是阙如。目前,国家层面对于非法行医行刑衔接主体协作配合的规定,只有2009年卫生部、公安部联合印发的《关于在严厉打击非法行医和非法采供血工作中加强衔接配合的暂行规定》中作了原则性规定。该规定提出要“加强卫生行政部门和公安机关的协作与配合,规范涉嫌非法行医犯罪案件的移送工作”。在地方层面,目前只有少部分地区在其出台的地方性规定或者工作方案中,具体提到了非法行医行刑衔接的主体问题。如吴忠市人民政府办公室在2015年发布的《关于加强非法行医涉嫌犯罪案件移送工作的通知》中强调要加强执法部门的衔接配合,并对卫生计生行政部门与公安机关在查处非法行医工作中的具体职责进行了较为具体的规定;安徽省宿州市泗县卫健委、公安局、检察院在2021年联合印发的《泗县卫生健康行政执法与刑事司法衔接工作制度》中以专章形式对主体间的“协作配合”进行了规定,明确“县卫健委、公安局和人民检察院应当建立健全卫生健康领域行政执法与刑事司法衔接的长效工作机制”;天津市卫生健康委员会在2023年起草的《天津市卫生行政执法与刑事司法衔接工作办法(征求意见稿)》中规定了“各级人民法院、人民检察院、公安机关、卫生行政机关要严格依法履行法定职责,各负其责,相互配合,通过资源共享、信息互通实现优势互补,确保卫生行政执法与刑事司法衔接工作有效落实”。国家层面统一规范指引的匮乏,使得非法行医衔接各方责任主体难以避免从各自利益的最大化出发,根据自己对事实与法律的理解来决定非法行医案件的具体处理,行刑衔接易走向任意化,导致实践中“行刑混同”的衔接乱象。

    行政执法属于行政权,刑事司法属于司法权,二者属于两种不同性质权力运行的结果,存在本质差别。这就要求两者之间的衔接程序必须能协调理顺行政机关与司法机关的不同权力,弱化部门之间的权力冲突从而实现利益平衡与合力。具体而言,先由卫生行政执法部门适用行政执法程序对非法行医案件进行查处,在查明行为人不具备行医资格、实施了医疗行为、出现了可能涉嫌非法行医罪规定的“情节严重”情形时,及时向公安机关移送涉嫌非法行医违法犯罪案件或线索。卫生行政执法部门如果发现非法行医行为人可能存在逃匿、串供,或者有转移、隐匿、销毁证据等行为,或者在证据的收集、保全、固定方面存在困难时,可以商请公安机关提前介入行政执法程序提供协助。公安机关应积极帮助、协助卫生行政执法部门开展进一步调查工作,对于有证据证明可能涉嫌犯罪的案件,公安机关不能以没有做出检验、鉴定、认定为由不受理移送案件。公安机关审查发现涉嫌犯罪案件移送材料不全、证据不充分的,可以就证明有犯罪事实的相关证据等书面提出补充调查意见,商请移送案件的卫生行政机关补充调查,必要时,公安机关可以自行调查。另一方面,公安机关对于卫生行政执法部门正在查处的非法行医案件,认为需要提前介入的,经相关部门同意,可以提前介入调查。在“反向移送”过程中,刑事司法机关经审查认为行为人的非法行医行为不符合刑事犯罪标准,但需要追究行政责任的,也应依法将案件移送卫生行政执法部门处理。在非法行医行刑衔接过程中,还要注重发挥检察机关的法律监督职能,一旦发现卫生行政执法机关有应当移送涉嫌犯罪案件而不移送的,应向同级行政执法机关提出检察意见,要求其及时移送刑事诉讼程序处理。发现公安机关对应进行刑事立案的案件而不予接收移送案件的,要依法开展立案监督。同时,刑事司法机关在办理涉嫌非法行医罪案件,需要卫生行政部门提供医疗卫生领域专业技术支持的,卫生健康行政部门应当积极协助,及时提供专业意见。

    当然,非法行医行刑衔接机制的运行亦离不开人工智能等新技术的加持,要结合大数据智能技术,通过由海量数据搭建的类型化证据模型为卫生行政执法机关与刑事司法机关提供具体指引,减少衔接主体的个体局限性,以智能化提升衔接效率,实现非法行医的有效治理。

    本文原载《政法论丛》2024年第3期。

  • 张祥龙:象、数与文字

    易象的特点使《周易·经》能成为中国古代哲理思维的一个源头。(1)象符系统有自身推演机制。(2)象符形式极其简易,具有结构主义语言学所讲的由对子构成的“区别性特征”,但其表现维度又非常多样。这是西方的演绎系统所不具备的。(3)这些象符的功能主要不是去象征现成的事物,而是以极丰富的变易可能为新象或变通样式的当场构成提供了一个潜在支持的“边缘境域”。(4)象只在这种变通之中才触及到辞,做出预言。这样,象与辞的关系就得到根本的改善,而与按图索骥式的预言术很不同。

    因此,《易》鼓励的是一种注重变易过程、原发想象直观和捕捉将来时机的艺术型思维。毕达哥拉斯学派也具有推演精神,认为“数是万物的本原”,对西方科学与哲学产生深远影响。但它对数与言的关系的学说在传统西方哲学中并不成功,主要原因就是十进制的数与几何图形与古希腊语相距过远,其间缺少“象”的环节。这种学说鼓励人去追求现象后面不变的本质和永恒结构。

    莱布尼兹通过他发明的数字二进制,使得毕达哥拉斯的广义的推演理想向现实化迈进了一大步。二进制使数字的表达方式大大简易化,出现了某种“数字象”的形态。与此相关,莱布尼兹设想了一种能让哲学思想完全演绎化的“普遍文字”,成为现代数理逻辑之嚆矢。也正是出于这个背景,他在传教士提供的“《周易》六十四卦方圆图”中看出了二进制和伏羲演绎智慧。这些思想是毕达哥拉斯主义与《周易》之间的一架悬桥,通过它,双方可以更清楚地意识到两者的某种类似和巨大的差别。

    莱布尼兹对《易》象的解释是有趣的,引发创新思路的,但也是比较贫乏的,因为它忽视了易象的多维完形构造的特点,以及这个特点带来了众多微妙功能。

    《周易》经文上下篇与中国古代哲理思维的关系一直是个令人困惑的问题。民国之前的中国学术界主流从未怀疑过这是一个肯定性的重要关系,即《周易·经》对于中国传统的哲理思想的起源与发展起过相当大的作用。但是,自新文化运动以来,不少学者否认《周易·经》本身有重大的哲理意义,因而直接或间接地导致了一种相当普遍的看法,即认为“中国哲学”[1] 的正式开端只能追溯到孔子或老子的时代,以前只有“朴素的”、不成潮流的零散表现而已。

    《周易·经》被认为只是或主要是一部用作卜筮的“迷信”之作,它是靠孔子之后出现的《周易·传》或《易传》才取得了重大哲理含义的。[2] 这种看法中隐含的一个结论就是:《易传》与《周易·经》之间没有内在的、一以贯之的思想联系。本文作者对这种看法的正确性表示怀疑。此文的一个主要的目标是要在新的、主要是现象学的和结构主义的视野中来探讨《易》象数的方法论特点,及其对中国古代哲理思维的关键性的影响。希望由此而可在一定程度上说明,《易传》确实是按照《易经》在讲的,[3]《周易·经》是中国古代哲理思维的源头,或起码是少数几个重要的源头之一,阐述“中国哲学史”的著作应该以此为正式开端。

    然而,为了以一种尽可能原本的方式来理解象数与哲理及象与辞的关系,将《易》与西方思想中的对应者的比较研究似乎是必要的。毕达哥拉斯(Pythagoras)学派“数是万物本源”的主张时而直接、时而间接,但却是极为深刻地影响了西方的哲学与科学,而莱布尼兹通过他发现的二进制,在西方之“数”与中国的《易》象数之间搭建起了一座虽然残缺,但确能带来思想上的某种新可能的悬桥。所以,本文将通过加深对莱布尼兹的有关学说的理解来说明《易》象数与毕达哥拉斯之数在各自的传统中所发挥的、就某些方面而言是类似的,但就另外一些更重要的方面而言又是极为不同的思想功能,希望能由此显示出象数与数学在中西传统哲学中的不同命运的原因,或者说是导致中西思想走上不同道路的原因。

    一、《易》象数的能变通的解释空间

    《周易·经》含两种不同的符号,一种是卦象或卦画,由或连或断的横道(爻象)组成,两者(卦象与爻象)可统称为 “易象”或“象”;另一种是中国古代的文字,用来解释卦象与爻象的意思,故称为“卦辞”和“爻辞”,通称为“筮辞”、“易辞”或“辞”。简言之,此书由象与辞两部分组成。就象的一面来说,有其内在的秩序、结构和变化方式,清清楚楚;但就其文字或辞的部分而言,则晦涩难懂。这些筮辞偶尔显示出某些哲理意思,比如讲“亢龙有悔”、“无平不陂,无往不复”等,但在更多的地方则似乎是在东说一句,西说一句,迷离散乱,[4] 几乎理不出个头绪。如果将这文字部分与易象联系起来,情况就有所改善,可看出一些辞是在说象,其中包含了一些“取象之法”。比如解释爻画的爻辞,其所言者与该爻画在六爻中的空间高低时有某种呼应,这尤其表现在初爻与上爻的爻辞中。初爻之辞往往取象于下,如《乾》卦之初九爻辞曰:“潜龙勿用”;《坤》之初爻言:“履霜坚冰至”;《剥》之初六爻辞为:“剥床以足,蔑贞,凶”,等等。上爻之辞皆往往取象于上,如“亢龙有悔”(《乾》),“比之无首”(《比》),“过涉灭顶”(《大过》),等等。[5] 然而,一来这种对应并不完全,二来如何在这种对应或其他的取象之法中看出重要的哲理含义,也还是个问题。如果按照爻辞,初爻到上爻意味着空间的从低到高,时间的从开始到终结,隐喻着事物的发展历程,这确实是给出了一个大致的解释框架。它可能具有极深刻的哲理含义,[6] 但毕竟还不足以将这种潜能实现出来。为了建立更有理可循的解释框架,就需要发现《易》的辞与象之间的更多的、更周全的对应方式,也就是要找到更多的取象之法,或对于卦画与爻画的“语义赋值法”。可以想见,自有《周易》以来,甚至是广义的《易》(比如再加上更古的《连山》、《归藏》)以来,这就是个挑战性的问题。

    那么,什么样的取象之法是最合理的呢?换言之,假定我们暂不去推测《周易》筮辞或文字部分的历史形成过程,就道理上说来,为了最大地获得与保持《易》的“能预言”(此乃“《易》与天地准”的最重要证据)的形象,易象与易辞之间应该是什么样的一种关系?很明显,取象法并不是越明了、越单义化就越好,因为那样的“算命对位表”或“单义算命的词典”很容易被未来发生的事件所否证,没有解释的回旋余地,更谈不上有思想的引发力。为了能够“朝向未来”(海德格尔语),这里的语义取象必须总包含着新的可能,也就是必须在本质上就具有感受语境的模糊性[7] 和随机性的能力。然而,同样明显的是,取象也绝不是越多样越好。为了找到象与辞之间的内在联系,增加取象之法或增大每一个象的多义性只是一种效力有限的途径,用得过分反会“添乱”或“增熵”,减低《易》的可信度。只有那种能够增加象与辞的深层交往维度和接触点的方式才会提供切实的帮助,以造成多重含义的收敛趋向。所以,沟通象与辞的努力绝不应仅限于辞的方面,将“象”当作一种现成的东西,只是通过考证、训诂等方式来增加文字方面的取象之法或寻求原本的取象之法;而是应该同时努力去增强对于易象的理解维度和活力,以增大象与辞的深层接触可能。更具体地讲就是要去发现象数内部的更多样的结构转换力,以及这些似乎是形式上的转换方式与取象语义的呼应。这恰是《易传》最强调的易象“变通”、“趣时”和易辞“曲中”[8] 的特性。

    由此亦可见《易传》深合《易经》的内在要求。而找到看待象的新方式、新样式不仅意味着找到了新的象,增加了象与辞的接触面,而且意味着找到了能把不同的象联系起来、组织起来的收敛结构,由此而大大有利于原来似乎是散泛的辞之间的收敛与相关。顾颉刚认为筮辞是《易》的中心。[9] 如果将这种看法理解为《周易》的思想价值以筮辞为中心的话,就颇成问题。沿着这种思路,很容易陷于力求从筮辞中考训出一些“历史故事”的窠臼,而几乎完全遮蔽了《易》的哲理命脉,因为这命脉首先是与象数的变易相关着的。

    现在我们的问题是:哪种象数结构最适合《易》的需要呢?回答似乎应该是:(1)它必须有合理的推演机制,就像数学(算术、代数、几何等)一样。换句话说,它必须可以按一套转换规则从基本符号产生,而且只产生属于自身系统的数量较丰富的符号成员。(2)进一步,这种转换生成可以仅仅依据符号或象符的形式特征而进行。(3)这种符号的形式上的可辨别特征必须十分“简易”[10] 即在尽可能的相似中保留最少的可区别特征,以使得符号的转换生成主要依据直观,而不是相应于符号的观念的抽象、联结与再现。由此也使得不同的象符之间具有明显的“家族类似”。(4)由于以上这三个特点的结合,在这个有限的象符系统中,安排、转换与生成不同象符的方式从根本上讲就是极其丰富多样的,也就是比较容易形成由象符组合成的“花样”或“样式”(patterns)的,比如对称、对应、循环等。总而言之,就是容易形成“变通”的样式。如果用棋类来打比方的话,这种象符系统更接近围棋而不是象棋。换句话说,在这样一个象数结构中,各种转换是由整个符号系统和使用它的人对于当下形势的直觉感受所潜在地、以“边缘域”的方式所支持着的。(5)因此,这种直观可鉴的和具有变通构成倾向的象符比较容易获得较自然的、具有境域前冲力的语义。而且,由于可变通的特性,某个象符的不同语义之间、不同象符的语义之间,乃至不同象符花样的含义之间也比较容易出现意思上的关联,由此而更增强它的预言功能。

    由于第(1)、(2)个要求,这种象符预言系统不同于古代的其他预言技艺系统,比如龟卜、占星术、看相术等;由于第(3)个要求或特点,它又不同于西方意义上的数学系统。按现在的一些考证,在通行的《周易》象符系统之前可能还有其他的系统,比如在商、西周的甲骨文、金文和陶文中发现的“数字卦”[11]。但很明显,只有以“—”和“- -”为单爻(初始符),以三爻和六爻为变换阶段的象符系统是最成功的,基本上满足了以上的五个要求。以下就来一一说明。

    首先,《周易》象符系统(爻画、卦画、卦序、方位)可以具有严格的自身推演机制。也就是说,它可以按照某个或某一组规则从自身的某个单位,比如阴阳爻、三画之卦或六画之卦,产生所有属于本系统的因子,而且只产生它们。这就是《系辞上》5章与10章所讲的“极数通变”的能力。在这一点上,象符系统与由[有限的]阿拉伯数字组成的算术系统、数理逻辑中的命题演算和谓词演算的系统等是一致的。

    其次,就(2)与(3)而言,这种推演可以只依据象符的形式特点,即象符的空间形象与位置而进行。而且,这种形式特点极其简易(此点极重要,下文将详析之)。因此,由它们组成的象符具有极强的整体直观的可辨别性或引发完形(Gestalt)想象和构造的倾向。就此而言,象符系统很不同于十进制的数码系统。

    因此,针对(4),我们可以说,每个象符都有极强的位置形式性或形势表现力。可以从两方面来理解这种“位性”:首先,爻的高低位置或由“初”向“上”的不同位置有不同的含义,而且这种含义具有比阿拉伯数字的位置本质上更丰富得多的维度,因为它不只可以表现“进位”,[12] 还可以表示“阶段”(或时序)、阴阳(奇数位与偶数位)、内外(内卦外卦)等,以及这些位置之间的关系,比如乘、据、比、应等。其次,卦象不仅有卦序,而且有空间的方位(四、六、八个或更多的方向,比如东西南北),以及与此方位系统内在相联的生存化时间(季候、时辰等)。这却是古代的西方数字系统所没有的。笛卡尔坐标在某种程度上将几何与数字联系了起来,但《易》卦象及其位置不是或不只是几何的,它的生存空间含义的丰富活泼和它的时间含义是几何的空间关系所没有的。这实际上就已经初步涉及到以上(5)所要求的象辞联系了。而且,从河图、洛书、太极图等可以看出,卦象的位置与数字的变换游戏及总体的阴阳变化结构有着十分密切的关系。这也就意味着,这些位置也具有可推演的变换性。这些就都不是西方的古代数学(在那里连几何与算术都还没有真正打通),更不是西方的形而上学的范畴体系所能具有的“演绎”或变通特性了。

    第三,与(5)直接相关,由于爻象的简易性和某种直观表意性,使得在中文中对它们的语义赋值或联想比较容易。比如“—”与“- -”本身与汉字的“一”与“二”及连带的“奇”、“偶”有某种或明或暗的关联;“鼎”、“颐”、“噬嗑”等卦象与其中文名也有象形的关联。但如果限于这一静态的、现成的联系,则不会有多深的思想含义,因为爻卦象是可推演的,而相应的汉字则不行。关键之处还在于,象的这种简易性表现为最鲜明直观的对立型差异。阴阳爻不止是两个符号,而是一对符号。阳与阴两个符码的形象极其相似,从正反面看都只差一个缺口,即“—”与“- -”,几乎是达到了能造成区别性特征(distinctive features)[13] 的形式上的最低限。实际上,它们可以被看作是一个更原本的隐蔽符码的两个变体,[14] 所以,这种区别或差异是处在一个有强大对衬力的“家族相似”的背景之中。从形象上讲,这种区别与相似之间的几乎可以说是“天然的”[15] 结合状态或“相摩相荡”的牵挂状态具有极强的构象能力,让人几乎能够自发地用它们去形成或发现某种反复出现的序列、对称和呼应等花样,以至造成了这样一个局面:你只要能找到某种前后一致的变易法或“走法”,就似乎总能变出个、走出个样式(pattern)来。[16] 换言之,易象提供的主要不是静态的东西,而是构成新象的可能性。用现象学的话来讲就是:易象所提供的不只是作为关注焦点的意象对象,更有那总是围绕着和先行于这些对象的边缘域(Horizont)或存在论意义上的视域。“莫见乎隐,莫显乎微”,[17] 正是这种边缘域以“匿名的”方式准备下了新的成象可能。这是一种比较容易造成妙棋的下棋结构,容易引发绘画灵感而画出“新象”和“妙象”的大写意格局,容易达到“至诚如神”[18] 和“前知”状态的先行结构。[19] 这种出自“简易”和“变易”的“容易[成象]”恰是“易”的最重要的功能之一。

    从象与辞的关系上讲,这种简易与对立的完满结合使其成为构意(meaning constitution)性的,也就是说,象与辞的关系不完全依赖某些现成的、规定好了的象辞对应或取象之法,而是可以根据解释易象的自发需要而选取或构成新象,从而调整和重构象与辞的关系。这就势必造成多样的、具有家族相似关系的,并因此而具有境域收敛性的象辞关系。比如,对于爻画可以有“阴阳”、“刚柔”、“奇偶”、“男女”等多种赋义,它们之间有家族相似,而且它们都是原初对立的构意因子或区别性特征,[20]而不是两个现成的存在者所组成的矛盾体。它们的具体含义依境域而有变更,当然是受约束的、而不是任意的变更。所以争论爻符是不是象征男根女阴或别的什么对于理解易象的构成能力是不相干的,找不找得到现成的“逻辑联系”[21] 在这里也是不相干的。那种关怀应该被“悬置掉”。而且,这种象与辞关系的动态化和多样化不只表现在辞对象的解释上,也同样表现在象对辞的关系上。比如,不止是爻有阴阳,三画与六画之卦也有阴阳,而且变通出的样式(如“八宫卦”中的四阳宫和四阴宫、卦变中以阴阳卦为起点的变体集合)也有阴阳;等等。

    更具体地讲,这些爻、卦及其位置并不主要是在象征或代表某些物体、观念及其关系,而是在以各种相互引发和变换的方式显示或构成一组组极其微妙和多维度的样式(花样或和谐结构)。《周易》的卦象预言方式(“筮例”)就其本身而言也要求着变易,它要在转换、生成、推衍和变更之中,比如在“老阳”爻、“老阴”爻变性而构成“之卦”的过程中,在“升降”、“旁通”、“互体”等变样之中,才能触及卦爻辞,从而顺势做出预言。这使它很不同于其他的“按图索骥”式的预言术。比如,春秋战国时人的筮例,汉易乃至部分宋易中各种花样翻新的“卦变”学说就都体现出这种“唯变所适”[22] 的“动态时机化结构”的特点。[23] 实际上,《易》象本身就是动态的。阴爻有向下向内的的趋势,阳爻则反之;爻位的基本流向是自下而上,但其中有跳跃式的呼应(比如“应”);先天卦序有“太极、两仪、四象、八卦”的生成,阴阳爻在其中可以“顺行”或“逆行”;[24]通行卦序则有“非变即复”的生成过程。此外,《周易》阴阳爻的画法(“—”与“- -”)可以经受住各种变换、包括翻转而仍是其自身,而前面所提到的甲骨文和金文上的“数字卦”(比如那里阴爻表示为“八”或“∧”)就不行,这就为易象的各种变通提供了方便的符号性质。

    综合以上各点可以看出,卦爻易象是一个极为特殊的符号系统:它是深层多维的,有数、形、位、时等多个维度;在每个维度上都是可以合理推演的;而且各个维度之间也是可变换沟通的。这样就造成了一种比“镜屋”还更巧妙的相互投映的“全息”效应,或现象学中讲的境域构成的效应,具有很强的构象和诠释的能力,比西方古代和现代的公理化系统从本质上要更聪灵。比如,在这个多重互构的推演系统中,根本就没有现成的、“是其所是”的单元、原子或自明的起点,每一“点”(比如一爻、一卦)都应该被看作是一簇簇推衍关系辐凑的枢机,在不同的、但又相互亲缘的变换趋势中获得时机中的意义和讲究。《系辞》讲:“是故易者象也。象也者,像也”。[25] 这里的“像”并非指一般意义上的、对已存在者的“象征”,而应解作“能象”;也就是说,面对如此丰富的变易可能,或所谓“通其变”而“极其数”的“至变”可能,解《易》者就总可能“引而申之,触类长之”,[26]构成“趋时”之象。[27] 换言之,象符的变易总可能达到“会通”,[28] 构成“探赜索隐,钩深致远”、能显示出时势趋向结构之几象。由此而可理解《系辞》中这样一段话:

    参伍以变,错综其数。通其变,遂成天下之文;极其数,遂定天下之象。非天下之至变,其孰能与于此?..夫《易》,圣人之所以极深而研几也。[29]

    在这样一个看法里,《易》的阴阳爻就不是可独自存在的原素(elements),而是能在人创造新样式的活动中以近乎自动的方式参与进来, 以自己的微妙差异或对立在边缘视域中起原发作用的区别性特征,从而依境况而被统握(aufgefasst, apprehended)为“某物”(某卦,某卦序、某位置安排、某种变换的样式..)。此为“象其物宜”之原意。而且,这种“参与统握”与“被统握成..”的各种象并不像胡塞尔的现象学所讲的,有一个从感觉材料向上递进的固定层级,它们在《易》中是可以互换的。比如,爻象并不注定了只是参与卦象的构成,在某种统握方式中,比如邵雍提供的“伏羲六十四卦方位图”中的圆图里,反倒是卦的序列构成了爻的正行和逆行。这就正如朱熹所引邵雍的话所言:“阳在阴中,阳逆行;阴在阳中,阴逆行;阳在阳中,阴在阴中,皆顺行。此真至之理,按图可见之矣”。[30] 由此可见,这种由易象符本身构成的、似乎是纯天然的变化样式给古代中国人以何等深切的理性和灵性激发:“此真至之理,按图可见之矣。先天学,心法也,故图皆自中起,万化万事生于心也”。[31]这种具有某种“超越性”的真理与心法的根源本应在时机化的境域构成之中。所以我们说,阴阳爻象及其语义实乃构成意义之对立式的差异, 而不是对象意义上的矛盾差别。就此而言,象符中有潜伏的语言结构,乃至语音结构,就如结构主义的开创者索绪尔和雅各布森认为人的自然语言所具有的。[32]

    总而言之,象与辞的主要联系不是线性的,而是凭借象与辞的动态的、境域式的变通来建立或“构成”的。并且,由于上述《易》的象符系统所具有的超强的变易成象(“能像”)能力,沟通象辞关系的人不只是或主要不是通过训诂、考证等方式扩大辞的语境,以达到对应象的目的;而是可以让象在变通中形成新的联系或样式,扩大象的“语境”,以便能够与辞接通。总之,这种“变通”是象辞互向或双向的,而且象的变通是打通象辞联系、揭示《周易》的哲理含义的更有效方式。不这样,《易》的深刻的哲理意义反倒出不来。换言之,《周易》中象与辞之间的距离在这种双向变通中成了“解释学的距离”,要求和激发着一种注重语境和变易成象成文的思路。杨雄的《太玄》中的象辞安排表面上更有理路可循,但其哲理意义反大不如通行本《周易》,除了其他原因之外,缺少解释学的距离也是一个重要因素。

    《易传》的作者已经看出这样一个解释学的形势,尤其是象的极端重要性。“立象以尽意,设卦以尽情伪,、系辞焉以尽其言[即象之言]”。[33] 对《易》的赞美主要集中于易象的“简易”和“广大配天地,变通配四时”之上,顺而延之于“阴阳之义配日月,易简之善配至德”。自那时以来,广义的象数一直是理解《周易》的生命线,甚至是理解中华文化的思想主流[34] 的生命线。通过“象”的各种变通样式,包括天文、历法、地理、医学、建筑、兵法、武术、乐律、韵学和各种技艺,一方面变易推衍或所谓“内在超越”进入中文和中国人的生活世界;另一方面则是“《易》义”或意义的变通构成方法反涌入中国古代的算学,在《九章算术》等“算之术”中放出异彩。那里没有或不需要欧几里德几何式的公理化演绎系统,而以变通或“算法”的巧妙和直接启发人为尚,由此而形成中国古代数学或“算学”的“以率为纲”和“出入相补”的独特方法论特色和传统。[35] 焦循试图打通《易》学与算学,取得了一些很有趣的结果。[36]

    二、毕达哥拉斯之数本原说及其历史命运

    大多数关于西方哲学史的书都没有充分估计毕达哥拉斯(Pythagoras,鼎盛年公元前532-529年)对于西方哲学的关键性影响。但有两位在数学或数学基础研究上有大造诣的哲学家看到了这一点。莱布尼兹说:“我对毕达哥拉斯有最高评价,而且我几乎认为,他高于所有别的古代哲学家”。[37] 罗素讲:“无论就他的聪明而论或是就他的不聪明而论,毕达哥拉斯都是自有生民以来在思想方面最重要的人物之一”。[38] 毕达哥拉斯或毕达哥拉斯学派之所以重要,不仅因为他或他的学派是古希腊世界中最伟大的数学家和数学流派,更是由于他力图通过数来把握关于世界与人生的终极真理,从而在西方思想中注入了强烈的演绎理性精神和数理型的方法论态度,这一精神的发展势头在今天这个越来越数字化的时代似乎还在增长。

    毕达哥拉斯的基本哲学观点是:数是万物的本原。这也就是说,数——正整数和几何图形——不只是计算形式(亚里士多德意义上的形式与质料的分离在这里还没有出现),它们及它们之间的关系才是最真实者,最可理喻者。所以,相比于水、土、气等,数才是真正的本原:万事万物(包括伦理、政治、宗教之物)出自于数,归回于数,并只有通过数才能得到理解。

    为了论证“数是本原”,毕达哥拉斯学派提出万物(这里可理解为表述万物的语言的意义)与数是“相似”的,而他们用以论证这种相似的最根本理由是结构性的,即认为数中的比率或和谐结构(比如在乐音中)证明万物必与它们相似,以获得存在的能力。亚里士多德这样叙述这一派的观点:“他们又见到了音律[谐音]的变化与比例可由数来计算——因此,他们想到自然间万物似乎莫不可由数范成,数遂为自然间的第一义;他们认为数的要素即万物的要素,而全宇宙也是一数,并应是一个乐调。”[39] 这种“以结构上的和谐为真”的看法浸透于这一派人对数的特点和高贵性的理解之中。比如,“10”对于他们是最完满的数,因为10是前四个正整数之和,而且这四个数构成了名为四元体(tetraktys,四面体)的神圣三角:“▲”[注意它的多重对称、相似与谐和]。而且,用这四个数就可以表示三个基本和谐音(4/3,3/2,2/1)和一个双八度和谐音(4/1)。这些和音的比率可以通过击打铁砧的锤子的重量、琴弦的长度、瓶子中水面的高度,甚至是宇宙星球之间的距离而表现,但它们的“本质”是数的比率。[40]此外,此组成10的四个基本数或四元体还表现为:1为点,2为线,3为面,4为体;而且是点或1的流动或移动产生了线,线的流动产生了平面,平面的运动产生了立体,这样就产生了可见的世界。所以毕达哥拉斯派的最有约束力的誓言之一是这样的:“它[四元体]蕴含了永恒流动的自然的根本和源泉”。[41] 此外,四元体还意味着火、气、水、土四个元素;人、家庭、市镇和城邦这社会的四元素;春夏秋冬四季;有生命物的四维(理性灵魂、暴躁的灵魂、贪欲的灵魂、作为灵魂寓所的躯体);四种认识功能(纯思想、学识、意见、感觉);等等。[42] 除了通过四元体之外,对10的完美性和神圣性还可以以更多的方式或花样来认识,比如数从10以后开始循环,还有就是认为10包含了偶数与奇数的平衡。所以,尽管毕达哥拉斯派认为奇数(有限)比偶数(无限)更真实高贵,10却如同1那样,占据了一个超域奇偶对立的终极地位。于是我们读到毕达哥拉斯派的这样一段话:“首先,[10]必须是一个偶数,才能够是一个相等于多个偶数和多个奇数之和的数,避免二者之间的不平衡。..10之数中包含着一切比例关系:相等、大于、小于、大于一部分、等等”。[43] 由此可见,数的本原性有数理本身的结构根据。10之所以完美,之所以被视为“永恒的自然的根源”,是由于在它那里,可以从多个角度形成某种包含对立、对称与比例的花样或“和谐”。一位著名的毕达哥拉斯主义者菲罗劳斯这么讲:“人们必须根据存在于‘十’之中的能力研究‘数’的活动和本质,因为它[‘十’]是伟大的、完善的、全能的。..如果缺少了这个,万物就将是没有规定的、模糊的和难以辨别的”。[44]

    这就涉及到这一派的另一个重要理论:对立(enantia,或译为“相反”)是事物的本原。亚里士多德告诉我们毕达哥拉斯派所说的十对对立:有限/无限,奇/偶,一/多,右/左,雄/雌(或阴/阳),静/动,直/曲,明/暗,好/坏,正方/长方。这里的关键还是数。毕达哥拉斯派通过数点角尺规范法、两行数点之间的箭头表示法,[45] 将“有限/无限”表现为“奇/偶”数的一种几何化。这一派认为奇数就完善性而言高于偶数。相应地,这十对对立的前项都高于后项。奇数为什么更完善呢?因为它有定准,包含着“1”。比如奇数总可以表示为一个中间的1加上两边的相等数:3=1+1+1,5=2+1+2,7=3+1+3,等等。也就是说,一个在两行对应数点中延伸的的箭头会被一个中间的点止住。而偶数的双行数点则没有这个中间点,只能让箭头无限延伸和变化下去,而这在数学计算或解题中就意味着找不到明确的答案。角尺法表示的也是这个意思,奇数数点排列的图形是正方形,其两边之比总是不变的1,而偶数数点排出的是长方形,其两边之比总在变化,找不到界限。那么,“1”为何高贵和原始呢?因为它意味着“定于一尊”的确定性,又是奇/偶数之源:任何偶数加上1就成为奇数,奇数加上1就成为偶数。

    所以可以说,一切奇偶数都由1产生,“1”既偶又奇,又收敛到自身,因此它是第一原则。“2”就大不同了。它意味着分歧和无定,所以被称为“不定的2”,或过分或不及,找不到自身,找不到能让各个因素相互呼应的收敛样式。因此它意味着发散的“多”、“不等(不正当)”和这个意义上的“无限”。[46] 在对立表中,它还意味着“动”、“曲”、“暗”和“坏(恶)”。可见,这张对立表里面每个对子的两项之间的关系除了表面上的对立之外,还有前一项对后一项的根本性的优势和胜出。

    主张对立是本原,与《周易》象数所蕴含的哲理有某种相似之处。但一个从根本处失衡的或一边压倒另一边的对立观则不同于《易》了。尽管《周易》在一定程度上有某种“扶阳抑阴”的倾向,并因此而不同于道家,但它更根本的构造和解释原理是“阴阳相交而成象,以趋时行中”的,所以对于变易、特别是微妙藏几的变易有着根本的需求。也正是在这个意义上《易》的哲理与道家也颇有相通之处。毕达哥拉斯派虽然在讲到某些推演过程,比如由点到体的构成时诉诸于运动,也极为重视数之间的和谐,但它通过推演达到的和谐样式本身(多中之一)是静态的,是由诸变化表现,但高于变化现象的本质。这一倾向被后来的希腊主流哲学家们(巴门尼德、柏拉图)大大扩张和发扬了。

    对于毕达哥拉斯学派,数字与几何形状,特别是10以内的数字和某些形状(比如圆形、四面体、十二面体)都具有像“1”、“2”、“4”、“10”那样的语义和思想含义,而且这些含义被表达得尽量与数、形本身的结构挂钩。例如“3”意味着“整体”和“现实世界”,因为它可以指开端、中间和终结,又可以指长、宽、高;此外,三角形是几何中第一个封闭的平面图形,基本的多面体的每一面是三角形,而这种多面体构成了水、火、土等元素,再构成了万物。所以,“世界及其中的一切都是由数目‘三’所决定的”。[47] 这似乎有些《老子》讲的“一生二,二生三,三生万物”的味道。“5”对于毕达哥拉斯派是第一个奇数(“3”)与第一个偶数(“2”)相加而得出的第一个数,所以,它是婚姻之数。此外,十二面体的每一面是正5边形,把正5边形的5个顶点用直线连起来,就做出5个等腰三角形,组成一个5角星,这5角星的中腹又是一个颠倒的正5边形。而且,这种正5边形对角线(顶点连线)与边之比等于黄金分割的比率:1.618。再者,这5角星围绕中心点5次自转而返回原状。等等。因此,这种5边形和5角星也是有某种魔力的。[48] 再比如,7是10之内的最大素数,意味着过时不候的“机会”,由此就有“时间”、“命运”的含义。诸如此类的对“数”的结构意义的把握及其语义赋值和哲理解释是典型的毕达哥拉斯派的风格。

    从这些讨论可以看出,在毕达哥拉斯学派、也可以说是在西方传统哲学的主流唯理论(rationalism)的开端这里,也有一种结构推演的精神在发挥关键性作用。“本原”意味着推演花样的最密集丰满处,也就是在这个意义上的最可理解处,最有理性处。所以,这里也有一个避不开的问题,即有自身推演力的符号系统[对于毕达哥拉斯是数学符号系统]与它的语言与思想内容的关系的问题,简言之,就是数与言的关系问题。对这个问题处理得成功与否,或在什么意义上成功与失败,决定着毕达哥拉斯派在哲学史上的地位,实际上也决定了西方传统哲学主流后来的发展方向。首先,应该说,就西方的整个学术思想走向,特别是它的近现代科学走向而言,对于数学符号系统的思想和语义赋值,以及反过来,科学思想和语言的数学化,都是相当成功的,或起码取得了重大进展,影响到整个人类的生存方式。数学成为科学的楷模,理性的化身,同时也是传统西方哲学在追求最高知识中的既羡又妒的情敌。在西方传统哲学中,毕达哥拉斯派论述过的前三个数字和某些图形,比如三角形、圆形,也获得了思想与语言的生命,尤其是,毕达哥拉斯派的“数本原”说中包含的追求可变现象后面的不变本质的倾向,几乎成了西方传统哲学主流中的一以贯之的“道统”。然而,毕达哥拉斯派对于数、形所做的思想和语言赋值的大部分具体工作都失败了,这些努力被后世的哲学家们视为幼稚、牵强、神秘,甚至是荒诞。相比之下,《易》象数在中国古代思想中却成功得多,解《易》是历代中国哲人形成和表达自己最深刻的思想的一种常用的方式。这样一个成败对比的事实后面的原因何在?

    在我看来,最重要的一个原因是毕达哥拉斯派固守十进制的数字结构和几何形状结构,使得这种意义上的“数”与“言(表达哲学思想的自然语言)”的有机联系无法在稍微复杂一点的层次上建立起来。这个似乎只是技术上的问题造成了这样一些不利的后果:(1)哪怕以阿拉伯数字为例,十进制数字也要在10个[算上零的话]不同形态的符号后才出现“位置”的含义和“循环”,这就使得整个符号结构很不经济,很不轻巧,冗员杂多,跨度过大,大大削弱了它的直接显示结构意义的能力,也就是“成象”的能力。后来只有两、三个数字和图形获得了重要的哲学含义这个事实暗示着:哲学思维可以与数字或图象有关系,但只能与结构上非常简易者打交道。(2)这种包含过多、过硬的自家符号和循环方式的表达系统很难与其他符号系统及解释符号系统的方式(比如从空间方向、时间阶段、不同的次序与位置出发的解释)沟通和耦合,于是失去了从结构上多维互连而触类旁通的能力。这样,对数、形的各种语义解释就显得牵强,缺少暗示力和对各种复杂的人生局面的显示力。(3)为了取得数字的象性,毕达哥拉斯派做了大量工作,主要是通过数点排列及其运动使之与几何图形挂钩。然而,绝大多数几何图形离语言和哲学思想还是太远,缺少生存的方向、时间与境域的显示力。而且,毕达哥拉斯派自己就发现了“无理数”,比如正方形对角线与边之比值,由此而动摇了在这个方向上的努力。(4)为了从根本上改变数、形与语言缺少联通渠道的局面,这一派提出了“对立是本原”。它确实能够极大地简化符号系统的结构,增强数、形的直接表现力和构意能力,如果毕达哥拉斯派能够将它的数理表现与赫拉克拉特式的对于对立的更彻底和流动的理解结合起来的话。然而,在毕达哥拉斯派那里,这种对立不仅仍然潜在地以十进制数字和几何图形为前提,未能获得符号的结构层次上的意义,而且,如上所述,它对立得还不够真实原发,以致于每个对子的两方的意义未能充分地相互需要,一方可以从“本质”上压制和统治另一方,因而大大限制了这种对立的变通能力和构造能力。

    总之,在大多数毕达哥拉斯派之数与哲理语言之间很难出现居中的、沟通两者的象,再加上西方文字的拼音特点,致使毕达哥拉斯派的数与言的沟通努力大多流产。后来的巴门尼德(Parmenides)抛弃了绝大部分毕达哥拉斯之数,只保留了1和圆形,并提出“存在(是)”这一自然语言中的范畴来对应之,开创了西方哲学两千年之久的“存在论”传统。在“圆形”的、“静止”的“1”被突出到无以复加的程度的同时,毕达哥拉斯派通过推演结构来演绎思想和语言的良苦用心就几乎完全被忽视了。柏拉图和亚里士多德企图在一定程度上恢复推演的结构性,但主要不再靠数、形,[49] 而是步巴门尼德的后尘,力图通过自然语言中似乎最接近“数”的“理式”(理念)和“范畴”,以及理式与理式、范畴与范畴之间的“辩证法”、“逻辑”来获得某种系统内的结构推演力。当然,这种观念化或范畴化的转换也付出了沉重的代价,“范畴演绎”和“辩证逻辑”一直缺少数学系统所具有的那种有自身内在依据的推演机制。所以,成为像数学或数学化的物理学那样的严格科学,同时又具有解释世界与人生现象的语义功能,这一直是西方哲学的梦想。但情况似乎是:毕达哥拉斯派的哲学梦破碎之处,其他的西方哲学家也极少能够将其补足。不过,毕竟还有某种希望:前两三个数字进入了哲学这一事实似乎表明:数、形并非都与思想语言完全异质。基数越小,越有可能与自然语言沟通。而且,如果这“小”不只意味着数量的“少”,而可以意味着进制的“小”和图形的“简易”的话,就有可能出现新的数与言的关系。

    三、莱布尼兹的《易》学——数与象之桥?

    莱布尼兹的伟大思想天才使得他可以在真实的意义上承接并大大改进毕达哥拉斯的传统,重新将哲学与数学及数学化的逻辑直接挂起钩来。他的思想方式中有一种在高阶(超越)处还能达到动态的构成机制的特性。所以,他的研究所及无不带有某种艺术感或处理方式上的微妙和谐,在他涉入的几乎每个领域——数学、逻辑、哲学、物理、化学、生物学、心理学、地学、法学、政治学、汉学,乃至演算机和新的机械设计——中都有新的创造。因此,虽然就哲学而言他被哲学史家们说成是唯理主义者,但他的学说前溯毕达哥拉斯(绝不止于柏拉图),后启二十世纪的西方哲学(现象学与分析哲学均与之有甚深的关联),进而延伸向未来,并牵挂到《易》学研究,实在是一种不受任何现行范畴归类制约的、卓而不群的特异者、“善出奇”者。与牛顿相比,他对自己创立的微积分的方法论含义更自觉,因而有“单子论”的哲理。对于毕达哥拉斯学说引起的“演绎系统与哲学语言的关联如何可能”的问题,他有更敏锐的感受,不只是像经典的唯理主义者们那样只通过自然语言的概念-范畴化来钝化它,而是直面它,提出了“普遍表意文字”(characteristica universalis, universal characters,普遍字符)的设想,将这个古老难题一下子推向了今天的人类还在苦苦寻求解决的新问题视野中。这个新思路不仅可视为他全部哲学思想——宇宙的普遍的和先定的和谐论,教派和解论,连续律,充足理由律,主词已包含一切有关谓词说,单子论,等等——的神经中枢,而且在今天看仍然是极为大胆的,充满了像费尔马大定理、哥德巴赫猜想一样的创新想象力和挑战力。这个思想的新颖之处在于,它已不满足于如何为某个演绎系统找到较合适的语义解释,而是要直接去寻找一种本身就能推演的语言或文字,或一种能够象文字那样表达思想的推演系统。它将使“思想的演算”成为可能。后来的数理逻辑(弗雷格、罗素等)只是这个思路所引出的一个比较贫乏的结果,早期维特根斯坦在《逻辑哲学论》(1919年)中指出了这种逻辑的贫乏性(“重言式”),[50] 因而导致了它在维也纳学派那里与经验主义的联手,颇有悖于莱布尼兹的原意。当然,莱布尼兹也不是要保持传统的观念化形而上学,他追求的是思想及文字的推演化,或思想文字与推演系统的相互谐调。

    莱布尼兹在他的早期作品,其实也就是他的博士论文《论组合术》(1666年)中就表达了关于普遍表意文字系统的设想:(1)将任何词分解为它的形式上的成分,也就是让这个词被定义。如果这些部分还可再分解,就一直分解下去,直到单纯的部分或不可定义的词项为止。这些不可定义的单纯词项就是人类思想的字母表。正如由字母组合成词、短语,从这些思想字母的组合中产生了思想命题。[51] 当然,这里的“字母表”不是拼音的,而是表意的;也就是说,这些初始符号不像西方文字中的字母那样表示语音单位,而是近乎中文的“字”(characters),最简单的字或偏旁,表示某个意义(象形、会意、指事)。于是,由这些初始词组合成的复合词就包含了这意义的复合结构,或用我们这里的话讲,包含了某种“象”性,就像汉字的“明”、“鸣”、“焱”、“全”、“意”,等等。(2)用数学或具有数学那样的演算功能的符号来表示这些初始的表意词项,以使得它们像“数”一样地获得系统内的推演性。[52] 按照莱布尼兹的设想,这种表意字的组合和变换推演就相当于人类思想发生与流动的过程。这样,不仅广义的思想(包括哲学思想)的表述变得像数学思想的表述一样精确,哲学、宗教等问题的争论可以像算数学题一样得到严格无争的解决,而且,更重要地,它意味着:符号的符合规则的构成样式能走多远,真实的思想就能走多远,反之亦然。这就相当于人类梦想过的“发现的演绎逻辑”或某个意义上的预测术,也是古老哲学所追求的“智慧”的某种实现。这种思想追求中犯的错误,也是数学家犯的那一类错误,不是散漫的观点之争、立场之争。

    在这样一个“推演性的表意文字”的天才构想的推动下,莱布尼兹对于中文表示出极大兴趣,感到未来的世界语言应走这种表意的路子。但中文符号系统是否含有推演的结构于其中呢?他渴望知道。因此,在他关于中国的通信中,就中文性质的问题一再向有关的传教士或有可能回答他的人们发问。比如,在1679年6月24日/7月4日致埃尔斯霍茨(Johann S. Elsholz)的信中,他写道:“第二,众所周知,由于中国的文字不是表示话语[口语],而是表示‘东西’、‘事物’的,因此我想知道,‘汉字’是否总是按照事物的性质创造的。第三,是否所有文字都可以回溯到一些确定的元素或基本的字母,是否从组合中还能形成其他的汉字。第四,人们是否把不可见的事物借助于同有形的、可见的事物的比较带到某种确定的形式之中。..十一,人们是否能够以及在多大程度上从汉字[本身]学习到它的含义”。[53] 所以,当他后来于1689年和1697年分别遇见了来华的传教士闵明我(Claudio F. Grimaldi,1638-1712)和白晋(Joachim Bouvet,1656-1730)时,这种热情就一次次地显露了出来。

    正是通过与这些传教士,特别是与白晋的通信和交往,“普遍表意文字”与“算术二进制”的思想在对《易》卦象的解释上统一了起来。莱布尼兹于1679年形成了数字二进制的思想。[54] 正是在这一年,莱布尼兹形成并撰写了关于普遍表意文字的比较成熟的思想及文章:《逻辑演算诸原则》及论述普遍表意文字的备忘录。[55] 可以说,这两种思路在那一段时间里是同时盘绕于他的心头。这个事实耐人寻味。这两个思想之间明显地有某种相交叠之处,如果我们说普遍表意文字设想是将文字向可推演系统方面推动的话,那么二进制算术则可理解为是将可推演系统向直观显示意义的表意文字方向上引。从我们下面的分析中可见,这两个思路确实在对《易》象的解释中以某种方式相遇了。但是,莱布尼兹终其一生并没有从学理上真正贯通它们。后来的布尔(G. Boole)的二值代数,乃至由弗雷格和罗素等人成就的逻辑演算,等,都只能算是莱布尼兹的这两个思路的部分的、相当有局限的打通。尽管弗雷格有着比较强烈的毕达哥拉斯和莱布尼兹的意向,想让由“概念文字”组成的逻辑命题表达思想,但他与后继者们的成果基本上限于“逻辑语法(syntax,句法)”的层次,并未达到莱布尼兹的“思维演算”或“逻辑语义学(semantics)”的境界。后来塔斯基(A. Tarski)、戴维森(D. Davidson)、乔姆斯基、结构主义语言学派的工作实际上都是从不同角度在探求这个意义极其重大的、但又似乎不可能根本解决的先天与后天如何交织的问题。这应该是造成现代西方哲学中的“[向]语言转向”的最重要的一个动因。意识到这股潜流的思想家们都能在自己的划桨上感受到它沉重的、变幻的压力,而感觉不到它的分量和艰难的“框架内”哲学家们则只是在打水漂。

    莱布尼兹在很长的时间内没有发表他的二进制算术的创意。在给白晋的信(大约写于1702年)中,他这样写道:

    我发明这个算术,距今二十年前。我认定以0与1简括的算术,把数的科学,从来局于某部分的,而进于更完全的领域,这是有不可思议的效果的。但而,我在没有成功更大的效用底时候,我暂时保留公表了。以后又因种种的事业和默想,把我对于这点上的努力,妨碍不少,因而在任何刊行的书物上,我遂没有把它公表问世。不料到了现在,偏于阐明中国古代的纪念物上,发生重大的效用,并以献于贵师[即白晋]参考,不胜喜悦之至。我想,这是冥冥中有若主宰之者,是天助也。[56]

    这确是中西思想交流史和哲学比较史中一段极难得的奇缘。莱布尼兹创立二进制算术已属旷世难遇的发现,而就在他发明但又未公开发表此术二十年之后,在当时交通那么不便、西方人对中国所知如此稀少的情况下,居然出现了那么有文化和数学感受力的传教士,被允许在大明、大清帝国长期居留,进入最高层的圈子中,并由其中的一位佼佼者带给了他“伏羲《易》图”,[57]而他也就在这张图中发现了对他的二进制算术的古老印证![58] 如此巧合的风云际会实在令人不可思议,以致他有“天助”之叹。莱布尼兹这样写道:

    这《易》图是留传于宇宙间的科学中之最古的纪念物,但是,依我愚见,这四千年以上的古物,数千年来,没有人了解它的意义。它和我的新算术,完全符合;当贵师您(即白晋)正努力于理解这记号时,而我在接到贵翰以后,即与以适当的解答,这是不可思议的。我告诉你,我若没有早发明的二元算术,我也不能明白六十四卦的体系和算术画图的目的,望洋兴叹,不知所云。[59]

    莱布尼兹在他的《论中国人的自然神学——致德雷蒙的信》(1716年)中将自己新发明的原则简单地表达为:“根据二进制算术,人们只须用两个符号:0与1,去写其他所有数字”。[60] 所以,每一个位置上只有两种可能,或0或1;这比十进制或其他进制都要简易。比如,从0到10,它这样写(括弧中为十进制数字):0(0),1(1),10(2),11(3),100(4),101(5),110(6),111(7),1000(8),1001(9),1010(10)。这样,位置的表现力大大提高,而数符则简化为无须记忆的二相辨别。所以,整个数字系统的表现方式发生了深刻变化:每个数字都有自己的表示结构,可以一目了然地、像看一幅图画似地看出它的大小。由数符表象的“观念”不再比数符本身更高贵了。这也就是说,数字本身获得了某种不同于几何图形的“象”性,与《易》象的表示法有某种同构关系。所以莱布尼兹写道:“当我将这算术[在1701年2月15日的信中]解释给白晋神父时,他在其中认出了伏羲的符号,因为〔0与1〕数字与它们完全符合:若是我们以断行〔阴爻〕代表0,以不断行〔阳爻〕代表1的话(只要在数字前,多置‘0’字,使最低的数字和最高的数字有一样多的爻即可)。这算术虽然千变万化,也是非常简单,因为它只有两个因素。所以伏羲似是在‘组合之学术’方面,有他的心得。”[61]

    莱布尼兹和白晋在讲到《易》卦象时,总将它们归为伏羲,并相信伏羲“是中国古代的君主,世界知名的哲学者,并且是中华帝国的东方科学的创造者”。[62] 这一方面是由于中国解《易》传统中“伏羲画卦”的说法,另一方面则与白晋所属的索隐象征派(Figuralism)的学说有关。按这一派,比如巴斯卡(Pascal),《旧约》对《新约》中发生的事情有预表或预示,后来主要在法国传教士中形成了《旧约》对中国文化经典有预表的看法。[63] 著名天文学家开普勒和莱布尼兹也都受到这种思想影响,假定在上帝“变乱人类语言”(见《旧约·创世纪》11章)之前,人类有共同的文化与文字来源。伏羲就属于那样一个共同起源的时代,是一位伟大的世界性人物。我现在还不确知莱布尼兹在开始构思他的普遍表意文字时是否受到了这种学说的影响,但很明显,他和白晋都倾向于在伏羲画的卦象或在他们看来是二进制数学的成果中看到中文的起源。莱布尼兹写道:“我与白晋神父两人已发现了中国创始人伏羲所造的符号的明白无误的原本意义。这类符号,只是由断线〔阴爻〕与不断线〔阳爻〕组合的,并算是中国最古的、最简单的文字(the most ancient writing of China in its simplest form)”。[64] 在1702年给白晋的信中,他已直接讲到这个问题:“我想伏羲当时是把六十四的数再加一倍[因‘方位图’中有64卦按‘方’与‘圆’的方式的两种排列],为百二十八,加以他所认为最基本的名辞,而对名辞又与以最适当的文字。这文字就是表示卦的数和卦的阶段。由单纯的而重要的名辞,再加以字画,作成他的文字。..历代的君主和哲人,是以改良为目的,对于文字加以种种的变更,但并不是基于同一的文法和语原之法则。这样,文字起源的意义完全消失,而伏羲造卦的起源,亦失其本来的意义。我很想知道各卦的中国文字的意义”。[65]

    根据这个想法,莱布尼兹觉得可以将《易》象及其初始文字用到他多年以来怀抱的普遍表意文字的设想上去,并由此而在中国重新输入或重现人类的原始智慧的数理的和神秘的精神,也就是《旧约》、毕达哥拉斯和伏羲的精神:

    将伏羲的文字再延展出去,发明一种新的文字,这不是对于我计划中的思想分析与理想计算给与一个导原吗?秘密而神圣的文字,是到达启示的宗教最简易之捷径,要使中国人了悟哲学和自然神学之最重要的真理,这不是一个最好的方法吗?纵然这文字,比之他们的文字,完全新异,但与伏羲的精神,并无不合,未尝不可以成为有素养而忠于伏羲的学者最高阶级之特别语言。因为我们已发现了卦的钥匙,中国人不能对我们再存何种疑难,所以我们将来在中国应该要增加空前的信用。[66]

    请注意,这里二进制算术通过《易》象而与他的普遍表意文字的思路贯通了起来。也就是说,莱布尼兹用二进制解释卦象,再将卦象及其孳乳形态看作原初文字,也就是与普遍表意文字等价的东西。所以,在卦象中找到二进制解释,对他而言可能不止是一种已有理论的应用,他可能同时也受到《易》象表现方法的启发,并由此而推进自己关于普遍表意文字的研究。

    这里出现一个问题:尽管莱布尼兹可以发现二进制算术与卦象有结构上的对应,但他凭什么说由卦象延展而成的普遍的表意文字是“秘密而神圣的”,并且“是到达启示的宗教最简易的捷径”呢?我们可以在莱布尼兹于1697年元旦(他在这之后才与白晋建立联系)写给鲁道夫·奥古斯都公爵的信中找到比较早的有关解释。在此信中,莱布尼兹讲述了他构思的一枚题为“造化之象”(IMAGO CREATIONIS)[67] 的纪念币。它里边包含的基本思路是:首先,要说明基督教的最令人费解的“上帝从无创造出世界”的道理,“没有比关于数字之源的理论”更合适的了,“而这里指的,是简单而朴实地用‘壹’与‘零’或‘无’来代表(创世的事迹)”。[68] 莱布尼兹这里称他的二进制算术表示法为“数字之源”,颇有根据,因为它是表示数字的最简单的,因而也可视为最原初最直观的方法。这一点使他能充满自信地实施“数本原”的古老方案。而且,这里只有两个符号,所以“零”自然而然地表示“无”,“壹”也就自然而然地表示“有”或“存在”。这种语义赋值或解释的合理性比毕达哥拉斯的解释大为改进了。而且,出现了毕达哥拉斯数本原说中没有的“零”,更是耐人寻味。由此可见二进制算术相比于十进制,如何大大改进了数与言的关系,由此也就改善了数本原说的地位。

    第二,在这种数理中,“从无产生有”是一个自发的、简捷的、具有内在和谐和直观美的过程,而这些都是这个过程的原本性的证据。按照莱布尼兹,这个过程是:在数符的右边第一栏或最后一栏处交错地写下0,1,0,1,等,即两个基数中的任何一个出现一次后就改变到对方;在右数第二栏中交错写下0,0,1,1,0,0,1,1,等,也就是每个数出现二次后就变到对方;而在右数第三栏中,0与1则各自每出现四次就变到对方;第四栏中它们每出现八次就变。这也就是说,每向左一栏,数的循环期就加一倍。如此而可以一直有序而交错地写下去,得到一个从0到任意大的数的序数表。这就是莱布尼兹所说的“我们不经计算,不须记忆,即可写出我们要的数字..[从中]可看出和谐的序列与美”的意思。于是我们“看出”:神从无(零)创造一个越来越丰富、多样的世界所依据的数理结构或数象(IMAGO,IMAGE)结构,它显得极端简捷、自然与和谐。“由此我们也可以演绎到一种道理,即是人似在神的手工中看到的无序只是表面上如此而已;当我们如同通过望远镜一般地从正确的观点观物时,自然会看到左右相称的美。这一切使我们更称扬、更敬爱身为众善、众美之源的至善的智慧与善美”。[69] 因此,莱布尼兹要在这纪念币的一面刻上:“G. W. 莱布尼兹所发现的创造之象”,以及一句画龙点睛的铭文:“[为了]从无中产生一切,壹就足够了”。[70] 这里的“壹”既指二进制数字中的1,又像毕达哥拉斯学派那样地指本原的纯存在,也就是从神那里来的光明。莱布尼兹欣喜自得之余,希望闵明我将此“造化之象”的道理告诉康熙,以“显现出基督教信仰的优越”。[71]

    因此,当莱布尼兹在四年后拿到白晋寄给他的《伏羲六十四卦方位图》,并明白无误地在其中辨认出这“造化之象”的结构时,是何等惊喜和振奋:呵,白晋神父,这原来并不只是一个向中国皇帝显示基督教的外在优越性的问题,而是一个向他“报知”他们自己的祖先原本就有的推演万象万物大智慧的问题。当然,这中华之祖在白晋、莱布尼兹等人看来也是人类之祖的一部分。

    这样看来,先天图系统是极为重要的。尽管关于它们的原始作者有争论,但毕竟,只有在《易》象结构中,才能出现先天系统,以及其中的“真至之理”。称之为“先天”,想必是与构造它们的方式直接相关,即按照一个自然的、谐调有致的次序而自动产生出所有卦爻象的方式,或“先天而天弗违”的方式。朱熹的《周易本义》的附图中以“伏羲”开头的四图及河图、洛书皆显示这样的构造。比如,“伏羲六十四卦次序图”就与莱布尼兹所述的产生二进制序数的方式是同一个结构,如果我们将此图顺时针转九十度,并以最小的黑框代表一个零,最小的白框代表一个壹的话。而且,如以上第一节提及的,这些图之间都有有机的联系。比如将上述的次序图的最上的一排从中分开,再交错地接上两端,则为“伏羲六十四卦方位图”中的圆图;将次序图的卦八个一横排地依次排下,则成为方位图中的方图。这两图正是引起莱布尼兹注意并在每卦上面标出阿拉伯数字的图。还值得注意的是,先天图的合理和谐的秩序结构经过程颢与朱熹的阐扬,同样给予当时的中国思想家们以深刻印象,认之为“先天”的证据,由此而生出对于“天理”和“一心”的大信心,极大地影响了宋明的理学和心学。至近现代,日本人采用“先天”来译西方唯理论中的关键词“a priori”,“后天”来译“a posteriori”,中国学者随之,这先天学又与唯理论发生直接接触。只是其中的“图象”根子蔽而未明。由此可见,莱布尼兹的“数象”易学的桥梁作用是无可替代的。

    由以上的阐析中可看出,莱布尼兹学说超出了巴门尼德及柏拉图创立的观念形而上学,追本溯源,袭取了毕达拉哥斯的数本原说的纯推演精神。但是,天纵睿智的他却深知,要成就这种精神追求,毕达哥拉斯的数的表达结构不可用,西方的拼音文字亦不可用,于是创出“表意文字设想”及“二进制算术”,为这种追求提供了更合适得多的、更紧凑微妙得多的表达方式。而且,这种表达方式的改进伴随着,甚至是引发着思想的精微化、有机化,使得莱布尼兹能将毕达哥拉斯主义中的“和谐说”发挥到了单子论和连续律的“至大无外,至小无内”的地步。正是由于这些重大的改进,莱布尼兹大大拉近了他与中国古代以《易》为源头的天道观的距离,因而在机缘凑合的时候对易象做出创造性的读解。

    然而,与本文第一节所阐发的情况相比,莱布尼兹的解释远未穷尽易象的多维多层的含义,尤其是未看到易象中蕴含的生存时间性与空间性的确切含义,或者说是那样一种境域的含义,凭借它,人们能够“与时偕行”,获得或构成对于人生的领悟(知天命)或预言。换言之,这种“思想表意文字”既不只是准确深入地表达、交流思想的工具,也不只是西方数学意义上的思想推演,而是能“与天地准”,使人的思想获得飞腾创新、化蚓为龙的“时中”能力的符云象气。而且,莱布尼兹囿于基督教索隐派的一些偏见,完全不考虑中国文化自《易传》以来的解《易》传统,甚至完全忽视中国古人对易象所做的“阴阳”、“刚柔”式的具有原发的构意功能的语义解释,也都是其易学中的败笔。

    然而,我们绝不能因此而否认莱布尼兹的易象说的珍贵思想价值,只以“误解”或“不符合《周易》原义”这样的判辞来打发。在易学研究上,谁又能垄断“《周易》的原义”的解释权呢?在我看来,莱布尼兹易象说有这样几个贡献:首先,他的二进制算术的易象说完全说得通,验于诸先天图,如合符节。对于易象这样的符号推演系统,这种符合通顺本身就有意义;而且,因其新鲜,因其作为数字系统的强大推演能力,这意义就更是深远重大。再者,莱布尼兹的这个解释绝非偶发灵感所致,而是与他本人最深切关注的哲学思想和科学思想内在相通。通过这个解释,数与象之间出现了更密切的联系,也就是说在毕达哥拉斯学说与《易》之间架起了一座悬桥,让我们感到这两端的区别所在和某种可相关之点的所在,从而能对西方传统哲学与中国古代思想的关系形成有数、象根据的层层理解,开出了不少新的研究“法门”。第三,如上所述,莱布尼兹的二进制算术学说背后有对于普遍表意文字的追求,所以,尽管他的易象说乍一看显得单薄、数学化,但深究下去,也不乏象数与语言及哲理的微妙联系。这一点从他的那番“从无中产生一切,只要壹就够了”的议论中可看出门道。而且,尽管莱布尼兹未能充分考虑易象与汉字语义的关系,他发现的数字(与卦象)的生成法说明了“对立表示法”的根本性,以一种前辩证法的方式预示了后来结构主义语义学的基本原则:意义出于原本的对立辨认结构,与指称无直接关系。第四,莱布尼兹的学说与后来出现的数理逻辑和计算机原理有内在关系。通过莱布尼兹,《易》与当今人类科技与生存走向也有了某种接触点。当然,上面也谈到了,莱布尼兹的学说比它引出的逻辑与技术要更深邃,而《易》也不止于莱布尼兹所理解的那样。

    四、总结:三者对思维方式的影响

    由于《易》以可直观的象为变易的枢机,“立象以尽意,设卦以尽情伪”,[72] 它鼓励的似乎首先是直观式的而不是观念式的思维。这么说并不错,但情况远不像表面上看的这么简单。首先,易象鼓励的直观肯定不是感觉某个现成对象式的直观,爻象与卦象也不是这样的对象。按照胡塞尔的现象学,直观包括感觉与想象,感觉是最基本的直观。从以上的讨论可以看出,易象思维虽然与感觉无重要关联,却与想象大有关系,而且这想象比感觉要更根本。当然,这不是或不只是对已经经验过的东西的“再生式的”想象,而是“产生式的”原发的想象。海德格尔在他的《康德书》中全力阐发康德《纯粹理性批判》第一版中“先验的想象力”的存在论的含义,将其导向他的《存在与时间》的生存境域式的解释学思想。这种先验的想象力所产生的“纯象”或“图几”(Schema)是时间(Zeit, time),在海德格尔那里则被理解为充满缘发境域性和出神态(Ekstasen)的时机化(Zeitigung)。[73] 易象的“能像”的特点使得这种原发的想象力可以发挥出来。利用易象变易提供的多维度的、动态的和境域式的潜在可能性,解《易》者能够当机构成或辨别出形势本身包含的象(“知几”),从而做出“时中”式的预言。在他看来,是“变而通之[至变],鼓之舞之”[74] 的原发想象力而不是对象化感觉或概念化理智才能作为真知识的源头,在它那里主体与客体、过去与未来还未分裂,还能以“气”(阴阳之气)、以“象”(阴阳之象)相通。运用这种想象力,就能先行于现成者,就能“极深而研几”,[75] 而“几者,动之微,吉[凶]之先见[现]者也。”[76] 因此“知几”就意味着“前知”和能够预言。至于“预言”,可能是针对具体事件的,也可能是针对长程的人生过程和命运的,还可能是针对国家与民族的气数消长的,如果是后两者,则可以有修身、齐家、治国、平天下的含义。自孔子之后,这种宏富意义上的《易》学在儒、道知识精英中占了主流。道德既不来自先天观念或道德律,也不只是“实践”的,它是人与世界的生存实情与未来朝向所要求着的,应该是最纯粹的思维样式。同理,治国之术也不只是外在的构造,而是与人的最潜在的最纯粹的能力的实现息息相关的。

    因此,《易》真正鼓励的是这样一种思维:它以变化为根本,绝不试图完全超出变化而达到某种理念或逻辑的确定性,而是通过易象的巧妙结构和运作方式来理解变化、应对变化和利用变化,使之成为既能带来新鲜活力(新象、新的可能),又具有动态的结构稳定性的造福人生的源泉。所以它一方面重视出新,“日日新”、“其命惟新”,[77] 有忧患意识(总有可能失败),[78] 另一方面又看重和谐与天然动态的稳定。此所谓“变-通”,所谓“时-中”或“中-庸”。能深刻地感受形势、情境中的“时”,能通过这种境域体验领会万事万物的时机,尤其是朝向未来的时机,是真正的“得道”,是最高的智慧。“圣之时者”[79] 是最纯粹意义上的圣人。由于这“时”的朝向未来的特性,真正的得时者(真儒、真道、圣人、至人)绝不止于适应周围一时之环境,或只知好古怀旧,而是有着“凭空而行”、“知其不可为而为之”的“先行”气慨和“杀身以成仁”的精神准备的人。当然,这也大不同于“为原则而献身”。但是,如何才能进入“时势”而领会“时机”呢?易象给人们的提示是:“势”是由区别性特征、也就是一对对的对立特性(A/非A)所造成的,而在原发的想象力中所感受到的势只能是由极“易、简”的对立特征所构成,如阴阳爻那样,因为只有这样的区别才能以非对象化的方式潜伏于边缘域中,随时可能参与想象的原发统握。这样的势才能是纯天然的“世势”和“时势”。因此,受《易》或易象影响的人特别重视原初的对立或对子,比如儒家的“夫/妇”、“亲/子”、“古/今”、“过/不及”,道家的“有/无”、“强/弱”、“高/下”、“白/黑”,两者都看重“阴/阳”、“往/来”、“天/地”等。但是,要能够在人生的关键形势中感受时机、把握时机却大不易。人天然有领会情境与时机的“直觉本能”,但往往只能运作于日常的境域和劳作(“在俗世里混日子”)之中。只有经过“艺”或广义的“技艺”的训练,这种本能才能达到“发而皆中节”和“随心所欲不逾矩”的地步。《易》本身就是儒家的“六艺”之首,“是故君子居则观其象而玩其辞,动则观其变而玩其占,是以‘自天佑之,吉无不利’。”[80] 所以还可以说,《易》鼓励技艺化的、艺术化的思维,这思维的方式总是简易、紧凑、动态和一气呵成的。

    毕达哥拉斯的数本原说也包含一种对世界现象的根本的可推演性和合谐结构性的信念,但他将这“可推演性”基本上理解为西方传统数学式的,因而缺少《易》的可推演性中的那种对于人生的、而不仅仅是天象的预言能力。不过,这种“数学”比后来的柏拉图的“辩证法”和亚里士多德的“逻辑”要境域化得多。由毕达哥拉斯及其学派参与而创立的古希腊数学是一种从形式上讲比较“纯粹关系化”的学科。它不再关注数所代表的经验对象,而只关注数与形的意义本身和关系本身,找到了发乎数形系统自身的“证明推演”的方法。这想必给了这些开创者们以极大的理智惊喜和对于“数是本原”的信心。所以,他们以数自身的结构和谐为真实的标准,具有某种超时代的前瞻性。但是,这种数学的符号系统却是不够简易的,缺少可直观的循环结构,而且,它里面的区别达不到微妙的对立,无法成为构造原发势态的、能潜伏于境域中而随时参与到构造和谐样式的过程中来的区别性特征。在这样的符号系统中要发现新的样式就不如在易象中容易,尽管要比在对象化的系统中强;特别是,使用这种无法直接帮助和显示构成过程的符号系统的人不会看重变化的、“偶然”的过程,而是看重那能体现必然合理性的结果,认为是它们而不是那些形成它们的变动过程和情境是更真实的,由此而鼓励一种追求静态的、超境域的和不变的本质结构的思维倾向。

    这种不够简易的、注重静态和谐的数结构系统难于与自然语言和当时的哲学问题表述建立比较合理的关系,由此而导致了毕达哥拉斯之后的观念范畴化的形而上学的倾向。由巴门尼德和柏拉图奠定基础的西方传统哲学的主流唯理论(rationalism)代表了一种理式化和概念化的理性追求。它保留了毕达哥拉斯学派的寻求超境域的不变本质结构的特点,但由于概念化而丧失了数系统的推演能力。为了补偿这个关键的缺失,哲学家们尝试了许多方法,比如古代的辩证法、逻辑法、论证(argumentation)法、怀疑法、表达形式的推演化方法(斯宾诺莎)、近代辩证法等等,由此而发展出存在论、认识论、自然哲学、价值哲学等各种哲学门类,并在黑格尔的辩证概念体系中达到了综合和终结。近代自然科学的出现及发展与毕达哥拉斯主义在新的观测条件下的复兴基本上是一个过程,毕达哥拉斯的“数本原说”被证明在自然科学、尤其是理论化的自然科学中是相当正确的,如果让经验观察过程被补充进来的话。传统的概念形而上学则终因缺少数的推演境域而被“终结”。因此,所谓哲学与科学之争,从根本上讲就是概念化的毕达哥拉斯主义与数学加上试错过程的新毕达哥拉斯主义之争。

    莱布尼兹敏锐地感受到了失去毕达哥拉斯的数学推演精神所付出的代价,试图以新的数学结构和文字结构来弥补之。他对“普遍文字”的设想不仅恢复了,而且尖锐化了毕达哥拉斯主义的哲学问题,即推演符号系统与自然语言的关系的问题。他发明的二进制算术则大大改进了数的表达结构,使数字表示得到了某种程度上的“象”性,从而拉近了数与言的距离,[81] 实际上也拉近了西方的新毕达哥拉斯主义与中国易学哲理传统的距离。这种在符号构成方式上的重大改变不可能不引起思想方式的革新。它鼓励的是一种力图去突破那种割裂个别与一般、有限与无限、意识与无意识、数与言、过程与结果的有机化倾向(单子论),颂扬那不可还原为机械元素的和谐的构成状态,一种“天(神)人合一”的理性乐观主义。这种思想已有能力去关注过程和表达中介,在这个意义上它预示了当代西方哲学。

    但是,莱布尼兹的二进制数学表示法没有获得生存意义上的位置与时间的含义,没有简易化、变易化、境域化为原本的区别性特征,因而无法自发地、合乎时机地参与人的生存活动。因此,他的有机论中缺少能朝向未来、进入真实的变动过程的活的时机化维度,没有忧患意识,无法真正突破在时空中构成的现象与超时空的本体的二元化分裂。就此而言,他的思想相比于当代西方哲学中的一些思潮,比如生存现象学、解释学、存在主义、维特根斯坦后期思想、实用主义、结构主义、解构主义等,还是相当传统的。从总体上看,他的思想处于传统的毕达哥拉斯主义与《易》之间,但这种可“人工智能化”的新毕达哥拉斯主义毕竟还是数理型的,也就是说,它依然是比较硬性的和非艺术性的,要求人去适应它的仿真世界、可计算时间而不是反过来适应人的自然世界和生存时间。而且,正是由于它的形式上的简易化、直观化、智能化、灵巧化,可以表现为“高科技”的形态,它对人的改变和控制会更加深入,对人的天然生存境域有更大的潜在威胁。在这个意义上,我们确实还可以问道:二进制到底是离《易》的世界更近了还是更远了?

  • 布莱恩·费根,纳迪亚·杜拉尼《气候变迁与文明兴衰——人类三万年的生存经验》

    前言
    长达3万年的故事
    来自过去的礼物
    作者说明
    15,000年前至今的重大气候与历史事件年代表
    绪论:开始之前
    冰与火的时代,以及更多 多种层次的替代指标 墨西哥湾暖流 北大西洋涛动 季风 “恩索” 最后是特大干旱
    第一章 冰封的世界
    不一样的世界 裹住全身 先进的技术 鲜明的打扮 寒冷中的舒适
    第二章 冰雪之后
    理解古代的气候  不断变化的地形地貌(自16,000年前起)  完美风暴  第一批农民(约11,000年前)  第一批城镇:药物、干旱与疾病(约公元前7500年)  生存朝不保夕
    第三章 特大干旱
    苏美尔人与阿卡德人(约公元前3000年至约公元前2200年)  可怕的干旱(约公元前2200年至公元前1900年) 新亚述人(公元前883年至公元前610年) 景观变迁 宏大工程的瓦解(公元224年至651年)
    第四章 尼罗河与印度河
    开端(约公元前6000年至公元前3100年) 无所不能的法老(公元前3100年至公元前2180年) 大旱来袭(约公元前2200年至公元前2184年) 印度河:城市与乡村(约公元前2600年至公元前1700年) 熬过大旱 各有所好
    第五章 罗马的衰亡
    暖和的开始(约公元前200年至公元150年) 韧性与瘟疫(公元1世纪以后) 后勤与脆弱性(公元4世纪) 马匹、匈人与恐怖场面(约公元370年至约公元450年) 酷寒时代(公元450年至约公元700年)
    第六章 玛雅文明之变
    低地与君主(约公元前1000年至约公元900年) 玛雅农民之古今 转折点之后(公元8世纪至10世纪) 科潘解体(公元435年至1150年) 崩溃(公元8世纪以后) 北部的气候事件(公元8世纪以后)
    第七章 众神与厄尔尼诺
    沿海:卡拉尔、莫切、瓦里与西坎(公元前3000年至公元1375年) 奇穆:多种水源管理(公元850年至约1470年) 农耕环境与十二河谷 令人震惊的高原:蒂亚瓦纳科(公元7世纪至12世纪) 忽冷忽热
    第八章 查科与卡霍基亚
    干旱与渔民(公元前1050年至公元13世纪) 查科峡谷:一场气候踢踏舞(约公元800年至1130年) 因灾迁徙(公元1130年至1180年) 密西西比人(公元1050年至1350年)
    第九章 消失的大城市
    无边的辉煌 无常的季风(公元1347年至2013年) 解体(公元13世纪以后) 进入斯里兰卡(公元前377年至公元1170年及以后) 进入多灾多难的19世纪:中国与印度的大饥荒(公元1876年至1879年)
     第十章 非洲的影响力
    掌控“巴萨德拉”(公元前118年以前至现代) 探索内陆(公元1世纪至约1250年) 自给农业的现实 马蓬古布韦与大津巴布韦(公元1220年至约1450年)
    第十一章 短暂的暖期
    火山作乱(公元750年至950年) “中世纪气候异常期”(约公元950年至1200年) 生存与苦役(公元1000年) 逐渐变暖(公元800年至公元1300年)黑暗时代和大饥荒(公元1309年至1321年)
    第十二章 “新安达卢西亚”与更远之地
    神秘的“新安达卢西亚”(公元1513年至1606年) 詹姆斯敦的麻烦(公元1606年至1610年) 努纳勒克知道如何做(公元17世纪以后) 干旱演变成特大干旱(公元16世纪末至1600年) 展望未来
    第十三章 冰期重来
    黑死病(公元1346年至1353年) “小冰期”(约公元1321年至19世纪晚期) 波罗的海地区的粮食与荷兰的基础设施(公元16世纪及以后) 太阳黑子、火山与罪孽(公元1450年及以后) 大洋彼岸(公元17世纪以后)
    第十四章 可怕的火山喷发
    失控的火山爆发(公元1815年)[4] 乱局(公元1815年至1832年) 美洲的退化?(公元1816年至1820年) 以煤驱寒(公元1850年及以后) 燃烧的问题(公元19世纪晚期) 人为变暖(公元1900年至1988年)
    第十五章 回到未来
    生而为人 知识传承 亲族关系 迁徙时代 领导力 组织资源 转折点 前车之鉴

    前言

    上埃及的尼肯(Nekhen),公元前2180年前后。在饱受异见和饥荒困扰的埃及,安赫提菲(Ankhtifi)是一个权势熏天的角色。他身为州长,属于地方行政长官,至少在理论上算是法老的臣属;可实际上呢,他却是全国最有影响力的人物之一。此人在庄重严肃的队伍中,由全副武装的守卫簇拥着,走向太阳神阿蒙(Amun)的神庙。他身穿一袭白袍,头上的假发整整齐齐,脖子上挂着几串由次等宝石串成的项链。这位贵族大人沐浴着明亮的阳光,毫不左顾右盼,似乎对聚集于路边的一群群沉默而饥饿的民众视而不见。他手持自己那根长长的官杖和一根仪式用的权杖,腰间则系着一条装饰华丽且打着结的腰带。士兵们的目光来回扫视,提防着矛和刀。百姓们全都饥肠辘辘;他们所得的口粮少得可怜,偷盗与轻微暴力的现象正在日益增加。号角响起,这位大人物走进了神庙,太阳神就在那座阴暗的神殿里等着他。州长向太阳神阿蒙献祭,祈祷来一场充沛的洪水以缓解近年的灾情时,全场一片寂静。

    这种情况已经持续了数代之久,连许多的当地农民也记不清了。在尼罗河的下游,祭司们多日来都在观察洪水的情况,在河岸边的台阶上标出洪水的上涨位置。其中有些祭司摇了摇头,因为他们感觉到,洪水的流速正在变缓。不过,大家还是满怀希望,因为他们相信,众神掌管着这条河流,掌管着来自遥远上游且滋养了这里的洪水。安赫提菲是一位强悍直率的领导人,用铁腕手段统治着子民。他定量配给食物,控制人们的流动,封锁了治下之州的边界;只不过,这个能干而又魄力非凡的人心中也深知,他和子民都任凭众神摆布。向来如此。

    安赫提菲及其同时代人所处的埃及世界,位于尼罗河流域。他生活在一个动荡不安的时代,当时的埃及深受河水泛滥与饥饿的困扰,这两个方面都威胁到了国家的生存;这一点,与我们如今这个世界并无太大的不同。只不过,我们这个时代的气候风险是全球性的,其严重性也史无前例。从政治家和宗教领袖到基层活动家和科学家,有无数人士都已强调,人类的未来岌岌可危。许多专家则提醒说,我们还有机会来纠正人类的前进路线,避免可能出现灭绝的命运。的确如此,只是我们在很大程度上已经忘记,我们其实继承了人类与气候变化方面的巨大遗产。

    人们普遍认为,古代人类应对气候变化的经验,与当今这个工业化的世界无关。完全不是这样的。我们不一定要直接学习过去的做法。但是,通过多年的考古研究,我们已经更深入地了解了自身;无论是作为个体还是作为一个社会,都是如此。而且,我们也开始更加理解长期适应气候变化带来的种种挑战。

    遗憾的是,如今我们对碳形成的化石燃料的依赖程度几乎没有降低。2020年肆虐美国西部的灾难性森林火灾提供了有力的证据,说明了人类导致的气候变化所带来的威胁。持续变暖,飓风与其他一些极端天气事件更加频发,海平面上升,史无前例的干旱,屡创纪录的气温……种种威胁,似乎不胜枚举。基础性科学研究的浪潮已经确凿无疑地证明,我们人类就是造成大气中碳含量升高和全球变暖的罪魁祸首。 尽管有了这种研究,但许多否认气候变化的人(通常会获得他们捍卫的产业提供的资助)却声称,如今的全球变暖、海平面上升以及极端气候事件的日益频发,都属于事物的自然循环中的一部分。这些“怀疑论者”花费大笔的资金,精心策划一些具有误导性的运动,甚至是炮制出一些阴谋论来诋毁科学。他们言之凿凿,以至于很大一部分美国公民认为他们说的是真话。不过,他们又是根据什么来得出这种结论的呢?在这里我们最关注的是,对于人类在过去的3万年里应对气候变化的情况,我们的认识取得了巨大的进步。以前的人们,是如何应对天气与气候中的这些不确定因素的呢?他们采取的措施,哪些有效,哪些又无效呢?我们能从他们的生活中吸取什么样的教训,来指导我们自己和未来的决策呢?否认气候变化者的主张,在这些讨论中都没有立足之地。

    哪怕是在25年之前,我们也还不可能讲清这些问题。在所有的历史学中,考古学的独特之处就在于,它能够研究人类社会在极其漫长的时期里发展和演变的情况。考古学家的历史视角可以回溯的时期,要比美国《独立宣言》发表的时候和古罗马帝国时代久远得多。与人类600万年的历史相比,约5 100年有文字记载的历史不过是一眨眼儿的工夫。在本书中,我们会把透视历史的“望远镜”的焦点集中于这段漫长历史中的一个部分,即从最近一次“大冰期”[1] 处于巅峰状态时的顶点到现代这3万年间的人类和气候变化上;这一时期,也是人类社会一个显著的变革期。古气候学领域里的一场重大革命,最终改变了我们对古代气候的认知。其中的大部分研究都具有高度的专业性和技术性,并且发展迅猛,每周都有重要的论文问世。掌握这门知识是一项艰巨的任务,几乎引不起外行的兴趣。但是,我们并没有一头扎进大量的科学细节中去,而是先撰写了一篇关于气候学的“绪论”,作为本书的开篇。这样做,是想概述一些重大的气候现象(比如厄尔尼诺现象和北大西洋涛动),以及人们在研究古代气候时运用得最广泛的方法,它们既可以是直接的,也可以是利用所谓的“替代指标”(proxy)、较为间接的方法。由于本书内容是以考古与历史为主,故我们认为最好是对这些主题分别进行讨论,以免偏离叙述的主要方向。

    有史以来头一次,我们这些考古学家与历史学家能够真正开始讲述古代气候变化的情况了。我们认为,过去的人类如何适应长期性与短期性气候变化所带来的影响,与如今人类导致的(即人为的)全球变暖问题之间,具有直接的相关性。为什么呢?因为我们可以吸取过去的经验教训,即我们的祖先是如何应对或者没有应对好气候变化带来的种种困难的。诚如天体物理学家卡尔·萨根在1980年所言:“唯有了解过去,方能理解未来。”

    《气候变迁与文明兴衰》一书不但吸收了最新的古气候学研究成果,而且借鉴了一些新的、经常具有高度创新性的研究成果,它们涵盖了人文学科与人类科学,范围广泛,其中包括人类学、考古学、生态学与环境史学。我们还会为您提供那些在过去 20 年里对人类行为与古气候之间的关系进行了深入研究的人所做的贡献;他们的研究成果,常常都深藏于专业期刊与大学图书馆里。我们搜集了这些资料,以便生动地将过去人类对气候事件所做的反应再现出来。

    长达3万年的故事

    本书并非一部论述古代气候变化的科学教科书,而是一个关于我们的祖先如何适应各种大小变化的故事。气候变化这门科学,则只是我们在本书中讲述的人类故事逐渐展开时的背景;它们讲述的是过去的人,即构成了各种不同社会的个人——无论他们身为猎人和觅食者、农民和牧民,还是生活在工业化之前各个文明中的人。这些故事,跨越了万千年历史,发生于政府机构、天气预报、全球模型、卫星,以及我们如今认为理所当然的任何一项技术出现之前(参见下文中的“15,000年前至今的重大气候与历史事件年代表”)。

    我们的故事始于“大冰期”末期,距今大约3万年。我们理当如此,因为此后的数千年里,人类一直采用服装、技术和各种风险管理策略去适应极端的寒冷。“大冰期”的艺术,尤其是洞穴壁画有力地证明了历史上人类与自然界之间的复杂关系;这种关系尽管有着不同的形式,却一直延续到了现代世界。“末次盛冰期”(last glacial maximum)在大约 18,000 年前达到了巅峰,接着出现了一段漫长而没有规律的全球自然变暖期。“大冰期”晚期人类的适应技能,就成了 15,000 年前之后那些后来者面对快速变化和不断变暖的世界时一种充满活力的遗产。我们很快就会发现气候变化的一种现实,那就是气候变化反复无常。它环绕着人类的方方面面,在寒冷与温暖的循环、降雨与洪水的循环、长期与短期的严酷干旱的循环,以及偶尔由大型火山喷发引起的气候变化中消长交替。

    本书前三章讲述的是大约 15,000 年前“大冰期”结束到公元1千纪之间的情况。这是一个非常重要的时期,其间出现了从狩猎与采集到农业与畜牧业的转变,随后不久又兴起了工业化之前的第一批城市文明。直觉与社会记忆,对自给农业的成功发挥了至关重要的作用;在这种农业中,经验与对本地环境的深入了解始终都是风险管理和适应能力当中一个利害攸关的组成部分。然而,日益复杂和产生了等级分层的社会不但很快出现了严重的社会不平等现象,而且越来越容易受到气候快速变化的影响。通过将大量人口迁入城市,并且让城市人口依赖于国家配给的口粮,统治者又反过来开始严重依赖于城市腹地的粮食盈余,以及由政治精英阶层掌控的集约化农业。随着罗马与君士坦丁堡这些城市的发展,它们开始严重依赖于从埃及和北非其他地区等遥远之地进口的粮食,风险也日益增加了。这些城市还越来越容易暴发流行性的瘟疫,比如公元541年那场灾难性的“查士丁尼瘟疫”[2] 。

    第四章至第十章讲述的,则是公元1千纪,直到罗马帝国终结、伊斯兰教在中东地区崛起,以及中美洲的玛雅文明达到鼎盛时期的情况。在此期间,人们对气候的记录变得精细多了。我们会再次看到,工业化之前那些复杂的中央集权国家变得日益脆弱,有时这会导致灾难性的后果。在柬埔寨的吴哥窟复杂的供水系统受到压力之后,这座伟大的城市便土崩瓦解了。从安第斯山脉南部的冰盖与湖泊中开采出来的岩芯,记录了1,000多年前玻利维亚和秘鲁高原上的蒂亚瓦纳科与瓦里这两个国家的崛起与崩溃(这个词,用在此处恰如其分)。强季风和弱季风,则要么是对东南亚与南亚诸文明发挥着支撑作用,要么是危及了这些文明,并且对非洲南部那些变化无常的王国产生了影响。

    这七章里,描述了工业化之前各种不同文明的情况,对古代的气候变化进行了重要的概述。长期或短期的气候变化,从来就不曾“导致”一种古代文明崩溃。更准确地说,在那些专制的领导阶层为僵化的意识形态所束缚的社会里,它们是在生态、经济、政治和社会脆弱性方面助长危险程度的一个主要因素。您不妨想一想,把一颗鹅卵石扔进一口平静的池塘里,涟漪从撞击点向外一圈圈地辐射开去的情形。气候变化所激起的“涟漪”,就是一些经济因素与其他因素;它们会结合起来,撕裂繁荣发展的国家看似平静的表面。

    接下来,我们将进入大家更加熟悉的、过去1 300年间的气候学和历史领域,其中就包括了“中世纪气候异常期”(Medieval Climate Anomaly)与“小冰期”这种气候变化无常的情况;在第十一章至第十四章里,我们将加以论述。

    同样,我们的论述视角是全球性的,关注的是气候变化对一些重大事件的影响,比如欧洲1315年至1321年的“大饥荒”和1346年的黑死病,以及太阳黑子活动减少的影响,其中包括了 1645 年至 1715 年间那段著名的“蒙德极小期”(Maunder Minimum)。我们将描述寒冷对北美詹姆斯敦殖民者的影响,美国西南部的古普韦布洛印第安人如何适应漫长的特大干旱期,以及气候如何促进了尼德兰地区所谓的“黄金时代”,那里的精明商人和水手曾经利用寒冷天气造成的盛行东风远洋航行。第十四章里还会描述 1816 年那个有名的“无夏之年”;它是前一年的坦博拉火山爆发造成的,而那次火山爆发还带来了全球性的影响,导致了严重的饥荒。最后,我们还谈到了始于19世纪晚期、由日益严重的工业污染导致的全球变暖问题。

    这是一场很有意思的历史之旅,但这一切对我们来说又意味着什么呢?第十五章里会强调指出,人类过去应对长期性和短期性气候变化所积累下来的经验,对于我们如今应对史无前例的人为变暖至关重要。在这一章里,我们会仔细列举出今昔之间的差异,尤其是今昔气候问题的规模差异。各种各样的书籍中,对气候“末日”(Armageddon)的预言比比皆是,以至于它们听上去常常像是现代版的《圣经·启示录》,带有“末日四骑士”。相比而言,我们认为,无论是古时的传统社会,还是如今仍在兴旺发展的传统社会,都有许多重要的教训可供我们去吸取。例如,我们应对气候变化的方法中,必须包括长期规划和财政管理两个方面,可古人却不知道这一点,只有安第斯地区的社会除外,因为他们了解长期干旱的种种现实。我们已经知道,就算是到了今天,许多方面也是既取决于我们对具有威胁性的气候变化做出地方性反应,也取决于以过去不可想象的规模进行国际合作。

    来自过去的礼物

    在适应气候变化方面,古人给我们留下了许多宝贵的教训。但首先来看,最基本的一点就在于:与祖先一样,我们属于人类;我们继承了与前人相同的前瞻性思维、规划、创新以及合作等优秀品质。我们是智人,而这些品质也始终帮助我们适应着气候变化。它们都是宝贵的经验遗产。

    来自过去的第二件礼物,是一种持久不衰的提醒:亲族纽带与人类天生的合作能力是两种宝贵的资本,即便在人口稠密的大都市里也是如此。我们只需看一看美国西南部古时或者现代的普韦布洛社会就能认识到:亲情、彼此之间的义务以及一些打破孤立的机制,仍然是人类社会面临压力之时一种必不可少的黏合剂。如今,在各种各样的社会群体(无论是教会,还是俱乐部)中,我们仍能看到那些相同的关系。亲族关系是一种应对机制。分散和人口流动两种策略也是如此;数千年的时间里,它们都是人类应对干旱或者突如其来的洪水所造成的破坏时极具适应性的方法。非自愿移民这种形式的人口流动,如今仍然是人类面对气候变化时的一种重要反应;看一看成千上万从非洲东北部的干旱中逃离的人,或者试图向北迁移到美国去的人,您就会明白这一点。如今,我们经常会说到生态难民。但我们见证的,实际上就是古时人口流动的生存策略,只不过其规模真正庞大而已。

    教训还不止于此。过去的社会与其生活环境联系得很紧密。他们从来没有得益于科学的天气预报,更不用说得益于电脑模型,甚至是得益于如今可供我们利用的众多替代指标中的某一种了。古巴比伦人与包括中世纪的天文学家在内的其他一些人,都曾探究过天体的奥秘,却无一成功。直到19世纪,连最专业的天气预报也只涉及一些局部的天气现象,比如云的形成或者气温的突然变化。农民与城市居民一样,靠的都是历经一代又一代习得的一些细微的环境提示,比如浓云密布预示着飓风即将到来。同样,渔民和水手也能看出强风暴到来之前海洋涌浪方面的细微变化。过去的经验提醒我们,适应气候变化的措施往往是人们根据地方性的经验与理解而采取的地方性举措。这种适应措施,无论是修建防海堤、将房屋搬到高处还是共同应对灾难性的洪水,靠的都是地方性的经验与环境知识。小村庄也好,大城市也罢,古时的大多数社会都很清楚,他们受到气候力量的制约,而非掌控着气候力量。

    回顾过去数千年间的情况,我们就可以看出祖先们面临的气候变化挑战的一般类别。像秘鲁沿海异常强大的厄尔尼诺现象,以及大规模火山喷发带来的破坏性火山灰云毁掉庄稼之类的灾难性事件,虽说持续时间很短,却会让人们苦不堪言,有时还会造成重大损失和伤亡。但是,一旦这种事件结束,气候条件就会恢复正常,受害者也会康复。它们的影响一般是短期性的,且会很快结束,常常不会超过一个人的一生之久。从此类气候打击中恢复过来,需要合作、紧密联系和强有力的领导:这一点,就是过去留给我们的一种永久性遗产。

    在规模很小的社会中,领导责任落在部族首领和长者的身上,落在经验丰富、个人魅力能够让别人产生忠诚感的人身上。这一点,在很大程度上依赖于亲族同胞之间的相互义务,同时也有赖于领导人掌控和统筹粮食盈余的能力。

    气候事件与短期的气候变化并不是一回事:一场漫长且周而复始的干旱,长达10年的多雨,或者持久不退、毁掉作物的洪水,都属于气候事件。过去许多自给自足的农业社会,比如秘鲁沿海的莫切人和奇穆人,就非常清楚长期干旱带来的危害。他们依靠安第斯地区的山间径流,来滋养沙漠河谷中精心设计出来、朝太平洋而去的灌溉设施。莫切人与奇穆人的饮食,在很大程度上也依赖沿海地区丰富的鳀鱼渔场;他们靠着精心维护的灌溉沟渠,在一个滴水如油的环境里对水源供应进行分配。他们的韧性,取决于在有权有势的酋长监督下以社区为基础的供水系统管理。

    过去5,000年中,工业化之前的诸文明都是在社会不平等的基础上发展起来的,这一点并非巧合,因为社会维护的就是少数人的利益。一切都有赖于精心获取并加以维持的粮食盈余,因为像古埃及与东南亚的高棉文明这样的社会,都是用分配的口粮来供养贵族和平民的。在土地上生活和劳作的乡村农民,可以靠一些不那么受人欢迎的作物,或许还有野生的植物性食物,熬过短期性的干旱。他们有可能挨饿,但生活还是会继续下去。不过,旷日持久的干旱循环,比如公元前2200年到公元前1900年那场著名的特大干旱,就是另一回事了;这场大旱,通常被称为“4.2 ka事件”,曾经蔓延到了地中海东部和南亚地区。面对这种干旱,法老们根本无法再养活手下的子民。于是,古埃及就此分裂,诸州之间开始你争我夺。干得最成功的州长们比较熟悉如何解决地方性问题,故能设法养活百姓,限制人口流动。人们不再说什么神圣的法老控制着尼罗河泛滥这样的话了。后来的诸王则在灌溉方面实行了大力投入,而古埃及也一直存续到了古罗马时期。

    工业化之前的文明在很大程度上属于变化无常的实体,其兴衰速度之快令人目眩,这一点也并非巧合。它们的兴衰,很大程度上取决于统治者远距离运输粮食与基本商品的能力。尼罗河近在历代法老的眼前,而玛雅文明以及华夏文明、美索不达米亚地区的许多国家,却只能依赖人力与驮畜进行运输。从政治角度来看,这就再次说明适应气候变化是一种地方性事务,因为当时的基础设施具有严重的局限性,以至于绝大多数统治者只能牢牢掌控方圆约100千米的领土。解决的办法,就是进行散货水运。虽然古罗马诸皇曾用埃及和北非其他地区出产的粮食养活了成千上万的臣民,但这些偏远地区的作物歉收给古罗马带来气候危机的可能性,也增加了上百倍。

    随着工业化的进步、蒸汽动力的发展以及19世纪到21世纪全球化进程的加速,较大规模社会的种种复杂性,已经让适应气候变化成为一项更具挑战性的任务。不过,未来还是有希望的;这种乐观态度,在一定程度上源自我们人类拥有抓住机遇和大规模适应气候变化的出色本领。过去的教训,也为我们提供了鼓舞人心的未来前景。

    果断的领导与人类最核心的素质,即我们彼此合作的能力,就是过去在应对气候问题时的两种历史悠久的根本性策略。人性以及我们对变化与突发事件的反应,有时是完全可以预测出来的。掩埋了庞贝古城的那次火山爆发与其他灾难中,都记录了人类面对灾难性事件时的相关行为。我们属于同一个物种,有很多东西可以相互学习,可以从我们共同的过去中吸取经验教训。假如不从现在开始,那么过不了多久,人类就将不得不转而采取艰难的办法,因为最终的现实是:有朝一日,或许就在明天,或许是几个世纪之后,人类就将面对一场超越了狭隘的民族主义,同时影响到所有的人并且像瘟疫一样严重的气候灾难。我们撰写本书旨在分析过去,帮助读者把握当下,并且借鉴古人的远见卓识,迈向未来。

    [1] 大冰期(Ice Age)指地质史上气候寒冷、冰川广布的时期,大冰期中又可分为相对寒冷的冰期(glacial period)与相对温暖的间冰期(interglacial period)。小冰期(Little Ice Age)则一般特指距今最近的一次寒冷时期,始于约1250年,终于约1850年。——编者注

    [2] 查士丁尼瘟疫(Justinian Plague),公元541年到542年间拜占庭帝国皇帝查士丁尼在位时暴发的一场流行性鼠疫。它不但是地中海地区暴发的首场大规模鼠疫,肆虐了近半个世纪,还对拜占庭帝国造成了致命打击,最终导致东罗马帝国走向崩溃。据估计,这场瘟疫总共导致近1亿人丧命,与“雅典鼠疫”、中世纪的“黑死病”等并称人类历史上八大最严重的瘟疫。——译者注

    作者说明

    年代 所有利用“放射性碳定年法”测定的年代,都对照日历年进行了校准。本书通篇使用的,是公元前(BCE)/公元(CE)这种惯例。早于公元前10000年的年代,则以“若干年前”表示。
    地名 现代的地名,采用的是当前最常用的拼写方式。在合适的地方,我们也使用了普遍公认的古代拼法。
    度量衡 本书中所有的度量衡都采用公制,因为公制如今已是一种通用的科学惯例。
    地图 在有些例子当中,地图上略掉了一些并不知名或者并不重要的地点,以及位于现代城市之内或者紧挨着现代城市的地点。
    年代表 下文列有一份概括性的年代表。考虑到本书所述内容的时间跨度很大,有时不免会在世纪与千纪之间突然切换,故每一章的标题和章节中的许多小标题里也给出了年代信息。

    15,000 年前至今的重大气候与历史

    事件年代表

    本表列出了“大冰期”以来的一些重大气候事件与文化发展。我们并未试图做到面面俱到。其中的重大气候事件用黑体标注。公元前10000年以前的年代,则列为“若干年前”。

    公元

    公元前

    *多格兰(Doggerland),如今欧洲北海中的一块“失落之地”,位于英格兰、荷兰和丹麦之间,亦译“道格兰”。——译者注

    绪论:开始之前

    冰与火的时代,以及更多

    就在我们撰写本书之时,快速蔓延的森林大火已经席卷了美国加州的大部分地区。迄今为止,过火土地的面积已超过160万公顷,有大大小小几十处火场失去了控制,有时还会连成一片,形成规模更大的火灾。浓密的灰云飘散到了遥远之地,造成了严重的空气污染,威胁着人们的健康。由于温度较高,故火势不可能再在一夜之间得到控制。北加州的“北方综合大火”(North Complex Fire),过火面积在一夜之间 扩大了40,468 公顷。自 1972 年以来,加州每年被火灾焚毁的土地面积已经增加了4倍。来自美国和世界各地的14,000 多名消防员,一直都在奋力灭火。成千上万的民众被疏散,数百座房屋在大火中付之一炬。气温已经上升;降雨已经减少,并且变得难以预测;在人们常常难以到达的地方,植被变得更加干燥;山区的积雪,正在消失。该州有不少于30%的人口生活在可能发生森林火灾的地区;至于原因,部分在于一些不恰当的土地利用政策助长了城市的扩张。越来越多的人,正在火灾风险很高的地区建造或者重建房屋。由于人们重新栽种的植被品种很单一,故森林管理的力度也在减弱。当局几乎也没有采取什么措施,去鼓励民众远离危险。加州人与俄勒冈人面临的,似乎正是日益变化无常、具有毁灭性且由人为导致的气候变化的后果,即看上去无法控制的火灾。

    这可并非人类在历史上第一次面临环境灾难,无论是洪水、干旱还是肆虐的火灾。只不过,这一次却有所不同。这一次,气候导致的灾难是近期我们自身一些活动带来的直接后果。有些人在问,我们究竟能不能适应气温极端和毁灭性火灾频发的新现实。那些人口密集的地区,极其容易为肆虐的火灾所害;这种火灾由雷击引发,猛烈的下坡风则会将火星吹到数千米之外,在短短的几分钟里就会让整个社区陷入火海。我们是否注定要灭绝,或者被迫疏散到更安全的环境里去呢?还是说,我们终将适应很大程度上是由我们自身造成的、种种更加危险的新状况?直到如今,我们才开始严肃地面对这些问题。

    本书论述的,就是人类适应各种气候变化的举措。古代社会曾经成功地适应了一些突如其来、时间短暂的事件,比如遥远的火山喷发带来的火山灰云,或者持续数年的干旱。我们的祖先还适应了较为长期的气候波动,比如海平面上升、数个世纪之久的干旱周期,以及间隔性的多年低温。总的来说,我们拥有的合作、互助以及有效管理风险的能力,都发挥了有益的作用。尽管付出的代价常常很大,但历史记录有力地表明,我们终究会挺过这场最新的环境灾难。我们终将通过短期适应和一些长期性的措施,经过艰苦的辩论,对整个社会和我们的生活方式做出永久性的改变,有时还会付出高昂的代价才能实现这一目标。

    幸好,过去的半个世纪,已经见证了研究古代气候的古气候学领域里发生了一场革命。19世纪末和20世纪初,少数天才科学家做出的大胆而具有开拓性的努力,如今已变成科学领域里的重大任务。近年来,论述古代气候的专业文献,有如雨后春笋一般纷纷涌现出来。差不多每周都有重要的论文发表,连气候学家们自己也几乎跟不上文献资料问世的步伐了。像我们这些不是气候学家的人(我们是考古学家),有时更是会对与时俱进失去信心。就算只是适度涉猎一下学术资料,有时甚至只是浏览一下更普通的文献,也会让人对一系列的术语和首字母缩写感到眼花缭乱;其中,“恩索”(厄尔尼诺现象和南方涛动的合称,略作ENSO)也许就是最常见的一个。

    我们撰写本书的目的,并不是 要深入探究全球气候学或者古气候学当中种种令人望而生畏的复杂之处;这两个领域,本身都是自成一体的编年史。相反,我们是利用最新的信息,讲述过去之人及其与不断变化的气候之间的关系,从古代一直讲到最近;要知道,研究漫长的年代学,正是考古学家之所长。在探究古代的气候变化情况时,我们发现,本书各章中所述的种种气候变化背后,隐藏着许多重要的力量。其中包括人们熟悉的一些现象,比如厄尔尼诺现象与拉尼娜现象、“大冰期”、特大干旱,以及季风。我们在本绪论中,将对气候变化中的这些重要因素和其他一些方面加以说明。我们还会说明一些“替代指标”,即可以揭示古代气候变化情况的间接方法。至于本绪论中余下的内容,假如您愿意的话,不妨像伟大的幽默作家P.G. 沃德豪斯那个令人难忘的说法一样,把它们想象成“真正开怀畅饮之前的小酌”。如果您并不熟悉其中的一些气候因素,那就随着我们,先来简单地了解一下全球的气候吧。

    乔治·菲兰德是一位地球科学家兼研究厄尔尼诺现象的专家,他在《气温正在上升吗?》这部论述全球变暖的经典作品中,为我们的研究奠定了基础。[1] 他论述了大气与海洋之间的不对称耦合关系,称二者并非理想的一对:“大气迅速而敏捷,能对来自海洋的暗示做出灵活机敏的响应,可海洋却呆板而笨拙。”这一句话,就概括出了古气候学最根本的挑战之一,即弄清楚一对并不相配的气候“巨人”是如何做到成功共舞的。这对“舞伴”当中,是谁处于主导地位?由谁来改变节奏,或者放慢节奏到几乎停顿下来的程度?这种复杂而不断变化的伙伴关系中,有诸多的细节我们还没有搞清楚。所以,在此我们只能探究一下其中的主要因素。

    多种层次的替代指标

    全球性的气候变化多数都具有规模宏大的特点。就在一个多世纪之前,奥地利的两位地质学家阿尔布雷希特·彭克(Albrecht Penck)和爱德华·勃吕克纳(Eduard Brückner)发现,阿尔卑斯地区至少经历了四个重大的冰期,而两个冰期之间则隔着气候温暖的间冰期。这两位地质学家研究的,是高山河谷中的冰川沉积物;只不过,如今他们的研究早已落伍了。用这四个冰期来描述“大冰期”,未免太过简单,因为“大冰期”构成了人类进化与现代人类出现在世界舞台之上的背景。如今我们知道,“大冰期”(即“更新世”)是在大约15,000 年前的“武木冰期”(Würm glaciation)结束的。随着“大冰期”的结束,“全新世”(词源中的希腊语holos意为“新的”)带来了气候的自然变暖,并且朝着气候学上的现代世界稳步前进了。

    我们对“大冰期”气候的认识,建立在气候变冷与变暖这种笼统的基础之上。在这个方面,我们所用的时间尺度须以千年计、以万年计。例如,我们知道上一个冰期里气候最寒冷的数千年,是在21,000年之前左右。但是,后来的记录极其清楚地表明,气候一直都在变化;因此,对于30,000年前至 15,000 年前“大冰期”中的气候,我们最终就不会根据冰川沉积物,而是根据气候替代指标来进行更加细致的描述。

    所谓的替代指标,是指源于大自然的气候信息资料,比如冰川钻芯和树木年轮,它们可用于判断 19 世纪中叶首次利用仪器做出准确记录之前的变化气候条件。在西南太平洋钻取的深海岩芯,可以追溯至 78 万年之前的情况,涵盖了“大冰期”的大部分年代;它们表明,在这几千年间,至少出现了多个完整循环的冰期与间冰期。显然,“大冰期”的气候变化要比人们一度推断的剧烈得多。然后我们有了冰芯,取自格陵兰冰盖与南极冰层的深处;现在,这种冰芯为我们提供了准确得多的气候记录,其年代至少可以追溯至 80 万年之前的更新世。例如,我们如今得知,过去的77万年里有一个时长达 10 万年的周期,支配着全球从寒冷的冰期转换到气温较高的间冰期。气候变冷是一个渐进过程,而变暖的速度却要快得多。

    当然,在利用如今几乎从每一个海洋中都能钻得的深海岩芯,以及从许多地方(其中包括了安第斯山脉秘鲁段的热带冰川)钻取的冰芯时,还存在许多的复杂因素。源自冰芯和海洋岩芯的替代指标正在变得越来越精确,但从考古学的角度来看,它们通常为我们提供的是“大冰期”中广泛的气候背景。大量的黄土沉积物也是如此,这些风积尘土源自“大冰期”里的冰川,常常在乌克兰和其他地区的河谷中把“大冰期”晚期的定居点掩埋起来。虽说这是一种很不错的总体视角,但在考虑人类适应气候变化的措施时,我们必须依赖一些更加精细的替代指标才行。

    “洞穴沉积物”(speleothem)一词有点儿拗口,这种替代指标在气候舞台上虽然算是相对新鲜的事物,却具有极其重要的作用。钟乳石(聚积于洞穴顶上)和石笋(长在洞穴地面上)是由富含矿物质的水透过地面,滴入洞穴之后形成的。随着富含矿物质的水不停地流动,洞穴沉积物中就会形成许多有光泽的薄层。滴入洞穴的地下水越多,洞穴沉积物里形成的层次就会越厚,而滴入洞穴的地下水越少,分层也就越薄。岩溶洞穴沉积物中的层次,可以通过测量从其周围基岩溶入水中的铀含量来确定年代。这一过程中会形成一种碳酸盐,这种碳酸盐则会变成不断生长的洞穴沉积物里每一层的组成部分。铀会以世人已知的速度衰变为钍,因此我们可以确定各层的年代。这就形成了地下水位随着时间变化的一种大致记录。各种各样的因素,比如当地地下水的化学成分,都会对洞穴沉积物的生长产生影响。这就意味着,我们必须把源自一个洞穴的气候记录,与源自一个广阔地域里其他洞穴中的沉积物所记录的气候信息进行对比才行。

    考虑到水中既存在重氧也存在轻氧,因此氧同位素比率就为我们提供了一种方法,可以了解降水随着时间推移而变化的情况。大雨会带来较多的轻氧,重氧则是雨水较少的标志;不同来源的水中,二者的比率也不同。对洞穴沉积物的研究,如今还处于发展阶段,但这种研究有着巨大的潜力,能为我们提供历史上的精确降雨数据;它们可能与过去的事件直接相关,比如公元10世纪玛雅低地文明的没落。在全球许多地区,重要的洞穴沉积物记录都在迅速积累起来。它们有可能成为所有气候替代指标中最有用的一种。

    在“大冰期”末期的数千年里,随着海平面上升了90米左右,达到了现代海平面的高度,全球的地形地貌也发生了巨大的变化。本书第二章中描述了两个经典的例子,即曾经将西伯利亚东北部与阿拉斯加连接起来的那条沉没的大陆桥,以及多格兰直到公元前 5500 年左右曾将英格兰与欧洲大陆连在一起的众多沼地河流平原。在公元前 4000 年左右之前,撒哈拉沙漠曾是牧民的家园,而从钻取的岩芯与孢粉分析中我们得知,这一时期的数千年里,撒哈拉地区到处都是浅湖和半干旱草原。

    我们研究过去 15,000 年间的气候变化时,开始使用更加完整的替代指标资料,比如来自北美洲和欧洲北部的孢粉记录,它们记录了全球气候变暖以来复杂的植被变化情况。第一批较精确的气候替代指标,就是来自欧洲北部沼泽与湿地的微小颗粒状孢粉化石;它们表明,“大冰期”之后那里的植被出现了巨大变化,从开阔的草原变成了桦树林,最终又变成了桦、栎混交林。此时的孢粉序列,加上木炭之类的其他源头,非但记录了欧洲西部早期农耕村庄周围不断变化的植被情况,而且记录了空地上蓬勃生长的栽培性杂草的情况。例如,人们从英格兰东北部的一个湖畔定居地获得了桦树孢粉和芦苇燃烧后形成的木炭,那里自公元前 9000 年至公元前 8500 年间就开始有人居住了;当时的人曾在春秋两季,趁着芦苇很干燥和新苗开始生长的时候反复焚烧芦苇。这种受控焚烧不但有助于植物的生长,而且可以引来觅食的动物。

    人们利用树木年代学(即用古树的年轮来测定年代)的历史,差不多有一个世纪之久了。这种方法,是由对太阳黑子颇感兴趣的美国西南部的天文学家安德鲁·道格拉斯(Andrew Douglass)率先提出来的,后来,它很快演变为一种精确的测定方法,用来判断古普韦布洛遗址发掘出的横梁的年代,比如新墨西哥州查科峡谷中的“普韦布洛波尼托”(Pueblo Bonito)遗址。树木年轮是由木质与树皮之间的形成层或者生长层构成的,其中记录了特定品种的树木每年的生长情况,比如美国西南部的道格拉斯冷杉。与现存活树中的年轮序列结合起来之后,古时的树木年轮就能让我们得知一些建筑物的建造年代,比如欧洲的大教堂、美国西南部的普韦布洛村落、沉船,以及其他各种各样的建筑。它们还能为世人提供宝贵的气候信息,这种信息是通过记录夏季降雨产生的氧同位素信号提供的。现在,树木年代学可以达到惊人的精确程度了。利用来自欧洲中部的7,000个树木年轮序列,人们已经估算出了公元前398年至公元2000 年间,每年4月至6月间这个重要的种植季与生长季的降雨量。树木年轮如今已是气候学研究的重要对象,世界许多地区都有大量年轮序列业已测定了年代。它们不但可以用于测定考古遗址的年代,还能提供非常精确的干湿降雨周期图。如今的树木年轮序列极其丰富,我们据此可以了解到严重干旱在美国西南部蔓延的情况。其中的多场干旱和其他一些气候变化,都是强大的全球性气候力量造成的。

    墨西哥湾暖流

    大西洋上的墨西哥湾暖流(简称湾流),是一个巨大的全球流动水体传输带中的组成部分,能够改变气候,影响人类的生活。高纬度的冷却作用与低纬度的加热作用——我们可以称之为“热力强迫”(thermal forcing)——会推动海水流向北方。大量的热量随着海水向北流动,然后升腾到北大西洋上空的极地气团中。北部的海水下沉,便形成了这条巨大的海洋传送带,将较高的气温带到了欧洲。这种加热作用,正是欧洲具有相对温暖的海洋性气候,并且盛行湿润的西风的原因。尽管其间也有所变化,但自“大冰期”以来,欧洲一直盛行这种西风。

    但情况并不是始终如此。“大冰期”结束后,随着北方的广袤冰盖开始消退,一个叫作“阿加西湖”的巨大淡水湖探入了北美洲正在消退的劳伦太德冰原(Laurentide),长达11,000 千米。这个淡水湖是以19世纪著名的地质学家路易斯·阿加西(Louis Agassiz)的名字命名的。一片广袤的冰原向南隆起,阻止了湖水东流,使之无法经由如今的圣劳伦斯河谷注入北大西洋。势不可当的全球变暖与日益稀少的积雪,导致这处冰原开始消退。接下来,在公元前11500年左右,这道屏障终于倒塌了。大量积聚起来的冰川融水向东奔流,涌入了大西洋。更暖的海水仿佛在向北、向东而去的湾流那温暖的水体之上形成了一个盖子,让欧洲的气候变得更加暖和。在随后长达1,000年的时间里,湾流与大西洋的水体曾经停止了循环。欧洲的气温迅速下降,斯堪的纳维亚半岛上的冰原则开始步步进逼。欧洲与中东地区变得更加干旱了。气候学家以北极苔原上的一种野花“仙女木”(Dryas octopetala )为名,将这桩长达 1,000 年的气候事件称为“新仙女木”事件(Younger Dryas),并且利用大量的放射性碳样本,测定其年代处在公元前11,500年至公元前10,600年之间。然后,湾流蓦然恢复了循环,全球开始逐渐变暖,并且一直持续至今。

    “新仙女木”事件见证了人类社会发生的巨变,其中就包括中东地区开始出现农业和畜牧业(参见第二章)。接下来,基本上就是现代的气候条件开始发挥作用了。它们当中包括了没有规律却不那么旷日持久的气候变化,其持续时间要短得多。这些变化造成了不可预测的降雨和干旱,给人类社会带来了新的挑战。气候波动出现的时间,正值人口密度不断上升、定居农业变成常态的数千年。早在人为造成的全球气候变暖出现之前,人类就必须适应这些波动了。

    降雨和干旱对局部地区有影响,但造成这些影响的气候因素往往源自数千千米以外的地方。大西洋上的湾流会把温暖的海水从亚热带地区输送至北极。它的作用就像是欧洲的一台空调,会让气温的波峰与波谷之间的落差趋于平缓。从长期来看,气候模型表明,湾流到21世纪末很可能会有所减弱,但这一点,在很大程度上取决于人类排放的温室气体量。最糟糕的情况是环流量减少 30%,只不过,这主要取决于格陵兰岛上的融冰对环流的影响程度。对此,我们迄今还没有做出什么准确的预测。

    北大西洋涛动

    对于欧洲地区和地中海的大部分地区而言,影响气候的主要因素就是北大西洋涛动(NAO)。它有如一座巨型的大气“跷跷板”,位于亚速尔群岛上空的永久性副热带高压和北方持久存在的副极地低压之间的海平面上;整个欧洲和地中海地区从12 月份至次年3月间的气温与降水变化中,有高达 60%的变化都是由北大西洋涛动造成的。它是北大西洋上冬季气候变化的主要因素,对从北美洲中部到欧洲,再到亚洲北部的广大地区都有影响。与厄尔尼诺现象不同(参见下文),北大西洋涛动主要是一种大气现象。

    北大西洋涛动会在一种正、负指数之间波动。正指数会造成一个更强大的副热带高压中心和一个低于往常水平、以冰岛附近为中心的副极地低压。这就意味着,更强大和更频繁的冬季风暴会沿着一条较为靠北的路径越过大西洋。于是,欧洲的冬季会变得暖和、湿润,但加拿大北部与格陵兰岛在相同的月份里却气候干燥。美国东海岸的冬季,气候也会温和而湿润。北大西洋涛动若为正指数,会让地中海大部分地区和中东大部分地区的冬季变得更凉爽和干燥。由于北大西洋涛动会调节从大西洋进入地中海的热量与水分,故大西洋和地中海的表面气温曾经影响并且如今仍在影响着中东地区的气候。通常来说,北大西洋涛动对北美洲的影响要小得多。

    北大西洋涛动处于负指数时的情况,则正好相反,即会形成一个弱副热带高压和一个弱副极地低压。二者之间的压力梯度会减小。冬季风暴会减少和变弱,并且沿着一条更偏东西走向的路线越过大西洋。它们会把湿润的大气带到地中海,把冷空气送到欧洲北部。美国东海岸的冬季则会较为寒冷,降雪也较多。由于北大西洋涛动会调节从大西洋进入地中海的热量与水分,故大西洋和地中海的表面温度会对中东地区的气候产生影响。公元3世纪末至4世纪,在罗马帝国历史上的一个重要时期,处于正指数的北大西洋涛动曾经发挥过重要的作用,为欧洲中部和北部带来了充沛的降水(参见第五章)。

    太阳辐照度与火山作用周期上的变化,是过去1,000年间气温变化的主要原因。尽管更早的情况可能也是如此,但北大西洋涛动如今已是全球广大地区一种主要的气候驱动因素。其影响范围东至地中海东部;我们可以把那里称为一个“气候十字路口”,因为亚洲的季风系统与远处西南太平洋上的厄尔尼诺现象都会对那里产生影响。这种情况,就导致整个中东地区在干旱与降雨两个方面都存在巨大的地区性差异。

    季风

    我们最难忘的经历之一,就是乘坐印度洋上的一艘单桅帆船,在也门最南端的亚丁以东和红海的入口,迎着冬季的东北季风航行。那艘装有大三角帆的货船驶近海岸,每每在眼看就要靠岸时转向一条离岸航线,就这样航行了一个又一个小时。海面平滑如镜,柔和的热带风接连刮了好几天;度过了一天难忘的航程之后,我们得知的情况大致如此。除了离岸的信风航道,借助印度洋上的季风差不多就是最佳的航海选择了。

    季风区的范围十分广袤,从东南亚和中国一直延伸到整个印度洋,而在季节性降雨的一般时间方面,则存在几种重要的变化。从根本上说,季风属于大规模的海洋风,当陆地上的气温高于或者低于海洋上的气温时,季风强度就会增大。

    陆上气温的变化速度比海上更快,海上往往会保持更加稳定的气温。在较为炎热的夏季,陆地与海洋的温度都会上升,只是陆地气温上升得更快。陆地上方的空气会膨胀扩散,从而形成一个低压区。与此同时,海洋上的气温始终会低于陆地,故其上空的气压较高。二者之间的气压差,就会导致季风从海洋吹往内陆,为陆地带去较为湿润的空气。随着湿润的空气上升,风又会往回飘向海洋,但在此期间空气会冷却下来,从而降低了空气当中保持水分的能力,故经常导致暴雨。在天气较为寒冷的月份,情况则正好相反:陆地上的气温下降得比海上快,故岸上的气压较高。陆地上方的空气飘向海洋,雨水则落在近海上。接下来,冷空气往回飘向陆地,大气循环就完成了。

    几千年以来,印度洋上的季风都是驱动帆船航行的动力。季风贸易利润可观,让商船可以在 12 个月内从印度西海岸前往红海或者非洲东部,然后再返回来。商船也可以沿着波斯湾地区和印度西北部之间那片荒无人烟的海岸航行。在数个世纪的时间里,丝绸与其他的纺织品再加上亚洲的舶来品,曾经源源不断地运往西方,而黄金和非洲的象牙则流往了东方。在印度洋上,夏季的西南季风会从7月份一直刮到9月份,而这几个月里,富含水汽的空气则会涌到整个印度次大陆那片炎热干旱的土地上。印度的降水当中,差不多有 80%来自夏季风;有70%的印度人口靠农耕过活,他们种植棉花、水稻和粗粮。印度西部的农民严重依赖季风带来的降雨,故极易受到季风雨延迟到来的影响;就算只是延迟几天或几个星期,影响也不容小觑。季风未能如期而至,曾经导致了无数次饥荒,让成千上万人丧了命;比如根本就没有季风雨的1877 年,情况就是如此。一些更为局部性的印度季风,则会对阿拉伯海和孟加拉湾产生影响。西南季风十分强大,连中国西北的新疆这样遥远的北方地区也能感受到它的威力。

    东亚季风则属于一种温暖多雨的气候现象,使得这里的夏季风通常很湿润,而冬季风则寒冷干燥。季风性降雨集中在一个地带,5 月初由华南地区开始,一路向北,然后来到长江流域,最后在7月份到达中国北部与朝鲜半岛。到了8月份,降雨带又会南移,退回到中国南部。在过去,季风性降雨曾经至关重要。柬埔寨吴哥地区的高棉农民向来都依赖于亚洲季风;目前认为亚洲季风最初形成于1,000万年左右之前,远早于地球上出现人类的时间。季风的强度各时不同,尤其在“大冰期”结束之后不久;但在全球气候中,亚洲季风始终发挥着一种主导作用。它给全世界 60%以上的人口带来了相当可靠的季节性降水和干燥的气候条件,如若不然,就是带来干旱。夏、冬两季里,欧亚大陆及其毗连的海洋在升温方面具有差异,导致风向会在半球范围内每年都出现一次逆转。还有一个因素,那就是热带辐合带(Intertropical Convergence Zone,略作 ITCZ),也就是信风带相交的地方。还有三个区域性季风系统,也是影响东南亚地区的那种复杂气候动力中的组成部分。此外,厄尔尼诺现象与“太平洋年代际振荡”(Interdecadal Pacific Oscillation)会造成短期或者较长期的扰动,从而有可能给包括吴哥在内的亚洲大部分地区带来严重的干旱。

    热带辐合带环绕着地球,位于赤道上或者赤道附近,也就是南、北半球信风的交汇地带。那里有强烈的阳光与温暖的海水,会让热带辐合带的空气受热,并且增加空气的湿度,使之变得轻盈起来。随着南北信风交汇,这种轻盈的空气便会上升;而上升、膨胀然后冷却的空气,则会在频繁但毫无规律的雷暴中释放出水分。海面附近的风力通常较弱,这就是水手们把热带辐合带称为“赤道无风带”(Doldrums)的原因。热带辐合带的季节性移动,会对许多热带国家的降水产生影响,并且导致热带地区有雨、旱两季之分。在北半球的夏季,热带辐合带会在北纬10°到15°之间移动。这种季节性的移动,曾对中美洲玛雅低地的降水产生过强大的影响(参见第六章)。随着亚洲大陆的升温幅度超过海洋的升温幅度,热带辐合带就会在太平洋上向北移动。大陆上的暖空气上升,空气从海上流往陆地,由此形成的南风就会带来季风雨。接着,到了南半球的夏季,热带辐合带就会南移了。

    “恩索”

    可以说,“恩索”是全球气候中最强大的一个因素。起初,人们以为厄尔尼诺是一种局部现象,会定期影响秘鲁沿海的鳀鱼渔场,通常出现在圣诞节前后。气象学上的一项伟大成就诞生在印度,由英属印度时期的气象学家吉尔伯特·沃克(Gilbert Walker)贡献;此人原本是一位训练有素的统计学家,后来却孜孜不倦地寻找季风形成的原因,变成了一位研究厄尔尼诺现象的专家。沃克是最早认识到“恩索”是一种全球性现象的观察人士之一。他总结称,当太平洋地区气压很高时,印度洋上从非洲直到澳大利亚的气压往往就会很低。他称这种现象为“南方涛动”,其回旋起伏改变了热带太平洋和印度洋的降雨模式与风向。可惜的是,当时的沃克没有海洋表面与次表层的温度数据,无法证实南方涛动的作用机制,因为20世纪20年代还没有这种数据资料。

    曾经任教于加州大学洛杉矶分校的挪威气象学家雅各布·皮叶克尼斯(Jacob Bjerknes)也用一种全球性的视角对大气循环进行了研究。1957年至1958年间一次强大的厄尔尼诺现象,使其将注意力转向了西方。他受此影响发现,赤道东太平洋的海水温度相对较低,而西至印度尼西亚之远的西太平洋广袤海域则水温较高,二者正常的海面气温梯度之间具有密切的关联。他认为,赤道平面附近存在一个巨大的东西向环流圈(circulation cell)。干燥的空气会在相对较冷的东太平洋上缓慢下沉。然后,它会成为东南信风系统的一部分,随之沿赤道往西飘去。东边的气压较高,西边的气压较低,就导致了大气运动。然后,空气会在上层大气中往东回流,完成整个环流模式。皮叶克尼斯把这种环流命名为“沃克环流”(Walker Circulation)。他认识到,东太平洋地区升温时,东、西太平洋之间的海面气温梯度就会减小。这种情况,会导致驱动沃克环流下半圈的信风强度减弱。东太平洋与赤道太平洋之间的气压变化,其作用就像是一座“跷跷板”,由此便形成了沃克环流。

    “恩索”的这种关联性,是由许多要素共同构成的,其中包括涛动的“跷跷板”式运动,导致太平洋升温的大气与海洋之间大规模的相互作用,以及它们与北美洲和大西洋地区的气候变化之间种种更广泛的全球性联系。皮叶克尼斯指出,大洋环流好比是驱动一台巨型气候“引擎”的“飞轮”。

    每一次“恩索”,都有不同的特点。有些涛动极其强大,还有一些则软弱无力、持续时间短暂,在东太平洋与西南太平洋之间一个广袤而自我延续的循环中,为大洋环流所驱动。沿着赤道,还有一个正常的南北环流,叫作“哈得来环流”(Hadley Circulation),将热带地区与北纬地区的大气连接起来。它会将冬季风暴往北带到阿拉斯加,除非厄尔尼诺现象扰乱了这一模式。风暴轨迹会慢慢东移,袭击美国加州的沿海地区。

    1972 年至 1973 年间一次大规模的“恩索”,引发了科学界人士的广泛关注;这在今天被视为一种全球性的现象,在几乎没有预警的情况下颠覆了干旱与降雨模式——这与秘鲁的鳀鱼渔业因过度捕捞而崩溃基本没有关系。如今,我们对“恩索”有了更多的了解,明白它像一个混乱无序、情绪会突然变化的“钟摆”,一旦摆动起来,就有可能持续数月,甚至是数十年之久。这个“钟摆”永远都不会沿着同一条轨迹摆动;就算摆动中有一种潜在的节奏,也是如此。从爪哇的柚木、墨西哥的冷杉、美国西南部的刺果松以及其他一些树木的年轮序列中可以看出,在1880年以前,差不多每7.5 年就会出现一个降雨量较高的年份。现在,似乎是每4.9年就会出现一次,而拉尼娜现象则是每4.2年就会出现一次。海洋中的珊瑚与取自高山冰川的冰芯则表明,“恩索”作为全球气候中的一个因素,其历史至少已达5,000年,很可能还要久得多。“恩索”的循环成了一台驱动全球气候变化的强大“引擎”,故许多专家都认为,它是气候变化方面仅次于季节的第二大原因。

    “恩索”是一种热带气候现象,非但对热带地区的千百万觅食者和自给农民的生活产生了强大的影响,而且对位于河谷、雨林以及安第斯高原的那些工业化之前的文明造成了巨大的影响。全球有 75%以上的人口都生活在热带地区,其中三分之二的人口都靠农耕为生,因此这些社会始终都很容易受到旱涝灾害的威胁。随着人口不断增长,热带环境的承载能力承受的压力日多,这些社会的脆弱性也在与日俱增。直到近来,人类才获得了预测“恩索”或者其他重大气候事件的能力。如今,我们的计算机与模型完全能够预测出这些气候事件了。在我们适应全球变暖的过程中,这种知识具有极其宝贵的经济、政治和社会价值。本书所描述的古代社会,全都没有这种难得的技术,故适应“恩索”成了古人面临的一项巨大挑战,有时还是一种致命的挑战。

    最后是特大干旱

    数个世纪的树木年轮研究已经为我们提供了丰富的记录,表明了“中世纪气候异常期”(约950 年至约1250 年)与“小冰期”(约1250年至约1850年)里出现的长期性特大干旱(这个术语用于气候学文献中)的情况;在第十一章至第十四章里,我们将对这两个时期加以探究。

    根据树木年轮所得的气候序列,具有极其精准、可以精确到某一年份的优势。幸好,如今美国的广大地区都获得了丰富的树木年轮序列,故一个令人瞩目的气候学家团队还编纂了一部《北美干旱地图集》(North American Drought Atlas ),以世人所称的“帕尔默干旱强度指数”(Palmer Drought Severity Index)为标准,重建了2,000年里的夏季湿度。最新版的《北美干旱地图集》中,还强调了两场对美国原住民社会产生过重大影响的特大干旱。其中一次发生在 13 世纪末的美国西南部,导致了弗德台地与福科纳斯两个地区的古普韦布洛族群人口锐减(参见第八章)。第二次则发生在14世纪的中部平原地区。这场特大干旱,是在伟大的宗教中心卡霍基亚被人们废弃之前不久出现的,并且此后一直持续;卡霍基亚位于密西西比河上的“美国之底”(American Bottom,亦请参见第八章)。但是,树木年轮序列的分布并不均匀,中部平原之类的地区尤其如此,因此会阻碍人们去了解这两次干旱和其他干旱的影响。

    美国西部近期出现的特大干旱都非常严重,但在过去的2,000 年里,特大干旱却要持久得多。它们的持续时间,无疑要比1932年至1939年间那场著名的“尘暴”干旱久得多。一系列有影响力的研究已经表明,特大干旱几乎影响过美国西部的每一个地区,但在“公历纪元”后的早期至中期,墨西哥、五大湖区和太平洋西北部等地也发生过特大干旱。

    直到19世纪中叶至19世纪晚期,古代社会都不得不去适应自然出现的气候变化,而其中的大部分变化,又是由过去主导着全球气候变化的一些强大力量导致的。随着化石燃料大行其道和工业活动日益加剧,“人为强迫”(即人类经济活动导致地球的能量平衡出现变化)开始发挥作用,而我们当前的气候危机也就开始了。不过,要想与其可能导致的破坏做斗争,最重要的一点就在于:我们必须了解数个世纪和数千年以来自然性气候变化背后的各种力量。

    [1] S. George Philander, Is the Temperature Rising? The Uncertain Science of Global Warming (Princeton, NJ: Princeton University Press, 1998).

    第一章 冰封的世界(约3万年前至约15,000年前)

    24,000 年前,欧洲中部,时值深秋。两名饱经风霜的猎人坐在溪边一块巨石之上,背对着风,转头朝天际望去。小溪对岸,有头驯鹿在秋天的枯叶间觅食,他们没有理会。彤云飞卷,几近贴地,向北方聚集。天色越来越暗,两人看着眼前那幅寒冷干燥的光景,什么也没说。接着,他们对视了一眼,点了点头,把兽皮制成的外套紧紧地裹在肩膀上。

    他们的夏季居所紧挨地面,是一种用草皮和兽皮盖成的穹顶建筑。猎人们俯身走进烟雾缭绕的室内,大家围坐在一座熊熊燃烧的火炉旁边,用动物油脂制成的灯火在昏暗中闪烁摇曳。随着夜幕降临,屋外风雨大作,人们都蜷缩到了兽皮之下。其中一位猎人据说拥有超自然的力量,他讲述了一个众人耳熟能详的故事,是关于很久以前第一批人类当中的一个神话人物的。大家已经听过这个故事很多次,内容就是人们曾经在春、秋两季跟着驯鹿与野马不停地迁徙。就在讲故事的过程中,长者会听取每个人的意见,不分男女老少。到了他们该搬往冬季营地的时间了。

    我们都是智人,也就是自封的“智者”。我们这个物种,出现于至少30万年之前的气候温暖的非洲;不过,世人对这个时间还存有争议。我们是一种灵活、聪明的动物,越过了一片片广袤的狩猎区域,通过在可靠的水源附近生活,适应了像漫长的干旱周期之类的气候变化。我们曾是彻头彻尾的机会主义者,靠着仔细观察、深入了解周围的地形地貌,以及合作——在家庭、部落的狭窄范围内进行合作,同时也与其他亲族进行合作——来生存。我们使用简单、轻便的工具与武器,随着当地的气候变迁生活。几乎在人类生存的所有时间里,我们都过着这样的游牧生活,即随着动物的迁徙与季节的更替,不断地迁徙。在文字出现之前,我们都是通过口耳相传的方法,将所有真实的或者想象的知识传授给下一代,有时也会通过艺术来传授;文字发端于亚洲西部,距今不过5,000年之久。

    在古代,我们的生存依赖于对现实世界的深入了解与尊重;人类身处其中,是这个现实世界的一部分。尽管当今没有哪一个群体能让我们直接回到遥远的过去,但思考一下目前仅存的寥寥几个从事狩猎与采集的游猎社会的生活情况,是大有益处的。在北极地区的因纽特人或者非洲南部的桑人当中,我们发现了一种对猎物的强烈尊重和一种对生存环境的深刻理解,即对季节、植物性食物以及野生动物之迁徙的深刻认识。这种知识意味着生死之别,并且一向如此。

    回想远古时代人类的非洲家园,猛烈的风暴、密集的干旱期以及大规模火山爆发之后余下的遍地灰烬,始终都是那里的气候现实。但是,一些智人在大约45,000年前迁徙到气候寒冷得多、人烟稀少的欧洲与亚洲之后,我们生存上面临的挑战急剧增加了。我们发现,自己正在与我们这个物种经历过的一些最恶劣的气候环境做斗争。但还不止于此:我们并不是唯一的人类物种。在人类 600 多万年的进化过程中,不管什么时候,始终都有几个不同的古人类物种与我们同生共存着。

    例如,在欧亚大陆上,大约40万年前到3万年前存在着尼安德特人,尽管世人对这个时间范围还存有争议。从进化的角度来看,这些古人类与我们之间具有密切的联系。至少在70万年之前,我们在非洲都有一个共同的祖先。直到大约5万年之前,东南亚的一座岛屿上还生存着另一群与世隔绝的矮人,即“弗洛里斯人”(Homo floresiensis ),也就是所谓的“霍比特人”,以个子矮小而闻名。如今在很大程度上仍然不为人知的第三种人类,是“丹尼索瓦人”(Denisovans),他们曾经生活在西伯利亚,以及更远的东部与南部。还有其他一些古人类物种,我们对他们的情况几乎一无所知。而且,尽管一些不同的人类物种(尤其是智人、尼安德特人和丹尼索瓦人)之间出现过程度最低的杂交,但除了我们之外,其他的所有物种都注定要灭绝。到了3万年之前,我们智人就成了唯一存世的古人类物种了。

    其他的古人类物种究竟为什么会全都灭绝,一直都是人们围绕着史前时代进行持久争论的问题之一。这些古人类物种的消失,往往与智人来到每个地区的时间大体一致。这就导致许多人如今都赞同一种“他们对决我们”的情况,也就是我们将他们全都杀光了、战胜了他们,或者二者兼而有之。然而,认为不同的古人类物种之间相对没有什么联系,只有偶尔的、有时还属于性吸引的相遇,这种说法同样有道理。或许,当时还发生了其他更严重的情况。像大卫·赖希(David Reich)这样的进化遗传学家认为,从大约 10 万年前开始,尼安德特人的数量就一直在减少,很可能是气候急剧变化导致的结果,故待到智人抵达尼安德特人的家园时,尼安德特人就只剩几千人了。类似的环境历史,可能也有助于解释如今业已灭绝的其他一些古人类物种的消亡原因。唯一可以肯定的就是,智人最终在世界各地定居下来,适应了种种新的、有时还极具挑战性的环境。

    不一样的世界

    这个以前的世界,又是个什么样子呢?45,000年前的世界,与如今这个供养着75亿多人、正在日益变暖的世界可大不一样。[1] 当时,广袤的冰盖笼罩着北欧大地,并从阿尔卑斯山脉向外涌出。有两个大冰原,一直延伸到北美洲的腹地,向南远至如今的西雅图与五大湖区。除了南极洲那片深度封冻的大冰盖,非洲的乞力马扎罗山与鲁文佐里山,南美洲的安第斯山脉,以及新西兰的南阿尔卑斯山上,也全都为冰雪所封冻。由于冰原中吸纳了大量的水,故当时全球的海平面比如今低了90米左右,或者更低。一个人可以步行穿过一条极其寒冷而多风的大陆桥,从西伯利亚走到阿拉斯加,连鞋子都不会打湿。北海与波罗的海当时还是干燥的陆地,不列颠则与欧洲大陆连在一起。一些巨大的沿海平原,从东南亚大陆向外延伸,直达新几内亚与澳大利亚。大片大片生长着低矮灌木的北极苔原,从大西洋沿岸一直延伸到了欧洲和西伯利亚的腹地。接连几个月里,猛烈的北风裹挟着来自北方冰原的细小冰尘,在无边无际的干旱草原上肆虐。在欧洲和欧亚大陆的大部分地区,动物与人类每年都要熬过长达9个月的冬季,以及持续低于零度的气温。当时到底有多冷呢?气候学家杰茜卡·蒂尔尼及其同事开发出了一些模型,可以利用源自海洋浮游生物化石的数据,结合模拟“末次盛冰期”的气候,重现海洋表面的温度。他们的研究证实,当时的全球平均气温要比如今低 6℃,而您也可以料到,高纬度地区的温度降幅最大。[2]

    源自格陵兰岛冰芯中的数据已经表明,在一个气候不断变化、有时变化还很迅速的时期,那些生活在北方的人适应了那个极度寒冷、气候变幻莫测的世界。从全球范围来看,北半球的气温下降幅度大得多。这种情况,主要是海洋的调节作用导致的。北半球有 60%的地表为水所覆盖,而赤道以南却有将近 80%的地表为水。这就意味着,南半球的陆上气温常常会较高;当然,南极洲附近地区除外。北半球的冬季气温较低,季节性差异更大,而离赤道较远的地方,降温也更加剧烈。大约24,000年之前,纽约附近的气温降幅为10℃,芝加哥地区的气温降幅更是高达20℃。相比而言,加勒比地区的气温下降幅度只有 2℃左右。北极与赤道之间的温差梯度较大,使得北半球的风速显著更高,从而导致风寒因素上升到了对动物与人类都很危险的程度。

    不过,当时并未出现永久性的深度封冻。格陵兰岛上的冰芯表明,在6万年前到3万年前这段时间里,曾经出现了多于12个短暂的较暖时期,称为“D-O事件”(Dansgaard Oeschger events)。 38,000 年前,格陵兰岛上突然出现了一个升温期,导致那里的平均气温在极短的时间里(也许只有一个世纪)跃升了12℃。但是,当地的年均气温很可能仍比如今低了 5℃至 6℃。同样短暂而寒冷的间隔期则导致了气温骤降,比那些较为温暖的振荡期低了5℃至8℃。

    在大约 35,000 年前的智人当中,北方的人口增长速度似乎有所放缓;这种情况,也许是冰原不断扩大导致的。[3]随着规模很小的家族部落慢慢退避到那些较少受到风雨侵袭的地方,比如靠近地中海的一些深邃河谷与山谷当中,人口数量可能事实上已经有所减少。当时,只有几百个狩猎部落生活在欧洲。一个人在大约20年至30年的寿命当中,碰到的人很可能不超过几十个,而且其中许多人都生活在其他的群落里。假如没有这种接触,就没有人能够生存下去,因为无论怎样专业,都没有哪个狩猎部落可以做到彻底的自给自足,尤其是在“大冰期”那种令人生畏的环境中。从一开始,我们的祖先就严重依赖于亲族关系,来获得信息、专业知识和配偶。人员流动和接触他人,令技术上的创新在极短的时间内传播到极远的地方。幸运的是,在气候最寒冷的数千年里,人口数量从未下降到极其严重的程度,既未让人们丧失适应“大冰期”的严寒时所用的重要技术手段,也没有让他们丧失有助于维持其生存的、与超自然世界之间种种错综复杂的象征性关系。

    3 万年前之后,充分的冰川条件卷土重来,导致24,000年前至 21,000 年前的气温达到了极端寒冷的程度。它们是“大冰期”末期最寒冷的几千年,通常称为“末次盛冰期”。由于大量的水被冻入了冰层中,故当时全球的海平面比如今低了差不多91米。

    裹住全身

    “大冰期”末期的人,是如何适应如此极端的寒冷的呢?我们智人,(本质上)全都起源于非洲的无毛猿类。倘若不穿衣物,那么,气温降到低于27℃时,我们的身体就会对寒冷做出反应。气温降到13℃时,我们就会开始发抖。不过,这些都只是实验室数据,是人们站在静止的空气中时得出的。刮风之时,裸体的热量会流失得更快。即便是稍低于零度的气温,对未穿衣物的人来说可能也很危险。倘若气温到了20℃,风速为30千米每小时,那么不到15分钟,人体就会冻伤。[4]

    倘若在寒冷当中再加上潮湿,那么,由于我们体表的水分在温度降低时会凝结起来,出汗就成了一个严重的问题。汗水会浸透衣物,从而让衣物丧失其保暖与隔冷的功能。假如感到太冷,我们的核心体温就会下降到低于37℃这一临界水平。倘若这种核心温度因为体温调节失败而下降,我们的身体就会出现体温过低的状态。体温降到33℃,我们就会陷入昏迷。若是体温低于30℃,我们的心跳就会放缓,血压则会下降,而心脏停搏几乎就是不可避免的事情了。

    那么,我们的祖先究竟是如何适应“大冰期”晚期的极端寒冷与气温突变的呢?如今,我们绝大多数人都会把汽车里的空调设置在21℃左右,因为这是我们穿着衣物时觉得舒适的温度。但我们知道,那些打一出生起就不穿衣服的人,都具有较强的挨冻能力。1829年,英国皇家海军“小猎犬号”的船长罗伯特·菲茨罗伊(Robert FitzRoy)在考察麦哲伦海峡时,遇到了雅甘人。他前往那里的时候,雅甘族可能有8,000 人,全都矮矮胖胖,平均身高约为1.5米。尽管那里气温很低,经常有雨雪,可他们一般都是赤身裸体,而在天气寒冷的时候,也只是披一件用水獭皮或者海豹皮制成、长度只到腰间的斗篷。年轻的查尔斯·达尔文曾在1833年随着“小猎犬号”前往,他对此大感震惊。“四五人兀然现身崖上,皆赤身露体,长发飘逸。”[5] 他们的耐寒能力之强,着实令人瞩目。

    除了通过人口流动和皮肤表层的基因改变这种普遍的方式来适应低温之外,人类抵御寒冷的仅有武器,就只有火、衣物和高效的石器了。没人确切地知道,我们第一次驯服火是在什么时候,但根据最近从南非的旺德韦克山洞里发掘的证据来看,我们的古人类祖先似乎在大约100万年之前,就已围坐在(有意识地加以控制的)火边了。无疑,火具有难以想象的重要性。火为人类带来了众多的益处,从保护我们免遭野生动物袭击,到提高我们摄取煮熟的食物时的热量,不一而足。(从食物中摄取更多的能量,供我们需要消耗巨大热量的大脑所用,可能一直都是推动人类进化的一个关键因素。)但可以说,最最重要的还在于火可以帮助我们保暖。火既让人们走出非洲之后能够在较寒冷的环境中生存,也为那些留在故土的人缓解了夜间气温的寒冷。人们甚至用火来清理洞穴,然后才住进去。我们还应当记住,穴居本身就是一种进步,不仅可以保护人类免遭掠食动物袭扰,也可以保护人类免受天气之害。

    至于衣物,则是另一种了不起的防寒之物;其基本原理也很简单,那就是遮住自身。与其他众多的创新之举一样,将兽皮和别的遮盖物披在自己身上的理念,在很多场合和不同时期都曾为人们所采用,只是我们不知道衣物的确切发明时间罢了。最简单的形式是,人们只用兽皮遮住上半身,火地岛人、非洲南部卡拉哈里沙漠中的桑族猎人以及澳大利亚原住民都是如此。这种兽皮并非仅仅用作衣物,它们还有多种用途:可以包住年幼的孩子,然后挂在肩上;可以将坚果或者其他的植物性食物运送回营地;可以在打制石器时保护双手,或者用于携带从刚刚宰杀的动物身上切下的肉。人们穿着兽皮制成的斗篷入睡,也用这种斗篷裹埋死者。

    驯鹿皮足以让人们应对较为寒冷的气候,而热带地区的桑人身上披的则是羚羊皮。夏威夷人与新西兰的毛利人还发明了羽毛斗篷,那可是威名赫赫者所穿的衣物。脱下或者穿上这种斗篷,都只需几秒钟,并且披在身上时,它们从来都不会让人觉得很紧。这是一种极具实用性的多功能衣物,在气温较低的情况下紧裹身体时,其保暖效果会大大增强。

    假如没有厚厚的衣物,“大冰期”中就没人能够在北方的寒冬里幸存下来。从生活在5万年至6万年前最后一次冰期那数千年酷寒当中的尼安德特人的遗址中,人们发掘出了大量边缘细长、形状经过小心打磨的石制刮器,用于将兽皮加工成床上用品、斗篷与其他物品。不过,我们的“近亲”尼安德特人所用的技术还不具备强大的适应性,只能加工出披在身上的兽皮;尽管他们可能也曾用锋利的石头或者荆棘作为针来缝制衣物,但就算如此,这种东西也早已湮灭在时间的无情流逝之中了。平心而论,在考古记录中找到针,要比大海捞针更难。然而,在南非斯布都(Sibudu)的智人洞穴遗址进行发掘的一个研究小组,却真的做到了这一点:他们发现了 61,000 年前的一个尖头,有可能是一种特制骨针的针尖。

    无疑,在最后一个“大冰期”中的某个时候,生活在欧亚大陆上的人就已认识到,多穿几层更加贴身的衣物会提高个人的防寒效果,并且就算是在极其寒冷的环境下,也有保暖作用。不过,要想真正有效,他们就必须使用由动物肌腱或者植物纤维制成的线,让衣物的内层贴合个人的四肢、臀部和肩膀等部位。有眼骨针和精心制作的尖锥,使他们得以用兽皮缝制衣物。一如以往,需求乃发明之母,这样的例子在欧洲和西伯利亚地区就有。然而,我们所知的最古老例子,还是大约5万年之前的一根鸟骨针,是在西伯利亚的“丹尼索瓦洞穴”发掘出来的;人们认为,这根鸟骨针并非智人所制,而是丹尼索瓦人所制——他们是一个在我们智人到来之前,就已在欧洲生活了数千年之久的人类物种。这些工具,既说明了人类的独创性,也推动了人类为应对变幻莫测的气候而采取技术适应措施,那就是制作能够适应不同气温的多用途衣物。不过,这些其他的古人类物种全都灭绝了,并且原因不明,尽管气候变化可能也在其中发挥了作用。3 万年前之后,地球上只剩下一个人类物种,那就是我们智人了。

    先进的技术

    虽然经常出现持久不断的严寒,智人还是在欧洲这个新的家园里蓬勃发展起来了。他们可能是在一个较为温暖的间冰期里从非洲迁徙到欧洲的,结果使得人口密度缓慢增长,而狩猎武器也出现了重大变化。诚如南非考古学家林恩·瓦德利(Lyn Wadley)所言,这些创新不一定是有意迁徙的结果,而是在不同部落之间的人定期接触、交流想法的过程中出现的。我们知道,至少在7万年以前,非洲南部就发生了技术上的变革;当时,锋利致命的小型石制矛尖已经开始在大范围里得到广泛应用了。我们可以肯定的是,在地中海以北的陌生环境里,人们以相同的进程产生了其他的想法,发明了其他的技术。

    我们并不知道人类究竟是在什么时候向北迁徙到欧亚大陆的,但极有可能,他们是在大约45,000年前,首先迁徙到了如今黑海以北的东欧平原上;当时的黑海,还是一个巨大的冰川湖。[6] 在遥远的西方,古人类物种之间可能出现过竞争。在我们到来之前,尼安德特诸部落早已成功地适应了那里相对寒冷的气候条件。这一点,可能就是智人先在气候较为寒冷、环境也不那么吸引人的东部定居下来,并且在北纬66°以北的北极圈里建起季节性营地的原因。不过,到了35,000 年前,一些智人就已在西部尼安德特人领地的中心地带站稳了脚跟,尽管有些现代智人群落肯定早在此时的1万年之前就已到达那里。

    智人在很短的时间里就极其迅速地适应了如此广泛多样的环境,这一点是非比寻常的。随着他们逐渐散布到欧亚大陆上的广大地区,智人也带来了一些复杂的符号、信仰和时空概念,形成了独特的世界观与行为方式。其中一个至关重要的因素,就是流利的口语和语言;尽管语言很可能并非我们这个物种所独有,但它无疑让我们的祖先拥有了通过词句和艺术来构建其世界的能力。他们用吟唱、舞蹈、音乐和歌曲来诠释周围的环境,诠释动物、云彩、冷热、白雪、雨水和干旱。然而,考古遗址中却很少保存下来能够发出声音的鼓与其他乐器,比如长笛。这些东西,就是人们以实际的和象征性的方式构建他们的宇宙及其周围世界时所用的工具。这就反映出,智人的定居地与如今业已灭绝的其他人类物种相比,组织上更加严密。树叶颜色的变化、四季的更替、天体的运行周期,再加上其他一些象征形式,比如时卷时舒的云层,衡量出了时间的流逝与各种空间现实。

    与当今北极地区的民族及各地的狩猎与采集民族一样,新到北方大地上的这些居民也积累了关于其周围环境的大量知识。单是他们掌握的植物用途知识就是一部百科全书,有各种各样的术语来描述植物的独特特征;而他们对冰雪的了解,可能也是如此。这种知识代代相传,从制作捕捉松鸡的陷阱所用的最佳材料,到连帽兽皮大衣的正确加工方法,不一而足。

    这些方面,几乎全都属于无形的、不成文的和短暂的知识。身为考古学家,我们只能凭头脑去推断,北方智人所用的那些非同寻常和日益复杂的技术究竟是如何产生的。技术最先出现在热带非洲,那里的石匠发明了制作锋利的小型工具的方法。反过来,这又导致他们发明了用不同原材料(包括鹿角、骨头、贝壳和木材)制造工具且更加复杂的方法。

    一个正在迁徙的家族,能够在数秒钟之内就从一块燧石上劈下几片窄窄的刃片,然后将它们变成相对具有专门用途的不同工具。他们制造过各种各样的工具,从锋利的矛尖和刮刀,到在皮革或者木头上打孔的锥子,以及考古学家称之为“錾刀”(burin)的模样像凿子的工具,什么都有。这些便于携带的工具很锋利,能够把鹿角切成长条,然后制成鱼叉叉尖和其他的武器。这些手艺不凡的工具制作者还会把一块经过精心打磨、纹理细密的石头当作模板,来制造专用工具。北方智人掌握的技术,与当今的“莱瑟曼”牌多用工具或者“瑞士军刀”的制作技术之间有着惊人的异曲同工之妙。而在一系列令人眼花缭乱的工具当中,还有一种堪称人类到此时为止所发明的最有用、最经久不衰的工具之一——有眼针。

    针、用于刺破兽皮的尖头石锥、锋利的刀刃,以及由割下的动物肌腱或者植物纤维制成的细线:这些毫不起眼的工具,彻底改变了人类在酷寒地区的生活。

    鲜明的打扮

    衣物容易腐烂,故很少在考古遗址中保存下来。就像研究气候变化时一样,我们必须依靠替代指标;如此一来,石刀和刮器这些最普通的工具的磨损程度,就能说明问题了。

    例如,从捷克共和国境内的帕夫洛夫定居地(Pavlov settlement)遗址发掘出来的刀片与刮器,其边缘的磨损状况就说明了石刃的用途——似乎是用于日常切割;在22,000年到 23,000 年前,帕夫洛夫定居地就有人居住了。这些工具,能够让人们制作出合身的复杂衣物,以遮挡脆弱的躯干,裹住圆柱形的四肢。当时的裁缝,不但能够制作复杂的衣物,还能用精心挑选的材料,选取像驯鹿和北极狐等动物身上的独特皮毛,制作衣物的不同部位,比如皮外套及其兜帽,或者制作鞋子。穿上从内衣到防水防风的厚风衣与裤子这样的三四层衣物之后,人们就能在低于零度的气温中高效地工作与生活了。这些衣物全都是精心制作的,非常合身。人们可以用锋利的锥子钻孔,制作出相当合身的衣物;这种锥子,很可能就是现代人最初在气候较为寒冷的北纬地区定居下来时,精心选择的一种工具。但是,有眼针让人们能够制作出复杂得多的衣物,比如内衣。衣物分层的好处就在于,假如气温迅速变化,一个人就可以轻松地穿上或者脱下多余的衣服。

    穿合身的衣物,意味着人们开始习惯于穿着衣服,从而导致他们不穿衣物就更难应对寒冷的气候了。较复杂的多层衣物,则可以缓解人们从暖和的洞穴居所走到严寒的户外时感受到的寒意。任何一个跑步者或骑自行车的人都可以证明:迅速加上一层衣物,就可以保护自身免遭气温骤降、雨雪或者冷风所害。所有具有保护性的现代衣物,都是按照分层的原理制成的。

    随着气候变得更加寒冷和更具挑战性,简单的衣物也发展成了更加复杂、更加贴身的服装。在中国西北地区的水洞沟[7],随着北纬36°到40°之间的气候变得越来越寒冷,这里的人大约 3 万年前就开始使用有眼针。[8] 而在遥远的西方,有眼针则是在大约35,000年前地处北纬51°的乌克兰出现的。西欧温度稍高一些,到了大约3万年前开始使用有眼针。在大约 21,000 年前“末次盛冰期”气候最寒冷的那个时期,有眼针就变得更加常见了。

    合身的衣物与服装制作技术,再加上对环境的深入了解与不停迁徙,就是人类适应“大冰期”晚期持续不断、有时还很迅速的气候变化时采用的主要手段,寒冷时尤其如此。

    寒冷中的舒适

    尽管古人在鹿角、骨头和洞壁上创作过很多出色的艺术作品,但在早至35,000年前(同样,这一时间也存有争议)猎人们精彩地描绘出的那些动物当中,我们却并未看到他们的自画像。事实上,我们只是在一些极其罕见的情况下一睹了古人的身影,比如从法国西南部发掘出的一尊大约有25,000 年历史、用象牙雕制的头像,人称“布拉桑普伊的妇人”(Lady of Brassempouy)。这个妇人头像(尽管它的模样更像是一个小姑娘,甚至像是一个男孩),是欧洲已知最古老的、对人脸进行真实再现的艺术作品。至于头像有什么意义,人们一直争论不休;头像上还覆盖着一种角度倾斜、垂在肩膀上的图案,人们对此的解释也各不相同,有人说是假发,有人说是头巾。其实更有可能的情况是,这一图案不过是此人紧紧编成了辫子的头发而已。这种发型并不令人觉得惊讶,因为目前的遗传证据表明,当时欧洲的智人有着卷发和黑色/深色的皮肤;这就明明白白地提醒世人,我们拥有非洲血统。

    这些早期的狩猎部落有许多都居住在岩石洞穴里,洞穴则位于深邃的河谷两岸大小不一、天然形成的悬垂峭岩之下。像法国西南部莱塞济(Les Eyzies)村附近的费拉西(La Ferrassie)和阿布里帕托(Abri Pataud)这些大型的栖身之处长期有人居住,至少也是季节性地有人居住。有迹象表明,住在上述两地和其他一些居所的古人,曾经在峭岩的突出部位悬挂大块大块的兽皮,目的就是形成一个个较为暖和的居所,抵御刺骨的寒风;兽皮之后,则是一座座大火塘和人们睡觉的地方。

    当时,人们一年中最忙碌的时节必定是春秋两季;各个部落会聚到一起,捕猎正在迁徙的驯鹿群。秋季迁徙很重要,因为度过了较为暖和的数月之后,野兽都变得膘肥体壮了。此时,就是人们将兽皮、油脂和干肉储存起来供冬天所需的时候。通过对古代和现代的驯鹿牙齿进行研究,我们得知,当时有8个方圆200千米至400千米的驯鹿活动区,其中的3 个就位于法国西南部,而智人也生活在那里。

    韦泽尔河上阿布里帕托岩穴中密集的居住遗迹层表明,在28,000 年前至20,500年前这个气候严寒的时期里,智人的生活几乎没有发生什么变化。[9] 大约24,000年前,人们曾在悬崖与洞穴前面的几块大石之间建起一个结实的帐篷状结构,并且以之为中心生活着。后墙与地面之间立有用缝制的兽皮遮住的柱子,从而形成了一个牢固的居所。我们可以想见,在无风的日子里,炉塘中升起的炊烟会在突出的崖壁之下缭绕。当时的居民捕猎野马、驯鹿和凶猛的欧洲野牛(一种体型庞大的野牛,在欧洲生存了数千年之久,直到1627 年才灭绝)。无论以何种标准来衡量,这些早期的人都属于高效而机灵的猎手,对于当时的严苛环境和如今不可想象的种种气候变迁方式都了如指掌。您只要看一看他们对于野牛与其他动物形象的出色描绘就能认识到,他们花了大量的时间去观察猎物的独特习性。他们绘制的驯鹿交配、野马的夏季与冬季皮毛、正在梳理身侧皮毛的野牛、动物处于警觉状态或者摆出威胁姿势的图画,表明他们已经深刻地理解了自己的生活环境。

    最重要的是,“大冰期”晚期人类创作的艺术作品,还揭示了他们与自然界以及周围宇宙中种种超自然力量之间的复杂关系。如今许多遗址仍然留有手印,仿佛是访客们通过接触深处地表下方的彩绘岩面,就获得了某种力量似的。法国的派许摩尔(Pech Merle)洞穴中有两匹绘制于大约24,600 年前的黑马,它们面对着面,四周则是一些巨大的黑点和彩色手印。在比利牛斯山山麓的加尔加斯(Gargas)洞穴里,世世代代的人,不论男女老少,甚至是婴儿,都在洞穴下层的岩壁上留下了手印。至于手印的意思,我们就只能去想象了。这些手印,是否有可能属于保护性的标志(触摸石头以求好运,是许多人类种族的共同理念),提供了他们接触超自然世界的不可磨灭的证据呢?它们也可能具有其他的作用,比如可能是标示人际关系的一种方式,或是表明一个人隶属于整个群体的手段,等等。[10]

    尽管早期的人类了解环境与食物来源,可气候变化却从不由他们所掌控。多年的漫长寒冷与食物匮乏之后,就是一段气候较为温暖、猎物充足的时期。像所有的猎人与觅食者一样,“大冰期”晚期的人也会利用每一次机会,在具有战略优势的地方捕杀猎物。大约32,000年前,在如今法国中部马孔市附近的梭鲁特,“大冰期”晚期的狩猎部落曾经在一个天然的围场里,年复一年、长久不变地屠戮猎物。[11] 在“末次盛冰期”气候寒冷的岁月里,周围的开阔草原上有大量的野马和驯鹿。每年的5月至11月,猎人们就会将年轻的公马诱入这个围场,然后大肆杀戮和屠宰。几千年里,至少有3 万匹野马在梭鲁特的围猎中被人们捕杀;这个山谷中,到处都是腐烂的马匹尸体与骨架。这种狩猎一直持续到了大约21 500 年前,直到严寒促使猎人们南下,迁徙到了气候较为温暖的环境里才作罢。

    而在遥远的东部,在那些开阔的平原、隐蔽的河谷和山麓地区,拥有不同传统的狩猎部落则在相遇、融合与保持着联系。他们能够与相距遥远、生活在东方广袤草原的边缘和延伸到了乌拉尔山脉的一些浅河河谷里的民族相互往来。东部诸地是一个残酷而寒冷的世界,到处是灰褐色的尘土,风沙肆虐,还有无情的干旱。尽管环境可能极其艰苦,但东部平原上却养活了数量惊人的野兽,以及众多以捕猎野兽为生、坚韧剽悍的狩猎部落。

    如今保存得最完好的一些营地遗址,位于顿河沿岸;大约25,000 年以前,这里的人主要猎杀马匹和毛皮类动物。夏季里,他们会在露天营地里短暂地住上一阵子;此时,遍布各地的部落会聚在一起进行贸易、通婚、解决争端和举行宗教仪式。到了漫长的冬季,人们就会弃这种露天营地而去,分散成规模较小的部落,住进他们在冻土上挖出的半地下的居所里。

    位于乌克兰第聂伯河流域的梅日里奇(Mezhirich)遗址,可以追溯到大约 15,200 年前,已是“末次盛冰期”结束之后很久了。当时的气温可能有所回升,但冬季依然极其寒冷。[12]人们通过部分迁入地下,住进直径约为5米的穹顶状居所,极好地适应了这种气候。他们利用猛犸的头骨和骨头,经过精心设计,搭建成外面那道穹顶形的护墙,然后用兽皮与草皮盖成屋顶。据美国考古学家奥尔加·索弗(Olga Sofer)估计,要想建造出4座梅日里奇遗址那种聚集在一起的房屋,只需14位或15位工人花费10天左右的时间。

    梅日里奇这样的地方属于大本营,人们每年在此居住的时间长达6个月;它们修建在很浅的河谷中,能够在一定程度上抵御无情的北风。夏季到来之后,部落就会迁徙到较为开阔的乡间,住在临时营地里。每个冬季营地可能会住五六十人,每处居所里住一两个家庭。在冬季的几个月里,他们会以夏季狩猎所得然后放在永久冻土层的坑洞里加以精心储存的肉类为食。这里和其他地方一样,捕猎迁徙的驯鹿是人们在春、秋两季里的主要活动;此外,他们也会用陷阱捕捉一些较小的动物和禽类,甚至会捕鱼。但他们最重要的狩猎活动还是捕杀身上带有皮毛的猎物,因为在如此严酷的环境下生存,靠的就是合身的衣物与动物皮毛。在气温低于零摄氏度的环境中,设陷阱诱捕,也就是在野兔与狐狸惯常所走的小径沿途设下简单而高效的陷阱,是一项重要的技能。这不仅为人们提供了在寒冷中生存所需的食物,也提供了熬过漫漫寒冬所需的衣物。

    在“末次盛冰期”里,欧洲有人类群体居住的地区从未出现过常年的深度冰冻。随着气温升高,各个部落会在时间较长的夏季里离开有所遮蔽的河谷;但是,对于困在河谷之外的极寒天气中面临的种种危险,他们一定没有过任何幻想。如今,若是气温远低于零度,连北方那些土生土长的猎人也不愿长途跋涉去打猎了。当时的人肯定都很清楚,在这种气候条件下,徒步狩猎会非常危险。一些人出去狩猎,其他人则是留在营地里,花大量的时间制作衣物、制备兽皮和毛皮,即用刮刀除去兽皮上的脂肪,让它们变得柔软起来。“大冰期”末期的人曾经鞣制过各种各样的兽皮,甚至是禽类的皮毛,将其细细刮擦,并用油脂加以处理。“大冰期”末期人们无休无止地用石器刮擦兽皮的做法,就像如今城市里的车水马龙之声一样,属于一种恒久的需要。

    深入了解不断变化的环境,小心谨慎地定时迁徙,并且对自然世界深怀尊重之情,就是人类适应这个原始的“大冰期”世界时必不可少的几项技能;随着一年又一年、一个世纪又一个世纪、一个千年又一个千年过去,这些技能也被代代相传。最重要的是,作为群居动物,我们的早期祖先依赖的是他们精心编织出来的群体纽带、不断从他人那里获取的智慧以及合作——合作正是人类在适应气候变化时最历久弥坚的品质之一。合作曾是维系人类生存的黏合剂。由于人口数量很少,又生活在条件艰苦、掠食性动物众多的环境中,故几乎每一项活动,甚至是制备兽皮或者分配狩猎所得的肉类,参与的都并非只是个人,而是家庭和整个群体。人们很少单独出去打猎,因为警觉的猎人两两结伴去打猎的成功率更高,也更安全。妇女们经常结成紧密的团体,去寻找可食用的植物和坚果,有时离家的距离需步行几个小时。这种合作,得益于她们对坚果林和其他食物所掌握的知识;无论老少,每个人在一生中都会获得这种知识。防止食物短缺,积聚即食的食物,以及在坑、洞穴和岩石居所里储存供冬季里吃的食物,属于人们不言而喻的日常任务。此外,还有其他一些现实情况。以狩猎与采集为生且规模很小的部落,都住在临时性的营地里或者寒冷天气更持久的地方,但由于人数太少,故一场事故就有可能在瞬间让两名技艺高超的猎人丧命,并且毁掉一个部落。一场突如其来的霜冻,有可能在一夜之间毁掉尚未采摘的坚果的收成,并且威胁到冬季的食物供应。分娩则有可能让一名母亲丧生,然后留下一个无助的孤儿。在这些情况下,人们只有相互依靠才能生存下去;无论是依赖住得很近的其他部落成员,还是依靠住得较远的其他人,都是如此。[13] 坦率地说,倘若没有其他人,没有将家庭、亲族和部落团结起来的各种紧密的习俗纽带,一个人就不可能生存下去。

    在过去,群体和亲族会以紧密合作为纽带,将小型的狩猎部落团结在一起。正是因为有其他人,既有身边的人也有远方的人,人类才得以生存。合作意味着他们在狩猎和采集时能够获得成功;部落集体掌握的专业知识则确保了生存,降低了风险,并且通过夏天傍晚和漫漫冬夜里的吟诵、歌唱和讲故事而得到了强化;这些方面,既是生存的基本特点,也界定了那些以合作为基础、确保人类不论年景好坏都能生存下去的基本行为。猎人的世界充满了生机与活力。人类曾经对猎物与不断变化的环境心怀敬意,从现在与以前来看,这都并非巧合。这些古老的合作品质,加上一种精心培养出来的环境知识,在人类社会中存续了数千年之久,而如今在少数社会中也依然存在。遗憾的是,在我们这个拥挤不堪的工业世界里,其中的许多品质和知识已经彻底消失,或者被人们低估了。

    不过,正如近年来经历的极端气候事件,如“卡特里娜”飓风所教导我们的那样,我们比以往任何时候都更需要这些古老品质中的许多品质。飓风带来的后遗症,以及由极端高温、雷击和下坡风导致的大规模森林火灾所带来的后果,摧毁了美国加州小型乡村社区,已经让一些看似无名的社区团结起来,携手救援与重建。这种时候,人们会依赖亲族关系以及教会会众或者俱乐部之类组织严密的机构,来提供住所、食物和帮助。在这种时候,共同利益会变得比个人目标更加重要。此时,合作似乎成了我们与生俱来的本领。不过,由于如今我们大多数人的生活环境与2万年前的冰封世界截然不同,故我们并没有回顾过去和从中吸取教训。实际上,就连我们的祖先当时也处在剧变的风口浪尖上,因为“大冰期”即将结束,一场毫无规律、后来又变得很剧烈的全球变暖即将开始;而且不久之后,大多数人的生活方式将发生改变。

    [1] John F. Hoffecker, A Prehistory of the North (New Brunswick, NJ: Rutgers University Press, 2005).

    [2] Brian Fagan, ed., The Complete Ice Age (London and New York: Thames & Hudson, 2009),这本文集收录了专业人士撰写的通俗文章。至于大冰期的气温,参见Jessica Tierney et al., “Glacial Cooling and Climate Sensitivity Revisited,” Nature 584 (2020): 569–573. doi: 10.1038/s41586-020-2617-x。

    [3] Brian Fagan, Cro-Magnon: How the Ice Age Gave Birth to the First Modern Humans (New York: Bloomsbury Press, 2010).

    [4] Ian Gilligan, Climate, Clothing, and Agriculture in Prehistory: Linking Evidence, Causes, and Effects (Cambridge: Cambridge

    University Press, 2018),对这一主题进行了明确而缜密的分析。

    [5] Charles Darwin, Charles Darwin’s“Beagle” Diary, ed. Richard Darwin Keynes (Cambridge: Cambridge University Press, 1988), 134.

    [6] Paul H. Barrett and R. B. Freeman, Journal of Researches: The Works of Charles Darwin (New York: New York University Press, 1987), pt. 3, 2:120.

    [7] 水洞沟,中国一处旧石器时代的文化遗址,位于宁夏灵武市临河镇,1923年由两名法国古生物学家率先发掘。——译者注

    [8] John F. Hoffecker, Desolate Landscapes: Ice-Age Settlement in Eastern Europe (New Brunswick, NJ: Rutgers University Press, 2002), chap. 5.

    [9] Fagan, Cro-Magnon, 159–163.

    [10] Hoffecker, Prehistory of the North, chaps. 5 and 6.

    [11] Hoffecker, Prehistory of the North, chaps. 5 and 6.

    [12] Jean Combier and Anta Montet-White, eds., Solutré 1968–1998. Memoir XXX (Paris: Société Préhistorique Fran.aise, 2002).

    [13] Olga Soffer, The Upper Palaeolithic of the Eastern European Plain (New York: Academic Press, 1985).

    第二章 冰雪之后(15,000 年前至约公元前6000年)

    大约12,000年前,中东地区北部,当今的黎巴嫩。夏日并不像夏日,出奇地寒冷,天空中乌云密布。部落里的人都躲在橡树林中的营地里,冻得瑟瑟发抖。他们前不久才在那里安顿下来,是被附近一条湍急的溪流吸引过来的。日子一天天过去,小溪逐渐干涸,涓涓细流最终在日益变小的水塘里变成了一潭死水。据长老们的记忆来看,此时的雨水量只有过去年岁的一小部分了。每个人都饥肠辘辘,靠着用陷阱捕捉的禽鸟、啮齿类动物以及在林间顽强生存着的野草勉强维生。围坐在篝火边,部落长老们讨论了附近一个山谷中有积水、食物较丰富的消息。他们听取了男女老少的意见,然后决定迁徙。第二天,整个部落便背起行囊,开始了一场他们自己并不知道将持续数代人之久的搜寻之旅。

    狩猎与采集民族在地中海沿岸与叙利亚-阿拉伯沙漠之间水源相对充足的土地上,已经繁衍生息了数千年之久。自2 万年前以来,先前“大冰期”末期的严寒气候已经慢慢变暖了。到了14,500年前至12,700年前,当地人就像是生活在一个“伊甸园”里:那里温暖湿润,雨水日益增多,食物供应情况也较易预测了。可到了如今,也就是7个世纪之后,噩运却即将来临。气温正在迅速下降。部落的未来变得很不明朗。我们是怎样得知这一切的呢?这个问题的答案,就在非洲鲁文佐里山深处的冰川沉积物与湖芯当中;鲁文佐里山位于如今的乌干达与刚果民主共和国两国的边境上。从地质学的角度来看,这些巨大的山峰能为我们揭示古代气候变化的情况;关键的一点是,其中包括了“大冰期”末期气候开始变暖的时间。

    理解古代的气候

    鲁文佐里山(当地人称之为“鲁文朱拉山脉”)的顶峰高达5,100米,上面有5个植被带,从热带雨林到高山草甸和积雪地带,依次分布。[1] 在24,000年前的“末次盛冰期”里,鲁文佐里山中部诸峰上的冰川,开始顺着穿过整座山脉的山谷往下流去。冰川汇合之后,在海拔约2,300米的地方形成了一条超级冰川。现在早已消失的那片冰盖融化之后留下的冰川碎石,在海拔3,000米的地方围出了一个完整的潟湖,即马霍马湖(Lake Mahoma)。如今,那些山谷中都长满了郁郁葱葱的热带植物。险峻的山坡高高耸立,白雪皑皑的顶峰常常笼罩在云雾之中。尽管如此,情况仍然令人担忧。1906 年,鲁文佐里山中有43条业已命名的冰川,它们分布在6座山上,面积为7.5平方千米。但在如今全球变暖的形势下,只有3座山上还有冰川,面积也只有1.5平方千米了。冰川的长期融化,给鲁文佐里山的植被与生物多样性带来了巨大的影响。

    这些山顶积雪的山峰,本是显示现代气候变化的晴雨表,可上面的冰雪却正在以惊人的速度融化。然而,它们也提供了关于远古时期的一些关键信息。冰川前进时,会裹挟着一堆堆的岩石与泥土;而冰川消退时,宇宙射线就会不断地照在这些刚刚裸露出来的一道道岩石与泥土之上(即冰川碎石堆积物,称为“冰碛”)。将这些冰碛碾碎,然后测量其中的宇生同位素铍-10(或者写作 10Be)的累积量,科学家就能确定冰川消退的时间,了解冰川随着时光流逝而向山上消退的情况,然后间接计算出气候变暖的程度。结果我们得知,鲁文佐里山上的冰川面积在大约21 500年前到18,000年前之间达到了最大,然后由于全球气温上升,它们在大约2万年前至19,000年前的某个时候,开始无可阻挡地消退。[2] 这个地质时刻,标志着地球当前的自然变暖的开始,从而预示着最后一个“大冰期”结束了。

    人们在东非的湖泊中钻取的岩芯,也表明了类似的情况。到19,000 年前,热带地区的海洋便开始升温了。此时,也正是覆盖着北美洲北纬地区那片广袤的劳伦太德冰原开始消退的时候,而南半球的冰原也是如此。“大冰期”末期的世界,发生了划时代的改变,而北纬各地区尤其如此。差不多19,000年前至16,000年前,海洋与陆地的温度都仍然较低。此后,气候变暖就开始加速了。但在15,000年前到13,000年前那段时间里,气温迅速上升,可能每个世纪的升温都高达7℃。到了大约13,000年前至11 600年前,气候这座“跷跷板”出人意料地再次跳水,气温下降到了寒冷得多的程度。这段寒冷的“瞬间”就是所谓的“新仙女木”时期(参见绪论),持续了约1,000年。气温骤降后,欧洲重新出现了北极地区的植被,冰原也再次开始前进。欧洲与亚洲西南部变得更加干燥。一场严重的干旱袭击了中东的许多地区,迫使众多部落开始迁徙,以寻觅食物。如今人们对造成干旱的原因争议颇多,从一系列火山活动到可能是陨石撞击,不一而足。

    “新仙女木”事件的影响是区域性的,并且在一定程度上与中东地区首次出现农业的时间相一致。这个时期以地球再次开始逐渐变暖而告结束,而这种变暖一直持续至今。

    不断变化的地形地貌(自16,000年前起)

    但是,这种情况对我们的祖先又意味着什么呢?在欧亚大陆北部,大约 16,000 年前之后,狩猎部落进一步向北迁徙,进入了冰川刚刚消融、变成了开阔草原的一些地区。随着“新仙女木”事件之后气温升高,森林逐渐取代了这些草原,先是桦树林,最终则成了橡树林。[3] 欧洲的狩猎部落,也从捕杀驯鹿和喜欢寒冷气候的猎物转向了捕猎马鹿、野猪和其他的森林动物。当时的猎人仍然使用长矛和投矛器,后者是一根带钩的棍子,能够准确无误地将长矛投掷出去。简单的弓箭此前早已为人们所使用,可能是5万多年前在非洲率先开始使用的;不过,在新的石器技术让人们能够制作出小而锋利的箭头之后,弓箭才开始盛行。这些轻型武器的射程更远,故拥有一种巨大的优势,能够猎杀飞行中的禽类。

    人类有了弓箭之后,野兔、啮齿类动物以及迁徙的水禽就变成了颇受重视的食物;人们不仅用网子和陷阱捕捉,而且可以用这种轻便的新型武器捕猎它们了。木箭的顶端带有小而致命的锋利倒钩,以及重量几乎可以忽略不计的致命箭头。考古学家把这种箭头称为“细石器”(microlith),即细小的石头。在猎物种类增加的同时,人们也扩大了对各种植物性食物的利用。此时,禾谷植物、水果和坚果绝对不只是补充性食物,而是“后大冰期”时代人类饮食中的核心组成部分。许多部落定居在湖畔、河滨和避风挡雨的海湾边,而在这些地方,捕鱼与寻觅软体动物也变得日益重要起来。在很多地方,大大小小的部落群体曾经可能年复一年甚至是永久地利用相同的营地;这一点,取决于各季食物的丰富程度。

    随着冰川融化、全球海平面上升,数千年的气候变暖也导致海岸线与河流发生了巨变。大陆架消失了,比如东南亚的近海大陆架就是如此。位于西伯利亚与阿拉斯加之间的“白令陆桥”,变成了一个风暴肆虐、波涛汹涌的海洋。直到大约8,500年前,不列颠群岛与欧洲大陆之间的北海还是一处由低洼的湿地与湖泊组成的陆桥。地质学家根据地名“多格浅滩”(Dogger Bank),将这个沉没的古代世界称为“多格兰”;如今,多格浅滩成了一处富饶的渔场。[4] 曾经有好几千人在那里繁衍生息。许多部落必定是划着独木舟,撒渔网、布渔栅、猎野禽,捕杀鹿和其他小型猎物,几乎终生如此。像“大冰期”里的所有人一样,他们也在不停地奔波,只不过,他们流动的必要性不仅是由动物的迁徙或植物性食物的时令所决定的,还取决于水位的变化情况。在这种近乎一马平川的环境中,海平面若是上升,甚至像某一次那样,爆发一场海啸,那就意味着到处都会洪水滔天。一个有所遮蔽的独木舟码头,可能会在一个人不到一辈子的时间内就没入水下。

    由此导致的影响,是很深远的。动物们都选择了新的迁徙路线,而当栖息地变成泽国之后,它们又会继续迁徙。突如其来的洪水,带来了疾病与新的寄生生物。最重要的是,在一个人口密度不断上升的时代,失去狩猎场地和明确划界的部落领地,会导致严重的社会动荡,会让人们为了获得开始稀缺的食物而展开争夺,从而不可避免地出现暴力现象和战争。持续不断且似乎势不可当的变化与环境威胁,引发了一种持久的不安全感,甚至是恐惧感,就像当今这个世界里,海平面上升带来的威胁让太平洋诸岛和其他低洼地区的人都心感忧惧一样。多格兰地区内发生的每一场大洪水,都意味着人们失去了一片曾经饱含意义与情感记忆、浸润着家族历史与亲族纽带的土地。它也意味着人们丧失了许多实用性的知识,比如在哪里可以找到最优质的鱼类,或者优质的燧石。尽管一些分析人士可能会不以为意地指出,人口流动是一条适应气候变化的可行之道,但在有些时期,生态环境变化必定曾带来创伤,甚至是危机。大约在公元前6500年到公元前6200年间,大西洋海平面上升,形成了北海,淹没了以前的多格兰陆桥,使之变成了如今的汪洋大海,将不列颠与欧洲大陆分隔了开来。

    不过,随着全球变暖,机会主义开始发挥作用了;其实,人类一贯如此。早期的人类既没有被永久性的住宅所束缚,也没有在庄稼种植方面进行投入,故他们会发现,不断迁徙相对容易,至少比后来定居的一代又一代人更加容易。同时,人们对环境了如指掌,这就意味着他们可以用灵活而具有创造性的方式去应对不断变化的气候。当然,我们在古人的技术创新中也会看出这个方面的蛛丝马迹,比如新型的渔具;1931 年人们在多格浅滩附近发掘出的一把经过精雕细刻的多齿骨制鱼叉叉尖,就是一个例子。

    大约 15,000 年前的某个时候,第一批人类横跨白令陆桥,从西伯利亚来到了阿拉斯加;他们极为了不起地适应了新环境中的生活。[5] 率先迁来的,是北极地区的狩猎民族;他们很可能是沿着太平洋海岸往南,无比迅速地扩散到了北美洲及其以南的地区。在几千年的时间里,尽管人口仍然稀少,但人类已经适应了各种各样的环境:从北极苔原到广袤开阔的平原,再到沙漠和热带雨林,范围惊人。

    起初,美洲的人口数量极少,分布广泛,并且分成了一个个的小部落。第一批美洲人属于来去匆匆的民族,他们不停地迁徙,只是偶尔与其他民族接触一下。他们的工具都很轻便,易于携带;至于狩猎武器和其他设备,许多都是到需要的时候才制作出来,然后很快就丢掉了。他们留下的东西,如今我们几乎都无从看到,通常只有散落的石器和石片,偶尔也有动物的骨头。据我们所知,当时人类用的是锋利的石刀和石尖长矛,它们与西伯利亚出土的工具几乎没有什么相似之处;这就表明,新的环境导致人类采取了新的适应手段。一些零散的石器和经放射性碳测定的工具,其年代可以追溯到14,000 年前,甚至更早。

    大约 13,000 年前,北美洲出现了分布广泛的克洛维斯人,他们以制作出了独具特色、带有薄底座的石制枪头而闻名。克洛维斯人全都是技术高超的猎手,能捕杀各种大小的猎物,但他们也曾广泛采集各种植物性食物。与先辈们一样,他们的流动性极强,能够长途追踪野牛和体形较小的猎物。克洛维斯人还曾从遥远的地方获得纹理细密、用于制造工具的石头。例如,在相距1,770千米之远的密苏里州圣路易斯附近,人们竟然发现了用来自北达科他州一些采石场的“刀河燧石”(Knife River Flint)制作而成的克洛维斯燧石矛尖。这些流动性强、多才多艺的克洛维斯部落适应了各种具有挑战性的环境,从“大平原”上的草地直到西部的沙漠之地,以及从寒冷的北方到炎热的沙漠这样的极端气温。

    克洛维斯人的文化传统,繁荣发展了大约500年。接下来,克洛维斯文化就被另一种从事狩猎与采集、称为“福尔索姆”(Folsom)的传统文化取代了;后者是一个文化标签,代表了从阿拉斯加的边境到墨西哥湾这个广袤地区里繁衍生息的数百个小型的狩猎部落。许多部落都曾逐猎北美野牛,可福尔索姆诸部落却适应了从落基山脉到“大平原”东部的草原林地等广泛多样的环境。数个世纪过去之后,他们的后继者也适应了各种各样的自然环境,包括西部的沙漠、东部的林地,以及异常富饶的河口与湖滨之地;在这些地区,日益复杂的狩猎采集文化曾于同一个地方繁衍生息数代之久,主要依靠鱼类、植物性食物和猎物为生。在这里,亲族纽带加上食物与其他商品的互惠交换既增加了人们的居住稳定性,也让他们与古老的土地之间形成了紧密的联系。其中有些社会,还成了后来一些更加复杂的狩猎与农耕社会的前身。

    所有这些社会都一如既往,将文化价值观、本能以及像拓展食物来源与流动性等经过了深思熟虑的策略结合起来,成功地应对了严重的气候变化,尤其是日益加剧的干旱与气温上升这两个方面。人口密度不断增长与定期接触其他部落,使得人们更加容易分享食物、进行合作,尤其是更易提供有关复杂环境的知识;当时的人类社会,普遍对环境心存敬意。

    完美风暴

    随着先前数千年里“大冰期”气温的升高,亚洲西南部的森林面积也迅速扩张了;只不过,当时的气温仍然比如今低,而降雨则相对充沛一些。植被变得更加丰富多样,其中还出现了野生谷物,为人类提供了大量可食用的谷物种子。猎物很丰富,而谷类植物和可食用的坚果(比如开心果与橡子)也是如此。底格里斯河与幼发拉底河的下游地区尤其如此,一代又一代的狩猎与采集民族都生活得极其富足,以至于他们开始在那里定居下来。他们兴建了一些规模越来越大的定居点,并且把死者安葬在墓地里,其中许多死者还有奢华的装饰品陪葬。有迹象表明,当时出现了较为复杂的社会组织,尤其是有迹象显示,他们对祖先,即以往数代居住在同一片土地上的人怀有一种更加深刻的敬畏之情。这一点并不令人觉得奇怪,因为将人们的土地所有权合法化的一个好办法,就是强调他们跟曾经拥有这片土地的祖先之间有着密切的联系。

    不过,刚开始时他们为什么要定居下来呢?要知道,在600 多万年的漫长岁月里,古人类一直都在迁徙,而智人也迁徙了30万年之久呢。一种说法认为,是冰川融化之后,大约14,500 年前至12,900年前,那种食物丰富、气候也较温和的环境条件,促使觅食民族开始在距肥沃土地不远的村庄里永久定居下来的。还有一种观点则认为,是降雨量增加和食物供应状况改善导致了人口增长,这就意味着人们会积极主动地想要获得“部落领地”的所有权。至于实际情况,很可能是二者兼有。

    然而,食物充裕的温暖期过后,就迎来了气候寒冷的“新仙女木”事件;它不但导致了黎巴嫩北部等地的气候条件变得更加干燥、气温有所下降,而且给那些地方带来了大范围的干旱。我们早已得知,“新仙女木”事件对亚洲西南部以采集觅食为生的社会造成了影响,但如今我们还对这种影响的细节有了十分详尽的认识;这一点,要归功于人们对以色列的索瑞克石窟(Soreq Cave)中的洞穴沉积物所进行的研究,以及用其他气候替代指标(包括花粉和同位素记录)进行的研究。

    对人类而言,气候条件变得较为干燥之后,他们就更加重视收获野生谷物和建造野生谷物的储存设施了。与此同时,植物栽培实验也进展得很顺利;早在23,000年前,在以色列加利利海(太巴列湖)岸边的“奥哈罗二号”(Ohalo Ⅱ)营地,人们就开始率先种植大麦与小麦,至少也是暂时开始种植了。当时的实验似乎为时不久,降雨量增加之后就没有再进行下去。在干旱环境里,动植物都属于无法预测的资源,栽培野生禾草显然已成为一种公认的策略。无疑,其他群体在“大冰期”末期也栽培过谷物;但此时人类栽培的谷类植物出现了基因改变,既导致了全职农业的产生,也导致了人口的显著增长,故人们开始广泛地转向了有意的作物栽培。

    不过,转向粮食生产属于一个适应过程,情况比乍看之下要复杂得多。既不是哪一个人“发明”了农业,也不是哪一个人在某天决定要去驯养有用的动物。相反,它是在多达14 个地方(很可能更多)逐渐展开、独立进行的一个转变过程,通常是为了应对气候变化。[6]

    第一批农民(约11,000年前)

    尽管人类进行过各种各样的早期实验,但正经的粮食生产,始于约11,000年前的亚洲西南部、东亚和南美地区。大约3,000年至4,000年后,中国的长江与黄河沿岸都出现了农民。5,000 年前,南亚与东南亚、非洲大草原的部分地区以及北美洲都兴起了农业和畜牧业。这些新兴经济以不可阻挡之势扩张开去,但取决于当地的环境而速度不一。有了较为可靠的粮食来源之后,人口数量与密度都出现了持续的增长。人类刚开始进行粮食生产时,全球只有500万左右的人口,但到了基督时代,这一数字急剧增长到了2亿到3亿之间。现在,自给农业与工业化农业养活着全世界75亿人口,而这个数字还在不断增长。但是,如今仍有不到100万的人口,在以古老的狩猎和采集方式生活着。

    半个多世纪以前,考古学家维尔·戈登·柴尔德曾经撰文论述人类历史上出现过的两大革命,即农业革命与城市革命。[7] 柴尔德笔下的这两大革命,掩盖了粮食生产能力曾经导致人类社会出现的一些复杂得多的变化。其中,不仅有人类在农作物与动物方面的专业知识的发展,还有规模更大、人口也要密集得多的永久性定居地的建立。

    柴尔德是一位马克思主义者,故尤其关注一些与定居生活相关的社会和经济问题,比如财产的积累、对有限土地的投资,以及后来少数人对多数人的统治。人类过上定居生活之后,的确出现了一种朝着竞争、社会不平等以及社会等级日益森严等方面发展的强大趋势。但另一方面,新兴经济也意味着此时一些人摆脱了筹集食物的日常任务,可以专攻其他的事情,比如制陶或冶金,或者只是花时间去思考和关注生活中的其他方面。这正是定居社会促使冶金、写作、艺术与科学领域里出现了大量创新的原因。此外,随着人口倍增,人们的想法也是如此,尤其是在他们会聚于城镇,能够分享知识与思想的时候。人口增长并非只因为食物供应很充足这一个方面(这种充足,从来都没有什么保障),还因为多生几个孩子(作为未来的劳动力)在农耕社会里往往是一种优势。这一点,与从事狩猎和采集的社会形成了鲜明的对比,因为子女太多会给后一种群体的食物供应带来负担。随着人口增长,村落变成了集镇,集镇变成了城市,而城市则变成了王国,然后有了实力强大的帝国。

    这种情况,还导致了一些意想不到的后果,即出现了由家畜或者昆虫滋生引发的新传染病,并且给环境带来了种种压力。这些“文明的变革”,对全球气候产生了重大影响。回顾过去的75万年,其间至少交替出现了8个气候温暖的“间冰期”,以及它们之间气候寒冷的冰期;其中的每一个冰期开始的时候,大气中的温室气体含量都很高,然后,随着气温下降,温室气体的含量也会缓慢下降。接着迎来了当今这个时代,地质学家称之为“全新世”;当然,这是一个农耕时代。气候学家威廉·拉迪曼已经指出了大气中的二氧化碳含量起初逐渐下降,但在大约7,000年前又开始上升的过程。[8] 大气中的甲烷含量,则在差不多2,000年之后开始上升。他认为,二氧化碳含量增加是人们砍伐森林以进行农耕导致的,而甲烷含量上升则是人类种植水稻的结果。拉迪曼的理论虽然备受争议,如今却已日益被人们广泛接受。可以说,从狩猎与觅食到农耕这个古老的转变过程,缓慢却势不可当,并且确实在无意当中助长了全球变暖,大大增加了我们在面对短期与长期性气候变化时的脆弱性。

    当然,人类一向都很脆弱。像灾难性干旱之类的短期事件,有可能在气候并未变暖的情况下突然降临。以前的社会为何能够适应突如其来的气候变化,并且幸存下来呢?很显然,寻找食物是推动当时社会发展的压倒性因素。当环境有利,猎物和植物性食物都很丰富时,人类的生存决策相对简单,其依据的是哪些食物最容易获得,并且会受到他们与邻近部落之间竞争的影响。环境条件恶化之后,就出现了新的问题;其中之一,就在于最大限度地降低风险。人类的直觉发挥了重要的作用,而一些传统的生存策略也不例外。有些人可能在不发生冲突的情况下,迁徙到新的地方;其他一些人则有可能争夺资源,诉诸暴力,可结果却毫无保障。

    当时,人们在很多方面必定都是依赖长期的社会记忆,依赖于人类代代相传的关于环境与食物资源方面的知识。不同于狩猎与采集民族,一旦与土地紧密联系起来,农民就会规避风险;他们非常清楚,反复出现的作物歉收与禽畜疾病有可能让他们无法适应天灾,比如一场旷日持久的干旱。结果,必定有很多人丧命,也必定有一些群体走向了灭绝。在这个方面,不断迁徙的觅食民族与世世代代留在一个地方尝试耕作的农民之间,就出现了一种重大区别。连最早的农民,也对他们的土地、房屋、储藏设施和仪式中心进行了大力投入。在对环境的这种精神依附的作用下,他们往往会对环境变化做出积极的反应,比如养羊而不养牛。抛弃一个定居地和整个部落所珍视的土地,是一种迫不得已的策略。

    在气候快速变冷的“新仙女木”事件中,黎凡特[9] 北部地区才真正开始了农业;假如仔细思考一下这个事实,我们就能看出环境在人类生活当中所扮演的角色。[10] 这种气候变化,可能导致人们开始进行粮食生产,因为冬季的霜冻杀死了种子,并且推迟了谷类作物的发芽与成熟时间。各个群落都不得不改变他们的食物来源。这是一个个季节性气候条件不断变化和很不稳定的时期。在只能养活少量人口的地区,存在严重的人口压力。结果,就出现了剧烈的社会动荡、争夺食物和无数次小规模的迁徙。觅食民族做出的反应,是从内盖夫沙漠(Negev Desert)和叙利亚-阿拉伯沙漠边缘这种较为干旱的地区,迁徙到了有可耕土地的地方。但短期内,觅食民族只能在靠近沙漠、不可耕作的边缘地区勉强生存。

    巨大的转变,出现在有地中海植被的地区,或者说靠近“肥沃新月”中那个大草原的地区。[11] 在其他一些森林较多的地区,觅食民族则继续与农民一起繁衍生息。在11,700年前到 11,200 年前的这段时间里,农民不但开发出了新型的斧、锛,而且开始使用效率更高的磨石、石镰,以及效果更好的新式箭头。他们的定居地变得更加恒久,还有足以傲人的土墙房屋或者砖墙房屋,这种平顶建筑常常建在石头地基上。宗教建筑的最早证据,比如土耳其东南部哥贝克力山丘(Göbekli Tepe)上的神殿,就可以追溯到这个时期。据我们所知,那处遗址的居民曾经把整座山顶变成一个祭祀中心,但他们仍然属于狩猎采集者,而不是农民。不过,他们建造了一座复杂的、带有石雕立柱的圆形建筑,立柱上雕着动物图案,表明那里曾是一个重要的圣地。

    与这种神殿有关的画作、雕像和石膏人类头骨,既反映出当时的人心怀一种强烈的执念,认为祖先是土地的守护者,也反映出他们极度迷信创造环境、力量强大的神秘生物和滋养环境的各种气候力量。这些执念,又反映出他们更加关注领地的控制权。与此同时,神殿内精心设计的动物雕像、人类雕像或者墙壁装饰则证明,他们与不论远近的相邻部落都经常交流。随着这些交流而来的,就是共享耕作与放牧的知识,从而让其他人也能采用新的生存方式与可持续发展方式。

    第一批城镇:药物、干旱与疾病(约公元前7500年)

    面临干旱时,随着森林范围逐渐缩小,野生禾草的收成也开始大幅下降。一些饥肠辘辘的部落依靠猎杀小羚羊与对谷物和豆类进行精耕细作而幸存了下来。在土耳其东南部和叙利亚北部这样的地区,一些群落开始种植野生禾草,想要扩大它们的种植范围;这种做法是人们熟悉的一种实验策略。

    在叙利亚北部靠近幼发拉底河一个叫作阿布胡赖拉的村庄土丘上,大约13,000年前的原始居民都住在简单的“窖屋”里;那里的环境可谓林木繁茂,动物与野生谷物都很丰富。[12] 他们还会捕猎成百上千头波斯瞪羚;每年春季,波斯瞪羚都会从南方迁徙而来。考古发掘者安德鲁·穆尔(Andrew Moore)用细筛对覆盖着灰烬的居住层进行筛选,从中获得了大量的植物性食物样本。他的同事戈登·希尔曼(Gordon Hillman)则发现,这些样本来自6种主要的野生植物。不过,当时还有数百种其他的野生植物,被人们用于各种各样的目的,其中还包括迷幻剂和染料。随着旱情加剧,这个小小的村落被人们遗弃了;或许,木柴短缺也是这里被遗弃的原因之一。

    公元前 9000 年前后,一个新的村落在这座低矮的土丘上兴起,然后逐渐发展到了占地近12公顷的规模。在一代人左右的时间里,人们不再捕猎瞪羚,而是开始牧养绵羊与山羊。希尔曼发现,人们起初是在附近的森林里采集水果与禾草。随着干旱加剧,一度生长在房屋附近的野生禾草变得日益稀少起来。400 年过后,旱情更加严重了。起初,人们通过转向采集种子很小的禾草与其他的应急性食物,来适应这个始终都属于半干旱气候的地区。从他们留下的骸骨来看,与前人相比,第一批农民的生活过得尤其艰难。一些年轻人的颈部和脊椎都有问题,因为他们经常背负太重的东西,比如一捆捆谷物或者建筑材料。女性身上通常有趾骨磨损的迹象;这种症状,与脚趾总是处于蜷曲/弯折姿势导致的症状相吻合——这种姿势,也就是她们在房中地上固定的磨石上无休无止地加工谷物时所需的姿势。尽管有这些问题,这里的人口还是迅速增长,以至于居民多达400人了。生活在如今业已荒芜的干旱草原环境中,他们便采用了人类从事农耕之前一种源远流长的策略:他们最终弃这座村落而去,迁往水源较丰富的地方了。

    公元前7700年过后,随着环境再次变得较为有利,这座土丘上又兴起了一个更大的村落;村中都是土砖平房,由狭窄的巷子隔开。阿布胡赖拉的情况,并非特例。随着更湿润的气候条件卷土重来,人们便忘掉了气候较干燥的那几个世纪,农业与畜牧业也从沿海地区扩散到了内陆,从低地传播到了高原,经由美索不达米亚传到了土耳其与尼罗河流域。然而,人们变成农民并不只是由于气候的变化。这个转变过程要复杂得多。

    在土耳其中部的加泰土丘,人们进行了另一项长期的考古发掘工作;这是一个大型的村落,或者说一个房屋密集的小型城镇,在大约公元前7400年至公元前5700年间的1,700多年里,重建了起码18次。[13] 此地之人的日常生活,以一群群密集的住宅为中心;在这些住宅里,同一家族已经居住了数代之久。许多房屋都带有装饰,所用的艺术风格非常奢华,呈现出复杂的象征意义。墙上绘有人类与猛兽的壁画,还能发现人类与公牛的石膏头骨。在有人居住的房屋里,居住者会与过去进行密切的互动。其他一些房子里则存放着人类的骸骨,数量比曾经居住在那里的活人要多得多。它们似乎就是考古发掘者所称的“祖宅”,是人们举行祭祀仪式、在世者得以接触备受敬重的祖先之地。

    当时的加泰土丘人的生活,并不一定令人觉得舒适。在加泰土丘最繁盛的时期里,有3,000人至8,000人住在村中或者附近;当时的降水相对充沛,贸易也在蓬勃发展。加泰土丘人面对过人口过密、传染病频发、暴力肆虐等问题,还遇到过严重的环境问题。公元前 7400 年前后始建的这个小村落,迅速发展成了一座人口稠密、规模大得多的村庄,甚至成了一座城镇,因黑曜岩(即用于制造工具因而备受重视的火山玻璃)生意红火而繁荣起来。如今,生物考古学家能够对当时居民骨骼中的化学成分进行研究。骨骼中稳定的碳同位素表明,当时的人主要以谷类为食,比如大麦、黑麦和小麦。他们一开始养的是羊,后来则是养牛。他们以谷类为主的饮食,导致了许多蛀牙病例。人们腿骨的横截面表明,后来住在这里的人比起初的居民走路更多。研究人员认为,这是因为后来的居民不得不到远离社区的地方去耕作与放牧。领导这项研究的克拉克·斯宾塞·拉森(Clark Spencer Larsen)认为,当时的环境恶化与气候变化,曾经迫使社区成员到离住处很远的地方去种植庄稼和充分收集一种至关重要的物品:木柴。

    在整个中东地区的气候变得日益干旱的那个时期里,加泰土丘在蓬勃发展。不过,长期的人口过密与恶劣的卫生条件必然会导致传染病;这一点在死者的骸骨中会显现出来。当时的住宅,就像是一栋栋拥挤不堪的廉价公寓,以至于研究人员对墙壁与地板进行分析时,竟然发现了人畜粪便的痕迹。垃圾坑和畜栏,都紧挨着一些房屋。这里的卫生条件,必定恶化得非常迅速。人口过密,也导致了暴力现象。在一份由 25 人构成的样本中,竟然有超过四分之一的人身上都存在愈合了的骨折痕迹。他们中的一些人还曾反复受伤,其中许多处伤都是他们背对袭击者时,被硬邦邦的黏土团击中头部造成的。受害者中,超过半数都是女性。大多数袭击,都发生在居住环境最拥挤的那几代里;或许,那几代就是这个社区内部紧张和冲突的时期。但最引人注意的一点在于,加泰土丘农民所面临的种种问题,几乎与如今城市在更大规模上普遍存在的问题毫无二致。

    在人们与土地的关系变得越来越紧密的一个时代,更频繁与更广泛的相互交往把远近各地的社群联系起来。在当时这个日常活动比以往任何时候都更加紧密地围绕着四季的无尽更替来进行的社会里,一种不可抗拒的延续性理念变成了生活中一个核心的组成部分。在这种背景下,几乎所有地区的农村社会都必须应对气候变化带来的种种挑战。

    在公元前6200年至公元前5800年间,一场场灾难性的干旱对位于尤克辛湖(Euxine Lake,即如今的黑海)与幼发拉底河之间的农耕社区都产生了影响。干旱旷日持久,湖泊与河流纷纷干涸,死海水位也降到了历史最低。在冷酷无情的干旱面前,大大小小的农耕社区都开始缩小规模和逐渐衰落下去。许多人消失不见,无数人死于饥饿和饥荒导致的疾病。还有一些人,例如一度繁荣兴旺的加泰土丘居民,则因为满足不了体形较大的畜群的饮水需求,从养牛转向了牧羊。

    生存朝不保夕

    “大冰期”结束后,人类不得不去适应剧烈的气候变化。随着冰原消退,海平面上升,就连地形地貌也发生了令人难以想象的变化,然而人类(此时仍然属于以狩猎和采集为生的游牧部落)利用了自己最熟悉的知识:他们采用了传统的方式,依靠经验、亲属关系、合作以及技术创新来降低风险和保持韧性,从而成功地适应了深刻的文化变革和环境变化。

    最大的一些变化,是在大约11,000年前之后,随着世界各地都转向了农业与畜牧业而出现的。自给农业与畜牧业将人们束缚在土地上,故他们开始“进口”当地没有的商品。此时,买卖“异域商品”的长途贸易就真正开始飞速发展起来。黑曜岩这种纹理细密的火山玻璃,变成了制造工具和装饰品的一种紧俏商品。英国考古学家科林·伦弗鲁(Colin Renfrew)曾经利用岩石中独特的微量元素,勾画出了地中海东部广大地区的黑曜岩贸易路线。

    然而,大多数靠农耕为生的人却过得非常艰辛,生活也朝不保夕。人类第一次开始面对自给农业的严酷现实,他们无法像过去那样靠迁徙来适应,只得忍受短期与长期的干旱。与耕种土地、经营农场相比,直接外出寻觅食物或者捕猎野兽时,需要付出的时间与精力要少得多。人类学家已经在他们与一些以狩猎和采集为生的群落合作研究的过程中一再证明了这一点;比如,研究坦桑尼亚的哈察人(Hadza)觅食部落时,他们曾经仔细记录了该部落生活方式中的热量消耗与恢复情况。此外,人类学家对非洲卡拉哈里沙漠的桑人进行的研究也已证明,耕作所需的热量与时间,要远多于以狩猎与觅食为生的部落采集等量食物所需的热量与时间;更何况,狩猎与觅食部落的人口数量事实上一直都在减少,因此整个部落无须再付出那么大的努力。

    但是,那些最终幸存下来的农耕部落之所以能够维持下来,在很大程度上要归功于前人遗留下来并代代相传的风险管理措施。适应气候变化是一个局部性的问题,取决于人们掌握的环境知识和继承的经验。如今我们仍然属于定居民族,却经常忘记局部适应的重要性。应对气候变化的措施,往往是从局部层面开始的,并且适合当地周围的局部环境。无论我们是住在乡村,还是住在一个有数百万人口的城市里,这一点到今天都仍然适用。

    而且,随着农业经济的扩张,人口密度也将开始上升。假如说“成功”要根据人口密度的上升来衡量,那么,农业就发展得非常成功。在数个世纪的时间里,美索不达米亚这个“河间之地”的南北各地,就都散布着从事农业的社群了。不久之后,先是城镇,然后是拥有文字、纪念性建筑物、黄金、珠宝、富有魅力的国王和进行全面战争的复杂城市,就会涌现出来。接下来的两章,我们将探讨美索不达米亚及其同时代的埃及文明与印度河流域文明,看一看它们在与日晒雨淋做斗争的过程中成功和最终失败的情况。

    [1] 据说,古希腊哲学家西诺帕的第欧根尼(前386—前354)曾经从今坦桑尼亚的拉普塔镇往内陆而去,游历了25天。他将鲁文佐里山命名为“月亮山”,并且认为那里就是尼罗河的源头。地理学家提尔的马利纳斯(Marinus of Tyre,约 70—130)记录了第欧根尼的历次旅行,为托勒密的《地理学指南》一书奠定了基础。遗憾的是,马利纳斯的地理专著已经佚失。后来的阿拉伯旅行者,则恰如其分地把这些传说中的山峰称为“吉贝尔厄尔库姆里”(Jibbel el Kumri,即阿拉伯语中的“月亮山”)。 1889年,以“我想您就是利文斯通博士?”这句话而出名的探险家亨利·莫顿·斯坦利最终在地图上确定了这条山脉的位置。此前的欧洲旅行者从未见过这条山脉,因为它们通常都笼罩在云层之下。

    [2] Margaret S. Jackson et al., “High-Latitude Warming

    Initiated the Onset of the Fast Deglaciation in the Tropics,”

    Science Advances 5 (12) (2019). doi: 10.1126/sciadv.aaw2610.

    [3] Steven Mithen, After the Ice: A Global Human History,

    20,000–5000 BC (Cambridge, MA: Harvard University Press,

    2006),这是一部权威而具有启发意义的总结性著作。

    [4] Vincent Gaffney et al., Europe’ s Lost World: The Rediscovery of Doggerland (York: Council for British Archaeology, 2009).

    [5] 论述美洲最初定居点的文献资料多如牛毛,并且充满了争议。See

    David Meltzer, First Peoples in a New World: Colonizing Ice

    Age America (Berkeley: University of California Press, 2008).

    See also David Meltzer, The Great Paleolithic War: How

    Science Forged an Understanding of America’ s Ice Age Past

    (Chicago: University of Chicago Press, 2015).

    [6] 同样,这方面的文献资料浩如烟海且相互矛盾。一部非常有用的总结之作:Graeme Barker, The Agricultural Revolution in Prehistory (New York: Oxford University Press, 2006)。

    [7] Bruce G. Trigger, Gordon Childe: Revolutions in Archaeology (New York: Columbia University Press, 1980),这是了解柴尔德的观点和著作的最佳资料。

    [8] William Ruddiman, Plows, Plagues, and Petroleum: How

    Humans Took Control of Climate (Princeton, NJ: Princeton

    University Press, 2016).

    [9] 黎凡特(Levant),一个并不精确的历史地名,大致相当于现代的东地中海地区,包括中东的托罗斯山脉以南、地中海东岸、阿拉伯沙漠以北和上美索不达米亚以西的一大片地区。——译者注

    [10] 埃及古物学家詹姆士·亨利·布雷斯特德(James Henry Breasted)在一个世纪前的通俗读物中创造了“肥沃新月”一词。它所指的范围呈一个巨大的半圆形,朝南敞开,从地中海的东南角向北隆起,穿过叙利亚、土耳其部分地区以及伊朗高地,然后往南至波斯湾。布雷斯特德把这里比作一个“沙漠海湾”。“肥沃新月”纯属一个便于使用的标签,并无严格的定义,却经受住了时间的检验。

    [11] Klaus Schmidt, G.bekli Tepe: A Stone Age Sanctuary in South-eastern Turkey (London: ArchaeNova, 2012).

    [12] Andrew T. Moore et al., Village on the Euphrates (New York: Oxford University Press, 2000).

    [13] 以任何标准来看,加泰土丘都是一个由国际发掘工作者和研究人员组成的团队实施的真正非凡的长期性考古项目。这方面的文献资料,正在迅速增加。对于一般读者来说,最好从下述文献资料开始:Ian Hodder, The Leopard’ s Tale (London and New York: Thames & Hudson, 2011)。从更专业的层面来看,同一作者编著的Religion in the Emergence of Civilization: .atalh.yük as a Case Study (Cambridge: Cambridge University Press, 2010)一书引人入胜,可以让您对非物质考古一探究竟。

    第三章 特大干旱(约公元前5500年至公元651年)

    马尔杜克既是众神之王与人类之王,也是正义、健康、农耕和雷雨之主,掌管着美索不达米亚的底格里斯河与幼发拉底河两条大河之间的那个原始宇宙。至少,古老的传说中就是这样说的。他跨上自己的风暴战车,用洪水、闪电与狂风暴雨,在混沌当中确立了秩序。这位魅力非凡的神祇战胜了混沌之龙,改变了属于世界上第一批城市居民的苏美尔人那纷乱不安的精神世界与人性世界。马尔杜克掌管的这片土地,气候十分极端,夏季灼热异常,气温高达49℃,冬季则暴雨肆虐,气温寒冷刺骨。他统治的这个世界,喧嚣动荡、反复无常且总是变幻莫测。

    他手下的诸神,在这片肥沃与暴力之地上建立了一座座相互争权夺利的城市。美索不达米亚地区的一个创世传说中曾称:“率土皆海,继而埃利都生焉。”数百年后,这个传说被人们刻到了一块泥板上。埃利都城位于幼发拉底河以西,在今天的伊拉克境内,是所有城镇中最古老的一座,属于“地狱之王”兼“智慧之神”恩奇(Enki)的居所。埃利都最早的神庙,建造时间可以追溯到公元前5500年左右;5个世纪之后,人们在一座宏伟的阶梯式金字形神塔(庙丘)下面发现了它,里面装饰着色彩鲜艳的砖块。另一座城市乌鲁克同样位于如今的伊拉克境内,也靠近幼发拉底河;公元前5000年之后,两个大型的农耕村落合并成一个定居地,原本发展迅速的这座城市就发展得更快了。[1] 乌鲁克是神话故事中的英雄吉尔伽美什的故乡。近2,000年之后,即到了公元前3500年,这里完全不只是一座大型的城镇了。其周围的卫星村庄,向四面八方延伸近 10 千米之远,每个村庄都有自己的灌溉系统。4个世纪之后,乌鲁克的面积达到了近200公顷,成了一座拥有5万至8万人口的城市。乌鲁克变成了一个重要的宗教与贸易中心,与一个更广阔的世界相连,其两侧就是幼发拉底河与底格里斯河这两大贸易线路。那里有一座雄伟的神庙,据说是吉尔伽美什本人供奉给爱神伊南娜(Inanna)的;而在神庙的所在之地,据说爱神伊南娜曾亲手种下了一棵采自幼发拉底河畔的柳树。按照《吉尔伽美什史诗》中的记载,乌鲁克有四个区域:城市本身、花园、砖坑,以及最大的神庙区。

    女神伊什塔尔[2] 的金字形神塔与神庙区,位于一座拥挤不堪的大都市,市里街区密布,到处都是土砖建成的房屋。其中的大多数都属于关系紧密的同族社区,与城市腹地的村落或者专业工匠生活、工作的地区之间有着长久的联系。狭窄的街道将住宅分隔开来,但街道的宽度足以让驮畜通过。在风平浪静而寒冷的日子里,整座城市和繁忙的市场都笼罩在各家各户的火塘与作坊中冒出的一层烟雾当中。乌鲁克到处都是动物的叫声与人声:狗在吠,小贩在摊位上兜售商品,男人在吵吵闹闹,女人们走到一起购买粮食,远处的神庙围墙后则传来了吟唱圣歌的声音。各种气味混杂在一起,食物、牛粪、腐烂的垃圾与尿液的味道交织;但与美索不达米亚地区的其他所有城市一样,这里虽说位于一个有可能出现危险自然事件的环境里,却是一个生机勃勃的地方。

    城市很快就变成了一种常态。[3] 到了公元前4千纪末,美索不达米亚南部有超过 80%的人口都生活在占地面积超过10 公顷的定居点里;那是一片动荡不安的土地,由竞争激烈的城邦统治着。它们构成了我们如今所称的苏美尔文明,以幼发拉底河与底格里斯河之间、如今的伊拉克南部为中心。苏美尔很难称得上是一个统一的国家,实际上不过是由城市与城邦拼凑而成的,而这些城市和城邦都依赖于印度洋夏季风带来的降雨,以及春季与夏初的河水泛滥。

    随着城市发展起来,农业生产也急剧增长,足以养活成千上万的非农人口。这种农业生产,靠的是春夏两季沿着那两条大河顺流而下的洪水。大约公元前3000年之后,带来夏季降雨的印度洋季风强度开始有所减弱。雨水减少,并且来得较晚,去得却较早。土耳其的降雨量也下降了,而那里正是幼发拉底河与底格里斯河洪水的发源地。美索不达米亚的气候变得不那么稳定,还有造成严重破坏的漫长干旱周期,而对靠着经常突然改道的河流生存的小规模群落来说,影响尤其严重。

    就算是有充沛的降水,这种情况对灌溉农业来说也是一大挑战。[4] 随着城市的发展,人们对谷物和其他主食的需求也大大增加了。数个世纪以来,农民都是沿着天然堤坝的后坡、沿着被洪水淹没的洼地边缘,耕作一片片狭窄的田地。他们还利用天然堤坝上的缺口以及由此冲积而成、排水状况较好的淤积土层,因为它们可以进行小规模的灌溉。不过,这种田地只能养活相对较小的定居地,其中大多是一些主要水道兼商路沿线的村庄。这就是在地方层级管理农业极其有效的原因。

    城市里居住的人口很快达到了5,000人至5万人,在面对较为干旱的天气条件时,这里就不可避免地出现了精耕细作与人造的灌溉设施。那些将村落与村落、村落与城市连接起来且本已紧密的相互依存网络,则具有了更加重要的意义。气候变化与非农人口的日益增加,意味着以方方正正的平坦地块为基础的农耕方式,会被耕作成一块块更加标准化的长形地块的方式取代;虽说长形地块需要人们仔细照管,但农民会用牛拉犁耕地。公元前3千纪一位农民的年历上,给出了明确的灌溉指南:“唯麰满犁沟之窄底,当予顶部之种子以水。”[5] 当时并没有什么重要权威,不像后来19世纪西方国家的产业化农业发展起来的时候那样。相反,农学家都来自一些小部落,其中每个部落都有规模不同的灌溉设施,并且那些设施会在他们适应快速变动的环境过程中不断变化。要想在地方控制之下管理好这种经济而具多重意义的农业,人们必须对村落政治与竞争具有深入的了解才行;对于任何一个中央集权机构而言,这都是一项重大的挑战。

    起初,这里并没有专制的国王和强有力的统治者来制定政策、分配水源或者修复沟渠。权力掌握在部落首领的手中,他们的权威依赖的是村民的忠诚、亲族关系,以及将农村社会、常常还有城市社会中每一个成员联系起来的各种互惠关系。这些社会现实和政治现实,导致城市与其外围社区之间出现了长期的紧张局势,导致了地方性的动荡和骚乱,并且在苏美尔文明终结之后依然持久存在。

    随着城市人口急剧增长,需要更多粮食盈余带来的压力也越来越大。长条状田地以及它们之间密集的犁沟,需要一种超越家庭和亲族群体的组织水平。一种新的要素,即一种社会权威开始发挥作用了;这种社会权威也许是在神庙的基础之上形成的,负责监管着更大范围里的灌溉与农耕。我们很容易认为税收会随之出现,但实际发展起来的是一种徭役代税制,非但为灌溉设施提供了劳动力,而且为各种公共工程提供了劳动力。劳力获得的报酬,都是仔细配给的口粮,而这反过来又迫使农民去满足徭役的要求。从美索不达米亚北部到伊朗腹地,都出现过为劳工准备的、带有斜边的标准化口粮碗,就是这种劳役的证明。尽管像乌鲁克的伊什塔尔神庙这样的宗教场所变成了强大的经济、政治与社会力量,

    但苏美尔人却生活在一个由城市与村落组成的二元世界里。村落生产粮食,城市则是制造中心、贸易中心和宗教活动中心。公元前3千纪里有一则谚语,说得恰到好处:“外围村落,乃中心城市之衣食父母。”还有一块泥板上则称:“民之惧者,实乃税吏。”

    意大利学者马里奥·利韦拉尼曾经论述过改变了美索不达米亚诸农耕社区的重要一步。[6] 数个世纪以来,这些农耕社区一直生活在自给自足、维持温饱的水平上。不久之后,它们变成了马里奥所称的、刚刚形成的城市社会的“外圈”。农耕社区为粮食生产和城市开发项目提供劳动力,至于回报,就算有的话,除了服务于掌管附近那座城市的守护神所带来的满足感之外,也是寥寥无几。“外圈”生产的粮食和提供的劳力,养活了城内获得口粮的工匠、官吏和祭司。这种不平等的粮食生产和再分配方式,不可避免地造就了一座座以社会不平等与特权为基础的城市。内外之别很快导致了精英阶层与平民百姓之间的分裂,导致了一种被礼制和强调通过等级体系进行合作的“智慧文学”[7] 加以巩固的制度。有则谚语曾经鼓吹:“勿逐权贵,勿毁城墙。”[8]

    苏美尔人与阿卡德人(约公元前3000年至约公元前2200年)

    苏美尔人的意识形态作品当中提到了两条伟大的灌渠,即幼发拉底河与底格里斯河;它们都发源于美索不达米亚北部的山区,流向南部的城市。这些作品中,还描述过提着篮子、手持锄头的神灵与统治者,仿佛他们曾经躬耕过垄亩似的,从而为粮食供应与农业生产赋予了宗教意义。南部的一切都有赖于灌溉,这就意味着每个农民都清楚那片泛滥平原的细微特点,比如最肥沃的土地在哪里,洪水会经常冲垮哪些地方的天然堤坝。根据后来的铭文资料来推断,对于可能出现灾难性洪水和低水位年景即将到来的种种征兆,当时最出色的农民都已熟知。

    美索不达米亚地区的农业耕作从来就不是一件容易的事情,即便是在降水较为丰沛的那几个世纪里,也是如此。至少在最初的时候,那里不可能有永久性的灌渠,因为河流经常在毫无征兆的情况下改道。河流改道是一种始终存在的风险,但天然堤坝的意外决口也带来了机会,让人们可以把河水引到有可能肥沃的土地上去。

    随着公元前 3000 年之后气候变得更加干旱,城市人口不断增加,农业耕作也变得更加艰难了。过去那些不规范和不稳定的村落灌溉系统,被较为规范的灌溉方法所取代;然而,后者仍然是以社区为基础。考虑到城市依赖于村庄的粮食盈余,所以人们也别无他法。苏美尔社会由世俗君主所统治,他们被称为“恩西”(ensi)或者“卢伽尔”(lugal),掌管着农业、战争、贸易和外交。[9] 此时,随着政治权力逐渐落入少数人的手中,由政治联盟和数个世纪中将各个社群联系起来的个人或亲族义务所组成的那个不断变化、错综复杂的网络,就开始在更大范围内发挥作用。由于河流系统不断变化,而且定居地集中于主要灌溉区,外交与政治问题的重要性便凸显出来。在这里,一个据有战略位置的统治者可能切断邻邦的水源,并将邻国之人饿死。像拉格什、乌玛、乌尔和乌鲁克这样的城市之间,都曾为了水源与农田而爆发过激烈的争斗。公元前2500年的人所说的话,听起来与如今一样刺耳:“汝等当悉知,汝城将尽毁!速降!”[10] 一些零碎的史料记载了当时因水源与农田控制权而产生的纷争,其中经常提到“高举恩利勒[11]之战网”,因为当时的战争一向是以众神的名义发动的。两条大河形成宽广的环状,在大地上蜿蜒逶迤,而溃堤之后偶尔还会改道,故是导致城市之间爆发冲突与战争的一种严峻考验。到了公元前2700年,许多城市都建起了城墙,比如拉格什与乌尔,后者就是《圣经》当中提到的迦勒底的吾珥。经济繁荣与萧条、人口增长与减少周而复始,再加上土壤中的盐度上升(这在一定程度上是因为休耕期较短),这些方面都导致了作物减产;比如在乌尔,作物产量就比早期减少了一半。

    日益加剧的干旱与获得更多粮食盈余的需求,使得全年耕种成了一种必不可少的惯例。像乌尔与乌鲁克之类的城市都形成了有组织的贸易联系网络,沿着两条大河延伸到了遥远的土耳其,并且产生了重大的政治与文化影响,从而形成了研究美索不达米亚的专家吉列尔莫·阿尔加兹(Guillermo Algaze)所称的“乌鲁克世界体系”(Uruk World System)。苏美尔的领主们曾与诸多城市展开过竞争,远至西北部的叙利亚。他们曾袭击贸易线路,吞并邻邦,但这些征伐行动都为时不久,因为内讧与国内的小对手会乘虚而入。有些统治者,必然会萌生获取更多领土的野心。公元前2334年,巴比伦南部的阿卡德国王萨尔贡打败了由乌尔的卢伽尔扎吉西国王(King Lugalzagesi)领导的苏美尔城邦联盟。[12] 萨尔贡由此建立了这里第一个为世人所知的帝国,疆域覆盖了美索不达米亚全境及其以西、以东、以南的遥远土地。不过,他这个疆域远拓、控制松散的帝国与以前那些面积较小且变化无常的国家相比,在严重干旱面前要脆弱得多。最后,帝国的农业生产几乎全都靠地方官吏和社群领导人去管理了。

    萨尔贡及其后继者建立的帝国,依赖于忠诚的官吏、慷慨赏赐,以及成千上万平民百姓与战俘的苦工;因为与工业化之前的所有文明一样,阿卡德人依靠的也是原始的人类劳动。日益复杂的上层建筑,要求帝国精心分配口粮,因为帝国不但要供养没有技术的劳力,而且要供养高级官吏、在城市和宫殿里工作的熟练工匠,以及用于征伐的所有军队。阿卡德人几乎所有的军事行动,以及随后对新获领土的开发,全都依赖于南北各地业已臣服的城市与村落,由它们提供大量的粮食盈余。阿卡德统治者的权力也依赖于这个网络,同时生态系统中有两个要素也尤为重要,即北部的充沛降水与滋养着南部一片片沃土的河水泛滥。

    从仅存的楔形文字史料中我们得知,阿卡德的官吏曾经仔细监测过洪水的水位,因为他们极其关注作物的产量与配给。然而没有迹象表明,他们对容易为旷日持久的干旱所影响这一点怀有过什么长久的担忧之情。阿卡德帝国的活动在公元前 2230 年左右达到了巅峰,但持续的时间却不到 100年,因为当时的雨水毫无预兆地开始不足了。雨水减少到了正常情况下的30%至50%。一场特大干旱,接踵而至。这场干旱,持续了300年之久。[13]

    可怕的干旱(约公元前2200年至公元前1900 年)

    公元前2200年前后到公元前1900年的那场大旱,通常被称为“4.2 ka事件”,属于一桩全球性的气候事件。这种史无前例的干旱循环影响了从美洲到亚洲、从中东地区到热带非洲和欧洲的人类社会。[14]

    为什么会出现这场特大干旱呢?[15] 我们不能确定。太阳辐照度的变化与周期性的火山作用,是过去1,000年间气温变化的主要原因。尽管更早时期的情况可能也是这样,但北大西洋涛动此时已是一种主要的气候驱动因素(如今依然如此)。在整个欧洲和地中海地区,每年12月到次年3月间的气温与降水变化中,高达 60%的变化都是由这座位于亚速尔群岛上空的副热带高压和副极地低压之间的巨型气候“跷跷板”造成的。由于北大西洋涛动调节着从大西洋进入地中海的热量与水分,故大西洋与地中海的海面温度曾对中东地区的气候产生过影响,如今也仍是如此。所以,说北大西洋涛动这座“跷跷板”推动了那场大旱的发生,似乎是没有问题的。

    那场特大干旱的情况,从冰岛和格陵兰岛的湖泊沉积物以及欧洲的树木年轮中,就可以看到。源自土耳其与伊朗等遥远之地一些洞穴的高分辨率洞穴沉积物序列,也记录了这桩气候事件。同样,印度季风强度减弱之后那300年的情况,在东非与印度河流域的古气候序列中也有所体现。当时,尼罗河的洪水与印度河沿岸的降水情况突然出现了变化,而撒哈拉与西非地区也是如此。变化无常的东亚季风,也对中国东部一些历史悠久的农耕社群造成了压力。

    这场特大干旱的影响,逐渐波及了各个王国、蓬勃发展的文明和乡村地区。我们在第四章中将看到,这场特大干旱发生的时间,与埃及古王国的终结和法老们的领地暂时的分裂相吻合。干旱的影响一路延伸,远至中国西藏,并且进入了美洲;在美洲,旱情与其西南部和中美洲的尤卡坦半岛引入玉米种植的时间相一致。这场干旱,也成了南美洲安第斯地区一些重要群落兴衰过程中的一个因素。

    至于中东地区,人们认为当时死海的水面下降了 45 米左右。从采自阿曼湾的一段海洋岩芯中,我们也可以看到这场大旱的迹象,而从印度东北部的莫姆鲁洞穴(Mawmluh Cave)获得的洞穴沉积物序列,则将尼罗河水量的减少与东非地区的湖泊水位下降、印度季风的转向关联了起来。可以想见,这场干旱对不同地区的影响有着巨大的差异。在亚洲西部和美索不达米亚北部,重要的旱作农业区面积突然减少了 30%至 50%。地中海东部、伊拉克北部和叙利亚东北部的哈布尔平原的大部分地区,都遭遇了灾难性的旱情。

    运气不佳的美索不达米亚人应对干旱的方式,也大不相同。在北部哈布尔平原之类的旱作区,一些重要的中心被人们彻底遗弃,比如布拉克土丘(Tell Brak)与雷兰土丘(Tell Leilan)。 [16] 这种疏散,在两座城市里都对2万人产生了影响;随后,一些重大建筑项目也停工了。耶鲁大学的考古学家哈维·韦斯曾在雷兰土丘发掘出了一座大型的粮食储存与分配中心;公元前2230年左右,那里突然就被废弃了。中心外面用石头铺就的街道对面,矗立着一些已经部分建成了的房屋,说明人们当时放弃了城市建设。这里和其他地方,都曾明确做出废弃一些重要建筑物的行政决定。公元前2200年过后,哈布尔平原上已无人生活,直到250年后降水情况好转才有所改变。从土耳其境内的幼发拉底河上游流域到黎凡特南部,从事旱作的农民都弃主要城市和其他社区而去。

    许多从事旱作的农民适应干旱的办法,就是一路沿着(通常称为“追踪”)水源较为充足的栖息地南下,前往一些有泉水滋养农田的地方。不过,地中海地区一些重要的沿海城市,例如比布鲁斯和乌加里特,没有这样的水源供应,故人口曾大幅减少。与此同时,南方的耶利哥却受惠于一口天然泉眼,大批羊群都有水可饮。幼发拉底河的水量虽然大减,但仍让美索不达米亚中部与南部地区能够进行某种程度的灌溉。然而,日益干旱却令畜牧业繁荣发展起来了。游牧业变得广受欢迎,成了古时人们在哈布尔平原与幼发拉底河之间进行的季节性放牧迁徙中断所引发的一种生存机制。哈布尔平原上的旱情,迫使统称为亚摩利人的游牧民族迁往附近的大草原和幼发拉底河沿岸,并且南下进入了有人定居的地区。由于他们的畜群侵占了定居者的农田,所以那里爆发了持续的动荡。由此带来的威胁极其严重,故公元前2200年左右,乌尔的统治者还修建了一道长达180千米的城墙,称之为“亚摩利亚人的驱逐者”,以遏阻这些不速之客。不过,此人的努力却是徒劳无功。[17] 在城中的官吏一直拼命地率人清理灌渠、发放少得可怜的口粮那个时期,乌尔腹地的人口却增长了两倍。刻有楔形文字的泥板告诉我们,乌尔的农业经济最终瘫痪了。

    但在南方,人们却把气候变化的责任归咎于神灵,并且用诗歌或者“城市挽歌”表达了出来。《苏美尔与乌里姆之挽歌》(“The Lament for Sumer and Urim”),就是最早用神灵的行为来解释气候变化的书面史料之一。从中我们得知,恩利勒、恩奇和其他神灵曾经决定毁掉一座城市。“风雨集焉,若洪水之袭……竟至栏中之牛不得站立,圈中之羊不得繁衍;河中之水皆咸。”[18] 他们还曾下令让底格里斯河与幼发拉底河沿岸长满“邪恶之杂草”,并将城市变成“废墟”。庄稼无法种植,乡村将会干涸;“底格里斯河与幼发拉底河之水,恩利勒壅塞之”。

    新亚述人(公元前883年至公元前610年)

    随着庄稼死于“茎上”,尸骸浮于幼发拉底河中,整个美索不达米亚地区的城市尽数被毁。食物匮乏,河渠淤塞。随之而来的,就是长达数个世纪的动荡不安,政治争斗与相互对抗此起彼伏,直到公元前9世纪;其时,在美索不达米亚地区占统治地位的亚述帝国的统治者亚述纳西拔二世(前883—前859年在位),在一个比较富足的时代开始了无情的扩张征伐。在一个完全凭借武力建立起来的帝国里,任何一丝反抗的迹象都会招来严厉的惩罚。他任命忠心耿耿的总督控制被征服的领土,严令被征服领地进贡贵金属、原材料与粮食之类的商品。向西征伐到远至地中海边之后,他在降水增加的一个时期(这一点,我们是通过伊朗北部的一段洞穴沉积物得知的)班师回朝,然后利用战俘,在幼发拉底河上的卡尔胡(即尼姆鲁德)建造了一座宏伟华丽的宫殿。接着,在大约公元前879年,他还举办了一场为期十天的盛宴,庆祝宫殿完工。

    那确实是一件盛事。[19] 亚述纳西拔二世曾吹嘘说,有69,574 位宾客参加了那场宴会,其中卡尔胡本地就有16,000人。他们享用了成千上万头羊、牛,还有鹿、禽、鱼、各种各样的谷物,喝了1万罐啤酒和满满1万囊葡萄酒。国王打发他们回家时,这些人个个都酒足饭饱,在一派“和平喜乐”的气氛中沐浴更衣、涂抹油脂。亚述纳西拔二世的宾朋享用盛宴之时,还欣赏了墙壁上装饰着色彩鲜艳的楔形文字的浅浮雕。其中,有22行楔形文字列举了这位国王的资历,还有9 行则铭记了他取得的胜利。他是恩利勒与尼努尔塔[20] 两位神灵的“天选之子”,是“伟大之王、强大之王、宇宙之王……战无所惧……一切敌人,皆踏于脚下”。无休无止的宣传,大肆宣扬了这位国王对通过残暴征服建立起来的亚述帝国的统治权;有无数的男女老少,都曾丧命于他的手中。然而,仅仅270年之后,嗜酒如命、喜欢割耳的亚述纳西拔二世曾经统治的那个帝国,就轰然崩溃了。

    考古学家所称的新亚述帝国,是当时疆域最广、势力最强的帝国,公元前912年前后正全速发展着,后来亚述纳西拔二世还举办了那场盛大的庆祝活动。不过,帝国在公元前8 世纪中期变得更加强大了;当时,帝国由令人畏惧的提格拉·帕拉萨三世(Tiglath Pileser Ⅲ)统治着,他曾进行了美索不达米亚地区最大的一次扩张。他的名字无处不在,从古代也门人的铭文到《旧约》中那些充满敌意的往事——尤其是对他入侵以色列、攻取加利利和不公平的苛捐杂税的记述中,到处都能看到。既然有这样一些无所不能的国王,那么,公元前610年新亚述王国为什么突然就土崩瓦解了呢?

    是不是一系列血腥的内战与叛乱,动摇了统治者的权威?还是说,残酷的战争与军事失利,削弱了一个过度扩张的帝国的基础?无疑,这两个方面都在其中扮演了重要的角色。亚述的统治与早期那些君主制国家的统治一样,向来都很脆弱,永远都变化无常,完全不像埃及历代法老那样,有精心形成的先例可循。然而,我们如今已经明白,还有一个大家都很熟悉的因素,也参与了帝国的崩溃过程,那就是气候变化。来自伊朗北部的库纳巴洞穴(Kuna Ba Cave)里一份分辨率高、断代精确的气候变化洞穴沉积物记录,就说明了问题。[21] 这些洞穴沉积物表明,新亚述帝国是在气候异常湿润的两个世纪里崛起的。对于成千上万的农民来说,充沛的降水就是上天的恩赐;他们不但要为城市提供粮食,也要为四处征伐、靠国家精心分配的口粮维持生计的军队提供粮食。此后,公元前7世纪早期到中期出现了一系列特大干旱,且每次干旱都持续了数十年之久;这种情况,似乎导致亚述帝国的农业生产力开始下滑,继而又导致了帝国在政治和经济上的最终崩溃。最后,整个新亚述帝国终于在艰苦的征战中土崩瓦解,只留下了一个早已为干旱所削弱的民族。

    景观变迁

    随着城市与长途贸易网络的发展,人们对各种原材料,尤其是木材与金属矿石的需求也日益增加了。除了用于各种建筑的木梁与其他木材,人们对陶土器皿以及金属工具和装饰品永无餍足的需求,也导致了社会对烧窑所用的薪炭存在持久的需求。木柴也始终供不应求,需要用驮畜运送,大捆大捆地输入。在家庭中和生产时都毫无节制地使用木柴,势必产生过浓密的烟雾,在风平浪静的日子里笼罩于不断发展的城市上空。严重的空气污染,必定困扰过那些人口稠密的城市,但砍伐森林造成的破坏,更是带来了严重和长期的后果。

    虽然中东地区的植被历史如今仍然鲜为人知,但以近乎工业化的规模消费木材带来的影响,让大部分地区变了模样。例如,花粉图谱表明,安纳托利亚的中部曾经是开阔的橡树林地,但到了公元前5000年左右至公元前3000年,那里的林木覆盖率却迅速下降,情况就像现代的伊朗与叙利亚一样。卡曼-卡莱土丘(Kaman-Kalehöyük)位于安卡拉东南100千米处,在公元前2千纪和公元前1千纪是一个重要的定居地,直到公元前300年左右;那里也是一个重要的农业中心,还有一定规模的纺织业和陶器制造业。人类在此居住的时间,与公元前1250年前后至公元前1050年间一场严重的旱灾相吻合;而当时实力强大的赫梯帝国,就是在这一时期四分五裂的。对木炭进行的一项研究表明,生活在这里的赫梯帝国居民曾经大肆集中采伐周围的林地,以至于伐木工不再像过去那样采伐成熟的橡树林,而是采伐其他物种较少的森林。[22]

    宏大工程的瓦解(公元224年至651年)

    特大干旱过后,原先的那种季节性降水恢复了,故美索不达米亚文明再次蓬勃地发展起来了。人们重新开始在哈布尔平原和亚述繁衍生息。雷兰土丘又一次繁荣起来。早期被削弱的意识形态与制度存续下来,成了那些在早期城邦的基础上崛起的伟大王国的发展蓝图。新兴的帝国,都把灌溉农业变成了一桩国家大事。不过,农业之本仍然掌握在地方酋长和乡村农民的手中;他们管理着水源与庄稼,就像数个世纪以来一样,只是其间的各种动荡与长期争斗,已经削弱了苏美尔、阿卡德与亚述的统治。那些在美索不达米亚地区耕作的人极具自力更生的精神,对此时已经被人类活动彻底改变的自然环境不抱任何幻想。他们完全清楚,除了干旱,当地还面临着许多困难,比如灌渠长期淤塞和土壤中的盐碱度在不断增加。不过,此时的农业生产仍然很稳定,足以养活古代世界中最大的帝国,即阿契美尼德王朝的波斯帝国(前550—前330);阿契美尼德波斯人生活在相对和平的环境下,并以建筑杰作而闻名,比如波斯波利斯城。

    时光荏苒,很快就到了公元224年;此时,萨珊人建立了波斯信奉伊斯兰教之前的最后一个帝国,然后繁荣发展了4 个世纪之久。[23] 他们控制了高加索山脉南部与阿拉伯半岛部分地区之间的广袤土地。帝国中央政府采取的是以前亚述人运用时发挥过有利作用的严苛政策,但实施的范围要广得多。当局对灌溉系统进行了大力投入;与之相比,早期人们在水源管理方面的努力可谓小巫见大巫了。[24] 就像亚述人一样,萨珊人也把被他们驱逐的人口重新安置在一些似乎有发展潜力的地区。他们兴建新的城镇,开始大规模地人工开掘灌溉设施来养活这些人。其中有一项灌溉工程建成于6世纪,它利用了两条河流,将230多千米以外的水引入了底格里斯河。这一工程灌溉了巴格达东北部约8,000平方千米的农田,但同时也将水源引到了排水不畅的土地上。萨珊帝国没落很久之后,密集的土地利用导致这里出现了严重的盐碱化,大面积的土地都无法再进行耕作。到了公元1500年,这项灌溉工程就被人们废弃了。

    在整个6世纪,萨珊人于底格里斯河与幼发拉底河之间开拓了面积约 12,000 平方千米且至少进行过零星灌溉的土地。这就说明,他们的耕作面积起码达到了早期的两倍。考虑到底格里斯河的水流湍急多变,故利用此河进行灌溉,是一种风险极大的勇敢之举。灌渠与农田纵横交织,遍布广大地区,远远超过了乡农或者小小城邦所能掌控的程度。但新建灌溉设施的巨大规模也意味着,一旦上游发生决堤,生活地点离水源有一定距离的农民就会陷入极大的麻烦之中。这是一种由中央政府进行规划、规模史无前例的标准化灌溉,其动力是潜在的税收而非收成,目的则是为中央政府在粮食与土地税两个方面带来最大的财政收入,而不是满足地方的需求。大多数灌渠都是成千上万的战俘修建起来的,这种修建工程也带有将被征服的百姓重新安置的目的。萨珊人抛弃了那些需要考虑当地条件、规模也较小的灌溉设施。他们创造了种种以人工为主的灌溉制度,起初也让各地生产出了充足的粮食。但是,随着设计不佳的灌渠逐渐淤塞,他们就陷入麻烦了。每一项复杂的灌溉方案、每一种来自外部的新需求,都降低了乡村百姓——那些在地里劳作的人——的自给能力。萨珊王朝那些干劲十足的工程人员都只盯着短期利益,却忽视了早期农民极其关注的、最重要的排水不畅问题。起初,丰厚的回报确实带来了繁荣与更多的财政收入。但是,日益增加的维护成本很快就让这些工程人员不堪重负起来。他们新建的堤坝破坏了原有的排水模式,抬高了地下水位,造成了农业用地的慢性盐碱化。不久之后,他们就必须以生态环境日益脆弱为代价,才能让粮食在短期内增产了。生产力急剧下降,一些边缘地区尤其如此。面对干旱、大洪水和其他一些气候变化,种种灌溉方案都丧失了灵活性。随着经济和政治衰弱导致农业人口日益贫困和集中管理的灌溉系统土崩瓦解,以农业与水源管理为中心的官僚制度也逐渐式微。公元632年至651年间,面对不断扩张的伊斯兰教,萨珊帝国解体了。到11世纪时,两河之间的土地已是一片废弃的、到处都是盐碱地的荒野了。

    亚述人、阿卡德人和苏美尔人经历了一个时代的开端;当时,农村人口和城市人口都开始更易受到突如其来、常为短期性的气候变化的影响。像萨珊帝国那样的中央集权制政府与专制统治,并没有解决人口密度不断增长和水源供应(无论是洪水还是降雨)不稳定的问题。早在苏美尔时代,人们就很清楚:最好的解决办法是在地方层面,因为地方的社群领导人可以单独采取规模较小的措施来战胜饥荒。他们熟悉这片土地,熟悉变幻莫测的洪水,也熟悉手下百姓的性情与专长。等到城市与乡村之间的复杂关系从相互依存演变成了城市占据统治地位,数个世纪的动荡经历再加上农民的自力更生精神,就使得任何一种应对严重干旱或者其他气候变化的长期性措施几乎都不可能实施了。无疑,有些早已被人们遗忘的美索不达米亚领导人,曾在他们辖地(无论是城市还是省份)的狭窄范围内成功应对过严重干旱带来的挑战,只是如今并无记载他们那些举措的史料留存下来。

    美索不达米亚位于两条大河之间,但一马平川的地形地貌则意味着,这里的边境地区容易被渗透,而人们在土地上建造的基础设施常常也很不牢靠。人口的持续流动、松散的控制、朝秦暮楚式的效忠,再加上官吏任免与皇室野心的不断变化,都与尼罗河沿岸历代法老治下的情况形成了鲜明的对比。所以,适应气候变化方面一个历久弥坚的教训就是:征服与开发并非解决之道;就算亚述纳西拔国王与提格拉·帕拉萨三世曾经以为它们可以解决气候变化的问题,也是如此。美索不达米亚地区的这一历史经验,在当今世界产生了强烈的共鸣。在解决办法属于地方性的,而非由遥远的官僚机构或大型的工业企业所强加时,适应不断变化的环境(其中也包括气候变化)的措施往往最为有效。

    [1] Nicola Crusemann et al., eds., Uruk: First City of the Ancient World (Los Angeles: J. Paul Getty Museum, 2019).

    [2] 伊什塔尔(Ishtar),前文中爱神伊南娜在古巴比伦神话中的名称。——译者注

    [3] Monica Smith, Cities: The First 6,000 Years (New York, Penguin, 2019).

    [4] T. J. Wilkinson, Archaeological Landscapes of the Near East (Tucson: University of Arizona Press, 2003).

    [5] Samuel Kramer, The Sumerians (Chicago: University of Chicago Press, 1963), 240.

    [6] Mario Liverani, The Ancient Near East: History, Society and Economy (Abingdon, UK: Routledge, 2014).

    [7] 智慧文学(wisdom literature),指公元前6世纪以色列人被掳流亡以后到公元纪元(即基督纪元)前后希伯来文学中出现的一种独特文体,主要以自下而上地探讨人生与伦理为主题,是《圣经》中的重要组成部分,亦称“智慧书”。——译者注

    [8] Kramer, The Sumerians, 190.

    [9] William H. Stiebing and Susan L. Helft, Ancient Near

    Eastern History and Culture, 3rd ed. (Abingdon, UK: Routledge,

    2017). See also Benjamin Foster, The Age of Agade: Inventing

    Empire in Ancient Mesopotamia (Abingdon, UK: Routledge, 2016).

    [10] J. S. Cooper, “Reconstructing History from Ancient

    Inscriptions: The Lagash-Umma Border Conflict,” Sources and

    Monographs on the Ancient Near East 2, no. 1 (1983): 47–54.

    [11] 恩利勒(Enlil),苏美尔神话中的大地和空气之神,尼普尔城邦的保护神,还可能拥有战神和风神的神格。——译者注

    [12] Marc Van De Mieroop, A History of the Ancient Near East ca. 3000–323 BC, 2nd ed. (New York: Blackwell, 2006). See also Foster, The Age of Agade.

    [13] 这一段在很大程度上参考了哈维·韦斯对气候变化与阿卡德王国崩溃进行的出色论述,事实上整章都是如此。参见Harvey Weiss,“4.2 ka BP Megadrought and the Akkadian Collapse,” in Megadrought and Collapse: From Early Agriculture to Angkor, ed. Harvey Weiss (New York: Oxford University Press, 2017),93–159。关于干旱及其成因的文献资料也越来越多。参见Heidi M. Cullen et al., “Impact of the North Atlantic Oscillation on Middle Eastern Climate and Streamflow,” Climatic Change 55(2002): 315–338。亦请参见Martin H. Visbeck et al., “The North Atlantic Oscillation: Past, Present, and Future,”Proceedings of the National Academy of Sciences 98, no. 23(2001): 12876–12877。

    [14] Weiss, “4.2 ka BP Megadrought and the Akkadian Collapse,” 135–159,这篇文章列举了古气候学替代指标的遗址并附上了参考资料,因而价值非凡。

    [15] M. Charles, H. Pessin, and M. M. Hald, “Tolerating Change at Late Chalcolithic Tell Brak: Responses of an Early Urban Society to an Uncertain Climate,” Environmental

    Archaeology 15, no. 2 (2010): 183–198.

    [16] Charles, Pessin, and Hald, “Tolerating Change at Late Chalcolithic Tell Brak,” 183–198.

    [17] W. Sallaberger, “Die Amurriter-Mauer in Mesopotamien: der .lteste historische Grenzwall gegen Nomaden vor 4000 Jahren,” in Mauern als Grenzen, ed. A. Nunn (Mainz: Phillipp von Zabern, 2009), 27–38.

    [18] J. A. Black et al., The Literature of Ancient Sumer (New York: Oxford University Press, 2004), 128–131.

    [19] 卡尔胡的一处王室碑文上描绘了这场盛宴的情形。Van De Mieroop, A History of the Ancient Near East, 234.

    [20] 尼努尔塔(Ninurta),美索不达米亚神话中的战争与农业灌溉之神。——译者注

    [21] Kuna Ba: Ashish Sinha et al., “Role of Climate in the Rise and Fall of the Neo-Assyrian Empire,” Science Advances 5, no. 11 (2019). doi: 10.1126/sciadv.aax6656.

    [22] Nathan J. Wright et al., “Woodland Modification in Bronze and Iron Age Central Anatolia: An Anthracological Signature for the Hittite State?” Journal of Archaeological Science 55 (2015): 219–230.

    [23] Touraj Daryaee, Sasanian Persia: The Rise and Fall of an Empire. Rpt. ed. (New York: I. B. Tauris, 2013). See also Eberhard Sauer, ed., Sasanian Persia: Between Rome and the Steppes of Eurasia (Edinburgh: Edinburgh University Press, 2019).

    [24] Fagan, Cro-Magnon, 146–152.

    第四章 尼罗河与印度河(公元前3100年至约公元前1700年)

    希腊历史学家希罗多德曾经在公元前5世纪撰文,描述了古埃及的农民:“彼等集稼穑,易于世间之他族……大河汤汤,自涨而灌溉其田,俟水再退,彼等则播于其地,遣豕踏之,令种入壤。”[1] 每年夏季,埃塞俄比亚高原上的季风暴雨都会让远在上游的青尼罗河与阿特巴拉河水位大涨。泥沙俱下的洪水向北奔腾,并在7月至9月的大约6个星期里达到最大。每一年里,“阿赫特”(即洪水)都会漫过那个沿着斜坡逐渐远离主河道的泛滥平原。一到此时,人们都会满怀期待。一段金字塔铭文中称:“既睹尼罗河之泛滥,彼等皆喜之而栗。田地开颜,河岸溢水。神赐既降,民色尽欢,神心亦悦。”[2]

    尽管希罗多德与古埃及的书吏确实描绘了一幅田园牧歌般的图景,可这却是一幅具有误导作用、实际上只有神话中才存在的景象。真实情况是,古埃及的村民曾无休无止地劳作,利用堤坝与沟渠将洪水引到他们耕作的田地里去;而这些堤坝与沟渠,在凶猛的洪水面前还有可能瞬间化为乌有。古埃及农民,都是在尼罗河的摆布之下生活,并且受制于遥远的海洋与大气之间驱动着印度洋季风的相互作用。

    尽管如此,他们却好像生活在一个永恒的世界中;那里的太阳,日复一日地划过万里无云的苍穹。水、大地与太阳,就是古埃及文明中亘古不变的三大真理。[3] 阿图姆神(Atum)号称“完整者”,是这里的造物主。他诞生于努恩神(Nun)即原始水与混沌之神,然后将一处土丘抬升到了水面之上。不过,太阳神拉(Ra)才是力量的最高体现;他在日出时必定现身,然后穿越诸天,有如生命不息,滚滚向前。古埃及人的信仰与思想意识,都依赖于虔诚并统治着一个和谐国度的法老们稳定而贤明地施政。埃及诸王都以荷鲁斯(Horus)的名义实行统治,荷鲁斯象征着神圣的力量与天空,象征着良好的秩序。他们的敌人,就是塞特神(Seth)这个长鼻子怪物,是混乱与无序之本。他给和谐的尼罗河世界带来了暴风雨、干旱和心怀敌意的异乡人。荷鲁斯与塞特之间的冲突,象征着秩序与和谐、无序与混乱这两组相对的力量。果断、有力而带有个人魅力的统治者,则象征着上埃及与下埃及“两界”的统一。古埃及历经数个世纪,才实现国家统一;只不过,人们总是(错误地)将这种统一描述成一种和谐之举,描述成秩序对混乱的一种胜利。

    古埃及是一个连贯的文明社会,紧靠着土地肥沃的洪泛平原,与此地之人一直认为动荡不安的外部世界不相往来。历代法老都是按照惯例实施统治,被人们当成“玛特”(ma’at)的化身;“玛特”的意思近似于现代的“秩序”或者“公正”,一位兼具智慧与和谐、掌管着四季与律法的同名女神便体现了这两种品质。“玛特”的意思,与代表无序力量的“伊斯菲特”(isfet)正好相对。古埃及的半神统治者都是用自己的旨令进行统治,并未遵循什么成文律法或者圣典。一个庞大的世袭官僚机构为他们有效地统治着整个国家,而这种官僚机构通常由大小官吏组成,属于一个个名副其实的王朝。大多数时候,这个国家都算得上国泰民安。这是一种非凡的文明,在“玛特”及其独特的尼罗河环境的支撑下,以各种形式存续了3,000多年。

    开端(约公元前6000年至公元前3100年)

    公元前 6000 年前后,美索不达米亚南部地区开始了农业耕作,而“多格兰”也沉入了北海水下,此时尼罗河流经的,是一个植被苍翠繁茂、被沙漠包围着的河谷。尼罗河以西的降水很没有规律,却还是足以维持撒哈拉地区一个个绵延起伏、由干旱草地组成的平原。当时,只有数千人生活在这个河谷里,有猎人、觅食者和渔民,他们可能还种植过一些谷类作物。他们偶尔与来自沙漠之上的游牧民进行交易,而后者之所以前来,就是为了交易物品,或者让他们放牧的畜群吃草和喝水。牧民的头领属于一些经验丰富、祭祀本领超群的人,他们显然都是专业的祈雨祭师。很有可能,就是这种本领让他们在干旱地区获得了异乎寻常的威望。

    公元前5000年之后,由于雨水变得更加没有规律,那些游牧民族便逐渐东迁,来到了尼罗河流域的洪泛平原上。随着撒哈拉地区变得越来越干旱,他们便在尼罗河畔永久定居下来,同时带来了“头领都是强壮的男性与牧人”这样的新观念,或许还带来了一些祭祀仪式,导致后来人们开始崇拜生育女神哈托尔(Hathor)。古埃及文明深深植根于早期的村落文化,后者则依赖于谨慎细致的水源管理与繁重的灌溉农业劳作。在一个几乎不存在降雨的世界里,可能是从村落头领那里继承下来的一种权威式领导传统,已经深深地扎根于古埃及人的心灵之中。这里的一切,全都依赖于赋予生命的洪水和一位牧人坚定自信的领导。

    尼罗河还流经了一些环境严酷的沙漠。从空中鸟瞰,此河就像一根绿色的斜线,宛如箭矢一般,直指北方的地中海。古埃及人把这里的洪泛平原称为“库姆特”(kmt),意思就是“黑土地”,因其肥沃的黑土与沙漠上的“红土地”形成了鲜明的对比。每一年里,假如众神庇佑,尼罗河就会裹挟着淤泥,从两条支流即白尼罗河与青尼罗河奔腾而去,直到遥远的下游;这两条支流源自东部非洲和埃塞俄比亚高原,然后在如今苏丹境内的喀土穆汇合,从而形成了尼罗河。在春、夏两季,待尼罗河的洪水漫上泛滥平原之时,“阿赫特”即洪水季就开始了。退去的洪水为农民滋养了肥沃的土地,他们精心开掘灌渠并进行维护,在洪泛平原上种植庄稼。这里的情况与美索不达米亚不同,“阿赫特”既给整个洪泛平原的土地带来了肥力,也没有导致土地盐碱化之虞。虽说农业耕作是一项极其艰苦的事情,但以美索不达米亚地区的标准来看,这里的农耕却相对容易,并不需要休耕或者给田地施肥。这里的农民,只需通过他们为阻挡洪水而修建的沟渠与水库,对上涨的河水加以导引就行了。

    尼罗河流域可能既是进行村落农耕的理想之地,也是一个生产大量粮食盈余且具有预见性的完美环境。希腊历史学家希罗多德曾将“阿赫特”描绘成一种一年一度、似乎很有规律的事件。这种关于洪水很可靠的神话,曾经广为流传,直至今天;可实际上呢,尼罗河却是一条反复无常的河流。雨水若是异常丰沛,就意味着这里有可能出现灾难性的洪水,将人们眼前的一切全都淹没,将庄稼与整座整座村庄冲走。“阿赫特”的强度若是很弱,就只能灌溉冲积平原上的小部分地区。有的时候,洪水几乎是立即退去,导致庄稼歉收,饥荒也就随之而来。在大多数年份,这里的水源都很充足,可以种植充足的庄稼,而农民也可以毫无困难地度过短期的干旱。不过,假如出现持续几年、几十年甚至是几个世纪的干旱周期,就是另一回事了。

    无所不能的法老(公元前3100年至公元前2180年)

    生活无常,变幻莫测,故秩序与团结就极为必要。数百年来,古埃及境内各诸侯王国都争来斗去;(可能)直到公元前3100年,一位名叫荷尔-阿哈(Hor-Aha)的统治者将上埃及与下埃及“两界”统一起来,埃及才变成一个国家。荷尔-阿哈及其继任者对埃及的统治持续到了公元前2118年;当时,平民百姓的福祉都系于他们的最高统治者即一个世俗君主的身上,而世俗君主的统治则代表着秩序战胜了混乱。在将近 8 个世纪的时间里,这个世俗国家都发展得相当平稳。

    古埃及这个文明社会的基础,并不是稠密的城市人口,而是通过水上交通相连的城镇与村落。此种基础结构,将这个狭长的国家联系起来,而不存在牲畜驮运谷物时只能走50千米的运输限制。但法老们很幸运,因为不断逼近尼罗河流域的沙漠是天然的防御工事;这些沙漠和浅滩密布的三角洲,让外敌几乎不可能入侵。这一点,与美索不达米亚与两河流域的边境可以渗透且不断变化的情况形成了鲜明的对比;后者的历史,就是不同国王及其文化群落在争斗中此兴彼衰、有时还会再次崛起的过程。与此同时,埃及的天然孤立状态,让法老们能够紧紧掌控手下的臣民。这里的人口虽有组织,却分散各地;人口普查以及对粮食、牲畜和其他商品所征的赋税,确保了这里拥有充足的粮食盈余;此外,国家还紧紧把持着优质的农业用地。

    只要该国臣民认为政府对他们有益且实力强大,法老就可以轻而易举地对其有限的疆土实施统治。王权既是永恒的,也是个人的,其象征就是统治者有形的神威。埃及的王权属于一种制度,以法老的成败为标志。不过,尽管人们认为法老神圣,王室权威最终依赖的却是充足的粮食盈余,而后者反过来又要靠百姓的辛勤劳作才能获得。虽然形势复杂,政治挑战日复一日,各州州长偶尔也有犯上作乱之举,但最重要的一点还在于,这个国家很容易为气候变化所危及——印度洋上的季风强度减弱,会导致严重的干旱。

    在公元前2575年到公元前2180年前后的古王国时期统治着埃及的那些法老,都是实力强大、自信十足的君主;他们执掌政权的4个世纪里,尼罗河洪水丰沛,作物收成充裕。他们可以轻而易举地凭借自己的神圣地位,声称他们是用全部神威掌控着洪水泛滥。法老都在孟斐斯的朝廷实施统治,那里位于下埃及,在“吉萨金字塔群”以南20千米。法老掌管着由上、下埃及“统一”而成的国家,全国分成9个“诺姆”(州),各州则由实力强大而又桀骜不驯的州长统治着。只要泛滥季带来了充足的洪水,国王的权力就是相对稳固的。这些领导人扩充了灌溉设施和沟渠,加强了下埃及地区那个肥沃三角洲上的农业生产。不过,一次强度不足的泛滥和作物歉收,会削弱国家权力中最关键的一个因素,即充足的粮食盈余。当然,其间偶尔也出现过洪水不足的年份,但过后总是再次出现了水量充沛的泛滥。这个国家不仅实力强大,治理得也很成功,因此到了公元前2250年,埃及的人口已经增长到了100多万,且其中很多人都在一定程度上靠国家提供的粮食维生。

    公元前 2650 年之后,实力日增的祭司阶层开始把太阳崇拜与对法老的崇拜联系起来。统治者死后,将在星辰之中占据一席之地,被人们当成神灵加以崇拜。刻在一座金字塔墓室中的铭文曾称:“王之其灵……有梯置焉,王可登之。”[4] 古王国时期那些法老修建的金字塔,都是象征阳光穿透云层的石制建筑。这些气势雄伟的石梯东侧,就是正对着日出方向的国王陵寝。建造这些陵寝,是官僚组织取得的巨大成功:他们要安排口粮和原材料的运输,要召集有技术的工匠,并且在农耕生产停止、可以找到较多劳动力的每个洪水季里召集成千上万的农村劳力。如今世人都很清楚,开罗以西那个庞大的“吉萨金字塔群”修建于公元前2500年前后,但法老们究竟为何要修建如此复杂、如此耗费劳力的陵墓,却仍然是一个谜。[5] 或许,他们的目的在于通过劳动力将百姓与他们的守护者联系起来。这也有可能是一种行政手段,是根据劳动重新分配粮食,来组织百姓及其守护者之间的关系并将其制度化;这种手段,有可能用于粮食匮乏的时期。或许,他们之所以建造金字塔,主要是为了强调法老与众神之间那种非同寻常的联系,是一种把国王与太阳神联系起来的方法;至于太阳神,正是人类生存与作物丰收的终极源泉。究竟为何,我们永远都不得而知了。过了一段时间,金字塔便实现了建造它们的目的。国家掌控的劳动力,便转向了其他一些不那么显眼的项目。

    埃及的精英阶层(其中也包括识字的书吏)与辛勤劳作的平民阶层之间,隔着一条巨大的鸿沟;当时,平民阶层必须提供劳动力,去清理灌渠、搬运石头和种植庄稼。这是一个领导有方的专制时代,依赖的是法老、法老手下的州长与高级官吏之间种种密切合作的关系。他们凭借集体才智与军事力量,创造出了一种独特的文明;这种文明在水源充足的几百年里运作良好,可在“阿赫特”水量不那么丰沛的时候却极易受到影响,事实上还非常脆弱。

    大旱来袭(约公元前2200年至公元前2184 年)

    古王国时期最后一位伟大的法老佩皮二世(前2278—前2184 年在位)统治埃及之后,这种脆弱性带来的恶果马上就显现出来了;据说此人曾统治埃及长达94年之久,是埃及历史上在位时间最长的法老。[6] 随着他年龄渐长、效率日降,这位法老手下的州长们便开始蠢蠢欲动。佩皮二世的应对之法,就是把大量财富赏赐给各个州长,从而极大地削弱了他的中央集权。公元前2184年佩皮二世归天之后,随着高级官吏们开始争权夺利,埃及便陷入了混乱之中。此时,彻底摧毁了美索不达米亚的“4.2ka 事件”也正好降临到了尼罗河流域。[7]

    有无数证据说明了此时干旱正在日益加剧的情况。从青

    尼罗河的源头即埃塞俄比亚的塔纳湖里钻取的淡水岩芯,记录了公元前 2200 年的一场干旱。红海中的咸水沉积物也表明,同期出现过一场严重的干旱。从下埃及地区萨卡拉钻取的一段岩芯表明,此地原来的耕地之上覆盖着深达1米的丘沙。水位很低的洪水,加上偶尔出现的强烈暴雨,将法尤姆洼地上的加龙湖(Lake Qarun)与尼罗河阻隔开来了。甚至从一具雪松棺材和一艘陪葬小船上取下的木头,其年轮也显示出了公元前2200 年到公元前 1900 年间一场干旱的迹象。

    洪水水量突然灾难性地长期减少,这几乎马上导致了饥荒,并让一些本已完善的政治制度失去了作用。在长达 300年的时间里,饥荒不断,因为此时需要养活的人口,比早期多得多了。绝望的农民开始在河中的沙洲上种植作物,结果却无济于事。一位名叫伊普味的智者,有可能目睹过那场旱灾。据此人描述,上埃及成了一片“荒芜之地”。“呜呼,众人皆云:‘吾愿既死。’”在一段放在今天也很适用的评论中,他曾谴责当时的法老:“权、智、真集于汝身,然汝之所为,实乃陷国于骚乱喧嚣之中。”[8]

    人们自然而然地向孟斐斯的法老求助,因为法老长久以来都宣称,他掌控着这条反复无常的河流。佩皮二世的继任者们既无能,也无权。储存的粮食很快就吃完了。于是,孟斐斯的统治者开始风水轮流转、你方唱罢我登场,而政治与经济权力则转移到了各州;此时的各州已经成了一个个小王国,由野心勃勃的州长掌管,其中有些州长的统治无异于国王。一些有能力的州长采取了严厉的措施,来眷顾手下的子民。通过实践,他们很快就掌握了应对突发性气候变化的一条基本原则,那就是在地方层面上解决这个问题。

    有些州长喜欢在其陵墓墙壁上吹嘘他们取得的丰功伟绩。他们的吹嘘究竟在多大程度上反映的是机会主义而非实际行动,是一个仍有争议的问题。尼肯与伊德富的安赫提菲曾在公元前2180年左右统治着埃及最南边的两个州;当时,尼罗河的洪水水位低得异常。此人的陵墓铭文中,就说到了他采取的果断行动:“凡上埃及诸地,无不饿殍遍野,至人人皆食其子。然吾尽力,致本州无一人饿毙。”[9] 安赫提菲还把宝贵的粮食出借给其他州。这些自吹自擂的陵墓铭文中,还描绘了人们漫无目的地寻觅食物的情形。

    此种行为,与 1877 年维多利亚时代那场可怕的大饥荒期间印度民众的做法惊人地相似(参见第九章)。随着周围沙漠上的丘沙被风刮到洪泛平原之上,那些一度繁荣兴旺的州都成了干旱的荒地。仓廪之中,空空如也;盗墓贼则把死者身上的东西尽数掳掠。

    与安赫提菲一样,艾斯尤特的州长罕提(Khety)也采取了极端的措施,来与饥荒做斗争。他命人修建了蓄水坝,排干了沼泽,开掘了一条宽达10米的沟渠,将灌溉用水引到干旱的农田里。凡是有能力的官吏都很清楚,只有采取极端的措施,才能养活每一个人。他们关闭了所辖州的边界,以防饥民不受控制地逃难。他们定量配给粮食,并且小心谨慎地进行分配。实力强大的州长才是埃及真正的统治者,因为只有他们,才能采取短期或者较长期的措施来养活饥民,刺激当地的农业生产。埃及整个国家那种脆弱的统一性,就此土崩瓦解。

    在3个世纪的时间里,埃及都是一个四分五裂的文明社会。历代法老已经促生出了一种信念,让民众以为他们掌控着从遥远上游而来的神秘泛滥。实际上,埃及这个国家所有不可一世的显赫辉煌,全都依赖于变幻莫测的印度洋季风,以及遥远的西南太平洋上的大气变化。这场危机,最终以尼罗河泛滥水位提高与法老门图霍特普(Mentuhotep)发动艰苦卓绝的军事征伐而宣告结束;公元前2060年,这位法老在上埃及登上王位,然后重新统一了全国,并且在位达半个世纪。

    门图霍特普及其继任者在位期间,重建了农业经济;当时,人们已经不再认为法老绝对正确了。他们变成了“百姓的牧人”,对古埃及人生活的方方面面强制实行一种严厉的官僚制度。他们得天独厚,在位期间洪水充沛,只有公元前8 世纪和公元前7世纪例外,其间的低水位泛滥再次导致了政治动荡。但到了此时,为了经济生存,各州州长开始前所未有地相互依赖起来。后来,埃及那些最成功的法老之所以能够实现治下的兴旺昌盛,是因为他们派人把尼罗河流域变成了一片组织有序的绿洲。拉美西斯二世(前1304—前1237年在位)兴建王都拉美西斯城时,他建造的沟渠被称为是全埃及最厉害的:高效、宏伟,精心装饰的设施灌溉着整个地区。

    在一个中央集权的农业国家里,法老简直就是神灵一般的管理者;国家在扩大灌溉计划、技术进步以及大规模粮食存储等方面进行了大力投入,确保了民众能够在多年的饥荒与危机中生存下去。宗教则是这种制度具有掌控力的最终源头。每个为自家田地和庄稼挖修沟渠的农民都很留意,他们必须公平修建,不然就会受到惩罚、坠入地狱。古埃及有所谓的“反面忏悔”,也就是人死之后灵魂接受审判时所做的告白;其中的第33条和第34条,要求灵魂申明自己从未阻断过水源,也从未非法接引过别人沟渠中的水。最终,这个国度就做好了应对危机的准备。埃及有备无患的情况,甚至在《圣经》中关于约瑟与家人为逃离迦南的饥荒而前往埃及的故事里都有所记载,因为约瑟等人知道,埃及会有充足的粮食盈余。

    众神尽管拥有无所不知的力量,却无法为人们做出长期性的季风预报。在数个世纪的时间里,祭司们确实开发出了简单的“尼罗尺”水位计——一种巧妙的科学工具,能够在河水上涨时测出洪水的水位。如今,除了一些可以追溯到公元7世纪穆斯林征服埃及之后出现的水位计,这种工具已经罕有存世了。由法老所制的大多数水位计,都由神庙控制着。上埃及地区的阿斯旺是该国最南端的城市,而其对面的象岛上,就留存着一种重要的水位计样本。人们在这里可以测量当季最早的洪水水位。那座水位计建于古罗马时代之前,后被古罗马人所修复,大致就是河岸之上的一口井,用严丝合缝的石块建成,石块上面标着以前记录的、不同的洪水水位。一代代人长期观察积累和传授下来的经验,让祭司们能够以惊人的准确程度对洪水的水位做出预测。这是一种极其宝贵的信息;不但为与灌溉工程打交道的农民所需要,也为孜孜不倦地监督庄稼收成的税吏所需要。正如古希腊地理学家斯特拉波曾嘲讽的:洪水越厉害,财政收入就越多。

    古埃及文明又繁荣发展了2,000年,最终变成了罗马的粮仓,这一点并非巧合;在下一章里,我们将对此进行探讨。不过,即便是在那时,突如其来的气候变化也曾造成旷日持久的干旱和旱情导致的饥荒,不但让成千上万人丧生,而且影响到了罗马与君士坦丁堡两地的粮食供应。

    印度河:城市与乡村(约公元前2600年至公元前1700年)

    印度洋季风的波动,对数百万人的生活产生了影响——不但影响到了尼罗河流域与美索不达米亚,也影响到了热带非洲,或许还影响到了南亚和东南亚;其中,就包括印度河流域及其周边地区的居民。

    南亚地区的东部为热带雨林,北部为山脉,且为阿拉伯海、印度洋和孟加拉湾所环绕。这个次大陆上,形成了自身的文化特色和极具多样性的独特文明。其中最早的,就是印

    度河文明,它属于早期与美索不达米亚文明、埃及文明同时繁荣发展起来的伟大文明之一。[10] 20世纪20年代,英国和印度的考古学家几乎纯属偶然地在旁遮普邦发现了这个文明;当时,更广阔的外界仍然对其所知不多。如今我们知道,这种文明曾经在至少达 80 万平方千米的广袤区域里(大致相当于西欧面积的四分之一)繁荣兴盛,不但覆盖了今天的巴基斯坦,还从如今的阿富汗一直延伸到了印度。印度河流域与现在已经干涸的沙罗室伐底河流域,是这个文明的文化中心,但它们仅仅是一个范围更大、具有多样性的散居社会中的一部分而已;那个社会绵亘多种多样的环境,从俾路支斯坦的高原和喜马拉雅山麓,纵贯旁遮普和信德的低地,直至如今的孟买。

    考古学家已经在印度河流域的多个生态区里确定了1,000 多个定居地,从植被葱茏、绿色遍野的乡间田园,到气候炎热、不宜居住的半沙漠地区,到处都有。尽管大多数遗址都是村落,但其中至少有5处为主要城市。需要明确的是,这里属于当时世界上最大的城市文化群落,规模大约达到了美索不达米亚或者埃及同时代城市文化群落的两倍。这里的城市,在公元前2600年左右到公元前1900年间,曾经令人钦佩地繁荣了六七个世纪之久。这里的人口可能达到了100 万,与古罗马鼎盛时期的人口相当。只不过,这个庞大的文明很快就从历史上消失了。无论是公元前4世纪入侵此地的亚历山大,还是公元前3世纪南亚次大陆上一心向佛的统治者阿育王,对这个文明都一无所知。因此,考古学家不禁要问:气候变化在印度河文明的消亡中,扮演了什么样的角色呢?

    如今,当地的气候有利于农业,因为那里有两种不同的天气系统占据主导地位,有时二者还会叠加。[11] 在西部高原地区发挥作用的,是多雨的冬季气旋系统,而夏季季风系统,则会为印度半岛各地带来降水。假如其中一个系统未能带来降雨,那么另一个系统往往能够加以补足,从而意味着如今的印度河流域不会出现饥荒。每年的7月至9月间,印度河本身也会泛滥。农民会待洪水退却之后,以洪水带来的淤泥为肥料种植庄稼,到来年春季再进行收割。有意思的是,我们没有证据表明印度河流域的农民进行过大规模的灌溉;这一点不同于埃及,因为埃及人必须修建灌渠来扩大洪水所及的范围和蓄水。很有可能,假如印度河流域某个地区的收成不佳,那么获得了丰收的另一个地区便会通过当时业已完备的贸易网络,送来粮食进行救济。

    印度北部新德里以北约200千米的萨希亚洞穴(Sahiya Cave)中的石笋表明,印度河文明形成的那几个世纪,正是强季风导致气温升高、降雨也显著增加的一个时期。[12] 结果,作物收成变得更可预测,粮食盈余变得更加可靠,印度河文明赖以生存的经济上层建筑就此形成。也正是此时,不断发展的村落与较大的农业群落逐渐演变成了一种复杂的前工业化文明。

    尽管有过多种形式,但城市已经成为古代文明的一个标志。它们完全不是人们在中东大部分地区发现的那种紧凑、拥挤而有围墙的定居地。印度河流域的城市,很难与乌鲁克、乌尔、拉美西斯诸城比较,事实上也很难与其他地方的任何一座城市比较。忘掉亚述和苏美尔君主们浮夸的豪言壮语,忘掉古埃及法老们自吹自擂的意识形态宣言吧。曾经掌管着哈拉帕、摩亨佐达罗以及印度河流域其他城市的统治者,至今仍默默无闻。他们与古埃及人或美索不达米亚人不同,不喜欢在寺庙墙壁上大肆宣扬自己的丰功伟绩。再则,这种文明中似乎没有什么寺庙;实际上,根本没有任何宗教建筑的明显迹象。此外,那里只有一些模糊的宗教暗示,比如一尊“祭司王”的小型半身像;不过,此人有可能既非国王也非祭司,而只是某个沉浸在极乐的瑜伽式冥想中的人。大量装饰性的印章上,也带有各种各样的形象,其中包括以明显的瑜伽姿势打坐的人。这是宗教信仰吗?也许吧。遗憾的是,他们的文字系统仍然没有为世人所破解。假如得到了破解,那么印度河文明的密码可能会讲述一个截然不同的故事;但在此以前,考古学还是会指出,当时此地城市中居住的,都是一些谦逊与崇尚平等的人。

    20世纪40年代末,劲头十足的英国考古学家莫蒂默·惠勒(Mortimer Wheeler)曾在哈拉帕与摩亨佐达罗两地进行过发掘,却并未找到装饰华丽的建筑、宏伟壮观的寺庙、镀金的神殿或者宫殿。相反,他发现了两座城堡,里面建有相当实用的公共建筑,包括一座粮仓和一座用砖块建造、有支柱的大型厅堂;砖块能够保护大厅不被洪水冲垮。人们都住在精心建造的房屋里(同样是用砖块建成),并未显露出城市里常有的阶级差别的任何迹象。然而,尽管两座城市明显崇尚平等主义,在公元前2550年左右到公元前1850年间有人居住的那个时期,两城都属于世界上最复杂的城市。城中建有气势恢宏的防洪工程、水井,以及可与现代相媲美的卫生设施,其中还包括世界上最早的洗澡间和带有下水道的厕所。在两座城市里,建造者都遵循一种不规则的网状建设规划;这种规划历经多个世代的发展演变,其中包括呈网格状的街道与房屋。惠勒曾经令人难忘地描绘他的印象:“中产阶层繁荣富裕,热衷于市政监管。”[13]

    惠勒喜欢进行生动形象的描述,并且用其西方视角来加以渲染。不过,他对中产阶层繁荣富足的描述,却是错误的。最新观点认为,两城都属于多中心社会,有墙壁与平台将城内划分成了不同的区域;城外的定居地较少,是从事经济活动和工匠们劳作的地方。印度河文明可能是一个无等级社会,公共活动曾是平常之事。然而,这种文明中的城市居民可能也逞强好斗,因为定居下来的人类经常如此;比方说,有迹象表明,哈拉帕曾经出现过相互对抗的地方社群。[14] 然而,考虑到印度河文明是世界上唯一一个没有证据表明发生过任何有组织战争的已知文明,那么,我们把读者的注意力引向可能存在的地方性争端,就会是一种相当不公平的做法。尽管我们也曾努力寻找相反的情况,但所有证据还是表明,至少在城市层面上来看,这是一个和平、繁荣与崇尚平等的社会。这个社会,也与外界有着密切的联系:这里的民众,曾与波斯湾和美索不达米亚地区进行过数个世纪的贸易。

    无论哪种社会曾在印度河沿岸以及更远的地方繁荣发展,无疑都不属于一个金字塔式的社会。我们很难找到另一个社会,能与华而不实的埃及和美索不达米亚诸邦形成更加鲜明的对比;而从应对气候变化方面来看,印度河文明的韧性也要强得多;尽管从其幕后始终存在地方领导人与城市之间的竞争这种意义上来说,印度河文明也很脆弱。

    随着城市的发展,城市周围的乡村定居地也发展起来了。实际上,我们或许应当把这些城市称为“城邦”,才能反映出它们在当地环境中的重要性。至于城市周边的定居地,其中很多都以农业耕作为主,还有一些则属于手工艺中心。许多定居地只是短时间里有人居住,或者断断续续地有人居住。

    当时居无定所的情况很常见,河流密布、季风性洪水频发的地区尤其如此。这样的环境要求定居人口具有流动性,以便适应变化迅速的水文条件。这种适应手段中的一部分,就是让家庭成员和亲属分散到几个定居地生活,以便稳定地获得水源供应。对于在局部需要面对极具挑战性的自然条件的人们来说,这样的局面有可能提供了更大的适应性与生存能力。在这种情况下,减少风险就成了生存的核心;人们所用的策略,很可能包括多茬复种(即每年种植两三种作物)、栽种抗旱作物以及在同一块地里同时种植不同的谷物等等。[15]

    随着人们越来越多地种植大麦、小麦之类的冬季作物与小米、抗旱谷物等夏季作物,农业多样性也随时间的推移而得到增强。不同地区的农耕方式之间差异巨大,使得这里很难对粮食生产实施任何一种形式的集中存储和控制措施。哈拉帕遗址的一个大型粮仓表明,养活大量不从事农耕的城市人口,无疑是当时的人十分关注的问题。极有可能的是,像哈拉帕这样的城市所依赖的,都是城市腹地提供的粮食盈余以及完善的基本商品贸易网络,而农村地区基本上都是自给自足。

    印度河文明与古埃及文明形成了鲜明的对比。印度河文明并非一个统一的国家,而是一个丰富多样、权力分散的社会;这一点,就使得可持续生存的问题远比独裁君主统治大片领土时更受地方关注。虽然不同地区的风险管理差异巨大,但它们却在朝着共同的方向发展:印度河流域的所有城市,在公元前2000年到公元前1900年左右全都消失,而整个文化综合体也随之消亡了。为什么呢?

    熬过大旱

    “4.2 ka事件”是一个极度干旱的时期,给整个亚洲与印度洋地区那些简单的和较复杂的社会都带来了长期的困扰。印度洋夏季风和冬季风强度减弱的时间,与哈拉帕、摩亨佐达罗以及印度河流域其他城市消失的时间大致吻合;不过,大旱似乎不太可能是触发城市解体的唯一因素。在这里,我们是有意使用“解体”(dissolve)一词,因为说“崩溃”的话,会让人产生误解。农村群落中,有一种由来已久的散居传统。近期对哈拉帕一座墓地中的骸骨进行的同位素研究表明,很多死者都是从别处而来的移民。人们源源不断地进出这些城市,也会频繁进出一些较小的群落。考虑到村落与较大社群之间联系紧密,这一点就不足为奇了,因为较大社群中必定有他们的其他亲属,起码也有贸易伙伴。

    印度河流域城市的解体,可能只是对食物短缺做出的一种防御性反应,因为迁往水源供应较充足、可以找到食物的社区,就能解决食物短缺的问题。这是一个去中心化的文明,故人口流动就是适应措施。毕竟,假如照管好自己所在的社区就能衣食无忧,为何还要去为城市提供粮食呢?村落中为了适应长期干旱而将作物多样化,更多种植夏季作物与抗旱谷物,比如小米与水稻,也就成了一种常规。作物收成可能一直处于较低水平,故难以维持大型城市所需。整个印度河流域各地显然存在差异,不过,我们同样应当将短期干旱与长期性的干旱周期区分开来;在长期性的干旱周期中,短途甚至是中等距离的供应网络也无法为城市生产出充足的粮食盈余。在高度重视亲属关系与义务的非等级制社会里,一种古老的适应策略开始发挥决定性的作用。据一些针对定居地进行的研究来看,许多人在公元前 1800 年左右离开了印度河流域,往北迁徙到了拉贾斯坦与哈里亚纳,故随着哈拉帕的没落,上述两地的人口也出现了大幅增长。

    除了韧性,一些根本问题如今依然没有答案。看似稳固的印度河流域诸城在面对漫长的干旱时,出现了什么情况?此时的气候,是否太过干旱?农民的适应之举,是否变得太过多样化了?是不是气候变化导致印度河流域的城市人口根本不可能适应?我们知道,虽说印度河当时仍然水流湍急,但该地区的第二条大河沙罗室伐底河却已干涸;或许是因为一场地震破坏了该河的上游,导致河水改向,注入了恒河。随着沙罗室伐底河逐渐干涸,依靠此河生存的定居地也消失了。这种情况,最终导致了整个社会的倾覆。

    尽管印度河文明已经消失,但从全局来看,它却是一种长久存在的文明。无疑,以工业化之前的早期标准来衡量,印度河流域诸城都曾异常稳固与持久存在。它们之所以具有长久的韧性,可能是因为当时的人都依赖一些可持续的农村生活方式;可事实证明,当作物收成减少导致粮食盈余大幅下降时,仅仅依靠这些生活方式是不够的。相比而言,乡村农民反而通过种植一系列适应了当地环境与水源供应的作物,实现了长期的可持续生存。人数较少的群落,可能拥有他们熟悉的、长期采用的社会机制,故人们对作物与耕作方式的选择以及他们的文化行为都较为灵活。在这种情况下,人口迁移可能就成了许多地方的必要之举,这也解释了人们不断弃定居地而去的原因。当然,我们没有证据表明这种文明是以痛苦的方式终结的,因为我们并未看到这里爆发过大战(甚至是小规模战争)的迹象,也没有证据表明定居地出现过暴力或者遭到过破坏。

    印度河文明之所以强大稳固,是因为它建立在一种农村的社会与经济基础之上。就其本质而言,这种社会和经济基础是有韧性和可持续的;原因部分在于,那里的环境极具挑战性与多样性,或许还在于,那里有一种似乎平和安宁、没有社会等级以及约束性的宗教教条的意识形态。在一个去中心化、大部分社会权力留在地方的社会中,这种意识形态发挥了良好的作用。城市是一种临时的适应之举。农村社区可以熬过长期的干旱;尽管邻近社群的帮助有可能减轻了干旱带来的影响,但农村无疑不会出现饥肠辘辘而密集拥挤的城市人口所经历的痛苦。同样,最成功地适应气候变化的措施,最终都属于地方性的举措。

    各有所好

    逞强好斗、极其脆弱且易被摧毁:美索不达米亚与古埃及这两大最早的文明,其一连串统治者都试图将自己的意志和独特的治理模式,强加于亘古以来的村落社会之上。由他们的宗教、他们的众神加以合法化之后,这些统治者的故事就成了一段权力与荣耀的佳话。可在印度河流域,人们却似乎尝试过某种别的做法,即合作与社会平等(起码在城市居民当中是如此),并且明显弱化了等级制度、君主制度和宗教信仰。为了适应气候变化而采取的这些策略,每一种都在一段时间里获得了成功,直到新的政治组织体系兴起并改变了社会。不过,说到应对干旱与重大气候事件,最有效的对策却既非来自为了资源而征服邻邦的中央集权制帝国,也非来自那些实力强大、掌管着集中化粮仓的总督,而是来自地方主动根据自身群落所熟悉的现实情况及其周围环境,量身定做出的适应性举措。无疑,今天的情况也是如此。

    这些早期文明在气候变化面前,没有哪一个曾经全然无力应对。但在面对一些重大情况,比如“4.2 ka事件”时,它们也不像偶尔有过的情形那样具有无限的适应力。它们所应对的《圣经》当中所述的一场场漫长干旱的经历,现代的工业文明社会从来不必面对。假如将4,200年前的干旱事件放到当代背景之下来看,那么,1998年至2012年间黎凡特地区长达15 年的干旱,其旱情据说就要比过去900年间任何一个可比时期都厉害。这场干旱,比近几百年里自然变化造成的其他干旱都要严重得多。造成这种现象的罪魁祸首,就是势不可当的人为气候变化。考虑到人们对未来全球气候的预测,我们需要在国际范围内采取更大的适应措施,规模将远超过去。从公元前 2200 年那场特大干旱事件中吸取的教训,或许有助于我们去面对未来即将出现的大量气候挑战。

    这些社会留下来的遗产,对如今具有相当重要的意义。法老们统治着一个面积广袤的河谷,那里降雨稀少,但每年都有一场变化莫测的河流泛滥。“4.2 ka事件”让他们明白,在一个农业权威最终以村落为本的社会里,无论是独裁权力还是众神,都无法解决作物歉收与饥荒的问题。后来的统治者则鼓吹新的教义,将法老说成是引路的牧人。这些领导者在粮食储存与地方性灌溉方案上进行过大量投入。他们的文明,延续了 2,000 多年。与此同时,在美索不达米亚地区,百姓却生活在一种撕裂了的政治局面中,很大程度上由显著的极端气候与往往猛烈的洪水所决定。这种局面,远比古埃及的环境易变,而反复无常的环境变化还有可能导致河流改道,甚至是干涸。从长远来看,生存以及适应干旱周期与其他气候变化既需要深入的环境知识,也需要深厚的农业知识。在这个方面,真正的权力最终并非掌握在实力强大、大肆征伐的国王手中,而在于城市与农耕社群适应当地环境的能力。正如萨珊人付出了巨大代价,在亚述人消亡数个世纪之后才发现的那样,大规模的灌溉农业会带来全面的环境改变,故在有些方面很脆弱(尤其是易受盐碱化的影响);而这一点,在早期进行较小规模耕作的农民中已是众所周知。所以,萨珊人的农业没有获得成功。

    尼罗河沿岸和美索不达米亚地区,是少数精英实行统治。他们过着锦衣玉食的奢华生活,农民却要辛勤劳作,有时还处于长期贫困之中。对于掌控多数民众的少数人而言,实行中央集权式的政治与经济控制最为理想,即便这种控制意味着他们必须遏制地方的知识,禁止传统的解决办法,以及消磨百姓在面对不断增长的实物税需求时的韧性。印度河文明似乎正好与之相反,是一个去中央集权化和极具多样性的社会,倡导社会平等(至少在城市中如此),权力则掌握在那些靠着土地为生的小社群手中。在这里,迁徙就是人们为适应洪水不足与干旱而经常采取的对策。即便到了沙罗室伐底河干涸、印度河流域诸城解体之后,这种独特的印度河文化及其制度,也依然存续了一段时间。如果说过去有什么例子,说明了传统知识与地方性办法对解决气候变化问题的重要价值,那就非印度河文明莫属了。

    与此同时,我们现代的工业化世界实行的却是一种经济极端不平等的制度,它建立在一种崇尚积聚、增长和剥削的意识形态之上,让少数精英靠别人的劳动变得富裕起来。然而,许多资本家都会忘记——或者更喜欢无视——还有无数人生活在农村,并且按较为传统的方式生活。尽管生活艰难,但这些人还是生存下来了,原因就在于他们依赖的是古老而传统的农耕和放牧策略;这些策略对所有人的未来都至关重要,在现代世界中也仍然具有可持续性。

    虽然考古学家已经让我们了解到大量有关远古时代气候变化与适应情况的知识,但我们也有许多的历史记录与科学资料,涵盖了过去的2,000年。我们将会看到,就算是几十年的短期干旱或者短暂的寒潮,也曾导致死亡与苦难,并且最终导致一些实力最为强大的帝国灭亡。在接下来的各章中,我们将从意大利开始,然后一路横跨整个世界,去探究其他几个在气候变化面前崩溃的帝国。偶尔,我们也会看到人们成功应对气候挑战的情况,并且学习他们的经验。但我们首先要探究的,就是罗马帝国的遭遇。

    [1] Herodotus, The Histories, trans. Robin Waterfield (Oxford: Oxford University Press, 1998), bk. 2, line 111, 136.
    [2] J. Donald Hughes, “Sustainable Agriculture in Ancient Egypt,” Agricultural History 66, no. 2 (1992): 13.
    [3] Barry Kemp, Ancient Egypt: The Anatomy of a Civilization, 3rd ed. (Abingdon, UK: Routledge, 2018),这是一部了解古埃及文明的出色指南。
    [4] I. E. S. Edwards, The Pyramids of Egypt (Baltimore: Pelican, 1985), 12.
    [5] Mark Lehner, The Complete Pyramids (London: Thames & Hudson, 1997). See also Miroslav Verner, The Pyramids. Rev. ed. (Cairo: American University in Cairo Press, 2021).
    [6] 佩皮二世的在位时间存有争议,有可能短至64年;但按照法老的标准来看,这仍然是一段令人印象深刻的漫长统治时期。
    [7] 在埃及学当中,气候变化在古王国的没落过程中所起的作用仍是一个具有争议的问题。有一篇论文对各种观点进行了有益的总结:Ellen Morris, “Ancient Egyptian Exceptionalism: Fragility,Flexibility and the Art of Not Collapsing,” in The Evolutionof Fragility: Setting the Terms, ed. Norman Yoffee (Cambridge,UK: McDonald Institute for Archaeological Research, 2019), 61–88。
    [8] 人们认为《伊普味陈辞》(The Admonitions of Ipuwer)的创作时间可以追溯至中王国时期,这是一部不完整的文学作品,保存在大约公元前1250 年的一份纸莎草纸上,但其正文源自更早的时代。这是世人已知最早的一部政治伦理学专著。伊普味认为,贤明的法老应当约束其手下官吏,并且执行众神的意志。引自 Barbara Bell,“Climate and the History of Egypt: The Middle Kingdom,”American Journal of Archaeology 79 (1975): 261。
    [9] Barbara Bell, “The Dark Ages in Ancient History, I: The

    First Dark Age in Egypt,” American Journal of Archaeology

    75 (1971): 9.

    [10] 对印度河文明的概述之作:Andrew Robinson, The Indus: Lost

    Civilizations (London: Reaktion, 2021)。亦请参见 Robin

    Coningham and Ruth Young, From the Indus to Ashoka:

    Archaeologies of South Asia (Cambridge: Cambridge University

    Press, 2015)。

    [11] Ashish Sinha et al, “Trends and Oscillations in the

    Indian Summer Monsoon Rainfall over the Past Two Millennia,”

    Nature Communications 6, no. 6309 (2015); Peter B. deMenocal,

    “Cultural Responses to Climate Change During the Late

    Holocene,” Science 292, no. 5517 (1976): 667–673. See also

    Alena Giesche et al., “Indian Winter and Summer Monsoon

    Strength over the 4.2 ka BP Event in Foraminifer Isotope

    Records from the Indus River Delta in the Arabian Sea,”

    Climate of the Past 15, no. 1 (2019): 73. doi: 10.5194/cp

    15-73-2019.

    [12] Gayatri Kathayat et al., “The Indian Monsoon

    Variability and Civilization Changes in the Indian

    Subcontinent,” Science Advances 3 (2017): e1701296.

    [13] Mortimer Wheeler, The Indus Civilization, 3rd ed.

    (Cambridge: Cambridge University Press, 1968), 44.

    [14] 基本资料:Cameron A. Petrie, “Diversity, Variability,

    Adaptation, and ‘Fragility’ in the Indus Civilization,”

    in Yoffee, Evolution of Fragility, 109–134。

    [15] C. A. Petrie and J. Bates, “ ‘Multi-cropping’, Intercropping and Adaptation to Variable Environments in Indus South Asia,” Journal of World Prehistory 30 (2017): 81–130,这是一篇全面论述印度河农业的论文。

    第五章 罗马的衰亡(约公元前200年至公元8世纪)

    公元 350 年,罗马帝国正处于鼎盛时期;其规模之大,令人难以置信。罗马帝国的公民,从欧洲西端的西班牙到远至东方的尼罗河流域,在各地繁衍生息着。罗马帝国的军团驻守在气候寒冷的不列颠北部的哈德良长城上,控制着莱茵河与多瑙河沿岸的防御工事,在撒哈拉沙漠北部边缘与亚洲西部也保持着强大的军事实力。罗马这座“永恒之城”最初只是一个小小的镇子;根据传说,此城是公元前753年由罗慕路斯与雷慕斯这对双胞胎兄弟所建,据说他们是由一头母狼养大的。罗马先是变成了一个君主国,然后是共和国,最终又成了一个庞大帝国的中枢。然而,公元476年最后一任皇帝退位之后,这个帝国便土崩瓦解了。

    罗马帝国为什么会分崩离析,是历史上一个存有重大争议的问题。[1] 1984年,德国古典学者亚历山大·德曼特曾经列举了自古典时代晚期以来,人们针对罗马帝国衰亡提出的不下210个原因。如今世间无疑提出了更多的原因,但也有了一种重大的区别,那就是:对于古罗马时期的气候变化,以及气候变化对人们生活的影响,我们有了更加深入的了解。

    暖和的开始(约公元前200年至公元150年)

    罗马帝国诞生于一个气候温暖、普遍湿润且持久稳定的时期;传统上,人们将这一时期称为“罗马气候最宜期”(Roman Climatic Optimum,略作 RCO),它从公元前200年左右一直持续到了公元150年。[2] 种种宜人的气候条件,与公元前 43 年阿拉斯加地区的“奥克莫克二号”火山大规模喷发之后火山活动大幅减少的时间相吻合。从公元前 44 年尤利乌斯·恺撒遇刺到公元169年之间,并没有出现什么重大的火山喷发;就算公元79年著名的维苏威火山喷发,规模也相对较小。在西方,北大西洋涛动与大西洋西风带是两大主导因素。东方则有一系列的气候因素参与,其中包括印度洋季风、厄尔尼诺现象,以及北纬30°的持久性副热带高压,它们单调而有规律地遏制着降水。这是一个温暖和气候稳定的时期;对任何智人而言,条件都很完美。45座高山冰川开始消退,直到公元3世纪。高海拔地区的树木年轮表明,最高气温出现在公元1世纪中叶。正是当时罗马的博物学家老普林尼[3],指出了山毛榉不只能在海拔较低之处茁壮成长,也喜欢生长在高山上。当时的整个地中海地区一直气候湿润,降水丰沛。

    “罗马气候最宜期”凭借较高的气温和通常很充沛的雨水,为地中海地区的农业创造了奇迹,尤其是小麦,这种作物对降雨和气温变化极其敏感。多年的较高气温与充沛的降水扩大了耕作的范围,提高了土地的生产力,所以古罗马时期种植的谷物要比数百年之后中世纪农民种植的谷物产量更高。据一项保守的估计数据,气温每上升 1℃,就会增加100万公顷适宜耕作的土地,足以多养活300万至400万人。不仅小麦的种植面积扩大了,像橄榄和葡萄等主要作物也是如此。

    有三大因素共同作用,促进了罗马疆域的扩张,即贸易、技术与气候。降雨增加,让北非地区变成了罗马的一座粮仓。如今,北非国家却须进口粮食了。不断上升的人口密度,将农民推向了更加边缘的地区。随着帝国不断发展和稳固下来,各地交通水平与长途贸易水平都大幅提高,使得原本具有风险的农耕变成了一种更加现实和风险较低的活动。属于半干旱气候的北非地区见证了灌溉农业的爆炸式增长,那里兴建了水渠、堤坝、蓄水池,以及简单却很巧妙的暗渠——这种设施能够利用重力,将地下水从海拔较高的地方输送到可耕作的低地上。[4] 在“罗马气候最宜期”达到顶峰的时候,作物种植拓展到了如今的撒哈拉沙漠北部。在公元2世纪干旱卷土重来期间,沙漠便再次开始扩大。在东方,来自死海地区索瑞克石窟中的洞穴沉积物则说明,公元100年之后那里的降雨量曾急剧下降。

    “罗马气候最宜期”快要结束的时候,夏季气候开始势不可当地加速转变成更严重的干旱。有一种观点认为,这种情况,是由于古罗马的农民为了建筑、生火和燃料所需的木材而对地中海地区的森林乱砍滥伐。上述活动,都会导致地面向大气中反射更多的热量。如此一来,土壤中通过蒸发进入低层大气中的水分减少,使得夏季的降水也减少了。假如这种观点是正确的——争论还在继续——那么,随着“罗马气候最宜期”结束,人为因素与自然因素就开始一起发挥作用,而罗马帝国在随后的数个世纪里,也一直面临着由此带来的压力。

    古典学者凯尔·哈珀指出:“气候就是古罗马人能够创造奇迹的有利背景。”[5] 他认为,罗马帝国统治的土地曾是“一座巨大的温室”。“罗马气候最宜期”导致的发展,在其规模与抱负方面都是史无前例的。不过——这个“不过”很严重——此种扩张看似神奇,其稳定性却直接取决于人类无法掌控的一些强大因素。

    公元150年之后的3个世纪里,罗马帝国的气候变得日益变幻莫测和不稳定起来,非但让农业和统治方式的调整变得反复无常,而且让帝国的人口也变得反复无常起来。各种不受掌控的气候变化力量开始产生微妙的作用,有时还会带来巨大的影响。

    正如哈珀进一步指出的那样,地中海向来都是一个气候变化剧烈的地区,而“罗马气候最宜期”气温较高、降雨丰沛,有可能缓解了每年气候莫测的程度;对当时的农民而言,气候过度不可预测是一种重要的现实情况。公元128年,经常出巡的哈德良皇帝巡察了非洲诸省。在巡察期间,那里下了5年以来的第一场雨;当年的小麦价格,要比过去气候较为湿润的数十年里高出了 25%。“御驾一到,天降甘霖”这样的奇迹固然很好,但还需要采取切实措施才行。于是,哈德良皇帝冒冒失失地下令,建造一条长达120千米的引水渠来为迦太基供水;这也是古罗马人建造的最长水渠之一。[6]皇帝的顺应之举虽然令人钦佩,但实际上,它不过是对数个世纪以来肆虐罗马帝国心脏地带的一场旷日持久的干旱危机所做的一种反应罢了。

    韧性与瘟疫(公元1世纪以后)

    罗马帝国是一个由农业、人口、财政、军事与政治制度错综交织而成的庞大帝国。各种各样的风险,都曾危及整个国家。诚如马可·奥勒留皇帝所言,整个帝国就像一座风雨飘摇的岛屿,被敌人的舰队、海盗与暴风雨所围困。每位皇帝都不得不在一个持久动荡的世界里直面诸多困难,其中就包括了气候变化。风险管理靠的是人,须利用各种来之不易的策略,去应对意外的洪水、漫长的干旱,以及由此导致的让粮食供应不堪重负的饥荒等事件。压力就是罗马帝国晚期一种始终存在的现实,而其中的大部分压力,又日益来自气候变化。

    最有效的应对武器在农村,在业已获得了代代相传的经验与专业知识的农耕群落里:作物多样化和稳健的粮食储存策略,以及一些奇异的当地作物,它们能够在干旱年份里茁壮成长,故是一种重要的保险措施。自给自足、在饥馑时期帮助困难亲属与邻居的互惠之举,以及精心安排的资助,都属于农民手中的“武器”。罗马帝国的农村社会背后,蕴藏着一种深厚的自力更生精神。比如说在不列颠,罗马时期的农耕定居地似乎已经实行了一定程度的自治。尽管这种遗址如今为世人所知的不多,但英格兰南部的萨默塞特郡却发掘了两处。第一处是西格韦尔斯,它由一些互不相连、修有石墙的长方形建筑组成,而附近的卡茨戈尔遗址则以一种呈直线形的“街道”布局为标志。[7] 这两个罗马-不列颠定居地属于同一时代,但看上去却截然不同。它们显然不是按照帝国那种自上而下的规则千篇一律地组织起来的,而是根据当地居住者的需求独立发展出来的,有时还是在罗马时代以前就发展了漫长的时间,比如西格韦尔斯就是这样。

    有些顺应策略,也拓展到了城市与市镇。城市里的粮食储存,在帝国各地都占有极其重要的地位。许多城市都是沿着主要河流与水道发展起来的,这一点并非巧合,因为河流与水道降低了它们对各自腹地的依赖程度。众所周知,内陆城市很容易受到短期干旱的影响,因为这些城市输入与输出粮食都要困难得多。

    出现粮食危机时,罗马帝国政府早已做好了准备,要么是提供粮食,要么就是遏制任何一种企图剥削他人的做法。这就是农村中普遍存在的互惠与资助原则的一种真正延伸。帝国实行的应对策略,往往规模宏大。公元117年至138年在位期间,哈德良皇帝巡视了许多城市,并且“悉加眷顾”。[8] 他修造水渠供水,兴建港口,进口粮食,甚至为公共建设提供资金。那些为罗马供应粮食的市政粮仓,规模都很巨大。塞普蒂米乌斯·塞维鲁皇帝(193—211年在位)极其关注罗马的粮食供应问题,以至于去世后他还留下了可供罗马吃上7 年的粮食。粮食救济变成了帝国慷慨大度的一种公认象征。公元2世纪时,古城以弗所发出的一封公函中曾经承诺,只要作物收成足供罗马所需,埃及就会将粮食运往此城。“若如吾等所祷,尼罗河之泛滥一如往昔,埃及人之小麦亦获丰收,则汝等当为母国之后率先获得粮食者。”[9] 在很多方面,古罗马人面临的全球粮食供应挑战都与我们如今一样,因为当时的人正越来越容易遭受饥荒的威胁。我们不妨想一想现代美国或者欧洲各国超市的情况。您可以买到产自世界6个大洲的食品。与古罗马人一样,我们的食品供应也严重依赖单一栽培,依赖玉米、小麦和其他谷物的大规模生产,也依赖于工业化的畜牧业。假如人类食物链中的部分链条因为全球变暖而断裂,又会出现什么结果呢?或者,面对新型冠状病毒之类的人类流行病,还有像“疯牛病”等有可能在短期内大幅减少牛肉供应量的动物瘟疫时,它们对食品供应的影响情况又会如何呢?

    古罗马人的食物链,达到了极其复杂的程度。在公元 2世纪,大约有20万罗马公民每月都能领到5斗小麦;光是用于救济的小麦,发放量就达到了8万吨。[10] 每年都有一支大型的运粮舰队,从亚历山大港驶往罗马,且舰队一向都会受到兴高采烈的罗马人夹道相迎。值得注意的是,向罗马城运送粮食的任务由私人负责,官方并未参与;这一点,应归功于当时粮食市场的雄厚实力。不过,罗马的谷物供应主要依赖于两大粮仓,即埃及各州与北非其他地区。

    纵观帝国的历史,罗马帝国堪称一家庞大的企业,以不断发展的城市与远远超出了帝国疆域的贸易网络为基础。古罗马人很清楚中国人的存在。罗马帝国是一个宏伟显赫而令人敬畏的文明社会,促进了人类的远距离流动与联系。但帝国也变成了流行性疾病的温床;这一点,很大程度上是由城市里的卫生问题导致的。帝国境内的主要城市人口都很稠密,居民住得很近,还挤满了来自遥远国度的移民与奴隶。古罗马的市政工程师将水源引入各座城市的中心,供人们饮用、沐浴和冲洗下水道。他们修建了一些较大的公共厕所,一次能供50 至100 人使用。但这些城市里的垃圾处理和卫生设施充其量只能算是很简陋的。据说,光是罗马城,一天就能产生45 300公斤的人类粪便。蛔虫、绦虫以及其他寄生虫十分常见,而大量的细菌则让城市变成了一个个致命的、传染病频发的杂乱之地,夏末和秋季这段死亡高峰期尤其如此,因为夏季的炎热很致命。不论是富人还是贫民,都会感染疟疾、伤寒、慢性沙门菌和腹泻等。就连皇帝本人,也未能幸免:公元81年,皇帝提图斯很可能就是死于疟疾。“罗马气候最宜期”当中气温较高、雨量增加的那几个世纪,似乎助长了疟疾的流行。罗马与其他的主要城市,都成了传染病的“培养皿”。

    当时的瘟疫,通常源自内部而非外部输入,这种情况直到公元2世纪马可·奥勒留统治时期才有所改变;当时,由于罗马开辟了季风航线,故帝国与印度洋、孟加拉湾沿岸地区的贸易联系大幅增加了。[11] 到了此时,每年都有差不多120 艘来自印度的商船抵达红海诸港。商船带来了黄金、象牙、胡椒和其他香料,还有中国的丝绸。胡椒变成了人们常用的一种香料,连遥遥驻守不列颠北部哈德良长城的士兵也不例外。亚历山大港扼守在地中海与印度洋世界之间的十字路口,成了东方奢侈品的最大市场。大部分贸易起源于盛产象牙与黄金的东非沿海,而那里正是一个拥有丰富的微生物多样性,以及有可能致命的病原体的地区。

    横跨欧亚大陆的“丝绸之路”,也是一条历史悠久、传播人体携带的病原体的路线。2016年,研究人员在中国西北地区一个大型的“丝绸之路驿站”发现了旅行者远距离传播传染病的最古老证据。他们的研究,集中在公元前111年前后挖成,直到公元109年仍在使用的一座汉代茅厕上。在一把把“个人卫生棒”(即用织物包裹着的擦粪棒)上,研究小组发现了4种不同的寄生虫虫卵,其中包括了中国的肝吸虫虫卵,它是一种能够引发腹痛、腹泻、黄疸和肝癌的寄生性扁虫。[12] 这种寄生虫只能在雨水充足、气候潮湿的地区才能完成其生命循环;然而,悬泉置驿站却位于气候干旱的塔里木盆地东端。这就说明,肝吸虫不可能曾在这个干旱地区普遍存在,而如今距这里最近、流行地方性肝吸虫病的地区,也在大约1,500千米以外。因此,研究人员的结论就是:一个本已感染了传染性肝吸虫病的旅行者,必定曾强忍腹痛,长途跋涉到了此地。不过,与很快就会让整个世界陷入困境的瘟疫相比,寄生虫及其虫卵就算不上什么了。

    公元2世纪中叶,一种似乎起源于热带非洲且传播迅猛的瘟疫,在安东尼·庇护在位期间(大概是在公元 156 年)传播到了阿拉伯半岛。公元166年年底,如今所称的“安东尼瘟疫”传播到了罗马,然后从一个人口聚集地传到另一个人口聚集地,迅速传遍了整个西地中海地区。[13] 整个罗马军团被瘟疫消灭,招募到的人员数量也大幅减少了。这场大流行是历史上首次有记载的瘟疫,从东南向西北蔓延,而其传播之势也完全不可预测。我们无法估算出究竟有多少人因此丧生,但死亡人数有可能多达罗马帝国总人口的三分之一。罗马著名的内科医生盖伦所描述的症状与天花最为接近,这是一种通过人与人之间的接触传播的疾病。在亚历山大港之类的大城市里,这种疾病先是潜伏起来,然后突然暴发。公元191 年罗马的一次大暴发中,每天都有2,000 多人丧生。“安东尼瘟疫”席卷了整个帝国;此时正值一个关键时刻,国际贸易联系发展到了一个新的成熟阶段。

    尽管遭受了巨大的经济破坏与人口损失,但罗马帝国并没有崩溃,因为下一场大瘟疫要到公元249年才会再次暴发。人口数量很快恢复过来,因此“安东尼瘟疫”并未在人口方面留下长久的影响。这场瘟疫主要的短期后果,就是中断了基本的粮食生产与农业,饥荒则蔓延到了帝国的边远地区。在有些地方,城市居民还曾袭扰农村地区,夺走农村社区的粮食,因为城市居民觉得那些粮食本来就是他们的。帝国采取的一些重大政治调整措施,我们在此无须去关注,但变幻莫测的气候变化与不久之后就将露头的新病菌,暴露出了帝国的脆弱性。

    天花的暴发与持续的干旱引起了普遍的悲观情绪。到了公元3世纪40年代末,迦太基主教西普里安身处日益干旱的北非地区,在作品中如此抱怨道:“世界日渐老耄,殊无往昔之生机……冬日既至,无充沛之甘霖,至种不润;夏之赤日,于麦田之上亦无往昔之焱焱。”[14] 他认为,当时的世界有如一个面色苍白、行将就木的老人,可他错了。

    后勤与脆弱性(公元4世纪)

    尽管西普里安主教如此悲观,但在公元4世纪的大部分时间里,罗马帝国却是一派欣欣向荣的气象。罗马仍然笼罩在一种特殊的光环之下。城中居住着大约70万人,每日配给的口粮是烤面包(而非谷物)、橄榄油以及葡萄酒,价格只有市场售价的零头;[15] 还有12万人获得猪肉救济。由于这些配给物资全都是免费的,故首都的人口急剧增长了。这一切的中心,是一个由国家掌管的庞大军事综合体。有50万人在战场上服役。一个复杂的后勤系统,为军队提供所有的装备、骑兵所用的坐骑和驮畜,还有军粮。仅仅军粮需求一项,就是帝国的一大负担,使之容易受到干旱以及其他一些比帝国当局意识到的更为严重的气候变化所影响。与此同时,公元330 年建成的君士坦丁堡(即如今的伊斯坦布尔)则成了正在崛起的东罗马帝国的中心。在公元4世纪,君士坦丁堡的人口增长到了原来的10倍,从3万人左右增长到了30万。

    原本应当运往罗马的粮食,如今开始往东而去。诚如凯尔·哈珀恰如其分地指出的那样:“亚历山大港与君士坦丁堡之间的海上,往来的船只极多,以至于就像一条狭长的人造‘陆地’。”[16] 这座建于 4 世纪的城市,既是当时国际贸易的十字路口,也是一个重要的希腊文化中心。

    幸运的是,此时的气候仍然相对宜人,气温较高,从而促进了经济增长;只不过,“罗马气候最宜期”那段天下太平的日子,却一去不复返了。尽管繁荣昌盛,但帝国依赖于集约化的单一栽培,尤其依赖于从北非进口的粮食。即便是在干旱年份,最可靠的粮食来源仍然是尼罗河流域,那里由季风雨导致的洪水似乎总是充沛得很。土地肥沃的泛滥平原与丰沛的洪水结合起来,就形成了一个天然的灌溉系统,而且早在法老们采取行动之前,人们就对那个系统进行了改造与利用。后来,罗马和帝国的大部分地区便靠埃及来养活了。

    然而,就算是埃及巧妙的“尼罗尺”水位计,也无法预测出种种影响尼罗河泛滥的不可阻挡的长期气候变化。最重要的罪魁祸首,就是遥远的南方与东方的热带辐合带和印度洋季风,它们一直都在非常缓慢地逐渐南移。尼罗河的泛滥是否稳定,对此河沿岸的人类社会与文明有着极大的影响。

    人们对纸莎草纸进行的细致研究表明,公元前 30 年屋大维(即后来的奥古斯都皇帝)吞并埃及之时,正值尼罗河泛滥稳定可靠,还出现过多场优质洪水的时期;这种情况,一直持续到了公元155年。从公元156年开始,泛滥就不再那么可靠,而一度富饶的埃及,粮食出口形势也受到了影响,并且常常是极其严重的影响。

    除了季风变化,处于正指数的北大西洋涛动也导致了一些无法预测的情况。[17] 公元 3 世纪末,一段漫长的正指数北大西洋涛动期开始了,且在整个4世纪一直持续;其涛动水平之高,我们只在后来的“中世纪气候异常期”里才再次见到(参见第十一章)。高山冰川纷纷消退。不列颠的树木年轮记录表明,当时北欧与中欧地区的降雨量曾居高不下。法国和德国的橡树年轮,则记录了降雨量直到公元5世纪初都在不断增加的情况。但是,这个降雨充沛的时期并不长久。随后的3个世纪里,气候条件就没那么稳定了。铍同位素记录表明,当时的太阳辐射量(即到达地球的阳光量)出现了大幅下降。气候随之开始变冷,高山冰川也再次开始向前推进。地中海的南部边缘遭遇了严重干旱,让北非地区遭到了重创。城市里的粮食开始短缺,而富人们却试图从上涨的粮价中牟取暴利。黎凡特的沿海地区降雨稀少,长期以来都以降水无常而闻名。尽管后来及时出现了较为丰沛的大雨,但关于这场大旱的故事,却在犹太人的希伯来语作品中长久留传了下来。

    冬季风暴的轨迹边缘,只在地中海上空一闪而过;热带季风与遥远的厄尔尼诺现象,导致帝国东部的降雨量不断地波动。干旱与饥荒,出现得更加频繁。公元383年,由于尼罗河的泛滥水位极低,故许多州的粮食都严重歉收。粮食开始普遍稀缺,情况极其严重,连相邻州也无法像过去一样运送粮食、相互帮助了。几个世纪以来,古罗马的哲人与诗人笔下描绘的,始终都是一个太平、仁义的世界。可如今呢,种种邪恶力量却降临到了人类头上。可想而知,当时的人们都以为,要么是公元4世纪刚刚皈依基督教的罗马帝国内的那个基督教上帝发怒而阻止了降雨,要么就是各州中那些尚未皈依者所信奉的异教神灵发怒而阻止了降雨。流行性疾病之所以不可避免地随着饥荒而暴发,部分原因就在于人们吃了实际上不能食用的东西或者有毒的食物,从而降低了他们对各种传染病的抵抗力。

    马匹、匈人与恐怖场面(约公元370年至约公元450年)

    西罗马帝国的东边,坐落着广袤的欧亚大草原,上面没有树木,只有一望无际的草地与灌木丛。那里的降雨毫无规律且变幻莫测,全然取决于来自西部的暴风雨的移动路径。古罗马人很瞧不起那些在无法耕作的大草原上到处流浪的游牧民族。古罗马人与中国的汉族都属于定居的农耕民族,可游牧民族却在不停地迁徙;他们骑马放牧,同时挤占定居民族的土地,先是袭扰中国中原王朝,后来又向西进犯。公元 4 世纪,一群群游牧的匈人出现在罗马帝国东部的边境。青藏高原的一系列桧树年轮表明,那里属于一种大陆性气候模式与季风气候相结合的环境。从公元350年前后至公元370年间,这个地区遭遇了 2,000 年来最严重的一个大旱时期。这一点,可能就是游牧部落开始向西迁徙的原因。[18]

    气候导致人们进出干旱环境——人们在降水较充沛的时期进入这些地区,而在气候干旱时则离开——这种效果开始发挥作用。匈人应对干旱的办法,就是跳上马背、四下散开,为他们的牧群寻找水源较为充沛的牧场。大草原上的政治权力中心,也从西伯利亚的阿尔泰地区向西转移。这次突然迁徙的时间,与游牧民族形成的不同联盟之间展开激烈竞争的一个时期相一致。古罗马军人兼历史学家阿米亚努斯·马凯林努斯,曾经生动直观地描绘了匈人的情况:“虽具人形,然皆丑陋,生活坚忍,乃至无须用火,无须美食……几至臀不离鞍。”[19] 他们那种威力强大的反曲弓,据说射程达到了150米。他们所用的战术极其凶狠,令人生畏。

    随着游牧民族不断从多瑙河中游地区向西迁徙,匈人的处境也到了紧要关头。公元378年,瓦林斯皇帝在哈德良堡附近的一场血战中被打败。有多达2万名罗马士兵在这场屠戮中丧生。公元405年至410年间,面对哥特人和后来其他民族的不断入侵,西罗马帝国逐渐衰亡了;入侵民族越过莱茵河,洗劫了高卢,并且向西征伐,远至西班牙。公元 395年狄奥多西一世皇帝死后,罗马帝国的东、西两半就再也没有统一到一个君主治下。公元410年,哥特人的统治者阿拉里克进入罗马。西罗马帝国的军事力量已经荡然无存,而罗马的实力也随之瓦解。阿提拉是所有匈人头领中最臭名昭著的一位,曾大肆劫掠了巴尔干地区。直到遭遇一场瘟疫,此人才在君士坦丁堡的城门前止了步;当时的君士坦丁堡,已因公元447年的一次大地震而遭到了重创。随后,阿提拉进军高卢和意大利,但因出现饥荒和军中流行在潮湿低地感染的疟疾而撤退,回到了大草原上。到6世纪时,由于始终须靠其他地方生产的粮食才能维生,故罗马的人口也急剧减少了。

    公元4世纪之初,戴克里先与君士坦丁两位皇帝已经加强了对帝国行政的控制。他们宣称自己是神圣的君主,崛起于东部诸省的繁荣兴旺之中。戴克里先让皇帝变成了一位高高在上的国君,极其倚重礼仪上的治国方略来扩大自己的权力,与早期那些从一座城池迁往另一座城池的皇帝形成了鲜明的对比。君士坦丁大帝则把自己的都城建在海上,建在连接东方与西方的贸易线路上。他的统治,是罗马帝国晚期的根基。君士坦丁堡取代罗马,成了国际贸易的十字路口和一个重要的希腊文化中心。原本运往罗马的粮食,如今则转道往东而去。

    没有什么比每年对帝国粮库进行审计更能突出皇权之显赫。归根结底,皇帝最基本的义务,就是养活手下的臣民。都城有50万居民,皇帝做任何事情都不能靠运气。一个庞大的官僚机构,控制着税收与粮食供应。都城的安全至关重要,而这种安全是靠提供粮食来保证的。饥荒的威胁曾经在罗马引发内乱,故首都有了大量的粮食储备,足以养活50万人;其中光是获得免费面包口粮的人,就达8万之多。与数个世纪以来的情况一样,君士坦丁堡的粮食供应也来自埃及。在查士丁尼统治时期(527—565),每年都从亚历山大港运来31万升小麦。[20]

    每一年,皇帝都会登上自己的战车。整个帝国中权力为一人之下、万人之上的禁卫军首领,会亲吻皇帝的双脚。皇家的游行队伍开进城中繁忙的市场区,然后朝着金角湾那些巨大的公共仓库进发;一艘艘装载着货物的船只,就停泊在金角湾里。到了这儿,掌管粮仓的庾吏就会呈上他的账簿。如果一切都没问题,庾吏及其会计就会获得 10 磅黄金和丝绸长袍,以资奖励。这场煞费苦心、精心上演的公开盛事向所有人表明,帝国的粮食供应很安全。

    查士丁尼大帝统治着一个真正全球性的和很不稳定的城市,其中到处都是来自已知世界各个角落的人与货物。当时的君士坦丁堡是一个国际化的大都市,位于众多较小城市组成的广袤网络的中心。不过,就在皇帝率领群臣巡察粮仓时,生态系统中的另一个成员却在暗中冷眼旁观着:那就是学名为Rattus rattus 的黑鼠。这种无处不在的啮齿类动物身上携带着鼠疫杆菌,也就是导致腺鼠疫的那种微生物。

    瘟疫于541年传播到埃及,并在接下来的两个世纪里蔓延到了罗马帝国全境。史称“查士丁尼瘟疫”的这场疫病,起源于中国西部的高原地区。[21] 到了 6 世纪,无论是经由陆路还是横跨印度洋的那些古老的贸易线路,罗马帝国与亚洲之间的贸易都已是一桩大生意,尤其是胡椒与其他香料贸易。丝绸也是一种珍贵的商品,但其生产大多集中在红海地区。红海以西,是埃塞俄比亚地区信奉基督教的阿克苏姆王国,以东则是阿拉伯半岛南部的希木叶尔王国,该国当时信奉犹太教,并且脚踩两只船,与罗马和波斯都结了盟。这个地区极具战略意义。因此,公元571年伊斯兰教的先知穆罕默德选定在红海沿岸阿拉伯半岛一侧的麦加降生,也就不足为怪了。

    病菌随着商人而来,而藏在船只运载的货物当中、已经感染了瘟疫的黑鼠也是如此。瘟疫首先出现于培琉喜阿姆,那里靠近红海北部的克莱斯马港(Clysma),从印度而来的船只经常在此停靠。从那里开始,瘟疫轻而易举地传到了尼罗河流域,然后进入了罗马帝国。登陆之后,瘟疫便朝着两个方向传播:一是往西传至亚历山大港,然后沿着尼罗河流域而上;二是往东,不但蔓延到了地中海沿岸,还传播到了整个叙利亚与美索不达米亚。罗马帝国那个高效的网络将瘟疫带到了内陆地区,但瘟疫经由海路传播得尤其迅速。1542年3 月,疫情扩散到了君士坦丁堡,并在城中持续了2个月之久。在疫情高峰期间,据说每天都有16,000人丧生。城中的50 万居民当中,死了25万至30万人。当地社会崩溃,市场关门,结果出现了饥荒。就连各级官吏,也十去其一。尽管人们将死者集中安葬在一座座大坑中,可尸体还是到处堆放着。许多死者层层叠叠,陷进“下方尸体渗出的浓液中”。以弗所的教士约翰曾目睹了当时的恐怖场景,并且撰文声称他看到的是“神烈怒的酒醡”[22] 。[23] 整个国家在这场灾难中摇摇欲坠。小麦价格暴跌,因为要供养的人口大幅减少了。一场严重的财政危机削弱了国家的力量,帝国几乎无力调动一支军队,更别提支付军饷了。东罗马帝国的人口,行将骤减。从542 年至619年,君士坦丁堡平均每15.4年就会遭到一场瘟疫重创。公元747年,由于有太多的人死于新的瘟疫,皇帝只得通过强制移民的方式往这座几乎荒无人烟的城市重置居民。

    酷寒时代(公元450年至约公元700年)

    在罗马历史上的这个关键时刻,从公元450年至公元700年前后这3个世纪不稳定的气候变化,逐渐演变成了较为显著的降温,从而有点儿像是到了“大冰期”。公元450年之前,北大西洋涛动处于正指数模式;可到了公元5世纪晚期,北大西洋涛动指数却突然转正为负,导致了长久稳定的暴风雨轨迹南移。地中海大部分地区的降水量都有所增加。与此同时,之前几百年里火山毫无动静的局面被打破,出现了猛烈的火山爆发。公元536年是一个“无夏之年”,阳光几乎没有带来多少温暖;大气中的火山灰还遮云蔽日,让太阳也变得暗淡无光。在帝国的东部地区,这个寒冷而不见阳光的年份则导致了葡萄酒产量大减。[24]

    意大利政治家卡西奥多鲁斯曾经看到过一个蓝色的太阳。[25] 意大利当年的作物虽然歉收,但前一年的丰收弥补了粮食分配上的欠缺。公元536年这一年,不但给极北方的爱尔兰带来了饥荒,也让遥远的中国异乎寻常地感受到了夏季的寒冷。通过将冰芯、树木年轮以及全球火山爆发的实物证据结合起来,我们如今就能确定,公元6世纪三四十年代是火山活动最异常与最严重的20年。公元536年北半球的大规模火山爆发,曾经让3月的君士坦丁堡上空为火山灰所笼罩;这一年,正是2,000年来最寒冷的一年。欧洲夏季的平均气温,下降幅度高达2.5℃。公元539年至540年间热带地区一次更加猛烈的火山爆发,则让欧洲的气温再次下降了大约2.7℃。当时的寒冷程度,比17世纪处于巅峰状态时的“小冰期”更加严重。

    幸好,公元535年的丰收在一定程度上暂时缓解了饥荒,而地中海地区那些农耕社会对作物歉收具有传统的韧性,这一点也发挥了作用。因此,这次饥荒的直接影响要比纯粹蔓延的饥荒更不易让人察觉。人们通常所谓的“古小冰期晚期”,充其量只能算是一个不恰当的标签;这个时期的降温,让帝国当局感受到了更大的压力,此前瘟疫的困扰与大草原上游牧部落在欧洲发动的密集袭击,早已让帝国当局不堪重负。公元500年前后,太阳活动已经开始大幅减少,导致太阳给地球带来的热量也少了。从公元6世纪30年代中期至公元7世纪80年代,太阳辐射量下降的同时,火山爆发也对全球的气温产生了影响。太阳辐射能锐减的幅度,甚至比17 世纪臭名昭著、气候酷寒的“蒙德极小期”里太阳辐射能的减幅还要大;至于详情,请参见第十三章。

    气候变化的影响,与气候变化本身一样,向来都因地而异。北大西洋涛动的突然变化,已经让暴风雨的轨迹南移,给意大利本土和西西里带来了丰沛的降雨和洪水。强降雪、低气温与更多的雨水,对土耳其(安纳托利亚)以及更往东的广袤地区也产生了影响。更为频繁的霜冻,导致许多传统种植区的橄榄树都被冻死了。北非地区则经历了灾难性的干旱化,导致大莱普提斯(Lepcis Magna)这座伟大的城市被人们所遗弃,其中的房屋则埋入了黄沙之下。北非地区不再是一座粮仓了。

    查士丁尼是一位积极主动的皇帝,他付出了巨大的心血,与气候变化导致的干旱做斗争,比如抗击持久的干旱。他下令修建了许多引水渠和大大小小的蓄水池,以及一座座战略性地分布于各地的粮仓。这位皇帝改善了粮食运输,命人开垦洪泛平原,并且让一些河流改了道。诚如一位作家所言,皇帝做到了“将林谷相连”和“让山海相接”。查士丁尼似乎认为,他可以像征服手下的臣民一样征服环境。但在他那个时代,各种大规模气候变化的力量都太过强大;一介凡夫,又怎能将其征服?

    查士丁尼奋力熬过了环境变化与瘟疫造成的双重灾难,但“古小冰期晚期”的极端气候却逐渐将帝国推向了一个关键的转折点。帝国相互联结的各个地区,则以不同的方式来到了这个关键时刻。归根结底,罗马帝国是在各种环境原因的触发下,从内部缓慢衰亡的。

    在地中海的东部,尼罗河流域已经变成一个经过精心改造和尽力组织的绿洲,因为罗马统治者的主要目的,就是让这里成为罗马的粮仓。粮食产自一个由沟渠、堤坝、抽水设施与车马组成的复杂系统,其中的各个方面都依赖大量劳力和异常艰辛的劳作。埃及人主要进行单一栽培,种植罗马与君士坦丁堡所需的小麦,除此之外几乎不种别的作物。在瘟疫导致罗马帝国诸城要供养的人口减少,使得小麦市场跌至谷底后,新收获的粮食供过于求,就给他们造成了巨大的经济损失。

    一种末日将至的感觉,在整个罗马帝国蔓延。一桩桩灾难性事件的沉重打击,似乎历数了上帝的愤怒与审判,因为上帝惩罚的都是虔诚的信徒。从6世纪起,我们就有了基督徒进行忏悔游行、旨在为不同社群赎罪的最早史料。教皇大格列高利曾经组织一场声势浩大的祈祷活动,进行了长达 3天的祷告与诵经。唱诗班齐声诵唱赞美诗,祈祷队伍则穿过了整座城市。据说,在连续不断的祷告中,曾有80人支撑不住而死去。这样的仪式,就是在呼吁人们进行忏悔。但到了最后,随着伊斯兰大军将东部领地从罗马帝国分离出去,一种新的、来自阿拉伯半岛的易卜拉欣一神论思想开始盛行起来。君士坦丁堡获取埃及粮食的那条生命线,停止了运作。数个世纪以来,罗马帝国一直如走钢丝,在脆弱与韧性的夹缝中艰难存续着。但到了最后,自然界种种不可避免的力量还是削弱了帝国百姓的意志,使得他们再也无法承受更多的苦难了。

    以任何标准来衡量,罗马帝国都像是一个庞大而复杂的企业,掌控着巨大的财富。帝国的历任皇帝,都面临着他们那些极其传统、协调良好的领地遭遇的诸多挑战。罗马帝国的衰落,是一个缓慢渐进的过程,从公元2世纪开始,一直持续到了8世纪。就像18世纪伟大的历史学家爱德华·吉本指出的那样,罗马帝国衰落的时间,比许多国家的整个兴亡过程更加漫长。[26] 这个内爆过程,并不是突然崩溃,而是一种缓慢的转变,是从一个严密控制和相对集权的帝国,变成了一个由不同社会和政治实体构成的组合体;其中的社会或者实体要么遭受了深重的苦难,甚至不复存在,要么就是兴旺发展起来了。罗马的繁荣发展,建立在奴役平民百姓尤其是奴隶的基础之上;帝国势力之所以曾经睥睨天下,是因为帝国具有优秀的军事组织能力,拥有高效地远距离运输粮食与其他商品的基础设施。帝国就是一种催化剂,使之容易受到短期与长期气候变化的影响。由于在运输和集中储存粮食方面付出了巨大的努力,因此出现相对短暂、只持续几年或者一二十年的气候事件时,帝国尚能应付。不过,随着干旱周期(尤其是特大干旱)变得更加旷日持久,对当地粮源与进口粮食的供应都造成了严重破坏,帝国的脆弱性就大大加剧了。加之罗马诸城不论大小,全都拥挤不堪,卫生条件恶劣,故像“安东尼瘟疫”与“查士丁尼瘟疫”这样的流行病既无可避免,也起到了决定性的作用。但是,尽管气候事件与瘟疫都属于转折点,我们也绝对不应忘记,经济与社会动荡,连同军事活动,常常是意外气候事件带来的冲击逐渐导致的。

    工业化之前的所有文明,都依赖于人类的劳动与自给农业。为了满足日益增长的城镇市场和供养常备军队而进行的农业集约化,以及为了养活劳工、军队和各级官吏而广泛运用的食物配给等发展手段,都加剧了日益复杂的社会在面对气候变化时的脆弱性。对于不愿冒险的自给农民而言,粮食盈余向来都很重要,因为他们耕种土地的时候,始终都对饥荒与营养不良心存担忧。相比之下,不断发展的城市和帝国则日益依赖于小麦之类的高效单一作物,可这种作物对干旱、寒冷以及降水过多都很敏感。罗马和君士坦丁堡开始严重依赖于进口遥远地区种植的粮食,而在那些地区,基本粮食作物的单一栽培差不多变成了一种产业活动。这两座城市和其他主要人口中心的居民,再加上军队和官僚阶层,全都依靠政府分配的口粮;这种配给制度,确保了政治与社会的稳定。尼罗河流域、欧洲的部分地区和北非其他地区都变成了罗马帝国的粮仓。在灌溉用水充足的几十年里,这种情况没什么问题;不过,等到埃及的洪水泛滥不足、干旱在北非各地的农田肆虐后,一切便都土崩瓦解。粮仓里空空如也,饥荒随之而来,结果就出现了粮食骚乱。面对气候变化与瘟疫,富裕的精英阶层与经常饥肠辘辘的平民之间那道日益加深的鸿沟,不可阻挡地扩大了。从罗马帝国的残垣断壁中,兴起了一个不同的、更加支离破碎的世界。国家被一些更有意义的地方性文化结构所取代,它们以新的方式塑造了世界。

    罗马帝国经历了一次又一次扩张,直到疆域从不列颠北部延伸到了美索不达米亚,并与更加遥远的地方有着贸易往来。这种扩张主要发生在气候条件相对有利的几个世纪里,将多种文化与经济纳入了一个单一而庞大的系统。其间,有许多政治人物都家喻户晓,比如尤利乌斯·恺撒、克娄巴特拉,以及许多各有优缺点的皇帝,比如奥古斯都、克劳狄乌斯、尼禄与哈德良等等。帝国是在制定了一系列经济、军事与政治战略的背景之下繁荣发展起来的,这一点值得注意,因为提出这些战略的人几乎没怎么花时间去思考长远的问题。无疑,他们也很少考虑那些会在他们有生之年过后出现的长期环境变化。尽管能够看出即将发生的种种灾难性气候变化,可我们如今的做法常常与他们没有什么两样。

    帝国后期只能采取被动的对策,因为不同于如今的我们,罗马当时并没有重大气候变化(其中也包括了重大干旱)的预警机制。

    回顾罗马帝国的解体与转型,我们很容易看出,其中有些方面与如今人们普遍关注的这个世界惊人地相似,只是我们面临的问题要重大得多罢了。易受气候变化的影响会带来种种危险,在这个方面,我们还有很多东西要向差不多2,000年前的帝王们学习。我们只要看一看如今食物链的全球化,就能明白这一点。相比于古罗马人来说,在面对重大的气候变化时,我们拥有调整自身食物链的潜在能力。不过,有一种可能性却始终存在:未来全球变暖的速度将有可能太快,规模有可能太大,以至于我们当中会有数万人甚至是数百万人挨饿。而且,如今几乎还没人从政治的角度来考虑这个问题。

    [1] 由于我们两位作者都不是研究古罗马的专业人士,故本章在很大程度上参考了凯尔·哈珀(Kyle Harper)一部经过了严密论证的综合性著作:《罗马的命运:气候、疾病和帝国的终结》(The Fate of Rome: Climate, Disease, and the End of an Empire, Princeton, NJ: Princeton University Press, 2017)。哈珀汇集了广博的资料,讨论了气候变化与流行病在帝国漫长的崩溃过程中的核心作用。这是一部非凡的作品,有时会引发争论,有时又引人深思,可以引领读者巧妙掌握这一主题的纷繁难懂之处。当然,在这里进行简要总结的时候,我们忽略了其中的许多争议与意见不一的地方。哈珀的作品当中,还含有一份全面的参考书目。亦请参见Rebecca Storey and Glenn R. Storey, Rome and the Classic Maya (Abingdon, UK: Routledge, 2017)。

    [2] 对于古罗马气候的概述,请参见Kyle Harper and M. McCormick, “Reconstructing the Roman Climate,” in The Science of Roman History, ed. W. Scheidel (Princeton, NJ: Princeton University Press, in preparation)。还有一份重要的综合性资料:Michael McCormick et al., “Climate Change During and After the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence,” Journal of Interdisciplinary History 43, no. 2 (2012): 169–220。关于“奥克莫克二号”火山喷发的资料:Joseph R. McConnell et al., “Extreme Climate After Massive Eruption of Alaska’ s Okmok Volcano in 43 BCE and Effects on the Late Roman Republic and Ptolomaic Kingdom,”Proceedings of the National Academy of Sciences 117, no. 27(July 7, 2020): 15443–15449. doi: 10.1073/pnas.2002722117。
    [3] 老普林尼(Pliny the Elder,23—79),古罗马时期一位百科全书式的作家兼博物学家,代表作是《自然史》(Natural History )。其拉丁语全名为盖乌斯·普林尼·塞孔都斯(Gaius Plinius Secundus),因其养子也叫普林尼,故冠以“老”“小”来加以区别。——译者注

    [4] 暗渠是指坡度平缓的地下渠道或者隧道,利用含水层或者深井来灌溉农田。它们在伊朗被称为“坎儿井”,在中东和北非地区广泛应用了数个世纪。它们基本上属于地下引水渠。

    [5] 该段的引文与来源:Harper, Fate of Rome, 53–54。

    [6] Harper, Fate of Rome, 54.

    [7] 关于西格韦尔斯(Sigwells):Richard Tabor, Cadbury Castle: The Hillfort and Landscapes (Stroud, UK: History Press, 2008), 130–142。关于卡茨戈尔(Catsgore): R. Leech, Excavations at Catsgore, 1970–1973 (Bristol, UK: Western Archaeological Trust, 1982)。

    [8] Harper, Fate of Rome, 57.

    [9] Harper, Fate of Rome, 57–58.

    [10] 1 斗相当于1配克(peck),或者约合9升的干量货物。

    [11] 这几段以哈珀的《罗马的命运》第92页至98页论述为基础。对于印度洋上的海运与贸易进行的总结,参见Brian Fagan, Beyond the Blue Horizon: How the Earliest Mariners Unlocked the Secrets of the Oceans (New York: Bloomsbury Press, 2012), chaps. 7 to 9。

    [12] Hui-Yuan Yeh et al., “Early Evidence for Travel with

    Infectious Diseases Along the Silk Road: Intestinal Parasites

    from 2000-Year-Old Personal Hygiene Sticks in a Latrine at

    Xuanquanzhi Relay Station in China,” Journal of

    Archaeological Science: Reports 9 (2016): 758–764.

    [13] William H. McNeill, Plagues and Peoples (New York: Doubleday, 1976), and Harper, Fate of Rome, chap. 3,都论及了“安东尼瘟疫”。

    [14] 西普里安(约200—258)虽有柏柏尔人的血统,但后来成了迦太基主教,他同时也是一位著名的早期基督教作家。他描述的那场瘟疫,后来就以他的名字命名。引自Harper, Fate of Rome, 130。

    [15] 整体概述请参见 Lucy Grig and Gavin Kelly, eds., Two Romes: Rome and Con-stantinople in Late Antiquity (Oxford: Oxford University Press, 2012)。

    [16] Harper, Fate of Rome, 185.
    [17] M. Finné et al., “Climate in the Eastern Mediterranean, and Adjacent Regions During the Past 6000 Years — a Review,”Journal of Archaeological Science 38 (2011): 3153–3173.

    [18] E. Cook, “Megadroughts, ENSO, and the Invasion of Late Roman Europe by the Huns and Avars,” in The Ancient Mediterranean Environment Between Science and History, ed. William Harris (Leiden: Brill, 2013), 89–102. See also Q Bin Zhang et al., “A 2,326-Year Tree-ring Record of Climate Variability on the Northeastern Qinghai-Tibetan Plateau,”Geophysical Research Letters 30, no. 14 (2003). doi: 10.1029/2003GL017425.

    [19] 引自Harper, Fate of Rome, 192。阿米亚努斯·马凯林努斯(Ammianus Marcellinus,约 330—约395)既是一名战士,也是古罗马最后一位了不起的历史学家。他的主要作品是《大事编年史》(Res gestae),这是一部从塔西佗结束之处写起的31卷本历史巨著,前13卷现已佚失。

    [20] Described by Harper, Fate of Rome, 199–200.

    [21] 在概述“查士丁尼瘟疫”时,我们主要参考了哈珀的《罗马的命运》第6章。然而,关于这场瘟疫的地方性影响和随之而来的死亡率,以及鼠疫杆菌的历史,我们还需要了解更多的信息。亦请参见William Rosen, Justinian’ s Flea (New York: Penguin Books, 2008)。

    [22] 神烈怒的酒醡,语出《圣经·启示录》中的19:15。原文为“他必用铁杖辖管他们,并要踹全能神烈怒的酒醡”。“酒醡”是古时榨酒的器具。——译者注

    [23] 以弗所的约翰(约507—588)曾是叙利亚正教会的领袖兼历史学家。他的《教会史》(Ecclesiastical History)中的第三部分论及了“查士丁尼瘟疫”,其中的内容都是他目睹的第一手资料。他认为那是神之震怒的征兆。引自Harper, Fate of Rome, 227。

    [24] Stuart J. Borsch, “Environment and Population: The Collapse of Large Irrigation Systems Reconsidered,” Comparative Studies in Society and History 46, no. 3 (2004):451–468,以及该作者的其他论文。

    [25] 古罗马政治家卡西奥多鲁斯(约485—585)也是一位可敬的学者与作家。此人在爱奥尼亚海边的庄园里修建了维瓦留姆修道院,专门用于阅读和抄录手稿。

    [26] 爱德华·吉本(1737—1794)是一位历史学家兼下院议员,著有不朽之作《罗马帝国衰亡史》。此书出版于1776年至1788年间,总计6卷。Edward Gibbon and David P. Womersley, History of the Decline and Fall of the Roman Empire, 3 vols. (London: Penguin Press, 1994).

    第六章 玛雅文明之变(约公元前1000年至公元15世纪)

    古罗马人曾经运气很好。公元前200年以后,在时间长达4个世纪和横跨地中海世界大部分地区的那种气候相对稳定、温暖与湿润的环境下,罗马帝国曾经繁荣发展和不断扩张,达到了鼎盛时期。他们建立了一个以集约化农业为基础的辽阔王国,但在很大程度上并未意识到,支撑他们那座看似不可战胜的大厦的环境基础已经岌岌可危。当时的帝国似乎注定会永垂不朽,注定是一个将永远存续下去的统治实体。许多人都以为,假如帝国真的衰亡,那就意味着世界末日到了。

    虔诚的古罗马人都认为,人类的未来掌控在神灵的手中,无论有众多神灵还是只有一个神灵,都是如此。罗马帝国的历任皇帝之所以像古时的许多统治者一样,强调他们与神灵之间具有密切的联系,原因就在于此。然而,我们在前一章中已经看到,众神未能对公元3世纪以后气候不稳定的严酷现实进行干预;这些现实,最终削弱了一个深受复杂的气候、政治和社会压力所困,还暴发了灾难性瘟疫的帝国。罗马与君士坦丁堡这两座大城市,在一个被不断扩张的伊斯兰教所包围、发生了变革的中世纪世界中幸存了下来,只是实力大大下降了。地球围绕太阳公转时地轴倾角的细微变化与强大的火山活动,助长了欧洲与地中海地区的动荡不安和危险局势,从而导致了所谓的“黑暗时代”。不过,在深入探讨这种交织着气候变化、政治与战争的混乱局面之前,我们必须走得更远一点,因为公元1千纪早期较为暖和与稳定的环境条件,还在美洲促生出了一些令人惊叹的文明。

    无论是墨西哥中部高原上靠近墨西哥城实力强大的城邦特奥蒂瓦坎,还是尤卡坦低地上具有多样性的玛雅文明,都在公元1千纪的中美洲取得了伟大的成就。[1] 玛雅统治者声称自己拥有神圣的血统,并且利用精明的商业头脑,涉及政治结盟与联姻的专业外交手段,结合精英武士阶层中偶尔爆发的战争,统治着那里。他们掌管着一个个动荡不安、以令人眼花缭乱的速度兴亡更替的王国。在其鼎盛时期,从公元250年左右一直持续到了公元900年前后的古典玛雅文明,包括大约40个城市与王国。[2] 但在公元10世纪,南方低地上的古典玛雅文明却解体了;那里如今属于危地马拉的佩滕。王朝接连瓦解,城市纷纷崩溃,城中居民则散布到了乡间的村落里。大量人口南迁到了如今的洪都拉斯,就像印度河流域诸民族在其文明解体之后迁徙到了拉贾斯坦一样。一度人口稠密、有人耕作的农田都变成了森林,后来一直都没有复原。

    古典玛雅文明的剧变,吸引了一代又一代学者进行研究;不过,只是在过去的大约20年里,气候变化以及由此带来的干旱与洪水才变成了这种学术性讨论中的一个主要方面。新的一代代更准确的气候资料,将揭示一段错综复杂的历史,而其中涉及的,也远不止干旱与飓风。

    低地与君主(约公元前1000年至约公元900 年)

    尤卡坦半岛上的玛雅中央低地的环境,对于以分散的社区中众多分散的农庄为生存之根本的自给农民而言,极具挑战性,而对那些由野心勃勃的君主所统治的、复杂而又竞争激烈的城邦而言,就更是如此了。[3] 然而,玛雅人却在这个一度森林密布的高原上耕作和生存了2,000多年;高原由松质岩石构成,耸立于半岛之上。那里的现实情况,实在令人生畏。季节性的降雨极其变幻莫测,只是在炎热的夏季里出现通常短暂的暴风雨时,才会降雨。冬季则气候干燥。雨水会迅速渗过基岩。差不多所有的低地上,都没有任何形式的永久性水源供应,只是散布着一些相距遥远的泉眼。这种含水层,位于地表以下100米或更深处,故人们很难获取。再加上偶尔会有长达10年或者100 年的干旱,水源就成了人们在这里生存下去的最关键因素。在这种时期,蒸散——来自海洋、湖泊、植物冠层和其他源头并且超过了降雨量的水运动——就至关重要了。

    茂密的季节性雨林,覆盖着这片土地;当时,此地还没有被人们开垦出来进行耕作。深度各异的肥沃土壤上,植物生长得茂盛茁壮。低洼地带全是深达1米的黏土,雨季降水形成的径流都汇入其中,形成了一个个弥足珍贵的季节性湿地。磷是植物的一种有限养分,主要由森林的冠层获取,然后会被雨水冲刷到土壤里。为了生产出越来越多的粮食盈余,满足数量日增的城邦所需、满足贪得无厌的城邦头领的要求,人们必须进行多样化和高效的农业耕作,并且深入了解复杂的低地环境。

    第六章里提及的考古遗址

    公元前1000 年至公元前 400 年间,有大批玛雅农民迁徙到了尤卡坦低地上;其中许多农民都来自墨西哥湾沿海,那里曾经出现过一个个繁荣兴旺的奥尔梅克社会。尤卡坦半岛上的本地农业繁荣已久,人们在这里栽培作物,并且在数个世纪的时间中对这里的森林环境有了深入的了解。[4] 到公元前600年时,他们正在兴建一座座巨大的金字塔,将祖先安葬于其中的平台或者其他结构里。这些金字塔成了他们礼敬祖先的圣地,家谱则成了他们申明自己对某些地方拥有所有权的重要方式。在几个世纪的时间里,他们的后人建造了一些庞大的建筑群,一座座精美的建筑物上都装饰着神灵与祖先的灰泥面具。由此诞生了“查尔阿霍”(ch’ul ahau)这种神圣王权制度,“查尔阿霍”也就是“圣主”的意思。伟大的埃尔米拉多城就说明了这一点。数个世代以来,当地农民都是靠耕作公元前150 年至公元50年间开垦的湿地为生。

    这几个世纪,正是玛雅人开始大规模地改造当地环境的时候。此时,他们不但需要养活越来越多的农民,还需要养活越来越多不从事粮食生产的人。他们曾移走数百万立方米的泥土,修建了水库、沟渠和池塘,为旱季蓄水。埃尔米拉多城在其鼎盛时期,曾占地16平方千米;它位于一个洼地之中,是靠洼地里的水源供应发展起来的。随着人口增加,为养活民众而进行的环境改造和兴建公共建筑对公共劳动力的需求也增加了。在数代人的时间里,社会不平等变成了一种常态;常常与执政的君主关系密切的特权精英阶层,也日益疏离了平民百姓。

    埃尔米拉多城在突然之间就崩溃了;至于原因,部分在于过度砍伐森林,部分在于地表径流和侵蚀破坏了周围的湿地,使之成了降水丰沛的牺牲品。数个世纪以来,当地农民都是靠湿地来种植大量的粮食作物,提供此城所需的粮食盈余。但是,由于这个城邦有大量的非农业人口,所以等到平民百姓无法养活精英阶层的时候,其政治与社会基础就受到了威胁。对所有人而言,唯一的对策就成了迁徙,即随着城市中心日渐没落,迁徙到农村地区一些规模较小的定居地去。到了公元250年,玛雅人的政治重心已经转移到了中央低地;那里的一些新兴中心,比如卡拉克穆尔和蒂卡尔,已经在降水较为丰沛的一个时期里发展成了实力强大的城邦。从破译的象形文字中,我们得知了一些城邦君主的情况;这些象形文字,向我们揭示了一幅外交、贸易与战争交织且不断变化的图景。城邦的一切,都以王权制度为中心;这种王权按照可以追溯至一位开国祖先的朝代更替顺序,由父传子或者由兄传弟。玛雅文明不同于古埃及或者罗马帝国,从来就没有形成一个高度集权的国家,而是由大小不一的政治单元所组成;那些政治单元,最终演变成了四大城邦和无数个较小的王国。这是一个竞争极其激烈的社会,由一些实力强大的王朝统治着;它们的大本营,就是蒂卡尔、卡拉克穆尔、帕伦克和科潘之类的重要中心。

    埃尔米拉多城衰落之后,蒂卡尔与附近的瓦哈克通便乘虚而入,填补了由此留下的政治真空。公元1世纪,一个精英阶层开始在蒂卡尔掌权;那里的象形文字资料表明,从公元292 年至869 年间,蒂卡尔历经31位统治者,实行了大约577年的王朝统治。这个实力强大的新兴城邦,逐渐变成了一个多中心的王国,然后在公元557年被一个崛起中的国家的君主征服了;那个国家就是卡拉科尔,位于如今的伯利兹境内。

    到了公元650年,主要的贵族王朝都曾主持过一些繁复的公开仪式,以确认他们的精神血统与政治权力。他们把自己的行为与神灵、祖先的行为联系起来,有时还会通过声称他们的血统重现了神话事件来将其合法化。他们把他们的历史与当下以及超自然的来世联系起来,并将社会嵌入一个由神圣的地点与时间所组成的环境里。一位玛雅君主会煞费苦心地宣称,他是在世者、祖先和超自然世界之间的媒介。这一点,就是统治者与被统治者之间一种不成文社会契约的基础;这里的被统治者就是千千万万玛雅人,他们付出了巨大的环境代价,支撑着小小的一撮精英。玛雅低地上的人口,出现了急剧增长。肥沃程度一般的雨林土壤上,作物收成却越来越少。就算是短暂的干旱周期,也会危及宝贵的水源供应,尽管有作物多样化这样历史悠久的惯例,也是如此。这片土地迟早无法再养活大量的非农业人口。

    并不是说贵族们没有意识到气候变化带来的危险。实际情况恰恰相反,因为在他们统治的数个世纪中,气候正在逐渐变得干旱起来。他们生活中的大部分仪式,都是以水源与降雨为中心。蒂卡尔的统治者还匠心独运,建造了一些神庙金字塔,对全年的富余雨水加以控制,因为这些金字塔的四面能将雨水导入蓄水池,用于灌溉附近的田地。玛雅统治者应对人口增长的措施,就是修建蓄水池和范围往往相当广泛的水源控制系统来蓄水,以应对干旱年份。

    玛雅农民之古今

    公元3世纪至10世纪间,整个玛雅低地上猛增了数百个大小不一的定居地,靠形式异常多样的农业耕作为生。其中,既有在森林空地上进行的刀耕火种式农业(称为火耕农业),在坡地上进行的梯田栽培,也有利用沼泽和湿地中的台田进行的耕作,这种台田农业的不同凡响之处在于积极地利用环境和稀缺的水源。许多农民还有各种各样的农户庭园,栽种着大量的植物与树木。在地方层面上,玛雅农民管理着森林、蓄水,并且充分利用了整个低地上的不同土地与食物资源。他们干得非常成功,故在长达4,000年的时间里应对好了艰苦环境带来的种种风险。他们之所以做到这一点,是因为他们最深入地了解了自身所处环境的具体情况,并且建立和维持着各种集约化的粮食生产体系;在公元9世纪玛雅文明遇到严重问题之前,他们至少经受了两次漫长干旱的考验。

    幸运的是,中美洲低地的玛雅农民后裔,如今仍然在那种严苛的低地环境里繁衍生息。现代村民采用的许多惯常做法,很早以前就一直存在;这就说明,它们可以让我们深入了解到,以前的人是如何应对干旱、作物歉收以及其他一些意外的气候灾难的。现代玛雅农业的多样性可谓惊人,这是他们针对从人口密度不断上升到当地土壤质量以及降雨模式变化等一切因素所做的反应。即便是作物混种,也会根据环境条件而逐年、逐季变化。比方说,伯利兹的凯克奇玛雅人如今仍然以传统农业为生。他们在排水不良的地区耕作台田、山坡梯田,雨季则会利用“火耕农业”这种刀耕火种式耕作系统。[5] 凯克奇人的旱季河岸农业,就是那种需要长期经验的机会主义创新能力的一个例子。每个农民都须平衡好气候条件、植被再生与其他的任务之间的关系。玉米越早播种下地越好,因为这种作物须趁着土壤仍然湿润的时候播种,才会有一个良好的开端。每年旱季开始的时间差别很大,会让问题变得很复杂,而收获火耕农业作物这一关键任务也是如此。假如火耕农业的收成不错,那么旱季耕作就不要那么多时间了。收成不好,则意味着他们要花更多的时间进行清理和耕种。

    这样的河岸农业,是在一种规模更大的自给周期之内进行的。其中的关键词是“周期”,因为这有助于我们揭开玛雅人年复一年地应对毫无规律可言的气候变化时所用的策略;实际上,其他许多自给农民也是如此。这样一种周期性的生存,意味着靠土地为生的人会把时间看成一个无穷无尽的循环。他们的祖先经历了同样的周期:播种、作物生长、收获,然后是一个宁静的季节。这样的生活,具有一种始终不变、取决于作物与降雨的恒久性。

    这种有力的设想,赋予了受人尊敬的祖先一种核心作用。玛雅的王公贵族之所以强调他们与神圣祖先之间的亲密关系,埃及的法老们之所以举行繁复的公开仪式来证明他们作为神圣统治者的合法角色,都有着迫不得已的理由。王公贵族与祖先之间的各种关系往往具有权威性,并且执着于精神上的合法性。祖先与在世者之间的联系,深入渗透到了乡村生活当中,而在乡村环境下,人类的生存曾经依赖于他们与环境、降雨、植被以及土壤肥力之间的密切关系,至今依然如此。当今凯克奇人依赖常识、详尽的环境知识加上一种根深蒂固的信念,即认为祖先积累的经验对于生存来说是一项宝贵的遗产。

    在这个地区,祖先的经验无疑是一项宝贵的遗产。以前,这个地区一度人口稠密,高度依赖于农民的耕作技术,还有降雨。[6] 这里的人口,在公元 700 年至 800 年间达到了峰值。当时,人口密度达每平方千米600人至1 200人的情况并不少见。据估计,生活在这些低地上的人口曾经达到了惊人的1,100万。其中大多数人都没有住在那些大城市里,而是以单个家庭的形式广泛分布于当地环境中,生活在所有的非城市地区。这种模式,与柬埔寨吴哥城周围的情况并无不同;在第九章里,我们将介绍后者的情况。可叹的是,无论是在柬埔寨还是在这里,城市腹地的任何一种环境压力,都增加了当地出现重大的社会动荡与政治动荡的概率。到了公元8世纪,南部低地的古玛雅文明就行将没落下去了。

    假如生活在公元8世纪末的玛雅低地,那么,您会居住在一个经过了人为改造、气候正在逐渐变得干旱起来,与数个世纪之前截然不同的环境中。随着人口增长和作物产量下降,环境改造形成的累积效应加速了。清除了植被的地区与有所管理的森林、田地、城市结合起来,将大部分低地变成了一个人工改造的环境。当然,密集的人口几乎向来都会导致乱砍滥伐,而树木减少则导致了气温上升和降水减少。此外,焚烧木柴与庄稼还会导致大气中的灰尘与污染物含量增加。

    随着低地上的定居地增加,不透水地表的面积也急剧扩大了。建筑活动的增加与耕地面积的扩张,进一步减少了磷的捕获量,增加了磷的沉积量。在以前的数个世纪里,高地上的沉积物会被冲刷到下方湿地农业多产高效的洪泛平原上,但农民们通过广泛采用坡地梯田进行耕作而减少了沉积磷的流失。仅仅是维护农田系统,以及不断增加的沟渠、池塘和水库,就需要成千上万的平民百姓和整个整个村庄的劳动力。施肥、培土与除草等日常工作,也是如此。

    光是滥伐森林造成的长期影响,就具有毁灭性。到了公元前600年,危地马拉北部佩滕的大部分森林已经被砍伐殆尽。砍伐森林的做法持续到了公元9世纪,直至人类改造过的土地上大部分林木植被全都消失。持续不断地滥伐森林、改变土地用途以及玛雅农业造成的环境恶化等方面结合起来,形成的长期效应就导致了降雨减少、气温升高和水资源日益短缺等后果。[7] 这些方面,全都截然不同于自然出现的干旱周期。但在一个严重干旱的时期,一旦森林差不多被砍伐殆尽,农民采用的种种持续性适应对策就不会成功。政治不稳定与社会动荡随之而来,玛雅文明也就此分崩离析了。人类和环境系统到达了一个转折点,从而导致了文化衰落和最终的人口减少。

    转折点之后(公元8世纪至10世纪)

    古典玛雅文明在这些低地的衰落,是人类与环境之间不断变化的关系带来了各种压力,再加上干旱周期激增导致的。但与此相关的,却远非食物供应与水源之类的基本要素。维持玛雅文明持续发展的决定性因素变得太过复杂和难以承受的时刻,已经到来——至少对统治者与精英阶层来说,就是如此。由于精英阶层根植于玛雅社会种种复杂的社会经济、意识形态和政治层面之中,所以维持或者发展这个系统的障碍极其巨大——或许巨大到了什么都不做让他们觉得更加容易的程度。公元9世纪中央低地的玛雅文明发生巨变,原因并不是单一的;只不过,世人如今对这种判断仍然存有重大争议。[8]

    研究人员曾经在北部低地的奇恰卡纳布湖(Lake Chichan canab)中钻取岩芯,表明那里在公元800年至1000年间出现过严重的干旱;此后人们就一直认为,气候变化是玛雅文明没落的一个主要诱因;更具体地说,干旱就是罪魁祸首。[9] 湖芯表明,公元750年至1100年间,这里的气候普遍较为干旱;从加勒比海的卡里亚科海盆中钻取的一段深海岩芯,也表明这里有过多年的干旱,比如公元760年、810年、860 年和910 年。然而,湖泊与海洋岩芯显示的信息,并没有达到必要的精确性。因此,许多专家往往低估了气候在古典玛雅文明衰落中的作用。

    新一代的研究,则得出了更加精确的干旱与降水信息。玛雅低地南部约克巴鲁姆洞穴(Yok Balum Cave)中一根56厘米长的石笋,为我们提供了一种精确的、时间长达 2,000年的气候序列。[10] 约克巴鲁姆洞穴中的这根霰石(一种碳酸钙矿物质)石笋之所以尤为重要,是因为它不但生长得相当迅速,而且持续生长了2,000年之久。研究人员利用铀系断代法,从中获得了不少于40个降雨年代的数据;它们精确到了5年至10年之内,并且与其他来源的气候数据非常吻合。公元440年至660年间,这个地区的降水异常丰沛,而在随后的三个半世纪里,气候则逐渐变得干旱起来。这种变化,最终以公元1000年至1100年间一场旷日持久、极其严重的大旱而告结束;那场大旱,也是2,000年里旱情最严峻的一次。情况还不止如此。公元820年至870 年间的一场大旱,持续了半个世纪之久,而公元930年左右,又发生过一场程度较轻的旱灾。从约克巴鲁姆洞穴石笋中获取的气候信息,与低地其他地方对公元820年至900年的一场严重干旱的记载,以及对公元1000年至1100年间另一场旱灾的历史记载完全吻合。

    以任何标准来看,我们从一系列证据中了解到的这些干旱,都是旷日持久的干旱时期;它们必定给一个降水变幻莫测的地区的农耕社会带来了严重的影响。干旱年份对作物收成与农业生产力具有显而易见的影响。假如雨季姗姗来迟或者作物绝收,这些影响便尤其严重。公元1千纪末期出现的干旱,却要另当别论。它们都持续了几十年,甚至是几个世纪之久。

    诚如考古学家道格·肯尼特(Doug Kennett)与气候学家大卫·霍德尔(David Hodell)指出的那样,农业干旱与水文干旱之间有一种重大的区别。前者是由雨水不足、蒸发增加使得土壤变干燥造成的,最终会导致作物歉收。在此期间,湖泊水位、河流流量和地下水供应却有可能在数年之内都不受影响。玛雅人很清楚,他们必须节约用水。这样的策略,虽然在短期和稍长时期内都有效,但在很大程度上取决于消耗水资源的人口密度。假如干旱周期旷日持久,或者异常严重,那么,随着水源枯竭或供应稀缺,就会出现水文干旱。如此一来,就有可能造成严重的社会经济后果,而当人口密度不断上升、水和环境中的其他资源供不应求时,影响则尤为严重。

    导致玛雅文明没落的,远非干旱一个方面。玛雅社会属于一个金字塔式的社会,由一小部分精英统治着;他们把武力和精心打造的意识形态结合起来,享有无上的权力。他们的生活水平比工匠与平民百姓高得多,几乎所有的财富都集中在贵族手中。同时,他们还控制着像黑曜岩与盐之类的重要资源,以及像天文学、数学与历法这样的复杂知识。与民众之间的这种不成文社会契约,就是精英阶层在意识形态、物质和精神上具有权威的保证。但是,随着他们煞费苦心地制定的种种统治机制变得比以往更加复杂、更加保守,问题的解决也变得日益棘手起来。

    维护精英阶层的权威、政治权力和财富并将其合法化,成了一项越来越复杂的任务,涵盖了从维护基础设施到开垦湿地、掌管军队进行防御以及袭扰邻邦等各个方面。当时的城邦都是君主制国家,由思想僵化但实力强大的君主统治着;百姓都认为,这些君主拥有半神的种种力量。除了他们自己那一幢幢奢侈华丽的宫殿豪宅,他们还强征大量的粮食盈余,用业已习惯的做派供养着宫廷、各级官吏,以及一个树大根深的精英阶层。他们实施的军事征伐,需要获得百姓的支持。无数技术熟练的建筑师、工匠、书吏以及非农人口也是如此,他们需要口粮和其他商品才能工作。当时的主要粮食作物,就是玉米;这种粮食极其重要,在公共仪式、私人仪式和艺术当中都扮演着重要的角色。不过,玉米属于热带作物,几乎不可能在玛雅低地这种潮湿的环境中长久储存。其他作物包括豆类、南瓜和辣椒,但无论以哪种作物为食,每个玛雅农民都必须养活自己的家人,同时为下个季节留出充足的种子。此外,每个农户还要向统治者和精英阶层上缴粮食、提供劳役,以维持众多相互争斗的王国中日益苛刻和错综复杂的上层建筑。再加上作物和土壤生产力不同,还有地形以及最重要的水源供应等因素,就使得哪怕是对短期的气候变化迅速做出反应,也成了一项他们难以应对的任务。

    到了8世纪末,统治者已经无力兑现他们对社会所做的承诺,尤其是无力在干旱持续时通过大量水库提供清洁水源了。此时,已有数百年历史的经济与政治结构,连同其中半神一般的君主,都陷入了严重的没落之境。在一个被激烈的竞争与林立的派系所撕裂的社会中,统治者对被统治者的严苛要求在贫富之间造成了一种直接而持久的紧张关系。一切所依赖的,乃是一个最终有可能难以为继的自给农业社会;可这个社会,却生活在一个深受降水不足、干旱无法预测且旷日持久两个方面困扰的地区。

    权威无能造成的不利政治影响是极其巨大的。尽管古代玛雅社会具有多样性,但也具有许多共同的文化传统,其中就包括了至关重要的神圣王权制度。这里的国王或者女王,就是较大的王国与无数等级不一、面积较小、效忠情况也不断变化的领地之间种种不稳定关系中的主角。每一位玛雅统治者,都生活在一种充满政治色彩的环境下,其中既有短暂的结盟与贸易网络,也有和祖先之间的亲缘关系。但归根结底,效忠与文化联系都具有地方性;这一点,也使得他们几乎不可能采取全面的措施来应对气候变化。

    科潘解体(公元435年至1150年)

    随着一度强大的城邦纷纷解体,工匠和平民都分散到了城市腹地,或者迁往其他地方以寻找机会。例如,洪都拉斯境内的科潘是一个宏伟壮观的玛雅文明中心,那里点缀着许多金字塔和广场,占地面积达12公顷。[11] 公元435年12月11 日之后的4个世纪里,有一个实力强大的王朝统治着科潘王国;这个王朝的开创者,是雅克·库克·莫[K’inich Yak Ku’k Mo’,或称“伟大的太阳神绿咬鹃金刚鹦鹉”(Great Sun Quetzal Macaw)——金刚鹦鹉与绿咬鹃是两种羽毛鲜艳的鸟类]。

    人们在科潘周围长期进行的实地考察,记录了这个“太阳鸟”王朝治下的400年间人口方面的巨大变化。公元550年至公元700年间,王国的人口曾经急剧增长。人们都住在中心区及其周边地区附近,只有少量的农村人口。人口和社会结构的复杂程度都增加了,一直发展到有18,000人至2万人生活在科潘河谷里;至于其核心区域,每平方千米则有大约500 人。似乎每隔80年到100年,这里的人口就会翻一番。农村人口仍然非常分散,但农民此时开始耕种不太理想的山麓之地,以增加作物的收成。

    不过,变化即将出现。公元749年,一位名号叫“烟壳”(Smoke Shell)的君主登上王位,统治了这个一度伟大的城邦。在一个派系斗争激烈、内部局势紧张的时代,此人开始疯狂地大兴土木;其中,有些工程就是降雨减少的现实情况引发的。当时的政治秩序似乎已经改变,因为一些小贵族纷纷请人给自家的房子刻下铭文,仿佛他们是在一个政治权威日渐衰落的时代,以此来维护自身的权利。意义深远的人口变化与政治变革,也随之而来。“烟壳”王朝的统治在公元810 年终结,城市人口也正是从此时开始减少。40年的时间里,住在城市中心及其边缘的人口中,差不多一半都迁走了,可农村人口却增长了 20%。随着连贫瘠耕地也被过度开发和土壤不受控制地遭到侵蚀,由此形成的累积效应开始带来恶果,而一些小型的地区性定居地便取代了大型的城市中心。1150 年,生活在科潘河谷中的人口已不过5,000至8,000人了。

    科潘的人口外迁,既是人们对作物产量下降和城市生活快速发展所做的一种合理反应,也是他们对严重干旱的一种传统反应,与许多古代社会无异。这种外迁,并非只有这里出现过。在蒂卡尔和卡拉克穆尔等中心城市的腹地进行的长期研究已经提供了充足的证据,表明当时密集的城市人口正在减少。公元8世纪以后,南部低地上的广大地区都已为人们所遗弃,后来再也没有人口聚居;就连西班牙殖民者对美洲进行了“武装远征”之后,也依然如此。玛雅人口的增长,依赖于一种不考虑漫长干旱等长期问题的农业系统。在这种文明的鼎盛期,居住在这些低地上的玛雅人或许多达1 100万,比如今生活在那里的人口还要多。到了此时,这个农业系统再也无法扩大,再也无法生产出贪得无厌的精英阶层所需的种种财富。就像科潘和蒂卡尔一样,那些一度很有影响力的城邦,就只有没落和人口外迁的路可走了。

    许多记载玛雅人口疏散的文献都会给人一种印象,似乎玛雅诸社会当时通通解了体。实际情况显然并非如此。有些城邦缩小了规模,幸存了下来。还有一些城邦则继续繁荣发展着,特别是那些紧邻重要河流和位于主要贸易线路两侧的城邦。沿海地区的许多中心也存续了下来,尤卡坦半岛的北部沿海尤甚。一些强大的经济与社会因素发挥了作用,其中包括:有通往沿海与河流贸易线路的通道;战争不断;或许还有一个最重要的因素,那就是贸易活动发生了巨变,从内陆贸易转向了海上贸易。

    干旱与作物歉收,加剧了城邦之间争夺粮食供应与争相控制贸易线路的局面。在公元7世纪和8世纪,许多地方都爆发过残酷的战争,但它们不一定都是干旱导致的。玛雅的君主,当时都是依靠玉米收成来维护他们的实力。直到气温在周而复始的干旱期间达到了30℃左右,作物产量才不再增加。此后,作物收成便迅速减少,而水库的水位也大幅下降了。由于气温超过30℃的天数越来越多,粮食供应骤减,从而威胁到了王权。为此,那些野心勃勃的统治者便开始进攻其他王国,以为只要征伐成功,就可以重新巩固他们当时似乎正在不断衰落的合法地位。干旱周期可能也减少了暴力冲突,因为食物与水源供应不足,让各个王国在备战时都要困难得多了。但是,不管气温条件如何,暴力冲突在玛雅历史上都时有发生,以至于有些贵族为了躲避暴力,还在大片大片的农田周围修建了防御性的城墙,保护正在生长的庄稼,却没有去加固神庙和以前修建的其他一些宏伟建筑。

    崩溃(公元8世纪以后)

    虽然在南部低地玛雅社会的崩溃过程中,战争可能确实起到了作用,但干旱在摧毁玛雅社会的过程中扮演了一个重要角色也是无可置疑的。约克巴鲁姆洞穴石笋中记录下来的历史干旱周期,与那里出现作物歉收、饥荒,以及暴发与饥荒有关的疾病的时间相吻合。还有证据表明,当时不但人口数量减少,而且人们纷纷迁往了规模较小的定居地。这是一种经典的迁徙对策;在一个干旱变得比以前更加旷日持久、旱情也更加严重的时代,人们再次显著地应用了这种策略。

    实际情况究竟如何呢?古典玛雅王权的逐渐瓦解并非一种剧变。更准确地说,早在公元780年至公元800年间,南部低地上那些历史悠久的政治与社会网络便已开始瓦解,同时战争也开始愈演愈烈。[12] 由此导致的结果,就是道格·肯尼特和其同事们所称的“割据”,因为政治网络权力变得分散起来,人口则开始外迁散居。与其说这是一种崩溃,不如说是社会的一种重新组织;公元900年之后,西班牙殖民者“武装远征”之前,留存于世的文字、历法以及其他珍贵的文化传统都体现了这一点。

    最急剧的变化发生在那些以危地马拉北部、伯利兹西部、尤卡坦半岛南部以及洪都拉斯的科潘地区为中心的玛雅王国里。它们留下了一片开垦过的土地,可如今那里仍是几乎无人居住的森林。中央低地上的森林虽然恢复了,可人们再也没有回去,以至于那里的雨林后来成了一个避难所,让玛雅难民得以躲避西班牙人的统治。就算到了今天,那里的人口密度也较古典玛雅时期减少了一半乃至三分之二。究竟为什么会这样,如今依然是一个谜。人们不再大范围毁林开荒了;一直要到现代,人们才再次开始砍伐硬木。一小部分人有可能曾经冒险进入过那片植被茂密的土地,采伐一些具有经济价值的树木,比如拉蒙树;这些树木的果实与坚果营养丰富,是容易发生旱灾的雨林环境下的一种珍贵的食物来源。或许,原因在于开垦森林、恢复集约化农业的基础设施需要付出的人力成本太高了。

    北部的气候事件(公元8世纪以后)

    玛雅文明继续在尤卡坦半岛北部蓬勃地发展着。[13] 一个以奇琴伊察为大本营且实力强大的王国,曾经从公元8世纪繁盛到了公元11世纪;至于原因,部分就在于许多百姓逃离了日益干旱的南部内陆地区,成了这个王国的新臣民。假如我们明白北方的地表水源供应其实要比南方稀少得多,那么,这个王国的崛起过程就会令人觉得难以置信了。奇琴伊察的实力,既源自积极扩张与建立同盟,也源自它控制了海上贸易和玛雅世界广大地区之间的联系。在这种情况下,人们应对干旱时采取的措施主要是经济和政治方面的,它们极其有效,以至于玛雅文明出现了复兴;只不过,这是以一种不同的方式实现的,注重共享统治。

    公元 11 世纪,这个地区发生了一场最漫长和最严重的旱灾,破坏了长久确立的现状,动摇了奇琴伊察的统治地位。但公元1220年前后,这里又崛起了一个新的国家,它以位于北方内陆的玛雅潘为大本营。[14] 当时的玛雅潘大约有15,000 位居民,隶属于一个实力强大的区域联盟,是其重要的政治首都。这是玛雅文明的一种国际性复兴,其特点是兴建了许多宏伟壮观的建筑,展开了广泛的对外交往,而传统的宗教信仰也得到了重振,有许多华美的抄本来加以纪念。由于所处的位置靠近一系列呈环状分布的天坑(即自然形成的深坑),地下水源丰富,故玛雅潘繁盛发展到了公元 1448年左右,后来又与严重的干旱抗争了一个半世纪之久。其间的一次次干旱对粮食供应造成了严重的破坏,扰乱了市场网络,并且导致了政治动荡和随之而来的战争。

    玛雅潘遗址(尤卡坦半岛,墨西哥)

    不过,玛雅文明还是存续了下来;原因部分就在于那些重要中心之间的联系并不紧密,因此它们不那么容易受到曾经颠覆了南方各个王国的种种政治动荡的影响。直到西班牙人开始“武装远征”,许多沿海城镇都令人瞩目、一片繁荣,广大地区也运作着各种复杂的市场体系。这一切,都是人们成功地适应了当地的环境挑战、地区性干旱和粮食短缺的结果。在一个拥有数百年文化传统的“文化玛雅”世界里,整个社会始终都在发生变革。16 世纪初西班牙征服者的到来,改变了玛雅文明的历史轨迹,因为人们适应了新的经济、政治与精神环境。

    所谓的“古典玛雅崩溃”一说,其实属于用词不当,听起来古典玛雅文明像是一夜之间急剧崩溃的。相反,文明的衰落是一个复杂的过程;在此过程中,人们会步履艰难地应对漫长的干旱周期,历经数代之久。尽管如此,古典玛雅的政治体系确实崩溃了,农民则继续生存着。最终,在公元800年左右,到了一个看似生死攸关的社会、政治与生态转折点之后,古老的玛雅文明经历了一场变革。玛雅人与其所处环

    境之间的相互作用,导致了不同程度的环境压力;更何况,这些压力还是与严重的干旱同时出现的。尽管玛雅统治者拥有精心设计的意识形态,并且牢牢控制着整个社会,但到了此时,他们已经无力组织民众采取措施去适应那些干旱得多的低地环境了。在一些被派系斗争和战争所撕裂的城邦里,组织并采取大胆的措施来适应生存危机就成了一项艰巨的任务,彻底压垮了那些傲慢自大、显赫一时的君主。对于他们的权威,对于统治者与被统治者之间早已土崩瓦解的社会契约,民众也失去了信心。于是,百姓便四散而去。

    从全球范围内来看,我们生活在一个被狭隘的民族主义所撕裂的世界里,千百万人被牵涉其中,故人为性全球变暖和可能具有灾难性的气候变化让我们面临的威胁,要比玛雅的君主们当时面临的威胁大得多,令人难以想象。由于危机带来的影响因地而异,故他们的臣民不是迁往农村,就是到其他地方寻找机会去了。不过,玛雅人的经验教训却显而易见,那就是:强有力和果断的领导十分重要。如今许多人正在努力解决未来气候变化的问题,但我们缺乏那种能够超越一代又一代、强大有力和具有远见卓识的领导能力。我们正面临着真正的危险,有可能遭遇像蒂卡尔和玛雅其他一些伟大城邦的执政者那样的命运,原因不仅是我们当中有许多人否认即将到来的气候危机,还有随着我们逐渐接近一种与之类似但规模要大得多的环境转折点,大多数人都会在挑战面前不知所措。玛雅人的经验提醒我们,大部分气候适应措施都是地方性的,而面对气候变化时无所作为,也不是一种可行的对策。

    相比于那些只关心作物收成的无名官吏制定的宏伟施政方案,应对气候变化的地方性 措施之所以有效得多,原因就在于此。还有更加重要的一个方面,那就是风险管理,尤其是在地方层面上的风险管理;只不过,我们如今经常会忽视这一点。

    [1] 在学术界,“Mesoamerica”(中美洲)一词被用来指前工业文明得到发展的中美洲地区,包括如今的墨西哥中部、伯利兹、危地马拉、萨尔瓦多、洪都拉斯、尼加拉瓜和哥斯达黎加北部。

    [2] 玛雅文明这一术语的内核,就是从公元250年前后一直持续到公元900年左右的古典玛雅文明。我们在此使用这一术语,只是为了方便起见;不过,它无疑在很大程度上掩盖了文化的多样性。

    [3] 要想详细了解我们在此所述的低地情况,请参见B. J. Turner

    II and Jeremy A. Sabloff, “Classic Period Collapse of the

    Central Maya Lowlands: Insights About Human-Environment

    Relationships for Sustainability,” Proceedings of the

    National Academy of Sciences 109, no. 35 (2012): 13908-13914。

    [4] 对古典玛雅文明进行通俗论述的经典作品:Michael Coe and

    Stephen Houston, The Maya, 9th ed. (London and New York:

    Thames & Hudson, 2015)。Linda Schele and David Freidel’ s A

    Forest of Kings (New York, William Morrow, 1990),生动而通俗地描绘了玛雅的王权情况,只是如今有点过时了。

    [5] Richard R. Wilk, “Dry-Season Agriculture Among the Kekchi Maya and Its Implications for Prehistory,” in Prehistoric Lowland Maya Environment and Subsistence Economy, ed. Mary Pohl (Cambridge, MA: Peabody Museum of Archaeology and Ethnology, Harvard University, 1985), 47–57. See also Richard R. Wilk, Household Ecology: Economic Change and Domestic Life Among the Kekchi Maya of Belize. Arizona Studies in Human Ecology (Tucson: University of Arizona Press, 1991).

    [6] B. L. Turner II, “The Rise and Fall of Maya Population and Agriculture: The Malthusian Perspective Reconsidered,” in Hunger and History: Food Shortages, Poverty, and Deprivation, ed. L. Newman (Cambridge: Cambridge University Press, 1990), 178–211.

    [7] Robert J. Oglesby et al., “Collapse of the Maya: Could Deforestation Have Contributed?” Papers in the Earth and Atmospheric Sciences 469 http://digitalcommons.unl.edu/geosciencefacpub/469. (2010).

    [8] 论述古典玛雅文明崩溃的文献非常多。一般性的概述之作,请参见 T. Patrick Culbert, ed., The Classic Maya Collapse (Albuquerque: University of New Mexico Press, 1973),但如今此作有点过时了;另外可见D. Webster, The Fall of the Ancient Maya (London and New York: Thames & Hudson, 2002)。在此,我们很大程度上参考了一部有用的分析之作:Turner and Sabloff,“Classic Period Collapse of the Central Maya Lowlands”。

    [9] David Hodell, M. Brenner, and J. H. Curtis, “Terminal Classic Drought in the Northern Maya Lowlands Inferred from Multiple Sediment Cores in Lake Chichancanab (Mexico),”Quaternary Science Reviews 24 (2005): 1413–1427.

    [10] Douglas Kennett and David A. Hodell, “AD 750–100

    Climate Change and Critical Transitions in Classic Maya

    Sociopolitical Networks,” in Megadrought and Collapse: From

    Early Agriculture to Angkor, ed. Harvey Weiss (New York:

    Oxford University Press, 2017), 204–230. See also Douglas

    Kennett et al., “Development and Disintegration of Maya

    Political Systems in Response to Climate Change,” Science

    338 (2012): 788–791.

    [11] Copán: William L. Fash and Ricardo Agurcia Fasquelle,

    “Contributions and Controversies in the Archaeology and

    History of Copán,” in Copán: The History of an Ancient

    Maya Kingdom, ed. E. Wyllys Andrews and William L. Fash

    (Santa Fe, NM: School of American Research Press, 2005), 3

    32. See also William L. Fash, E. Wyllys Andrews, and T. Kam

    Manahan, “Political Decentralization, Dynastic Collapse,

    and the Early Postclassic in the Urban Center of Copán,

    Honduras,” in The Terminal Classic in the Maya Lowlands:

    Collapse, Transition, and Transformation, ed. Arthur A.

    Demarest, Prudence M. Rice, and Don S. Rice (Boulder:

    University Press of Colorado, 2005), 260–287.

    [12] Arthur Demarest, Ancient Maya: Rise and Fall of a Rainforest Civilization (Cambridge: Cambridge University Press, 2004).

    [13] Jeremy A. Sabloff, “It Depends on How You Look at Things: New Perspectives on the Postclassic Period in the Northern Maya Lowlands,” Proceedings of the American Philosophical Society 109 (2007): 11–25. See also Marilyn A. Masson, “Maya Collapse Cycles,” Proceedings of the National Academy of Sciences 109, no. 45 (2012): 18237-18238.

    [14] Marilyn A. Masson and Carlos Peraza Lope, Kukulkan’ s Realm: Urban Life at Mayapan (Boulder: University of Colorado Press, 2014), 5.

    第七章 众神与厄尔尼诺(约公元前3000年至公元15世纪)

    蓝天之下,皑皑白雪一望无际。此时,我们来到了偏僻的奎尔卡亚(Quelccaya)冰盖上,这里位于秘鲁北部的安第斯山脉高处,是世界上面积最大的热带冰原之一。如今,这座冰盖的面积约为43平方千米,最高点的海拔为5,680米。

    然而,在18,000年前的最后一个“大冰期”结束时,这座冰盖却要广袤得多:人为造成的全球变暖正以不可阻挡之势,让这座冰盖的面积缩小,以至于到2050年时,冰盖有可能彻底消失。在冰盖的东部,群山向下延伸到了亚马孙河流域,距那里的热带雨林仅有 40 千米之遥。这座冰盖虽然属于高山冰川,却异乎寻常地位于地表平坦之处,有的地方冰层竟然厚达200米。这种情况,使得奎尔卡亚成了人们钻取冰芯的理想之地;冰芯中呈现出了分界清晰的层次,每一层都代表了一年,各层之间有旱季尘埃层隔开,足以重现奎尔卡亚约1 800年的气候历史。

    1983 年,美国俄亥俄州立大学的古气候学家朗尼·汤普森(Lonnie Thompson)曾用一台太阳能冰钻,在这片冰原的中心地带钻取了两段长长的冰芯;那里除了太阳能,没有其他能源可以利用。[1] 由于没有办法带走冰芯,他便把冰芯切割成样本,当场融化并装入瓶中,从而重新获得了有 1,500年历史的部分冰芯。2003年,由于物流条件已经有了充分的改善,汤普森又把两段一直钻到了基岩之上且仍然封冻的冰芯运回了俄亥俄州的实验室。如今,汤普森得以研究奎尔卡亚过去1,800年以来的气候历史,并且揭示了“恩索”与热带辐合带的位置曾经如何对这处冰盖的气候产生影响。

    厄尔尼诺现象会带来西风,从而减少到达冰盖中的水分,并给西海岸的沿海沙漠带来暴雨。随着时间推移,导致气温上升的厄尔尼诺现象与对应的、导致气温下降的拉尼娜现象会毫无规律地交替出现。前者会导致秘鲁南部与玻利维亚的高海拔草原(或称 altiplano,在西班牙语中就是“高原”的意思)出现干旱。与之相反的是,拉尼娜现象则会给高原地区带来降雨。它们结合起来,就成了安第斯山脉与南美洲西海岸,尤其是秘鲁的沿海干旱平原上的两大气候驱动因素。

    来自附近安第斯山脉上的径流,曾经让秘鲁境内工业化之前那一个个蕴藏着丰富黄金的国家(比如莫切国)变得极其富裕。“恩索”属于复杂的气候事件,在安第斯地区的古代历史上发挥过重要的作用。

    沿海:卡拉尔、莫切、瓦里与西坎(公元前3000年至公元1375年)

    安第斯文明的两大支柱,发展了数个世纪之久。古安第斯文明的一大支柱位于高原地区,以的的喀喀湖为中心。另一个支柱则在遥远的西北部,即秘鲁北部的低地沿海平原上繁衍生息着,那里也是全球气候最干旱的地方之一。从整体来看,这个广袤的地区由一系列东西走向的环境带组成,由西向东依次为沿海沙漠与河谷、山脉、高原、平原和热带雨林等等。每个环境带都有种植在不同条件之下的作物,说明自给自足与远距离贸易是这里两大持久存在的现实状况。[2]当时,沿海地区的百姓严重依赖于近海的鳀鱼渔业;这种渔业为他们提供了食物和鱼粉,其中的大部分都销往了高原地区。捕鱼是低地文明一项生死攸关的任务。河谷地区的灌溉农业,也是如此。秘鲁北部沿海的灌溉用水,几乎全都来自山间的径流;它们沿着河流而下,将一个个沿海平原分隔开来。沿海地区的环境非常脆弱,经常发生灾难性的地震,更不用说有常常旷日持久的严重干旱、沙漠化与沙丘构造,以及强大的厄尔尼诺现象导致的大洪水了。在这种艰难的环境条件下生活,对沿海社会造成了极大的制约;只有像逐渐沙漠化之类的变化,才允许他们在漫长的时间里慢慢地去适应。

    到了公元前3000年,有1,000 至3,000 位农民与渔民生活在一些离太平洋不远且早已有人居住的定居地。他们是一些联系紧密的社群,拥有种种牢固的亲族纽带和对祖先的深厚敬意。这一点,在一些华丽气派、精心装饰的织物中体现了出来;织物上,描绘着许多拟人化的图像、螃蟹、蛇和其他生物。这里也有城市,其中以秘鲁中北部沿海地区苏佩河谷中的卡拉尔古城遗址(约前3000—前1800)尤为著名。[3] 卡拉尔古城中,建有一座座巨大的泥土金字塔、广场、住宅和神庙建筑群。这是一个强大的文明社会,与“旧大陆”上的印度河流域、埃及与美索不达米亚等文明属于同一时代。

    卡拉尔古城遗址

    这里的人与古埃及人一样热爱金字塔;只不过,考古学家在卡拉尔并未发现爆发过战争的痕迹:没有残缺不全的骸骨,没有城垛,也没有武器,与印度河流域的情况一样。相反,卡拉尔似乎是一座和平安宁的城市、一个繁盛兴旺的大都市,占地面积超过了150公顷,并且至少催生了同一时期的19个卫星城镇。至于人口众多、交通发达的卡拉尔究竟为什么会逐渐衰落下去,如今我们仍不清楚;但这个地区的整体情况与世间的所有地区一样:随着人们艰难地应对社会变迁、政治变革与气候变化,各种文化此兴彼衰,一些特点保留了下来,还有一些要素则不复存在了。当我们沿着时间的长河继续前行,把注意力集中到公元1千纪前后的一些事件时,这种相互作用就会得到充分的体现。

    第七章中提到的考古遗址

    差不多就在提比略皇帝将敌人扔进台伯河里和维苏威火山喷发的时候,秘鲁北部沿海崛起了一个富裕的新文明社会,即莫切城邦(约 100—800);这个城邦由一个富裕的精英阶层统治着,他们把死者安葬在用土砖修建的金字塔里,留下了大量的黄金珠宝和丰富的艺术作品等遗产。他们掌管着一条狭长的海岸线,长约400千米,宽度却顶多只有50千米,从北部的兰巴耶克河谷一直延伸到了南部的内佩尼亚河谷。[4] 当然,秘鲁既然拥有伟大的文化遗产,那么莫切文化就不是凭空出现的。相反,他们是以当地各种错综复杂、历史悠久的河谷灌溉系统为基础,建立了自己的国家。他们留下的遗址周围虽说布满了沟渠与灌溉系统,但一切全都依赖于以单个村庄为基础的灵活耕作方法。莫切人的农业之本,需要小规模的劳动力和简单的灌溉设施,尤其是这些设施还须容易维修才行。与“旧大陆”上的情况一样,散居的本地社群也依赖于泉水和偶尔降下的暴雨所形成的地表径流。

    广泛分布的灌溉系统为莫切城邦提供了一种防御手段,以免为漫长的干旱和厄尔尼诺现象导致的暴雨所害;这种暴雨,有可能在几个小时内淹没和彻底摧毁所有的灌溉系统。从安第斯山脉流淌而下的山泉径流,宛如超自然世界一年一度馈赠给他们的礼物。从莫切人留下的艺术作品与墓葬来看(他们没有留下书面文字),当时是一些实力强大、叱咤风云的君主在统治着这个国家。[5] 他们声称自己拥有种种超自然力量,充当的是凡人与众神之间的中间人,而沿海渔场与珍贵作物正是由众神滋养的。莫切的统治者披金戴银,服饰华丽,出现在精心设计的公开仪式上,以强化人们的一种信念,即每位头领都对生命的延续不可或缺。若是没有头领,太阳有可能不会东升,鱼类也有可能死去。与(时代稍晚的)蒂亚瓦纳科高原上的人(参见后文)一样,莫切王国的臣民也是通过他们生产出来的商品与粮食向这些“赐予生命”的头领纳税;还有强制劳动,因为当时有大量平民被派去建造一座座宏伟的高台与神庙。

    对我们而言,这种制度可能看上去是一种杜撰,目的是让百姓为精英阶层服务,像是一个童话故事和一种欺骗,可莫切人看待这些观念时却很严肃,认为它们攸关生死。在一个充满不确定性的世界里,在现代科学崛起之前,头领和他们的众神乘虚而入。奎尔卡亚冰芯为我们提供了沿海地区生活严酷的证据,其中就包括接连不断的大旱,导致降雨量较平均水平减少了30%。[6]

    最严重的一场大旱发生在公元563年至594年之间;当时,莫切的统治者(或者君主、武士祭司,考古学家对他们的称呼五花八门)都生活在靠近太平洋的河流下游。这种战略位置,使得他们控制了水源与近海富饶的鳀鱼渔场;那些渔场是美洲驼商队销往高原地区的富氮鱼粉的主要来源,利润丰厚。干旱将各种灌溉系统都变成了贫瘠的尘暴区。君主们利用城邦谨慎节约和储存下来的粮食应对干旱年份,但当时肯定普遍存在营养不良的问题。幸好,他们还可以依赖渔场,直到强大的厄尔尼诺现象在干旱周期的高峰期来袭。暴雨导致沙漠中的河流变成一道道汹涌的洪流,将他们面前的一切席卷而去,来自北方的较暖海水则让鳀鱼的种群数量锐减。“恩索”摧毁了莫切人的生活之地,数十座村落消失在泥浆之下,土房纷纷倒塌,其中的居民则纷纷溺水而亡。

    那些武士祭司都很清楚,强大的厄尔尼诺现象会带来什么样的影响。他们的应对之法,就是派百姓重修灌溉系统,并且以人献祭。在考察研究莫切河谷中“月亮金字塔”(Huaca de la Luna)旁边一座隐蔽的广场时,考古学家史蒂夫·博格特(Steve Bourget)发现了一些描绘着海鸟与海洋生物、令人眼花缭乱的壁画,它们都与近海温暖的“恩索”洋流有关;可在这次轰动一时的艺术发掘当中,他还找到了大约70位被杀害武士的遗骸。他认为,在面对灾难时,莫切统治者曾经用活人献祭和复杂的仪式,来巩固他们的权威。接着,又一次强大的厄尔尼诺现象袭击了这个河谷。由河流冲积物形成的巨大沙丘被冲上海滩,掩埋了数百公顷的农田,淹没了莫切王国的都城。于是,莫切河谷里的君主和同一时期生活在兰巴耶克河谷中的人,都迁往了上游地区。

    尽管出现了这些不利的气候事件,但莫切人仍然维持着在投资尽可能少的情况下修建起来的面积广阔的农田系统。人口流动性变得更强,人们在不同的环境条件下兴建了许多较小的定居地,而不再兴建以前那种大型的城市中心。由于争夺肥沃土地与水源的冲突日益加剧,故农民们会迅速修好受损的地方。

    公元500年至600年间,莫切人巩固了他们那些规模越来越小、越来越分散的定居地;它们都位于安第斯山麓,分布在沿海河流的颈部,也就是河流进入沙漠的地方。[7] 到了此时,莫切人的领地日益变得四分五裂,故对粮食生产进行任何形式的地区性控制都难以实现。随着另一次严重的厄尔尼诺现象将关键的农田系统彻底摧毁,一个实力本已遭到削弱的领导阶层既要与突如其来的气候变化做斗争,还要全力对付高原部落的袭击。君主们丧失了神圣的信誉,莫切王国便开始分裂。与古埃及的法老一样,他们起码也设法熬过了一场曾经威胁到王国的灾难性气候事件。但与古埃及的法老不同的是,环境让他们几乎没有什么灵活变通的余地。他们在各个河谷中创造的人工环境需要长期规划和技术创新,以及摒弃一种僵化的意识形态,这种意识形态无法再支撑起一个严格控制的社会。他们显然与被统治的村落里的生活脱了节,已经别无选择,故到了公元650年之后,他们那个富有的遍地黄金的社会便逐渐分裂成了无数个较小的王国。

    在这些分散的王国当中,有一个是瓦里王国。瓦里人的领地,在公元500 年前后至公元1000 年间,从安第斯高原往下,一直延伸到了秘鲁北部(可能还有中部)的沿海地区。这是一种复杂的文明。瓦里人会用精美的珠宝加上精美的织物与陶器,给他们的精英阶层陪葬。他们巧妙地耕种土地,在山坡上开发出了一种壮观的梯田农耕系统。不过,由于实力受到了干旱的削弱,他们最终也衰落下去了。人们之间的暴力,或许还加速了他们的终结:在瓦里古城发掘出的一些政府建筑中,门都被堵上了,这暗示当时的人逃离了这里。考古学家提出,也许城中市民本想在再度下雨或者重归和平之后返回故里,但最终也没能回去。

    接下来,沿海地区就出现了西坎文化。西坎的头领,是在公元800年左右莫切社会开始分裂时上台掌权的。他们很可能就是莫切精英阶层的后裔;他们投入巨资,兴建了许多装饰华丽的仪式中心,其中主要是用土砖建造的假山。一座高达 27 米的金字塔,俯瞰着一个大广场和位于兰巴耶克河谷中的巴坦格兰德的西坎中心;如今,那座金字塔被称为“胡亚卡洛罗”(Huaca Loro)。葬在墓穴里的精英们个个装扮华丽,戴着特别的金面具和饰品。平民百姓却是葬在很浅的墓穴里,身上少有甚至没有饰物。他们与之前的莫切人一样,在“恩索”的破坏面前也很脆弱。在1375年另一个王国即奇穆王国行将征服西坎之前,面对一次大规模的厄尔尼诺现象,巴坦格兰德也衰亡了。

    奇穆:多种水源管理(公元850年至约1470 年)公元850年前后,奇穆王国崛起于莫切河谷之中。与西坎王国的情况一样,奇穆王国的第一批统治者有可能是莫切贵族的后裔;他们还深受同时代其他民族的影响,尤其是受到了瓦里人的影响。在接下来的4个世纪里,奇穆人将他们的经济与政治权威扩张到了秘鲁北部与中北部沿海的广大地区。他们虽然继承了前人的很多东西,但有一种重大的区别。从一开始,奇穆王国的君主就采取了一种不同的方法,来兴建他们的都城昌昌。[8]

    昌昌城位于莫切河谷的入口附近,后来逐渐发展成了一座庞大的城市,与数个世纪之前墨西哥高原上的特奥蒂瓦坎不相上下。一开始的时候,昌昌城是一座没有阶层之分的大都市,统治者专注于提供充足的粮食供应。没人确切知道,这座城市的人口数量后来有多庞大。到公元1200年时,此城的面积已经扩大到了20多平方千米。有大约26,000名工匠住在中心城区南部与西部边缘一带的土屋和藤屋里,其中还有五金匠与纺织工。还有3,000人紧挨着王室宫廷居住,而附近一座座独立的土砖大院里,住着大约6,000名贵族与官吏。对于这些统治者本身,如今我们仍然不知其名,因为他们没有留下任何文字记载;不过,当时他们住在城市中心 9座高墙环绕的僻静大院里。每座大院都有自己的供水系统、装饰华丽的住宅区和一个墓葬平台;统治者死后,这里便做坟墓之用。

    口头传说与17世纪西班牙人的编年史表明,在公元1462年至 1470 年的印加征服期间,统治着奇穆王国的是一位名叫米昌卡曼(Michancamán)的君主。显然,此人手下的朝臣都有明确的等级,其中还有“开路官”,是一名专司在君主要走的路上撒下贝壳粉末的官吏。每位领袖都会把自己的宅邸建在其他统治者的宫廷附近,但不会继承后者的任何财产。这种制度,通常被称为“分离式继承”,让奇穆王国的领袖们不得不通过征服来获得额外的领土、财富和纳税的臣民。他们还采取了强行将被征服民族迁离故土的措施,与印加人的做法一样。[9]

    秘鲁奇穆王国昌昌城古城遗址

    奇穆王国逐渐变成了一个等级森严、组织严密的社会,既有精心划分的贵族与平民两个阶层,也有严格的法律体系来执行社会等级制度。奇穆王国境内的不同地区,都由受到统治者信任的官吏管治着。从政治角度来看,这个国家堪称治理有方。在其鼎盛时期,奇穆人统治着一个广袤的王国,其疆域扩张到了古莫切王国的北部沿海地区以外,并且一直向南,沿着差不多长达1,000千米的海岸线延伸。

    历任君主都把武力与朝贡结合起来,维护着他们这个不断发展的国家。他们很快就认识到,以连接每座河谷的道路系统为基础的高效交通十分重要。其中的许多道路不过是羊肠小道而已,可它们却将奇穆王国的每个地区都连接起来了。这一点至关重要,因为该国的贡品与物质财富,都经由这些道路流向中央。与其他的古代文明一样,奇穆君主曾精心利用徽章和贵重礼物,奖励手下臣民的忠诚和在战斗中的勇猛之举。他们也很清楚,整个国家依赖的是无法仅凭武力或者朝贡就获得的粮食供应。

    数个世纪以来,沿海地区的农民像莫切人那样,一直利用沿海山坡上各种高度灵活的农业系统进行耕作;在沿海山坡上,他们可以最大限度地利用泉水和暴雨形成的地表径流。人口密度相对较低的时候,这种农耕策略效果很好。与莫切人形成了鲜明对比的是,面对快速发展的城市建筑群与迅速增长的人口,奇穆人在极其多样化、组织严密的水源管理与农业方面进行了大力投入。

    昌昌城本身严重依赖于阶梯井,其中的许多水井都利用了靠近太平洋的高地下水位。此城东部地势低洼,从而为一种复杂的下沉式庭园系统提供了条件,使得高地下水位从太平洋沿岸朝上游方向,延伸达5千米之远。到了公元1100年,徭役劳动力已经开掘了一个巨大的沟渠网络,为昌昌城北面和西面的平原地区提供灌溉用水了。灌溉用水也对城市的地下含水层进行了回补。同年一次强大的厄尔尼诺现象导致莫切河改了道,并且严重破坏了这座都城上游的灌溉系统,之后统治者们便冒冒失失地下令开始建造一条长达 70 千米的沟渠,要从附近的奇卡马河谷中将水源引到被毁的农田里。[10]

    这项雄心勃勃的工程一直没有完成,部分原因在于该城已经扩张到了上游地区,那里的地下水位要深得多。最终,此城就只能往太平洋和地下水位较浅的沿海地区收缩了。

    这还只是奇穆人与干旱及“恩索”进行的非凡抗争的一部分。君主们的计划原本更具雄心,耗资更加巨大。[11] 他们在整个王国境内兴修了许多精心设计的沟渠,把水源引到土地有可能肥沃的各座河谷中的不同地方。有些沟渠长达40千米。对于奇卡马北部的赫克特佩克河谷来说,不但其泛滥平原和与之毗邻的可灌溉沙漠平原上有肥沃的农田,沿海地区也有丰富的海洋资源。如今,河谷的北侧依然留存着奇穆人在数百年里开掘的至少长400千米的沟渠遗迹。这个广袤的沟渠系统从来没有同时使用过,因为那里没有充足的水源来灌满所有的沟渠。凡是依赖于这些沟渠的社群,必定精心制定过灌溉时间表,以便公平地为所有群落供水。若是明白如今当地的农民每隔 10 天左右就要给庄稼浇一次水,我们就会对这个沟渠系统的运筹复杂性有所了解。尽管极其复杂,但奇穆人的沟渠设施既提供了一种切实可行的方法,可以缓解极端气候事件带来的影响,比如“恩索”导致的暴雨,同时也提供了应对缺水导致的政治动荡的某种手段。

    农耕环境与十二河谷

    赫克特佩克河谷的南侧是一幅完全不同的景象,那里有大量的沿海沙丘,向内陆延伸达25千米之远。公元1245年至1310年间的一场大旱,导致这里形成了大片沙丘,以至于人们在14世纪末还遗弃了位于卡农西略(Cañoncillo)的一个大型定居地;当时,不断推进的沙丘覆盖了农田,堵塞了灌渠,掩埋了房屋。这种较为长期的沙漠化,规模远大于干旱和暴雨造成的破坏。干旱与暴雨导致的破坏,人们尚可修复,但日益侵袭的沙丘,却非人类所能阻遏的。人们只能迁往别的地方。

    干旱是一回事,厄尔尼诺现象导致的降水过多则是另一回事。在法凡苏尔(Farfán Sur)、卡农西略以及奇穆王国其他一些较大的城市中心,当地的头领与水利专家兴建了许多复杂的溢流堰,将其作为灌溉沟渠中的组成部分,尤其是为连接一些深谷的引水渠修建了溢流堰。这种溢流堰能够降低水流速度,防止水土流失。他们修建的引水渠里还衬有用石头砌就的导水沟,让水流不致破坏整个结构的底部。这些策略起到了一定的作用,但有迹象表明,其中许多引水渠都是在垮塌之后重新修建起来的。另一种策略,就是在沿海附近的地区用石头修建一些呈新月形的石制挡沙墙。这种挡沙墙减缓了丘沙侵入灌溉沟渠和农田的速度,只不过其中的许多并没有起什么效果。

    莫切人依赖的都是单个社群,他们很少尝试对农业进行集中管理。村落被毁之后,人们只是迁往别处,然后修建一个新的沟渠系统罢了。人口密度很低的时候,尽管各个社群对最肥沃之地的争夺很激烈,这样做也完全没有问题。可奇穆人生活在一个人口要密集得多的农耕环境里。他们逐渐形成了许多大型的城镇与城市,在地区范围内从事着农业生产。他们利用大量的徭役劳动力,对他们创造的整个农耕环境进行了大力投入。这些有组织的农耕环境包括大型的蓄水池与陡坡之上的梯田,后者可以控制倾泻的下坡水。他们最大的投入,就是开掘了一些长长的沟渠,将水源从深深下切的河床引到遥远的梯田与灌溉用地里;即便是大旱期间,那些沟渠也能引水。这是一种长远投入,让奇穆王国能够开辟数千公顷的新地;奇穆人耕作着这些土地,每年都能种、收两三次。在此以前,他们每年只能收获一次,且时间上与一年一度的山间洪水一致。

    最后,就算有大量的劳动力,土地开垦也变得不划算起来了。奇穆王国的君主们转而开始了征伐;“分离式继承”制度为这种征伐提供了理由,因为在此制度下,每位统治者都必须通过自己的努力才能获得农田。最终,他们掌控了12个以上的河谷,其中至少有50,500公顷的耕田,全靠当时的农民用简易的锄头或挖掘棒进行耕作。这种规模的农业,需要进行高效而坚决的监管。考虑到建设与管理方面所需的巨大投入,他们也不可能采取别的做法。统治者严格限制个人流动,强迫许多臣民住进城市,还对粮食供应与人口实施高度集权化的控制。这种集权管理具有战略上的优势,因为奇穆王国可以在地区范围内而非局部范围内去应对漫长的干旱和重大的“恩索”事件。他们可以把一个地区的庄稼转到另一个地区去播种,可以启用未受损坏的灌渠,并且派出大量劳力去修复洪水造成的损毁。

    奇穆王国依靠长远规划,在一个只有 10%可耕土地的环境中创造了众多的农业奇迹。幸运的是,这个王国还可以仰仗鳀鱼渔业。据史料记载,当时的渔民与众不同,会跟农民交换粮食。沿海居民几乎不会遭到干旱影响,却会为厄尔尼诺现象所害,因为近海的上升流速度放缓,鳀鱼捕获量就会锐减。

    玛雅的君主率领着臣民进入一种环境乱局之时,奇穆王国的精英阶层则在“中世纪气候异常期”熬过了一场场漫长的干旱和一次次异常强大的“恩索”事件。奇穆人的领袖掌管的是一个精心组织的绿洲,以大量人力劳动与严酷的集中控制为基础。他们还依赖于一种僵化的社会秩序,以及沟通自然世界与超自然世界的种种宗教仪式。他们所处的环境,让领袖与农民都预先适应了干旱程度在世界上数一数二的环境中的严酷现实;这里雨水稀少,水源则来自遥远的地方。每个人的一生中,都经历过干旱;国家则通过让粮食供应变得多样化、节约每一滴水以及捕鱼来扩大食物基础,从而适应了这一切。祖先们来之不易的经验、老练的机会主义和长期规划,都带来了很好的回报。

    奇穆王国掌控着自身的生存,但君主们却无法主宰那些用山间径流滋养着王国的分水岭。此时,王国的农业耕作已经极具规模且复杂,以至于他们开始难以管理水源供应,尤其是难以对上游水源进行管理了。公元1470年前后,来自高原地区的印加征服者获得了诸分水岭的战略性控制权,并且打垮了这个国家。奇穆王国变成了塔万廷苏尤的一部分,“塔万廷苏尤”在印加语里就是“四方之国”的意思。农耕与灌溉继续进行,而沿海河谷中那些新的王公贵族,则把奇穆王国中的专业工匠迁往了高原地区的库斯科。

    沿海诸国之所以在不同规模上繁荣发展起来,是因为人们深入了解了自己所处的环境和滋养土地的水源。各国领袖与农民生活的河谷里经常出现严重的干旱,而一次次厄尔尼诺还毁掉了他们的农田。他们十分熟悉“恩索”即将到来的种种迹象,比如鳀鱼渔获减少、近海洋流南下、出现不熟悉的热带鱼类,以及近海水温上升。无论是莫切人、西坎人还是奇穆人,人人都能预测出可能发生的灾难,以及高原地区由“恩索”导致的干旱,这种气候现象会让播种时节的地表径流减少。安第斯地区诸国对气候与环境变化做出过各种不同的社会反应,但其中只有奇穆王国认识到了长远规划有助于维持王国的持续发展;而且,这种认识一直延续到了印加时代及其以后。

    在秘鲁沿海和安第斯山区,保持可持续性始终都是一种挑战。一些小社群在适应当地条件与变幻莫测的干旱时所用的各种方法,会让我们立刻大吃一惊;这里的干旱,有时会持续一代人的时间,甚至更久。莫切人与奇穆人在沿海地区从事的河谷农业,若是没有小社群里耕作者精心做出的长远规划,是绝对不可能蓬勃发展起来的。强调“防患于未然”,为大旱时期制定应对措施,在奇穆王国表现得尤为突出;这个王国曾大力投资兴建水利工程,比如将各个河谷连通起来的沟渠。

    莫切人与奇穆人都属于等级社会,使得他们的领袖能够强迫臣民用劳役的形式纳贡。很显然,这一点建立在领袖与平民之间具有一种社会契约的基础之上,且每个人都据此认识到了谨慎管理水源和预见潜在风险所带来的益处。回顾起来,这个方面在奇穆社会里似乎组织得更加严密;只不过,无论领导层多么高效,专业的农耕知识(即当地的环境知识)和以社群为基础的劳动力显然都极其重要。在靠近灌溉工程的农耕村落之间起着黏合作用的亲族关系,也是如此。社群的合作劳动无比重要。中央集权的专制统治负责调配劳动力,但对本地的了解和亲族纽带,却将各个方面团结了起来。此外,还有近海的鳀鱼渔场;故在干旱年份,这里也有多样化的粮食供应,足以养活百姓。

    我们可以将这种情况与高地上的蒂亚瓦纳科比较一下;那里的粮食盈余既取决于降雨,也取决于最终以社群为基础的灌溉规划。长期性的干旱降临之后,蒂亚瓦纳科统治者们的中央集权势不可当地解了体,而整个国家也分崩离析了。可在农村地区,当地社群由于拥有种种紧密的亲族联系,所以存续了下来。

    令人震惊的高原:蒂亚瓦纳科(公元7世纪至12世纪)

    阿尔蒂普拉诺(altiplano,即西班牙语里的“高原”一词)紧挨着奎尔卡亚冰盖南部边缘;这就意味着,此地钻取的冰芯会敏锐地反映出气候变化的情况。的的喀喀湖位于奎尔卡亚以南,相距仅有120千米;从此湖中钻取的沉积物岩芯,则提供了第二种关于降水的准确来源。所以,问题就在于:过去的人是如何对冰芯中所记录的气候变化做出反应的呢?对考古学家而言,幸运的是,蒂亚瓦纳科属于南美洲已知的、哥伦布到来之前(pre Colombian)的最大遗址之一,它就位于离的的喀喀湖畔不远的地方。

    公元7世纪至12世纪初,蒂亚瓦纳科逐渐发展成了一个主要的城邦。[12] 据钻取的冰芯所示,在这差不多5个世纪的时间里,气候普遍温暖且相对湿润。虽然其间也有比较干旱的时期,但气候相对稳定。冰芯当中含有一层层的风积物;这些风积物,来自城市周围面积广袤和阡陌纵横的台田系统。据我们所知,光是蒂亚瓦纳科的腹地,就有大约19,000公顷这种农田。在城邦的全盛期里,全国的农业全都依赖由村落社群兴建和维持的这些农田系统。产量最高的田地都位于高原上的战略要地,就是那些被灌渠环绕的地块。连四周那些灌渠中的淤泥,也为台田原本肥沃的土壤提供了丰富的养分,而当地的主要家畜美洲驼的粪便也是如此。降水丰沛的时候,高位地下水和灌渠会浸润田地,不但可以提供充足的水分,还可以极好地保护生长中的作物免受霜冻之害。这种浸润,与最负盛名的作物即玉米的成功极为相关。

    蒂亚瓦纳科的农民也种植土豆——这是当时平民百姓的主食,但同样容易被高地上的霜冻所毁;他们还成片成片地种植块根落葵,这种植物的根块颜色鲜艳,样子跟土豆一样,叶子则可食用,像是菠菜。台田农业如此多产,以至于从公元7世纪至12世纪初期,村民们开发出了大片这种阡陌交错的田园。局部的农田系统最终变成了精心整合的地区性系统,提供的粮食盈余既养活了一个政治精英阶层,支撑起一种复杂的意识形态和各种宗教信仰,还广泛销往了各大低地和沙漠地区。

    蒂亚瓦纳科遗址,玻利维亚

    当时,在蒂亚瓦纳科这个政治与宗教中心周围从事农耕生产的“城郊”地区,可能生活着2万人。蒂亚瓦纳科城宏伟壮观,城里不乏巍峨雄壮的建筑。其中有一个巨大的下沉式场院,名叫“卡拉萨萨亚”,坐落于一个铺着石头的土台之上。不远处,一排笔直的石头围成了一道呈长方形的围墙,附近一扇大门上则刻有一个拟人化的神像,人们有时称之为“维拉科查”[13] 。宗教建筑群的附近坐落着一些较小的建筑、场院和巨大的雕像;它们都是一种强大图腾的组成部分,这种图腾以秃鹰和美洲狮为特点,外加一些拟人化的神灵,且神灵身边还跟着一些地位较低的神祇或者信使。蒂亚瓦纳科的中心是一个极其神圣的地方,由一些姓名不详的半神贵族掌管着。这个精英阶层站在一个精心组织的王国的顶端实施统治,王国依靠畜牧业和自给农业支撑着;其规模之大,以至于考古学家如今仍然能够在城市四周废弃已久的台田里看到犁沟的遗迹。

    在这个高原国家的表象之下,隐藏着一些强大的经济与政治力量;该国的繁荣,很大程度上依靠当地的冶铜业,再加上的的喀喀湖南岸及其与遥远的沿海地区之间进行的其他贸易。利用美洲驼形成的非正式贸易网络,将这个高原城邦与大约325千米以外一个距离太平洋不远的殖民地莫克瓜联系起来了。这种殖民开拓活动并非偶然,因为两个中心都地处一个肥沃的玉米种植环境的心脏地带。查尔斯·斯坦尼什(Charles Stanish)和其他人曾在的的喀喀湖盆地西南部进行实地考察,他们既发现了这座城市,还在同一个南方河谷中找到了其他两座与蒂亚瓦纳科具有密切文化联系的大型城镇。[14] 在数个世纪的时间里,有无数人曾经生活在那儿。其中有些人还曾到处游历。在当时距海岸不远的昌昌城中的一座大型公墓里,长眠着 10,000 多个与地处高原的蒂亚瓦纳科有密切联系的人。

    蒂亚瓦纳科中部与其周边遗址之间的贸易,似乎相对不那么正式,但涉及了来自周边地区的、该国心脏地带无法获得的商品与货物的流动。不同于后来的印加人,蒂亚瓦纳科人并未付出什么努力,去维持一种正式的道路系统。不过,他们确实在低海拔地区保持着一些殖民地,其中的居民与高原上的创始社群之间保持着密切而长久的联系。当时的大部分贸易,都掌控在历史悠久的贸易路线沿途那些具有牢固人际关系的亲族群体与商人手中。当时的驼队数量,有可能达到了数百支(如今数量少得多了);而从现代的观察结果来看,这种驼队每天能够走上15千米至20千米。这种贸易,将该国的意识形态传播了出去,以黏土器皿与艺术的形式加以表达,从而强化了蒂亚瓦纳科在面积广袤的高原与低地上的经济与政治权威。即便是蒂亚瓦纳科城邦土崩瓦解之后,这种贸易也仍然进行了下去。

    忽冷忽热

    我们在前文中已经提到蒂亚瓦纳科在气候相对温暖和稳定、降雨也较以前更多的那几个世纪中崛起的过程。与玛雅人的情况一样,当时蒂亚瓦纳科的农业不断扩张,台田面积大增,人口密度也上升了。那几个世纪可谓黄金时代,蒂亚瓦纳科经历了一场大规模的建设与扩张,而其统治者的威望与宗教势力则主宰着辽阔的高原,以及遥远而气候干旱的沿海地区。不过,这种状况并没有持续多久。

    奎尔卡亚冰盖上的冰芯与的的喀喀湖中的钻孔取样表明,公元1000年前后蒂亚瓦纳科及其领地遭遇过一场大旱。[15] 降雨量急剧减少,的的喀喀湖的水位也在公元1100年以后下降了12米多。湖岸明显退却了数千米之远,导致大量的台田陷入了无水可灌的境地。与此同时,当地的地下水位下降,远低于之前数个世纪的正常水平了。许多水力循环系统曾经极其巧妙地维持着附近的沟渠,此时却变得毫无用处;由湖边往内陆而去的引水系统尤其如此。

    剧烈的环境变化,出现在人口数量不断增加、人口密度也日益上升的一个时期。以前的沼泽地带是进行精耕细作的理想之地,如今则变成了比较干旱的环境。尽管人们随即大幅降低了农耕生产的集约化程度,还种植了种类更多的作物,可他们已经无力创造出以前那样富足的粮食盈余了。寥寥几代人过去之后,由城邦统治者兴建和管控的那种精心组织的大规模农耕体系,就再也行不通了。曾经支撑着蒂亚瓦纳科根基的那种农耕体制崩溃了。严重的干旱,导致蒂亚瓦纳科这个城邦在经历了数代人的经济、政治与社会动荡之后,就此土崩瓦解。日益分化、竞争激烈的农业与畜牧业经济发展起来,不可避免地带来了严重的政治与经济影响。[16] 在一些灌溉条件较好的地区,成就斐然的地方领袖纷纷获得独立,摆脱了这个统治者长久以来都依靠其强大的神圣血统及其与神的联系来实施统治的国家。这些变化,出现在公元1000年至1150年之间。

    与玛雅人的情况一样,蒂亚瓦纳科城邦的解体也是一个复杂而不规则的过程。人们继续居住在蒂亚瓦纳科的部分地区,以及附近卡塔里河谷中的一个重要农耕区,直到 12 世纪。宗教仪式继续举行,并未中断。传统的生活方式,也在一个看似漫长而混乱的解体过程中留存了下来。

    奎尔卡亚冰盖上的冰芯表明,干旱继续在这一地区肆虐;13 世纪和14世纪出现过一场尤其漫长的旱灾,而公元1150年左右那段不规律的变暖期里也出现过一次(此时正值“中世纪气候异常期”,即欧洲变暖的那个时期,我们将在第十一章里看到)。在这种反常的炎热气候中,蒂亚瓦纳科与北方安第斯高原上另一个伟大的城邦瓦里在经济和政治上最终都崩溃了。到了此时,各个社群都已从河谷谷底与位置较低的河谷山坡迁往海拔较高的地区;人们认为,海拔较高的地区较易获得水源。

    由于台田无法再耕作下去,其中的许多社群便将蒂亚瓦纳科人曾经忽视、以前未被开发和无人居住的地方性环境利用了起来。这种做法,对高原社会产生了巨大的影响。在一度繁荣兴旺的卡塔里河谷,农民都迁移到了无数座较小的村落里;它们的规模,只有蒂亚瓦纳科全盛时期的四分之一。以前数个世纪里精心形成的社会等级制度,以及曾经将人们与此时业已遗弃的城市维系在一起、有时必定需要人们像奴

    隶一样奉献的政治与宗教活动(其中还包括节庆宴飨),全都一去不复返了。要想生存,就意味着他们必须离开蒂亚瓦纳科附近那些一度富足的农耕环境,迁往海拔更高、更靠近冰川水源且容易防御的地方。到了公元1300年,修建在山巅的城寨要塞已经随处可见;考古学家发掘出的遗骸表明这里出现过暴力,或许还发生过地方性战争。[17] 经过了长达5个世纪不间断的台田农耕,出现了一座座拥挤的城市中心之后,肆虐的干旱导致的的喀喀湖周围的农业耕作在随后的数个世纪里都难以为继了。在 15 世纪中叶印加帝国掌控这一地区之前,阿尔蒂普拉诺高原及其毗邻的高地上几百年间都没有出现过人口稠密、繁荣发展的城镇。

    实际上,人们直到现代才停止台田耕作。这种耕作方式,是美国的艾伦·科拉塔(Alan Kolata)和玻利维亚的奥斯瓦尔多·里维拉(Oswaldo Rivera)这两位考古学家“重新发现”的,他们曾研究蒂亚瓦纳科以北约 10 千米一些废弃的台田。[18] 他们的发掘,穿过了一些台田与附近的沟渠,还穿过了一些曾经有人居住的土丘,目的是揭示人们为改善排水状况和把沟渠中的淤泥铺到田地里而采取的措施。在考古学家克拉克·埃里克森(Clark Erickson)、当地农民、一群农学家和其他人的参与下,他们启动了一个旨在恢复传统耕作方式的项目。他们一起精确地复制出了一块台田,并且只使用传统的工具,比如脚踏犁。结果表明,这块新辟之地不但大获成功,还证明了小家庭与亲族群体可以轻而易举地建造、耕作和维护这种田地。随后进行的对照实验项目,已经让高原上的许多农民开始采用这种失传已久、曾经支撑过一个完整的文明社会的台田耕作方法。

    由此我们再次得知,传统的农耕知识在当今世界上仍然具有重大的意义。可惜的是,在我们能够将其应用到正在变暖的世界中去之前,这种知识中的大部分正在消失。如果不吸取过去的教训,我们就将面临危险。

    [1] L. G. Thompson et al., “A 1500-Year Record of Climate Variability Recorded in Ice Cores from the Tropical Quelccaya Ice Cap,” Science 229 (1985): 971–973.

    [2] Michael Moseley, The Inca and Their Ancestors, 2nd ed.(London and New York: Thames & Hudson, 2001),这是一部旁征博引的综合性作品。

    [3] Ruth Shady and Christopher Kleihege, Caral: First Civilization in the Americas. Bilingual ed. (Chicago: CK Photo, 2010).

    [4] 关于莫切人:除了Moseley, The Inca and Their Ancestors,

    请参见Jeffrey Quilter, The Ancient Central Andes (Abingdon,

    UK: Routledge, 2013)。

    [5] Walter Alva and Christopher Donnan, Royal Tombs of Sipán

    (Los Angeles: Fowler Museum of Cultural History, 1989). 更

    新之作:Nadia Durrani, “Gold Fever: The Tombs of the Lords

    of Sipan,” Current World Archaeology 35 (2009): 18–30。

    [6] L. G. Thompson et al., “Annually Resolved Ice Core

    Records of Tropical Climate Variability over the Past 1800

    Years,” Science 229 (2013): 945–950.

    [7] Brian Fagan, Floods, Famines, and Emperors: El Ni.o and

    the Fate of Civilizations. Rev. ed. (New York: Basic Books,

    2009), chap. 7,其中为普通读者进行了描述。

    [8] Michael Moseley and Kent C. Day, eds., Chan Chan: Andean Desert City (Albuquerque: University of New Mexico Press, 1982).

    [9] Brian Fagan, The Great Warming (New York: BloomsburyPress, 2008), chap. 9,其中进行了大致的描述。
    [10] Charles R. Ortloff, “Canal Builders of Pre-Inca Peru,” Scientific American 359, no. 6 (1988): 100–107.

    [11] Tom D. Dillehay and Alan L. Kolata, “Long-Term Human Response to Uncertain Environmental Conditions in the Andes,” Proceedings of the National Academy of Sciences 101, no. 2:4325–4330.

    [12] Alan L. Kolata, The Tiwanaku: Portrait of an Andean

    Civilization (Cambridge, MA: Blackwell, 1993). 还有两卷编著

    作品,它们属于详尽的专著:Alan L. Kolata, ed., Tiwanaku and

    Its Hinterland: Archaeology and Paleoecology of an Andean

    Civilization, vol. 1: Agroecology and vol. 2: Urban and Rural

    Archaeology (Washington, DC: Smithsonian Institution, 1996

    and 2003)。

    [13] 维拉科查(Viracocha),印加神话中的创世神,被奉为众神之王。——译者注

    [14] Charles Stanish et al., “Tiwanaku Trade Patterns in Southern Peru,” Journal of Anthropological Archaeology 29(2010): 524–532.

    [15] 这一节在很大程度上参考了Lonnie G. Thompson and Alan L. Kolata, “Twelfth Century A.D.: Climate, Environment, and the Tiwanaku State,” in Megadrought and Collapse: From Early Agriculture to Angkor, ed. Harvey Weiss (New York: Oxford University Press, 2017), 231–246。

    [16] R. A. Covey, “Multiregional Perspectives on the Archaeology of the Andes During the Late Intermediate Period (c. A.D. 1000–1400),” Journal of Archaeological Research 16 (2008): 287–338.

    [17] E. Arkush, Hillforts of the Ancient Andes: Colla Warfare,

    Society, and Landscape (Gainesville: University Press of

    Florida, 2011). See also E. Arkush and T. Tung, “Patterns

    of War in the Andes from the Archaic to the Late Horizon:

    Insights from Settlement Patterns and Cranial Trauma,”

    Journal of Archaeological Research 219, no. 4 (2013): 307-369; Alan L. Kolata, C. Stanish, and O. Rivera, eds., The Technology and Organization of Agricultural Production in the Tiwanaku State (Pittsburgh, PA: Pittsburgh Foundation, 1987).

    [18] Clark L. Erickson, “Applications of Prehistoric Andean Technology: Experiments in Raised Field Agriculture, Huatta, Lake Titicaca, 1981–2,” in Prehistoric Intensive Agriculture in the Tropics, ed. I. S. Farrington. International Series 232 (Oxford: British Archaeological Reports, 1985), 209–232. 还有一篇论述这个地区传统农业的宝贵论文:Clark Erickson, “Neo-environmental Determinism and Agrarian ‘Collapse’ in Andean Prehistory,” Antiquity 73(1999): 634–642。

    第八章 查科与卡霍基亚(约公元800年至1350年)

    公元1100年前后,美国佛罗里达州派恩岛海峡。独木舟静静地穿过红树林沼泽中一条狭窄的水道,驶入了开阔水域。一段长长的麻绳和一根插到水底的杆子,让小船停到了合适的位置。船上的夫妻二人撒下一张细细的渔网,任由网子下沉,然后耐心地等待着。他们拽了拽,觉得渔网很沉,稍微动了动。他们收了网,把不断挣扎的钉头鱼拉到船上,然后继续前进。但是,船桨触到了水底。划桨者在心中暗暗记住了这个地方,然后把船划入了较深的水域。近来天气较为寒冷,这里的水深在不断变化,所以大家都开始日益主要靠海螺和其他可食用的软体动物为生了。

    如今佛罗里达州东南部的美洲原住民卡卢萨族曾经在一种地势低洼的沿海环境中繁衍生息,以种类繁多的鱼类和软体动物为食。人人都靠船只谋生,住在紧凑的永久性定居地,因为这里高地很罕见,人口流动起来也很困难。食物供应虽说充足可靠,但海平面从来都不是永久不变的。海平面上升或者下降几厘米,就有可能毁掉一个海草渔场,或者毁掉盛产牡蛎或海螺的地方。他们几乎不可能将食物储存起来,故每座孤立的村落都靠着独木舟,在一个贸易和互惠互利对所有人都有益的社会里与其他村落保持联系。从根本来看,将所有人团结起来的那种黏合剂是无形的,那就是他们的经验性知识,以及他们在一种复杂的仪式生活中体现出来的超自然信仰。

    无形领域在古代北美洲人的生活中居于核心位置。智人从 15,000 多年的漫长岁月的一开始便成功地适应了北美洲的各种迥异的环境:从严酷的北极苔原,到温带森林,再到占据了西部大部分的荒芜、干旱地区。美洲原住民通过数百代人的口耳相传,将这些适应措施的奥秘,以及与之相关的大量知识传了下来。其中很多知识曾帮助人们应对过各种各样的气候变化,直到19世纪仍然保存得很完整。许多知识如今依然留存于世,既铭刻在赞美诗与歌曲里,也铭刻在人们谨慎珍藏、很少与他人分享的不成文知识当中。全球气候变化中的重大变化,比如大气与海洋之间持续不断的相互作用、厄尔尼诺现象、严重的干旱周期以及导致海平面大幅上升的气候变暖等等,就是无数成功与不成功、牢牢立足于传统经验与知识的地方性 适应措施的背景。直到如今我们才开始认识到:可持续性与面对这些变化时的韧性,是当代加拿大与美国的美洲原住民历史中的两个主要因素。

    在本书中,我们只能描述几个例子,但它们代表着我们的知识具有巨大的进步潜力,对我们如今关于未来气候变化的论争具有重要的意义。

    干旱与渔民(公元前1050年至公元13世纪)

    赤道太平洋表面海水温度的不断变化,给美国加州既带来了干旱,也带来了降雨,并且次数极多,变幻莫测。数千年来,生活在沿海与内陆地区的狩猎与采集民族,都曾以我们熟悉的对策适应干旱或者洪水。[1] 他们顺应各种气候力量,在干旱年份里依靠永久性的或者可靠的水源供应,必要的时候还会吃一些不那么理想的食物。许多群落都倚重各种各样的橡树,摘取易于储存、营养也很丰富的橡子为食。加州南部沿海从事渔业的社群,则是利用圣巴巴拉海峡的自然上升流,以鳀鱼为主食,辅之以橡子。[2] 与其他从事狩猎和采集的社会一样,这里的人们也是通过焚烧干草的手段来促进新植物生长或者吸引猎物,从而对所处的环境进行“管理”。干旱降临之后,许多群落都会退回到沼泽或者湿地环境中去。和往常一样,将风险降至最小的传统对策与灵活性、机会主义结合起来,就确保人们能够在各种干旱与半干旱地区生存下来。

    像圣巴巴拉沿海地区的丘马什族这样的渔民,能够毫不费力地应对厄尔尼诺之类的短期气候变化。较长期的气候变化就是另一回事了;如今,我们可以从深海岩芯、湖泊岩芯与树木年轮中看出来。幸运的是,人们从圣巴巴拉海峡中钻取了一根长达198 米的深海岩芯,其中的17米岩芯中记录了自“大冰期”以来此地的气候变化情况。[3] 有孔虫(浮游生物以及其他类似的简单生物)沉积物的聚积速度很快,故非常适合用于研究高度敏感的环境情况。由道格拉斯·肯尼特与詹姆斯·肯尼特这对父子组成的一个研究团队利用有孔虫与放射性碳定年法,获得了一幅显示过去3,000年间每隔25年海洋气候变化情况的高分辨率图像。

    第八章与第十三章中提到的北美洲遗址

    肯尼特父子发现,海洋表面平均温度的变化幅度高达3℃。可公元前2000年之后,气候就变得更不稳定了。从人类的角度来看,生活变得更加复杂,因为沿海渔场的产量每一年都有可能出现巨大变化。海岸上升流的强度是一个关键指征,标志着富含养分的低温海水上升到海面的时期。这种上升流,极大地提高了当地渔场的产量。通过研究岩芯中的深海有孔虫和浅海有孔虫,肯尼特父子还发现,从公元前1050 年至公元450年,海水温度相对较高、较平稳。海面水温较高导致自然上升流减少,故渔场产量也较低。从公元450年至1300年,海水温度大幅下降,比“大冰期”以来的水温中值低了大约1.5℃。在公元950年至1300年这三个半世纪的时间里,海洋上升流特别强劲,导致各个渔场的产量都大增。公元 1300 年之后,海水温度又平稳下来,开始逐渐上升。到了公元 1550 年,上升流的强度已经减弱。有意思的是,在公元500 年至1250 年间,海洋表面温度下降与海洋上升流增加的时间,与出现地区性干旱的时间相吻合。(公元800 年至 1250 年这段干旱周期,大体与“中世纪气候异常期”相一致。)在美国西部的许多地方,内华达山脉的树木年轮序列中也记录了类似的干旱周期;其中一个序列中记录了两场旷日持久的干旱,分别持续了200多年和140多年。不管以什么标准来衡量,它们都属于特大干旱。

    长久以来,圣巴巴拉海峡地区的丘马什民族及其祖先都在一个被世人误称为“伊甸园”的地方繁衍生息,并且以此闻名;那里有资源丰富的近海渔场,陆地上的橡实收成也很充足。不过,就算是在一个个降雨充沛、渔获丰收的好年景里,许多群落也是过一年算一年。虽说公元450年之后海水温度的下降改善了渔业状况,但要养活的人口也更多了。接下来的八个半世纪里干旱周期频繁,虽然有可能没给沿海地区带来太大的问题,却给内陆地区造成了重创。随着人口增加,部族领地的边界划分也变得极其清晰了。部族首领之间不断争夺领地和橡树林的控制权,并且为了永久性水源而争战。从一些墓葬的遗骸中我们得知,当时偶尔有营养不良的现象,还有受过外伤的人;这些遗骸可以追溯到公元1300年和1350年前后,当时弓箭开始出现。在降水变幻莫测、粮食供应高度本地化、政治竞争与社会竞争都很激烈的地区,深受气候压力之苦的群体之间爆发一场场短暂而激烈的局部冲突,是在所难免的事情。

    公元 1100 年以后,丘马什社会发生了深刻的变化;当时,暴力与持久的饥荒(或许甚至还有当地的族群消亡)成了普遍存在的现象。定居地的规模变得越来越大,人们住得更近、更集中了。随着首领家族领导的世袭精英阶层制定了各种有力的机制来控制贸易、解决争端和分配食物,许多大型定居地和较小的定居地都形成了等级制度;有些地方仅仅相距数千米,食物资源方面却差异巨大。人们用舞蹈和其他的宗教仪式,通过一种被称为“安塔普”(antap)的联盟,确认了这种新的社会秩序;“安塔普”发挥了一种社会机制的作用,可以把相距甚远、有权有势的个人联合起来。因此,丘马什族一直存续到了 16 世纪西班牙殖民者来到美洲的时候;在一种动荡不安的政治环境下,合作确保他们能够在充满挑战的自然环境中生存下来。[4] 丘马什族的这个例子表明,在食物供应不一定充足的社会中,精心控制的传统仪式可以提升整个社会的可持续性与韧性。

    在公元10 世纪至13 世纪的“中世纪气候异常期”里,丘马什族的渔场曾因得益于海洋中的自然上升流而产量大增。还有两个重要的社群也是如此:美国西南部的查科峡谷,以及位于密西西比河的“美国之底”、靠近如今圣路易斯的卡霍基亚。尽管两地相距约有1,500千米(对于他们是否知道彼此存在的问题,世人尚存分歧),但这两个社群都是一度崛起,然后在12世纪至13世纪解体的。它们存续的时间跨度,与“中世纪气候异常期”相一致;当时的人寿命短暂,而在不到15代人的这段时间里,气候条件较为温暖、湿润。

    查科峡谷:一场气候踢踏舞(约公元800年至1130年)

    圣胡安盆地的范围,包括了美国新墨西哥州西北的大部分地区,以及与该州毗邻的科罗拉多州、犹他州和亚利桑那州的部分地区。[5] 这里有辽阔的平原和众多的山谷。盆地的四周,是一些小型的台地、孤峰与低矮的峡谷。查科峡谷是一个壮观的宗教仪式中心和土木建筑群,以其中的9处多层式“大房子”或者说大型的普韦布洛(即印第安村落)而闻名。它们的内部和四周还有2,400多处大小不一的考古遗址。在公元800 年至1130 年间的300多年里,这个地区曾经生活着密度惊人的农耕人口,人们住得很近,而从一座座露台与一个个广场上不断传来的嗡嗡低语和一阵阵袭来的气味——包括北美蒿属植物、人们身上的汗液以及食物腐坏等各种气味——就是他们日常生活的写照。他们生活在一个贫瘠的农耕地区,却维持着一种可持续的农耕系统;那里的降水量变幻莫测,每年只有200毫米左右,并且变化很大。归根结底,一切都依赖于谨慎细致的水源管理。[6]

    查科文化的核心区域坐落在查科峡谷的中间地带,如今称为“查科峡谷国家纪念公园”。这里最负盛名的普韦布洛沿着一侧的查科河绵延达 17 千米,此河会不定期地从峡谷当中穿过。在所有的“大房子”里,“普韦布洛波尼托”最为有名;这是靠近一座中央广场的一群呈半圆形排列的房间,其中还有曾经位于地下的圆形礼堂,或称“基瓦”(kiva)。[7] 每处“大房子”都曾经是一个生机勃勃的地方,经常出现派系斗争与社会关系紧张等现象。这处遗址本身,有可能是作为一个圣地建成的,其标志就是附近的峡谷崖壁上有引人注目的岩层。普韦布洛波尼托也坐落在显眼的“南隘”对面;这个隘口,会把夏季的暴风雨导入查科峡谷的心脏地带。

    起初,在公元860年至935年间,普韦布洛波尼托还属于一个砖石建筑的小型定居地,是一个普普通通的弧形之地,但也是一个十分具有灵性的地方。其中的居民,都生活在一个包括了天空、大地与地狱的分层世界里。他们的村落叫作“西帕普”(sipapu),也就是从地下世界出来的地方。他们举行的复杂仪式,都是围绕着夏至、冬至以及日月的运行更替进行的。普韦布洛人的世界向来都和谐、有序,他们的基本价值观则在戏剧表演中得到了再现。群体比个人重要;人们专注于维持的那种人生,过去一直如此,将来也仍然不会改变。查科峡谷的生活,以玉米耕种和宗教信仰为中心;这里气候干旱,种种严酷的现实决定了人类的生存。

    不过,在一个日益复杂与更加政治化的时代,由于越来越多的新兴领袖渴望获得更大的权力与宗教权威,其他一些因素也开始发挥作用了。到了公元1020年,普韦布洛波尼托已经与宗教有了很深的联系。公元1040年之后,这里再次开始大兴土木。在不到30年的时间里,普韦布洛波尼托便变成了一个有如迷宫一般、着实引人入胜的复杂建筑群。它起初属于一个住宅区,但接下来变成了“大房子”,一座与宗教及政治密切相关的仪式性建筑,其中储存空间巨大,却没有几个永久性的居民,只是到了夏至、冬至和举行其他重大活动时,才会有人把那里挤得满满当当的。

    查科峡谷里的农民,依靠各种各样的水源管理制度来灌溉庄稼。他们开垦了查科河两岸的冲积平原和悬崖之上的斜坡,并且在雨水充沛的年份靠洪水进行耕作。人们运用一系列科学方法[其中包括机载激光雷达(LiDAR)勘测],对久已淤塞的沟渠进行考古发掘,钻取沉积岩芯,并且利用锶同位素研究水源之后,我们得知,查科的农民曾经通过引导径的方法,利用过各种各样的水源。[8] 一个个由人工灌渠与土沟构成的复杂系统,成了适合当地条件的一种多层面灌溉系统中的组成部分。变化迅速的降雨模式和变幻莫测的环境,要求整个社会随机应变,通过部署大房子与小定居地的劳力,对突如其来的雨水丰沛和水源稀缺做出反应。与居住在大房子里的精英阶层息息相关的种种强大有力的宗教关联,既强调了农耕,也强调了水源管理。对普韦布洛波尼托墓葬进行的 DNA(脱氧核糖核酸)研究证实,母系血统是查科农业获得成功的一个关键因素,因为他们的宗教活动与生育、水两个方面都息息相关,故女性在水源管理方面有很大的发言权。[9]

    在女性属于社会的重要成员且常常担任宗教仪式头领的一种文化中,亲族关系、遗传与保护珍贵的水源供应几个方面都极其重要。普韦布洛波尼托的领导权属于世袭制,带有宗教性且强大有力。文化秩序则以种种无常的现实为中心,比如无法预测的水源供应、天空,以及在周围地形衬托之下显得或明或暗的天体。

    查科领导权的这种集中化,有可能维持过一种社会制度,它曾经不断面临变幻莫测的环境条件与气候变化。不过,这种集权也对整个地区产生了轻微的影响。确保领导层能够对土地与不断变化的水源供应加以监测的各种社会控制手段,连同在短时间里调配劳力,就是长期生存背后那种风险管理中的基本要素。

    归根结底,查科社会之所以成功生存,与其说是因为这里有强大的领袖,倒不如说是因为这里的家庭具有灵活的自主性;这种自主性,受到了一种信念的引领,这种信念认为大部分劳动最终都是为了整个社会的共同利益。在圣胡安盆地那样的干旱环境里,没人能够做到自给自足;这一点,就是一些精心设计的宗教仪式曾经将整个社会团结起来的重要原因之一。至日仪式以及纪念每年农事中一些重要时刻的仪式活动,将人们团结起来,使之能够在亲族关系与义务远远超出了峡谷范围的一种环境中生存下去。在一个具有各种互惠关系,从而将住在数千米以外的亲族群体联系起来的社会中,不可能再有其他任何一种团结方式;这些互惠关系,有时反映在陶器的风格上。等到一个地方食物充足,而另一个地方食物有限的时候,这些关系就会发挥作用。在物资匮乏的时期,人们会搬到水源供应较充足的地方与亲族一起生活,对方也可以指望自己有难时同样能够投奔亲族。在一个受到年年改变节奏的气候变化所影响的社会里,合作、人口流动与韧性之间息息相关。查科人与气候之间的关系,有如一种复杂的舞蹈,有如农民与不停循环变动的降雨、气温、生长季节之间的小步舞。气候设定了一种快速而灵活的步速。它的人类“舞伴”,必须灵活、敏捷地对来自大地与天空的暗示做出反应,否则的话,这种“舞蹈”就会以灾难而告终。对此,查科人都老练地做出了反应。

    有4种主要的天气模式会对圣胡安盆地与科罗拉多高原产生影响。湿润的极地太平洋气团从西北而来,是由往南与东南方向移动的气旋性风暴带来的。到了夏季,这种情况就会反过来;此时,源自墨西哥湾那种温暖湿润的热带气流会带来降雨,偶尔还会有太平洋上的温暖气流入侵,导致雨水更多。山脉的抬升作用,有时也会带来大量的局部性夏季雷雨,主要出现在7月份到9月初之间。不过,这里每年都只有少量降雨,并且每年都有相当大的变化。一切都取决于数千千米以外的气团运动和当地的地形地势。在相距仅有数千米之远的地方之间,雨量有可能差异巨大。

    整个盆地夏季炎热,冬季寒冷,生长季约为150天,但在查科峡谷等地势较低的地方,生长季则会短上1个月之久。居住在峡谷里的人,都是任凭变幻莫测、常常还出人意料的气候变化所摆布。像厄尔尼诺之类的短期性全球气候事件,也对每年的农业耕作产生了深远的影响。

    当时的查科人,很可能没有意识到长期气候变化的影响,因为活着的一代人与历代祖先具有相同的基本适应力,我们可以称之为一种“稳定性”。不过,每个查科农民都非常清楚那些为期较短、出现频率较高的变化,比如年复一年的雨量变化、长达10年的干旱周期、季节性变化等等。干旱、厄尔尼诺现象带来的降雨以及其他类似的气候波动,需要他们采取临时性的和高度灵活的调整措施,比如耕作更多的土地、维持两三年的粮食储备、更多地依赖野生的植物性食物,还有在整个地区进行迁徙。

    这些对策,在数个世纪里都很有效;只要查科人的生活方式具有可持续性,耕作的土地上要供养的人口远低于每平方千米能够养活的人口数量,这些对策就很有效。然而,当人口增长到接近土地的承载能力上限时,人们就会日益容易受到厄尔尼诺现象的影响,尤其是容易为短期或者较长期的干旱所害。就算是一年降雨不足、作物歉收或者出现暴雨,也有可能导致一户人家数周或数月之内无以为生。时间更久的干旱周期,则有可能带来灾难性的后果。

    树木年轮定年法是西南地区一种基本的气候替代指标。如今,我们已经有了查科峡谷自公元661年至1990 年间的逐年树木年轮记录,以及来自其他替代指标的数据资料;它们表明,此地大兴土木、建造“大房子”的时间与降雨较为充沛的时期相吻合,从而进一步说明,稳定的气候可能导致人口增长。普韦布洛波尼托和其他地方的建造活动,在1025年至1050 年间曾经大增;其间有 3 个时期的降雨量高于平均水平,它们之间隔着短暂的干旱期。即便是在情况最好的年份,圣胡安盆地的农耕环境也很不稳定;只不过,高于往常的地下水位以及较多的降雨,让这个峡谷成了比较安全的地方之一。在1080年到1100年之间,长达20年的干旱给农民带来了很大的麻烦,幸好有高地下水位加以缓解。接下来,这里再次出现了充沛的降雨,而人们也再次加速大兴土木;查科地区如此,而圣胡安盆地北部的阿兹特克与萨尔蒙普韦布洛等地也是如此。

    到了1130年,查科居民已经极其依赖于栽培植物,故对同年开始的那场长达50年、其间只短暂中断过一次的干旱,他们根本就没有做好准备。玉米产量大幅下降,野生植物的生长严重受阻。兔子或其他野生动物,也不容易猎取了。公元 1100 年之后,人们曾从圣胡安盆地北部引入火鸡作为替代品,但这种做法并未满足人们对更多食物供应的需求。假如这场干旱只持续了数年,那么“大房子”与一些较小的社群都会幸存下来。可公元1130年之后,那场大旱似乎并未缓解,所以人们开始挨饿。于是,查科人只得求助于一种古老的对策,那就是迁往别的地方。

    在查科峡谷,人口流动向来都是一种常见的现象。很久以前,家家户户就已经不断进出这个峡谷了。他们来来去去的原因,可能是某个季节,决定与远在高地上的亲族住到一起,或者通过迁往别处来解决一种长久的纠纷。他们所属的那些历史悠久的社区继续繁荣发展着,每个社区都有各自的庭园与水源供应,拥有获得其他食物与资源的权利。待那场长达 50 年的干旱降临时,这里既没有出现人们大规模迁离的情景,也没有出现成百上千查科人死于严重饥荒的现象。相反,人们是一个家庭一个家庭地离去,有时则是大家族一起迁走。他们前往降雨较为充沛的地区,前往数个世纪以来他们一直维系着亲族关系和贸易联系的群落。

    12 世纪查科峡谷的人口外迁,刚开始时跟往常一样,是一个个家庭毫无规律地进出这个峡谷。不过,随着情况恶化,人们种植更多作物的努力并未奏效。地下水位下降了。最终,原本小规模的人口流动就变成了源源不断的迁徙,家家户户都开始迁往其他地方那些正在发展的群落。查科峡谷里的人口日益减少,并且达到了一个临界点,使得那些历史悠久的群落全都突然迁走了。只有少数顽强不屈的村落仍在坚持着,直到他们无法再生存下去。至于留下者的遭遇,我们只能搜集到少量的蛛丝马迹。例如,考古学家南希·阿金斯(Nancy Akins)的骨骼研究显示,到了11世纪,查科峡谷中有83%的儿童都患有严重的缺铁性贫血;这一点,又增加了他们患上痢疾和呼吸系统疾病的风险。

    只要仍有降雨,人们就可以耕种新的庭园,庭园主人也可以兴建新的定居之地。公元1080年之后,虽说雨水减少,但大兴土木的热潮并未消退。不过,在某个时间点上,“大房子”里的首领们丧失了他们对复杂宗教仪式的控制权;这样的宗教仪式,曾经为普韦布洛波尼托这类地方带来许多宝贵的奇珍异物,以及像木梁之类的商品。他们再也无力组织精心表演的种种仪式了;数个世代以来,这些仪式都是农耕年份里农事节奏的标志。查科不再是这个世界的精神生活中心。人们逐渐散居到了其他地方。古普韦布洛人跳动的心脏北移到了圣胡安河、科罗拉多州西南部和弗德台地。查科峡谷全然成了一种记忆;但它是一种强大的记忆,深深地镌刻在北方几十个普韦布洛群落的口述传统当中。

    查科的历史,始终都以他们与别人、与别的民族、与亲族以及范围狭窄的峡谷之外各个群落之间的关系为中心。我们可以将那里称为查科世界,它以“大房子”为基础,然后变成了一个日益重要的宗教中心。查科的首领们从来没有掌控过偏远地区的群落,但这个世界的不同地区都以不同的方式将自己与这座峡谷联系在一起,他们的目标也各不相同(既是为了他们自己,也是为了查科的首领们)。

    如果说查科的瓦解完全是由干旱造成的,那就是无稽之谈,就像用同样的说法解释玛雅文明崩溃的原因是误人子弟一样。查科人始终生活在一个贫瘠的农耕环境里,可持续性方面存在由此带来的种种脆弱性。查科的首领们世世代代都得益于一个降雨量高于平均水平、农耕生产极其成功的时期。这一点,就要求其他社群将上述首领的身份合法化。待到查科没落下去,一系列复杂的事件导致人们遗弃了此地,这个峡谷世界的中心便北移了。就算有东西留存下来,那也是因为人们对祖先的记忆十分有力,相信众神不但掌控着宇宙,还掌控着人类。只是与凡人一样,神祇也有义务将他们的恩赐分享给他人,因为这是一种古老的互惠观念。查科的根基,是三种不言而喻的价值观,即和谐、灵活性与迁徙。同样的原则,在许多古代社会中都居于核心位置,因为后者也敏锐地认识到了韧性、可持续性与风险管理的重要性。如今,对于这些合理的日常生存方法,我们还有许多要学习之处。

    因灾迁徙(公元1130年至1180年)

    公元1130年至1180年的那场大旱,让查科的“大房子”遭受了重创。随着查科衰落下去,政治势力便向北转移,落到了阿兹特克和萨尔蒙普韦布洛的头领手中。[10] 此时,有两个从事农耕生产的群落获得了一定的突出地位,其中一个以阿兹特克北部的托塔(Totah)为中心,另一个则以福科纳斯地区的弗德台地为中心。随后,那里出现了一轮兴建“大房子”的热潮,并且持续了60年左右。但到了1160 年前后,各种大规模的建造活动都停了下来;从弗德台地中心区域发掘出的木梁表明,在接下来的一场大旱期间,人们砍伐树木的速度有所放缓了。

    圣胡安北部的社群不同于查科的农民,他们完全依靠旱地玉米种植为生,并且主要在海拔1 829米以上的地区栽培庄稼。在干旱年岁里,质地疏松的土壤可以养活的人口要比实际生活在这一地区的人口多得多,连严重干旱期间也是如此。在公元10世纪,当地人都住在小而分散的群落里;这种群落,一般由5至10个带有一间“基瓦”与若干间储存室的住宅单元组成。但从12世纪末到13世纪,定居地的规模变得越来越大,农业人口则变得没有那么分散了。许多以前的小村落,都变成了带有多个住宅区的村庄,只不过,它们并未达到查科“大房子”那样的规模。

    这里的人口增长一直持续到了 13 世纪中叶,其间无数个各自为政的群落相互争夺农田,争夺贸易路线的控制权和政治权力。随着众多群落纷纷迁到各个峡谷当中能够采取防御措施的地方,袭击与战争也变得普遍起来。这就是“绝壁宫殿”与其他著名的弗德台地普韦布洛的时代,它们出现在峡谷深处,而附近的曼科斯与蒙特苏马两处河谷的普韦布洛则靠着大量的排水系统而繁荣发展起来。这里的人,往往聚居在最多产的土地附近;假如迁徙方面没有限制,或者可以耕作最优质的土地,他们便能在此熬过极端严重的干旱时期。3 个世纪之后,人口密度就从每平方千米13至30人上升到了每平方千米多达 133 人。村落的规模也翻了一番。但是,一旦人口密度接近土地的承载能力上限,而所有最多产的土地也已被开垦,人们适应长久的干旱周期就要困难得多了。

    离如今科罗拉多州南部科特斯不远的尘沙峡谷(Sand Canyon)普韦布洛,此时变成了圣胡安北部最大的修有防御工事的社群之一,距一个水源充足的峡谷前部很近。在公元1240 年至 1280 年间,这里有多达700人生活在一堵巨大的围墙之后。有80至90 户人家居住在尘沙峡谷的住宅群里,生活在他们于短短的 40 年间建造、居住然后又将其遗弃的一个普韦布洛村落里。与普韦布洛波尼托不同,这里更像是居住地而非仪式中心;只不过,宗教节庆与至日仪式也是这里一年一度的活动中的一部分。

    1280 年,历经了40 年的繁荣之后,尘沙峡谷的居民遭受了一场大旱,其严重程度甚于他们集体经历过的任何一场干旱。此时,气候露出了它的真正面目。精确的树木年代学加上以“帕尔默干旱强度指数”为基础的气候重建,为我们提供了详尽的环境信息。气象学家韦恩·帕尔默(Wayne Palmer)开发出了一种算法,可以利用降雨和气温方面的数据来衡量干旱的严重程度。他开发的指数,已被广泛应用于衡量如今与过去的长期性干旱。一系列重建出来的气候变化、土壤信息、可能的作物生产数据和可以获得的野生食物表明,13 世纪的那场干旱并未彻底破坏尘沙峡谷环境的承载能力。因此,可能有一个人口数量业已减少的群落一直留在该地区,熬过了最严重的干旱期。

    由此所需的树木年轮研究既复杂,要求也很高。例如,目前大多数序列使用的都是冷季的湿度条件,它们将被以春夏两季降水研究为基础的曲线所替代。弗德台地的冷杉树提供了一些最强烈的气候信号,因为它们的年轮中记录了前一年秋季、冬季与春季的气候信息。研究人员利用复杂的相关分析法,重现了过去1 529年间每个10年里9月到次年6月的降雨量。如今我们得知,在12世纪与13世纪,弗德台地曾经出现过数场旷日持久的冷季干旱。公元1130年至1180年间的干旱周期,曾经导致冬季与较暖和的月份都出现了严重的旱情。让气候条件变得雪上加霜的是,在整整一百年里,这里的大片地区普遍遭遇过初夏干旱。13世纪初期与末期的旱情最为严重。正如一个世纪之前查科峡谷的情况那样,人们开始迁出这一地区。外迁缓慢地进行着,持续了数十年之久,直到13世纪末整个地区变得空无一人。

    最终,圣胡安北部人口分散的过程开始逐渐展开,就像以前查科峡谷的情况一样。在这两个地方,古普韦布洛人都遵循了数个世纪以来的传统,离开了深受干旱困扰的土地;这一过程则见证了战争、苦难,以及农民逐渐往东南而去的迁徙过程,他们来到了雨量变化不大的小科罗拉多河流域、莫戈永高地,以及格兰德河河谷。我们如今所知的美洲原住民部落,比如霍皮族与祖尼族,就是迁往这一地区的古普韦布洛人的后裔。

    迁徙曾是解决贫瘠农耕地区人口过多的一个办法。不过,如今的美国西南部也见证了人口急剧增长和主要城市迅速发展的历史,比如凤凰城、图森、拉斯维加斯和阿尔伯克基。随着全球变暖加剧、长期干旱变得更加常见,而将人们迁往水源供应更加可靠的地区也不再可行,这些大城市和大规模农耕生产就给地下水以及其他稀缺水源带来了巨大的压力。同样,对于气候更加干旱、人口更加稠密的未来而言,做出长远规划与思考供水问题都具有至关重要的意义。迁徙这种经典的对策虽说有可能在早期的文明社会中发挥过很好的作用,但它在我们这个时代已经不再是一种可行的选择。

    密西西比人(公元1050年至1350年)

    密西西比河流域的环境条件,与美国西南地区大不一样。以任何标准来衡量,密西西比河都算得上一条大河,其广袤而呈三角形的流域面积覆盖了美国 40%左右的国土,仅次于亚马孙河与刚果河。密西西比河也是一条反复无常的河流,既有可能带来灾难性的洪水,也有可能带来旷日持久的低水位期,进而导致干旱。人们把圣路易斯附近的那个冲积平原称为“美国之底”,此地土地肥沃、气候湿润,在欧洲人到来之前就早已是人类一个重要的定居中心了。

    自公元 1050 年左右开始,卡霍基亚在“美国之底”占据了统治地位;它是当地一个宏伟的仪式中心,也是考古学家口中一个实力强大的“密西西比王国”的政治和宗教中心。[11] 这个伟大的中心,既是一个举行宗教典礼的地方,也是一座繁荣的城市与仪式综合体,横跨密西西比河的两岸。卡霍基亚的中心区域居民稠密并且筑有防御工事,还有一座座壮观巍峨的土丘;在公元1050年到1100年这半个世纪的时间里,这里的人口从大约2,000人迅速增长到了10,000至15 300 位居民。其中的许多人,都是在“中世纪气候异常期”从美国中部的其他地方迁徙而来的移民;这段异常期,就是公元950 年前后至 1250 年前后世界上广大地区的气候都较为暖和的一个时期。

    美洲原住民的首领凭借亲族关系、巧妙的政治手腕、长途贸易垄断以及种种据说与精神世界具有密切联系的个人超自然力量,领导着这个宏伟的中心。一些并不可靠的联盟,将卡霍基亚那些组织松散的地区团结到了一起,而后者又是靠效忠、个人与亲族关系等短暂的纽带和一种古老的宇宙观联系起来的;这种宇宙观认为,宇宙中有三个层次,最上层和最下层里都居住着力量强大的超自然生物。其中之一,就是神话中的“鸟人”,它是战士的化身。“巨蟒”则是地狱里一种了不起的生物,它一直都在跟“鸟人”作对。这种宇宙观的政治影响力与精神触角,从墨西哥湾沿岸一直延伸到五大湖区,并且深入了密西西比河的无数支流地区。

    卡霍基亚遗址

    卡霍基亚是一个独特之地,是当地的美洲原住民适应有利的环境条件、不断增长和越来越多样化的人口,以及需要更多粮食盈余来维持一个日益复杂的酋邦等方面的结果。“美国之底”有适合种植玉米的肥沃土地,有丰富的鱼类和水禽;但由于这里的人口极其稠密,故风险也很大,年景接连不好的时候尤其如此。农业耕作由精英阶层牢牢掌控着,并且随着许多农民迁往地势较高之处,以躲避日益上涨的地下水位和周期性的河流泛滥,农业也扩张到了附近的高地之上。如果没有高地上的农民,那么,生活在中心区域的10,000多人就会面临更大的粮食短缺风险。这里的人也不具有灵活性,无法适应更加恶劣的气候状况。

    源自一个覆盖了整个北美洲的干旱测量网络且经过了校准的树木年轮数据,就说明了气候变化的部分情况。与美国西南地区一样,在公元1050年至1100年半个世纪的时间里,这里的气候相对湿润。在这些年里,高地上的人口迅速增长了。接下来,干旱降临,一开始就是1150年之后一个长达15 年的干旱周期。大多数年份里都是旱灾频发,而1150年开始的那个干旱周期,则与我们在前文中业已论述过的西南大旱在时间上相吻合。

    获取古代的人口数据通常都是一个问题,因为遗址的数量有可能产生误导作用。然而,卡霍基亚北部密西西比河上一个呈牛轭状的湖泊“马蹄湖”,却证实了此地人口的上述变化。[12] 人们从湖中钻取的两份重要岩芯,提供了1 200年间的粪固醇记录;粪固醇是源自人类肠道中的有机分子,而令我们感到惊讶的是,这种分子竟然在沉积物中存留了成百上千年之久。它们是一种衡量人口数量随着时间推移而变化的替代指标。粪固醇(即人类粪便中产生的固醇)与土壤中产生的 5a-粪固醇微生物之间的高比率表明,这一地区曾经有过大量的人口。低比率则会反映出,该地区以前的人口要少得多。两段湖泊岩芯中不断变化的固醇比率表明,这里的人口在公元10世纪曾快速增长,并在11世纪达到了最大值。到12世纪时,卡霍基亚流域的人口开始减少,并在公元1400年左右达到了最低值。

    春季与夏初生长的玉米,是卡霍基亚鼎盛时期一种决定性的主要作物。公元1150年左右人口数量开始下降时,气温与粪固醇的比率也一齐开始下降,直到 13 世纪才停止。但1200 年的一场大洪水也淹没了耕地、粮仓,以及洪泛平原上的无数定居地,它是5个世纪以来的头一场大洪水。[13] 这种大洪水通常出现在春季与夏初,也就是非常关键的玉米生长季里。随之而来的,必定就是严重的作物歉收与粮食短缺。那场大洪水定然重塑了卡霍基亚的模样,因为头领们既无法调派大量人手去清理耕地上的杂物和干燥的冲积物,也无力派人去重建神殿与房屋。尽管许多卡霍基亚人可能已经迁往地势较高的地方,与亲属一起生活,但破坏已经造成。由此我们得知,这个时期人口数量已经开始缓慢减少,人们正在建造防御所用的栅栏,而复杂公共建筑的修建速度也已放缓。

    卡霍基亚的领导阶层可能是由几个精英家族组成,而随着“美国之底”人口外迁,这个领导阶层也崩溃了。到1350年时,除了寥寥几个小村落,卡霍基亚已成废弃之地。其中的居民,都散居到了各地;整个周边地区,全都化成了尘土;一座座土木建筑和土丘,则消失在森林之下。

    有许多因素构成了以卡霍基亚为中心的各种宗教信仰中的一部分。其中包括生与死两大现实、像水这样普遍存在的物质,以及像变化的月光与黑暗之类的现象,还有他们自己制定的、时长为18.6年的月亮周期。这一点,在他们的一座座雄伟壮观的纪念碑、土丘、灵堂和一些复杂的公共殡葬仪式中体现了出来;除了其他方面,这种殡葬仪式中还有一条通往逝者、穿过积水的土路。以神殿为中心的汗屋[14] ,也在卡霍基亚的宗教生活中扮演了一个角色。这些方面都让人觉得强大有力,只不过,它们取决于人们认为卡霍基亚是世界的中心这种信念,也取决于他们的忠诚。

    但是,像查科一样,这个王国及其基础设施在当地留下的痕迹相对轻微。也许是因为持有一种盲目的、狭隘的视角,过度专注于精神领域,所以这个领导地位衰落之后,秩序被打乱了,直到当地一些规模小得多的新中心纷纷崛起方有所好转。具有争议的继承权、一位缺乏魅力的首领、一场成功的反叛,都有可能推翻卡霍基亚的统治者,而历史上也很可能出现过这类事件。团结民众与精英阶层的社会纽带断裂了。形形色色的移民与当地人的幻想都已破灭,他们便纷纷弃“美国之底”而去。根据他们明显没有关于卡霍基亚的口述传统这一点来判断,那些离开此地的人必定曾经心怀一种深刻的疏离感。卡霍基亚从历史中消失了近7个世纪,直到19世纪初才被考古学家发现。然而,“美国之底”并不是全然没有人生活了;那里还有一些耕种玉米的半定居农民和捕猎野牛的狩猎民族,他们比前人更具流动性。[15]

    密西西比河流域里像卡霍基亚这样的酋邦都依赖于玉米耕种,以及政治领导与社会领导,这种领导靠向有权势的酋长进献财物来维持。这些首领通过重新分配贡物和共同遵奉的宗教信仰与复杂的仪式(比如汗屋仪式),来维持追随者和一些较小中心的忠诚。这是组织管理等级社会时的一种经典方式,但它也具有一些致命的弱点。一切都依赖于亲属关系与忠诚,可后者在派系斗争盛行的社会中,往往是一种靠不住的品质,比如美国西南地区的普韦布洛人就是如此。查科峡谷与普韦布洛波尼托的历史就是一个典型的例子,说明在一个亲族义务远远延伸到了峡谷狭窄范围之外的社会里,根本力量还在于亲族与社群。在这里,宗教义务是围绕着农事与季节更替,在水源与干旱之间履行的。人们几乎彻底遗弃查科峡谷很久之后,在面对气候变化时,就算是大型的印第安村落中居于领导地位的女性与家族那种相对专制的角色,最终依赖的也是种种古老的亲族关系和迁徙的信条。普韦布洛村庄植根于所在的环境与种种社会关系之中;这些关系盘根错节,让它们存续了一代又一代,直至现代。

    中央集权依赖于长期的稳定与可靠的粮食盈余。在许多以亲族关系为基础的社会中,严格的管控(甚至是通过武力进行控制的做法)只能延伸到相对有限的领土之上,或许还会小至方圆50千米的范围。卡霍基亚的情况无疑就是如此,因其影响力与实力的根基就是贸易与复杂的宗教信仰。待重大的旱涝灾害影响到“美国之底”之后,随着气温下降带来重创,卡霍基亚这个酋邦便土崩瓦解了。经济与政治剧变的影响有如涟漪一般,波及整个密西西比河流域。争端加剧,演变成了战争;与其他定居地一样,这个大型中心也修建了栅栏,围起来以防动乱。为了应对内战和邻邦之间为争夺权力而爆发的战争,居民纷纷迁走,故那些重要的人口中心也崩溃了。在密西西比河流域,对玉米盈余和更多外来商品的控制则巩固了政治权力。西班牙征服者经由美国东南部而来的时候,碰到的并不是一个统一的和强大的酋邦,而是数十个筑有防御工事的村落与城镇,它们之间常常还有荒芜之地隔开。当地有些村落的人口达到了数千之多,从而表明那里拥有可以证明西班牙人贪婪之心的巨大财富。不过,他们发现自己陷入了仇恨与对抗的泥淖之中。这些美洲原住民社会的生存与可持续性,取决于种种复杂的政治现实和社会现实;这种情况,完全不同于一些高度集权的国家,比如我们在下一章即将论述的吴哥。

    [1] Brian Fagan, Before California: An Archaeologist Looks

    at Our Earliest Inhabitants (Lanham, MD: Rowman & Littlefield,

    2003); Jeanne Arnold and Michael Walsh, California’ s

    Ancient Past: From the Pacific to the Range of Light

    (Washington, DC: Society for American Archaeology, 2011).

    [2] Lynn H. Gamble, First Coastal Californians (Santa Fe, NM:

    School for Advanced Research, 2015),这是一部供普通读者阅读

    的佳作。

    [3] Douglas J. Kennett and James P. Kennett, “Competitive and Cooperative Responses to Climatic Instability in Coastal Southern California,” American Antiquity 65 (2000): 379 395. See also Douglas J. Kennett, The Island Chumash: Behavioral Ecology of a Maritime Society (Berkeley: University of California Press, 2005).

    [4] Lynn H. Gamble, The Chumash World at European Contact(Berkeley: University of California Press, 2011).

    [5] Frances Joan Mathien, Culture and Ecology of Chaco Canyon and the San Juan Basin (Santa Fe, NM: National Park Service, 2005). See also Gwinn Vivian, Chacoan Prehistory of the San Juan Basin (New York: Academic Press, 1990).

    [6] 描述查科供普通读者阅读的作品:Brian Fagan, Chaco Canyon: Archaeologists Explore the Lives of an Ancient Society (New York: Oxford University Press, 2005)。关于该峡谷的近期研究成果的论文:Jeffrey J. Clark and Barbara J. Mills, eds., “Chacoan Archaeology at the 21st Century,” Archaeology Southwest 32, nos. 2–3 (2018)。

    [7] Jill E. Neitzel, Pueblo Bonito: Center of the Chacoan World (Washington, DC: Smithsonian Books, 2003). See also Timothy R. Pauketat, “Fragile Cahokian and Chacoan Orders and Infrastructures,” in The Evolution of Fragility: Setting the Terms, ed. Norman Yoffee (Cambridge, UK: McDonald Institute for Archaeological Research, 2019), 89–108.
    [8] Vernon Scarborough et al., “Water Uncertainty, Ritual Predictability and Agricultural Canals at Chaco Canyon, New Mexico,” Antiquity 92, no. 364 (August 2018): 870–889.

    [9] Douglas L. Kennett et al., “Archaeogenomic Evidence Reveals Prehistoric Patrilineal Dynasty,” Nature Communications 8, no. 14115 (2017). doi: 10.1038/ncomms14115.

    [10] 这一节参考的文献:David W. Stahle et al., “Thirteenth Century A.D.: Implications of Seasonal and Annual Moisture Reconstructions for Mesa Verde, Colorado,” in Weiss, Megadrought and Collapse, 246–274。亦请参见Mark Varien et al., “Historical Ecology in the Mesa Verde Region: Results from the Village Ecodynamics Project,” American Antiquity 72 (2007): 273–299。

    [11] 关于卡霍基亚的文献资料极多。参见 Timothy R. Pauketat,

    Cahokia: Ancient America’s Great City on the Mississippi

    (New York: Viking Penguin, 2009),以及同一作者的 Ancient

    Cahokia and the Mississippians (Cambridge: Cambridge

    University Press, 2004)。亦请参见 Timothy R. Pauketat and Susan Alt, eds., Medieval Mississippians: The Cahokian World (Santa Fe, NM: School of Advanced Research, 2015);Pauketat, “Fragile Cahokian and Chacoan Orders and Infrastructures,”89–108。

    [12] A. J. White et al., “Fecal Stanols Show Simultaneous

    Flooding and Seasonal Precipitation Change Correlate with

    Cahokia’s Population Decline,” Proceedings of the National

    Academy of Sciences 116, no. 12 (2019): 5461–5466.

    [13] Samuel E. Munoz et al., “Cahokia’s Emergence and

    Decline Coincided with Shifts of Flood Frequency on the

    Mississippi River,” Proceedings of the National Academy of

    Sciences 112, no. 20 (2015): 6319–6327. See also Timothy R.

    Pauketat, “When the Rains Stopped: Evapotranspiration and

    Ontology at Ancient Cahokia,” Journal of Anthropological

    Research 76, no. 4 (2020): 410–438.

    [14] 汗屋(sweat house),美洲印第安人用于与祖先进行精神沟通、

    净化身心和洗涤灵魂的地方,其大小不等,多用柳条编制,呈圆形或

    者椭圆形,上面用水牛皮或者其他兽皮覆盖,从而围成一个黑暗、密

    封的屋子。举行汗屋仪式时,人们会在屋里击鼓、唱歌、祈祷,并按

    顺时针方向轮流为自己和家人祈福。——译者注

    [15] A. J. White et al., “After Cahokia: Indigenous Repopulation and Depopulation of the Horseshoe Lake Watershed AD 1400–1900,” American Antiquity 85, no. 2 (April 2020): 263–278.

    第九章 消失的大城市(公元802年至1430年)

    富有、美丽而壮观:柬埔寨境内的吴哥窟,是惊人的建筑杰作,据说也是20世纪以前世界上最大的宗教建筑。公元1113 年至 1150 年在位期间,痴迷于权力的统治者苏利耶跋摩二世在高棉帝国的鼎盛时期修建了他的这座皇宫兼庙宇。其规模之大,令人叹为观止。光是主寺加上寺中的莲花塔,就占有215米×186米的面积,并且高出了周围的地面60多米。护城河边的宫墙,长1,500米,宽1,200米。与吴哥窟相比,埃及人祭祀太阳神阿蒙的卡纳克神庙或者巴黎圣母院简直就像是村中的小神殿了。[1]

    吴哥窟紧挨着湄公河,此河会在每年的8月至10月间泛滥。泛滥的河水会注满附近的一个湖泊,即洞里萨湖,使之变得浩浩汤汤,长达160 千米,水深16米。待到洪水退去,成千上万尾鲇鱼和其他鱼类会在浅滩出没,使得这里成了地球上最富饶的渔场之一。著名的“大吴哥”,就位于洞里萨湖与水源丰沛的荔枝山之间。吴哥窟周围皆为平原,使之可向四面八方扩张,故有充足的土地来种植水稻。一座座水库和一条条沟渠,将水源输送到数千公顷的农田里,支撑着公元802年至1430年间繁盛兴旺、极其富裕的高棉文明。然而,这里也有一个棘手的问题:在一个若不谨慎实施水源管理就从来没有充沛水源的地区,人们几乎不可能维持作物的产量。即便作物收成充足,不断增长的人口也加大了粮食短缺的风险。吴哥的领导人只有一个选择,那就是砍伐更多的森林、耕种更多的土地,才能养活以不可阻挡之势日益增长的人口。

    东南亚地区尤其是湄公河三角洲上的小型城市中心,已经有6个多世纪的漫长发展历史。在公元8世纪和9世纪,这些小型中心为更加分散的城市所取代,后者在 13 世纪发展到了巅峰。一连串雄心勃勃的高棉国王,建立了一个实力强大而更加稳定的帝国。统治者们开创了一种对神圣王权的崇拜,兴建了许多精心设计的复杂中心,其中主要是精美奢华的神庙,比如吴哥窟和附近的吴哥城就是如此。成千上万的平民百姓,曾为一个所有东西完全流向了中央的国家辛勤劳作。公元1113年,国王苏利耶跋摩二世开始利用整个王国内精心组织起来的劳动力兴建吴哥窟,并用洞里萨湖的鱼儿和海量的稻米收成供养那些劳力。[2]

    吴哥窟的每一处细节,都体现出了高棉神话的某种元素。高棉人的宇宙观里,包括一个大陆南赡部洲[3] ,以及耸立于南赡部洲以北的世界中心的须弥山。吴哥窟的中央有一座60米的高塔,它效仿的就是须弥山;还有4座塔,代表着4座较低的山峰。这里的围墙,再现了传说中环绕着南赡部洲的那些山脉,而其四周的护城河则代表了乳海,据说神、魔双方曾经在那里搅起过“不死甘露”。

    吴哥窟与吴哥城里,到处都是象征着宇宙与宗教的建筑;其中,包括了星象台、王陵与寺庙。一代代研究人员对两地的艺术与建筑都进行过研究,但笼罩在这两座遗址和整个地区之上的茂密植被,却让他们无法进行任何系统性的实地考察。2007年,一个国际研究小组联手启动了一个最先进的项目,旨在利用一系列前沿技术来了解吴哥窟的真实情况及其更广泛的地形环境。这项具有突破性的研究表明,吴哥窟的寺庙建筑群要比人们以前所想的庞大得多、复杂得多。不过,可能更加令人激动的是,研究小组还运用了机载激光雷达技术;这是一种遥感方法,就是利用脉冲激光测量出无人机(或者其他机载设备)到地球之间的可变距离。在吴哥窟这个研究项目中,所捕获的图像让研究小组能够“看透”吴哥窟主庙群周围的茂密丛林,发现一些意想不到的东西。该项目发表了一篇在学术界引起轰动的论文,表明那里存在一个失落的“特大城市”:有一个庞大的道路网络,有池塘、沟渠、狭窄堤岸环绕着的成千上万片稻田、房屋土堆,还有1,000多座小型神庙。[4]

    东南亚地区的高棉文明遗址

    无边的辉煌

    大吴哥地区的城乡面积加起来至少达 1,000 平方千米,并且这个广袤区域里可能有75万至100万人口(这一数据还有待商榷)。与此同时,居住在吴哥窟寺庙群围墙之内的,却只有相对较少的人口(大约为25,000人)。范围更广的定居地与这个宗教—政治—经济精英中心之间的关系,有点类似纽约城与圣帕特里克大教堂所在的曼哈顿中心城区之间的关系,或者大伦敦地区与其中心即圣保罗大教堂俯瞰着的伦敦城之间的关系。这是一片组织得井然有序的绿洲,整个大吴哥地区则在辽阔而有组织的稻田之上延伸。从考古学的角度来看,它会让人想起一度环绕着玛雅那些宗教中心的人口稠密的地区,比如人们最近也用激光雷达技术考察研究过的蒂卡尔与卡拉科尔,只是大吴哥的规模比它们大得多而已。

    吴哥窟这个伟大而生生不息的心脏之地,并不是独一无二的。尽管吴哥窟是苏利耶跋摩二世(1113—1150 年在位)所建,但它实际上完工于国王阇耶跋摩七世(1181—约1218年在位)的统治时期。而且,这位面带温柔微笑的国王阇耶跋摩七世(其雕像上的模样就是如此)还兴建了另一座寺庙群,即吴哥城;它名副其实,意思就是“大城”。这将是高棉帝国最后一座都城,也是存续时间最久的一座都城。阇耶跋摩七世兴建的这座新城,坐落在吴哥窟以北约1.7千米处,占地9平方千米,其中心区域有3万至6万居民。还有大约50 万人生活在从市中心向外延伸达15千米的郊区。兴建此城,并不是什么心血来潮的项目。相反,用激光雷达进行的勘测表明,高棉人必定是早就有了兴建吴哥城的想法,因为他们在修建这处寺庙群的半个世纪之前,就已建好了一个路网。四通八达的道路,将寺庙群的整个腹地接入了一个沟渠与道路交织的网络中,后者则延伸到了当时大部分人生活的广阔邻近地区。

    这里的一切,都依赖于娴熟的水源管理。早在兴建吴哥窟和吴哥城的很久之前,高棉人就开始修建“巴莱”(baray)了。“巴莱”就是一座座巨大的长方形水库,既可用于储水,也可将多余的水排进烟波浩渺的洞里萨湖;此湖通往洞里萨河,然后注入湄公河。到了公元9世纪,兴建“巴莱”的工作进行得如火如荼,成了一个不变的水源管理系统的基础,并且由此形成了一个规模庞大的人造三角洲。三角洲的北端有输入水道,南部则是一些呈扇形分布的水道,它们位于紧邻吴哥窟的东巴莱湖与西巴莱湖[5] 两侧。[6]

    这个巧妙而灵活的水源管理系统使得官吏们几乎可以将水源输往整个平原上的任何方向,然后储存起来或者排入辽阔的洞里萨湖中。可不要把这个系统与埃及或者美索不达米亚地区形成的集中灌溉系统混为一谈。上述各地的基本灌溉技术都很简单,并且都依赖于充足的人力,只有吴哥这个国家能够召集规模充足的劳力,去兴建那些曾经属于吴哥文明之命脉的重要沟渠或水库。澳大利亚考古学家罗兰·弗莱彻曾经恰如其分地把这个系统称为“一种风险管理系统,旨在缓解一个以雨水灌溉为主且稻田有田埂环绕的地区里季风变化带来的种种不确定性”。[7] 从根本上看,他无疑是对的,而他也恰当地称之为一种悖论。

    高棉人创造了一个多功能系统,可以应对变幻莫测的季风波动。不过,他们面临着一个严重的长期问题。规模庞大的灌溉设施和他们的管理方式,使得他们在面临重大的气候变化并需要迅速做出改变的时候,很难(且几乎不可能)去改造甚至是维护这些灌溉设施。

    吴哥地区的沟渠与堤坝网络既灌溉了北部的田地,也提供了充足的水源供应,确保了吴哥地区南部那些有埂农田里种植的水稻获得高产。靠近吴哥中部的西巴莱湖,其灌溉面积在整个平原上相对较小。此湖曾为大约 20 万人口提供水源,其供应量足以让人应对季风不力所导致的干旱年份。这个系统一直运行到了 12 世纪晚期且效果良好。当时水利工程的重点,更多地放在那座中心城市之上。新筑的沟渠——至少在一定程度上是为了给管理和维护主要寺庙所需且日益增多的人口提供水源而修建的——都确保水源会流经吴哥这个中心。光是阇耶跋摩七世国王,就在12世纪末至13世纪初让吴哥中部地区的寺庙数量翻了一番。

    由此所需的资源之多,是令人不可想象的。仅是一位寺庙工作人员,就需要大约5个农民劳作,才能生产出此人所吃的稻米。光是阇耶跋摩七世建造的塔普隆寺(1186年完工)与圣剑寺(1191年完工),就用了不下15万名辅助人员,他们都必须住在寺庙的附近。建造这两座中等规模的寺庙,消耗了大吴哥地区人口中五分之一的劳动力。然而,他们似乎成功地解决了这个问题。当地的水牛随处可见,鱼类极其普遍,菜蔬也很丰富。该国维持着一副光鲜亮丽的外表,实际上却是用苛政和宗教狂热维持着秩序。事实上,倘若不进行大规模的武力展示,国王就不会公开露面。当时,这种无边的辉煌似乎永远不会终结,直到这里开始遭遇季风不力的问题。

    无常的季风(公元1347年至2013年)

    吴哥地区的庄稼收成,向来都依赖于亚洲季风。[8] 季风导致的西风,会随着它们北移进入东南亚地区和南海而逐渐加强。季风雨会在每年的8月和9月达到顶峰,给孟加拉湾带来强大的热带气旋。吴哥地区的夏季降水,都源自稳定的季风雨,以及强烈的热带扰动(尤其是热带气旋)给陆地带来的暴雨。等热带扰动到达东南亚之后,它们导致的强风虽然会逐渐减弱,但会随着缓慢移动、长达4天的风暴系统带来大量的降雨。这些扰动与一次次强度较弱的赤道东风带来的降雨,占到了整个东南亚地区夏季降水的一半左右。

    虽然 12 世纪在吴哥地区建立帝国的统治者们可能并不知道这一点,但他们治下的王国其实比哪怕一个世纪之前都要脆弱得多。[9] 该国通过一种简单的权宜之计,即靠大规模砍伐森林来增加农业用地的数量,保持着高水平的水稻生产。此时,吴哥的大部分地区都成了有埂稻田,却只有零星的树木了。当季风性暴雨来临,强劲的地表径流以及由此导致和无法遏制的侵蚀作用,就会让土壤裸露出来。再加上高地的森林被砍伐一光,所以严重的生态后果随之而来。航拍照片表明,在一片耕作强度远高于如今的土地上,遍布着成千上万处废弃的古老稻田。

    此外,吴哥的基础设施原本是作为一种风险管理措施而兴建的,当气候开始变得不稳定时,已经有500多年的历史了。这里的最后一座“巴莱”,还是此时的一个世纪之前建成的。吴哥那种庞大的基础正在老化,不但越来越难以有效地管理,而且变得越来越盘根错节了。弗莱彻的考古团队发掘出了一座垮塌了的水坝,它曾在10世纪或者11世纪得到重建。在城市人口少得多和这个系统刚刚形成的时候,一切都没有问题。这个系统受损后,人们就会迅速将其修复,但也仅此而已。

    究竟发生了什么?多亏了在越南发现的一种热带柏树“福建柏”(Fokienia hodginsii),我们才能找出这个问题的答案。这种柏树的年轮记录了从公元1347年至2013年间出现的“恩索”事件与季风情况。年轮的厚薄,与寒冷的拉尼娜现象与炎热的厄尔尼诺现象相互交替的时间相吻合。[10] 在14世纪,二者之间出现了剧烈的波动,以大规模的季风与严重的干旱为代表。除此之外,从印度季风区的丹达克洞穴与中国西北地区的万象洞获得的优质洞穴石笋记录,与越南南方的树木年轮记录非常吻合,尤其是与13世纪和14世纪时形成的树木年轮记录非常吻合。[11] 总之,这些证据表明,13世纪和14世纪是东南亚地区一个重要的气候不稳定时期,这对元朝来说也是如此;当时的气候,在异常强大的季风与严重干旱之间波动,变幻莫测。

    起初,高棉人的系统能够应对周期性的干旱,就像数个世纪以来的情况一样,只是这个系统很脆弱。这里的水坝,显然无法应对严重的泛滥。人们对这里两座主要的水库即东巴莱湖与西巴莱湖进行发掘后发现,它们的出水口都被堵死了,其中有些早在12世纪就已淤塞。东巴莱湖还曾多次储水不足,导致 13 世纪初气候较为干旱的时期出现了严重缺水的情况。接着,季风带来的大雨倾盆而下;直到16世纪,这种波动才稳定下来。到了此时,劳动力却出现了短缺,没有充足的人手去分流调水了。

    我们不妨想象一下当时的情景:一场长达150年的大旱过后,极端强大的季风突然袭来,冲击着规模庞大却有数百年历史的基础设施。洪水汹涌,导致那个衰朽的网络上出现了裂口;这必定对精心设计的各级沟渠造成了灾难性的损毁,可精英阶层既无能力也无意愿进行修复。由此带来的后果是致命的。受损的田地再也无法养活吴哥稠密的城市人口。可持续性遭到了破坏。世世代代供养着寺庙及其工作人员的农民,也无法继续供养他们。精英阶层过着奢华的生活,拥有庞大而关系复杂的家庭,如今却难以为生了。该国的统治者和高级官吏再也没有能力或者权力来为重大的工程招募劳力,以修复这个系统。他们可以支配的粮食盈余也不足了。

    数个世纪以来,复杂而极其稳固的供水系统还支撑着其他一些方面,比如道路,比如与稻田相连的鱼塘。因此,蛋白质供应与水稻这种主要作物的收成都开始面临压力。上游的供水系统失去作用之后,损害就会迅速波及下游;除了其他方面,整个道路网络也会瓦解。水运与陆运不但曾将粮食运往吴哥各地的集市,还将其他各种各样的商品和奢侈品汇集到了这些市场上。比如,大吴哥地区的家用商品中,有不少于6%产自中国。谣言、恐慌与社群之间的竞争,导致了与环境混乱相一致的社会动荡。

    解体(公元13世纪以后)

    14 世纪60 年代的那场大旱,必定对粮食供应造成了严重的破坏。到了14世纪末,吴哥的部分地区已经变得不可再用,寺庙经济也处于崩溃状态。除了洪水造成的破坏,肆虐的大水还会将各种垃圾冲到整个地区,堵塞重要的沟渠,甚至更加严重地损毁精心组织起来的整个局面。

    当然,并不是一切都被洪水冲毁得不留痕迹了。被冲毁的道路与堤坝当中,有一片呈方形的纵横交错的堤坝与农田完好无损地留存了下来。当时,精英阶层有好几种选择:要么迁往别的地方,跟富有的亲戚一起生活,要么随着他们的君主迁往其他中心,或者搬到他们在内地的庄园生活。不过,依赖他们谋生的工匠和为精英阶层提供粮食的农民,却被留在疮痍满目的穷乡僻壤,自生自灭了。沟渠与堤坝崩溃之后,洪水溢出人造的水道,漫到了整个地区;被遗弃于此的普通百姓,饱受饥饿与营养不良之苦。无疑,农民与其他人也曾努力修复吴哥城的供水系统,可在 16 世纪中叶之前的差不多200年时间里,吴哥地区都没有王室存在。

    表面上,吴哥的崩溃是超强季风和极端干旱降临到高棉人身上并给他们造成了重创的直接结果。尽管这看似是一种直接的因果关系,可历史真相却要更加复杂。

    一如既往地,宗教扮演了一个主要的角色(就吴哥而言,宗教还是一个致命的角色)。佛教中的大乘佛教一派,在吴哥城的缔造者阇耶跋摩七世治下(1181—约1218)被定为了国教。也正是在这段时间里,季风强度日益减弱,而粮食短缺的现象也出现了。精英阶层与农民不但都要应对这种危机,而且要为发生的事情找到一种解释。于是,他们转向了宗教。在12世纪末至13世纪初,这里爆发了一场反对王室支持大乘佛教的运动,导致一些重要寺庙墙壁上所绘的佛像遭到了破坏。几乎可以肯定地说,这种破坏佛像的行为就是民众对干旱做出的有力反应,表明他们认为其他信仰可能会提供应对持久干旱的更好方法。

    多年以来,学者们都认为,吴哥是1431年被其竞争对手即暹罗的大城王朝攻陷并洗劫一空的;大城(音译“阿瑜陀耶”)如今位于泰国境内,曾经是一个重要的国际贸易中心,并在 16 世纪变成了东方最大和最富裕的城市之一。但我们如今明白,事实并非如此:因为到了那时,吴哥地区早已不适宜人类居住。精英阶层可能早已带着他们的财产离去了。也就是在这个时期,高棉帝国发生了深刻的政治、经济和社会变革。国家不得不面对暹罗人与越南人成群结队的南迁,这一迁徙活动切断了高棉人那些历史悠久的陆上贸易线路和沿海通道。在15世纪和16世纪,贸易变得更加全球化了。沿海城市的地位日益重要起来,而高棉内地那种古老且极其稳定的水稻生产则逐渐衰落下去。高棉帝国与阿拉伯、印度、中国以及其他航海国家和地区之间的海上贸易,也变得越来越重要。由于深受气候难题所困扰,故这个帝国随着人口减少的加速便慢慢没落下去,变得默默无闻了。

    此外,新的宗教信仰也对种种旧的生活方式构成了制约。吴哥地区与印度之间有着长久而密切的贸易联系。这些历史悠久的贸易线路带来的不仅有商品,还有思想和信仰,其中包括南传佛教。13 世纪过后,南传佛教就成了高棉的国教。

    新的教义淡化了长期以来供养大型庙宇和庙宇中众多看管人的惯例。随着大寺庙的势力自13世纪起日渐减弱,其经济后果也对吴哥的人口产生了影响。3 个世纪之后,尽管人们还没有废弃吴哥城,吴哥窟也只是一个朝圣中心了。随着国家的权力中心南移到了当今金边附近的四臂湾地区,吴哥地区只有少量人口留存了。

    吴哥的衰亡,涉及的远不只是气候带来的冲击。内部瓦解与征服无关;相反,这是一种变革。高棉帝国的领导阶层和权力中心,从那个面积广袤、组织有序且种植水稻的绿洲向东南方向迁移,进入了一个每年都受自然泛滥所滋养的地区。这里的农民不会那么容易受到干旱的影响。一到汛期,湄公河就会水量大增,溢出河岸。当湄公河在季风雨过后漫到洞里萨河时,洪水就会把周围之地淹没。洪水会注满面积约1万平方千米的洞里萨湖这个淡水湖,有时甚至还会将整个湖泊淹没。[12]

    高棉地区的遭遇,与玛雅人的情况完全一样;我们将看到,斯里兰卡的情况也是如此。公元9世纪到16世纪之间,从中美洲一直到东南亚的热带地区中散布着的城市文明纷纷解体,它们的根基都因粮食供应的不确定性和传统的政治权力受到削弱而遭到了动摇。一个个实力强大的王朝兴起又衰落,战争变得司空见惯,一些精英阶层则迁往了新的中心。这些文明之所以崩溃,很大程度上是因为维持文明的可持续发展超出了那些中央集权制国家的能力,这些国家由神圣的国王所统治,而国王们致力于奉行不变的宗教思想,行政管理僵化。随之而来的,必然是一个转型期。农民们曾经供养距他们很遥远的君主治下的一个个王朝,他们保持着可持续的传统农耕方式,并且对其进行了改造,使之反映了新的环境现实。城市中心变得格局更加紧凑,通常位于如今业已消失的国家的外围。此前的大城市,比如蒂卡尔、蒂亚瓦纳科和吴哥窟,都屈服于种种新的经济现实和政治联盟,且其中许多都建立在国际贸易的基础之上。取而代之的则是在广袤的腹地外围繁荣发展起来的小型定居地。

    在亚热带和热带地区,水源管理曾是各地可持续性当中一个至关重要的组成部分。这些社会面临着无数挑战:泾渭分明的干、湿两季,有可能带来暴雨的季风,“恩索”事件,飓风或者台风,以及短期和长期的干旱周期。尤其重要的一点在于,变幻莫测的降水是一种永远存在的挑战,降雨量年年都有可能大不相同。有了一代代新的气候替代指标之后,我们如今就可以明确,在亚洲季风区的大部分地区,气候变化曾经发挥过作用,动摇了中世纪的社会体系和政治体系。南亚、东南亚以及中国北方和南方的农民,曾经都任由距其家乡很遥远的各种气候力量所摆布,现在也依然如此。早先那种原生态的辉煌,实际上就是一个神话。

    进入斯里兰卡(公元前377年至公元1170 年及以后)

    我们在第五章里已经看到,古罗马人与印度洋各地以及远至孟加拉湾沿岸之间的贸易,甚至把中国的丝绸带到了地中海地区,其作用就像横跨欧亚大陆的“丝绸之路”一样。其中的一大驱动因素就是季风,它在公元2世纪发挥了重要的作用。罗马与君士坦丁堡两地,在公元4世纪都极其繁荣。后者还变成了日益发展壮大的东罗马帝国的中枢。稳定可靠的季风会季节性地转变风向,将亚历山大港、红海地区与印度西海岸及斯里兰卡连接起来。人们对象牙、香料与织物都有一种永不餍足的需求;这种需求不但促进了贸易,也为斯里兰卡那些日益复杂的社会带来了财富。

    当时,槃陀迦阿巴耶(Pandukabhaya)国王于公元前377年建立的阿努拉德普勒王国统治着斯里兰卡。王国的都城,坐落于斯里兰卡岛上那个所谓的干燥地带,就在如今的阿努拉德普勒遗址上;阿努拉德普勒既是当时一个重要的政治中心,也是后来在高棉占统治地位的那个佛教分支即南传佛教的一个主要的知识中心和朝圣中心。[13]

    这里的百姓必须想出办法,好在每年的12月至次年2月之间利用季节性的降雨来灌溉田地。为了节约水源供旱季所用,他们修建了许多大型的水库与水坝,故需要大量的劳力。农民也兴建了一些灌溉工程,依靠的是重力,以及阿努拉德普勒腹地倾泻而下的水流。[14] 随着当地寺庙与朝圣者的数量都不断增加,中心区域也在扩大。他们的水库越修越大,到了公元1世纪,努瓦拉维瓦湖(Nuwarawewa Lake)的面积达到了 9 平方千米。然而,人们的用水需求也进一步猛增,故精英阶层修建了更多的巨型水坝和重要的引水渠。长达87千米的尤达埃拉[Yoda Ela,或称“贾亚甘加”(Jaya Ganga)]运河,将更可靠的水源引到了地势较高的重要水库里。无论以什么标准来看,这条水渠都称得上一项工程杰作:水渠每千米的坡度,竟然只有10至20厘米。

    阿努拉德普勒的用水供应,依赖于精英阶层派人兴建的大型水利项目,而当地社区与寺庙也兴建和管理着各自的小型阶梯式灌渠。在季风状态相对稳定、降水充沛的几个世纪里,一切都运行得很顺利。寺庙对受到灌溉的腹地施加意识形态上的控制,从而开创了一种神权政治的局面,使得僧侣既是宗教管理者,又是世俗统治者。

    接下来,气候在9世纪至11世纪变得极其不稳定,导致了气温上升和持久的干旱。变幻莫测的降雨造成了严重的后果,就像吴哥的情况一样。相比而言,14世纪至16世纪则气温较低,暴雨和干旱的发生频率也越来越高。考古学家指出,在11世纪,阿努拉德普勒方圆15千米之内的遗址数量减少到仅剩11个定居地了。[15] 没有人仍然生活在城市的核心区域里。中心区域和外围的绝大多数寺庙,都已门庭冷落。没人再对水库与沟渠进行日常维护,所以许多都淤塞了。在 19 世纪人们重新开垦那片干燥地带之前,只有少数几个进行刀耕火种式农耕的小社群在这里幸存了下来。

    随着气温在11世纪和12世纪不断上升和阿努拉德普勒日渐没落,波隆纳鲁瓦-斯里兰卡第二古老的王国——开始崛起。这个王国由僧伽罗王族维阇耶巴忽一世于公元1170年建立,位于更远的内陆和气温没那么极端、地势较高的地区。维阇耶巴忽的外孙波罗迦罗摩巴忽一世(约 1153—1186 年在位)派人修建的沟渠与水库,甚至比阿努拉德普勒的沟渠和水库更大。此人兴建的“波罗迦罗摩萨姆德拉雅”(意即“波罗迦罗摩海”)环绕着他的城池,既是水库,也是防御攻击的护城河。国王修建的这个湖泊面积达87平方千米,实际上由3个水库组成,它们的浅水区有狭窄的水道相连。成千上万名劳力完全是用双手为国王修建了这座湖泊,可获得的回报却是精神上的。这个人工修建的“海”与真正的大海相比毫不逊色,它支撑着一个复杂的稻田灌溉系统,后者覆盖了7 300公顷的土地,养活了稠密的城市人口。

    阿努拉德普勒和波隆纳鲁瓦两个王国的寺庙,在农耕生产与水源管理方面都发挥了核心作用。两国的寺庙,都是举行一年一度的重大宗教节庆活动的中心;每到那个时候,都有来自城市及其腹地的成千上万人参加。在吴哥和斯里兰卡,重大的公共庆祝活动确定了四季。与玛雅君主举行的公共仪式一样,这种庆祝活动可以提醒每个人记住那些复杂的和不成文的社会契约,它们将所有的人联系在一起,无论是祭司、统治者还是平民百姓,全都如此。环绕着一座座大佛塔的水库,形成了一个个组织有序的绿洲,增强了寺庙所代表的那种宗教权威。这种宁静的景色,给人以恒久和稳定的印象。不过,与吴哥的情况一样,这里的气温在13世纪和14世纪日益上升,季风降雨周期也大幅减少,对水库造成了严重的破坏;而在当时,人口密度正在增加,由此导致农业生产日益密集,以满足不断增长的粮食盈余需求。为了应对这种情况,统治者便迁往了距数量大减的水库更近的地方,有时还皈依了新的宗教信仰。这种社会转型具有深远的意义,因为人们在面对旷日持久的干旱时,采取了常见的分散策略。人口的锐减使得大城市成了纯粹的朝圣之地。

    进入多灾多难的19世纪:中国与印度的大饥荒(公元1876年至1879年)

    自公元前206年至公元220年(与古罗马人统治欧洲同期)统治中国的汉朝诸帝,确立了皇室负责灌溉与掌控水利的模式;虽说此后经历了很大的改良,不过这些模式一直持续到了20世纪。他们面临着许多重大的挑战,其中既有北方的黄河造成的,也有南方的长江导致的。汉朝及之后的朝代,都是依靠成千上万的劳力去修建堤坝、治理洪水的。中央政府与地方利益集团之间的关系一直都很紧张,在兴建重大水利设施的问题上尤其如此。到了19世纪,在厄尔尼诺现象异常活跃的一段时期,中国没能将其可持续性维持下去。[16] 数千年来偶尔灵感勃发的灌溉工作、常常僵化的官僚机构和受到严格管制的劳作,都无法遏制自然界突如其来且经常很剧烈的各种循环。

    长期以来,当洪水与干旱周期影响的充其量只是微小的可持续性时,断断续续且偶尔有效的饥荒救济制度曾解决过粮食短缺的问题。但在1875年至1877年间季风雨连续两年不力之后,中国北方遭遇了巨大的厄运。随之而来的干旱与饥荒,要比印度同一时期的干旱与作物歉收严重得多。1876年,远至南方的上海这座城市的街头也出现了数以万计的难民;但在此之前,一个效率低下的政府在遥远的北京却几乎无动于衷。饥肠辘辘的农民只能吃谷壳、草籽,以及他们能够找到的任何东西。美国传教士卫三畏曾经看到,“民如幽魂,逡巡于已为灰烬之宅,觅薪于寺庙之废墟”。[17] 大多数地区的官吏面对这场灾难的规模时都不知所措,什么措施也没有采取;或者,他们干脆将成千上万名因饥成匪的百姓关在笼子里活活饿死。

    最终,在一个面积比法国还大的地区里,有9,000多万人陷入了饥荒。传教士与外国公使成了向外界传递消息的唯一源头。他们报告说,一座座大坑里躺满了死去的人。最后,一些从鸦片贸易中赚取了巨额利润的公司成立了一个“中国赈灾基金委员会”。中国教区里那些虔诚的基督教信众都把饥荒赈济视为“一个美妙的开端”,可在 1878 年季风再度回归之后,信众中却没有多少人继续保持他们的信仰。据传教士们估计,当时只有20%至40%的饥民得到了救济。到那场饥荒结束之时,许多村落里剩下的人口都不到饥荒之前的四分之一了。

    19 世纪的严重气候变化也对印度产生了极大的影响。从维多利亚女王治下初期直到19世纪60年代,季风区的气候相对平静,降雨一直都很丰沛。就像数个世纪之前吴哥的情况一样,充沛的雨水使得作物丰收和人口增长。耕地不足的印度农民,开始去耕作一些不那么肥沃的地带;虽然这些地带在气候湿润的年份可以种植适量的作物,但大多数时候,它们对农业而言是微不足道的。在英属印度开始输出粮食的那个时候,一切似乎都没有问题。接下来,1877年至1878年发生了一次大规模的厄尔尼诺现象,随后与之类似的异常气候事件又一批接一批,持续了30多年,尤以1898年和1917年为甚。1877 年的厄尔尼诺现象最为严重,它始于1876年的一场大旱,然后持续了3年之久。印度尼西亚上空形成了一个强大的高气压系统,阻延了季风。干旱随之而来,并且导致了大范围的丛林火灾。1877年,西南太平洋广袤的温暖水体东移,催生出了严重程度在历史上屈指可数的一次厄尔尼诺现象。大部分热带地区遭到了重创,人口大量死亡,尤其是只依靠雨水而不靠灌溉进行耕作的农业人口。

    印度在遭受了 1792 年以来最严重的干旱之后,又迎来了饥荒。雨水未至,作物枯萎。英国当局拒绝实施物价管控措施,从而引发了疯狂的投机大潮。随着粮食骚乱爆发和许多劳力饿死,即便是灌溉情况良好的地区也有数百万人受灾和丧生;可是,英国人却继续在全球市场上出售印度所产的大米与小麦。

    这场严重的饥荒,实际上是一场人为造成的灾难。难民纷纷涌向城市,城市里的警察却将他们拒之门外;光是马德拉斯一地,被拒的难民就达25,000人。许多难民死去,其他难民则是漫无目的地四下流浪,寻觅食物。与此同时,英属印度当局却认为,赈济饥民虽然有可能挽救生命,却只会导致更多的人生而贫困;因此,当局并未积极尝试为饥饿的百姓提供粮食。官方的政策就是自由放任,结果是仅在马德拉斯地区,至少就有 150 万人饿死。等到雨水再度降临之后,成千上万的百姓却虚弱得无法耕种了。在获得补贴的工作场所里,工人们的口粮根本不够,已死和垂死之人到处都是,而“霍乱患者皆辗转于未病者之中”。新闻界与政府中少数义愤填膺之士提出了强烈抗议,却无济于事。作家迈克·戴维斯(Mike Davis)已经令人信服地指出,这场灾难为印度的民族主义奠定了基础。

    1877 年的灾难,让许多殖民政府第一次不得不真正去面对气候变化方面一个普遍但经常为人们所忽视的问题:在他们正剥削的国度里,几乎普遍存在饥荒和饥饿的现象,可当时当地人唯一明确的解决办法就是外迁。没有人对由此导致的大规模人口分流做好准备,而这种分流,也预示了20世纪末和如今的大规模移民。自给自足的农民对祖辈留下的土地怀有深深的眷恋之情,他们用尽了熟知的办法,只能采取唯一可行的生存之道:分散开来,迁往他处,去寻觅食物和可以种植庄稼的地方。

    19 世纪发生在中国和印度的严重饥荒,让基本上无视这个问题的两国中央政府几乎无力回天了。以印度为例,当时英属印度当局更关心的是从全球粮食价格中牟取暴利,而不是帮助当地农民摆脱困境。他们的干预导致了规模惊人的骚乱。有数以百万计的百姓,在现代的国际救济组织出现之前的时代里死亡。自私自利却具有凝聚力的高棉帝国曾经迅速扩张,但最终被维护水利工程的需求所压垮,因为那些水利项目需要大量的人力、谨慎细致的组织,以及高效而去中心化的行政管理。与玛雅人和蒂亚瓦纳科的农民一样,最有效的解决之道在于社会转型;转型之后的社会,不能以兴建气势恢宏的城市与寺庙为基础,而应以自给自足的农村社区为根基。

    这一点,与我们的世界息息相关。如今,有数以百万计的自给农民和贫困人口都深受粮食不安全之苦。干旱与饥荒,如今在刚果民主共和国、南苏丹、津巴布韦和萨赫勒地区几乎普遍存在,而阿富汗也有三分之一的人口(约为1 100万人)为粮食不安全所困。形势既微妙又复杂,但就像殖民时代西方国家瓜分世界、争夺土地和资源并让民众丧失人性一样,战争、对人民和资源的剥削往往还会继续下去。此外,我们还要面对常常很腐败和冷漠的无能地方官僚机构,因此人们唯一的生存之道就变成了外迁,与过去没什么两样。

    19 世纪末,中国和印度曾经有成千上万忍饥挨饿的村民孤注一掷地迁徙,以寻觅食物和可靠的水源。如今,在全球变暖、干旱迅速蔓延的情况下,生态移民的人数已数以万计甚至更多。然而,我们西方人却向我们剥削的民族筑起了一道道壁垒(不管是隐喻还是非隐喻的壁垒)。究竟是什么给了我们这样做的权利呢?是西方的经济制度让我们不得不这样,因为资本主义内含强大的企业利润观念与剥削观念。因此,各国政府不得不保护本国的土地与资源,并且打压其他国家。这样做,究竟是不是我们这个物种应对全球变暖诸问题的最佳之道呢?

    无疑,在我们生活的这个时代,城市人口动辄就有数百万之多。不过,这种情况导致我们忘记了过去的教训:我们忘记了许多农村社群在自我维持与合作方面所做的大规模投入,忘记了他们长期积累下来的风险管理经验。假如我们与这样的社群合作,向其学习,并且通过投资他们的生活方式和处理问题的方式,与之共享资本,那么,与始终庞大的军费支出等方面相比,这种投资对人类的未来将有用得多。

    [1] 要想了解高棉文明的概况,请参见 Charles Higham, TheCivilization of Angkor (London: Cassel, 2002),或者 Michael D. Coe, Angkor and the Khmer Civilization (London and New York: Thames & Hudson, 2005)。亦请参见Roland Fletcher et al., “Angkor Wat: An Introduction,” Antiquity 89, no. 348 (2015):1388–1401。
    [2] 对最新研究的通俗论述,请参见Brian Fagan and Nadia Durrani, “The Secrets of Angkor Wat,” Current World Archaeology 7, no. 5 (2016):14–21。

    [3] 南赡部洲(Jambudvipa),佛教传说中的“四大部洲”之一,由“四大天王”中的“增长天王”负责守卫,泛指人类生存的这个世界,亦译“琰浮洲”“南阎浮提”“南阎浮洲”“阎浮提鞞波”等。——译者注

    [4] 关于在吴哥进行的激光雷达勘测:Damian Evans et al.,

    “Uncovering Archaeological Landscapes at Angkor Using

    Lidar,” Proceedings of the National Academy of Sciences 110

    (2013): 12595–12600。

    [5] 东巴莱湖与西巴莱湖(East and West Barays),亦译“东大人工湖”与“西大人工湖”,或者“东池”与“西池”。——译者注

    [6] Roland Fletcher et al., “The Water Management Network of Angkor, Cambodia,” Antiquity 82 (2008): 658–670.

    [7] 本章的其余部分主要参考的文献是:Roland Fletcher et al., “Fourteenth to Sixteenth Centuries AD: The Case of Angkor and Monsoon Extremes in Mainland Southeast Asia,” in Megadrought and Collapse: From Early Agriculture to Angkor, ed. Harvey Weiss (New York: Oxford University Press, 2017), 275–313;此处引自其中的第279页。

    [8] P. D. Clift and R. A. Plumb, The Asian Monsoon: Causes,

    History, and Effects (Cambridge: Cambridge University Press,

    2008).

    [9] 对这种复杂的恶化过程的概述,见于Fletcher, “Fourteenth

    to Sixteenth Centuries AD,” 292–304。

    [10] B. M. Buckley et al., “Climate as a Contributing Factor

    in the Demise of Angkor, Cambodia,” Proceedings of the

    National Academy of Sciences 107 (2010): 6748–6752. See also

    B. M. Buckley et al., “Central Vietnam Climate over the Past

    Five Centuries from Cypress Tree Rings,” Climate Dynamics

    Heidelberg 48, nos. 11–12 (2017): 3707–3708.

    [11] 关于丹达克洞穴(Dandak Cave):A. Sinha et al., “A Global

    Context for Mega-droughts in Monsoon Asia During the Past

    Millennium,” Quaternary Science Reviews 30 (2010): 47–62。

    关于万象洞的洞穴堆积物:R.-H Zhang et al., “A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record,” Science 322 (2008): 940–942。

    [12] R. A. E. Coningham and M. J. Manson, “The Early Empires

    of South Asia,” in Great Empires of the Ancient World, ed.

    T. Harrison (London and New York: Thames & Hudson, 2009),

    226–249.

    [13] De Silva, K. M., A History of Sri Lanka (New Delhi:

    Penguin Books, 2005).

    [14] R. A. E. Coningham, Anuradhapura: The British-Sri Lankan

    Excavations at Anuradhapura Salgaha Watta. 3 vols. (Oxford,

    UK: Archaeopress for the Society for South Asian Studies,

    1999, 2006, 2013).

    [15] Lisa J. Lucero, Roland Fletcher, and Robin Coningham,

    “From ‘Collapse’ to Urban Diaspora: The Transformation of

    Low-Density, Dispersed Agrarian Urbanism,” Antiquity 89, no.

    337 (2015): 1139–1154.

    [16] Mike Davis, Late Victorian Holocausts: El Ni.o Famines

    and the Making of the Third World (Brooklyn, NY: Verso Books,

    2001).

    [17] Frederick Williams, The Life and Letters of Samuel Wells

    Williams, MD: Missionary, Diplomatist, Sinologue (New York:

    G. P. Putnam’s Sons, Knickerbocker Press, 1889), 432.

    第十章 非洲的影响力(公元前1世纪至公元1450年)

    “这条铁路,是尸骨堆成的。”那些受害者的后代,如今仍然称之为“尤阿亚恩戈曼尼兹”(Yua ya Ngomanisye),也就是“到处蔓延的饥荒”。[1] 肯尼亚中部的那场干旱,从1897 年持续到了1899 年,严重削弱了东非大裂谷东侧的坎巴和基库尤两个小型的自治社会。有些地方的庄稼接连3年歉收。在更早的时代,农民可能还有充足的余粮维生,可此时却到了殖民时代。当时,这里正在修建乌干达铁路。从附近群落征收来的宝贵粮食,都被分配给了修建铁路的劳工。腺鼠疫很可能就是由移民劳工从印度传播到这个地区的,造成了数千人死亡。饥饿的当地人开始抢劫。铁路警察则以牙还牙,焚毁了当地人的村落,从而毁掉了更多的粮食。狮子和其他食肉动物在光天化日之下跟踪和猎杀人类,鬣狗则啃食着倒在路边的饿殍。虽然英国当局粗略尝试过为幸存者提供粮食,但损失已经极其巨大。在乌干达西部,饥荒导致的死亡人数超过了14万。

    多年的大丰收和充沛的降雨导致人口增长集中发生于拥挤不堪的定居地之后,饥荒降临了。就像中世纪欧洲的情况一样,农民开始耕作那些贫瘠的土地,以便种出更多的粮食。雨水持续丰沛,使得本地和长途贸易也繁荣发展起来。

    接着,1896年出现了一场大旱,是由一次大规模的厄尔尼诺现象导致的,其严重程度超乎想象;随后,1898年又出现了一场由拉尼娜现象导致的干旱,而 1899 年再次爆发了一次由厄尔尼诺现象导致的干旱。埃塞俄比亚高原曾经是一个富饶之地,孕育过阿克苏姆文明,此时却旱情肆虐,以至于尼罗河的洪水降到了自1877年至1878年以来的最低水位。严重的旱情,笼罩着非洲东部、南部以及萨赫勒地区。从肯尼亚山往南,直到遥远的斯威士兰,有数以百万计的农民都遭遇了严重的作物歉收。而且祸不单行,不断暴发的牛瘟让牛群遭到重创,天花在许多社群中肆虐,无数群蝗虫遮天蔽日,其他灾祸在面对重大气候变化时也持久不去。与此同时,欧洲的帝国主义者也在步步进逼。英国人趁火打劫,将他们以内罗毕为大本营的新保护国向外扩张,吞并了坎巴和基库尤的大部分领地。在南方,塞西尔·约翰·罗得斯则占领了后来的罗得西亚。大津巴布韦一些供奉绍纳人的神灵姆瓦里的著名灵媒就曾宣称:“白人乃汝等之敌……雨云将不至矣。” [2]

    气候变化与其他灾难,彻底改变了非洲社会。随着各种贸易土崩瓦解,作物种类开始减少,而作物产量也大幅下降,曾经充满活力的乡村经济崩溃了。权力从传统的部落酋长转移到了殖民地政府任命的傀儡首领身上。此时非洲的各个社群,全都处于权力等级的最下层;这种权力等级,与西方国家控制下的全球粮食与原材料市场紧密相关。随着欧洲人开始“争夺非洲”,科学上极其荒谬的种族主义意识形态所支持的社会不平等与不发达,也变成了一种常态。

    掌控“巴萨德拉”(公元前118年以前至现代)

    公元916年,阿拉伯地理学家阿布·扎伊德·艾尔赛拉菲曾经写道:“‘巴萨德拉’[即夏季风]赐生于率土之民,因雨令地沃,如若无雨,民皆饥亡焉。”[3] 数个世纪之后的1854 年,美国气象学家马修·方丹·莫里发表了他的《风向与洋流图之说明及航向》一书。[4] 他利用数百艘船只的观测结果,揭示了印度季风的环流情况。1875年,印度气象局建立,试图利用全印度的观测网络,对带来降水的西南季风做出预报。1903年,吉尔伯特·沃克登场了;此人是英国的一位统计学家,他利用世界各地获得的成千上万份观测数据,确定了复杂的大气与其他有可能影响到季风降雨的气候条件之间的关系。也正是沃克,发现了南方涛动及其与季风雨之间的关系——这种关系,属于印度洋气候中的一个基本要素(参见绪论)。

    商船水手们在印度洋水域航行,从阿拉伯半岛和美索不达米亚地区一路来到印度,至少已有5,000年的历史了。他们习得了在季风中航行的本领,因而能够掌控海上的贸易路线。几个世纪以来,他们都严守着关于印度洋季风的知识,只是父子相传。到了公元前118年至前116年左右,一名遭遇海难的水手从红海抵达了亚历山大港,在协助一位名叫“库齐库斯的欧多克索斯”(Eudoxus of Cyzicus)的希腊人两度前往印度之后,这些知识才传到了更广阔的外界。不久之后,另一位希腊兼亚历山大港的船长希帕卢斯(Hippalus)想出了一个比沿着海岸航行要快得多的办法,那就是利用8月份猛烈的西南季风,开辟一条能在12个月内返回的从红海近海的索科特拉岛直达印度的海上航线。远洋航行中的这一重大突破,将使人们接触到非洲几十个地处内陆且远离印度洋的社会。如此一来,全球天气模式就对数以百万计的非洲自给农民以及努力统治着他们的部落酋长产生了影响。

    长久以来,非洲的红海沿岸一直吸引着商贾们前往。从公元前2500 年前后到公元前1170年间的12份古埃及文献资料中,都提到了“蓬特”或者“神之国度”这个神秘之地,并且盛赞那里有着种种珍贵的资源,其中包括黄金和沉香。一代代考古学家都在试图找出蓬特的具体位置,很有可能,它是在沿着“非洲之角”的红海往北,一直延伸到如今埃塞俄比亚和厄立特里亚所在的高原那一带。事实上,公元前600年的一篇古埃及铭文中提到了雨水落在蓬特山上,以及雨水随后如何流入尼罗河的情况;极有可能,流入的就是我们在第四章中曾提到过的青尼罗河。所有的古埃及文献还进一步表明,从陆路和海路都可以抵达蓬特;这就说明,至少自公元前 3 千纪起,人们就懂得如何利用季风沿着红海航行了。

    尽管如此,人们显然并未大量利用这条航路。蓬特及其位置始终披着一层神秘的面纱,人们曾认为那里异常重要,以至于(在公元前1472年至前1471年前后)令人敬畏的哈特谢普苏特女王还用来自蓬特的无数商品的形象,包括搬运沉香树的奴隶、狒狒、长颈鹿、牛、狗、驴、埃及姜果棕的形象,以及一些丰乳肥臀的贵妇的形象,装饰过她位于上埃及的达尔巴赫里陵庙的墙壁。陵墓墙壁上还绘有蓬特的许多珍贵资源,比如没药、乌木、象牙和黄金。考虑到哈特谢普苏特女王对蓬特的关注,我们可以推测,这里或许是女王希望作为遗产而留下的一项开创性的国家使命。

    到了公元前1千纪末期,形势出现了一些变化。商人们开始更加频繁地出入红海,尽管我们从斯特拉波和阿伽撒尔基德斯(Agartharchides)这些古典作家那里了解到,这仍然是一段艰难的航程,因为一路上既有遍布暗礁的水域,还有汹涌的巨浪,且没有锚泊之地。阿伽撒尔基德斯在公元前2 世纪记述这些情况时,偶尔会发挥一点儿想象力,称有条河流流经那片土地,带来了大量的金沙,而继续往南的一座座金矿,则出产天然金块。我们认为,当时这条航线仍是一个秘密。一个世纪过后,知道这条航线的人就多得多了,连那些原本可以依靠广泛采用的航向去航行的外来者也知道了。公元1世纪的《红海环航》(Periplus of the Erythraean Sea )一书最为著名。此书的佚名作者可能是一位熟悉这个地区的航海者,用朴实无华的希腊文描述了进一步往南的非洲沿海的情况;当时,那里称为阿扎尼亚,一直延伸到了遥远的南方。[5]

    《红海环航》一书中提到,遥远的南方有许多避风锚地和像拉普塔(Rhapta,具体位置至今不明)这样的地方,那里到处都是象牙与玳瑁。由于季风很有规律,故帆船可以穿越红海往返,或者从东非地区前往印度西海岸,并在12个月之内返回。在像肯尼亚北部的拉穆这样的避风锚地,信风商船的进出是一年当中的头等大事。在这里,人们将大船的货物卸到小船上,由后者去跟历史上默默无闻的偏远沿海群落进行贸易。在这些沿海群落里,人们可以购得许多贵重商品,比如质地柔软、易于雕刻的非洲象牙,用于制作装饰品的金、铜,以及易冶炼的铁矿石,然后销往阿拉伯半岛和印度。也有一些较为普通的商品,其中包括产自非洲红树沼泽的木屋梁柱;在没有树木的阿拉伯半岛上,这种梁柱对住宅建造很是重要。

    数个世纪以来,阿扎尼亚都是一个由小村落组成的冷清之地,只有来自红海的商贾偶尔前来。可这一切,在10世纪出现了变化,因为地中海地区对黄金、象牙以及透明石英的需求急剧增加了。此时,随着一些商贾社群在避风港附近的发展,伊斯兰教也站稳了脚跟。有些沿海飞地有数以千计的聚居人口,他们都住在一座座“石头城”里面;一些实力强大的商贾家族,在遥远的南方也兴旺发达得很,比如当今坦桑尼亚的基卢瓦。

    如今,这里被称为“斯瓦希里走廊”(Swahili Corridor),在这片狭窄的沿海地带,许多本地的商业城镇都是在安全的锚地附近发展起来的。[6] 在公元1千纪晚期,伊斯兰教开始与范围更加广泛的世界产生政治联系和经济联系,并且与那些更遥远之地的意识形态形成了联系。然而,生活在非洲这一地区的石头城中的群体与实力强大的商贾家族也注重更多的地方关系。他们与一个个贸易线路网之间发展起政治联系与社会联系,并且小心翼翼地加以维护;那些贸易线路延伸到了数百千米以外的内陆。一小批一小批的商贾带着粮食、兽皮、贝壳和农民十分重视的食盐,深入了遥远的内陆地区。他们还带来了其他的奇珍异宝,比如中国的瓷器、印度的纺织品和玻璃珠子。贝壳和小饰品基本上都是廉价的小玩意儿,只相当于他们运往沿海地区的黄金和象牙价值的一小部分。在遥远的非洲内陆,海贝却是声名赫赫之物;当然,它们并不是用作发饰的普通子安贝,而是一些更稀罕的贝类。印度洋中的芋螺贝成了部落酋长威望的重要象征。近至1856年,5 个芋螺贝仍可以在非洲中部买到一根象牙。黄金最难获得,因为黄金产地在遥远的南方,即津巴布韦高原上。然而,据估计,在长达8个世纪的时间里,至少有567吨黄金被运往了沿海,因为非洲的黄金是当时全球经济中的一个要素。[7]

    这种非正式的贸易已经持续了数世纪之久。在许多考古遗址中,人们都发掘出了像中国的陶瓷器皿、精细和较粗糙的棉织品以及成千上万颗玻璃珠子之类的外来商品;而那些考古遗址,距这些商品首次抵达非洲时落脚的港口都有数百千米之遥。令考古学家们觉得幸运的是,根据样式就可以确定其中许多东西所属的年代,而光谱微量元素常常可以揭示出它们的原产地。

    季风将东非地区的石头城与遥远的地方联系了起来,并将它们纳入了全球长途贸易领域当中。尽管风力可能年年不同,降雨量也有可能逐年增加或者减少,但印度洋上的商业贸易却持续了数个世纪,甚至持续到了欧洲人开始殖民之后。可以说,全球气候在过去的2,000多年里,在非洲东部和南部的历史中扮演了一个重要的角色。不过,变幻莫测的季风对那些生活在遥远内陆的人,又产生了什么样的影响呢?这个问题的答案,就存在于赞比西河与林波波河之间的津巴布韦高原上,存在于那些从事畜牧业的王国与农耕村落的复杂历史之中。

    探索内陆(公元1世纪至约1250年)

    前往非洲内陆,我们就会进入这样的一个世界:在19世纪中叶传教士兼探险家大卫·利文斯通(David Livingstone)穿过非洲中部大部分地区之前,欧洲人对这个世界几乎一无所知。一些零碎的文献,如葡萄牙人所著的编年史和维多利亚时期一些探险家的著作,描绘了从16世纪到19世纪这里的情况。不过,除了“大津巴布韦是腓尼基人的一座宫殿”这种不正确的说法之外,我们对非洲早期的历史几乎是一无所知,直到20世纪60年代人们开始认真研究。我们正在进入的,是一个与世界上许多其他地区相比,很少被探索且具有复杂气候动态的历史领域。

    我们的“老朋友”热带辐合带,在印度洋上的南、北半球之间来回移动。尽管它始终停留在赤道附近,但其北移的极限却是北纬15°上下。每年的1月份,它会南移至南纬5°左右。热带辐合带是一个雨云密布的地带。在冬季里,即从11 月份至次年2月,这种移动会给非洲南部带来降雨。但热带辐合带位置的长期变化,却有可能导致旷日持久的干旱。这一点,还只是一种复杂的气象状况中的一部分,因为厄尔尼诺现象与拉尼娜现象在干旱与洪涝灾害中都扮演着重要的角色。我们探究气候变化在非洲东部与南部的作用时,就像是在玩一个难以掌握、变化莫测的溜溜球。

    大约2,000年前,一小群一小群的农民与牧民相继迁徙到了赞比西河流域,并从那里进入了非洲南部。他们在辽阔的热带稀树草原上的广大地区定居下来,形成一个个小村落,并且喜欢选择没有采采蝇的地方,因为采采蝇对牛群具有致命性;这些地方的土壤也相对较松,用简单的铁片锄头就可以轻松耕作。[8]

    这些新来者迁入的地区里,已有少量的桑族猎人与采集民族生活了数千年之久。几个世纪之后,农耕人口增加了,而桑人要么是采用了新的经济模式,要么就是迁往了边缘地带。桑人的祖先人口不多,并且流动性极强,可农民却被束缚于土地之上,种植高粱和两种谷子,早在玉米从美洲传入之前就已如此了。

    一道崎岖的悬崖,将非洲南部赞比西河与林波波河之间的内陆地区与东边紧邻印度洋的平原分隔开了。一个个炎热而低洼的河谷,切入了地势较高、平均海拔超过1,000米的津巴布韦高原。绵延起伏的平原上,是一望无际的热带稀树林地,其间夹杂着一片片适合种植高粱与谷子的沃土,是一个气候相对凉爽、灌溉条件相对较好的环境。[9] 这两种作物都是在南方的夏季生长,但它们需要 350 毫米左右的降水,且每天起码还需要3毫米的灌溉用水。这些现实情况,意味着此地的农田须有500毫米左右的最低年降水量,同时气温不能低于15℃。虽然不同地区的要求也有所不同,但在一种旱季漫长和降水量变化无常的环境下,它们算是两种要求颇高的作物了。一片片辽阔的草地,为牛、绵羊和山羊提供了优质的牧草;只不过,其背后始终都存在干旱与降水无常的风险。这里并不是一个条件优越的农耕地区,因为这里不但存在干旱、缺水和旱季漫长等问题,偶尔还会出现降雨过多的情况和洪涝灾害,并且年年不同,变化巨大。

    非洲南部的降雨,自东向西呈显著递减的趋势;同时,非洲南部的东南部在南半球冬季的降雨量,占到了其年降雨量的 66%左右。热带辐合带在印度洋上南移,一股来自印度洋的偏东气流,给广大地区带来常常难以预测的降雨。这些相对湿润的气候条件,对过去1,000年间农业与牧业的规模产生了关键的作用。此地的农牧业,大多局限于草原林地和开阔的热带稀树草原上,以及位于北方的赞比西河与南方的大凯河之间的草原地区。

    大量的湖泊岩芯、洞穴石笋以及树木年轮表明,在过去的1,000年间,这里的降水与气温都出现过显著的变化。[10]总的来说,从公元1000年以前到公元1300年后不久的这一时期,非洲南部的广大地区都出现了变化极大的中世纪变暖现象。气温在公元1250年前后达到了一个显著的峰值,故那一年是过去6,000年间最炎热的年份之一;当年的气温,要比1961 年至 1990 年间的年最高气温还高了3℃到4℃。接着,气温开始下降;从海洋中钻取的岩芯与内陆地区的马拉维湖的水位变化,就说明了这一点。气温最低的时候,是1650年前后到1850年之间。其间的最低气温,出现在1700年前后,但差不多一个世纪之前,还出现过一个较为寒冷的短暂时期。有意思的是,从南非西开普省和其他沿海地区的考古遗址中发掘出的软体动物身上的同位素记录了当时海面气温下降的情况。南非北部马卡潘斯盖地区一些洞穴中最低温度与氧同位素记录的时间,则与1645年前后至1715年间让欧洲变得极其寒冷的“蒙德极小期”相吻合,而且记录中也有气候寒冷的“斯波勒极小期”(1450—1530)的迹象。当然,这些都属于大致情况,因为洞穴石笋中还记录了无数种地区性的差异。1760 年之后,气候又慢慢地回暖了。不过,无论具体情况如何,对于村落中的农民和在“小冰期”中崛起然后又逐渐衰亡的国家而言,降雨和气温变化都是一种始终存在的重大挑战。

    自给农业的现实

    在粗略地探究了范围更广的气候时间框架之后,我们现在将关注焦点缩小到过去的2,000年间,即自给农民首次在非洲中南部定居以来的那些世纪。当时,几乎所有的农耕生产都是围绕着村庄进行的,并且依靠刀耕火种式的农业,即烧垦农业。每年9月份旱季结束时,村民都会清理掉此前无人清理过的林地,然后在各自的地块上点火焚烧。接下来,他们会把灰烬散播开去,用锄头将灰烬翻进土里,做好一切准备。然后,随着气温每天稳步上升,他们就开始等待天降甘霖。有时,几场阵雨会落到这个地区的不同地方,出现一个村庄下雨而邻村却艳阳高照的情况。这种时候,该不该播种呢?假如播下了种子,那人们就会盯着天空,盼着雨云出现了。有时,充沛的雨水随之而来,庄稼也长势良好。但更常见的情况是,庄稼会在田地里枯萎。几周之后,饥荒就会降临,而到了春天,就会有人饿死了。大多数农耕村落虽然可以凭借存粮熬过一年的干旱,却没法在多个干旱年份中幸存下来。人们会以野生植物、猎物维生,假如养有家畜的话,他们也会宰杀牛羊为食。

    世世代代的人来之不易的经验教训,就是农业获得成功的基础。[11]

    风险管理需要人们运用熟悉的对策,但就像农业具有多样性一样,这些对策也因村而异。人们曾在家庭和村庄两个层面,建立了一些完善的应对机制。其中包括谨慎地长期储存粮食,同族之间分享粮食,以及古老的互惠互助观念;这种互助观念,可以确保挨饿的人尽可能地少。清理田地和执行其他重要任务时的合作劳动,已经成了惯例。

    这些社群,在很大程度上依赖于亲族和与祖先之间强大的仪式联系;因为自古以来,祖先就是这片土地的守护者。在部落社会里,求雨和祈雨仪式是两种强大的催化剂,而人们与居住在附近或者更远社区的亲族之间种种强大的纽带,也是如此。源远流长的互济关系以及相互提供帮助、食物甚至是播种用的谷物之类的共同义务,在气候突然变化和出现长久干旱的时候,为人们提供了强大的适应武器。

    那些散布各地且养有少量畜群的农耕村落,在这几个世纪中挺了过来,当村民们可以靠不定时的长途象牙贸易和其他商品交换粮食时,尤其如此。但其中最重要的,还是宗教仪式与血缘关系,它们就是最初将远近村落维系起来的纽带。经过多个世代之后,这些血缘关系和受人重视的能够与祖先交流的超自然力量,将曾经规模很小的村落社会变成了一种由小型的酋邦构成且不断变化的政治格局。社会地位上的差异,取决于人们所谓的超自然天赋、是否属于主要宗族的成员以及个人魅力,因为这里与古代世界的其他地方一样,权力常常取决于一个人的统领能力和让追随者(通常都是亲族)保持忠诚的能力。仪式性的帮助、适时的礼物与互惠姿态,就是换取忠诚的通用方法,而赠予财富也是一个办法。这种财富以活的牲畜为主,尤其是牛。

    人们养牛,远非只是用于产肉与产奶。这种享有盛誉的牲畜,当时也是财富、社会地位和丰厚聘礼的有力指标。多余的公牛是十分宝贵的通用财富,而数量庞大的畜群则是政治权力的无声象征。只不过,大大小小的畜群都很容易受到变幻莫测的降雨和干旱影响,因为每头牛起码每隔 24 小时就须喝一次水,并且还需要优质的牧草。高原与河谷地区的酋长都不遗余力地获取粮食与牛群,来巩固他们的政治权力。到了10世纪,高原社会开始出现变化,但终究还是依赖于一种行之有效的对策,去适应一种以分散的村落社会为根基的变化无常的环境。从根本来看,人们在高原环境中的成功生存和发展,一如既往地取决于畜牧业和自给农业。不过,高原地区远非只有肥沃的土地与牧草。从冲积矿床中开采的黄金,石英矿脉,以及铜、铁和锡,很快就成了长途贸易的主要商品。在高原上繁衍生息的不只是牛,还有长着象牙的大象。控制着高原地区的绍纳人酋长们,开始接触从遥远的印度洋沿岸来寻找黄金和象牙的游客。起初,沿海贸易断断续续地进行,但10世纪过后,在气候条件较为炎热且湿润的一个时期,这种贸易急剧扩大了。随着高地上的一些酋长成功地掌控了贸易路线,并且从实力较弱的部落首领那里榨取贡赋,他们自然地在经济和政治上获得了统治地位。这给他们带来了不稳定的政治权力与经济权力,因为在面临长期干旱或者印度洋贸易出现变故时,这种权力有可能迅速化为乌有。

    马蓬古布韦与大津巴布韦(公元1220年至约1450年)

    在气候炎热、地势低洼的林波波河河谷中,崛起了一个实力强大的王国。[12] 公元10世纪到公元13世纪,也就是在“中世纪气候异常期”的那几个世纪里,较多的降雨导致河流经常泛滥,并将原本干旱的河谷变成了一个农耕生产欣欣向荣、牛群茁壮成长的地区。林波波河流域的优质牧草还引来了大批象群。一个统领河谷的王国崛起所需的一切要素均已具备,尤其是在环境对一个以牛为财富与社会地位象征的社会有利时。起初,实力强大的新兴部落首领们都住在河谷中较大的村落里。到了公元1220年,一小群精神力量强大的人迁到了一座显眼的小山之巅;此山名叫“马蓬古布韦”,俯瞰着整个河谷。长久以来,这座独特的小山一直是部落举行求雨仪式的中心,而求雨仪式又是当地绍纳人社会的一个重要组成部分。当时的降雨较为丰沛,似乎就证明了马蓬古布韦的首领们具有强大的精神力量。

    当时,因有牲畜、黄金和象牙而富甲一方的马蓬古布韦并非一枝独秀。还有一些中心也纷纷崛起,其中许多都坐落在平坦的山巅,有石墙环绕,还有安全无虞的牛栏;并且,每个中心的位置都经过精挑细选,都位于主要的河流流域,确保有可靠的水源供应。酋长和村民都采取了深思熟虑的对策,来适应季节的更替与气候变化。他们精心挑选耕地,种植高粱之类的抗旱作物,并且极其注意储存粮食,以备干旱年份之需。他们的农耕策略在广大地区蓬勃发展,包括尝试通过点火生烟来减少采采蝇造成的牲畜死亡。

    随着 13 世纪降雨量减少,马蓬古布韦的部落酋长们借助那些控制着降雨的超自然力量来求雨的能力,也变得越来越重要了。求雨仪式变得更加集中,从而强化了酋长的合法性,增加了酋长的权力。不过,由于一个个旱季接连而至,酋长的求雨能力似乎显著下降,故他们的地位与权力就变得岌岌可危了。公元1290年前后至1310年间,气温下降和干旱加剧,再加上降雨极其多变,就慢慢地动摇了部落酋长们的威信,削弱了他们确保林波波河洪泛平原土壤肥沃的能力。马蓬古布韦的影响力,也在 13 世纪那一场场越发漫长的干旱中大大下降了。

    马蓬古布韦并不是独一无二的。整个地区的生物丰富多样,养活了无数的群落;这些群落从事着本地贸易与长途贸易,贸易物包括基本商品、金属以及像印度洋地区的珠子、海贝和纺织品之类的进口商品。他们应对气候变化的长期性保障措施,很大程度上源自与远亲近邻之间的合作。许多措施也要依靠别人的技能。其中包括铜铁加工、矿石开采,甚至是制作捕猎大象的铁矛。其中一些社群的社会变得相当复杂,但最重要的是,他们擅于通过农业知识、手工艺生产,以及在不同社群和亲族群体中共享知识和经验来进行风险管理。遗憾的是,对于马蓬古布韦地区这些为数众多的社群及其弱点,我们仍然几乎一无所知。

    随着马蓬古布韦适应较干旱气候条件的能力受到削弱,干旱更加普遍的现象与酋长们影响力的下降之间,无疑是存在关联的。14世纪初,政治权力从林波波河流域往北转移到了津巴布韦高原上。大津巴布韦地区举世闻名,那里有其标志性的石制建筑和一座居高临下的山丘。[13] 但不那么为人所知的是,这个遗址起初是很有影响的求雨仪式的主要中心,事实上后来也一直如此。津巴布韦位于一个黄金矿区的边缘,但更重要的是,这个地区一年四季都绿意盎然,因为从印度洋直接袭来的雾气和雨水会频繁地从附近的穆蒂里奎河流域向北推进。这个偏远之地,似乎是津巴布韦高原上一个相对干燥的地区里的一片绿洲,曾经被人们奉为求雨中心。那座气势雄伟的山丘上,有许多巨石和洞穴,成了一个与姆瓦里崇拜有关的求雨和祭祖的仪式中心;在绍纳人社会中,姆瓦里崇拜扮演着一个重要的角色。姆瓦里这种一神论信仰中身兼祭司的酋长,对津巴布韦社会产生了重大的影响。

    当时,人们上山肯定受到了限制,但津巴布韦的部落酋长们统治着一个由自给农业和养牛业支撑着的辽阔王国;就像马蓬古布韦一样,在大大小小的社群里,牛既是一种财富之源,也是区分社会等级的基础。只不过,牛属于一种要求颇高的财富来源,原因不但在于牛容易患上疾病,而且在于它们需要广阔的牧场,尤其是需要充沛的水源。不断增长的人口密度,为获取柴火和出于其他目的而对林地进行的过度开发,以及更加寒冷和干燥的气候条件(这一点是最重要的),逐渐削弱了王国的适应能力。这个王国位于降雨无常的地区,当地土壤往往也只有中等肥力。尽管大津巴布韦的酋长们曾经努力储存粮食,可能还集中管控过粮食供应,但他们在应对气候压力方面几乎没有什么长期的保护措施,唯一能对他们起到保护作用的是印度洋贸易给他们带来的威望、财富和权力。

    津巴布韦王国及其后继者所处的政治环境十分复杂。王室牛群规模太过庞大,以至于无法饲养在都城里;在这样一个王国中,王位继承是个很复杂的问题。这就意味着,王国周围的众多其他政治实体(其中许多有自己的祭司),提供了一些可以取而代之的权力中心。酋长们的都城频繁地搬迁,如今,其中许多都城都以规模较小的石制建筑为标志。战争显然非常普遍;不过,鉴于人们需要在地里耕作和收割,当时的战争规模还是有限的。

    像大津巴布韦这样的牧牛王国,可能都由一些权势显赫的酋长统治着,他们曾受益于黄金和象牙贸易,但他们的统治地位不但依赖于印度洋贸易带来的威望,还依赖于他们拥有的需要广阔牧场的畜群。一些主要中心可能掌控着长途贸易,但它们与散布在其大部分领地的村落相比,更容易受到气候变化的影响。较大的中心周围的人口也较为稠密,故需要可靠的粮食供应,而小村落则可以靠狩猎与觅食为生,并且更容易转向种植较为耐旱的替代性作物。它们的主要压力并不来自频繁出现干旱年景,而是来自较为长期的干旱,因为长期干旱既有可能毁掉牧草,也有可能毁掉固定的水源。像牛瘟之类的牲畜疾病、蝗灾,甚至是偶尔出现的洪涝灾害,则带来更多的危险。在这种情况下,数量庞大而分散在各处的畜群就提供了一定的保护,让人们可以应对饥荒,野生植物和精心组织的狩猎也是如此。

    至于津巴布韦王国瓦解的确切原因,至今依然是一个谜;但极有可能的情况是,一连串事件的发生,导致了该王国的解体。其中之一,可能就是大津巴布韦附近的金矿枯竭,导致商人们都到其他地方寻找黄金了。15世纪初,气候条件再次变得较为寒冷和干燥,这一点有可能破坏了农耕生产,从而养活不了日益增长的人口。来自邻近王国的竞争日益加剧,可能也有影响。到了16世纪60年代,与那些较为分散的部落群体相比,像津巴布韦这样的较大王国其实更加脆弱了。当时,政治重心已经北移到了赞比西河地区,葡萄牙商人与殖民者为了搜寻黄金,也已深入了高原腹地。在 1625 年至1684 年间,葡萄牙人从当地酋长的手中夺取了矿区开采的控制权,削弱了那些实力一度强大的王国经济繁荣的基础。尽管如此,在政局动荡的情况下,传统的食物体系和求雨仪式仍旧延续了下来,许多较大的群落也依然顽强地生存着。[14]

    非洲南部的王国中,没有哪一个曾经长久存在或者达到了幅员辽阔的规模,连津巴布韦也不例外。这里没有任何将中央集权的高棉帝国团结起来的那种大规模的基础设施。这是一个由分散的村落与反复无常的王国组成的世界:村落的韧性,靠的是谨慎的风险管理;王国则由酋长们统治着,存续时间很少超过200年,而酋长们得到的忠诚度又取决于其是否慷慨,允许一夫多妻则会显得更加大度。凡是在津巴布韦高原上统治一个王国的人,都必须既是企业家又是政治家。酋长们的地位安全与否,在很大程度上取决于他们与人打交道的技巧和获得牲畜的本领。在这个方面,我们所知的情况仍然很不可靠,而唯一能够肯定的是,内陆地区的所有王国都很脆弱。最终幸存下来的是分散的村落,它们积累的知识可以告诉人们如何在一个极具挑战性的环境中进行风险管理。现代非洲的情况仍是如此;尽管城市化的速度很快,但数以百万计的人口仍然依靠自给农业与村落生活。无论是过去还是现在,在地方层面上应对气候变化都最为有效,因为当地的人们对环境与地形地貌都了然于胸。

    本章将长途的全球性贸易与村落里的农民所在的世界联系了起来,但非洲农民的思维方式,与种植水稻的高棉农民或者封建制度下的欧洲农民截然不同。与“中世纪气候异常期”有关的气候温暖的那几个世纪,对热带非洲的大部分地区产生了重要的影响。在接下来的章节里,我们将对“中世纪气候异常期”和欧洲、北美洲的“小冰期”加以探究。

    [1] Mike Davis, Late Victorian Holocausts: El Ni.o Famines and the Making of the Third World (Brooklyn, NY: Verso Books, 2001), 201.

    [2] Davis, Late Victorian Holocausts, 201.

    [3] Brian Fagan, Floods, Famines, and Emperors: El Ni.o and the Fate of Civilizations. Rev. ed. (New York: Basic Books, 2009), 16. 阿布·扎伊德·艾尔赛拉菲(Abu Zayd al-Sirafi)是一名航海者。公元916年前后,他撰写了Accounts of China and India, trans. Tim Macintosh-Smith (New York: New York University Press, 2017)。

    [4] Matthew Fontaine Maury, Explanations and Sailing

    Directions to Accompany the Wind and Current Charts (New York:

    Andesite Press, 2015),初版于1854年。

    [5] Lionel Casson, The Periplus Maris Erythraei: Text with

    Introduction, Translation, and Commentary (Princeton, NJ:

    Princeton University Press, 1989). 关于古代红海航线的更多内

    容,请参见Nadia Durrani, The Tihamah Coastal Plain of South

    West Arabia in Its Regional Context c.6000 BC–AD 600. BAR

    International Series (Oxford: Archaeopress, 2005)。

    [6] 文献资料浩如烟海,并且在迅速增加。优秀的概述,请参见

    Timothy Insoll, The Archaeology of Islam in Sub-Saharan

    Africa (Cambridge: Cambridge University Press, 2003), 172

    177。

    [7] Roger Summers, Ancient Mining in Rhodesia and Adjacent

    Areas (Salisbury: National Museums of Rhodesia, 1969), 218.

    [8] David W. Phillipson, African Archaeology, 3rd ed.

    (Cambridge: Cambridge University Press, 2010).

    [9] T. N. Huffman, “Archaeological Evidence for Climatic Change During the Last 2000 Years in Southern Africa,” Quaternary International 33 (1996): 55–60.

    [10] 后续各段主要参考的是P. D. Tyson et al., “The Little

    Ice Age and Medieval Warming in South Africa,” South African

    Journal of Science 96, no. 3 (2000): 121–125。

    [11] Peter Robertshaw, “Fragile States in Sub-Saharan

    Africa,” in The Evolution of Fragility: Setting the Terms,

    ed. Norman Yoffee (Cambridge, UK: McDonald Institute for

    Archaeological Research, 2019), 135–160,对本节涉及的问题进

    行了讨论。亦请参见 Matthew Hannaford and David J. Nash,

    “Climate, History, Society over the Last Millennium in

    Southeast Africa,” WIREs Climate Change 7, no. 3 (2016):

    370–392。

    [12] Graham Connah, African Civilizations, 3rd ed. (Cambridge: Cambridge University Press, 2015),这是一部权威的概述之作。T. N. Huffman, “Mapungubwe and the Origins of the Zimbabwe Culture,” South African Archaeological Society Goodwin Series 8 (2000): 14–29,从这篇文章开始了解相关问题会很有帮助;Robertshaw, “Fragile States in Sub-Saharan Africa”和Tyson et al., “The Little Ice Age and Medieval Warming in South Africa”两篇论文则提供了最新的信息。

    [13] Peter S. Garlake, Great Zimbabwe (London: Thames & Hudson, 1973),此书尽管有点过时,但仍属基础文献。Robertshaw, “Fragile States in Sub-Saharan Africa”一文参考了许多最近的研究。

    [14] 相关讨论见 Tyson et al., “The Little Ice Age and Medieval Warming in South Africa”。

    第十一章 短暂的暖期(公元536年至1216年)

    以任何标准来衡量,公元536年都是东地中海地区一个极其可怕的年份(亦请参见第五章)。拜占庭的历史学家普罗科匹厄斯曾写道:“日如淡月,无熠无光,全年皆然。”[1]欧洲、中东和亚洲的部分地区都有如浓雾笼罩,天昏地暗,长达18个月之久。造成这种状况的罪魁祸首,是冰岛发生的一次大规模的火山爆发,这一次爆发将大量的火山灰抛到了整个北半球。接着,公元540年和547年又出现了两次规模巨大的火山喷发。这几次火山事件,再加上“查士丁尼瘟疫”,让欧洲的经济陷入了100多年的停滞不前,直到公元640 年才有所好转。

    火山作乱(公元750年至950年)

    火山喷发的时候,会将硫、铋和其他物质抛至高空的大气中。这些物质会形成一层气溶胶,将阳光反射回太空,从而让地球上的气温下降。研究人员首先确定了公元536年的火山爆发,因为采自格陵兰岛和南极洲的冰芯都表明当年喷发物处于峰值。随后,2013年研究人员又在瑞士阿尔卑斯山上的科尔格尼菲蒂(Colle Gnifetti)冰川中钻取了一段长达 72 米的冰芯,并从体现了数天或者数周降雪情况的激光切割冰条中,获得了有关火山爆发、撒哈拉沙尘暴和人类活动的记录。[2] 每米冰芯中大约有5万个样本,使得冰川学家保罗·马耶夫斯基(Paul Mayewski)和其同事们能够精准地确定像火山爆发之类的气候事件,甚至是铅污染的情况,并且时间可以精确到2,000年前的月份。在探究公元536年的火山爆发时,他们就是根据冰芯粒子确定其源头在冰岛的。

    从全球范围来看,火山活动从来没有出现过连续不断的情况。尽管公元536年出现了火山爆发,但在公元1千纪的前500年里,几乎找不到其他的火山活动迹象。不过,从公元750 年至 950 年的两个世纪,就是另一番光景了。其间,全球至少发生了8次大规模的火山爆发。我们能够知道这一切,应归功于研究人员从“格陵兰冰盖项目2”(Greenland Ice Sheet Project 2,略作GISP 2)中获取的数据。“格陵兰冰盖项目 2”为我们提供了一份重要的大气化学成分记录,揭示了西伯利亚的天气事件、中亚地区的暴风雨以及海洋风暴等方面的情况。格陵兰岛冰芯中出现的火山爆发证据,就是硫酸盐颗粒的背景值突然大幅增加了。其中大部分硫酸盐颗粒的来源仍不为人知。值得注意的是,研究人员从“格陵兰冰盖项目2”的冰芯中获得了公元750年至950年间的气候事件记录,它们的时间都精确到了2.5年之内,其间8次主要火山喷发的记录还更加准确。

    不过,将科学研究与同一时期的书面史料进行对照,结果又会如何呢?迈克尔·麦考密克和保罗·达顿(Paul Dutton)这两位历史学家与冰川学家保罗·马耶夫斯基合作,将公元750 年至 950 年之间最重大的火山喷发事件与现存的历史资料进行了对照。只有史料中记载的几个地区同时异常寒冷(而非只有局部观察到这种反常现象)的冬季,他们才会纳入研究范围。冰川钻芯与当时在世者撰述的第一手资料结合起来,揭开了一段令人目眩的历史;其间既有严寒的冬季和气候偶尔湿润的夏季,也出现过作物歉收和饥荒。公元 750年至950年间,欧洲西部出现过9次严冬;其中有8次表明,“格陵兰冰盖项目 2”冰芯中的硫酸盐沉积水平峰值,与那些抱怨说天气异常寒冷的史料之间有所关联。公元763年至764 年的冬天给爱尔兰到黑海的广大地区带来了巨大的灾难。爱尔兰的历史文献中曾经提到,那里的降雪持续了差不多 3个月之久。严寒席卷了欧洲中部,而君士坦丁堡也遭遇了酷寒,以至于冰雪从黑海北部海岸开始,一路延伸了157千米。待到2月份冰雪融化之后,浮冰竟然阻塞了博斯普鲁斯海峡。

    极其严酷的寒冬,又在公元821年至822年和公元823年至824年卷土重来,而此前的两个夏季气候湿润,故查理帝国的葡萄酒收成不佳;当时,查理帝国统治着西欧的大部分地区。莱茵河、多瑙河、易北河与塞纳河全都冻结了,马车可以在这些大河之上行驶,时间达 30 天或者更久。公元855 年至856年和859年至860年,寒冬再度来袭。公元859年至860年的那个冬天异常漫长和寒冷,整个欧洲西部都是如此。在鲁昂,严寒从头年11月30日开始,一直持续到了次年的4月5日。公元873年夏末,今天的德国、法国和西班牙所在地区先是爆发了一场蝗灾,接着又经历了一个严冬。饥荒加上相关的疾病,夺走了西法兰克王国和东法兰克王国三分之一左右的人口。从公元913年到939年或940年那段时间也极其寒冷,后者是由冰岛的埃尔加火山爆发导致的。

    火山爆发能够对气候产生重大影响。大规模的爆发,有可能令大量的火山气体、火山灰和其他物质喷射到大气的平流层中。像二氧化硫之类的火山气体,可以导致全球气温下降。二氧化硫变成硫酸之后,硫酸会在平流层里迅速凝集,形成硫酸盐气溶胶。这些东西会提高大气对太阳辐射的反射量,将阳光反射回太空,从而导致地球的低层大气降温。1991年6月菲律宾的皮纳图博火山大爆发,曾令大约2,000万吨二氧化硫喷向高度达32千米的大气中。这一事件,使得地表温度的最大下降幅度超过了 1℃。过去一些规模更大的火山爆发,比如 19 世纪时的坦博拉火山爆发和喀拉喀托火山爆发[3] ,曾经让气温的下降持续数年之久。虽然没人会说公元1 千纪末期似乎频繁出现的火山爆发事件摧毁了一个又一个王国,但它们对这两个世纪的气候造成了强大的冲击,既影响了作物收成,也对动物和人类产生了影响。在那段艰难岁月里,人口下降现象严重,粮食供应方面也出现了经济倒退。从更广阔的历史范围来看,经历了快速气候变化的法兰克国王查理曼(742—814)相对来说还算幸运,因为他的臣民挺过了公元763年至764年那个可怕的冬季,以及公元792年至793年间的饥荒。然而,他的儿子“虔诚者”路易(Louis the Pious,778—840)却忧心忡忡,固执地相信公元821年至822年间那个同样可怕的冬天与上帝的震怒之间存在一种似是而非的联系,故他还在公元822年8月,为自己和父亲的罪孽进行了公开忏悔。可就算是忏悔,也无济于事,因为一年之后又是一个严冬,他的帝国陷入了酷寒之中。

    “中世纪气候异常期”(约公元950年至1200 年)

    就在4个多世纪之后的公元1244年,方济各会修士“英国人”巴塞洛缪(Bartholomew the Englishman)宣称,欧洲占据了已知世界的三分之一,从“北大洋”一直延伸到了西班牙南部。[4] 当时的学者,都在凝望着一片广袤的陆地。东边的尽头,是似乎无边无际的欧洲平原,并在遥远的天际融入了亚洲大草原。那里人口稀少,主要是经常四处奔波的游牧民族,他们受到没有规律的干旱周期与更加充沛的降雨所驱使,不断地迁徙。那里的半干旱草原宛如一个个吞吐呼吸着的巨肺,雨水降临时引来动物与人类,而到了干旱时节,又将其赶往周边水源条件较好的地方。所以,中世纪的欧洲人以为他们被一个危险的人类—自然世界包围着,并不让人感到奇怪。东面有伊斯兰教步步进逼,西面的大西洋则形成了一道屏障。来自东方平原上的游牧部落,则在欧亚大陆的边缘徘徊。

    东方的大草原,是成吉思汗的天下。由此带来的威胁,是切实存在的。公元1227年,成吉思汗驾崩;14年之后,在如今波兰境内的莱格尼察,一支蒙古军队打败了欧洲诸侯。装有被杀的波兰人右耳的 9 个袋子,被送到了蒙古的王庭。可在1242年,这些入侵者却突然向东撤退了;至于原因,至今仍然是一个谜团。他们的撤退可能并非巧合,因为大雨和较低的气温束缚了蒙古骑兵的行动,并且导致战马所需的饲料不足。[5]

    我们并不能责怪蒙古人曾经把贪婪的目光投向西方水源较充足的肥沃之地。欧洲人生活在一个半岛上,四周都是较为干旱的环境。在大约10世纪至13世纪,这里的气候条件比较暖和,气温略高于之前的年份。这3个世纪,基本就是人们通常所称的“中世纪气候异常期”,它短暂地让欧洲变成了一个繁荣兴旺的粮仓。

    提出中世纪是一个异常温暖的时期这一观点的,是目光敏锐的英国气候学家休伯特·兰姆(Hubert Lamb);此人在1965 年率先创造了“中世纪暖世”(Medieval Warm Epoch)的说法,只不过后来改成了“中世纪暖期”(Medieval Warm Period),如今则称为“中世纪气候异常期”。[6] 不同于现代的气候学家,兰姆当时几乎没有什么气候替代指标可用,主要依靠七拼八凑的历史资料。他是最早提出气候有可能在数代人的时间里发生变化的科学家之一;这种观点,与当时认为气候长期不变的正统观点针锋相对。兰姆指出,北大西洋与欧洲上空的冬季环流在中世纪存在适度却持续的变化。他还说过:“尤其是在英格兰,在公元1100年至1300年间,每年5月份出现霜冻的可能性一定小一些。”这一点,可是丰收的好兆头。

    气候上的转折点,出现在“中世纪盛期”(公元1000年至 1299 年)。兰姆将它与艺术史学家肯尼斯·克拉克(Kenneth Clark)提出的“欧洲文明的第一次伟大觉醒”观点联系了起来;那种观点,因1969年克拉克在英国广播公司播出的电视系列片《文明》(Civilization )而给世人留下了难以磨灭的印象。尽管世人(尤其是欧洲与北美洲以外的人)如今仍对“中世纪气候异常期”知之甚少,但这个时期已经成为许多国家气候学界公认的气候标准。不过,作为一个定义明确的实体,这个时期真的存在吗?

    如今细致入微的考古学表明,许多对古代人类社会进行的刻板分类,其实与过去的文化现实几乎没有什么相吻合之处。过去是动态的、不断变化的,很少有清晰明确的分界线。同样,考古学家仅仅把我们对人类历史进行的人为细分看作各种便利的参考术语和有用的工具。可以说,“中世纪气候异常期”也是如此。虽说大多数气候学家一致认为,这个异常时期从公元 950 年至 1000 年左右持续到了公元 1250 年至1300 年前后,但其时间范围存在无数变化,并且其中许多都因地而异。[7]

    我们已经描述了一系列范围广泛的古代社会,它们都在“中世纪气候异常期”的数个世纪中,崛起和瓦解于欧洲以外的地区,但我们至今仍然没有发现其他地区明确出现过欧洲的气候模式。20世纪70年代,气候学家V.C. 拉马什(V. C. LaMarche)在研究了源自美国加州怀特山脉的树木年轮和其他资料之后表明,在公元1000年至1300年间,那个地区的气候条件大多较为温暖和干旱,而到了公元 1400 年至1800 年间,气候则变得较为寒冷和湿润了。这些变化,是由该地区上空的暴风雨路径自北向南移动造成的。这一发现说明,当时的全球环流模式可能发生了变化,且其影响范围远远超出了欧洲。

    但情况还不止于此:人们对太阳黑子活动强度进行的研究表明,在过去的1,200年里,太阳黑子活动强度出现过5个低谷期。这些低谷期,通常与气温下降的时期相一致。最早的一个低谷期从公元1040年持续到了1080年,与“中世纪气候异常期”中气温相对较低的时段相吻合。接着,公元1280 年之后,又接连出现了4个太阳黑子活动低谷期(我们将在第十二章加以论述),与16世纪末至17世纪初的“小冰期”相吻合。

    这几个世纪里发生的各种气候变化,主要都是局部变化;就算它们起源于大气与海洋之间较大规模的相互作用,也是如此。欧洲经历了一个个漫长的暖期,只是当时的气温略低于如今。东太平洋地区由于有拉尼娜现象而气候凉爽、干燥,导致了北美洲西南部出现了特大干旱(参见第八章)。西太平洋和印度洋地区较为炎热;北大西洋涛动朝着正指数阶段发展,导致了气温升高和更严重的暴风雨;北极地区夏季的冰雪范围则缩小了。有粗略的证据表明,从中国西藏到安第斯山脉的广大地区以及热带非洲的气温当时都有所升高。简而言之,在公元1000年到1349年间,全球6个大洲的气温都要高于1350 年前后至1899 年间的气温。然而,从1900年到现在,世界各地的气温始终都在上升,只有南极洲除外,因为南极洲四周的海洋有可能导致气候惯性。至于是不是这样,迄今还无人知晓。

    丰富的气候替代指标资料,说明了中世纪晚期欧洲的气候情况。它们表明,当时出现了一个气候变化频发且有时还相当剧烈的时期。例如,气候学家乌尔夫·宾特根(Ulf Büntgen)与莉娜·赫尔曼(Lena Hellman)对源自欧洲阿尔卑斯山脉的冰川冰芯和树木年轮中的气候数据进行了比较。[8] 数据表明,中世纪和近代的气温都相对较高,其间则是一段较为寒冷的时期。瑞士阿尔卑斯山脉西部高海拔落叶松的横截面,曾经被用于进行年轮定代,其中有的来自树木本身,还有的则来自那个时代的历史建筑。它们表明,10世纪至13世纪的高温与现代相似。然而,过去1,000年里还出现过相当大的自然变化,大约公元1250年之前和大约1850年之后的气温相对较高。公元755年至2004年间气温最高的10年中,有6个出现在20世纪。其间,最冷的年份是1816年,最热的是2003年,而最热的20世纪40年代与最冷的19世纪第二个10年之间,气温的变化幅度达到了3.1℃。气候情况方面的线索,有时会源自我们意想不到的地方。连从瑞士阿尔卑斯山一个冰川湖中发掘出来的细小蠓虫,也可以用作气候替代指标,能够为我们提供早至1032 年7月的大致气温。这些蠓虫表明,中世纪的气温比1961年至1990年间的气温高了1℃左右。

    还有一项令人瞩目的研究,则是利用欧洲中部的橡树年轮,集中研究了每年4月至6月间的降水变化情况;研究人员使用了数千份具有降水敏感性的树木年轮序列,它们来自一个面积广袤的地区,时间涵盖了过去的2,500年。[9] 这项研究牵涉的远不只是树木年轮,还包括了当时的仪器记录与历史记录之间的对照研究。至少有 88 位亲历者对降雨情况的描述,与树木年轮记录里总计32次极端降雨中的30次相吻合——这可是一种令人印象深刻的相关性。通过将橡树年轮记录与其他树木(比如奥地利阿尔卑斯山上的高海拔落叶松)年轮中的记录结合起来,研究人员得到了一种复合记录,这与现代气象学家在1864年至2003年间对每年6月至8月的气温变化情况进行的记录相当一致。

    到了9世纪初,由一连串火山活动引发的极端气候开始平静下来,与古罗马时代的气候条件更加相似了;只不过,当时仍有大量的火山活动,冬季也仍然极其寒冷。此时,正值欧洲一些新的王国在“中世纪盛期”开始崛起。在大约公元800 年至 1000 年间,各个王国都开始取得骄人的文化成就与政治成就。

    生存与苦役(公元1000年)

    公元1000年时,欧洲人几乎完全依赖于自给农业。在这一点上,他们与吴哥人、玛雅人或者古普韦布洛人并无不同。当时的农耕方式仍然极其简单,特别容易被突如其来的气候变化所影响,或者被火山活动对环境造成的往往很严重的影响所波及。

    欧洲的乡村由森林与林地、河谷与湿地等地形地貌交织而成,而在历经了数千年的农业与畜牧业生产之后,它们都出现了沧桑巨变。[10] 到了公元1000年,大多数农村人口都生活在分散的小村落里;但更常见的情况是,他们都生活在较大的村庄里,四周是开阔的田野,且田地被分割成了每块面积约为0.2公顷的狭长地块。虽说在欧洲靠耕作土地谋生从来都不容易,但人们还是做得到这一点,尤其是在天气炎热和相对干燥的夏季里,到了5月份,气温便高到足以让人们耕种了。

    英法两国的自给农民,当时主要种植小麦、大麦和燕麦。约有三分之一的耕地种植的是小麦,可能有一半土地种植大麦,余下的耕地种植的就是各种各样的作物了,包括豌豆。用现代的标准来衡量,当时的收成少得可怜,只有如今的四分之一左右。每0.4公顷土地所获的4公石[11] 收成中,20%会留作下一季的种子,重新播到地里去。加上教会征收的什一税,以及就算是歉收年份也须向地主缴纳的粮食税,余下来养活一家人的收成就少到弥足珍贵了。一个有妻子和两个孩子的农民,靠2公顷土地的收成只能勉强维生,几乎无力去应对意外出现的霜冻、干旱或者暴风雨。所有人都须劳作,去种植蔬菜,采集蘑菇、坚果以及其他野生的植物性食物,连孩童也不例外。

    大多数家庭都养有一些牲畜,也许是两头奶牛、猪、绵羊或者山羊,还有鸡。要是运气好的话,他们会有一匹马,或者起码也能找到一匹马来耕地。牲畜既可以为人们提供肉和奶,还可以提供皮革和羊毛。牲畜身上的每一个部位,都会做到物尽其用。一年当中的大部分时间里,牲畜都是自由放养;但一到冬天,要让牲畜活下来并且得到妥善喂养,却成了一场持久战。每年秋天,村民都会屠宰多余的公畜和老牛,好让他们珍贵的草料能够储存得更久一点儿。每年的 6月和7月,人们都会割取草料,同时祈盼天气晴好,以便将庄稼晒干储存起来,而不致让庄稼腐坏或者自燃起火(如果农民们很快地把大量潮湿的粮食储存起来,那么他们依然会碰到这个问题)。多雨年份会带来严重的后果,有可能导致存粮遭受灾难性的损失。

    春、夏、秋、冬四季的无尽循环,既决定了自给农民的生活,也反映出了人类的生存真谛。播种、生长和收获,然后是宁静的几个月;这种循环宛如人类的生存,是一个从出生、生活到死去的过程。生存曾经非常残酷。忍饥挨饿,是免不了的事情。中世纪从事农耕的村落里,每个人都经历过营养不良,有时是饥荒和挨饿,以及随之而来的与饥荒相关的疾病。当时婴儿的死亡率极高,大多数农民的平均寿命只有二十几岁。

    与此前各个古代文明中的民族一样,中世纪的农民也对周围的环境了如指掌。他们熟悉不同禾草的性质;他们懂得肥力枯竭的土地可以再次耕作,明白必须将牲畜赶到耕地上去放牧、施肥,然后休耕,使土壤恢复肥力,并将植物病害降至最低程度。人人都知道各种可以食用或者药用的水果与植物在什么时候应季。当时的小麦种植效率很低,因为人们使用的是极其简单的工具,靠的是极其艰苦的劳作。生存取决于人们在田间地头获得并且代代相传的知识。例如,播撒的种子若是太少,就会给杂草留下生长的空间;可种子若是播得太多,就会扼杀幼苗。他们没有什么精心制定的标准公式,只有民间习俗与实践经验。与世界各地的自给农民一样,中世纪的耕作者也擅长风险管理,他们会尽可能地种植多种多样的作物。这里的降水常常比热带地区更加充沛,但要从土地中收获庄稼,就算不是更难,至少也与玛雅低地或者吴哥窟一样艰难,更别提粮食富余了。

    了解历史但对气候变化持怀疑态度的人,把“中世纪气候异常期”视为一个持久且宜人的夏季,认为它是有益的,还是自然变暖的象征,并且声称当时的情况与如今没什么两样。他们的论调,建立在下述观点之上:我们正在经历的这种变暖,过去已经出现过,所以不是气候不稳定或者危机即将到来的征兆。当然,这纯属无稽之谈。非但是我们人类导致了目前的气候变暖,而且我们越来越多的证据也不支持他们的幻象(即认为往昔的夏日美好漫长、无休无止)。

    逐渐变暖(公元800年至公元1300年)

    确实有那么几年,中世纪的农民们曾在夏天沐浴着太阳,而庄稼则在明媚的阳光之下茁壮成长。可气候从来都不是一成不变的,而是常常以不显眼的方式反复变化着。虽然欧洲的农民们享受过比较温暖和干燥的气候,但树木年轮中却记录了持续而细微的气候变化;它们都是由如今仍然鲜为人知的一些变化导致的,比如地球倾角的变化、太阳黑子活动周期的变化以及火山喷发等。公元800年左右至公元1300 年间是欧洲发生深刻变化的一个时期,当时大气与海洋之间无休无止的“共舞”速度稍有放缓,变成了一种较有规律的常见现象。不过,大家仍然是一个季节又一个季节地生活着;夏季白天漫长,天气炎热,冬季则号称“黑暗季节”,人们都挤在一起取暖,充其量靠摇曳的烛光和烟雾缭绕的火堆来照明。一件厚长袍或者一张舒适的床,就是极佳的奢侈品了。

    尽管如此,这个暖期顶多不过像怀疑气候变化的人所称的那样,是一个人们快乐生活的时期,而欧洲在“中世纪盛期”(大约自公元1000年至1250年)确实也很繁荣。马姆斯伯里的威廉是一位修士兼历史学家,他曾在公元 1120 年前后游历了英格兰的格洛斯特谷,欣赏了那里的夏日景象。他如此写道:“此地所见,通衢大道果树满目,且非人力所植,乃自然天成。”[12] 他对英国的葡萄酒也赞不绝口,称“味之甘美,不逊法国红酒”。令法国当地的酒商大感惊慌的是,产自英吉利海峡对面的葡萄酒大量涌入了法国市场。这种情况其实不足为怪。当时的葡萄园可谓遍地开花,最北可达挪威南部。

    最重要的一点是,在气温较高的年份,谷物的生长季延长了3周之久。在公元1100年至公元1300年间,祸害过早先农民的5月霜冻几乎没有再出现过;这是一种可喜的征兆,说明作物的生长季和收获季通常都是漫长而稳定的夏日天气。随着谷物种植的范围急剧扩大,常常还延伸到了以前人们认为贫瘠的土地上,农村人口也稳步增长了。地处苏格兰南部的凯尔索修道院,曾经在海拔300米的地方种植了100多公顷的谷物,那里远远超出了如今的谷物耕种范围。修士们还拥有1,400 只绵羊,并且在他们的土地上养活了 16 个牧羊人家庭。挪威的农民,曾经在北至特隆赫姆的地方种植小麦。在南方海拔较低的地区,由于生长期较长,所以谷物的产量也大幅增加了。由此带来的粮食盈余,为不断发展的市镇和城市提供了粮食。与此同时,随着原始橡树林被砍伐一空,人们对耕地的需求也急剧上升了。对大多数人而言,生活并不容易。一个中等收入的城市家庭,每年要购买 5.5吨食物,其中大部分粮食都被制成了面包。大多数生活在贫困线以上的家庭,每天会消耗1.8公斤的面包。穷苦人家经常喝奶麦粥,那是一种用碎小麦或其他碎谷物加上牛奶或者清汤熬成的粥。不过,面包与啤酒是当时的主食,每天可以为每人提供大约1,500至2,000卡路里的热量。[13]

    然而,当时仍出现过一些极其寒冷的冬季,比如公元1010 年至 1011 年间的那个冬天,甚至让东地中海地区也陷入了严寒。尽管气温偶尔有起落,但持续较暖的气候条件还是融化了冰盖,提高了山间的林木线,并且导致北海的海面上升了80厘米。到了公元1100年,一条潮汐汊道竟然深入英国内陆,到达了诺福克郡的贝克尔斯镇,将那里变成了一个繁荣兴旺的鲱鱼港口。海平面上升还导致猛烈的西风带来了强劲的风暴潮,淹没了地势低洼的沿海地区,尤其是尼德兰地区。公元1251年和1287年的两场大风暴还导致海水涌到岸上,形成了一条巨大的内陆水道,即须德海。此外,虽然“中世纪气候异常期”里阳光明媚,可欧洲却并不平静,暴力随处可见。精英阶层与特权阶层醉心于结成昙花一现的联盟,进行残酷的军事征战。按骑士标准表现出来的勇敢与力量,是人们评估政治权威的范围、确定效忠对象的依据。战争时起时消,但正是因为有了粮食盈余,加上野心勃勃的领主们能够修建要塞与城堡来保护日益增长的人口,这里才有可能爆发战争。

    最终,随着一些存续时间更久远的王国崛起,迅速增长的人口与日益扩大的长途贸易量就改变了欧洲的政治格局。现代欧洲的遥远发端首次出现了。在阿尔卑斯山北部,靠土地为生的人越来越多,导致森林和沼泽遭到了大规模的砍伐和清理,其中还包括古罗马时代耕作过,但后来荒芜了的地区。人们开始迁往土壤贫瘠的边缘地区。成千上万农民往东迁徙,越过了易北河。在这几个世纪里,天主教会的政治权力达到了巅峰,而其标志就是“十字军”进攻塞尔柱突厥人和法蒂玛王朝治下的埃及,在黎凡特地区建立“十字军国家”,以及推翻西班牙的信奉伊斯兰教的安达卢西亚。

    “中世纪盛期”的欧洲,经历了一场艺术与知识话语的新爆发;这场爆发,将亚里士多德和托马斯·阿奎那等思想家的思想,与一些源自伊斯兰教和犹太哲学的观念结合了起来。这是一个各国君主都鼓励兴建哥特式大教堂的时代,也是一个彩绘手稿和上等木制品盛行的时代,成就不胜枚举。所有这些创新之举,无论是知识上的、物质上的、精神上的还是社会政治上的,全都依赖于丰富的粮食盈余,才能创造出财富与金钱,去支付工匠和不断增长的非农人口的工资,以及去礼敬上帝。作物丰收、粮食充足的时候,每一个人,无论是君主、贵族还是平民百姓,都会感谢上帝,并向上帝敬奉奢侈的供品。大家都害怕神之震怒,因为神灵一怒,就会出现饥荒、瘟疫和战争。若是收成不佳,供品就会缩水,大教堂的修建速度也会放缓。不管有没有供品,中世纪欧洲那副华美壮丽的外表,最终都靠农村那些自给农民默默无闻的辛勤劳作来维持;此时,乡村已经包围了正在发展中的城镇。

    君主、贵族、宗教人士以及城镇居民,都是靠着几乎全部由当地农民供应的谷物为生。那时,大多数人的饮食都很简单——面包、饼干、粥和汤。他们在单调的饮食中添加新鲜或腌制的水果或蔬菜,偶尔也会有肉。肉类太贵,大多数人并不常吃;鱼则是沿海、湖滨或者河滨地区的主食,只有腌制过的鳕鱼或者鲱鱼除外。就算是轻微的作物歉收,也会导致粮食价格上涨,农村地区出现饥荒,农村居民因此更易生病。在不断发展的城市里,社会动荡和饥荒则会结合起来,以“面包暴动”的形式爆发。

    在差不多1,000年的时间里,欧洲的自给农业一步步地发展起来。欧洲的经济和社会体系,依赖于掌控在地方贵族和教会手中的封建土地所有权。耕作土地的农民一个季节又一个季节地勉强维生,使用的是数个世纪以来几乎没有改变过的工具。由于金属农具供应不足,故许多农民严重依赖于木制工具,它们只能勉强翻开土壤的表层。很少有人买得起牛马来拉犁,只能靠家人拉犁耕地。实际上,他们从事的是一种简单的单一栽培,会耗尽土壤中的重要养分,降低作物的产量,连休耕之后也是如此。考虑到教会和贵族都很贪婪,即便是在丰收年份也会增加实物税,而农民留下的份额则保持不变,故农民也没有提高粮食生产的动机。偶尔出现的粮食短缺,确实是一个问题,但整个系统还是能够存续下去。不过,当降雨和气温都出现重大变化时,日常生活与农业的根基就会分崩离析;1314年初的情况就是如此。

    黑暗时代和大饥荒(公元1309年至1321年)

    公元1309年至1312年间,欧洲的冬天都极其寒冷。浮冰从格陵兰岛延伸到了冰岛,厚度足以让北极熊从一地走到另一地。北大西洋涛动一直处于高指数模式,低气压则以冰岛上空为中心;这种情况,就是气候寒冷的原因。接着,突然间,北大西洋涛动变成了低指数模式,气候条件开始变得不稳定,整个欧洲都受到了影响。无人知道为什么会这样,但某种突发性的大气作用导致了一个巨大的气团在欧洲北部上升,冷凝成水,然后在大片地区降下了暴雨。[14]

    要知道,这些大规模的降雨,始于1314 年4月中旬或者5月,即五旬节前后。法国北部拉昂附近圣文森特修道院的院长曾写道:“大雨如注,历时甚久。”[15] 另一份文献则称,从比利牛斯山脉一直到东方的乌拉尔山脉和北方的波罗的海的广大地区,曾经连续不断地下了155天的雨。萨尔茨堡的一位编年史家曾称:“彼时泽国汪洋,宛如末世之洪水。”仅在萨克森一地,洪灾就将450多座村庄夷为了平地。桥梁纷纷倒塌,堤坝纷纷溃垮。就连地基牢固的房屋,也轰然垮塌。

    这种情况,对田地的破坏最严重。一代代的人口增长和乱砍滥伐,已经让密实的薄土裸露出来,尤其是山坡与地势较高处那些产量不高的贫瘠土地。暴雨的冲刷,让田地变得泥泞不堪,冲走了此时已经裸露出来的紧实土壤,形成一道道很深的侵蚀沟壑,将农田变成了大坑。在14世纪,人们耕作最优质的表层土壤时,犁铧已能掘出深深的犁沟了。在正常情况下,这种犁耕田地可以毫无困难地吸收掉760毫米的年均降雨量。可1314 年的暴雨却降下了5倍的雨水,至少达到了2 540毫米。所以,有着很长犁沟的表层土壤被冲走,露出来的就只有坚硬的黏土底土了。那些较松和较贫瘠的土壤,几天就被冲刷得一干二净。从苏格兰和英格兰直到法国北部,再往东到波兰,差不多有一半的可用耕地不复存在,只剩下了岩石。

    饥荒和一个极其寒冷的冬季接踵而至。1315 年的春季,出现了更多无情的降雨。按照惯例,大家都播下了种子;可经过4个月持续的倾盆大雨,英格兰与法国北部都颗粒无收。许多欧洲家庭便采取了那种跨越时间与文明的经典对策,抛弃了他们的土地,开始漫无目的地流浪,或者向亲戚寻求救济。到了1316年底,成千上万的劳力和农民都变得穷困潦倒了。社群要么解体要么规模缩小,尤其是那些靠贫瘠耕地维生的群落;由于没有谷种和耕牛,他们只得舍弃自己的村庄与田地。所以,经常没有充足的人手去耕种或者犁地。

    当时,经营水力磨坊是一桩有利可图的生意;水力磨坊由磨坊所有者严格掌控着,他们会向使用者征收实物税。1315 年和 1316 年的洪水,冲毁了数百座水力磨坊;其余磨坊也被洪水淹没,无法再用了。这些磨坊,正是人们将小麦这种主食磨碎成粉的地方;不过,当时的粮食供应反正也紧缺。暴雨大幅降低了土地的生产力;这不但是因为下雨让收割和播种都变得很困难,常常会把粮食冲走,而且是因为洪水会带走土壤中的硝酸盐。潮湿的天气还给贫瘠的土地带来了植物病害,尤其是霉菌和霉病。到1316年时,英格兰南部温切斯特周边地区的小麦与大麦收成,都只有平均水平的60%,成了公元 1217 年至 1410 年之间的最低水平。这两种作物的收成,至少在接下来的5年里都比平均水平低25%。[16]

    为了增加粮食供应,英国王室还给予过西班牙的粮食商人安全通行权。但是,1316 年再度出现了同样的天气模式。到了此时,数年来降雨过度和洪水接连不断所形成的累积效应,带来了毁灭性的后果。我们之前已经看到,热带地区的干旱有可能让正在生长的作物枯萎,并将农田变成干旱的荒芜之地。然而,当雨水再度来临,庄稼可以再度迅速生长之后,人们就会忘掉干旱。不过,1315年至1317年间的这种极端降雨和由此引发的洪灾,却导致了持久的破坏,需要多年才能缓解。德国的编年史家曾经记载过许多一度肥沃的农田如今变得贫瘠的现象。在人们对这一切还记忆犹新的1326年,英王爱德华二世的佚名传记作者曾称:“豪雨泛滥,种子皆腐,若以赛亚之预言,此时似将实现……诸地之草料,久淹于水下,至刈拔皆为不能。”[17] 接着,就是1317年至1318 年间的那个冬季;由于北大西洋暖流与北冰洋之间的水温梯度增加了,所以那个冬天异常寒冷。

    降雨对中世纪饮食的方方面面都产生了影响。在那个时代,没有人把葡萄酒储存起来制作年份酒。他们都是在几个月内就把葡萄酒喝光了。1316年,由于葡萄歉收,法国实际上没有生产出什么葡萄酒。食盐主要是通过阳光晒制和在沿海盐田中点火焚烧制成的,当时由于木柴太过潮湿、无法点燃,故食盐变得稀少和昂贵。腌鳕鱼与腌鲱鱼的价格,很快就上涨到了一个世纪以来的最高水平。

    营养不良是粮食短缺带来的一种明显后果。战争持久不断,四处游荡的军队大肆掠夺庄稼和其他粮食,导致营养不良的程度不断加剧,从而变成了饥荒。由此造成的影响,从各个方面都看得出来;当时,欧洲各地饿死的人达数百万人之多。1319年,英格兰前都城温切斯特的大街小巷里,饿殍遍地,还散发着恶臭。在绝望之下,有些人开始吃人,还有一些人则开始杀死婴儿。照例,穷人和乡间农民遭受的苦难最为严重。富人与宗教群体中的人,通常都有多种多样的充足食物。当然,情况也并非始终如此。比如同一年里,在北海对岸原本富裕的佛兰德斯,30 个星期之内就死了将近3,000 人,可那里的居民总共仅有25,000人。

    糟糕的情况还在后头。1319 年,欧洲暴发了一场牛瘟。[18] 牛瘟病毒对人们无害,对牲畜却是致命的,杀死了英格兰65%的牛、绵羊和山羊。人们转而开始饲养繁殖速度很快的猪,但日益增长的需求很快就导致这种牲畜也短缺起来。牛羊畜群都极度营养不良,以至于存栏量直到1327年才恢复过来。牛奶产量骤降至每头奶牛仅有170升。牛奶的匮乏,更是让营养不良的局面变得雪上加霜。这种情况原本已经够糟糕的了,可牛瘟还导致用于拉犁耕地的公牛大量死亡。有些人养了马匹,但喂养马匹的成本更高。农耕生产的成功依赖于耕作更多的土地,故由此带来的后果极其严重。

    这场“大饥荒”,让欧洲的农民遭受了重创。尽管粮食短缺的情况很严重,但农民社会足够顽强,仍然能够存续下来。凭借传统的知识,他们能够熬过数场庄稼歉收。1314 年至1321 年间多年的降雨和饥荒,导致了政治和社会动荡、叛乱,以及近乎持续不断的暴力与战争。气候温暖的数个世纪结束之后,这些天灾人祸结合起来,导致“中世纪盛期”出现了一场不可思议的粮食危机。这场灾难,将对教会、国家以及整个欧洲社会的未来产生影响;与之前的数个世纪比起来,欧洲社会的未来将呈现出更加动荡和更加暴力的特点,其中就包括了“百年战争”(1337—1453)期间的种种恐怖情景。

    欧洲中世纪的作物产量一向很低,就算在人们可以称之为正常天气的情况下也是如此,因为其间有可能存在反常的霜冻和秋季冰雹。其中还不包括禽鸟和啮齿类动物造成的破坏;事实上,还有养活(以前)剧增的中世纪人口所带来的各种压力。其实,人口数据就说明了一切。1066年,“征服者”威廉入侵时,英格兰有260万至340万公顷的土地种植着谷物。这些土地,轻而易举地养活了 150 万左右的人口。到了13 世纪最后的几十年,英格兰的人口达到了500万,却只能靠460万公顷的土地维持生计了;而且,其中很多还是贫瘠的土地。

    “中世纪气候异常期”并不像许多人认为的那样,经历了几个世纪温暖而稳定的气候。其间确实出现过几十年的好天气,有一周又一周的明媚阳光,充沛的雨水则带来了丰收,而冬季气候也比以往更加温和。但这几个世纪属于异常现象,其显著之处并不在于气温较高,而在于气候多变,常常在极端的寒冷和炎热之间来回变换。无疑,我们并不能像那些否认气候变化的人一样,声称“中世纪气候异常期”比如今还要温暖。当时的大多数时候,平均气温似乎都跟21世纪的常态差不多,偶尔有些年份,甚至是几十年,气温还要比如今稍高一点儿。只不过,这些影响很微妙,而“中世纪气候异常期”那几个世纪也属于气候持续多变的时代,就像此前和此后的多个世纪一样。

    起初,人们认为“中世纪气候异常期”是欧洲特有的一种现象。如今我们得知,它的影响虽然很微妙,却具有全球性,有时还是灾难性的,尤其是像美国西南部和东南亚这样的半干旱地区遭遇持久干旱的时候。在欧洲,这种异常气候加上经常的作物丰收,催生出了人们通常所称的“中世纪盛期”,催生出了那里众多宏伟壮观的大教堂,以及随着人们争夺资源控制权而爆发的地方性战争。特别是,正如我们在后续各章中即将看到的那样,在接下来的数个世纪里,随着人口增加,随着越来越多的农民为了可持续农业而被迫去开垦那些称为贫瘠土地都很勉强的地块,人们易受气候变化影响的脆弱性也急剧增加了。“中世纪暖期”再次提醒我们,可持续性与韧性取决于前瞻性思维、细致的环境知识,以及对短期和长期的气候变化做出的长期规划。

    1316 年春季,数代以来不断增加的脆弱性,终于结出了恶果。春雨不停地下,冲走了地里的种子,侵蚀了脆弱的山坡。与营养不良和饥荒相关的疾病在欧洲的广大地区肆虐了5 年。饥荒就像是《圣经》中的“天启第三骑士”一般降临,后者骑着黑马,带着象征着食物的价格与丰裕程度的决定命运的天平。在这位神话中的“骑士”的脚步声中,瘟疫和几个世纪的降温随着“小冰期”的到来不断出现,经常是极度寒冷的气候波动,对生活在欧洲和美洲的人都产生了影响。

    [1] 凯撒里亚的普罗科匹厄斯(Procopius of Caesarea,约500—

    约570)是拜占庭的一位希腊学者兼律师,曾大力批评过查士丁尼一

    世皇帝。此人的《查士丁尼战争史》(History of the Wars)是记载

    6 世纪早期诸事件和“查士丁尼瘟疫”的宝贵资料。Procopius,

    History of the Wars (Cambridge, MA: Loeb Classical Library,

    1914), IV, xiv, 329.

    [2] Michael McCormick, Paul Edward Dutton, and Paul A.

    Mayewski, “Volcanoes and the Climate Forcing of Carolingian

    Europe, A.D. 750–950,” Speculum 82 (2007): 865–895,此文

    是论述这一时期的气候以及火山喷发与气候之间关系的基本资料,我

    们在很大程度上参考了这篇论文。

    [3] 这两座火山都位于印度尼西亚。——译者注

    [4] 巴塞洛缪·安格利库斯(Bartholomeus Anglicus,约 1203—1272)

    通常被称为“英国人”巴塞洛缪,是一位方济各会学者兼教会官员。

    他的19卷本《万物本性》(De proprietatibus rerum)一书是现代百科全书的前身,曾经广为传阅。此书论述的主题范围广泛,包括上帝和动物。

    [5] Ulf Büntgen and Nicola Di Cosmo, “Climatic and

    Environmental Aspects of the Mongolian Withdrawal from

    Hungary in 1242 CE,” Nature Scientific Reports 6 (2016):

    25606.

    [6] Hubert Lamb, Climate, History and the Modern World, 2nd

    ed. (Abingdon, UK: Routledge, 1995),它是了解兰姆作品的优秀

    指南。至于“中世纪气候异常期”,请参见他的“The Early

    Medieval Warm Epoch and Its Sequel,” Palaeogeography,

    Palaeoclimatology, Paleoecology 1 (1965): 13–37。

    [7] Michael Mann et al., “Global Signatures and Dynamical

    Origins of the Little Ice Age and the Medieval Climate

    Anomaly,” Science 326 (2009): 1256–1260.

    [8] Ulf Büntgen and Lena Hellman, “The Little Ice Age in

    Scientific Perspective: Cold Spells and Caveats,” Journal

    of Interdisciplinary History 44 (2013): 353–368. Sam White,

    “The Real Little Ice Age,” Journal of Interdisciplinary

    History 44, no. 3 (winter 2014): 327–352,其中也提供了一些重要的见解。宾特根与赫尔曼强调说,这一切煞费苦心的研究都只是暂时的,因为许多高度技术性的问题还有待解决。其中的核心问题,就在于需要有可靠的仪器测量网络,来校准精心搜集与精确断代的替代指标资料。然而大致来看,现有的研究至少提供了气候变化的总体印象,比早期的研究要精确多了。未来的气候变化情况将变得更加精确,因为其中很大一部分将来自极其复杂、有时甚至非常深奥且掌握在专家手中的统计计算。不过,对于中世纪的气候及其变迁,我们了解的情况已经比短短几年之前都要丰富得多了。

    [9] Ulf Büntgen et al. “Tree-ring Indicators of German

    Summer Drought over the Last Millennium,” Quaternary Science

    Reviews 29 (2010): 1005–1016.

    [10] 论述中世纪农业的文献资料有很多。Grenville Astill and

    John Langdon, eds., Medieval Farming and Technology: The

    Impact of Agricultural Change in Northwest Europe (Leiden:

    Brill, 1997),是一部重要的概述之作。

    [11] 公石(hectoliter),英制容量单位,1 公石合 100 升(略作“石”);作重量单位时,1公石合100公斤(也作“公担”)。缩写为hl.。——译者注

    [12] 马姆斯伯里的威廉(William of Malmesbury,约 1096—1143)

    是英格兰西南部的一位修士,也是一位备受推崇的历史学家,地位仅

    次于“尊者比德”(Venerable Bede)。他的《历史小说》(Historia Novella)第5 卷(Book V)描述了当时的葡萄园。

    [13] 参考的是Hubert Lamb, Climate, History and the Modern

    World (London: Methuen, 1982), 169–170。

    [14] William Chester Jordan, The Great Famine (Princeton, NJ:

    Princeton University Press, 1996),对那场饥荒进行了最权威的

    描述,我们在这里也主要参考了这部作品。亦请参见William Rosen,

    The Third Horseman: Climate Change and the Great Famine of

    the 14th Century (New York: Viking, 2014)。

    [15] 本段引文来源:Abbott of St. Vincent: Martin Bouquet et al., eds., Recueil des historiens des Gaules et de la France, 21:197。From Jordan, The Great Famine, 18.

    [16] 本段参考了Rosen, The Third Horseman, 149–151。

    [17] Wendy R. Childs, ed. and trans., Vita Edwardi Secundi:

    The Life of Edward II (New York: Oxford University Press,

    2005), 111.

    [18] C. A. Spinage, Cattle Plague: A History (New York: Springer, 2003).

    第十二章 “新安达卢西亚”与更远之地(公元1513年至今)

    一切都始于诺曼人,且远早于克里斯托弗·哥伦布登陆巴哈马群岛的时候。欧洲人与美洲原住民之间的第一次接触,是在“中世纪气候异常期”;当时,冰岛与加拿大拉布拉多之间的北方海域上,浮冰已经消退。到公元874年时,北欧殖民者已经开始利用北方海域的有利冰雪条件了。他们在北极边缘的冰岛上永久定居下来。他们的航海鼎盛期持续了差不多3个世纪,当时北大西洋东部的气温较高,气候条件也较稳定(参见第八章中的地图)。

    公元986年,因为“杀了一些人”而被逐出冰岛的“红发”埃里克[1] 在格陵兰岛建立了殖民地。不久之后,这些殖民者就跨海而过,来到了如今属于加拿大北部的巴芬兰。埃里克的儿子莱夫·埃里克森(Leif Eirikson)又驾船往南航行,远至圣劳伦斯河河口,并且在纽芬兰的北部过了冬。此人的过冬之地,可能就是该岛最北端的兰塞奥兹牧草地遗址;在这处遗址上,考古学家发现了北美洲唯一一个为世人所知的维京人殖民地。[2] 后来,他们又多次航行到了拉布拉多,与因纽特部落进行了不定期的接触,还前去采伐格陵兰岛上供不应求的木材。世世代代,格陵兰人都是用他们在这些航海活动中获得的海象象牙,向祖国的教会缴纳部分什一税。1075 年,一位名叫奥顿(Audun)的商人甚至从格陵兰岛运来了一只活的北极熊,并把它当作礼物送给了乌尔夫松国王;这种事情,在公元 1200 年以后气候较为寒冷的数个世纪里根本就做不到。

    诺曼人从未在北美洲定居下来;至于原因,部分在于他们与美洲原住民之间的激烈交锋阻碍了殖民。但在北大西洋西部气温较低、气候寒冷的数个世代里,他们却一直留在格陵兰岛上,生活了3个世纪。在格陵兰岛对面的巴芬兰,高山冰川的面积在公元1000 年前后到1250 年间达到了最大。此外,从“格陵兰冰盖项目 2”的冰芯中获得的气温数据表明,从公元1000年左右到1075年以及从公元1140年至1220年这两个时期,都出现过气温下降的现象。[3] 诺曼殖民者的人口逐渐减少,直到1450年他们彻底弃定居点而去。至于诺曼人离开格陵兰岛的确切原因,如今仍然是一个存有争议的问题。日益孤立的环境、海象象牙贸易的衰落,或许还有因纽特人的敌意,可能都是他们遗弃定居地的原因。只有诺曼人的史诗中,还保存着人们对美洲原住民与欧洲人首次相遇时的记忆。

    神秘的“新安达卢西亚”(公元1513年至1606 年)

    15 世纪末至16世纪初,欧洲已知世界的边界显著扩张了。克里斯托弗·哥伦布及其后继者,在属于热带气候的加勒比地区建立了殖民地。阿兹特克的印第安人曾在西班牙的宫廷之前接受检阅。西班牙征服者对佛罗里达和新墨西哥进行勘察,结果却酿成了一场灾难,遭遇了严寒。在深受干旱与低温所困的弗吉尼亚,英国殖民者建立了詹姆斯敦。1497年约翰·卡伯特到纽芬兰的航行以及后来的探险活动则清晰地表明,任何一条前往亚洲的“西北通道”,都要经过冰天雪地、极其寒冷的地带。

    1605 年至 1607 年间,丹麦国王克里斯蒂安四世曾经派遣3支远征队,前去寻找业已消失的诺曼人殖民地。这几次远征,都以失败而告终。远征队遭遇了严寒,连夏季也是如此;夏季冰层从格陵兰岛沿海往外,一直延伸到了很远的地方。此后,捕鲸就成了荷兰人在北极水域的主要活动。北方的真正“黄金”藏在纽芬兰的鳕鱼渔场里,可汉弗莱·吉尔伯特(Humphrey Gilbert)在这座岛屿上进行殖民的努力,在1583年以灾难而告终。[4] “小冰期”里最寒冷的一些天气,不利于人们在纽芬兰进行永久性的殖民活动。人们的关注焦点,便转向了科德角的南部。

    与欧洲的情况一样,“小冰期”从来都不是一个持久存在的深度冰冻期,也不只是数个世纪的寒冷天气。这几个世纪不断变化的气候,同样对美洲的殖民历史产生了极大的影响。[5] 寒冷刺骨的冬天、旷日持久的干旱、飓风以及猛烈的暴风雨,都曾导致船只偏离航线和失事。北美洲的情况,尤其让当时的人感到困惑。来到陌生环境里的欧洲农民,都期待着这里有他们熟悉的、界限明确的季节,而不是像夏季炎热潮湿、冬季气温低于零度之类的极端气候。此外,他们在狩猎与捕鱼时碰到的也是不同的物种。

    当时欧洲人对北美洲天气的态度很僵化,以为世界上任何一个纬度地区的气候都是恒定不变的。[6] 古典作家把已知世界划分成了一些所谓的“克利玛塔”(climata)带,故才有了如今的“气候”(climate)一词。[7] “克利玛塔”往往是指气温,它会随着纬度的变化而以一种相对可预测的方式变化。欧洲属于湿润的海洋性气候,一年到头降雨充沛,气温日较差与季节性温差相对较小,而且一般来说,每个季节的起始时间变化不大。这就意味着,那些鼓吹殖民的人以为,生活在北美洲的人也会享受与欧洲西部相似的温和气候。这种看似常识的设想,其实是完全错误的。

    北美洲的东部,夏季极其炎热,冬季极其寒冷;那里属于大陆性气候,为来自陆地而非来自大西洋的气团所控制,后者对欧洲的气候具有强大的影响。不但如此,两地气温所属的纬度区间也不同,欧洲为北纬40°到60°之间,而北美洲则为北纬35°到50°之间。伦敦位于北纬51°,与纽芬兰北部的纬度相同。美国弗吉尼亚州的切萨皮克湾位于北纬37°,则与西班牙塞维利亚的纬度相同。弗吉尼亚的降雨主要出现在夏季,并且不那么可靠,还会出现毫无规律的干旱周期。对于欧洲殖民者而言,这种气候现实很严酷,他们原本指望这里是一个气候温和、气温较高且如地中海地区一般的“天堂”。一些劝人去殖民的作家,把这里称为“新安达卢西亚”。[8]

    最早记载从北部诸地前往波多黎各的西班牙殖民地的情况的资料中,提到过一个叫作“比米尼”(Bimini)的岛屿。1513 年,西班牙探险家胡安·庞塞·德莱昂(Juan Ponce de León)沿着比米尼岛海岸航行,将这个神秘之地改名为“佛罗里达”。两度探险失败后,此人便放弃了野心勃勃的殖民计划,抱怨那里的气候不好,那里的人则“十分野蛮和好战”。在接下来的50年里,还有人往返于此地,全都大失所望。“佛罗里达”不是什么“新安达卢西亚”,不会给他们的祖国提供地中海各地可以找到的橄榄油和其他商品。大部分雨水都是在夏季的那几个月里降下,使得冬季作物很少,甚至根本就没有发芽所需的水分。那里也没有旱季来让作物成熟。年复一年,西班牙殖民者种植的庄稼全都烂在了地里。佛罗里达还深受猛烈的飓风和冬季极其寒冷的北风所害。大大小小的探险队曾经向西远行,到达了密西西比河与如今的得克萨斯州;其中的一次远征,是1538年至1543年间埃尔南多·德索托(Hernando de Soto)发动的损失惨重的入侵,这次远征因他们的苦难经历和暴行而令人瞩目。西班牙之所以殖民失败,部分原因就在于远征者无能且领导无方,同时也在于殖民者怀有不切实际的野心。这些远征,并不是王室经过了精心计划且持续提供资金支持的行动。一切都依赖于个人的开拓精神,可这又要靠西班牙贵族的财富来支持。王室国库负担不起实施这种计划所需的费用。

    西班牙的殖民活动,也是因为严酷的气候变化才会土崩瓦解。今天的美国东南部在“小冰期”里曾经显著降温,气温降幅视地点而异,高达1℃至4℃不等。这种降温,在一定程度上是由西北部寒冷干燥的空气和冬季降雪导致的,16世纪和17世纪尤其如此。西班牙人的记述中,就反映出了当时大气环流的变化和寒风肆虐的情况,以及殖民者遭遇的严重干旱。[9] 异乎寻常的寒冷、大雨和大雪,使得他们不论身处哪里都有挨饿和生病的危险,同时还会遭到心怀敌意的印第安人的袭击。1528年,得克萨斯沿海地区极其寒冷,以至于海中的鱼都冻僵了,还有过同一天既下雪又下冰雹的情况。

    十几年之后的 1541 年,埃尔南多·德索托率领的那支远征队在如今密西西比州境内距奇卡索人(Chickasaw)不远的地方扎下了营寨。当时,天气极度寒冷,故他们“整夜无眠,辗转反侧;半身若暖,半身受冻”。[10] 经历了“小冰期”的气候严寒(如今几乎不为人所知)后,人们的“新安达卢西亚”之梦就破灭了。至于其间的一场场干旱,下文所述的树木年轮序列表明,当时的旱情是数个世纪以来最严重的。

    但人们还是继续努力,想要在这里永久定居下来。1565年9月,西班牙海军将领佩德罗·梅内德斯·德·阿维莱斯(Pedro Menédez de Avilés)率军来到了佛罗里达。此人将法国殖民者从圣约翰斯河畔的卡洛琳堡(Fort Caroline)赶走,然后在圣埃伦娜和圣奥古斯丁两地建立了殖民地;当时,恰好碰上16世纪60年代一次严重的干旱和一场大飓风袭击了各个殖民地。在6年的时间里,阿维莱斯手下有一半的士兵都饿死和病死了。当地的印第安人便把西班牙人赶出了圣埃伦娜。16世纪80年代初,又出现了一场大旱;当时,西班牙殖民者正在与当地的瓜勒(Guale)印第安人进行一场残酷的战争。最终,印第安人缴械投降,圣埃伦娜则进行了重建。佛罗里达一度短暂地恢复了元气,直到 1586 年弗朗西斯·德雷克(Francis Drake)袭击了圣奥古斯丁,放火将那里的250幢房屋夷为平地,并且掳走了一切。但在“新西班牙”[11] 当局的大力资助下,这座城市最终幸免于难,成了西属佛罗里达的首府,时间超过了200年。

    此时的西属美洲已经因为从墨西哥与秘鲁攫取了大量黄金和白银,积聚了巨大的财富而享有了传奇般的声誉,所以引来了大量的海盗与私掠船。一双双贪婪的眼睛,全都盯着西班牙的领地,以及此时几乎还无人了解的佛罗里达北部沿海。1584 年 5 月,英国伊丽莎白一世时期的冒险家沃尔特·雷利(Walter Raleigh)派遣两艘船只,对那里实施过一次侦察。他们在哈特勒斯湾登岸,然后又向北航行到了罗阿诺克岛,那里的塞科坦(Secotan)印第安人热情地欢迎了他们。这些来客带着极尽赞誉之语的报告而返,称那里有肥沃的土地、丰富的木材,甚至还有野生葡萄。至于当地的印第安人,则一个个都态度温和,当然也没有敌意。据说,他们都是“按照着黄金时代的方式”生活着。

    另一支前往罗阿诺克岛的探险队,由理查德·格伦维尔(Richard Grenville,或者拼作Richard Greenville)与拉尔夫·莱恩(Ralph Lane)两人率领,于1585年起航。[12]由于遭遇了暴风雨、船只失事和偶尔的私掠船骚扰,再加上旗舰在“外滩群岛”搁了浅,失去了全部的辎重,所以这些殖民者狼狈不堪地到达了罗阿诺克。格伦维尔返回英国寻找新的给养,莱恩则与大约100位殖民者留了下来。这个殖民地,很快就变得岌岌可危了。完全不同于之前的报告,这里的土层很薄,一点儿也不肥沃。种在地里的庄稼全都死了。此地的池柏年轮表明,在1587年至1589年的殖民期间,800年来最严重的一场干旱仍在这里肆虐。[13] 殖民者还遭遇了食物短缺,因为印第安人不愿把玉米卖给他们。英国也没有派来救援船只。尽管害怕遭到印第安人的伏击,这些绝望的殖民者还是不得不去寻找给养。接下来,莱恩与当地酋长的对手结盟,杀掉了那位酋长。不到一个星期之后,弗朗西斯·德雷克爵士就率领一支满载劫掠品的船队抵达了;只不过,他手下的船员因为患病而数量大减。他提出帮助莱恩另觅一个殖民地,可一场大风却刮了4天,可能会让德雷克的舰队陷入搁浅的危险。于是,殖民者迅速遗弃了这个前哨,坐船返回了英国,只在罗阿诺克留下了15个人,这些人后来消失得无影无踪。关于这些消失的殖民者,有一个传说流传了下来,可他们的遭遇,至今依然不为人知。极有可能,他们要么是加入了当地的一个印第安群落,要么就是为印第安人所杀。对此,我们多半永远都无从知晓了。

    尽管有罗阿诺克岛之祸,可北美洲以及那里的原住民,还是深深地吸引着英国国内的民众。激情洋溢的支持者计划开拓新的殖民地,其中就有持乐观态度的理查德·哈克卢特(Richard Hakluyt);此人是一位大臣兼业余地理学家,他确信英国拥有巨大的潜力,能够掌控海外勘探和贸易。[14] 他曾经热情地吹嘘说,北美洲拥有丰富的黄金、白银、珍珠和充足的热带食物,其实这种说法并不正确。西班牙帝国在美洲进行扩张的流言,时断时续地传到了欧洲,因为西班牙人认为他们的发现属于国家机密,只有少数精英人士才能知晓。英国没人看过16世纪70年代至80年代编纂而成的《印第亚斯之地理关系》(Relaciones geográficas de Indias )一作,而此作也从未得到过广泛传播。这份具有里程碑意义的报告详细描述了当地的天气状况。对于任何一个打算到加勒比地区、佛罗里达以北和更往北的海岸进行航海探险的人而言,这种信息都属于无价之宝。除了地理方面的错误,哈克卢特还重申了一种错误的观点,即从卡罗来纳到缅因地区的整个东海岸都是地中海气候。他在作品中称,那里气候温和、土地肥沃、气温较高,是一个农民可以种植橄榄、葡萄、柑橘和其他各种作物的地方;这些作物,原本都是英国耗费巨资从地中海地区进口的。这片土地上,“气候、土壤皆似意大利、西班牙,以及吾等获取葡萄酒与油料之群岛”。[15]

    这种前景确实诱人,也构成了弗吉尼亚公司在 1606 年派遣 3 艘船只前往美国东海岸时制定的《建议性指示》(Instructions by Way of Advice)的核心内容。当时的组织者,几乎没有从过去其他地方的错误中吸取经验教训。他们想当然地以为,尽管16世纪末的气候日益寒冷,但他们的目的地的气候会跟祖国的气候差不多。

    詹姆斯敦的麻烦(公元1606年至1610年)

    1606 年 12 月,从伦敦起航的3艘船只和大约144位殖民者在美国东海岸登陆了。1607年5月6日,他们在如今的弗吉尼亚驶入了詹姆斯河河口;虽说当地的“印度人”[16]袭击了他们,可他们还是继续进行了勘探。最终,他们在这条河上游方向大约 80 千米处一个沼泽密布的半岛上,修建了一座呈三角形的要塞。从战略上来看,这个低洼之地的选址是很合理的,而且那里的土壤“肥沃之至,非言表所及”。不过,要塞紧挨着水边,除了河水就没有淡水供应。森林则不断地向这个定居地逼近,故他们有遭到伏击的危险。对于即将到来的可怕遭遇,这些殖民者毫无准备。[17]

    哈克卢特的计划以当时人们能够接触到的最佳信息为基础,同时也着眼于长远。他将目光投向了殖民活动的遥远未来。然而,殖民者首先就碰到了一个更加紧迫的问题,那就是他们必须在詹姆斯敦挺过最初的几个冬天,只能靠自给农业维生。从一开始,这里的粮食供应就很稀缺,因为印第安人并没有像大家以为的那样慷慨地给他们提供粮食。很快,疾病与死亡接踵而至,到8月份就死了50个人。没人知道究竟是哪些原因导致了他们死亡,但毫无疑问的是,与饥荒有关的疾病位列其中。更加糟糕的情况还在后头,因为气候也对殖民者造成了压力。此地的树木年轮中,就客观地记录了气温变化的情况。不巧的是,殖民者抵达詹姆斯敦的时候,正值一场从1606年持续到1612年的漫长干旱刚刚开始。气候学家还研究了取自切萨皮克湾中的沉积岩芯,发现这段时间也是整个千年里最寒冷的几年,气温比20世纪低了2℃。[18]

    美国西弗吉尼亚州的树木年轮与洞穴沉积物都表明,17世纪初这里的季节性气候条件出现了重大变化,从而证实了殖民者自己记载的情况:冬季更加寒冷,夏季则更加干旱。

    在詹姆斯敦这个殖民地最初和最脆弱的几年里,极端的气候变化造成了严重的破坏。炎热干燥的夏季,毁掉了正在生长的庄稼。詹姆斯河的水位急剧下降,使得河水中的盐分增加,变得极不利于健康了。当时也没人想过要挖一口井来获取淡水。冬季那种不常见的寒冷所导致的作物歉收,既加剧了粮食短缺的程度,也让殖民者之间的人际关系变得恶化。人们每天聊以为生的,只有1品脱甚至更少[19] 的小麦与大麦,再加上他们能够找到的其他食物。他们虽说既有武器,也有渔具,但显然很少加以利用。他们的生活条件充其量只能说是非常简朴,许多人都睡在冰冷的地上。正如历史学家凯伦·库珀曼所言,那些殖民者极有可能始终处在饥饿与震惊的状态之中;她还认为,这种状况堪比受到了虐待的战俘。[20]

    除了不得不将就着饮用盐分很高的肮脏河水,殖民者可能还把伤寒从卫生条件很差的船上带了过来;他们花了2年的时间,才掘出一口井来获取“甜水”。鉴于印第安人的袭击始终都是一种威胁,故他们取水的地方可能距他们处理垃圾的地方很近,这也很危险。可以说,许多殖民者可能都是死于饮用了不干净的水,而非死于饮用啤酒。英国当时的大麦收成,绝大部分用于酿制啤酒了;许多人每天要饮用6品脱左右,故啤酒在他们每天所获的热量中占有重要的比例。酿制啤酒时的麦芽,也是他们日常饮食的一部分。由于对艰苦的生活条件和食物匮乏的情况毫无准备,所以殖民者还遭到了毁灭性的心理打击。

    当地的美洲原住民村庄,都被波瓦坦部落联盟统治着;那是一个实力强大的酋邦,控制着无数座村落,总计有约15,000 人生活在詹姆斯敦的上游地区。不同于新来的殖民者,他们在当地的气候下生活了数百年,故经验丰富。与当时弗吉尼亚的所有印第安人一样,波瓦坦部落把农耕生产与狩猎、捕鱼以及采集植物性食物结合起来维生。[21] 他们追求食物的多样化。在春季里,他们会用鱼梁捕鱼,并且用陷阱捕猎松鼠之类的小型动物。5月和6月是播种季节,他们主要以橡子、核桃和鱼为食。还有一些人则散布在各个小营地里,靠各种各样的食物维生,其中既有鱼类、螃蟹和一些猎物,也有多种多样的植物性食物。6月、7月和8月是食物相对充沛的几个月,他们会以箭叶芋(tocknough)的根茎、浆果(疆南星属植物)、鱼和青玉米为食。夏末秋初是收获和富足的季节;接下来,他们整个冬天就会捕猎鹿和其他猎物。有些酋长和位高权重的个人还会设法储存玉米供全年所食,但大多数波瓦坦人种植的粮食都只足以吃上几个月,然后他们就靠吃野生食物来熬过一年中余下的时间。

    从当时一些美洲原住民遗骸中重要的碳、氮同位素来看,17 世纪的大多数印第安人主要是以玉米为食。[22] 而且,尽管他们对环境中的各种资源了如指掌,可这些人的骨骼也证明,他们经历过严重的营养不良时期。生存从来就不是一件容易的事情,哪怕他们比欧洲移民有更多的选择,也是如此;至于他们具有更多选择的原因,部分在于他们对自己所处的环境与气候有着深入的了解。他们可以把园圃迁到气温较高和朝南的向阳坡上,可以种植一些比玉米更加耐寒的作物。在极端情况下,当地人要么是迁往别处,要么就是彻底回归狩猎与采集的生活方式。正如人类学家海伦·朗特里指出的那样,部落里的女性可能不愿储存较多的玉米,因为她们担心酋长和精英阶层会把余粮当成贡品夺走。[23] 当时,随着一些实力强大的酋长相互争夺权力和威望,波瓦坦人生活的村落越来越大、越来越集中,并且筑有防御工事。从印第安人的角度来看,如何应对新来的殖民者,其实是一个非常简单的问题,那就是:他们怎样才能在不冒不必要的风险的情况下,最大限度地利用欧洲人的存在呢?

    波瓦坦印第安人都盼着把玉米和其他食物卖给欧洲人,以此来获得欧洲人那些奇异的金属工具。由于地位和外交等问题都很棘手,并且有时还很微妙,所以二者之间的交易时起时落。到1607年秋季,殖民者几乎没有开垦任何土地。这些新来者都住在简陋不堪的洞穴居所里,其中许多人还意志消沉,坐在那里无所事事。1608年1月两艘补给船抵达之后,一场火灾又迅速把船上带来的一切连同要塞烧了个精光。那个冬天异常寒冷,冰冻的詹姆斯河几乎把两岸连起来了。1608 年,一支损失惨重的救援远征队带来了更多的殖民者,可他们的粮食供应却降到了最低限度。

    面对敌意越来越强烈的当地人,大约400位殖民者都挤进了那座重建的要塞,几乎没人去耕种作物了。饥荒自然随之而来。1609年末,还有大约240人住在詹姆斯敦。到了第二年夏天,就只剩60人还活着了,死者则被安葬在附近的一处墓地里;他们的遗骸清晰地表明,这些人都是饿死的。到了这一年的隆冬,天气太过寒冷,以至于人们都没法涉水到浅滩上去寻找牡蛎了。一些绝望的欧洲殖民者竟然掘出死尸,以之为食。人们曾在这座要塞的一个地窖发现过一具少女的遗骸,上面带有明显的杀戮痕迹;有人甚至切开了少女的头骨,将她的大脑拿走了。[24] 1610年,切萨皮克湾周边的河流里,连鲟鱼这种重要的食物也不见踪影;至于原因,可能就是持续的干旱使得河水盐度太大,导致鲟鱼未至。殖民者只得把东西都装上船,离开了这里,结果却在詹姆斯河河口碰上了从英国而来的一支给养充足的新船队;若是没有这支船队,詹姆斯敦殖民地就不可能在“小冰期”中幸存下来。

    努纳勒克知道如何做(公元17世纪以后)

    在“小冰期”天气最寒冷的那些年里,詹姆斯敦爆发了一场粮食危机。即便是在较为暖和的年份,这个定居地也很容易受到作物歉收的影响,而波瓦坦印第安人不稳定的粮食供应,也让这里深受困扰。当地的美洲原住民,已经适应了数个世纪里迅速变化的气候;出现极端气候的时候,他们通过在一个有鱼、野生植物性食物和小型猎物的环境中追求食物的多样化而幸存了下来。尽管当地人的文化当中含有某种礼尚往来的精神,但与殖民者相比,他们获取食物的方式还是要灵活得多。而且,波瓦坦印第安人只是众多美洲原住民部落里的一个;这些部落都曾利用食物多样化的对策,在“小冰期”的气候波动中幸存了下来。

    努纳勒克是一个图勒族村落,位于白令海靠阿拉斯加沿海地区卡斯科奎姆湾畔的昆哈加克村附近。[25] 从14世纪至19 世纪,那里的气候明显更为寒冷,降雪量更大,夏季气温比如今低了 1.3℃,而海冰的面积也更广阔。原住民在努纳勒克生活了差不多300年之久。此地居民最密集的时期,是17 世纪早期与中叶,与詹姆斯敦人口最密集的时间相同;当时正值“蒙德极小期”的最盛期,也就是“小冰期”里气候最寒冷的数年。这个定居地紧挨着河流,河中既有丰富的季节性洄游鱼类,也有世界上迁徙性水禽的一些最大集中地。这里到处都是小型的哺乳动物;鲸鱼在近海觅食,而海洋中的哺乳动物很丰富。人们所吃的肉类来自北美驯鹿,它们冬季会在海岸附近觅食。如今,这里却变成了多雪的北极气候,夏季凉爽而湿润。努纳勒克丰富的食物资源层级,也为人们提供了从衣物到狩猎武器的各种原材料。最重要的一点是,该村村民的食物都可以在距离相对很近的地方得到。利用天然冻土层的制冷作用,食物储存不成问题。人们几乎也不存在饮食方面的压力。正因为如此,人们才在这个地方居住了一代又一代。

    这个村落的地理位置很优越,使得人们可以极其灵活地获取多种多样的食物。他们的家门口就有各种食材,而且有高效地储存食物的潜力,这意味着气候发生变化的时候,人们完全可以改变狩猎目标,只需重点捕杀其他的猎物就行了,因为气候变化不太可能对一个地区的所有动物产生同样的影响。就算是气候迅速波动,可能也不成问题,这主要是因为像鲑鱼这类食物的有无可以相对容易地预测出来。风险管理始终是人们在寻觅食物时的背景,但与季节更替、干旱和极端低温对食物供应有直接影响的许多环境相比,这里的人进行风险管理却要容易得多。目前,冰雪消融、海平面上升以及较高气温对当地永久冻土层的融化作用,正在侵蚀着这座遗址。

    努纳勒克繁荣发展起来的环境,我们可以称之为一个“资源热点”。在这里,得益于对当地环境的深入了解,当地人形成了一种灵活多变的生存策略。他们的技术非常先进,完全适合在零度以下的气温中寻觅食物与生活,从而让村中的居民能够在条件艰苦的几十年里生活在一个地方;当时的天气条件会在毫无征兆的情况下突然改变,而食物来源也年年不同。与波瓦坦印第安人一样,高效灵活的缓冲机制与应对机制,让这个群落在“小冰期”的极端气候最恶劣,同时也是各个群落争夺食物资源的一个时期里幸存了下来。他们的位置得天独厚,这或许也是这里最终受到了袭击,接着又在17世纪末被人们遗弃的原因。

    干旱演变成特大干旱(公元16世纪末至1600 年)

    最后,我们再来看一看美国西南地区的情况。在前文中,我们已经描述过这里的美洲原住民社会利用迁徙并通过与不论远近的相邻群落维持亲族纽带的对策,适应了一次次漫长干旱的过程。这些干旱,都是由自然的气候变化造成的。“新西班牙”诸殖民者遭遇的干旱,也是如此;他们往北步步推进,深入了有着种种极端气候的新墨西哥州的沙漠地带。他们在 16 世纪晚期到达了这里,当时正值“小冰期”里西部地区气候最干旱和最寒冷的一个时期。数个世纪以来,古普韦布洛诸社会已经出色地适应了这里的环境:作物歉收是常有的事情,生存则取决于谨慎细致地利用泉水和降雨。普韦布洛人的骸骨表明,在那些经常发生暴力事件的社会中,曾经频繁地出现过营养不良、慢性贫血与寿命短暂的时期。[26]最早到达新墨西哥地区的欧洲人的经历,几乎与殖民者在北美洲东部的遭遇完全一样。错误的希望、不准确的预测和不熟悉的气候全都产生了影响,纯粹因厄运而遭遇的严重干旱与其他气候异常则令其雪上加霜;这些干旱与气候异常,在一定程度上是由1600年的于埃纳普蒂纳火山爆发导致的。

    这里与其他地方一样,极度的不信任、缺乏了解与相互冲突,都曾让美洲原住民与新来者之间的关系备受困扰。从与之为邻的美洲原住民那里,欧洲殖民者没有了解到多少关于当地环境和食物的知识,也没有学习其狩猎、打鱼的策略,这一点实在令人感到惊讶。他们都是从自身的艰苦经历中吸取教训,利用来自祖国的技术来生产和生活。在应对这片土地和气候的数千年里,当地居民已经开发出了一些技术,可以制作充足的防寒装备、防水捕鱼服和防冻鞋具;假如欧洲殖民者能够看到并且借鉴这些技术,他们经历的苦难可能就要少得多了。

    展望未来

    与北美洲其他大多数地方相比,美国西南地区给我们带来了更多的启示,让我们看到人类活动导致的全球变暖正在改变我们的未来。尽管处于低活跃水平的厄尔尼诺现象可能是造成美洲遭遇特大干旱的一个主要因素,但一项新的研究将树木年轮中记录的1 200年之久的夏季土壤湿度重建与水文建模、统计评估结合起来,表明从2000年至2018年的这19 年才是公元800年以来第二个最干旱的时期。此外,目前这场特大干旱造成的严重后果当中,有不少于 47%是人为气候变暖导致的。人类活动抬升了气温,降低了相对湿度,杀死了西部数以百万计的树木。因此,一个原本属于常规性的干旱周期,就演变成了一场特大干旱,并且严重程度和持续时间在1 200年来均位居第二。严重干旱的表征,体现在各个方面,比如积雪大幅减少、河流流量下降、地下水减少、森林火灾增多等等。[27] 气候学家把干旱的原因归咎于太平洋东部海面气温的下降,其气候条件与厄尔尼诺现象处于低活跃度时的拉尼娜现象相似。这些气候条件,在北太平洋西部催生出了一个大气波列,从而挡住了暴风雨,使之无法到达美国西南部。过去1,000年中严重程度位居第二的这场特大干旱始于公元2000年,并且仍在继续发展着。如今,它已经让20 世纪30 年代的“尘暴”大干旱和20世纪50年代“大平原”南部的严重干旱相形见绌了。当然,我们还没法预测出这场干旱会不会因为不久之后一种降水较为充沛的新循环而结束,但更严重的人为变暖带来的威胁令人不安,因为它表明了我们现在对全球气候的影响究竟有多么强大。

    未来究竟会怎样呢?在撰写本书之时(即2020年),我们还没有看到气温下降或者降雨更加充沛的迹象。气候建模的预测表明,到21世纪中叶时,干旱情况可能会更加严重。现有的气候变化数据,更加全面地描绘出了过去由大气与海洋异常导致的干旱的情况,而大气与海洋的异常,又是由自然的气候变化造成的。那些声称气候变化总会发生的人一直都在强调21世纪的变暖属于自然现象。但是,根据人们过去在美国西南部进行的学术研究来看,2000年至2018年间的土壤变干、蒸发增强和早期积雪的消失,全都因人类做出的决策与活动而增强了,因干旱叠加于气候压力之上而受到影响的地区也扩大了,故它们已经将原本属于常规性的一个干旱期变成了一场特大干旱。而且,真正的干旱可能还未开始。就算是自然力量终结了当前的干旱,全球人类排放的温室气体也会对将来干旱期的规模产生极大的影响。我们又一次收到了有力的提醒,必须牢记可持续发展的重要性。虽说记忆短暂,但我们已经看到,过去的地下水源是如何在短时间里灾难性地枯竭的。这种情况,已经在一些国家里出现,比如印度。可不可以兴建更多的水库,来储存更多的水呢?虽然在某些情况下,我们把这种做法视作一种短期的解决办法,但若认为这样做可以解决我们预测的未来降水会越来越少的长期问题,尤其是在我们的行为还会加速这一趋势的时候,就纯属痴心妄想了。

    [1] “红发”埃里克(Eirik the Red,950—1003),挪威维京时期的探险家兼海盗埃里克·瑟瓦尔德森(Erik Thorvaldsson), “红发”是其外号。——译者注

    [2] 对于古代北欧人在格陵兰岛定居以及随后越过大洋前往北美洲

    的航海活动,人们已经进行了深入的研究,其中包括丹麦考古学家在

    格陵兰岛进行的出色发掘工作。参见Kristen A. Seaver, The Frozen

    Echo: Greenland and the Exploration of North America, ca.

    A.D. 1000–1500 (Stanford, CA: Stanford University Press,

    1996)。至于兰塞奥兹牧草地,参见Helga Ingstad, ed., The Norse

    Discovery of America (Oslo: Norwegian University Press, 1985)。

    人们一直在质疑,兰塞奥兹牧草地究竟是不是埃里克过冬的地方。这

    一争议尚未解决。

    [3] Nicolás Young et al., “Glacier Maxima in Baffin Bay During the Medieval Warm Period Coeval with Norse Settlement,” Science Advances 10.1126/sciadv.1500806. 1, no. 11 (2015). doi:

    [4] Brian Fagan, Fish on Fridays: Feasting, Fasting, and the

    Discovery of the New World (New York: Basic Books, 2006),其中进行了综合论述。

    [5] Sam W. White, A Cold Welcome: The Little Ice Age and Europe’s Encounter with North America (Cambridge, MA: Harvard University Press, 2017),此书是关于这一主题的权威资

    料。在撰写本章余下的内容时,我们在很大程度上也参考了此书。

    [6] White, A Cold Welcome, 9–19,怀特在书中此部分论述了气

    候。亦请参见Karen Kupperman, “The Puzzle of the American

    Climate in the Early Colonial Period,” American Historical

    Review 87 (1982): 1262–1289。

    [7] Anne Lawrence-Mathers, Medieval Meteorology: Forecasting

    the Weather from Aristotle to the Almanac (Cambridge:

    Cambridge University Press, 2019).

    [8] White, A Cold Welcome, 28–47,怀特在书中此部分有全面的论述。

    [9] White, A Cold Welcome, 31–32.

    [10] 本段中的引文源自White, A Cold Welcome, 38, 41。

    [11] 新西班牙(New Spain), 1535年至1821年间西班牙在其殖民

    地设置的一个总督辖区,范围包括如今的美国西南部、墨西哥、巴拿

    马北部的中美洲及西印度群岛的大部分,首府设在墨西哥城。——译者注

    [12] 关于罗阿诺克:Karen Kupperman, Roanoke: The Abandoned Colony (Lanham, MD: Rowman & Littlefield, 2007)。

    [13] David W. Stahle et al., “The Lost Colony and Jamestown

    Droughts,” Science 280, no. 5363 (1998): 564–567.

    [14] Richard Halkuyt, Voyages and Discoveries: The Principal

    Navigations, Voyages, Traffiques and Discoveries of the

    English Nation, ed. Jack Beeching. Reissue ed. (New York:

    Penguin, 2006). . See also White, A Cold Welcome, 103–108.

    [15] 转引自White, A Cold Welcome, 105。

    [16] 英文中的“印度人”与“印第安人”为同一个单词。这是因为

    欧洲殖民者初抵美洲时,以为他们到达的是印度。为了将其区分开来,

    我们才将两地的人分译为“印度人”和“印第安人”。此处的“印度

    人”加了引号,无疑是指印第安人。——译者注

    [17] 关于詹姆斯敦的这一节,参考了White, A Cold Welcome, chap.

    6。亦请参见Karen Kupperman, The Jamestown Project (Cambridge,

    MA: Harvard University Press, 2007),以及James Horn, A Land

    as God Made It: Jamestown and the Birth of America (New York:

    Basic Books, 2005)。

    [18] Stahle et al., “The Lost Colony and Jamestown

    Droughts”,说明了树木年轮方面的研究情况。亦请参见 T. M.

    Cronin et al., “The Medieval Climate Anomaly and Little Ice

    Age in Chesapeake Bay and the North Atlantic Ocean,”

    Palaeogeography, Palaeoclimatology, Paleoecology 297 (2010):

    299–310。

    [19] 品脱(pint),英美等国的容积单位。在英制单位中,1品脱约

    合0.568 3升,美制单位中则有干、湿之分,1干量品脱约合0.550

    6 升,1湿量品脱约合0.473 2升。1品脱小麦换算成重量之后,无

    论干湿,都不到0.5公斤。——译者注

    [20] Karen Kupperman, “Apathy and Death in Early Jamestown,”

    Journal of American History 66 (1979): 24–40.

    [21] Helen C. Rountree, The Powhatan Indians of Virginia:

    Their Traditional Culture (Norman: University of Oklahoma

    Press, 1989),这本书是一份重要的参考资料。

    [22] 这个方面的文献资料正在快速增加。其中的概述之作,请参见

    Martin Gallivan, “The Archaeology of Native Societies in

    the Chesapeake: New Investigations and Interpretations,”

    Journal of Archaeological Research 19 (2011): 281–325。

    [23] Helen C. Rountree, Pocahontas, Powhatan, Opechancanough: Three Indian Lives Changed by Jamestown (Charlottesville: University of Virginia Press, 2005), 64.

    [24] William M. Kelso, Jamestown: The Truth Revealed

    (Charlottesville: University of Virginia Press, 2018).

    [25] 努纳勒克因近期的考古发掘才为世人所知:Paul M. Ledger et

    al., “Dating and Digging Stratified Archaeology in

    Circumpolar North America: A View from Nunalleq, Southwestern

    Alaska,” Arctic 69, no. 4 (2019): 278–390。亦请参见

    Charlotta Hillerdal, Rick Knecht, and Warren Jones,

    “Nunalleq: Archaeology, Climate Change, and Community

    Engagement in a Yup’ik Village,” Arctic Anthropology 56

    (2019): 18–38。

    [26] Gideon Mailer and Nicola Hale, Decolonizing the Diet:

    Nutrition, Immunity, and the Warning from Early America (New

    York: Anthem Press, 2018),它是对这一新兴研究领域进行概述的

    一部有益之作。

    [27] A. Park Williams et al., “Large Contribution from

    Anthropogenic Warming to an Emerging North American

    Megadrought,” Science 368, no. 6488 (2020): 314–318。供一般读者阅读的概述之作,请参见David W. Stahle, “Anthropogenic Megadrought,” Science 368, no. 6488 (2020): 238–239。

    第十三章 冰期重来(约公元1321年至1800年)

    对于接下来要描述的现象,人们曾称之为“大曼德雷克”(the Grote Mandreke),或者“人类大溺水”。13世纪末和 14 世纪的大部分时间里,欧洲北部都是世界上一个暴风雨肆虐的地区。至少有12场大风暴曾在“低地国家”[1] 的沿海肆虐,将面前的一切全都席卷而去。接着,1362年1月16 日,“大曼德雷克”出现了;它在北大西洋形成了一股强劲的西南大风,然后横扫爱尔兰和英格兰,导致诺威奇大教堂的木制尖顶轰然倒塌,坠到了下方的中殿[2] 里。这还仅仅是个开始。狂风巨浪在北海上呼啸而过,然后冲到了德国北部和尼德兰地区,将那里的一切也都席卷而去了。这场特大风暴,摧毁了丹麦的60多个教区,像玩“九柱戏”[3] 一样把牛群击倒。当时的一位目击者写道:“狂风令锚楫折断,港内舰船尽毁,溺亡者众,牛羊皆不能免……亡者不可胜数。”[4] 由于当时几乎不存在什么海防设施,也没有什么预警机制,故成千上万生活在海边的百姓在面对这种似乎是为了惩罚罪人而释放的神灵的震怒时,全都束手无策。

    差不多就在1315年至1321年的“大饥荒”期间,随着暴雨和持续不断的气候波动,“中世纪气候异常期”迅速结束了。随后的数个寒冬导致大河封冻,并且阻塞了波罗的海上的航运。其间,既不是没有出现过气候十分炎热的夏季,也不是没有出现过持续近 10 年或者仅仅一两个季节的严重的干旱周期。毫无征兆地刮起的狂风,是数十年间快速气候变化中的一部分,而且常常伴随着极端的寒冷和炎热,从而开启了“小冰期”。

    从气候的角度来说,一位旅行者在“小冰期”里穿越欧洲时,除了偶尔会碰上极其严酷的寒冬和一个个酷暑之外,其经历与现在几乎不会有什么不同。如今,我们许多人都经历过高速公路结冰、雪连下几周或者夏季气温高于20℃之类的情况。14世纪的欧洲农民,有可能种植多种多样的作物来降低霜冻或干旱天气的影响,但在面对反复无常的气候波动时,他们基本上无能为力。由于敏锐地认识到了这种脆弱性,所以他们都生活在忧虑之中,担心作物歉收和饥荒,害怕营养不良导致的疾病。神灵的报复与“末日审判”带来的威胁,无形地笼罩在城镇与乡村之上。接下来,腺鼠疫暴发了。

    黑死病(公元1346年至1353年)

    1346年至1353年间,臭名昭著的黑死病降临到了欧洲。[5] 欧洲西部大约有2 500万人染病死亡,只是确切的死亡人数我们无法确知。这场可怕的瘟疫,实际上是腺鼠疫第二次侵袭欧洲了;至于第一次,就是公元541年至542年间的“查士丁尼瘟疫”(参见第五章)。引发此疫的罪魁祸首是一种细菌,即鼠疫杆菌,它会感染寄居于地面上的啮齿类动物身上的跳蚤;这些啮齿类动物中,包括了中亚旱獭和各种鼠类。人们并不清楚鼠疫杆菌首次到达欧洲的确切时间,但这种细菌最晚也是在公元前3000年就在欧洲出现了;只不过,鼠疫杆菌第一次暴发时,并未导致真正的瘟疫大流行。[6]

    中世纪的黑死病起源于亚洲中部,有可能源自吉尔吉斯斯坦;那是“丝绸之路”上的一个内陆国家,与哈萨克斯坦、中国、塔吉克斯坦以及乌兹别克斯坦等国接壤。鼠疫从那里开始,传播到了中国和印度。这种疾病,有可能是沿着连接国际大都市的“丝绸之路”,或者经由船只一路来到黑海地区的。到1346年底,欧洲各个港口接到了报告,称印度人口正在减少,而美索不达米亚、叙利亚、亚美尼亚和蒙古人统治的地区已尸横遍野。据说,是1347年乘坐帆船从克里米亚半岛东部的卡法(Kafa)回来的30名热那亚商人,将鼠疫传到了西西里岛上。于是,瘟疫从意大利开始,沿西北方向蔓延到了整个欧洲。染病者身上出现的显著症状,有淋巴结炎(即腋窝下或腹股沟出现疖子)、发烧和吐血。最近人们对伦敦和欧洲大陆因患黑死病而身亡的人进行了DNA分析,结果表明,鼠疫杆菌就是造成这场瘟疫的罪魁祸首。

    为什么黑死病会在中亚地区盛行呢?气候变化在其传播过程中,有没有发挥作用?验证这个问题的一个方法,就是研究沙鼠而非老鼠。在吉尔吉斯斯坦,沙鼠的种群密度会随着占主导地位的气候条件而变化。温暖湿润的环境,会提高这些大沙鼠及其身上的跳蚤原本就在增加的种群密度。假如同样的天气在一个面积广大的地区里发展,那么瘟疫就会迅速蔓延开去。每只沙鼠身上的跳蚤密度都会增加,鼠疫则会变得更加盛行;而更重要的是,跳蚤会寻找其他的宿主,包括人类及其饲养的牲畜。假如气温下降,环境变得较为干燥,那么沙鼠的数量就会大幅下降,而跳蚤的数量也会减少。

    为了验证这种观点,一组研究人员曾将源自喀喇昆仑山脉上的刺柏年轮序列以及其中记录的降水和气温情况与鼠疫暴发的历史记载进行了比较。[7] 他们发现,亚洲暴发的一场鼠疫过了15年左右之后,才传播到了欧洲的港口。但在人口较为稠密的欧洲,瘟疫的传播速度却比中亚地区快得多,每年能够传播1,300千米左右。长久以来,流行病学家和历史学家都以为,黑死病是一桩单一的意外事件。新的气候学证据却表明,由于沙鼠的种群数量以及它们身上的跳蚤种群数量都随着气候而波动,故源自亚洲大量野生啮齿类储存宿主身上的鼠疫出现了由气候驱动的、间歇性暴发的新菌株。欧洲本地却没有这些储存宿主。

    由此导致的后果,是毁灭性的。在苏格兰,染病者“残喘于世,仅有二日”。与此同时,巴黎及其周边地区的人口锐减了三分之二。据估计,当时法国的人口数量降幅惊人,达到了 42%。许多死者原本就异常容易受到感染,因为他们在“大饥荒”期间已经营养不良了。到了15世纪初,法国大约有3,000座村庄都被人们所遗弃。由英法“百年战争”引发的连年战乱,本已让粮食短缺的情况变得很严重,而作物歉收与潮湿的天气更是加剧了这个问题。人们的绝望情绪,在1420 年至 1439 年间集体陷入了低谷,当时北大西洋涛动处于高指数模式,带来了非比寻常的大暴雨。虽说要养活的人口少了许多,但粮食短缺与饥荒仍然存在,其中许多都是由连年的战争导致的。

    反复暴发的瘟疫和时不时出现的饥荒,在数十年里一直对欧洲人口的增长产生遏制作用。多场粮食危机爆发的时间,都与斯堪的纳维亚半岛上空高气压导致的异常寒冷的冬天相吻合,特别是在15世纪30年代;当时出现了长达7年的漫长霜冻和猛烈的暴风雨,比斯开湾与北海海域尤其如此。1451 年黑死病结束之后,随着农民回到疫情期间废弃的土地上,粮食生产开始飙升。1453 年“百年战争”结束后,欧洲迎来了真正的复苏。气温逐渐升高,降雨日见充沛。70年之后,16世纪20年代的英国出现了5次异乎寻常的大丰收,这一局面直到 1527 年一场寒潮导致圣诞节期间小麦供应不足,并且有可能爆发针对富人的粮食骚乱才结束。尽管如此,以自给自足和作物多样化两种观念为基础的历史悠久的自给农业传统仍在继续。不过,这种暂时的缓解并没有持续多久。气候造成的凛冽之风,正在天边聚集。

    “小冰期”(约公元1321年至19世纪晚期)

    所谓的“小冰期”,是指“中世纪气候异常期”之后出现的一个“短暂”的显著降温期,但并不属于一段真正持久的冰期。弗朗索瓦·马泰是一位受人敬重的冰川学家,曾任职于美国地球物理学会冰川委员会;他在 1939 年首次使用了这个术语,如此写道:“我们正生活在一个重新开始但规模中等的冰川时期——一个‘小冰期’里。”[8] 马泰当时是用一种非正式的方式使用这个说法的,他甚至没有用大写字母进行突出显示,但这一术语如今已经成为一种公认的气候学标签了。

    1939 年,“小冰期”还仅仅是一种观点。如今,研究人员却已积累了来自世界各地“小冰期”里的气候替代指标与历史记录,其中不但有欧洲和北美地区的,也有包括澳大利亚的大洋洲和日本等遥远之地的。比如说,日本对樱花盛开期的详尽记录可以追溯到600年之前,并且提供了充足的降温记录。最近进行的一次全球气温重建,利用了不少于73种不同的全球性气候替代指标,它们证明确实存在降温现象,尤其是公元1500年至1800年间。目前,“小冰期”十分突出,成了自公元前6000年以来最显著的一个气候异常期;当然,这并不包括当今人为造成的全球变暖。[9]

    究竟是怎么回事呢?在公元 1250—1300 年到公元1850—1900 年的这段时间里,全世界的气温稍有下降;至于原因,我们却还不清楚。采自格陵兰岛、冰岛和拉布拉多周边的深海岩芯提供了确凿的证据,证明了北极海冰有随着气温突然下降而向南移动的趋势。例如,采自“东冰岛大陆架”且断代准确的高分辨率洋底岩芯中,记录了公元 1300 年之后一次持续了60年至80年左右的气温陡降,这就是北极冰层南移的结果。14世纪中叶有过一次短暂的升温期,14世纪末期再度出现了一次突如其来的降温。在另一个冰层较少南移的时期之后,从公元1500年至20世纪初,南移的冰层面积就普遍增加了。冰层的这些变化究竟是由火山喷发事件或者太阳变化造成的,还是由其他因素导致的,目前我们还不得而知。

    “气温稍降”在很大程度上算是一种一般性的说法,因为降温趋势会随着时间和空间而变化。真正意义上的全球变冷始于公元1400 年前后,直到 1850 年左右才结束;当时,工业污染导致的温室气体抵消了长期的“轨道强迫”效应(也称“轨道驱动”,即地轴倾角以及它围绕太阳公转时轨道形状的缓慢变化带来的影响,其中可能涉及太阳能在纬度和季节方面的再分布)。

    “小冰期”里的气候,并不是一成不变的。较短的强迫期(比如火山爆发或者太阳活动的变化)虽然只有暂时的影响,但确实也曾导致气候记录中出现突然而短暂的波动。其他的极端事件包括“大饥荒”这场灾难,以及特大干旱、异常寒冷的冬季和周期性的大风,还有一些对人类社会产生了深远影响的事件,其中包括瘟疫流行、作物歉收和禽畜周期性地大批死亡。这样的事件,既加剧了我们的短期脆弱性,也减缓了人类的顺应速度。

    亲历者描述早期全球降温情况的史料非常罕见。1572年,荷兰豪达一座天主教修道院的院长沃特·雅各布森(Wouter Jacobszoon)迁居到了阿姆斯特丹。此人写有一部日记,记录了当时普遍存在的暴力现象与天主教徒受到迫害的情况,其中也有对寒冷天气的牢骚之语。当时,阿姆斯特丹的人连谷物与鲱鱼之类的主食也买不起。降雪一直持续到了来年的4 月份。可天气如冬季一般,依然寒冷。1574年11月,一场暴风引发了洪水,冲垮了堤坝,将淹没的田野变成了冰雪覆盖的荒漠。在普鲁士,新教牧师丹尼尔·沙勒(Daniel Schaller)竟然怀疑世界末日已经来临。“非但面包奇匮,吾等珍爱之玉米及谷物,价格亦昂贵至极……林中之木,长势不如既往……是故ruina mundi[世界之毁灭]将至。”[10]

    雅各布森及其同侪曾一再祈求上帝施以援手,却无济于事。那些年间的树木年轮记录的确表明,树木的生长速度放缓了。自公元1510年以来,普鲁士发生了10次地震。虔诚的沙勒认为,地震预示着即将到来的“末日审判与末世之震,凡亡者皆醒,出其墓穴,领受基督之审判”。

    不过,“末日审判”始终都没有降临。相反,气候变化仍在继续,而随着海洋温度下降,北海海域很快出现了大量的鲱鱼,让渔民颇感欣慰。但是,寒冷仍然持续不去。泰晤士河的伦敦段在公元1408年至1437年间出现过5次封冻,而在1565年至1695年间则封冻了12次。(泰晤士河上一次封冻是在1963 年,那是1814 年以来最寒冷的1月份。)这段时间,也就是泰晤士河上的“冰冻集市”蓬勃发展起来的时候。一些具有生意头脑的小商小贩甚至会在冰上烤全牛。冬季的气温不但下降了,而且变得非常极端,完全无法预测。根据气候替代指标重建出来的气温证明,在14世纪和从16世纪末到 19 世纪之间,罗讷河上的封冻期要比之前的各个时期多得多。

    欧洲 16 世纪末的“小冰期”并不是一个令人觉得愉快的时期,因为当时社会普遍动荡不安,而社会动荡常常是由粮食价格上涨引发的。光是在英国,自威廉·莎士比亚出生的1564 年至 1660 年间,就爆发了70多起粮食骚乱。在之前的数个世纪里,英国的酒商一直都向法国出口葡萄酒,可他们的收成在寒冷面前却化为乌有。战争、时有发生的饥荒和严寒,影响了数百万欧洲人的生活。法国的损失尤其严重,这既是连年战乱所致,也有寒冷造成作物歉收的影响。在16世纪晚期,至少有400万人死于军事暴力、饥荒和流行性疾病。1590年,信奉新教的国王亨利四世率军围困了信奉天主教的巴黎。由于无法获得充足的大炮,故他决定用断粮的方式,迫使这座城市投降。寒冬对城中的粮食供应造成了严重的破坏;愤怒的暴民要求获得食物,但守军还是继续坚持着。街道两旁,全都是死去的人和极度饥饿、虚弱得无法动弹的民众。到1590 年 8 月信奉天主教的守军突围之时,已经有45,000 人饿死或者病死,这一数目占城中人口的五分之一。[11] 在此期间,英国与整个欧洲人口外迁的速度加快了,这可不是巧合。

    波罗的海地区的粮食与荷兰的基础设施(公元16世纪及以后)变革即将发生。早在14、15世纪,佛兰德斯与尼德兰就率先出现了应对气候变化的创新之举。[12] 长期以来,波罗的海诸国与乌克兰都是欧洲大部分地区的粮仓,这里种植的粮食经由阿姆斯特丹外销,远至南方的意大利。17世纪初,从波罗的海诸国进口而来的粮食当中,75%的粮食都会抵达阿姆斯特丹,储存于一座座巨大的仓库中。在国内进行粮食生产,已经变得很不划算了。

    为了应对这种情况,荷兰与佛兰德斯的农民都开始尝试种植牲畜饲料,并且种植牧草供牛吃。他们在以前闲置休耕的土地上种植豌豆、蚕豆和富氮的苜蓿。随着越来越多的闲置土地被开垦出来进行耕作,畜牧业也变得越来越重要。由于新的农业生产打破了人们对谷物的一味依赖,并且促生了一种新的国内贸易,因此粪肥、肉类、羊毛和皮革纷纷进入了市场。农民在以前种植谷物的地里种植苜蓿,而他们饲养的牛群则在主人重新种植谷物之前,在草地上吃草。这种自我延续的农业循环,大幅提高了土地的生产力,尤其是在作物中包括了芜菁或者用于酿造啤酒的啤酒花,还有像亚麻和芥菜之类的纯粹经济作物的时候。

    波罗的海地区进行的贸易也不容易。冰雪是一个始终存在的难题,严冬之际尤其如此。1586年2月12日,正值天气严寒的隆冬时节,大风和滴水成冰的气温把 18 艘船困在了霍伦港外迅速扩张的冰层之中。城中居民用斧子破开冰层,费了九牛二虎之力,才把那些船只拖进港口。冬季的暴风雪甚至更加危险。1695年9月9日,接二连三的狂风吹沉了北海上的几十艘船只。大约有1,000名水手因此而丧生。到了夏季,荷兰的沿海地区则完全暴露在盛行的西风之下。在大风中,许多商船都在这个危险的下风岸搁了浅。

    阿姆斯特丹的商贾在舒适的住所和仓库里,相当有效地解决了“小冰期”的冬季带来的各种挑战。不过,运送货物的水手却要历经各种艰难险阻,常常还会丢掉性命。诚如历史学家达戈马·德格罗所言:“许多荷兰人都适应并利用了不断变化的环境。他们也许并未意识到气候正在改变,但不管是有意还是无意,他们的应对方式都于他们的利益有所裨补,并且反过来造福于他们社会的利益。”[13] 尽管云谲波诡的战争和日益复杂的外交手段导致波罗的海诸国间的贸易关系变得更加棘手,这一切还是发生了。例如,在小麦供不应求的时候,人们开始广泛使用价格较为便宜的黑麦,尽管后者制作出来的面包不太受欢迎。结果,小麦和黑麦的价格都出现了波动。在粮食匮乏时,荷兰商贾非但根本没有被这些挑战吓倒,反而动用了阿姆斯特丹的大量存粮,高价出售谷物(尤其是黑麦),将粮食销往那些深陷作物歉收之困境、有可能爆发饥荒的南方地区。

    荷兰人在生意上的适应能力,还不止于此。荷兰是一个由大大小小的水道、沟渠、河流、湖泊及近海航路构成的网络,此外还有陆路。荷兰多种多样和紧密相连的交通网络,使得这里比欧洲其他地方都更容易出行,只有在“格林德沃波动期”(1560—1620)出现最严重的暴风雪(气温更低)的时候与“蒙德极小期”除外。[14] 阿姆斯特丹和霍伦港还开发出了小型帆船的摆渡服务;它们都定时出发,前往不同的地方,无论空载还是满载,都是如此。这个“船渡”系统经营得红红火火,故16世纪时开始在沿海诸省得到广泛应用。两个世纪之后,阿姆斯特丹每周已有不少于800艘渡船出发驶往荷兰共和国境内的121个目的地了。虽然逆风和狂风有可能导致混乱,可这个系统运作得相当好。1595年,英国富翁法因斯·莫里森(Fynes Moryson)开始了前往耶路撒冷漫长旅程中的第一站:在“喧嚣狂暴”的大风中,从吕伐登前往格罗宁根。他们一行人乘坐的是一条私家渡船。受一股可怕却又有利的西风的推动,乘客们在“狂风大作”时失去了船舵,当时差点儿就沉了船。

    各座城市的政府和商贾新建了一些带有纤道的运河,供马匹拉拽的驳船所用。当时逆风航行根本不成问题,人们可以用一种很悠闲的速度,每小时航行7千米,差不多2个小时之内就能从阿姆斯特丹坐船到达霍伦港,反之亦然。到17世纪中叶时,已有30多万名乘客乘坐过这种“拉拽渡船”,并且有头等舱与二等舱之分。儿童乘坐时,只需要半价。

    当时包括奴隶在内的人,再加上基本的商品,甚至是干草、鱼和信件,都是通过农民和企业主的小型船只运送的。这种小船叫作schuiten,有些挂着船帆,最长可达10米;它们不仅在主要水道上来去,还在通往所有小社区的各种小运河与渠道中穿梭。天气较为暖和之时,这些渡船通常都能顺利航行。可到了寒冬腊月,冰雪与持续封冻则有可能阻断船渡交通达3个月之久,从而危及乳制品如牛奶的运输,这种商品主要就是用渡船进行运输的。就算是在那种时候,当地人也发挥出了聪明才智,让货物与人口继续流动,从而赋予荷兰共和国一种超过英、法等国的巨大优势;在英、法两国,兴建远离内河与海洋的基础设施是一种更大的挑战。

    荷兰的国内交通网络为旅行者提供了一种灵活性与韧性,使得人们能够在“小冰期”气候迅速变化的情况下出行。狂风与冰雪,曾是人们在波罗的海与北海地区进行贸易的两大威胁。幸运的是,尽管粮食价格不断变化,荷兰人在饮食方面却具有多样性,故几乎没有出现过食物匮乏的情况。

    多样化的农业经济,使得人们更加容易适应突如其来的短期气候变化;特别是,这里很容易获得波罗的海地区的粮食,而内陆水道则让粮食运输变得更加便捷,几乎可以运往任何一个地方。在人们大规模地开垦土地的同时,这些基础设施也得到了改善,故从16世纪至19世纪初,荷兰的农田面积扩大了差不多10万公顷,而其中大部分又是在1600年至1650年间开垦出来的。幸运的是,荷兰人拥有一种灵活的社会组织制度,在农民收入不断增加的过程中促进了小型农场的发展。与此同时,较年轻的家庭开始追求基本生活用品以外的东西。随着砖木结构的普及和像衣物、家具之类的消费品更易买到,人们的居住条件也大幅改善了。

    由于能干和极具竞争精神,故在当时仍然以自给农业为主,且农耕方式数个世纪以来几乎没有什么变化的欧洲,荷兰与佛兰德斯的农民显得独一无二。他们的种种创新之举,逐渐普及开来。到了公元1600年,英国伦敦附近开始出现商品菜园,为城中的市场种植蔬菜。60年之后,荷兰移民又将抗寒的芜菁引入了土质较松的英格兰东部。绿色的芜菁嫩叶可以很好地替代干草。英国东部地势低洼的沼泽地带,长久以来都是牧民、渔民和捕鸟者的庇护所。荷兰出生的工程师兼海防专家科尼利厄斯·费尔默伊登则在 17 世纪开垦了那里的 15.5 万多公顷沼泽地,使之一跃进入英国产量最高的耕地之列。[15]

    尝试种植新的作物,开始变成多样化生存的另一种策略。从美洲引入的玉米和土豆,成了两种常见的作物。土豆是在1570 年前后,由一个从南美洲回国的西班牙人引入欧洲的。起初,人们只是把土豆当成一种奇异的植物,甚至认为它是一种具有催情作用的药物;当时一位姓名不详的权威人士曾称,食用土豆会“激起爱欲”[16] 。这种外来的块茎类植物,非但产量比燕麦和其他作物高得多,而且还富含矿物质。它们先是被用作牲畜的饲料,在18、19世纪才变成了爱尔兰和欧洲各地的一种主食。新作物、具有创新性的农耕方法(包括广泛施肥)和改善排水,再加上圈地政策,让英国慢慢地摆脱了谷物种植的束缚。法国却要再过两个世纪的时间,才会摆脱那种束缚。与此同时,像烟草与巧克力之类的成瘾性产品,则变成了社会等级制度中的一部分。

    肉类消费也急剧增长了。到18世纪时,英国人已经养成了大量食用牛肉、羊肉和猪肉并且乐此不疲的习惯。仅在1750 年一年,伦敦的屠夫就宰杀了至少 7.4 万头肥牛和 57万只绵羊。随着农作物产量的提高和饲料的丰富,畜群规模变得越来越大,牲畜因它们的肉、皮和副产品而受到了重视。畜牧业在 18 世纪变成了一门艺术,尤其是在罗伯特·贝克维尔的手中;此人是英格兰中部的一位农民,他饲养了许多拉车运货的马匹和肉质上好的牛群。此人最大的成功还在于养羊,特别是“新莱斯特羊”;这是一个成熟速度很快的品种,饲养两年就可以上市出售。[17]

    太阳黑子、火山与罪孽(公元1450年及以后)

    尽管农民和牧师们仍会想起一些将气候灾难与神之震怒联系起来的古老噩梦般的可怕场景,但17世纪至18世纪初也见证了一些重大的科学进步,并且其中很多都出现在天文学领域里。天文学家记录了金星和水星的凌日现象,还通过观察木星诸卫星的轨道,确定了光的速度。他们的一些研究,有助于我们理解宇宙对地球气候的影响方式。除了对太阳黑子进行探究,他们还研究了日食,发表了第一批详尽论述太阳本身的研究结果。

    1711 年,针对1660年至1684年间太阳黑子活动处于低水平的现象,英国自然科学家威廉·德勒姆发表了评论。他声称:“彼时观日者咸以远镜窥之,并无休止,故黑子当无所遁形。”[18] 在1774年之前,人人都以为黑子是遮挡了太阳的云朵,所以直到19世纪,几乎都没有什么新的观测结果问世。如今我们知道,黑子其实是太阳磁场从其表面突起的地方。黑子活动差不多每隔11年就会出现一次盛衰,但不会直接对我们产生影响。有时,可能几天甚至是数周之内完全不出现太阳黑子活动。但在过去的两个世纪里,只有1810年全年都没有出现过黑子活动。以任何标准来衡量,“小冰期”内太阳黑子活动处于低水平的现象都是不同寻常的。这些黑子活动平静期是否导致了该时期的较低气温,我们仍不得而知;但是,它们在很大程度上与气候最寒冷的年份相一致。“小冰期”内有过3个极小期。第一个时间较长的寒冷阶段,出现在1450年至1530年间。这个阶段,与一个被称为“斯波勒极小期”(以一位德国天文学家的名字命名)的太阳黑子活动水平很低的时期相吻合。[19] “斯波勒极小期”各个年份都气候寒冷,但从16世纪60年代初持续到了1620年的第二个极小期,却要显著寒冷得多;这个时期以阿尔卑斯山上的一座小镇为名,被称为“格林德沃波动期”。在“格林德沃波动期”最寒冷的年份里,欧洲北部的作物生长季竟然短了多达6周。许多农民都不再种植小麦,转而开始种植更加耐寒的大麦、燕麦和黑麦。尽管如此,当时仍然出现了作物歉收,而那些贫瘠土地上的歉收现象尤其严重。“蒙德极小期”(1645—1715)是太阳黑子活动水平极低的一个时期,与欧洲和北美洲气温低于平均水平的那个时期相吻合。当时,泰晤士河的伦敦段与荷兰的运河全都封冻起来了。在“蒙德极小期”里,太阳辐射出来的紫外线较弱,使得平流层里的臭氧含量下降了。这种下降导致了“行星波”,从而让北大西洋涛动转向了负指数模式。在这种情况下,冬季的暴风雪往往更加寒冷,气温也更低,有限的历史资料已经证实了这一点。

    太阳黑子活动并不是出现“小冰期”的原因。极有可能,火山活动是一个主要因素,因为寒冷会随着火山活动的增加而加剧。1600年2月19日,秘鲁南部的于埃纳普蒂纳火山爆发了;这是此前2 500年里规模最大的一次火山爆发,使得掩埋了庞贝古城的维苏威火山爆发,以及 19 世纪的坦博拉火山和喀拉喀托火山爆发都相形见绌(参见第十四章)。[20] 于埃纳普蒂纳火山爆发时,将 30 立方千米的火山灰与岩石喷射到了35千米高的大气当中。火山灰有如大雨一般,落到了面积达数百平方千米的地方。火山灰还覆盖了被火山包围的阿雷基帕。当地的学者费利佩·华曼·波马·德阿亚拉(Felipe Guáman Poma de Ayala)曾称,足足有一个月的时间,人们既看不到太阳和月亮,也看不到星星。1601年的夏季,成了整个北半球自公元 1400 年以来气温最低的一个夏季。冰岛当年夏天的阳光无比暗淡,地上连影子都照不出来。

    太阳和月亮不过是两个“朦胧而微红”的幻影罢了。虽然17世纪至少还有 4 次火山爆发导致气温显著达到了寒冷峰值,但没有哪一次的后果像于埃纳普蒂纳火山爆发那么严重。

    沙莫尼如今已是一个时尚的滑雪胜地,但在当时还是一个贫困的村庄,冰雪始终都在威胁着生长中的作物。从1628年至1630年,面对雪崩、洪水和不断推进的冰川,这个村庄失去了三分之一的土地。由于田地一年当中的大部分时间都被积雪覆盖,故三季收成当中只有一季达到了成熟。村民都深感绝望,便说服社区的头领们,向日内瓦主教汇报了他们的困境。他们将冰雪带来的种种威胁,以及他们认为自己正在因为罪孽而遭到惩罚的恐惧之情通通告知了主教。主教便率领一支由300人组成的队伍,来到了4个被冰川围困的村庄里。他一遍又一遍地祷告,并且为冰原祈福。幸运的是,他的祈福似乎起到了作用,冰雪慢慢地消退了。可不幸的是,刚刚从冰川之下现出身来的土地却太过贫瘠,不适合耕作。而且,冰川的消退也不是永久性的活动。每当冰川再次进逼,沙莫尼和其他地方重新开始的虔诚祈祷,就会上达天听。在1850 年左右冰川开始消退之前,高山冰川的规模比如今要大得多。

    与此同时,由于作物持续歉收,葡萄酒的价格不断上涨,粮食价格也上涨了。作物歉收、饥荒以及由此导致的疾病,便引发了面包骚乱和社会动荡。一如数个世纪以来的历史,教士们纷纷宣称,持久的恶劣天气是上帝对罪孽深重的人类感到震怒的结果。在1587年和1588年的寒冷岁月里,一场歇斯底里的指控狂潮爆发了。邻居们之间相互指控对方使用巫术。1563 年,德国维森施泰格市政当局就将不少于63名被人指控使用巫术的女性判处了火刑。[21] 直到科学家开始对气候事件做出自然的解释,巫术才逐渐淡出了人们的视野。在此之前,上帝和种种超自然力量都很容易被人们当成这一切的始作俑者。

    大洋彼岸(公元17世纪以后)

    尽管为了应对气候条件的挑战,农场与住宅都发生了革命性的变化,但其中有些最彻底的变革,却发生在远距离的海上贸易领域。虽然葡萄牙人与西班牙人在历史上处于领先地位,可令人惊讶的是,此时的荷兰人在一个暴风雨强度日益增加的时期顶替了他们。[22] 在“格林德沃波动期”里,佛兰德斯地区出现猛烈暴风雨的次数达到了以前的4倍。最显著的是,风向与风速都出现了重大的变化,导致了一些很有意思的结果。

    “格林德沃波动期”内寒冷天气的日益加剧,对荷兰水手以及商贾雄心勃勃地要开辟一条穿越欧洲北部的北极航线的尝试构成了障碍。当时的冰天雪地令人望而生畏,走这条航线的成本也过于高昂,对长途贸易来说并不划算。于是,他们便把注意力转向了一些小型的公司,这些公司曾经对一条经由好望角前往亚洲的南部航线进行过投资。对于这些小企业而言,前往东南亚的航程既危险又漫长,其中的风险也是难以接受的。因此,1602年,荷兰国会便将这些公司联合起来,组建了荷兰东印度公司(荷兰语为 Vereenogde Oostindische Comagnie,因此略作VOC)。这家公司实际上是一个企业集团,通过用印度和东南亚出产的香料与纺织品交易贵金属而迅速蓬勃发展起来。荷兰东印度公司由“17人董事会”(Heren XVII,意即“17贵族”)掌管着,而公司的最终目标为削弱其竞争对手西班牙的商业实力。1619 年,荷兰东印度公司驻亚洲总督扬·彼得松·科恩(Jan Pieterszoon Coen)占领了东南亚的巴达维亚(即如今的雅加达);后来,这里变成了荷兰企业在该地区的中心。荷兰东印度公司变成了一个庞大的企业,有3万多名员工,此外还有来自非洲的大量劳工,像奴隶一样遭到公司剥削。荷兰人很快就掌控了欧、亚两洲和亚洲诸港之间的贸易,时间长达数代之久。

    荷兰东印度公司凭借东印度商船组成的船队,以将风险降至最低程度的规模进行远洋航行。这在很大程度上依赖于公司在海况方面积累起来的经验,尤其是对盛行的洋流与信风的了解。通常来说,这些洋流与信风在北半球是来自东北方向,在南半球则是来自东南方向。起初,公司的船长们尝试了不同的航线,但“17人董事会”制定了标准化的航程安排:穿过英吉利海峡,然后往南到达好望角,再从那里往东到达澳大利亚沿海,最终向北前往东南亚。每年都有两支船队起航:一支是冬季的“圣诞船队”,另一支则是春季的“复活节船队”。从巴达维亚返回的航程,则是11月至次年1 月间起航,并于次年的11月抵达荷兰共和国。

    以任何标准来衡量,荷兰东印度公司的航海活动都是很危险的,尤其是在“小冰期”气候最寒冷、时常狂风大作的那几十年里。任何一条船失事都是一场灾难,因为每艘船上都满满当当,全是人员和贵重的货物。在极其寒冷的数十年里,由天气原因导致的沉船事故当中,有一半以上都发生在北海海域。

    荷兰东印度公司船只的航海日志是一个宝库,让我们对年复一年的气候变化影响航海的情况有了新的认识。在“蒙德极小期”里,低指数模式的北大西洋涛动和西伯利亚高压(东方一种持久存在的高压)加剧了大西洋东北部盛行的东风,而那里通常是整个航程中速度最慢的地方。热带辐合带也已南移,使得船队在途中的港口停靠变得很不划算。与此同时,1640年后在加勒比海南部涌流的驱动下,信风强度不断提升,加快了荷兰东印度公司的船只横跨大西洋的速度。“小冰期”缩短了前往东南亚的航程,提高了利润;夏季风的强度虽然较弱,但船只若是及时抵达,它们就能够在整个东南亚地区进行贸易。

    荷兰商人及其手下的海员可能较为有效地应对了“小冰期”里天气寒冷的数十年,因为该国沿海各地都从全球远洋贸易中获取了巨大的利益。到了17世纪晚期,由于斯堪的纳维亚人、法国人和英国人的小型船舶速度变得更快,运载的也是其他一些利润更高、供精英阶层所用的商品,比如咖啡与茶叶,所以荷兰东印度公司的影响就逐渐衰落下去了。从气候方面来看,“蒙德极小期”的衰退增强了大西洋东北部的西风,从而减缓了出港船舶的速度。

    荷兰共和国拥有一种独特的政治结构形式,主要由城市商人委员会实施管理。这些人当中,有野心勃勃的企业家和创新者,也有对非洲原住民进行残酷剥削的人;如今,不但荷兰人承认了这些剥削者的存在,事实上西方的其他大多数殖民国家也承认了这一点。他们利用由此攫取的财富,改进了土地开垦和造船技术,甚至是消防方面的技术。快速发展起来的阿姆斯特丹,变成了欧洲的商业和金融中心,以及一个以商业效率而著称的国际性的进出口中心。最重要的是,荷兰人还成功地适应了气候异常寒冷所带来的种种挑战,并且充分利用了各种独特的机会。

    最终,不管是身为工程师、农民、水手,还是农场里的劳力,荷兰人都非但逐渐习惯了持续不断的气候变迁,还设计出了许多巧妙的方法来规划航线,克服了数十年常见的酷寒和各种变幻莫测的自然挑战;这一切,都是人类的奴隶付出了无数努力,辛勤劳作才促成的。我们可以称这种资本主义为有助于解决环境挑战的企业资本主义。但到了最后,正如我们将在第十四章中看到的那样,1815年一场巨大的火山喷发让每个人所处的局面都彻底发生了逆转。

    这些事件,都是在基督教教义对人们思考自然、环境以及人类起源等方面维持着一种宗教束缚的数个世纪里发生的。亚伯拉罕宗教的教义宣称,《创世记》中上帝创造世界与人类的故事属于历史事实。身为阿马大主教的厄谢尔,曾经利用《圣经》中的谱系计算出,上帝是在公元前4004年10月 22 日创造出地球和人类的。厄谢尔是一位令人敬畏的学者,他发表这一研究结果的时候,正值各个领域里都出现了重大科学进步的几十年,从天文学、生物学、数学、医学到植物分类,不一而足。科学在田野上、实验室里和书房中蓬勃发展起来了。农业多样化和动物选育开始盛行起来;理性的论争与对话,则与宗教意识形态展开了竞争。

    在“小冰期”里,认为气候变化是上帝对人类罪孽感到震怒导致的结果这种长久存在的、想当然的观点,在一个理性对话与仔细观察促进了各种科学探究的时代中逐渐消失了。这是古代与当代气候研究中的一个重大转折点;此后,科学便逐渐登上了气候条件预测研究的中心舞台。除了少数阴谋论者和宗教信徒,将科学与其他解释对立起来的论争早已结束。古气候学在很大程度上属于20世纪和21世纪的一门科学,它彻底改变了我们对全球气候的认知。不过,与世俗和宗教推测相对立的科学,其主导地位却是在“小冰期”气候最寒冷的那个时期开始形成的,对当今和未来的世界都具有根本性意义。

    [1] 低地国家(Low Countries),对欧洲西北沿海地区的称呼,广义上包括荷兰、比利时、卢森堡以及法国北部与德国西部,狭义上则仅指荷兰、比利时、卢森堡,因地势和平均海拔较低而得此名。——译者注

    [2] 中殿(nave),欧洲基督教传统教堂的一个重要组成部分,是举行礼拜活动时容纳信徒的场所,亦译“中厅”。——译者注

    [3] 九柱戏(ninepins),现代保龄球运动的前身,发源于德国,起初是教会的一种宗教仪式(人们在教堂的走廊里放置9根象征着叛教者与邪恶的柱子,然后用一个球滚地击打它们,叫作打击“魔鬼”),后来逐渐发展成了贵族之间盛行的一种高雅游戏。——译者注

    [4] Hubert Lamb and Knud Frydendahl, Historic Storms of the

    North Sea, British Isles, and Northwestern Europe (Cambridge:

    Cambridge University Press, 1991),这是一项出色的研究,说明了“大曼德雷克”和其他风暴背后的气象状态。引自第93页。

    [5] Ole J. Benedictow, The Black Death, 1346–1353: The Complete History (Woodbridge, UK: Boydell & Brewer, 2006).

    [6] M. Harbeck et al., “Distinct Clones of Yersinia pestis

    Caused the Black Death,” PLOS Pathology 9, no. 5 (2013):

    c1003349.

    [7] Boris V. Schmid et al., “Climate-Driven Introduction of

    the Black Death and Successive Plague Reintroductions into

    Europe,” Proceedings of the National Academy of Sciences

    112, no. 10 (2015): 3020–3025.

    [8] Fran.ois Matthes, “Report of Committee on Glaciers,” Transactions of the American Geophysical Union 20 (1939): 518–523.

    [9] 近年来,环境史学家对“小冰期”极其关注,故如今有丰富的历

    史资料,其中大部分都集中于16世纪与17世纪。我们尤其推荐这两

    部著作:Philipp Blom, Nature’s Mutiny: How the Little Ice

    Age of the Long Seventeenth Century Transformed the West and

    Shaped the Present (New York: W. W. Norton, 2020),以及 Dagmar

    Degroot, The Frigid Golden Age: Climate Change, the Little

    Ice Age, and the Dutch Republic, 1560–1720 (Cambridge: Cambridge University Press, 2018)。亦请参见Geoffrey Parker, Global Crisis: War, Climate Change and Catastrophe in the Seventeenth Century (New Haven, CT: Yale University Press, 2013)。至于冰雪频现和“小冰期”的开始,请参见Martin M. Miles et al., “Evidence for Extreme Export of Arctic Sea Ice

    Leading the Abrupt Onset of the Little Ice Age,” Science

    Advances 6, no. 38 (2020). doi.10.1126/sciadv.aba4320。

    [10] 沙勒的话转引自Blom, Nature’s Mutiny, 30–31。

    [11] 描述来自Blom, Nature’s Mutiny, 39–40。

    [12] Dagmar Degroot, The Frigid Golden Age,是这一节参考的权

    威资料。

    [13] Dagmar Degroot, The Frigid Golden Age, 130.

    [14] 相关论述见Dagmar Degroot, The Frigid Golden Age, 130

    149。

    [15] 荷兰工程师科尼利厄斯·费尔默伊登(Cornelius Vermuyden,

    1595—1677)曾在英格兰的数个地区兴建排水工程,其中还包括英格

    兰东部的沼泽。在人们开始使用蒸汽泵之前,他的努力只取得了一定

    程度的成功。

    [16] 原文为“incites to Venus”。维纳斯(Venus)为古罗马神话中十二主神之一,是爱与美的女神。——译者注

    [17] 罗伯特·贝克维尔(Robert Bakewell,1725—1795)是一位农

    学家,长于畜牧,尤其是绵羊的畜牧。他曾给牧场施肥,以改良牧草。

    他饲养的绵羊盛产羊毛,被出口到远至澳大利亚和新西兰这样的地方,

    同时他也是第一个饲养牛来获得牛肉的人,这种牛的体重在18世纪

    翻了一倍多。

    [18] 威廉·德勒姆(William Derham,1657—1735)曾是距伦敦不

    远的阿普敏斯特的教区牧师。此人酷爱数学、哲学和科学,发明了最

    早的以合理方式精准测量声速的办法。引自“Observations upon

    the Spots That Have Been upon the Sun, from the Year 1703 to

    1711. with a Letter of Mr. Crabtrie, in the Year 1640. upon

    the Same Subject. by the Reverend Mr William Derham, F. R.

    S,” Philosophical Transactions of the Royal Society 27

    (1711): 270。

    [19] 供普通读者阅读的关于太阳活动极小期的概述,请参见Dagmar

    Degroot, The Frigid Golden Age, 30–49。

    [20] J.-C. Thouret et al., “Reconstruction of the AD 1600

    Huaynaputina Eruption Based on the Correlation of Geological

    Evidence with Early Spanish Chronicles,” Journal of

    Vulcanology and Geothermal Research 115, nos. 3–4 (2002): 529–570.

    [21] Gary K. Waite, Eradicating the Devil’s Minions: Anabaptists and Witches in Reformation Europe, 1525–1600 (Toronto: University of Toronto Press, 2007).

    [22] 本节主要参考了Degroot, The Frigid Golden Age, chaps. 2 and 3。关于荷兰东印度公司的部分见该书第81页至第108页。

    第十四章 可怕的火山喷发(公元1808年至1988年)

    哥伦比亚天文学家弗朗西斯科·何塞·德卡尔达斯感到十分困惑。他从1808年12月11日就开始观察到,平流层里有一层持久存在的“透明之云,翳金乌之辉”。他的观察结果进一步指出:“[日之]自然赤色已转银白,至众人皆误以为月。”[1] 秘鲁利马的一位外科医生也注意到,日落时分的晚霞异于寻常。这两位目击者的描述,是唯一记录了一场大规模火山喷发的第一手资料;那场火山爆发很可能发生在东南亚,对全球广大地区的气温都产生了影响。唯一的另一项记录,则是坦博拉火山大爆发5年之前,南极冰芯中的硫酸盐含量达到了一个峰值;坦博拉火山也位于东南亚,于1815 年喷发。

    神秘莫测的火山喷发,并不是只有一次。从 1808 年至1835 年间,全球至少出现过5场重大的热带火山喷发;在那几十年里,4月至9月间的气温与随后气温较高的30年相比低了0.65℃左右。[2] 这种显著的降温,很可能与猛烈的火山活动有关。高山冰川的面积不断扩大。这些火山活动导致的气温变化,减少了印度、澳大利亚和非洲的季风活动,带来了干旱,并在尼罗河的低泛滥水位和东非地区的低湖泊水位中体现出来。火山爆发之后,大西洋—欧洲气旋的路径便南移了,而这种南移,与非洲季风活动的强度降低之间具有关联性。

    火山活动就是“小冰期”的最后阶段以广泛的气候波动而引人关注的一个原因;这些气候波动,持续了十年或者数十年之久。火山活动消停之后气温又快速上升,反映出全球气候系统在经历了一系列罕见的火山爆发,或许还有与“工业革命”初期有关的某种有限的人为变暖之后的恢复情况。但从18世纪末和19世纪初以来,随着“小冰期”为长期的变暖所取代,人类导致的温室气体增加就在长期性的气候趋势中占据了首要地位。

    火山爆发频繁的那些年,也是社会和政治动荡不安的时期。火山及其原生熔岩流与灾难性的爆炸,成了时髦的奇观。意大利维苏威火山喷发后形成的火山口不但成了一处旅游胜地,还是当时“壮游”[3] 中的一个亮点。一些不那么富有的寻欢作乐者,则可以在伦敦的休闲公园与剧院里一睹壮观的火山爆发场景。“维苏威火山大爆发,喷出滚滚烈焰”(The Eruption of Vesuvius Vomiting Forth Torrents of Fire)这样的标题,就有可能让一家报纸在竞争激烈的广告行业中大获成功。

    失控的火山爆发(公元1815年)[4]

    与东南亚太平洋“火山圈”发生的大规模火山爆发相比,维苏威火山喷发只能算是小打小闹,且过去与现在都是如此。取自北极与南极地区的冰芯表明,1808年西南太平洋地区曾经出现过一场大规模的火山喷发(至于具体日期,仍然有待确定),是15世纪初以来规模位列第三的一次大喷发,其规模仅次于坦博拉火山爆发(参见下文所述)和1458年西南太平洋地区瓦努阿图岛上的库维火山喷发。1808年的火山爆发导致遥远的英国都降了温;那一年的整个春季,苏格兰低地山丘上的积雪都久久未化。在英国南部的曼彻斯特,5 月清晨的气温竟然到了冰点以下。1810年的夏季,接连数周之内的天气都是阴云密布。

    一次大规模的火山爆发,对全球气温的影响会持续一两年的时间;这一点,与一系列火山爆发(其中也包括1808年的那一次)造成的影响大不相同。1815年东南亚松巴哇岛上的坦博拉火山爆发之前,全球气温已经因为 1808 年那场火山喷发而下降了;坦博拉火山爆发,是现代最猛烈的一桩火山事件。坦博拉火山长期处于休眠状态,但如今我们得知,它在 77,000 年以前曾经喷发过,对亚洲以外的遥远地区也产生了影响。1815年那场灾难与之前相隔久远的历次喷发一样,是一桩真正的全球性事件。

    隆隆作响了数个星期之后,1815年4月5日晚,坦博拉火山开始喷发了。在3个小时的时间里,山上不断喷出巨大的火苗和一团团火山灰云。5 天之后,火山爆发,炽热的熔岩从山坡上倾泻而下,发出耀眼的光芒。有多达1万人因困于火焰、火山灰和熔岩中而死去。两三天之后,坦博拉火山坍塌下去,形成了一个宽达6千米的火山口,原来的顶峰则不见了踪影。此山的高度在爆发中减少了1 500米,而其爆炸之声,数百千米以外亦可听到。船舶上积满了厚度1米多的火山灰。云层之中尽是灰烬,遮天蔽日,将白昼变成了黑夜。火山爆发引起的海啸对沿海地区造成了严重的破坏,导致了大量的人员伤亡。喷发造成的一座座浮石岛屿向西最远漂到了印度洋中部。在方圆600千米的范围内,整整两天都是天色昏暗,有如黑夜。整个地区都变得难以辨认,田地尽毁。随着这场灾难的影响不断加剧,有数以千计的人都死于饥饿。松巴哇岛上的森林尽数被毁,此后也一直没有完全恢复原貌。如今,人们对那场火山爆发的情景仍然记忆犹新。

    当地人还把 1815 年 4 月坦博拉火山爆发的那段时间称为“灰雨时期”,这是有充分理由的。[5] 从全球范围来看,坦博拉火山爆发造成的环境影响与社会影响,一直持续到了遥远的将来。此山喷出的火山灰量,达到了1980年美国华盛顿州圣海伦斯火山喷发的100倍。1883年的喀拉喀托火山爆发同样位于东南亚,它是人们系统地加以研究的第一场大规模爆发,使得直射到地球上的阳光量减少了15%至20%。

    这场火山喷发之后不久,火山灰便开始在平流层里肆意飘散起来。巨大的火山灰云加上其中的硫酸盐气体,形成了气溶胶;由于气溶胶的密度变得很大,足以将太阳能反射回太空,故平流层的温度升高,地表温度却下降了。陆地、海洋与天空之间的热同步遭到了破坏,季风以及原本长达3个月的季风降雨也遭到了削弱。1816年,南亚的广大地区并没有出现倾盆而下的季风雨,反而遭遇了干旱。气温的波动非常剧烈,储水罐里的饮用水见了底,庄稼也无法再播种,免得播下去之后枯死。降水不足严重地抑制了树木的生长。1816 年9月大气状况恢复过来之后,季风却一反常态地猛烈袭来,造成了大范围的洪涝灾害。

    在地球的另一端,坦博拉火山爆发则导致了欧洲1816年的阴冷天气。那一年的冬天十分寒冷,暴风雪无比猛烈;随着那一年过去,形势也没有出现任何好转。事实上,1816年还被人们称为“无夏之年”;这种叫法虽然恰如其分,但它掩盖了此次事件的规模:这是一次全球性气候异常现象,而不是一桩孤立的气候事件。

    那个不同寻常的夏季里,英国诗人珀西·比希·雪莱曾经携其第二任妻子玛丽,在诗人拜伦勋爵的陪同下去瑞士度假,并且在“猛烈至极的狂风暴雨”中攀登过阿尔卑斯山。当时,这对夫妇和当地人都抱怨天气寒冷,降雨几乎连绵不断,狂风与雷暴把他们困在屋子里。那是自1753年有记载以来,日内瓦最寒冷的一个冬天,4月至9月间下了130天的雨,7 月甚至下过雪。为天气所困的玛丽,写下了她那篇标志性的恐怖小说,讲述了一位名叫“弗兰肯斯坦”的年轻科学家的故事;如今,弗兰肯斯坦已经成了文学作品当中一个不朽的角色。[6] 拜伦则创作了一首题为《黑暗》(“Darkness”)的诗歌,描述了极其寒冷的一天,那天寒冷到小鸟在中午就回巢栖息。在那可怕的一年里,人们连牲畜的草料也买不起,所以马匹要么死去,要么被宰杀吃掉。在边境另一侧的巴登,这种情况还激发了德国发明家卡尔·弗赖尔·冯·德莱斯的灵感,使之发明了“跑步机”,后来则称为“脚踏车”,用以取代马匹。不过,他的这种脚踏机器(即自行车的前身)因危及行人的安全,故被当局禁止使用,连印度车水马龙的加尔各答也是如此。[7]

    整个生长季里的异常低温不但毁掉了牲畜的草料,而且毁掉了所有的庄稼收成。英国的小麦达到了1816年至1857年间的最低产量,当时食物支出占到了一个家庭预算的三分之二。[8] 法国的作物收成只有正常情况下的一半,部分原因就在于大范围的洪水泛滥和雷暴、冰雹。当年的葡萄收获始于10 月19 日,是多年以来最晚的一次。粮食价格上涨了,但幸运的是,以前收成中余下了大量储备,让粮食暂时保持着合理的低价。由于交通运输条件有了一定程度的改善,加上粮食进口,故当时出现的仅仅是粮食短缺,而不是一场普遍的饥荒。尽管如此,德国还是陷入了一场全面的粮食危机,而苏黎世的大街小巷里也挤满了乞丐。社会动荡、粮食骚乱和暴力事件在欧洲各地频频爆发,而当时的欧洲仍未从拿破仑战争的浩劫当中恢复过来。

    制造业与贸易停滞、普遍失业和英国经济快速工业化所带来的压力造成了大范围的骚乱,但它们都被国民卫队镇压下去了。爱尔兰刚刚开始依赖从南美洲引入的那种不耐霜冻和潮湿的主要作物,即土豆,由于救济工作做得不足而陷入了大范围的饥荒之中。[9] 这场生存危机导致欧洲各地出现了大规模的移民现象,成千上万饥肠辘辘的穷苦百姓沿着莱茵河而下,前往荷兰,寻找去往美洲的途径。有2万多名穷困潦倒的莱茵兰人[10] 移民到了北美洲,以逃避在高度分散和作物歉收风险越来越高的土地上从事自给农业的悲惨命运;至于迁往美洲的英国人和爱尔兰人之多,就更不用说了。

    乱局(公元1815年至1832年)

    暴风雨天气一直持续到了第二年。到了1817年,孟加拉湾的水环境产生了刺激作用,导致潜伏在干旱地区水域中的霍乱细菌出现了基因突变。坦博拉火山爆发导致的异常旱涝灾害,诱发了一场全球性的霍乱疫情,令印度人和欧洲人都大量死亡。(据估计,光是爪哇岛一地就死了12.5万人,比死于火山喷发中的人还要多。)国界在霍乱面前形同虚设,疫情势不可当地蔓延着。霍乱在1822年传到了波斯,1829年传到了莫斯科,1830年传到了巴黎,1年之后又传到了伦敦,并在 1832 年蔓延到了北美洲。疫情对历史的长期影响是巨大的。霍乱让这个刚刚连通起来的世界面临着瘟疫带来的种种危险,并且让拥挤不堪、穷困潦倒的贫民窟里疾病肆虐,导致了种种社会不平等现象。[11] 坦博拉火山爆发造成的气候影响,为一场破坏力堪比黑死病的瘟疫奠定了基础。

    坦博拉火山爆发之后的 1816 年夏季,中国上空曾经呈现出瑰丽的色彩。目击者阿裨尔(Clarke Abel)如此描述:“粉色斑斓,层层叠叠……骤升于天际。”诚如环境专家吉伦·达西·伍德恰如其分地指出的那样:“我们完全可以这样来形容坦博拉的火山灰尘:它是一种迷人的致命之物,对各国而言是伪装成壮观日落的悲剧。”[12] 由此带来的影响可谓立竿见影:华东地区的气温达到了历史最低,作物则基本歉收。在中国西北地区的陕西省,作物严重歉收令成千上万的民众到其他省份逃荒;他们的反应,与欧洲人无异。但受灾最严重的地方还是西南部的云南省,这是一个山区省份,与东南亚的贸易网络之间联系紧密。云南的群山之间,坐落着一处处土地肥沃的河谷,故长期以来都是一个种植水稻和小麦的粮仓。该省的气候温和、宜人,猛烈的印度季风和东亚季风都无法为害。18世纪末和19世纪初云南的农业集约化使得当地人口猛涨数倍,从1750年的300万增加到了1820年的2,000万。

    1815 年的云南既无春季,也无夏季,因为坦博拉火山爆发之后刚过了一个月,那里的天气就开始寒冷起来。多云多雨的天气毁掉了冬季作物;8 月份的霜冻则冻坏了稻田,让水稻也颗粒无收。由于寒冷的北风导致作物收成减少了三分之二,甚至可能更多,所以从1815年至1818年,这里就陷入了一场可怕的饥荒之中。气温比平均水平低了 3℃左右。这种温差看似很小,但别忘了:气温每下降 1℃,作物的生长季就会缩短3个星期。不幸的是,1814年的一场旱灾已经让云南的粮食储备消耗一空,因此这里出现了大范围的饥荒。1816 年,这里不但下了雪,还再次出现了一场由寒冷气温和史无前例的冰雾导致的水稻歉收。这场饥荒,直到1818年大气条件恢复正常之后才得以缓解。

    到了 1817 年初,清朝中央政府对这种紧急情况充分警觉起来,于是各级官吏开始从官方粮仓中拨出免费粮食来赈灾。这种做法并不新鲜,因为中国的官吏一直都仔细地监测着粮食的价格与分配情况,已有数个世纪之久。他们在收获季节征收粮食,然后到了冬季和春季,随着当地粮食供应减少和价格上涨,他们又会分发粮食。据本地官吏称,当时云南储存的粮食足够该省的每个成年男子吃上一个月之久。不过,由于政府多年来对粮仓疏于管理,故这个系统很快就分崩离析,而民众也陷入了饥荒之中。于是,他们转而开始种植经济作物。云南的罂粟种植面积激增,从而催生出了利润丰厚的鸦片贸易。一个世纪之后,云南的粮食几乎就全靠从东南亚进口了。鸦片贸易在18世纪和19世纪发展起来,以英国为主的西方国家纷纷把印度种植的鸦片出口和销售给中国;中国国内也种有鸦片。然后,英国人再用鸦片销售的利润购买中国的奢侈商品,比如瓷器、丝绸和茶叶,因为西方国家对这些商品的需求量都很大。

    美洲的退化?(公元1816年至1820年)

    在西半球,“无夏之年”不但已经变成了一个历史传说,也是数个世代以来北美洲历史上被人们撰文论述得最多的一桩气候事件。当时许多人都称之为“19世纪的冻死之年”(Eighteenth Hundred-and-Froze-to Death)。 1816 年 5 月初,美国华盛顿特区的上空中出现了尘埃云。同样是在5月初,格陵兰岛东部上空形成了一个强大的高压系统,引导着北极地区的大气南移,且那一年的隆冬时节也是如此。由于有一个巨大的低压槽驻留在北美洲的五大湖区上空,故冷空气涌入了新英格兰地区之后,那里的气温就大幅下降了。5月中旬的一场黑霜,毁掉了刚刚种植的作物;当时还出现了一股寒潮,给整个美国东北部带来了厚达三分之一米的降雪。寒冷刺骨的气温笼罩着整个东部地区,向南远至弗吉尼亚的里士满,西至俄亥俄州的辛辛那提。6月、7月下旬和8月接着出现了霜冻;历史记载中,只有这一年出现过此种情况。在康涅狄格州的纽黑文,作物的生长季缩短到了只有70天;干草十分紧缺,牛群则变得饥肠辘辘。[13]

    干旱天气加上异常寒冷,一直持续到了1817年;当时,业已退休的美国总统托马斯·杰斐逊曾称,他家的大部分庄稼都出现了歉收。3 年之后,他就面临破产了,因为作物歉收让他进一步陷入了债台高筑的困境。杰斐逊向来希望美国成为一个农业大国,可此时他的这个梦想似乎受到了威胁。法国著名的科学家布丰伯爵曾因很少提及上帝在气候与自然中的作用而遭到过神职人员的批评,可正是此人声称,北美洲的持久寒冷不可能让作物和小型物种以外的任何动物存活。这是一种古老的观点,认为纬度决定了气候,以至于当时还有人说,欧洲殖民者在这片被布丰伯爵称为“十足沙漠”的土地上“退化”了。

    布丰伯爵的理论当然属于无稽之谈,只不过在广大听众当中一直都很受欢迎。就连玛丽·雪莱也曾提到,弗兰肯斯坦的怪物就是在“退化”的美洲想要逃离文明的。对于造访欧洲的美国人来说,天气变成了一个敏感的话题。18世纪80年代初担任美国驻巴黎大使期间,杰斐逊曾是祖国的积极辩护者。他那部具有里程碑意义的作品《弗吉尼亚纪事》(Notes on the State of Virginia )对布丰伯爵的种种假说发起了一次正面进攻。他以业已灭绝的猛犸的硕大体形和“精神之充沛及活力与吾等无二”的美洲原住民为例,既为祖国的民众辩护,也为祖国的动物辩护。至于美国的西部,则是一幅健康与幸福的景象。[14] 对于美国,杰斐逊心怀一种充满激情的帝国愿景。他曾与布丰伯爵共进晚餐。两人用一种极其文明的方式,一致同意求同存异。

    与17 世纪一样,19世纪早期许多论述美国的作品中充斥着的气候乐观主义,在创纪录的寒冷面前并未保持下去;那种寒冷首先是由 1808 年的火山喷发引起的,这次喷发导致纽黑文的气温远远降到了平均水平以下。接下来是坦博拉火山的爆发,它主要影响的是美国的东部沿海地区,而在像俄亥俄州这样位于其西部的地区,当年的庄稼还获得了丰收。不过,坦博拉火山事件带来的严寒,让美国的经济陷入了一场从1819年持续到1822年的萧条之中。许多人为了逃离经济萧条而迁往西部,从而形成了美洲历史上第一次为气候所驱动的大规模移民,可他们最终却沦为了土地投机商的牺牲品,只能任其摆布。除了这些移民,还有成千上万为逃离欧洲的恶劣条件而来的移民,所以这里不可避免地出现了地产泡沫和信贷危机。随着欧洲的农作物产量在 1820 年之后大幅增加,美国棉花与小麦的价格也急剧下跌了。到了此时,金融恐慌已经导致300多家银行在一夜之间倒闭。总而言之,坦博拉火山爆发不仅导致美国商品的欧洲市场崩了盘,而且削弱了金融系统和美国经济的方方面面,在美国人口还只有区区1,000 万的一个时期,导致了可能在 19 世纪最具破坏性的一场经济危机。

    以煤驱寒(公元1850年及以后)

    “小冰期”是什么时候结束的呢?长期以来,传统观点一直认为是在 1850 年左右,认为其结束与工业活动日益加剧导致的持续变暖有关。然而,据取自瑞士阿尔卑斯山上的冰芯来看,情况却并没有这么简单。

    在19 世纪中叶的冰川最盛期,全球大约有4,000 座大小不一的高山冰川,它们延伸的距离差不多是如今的 2 倍。接下来,它们在1865年前后开始消退。科学家长久以来都认为,是气温上升和降雨减少导致了冰川的快速消退,从而标志着“小冰期”的结束。但最终证明,这种假设是错误的,因为冰川消退的时候,当地的气温比18世纪末期和19世纪初期更低。降雨量显然也没有发生变化。所以,还有某种强迫机制在发挥作用,导致了冰川的神秘消退。

    人们在海拔大约4,000米的地方钻取的高海拔冰芯表明,当时的炭黑排放量及含碳气溶胶都急剧增加了;这种情况,在一定程度上是由化石燃料的不完全燃烧和其他的人类活动导致的。[15] 这两种物质,随着工业革命的发展而进入了大气当中;工业革命 18 世纪中叶始于英国,然后在接下来的100 年里蔓延到了法国、德国和西欧的大多数国家。1850年以后,炭黑的排放量急剧上升。冰川研究人员将当时冰川上的炭黑能量效应进行转换之后发现,炭黑的融化效应导致了冰川消退,而没有导致气温出现剧烈的变化。由于阿尔卑斯山脉周边地区都在大力进行工业化,故此地冰川中的炭黑含量在1850年至1870年间迅速攀升,此后则稳步增长,一直持续到进入20世纪后的很长一段时间。

    为了取暖和工业用途而进行的煤炭燃烧,是造成污染的一个重要原因;同时,阿尔卑斯地区旅游交通的增长,也是如此。阿尔卑斯诸谷中的空气中弥漫着乌黑的烟尘,所以19世纪那里的家庭主妇从来就没有在户外晾晒过衣物。

    对于阿尔卑斯山脉上的冰川,人们的了解超过对世界上其他任何地方的冰川;因此,若是想当然地认为阿尔卑斯山地区“小冰期”的结束与其他地方的冰川消退时间相一致,那就错了。并不是所有的冰川都在19世纪60年代同时开始消退。早在1740年,玻利维亚安第斯山脉上就出现了冰川消退的现象;喜马拉雅冰川在19世纪中叶开始消退,而阿根廷与挪威等地的冰川则到 20 世纪初才开始消退。跟其他许多与气候有关的现象一样,气温变化与其他变化既是地方性的,也是全球性的。

    而且,欧洲也不是明确地在1850年之后变暖了。19世纪70年代各个年份都比较暖和,只是1875年之后偶尔出现过2月份极其寒冷和夏季湿润的情况。1878年至1879年间出现过一次短暂的寒潮,其间的气候条件堪比17世纪90年代。英格兰东部的农民过了圣诞节之后仍在收割庄稼;当时,产自美国大草原地区的廉价小麦正在铺天盖地地涌入英国的粮食市场。随后,就出现了农业萧条。此时也正是印度和中国持续出现季风不力的一个时期,有1,400万至1,800万人死于寒冷、干旱与季风不力导致的饥荒。晚至19世纪80年代,仍有数百名伦敦穷人在持久的寒潮中死于意外高热。1894 年至 1895 年间的隆冬时节,泰晤士河上出现了大块大块的浮冰。接下来,漫长的气候变暖开始了。从 1895 年至1940 年这差不多半个世纪的时间里,欧洲的冬季气候都相对温和。其间只有1916年至1917年间和1928年至1929年间的两个冬天异常寒冷,但完全没有出现“小冰期”里那种持久不断的刺骨之冷。

    19 世纪80 年代经济萧条的局面,导致移民如潮水一般迁往了各个新的国度。成千上万失业的农场劳力从乡村迁入了城市,或者搬到了澳大利亚、新西兰,以及他们觉得有生存机会的其他地方。19世纪的移民大潮,让渴望获得土地的欧洲农民纷纷迁移到了澳大利亚、北美洲、新西兰、南非以及其他地方,寻找未开垦的肥沃之地。他们像蝗虫一般蜂拥而至,砍伐了数以百万计的树木,以供耕种、取薪,并且为发展中的市镇和城市提供建筑所用的木料。[16] 大规模的森林砍伐让大气中的二氧化碳含量增加,从而助长了气候变暖。一座原始森林中,每平方千米的林木可以吸纳多达3万吨的碳;再加上其中的林下植物,它们吸纳的碳还会更多。树木被伐之后,它们不再吸收碳,故大部分碳就会进入大气当中。据一项估算,1850年至1870年这20年间全球农业生产和土地改造的剧增,导致大气中的二氧化碳含量增加了10%左右;即便是把海洋中吸收的碳算进去之后,也是如此。虽然在那些年里,古老的加州狐尾松中的同位素水平上升了,但其时燃烧化石燃料在整个环境中还是一个无关紧要的因素。我们可以把这种情况与 2020 年巴西亚马孙雨林中由农民与伐木工引发的 76,000 次林火造成的灾难性影响进行对比。光是2020 年 7 月,亚马孙雨林的面积就减小了1,345平方千米。

    燃煤是炭黑聚积的主要原因。早在1912年8月14日,新西兰北岛的一份报纸《罗德尼与奥塔马泰亚时报、韦特马塔与凯帕拉公报》上就曾指出:“如今,全世界的火炉每年都要烧掉大约20亿吨煤炭。煤炭与氧气结合进行燃烧后,每年会让大气中增加大约700万吨二氧化碳……几个世纪之后,由此产生的影响将会相当之大。”[17] 这篇默默无闻的文章,并不是人们头一次论述气候变暖的危害。早在一个月之前,即 1912 年 7 月 17 日,澳大利亚的《布雷德伍德快报》(Braidwood Dispatch )上就刊登过同样的报道,而那篇报道又是从同年 3 月发表过一篇类似报道的英国《大众机械》(Popular Mechanics )杂志上复制过来的。这种可怕的警告,并不是什么新鲜事。它们早已以某种形式,存在很长一段时间了。

    燃烧的问题(公元19世纪晚期)

    早在17世纪,伦敦人就对烧海煤(即在海平面或海平面以下的地方发现的烟煤)时会产生具有污染性的烟雾问题发过牢骚。感觉敏锐的约翰·伊夫林(John Evelyn)曾经抱怨过煤炭燃烧时产生的“烟汽”。英王查理二世想过一些办法来减少日益严重的雾霾问题,却无济于事。1843年,曼彻斯特至少有500座工业烟囱,使得整座城市都笼罩在一层“浓云”之下,而透过云层看去,太阳“宛如无光之盘”。[18] 到了19世纪50年代,伦敦已经成了全球最富裕、实力最强大的城市,随后又成了全球最拥挤和污染最严重的城市。到1900 年时,伦敦这座靠燃煤取暖的城市里已有650万人生活着。与此同时,该市的卫生问题却令人瞠目,让泰晤士河变成了一条可怕的下水道。该市有如“豌豆汤”一般的浓雾,阿瑟·柯南道尔爵士曾在其“夏洛克·福尔摩斯”系列小说中描写过;这种浓雾,不但在整个欧洲赫赫有名,而且一直持续到了20世纪中叶。工业活动与自然条件结合起来,便产生了一种有毒的大气。

    一个深奥的研究领域,也让人们产生了空气污染日益严重的印象,那就是19世纪绘画作品中的风景画。[19] J.M.W. 透纳(1775—1851)是一位风景画家,他在光线和气氛方面的表现主义研究生动而出众。在坦博拉火山喷发之后的3年里,他和一些画家一样,绘制过一些令人震惊的日落之景。

    透纳说过,他绘制风景画的目的,是展示场景的本来面貌。颜色较红的日落之景,可能就反映出了火山喷发的影响。20世纪70年代,气象学家汉斯·纽伯格(Hans Neuberger)曾经对欧洲与美国的美术馆里收藏的、绘制于1400年至1967年间的画作进行了分析。他的统计分析表明,几个世纪以来,画作中的云量都在缓慢增加,但1850年之后,画作中的天空就不再那么蔚蓝,空气也更加朦胧了;至于原因,除了艺术惯例,纽伯格还认为那是由于空气污染加剧,欧洲的蓝天逐渐消失了。如今,雅典国家天文台的一个小组正在对旧时无数大师绘制的日落作品进行研究。然而,诚如环境史学家业已指出的那样,我们必须将众多因素考虑进去,才能将这些作品视作当时气候状况的可靠指标来使用;这些因素中,也包括了艺术市场的种种时尚。尽管如此,许多知名度不那么高、描绘了19世纪末泰晤士河上航运情况的日常画作,却都以伦敦受到污染的天空中飘浮着一层薄雾为特点。

    虽说燃煤和工业污染是气候持续变暖的原因,可我们很难确定,人类活动究竟是从何时开始导致如今这种长期变暖局面的。在某种程度上,这是一个定义的问题。例如,成立于 1988 年的联合国政府间气候变化专门委员会就武断地将公元 1750 年定为起始点,认为工业活动从此开始更加广泛地扩散,从而导致化石燃料的使用与温室气体排放量增加。不过,人们将海洋的古气候数据综合起来之后,却得出了一种更加微妙的判断:海洋古气候数据表明,过去2,000年里海洋表面温度最低的时期出现在1400年至1800年间;这种情况,很大程度上是过去 1,000 年间火山活动加剧导致的。在许多地区,海面温度长期下降的趋势到了工业时代发生了逆转,与陆地上的相同温度趋势相吻合。海陆两种趋势都表明,全球变暖是在1800年之后开始的。

    这些关于平均气温的资料,都掩盖了显著的地区性气温差异。19 世纪30年代,热带海域开始持续变暖,北半球的陆地变暖也反映出了这一点。大约50年之后,南半球(尤其是大洋洲和南美洲)才开始变暖。这里具有争议的问题,就是气候变化带来的影响究竟在何时超出了各种自然体系能够适应的气候变化范围。最新评估表明,属于20世纪的标志性特征并且持续至今的大范围气候变暖源自一种持续的趋势;这种趋势,早在19世纪30年代就在热带海洋和北半球的部分地区开始了。火山活动有没有在其中发挥作用呢?坦博拉火山爆发导致的降温并没有持续下去,反而是随着气候的恢复,进入了一个全球加速变暖的间隔期。情况极有可能是,到了 19 世纪中叶,工业时代气候变暖的“温室强迫效应”就已开始,并且持续至今。

    人为变暖(公元1900年至1988年)

    1900 年至 1939 年间是一个西风频现、冬季气候温和的时期;这两个方面,正是北大西洋涛动处于高指数阶段的典型特征。亚速尔群岛与冰岛低压之间的气压梯度十分陡峭,足以维持盛行风。世界各地的气温都在20世纪40年代初达到了峰值,而像冰岛和斯匹次卑尔根岛这些靠近北极的地区,气温也明显上升了。北方的浮冰面积减少了 10%左右;高山上的雪线上移;船只每年可以抵达斯匹次卑尔根岛的时间达到了5个月,而在20世纪20年代却只有3个月。欧洲北部和西部降雨增多,使得“一战”中的西线战场变成了一片泥泞的荒野。随着气候持续变暖,充沛的降雨也持续到了20世纪20年代和30年代。1925年以后,高山冰川退入了山间,从一座座谷底消失了。更强劲的太平洋西风带不但导致了20世纪 30 年代美国俄克拉何马州的“尘暴”,而且增加了落基山脉频频出现干燥之风的可能性。大气环流的变化,使得印度季风更加稳定可靠,在1925年至1960年间只出现过两次强度稍有不足的情况。

    20世纪40年代,科学家开始讨论气候持续变暖的问题,因为这种变暖已经超过了以前各个时代正常的气候波动范围。据他们推测,长此以往,北极冰川将会消退,北方的浮冰也会消失。不过,他们并没有把人类的行为考虑进去,比如砍伐森林或者使用化石燃料,因而将大多数人为造成的变化排除在外,免除了人类的责任。当时,气候研究还处于起步阶段,没有计算机模型、卫星以及全球天气跟踪技术。除了无工具可用,降雨和气温的持续变化往往还掩盖了一些至关重要的长期性趋势。人们也缺乏时间跨度以千年和世纪计,并且经过了精心组织的气象资料。

    随着西风带的强度减弱和欧洲西部气候变得更加寒冷、冬季通常也变得更加干燥,北大西洋涛动在20世纪60年代转入了一个低指数阶段。1965年至1966年间,波罗的海完全为冰层所覆盖。1968年的冬季异常寒冷,冰岛自1888年以来第一次被北极海冰所环绕。那一年,欧洲东部和土耳其也经历了两个世纪以来最寒冷的一个冬天。美国中西部和东部地区出现了创历史纪录的低温,使得许多人都认为,另一个“大冰期”即将来临。

    1971 年至 1972 年间,北大西洋涛动突然发生了变化。气候变暖重新开始,速度似乎还加快了。波罗的海上,1973年至1974年间全然无冰。英国度过了自1834年以来气温最高的一个夏季。1975 年至1976 年间,创纪录的热浪席卷了西欧的大部分地区。越来越多的极端天气和日益增加的飓风活动,再加上无数场干旱,描绘出了一幅与20世纪初截然不同的全球气候图景。1988年出现了一个暴露政治真相的时刻,一场2个月的热浪在美国中西部和东部地区肆虐。密西西比河上,一长段一长段的河道几近干涸。驳船搁浅了数个星期之久。“大平原”上约有一半的庄稼歉收,而美国西部为干旱所困的乡村地区则有 1,000 多万公顷的土地发生了火灾。1988 年 6 月23日,美国参议院在华盛顿特区举行的一场听证会将气候变化与全球变暖从一个鲜为人知的科学问题变成了一个公共政策的问题。气候学家詹姆斯·汉森在美国参议院的能源和自然资源委员会做证的那一天,气温高达38℃。[20] 汉森利用世界各地2,000座气象站的数据证明,不但全球气温在过去一个世纪里变暖了,而且20世纪70年代初期以后,全球气温再度急剧上升。他直言道,由于人类胡乱使用化石燃料,地球正在永久性地变暖。我们未来的气候当中,将出现更加频繁的热浪、干旱和其他极端气候事件。

    他的证词,在一夜之间就将人为造成的全球变暖问题推到了公众的视野当中。从那以后,还没有哪一桩气候事件证明汉森的观点是错误的。

    但是,气候变化意识慢慢地进入了公众觉悟的背景当中。工业发展不但改变了美国的经济,还导致美国形成了一种复杂的金融制度;这种制度发挥了巨大的作用,让绝大多数美国人都不会受到作物歉收与气候突变等严酷现实的影响。不过,自20世纪90年代以来,气候变化已经变成了公众关注的焦点;之所以如此,在很大程度上是因为大规模的厄尔尼诺现象、持续的升温和漫长的干旱周期造成了巨大的破坏。人类活动正在导致全球势不可当地变暖,这一点如今已为科学所证实。正是如今,在一个人为导致气候不断变暖的世界上,气候变化才迅速变成全球政治中的一个重大问题;尽管仍有一些落伍的理论家在喋喋不休,也是如此。

    [1] 弗朗西斯科·何塞·德卡尔达斯(Francisco José de Caldas)

    在1805年至1810年曾任哥伦比亚波哥大天文台的台长一职。引自A.

    Guevara-Murua et al., “Observations of a Stratospheric

    Aerosol Veil from a Tropical Volcanic Eruption in December

    1808: Is This the ‘Unknown’ ~1809 Eruption?” Climate of

    the Past Discussions 10, no. 2 (2014): 1901。这桩神秘的火山

    喷发事件究竟发生在1808年末还是1809年,如今仍然存有争议。

    [2] Stefan Br.nnimann et al., “Last Phase of the Little Ice Age Forced by Volcanic Eruptions,” Nature Geoscience 12 (2019): 650–656.

    [3] 壮游(grand tour),旧时英国富家子弟游历欧洲各主要城市的一种教育旅行。——译者注

    [4] 原文为FRANKENSTEIN’S ERUPTION。其中的FRANKENSTEIN(弗兰肯斯坦)是英国女作家玛丽·雪莱1818年发表的长篇小说《弗兰肯斯坦——现代普罗米修斯的故事》(或译《科学怪人》)中的主人公,是个热衷于研究生命起源的生物科学家。此人尝试用不同尸体的各个部位拼凑出一个巨大的人体,并且最终创造出了一个怪物。后来,“弗兰肯斯坦”一词就变成了“作法自毙者”或“失控的创造物”等的代名词。——译者注

    [5] 此处我们参考了Gillen D’Arcy Wood, Tambora: The Eruption That Changed the World (Princeton, NJ: Princeton University Press, 2014),这是描述那次火山喷发的一部优秀的通俗作品;还有William Klingaman and Nicholas P. Klingaman, The Year Without Summer: 1816 and the Volcano That Darkened the World and Changed History (New York: St. Martin’s Press, 2013)。

    [6] Miranda Shelley, Mary Shelley (London: Simon & Schuster, 2018).

    [7] 卡尔·弗赖尔·冯·德莱斯(Karl Freiherr von Drais,1785— 1851)是一位多产的发明家,他不但发明了脚踏车,还在1821年发明了最早的带有键盘的打字机,甚至发明了用脚来蹬踩的人力轨道车,即如今轨道手摇车的前身。1848年,作为对法国大革命一种迟到的致敬,他放弃了自己的贵族头衔,去世时身无分文。

    [8] John D. Post, The Last Great Subsistence Crisis in the Western World (Baltimore: John Hopkins University Press, 1977),是一份权威的参考资料。

    [9] 关于爱尔兰的饥荒,见Wood, Tambora, chap. 8。

    [10] 莱茵兰(Rhineland),旧地区名,也称“莱茵河左岸地带”,位于如今德国的莱茵河中游,包括今北莱茵—威斯特法伦州、莱茵兰—普法尔茨州。——译者注

    [11] Christopher Hamlin, Cholera: The Biography (New York: Oxford University Press, 2008),是一部标准的作品。

    [12] 引自Wood, Tambora, 97。此书第5章中描述了云南发生的一些事件,我们的论述便是以此为基础的。

    [13] 本段参考了Wood, Tambora, chap. 9。

    [14] Thomas Jefferson, Notes on the State of Virginia (Chapel Hill: University of North Carolina Press, 2006). 1784 年初版于巴黎。

    [15] Thomas H. Painter et al., “End of the Little Ice Age in the Alps Forced by Industrial Black Carbon,” Proceedings of the National Academy of Sciences 110, no. 38 (2013):15216–15221.

    [16] Richard H. Grove, Ecology, Climate, and Empire: Colonialism and Global Environmental History, 1400–1940(Cambridge, UK: White House Press, 1997).

    [17] Rodney and Otamatea Times, Waitemata and Kaipara Gazette, August 14, 1912.

    [18] Peter Brimblecombe, The Big Smoke: A History of Air Pollution in London Since Medieval Times (Abingdon, UK: Routledge, 1987). See also Stephen Halliday, The Great Stink of London: Sir Joseph Bazalgette and the Cleansing of the Victorian Metropolis (Stroud, UK: Sutton, 2001).

    [19] C. S. Zerefos et al., “Atmospheric Effects of Volcanic Eruptions as Seen by Famous Artists and Depicted in Their Paintings,” Atmospheric Chemistry and Physics 7, no. 15(2007): 4027–4042; Hans Neuberger, “Climate in Art,”Weather 25, no. 2 (1970): 46–56.

    [20] James Hanson, congressional testimony, June 23, 1988.

    第十五章 回到未来(今天与明天)

    美洲、罗马、中国、印度;洪水、火山、干旱、温和年份;饥荒、战争、剥削、适应,以及合作。在本书中,我们已经讲述了许多关于人类祖先成功和不成功地应对气候变化的故事。但在当前这种气候变化的背景之下,过去还重要吗?毕竟,除了少数否认气候变化的人,大多数人都一致认为,如今气候变化的原因就是我们自己在工业时代的行为;可在19世纪以前,这样的变化是自然促成的。正如一群气候学家最近强调的那样,古时的气候变化大部分都发生在局部和地区的层次上,而如今人为导致的变暖与气候变化却是持续不断和全球性的;现在,我们可以在全球范围内几乎同时共享气候变化的信息了。[1] 这些即时性的联系,赋予每个人以新的力量。无论是谁,都可以对未来的气候变化施加影响;这种情况,有时被称为“格蕾塔·通贝里效应”。那么,为什么有人要去关注工业化之前众多常常互不联系的社会适应气候变化的方式呢?我们那些业已作古的祖先的经验,对于我们今天正在面对、未来甚至要更加直接地面对的气候变化,又可能具有哪些意义呢?正如小说家 L.P. 哈特利在1954 年所写的那样:“过去有如他乡,人们行事方式相异。”[2]

    尽管在本书论及的3万年间,整个世界已经发生了沧桑巨变,一如我们的经济发展,但我们以及生活在这万千年里的人们,无论肤色还是国籍,都具有很浅的进化根基。我们智人在本质上都很相似,全都拥有相同的激素、躯体、血液和大脑潜能。而且,由于我们属于同一物种,故我们对意外事件所做的反应常常具有惊人的相似性,跨越了时间与空间。我们之所以明白这一点,是因为亲历者对古罗马人在维苏威火山爆发那场灾难发生后所做反应的描述,听起来与人们对1815 年坦博拉火山爆发或者对1980年美国西北部太平洋沿岸圣海伦斯火山爆发的反应出奇地相似。2005年8月“卡特里娜”飓风将美国新奥尔良变成一片汪洋和 2012 年超级风暴“桑迪”袭击古巴和美国东部地区的时候,人们也出现了同样的行为。

    从这些自然灾难当中,我们已经得知,最强大的顺应与生存武器,就是人类身上一些可以追溯至遥远过去的品质:在适应和恢复过程中进行地方性合作十分重要;不论是社群之间、亲族群体之间进行合作,还是常常有可能在政治、宗教或者文化上处于对立状态的范围更广的群体之间进行合作,都是如此。回顾过往,我们还能看出人类这个物种所有的潜在行为;虽然其中一些行为令人毛骨悚然和具有剥削性,但我们也可以从中吸取教训。

    新的科学研究也正在彻底改变我们对过去那些全球性的和地方性的气候变化的看法。半个世纪以前,我们对过去2,000 年间欧洲和美洲的气候情况还知之甚少。如今,我们却可以破译 2,000 年甚至是更久的季节性气候变化密码了。在中国和印度、澳大利亚和新西兰以及太平洋诸岛上进行的研究表明,气候变化在人类历史上始终都是一种强大的驱动因素,只是常常并不引人注目罢了。我们也得知了当前的许多情况,明白了我们人类对全球生态系统已经造成并将继续造成的生态危害。许多研究气候变化的人士都预测说未来很危险,因为未来世界在很大程度上将受到日益激增、居住之地也越来越近的人口影响,以及受几乎全部由人类活动导致的气候变化所影响。他们恰如其分地呼吁人们寻找解决方案,减少人为导致的变暖。这依然是一个全球性的问题,而不能成为一个被狭隘的民族主义和党派政治所模糊的问题。[3]

    我们要重申这一呼吁。人人都须牢记,我们是同一个物种,只有很浅的进化根基,代表了全球之间的紧密联系;而且,我们都是过去和未来的参与者。

    生而为人

    之所以说我们的根基很浅,是因为我们所处的现代工业世界建立在不久之前的奴隶制度与殖民主义的基础上。为了证明利用奴隶和剥削其他国度具有正当性,西方殖民主义者曾经强调,世界不同地区的人(或者“种族”,这是一个难以明确分类的术语,很大程度上是以肤浅而容易改变的外貌为基础)之间存在一条鸿沟。这种洗脑之举,根深蒂固。直到20 世纪90 年代,许多人类进化论者还认为,不同大陆上的现代智人之间的进化关联都极其久远(差不多有200万年),而且不同“种族”是在不同的地区同时进化出来的,比如在中国、欧洲、非洲等等。可如今我们得知,我们这个物种是在大约30万年前于非洲登上历史舞台的,身体结构(即生理上,可能心理上也是如此)则在15万年前以后变得和现代人完全一样了;所有生活在非洲以外的人,都是在大约5万年前离开那个大陆的。

    的确,其中有些人后来跟尼安德特人和其他物种繁育过后代,但由此遗传下来的 DNA,却并未局限于单一的肤色、头发类型或者头部形状,而且绝对不会造成种族主义者所鼓吹的种种巨大差异。作为一个物种,我们在生物学上很相似。我们的外貌属于表面现象,且容貌也很容易在一代人的时间里就发生改变。而具有普遍性和让我们成为“生理结构上的现代人类”的,是我们的内在布局:我们都有一个很大的脑袋,具有说话、提前规划和创造性思维的能力。这些能力,有助于定义我们作为智人的独特身份。把现代人类与世间其他动物区分开来的关键行为特征,就是文化。文化既是人类的一种独特属性,也是我们适应不断变化的环境的主要手段。

    不过,文化具有悠久的历史,比我们人类这个物种的历史还要悠久。

    让维多利亚时代那些顽固不化的人大感恐惧的是,我们竟然属于裸猿。我们的整个进化起源,可以追溯到600万年前甚至更久以前,追溯到早期人类与现代黑猩猩的祖先分道扬镳的时候。我们只发现了在那数百万年之后人类文化的证据:在肯尼亚境内发掘出的具有330万年历史的“洛迈奎3号”(Lomekwi 3)遗址中,出现了粗糙的残破石器这种考古记录。

    洛迈奎3号出土的石器

    这些工具表明,一个古老的人类物种已经开始巧妙地利用天然石块为自己服务了。诚然,还有一些聪明的动物也会使用工具——我们会想到章鱼和黑猩猩——但它们不可能达到我们如今和过去已经达到的那种程度。

    只有人类依赖于各种各样的“物质文化”(即我们制造出来的东西),并将其当成自身与环境之间的缓冲之物,而不是只依靠我们的身体。这一点独一无二,与依赖皮毛、獠牙、网子、毒液、兽角等的其他动物截然不同。文化具有令人着迷的多样性:如今极北之地的因纽特人会缝制厚厚的多层衣物,建造圆顶冰屋,并且用石头、鹿角和兽角制成的器具捕杀猎物为食,而大多数伦敦人却住在砖木房屋里,穿着工厂里生产出来的布料衣物,从超市里购买食品,并且使用计算机。但是,我们可不能为这种多样性所蒙蔽,以至于看不到我们固有的相似之处。

    尽管种类繁多,但所有的人类文化都有一个共同的特点,那就是它们会持续不断地适应各种各样的变化。在狩猎社会中,一群驯鹿有可能在毫无征兆的情况下改变它们的春季迁徙路线;邻近群落(或者街道)的亲族可能发生争执;从其他女性那里搜集到的消息,有可能导致一个群体迁徙到20千米以外的地方去采摘成熟的果子。自给农民有可能因土地继承的问题而发生纠纷,在饥馑岁月里有可能靠住在一定距离之外的亲族提供食物。城市领导人有可能争夺贸易线路,甚至发动战争来控制像铁矿、大米或石油之类的资源。所有社会,在做出决策或者讨论决策时都会出现动荡。

    令人瞩目的是,人类常常以同样的通用方法来适应。这就是为什么迁徙是适应策略中的一种强大催化剂。数千年以来,迁徙始终都是一种合乎逻辑的适应策略。不过,当我们回顾更加久远的过去时,由于没有文献记载,故我们有可能很难理解以前经济、环境、政治与社会方面的变化。适应过程很复杂。考古学家如今已经变得相当擅长发现重大经济变化和技术变化的痕迹,比如从狩猎与采集变成农业与畜牧业。虽然人类的许多行为都存在于无形的领域——比如,我们虽然无法发掘出一种业已消失的语言,或者一种早已失传的口头传统——但我们可以看到帮助我们适应了重大气候变化的种种技术创新。

    在“大冰期”末期的严寒气候中,生活在欧亚大草原上的人们曾穿着用有孔针缝制的分层服装御寒,但这并不意味着,这些生活在“大冰期”里的人是最早使用针这种工具的人;他们并不是率先使用针的人,因为南非斯布都洞穴的古人早在61,000 年前就使用这种工具了。大约 15,000 年前,陶罐开始被用于烹煮和储存食物。但同样,人们甚至在更早的时代就已经使用陶土了,它们以装饰性的小雕像形式留存于世。人类能够创新,但聪明的人还会从过去和别人那里吸取教训。用于制造斧头和刀剑的青铜,彻底改变了农业与战争;随后又出现了硬度更大的铁,以及被各地群落迅速采用的冶炼方法。灌溉技术与城市卫生设施,以及战车与有舷外支架的独木舟,都是我们这个“聪明的”物种的非凡发明。有的时候,这些发明是在相距遥远的地区独立出现的(比如说,美洲和近东地区的作物驯化就是如此);有的时候,一些非凡的发明却会逐渐变得默默无闻,并且最终消失(比如说,随着印度河文明终结,又过了2,000年,才出现可以与之比肩的卫生技术)。不过,有时聪明的点子会在广大地区之间共享,从一个社群传到另一个社群;假如愿意的话,您可以喻之为一种有益的“传染病”。我们这些身处 21 世纪工业时代的人类,并不是带着超级计算机和原子能突然之间就敏捷地跳上了历史舞台的。我们的背后,至少有300万年的技术实验和创新,以及人类适应气候变化的数百万年历史。

    为什么这些遗产会持久存续呢?因为我们总是把自己掌握的知识和经验传授给年轻人。在后“大冰期”时代气候开始变暖以前,几乎所有社会都以小型狩猎与采集群落的形式繁衍生息着;对这些群落而言,经验具有至关重要的意义。老一辈人积累起来的经验,会以口头形式代代相传,而工业化之前的所有农业和畜牧业群落也是如此;他们有时是通过口口相传,或者以歌唱、吟诵和讲故事的方式(当然还有举例)将经验传递下去。这些经验,大部分都属于有关当地环境和环境中各种动植物的深入知识;动植物不但为人们提供了食物,还提供了药物、衣物,以及用于制造狩猎武器、挖土棍棒和其他工具的原材料。这种环境知识,源自人们世世代代的仔细观察,观察的对象既有随季节更替而变化的自然现象,也有猎物和即将出现的天气情况,不论那是一场暴风雪、一场飓风,还是表明一股干燥的离岸风将毁掉正在生长的作物的种种征兆。这种知识异常全面,通过人类遗留下来的东西向我们表明了当时的情况,比如“大冰期”洞穴壁画中的驯鹿皮毛细节、为夏威夷的酋长制作斗篷所用的羽毛,或者牛群在不同季节里所吃的野草。因纽特人以前和现在都有许多的词语来描述不同的冰雪环境。阿留申群岛上曾经划着独木舟在白令海峡上乘风破浪的印第安人,也是如此。他们曾经用各种各样的词汇,描述过海峡上汹涌的波涛。这些全都属于传承性的知识,父传子、母传女,代代相传,从祖先一路传授给了后代。

    知识传承

    大量的环境知识,已经通过一代又一代人传承到了我们的手中;其中,记载于纸张或者羊皮纸上的知识很少,大部分都属于口述传统,且如今越来越多的口述传统正在逐年消失。历经数千年才习得的这些自然环境知识,当是我们从过去传承而来的最不朽之遗产。只可惜,随着18、19世纪开始的工业化,这个庞大而至关重要的专业知识宝库正在迅速枯竭,被工业化的粮食生产及其生产过程中所用的肥料边缘化,被人们对森林的乱砍滥伐扫到了一边;这些做法的特点,就是几乎完全无视原住民族和我们这个世界的未来。

    尽管如此,世间仍然留存着一个传统的气候与环境知识宝库;它既留存于自给农民的记忆当中,也留存在世人遗忘已久的人类学档案与历史档案之中。19世纪和20世纪的西方人类学家搜集了这种知识当中的一大部分;之所以如此,是因为他们对日常生活的细节怀有持久的兴趣(常常是服务于殖民主义),而日常生活就包括了自给农业和常规的传统做法。这种传统知识当中,大部分都以我们如今所称的“风险管理”为中心。与一位靠一季又一季作物收成为生、在土地上辛勤劳作的农民谈一谈,或者读一读维多利亚时期的渔民驾驶帆船在北大西洋冒险出航的故事,您就会发现,自己看到的都是一些谨慎之人。无论现在还是过去,他们所关心的,都是如何在饥荒与营养不良始终像幽灵一般徘徊于地平线上的世界里长期生存下去。

    这些人都生活在农村社区,而不是大城市;如今,全世界仍有数以百万计这样的人。巨大的认知鸿沟,再加上一种紧迫感和采取行动的需要,将我们这些城里人与那些传统上与环境联系紧密的人分隔开来了。二者的生活,是脱了节的。那些生活与环境密切相关的人,对他们的农田都投入了深厚的情感——为兴建重大水电项目而安置被迫搬迁的民众时会困难重重,就是明证。自给农民对他们的土地和所处的环境了如指掌,而对生活在拥挤的都市环境里的大多数人而言,这一点是难以想象的。他们对本地 的生态、对干旱周期之类的局部 气候变化以及它们在环境中的征兆等方面的认识,原本是揭示小型社群如何在气候变化中生存下去的宝贵资料;可这种正在快速消失的知识,却被人们遗忘或者忽视了。亚马孙人、安第斯地区的农民、美国西南部的普韦布洛印第安人,以及非洲中部的农村社群里的人们,如今仍然严格保守着这些知识的秘密。考虑到最近几个世纪的掠夺性殖民活动,我们并不能去责怪他们。环境智慧是一种令人叹服却经常被人们忘记的历史遗产,其中的大部分知识与如今生态学家费尽辛苦得来的知识相比,要细致得多。随着气候危机不断加剧,我们是否可以认为这条鸿沟终将弥合呢?当今世界的气候瞬息万变,我们这些目前与环境脱了节的城市居民,是否会有朝一日开始更加直接地面对环境呢?倘若如此,我们将受益无穷。

    亲族关系

    过去的另一种宝贵遗产,就是亲族关系(指社群内部和社群之间实际存在或者想象出来的种种亲族联系)。没有哪一个人类社会做到过彻底的自给自足,连“大冰期”里的许多狩猎群落也是如此——他们在短暂的一生中,可能只会遇到群落以外的大约30个人。即便是规模最小的群落,也与远近不一的相邻群落保持着至少不定时的联系。有的时候,他们会聚到一起娶妻嫁夫,解决纠纷,或者交换兽皮、外来装饰品,以及像制造工具的石头之类的其他重要物品。这种接触,全然依靠亲族关系。亲属关系是一代又一代人类学家的关注焦点,而他们这样做也有充分的理由,因为家庭、大家族以及与生活在遥远之地的亲族群体保持联系,始终都是让大大小小的人类社会团结起来的必要纽带。

    成为亲族群体中的成员,需要承担若干义务,比如履行婚约、相互支持,尤其是互惠互助(即在必要的时候,亲族应当彼此支持,提供食物和其他必需品)。这样的合作与互助关系,就是人们应对作物歉收和漫长干旱等风险时所采取的措施当中一个至关重要的组成部分。亲族关系曾在古普韦布洛社会中发挥过核心作用;比如,查科峡谷里的人曾经与遥远社群中的亲族保持着牢固的互助关系。假如峡谷里的生存条件变得难以为继,这种关系甚至可以让他们迁徙到亲族所在的村落里去;而他们的确就是这样做的。

    强大的亲族纽带,也是工业化之前那些复杂得多的文明当中的一大组成要素。从根本来看,美索不达米亚最早的城邦都由村落凝聚而成,并且根据亲族成员的身份与职业分成了众多的社区。大多数古埃及人,都与具有数代历史的乡间村落保持着紧密的联系。南亚印度河流域的城市居民和东南亚地区的高棉村民,也是如此。古代玛雅人与安第斯地区的印加人由于生活在山间径流与降水都变幻莫测的环境里,故也严重依赖于亲族关系。

    在如今规模庞大的城市社会中,隐姓埋名和独居避世的现象都极其普遍,故亲族关系这种传承受到了极度削弱。无疑,其中也有许多例外情况;但我们完全可以说,亲属关系最牢固的根基就存在于那些至今仍与土地维持着密切联系的社群中。幸好,如今一些联系最紧密的城市社群,包括具有强烈文化认同感的城市社区,以及像兄弟会和教会之类的组织,都与各自的本地成员之间保持着牢固的联系。令人瞩目的是,与“卡特里娜”飓风这样的灾难性气候事件和其他灾难做斗争时最有力的一些武器,就是亲族纽带与社群关系,以及种种具有悠久传统、可以追溯至遥远过去的制度。在面对未来将有更多极端天气事件的现实时,这样的应对机制必将变得更加重要。

    迁徙时代

    散居与迁徙,也是早期人类两种强大有力的传家宝。近几十年来,我们开始面对这样一种现实:在一个人口密度高得多、城市居民动辄数以百万计的世界上,人类的流动性降低了。比方说,人们怎样才能在很短的时间里大规模地离开像休斯敦、迈阿密之类的城市,或者离开上海的中心城区呢?这几乎是一项不可能完成的任务。事实上,现代民族国家还禁止人们在没有规范证件的情况下流动。

    然而,自由来去的本领既是我们的天性,也是数百万年以来人类的生存常态。毕竟,狩猎与觅食靠的就是不断移动——追逐猎物、寻找可食用的植物性食物以及追踪从遥远之地所获的重要知识。在人口很少、群落只由几个家庭组成的时候,人们的迁徙毫不费力;这是一种具有高度适应性的方式,可以让人们免受异常严重的洪水和短期性或长期性干旱周期造成的破坏。多格兰(即如今的北海)心脏地带从事打鱼和觅食的狩猎部落曾经在一个地势低洼的环境中不断地迁徙,因为此种环境在一个人短暂的一生中,就能迅速改变景观。当时参与迁徙的部落人口都很少,迁徙是他们日常生活中根深蒂固的一部分。

    待到农民在永久性的村落里定居下来,再也离不开他们的土地之后,这种局面就彻底改变了;由于继承规则已经牢牢扎根于亲族群体与血统当中,所以他们的土地会代代相传。很多情况下,当附近的土地已经枯竭,从事刀耕火种的农民就会将整个村落搬离。或许每一代都会发生一次迁徙,而定居地的迁徙路线经常大致呈椭圆形,故他们最终又会回到多年以前遗弃的那些地方。大多数群落的规模都很小,因此迁徙起来相对容易,这不过是一个共同做出决策和听取大家意见的问题罢了。在此种情况下,面对漫长干旱或者像灾难性暴风雨之类的其他因素时,他们往往就会选择散居到其他地方去。

    迁徙是一种重要的顺应策略,而在像印度河文明这样的前工业化社会中尤其如此,因为当时的城市与农村社群保持着强大的联系。食物或水源不足,就会促使人们迁徙到乡村去寻找这些资源;而他们利用的,常常就是以种种源远流长的互助义务为基础的亲族关系。如今的大规模移民,甚至让19 世纪时人们为应对强厄尔尼诺现象、常常迫于贫困和长期干旱而进行的移民也相形见绌。应对这种经常属于非自愿性的人口流动而采取的措施,往往会引发复杂的社会问题。不过,为摆脱气候变化而采取的散居与迁徙两种策略既具有悠久的历史,也是人类面对压力时两种近乎本能的行为。强制迁徙的现象虽然比较罕见,但也的确出现过;此处只举两个例子,即古亚述人和印加人,他们都曾将被征服民族重新安置于常常很偏远的新领地上。在当今这个世界上,人口迁徙不再是一种有益本领,而是一种负累之举了;所以,制定全球性的政策来应对生态难民,就成了一个紧迫的问题。

    领导力

    从早期社会中传承下来的人类行为遗产,在公元前3100年以后世界各地发展起来的前工业化文明中曾经显得更为重要。正是在这个时期,领导力在许多人类社会中都发挥了核心作用;它对人们克服气候变化的方式既产生过积极影响,也产生过消极影响。

    领导力首先在于经验和获得的智慧,且这两种品质都与受人敬重的长者、巫医以及灵媒有关;古人认为,巫医、灵媒是人类与超自然世界之间的强大中介。祖先则对人类的生存发挥着必不可少的作用;他们一旦去世,就会成为决定人类能否延续下去的种种超自然力量之中的一部分。在与祖先耕作过的土地之间具有密切联系的农耕社会里,这种作用还变得日益强大起来。为了将所有权合法化和主张土地所有权,人们会把祖先搬出来(如今所有的民族国家也仍在如此做)。随着人类社会变得越来越复杂,亲族关系和祖先变成了领导力的两大支柱。随着第一批前工业化文明崛起,人们对气候变化做出的文化反应与社会反应呈现出了许多更加复杂的新特点。在村落变成城镇与城市的过程中,宗族和其他亲族群体中开始形成等级制度,有些人则获得了公认的宗教权威与政治权威。长久以来,部落首领都是通过个人魅力以及巧妙地利用赏赐、任命位高权重的官职等方式来培养忠诚的追随者,从而获得并保持他们的势力。但这样的忠诚转瞬即逝,并不牢靠,因为它在很大程度上取决于馈赠与互惠,即恩宠与赏赐,无论是赏赐食物还是提供政治支持,甚至是军事援助;首领赐予这些东西的目的,都是指望获得手下效忠这种形式的回报。首领必须让追随者感到满意,否则的话,后者就会弃之而去,转而追随另一位首领。

    世袭制的领导权带来了社会不平等和贫富差距。大多数前工业化文明,都属于社会不平等的集权制金字塔社会,由实力强大的个人以及他们那些位于或接近塔尖、拥有特权的亲族统治着。这些人之下,就是各级官吏和神职人员,他们对成千上万的平民百姓实施监管,并向百姓征取赋税;平民的无尽劳作则积聚起粮食盈余,支撑着整个王国。为少数人的利益服务的古代社会全都依赖于大量的粮食盈余、强大有力的政治意识形态和宗教意识形态,以及坚决果断的领导,来生存下去。它们全都很容易受到当地和全球性气候变化的影响,只是程度各异而已。在很多方面,它们与当今的许多社会并无太大的不同,因为当今社会的贫富之间也存在巨大的社会鸿沟。

    在几乎每一个古代社会里,自给农民都是勉强维生,因为食不果腹是一种始终存在的现实,而谨慎的风险管理则是一种不言而喻的现实。但是,当一个拥有特权的精英阶层依赖可靠的粮食盈余以及从农民那里攫取的口粮来生存时,又会出现什么情况呢?面对变幻莫测的气候事件,比如北美洲和北海上刮向沿海地区的飓风与狂风,让秘鲁诸河谷中灌溉设施毁于一旦的百年不遇之大雨,尤其是干旱的时候,脆弱性这个幽灵就会暴露出其更加丑陋的面目来。毫无疑问,长久干旱曾经是所有前工业化文明面临的最大威胁。我们已经将干旱区分成了有可能持续1年至3年的短期性干旱,以及有可能持续一个世纪或者更久,且要严重得多的水文干旱周期。乡村里的农民对短暂的干旱都习以为常,或许还习惯了一两个荒年;在荒年里,人们会去种植一些不那么受欢迎的作物,或者去采集野生的植物性食物,但常常会无功而返。他们也许遭遇过饥荒,甚至有人饿死,但生活仍在继续。对于早期文明而言,这种短暂的干旱周期并不是毁灭性的打击,尤其是在统治者已经采取了措施储存下供荒年所用的粮食的时候。

    水文干旱周期,或者我们如今所称的特大干旱,却是另一回事了。“4.2 ka事件”,即公元前2200年至公元前1900年间的那场特大干旱,其影响波及地中海东部和南亚地区。公元前2118年,季风强度减弱,尼罗河泛滥严重,埃及整个国家也四分五裂,各州之间你争我夺。粮食盈余化为乌有,人们对法老的权威也信心尽失。数代人之后,国家才在崇尚武力的统治者手下重新统一起来。人们不再说神圣的统治者能够控制尼罗河泛滥之类的话了。此时,法老们开始宣称自己是“百姓的牧人”,并且对灌溉项目和国有粮食储备进行了大力投入。于是,古埃及一直存续到了罗马时代。

    组织资源

    古埃及很幸运,因为其领土与肥沃之地都位于安全可靠的疆域之内,使得他国几乎不可能进行武装入侵。该国变得更具韧性,并且长期自给自足;尽管当时法老的朝廷之内派系斗争之风盛行,也是如此。在人们寿命很短、医学还处于起步阶段的一个时代,由于竞争对手在暗中争夺权力,故王位继承的问题普遍存在。持续不断的阴谋诡计与各种并不牢靠的联盟,是每一个前工业化文明社会的组成部分;其中大多数文明的兴衰速度之快,令人眼花缭乱。其中的原因,是很容易看出来的。我们仅举几例。比如说,美索不达米亚地区的几乎每一个城邦、玛雅的几乎每一个王国以及中国早期的几乎每一个诸侯国里,都存在基础设施的问题。古埃及的法老们可以通过水路,极其高效地调遣军队和运送各种各样的商品。在沙漠里,他们先是依赖驴子,后来又靠骆驼进行运输;只不过,当时喂养驮畜的粮草问题限制了商队运送的货物量。

    陆上国家曾经面临着一种严酷的现实,且这种现实一直延续到了近代。统治者与商贾只能利用人力背驮肩扛,或者用驴子、骆驼等驮畜来运送货物。像木材或一袋袋谷物之类的重物,可以经由河流、湖泊甚至是近海进行运输。但从基础设施的角度来看,陆上往来的各种商品都只能运输大约50千米远,然后就得让驮畜休息,或者更换驮畜。这种现实,也有力地制约了朝廷能够严加掌控的领土面积——有可能少于方圆100千米。出了这个范围,朝廷的掌控就多属于名义上的掌控,并且严重依赖于贵族与各省官吏的忠诚了。

    适应突如其来的气候变化,尤其是适应水文干旱和季风强度减弱时采取的措施,其有效程度取决于坚决果断的领导与亲族关系。强有力的领导能够让下属保持忠诚,能够组织兴建基础设施(偏远地区尤其如此),这些措施可以利用充足的粮食盈余,帮助百姓度过粮食短缺的时期。在作物歉收、百姓挨饿的时候,这些措施都至关重要。曾经把生活在摩亨佐达罗、蒂卡尔或者乌尔等城市里的人与城市腹地的社群联系起来的种种亲族关系,也是如此。这种联系就像一份保单,因为遭遇干旱的时候,互助义务可以让挨饿的民众安静平稳地散居到更理想的地区与环境中去;比如底格里斯河泛滥不力,或者数月降雨毁掉了中世纪欧洲的庄稼之时,就是如此。一种古老的生存策略,可以带来莫大的好处。

    包括罗马帝国在内的前工业化文明社会,全都严重依赖于人力、驮畜,以及帝国广大地区的种植业,而其栽培的其实是单一作物。在后来的几个世纪里,帝国极大地依赖从埃及和北非地区进口的粮食,由横跨地中海往来的大型运粮船只负责运送。在以桨和帆为动力的货船以及驮畜从偏远的农田运送粮食时,为帝国供应大部分粮食的基础设施曾经做到了尽可能地高效。帝国的海上运输,在很大程度上依赖于奴隶。最后,削弱帝国经济的并不是基础设施,而是弱季风,因为弱季风大幅减少了尼罗河的洪水量,导致撒哈拉沙漠的范围北移了。跟同一时期以及此前的其他国家一样,面对那些影响到了全球广大地区且其中许多都发生在帝国疆域以外的重大气候变化时,罗马帝国也束手无策。

    工业化之前的中央集权国家,都特别容易受到特大干旱与其他气候变化的影响。像一系列弱季风或者突如其来的气候变化导致洪水冲毁了灌溉所用的沟渠,随后又是干旱(吴哥的情况就曾如此)之类的情况,都超出了统治者的能力范围;国家无论实力多么强大,都无法存续下去。这些国家有可能是从内部崩溃的,但转型的社会却从它们残余的部分中崛起;转型的社会也许更加分散,也许与新的长途贸易路线相连,但始终缺乏工业规模的基础设施来应对日益增加的脆弱性与风险。

    多个世纪以来,前工业文明的兴衰往往伴随着常见的经济与政治动荡。它们都很容易受到气候变化的影响,几乎无一例外。假如成功适应了气候变化,那就是它们在地方层面采取了适应措施,因为有能力的地方管理者可以集中食物供应、封锁各省边界,或者派遣工人去修建灌溉沟渠。大言不惭的古埃及州长安赫提菲,曾在其陵墓的墙壁上吹嘘过他在公元前 2180 年成功战胜了干旱的丰功伟绩。就算是有所夸张,我们也必须承认,此人清晰地认识到了成功适应的一大秘诀:地方性 措施的效果,往往比那些让许多人仍然陷于危险当中的宏伟计划大得多。追随安赫提菲的后人,则不断地创造和开发出解决问题的新方法。最终,这就导致了工业化,以及随之而来的更多技术。

    现代技术赋予了我们一种胜过前工业化时期那些祖辈的巨大优势。我们的技术能力如此之强,以至于我们能够登陆和探索月球、研究太平洋深处的海沟,以及涉足人工智能领域了。我们甚至到了这样的地步:许多人都天真地以为,技术可以解决气候变化的问题。确实,技术将有所帮助,古罗马的修路者和快速帆船的船长就曾受益于此;不过,我们由此付出的环境代价已经极其巨大,将来也仍会如此。找到应对未来气候挑战的方法,确实需要我们在技术解决方案上进行大力投入;但是,这种解决方案必须做到碳中和,且能够自我维持下去。这种投入将是长期的,既需要巨额资金,也需要改造社会,改变我们的自我管理和行事方式的政治意愿。控制全球气候变化的技术创新,很可能正在向我们走来,但实现这些创新的使命,却是未来数代人的巨大责任。与过去一样,创新会带来义务;只不过,如今这种情况达到了工业化之前的世界无法想象的规模而已。

    转折点

    有史以来第一次,适应气候变化既成了一个全球性问题,也成了一个地方性问题。此时,也正是历史遗产走上前台之时。过去其实一直与我们同在,既鼓励着我们,提醒我们注意无处不在的危险,也为我们提供了应对未来危机重重的气候之先例。古人的真知灼见,从来没有像今天这样重要过。有史以来第一次,人类正在造成巨大的气候变化,扰乱全球气候的自然循环。大气中的二氧化碳含量日益增加,全球持续加速升温,海平面上升定将淹没地处海边或者海拔接近海平面的繁荣发展着的众多城市,再加上人类长期的乱砍滥伐,导致在这个拥有 76 亿多人的世界上,到处都是破坏生态的现象。数以亿计的人,都生活在极端天气事件以及一些大江大河(比如尼罗河与密西西比河)出现剧变的威胁之下;这些剧变,都是人为造成的气候变化导致的。我们会陷入一连串潜在的气候灾难和生态灾难的重围,其中的大部分灾难也是人类活动的直接后果。这种情况,与安第斯人、印度河文明、中世纪的欧洲农民以及印度莫卧儿王朝面临的各种气候适应性变化都大不一样。如今,我们正处在一个必须面对史无前例和极其凶险的全球性气候变化的时刻。

    一些气候学家、生态学家、备受世人敬重的科学家,以及一些政府机构和国际组织,已经一再提醒我们注意未来的这种危机。不过,像古罗马皇帝尼禄一样,就在整个世界都有可能燃烧起来且不可逆地变暖的时候,我们却仍在歌舞升平、虚度光阴。世间如今几乎全然缺乏全球性的 领导力;这种领导力并非仅仅展望未来的几年或者几十年,而是放眼未来的一代代人,制定出全球性的战略,为我们的子孙后代创造出一个安全的世界。这是一种真正的全球性挑战,在人类历史上独一无二,的确将让我们和我们的后代付出极其高昂的代价。人类的未来岌岌可危,这种说法并不夸张。

    采取一致行动的时机即将到来。说得委婉一点,无视过去数十万年来人类适应气候变化的经验教训,是一种目光极其短浅的做法。

    前车之鉴

    那么,在适应气候变化方面,我们又从过去获得了一些什么样的经验教训呢?其实都是些非常简单的道理。

    第一,我们是人类,具有与每一代智人相同的行为特点,即前瞻性思维、长于规划与合作、能进行智力推理与创新等卓越的品质。在规划适应未来气候变化的措施之时,我们必须最大限度地发挥这些历久弥坚的品质;这些品质,会支撑我们为将来制订出具有决定性的适应规划。

    第二,我们在预测气候变化方面已经逐渐获得了一种非凡的、如今仍在迅速改善的专业知识。本书中所描述的古代社会,从来就没有得益于科学的天气预报、卫星观测、全面的气候替代指标以及计算机建模等技术;这些进步,已经彻底改变了我们对全球气候以及对大气与海洋之间无休无止、变幻莫测的相互作用的了解。古巴比伦人和其他民族曾经把观察天体当成预测天气的一种方法,却没有成功;欧洲中世纪的天文学家也是如此。气象学家休伯特·兰姆曾称,19世纪末期之前的天气预报都属于“教堂尖塔式的气象学”,也就是从高处对云层和其他天气征候进行的观察。

    完全科学的气象学,是20世纪和21世纪的产物。不过,如今仍然有许多至关重要的传统气候知识不显山不露水地留存了下来。古埃及的祭司们利用“尼罗尺”来测量和预测每年的泛滥水位。早期的欧洲水手,都看得出大风将起的迹象;加勒比海上的岛民与玛雅的占星家,有时能够发现飓风即将到来;太平洋上的航海者曾经利用波利尼西亚的盛行信风会转向 180°的特点,在厄尔尼诺现象期间向东航行。如今仍然挨着土地或者海洋生活的人们都拥有非凡的预测性知识,可我们常常忽视了这些知识。考虑到气候变化大多会造成的地方性影响,我们的做法是错误的。这种口耳相传的传统知识大多依然存在,因此需要我们在为时已晚之前加以搜集和整理。

    第三,在一心关注全球性气候变化的同时,我们还忘记了一点:大量适应气候变化的措施,其实都是一个地方性 领导力与行动的问题;无论是建造防波堤,还是把住宅迁往地势更高的地方,都不例外。如前文所述,我们不断看到气候变化带来的地方性影响,而各地成功适应气候变化的例子,也比比皆是。其中一个值得注意的例子,就是英格兰东南部的梅德梅里(Medmerry);此地过去经常被淹的沿海地带曾经屈服于海洋的威力,如今则变成了一个自然保护区。不管代价如何巨大,地方性的适应措施都至关重要;就算它们是全球性气候变化的结果,也是如此。

    第四,我们是一种社会性动物,这就意味着,在一个有着令人不快的气候危机的世界上,家庭与范围更广泛的亲族之间的纽带,以及社群与成员之间联系紧密的非营利性组织之间的关系,是一种非凡的生存机制,并且具有极其重要的作用。从一开始,这些关系就是人类历史中的组成部分。它们是人类最强大的一种适应武器,只是我们一直忽视了它们的巨大潜力。此外,作为一个定居世界里的社会性动物,我们往往会利用彼此、利用环境;为了显示我们的地位高人一等也好,实际上仅仅为了在资源有限、有时还很成问题的地方确保自己的生存也罢,我们都会这样干。在我们看来,许多战争可能都与资源冲突相关,而不管战争双方声称的意识形态或者宗教借口是什么。

    第五,我们生活在一个工业化的世界,拥有非凡的基础设施,它们在未来具有巨大的潜力。但我们常常忘记,无数人仍在靠着一季一季的收成为生,他们的水源供应往往变化无常,极易受到饥荒与干旱的影响。在极度干旱与饥荒时期放赈救灾的做法虽说可敬,却不是一剂长效的灵丹妙药。人们极少关注传统农业的运作方式以及传统农业中固有的、对当地环境的深入了解,这一点曾令我们深感震惊。美国西南部的普韦布洛农民、伯利兹的凯克奇玛雅人以及玻利维亚高原上的台田农民都是典型的例子,说明我们应当向这些在无人关注的情况下成功践行了多个世纪的传统农业学习。口耳相传的农业知识是过去留下来的一份强大遗产,如今却面临着消失的危险。

    第六,工业化之前的文明社会在面对气候危机时,都出现过显著的动荡。一次又一次,连一些强大有力的领袖在情况紧急时也曾犹豫不决,特别是在干旱与其他气候变化否定了他们身上种种公认的超自然力量的时候。那些幸存下来的人,不管是采取了行动还是深思熟虑地适应了业已改变的环境,都是坚决果断的领导人,都能够未雨绸缪并采取大胆的行动。秘鲁沿海的奇穆人当中,就曾有一些姓名不详的目光长远的头领。中国的历代皇帝当中,偶尔也出现过高瞻远瞩的帝王;只不过,他们的努力往往遭到了思想僵化的官僚阻挠。过去的经验提醒我们,长久成功地战胜气候变化的终极助力因素将是有魅力的威权式领导力;这种领导力能够超越国家利益,从真正的全球性视角来与气候变化做斗争。

    我们的起点,必须基于我们是一个由智人组成的全球性共同体这个现实,因为我们的未来依赖于那种不痴迷于选举周期和其他类似琐事的领导力。过去提醒我们,有史以来第一次,人类正面临着一种真正的、在过去300万年里从未碰到过的全球性挑战。原因就在于,是我们导致了这种挑战,而其影响将波及太多的人。本书希望通过考古学家与历史学家提供的证据,揭示过去气候变化的真相和人们生活的真实面貌。

    人类会不会存续下去呢?假如历史记载具有指导意义的话,那么我们应该会存续下去。只不过,我们需要去适应,或许还是不得不去适应。我们将面临无数挑战,并且几乎可以肯定,其中会有暴力与大量的伤亡。过去提醒我们:人类既灵巧又具有创造力,能够经受比古时更加严峻的考验。回首历史的时候,由于我们如今能够用前人做梦也想不到的方式来进行回顾,所以我们就能看出过去哪些方面有效,哪些方面无效。不过,或许最重要的是,作为一个物种,我们显然需要团结与合作。人类将存续下去,而其中的一个原因就在于,我们已经理解了人类与世界上不断变化的气候之间的复杂关系。过去并非他乡,而是我们所有人的一部分,掌握着开启未来的钥匙。

    [1] Raphael Meukom et al., “No Evidence for Globally Coherent Warm and Cold Periods over the Preindustrial Common Era,” Nature 571 (2019): 550–554.
    [2] “过去有如他乡”(“The past is a foreign country”): L. P. Hartley, The Go Between (New York: New York Review Book Classics, 2011)。David Lowenthal, The Past Is a Foreign Country, 2nd ed. (Cambridge: Cambridge University Press, 2015),是最近对这个主题进行讨论的一部作品。
    [3] 要想了解全球变暖的方方面面与潜在的解决之道,最有效的办法就是参见Paul Hawken, ed., Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming (New York: Penguin Books, 2017)。这部非凡之作中的论文,提供了一些观点与可能的解决办法;它们虽说有时极其简单,但总是具有前瞻性。

  • Venki Ramakrishnan《Why We Die: The New Science of Aging and the Quest for Immortality》

    Table of Contents
    Introduction
    1. The Immortal Gene and the Disposable Body
    2. Live Fast and Die Young
    3. Destroying the Master Controller
    4. The Problem with Ends
    5. Resetting the Biological Clock
    6. Recycling the Garbage
    7. Less Is More
    8. Lessons from a Lowly Worm
    9. The Stowaway Within Us
    10. Aches, Pains, and Vampire Blood
    11. Crackpots or Prophets?
    12. Should We Live Forever?
    Acknowledgements
    Notes
    Index

    Introduction

    Almost exactly one hundred years ago, an expedition led by the Englishman Howard Carter unearthed some long-buried steps in the Valley of Kings in Egypt. The steps led to a doorway with royal seals, signifying that it was the tomb of a pharaoh. The seals were intact, meaning that nobody had entered for more than three thousand years. Even Carter, a seasoned Egyptologist, was awestruck by what they found inside: the mummified young pharaoh Tutankhamun, with his magnificent gold funerary mask, kept company in the tomb for millennia by a wealth of ornate and beautiful artifacts. The tombs had been secured shut so that mere mortals could not enter—the Egyptians had gone to enormous efforts to create objects never intended to be seen by other people.

    The splendor of the tomb was part of an elaborate ritual aimed at transcending death. Guarding the entrance to a room of treasures was a gold and black statue of Anubis, the jackal-headed god of the underworld, whose role is described in The Egyptian Book of the Dead. A scroll of the book was often placed in the pharaoh’s sarcophagus. We may be tempted to think of it as a religious work, but it was more akin to a travel guide, containing instructions for navigating the treacherous underworld passage to reach a blissful afterlife. In one of the final tests, Anubis weighs the heart of the deceased against a feather. If the heart is found to be heavier, it is impure, and the person is condemned to a horrible fate. But if the examinee is pure, he would enter a beautiful land filled with eating, drinking, sex, and all the other pleasures of life.

    The Egyptians were hardly alone in their beliefs of transcending death with an eternal afterlife. Although other human cultures may not have constructed such elaborate monuments as the Egyptians did for their royalty, all of them had beliefs and rituals around death.

    It is fascinating to consider how we humans first became aware of our mortality. That we are aware of death at all is something of an accident, requiring the evolution of a brain that is capable of self-awareness. Very likely it needed the development of a certain level of cognition and the ability to generalize as well as the development of language to pass on that idea. Lower life forms and even complex ones such as plants, don’t perceive death. It simply happens. Animals and other sentient beings may instinctively fear danger and death. They recognize when one of their own has died, and some are even known to mourn them. But there is no evidence that animals are aware of their own mortality. I do not mean being killed by an act of violence, an accident, or a preventable illness. Instead, I mean the inevitability of death.

    At some point, we humans realized that life is like an eternal feast that we join when we are born. While we are enjoying this banquet, we notice others arriving and departing. Eventually it is our turn to leave, even though the party is still in full swing. And we dread going out alone into the cold night. The knowledge of death is so terrifying that we live most of our lives in denial of it. And when someone dies, we struggle to acknowledge that straightforwardly, and instead use euphemisms such as “passed away” or “departed,” which suggest that death is not final but merely a transition to something else.

    To help humans cope with their knowledge of mortality, all cultures have evolved a combination of beliefs and strategies that refuse to acknowledge the finality of death. Philosopher Stephen Cave argues that the quest for immortality has driven human civilization for centuries. He classifies our coping strategies into four plans. The first, or Plan A, is simply to try to live forever or as long as possible. If that fails, then Plan B is to be reborn physically after you die. In Plan C, even if our body decays and cannot be resurrected, our essence continues as an immortal soul. And finally, Plan D means living on through our legacy, whether that consists of works and monuments or biological offspring.

    All of humanity has always incorporated Plan A into their lives, but cultures differ in the extent to which they fall back on the other plans. In India, where I grew up, Hindus and Buddhists gladly embrace Plan C, and the idea that each person has an immortal soul that lives on after death by being reincarnated in a new body, even in a completely different species. The Abrahamic religions, Judaism, Christianity, and Islam, subscribe to both Plans B and C. They believe in an immortal soul but also in the idea that we will rise bodily from the dead and be judged at some point in the future. Perhaps this is why traditionally these religions insisted on burial of the intact body and forbade cremation.

    Some cultures, such as the ancient Egyptians, hedged their bets by incorporating all four plans into their belief systems. In grandiose tombs, they mummified the corpses of their pharaohs so that they might rise up bodily in the afterlife. But they also believed in a soul, called Ba, that represents the essence of the person and survives death. The first emperor of a unified China, Qin Shi Huang, took a similarly multipronged approach to immortality. Having escaped many attacks on his life, conquered warring states, and consolidated his power, he turned his attention to seeking the elixir of life. He sent emissaries to pursue even the faintest rumors of its existence. Facing certain execution for their failure to find it, many quite sensibly absconded and were never heard from again. In an extreme combination of Plans B and D, Qin also ordered the construction of a city-sized mausoleum for himself in Xian, employing 700,000 men in the process. The tomb contained an army of 7,000 terra-cotta warriors and horses—all meant to guard the deceased emperor until he could be reborn. Qin died at the age of forty-nine in 210 BCE. Ironically, it may have been toxic potions taken to prolong his life that ultimately cut it short.

    Our ways of coping with death began to change with the arrival of the Enlightenment and modern science in the eighteenth century. The growth of rationality and skepticism means that although many of us still hang on to some forms of Plans B and C, deep down we have become less sure they are real alternatives. Our focus has shifted toward finding ways to stay alive and preserving our legacy after we die.

    It is a curious facet of human psychology that even if we accept that we ourselves will be gone, we feel a strong need to be remembered. Today, instead of constructing tombs and monuments, the very rich engage in philanthropy, endowing buildings and foundations that will long outlast them. Throughout the ages, writers, artists, musicians, and scientists have sought immortality through their works. Ultimately, however, living on through our legacy is not an entirely satisfying prospect.

    If you are neither a powerful monarch or billionaire, nor an Einstein, do not despair. The other way to leave a legacy and be remembered is accessible to nearly all living things, which is to live on through our offspring. The desire to procreate so that some part of us will live on is one of the strongest biological instincts to have evolved, and is so central to life that we will have much more to say about it later. But even though we love our children and grandchildren and want them to live on long after we are gone, we know that they are separate beings with their own consciousness. They are not us.

    Nevertheless, most of us do not live in constant existential angst about our mortality. Rather, our brains appear to have evolved a protection mechanism by thinking of death as something that happens to other people, not ourselves. A separation of the dying reinforces the delusion. Unlike the past, when we were confronted by people dying all around us, today people often die in care homes and hospitals, isolated from the rest of the population. As a result, most of us, especially young people, go about our daily lives acting as though we are immortal. We work hard, engage in hobbies, strive after long-term goals—all useful distractions from potential worry about dying. However, no matter what tactics we employ, we cannot fully escape awareness of our mortality.

    And that brings us back to Plan A. The one strategy that all sentient beings have had in common for millions of years is simply to try to stay alive for as long as possible. From a very young age, we instinctively avoid accidents, predators, enemies, and disease. Over millennia, that universal desire led us to protect ourselves from attacks by forming communities and fortifications and developing weapons and maintaining armies; but it also led to the search for potions and cures and eventually to the development of modern medicine and surgery.

    For centuries, our life expectancy hardly changed. But over the last 150 years, we have doubled it, primarily because we better understood the causes of disease and its spread, and improved public health. This progress allowed us to make enormous strides in extending our average life span, largely as a result of reducing infant mortality. But extending maximum life span—the longest we can expect to live even in the best of circumstances—is a much tougher problem. Is our life span fixed, or could we slow down or even abolish aging as we learn more about our own biology?

    Today the revolution in biology that began with the discovery of genes more than a hundred years ago has led us to a crossroads. For the first time, recent research on the fundamental causes of aging is raising the prospect not merely of improving our health in old age but also of extending human life span.

    Demographics is driving a huge effort to identify the causes of aging and to find ways to ameliorate its effects. Much of the world is faced with a growing elderly population, and keeping them healthy for as long as possible has become an urgent social imperative. The result is that after a long period in which it was a scientific backwater, aging research—or gerontology—has taken off.

    In the last ten years alone, more than 300,000 scientific articles on aging have been published. More than 700 start-up companies have invested a combined many tens of billions of dollars to tackle aging—and this is not counting large, established pharmaceutical companies that have programs of their own.

    This enormous effort raises a number of questions. Could we eventually cheat disease and death and live for a very long time, possibly many times our current life span? Certainly some scientists make that claim. And California billionaires, who love their lifestyles and don’t want the party to end, are only too willing to fund them.

    The immortality merchants of today—the researchers who propose trying to extend life indefinitely and the billionaires who fund them—are really a modern take on the prophets of old, promising a long life largely free of the fear of encroaching old age and death. Who would have this life? The tiny fraction of the population who could afford it? What would be the ethics of treating or modifying humans to achieve this? And if it becomes widely available, what sort of society would we have? Would we be sleepwalking into a future without considering the potential social, economic, and political consequences of humans living well beyond our current life spans? Given recent advances and the enormous amount of money pouring into aging research, we must ask where this research is leading us, as well as what it suggests about the limits of human beings.

    The coronavirus pandemic that hit the world in late 2019 is a stark reminder that nature does not care about our plans. Life on Earth is governed by evolution, and we are yet again reminded that viruses have been here long before humans, are highly adaptable, and will be here long after we are gone. Is it arrogant to think that we can cheat death using science and technology? If it is, what should our goals be instead?

    I have spent most of my long career studying the problem of how proteins are made in the cells that make up our body. The problem is so central that it impinges on virtually every aspect of biology, and over the last few decades, we have discovered that much of aging has to do with how our body regulates the production and destruction of proteins. But when I started my career, I had no idea that anything I did would be connected with the problem of why we age and die.

    Although fascinated by the explosion in aging research that has led to some very real breakthroughs in our understanding, I have also watched with growing alarm the enormous amount of hype associated with it, which has led to widespread marketing of dubious remedies that have a highly tenuous connection with the actual science. Yet they continue to flourish because they capitalize on our very natural fear of growing old and disabled and eventually dying.

    That natural fear is also the reason that growing old and facing death is the subject of innumerable books. They fall into a few categories. There are books that provide practical advice on how to age healthily; some are sensible, while others border on snake oil. Others are about how to face our mortality and accept our end gracefully. These serve both a philosophical and moral purpose. Then there are books that delve into the biology of aging. These too fall into a couple of categories. They are written either by journalists or by scientists who have considerable personal stake in the form of their own start-up anti-aging companies. This book is not any of these.

    Considering how rapidly the field is advancing, the enormous amount of both public and private money invested in it, and the resulting hype, I thought it was an appropriate moment for someone like me, who works in molecular biology but has no real skin in the game, to take a hard, objective look at our current understanding of aging and death. Because I know many of the leading figures in this area personally, I have been able to have many frank conversations to gain an honest and deeper understanding of how they see aging research in its many aspects. I have deliberately refrained from talking to those scientists who have made their positions clear in their own books, especially when they are also tied closely to commercial ventures on aging, but I have discussed their highly publicized views.

    Given the pace of discovery, any book that focuses just on the most recent aging research would be out of date even before it was published. Moreover, the most recent discoveries in any area of science often do not hold up to scrutiny and have to be revised or discarded. Accordingly, I have tried to concentrate on some of the essential principles behind the most promising approaches to understanding and tackling aging. These principles should not only stand the test of time, but also help readers realize how we got to our present state of knowledge. I also give a historical background to some of the basic research that led to our current understanding. It is both fascinating and important to realize how much of what we know began with scientists studying some completely different fundamental problem in biology.

    I said I have no skin in the game, but, of course, all of us do. We are all concerned about how we will face the end of life—less so when we are young and feel immortal, but more so at my age of seventy-one, when I find that I can do only with difficulty, or not at all, things I could do easily even just ten or twenty years ago. It sometimes feels that life is like being constrained to a smaller and smaller portion of a house, as doors to rooms that we would like to explore slowly close shut as we age. It is natural to ask what the prospects are that science can pry those doors open again.

    Because aging is connected intimately with so many biological processes, this book is also something of a romp through a lot of modern molecular biology. It will take us on a journey through the major advances that have led to our current understanding of why we age and die. Along the way, we will explore the program of life governed by our genes, and how it is disrupted as we age. We will look at the consequences of that disruption for our cells and tissues and ultimately ourselves as individual beings. We will examine the fascinating question of why even though all living creatures are subject to the same laws of biology, some species live so much longer than even closely related ones, and what this might mean for us humans. We will take a dispassionate look at the most recent efforts being made to extend life span and whether they live up to their hype. I will also challenge some fashionable ideas, such as whether we do our best work in old age. I hope to probe, as well, the crucial ethical question that runs beneath anti-aging research: Even if we can, should we?

    The first step in our journey is to think about what exactly death is, the many ways it can manifest itself, and explore the fundamental question of why we die.

      1. The Immortal Gene and the Disposable Body

        Whenever I walk along the streets of London, I never cease to be amazed by a city where millions of people can work, travel, and socialize so seamlessly. A complex infrastructure, and hundreds of thousands of people, all work in concert to make it possible: the London Underground and buses to move us around the city; the post office and courier services to deliver the mail and goods; the supermarkets that supply us with food; the power companies that generate and distribute electricity; and the sanitation services that keep the city clean and remove the enormous quantities of waste we produce. As we go about our business, it is easy to take for granted this incredible feat of coordination that we call a civilized society.

        The cell, our most basic form of life, has a similarly complex choreography. As the cell forms, it builds elaborate structures like the parts of a city. Thousands of synchronized processes are required to keep it functioning. It brings in nutrients and exports waste. Transporter molecules carry cargo from where they are made to distant parts of the cell where they are needed. Just as cities cannot exist in isolation but must exchange goods, services, and people with surrounding areas, the cells of a tissue need to communicate and cooperate with neighboring cells. Unlike cities, whose growth is not always constrained, the cell needs to know when to grow and divide but also when to stop doing so.

        The complex organization of a cell has similarities to a city. Only some of the major components are shown, and for clarity, they are not drawn to scale.

        Throughout history, cities were imagined by their inhabitants to be permanent. We don’t go about our lives thinking that the city we live in will one day cease to exist. Yet cities and entire societies, empires, and civilizations grow and die just as cells do. When we talk about death, we aren’t usually thinking about these other kinds of death; we mean as it occurs to each one of us as individuals. But it turns out to be tricky even to define an individual, let alone what we mean by its birth or death.

        At the moment of our death, what exactly is it that dies? At this point, most of the cells in our body are still alive. We can donate entire organs, and they work just fine in someone else if transplanted quickly enough. The trillions of bacteria, which outnumber the human cells in our body, continue to thrive. Sometimes the reverse is also true: suppose we were to lose a limb in an accident. The limb would certainly die, but we don’t think of ourselves as dying as a result.

        What we really mean when we say we die is that we stop functioning as a coherent whole. The collection of cells that forms our tissues and organs all communicate with one another to make us the sentient individuals we are. When they no longer work together as a unit, we die.

        Death, in the inevitable sense we are considering in this book, is the result of aging. The simplest way to think of aging is that it is the accumulation of chemical damage to our molecules and cells over time. This damage diminishes our physical and mental capacity until we are unable to function coherently as an individual being—and then we die. I am reminded of the quote from Hemingway’s The Sun Also Rises, in which a character is asked how he went bankrupt, and he replies, “Two ways. Gradually, then suddenly.” Gradually, the slow decline of aging; suddenly, death. The process of aging can be thought of as starting gradually with small defects in the complex system that is our body; these lead to medium-sized ones that manifest as the morbidities of old age, leading eventually to the system-wide failure that is death.

        Even then, it is hard to define exactly when this happens. Death used to mean when someone’s heart stopped beating, but today cardiac arrest can often be reversed by CPR. The loss of brain function is now taken as a more direct sign of death, but there are hints that even that can sometimes be reversed. Differences in the precise legal definition of death can have very real consequences. Harvesting organs for donation from two persons in two different US states could be perfectly legal in one and murder in the other, even if they were both considered dead using identical criteria. A girl who was declared brain dead in Oakland, California, was considered alive by the standards of New Jersey, where her family lived. Her family petitioned and eventually had her body transported with its life support equipment to New Jersey, where she died a few years later.

        If the precise moment of our death is ill-defined, so too is the moment of our birth. We exist before we emerge from the womb and take our first breath. Many religions consider conception to be the beginning of life, but conception too is a fuzzy term. Rather, there is a window of time after a sperm has made contact with the surface of an egg during which a series of events has to take place before the genetic program of the fertilized egg is set into motion. After that, there is a multiday window during which the fertilized egg undergoes a few divisions, and the embryo—now called a blastocyst—has to implant itself in the lining of the womb. Still later, the beginning of a heart develops, and only long after that, with the development of a nervous system and its brain, can the growing fetus sense pain.

        The question of when life begins is as much a social and cultural question as it is a scientific one, as can be seen by the continuing debate over abortion. Even in many countries where abortion is legal, including the United States and the United Kingdom, it is a crime to grow embryos for research beyond fourteen days, which corresponds roughly to the time when a groove called the primitive streak appears in the embryo and defines the left and right halves. After this stage, the embryo can no longer split and develop into identical twins. Although we think of birth and death as instantaneous events—in one instant we come into existence and in another we cease to exist—the boundaries of life are blurry. The same is true of larger organizational units. It is hard to pinpoint the exact time when a city came into existence or when it crumbled.

        Death can occur at every scale, from molecules to nations, but there are common features of the growth, aging, and demise of these very different entities. In every case, there is a critical moment when the component parts no longer allow the organic whole to function. Molecules in our cells work in a coordinated way to allow the cell to function, but they themselves can suffer chemical damage and eventually break down. If the molecules are involved in vital processes, their cells will themselves begin to age and die. Moving up the scale hierarchy, the trillions of cells in a human being carry out their specialized duties and communicate with one another to allow an individual to function. Cells in our body die all the time, with no adverse effects. In fact, during the growth of an embryo, many cells are programmed to die at precise points of development—a phenomenon called apoptosis. But when enough essential cells die, whether in the heart or the brain or some equally critical organ, then the individual can no longer function and dies.

        We human beings are not so different from our cells. We carry out roles in groups: companies, cities, societies. The departure of one employee will not normally affect the functioning of a large company, and even less that of a city or a country, just as the death of a single tree says nothing at all about the viability of a forest. But if key employees, such as the entire senior management, were to leave suddenly, the health and future of the company would be in doubt.

        It is also interesting to see that longevity increases with the size of the entity. Most of the cells in our body have died and been replaced many times before we ourselves die, while companies tend to have much shorter life spans than the cities in which they operate. The principle of safety in numbers has driven the evolution of both life and societies. Life probably began with self-replicating molecules, which then organized in closed compartments that we know as cells. Some of those cells then banded together to form individual animals. Then animals themselves organized into herds—or, in our case, communities, cities, and nations. Each level of organization brought greater safety and a more interdependent world. Today hardly any of us could survive on our own.

        STILL, WHEN WE THINK OF DEATH, we are generally thinking about our own: the end of our conscious existence as an individual. There is a stark paradox about that kind of death: although individuals die, life itself continues. I don’t mean just in the sense that our family, community, and society will all go on without us. Rather, it is remarkable that every creature alive today is a direct descendant of an ancestral cell that existed billions of years ago. So, although changing and evolving with time, some essence in all of us has lived continuously for a few billion years. That will continue to be true for every living thing for as long as life survives on Earth, unless we one day create an entirely artificial form of life.

        If there is a direct line of succession from us to our ancient ancestors, then there must be something about each of us that doesn’t die. That something is information on how to create another cell or an entirely new organism, even after the original carrier of that information has died—just as the ideas and information here can persist in some form long after the physical copy of this book has deteriorated.

        The information to continue life resides, of course, in our genes. Each gene is a section of our DNA, and is stored in the form of chromosomes in the nucleus, the specialized compartment that encapsulates genetic material in our cells. Most of our cells contain the same entire set of genes, known collectively as our genome. Every time our cells divide, they pass on the entire genome to each of the daughter cells. The vast majority of these cells are simply part of our body and will die with it. But some of our cells will outlive our body by developing into our children—the new individuals that make up the next generation. So what is special about these cells that allows them to live on?

        The answer to this settled a raging controversy, one that came long before our knowledge of genes, let alone DNA. When people first began to accept that species could evolve, two opposing views emerged. The first, advanced by the Frenchman Jean-Baptiste Lamarck in the early nineteenth century, held that acquired characteristics could be inherited. For example, if a giraffe were to keep stretching its neck to reach higher branches for leaves to eat, its offspring would inherit the resulting longer neck. The second theory was natural selection, proposed by a pair of British biologists, Charles Darwin and Alfred Wallace. In this view, giraffes were variable, some with longer necks and others with shorter. Those with longer necks were more likely to find nourishment and thus be able to survive and have offspring. Progressively, with each generation, variants with longer and longer necks would be selected.

        A relative outsider working in what was then the Malay Archipelago, thirty-five-year-old Alfred Wallace wrote to Darwin in 1858 expressing his ideas, not realizing that the older man had himself come to the same conclusion many years earlier. Because these ideas were so revolutionary, and had social and religious implications, Darwin had not yet summoned the courage to publish them, but the communication from Wallace spurred him into action. Darwin was at the heart of the British scientific establishment, and had he been less scrupulous, he could have simply ignored Wallace’s letter and hurriedly published his book. Nobody would have ever known Wallace’s name. Instead, Darwin arranged for himself and Wallace to make a joint presentation at the Linnean Society of London on July 1, 1858. The response to the lecture itself was relatively muted and had little immediate impact. In what was one of the worst pronouncements in the history of science, the society’s president said in his annual address, “The year has not, indeed, been marked by any of those striking discoveries which at once revolutionize, so to speak, the department of science on which they bear.” However, the lecture paved the way for the publication of Darwin’s book On the Origin of Species the following year, which changed our understanding of biology forever.

        In 1892, thirty-three years after Darwin’s monumental tract was published, the German biologist August Weismann posited a neat rebuttal of Lamarck’s ideas. Although humans have known for a very long time that sex and procreation were connected, it is only in the last 300 years that we discovered that the key event is the fusion of a sperm with an egg to start the process. The fertilization of an egg by a sperm results in the seemingly miraculous creation of an entirely new individual. The individual consists of trillions of cells that carry out nearly all of the functions of the body and die with it. They are known collectively as somatic cells, from soma, the Latin and Greek word for “body.” The sperm and the egg, on the other hand, are germ-line cells. They reside in our gonads, which are testes in males and ovaries in females. And they are the sole transmitters of heritable information: our genes. Weismann proposed that germ-line cells can create the somatic cells of the next generation, but the reverse can never happen. This separation between the two kinds of cells is called the Weismann barrier. So if a giraffe stretches its neck, it might affect various somatic cells that make up its neck muscles and skin, but these cells would be incapable of passing on any changes to its offspring. The germ-line cells, protected in the gonads, would be impervious to the activities of the giraffe and any characteristics its neck acquired.

        The germ-line cells that propagate our genes are immortal in the sense that a tiny fraction of them are used to create the next generation of both somatic and germ-line cells by sexual reproduction, which effectively resets the aging clock. In each generation, our bodies, or our soma, are simply vessels to facilitate the propagation of our genes, and they become dispensable once they have fulfilled their purpose. The death of an animal or a human is really the death of the vessel.

        WHY DOES DEATH EVEN EXIST? Why don’t we simply live forever?

        The twentieth-century Russian geneticist Theodosius Dobzhansky once wrote, “Nothing in biology makes sense except in the light of evolution.” In biology, the ultimate answer to a question about why something occurs is because it evolved that way. When I first began to consider the question of why we die, I thought naively that perhaps death was nature’s way of allowing a new generation to flourish and reproduce without having older ones hanging around to compete with it for resources, thus better ensuring the survival of the genes. Moreover, each member of a new generation would have a different combination of genes than its parents, and the constant reshuffling of life’s deck of cards would help facilitate survival of the species as a whole.

        This idea has existed at least since the Roman poet Lucretius, who lived in the first century BCE. It is appealing—but it’s also wrong. The problem is that any genes that benefit the group at the expense of the individual cannot be stably maintained in the population because of the problem of cheaters. In evolution, a “cheater” is any mutation that benefits the individual at the expense of the group. For example, let us suppose there are genes that promote aging to ensure that people die off in a timely way to benefit the group. If an individual had a mutation that inactivated those genes and lived longer, that person would have more opportunity to have offspring, even though it did not benefit the group. In the end, the mutation would win out.

        Unlike humans, many insects and most grain crops reproduce only once. Species such as the soil worm Caenorhabditis elegans, as well as salmon, produce lots of offspring in one big bang and die in the process, often recycling their own bodies as a form of suicide. This kind of reproductive behavior makes sense for worms, which usually live as inbred clones and are therefore genetically identical to their offspring. On the other hand, the reproductive behavior of salmon is a result of their life cycle: they have to swim thousands of miles in the ocean before returning to spawn. With little chance of surviving such a journey twice, they are better served by putting everything they can into breeding just once, using up their entire energy and even dying in the process, to produce enough offspring and maximize the chance that those offspring survive. For species that can reproduce multiple times, like humans, flies, or mice, it would not make genetic sense to die in the act of producing offspring to which they are only 50 percent related. In general, natural selection rarely acts for the good of species or even groups. Rather, nature selects for what evolutionary biologists call fitness, or the ability of individuals to propagate their genes.

        If the goal is to ensure that our genes are passed on, why has evolution not prevented aging in the first place? Surely the longer humans survive, the more chance we have of producing offspring. The short answer is that through most of our history as a species, our lives were short. We were generally killed by an accident, disease, predator, or a fellow human before our thirtieth birthday. So there was no reason for evolution to have selected us for longevity. But now that we have made the world safer and healthier for us, why don’t we just keep living on?

        The solution to this puzzle began in the 1930s with two members of the British scientific elite, J. B. S. Haldane and Ronald Fisher. Haldane was a polymath who worked on everything from the mechanisms of enzymes to the origin of life. He was a socialist who late in life became disillusioned with Britain and emigrated to India, where he died. Fisher’s fundamental contributions to statistics have propelled our understanding of evolution and also form the basis of randomized clinical trials that are used to test the efficacy of new drugs or medical procedures and have saved millions of lives. More than fifty years after his death in 1962, he became controversial for his views on eugenics and race. A stained glass window that portrayed one of Fisher’s key ideas for the design of experiments was recently removed by Gonville and Caius College in Cambridge, where he was once a fellow, and its final disposition is still uncertain.

        Around the same time, Fisher and Haldane independently came up with a revolutionary idea. A mutation that is harmful early in life, each realized, would be strongly selected against because those who carry it would not reproduce. However, the same could not be said for a gene that is deleterious to us only later in life, because by the time it causes harm, we will already have passed it on. For most of our history as a species, we would not have even noticed its harmful consequences, because long before these effects would be felt, we would have died. It is only relatively recently that we have become aware of the consequences of any mutations that are detrimental late in life. Huntington’s disease, for example, primarily affects people over thirty, by which time, historically, most of them would have already reproduced and died.

        Fisher’s and Haldane’s ideas explain why certain deleterious genes persist in the human population, but their relevance to aging was not immediately obvious. That understanding came when British biologist Peter Medawar, another brilliant and colorful figure, turned his attention to the problem. Medawar, born in Brazil, was most famous for his ideas of how the immune system rejects organ transplants and acquires tolerance. Unlike many scientists who focus narrowly on one area, Medawar, like Haldane, had widespread interests, and wrote books that were famous for their erudition and elegant writing. Many scientists of my generation grew up reading his Advice to a Young Scientist (1981), which I found pompous, arrogant, thoughtful, engaging, and witty all at once.

        Medawar proposed what has become known as the mutation accumulation theory of aging. Even if a person harbored multiple genetic mutations that didn’t noticeably impair health early on, in combination they brought about chronic problems later in life, resulting in aging.

        Going one step further, the biologist George Williams suggested that aging occurs because nature selects for genetic variants, even if they are deleterious later in life, because they are beneficial at an earlier stage. This theory is called antagonistic pleiotropy. Pleiotropy is simply a fancy term for a situation in which a gene can exert multiple effects. So antagonistic pleiotropy means that the same gene could have opposite effects; with genes involved in aging, the effects could occur at different times, such as being helpful early in life and problematic later. For example, genes that help us grow early in life increase the risk of age-related diseases such as cancer and dementia when we are old.

        Similarly, the disposable soma hypothesis posits that an organism with limited resources must apportion them between investing in early growth and reproduction and prolonging life by continuously repairing wear and tear in the cell. According to biologist Thomas Kirkwood, who first proposed this theory in the 1970s, the aging of an organism is an evolutionary trade-off between longevity and increased chances of passing on its genes through reproductive success.

        Is there any evidence for these various ideas about aging? Scientists have experimented on fruit flies and worms, two favorite organisms because they are easy to grow in the laboratory and have short generation times. Exactly as these theories would predict, mutations that increase life span reduce fecundity (the rate at which an organism produces offspring). Similarly, reducing the caloric intake of the daily food given to these organisms also increases life span and reduces fecundity.

        Apart from the ethics of experimenting on humans, the two to three decades between generations is too long for a typical academic career, let alone the handful of years a graduate student or research fellow might stick around. But an unusual analysis of British aristocrats over the past 1,200 years shows that among women who survived beyond sixty (to weed out factors such as disease, accidents, and dying in childbirth), those with fewer children lived the longest. The authors argue that in humans too, there is an inverse relationship between fecundity and longevity, although, of course, as any harried parent knows, there could have been many other reasons why having fewer children extends life expectancy.

        THE INCREASE IN OUR LIFE span over the last century brings us to another curious feature of aging that is almost unique to humans: menopause. With the exception of a few other species, including killer whales, most female animals can reproduce almost to the end of their lives, whereas women suddenly lose the ability in midlife. The abruptness of this change in women, as opposed to the more gradual decline in male fertility, is also strange.

        You might think that if evolution selects for our ability to pass on our genes, it should want us to reproduce for as much of our lives as possible. So why do women stop reproducing relatively early in life?

        This may be asking the wrong question. Our closest relatives, such as the great apes, all stop having babies about the same age that we do: the late thirties. The difference is that they generally die soon afterward. And for most of human history, most women too died soon after menopause, if not earlier. Perhaps the real question is not why menopause occurs so early in life but why women live so long afterward.

        People cannot be sure they have reproduced in the sense of passing on their genes until their youngest child has become self-sufficient, and humans have a particularly long childhood during which they are dependent on their parents. Menopause may have arisen to protect women from the increased risk of childbirth in later age, keeping them alive longer to take care of the children they had already. This might also explain why men—who don’t suffer such an increased risk—can be reproductive until much later in life. So perhaps menopause developed as an adaptation to maximize the chances of a woman’s children growing up—and thus propagating her genes. This is the so-called good mother hypothesis. Indeed, the few species where females live well beyond their reproductive years are ones whose offspring require extended maternal care. However, even in these species, there is a gradual loss of fertility rather than the abrupt change brought on by menopause. For example, although the fertility of elephants declines with age, they, unlike humans, can continue to have offspring until very late in life. Similarly, while living beyond childbearing age has also been observed in chimpanzees, menopause actually occurs near the end of their life span.

        The grandmother hypothesis for the origin of menopause takes the idea one generation further. Proposed by the anthropologist Kristen Hawkes, it argues that living longer makes sense if a woman helps in the care of her grandchildren, thus improving their survival and ability to reproduce. But others contend that it is rarely better for a woman to give up the chance to pass on half her genes through continuing to have her own children for the sake of improving the survival of grandchildren, who only carry a quarter of her genes.

        Another idea, based on studying killer whales, one of the few species that, like humans, has true menopause and lives in groups, is that menopause is a way to avoid intergenerational conflict. In some species that breed in groups, reproduction is suppressed in younger females, who act as helpers to older, reproducing females. But in humans, there is little overlap: women stop breeding when the next generation starts to breed. Women would have no interest in helping their mother-in-law have more children, since they would not have any genes in common. But a woman who helps her daughter-in-law reproduce will help to bequeath a quarter of her genes to her grandchildren. So her best strategy may be to stop breeding and help her daughter-in-law breed instead.

        It could also simply be that the number of eggs in a female evolved to match its average life span in the wild. Steven Austad, now at the University of Alabama in Birmingham, points out that menopause may not be adaptive at all in the sense of favoring mothering or grandmothering. It was only about forty thousand years ago that we became much longer lived than Neanderthals and chimpanzees. So perhaps there has just not been enough time for the aging of human ovaries to adapt to that increased life span. In the absence of hard experiments, scientists, especially evolutionary biologists, love to argue.

        THESE THEORIES OF WHY WE age depend on the idea of a disposable body being able to pass on its genes before it ages and dies. In doing so, the aging clock is somehow reset with each generation. Such theories should apply only to organisms where there is a clear distinction between parents and offspring. Certainly that distinction is true for all sexual reproduction. Sex evolved because it is an efficient mechanism to produce genetic variation in the offspring by generating different combinations of genes from each parent, allowing organisms to adapt to changing environments. In some sense, you could say that death is the price we pay for sex! While this may be a catchy statement, not all animals with a distinction between germ line and soma reproduce sexually. Moreover, scientists have found that even single-celled organisms such as yeast and bacteria age and die, as long as there is a clear distinction between mother and daughter cells.

        The laws of evolution apply to all species, and all life forms are made up of the same substances. Biologists from Darwin onward have never ceased to be amazed that evolution, which is simply selecting for fitness—or the efficiency with which each species can pass on its genes—has given rise to the amazing variety of life forms on Earth. That variety includes a huge range of life spans, from those best measured in hours to those that may stretch more than a century. For human beings seeking to understand the potential limits of our own longevity, some surprising lessons can be learned from species across the animal kingdom.

        2. Live Fast and Die Young

        In springtime, my wife and I will often take a walk in Hardwick Wood near Cambridge to see the riot of bluebells that cover the forest ground. Once, we were walking along a path when we came upon a stone monument commemorating Oliver John Hardiment, a young man who died in 2006 at the age of twenty-five. Below his name was a quotation from the Indian writer Rabindranath Tagore: “The butterfly counts not months but moments and has time enough.”

        The life of a butterfly can be as short as a week, and most live less than a month. As I considered the fleetingly short life of a typical butterfly, I was reminded of the contrast with something else that had fascinated me. I have often visited the American Museum of Natural History in New York, where there is an enormous section of the trunk of a giant sequoia tree. The tree was more than 1,300 years old when it was cut down in 1891. Some yew trees in Britain are estimated to be over 3,000 years old.

        Of course, trees are fundamentally different from us because of their ability to regenerate. In the Cambridge University Botanic Garden there is an apple tree that was grown from a cutting from the tree under which a young Isaac Newton sat a few hundred years ago about a hundred miles north at Woolsthorpe Manor, the Newton family home. In fact, there are several “Newton” trees, all started as cuttings from the one with the famous apple that fell to the ground, allegedly inspiring Newton to formulate the theory of gravity. The question of whether these trees should be dated back to the root system of the original is interesting, but it is different from looking at the life span of animals.

        Even in the animal kingdom, there are some species that possess tree-like properties. If you cut off one of a starfish’s arms, it can grow right back. A small aquatic animal called a hydra is even more impressive: it doesn’t seem to age at all and is able to regenerate tissue continuously. Still, it is a complex procedure. One study showed that a large number of genes are involved just for regenerating its head. All this for an organism that is barely half an inch in length.

        If the hydra is remarkable, it is related to another sea dweller that can age backward—at least metaphorically. That species is Turritopsis dohrnii, also known as the immortal jellyfish. This jellyfish, when faced with injury or stress, will metamorphose into an earlier stage of development and live its life all over again. It is almost as if an injured butterfly could transform itself back into a caterpillar and start over.

        Since hydra and the immortal jellyfish don’t exhibit obvious signs of aging, they are often called biologically immortal. This doesn’t mean they don’t die—they can and do die for all sorts of reasons. They still fear predators and must themselves obtain enough food to survive. Nor does it even mean that they cannot die of biological causes. But, unlike most every animal, their likelihood of dying does not increase with age.

        Species such as hydra and the immortal jellyfish excite gerontologists because they may provide clues about how to defeat the aging process. But to me, their property of being able to regenerate entire body parts, or even a whole organism, makes them more similar to trees than to us. Although we may learn some fascinating things about their lack of apparent aging, it is not at all clear how relevant those findings will be to human aging. Sometimes biology is universal, especially if it relates to fundamental mechanisms. But in other cases, even discoveries in rats or mice, which are mammals and biologically much closer to us, are difficult to translate into humans. It may be a very long time before any findings gleaned from hydra or jellyfish are useful to us.

        PERHAPS WE NEED TO LOOK at species that are more closely related to us—say, mammals, or at least vertebrates. Although this class of animals doesn’t span the enormous range of longevity from insects to trees, they still vary considerably. Some small fish live for just a few months, while a bowhead whale is known to have lived for more than 200 years, and a Greenland shark is thought to have lived almost 400 years.

        What causes this large variation even among a particular group of animals such as mammals? Can we detect a pattern among these species just from some overall characteristics? Scientists have long looked for such relationships. Physicists, especially, love to look for general rules to make sense of disparate observations. Geoffrey West at the Santa Fe Institute is one such physicist who now works on complex systems, including aging. West takes a broad view, analyzing how cities and companies, as well as organisms, grow, age, and die. Along the way, he explores how some properties of animals scale across a wide range of sizes and longevities.

        If you look at mammals, the larger the animal, generally speaking, the longer its life span. This makes evolutionary sense. A small animal is more vulnerable to predators, and there would be no point in having a long life span if it is going to be eaten long before it dies of old age. But the more fundamental reason for the relationship between size and life span is that size is related to metabolic rate, which is roughly the rate at which an animal burns fuel in the form of food to provide the energy it needs to function. Small mammals have more surface area for their size and so lose heat more easily. To compensate, they need to generate more heat, which means maintaining a higher metabolic rate and eating more for their weight. This means that the total number of calories burned per hour by an animal increases less slowly than the mass of the animal. An animal that is ten times as large burns only four to five times as many calories per hour. So for their weight, smaller animals burn more calories than larger animals. The relationship between how fast an animal burns calories and its mass is named Kleiber’s law after Max Kleiber, who showed in the 1930s that an animal’s metabolic rate scales to the ¾th power of its mass. The exact power is a matter of dispute and some show that for mammals, a ⅔rd power fits the data better.

        Since heart rate also scales with metabolic rate, over a very wide range of sizes—from hamsters to whales—mammals typically have roughly the same number of heartbeats over their lifetime: about 1.5 billion. Humans currently have almost twice that, but, then, our life expectancy has doubled over the last hundred years. It is almost as if mammals were designed to last a certain number of heartbeats, much like a typical car can be driven about 150,000 miles. West points out that 1.5 billion is also roughly the number of total revolutions a car engine makes over its expected lifetime and asks, perhaps tongue in cheek, whether this is just a coincidence or whether it tells us something about the common mechanisms of aging!

        These relationships suggest that there will be natural limits on life span because size and metabolic rate can vary only so much. For example, an animal cannot evolve to become arbitrarily large without collapsing under its own weight. Such an animal would also have great difficulty supplying its cells with the necessary oxygen. A metabolism must be fast enough for an animal to move and find food—and there are biological limits on how fast a metabolism is actually achievable if you are small. But within the allowable range, these rules hold remarkably well. Geoffrey West declares that just knowing the size of a mammal, he could use scaling laws to estimate almost everything about it: from its food consumption, to its heart rate, to its life span.

        This is quite remarkable, and although it deals with averages, it sounds almost like a hard-and-fast rule that limits life span. But what of human beings’ marked increase in longevity over the past century? As West observes, this is a question of what one means by life span: we have almost doubled life expectancy in the last hundred years, but we have done nothing at all to increase the maximum human life span, which remains about 120 years. He argues that, according to the evidence, aging and mortality result from the wear and tear of being alive. Inexorable forces of entropy—a measure of disorder—that push in the direction of disorder and disintegration press against that dream of immortality. Unlike cars, which consist of mechanical components that we can swap out for new ones as they wear out, we cannot simply replace ourselves with new parts and keep going indefinitely.

        WHILE THIS RULE-OF-THUMB CONNECTION AMONG size, metabolism, and life span is fascinating, biologists tend to be more interested in the exceptions. They love to study species that beat the system, in the hopes that they can tell us something about the underlying mechanisms of aging. One big question is whether there is a theoretical maximum life span or not. We have seen species such as hydra and jellyfish that seem not to age and can, in fact, continuously replace their worn-out parts. While biologists are well aware of the second law of thermodynamics—which states that in any natural process the amount of disorder or entropy increases with time—most would disagree that the law applies in some blanket form to aging and death, because living systems are not closed as the law requires but need a constant input of energy to exist. In fact, with a sufficient expenditure of energy, you can indeed reverse entropy when it comes to regularly cleaning your attic or hard drive; it is just that most of us don’t feel it is worth it.

        As a result, biologists do not think that aging is inevitable. Rather, all evolution cares about is fitness: the ability to pass on our genes most efficiently. But living a long life is worth it only if you are not going to be eaten or die of disease or an accident long before you die of old age. Hence birds, which can escape predators by flying away, generally live longer than earthbound animals of about the same size. For those lucky animals that don’t have as much to fear from predators, living a longer life gives them more time to find a mate and reproduce. Slowing down their metabolism, so that they need not procure large amounts of food every day, may then simply be a way of surviving better into old age. In each case, the life span simply reflects how evolution has optimized the fitness of each species.

        Steven Austad is a leader in aging research who studies exotic species with widely varying life spans. For a scientist, he has a highly unusual background: he majored in English literature at the University of California, Los Angeles, hoping to write the Great American Novel. Given that we’ve never heard of it, Austad jokes, one can see how that worked out. After graduation, while not writing his novel, he drove a taxi and worked as a newspaper reporter before spending several years taming lions, tigers, and other wild animals for the movie industry. This sparked an interest in science, and Austad went back to school to study animal behavior. From there, he became interested in the question of why animals age at different rates.

        In 1991 Austad and his graduate student Kathleen Fischer examined the longevity of several hundred species. They discovered that, even among mammals, the relationship between body size and longevity disappears below a threshold of about one kilogram of body mass. Possessing a biologist’s instinct for the particular, the two of them then asked which species deviated most from this scaling law, coining what they called the longevity quotient. The LQ is the ratio of the average life span of the species to what it would be if it followed the scaling laws. This allowed them to focus on those species that deviate by either living much longer or much less than would be expected for their size.

        The life span of animals generally increases with size. Estimates for the maximum life span of mammals are shown along with a line showing the general trend. In addition, points for the Major Mitchell’s cockatoo, Galapagos tortoise, and Greenland shark are shown. Data are taken from the AnAge database (https://genomics.senescence.info/species/index.html).

        It turns out that humans already do rather well: we have an LQ of about 5, meaning that we live 5 times as long as would be expected. Nineteen mammalian species outperform us: eighteen species of bat and the naked mole rat. Over the years, Austad has studied these outlier species, and he describes them in colorful prose as befits his background in English literature. He poses this provocative question: Why do aging researchers study mice and rats, both of which have LQs of just 0.7, when they could be looking at these more exceptional species instead? There are many reasons why animals are chosen as model organisms, including ease of breeding and maintenance, and the ability to study their genetics. We have acquired tremendous knowledge of their biology over decades. Since the underlying mechanisms of aging are likely to be universal even if their rates are not, and studying short-lived animals could actually be an advantage by speeding up experiments, I am not sure that many in the gerontology community will rush to follow Austad’s advice. But I hope enough of them do, so that we learn how these unusually long-lived outliers have evolved such different rates of aging.

        Among the species Austad describes are giant tortoises, such as the Galápagos tortoise, which holds the record for life span of a terrestrial vertebrate animal and can amble along for two centuries. There might well be a Galápagos tortoise still alive that was spotted by Darwin during his five-year voyage aboard the Royal Navy ship HMS Beagle from 1831 to 1836. Also, for much of their long life, they are remarkably free of diseases such as cancer. Determining the LQ of these tortoises is tricky, though. For one, their exact age is hard to determine, since their history is usually poorly documented and the subject of much exaggeration. Even thornier is the question of what a tortoise truly weighs. Much of their body mass consists of their protective shell, which is more like our hair and nails than highly active tissue, so drawing comparisons with other animals can be misleading.

        These giant tortoises may not be alone in their longevity. Two studies that evaluated survival data from various turtles and other reptiles and amphibians found negligible senescence in a number of turtles and other species. The biologist’s term negligible senescence, which means little or no increase in mortality, has been interpreted popularly to mean “eternal life,” but this is a bit of a misnomer. Actually, it means that mortality, or the likelihood of dying, does not increase with age.

        The relationship between mortality and age was worked out in 1825 by Benjamin Gompertz, a self-educated British mathematician. Gompertz worked for an insurance company, and so was naturally interested in the question of when a person seeking to purchase coverage might die. By digging through death records, he discovered that starting in our late twenties, the risk of dying increases at an exponential rate year after year. It doubles roughly every seven years. At age 25, our probability of dying in the next year is only about 0.1 percent. This rises to 1 percent at age 60, 6 percent at age eighty, and 16 percent at age 100. By the time a person reaches 108 years old, there is only about a 50 percent chance of making it another year.

        Negligible senescence, when the probability of dying is constant rather than exponentially increasing with age, violates Gompertz’s law. But even if there is negligible or even negative senescence, you still face a probability of dying every year from age-related diseases, quite apart from dying of infections or accidents. Aging involves more than increasing mortality with age. It also depends on maintaining the physiology of the animal. The long-lived tortoises show unmistakable signs of aging. Like elderly humans, their eyesight and heart gradually fail. Some of them develop cataracts. Some become feeble to the point where they need to be fed by hand. So these animals do age, just slowly.

        Moreover, biological time for tortoises is very different: they live life in the slow lane. They are not warm-blooded creatures like us mammals. They move slowly and reproduce slowly, often taking several decades to reach puberty in the wild. Their hearts beat only once every ten seconds, and they breathe slowly. Despite their long chronological lives, they fit the metabolic rate theory of longevity.

        Other long-lived species are aquatic, such as the Beluga sturgeon and the aforementioned Greenland shark. Like the tortoise, they too aren’t in any hurry. Greenland sharks swim more slowly than a normal eighty-year-old human walks, and they seem to be scavengers, rather than catching prey. Perhaps more extraordinary than the Greenland shark is the bowhead whale. This baleen whale lives in freezing Arctic waters, but because it is a warm-blooded mammal, its internal body temperature is only a few degrees lower than that of most other mammals. Moreover, it eats about three times more than was previously suspected, implying a metabolic rate three times higher than was thought. How such an animal can survive for about 250 years is still a mystery.

        The Greenland shark and the bowhead whale are large aquatic vertebrates, but there are much smaller terrestrial outliers too. One particularly interesting example is Major Mitchell’s cockatoo, a striking white bird with a pink face and a vibrant bright red and yellow crest that resembles a radiating sun. This cockatoo has been known to live to eighty-three years in a zoo. This would not be exceptional for a human, but the bird is far smaller. So this is definitely not a species that fits the general relationship among size, metabolic rate, and life span.

        Remember how the relationship between mass and longevity for mammals disappeared below one kilogram? That’s largely due to bats. Bats do not live as long as Major Mitchell’s cockatoo, but they generally outlive nonflying mammals of the same size, which is exactly what evolutionary theories would predict, since their ability to fly allows them to evade predators. In keeping with this, bats that roost in caves, and are thus further protected from predators, live almost five years longer than those that don’t. The champion is Brandt’s bat, a small, brown animal that fits comfortably in the palm of your hand. A male of the species was recaptured in the wild forty-one years after it was originally banded. Austad estimates that its LQ of about 10 is the highest known for any mammal and about twice that of humans.

        Another reason bats are thought to live longer is that they slow down their metabolism during their long periods of hibernation. On average, bats that hibernate live six years longer than those that don’t. But even bats that don’t hibernate live exceptionally long for their size, so clearly metabolic rate is not the only reason for their longevity. Rather, they may have special mechanisms that protect them from aging.

        One curious feature is that the longest-lived Brandt’s bats on record are males. This is certainly different from humans. Austad speculates that this could be because female bats are less agile in flight and more susceptible to predators when they are pregnant, because they carry more than a quarter of their own body weight. They also face much greater energy demands in feeding their young.

        Finally, no discussion of long-lived animals would be complete without mentioning the remarkably ugly, nearly hairless rodent that has become something of a darling of the aging research community: the naked mole rat. Despite the name, it is neither a mole nor a rat but a species of rodent that is indigenous to equatorial East Africa. It is about the same size as a mouse, but whereas a mouse lives roughly two years, a naked mole rat can live for more than thirty. This gives it an LQ of 6.7—not as high as Brandt’s bat, but a record for a terrestrial nonflying mammal. How do they do it?

        Rochelle Buffenstein, currently at the University of Illinois in Chicago, has done more than perhaps anyone else to understand the biology of aging in the naked mole rat. As a result of work by her and many others, we know that naked mole rats are one of a small number of mammals that are referred to as eusocial: they live in underground colonies with a queen, and, in that sense, are reminiscent of ants. As one might expect, they have a very low metabolism and are tolerant of oxygen levels so low that they would kill mice—and us. In the wild, naked mole rat queens live much longer than workers: about seventeen years compared with two to three years. But in the lab, where worker naked mole rats live a comfortable, well-fed life with good health care and no predators, the difference is not so stark.

        Not surprisingly, naked mole rats are extremely resistant to cancer, regardless of age—again, in marked contrast to mice. Even more strikingly, when Buffenstein and her colleagues tried to induce cancer in naked mole rat skin cells using techniques that worked reliably for other species, they could not do it. According to their 2010 study, instead of proliferating like cancerous cells, the naked mole rat cells entered a terminal state and were cleared away, suggesting that they respond to cancer-causing genes very differently.

        One of the biggest headlines about naked mole rats was generated by the observation that they seem to violate Gompertz’s law: their risk of dying seems not to increase with age. As a result of these findings, no animal has been hyped as much as the naked mole rat, with both the popular press and news articles in scientific journals touting each discovery as a major breakthrough in the quest to defeat aging. This was too much for some scientists, who pointed out that naked mole rats do age, just more slowly than might be expected for their size. As we saw with long-lived tortoises, they show many signs of aging, including lighter, thinner, and less elastic skin resembling parchment, as well as muscle loss and cataracts. They are not like hydra and the immortal jellyfish, which can regenerate themselves with ease. Still, as exceptionally long-lived mammals, they could provide important clues into our own aging processes.

        IT IS TIME TO LEAVE these unusually long-lived species and focus on the one that interests us most: ourselves. Most crucially: How long can human beings live? And is this limit fixed, or can it be changed?

        For most of human history, life expectancy was just over thirty. But today, in developed countries, we can look forward to living into our mid-eighties. Even in poorer countries, a person born today can expect to live longer than the grandparents of people in the richest countries. The science writer Steven Johnson makes the point that this is like each of us acquiring an entire additional life.

        When we say life expectancy, we mean life expectancy at birth, or the average number of years a newborn would live if current mortality rates remained unchanged. This value, as you can imagine, is greatly affected by infant mortality rates. Even in the nineteenth century, when life expectancy was forty years, a person who reached adulthood had a good chance of living to be sixty or more. Most of the increase in life expectancy has come about because of improvements in public health rather than groundbreaking advances in medicine. Johnson observes that the three biggest contributors have been modern sanitation and vaccines, which both prevented the spread of infection, and artificial fertilizers. Other significant innovations were antibiotics, blood transfusions (crucial for accidents and surgery), and sterilization of water and food by chlorination and pasteurization.

        The inclusion of fertilizers may surprise you, but prior to the ready availability of food—which has brought about its own problems of obesity, diabetes, and cardiovascular diseases—humans were constantly struggling to get enough to eat. Chemical fertilizers include nitrogen-containing compounds and have increased crop yields several-fold. The ability to chemically capture nitrogen from the air, a discovery for which Fritz Haber received the Nobel Prize in 1918, made it much easier to synthesize fertilizers and helped to double the world’s population. Interestingly, almost half of the nitrogen atoms in our bodies went through a Haber-Bosch high-pressure steam chamber that converted atmospheric nitrogen to ammonia for use in fertilizers, which then ended up in the food we ate and became incorporated into ourselves.

        Haber himself was a tragic figure. A German Jew, he was intensely loyal to Germany during World War I, and his method for fixing nitrogen into ammonia enabled the country to prolong the war by producing its own explosives. Prior to that, its military had been importing nitrates from Chile, which became impossible due to the Allied Powers’ wartime blockade. He also initiated the use of chemical warfare against the Allies, who denounced him as a war criminal. At the same time, his Jewishness trumped his loyalty to Germany. Soon after the Nazis assumed power, he had to flee Germany in 1933 although he was a world-famous scientist and director of a prestigious institute in Berlin. After a brief sojourn in England, he set out for Rehovot in what is now Israel, but died mid-journey of heart failure in a hotel in Basel, Switzerland.

        Back to life expectancy: preventing infectious disease dramatically reduced infant mortality, which is now as low as 1 percent in advanced countries and about 3–4 percent worldwide. But there has been progress across the rest of the aging curve as well. Public health measures for safety, regulations against smoking, and better treatments for life-threatening illnesses such as cardiovascular disease and cancer have all added up to a slow but steady increase in life expectancy beyond sixty years of age. Does this mean that our life expectancy might go on increasing indefinitely?

        Ever since humans became aware of their mortality, we have wondered whether our life span has a fixed limit. Scientists aren’t sure.

        Jay Olshansky of the University of Illinois at Chicago says yes. He examined how much we would gain by eliminating various common causes of death such as cancer, heart disease, and other diseases. Based on statistical calculations, he argued that for life expectancy to increase dramatically, we would need to reduce mortality rates from all causes by 55 percent and even more at older ages. He and his colleagues contended that average life expectancy would likely not exceed eighty-five and that it would not exceed a hundred until everyone alive today had died. Even curing all forms of cancer would add only four to five years on average.

        In the other corner was the late James Vaupel, who maintained that life span is elastic. If evolutionary theories were strictly correct, then our maximum life span should be adapted for life in the wild and thus not much more than about thirty to forty years. But, as you know, life expectancy has more than doubled. Moreover, in certain species, such as some tortoises, reptiles, and fish, mortality actually falls and then levels off, presumably because as these creatures grow larger, they can better resist starvation, predators, and disease; senescence is not inevitable.

        The disagreements between the two boiled into a sort of scientific blood feud, with Vaupel refusing to attend any meetings where Olshansky was present, and attacking his findings as a “pernicious belief sustained by ex-cathedra pronouncements.” Olshansky, for his part, feels that demographers relying purely on statistics fail to consider biology. In agreement with this, an analysis of the lives of primates implies that there are biological constraints on how much the rate of human aging can be slowed.

        Of course, life expectancy at birth is not the same as the maximum possible life span, and it is that maximum that tends to interest us more than averages. We want to know how long it is theoretically possible for humans to live. Most cultures have writings about prophets and sages who allegedly lived for hundreds of years. In Western culture, the name Methuselah has become synonymous with longevity, after the biblical prophet who is said to have lived 800 years. In somewhat more recent times, the Englishman Tom Parr, who died in 1635, was said to have lived for 152 years, but this has been thoroughly debunked. Unlike most people, for whom childhood memories are the strongest, “Old Tom” could remember nothing of his youth.

        The oldest person for whom we have reliable records is Jeanne Calment, who died at the age of 122 in 1997. She lived in Arles, the town in southern France where van Gogh resided near the end of his life. She actually met the troubled artist in her teens, describing him as “very ugly, ungracious, impolite, and sick.” Apparently Calment had a sharp wit. As she grew older and older, journalists began to gather around her on each birthday. When one of them took leave by telling her, “Until next year, perhaps,” she retorted, “I don’t see why not! You don’t look so bad to me.”

        Calment was in very good health for nearly her entire life, riding a bicycle until she was a hundred. It is hard to know what contributed to her longevity, beyond genetics. She smoked for all but the last five years of her life. While this is not an example we should follow, many of us might be tempted to emulate her habit of eating more than two pounds of chocolate every week. While Calment’s robust physical condition even late in life was extraordinary, it did not mean that she did not age; for instance, she was blind and deaf for many of her final years.

        Calment is the record holder, but one has to remember that she was born almost 150 years ago, in 1875. It is almost a miracle that she survived for so long in the age before antibiotics and other advances in modern medicine. Given the even greater progress made since then, might we expect today’s humans to live much longer?

        A few years ago, Jan Vijg and his colleagues at the Albert Einstein College of Medicine in the Bronx published a study that analyzed demographic data from several countries to look at shifts in the population of each age group. As life expectancy improves, the fastest growing segment of the population is usually the oldest, since many more people reach the threshold for that group. For example, in France in the 1920s, 85-year-old women were the fastest growing group. By the 1990s, the fastest growing group were 102-year-olds. You might expect that with time, this would shift to even older ages. But the study showed that improvements in survival decline after age 100, and the age of the oldest person has not increased since the 1990s. Vijg predicted that the natural limit of our life span is about 115 years; there will be occasional outliers such as Jeanne Calment, but he calculates that the probability of anyone exceeding 125 in any given year is less than 1 in 10,000.

        This conclusion was contradicted a couple of years later by a study examining records of men and women in Italy who had reached the age of 105 between 2009 and 2015. It concluded that mortality rates plateaued after the age of 105, in an apparent violation of Gompertz’s law. The researchers went on to say that a limit to longevity, “if any, has not been reached.” This paper in turn was criticized by one of the authors of the earlier study, who felt that it was rather far-fetched that after increasing exponentially for most of one’s life, the chance of dying should plateau in extreme old age. Others pointed out that most of the cohort did, in fact, follow Gompertz’s law, so the plateau came from less than 5 percent of the mortality data. Moreover, they argued that even if mortality did plateau after age 105, the likelihood of anyone surviving much beyond Calment’s 122 years was remote, in the absence of major biomedical advances. It is a question of statistics. At today’s rates, the odds of surviving each year after 105 is only about 50 percent; to beat Jeanne Calment’s 122 would be like tossing a coin seventeen times and having it come up heads every time. Those odds are about 1 in 130,000.

        Recent data support the views of Vijg, Olshansky, and other proponents of a limit to maximum life span. After climbing steadily for the last 150 years, the annual increase in life expectancy slowed down globally around 2011 to a fraction of what it had been in previous decades, and plateaued from 2015 to 2019 before falling precipitously as a result of the Covid-19 pandemic. The pandemic, like the influenza epidemic that gripped the world in 1918–19, killing an estimated 50 million people, was an exceptional situation. But we weren’t making progress even in the handful of years before the pandemic. Why not is unclear. It could be due to the rising epidemic of obesity and associated scourges such as type 2 diabetes and cardiovascular disease. As people live longer, Alzheimer’s and other neurodegenerative diseases are responsible for an increasing share of deaths, and there is currently little treatment for them.

        In any case, although the number of people who live to be 100 keeps increasing, nobody has beaten Calment’s record of 122 in the twenty-five years since she died. The next oldest person, a Japanese woman named Kane Tanaka, died in 2022 at the age of 119. As I write this, the oldest living person is Maria Branyas Morera of Spain, who is 116 years old. What is striking is that these extremely long-lived people are all women. Now that death rates due to childbirth have been reduced dramatically, life expectancy for women is greater than that of men in nearly every country.

        Even if nobody beats Calment’s record soon, there remains great interest in why some humans live exceptionally long. Thomas Perls, who heads the New England Centenarian Study, has been studying centenarians for several decades. As a practicing physician who specializes in geriatrics, he confronts the realities of aging in his patients every day. He investigates the health history, personal habits, and lifestyles of centenarians, along with what is known about their family histories and genetics. In one large study, Perls concluded that centenarians fell into three classes. About 38 percent were what he called Survivors, who had been diagnosed with at least one age-associated disease before the age of eighty; another 43 percent were Delayers, who developed such a disease after the age of eighty; and the last group consisted of Escapers, the 19 percent who reached their hundredth birthday without being diagnosed with any of the ten most common age-associated diseases. In fact, about half of centenarians celebrated turning one hundred without heart disease, stroke, or non–skin cancer, which is extraordinary.

        Perls says that centenarians generally maintain their independence up through their early to mid-nineties. For those who live beyond 105, that independence can be observed at least through age 100. So it appears that centenarians survive for so long by staying healthy longer than most people, rather than going through a prolonged period of living with diseases of old age. Perls also told me that he has seen an increase in the number of people aged 100 to 103, a likely reflection of improvements in medicine and lifestyle over the last few decades, but, beyond that, he is not seeing an increase—perhaps because genetics play such an influential role in survival to those extreme ages. He agrees with Olshansky that currently there is a natural limit on our life span.

        Perls and other researchers are now sequencing the genomes of centenarians, and he plans to also study the modifications in DNA that accumulate with age. These studies could reveal the underlying biology of extreme longevity in ways that could be very useful to the rest of us. In the meantime, based on what he has learned so far, Perls has developed a website, livingto100.com, which asks visitors questions about themselves, and spits out an estimated life span, along with suggestions for how to improve it. A few findings may surprise you: it recommends tea over coffee, reducing our intake of iron (often found in multivitamins), and flossing regularly. But many of the suggestions are what one might expect: eating moderately and healthily and avoiding fast food, processed meat, and excessive carbohydrate consumption, as well as exercising and maintaining a healthy weight, getting adequate sleep, reducing stress, staying mentally active, and having an optimistic outlook. It helps not to have diabetes, and having a close family member who lived to be over ninety is a big plus. Since my father, at ninety-seven, still does his own laundry, grocery shopping, and cooking—making complicated Indian recipes and his own ice cream from scratch—I may have lucked out.

        The debate about whether there is a limit to human longevity led to a famous bet. At a 2001 meeting, a reporter asked Steven Austad when we would see the first 150-year-old human. None of the other scientists wanted to go out on a limb, but Austad blurted out, “I think that person is already alive.” When he read about this, Olshansky, who remains skeptical of exceptional longevity, called up Austad and challenged him to a friendly bet. You might think that this was a safe bet since they would both be dead before it could be decided, but they’d already thought of that. The two men agreed to put $150 each into a fund for 150 years, which, Austad notes, had a nice symmetry to it. A back-of-the-envelope calculation by Olshansky suggested that in 150 years, $150 could turn into about $500 million to be won by either them or one their descendants. A dozen years later, nobody had yet approached the age of Jeanne Calment, but both of them still felt confident, so they doubled the bet, with each putting another $150 into the pot, raising the potential stake to a cool $1 billion 150 years from now—although it is not clear what $1 billion would actually buy at that point.

        Why did Austad make this bet? It is not as if he believes that just because we are getting better at treating diseases of old age such as cancer, stroke, and dementia, people will live thirty years more than Calment. In fact, on that point, he and Olshansky agree. Rather, Austad believes that research on aging will result in game-changing medical breakthroughs. The scientists disagree mainly on how rapidly these innovations will occur.

        We have now explored how evolutionary theories help us understand why death occurs at all, and how the optimization of fitness by evolution has resulted in a huge range of life spans in different species. We have also explored whether there are biological limits to our own life span. But none of this tells us how aging occurs and how it leads to death.

        The quest to defeat aging and death is centuries old, but findings from modern biology over the last half century have led to an explosion of knowledge about exactly what goes on in our bodies as we age. As we noted before, aging is simply an accumulation of damage to our molecules, cells, and tissues due to a variety of causes that bring about increasing debilitation and eventually death. An aging body changes in so many ways that it is hard to glean which factors cause aging and which are simply its consequences. But scientists have homed in on a small number of hallmarks of aging. According to them, such a hallmark should have three characteristics: first, it should be present in an aging body. Second, an increased presence of the hallmark should accelerate aging. Third, reducing or eliminating the hallmark should slow aging.

        These hallmarks exist at every level of complexity, from molecules, to cells, to tissues, to the interconnected system we call our body. No hallmark exists in isolation; they all influence one another. Thus aging doesn’t have one or even a few independent causes. It is a highly intricate and interconnected process.

        It is easiest to make sense of it all if we start at the most basic level of complexity: with the molecule that could be thought of as the ultimate command and control center of the cell.

        3. Destroying the Master Controller

        The ancient site of Hampi in South India offers a stark contrast to the thriving metropolis of London. The grand city that existed for more than a thousand years and at its peak in the early sixteenth century was second in wealth only to Beijing is now a collection of well-preserved granite ruins about fifteen miles from the nearest railway station. The once-bustling marketplaces and intricately carved temples and palaces are now only alive with camera-toting tourists. It was once the London of its time: the seat of an empire and a flourishing center of trade and culture. When I travel to London, I simply cannot imagine the city ever not existing, and the inhabitants of Hampi probably thought the same. This failure of imagination extends to us as individuals too. Even if we know we are going to age and die, in our daily lives, unless we are terminally ill, we carry on as if we are immortal.

        How could a thriving, vibrant city like Hampi have disintegrated and no longer exist? Throughout history, one of the fastest ways for a society to crumble was the breakdown of law and order resulting from a government’s loss of control due to civil unrest or a war. And just as with society, loss of control and regulation in biology leads to decay and death, not only of the cell but of the entire organism.

        Unlike a functioning society run by a government, there is no central authority in the cell that supervises its thousands of components as they go about their business. So is there even a counterpart in the cell of a command and control center? Perhaps the closest thing is our genes, which reside in our DNA. The nature of genetic information in our DNA and the ways it becomes corrupted over time are essential for understanding aging and death.

        We didn’t even know about genes as an entity until the late nineteenth century. Most of us think of genes as traits that we inherit from our parents and pass on to our children. We may think of good genes, reflected in positive traits, or bad ones, characterized by disease or defects. But genes are better described as units of information. They contain information not only on how to reproduce an organism and pass on its traits, but also on how to build an entire organism from a single cell and keep it functioning.

        Among the most important information that genes contain is how to make proteins. We normally think of proteins as essential components of our diet, and we know they are used to build muscle. In fact, our body contains thousands of proteins. Not only do they give the body form and strength, but they also carry out most of the chemical reactions that are essential for life. They regulate the flow of molecules in and out of cells. They allow our cells (and us) to communicate with one another. They are the reason we can sense light, smell, touch, and heat. Our nervous system depends on proteins to transmit nerve signals and even to store memory. The antibodies we use to fight infections are proteins. Proteins also enable the cell to manufacture all the other molecules it needs, including fat and carbohydrates, vitamins, and hormones, and—to complete the circle—even our genes. Proteins are everywhere. And every one of these proteins is made by following instructions in a gene.

        Exactly how genetic information is stored and used remained a huge mystery until relatively recently. Even in the 1940s, scientists still didn’t understand the molecular nature of genes. Today we know that our genes reside in DNA, a long molecule that consists of two strands wrapped around each other in a double helix. Each strand of DNA has a backbone made up of alternating groups of phosphate and a sugar called deoxyribose. If that were all DNA was, it would just be like any other repeating polymer such as polyethylene or other plastics, and incapable of carrying information. But DNA is able to encode instructions because each sugar in its backbone is attached to one of four types of chemical groups called bases. These bases are adenine (A), guanine (G), thymine (T), and cytosine (C). This phosphate-sugar-base unit is the building block of DNA, known as a nucleotide.

        You can think of each building block as a letter, and a DNA chain as a very long sentence written using this four-letter alphabet. Just as a particular sequence of letters can form a sentence that conveys meaning and information, suddenly you could imagine how DNA could too, but it was still not at all clear how. This changed dramatically in 1953 when the three-dimensional structure of DNA was deduced by James Watson and Francis Crick. Normally, the structure of a molecule only hints at how it might work, but DNA was different. Its structure immediately shed light on how the sequence of bases could transmit information, transformed our understanding of genetics, and ushered in the current revolution in molecular biology. Without it, we would have had no hope of understanding the workings of life or unlocking the secrets of why we age.

        Genetic information stored in our chromosomes in the form of DNA is copied (transcribed) into mRNA in the nucleus. The mRNA then moves to the cytoplasm, where ribosomes read it to make proteins.

        In DNA, two strands running in opposite directions are wrapped around each other in a double helix. A base from one strand chemically bonds, or pairs, with the base directly across from it in a very specific way: an A pairs only with a T or vice-versa, and a C with a G. Hence the magic of DNA: if you know the sequence of bases in one of the two strands, you can determine the sequence of the other. This also means that if you separate the two strands, each of them has the information to make the other, enabling you to create two identical copies of the molecule from an original. Suddenly an age-old problem was solved: How could you get two daughter cells, each of them possessing exactly the same genetic information as the single parent cell? Genetics had become chemistry: we could understand at the molecular level how genetic information could be duplicated and passed on to a new generation.

        Still, there remained the second question of how genetic information in DNA actually codes for proteins. It turns out that the section of DNA that codes for a gene is copied into an intermediate molecule called ribonucleic acid. RNA is similar to DNA but with some important differences. Unlike DNA, it has only one strand, and instead of deoxyribose, it has a sugar called ribose. In RNA, the thymine (T) base is replaced by uracil (U), which is slightly different chemically but pairs with A just as T does.

        Think of DNA as the collection of all our genes, much as the British Library or the US Library of Congress are collections of all the books published in their respective countries. Those libraries are not likely to let you take a valuable eighteenth-century book home to read at your leisure. But they can often provide a copy of it to take home. Similarly, RNA is a working copy of the gene that can be used by the cell.

        Not every piece of DNA that is copied to RNA codes for a protein. Some RNAs are part of the machinery that is used to make proteins. Others can even control whether certain genes are turned on or off. But when an RNA is made from a gene that codes for a protein, it is called messenger RNA, or mRNA, because it carries the genetic message for how to make that protein. We’ve heard a lot about mRNA recently in connection with vaccines for Covid-19. These vaccines are made from mRNA molecules that contain instructions on how to make the spike proteins that are on the surface of the virus that causes Covid-19. When those mRNA molecules are injected into us, our cells read the instructions in it and produce the corresponding spike proteins, which in turn trains our immune system to be ready to fight the real Covid-19 virus.

        How instructions in mRNA are read to make proteins was a hard puzzle that took over a decade to crack. The problem scientists faced was that proteins too are long chains, but of completely different types of building blocks called amino acids. Unlike DNA and RNA, which have four types of bases, there are at least twenty different types of amino acids. If proteins were like sentences written in a twenty-letter alphabet, how could they translate those sentences from the four-letter language of genes? The way nature has solved this problem is that groups of three bases (or letters) in mRNA are read as a code word, or codon, each of which specifies an amino acid. The whole process takes place on the ribosome, a giant, ancient molecular machine that consists of almost half a million atoms.

        I have spent much of my life trying to understand how the ribosome carries out the complicated process of reading mRNA to synthesize a protein. What seems miraculous is that as the newly made protein chain emerges from the ribosome, the sequence of its amino acids contains within itself the information needed for the protein chain to fold up into a particular shape so that it can carry out its function. It is akin to writing different sentences on strips of paper and, depending on what I had written, each strip would magically fold itself into its unique shape. This ability of a protein chain to fold itself up is why the one-dimensional information contained in our genes allows us to build the complex three-dimensional structures that make up a cell—and, eventually, us.

        The gene doesn’t just contain information on how to make a protein. The part that specifies that is called the coding sequence, but flanking it are regions (non-coding sequences) that signal when to make the protein, when to stop, and even whether to make it quickly or slowly, for a brief while or for a long time. These signals are turned on or off either by chemicals in the environment or by other genes. Genes, in other words, don’t act alone; they form a giant network with lots of other genes, as well as the broader environment. This is why some proteins are made by all our cells, but others only by specific cells, such as skin cells or neurons. And why some proteins are made only at certain stages in our development from a single cell to a complete human being. The precise orchestration of this network of thousands of genes is what makes life possible.

        You could think of the process of life as an enormous program that somehow activates itself using the blueprint provided by DNA. The word blueprint is a convenient metaphor, but we should not take it too literally, because a blueprint implies a rigid manufacturing process that produces a strictly defined product. Unquestionably, DNA is the central hub for regulating the overall program of the cell. But I think of the cell as more like a democracy than a dictatorship. Just as an ideal government is not autocratic but responsive to the needs of its people over time, DNA does not dictate the entire process. Rather, conditions in the cell and its environment decide which parts of the DNA are used, as well as how often and when.

        UNDERSTANDING THE MOLECULAR BASIS OF genetics has transformed modern biology, but what does it have to do with aging? If the genes in our DNA specify the program of the cell, why doesn’t the program just keep running forever? The problem is that the DNA itself changes and deteriorates with time.

        Of course, genes and mutations were studied long before we knew about DNA. Prior to DNA, the only way to determine whether an organism had a genetic mutation was when it resulted in a change in an observable trait. Today we know that mutations are simply changes in the bases of DNA. Changing bases in DNA is the equivalent of changing letters in a sentence. Sumtymes we can still dicifer the same meening, but other times, just a single change can be confusing or even have the opposite meaning—for example, if we change the word hire to fire.

        Now that we can sequence DNA—or determine the precise order of bases in any piece of DNA—we can see that mutations happen all the time. Many of them have no observable effect. This is because even with the change to the DNA, the altered gene functions just as well; or the organism has redundant genes, so that if one is defective, the others can compensate for it. Other mutations can be harmful to varying degrees because they result in proteins that are defective; or proteins that are produced in the wrong amounts or at the wrong time.

        Sometimes, mutations can actually be beneficial. For instance, if the mutation occurs in a germ-line cell, it might very occasionally give offspring an advantage that facilitates their survival. A species that is uniformly the same could be wiped out by some pestilence, like trees susceptible to Dutch elm disease, or by sudden changes in the climate or geography. Mutations can give rise to genetic variability in a population and make it more resilient by increasing the likelihood that some strains might survive better than others as conditions change. Without mutations, there would be no evolution; we would never have emerged from primitive molecules. The cell, then, must strike a balance, tolerating enough mutations in the germ line to allow variability and evolution, but not allowing so many mutations in our somatic cells that the complex process of life begins to break down.

        A societal breakdown of law and order can bring about chaos, mass starvation—even the annihilation of entire cities and civilizations. The worst criminal elements often take advantage during turbulent times, usurping power and making life miserable for everyone else. Similarly, loss of control in biology can lead to deterioration and death as well as to many diseases. One of the worst examples of cells misbehaving is cancer, in which aberrant cells are no longer inhibited by neighboring cells but instead multiply unchecked and take over entire tissues and organs, interfering with their functioning. In that sense, cancer and aging are intimately related: they both arise from a biological loss of control, and their ultimate source is often mutations in our genes, owing to changes in our DNA.

        LONG BEFORE WE KNEW OF DNA, there were hints that environmental agents could cause what we now know to be genetic mutations. As early as the eighteenth century, the English surgeon Percival Pott discovered that the country’s chimney sweeps, many of them children, had abnormally high rates of cancer of the scrotum. He attributed this to their excessive, prolonged exposure to the soot and tar from burned coal. In 1915, Yamagiwa Katsusaburo, a professor of pathology at the Tokyo Imperial University, demonstrated that applying coal tar to the ears of rabbits caused skin cancer. These products of coal would later be identified as cancer-causing agents, or carcinogens, but when Pott made his observations, nobody had any idea what cancer was, and even when Katsusaburo reported his results, the link between cancer and genetic mutations was still decades away.

        The first direct evidence linking an environmental agent to mutations was discovered by a scientist with a remarkably peripatetic life. Hermann Muller was a third-generation American who grew up in New York City and entered Columbia College (now Columbia University) at the precocious age of sixteen, graduating in 1910. He stayed on at Columbia for his PhD, working with the famous geneticist Thomas Morgan, who had used fruit flies to show that genes resided in the chromosomes in our cells.

        Later, Muller moved to the University of Texas, where, in a key experiment in 1926, he subjected fruit flies to increasing doses of X-rays. As he ratcheted up the dose, the number of lethal mutations rose dramatically. Even a modest application of X-rays produced 35,000 times as many mutations than would have occurred spontaneously. Muller’s work advanced genetics tremendously by making it much easier to produce mutations, and also raised awareness of the danger of X-rays and other radiation. At the time, people used X-rays rather cavalierly—it was common for shoe sellers to X-ray the feet of their customers in the shoes they were considering.

        Like many geneticists in the early twentieth century, Muller was a proponent of eugenics for much of his life and thought of it as a way for improving the human species. Oddly for a eugenicist, he was also quite left wing, a result of his disillusionment with capitalism in the wake of the Great Depression. He recruited lab members from the Soviet Union and as a faculty advisor, helped edit and distribute a leftist student newspaper called The Spark, which spurred the FBI to investigate him.

        Partly as a result, in 1932 Muller left the United States for Berlin. Discouraged by the rise of Hitlerism, he left the following year for the Soviet Union, believing that the environment there would be more conducive to his left-wing views. He spent a year in Leningrad before moving to Moscow for a few years. He had not, however, reckoned with the rise of Trofim Lysenko, the Soviet biologist and charlatan who had ingratiated himself to Stalin. Lysenko viewed genetics as inconsistent with socialism, and instead espoused a number of crazy ideas in agriculture, while ruthlessly wielding his power to suppress or destroy any biologist who dared question him. In doing so, he contributed to famines that killed millions of people and set back Soviet biology by decades. Muller and other geneticists did what they could to counteract Lysenko, but eventually Muller incurred Stalin’s wrath for his views on both genetics and eugenics and had to flee.

        Not yet ready to return to the United States, where the FBI was still investigating him, Muller ended up at the Institute for Animal Genetics at the University of Edinburgh in 1937. There he helped catalyze another important discovery. He joined a lively group of scientists, many of them refugees from totalitarian regimes, under the direction of pioneering medical geneticist Francis Crew.

        One of Crew’s key collaborators, Charlotte Auerbach, had been born to an academic Jewish family in Krefeld, Germany. Auerbach, known as Lotte, was an independent thinker who did not take well to being told what to do. While studying for her PhD in Berlin, her professor refused her request to change her project, so she simply quit and became a high school teacher. She found teaching and keeping order in class exhausting, perhaps not helped by the increasing antisemitism of the time. In what turned out to be a blessing in disguise, she was summarily dismissed in 1933 at the age of thirty-four because she was Jewish. On her mother’s advice, she left Germany, and, with the help of friends of the family, was able to finish her PhD at the Institute for Animal Genetics, where she worked with Crew. In 1939 she became a British citizen; later that year, her mother showed up in Edinburgh without any money or baggage, having made it out of Germany just two weeks before World War II broke out.

        Crew’s initial attempt to bring Auerbach and Muller together was not a success. He introduced her to Muller and simply told him, “This is Lotte, and she is going to do cytology for you.” But Auerbach had no interest in spending her time peering through a microscope to characterize Muller’s cells, and, independent minded as always, she refused. She told Muller that she was really interested in how genes enabled development. To his credit, Muller told her that he wouldn’t dream of having someone work with him on a project that didn’t interest her. However, he persuaded Auerbach that if she wanted to pursue her interest in understanding the role of genes in development, she needed to produce mutations in them and see their effects.

        Around this time, a colleague of hers, Alfred J. Clark, had noticed that soldiers exposed to mustard gas in World War I exhibited lesions and ulcers that resembled the effects of exposure to X-rays. Auerbach, along with Clark and their colleagues, exposed fruit flies to mustard gas, checking for mutations using the methods Muller had pioneered. It says something about their dedication that their experiments were carried out on the roof of the Pharmacology Department in cold, wet, blustery Edinburgh. The experimental conditions would never pass a workplace health and safety inspection today: the fruit flies were exposed to the gas in vials and afterward were removed by hand, causing serious burns to the workers. In any case, the results were unambiguous. Exposure to mustard gas had resulted in ten times as many lethal genetic mutations. Chemicals, like radiation, could also cause mutations.

        MULLER AND AUERBACH’S WORK SHOWED how our genetic blueprint could be damaged by environmental agents such as radiation or chemicals. At the time, we didn’t even know that DNA was the genetic material, let alone how the information it carried could be corrupted. But once Watson and Crick revealed its double-helical nature, the question naturally became how exactly did these agents cause changes in our DNA that resulted in mutations?

        Studying the biological effects of radiation had been something of a stepchild of the life sciences before World War II. But once the world saw the horrible effects of radiation wrought by the two atomic bombs dropped on Japan in August 1945, the US government became very interested in this once sleepy field. After the war, many of the sites that had been used for the Manhattan Project to develop nuclear weapons were converted to radiation biology research centers. One of these was Tennessee’s Oak Ridge National Laboratory, which had originally been the site for producing large amounts of the uranium isotope used in the first atomic bomb, detonated over the city of Hiroshima. Remote from the large academic centers of the United States in the Northeast and the West Coast, Oak Ridge was nestled between the spectacular wilderness of the Cumberland and Smoky Mountains. These attractions, and the generous funding provided by the government, allowed Alexander Hollaender, a leading radiation biologist of his time, to recruit many excellent scientists to Oak Ridge, including Dick and Jane Setlow.

        Dick and Jane Setlow met as undergraduates at Swarthmore College in the 1940s and married soon afterward. When Hollaender approached them around 1960, Dick was on the biophysics faculty at Yale University. It was one of the oldest biophysics programs in the country, but Hollaender lured away Dick with a shrewd move: he offered Jane, who had a temporary appointment working for someone else, a full position too. In those days, even women who had earned graduate degrees rarely had the opportunity to work as equals and ended up assisting some male scientist, frequently their husband. Hollaender’s gambit worked. Both Dick and Jane became leaders in the field, sometimes working together but just as often separately. They also raised a family of four children and hiked and hunted for fossils in the mountains around Oak Ridge before moving to another national lab in Brookhaven on Long Island about fifteen years later.

        Brookhaven National Laboratory was where I first met them, in 1982. Dick was the chair of the department that hired me. It might have helped that I was desperately trying to leave Oak Ridge after only fifteen months there because the resources I had been promised never materialized. Dick, having made the same move himself, was sympathetic. At the time, I was thirty-one years old, and although they were only around sixty then, I regarded them as ancient fossils, like the ones they collected. Like some of the more mainstream molecular biologists, I severely underestimated the importance of their work, and I regret that I didn’t talk to them about their discoveries when I had the chance. It’s a reminder to me of how insular most scientists are, with little appreciation of what goes on outside their narrow specialties.

        Even before X-rays were discovered, we knew about other forms of radiation. As early as 1877, the British scientists Arthur Downes and Thomas Blunt discovered that sunlight could kill bacteria. In the early twentieth century, Frederick Gates showed that it was the shorter wavelengths in sunlight—ultraviolet, or UV, radiation—that had the killing effect. Soon after Muller demonstrated that X-rays could cause genetic mutations, scientists started studying UV radiation too; after all, it was easier to produce and safer to handle. They found that for a given dose, UV light produced even more mutations. At Oak Ridge, Dick and Jane began by trying to understand exactly how UV caused mutations in DNA. One finding that intrigued them was that UV light links up two adjacent thymines (the T bases) on DNA. Virtually any sequence of DNA will occasionally have two thymines next to each other, and somehow UV was linking them together so that the two bases were no longer separate but acted as a single unit consisting of two building blocks—known as a thymine dimer, or sometimes as a thymidine dimer, if scientists want to refer to the larger unit that includes the sugar to which the thymine is attached. Was this how UV inactivated DNA and killed bacteria?

        Dick and Jane experimented with inserting foreign DNA into a bacterium. This enabled them to introduce a gene that gave the bacterium new abilities, such as growing in the absence of a nutrient it would need otherwise or becoming resistant to an antibiotic. However, when they tried this using DNA containing thymine dimers, it was as if the DNA had become inactivated. Dick went on to show that thymine dimers prevent the DNA from being copied, so new DNA could not be made.

        The next step was even more remarkable. Dick and his colleagues found that shortly after exposure to UV radiation, the thymine dimers disappeared from the DNA altogether. The dimers, including the sugar and phosphate to which the bases were attached, were cut out of the DNA, with the missing section filled in using the other strand as a guide, just as when DNA is copied. Discoveries in science are not made in a vacuum. The state of knowledge reaches a stage where the next advances are possible, so new breakthroughs are often made simultaneously. The same year, 1964, that Setlow reported his discovery, two other groups, led by Paul Howard-Flanders and Philip Hanawalt, respectively, made similar findings. The reports all confirmed that the cell clearly had some mechanism to not only recognize the thymine dimers but also to repair them, by a process called excision repair.

        Excision repair was also found in a different context. Even in the 1940s, scientists realized that they could reverse the effects of UV light on bacteria by exposing them to visible light. The arrested bacteria would start growing again. Extracts from bacteria that had been exposed to visible light could repair damaged DNA. How it worked was something of a mystery until Aziz Sancar, a Turkish doctor turned scientist, got involved in the work and identified its mechanism, which also involved repairing thymine dimers using a different enzyme. Oddly, Hemophilus influenzae, the organism in which Dick Setlow had identified the same kind of repair, lacks this mechanism (as do we humans)—otherwise he might never have made his discovery. Just the fact that nature had evolved two completely different mechanisms to remove thymidine dimers tells us about the importance of repairing them.

        These experiments established firmly that the cell could repair damaged DNA. But we’re rarely exposed to high doses of X-rays. Our clothes and the melanin pigment in our skin protect us from a lot of UV exposure. Also, we know enough to stay away from mustard gas, coal tar, and other nasty chemicals, which human beings never encountered in the wild in prehistoric times. Yet these mechanisms to repair damaged DNA evolved billions of years ago and are part of every life form.

        It turns out that our DNA is constantly being assaulted, even in the normal course of living, without exposure to nasty chemicals or radiation. The person who did more than anyone to make us appreciate this was the Swedish scientist Tomas Lindahl. As a postdoctoral fellow at Princeton University, he was working on a relatively small RNA molecule. To his frustration, he found that it kept breaking down.

        As we’ve discussed, RNA molecules use the sugar ribose rather than the deoxyribose found in DNA. Ribose differs from deoxyribose by just one additional oxygen atom. That extra atom makes RNA much more unstable, but also gives it the ability to form complex three-dimensional structures that can carry out chemical reactions. Because of these properties, scientists believe that life originally emerged in a primordial world in which RNA carried out chemical reactions as well as stored genetic information. As life evolved to become more complex, using an unstable molecule to store an increasingly large genome was not viable, and so the more stable DNA was used to store genetic information.

        Lindahl knew that DNA was more stable than RNA, but he wanted to know how much more. It had to be stable enough to pass on information to the next generation without too much change. Or over the billions of cell divisions that occur by the time a single cell develops into a mature organism. That is a very long time.

        Lindahl studied DNA in a variety of conditions and found that over time some of its bases changed. The most common change was that the base cytosine (C) was transformed into a different base called uracil (U), which is normally found in RNA, where it stands in for thymine (T). The problem is that, like T, U pairs with an A, while C pairs with a G. This transformation was like changing a letter in the DNA sentence. Having many of these changes throughout the genome would corrupt the encoded instructions to the point where they would become nonsensical.

        Lindahl showed that the change from a C to a U can be caused simply by exposure to water, a ubiquitous occurrence for all living molecules in a cell. In one day, water could cause about ten thousand changes to the DNA in each of our cells. Lindahl estimated later that, taking into account all forms of spontaneous damage to DNA, about a hundred thousand changes are inflicted on the DNA in each of our cells every single day. It was hard to imagine how life could survive when the set of instructions that enabled it was being corrupted so rapidly. Clearly, there had to be a mechanism to correct these errors too. Over the next few decades, Lindahl and other scientists worked out how this change is repaired.

        A much more drastic form of DNA damage occurs when both strands break, leaving two pieces that have to be rejoined. Sometimes there are even multiple breaks on different chromosomes. This can result in a complete mess, where half of one chromosome is joined to the other half of a completely different one, or where a broken-off piece has been reinserted backward. Again, if we think of DNA as a text consisting of sentences, changes to individual bases are like typos: although they will occasionally garble the meaning, often you can still make sense of them. But if you repair a double-strand break incorrectly, it is like cutting sentences or whole paragraphs from a long text and pasting them back in some random order. Occasionally, it might still sort of make sense, but other times it will be complete gibberish. So it is imperative for the cell to join broken ends of DNA as soon as it recognizes them, preferably before multiple breaks occur. Special proteins recognize the broken ends and join them together to make an intact DNA molecule. This process does take into account the DNA sequence at the ends, so if there is more than one break in the cell at any given time, there is always a chance that it will join the wrong ends. When our genome is scrambled in this way, it can lead to different kinds of problems. One is a loss of function, where the cell cannot do its job efficiently or perhaps not at all. In other cases, it can corrupt or lose the signals that control genes. As a result, the cell starts growing unchecked, leading to cancer.

        Humans are what we call diploid, possessing two copies of each chromosome. The more common and accurate way that the body repairs double-stranded breaks is to use the undamaged DNA in the other chromosome as a guide. Even in organisms such as bacteria, a second copy is often present when cells are dividing and the DNA is being duplicated. Either way, the repair machinery lines up the broken ends against the matching sequence on the other (intact) copy of the DNA to form a complicated structure in which all four strands are intertwined. This is more accurate than simply grabbing random ends and joining them because it checks whether they are the right ends to be joined. By doing so, it restores the integrity of the genome and fills in any gaps that arise if the broken ends have been frayed.

        Apart from chemical damage, mutations have another way of creeping into our genome. Each time a cell divides, the entire genome has to be duplicated, which is like copying a text three billion letters long. No process in biology is ever completely accurate. Just as with writing or typing, the faster you try to copy something, the more prone you are to making mistakes. The polymerase enzymes that replicate DNA are incredibly accurate; what’s more, they can proofread their work, so to speak, correcting mistakes as they go. Nevertheless, they still make an error once every million or so letters. In a genome with a few billion letters, that means several thousand mistakes occur each time the cell divides. The cell can’t take forever to divide, and in life there is always a compromise between speed and accuracy. Not surprisingly, the cell has evolved sophisticated machinery to correct these errors.

        Relying on some very clever experiments, Paul Modrich figured out how enzymes in a bacterium recognize the mismatch, cut out a section of the new strand containing the mistake, and fill in the section so that the mistake is corrected. That mechanism is now well established in bacteria, but scientists are still debating exactly how these kinds of errors are corrected in higher organisms like humans.

        It took a long time for the scientific community to realize the importance of DNA damage and repair. Muller received the Nobel Prize in 1946, a full twenty years after his discovery that X-rays cause mutations. But by the time the 2015 Nobel Prize in Chemistry went to Lindahl, Sancar, and Modrich, the field of DNA repair had long ceased to be a scientific backwater. Now it is widely recognized as crucial for life as well as for understanding the basis of both cancer and aging. As in most scientific areas, hundreds of scientists working in different labs throughout the world had contributed to these discoveries, but the Nobel Prize can be shared by only three people at most, so the committee has the unenviable job of choosing the three most important to honor, not always without controversy. The prize also cannot be given posthumously, and, sadly, Dick Setlow had died a few months before it was announced, at the age of ninety-four.

        Over the years, scientists have isolated many different repair enzymes. Many of them are essentially the same in all life forms from bacteria to humans. DNA repair is so essential to life that it originated billions of years ago, before bacteria and higher organisms diverged. Maintaining the stability of the genome and its instructions is critical for the cell and demands constant surveillance and repair. You can think of these repair enzymes as the sentinels of our genome.

        Because DNA damage occurs all the time, any defect in the repair machinery itself is particularly disastrous because it means that the damage would accumulate rapidly. Not surprisingly, many mutations in the repair machinery have been linked to cancers: for example, mutations in the BRCA1 gene predispose women primarily to cancers of the breast and ovary. Defects in the repair machinery also cause aging, but because we are also more likely to develop cancer as we age, it is hard to separate out the two effects. Perhaps more than any single person, the Dutch scientist Jan Hoeijmakers has worked extensively to explore how DNA repair defects can age a person prematurely. One condition he has focused on is Cockayne syndrome, which manifests symptoms associated with aging, such as neurodegeneration, atherosclerosis, and osteoporosis. In females, defects in how the cell responds to DNA damage can affect the age at which menopause begins. Generally, the more effectively our bodies can repair our DNA, the more we can resist aging.

        WHEN A CELL SENSES SIGNIFICANT DNA damage, it triggers what is called the DNA damage response. This is not all good news: the damage response often has greater consequences for aging than the damage itself. Sometimes the cell will go into senescence, a state in which it is unable to divide further, and in extreme cases, the cell is triggered to commit suicide. It is odd to think that life would have evolved a mechanism to kill its own cells, but one individual cell among an organism’s billions is ultimately dispensable. If, however, that cell were allowed to become cancerous as a result of DNA damage, it could multiply and eventually kill the entire organism. Both cell death and senescent cells are important factors in aging, especially the latter, and we will have a lot more to say about them in later chapters. Suffice it to say here that the DNA damage response evolved to balance the risk between cancer and aging. It is one more mechanism that evolved to benefit us early in life, even if it costs us later, after we’ve already passed on our genes.

        At the heart of the damage response is a protein called p53, the product of the TP53 tumor suppressor gene. This protein is so essential that it is often called the Guardian of the Genome. Almost 50 percent of all cancers have a mutation in p53; in some forms of cancer, the rate is as high as 70 percent. Normally, p53 is bound to a partner protein and is inactive. It is also turned over rapidly in the cell, so it is made and then degraded all the time. When DNA damage is sensed, p53 is activated and starts to accumulate. It is also freed from its partner protein, springs into action, and turns on the expression of many genes; in this context, expression means the production of the functional protein from the information coded by the genes. Some of them are genes for DNA repair proteins. Others stop the cell from dividing to give DNA repair genes a chance to do their job. When the damage is too extensive, p53 can turn on genes that induce cell death.

        P53 may also hold the key to Peto’s paradox, an oddity observed in the 1970s by the British epidemiologist Richard Peto. Large animals such as elephants or whales can have a hundred times as many cells as we do. Even accounting for their slower metabolism, this means there is a much greater chance that one of their cells will mutate to become cancerous. Yet these large mammals are remarkably resistant to cancer and live almost as long or even longer than us. Humans inherit one copy of the gene for p53 from each of our parents, but it turns out that elephants have twenty copies. Therefore their cells are exquisitely sensitive to DNA damage and commit suicide when it is detected. Scientists are always worried about proving cause, so they wanted to find out what would happen if you increased the level of repair genes in other organisms. Curiously, in studies involving fruit flies, they found that repair gene overexpression did indeed increase longevity—but only if the genes were turned on throughout the fly’s entire life. If the repair genes weren’t activated until adulthood, there was no increase in life span.

        Some of the long-lived species we encountered in chapter 2, such as certain whales and giant tortoises, also have unusual variations in the numbers and types of tumor suppressor genes. Perhaps without this, they would have died of cancer at much younger ages. In general, there seems to be a powerful correlation between strong DNA repair genes and longevity. Humans and naked mole rats, which can live up to 120 and 30 years, respectively, have a higher expression of DNA repair genes and their pathways than do mice, which live only up to 3 or 4 years. It remains to be seen whether exceptionally long-lived people have unusually efficient DNA repair mechanisms.

        Paradoxically, many new cancer therapies work by inhibiting DNA repair. This is because cancer cells have defects in some of their repair machinery, so inhibiting other routes of repair closes off their options. Unable to repair their own DNA, the cancer cells die off. However, this is a short-term solution to combating aggressive cancers; normally, blocking DNA repair over an extended period could actually increase a person’s risk of both cancer and aging. Attempting to use our knowledge of DNA damage and repair to tackle aging is not straightforward because of the tricky interplay between aging and cancer.

        Even if it is difficult to use DNA repair to directly improve longevity, our knowledge of it underpins our understanding of virtually every process of aging. Genes ultimately control the entire process of life: when and how much of each protein we make; whether our cells continue to live or suddenly stop dividing; how well our cells sense nutrients in their surroundings and respond to them; and how different molecules and cells communicate with one another. Genes control our immune system, which must maintain the delicate balance of reacting to invading pathogens without inducing chronic inflammation.

        Direct damage to our DNA, and the cell’s seemingly paradoxical response to it, is only one of the ways our genetic program can be changed as to cause aging. For our DNA has two peculiarities. The first is that its end segments are special and protected, and the consequences of disrupting them are serious. The second is that the way our genome is used does not depend exclusively on the sequence of bases in the DNA itself. Our DNA exists as a tight complex with ancient proteins called histones, and both the DNA and its partner proteins can be altered by our environment to affect the way our genes are used. Our genome, it turns out, is not written in stone but can be modified on the fly.

        4. The Problem with Ends

        Over a century ago, a scientist in a New York laboratory peered at the cells he had cultivated in flasks and wondered whether he might have uncovered the secret of immortality.

        Alexis Carrel was a French surgeon who by then was already famous for having pioneered techniques to reconnect blood vessels that had been severed in an accident or an act of violence such as a stabbing. His method for joining blood vessels end to end with tiny, almost invisible sutures transformed many kinds of surgery, and is the basis of organ transplants even today. In 1904 Carrel left France for Montreal and then Chicago. Two years later, he moved to New York City to become one of the earliest investigators at the newly created Rockefeller Institute for Medical Research (now Rockefeller University). The institute offered an unparalleled environment for an ambitious scientist, including superb laboratories and sizable endowments. And the thirty-three-year-old Carrel certainly had ambitions.

        As a surgeon, Carrel dreamed of keeping tissues alive outside the human body. In the lab, we can grow cultures of bacteria or yeast indefinitely. Although individual bacteria or yeast can age and die, the culture continues to grow and is, in a sense, immortal. But that was not clear for cells and tissues from higher life forms such as us. At Rockefeller, Carrel began a long series of experiments to see whether a culture of cells from a tissue could be kept alive indefinitely. By placing the cells from the heart of a chicken embryo in a special flask, and steadily supplying them with nutrients, Carrel seemed to have made a breakthrough. The culture could be maintained for years. These cells, he claimed, were immortal.

        The discovery was reported with great fanfare. If cells from a tissue could be made immortal, journalists reasoned, then so could entire tissues and eventually us. An editorial in the July 1921 issue of Scientific American gushed, “Perhaps the day is not far away when most of us may reasonably anticipate a hundred years of life. And if a hundred, why not a thousand?”

        But Carrel was wrong.

        Initially, his work went unchallenged because of his stature, and, over the years, the immortality of cultured cells became dogma. That is, until three decades later, when a young scientist at the Wistar Institute in Philadelphia, Leonard Hayflick, wanted to see if cells would change when exposed to extracts from cancer cells. He decided to use Carrel’s method to grow human embryonic cells in culture. To his disappointment, he found he could not grow these cells indefinitely. Initially, Hayflick, a recent PhD in medical microbiology and chemistry, thought he must have made a mistake. Perhaps he hadn’t correctly prepared the nutrient broth or was washing his glassware improperly. But over the next three years, he carefully ruled out any technical problems and concluded that the prevailing theory was simply incorrect: normal human cells would not replicate indefinitely in culture. They were not immortal.

        Instead, Hayflick found that his cells would divide a finite number of times and then stop. In an ingenious experiment, he and his colleague Paul Moorhead took male cells that had already divided many times and mixed them with female cells that had divided only a few times. When they soon reached their limit, the male cells stopped dividing, while the female ones continued to grow to the point that they came to dominate the culture. Somehow the old cells remembered they were old, even when surrounded by young cells. They were not rejuvenated by the presence of the young cells, nor did they stop dividing because of some contaminating chemicals or viruses in the environment. Hayflick and Moorhead coined the term senescence to describe this state, in which the cells were arrested and could no longer divide further.

        Another junior scientist might have been nervous about challenging such established ideas, but not the confident Hayflick. He and Moorhead wrote up their results in a meticulously detailed thirty-seven-page paper and submitted it to the same journal in which Carrel had published his original findings. Because it went counter to the prevailing dogma, and perhaps because the editor was a colleague of Carrel’s and more inclined to trust him than some young unknown scientist, the paper was rejected but eventually published in Experimental Cell Research in 1961. It has since become a classic in the field. The number of times a particular kind of cell can divide is now called the Hayflick limit.

        How did Carrel get it so wrong? One possibility, suggested by Hayflick himself, is that the French scientist may have inadvertently introduced fresh cells into the culture each time he replenished the nutrient broth in which they were growing. Some have even suggested that fresh cells may have been incorporated deliberately, although this would be a case of either egregious misconduct or sabotage.

        My sneaking suspicion is that by the time Carrel worked on these cells, fame and power had gone to his head, and he had become arrogant and less self-critical about his research. This attitude manifested itself in other ways. In 1935 he published a book titled Man, the Unknown, which recommended sterilizing the unfit and gas chambers for criminals and the insane, and commented about the superiority of Nordic people over southern Europeans. In the preface to the book’s 1936 German edition, he praised the Nazi government of Adolf Hitler for its new eugenics program. Given Carrel’s stature, it is quite possible that the Nazis used his remarks as one justification for their activities. His plaque in Rockefeller University was recently corrected to reflect his views.

        Titia de Lange, a renowned biologist currently at the very same Rockefeller University, suggested a more straightforward explanation for Carrel’s results: the laboratory next door to Carrel’s was working with malignant tumors in domestic chickens, and these cancerous chicken cells might have contaminated Carrel’s cultures growing nearby. Cancer cells are the exception to the Hayflick limit: they don’t stop dividing after a certain number of divisions, and this uncontrolled growth is why cancer wreaks such havoc on the body.

        Why don’t cancer cells stop growing unlike the normal ones studied by Hayflick? And how can a cell keep count of the number of times it has divided and know when to stop?

        When a cell divides, each of the DNA molecules in our chromosomes has to be copied. Unlike bacteria, whose genome consists of a circular piece of DNA, the DNA in each of our forty-six chromosomes is linear. Like an arrow, each strand of the double-helical DNA molecule has a direction, and the two strands of the DNA molecule run in opposite directions. The complex machinery that copies each DNA molecule uses each strand as a guide to make the opposite or complementary strand, but it can do so only in one direction. In the early 1970s James Watson of DNA fame and a Russian molecular biologist named Alexey Olovnikov both noticed at about the same time that the way the cell’s machinery copies DNA would create a problem at the very ends of the molecule.

        One day, Olovnikov was obsessing over this idea while standing on the platform of a train station in Moscow. He imagined the train in front of him as the DNA polymerase enzyme that copies DNA, and the railway tracks as the DNA to be copied. He realized that the train would be able to copy the rail track ahead of it, but not the part that lay immediately under it. And because the train could go in only one direction, even if it started at the very end of the track, there would always be a section underneath the train that could not be copied. This failure to copy the very end of a DNA strand meant that each newly made strand would be just a little shorter than the original. With each cell division, the chromosomes would progressively shorten, until eventually they lost essential genes and could no longer divide, thereby reaching their Hayflick limit. The end replication problem, as this is known, could explain at least in principle why cells stopped dividing, although the real answer, as we will see, is more complex.

        A SEPARATE MYSTERY REMAINED UNANSWERED. Why didn’t the cell see the ends of chromosomes as breaks in the DNA and try to join them together? Why didn’t it induce some sort of DNA damage response?

        In the 1930s and 1940s, around the time that Hermann Muller was investigating how X-rays might damage chromosomes, a young scientist named Barbara McClintock was looking at the genetics of maize. At some point, she discovered the phenomenon of “jumping genes”: where genes hop from their position on DNA to a completely different position on the chromosome or even to a completely different chromosome.

        Even in the 1930s, both Muller and McClintock, working independently, noticed that there was something special about the ends of chromosomes. Unlike broken chromosome ends, which would often be joined up, the ends of intact chromosomes seemed to stay separate. Muller named the natural ends of chromosomes telomeres. He and McClintock both suggested that they had some special property that prevented them from being mistaken for breaks in the DNA and being joined with each other. This allowed chromosomes to be maintained stably as individual entities in cells instead of being combined randomly. But what made telomeres so special?

        Elizabeth Blackburn grew up along with her seven siblings and a large menagerie of pets in the small town of Launceston on the north coast of Tasmania, Australia. She became interested in science and majored in biochemistry at the University of Melbourne, where she had the good fortune to meet Fred Sanger, the famous biochemist who was visiting from England. Encouraged by this encounter, and at a time when there were few women in molecular biology, Blackburn went on to do her doctoral work in Sanger’s laboratory in Cambridge. Her timing couldn’t have been better, for Sanger had just figured out how to sequence DNA. And there was a second fortuitous event in her life: in Cambridge, she met her future husband, American John Sedat, who soon accepted a position at Yale University. As a result, she decided to join Joseph Gall’s lab at Yale for her postdoctoral research.

        Gall, a well-established cell biologist, was interested in chromosome structure, and Blackburn knew how to sequence DNA from her work with Sanger. They applied their combined expertise to identify the sequence of DNA specifically at the telomeres of chromosomes. Humans had a mere ninety-two telomeres in each cell; two for each of the forty-six chromosomes. This, they realized, was not enough material. Cleverly, they chose a single-celled organism called Tetrahymena, which in one phase of its life cycle has up to ten thousand small chromosomes. They found that the sequence of DNA at the telomeres of chromosomes was different not only from anything in the rest of the chromosomes but also from anything they’d ever seen before. TTGGGG (or the complementary CCCCAA on the other strand) was repeated anywhere from twenty to seventy times.

        Shortly after Blackburn had characterized these repeats, she encountered Jack Szostak, who was working at Harvard Medical School and was trying to insert artificial chromosomes into yeast. The idea was to introduce new genes into yeast through these artificial chromosomes, which would be replicated along with the yeast’s own chromosomes. For some reason, however, they were unstable. The yeast cells were seeing the ends of these artificial DNA molecules as breaks due to damage and setting off a response. Szostak and Blackburn collaborated to see what would happen if they tacked on the telomere sequence of the Tetrahymena chromosomes to the ends of Szostak’s artificial chromosomes. It worked like a charm: the modified artificial chromosomes were now stable in yeast. Szostak went on to characterize the telomeric DNA from yeast itself. It turned out to have a similar repeat to Tetrahymena. Instead of TTGGGG, the repeat was a combination of TG, TGG, or TGGG. From later work, we know now that in humans and other mammals, the repeat is TTAGGG.

        Somehow these short telomere sequences told the cell that they were special and should not be treated as ends of broken DNA. Amazingly, although Tetrahymena and yeast are separated by more than a billion years of evolution, the slightly different repeat sequence from Tetrahymena still works in yeast. This suggests a universal mechanism that protects the telomeres of chromosomes and depends on these repeated sequences.

        You could think of these repeated sequences as extra, dispensable material tagged on to the ends of chromosomes. Each time the chromosome replicated, it would lose some repeats, but it wouldn’t matter until you eventually lost them all and started losing important genes near the ends of chromosomes. It could explain why cells divided only a certain number of times before they reached the Hayflick limit and stopped.

        Even though this explained some things in principle, it still left several basic questions unanswered. What added these telomeric sequences? And why can some cells divide many more times than the Hayflick limit, such as cancer cells or our own germ-line cells?

        The first big advance toward answering these questions came when Blackburn, who was now running her own lab at the University of California, San Francisco, was joined by a graduate student, Carol Greider. The two of them discovered an enzyme that adds the telomeric repeat sequences to the ends of chromosomes. They named it telomerase.

        Cells from most tissues make very little or no telomerase, but cancer cells and some special cells such as germ-line cells do. Without telomerase, our telomeres get shorter and shorter with age until the cell is triggered into senescence and stops dividing. By contrast, cells with telomerase can simply rebuild their telomeres after each division and thus divide indefinitely. Even introducing telomerase into normal cells can extend their life spans.

        As is often the case in biology, it is not quite this simple. Cells lose much more DNA during each division than Watson and Olovnikov would have predicted. Moreover, they stop dividing even before all of the telomeric region is lost. And finally, even if telomeres have a special sequence, it still wasn’t clear why the cell didn’t see them as breaks in the DNA and turn on its DNA damage response.

        It turns out that the telomeric ends have a special structure in which one DNA strand extends beyond the other. This longer strand loops back and forms a special structure with the help of special proteins collectively called shelterin, because they shelter and protect the ends of the DNA. This crucial structure is why the cell doesn’t recognize the ends of chromosomes as double-strand breaks. A loss or deficiency in shelterin can be lethal, and even moderately defective shelterin can lead to chromosome abnormalities and premature aging, even when the telomeres are of normal length.

        When enough of the telomere DNA is lost, these special structures cannot form. The cell then sees the unprotected ends of the DNA as breaks and sets off the damage response, instructing other cells to either commit suicide or go into senescence. We still don’t know how or why some cells, like the ones Leonard Hayflick studied, go into senescence while others self-destruct. Perhaps cells that are especially important for maintaining or regenerating tissues—such as stem cells—preferentially commit suicide to avoid passing on damaged DNA to their offspring.

        This is all very well for understanding cells in culture, but does this have anything to do with why we age? Or our life spans? And why is telomerase switched off in most of our cells? If we switched it on again, would we simply stop aging?

        People with defective telomerase, or who have less than the normal amount of it, prematurely develop a number of diseases associated with old age. Likewise, a stressful life can often make us appear to age faster. We look haggard, and even our hair can turn prematurely gray or white. Stress can also bring on many of the diseases we associate with old age. Stress has multiple effects on our physiology, and exactly how it affects the aging process is complex. But one of the things it does is to accelerate telomere shortening. When we are stressed, our body produces much more cortisol—referred to as the stress hormone—which reduces telomerase activity.

        You might expect that species with longer telomeres would live longer, but mice, which typically live only about two years in the lab and much less in the wild, have much longer telomeres than we do. So it may be that the shortening of their telomeres occurs more rapidly. Nevertheless, if you reactivate telomerase in mice that are deficient in the enzyme, you can reverse the tissue degeneration that occurs with aging. According to a number of studies, mice engineered to have even longer telomeres showed fewer symptoms of aging and lived longer. Presumably, starting off with much longer telomeres compensated for their more rapid shortening in mice.

        Based on studies like these, many biotech companies are introducing the gene for telomerase into cells or using drugs to activate the telomerase gene that already exists. Some of them are working on how to turn on the enzyme transiently, to avoid the potential problem of triggering cancer by having telomerase switched on permanently. Initially, many of these experiments are focusing on specific diseases where aberrant telomere shortening is thought to be the cause. But the efficacy and long-term consequences of these strategies remain unknown.

        When telomerase was discovered, it stirred a lot of excitement in cancer research. Since cancer cells had activated telomerase, scientists thought of it as an anti-cancer target—if you could inhibit it or turn it off, you might kill cancer cells. On the other hand, turning it off could potentially accelerate the shortening of telomeres, which could not only lead to premature aging or other diseases, but by disrupting our telomeres, lead to chromosome rearrangements, which, ironically, could itself cause cancer. There seems to be a delicate balance between telomere loss and aging on the one hand and increased risk of cancer on the other, and it may be that our normal process of switching off telomerase in most of our cells is actually a mechanism to suppress cancer early in life. This balancing act is also apparent from a study showing that people with short telomeres are prone to degenerative diseases, including organ failure, fibrosis, and other symptoms of aging. On the other hand, those with long telomeres face increased risks of melanoma, leukemia, and other cancers. This suggests that we have some way to go before tinkering with telomerase can be a viable strategy for either cancer or aging.

        In the last two chapters, we’ve talked about how genes contain the program to control the complex process of life. In chapter 5, we will see how even allowing for changes from damage to DNA or to our telomeres, the script of life written in our DNA is not fixed. It is modified and adapted on the fly, depending on its history and environment. The ability to annotate the script, much like a conductor would a score or a film director would a screenplay, is the basis of some of the most fundamental processes of life, including how an entire animal develops from a single cell. When the annotation goes awry, that too is a fundamental cause of disease and aging.

        5. Resetting the Biological Clock

        On June 26, 2000, President Bill Clinton and British prime minister Tony Blair, each flanked by some of the world’s most distinguished scientists, linked up via satellite to make a carefully choreographed announcement of “another great Anglo-American partnership.” The occasion was the publication of the draft sequence of the entire human genome: the precise order of bases in nearly all of our DNA.

        Excitement over this milestone was unanimous across the belief spectrum. Clinton said, “Today we are learning the language in which God created life,” while Richard Dawkins, the evolutionary biologist and passionate atheist, said, “Along with Bach’s music, Shakespeare’s sonnets, and the Apollo space program, the Human Genome Project is one of those achievements of the human spirit that makes me proud to be human.”

        Other scientists and the popular press gushed with similarly hyperbolic statements. The identification of every human gene would make possible new treatments against diseases and usher in a new era of truly personalized medicine. If we sequenced the genes of individuals, some suggested, we would be able to understand their fate in detail: their strengths and weaknesses, aptitudes and talents, susceptibility to disease, how quickly they would age, and how long they would survive.

        The announcement ceremony was the culmination of a long and difficult path. For many years, an international consortium of scientists, mostly in the United States and the United Kingdom, and funded by government sources or biomedical charities such as the Wellcome Trust, had made slow but steady progress, releasing bits of sequence as they went along. They were called the public consortium because they received substantial public funding and had pledged to make their data available to all.

        Then, in the early 1990s, J. Craig Venter, who had made his name by producing the first complete sequence of a bacterium, Haemophilus influenzae, entered the fray. Venter was something of a maverick in the field. He played the part of the American entrepreneur and capitalist, sailing around the world in his yacht, often flying by private jet. On one of the few occasions I saw him, he jetted into a meeting at the Cold Spring Harbor Laboratory to celebrate the 150th anniversary of Darwin’s On the Origin of Species, gave his talk, and left immediately because he clearly must have had more important things to do—unlike me, who stayed for the rest of the weeklong conference. Venter had already caused a huge fracas in the science community when he worked at the U.S. National Institutes of Health (NIH)—the large government biomedical research laboratories in Bethesda, Maryland—by attempting to patent pieces of human DNA sequences to allow their commercial exploitation for treatment and diagnosis. The decision by NIH to green-light this led James Watson to resign as the first director of the agency’s National Center for Human Genome Research. Although the NIH had filed the patents in his name, Venter said later that he was always against them.

        Venter felt that the public consortium was too slow and that the method he had used for sequencing the million bases of a bacterium could be scaled up to sequence the roughly 3 billion bases in the human genome at much lower cost. So he started a private company, Celera, to do just that. Of course, Venter wasn’t above using the large portions of the human genome that had already been sequenced by the public consortium before he entered the race. Many in the human genome community were outraged by Venter’s audacity and were determined to ensure that the human genome, and, indeed, all other natural genomes, were not patented for the benefit of a private company but freely available to humanity.

        One detractor was John Sulston, one of the leaders of the public consortium. Sulston presented a marked contrast to Venter. Despite his considerable fame and influence, the British scientist continued to dress in the sandals and other shabby attire reminiscent of a 1960s hippie. He lived in the same modest house and commuted to his lab on his ancient bicycle. A particularly passionate advocate of the genome being free for use by all, Sulston was sharply critical of Venter’s motives and contributions. In the run-up to the completion of the draft sequence, relations between members of the public consortium and Venter became so acrimonious that President Clinton had to intervene personally to get them to politely share the stage at the announcement.

        Despite all the hoopla, the draft sequence that Clinton and Blair announced was just the beginning. Large sections of the genome were still missing, especially regions consisting of repeating letters and thus difficult to sequence, and scientists had to figure out how some stretches of DNA actually fit together. The sequence was declared finished three years later, although, in reality, even today a few gaps remain, including on the Y chromosome, the male sex chromosome. (Women have two X chromosomes; men, one X and one Y.)

        The human genome sequence is often called “the book of life,” but this is somewhat misleading. In reality, even a perfectly complete sequence would be more like one long unpunctuated stream of text than a book. It would have no markings to denote individual chapters, paragraphs, or even sentences, nor cross-references to provide context. It would certainly be nothing at all like a well-edited encyclopedia in which you could look up your favorite gene and learn all about it and its relationship to everything else. And frankly, a lot of it was indecipherable. Only about 2 percent of our DNA actually codes for the proteins that carry out much of life’s functions. The rest consists of what biologists once dismissed as “junk DNA”; they now increasingly think it is important, but don’t fully understand how or why.

        Initially, scientists didn’t even know where a lot of the protein-coding genes were, because the signals that indicate where a gene starts and ends on the DNA are not always obvious. They are made even harder to discern by the presence of what are called pseudogenes: regions that once might have coded for proteins but are no longer expressed or functional. Many pseudogenes originated from viruses that inserted their own genes into our DNA. Finally, even knowing the sequence of a gene does not automatically reveal its function. Nevertheless, sequencing the genome was an immensely useful start. It allowed us to ask questions and conduct experiments that would have been unthinkable before. It was a watershed in biology.

        You might also think that the book of life would be able to tell us accurately how each of our individual stories develops and ultimately ends. After all, DNA is the carrier of all genetic information, the master controller that oversees biological processes. Shouldn’t knowing its entire sequence enable us to predict how an organism or cell will develop? Certainly mutations in individual genes have been associated with many diseases; examples include cystic fibrosis, breast cancer, Tay-Sachs disease, and sickle-cell anemia. But on the whole, biology is just not that deterministic.

        Identical twins belie the view of DNA as destiny. They share the same genes and are often strikingly similar even when separated at birth. That’s not surprising. What is surprising is that identical twins raised in the same environment can sometimes be very different, even when it comes to conditions with a strong genetic basis, such as schizophrenia.

        Every one of us is a living testament to the fact that DNA by itself does not determine fate. All of our cells are descended from a single cell, the fertilized egg, and as that cell divides, it produces new cells, each one containing the same genes. Yet these genes give rise to a multitude of different cells. A skin cell is very different from a neuron, or a muscle cell, or a white blood cell. As we know, different genes are turned on and off in response to changes in the environment. It makes sense, then, that as different cells find themselves in slightly different circumstances, they change which genes they express and go down different paths to form the various tissues in the body. Importantly, you cannot reverse this process—even if you try to culture these different cells in exactly the same medium, they maintain their identity, as though the cells still remember which tissue they came from.

        This suggests that some more permanent change has occurred in the genetic program of the cells as a result of their environment. The study of this change is known as epigenetics, from the Greek prefix epi-, for “above,” to imply there was a second layer of control on top of our genes. The term was coined by the British polymath and professor of animal genetics Conrad Waddington in 1942. Waddington described the process in terms of a landscape. The original fertilized egg, he said, was like a ball on top of a mountain. Its progeny rolled down different paths into the various ravines and valleys at the foot of the mountain, each valley representing a different type of cell. Once there, it would be impossible to roll back up to the top or to roll up the ridge and down into a neighboring valley. In other words, once a cell had settled down into its final type, it couldn’t change into a different type; a skin cell could not become a lymphocyte, a type of white blood cell. Nor could a skin cell reverse its fate and become a fertilized egg to give rise to an entirely new body.

        Initially, Waddington was vilified by many as a Lamarckian, or someone who, like the evolutionary biologist Lamarck, believed that acquired characteristics could be inherited, an idea discredited by Darwin and Wallace’s theory of evolution by natural selection. Waddington’s theory seemed to imply that our environment affected our genes in some irreversible way. Even for those who accepted his ideas, they raised questions. At what point did the cell have its genome so altered that it could no longer direct the development of an entire organism? And how far down Waddington’s mountain could a ball roll and still somehow go back to the top?

        During Waddington’s time, we did not even know that DNA was the genetic material, let alone its structure or how it stored genetic information. But it was known already that the fertilized egg, or zygote, was a very special cell: it had the right genetic material, and its cytoplasm, the internal material of the cell, seemed to have everything needed for kick-starting the process of developing into a new organism. The fertilized egg is said to be totipotent, meaning that it can develop into all the cell types needed to make a new animal, including its body and placenta. After a few divisions, the embryo reaches a stage called the blastocyst, which has a couple of hundred cells surrounding a fluid-filled cavity. The outer cells go on to form the placental sac, while the inner cells develop into everything else that forms the new animal. Those inner cells that develop into every cell in the body are called pluripotent.

        Waddington’s metaphorical mountain shows the development of special cell types from a pluripotent stem cell.
        Development of a blastocyst from the fertilization of an egg.

        Was the special property of the fertilized egg a result of its genome or its environment? If the latter, could you take a nucleus containing the genes from a highly specialized cell, put it into an egg that had its own nucleus removed, and make it totipotent so that it developed into a normal animal? This was precisely the question that Robert Briggs and Thomas King at the Institute for Cancer Research and Lankenau Hospital Research Institute in Philadelphia sought to answer. In 1952 they tried this with the northern leopard frog (Rana pipiens), as frog eggs are large and transparent, and thus easy to manipulate under a microscope. Briggs and King found that if they took nuclei from cells in the blastocyst stage of the embryo and introduced them into enucleated eggs, the eggs could develop normally into tadpoles. But if they took nuclei from cells at a later stage of development, the egg would develop partly and then stop and die. By a relatively early stage of development, then, an embryo’s cells are already committed to their program. They are too far down Waddington’s metaphorical hill and can’t go all the way back to the top.

        At this time, scientists simply did not know whether specialized cells had lost parts of their genome that were essential for growing an entire animal from scratch, or whether there was something else about them that prevented their development beyond a certain stage. Then along came a young scientist who would carry out one of the most famous experiments in modern biology.

        WHEN I FIRST MET JOHN GURDON, I was immediately struck by his shock of golden hair that gave him a leonine appearance. By then, he was a world-renowned scientist in his seventies who worked in the institute named after him in central Cambridge, England, about three miles from my lab. Despite his stature in the world of science, he was unassuming and courteous to everyone, from a beginning graduate student to his senior colleagues. Long after many scientists would have retired, Gurdon remained passionate about science and carried out his own experiments. But his career had a rocky start.

        Gurdon hailed from an aristocratic family whose Norman ancestor came with William the Conqueror in the 1066 invasion of England. Like many boys from privileged families, he went to Eton, the prestigious boarding school, at the age of thirteen. His time there did not begin well, for his biology teacher wrote a damning report at the end of his first science course. With the random capitalization that was already a couple of centuries out of date except in certain quarters of the British establishment, it said, “I believe he has ideas about becoming a Scientist; on his present showing, this is quite ridiculous, if he can’t learn simple Biological facts he would have no chance of doing the work of a Specialist, and it would be sheer waste of time, both on his part, and those who have to teach him.” Gurdon was not allowed to take any more science courses. He studied languages instead.

        Nevertheless, Gurdon had a strong interest in biology and nature from childhood and was not so easily dissuaded. Fortunately for science, his parents were supportive and able to help him. Although they had already forked out several years’ worth of expensive tuition fees to Eton, they paid for him to study biology with a private tutor for an additional year after he had graduated. In an unusual arrangement, he was then admitted to the University of Oxford on the condition that he first pass exams in basic physics, chemistry, and biology in a preliminary year. Gurdon survived the ordeal, began his undergraduate studies in zoology, and went on to begin research for a PhD with Michael Fischberg, who was also at Oxford. This was just four years after Briggs and King’s experiment with frogs.

        Fischberg suggested that Gurdon try to repeat their experiment but using a different kind of amphibian: the African clawed frog (Xenopus laevis). Referred to originally as a toad, it was first brought to the attention of biologists by Lancelot Hogben, a peripatetic British scientist who moved from England to Canada and then, in 1927, became a professor at the University of Cape Town in South Africa. While there, Hogben began studying the frog because of its chameleonlike properties. The clawed frog became a favorite model organism in embryology; not only were its eggs large like those of the frogs that Briggs and King had studied, but also it had a short life cycle and could be triggered by external hormones to lay eggs any time of the year.

        After overcoming some technical difficulties, Gurdon finally pulled off an experiment using Xenopus laevis that would revolutionize the world of biology. He was able to take the nucleus from one of the cells lining the intestine of a tadpole and insert it into an egg whose own nucleus had been inactivated by subjecting it to a large dose of UV radiation. The resulting egg developed into a complete tadpole, suggesting that the intestinal cell nucleus had all of the information needed for development that an egg nucleus had. To rule out the possibility that the egg’s own nucleus had not been completely inactivated, Gurdon was careful to use two distinguishable strains of Xenopus for the cell that donated the nucleus and the egg that received it. There was no doubt that the donor nucleus had given rise to the tadpole. In fact, since the genes of the new tadpole were identical to those of the donor that contributed the nucleus, it was a clone of the parent. This was the first time that someone had taken the nucleus from the cell of a fully developed animal to clone an entirely new animal.

        Gurdon’s work had a tremendous impact almost immediately. He had demonstrated that the nucleus of a somatic cell of a fully developed animal was capable of directing the development of an entirely new animal—which would be a clone of the animal that donated the nucleus. It meant that a somatic cell could be made to go backward in development; in fact, all the way back to the top of Waddington’s mountain. It could reverse the aging clock and start all over again to grow into a new animal. It also meant that cells that had developed into specialized tissues such as intestines retained all their genes. They were specialized not because they had preferentially lost genes but because they had somehow modified which genes would be turned on or off in each case.

        Eventually other researchers reproduced Gurdon’s experiments with different species, but the procedure was not performed on mammals until 1996. Scientists at the Roslin Institute, outside Edinburgh, cloned a sheep named Dolly from a cell taken from the mammary gland of an adult animal. The news generated huge headlines around the world. There was widespread discussion of the ethics of cloning, with concerns ranging from animal welfare to a brave new world in which rich people who wanted to live on would clone themselves or a loved one they had lost. (Apparently the absurdity inherent in this was also lost.) Today cloning has been successful in a wide range of animals, although for obvious ethical reasons, it is internationally forbidden to attempt it in humans.

        In spite of all the excitement, Gurdon’s early experiments were quite inefficient: only a small fraction of the nuclear transplantations actually worked. Others failed right away or developed into defective embryos that stopped growing and died. And in the sixty years since Gurdon’s original experiments and the more than twenty-five years since Dolly, scientists have toiled painstakingly to improve the efficiency of cloning; nevertheless, it remains an inefficient technique. Nature’s way of creating offspring works far better.

        ONE OF THE BIG PROBLEMS with being human as opposed to, say, a starfish, is that we cannot generally regenerate our tissues. We cannot grow a new arm if one gets cut off. Soon after the first nuclear transplantation experiments, scientists began wondering whether the following might be the solution: Could you make these early embryonic cells grow on command into any type of tissue you wanted, such as heart muscle, neurons, or pancreatic cells? If that ever became a practical option, it would have enormous potential for medicine. Moreover, the deterioration of our tissues is one of the major problems we face as we age, and you could think of regenerating and rejuvenating them.

        We might not be able to regrow a limb, but we already have the ability to regenerate certain kinds of tissue. Every time you cut or scrape yourself, your body creates new skin. Donate blood, and your body simply makes more. How does the body do this? While many of our cells are what we call terminally differentiated—they have reached a final state and will simply carry out their assigned tasks until they die—other, highly specialized cells are responsible for producing new cells to regenerate aging tissues. We call them stem cells.

        Stem cells can be at many stages themselves. Many of them are already quite a way down Waddington’s mountain, capable of developing into only a few different cell types. For example, hematopoietic stem cells in our bone marrow can generate all the major cells in our blood, including red blood cells and the cells of our immune system. But they can’t become liver cells or heart muscle cells. However, the inner cells of the early embryo are pluripotent stem cells that can develop into every cell type in the body.

        Scientists have been able to take these embryonic stem cells, or ES cells, maintain them in culture, and then alter conditions to nudge them into developing into one tissue type or another. Being able to grow ES cells in culture solved the problem of having to extract them from fresh embryos each time and fueled an explosive growth in stem cell research. However, the ultimate source of ES cells was still embryos, which would often be obtained from aborted fetuses, raising ethical questions and regulatory scrutiny. For some time, federal grants in the US could not be used to pay for research involving human ES cells, and labs had to clearly separate areas that were federally funded from those that were not.

        It seemed almost miraculous that you could take any adult cell and coax it into developing into any tissue you wanted, let alone into an entirely new animal. What is it about stem cells, especially pluripotent stem cells, that makes them different from most cells in our body?

        Molecular biologists had begun to identify transcription factors: proteins that regulate gene expression—that is, turning genes on or off, and by how much. The name comes from their control over whether a particular gene on DNA is “transcribed” into mRNA, which is then read to make the appropriate protein. Stem cells contained a large number of active transcription factors, some of which were needed to keep them growing in the laboratory. It was hypothesized that perhaps a newly fertilized egg possessed similar transcription factors that allowed it to develop into a new animal. Some of these same factors were also active in cancer cells, which can proliferate indefinitely.

        Such was the state of affairs in the late 1990s, when a Japanese scientist, Shinya Yamanaka, turned his attention to the matter. Yamanaka was born in 1962, the same year as John Gurdon’s successful cloning of a frog. He began his career as a surgeon, influenced partly by his father, an engineer who ran a small factory in the city of Higashi-Osaka. Yamanaka’s enthusiasm for surgery soon waned, however: not only did he begin to lose confidence in his skills but also he came to see surgery as limited in terms of being able to treat many patients with intractable conditions such as rheumatoid arthritis and spinal cord injuries. Instead, Yamanaka thought, he ought to spend his life working as a basic scientist to find ways to cure them. He earned a PhD in Osaka and went on to postdoctoral research at the Gladstone Institute of Cardiovascular Diseases in San Francisco.

        By the time Yamanaka returned to Japan to establish his own lab in the late 1990s, scientists knew that ES cells expressed quite a few transcription factors. If you turned on some or all of these factors in a normal cell, would you be able to trick it into behaving like a stem cell? Yamanaka and his student Kazutoshi Takahashi hoped so. They identified twenty-four factors that might be responsible for the pluripotent property of ES cells, and systematically introduced them into fibroblast cells found in skin and connective tissue—the same cells that Hayflick had attempted to culture. By experimenting with transcription factors in various combinations, they found that just four were enough to convert an adult fibroblast cell into a pluripotent cell.

        As a result of Yamanaka’s work, we no longer need to harvest cells from embryos to generate pluripotent cells; we can make them from other adult cells. The pluripotent cells made using Yamanaka factors are called induced pluripotent cells or iPS cells. The increased ease of generating iPS cells has led to an even greater explosion in the field of stem cells. Scientists are constantly improving both the efficiency and safety of the process, as well as becoming increasingly sophisticated in determining the paths that the stem cells can take.

        REMARKABLE AS THESE ADVANCES ARE, they don’t tell us exactly what is happening to our genome that makes cells behave so differently even though they all have the same DNA. Why do different cells have such different genetic programs? And why do cells remain true to type, so that one cell type doesn’t suddenly change into a different one? Even stem cells that are responsible for generating blood cells don’t start producing neurons or skin cells.

        Each cell carries genes that are always expressed because every cell needs them. They’re referred to as housekeeping genes. But for other genes, which ones are turned on and which are kept switched off depends very much on what that particular cell needs. How does the cell control this process? You just read about transcription factors, proteins that control which genes are actively expressed or repressed. One of the first and simplest examples of such a factor was discovered in exploring how the bacterium E. coli digests the simple sugar lactose. Ordinarily, E. coli doesn’t encounter lactose, so it does not constantly make the enzymes necessary to digest it. Instead, it operates on an as-needed basis: when the bacterium senses lactose, it turns on the genes tasked with turning out the appropriate enzymes. As soon as there is no more lactose around, it shuts down those genes. It is a simple and elegant way to switch genes on or off in response to a change in the environment. A good deal of gene regulation works exactly like that, by controlling transcription in response to a stimulus. It is seldom as simple as the lactose case, and usually involves a complicated network where genes that are activated in turn activate or switch off other genes, which affect even more genes.

        With E. coli, you can reverse the response to lactose simply by removing lactose from the culture. But if you took a skin cell and put it into, say, a liver, it wouldn’t suddenly start behaving like a liver cell. The transcription factors of a skin cell and a liver cell are different; in addition, the cell has a way of ensuring that some changes in the genetic program persist for a long time, which involves rewiring the code on DNA itself.

        So far, we have thought of DNA as a simple four-letter script containing all the information to make the proteins that carry out various essential functions. But even before the structure of DNA was known, scientists understood that a small fraction of its four bases, A, T, C, and G (or U, the equivalent of T in RNA), had extra chemical groups attached to the base. In the early days, nobody knew what these modifications were for.

        Today we know that many of them act as extra tags that serve as signals for whether a gene should be kept switched on or off over the longer term. The most common of these is the addition of methyl (-CH3) group to cytosine, the C base in DNA. When Cs at the right place are methylated in this way, the genes just ahead of them are kept switched off.

        As cells develop, they will methylate their DNA in the region of genes they want to shut down, and leave unmethylated those regions that contain genes they need to actively use. So cells that differentiate into skin cells will have a different methylation pattern from, say, neurons.

        You might expect that when cells divide and their DNA copied, the patterns of methylation would be lost because you’re making the new DNA with fresh building blocks, but the cell has an ingenious way of restoring the methylation pattern of the parent cell. What this means is that the exact pattern of methylation can be passed on to the daughter cell when a cell divides, so genes that are shut off in a particular cell lineage remain shut off. The flip side of this also occurs: there are demethylases that remove methyl groups, which then allow those genes to be turned back on. Apart from using transcription factors, modifying the DNA itself in this way offers a completely additional level of control over which genes are turned on and off. It is also a method of ensuring that these changes can be passed on to the next generation of cells. These modifications of DNA alter the way our genes are used. They are called epigenetic marks or changes because they are the molecular explanation for the phenomenon of epigenetics that Conrad Waddington had first described.

        These epigenetic marks not only persist and even increase as we age—they can even be passed across generations. Toward the end of World War II, between September 1944 and May 1945, the Netherlands suffered from a devastating famine that would claim the lives of more than 20,000 people. A later study showed that despite the relatively brief duration of the famine, the children of women who were pregnant during the mass starvation suffered adverse physical and mental health consequences throughout their lives. They experienced higher rates of obesity, diabetes, and schizophrenia, and had a higher mortality than children who were not in utero during the famine. The effects were even different depending on whether the famine occurred in the early or late stages of pregnancy. Comparing the DNA of subjects who had experienced starvation in utero with those of their older and younger siblings was revealing: the famine had imposed on the fetus a methylation pattern that had consequences over the course of its life and accelerated both aging-related diseases and mortality. It is a striking example of how an external stress can cause epigenetic changes to DNA that last a lifetime.

        IF THAT ISN’T COMPLICATED ENOUGH for you, just wait: DNA isn’t present in cells as a naked molecule. Rather, it is heavily coated with proteins called histones, and this mixture of proteins and DNA is called chromatin. These histones help us understand how all of our DNA can fit into a cell’s tiny nucleus. If you could stretch out the DNA in a cell, it would measure approximately two meters (six and a half feet). The nucleus, in contrast, is only microns in diameter—or about a million times smaller. Histones are positively charged and neutralize the negative charges on the phosphate groups of the DNA. By doing so, they allow DNA to condense into a highly compacted form.

        The first level of DNA compaction is the nucleosome, in which DNA is wound around a ball-like core consisting of eight histone proteins. The nucleosomes further organize themselves into filaments that are then woven back and forth until it all fits comfortably in the nucleus. When cells divide, the duplicated chromosomes have to move into each daughter cell, and just as you would cram the belongings from your entire household into a truck before you move, chromosomes are most compact just before cell division. That is when they have the familiar X shape that we see in most popular images of chromosomes. But for most of the life of the cell, chromatin is much more extended.

        The problem with compacting chromatin is that the cell needs to be able to access information on the DNA when needed. It’s like owning a large collection of books but not having sufficient space in your home to have all of them within easy reach. You might box most of them and store them in the attic but keep the books you’re currently reading or planning to read soon easily accessible on a bookshelf or piled on your nightstand. The cell too has to make sure that appropriate regions of chromatin are accessible, even if it wants to shut down much of it. It does so by tagging histones by adding certain chemical groups to them. Just as with methyl groups on DNA, there are enzymes that add these histone tags and others that take them off. Tags on histones can act as a signal for the cell to recruit other proteins to that region and either inactivate chromatin or open it up, so they too act as epigenetic marks. With histones, one common tag is called an acetyl group, and the enzymes that add them to histones are called histone acetylases.

        In general, DNA methylation and histone acetylation exert opposite effects. DNA methylation usually silences the gene that follows the methylated region, while histone acetylation signals that the gene is to be actively transcribed. Both can be reversed by the action of demethylases or deacetylases.

        What both modifications do is to overlay on top of the DNA sequence itself a second and longer-lasting way of modifying the program of a particular cell. They allow cells to maintain a stable identity as neurons, skin cells, or heart muscle cells. As a cell develops from the fertilized egg, different epigenetic marks must be laid down as it develops into different cell types.

        WE ALL KNOW THAT PEOPLE age at different rates. Some people look old at fifty, while others are remarkably youthful into their eighties. Some of this comes down to genetics, but aging can also be accelerated by stress and hardship. From the moment we are conceived, our cells don’t just acquire mutations in the DNA affecting the underlying code itself. They also acquire epigenetic marks. As we saw with the Dutch famine survivors, some of those marks are the result of environmental stress.

        Steve Horvath, while working at the University of California, Los Angeles, was not interested in epigenetics, believing it to be too messy, indirect, and unlikely to show much useful connection to aging. But one day, a colleague was collecting saliva from identical twins who differed in sexual orientation, and he wanted Horvath to help him see if there were any epigenetic differences between them. Horvath is a twin; his brother is gay, while he is heterosexual. In the spirit of scientific inquiry, they contributed some of their own spit to the study. When they looked at the methylation of cytosines, they found absolutely no relationship between the pattern and sexual orientation.

        But Horvath now had a lot of data from twins of various ages. He decided to mine it further to see what else he could learn. He discovered a very strong correlation between the DNA methylation pattern and age. He then looked at cells in other tissues and correlated the methylation pattern with actual markers of aging—for example, the sort of things your doctor would analyze from your blood, such as liver and kidney function. He was able to identify 513 sites of methylation that could predict not only mortality but also cancers, health span, and the risk of developing Alzheimer’s disease.

        These patterns help scientists approach a fundamental problem. People age biologically at different rates, so how do you measure aging? Methylation patterns are like a biological clock; in fact, they are more accurate than chronological age alone at predicting age-related diseases and mortality. Many other research groups developed their own methylation clocks with slightly different markers, all correlating well with biological age. Still, as Horvath and his colleagues themselves point out, these clocks are useful for research but are not yet a substitute for tests that measure loss of physiological function or provide early diagnosis of diseases.

        We don’t think of young children as aging; in fact, throughout much of childhood and adolescence, they become stronger and their odds of dying decline. But it turns out that while the methylation patterns reverse very early in the embryo, suggesting a resetting of the clock or a rejuvenation, from that point on, methylation follows an inexorable pattern. So we age from even before we are born! Similarly, the long-lived naked mole rat is thought not to age because its risk of dying doesn’t increase with time. In fact, its methylation pattern shows that it does age, just more slowly than other rodents.

        For an extreme example of the effect of epigenetics on longevity, look no further than a beehive. Bees, like ants, have a queen that can live many times longer than other bees that share exactly the same genes: queen honeybees live two to three years, while worker bees die after only about six weeks. This is partly because once the queen is selected, she is treated very differently. She is kept deep in the hive, pampered and protected against predators, whereas worker bees and ants must go out and risk their lives foraging for food. She is fed an exclusive diet of royal jelly, which has a different composition and a much higher nutritional value than the ordinary nectar and honey that worker bees live on. But the impact of these factors goes deeper. Something about her diet and stress-free environment results in her having different epigenetic marks from worker bees, and she ages at a far slower pace.

        The question of why epigenetic marks should cause aging is complicated. The patterns are associated with an increase in inflammatory pathways and a decrease in pathways for making RNA and proteins as well as DNA repair, so it is easy to see how they might result in aging.

        The epigenetic changes also seem to occur on a timetable. This doesn’t mean that aging itself is programmed. It could simply be that the epigenetic changes take place when they are needed at some stage, but they are not switched off when their work is done because evolution doesn’t care what happens to you after you have passed on your genes. By shutting down many genes in a stable way, epigenetics may also prevent cells from becoming cancerous early in life. Like telomere loss, and the response to DNA damage, this may be yet another example of the trade-off between preventing cancer and preventing aging.

        It is also possible that many epigenetic changes are not programmed but caused by random changes in the environment. Remember the case of identical twins? Those epigenetic changes in their DNA diverge right from birth, so while they still have largely the same DNA sequence, they acquire very different epigenetic marks.

        CAN THE AGING CLOCK EVER run backward? Yes, and it has happened to every single one of us: at conception, when the aging clock is reset to zero. When a forty-year-old woman gives birth, that newborn is not twenty years older than a baby born to a twenty-year-old woman. Even though the germ-line cells are older in the forty-year-old woman, both children start at the same age. The aging that takes place in the parents is reset in the child.

        We have evolved at least three ways to reset the aging clock. The first is that germ-line cells have superior DNA repair and accumulate fewer mutations than somatic cells do.

        Second: the egg and the sperm each undergo a rigorous selection process prior to fertilization. A woman produces all the eggs she will ever have while she is still a fetus. These number perhaps a few million to start with but are down to about a million by the time she is born. By puberty, this number drops to about a quarter million, and by the time a woman is thirty, only about 25,000 eggs remain. However, a mere 500 of those eggs get used up by ovulation during the menstrual cycle over a woman’s lifetime. With sperm, this ratio is even more dramatic: males produce millions of sperm cells from puberty on. So there is a huge surplus of both eggs and sperm. Why? Prior to ovulation—that monthly event in which the ovary releases one mature egg, or ovum, into the fallopian tube for the purpose of potentially being fertilized—the eggs in the ovary are somehow inspected and destroyed if damage is detected. Only those that pass the test make it to ovulation. As damage is likely to increase with age, this might explain why the egg count drops precipitously and the chance of becoming pregnant decreases. Perhaps the monitoring process also becomes less effective, since genetic defects in the baby also increase with the age of the mother.

        Similarly, sperm cells may undergo selection as well, and a sperm must swim and outcompete all the millions of others to be the first one to fertilize the egg. Even after fertilization, many embryos are rejected early in development if they are sensed as being defective. And even within an embryo that is developing normally overall, there is competition to eliminate abnormal cells. The process isn’t perfect, but nature has done its best to ensure that our offspring are free of our own cellular damage and aging.

        The third method for resetting the aging clock is to actually reprogram the genome. Immediately after impregnation, the fertilized ovum, or zygote, temporarily bears two nuclei (pronuclei): one from the mother and the other contributed by the father. The enzymes and chemicals in the zygote proceed to erase nearly all the epigenetic marks in the DNA of both pronuclei, and then add new ones to start the fertilized egg on the path to making a baby. Notice that I said “nearly all.” An egg with both pronuclei coming from just a male or female parent alone would not develop normally. This is because the pronuclei donated by the mother and father have a different but complementary pattern of epigenetic marks, also called imprinting, which together provide the proper program for development.

        Considering all the intricacies of normal development we just described, it is amazing that cloning frogs or Dolly the sheep ever worked at all. For one thing, the genome of cloned animals came from adult somatic cells, with an entire lifetime of accumulated damage. Animals conceived normally, on the other hand, start off from much more protected germ-line cells and go through a rigorous selection process both before and after fertilization. In addition, changing the program of a somatic cell is very different from an egg’s normal task. Given these difficulties, how could these cloned animals possibly be normal? Would they not show signs of premature aging or other abnormalities compared with naturally conceived animals? In truth, it didn’t work so well. Most of the transplants never made it to fully formed animals. Still some, like Dolly, did.

        And the truth is, Dolly was quite a sick sheep. She had abnormally short telomeres and, at the age of one, was judged as older than her chronological age by several criteria. Sheep normally live ten to twelve years, but at six, poor Dolly developed tumors in her lungs and had to be put down. It turns out, however, that Dolly was not the only sheep cloned. There were also the lesser-known Daisy, Diana, Debbie, and Denise, who, surprisingly, all lived healthy lives with a normal life span. This suggests that, at least in principle, it may be possible to reverse the effects of aging and reset the clock even if you start from an adult somatic cell, just by reprogramming the cell. Erasing the epigenetic marks and initiating a new program of gene expression can enable a newly cloned animal to begin from scratch.

        Cloning, though, is not the main aim of reprogramming cells, even for farm animals or crops. The real payoff would be in using stem cells for regenerative medicine: repairing or replacing tissue that has died or sustained damage. If we can overcome the technical problems, the possibilities are enormous and wide-ranging. Perhaps we could introduce new pancreatic cells that produce insulin in patients with diabetes, replace damaged heart muscles after a heart attack, or even regrow neurons in people who have suffered a stroke or a neurodegenerative disease like Alzheimer’s. The potential for such breakthroughs is why billions of dollars are being invested in stem cell research today.

        Even though they’re not going all the way back to zero and creating a new cloned animal, these stem cells are effectively trying to reverse the aging clock by regenerating or even replacing individual parts of an animal that have aged. Both embryonic stem cells and induced pluripotent stem cells (iPS cells) are capable of differentiating into numerous cell types, but the two are not exactly the same. ES cells are natural early embryonic stem cells that scientists have figured out how to keep cultured and then program to follow different paths to make different tissues, whereas iPS cells are reprogrammed not by the action of factors in the egg but by using the four Yamanaka factors in a somatic cell. This means their behavior is not exactly the same. Still, because of the convenience of generating iPS cells (without the added burden of having to contend with the legal and ethical issues surrounding ES cells), many scientists are working hard to improve Yamanaka’s original method for reprogramming cells.

        We will soon see how scientists are trying to reverse aging using this approach. There is also much interest in reprogramming the cell by using specific compounds that inhibit DNA methylation or histone deacetylases. This route to rejuvenating tissues, and even the whole animal, is a major focus of current research. As with telomerase, it may well be the case that our epigenetics have evolved to strike a fine balance between reducing the risk of cancer early in life and accelerating aging. Thus, any approaches to slow down aging or attempt to reverse it by rejuvenation may have to contend with how to do it safely. Indeed, many tissues that have been generated using the four Yamanaka factors have been associated with an unusually high proportion of tumors.

        In the last three chapters, we have seen how the genetic program that controls life can be disrupted by damage to our genome, accumulated with age. We have seen how the program itself is modified on the fly to suit the organism’s needs at any given stage. The product of the program is the ensemble of proteins in our cells. These proteins carry out a huge number of complex and interconnected tasks and are like players in a large symphony orchestra.

        Now we will see what happens when that orchestra becomes discordant and breaks down.

        6. Recycling the Garbage

        These days, whenever I forget an appointment or misplace my gloves, umbrella, or hat, I panic for a moment. I have just turned seventy as I write this, and these occurrences immediately strike me as signs of an inevitable and worsening decline. I cheer up when I remember that in my early twenties, I once invited a friend to dinner, forgot about it, and wasn’t even home when he called; or that a couple of years later, I was so preoccupied with finishing my work that I forgot to attend my own going-away party that a neighbor was going to throw for me. And that I’ve been notorious for losing things all my life.

        Still, there is a good reason for my foreboding. We all face the prospect of suffering from neurodegenerative diseases that cause us not just to forget but also to completely lose our sense of who we are.

        Today more than 50 million people suffer from dementia, and as the proportion of older people in the population is increasing in almost every country in the world, that number is expected to grow to 78 million by 2030 and 139 million by 2050. In England and Wales, it recently overtook heart disease as the leading cause of death, partly because treatment of heart disease has vastly improved, while there is still no effective treatment for dementia. In the United States, it still lags behind the more established killers such as heart disease, cancer, and accidents, but its proportion is gradually rising. It is estimated that about one-third of people born in 2015 will go on to suffer from some form of dementia.

        Over half of those with dementia have Alzheimer’s disease, named after the German psychiatrist Alois Alzheimer, who, around 1900, characterized the onset of the then-unnamed disease. His patients, he wrote, would oscillate from periods of calm and lucidity to being unable to identify common objects, feeling increasingly disoriented, forgetful, agitated, and even unhinged. That is just the beginning. As the disease progresses, many Alzheimer’s sufferers are unable to recognize their family and friends. They can no longer carry out basic activities such as speaking, eating, and drinking. They become increasingly terrified at their loss of control, their loss of self-identity, and their increasing inability to make sense of the world around them. Their loved ones may have it even worse, though, having to watch this person—a spouse, a grandparent, a cherished friend—gradually vanish.

        In the century-plus since Dr. Alzheimer’s description, we have made tremendous progress in understanding the biology behind Alzheimer’s disease. The same is true of other neurodegenerative maladies, such as Parkinson’s and Pick’s diseases. They all have two things in common: the likelihood of the disease increases as we grow older; and they are caused by a malfunction of our own proteins.

        Proteins, as we have seen, are long chains of amino acids that miraculously fold up as they are made. Well, not miraculously. The reason that they fold up is that some amino acids, like oils, are hydrophobic, meaning that they do not like to be exposed to water. Hydrophilic amino acids, on the other hand, are happy to interact with water molecules. As a protein chain emerges, it folds into its characteristic shape by tucking away most of the hydrophobic amino acids on the inside of the protein and exposing the hydrophilic ones on the outside where they are in contact with the surrounding water. Most protein chains have a particular shape or fold that is stable and functional. Sometimes a protein chain folds up along with others to form a complex of several chains. But the principle is the same. In an amazing display of coordination, each of our cells makes not one but thousands of proteins in the amounts it needs and at the time it needs them, and they all must work together as a well-orchestrated ensemble. But the process can, of course, go wrong.

        Think of the many ways a household item can become useless. Even a brand-new product can be poorly made and arrive saddled with manufacturing defects. You could damage it accidentally while using it. Or it could slowly wear out or rust and become dangerous to use or stop working entirely. Then there are products, once essential, that we no longer need. Perhaps our children have grown up, and we no longer require baby bottles or cribs. Or technology has changed, and we have no use for a cassette recorder or a film camera. Or our possessions simply go out of style, and we no longer want them. Food has an even shorter shelf life. In our daily lives, we deal with all this as a matter of course. We throw out leftover food that has perished, mend or throw out old clothes, and fix or get rid of broken gadgets. If we didn’t do that, our homes would quickly fill up with junk and become unlivable.

        It is the same with cells and their proteins. Proteins can have manufacturing defects too. The protein chain may be made incorrectly or be incomplete. It might not have folded into its appropriate shape. During its lifetime, it could lose its shape by unfolding or be damaged by chemicals or other agents. Just as we may need items only during a particular phase in our lives, many proteins are needed only briefly at a particular stage during a cell’s development or in response to some environmental stimulus. And just as we dispose of or recycle products that are faulty or have simply worn out or been damaged, the cell has evolved ways to detect and then destroy proteins that are defective to begin with or when they become aberrant later. It also has ways of getting rid of perfectly normal proteins that it no longer needs. In all these cases, the cell breaks down defective proteins into their amino acid building blocks, which it can then use to make new proteins or to produce energy.

        However, there are crucial differences between the proteins in a cell and a home full of household items. Manufacturers don’t usually much care what happens to their products after they are sold (except during the warranty period, of course). Moreover, the manufacturer of your washing machine does not have to make it compatible with other appliances and therefore isn’t concerned about which brand of refrigerator or microwave oven you own, or whether you own one at all. Cells, on the other hand, both manufacture proteins and use them, and have to ensure that the many thousands of proteins all work together without problems.

        As we age, the quality control and recycling machinery of the cell deteriorates, leading not only to neurodegenerative but also many other diseases of old age, including inflammation, osteoarthritis, and cancer. Accordingly, the cell has come up with multiple ways of ensuring the quality and integrity of its collection of proteins.

        Proteins can be defective in many ways. The birth of a protein chain takes place on the ribosome, the large molecular machine that I have studied for the last forty-five years. As the ribosome chugs along, it reads the genetic instructions on mRNA to stitch together amino acids in a precise order to make a protein chain. The process has evolved to a high level of perfection over billions of years, but it still occasionally gives rise to defective products. Sometimes the mRNA contains mistakes; sometimes the ribosome misreads it. In these cases, the newly made protein has the wrong sequence of amino acids, so it malfunctions—a bit like a brand-new gadget with a manufacturing defect. These days, many of my colleagues and I are trying to understand how the cell recognizes these mistakes and homes in on them for removal.

        Even if the new protein chain has the correct sequence of amino acids, as it emerges from a tunnel in the ribosome, it still faces the challenge of folding into its proper shape. Although the protein chain contains within it all the information needed to form that shape, the process doesn’t usually work spontaneously. With larger proteins, it is difficult to keep the hydrophobic sections from different parts of the chain apart so that they do not stick to one another (or even worse, to other chains that are being made at the same time) while the protein is folding. There are many ways that the folding process can go awry, so cells ranging from bacteria to humans have evolved special proteins whose purpose is to assist other proteins to fold correctly. Ron Laskey, one of my fellow scientists in Cambridge, humorously named these proteins chaperones. (Among other things, Laskey is a folk singer who has written and recorded witty songs about life as a scientist. One of his songs is about how, as a young man, he was part of a double bill with Paul Simon in a small venue in England when neither of them was well known—and realized immediately that he had better stick to science.) Like Victorian chaperones during courtship, these proteins prevent improper interactions between different parts of the chain or between chains. Even so, proteins occasionally misfold.

        Even after a protein has already folded into the right shape, you can make it unfold. The proteins in a chicken egg are all folded correctly to carry out their collective function of helping a fertilized egg grow into a chick. But if you take that egg and boil it, its proteins unfold. Similarly, if you add lemon juice to milk and stir, the acid unravels the proteins in the milk. In either case, when the protein chains unfold, the water-avoiding hydrophobic amino acids that were on the inside now become exposed to the surrounding liquid. This makes the proteins stick to one another and become tangled, and the egg or milk turns into a gelatinous solid.

        Even without being boiled or treated with acidic lemon juice, proteins are not rocklike, static entities. The atoms in a protein jiggle around all the time, and the proteins themselves breathe and oscillate around their average shapes. Over time, they can unfold, either spontaneously or in response to environmental stress. Often the proteins will then fold back into their original shapes, but sometimes they will clump together instead. As we age, more clumps means more proteins that have lost their function. Even more seriously, the protein aggregates themselves can lead to diseases such as dementia.

        We can thus have proteins that are incorrectly made to begin with, or proteins that misfold later. But that’s not all. Many proteins have extra sugar molecules added to specific points on their surface after they are made. This process, called glycosylation, is essential for their work. But as we age, sugar molecules are added randomly to proteins, a process called glycation, to distinguish it from the normal and orderly process of glycosylation. Glycation causes a number of common health problems. For instance, eye diseases such as cataracts and macular degeneration result from proteins in the lens or retina of our eye being modified by sugar molecules, which changes their properties and prevents them from functioning normally. These proteins too need to be recognized and destroyed before they become a problem.

        The first line of defense are the chaperones, which refold misshapen proteins into their correct shapes. But if unfolded proteins accumulate, more drastic action becomes necessary. Cells have an elaborate sensor to detect the buildup of unfolded proteins. The unfolded protein response, as this is known, is multipronged: First, more chaperones are synthesized to aid in folding these aberrant proteins. Second, they are tagged and targeted for destruction. Since there is clearly a problem with proteins folding properly, the cell also slows down protein production or shuts it down entirely. In extreme cases, where these measures are inadequate, the unfolded protein response can simply direct the cell to commit suicide.

        How can a cell destroy proteins that it senses as defective or unwanted? When it senses that something is wrong, it tags the protein with a molecule called ubiquitin, which is itself a small protein. Ubiquitin was discovered in the mid-1970s and got its name from the fact that it was ubiquitous—scientists found it in almost every tissue they examined. It seemed to have something to do with regulating proteins in the cell, but exactly how wasn’t clear.

        Eventually researchers discovered a huge molecular machine called the proteasome, which acts as a giant garbage disposal. When a ubiquitin-tagged protein is fed into the proteasome, it gets chopped up into pieces that can be recycled. Of course, you can imagine that such a powerful degrading machine could be quite dangerous if it were free to act on proteins at will. So the entire process is highly regulated. It is used not just for defective proteins but also for perfectly functional proteins that are no longer required.

        Any defect in the proteasome or the ubiquitin tagging system means that unwanted proteins hang around the cell and cause problems. Proteasome activity declines with age, and we have reason to believe it is a cause of aging. Deliberately introducing defects in the proteasome or the ubiquitin tagging machinery can be lethal, and even minor defects can lead to diseases associated with old age, such as Alzheimer’s and Parkinson’s.

        The ubiquitin-proteasome system is beautifully tuned to get rid of unwanted or aberrant proteins. It works by chewing away the strand of a single protein at any given time. Like the garbage disposal in your kitchen sink, it can handle only one scrap at a time. But what if a cell wanted to get rid of a lot of very large junk, much as we would want to get rid of a used sofa, old furniture, or appliances? Not to worry. Nature has this covered with an apparatus that, oddly enough, was discovered decades before the proteasome.

        Scientists have long known that cells from higher organisms have a nucleus that contains our chromosomes, but as they studied the cell in greater detail with ever more powerful microscopes, they discovered that they have many other specialized structures called organelles. How these structures worked together to facilitate cell function remained a mystery. One of those structures turned out to be hugely important for recycling the cell’s garbage.

        In 1955, Christian de Duve, who split his time between Rockefeller University in New York and the Catholic University of Leuven in Belgium, discovered an organelle called the lysosome. He and his Leuven colleagues found they were full of digestive enzymes that would break down any of the major constituents of living matter. Initially the lysosome was considered rather boring—about as exciting as a landfill site in a city. But things became more interesting when scientists showed that lysosomes often contained remnants of other parts of the cell. All kinds of unwanted structures were taken to lysosomes for disposal. De Duve coined the term autophagy, from the Greek for “self-eating,” because the cell was digesting away parts of itself. But how did the cell’s garbage make its way to the lysosomes?

        In the cell, membranous structures called autophagosomes form and grow in size, gradually engulfing everything the cell targets for disposal. Think of autophagosomes as large garbage trucks. The garbage they collect can be anything from protein aggregates all the way to large organelles. An autophagosome eventually merges with a lysosome to deliver its contents to be digested and recycled. If the proteasome is akin to the garbage disposal in your kitchen sink, the lysosome is the huge garbage recycling center in your city.

        While this process goes on perpetually, it is highly regulated. If you stress or starve the cell, autophagy goes up. It makes sense to break down proteins and other structures and recycle their components to survive a difficult time.

        However, this still doesn’t tell us how the cell decides when and what to deliver to lysosomes. Science would have to wait almost fifty years to make headway on this problem. In the late 1980s and early 1990s, Yoshinori Ohsumi, a young assistant professor at Tokyo University, hatched a clever idea.

        Biology often advances by studying simple organisms that are easy to grow and mutate, and the discoveries made there can then easily be generalized to more complex ones such as humans. Ohsumi turned to that favorite of molecular biologists, baker’s yeast, in which the equivalent of the lysosome is called a vacuole. By isolating strains in which the vacuole had accumulated cellular debris, he was able to find a dozen genes that were essential for activating autophagy.

        As a result of these breakthroughs, we know now that autophagy happens continuously as part of the general maintenance of the cell. Its rate can go up or down, depending on the cell’s needs. It can also be triggered when the cell needs to get rid of invading viruses or bacteria. This kind of autophagy requires special adaptor proteins that recognize these foreign objects and bring them to the autophagosome, which then delivers them to lysosomes to be destroyed. Autophagy is the only process by which the cell can destroy such enormous structures.

        You might think that the only function of autophagy is to deal with problems, but it is also essential for a single fertilized egg’s development into an adult animal. Imagine that you have a perfectly serviceable house, but you want to remodel it. Maybe you’ve had a new addition to your family, or you suddenly need more space so that you can work from home during a pandemic. Or you simply want a larger kitchen. When you remodel a structure, you have to break down parts of it before you can start building. You may have to take down walls, plumbing, and counters, or get rid of furniture that won’t fit in the new space. Our cells go through this same process as they develop from that original fertilized egg into specialized cells such as neurons and muscles, which have very different internal organization and structures. Autophagy makes it happen.

        In short, autophagy is used both to ensure cells develop normally and to jettison defective proteins or aging structures, as well as to destroy bacteria and viruses. It has so many essential functions that when it fails even partially, we develop serious problems, from cancer to neurodegenerative diseases.

        So far, we have talked about how cells deal with proteins and larger structures that are defective or they don’t need anymore. If there are just too many defective proteins piling up, it becomes hard for the recycling machinery to keep up. In that case, it would make sense to quickly shut down the synthesis of new proteins, a bit like turning off the main water supply when you have a flood in the bathroom. Also, it makes no sense for cells to produce new proteins and grow when they face starvation or stress.

        One way the cell does this is to stop ribosomes from starting the process of reading mRNA to make proteins. It is a way of slowing down the production of new proteins while it handles crises, which is a bit like seeing a traffic jam on a freeway and preventing cars from entering the on-ramp and making the problem worse. While this process shuts down the production of most proteins, it also turns on the production of proteins that help the cell survive the stress and alleviate it. In the traffic jam analogy, this would be like sending a signal that stops new cars from entering the freeway and at the same time bringing in tow trucks to clear the accident that caused the jam.

        This process of shutting down the synthesis of most proteins while allowing a few useful proteins to be made can be triggered by starvation, a viral infection, or too many unfolded proteins. Since it is a unified response to many kinds of stress, it is called the integrated stress response, or ISR.

        You would think that these problems with protein quality and quantity would worsen with aging, making a strong ISR useful. That is exactly what some groups have found. If you delete the genes that turned on ISR in mice, the rodents were more prone to various pathologies caused by abnormal protein production. When mice suffering from a pathology due to unfolded proteins were treated with a compound that allowed ISR to persist, it alleviated their symptoms, whereas, conversely, suppressing ISR made them worse and hastened their demise. Compounds such as guanabenz or its derivative Sephin1 that strengthen the integrated stress responses prevent diseases caused by poor quality control of protein production. They also extend life span, although in at least one case, there was disagreement about how these compounds acted, and whether they even affected ISR directly.

        If all this makes a strong case for restoring or strengthening ISR as we age, some research groups have found the exact opposite. According to their studies, deleting the genes that turn on ISR alleviated some of the symptoms of Alzheimer’s disease in mice, including memory deficits. A molecule that shut down ISR enhances cognitive memory and reverses cognitive defects following traumatic injury to the brain. Even more surprisingly, the effects were seen even when the experimental drug being tested, an integrated stress response inhibitor—ISRIB, for short—was administered a month after the trauma.

        Why would turning off a universal control mechanism be beneficial? Nahum Sonenberg, an expert on translation at McGill University in Montreal and a coauthor of the ISRIB study, believes there are pathological conditions in which the ISR itself is chronic and out of control. It may be suppressing protein synthesis when it shouldn’t or to a much greater degree than it should. It’s like driving a car in which the brake is activated all the time instead of only in response to a signal to slow down or an accident ahead. Instead of being a lifesaver, it becomes a nuisance. Even as we age, we still need to make new proteins. For example, forming new memories requires synthesizing new proteins that strengthen connections between brain cells. But when ISR is itself out of control, we are unable to make proteins in the amounts we need. In cases such as this, turning off ISR may be beneficial.

        ISRIB has been touted in the press as a “miracle molecule” that could boost fading memory and treat brain injuries. The San Francisco company Calico Life Sciences, owned by Alphabet, the parent company of Google, started conducting clinical trials on ISRIB-like compounds that inactivated ISR. Peter Walter, one of the discoverers of the unfolded protein response and of ISRIB, recently gave up a prestigious professorship at the University of California, San Francisco, to join Altos Labs, a private company that operates research institutes to tackle aging, with campuses in California and Cambridge, England.

        How this will play out is unclear. It is well to remember that ISR is a universal control mechanism precisely to deal with situations that are problematic for the cell, such as an accumulation of unfolded proteins, amino acid starvation, and viral infections. As we discussed above, initially, scientists found that prolonging ISR was beneficial for certain pathologies. So there may be situations when it would be helpful to enhance ISR and others in which it would be better to inhibit it. Figuring out exactly how much ISR is optimal at any given stage is unlikely to be straightforward, and we may have some way to go before it can be used with any confidence as a long-term treatment for combating diseases of aging.

        We have covered a lot of ground in this chapter, but a common thread runs throughout. For cells to be able to function, their thousands of proteins have to work together. They must be produced at just the right time and in the right amount, and they must be the correct shapes. It is not unlike all the instruments in a symphony orchestra that all have to play their parts together. As with some modern orchestras, there is no conductor. And if parts of the orchestra don’t perform properly, the whole thing falls apart.

        Everything we have discussed so far is about the different ways that cells sense when things are not right and what they do to correct that. This is an amazingly complicated web of interactions, which is itself controlled by yet more proteins. If the control proteins themselves become defective, the problems are amplified. That is just what happens as we age.

        WE BEGAN THIS CHAPTER WITH the terrible scourge of Alzheimer’s disease. The disease, which is increasingly a dread of old age, turns out to be related to a curious group of diseases whose cause was uncovered in a most unexpected way. The key person to unravel its mystery was Carleton Gajdusek, a scientist with the unique and unfortunate distinction of being both a Nobel Prize winner and a convicted child molester.

        After earning his medical degree from Harvard, Gajdusek was serving a fellowship in Boston when he was drafted into the army. He ended up in the Korean War, where he showed that a fever that was killing American soldiers was spread by migrating birds. On the strength of this, he was offered a job with the US government’s Center for Disease Control, but chose instead to work with the famous immunologist MacFarlane Burnet in Melbourne, Australia. Burnet sent him to Port Moresby, New Guinea, to set up part of a multinational study on child development, behavior, and disease. It could not have been easy carrying out fieldwork in such a remote area, far away from any modern research laboratory, but Gajdusek was an unusual character. Burnet once described him as someone who “had an intelligence quotient up in the 180s and the emotional immaturity of a 15-year-old,” adding candidly that his protégé was completely self-centered, thick-skinned, and inconsiderate. At the same time, said Burnet, the young man from the United States would not let the threat of danger, physical hardship—or other people’s feelings—interfere in the least with what he wanted to do.

        While in Port Moresby, Gajdusek heard about a mysterious illness called kuru and set out for the Eastern Highlands Province, about 200 miles away, where the disease was prevalent among the native Fore tribe. Patients with the disease showed no symptoms of fever or inflammation but died of a progressive brain disease that caused tremors and highly abnormal behavior such as uncontrolled fits of laughter. Two anthropologists, Shirley Lindenbaum and Robert Glasse, observed that women and children, but not adult men, ate the entire bodies of deceased family members, even the bones. This was a recent practice among the Fore, and by collecting detailed evidence of cannibal feasts which could be matched with the subsequent appearance of the disease in participants, they concluded that this practice of cannibalism may have had something to do with transmission of the disease. Gajdusek and a colleague named Vincent Zigas had observed that one of the practices of the tribe was to cook and eat the brains of deceased family members following funerals. So Gajdusek suspected that something in the diseased brain was transmitting the disease to the people who ate it. Following up on this hunch, he was able to show that you could transmit kuru to chimpanzees by injecting their brains with extracts from the brains of diseased patients.

        The autopsied brains of the Fore tribe, when examined under a microscope, were full of holes, like a sponge. Kuru is one of many brain diseases with this pattern, called spongiform encephalopathies, including a variant form of Creutzfeldt-Jakob disease. (Variant refers to the transmissible rather than inherited form of a disease.) About 10 percent of all cases are inherited, and just as he had done for kuru, Gajdusek was able to show that brain extracts from infected patients could transmit the disease to chimpanzees. The idea that a disease could be inherited in some instances but also transmitted like an infection in other cases was unprecedented. Gajdusek was awarded a Nobel Prize in 1976.

        Unfortunately, the end of Gajdusek’s career was not so glorious. Over the course of many years, he brought back more than fifty children to the United States from New Guinea and Micronesia, and acted as their guardian. In the 1990s, in response to a tip-off from a member of his lab, the FBI began to investigate the scientist. The bureau persuaded one of the boys to tape a phone conversation in which Gajdusek admitted that he and the boy had sexual contact. In a plea bargain that would be unthinkable today, he served a year in jail in 1997 and then left the United States as soon as he was released to spend the rest of his life in Europe. During his self-imposed exile, he stayed active scientifically and was affiliated with several universities. He showed no remorse for his behavior, dismissing his treatment as American prudishness. Many of the boys continued to have contact with him, some adopting his name and even naming their own children after him. In 2008 he died in a hotel room in Tromso, Norway, where he was a frequent visitor to the university there.

        Gajdusek’s concept of transmissibility had a huge impact on our thinking about this class of diseases. Mad cow disease (bovine spongiform encephalopathy) afflicted cows in Britain, notably in the 1980s, as a result of cows being fed the remnants of infected animals. Around this time, more than a hundred people died of Creutzfeldt-Jakob disease. Scientists began to suspect that this was because they had eaten meat from diseased cows. The connection with eating infected beef was then not universally accepted, and John Gummer, a UK government minister, famously encouraged his four-year-old daughter, Cordelia, to eat a hamburger on television, declaring British beef to be completely safe. (The girl did not get sick.) Nevertheless, many countries prudently banned the importation of British beef and lifted it only after several million cows had been slaughtered and farming practices had been changed.

        Although the transmissibility of these diseases was established, it was not clear exactly how they spread. Ever since the nineteenth and early twentieth centuries, it has become a firm dogma that every infectious disease is transmitted by living organisms that can multiply in the host, whether they are parasites or microbial organisms such as bacteria, fungi, or viruses. In the early 1980s Stanley Prusiner, an American neurologist at the University of California, San Francisco, began trying to isolate the infectious agent for scrapie, a spongiform encephalopathy of sheep and goats. The brain extracts that transmit scrapie remained infectious even after they were sterilized using standard methods such as heat, so the prevailing view was that the infectious agent was a virus that was resistant to inactivation and had a long incubation time. When Prusiner gradually isolated the infectious agent, it turned out to be a protein—a notion that was greeted with a chorus of skepticism. After all, unlike bacteria or viruses, proteins could not multiply, so how could they possibly cause an infection that spread from one animal to another?

        Over the next several years, Prusiner identified the protein and showed that although it was a normal component of brains, its shape in a scrapie-infected brain was abnormal. Prusiner called the protein a prion and proposed there were two forms: a normal version and a scrapie version. Like an evil character who corrupts all the good people around him, this aberrant, misfolded, scrapie version of the protein acts as a mold, or template, and induces each normal prion protein it encounters to switch to the misfolded version. The result is that the misfolded form spreads like an infection throughout the cell and across cells throughout the tissue, bringing about disease.

        At first glance, the only commonality between diseases such as kuru or scrapie and Alzheimer’s is that they are lethal brain diseases, but as we shall see, the similarity runs deeper. Dr. Alois Alzheimer himself autopsied the brains of deceased patients and discovered deposits of plaques outside cells as well as tangles of fibrils inside some nerve cells. It wasn’t initially clear whether the formation of these deposits was a cause of the disease or a symptom.

        In 1984, scientists identified that the major component of the plaques was a protein called amyloid-beta, which itself is produced by trimming a much larger amyloid precursor protein, or APP. Alzheimer’s is normally a disease of old age and not necessarily inherited, but some patients with inherited forms develop the disease earlier in life. They turn out to have mutations in the APP gene. Scientists have also identified the enzymes that trim the APP to the mature amyloid-beta and, in a nod to their involvement in causing senility, called them presenilins. Mutations in these proteins also led to familial Alzheimer’s disease. The case that the disease was caused by accumulating either too much or incorrectly processed amyloid-beta protein seemed overwhelming. Much of the research community then focused on the details of what caused the plaques to develop and how they could be prevented.

        However, in science, things are often never quite so straightforward. For one thing, the plaques typically develop outside nerve cells, so why are they killing them? Another curious feature is that other tissues—for example, blood vessels—also contain amyloid-beta deposits, but it is the diseased brain that kills people. A feature of the disease that was ignored earlier on is that inside some neurons of patients, there are filaments made of a different protein called tau. Perhaps these tau filaments were the cause of the disease?

        Although scientists were skeptical at first, evidence incriminating tau also began to mount when three groups found independently that patients with an inherited form of dementia related to Parkinson’s disease had mutations in the tau gene. Also, it was not hard to imagine how tau could cause disease. The tau filaments could block the narrow axons and dendrites that connect neurons, and, not surprisingly, it is these connections that are the first to go, causing cognitive impairment.

        Recently, scientists have found that the filaments characteristic of diseased brains are not just random clumps of unfolded proteins. Rather, the aberrant molecules come together to form filaments that are distinct for each type of dementia. Studies show consistently that the tangles we see in diseased brains actually have very well-defined structures, each of which is a hallmark of a particular disease. This is something we did not know even a few years ago.

        Therefore, as things stand, we have very compelling evidence that amyloid-beta, tau, and other filaments are implicated in disease. One problem is that nobody really understands what these proteins are doing normally. We do know that if you delete the genes for them in mice, the animals exhibit some abnormalities, but they don’t develop plaques or Alzheimer’s disease. This means that the reason amyloid-beta or tau causes disease is not because it has ceased to function normally. Rather, it is because the unfolded forms can give rise to filaments that spread throughout the brain.

        Alzheimer’s and prion diseases are both caused by aberrant forms of proteins that come together to form tangles or plaques. In prion diseases, the prion form assumes a different shape from the normal form, and spreads because it switches the normal version into the prion form when it comes into contact with it. There is a growing feeling that exactly the same thing happens in Alzheimer’s and other neurodegenerative diseases: an abnormal, unfolded form can seed the formation of filaments, which then spread throughout the brain. Injecting brain extracts from Alzheimer’s disease patients into mice stimulates the premature formation of plaques or tangles. But, unlike prion diseases such as kuru and bovine spongiform encephalopathy, nobody has demonstrated that Alzheimer’s, Parkinson’s, or similar diseases are actually infectious. That could be because we don’t eat the brains of patients with dementia or inject extracts of their diseased brains into our own.

        What causes Alzheimer’s disease is a burning question because that holds the key to preventing it. The answer depends on how you define cause. The immediate cause may well be the formation of tau or amyloid-beta filaments in the brain. However, an earlier and root cause is the cell’s inability to manage the excess of unfolded proteins that aggregate to form these filaments in the first place. This in turn is caused by damage to our control systems: the quality control and recycling machinery of the cell that we discussed earlier in the chapter. And that damage to our control systems is a result of aging.

        So you could say it all boils down to our living long enough for the damage to occur. It is particularly ironic that one of the consequences of our increased life expectancy over the last century is the greater likelihood of spending our final years with the terrible effects of diseases such as Alzheimer’s.

        Can anything be done about it? The difficult truth is that there are still no effective treatments for these dementias, despite several decades of work. Just as cancer is so hard to treat because it is our own cells that have gone out of control, Alzheimer’s is caused by our own proteins misbehaving. And just as with cancer, there may be both genetic factors and chemicals or infectious agents that accelerate the process. This creates a fundamental difficulty for treatments. Very recently, therapies based on antibodies that bind to the amyloid-beta protein were shown to halt cognitive decline by about 25 percent after eighteen months. They were most effective at slowing the progression of the disease if treated early, and in patients that had only a modest level of tau aggregates. They carried a serious risk of side effects, including seizures and bleeding in the brain. However, they did demonstrate that targeting beta-amyloid showed some clinical effect, and against the bleak backdrop of having next to nothing to offer Alzheimer’s patients, even an expensive and complicated treatment with a relatively modest gain was heralded as a huge breakthrough.

        All the recent breakthroughs in our understanding the basis of the disease offer some hope, however. Now that we know that the filaments are not random but consist of very specific contacts to form their structure, perhaps drugs can be developed to prevent their formation. Others are attempting to inhibit the production of the protein itself. And scientists are busy at work on the ultimate causes as well, including how to modify aging cells so they can handle aberrant proteins as effectively as younger cells do. We also need to identify suitable biomarkers that are an early warning of incipient disease. As we learn much more about the underlying biology involved, we can be hopeful that we will find more ways to prevent the disease in the first place, and diagnose it early and treat it when it occurs.

        7. Less Is More

        The India in which I grew up is a land of many religions, and there never seemed to be a time when one or another group wasn’t fasting. Hindus fasted before certain religious occasions—or if they were strict, every week. Muslims fasted from dawn to dusk for the entire month of Ramadan, not drinking a drop of water even when the holiday fell amid the long, hot summer days of the subcontinent. Christians fasted during Lent. And fasting was not only a religious imperative. Nearly all cultures considered fasting, and moderation in general, a key to a long and healthy life, and gluttony to be a vice.

        For much of our existence as a species, we were hunter-gatherers, feasting occasionally between prolonged periods of involuntary fasting. Perhaps our metabolism evolved to adapt to that lifestyle. It is different today, especially in the rich countries of the West. Like millions of others, I gained an inordinate amount of weight during the early days of the Covid-19 pandemic, when most people were stuck at home, and food was only as far away as the refrigerator. Indeed, today we face a widespread epidemic of obesity, which is linked not only to cardiovascular disease and type 2 diabetes but also to certain cancers and even Alzheimer’s disease. It is also a major risk factor in infections: Covid-19 patients who were obese were far more likely to die from the virus. Clearly it has far-reaching consequences, both for ill health in old age and our likelihood of dying from those disorders.

        The reasons for the rise in obesity in recent times are complex. One popular theory is that throughout most of our history, food was scarce and sporadic, and those who had “thrifty genes” that could store fat more efficiently could better survive times of scarcity. Now, in a time of plenty, those very genes efficiently keep storing away all the excess fat we eat and cause obesity. This idea was so prevalent that it became a truism, but it is now being questioned. Even today, less than half the population in the United States is obese. John Speakman, who has studied the relationship between energy intake and weight in organisms, has argued convincingly that it is simply that the population had a lot of genetic variability in how efficiently they could store fat, a variability he calls “drifty genes.” When food was generally scarce, even those individuals who might be prone to becoming obese rarely were. But now, an abundance of calorie-rich food has driven a rise in obesity, especially in the portion of people who have inherited genes that in previous eras would not have caused any harm. Also, historically there was no reason for us to have evolved to be abstemious.

        Regardless of the reasons for the rise in obesity, nobody doubts that moderation and maintaining a healthy weight are recipes for good health. Clearly, overeating is bad for your health, but is the converse also true? Would stringently restricting our diet to less than what we eat normally actually make us live much longer? The first studies to test this, carried out in 1917, were not taken seriously, perhaps because for most of our existence as a species, being undernourished was a much greater threat to life than overeating. Nevertheless, the idea persisted, and later studies showed that rats fed a calorie-restricted diet lived longer and were healthier than those allowed to eat without limit.

        During caloric restriction, or CR, an animal is fed 30–50 percent fewer calories than it would consume if it ate as much as it liked (ad libitum), while making sure that it consumes enough essential nutrients to not become malnourished. In rodents and other species, animals on CR lived 20–50 percent longer, as judged by both average life span and maximum life span. Moreover, they appeared to have delayed the onset of several diseases of aging, including diabetes, cardiovascular disease, cognitive decline, and cancer.

        Mice are small, however, with short life spans. What about animals more similar to us? In 2009 a long-term study from the University of Wisconsin found that rhesus monkeys lived longer and were healthier and more youthful when subjected to caloric restriction. But this was contradicted only a few years later by a twenty-five-year study at the National Institute on Aging (NIA). The Wisconsin diet was richer and had a higher sugar content, so perhaps eating a healthy diet rather than fewer calories might have made the difference. The NIA control animals were not allowed to eat ad libitum but were fed an apportioned amount to prevent obesity. More than 40 percent of the Wisconsin control group developed diabetes, while only 12.5 percent of the NIA control group did. In tandem, the studies suggest that for animals already on a healthy diet and not overweight, further caloric restriction has little additional effect on longevity. Interestingly, all the animals in both groups, even the CR animals, weighed more than animals found in the wild, suggesting that even the restricted diet provided more food than they would eat naturally.

        Experimenting with monkeys is hard enough. They can live between twenty-five and forty years, and the studies from NIH and Wisconsin have gone on for over two decades and already cost millions of dollars. Conducting similar studies with humans—who live more than twice as long and whose dietary intake is much harder to track—seems out of the question. Any evidence for the effect of CR on human longevity is purely anecdotal at this point, but that hasn’t stopped individuals from experimenting on themselves and even writing books to tout their lifestyles.

        There have also been persistent claims that fasting is beneficial for health beyond simply reducing the overall intake of food. There is 5:2 fasting, whose adherents eat as little as 500–600 calories per day twice a week but eat normally on the other five. Another method advocates eating all your food in a window of a few hours each day. Recently, scientists examined the effects not just of CR and intermittent fasting in mice but also of aligning feeding times to their daily biological rhythms. They concluded that matching feeding times to our biological circadian rhythm greatly improved the benefit of intermittent fasting. This might seem like the home run the field wanted, but, as the accompanying commentary points out, much of the additional benefit may have nothing to do with the time of feeding as such. Rather, if you allowed mice to eat only during the day—when they would normally be asleep—they were faced with the unenviable choice between starving and not sleeping. The test animals chose to disrupt their sleep. Even if you distributed the restricted diet throughout the twenty-four-hour period, the mice would not get enough to eat when they were awake and would choose to disrupt their sleep to get the rest.

        I know what a wreck I am when I am sleep deprived. As I get older, my problems with jet lag are getting worse, and I am barely able to function right after I show up on some other continent. So I am always struck by how sleep, which is so intimately related to our health, is ignored by scientists in other fields. We think of sleep as something that is connected with our brains and especially our eyes and vision. But as Matthew Walker explains so well in his book Why We Sleep, you don’t need a brain or even a nervous system to sleep. In fact, sleep is ancient and highly conserved across the entire kingdom of life. Even single-celled life forms follow a daily rhythm that is related to sleep. Considering that sleep can be perilous—animals are vulnerable to attack when they are asleep—it must have huge biological benefits for it to persist through evolution. The consequences of sleep on our health are profound and widespread. In particular, sleep deprivation increases the risk of many diseases of aging, including cardiovascular disease, obesity, cancer, and Alzheimer’s disease. According to a recent study, one of the ways that a lack of sleep accelerates aging and death is by altering repair mechanisms that prevent the buildup of damage to our cells.

        But going back to the study matching feeding times with when mice are awake, although it did not explicitly monitor the sleep patterns of the mice, the researchers suggest that as long as you don’t deliberately disrupt sleep, CR has a significant positive effect on both health and longevity. Over the decades, study after study have confirmed the benefits of CR over an ad libitum diet in multiple species.

        If all this seems too good to be true, it might be. In one study, the effects of CR varied greatly depending on the strain and sex of the mice; in fact, in a majority of the test animals, CR actually reduced life span. Indeed, one of the pioneers of the aging research field, Leonard Hayflick, expressed skepticism that dietary restriction had any effect on aging. He felt that animals on an ad libitum diet were overfed, and unhealthy as a result, and caloric restriction simply brought their diets closer to conditions in the wild. Moreover, when scientists look outside typical lab conditions to animals in the wild, the link between eating less and living longer becomes much more tenuous.

        Nevertheless, in multiple laboratory studies, at least compared to an ad libitum diet, CR appears to be beneficial not only in rats and mice but also in diverse organisms ranging from worms, to flies, to even the humble unicellular yeast. Most scientists working on aging agree that dietary restriction can extend both healthy life and overall life span in mice and also leads to reductions in cancer, diabetes, and overall mortality in humans. On a more granular level, limiting protein intake or even just reducing consumption of specific amino acids such as methionine and tryptophan (both of which are essential in our diets because our bodies don’t produce them) can confer at least some of the advantages of overall dietary restriction.

        It might seem counterintuitive that eating the bare minimum to avoid malnutrition would be good for you. In fact, the results of CR may be yet another example of the evolutionary theories of aging. Consuming lots of calories allows us to grow fast and reproduce more at a younger age, but it comes at the cost of accelerated disease and death later on.

        So why aren’t we all on CR diets? For the same reason that rich countries face an epidemic of obesity: we now live in a time of plentiful food, and we have not evolved to be abstemious. Moreover, caloric restriction is not without its drawbacks. It can slow down wound healing, make you more prone to infection, and cause you to lose muscle mass, all serious problems in old age. Among its other reported downsides are a feeling of being cold due to reduced body temperature, and a loss of libido. And, of course, a side effect that to most readers will seem blindingly obvious: people on calorically restricted diets feel perpetually hungry. In fact, animals on CR diets all revert to eating as much as possible when permitted.

        The anti-aging industry would love to produce a pill that can mimic the effects of CR without our having to forego the ice cream and blueberry pie. For that to happen, we need to understand exactly what caloric restriction does to our metabolism. It’s a story full of unusual twists and turns and the discovery of some completely new processes in our cells.

        IN 1964 A GROUP OF Canadian scientists set out on a voyage to Easter Island, a remote spot in the South Pacific that is about 1,500 miles away from its nearest inhabited neighbor. Their goal was to study the common diseases of the island’s Indigenous people, who had little contact with the outside world. In particular, they wanted to know why the islanders did not develop tetanus, even though they walked around barefoot. The researchers collected sixty-seven soil samples from different parts of the island. Only one of them had any tetanus spores, which are typically more common in cultivated soil that has less diversity of microbes than virgin soil does. Nothing further might have come out of this expedition had not one of the scientists given the soil samples to the Montreal lab of Ayerst Laboratories, a pharmaceutical manufacturer. The company was looking for medicinal compounds produced by bacteria. By then, it was well known that soil bacteria, notably the genus Streptomyces, produced all kinds of interesting chemicals, including many of the most useful antibiotics today. Part of the reason they produce them is thought to be biological warfare among soil microbes, where some species make compounds that are toxic to others.

        To identify anything useful from an unknown bacterium in a soil sample, you first have to isolate it and coax it to grow in the lab. Then you need to analyze the hundreds or thousands of compounds that it makes and screen them for useful properties. Through this painstaking venture, the Ayerst scientists found that one of the vials contained a bacterium, Streptomyces hygroscopicus, that made a compound that could inhibit the growth of fungi. Because fungi are more similar to us than bacteria are, it is hard to find compounds that will treat fungal infections without also harming our own cells. So it seemed worthwhile to follow up on their initial observation. It took Ayerst two years to isolate the active compound, which the company named rapamycin after Rapa Nui, the Indigenous name for Easter Island.

        The scientists soon discovered that rapamycin had another, potentially much more useful property. It was a potent immunosuppressant and stopped cells from multiplying. Suren Sehgal, a scientist at Ayerst, sent off some of the compound to the US National Cancer Institute. Researchers there found the drug to be effective against solid tumors, which are ordinarily difficult to treat. Despite these promising early results, work on rapamycin ground to a halt when Ayerst closed its Montreal lab and relocated the staff to a new research facility in Princeton, New Jersey, in 1982.

        Sehgal, however, was convinced that rapamycin was going to be useful. Just before moving to the States, he grew a large batch of Streptomyces hygroscopicus and packed it into vials. At home, he stored them in his freezer next to a carton of ice cream, with a label cautioning, “Don’t Eat!” The vials remained there for years. In 1987 Ayerst merged with Wyeth Laboratories, and Sehgal persuaded his new boss there to pursue rapamycin. He was given the go-ahead to look at its immunosuppressive properties, which could be useful to prevent transplant rejection. Eventually rapamycin was approved as an immunosuppressant for transplant rejection, but nobody had any real idea of how it worked. How could it inhibit the growth of fungi, prevent cells from multiplying, and be an immunosuppressant, all at once?

        Here our story shifts to Basel, Switzerland, where two Americans and an Indian chanced upon an unexpected breakthrough. One of the Americans, Michael Hall, had an unusually international childhood: he was born in Puerto Rico to a father who worked for a multinational company and a mother who had a degree in Spanish. They both liked Latin American culture and decided to make their home in South America, where Hall grew up, first in Peru and then in Venezuela. When he was thirteen, his parents decided he needed a rigorous American education; Hall was suddenly ejected from his carefree life wearing T-shirts, shorts, and sandals in warm and sunny Venezuela, and dropped into a boarding school in the freezing winters of Massachusetts. From there he attended the University of North Carolina, intending to major in art but eventually settling on zoology, with the intention of going to medical school. An undergraduate research project whetted his appetite for science, and Hall went on to earn a PhD from Harvard and then put in time pursuing postdoctoral research at the University of California, San Francisco. In between, he spent almost a year at the famous Pasteur Institute in Paris, where he met Sabine, the Frenchwoman who would become his wife. Thus, unlike many American scientists who see leaving the United States as equivalent to falling off the map, Hall cast a broad net in the job search that followed his postdoc. He had not originally thought of moving to Switzerland, but when he interviewed for a starting faculty job at the Biozentrum at the University of Basel, he fell in love with the institute and the city.

        Shortly after he started his lab in Basel, Hall was joined by another young American, Joe Heitman, who was in an MD-PhD program that combined medical studies at Cornell Medical School with research at Rockefeller University. After his PhD research, rather than go back immediately and finish his medical degree, Heitman decided to do some postdoctoral research, partly because his wife would be starting her own postdoctoral work in Lausanne, Switzerland. Looking for suitable labs in the vicinity, he identified Hall as someone he wanted to work with. His initial project there turned out to be frustrating, however, and Heitman briefly considered going back to medical school, when he read a scientific paper describing mutants of a mold, Neurospora, that were resistant to the immunosuppressive drug cyclosporine. He approached Hall with the idea of studying immunosuppressants using yeast.

        By sheer chance, Heitman could not have found a more receptive mentor. It turned out that cyclosporine was a blockbuster drug for Sandoz, the pharmaceutical company located right in Basel, and Hall had already begun working with a scientist there who was interested in how it and other immunosuppressants worked. That scientist, Rao Movva, who grew up in a small village in India, had already enjoyed quite a bit of success in using yeast to understand the mechanism of cyclosporine, and he was keen to study rapamycin, which was still being developed for use in patients.

        To most in the field, this must have seemed a crazy idea. What could yeast—a unicellular organism that doesn’t have an immune system—teach them about immunosuppressive drugs and human beings? But Hall points out that these compounds were produced as part of biological warfare among soil microbes, so, really, yeast was their natural target; it is administering them to humans that is actually unnatural. As soon as Heitman had expressed interest in the problem, Hall put him in touch with Movva. This was a huge advantage, because at a large pharmaceutical company such as Sandoz, Movva had the resources to produce enough rapamycin. One day he came into Hall’s lab with a small vial and told Heitman, “Okay, this is the world’s supply of rapamycin. Think very carefully about the next experiments you’re going to do. Don’t blow it, because this is all we have.”

        The gamble paid off. The trio looked for mutant strains of yeast that would grow even in the presence of rapamycin, and their experiments revealed that many of the mutations occurred on two closely related new genes that coded for some of the largest proteins in yeast. Names of genes and proteins from yeast typically consist of a three-letter acronym that makes little sense to those outside a particular field. In this case, from a long list of possibilities, they chose TOR1 and TOR2, to denote “target of rapamycin.” The names held additional appeal for Heitman because he lived near one of the picturesque medieval gates of Basel, and the German word for gate is Tor.

        This was a big breakthrough. Rapamycin’s immunosuppressive activity was thought to derive from its ability to inhibit cell growth. The compound also arrests yeast growth, however, so identifying its protein targets would enable scientists to understand exactly how. The mutants identified two genes, but without cloning and sequencing them, nothing was known about the proteins they coded for, let alone what they did.

        At this point, the problem almost fizzled out in Hall’s lab. Heitman stayed as long as he could, but he had to return to New York to finish his medical studies. At the time, although it was acknowledged that rapamycin was a potentially important immunosuppressive drug, nobody had any idea of how important their discovery would turn out to be. Meanwhile, Heitman’s mutants were sitting in the lab freezer until a new student was frustrated when her original project was not working. She, along with another student and others in the lab, used the mutants to clone and sequence the TOR1 and TOR2 genes. In those days, sequencing had to be done manually. What’s more, this was no trivial project, because they were both among the largest genes in yeast, and were similar but not identical. One of them was lethal when deleted, proving that it was essential in order for yeast to survive, while the other was not.

        Understanding the mechanism of an immunosuppressive drug that was also a potential anticancer drug was of great medical importance, so while Hall and his colleagues carried on their work, they were participants in an intense race to discover the target of rapamycin. Three groups in the United States directly purified the protein target of rapamycin in mammals. It turned out to be the mammalian counterpart of the genes that Hall and his colleagues had identified. Now, scientists can be fiercely competitive and don’t like to come in second place. It’s a bit like leading the second expedition to climb Mount Everest or being the second pair of astronauts to walk on the moon—you just don’t get the same level of recognition. In the case of the two genes, prickly egos and difficulty accepting one’s also-ran status led to a profusion of names in the field, sowing confusion.

        The US research groups realized that they had discovered the mammalian version of essentially the same protein that Hall and his colleagues had identified already. Nevertheless, some of them gave it entirely different names. Eventually they all agreed to christen it mTOR, with the m denoting “mammalian,” to distinguish their findings from the yeast TOR. When the same protein was identified in a variety of organisms, including flies, fish, and worms, things began to get a little silly, with scientists studying zebrafish calling their version zTOR or DrTOR (the scientific name for zebrafish is Danio rerio). Eventually everyone settled on mTOR for all species—except, paradoxically, the original yeast!—with the m now standing for mechanistic, which makes no sense at all, since it implies that there is also some other target of rapamycin that is nonmechanistic (whatever that means). Why they didn’t simply revert to the original TOR remains a mystery to me. For consistency, and in deference to the original discoverers, I will refer to the molecule as TOR, but if you read elsewhere about TOR with a small letter before it, it is basically referring to the same protein.

        From the start, it was known that rapamycin would prevent cultures of cells from growing, but it wasn’t clear how. Did it limit the number of cells or the average size of each cell? At first, Hall thought that rapamycin would simply stop cells from dividing, but after pushback from a famous expert in that field, he realized that TOR actually controlled cell growth by activating the synthesis of proteins in the cell when nutrients are available. Among other things, Hall and his colleagues showed that in the presence of rapamycin, or mutants of TOR, cells would appear starved and stop growing even when plenty of nutrients were available.

        Biologists have known for a very long time that the size and shape of cells is highly controlled. Cell size varies not only in different species but also in different tissues and organs. For example, an egg cell is about thirty times the diameter of the head of a sperm cell, and neurons can have protrusions, the nerve axons, as long as three feet. How cell size and shape are controlled is still a very active area of research. But the general belief was that cells would simply keep growing and dividing as long as you provided them nutrients—unless, that is, they received specific signals to stop growing. Hall’s experiments turned this dogma around. Cell growth, they suggested, was not passive; rather, TOR had to actively stimulate it, by sensing when nutrients were present.

        It is a bit like the difference between an old steam locomotive and a gasoline-powered car. Once a locomotive gets going, as long as it has plenty of burning coal in the furnace and water in the boiler, it will keep rumbling down the track unless you take action to stop it. But a car, even with a full tank of gas, requires a foot on the accelerator in order for the vehicle to remain in motion; you have to actively do something to use the fuel. TOR is the driver that presses on the gas pedal to ensure that available nutrients are used to drive cell growth.

        Hall’s conclusions represented a paradigm shift in our understanding of how cells grow and ran counter to decades of understanding. His paper was rejected seven times before it found a home in the journal Molecular Biology of the Cell in 1996. Around the same time, Hall also collaborated with Nahum Sonenberg, the same scientist we encountered in chapter 6 for his studies on the integrated stress response, and who is best known for his work on how ribosomes initiate; in other words, how they find the beginning of the coding sequence on mRNA and start reading it to make proteins. They found that without TOR actively making it possible, cells could not begin the process of translating mRNA to produce proteins, and would stop growing.

        The initial discoveries by Hall and the other groups opened up the floodgates. Since then, TOR has become one of the most studied molecules in biology with about 7,500 research articles in 2021 alone. There is no question that finding out how rapamycin was immunosuppressive was important. But not even the brilliant scientists first working on it could have imagined that they would later uncover one of the oldest and most important metabolic hubs of the cell. In metabolism, proteins seldom act in isolation; they influence the actions of other proteins. If you think of such proteins as nodes that connect to one another—picture an airline map of its routes—TOR would be a major hub like London, Chicago, or Singapore, making direct connections to a large number of cities all over the world.

        How could one protein have such widespread effects on the cell, and how exactly was it linked to caloric restriction? Ever since Michael Hall and his colleagues sequenced the two TOR genes, we have known that TOR is a member of a family of proteins called kinases. These enzymes often act as switches by adding phosphate groups to other proteins, which then act as tags or flags to turn them on or off. (The act of adding phosphate groups is called phosphorylation, and the proteins with the added phosphates are described as phosphorylated.) Sometimes kinases activate other kinases, which in turn activate other enzymes. You can think of kinases as part of a huge relay system, where many different proteins in a large network are turned on or off in response to some cue in the environment or the state of the cell. A map of all the proteins involved in activating or being activated by TOR is enormously complicated. So it is not surprising that by responding to many different environmental cues and then switching on or off many different targets, TOR has such widespread effects within the cell. Some of these environmental cues are not sensed directly by TOR but by other proteins, which in turn activate TOR.

        TOR is not a protein chain that functions all by itself. It is part of two larger complexes called TORC1 and TORC2. Much more is known about TORC1, which is activated by proteins that sense the level of nutrients such as individual amino acids and hormones, including those that stimulate growth, known as growth factors. It is also affected by energy levels in the cell. If conditions are right, TORC1 promotes the synthesis not only of proteins but also nucleotides, which are the building blocks of DNA and RNA, and also lipids, which make up the membranes of all cells and organelles.

        An important function of TOR is that when nutrients are available and the cell is not stressed, it inhibits autophagy, which, as you learned in chapter 6, is the process by which damaged or unneeded components of the cell are taken to the lysosome to be destroyed and recycled. This makes sense because these are exactly the conditions in which you want to stimulate cell growth and proliferation, not the opposite.

        We can now see how TOR is connected to caloric restriction. Under CR, there are fewer nutrients around, and TOR, recognizing that, can switch off protein synthesis and other growth pathways, and also green-light autophagy. We have already seen how important both controlling protein synthesis and clearing defective proteins and other structures through autophagy are to keep the cell working optimally, and to aging in general.

        But what if we didn’t need caloric restriction to reap its benefits—if we could inhibit a normal TOR and mimic its effects, with no change to the human diet? TOR was discovered precisely because it was the target of rapamycin. Might rapamycin be the long-sought pill that could imitate CR without our having to cut down on how much we eat?

        It turns out that both a defective TOR and inhibiting TOR with rapamycin can enhance health as well as longevity in a range of organisms, from the simple yeast, to flies, to worms, and to mice. Strikingly, even short courses of rapamycin, or initiating treatment relatively late in the life of mice (equivalent to age sixty in men and women), conferred significant improvements in both health and life span. Rapamycin also delayed the onset of Huntington’s disease in a specially engineered strain of mice, presumably because it increased autophagy and prevented the accumulation of misfolded proteins. This shows that rapamycin not only improves longevity, but may also keep the mice healthier. In fact, the two may be closely related—perhaps the mice in these experiments live longer precisely because they are protected against various disorders of aging.

        Though rapamycin is an immunosuppressive drug, it also, counterintuitively, improves some aspects of our immune response. There are two important components of our immune system: one is B cells, a type of white blood cell that churns out antibodies for identifying and then binding to the surfaces of bacteria, viruses, and other foreign invaders, or antigens, so that other foot soldiers in the body’s self-defense corps can race to the crime scene and finish off the culprit. The other is T cells, another type of white blood cell: helper T cells stimulate B cells to manufacture antibodies, while killer T cells, as their name implies, recognize and destroy cells that have been infected by a pathogen. While rapamycin inhibits those parts of the immune system responsible for rejecting grafts of tissue from a donor (such as kidney, bone marrow, or liver transplantation) and triggering inflammation in general, it actually increases the functional quality of certain helper T cells, thus potentially improving a person’s response to vaccines. Another study, from 2009, showed that administering rapamycin in mice rejuvenates aging hematopoietic stem cells, the precursors of the cells of the immune system, and boosts the body’s response to the influenza vaccination.

        These results generated a great deal of excitement about rapamycin in the anti-aging community, but before we charge ahead with an immunosuppressive drug as a long-term panacea against aging, a note of caution is warranted. As one might expect, numerous studies have warned that long-term rapamycin use increases the risk of infection, such as with cancer patients. In fact, in that seemingly encouraging 2009 mouse study, treatment with rapamycin had to be paused for two weeks prior to administering the vaccine, the authors acknowledged, to “avoid the possible suppression of the immune response by rapamycin.” It makes one wonder whether the results would have been as promising without the pause to clear away the rapamycin.

        Moreover, it is possible that some of the effects of rapamycin and TOR inhibitors are due to a general reduction of inflammation. Yet other research contends that optimal health calls for a fine balance between excessive inflammation and heightened susceptibility to infection. In a recent study, scientists show that TOR inhibitors dramatically increase the susceptibility of zebrafish to pathogenic mycobacteria closely related to the bacteria that cause TB in humans, and point out that this “warrants caution in their use as anti-aging or immune boosting therapies in the many areas of the world with a high burden of TB.”

        Still, rapamycin’s draw as a potential wonder drug endures. In some quarters, the excitement has overtaken the data: one prominent aging researcher told me that he knew several scientists who were quietly self-medicating with rapamycin. I asked Michael Hall what he thought about using an immunosuppressive drug to combat aging, and he replied, “I suppose the rapamycin advocates are following Paracelsus’s adage that the poison is in the dose.” He was alluding to the Renaissance Era Swiss physician who defended his use of substances that he believed were medicinal even though they were toxic at higher doses. In fact, most drugs, even relatively safe ones such as aspirin, can be toxic if the dose is high enough. It may well be that low or intermittent doses of rapamycin or other TOR inhibitors can confer most of their benefits without serious risks. But we need long-term studies on their safety and efficacy before they can be used to target aging in humans.

        A problem with laboratory animals, including mice, is that they are kept in a highly protected and relatively sterile environment that does not mimic real-life conditions. To address this, Matt Kaeberlein at the University of Washington in Seattle is leading a nationwide US consortium to study the health and longevity of domestic dogs. Canines not only vary greatly in size but also live in environments as diverse as their owners’, so this is a way to conduct controlled studies in a natural setting outside of a laboratory environment. The consortium will analyze various aspects of dogs’ metabolism, including their microbiome and the differences between how large dogs age compared to small dogs. It will also carry out a randomized study on the effect of rapamycin in large middle-aged dogs. Experiments like these will go a long way to establishing whether rapamycin will turn out to be useful for general health in old age.

        It is curious that using rapamycin to shut down a major pathway in the cell could actually be beneficial. As is often the case, the answer to this paradox lies in the evolutionary theories of aging discussed earlier. In a 2009 paper published in the journal Aging, Michael Hall, of the University of Basel, and the Russian-born evolutionary biologist Mikhail Blagosklonny suggest an explanation: TOR promotes cell growth, which is essential in early life. Later, however, it is unable to switch itself off even when the growth it drives becomes excessive, leading to cell deterioration and the onset of age-related diseases. They go on to suggest that while these pathways that cause aging cannot be completely switched off by a mutation (because that would be harmful or even lethal early in life), perhaps they can be inhibited by drugs such as rapamycin years later, when an uninhibited TOR becomes a problem after individuals have reached middle age.

        This chapter began with how the age-old idea of fasting as a beneficial practice gained credence with scientific studies on caloric restriction. However, the journey to discover a potential drug that could replicate the advantages of restricting calories without requiring unwavering self-control is nothing short of extraordinary. It began with a completely open-ended fishing expedition by Canadian scientists to find something interesting in the soil of the remote island of Rapa Nui. Just one of many soil samples they collected had a bacterium that produced a promising compound, and that nearly died in a scientist’s freezer as he moved from one country to another. The baton was taken up years later by two Americans and an Indian working in Switzerland. None of the scientists involved had any idea that they would be revealing one of the cell’s most important pathways with connections to both cancer and aging. This is often how science works: people follow their curiosity, and one thing leads to another. It is a story of persistence, insight, brilliance, and vision, but also chance encounters and sheer luck. If this strange journey ends up unlocking a key to protecting us from the relentless onslaught of old age, it would indeed be a scientific miracle.

        8. Lessons from a Lowly Worm

        We all know families of long-lived individuals. But exactly how much do genes influence longevity? A study of 2,700 Danish twins suggested that the heritability of human longevity—a quantitative measure of how much differences in genes account for differences in their ages at death—was only about 25 percent. Further, these genetic factors were thought to be due to the sum of small effects from a large number of genes, and therefore difficult to pinpoint on the level of an individual gene. By the time that the Danish study was carried out in 1996, a lowly worm was already helping to overturn that idea.

        That lowly worm was the soil nematode Caenorhabditis elegans, introduced into modern biology by Sydney Brenner, a giant of the field known for his caustic wit. Born and initially educated in South Africa, he spent much of his productive life in Cambridge, England, before he established labs all over the world from California to Singapore, leading some of us to remark that the sun never set on the Brenner Empire. He first became famous for having discovered mRNA. More generally, he worked closely with Francis Crick on the nature of the genetic code and how it was read to make proteins. Once he and Crick decided that they’d solved that fundamental problem, Brenner turned his attention to investigating how a complex animal develops from a single cell, and how the brain and its nervous system work.

        Brenner identified C. elegans as an ideal organism to study because it could be grown easily, had a relatively short generation time, and was transparent, so you could see the cells that made up the worm. He trained a number of scientists at the MRC Laboratory of Molecular Biology in Cambridge and spawned an entire worldwide community of researchers studying C. elegans for everything from development to behavior. Among his colleagues was biologist John Sulston, whom you met in chapter 5. One of Sulston’s more remarkable projects was to painstakingly trace the lineage of each of the roughly 900 cells in the mature worm all the way from the single original cell, which led to an unexpected discovery: certain cells are programmed to die at precise stages of development. Scientists went on to identify the genes that sent these cells to commit suicide at just the right time in order for the organism to develop.

        For an animal with only 900 cells, these worms are incredibly complex. They have some of the same organs as larger animals but in simpler form: a mouth, an intestine, muscles, and a brain and nervous system. They don’t have a circulatory or respiratory system. Though tiny—only about a millimeter long—nematodes can easily be seen wriggling around under a microscope. Being hermaphrodites, they produce both sperm and egg, but C. elegans can also reproduce asexually under some conditions. They are normally social, but scientists have found mutations that make them antisocial. Worms feed on bacteria, and just like bacteria, they are cultivated in petri dishes in the lab. They can be frozen away indefinitely in small vials in liquid nitrogen and simply thawed and revived when needed.

        Worms typically live for a couple of weeks. However, when faced with starvation, they can go into a dormant state called dauer (related to the German word for endurance), in which they can survive for up to two months before reemerging when nutrients are plentiful again. Relative to humans’ life span, this would be the equivalent of 300 years. Somehow these worms have managed to suspend the normal process of aging. There is a caveat, though: only juvenile worms can enter the dauer state. Once animals go through puberty and become adults, they no longer have this option.

        David Hirsh became interested in C. elegans while he was a research fellow under Brenner in Cambridge, then continued working with the worms upon joining the faculty at the University of Colorado. There he took on a postdoc named Michael Klass, who wanted to focus on aging. This was at a time when aging was simply thought to be a normal and inevitable process of wear and tear, and mainstream biologists viewed aging research with some disdain. However, things were beginning to change, partly because the US government was concerned about an aging population. As Hirsh recalled, the National Institutes of Health had just established the National Institute on Aging, and at least some of his and Klass’s motivation for working in the area was that they knew they stood a good chance of receiving federal funding.

        Hirsh and Klass first showed that, by many criteria, worms age little if at all in the dauer state. Next, Klass wanted to see if he could isolate mutants of worms that would live longer but not necessarily go into dormancy. This would help him identify genes that affected life span. To rapidly produce mutants that he could screen for longevity, he treated the nematodes with mutagenic chemicals. He ended up with thousands of plates of worms, which he continued studying after starting his own lab in Texas. In 1983 Klass published a paper about a few long-lived mutant nematodes, but eventually he shut down his lab and joined Abbott Laboratories near Chicago. Before doing so, however, he sent a frozen batch of his mutant worms to a former colleague from Colorado, Tom Johnson, who by then was at the University of California, Irvine.

        By inbreeding some of the mutant worms, Johnson found that their mean life span varied from ten to thirty-one days, from which he deduced that, at least in worms, life span involved a substantial genetic component. It still wasn’t clear how many genes affected life span, but in 1988 Johnson, working with an enthusiastic undergraduate student named David Friedman, came to a striking conclusion that ran completely counter to the conventional wisdom that many genes, each making small contributions, influenced longevity. Instead, it turned out that a mutation in a single gene, which the two called age-1, conferred a longer life span. Johnson went on to show that worms with the age-1 mutation had lower mortality at all ages, while their maximum life span was more than double that of normal worms. Maximum life span, defined as the life span of the top 10 percent of the population, is considered a better measure of aging effects because mean life span can be affected by all sorts of other factors that don’t necessarily have to do with aging, such as environmental hazards and resistance to diseases.

        At the time, Tom Johnson was not a famous scientist, and his premise that a single gene could affect aging to such a degree defied the consensus view. Thus it took almost two years for his paper to be published. Even after it finally appeared in the prestigious journal Science in 1990, Johnson’s work was viewed with some skepticism by the scientific community.

        But then, a few years later, came a second mutant worm. This effort was led by Cynthia Kenyon, already a rising star in the C. elegans field. Kenyon had a golden career: PhD from MIT; postdoctoral work with Sydney Brenner at the MRC Laboratory of Molecular Biology in Cambridge, where the first studies on the genetics of the worm were being carried out; faculty member at the University of California, San Francisco, another world-renowned center for molecular biology and medicine. Kenyon had established herself as a leader in the worm’s pattern development, which is the process by which it lays down its body plan as it grows. She was interested in aging research, but since it was still an unfashionable discipline, she found it difficult to enlist students to work on the problem. After hearing Tom Johnson speak about his work on age-1 at a meeting in Lake Arrowhead just outside Los Angeles, though, she felt inspired to work on the problem of aging and began her own screening for new mutants.

        Like Hirsh, Klass, and Johnson, Kenyon focused on dauer formation. In the previous decade, scientists had identified many genes that affected dauer formation, usually prefixed by the letters daf. Scientists traditionally italicize the names of genes; when not italicized, the letters refer to the proteins that the genes encode. Under normal conditions, these mutations would predispose worms to enter the dauer state. But Kenyon had a hunch that some of these genes would affect longevity even outside the dauer state. She employed a trick in which she used mutant worms that were temperature sensitive: they would not enter the dormant state at a lower temperature (68°F, or 20°C). They were allowed to develop at this lower temperature until they were no longer juveniles and dauer formation was no longer an option. At that point, they were shifted to a higher temperature of 77°F (25°C) and allowed to mature into adulthood so that their life span could be measured.

        From these studies, Kenyon and her colleagues identified a mutation in a gene, daf-2, that lived twice as long as the average worm. In marked contrast to the skepticism Johnson faced, Kenyon had no trouble publishing her work: her 1993 paper in Nature was received with great fanfare. Apart from her stellar academic pedigree and scientific abilities, Kenyon was also lucid and charismatic, so she was extolled by the media. In an unfortunate omission, neither Kenyon’s paper nor the accompanying commentary mentioned Johnson’s earlier work on age-1, and much of the reporting of Kenyon’s work gave the impression that it was the first time that a mutation that extends longevity had been discovered.

        At this point, nobody had any real idea of what the genes identified by Johnson and Kenyon actually did. Enter Gary Ruvkun. Today Ruvkun is most famous for discovering how small RNA molecules called microRNAs regulate gene expression, but he has led a varied and colorful life, both personally and scientifically. When I met him about ten years ago at a meeting in Crete, he became increasingly gregarious after a few drinks; at one point, he donned a bandanna and pretended to smoke a cigarette while pouring himself some strong Greek liquor, which, with his luxuriant but well-tended mustache, made him look like a sailor on shore leave in a Greek taverna. All the while, he incongruously continued to hold forth on RNA biology. In the mid-1990s he too was using the worm and had been studying dauer mutants, including daf-2, for reasons unconnected with aging. Apparently he did not hold the field in high regard, because he recollected that when Kenyon’s report came out, “I thought, ‘Oh, gosh, now I’m in aging research.’ Your IQ halves every year you’re in it.”

        The big breakthrough came when Ruvkun isolated and sequenced the daf-2 gene. It coded for a receptor that sticks out of the cell’s surface and responds to a molecule very similar to insulin: IGF-1 (insulin-like growth factor). Both insulin and IGF-1 are hormones that bind to their receptors in the cell. Both receptors are also kinases that activate downstream molecules, which in turn affect metabolic pathways that play a role in longevity. These hormones or their counterparts exist in nearly all organisms, so they must have originated very early in the evolution of life. That these ancient hormones control aging was a stunning finding.

        These discoveries led to a general understanding of how this pathway would work. IGF-1 binds to the daf-2 receptor, which is a kinase, and activates it. This sets off a cascade of events in which one kinase acts upon another until a protein called daf-16 is phosphorylated. It’s basically the domino effect. The last domino in the chain, daf-16, is a transcription factor, so its role is to turn on genes. When it is phosphorylated, it cannot be transported to the nucleus, where the genes reside on the chromosomes, so it cannot act on its target genes. But if we disrupt the pathway—for example, by mutations in any of the proteins in this cascade—daf-16 can move into the nucleus and turn on a large number of genes that help the worm survive in the dauer state during stress or starvation, thus extending its life span. As it turns out, the age-1 gene originally identified by Tom Johnson is somewhere in the middle of the cascade that starts with daf-2 and ends in daf-16.

        Daf-16 turns on genes that are involved in coping with stress triggered by starvation or increased temperature, as well as genes that code for the chaperones that help proteins fold or rescue unfolded or misfolded proteins before they become a problem for the cell. Kenyon wrote in a 2010 review that these genes “constitute a treasure trove of discovery for the future.” The pathway explained a puzzling paradox. Aging or longevity was thought to be the effect of a large number of genes, each of which would have a small effect. How could a mutation in a single gene, such as age-1 or daf-2, effectively double the life span of the worm? Clearly the reason was that they were part of a cascade that ended up activating daf-16, which then turned on multiple genes that collectively exerted a cumulative effect on life span.

        The idea that a growth hormone pathway might be involved in longevity also explains a curious fact. Larger species generally live longer than smaller ones because they have slower metabolisms and can also escape predation. But within species, smaller breeds generally live longer than larger ones. For example, small dogs can live twice as long as large dogs. This may have to do partly with how much growth hormone they make.

        Remember that queen ants live many times longer than worker ants. Among the many reasons for this is that queens produce a protein that binds insulin-like molecules and shuts down the IGF-like pathways in ants.

        But what of quality of life? Are these long-lived worms sickly and barely surviving? In a word, no. The nematodes don’t just live longer, they look and act like much younger worms. We all know that one of the horrors of aging is the onset of Alzheimer’s disease. Researchers can generate a model for Alzheimer’s disease by making a genetic strain of worms that manufactures amyloid-beta protein in their muscle cells, paralyzing them. However, if the experiment is repeated—but this time using a strain of long-lived worms with mutations in the IGF-1 pathway—paralysis is reduced or delayed. Thus, the same mutations that extend life may also protect you from Alzheimer’s and other age-related diseases that are caused by proteins misfolding and forming tangles. In fact, these mutations may prolong life precisely because they protect against some of the scourges of old age.

        It is all very well to make worms live longer and healthier, but what about other species? Evidence elsewhere in the animal kingdom suggests similarly a strong relationship between the IGF-1 pathway and life span. Deleting the gene that codes for a protein called CHICO, which activates the IGF-1 pathway in flies, made them live 40–50 percent longer. They were significantly smaller but seemed healthy otherwise. The IGF-1 receptor is essential, but mice, like humans, have two copies of it (from their maternal and paternal chromosomes), and knocking out one of them made the mice live longer without any noticeable ill effects.

        Scientists, of course, are not doing all this work to help mice. We want to know what happens in humans, but you can’t just mutagenize people. There are people who naturally have mutations in the insulin receptor. Some of them suffer from a disease called leprechaunism, which stunts growth, and seldom reach adulthood. An analysis of subjects with the disease showed that the same mutations in daf-2 would affect dauer formation in the worm, yet the consequences were rather different. Still, there are hints that this pathway plays a role in human longevity. Mutations known to impair IGF-1 function are overrepresented in a study of Ashkenazi Jewish centenarians, and variants in the insulin receptor gene are linked to longevity in a Japanese group. Variants in proteins identified as part of the IGF-1 cascade have also been associated with longevity. It may be tempting to see the IGF-1 and insulin pathway as a straightforward route to tackling aging. But just the complexity of the pathway and the range of effects it produces tells us it is a finely tuned system, and tinkering with it while avoiding unforeseen ill effects could be difficult.

        When food intake is restricted, the levels of both IGF-1 and insulin decline. If the IGF-1 pathway is inhibited already, you might not expect caloric restriction to have much additional effect. Exactly as you might predict, caloric restriction did not further increase the life span of daf-2 mutant worms; moreover, its full effect depended on daf-16. But this too is puzzling, because the other, completely different TOR pathway is also affected by caloric restriction. So even if the IGF-1 pathway was disrupted, shouldn’t caloric restriction have had at least some effect through the TOR pathway? It turns out that these two pathways are not completely independent. They are two large hubs in a large network, but there is lots of cross talk between them. In other words, proteins that are activated as part of one pathway will activate ones in the other pathway, so they are interconnected. In particular, TOR is activated by elements of the IGF-1 pathway as well as by nutrient sensing.

        While the two pathways are highly coordinated, they are not the whole story behind caloric restriction. Two scientists found a mutant that causes partial starvation of the worm by disrupting its feeding organ, the equivalent of the throat. The mutant, eat-1, lengthens life span by up to 50 percent and does not require the activity of daf-16. Also, double mutants of daf-2 and eat-1 live even longer than the daf-2 mutants alone. This means that caloric restriction affects other pathways besides TOR and IGF-1.

        Mutations that affect longevity dramatically might seem to suggest that aging is under the control of a genetic program. This idea might seem to contradict evolutionary theories of aging, but, in fact, it doesn’t. When worms were subjected to alternative cycles of food and scarcity, it turned out that the long-lived mutant worms simply could not compete reproductively with shorter-lived, wild-type worms. These pathways allow organisms to have more offspring at the cost of shortening life later on, exactly as one might predict from the antagonistic pleiotropy or disposable soma theories of the evolution of aging.

        We have seen what rapamycin can do, but is there a drug that acts elsewhere, such as on the IGF-1 pathway? There is a great deal of interest in metformin, a diabetes treatment. Diabetes, of course, is related to deficient insulin secretion or regulation rather than to IGF-1, although the two molecules are closely related. To understand the difference between these two hormones, I took a short walk from my own lab to the nearby Wellcome-MRC Institute of Metabolic Science on the Addenbrooke’s Biomedical Campus in Cambridge, England, to meet Steve O’Rahilly, one of the world’s experts on insulin metabolism and its consequences for diabetes and obesity.

        Despite his many distinctions and his job as the director of a major institute, Steve lacks even a hint of self-importance. He is a jolly man who in his talks often jokes that his physique makes him particularly qualified to study obesity and its causes; while far from obese, he certainly looks well fed. But underneath the jovial demeanor, he is a sharp and critical scientist who has advanced a messy field by imbuing it with intellectual rigor. Among his many contributions is demonstrating the importance of appetite genes in obesity. Here too Steve has a highly personal interest: he told me that appetite can be such a strong urge that when he is hungry, he can hardly concentrate on anything besides food.

        Steve pointed out that while insulin and IGF-1 are similar in structure and have similar effects when they act on the cell, they have some major differences. Insulin has to act very quickly and in just the right amounts. Getting insulin regulation wrong can be lethal. The brain needs glucose for fuel, so hypoglycemia, a drop in blood sugar caused by too much insulin in the circulation, is very dangerous even if it only lasts a few minutes.

        Insulin receptors are particularly abundant in liver, muscle, and fat cells. In the fasting state, insulin levels are relatively low, and the liver produces the glucose needed constantly by the brain from stored carbohydrates and other sources. But even that low level of insulin is needed to prevent the liver from making too much glucose or ketone bodies (a product of metabolizing fat). After a meal, the level of insulin surges by between ten- and fifty-fold, promoting the uptake of glucose into muscle cells, the synthesis of lipids (fat) in the liver, and the storage of lipid in fat cells.

        Newly secreted insulin does not last long in the bloodstream, with a half-life of only about four minutes. If insulin is like a speedboat racing to its destination, IGF-1 is more like an oil tanker. Its effect lasts much longer, and, in the circulation, it is often bound to other proteins and not active. It needs to be released from them to act, and exactly how this happens is not clear, but that too may be under hormonal control. Also, unlike insulin receptors, IGF-1 receptors are distributed much more broadly throughout all the cells in the body, and there are more of them during development, when the organism has to grow.

        IGF-1 is produced in response to the secretion of growth hormone, but its action controls the amount of growth hormone in a complicated feedback loop. When IGF-1 levels are low or IGF-1 is defective, the body responds by producing more growth hormone. The problem is that growth hormone has other effects apart from stimulating the production of IGF-1. Most notably, it releases fat from fat cells. Not storing away fat in these cells is the cause of much human pathology, such as clogged arteries, or messing up the metabolism in our liver and muscle. So it is not surprising that mutations in the receptor for insulin or IGF-1 can cause diabetes. On the other hand, with caloric restriction, you are consuming the bare minimum of calories. So you actually have less spare fat because you are burning it off to provide energy. This means that caloric restriction does not have the same consequences as simply reducing the level of IGF-1, where excess fat is released to cause damage. Because of this fundamental difference, drugs that try to mimic caloric restriction by acting on the IGF-1 pathway could be particularly challenging to develop. It is hard to cheat our bodies’ finely tuned system.

        That is what explains the current interest in metformin. The drug is already used by millions of people with diabetes all over the world, so it has gone through various clinical trials for safety. Its use, in fact, dates all the way back to medieval Europe, where extracts of the plant Galega officinalis, commonly known as French lilac or goat’s rue, were used to relieve the symptoms of diabetes. One of the products of the extract, galegine, could lower blood glucose but was too toxic. Eventually a derivative, metformin, was synthesized and tested and is now the first-line treatment for type 2 diabetes, which is more common later in life and is caused not by a lack of insulin but because the insulin doesn’t bind well to its receptor.

        How metformin works as a treatment for type 2 diabetes is not entirely clear. Traditionally, most charts of metformin interactions resemble an incredibly complicated wiring diagram. Because of recent advances in our ability to visualize biological molecules, we can now see exactly how metformin binds and inhibits its target protein. This target protein is a crucial component in the process of respiration, in which oxygen is used to burn glucose to produce energy in our cells. Disrupting our ability to utilize glucose in turn affects our energy metabolism and acts on components of the IGF pathway, including an enzyme that regulates glucose uptake. Although some studies have claimed that metformin reduces glucose production in the liver, others show that it actually increases it in healthy people and those with mild diabetes. According to another study, the drug alters our gut microbiome in a way that is at least partly responsible for its effects. Steve O’Rahilly’s work demonstrates that metformin also works by elevating the levels of a hormone that suppresses appetite.

        It may seem odd that a drug whose mode of action is so complex and poorly understood should be so widely prescribed for people with diabetes, but this is often the case in medicine. For almost a hundred years, we had no idea how aspirin worked, yet people consumed billions of tablets for their aches and pains. Still, given the uncertainties, it is rather surprising that metformin has now become interesting as a potential drug to combat aging. This is partly because of a couple of early studies. In the first, from the National Institute on Aging, long-term treatment with metformin in mice improved both their health and life span. A second study, in humans, showed that diabetics on metformin lived longer not only than diabetics on other drugs but also longer than nondiabetics—a significant finding, since diabetes itself is a risk factor for aging and death.

        Such promising outcomes certainly raised optimism about using metformin to prolong healthy life even in people without diabetes, but subsequent studies have questioned these results. One, from 2016, concluded that metformin was merely better than other diabetes drugs, so that diabetics on metformin had about the same survival rate as the general population. More than metformin, it was the family of cholesterol-lowering medications known as statins that dramatically reduced mortality, especially in patients with a history of cardiovascular disease. Metformin did extend the life of worms if treatment was initiated at a young age, but it was highly toxic and actually shortened life span when treatment commenced at an older age. Curiously, some of the toxicity was alleviated by giving the worms rapamycin at the same time. Metformin also undermined the health benefits of exercise, which itself is well established as one of the best remedies against diseases of aging. And one study claimed that diabetics on metformin exhibited an increased risk of dementia, including Alzheimer’s disease.

        Given these uncertainties, Nir Barzilai, a gerontologist at Einstein College of Medicine in New York, is the principal investigator for a large clinical trial of about three thousand volunteers between the ages of sixty-five and seventy-nine called Targeting Aging with Metformin (TAME). The study’s goal is to see if metformin delays the onset of age-related chronic diseases such as heart disease, cancer, and dementia, as well as monitor for adverse side effects.

        To date, however, despite considerable effort, the evidence for metformin concerning longevity is not at all clear. Its effect isn’t nearly as strong or as well established as that of rapamycin, which inhibits the TOR pathway. One reason for the interest in metformin is that its long-term safety has been established in diabetics. Those with diabetes will be perfectly happy to take metformin, as their risk of poor health and eventually dying of complications of diabetes is much higher without treatment. But given the potential drawbacks noted here, it is quite a different matter to recommend its long-term use in healthy adults just yet.

        WE HAVE COME A LONG way from the age-old idea that exerting self-control over one’s diet is good for you and that gluttony comes at a steep price to our health. First there was the scientific evidence that caloric restriction could prolong healthy life compared to an ad libitum diet. Then in the last few decades, two previously unknown pathways, the TOR and the IGF-1, were shown to be major processes in the cell that responded to caloric restriction. This in turn has opened up the possibility of extending healthy living and even life span by tinkering with these pathways. The world of medical science has compiled a tremendous amount of research regarding the effects of rapamycin, metformin, and related compounds on aging and life span; rapamycin and its chemical analogs are among the more promising avenues for tackling aging. Still, bear in mind that inhibiting these pathways individually is not the same as caloric restriction, and a lot more work needs to be done to establish both the efficacy and safety of these approaches.

        Several things strike me about the discovery of TOR and the IGF-1 pathways. First, the mere existence of these pathways came as a complete surprise. Second, at least in the case of TOR, scientists were not even looking originally for a connection with caloric restriction, let alone aging. By sheer chance, they uncovered major processes in the cell that have ramifications not only for aging but also for many diseases. Third, they involved organisms that might not seem obvious for studying aging, such as yeast and worms. Finally, the discovery that a single gene could impact life span so dramatically was quite unexpected.

        Before we leave the complicated maze of caloric restriction and its pathways, let us visit a third strand that, like the story of TOR, begins with baker’s yeast. Unlike the discoverers of TOR, who were not even investigating anything pertaining to the aging process, this story is about scientists who deliberately used yeast to discover genes related to aging. A yeast cell divides by budding off smaller daughter cells. The mother cell acquires scars on its surface with each budding and can only undergo a finite number of divisions. This inability to divide further is called replicative aging. Still, you might not think that studying this rather specialized property of a single-celled organism such as yeast would have any relevance at all for a phenomenon as complex as human aging. That was exactly the skepticism that Leonard Guarente encountered from his colleagues at MIT when he said he was planning to tackle aging using yeast.

        Like many molecular biologists, Guarente had relied on yeast to study how genes are turned on and off by controlling the transcription of DNA into mRNA. By 1991, three years after Johnson’s report on the long-lived age-1 mutant in worms, Guarente was a tenured faculty member at MIT. He was already established and professionally secure, so when two of his students, Brian Kennedy and Nicanor Austriaco, told him they wanted to work on aging, Guarente agreed to embark on what for him was an entirely new area, dramatically altering the trajectory of his career.

        Initially, Guarente and his students identified a trio of genes belonging to a family called SIR genes, for silent information regulator. The SIR family in turn controls genes that define the mating type or “sex” of yeast. (Yeast mating is complicated, and they can switch their “sex” from one type to another.) Eventually Guarente’s team showed that just one of these genes, Sir2, had the biggest effect on yeast life span. Increasing the amount of Sir2 in cells extended life span, while mutating it reduced life span. The effect was not as large as the factor of 2 seen for the age-1 or daf-2 mutants in worms. But they had clearly identified a gene in yeast that controlled how many times a mother cell could divide before it was exhausted. Even more promising, Sir2 was a highly conserved gene: it had counterparts in other species, including flies, worms, and humans. They soon found, with mounting excitement, that increasing the amount of Sir2 in flies and worms also extended their lives.

        But how did it work? Recall that our genome can be recoded using epigenetic marks—chemical tags—on either the DNA itself or on the histone proteins tightly associated with it. In general, adding acetyl groups to histones activates those regions of chromatin, whereas removing acetyl groups silences them. Sir2 turns out to be a deacetylase, which you might recall are enzymes that remove acetyl groups from proteins such as histones, and there is evidence that this activity silences genes near the boundary of telomeres and affects life span. Sir2 also requires a molecule called nicotinamide adenine dinucleotide (NAD), which is required for metabolizing energy in the cell. This was a hint that when there is starvation, there is not enough free NAD to activate Sir2. Suddenly you could make a plausible link between Sir2 and caloric restriction, which had long been implicated in aging in many organisms, including yeast. Sure enough, in both flies and yeast, mutation of Sir2 eliminated the benefits of caloric restriction in prolonging life, and, in worms, the effect of Sir2 required the presence of daf-16, the same transcription factor that had already been identified as the target of the IGF-1 pathway in worms. Suddenly things appeared to come together: a mutant affecting life span in yeast was associated with a pathway affecting aging in worms that in turn was connected with caloric restriction.

        Finding mutants that increased longevity in both worms and yeast prompted Guarente and Kenyon to publish a highly enthusiastic article in the journal Nature extolling the prospects of curing the aging problem. “When single genes are changed,” they wrote, “animals that should be old stay young. In humans, these mutants would be analogous to a ninety-year-old who looks and feels forty-five. On this basis, we begin to think of ageing as a disease that can be cured, or at least postponed.” They went on to found a company in Cambridge, Massachusetts, with the equally optimistic name Elixir Pharmaceuticals.

        Not long after Guarente had made his initial breakthrough, he gave a talk in Sydney, Australia. In the audience sat David Sinclair, a brash young graduate student working on his PhD at the University of New South Wales. Sinclair was clearly both impressed and excited by Guarente’s results because he persuaded the latter to take him on as a postdoctoral fellow at MIT. Following his fellowship, Sinclair started his own lab at Harvard Medical School, across the river in Boston, and continued to work on Sir2 and aging, in effect becoming a competitor of his former mentor. Next, Sinclair started his own company, bearing the more descriptive and modest name of Sirtris Pharmaceuticals.

        By then, researchers were keen to see if the counterpart of Sir2 in humans and other mammals would have similarly beneficial effects on life span and health. In mammals, there are seven members of this family, numbered SIRT1 through SIRT7. These proteins, like the equivalents of Sir2 in other organisms, were collectively called sirtuins. (Proteins that activate other proteins are often given names ending in in; sirtuins is simply a play on “Sir2-ins.” SIRT1 seemed the most similar to Sir2, so it drew the bulk of early attention. The goal was to find a pill—or magic elixir—that would activate sirtuins in some beneficial way.

        Here the story takes a rather strange, and rather French, turn. It has long been speculated that the French have a relatively low prevalence of heart disease despite their rich diet because they also drink copious quantities of red wine. Sinclair, collaborating with a biotech company in Boston, identified resveratrol as one of the compounds that stimulated SIRT1. Oenophiles around the world rejoiced, for resveratrol was a compound present in red wine. Finally, here was scientific evidence for the benefits of a French lifestyle. Their enthusiasm was apparently not tempered by the realization that it would take about a thousand bottles of wine to produce the amount of resveratrol used as a dose in those studies.

        Sinclair’s team and a competing group appeared to clinch the issue when they administered resveratrol to mice fed a diet high in sugar and fat. Although the mice remained overweight, and their maximum life span was unaffected, they were protected against the diseases of overeating: more of them survived to old age, and their organs were not diseased like those in typically obese mice.

        This seemed exactly the Get Out of Kale Free card people were waiting for: permission to overindulge on an unhealthy diet without any ill effects. Never shy when it came to self-promotion, Sinclair was all over the news again when the pharmaceutical giant GlaxoSmithKline bought Sirtris for an astonishing $720 million in 2008. He had hit both the scientific and commercial jackpots—or so it seemed. But even at the time, there was considerable skepticism in the industry about the purchase.

        There has been significant pushback against the claims made by sirtuin advocates, some of it coming, oddly enough, from two of Sinclair’s former colleagues in the Guarente lab: Brian Kennedy and Matt Kaeberlein. Among other things, their work showed that contrary to earlier findings, caloric restriction results in an even greater life span extension in yeast cells lacking Sir2, suggesting that the two were not likely to be linked. Rather, Sir2 may have been acting in other ways by modifying the program of gene expression by deacetylating histones on DNA. The two went on to reveal that the activity of resveratrol on SIRT1 was due to the presence of a fluorescent molecule that was used to detect the activation. Without this additional molecule, no increase in activity was observed, so it was not even clear whether resveratrol had any effect on SIRT1. Not only that, but they did not find any effect of resveratrol on Sir2 activity in yeast, including life span. Pharmaceutical companies do not usually spend time proving one another wrong, but in an unusual step, scientists at Pfizer published a report stating that several of the other compounds identified by Sirtris did not directly activate SIRT1 either.

        With any machinery, it is much easier to do something that will stop it from working than to improve its performance. It is the same with drug development; many drugs work by inhibiting an enzyme, and manufacturing a new drug that makes an enzyme more effective is always a challenge and relatively rare. So Glaxo’s very expensive purchase of Sirtris raised eyebrows in the industry. Eventually it gave up on the lead compounds it had acquired from Sirtris and shut down the division. Five years after the sale, an article in Forbes magazine concluded that the best way to experience the benefits of red wine was to drink it in moderation.

        Of course, following the dictum of the German theoretical physicist Max Planck that scientists rarely change their minds in light of contradictory evidence, Sinclair and others stuck to their guns. They countered the new findings by reporting that resveratrol worked alongside other helper compounds in the cell that had properties similar to the fluorescent molecules they had used to monitor Sir2 activity in the test tube. This led to another commentary, this time in the journal Science, titled, “Red Wine, Toast of the Town (Again).”

        However, this optimistic assessment must be weighed against a systematic 2013 study by the National Institute on Aging that evaluated several compounds proposed to increase healthy life or overall life span, including resveratrol. None of them had any significant effect on the longevity of mice. Among the others were curcumin, which is present in the herb turmeric, and green tea extract—not that these findings seem to have put many health food stores out of business.

        Beyond resveratrol, skeptics began to question the very premise of the sirtuin idea. Sir2 extends replicative life span, but losing the ability to keep reproducing is only one kind of aging in yeast. There is also chronological life span, which measures how long yeast can survive in a semi-dormant state—for example, when it has run out of nutrients. Sir2 activation actually reduces chronological life span in yeast. We humans—with the exception, perhaps, of a few very rich old men—are not mainly concerned with our ability to reproduce in old age, but with increasing life span and improving health.

        Later studies also contradicted some of the early studies about the effect of Sir2 on life span. If you ascribe an effect to a mutation, you need to take care that in creating the mutant strain, you have not changed any of the thousands of other genes in the organism. Scientists clarified that overproduction of Sir2 in worms and flies had no effect on the life span of either worms or flies as long as they did not change anything else about the genetic makeup of their organisms. This considerably deflated enthusiasm for sirtuins as a potential boon to extending life, as illustrated by journal articles titled “Midlife Crisis for Sirtuins” and “Ageing: Longevity Hits a Roadblock.” Feeling embattled, Leonard Guarente repeated the experiment in worms by overproducing Sir2 without changing the genetic background, and had to revise his previous estimate of an up to 50 percent increase in life span down to about 15 percent.

        The sirtuin with the most dramatic effect may actually turn out to be SIRT6; mice deficient in SIRT6 develop severe abnormalities within two to three weeks and die in about four weeks. The protein is also a histone deacetylase that may affect how genes are expressed in telomeric chromatin, and some studies suggest that it increases life span in mice, with one study theorizing it does so because it stimulates DNA repair.

        It is telling that two of the pioneers of sirtuins in Guarente’s own lab, Kennedy and Kaeberlein, both well-established, respected researchers in their own right, have now entirely moved away from sirtuins to focus on other aspects of aging research such as the TOR pathway and how rapamycin affects it. Sirtuins, through their action on histones, may be involved in patterns of gene expression and genome stability, and are important for human physiology in ways that still need to be understood. But enthusiasm for their use in aging has declined except among the faithful. Many in the gerontology community are highly dubious that they have any direct connection with caloric restriction or extension of life span.

        There is one related molecule that has retained considerable prominence regardless of the fate of sirtuins: NAD. Nicotinamide adenine dinucleotide plays many essential roles in the cell, including for sirtuin function. It is made by the body using nicotinic acid (niacin) or nicotinamide, both slightly different forms of vitamin B3, although it can also be made by our cells from the amino acid tryptophan or by salvaging some recycled molecules.

        In the cell, NAD cycles between an oxidized and reduced form to help our cells burn glucose to convert it into other forms of energy. This process, called respiration, is absolutely essential for our ability to use glucose as a fuel; however, it does not use up NAD rapidly, since it simply cycles back and forth between its two forms. But NAD performs other essential functions, such as repairing DNA and altering gene expression through sirtuins, and these functions deplete it. Thus, as we grow older, our levels of NAD decline. The brain is one of the body’s biggest consumers of glucose as a source of energy, and you can imagine how a decline in NAD levels might harm brain function. It can also cause a host of other problems, from increased inflammation to neurodegeneration. If that seems a lot for a single molecule, it simply says something about how central NAD is to our metabolism.

        Our cells can’t take up NAD directly from our diet. But we can utilize molecules that are direct precursors of NAD, of which two popular ones are called NR (nicotinamide riboside) and NMN (nicotine mononucleotide). Search for them on the internet, and you will find countless websites arguing that one or the other is better as an anti-aging supplement depending on which one they are selling. According to one study, increasing NAD levels by providing NR or NMN to mice slowed their loss of stem cells and protected them from muscle degeneration and other symptoms of decline; in another report, higher NAD levels led to an increase in life span. However, since NAD is so central to the chemistry of life, it may have benefits that have nothing to do with an increase in life span. Indeed, Charles Brenner, a longtime expert on NAD metabolism, says, “I expressly tell people NR is not a life extension drug and that the case for its use has nothing to do with sirtuins and everything to do with acute or chronic losses of redox [reduction/oxidation reactions involved in respiration] and repair functions in the conditions that attack the NAD system. The NR trial I am most interested in is promoting healing from scratches and burns.” The results of taking either NR or NMN in humans are not yet definitive, and so far there have been no long-term studies in humans on their benefits or side effects. However, this has not stopped them from being heavily marketed as anti-aging nutraceuticals, or dietary supplements with real or alleged physiological benefits that don’t require approval from agencies like the FDA. Global sales of NMN register about $280 million annually and are forecast to reach almost $1 billion by 2028.

        We have seen how our cells orchestrate a finely tuned protein production program—and how this program starts to wobble as we age. A simple corrective—restricting our calories and eating well—can do much to slow this deterioration through complex interconnected pathways. Much excitement in aging research is about the prospect of producing drugs that inhibit these pathways and produce the benefits of caloric restriction.

        The cell, though, is not merely a bag of proteins. It contains large structures and entire organelles that must work together in harmony. When and why those relationships break down is a topic at the forefront of aging research. And it all comes back, strangely enough, to an ancient parasite. We normally think of parasites as harmful, but this one was a mixed blessing. On the one hand, it enabled us to evolve from small unicellular organisms into the complex creatures we are today. On the other hand, it is also a major reason why we age.

        9. The Stowaway Within Us

        A couple of times a year, I visit my ten-year-old grandson in New York and experience something that must be familiar to all grandparents. Although I am physically fit for my age, I am exhausted after spending a day with him. How does he have such boundless energy that just watching him makes me tired? One reason I lack his energy also explains why we both exist as complex creatures, and it dates back to an event that occurred about 2 billion years ago.

        The earliest life forms were single-celled creatures swimming around in a primordial soup. How did they become us? Each cell in our body is much larger and more complex than a typical bacterium, so even how just one of these complex cells evolved was a mystery. In the early 1900s a Russian botanist named Konstantin Mereschkowski proposed that one cell swallowed up another simpler, smaller cell. On its own, this was not remarkable; normally, either the smaller cell was killed and digested, or the cell doing the swallowing bit off more than it could chew and perished from the indigestion. But in one such case, Mereschkowski proposed, the swallower and swallowed both survived—and have continued to coexist and replicate ever since.

        The theory hung around for decades but really gained credence in the 1960s when a biologist named Lynn Margulis began working on the idea. Margulis was an iconoclast. She was married to the astronomer Carl Sagan before marrying Thomas Margulis, a chemist, whom she also soon divorced, and is quoted as saying, “I quit my job as a wife twice. It’s not humanly possible to be a good wife, a good mother, and a first-class scientist. No one can do it—something has to go.” One of her more controversial theories is the Gaia hypothesis she proposed with scientist James Lovelock, which states that the entire biosphere—the Earth, its atmosphere, geology, and all the life forms that inhabit it—is a self-regulating, living organism. She also had more extreme, and troubling, views. Margulis wrote an essay suggesting that the 9/11 attacks on the World Trade Center were part of a conspiracy orchestrated by the US government, and questioned whether the human immunodeficiency virus (HIV) was really the cause of acquired immunodeficiency syndrome, or AIDS. Her view of herself as a maverick may have attracted her to conspiracy theories, but this attitude also allowed her to make a major contribution to our understanding of life.

        Margulis believed that symbiosis was widespread and that eukaryotes—more complex cells that have a nucleus—evolved as a result of symbiotic relationships among bacteria. At the time, the dogma was that simpler bacteria evolved slowly into more complex forms of cells. You could think of Margulis’s idea as an extension of the one Mereschkowski had proposed almost six decades earlier, but it was still sufficiently controversial that her work was rejected by fifteen academic journals before being published in 1967 by the Journal of Theoretical Biology (under the byline Lynn Sagan). Margulis proposed that the descendants of the bacteria that were swallowed up now exist as organelles in the larger cell. In animal cells, we know these as mitochondria. In addition to mitochondria, plants have another bacterial descendant inside them: chloroplasts, which turn sunlight into sugar through photosynthesis. Neither we nor plants can exist without these stowaways inside us.

        Today scientists believe that the key event that led to the formation of eukaryotes occurred about 2 billion years ago, when a single-cell organism called an archaeon swallowed a smaller bacterium. Against the odds, the bacterium survived, and eventually entered into a symbiotic relationship with its archaeon host. In the intervening 2 billion years, the bacterium evolved into mitochondria. In the 170 years since mitochondria were first discovered, scientists have learned that they are highly specialized centers of energy production in the cell. It is that ability to generate energy that allowed our primitive ancestor to evolve into today’s huge and complex variety of cells and spurred the growth of complex life forms. But we also know that energy is conserved and cannot be created out of nothing. So what does it mean to say that mitochondria generate energy?

        Contrast today’s world with a primitive, preindustrial one. In a primitive world, there were many different sources of energy. You could use the energy of the sun to warm things; you could burn wood and other fuel to generate heat; you could use the flow of a river or the power of wind to turn a mill wheel; or use wind to sail across oceans. However, these different sources of energy are not interconvertible, and they can be used only in very limited ways. You could not, for example, use wind to cook your food.

        Now think of today’s world: virtually every source of energy, from solar and wind, to fossil fuels and nuclear fission, can be converted to electricity. Electricity in turn can be used for almost everything. It provides heat and light, moves us around in cars and trains, entertains us through our television sets and other gadgets, and enables instant communication around the world. Electricity has become the universal currency of energy, in much the same way that monetary currency replaced barter trade hundreds of years ago.

        That is exactly what mitochondria do in a cell. They take less versatile forms of energy—for example, the carbohydrates that we consume—and convert them into the universal energy currency of the cell, which is the molecule adenosine triphosphate, or ATP. We have come across ATP before: it is one of the building blocks of RNA and consists of the adenine base attached to a ribose sugar and a string of three phosphates. The bonds between the phosphate groups are what chemists call high-energy bonds. It takes energy to form them, and that energy is released when they are broken. When the cell needs energy for any particular process in the cell, it can break the bond between the second and third phosphate groups and use the energy released as a result. ATP is like a tiny, highly mobile molecular battery.

        When we digest food, especially carbohydrates, we are effectively burning the sugar that we obtain by breaking down carbohydrates. In fact, chemically it is the same as if we actually burned sugar in a flame, except that our cells do it in a very controlled way. In both cases, the result is the same: sugar combines with oxygen and releases carbon dioxide and water, and releases energy in the process. That is exactly what we do when we breathe in and out. The energy released during respiration is used by mitochondria to make ATP.

        This process is chemically similar to the way we produce electricity using hydroelectric power. Unlike our own cells, which have a single membrane enveloping them, mitochondria, like their bacterial ancestors, have two membranes: each one a thin double layer of fatty molecules called lipids, which separate aqueous compartments from one another. Inside the inner membrane is a large complex of protein molecules that uses the energy of respiration to move hydrogen ions (H+), or protons, across the inner membrane, creating a proton gradient, where one side of the membrane has a higher concentration of protons than the other. And just as water flows downhill, the protons want to go down the concentration gradient. But because the membrane is not generally permeable to protons, they can do so only by traveling through a specialized molecule that acts like a molecular turbine. In the same way that water is made to go down a hydroelectric dam through large pipes to turn turbines that generate electricity, protons go through that special molecule, ATP synthase, which, as a result, actually turns like a turbine, and makes a molecule of ATP by adding on the third phosphate to adenosine diphosphate, or ADP, which has just two phosphates.

        Production of energy in our mitochondria.

        Just as monetary currency increased trade and prosperity dramatically, enabling complex societies to evolve, and just as the energy currency of electricity allowed societies to become incredibly complex technologically, the efficient production of ATP allowed cells to become ever more complex and specialized. ATP is a small molecule and makes its way, as needed, all over the cell. It provides the energy for everything from making the components of the cell, to moving around parts of the cell, to enabling cells themselves to move. Our muscles use ATP to generate the power to contract. In our brain, ATP maintains the voltage across membranes in our neurons while they transmit electrical signals and fire impulses. The human body has to generate roughly its own weight in ATP every day, and the brain alone uses about a fifth of that. Just thinking uses hundreds of calories a day. And mitochondria provide nearly all of that ATP.

        The stowaways within us, which may well have begun their lives as parasites, have made themselves indispensable by producing the ATP we need to survive. Mitochondria differ from their bacterial ancestors in other ways too. For one thing, they’ve shed most of their genes, so the mitochondrial genome is now tiny, typically coding for only a dozen protein genes. More than 99 percent of the mitochondria’s components are made by translating genes that now reside on the chromosomes in our nucleus. These proteins are made in the cytoplasm of our cells and then imported across one or both membranes of the mitochondria using a complicated machinery. How and why mitochondria managed to move most of their genes to their host’s genome, or why they retained any genome at all, is not well understood. This small mitochondrial genome is the source of many problems, though, because mutations in the mitochondrial DNA can give rise to diseases, including diabetes, and heart and liver failure, as well as conditions such as deafness.

        We inherit our mitochondria exclusively from our mothers because the sperm contributes none of its mitochondria to the fertilized egg. As a result, diseases due to defects in the mitochondrial genome are inherited entirely from the mother. A few years ago, the United Kingdom made it legal for parents to produce a “three-parent” baby. The nucleus from the egg of a potential mother with defective mitochondria is introduced into the egg of a healthy woman donor that has had its own nucleus removed. This egg is then fertilized with the father’s sperm and placed in the womb of the potential mother. The child will carry mostly the genes of its father and mother, but all of his or her mitochondria, with their tiny genome, will come from the egg donor.

        Cells can contain between tens to thousands of mitochondria. These mitochondria don’t lead entirely separate lives as they might if they were bacteria in a culture. Rather, they are constantly fusing and splitting. Mitochondria may be fusing to intermix their contents, partly as a way to compensate for partially damaged components in each of them. They also split in different ways. When cells divide, mitochondria will also split, often down the middle. But sometimes they will also split off parts that are defective so that they can be sent off to be degraded and recycled using processes such as autophagy, which we discussed in chapter 6.

        Mitochondria don’t just fuse with one another; they also interact with a cell’s other organelles in interesting ways. It turns out that lipids—the fatty molecules that make up our membranes—are highly specialized, so different organelles and cell types have different compositions of lipids. Mitochondria often exchange components with other organelles so that they can help one another make the specialized lipids they need. Excessive contacts between these organelles and mitochondria can be just as harmful as having too little.

        Finally, they do many other things besides making ATP. For example, they are also the place where the final stages of sugar burning occurs. They are the sites of burning our stored fat, which is especially important when our carbohydrate intake is insufficient, such as when we are starving or dieting. The energy from burning fat is also used to make ATP. Beyond energy production, mitochondria are now part of a complicated signaling network with the rest of the cell. They tell the cell when energy levels are low or high, so that it can adapt accordingly by turning on or off appropriate genes and pathways.

        Thus, mitochondria are no longer just energy factories but have become a central hub of the cell’s metabolism, which is a far cry from the bacterial stowaway in our cells that they once were. We now coexist in a complex relationship with them. As we age, our mitochondria still work, but they have accumulated defects. Not only do they produce energy less efficiently, but they have become creakier and less effective at their myriad other tasks. Perhaps no other structure in the cell is so intimately connected to the energy of youth and the decline of the old. Aging mitochondria even acquire a different shape as they degrade, transitioning from elongated ovals to spherical blobs. You can see why my grandson, with his young, healthy mitochondria, might feel so much more energetic—and generally healthier—than I do.

        IF MITOCHONDRIA ARE UNABLE TO function at some minimum level, we die. Remember, in most countries, death is defined by when our brain stops functioning. If we are unable to provide oxygen and sugar to our brain—which could be for a variety of reasons, such as a heart attack—the mitochondria in our brain tissue can no longer produce enough ATP for neurons to function, leading to brain death. A sudden loss of oxygen from a heart attack is a drastic occurrence, but even over the normal course of life, mitochondria gradually decline until they no longer function at the required level.

        What brings mitochondria to this point? Mitochondria age for all the same reasons the rest of the cell does, but they have their own particular burden as well. In 1954, Denham Harman proposed something called the free-radical theory of aging. His idea was that chemically reactive species of molecules, some of them called free radicals, are produced normally as a byproduct of metabolism, and cause damage to the cell over time, accelerating aging. Harman’s idea would seem to help explain the benefits of caloric restriction. If you eat less, you burn fewer calories every day, and you don’t produce as many damaging chemical byproducts. Harman’s theory also explained why animals with high metabolic rates tend to live shorter lives than those with slower metabolism.

        Free radicals can be produced throughout the cell, but they and other reactive species are produced in abundance in mitochondria. A primary function of mitochondria is burning sugar by oxidizing it. The oxygen we breathe consists of two oxygen atoms bound tightly together to form the O2 molecule. In mitochondria, this oxygen is reduced ultimately to two water molecules, each of which is H2O. If the reduction of oxygen is not complete, the partially reduced molecules are highly reactive intermediates called reactive oxygen species, or ROS. These highly reactive forms of oxygen can damage other components of the cell, including proteins and DNA. Anyone who has ever had an old car knows what reactive oxygen can do to the chassis; in that case, the reaction is speeded up when there is common salt around, which is why cars in climates where roads are salted in the winter tend to corrode more quickly. So you can think of damage to mitochondria from oxidation as a case of our cells rusting from within.

        Normally mitochondria have enzymes to scavenge away these reactive species before they cause harm, but the process is not perfect. A fraction of reactive molecules escape. Over time, they damage the molecules around them, including the proteins that make our cells work. The general breakdown in the function of the cell leads to aging. Apart from causing immediate damage, these reactive species can also affect future generations of mitochondria by damaging our mitochondrial DNA. That DNA codes for parts of the essential machinery for oxidizing sugar and generating ATP, and if it acquires too many mutations, the machinery produced will be defective. This in turn makes the reduction of oxygen less efficient, resulting in even more reactive species, kicking off a vicious cycle. The reactive species can also diffuse to other parts of the cell and generally cause havoc. Slowly with age, mitochondria will perform less and less effectively.

        Harman’s mitochondrial free-radical theory didn’t gain much traction at first, but a number of observations supported it. For one thing, the production of these reactive species increases with age; by contrast, the activity of the scavenging enzymes that remove them decreases with age, compounding the harm. But it wasn’t clear whether these changes were simply a result of aging or whether they themselves were further driving the aging process. Strains of mice that made more of an enzyme that scavenged hydrogen peroxide lived about five months longer than average, which is quite an increase in longevity for a mouse. As recently as 2022, scientists in Germany showed that a parasite increases the longevity of its ant hosts severalfold by secreting a cocktail that includes two antioxidant proteins as well as other compounds. You may remember that germ-line cells such as oocytes boast superior DNA repair. One way they may minimize damage is by suppressing one of the enzymes that generates reactive oxygen species.

        As the free-radical theory gained credibility, antioxidants took center stage. These compounds, which combat reactive oxygen species, were touted as a panacea for everything from cancer to aging. Sales of antioxidants such as vitamin E, beta-carotene, and vitamin C soared. Cosmetic companies included vitamin E, retinoic acid, and other antioxidants in their lotions and creams to keep skin youthful. People were exhorted to eat foods rich in antioxidants, such as broccoli and kale.

        Alas, although there were isolated reports of benefits from antioxidants, an analysis of sixty-eight randomized clinical trials of antioxidant supplements, encompassing a total of 230,000 participants, suggested that not only did they not reduce mortality, but some of them—beta-carotene, vitamin A, vitamin E—actually increased it. This by itself doesn’t mean that the free-radical theory has no merit. But it does mean that you cannot just pop antioxidant supplement pills and expect to get much protection against free-radical damage. Still, don’t give up on the kale just yet; eating fresh fruits and vegetables is beneficial for all sorts of other reasons.

        There are many potential reasons why the results from antioxidant dietary supplements have been disappointing. They may be metabolized in a way that doesn’t maintain a lasting effect, or they may not properly mimic the natural process by which enzymes scavenge free radicals and reactive oxygen species. But over the last ten to fifteen years, some in the field have come to doubt that oxidative damage from reactive oxygen species and free radicals are a major cause of aging at all. Studies with other animals, including worms and flies, showed no clear correlation between the level of scavenging enzymes and life span. In fact, contrary to the report on mice I just mentioned above, studies in species as varied as yeast, worms, and mice reveal that increased levels of scavenging enzymes or other defenses don’t extend life span. On the contrary, in one study, mutant worms with higher levels of free radicals lived about a third longer. Giving them a herbicide that stimulates a surge of free-radical activity prolonged their lives even more, while reducing the level of free radicals by giving the worms antioxidant supplements reduced their lives. The naked mole rat lives many times longer than other animals of the same size, yet it has higher levels of reactive oxygen species.

        What could possibly be going on? This may be an example of something called hormesis, in which exposure to low levels of a toxin is actually beneficial, whereas those same toxins are harmful at higher levels. Or, as the German philosopher Nietzsche said, that which does not kill us makes us stronger. Free radicals and reactive oxygen species send signals to stimulate the production of detoxification enzymes and repair proteins, which actually have a protective effect. Moreover, these reactive oxygen species have widespread roles as signaling molecules that convey the state of mitochondria to other parts of the cell.

        So if free radicals and reactive oxygen species are by themselves not the major problem, what else about mitochondria might make them factors in aging? We know that mitochondrial DNA mutations increase with age, and accumulation of these mutations is correlated with disease. But does it cause aging? One way to settle this was to genetically engineer strains of mice in which the DNA polymerase enzyme that replicates mitochondrial DNA was made more error prone; consequently, mutations would accumulate at a much faster rate. These mutator mice were apparently normal at birth, but they soon showed many of the symptoms of premature aging, including gray hair, hearing loss, and heart disease. At the age of about sixty weeks, most of them were dead, while normal mice were still alive. This is strong evidence that damage to our mitochondrial DNA is an important factor in aging. Tellingly, these mutator mice did not have a higher level of reactive oxygen species, so it was not as if increased mutations led to defective enzymes, which then worsened the problem by accumulating reactive oxygen species. The ultimate reason these mutator mice age rapidly is still not settled. There are reports of a complicated interplay between errors in mitochondrial DNA and the stability of the bulk of the genome in the cell’s nucleus, which can cause all of the more general problems associated with DNA damage.

        There is no question that damage to mitochondria is bad for the cell and accelerates aging, but it is remarkably difficult to tease out the precise sources of damage. Each human cell can house tens to thousands of mitochondria, each with its own genome. So if some of them acquire serious errors in their DNA, there will still be lots of healthy mitochondria to keep the cell working. But at some point, a threshold is reached where there are simply too many defective mitochondria in the cell, which cause so many problems that they overwhelm the good mitochondria. There are also situations where some of these defective mitochondria can multiply more quickly because they don’t actually do much of the work that healthy mitochondria do. In these cases, clones of these defective mitochondria can dominate, leading to serious problems for the cell.

        Mitochondria are not just energy factories but also are intimately involved in the cell’s metabolism. So as they acquire defects with age, they contribute to the decline of the cells they inhabit and speed up aging. The effect is most pronounced when they contribute to the decline of stem cells, because those cells play such important and diverse roles: when they become dysfunctional, they not only fail to regenerate tissue but also cause cellular senescence and chronic inflammation, all of which are hallmarks of aging.

        One characteristic of aging is a chronic low level of inflammation, cleverly dubbed “inflammaging.” Inflammaging owes its existence in part to our mitochondria’s ancient bacterial origins. Older, defective mitochondria are more prone to rupture and can leak their DNA and other molecules into the cytoplasm of the cell. The cell mistakes these as coming from bacterial invaders, triggering inflammation. Our neurons, which are either very long lived or do not regenerate at all, are particularly prone to aging mitochondria. It may be one reason that our cognitive abilities decline. Neurons with aging mitochondria are also less able to use the recycling pathways to clear away defective proteins and organelles, all of which expend energy. As a result, we become more prone to dementia with age.

        For all these reasons, maintaining healthy mitochondria is a key to good health. How the cell does this is closely related to some of the pathways involved in caloric restriction that we have come across already. It also uses autophagy to get rid of entire mitochondria that it deems defective, or even just defective parts of mitochondria that are broken off. This process, called mitophagy, targets the mitochondria for destruction and recycling. Some proteins can sense when things are going wrong and coat the surface of defective mitochondria with markers that signal the autophagy apparatus to target them for destruction. The same caloric restriction that increases levels of autophagy by the TOR pathway also increases levels of mitophagy.

        If a cell disposes of defective mitochondria, it must replace them with new mitochondria; here too, caloric restriction plays a role. The inhibition of TOR by caloric restriction, or the drug rapamycin, shuts down the synthesis of many proteins but turns on the synthesis of other proteins involved in turning out mitochondria. In studies, the increased mitochondrial activity from this process was tied directly to longer life spans in fruit flies.

        Besides TOR, other signals also stimulate production of new mitochondria. Sometimes, though, this effort is futile: if the cell senses a problem with mitochondrial function, it may simply end up making more defective mitochondria.

        WHILE SCIENTISTS AND THE PHARMACEUTICAL industry strive to produce a pill that will combat mitochondrial dysfunction, there is a simple way to stimulate the production of new mitochondria, and it doesn’t have to cost a penny: exercise. Physical activity turns on some of the same pathways that stimulate mitochondrial production in tissues ranging from our muscles to our brain. Exercise too is an example of hormesis. Too much exercise can be harmful, and even moderate exercise can temporarily increase blood pressure, oxidative stress, and inflammation, all of which are potentially problematic. Yet as long as the amount of exercise is not so excessive as to injure us, which depends on our health and many individual factors, it is highly beneficial. One way it spurs mitochondrial function is by generating the reactive oxygen species produced by incomplete oxidation when we breathe, which, as discussed earlier in this chapter, can be beneficial in the right amounts. Of course, exercise does far more than that and benefits us in many ways: reducing stress, maintaining muscle and bone mass, countering diabetes and obesity, improving sleep, and strengthening immunity. Add to this list the healthful effects of fresh mitochondria.

        Eventually, despite the cell’s best efforts to both recycle defective mitochondria and manufacture new ones, our mitochondria inexorably age, and in turn accelerate other aspects of our overall aging. If accumulated mutations in mitochondrial DNA are a factor in their aging, why does a baby—or my grandson—have healthy mitochondria? The same question we asked for us as individuals could be asked here too. Why is the clock reset at each generation? Recall that the resetting of the aging clock has a few reasons. The first is that germ-line cells that form the next generation have better DNA repair and age more slowly. The second is that the epigenetic marks on DNA get reset with each new generation when germ-line cells are formed. Unlike our nuclear DNA, mitochondrial DNA doesn’t have the same sophisticated epigenetic mechanisms, but it is better repaired in germ-line cells. Moreover, there is a strong selection against mutations in mitochondrial DNA, so defective oocytes are not used for fertilization. There is also a strong selection against defective sperm and even defective early embryos, so any participants with deficient mitochondria should be weeded out. Nevertheless, selection is not perfect: at least some of the loss of fertility with age is due to aging mitochondria.

        By now, it should be clear that all the causes of aging described so far are highly interconnected. We started off with perhaps the most fundamental molecule of all: our DNA, which contains the information necessary to make the thousands of proteins in a cell at just the right time and in the right amounts. That information needs to be protected against damage. Those thousands of proteins must work in harmony to ensure the functioning of a healthy cell, and the cell has many mechanisms to deal with problems as they arise. Beyond proteins, entire organelles such as mitochondria need to work in a symbiotic relationship with the rest of the cell. These mitochondria may have started off as an engulfed bacterium inside a larger ancestral cell, but today they have become a central hub in our metabolism. Any defects they acquire with age set off a whole sequence of events that themselves accelerate aging. All of these affect the aging of individual cells.

        If individual cells in our body were to age or die, we would hardly notice it—after all, we have trillions of cells. But except in primitive life forms, cells don’t exist in isolation. In our bodies, they have to communicate with one another, and work together as part of our tissues and organs. It is when a sufficient number of cells accumulate defects with age that the symptoms of aging manifest themselves: arthritis, fatigue, susceptibility to infection, decreased cognition, and more generally, bodies that simply do not work as well as they did in our youth. It is time to look at how the aging of individual cells leads to some of the morbidities of old age.

        10. Aches, Pains, and Vampire Blood

        The coast-to-coast walk is one of the great long-distance treks in England. Starting in St. Bees Head on the west coast, it cuts through the most picturesque parts of the country before ending at Robin Hood’s Bay on the east coast, near Whitby, Dracula’s port of entry to England in the Bram Stoker novel. The entire walk runs about 200 miles. I figured when I finished it, I could get an “I Did the Coast-to-Coast Walk” T-shirt and disingenuously wear it in the States to impress people.

        My opportunity came in the summer of 2013, when a group of friends and I set off. Everything was fine for the first week, but then my knee started to become more and more inflamed until I had to abandon the walk with only a few days to go. On my return, a surgeon looked at it and discovered a torn and inflamed meniscus, the result of moderate osteoarthritis. As soon as I had the knee repaired, my right shoulder started to ache—osteoarthritis striking again. I receive little sympathy from my similarly aged friends: aches and pains in our joints are simply part of life as we get older.

        Joint pain is a symptom of just one kind of inflammation, and its causes are often physical, such as the wear and tear on the bones in the joint, which then pinch and inflame the soft tissue in it. But as we age, there is a much more pervasive yet less obvious inflammation that affects our health as well as our response to disease.

        One cause of inflammation comes from cells that reach a senescent state because they have aged or become damaged. We’ve seen that when a cell senses DNA damage, it can do one of three things. If the damage is mild, it can turn on repair mechanisms. If the damage is more extensive, it can trigger signals that kill the cell; or it can send the cell into a senescent state, in which it is no longer able to divide. We saw an example of the latter when we discussed how cells stop dividing when the telomeres at the ends of their chromosomes shorten beyond a certain point. Whether a cell is killed off or whether it enters senescence, the purpose is the same: to prevent cells with a damaged genome from reproducing. Such cells run the risk of being cancerous; indeed, the entire response to DNA damage can be thought of as a mechanism to prevent cancer. As we saw earlier, nearly half of cancers have mutations in a single protein, p53, that plays a key role in the DNA damage response. These tumor suppressor genes can induce premature senescence to prevent cancer.

        Just as evolutionary theories would predict, processes that prevent us from developing cancer early in life can become a problem later on. Our tissues, for instance, would stop functioning if their cells kept getting killed off without being replaced. And even though they are alive and present, senescent cells also lead to problems. The transition from a normal cell to a senescent cell is not clearly understood. It occurs because of extensive changes to the genetic program of the cell triggered by the DNA damage response. In their altered state, senescent cells no longer contribute to the normal functioning of the tissues they serve. If they are no longer functioning as they should, you might well wonder why cells go into senescence at all instead of simply being destroyed, and why they persist.

        In fact, senescent cells often don’t just sit there quietly doing nothing. They secrete molecules such as cytokines that cause inflammation and disrupt the surrounding tissue. This is by design. Senescent cells are often produced in response to injury or other damage, and the same secretions that set off inflammation also promote wound healing and tissue regeneration, while at the same time signaling the immune system to clear them from the tissue. But our immune system ages along with the rest of us, and its ability to clear senescent cells declines. As damage to our DNA accumulates and our telomeres shorten, we produce senescent cells in places where they don’t serve any purpose and at a faster rate than our immune system can handle, leading to chronic, widespread inflammation.

        In all of the causes of aging we have discussed so far, the processes are so complex and interconnected that it is always a problem to separate cause and effect. Here too, there is the nagging question of whether an increase in senescent cells and accompanying inflammation is just a consequence of aging or whether it accelerates aging further. This question was tackled in a key study led by Jan van Deursen, who was then at the Mayo Clinic in Minnesota. He and his team used a biomarker that identified senescent cells and devised a clever method to eliminate cells with that marker. Using mice that age prematurely—called progeroid mice—they showed that removing senescent cells delayed age-related pathologies in adipose (fatty) tissue, skeletal muscle, and the eye. Even late in life, removing senescent cells delayed the progression of disorders that had already been established. The study concluded by saying that removal of senescent cells could prevent or delay aging disorders and extend healthy life. A few years later, the same team demonstrated that mice whose senescent cells were killed off were healthier in many ways than those in whom these cells were allowed to build up. Their kidneys functioned better, their hearts were more resilient to stress, they were more active, and they fended off cancers for longer. They also lived about 20–30 percent longer.

        According to a follow-up study, transplanting even small numbers of senescent cells into young mice was sufficient to cause persistent physical dysfunction, and even spread senescence throughout the tissues. With older mice, introducing even fewer senescent cells had the same effect. When researchers used an oral cocktail that selectively killed senescent cells, it alleviated the symptoms of both the young and old mice and reduced their mortality significantly.

        These studies have led to an explosion of experiments examining senescent cells as they relate to aging. The selective targeting of these cells for destruction, called senolytics, is growing rapidly in popularity, both in academic research and industry. But destroying problematic cells like these is only one side of the coin. Most of our tissues are constantly regenerated, and if cells are destroyed either naturally or deliberately, they need to be replaced.

        An old saw holds that the human body replaces itself every seven years; in other words, after seven years, you’re an entirely new collection of cells. But this isn’t strictly true. Our tissues don’t all regenerate at the same rate. Some, such as blood and skin cells, are regenerated rapidly. Cuts, bruises, and minor burns will heal over quickly with new skin, and if you donate blood, your body replenishes it in just a few weeks. Other organs are renewed more slowly; for example, most of the cells in your liver are replaced within three years. Heart tissue is replaced even more slowly, with only 40 percent of its muscle cells replaced in a lifetime, which is why the damage caused by a heart attack is often permanent. And it was thought that the neurons in our brain are never renewed—that we are born with every neuron we will ever have. Recently, however, scientists have shown that some brain cells are renewed, albeit very slowly, at a rate of about 1.75 percent annually. Still, most of our neurons were present at birth, and the inability to replenish them is why diseases that destroy them—either suddenly in a stroke or more gradually as in Alzheimer’s—are so horrific.

        The majority of our cells, however, are replaced with some regularity, and the key actors responsible for regenerating tissue are those stem cells we discussed earlier. Remember that the ultimate stem cells are the pluripotent stem cells in the early embryo that can give rise to any tissue type in the body as they differentiate. But other stem cells are halfway down the path to development of the complete organism and can regenerate only specific tissues. As Leonard Hayflick discovered in the 1950s, the cells in most tissues can undergo only a certain number of divisions, but stem cells, because they are required for regenerating tissues, are not subject to this limit.

        Stem cells that maintain and regenerate tissue must strike a delicate balance. They cannot all differentiate into the mature cells of the tissues, or there would be no stem cells left to carry on this task. And the stem cells that remain behind have to keep dividing into more stem cells to replenish the ones that have differentiated into specific tissue cells. As we age, our stem cells begin to lose this balance between producing more of themselves and regenerating tissue.

        Stem cells do not divide and proliferate indiscriminately; rather, they are activated by specific signals that they receive when the body senses a need for tissue regeneration. These signals and their ability to activate stem cells decline with age, for the many reasons we have discussed before, including damage to our genome, and epigenetic marks that our DNA acquires with age. This is one reason our muscles, skin, and other tissues degenerate with age.

        Apart from not being activated, stem cells themselves eventually suffer from DNA damage and telomere loss, and accumulate metabolic defects. Eventually they trigger a response such as the DNA damage response, which can lead to either cell death or senescence. With stem cells, death is more likely, partly because a stem cell that has damaged DNA might be too much of a cancer risk to keep around. The result is a gradual depletion of stem cells throughout the body, diminishing the ability to regenerate tissue. When our bones, muscles, and skin cannot regenerate, we become increasingly frail. A particularly significant decline is the population of hematopoietic stem cells, which give rise to all our blood cells, including the cells of our immune system. This leads to immune system decline or even immune dysfunction—something called immunosenescence, which is associated with an increase in disorders such as inflammation, anemia, and various cancers, as well as in increased susceptibility to infections.

        Apart from a gradual loss in the number of stem cells, there is a problem with the remaining stem cells. During much of our life, we have a healthy diversity of cells that have acquired different mutations, making us a mosaic of genomes. As we age, our stem cells acquire mutations, some of which cause them to proliferate more rapidly. These rapidly multiplying stem cells are not necessarily the best for regenerating tissues, but because they have a growth advantage, they outcompete their counterparts. Consequently, old age leaves us with stem cells that have all descended from just a few clones. Not only are they less effective, but—of greater concern—the clonal mutants themselves can become sources of cancer.

        If the number of stem cells declines with age, and those that remain are descendants of a few clones, some of which may be problematic, can we somehow reverse this process? In chapter 5 on epigenetics, I explained about how turning on just a few genes that code for the so-called Yamanaka factors can reprogram cells so that they can return to being pluripotent stem cells—and thus can again give rise to any tissue in the body. Might scientists learn to regenerate stem cells in the body and reverse some of the effects of aging?

        When cells are reprogrammed fully with Yamanaka factors to form induced pluripotent stem cells (iPS cells) and used to grow new tissues, they often produce tumors such as teratomas, which can be benign or malignant. One reason for this is that the Yamanaka factors are not precisely reversing the normal process of development. The truth is, we don’t fully understand what they do or how, but the resulting induced pluripotent stem cells are not exactly the same as our own embryonic stem cells, which develop into our body—after all, teratomas are quite rare in normal development. Given the potential risks associated with the use of Yamanaka factors, one idea is to expose cells to them only transiently, so that they would not go all the way back to being pluripotent stem cells again, but just part of the way back developmentally so they would be transformed into the specialized stem cells for whichever tissue they came from. Even this transient and partial reversal could help rejuvenate tissue.

        Many scientists had been working on this in cells in culture, but it wasn’t clear what turning on these factors even transiently in an entire animal would do. A group led by Juan Carlos Izpisua Belmonte at the Salk Institute in La Jolla, California, did exactly this by turning on the Yamanaka factors in entire mice for a short burst. After six weeks, the mice appeared younger, with better skin and muscle tone. They had straighter spines, improved cardiovascular health, healed more quickly when injured, and lived 30 percent longer. These studies involved a special strain of progeroid mice that aged prematurely. Recently, though, both Belmonte’s own group as well as groups led by Manuel Serrano and Wolf Reik, both in Cambridge, England, found that doing the same thing in naturally aged mice—as well as in human cells—induced similar effects. Not only did the animals (or cells) seem younger based on various criteria, but the epigenetic marks on their DNA, and the various markers in their blood and cells, were all characteristic of a more youthful state.

        David Sinclair, who had spent much of his earlier career working on sirtuins, has also begun using the Yamanaka factors to reprogram cells. A newborn mouse can regenerate the optic nerve that transmits signals from the eye to the brain, but this ability disappears as the mouse develops. Sinclair and his colleagues crushed the optic nerves of adult mice, and then introduced three of the four Yamanaka factors. They omitted the fourth, c-Myc, because it is known to have cancer-causing properties. The factors prevented the injured cells from dying and prompted some of them to grow new nerve cells reaching out to the brain. In the same study, they introduced the three factors into middle-aged mice and found that their vision was as good as younger ones. Their DNA methylation epigenetic marks resembled those of younger animals. In another experiment, the team deliberately introduced breaks in the DNA of mice, which accelerated aging by inducing the DNA repair response. One of the effects was that the pattern of epigenetic marks in the genome were characteristic of an aged animal. All of these effects could be reversed by introducing the same three Yamanaka factors.

        Stem cells have been the basis of a very large biotech industry for a long time because of the promise of regenerating new cells and tissues. But it was still quite astonishing that introducing Yamanaka factors into an entire animal, where they could affect virtually every tissue, could apparently reverse aging without any obvious ill effects, at least in the short term. For example, even though two of the three Yamanaka factors used in Sinclair’s experiments are also linked to cancer, his mice were tumor free for nearly a year and a half after treatment. These studies generated huge excitement in the aging community because, unlike other approaches, which can slow down the inexorable progress of aging, these studies actually promise to reverse aging by restoring cells and tissues to an earlier state. Not surprisingly, Belmonte, Serrano, and Reik, all leading researchers originally in academic labs, were snapped up by Altos Labs, the private company set up to tackle aging, which had also snapped up Peter Walter, whom we encountered in chapter 6. We will have more to say about these anti-aging enterprises later.

        BEFORE WE LEAVE THIS CHAPTER, let us turn to blood. Most of us don’t think of blood as an organ in the same way that we consider the liver, kidney, heart, and brain. But perhaps we should. For in many ways, blood circulation is one of the most important systems in the body. It supplies essential nutrients, including oxygen and glucose, to the other organs, as well as disposes of their waste products. It enables our response to hormones, promotes healing by forming structures at the site of injuries, and fights off infections with the immune cells that circulate in our bloodstream. If we have old, defective blood—clonal or not—that is a problem.

        The idea of living forever by drinking young blood has been around for a long time. I remember being terrified when I saw my first Dracula movie at the age of ten. But Transylvanian myths and Gothic novels aside, is it possible to replace old blood with young?

        Parabiosis attempts to do just that, by surgically connecting the circulatory systems of two animals. Some of the earliest experiments date back to the nineteenth-century French biologist Paul Bert, who was interested in tissue transplantation rather than aging. He not only connected two rats but, amazingly, is reported to have attached a rat to a cat and successfully maintained this state for several months.

        Sharing blood between two different animals, let alone different species, could obviously be problematic not only because of the possibility that one or both animals’ immune systems will reject the transfused blood due to incompatibility (this is why blood donors have to be matched to recipients with compatible blood groups), but also psychological issues. Indeed, Clive McCay of Cornell University in Ithaca, New York, is quoted as saying, “If two rats are not adjusted to each other, one will chew the head of the other until it is destroyed.” Nowadays the animals are inbred and matched genetically to avoid biochemical incompatibilities. Then they are socialized with each other for several weeks before attachment.

        Early experiments on parabiosis probed questions such as the role that blood plays in metabolic disorders, including obesity. There were, however, some scientists, like McCay, who were looking at the effects on aging as early as the 1950s. His group found that when aged rats were joined to young ones for about a year, their bones became more similar in weight and density to those of their young partners. Other studies showed that the older partners in old-young pairings lived four to five months longer than normal, which for a two-year life span is a significant extension of life. But for some reason, these studies died out in the 1970s.

        The field was resuscitated in the early 2000s when Irina and Michael Conboy, a husband-and-wife team in Thomas Rando’s lab at California’s Stanford University, again began pairing old and young mice. Within five weeks, the young blood restored muscle and liver cells in the older subjects. Their wounds healed more easily. The fresh blood even made their fur shinier. By the same criteria, the younger partner in each of the pairs tended to fare worse than usual; it, of course, was receiving older blood in the exchange.

        Rando and his colleagues had left out of their 2013 published paper that they had also seen enhanced growth of the older mice’s brain cells. We know that neurons, for the most part, do not regenerate. But these early results motivated one of Rando’s Stanford colleagues, the neurobiologist Tony Wyss-Coray, to investigate the effects of parabiosis on the brain. He showed that old blood could impair memory in young animals, while, conversely, young blood could improve the memories of older animals. There was a threefold increase in the number of new neurons in the older mice. By contrast, the younger mice that received old blood from their conjoined partners generated far fewer nerve cells than young mice allowed to roam free did.

        Against the centuries-old backdrop of the vampire myth, these reports captured people’s imaginations. Rando and Wyss-Coray were deluged with phone calls from reporters and from the general public—some of them dubious, not to mention scary. There were reports of rich old men—and, yes, it usually seems to be men—procuring a ready supply of young blood to prolong their lives.

        The scientists involved were more circumspect. In a 2013 journal article, the Conboys and Rando pointed out that even in highly inbred strains of mice and rats, the risk of parabiotic disease was as high as 20–30 percent. Moreover, it was not obvious whether all of the positive effects of parabiosis could be attributed to the blood; the older animal would have also benefited from the better-functioning organs of the younger partner, such as its liver and kidneys. To test this, the Conboys conducted a study in which they exchanged blood between two animals that were not joined. They found that the adverse effects of old blood were more pronounced than the beneficial effects of young blood.

        Such cautionary views did not stop lots of companies from trying to capitalize on the hype, rushing ahead before any careful human trials were completed. One company, Ambrosia, offered blood plasma from donors aged sixteen to twenty-five for $8,000 a liter. Alarmed, the US Food and Drug Administration (FDA) issued a warning that these treatments were unproven and should not be assumed to be safe, and strongly discouraged consumers from pursuing this therapy outside of clinical trials with appropriate regulatory oversight. In response, Ambrosia stopped offering the treatment, but only briefly: the people involved soon began marketing it again under the aegis of a new but short-lived business named Ivy Plasma—before returning to its original name. Ambrosia’s CEO, Jesse Karmazin, said, “Our patients really want the treatment. The treatment is available now. Trials are very expensive, and they take a really long time.” Most serious scientists, including those who pioneered the discoveries, believe it is premature and potentially dangerous to offer these kinds of treatments to humans without proper clinical trials.

        Beyond all the hype, Thomas Rando’s initial findings set off an extensive search for specific protein factors in blood that could be related to aging. In theory, you could have factors in young blood that stimulate growth and improve function; by the same token, old blood might contain factors that made things worse. Wyss-Coray and his colleagues showed that it was both. As they described in a 2017 article in the journal Nature, proteins from umbilical cord plasma revitalized the function of the hippocampus—a part of the brain crucial for the formation of both episodic and spatial memory. As for old blood, they zeroed in on a protein that impaired hippocampus activity; blocking it relieved some of the adverse effects.

        Of course, in the parabiosis experiments, young blood improved many organs, not just the brain. Amy Wagers of Harvard University, who was a member of Rando’s original team at Stanford, screened the hundreds of protein factors in blood to pinpoint the ones more prevalent in old or young blood. A factor called GDF11 was abundant in young mice but not in old, and it could rejuvenate heart tissue. But it didn’t just act on heart tissue. She and her colleagues showed that the factor reversed age-related deterioration of muscle tissue by reviving stem cells in old muscles and making them stronger. In a second study with her Harvard colleague Lee Rubin, they showed that it spurred the growth of blood vessels and olfactory neurons in the brain.

        Stem cells can decline in number and lose function with age, and clearly some of the factors in blood work by reactivating them. But what about the old blood making the young mice worse off? A recent study by the Conboys and Judith Campisi, another leading aging researcher, showed that treating young mice with old blood quickly increased the number of senescent cells in their circulation. This means that senescence is not just a response to stress and damage from the environment, nor is it something that simply happens over time. It can also be induced rapidly. Clearing those senescent cells reversed some of the harmful effects of old blood on multiple tissues.

        Blood need not even be from young animals to confer benefits. We saw in chapter 8 that exercise has a real benefit on many aspects of our metabolism, including insulin sensitivity and mitochondrial biology. It turns out that blood from adult mice that had been subjected to an exercise program can improve cognitive function and regeneration of neuronal tissue. Rando and Wyss-Coray showed that exercised blood can also rejuvenate muscle stem cells. Using a new way of measuring effect based on which mRNAs are made in different tissues, they showed that young blood and exercised blood act in different ways. Parabiosis from young animals reduced the activity of genes that caused inflammation, whereas exercise increased the activity of genes that decline with age. Although they both stimulated growth of brain tissue, each stimulated different types of cells.

        Identifying aging factors in blood and understanding how they work is now a major area of research. Scientists hope that one day it might be possible to administer a cocktail of a few factors with real anti-aging effects. This hope is spurring not only basic research but also has resulted in the creation of many biotech companies, including ones founded by some of the pioneers in the field.

        While science is advancing to find out precisely which combination of blood factors is most beneficial, some billionaires are unwilling to wait. They continue to be drawn to the Dracula-like allure of young blood. For instance, Bryan Johnson, the middle-aged tech mogul behind the company Braintree Payment Solutions, spends $2 million a year on his anti-aging regimen, which includes two dozen supplements, a strict vegan diet, and, as befits a techie, lots of data, including more than 33,000 images of his bowels. He went to Resurgence Wellness, a Texas outfit that describes itself as a comprehensive health and wellness clinic–slash-spa. There he was transfused with blood from his seventeen-year-old son, Talmage, and in turn donated his own blood to his father in a series of multigenerational blood exchanges that lent new meaning to “all in the family.” Johnson stopped the transfusions from his son after seeing no benefits himself, but still felt that “young plasma exchange may be beneficial for biologically older populations or certain conditions.”

        IN THIS AND EARLIER CHAPTERS, we have covered the broad landscape of aging at various levels, from our genes, to the proteins they encode, and how they affect cells and their ability to function as part of an entire animal. These levels are all interconnected, so the state of our proteins and our cells influences how and which genes are expressed, which in turn affects them. By their very nature, the causes of aging encompass virtually all of biology, and as new areas of research emerge, we find new and sometimes surprising connections with aging. So why we age and die is an ongoing story, and this book has focused on processes of the greatest interest or promise.

        The quest to defeat aging and death is centuries old, but it is only in the last half century that we have accumulated a detailed biological understanding of the processes that lead to them. That knowledge has brought about an explosion of efforts by both academic institutions and for-profit companies to combat aging. Now we come to these efforts, ranging from sound mainstream science to the wildest crackpot ideas.

        11. Crackpots or Prophets?

        Last Christmas, when my son’s family was visiting from America, there was a special exhibition at the British Museum about the Rosetta Stone and how it led to the decipherment of Egyptian hieroglyphics. So we trudged off to London, and since it was a cold and wet day during the Christmas break, we found to our dismay that the museum was packed. After we battled the crowds milling about the exhibition, we were naturally curious to see the rest of the Egyptian artifacts in the museum, including its unparalleled collection of mummies. We went over to the long hall with cases enclosing one mummy after another. It was both thrilling and sobering. Thrilling that these mummies had been preserved for a few thousand years and were right there for us to see. Sobering that each of them represented a person who had been alive.

        Their corpses, now in varied states of preservation, lay underneath the wrappings and caskets. It was a stark reminder yet again of the extent to which people will go to deny death. After all, Egyptians mummified their pharaohs so that they could arise corporeally at some point in the future for their journey in the afterworld. Surely now, a few millennia after the pharaohs and with more than a century of modern biology behind us, we would not do anything even remotely so superstitious. But in fact, there is a modern equivalent.

        Biologists have long wanted to be able to freeze specimens so that they can store and use them later. This is not so straightforward because all living things are composed mostly of water. When this water freezes into ice and expands, it has the nasty habit of bursting open cells and tissues. This is partly why if you freeze fresh strawberries and thaw them, you wind up with goopy, unappetizing mush.

        An entire field of biology, cryopreservation, studies how to freeze samples so that they are still viable when thawed later. It has developed useful techniques, such as how to store stem cells and other important samples in liquid nitrogen. It has figured out how to safely freeze semen from sperm donors and human embryos for in vitro fertilization treatment down the road. Animal embryos are routinely frozen to preserve specific strains, and biologists’ favorite worms can be frozen as larvae and revived. For many types of cells and tissues, cryopreservation works. It is often done by using additives such as glycerol, which allow cooling to very low temperatures without letting the water turn into ice—effectively like adding an antifreeze to the sample. In this case, the water forms a glass-like state rather than ice, and the process should be called vitrification rather than freezing (the word vitreous derives from the Latin root for glass), but even scientists casually refer to it as freezing and the specimens as frozen.

        Enter cryonics, in which entire people are frozen immediately after death with the idea of defrosting them later when a cure for whatever ailed them has been found. The idea has been around a long time, but it gained traction through the work of Robert Ettinger, a college physics and math teacher from Michigan who also wrote science fiction. Ettinger had a vision of future scientists reviving these frozen bodies and not only curing whatever had ailed them but also making them young again. In 1976 he founded the Cryonics Institute near Detroit and persuaded more than a hundred people to pay $28,000 each to have their bodies preserved in liquid nitrogen in large containers. One of the first people to be frozen was his own mother, Rhea, who died in 1977. His two wives are also stored there—it is not clear exactly how happy they were to be stored next to each other or their mother-in-law for years or decades to come. Continuing this tradition of family closeness, when Ettinger died in 2011 at age ninety-two, he joined them.

        Today there are several such cryonics facilities. Another popular one, Alcor Life Extension Foundation, headquartered in Scottsdale, Arizona, charges about $200,000 for whole-body storage. How do these facilities work? Essentially, as soon as a person dies, the blood is drained and replaced with an antifreeze, and the body is then stored in liquid nitrogen. Theoretically, indefinitely.

        Then there are the transhumanists who want to transcend our bodies entirely. But they don’t want humanity as we know it to end before we have figured out a way to preserve our minds and consciousnesses indefinitely in some other form. In their view, intelligence and reason may be unique to human beings in the universe (or at least they see no evidence for extraterrestrial intelligence). To them, it is of cosmic importance to preserve our consciousnesses and minds and spread them throughout the universe. After all, what is the point of the universe if there is no intelligence to appreciate it?

        These transhumanists are content to have only their brains frozen. This takes up less space and costs less. Moreover, it could be faster to infuse the magic antifreeze directly into the brain after death, increasing the odds of successful preservation. The brain is the seat of memories, consciousness, and reasoning, and that is their sole concern. At some point in the future, when the technology is ripe, the information in the brain will simply be downloaded to a computer or some similar entity. That entity will possess the person’s consciousness and memories and will resume “life.” It won’t be limited by human concerns such as the needs for food, water, oxygen, and a narrow range of temperature. We will have transcended our bodies, with the possibility of traveling anywhere in the universe. Not surprisingly, transhumanists are generally ardent about space travel, viewing it as our only chance to escape destruction on Earth. One such proponent is Elon Musk, said to be the wealthiest person in the world, depending on the year, who is well known for his desire to “die on Mars, just not on impact.” Presumably one of his first goals upon reaching the red planet will be to construct a cryonics facility.

        The bad news is that there is not a shred of credible evidence that human cryogenics will ever work. The potential problems are myriad. By the time a technician can infuse the body, minutes or even hours may have elapsed since the moment of death—even if the “client” moved right next to a facility in preparation. During that time, each cell in the deceased person’s body is undergoing dramatic biochemical changes due to the lack of oxygen and nutrients, so that the state of a cryogenically frozen body is not the state of a live human being.

        No matter, say cryo advocates: we simply must preserve the physical structure of the brain. As long as it is preserved enough that we can see the connections between all the billions of brain cells, we will be able to reconstruct the person’s entire brain. Mapping all the neurons in a brain is an emerging science called connectomics. Although it has made tremendous advances, researchers are still ironing out the kinks on flies and other tiny organisms. And we don’t yet have the know-how to properly maintain a corpse brain while we wait for connectomics to catch up. Only recently, after many years, has it been possible to preserve a mouse brain, and that requires infusing it with the embalming fluid while the mouse’s heart is still beating—a process that kills the mouse. Not one of these cryonics companies has produced any evidence that its procedures preserve the human brain in a way that would allow future scientists to obtain a complete map of its neuronal connections.

        Even if we could develop such a map, it would not be nearly enough to simulate a brain. The idea of each neuron as a mere transistor in a computer circuit is hopelessly naive. Much of this book has emphasized the complexity of cells. Each cell in the brain has a constantly changing program being executed inside it, one that involves thousands of genes and proteins, and its relationship with other cells is ever shifting. Mapping the connections in the brain would be a major step forward in our understanding, but even that would be a static snapshot. It would not allow us to reconstruct the actual state of the frozen brain, let alone predict how it would “think” from that point on. It would be like trying to deduce the entire state of a country and its people, and predict its future development, from a detailed road map.

        I spoke to Albert Cardona, a colleague of mine at the MRC Laboratory of Molecular Biology who is a leading expert on the connectomics of the fly brain. Albert stresses that, in addition to the practical difficulties, the brain’s architecture and its very nature are shaped by its relationship to the rest of the body. Our brain evolved along with the rest of our body, and is constantly receiving and acting upon sensory inputs from the body. It is also not stable: new connections are added every day and pruned at night when we sleep. There are both daily and seasonal rhythms involving growth and death of neurons and this constant remodeling of the brain is poorly understood.

        Moreover, a brain without a body would be a very different thing altogether. The brain is not driven solely by electrical impulses that travel through connections between neurons. It also responds to chemicals both within the brain and emanating from the rest of the body. Its motivation is driven very much by hormones, which originate in the organs, and includes basic needs such as hunger but also intrinsic desires. The pleasures our brains derive are mostly of the flesh. A good meal. Climbing a mountain. Exercise. Sex. Moreover, if we wait until we age and die, we would be pickling an old, decrepit brain, not the finely tuned machine of a twenty-five-year-old. What would be the point of preserving that brain?

        Transhumanists argue that these problems can be solved with knowledge that mankind will acquire in the future. But they are basing their beliefs on the assumption that the brain is purely a computer, just different and more complex than our silicon-based machines. Of course, the brain is a computational organ, but the biological state of its neurons are as important as the connections between them in order to reconstruct its state at any given time. In any case, there is no evidence that freezing either the body or the brain and restoring it to a living state is remotely close to viable. Even if I were one of the customers who was sold on cryonics, I would worry about the longevity of these facilities, and even the societies and countries in which they exist. America, after all, is only about 250 years old.

        Despite this, many people have bought into the idea of cryonics. In the United Kingdom, a fourteen-year-old girl who was dying of cancer wanted to have her body cryogenically frozen. She needed the consent of both parents, but they were separated, and her father, who himself suffered from cancer, and was not part of her life, was opposed. She took the matter to court, and the judge ruled that she was entitled to have her wishes followed—but they should be made public only after her death. This elicited an outcry from prominent UK scientists, who called for restrictions on the marketing of cryonics to vulnerable people.

        In almost a mirror image of this case, the renowned baseball player Ted Williams wanted to be cremated. Upon his death in 2002 at the age of eighty-three, two of his three children insisted on having his remains frozen, igniting a bitter family feud. In the end, a compromise was reached: only the great athlete’s head would be put on ice, so to speak.

        According to press reports, well-known people who intend to be cryopreserved include entrepreneur Peter Thiel, one of the cofounders of PayPal; computer scientist Ray Kurzweil, best known for his prediction that in 2045 we will reach the singularity where machines will become more intelligent than all humans combined; philosopher Nick Bostrom, who is concerned that such machine superintelligence could spell an existential catastrophe for humans; and computer scientist turned gerontologist Aubrey de Grey. More about him in a moment.

        Because the brain decays rapidly following death, many cryonics facilities recommend that their clients move somewhere nearby when it’s known that the end is nigh. However, this may not be good enough. Remember that the only way cryopreservation has been shown to merely preserve connections in a mouse brain was by infusing embalming chemicals into its blood while it was still alive, in a procedure that kills the animal. In 2018, a San Francisco company called Nectome was reported to have plans to do exactly that to human beings: infusing a mixture of embalming chemicals into the carotid arteries in the neck—killing the customer immediately in the process. This would be carried out under general anesthesia, although what the embalming would do to the state of the brain was not clear. The company’s cofounder claimed that this assisted suicide will be completely legal under California’s End of Life Option Act. One might think that the prospect of certain euthanasia coupled with an uncertain outcome would be a tough sell, but the same article claimed that twenty-five people had already signed on as customers, and one of them was reported to be thirty-eight-year-old Sam Altman, cofounder of OpenAI, the artificial intelligence research lab that launched ChatGPT, who believes that minds will be digitized in his lifetime and that his own brain will one day be uploaded to the cloud. In response, Robert McIntyre, the founder of Nectome, said that those people were early supporters of his research and had not been promised or even offered anything, certainly not silicon-based mental immortality.

        LET US MOVE FURTHER UP the plausibility scale, from cryonics to Aubrey de Grey. With his two-foot-long beard and a matching messianic zeal, de Grey looks the very stereotype of an upper-class English eccentric and has amassed a large cultlike following. He began his career as a computer scientist and, although not a professional mathematician, contributed a major advance toward solving a sixty-year-old mathematics problem. At some point, he met the American fly geneticist Adelaide Carpenter at a party in Cambridge and eventually married her. This sparked his interest in biology—in particular, the mitochondrial free-radical theory of aging. De Grey came to believe that aging was a solvable problem. He asserts that the first humans who will live to be 1,000 years old have already been born. De Grey’s central idea is that if we can improve average life expectancy faster than we age—if, in other words, life expectancy increases by more than a year annually—we can hope to escape death altogether. He calls this “escape velocity.”

        To reach escape velocity, de Grey has a plan. Bucking the conventional wisdom of the biological community, he proposes that we can defeat aging if we crack seven key problems: (1) replenish cells that are lost or damaged over time, (2) remove senescent cells, (3) prevent stiffening of structures around the cell with age, (4) prevent mitochondrial mutations, for example by engineering mitochondria so that they don’t make any proteins themselves using their own genome but import them exclusively from the rest of the cell, (5) restore the elasticity and flexibility of the structural support to cells that stiffen with age, (6) do away with telomere lengthening machinery so that we don’t get cancer, and (7) figure out how to reengineer stem cells so that our cells and tissues don’t atrophy. He calls his program to solve these problems SENS: strategies for engineered negligible senescence.

        De Grey has learned enough biology to pinpoint many of the things that go wrong as we age. But with the characteristic arrogance that many physicists and computer scientists display toward biologists, he is wildly optimistic about the feasibility of addressing them. In response to his claims, twenty-eight leading gerontologists, including many you’ve come across in this book, wrote a scathing rebuttal arguing that many of his ideas were neither sufficiently well formulated nor justified to even provide a basis for debate, let alone research, and that not a single one of de Grey’s proposed strategies has been shown to extend life span. The coauthors included Steven Austad and Jay Olshansky. Other mainstream researchers too dismissed SENS as pseudoscience. One of them, Richard Miller of the University of Michigan, penned a hilarious parody of SENS in a satirical open letter to de Grey in the journal MIT Technology Review. Since the aging problem had been solved, Miller proposed, perhaps we could turn now to the challenge of producing flying pigs; there are a mere seven reasons why pigs, at present, cannot fly, and we could fix all of them easily. De Grey, in response, huffed that the gerontology community was short-sighted, comparing the field to Lord Kelvin, the famous physicist and former president of the Royal Society who once scoffed that heavier-than-air flying machines were impossible.

        Dissatisfied with the lack of support from the academic community and the funding prospects in England, de Grey left for the United States in 2009. He set up the SENS Foundation in well-heeled Mountain View, California, with a private endowment, and initially with the support of some well-known gerontologists. Around this point, he began liaisons with other women, two of whom were forty-five and twenty-four years old. Adelaide Carpenter de Grey, then sixty-five, did not want to move to California to be part of this lifestyle, and they eventually divorced. De Grey remarked that as we solved the aging problem, “There’s going to be much less difference between people of different chronological ages,” and the expectation of living a very long time might very well lead to a reevaluation of the value of permanent monogamy. In 2021 he made the news again after being accused of sexual harassment by two young women, one of whom was only seventeen when she encountered de Grey. He denied the allegations and was suspended by his own foundation initially. But following charges that he’d interfered with an investigation into his conduct, the SENS Foundation fired him. A company report eventually cleared de Grey of being a sexual predator but criticized him over instances of poor judgment and boundary-crossing behavior. De Grey, undaunted, founded the new LEV Foundation, with the letters standing unsurprisingly for Longevity Escape Velocity. His longevity in longevity research is remarkable, as is his ability to continue to obtain funding from rich benefactors.

        Even the more mainstream anti-aging industry has some extreme optimists. Among them is David Sinclair, who, unlike the charlatans of the aging field, is a Harvard professor who has published a number of high-profile papers on aging in top journals, including two recent papers on reprogramming cells that made considerable waves. At the same time, Sinclair is known for excessive self-promotion and highly enthusiastic claims. For example, he has predicted that it will be normal to go to a doctor and take a medicine that will make us a decade younger, and that there is no reason why we couldn’t live to be 200. Such statements cause some of his critics to cringe and even fellow scientists who respect his ability to be embarrassed for him. I discussed the fate of resveratrol and his company Sirtris in chapter 8, but it appears to have had no effect on his ability to raise money to found several new companies—or indeed on his large public following, one that rivals de Grey’s. His recent popular book, which doubles down on his beliefs, shows that he is completely unfazed by any criticisms of his work. I doubt whether he would have been bothered much by a scathing review of the book by Charles Brenner.

        Although resveratrol has long been discounted by the mainstream community, Sinclair still stands by it. In an essay on LinkedIn, he said coyly that he does not give medical advice—then proceeded to say that he takes resveratrol, metformin, and NMN (an NAD precursor) daily. We have come across these compounds in these pages. There is no evidence that any of them improves life span in humans; they haven’t been tested for this purpose in rigorous clinical trials, and, therefore, have not been approved by the FDA. Moreover, the evidence that metformin is beneficial in healthy adults is mixed; as we saw earlier, there are also problems associated with its use. For a Harvard professor to make this sort of statement on social media is essentially advocating their use, which strikes me as both ethically questionable and potentially dangerous. In the piece, Sinclair also bragged that he had a heart rate of 57 despite not being an athlete and that his lungs functioned as though he were multiple decades younger. Oddly, I am seventy-one, and although I’m no athlete either, my resting heart rate has been in the low 50s for much of my adult life—without taking Sinclair’s nutraceutical supplements. Since he is a scientist, at least he ought to compare himself to close relatives who don’t take the supplements, and also see what would happen if he went off his regimen but preserved his general lifestyle.

        Starting a few decades ago, all sorts of dubious commercial enterprises started selling various compounds or procedures purporting to extend health or life. They would often make the most tenuous connection with some genuine research finding to hawk their wares. Respectable scientists founded their own companies—in many cases, several—and some of them gave the impression that the problem of aging would soon be solved. After all, investors are unlikely to fund companies if the payoff is many decades down the road. All of this led to a feeling that the fountain of youth was just around the corner.

        Even back in 2002, fifty-one leading gerontologists were already alarmed enough by the hype to write a position statement laying out their views on what was known and what was fantasy or science fiction. They were particularly anxious to draw a clear distinction between serious anti-aging research and questionable claims about extending health and life. Among their key points:

        Eliminating all aging-related causes of death would not increase life expectancy by more than fifteen years.

        The prospects of humans living forever is as unlikely today as it has ever been.

        Antioxidants may have some health benefits for some people, but there is no evidence that they have any effect on human aging.

        Telomere shortening may play a role in limiting cellular life span, but long-lived species often have shorter telomeres than do short-lived ones, and there is no evidence that telomere shortening plays a role in determining human longevity.

        Hormone supplements sold under the guise of anti-aging medicine should not be used by anyone unless they are prescribed for approved medical uses.

        Caloric restriction might extend longevity in humans, since it does so in many species. But there is no study in humans that has proved it will work, since most people prefer quality of life to quantity of life; but drugs that mimic caloric restriction deserve further study.

        It is not possible for individuals to grow younger, since that would require performing the impossible feat of replacing all of their cells, tissues, and organs as a means of circumventing aging processes.

        While advances in cloning and stem cells may make replacement of tissues and organs possible, replacing and reprogramming the brain is more the subject of science fiction than likely science fact.

        Despite these many reservations, the gerontologists enthusiastically supported research in genetic engineering, stem cells, geriatric medicine, and therapies to slow the rate of aging and postpone age-related diseases.

        Interestingly, Aubrey de Grey was a signatory to this statement. Notable omissions, though, included Leonard Guarente and David Sinclair, both of sirtuin fame, and Cynthia Kenyon, who had discovered the daf-2 mutant in worms. All three of them were involved with various longevity companies at the time and were on record as being highly optimistic about the prospects of major breakthroughs.

        Nevertheless, the explosion in the anti-aging industry has proceeded unabated. Today there are more than 700 biotech companies focused on aging and longevity, with a combined market cap of at least $30 billion. Some of these firms have been around for almost two decades but have yet to produce a single product. Others generate revenue by selling nutraceuticals; these supplements do not require FDA approval, and no randomized clinical trials to assess their safety and effectiveness have been carried out. Many of these companies have highly distinguished scientists on their advisory boards—including some Nobel laureates who have no particular expertise in aging, apart from being old. To the public, the presence of these distinguished scientists lends an air of credibility to the enterprise. How has such an enormous industry flourished for so long with so few actual advances to show for it?

        AGING RESEARCH TAPS INTO OUR primeval fear of death, with many people willing to subscribe to anything that might postpone or banish it. California tech billionaires, especially. Many of them made their money in the software industry, and because they were able to write programs to carry out rapid financial transactions or swap information of various sorts, they believe aging to be just another engineering problem to be solved by hacking the code of life. The pace of success in the software industry has made them impatient. They are used to making major breakthroughs in a couple of years, sometimes even a couple of months, and they underestimate the complexity of aging. They want to “move fast and break things.” We all know how that attitude worked out for social media, with consequences for social cohesion and politics that we could never have imagined twenty years ago. Currently, these same people have prematurely unleashed AI on the world while at the same time warning us of its dangers. One can only shudder at applying that attitude to something as profound as aging and longevity.

        These enthusiastic tech billionaires are mostly middle-aged men (sometimes married to younger women) who made their money very young, enjoy their lifestyles, and don’t want the party to end. When they were young, they wanted to be rich, and now that they’re rich, they want to be young. But youth is the one thing that they cannot instantly buy, so, not surprisingly, many of the celebrity tech billionaires—such as Elon Musk, Peter Thiel, Larry Page, Sergey Brin, Yuri Milner, Jeff Bezos, and Mark Zuckerberg—have all expressed an interest in anti-aging research. And in many cases, they are funding it. One notable exception is Bill Gates, who recognizes realistically that the best way to improve overall life expectancy remains addressing the serious health care inequalities in the world.

        Recently, the company Altos Labs made a big splash, announcing a war chest of several billion dollars of investment money. It was founded by Richard Klausner and Hans Bishop with the active encouragement and financial support of Yuri Milner and several wealthy benefactors, mostly in California, reportedly including Jeff Bezos. Milner, a software billionaire originally from Russia, has had a long-standing interest in science. He founded the Breakthrough Prizes, which are among the most prestigious—and certainly the most lucrative—international awards in science. Recently, he wrote a tract titled Eureka Manifesto: The Mission for Our Civilization, which explains some of his thinking about aging. Some of what he believes seems to be similar to the transhumanists: our evolution of reason, and all the knowledge we humans have accumulated, is precious and should not be lost. Having Earth as our only home could be a huge risk, so we may need to populate other parts of the universe. As I read his essay, I suddenly saw why Milner would want to tackle aging. Outer space is vast, and if we have to travel hundreds if not thousands of years toward a new home, it might be nice to be able to survive the voyage. There is nothing particularly illogical about Milner’s views, but they display the grandiosity—and the optimism bordering on arrogance—typical of this subset of the tech community. In any case, Altos Labs was launched with a big bang in 2022. In one swoop, the company netted some of the biggest stars in anti-aging research, luring them away from their academic positions by offering them huge resources and salaries. Altos now has campuses in both Northern and Southern California (naturally), and also in Cambridge, England, not far from my own lab.

        When news of Altos Labs first leaked in the press, it was touted as a company that wanted to defeat death. Rick Klausner, its chief scientist and cochair, denied this and said that its objective is to improve healthy life span. At the launch of the Cambridge campus, he said, “Our goal is for everyone to die young—after a long time.” Klausner and others also pointed out that Altos Labs offers a highly collaborative way of doing science that allows it to tackle big problems in a way that academic labs dependent on individual grants cannot. Some mentioned to me that the company hoped to be gerontology’s version of Bell Labs, the famous private and commercial laboratory in New Jersey where small groups worked in highly collaborative settings to produce major breakthroughs such as the transistor, information theory, and lasers.

        If tech billionaires are interested in curing aging in a hurry, many scientists are only too happy to enable them. Many truly distinguished scientists now have financial stakes in the industry, either through their own companies or as employees or consultants. This is not at all a bad thing in itself, but when I see some of them constantly touting their findings or their companies’ prospects, I wonder whether they can all really believe what they are saying. Do they not understand the complexities and difficulties ahead? Or, in the words of Upton Sinclair, is it simply that “It is difficult to get a man to understand something when his salary depends on his not understanding it”?

        OF ALL THE LIVING SCIENTISTS I have described in this book, Michael Hall, who led the team that discovered TOR, is one of the most distinguished. Of aging research, he told me, “I went through a period about fifteen years ago when I was thinking a lot about TOR and aging, but was then turned off by the aging meetings I attended. They were three-ring circuses: light science and wackos walking around looking like Father Time. However, I think the field has evolved. It is now on firm ground with rigorous science.”

        What has changed? Mainly, gerontology has gone from being a somewhat disrespectable soft science scorned by mainstream biologists to becoming a major research priority, partly because of the need to deal with aging populations in the developed world and, increasingly, worldwide. The result is that we now have a much better handle on the complicated biological causes of aging. Of these, DNA repair, although fundamental to aging, has been used far more to target cancer than aging. Virtually every other aspect of aging is also the target of therapeutic interventions to slow it down or reverse it. We have discussed many of them in context throughout the book, but some of them seem to be more promising than others—and have certainly attracted more investment.

        One promising approach is to prevent the accumulation of “bad” proteins and other molecules as we age, either by recognizing them and disposing of them, or by slowing down or altering the rate or program of protein production, which allows the body to cope with these changes. Drugs that essentially mimic caloric restriction fall into this class, and the ones that are most actively investigated are those that target TOR, such as rapamycin and similar drugs, and others like the antidiabetic drug metformin, whose mechanism of action is still not well understood. The vitamin-like precursors of NAD and other nutrients that need to be supplemented with age are also an active area of research. Other drugs aim to target senescent cells, which are the source of inflammation and its accompanying problems, while still others seek to identify factors found in young blood that can slow down aging in various ways.

        Some of the biggest excitement today concerns the reprogramming of cells to reverse the effects of aging. You have already read in chapter 10 about how scientists are using transient exposure to Yamanaka factors to try to rejuvenate animals while also trying to minimize the risk of cancer. The early results of this approach have been promising enough that a huge number of start-up companies has sprouted up around this strategy. It is a major focus of Altos Labs, which hired Shinya Yamanaka himself as an adviser. Stem-cell therapy was already a major area of biotechnology because of its potential to regenerate damaged tissue and restore function to organs. Many of these companies already have expertise in reprogramming to generate various kinds of stem cells and have now jumped onto the anti-aging bandwagon. However, patients will be more receptive to stem-cell treatment for serious diseases such as replacing damaged muscle after a heart attack or restoring functional cells in a pancreas to treat diabetes, because the benefits will clearly outweigh the risks. It is not yet clear when this will happen with efforts to tackle aging—clearly the bar for safety and efficacy will be much higher.

        That brings us to another, more fundamental problem with aging research. How can researchers tell if their treatments are working? The customary way for any new treatment in medicine would be to carry out a randomized clinical trial. Patients are divided into two groups, with one given either a placebo or the current standard therapy for a particular condition, and the other the agent being tested, to see if the patients given the experimental medicine fare better, or worse. The equivalent for anti-aging medicine would be to see if the treatment prolongs health and life. But this could take years to assess. This long wait for results makes it more difficult to find volunteers for properly randomized trials.

        In management, as well as in science and technology, there is a well-known saying that you can’t improve what you can’t measure. The fifty-one gerontologists who criticized the hyperbolic statements from the anti-aging industry pointed out that aging was highly variable from individual to individual. They added pointedly: “Despite intensive study, scientists have not been able to discover reliable measures of the processes that contribute to aging. For these reasons, any claim that a person’s biological or ‘real age’ can currently be measured, let alone modified, by any means must be regarded as entertainment, not science.”

        That was true twenty years ago when the authors wrote it. But today, increasingly, there are so-called biomarkers that correlate well with our underlying physiology and the characteristics that arise from it. Some characteristics of age are obvious. Our hair gets thinner and grayer or whiter, our skin becomes more wrinkled and less elastic, our arteries narrow and become more rigid, our brains are— Well, you get the picture. These traits are subjective and tricky to quantify, but if we can come up with measurable biomarkers that are proxies for them, that would be a big step forward. In addition to epigenetic changes to our DNA such as the Horvath clock, explained in chapter 5, there are now a variety of markers that measure inflammation, senescence, hormone levels, and various blood and metabolic markers, as well as the pattern of gene expression in different cell types. So scientists may be able to measure if their treatments are having any effect on aging without having to wait an interminably—or terminably—long time. Although these biomarkers or aging clocks have been rapidly taken up by the industry, their underlying basis is often not clear, and there are few studies that compare them to see how well they agree with one another.

        Anti-aging researchers run into a regulatory problem as well: clinical trials are usually only approved for treatment of disease. In the scientific community, debate rages over whether aging is simply a normal progression of life or a disease. The traditional view is that something that happens to everyone and is inevitable can hardly be termed a disease. Gerontologists who subscribe to this view would argue that aging is the result of molecular changes that occur over time, which make us function less optimally and become more prone to diseases. Aging may be a cause of disease but is not a disease in itself. Another stark difference is that disease is usually subject to a clear definition: whether one has it and when one got it. But there is no clear consensus on when you become old. For these reasons, the latest International Classification of Diseases by the World Health Organization (WHO) omitted aging. While many in the gerontology community were disappointed by this decision, others welcomed it because they worried that classifying aging itself as a disease could lead to inadequate care from physicians: rather than pinpoint the cause of a condition, they would simply dismiss it as an unavoidable consequence of old age.

        Still, the biggest risk factor for many diseases is age. Even during the recent Covid-19 pandemic, the risk of dying from being infected roughly doubled with every seven to eight years of age, so that an eighty-year-old was about 200 times as likely as a twenty-year-old to die if he or she caught Covid. Drawing on this, some gerontologists argue that we should regard aging as a disease, one that manifests itself in various ways such as diabetes, heart disease and dementia, or indeed being more prone to pneumonia or Covid-19. Of course, with billions of investment and research dollars at stake, there is currently fierce lobbying both by elements of the gerontology community and the anti-aging industry to have aging classified as a disease. So far, the FDA has refused, although it approved clinical trials for progeria, a disease in which patients age prematurely, dying around fifteen years of age. More surprisingly, in 2015 it authorized the TAME trial on the use of metformin in a study of aging in healthy adults; perhaps the federal agency was swayed by the fact that metformin was already an approved drug for diabetes, and at least some data on diabetics suggested a beneficial effect. But unless companies invested in longevity succeed in persuading the FDA to allow clinical trials for normal aging, they will face difficulty carrying out rigorous patient studies and will have to resort to other criteria to show the efficacy of their treatments.

        MOST PEOPLE SAY THEY DO not fear death so much as the prolonged debilitation that precedes it. Almost everyone would agree that it is a worthy goal to increase health span, or the number of years of healthy life, by reducing the fraction of years of life that we spend in poor health as a result of age-related diseases. This goal was termed compression of morbidity by James Fries in 1980. Or as Klausner phrased it, we should all die young after a long time. Compression of morbidity rests on two assumptions: that we can alter the process of aging to postpone the onset of the diseases of aging; and that the length of life is fixed. The first, of course, is the goal of much of anti-aging research.

        However, there is some debate about the second assumption. Much of the gain in life expectancy in the last hundred years was by reducing infant mortality. However, in the last few decades, tremendous advances have been made in the treatment of diseases that occur as we age, including diabetes, cardiovascular disease, and cancer. These advances have inevitably increased our life expectancy. Aubrey de Grey has argued convincingly that the gerontology community is hypocritical in rejecting life extension because treating the causes of aging will inevitably extend life and that compressing morbidity will “forever remain quixotic.” Even if we accept that there is currently a natural limit of about 120 years to our life span, the reasons for that limit are not well understood beyond a vague notion that it has to do with a general breakdown of our complex biology that leads to general frailty. As de Grey points out, compression of morbidity would require us to eliminate or slow down various causes of aging, while at the same time deliberately not tackle the causes of frailty that eventually make us die. Even Steven Austad, who is far more in the mainstream of the gerontology community than de Grey, made his famous bet that advances in combating aging would enable someone currently alive to live over 150 years.

        If anything, data from the Office of National Statistics in the UK suggest that rather than compressing morbidity, advances in treatment of age-related diseases have done the opposite: they show that the number of years we spend with four or more morbidities has not declined but actually slightly increased as a fraction of our lives. A United Nations report on the trend worldwide is similar and concludes that both life span and disability-free years increased but the fraction of our lives spent in disability has not decreased. In short, we are living more years and possibly a greater fraction of our lives in poor health.

        Is compression of morbidity even possible? When I first heard the idea, I thought it was absurd: if someone was “young” in Klausner’s sense of being healthy, what would suddenly cause him or her to collapse and die? It would be like a car that was running perfectly suddenly falling apart. In his original 1980 article on compression of morbidity, Fries himself likened the idea to the titular one-hoss-shay of the 1858 Oliver Wendell Holmes poem “The Deacon’s Masterpiece or, the Wonderful ‘One-Hoss Shay’” in which a shay—a horse-drawn carriage for one or two people—was designed so perfectly that all its parts were equally strong and long-lasting. A farmer was merrily riding it when all of a sudden the shay disintegrated under him—“Just as bubbles do when they burst”—and he found himself on the ground in a heap of dust.

        There are animals that live a healthy and vigorous life, reproducing right up to the point of death. In his book Methuselah’s Zoo, Steven Austad describes an albatross that lives many decades in perfect health until it dies. However, the albatross’s demise is not the death we might wish for, as centenarians in the peak of health quietly slipping away in our sleep. In nature, life is brutish and merciless. The bird probably reached a point where it could no longer make the long journey to return to its nest and collapsed after a struggle, or it was killed by a predator. Similarly, our hunter-gatherer ancestors probably did not spend many years with the morbidities of old age; instead, they often starved, died of disease, were eaten by predators, or killed by a fellow human being the moment they were not absolutely healthy and fit. Their morbidity was highly compressed but it’s not exactly what most of us are striving for. If compressing morbidity were the only goal, we could squish it all the way to zero if we chose. In Aldous Huxley’s classic 1932 dystopian novel Brave New World, perfectly healthy people are simply euthanized at their appointed time. It is not clear that many people would opt for such a world especially if the timing of “compression” was not up to us. If we were faced with many years of decrepitude, some of us might well consider it, but if we were perfectly healthy, why would we want to die? I don’t think these examples represent true compression of morbidity, because the death of an otherwise healthy being occurs rather suddenly as the result of some unpleasant external cause.

        If all this sounds bleak, there is some hope that true compression of morbidity is actually possible. Thomas Perls of the New England Centenarian Study points out that although the number of centenarians has grown in recent decades, the numbers of semisupercentenarians and supercentenarians (those that reach 105 and 110 years of age, respectively) have not and remain very small. This is contrary to what we would expect given medical advances and a general population increase in life expectancy. While many centenarians live extraordinarily long lives in good health, about 40 percent of them had age-related diseases prior to 80. By contrast, supercentenarians are healthy nearly their entire lives. As they approached the limit of the human life span at around 120 years, like the one-hoss-shay they experienced a rapid terminal decline in function and died. This would argue in favor of a fixed life span, with supercentenarians managing to compress morbidity as much as possible and pushing close to the maximum life span of the species.

        Perhaps by studying their genetics, metabolism, and lifestyles, we can understand what it would take to achieve a life that is healthy right up to the very end. There may be hundreds of genetic changes that each contribute in a subtle way to longevity, and there may be no magic combination of genes that allows you to live very long. Moreover, although scientists have been able to isolate single genes that extended life in highly artificial situations, we know that those mutants are unable to compete with normal wild-type worms or flies because these genes are detrimental to fitness in other ways. Similarly, a variant of a gene called APOE is overrepresented in centenarians and is thought to protect against Alzheimer’s disease, but this same variant increases the risk of metastatic cancer, and also makes people more likely to die of Covid-19. Findings like these should temper any dreams of using future advances to engineer humans with extremely long lives. Genetic variants that are associated with longevity could make us vulnerable in other unforeseen ways.

        Anyway, even these supercentenarians are hardly as fit as they were in their twenties, nor indeed would you mistake them for a younger person. Something about them has still aged, and they become increasingly frail. As I pointed out earlier, Jeanne Calment was deaf and blind near the end. So the question of what characterizes good health or a lack of morbidity bears closer examination.

        It is conceptually easy to define mortality, but morbidity is much fuzzier. It is defined as a disease, but many chronic illnesses such as diabetes, high-blood pressure, or atherosclerosis can be treated with medication and people can lead perfectly normal and satisfactory lives. I take medication for high cholesterol and high blood pressure, which might be termed chronic diseases, but I can do most things I like, including bicycling and hiking. If you simply count diagnoses for diseases as morbidities, then you are not capturing a true picture of whether the person is living a reasonably healthy life or is decrepit, incapacitated, and suffering. Statistics regarding morbidities in old age must be looked at carefully.

        The efforts to combat aging today span a wide range. At one end are a small and highly vocal minority, including both high-profile scientists and investors, who want to defeat death altogether. They have large, cultlike followings, and I suspect there are many more who want this goal but are too embarrassed to profess it openly. At the other end are those focused strictly on treating specific diseases of old age using what we have learned about their various causes. The broad spectrum in the middle want to tackle aging directly to compress morbidity so that humans might live healthy lives into old age.

        Today there is a vast amount of money invested in aging research, both by governments and by private commercial companies. In a decade or two, we will have a clear idea of whether they will succeed and to what extent. If they succeed even partly, it could have profound and unpredictable consequences for society. Let’s now look at what some of those might be.

        12. Should We Live Forever?

        I am now roughly the age my grandparents were when they died. The physically active lifestyle I lead is something they could not have imagined in their final decade. Today it is increasingly common for people to die in their nineties or later. My personal experience is simply a reflection of demographic changes in the world over the last few decades. Virtually every part of the world is experiencing a growth in the size and proportion of the population over the age of sixty-five. The share of older people is currently almost 20 percent in high-income countries and expected to double between now and 2050 in many regions of the world.

        At the same time, people are having fewer children. We first saw this in developed countries and are increasingly seeing it now across the globe. This means that fewer and fewer workers will support an ever larger population of retirees. In some Asian countries, there may eventually be twice as many retired people as there are workers. Many of the elderly will also require expensive medical care for a decade or even two. In countries with weak social safety nets, they will either be at the mercy of their families or will have to be self-reliant, for which they will need to be mentally and physically fit. Even in countries with more robust state support, an aging population will put tremendous strain on pension and social security programs.

        The social consequences of extending life span are immense. Nearly all state-backed retirement programs assume that people will stop working around age sixty-five. These measures were introduced when people generally lived only a few years past retirement age, but now they can live two decades beyond it. In both social and economic terms, this is a ticking time bomb, and it is no surprise that governments the world over are enthusiastically funding aging research to improve health in old age in the hopes that this segment of the population can be both more productive and independent for a longer time, and in less need of costly care.

        If we increase life span without compressing morbidity, it will simply make our current problems worse. But if researchers manage to combat aging and compress morbidity, we could well see a scenario where people routinely live healthily beyond 100 years, possibly approaching our current natural limit of about 120 years of age. In the context of any one individual that might seem a wonderful outcome, but it will also have profound and unpredictable consequences for society.

        When major, disruptive technologies arrive, we are not always good at understanding their long-term ramifications. For example, not so long ago, people gladly adopted social media while giving scarcely a thought to its potential consequences, such as a loss of privacy, monetization of the individual by large corporations, surveillance by governments, and the spread of misinformation, prejudice, and hatred. We cannot afford to repeat that mistake by blindly adopting new anti-aging technologies and sleepwalking into a world for which we are ill-prepared. What might some of the consequences of life extension be?

        One of them is even greater inequality. There is already a wide gap in life expectancy between the rich and poor. Even in England, which has a national health service providing universal coverage, this disparity is about ten years. However, the difference in the number of healthy years is almost twice that. The poor not only live shorter lives but also spend more of it in poor health. Things are even worse in the United States, where the richest live about fifteen years longer than the poorest, and the disparity actually increased between 2001 and 2014.

        Advances in medicine have always had the potential to increase inequality. Historically, the rich in advanced countries have benefited first. Later, others in these countries may benefit, depending on whether health-care systems and insurance companies view these treatments as necessities. Only then will they eventually spread to the rest of the world, where only those individuals who can afford them will be able to benefit. We already see this in the health and economic status of people from different parts of the world. So any advances in aging research is likely to similarly increase inequality. But unlike other kinds of inequality, an inequality in both the quality and extent of life has the potential to be not just self-sustaining but actually to drive even larger increases in inequality. The economically well off in white-collar jobs will now be able to live and work longer and pass on even more generational wealth to their descendants, thus exacerbating the inequality. Unless treatments become very cheap and generic—such as cholesterol-lowering statins or blood pressure medications—there is a serious risk that we will be creating two permanent classes of humans: those who enjoy much longer lives in good health, and the rest.

        Another concern is overpopulation. Such a large increase in life expectancy could lead to a dramatic increase in the world’s population at a time when there are already too many people on Earth. Our current population, and its predicted increase in the coming decades, is partly why we face so many existential disasters, including climate change, loss of biodiversity, and dwindling access to natural resources like fresh water.

        Past increases in longevity have indeed led to dramatic increases in the population. This is because fertility rates remained high for some decades after life expectancy increased. Similarly, today, Africa has experienced significant increases in life expectancy, but fertility rates remain high at about 4.2, which is why the population of Africa is still increasing rapidly. However, improvements in life expectancy and standard of living are almost inevitably followed by a demographic transition in which the birth rate gradually falls. For example, in the late eighteenth century, European women had about five children on average at a time when life expectancy was low due to high infant mortality, but that fertility rate now ranges from 1.4 to 2.6, depending on the country. Eventually the birth and death rates became roughly equal, and the population has stabilized at some new higher level. Over the course of the nineteenth and twentieth centuries, this happened in much of the West, as well as in many Asian countries such as Japan and South Korea.

        In the past, improvements in infant and childhood mortality meant more people lived to reach reproductive age, which naturally led to rapid population growth. But it is not inevitable that in advanced countries that have already gone through a demographic transition, further increases in life expectancy will necessarily lead to a growth in population. In Japan, people live longer than they did a few decades ago, yet the population of Japan has actually fallen since 2010, because of lower birth rates.

        The fertility rate has dropped and is below replacement level in many countries. The average age of childbearing has also been steadily increasing in developed countries. Currently, it is increasingly common for women to have their first child in their thirties, and sometimes even around forty, which is almost a decade or two later than the norms a century ago. Both of these trends are the result of more security and prosperity, the expectation of a long life, and the emancipation of women and their entry into the workforce. Together these factors have slowed down or stopped population growth in many parts of the world, which has been hugely beneficial in many important ways, not least the effect on our environment and natural world. I am puzzled by economists who talk about it as a problem, especially in reference to China’s decline in population growth. Elon Musk believes that an impending global population collapse is a much bigger problem than climate change, which strikes me as absurd.

        Nevertheless, as people live longer, the population will grow unless one of two things happens: either the fertility rate decreases even more, or the average age of childbearing increases along with life expectancy. However, both of these scenarios have some problems. In many countries, the average age of childbirth has gradually increased until it is pushing up against the realities of biology. Women from their midthirties on have increasing difficulty in conceiving and soon afterward face menopause. If menopause can be delayed as we increase life expectancy, this would solve the problem of delaying childbirth and would be much fairer to women, many of whom face the problem of deciding whether to have children right when their career is taking off. However, menopause is the result of very complex biology, and there is no evidence that we will be able to alter the age of its onset. Of course, there are ways for women to have children even beyond menopause—for example, by freezing eggs for later implantation along with hormone treatment—but these are expensive and cumbersome, and not without considerable risk. The other solution to prevent population growth in the face of increasing longevity is to have even fewer children, which means that an even greater proportion of the population will be elderly, which has its own consequences.

        Let us assume an optimistic scenario: life expectancy surges beyond a hundred years and they are mostly healthy years. The population has stabilized; people are having fewer children and having them as late as possible. If we can’t ask a smaller and smaller fraction of younger people to support an increasing cohort of older people in retirement, there’s really only one solution: careers are going to get longer.

        WORKING INTO YOUR SEVENTIES OR eighties—or even longer—is a rather different prospect depending on what your job is. As Paul Root Wolpe, director of the Emory University Center for Ethics, asks: Would hard laborers or people doing menial jobs at the age of sixty-five relish the prospect of doing this for another fifty years? Large percentages of people dislike their jobs and look forward to retirement. In 2023 more than 1.2 million people marched in France to protest against the government’s proposal to raise the retirement age a mere two years from sixty-two to sixty-four. Reacting to the French protests, some have argued that the United States should actually lower retirement age, pointing out that the people who advocate that Americans should work until they are seventy are typically in cushy, remunerative white-collar jobs that are fun and intellectually engaging for octogenarians, and it is different for people who want to stop changing tires or working a cash register for $11 an hour at age sixty-two. In my own institute, I have found that nonscientists on the staff retire as soon as they qualify, while the scientists try to hang on for as long as they can.

        When I ask some of my scientific colleagues about their retirement plans, especially in America, where it is not uncommon to see academics work well into their eighties or even longer, the typical response is “I’m having far too much fun to retire!” Some of them go on to claim they are doing the best work of their lives. But the evidence says otherwise. We are all willing to accept that we cannot run a hundred-meter race as fast as we could when we were twenty, but we persist in the delusion that we are intellectually just as capable as we were when we were younger. This may be because we identify too closely with our own thoughts—they define who we are. All the evidence suggests that in general, we are no longer as creative and bold as when we were younger.

        One way to assess this is to retrospectively ask how old someone was when they did their best work. In the sciences, Nobel Prize winners nearly always make their key breakthroughs when they are young and not very powerful. Biologists and chemists often achieve their big breakthroughs a decade or so later than physicists and mathematicians, perhaps because it takes time to assimilate a huge body of knowledge, acquire the practical experience, and build up the resources needed. Indeed, the famous mathematician G. H. Hardy wrote in his 1940 book, A Mathematician’s Apology, “No mathematician should ever allow himself to forget that mathematics, more than any other art or science, is a young man’s game. . . . I do not know of an instance of a major mathematical advance initiated by a man past fifty.” In recent times, one of the great achievements of mathematics, the proof of the 350-year-old Fermat’s Last Theorem, was made by Andrew Wiles when he was about forty.

        When they are older, many scientists continue to churn out first-rate work from their labs. However, this is not because they themselves are sharp and innovative. Rather, they have become a brand name, have amassed resources and funding, and can attract first-rate young scientists to do the work. Many, if not all, of the new ideas—and certainly the lion’s share of the work—come from these young scientists. Even so, it is very rare for an older scientist—even one who is doing very good work and has a team of young scientists to help—to truly break new ground. Often they are doing more of the same. For example, I have had the good fortune to attract very talented young people thanks to whom my laboratory continues to publish papers in top journals. But it is also true that in some sense, they are extensions of my previous work. The few really new directions have come not from me but from the young people who work with me. It is true that everyone can point to an exception: the chemist Karl Sharpless won his second Nobel Prize at the age of eighty-one for work he had begun when he was around sixty. But that is remarkable because it is so rare.

        It is not just in science and mathematics that our creative powers peak when we are relatively young. This is also true in business and industry. Thomas Edison was under thirty when he started the Menlo Park laboratory in New Jersey and invented his version of the lightbulb soon afterward. In today’s world, many of the most innovative companies, such as Google, Apple, Microsoft, and the AI company DeepMind, were started by people in their twenties or thirties.

        You might think that things are different in literature, where experience of life and accumulated wisdom would make you more profound as you aged. However, at a Hay Literary Festival event in 2005, the Nobel Prize–winning novelist Kazuo Ishiguro outraged his fellow writers by suggesting that most authors produce their best work when they are young. He said it was hard to find cases where an author’s most renowned work had come after the age of forty-five and pointed out that War and Peace, Ulysses, Bleak House, Pride and Prejudice, Wuthering Heights, and The Trial were all written by writers in their twenties and thirties. Many great writers—Chekhov, Kafka, Jane Austen, the Brontë sisters—died before they reached their midforties. Ishiguro says he is not suggesting that novelists cannot do good work later in life, just that their best work tends to come before their midforties. His main point was actually that authors should not wait until they are older to attempt a great novel. He may have contradicted his own thesis with Klara and the Sun, which he wrote in his midsixties. It was received as one of his finer novels, although only time will tell whether it will rank as highly as his earlier work. Similarly, Margaret Atwood’s recent Booker Prize–winning novel, The Testaments, was published when she was over eighty. It is brilliantly gripping and disturbing, but the novel is really a further exploration of the world she conjured in The Handmaid’s Tale almost forty years before.

        Ishiguro posited a theory for why some types of creativity decline with age. As we grow older, one of the first mental abilities to decline is our short-term memory. Perhaps writing a novel requires holding disparate facts and ideas in our heads while we synthesize something new from them. This may well be true in science and mathematics. The process of creativity may be different in other disciplines. For example, many film directors, conductors, and musicians continue to perform at the highest level well into old age, as do many artists.

        Advances in healthy aging would not necessarily make us as creative and imaginative later in life as we are in our younger years. Young people see the world with fresh eyes, and in new ways. Ishiguro wonders whether in writing, the proximity to childhood and the experiences of growing up—a time of life when one’s perspective changed from year to year, even month to month, because one was oneself changing so profoundly—is central to the creation of satisfying novels. In science and mathematics, younger practitioners may be less biased by a lifetime accumulation of knowledge, and bolder about questioning paradigms.

        So far, we have been talking about big creative breakthroughs declining with age in a variety of fields, but these breakthroughs are outliers and represent a tiny fraction of the whole enterprise. Even in science, the big breakthroughs are built on the vast foundations laid by the majority of scientists productively going about their jobs of gradually advancing our state of knowledge. It would hardly be appropriate to formulate social policy based on these outliers. How would the bulk of white-collar work be affected by age?

        Most studies say our general cognitive abilities also decline with age, but there has been some debate about when exactly that happens, with some arguing that it begins as early as age eighteen, and others arguing that it is significant only after sixty. A ten-year study that followed a large cohort of British civil-service workers showed that cognitive scores on tests of memory, reasoning, and verbal fluency all declined from the age of forty-five, with faster decline in older people. The one category not to show a major decline was vocabulary. Other studies also make a distinction between so-called “crystallized abilities” such as vocabulary and “fluid abilities” such as processing speed. The latter declines steadily from the age of twenty, while the former increases and then remains steady, and only declines gradually from about age sixty. All of this affects our ability to learn new tasks and be as mentally agile. Any adult who doubts these findings should try learning the piano, a new language, or advanced mathematics for the first time.

        It is of course theoretically possible that as we learn to combat the causes of aging, we can also do something about the deterioration of our mental abilities. But so far, the brain has proved the most difficult frontier to conquer. Neurons regenerate very slowly if at all, and many of the processes that lead to deterioration and eventual disease in the brain remain intractable. It is true that at least one approach, inhibiting the integrative stress response in protein synthesis, has been shown to improve memory, but there is no evidence that it reverses general cognitive decline and ability to learn.

        Many argue that any cognitive decline is offset by increased wisdom, a vague and poorly defined trait. It’s true that young people often do lack wisdom and foresight, leading to rash behavior. But there is no evidence that wisdom continues to increase beyond a certain age. In recent elections in both the United States and Great Britain, older age groups have tended to be conservative and swayed by demagoguery and an appeal to their sense of nostalgia. They have acquired a lifetime of biases and prejudices and are generally less open to new ideas. My guess is that we acquire most of our wisdom by our thirties. After that, we become increasingly set in our ways, as likely to be reactionary as wise.

        Today there is an imbalance of power that favors the old. This is partly because they have accumulated a great deal of wealth: in both Britain and American, households where the head is over seventy have about fifteen to twenty times the median wealth of those under thirty-five. But it is also because as people age, they accumulate power and a powerful network of connections. Even if they are no longer as qualified or competent to do their job as their younger peers might be, they may cling to power and authority, using their connections and reputation. It is hard to dislodge them from their positions even if they are no longer on top of their game and could be replaced by many more competent people. More generally, Wolpe argues that the political ramifications of a long life span are huge because the elderly vote at much higher rates than the young, and the highest echelons of power have become the preserve of the over-seventies. The United States is led by President Joe Biden, who will be eighty-one as of the 2024 presidential election; his chief rival, Republican Donald Trump, will be seventy-eight. Elsewhere, Rupert Murdoch, until recently the chair of Fox Corporation and executive chairman of News Corp, retains enormous media influence (and with it, political clout) in several countries at the age of ninety-three. Politically, Wolpe argues, young people will be squeezed out, and the fresh ideas they bring to politics and innovation will be suppressed. By contrast, the vast majority of the great innovations, including social advances such as gay marriage, diversity inclusion movements, and before that civil rights and women’s rights, were driven by young people.

        The imbalance of power is particularly egregious in academia, where the concept of tenure, which was introduced so faculty members could not be fired for expressing unorthodox opinions, is now being wielded by faculty members to remain in their posts for as long as they possibly can. Many universities in the United States and United Kingdom have abolished mandatory retirement age, and those that haven’t, such as Oxford and Cambridge, are facing lawsuits from disgruntled professors. Recently, Oxford lost a tribunal case brought by three professors who accused the university of ageism, claiming, not surprisingly, that they were dismissed “at the peak of their careers.”

        Even if they are not doing groundbreaking work or at the peak of their careers, as long as they are being productive, what harm is there in allowing them to stay on? Some of my academic colleagues argue that established senior scientists have the resources, wisdom, vision, and perspective to provide a great environment to train and mentor the next generation of younger scientists. Not everyone agrees. Fred Sanger, who won two Nobel Prizes, hung up his hat the day he turned sixty-five and spent the rest of his life pursuing hobbies such as building a boat that he sailed around Britain and growing roses. My own mentor, Peter Moore, retired after a long and distinguished career at Yale at the age of seventy. It is not as if he suddenly became intellectually dead. He continues to edit journals, write books, and carry on other intellectual activities that take neither resources nor money from his institution. He had this to say: “I had been telling my colleagues for years that it is an abuse of the privilege of tenure for elderly faculty to hang on to the bitter end, not least because there are no seventy-year-old scientists so wonderful that a thirty-five-year-old scientist who is better cannot be found.”

        In academia, the combination of tenure and a lack of retirement age is particularly problematic. Some senior academics have rightly complained that they are far more productive than some younger faculty who have burned out by the age of forty. But this can be solved by abolishing both tenure and retirement age and having regular assessments of productivity.

        Moore’s comment goes to the heart of intergenerational fairness. The most senior faculty tend to draw very large salaries, which would often be sufficient to hire two young scientists in their stead. Even if they are not drawing a salary, they are taking up precious resources such as laboratory space that could otherwise be used to recruit new young faculty who would go on to make the breakthroughs of the future and open up entirely new areas. Older researchers also have the clout to influence the agenda at their institution and in science more generally, and tend to be conservative and incremental rather than bold and innovative. The same is true broadly in other sectors of work, including corporate careers.

        The problem of intergenerational fairness conflicts with the push for people to work longer as the population ages. So what is to be done?

        Ageism is now considered a sin along with other -isms such as racism and sexism. However, ageism is different because we all actually decline with age. Still, it is important to recognize that the rate at which people’s physical and mental abilities decline is highly variable. We must not use chronological age as a proxy for ability, and a rigid retirement age that applies to everyone is highly inappropriate. Moreover, despite the well-documented decline in people’s ability with age, two surveys of the literature concluded that the relationship between age and productivity is more complex. One concluded that as they aged, people did less well at tasks that required problem-solving, learning, and speed, but maintained high productivity in jobs where experience and verbal abilities are important. The other concluded that 41 percent of the reports showed no differences between younger and older workers, and 28 percent reported that older workers had better productivity than younger workers, citing experience and emotional maturity as possible factors.

        All of this suggests that we need to be flexible in our approach to work and retirement. As we have seen, many professions are physically or mentally demanding, and people may need to retire earlier. They may be able to switch to less demanding jobs and continue working if they are able. Rather than apply a one-size-fits-all approach, we need to bring in objective measures of assessment that can apply to all age groups, which will also ensure fairness to both young and old. Moreover, even after they can no longer do the job they did for much of their career and have to retire, older people can still be useful and productive in many ways for as much of the rest of their lives as possible.

        There is a lot of evidence that having a purpose in life reduces mortality from all causes as well as the incidence of stroke, heart disease, mild cognitive decline, and Alzheimer’s. And elderly professionals do have a wealth of experience and a deep knowledge of their field. They can be unparalleled sources of advice and mentorship; they can participate in civic activities. Peter Moore, whom I mentioned earlier, is a great example of someone who has retired from his professorship but still makes himself extremely valuable to the scientific community.

        Even after they have retired, we need to think of ways that allow older citizens to remain independent for as long as possible. This means paying attention to the way houses are constructed, with bedrooms on ground floors, and communities are planned, with nearby amenities such as shopping and mass transit. Social isolation and loneliness are detrimental for the well-being of all people but especially for the elderly. Currently, many Western societies seem to treat the old as a problem to be hidden away in separate retirement enclaves rather than an integral part of society. Perhaps it is better to integrate them fully into the broader community, where they live interspersed with the rest of the population, and through their social and civic activities, they interact routinely and regularly across the entire generational spectrum of society. Their active participation will also benefit the rest of society.

        These are all problems we may plausibly soon encounter, if biologists succeed in pushing life spans ever closer to a natural limit of roughly 120 years. Yet there is no hard scientific law that necessarily precludes far more drastic increases in life expectancy. After all, we know of species that live many hundreds of years and others that show no signs of biological aging. If, someday, humans breach our current limit and live for several hundred years as Aubrey de Grey prophecies, all of these issues would only be magnified. Advocates for extreme life extension have no real solutions except to say that we will learn to deal with problems as we encounter them. Some have said that if we have a population crisis as a result of extreme longevity, we should be made to leave Earth and settle other planets once we reach a certain age. As always, the answer to problems created by technology seems to be even more far-fetched technology.

        I AM NOT SURE THAT if we lived so much longer, we would be any more satisfied. Now that we live twice as long as we did a century ago, we still aren’t content with that entire extra life. Rather, we seem to be even more obsessed with death. If we live to be 120 or 150 years old, we will fret about why we can’t live to 300. The quest for life extension is like chasing a mirage: nothing will ever be enough short of true immortality. And there is no such thing. Even if we conquer aging, we will die of accidents, wars, viral pandemics, or environmental catastrophes. It may be simpler to accept that our life is limited.

        Moreover, our very mortality may give us the incentive and desire to make the most of our time on Earth. A greatly extended life span would deprive our lives of urgency and meaning, a desire to make each day count. It is not clear that even with an entire extra lifetime, we are accomplishing more than the great writers, composers, artists, and scientists of past eras. We may well end up living a very much longer life bored and lacking in purpose. As I mentioned earlier, it could also lead to a stagnant society, since many of the big social changes have been spearheaded by younger generations.

        This obsession with mortality is probably unique to humans. It is only the accidental evolution of our brain and consciousness, and our development of language to communicate our fears, that has made our species so fixated on the end. The writer and editor Allison Arieff has pointed out the irony that the same Silicon Valley culture that produces gadgets designed to be obsolete and discarded every few years seems to be obsessed with living forever. She quotes the writer Barbara Ehrenreich, “You can think of death bitterly or with resignation and take every possible measure to postpone it. Or, more realistically, you can think of life as an interruption of an eternity of personal nonexistence, and seize it as a brief opportunity to observe and interact with the living, ever-surprising world around us.” Arieff believes that our very humanness is intertwined with the fact of our mortality.

        On a recent trip to India, I met Ganesh Devy, a linguist who works with dozens of rural, forest-dwelling tribes in the country. India has well over a hundred languages, many facing a different kind of death: some of them are now spoken by only a few people and will soon become extinct. He said he himself did not fear death. I was skeptical, but he pointed out that on a field trip once he was bitten by a highly poisonous snake and he felt no fear or panic at the thought of dying. I asked him why. Devy said that we have to regard our individual selves as parts of larger entities like family, community, and society, just as all the cells in our body are part of tissues and organs and us. Millions of our cells die every day. Not only do we not mourn their passing, but we are not even aware of it. So even if we as individuals die, our society and indeed life on Earth will go on. Our own genes will live on through our offspring or other family members. Life has been going on continuously for several billion years while we individuals come and go.

        Still, if someone were to offer a pill that would add ten years of healthy life, hardly anyone would decline it. I view myself as more in the philosophical camp, yet take several anti-aging medicines a day: pills for my blood pressure, a statin for high cholesterol, and a low-dose aspirin to protect against thrombosis. All of these are to prevent heart attacks or strokes and have the effect of prolonging my life. I would be a hypocrite to dismiss attempts to alleviate the problems of aging. Physicians are struck by how many people, even faced with terminal illnesses that inflict appalling pain, want every measure taken to prolong their lives, even if only by a few weeks or even days. The will to live is deeply ingrained in us, even if we are sanguine in our more rational moments.

        About ten years ago, the Pew Research Center explored American attitudes on living much longer. Respondents were optimistic about cures for cancer and artificial limbs, and they viewed advances that prolong life as generally good. However, over half said that slowing the aging process would be bad for society. When asked if they themselves would take treatments to live longer, a majority of them said no, but two-thirds thought that other people would. Most doubted that an average person living to 120 would happen before 2050. A large majority felt that everyone should be able to get these treatments if they wanted, but two-thirds felt that only the wealthy would actually have access. About two-thirds also said that longer lives would strain our natural resources. About six in ten said that medical scientists would offer treatments before they fully understood how doing so could affect people’s health and that such treatments would be fundamentally unnatural. The clear-eyed view of the American public in the face of relentless hype is certainly heartening.

        In this book, I have discussed how advances in molecular biology have shed light on virtually every aspect of aging, often taking a skeptical look at some of the hype. In doing so, I hope that readers acquire not only an appreciation of the underlying causes of aging, but are able to more knowledgeably interpret news reports and PR blurbs about each new “advance” and judge for themselves how realistic various claims are. How long it takes to go from a fundamental discovery to a practical application is hugely variable and unpredictable. It took three centuries for Newton’s laws of motion to be translated into rockets and satellites. It took over a hundred years for Einstein’s theories of relativity to be used in the GPS systems that our phones use to tell us where we are on a map. Neither Newton nor Einstein could have remotely anticipated the use we made of their discoveries. Other advances are much faster: from Alexander Fleming’s discovery of penicillin in 1928 to its use in humans was less than twenty years. With the money and urgency that drive current research on aging, major advances might well come in years rather than decades, but the sheer complexity of aging makes any prediction highly uncertain.

        We are at a crossroads. The revolution in biology continues unabated. Artificial intelligence and computing, physics, chemistry, and engineering are all being brought to bear on what was the domain of traditional biologists. Together they are creating new technologies and increasingly sophisticated tools to manipulate cells and genes to advance every aspect of the life sciences, including aging.

        I have highlighted the relationship between cancer and aging many times throughout this book. Both are rooted in highly complex biology. Just as cancer is not a single disease, aging too has many interconnected causes. It has now been half a century since President Nixon declared a “war on cancer” in 1971. Since then, our biological understanding of cancer has advanced enormously, resulting in a steady stream of new and improved treatments that continues to this day, saving or prolonging millions of lives. Today, the sheer talent and money committed to aging research is reminiscent of our efforts to combat cancer. This means that just as with cancer, we will eventually make breakthroughs, even if it takes time for them to actually improve and extend our lives. It is well to remember that even today, after a half century of intense effort, cancer is not “solved.” It remains one of the largest killers in most societies. Our progress with aging may follow a similar trajectory, given the similar complexity of both problems.

        The American futurist and scientist Roy Amara said that we tend to overestimate the effect of a technology in the short run and underestimate its effect in the long run. This has been true for many things, including the internet and artificial intelligence. If Amara’s law holds, all the hype in the anti-aging industry will lead to considerable disappointment in the short term, but it also means that once we get past the winter of disillusionment and discontent, there will be major advances eventually.

        As a society, it is important for us to think about the possibly profound consequences of these changes. However, this task is not just for governments and citizens alone: the anti-aging industry should not repeat the mistakes of the computer industry and plunge ahead without any thought of where it will all lead and leave the rest of us to try and clean up the mess when it is too late. These companies stand to benefit hugely from any breakthroughs in aging research but do not seem to have put much effort into either the social or ethical consequences of their work. In their blurbs, their work is always portrayed as an unmitigated and universal good for humanity.

        In the meantime, we need not sit around and wait for a long period of decrepitude and decline. Ironically, the very same advances in biology that are the basis of the anti-aging industry also thoroughly validate some age-old advice for living a long and healthy life: diet, exercise, and sleep. In his book In Defense of Food: An Eater’s Manifesto, Michael Pollan advises us, “Eat food. Not too much. Mostly plants.” This advice is entirely consistent with everything we know about caloric restriction pathways. Exercise and sleep, as we discussed earlier, affect a large number of factors in aging, including our insulin sensitivity, muscle mass, mitochondrial function, blood pressure, stress, and the risk of dementia. These remedies currently work better than any anti-aging medicine on the market, cost nothing, and have no side-effects.

        While we wait for the vast gerontology enterprise to solve the problem of death, we can enjoy life in all its beauty. When our time comes, we can go into the sunset with good grace, knowing that we were fortunate to have taken part in that eternal banquet.

        Notes

        Introduction

        Even Carter, a seasoned Egyptologist: Maite Mascort, “Close Call: How Howard Carter Almost Missed King Tut’s Tomb,” National Geographic online, last modified March 4, 2018, https://www.nationalgeographic.com/history/magazine/2018/03-04/findingkingtutstomb.

        We may be tempted to think of it: Nuria Castellano, “The Book of the Dead Was Egyptians’ Inside Guide to the Underworld,” National Geographic online, last modified February 8, 2019; Tom Holland, “The Egyptian Book of the Dead at the British Museum,” Guardian online, last modified November 6, 2019, https://www.theguardian.com/culture/2010/nov/06/egyptian-book-of-dead-tom-holland.

        They recognize when one: For example, see this study of elephants: S. S. Pokharel, N. Sharma, and R. Sukumar, “Viewing the Rare Through Public Lenses: Insights into Dead Calf Carrying and Other Thanatological Responses in Asian Elephants Using YouTube Videos,” Royal Society Open Science 9, no. 5 (May 2022), https://doi.org/10.1098/rsos.211740, described in Elizabeth Preston, “Elephants in Mourning Spotted on YouTube by Scientists,” New York Times online, May 17, 2022, https://www.nytimes.com/2022/05/17/science/elephants-mourning-grief.html.

        But there is no evidence: James R. Anderson, “Responses to Death and Dying: Primates and Other Mammals,” Primates 61 (2020): 1–7; Marc Bekoff, “What Do Animals Know and Feel About Death and Dying?,” Psychology Today online, last modified February 24, 2020, https://www.psychologytoday.com/gb/blog/animal-emotions/202002/what-do-animals-know-and-feel-about-death-and-dying.

        Philosopher Stephen Cave argues: Stephen Cave, Immortality: The Quest to Live Forever and How It Drives Civilization (New York: Crown, 2012).

        The first emperor of a unified China: Ibid.

        Rather, our brains appear: Y. Dor-Ziderman, A. Lutz, and A. Goldstein, “Prediction-Based Neural Mechanisms for Shielding the Self from Existential Threat,” NeuroImage 202 (November 15, 2019): art. 116080, https://doi.org/10.1016/j.neuroimage.2019.116080, cited in Ian Sample, “Doubting Death: How Our Brains Shield Us from Mortal Truth,” Guardian online, last modified October 19, 2019, https://www.theguardian.com/science/2019/oct/19/doubting-death-how-our-brains-shield-us-from-mortal-truth.

        1. The Immortal Gene and the Disposable Body

        But it turns out to be tricky: A group at the Santa Fe Institute led by David Krakauer and Geoffrey West has held several workshops to define both death as it applies to various entities and the definition of the individual.

        The loss of brain function: A meeting about the issue of resuscitation and death was held at the New York Academy of Sciences in 2019. See “What Happens When We Die? Insights from Resuscitation Science” (symposium, New York Academy of Sciences, New York, November 18, 2019), https://www.nyas.org/events/2019/what-happens-when-we-die-insights-from-resuscitation-science/. There is also a movement to make the definition of brain death uniform to prevent legal anomalies such as the one I described.

        Her family petitioned: S. Biel and J. Durrant, “Controversies in Brain Death Declaration: Legal and Ethical Implications in the ICU,” Current Treatment Options in Neurology 22, no. 4 (2020): 12, https://doi.org/10.1007/s11940-020-0618-6.

        After that, there is a multiday window: Two popular books that discuss these early events are Magdalena Zernicka-Goetz and Roger Highfield, The Dance of Life: The New Science of How a Single Cell Becomes a Human Being (New York: Basic Books, 2020), and Daniel M. Davis, The Secret Body: How the New Science of the Human Body Is Changing the Way We Live (London: Bodley Head, 2021).

        Death can occur at every scale: Geoffrey West, Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies (New York: Penguin Press, 2020).

        However, the lecture paved: R. England, “Natural Selection Before the Origin: Public Reactions of Some Naturalists to the Darwin-Wallace Papers,” Journal of the History of Biology 30 (June 1997): 267–90, https://doi.org/10.1023/a:1004287720654.

        Although humans have known: Matthew Cobb, The Egg and Sperm Race: The Seventeenth-Century Scientists Who Unlocked the Secret of Sex, Life and Growth (London: Simon & Schuster, 2007).

        The germ-line cells, protected in the gonads: Today we know that the Weismann barrier is not perfect and that the germ line also ages and is susceptible to changes from the environment, although much more slowly. P. Monaghan and N. B. Metcalfe, “The Deteriorating Soma and the Indispensable Germline: Gamete Senescence and Offspring Fitness,” Proceedings of the Royal Society B (Biological Sciences) 286, no. 1917 (December 18, 2019): art. 20192187, https://doi.org/10.1098/rspb.2019.2187.

        “Nothing in biology makes sense”: T. Dobzhansky, “Nothing in Biology Makes Sense Except in the Light of Evolution,” American Biology Teacher 35, no. 3 (March 1973): 125–29, https://doi.org/10.2307/4444260.

        If an individual had a mutation: T. B. Kirkwood, “Understanding the Odd Science of Aging,” Cell 120, no. 4 (February 25, 2005): 437–47, https://doi.org/10.1016/j.cell.2005.01.027; T. Kirkwood and S. Melov, “On the Programmed/Non-Programmed Nature of Ageing Within the Life History,” Current Biology 21 (September 27, 2011): R701–R707, https://doi.org/10.1016/j.cub.2011.07.020. There are some exceptions to this rule against group selection, but they apply only under very special circumstances and usually involve species where the members of the colonies are all genetically either identical or very closely related, such as insects. J. Maynard Smith, “Group Selection and Kin Selection,” Nature 201 (March 14, 1964): 1145–47, https://doi.org/10.1038/2011145a0.

        Species such as the soil worm: Species that reproduce multiple times in a lifetime are called iteroparous, and those that reproduce only once are semelparous. See T. P. Young, “Semelparity and Iteroparity,” Nature Education Knowledge 3, no. 10 (2010): 2, https://www.nature.com/scitable/knowledge/library/semelparity-and-iteroparity-13260334/.

        He was a socialist: N. W. Pirie, “John Burdon Sanderson Haldane, 1892–1964,” Biographical Memoirs of Fellows of the Royal Society 12 (November 1966): 218–49, https://doi.org/10.1098/rsbm.1966.0010; C. P. Blacker, “JBS Haldane on Eugenics,” Eugenics Review 44, no. 3 October (1952): 146–51, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2973346/.

        A stained glass window: Two opposing views of Fisher can be found in A. Rutherford, “Race, Eugenics, and the Canceling of Great Scientists,” American Journal of Physical Anthropology 175, no. 2 (June 2021): 448–52, https://doi.org/10.1002/ajpa.24192, and W. Bodmer et al., “The Outstanding Scientist, R. A. Fisher: His Views on Eugenics and Race,” Heredity 126 (April 2021): 565–76, https://doi.org/10.1038/s41437-020-00394-6.

        However, the same could not be said: T. Flatt and L. Partridge, “Horizons in the Evolution of Aging,” BMC Biology 16 (2018): art. 93, https://doi.org/10.1186/s12915-018-0562-z.

        That understanding came when British biologist Peter Medawar: N. A. Mitchison, “Peter Brian Medawar, 28 February 1915–2 October 1987,” Biographical Memoirs of Fellows of the Royal Society 35 (March 1990): 281–301, https://doi.org/10.1098/rsbm.1990.0013.

        Similarly, the disposable soma hypothesis: Kirkwood, “Understanding the Odd Science of Aging,” 437–47, https://doi.org/10.1016/j.cell.2005.01.027.

        Exactly as these theories would predict: Flatt and Partridge, “Horizons,” https://doi.org/10.1186/s12915-018-0562-z.

        But an unusual analysis: R. G. Westendorp and T. B. Kirkwood, “Human Longevity at the Cost of Reproductive Success,” Nature 396 (December 24, 1998): 743–46, https://doi.org/10.1038/25519. See also the letter responding to this article: D. E. Promislow, “Longevity and the Barren Aristocrat,” Nature 396 (December 24, 1998): 719–20, https://doi.org/10.1038/25440.

        Menopause may have arisen: G. C. Williams, “Pleiotropy, Natural Selection and the Evolution of Senescence,” Evolution 11, no. 4 (December 1957): 398–411.

        For example, although the fertility of elephants: M. Lahdenperä, K. U. Mar, and V. Lummaa, “Reproductive Cessation and Post-Reproductive Lifespan in Asian Elephants and Pre-Industrial Humans,” Frontiers in Zoology 11 (2014): art. 54, https://doi.org/10.1186/s12983-014-0054-0.

        Similarly, while living beyond: J. G. Herndon et al., “Menopause Occurs Late in Life in the Captive Chimpanzee (Pan Troglodytes),” AGE 34 (October 2012): 1145–56, https://doi.org/10.1007/s11357-011-9351-0.

        The grandmother hypothesis: K. Hawkes, “Grandmothers and the Evolution of Human Longevity,” American Journal of Human Biology 15, no. 3 (May/June 2003): 380–400, https://doi.org/10.1002/ajhb.10156; P. S. Kim, J. S. McQueen, and K. Hawkes, “Why Does Women’s Fertility End in Mid-Life? Grandmothering and Age at Last Birth,” Journal of Theoretical Biology 461 (January 14, 2019): 84–91, https://doi.org/10.1016/j.jtbi.2018.10.035.

        Another idea, based on studying killer whales: D. P. Croft et al., “Reproductive Conflict and the Evolution of Menopause in Killer Whales,” Current Biology 27, no. 2 (January 23, 2017): 298–304, https://doi.org/10.1016/j.cub.2016.12.015.

        It could also simply be that the number of eggs: An idea suggested to me by the population biologist Trudy Mackay of Clemson University.

        So perhaps there has just not been enough time: Steven Austad, Methuselah’s Zoo: What Nature Can Teach Us about Living Longer, Healthier Lives (Cambridge, MA: MIT Press, 2022), 258–59.

        Moreover, scientists have found: R. K. Mortimer and J. R. Johnston, “Life Span of Individual Yeast Cells,” Nature 183, no. 4677 (June 20, 1959): 1751–52, https://doi.org/10.1038/1831751a0; E. J. Stewart et al., “Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division.” PLoS Biology 3, no. 2 (February 2005): e45, https://doi.org/10.1371/journal.pbio.0030045.

        2. Live Fast and Die Young

        A small aquatic animal: T. C. Bosch, “Why Polyps Regenerate and We Don’t: Towards a Cellular and Molecular Framework for Hydra Regeneration,” Developmental Biology 303, no. 2 (March 15, 2007): 421–33, https://doi.org/10.1016/j.ydbio.2006.12.012.

        Still, it is a complex procedure: R. Murad et al., “Coordinated Gene Expression and Chromatin Regulation During Hydra Head Regeneration,” Genome Biology and Evolution 13, no. 12 (December 2021): evab221, https://doi.org/10.1093/gbe/evab221; see also a popular account of this work and hydra in general in Corryn Wetzel, “How Tiny, ‘Immortal’ Hydras Regrow Their Lost Heads,” Smithsonian online, last modified December 13, 2021, https://www.smithsonianmag.com/smart-news/were-closer-to-understanding-how-immortal-hydras-regrow-lost-heads-180979209/.

        It is almost as if an injured butterfly: Y. Matsumoto and M. P. Miglietta, “Cellular Reprogramming and Immortality: Expression Profiling Reveals Putative Genes Involved in Turritopsis dohrnii’s Life Cycle Reversal,” Genome Biology and Evolution 13, no. 7 (July 2021): evab136, https://doi.org/10.1093/gbe/evab136; M. Pascual-Torner et al., “Comparative Genomics of Mortal and Immortal Cnidarians Unveils Novel Keys Behind Rejuvenation,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 119, no. 36 (September 6, 2022): e2118763119, https://doi.org/10.1073/pnas.2118763119; see also a popular account by Veronique Greenwood, “This Jellyfish Can Live Forever. Its Genes May Tell Us How,” New York Times online, September 6, 2022, https://www.nytimes.com/2022/09/06/science/immortal-jellyfish-gene-protein.html.

        Along the way, he explores: West, Scale. Many of the original findings for relationships between longevity, size, and metabolic rates can be found here.

        As a result, biologists do not think: For a biologist’s view of the second law of thermodynamics and the wear-and-tear theory of aging, see Tom Kirkwood, chap. 5, “The Unnecessary Nature of Ageing,” in Time of Our Lives: The Science of Human Aging (New York: Oxford University Press, 1999), 52–62.

        From there, he became interested: See Austad’s academic website: University of Alabama at Birmingham online, College of Arts and Science, Department of Biology, https://www.uab.edu/cas/biology/people/faculty/steven-n-austad; see also a description about him and a podcast interview, https://blog.insidetracker.com/longevity-by-design-steven-austad.

        The LQ is the ratio: S. N. Austad and K. E. Fischer, “Mammalian Aging, Metabolism, and Ecology: Evidence from the Bats and Marsupials,” Journal of Gerontology 46, no. 2 (March 1991): B47–B53, https://doi.org/10.1093/geronj/46.2.b47.

        Over the years, Austad has studied: Austad, Methuselah’s Zoo. There is also a previous short and more technical version of this: S. N. Austad, “Methusaleh’s Zoo: How Nature Provides Us with Clues for Extending Human Health Span,” Journal of Comparative Pathology 142, suppl. 1 (January 2010): S10–S21, https://doi.org/10.1016/j.jcpa.2009.10.024. Much of this section on the life span of various animals is from these two sources.

        Two studies that evaluated survival data: B. A. Reinke et al., “Diverse Aging Rates in Ectothermic Tetrapods Provide Insights for the Evolution of Aging and Longevity,” Science 376, no. 6600 (June 23, 2022): 1459–66, https://doi.org/10.1126/science.abm0151; R. da Silva et al., “Slow and Negligible Senescence Among Testudines Challenges Evolutionary Theories of Senescence,” Science 376, no. 6600 (June 23, 2022): 1466–70, https://doi.org/10.1126/science.abl7811.

        By the time a person: “Actuarial Life Table,” Social Security Administration online, accessed August 7, 2023, https://www.ssa.gov/oact/STATS/table4c6.html.

        Like elderly humans: S. N. Austad and C. E. Finch, “How Ubiquitous Is Aging in Vertebrates?,” Science 376, no. 6600 (June 23, 2022): 1384–85, https://doi.org/10.1126/science.adc9442; Finch is quoted in Jack Tamisiea, “Centenarian Tortoises May Set the Standard for Anti-aging,” New York Times online, June 23, 2022, https://www.nytimes.com/2022/06/23/science/tortoises-turtles-aging.html.

        Bats do not live as long: G. S. Wilkinson and J. M. South, “Life History, Ecology and Longevity in Bats,” Aging Cell 1, no. 2 (December 2002): 124–31, https://doi.org/10.1046/j.1474-9728.2002.00020.x.

        Austad estimates that its LQ: A. J. Podlutsky et al., “A New Field Record for Bat Longevity,” Journals of Gerontology: Series A 60, no. 11 (November 2005): 1366–68, https://doi.org/10.1093/gerona/60.11.1366.

        But even bats that don’t hibernate: Wilkinson and South, “Life History,” 124–31.

        Rather, they may have special mechanisms: Podlutsky et al., “New Field Record,” 1366–68.

        Rochelle Buffenstein, currently at the University of Illinois in Chicago, has done more: R. Buffenstein, “The Naked Mole-Rat: A New Long-Living Model for Human Aging Research,” Journals of Gerontology: Series A 60, no. 11 (November 2005): 1366–77, https://doi.org/10.1093/gerona/60.11.1369.

        Instead of proliferating: S. Liang et al., “Resistance to Experimental Tumorigenesis in Cells of a Long-Lived Mammal, the Naked Mole-Rat (Heterocephalus glaber),” Aging Cell 9, no. 4 (August 2010): 626–35, https://doi.org/10.1111/j.1474-9726.2010.00588.x.

        One of the biggest headlines: J. G. Ruby, M. Smith, and R. Buffenstein, “Naked Mole-Rat Mortality Rates Defy Gompertzian Laws by Not Increasing with Age,” eLife 7 (January 24, 2018): e31157, https://doi.org/10.7554/eLife.31157.

        This was too much for some scientists: S. Braude et al., “Surprisingly Long Survival of Premature Conclusions About Naked Mole-Rat Biology,” Biological Reviews of the Cambridge Philosophical Society 96, no. 2 (April 2021): 376–93, https://doi.org/10.1111/brv.12660.

        As we saw with long-lived tortoises: R. Buffenstein, et al., “The Naked Truth: A Comprehensive Clarification and Classification of Current ‘Myths’ in Naked Mole-Rat Biology,” Biological Reviews of the Cambridge Philosophical Society 97, no. 1 (February 2022): 115–40, https://doi.org/10.1111/brv.12791.

        The science writer Steven Johnson: Steven Johnson, Extra Life: A Short History of Living Longer (New York: Riverhead Books, 2021).

        The ability to chemically capture nitrogen: The dramatic impact of fertilizers on humanity is told in Thomas Hager’s fascinating book The Alchemy of Air: A Jewish Genius, a Doomed Tycoon, and the Scientific Discovery That Fed the World but Fueled the Rise of Hitler (New York: Crown, 2009).

        He and his colleagues contended: S. J. Olshansky, B. A. Carnes, and C. Cassel. “In Search of Methuselah: Estimating the Upper Limits to Human Longevity,” Science 250, no. 4981 (November 2, 1990): 634–40, https://doi.org/10.1126/science.2237414; S. J. Olshansky, B. A. Carnes, and A. Désesquelles, “Prospects for Human Longevity,” Science 291, no. 5508 (February 23, 2001): 1491–92, https://doi.org/10.1126/science.291.5508.1491.

        Moreover, in certain species: A. Baudisch and J. W. Vaupel, “Getting to the Root of Aging: Why Do Patterns of Aging Differ Widely Across the Tree of Life?,” Science 338, no. 6107 (November 2, 2012): 618–19, https://doi.org/10.1126/science.1226467; O. R. Jones and J. W. Vaupel, “Senescence Is Not Inevitable,” Biogerontology 18, no. 6 (December 2017): 965–71, https://doi.org/10.1007/s10522-017-9727-3.

        The disagreements between the two boiled: See J. Couzin-Frankel, “A Pitched Battle over Life Span,” Science 338, no. 6042 (July 29, 2011): 549–50, https://doi.org/10.1126/science.333.6042.549.

        “pernicious belief”: J. Oeppen and J. W. Vaupel, “Demography. Broken Limits to Life Expectancy,” Science 296, no. 5570 (May 10, 2022): 1029–1031, https://doi.org/10.1126/science.1069675.

        In agreement with this: F. Colchero et al., “The Long Lives of Primates and the ‘Invariant Rate of Ageing’ Hypothesis,” Nature Communications 12, no. 1 (June 16, 2021): 3666, https://doi.org/10.1038/s41467-021-23894-3.

        Unlike most people: There is an entertaining account of Parr in Austad, Methuselah’s Zoo, pages 262–63.

        “Until next year, perhaps”: Craig R. Whitney, “Jeanne Calment, World’s Elder, Dies at 122,” New York Times, August 5, 1997, B8.

        Vijg predicted: X. Dong, B. Milholland, and J. Vijg, “Evidence for a Limit to Human Lifespan,” Nature 538, no. 7624 (October 13, 2016): 257–59, https://doi.org/10.1038/nature19793.

        “if any”: E. Barbi et al., “The Plateau of Human Mortality: Demography of Longevity Pioneers,” Science 360, no. 6396 (June 29, 2018): 1459–61, https://doi.org/10.1126/science.aat3119.

        This paper in turn was criticized: Carl Zimmer, “How Long Can We Live? The Limit Hasn’t Been Reached, Study Finds,” New York Times online, June 28, 2018, https://www.nytimes.com/2018/06/28/science/human-age-limit.html.

        Others pointed out: H. Beltrán-Sánchez, S. N. Austad, and C. E. Finch, “The Plateau of Human Mortality: Demography of Longevity Pioneers,” Science 361, no. 6409 (September 28, 2018): eaav1200, https://doi.org/10.1126/science.aav1200.

        After climbing steadily for the last 150 years: C. Cardona and D. Bishai, “The Slowing Pace of Life Expectancy Gains Since 1950,” BMC Public Health 18, no. 1 (January 17, 2018): 151, https://doi.org/10.1186/s12889-018-5058-9; J. Schöley et al., “Life Expectancy Changes Since COVID-19,” Nature Human Behaviour 6, no. 12 (December 2022): 1649–59, https://doi.org/10.1038/s41562-022-01450-3.

        As I write this: “List of the Verified Oldest People,” Wikipedia, last accessed July 10, 2023, https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people.

        In fact, about half of centenarians: J. Evert et al., “Morbidity Profiles of Centenarians: Survivors, Delayers, and Escapers,” Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 58, no. 3 (March 2003): 232–37, https://doi.org/10.1093/gerona/58.3.m232.

        He agrees with Olshansky: Thomas Perls, email messages to the author, November 27, 2021, and January 17, 2022.

        A dozen years later: Described in Austad, Methuselah’s Zoo, 273–74.

        But scientists have homed in: C. López-Otín et al., “The Hallmarks of Aging,” Cell 153, no. 6 (June 6, 2013): 1194–217, https://doi.org/10.1016/j.cell.2013.05.039. This classic paper has recently been updated on the tenth anniversary of the original: C. López-Otín et al. “Hallmarks of Aging: An Expanding Universe,” Cell 186, no. 1 (January 19, 2023): 243–78, https://doi.org/10.1016/j.cell.2022.11.001.

        3. Destroying the Master Controller

        Today we know that our genes: Two very readable accounts of the history of genetics can be found in Matthew Cobb, Life’s Greatest Secret: The Race to Crack the Genetic Code (London: Profile Books, 2015), and Siddhartha Mukherjee, The Gene: An Intimate History (New York: Scribner, 2017).

        How instructions in mRNA are read: The decade-long effort to crack the genetic code and understand how proteins are made is described in Cobb, Life’s Greatest Secret.

        I have spent much of my life: Venki Ramakrishnan, Gene Machine: The Race to Decipher the Secrets of the Ribosome (London: Oneworld, 2018).

        As early as the eighteenth century: H. W. Herr, “Percivall Pott, the Environment and Cancer,” BJU International 108, no. 4 (August 2011): 479–81, https://doi.org/10.1111/j.1464-410x.2011.10487.x.

        Hermann Muller was a third-generation American who grew up in New York City: G. Pontecorvo, “Hermann Joseph Muller, 1890–1967,” Biographical Memoirs of Fellows of the Royal Society 14 (November 1968): 348–89, https://doi.org/10.1098/rsbm.1968.0015; Elof Axel Carlson, Hermann Joseph Muller 1890–1967: A Biographical Memoir (Washington, DC: National Academy of Sciences, 2009), available at http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/muller-hermann.pdf.

        Even a modest application: Errol Friedberg, chap. 1, “In the Beginning,” in Correcting the Blueprint of Life: An Historical Account of the Discovery of DNA Repair Mechanisms (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1997).

        One of Crew’s key collaborators: Geoffrey Beale, “Charlotte Auerbach, 14 May 1899–1917 March 1994,” Biographical Memoirs of Fellows of the Royal Society 41 (November 1995): 20–42, https://doi.org/10.1098/rsbm.1995.0002

        But once Watson and Crick revealed its double-helical nature: A very good historical summary of early work on DNA damage and repair can be found in Friedberg, chap. 1, “In the Beginning,” in Correcting the Blueprint of Life.

        Sunlight could kill bacteria: A. Downes and T. P. Blunt, “The Influence of Light upon the Development of Bacteria,” Nature, 16 (July 12, 1877), 218, https://doi.org/10.1038/016218a0; F. L. Gates, “A Study of the Bactericidal Action of Ultraviolet Light,” Journal of General Physicology, 14, No. 1 (September 20, 1930): 31–42, https://doi.org/10.1085/jgp.14.1.31.

        However, when they tried this: R. B. Setlow and J. K. Setlow, “Evidence That Ultraviolet-Induced Thymine Dimers in DNA Cause Biological Damage,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 48, no. 7 (July 1, 1962): 1250–57, https://doi.org/10.1073/pnas.48.7.1250.

        Dick and his colleagues found: R. B. Setlow, P. A. Swenson, and W. L. Carrier, “Thymine Dimers and Inhibition of DNA Synthesis by Ultraviolet Irradiation of Cells,” Science 142, no. 3698 (December 13, 1963): 1464–66, https://doi.org/10.1126/science.142.3598.1464; R. B. Setlow and W. L. Carrier, “The Disappearance of Thymine Dimers from DNA: An Error-Correcting Mechanism, Proceedings of the National Academy of Sciences (PNAS) of the United States of America 51, no. 2 (April 1964): 226–31, https://doi.org/10.1073/pnas.51.2.226.

        The same year: R. P. Boyce and P. Howard-Flanders, “Release of Ultraviolet Light-Induced Thymine Dimers from DNA in E. coli K-12,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 51, no. 2 (February 1, 1964): 293–300, https://doi.org/10.1073/pnas.51.2.293; D. Pettijohn and P. Hanawalt, “Evidence for Repair-Replication of Ultraviolet Damaged DNA in Bacteria,” Journal of Molecular Biology 9, no. 2 (August 1964): 395–410, https://doi.org/10.1016/s0022-2836(64)80216-3.

        How it worked was something of a mystery: Aziz Sancar, “Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture, December 8, 2015), available at https://www.nobelprize.org/uploads/2018/06/sancar-lecture.pdf.

        That is a very long time: A great account of Thomas Lindahl’s discoveries can be found in his “The Intrinsic Fragility of DNA” (Nobel Lecture, December 8, 2015), available at https://www.nobelprize.org/uploads/2018/06/lindahl-lecture.pdf.

        Lindahl estimated later: Tomas Lindahl, “Instability and Decay of the Primary Structure of DNA,” Nature 362, no. 6422 (April 22, 1993): 709–715.

        Not surprisingly, the cell: Paul Modrich, “Mechanisms in E. coli and Human Mismatch Repair” (Nobel Lecture, December 8, 2015, https://www.nobelprize.org/uploads/2018/06/modrich-lecture.pdf).

        Relying on some very clever experiments: Ibid.

        The prize also cannot be given: As is increasingly the case because of the limitation of the Nobel Prize to three people, the prize for DNA repair was not without its controversy: David Kroll, “This Year’s Nobel Prize in Chemistry Sparks Questions About How Winners Are Selected,” Chemical & Engineering News (C&EN) online, last modified November 11, 2015, https://cen.acs.org/articles/93/i45/Years-Nobel-Prize-Chemistry-Sparks.html.

        One condition he has focused on: B. Schumacher et al., “The Central Role of DNA Damage in the Ageing Process,” Nature 592, no. 7856 (April 2021): 695–703, https://doi.org/10.1038/s41586-021-03307-7.

        In females, defects in how the cell: K. T. Zondervan, “Genomic Analysis Identifies Variants That Can Predict the Timing of Menopause,” Nature 596, no. 7872 (August 2021): 345–46, https://doi.org/10.1038/d41586-021-01710-8; K. S. Ruth et al., “Genetic Insights into Biological Mechanisms Governing Human Ovarian Ageing,” Nature 596, no. 7872 (August 2021): 393–97, https://doi.org/10.1038/s41586-021-03779-7. See also the commentary by H. Ledford, “Genetic Variations Could One Day Help Predict Timing of Menopause,” Nature online, last modified August 4, 2021, https://doi.org/10.1038/d41586-021-02128-y.

        Sometimes the cell: Apoptosis, or programmed cell death, is also a feature of normal development, as specific cells die at precise points during the development of an organism from a single cell into the adult animal. This was first discovered by studying how the worm C. elegans develops from a single fertilized egg into an adult of almost a thousand cells, and resulted in the award of the 2002 Nobel Prize to Sydney Brenner, John Sulston, and Robert Horvitz.

        When the damage is too extensive: A. J. Levine and G. Lozano, eds., The P53 Protein: From Cell Regulation to Cancer, Cold Spring Harbor Perspectives in Medicine (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 2016).

        Humans inherit one copy: L. M. Abegglen et al., “Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans,” Journal of the American Medical Association (JAMA) 314, no. 17 (November 3, 2015): 1850–60, https://doi.org/10.1001/jama.2015.13134; M. Sulak et al., “TP53 Copy Number Expansion Is Associated with the Evolution of Increased Body Size and an Enhanced TP Damage Response in Elephants,” eLife 5 (2016): e11994, https://doi.org/10.7554/eLife.11994.

        Curiously, in studies: M. Shaposhnikov et al., “Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes,” Scientific Reports 5 (October 19, 2015): art. 15299, https://doi.org/10.1038/srep15299.

        Some of the long-lived species: D. Tejada-Martinez, J. P. de Magalhães, and J. C. Opazo, “Positive Selection and Gene Duplications in Tumour Suppressor Genes Reveal Clues About How Cetaceans Resist Cancer,” Proceedings of the Royal Society B (Biological Sciences) 288, no. 1945 (February 24, 2021): art. 20202592, https://doi.org/10.1098/rspb.2020.2592; V. Quesada et al., “Giant Tortoise Genomes Provide Insights into Longevity and Age-Related Disease,” Nature Ecology & Evolution 3 (January 2019): 87–95, https://doi.org/10.1038/s41559-018-0733-x.

        Humans and naked mole rats: S. L. MacRae et al., “DNA Repair in Species with Extreme Lifespan Differences,” Aging 7, no. 12 (December 2015): 1171–84, https://doi.org/10.18632/aging.100866.

        Paradoxically, many new cancer therapies: See, for example, Liam Drew, “PARP Inhibitors: Halting Cancer by Halting DNA Repair,” Cancer Research UK online, last modified September 24, 2020, https://news.cancerresearchuk.org/2020/09/24/parp-inhibitors-halting-cancer-by-halting-dna-repair/.

        4. The Problem with Ends

        “Perhaps the day”: Scientific American, July 1921, quoted in Mark Fischetti, comp., “1921: Immortality for Humans,” Scientific American online, July 2021, 79, https://robinsonlab.cellbio.jhmi.edu/wp-content/uploads/2021/06/SciAm_2021_07.pdf.

        They were not immortal: An engaging history of Hayflick’s discovery and its aftermath is J. W. Shay and W. E. Wright, “Hayflick, His Limit, and Cellular Ageing,” Nature Reviews Molecular Cell Biology 1, no. 1 (October 2000): 72–76, https://doi.org/10.1038/35036093.

        It has since become a classic: L. Hayflick and P. S. Moorhead, “The Serial Cultivation of Human Diploid Cell Strains,” Experimental Cell Research 25, no. 3 (December 1961): 585–621, https://doi.org/10.1016/0014-4827(61)90192-6.

        Some have even suggested: J. Witkowski, “The Myth of Cell Immortality,” Trends in Biochemical Sciences 10, no. 7 (July 1985): 258–60, https://doi.org/10.1016/0968-0004(85)90076-3.

        Given Carrel’s stature: John J. Conley, “The Strange Case of Alexis Carrel, Eugenicist,” in Life and Learning XXIII and XXIV: Proceedings of the Twenty-third (2013) and Twenty-fourth Conferences of the University Faculty for Life Conference at Marquette University, Milwaukee, Wisconsin, vol. 26, ed. Joseph W. Koterski (Milwaukee: University Faculty for Life), 281–88, https://www.uffl.org/pdfs/vol23/UFL_2013_Conley.pdf.

        Titia de Lange: Titia de Lange, conversation with the author, September 10, 2021.

        He realized that the train: This so-called end replication problem was first pointed out by J. D. Watson, “Origin of Concatemeric T7 DNA,” Nature New Biology 239, no. 94 (October 18, 1972): 197–201, https://doi.org/10.1038/newbio239197a0, and A. M. Olovnikov, “Telomeres, Telomerase, and Aging: Origin of the Theory,” Experimental Gerontology 31, no. 4 (July/August 1996): 443–48, https://www.sciencedirect.com/science/article/abs/pii/0531556596000058. For a good description of how it would work, see M. M. Cox, J. Doudna, and M. O’Donnell, Molecular Biology: Principles and Practice (New York: W. H. Freeman, 2012), 398–400. The Wikipedia page “DNA Replication,” last modified June 14, 2023, https://en.wikipedia.org/wiki/DNA_replication, is also quite informative.

        At some point, she discovered: For a long time, McClintock was not believed, but these so-called transposable elements turned out to be a fundamental part of biology, and she was awarded the Nobel Prize for her work in 1983 at the age of eighty-one.

        TTGGGG: E. H. Blackburn and J. G. Gall, “A Tandemly Repeated Sequence at the Termini of the Extrachromosomal Ribosomal RNA Genes in Tetrahymena,” Journal of Molecular Biology 120, no. 1 (March 25, 1978): 33–53, https://doi.org/10.1016/0022-2836(78)90294-2.

        It worked like a charm: J. W. Szostak and E. H. Blackburn, “Cloning Yeast Telomeres on Linear Plasmid Vectors,” Cell 29, no. 1 (May 1982): 245–55, https://doi.org/10.1016/0092-8674(82)90109-x.

        The two of them discovered an enzyme: C. W. Greider and E. H. Blackburn, “Identification of a Specific Telomere Terminal Transferase Activity in Tetrahymena Extracts,” Cell 43, no. 2, pt. 1 (November 1985): 405–13, https://doi.org/10.1016/0092-8674(85)90170-9; C. W. Greider and E. H. Blackburn, “The Telomere Terminal Transferase of Tetrahymena Is a Ribonucleoprotein Enzyme with Two Kinds of Primer Specificity,” Cell 51, no. 6 (December 24, 1987): 887–98, https://doi.org/10.1016/0092-8674(87)90576-9; C. W. Greider and E. H. Blackburn, “A Telomeric Sequence in the RNA of Tetrahymena Telomerase Required for Telomere Repeat Synthesis,” Nature 337, no. 6205 (January 26, 1989): 331–37, https://doi.org/10.1038/337331a0.

        Without telomerase: C. B. Harley, A. B. Futcher, and C. W. Greider, “Telomeres Shorten During Ageing of Human Fibroblasts,” Nature 345, no. 5274 (May 31, 1990): 458–60, https://doi.org/10.1038/345458a0.

        Even introducing telomerase: A. G. Bodnar et al., “Extension of Life-span by Introduction of Telomerase into Normal Human Cells,” Science 279, no. 5349 (January 16, 1998): 349–52, https://doi.org/10.1126/science.279.5349.349.

        It turns out that the telomeric ends: The strand that extends beyond the other is called a 3’ overhang, so the reason for the loss of the ends is not exactly the reason first proposed by Olovnikov and Watson. Aficionados can look at J. Lingner, J. P. Cooper, and T. R. Cech, “Telomerase and DNA End Replication: No Longer a Lagging Strand Problem,” Science 269, no. 5230 (September 15, 1995): 1533–34, https://doi.org/10.1126/science.7545310.

        This longer strand: T. de Lange, “Shelterin: The Protein Complex That Shapes and Safeguards Human Telomeres,” Genes & Development 19, no. 18 (September 15, 2005): 2100–10, https://doi.org/10.1101/gad.1346005; I. Schmutz and T. de Lange, “Shelterin,” Current Biology 26, no. 10 (May 23, 2016): R397–99, https://doi.org/10.1016/j.cub.2016.01.056.

        This crucial structure is why the cell: W. Palm and T. de Lange, “How Shelterin Protects Mammalian Telomeres,” Annual Review of Genetics 42 (2008): 301–34, https://doi.org/10.1146/annurev.genet.41.110306.130350; P. Martínez and M. A. Blasco, “Role of Shelterin in Cancer and Aging,” Aging Cell 9, no. 5 (October 2010): 653–66, https://doi.org/10.1111/j.1474-9726.2010.00596.x.

        The cell then sees: F. d’Adda di Fagagna et al. “A DNA Damage Checkpoint Response in Telomere-Initiated Senescence,” Nature 426, no. 6963 (November 13, 2003): 194–98, https://doi.org/10.1038/nature02118.

        People with defective telomerase: M. Armanios and E. H. Blackburn, “The Telomere Syndromes,” Nature Reviews Genetics 13, no. 10 (October 2012): 693–704, https://doi.org/10.1038/nrg3246.

        When we are stressed: E. S. Epel et al., “Accelerated Telomere Shortening in Response to Life Stress,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 101, no. 49 (December 1, 2004): 17312–15, https://doi.org/10.1073/pnas.0407162101; J. Choi, S. R. Fauce, and R. B. Effros, “Reduced Telomerase Activity in Human T Lymphocytes Exposed to Cortisol,” Brain, Behavior, and Immunity 22, no. 4 (May 2008): 600–605, https://doi.org/10.1016/j.bbi.2007.12.004. See also the following on stress and premature gray hair in mice: B. Zhang et al., “Hyperactivation of Sympathetic Nerves Drives Depletion of Melanocyte Stem Cells,” Nature 577, no. 792 (January 2020): 676–81, https://doi.org/10.1038/s41586-020-1935-3.

        So it may be that the shortening: M. Jaskelioff et al. “Telomerase Reactivation Reverses Tissue Degeneration in Aged Telomerase-Deficient Mice,” Nature 469, no. 7328 (January 6, 2001): 102–6 (2011), https://doi.org/10.1038/nature09603.

        According to a number of studies, mice engineered: M. A. Muñoz-Lorente, A. C. Cano-Martin, and M. A. Blasco, “Mice with Hyper-long Telomeres Show Less Metabolic Aging and Longer Lifespans,” Nature Communications 10, no. 1 (October 17, 2019): 4723, https://doi.org/10.1038/s41467-019-12664-x.

        There seems to be a delicate balance: Titia de Lange, conversations with and email messages to the author, November and December 2021. See also Jalees Rehman, “Aging: Too Much Telomerase Can Be as Bad as Too Little,” Guest Blog, Scientific American online, last modified July 5, 2014, ttps://blogs.scientificamerican.com/guest-blog/aging-too-much-telomerase-can-be-as-bad-as-too-little/.

        On the other hand, those with long telomeres: E. J. McNally, P. J. Luncsford, and M. Armanios, “Long Telomeres and Cancer Risk: The Price of Cellular Immortality,” Journal of Clinical Investigation 129, no. 9 (August 5, 2019): 3474–81, https://doi.org/10.1172/JCI120851.

        5. Resetting the Biological Clock

        “another great Anglo-American partnership”: The official text of the statement on the publication of the draft human genome sequence by the White House and the UK government is here: National Human Genome Research Institute online, “June 2000 White House Event,” news release, June 26, 2000, https://www.genome.gov/10001356/june-2000-white-house-event. A slightly different text was reported by the New York Times: “Text of the White House Statements on the Human Genome Project,” Science, New York Times online, June 27, 2000, https://archive.nytimes.com/www.nytimes.com/library/national/science/062700sci-genome-text.html. The sequence itself was described in two large, coordinated publications: the public consortium was published as International Human Genome Sequencing Consortium et al., “Initial Sequencing and Analysis of the Human Genome,” Nature 409, no. 6822 (February 15, 2001): 860–921, https://doi.org/10.1038/35057062, while the private Celera effort was published as J. C. Venter et al., “The Sequence of the Human Genome,” Science 291, 1304–51, https://doi.org/10.1126/science.1058040.

        “Along with Bach’s music”: Quoted in G. Yamey, “Scientists Unveil First Draft of Human Genome,” BMJ 321, no. 7252 (July 1, 2000): 7, https://doi.org/10.1136/bmj.321.7252.7.

        Venter was something: “Profile: Craig Venter,” BBC News online, last modified May 21, 2010, https://www.bbc.co.uk/news/10138849.

        The decision by NIH: “US Patent Application Stirs Up Gene Hunters,” Nature, 353 (October 10, 1991): 485–86 (1991), https://doi.org/10.1038/353485a0; N. D. Zinder, “Patenting cDNA 1993: Efforts and Happenings” (abstract), Gene 135, nos. 1/2 (December 1993): 295–98, https://www.sciencedirect.com/science/article/abs/pii/037811199390080M.

        Venter said later that he was always against them: Matthew Herper, “Craig Venter Mapped the Genome. Now He’s Trying to Decode Death,” Forbes (online), February 21, 2017, https://www.forbes.com/sites/matthewherper/2017/02/21/can-craig-venter-cheat-death/?sh=8f6fefa16456.

        A particularly passionate advocate: John Sulston and Georgina Ferry, The Common Thread: A Story of Science, Politics, Ethics, and the Human Genome (New York: Random House, 2002).

        In the run-up: “How Diplomacy Helped to End the Race to Sequence the Human Genome,” Nature 582, no. 7813 (June 2020): 460, https://doi.org/10.1038/d41586-020-01849-w.

        The sequence was declared finished: S. Reardon, “A Complete Human Genome Sequence Is Close: How Scientists Filled in the Gaps,” Nature 594, no. 7862 (June 2021): 158–59, https://doi.org/10.1038/d41586-021-01506-w.

        The study of this change: Nessa Carey’s The Epigenetics Revolution: How Modern Biology Is Rewriting Our Understanding of Genetics, Disease, and Inheritance (New York: Columbia University Press, 2012) is a great popular introduction to epigenetics. Mukherjee’s The Gene is more broadly about the nature of the gene but has a significant emphasis on epigenetics.

        They are too far down: R. Briggs and T. J. King, “Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs’ Eggs,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 38, no. 5 (May 1952): 455–63, https://doi.org/10.1073/pnas.38.5.455.

        He studied languages instead: “Sir John B. Gurdon: Biographical,” Nobel Prize online, accessed August 7, 2023, https://www.nobelprize.org/prizes/medicine/2012/gurdon/biographical/.

        The clawed frog became: J. B. Gurdon and N. Hopwood, “The Introduction of Xenopus Laevis into Developmental Biology: Of Empire, Pregnancy Testing and Ribosomal Genes,” International Journal of Developmental Biology 44, no. 1 (2000): 43–50.

        This was the first time: J. B. Gurdon, “The Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles,” Development 10, no. 4 (December 1, 1962): 622–40, https://doi.org/10.1242/dev.10.4.622.

        Eventually other researchers reproduced: I. Wilmut et al., “Viable Offspring Derived from Fetal and Adult Mammalian Cells,” Nature 385, no. 6619 (February 27, 1997): 810–13, https://doi.org/10.1038/385810a0.

        Being able to grow ES cells: M. J. Evans and M. H. Kaufman, “Establishment in Culture of Pluripotential Cells from Mouse Embryos,” Nature 292, no. 5819 (July 9, 1981): 154–56, https://doi.org/10.1038/292154a0; G. R. Martin, “Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 78, no. 12 (December 1, 1981): 7634–38, https://doi.org/10.1073/pnas.78.12.7634.

        By experimenting with transcription factors in various combinations: Shinya Yamanaka, “Shinya Yamanaka: Biographical,” Nobel Prize online, https://www.nobelprize.org/prizes/medicine/2012/yamanaka/biographical/.

        One of the first and simplest: The lac operator and repressor system was discovered in the 1960s by Jacques Monod and Francois Jacob, and its history, along with another genetic switch in a bacteriophage by Andre Lwoff, resulted in the Nobel Prize in 1965. For an insightful history, see M. Lewis, “A Tale of Two Repressors,” Journal of Molecular Biology 409, no. 1 (May 27, 2011): 14–27, https://doi.org/10.1016/j.jmb.2011.02.023.

        You might expect that when cells divide: The British geneticist Adrian Bird showed that the methylation occurs mainly on islands with CG repeats. Because C pairs with a G, if you have a CpG island, the C and G on each strand will be directly across from a G and C on the opposite strand. Each C will then be diagonally across from the C on the other strand. When cells methylate a CpG island, they methylate the Cs on both strands. As soon as the cell divides, you have two molecules of DNA instead of one. Each of them has an original strand where the C is methylated, and a newly made strand in which it isn’t. There are special methyltransferase enzymes that will add a methyl group to a C only if the C diagonally across from it on the other strand already has one. This ensures that both strands end up methylated exactly in the same places they were before.

        It is a striking example: E. W. Tobi et al., “DNA Methylation as a Mediator of the Association Between Prenatal Adversity and Risk Factors for Metabolic Disease in Adulthood,” Science Advances 4, no. 1 (January 31, 2018): eaao4364, https://doi.org/10.1126/sciadv.aao4364; described in Carl Zimmer, “The Famine Ended 70 Years Ago, But Dutch Genes Still Bear Scars,” New York Times online, January 31, 2018, https://www.nytimes.com/2018/01/31/science/dutch-famine-genes.html. See also Mukherjee, The Gene, and Carey, The Epigenetics Revolution.

        When they looked at the methylation: For an expert popular account of Steve Horvath and epigenetic clocks, see Ingrid Wickelgren, “Epigenetic ‘Clocks’ Predict Animals’ True Biological Age,” Quanta, last modified August 17, 2022, https://www.quantamagazine.org/epigenetic-clocks-predict-animals-true-biological-age-20220817/. Some of the background on Horvath is taken from this article.

        He was able to identify 513 sites: M. E. Levine et al., “An Epigenetic Biomarker of Aging for Lifespan and Healthspan,” Aging 10, no. 4 (April 2018): 573–91, https://doi.org/10.18632/aging.101414.

        Methylation patterns are like a biological clock: S. Horvath and K. Raj, “DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing,” Nature Reviews Genetics 19, no. 6 (June 2018): 371–84, https://doi.org/10.1038/s41576-018-0004-3.

        Many other research groups developed: For an example, see G. Hannum et al., “Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates,” Molecular Cell 49, no. 2 (January 24, 2013): 359–67, https://doi.org/10.1016/j.molcel.2012.10.016.

        In fact, its methylation pattern: C. Kerepesi et al., “Epigenetic Clocks Reveal a Rejuvenation Event During Embryogenesis Followed by Aging,” Science Advances 7, no. 26 (June 25, 2021): eabg6082, https://doi.org/10.1126/sciadv.abg6082; C. Kerepesi et al., “Epigenetic Aging of the Demographically Non-Aging Naked Mole-Rat,” Nature Communications 13, no. 1 (January 17, 2022): 355, https://doi.org/10.1038/s41467-022-27959-9.

        Something about her diet: R. Kucharski et al., “Nutritional Control of Reproductive Status in Honeybees Via DNA Methylation,” Science 319, no. 5871 (March 28, 2008): 1827–30, https://doi.org/10.1126/science.1153069; M. Wojciechowski et al., “Phenotypically Distinct Female Castes in Honey Bees Are Defined by Alternative Chromatin States During Larval Development,” Genome Research 28, no. 10 (October 2018): 1532–42, https://doi.org/10.1101/gr.236497.118.

        The first is that germ-line cells: L. Moore et al., “The Mutational Landscape of Human Somatic and Germline Cells,” Nature 597, no. 7876 (September 2021): 381–86, https://doi.org/10.1038/s41586-021-03822-7.

        By puberty, this number: Kirkwood, Time of Our Lives, 167–78.

        And even within an embryo that is developing normally overall: A recent example is A. Lima et al., “Cell Competition Acts as a Purifying Selection to Eliminate Cells with Mitochondrial Defects During Early Mouse Development,” Nature Metabolism 3, no. 8 (August 2021): 1091–108, https://doi.org/10.1038/s42255-021-00422-7, but there are many ways in which the body rejects defective embryos from developing to term.

        This is because the pronuclei: Azim Surani, the scientist in Cambridge who first showed that a fertilized egg needed nuclei from both paternal and maternal germ-line cells to develop normally into a new animal, first suggested the idea of random, environmentally induced, and possibly deleterious epigenetic changes in our genome, which he called “epimutations.” Interview with the author, February 10, 2022.

        There were also the lesser-known: Joanna Klein, “Dolly the Sheep’s Fellow Clones, Enjoying Their Golden Years,” New York Times online, July 26, 2016, https://www.nytimes.com/2016/07/27/science/dolly-the-sheep-clones.html, reports on K. D. Sinclair et al., “Healthy Ageing of Cloned Sheep,” Nature Communications 7 (July 26, 2016): 12359, https://doi.org/10.1038/ncomms12359. An extensive analysis of cloned animals in 2017 showed no systematically lower life span or other problems, suggesting that at least some cloned animals live just as long and healthy lives as naturally conceived ones: J. P. Burgstaller and G. Brem, “Aging of Cloned Animals: A Mini-Review,” Gerontology 63, no. 5 (August 2017): 417–25, https://doi.org/10.1159/000452444.

        This route to rejuvenating: T. A. Rando and H. Y. Chang, “Aging, Rejuvenation, and Epigenetic Reprogramming: Resetting the Aging Clock,” Cell 148, no. 1/2 (January 20, 2012): 46–57, https://doi.org/10.1016/j.cell.2012.01.003; J. M. Freije and C. López-Otín, “Reprogramming Aging and Progeria,” Current Opinion in Cell Biology 24, no. 6 (December 2012): 757–64, https://doi.org/10.1016/j.ceb.2012.08.009.

        6. Recycling the Garbage

        Today more than fifty million people: “Dementia,” World Health Organization online, last modified March 15, 2023, https://www.who.int/news-room/fact-sheets/detail/dementia.

        In England and Wales: “Dementia Now Leading Cause of Death,” BBC News online, last modified November 14, 2016, https://www.bbc.co.uk/news/health-37972141.

        It is estimated: “One-Third of British People Born in 2015 ‘Will Develop Dementia,’” Guardian (US edition) online, last modified September 21, 2015, https://www.theguardian.com/society/2015/sep/21/one-third-of-people-born-in-2015-will-develop-dementia.

        Over half of those with dementia: A very engaging and moving book on Alzheimer’s disease is Joseph Jebelli, In Pursuit of Memory: The Fight Against Alzheimer’s (London: John Murray, 2017). The author grew up with a grandfather who suffered from the disease.

        There are many ways that the folding process: R. J. Ellis, “Assembly Chaperones: A Perspective,” Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 368, no. 1617 (March 25, 2013): 20110398, https://doi.org/10.1098/rstb.2011.0398.

        But as we age: M. Fournet, F. Bonté, and A. Desmoulière, “Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging,” Aging and Disease 9, no. 5 (October 2018): 880–900, https://doi.org/10.14336/AD.2017.1121.

        Cells have an elaborate sensor: For an accessible description of the unfolded protein response, see Evelyn Strauss, “Unfolded Protein Response: 2014 Albert Lasker Basic Medical Research Award,” Lasker Foundation online, accessed July 7, 2023, https://laskerfoundation.org/winners/unfolded-protein-response/#achievement. How exactly the sensor detects that there are too many unfolded proteins is still not entirely clear. I spoke with Dr. David Ron, a scientist at England’s Cambridge Institute for Medical Research, and one of the leaders in this area. One idea is that some chaperones—the proteins that help proteins to fold—are normally abundant and can bind to the sensors, which are then kept in a quiescent state. When the number of unfolded proteins increases, these chaperones are called to action, and they release the sensors, which then go on to trigger the unfolded protein response. S. Preissler and D. Ron, “Early Events in the Endoplasmic Reticulum Unfolded Protein Response,” Cold Spring Harbor Perspectives in Biology 11, no. 4 (April 1, 2019): a033894, https://doi.org/10.1101/cshperspect.a033894.

        In extreme cases: A. Fribley, K. Zhang, and R. J. Kaufman, “Regulation of Apoptosis by the Unfolded Protein Response,” in Apoptosis: Methods and Protocols, ed. P. Erhardt and A. Toth (Totowa, NJ: Humana Press, 2009), 191–204, https://doi.org/10.1007/978-1-60327-017-5_14.

        Eventually researchers discovered: K. D. Wilkinson, “The Discovery of Ubiquitin-Dependent Proteolysis,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 102, no. 43 (October 17, 2005): 15280–82, https://doi.org/10.1073/pnas.0504842102. There is a popular account of the discovery of the proteasome and the award of the Nobel Prize to Avram Hershko, Aaron Ciechanover, and Irwin Rose in “Popular Information: The Nobel Prize in Chemistry 2004,” Nobel Prize online, accessed July 4, 2023, https://www.nobelprize.org/prizes/chemistry/2004/popular-information/.

        Deliberately introducing defects: I. Saez and D. Vilchez, “The Mechanistic Links Between Proteasome Activity, Aging and Age-Related Diseases,” Current Genomics 15, no. 1 (February 15, 2014): 38–51, https://doi.org/10.2174/138920291501140306113344.

        By isolating strains: K. Takeshig et al., “Autophagy in Yeast Demonstrated with Proteinase-Deficient Mutants and Conditions for Its Induction,” Journal of Cell Biology 119, no. 2 (October 1992): 301–11, https://doi.org/10.1083/jcb.119.2.301; M. Tsukada and Y. Ohsumi, “Isolation and Characterization of Autophagy-Defective Mutants of Saccharomyces cerevisiae,” FEBS Letters 333, nos. 1/2 (October 25, 1993): 169–74, https://doi.org/10.1016/0014-5793(93)80398-e.

        It has so many essential functions: For a very reader-friendly description of autophagy, see “The Nobel Prize in Physiology or Medicine 2016: Yoshinori Ohsumi,” press release, Nobel Prize online, October 3, 2016, https://www.nobelprize.org/prizes/medicine/2016/press-release/.

        Integrated stress response or ISR: Two reviews of the integrated stress response are Harding, H. P. et al., “An integrated stress response regulates amino acid metabolism and resistance to oxidative stress,” Molecular Cell 11, no. 3 (March 2003): 619–33, https://doi.org/10.1016/s1097-2765(03)00105-9; and Pakos‐Zebrucka, K. et al. “The integrated stress response,” EMBO Reports 17, no.10 (2016): 1374–95, https://doi.org/10.15252/embr.201642195. Its discovery in amino acid starvation is described in Dever, T. E. et al., “Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast,” Cell 68. no. 3 (February 1992): 585–96, https://doi.org/10.1016/0092-8674(92)90193-g and that in the unfolded protein response in Harding, H. P. et al., “PERK is essential for translational regulation and cell survival during the unfolded protein response,” Molecular Cell 5, no. 5 (May 2000): 897-904, https://doi.org/10.1016/s1097-2765(00)80330-5.

        If you delete the genes: M. Delépine et al., “EIF2AK3, Encoding Translation Initiation Factor 2-Alpha Kinase 3, Is Mutated in Patients with Wolcott-Rallison Syndrome,” Nature Genetics 25, no. 4 (August 2000): 406–9, https://doi.org/10.1038/78085; H. P. Harding et al., “Diabetes Mellitus and Exocrine Pancreatic Dysfunction in Perk-/- Mice Reveals a Role for Translational Control in Secretory Cell Survival,” Molecular Cell 7, no. 6 (June 2001): 1153–63, https://doi.org/10.1016/s1097-2765(01)00264-7.

        They also extend life span: S. J. Marciniak et al., “CHOP Induces Death by Promoting Protein Synthesis and Oxidation in the Stressed Endoplasmic Reticulum,” Genes & Development 18, no. 24 (December 15, 2004): 3066–77, https://doi.org/10.1101/gad.1250704; M. D’Antonio et al., “Resetting Translational Homeostasis Restores Myelination in Charcot-Marie-Tooth Disease Type 1B Mice,” Journal of Experimental Medicine 210, no. 4 (April 8, 2013): 821–38, https://doi.org/10.1084/jem.20122005; P. Tsaytler et al., “Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis,” Science 332, no. 6025 (April 1, 2011): 91–94, https://doi.org/10.1126/science.1201396; H. Q. Jiang et al., “Guanabenz Delays the Onset of Disease Symptoms, Extends Lifespan, Improves Motor Performance and Attenuates Motor Neuron Loss in the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis,” Neuroscience 277 (March 2014): 132–38, https://doi.org/10.1016/j.neuroscience.2014.03.047; I. Das et al., “Preventing Proteostasis Diseases by Selective Inhibition of a Phosphatase Regulatory Subunit,” Science 348, no. 6231 (April 10, 2015): 239–42, https://doi.org/10.1126/science.aaa4484.

        whether they even affected ISR directly: A. Crespillo-Casado et al., “PPP1R15A-Mediated Dephosphorylation of eIF2α Is Unaffected by Sephin1 or Guanabenz,” eLife 6 (April 27, 2017): e26109, https://doi.org/10.7554/eLife.26109.

        According to their studies, deleting the genes: T. Ma et al., “Suppression of eIF2α Kinases Alleviates Alzheimer’s Disease–Related Plasticity and Memory Deficits,” Nature Neuroscience 16, no. 9 (September 2013): 1299–305, https://doi.org/10.1038/nn.3486.

        Even more surprisingly: Adam Piore, “The Miracle Molecule That Could Treat Brain Injuries and Boost Your Fading Memory,” MIT Technology Review 124, no. 5 (September/October 2021): https://www.technologyreview.com/2021/08/25/1031783/isrib-molecule-treat-brain-injuries-memory/; C. Sidrauski et al., “Pharmacological Brake-Release of mRNA Translation Enhances Cognitive Memory,” eLife 2 (2013): e00498,https://doi.org/10.7554/eLife.00498; C. Sidrauski et al., “The Small Molecule ISRIB Reverses the Effects of Eif2α Phosphorylation on Translation and Stress Granule Assembly,” eLife 4 (2015): e05033, https://doi.org/10.7554/eLife.05033; A. Chou et al., “Inhibition of the Integrated Stress Response Reverses Cognitive Deficits After Traumatic Brain Injury,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 114, no. 31 (July 10, 2017): E6420–E6426, https://doi.org/10.1073/pnas.1707661114.

        Nahum Sonenberg: Nahum Sonenberg, email message to the author, January 12, 2023.

        The key person: D. M. Asher with M. A. Oldstone, Carleton Gajdusek, 1923–2008: Biographical Memoirs (Washington, DC: US National Academy of Sciences, 2013), http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/gajdusek-d-carleton.pdf; Caroline Richmond, “Obituary: Carleton Gajdusek,” Guardian (US edition) online, last modified February 25, 2009, https://www.theguardian.com/science/2009/feb/25/carleton-gajdusek-obituary.

        On the strength of this: Frank Macfarlane Burnet studied how the immune system distinguishes between our own cells and foreign invaders and shared the 1960 Nobel Prize with Peter Medawar.

        “had an intelligence quotient”: Jay Ingram, Fatal Flaws: How a Misfolded Protein Baffled Scientists and Changed the Way We Look at the Brain (New Haven, CT: Yale University Press, 2013), as quoted in M. Goedert, “M. Prions and the Like,” Brain 137, no. 1 (January 2014): 301–5, https://doi.org/10.1093/brain/awt179. See also J. Farquhar and D. C. Gajdusek, eds., Early Letters and Field-Notes from the Collection of D. Carleton Gajdusek (New York: Raven Press, 1981).

        This was a recent practice among the Fore: J. Goodfield, “Cannibalism and Kuru,” Nature 387 (June 26, 1997): 841, https://doi.org/10.1038/43043; R. Rhodes, “Gourmet Cannibalism in New Guinea Tribe,” Nature 389 (September 4, 1997): 11, https://doi.org/10.1038/37853.

        He showed no remorse: Ivin Molotsky, “Nobel Scientist Pleads Guilty to Abusing Boy,” New York Times online, February 19, 1997, https://www.nytimes.com/1997/02/19/us/nobel-scientist-pleads -guilty-to-abusing-boy.html. Two articles shed light on the sociology of Gajdusek’s extended family: C. Spark, “Family Man: The Papua New Guinean Children of D. Carleton Gajdusek,” Oceania 77, no. 3 (November 2007): 355–69, and C. Spark, “Carleton’s Kids: The Papua New Guinean Children of D. Carleton Gajdusek,” Journal of Pacific History 44, no. 1 (June 2009): 1–19.

        The result is that the misfolded form: S. B. Prusiner, “Prions,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 95, no. 23 (November 10, 1998): 13363–83, https://doi.org/10.1073/pnas.95.23.13363.

        Alzheimer himself autopsied: A good review of the beta-amyloid hypothesis is R. E. Tanzi and L. Bertram, “Twenty Years of the Alzheimer’s Disease Amyloid Hypothesis: A Genetic Perspective,” Cell 120, no. 4 (February 25, 2005): 545–55, https://doi.org/10.1016/j.cell.2005.02.008.

        In 1984, scientists identified: G. G. Glenner and C. W. Wong, “Alzheimer’s Disease and Down’s Syndrome: Sharing of a Unique Cerebrovascular Amyloid Fibril Protein,” Biochemical and Biophysical Research Communications 122, no. 3 (August 16, 1984): 1131–35, https://doi.org/10.1016/0006-291x(84)91209-9.

        They turn out to have mutations: A. Goate et al., “Segregation of a Missense Mutation in the Amyloid Precursor Protein Gene with Familial Alzheimer’s Disease,” Nature 349, no. 6311 (February 21, 1991): 704–6, https://doi.org/10.1038/349704a0; M. C. Chartier-Harlin et al., “Early-Onset Alzheimer’s Disease Caused by Mutations at Codon 717 of the Beta-amyloid Precursor Protein Gene,” Nature 353, no. 6347 (October 31, 1991): 844–46, https://doi.org/10.1038/353844a0.

        Perhaps these tau filaments: Jebelli, In Pursuit of Memory.

        Although scientists were skeptical at first: P. Poorkaj et al., “Tau Is a Candidate Gene for Chromosome 17 Frontotemporal Dementia,” Annals of Neurology 43, no. 6 (June 1998): 815–25, https://doi.org/10.1002/ana.410430617; M. Hutton et al., “Association of Missense and 5’-splice-site Mutations in Tau with the Inherited Dementia FTDP-17,” Nature 393, no. 6686 (June 18, 1998): 702–5, https://doi.org/10.1038/31508; M. G. Spillantini et al., “Mutation in the Tau Gene in Familial Multiple System Tauopathy with Presenile Dementia,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 95, no. 13 (June 23, 1998): 7737–41, https://doi.org/10.1073/pnas.95.13.7737.

        Rather, the aberrant: S. H. Scheres et al., “M. Cryo-EM Structures of Tau Filaments,” Current Opinion in Structural Biology 64, 17–25 (2020). https://doi.org/10.1016/j.sbi.2020.05.011; M. Schweighauser et al., “Structures of α-synuclein Filaments from Multiple System Atrophy,” Nature 585, no. 7825 (September 2020): 464–69, https://doi.org/10.1038/s41586-020-2317-6; Y. Yang et al., “Cryo-EM Structures of Amyloid-β 42 Filaments from Human Brains,” Science 375, no. 6577 (January 13, 2022): 167–72, https://doi.org/10.1126/science.abm7285.

        We do know that if you delete the genes: H. Zheng et al., “Beta-Amyloid Precursor Protein-Deficient Mice Show Reactive Gliosis and Decreased Locomotor Activity,” Cell 81, no. 4 (May 19, 1995): 525–31, https://doi.org/10.1016/0092-8674(95)90073-x.

        There is a growing feeling: M. Goedert, M. Masuda-Suzukake, and B. Falcon, “Like Prions: The Propagation of Aggregated Tau and α-synuclein in Neurodegeneration,” Brain 140, no. 2 (February 2017): 266–78, https://doi.org/10.1093/brain/aww230; A. Aoyagi et al., “Aβ and Tau Prion-like Activities Decline with Longevity in the Alzheimer’s Disease Human Brain,” Science Translational Medicine 11, no. 490 (May 1, 2019): eaat8462, https://doi.org/10.1126/scitranslmed.aat8462; M. Jucker and L. C. Walker, “Self-propagation of Pathogenic Protein Aggregates in Neurodegenerative Diseases,” Nature 501, no. 7465 (September 5, 2013): 45–51, https://doi.org/10.1038/nature12481.

        Very recently, therapies: C. H. van Dyck et al., “Lecanemab in Early Alzheimer’s Disease,” New England Journal of Medicine 388, no. 1 (January 5, 2023): 9–21, https://doi.org/10.1056/nejmoa2212948; M. A. Mintun et al, “Donanemab in Early Alzheimer’s Disease,” New England Journal of Medicine 384 (May 6, 2021): 1691–1704, https://doi.org/10.1056/NEJMoa2100708. See also the more recent discussion by S. Reardon, “Alzheimer’s Drug Donanemab: What Promising Trial Means for Treatments,” Nature 617 (May 4, 2023): 232–33, https://doi.org/10.1038/d41586-023-01537-5.

        7. Less Is More

        Now, in a time of plenty: J. V. Neel, “Diabetes Mellitus: A ‘Thrifty’ Genotype Rendered Detrimental by ‘Progress,’” American Journal of Human Genetics 14, no. 4 (December 1962): 353–62, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932342/.

        “drifty genes”: J. R. Speakman, “Thrifty Genes for Obesity and the Metabolic Syndrome—Time to Call off the Search?,” Diabetes and Vascular Disease Research 3, no. 1 (May 2006): 7–11, https://doi.org/10.3132/dvdr.2006.010; J. R. Speakman, “Evolutionary Perspectives on the Obesity Epidemic: Adaptive, Maladaptive, and Neutral Viewpoints,” Annual Review of Nutrition 33, no. 1 (July 2013): 289–317, https://doi.org/10.1146/annurev-nutr-071811-150711.

        The first studies to test this: Two surveys of the field from the mid-2000s are E. J. Masoro, “Overview of Caloric Restriction and Ageing,” Mechanisms of Ageing and Development 126, no. 9 (September 2005): 913–22, https://doi.org/10.1016/j.mad.2005.03.012, and B. K. Kennedy, K. K. Steffen, and M. Kaeberlein, “Ruminations on Dietary Restriction and Aging,” Cellular and Molecular Life Sciences 64, no. 11 (June 2007): 1323–28, doi: 10.1007/s00018-007-6470-y.

        Moreover, they appeared to have delayed: R. Weindruch and R. L. Walford, The Retardation of Aging and Disease by Dietary Restriction (Springfield, IL: C. C. Thomas, 1988), as quoted in Kennedy, Steffen, and Kaeberlein, “Ruminations,” 1323–28; L. Fontana and L. Partridge, “Promoting Health and Longevity Through Diet: From Model Organisms to Humans,” Cell 161, no. 1 (March 26, 2015): 106–18, https://doi.org/10.1016/j.cell.2015.02.020.

        In 2009: R. J. Colman et al., “Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys,” Science 325, no. 5937 (July 10, 2009): 201–4, https://doi.org/10.1126/science.1173635.

        But this was contradicted: J. A. Mattison et al., “Impact of Caloric Restriction on Health and Survival in Rhesus Monkeys from the NIA Study,” Nature 489, no. 7415 (September 13, 2012): 318–21, https://doi.org/10.1038/nature11432. See the accompanying commentary by S. N. Austad, “Aging: Mixed Results for Dieting Monkeys,” Nature 489, no. 7415 (September 13, 2012): 210–11, https://doi.org/10.1038/nature11484, and a related news article in the same journal, A. Maxmen, “Calorie Restriction Falters in the Long Run,” Nature 488, no. 7413 (August 30, 2012), 569, https://doi.org/10.1038/488569a.

        Any evidence for the effect of CR: Laura A. Cassiday, “The Curious Case of Caloric Restriction,” Chemical & Engineering News online, last modified August 3, 2009, https://cen.acs.org/articles/87/i31/Curious-Case-Caloric-Restriction.html.

        There is 5:2 fasting: Gideon Meyerowitz-Katz, “Intermittent Fasting Is Incredibly Popular. But Is It Any Better Than Other Diets?,” Guardian (US edition) online, last modified January 1, 2020, https://www.theguardian.com/commentisfree/2020/jan/02/intermittent-fasting-is-incredibly-popular-but-is-it-any-better-than-other-diets.

        They concluded that matching: V. Acosta-Rodríguez et al., “Circadian Alignment of Early Onset Caloric Restriction Promotes Longevity in Male C57BL/6J Mice,” Science 376, no. 6598 (May 5, 2022): 1192–202, https://doi.org/10.1126/science.abk0297. See the accompanying commentary in S. Deota and S. Panda, “Aligning Mealtimes to Live Longer,” Science 376, no. 6598 (May 5, 2022): 1159–60, https://doi.org/10.1126/science.adc8824.

        In particular, sleep deprivation: Matthew Walker, Why We Sleep: The New Science of Sleep and Dreams (New York: Scribner, 2017). See in particular chapter 8 for its effects on aging.

        According to a recent study: A. Vaccaro et al., “Sleep Loss Can Cause Death Through Accumulation of Reactive Oxygen Species in the Gut,” Cell 181, no. 6 (June 11, 2020): 1307–28.e15, https://doi.org/10.1016/j.cell.2020.04.049. See also a popular discussion of this in Veronique Greenwood, “Why Sleep Deprivation Kills,” Quanta, last modified June 4, 2020, https://www.quantamagazine.org/why-sleep-deprivation-kills-20200604/, and Steven Strogatz, “Why Do We Die Without Sleep?,” The Joy of Why (podcast, transcription), March 22, 2022, https://www.quantamagazine.org/why-do-we-die-without-sleep-20220322/.

        In one study: C.-Y Liao et al., “Genetic Variation in Murine Lifespan Response to Dietary Restriction: From Life Extension to Life Shortening,” Aging Cell 9, no. 1 (February 2010): 92–95, https://doi.org/10.1111/j.1474-9726.2009.00533.x.

        He felt that animals: L. Hayflick, “Dietary Restriction: Theory Fails to Satiate,” Science 329, no. 5995 (August 27, 2010): 1014, https://www.science.org/doi/10.1126/science.329.5995.1014; L. Fontana, L. Partridge, and V. Longo, “Dietary Restriction: Theory Fails to Satiate—Response,” Science 329, no. 5995 (August 27, 2010): 1015, https://www.science.org/doi/10.1126/science.329.5995.1015.

        Moreover, when scientists: Saima May Sidik, “Dietary Restriction Works in Lab Animals, But It Might Not Work in the Wild,” Scientific American online, last modified December 20, 2022, https://www.scientificamerican.com/article/dietary-restriction-works-in-lab-animals-but-it-might-not-work-in-the-wild/.

        On a more granular level: Fontana and Partridge, “Promoting Health and Longevity,” 106–18.

        Among its other reported downsides: J. R. Speakman and S. E. Mitchell, “Caloric Restriction,” Molecular Aspects of Medicine 32, no. 3 (June 2011): 159–221, https://doi.org/10.1016/j.mam.2011.07.001.

        In 1964: For an intriguing history of the discovery of rapamycin, see Bethany Halford, “Rapamycin’s Secrets Unearthed,” Chemical & Engineering News online, last modified July 18, 2016, https://cen.acs.org/articles/94/i29/Rapamycins-Secrets-Unearthed.html, which is the basis for the next few paragraphs. See also David Stipp, “A New Path to Longevity,” Scientific American online, last modified January 1, 2012), https://www.scientificamerican.com/article/a-new-path-to-longevity/.

        Here our story shifts to Basel, Switzerland: U. S. Neill, “A Conversation with Michael Hall,” Journal of Clinical Investigation 127, no. 11 (November 1, 2017): 3916–17, https://doi.org/10.1172/jci97760; C. L. Williams, “Talking TOR: A Conversation with Joe Heitman and Rao Movva,” JCI Insight 3, no. 4 (February 22, 2018): e99816, https://doi.org/10.1172/jci.insight.99816.

        How cell size and shape are controlled: M. B. Ginzberg, R. Kafri, and M. Kirschner, “On Being the Right (Cell) Size,” Science 348, no. 6236 (May 15, 2015): 1245075, https://doi.org/10.1126/science.1245075.

        His paper was rejected: N. C. Barbet et al., “TOR Controls Translation Initiation and Early G1 Progression in Yeast,” Molecular Biology of the Cell 7, no. 1 (January 1, 1996): 25–42, https://doi.org/10.1091/mbc.7.1.25. For Hall’s recollections about the early days and the difficulty of getting the scientific community to accept that cell growth was actively controlled, see M. N. Hall, “TOR and Paradigm Change: Cell Growth Is Controlled,” Molecular Biology of the Cell 27, no. 18 (September 15, 2016): 2804–6, https://doi.org/10.1091/mbc.E15-05-0311.

        We can now see: D. Papadopoli et al., “mTOR as a Central Regulator of Lifespan and Aging,” F1000 Research 8 (July 2, 2019): 998, https://doi.org/10.12688/f1000research.17196.1; G. Y. Liu and D. M. Sabatini, “mTOR at the Nexus of Nutrition, Growth, Ageing and Disease,” Nature Reviews Molecular Biology 21, no. 4 (April 2020): 183–203, https://doi.org/10.1038/s41580-019-0199-y.

        It turns out that both a defective TOR: L. Partridge, M. Fuentealba, and B. K. Kennedy, “The Quest to Slow Ageing Through Drug Discovery,” Nature Reviews Drug Discovery 19, no. 8 (August 2020): 513–32, https://doi.org/10.1038/s41573-020-0067-7.

        Strikingly, even short courses: D. E. Harrison et al., “Rapamycin Fed Late in Life Extends Lifespan in Genetically Heterogeneous Mice,” Nature 460, no. 7253 (July 16, 2009): 392–95, https://doi.org/10.1038/nature08221; see the accompanying commentary by M. Kaeberlein and R. K. Kennedy, “Ageing: A Midlife Longevity Drug?,” Nature 460, no. 7253 (July 16, 2009): 331–32, https://doi.org/10.1038/460331a.

        Rapamycin also delayed: F. M. Menzies and D. C. Rubinsztein, “Broadening the Therapeutic Scope for Rapamycin Treatment,” Autophagy 6, no. 2 (February 2010): 286–87, https://doi.org/10.4161/auto.6.2.11078.

        While rapamycin inhibits: K. Araki et al., “mTOR Regulates Memory CD8 T-cell Differentiation,” Nature 460, no. 7251 (July 2, 2009): 108–12, https://doi.org/10.1038/nature08155.

        Another study, from 2009, showed that administering rapamycin: C. Chen et al. “mTOR Regulation and Therapeutic Rejuvenation of Aging Hematopoietic Stem Cells,” Science Signaling 2, no. 98 (November 24, 2009): ra75, https://doi.org/10.1126/scisignal.2000559.

        As one might expect: A. M. Eiden, “Molecular Pathways: Increased Susceptibility to Infection Is a Complication of mTOR Inhibitor Use in Cancer Therapy,” Clinical Cancer Research 22, no. 2 (January 15, 2016): 277–83, https://doi.org/10.1158/1078-0432.ccr-14-3239.

        “warrants caution”: A. J. Pagán et al., “mTOR-Regulated Mitochondrial Metabolism Limits Mycobacterium-Induced Cytotoxicity, Cell 185, no. 20 (September 29, 2022): 3720–38, e13, https://doi.org/10.1016/j.cell.2022.08.018.

        “I suppose the rapamycin advocates”: Michael Hall, email message to the author, September 29, 2022.

        The consortium will analyze: K. E. Creevy et al., “An Open Science Study of Ageing in Companion Dogs,” Nature 602, no. 7895 (February 2022): 51–57, https://doi.org/10.1038/s41586-021-04282-9.

        They go on to suggest: M. V. Blagosklonny and M. N. Hall, “Growth and Aging: A Common Molecular Mechanism,” Aging 1, no. 4 (April 20, 2009): 357–62, https://doi.org/10.18632/aging.100040.

        8. Lessons from a Lowly Worm

        A study of 2,700 Danish twins: A. M. Herskind et al., “The Heritability of Human Longevity: A Population-Based Study of 2,872 Danish Twin Pairs Born 1870–1900,” Human Genetics 97, no. 3 (March 1996): 319–23, https://doi.org/10.1007/BF02185763.

        Once he and Crick: Their views and plans are outlined in a 1971 report by Francis Crick and Sydney Brenner. See F. H. C. Crick and S. Brenner, Report to the Medical Research Council: On the Work of the Division of Molecular Genetics, Now the Division of Cell Biology, from 1961–1971 (Cambridge, UK: MRC Laboratory of Molecular Biology, November 1971), https://profiles.nlm.nih.gov/spotlight/sc/catalog/nlm:nlmuid-101584582X71-doc.

        Scientists went on to identify: For this work, Brenner was awarded the 2002 Nobel Prize in Physiology or Medicine, along with two of his former colleagues, John Sulston and Robert Horvitz. “The Nobel Prize in Physiology or Medicine 2002,” Nobel Prize online, accessed July 22, 2023, https://www.nobelprize.org/prizes/medicine/2002/summary/.

        As Hirsh recalled: David Hirsh, email message to the author, August 1, 2022.

        Instead, it turned out: D. B. Friedman and T. E. Johnson, “A Mutation in the age-1 Gene in Caenorhabditis elegans Lengthens Life and Reduces Hermaphrodite Fertility,” Genetics 118, no. 1 (January 1, 1988): 75–86, https://doi.org/10.1093/genetics/118.1.75.

        Johnson went on to show: T. E. Johnson, “Increased Life-Span of age-1 Mutants in Caenorhabditis elegans and Lower Gompertz Rate of Aging,” Science 249, no. 4971 (August 24, 1990): 908–12, https://doi.org/10.1126/science.2392681.

        Even after it finally appeared in the prestigious journal Science in 1990: David Stipp’s book The Youth Pill: Scientists at the Brink of an Anti-Aging Revolution (New York: Penguin, 2010) contains an engaging and detailed account of the history, personalities, and science behind the discovery of aging mutants.

        she felt inspired: Two firsthand accounts by Kenyon and Johnson of their discoveries are C. Kenyon, “The First Long-Lived Mutants: Discovery of the Insulin/IGF-1 Pathway for Ageing,” Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1561 (January 12, 2001): 9–16, https://doi.org/10.1098/rstb.2010.0276, and T. E. Johnson, “25 Years After age-1: Genes, Interventions and the Revolution in Aging Research,” Experimental Gerontology 48, no. 7 (July 2013): 640–43, https://doi.org/10.1016/j.exger.2013.02.023.

        her 1993 paper: C. Kenyon et al., “A C. elegans Mutant That Lives Twice as Long as Wild Type,” Nature 366, no. 6454 (December 2, 1993): 461–64, https://doi.org/10.1038/366461a0.

        Apart from her stellar academic pedigree: Stipp, Youth Pill.

        “I thought, ‘Oh, gosh’”: Ibid.

        As it turns out, the age-1 gene originally identified: The key papers for the identity of some of the key genes are (daf-2) K. D. Kimura, H. A. Tissenbaum, and G. Ruvkun, “daf-2, an Insulin Receptor-Like Gene That Regulates Longevity and Diapause in Caenorhabditis elegans,” Science 277, no. 5328 (August 15, 1997): 942–46, https://doi.org/10.1126/science.277.5328.942; (age-1, which turned out to be the same as daf-23), J. Z. Morris, H. A. Tissenbaum, and G. Ruvkun, “A Phosphatidylinositol-3-OH Kinase Family Member Regulating Longevity and Diapause in Caenorhabditis elegans, Nature 382, no. 6591 (August 8, 1996): 536–39, https://doi.org/10.1038/382536a0; (daf-16), S. Ogg et al., “The Fork Head Transcription Factor DAF-16 Transduces Insulin-like Metabolic and Longevity Signals in C. elegans,” Nature 389, no. 6654 (October 30, 1997): 994–99, https://doi.org/10.1038/40194, and K. Lin et al., “daf-16: An HNF-3/Forkhead Family Member That Can Function to Double the Life-Span of Caenorhabditis elegans,” Science 278, no. 5341 (November 14, 1997): 1319–22, https://doi.org/10.1126/science.278.5341.1319.

        “constitute a treasure trove”: C. J. Kenyon, “The Genetics of Ageing,” Nature 464, no. 7288 (March 25, 2010): 504–12, https://doi.org/10.1038/nature08980.

        Among the many reasons for this: H. Yan et al., “Insulin Signaling in the Long-Lived Reproductive Caste of Ants,” Science 377, no. 6610 (September 1, 2022): 1092–99, https://doi.org/10.1126/science.abm8767.

        However, if the experiment is repeated—but this time using a strain: E. Cohen et al., “Opposing Activities Protect Against Age-Onset Proteotoxicity,” Science 313, no. 5793 (September 15, 2006): 1604–10, https://doi.org/10.1126/science.1124646.

        Deleting the gene that codes for a protein: D. J. Clancy et al., “Extension of Life-span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein,” Science 292, no. 5514 (April 6, 2001): 104–6, https://doi.org/10.1126/science.1057991.

        The IGF-1 receptor is essential: M. Holzenberger et al., “IGF-1 Receptor Regulates Lifespan and Resistance to Oxidative Stress in Mice,” Nature 421, no. 6919 (January 9, 2003): 182–87, https://doi.org/10.1038/nature01298; G. J. Lithgow and M. S. Gill, “Physiology: Cost-Free Longevity in Mice,” Nature 421, no. 6919 (January 9, 2003): 125–26, https://doi.org/10.1038/421125a.

        An analysis of subjects: D. A. Bulger et al., “Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies,” G3 Genes|Genomes|Genetics 7, no. 1 (January 1, 2017): 257–68, https://doi.org/10.1534/g3.116.037184.

        Mutations known to impair IGF-1: Y. Suh et al., “Functionally Significant Insulin-like Growth Factor I Receptor Mutations in Centenarians,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 105, no. 9 (March 4, 2008): 3438–42, https://doi.org/10.1073/pnas.0705467105; T. Kojima et al., “Association Analysis Between Longevity in the Japanese Population and Polymorphic Variants of Genes Involved in Insulin and Insulin-like Growth Factor 1 Signaling Pathways,” Experimental Gerontology 39, nos. 11/12 (November/December 2004): 1595–98, https://doi.org/10.1016/j.exger.2004.05.007.

        Variants in proteins: See references in Kenyon, “Genetics of Ageing,” 504–12.

        Exactly as you might predict: S. Honjoh et al., “Signalling Through RHEB-1 Mediates Intermittent Fasting-Induced Longevity in C. elegans,” Nature 457, no. 7230 (February 5, 2009): 726–30, https://doi.org/10.1038/nature07583.

        This means that caloric restriction: B. Lakowski and S. Hekimi, “The Genetics of Caloric Restriction in Caenorhabditis elegans,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 95, no. 22 (October 27, 1998): 13091–96, https://doi.org/10.1073/pnas.95.22.13091.

        When worms were subjected: D. W. Walker et al., “Evolution of Lifespan in C. elegans,” Nature 405, no. 6784 (May 18, 2000): 296–97, https://doi.org/10.1038/35012693.

        To understand the difference: Stephen O’Rahilly, conversation with the author, August 11, 2022.

        Because of recent advances: H. R. Bridges et al., “Structural Basis of Mammalian Respiratory Complex I Inhibition by Medicinal Biguanides,” Science 379, no. 6630 (January 26, 2023): 351–57, https://www.science.org/doi/10.1126/science.ade3332.

        Disrupting our ability to utilize glucose: G. Rena, D. G. Hardie, and E. R. Pearson, “The Mechanisms of Action of Metformin,” Diabetologia 60, no. 9 (September 2017): 1577–85, https://doi.org/10.1007/s00125-017-4342-z; T. E. LaMoia and G. I. Shulman, “Cellular and Molecular Mechanisms of Metformin Action,” Endocrine Reviews 42, no. 1 (February 2021): 77–96, https://doi.org/10.1210/endrev/bnaa023.

        Although some studies have claimed: L. C. Gormsen et al., “Metformin Increases Endogenous Glucose Production in Non-Diabetic Individuals and Individuals with Recent-Onset Type 2 Diabetes,” Diabetologia 62, no. 7 (July 2019): 1251–56, https://doi.org/10.1007/s00125-019-4872-7.

        According to another study, the drug alters: H. Wu et al., “Metformin Alters the Gut Microbiome of Individuals with Treatment-Naive Type 2 Diabetes, Contributing to the Therapeutic Effects of the Drug,” Nature Medicine 23, no. 7 (July 2017): 850–58, https://doi.org/10.1038/nm.4345.

        Steve O’Rahilly’s work demonstrates: A. P. Coll et al., “GDF15 Mediates the Effects of Metformin on Body Weight and Energy Balance,” Nature 578, no. 7795 (February 2020): 444–48, https://doi.org/10.1038/s41586-019-1911-y.

        In the first, from the National Institute on Aging, long-term treatment: A. Martin-Montalvo et al., “Metformin Improves Healthspan and Lifespan in Mice,” Nature Communications 4 (2013): 2192, https://doi.org/10.1038/ncomms3192.

        A second study, in humans: C. A. Bannister et al., “Can People with Type 2 Diabetes Live Longer Than Those Without? A Comparison of Mortality in People Initiated with Metformin or Sulphonylurea Monotherapy and Matched, Non-Diabetic Controls,” Diabetes, Obesity and Metabolism 16, no. 11 (November 2014): 1165–73, https://doi.org/10.1111/dom.12354.

        One, from 2016, concluded that metformin: M. Claesen et al., “Mortality in Individuals Treated with Glucose-Lowering Agents: A Large, Controlled Cohort Study,” Journal of Clinical Endocrinology & Metabolism 101, no. 2 (February 1, 2016): 461–69, https://doi.org/10.1210/jc.2015-3184.

        Curiously, some of the toxicity: L. Espada et al., “Loss of Metabolic Plasticity Underlies Metformin Toxicity in Aged Caenorhabditis Elegans,” Nature Metabolism 2, no. 11 (November 2020): 1316–31, https://doi.org/10.1038/s42255-020-00307-1.

        Metformin also undermined: A. R. Konopka et al., “Metformin Inhibits Mitochondrial Adaptations to Aerobic Exercise Training in Older Adults,” Aging Cell 18, no. 1 (February 2019): e12880, https://doi.org/10.1111/acel.12880.

        And one study claimed that diabetics: Y. C. Kuan et al., “Effects of Metformin Exposure on Neurodegenerative Diseases in Elderly Patients with Type 2 Diabetes Mellitus,” Progress in Neuropsychopharmacol and Biological Psychiatry 79, pt. B (October 3, 2017): 1777–83 (2017), https://doi.org/10.1016/j.pnpbp.2017.06.002.

        The study’s goal is to see: “The Tame Trial: Targeting the Biology of Aging: Ushering a New Era of Interventions,” American Federation for Aging Research (AFAR) online, accessed August 1, 2023, https://www.afar.org/tame-trial.

        That was exactly the skepticism: A detailed account of how Guarente became involved in this research and his laboratory’s early discoveries is found in his book, Lenny Guarente, Ageless Quest: One Scientist’s Search for Genes That Prolong Youth (Cold Spring Harbor, NY: Cold Spring Harbor Press, 2003).

        Increasing the amount of Sir2: M. Kaeberlein, M. McVey, and L. Guarente, “The SIR2/3/4 Complex and SIR2 Alone Promote Longevity in Saccharomyces cerevisiae by Two Different Mechanisms,” Genes and Development 13, no. 19, October 1, 1994, 2570–80, https://doi.org/10.1101/gad.13.19.2570.

        They soon found, with mounting excitement: B. Rogina and S. L. Helfand, “Sir2 Mediates Longevity in the Fly Through a Pathway Related to Calorie Restriction,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 101, no. 45 (November 2004): 15998–6003, https://doi.org/10.1073/Pnas.040418410; H. A. Tissenbaum and L. Guarente, “Increased Dosage of a Sir-2 Gene Extends Lifespan in Caenorhabditis Elegans,” Nature 410, no. 6825 (March 8, 2001): 227–30, https://doi.org/10.1038/35065638.

        Sir2 turns out to be a deacetylase: S. Imai et al., “Transcriptional Silencing and Longevity Protein Sir2 Is an NAD-Dependent Histone Deacetylase,” Nature 403, no. 6771 (February 17, 2000): 795–800, https://doi.org/10.1038/35001622; W. Dang et al., “Histone H4 Lysine 16 Acetylation Regulates Cellular Lifespan,” Nature 459, no. 7248 (June 11, 2009): 802–7, https://doi.org/10.1038/nature08085.

        Sure enough, in both flies and yeast: S. J. Lin, P. A. Defossez, and L. Guarente, “Requirement of NAD and SIR2 for Life-span Extension by Calorie Restriction in Saccharomyces cerevisiae,” Science 289, no. 5487 (September 22, 2000): 2126–28, https://doi.org/10.1126/science.289.5487.2126; Rogina and Helfand, “Sir2 Mediates Longevity in the Fly,” 15998–6003.

        “When single genes are changed”: L. Guarente and C. Kenyon, “Genetic Pathways That Regulate Ageing in Model Organisms,” Nature 408, no. 6809 (November 9, 2000): 255–62, https://doi.org/10.1038/35041700.

        Finally, here was scientific evidence: K. T. Howitz. et al., “Small Molecule Activators of Sirtuins Extend Saccharomyces cerevisiae Lifespan,” Nature 425, no. 6809 (November 9, 2000): 191–96, https://doi.org/10.1038/nature01960.

        Although the mice remained overweight: J. A. Baur et al., “Resveratrol Improves Health and Survival of Mice on a High-Calorie Diet,” Nature 444, no. 7117 (November 16, 2006): 337–42, https://doi.org/10.1038/nature05354; M. Lagouge et al., “Resveratrol Improves Mitochondrial Function and Protects Against Metabolic Disease by Activating SIRT1 and PGC-1alpha,” Cell 127, no. 6 (December 15, 2006): 1109–22, https://doi.org/10.1016/j.cell.2006.11.013.

        Among other things: M. Kaeberlein et al., “Sir2-Independent Life Span Extension by Calorie Restriction in Yeast,” PLoS Biology 2, no. 9 (September 2004): E296, https://doi.org/10.1371/journal.pbio.0020296.

        Not only that, but they did not find: M. Kaeberlein et al., “Substrate-Specific Activation of Sirtuins by Resveratrol,” Journal of Biological Chemistry 280, no. 17 (April 2005): 17038–45, https://doi.org/10.1074/jbc.M500655200.

        Pharmaceutical companies do not usually: M. Pacholec et al., “SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1,” Journal of Biological Chemistry 285, no. 11 (March 2010): 8340–51, https://doi.org/10.1074/jbc.M109.088682.

        Five years after the sale: John La Mattina, “Getting the Benefits of Red Wine from a Pill? Not Likely,” Forbes online, last modified March 19, 2013, https://www.forbes.com/sites/johnlamattina/2013/03/19/getting-the-benefits-of-red-wine-from-a-pill-not-likely/.

        This led to another commentary: B. P. Hubbard et al., “Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators,” Science 339, no. 6124 (March 8, 2013): 1216–19, https://doi.org/10.1126/science.1231097; H. Yuan and R. Marmorstein, “Red Wine, Toast of the Town (Again),” Science 339, no. 6124 (March 8, 2013): 1156–57, https://doi.org/10.1126/science.1236463.

        None of them had any significant effect: R. Strong et al., “Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice,” Journals of Gerontology: Series A 68, no. 1 (January 2013): 6–16, https://doi.org/10.1093/gerona/gls070.

        Sir2 activation actually reduces: P. Fabrizio et al., “Sir2 Blocks Extreme Life-span Extension,” Cell 123, no. 4 (November 18, 2005): 655–67, https://doi.org/10.1016/j.cell.2005.08.042; see also commentary by B. K. Kennedy, E. D. Smith, and M. Kaeberlein, “The Enigmatic Role of Sir2 in Aging,” Cell 123, no. 4 (November 18, 2005): 548–50, https://doi.org/10.1016/j.cell.2005.11.002.

        Feeling embattled: C. Burnett et al., “Absence of Effects of Sir2 Overexpression on Lifespan in C. elegans and Drosophila,” Nature 477, no. 7365 (September 21, 2011): 482–85, https://doi.org/10.1038/nature10296; K. Baumann, “Ageing: A Midlife Crisis for Sirtuins,” Nature Reviews Molecular Cell Biology 12, no. 11 (October 21, 2011): 688, https://doi.org/10.1038/nrm3218; D. B. Lombard et al., “Ageing: Longevity Hits a Roadblock,” Nature 477, no. 7365 (September 21, 2011): 410–11, https://doi.org/10.1038/477410a; M. Viswanathan and L. Guarente, “Regulation of Caenorhabditis elegans lifespan by sir-2.1 Transgenes,” Nature 477, no. 7365 (September 21, 2011): E1–2, https://doi.org/10.1038/nature10440.

        The protein is also a histone: R. Mostoslavsky et al., “Genomic Instability and Aging-like Phenotype in the Absence of Mammalian SIRT6,” Cell 124, no. 2 (January 24, 2006): 315–29, https://doi.org/10.1016/j.cell.2005.11.044; E. Michishita et al. “SIRT6 Is a Histone H3 Lysine 9 Deacetylase That Modulates Telomeric Chromatin,” Nature 452, no. 7186 (March 27, 2008): 492–96, https://doi.org/10.1038/nature06736; A. Roichman et al., “SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan,” Journals of Gerontology: Series A 72, no. 5 (May 1, 2017): 603–15, https://doi.org/10.1093/gerona/glw152; X. Tian et al., “SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species,” Cell 177, no. 3 (April 18, 2019): 622–38.e22, https://doi.org/10.1016/j.cell.2019.03.043.

        Many in the gerontology community: C. Brenner, “Sirtuins Are Not Conserved Longevity Genes,” Life Metabolism 1, no. 2 (October 2022), 122–33, https://doi.org/10.1093/lifemeta/loac025.

        It is made by the body: P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ Metabolism in Health and Disease,” Trends in Biochemical Sciences 32, no. 1 (January 2017): 12–19, https://doi.org/10.1016/j.tibs.2006.11.006.

        It can also cause a host: H. Massudi et al., “Age-Associated Changes in Oxidative Stress and NAD+ Metabolism in Human Tissue,” PLoS One 7, no. 7 (2012): e42357, https://doi.org/10.1371/journal.pone.0042357; X. H. Zhu et al., “In Vivo NAD Assay Reveals the Intracellular NAD Contents and Redox State in Healthy Human Brain and Their Age Dependences,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 112, no. 9 (February 17, 2015): 2876–81, https://doi.org/10.1073/pnas.1417921112; A. J. Covarrubias et al., “NAD+ Metabolism and Its Roles in Cellular Processes During Ageing,” Nature Reviews Molecular Cell Biology 22, no. 2 (February 2021): 119–41, https://doi.org/10.1038/s41580-020-00313-x.

        Increasing NAD levels: H. Zhang et al., “NAD+ Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice,” Science 352, no. 6292 (April 28, 2016): 1436–43, https://doi.org/10.1126/science.aaf2693; see also the commentary on this report by L. Guarente, “The Resurgence of NAD+,” Science 352, no. 6292 (April 28, 2016): 1396–97, https://doi.org/10.1126/science.aag1718; K. F. Mills et al., “Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice,” Cell Metabolism 24, no. 6 (December 13, 2016): 795–806, https://doi.org/10.1016/j.cmet.2016.09.013.

        “I expressly tell people”: Charles Brenner, email message to the author, January 22, 2023.

        The results of taking: Partridge, Fuentealba, and Kennedy, “Quest to Slow Ageing,” 513–32.

        Global sales of NMN: Global News Wire, “Nicotinamide Mononucleotide (NMN) Market Will Turn Over USD 251.2 to Revenue to Cross USD 953 Million in 2022 to 2028 Research by Business Opportunities, Top Companies, Opportunities Planning, Market-Specific Challenges,” August 19, 2022, https://www.globenewswire.com/en/news-release/2022/08/19/2501489/0/en/Nicotinamide-Mono nucleotide-NMN-Market-will-Turn-over-USD-251-2-to-Revenue-to-Cross-USD-953-million-in-2022-to-2028-Research-by-Business-Opportunities-Top-Companies-opportunities-p.html.

        9. The Stowaway Within Us

        “I quit my job”: Martin Weil, “Lynn Margulis, Leading Evolutionary Biologist, Dies at 73,” Washington Post online, November 26, 2011, https://www.washingtonpost.com/local/obituaries/lynn-margulis-leading-evolutionary-biologist-dies-at-73/2011/11/26/gIQAQ 5dezN_story.html.

        Margulis wrote an essay: Lynn Margulis, “Two Hit, Three Down—The Biggest Lie: David Ray Griffin’s Work Exposing 9/11,” in Dorion Sagan, ed., Lynn Margulis: The Life and Legacy of a Scientific Rebel (White River Junction, VT: Chelsea Green, 2012), 150–55.

        questioned whether the human immunodeficiency virus (HIV): Joanna Bybee, “No Subject Too Sacred,” in Sagan, ed. Lynn Margulis, 156–62.

        You could think of Margulis’s idea: L. Sagan, “On the Origin of Mitosing Cells,” Journal of Theoretical Biology 14, no. 3 (March 14, 1967): 255–74, https://doi.org/10.1016/0022-5193(67)90079-3.

        In the same way that water: The idea that ATP is made by using a proton gradient across a membrane was proposed by Peter Mitchell and highly controversial initially. He went on to receive the 1978 Nobel Prize. See: Royal Swedish Academy of Sciences, “The Nobel Prize in Chemistry 1978: Peter Mitchell,” press release, October 17, 1978, available at Nobel Prize online, https://www.nobelprize.org/prizes/chemis try/1978/press-release/. Part of the 1997 Chemistry Nobel Prize was awarded to Paul Boyer and John Walker for their work on the molecular turbine that actually makes the ATP. The Nobel press release has an excellent description of it: Royal Swedish Academy of Sciences, “The Nobel Prize in Chemistry 1997: Paul D. Boyer, John E. Walker, Jens C. Skou,” press release, October 15, 1997, available at Nobel Prize online, https://www.nobelprize.org/prizes/chemistry/1997/press-release/.

        The human body has to generate: F. Du et al., “Tightly Coupled Brain Activity and Cerebral ATP Metabolic Rate,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 105, no. 17 (April 29, 2008): 6409–14, https://doi.org/10.1073/pnas.0710766105. For a popular account of this article, see N. Swaminathan, “Why Does the Brain Need So Much Power?,” Scientific American online, April 29, 2008, https://www.scientificamerican.com/article/why-does-the-brain-need-s/.

        The child will carry mostly: Ian Sample, “UK Doctors Select First Women to Have ‘Three-Person Babies,’” Guardian (US edition) online, last modified February 1, 2018, https://www.theguardian.com/science/2018/feb/01/permission-given-to-create-britains-first-three-person-babies.

        Excessive contacts: J. Valades et al, “ER Lipid Defects in Neuropeptidergic Neurons Impair Sleep Patterns in Parkinson’s Diseases,” Neuron 98, no. 6 (June 27, 2018): 1155–69, https://doi.org/10.1016/j.neuron.2018.05.022.

        Perhaps no other structure: N. Sun, R. J. Youle, and T. Finkel, “The Mitochondrial Basis of Aging,” Molecular Cell 61, no. 5 (March 3, 2016): 654–66, https://doi.org/10.1016/j.molcel.2016.01.028.

        In 1954: D. Harman, “Origin and Evolution of the Free Radical Theory of Aging: A Brief Personal History, 1954–2009,” Biogerontology 10, no. 6 (December 2009): 773–81, https://doi.org/10.1007/s10522-009-9234-2.

        Harman’s idea: R. S. Sohal and R. Weindruch, “Oxidative Stress, Caloric Restriction, and Aging,” Science 273, no. 5271 (July 5, 1996): 59–63, https://doi.org/10.1126/science.273.5271.59.

        Over time, they damage: E. R. Stadtman, “Protein Oxidation and Aging,” Free Radical Research 40, no. 12 (December, 2006): 1250–58, https://doi.org/10.1080/10715760600918142.

        Strains of mice that made: S. E. Schriner et al., “Extension of Murine Life Span by Overexpression of Catalase Targeted to Mitochondria,” Science 308, no. 5730 (June 24, 2005): 1909–11, https://doi.org/10.1126/science.1106653.

        As recently as 2022: J. Hartke et al., “What Doesn’t Kill You Makes You Live Longer—Longevity of a Social Host Linked to Parasite Proteins,” bioRxiv (2022): https://doi.org/10.1101/2022.12.23.521666.

        One way they may minimize: A. Rodríguez-Nuevo et al., “Oocytes Maintain ROS-free Mitochondrial Metabolism by Suppressing Complex I,” Nature 607, no. 7920 (July 2022): 756–61, https://doi.org/10.1038/s41586-022-04979-5.

        Alas, although there were isolated reports: G. Bjelakovic et al., “Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention: Systematic Review and Meta-analysis,” Journal of the American Medical Association (JAMA) 297, no. 8 (2007): (February 28, 2007): 842–57, https://doi.org/10.1001/jama.297.8.842.

        But over the last ten to fifteen years: S. Hekimi, J. Lapointe, and Y. Wen, “Taking a ‘Good’ Look at Free Radicals in the Aging Process,” Trends in Cell Biology 21, no. 10 (October 2011): 569–76, https://doi.org/10.1016/j.tcb.2011.06.008. There are also first-rate discussions of the evidence in López-Otín et al., “Hallmarks of Aging,” 1194–217, and A. Bratic and N. G. Larsson, “The Role of Mitochondria in Aging,” Journal of Clinical Investigation 123, no. 3 (March 2013): 951–57, https://doi.org/10.1172/JCI64125.

        Studies with other animals: See the papers cited in Bratic and Larsson, “Role of Mitochondria,” 951–57.

        In fact, contrary to the report: V. I. Pérez et al., “The Overexpression of Major Antioxidant Enzymes Does Not Extend the Lifespan of Mice,” Aging Cell 8, no. 1 (February 2009): 73–75, https://doi.org/10.1111/j.1474-9726.2008.00449.x.

        Giving them a herbicide: W. Yang and S. Hekimi, “A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans,” PLoS Biology 8, no. 12 (December 2010): e1000556, https://doi.org/10.1371/journal.pbio.1000556.

        The naked mole rat lives: B. Andziak et al., “High Oxidative Damage Levels in the Longest-Living Rodent, the Naked Mole-Rat,” Aging Cell 5, no. 6 (December 2006): 463–71, https://doi.org/10.1111/j.1474-9726.2006.00237.x; F. Saldmann et al., “The Naked Mole Rat: A Unique Example of Positive Oxidative Stress,” Oxidative Medicine and Cellular Longevity 2019 (February 7, 2019): 4502819, https://doi.org/10.1155/2019/450281.9.

        This may be an example of something called hormesis: V. Calabrese et al., “Hormesis, Cellular Stress Response and Vitagenes as Critical Determinants in Aging and Longevity,” Molecular Aspects of Medicine 32, nos. 4–6 (August–December 2011): 279–304, https://doi.org/10.1016/j.mam.2011.10.007.

        At the age of about sixty weeks: A. Trifunovic et al., “Premature Ageing in Mice Expressing Defective Mitochondrial DNA Polymerase,” Nature 429, no. 6990 (May 27, 2004): 417–23, https://doi.org/10.1038/nature02517. This and several other papers published the following year are reviewed in L. A. Loeb, D. C. Wallace, and G. M. Martin, “The Mitochondrial Theory of Aging and Its Relationship to Reactive Oxygen Species Damage and Somatic MtDNA Mutations,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 102, no. 52 (December 19, 2005): 18769–70, https://doi.org/10.1073/pnas.0509776102.

        There are reports of a complicated interplay: E. F. Fang et al., “Nuclear DNA Damage Signalling to Mitochondria in Ageing,” Nature Reviews Molecular Cell Biology 17, no. 5 (May 2016): 308–21, https://doi.org/10.1038/nrm.2016.14; R. H. Hämäläinen et al., “Defects in mtDNA Replication Challenge Nuclear Genome Stability Through Nucleotide Depletion and Provide a Unifying Mechanism for Mouse Progerias,” Nature Metabolism 1, no. 10 (October 2019): 958–65, https://doi.org/10.1038/s42255-019-0120-1.

        In these cases, clones: T. E. S. Kauppila, J. H. K. Kauppila, and N. G. Larsson, “Mammalian Mitochondria and Aging: An Update,” Cell Metabolism 25, no. 1 (January 10, 2017): 57–71, https://doi.org/10.1016/j.cmet.2016.09.017.

        The effect is most pronounced: N. Sun, R. J. Youle, and T. Finkel, “The Mitochondrial Basis of Aging,” Molecular Cell 61, no. 5 (March 3, 2016): 654–66, https://doi.org/10.1016/j.molcel.2016.01.028.

        One characteristic of aging: C. Franceschi et al., “Inflamm-aging. An Evolutionary Perspective on Immunosenescence,” Annals of the New York Academy of Sciences 908, no. 1 (June 2000): 244–54, https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.

        Some proteins can sense: N. P. Kandul et al., “Selective Removal of Deletion-Bearing Mitochondrial DNA in Heteroplasmic Drosophila,” Nature Communications 7 (November 14, 2016): art. 13100, https://doi.org/10.1038/ncomms13100.

        The inhibition of TOR: M. Morita et al., “mTORC1 Controls Mitochondrial Activity and Biogenesis Through 4E-BP-Dependent Translational Regulation,” Cell Metabolism 18, no. 5 (November 5, 2013): 698–711, https://doi.org/10.1016/j.cmet.2013.10.001.

        In studies, the increased mitochondrial activity: B. M. Zid et al., “4E-BP Extends Lifespan upon Dietary Restriction by Enhancing Mitochondrial Activity in Drosophila,” Cell 139, no. 1 (October 2, 2009): 149–60, https://doi.org/10.1016/j.cell.2009.07.034.

        Besides TOR, other signals: C. Cantó and J. Auwerx, “PGC-1α, SIRT1 and AMPK, an Energy Sensing Network That Controls Energy Expenditure,” Current Opinion in Lipidology 20, no. 2 (April 2009): 98–105, https://doi.org/10.1097/mol.0b013e328328d0a4.

        Sometimes, though, this effort is futile: C. Cantó and J. Auwerx, “PGC-1α, SIRT1 and AMPK, an Energy Sensing Network That Controls Energy Expenditure,” Current Opinion in Lipidology 20, no. 2 (April 2009): 98–105, https://doi.org/10.1097/mol.0b013e328328d0a4.

        Physical activity turns on: See Sun, Youle, and Finkel, “Mitochondrial Basis of Aging,” 654–66; J. L. Steiner et al., “Exercise Training Increases Mitochondrial Biogenesis in the Brain,” Journal of Applied Physiology 111, no. 4 (October 2011): 1066–71, https://doi.org/10.1152/japplphysiol.00343.2011.

        One way it spurs mitochondrial function: Z. Radak, H. Y. Chung, and S. Goto, “Exercise and Hormesis: Oxidative Stress-Related Adaptation for Successful Aging,” Biogerontology 6, no. 1 (2005): 71–75, https://doi.org/10.1007/s10522-004-7386-7.

        Of course, exercise does far more: G. C. Rowe, A. Safdar, and Z. Arany, “Running Forward: New Frontiers in Endurance Exercise Biology,” Circulation 129, no. 7 (February 18, 2014): 798–810, https://doi.org/10.1161/circulationaha.113.001590.

        But it is better repaired: J. B. Stewart and N. G. Larsson, “Keeping mtDNA in Shape Between Generations,” PLoS Genetics 10, no. 10 (October 9, 2014): e1004670, https://doi.org/10.1371/journal.pgen.1004670.

        Nevertheless, selection is not perfect: Y. Bentov et al., “The Contribution of Mitochondrial Function to Reproductive Aging,” Journal of Assistive Reproduction and Genetics 28, no. 9 (September 2011): 773–83, https://doi.org/10.1007/s10815-011-9588-7.

        10. Aches, Pains, and Vampire Blood

        These tumor suppressor genes: M. Serrano et al., “Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a,” Cell 88, no. 5 (March 7, 1997): 593–602, https://doi.org/10.1016/s0092-8674(00)81902-9; M. Narita and S. W. Lowe, “Senescence Comes of Age,” Nature Medicine 11, no. 9 (September 2005): 920–22, https://doi.org/10.1038/nm0905-920.

        Senescent cells are often produced: M. Demaria et al., “An Essential Role for Senescent Cells in Optimal Wound Healing Through Secretion of PDGF-AA,” Developmental Cell 31, no. 6 (December 22, 2014): 722–33, https://doi.org/10.1016/j.devcel.2014.11.012; M. Serrano, “Senescence Helps Regeneration,” Developmental Cell 31, no. 6 (December 22, 2014): 671–72, https://doi.org/10.1016/j.devcel.2014.12.007.

        As damage to our DNA accumulates: These reviews offer a comprehensive view of senescent cells’ role in aging: J. Campisi and F. d’Adda di Fagagna, “Cellular Senescence: When Bad Things Happen to Good Cells,” Nature Reviews Molecular Cell Biology 8, no. 9 (September 2007): 729–40, https://doi.org/10.1038/nrm2233; J. M. van Deursen, “The Role of Senescent Cells in Ageing,” Nature 509, no. 7501 (May 22, 2014): 439–46, https://doi.org/10.1038/nature13193; J. Gil, “Cellular Senescence Causes Ageing,” Nature Reviews Molecular Cell Biology 20 (July 2019): 388, https://doi.org/10.1038/s41580-019-0128-0.

        They also lived: D. J. Baker et al., “Clearance of p16Ink4a-Positive Senescent Cells Delays Ageing-Associated Disorders,” Nature 479, no. 7372 (November 2, 2011): 232–36, https://doi.org/10.1038/nature10600; D. J. Baker et al., “Naturally Occurring p16(Ink4a)-Positive Cells Shorten Healthy Lifespan,” Nature 530, no. 7589 (February 11, 2016): 184–89, https://doi.org/10.1038/nature16932; see also the commentary by E. Callaway, “Destroying Worn-out Cells Makes Mice Live Longer,” Nature (February 3, 2016): https://doi.org/10.1038/nature.2016.19287.

        When researchers used an oral cocktail: M. Xu et al., “Senolytics Improve Physical Function and Increase Lifespan in Old Age,” Nature Medicine 24, no. 8 (August 2018): 1246–56, https://doi.org/10.1038/s41591-018-0092-9.

        But this isn’t strictly true: Donavyn Coffey, “Does the Human Body Replace Itself Every 7 Years?,” Live Science, last modified July 22, 2022, https://www.livescience.com/33179-does-human-body-replace-cells-seven-years.html; P. Heinke et al., “Diploid Hepatocytes Drive Physiological Liver Renewal in Adult Humans,” Cell Systems 13, no. 6 (June 15, 2022): 499–507.e12, https://doi.org/10.1016/j.cels.2022.05.001; K. L. Spalding et al., “Dynamics of Hippocampal Neurogenesis in Adult Humans,” Cell 153, no. 6 (June 6, 2013): 1219–27, https://doi.org/10.1016/j.cell.2013.05.002; A. Ernst et al., “Neurogenesis in the Striatum of the Adult Human Brain,” Cell 156, no. 5 (February 27, 2014): 1072–83, https://doi.org/10.1016/j.cell.2014.01.044.

        This leads to immune system decline: For a comprehensive discussion of stem cell depletion, see López-Otín et al., “Hallmarks of Aging,” 1194–217, https://doi.org/10.1016/j.cell.2013.05.039.

        After six weeks, the mice: A. Ocampo et al., “In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming,” Cell 167, no. 7 (December 15, 2016): 1719–33.e12, https://doi.org/10.1016/j.cell.2016.11.052.

        Not only did the animals: K. C. Browder et al., “In Vivo Partial Reprogramming Alters Age-Associated Molecular Changes During Physiological Aging in Mice,” Nature Aging 2, no. 3 (March 2022): 243–53, https://doi.org/10.1038/s43587-022-00183-2; D. Chondronasiou et al., “Multi-omic Rejuvenation of Naturally Aged Tissues by a Single Cycle of Transient Reprogramming,” Aging Cell 21, no. 3 (March 2022): e13578, https://doi.org/10.1111/acel.13578; D. Gill et al., “Multi-omic Rejuvenation of Human Cells by Maturation Phase Transient Reprogramming,” eLife 11 (April 8, 2022): e71624, https://doi.org/10.7554/eLife.71624.

        Their DNA methylation: Y. Lu et al., “Reprogramming to Recover Youthful Epigenetic Information and Restore Vision,” Nature 588, no. 7836 (December 2020): 124–29, https://doi.org/10.1038/s41586-020-2975-4; see also the news item K. Servick, “Researchers Restore Lost Sight in Mice, Offering Clues to Reversing Aging,” Science online, last modified December 2, 2020, https://doi.org/10.1126/science.abf9827.

        These effects could be reversed: J.-H. Yang et al., “Loss of Epigenetic Information as a Cause of Mammalian Aging,” Cell 186, no. 2 (January 19, 2023), https://doi.org/10.1016/j.cell.2022.12.027.

        He not only connected two rats: R. B. S. Harris, “Contribution Made by Parabiosis to the Understanding of Energy Balance Regulation,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease 1832, no. 9 (September 2013): 1449–55, https://doi.org/10.1016/j.bbadis.2013.02.021.

        “If two rats are not adjusted”: C. M. McCay, F. Pope, and W. Lunsford, “Experimental Prolongation of the Life Span,” Journal of Chronic Diseases 4, no. 2 (August 1956): 153–58, https://www.sciencedirect.com/science/article/abs/pii/0021968156900157. Quoted in an overview of the field by M. Scudellari, “Ageing Research: Blood to Blood,” Nature 517, no. 7535 (January 22, 2015): 426–29, https://doi.org/10.1038/517426a.

        But for some reason: Scudellari, “Ageing Research,” 426–29.

        By the same criteria: M. J. Conboy, I. M. Conboy, and T. A. Rando, “Heterochronic Parabiosis: Historical Perspective and Methodological Considerations for Studies of Aging and Longevity,” Aging Cell 12, no. 3 (June 2013): 525–30, https://doi.org/10.1111/acel.12065.

        He showed that old blood: S. A. Villeda et al., “The Ageing Systemic Milieu Negatively Regulates Neurogenesis and Cognitive Function,” Nature 477, no. 7362 (August 31, 2011): 90–94, https://doi.org/10.1038/nature10357; S. A. Villeda et al., “Young Blood Reverses Age-Related Impairments in Cognitive Function and Synaptic Plasticity in Mice,” Nature Medicine 20, no. 6 (June 2014): 659–63, https://doi.org/10.1038/nm.3569.

        the Conboys and Rando pointed out: Conboy, Conboy, and Rando, “Heterochronic Parabiosis,” 525–30.

        that were not joined: J. Rebo et al, “A Single Heterochronic Blood Exchange Reveals Rapid Inhibition of Multiple Tissues by Old Blood,” Nature Communications 7, no. 1 (June 10, 2016): art. 13363, https://doi.org/10.1038/ncomms13363.

        Such cautionary views: Rebecca Robbins, “Young-Blood Transfusions Are on the Menu at Society Gala,” Scientific American online, last modified March 2, 2018, https://www.scientificamerican.com/article/young-blood-transfusions-are-on-the-menu-at-society-gala/.

        Alarmed, the US Food and Drug Administration (FDA): Scott Gottlieb, “Statement from FDA Commissioner Scott Gottlieb, M.D., and Director of FDA’s Center for Biologics Evaluation and Research Peter Marks, M.D., Ph.D., Cautioning Consumers Against Receiving Young Donor Plasma Infusions That Are Promoted as Unproven Treatment for Varying Conditions,” U.S. Food and Drug Administration, press release, February 19, 2019, https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-director-fdas-center-biologics-evaluation-and-0.

        “Our patients really want”: Emily Mullin, “Exclusive: Ambrosia, the Young Blood Transfusion Startup, Is Quietly Back in Business,” OneZero, last modified November 8, 2019, https://onezero.medium.com/exclusive-ambrosia-the-young-blood-transfusion-startup-is-quietly-back-in-business-ee2b7494b417.

        As for old blood, they zeroed in: J. M. Castellano et al., “Human Umbilical Cord Plasma Proteins Revitalize Hippocampal Function in Aged Mice,” Nature 544, no. 7651 (April 27, 2017): 488–92, https://doi.org/10.1038/nature22067; H. Yousef et al., “Aged Blood Impairs Hippocampal Neural Precursor Activity and Activates Microglia Via Brain Endothelial Cell VCAM1,” Nature Medicine 25, no. 6 (June 2019): 988–1000, https://doi.org/10.1038/s41591-019-0440-4.

        In a second study: F. S. Loffredo et al., “Growth Differentiation Factor 11 Is a Circulating Factor That Reverses Age-Related Cardiac Hypertrophy,” Cell 153, no. 4 (May 9, 2013): 828–39, https://doi.org/10.1016/j.cell.2013.04.015; M. Sinha et al., “Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle,” Science 344, no. 6184 (May 9, 2014): 649–52, https://doi.org/10.1126/science.1251152; L. Katsimpardi et al., “Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors,” Science 344, no. 6184 (May 9, 2014): 630–34, https://doi.org/10.1126/science.1251141. These findings are described in a very accessible article by Carl Zimmer, “Young Blood May Hold Key to Reversing Aging,” New York Times online, May 4, 2014, https://www.nytimes.com/2014/05/05/science/young-blood-may-hold-key-to-reversing-aging.html.

        Clearing those senescent cells: O. H. Jeon et al., “Systemic Induction of Senescence in Young Mice After Single Heterochronic Blood Exchange,” Nature Metabolism 4, no. 8 (August 2022): 995–1006, https://doi.org/10.1038/s42255-022-00609-6.

        It turns out that blood: A. M. Horowitz et al., “Blood Factors Transfer Beneficial Effects of Exercise on Neurogenesis and Cognition to the Aged Brain,” Science 369, no. 6500 (July 10, 2020): 167–73, https://doi.org/10.1126/science.aaw2622.

        Rando and Wyss-Coray: J. O. Brett et al., “Exercise Rejuvenates Quiescent Skeletal Muscle Stem Cells in Old Mice Through Restoration of Cyclin D1,” Nature Metabolism 2, no. 4 (April 2020): 307–17, https://doi.org/10.1038/s42255-020-0190-0.

        Although they both stimulated: M. T. Buckley et al., “Cell Type–Specific Aging Clocks to Quantify Aging and Rejuvenation in Regenerative Regions of the Brain,” Nature Aging 3 (January 2023): 121–37, https://www.nature.com/articles/s43587-022-00335-4.

        He went to Resurgence Wellness, a Texas outfit: David Averre and Neirin Gray Desai, “Tech Billionaire, 45, Who Spends $2 Million a Year Trying to Reverse His Ageing Reveals Latest Gadget He Uses That Puts His Body Through the Equivalent of 20,000 Sit Ups in 30 Minutes,” Daily Mail (London) online, last modified April 5, 2023, https://www.dailymail.co.uk/news/article-11942581/Tech-billionaire-45-spends-2million-year-trying-reverse-ageing-reveals-latest-gadget.html; Orianna Rosa Royle, “Tech Billionaire Who Spends $2 Million a Year to Look Young Is Now Swapping Blood with His 17-Year-Old Son and 70-Year-Old Father,” Fortune online, last modified May 23, 2023, https://fortune.com/2023/05/23/bryan-johnson-tech-ceo-spends-2-million-year-young-swapping-blood-17-year-old-son-talmage-70-father/; Alexa Mikhail, “Tech CEO Bryan Johnson admits he saw ‘no benefits’ after controversially injecting his son’s plasma into his body to reverse his biological age,” Fortune, July 8, 2023, https://fortune.com/well/2023/07/08/bryan-johnson-plasma-exchange-results-anti-aging/.

        11. Crackpots or Prophets?

        An entire field of biology: S. Bojic et al., “Winter Is Coming: The Future of Cryopreservation,” BMC Biology 19, no. 1 (March 24, 2021): 56, https://doi.org/10.1186/s12915-021-00976-8.

        The idea has been around a long time: Paul Vitello, “Robert C. W. Ettinger, a Proponent of Life After (Deep-Frozen) Death, Is Dead at 92,” New York Times online, July 29, 2011, https://www.nytimes.com/2011/07/30/us/30ettinger.html; Associated Press, “Cryonics Pioneer Robert Ettinger Dies,” Guardian (US edition) online, last modified July 26, 2011, https://www.theguardian.com/science/2011/jul/26/cryonics-pioneer-robert-ettinger-dies.

        One such proponent is Elon Musk: See “Elon Musk on Cryonics,” Elon Musk, interviewed by Zach Latta, YouTube video, 2:09, uploaded by Hack Club on May 4, 2020, https://www.youtube.com/watch?v=MSIjNKssXAc.

        “die on Mars”: Daniel Terdiman, “Elon Musk at SXSW: ‘I’d Like to Die on Mars, Just Not on Impact,’” CNET, last modified March 9, 2013, https://www.cnet.com/culture/elon-musk-at-sxsw-id-like-to-die-on-mars-just-not-on-impact/.

        It would be like trying to deduce the entire state of a country: See a particularly cutting article that deals with this and the general issue of cryonics by the neurobiologist Michael Hendrick, “The False Science of Cryonics,” MIT Technology Review, September 15, 2015, https://www.technologyreview.com/2015/09/15/109906/the-false-science-of-cryonics.

        What would be the point: Albert Cardona, conversation with the author, January 12, 2023.

        She took the matter to court: Owen Bowcott and Amelia Hill, “14-Year-Old Girl Who Died of Cancer Wins Right to Be Cryogenically Frozen,” Guardian (US edition) online, last modified November 18, 2016, https://www.theguardian.com/science/2016/nov/18/teenage-girls-wish-for-preservation-after-death-agreed-to-by-court.

        This elicited an outcry: Alexandra Topping and Hannah Devlin, “Top UK Scientist Calls for Restrictions on Marketing Cryonics,” Guardian (US edition) online, last modified November 18, 2016, https://www.theguardian.com/science/2016/nov/18/top-uk-scientist-calls-for-restrictions-on-marketing-cryonics.

        In almost a mirror image: Tom Verducci, “What Really Happened to Ted Williams?,” Sports Illustrated online, last modified August 18, 2003, https://vault.si.com/vault/2003/08/18/what-really-happened-to-ted-williams-a-year-after-the-jarring-news-that-the-splendid-splinter-was-being-frozen-in-a-cryonics-lab-new-details-including-a-decapitation-suggest-that-one-of-americas-greatest-heroes-may-never-rest-in.

        According to press reports: See sources cited in https://en.wikipedia.org/wiki/List_of_people_who_arranged_for_cryonics; when I wrote to Nick Bostrom, he replied, “It has been thus reported in the media. My general stance however has been not to comment on my funereal or other posthumous arrangements . . .”, email January 11, 2023.

        a San Francisco company called Nectome: Antonio Regalado, “A Startup Is Pitching a Mind-Uploading Service That Is ‘100 Percent Fatal,’” MIT Technology Review online, last modified March 13, 2018, https://www.technologyreview.com/2018/03/13/144721/a-startup-is-pitching-a-mind-uploading-service-that-is-100-percent-fatal/.

        In response, Robert McIntyre, the founder of Nectome said: Sharon Begley, “After Ghoulish Allegations, a Brain-Preservation Company Seeks Redemption,” Stat (online), January 30, 2019, https://www.statnews.com/2019/01/30/nectome-brain-preservation-redemption.

        He began his career: Evelyn Lamb, “Decades-Old Graph Problem Yields to Amateur Mathematician,” Quanta, last modified April 17, 2018, https://www.quantamagazine.org/decades-old-graph-problem-yields-to-amateur-mathematician-20180417/.

        He asserts that the first humans: Aubrey de Grey, “A Roadmap to End Aging,” TED Talk, July 2005, 22:35, https://www.ted.com/talks/aubrey_de_grey_a_roadmap_to_end_aging/.

        if we crack seven key problems: A. D. de Grey et al., “Time to Talk SENS: Critiquing the Immutability of Human Aging,” Annals of the New York Academy of Sciences 959, no. 1 (April 2002): 452–62, discussion 463, https://doi.org/10.1111/j.1749–6632.2002.tb02115.x; A. D. de Grey, “The Foreseeability of Real Anti-Aging Medicine: Focusing the Debate,” Experimental Gerontology 38, no. 9 (September 1, 2013): 927–34, https://doi.org/10.1016/s0531-5565(03)00155-4.

        In response to his claims: H. Warner et al., “Science Fact and the SENS Agenda: What Can We Reasonably Expect from Ageing Research,” EMBO Reports 6, no. 11 (November 2005): 1006–8, https://doi.org/10.1038/sj.embor.7400555.

        Other mainstream researchers: Estep et al., “Life Extension Pseudoscience and the SENS Plan,” MIT Technology Review, 2006, http://www2.technologyreview.com/sens/docs/estepetal.pdf; Sherwin Nuland, “Do You Want to Live Forever?,” MIT Technology Review online, last modified February 1, 2005, https://www.technologyreview.com/2005/02/01/231686/do-you-want-to-live-forever/.

        One of them, Richard Miller: Richard Miller, open letter to Aubrey de Grey, MIT Technology Review online, November 29, 2005, https://www.technologyreview.com/2005/11/29/274243/debating-immortality/.

        “There’s going to be much less difference”: Comments by Aubrey de Grey in The Immortalists, ibid.

        He denied the allegations: Analee Armstrong, “Anti-Aging Foundation SENS Fires de Grey After Allegations He Interfered with Investigation into His Conduct,” Fierce Biotech, last modified August 23, 2021, https://www.fiercebiotech.com/biotech/anti-aging-foundation-sens-turfs-de-grey-after-allegations-he-interfered-investigation-into.

        A company report: SENS Research Foundation, “Announcement from the SRF Board of Directors,” news release, March 23, 2022, https://www.sens.org/announcement-from-the-srf-board-of-directors/.

        De Grey, undaunted: “Meet the Team,” LEV Foundation online, accessed August 7, 2023, https://www.levf.org/team.

        For example, he has predicted: David Sinclair, quoted in Antonio Regalado, “How Scientists Want to Make You Young Again,” MIT Technology Review online, last modified October 25, 2022, https://www.technologyreview.com/2022/10/25/1061644/how-to-be-young-again/.

        Such statements: Catherine Elton, “Has Harvard’s David Sinclair Found the Fountain of Youth,” Boston online, last modified October 29, 2019, https://www.bostonmagazine.com/health/2019/10/29/david-sinclair/.

        I doubt whether: David Sinclair and Matthew LaPlante, Lifespan: Why We Age, and Why We Don’t Have To (New York: Atria Books, 2019). For a sharply critical review of the book, see C. A. Brenner, “A Science-Based Review of the World’s Best-Selling Book on Aging,” Archives of Gerontology and Geriatrics 104 (January 2023): art. 104825, https://doi.org/10.1016/j.archger.2022.104825.

        In an essay on LinkedIn: David Sinclair, “This Is Not an Advice Article,” LinkedIn, last modified June 25, 2018, https://www.linkedin.com/pulse/advice-article-david-sinclair.

        They would often make: As one of hundreds of examples, see this description of companies founded in response to findings on blood transfusions: Rebecca Robbins, “Young-Blood Transfusions Are on the Menu at Society Gala,” Scientific American online, last modified March 2, 2018, https://www.scientificamerican.com/article/young-blood-transfusions-are-on-the-menu-at-society-gala/.

        Even back in 2002: S. J. Olshansky, L. Hayflick, and B. A. Carnes, “Position Statement on Human Aging,” Journals of Gerontology: Series A 57, no. 8 (August 1, 2002): B292–97, https://doi.org/10.1093/gerona/57.8.b292. A total of fifty-one gerontologists cosigned the statement, and the three lead authors also published a popular summary, “Essay: No Truth to the Fountain of Youth,” Scientific American 286, no. 6 (June 2002): 92–95, https://doi.org/10.1038/scientific american0602-92.

        California tech billionaires, especially: See, for example, Todd Friend, “Silicon Valley’s Quest to Live Forever,” New Yorker online, last modified March 27, 2017, https://www.newyorker.com/mag azine/2017/04/03/silicon-valleys-quest-to-live-forever; Anjana Ahuja, “Silicon Valley’s Billionaires Want to Hack the Ageing Process,” Financial Times online, last modified September 7, 2021, https://www.ft.com/content/24849908-ac4a-4a7d-b53c-847963ac1228; Anjana Ahuja, “Can We Defeat Death?,” Financial Times online, last modified October 29, 2021, https://www.ft.com/content/60d9271c-ae0a-4d44-8b11-956cd2e484a9.

        When they were young, they wanted to be rich: This paraphrases an idea expressed previously by Antonio Regalado, “Meet Altos Labs, Silicon Valley’s Latest Wild Bet on Living Forever,” MIT Technology Review online, last modified September 4, 2021, https://www.technologyreview.com/2021/09/04/1034364/altos-labs-silicon-valleys-jeff-bezos-milner-bet-living-forever/.

        Recently, he wrote a tract: Yuri Milner, Eureka Manifesto, available for downloading at https://yurimilnermanifesto.org/.

        When news of Altos Labs: Antonia Regalado, “Meet Altos Labs, Silicon Valley’s Latest Wild Bet on Living Forever,” MIT Technology Review online, last modified September 4, 2021, https://www.technologyreview.com/2021/09/04/1034364/altos-labs-silicon-valleys-jeff-bezos-milner-bet-living-forever/.

        Rick Klausner, its chief scientist: Hannah Kuchler, “Altos Labs Insists Mission Is to Improve Lives Not Cheat Death,” Financial Times online, last modified January 23, 2022, https://www.ft.com/content/f3bceaf2-0d2f-4ec7-b767-693bf01f9630.

        “Our goal is for everyone”: The author was present at the launch of the Cambridge campus of Altos Labs on June 22, 2022.

        “I went through a period”: Michael Hall, email message to the author, September 2, 2021.

        Other drugs aim to target: A more comprehensive list of strategies and drugs that are used to combat aging is found in Partridge, Fuentealba, and Kennedy, “Quest to Slow Ageing,” 513–32.

        Some of the biggest excitement: M. Eisenstein, “Rejuvenation by Controlled Reprogramming Is the Latest Gambit in Anti-Aging,” Nature Biotechnology 40, no. 2 (February 2022): 144–46, https://doi.org/10.1038/d41587-022-00002-4.

        “Despite intensive study”: Olshansky, Hayflick, and Carnes, “Position Statement,” B292–97.

        In addition to epigenetic changes: K. S. Kudryashova et al., “Aging Biomarkers: From Functional Tests to Multi-Omics Approaches,” Proteomics 20, nos. 5/6 (March 2020): art. E1900408, https://doi.org/10.1002/pmic.201900408; Buckley et al., “Cell Type–Specific Aging Clocks.”

        This goal was termed: Kudryashova et al., “Aging Biomarkers: From Functional Tests to Multi-Omics Approaches”; Buckley et al., “Cell Type–Specific Aging Clocks.”

        “forever remain quixotic”: A. D. de Grey, “The Foreseeability of Real Anti-Aging Medicine: Focusing the Debate,” Experimental Gerontology 38, no. 9 (September 1, 2003): 927–34, https://doi.org/10.1016/s0531-5565(03)00155-4.

        If anything, data: “Health State Life Expectancies, UK: 2018 to 2020,” Office of National Statistics (UK) online, last modified March 4, 2022, https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexpectancies/bulletins/health statelifeexpectanciesuk/latest.

        A United Nations report: Jean-Marie Robine, “Aging Populations: We Are Living Longer Lives, But Are We Healthier?,” United Nations Department of Economic and Social Affairs, Population Division, online, September 2021, https://desapublications.un.org/file/653/download.

        A farmer was merrily riding: Oliver Wendell Holmes, The Deacon’s Masterpiece or the Wonderful One-Hoss Shay, Cambridge, MA: Houghton, Mifflin, 1891. With illustrations by Howard Pyle. Reproduced in http://www.ibiblio.org/eldritch/owh/shay.html.

        Thomas Perls: Perls, email, November 27, 2021.

        This would argue in favor: S. L. Andersen et al., “Health Span Approximates Life Span Among Many Supercentenarians: Compression of Morbidity at the Approximate Limit of Life Span,” Journals of Gerontology: Series A 67, no. 4 (April 2012): 395–405 (2012), https://doi.org/10.1093/gerona/glr223.

        Similarly, a variant of a gene: P. Sebastiani et al., “A Serum Protein Signature of APOE Genotypes in Centenarians,” Aging Cell 18, no. 6 (December 2019): e13023, https://doi.org/10.1111/acel.13023; B. N. Ostendorf et al., “Common Germline Variants of the Human APOE Gene Modulate Melanoma Progression and Survival,” Nature Medicine 26, no. 7 (July 2020): 1048–53, https://doi.org/10.1038/s41591-020-0879-3; B. N. Ostendorf et al., “Common Human Genetic Variants of APOE Impact Murine COVID-19 Mortality,” Nature 611, no. 7935 (November 2022): 346–51, https://doi.org/10.1038/s41586-022-05344-2.

        12. Should We Live Forever?

        The share of older people: United Nations Department of Economic and Social Affairs, Population Division, World Population Prospects 2022: Summary of Results (New York: United Nations, 2022), https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf.

        In both social and economic terms: David E. Boom and Leo M. Zucker, “Aging Is the Real Population Bomb,” Finance & Development online, June 2022, 58–61, https://www.imf.org/en/Publications/fandd/issues/Series/Analytical-Series/aging-is-the-real-population-bomb-bloom-zucker.

        The poor not only live: Veena Raleigh, “What Is Happening to Life Expectancy in England?,” King’s Fund online, last modified August 10, 2022, https://www.kingsfund.org.uk/publications/whats-happening-life-expectancy-england.

        Things are even worse in the United States: R. Chetty et al., “The Association Between Income and Life Expectancy in the United States, 2001–2014,” Journal of the American Medical Association (JAMA) 315, no. 16 (April 26, 2016): 1750–66, https://doi.org/10.1001/jama.2016.4226.

        Advances in medicine: V. J. Dzau and C. A. Balatbat, “Health and Societal Implications of Medical and Technological Advances,” Science Translational Medicine 10, no. 463 (October 17, 2018): eaau4778, https://doi.org/10.1126/scitranslmed.aau4778; D. Weiss et al. “Innovative Technologies and Social Inequalities in Health: A Scoping Review of the Literature,” PLoS One 13, no. 4 (April 3, 2018): e0195447 (2018), https://doi.org/10.1371/journal.pone.0195447; Fiona McMillan, “Medical Advances Can Exacerbate Inequality,” Cosmos online, last modified October 21, 2018, https://cosmosmagazine.com/people/medical-advances-can-exacerbate-inequality/.

        This is because fertility: D. R. Gwatkin and S. K. Brandel, “Life Expectancy and Population Growth in the Third World,” Scientific American 246, no. 5 (May 1982): 57–65, https://doi.org/10.1038/scientificamerican0582-57.

        Elon Musk believes: Tweet by Elon Musk, August 26, 2022, https://twitter.com/elonmusk/status/1563020169160851456.

        Nevertheless, as people live longer: J. R. Goldstein and W. Schlag, “Longer Life and Population Growth,” Population and Development Review 25, no. 4 (December 1999): 741–47, https://doi.org/10.1111/j.1728-4457.1999.00741.x.

        Large percentages of people: Paul Root Wolpe, quoted in Jenny Kleeman, “Who Wants to Live Forever? Big Tech and the Quest for Eternal Youth,” New Statesman online, last modified October 13, 2021, https://www.newstatesman.com/long-reads/2022/12/live-forever-big-tech-search-quest-eternal-youth-long-read.

        In 2023: Angelique Chrisafis, “More Than 1.2 Million March in France over Plan to Raise Pension Age to 64,” Guardian (US edition) online, last modified March 7, 2023, https://www.theguardian.com/world/2023/mar/07/nationwide-strikes-in-france-over-plan-to-raise-pension-age-to-64.

        Reacting to the French protests: Annie Lowrey, “The Problem with the Retirement Age Is That It’s Too High,” Atlantic online, last modified April 15, 2023, https://www.theatlantic.com/ideas/archive/2023/04/social-security-benefits-france-pension-protests/673733/.

        However, at a Hay Literary Festival event: Interview on Channel 4 (UK), May 27, 2005.

        Ishiguro posited a theory: Kazuo Ishiguro, email to the author, August 6, 2021.

        Most studies say our general cognitive abilities: T. A. Salthouse, “When Does Age-Related Cognitive Decline Begin?,” Neurobiology of Aging 30, no. 4 (April 2009): 507–14, https://doi.org/10.1016/j.neurobiolaging.2008.09.023; L. G. Nilsson et al., “Challenging the Notion of an Early-Onset of Cognitive Decline,” Neurobiology of Aging 30, no. 4 (April 2009): 521–24, discussion 530, https://doi.org/10.1016/j.neurobiolaging.2008.11.013; T. Hedden and J. D. Gabrieli, “Insights into the Ageing Mind: A View from Cognitive Neuroscience,” Nature Reviews Neuroscience 5, no. 2 (February 2004): 87–96, https://doi.org/10.1038/nrn1323.

        The one category: A. Singh-Manoux et al., “Timing of Onset of Cognitive Decline: Results from Whitehall II Prospective Cohort Study,” BMJ 344, no. 7840 (January 5, 2012): d7622, https://doi.org/10.1136/bmj.d7622.

        The latter declines steadily: D. Murman, “The Impact of Age on Cognition,” Seminars in Hearing 36, no. 3 (2015): 111–21, https://doi.org/10.1055/s-0035-1555115.

        This is partly because: Household total wealth in Great Britain: April 2018 to March 2020, Office of National Statistics, January 7, 2022, https://www.ons.gov.uk/peoplepopulationandcommunity/per sonalandhouseholdfinances/incomeandwealth/bulletins/totalwealth ingreatbritain/april2018tomarch2020; Donald Hays and Briana Sullivan, The Wealth of Households:2020, United States Census Bureau, August 2022, https://www.census.gov/content/dam/Census/library/publications/2022/demo/p70br-181.pdf.

        By contrast, the vast majority: D. Murman, “The Impact of Age on Cognition,” Seminars in Hearing 36, no. 3 (2015): 111–21, https://doi.org/10.1055/s-0035-1555115.

        “at the peak of their careers”: “Tom Williams, “Oxford Professors ‘Forced to Retire’ Win Tribunal Case,” Times Higher Education, March 17, 2023, https://www.timeshighereducation.com/news/oxford-professors-forced-retire-win-tribunal-case.

        “I had been telling”: P. B. Moore, “Neutrons, Magnets, and Photons: A Career in Structural Biology,” Journal of Biological Chemistry 287, no. 2 (January 2012): 805–18, https://doi.org/10.1074/jbc.X111.324509.

        The other concluded: V. Skirbekk, “Age and Individual Productivity: A Literature Survey” (MPIDR working paper WP 2003–028, Max Planck Institute for Demographic Research, Rostock, Ger., August 2003), https://www.demogr.mpg.de/papers/working/wp-2003-028.pdf; C. A. Viviani. et al. “Productivity in Older Versus Younger Workers: A Systematic Literature Review,” Work 68, no. 3 (2021): 577–618, https://doi.org/10.3233/WOR-203396.o.

        There is a lot of evidence: P. A. Boyle et al., “Effect of a Purpose in Life on Risk of Incident Alzheimer Disease and Mild Cognitive Impairment in Community-Dwelling Older Persons,” Archives of General Psychiatry 67, no. 3 (March 2010): 304–10, https://doi.org/10.1001/archgenpsychiatry.2009.208; R. Cohen, C. Bavishi, and A. Rozanski, “Purpose in Life and Its Relationship to All-Cause Mortality and Cardiovascular Events: A Meta-Analysis,” Psychosomatic Medicine 78, no. 2 (February/March 2016): 122–33, https://doi.org/10.1097/PSY.0000000000000274.

        Social isolation and loneliness: A. Steptoe et al., “Social Isolation, Loneliness, and All-Cause Mortality in Older Men and Women,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 110, no. 15 (March 25, 2013): 5797–801, https://doi.org/10.1073/pnas.1219686110; J. Holt-Lunstad et al., “Loneliness and Social Isolation as Risk Factors for Mortality: A Meta-Analytic Review,” Perspectives on Psychological Science 10, no. 2 (March 2015): 227–37, https://doi.org/10.1177/1745691614568352.

        Arieff believes: Allison Arieff, “Life Is Short. That’s the Point,” New York Times online, August 18, 2018, https://www.nytimes.com/2018/08/18/opinion/life-is-short-thats-the-point.html.

        The clear-eyed view: Report: Living to 120 and Beyond: Americans’ Views on Aging, Medical Advances and Radical Life Extension (Washington, DC: Pew Research Center, August 6, 2013), https://www.pewresearch.org/religion/2013/08/06/living-to-120-and-beyond-americans-views-on-aging-medical-advances-and-radical-life-extension/.

        Index

        A specific form of pagination for this digital edition has been developed to match the print edition from which the index was created. If the application you are reading this on supports this feature, the page references noted in this index should align. At this time, however, not all digital devices support this functionality. Therefore, we encourage you to please use your device’s search capabilities to locate a specific entry.

      1. 李立众:绑架行为的构造研究

        绑架行为的构造问题,是指作为绑架罪实行行为的绑架行为,涉及几方人员关系、由几个部分(环节)组成的问题,具体包括三个问题:第一,根据法条规定,有三种情形可以构成绑架罪,由此产生绑架行为只有一种行为类型,还是有数种不同行为类型的问题。这是关乎绑架罪是否存在统一行为构造的前提性问题。第二,在“以勒索财物为目的绑架他人”的规定中,没有明确规定勒索对象是谁,由此产生是否只有向第三人勒索财物才能构成绑架罪的问题。对此,存在三方关系说与两方关系说的争论。第三,“以勒索财物为目的绑架他人”意味着行为人绑架他人之后,会向勒索对象提出勒索要求,因此产生勒赎行为是否为绑架行为有机组成部分的问题。对此,存在单一行为说与复合行为说的持续争论。本文拟对这些问题展开研究。

        一、绑架行为的构造前提:几种类型之争

        (一)问题所在

        根据《刑法》第239条的规定,以勒索财物为目的绑架他人、绑架他人作为人质或者以勒索财物为目的偷盗婴幼儿的行为,构成绑架罪。据此,有人认为,绑架罪包括勒索型绑架、人质型绑架与偷盗型绑架三种类型。但问题在于,这三种绑架情形属于不同的行为类型,还是实为同一行为类型?这是讨论绑架行为构造的前提性问题,因为如果这些绑架类型相异,绑架行为的统一构造就是一个伪问题。

        早在1997年刑法颁布之初,关于《刑法》第239条的罪名,就存在“绑架罪”一罪名说、“绑架勒索罪”“绑架人质罪”二罪名说与“绑架勒索罪”“绑架人质罪”“偷盗婴幼儿罪”三罪名说之争。罪名之争的背后,是绑架行为的类型之争。1997年最高人民法院发布《关于执行〈中华人民共和国刑法〉确定罪名的规定》,将该条罪名确定为“绑架罪”一个罪名,终结了该条罪名个数之争。但是,这并未解决(甚至掩盖了)绑架罪是否存在不同行为类型的问题。原因在于,即使该条只有绑架罪一个罪名,也并不意味着绑架行为的类型相同,不能排除“绑架罪”罪名是概括罪名的可能。绑架罪罪名是单一罪名还是概括罪名,这是学界并未留意过的问题。在概括罪名中,并无统一的行为构造,如在《刑法》第293条中,寻衅滋事罪是概括罪名,存在随意殴打他人型等四种不同的行为类型,故寻衅滋事行为就不存在统一的构造。因而,即使《刑法》第239条仅有绑架罪一个罪名,在尚未明确该罪名是单一罪名还是概括罪名之前,无法明确绑架行为是否存在不同行为类型。

        在比较法上,绑架行为的类型问题并不简单。例如,日本刑法关于绑架犯罪的规定极为复杂,与赎金相关的绑架犯罪被规定在《日本刑法典》中,其他类型的绑架犯罪则被规定在单行刑法中。具体而言:(1)对于与赎金相关的绑架犯罪,《日本刑法典》第225条之二等条款规定了勒索赎金目的拐取罪与要求赎金罪等犯罪。该条第1款勒索赎金目的拐取罪,处罚的是以交付财物为目的的略取、诱拐行为,预备与未遂行为均受处罚;第2款要求赎金罪,处罚的是拐取犯人让他人交付财物或者要求交付财物的行为,不处罚未遂行为。第1款勒索赎金目的拐取罪是目的犯,只要行为人出于获得赎金的目的,略取或者诱拐了他人,即构成本罪既遂,行为人放弃勒索赎金的行为不影响犯罪既遂的认定;而第2款要求赎金罪具有结合犯的性质,由行为主体的略取、诱拐他人的行为与属于行为方式的要求、取得赎金的行为结合而成,成立本罪要求行为人实施了要求或者取得赎金的行为。(2)对于非赎金型的绑架犯罪,1978年日本《有关处罚人质强要等行为的法律》第1条等条文规定了人质强要罪等犯罪。与中国刑法不同,日本刑法中与赎金相关的绑架犯罪,无论法定最低刑还是法定最高刑,均显著高于非赎金型的人质强要罪。从处罚的重点、构成要件的要求以及法定刑的轻重方面可见,在日本刑法中,绑架犯罪存在数种不同的行为类型。

        从日本刑法反观中国刑法,即使《刑法》第239条只有“绑架罪”一个罪名,也需要研究该条到底规定了几种绑架行为的类型。

        (二)本文见解

        本文认为,在《刑法》第239条中,三种绑架情形的本质相同,均属于以向他人提出非法要求为目的,绑架他人作为人质,因而,我国刑法中只有一种绑架行为类型。

        1.以勒索财物为目的偷盗婴幼儿,不是独立的行为类型

        一方面,就《刑法》第239条第3款“以勒索财物为目的偷盗婴幼儿”而言,偷盗的实质是对婴幼儿建立起实力支配关系,以便行为人以婴幼儿为筹码向第三人勒索财物,因而,“以勒索财物为目的偷盗婴幼儿”在本质上就是该条第1款的“以勒索财物为目的绑架他人”。另一方面,就第1款的“以勒索财物为目的绑架他人”而言,绑架的对象不限,“他人”包括婴幼儿在内,同时,刑法也未明文限定绑架手段,偷盗行为同样能对婴幼儿建立起实力支配关系,故“偷盗”当然可以成为绑架的手段。所以,第1款的“以勒索财物为目的绑架他人”其实就已包含了第3款“以勒索财物为目的偷盗婴幼儿”的内容。换言之,“以勒索财物为目的偷盗婴幼儿”乃是“以勒索财物为目的绑架他人”的情形之一。因此,即使没有第3款的规定,以勒索财物为目的“偷盗婴幼儿”的行为,也构成绑架罪。既然第3款并未改变第1款的构成要件,其在性质上是注意规定,则以勒索财物为目的偷盗婴幼儿的行为,自然就不是一种独立的绑架行为类型。

        2.以勒索财物为目的绑架他人,也不是独立的行为类型

        在《刑法》第239条中,“以勒索财物为目的绑架他人”与“绑架他人作为人质”的表述确实不同,前者是目的犯的表述,后者则是纯客观的表述。这是否意味着二者在本质上是彼此有别的行为类型?如果二者是不同的行为类型,绑架行为是单一行为还是复合行为,就可能需要视行为类型而定。

        在绑架手段、对象方面,“以勒索财物为目的绑架他人”与“绑架他人作为人质”应当并无不同。如果认为二者的行为类型有别,必定是绑架行为的组成部分不同,或者说立法者的关注点不同。对此,在理论上存在如下两种可能性:(1)像《日本刑法典》第225条之二第1款、第2款那样,主张“以勒索财物为目的绑架他人”处罚的是以勒索财物为目的所实施的绑架行为(单一行为),只要出于该目的完成了绑架行为,即属于绑架既遂。而“绑架他人作为人质”处罚的则是绑架他人作为人质的行为+向他人提出非法要求的行为(复合行为),行为人需要实施了这两个行为,才构成绑架既遂。有学者讨论过这一可能性,得出了否定结论。(2)或者主张,“以勒索财物为目的绑架他人”虽是目的犯,但处罚的是复合行为,而“绑架他人作为人质”处罚的则是单一行为。学界就有人如此主张,认为“以勒索财物为目的绑架他人”是复合行为,具体包括绑架行为与勒索赎金行为,而“绑架他人作为人质”则是行为人为满足其他不法要求控制他人作为人质的单一行为。但该主张能否成立,需要进一步研究。

        本文认为,“以勒索财物为目的绑架他人”与“绑架他人作为人质”是列举与概括的关系,属于同一行为类型,不存在其中一者为单一行为、一者为复合行为的可能性。

        第一,与“以勒索财物为目的绑架他人”一样,“绑架他人作为人质”也是目的犯。如同“盗窃”暗含行为人必须具有非法占有的目的一样,“人质”一词同样暗含行为人必须具有特定目的。“人质”是指“一方扣留或劫持的对方的人,用来迫使对方履行诺言或接受某些条件”。从“人质”的含义出发,“绑架他人作为人质”自然意味着行为人具有向他人提出非法要求的特定目的。如果行为人没有向他人提出非法要求的特定目的,即使“绑架”了他人,也不属于“绑架他人作为人质”。如行为人以出卖目的,采用麻醉方法绑架妇女的,不能称之为“绑架他人作为人质”。抛开客观表述的外表,“绑架他人作为人质”也是(不成文的)目的犯。因而,在“以勒索财物为目的绑架他人”与“绑架他人作为人质”之中,不存在一者是单一行为、一者是复合行为的可能性。

        第二,“以勒索财物为目的绑架他人”是“绑架他人作为人质”的情形之一。首先,二者的表述可以相互转换。一方面,行为人“以勒索财物为目的绑架他人”之时,被绑架的人就已成为“人质”,故可将此情形表述为行为人以勒索财物为目的“绑架他人作为人质”。另一方面,绑架的目的是多样的,勒索财物的目的仅是绑架目的之一而不是全部。“绑架他人作为人质”时,若行为人的具体目的是勒索他人财物,则可将“绑架他人作为人质”表述为“以勒索财物为目的绑架他人”。这种相互的可转化性,意味着二者是同一行为类型。其次,“以勒索财物为目的绑架他人”是“绑架他人作为人质”的常见情形,二者不具有并列地位。就事实而论,行为人绑架人质的目的,绝大多数是为了勒索赎金。于是,立法者采用“列举常见情形+概括行为实质”的立法方式,在法条中首先列举绑架犯罪的常见情形“以勒索财物为目的绑架他人”,然后概括本罪的实质是“绑架他人作为人质”。因此,“以勒索财物为目的绑架他人”实为“绑架他人作为人质”的常见情形,不是一种独立的绑架类型。

        第三,立法沿革能够证明绑架犯罪只有“绑架他人作为人质”这一种行为类型。对于绑架罪,在1997年刑法通过的前夕,1996年8月8日全国人大常委会法制工作委员会《刑法分则修改草稿》以及1996年8月31日全国人大常委会法制工作委员会《中华人民共和国刑法(修改草案)》均规定:“绑架他人的,处……”。可见,当初构思绑架罪立法时,立法者仅设计了一种绑架行为类型。虽然正式通过的条文在表述上有所变化,但这是由其他原因导致的,而不是立法本意有所改变。为了避免人们混淆绑架犯罪中的绑架行为与拐卖犯罪中的绑架行为,立法者于是将上述草案中的“绑架他人”修改为“绑架他人作为人质”——这一修改仅是形式化的文字润色,因为在绑架犯罪中,行为人绑架他人之时,被绑架的人就是人质,故可将“绑架他人”表述为“绑架他人作为人质”;同时,立法者列举了“绑架他人作为人质”的常见情形——“以勒索财物为目的绑架他人”。可见,与1996年草案相比,《刑法》第239条的条文表述虽有不同,但并未改变绑架罪只有一种行为类型的立法本意。

        二、人员的构造:几方关系之争

        (一)问题所在

        成立绑架罪,要求存在几方人员,这就是绑架行为的人员构造问题。《刑法》第239条既未规定以勒索财物为目的绑架他人时,行为人向谁勒索财物,也未规定绑架他人作为人质时,行为人向谁提出非法要求。这就产生了一个重要问题:在绑架罪中,被绑架人与被勒赎对象是否必须是不同的人?如行为人以勒索财物为目的,劫持被害人之后,直接向被害人勒索财物的,该行为能否构成绑架罪?

        对此,一种观点认为,构成绑架罪,行为人只能向被害人(人质)以外的第三人提出勒索财物等非法要求。这意味着仅在行为人、被害人(人质)与第三人的三方关系的场合,才能成立绑架罪(以下简称“三方关系说”)。据此,行为人以勒索财物为目的,实力支配被害人之后,仅向被害人勒索财物的,该行为不构成绑架罪(构成抢劫罪)。另一种观点则认为,三方关系不是绑架罪的必备前提,在行为人与被害人两方关系的场合也能成立绑架罪(以下简称“两方关系说”)。据此,行为人以勒索财物为目的,劫持被害人之后,直接向被害人勒索财物的,该行为构成绑架罪。两方关系说不是对三方关系说的直接否定,其同样赞成在三方关系的场合成立绑架罪,但其主张仅存两方关系时也有成立绑架罪的余地。该见解能否成立,需要认真研究。

        (二)实务情况

        关于如何看待绑架行为的人员构造问题,司法实务意见不一。如被告人杨保营等人将田某劫持至一旅馆内非法拘禁,向其索要钱物,两日后将田某挟持回其住处,从田某存折中支取现金5000元后将其释放。对此,检察院以绑架罪起诉,一审法院判决被告人构成绑架罪,二审法院则认定被告人构成抢劫罪。显然,检察院与一审法院采用的是两方关系说,故在实力支配被害人之后,仅向被害人提出勒索要求的,被告人也能构成绑架罪。而二审法院采用的是三方关系说,本案中被告人并未向第三人提出勒索要求,故被告人不能构成绑架罪,而是构成抢劫罪。2005年第2期《最高人民法院公报》选中该案二审判决,明确指出“杨保营等三人向被害人田茂云暴力劫取财产的行为并没有涉及其他的人,其行为特征与以勒索财物为目的的绑架他人行为是不同的,不符合绑架罪的犯罪构成”,并将该案裁判要旨归纳为“根据刑法第二百六十三条的规定,被告人以殴打、捆绑、禁闭为手段非法拘禁被害人,并迫使被害人直接交出现金的行为,应按抢劫罪论处”。如果公报案例能代表最高人民法院的意见,就意味着最高人民法院采用的是三方关系说。这一观点后来写进了最高人民法院相关领导主编的《刑事审判实务教程》,该书明确指出绑架罪是将被绑架人作为人质向第三人索取财物的犯罪。

        三方关系说在实务中曾一度被采纳。例如,被告人李秀伯、吴仕桥预谋抢劫卖淫女,二人以欺诈手段将卖淫女赵某、孙某骗至宾馆房间,将二女捆绑,以弹簧刀相威胁,让赵某、孙某编造理由,分别打电话向他人筹款4000元。三日后公安人员至宾馆将两被告人抓获,被害人被解救。检察院以被告人李秀伯、吴仕桥犯绑架罪起诉,但法院判决二被告人构成抢劫罪。检察院显然采用的是两方关系说,得出行为人构成绑架罪的结论。与此不同,法院则持三方关系说,作出了行为人构成抢劫罪的判决。该案主审法官认为,绑架罪是侵犯第三人自决权的犯罪,绑架勒索的对象只能是对被绑架人安危担忧的第三人。

        然而,刘强等人劫持张某索要财物一案表明,最高人民法院已经转向两方关系说。被告人刘强等人暴力劫持某公司董事长张某,向其索要钱财,张某被迫答应4个月内交出1亿元。为让张某乖乖交钱,刘强等人胁迫张某杀害无辜第三人,在张某杀人时拍摄其杀人录像后,将其释放,指望张某限期交钱。本案中不存在被勒索的第三人,根据三方关系说,被告人不能构成绑架罪,对此应以抢劫罪定罪。然而,对于被告人劫持张某向其索要钱财的行为,检察院以绑架罪起诉,一审、二审法院均判决刘强等人成立绑架罪。最高人民法院对刘强等人进行死刑复核时,也维持了刘强等人成立绑架罪的结论。由此可见,最高人民法院采用两方关系说,从而得出结论:在实力支配被害人之后,行为人直接向被害人勒索财物的,构成绑架罪。

        与杨保营等人抢劫案相比,刘强等人劫持张某索要财物案中的暴力程度确实更高,但两案在本质上并无不同,均为劫持被害人之后向其索要财物的案件。最高人民法院对杨保营案采用三方关系说,对刘强案采用两方关系说,以致对两案的定性不同,前后显然缺乏逻辑一贯性。

        (三)理论动向

        与实务倾向不同,三方关系说向来都是理论上的通说。第一,作为绑架罪的前身,围绕1991年全国人大常委会《关于严惩拐卖、绑架妇女、儿童的犯罪分子的决定》(下文简称1991年《严惩拐卖、绑架犯罪决定》)第2条第3款规定的绑架勒索罪,当时的学界认为,绑架勒索行为中的勒索,是将被绑架者以杀死、伤害或继续扣押为威胁,来强迫第三方在指定的时间和地点交付一定的财物,来赎取人质。从该罪的特点看,被绑架者与被勒索者不可能是同一个人,被勒索的人只能是人质以外的人。如果行为人绑架他人是为了直接向被绑架人索取财物,则不构成绑架勒索罪,而构成抢劫罪。

        第二,围绕1997年《刑法》第239条,学界仍旧认为,绑架罪在客观方面表现为利用被绑架人近亲或其他人对被绑架人安危的忧虑,而使用暴力、胁迫等手段劫持或以实力控制他人的行为;如果行为人绑架他人是为了直接向被绑架人索取财物,不构成绑架罪,而是构成抢劫罪。绑架罪与抢劫罪的区别之一是,抢劫罪是当场强行劫取被害人的财物,而绑架罪是将人掳走限制其自由后,威胁被害人家属或有关人员,迫使其交付财物。

        第三,近来,学界更是明确地提出了三方关系说:绑架罪是“三角”互动结构,以存在绑匪、人质、第三人的三方关系为前提,被勒索、被要挟的人只能是被绑架者以外的第三人。

        学界主张三方关系说的理由在于:其一,是文义解释的当然结论。所谓“作为人质”,“是指作为交换条件,即行为人使用暴力、胁迫或其他手段控制人质后,以对人质的安危作为交换条件,向第三人发出了要挟令。否则无从谈起作为人质。”换言之,仅当行为人意图将被害人作为迫使第三人就范的筹码时,被害人才属于《刑法》第239条中的“人质”,因而,绑架罪必然是涉及三方关系的犯罪。其二,是区分绑架罪与抢劫罪的需要。行为人以取财为目的,实力支配被害人之后,向被害人索要财物的,采用三方关系说可以快速区分犯罪:“行为人是直接向被绑架人索要财物,还是向被绑架人之外的第三人索要财物,是区分绑架罪和抢劫罪的关键。”

        不过,随着上述刘强等人劫持张某索要财物一案判决的出台,有论者开始质疑作为理论通说的三方关系说,提倡两方关系说并对此进行了详细论证:第一,《刑法》第239条只是陈述了“以勒索财物为目的”和“绑架他人”这两项要件,无法据此得出勒索对象必须是被绑架人之外的第三人的结论。第二,就含义而言,绑架是指对被害人的身体在特定时间、空间范围内进行稳定性的实力支配,其本质是使被害人成为刀俎上的鱼肉、掌控于绑匪手心的筹码,故控制被害人之后,向被害人索要财物的行为,完全符合绑架的文义与本质。第三,不要求绑架罪必须存在三方构造,不会造成绑架罪与抢劫罪的区分混乱:在向被害人索要财物的场合,如果行为人已经对被害人形成稳定的实力支配态势,将被害人操控于掌心,进而意图利用这种态势最终获取被害人的财物的,成立绑架罪;尚未形成稳定的实力支配态势的,构成抢劫罪。顺着两方关系说,男性采用暴力劫持陌生女性,控制女性的人身自由后,强行要求与其建立恋爱关系,如果女性拒绝就对其进一步施暴的,近来也有论者主张该行为成立绑架罪。

        在理论上提倡两方关系说,也有比较法上的背景。就全球来看,绑架罪未必限于三方关系。例如,对于国际刑法中的劫持人质罪,《国际刑法典及国际刑事法庭法草案》将该罪条文设计为:“任何人为了下列目的违背他人意志故意和非法地加以劫持或扣押即构成劫持人质罪:(1)为了从该人或另一人、国家、国际组织、按国家法律成立的法人团体获得情报或财产;(2)为了威胁、诋毁、羞辱该人或另一人……。”据此,实力支配被害人之后,要求被害人满足行为人某种要求的,构成绑架罪(劫持人质罪)。再如,在德国刑法中,掳人勒赎罪“原本规定仅限于该罪行所特有的三角关系”,即行为人必须是以实力控制被害人并且意图利用他人对被害人安危的忧虑进行敲诈勒索或者提出其他非法要求,才能成立绑架罪。然而,1989年,针对“恐怖主义暴力犯罪的典型表现形式”,德国修订了绑架罪条文,修订后的第239a条掳人勒赎罪第1项规定:“意图勒赎(第253条),以掳人或将他人置于自己实力支配下之方式,使被掳人或第三人担忧被掳人安危,而对其勒赎,或行为人利用因其所生之上述情状勒赎者,处五年以上有期徒刑。”由此,绑架罪的适用范围扩张到了行为人与被害人两人的场合,即行为人意图利用被害人对自身安危的忧虑,强制被害人自己交付财物的,也成立绑架罪。再如,根据我国《澳门刑法典》分则“侵犯人身自由罪”第154条绑架罪规定,绑架被害人后逼迫其交出财物的,构成绑架罪。

        既然在比较法上,两方关系的场合也能成立绑架罪,那么,面对三方关系说遭受质疑的局面,中国刑法理论应当何去何从?

        (四)应然选择

        1.立法沿革的考察

        新中国成立之后,绑架他人勒索财物的案件几乎绝迹,故1979年《刑法》并无绑架犯罪的相关规定。但20世纪80年代,绑架他人勒索财物的案件开始死灰复燃,不断增加。当时,围绕绑架勒索罪行应当如何定性的问题,有的主张定敲诈勒索罪,以“情节严重”处刑;有的认为,应以敲诈勒索罪和非法拘禁罪数罪并罚;有的则主张按抢劫罪中的“情节严重”处罚。对此,1990年2月3日,最高人民检察院研究室《关于当前以人质勒索他人巨额财物案件如何定罪处罚问题的函》主张,对于以人质勒索他人巨额财物案件,可以按照抢劫罪论处。为稳妥起见,最高人民检察院就此征求最高人民法院研究室的意见。1990年2月17日,最高人民法院研究室《关于以人质勒索他人巨额财物案件如何定罪处罚问题的复函》回复如下:“关于以人质勒索他人巨额财物案件如何定罪处罚的问题,同意你们的意见,即对于掳人勒赎(以人质勒索他人巨额财物)案件,在刑法未作修改以前,可以按照抢劫罪定罪处罚。”

        问题是,对于1979年《刑法》而言,劫持人质勒索他人的行为原本就符合抢劫罪的构成要件,因而可按抢劫罪定罪处罚,还是该行为原本并不符合抢劫罪的构成要件,通过类推适用抢劫罪定罪处罚?对此,当时的多数意见是:“抢劫是即时犯,是当时、当场使用暴力从财物所有人身上或面前劫走财物。而‘绑票’则是继续犯,行为人在绑架人质后,要持续一段时间,才能在另外的地方从人质的亲属或利害关系人那里强索到财物。这中间,时间有延续,场所有变更,不同于抢劫的当时、当场的犯罪特征。”这一意见认为,在取财的对象(从被害人处取财还是从第三人处取财)与取财的时间(是当场取财还是事后取财)上,绑架勒索行为与抢劫行为存在明显不同。当时的立法人员同样认为,“抢劫罪与以勒索财物为目的的绑架,在犯罪构成上具有明显的不同。最主要的区别是绑架罪是将人掳走,限制其自由,并以杀害、重伤被害人,威胁被害人家属,迫使其交付赎金;抢劫罪则是犯罪分子对被害人当场使用暴力或暴力威胁,迫使被害人交出财物,或抢走被害人的财物,既不掳走被害人,也不威胁其家属。二者的社会危害程度也不同。如果对为勒索财物的绑架按抢劫罪的规定处罚,失之于轻,不利于打击绑架犯罪。”

        可见,对于绑架他人勒索财物的行为以抢劫罪论处,是类推适用的结果。1979年《刑法》允许类推适用,对绑架勒索行为以抢劫罪定罪处罚,符合当时的刑法规定。但是,如果想要贯彻罪刑法定原则,针对绑架勒索行为就有必要制定专门的罪刑规范。为此,1991年《严惩拐卖、绑架犯罪决定》第2条第3款规定:“以勒索财物为目的绑架他人的,依照本条第一款的规定处罚。”参与制定《严惩拐卖、绑架犯罪决定》的立法人员对此的解读是:“本罪既侵犯被绑架者本人,也侵犯被绑架者的家属或所属组织”,“本罪的犯罪分子并不直接从被绑架人手中获取财物,而是向其亲友所在组织索取财物,取财手段是间接的”。可见,立法人员认为绑架勒索罪是三方关系的犯罪。

        对于1997年《刑法》第239条,立法人员的解读是:以勒索财物为目的绑架他人,是指“以暴力、胁迫或者麻醉方法强行掳走他人,以此向被害人亲友索取钱物的行为”;绑架他人作为人质,是指“出于其他目的,如出于政治性目的、为了逃避追捕或者要求司法机关释放罪犯等,劫持他人作为人质的行为。”从立法解读可以看出,立法机关是以三方关系为原型来设立绑架犯罪条文的。如此设计绑架犯罪是合理的,因为对于两方关系的案件,以抢劫罪定罪即可。即使少数劫持被害人后向被害人索要财物的案件,其危害性不一定就轻于绑架犯罪,但因抢劫罪的法定刑幅度较大,对此完全可以通过合理量刑来实现罪刑均衡,故没有必要将绑架罪扩大适用至两方关系的案件中。

        2.规范根据的支持

        从教义学的角度出发,存在规范根据的学说才是值得支持的学说。因此,在两方关系说与三方关系说之中,何者存在规范上的根据,是二者对决的主战场。在这方面,三方关系说至少存在三条规范根据:

        第一,《刑法》第239条第1款“绑架他人作为人质”中的“人质”一词,支持三方关系说。在古代汉语中,“质”有以财物或者人员作抵押的意思,将“人”与“质”相结合,就形成了“人质”的概念。春秋时期,各国为了彰显诚信,多交换王子以为质。这种做法不仅发生在诸侯之间,甚至周王室也发生过“周郑交质。王子狐为质于郑,郑公子忽为质于周”的事情。在我国,“一直到17世纪中叶,为了保证而使用人质,就形成一种制度,一直存在着。从《左传》……到1637年与1645年间朝鲜的人质送给满洲统治者,无数互换人质或让与人质的实例均可为证”。这种源远流长的人质文化,给与绑架相关的汉语词汇留下了深深烙印:(1)在仅涉及匪徒与被匪徒控制的人两方的场合,被匪徒控制的人在语言学上只能被称为“被害人”,不能被称为“人质”;只有在匪徒意图通过控制被害人向第三人提出某种要求的场合,该被害人才能被称为“人质”。进而,匪徒向被其控制的人索要财物未成而杀害该人的,在语言学上不能表述为杀害“人质”,只能称为杀害“被害人”。仅在匪徒向第三人索要财物未成,而杀害被匪徒控制的人的场合,才能将此表述为杀害“人质”。(2)匪徒控制他人后,向该人索要财物,对于该人所交出的财物,人们不会将此称为“赎金”。只有第三人出于对被害人安全的担忧,而向匪徒交付的财物,才会被称为“赎金”。(3)匪徒以勒索财物为目的劫持他人后,如果仅是意图向该人索取财物,未向第三人索取财物的,此时人们不会认为该人属于“绑票”。匪徒向该人索取财物,因遭到拒绝而被匪徒杀死的,人们不会将此称为“撕票”或者杀害“人质”。可见,《刑法》第239条第1款中的“人质”一词,足以否定两方关系说。

        因此,不能因为有些国家或者地区的立法采用了两方关系说,就在我国提倡两方关系说。一方面,也有一些国家的绑架罪立法明文采用了三方关系说。如《日本刑法典》第225条之二第1款明文规定,只有“利用近亲者或者其他人对被略取者或者被诱拐者安危的忧虑”的,才成立掳人勒赎罪。既然在比较法上,既有两方关系说的立法例,也有三方关系说的立法例,存在比较法上的根据就不构成我国应当采用两方关系说的理由。另一方面,中国刑法能否采用比较法上的结论以及采取哪一结论,归根到底取决于该结论是否符合中国的文化与中国刑法典规定。对于个人非法扣留人质以索取财物等行为,我国古代刑法专门规定了“持质罪”。《唐律·贼盗》规定:“诸有所规避,而执持人为质者,皆斩。”疏议曰:“有人或欲规财,或欲避罪,执持人为质。规财者求赎,避罪者防格。不限规避轻重,持质者皆合斩坐。”该规定相当于现代刑法中的掳人勒赎型绑架罪。疏议中“规财者求赎”的规定,足以表明绑架犯是向人质之外的第三人索取财物。既然三方关系说符合中国文化、符合中国刑法规定,对此加以否定就是不合适的。

        第二,《刑法》第239条第3款“以勒索财物为目的偷盗婴幼儿”的规定,同样支持三方关系说。婴幼儿通常没有什么随身财物,即使有随身财物,也没有必要采用绑架的方式取得这些财物。此外,由于年龄的缘故,婴幼儿也不能领会自己作为被害人到底意味着什么。因此,当行为人“以勒索财物为目的偷盗婴幼儿”时,其只有向婴幼儿的近亲属等第三人索取财物,才能实现勒索财物的目的。可见,该款规定同样印证了三方关系说。对此,两方关系说可能提出反驳:该款仅是对偷盗婴幼儿构成绑架罪所作的特别规定,不能进行普遍推广。然而,一方面,不论两方关系说如何反驳,都改变不了该款规定支持三方关系说的事实。另一方面,三方关系说并不缺乏规范根据,缺乏规范根据的恰恰是两方关系说。两方关系说要证明其合理性,单纯批评三方关系说是不够的,其必须努力提供令人信服的规范根据,但其至今未能提供任何规范根据。

        第三,联合国《反对劫持人质国际公约》第1条第1款的规定,同样支持三方关系说。立法人员明确指出,增加“绑架他人作为人质”的规定,“是考虑到国际上《反对劫持人质国际公约》和我国同劫持人质犯罪作斗争的实际需要增加的。”1979年联合国《反对劫持人质国际公约》第1条第1款规定:“任何人如劫持或扣押并以杀死、伤害或继续扣押另一个人(以下称‘人质’)为威胁,以强迫第三方,即某个国家、某个国际政府间组织、某个自然人或法人或某一群人,作或不作某种行为,作为释放人质的明示或暗示条件,即为犯本公约意义范围内的劫持人质罪行。”1992年12月28日,我国决定加入该公约,因而我国有遵守并在相关国内立法中落实该公约的义务。只要认为我国所承认的国际公约也是我国的法律渊源,那么,《反对劫持人质国际公约》中“以强迫第三方”的规定,就能够成为三方关系说的规范根据。

        3.绑架的法律含义

        进行两方关系说与三方关系说的选择时,还需要严格区分“绑架”一词的日常含义与法律含义。正如日常生活中的“故意”不等于刑法中的“故意”,日常生活中的“放火”不等于刑法中的“放火”一样,日常生活中的“绑架”不等于刑法中的“绑架”。只有依据“绑架”一词的法律含义,才能真正解决绑架罪中的人员关系构造问题。

        “绑架”是一个日常使用频率不低的词语,不仅用于描述具体的某人被绑架的场合,而且用于描述一些较为抽象的场合,如“被道德绑架”“舆论绑架司法”等即是如此。这些表述的意思分别是“被道德支配、控制”“司法被舆论支配、受到舆论的影响”。可见,尽管词典并未收录这一义项,但“绑架”已经引申出“支配、控制”的意思。

        两方关系说认为,两方关系也符合绑架的含义,因为到底存在几方关系,改变不了被害人处于行为人的实力支配之下,被害人是刀俎上的鱼肉、绑匪手中的筹码这一客观事实。两方关系说明显重视“绑架”的日常含义“支配、控制”这一点。从日常含义出发,对于劫持被害人之后向其勒索财物的情形,当然可以描述为被害人被“绑架”了。然而,具有“支配、控制”属性的行为,未必都是《刑法》第239条中的“绑架”行为。例如,在拐卖妇女、儿童罪,强迫卖淫罪、劫持航空器罪等场合,被害人均处于行为人的实力支配之下,成为刀俎上的鱼肉、行为人手中的筹码,但是,这些具有“支配、控制”属性的行为,均不属于绑架罪中的绑架行为。总之,在具有支配、控制被害人属性的场合,仅有一部分情形才能被评价为《刑法》第239条中的绑架行为。两方关系说没有严格区分“绑架”的法律含义与日常含义,导致其结论并不妥当。

        如何把握绑架罪中“绑架”的法律含义,取决于刑法本身的具体规定。在英美刑法中,未经被害人同意将其带走进行实力支配的行为,构成普通法上的绑架罪(Kidnapping)。不过,中国刑法关于绑架罪的规定与此完全不同。在我国,“人质”一词的特定含义,决定了绑架罪中“绑架”一词的法律含义只能是:意图将被害人作为迫使第三人满足行为人要求的筹码,而实力支配、控制被害人。如若不然,将路上的妇女劫持到行为人家中予以强奸的,该情形中的妇女也处于行为人的实力支配之下,具有“人为刀俎、我为鱼肉”的属性,就应将该行为也评价为绑架行为。事实上,两方关系说就持这一主张。本文并不否认,的确存在诸如《澳门刑法典》第154条之类的立法例。在美国部分州的刑法中,也有类似规定。然而,只要从我国《刑法》第239条出发,就没有将这些情形评价为绑架罪的余地,因为勒索目的不同于报复、性侵等目的,出于诸如此类目的而实力控制他人的行为,并非绑架罪的绑架行为。

        综上所述,与两方关系说相比,三方关系说符合立法沿革、存在规范根据、符合法律含义,因而,我国应当继续维持三方关系说。

        三、环节的构造:几个环节之争

        (一)问题与概况

        绑架行为由几个环节构成,这就是绑架行为的环节构造问题。当立法者写下“以勒索财物为目的绑架他人”时,其脑海中必会浮现绑匪绑架人质、要求人质的近亲属等第三人交付赎金的典型场景。当立法者写下“绑架他人作为人质”时,脑海中同样会浮现诸如绑匪劫持人质、向警方提出非法要求之类的典型场景。因而,绑架罪的实行行为由几个环节、部分构成,就成为问题。对此,存在两种学说:单一行为说主张,绑架行为是以提出勒索等非法要求为目的,实力支配人质的单一行为;与此相对,复合行为说则主张,绑架行为除要求有实力支配人质的行为外,还要有向第三人提出勒索等非法要求的行为。单一行为说与复合行为说之争,不仅影响绑架罪的既未遂与中止犯的认定,而且涉及第三人的自决权是否是绑架罪的保护法益等问题,值得研究。

        单一行为说符合法条的表述,与绑架罪的保护法益相吻合,也与拐卖妇女、儿童罪的规定相协调,其能够妥当处理绑架罪的未完成形态与共同犯罪问题,不会导致处罚过重的局面。因此,单一行为说始终是刑法理论的通说,也是司法实务的通说。究其原因,复合行为说的论证始终不够牢固。归纳起来,主张复合行为说的主要理由有:一是绑架罪的保护法益,决定了绑架行为是复合行为;二是从绑架罪的法定刑出发,只有将绑架行为确定为复合行为,才能与极重的法定刑相协调;三是从绑架罪的犯罪形态与共同犯罪出发,只有将绑架行为确定为复合行为,才能合理解决中止犯与共同犯罪问题;四是从绑架案件事实出发,绑架行为在事实上呈现为复合行为。但是,其一,即使绑架罪有多个保护法益,也并不意味着绑架行为是复合行为,因为保护法益数量的多少与犯罪行为是否是复合行为,不存在内在关联。其二,即使从量刑反制定罪的原理出发,与极重的法定刑相协调的途径也是多元的,并非只有将绑架行为确定为复合行为这一条路径。如将绑架行为限定为严重危害被害人生命、身体安全的行为,一样可以达到目的。其三,绑架罪的行为类型,是立法者通过立法方式塑造的,早已定型化,不是解释者为了解决绑架罪的中止犯与共同犯罪问题,而可以重新塑造的。其四,事实不等于规范,绑架行为在事实上呈现为复合行为,并未意味着其在规范构造上也是复合行为。

        尽管如此,复合行为说的势头至今不减。如在学界有相当影响力的马工程教材《刑法学》就主张,虽然绑架他人作为人质型的绑架罪是单一行为,但以勒索财物为目的绑架他人型的绑架罪是复合行为,具体包括绑架行为与勒索赎金行为。部分新近出版的刑法学教材则主张不分类型,所有绑架行为均为复合行为。有些教材甚至认为,绑架与勒索财物是犯罪的手段与目的的关系,缺一不可,仅有绑架行为,而没有强行以财物勒赎的行为,不能构成绑架罪(可以构成非法拘禁罪)。甚至有人进一步主张,绑架行为是复合行为,成立绑架罪既遂,行为人仅对他人实施勒索行为是不够的,勒索行为还必须达到压制他人意志的程度,否则,如果第三人意志自由并未被完全压制,掳人勒赎行为可能仅成立敲诈勒索罪。复合行为说是否合理,值得再次讨论。

        (二)对复合行为说新论证的审查

        近来,复合行为说论者主要从两个角度进行了重新论证。其一,立足于三方关系说,从“人质”的语义分析论证复合行为说。如有人主张,“人质”意味着将被害人作为要挟对方的筹码,而向对方索求自己想要的东西,故“作为人质”的表述蕴含着勒赎行为,因为若无勒赎,又何来“人质”之说?其二,立足于比较单一的支配、控制人质行为的危害性与抢劫行为的危害性,从绑架罪法定刑(重刑)的角度进行论证。如有人主张,单纯的实力支配人质的行为,危害性尚不能与抢劫行为相当,只有绑架行为加上勒赎行为,其危害性才能重于抢劫,才能与绑架罪的法定刑相称。本文认为,复合行为说的最新论证并不成功。

        1.三方关系说并不必然采用复合行为说

        当立法者的脑海中浮现绑匪绑架人质、向第三人提出勒赎要求时,仅意味着绑架罪中存在三方关系,并非注定了绑架行为就是复合行为。这是因为,如何处理三方关系,属于技术立法问题,有不同的方案可供选择。

        一种立法方案是,在绑架罪的客观要件中体现三方关系(以下简称“客观的三方关系方案”)。如《匈牙利刑法典》第190条第1款规定,任何人通过暴力以及对生命或者身体完整的直接威胁,或者通过使其处于无能力自卫或者无意志行为能力状态下或者利用这样的状态,剥夺其他人的自由,并且要求在满足某种要求的情况下才会将其释放的,处2年以上8年以下的有期徒刑。据此,匈牙利刑法中的绑架行为,由剥夺人身自由的行为与向第三人提出的行为组成。我国立法者曾经考虑过客观的三方关系方案,如1995年8月8日全国人大常委会法制工作委员会刑法修改小组在《刑法分则条文汇集》第三章侵犯公民人身、权利罪第10条规定:“绑架他人勒索财物的,处5年以上有期徒刑……。”据此,绑架行为就是由绑架人质行为与勒索财物行为两部分组成。如果立法者通过绑架罪的客观要件体现三方关系,绑架行为自然就是复合行为。

        另一种立法方案是,在绑架罪的主观要件中体现三方关系(以下简称“主观的三方关系方案”)。《日本刑法典》第225条之二第1款“利用近亲者或者其他人对被略取者或者被诱拐者安危的忧虑,以使之交付财物为目的,略取或者诱拐他人的,处……”,就是主观的三方关系方案的立法例。该方案同样要求成立绑架罪必须存在三方关系,但与客观的三方关系方案不同,其是在行为人意图勒索第三人的主观目的中体现三方关系。主观的三方关系方案意味着绑架行为是行为人实力支配人质的单一行为。

        既然如何处理绑架罪中的三方关系,存在不同的立法方案,单一行为说与复合行为说之争就变成了我国立法者到底采用了哪一立法方案的问题,对此应根据我国的刑法规定作出判断。问题在于,法条虽然采用的是叙明罪状,但对条文的关注点不同,得出的结论将会不同:

        如果着眼于法条中“以勒索财物为目的绑架他人”的规定,既然勒索财物系主观目的的要求,不是对绑架罪实行行为的要求,就会得出我国立法者采用了主观的三方关系方案的结论。据此,单一行为说胜出。

        如果着眼于法条中“绑架他人作为人质”的规定,结论就比较微妙。其一,如果认为“既然‘以勒索财物为目的绑架他人’是单一行为犯,那么,‘绑架他人作为人质’也应当是单一行为犯。换言之,既然‘勒索财物’只是目的,那么,‘作为人质’也只是目的”,就会认为我国立法者采用了主观的三方关系方案。从而,单一行为说再次胜出。其二,如果认为“人质”的概念决定了“绑架他人作为人质”不仅要求有绑架被害人的行为,还要求有向第三人提出勒赎的行为;“以勒索财物为目的绑架他人”是绑架罪的特殊情形,受到一般情形“绑架他人作为人质”的制约,既然后者是复合行为,则“以勒索财物为目的绑架他人”也是复合行为(勒索财物的目的需要客观化为勒索行为,否则会导致“人质”概念没有存在空间)。据此,就会得出我国立法者采用了客观的三方关系方案的结论,从而复合行为说胜出。本文认为,第二种解读不能成立。

        第一,“人质”一词不能表明立法者采用的是客观的三方关系方案。其一,正如前文所指出,“人质”的概念确实要求绑架罪存在三方关系,但是,并非只有复合行为才能体现三方关系,通过绑架目的也能体现三方关系。因此,从“人质”的概念出发,不能得出立法者采用了客观的三方关系方案的结论。其二,“人质”一词确实意味着行为人有向第三人提出勒赎要求的想法,但是,这并不意味着仅在这种想法外化为现实的行为时,被害人才成为人质,因为行为人是否向第三人提出非法要求,不影响被害人是人质的认定。换言之,在绑架他人作为人质的场合,只要行为人主观上具有将他人作为人质的意思,被绑架人就已经属于人质。如两名恐怖分子闯入教室,将门反锁,意图将室内师生作为人质,以便向政府提出非法要求。老师乘一名恐怖分子放松警惕时,迅速夺过枪支,将其一枪毙命,后与另一名恐怖分子对射,将其制服。恐怖分子尚未来得及向政府提出要求,一场恐怖危机就被英勇的老师解除了。在该案中,在恐怖危机被解除之前,师生无疑已经成为人质,而不是只有等到恐怖分子向政府提出非法要求时,师生才成为人质。因此,“绑架他人作为人质”的表述并不要求行为人实施勒赎行为。其三,“绑架他人作为人质”在本质上也是目的犯,不可能是复合行为。“人质”一词意味着行为人在绑架他人作为人质时,主观上存在将他人作为交易的筹码、迫使第三人满足其勒赎要求的意思。换言之,对于“作为人质”应当进行主观解读,是指行为人实力支配他人的目的是将被害人作为人质,以便迫使第三人满足其勒赎要求。此外,如果“绑架他人作为人质”成立绑架罪时,不要求行为人主观上具有勒赎目的,属于纯客观规定的“绑架他人作为人质”,就无法兼容乃至制约作为目的犯的“以勒索财物为目的绑架他人”,这是不可接受的。就此而言,所谓“绑架他人作为人质”还要求有向第三人提出勒赎的行为的说法,是不合逻辑的。

        第二,从现行条文表述来看,立法者采用的是主观的三方关系方案。1997年《刑法》并未采用1995年8月8日全国人大常委会法制工作委员会刑法修改小组设计的“绑架他人勒索财物的,处……”的草案,取而代之的是“以勒索财物为目的绑架他人……”的规定,这足以表明立法者放弃了客观的三方关系方案。如果承认绑架罪存在统一的行为构造,同时承认“以勒索财物为目的绑架他人”是目的犯中的短缩的二行为犯,要求绑架行为需要现实化为勒赎行为的看法,就是没有道理的。

        第三,从立法人员的相关解读来看,立法者采用的是主观的三方关系方案。其一,对于1991年《严惩拐卖、绑架犯罪决定》第2条第3款“以勒索财物为目的绑架他人的,依照本条第一款的规定处罚”的规定,立法人员对此的解读是:“本款所说的‘绑架他人’,是指以暴力、胁迫或者麻醉方法,强行掳走他人的行为。”“从理论上讲,理想的绑架勒索罪的构成应当包括劫掳他人的行为和勒索被绑架人亲友或其所属组织财物的行为。前者是勒索财物的手段,后者是实施绑架的目的,手段行为和目的行为统一起来才是绑架勒索罪的理想形态,因此也有人将绑架勒索罪称为掳人勒赎。但根据《严惩拐卖、绑架犯罪决定》的规定,本罪的成立并不要求行为人必须同时具有勒索他人财物的行为。只要行为人主观上具有勒索财物的目的,客观上使用暴力、胁迫、麻醉或其他方法实施了绑架他人的行为即构成本罪。”可见,对于作为绑架罪前身的绑架勒索罪,立法者是通过绑架目的来体现三方关系的。其二,对于1997年《刑法》第239条的绑架罪,当时的立法人员的解读是,“本罪的客观方面表现为实施了以暴力、胁迫或者其他方法绑架他人的行为”;“绑架他人作为人质的”是指“出于其他目的,如出于政治性目的、为了躲避追捕或者要求司法机关释放罪犯等,劫持他人作为人质的行为。”在这些解读中,并无绑架行为是复合行为的意思。只要认为我国刑法通过绑架目的来体现三方关系,就应认为绑架行为是单一行为。

        2.单一的绑架行为足以科处重刑

        绑架罪的法定刑远重于抢劫罪,围绕法定刑的比较,复合行为说提出了一个问题:如果绑架行为是单一行为,作为单一行为的绑架行为,其危害性真的超过了手段行为侵犯人身法益、目的行为侵犯财产法益的抢劫行为吗?复合行为说主张,单一的绑架行为的危害性与由复合行为构成的抢劫行为并不相当,只有绑架行为加上勒赎行为,才能使得绑架犯罪重于抢劫犯罪。本文认为,这一看法轻视绑架行为侵犯人身法益的程度,片面重视抢劫行为侵犯法益的数量,导致结论不当。

        暂时抛开第三人的自决权是否是绑架罪的保护法益不论,主张绑架行为是单一行为,仅侵犯人身法益,则绑架行为所侵犯法益的种类、数量,确实不及同时侵犯人身法益与财产法益的抢劫行为。但是,这并不意味着只有主张绑架行为是复合行为,仅在绑架行为与抢劫行为所侵犯保护法益的种类、数量相当时,绑架犯罪的危害性才重于抢劫犯罪。这是因为,该主张要得以成立,需要预设绑架行为与抢劫行为对人身法益的侵犯程度相同这一基本前提。仅在该前提之下,单纯侵犯人身法益的绑架行为,危害性尚不及抢劫行为;要使绑架犯罪的危害性超过抢劫犯罪,就必须在绑架犯罪侵犯法益的种类或者数量上增加砝码,从而主张绑架犯罪还侵犯了第三人的自决权,进而得出绑架行为是复合行为的结论。然而,这一预设前提不能成立,因为绑架行为与抢劫行为对人身法益的侵犯程度并不相同,前者对人身法益的侵犯程度远超后者,这一点就足以使得绑架行为的危害性重于抢劫行为,因而需要对绑架罪配置比抢劫罪更重的法定刑。

        绑架行为侵犯人身法益的程度远超抢劫行为,表现在两个方面:其一,采用暴力方法时,绑架行为的暴力程度一般更高。在抢劫罪中,行为人的主要目标是图财,所采用的暴力只要达到足以压制被害人反抗的程度即可,不需要达到完全支配被害人的程度,更不需要非伤害被害人不可。而且,被害人通常能快速识别行为人的打劫意图,很多被害人出于破财免灾的目的而放弃反抗,直接交付财物。这就意味着抢劫犯并不需要采用非常严重的暴力,就能完成抢劫犯罪。与此不同,在绑架罪中,需要达到支配被害人的程度,否则无法将其作为筹码来迫使第三人满足其非法要求。而且,不同于抢劫犯罪,在绑架犯罪的场合,一般需要将被害人劫持到他处。此外,被害人要么难以识别行为人的绑架意图,出于对未知的恐惧而激烈反抗,要么识别出行为人的绑架意图而拼死挣扎。因此,绑架犯需要采取强度较高的暴力,才能将被害人劫持到他处,实现对被害人的支配。既然完成绑架犯罪需要程度更高的暴力,绑架行为对人身法益的侵犯程度,自然就重于抢劫行为。

        其二,在侵犯人身法益的时长方面,绑架行为远超抢劫行为。抢劫罪属于“短时犯罪”,抢劫犯为了迅速得手,通常会尽量以最快的速度完成抢劫犯罪。与绑架犯需要持续控制被害人不同,抢劫犯在压制被害人的反抗之后,一般不需要对被害人实施堵口、捆绑等行为,从而,被害人不会持续处于莫名的恐惧之中。与此不同,向他人提出非法要求的目的,决定了绑架罪属于“长时犯罪”——绑架犯在劫持被害人之后,会在相当时间内持续地实力支配被害人。为防止被害人逃跑,被害人通常会遭受堵口、捆绑等长时间虐待。被害人因不知自己能否被解救、何时被解救,会持续处于巨大的恐惧之中。可见,单就时长而论,绑架行为对人身法益的侵犯程度就远超过抢劫行为。

        单一的绑架行为的危害性远超属于复合行为的抢劫行为,对此还可通过拐卖妇女、儿童罪这一中间项进行证明:(1)拐卖行为的危害性重于抢劫行为。拐卖妇女、儿童罪与抢劫罪看起来缺乏相关性,导致学界很少对二者进行比较,但其实二者也有相似性,如二者都是行为人通过压制被害人的反抗来非法获利。拐卖妇女、儿童罪的法定最低刑(5年有期徒刑),重于抢劫罪的法定最低刑(3年有期徒刑),据此可得出结论:作为单一行为的拐卖行为的危害性重于抢劫行为。(2)绑架行为的危害性与拐卖行为的危害性相当。绑架罪与拐卖妇女、儿童罪同为侵犯人身权利的犯罪,条文序号前后相连,具有实质上的相似性:一方面,两罪都是目的犯。拐卖犯罪分子有出卖的目的,而出卖的目的是图财。若将勒索财物型绑架罪中的勒索财物的目的理解为图财,则两罪在犯罪目的上就具有相同性。另一方面,与绑架罪一样,拐卖犯罪分子也需要首先采用各种手段,才能对被拐卖人建立起实力支配关系。被拐卖人与绑架罪中的人质一样,都是待宰羔羊,无法主宰自己的命运。基于这些原因,在香港刑法《侵害人身罪条例》中,绑架犯罪与拐卖犯罪作为选择性行为,被规定在同一条文(第42条)之中,法定刑相同。在现行刑法中,绑架罪与拐卖妇女、儿童罪的法定最低刑与法定最高刑完全一致,据此可得出结论:绑架行为与拐卖行为,二者的危害性相当。(3)绑架罪与拐卖妇女、儿童罪都是目的犯,这使得绑架行为与拐卖行为都是单一行为。既然二者的危害性相当,而作为单一行为的拐卖行为的危害性重于复合行为的抢劫行为,则作为单一行为的绑架行为,其危害性自然也重于属于复合行为的抢劫行为。如果认为第三人的自决权也是绑架罪的保护法益,则绑架行为的危害性就更加重于抢劫行为。因此,无须主张绑架行为是复合行为,也能合理解释绑架罪的法定刑重于抢劫罪的原因。

        结 语

        绑架罪构造的争议根源,在于人们未能明确区分绑架罪的现实法条(解释对象)与理想法条(解释者前见)。在解释刑法分则罪刑条文时,解释者需要有意识地区分解释对象与解释者前见,清晰地辨别眼前的现实法条与心中的理想法条。如果现实法条存在较大弹性空间、可向理想法条靠拢时,解释者理当努力往理想法条的方向解释现实法条。但是,如果现实法条的表述限制了向个人心中的理想法条靠拢的可能性,解释者就必须恪守眼前的现实法条,不可强行以理想法条取代现实法条,不得削足适履将个人私见以刑法解释的名义包装为国法,否则不但不能解决问题,反而可能使理论与实务变得更加混乱。只要立足于中国文化,重视《刑法》第239条中“人质”“以勒索财物为目的”等表述以及单一的绑架行为的危害性,便不难厘清绑架行为涉及几方人员关系、涉及几个环节的问题。

        曾有学者呼吁,刑法学研究应当从弱势理论着手,维持刑法学的强势理论不是刑法学者的任务与目的,因为论证强势理论对刑法学的贡献有限。本文显然并不符合这一要求,因为本文批评、否定了弱势理论两方关系说、复合行为说,深化、巩固了强势理论三方关系说、单一行为说。本文认为,无论弱势理论还是强势理论,都有(当下)合理与不合理之分,执着于发展弱势理论或者维护强势理论均可能存在方向性偏差,而追求合理的刑法理论才是永远正确的方向。从中道观出发,刑法学研究既不以维护、强化强势理论为己任,也不以论证、发扬弱势理论为追求(并非只有推广弱势理论才能对刑法学作出更大的贡献)。在共识日益缺乏的当下,刑法学人宜抛弃弱势理论与强势理论的区分,以追求合理的刑法理论、促成刑法学共识为使命。

        本文转自《法学家》2024年第3期

      2. 顾烜:山花寻海树,不如就春风

        坐在不知道第多少次开往河西的高铁上,漫长的隧道和漆黑吞没,网络断断续续几乎没有,以前总是不知道该如何打发这种仿佛与世隔绝的时间而万般苦恼,后来在每次往返的列车上开始写文章,一篇一篇的短篇,或者是心情的记录,旁边不时伴随着邻座人的呼噜声,也有人使劲摇手机玩可恨的永远抓不到的“抓大鹅”,以及“中欧班列-雪花膏,青草膏,德国马膏”的推销声,竟然也觉得时间没那么难熬,脑海里像走马灯一般开始回忆过往,便觉得要给自己一个记录。

        文学出身,也总是不好让文字伤心。看过有文章写,文字是浮在水面上的,脑海里开始有了画面,在漫长的隧道中列车的窗户变成水波纹那般,一碰泛出一圈圈涟漪,我伸手去抓,摊开手掌,是金色的字在闪烁。时间就一下子开了倍速,难怪古人常说“书中自有黄金屋”,像是红楼梦评“大漠孤烟直,长河落日圆”,其实这种直白到没有境界的古诗词有时候反倒灵光乍现之时铺成画卷,不必过多考虑,平铺直叙到不费精气神,又何尝不是一种不加掩饰的失禁一样的快乐。

        本来还在思索要怎么给自己的经历每段写一个文艺又诗意的小标题,刚才想,既然平铺直叙反倒是高境界,那朴素说话也是一种起名艺术。

        不由得想起来去年毕业时我导师曾经修改我的论文:不要东拉西扯。当时坐在图书馆里摊开导师给我论文里夹的白纸上大大写着这一行字,没忍住在图书馆和朋友放声大笑。无他,觉得导师实在是锐评且直中要害、不加掩饰的评价带着学术人的风骨,实在是可爱。(还是东拉西扯了好多,改不了的臭毛病)

        1.2022年12月–2023年3月

        疫情刚放开的寒冬,工作并不好找,虽然自己在彼时已经拿到了9个offer,但是内心的不安和不甘让我的危机感与日俱增,应届生身份就像一块敲门砖,一切能用应届生身份的我都去试,包括考选调,考公务员。我自己在多年来的读书生涯中其实一直并未把公务员这份工作列入职业规划中,常常觉得自己有时候自由放浪不羁,不顾后果,敢说敢做,实在是要给自己和别人添麻烦。但是中国古时便说“宁可错杀一百不可放过一个”,好吧,我也来当秋招春招皇帝。

        再者便是当时也见识了一些企业的丑恶嘴脸和对女性不加掩饰的鄙视,那就试试吧,复习吧,动起来吧。这段日子实在是辛苦,觉得自己简直就是“没苦硬吃”,可恨人生信条一直是“从不轻易放弃”,只是之后我想,其实这个人生信条里应该加上一句“别总掉眼泪,又不是国王的小女儿”。

        硬着头皮倒也坚持下来。

        妈妈陪着我在吹着寒风的冬天去考甘肃选调的考试,爸爸给我交了价格不菲的选调面试班费用,十天集训天不亮起床,凌晨一两点堪堪睡下,竟然还有精力掏出手机摇人timi,谁说我不坚强。我自知笔试成绩不占优,甘肃选调只考一门申论,我的拿手项一直是行测,逻辑、速算、分析,样样都是我的强项,可恨强项无施展之地。只能靠面试翻盘。面试时恨不得把自己嘴角黏天上,好让我灿烂的笑闪烁到考官睁不开眼。上讲诗文,下讲理论,中间穿插自己的见解,面试分也算对得起自己。

        回家颜着走,按照这个分数,再加上还算拿得出手的学校,就算省上再满分,也能留在兰州留在家了吧。

        翻车了。哈哈。

        2.2023年3月

        颤抖的手,哆哆嗦嗦在朋友的陪伴下点开分配查询,“嘉峪关市市直单位”,我感觉自己瞎了,这什么玩意儿啊我请问?没分到兰州就算了,还给我分到省内差不多最远的一个地级市。给非甘肃的大家解释一下,甘肃长条的地形,省内最远的两个地级市之间的距离可能差不多有1500公里到1700公里左右,往往省内距离比去省外还要远。朋友和我大骂一些美丽的中国话,花香鸟语,香气扑鼻,优美动听,我们俩不愧是文学方向大拿(这是自己夸自己)。词汇丰富,花样多变,一派祥和之景,莺莺拜月的bgm显得比较配这个美丽的场景。就差旗袍上身手抱琵琶扫弦后再微微张口:“我有一段情呀唱给那诸公听。”

        旗袍倒是常在身。唱个鬼。

        放弃。

        这谁去谁脑子有病。烫个头冷静一下。

        3.2023年4月

        觉得我武汉的tony老师有种魔力,只要在那烫了头,立刻清醒,大脑的思考能力翻几倍,头上架着烫头机子,大脑清醒思考了放弃的充分理由和对自己未来的规划。

        老师店里是不是打氧了。这比澳门赌场里还让人清醒,现在想想,头上的热气根本不是机子的蒸汽,是我cpu运转的水蒸气。

        放弃的理由简单形容就是“钱少事多离家远”,孔乙已脱不下来长衫,我也脱不下来,我并没有地域歧视的意思,但是实在也是不想愧对武大对我的培养,不想愧对导师对我的培养,最后去一个小城市,离家800多公里远,大概率一辈子定居在那。我心向自由,更爱繁华迷人眼,我不能对不起自己。

        这种时候多希望家里人和亲戚们也去tony老师那烫个头。兰州还是海拔太高,氧气不足。老师店里打氧了,吸点氧气精神一下。

        也能理解家里入往往住在时代遗物中,公务员听起来就是顶顶好的工作,父母这辈人的执念是稳定,是地位,是体面。这并没有错,只是他们往往只看到了自己想看到的。

        只是现在想起来时不时还是会怨,那时候每天精疲力尽,应付亲戚、应付妈妈每天几十个电话,几十条语音长条,到后期演变成了阴阳怪气,歇斯底里。我只觉得要不是技术受限,那时候的我妈可能恨不得让我故去的姥爷给我托梦。我实在是累。

        “公务员多好啊!工资高地位高,你一个姑娘家家的找个稳定工作比什么都重要,在嘉峪关那边找个当地人嫁了,把家安那边不是也挺好的吗。”之前面对亲戚朋友们这样的措辞我会生气,会反驳,会崩溃。

        可是我也实在是累了。

        食堂碰见我导师,我眼泪往盘子里掉。我导师背着她的大挎包,她已经不年轻了。但是她坚强,坚定,强大。

        她说“不要去。”她说“你家是省会的,又在武汉接受高等教育,你怎么甘心去那边偏远落后地区。”她说“那边能有什么好的男人能配得上我的学生,你嫁过去我都不同意,什么当地成家,简直就是胡说八道。我不允许我的学生当野妇。”

        我落泪。她说“不要哭,哭最没用了,你要坚强。”她跟我说她自己的经历,说她也放弃过所谓的稳定工作,自己跑出去闯荡。没什么可怕的,要听自己的内心。老师,我还是跟您相像,我在无数的日子里告诉自己绝不放弃,后来变成了“绝不放弃,绝不轻易掉眼泪。”

        可是我还是累了。我还是妥协了。我开始抱着幻想,说不定以后也能调动或者考试回兰州呢,人类进化学会的本事不就是撒谎吗。

        骗自己骗别人,骗万物,骗灵魂。

        还是我错了。

        4.2023年5月

        政审的人还是来了,导师还是比较震惊于我最后的选择,但是她说“我跟他们谈话,我不能把你的后路堵死,哪怕我不愿意让你去。”

        导师第一个进去和人谈话。事后我才知道,导师不关心别的,她最关心的是“你们不会让我的学生一天到晚端茶倒水打扫卫生吧,我学生也有文人风骨,有学术骄傲,一天到晚干这种工作的话那我觉得还是算了。”她不愿意我受委屈受气,她还是明白武大学生的骄傲和自由。

        未来的日子,每每想起这里总是落下泪来。是因为事与愿违。

        5.2023年6月

        那时候的高铁甚至还没有通,沿途常发的地震震断了高铁线,没有别的交通工具,只能开车一整天去往河西走廊的深处。爸爸也不年轻了,五十多岁的年龄开着车,带我去嘉峪关体检。沿途越来越少的植被,沙土往车身上扑,零星的几座小房子时不时在视野里出现又很快消失。我想起霍去病,想起少年将军平匈奴,定河西,扬武威,张臂膀。诗意和现实往往脱节,真实掩盖了辉煌历史,沙土让我看不清前路,是真实,也是梦境。

        体检完还是哭了。爸爸也还是心疼我了。黄沙大风,没有娱乐,甚至找个吃饭的地方都没什么可找的地方。爸爸说,没关系,实在不行之后就辞掉吧。爸爸抱我,还是哭的爸爸衣服湿掉。

        沙子太大,迷了眼睛才哭。

        6.2023年7月

        去西安看了黄诗扶的演唱会,歌中唱“山花寻海树”“偏偏过江寒”“你是我年少求剑时刻的舟”。演唱会现场还是哭了,哭未卜的前程,哭“诗中有,诗中有,诗中有。”

        7.2023年 8-12月

        写到这里的时候,已经有点恍惚了,有种已经过去了的坦然,也有心疼自己付出的不甘。这五个月并不好过,我想我其实是抑郁了,我的人生信条崩塌了,我开始想放弃自己的生命。

        恶劣的环境,刮不完的沙尘,每天呼啸的大风,如果我是红衣侠客,那么我一定翻身上马,手扬马鞭,意气风发大喊“驾”,然后逐尘而去,白马照银鞍,飒沓如流星。可是我睁开眼睛,就是无尽的加班,不适应的饮食和气候,时刻思念的家人和朋友。因为加班和刚接触完全陌生的工作,我极少回家。想起王昭君,想起固伦公主,史书人物以这样的方式呈现在眼前,苦痛和思念穿越千年,人类的情感悲欢如何不相通呢?

        冬天很快就来了,偏远戈壁城市的冬天来的极早,极寒的天气,戴着手套都感觉手痛到没有知觉,冷的头发和睫毛结冰。几乎没有公共交通的城市冬天一下雪出行都困难,有时走在雪地里边走边哭,眼泪很快结冰,朋友们心疼我,说多吃点好吃的,你还有我们。

        偶尔回家,常常坐上周天晚上21:58的T6601次车,在火车上晃悠一整晚才能从兰州到嘉峪关。有时是爸爸拉着箱子送我,我在进站电梯那里频频回头,带着哭腔说爸爸再见。有时是妈妈开着车送我,到站门口停车的时候,其实她也会在车里哭。她心里也是后悔的,后悔当时没有信我的话,后悔我没有骗她嘉峪关就是落后的戈壁滩小县城,我在那里被禁铟,动弹不得。

        火车上总是睡不着,然后觉得自己像黑奴,一车车拉着黑奴去往不同的地方。想着想着又笑出声,我又不黑,我是美女。然后觉得自己像妓女,只不过是出卖自由和灵魂。

        脑海中轻声哼昆曲《游园惊梦》。原来姹紫嫣红开追,似这般都付与断井颓垣。

        摇晃一整晚,早上在寒冷的清展到达,困倦康挟,想哭,总是哭不出来。

        有时候想冻死在雪地里。我觉得在遥远的戈壁滩上,雪掩盖了这座城市,它和雪山融为一体,于是被人们遗忘。

        我于是也被遗忘。被遗忘的恐惧是巨大的。

        半夜猛然惊醒,又觉得绝不能轻易放弃,我绝不轻易放弃。绝不轻易放弃!

        8.2023年12月

        又去了西安,听银临的演唱会。银临唱《琉璃》;你要燃烧不欲又丰盈的爱意,偏这人间要爱欲屏息,一生奔赴一场大无畏梦境。在金碧枷锁,在无垠天地,诉尽这爱意。

        唱采摄花月,逃奔风月。

        不如就春风。

        从西安准备回家的路上,我提着我的箱子,12月的西安天气晴朗,树叶飘落那一瞬间,阳光照的我一下睁不开眼。

        在那一瞬间,我决定不能再这样活着了。我不愿意这样活着,我绝不轻易放弃。

        9.2024年

        这段经历到这里也差不多结束了,之后就是漫长的取录过程,苦难已经变得容易接受,我想我是有勇气和魄力的,我不愿意辜负自己的内心,也不愿意就这么将就下去,在一个不度春风的城市妄想寻找春风和山花,是缘木求鱼,是南辕北辙,是滋生妄想。

        前两周的晚上做梦,梦里面是无尽的大火,我在火里被烧死,皮肉溶解,梦里竟然会感觉到疼痛,骨头脱落,皮肉往下掉,但是竟然还算平静。快要死在熊熊大火中的时候发现点火的人们是我想要逃离的地方人们的脸。但我不会再怕了。

        但是我想我也成长了,我不会再抱着一些可笑的希翼和完美主义的约束。存在主义说过,人生是没有意义的,人间就是荒诞的地狱。

        但是萨特却说,如果世界没有意义,那就自己赋予它意义,真实的活,这就是生命和存在。

        我也在朋友圈写:终极答案在于心而不在于形。那么这个命题我找到了终极答案。

        自在随心。

      3. 周日礼:回顾安徽的农村改革

        本文选自《改革开放口述史》(编者:欧阳淞,高水中;中国人民大学出版社2014年1月版),周日礼20世纪50年代初至1963年任安徽省委第一书记曾希圣的机要秘书,此后任安徽省农委研究室主任、省委政策研究室主任等职。

        在党的十一届三中全会“解放思想,实事求是,团结一致向前看”的思想路线指引下,安徽率先在农村推行了以包产到户为内容的家庭联产承包责任制。在这一改革过程中,遇到了各种习惯势力和“左”倾思想的顽强干扰和抵制。包产到户的过程,也就是解放思想的过程。

        省委“六条”出台前后

        1977年6月21日,党中央委派万里、顾卓新、赵守一分别担任安徽省委第一、二、三书记。当时,是粉碎“四人帮”的第二个年头,但“四人帮”推动的“左”倾政策,在安徽基本上没有被触动。万里等人到任后,雷厉风行,大刀阔斧,采取果断措施排除了派性干扰,很快揭开了被“四人帮”代理人捂了8个月的盖子,初步调整了县以上各级领导班子,在揭批查过程中,农村问题反映相当突出。万里通过省委副书记王光宇,通知我(当时任省农委政策研究室主任)准备系统地汇报农村情况。

        8月下旬的一天,我在万里住地稻香楼西苑会议室作汇报,听取汇报的还有赵守一、王光宇。我们边谈边议,从下年两点一直搞到天黑,谈了5个多小时。

        首先汇报的是,“四人帮”在农村推行“左”倾政策,安徽是重灾区,农村经济已经到了崩溃的边缘。“文化大革命”10年,粮食总产量一直徘徊在200亿斤左右,农民人均年收入60元上下,由于价格的因素,农民实际生活水平下降了30%。根据当时测算,农民每人每年最低生活费用需要100多元。全省28万多个生产队,其中只有10%左右的队勉强维持温饱;67%低于60元,40元以下的占20%左右。这些数字说明,全省有将近90%的生产队不能维持温饱。这些队的基本状况是“三靠”,即生产靠贷款,吃粮靠返销,生活靠救济,其中有10%的队仍在饥饿线上挣扎。

        至于强迫命令、瞎指挥的现象是相当普遍的,引起了农民群众的愤慨。定远县耕地面积160多万亩,按照实际情况只能种80万亩水稻,“四人帮”在安徽的代理人却强行规定要种150万亩,并说是“铁板上钉钉子,外加三锤,一亩也不能少”,结果有20多万亩无收,有收的产量也很低。芜湖县易太公社追求形式主义,打破原有生产队体制,打破各队土地界限,打乱水系,把集体的粮、款、物等全部重新分配。新划的生产队要做到四个一样,即土地一样,人口一样,村庄大小一样,水利工程兴办一样。公社还规定,凡是妨碍规划实施的树木要砍掉、村庄要移址、房屋要拆迁、沟塘要填平、道路要重修。社员看到这种情形非常愤怒。由于严重强迫命令、瞎指挥,全社粮食减产592万斤,有的大队人均收入由1976年的70元下降到38元。

        分配上大锅饭,生产上“大呼隆”,严重挫伤了农民的生产积极性。由于生产队生产单一,主要是搞粮食生产,而粮食的比较效益又低,社员劳动一天,只能拿到4毛多钱,少的只有几分钱,连吃饭都不够,因而在收益分配上普遍出现了多年来想解决又无法解决的“超支户”顽症。在这种情况下,生产队只好实行按人分配粮食。群众风趣地说,“白天黑夜拼命干,不如生个大肉蛋”(指生小孩),“七千分八千分,不如老母鸡窝里蹲”(指一个劳动日值不如一个鸡蛋)。分配上的平均主义,造成了上工一条龙,干活“大呼隆”,出勤不出力,记的一样工,一天的农活三天干不完。农村中普遍有两句顺口溜:“头遍哨子不买账,二遍哨子伸头望,三遍哨子慢慢晃,到了田头忘带锄,再去回家逛一趟”;“男的上工带打牌,女的上工带纳鞋,边干边玩到下工,赶快回家忙自留(自留地)”。

        农民中还有一个突出的问题,就是人与人之间的关系紧张。在人民公社“政社合一”的管理体制下,在不断的政治运动冲击下,社员之间为争工评分,“大吵三、六、九,小吵天天有”;社员与干部之间,因为强迫命令、瞎指挥,搞得矛盾重重。运动一来,帽子一大把,互相开展“阶级斗争”,社会主义同志式的相互关心、相互帮助的关系被斗得面目全非。相当多的生产队找不到人当干部,有的采用抓阄的办法解决;有的组织大家摸扑克牌,摸到大鬼当队长,摸到小鬼当副队长,有的花钱雇人当队长。

        农村干部群众的这种消极情绪是非常严重的,它比公开的罢工危害更大。生产力最活跃的因素是人,我们要发展农业,实现农业的现代化,没有人的高度积极性,通通都是空话。

        汇报结束后,万里严肃地指出,“看来经济上的拨乱反正,比政治上的拨乱反正更艰巨,不搞好经济上的拨乱反正,政治上的拨乱反正也搞不好”。万里明确表示,他“要拿出百分之八十的时间和精力,来研究和解决农村问题。揭批‘四人帮’的有关人和事以及工业生产,由别人去抓。省委领导同志都要下去搞调查研究。你们农委的同志也要进一步调查研究,尽快拿出一个切实有效的政策性意见”。

        1977年11月上旬,万里到金寨县调查。在燕子河山区,他走进一户低矮残破的茅屋,在阴暗的房间里,见锅灶旁边草堆里,坐着一位老人和两个姑娘,便亲热地上前和他们打招呼。老人麻木地看着他,一动不动。万里伸出手想和他握手,老人仍麻木地看着他,不肯起身。万里很纳闷,以为老人的听觉有问题。陪同的地方干部告诉老人,新上任的省委第一书记来看你,老人这才弯着腰颤抖地缓缓站起。这时万里惊呆了,原来老人竟光着下身,未穿裤子。万里又招呼旁边的两个姑娘,姑娘只是用羞涩好奇的眼光打量他,也不肯移动半步。村里人插话说,“别叫了,她们也没有裤子穿,天太冷,他们冻得招架不住,就蹲在锅边暖和些”。

        万里又走到了另一户农家,看到家里只有一位穿着破烂的中年妇女,便询问她家的情况。“你家几口人?”“四口人,夫妻俩和两个小孩。”“他们到哪去了?”“出去玩了。”“请你喊他们回来让我看看。”万里连催两遍,这位妇女面有难色,不愿出门去找。在万里的再三催促下,她无奈地掀开锅盖,只见锅膛坐着两个赤身裸体的女孩子。原来烧过饭的锅灶,拿掉铁锅,利用锅膛内的余热,把两个没有衣服穿的孩子放到里面防寒。

        万里看了两户农民后,已是泪流满面,他沉痛地说:“老区人民为革命作出了多大的牺牲和贡献啊!没有他们,哪来我们的国家!哪有我们的今天!可我们解放后搞了这么多年,老百姓竟家徒四壁,一贫如洗,衣不蔽体,食不果腹,有的十七八岁姑娘连裤子都穿不上,我们有何颜面对江东父老,问心有愧呀!“

        我们省农委政策研究室全体同志按照万里的嘱咐,也分赴全省各地进行调查,并于1977年9月20日到24日,在滁县召开了农村政策座谈会。会议充分揭露了农村“左”倾现象,讨论起草了《关于当前农村经济政策几个问题的规定》(简称省委“六条”)。

        “六条”草稿送呈省委常委后,顾卓新于10月6日作了批示:“这些意见都很好,文件写得也明确。可以考虑批转各地执行。但是:(1)这些办法能否真正做得到,有多少把握?(2)各地区的社队实际收入分配情况如何?每个劳动日多少钱?能否分到现金?(3)真正贯彻这些政策得经过社队的彻底整顿。现在下边很乱,无保证,应考虑明年社教工作队结合完成这项任务。”

        万里看到“六条”草稿后非常高兴,认为写得很好,并提出还要广泛听听基层干部和社员群众的意见。

        根据万里等人的意见,我们选定肥东县解集公社青春大队和长丰县吴山公社四里墩大队,于10月下旬分别召开了两次座谈会。每个大队将大队干部、生产队干部和群众代表分成3个小组,万里、顾卓新、赵守一分头参加一个小组。干部群众看到省委领导同志和自己面对面地讨论研究问题,虚心听取下边意见,情绪十分高昂,发言非常踊跃,都想把自己心里憋了多年的话倒出来。座谈中,大家对允许和鼓励社员经营自留地和正当家庭副业的规定,一致表示赞成。对尊重生产队自主权和建立生产责任制等方面的规定,希望能再放宽一些,要相信下边干部群众是不会胡来的。根据座谈会的意见,“六条”草稿又作了一次较大的修改。

        1977年11月15日到21日,省委召开全省农村工作会议,各地市县委书记和省直各部门负责人参加了会议,集中讨论修改“六条”。会议开始时,万里只作了不到20分钟的简短讲话。他说:“这次省委农村工作会议,中心议题是研究当前农村迫切需要解决的经济政策问题,把农民发动起来,全党大办农业。安徽是农业省,农业搞不上去问题就大了。”“农业政策怎么搞好,管理怎么搞好,主要应当坚持因地制宜、因时制宜的原则,实事求是,走群众路线。抓农业机械化,这是完全对的。但是,最重要的生产力是人,是广大群众的社会主义积极性,没有人的积极性,一切无从谈起,机械化再好也难以发挥作用。调动人的积极性要靠政策对头,干部带头,团结一切积极因素干社会主义,群众就会积极起来,农业就能上得快。”万里还说:“中国革命在农村起家,农民支持我们。母亲送儿当兵,参加革命,为的什么?一是为了政治解放,推翻压在身上的三座大山;一是为了生活,为了有饭吃。现在进了城,有些人把群众这个母亲忘掉了,忘了娘了,忘了本了。我们一定要想农民之所想,急农民之所急。”

        对“六条”规定,会议讨论中有赞成的,也有反对的,大家唇枪舌剑,你争我吵。由于不少人顾虑重重,怀疑抵制,特别是受到当时国务院召开的北方农业学大寨会议的影响,一些原来写进去的更宽的规定,不得不暂时搁置起来,所以,在某些条文中还留有“左”倾政策的烙印。万里解释说:“有些同志思想不通,不要勉强,要耐心等待,因为具体工作还要靠下边同志去做。有些更宽的条文硬写进去,他们接受不了,反而会把事情弄糟。”

        省委“六条”经过上上下下座谈讨论,进行了十多次的反复修改,几易其稿,于11月28日,以“试行草案”的形式下发全省各地农村贯彻执行。

        省委“六条”的基本内容是,搞好人民公社的经营管理工作,根据不同的农活,生产队可以组织临时的或固定的作业组,只需个别人去做的农活,也可以责任到人,积极地有计划地发展社会主义大农业;减轻生产队和社员的负担;分配要兑现,粮食分配要兼顾国家、集体和个人利益;允许和鼓励社员经营正当的家庭副业。这些内容,今天看来似乎很平常,但在当时,许多规定都触犯了不可动摇的原则,突破了长期无人逾越的“禁区”。这在粉碎“四人帮”后处于迷茫徘徊的中国,是第一份突破“左”倾禁区的关于农村政策的开拓性文件,是一支向“左”倾思想宣战的利剑,也是农村改革的序幕。

        省委“六条”发出后,全省各地掀起了宣传贯彻的热潮,领导亲自动手,形式多样,声势浩大,效果显著,群众满意。在具体做法上,有的召开了县、社、大队三级干部会,有的举办万人学习班,培训大批宣传骨干,由领导同志带队深入基层,原原本本向群众宣讲。有的县广播站设立了宣传贯彻“六条”专题节目。有的将“六条”抄写在生产队活动室墙上,每天晚上组织社员学习讨论。干部、社员把落实“六条”看成是一件喜事,欢欣鼓舞,奔走相告。许多地方听传达的人数之多,到会之齐之快,都是多年少有的。有的地方通知一户来一人,很多全家老小都来了,这种热闹场面很有点像当年搞土改的劲头。通过近3个月的宣传贯彻,“六条”的基本内容在全省范围内基本上做到了家喻户晓,“六条”所规定的各项政策得到了全面贯彻执行。

        邓小平在看到安徽“六条”后,拍案叫好。1978年春天,他对当时四川省委第一书记说,在农村政策方面,你们的思想要解放一些,万里在安徽搞了个“六条”,你们可以参考,并亲手将一份安徽“六条”交给了他。不久,四川省委制定了关于农村经济政策的十二条规定。

        1978年,在贯彻执行省委“六条”过程中,我们进行了大量调查研究工作。3月,在淮北地区就如何搞好夏季分配问题,针对小麦生产为什么长期上不去,山芋生产为什么越种越多向干部群众请教。很多群众用形象的比喻道出了症结所在,他们说:“小麦是姑娘,收的再多是人家的(意思是交售给国家),山芋、玉米是儿子(国家征购粮食不收或少收山芋、玉米)。”我们将这些反映,及时写信送给万里。5月,省委决定将夏季粮食起购点由原来每人65斤提高到75斤。就10斤粮食,一下子把几千万农民的生产积极性调动起来,带来了1979年小麦特大丰收。

        9月,围绕生产责任制问题,我们选择了长丰县朱集公社朱集大队(学大寨先进单位)和凤阳县马湖公社进行对比研究。朱集大队实行的是定额记工办法,社员“只想千分,不想千斤”的情况是很突出的。马湖公社部分生产队实行的是包产到组办法,生产年年发展。通过对比,明显看出:不联系产量的责任制,实际上没有责任制。

        我在马湖公社调查时,凤阳县委副书记、县“革委会”主任吉绍宏特地来到公社,和我交换意见,他很感慨地说:“农村问题离开了农民个人利益,办法再多也不能解决问题。在过去20多年中,我们曾采取了很多办法,如学大寨、定额记工、死分活评、死分死记、小段包工、包工到组、路线教育、割资本主义尾巴等,什么戏法都玩过,什么招数都用过,农业生产并没有搞上去。农民一年忙到头,连吃饭穿衣都不能解决。”他的结论是“包产到组小翻身,包产到户大翻身,‘大呼隆’永世不得翻身”。对于包产到户,我们共同的看法是,不少干部包括党的高级干部,为此被撤了职,丢了官,人们心有余悸、谈“包”色变的情况相当普遍,不解决这个问题,中国的农业就没有出路。

        省委在山南公社进行包产到户试验

        遵照省委指示,省农委抽调了12位同志,并吸收县、区、社总共38位同志,组成省委工作队,于1979年2月1日去肥西县山南公社,直接向干部群众宣讲党的十一届三中全会同意下发的两个农业文件[指《中共中央关于加快农业发展若干问题的决定(草案)》和《农村人民公社工作条例(试行草案)》。这两个文件提出了“不许包产到户,不许分田单干”的“两个不许”]。在原原本本宣讲这两个文件的基础上,干部、群众展开了热烈讨论。大家对生产责任制问题最感兴趣,普遍要求实行包产到户。对包产到户,不仅群众拥护,党员、干部也拥护,不仅劳力强的拥护,劳力弱的甚至连五保户都拥护。

        宗店大队19个生产队,干部、社员一致要求实行包产到户。他们说,不这样,农业生产就搞不上去。这个大队曾立过几次战功的抗美援朝复员军人张世林说:“我讲句不怕坐班房的话,要想把农业搞上去,就要把产量包到户上。记得土改时,我家分3亩田,我不在家,请人代耕,每年收17石稻子,现在,还是这几亩田,集体种每年只收6石稻子。”

        红星大队三合队社员汪其高说:“1978年分口粮1200斤,稻草800斤,油脂5斤,付款172元,由儿子汪晋清(在合肥中学教书)负担。如果搞包产到户,我和老伴可以种2亩水田、1亩旱地。水田全年最少可收2000斤粮,除交征购和集体提留外,自己可得1350斤,加上去年秋借种的6分地,可收小麦150斤,总共可收1500斤,比去年从集体分配的还多300斤,而且还不要付款。”大队民兵营长何道发说,越小越好干,绑在队里队长动脑筋,分到组里组长动脑筋,包到户上人人动脑筋。

        湖中大队在讨论中,干部群众讲,过去搞“责任田”时牛力不足,粮食不够吃,人还浮肿,只干两年就富了,收的山芋不吃了,山芋的价格比稻草低,就捆在草里当草卖。现在人多了,牛强了,干部社员都有正反两方面的经验教训,搞起来就更快了。

        刘老庄大队夏郢生产队社员王道银说,过去干活不知有多难!没有尿的也去撒尿,妇女不该喂奶的也去喂奶,如果让我们包产到户干,两三年内要粮有粮,要猪有猪,要啥有啥。

        公社粮站站长解其芬,家里7口人,老的老,小的小;供销社主任廖子坤,家里5口人,4个孩子,爱人生病。他们两人都说,从我们个人家庭来看包产到户,生产有困难,但可以想办法解决;从加快农业发展的角度看,我们积极赞成包产到户。

        在讨论中,干部群众还提出了不少意见。有的说,早也盼,晚也盼,盼到现在搞了“两个不许干”。有的说上面让我们解放思想,我们看中央的思想也没真正解放。一边强调生产队自主权,一边又强调“两个不许”。还有的说,这次是省、县、区、社直接给我们宣讲中央文件,我们要求包产到户,如果这一炮打不响,就没有希望了。这不光是生产搞不上去,我们也不能真正当家作主,心里感到憋气。大家纷纷要求中央修改两个文件时把“两个不许”去掉。

        对于上述情况,我于2月4日晚上赶回合肥,第二天向万里作了口头汇报。万里说,群众的意见应当重视,这个问题要专门讨论一次。2月6日,万里召开省委常委会议,专门讨论包产到户问题。会上首先由我汇报了省委工作队在肥西县山南公社宣讲中央两个文件情况和干部群众的意见。常委们在讨论中认为包产到户是个好办法,但中央文件中明确规定“不许包产到户”,如果要实行这种办法,主张先向中央请示。王光宇在会上回顾了1961年安徽推行“责任田”的情况,他说,“责任田”对恢复和发展农业生产,克服农村困难局面,改善农民生活水平,确实起了很大作用。现在一讲起“责任田”,农民都非常怀念,说“责任田”是“救命田”。他主张有领导有步骤地推行,至少在生产落后、经济困难的地方可以实行这种办法。

        上午会议没有取得一致意见,下午继续开会。在会上,万里谈了自己的意见,他说,包产到户问题,过去批了十几年,许多干部批怕了,一讲到包产到户,就心有余悸,谈“包”色变。但是,过去批判过的东西,有的可能是正确的,有的也可能是错误的,必须在实践中去加以检验。我主张在山南公社进行包产到户试验,如果滑到资本主义道路上去,也不可怕,我们有办法把他们拉回来,即使收不到粮食,省委负责调粮食给他们吃。到会同志对万里的意见都表示赞成。

        2月6日晚上,我又回到山南公社,第二天向社队干部传达了省委试点的意见。干部群众得知省委在山南公社进行包产到户试点的消息后,无不欢欣鼓舞。山南公社搞包产到户,消息不胫而走,山南区共有6个公社,在四五天时间内普遍推行了包产到户。山南区的情况,我及时向万里作了汇报,万里说,不要怕,让他们搞,山南区收不到粮食,省委调粮食给山南区。山南公社和山南区搞包产到户像旋风一样,很快席卷了整个肥西县,在不到1个月时间里,全县搞“包产到户”的生产队即占生产队总数的40%。肥西县的情况我又及时向万里作了汇报,万里说,可以让他们搞。

        省委在肥西县山南公社进行包产到户试点,直接推动了肥西县包产到户迅猛发展,1979年春耕时,全县包产到户生产队占11%,麦收时占23%,双抢时占50%,秋种时发展到93%。山南公社和肥西县的包产到户,对全省影响很大,它像催化剂,启发着人们思考问题,想方设法推动农业生产尽快发展。尤其是“包产到户”,得到了更多群众的欢迎。1979年,推行包产到户较多的有宣城、芜湖、东至、无为、肥东、长丰、颍上、固镇、来安、全椒、嘉山、阜南、六安13个县。对全国影响也很大,中央党、政、军机关有20多个单位负责同志,全国有23个省市负责农业的领导同志先后到肥西考察。1985年春节,肥西县委委派县长胡庆长、副县长汤茂林、农经委主任魏忠,赴京向万里汇报工作,万里愉快地说:“肥西县搞生产责任制是带了头的,这是上了《邓小平文选》的。几年来,发生这样大的变化,我很高兴。肥西是有有利条件的,希望在第二步改革发展商品生产中,取得更大成就。”

        3月初,包产到户大有覆盖全省的势头。对此,万里确实也有些担心,他要我起草一份电报,向中央汇报一下安徽推行生产责任制的情况。电报由我主持起草,赵守一修改,万里于3月4日签发。电报说:“安徽农业生产责任制的形式,大体有以下几种:死分死记的约占生产队总数百分之二十;定额管理约占百分之五十;联系产量责任制约占百分之三十。联系产量责任制又有两种形式:一是分组作业,三包一奖到组;二是有的地方对一些单项作物或旱粮作物实行定产到田、责任到人,水旱作物兼作地区,有的实行水田定产到组、旱杂粮定产到户的办法。”“关于责任制的问题,我们认为,只要不改变所有制性质,不改变核算单位,可以允许有多种多样的形式。三包一奖到组可以普遍搞。已经搞的要加强领导,巩固提高;正在搞的,要抓紧时间,力争春耕大忙前搞完;未搞的,为了不影响春耕,可暂时不搞。少数边远落后、生产长期上不去的地方,已经自发搞了包产到户岗位责任制的,我们也宣布暂时维持不变,以免造成不应有的波动,由于为数不多,允许作为试验,看一年,以便从中总结经验教训。”

        1979年春天,各地在宣传贯彻党的十一届三中全会文件过程中,纷纷推行了各种形式的生产责任制。特别是联系产量责任制,包括包产到组和包产到户,它直接动摇了人民公社“三级所有,队为基础”的管理体制,受到了一些思想僵化和心有余悸者的怀疑和抵制。由此,围绕联系产量责任制是姓社还是姓资的问题,引发了一场全民大讨论。这种大讨论的广度和深度都是史无前例的。从农村到城市,从机关到街道,从工厂到学校,每个行业,每个角落,甚至每个家庭几乎人人都在谈论农村改革。人们像打开闸门似的各抒己见,针锋相对,争论不休。农村的改革,震动了整个社会。在周围邻近的省份,也发出了一片指责声,有的省委负责人公开宣称自己“要保持晚节”,并在安徽的边界装上高音喇叭,成天叫喊“要坚决抵制安徽的单干风”。

        面对这种情况,万里在各种会议各种场合,头脑冷静,态度坚定,反复强调:“对于农村改革,我们的头脑一定要清醒,不能为社会上说三道四所干扰。”“对于各种形式责任制,都应当在实践中相竞争而存在,相比较而发展。只要能增产、增收、增贡献,就是好办法。”“对待各种形式责任制,省委不搞派性,不支一派、压一派,由群众在实践中去鉴别和选择。”“各种形式责任制,试验一年,年终总结。”

        万里还特别对我们交代说,现在农村责任制形式很多,干部群众的认识又很不一致,你们要及时了解农村的动向,有什么情况和问题,随时向省委汇报。

        按照万里的指示,我们除了直接深入基层和通过来信来访了解情况外,还在合肥、嘉山、固镇、肥西、休宁等地多次召开座谈会,听取各地的汇报。在我们掌握的材料中,农村在推行包产到组和包产到户初期,确实出现了不少值得注意的问题。比如,有的地方群众对集体经济失去信心,对社、队干部存有意见,在划分作业组时,有排斥党员、干部的行为。有的生产队划分了4个作业组,提出要将生产队的集体财产全部分光,甚至连生产队的公章也要分,即将公章劈成4块,每个小组保存一块,如以生产队名义对外联系工作时,需经4个小组讨论同意后,才能将公章拼到一起来使用。有的将水车锯成几截,一个组一截;有的将拖拉机拆开分掉,有的生产队只有一部手扶拖拉机,几个作业组不好分配,只好将它放到水塘里“保存”起来,几个月后捞上来,已经锈坏了。有的分组作业后,将生产队的树木砍光了,有的将生产队的公房拆除分掉。不少地方还出现争牛争水现象,有累死耕牛、吵嘴打架的。还有的农户承包土地后,因为缺少劳力,女主人担心害怕,上吊自尽了。对于这些问题,省委及时采取各种办法,进行了妥善处理和正确指导。

        5月中旬的一天晚上,我和几位同志在办公室研究各地送来的情况反映,起草向省委的书面汇报。材料搞好后,已是夜里11点钟了。我约请辛生和沈章余,坐上车子到合肥周围去看看农村的夜景。我们沿着合肥到六安的公路,边走边议。当看到公路两边万籁无声的村庄,就评论说这里可能是坚持集体劳动的地方;当走到官亭区金桥公社地界时,看到不少农民借着皎洁的月光,在田间紧张地忙碌着,就评论说这里可能是包产到户的地方。我们下车站在公路旁边向北看,河里有小船在划动,像是运送肥料的;河边有人摇动水车,正向地里抽水灌溉。转过身来向南看,三三两两的男女,在犁田整地,准备栽插水稻。我们走到田头,向一对小夫妻询问道:“快到下半夜了,你们怎么还不休息呀!”男的回答说:“政府将土地交给我们承包,生产搞不好,就对不起政府了。现在季节不等人,庄稼早一天下地,就能多收一些粮食。”当车子走到山南区金牛公社时,看到一个大院门口有很多人进进出出,下车一看,原来是公社粮站挑灯夜战,紧张地收购社员送来的油菜籽。旁边小屋里锅灶上热气腾腾,掀开锅盖一看,里面正在烧着半锅红烧肉。我对粮站职工说:“天这么晚了,吃过饭再干也不误事嘛。”他们爽快地回答说:“今年油菜籽大丰收,农民同志白天忙,分不开身,利用夜里时间把油菜籽送来,我们应该抓紧收,不吃饭心里也高兴。”我们向万里汇报了这些情况,他乐滋滋地说:“我也要抽时间下去走一走,看一看。”

        5月21日上午上班时,万里打来电话说:“今天我们到肥西山南公社去看看,我不带人了,你可以带一位同志一起去。”我和辛生于8点半赶到万里住地时,他正站在门口等着,我们即刻坐上北京吉普出发了。9点多钟,车子到了山南公社地界,万里要下车看看。我们走在田间的小路上,天空万里无云,风和日丽,真是一个难得的体察民情的好日子。万里四处眺望,看不到红旗招展、人山人海的场面,看到的多是一对对夫妻聚精会神地在承包地里干活,有的在整地,有的在整修田埂,有的在看护秧苗,公路上不时有人拖着小板车,将购买的化肥拉回家。一块块葱绿的秧苗,正在茁壮生长;身边齐胸的麦子,穗大籽饱,随风掀起滚滚的麦浪,好像是在欢迎万里的到来;天上布谷鸟叫个不停,地上的虫鸣蛙鼓,仿佛是在预祝麦子的丰收而演奏一曲曲美妙动人的大合唱。农村的这一派勃勃生机,万里看在眼里,喜在眉梢。远处有位放牛的老人坐在田埂上抽烟,他信步走了过去,与老人闲聊起来。“老人家,这样的麦子一亩能收多少?”老人回答说:“四五百斤没有问题。”“是不是公路边上好些,里面差些?”“不!越往里走,长得越好,好的能收六七百斤。”我们往前走了一两里路,看到的麦子一块比一块长得好,果然如老人所说。

        我们赶到公社时,已是10点多钟了,公社只有一两个看家的,他们找来公社党委书记王立恒、妇女主任张玉兰。万里问王立恒:“搞包产到户,你可怕?”“是有点.……”“不要怕,在你们公社搞包产到户试点,我是点过头的!……”万里接着问:“你到底怕什么?”“怕‘五统一’统不起来。”“搞错了,不要你负责!”万里果断地表态,转而提醒道:“不过,集体经济不能瓦解!”王立恒说:“这些问题,我们都有具体措施。”万里接着问道:“可有争水、争肥、争耕牛和农具,吵闹打架、破坏公房的?”“我们明确规定,不准侵犯集体利益!”“这我就放心了!”万里还详细询问了社队干部的生活情况,王立恒介绍说,包产到户前,公社大部分干部负债累累,多的负债1000多元。万里问,干部借这么多钱,用什么办法还呢?王立恒说,包产到户后,催耕催种的事情少了,干部家里都分了承包田,个人收入会不断增加,还钱是没有问题的。万里听了后很高兴。

        午饭后,万里到了馆西大队小井生产队,一听说来了万书记,乡村沸腾了!连外村在田里干活的社员都扔下农具赶来了。万里看到满屋子都是人,便开门见山地问道:“这样干,你们有什么想法?随便提,随便问……”第一个发言的是小井生产队会计李祖忠:“万书记,可允许包产到户?”“大胆干,省委支持你们。”“我们有点怕!”“怕什么?”“怕变!”“不会变!”“包产到户比‘大呼隆’好,多干几年就有吃的了!”“那你们就多干几年嘛!”“万书记,你能不能给我们个准话,到底能干几年?”“不放心?”万里笑起来,“你们就这样干,包产到户,想干多少年就干多少年!不过仓库、牛棚要保护好,用水要有秩序,不能破坏集体经济!包产到户的目的是为了增产,让群众吃饱吃好!”

        万里的山南之行,留下了深沉的嘱托和热望。1979年,山南区夏粮获得了空前的大丰收,单夏季大小麦总产量就达1005万公斤,较之1978年翻了两番。

        在山南公社进行包产到户试验,万里十分关心。1979年12月13日,他又一次来到了山南。在区委会议室,刚一坐下,便开门见山,单刀直入地把社会上提出的问题一齐端给区委书记汤茂林。下面是当时谈话的记录:
        万: 我这次来,想问你6个问题,请你回答。
        汤: 只管提,万书记,我知道多少讲多少。
        万: 部队的同志反映你们在山南区搞包产到户是“扰乱军心”“毁我长城”,你怎么回答?
        汤: 这种担心是不必要的!我们山南区有现役军人14名,区委一一去信介绍家乡包产到户后获得大丰收的消息。同时,告诉他们:家中有“责任田”的,照顾得很好,超奖减赔,工分照顾,分配兑现。一般困难户照顾1000工分,对烈、军属每年另外照顾150~200元现金……
        万: 那你不是“扰乱军心”“毁我长城”,而是巩固国防喽!
        汤:是的!
        万: 我再问你第二个问题:合钢(合肥钢铁公司)工人不上班了,要求回家种地,你看怎么办?
        汤: 也不是这种情况!刘老家大队有一位工人家属叫熊祖华,一人带4个孩子,没搞包产到户以前每年收入150元左右。包产到户以后,基本口粮420斤,还超产1650斤,还养了1头重200多斤的大肥猪和7只鹅。过去每年都超支,今年生活有所缓和,没有超支….…
        万: 那不是工人要回乡,而是双工资喽!
        汤:对,相当于双工资!
        万: 我问你第三个问题:烈、军属和五保户、困难户没人管了,你看如何解决?
        汤:不是没人管,而是比过去管得更好了!我们在金牛公社搞试点,五保户每年给口粮700斤,稻草1000斤,食油5斤,生活全包,还给50元现金零用,已在全区推广。至于烈、军属比“大呼隆”时好多了,那时工值很低,每年不过25元,现在超过4~5倍。
        万:我再问你第四个问题:破坏水利设施的,可有?
        汤: 过去在大集体时,争水争肥的现象也存在。包产到户后我们确实发现李桥大队有3户农民为争水打架,后来把水塘划开了,也就稳定了。关键是领导问题,大塘有专人统一调配、统一管理,水利设施完好….
        万: 我现在问你第五个问题:耕牛、农具,怎么保护好?
        汤: 牛、犁、耙统一折价落实到户保管,损失要赔。“大呼隆”的时候,说是生产队管,实际上没人管,各户负责比那时管理得好,责任心也强得多..…
        万:现在,我问你最后一个问题:包产到户的穷队,今年能不能取得丰硕成果?
        汤:能!
        万: 举个例子!
        汤:馆东大队瓦屋生产队包产到户后,光生产队长王光柱一年就产粮2万多斤。
        汤茂林的回答,把笼罩在万里心头的乌云冲了个精光。“不虚此行,不虚此行!看来怕这怕那都是不必要的,也是可以解决的!”万里乐呵呵地站起来,一边说一边向门外走去。

        七省座谈会上的争论

        1979年3月12日到24日,国家农委在北京召开了有广东、湖南、四川、江苏、安徽、河北、吉林七省农村工作部门负责人和安徽全椒、广东博罗、四川广汉三个县委负责同志参加的农村工作问题座谈会。我和王杰参加了会议。在会上,我就党的十一届三中全会两个文件、省委“六条”的贯彻落实情况,以及农业推行联系产量责任制的情况作了详细汇报,整整讲了一天。

        这次座谈会,围绕包产到户问题,争论是很激烈的,有的同志还动了肝火。有的同志说,包产到户即使还承认集体对生产资料的所有权,承认集体统一核算和分配的必要性,但在否定统一经营这一点上,本质上和分田单干没有多少差别。我们不同意这一说法,认为包产到户只要坚持生产资料公有制和按劳分配原则,它就与分田单干有了本质上的区别。

        国家农委为座谈会起草了会议纪要草稿,关于责任制部分,我提出了不同意见,杜润生要我按照我们的观点另外起草一个稿子,准备向华国锋汇报。3月20日下午3时,华国锋接见了会议代表。开始由杜润生汇报会议情况,接着由李友九宣读会议纪要草稿,我也宣读了我们起草的稿子。我们的稿子主要观点是,包产到户应当看成是责任制的一种形式,各种责任制都应当允许试行,在实践中由群众加以鉴别和选择。会议纪要两个稿子念完后,华国锋要王任重打电话找万里,问一问安徽的情况。结果电话打到嘉山县找到了万里。王任重说:“安徽参加座谈会的同志所谈的情况,省委是否知道?”万里回答说:“周日礼是省委派去参加会议的,他的意见完全可以代表省委的意见。”万里还详细介绍了对待农村各种形式责任制,省委所采取的对策。王任重说:“那好吧,你们就按省委的部署干吧。”(这段话是我回合肥后万里主动对我说的。)

        在接见的过程中,华国锋对纪要的两个稿子始终没有直接表态。他反复谈道:“就全国大多数地方来说,都要强调建立责任制。我在湖南也研究过。一个二三十户的队,如果各方面的生产内容都到组不行。双抢时,就要组织个打禾桶,一个桶要四个人,大的丘,要三四个禾桶,一个四五亩的大丘,就要几个禾桶,他要抢季节,只有十几天时间,熟一片就割一片,犁田的跟上就犁,那里犁过了,跟上就插秧,非组织起来,分工协作不行。晒谷的一般是妇女,犁田多是男的,大人、妇女、小孩要组织好,分工就能互相促进,全部分到小组就成了问题。”他还认为:“评工记分,按工分分配,工分也是联系产量的。”

        接见到晚上9点半结束,共进行了6个半小时。

        座谈会过程中还出现了一个插曲,即3月15日《人民日报》头版头条发表了张浩的题为《“三级所有,队为基础”应该稳定》的来信,并加上长篇编者按语。信中说,“轻易地从‘队为基础’退回去,搞分田到组、包产到组,也是脱离群众,不得人心的”。“会搞乱‘三级所有,队为基础’的体制,搞乱干部、群众的思想,挫伤积极性,给生产造成危害,对搞农业机械化也是不利的。”大家看到了这一新闻,一致认为各地正在贯彻落实党的十一届三中全会的两个文件,发表这样的来信是不适宜的,必然会在下面造成思想混乱,特别是国家农委正在召开座谈会期间,容易使下面误解为这次座谈会是纠偏的会议。当时,《人民日报》农村部主任李克林参加了会议,她答应向报社反映大家的意见。我考虑到当时安徽实行联系产量责任制的数量比较大,为了避免引起思想混乱,有必要对张浩的来信加以澄清,便打电话给在家的辛生、卢家丰两位同志,要他们立即赶到北京采用来信对来信的办法,写了一篇题为《正确看待联系产量的责任制》的来信。信中说:“作业组仅仅是劳动管理组织的一种形式,无权决定生产计划和收益分配。超产奖励部分数量很少,不会构成一级核算,也不会改变‘三级所有,队为基础’的体制。”“作业组要联系产量计算报酬,就必然要分给一定的田块,确定一定的产量,联系产量就是定产,而定产必须按田块定,也可以叫包产,只是说法不同。”“如果只划分作业组,只包工分,不划分田块,不定产量,联系产量计算报酬又从何做起来呢。”“‘包产到组’和‘包工到组、联系产量计算报酬,实行超产奖励’并没有什么本质不同,它既不改变所有制性质,也不改变生产队基本核算单位,又不违背党的政策原则,为什么现在却把它当作‘错误做法’要坚决纠正呢?.……‘四人帮’虽然被粉碎两年多了,但余毒未除,至今还禁锢着一些人的思想。有的明明是包产到组,却偏说是定产到组,好像‘包’就是资本主义,一‘包’就改变所有制性质,集体经济马上就要瓦解了,这种看法实在是站不住脚的。”这篇来信,在我们的力争下,《人民日报》于3月30日在头版头条位置发表了。《人民日报》还写了长篇编者按,承认发表张浩的来信和编者按语其中有些提法不够准确,今后应当注意改正。

        至此,对“张浩来信”的争论告一段落,但其造成的后果是严重的。它造成了干部群众的思想混乱。有些群众说:“‘张浩来信’给我们泼了一瓢不算小的冷水,社员们鼓起来的干劲一下子给拔掉了气门嘴。”有人还写了一首打油诗,诗云:“《人民日报》太荒唐,张浩不写好文章。一瓢冷水泼洛阳,混淆政策理不当。”

        1979年夏天,为消除“张浩来信”造成的干群思想混乱,中共安徽省委及时发出了八条代电,要求各地不论实行什么责任制办法都要坚决稳定下来,不能变来变去,以便集中力量搞好春耕生产。全省绝大多数地方干部群众的情绪得到稳定。但也有少数地方对省委的代电贯彻不力,措施不力,致使原来一些基层干部怕整、群众怕变的地方,思想更加动荡。突出的如霍邱县,全县7866个生产队实行联系产量责任制的有6325个队,占生产队总数的80%以上。由于“张浩来信”的影响,在很短的时间内,退回去1748个,占实行联产责任制生产队总数的27.6%。该县长集区五四公社包产到组的145个队,一次就退回去101个队,粮食比1978年减产700万斤。西臬公社北庄生产队,原来是个先进队,水利、土质、条件都比较好,实行包产到组后,群众的积极性比以前更高,生产搞得比以前更好,后来否定联产责任制的冷风一刮,包产到组改回去了,人心散了,干活出勤少了,工效低了,生产无人指挥,上工无人记工分,生产受到很大破坏,粮食比1978年减产10多万斤。由于联产责任制摇摆不定,1979年全县粮食总产73500万斤,比1978年减产16000多万斤。

        经过各级党委的细致工作,虽然干群情绪很快稳定下来,但是,“张浩来信”造成的余悸未消,怕变心理犹存,凤阳、肥西就是两个突出的例子。凤阳当时全县有70.8%的生产队实行包干到组。按照万里的指示,我于7月初专程来到凤阳,用了半个多月时间,走访了20多个公社,以县委名义写出了关于“农业经济管理的一项重大改革”的调查报告,县委党委经过激烈争论后,很快上报省委。不久,《安徽日报》在头版头条位置全文发表。这对进一步稳定干群情绪是起了积极作用的。此后,凤阳全县农村要求将包干到组变为包干到户。县委却提出“一定要把包干到组稳住”,并以区为单位,举办党员干部训练班,宣布党员搞包干到户的开除党籍,公社书记搞包干到户的撤职。

        7月,肥西县刮起了一股强行扭转包产到户的歪风。副书记、县长张文题,对包产到户一直心有疑虑,害怕犯方向性错误,对省委在山南搞包产到户试验,一直持有不同意见,他屈服于压力,不顾全县有50%包产到户的生产队,操纵县委常委会于7月16日发出第46号文件,明确规定:“不许划小核算单位,不许分田单干,不许包产到户。”“要把包产到户的重新组织起来。”县委召开了县、区、社三级干部会,要求各级干部以党籍做保证,立即纠正包产到户,还强令山南区委举办干部学习班,限期纠正包产到户。于是,带头搞责任制的干部受到批判,官亭区一个公社党委书记被宣布停职反省。

        县委的倒行逆施,不得人心。有的抗争,有的罢耕罢种,全县农业生产急剧下降。有的群众责问县委:“难道增产粮食犯法?难道农民就活该吃不饱饭?”有的责问:“山南包产到户是省委同意了的,你县委为什么要纠正?你县委不听省委的,我们就不听你县委的。”一些基层干部纷纷到合肥向省委告状。

        万里知道肥西的情况后,于8月3日召开省委常委会议,专门讨论农业问题。对肥西的情况,万里生气地说:“山南包产到户试验是省委决定的,如果有什么错误,应由省委首先是我来承担。肥西县委强制收回包产田是错误的。要告诉他们,已经实行包产到户的地方,不要强行硬扭,不要跟群众闹对立,不要违背群众意愿,不要挫伤群众生产积极性。包产到户到底对不对?至少要让群众到秋后吧,要让实践来检验。”会议提出,由王光宇和我前往肥西,做好县委工作。

        8月5日,王光宇和我专程来到肥西,立即召开县委常委会议,传达了万里的意见。县委常委纷纷表态,一致表示要坚决按照万里的意见办。县委于8月8日下发第50号文件,提出“生产责任制的形式,应该允许多种多样,不能只实行一种办法,不可以强求整齐划一,不搞‘一刀切’”。从此,县委同社队干部和农民群众的对立情绪缓和下来了。

        按照原来的部署,1980年2月2日到11日,省委召开了有地市县委书记参加的全省农业会议。会议开始时,万里没有作长篇讲话,只是交代了“这次会议的任务,是解决各级领导干部对各种形式生产责任制的认识问题。省委为会议准备了一个总结草稿,希望到会同志发扬民主,敞开思想,集思广益,把文件修改好”。对总结草稿,赞成的、反对的都大有人在。反对者认为,“总结草稿是复辟宣言书,要查查是几个什么人起草的”。有的甚至提出“要改组大会秘书组”,可见会议争论的激烈程度。经过几上几下,反复修改,在取得一致意见的情况下,万里在会上作了总结讲话。他说,我们提出在坚持生产资料公有制和按劳分配原则的前提下,不论是哪一种形式的责任制,只要有利于充分调动群众的生产积极性,有利于发展生产,符合群众意愿,得到群众的拥护,就应当允许试行。对包产到户“是不是联系产量责任制的形式之一,同志们的看法有分歧。有些同志承认这种形式对改变长期低产落后的生产队效果显著,但又担心这样做违背中央的决定。其实,这样做正是实事求是地执行中央的决定,和中央决定的基本精神是一致的”。万里强调说:“目前,我们干部的思想绝不是解放得过了头,而是解放得还不够。我们一项重大的任务是继续肃清‘左’的流毒,坚持四项基本原则,排除‘左’的和右的干扰,进一步解放思想。”

        万里的讲话,对于解除干部的思想顾虑,统一思想认识,推动包产到户的普及和发展,起了极其重要的作用。安徽农村包产到户的生产队占总数的比例:1979年年底占10%,1980年年底占66.88%,而到1982年上半年占98.8%。

        全国农村人民公社经营管理会议上的分歧

        1980年1月11日至2月2日,国家农委在北京召开了全国农村人民公社经营管理会议。我、张秀岗、鲁受教和滁县地委的陆子修参加了会议。会议开始后,杜润生指定要我在大会上发言。我于1月14日下午,在全体大会上作了题为《联系产量责任制的强大生命力》的发言,讲了两个半小时。发言的主要内容是:

        1979年年底,安徽农村共有生产队379855个,实行定额记工和按时记工加评议办法的有145895个,占生产队总数的38.4%;实行联系产量责任制的有232184个,占61%,其中实行包产到组、大包干到组办法的有194288个,占生产队总数的51%,包产到户的37896个,占10%。经过一年的实践看,各种责任制都有增产效果,但联系产量责任制的增产效果更明显。

        “据9个地区20个县154个生产队年终分配试点统计,全年集体粮食总产比去年增长26.8%,其中联系产量责任制的93个队,比去年平均增长44.1%,没有实行联系产量责任制的61个队,只比上年增长4.8%。

        “联系产量责任制,在比较后进地区增产效果特别显著,全省著名的三大后进片(淮北的泗县、五河、灵璧、固镇,江淮丘陵地区的定远、凤阳、嘉山,江南的宣城、郎溪、广德)共十个县,去年有58.4%的生产队实行联系产量责任制,粮食比1978年增长33.9%,油料增长59%。

        “在生产长期落后、群众生活极为困难的地方,包产到户的效果比包产到组又更为显著。肥西县山南区是个生产条件比较差的后进区,1978年秋种时,因为大旱,麦子种不下去,全区有77.3%的生产队采用包产到户办法,不仅种麦进度快,种得多,面积扩大一倍,而且质量好。1979年粮食总产量比1978年增长31%,粮食征购超过任务的66%,集体积累50万元(1978年集体未留积累),社员人均分配收入99元,比1978年增加27元。

        “凤阳县梨园公社小岗生产队,初级社时有34户,175人,30犋牲口,1100亩耕地,常年产量18万斤左右,人均1000多斤。高级社以后,产量连年下降。1960年,只有10户,39人,一犋半牛。‘文化大革命’十年,产量只有两三万斤,人均口粮一两百斤。1976年,县、区、社三级党委下决心改变这个队的面貌。一个19户、110多人的生产队,派工作队18人进驻。公社人保组长在社员会上说,你们外流成了习惯,资本主义道路走不通了。今天,我们左手拿着社会主义鞭子,右手拿着无产阶级专政的刀子,牵着你们的鼻子,非要把你们赶到社会主义金光大道上来。一个工作队员看一户,一起劳动,干了一年,国家还有支援,收粮35000斤,人均口粮230斤,人均分配收入32元。工作队走后,社员又外出‘查户口’、‘数门头’(指讨饭)去了。去年搞了包产到户,收粮132300多斤,向国家交售粮食3万斤,第一次还贷800元,人均口粮800斤,人均分配收入200多元。

        “在一部分后进地区,干部群众迫切要求实行包产到户办法。安徽全省生产长期上不去因此此,的后进队,占生产队总数的25%左右。这些地方突出的矛盾是穷,生产队家底空,连简单再生产也维持不了。在这些穷队中,如果还清了国家的贷款和投资,生产队则会成了一无所有的空壳,甚至有30%的队,即使把全部资产,包括耕牛、土地、房屋全部卖了也还不清国家的债。有人说,搞包产到户,会削弱集体经济,实际上,在这些穷队中有什么值得削弱的呢?过去,各级党委对这些穷队采用了很多办法,花了很大的精力、财力和物力,都没有改变面貌,实行包产到户办法,仅仅经过一年的时间,就出现了一大批一年翻身、一季翻身的单位,这有什么不好呢?在生产队统-领导下的包产到户,应当看成是责任制的一种形式,因为它没有改变所有制性质和按劳分配的原则,不能同分田单干混为一谈。一般地说,在后进地方,群众没有亲身体会到社会主义的优越性他们看到的只是极左路线给他们带来的苦难。在党中央提出要加快发展农业的号召时,这些地方的群众对生产队集体生产没有信心,希望用包产到户办法多收粮食,为’四化’多作贡献,这本身就是社会主义积极性高涨的表现,也是生产责任心加强的反映。这种包产到户形式的出现,正是极左路线逼出来的,是对极左路线的反动”。

        一石激起千层浪。大会发言后分组讨论,大家的分歧很大,尤其是华东组争论极为激烈,一些新闻单位和经济研究部门的同志,都纷纷前来旁听。争论的焦点是包产到户是姓社还是姓资的问题。有的同志说,联系产量责任制是半社会主义性质的,包产到户实质上是分田单干,它与社会主义就沾不上边了,是资本主义性质的。有的说,如果放任自流,让包产到户滑下去,人心一散,各奔前程,农村的社会主义阵地就被破坏了。有的说,我们已经有20多年合作化的历史,已经有了一定的公共财产,一无所有的队不多了,治穷的办法很多,不一定非要包产到户。上海的同志态度比较缓和一些,他们说,上海的情况与其他省不一样,上海不搞包产到户(实际上,上海郊区2年后也搞了清一色的包产到户)。

        1月31日下午3时半,会议向中央政治局汇报情况,参加听取汇报的有华国锋、邓小平、李先胡耀邦、余秋里、王任重、姚依林等,各省、市、自治区农委的负责人也参加了汇报会。

        会上,杜润生汇报会议情况后,华国锋讲了话。关于生产责任制问题,他除了重复提到1979年7省座谈会的观点外,特别强调:“责任制和包产到户单干不要混同起来”“包产到户老的弱的也分了一份,有困难;妇女、职工家属不能发挥他们的才能”。至于已经搞了的,“他们已经搞了一年,要认真总结经验,提高群众觉悟,逐步引导他们组织起来”。

        最后,邓小平讲了话,他说,对于包产到户这样的大问题,事先没有通气,思想毫无准备,不好回答。他讲一个问题,就是20世纪末达到小康目标,每人收入1000美元。他说:“这是个战略思想,定出这个目标是不容易的。我们要按照1000美元这个目标,考虑我国经济发展的速度,考虑农村经济的发展。现在不定出规划,不确定目标,四个现代化是没有希望的。

        我们回到安徽后,及时向万里汇报了会议情况,并请示如何贯彻的问题。万里考虑到省委农业会议刚刚结束,下边正在传达会议精神,为了稳定人心,发展大好形势,避免不必要的思想混乱,决定全国农村人民公社经营管理会议精神不予贯彻。

        1980年的人为折腾

        1980年3月,万里离开安徽后,在省委个别领导人的挑动下,围绕包产到户问题,在全省范围内又出现了一次不该发生的争论。争论的焦点仍然是,包产到户是姓社还是姓资?由于这次争论是从上面挑起来的,因而迎合了下边某些干部的“左”倾思想,对群众要求实行包产到户的愿望,多方加以压制,在不少地方出现了干部与群众顶牛的严重情况。对包产到户不认识、不理解的言论主要有:

        “包产到户的关键是分而不是包,是分田单干,不仅退到了资本主义,而且退到了封建主义倒退了几千年。”
        “包产到户是生产关系的倒退,辛辛苦苦几十年,一夜退到解放前。”
        “看产量喜人,看方向愁人。农民只顾眼前利益,要求包产到户是农民自私落后心理的表现。支持包产到户就是迁就农民落后意识。”
        “包产到户是一些文人舞文弄墨、强词夺理吹起来的,他们冒充革命,冒充马列主义,欺骗了不懂理论的农民。他们是代表富裕农民的利益,是被列宁批倒了的第二共产国际提出的’工团福利主义’。”
        “我们宁愿迟发财,也不能摔跤子。”

        在我们党内,对某些问题出现分歧和争论,这本来是正常现象。但是,有些人在错误思想支配“对越轨的,必要时要采取行政手段”,要以下,对工作实行错误指导,提出“要坚决刹车”“破坏三个秩序论处”。这种违背党的十一届三中全会思想路线和农民意愿的错误做法,不仅在干部群众中造成极大的思想混乱,而且对工作带来了恶劣影响。在这种情况下,有些原来反对包产到户的干部,气焰嚣张;有些原来积极推行包产到户的干部,产生了更大的疑虑和动摇。不少地方出现了干部与群众严重对立,许多积极推行包产到户的党员干部和群众,包括一些县委的主要领导人,有的要调离,有的被批判,有的被停职,有的被拘留。群众不满地说:“中央三句话(指可以按定额记工分,可以按时记工分加评议,也可以在生产队统一核算和分配的前提下,包工到作业组,联系产量计算劳动报酬,实行超产奖励),省里在打,县里在打坝,公社干部害怕,大队干部挨骂,群众急得发炸。

        这种人为的折腾,庐江县就是一个突出的代表。这个县的县委主要领导人在四级干部会上宣称,“庐江县要搞包产到户,除非我县委书记不干,或者把我撤掉”。“谁搞包产到户,就以破坏生产论处,逮捕他。”“有人捣蛋搞单干,今后县党代表大会不选他。”并且自封庐江是“坚持马列主义的县”,要用马列主义与推行包产到户的所谓“修正主义县”开展比赛,要在大灾之年见高低。在他的影响下,全县强迫命令事件到处发生。对要求包产到户的群众,一些公社、大队干部声色俱厉地说:“你们要搞包产到户,可以搬到别的地方去搞,我们这里不能搞。”南闸公社姚湾大队批斗了社员王同明;杨柳公社逮捕了杭头大队社员张开香、张世彩、黄安珍,关在县公安局长达15天之久。这个县迎松公社中山大队十二担生产队农民朱正启,于1979年秋天,到肥西县走亲戚回家后,约了5户农民把包产到组改为包产到户,夏季和早稻获得空前大丰收。朱正启在“大呼隆”时期,最好年景全家只能分得2900斤粮食,搞了大半年的包产到户,麦子收了400斤,早稻收了3200斤。这样的大好事没有得到支持和鼓励,反而在庐江县掀起了一场轩然大波。当时,县委主要领导人认为,朱正启的行动“越了轨”,迎松公社人均一亩耕地,亩产千斤,不能搞单干(指包产到户),任其发展,就要乱全县的套,后患无穷。于是,一方面抽调7名干部组成专案调查组,到十二担生产队搜集整理朱正启搞“单干”的罪证材料,准备逮捕(后因公安局长认为罪证不足才未能办成);另一方面发动(实际上强迫)全大队群众对朱正启开展多次批判斗争,还指派大队民兵营长、治保主任和一名大队党支委,坐镇十二担生产队,不准朱正启等5户到承包田干活,一直折腾了两个多月,致使这5户农民的晚稻生产遭受严重损失。对于县委的错误领导,群众软拖硬抗,在秋收大忙季节,不少地方出现了罢种罢收,使已经成熟的水稻不能及时收割,成片发芽霉烂,造成全年粮食减产3亿多斤,不仅征购任务完不成,不少农民吃返销粮,有的农民外出逃荒,有的地方还发生浮肿病。到了这样困难的地步,县委领导仍然在会议室里为推行何种责任制论不休。这样的县委在群众心目中,已经完全失去了信任,群众干脆开县委,自发地在全县搞开了包产到户,不少地方提出“不管你金钟和银钟(指县委领导人),团结起来向前冲”。对于这样的县委领导人,不但没有被追究领导责任,反而提升为行署副专员。这种是非不分、不讲原则的做法,群众反感地说:“我讨我的饭,你提你的干,你提干不影响我讨饭,我讨饭也不影响你提干。”

        1980年,安徽全年粮食减产31亿斤,主要是在包产到户动荡不定的几个地区。相反,在包产到户比较稳定的地方,几乎处处增产。如被人称为“修正主义”的肥西县,与庐江县边连边、地连地,在同等自然条件、同等灾害的条件下,粮食总产量比1979年增产2000多万斤。长丰县99.5%的生产队搞了包产到户,这一年全县水灾之严重仅次于1954年,受涝农田50多万亩,有12万亩绝收。但广大农民奋起抗灾,大灾之年空前增产,全县粮食总产量比1979年增长41.2%。桐城县石南公社三岔路生产队,是当时全县唯一搞了包产到户的队,这一年全县普遍减产,而这个队群众生产积极性高涨,在连绵阴雨的恶劣气候下,社员们千方百计抢时收割,想方设法把稻子弄干,粮食增产30%。而与三岔路生产队同一个村庄、同一个水系、田地土质相同的邻队坚持“大呼隆”粮食减产40%。

        邓小平高度赞扬了安徽的包产到户,他说:“农村政策放宽以后,一些适宜搞包产到户的地方搞了包产到户,效果很好,变化很快。安徽肥西县绝大多数生产队搞了包产到户,增产幅度很大。’凤阳花鼓’中唱的那个凤阳县,绝大多数生产队搞了大包干,也是一年翻身,改变面貌。有的同志担心,这样搞会不会影响集体经济。我看这种担心是不必要的。”许多干部迅速觉醒,纷纷深入基层,积极带领群众研究措施,推行多数群众同意的生产责任制,使安徽农村改革大大向前推进了一步。

        天长县是个经济发展比较好的县。这个县地处高邮湖畔,自然条件较好,科学种田水平较高农业生产发展较快,农民生活比较富裕。在1980年1月省委农业会议期间,参加会议的县委书记曾向万里请示:根据天长县的生产情况,县委决定不搞包产到户。万里点头表示同意。但县委没有故步自封,夜郎自大。他们看到群众要求包产到户的呼声很高、很普遍,为了尊重群众意见,县委先后3次组织100多名科局长以上干部,深入基层进行调查。调查结果,使他们清楚地看到,包产到户早搞早增产,迟搞迟增产,不搞不增产。于是,县委下了决心,领导群众普遍实行包产到户。1981年,全县粮食总产量达到78700万斤,比1980年增长34.8%,一年增长的速度,等于1957年至1976年20年增产的总和,提前4年实现了原定1985年粮食总产量7亿斤的规划。皮棉总产77726担,比1980年增长1.49倍。油料总产3969多万担,比1980年增长1.56倍。这一年,全县入库粮食3.1亿斤,是统购任务的3.44倍;入库油脂941万多斤,是统购任务的7.49倍;入库皮棉72271担,商品率达92.9%。全县人均分配收入220.4元,比上年增加122.54元,增长1.25倍,加上家庭副业收入,全县人均收入达到307.4元。县委总结了包产到户的巨大变化,归结为“十个没有想到”:
        一是没有想到包产到户以后,农民劳动生产率这样高。
        二是没有想到生产能够这样大幅增长。
        三是没有想到农民富得这样快。
        四是没有想到比较富裕的地区,实行包产到户后,生产比过去发展得更快,富得更快。
        五是没有想到农村的“科学热”这么高。
        六是没有想到农业机械化不仅没有受到影响,相反地,发展得更快,经济效益更高。
        七是没有想到包产到户以后,农民搞农田基本建设的积极性这样高。
        八是没有想到包产到户以后,农民互助协作精神这样好。
        九是没有想到包产到户以后,农民爱国家、爱集体的精神这样好。
        十是没有想到党群关系、干群关系这样快地显著改善。

        芜湖地区宣城县是个有名的“鱼米之乡”,后来变成了有名的后进县。1979年12月前后,有些地方推行了包产到户。群众要搞,基层干部不同意搞,县委也不同意搞,并且派人前去纠正,开了党员会和干部会,在大军压境的情况下,群众表示同意纠正,但派去的人一走又恢复了。在早征购入库时,这些地方进度最快。县委书记朱景本亲自前去察看,他看到庄稼生长的情况和社员的干劲,当即宣布同意他们搞包产到户。他经过细致了解,进一步看到包产到组克服了“大呼隆”激发了积极性,比原来的定额记工大大前进了一步。但通过一段实践后,群众的积极性仍不能持久,因为作业组由“大呼隆”变成了“小呼隆”,关系到群众切身利益的根本问题并没有解决,是按劳分配不能体现,二是经营管理水平跟不上,三是队长难当,非生产性开支增大。经过比较他认为最放心、最实在、最能调动积极性的还是包产到户。县委常委经过充分讨论,统一了认识首先带头闯入“危险区”,组织大队书记到包产到户搞得好的地方进行实地调查,让实践回答问题,并且在公社书记会议上明确表态,只要把住生产资料公有制和按劳分配两条原则,实现群众要求而又能增产的就是好办法,就可以实行。如有问题,要追查责任,由县委负责,首先由一把手负责。这样一表态,社、队书记胆子壮了,群众更加安心了,于是在全县迅速推行了包产到户办法,由隐蔽到公开,逐步发展起来。对于这样一位群众拥护的县委书记,省委个别领导人不感兴趣,提出要调动他的工作,遭到普遍的反对。

        经过一年的实践,原来积极领导群众推行联产责任制的干部,纷纷畅谈感想,畅谈体会,思想认识又有了新的飞跃。原固镇县委书记陈复东说:“一年来,我们联系生产实际开展了三次真理标准的讨论,使我们体会到发展农业生产的过程,在一定意义上讲,也是思想不断解放的过程。目前,农业生产同其他领域一样还存在一些禁区,需要大胆实践,勇于冲破。同时,在新形势面前我们又遇到许多新问题,要探索、要解决。思想不解放,在禁区面前就会束手无策,在新问题面前就会无所作为。解放思想也不是一次能够完成的。我们在领导农业生产中,觉得当时思想解放了过一段时间思想又守旧了,在这个问题上思想解放了,在另一个问题上思想又跟不上了,这就需要不断地学习,不断地实践,认真了解新情况,研究新问题。”

        颍上县原县委书记刘耀华说:“我们能够经受压力和考验,坚持实践不动摇,最根本的原因是紧紧和群众站在一起,是广大群众给了我们勇气和力量。30多年的经验教训告诉我们,农民有了积极性,农业的发展才有希望。我们在深入农村调查的过程中,发现对联系产量责任制说长道短的多半是一些干部,什么划小了’”倒退了’、’不好开会了’等,农民却始终满腔热情,信心百倍。他们说,”张浩来信’一出来,我们立即到农民中征求意见,我们问农民怕不怕,他们立即问我们怕不怕。他们说:’干部怕错,社员怕饿。只要能多打粮食,我们不管他张浩、李浩!’有些社员担心县委顶不住,鼓励我们说:’只要县委不变,俺们累死也情愿。’农民没有’铁饭碗’,他们的衣食温饱直接和农业生产好坏联系在一起,他们比任何人更关心农业的发展。支持农民的正当要求,尊重农民的选择和创造,保护农民的积极性,一切从有利于发展农业生产出发,各种责难都要由农民的实践作回答,这就是我们敢于坚持联系产量责任制不动摇的根本所在。

      4. 罗翔:网络暴力刑法规制的路径选择及反思

        导言

        2023年9月,最高人民法院、最高人民检察院、公安部发布《关于依法惩治网络暴力违法犯罪的指导意见》。据此意见,“网络暴力”被描述为一种在网络空间针对个人肆意发布谩骂侮辱、造谣诽谤、侵犯隐私等信息,贬损他人人格,损害他人名誉,并造成一定后果的行为,如造成他人“社会性死亡”、精神失常,甚至自杀等严重后果。

        网络暴力包括以虚假事实和以真实事实网暴两种情况,前者如“女子取快递被造谣案”、最高人民法院发布的惩治网络暴力违法犯罪典型案例(以下简称最高院“网暴典型案件”)中的吴某某诽谤案,这些行为构成诽谤罪,并无太大争议。比较复杂的是以真实事实发动网暴的案件。在这类案件中,行为人通常认为被害人有某种道德瑕疵,自己有权在网络上对此不当行为予以披露;不少转发者也基于类似心理进行传播。以真实事实诋毁他人,虽然不构成诽谤罪,但是否符合侮辱罪或侵犯公民个人信息罪的构成要件?这个问题值得研究。

        与殴打、捆绑、伤害、禁闭等有形力的使用不同,网暴是通过网络、以文字、动图和视频方式对目标进行攻击的协同和组合行为。网络暴力主要与言论表达有关,对它的法律规制会涉及言论自由与其他法益之间的关系,例如人格权、名誉权。为了保护个人的名誉权,法律应当对言论自由做必要限制。但是如何限制,各国做法不一。当前,我国刑法学界对名誉权的内涵研究不充分,这影响了司法实践对具体案件的定性。探究名誉权的本质与相关概念的差异,具有重要的理论和实践意义。

        一、自由还是尊严:言论规制的两种进路

        在世界范围内,对言论自由与尊严之关系进行规制,主要有两种进路:一种是侧重自由的美国模式,另一种则是侧重尊严的德国模式。

        (一)自由模式

        这种模式认为言论自由价值至上,无论是对诽谤性言论还是侮辱性言论,都不宜采取刑法规制。美国宪法第一修正案主张内容中立,政府不得将言论区分为受保护的言论与不受保护的言论,禁止政府对言论进行内容审查,以避免寒蝉效应。内容中立为几乎所有的言论提供了宪法保护,除非一种言论有清楚且现实的危险,否则法律对言论不得限制,这一进路投射到刑法层面,具有下列展开样态。

        首先,对于诽谤性言论,美国联邦层面没有刑事化的立法,大部分司法区也都废除了刑事诽谤的规定。受美国模式的影响,不少普通法系国家也采取类似做法,比如英国2009年全面取消了刑事诽谤罪(criminal libel)的规定。根据《2009年验尸官和司法法》(Coroners and Justice Act 2009),英格兰、威尔士和北爱尔兰三个司法区将刑事诽谤罪的条款悉数取消,在此之前苏格兰司法区也早已取消类似的犯罪。

        其次,对于侮辱性言论,也鲜有刑事治罪的规定。与大陆法系将侮辱罪和诽谤罪并列的做法不同,普通法系只有单一的破坏名誉罪(defamation)。一般说来,破坏名誉只关注不实言论,不涉及意见表达。因此,以真实的事实诋毁他人名誉不属于破坏名誉,但有可能构成侵犯隐私的犯罪。相比于诽谤罪,普通法系的观念认为侮辱罪(insult)的规定对言论自由可能构成更大威胁,因为真相并非侮辱罪的辩护理由。传统的侮辱罪往往用于惩罚真实陈述的言论、观点、讽刺、谩骂甚至幽默。因此,不能在刑法中规定侮辱罪,甚至也不宜对其民事追责,以免对言论自由造成过度干预。正如伦奎斯特(William Hubbs Rehnquist)大法官所说,公民必须容忍侮辱性甚至令人发指的言论,以便为第一修正案保护的自由提供足够的“喘息空间”。

        再次,对于仇恨性言论,美国模式也采取比较克制的态度,这甚至与国际公约相抵触。美国是《消除一切形式种族歧视国际公约》的推动者,但在签署和批准时却免除了公约规定的将仇恨言论、煽动暴力、组建政党煽动种族暴力定为刑事犯罪的义务。另外美国对《公民权利和政治权利国际公约》第20条有关禁止鼓吹战争、鼓吹民族、种族或宗教仇恨言论的相关规定也提出了保留。

        最后,对于媒体言论,美国的诽谤法最为友好。在1964年《纽约时报》诉沙利文案中,联邦最高法院确立了对于公共官员(public officials)诽谤的“实际恶意”规则。公共官员对媒体报导提起民事诽谤诉讼,必须承担被告有“实际恶意”的举证责任,这几乎是一个无法完成的任务。随后,公共官员的概念扩张到公众人物(public figures),公众人物的范围包括歌星、明星甚至公众感兴趣的各式人等。

        (二)尊严模式

        这种模式注重对个人尊严的捍卫。当言论自由与尊严发生冲突时,该模式主张为了维护人的尊严,可对言论自由进行限制。德国《基本法》第1条规定:“人之尊严不可侵犯,尊重及保护此项尊严为所有国家机关之义务。”人的尊严是德国《基本法》所保护的首要价值,其价值排序超过言论自由的价值。德国《基本法》第5条规定为了保护少年儿童的利益和个人的荣誉(pers?nlichen Ehre),言论自由应受到限制。因此,德国不赞同内容中立原则,认为政府可以为了捍卫人的尊严而对言论的内容作必要审查。德国之所以采取这种做法,与其所经历的两个惨痛历史教训有关:一是滥用自由的经历导致魏玛共和国的灭亡;二是纳粹法西斯对人类尊严肆无忌惮的践踏。沉重的历史教训让德国人牢牢记住了托克维尔先知般的教导:“谁要求过大的独立自由,谁就是在寻求过大的奴役。”因此,德国《基本法》认为言论自由并非无拘无束,必须受人类尊严这一更高价值的节制。

        上述观念投射到刑法层面,呈现出以下特征。首先,德国刑法上既有侮辱罪(Beleidigung),也有诽谤罪(Verleumdung)的规定,同时还规定了恶意中伤罪(üble Nachrede),它们都属于《德国刑法》第十四章侮辱类犯罪(Beleidigung)中的具体罪名。侮辱罪属于基础性罪名,以真实事实诋毁构成侮辱罪;以不真实事实侮辱则属于诽谤罪;如果无法判断真伪,则系恶意中伤罪。《德国刑法》对侮辱罪采取了简单罪状的表述方式——犯侮辱罪的,处一年以下自由刑或罚金刑;以实施行为进行侮辱的,处两年以下自由刑或罚金刑。侮辱包括言语侮辱和行为侮辱两种方式,其内涵非常模糊,且无需采取公然方式,一对一的侮辱也构成犯罪。在德国,辱骂他人(如说人“混蛋”“瘸子”“混蛋”和“白痴”)、使用诅咒词、说他人绰号、或者使用淫秽和嘲笑的手势(如竖中指),原则上都可能受到刑事起诉。甚至在正式场合没有使用敬语也可能遭到诉讼。虽然这些诉讼大多以罚款告终,但却反映了德国法律如何致力于维护公民礼节和个人荣誉。在德国,侮辱罪被广泛适用。以2013年为例,德国共审理涉及侮辱罪的刑事案件26757件,定罪21454件,监禁363件,缓刑701件,刑事罚款20390件。

        其次,因为德国历史上有过第三帝国对犹太人的黑暗历史,尤其是其恶毒的仇恨宣传和歧视,最终导致了大屠杀,因此明确禁止仇恨性言论。《德国刑法》第130条规定了煽动民众罪(Volksverhetzung),其中包括以扰乱公共安宁的方法,“针对民族、种族、宗教或由出生决定的群体,激起对部分居民的仇恨,或激起属于前述群体的一员或部分居民的一员的仇恨,煽动对其实施暴力或专制,或辱骂、恶意蔑视或诽谤前述群体、部分居民或前述群体的一员或部分居民的一员,损害其人格尊严”。对此行为可以处三个月以上五年以下的自由刑。“公开或在集会中,以侵害被害人尊严的方式妨害公共秩序,对纳粹暴力和专制加以赞许、颂扬或辩护的,处三年以下自由刑或罚金。”《德国刑法》第189条还规定了诋毁死者的记忆犯罪(Verunglimpfung des Andenkens Verstorbener),对于否认大屠杀的言论可以此罪论处,最高可以判处两年自由刑。2021年9月22日《德国刑法》又在侮辱罪章节中增加了煽动仇恨侮辱罪(Verhetzende Beleidigung),规定因他人的国籍、种族、宗教、族裔、意识形态、残疾或性向,对其所属群体或个人进行侮辱、蔑视或诽谤,应处以两年以下监禁或罚款。

        再次,德国模式认为政府官员也存在尊严,批评政府的言论自由,并不代表对政府工作人员个人可无节制地诋毁。对政府官员的侮辱与诽谤也可能构成犯罪,这和美国完全不同。《德国刑法》第188条专门规定了对政界人士的中伤和诽谤犯罪——出于损害与受侮辱者的公开生活地位有关的动机,公开在集会中或通过散发文书,对政界人士进行恶意中伤或者诽谤,足以损害其在民众中的影响力的,最高可以处五年自由刑。第90条还规定,公开诽谤联邦总统是刑事犯罪,可被判处三个月至五年的监禁,但必须经总统授权才能追诉。德国有判例认为:将一位著名政治家(巴伐利亚州总理)讽刺为与正义同居的性活跃的猪,构成侮辱罪。德国人对将人比作动物的非人化非常敏感,例如在漫画中把人画成猪或老鼠。这主要是因为有对历史的痛苦记忆:纳粹在宣传部长约瑟夫·戈培尔的策划下,曾经将犹太人描绘成老鼠和害虫。类似行为在美国不可能构成犯罪,甚至连民事侵权都谈不上。例如,在皮条客杂志诉福尔韦尔案(Hustler Magazine,Inc. v. Falwell),中,皮条客杂志在一则酒类宣传广告中模拟对著名新教牧师杰里·福尔韦尔(Jerry Falwell)的采访。在虚拟采访中,主持人使用“第一次”的双关语暗示他们在谈论首次性行为,假冒的福尔韦尔谈到了在户外厕所与母亲发生了性关系。该杂志谨慎地在页面底部添加了免责声明,提醒读者这是一个玩笑性的模仿。福尔韦尔对杂志提起了民事诉讼,共有三项诉讼请求:侵犯隐私、诽谤和故意造成精神痛苦。前两项诉讼请求都被驳回,理由是广告明显被标记为模仿。但是,陪审团裁定第三项诉讼请求成立,福尔韦尔获赔15万美元。杂志不服,向联邦巡回法院提起了上诉,但被驳回。杂志遂向联邦最高法院上诉,主张福尔韦尔属于公众人物,按照沙利文案所确立的实际恶意原则,杂志并无恶意,只是开玩笑而已。美国联邦最高法院支持了杂志的诉请,推翻了原审判决。最高法院认为:在公众人物以被故意施加精神痛苦索赔案中,也应该使用实际恶意标准。第一修正案保护对名人或其他公众人物的模仿,即使这些模仿旨在给被模仿者造成痛苦。对于福尔韦尔案这样的判决,在德国法中是无法想象的。

        需要说明的是,为了平衡言论自由的价值,《德国刑法》对于侮辱、诽谤等犯罪规定了正当权益维护的出罪事由。《德国刑法》第193条规定:对科学、艺术或商业成就的批评意见、为了保护权益或维护正当权益所发表的言论、上级对下级的抗议和斥责、公务员的官方报告或判决可以作为侮辱罪的出罪事由。只是,该条对出罪事由也做了限缩,认为行权方式不当也可能构成侮辱罪,比如教授批评学生论文不构成侮辱罪,但在批评过程中使用了侮辱性的语言,如使用了“文章写得像垃圾”、“你真是个蠢货,不适合做学问”等表述,则可能构成侮辱罪。

        (三)混合模式

        包括我国在内的大多数国家和地区采取了上述两种模式之间的折衷立场,试图在言论自由和人类尊严这两种价值间寻求平衡,即混合模式。

        首先,在保留侮辱罪的国家和地区,大多数规定只有公然为之的侮辱,才构成犯罪。比如我国刑法通说就认为,《刑法》第246条规定的侮辱罪必须采取公然方式。《日本刑法》也认为只有公然侮辱他人,才构成侮辱罪。

        其次,大陆法系不少国家和地区在保留诽谤罪的同时,将侮辱性言论去罪化,只有虚构事实诋毁他人才构成犯罪。在英美法系国家,刑事诽谤法基本上已被废弃,大陆法系国家则大多保留着诽谤罪的立法。以欧盟为例,在27个国家中有23个保留着诽谤罪,其中20个国家规定了监禁刑。比较特别的是,挪威2016年废除了诽谤罪。另外,不少大陆法系国家对侮辱罪也有所松动,开始了除罪化运动。比如意大利2016年废除了刑法第594条的侮辱罪。《法国刑法典》将大多数侮辱行为视为违警行为,而非犯罪,只有少数的诽谤性侮辱才被规定为犯罪,而且刑罚也只能处罚款。《西班牙刑法》也没有侮辱罪的规定,只有诋毁(slander)和妨害名誉(defamation)两种犯罪,成立两罪都必须明知事实虚假或者轻率地罔顾事实真相。同时,《西班牙刑法》第620条规定,诽谤性言论不构成重罪,只是轻罪,处以10至20天的罚款。2011年12月《俄罗斯刑法典》废除了原第129条诽谤罪、130条侮辱罪的刑事责任,侮辱、诽谤仅承担行政责任。然而,2012年7月,《俄罗斯刑法典》再次修改,诽谤被重新纳入刑法,规定在第128条第1款;但是诽谤罪不再保留自由刑,只处以罚金和强制性社会公益劳动,只是罚金数额大幅增加,最高到500万卢布。值得注意的是,日本2022年提高了侮辱罪的刑罚。原《日本刑法》第231条规定:未揭示事实,公然侮辱人者,处拘留或科料;但修正后的刑法将其法定刑提高到处一年以下惩役或禁锢,或三十万日圆以下罚金或拘留或科料。

        再次,大多数国家和地区都对仇恨性言论保留了刑事治罪的规定,这也与国际公约相符。即使是普通法系的英国、加拿大和澳大利亚,也对诸如反犹太主义和种族主义等仇恨性言论予以刑事规制。根据《公民权利和政治权利国际公约》《消除一切形式种族歧视国际公约》和《防止及惩治灭绝种族罪公约》这三个公约的相关规定,其一,蓄意煽动种族灭绝的言论必须被定为犯罪;其二,煽动暴力的言论可以被定为犯罪;其三,煽动仇恨、敌意或歧视的侮辱性言论,则属于有争议的灰色地带,国际人权机构目前允许各国因此类言论对个人处以监禁刑。

        最后,为了平衡保护言论自由和人类尊严这两种价值,在保留诽谤罪或侮辱罪的情况下,大多数国家和地区都规定了专门的出罪事由。比如《丹麦刑法》规定了破坏名誉罪,以侮辱目的传播真实消息也可能构成本罪。但法律同时规定了为了保护公共利益和个人利益两种出罪事由。如果一项指控属实,并且善意提出指控的人有义务作出陈述,或为了明显合法的公共利益,或为了自己或他人的利益行事,则该指控应免于处罚。

        二、荣誉还是名誉:侮辱、诽谤侵犯的法益

        我国刑法学界普遍认为侮辱罪和诽谤罪所侵犯的法益是名誉权,但是对于名誉权的具体内涵,学界却很少有过专门研究。我国1979年《刑法》规定了侮辱罪和诽谤罪,立法时并无隐私权的概念。因此,名誉权概念经常与隐私权纠缠不清。不实言论自然会破坏名誉,构成诽谤罪,但是真实的言论则可能侵犯隐私权。如果对隐私权和名誉权不加甄别,就会导致将侵犯隐私的行为处以破坏名誉的侮辱罪。另外,侮辱罪侵犯的更多是一种名誉感,这是一种主观上获得好名声的期待,它更接近荣誉。虽然名誉(reputation)与荣誉(honor)都与人的尊严有关,但如果对两者不加区分,那法律所保护的名誉权可能只是个人假想的名声,也即虚假的名誉,借以掩盖自己的不堪与脆弱,甚至会导致粗鄙低俗的观点、批评或讽刺,冒犯性的艺术都论以侮辱罪。因此,有必要探究这些概念的缘起、内涵和关系。

        (一)荣誉

        詹姆斯·怀特曼(James Whitman)比较了德国侮辱罪的发达、法国侮辱罪的式微以及美国侮辱罪的隐没,认为侮辱罪的起源应该追溯到法国和德国的“个人荣誉”观念,这与两个国家的贵族文化有很大关系。美国没有贵族传统,因此也就没有荣誉的概念。今天的问题不过只是历史问题的延续。

        1.德国模式

        早在19世纪四十年代,德国法律思想中就认为荣誉必须成为任何真正“德国”法律的基础。当贵族的荣誉受到挑战,社会允许决斗的存在,而侮辱罪恰恰就源起于贵族社会的决斗传统。如果想要防止决斗,就必须制定相应的法律避免侮辱行为。因此,法律不可避免地倾向于以决斗者理解的方式来定义侮辱。19世纪中后期,为了消除决斗制度,法律规定了侮辱罪,捍卫贵族阶级被伤害的荣誉。但随着平等主义思潮发展,法律逐渐让平民也分享这种本应由贵族专属的荣誉,贵族荣誉开始转变为平等荣誉。1871年出台了新的《帝国刑法典》,其中就包括至今仍在使用的有关侮辱罪的条款。

        魏玛政权倒塌之后,第三帝国的纳粹法学家认为荣誉是纳粹法律的基础,只不过将传统的贵族荣誉转变为种族荣誉。法律禁止“雅利安人”和“非雅利安人”之间的性关系,并将之规定为犯罪,因为这是对种族荣誉的亵渎。同时纳粹法学家试图重新引入决斗,并坚持认为所有德国人,无论其社会地位高下,都有权通过决斗来捍卫自己的荣誉,维护整个雅利安民族的群体荣誉。如果说魏玛共和国关于荣誉的重心是礼貌,那第三帝国的重心则是傲慢。

        纳粹覆灭之后,荣誉的概念并未被彻底抛弃,联邦德国试图接续魏玛共和国未竟的事业,将平等荣誉的思想渗透到社会各阶层。德国法律开始从荣誉价值转向人类尊严价值。1949年的德国《基本法》第1条有关“人的尊严不可侵犯”的宣言就是一个重要标志。但是德国《基本法》依然保留了荣誉这个术语。该法第5条规定为了保护少年儿童利益和个人的荣誉,言论自由可以被限制。

        根据詹姆斯·怀特曼的描述,侮辱法存在于现代德国,是一种活化石,保留了前现代时代的特征。今天《德国刑法》侮辱罪的规定与判例,都可以从古老的决斗传统中找到根据。比如《德国刑法》第199条规定的实施侮辱的自力救济免责事由——对他人的侮辱当场以侮辱还击的,法官可以宣告侮辱双方或一方不负刑事责任。又如德国法律认可性侮辱,与男方的妻子通奸可以视为对男方的侮辱,目睹丑行的丈夫出于维护自己的荣誉在愤怒中将妻子的情人杀害,这可以作为减轻处罚的辩护理由。总之,德国的侮辱法曾经只适用于社会地位较高的人,但现在适用于所有德国人。曾经局限于贵族阶层的不受冒犯权,已成为所有德国人的权利。在某种意义上,德国侮辱罪的立法发展也是一种向上的平等观,让平民跃升为贵族。

        2.法国模式

        法国也有贵族文化的传统,因此也比较注重荣誉。这也是为什么法国没有美国那么重视言论自由的原因。但是法国的侮辱罪基本上已名存实亡,这主要和法国大革命与旧制度彻底割裂的平等观念有关。法国侮辱罪的早期历史与德国惊人地相似。18世纪大多数法国人对侮辱法的思考也与决斗问题密切相关。但是法国大革命让法律面前荣誉平等的思想深入人心。在大革命过程中存在着一种荣誉“国有化”的观念,只要法国人为祖国而战,他们就被赋予了荣誉的平等份额。考虑到荣誉一词与旧制度关系密切,雅各宾派倾向于用“美德”取代“封建荣誉”。1789年《人权和公民权利宣言》对“荣誉权”只字未提。随后的立法严重削弱了侮辱罪的严厉性,这也是为了与旧时代彻底划清界限。1796年,法兰西共和国出台《犯罪和惩罚法典》,将言语侮辱视为违警行为,由警察以即决方式处理,不必诉诸普通法院。拿破仑时期1810年的《法国刑法典》正式确认了这种做法,将大多数侮辱行为规定为警察处理的“违法行为”,而非犯罪行为,只有少数公开的诽谤性侮辱才被视为犯罪,其刑罚也只是罚金。

        1810年《法国刑法典》中对“荣誉”的真正关注点在于维护政府权威,因此规定了侮辱警察和政府官员的犯罪,以保护他们的荣誉。直到今天,这种规定依然部分存在于法国,1881年通过迄今仍然有效的《新闻自由法》第30—31条规定,当对公职人员实施刑事诽谤时,最高罚款增加到45,000欧元。公职人员包括法国总统、部长、立法委员和宗教事务部长。《法国刑法典》规定用言语、手势、威胁、文字或任何形式的图像对他人进行非公开的严重侮辱,最高可处7500欧元的罚款。

        在法国,法律并不特别保护普通民众的荣誉,对于他们荣誉的捍卫主要是通过行业规则和教育体系来培养。这特出表现为:首先,决斗者的行为规则为法律所尊重。由于法国并未像德国一样规定详细的侮辱法,因此19世纪民间仍广泛存在决斗。1836年查托维拉德伯爵(Comte de Chatauvillard)起草了决斗准则,这个准则后来被法院所接受,认为按照这个准则参与决斗者不构成犯罪。其次,法国不少行业都出台了行业规则,要求行业成员彼此尊重,不得侮辱成员的荣誉,否则会被处罚款,甚至除名。再次,更为重要的是,1881年法国第三共和国颁行《义务初等教育法》,开始普及初等义务教育,用“道德和公民”教育代替宗教教育,通过教育来让学生学会良好的礼仪。德国用法律来推行的文明礼仪,在法国则主要通过教育培养的方式来完成。

        3.美国模式

        在詹姆斯·怀特曼看来,法国和德国是一种将平民提升为贵族的平等主义,而美国则是一种平庸的平等主义。美国从来没有过贵族,大家都是底层。因此,这种平庸的平等主义必然是一种缺乏尊重的平等主义,它没有所谓的荣誉观念。文明(civility)和体面(decency)都可被归为“礼貌”,前者是积极地尊重他人,这表现为各种繁冗的礼节与称谓;后者则是消极地避免粗俗,防止用野蛮的方式冒犯他人。一般而言,文明规则是旨在维持人类必要的社会等级秩序,而体面规则是将人类区别于野兽。如果说德国通过法律来捍卫高尚的文明,法国通过教育来培育文明,那么美国则是通过法律来保持底线的体面。

        因为美国没有贵族传统,因此也就不会将荣誉作为法律保护的利益,它只惩罚可能威胁到身体完整性的言语,如存在紧迫危险的战斗性语言。与德国和法国相比,美国法律并不存在对等级尊重的规范。德国侮辱法中所谓“不尊重”的表现,在历史上所保护的是被害人所主张的等级优越感,这在美国法中是不可能出现的。美国的诽谤法不保护荣誉,它只保护声誉(reputation),仅在损害声誉时才规制此类言论,这意味着它们必须为被害人以外的他人所见所闻。

        (二)名誉

        关于名誉的内涵,学界有不少争论。大致而言,名誉可以分为三种:其一,内部名誉,它是独立于自己或社会评价而客观存在的人之内在价值;其二,外部名誉,这是一种社会对他人的评价,也即声誉;其三,主观名誉也即名誉感,这是本人的自我主观评价。

        内部名誉是人的一种内在价值,与其社会地位、成就、能力无关,它其实类似一种客观存在的绝对命令,不可能被侵犯。一个人无论如何被亵渎、伤害,他依然是人,他的内在名誉仍然存在。在某种意义上,内部名誉相当于人类尊严的同义语。一个人无论多么卑微,他依然有作为人的尊严,有其内在名誉。

        外部名誉是人的一种社会评价,也即声望。社会评价有事实评价和规范评价之分,比如诽谤他人感染艾滋病会导致其社会评价降低,但如果法律认为这减损了被害人的名誉,这其实是在强化对艾滋病人的污名化,因此事实评价有可能不符合法规范所要倡导的价值观,需要借助规范对事实评价进行必要的筛选,通过规范评价避免法律实际上扮演着减损他人人格尊严的帮凶。

        主观名誉则取决于个人的主观判断,它其实就是荣誉的意思。但是个人的想象可能与真实的情况不太一样,甚至带有自欺的成分,如果法律不问具体事实,一律根据被害人的主观感受予以保护,这既可能保护过度,也可能保护不足。保护过度的现象如张三没有坐在首座,感到被侮辱;而保护不足的例子如幼童、智力残疾者,他们并不觉得自己有名誉,按照主观名誉的立场,这些人的名誉就会被排除在保护之外。

        外部名誉和主观名誉其实都从内部名誉而来,因为内部名誉本来就是一种人格尊严不容亵渎的绝对命令,从这种绝对命令的规范派生出了客观方面的外部名誉和主观方面的主观名誉。因此,有学者认为名誉其实是名誉感(荣誉)和声誉的上位概念,侵害声誉或者侵害名誉感都构成名誉侵害。

        名誉权又往往和隐私权存在交集。隐私权是一种排除他人对个人私密生活进行干预的权利。大多数国家和地区都在侮辱罪或诽谤罪以外对侵犯隐私权的行为规定了专门的犯罪。《德国刑法》在第十四章侮辱类犯罪后专门用一章规定了侵犯私人生活和秘密的犯罪,包括侵害言论秘密、以拍照方式侵害私人生活领域、侵害他人隐私等各种犯罪。在对侮辱、诽谤除罪化的美国,也专门规定了侵犯隐私的犯罪,如《加利福尼亚州刑法典》第647条就将非法侵犯他人隐私定为犯罪,最高可判处6个月监禁和1000美元罚款。我国《刑法》也在侮辱罪和诽谤罪以外规定了侵犯公民个人信息罪,侵犯个人隐私的行为有可能构成此罪。

        (三)侮辱、诽谤罪到底侵犯何种法益?

        在保留侮辱罪和诽谤罪的国家和地区,不少学者认为,侮辱罪侵犯的是人的主观名誉或名誉感情,也就是荣誉;而诽谤罪所侵犯的则是人的外在名誉或社会名誉,导致其社会评价降低,也就是损害声誉,这种看法有待商榷。

        1.主观名誉或荣誉

        无论是荣誉还是主观名誉的概念,都是应该被抛弃的概念。荣誉概念来源于身份社会,是不平等的一种残留,对于不同身份者有不同的要求。而与荣誉概念相似的主观名誉概念也过于主观,完全取决于被害人的一己之见,会导致法律的判断缺乏客观标准。詹姆斯·怀特曼认为:荣誉与名誉的核心区别在于,前者是确保他人在公共领域或私人场合向我们表示尊重的利益,而后者则是确保关于我们的可耻或不可信的事情不会为公众所知悉。既然侮辱罪并不涉及名誉损害,而是对个人荣誉或尊严的损害,它更多涉及的是被害人的主观感受,那么侮辱条款就几乎可以无所不包,披露通奸、出轨、性骚扰、家暴、嘲讽、恶评等信息,说粗鄙的笑话、口角、殴斗(如扇耳光)等行为都可能认定为侮辱罪,这有违罪刑法定的明确性要求。因此,以侵犯荣誉或主观名誉为法益的侮辱罪是否应该存在,就成为一个需要慎重思考的问题。

        其次,荣誉或主观名誉的概念很容易推导出伤害群体荣誉的侮辱案件。德国法院1934年首创群体侮辱概念。一名男子在理发店对党卫军(SS)和纳粹冲锋队(SA)发表议论,认为它们都是渣滓,该男子的言论被人偷听,后被举报,法院认为男子的言论严重损害这两个团体中每个成员的荣誉,构成侮辱罪。群体侮辱概念随后进入到德国法理论。最具代表性的案件是20世纪九十年代的图霍尔斯基案一(Tucholsky Ⅰ)(也称“士兵都是杀人犯”案)。行为人是和平主义者,海湾战争期间在汽车保险杆上贴了一个“士兵都是杀人犯”(soldiers are murderers)的标语,批评德国参与战争。这个标语最早由20世纪三十年代的反纳粹活动家库尔特·图霍尔斯基(Kurt Tucholsky)提出。初审法院认为,行为人冒犯了德国军人的人格尊严,构成侮辱罪。该案上诉到德国联邦宪法法院后,法官迪特尔·格林(Dieter Grimm)领导的三名法官小组在所撰写的内部意见(chamber opinion)中,推翻了原审法院的裁决,认为这种标语并不构成对军人的侮辱。这个意见招致了学界、政界甚至宪法法院前首席大法官的广泛批评。1995年联邦宪法法院合并了四个使用“士兵都是杀人犯”口号被判侮辱罪的相似案件,对类似案件做出了正式回应(亦称图霍尔斯基案二)。此案由宪法法院全体裁决。法院虽然最终认为上述案件不构成侮辱罪,但缩小了图霍尔斯基案一的适用范围,认为《德国刑法》第185条关于侮辱罪的规定是合宪的,该法条不仅保护个人的名誉,也保护国家机构的名誉。为了让国家机构获得必要的权威,对言论自由的必要限制是合理的。宪法法院认为,“士兵都是杀人犯”这种表述针对的是所有的军人,贬低性言论涉及的群体越大,作为个体所受到的贬损也越小。对全体军人的贬损并不必然能够推导出对德国联邦军人的侮辱。按照法院的立场和逻辑,如果行为人使用了“德国联邦军人都是谋杀犯”的口号,那还是可能构成侮辱罪的。

        2.外在名誉

        与主观名誉相比,外在名誉所倡导的社会评价降低较好地把握了名誉权的本质,但它所涉及的事实评价与规范评价也可能存在问题。

        其一是事实评价中的事实是否包括虚假事实。换言之,基于虚假事实所获得声誉是否值得法律保护?如果以法律手段保护伪善者的声誉,是否违背法律所追求的公平与正义?柏拉图《理想国》中诡辩论者色拉叙马霍斯曾主张:做一个伪善的人才是最聪明的做法,人只需要假装正义,拥有正义者的名声,而无需行正义之事。如果泄露真实的隐情,也构成伤害被害人声誉,则法律所保护的不过是被害人虚假的声誉。这是不是以法律手段为诡辩者所倡导的伪善人生观保驾护航呢?

        其二是规范评价会导致事实上的不公平,以逻辑自洽伤害人类朴素的正义感。比如,诽谤他人感染恶疾,或者诽谤他人为同性恋,如果在法律上将之认定为名誉受损,是对疾病、性向的污名化,会导致社会歧视的合法化;但如果法律不认为这些行为侵犯名誉权,是否会对具体的被害人造成个体不公呢?然而,一旦取消规范评价,只按照事实评价来判断他人的社会评价,那么如果发布某人其实很穷、平常朋友圈所发的炫富图片都是假的等信息,这是否侵犯名誉权,从而构成侮辱、诽谤罪呢?

        以上事例说明,即使采用外在名誉标准一样会引发认定困难。正因为人类理性的有限性,很难做出合理的规范评价,所以美国模式认为应该彻底取消侮辱、诽谤罪,将言语攻击区分为民事诽谤之诉与恶意不实言论(malicious falsehood)之诉。法律虽不能认为恶疾、性向、贫穷、身份与人格减损有关,因此对这些贬损不能看成名誉侵权,但如果上述言论导致他人财产等利益受到损害,被害人虽然不能提起民事诽谤之诉,但可以提起恶意不实言论之诉。

        3.我国刑法的取舍

        我国刑法关于侮辱罪、诽谤罪的设立有其特殊历史背景,1979年《刑法》设立此罪是为了防止十年浩劫中随意侮辱、诽谤他人的情况再次出现,以保护公民的人格尊严。1979年《刑法》第145条规定:“以暴力或者其他方法,包括用‘大字报’、‘小字报’,公然侮辱他人或者捏造事实诽谤他人,情节严重的,处三年以下有期徒刑、拘役或者剥夺政治权利……”1997年《刑法》取消了“大字报和小字报”的规定,理由是1982年《宪法》取消了1978年《宪法》第45条规定的公民有运用大鸣、大放、大辩论、大字报的权利,因此采取“大字报、小字报”的方式侮辱、诽谤的,也可以为其他方法所包括。1997年《刑法》第246条规定:“以暴力或者其他方法公然侮辱他人或者捏造事实诽谤他人,情节严重的,处三年以下有期徒刑、拘役、管制或者剥夺政治权利……”比较新旧《刑法》,一个值得关注的地方在于暴力侮辱是否必然需要采取“公然”方式。按照1979年《刑法》的规定,无论是“以暴力或者其他方法”进行侮辱,都必须采取“公然”方式;但是按照1997年《刑法》的规定,法律语言的表述其实存在歧义。由于1997年《刑法》删除了“包括用‘大字报’、‘小字报’”的规定”和连接前后文的“以暴力或者其他方法公然侮辱他人”中的其他方法与公然侮辱之间没有用逗号隔开,因此对于这种表述就有两种理解:一种理解是暴力侮辱无需采取公然方式,但暴力以外的其他方法则需要采取公然方式;另一种理解是无论是暴力侮辱还是其他方法,都需要采取公然方式。如果采取第一种解释方法,那么私下的暴力侮辱,比如在私下场合打人耳光,即便没有达到轻伤或轻微伤的程度,也可以论以侮辱罪。我国刑法通说采取的是第二种观点,即无论是暴力侮辱,还是其他侮辱,都必须采取公然方式。

        既然侮辱罪需要公然为之,私下的侮辱不构成侮辱罪,那么侮辱罪所侵犯的法益就并非荣誉或主观名誉,而是外在的名誉,也即声誉。外在的名誉是一种社会评价,但法律所保护的社会评价应该以真实作为基础,而不能保护建立在虚假事实基础上的伪名。以真实的事实相侮辱,不可能侵犯真实的声誉。因此,只有诽谤性的侮辱才可能侵犯名誉权。以真实的事实攻击他人,只可能构成侵犯隐私权的犯罪,符合其他条件的话也可构成侵犯公民个人信息罪。

        至于规范评价可能导致的不公,则是一个非常难处理的问题。法律既不能无视民众的朴素情感,也不能以法律的方式来强化社会歧视;但法律也不能没有固守的价值观。因此,或许可以从两个方面来缓和这个矛盾:其一,应该以一般人的道德观来对事实评价进行规范引导。在任何时代,一般人的道德观念都不会认为贫穷是一种人格瑕疵,因此虚构事实说他人是穷人自然不构成诽谤罪;但是一般人道德观念往往都会认为妓女属于不道德的职业,法律不能以防止对性工作者的污名化而拒绝将此种诽谤认定为犯罪,否则就会导致道德相对主义,无视具体被害人的真实痛苦,以人道主义之名行不人道的伪善之举。其二,从主观故意的角度,如果行为人明知某种虚构事实的行为足以给特定个体带来伤害,即便一般人认为这种虚构事实(如感染麻风病)不会导致他人人格降低,但因为被害人特殊的情况,行为人具有超越一般人的特殊认识,也可以诽谤罪论。

        三、网络暴力规制的刑法选择与侮辱罪的拆分

        随着时代的发展,网络世界与现实世界已密不可分。虽然有人认为网络世界是一种虚拟世界,与现实世界相对立,但“虚为实时实亦虚”。虚拟世界与现实世界的二分法已经越来越无法揭示世界的真相。

        (一)网暴的刑法规制路径

        在学界,关于虚拟世界和现实世界的关系大致有四种看法:一说认为虚拟世界仍属个人的集合体,属于现实世界一环,与现实世界无异;二说认为两者为交互作用,相互渗透;三说认为虚拟世界与现实世界无涉;四说认为现实世界会为虚拟世界整合。如果采第一种观点,那么刑法对于网络暴力就无需大惊小怪,直接将现实世界的规则适用于网络世界即可;如果按照第二种观点,那么对于网络暴力,就有必要根据网络社会的特点进行相应的修正;但如果采取第三、四种观点,那就必须另起炉灶,创造一种与现实世界完全不同的针对网络世界的全新法律。

        后两种说法太过于激进,几乎没有哪个国家或地区在立法时采取;第一种观点则过于保守。大多数国家采第二种理解,认为网络世界与现实世界虽有区别,但却密不可分。刑法只需要根据网络世界的特点进行必要的修正,即可规制网络空间的行为。

        具体到网络暴力问题上,有两种不同的修正路径:一种观点认为应该强化对侵犯名誉犯罪的打击力度,制定专门的反网络暴力法。理由在于,网络世界并无太多的过滤机制,侵犯名誉的行为一旦散布于网络,对于被害人的伤害具有全球性和永久性,因此有必要加强管制。比如韩国2007年开始推动网络实名制,2008年由于女星崔真实遭受网络谣言而自杀,韩国国会开始推动立法,也称崔真实法案。该法案拟增设网络暴力罪,按照草案的规定,只要在网络上散布足以损害他人名誉事者,无论真实与否,均处九年以下有期徒刑;所散布信息如仅侮辱中伤他人之事者,处三年以下有期徒刑。这个法案在韩国引发了重大争议。但是最后增设新罪的提议并未被通过。受此观念影响,我国也不乏学者主张增设专门的网络暴力罪。另一种观点则认为刑法无需过度介入。他们认为,网络言论在传播上具有一定的匿名性,可信度不高;且由于网络使用的便捷,各方当事人处于平等地位,当被害人得知自己名誉受损,很容易提出反对意见;对于网络言论应该更加宽容,没有必要采取强管制立场。

        我国刑法更加偏向第一种立场,这体现为积极地增加新罪。比如2009年《刑法修正案(七)》规定了出售、非法提供公民个人信息罪,2015年《刑法修正案(九)》又将其扩张为侵犯公民个人信息罪,《刑法修正案(九)》增设了拒不履行信息网络安全管理义务罪、非法利用信息网络罪、帮助信息网络犯罪活动罪等,极大地强化了对网络不法行为的刑事打击力度。另外,《刑法修正案(九)》还加大了对网络侮辱、诽谤的打击力度,规定通过信息网络实施侮辱、诽谤行为的,“被害人向人民法院告诉,但提供证据确有困难的,人民法院可以要求公安机关提供协助”。

        然而,立场并不能取代思考。无论是持网络暴力刑事打击一律从重还是一律从轻的观点,都是一种过于匆忙的简单化处理,也忽视了现实的复杂性和变动性。刑法毕竟是最后法、补充法,不到万不得已,不应该轻易动用。对于网络暴力,还是应该在准确认识各类犯罪本质的基础上,有所甄别,采用民法、行政法、刑法齐头并进的方式综合治理。尤其是在帮助信息网络犯罪活动罪等网络新罪开始成为“超级罪名”、司法实践已有泛滥趋势之情形下,学界关于停用废止相关罪名的呼声越来越高。因此,新罪的设置要慎之又慎。总之,如果现有的法律经过适当整合足以应对网络暴力,就没有必要制定新法。

        (二)侮辱罪的拆分

        如上文所述,法律所保护的声誉应当建立在真实的基础上,以真实的事实攻击他人就不宜以侮辱罪论处。鉴于此,我国《刑法》第246条关于侮辱罪的规定有拆分整合的必要。

        1.暴力侮辱属于暴行罪的范畴

        暴力侮辱,比如泼粪、殴打、强迫他人食粪等,这其实属于暴行罪的范畴。暴行是一种包括殴打以及其他对身体施加有形力的行为。它所侵犯的法益是身体权,而非名誉权。将暴行视为侮辱,其实降低了对人身权利的保护力度。暴行罪(batter)在世界各国普遍存在,在侮辱、诽谤除罪化的普通法系,也存在暴行罪的规定。因此,有必要对侮辱罪进行拆分,暴力侮辱其实属于暴行罪的范畴,没有必要限定为公然为之,私下的暴行行为,诸如一对一的家暴、泼粪,都可以犯罪论处。在刑法还未规定暴行罪之前,暴力侮辱的法律规定可以作为替代性的规定,将这些行为直接以侮辱罪处理。

        2.诽谤性侮辱属于诽谤罪的范畴

        对于缺乏事实根据的诽谤性侮辱,直接论以诽谤罪即可,而非侮辱罪。虽然从哲学上来说,现象界所有的虚假都有真实的成分,所有的真实也都有虚假的部分。但是,只要某种信息足以让一般人产生误解,那么在法律中就可以判断为诽谤性的虚假信息。事实上,司法实践中绝大多数网络侮辱,都具有诽谤性的内容,传播的视频大多经过剪辑,断章取义,过滤对自己不利的细节,夸大他人的过错。在网上发布传播这种信息攻击他人,其实就是一种诽谤性侮辱,应该直接以诽谤罪论。比如,在最高法“网暴典型案例”的王某某诉李某某侮辱案中,王李两人原系男女朋友,分手后,男方将女方裸照发在网上,并发布报料文章,配以“有偿约炮”“床照”等文字。在这个案件中,被告人所配的文字如“有偿约炮”等,所传递的信息从根本上偏离了实情,属于虚构事实诋毁他人为性工作者,这应该理解为诽谤性侮辱,论以诽谤罪更加合适。

        3.用真相侮辱属于侵犯公民个人信息罪的范畴

        以真实的事实相侮辱不可能侵犯真实的声誉,因此不构成侮辱罪;但由于侵犯隐私权,可能构成侵犯公民个人信息罪。

        比较复杂的案件是行为人出现认识错误,自以为发布的是真实信息,但其实是虚假信息,导致他人名誉受损。典型的案例如蔡某某侮辱案,被告人蔡某某因怀疑徐某在其服装店试衣时偷了衣服,于是将徐某在该店的视频截图配上“穿花花衣服的是小偷”等字幕后,上传到网上,并以求“人肉搜索”等方式对徐某进行侮辱。徐某后因不堪受辱跳水自杀,法院以侮辱罪判处被告人有期徒刑一年。然而,如果按照传统侮辱罪、诽谤罪并存的立场,该案很难认定为侮辱罪的既遂。本案属于典型的认识错误,被告人主观上想实施侮辱行为,但客观上属于诽谤。由于侮辱罪和诽谤罪属于相同刑罚的平行罪名。按照传统观点,侮辱、诽谤两罪属于排斥关系,无法出现实质竞合,因此本案只能以侮辱罪的未遂论处。但其实“人肉搜索”,用真实的事实攻击他人不构成侮辱罪,而属于侵犯公民个人信息罪的范畴,因此本案属于主观上想实施侵犯公民个人信息罪,但客观上属于诽谤。按照抽象符合说,由于两罪都属于侵犯人身权利的犯罪,重罪和轻罪在轻罪范围内重合,因此可以论以诽谤罪。

        司法实践中比较常见的侮辱判例是发布他人裸照或私密视频,对此可能有三种情况:第一,发布他人真实的裸照或私密视频,这属于侵犯隐私权的行为,如果通过照片或视频可以识别到具体的个人,情节严重可以构成侵犯公民个人信息罪。《个人信息保护法》将个人信息定义为,“个人信息是以电子或者其他方式记录的与已识别或者可识别的自然人有关的各种信息”,对于此类私密信息,不能排除在个人信息以外,否则会抵触民众的常识,让法律语言和日常用语出现巨大的割裂。根据《最高人民法院、最高人民检察院关于办理侵犯公民个人信息刑事案件适用法律若干问题的解释》的规定:“知道或者应当知道他人利用公民个人信息实施犯罪,向其出售或者提供的”,属于“情节严重”,从而可以构成侵犯公民个人信息罪。行为人在网上发布他人的裸照或私密视频,显然也明知会有人利用此个人信息从事传播淫秽物品类的犯罪,因此即便行为人只发布少量视频或裸照,也可能构成此罪。第二,发布并非他人真实的裸照或私密视频,比如使用网络技术用他人的照片加工成裸照或私密视频,这种行为因诱发不当联想而损害他人声誉,导致其社会评价降低,属于诽谤性侮辱,情节严重,可以构成诽谤罪。第三,发布他人真实的裸照或私密视频,并附加诽谤性的文字描述,如前文提及的王某某诉李某某侮辱案,情节严重可以构成侵犯公民个人信息罪和诽谤罪的想象竞合。当然上述三种情况,还可能与传播淫秽物品类犯罪发生竞合关系。

        4.仇恨性言论不属于侮辱罪的范畴

        对于仇恨性言论,联合国在《关于仇恨言论的战略和行动计划》中将之定义为“因为个人或群体的身份(即宗教、族裔、国籍、种族、肤色、血统、性别或其他身份因素)而攻击他们或对他们使用贬损或歧视性语言的任何言论、文字或行为交流”。《反恐怖主义法》第4条第2款规定:“国家反对一切形式的以歪曲宗教教义或者其他方法煽动仇恨、煽动歧视、鼓吹暴力等极端主义,消除恐怖主义的思想基础。”

        我国《刑法》所打击的仇恨性言论主要有种族、宗教和极端主义三类。对于宣言种族仇恨的言论,《刑法》第249条煽动民族仇恨、民族歧视罪对其予以规制;对于宣言宗教仇恨的言论,《刑法》第251条非法剥夺公民宗教信仰自由罪、侵犯少数民族风俗习惯罪,《刑法》第300条组织、利用会道门、邪教组织、利用迷信破坏法律实施罪都可以对其予以规制;至于其他的仇恨言论,可以通过对《刑法》第120条之三宣扬恐怖主义、极端主义、煽动实施恐怖活动罪和第120条之四利用极端主义破坏法律实施罪中的极端主义进行相应的解释,实现必要的打击。没有必要新设专门的“煽动仇恨罪”。

        需要特别强调的是,对于仇恨性言论的禁止并非来源群体荣誉的观念;上述罪名所侵犯的法益也非名誉权,不能用侮辱罪来惩治仇恨性言论。对仇恨性言论的禁止不是为了保护强势群体,而是对弱势群体的保护。民主不仅要防止少数凌驾多数的特权,也要避免多数对少数的歧视,防止“多数人的暴政”。在网络时代,各种仇恨性言论假借多数意志肆意蔓延,这种社会暴虐比国家专断更可怕,一如约翰·穆勒(John Stuart Mill)所言:“当社会集体地凌压其组成的个人时,它的肆虐手段并不只是限于其政治机构的所作所为……这种暴虐比许多政治暴虐还可怕,因为虽不常用极端的处罚做后盾,但却令人更难遁逃,这是因其更深入生活的细节,甚至奴役到灵魂深处。”

        5.辱骂性侮辱可以非刑法方式处理

        对于司法实践中常见的辱骂性侮辱,比如用各种无事实基础的评价性语言进行谩骂,如骂人猪狗不如、垃圾、蠢货等等,这些不宜以犯罪论处,但可以作为民事侵权,情节严重的可由治安管理处罚法处罚。如果观点性评价构成侮辱罪,那么按照滑坡理论,很有可能正常的批评、合理的建议、戏剧性的讽刺、冒犯性的艺术都有成立侮辱罪的可能。

        四、权利行使与出罪事由

        在网络时代,任何对言论的法律规制都关涉言论自由。为了保护言论自由的价值,在保留侮辱罪或诽谤罪的地方,一般都将权利行使作为出罪事由。

        (一)维护公共利益

        在大多数国家和地区,维护公共利益可以作为妨害名誉犯罪的出罪事由。在侮辱罪和诽谤罪并存的地方,真相是诽谤罪的出罪事由,但不能排除侮辱罪的成立,比如《德国刑法》第192条规定,“如果侮辱是根据断言或散布的形式或根据侮辱发生的情况来认定的,即使其所断言或散布的事实有事实证明,也不能排除适用第185条(侮辱罪)规定的刑罚”。但如前文所述,《德国刑法》第193条紧接着规定:如果出于维护某些公共利益的需要,则可能排除侮辱罪的成立。《日本刑法》第230条之二也规定:如果公然披露损害他人名誉的行为,是涉及有关公共利益的事实,而且其目的只是为了维护公共利益,经判断事实的真伪,证明该事实真实,不处罚。

        根据前文所述,侮辱罪可被拆分为暴行类的暴力侮辱、诽谤性侮辱和侵犯隐私的侮辱,第一种情况本应该以暴行罪处理,但是在我国《刑法》还未修改之前,可以暂用侮辱罪代替适用。第二种情况属于诽谤罪的范畴,第三种情况则可能构成侵犯公民个人信息罪。真相虽然可以排除诽谤罪的成立,但并不一定可以作为侵犯公民个人信息罪的出罪事由。然而,《个人信息保护法》第13条规定,“为公共利益实施新闻报道、舆论监督等行为,在合理的范围内”,个人信息处理者可处理个人信息。由于侵犯公民个人信息罪的罪状描述有“违反国家有关规定”的空白罪状,因此在维护公共利益的情况下,如果信息处理者在合理范围内处理个人信息,即便这些信息属于隐私信息,也不能论以侵犯公民个人信息罪。

        公共利益不同于大众兴趣,所以身体障碍、精神障碍,疾病、血统、性生活等属于私生活秘密的事实,原则上应否定其具有公共性。但是个人私生活的品行如果与其从事的公共活动性质有关,可以作为其社会活动批判与评价的素材,也可属于公共利益的范畴,比如公职人员或者宗教团体的负责人私生活不检点。卢梭在《社会契约论》中将公意(general will)与众意(the will of all)相区别,公意在其目标和本质上都是普遍的,平等适用于所有公民,但是众意则是每个人特殊意志的产物。公意与公共利益有关,但众意更多只是大众的兴趣。

        美国沙利文案所确立的实际恶意原则最早针对的是“公共官员”,但随后扩张到公众人物,公众人物有完全性公众人物和有限性公众人物之分。前者包括著名的、经常活跃于大众媒体,为公众所熟悉,具有说服力和影响力的人。后者则是偶然卷入公共议题,旨在解决有争议的共同问题,自愿进入重要公共辩论希望影响舆论之人。从表面上看,关于公众人物的内涵有人与事两种视角,前者是因为身份特殊,所以他所有的事情都值得关注;后者则是因为事件特殊,所以卷入事件的相关人士具有公共性,比如地震中的受害人,刑事案件中的嫌疑人。这两种视角都有一定的合理性,但都可能导致公众人物概念的泛化。比如公职人员因为特殊的身份,属于公众人物,但是与其公职身份无关的隐私,如官员离婚妻子再婚的对象,自然与公共利益无关。又如,遭遇火灾的被害人因为事件特殊卷入公共话题,但是被害人的性取向与事件没有关系,那就不属于公共利益所关涉的内容。因此,公共利益可以限缩为因行为人特殊的公共身份,而与该身份履职行为密切相关的事件,或者因卷入特殊公共事件,与该事件有密切关系之人与所涉事件相关的事情。

        我国《宪法》第41条规定:“中华人民共和国公民对于任何国家机关和国家工作人员,有提出批评和建议的权利。”因此,公民有对公职人员提出批评的权利,当公民行使这种权利,即便表达方式有所不当,也不宜随意贴上犯罪的标签,让人噤若寒蝉。对于公职人员以外的公众人物,理论上也普遍认为,他们的隐私权和名誉权会受到一定的限制。因此,公共利益是一种重要的出罪事由。如果行为人为了公共利益发表了诽谤性侮辱,若客观上属实,自然不构成诽谤罪;即便符合侵犯公民个人信息罪的构成要件,也可以作为违法阻却事由排除犯罪性。

        值得研究的问题还有关于真相的证明责任。如果它是构成要件本身的阻却事由,那么必须由控诉机关承担举证责任。只要被告人主张所言属实,并提供导致合理怀疑的证据,举证责任就转移到公诉机关,后者必须超越合理怀疑证明行为人所言为虚。但如果作为违法阻却事由,其证明责任就存在一定的争议。有些地方认为诸如正当防卫这类正当化事由的举证责任也主要应由控诉机关承担,也即只要被告人提出具有正当防卫的合理怀疑,让抗辩理由成为法庭审理的争议点,那么反驳责任就转移到控诉机关,控诉机关要承担超出合理怀疑的证明责任进行反驳。但是,也有些地方认为正当化事由的举证责任主要应由被告方承担。换言之,被告方不仅应负有提出责任(达到合理怀疑的程度,从而成为审理的问题),同时还要承担优势证据的说服责任。

        毫无疑问,真相是诽谤罪构成要件本身的阻却事由,但它并不能排除侵犯公民个人信息罪的成立,因为后者本来就需要侵犯真实的个人信息。如果侵犯虚假的个人信息,那不可能成立侵犯公民个人信息罪。当行为人为了维护公共利益,主张某官员出轨,并提出了引发合理怀疑的证据,如提供的视频显示两人搂抱进入宾馆房间,提供了多次开房记录等等,但官员称两人并无越轨之举,并控告行为人同时构成诽谤和侵犯公民个人信息罪。这种情形下,由于行为人提供了引发合理怀疑的证据,如果控告方无法提供超出合理怀疑的证据证明两人没有发生越轨之事,那就可以排除诽谤罪的成立。同时,由于行为人披露个人信息的目的是为了公共利益,故也不构成侵犯公民个人信息罪。总之,如果行为人为了维护公共利益,只要提供了引发合理怀疑的事实,对公众人物提出批评,那么就可以豁免诽谤罪或侵犯公民个人信息罪的责任。但在这类案件中,如何界定“公共利益”至关重要,对公共利益的判定和证明是理论和实践中需要进一步研究的问题。

        (二)维护个人利益

        维护个人利益属于一种自救行为,它是一种超法规的违法阻却事由。对于侵犯名誉和隐私的犯罪,有些地方的刑法也特别规定维护个人利益可以作为免责事由,比如前文所提及的《丹麦刑法》;又如《德国刑法》第199条所规定的对他人的侮辱当场以侮辱加以还击不负刑事责任,这也是一种典型的自救行为。我国台湾地区“刑法”第311条规定了四种出罪事由:“以善意发表言论,而有下列情形之一者,不罚:1.因自卫、自辩或保护合法之利益者;2.公务员因职务而报告者;3.对于可受公评之事,而为适当之评论者;4.对于中央及地方之会议或法院或公众集会之记事,而为适当之载述者。”第1款是为了维护个人合法利益,而后三款则是为了维护公共利益。

        我国刑法理论普遍认为自救行为是一种超法规的违法阻却事由。成立自救应符合四个条件:其一,前提条件。权利受损且被侵害的权利有恢复的可能;其二,目的条件。实施自救是为了保护自己的合法权利;其三,时机条件。自救行为必须在紧迫状态下实施;其四,限度条件。自救行为具有社会相当性。常见的自救行为如行为人摩托车被偷,次日在他人家中发现摩托车,遂将摩托车骑回(摩托车案),这不构成盗窃罪。再如,女车主坐车盖哭诉维权案,这也不构成损害商品声誉罪。

        在司法实践中常见的案件,如恋人出轨被网暴案中,就可能涉及自救行为。关键性的问题有三:第一是权利基础问题。如果双方没有婚姻关系,一方在法律上就并不拥有要求对方保持忠诚的权利,其自救行为也就缺乏相应的权利基础。另外,其目的可能只是单纯的泄愤,很难说有让对方回头再续前缘的想法。

        第二是限度条件。社会相当性理论由德国刑法学家汉斯·威尔泽尔(Hans Welzel)首创,其目的在于为超法规的违法阻却事由寻找依据,避免刑法过于机械与教条。社会相当包括手段相当与结果相当。在道德哲学上,前者是从道义论的角度来检视一种行为本身是否具有道义的正当性,而后者则是从功利论的角度来探究结果是否具有功利上的有利性。比如恋人为了披露过错方出轨,将“小三”的裸照和私密视频公之于众,甚至将“小三”父母的个人信息发在网上,这就明显突破了道义限度,手段不再具有相当性。另外,如果“小三”精神失常自杀身亡,社会性死亡转为生理性死亡,那么结果也不具有相当性。

        第三是认识错误问题,这主要涉及对权利行使的误认。在恋人出轨被网暴案中,如果行为人误认自己有权实施自救,但客观上并无此权利。对此行为如何处理,在理论上也存在分歧。假想的自救或说假想的权利行使,包括两种情况:一是对事实问题的误认。如摩托车案中,行为人骑回车辆后发现并非自己的摩托车,这是一种事实上的认识错误,可以排除盗窃故意。由于盗窃不处罚过失,所以不构成盗窃罪。另一种情况类似恋人出轨被网暴案,行为人对事实问题没有误认,但对自己是否有权利基础产生了误认,这是一种评价性错误,属于法律上的认识错误,这一般无法豁免罪责。

        总之,权利行使是网络暴力相关犯罪的重要出罪事由。为了维护公共利益针砭公众人物,只要提供引发合理怀疑的事实,就可以豁免诽谤罪或侵犯公民个人信息罪的责任。对公职人员的批评是宪法赋予公民的权利。至于因为恋人出轨而对其进行网暴,则需根据社会相当性理论进行处理,利益权衡非常复杂,刑法只能勉力而为。

        五、结语

        网络暴力主要是一种与言论表达有关的暴力,对网络暴力的法律规制涉及言论自由与人的尊严之间的关系。如何在两者间寻找一种合乎中道的平衡,仅凭理性无法得出妥帖的答案,需要我们不断寻求实践性智慧。侮辱罪和诽谤罪是侵犯名誉权的犯罪,但正如所有的超级大词,你不问我我还知道;你若问我,我就茫然无知。我们经常将名誉、隐私、荣誉这些相关概念混为一谈。哲学家说,我们语言的界限意味着我们世界的界限。同理,我们语言的混乱也代表着我们混乱的世界观。因此,必须对法律概念进行精准的定义,虽然这是不可能彻底完成的任务。

        从历史观之,侮辱罪与等级社会的“个人荣誉”观念有关,荣誉原是一个去除一切等级制度的神学概念,荣誉要求视虚名为粪土;但当荣誉转化为世俗概念后却成为强化等级的观念。语言的变迁时常具有莫大的讽刺。当前,我们已经处在一个世俗主义的平等社会,荣誉这个概念已失去其存在的土壤。当荣誉转化为主观名誉观念,侮辱罪似乎获得继续存在的可能,但却可能无限膨胀,几乎无所不包,因此侮辱罪的存废就成为一个需要慎重思考的问题。刑法所保护的名誉,是一种具有社会评价的外在声誉,但外在声誉必须有真实的基础,而不能是以虚假事实所搭建的伪名。法律不能助长伪善。因此,有必要拆分侮辱罪。具体而言,暴力侮辱可以作为暴行罪的替代罪名,无论公开或私下的暴力侮辱,都可以犯罪论处;虚构事实的诽谤性侮辱直接论以诽谤罪即可;以真实的事实攻击他人,侵犯的并非名誉,而是隐私,情节严重的可构成侵犯公民个人信息罪。至于辱骂则可以更多使用行政法和民法进行规制。尽管现在的侮辱诽谤大多发生于网络世界,但网络世界与现实世界无法截然分离,故无需在现实世界之外专门针对网络世界另立新法,用好现有的法比制定新法可能更好。

        古老的哲学曾经认为,所有真正的问题都只有唯一正确的答案,其他答案都是错误的;如果一个问题没有正确的答案,那么问题本身就并非真正的问题。然而,我们并非生活在乌托邦,尘世中的经验世界就如柏拉图隐喻中的洞穴,充满着各种想象和无知。没有最好的答案,我们只能祈求最不坏的结果。以赛亚·伯林(Isaiah Berlin)说:我们能做的最好的事,就是维持一种不稳定的平衡,以此来防止陷入绝境或者是做出不可忍受的选择——这是对一个文明社会的基本要求。此时,保持一点谦卑是很有必要的。

        【注释】

        [1]王昱璇、张灿灿:“奏响网络时代人格权司法保护强音”,载《检察日报》2023年2月9日,第1版。

        [2]吴某某在网上浏览到被害人沈某某发布的“与外公的日常”贴文,遂捏造“73岁企业家豪娶29岁大美女”的贴文,造成极其恶劣的社会影响,法院后以诽谤罪判处吴某某一年有期徒刑。最高人民法院:“依法惩治网络暴力违法犯罪典型案例”,载《人民法院报》2023年9月26日,第3版。

        [3]赵宏:“网暴案件中的民行刑衔接”,《北方法学》2023年第5期,第3页。

        [4] Guy E. Carmi, “Dignity Verus Liberty: The Two Western Cultures Of Free Speech, ” Boston University International Law Journal, Vol.26, No.2, 2008, p.362.

        [5]Ibid., p.347.

        [6]美国有15个司法区保留了某种形式的刑事诽谤法。

        [7] Coroners and Justice Act 2009, p47,http://www.legislation.gov.uk/ukpga/2009/25/pdfs/ukpga_20090025_en.pdf, last visited on 22 January 2024.

        [8]James Q. Whitman, “Enforcing Civility and Respect: Three Societies, ” The Yale Law Journal, Vol.109, No.6, 2000, p.1382.

        [9]Carmi, supra note [4], p.345.

        [10]Carmi, supra note [4], p.343.

        [11]Donald P. Kommers, “The Jurisprudence of Free Speech in the United States and the Federal Republic of Germany, ” Southern California Law Review, Vol.53, No.2, 1980, p.657.

        [12](法)托克维尔:《旧制度与大革命》,冯棠译,商务印书馆2012年版,第184页。

        [13]Whitman, supra note [8], p.1284.

        [14]Edward J. Eberle, “Public Discourse in Contemporary Germany, ” Case Western Reserve Law Review, Vol.47, No.3, 1997, p.897.

        [15]Whitman, supra note [8], p.1305.

        [16]Carmi, supra note [4], p.332.

        [17]Organization for Security and Cooperation in Europe, “Defamation and Insult Laws in the OSCE Region: A Comparative Study, ” p.103, https://www.osce.org/files/f/documents/b/8/303181.pdf, last visited on 22 January 2024.

        [18]Carmi, supra note [4], p.327.

        [19]徐久生:《德国刑法典》,北京大学出版社2019年版,第108—109页。

        [20] German Criminal Code, https://www.gesetze-im-internet.de/englisch_stgb/englisch_stgb.html#p1907, last visited on 22 January 2024.

        [21]徐久生,见前注[19],第144页。

        [22]因诽谤德国总统而被起诉的情况很少见,此类起诉必须得到总统的许可。2011年,总统克里斯蒂安·伍尔夫(Christian Wulff)批准起诉一名博主,原因是该博主的图片造假,显示总统的妻子做出了纳粹手势。但伍尔夫最终撤回了许可。Organization for Security and Cooperation in Europe, supra note [17], p.104.

        [23]Eberle, supra note [14], p.897.

        [24]Carmi, supra note [4], p.333.

        [25]Hustler Magazine v. Falwell, 485 U. S.46(1988).

        [26]王爱立主编:《中华人民共和国刑法条文说明、立法理由及相关规定》,北京大学出版社2021年版,第930页。

        [27]Amal Clooney and Philippa Webb, “The Right To Insult In International Law, ” Columbia Human Right Law Review, Vol.48, No.2, 2017, pp.3-4.

        [28]Organization for Security and Cooperation in Europe, supra note [17], pp.124, 179.

        [29]比如虚构事实说被害人涉嫌参与维希政权或纳粹人而被控“侮辱”。

        [30]Whitman, supra note [8], p.1350.

        [31]Organization for Security and Cooperation in Europe, supra note [17], pp.96, 216.

        [32]Organization for Security and Cooperation in Europe, supra note [17], p.198.

        [33]根据《日本刑法》第16、17条的规定,拘留是指1日以上未满30日之身体拘禁;科料是指1,000日圆以上未满1万日圆之金钱剥夺。

        [34](日)深町晋也:“日本侮辱罪法定刑的提高与所留下的课题”,黄士轩译,《月旦法学杂志》第343期(2023年),第187页。

        [35] Carmi, supra note [4], p.364.

        [36]Clooney and Webb, supra note [27], p.2.

        [37]英译为“if the issuer of the allegation in good faith has been under an obligation to speak or has acted in lawful protection of obvious public interest or of the personal interest of himself or of others”。Organization for Security and Cooperation in Europe, supra note [17], p.84.

        [38]李念祖:“侮辱罪的宪法问题”,《在野法潮》第23期(2014年),第7页。

        [39]Whitman, supra note [8], p.1315.

        [40] Whitman, supra note [8], p.1328.

        [41]Whitman, supra note [8], p.1318.

        [42]Whitman, supra note [8], p.1328.

        [43] Whitman, supra note [8], p.1308.

        [44]Whitman, supra note [8], p.1315.

        [45] Whitman, supra note [8], p.1346.

        [46]Whitman, supra note [8], pp.1348-1349.

        [47]Whitman, supra note [8], p.1351.

        [48]Organization for Security and Cooperation in Europe, supra note [17], pp.94-95.

        [49]Whitman, supra note [8], p.1363.

        [50]Whitman, supra note [8], p.1365.

        [51] Whitman, supra note [8], p.1290.

        [52]Whitman, supra note [8], p.1346.

        [53]徐伟群:《论妨碍名誉权的除罪化》,台湾大学博士学位论文2004年版,第22页。

        [54]同上注,第23页。

        [55]徐伟群,见前注[53],第20页。

        [56]徐伟群,见前注[53],第21页。

        [57]王正嘉:“网际网路上之刑法妨害名誉罪适用与界限”,《政大法学评论》第128期(2012年),第151页。

        [58]徐伟群,见前注[53],第34页。

        [59]Whitman, supra note [8], p.1335.

        [60]Whitman, supra note [8], p.1329.

        [61]Carmi, supra note [4], p.337.

        [62] Eberle, supra note [14], p.878.

        [63]Carmi, supra note [4], p.337.另请参见我国台湾地区“司法院”:《德国联邦宪法法院裁判选辑(十一)》,我国台湾地区“司法院”编印2004年版,第28、34页;张翔主编:《德国宪法案例选释(第2辑):言论自由》,法律出版社2016年版,第193—194页。

        [64]〔古希腊〕柏拉图:《理想国》,郭斌和、张竹明译,商务印书馆2017年版,第32—33, 49页。

        [65]徐伟群,见前注[53],第39页。

        [66]高铭暄:《中华人民共和国刑法的孕育诞生和发展完善》,北京大学出版社2020年版,第269—270页。

        [67]王正嘉,见前注[57],第170页。

        [68]王正嘉,见前注[57],第167页。

        [69]刘艳红:“网络暴力治理的法治化转型及立法体系建构”,《法学研究》2023年第5期,第90页。

        [70]王正嘉,见前注[57],第169页。

        [71]王正嘉,见前注[57],第173页。

        [72]石经海、黄亚瑞:“网络暴力刑法规制的困境分析与出路探究”,《安徽大学学报(哲学社会科学版)》2020年第4期,第88页。

        [73]王正嘉,见前注[57],第170页。

        [74]参见张明楷:“帮助信息网络犯罪活动罪的再探讨”,《法商研究》2024年第1期,第21页。

        [75]最高人民法院:载“依法惩治网络暴力违法犯罪典型案例”,载《人民法院报》2023年9月26日第3版。

        [76]“蔡晓青侮辱案”,载最高人民法院刑事审判第一、二、三、四、五庭主办:《刑事审判参考》第101集,法律出版社2015年版,第84页。

        [77]王文华:“论反仇恨言论视阈下网络暴力的法律治理”,《中国应用法学》2023年第5期,第64页。

        [78](法)托克维尔:《论美国的民主(上)》,董果良译,商务印书馆1997年版,第289页。

        [79]杨肃默:“英国政治传统中的自由观念”,载刘军宁等编:《自由与社群》(公共论从第4辑),生活·读书·新知三联书店1998年版,第61页。

        [80]张凌、于秀峰编译:《日本刑法及特别刑法总览》,人民法院出版社2017年版,第48页。

        [81](日)西田典之:《日本刑法各论》,刘明祥、王昭武译,中国人民大学出版社2007年版,第90页。

        [82](英)乔纳森·沃尔夫:《政治哲学》,毛兴贵译,中信出版集团2019年版,第96—97页。

        [83]杨士林:“‘公众人物’的名誉权与言论自由的冲突及解决机制”,《法学论坛》2003年第6期,第6页。

        [84]罗翔:“证明责任与犯罪构成”,《证据科学》2016年第4期,第486—487页。

        [85]参见贺秋华:“自救行为论”,《中国刑事法杂志》2005年第4期,第30—31页。

        [86]朱昌俊:“‘奔驰车主哭诉维权’缘何引发关注”,载《光明日报》2019年4月15日,第2版。

        [87](英)以赛亚·伯林:《扭曲的人性之材:观念史论集》(第2版), (英)亨利·哈代编,岳秀坤译,译林出版社2023年版,第24页。

        [88]同上注,第17页。

        本文转自《中外法学》

      5. 金炜凯:社会角色理论视阈下过失犯注意义务的合理边界

        一、问题的提出

        由于较故意犯而言,可谴责性更低,刑法上对于过失犯的构罪限制作了相应规定:我国《刑法》第15条第2款强调,过失犯的刑事责任以法律明确规定者为限;《德国刑法典》第15条亦有类似规定,德国学者称之为过失责任的例外特征(Ausnahmecharakter)。①但是,刑法分则中各罪构成要件以严格限制过失犯成立为原则的立法模式并不意味着在司法层面上能够对过失构罪加以克制。与之相反,随着人类社会工业化、信息化程度的不断提高,一方面,以预防为导向的风险遏制思想在刑法教义学中逐渐占领高地;另一方面,司法机关越来越倾向于通过适用刑法来达到维护社会稳定的目的。因而,在损害结果比较严重的案件中,若无法从现有事实依据中证明行为人对构成要件实现抱有“希望”或者“放任”之态度,实务人员则更加倾向于将其行为认定为“违反注意义务”,并强调行为人本应秉持的审慎态度,从而肯定过失犯的成立。

        [案例一]:被告人因锁车事宜在某县建业管理局与该局门卫及其妻发生口角,对方互相撕扯。期间,该门卫倒地死亡。经鉴定,该门卫死于冠状动脉粥样硬化性心脏病急性发作,且情绪激动、外伤等是主要诱因。一审法院认定被告人之行为构成过失致人死亡罪,被告人上诉后二审维持原判。②

        [案例二]:被告人何某驾驶转向系统与灯光装置不合格的货车,沿某村内道路行驶,遇到同村的纳某某(11岁)骑一辆自行车迎面驶来时,停车让行。纳某某骑自行车到何某所驾货车附近时亦在何某所驾车右侧停下,给何某让行。何某见状便启动自己所驾机动车以12公里/小时的速度从纳某某身边通过。在车辆从纳某某身边通过时,何某所驾车右后轮与纳某某及其所骑的自行车碰撞,致纳某某受重伤,经医院抢救无效死亡。两审法院针对何某的行为均以过失致人死亡罪定性。③

        [案例三]:周某某通过平台接到被害人车某某的搬家订单,当日晚间驾车到达约定地点。周某某因长时间等候且与被害人就服务费用问题未能达成共识,心生不满,遂未按平台推荐路线行驶;而是自行选择一条相对省时但人车稀少、灯光昏暗的偏僻路线。坐在副驾驶位的车某某发现周某某偏离导航路线并驶入偏僻路段,四次提示偏航,周某某态度恶劣,与车某某发生争吵。车某某心生恐惧,将上身探出窗外要求停车。周某某发现后,考虑到被害人可能坠车,就打开了双闪,但未制止被害人或采取制动措施。随后,车某某从车窗坠落。此时周某某制动停车,下车发现被害人车某某躺在地上,头部出血,随即拨打120急救电话,并拨打110报警。后来救护车到达现场,医护人员将车某某送往医院救治。车某某因头部与地面碰撞致重度颅脑损伤死亡。两审法院均肯定周某某的行为构成过失致人死亡罪。④

        以上三个案例都发生于日常社会交往之中,而且缺乏可供参考的具有强制力的行为准则,因而法院所适用的罪名都是典型的纯粹结果犯——过失致人死亡罪。但是,和普通的过失犯罪一样,过失致人死亡罪的罪状又是开放性的,法官要在具体案件中依据普遍的指导图示(Leitbild)来填补行为人致使被害人死亡的行为不法。⑤于是,在这些案件中,通过论证行为人在社会交往之中对他人生命安全缺乏必要的谨慎态度,并确认伴随这种态度的举止与损害结果之间的因果关系,进而肯定过失的成立,就成了不二选择。然而,裁判文书中的说理基本流于形式,尽管法院一再强调对他人生命安全应予重视的规范性要求,但对于行为人对被害人肩负怎样的注意义务以及相应的义务边界缺乏明晰的解说和界定,是故,给人留下了“行为和结果之间只要存在因果关系,就可径行推定过失成立”的印象。

        [案例一]中二审法院以行为人对于矛盾激化、与被害人之间产生肢体冲突负主要责任为由,肯定行为人对于被害人的死亡结果存在过失。然而,引发争吵并不意味着损害结果就要客观归责于行为人,更不意味着其违反了注意义务。[案例二]中法院认为,何某的行为客观上与被害人的死亡结果存在因果关系,主观上被告人和被害人在相遇时均给对方停车让行,说明被告人已经认识到了直接驾驶车辆通过可能导致的危害后果;再加上被害人是年仅11周岁的未成年人,应该更加予以注意,以避免危害结果的发生才对。虽然被告人以12公里/小时的速度从被害人身边通过,但依然不足以达到应有的谨慎,被告人预见到某种行为可能会引起危害后果,但轻信能够避免,属于过于自信的过失。法院在这里犯的逻辑错误是,对缺少归责能力者加以照顾,前提是无法指望这类交通参与者能够遵守相应的注意义务或者交往规范,这是信赖原则本来的含义,而法院对此不加论证,就直接以被害人是未成年人为由提高被告人应保持的谨慎程度。于是,被告人究竟应当采取何种结果避免措施的问题陷入了不可知论。就[案例三]而言,二审法院认为被害人探身车窗外的举动是行为人自行偏离导航路线的行为及其恶劣的态度所致,行为人因先行行为产生了防止被害人遭受损伤的作为义务;所以,在被害人已经做出危险举动的情况下,行为人未能采取车辆制动措施,将结果避免的希望寄托在被害人主动缩回车内的可能性之上,属于已经预见自己的行为可能会发生危害社会的结果却轻信其能够避免的情形,故成立过于自信之过失。然而,这种论证过于表面化,法院只是简单地套用了先行行为引发作为义务的原理,推导出被告人在行车过程中的主观心态。对于先行行为的范围、结果预见可能性的标准都缺乏明晰的意见和态度。

        综合来看,上述法院的说理未能证成过失行为人注意义务范围的前提,反而过分侧重结果导向,即从结果发生的角度向前回溯,认定行为人在行为当时始终具备避免结果发生的选择。然而,如若不严格限制注意义务的边界,一味地强调公民个人对于危险、损害的防果义务,那么就无异于承认刑事司法在过失这一罪过形式上转向了结果责任。本文以上述三个案件所牵涉的过失致人死亡罪为例,从现有国内外学说中比较有力的观点出发,尝试对过失犯中的行为不法,即注意(谨慎)义务违反性加以考察,从而就如何划定注意义务边界的问题作出解答。

        二、对既有理论观点的反思

        行为人究竟要达到何种谨慎的程度,注意义务的范围到底如何框定?这一问题到目前为止在学界并没有较为明确且统一的答案。从现有的学说中汇总出来的有影响力的观点主要提供了两种思路:要么依托于客观归责理论中的“法不容许的风险”概念来划定行为人注意义务的边界,要么将注意义务规范作区别于举止规范的理解。但是,在笔者看来,上述两种思路均存在明显的缺陷,需要慎重对待。

        (一)“不被容许的风险”概念无助于注意义务边界的划定

        自德国学者恩吉施(Engisch)指出,过失不应当仅从心理错误或者性格缺陷的意义上来理解,而是还要从危险预防措施(也就是外在注意)的视角来看待后,⑥过失责任的客观化似乎逐渐成为一种趋势。韦尔策尔(Welzel)就认为,在社会交往中必要的注意并不取决于行为人已然或者能够创造的东西,它是规范针对行为人提出的要求。⑦为此,对注意义务的判断需要注意的是,哪些危险预防措施是行为人应当在交往中加以准备的。这一问题在后来的客观归责理论那里被转化为了行为人是否客观上创设了法不容许的风险,且过失不法的判断对象被一概纳入客观构成要件的范畴之中。⑧

        按照客观归责理论的逻辑,一个可以被归责的行为必须是创设并实现不被容许之风险的行为,同时该行为所涉及的风险并没有脱离构成要件的保护范围。那么,在过失领域,究竟什么样的行为创设了不被容许的风险呢?依照罗克辛(Roxin)和格雷科(Greco)的总结,有以下几种:⑨(1)违反实定法规范,亦即在诸多生活领域中,立法者通过法律规范将抽象的危殆化禁止(Gefhrdungsverbote)固定下来,违反了这种规范,就意味着创设了不被容许的风险,这其中以交通领域的法律法规最为典型;(2)违反交往规范(Verkehrsnorm),也就是在私人利益相关领域中衍生出的规则,这些规则往往都包含着对于特定的不被容许的风险的防范;(3)违反信赖原则,这些原则主要体现在交通领域和分工协作领域;(4)违反不同的标准形象(die differenzierte Mafigur),这些形象通过在具体的交往圈中塑造一个勤勉认真而又审慎注意的人,来确定不被容许的风险;(5)违反咨询和不作为义务(Unterlassungspflicht),这些义务是为了填补在专业化生活领域中成文的行为标准的缺失,对于风险是否有损刑法保护的法益无法判断但又准备实施某种行为的人,必须事前向他人咨询,或者干脆不做。

        然而,上述对于具体的禁止性事项加以归类的做法,在客观归责论者看来只能为行为人创设法不容许的风险提供线索,却无法给出实质依据。毕竟,一般的禁止性规定只能抽象地概括危险性,却无法确保在具体的个例中蕴藏着切实的危险。⑩因此,对于那些无法覆盖在上述讨论范围内的情况,要对被控行为进行收益—风险评估,针对那些于社会无甚益处,却招致相应风险的行为就应当肯定过失成立;反之,那些为社会价值所承认,但依旧存在一定甚至较大风险的行为(比如救护车超速行驶),也应该尽量免于归责。(11)德国甚至有判例指出,“如若僵化地遵守交通规则只会破坏交通安全,且对规则的违背因此显得富有意义且具备理性的话,那么在具体事例中违背交通规则的行为就是被允许的”(12)。

        所以,至少在过失犯的问题上,风险是否被容许并不是一个泾渭分明的决断。它可能随着行为人所追求的目的在价值上更加重要,因而削弱原本设定在规范中的目的。(13)罗克辛就认为,“被容许的风险一直都是在交往必要性和个人利益保护之间进行权衡的产物。升高那些还在被容忍的危险,就会致使天平倒向有利于法益保护的这一边,并且因此导致的结果原本不会被反对,此刻却会以过失的形象出现”(14)。在此基础上,有学者指出,风险的容许性并不取决于行为人个人对秩序的遵守或者谨慎注意的态度,而是正好相反,在从事具有风险性的活动时,注意义务的确定要以客观且普遍的利益衡量作为前提。(15)

        然而,这种理解本身违背了“不被容许的风险”概念确立的初衷,也无助于“风险”概念自洽。

        首先,客观归责理论在体系上是关于客观构成要件符合性判断的学说,(16)与正当化事由不同,后者才要求在个案中对于行为人的行为进行具体的分析和判断。(17)构成要件本身应当清楚明确地指出,立法者将哪些法益预设为刑罚规范的目的,有哪些作为或者不作为是被禁止的,这些行为是会造成损害还是具体的危险。(18)因此,构成要件是不法的类型化,具有呼吁功能,不被容许的风险并不应当成为利益衡量的产物,而应该自身就是不法类型。但是客观归责论者在过失犯的问题上却放弃了这一点,将本应成为一般性禁止规定的不被容许的风险转化成了需要具体利益权衡的事由。

        其次,不被容许的风险的判断时点应当设置在行为时,而不是裁判时。诚如弗里施(Frisch)所言:“因为只有在行为时的状况下为人可识别的危险才能有意义地成为举止规范的对象。”(19)因而,创设不被容许的风险只能是对行为时的客观状况综合评估,从而得出的有关危险性的评价。但是,与之相对的,风险实现之判断却处于裁判时的视角,(20)而结果的发生又并不能征表行为自身的危险性。(21)按照这样的逻辑,“风险”概念在整个客观归责判断过程中呈现出了一种不一致性。为了修正这种不一致性,像罗克辛提倡的那种做法似乎在情理之中:承认不被容许的风险是介乎违反具体注意义务规范的行为和法益侵害后果之间的一个概念,认定不被容许的风险指向的客体为事后的具体危险。然而随之而来的问题就是,事后危险的审查视角应当是裁判时而非行为时。在行为所指向的法益损害后果没有实现的情况下,仍然要通过司法官在掌握了所有发生的事实之后来判断,行为人的行为所创设的风险是否超出了法律所允许的范围并极有可能得到实现。这样一来,为了突出预防目的而本应在行为时发挥作用的注意义务规范,其功能几乎消失殆尽。毋宁说,行为人虽然违反了某种注意义务规范,但是是否创设了不被容许的风险,却仍然要等到行为终了且相应的事实因果流程实现,才能得到确定。

        如果从一般意义上考察客观归责理论就会发现,问题的根源不在于不被容许的风险的目标定位,而是故意和过失在本体构造上的差异。

        “在客观归责论的判断中,整体体现出一种消极否定的论证因果关系的思路”(22),论者大都是从反面框定什么样的情形不属于在法律上具有相关性的风险,而不能正面指出不被容许的风险究竟是什么。照理说,这样一种理论本不能撑得起它在观感上给我们带来的强大的工具价值。但是在实际应用中,却不存在这样的突兀感。因为现实中的故意行为通常都服务于特定不被容许的风险,纯粹设定在法律上不相关的风险之举止,并不能证明故意的存在。(23)德国学者霍尼希(Honig)称,客观归责区别于纯粹因果关联的地方是人之行为的介入,人的举止在客观面上可以被视作其富有意义的意志表达;与之相应,可归责的结果,是那些能够被看作富有目的的介入到自然经过中的东西。(24)因此,故意行为因其本身对不法目的的追求或者容忍,而与不被容许的风险之间有天然的亲和性。

        但是过失行为不同于故意行为的地方在于,故意行为对于构成要件的结果存在现实的目的性操纵,而过失行为的目的性与构成要件结果的发生无关,毋宁是过失行为人在现实交往的过程中未能满足避免构成要件结果发生的注意要求。(25)所以,过失行为只能被描述为“伴随着”某种风险,而无法称之为“设定了”某种风险。同时,实定法中的过失犯绝大多数都是结果犯,甚至《刑法》第15条第1款着重强调了过失犯罪是应当或者已经预见到行为可能会发生危害社会的“结果”,因为疏忽大意或者过于自信而致使“结果”发生的情形。所以,一旦结果发生,那么从事后的角度进行回溯,即使过失行为并不能称得上创设了某种不被容许的风险,法益损害也必然是该行为升高风险的后果。

        而一方面过失行为人不追求甚至排斥法益侵害后果,另一方面过失行为又要以具体法益侵害后果为依托来反推其行为反价值性时,就会产生难以调和的矛盾。所以“不被容许的风险”概念也就自然地摒弃了“行为禁止”的规范性特征,转而融入了“利益衡量”的思维模式。

        (二)“能力维持规范”论忽视了行为指引功能的重要性

        正是意识到“不被容许的风险”概念在过失归责中存在的问题,学者们另辟蹊径,尝试对这一概念进行解构。

        第一,除了具备捍卫权利或者避免更为重大的利益遭受损害等理由以外,其他一切造成他人或者公共利益损害的行为都难谓“法律所容许的”。我国早有学者指出:“被允许的危险本身不符合犯罪的构成要件,并不意味着其造成实害时也不符合犯罪的构成要件。”(26)这一论断颇为犀利地道破了问题的关键,那就是所谓“被容许的风险”并不意味着法律赋予行为人制造风险的“权利”,而是考虑到行为人自身的状况对其侵害法益的行为不予谴责。(27)

        第二,既然给他人造成法益损害或者损害公共利益的行为原则上都是法律所反对的,那么就不存在绝对的“容许行为”的边界。即使行为人并没有能力避免法益侵害结果,也不意味着行为人一定免于承担刑事责任。只有在法律并不苛求行为人在某个具体时刻有能力去避免法益侵害结果时,行为人才能免于刑事处罚。换句话说,公民不仅不能主动地去侵害法益,而且还有义务维持避免法益损害结果发生的能力。

        第三,结合上文中对于故意和过失的区分,我们就会发现:故意行为人违反义务的原因在于具备相应的身体和心理条件,但未实施合乎举止规范的行为;过失行为人违反义务的原因在于,未能保持被法规范期待的谨慎,以获得避免构成要件实现的身体以及心理条件。(28)故而,过失行为人本质上违反的并非举止规范,而是所谓的“能力维持规范”;而规定注意义务的规范本身并不具有如同举止规范那样的指引作用,其自身并不是直接向行为人提出不得实施法益侵害行为的规范。

        因此,在过失犯中,严格划定行为不法的客观标尺并不存在,而是要分两个层次进行归责审查:(1)确定行为人在行为时客观上已无法避免结果发生(排除故意);(2)判断行为人是否可谴责地使自己陷入了无法避免结果的状态(分析“法忠诚动机”)。进而,过失罪责本质上并不质问行为本身是否成立不法,而是要直接拷问行为人的法忠诚动机。故而,注意义务的合理边界就要由过失行为人是否有足够充分的不避免结果发生的理由来划定。笔者将其总结为对于公民“法忠诚动机”的检验。这种检验方法的最主要的标准,是具体社会交往中预示危险的信号的强弱程度。在个案判断中,提示危险的信号越异常、重大或者迫近,那么法秩序就越倾向于令公民分出较多的精力,并将之投放到相应交往活动的谨慎态度之中。所以,相应的判断方法只能从事后的损害结果反推,根据危险信号的强度假定维持相应谨慎能力所需要采取的措施,通过利益衡量的思考方式,考虑保持这样一种谨慎态度能否成为普遍化的准则。(29)

        上述推理和论证在逻辑方面固然是十分精致到位的,但同时会令人产生疑惑:这样一种复杂的检测“公民法忠诚动机”的方法能否符合一般预防意义上的刑事政策需要?

        依据宾丁(Binding)对于规范的理解,规范的“唯一目的在于,禁止具有法秩序损害性的本质或者结果的特定行为,并命令作出不可或缺的行为,而对这些作为与不作为的法律评价则是规范目的的基础”(30)。因此,刑法规范是通过对某些损害法益的举止作出否定评价,进而指引公民不要违反刑法发出的禁止或者要求命令的决定规范。(31)然而,禁止或者要求规范的接收者不作为或者作为,必然在一定程度上限制了公民个人的行动自由。从法治国的角度出发,为避免裁判者滥用刑罚权,刑法规范中的禁止或者命令内容应当具有明确性,更确切地说,是尽可能清晰地描述符合构成要件的行为,以维护公民的预测可能性。(32)因而,一切招致刑罚后果的不法行为,都违反了刑法中的举止规范,而不应当存在例外。

        但是,将过失行为不法视作行为人违反了能力维持规范的观点,却直接否认了注意义务规范框定过失实行行为的功能。如前所述,故意犯之所以能够在不法层面上进行归责,并不是因为行为人的行为造成了法益损害结果,而是符合构成要件的行为是在行为人违反禁止(或者要求)规范的命令之下实施的。如此一来,这样的损害结果完全可以归责于行为人违背规范的意志。但是,在过失犯中,行为人并没有认识到自己的行为违反了构成要件当中的禁止规范,也就是缺乏遵守规范的能力。因此,过失犯的归责就需要更深入地追问行为人缺乏遵守规范能力的原因是什么,以行为人在避免构成要件实现的节点上没有能力避免的这一待归责的事实为基础,判断其是否要为自己的能力不足承担责任。(33)这意味着,它作为一种特殊的归责包含了因违反义务而对自己的非自由状态予以负责的维度,进而会有违背罪责与行为同在性原则的嫌疑。(34)金德霍伊泽尔(Kindhuser)指出,当行为人在对构成要件实现的决定性节点上缺乏避免能力的时候,才能对该行为人负有责任的缺乏能力的状态进行归责。(35)但是什么才是具有决定性的时间节点?对于行为人所负责的缺乏避免能力的原因要溯及何时?恐怕这才是“能力维持规范”论要回答的关键问题。恰恰是在这一点上,相关论者的描述存在语焉不详的地方。

        更何况,在某些案件中能力维持规范的原理对法律适用而言,解释效果并不理想。例如,在赵某某过失致人死亡案中,被告人赵某某在驾驶出租车运营期间因车费问题而与被害人徐某发生争执,徐某在下车之后透过打开的驾驶室窗户与被告人继续争执,被告人因急于驾车离开而不慎将被害人刮倒碾压。(36)本案行为人得以避免结果发生的时间节点与维持相应能力的关键时间节点其实是一致的,都聚焦于其驾车离开的瞬间,按照上述区别举止规范与能力维持规范的观点,在结果本得以避免的情况下,该行为至少有成立间接故意犯罪的可能。然而,针对本案法院却认定被告人没有放任被害人死亡的间接故意,还是以汽车驾驶人员所具备的经验和应当尽到的义务来探讨其行为是否成立过失犯罪。这实际从侧面说明能力维持规范原理于注意义务违反和构成要件结果发生在时空间联系紧密的场合,其解释力会大打折扣。

        是故,离开了举止规范的框架,决定规范无法发挥行为指引功能,借助能力维持规范,试图使得注意义务内容在脱离“举止规范”之后依然能够被视为“决定规范”的努力终归失败。对此持相反观点的学者认为,“谨慎义务的作用在于为人们应当如何维护自身的注意能力提供统一的标准,而不在于引导人们如何去选择具体的行动目标”(37),只要不对国家、社会以及第三人的利益造成损害,怎样安排自己的行动是公民的个人自由。但是,这种设想的实现不能全然依靠法院事后的裁判,而是事前就应该明确怎样做才是符合注意义务规范的,否则好心办了坏事,以善良的目的行动却招致刑罚惩处的后果,无疑会对那些不精通教义学的普通民众带来“恶法亦法”的印象。结合能力维持规范观点来具体分析行为人法忠诚动机的思路或许为裁判者的论证说理提供了全新的视角,但是却无法给规范接收者带来明确且有效的行为指引。

        三、注意义务的规范本质——社会角色理论的提倡

        过失犯构成要件的开放性以及注意义务问题结构的复杂性,决定了司法实践只能尽可能地从社会生活的普遍经验出发来寻找答案;司法判断不能只着眼于利害冲突中合法利益的需保护性,而是更要分析个案中主体之间在法秩序之下的关系,从而为规范接收者在日常交往的安排中提供合法行为指引,因而,我们需要沿着这一方向寻找新的解决办法。

        (一)罪责原理对注意义务边界的启示

        无论是不被容许的风险概念的适用困境,还是能力维持规范的逻辑基础,都切实地指出了故意和过失在避免构成要件实现的问题上所存在的区别。前者因为对于危险的发生存在现实的认知,因而具备相应的直接操纵能力,来防止结果发生;但是后者却对危险在规范层面上缺乏现实的、正确的认知,故而只能通过间接的预防性措施来降低风险实现的概率。《刑法》第15条第1款虽然明确了“已经预见行为可能会导致危害结果,却轻信能够避免”的情况也属于过失,但这并不意味着过失行为人对于构成要件实现的风险(或者说具有社会危害性的事实自身)具备现实的认知;(38)所以,过失归责自始就和故意归责走上了完全不同的道路。但是,二者在罪责层面的依据却不应存在性质差异,都是可谴责地违反了举止规范,进而破坏了公民对于法规范的忠诚,需要刑罚对其加以回应。在一个民主、自由的法治社会当中,法忠诚的缺失意味着行为主体在得以催动法外在形式之沟通(Verstndigung)的交流性忠诚(kommunikative Loyalitt)方面存在瑕疵。(39)这种交流性的忠诚并不全然建立在个人的理性之上,而是法治国成员就公民自治所达成的一致意见。一旦行为人通过自身行动宣告了规范对于自己无效,那么他就必然在规范的沟通层面陷入了自我矛盾的境地:作为法治国的一员,他既是规范的创设者,又是宣布规范对自己无效的“背叛者”。作为“背叛者”他全然不顾其他社会成员对权利边界和行使问题的看法,摧毁了交流性自治的基础,也就是能够指向主体之间沟通的、得以使行为相协调的交流性忠诚。(40)因此,行为人以违反举止规范的行为来破坏交流性忠诚的手段,就是值得谴责的。

        那么,对于过失犯罪而言,围绕着规范可交谈性的忠诚策略显然无法等同于无条件的利他主义,这从“无知之幕”的假设来看是无法成立的。在行为不与他人权利直接发生冲突,又要兼顾可能产生的不利影响时,最能够为法秩序普遍化的,恐怕莫过于遵照某个既定的标准而正常行事的情形,这个标准不能过于死板,否定法主体化解冲突纠纷的自主性;亦不能过于抽象,以形而上学的哲人眼光去看待现实生活中的芸芸众生。因而,这个标准是一个指引,虽然未经解释无法详细地为法主体设计不会存在任何风险的行动方案,但是它在大体上能够帮助人们标记不合乎规范期待的“雷区”。这个标准在笔者看来,应当回归到法主体在社会交往中所扮演的角色中去。

        (二)道德法则在社会分工背景下的全新含义

        许乃曼(Schünemann)曾坦言,古典刑法体系所设计出的归责原则,在面对如今社会中的过失犯时完全陷入了困境,因为工业社会经济活动中的现代风险,从来就不是个人可以控制和负责的,很难由深入贯彻个人负责原理的古典学说来说明。(41)但是,从社会学角度来看,分工协作从来就是人类社会发展的必然规律,它不只适用于孤立的经济学现象,而是一个社会共同体存在的必要条件。(42)人与人之间的相似性虽然能够在观念上带来一致性,但是集体的群聚效应更多地来自成员之间的差异互补。只有通过社会分工细化不同领域内的角色,进而使个体在某一个领域内深入探究,获得相应的优势和特长,才能更好地促进社会发展,同时巩固社会群体的连带关系。在社会现实背景下,为了防止个人意志自我实现的举止过分背离集体形态,由社会成员来扮演相应的社会角色就成了实现社会以符合预期的方式来运行的不二选择,按照符合共同体成员预期的方式来选择行动模式的做法实现了意志特殊性和普遍性的统一。因而,在这个意义上,道德法则在形式层面承认主体在尊重他人意志基础上行动的基本准则之后,主体要从“理性人”转化为“社会人”,借助社会角色来决定自己的行动。将这一思想带入到康德原来的实践理性法则公式中时,(43)我们就得到了这样一个表达:“你要依照自己的社会角色来行事,以保证自己的举止合乎普遍法则”。

        因此,社会角色理论的核心依据来自一个社会存续和发展的基本条件,它总是遵照着特定历史时空背景下匿名社会主体之间进行沟通和协作的现实需求。在与陌生人打交道的过程中,人们无法无限制地投入精力和资源用以获取相对方的信息,借以作出是否或者在多大程度上信赖对方的理性选择。社会系统的功能又在于减少偶在性、不断稳定人们的价值期望,那么在真实信息受限于时效性的非理想状况下,人们只能期待相对方能够满足其所扮演社会角色的基本条件。而法规范的作用即在于即使社会交往的一方违背了其他主体对于其角色的规范性期待之后,仍然能够使社会成员反事实地相信这种期待的有效性:正义理念不能接受人们在违背期待的行为发生后,要通过适应规范不会被遵守的事实来降低维系社会存续的条件。(44)因此,一旦某个社会成员并未按照与其社会角色相一致的规范性期待行事,那么必然要通过对他进行归责的方式将这样一种越法行为从社会正常的秩序当中驱逐出去:“这样的事件不仅只是被隔离出来、被个别化和个人化,而且还同时变成了一个针对失望进行解释的连接点”(45)。

        事实上,社会角色之所以重要,是因为没有哪一个个体能够以某种完全空白的身份或者面貌存在于世界之中,社会交往中的个体,在与他人的关系上,都要受制于社会角色的“软法”。无论是不真正不作为犯中的保证人地位,还是某些构成要件中的身份要素,都彰显了社会角色在刑法中独特的意义:当法益侵害后果发生时,普通人可能无法直接援引《人民警察法》《执业医师法》这样的具体法律法规,从中归纳出预防结果发生的义务,但是会去追问行为人的职业、身份背景以及与被害人之间的关系,从而得出一个大致中肯的答案。一方面,社会角色的背后附加着一系列的行为准则和道德逻辑,社会交往中不同的角色是规范的外在化身,社会的同一性需要由这些角色的确定来予以保障;另一方面,角色又是不法归责的基础,可归责的行为必然是社会交往中的人格体所选择的背离了角色的行为,因为这样的行为会给其他规范接收者在社会交往层面制造规范性期待落空的效果。(46)德国学者沃尔特(Wolter)亦指出,公民对法的忠诚只能在这样的条件下得到实践并且产生一般预防的效果:公民得以在其社会角色以及具体的时空当中认真考虑风险关联。(47)因而,为避免使有罪宣告成为主权者单方面的决断,让公民将举止规范内化为自身行动的准则,就必须将行为人的社会角色及其所面临的状况置于归责的标准当中。金德霍伊泽尔也在一定程度上认同社会角色对于注意能力要求的划定,他认为个别化的谨慎标准建立在规范接收者所扮演的社会角色之上。例如,普通人之间出于礼貌而握手并不期待对方对手部进行专门的消毒处理,来防止病毒传播;但是倘若握手的对方是专门对病原体进行试验的科研人员,这种期待不仅不过分,而且具有合理性。(48)故而,通过社会角色来框定注意义务并不意味着将浅显的生活常识正当化,而是令其凝铸相关领域的义务群,指导角色扮演者和相对方合乎道德法则地来行事。借此,人们无须在开放构成要件的规范海洋中捞针,而是可以“按图索骥”地实现正常社会交往。况且,对于其他社会成员来说,判断他人在无恶意的情形下是否背离了规范性期待的行之有效的办法,就是判断其行为是否有违其正常社会角色。只要行为人按照社会制度赋予的角色标准化地安排行动,哪怕这样的行为招致了不愿看到的结果,那么也无法真正算到行为人头上——他的行为不能算作违反注意义务。

        所以,从现实经验层面出发,日常交往中的社会角色是评判行为人对规范忠诚性的标尺。这样的标尺既不会凭借以“促进所有人幸福”为宗旨的功利主义而过分拔高注意义务的标准,也不会因为普遍化的道德准则过于抽象、形式化而令脱离形而上学色彩的社会人在行动选择问题上无所适从。

        (三)社会角色理论与过失归责的特点契合

        通过社会角色来设置标准,进而归责的做法并不新鲜,德国学者雅各布斯(Jakobs)曾将这一思想推广至包括故意在内的普遍归责原则之中。他认为在匿名社会的交往中,无论行为人的主观认识或者能力为何,在归责中都不是决定性的,因为人格体是一种客观化的规范构造。因此,在餐厅打工的生物专业大学生,上菜时认出了其中的某种植物有毒,即使他不去阻止顾客食用,那么顾客死亡的结果也无法归咎于他。因为这种特殊能力在社会交往中是不被人所期待的。(49)但是,这一论断却又过于极端,“当(打工的)生物系学生明知蘑菇有毒还端给客人,当侄子明知飞机上安装有恐怖分子放置的炸弹还劝其叔父乘坐该飞机,这些情形还认为行为人不必为危害结果负责显然与一般人感情相违背”(50)。故而,有论者指出,在面临重大不法侵害的情形之下,社会角色赋予的义务应当退至社会团结义务之后,因为依据角色产生的权利和义务是相对的,面对重大利益的丧失,都可能需要退缩。(51)然而,在笔者看来,社会角色的归责标准不应当被普遍化,从罪过层面上来讲,它的适用领域宜仅限于过失犯罪。

        首先,过失行为人在现实层面不像故意那样具备强烈的可谴责性,因为刑法对过失犯非难的侧重点不是“明知而故犯”,而是“当从却未就”;行为人并不是有意地引起了终局性的不法结果,而是经由某些具有可能性的中间结果,偶在地设定了行为和不法结果之间的关系。(52)行为人与其说具备法冷漠的意志,毋宁看成是法忠诚度不足。所以,如前所述,对过失行为人施加刑罚的做法,报应主义的色彩更弱,一般预防的意味更强。因而,以摆脱纯粹个人色彩的社会角色标准来指导归责更加合适。

        其次,如果说过失联结的是不期望看到的法益侵害结果,那么故意则直接指向脱逸于法秩序的构成要件符合性的举止。(53)回顾犯罪论体系的发展史,我们能够得出的结论是,故意和过失不能被简单视作行为人的主观心态,例如规范层面上的故意自始就使得行为人的某个决定外化为违背社会期待的不法举措。普珀(Puppe)就曾指出,一切故意之不法共享统一的标识,那就是行为人在其所制造的事实条件之下通过为其行为奠定基础的准则,直接地违背禁止损害之命令。(54)这一点也能从《刑法》有关故意的规定中找到线索,第14条对于故意犯主观认知的界定是“明知自己的行为会发生危害社会的结果”。我国学者敏锐地认识到,不同于德日刑法中故意的认识要素,我国刑法中的故意不仅要求行为人认识到符合构成要件的事实结果,还要求其认识到这一结果的评价属性。(55)因此,只要承认规范化的故意概念,就完全可以以其“危害社会”的评价属性认定其与“维持社会存续和发展需要的社会角色”理念相违背,进而肯定故意犯的不法成立。这个结论有两个层面的涵义:(1)(规范化的)故意犯行自始至终都是背离社会角色的,无须再借助这一标准划定归责范围;(2)故意犯行中的特别认知问题不会再与行为人的某个具体角色产生冲突,因为社会角色只是法秩序之下的引导行为合乎规范期待的标准,在借助特殊认知认识到“危害社会的结果”后,法规范自然要求行为人产生相应的反对动机。与之相反的是,过失行为既不追求“危害社会的结果”,也不存在对特定法益侵害危险的“明知”,具有违反举止规范的间接性。所以通过社会角色这个桥梁,沟通法益侵害结果与注意义务违反之间的关系的做法就显得较为恰当。

        最后,社会角色理论可以逻辑顺畅地应对“接受性过失”的问题。依照传统的过失犯理论,行为人在从事特定危险活动时如若欠缺必要的知识或者能力,则要以其在事前是否具备相应的预见可能性,来决定该行为人是否对法益侵害结果负有过失责任。(56)但是,预见可能性标准饱受学理上的质疑:它固守传统的“主体—客体”纵向归责视角,以本体论意义上的主观归责思想作为出发点,难以适应社会分工背景下关于风险管辖或者分配方面的目的理性考量。(57)这在“无意识的过失”的类型中尤为明显。换言之,即使承认接受性过失原理的正当化基础,也需要澄清的是,要前移行为可谴责性的时点,不仅需要行为人有能力正确评估将来之行为招致的后果,更为关键的是他有义务避免相应的结果发生。(58)所以,行为人在所从事之危险活动中扮演的社会角色,就成了结果避免义务或者风险管辖的规范性依据。对于一个刚上路的新手来说,其驾驶技术和经验远远比不上一个驾龄超过十年的司机。但是当行为人拿到机动车驾驶执照之后,法律对他提出了和那些熟练掌握驾驶技巧的司机一样的要求。不能认为新手司机面对突发状况的反应能力较弱,就应当削弱甚至放弃对他维护交通秩序和安全的相关要求。

        在刘某某过失致人死亡案中,被告人刘某某在给被害人实施吸脂手术时,注射了属于处方药的利多卡因等药物,致使被害人药物中毒。法院认为,被告人本人及其经营的美容机构并无相应的医疗资质,也无法将手术风险控制在合理范围之内,这种行为即构成违反注意义务的行为。(59)是故,司法人员在此的评价侧重点并非行为人主观上能够预见到的具体危险,而是被告人的行为所对应的社会角色应当向公众提供的合理期待:既然实施了医疗美容行为,就必须依照公众对于相关行业人员的合理期待来行事,不能以不具备资质或者无法预见潜在的危险为由,对自己违反注意义务的行为进行辩护。由此可见,预见以及预防危险结果的能力具有相当大的弹性,无法为“接受性过失”奠定归责基础,只有在社会角色的标准下相应的归责依据才能得到合理解释。

        四、注意义务的边界控制——社会角色理论的应用

        总结前文的观点,社会角色理论的基本内涵是,在行为人没有正确认识到行为将会引起法益侵害危险的情况下,法规范基于行为人在社会交往中的角色而对其提出的谨慎注意要求。与之相应的是,社会角色概念的功能不在于给某个具体角色完美无缺的定义,在过失犯中引入社会角色标准的根本目的是令其辅助界定注意义务的理性边界,从而合乎正义地发挥注意义务规范对于行为人在日常社会交往中的行为指引功能。因此,社会角色更应该被归类为类型概念(Typusbegriff)而非分型概念(Klassenbegriff),亦即组成概念的各项特征及其相互关系并不是恒定的而是变化的:在具体情况下某一个概念要素的权重越高,那么剩下的要素就必然分量越轻。(60)申言之,社会角色并不一定只与行为人从事的职业相关,也与行为人和被害人之间的社会关系相关。如果行为人因为并未从事相关行业,不具备专业领域的知识,但是行为人与被害人之间存在较为密切的交往,不同于陌生人之间的关系,那么从双方基于信赖而实现的特殊联系之中就有理由要求行为人对被害人有可能存在的脆弱法益状况加以关注。遵照社会角色理论的基本内涵与社会角色概念的类型性特征,我们可以从中归纳出一些社会角色理论适用的具体准则。

        (一)社会角色的界定要符合法秩序的要求

        毋庸置疑的是,法(特别是刑法)的主要任务是让公民按照自己的理性来引导和安排自己的生活。(61)然而,当个体处在现实环境和时代局限双重塑造下的社会中时,难免会被贴上相应的标签。这种标签在法律规范的视角下却只有合法/不法的二元评价机制,很难存在价值中性的选项。故而,在法秩序所给出的有限可能性之中,社会角色只能以合法的类型作为标准。比方说,《刑法》中虽然并不处罚单纯卖淫、嫖娼的行为,但是这不意味着从现实客观存在的“性工作者”和嫖客这种身份角色中可以推导出相应的注意义务边界来。因为卖淫嫖娼的行为为《治安管理处罚法》所禁止。相应的,即使根据社会经验人们可以认为,卖淫嫖娼行为极有可能使得发生性关系者感染疾病,严重损害身体健康,甚至威胁生命;也不能以此作为依据,限制双方为防止疾病传播而应保持的谨慎程度,进而缩小过失致人重伤罪或者过失致人死亡罪的成立范围。(62)一旦行为人从事了非法活动,进而扮演了不合法的角色时,刑法对其为谨慎态度投入精力的要求必然会大大提高。在这方面,我国刑法中就存在一个较有说服力的例证:《刑法》第335条规定,医务人员严重不负责任,造成就诊人死亡或者严重损害就诊人身体健康的,处三年以下有期徒刑或者拘役;而如若行为人在未取得医师资格的情况下非法行医,那么依照《刑法》第336条第1款的规定,只要严重损害就诊人身体健康,就可能面临三年以上十年以下的有期徒刑及罚金刑处罚。由此可见,法秩序承认的社会角色是防止行为人承受过重的防果负担的制度保障,当行为人完全放弃从事相应活动的合法角色资格时,刑法对于其避免结果发生所需采取的防范措施之要求就会大大提高,原本的构成要件结果极有可能成为纯粹触发刑事制裁或者导致法定刑升格的客观条件。

        (二)社会角色的界定应当客观化

        社会角色标准的内核是从既有法秩序中推导出公民在日常交往中所应遵守的必要注意义务。因而,社会角色的界定标准就不能以行为人个人的能力作为判断依据,而是要按照角色背后的应然要求明确“当为”的界限。这一点与韦尔策尔的社会相当性原理有不谋而合之处,该原理在过失犯罪中的体现,就是借用了《德国民法典》第276条第2款中关于“社会交往中必要之谨慎”的规定,(63)他认为这一规定划定了违法性完全不会出现的正常的生活范围。他本人提出这一主张主要是为了将过失归责的重心从主观罪责转向客观不法,并将日常交往中必要的利益消耗和道德上中性的损害行为从不法范围中驱逐出去。民法学者亦认为,“社会交往中必要之谨慎”的规定应该客观地予以确定,而在一般的过错责任中引入客观的谨慎注意义务,其规范目的在于防止判断标准中不可避免地掺杂信息不对称的权重;在普遍的社会交往中,社会主体对于特定事件的参与,在大多数情况下都是按照共享的普遍确定性(Sicherheit)来谋划的,这种确定性与其说是参与的动机,毋宁是一种公共利益;所以,一个客观化的(确定性)标准是不可或缺的。(64)

        上述分析已经揭示了社会相当性原理的合理性,那就是要想让正常的社会交往得以实现,注意义务规范所要求的谨慎义务必须客观化、常态化。这意味着注意义务的界定方式要符合社会客观认知,不能因为行为人个人的见识、能力而发生偏离。所以,以行为人在社会交往中所扮演的日常角色来约束注意义务范围,要严格依照行为人所从事的职业性活动与被控行为之间的联系,以及行为人与被害人之间的社会关系两个方面进行。一般而言,若被控事实所涉及的具体危险属于行为人职业角色的管辖范围,或者行为人与被害人之间存在特殊的社会关系(医生与患者、律师与委托人、亲属等),都意味着注意义务等级的相应提升。若非如此,则不宜过于严苛地要求行为人所应持有的谨慎态度。

        [案例一]即为典型。即使当事人双方因为生活中的日常琐事发生冲突,在行为人对于被害人的痼疾完全不存在认识可能性的情况下,法院仍然肯定行为人过失致人死亡的责任,这么做无疑过分扩张了过失致人死亡罪构成要件的适用范围。无法否认的是,日常生活中因为争吵而情绪激动、引发旧疾的可能性固然存在,但并不是任何条件下造成一方死亡的争执、拉扯行为,都能被视作过失犯罪。以单纯的利益衡量思维(生命法益的价值高于一般的行动自由)来推导行为人是否违反谨慎注意义务的做法,会导致刑事责任和民事侵权责任的混同,从而在事实上滑向结果责任。

        虽然被害人的死因是当事人双方肢体上的冲突、情绪激动以及固有的冠状动脉粥样硬化病,三者综合引发了急性心脏病,而且行为人主动引起了争吵,就冲突产生而言是过错方;但在行为人并不了解被害人痼疾的前提之下,以行为时的视角来观察,双方的肢体冲突并没有上升到能够导致一方遭受轻伤以上损害的程度。尤其是考虑到行为人与被害人并不熟悉,行为人也并未从事与医疗相关的行业,从社会角色的角度来看并不能对其课以如此严格的预防突发性疾病的义务;更遑论在规范层面禁止公民因为日常琐事而发生争吵。因此,本案无法适用《刑法》第15条中所谓“应当注意到自己的行为会导致危害社会的结果,因疏忽大意而未能预见”的规定,而将之理解为第16条中非出于故意或者过失的意外事件更为合适。

        与[案例一]形成对比的是乌某秋、乌某华过失致人死亡一案,本案同样是因日常琐事引发的肢体冲突,且尽管被告二人殴打行为的暴力程度轻微,但被害人仍然因此诱发冠心病急性发作而死亡。与前者不同的是,本案两被告人与被害人同在一处摆摊做买卖,彼此互相认识,且原审法院查明被告二人知晓被害人有吸毒史,故而从这种熟人社会关系中法院对被告人之于被害人的生命安全、身体健康提出了不同于陌生人所应具备的谨慎要求。(65)虽然法院说理的着眼点仍然是被告人对于结果的预见可能性,但之所以会在本案中强调被告人特别的谨慎注意义务,归根结底还是认为这种熟人交往能够进一步催生出信赖关系和团结性的义务,即行为人扮演了不同于[案例一]中那种相对于被害人而言完全陌生的社会角色。

        (三)具体的填充性规范只提供辅助性的判断标准

        特定行业领域中具有效力性的实定规范(比如行政法律法规、部门规章中的相关规定以及行业自治性规定)固然对于完善社会角色形象、勾勒注意义务边界而言蕴含着权威性的、极具说服力的指导作用,但若是具体案件脱离了相关规定的适用范围,社会共同体对于涉足特殊职业领域需要具备的专业知识和能力所达成的共识亦可继续发挥界定相应注意义务的功能。

        以[案例二]为例,本案中的事故发生地是当地村镇自行修缮,供村民、车辆通行的村内道路,不属于公共交通领域,因而无法直接适用《道路交通安全法》等行政法律、法规涉及机动车驾驶人驾驶机动车辆的安全注意义务规定。但是行为人领取了驾驶执照,具有驾驶机动车的资格,那么从社会共同体对于机动车驾驶者这一职业的普遍认知出发,仍然可以从中界定行为人的注意义务的范围。而本案中的行为人确实有违反注意义务嫌疑的举止存在,那就是其驾驶车辆的转向系统存在缺陷,如果事后查明肇事车辆的这一缺陷对于规避被害人遭受重伤的危险而言具有规范上的联系,那么自然可以进一步推敲该行为违反注意义务的可能性。但是判决书并没有就此深入论证,因而无从考据。与之相反,法院的判决仅是从当事人双方互相让行的事实推断出行为人已知该路段的宽度无法令双方同时通过,并且以被害人年龄幼小为由,肯定行为人本应尽到更高程度的注意义务而非驾车通过该路段。但是被害人年龄幼小的事实与本案中的危险实现方式并无关系。尤其是行为人已经作出了让行表示,示意被害人通过,这一客观事实完全可以反过来说明行为人已经尽到了避让义务,在对方也止步让行的情况下保持缓慢车速尝试通过,这本就是合乎情理的应然之举。就被害人的年龄问题来说,以行为人当时处在车内的状况亦有可能对其发生误判,没有理由要求所有机动车驾驶人在狭窄路段遇到未成年人都要下车确定对方的年龄大小以及辨认和控制能力。所以,裁判者以上述两点理由肯定行为人对被害人死亡的结果构成过失的论证中,利益权衡以及责任分配的思维模式难免过于简单。虽然被害人是年龄偏小的未成年人,在无监护人陪同的情况下参与交通之后,正常人心中的天平都难免向其偏斜;然而,这样的思考方式渗透着民事侵权中的公平责任色彩,对于论证行为人在事故中所酿成的刑事过错而言却十分牵强。如果还要对行为人所应投入的谨慎程度升级,那么只能是行为人下车护送被害人通过车辆所在路段这一选项了。但是这明显大大超出了一个驾驶员正常应当采取的危险防范措施之范围。在车辆和行人往来的道路上,要求驾驶员做到这一点并不现实。所以在笔者看来,本案仍然是意外事件而非行为人过失造成的后果。

        (四)自我决定权与社会角色的关系

        在过失犯罪中,法益损害结果往往并非由行为人单方面促成,而是被害人和行为人共同作用导致的,类似于侵权法中的“与有过失”。因此,为避免被害人自我答责和行为人违反注意义务这两种不同的判断相互纠缠,如何区分并体系性地适用二者的原理就成为关键。

        虽然(被害人)自我答责原理与社会角色标准都涉及风险管辖的问题,(66)但是二者背后划定风险管辖范围的依据并不相同,前者是公民个人的自我决定权,本质上是个人自律(Autonomie)的范畴,后者则是行为人所从事行业领域的社会交往注意要求,其更多地偏向他律(Heteronomie)因素。虽然从道德哲学的角度来说,自律是他律的基础,只有每一个个体具备向善的契机,才有可能从外在对所有人的行为加以约束。(67)公民在自由状态下选择某种职业,从事相应的活动,也完全是自由选择的结果。然而在进入社会角色之后,他律的因素就要开始发挥作用了。在不存在故意的情况下,法规范虽然不干预行为人对行动目标的追求,但是却将其追求目的的举止限制在不招致特定后果的前提之上。

        与之相反,从完全自律的前提出发,公民个人的自我决定权是其自由人格的实现方式,其处分个人权利的行为除决定本身存在瑕疵或者处分行为不当干涉第三人权利、有损公共利益之外,并无被实定法限制的依据。(68)而社会角色标准则是出于风险预防的目的而对行为人在从事有关风险活动时的行动自由的限制,虽然这个限制的实际制裁后果仍然以特定的法益侵害结果为前提条件。因而,在行为人自我负责的绝对领域内,并无他人注意义务适用的实际空间,自我答责原理相对于社会角色标准属于“特别规定”,应当优先予以适用。

        现在让我们再次回顾[案例三],本案首先需要界定的是,被害人将上身探出窗外并最终坠车身亡的这一情形是否适用自我答责原理?如若适用,则完全不需要再分析行为人的注意义务了。尽管从事后的理性视角出发,将身体探出正在行驶中的机动车车窗外这一举动对于辨认和控制能力正常的成年人而言无疑是极度危险的行为,不可能存在对风险误判的情况。但是结合案件事实本身来讲,行为人偏离导航路线驾驶,多次被提醒却拒不纠正,并且因为被害人“抠门”的行径而展现出了较为恶劣的态度,这些情形可能在一定程度上引发了被害人的恐惧心理,而如果被害人因为惧怕行为人潜在的侵害,且只能选择通过自陷风险或者自我损害的方式来躲避的话,是无法确保被害人决定的任意性的,(69)无法肯定其自我答责。所以,问题的关键在于,行为人的一系列举动是否限制了被害人作出决定的自由?如果采取事后的一般人立场,则被害人显然没有受到要以极度危险的行为换取安全的精神胁迫,因而无法否认被害人的危险举止出自个人的自我决定。但是,如果站在事前的当事人视角,则考虑到被害人与行为人之间缺少信赖关系,在面对行为人偏航驾驶且态度恶劣的举动时,为避免行为人对自己实施不利之举动的可能,采取危险举止以强迫行为人停车的方法并非完全不可理喻。

        然而,即使依照这一论证路径,否定被害人自我答责,也不能得出行为人需要为被害人的死亡结果承担过失责任的结论。因为行为人的举止并没有直接地对被害人法益产生影响,并不能从否定被害人答责的前提简单推导出要对行为人归责的结论,还有作为“普通规范”的社会角色标准有待检验。很明显的是,行为人的行为并不足以被视作导致防止被害人坠车之作为义务产生的危险前行为,因而以纯粹的条件关系来论证行为人不作为的思考方向是行不通的,法院的论证缺乏逻辑支撑。那么从行为人的社会角色出发,其偏航驾驶的举止是否违反了相应的注意义务呢?答案也是否定的,即使该行为违背了当事人签订的承运合同,或者劳动单位的相关规定,但在“作为驾驶员保障乘客的人身安全”这一角色意义上也与被害人的死亡结果没有规范上的联系。当行为人发觉被害人将部分身体探出车外时,虽然可以直接采取紧急制动措施,但是这样做无法确保被害人不会因为惯性而被甩出车外。结合案发后查明的事实,行为人当时有打开车辆双闪、降低车速的举动,(70)相较于口头上的劝阻而言,应属于更为有效的安全举措。所以,本案也更宜被认定为意外事件。

        五、结语

        “法学家们时时刻刻要面对日新月异的法律生活”(71),在风险社会已然成为现实且风险种类不断得到“扩容”的时代,过失犯在刑法教义学研究中的地位已经不再是继子,而是时代的宠儿。国内学界对于过失犯的研究,透过日本新旧过失论的交替,经过对德国客观归责理论的观察和反思,精细化程度已经越来越高。本文讨论的侧重点,是将近些年日臻成熟的因果关系问题暂时搁置,回归到过失行为不法的核心要素——注意义务违反上来,意图通过规范化的探索,为过失认定中注意义务规范的界定提供一个崭新的视角。经过本文的论证和分析,可以得出以下结论。

        1.现有的理论学说中的两种思路——判断被创设风险的法容许性或者评价行为人防果能力下降的事实是否具备可谴责性,都因为自身存在的缺陷而难以形成妥当、可接受的结论。前者在检验体系上无法“善始善终”,后者则放弃了过失归责中对于举止规范的坚守。

        2.结合上述两个方案中所总结出的不足,过失教义学应当引入社会角色理论作为界定注意义务的标准。一方面,交谈性的罪责概念与劳作分工背景下的社会现实都给以凝聚社会共识作为特色的社会角色理论提供了有利的依据;而另一方面,对比故意的构造,社会角色理论对于过失归责而言更加贴切与合适。

        3.社会角色理论在运用过程中要遵照法秩序的现实要求,能够塑造注意义务规范的社会角色绝非受到整体法秩序否定评价的类型,主动选择扮演非法角色的行为人,要承受构成要件结果转化为客观的刑罚发动或者加重条件的不利后果。同时,出于维系正常社会交往的需要,对社会角色的界定应当朝着客观化方向努力。至于判断行为是否符合相应社会角色的方法,则不必拘泥于具体的填充性规范,其在判断方向上应当更加靠近社会共同体就相关行业领域所形成的共识。最后,如果在具体案件中出现了被害人自陷风险的情况,则应比照特别法优于一般法的原则优先考虑能否适用被害人自我答责原理,但被害人的行为是否成立自我答责的结论并不影响对行为人社会角色的界定。

        注释:

        ①Vgl.Gunnar Duttge,in:Münchener Kommentar zum StGB,Band 1,4.Aufl.,2020,§ 15 Rn.30.

        ②山东省淄博市中级人民法院(2018)鲁03刑终78号刑事裁定书。

        ③参见刘春浩:《在乡村道路上驾驶车辆致人死亡构成过失致人死亡罪》,载《人民司法·案例》2007年第6期,第79页。

        ④湖南省长沙市中级人民法院(2021)湘01刑终1436号刑事裁定书。

        ⑤Vgl.Hans Welzel,Das deutsche Strafrecht,11.Aufl.,1969,S.131.

        ⑥Vgl.Karl Engisch,Untersuchungen über Vorsatz und Fahrlssigkeit im Strafrecht,1930,S.276 ff.

        ⑦Vgl.Hans Welzel,Das deutsche Strafrecht,11.Aufl.,1969,S.131 f.

        ⑧Vgl.Claus Roxin/Luís Greco,Strafrecht Allgemeiner Teil,Band 1,5.Aufl.,2020,§ 24 Rn.10.

        ⑨Vgl.Claus Roxin/Luís Greco,Strafrecht Allgemeiner Teil,Band 1,5.Aufl.,2020,§ 24 Rn.15 ff.

        ⑩Vgl.Claus Roxin/Luís Greco,Strafrecht Allgemeiner Teil,Band 1,5.Aufl.,2020,§ 24 Rn.16.

        (11)Vgl.Claus Roxin/Luís Greco,Strafrecht Allgemeiner Teil,Band 1,5.Aufl.,2020,§ 24 Rn.39 f.

        (12)BayObLGSt 1959,13(14).

        (13)Vgl.Christoph Hübner,Die Entwicklung der objektiven Zurechnung,2004,S.137.

        (14)Claus Roxin,Pflichtwidrigkeit und Erfolg bei fahrlssigen Delikten,ZStW 74(1962),S.433.

        (15)Vgl.Wilfried Küper, zum sog.Pflichtwidrigkeitszusammenhang beim Fahrlssigkeitsdelikt,FS-Lackner,1987,S.273.

        (16)Vgl.Wolfgang Frisch,Objektive Zurechnung des Erfolgs,JuS 2011,S.19 f.

        (17)Vgl.Claus Roxin/Luís Greco,Strafrecht Allgemeiner Teil,Band 1,5.Aufl.,2020,§ 11 Rn.66.

        (18)Vgl.Hans-Heinrich Jescheck/Thomas Weigend,Lehrbuch des Strafrechts Allgemeiner Teil,5.Aufl.,1996,S.245.

        (19)Wolfgang Frisch,Tatbestandsmiges Verhalten und Zurechnung des Erfolgs,1988,S.71 f.

        (20)这一点在学者们对于风险升高理论的界定上可以得到体现。Vgl.Ingeborg Puppe,Brauchen wir eine Risikoerhhungstheorie?,FS-Roxin,2001,S.306.

        (21)Vgl.Wolfgang Frisch, Verhalten und Zurechnung des Erfolgs,1988,S.513.

        (22)马春晓:《危险现实化与结果归属》,载《国家检察官学院学报》2020年第6期,第94页。

        (23)Vgl.Wolfgang Frisch,Faszinierendes,Berechtigtes und Problematisches der Lehre von der objektiven Zurechnung des Erfolgs,FS-Roxin,2001,S.218 f.

        (24)Vgl.Richard Honig,Kausalitt und objektive Zurechnung,Festgabe-Frank,Band 1,1930,S.184.

        (25)Vgl.Hans Welzel,Die finale Handlungslehre und die fahrlssigen Handlungen,JZ 1956,S.317.

        (26)张明楷:《论被允许的危险的法理》,载《中国社会科学》2012年第11期,第120页。

        (27)参见陈璇:《注意义务的规范本质与判断标准》,载《法学研究》2019年第1期,第147页。

        (28)Vgl.Urs Kindhuser,Zur Funktion von Sorgfaltsnormen,FS-Schünemann,2014,S.152.

        (29)具体规则的详细展开,参见陈璇:《标准人的心素与注意义务的边界——与“杨存贵交通肇事案”二审裁定书展开的学术对话》,载《清华法学》2020年第6期,第92-96页。

        (30)梁奉壮:《宾丁规范论研究:本体论考察》,载《清华法学》2017年第1期,第109-110页。

        (31)故而,也有学者指出,举止规范既是评价规范,又是决定规范。参见唐志威:《共犯的举止规范》,载《法学》2021年第4期,第164页。

        (32)Vgl.BVerfG NJW 2016,3648,Rn.38.

        (33)Vgl.Urs Kindhuser,Zur Funktion von Sorgfaltsnormen,FS-Schünemann,2014,S.147.

        (34)虽然原因自由行为也有类似的疑问,但它毕竟是例外,相较而言因过失而招致法益侵害后果的情形在现实生活中更为普遍。

        (35)Vgl.Urs Kindhuser,Erlaubtes Risiko und Sorgfaltswidrigkeit,in:ders.,Analytische Strafrechtswissenschaft,2021,S.937.

        (36)辽宁省大连市中级人民法院(2022)辽02刑终47号刑事裁定书。

        (37)陈璇:《标准人的心素与注意义务的边界——与“杨存贵交通肇事案”二审裁定书展开的学术对话》,载《清华法学》2020年第6期,第87页。

        (38)参见黎宏:《过失犯研究》,载刘明祥主编:《过失犯研究——以交通过失和医疗过失为中心》,北京大学出版社2010年版,第5页。

        (39)Vgl.Urs Kindhuser,Rechtstreue als Schuldkategorie,in:ders.,Analytische Strafrechtswissenschaft,2021,S.334.

        (40)Vgl.Urs Kindhuser,Rechtstreue als Schuldkategorie,in:ders.,Analytische Strafrechtswissenschaft,2021,S.328.

        (41)参见[德]许乃曼:《过失犯在现代工业社会的捉襟见肘——资产清算》,单丽玟译,载许玉秀、陈志辉合编:《不疑不惑献身法与正义——许乃曼教授刑事法论文选辑》,新学林出版股份有限公司2006年版,第519页。

        (42)See Emile Durkheim,The Division of Labour in Society,2nd Ed.,translated by W.D.Halls,Palgrave Macmillan 2013,p.51.

        (43)即“这样行动:你意志的准则始终能够同时用作普遍立法的原则”,[德]康德:《实践理性批判》,韩水法译,商务印书馆2000年版,第31页。

        (44)有论者从时间维度解释这种规范性期待的反事实特性,即期待是当下形成的,但是可以规制未来发生的事情。参见周维明:《系统论刑法学的基本命题》,载《政法论坛》2021年第3期,第122页。

        (45)[德]尼克拉斯·卢曼:《法社会学》,宾凯、赵春燕译,上海人民出版社2013年版,第93页。

        (46)参见何庆仁:《特别认知者的刑法归责》,载《中外法学》2015年第4期,第1039页。

        (47)Vgl.Jürgen Wolter,Objektive und personale Zurechnung von Verhalten,Gefahr und Verletzung in einem funktionalen Straftatsystem,1981,S.30.

        (48)Vgl.Urs Kindhuser,Erlaubtes Risiko und Sorgfaltswidrigkeit,in:ders.,Analytische Strafrechtswissenschaft,2021,S.946.

        (49)参见[德]京特·雅科布斯:《规范·人格体·社会:法哲学前思》,冯军译,邵建东校,法律出版社2001年版,第89页。

        (50)喻浩东:《反思不法归责中的“特别认知”——以德国相关学理为参照》,载《苏州大学学报(法学版)》2018年第3期,第96页。

        (51)参见何庆仁:《特别认知者的刑法归责》,载《中外法学》2015年第4期,第1046-1047页。

        (52)Vgl.Stephan Ast,Handlung und Zurechnung,2019,S.179.

        (53)Vgl.Wolfgang Frisch,Vorsatz und Risiko,1983,S.301 f.

        (54)Vgl.Ingeborg Puppe,Vorsatz und Zurechnung,1992,S.40.

        (55)参见曾文科:《犯罪故意概念中的“危害社会”:规范判断与归责机能》,载《法学研究》2021年第5期,第160页。

        (56)参见许恒达:《“超越承担过失”的刑法归责》,载《东吴法律学报》第20卷,2008年第2期,第98-99页。

        (57)参见劳东燕:《过失犯中预见可能性理论的反思与重构》,载《中外法学》2018年第2期,第310-313页。

        (58)Vgl.Günther Jakobs,Strafrecht Allgemeiner Teil,2.Aufl.,1991,9. Abschn.Rn.14.

        (59)北京市海淀区人民法院(2018)京0108刑初1789号刑事判决书。

        (60)Vgl.Ingeborg Puppe,Kleine Schule des juristischen Denkens,5.Aufl.,2023,S.67.

        (61)参见[德]米夏埃尔·帕夫利克:《作为违反协力义务报应的刑罚——论犯罪论的新范式》,赵书鸿译,载《中国刑事法杂志》2022年第5期,第165页。

        (62)这里有可能涉及被害人自我答责的问题,如果被害人确实清楚地了解了相应行动极有可能带来风险,那么固然可以以被害人自我答责原理排除对行为人举止的归责,但是这不妨碍我们根据社会角色对行为人注意义务的范围作出相应的划定,这一点后文还会谈到。

        (63)Vgl.Hans Welzel,Studien zum System des Strafrechts,ZStW 58(1939),S.558 f.; ders.,Das deutsche Strafrecht,11.Aufl.,1969,S.131.

        (64)Vgl.Stefan Grundmann,in:Münchener Kommentar zum BGB,Band 2,9.Aufl.,2022,§ 276 Rn.55.

        (65)陕西省西安市中级人民法院(2022)陕01刑终100号刑事附带民事裁定书。

        (66)在德国,学理上将被害人自我答责与风险管辖原理相结合,认为若被害人以自己所认可的方式陷入危险或者遭受损害,则会阻截他人对风险的管辖,vgl.Urs Kindhuser/Till Zimmermann,Strafrecht Allgemeiner Teil,9.Aufl.,2020,§ 11 Rn.22 ff.

        (67)参见朱勇:《道德的正义内涵及其形成途径——兼论多重视角下的自律和他律》,载《云南社会科学》2013年第5期,第57页。

        (68)Uwe Murmann,Die Selbstverantwortung des Opfers im Strafrecht,2005,S.201 ff.

        (69)Uwe Murmann,Die Selbstverantwortung des Opfers im Strafrecht,2005,S.439.

        (70)根据本案被告人的供述以及湖南省长沙市高新区公安分局的通报,被告人在发觉被害人探身车外之后有采取松开油门、通过点刹降速的举措。

        (71)舒国滢:《论法学的科学性问题》,载《政法论坛》2022年第1期,第159页。

        本文转自《苏州大学学报:法学版》2023年第3期

      6. 萧红《呼兰河传》

            严冬一封锁了大地的时候,则大地满地裂着口。从南到北,从东到西,几尺长的,一丈长的,还有好几丈长的,它们毫无方向地,便随时随地,只要严冬一到,大地就裂开口了。

            严寒把大地冻裂了。

            年老的人,一进屋用扫帚扫着胡子上的冰溜,一面说:

            “今天好冷啊!地冻裂了。”

            赶车的车夫,顶着三星,绕着大鞭子走了六七十里,天刚一蒙亮,进了大车店,第一句话就向客栈掌柜的说:

            “好厉害的天啊!小刀子一样。”

            等进了栈房,摘下狗皮帽子来,抽一袋烟之后,伸手去拿热馒头的时候,那伸出来的手在手背上有无数的裂口。

            人的手被冻裂了。

            卖豆腐的人清早起来沿着人家去叫卖,偶一不慎,就把盛豆腐的方木盘贴在地上拿不起来了,被冻在地上了。

            卖馒头的老头,背着木箱子,里边装着热馒头,太阳一出来,就在街上叫唤。他刚一从家里出来的时候,他走的快,他喊的声音也大。可是过不了一会,他的脚上挂了掌子了,在脚心上好像踏着一个鸡蛋似的,圆滚滚的。原来冰雪封满了他的脚底了。他走起来十分地不得力,若不是十分地加着小心,他就要跌倒了。就是这样,也还是跌倒的。跌倒了是不很好的,把馒头箱子跌翻了,馒头从箱底一个一个地滚了出来。旁边若有人看见,趁着这机会,趁着老头子倒下一时还爬不起来的时候,就拾了几个一边吃着就走了。等老头子挣扎起来,连馒头带冰雪一起拣到箱子去,一数,不对数。他明白了。他向着那走不太远的吃他馒头的人说:

            “好冷的天,地皮冻裂了,吞了我的馒头了。”

            行路人听了这话都笑了。他背起箱子来再往前走,那脚下的冰溜,似乎是越结越高,使他越走越困难,于是背上出了汗,眼睛上了霜,胡子上的冰溜越挂越多,而且因为呼吸的关系,把破皮帽子的帽耳朵和帽前遮都挂了霜了。这老头越走越慢,担心受怕,颤颤惊惊,好像初次穿上滑冰鞋,被朋友推上了溜冰场似的。

            小狗冻得夜夜地叫唤,哽哽地,好像它的脚爪被火烧着一样。

            天再冷下去:

            水缸被冻裂了;

            井被冻住了;

            大风雪的夜里,竟会把人家的房子封住,睡了一夜,早晨起来,一推门,竟推不开门了。

            大地一到了这严寒的季节,一切都变了样,天空是灰色的,好像刮了大风之后,呈着一种混沌沌的气象,而且整天飞着清雪。人们走起路来是快的,嘴里边的呼吸,一遇到了严寒好像冒着烟似的。七匹马拉着一辆大车,在旷野上成串地一辆挨着一辆地跑,打着灯笼,甩着大鞭子,天空挂着三星。跑了两里路之后,马就冒汗了。再跑下去,这一批人马在冰天雪地里边竟热气腾腾的了。一直到太阳出来,进了栈房,那些马才停止了出汗。但是一停止了出汗,马毛立刻就上了霜。

            人和马吃饱了之后,他们再跑。这寒带的地方,人家很少,不像南方,走了一村,不远又来了一村,过了一镇,不远又来了一镇。这里是什么也看不见,远望出去是一片白。从这一村到那一村,根本是看不见的。只有凭了认路的人的记忆才知道是走向了什么方向。拉着粮食的七匹马的大车,是到他们附近的城里去。载来大豆的卖了大豆,载来高粱的卖了高粱。等回去的时候,他们带了油、盐和布匹。

            呼兰河就是这样的小城,这小城并不怎样繁华,只有两条大街,一条从南到北,一条从东到西,而最有名的算是十字街了。十字街口集中了全城的精华。十字街上有金银首饰店、布庄、油盐店、茶庄、药店,也有拔牙的洋医生。那医生的门前,挂着很大的招牌,那招牌上画着特别大的有量米的斗那么大的一排牙齿。这广告在这小城里边无乃太不相当,使人们看了竟不知道那是什么东西,因为油店、布店和盐店,他们都没有什么广告,也不过是盐店门前写个“盐”字,布店门前挂了两张怕是自古亦有之的两张布幌子。其余的如药店的招牌,也不过是:把那戴着花镜的伸出手去在小枕头上号着妇女们的脉管的医生的名字挂在门外就是了。

            比方那医生的名字叫李永春,那药店也就叫“李永春”。人们凭着记忆,哪怕就是李永春摘掉了他的招牌,人们也都知李永春是在那里。不但城里的人这样,就是从乡下来的人也多少都把这城里的街道,和街道上尽是些什么都记熟了。用不着什么广告,用不着什么招引的方式,要买的比如油盐、布匹之类,自己走进去就会买。不需要的,你就是挂了多大的牌子,人们也是不去买。那牙医生就是一个例子,那从乡下来的人们看了这么大的牙齿,真是觉得稀奇古怪,所以那大牌子前边,停了许多人在看,看也看不出是什么道理来。假若他是正在牙痛,他也绝对的不去让那用洋法子的医生给他拔掉,也还是走到李永春药店去,买二两黄连,回家去含着算了吧!因为那牌子上的牙齿太大了,有点莫名其妙,怪害怕的。

            所以那牙医生,挂了两三年招牌,到那里去拔牙的却是寥寥无几。

            后来那女医生没有办法,大概是生活没法维持,她兼做了收生婆。

            城里除了十字街之外,还有两条街,一条叫做东二道街,一条叫做西二道街。这两条街是从南到北的,大概五六里长。

            这两条街上没有什么好记载的,有几座庙,有几家烧饼铺,有几家粮栈。

            东二道街上有一家火磨,那火磨的院子很大,用红色的好砖砌起来的大烟筒是非常高的,听说那火磨里边进去不得,那里边的消信可多了,是碰不得的。一碰就会把人用火烧死,不然为什么叫火磨呢?就是因为有火,听说那里边不用马,或是毛驴拉磨,用的是火。一般人以为尽是用火,岂不把火磨烧着了吗?想来想去,想不明白,越想也就越糊涂。偏偏那火磨又是不准参观的。听说门口站着守卫。

            东二道街上还有两家学堂,一个在南头,一个在北头。都是在庙里边,一个在龙王庙里,一个在祖师庙里。两个都是小学:

            龙王庙里的那个学的是养蚕,叫做农业学校。祖师庙里的那个,是个普通的小学,还有高级班,所以又叫做高等小学。

            这两个学校,名目上虽然不同,实际上是没有什么分别的。也不过那叫做农业学校的,到了秋天把蚕用油炒起来,教员们大吃几顿就是了。

            那叫做高等小学的,没有蚕吃,那里边的学生的确比农业学校的学生长得高。农业学生开头是念“人、手、足、刀、尺”,顶大的也不过十六七岁。那高等小学的学生却不同了,吹着洋号,竟有二十四岁的,在乡下私学馆里已经教了四五年的书了,现在才来上高等小学,也有在粮栈里当了二年的管账先生的现在也来上学了。

            这小学的学生写起家信来,竟有写到:“小秃子闹眼睛好了没有?”小秃子就是他的八岁的长公子的小名。次公子,女公子还都没有写上,若都写上怕是把信写得太长了。因为他已经子女成群,已经是一家之主了,写起信来总是多谈一些个家政:姓王的地户的地租送来没有?大豆卖了没有?行情如何之类。

            这样的学生,在课堂里边也是极有地位的,教师也得尊敬他,一不留心,他这样的学生就站起来了,手里拿着“康熙字典”,常常会把先生指问住的。万里乾坤的“乾”和乾菜的“乾”,据这学生说是不同的。乾菜的“乾”应该这样写:‘’乾”,而不是那样写:“乾”。

            西二道街上不但没有火磨,学堂也就只有一个。是个清真学校,设在城隍庙里边。

            其余的也和东二道街一样,灰秃秃的,若有车马走过,则烟尘滚滚,下了雨满地是泥。而且东二道街上有大泥坑一个,五六尺深。不下雨那泥浆好像粥一样,下了雨,这泥坑就变成河了,附近的人家,就要吃它的苦头,冲了人家里满满是泥,等坑水一落了去,天一晴了,被太阳一晒,出来很多蚊子飞到附近的人家去。同时那泥坑也就越晒越纯净,好像在提炼什么似的,好像要从那泥坑里边提炼出点什么来似的。若是一个月以上不下雨,那大泥坑的质度更纯了,水分完全被蒸发走了,那里边的泥,又黏又黑,比粥锅瀙糊,比浆糊还黏。好像炼胶的大锅似的,黑糊糊的,油亮亮的,哪怕苍蝇蚊子从那里一飞也要黏住的。

            小燕子是很喜欢水的,有时误飞到这泥坑上来,用翅子点着水,看起来很危险,差一点没有被泥坑陷害了它,差一点没有被黏住,赶快地头也不回地飞跑了。

            若是一匹马,那就不然了,非黏住不可。不仅仅是黏住,而且把它陷进去,马在那里边滚着,挣扎着,挣扎了一会,没有了力气那马就躺下了。一躺下那就很危险,很有致命的可能。但是这种时候不很多,很少有人牵着马或是拉着车子来冒这种险。

            这大泥坑出乱子的时候,多半是在旱年,若两三个月不下雨这泥坑子才到了真正危险的时候。在表面上看来,似乎是越下雨越坏,一下了雨好像小河似的了,该多么危险,有一丈来深,人掉下去也要没顶的。其实不然,呼兰河这城里的人没有这么傻,他们都晓得这个坑是很厉害的,没有一个人敢有这样大的胆子牵着马从这泥坑上过。

            可是若三个月不下雨,这泥坑子就一天一天地干下去,到后来也不过是二三尺深,有些勇敢者就试探着冒险地赶着车从上边过去了,还有些次勇敢者,看着别人过去,也就跟着过去了。一来二去地,这坑子的两岸,就压成车轮经过的车辙了。那再后来者,一看,前边已经有人走在先了,这懦怯者比之勇敢的人更勇敢,赶着车子走上去了。

            谁知这泥坑子的底是高低不平的,人家过去了,可是他却翻了车了。

            车夫从泥坑爬出来,弄得和个小鬼似的,满脸泥污,而后再从泥中往外挖掘他的马,不料那马已经倒在泥污之中了,这时候有些过路的人,也就走上前来,帮忙施救。

            这过路的人分成两种,一种是穿着长袍短褂的,非常清洁。看那样子也伸不出手来,因为他的手也是很洁净的。不用说那就是绅士一流的人物了,他们是站在一旁参观的。

            看那马要站起来了,他们就喝彩,“噢!噢!”地喊叫着;看那马又站不起来,又倒下去了,这时他们又是喝彩,“噢噢”地又叫了几声,不过这喝的是倒彩。

            就这样的马要站起来,而又站不起来地闹了一阵之后,仍然没有站起来,仍是照原样可怜地躺在那里。这时候,那些看热闹的觉得也不过如此,也没有什么新花样了。于是星散开去,各自回家去了。

            现在再来说那马还是在那里躺着,那些帮忙救马的过路人,都是些普通的老百姓,是这城里的担葱的、卖菜的、瓦匠、车夫之流。他们卷卷裤脚,脱了鞋子,看看没有什么办法,走下泥坑去,想用几个人的力量把那马抬起来。

            结果抬不起来了,那马的呼吸不大多了。于是人们着了慌,赶快解了马套。从车子把马解下来,以为这回那马毫无担负地就可以站起来了。

            不料那马还是站不起来。马的脑袋露在泥浆的外边,两个耳朵哆嗦着,眼睛闭着,鼻子往外喷着突突的气。

            看了这样可怜的景象,附近的人们跑回家去,取了绳索,拿了绞锥。用绳子把马捆了起来,用绞锥从下边掘着。人们喊着号令,好像造房子或是架桥梁似的,把马抬出来了。

            马是没有死,躺在道旁。人们给马浇了一些水,还给马洗了一个脸。

            看热闹的也有来的,也有去的。

            第二天大家都说:“那大水泡子又淹死了一匹马。”

            虽然马没有死,一哄起来就说马死了。若不这样说,觉得那大泥坑也太没有什么威严了。

            在这大泥坑上翻车的事情不知有多少。一年除了被冬天冻住的季节之外,其余的时间,这大泥坑子像它被赋给生命了似的,它是活的。水涨了,水落了,过些日子大了,过些日子又小了。大家对它都起着无限的关切。

            水大的时间,不但阻碍了车马,且也阻碍了行人,老头走在泥坑子的沿上,两条腿打颤,小孩子在泥坑子的沿上吓得狼哭鬼叫。

            一下起雨来这大泥坑子白亮亮地涨得溜溜地满,涨到两边的人家的墙根上去了,把人家的墙根给淹没了。来往过路的人,一走到这里,就像在人生的路上碰到了打击,是要奋斗的,卷起袖子来,咬紧了牙根,全身的精力集中起来,手抓着人家的板墙,心脏扑通扑通地跳,头不要晕,眼睛不要花,要沉着迎战。

            偏偏那人家的板墙造得又非常地平滑整齐,好像有意在危难的时候不帮人家的忙似的,使那行路人不管怎样巧妙地伸出手来,也得不到那板墙的怜悯,东抓抓不着什么,西摸也摸不到什么,平滑得连一个疤拉节子也没有,这可不知道是什么山上长的木头,长得这样完好无缺。

            挣扎了五六分钟之后,总算是过去了。弄得满头流汗,满身发烧,那都不说。再说那后来的人,依法炮制,那花样也不多,也只是东抓抓,西摸摸。弄了五六分钟之后,又过去了。

            一过去了可就精神饱满,哈哈大笑着,回头向那后来的人,向那正在艰苦阶段上奋斗着的人说:

            “这算什么,一辈子不走几回险路那不算英雄。”

            可也不然,也不一定都是精神饱满的,而大半是被吓得脸色发白。有的虽然已经过去了多时,还是不能够很快地抬起腿来走路,因为那腿还在打颤。

            这一类胆小的人,虽然是险路已经过去了,但是心里边无由地生起来一种感伤的情绪,心里颤抖抖的,好像被这大泥坑子所感动了似的,总要回过头来望一望,打量一会,似乎要有些话说。终于也没有说什么,还是走了。

            有一天,下大雨的时候,一个小孩子掉下去,让一个卖豆腐的救了上来。

            救上来一看,那孩子是农业学校校长的儿子。

            于是议论纷纷了,有的说是因为农业学堂设在庙里边,冲了龙王爷了,龙王爷要降大雨淹死这孩子。

            有的说不然,完全不是这样,都是因为这孩子的父亲的关系,他父亲在讲堂上指手画脚地讲,讲给学生们说,说这天下雨不是在天的龙王爷下的雨,他说没有龙王爷。你看这不把龙王爷活活地气死,他这口气哪能不出呢?所以就抓住了他的儿子来实行因果报应了。

            有的说,那学堂里的学生也太不像样了,有的爬上了老龙王的头顶,给老龙王去戴了一个草帽。这是什么年头,一个毛孩子就敢惹这么大的祸,老龙王怎么会不报应呢?看着吧,这还不能算了事,你想龙王爷并不是白人呵!你若惹了他,他可能够饶了你?那不像对付一个拉车的、卖菜的,随便的踢他们一脚就让他们去。那是龙王爷呀!龙王爷还是惹得的吗?

            有的说,那学堂的学生都太不像样了,他说他亲眼看见过,学生们拿了蚕放在大殿上老龙王的手上。你想老龙王哪能够受得了。

            有的说,现在的学堂太不好了,有孩子是千万上不得学堂的。一上了学堂就天地人鬼神不分了。

            有的说他要到学堂把他的儿子领回来,不让他念书了。

            有的说孩子在学堂里念书,是越念越坏,比方吓掉了魂,他娘给他叫魂的时候,你听他说什么?他说这叫迷信。你说再念下去那还了得吗?

            说来说去,越说越远了。

            过了几天,大泥坑子又落下去了,泥坑两岸的行人通行无阻。

            再过些日子不下雨,泥坑子就又有点像要干了。这时候,又有车马开始在上面走,又有车子翻在上面,又有马倒在泥中打滚,又是绳索棍棒之类的,往外抬马,被抬出去的赶着车子走了,后来的,陷进去,再抬。

            一年之中抬车抬马,在这泥坑子上不知抬了多少次,可没有一个人说把泥坑子用土填起来不就好了吗?没有一个。

            有一次一个老绅士在泥坑涨水时掉在里边了。一爬出来,他就说:

            “这街道太窄了,去了这水泡子连走路的地方都没有了,这两边的院子,怎么不把院墙拆了让出一块来?”

            他正说着,板墙里边,就是那院中的老太太搭了言。她说院墙是拆不得的,她说最好种树,若是沿着墙根种上一排树,下起雨来人就可以攀着树过去了。

            说拆墙的有,说种树的有,若说用土把泥坑来填平的,一个人也没有。

            这泥坑子里边淹死过小猪,用泥浆闷死过狗,闷死过猫,鸡和鸭也常常死在这泥坑里边。

            原因是这泥坑上边结了一层硬壳,动物们不认识那硬壳下面就是陷阱,等晓得了可也就晚了。它们跑着或是飞着,等往那硬壳上一落可就再也站不起来了。白天还好,或者有人又要来施救。夜晚可就没有办法了。它们自己挣扎,挣扎到没有力量的时候就很自然地沉下去了,其实也或者越挣扎越沉下去得快。有时至死也还不沉下去的事也有。若是那泥浆的密度过高的时候,就有这样的事。

            比方肉上市,忽然卖便宜猪肉了,于是大家就想起那泥坑子来了,说:

            “可不是那泥坑子里边又淹死了猪了?”

            说着若是腿快的,就赶快跑到邻人的家去,告诉邻居。

            “快去买便宜肉吧,快去吧,快去吧,一会没有了。”

            等买回家来才细看一番,似乎有点不大对,怎么这肉又紫又青的!可不要是瘟猪肉。

            但是又一想,哪能是瘟猪肉呢,一定是那泥坑子淹死的。

            于是煎、炒、蒸、煮,家家吃起便宜猪肉来。虽然吃起来了,但就总觉得不大香,怕还是瘟猪肉。

            可是又一想,瘟猪肉怎么可以吃得,那么还是泥坑子淹死的吧!

        本来这泥坑子一年只淹死一两只猪,或两三口猪,有几年还连一个猪也没有淹死。至于居民们常吃淹死的猪肉,这可不知是怎么一回事,真是龙王爷晓得。

            虽然吃的自己说是泥坑子淹死的猪肉,但也有吃了病的,那吃病了的就大发议论说:

            “就是淹死的猪肉也不应该抬到市上去卖,死猪肉终究是不新鲜的,税局子是干什么的,让大街上,在光天化日之下就卖起死猪肉来?”

            那也是吃了死猪肉的,但是尚且没有病的人说:

            “话可也不能是那么说,一定是你疑心,你三心二意地吃下去还会好。你看我们也一样地吃了,可怎么没病?”

            间或也有小孩子太不知时务,他说他妈不让他吃,说那是瘟猪肉。

            这样的孩子,大家都不喜欢。大家都用眼睛瞪着他,说他:

            “瞎说,瞎说!”

            有一次一个孩子说那猪肉一定是瘟猪肉,并且是当着母亲的面向邻人说的。

            那邻人听了倒并没有坚决地表示什么,可是他的母亲的脸立刻就红了,伸出手去就打了那孩子。

            那孩子很固执,仍是说:

            “是瘟猪肉吗!是瘟猪肉吗!”

            母亲实在难为情起来,就拾起门旁的烧火的叉子,向着那孩子的肩膀就打了过去。于是孩子一边哭着一边跑回家里去了。

            一进门,炕沿上坐着外祖母,那孩子一边哭着一边扑到外祖母的怀里说:

            “姥姥,你吃的不是瘟猪肉吗?我妈打我。”

            外祖母对这打得可怜的孩子本想安慰一番,但是一抬头看见了同院的老李家的奶奶站在门口往里看。

            于是外祖母就掀起孩子后衣襟来,用力地在孩子的屁股上哐哐地打起来,嘴里还说着:

            “谁让你这么一点你就胡说八道!”

            一直打到李家的奶奶抱着孩子走了才算完事。

            那孩子哭得一塌糊涂,什么“瘟猪肉”不“瘟猪肉”的,哭得也说不清了。

            总共这泥坑子施给当地居民的福利有两条:

            第一条:常常抬车抬马,淹鸡淹鸭,闹得非常热闹,可使居民说长道短,得以消遣。

            第二条就是这猪肉的问题了,若没有这泥坑子,可怎么吃瘟猪肉呢?吃是可以吃的,但是可怎么说法呢?真正说是吃的瘟猪肉,岂不太不讲卫生了吗?有这泥坑子可就好办,可以使瘟猪变成淹猪,居民们买起肉来,第一经济,第二也不算什么不卫生。

            东二道街除了大泥坑子这番盛举之外,再就没有什么了。

            也不过是几家碾磨房,几家豆腐店,也有一两家机房,也许有一两家染布匹的染缸房,这个也不过是自己默默地在那里做着自己的工作,没有什么可以使别人开心的,也不能招来什么议论。那里边的人都是天黑了就睡觉,天亮了就起来工作。一年四季,春暖花开,秋雨冬雪,也不过是随着季节穿起棉衣来、脱下单衣去地过着。生老病死也都是一声不响地默默地办理。

            比方就是东二道街南头,那卖豆芽菜的王寡妇吧:她在房脊上插了一个很高的杆子,杆子头上挑着一个破筐。因为那杆子很高,差不多和龙王庙的铁马铃子一般高了。来了风,庙上的铃子格棱格棱地响。王寡妇的破筐子虽是它不会响,但是它也会东摇西摆地作着态。

            就这样一年一年地过去,王寡妇一年一年地卖着豆芽菜,平静无事,过着安详的日子,忽然有一年夏天,她的独子到河边去洗澡,掉河淹死了。

            这事情似乎轰动了一时,家传户晓,可是不久也就平静下去了。不但邻人、街坊,就是她的亲戚朋友也都把这回事情忘记了。

            再说那王寡妇,虽然她从此以后就疯了,但她到底还晓得卖豆芽菜,她仍还是静静地活着,虽然偶尔她的菜被偷了,在大街上或是在庙台上狂哭一场,但一哭过了之后,她还是平平静静地活着。

            至于邻人街坊们,或是过路人看见了她在庙台上哭,也会引起一点恻隐之心来的,不过为时甚短罢了。

            还有人们常常喜欢把一些不幸者归划在一起,比如疯子傻子之类,都一律去看待。

            哪个乡、哪个县、哪个村都有些个不幸者,瘸子啦、瞎子啦、疯子或是傻子。

            呼兰河这城里,就有许多这一类的人。人们关于他们都似乎听得多、看得多,也就不以为奇了。偶尔在庙台上或是大门洞里不幸遇到了一个,刚想多少加一点恻隐之心在那人身上,但是一转念,人间这样的人多着哩!于是转过眼睛去,三步两步地就走过去了。即或有人停下来,也不过是和那些毫没有记性的小孩子似的向那疯子投一个石子,或是做着把瞎子故意领到水沟里边去的事情。

            一切不幸者,就都是叫化子,至少在呼兰河这城里边是这样。

            人们对待叫化子们是很平凡的。

            门前聚了一群狗在咬,主人问:

            “咬什么?”

            仆人答:

            “咬一个讨饭的。”

            说完了也就完了。

            可见这讨饭人的活着是一钱不值了。

            卖豆芽菜的女疯子,虽然她疯了还忘不了自己的悲哀,隔三差五地还到庙台上去哭一场,但是一哭完了,仍是得回家去吃饭、睡觉、卖豆芽菜。

            她仍是平平静静地活着。

            再说那染缸房里边,也发生过不幸,两个年轻的学徒,为了争一个街头上的妇人,其中的一个把另一个按进染缸子给淹死了。死了的不说,就说那活着的也下了监狱,判了个无期徒刑。

            但这也是不声不响地把事就解决了,过了三年二载,若有人提起那件事来,差不多就像人们讲着岳飞、秦桧似的,久远得不知多少年前的事情似的。

        同时发生这件事情的染缸房,仍旧是在原址,甚或连那淹死人的大缸也许至今还在那儿使用着。从那染缸房发卖出来的布匹,仍旧是远近的乡镇都流通着。蓝色的布匹男人们做起棉裤棉袄,冬天穿它来抵御严寒。红色的布匹,则做成大红袍子,给十八九岁的姑娘穿上,让她去做新娘子。

            总之,除了染缸房子在某年某月某日死了一个人外,其余的世界,并没有因此而改动了一点。

            再说那豆腐房里边也发生过不幸:两个伙计打仗,竟把拉磨的小驴的腿打断了。

            因为它是驴子,不谈它也就罢了。只因为这驴子哭瞎了一个妇人的眼睛(即打了驴子那人的母亲),所以不能不记上。

            再说那造纸的纸房里边,把一个私生子活活饿死了。因为他是一个初生的孩子,算不了什么。也就不说他了。

            其余的东二道街上,还有几家扎彩铺。这是为死人而预备的。

            人死了,魂灵就要到地狱里边去,地狱里边怕是他没有房子住、没有衣裳穿、没有马骑,活着的人就为他做了这么一套,用火烧了,据说是到阴间就样样都有了。

            大至喷钱兽、聚宝盆、大金山、大银山,小至丫鬟侍女、厨房里的厨子、喂猪的猪倌,再小至花盆、茶壶茶杯、鸡鸭鹅犬,以至窗前的鹦鹉。

            看起来真是万分地好看。大院子也有院墙,墙头上是金色的琉璃瓦。一进了院,正房五间,厢房三间,一律是青红砖瓦房,窗明几净,空气特别新鲜。花盆一盆一盆地摆在花架子上,石柱子、全百合、马蛇菜、九月菊都一齐地开了,看起使人不知道是什么季节,是夏天还是秋天,居然那马蛇菜也和菊花同时站在一起。也许阴间是不分什么春夏秋冬的,这且不说。

            再说那厨房里的厨子,真是活神活现,比真的厨子真是干净到一千倍,头戴白帽子、身扎白围裙,手里边在做拉面条。似乎午饭的时候就要到了,煮了面就要开饭了似的。

            院子里的牵马童,站在一匹大白马的旁边,那马好像是阿拉伯马,特别高大,英姿挺立,假若有人骑上,看样子一定比火车跑得更快。就是呼兰河这城里的将军,相信他也没有骑过这样的马。

            小车子、大骡子,都排在一边。骡子是油黑的,闪亮的,用鸡蛋壳做的眼睛,所以眼珠是不会转的。

            大骡子旁边还站着一匹小骡子,那小骡子是特别好看,眼珠是和大骡子一般的大。

            小车子装潢得特别漂亮,车轮子都是银色的。车前边的帘子是半掩半卷的,使人得以看到里边去。车里边是红堂堂地铺着大红的褥子。赶车的坐在车沿上,满脸是笑,得意洋洋,装饰得特别漂亮,扎着紫色的腰带,穿着蓝色花丝葛的大袍,黑缎鞋,雪白的鞋底。大概穿起这鞋来还没有走路就赶过车来了。他头上戴着黑帽头,红帽顶,把脸扬着,他蔑视着一切,越看他越不像一个车夫,好像一位新郎。

            公鸡三两只,母鸡七八只,都是在院子里边静静地啄食,一声不响,鸭子也并不呱呱地直叫,叫得烦人。狗蹲在上房的门旁,非常地守职,一动不动。

            看热闹的人,人人说好,个个称赞。穷人们看了这个竟觉得活着还没有死了好。

            正房里,窗帘、被格、桌椅板凳,一切齐全。

            还有一个管家的,手里拿着一个算盘在打着,旁边还摆着一个账本,上边写着:

            北烧锅欠酒二十二斤

            东乡老王家昨借米二十担

            白旗屯泥人子昨送地租四百三十吊

            白旗屯二个子共欠地租两千吊

            这以下写了个:

            四月二十八日

            以上的是四月二十七日的流水账,大概二十八日的还没有写吧!

            看这账目也就知道阴间欠了账也是马虎不得的,也设了专门人才,即管账先生一流的人物来管。同时也可以看出来,这大宅子的主人不用说就是个地主了。

            这院子里边,一切齐全,一切都好,就是看不见这院子的主人在什么地方,未免地使人疑心这么好的院子而没有主人了。这一点似乎使人感到空虚,无着无落的。

            再一回头看,就觉得这院子终归是有点两样,怎么丫鬟、侍女、车夫、马童的胸前都挂着一张纸条,那纸条上写着他们每个人的名字:

            那漂亮得和新郎似的车夫的名字叫:

            长鞭

            马童的名字叫:

            快腿

            左手拿着水烟袋,右手抡着花手巾的小丫鬟叫:

            德顺

            另外一个叫:

            顺平

            管账的先生叫:

            妙算

            提着喷壶在浇花的侍女叫:

            花姐

            再一细看才知道那匹大白马也是有名字的,那名字是贴在马屁股上的,叫:

            千里驹

            其余的如骡子、狗、鸡、鸭之类没有名字。

            那在厨房里拉着面条的“老王”,他身上写着他名字的纸条,来风一吹,还忽咧忽咧地跳着。

            这可真有点奇怪,自家的仆人,自己都不认识了,还要挂上个名签。

            这一点未免地使人迷离恍惚,似乎阴间究竟没有阳间好。

            虽然这么说,羡慕这座宅子的人还是不知多少。因为的确这座宅子是好:清悠、闲静,鸦雀无声,一切规整,绝不紊乱。丫鬟、侍女,照着阳间的一样,鸡犬猪马,也都和阳间一样。阳间有什么,到了阴间也有,阳间吃面条,到了阴间也吃面条,阳间有车子坐,到了阴间也一样地有车子坐。阴间是完全和阳间一样,一模一样的。

            只不过没有东二道街上那大泥坑子就是了。是凡好的一律都有,坏的不必有。

            东二道街上的扎彩铺,就扎的是这一些。一摆起来又威风、又好看,但那作坊里边是乱七八糟的,满地碎纸,秫杆棍子一大堆,破盒子、乱罐子、颜料瓶子、浆糊盆、细麻绳、粗麻绳……走起路来,会使人跌倒。那里边砍的砍、绑的绑,苍蝇也来回地飞着。

            要做人,先做一个脸孔,糊好了,挂在墙上,男的女的,到用的时候,摘下一个来就用。给一个用秫杆捆好的人架子,穿上衣服,装上一个头就像人了。把一个瘦骨伶仃的用纸糊好的马架子,上边贴上用纸剪成的白毛,那就是一匹很漂亮的马了。

            做这样的活计的,也不过是几个极粗糙极丑陋的人,他们虽懂得怎样打扮一个马童或是打扮一个车夫,怎样打扮一个妇人女子,但他们对他们自己是毫不加修饰的,长头发的、毛头发的、歪嘴的、歪眼的、赤足裸膝的,似乎使人不能相信,这么漂亮炫眼耀目,好像要活了的人似的,是出于他们之手。

            他们吃的是粗菜、粗饭,穿的是破烂的衣服,睡觉则睡在车马、人、头之中。

            他们这种生活,似乎也很苦的。但是一天一天地,也就糊里糊涂地过去了,也就过着春夏秋冬,脱下单衣去,穿起棉衣来地过去了。

            生、老、病、死,都没有什么表示。生了就任其自然地长去;长大就长大,长不大也就算了。

            老,老了也没有什么关系,眼花了,就不看;耳聋了,就不听;牙掉了,就整吞;走不动了,就瘫着。这有什么办法,谁老谁活该。

            病,人吃五谷杂粮,谁不生病呢?

            死,这回可是悲哀的事情了,父亲死了儿子哭;儿子死了母亲哭;哥哥死了一家全哭;嫂子死了,她的娘家人来哭。

            哭了一朝或是三日,就总得到城外去,挖一个坑把这人埋起来。

            埋了之后,那活着的仍旧得回家照旧地过着日子。该吃饭,吃饭。该睡觉,睡觉。外人绝对看不出来是他家已经没有了父亲或是失掉了哥哥,就连他们自己也不是关起门来,每天哭上一场。他们心中的悲哀,也不过是随着当地的风俗的大流,逢年过节地到坟上去观望一回。二月过清明,家家户户都提着香火去上坟茔,有的坟头上塌了一块土,有的坟头上陷了几个洞,相观之下,感慨唏嘘,烧香点酒。若有近亲的人如子女父母之类,往往且哭上一场;那哭的语句,数数落落,无异是在做一篇文章或者是在诵一篇长诗。歌诵完了之后,站起来拍拍屁股上的土,也就随着上坟的人们回城的大流,回城去了。

            回到城中的家里,又得照旧地过着日子,一年柴米油盐,浆洗缝补。从早晨到晚上忙了个不休。夜里疲乏之极,躺在炕上就睡了。在夜梦中并梦不到什么悲哀的或是欣喜的景况,只不过咬着牙、打着哼,一夜一夜地就都这样地过去了。

            假若有人问他们,人生是为了什么?他们并不会茫然无所对答的,他们会直截了当地不假思索地说了出来:“人活着是为吃饭穿衣。”

            再问他,人死了呢?他们会说:“人死了就完了。”

            所以没有人看见过做扎彩匠的活着的时候为他自己糊一座阴宅,大概他不怎么相信阴间。假如有了阴间,到那时候他再开扎彩铺,怕又要租人家的房子了。

            呼兰河城里,除了东二道街、西二道街、十字街之外,再就都是些个小胡同了。

            小胡同里边更没有什么了,就连打烧饼麻花的店铺也不大有,就连卖红绿糖球的小床子,也都是摆在街口上去,很少有摆在小胡同里边的。那些住在小街上的人家,一天到晚看不见多少闲散杂人。耳听的眼看的,都比较地少,所以整天寂寂寞寞的,关起门来在过着生活。破草房有上半间,买上二斗豆子,煮一点盐豆下饭吃,就是一年。

            在小街上住着,又冷清、又寂寞。

            一个提篮子卖烧饼的,从胡同的东头喊,胡同向西头都听到了。虽然不买,若走谁家的门口,谁家的人都是把头探出来看看,间或有问一问价钱的,问一问糖麻花和油麻花现在是不是还卖着前些日子的价钱。

            间或有人走过去掀开了筐子上盖着的那张布,好像要买似的,拿起一个来摸一摸是否还是热的。

            摸完了也就放下了,卖麻花的也绝对地不生气。

            于是又提到第二家的门口去。

            第二家的老太婆也是在闲着,于是就又伸出手来,打开筐子,摸了一回。

            摸完了也是没有买。

            等到了第三家,这第三家可要买了。

            一个三十多岁的女人,刚刚睡午觉起来,她的头顶上梳着一个卷,大概头发不怎样整齐,发卷上罩着一个用大黑珠线织的网子,网子上还插了不少的疙瘩针。可是因为这一睡觉,不但头发乱了,就是那些疙瘩针也都跳出来了,好像这女人的发卷上被射了不少的小箭头。

            她一开门就很爽快,把门扇呱哒地往两边一分,她就从门里闪出来了。随后就跟出来五个孩子。这五个孩子也都个个爽快,像一个小连队似的,一排就排好了。

            第一个是女孩子,十二三岁,伸出手来就拿了一个五吊钱一只的一竹筷子长的大麻花。她的眼光很迅速,这麻花在这筐子里的确是最大的,而且就只有这一个。

            第二个是男孩子,拿了一个两吊钱一只的。

            第三个也是拿了个两吊钱一只的。也是个男孩子。

            第四个看了看,没有办法,也只得拿了一个两吊钱的。也是个男孩子。

            轮到第五个了,这个可分不出来是男孩子,还是女孩子。

            头是秃的,一只耳朵上挂着钳子,瘦得好像个干柳条,肚子可特别大。看样子也不过五岁。

            一伸手,他的手就比其余的四个的都黑得更厉害。其余的四个,虽然他们的手也黑得够厉害的,但总还认得出来那是手,而不是别的什么,唯有他的手是连认也认不出来了。说是手吗,说是什么呢,说什么都行。完全起着黑的灰的、深的浅的,各种的云层,看上去,好像看隔山照似的,有无穷的趣味。

            他就用这手在筐子里边挑选,几乎是每个都让他摸过了,不一会工夫,全个的筐子都让他翻遍了。本来这筐子虽大,麻花也并没有几只。除了一个顶大的之外,其余小的也不过十来只,经了他这一翻,可就完全遍了。弄了他满手是油,把那小黑手染得油亮油亮的,黑亮黑亮的。

            而后他说:

            “我要大的。”

            于是就在门口打了起来。

           他跑得非常之快,他去追着他的姐姐。他的第二个哥哥,他的第三个哥哥,也都跑了上去,都比他跑得更快。再说他的大姐,那个拿着大麻花的女孩,她跑得更快到不能想象了。

            已经找到一块墙的缺口的地方,跳了出去,后边的也就跟着一溜烟地跳过去。等他们刚一追着跳过去,那大孩子又跳回来了,在院子里跑成了一阵旋风。

            那个最小的,不知是男孩子还是女孩子的,早已追不上了。落在后边,在号啕大哭。间或也想拣一点便宜,那就是当他的两个哥哥,把他的姐姐已经扭住的时候,他就趁机会想要从中抢他姐姐手里的麻花。可是几次都没有做到,于是又落在后边号啕大哭。

            他们的母亲,虽然是很有威风的样子,但是不动手是招呼不住他们的。母亲看了这样子也还没有个完了,就进屋去,拿起烧火的铁叉子来,向着她的孩子就奔去了。不料院子里有一个小泥坑,是猪在里打腻的地方。她恰好就跌在泥坑那儿了,把叉子跌出去五尺多远。

            于是这场戏才算达到了高潮,看热闹的人没有不笑的,没有不称心愉快的。

            就连那卖麻花的人也看出神了,当那女人坐到泥坑中把泥花四边溅起来的时候,那卖麻花的差一点没把筐子掉了地下。他高兴极了,他早已经忘了他手里的筐子了。

            至于那几个孩子,则早就不见了。

            等母亲起来去把他们追回来的时候,那做母亲的这回可发了威风,让他们一个一个地向着太阳跪下,在院子里排起一小队来,把麻花一律地解除。

            顶大的孩子的麻花没有多少了,完全被撞碎了。

            第三个孩子的已经吃完了。

            第二个的还剩了一点点。

            只有第四个的还拿在手上没有动。

            第五个,不用说,根本没有拿在手里。

            闹到结果,卖麻花的和那女人吵了一阵之后提着筐子又到另一家去叫卖去了。他和那女人所吵的是关于那第四个孩子手上拿了半天的麻花又退回了的问题,卖麻花的坚持着不让退,那女人又非退回不可。结果是付了三个麻花的钱,就把那提篮子的人赶了出来了。

            为着麻花而下跪的五个孩子不提了。再说那一进胡同口就被挨家摸索过来的麻花,被提到另外的胡同里去,到底也卖掉了。

            一个已经脱完了牙齿的老太太买了其中的一个,用纸裹着拿到屋子去了。她一边走着一边说:

            “这麻花真干净,油亮亮的。”

            而后招呼了她的小孙子,快来吧。

            那卖麻花的人看了老太太很喜欢这麻花,于是就又说:

            “是刚出锅的,还热忽着哩!”

            过去了卖麻花的,后半天,也许又来了卖凉粉的,也是一在胡同口的这头喊,那头就听到了。

            要买的拿着小瓦盆出去了。不买的坐在屋子一听这卖凉粉的一招呼,就知道是应烧晚饭的时候了。因为这卖凉粉的,一个整个的夏天都是在太阳偏西时他就来的,来得那么准,就像时钟一样,到了四五点钟他必来的。就像他卖凉粉专门到这一条胡同来卖似的。似乎在别的胡同里就没有为着多卖几家而耽误了这一定的时间。

            卖凉粉的一过去了,一天也就快黑了。

            打着拨浪鼓的货郎,一到太阳偏西,就再不进到小巷子里来,就连僻静的街他也不去了,他担着担子从大街口走回家去。

            卖瓦盆的,也早都收市了。

            拣绳头的、换破烂的也都回家去了。

            只有卖豆腐的则又出来了。

            晚饭时节,吃了小葱蘸大酱就已经很可口了,若外加上一块豆腐,那真是锦上添花,一定要多浪费两碗苞米大芸豆粥的。一吃就吃多了,那是很自然的,豆腐加上点辣椒油,再拌上点大酱,那是多么可口的东西;用筷子触了一点点豆腐,就能够吃下去半碗饭,再到豆腐上去触了一下,一碗饭就完了。因为豆腐而多吃两碗饭,并不算吃得多,没有吃过的人,不能够晓得其中的滋味的。

            所以卖豆腐的人来了,男女老幼,全都欢迎。打开门来,笑盈盈的,虽然不说什么,但是彼此有一种融洽的感情,默默生了起来。

            似乎卖豆腐的在说:

            “我的豆腐真好!”

            似乎买豆腐的回答:

            “你的豆腐果然不错。”

            买不起豆腐的人对那卖豆腐的,就非常地羡慕,一听了那从街口越招呼越近的声音就特别地感到诱惑,假若能吃一块豆腐可不错,切上一点青辣椒,拌上一点小葱子。

            但是天天这样想,天天就没有买成,卖豆腐的一来,就把这等人白白地引诱一场。于是那被诱惑的人,仍然逗不起决心,就多吃几口辣椒,辣得满头是汗。他想假若一个人开了一个豆腐房可不错,那就可以自由随便地吃豆腐了。

            果然,他的儿子长到五岁的时候,问他:

            “你长大了干什么?”

            五岁的孩子说:

            “开豆腐房。”

            这显然要继承他父亲未遂的志愿。

            关于豆腐这美妙的一盘菜的爱好,竟还有甚于此的,竟有想要倾家荡产的。传说上,有这样的一个家长,他下了决心,他说:

            “不过了,买一块豆腐吃去!”这“不过了”的三个字,用旧的语言来翻译,就是毁家纾难的意思;用现代的话来说,就是:“我破产了!”

            卖豆腐的一收了市,一天的事情都完了。

            家家户户都把晚饭吃过了。吃过了晚饭,看晚霞的看晚霞,不看晚霞的躺到炕上去睡觉的也有。

            这地方的晚霞是很好看的,有一个土名,叫火烧云。说“晚霞”人们不懂,若一说“火烧云”就连三岁的孩子也会呀呀地往西天空里指给你看。

            晚饭一过,火烧云就上来了。照得小孩子的脸是红的。把大白狗变成红色的狗了。红公鸡就变成金的了。黑母鸡变成紫檀色的了。喂猪的老头子,往墙根上靠,他笑盈盈地看着他的两匹小白猪,变成小金猪了,他刚想说:

            “他妈的,你们也变了……”

            他的旁边走来了一个乘凉的人,那人说:

            “你老人家必要高寿,你老是金胡子了。”

            天空的云,从西边一直烧到东边,红堂堂的,好像是天着了火。

            这地方的火烧云变化极多,一会红堂堂的了,一会金洞洞的了,一会半紫半黄的,一会半灰半百合色。葡萄灰、大黄梨、紫茄子,这些颜色天空上边都有。还有些说也说不出来的,见也未曾见过的,诸多种的颜色。

            五秒钟之内,天空里有一匹马,马头向南,马尾向西,那马是跪着的,像是在等着有人骑到它的背上,它才站起来。再过一秒钟,没有什么变化。再过两三秒钟,那匹马加大了,马腿也伸开了,马脖子也长了,但是一条马尾巴却不见了。

            看的人,正在寻找马尾巴的时候,那马就变没了。

            忽然又来了一条大狗,这条狗十分凶猛,它在前边跑着,它的后面似乎还跟了好几条小狗仔。跑着跑着,小狗就不知跑到哪里去了,大狗也不见了。

            又找到了一个大狮子,和娘娘庙门前的大石头狮子一模一样的,也是那么大,也是那样地蹲着,很威武地、很镇静地蹲着,它表示着蔑视一切的样子,似乎眼睛连什么也不睬。看着看着地,一不谨慎,同时又看到了别一个什么。这时候,可就麻烦了,人的眼睛不能同时又看东,又看西,这样子会活活把那个大狮子糟蹋了。一转眼,一低头,那天空的东西就变了。若是再找,怕是看瞎了眼睛也找不到了。

            大狮子既然找不到,另外的那什么,比方就是一个猴子吧,猴子虽不如大狮子,可同时也没有了。

            一时恍恍惚惚的,满天空里又像这个,又像那个,其实是什么也不像,什么也没有了。

            必须是低下头去,把眼睛揉一揉,或者是沉静一会再来看。

            可是天空偏偏又不常常等待着那些爱好它的孩子。一会工夫火烧云下去了。

            于是孩子们困倦了,回屋去睡觉了。竟有还没能来得及进屋的,就靠在姐姐的腿上,或者是依在祖母的怀里就睡着了。

            祖母的手里,拿着白马鬃的蝇甩子,就用蝇甩子给他驱逐着蚊虫。

            祖母还不知道这孩子是已经睡了,还以为他在那里玩着呢!

            “下去玩一会去吧!把奶奶的腿压麻了。”

            用手一推,这孩子已经睡得摇摇晃晃的了。

            这时候,火烧云已经完全下去了。

            于是家家户户都进屋去睡觉,关起窗门来。

            呼兰河这地方,就是在六月里也是不十分热的,夜里总要盖着薄棉被睡觉。

            等黄昏之后的乌鸦飞过时,只能够隔着窗子听到那很少的尚未睡的孩子在嚷叫:

            乌鸦乌鸦你打场,

            给你二斗粮……

            那漫天盖地的一群黑乌鸦,呱呱地大叫着,在整个的县城的头顶上飞过去了。

            据说飞过了呼兰河的南岸,就在一个大树林子里边住下了。明天早晨起来再飞。

            夏秋之间每夜要过乌鸦,究竟这些成百成千的乌鸦过到哪里去,孩子们是不大晓得的,大人们也不大讲给他们听。

            只晓得念这套歌,“乌鸦乌鸦你打场,给你二斗粮。”

            究竟给乌鸦二斗粮做什么,似乎不大有道理。

            乌鸦一飞过,这一天才真正地过去了。

            因为大昴星升起来了,大昴星好像铜球似的亮晶晶的了。

            天河和月亮也都上来了。

            蝙蝠也飞起来了。

            是凡跟着太阳一起来的,现在都回去了。人睡了,猪、马、牛、羊也都睡了,燕子和蝴蝶也都不飞了。就连房根底下的牵牛花,也一朵没有开的。含苞的含苞,卷缩的卷缩。含苞的准备着欢迎那早晨又要来的太阳,那卷缩的,因为它已经在昨天欢迎过了,它要落去了。

            随着月亮上来的星夜,大昴星也不过是月亮的一个马前卒,让它先跑到一步就是了。

            夜一来蛤蟆就叫,在河沟里叫,在洼地里叫。虫子也叫,在院心草棵子里,在城外的大田上,有的叫在人家的花盆里,有的叫在人家的坟头上。

            夏夜若无风无雨就这样地过去了,一夜又一夜。

            很快地夏天就过完了,秋天就来了。秋天和夏天的分别不太大,也不过天凉了,夜里非盖着被子睡觉不可。种田的人白天忙着收割,夜里多做几个割高粱的梦就是了。

            女人一到了八月也不过就是浆衣裳,拆被子,捶棒硾,捶得街街巷巷早晚地叮叮当当地乱响。

            “棒硾”一捶完,做起被子来,就是冬天。

            冬天下雪了。

            人们四季里,风、霜、雨、雪地过着,霜打了,雨淋了。

            大风来时是飞沙走石,似乎是很了不起的样子。冬天,大地被冻裂了,江河被冻住了。再冷起来,江河也被冻得锵锵地响着裂开了纹。冬天,冻掉了人的耳朵,破了人的鼻子,裂了人的手和脚。

            但这是大自然的威风,与小民们无关。

            呼兰河的人们就是这样,冬天来了就穿棉衣裳,夏天来了就穿单衣裳。就好像太阳出来了就起来,太阳落了就睡觉似的。

            被冬天冻裂了手指的,到了夏天也自然就好了。好不了的,“李永春”药铺去买二两红花,泡一点红花酒来擦一擦。擦得手指通红也不见消,也许就越来越肿起来,那么再到“李永春”药铺去,这回可不买红花了,是买了一贴膏药来。

            回到家里,用火一烤,黏黏糊糊地就贴在冻疮上了。这膏药是真好,贴上了一点也不碍事。该赶车的去赶车,该切菜的去切菜。黏黏糊糊的是真好,见了水也不掉,该洗衣裳的去洗衣裳去好了。就是掉了,拿在火上再一烤,就还贴得上的。

            一贴,贴了半个月。

            呼兰河这地方的人,什么都讲结实、耐用,这膏药这样地耐用,实在是合乎这地方的人情。虽然是贴了半个月,手也还没有见好,但这膏药总算是耐用,没有白花钱。

            于是再买一贴去,贴来贴去,这手可就越肿越大了。还有些买不起膏药的,就拣人家贴乏了的来贴。

            到后来,那结果,谁晓得是怎样呢,反正一塌糊涂去了吧。

            春夏秋冬,一年四季来回循环地走,那是自古也就这样的了。风霜雨雪,受得住的就过去了,受不住的,就寻求着自然的结果。那自然的结果不大好,把一个人默默地一声不响地就拉着离开了这人间的世界了。

            至于那还没有被拉去的,就风霜雨雪,仍旧在人间被吹打着。

            呼兰河除了这些卑琐平凡的实际生活之外,在精神上,也还有不少的盛举,如:

            跳大神;
            唱秧歌;
            放河灯;
            野台子戏;
            四月十八娘娘庙大会……

            先说大神。大神是会治病的,她穿着奇怪的衣裳,那衣裳平常的人不穿;红的,是一张裙子,那裙子一围在她的腰上,她的人就变样了。开初,她并不打鼓,只是一围起那红花裙子就哆嗦。从头到脚,无处不哆嗦,哆嗦了一阵之后,又开始打颤。她闭着眼睛,嘴里边叽里咕噜的。每一打颤,就装出来要倒的样子,把四边的人都吓得一跳,可是她又坐住了。

            大神坐的是凳子,她的对面摆着一块牌位,牌位上贴着红纸,写着黑字。那牌位越旧越好,好显得她一年之中跳神的次数不少,越跳多了就越好,她的信用就远近皆知,她的生意就会兴隆起来。那牌前,点着香,香烟慢慢地旋着。

            那女大神多半在香点了一半的时候神就下来了。那神一下来,可就威风不同,好像有万马千军让她领导似的,她全身是劲,她站起来乱跳。

            大神的旁边,还有一个二神,当二神的都是男人。他并不昏乱,他是清晰如常的,他赶快把一张圆鼓交到大神的手里。大神拿了这鼓,站起来就乱跳,先诉说那附在她身上的神灵的下山的经历,是乘着云,是随着风,或者是驾雾而来,说得非常之雄壮。二神站在一边,大神问他什么,他回答什么。好的二神是对答如流的,坏的二神,一不加小心说冲着了大神的一字,大神就要闹起来的。大神一闹起来的时候,她也没有别的办法,只是打着鼓,乱骂一阵,说这病人,不出今夜就必得死的,死了之后,还会游魂不散,家族、亲戚、乡里都要招灾的。这时吓得那请神的人家赶快烧香点酒,烧香点酒之后,若再不行,就得赶快送上红布来,把红布挂在牌位上,若再不行,就得杀鸡。若闹到了杀鸡这个阶段,就多半不能再闹了,因为再闹就没有什么想头了。

            这鸡、这布,一律都归大神所有。跳过了神之后,她把鸡拿回家去自己煮上吃了。把红布用蓝靛染了之后,做起裤子穿了。

            有的大神,一上手就百般地下不来神,请神的人家就得赶快地杀鸡来。若一杀慢了,等一会跳到半道就要骂的。谁家请神都是为了治病,请大神骂,是非常不吉利的,所以对大神是非常尊敬的,又非常怕。

            跳大神,大半是天黑跳起,只要一打起鼓来,就男女老幼,都往这跳神的人家跑。若是夏天,就屋里屋外都挤满了人。还有些女人,拉着孩子,抱着孩子,哭天叫地地从墙头上跳过来,跳过来看跳神的。

            跳到半夜时分,要送神归山了,那时候,那鼓打得分外地响,大神也唱得分外地好听;邻居左右,十家二十家的人家都听得到,使人听了起着一种悲凉的情绪,二神嘴里唱:

            “大仙家回山了,要慢慢地走,要慢慢地行。”

            大神说:

            “我的二仙家,青龙山,白虎山……夜行三千里,乘着风儿不算难……”

            这唱着的词调,混合着鼓声,从几十丈远的地方传来,实在是冷森森的,越听就越悲凉。听了这种鼓声,往往终夜而不能眠的人也有。

            请神的人家为了治病,可不知那家的病人好了没有?却使邻居街坊感慨兴叹,终夜而不能已的也常常有。

            满天星光,满屋月亮,人生何如,为什么这么悲凉。

            过了十天半月的,又是跳神的鼓,当当地响。于是人们又都着了慌,爬墙的爬墙,登门的登门,看看这一家的大神,显的是什么本领,穿的是什么衣裳。听听她唱的是什么腔调,看看她的衣裳漂亮不漂亮。

            跳到了夜静时分,又是送神回山。送神回山的鼓,个个都打得漂亮。

            若赶上一个下雨的夜,就特别凄凉,寡妇可以落泪,鳏夫就要起来彷徨。

            那鼓声就好像故意招惹那般不幸的人,打得有急有慢,好像一个迷路的人在夜里诉说着他的迷惘,又好像不幸的老人在回想着他幸福的短短的幼年。又好像慈爱的母亲送着她的儿子远行。又好像是生离死别,万分地难舍。

            人生为了什么,才有这样凄凉的夜。

            似乎下回再有打鼓的连听也不要听了。其实不然,鼓一响就又是上墙头的上墙头,侧着耳朵听的侧着耳朵在听,比西洋人赴音乐会更热心。

            七月十五盂兰会,呼兰河上放河灯了。

            河灯有白菜灯、西瓜灯,还有莲花灯。

            和尚、道士吹着笙、管、笛、箫,穿着拼金大红缎子的褊衫,在河沿上打起场子来在做道场。那乐器的声音离开河沿二里路就听到了。

            一到了黄昏,天还没有完全黑下来,奔着去看河灯的人就络绎不绝了。大街小巷,哪怕终年不出门的人,也要随着人群奔到河沿去。先到了河沿的就蹲在那里。沿着河岸蹲满了人,可是从大街小巷往外出发的人仍是不绝,瞎子、瘸子都来看河灯(这里说错了,惟独瞎子是不来看河灯的),把街道跑得冒了烟了。

            姑娘、媳妇,三个一群,两个一伙,一出了大门,不用问到哪里去,就都是看河灯去。

            黄昏时候的七月,火烧云刚刚落下去,街道上发着显微的白光,嘁嘁喳喳,把往日的寂静都冲散了,个个街道都活了起来,好像这城里发生了大火,人们都赶去救火的样子。非常忙迫,踢踢踏踏地向前跑。

            先跑到了河沿的就蹲在那里,后跑到的,也就挤上去蹲在那里。

            大家一齐等候着,等候着月亮高起来,河灯就要从水上放下来了。

            七月十五日是个鬼节,死了的冤魂怨鬼,不得脱生,缠绵在地狱里边是非常苦的,想脱生,又找不着路。这一天若是每个鬼托着一个河灯,就可得以脱生。大概从阴间到阳间的这一条路,非常之黑,若没有灯是看不见路的。所以放河灯这件事情是件善举。可见活着的正人君子们,对着那些已死的冤魂怨鬼还没有忘记。

            但是这其间也有一个矛盾,就是七月十五这夜生的孩子,怕是都不大好,多半都是野鬼托着个莲花灯投生而来的。这个孩子长大了将不被父母所喜欢,长到结婚的年龄,男女两家必要先对过生日时辰,才能够结亲。若是女家生在七月十五,这女子就很难出嫁,必须改了生日,欺骗男家。若是男家七月十五的生日,也不大好,不过若是财产丰富的,也就没有多大关系,嫁是可以嫁过去的,虽然就是一个恶鬼,有了钱大概怕也不怎样恶了。但在女子这方面可就万万不可,绝对地不可以;若是有钱的寡妇的独养女,又当别论,因为娶了这姑娘可以有一份财产在那里晃来晃去,就是娶了而带不过财产来,先说那一份妆奁也是少不了的。假说女子就是一个恶鬼的化身,但那也不要紧。

            平常的人说:“有钱能使鬼推磨。”似乎人们相信鬼是假的,有点不十分真。

            但是当河灯一放下来的时候,和尚为着庆祝鬼们更生,打着鼓,叮当地响;念着经,好像紧急符咒似的,表示着,这一工夫可是千金一刻,且莫匆匆地让过,诸位男鬼女鬼,赶快托着灯去投生吧。

            念完了经,就吹笙管笛箫,那声音实在好听,远近皆闻。

            同时那河灯从上流拥拥挤挤,往下浮来了。浮得很慢,又镇静、又稳当,绝对地看不出来水里边会有鬼们来捉了它们去。

            这灯一下来的时候,金呼呼的,亮通通的,又加上有千万人的观众,这举动实在是不小的。河灯之多,有数不过来的数目,大概是几千百只。两岸上的孩子们,拍手叫绝,跳脚欢迎。大人则都看出了神了,一声不响,陶醉在灯光河色之中。灯光照得河水幽幽地发亮。水上跳跃着天空的月亮。真是人生何世,会有这样好的景况。

            一直闹到月亮来到了中天,大昴星、二昴星、三昴星都出齐了的时候,才算渐渐地从繁华的景况,走向了冷静的路去。

            河灯从几里路长的上流,流了很久很久才流过来了。再流了很久很久才流过去了。在这过程中,有的流到半路就灭了,有的被冲到了岸边,在岸边生了野草的地方就被挂住了。

            还有每当河灯一流到了下流,就有些孩子拿着竿子去抓它,有些渔船也顺手取了一两只。到后来河灯越来越稀疏了。

            到往下流去,就显出荒凉孤寂的样子来了。因为越流越少了。

            流到极远处去的,似乎那里的河水也发了黑。而且是流着流着地就少了一个。

            河灯从上流过来的时候,虽然路上也有许多落伍的,也有许多淹灭了的,但始终没有觉得河灯是被鬼们托着走了的感觉。

            可是当这河灯,从上流的远处流来,人们是满心欢喜的,等流过了自己,也还没有什么,惟独到了最后,那河灯流到了极远的下流去的时候,使看河灯的人们,内心里无由地来了空虚。

            “那河灯,到底是要漂到哪里去呢?”

            多半的人们,看到了这样的景况,就抬起身来离开了河沿回家去了。于是不但河里冷落,岸上也冷落了起来。

            这时再往远处的下流看去,看着,看着,那灯就灭了一个。再看着看着,又灭了一个,还有两个一块灭的。于是就真像被鬼一个一个地托着走了。

            打过了三更,河沿上一个人也没有了,河里边一个灯也没有了。

            河水是寂静如常的,小风把河水皱着极细的波浪。月光在河水上边并不像在海水上边闪着一片一片的金光,而是月亮落到河底里去了。似乎那渔船上的人,伸手可以把月亮拿到船上来似的。

            河的南岸,尽是柳条丛,河的北岸就是呼兰河城。

            那看河灯回去的人们,也许都睡着了。不过月亮还是在河上照着。

            野台子戏也是在河边上唱的。也是秋天,比方这一年秋收好,就要唱一台子戏,感谢天地。若是夏天大旱,人们戴起柳条圈来求雨,在街上几十人,跑了几天,唱着,打着鼓。

            求雨的人不准穿鞋,龙王爷可怜他们在太阳下边把脚烫得很痛,就因此下了雨了。一下了雨,到秋天就得唱戏的,因为求雨的时候许下了愿。许愿就得还愿,若是还愿的戏就更非唱不可了。

            一唱就是三天。

            在河岸的沙滩上搭起了台子来。这台子是用杆子绑起来的,上边搭上了席棚,下了一点小雨也不要紧,太阳则完全可以遮住的。

            戏台搭好了之后,两边就搭看台。看台还有楼座。坐在那楼座上是很好的,又风凉,又可以远眺。不过,楼座是不大容易坐得到的,除非当地的官、绅,别人是不大坐得到的。

            既不卖票,哪怕你就有钱,也没有办法。

            只搭戏台,就搭三五天。

            台子的架一竖起来,城里的人就说:

            “戏台竖起架子来了。”

            一上了棚,人就说:

            “戏台上棚了。”

            戏台搭完了就搭看台,看台是顺着戏台的左边搭一排,右边搭一排,所以是两排平行而相对的。一搭要搭出十几丈远去。

            眼看台子就要搭好了,这时候,接亲戚的接亲戚,唤朋友的唤朋友。

            比方嫁了的女儿,回来住娘家,临走(回婆家)的时候,做母亲的送到大门外,摆着手还说:

            “秋天唱戏的时候,再接你来看戏。”

            坐着女儿的车子远了,母亲含着眼泪还说:

            “看戏的时候接你回来。”

            所以一到了唱戏的时候,可并不是简单地看戏,而是接姑娘唤女婿,热闹得很。

            东家的女儿长大了,西家的男孩子也该成亲了,说媒的这个时候就走上门来,约定两家的父母在戏台底下,第一天或是第二天,彼此相看。也有只通知男家而不通知女家的,这叫做“偷看”,这样的看法,成与不成,没有关系,比较地自由,反正那家的姑娘也不知道。

            所以看戏去的姑娘,个个都打扮得漂亮。都穿了新衣裳,擦了胭脂涂了粉,刘海剪得并排齐。头辫梳得一丝不乱,扎了红辫根,绿辫梢。也有扎了水红的,也有扎了蛋青的。走起路来像客人,吃起瓜子来,头不歪眼不斜的,温文尔雅,都变成了大家闺秀。有的着蛋青市布长衫,有的穿了藕荷色的,有的银灰的。有的还把衣服的边上压了条,有的蛋青色的衣裳压了黑条,有的水红洋纱的衣裳压了蓝条。脚上穿了蓝缎鞋,或是黑缎绣花鞋。

            鞋上有的绣着蝴蝶,有的绣着蜻蜓,有的绣着莲花,绣着牡丹的,各样的都有。

           手里边拿着花手巾。耳朵上戴了长钳子,土名叫做“带穗钳子”。这带穗钳子有两种,一种是金的、翠的;一种是铜的、琉璃的。有钱一点的戴金的,少微差一点的带琉璃的。反正都很好看,在耳朵上摇来晃去,黄忽忽、绿森森的。再加上满脸矜持的微笑,真不知这都是谁家的闺秀。

            那些已嫁的妇女,也是照样地打扮起来,在戏台下边,东邻西舍的姊妹们相遇了,好互相地品评。

            谁的模样俊,谁的鬓角黑。谁的手镯是福泰银楼的新花样,谁的压头簪又小巧又玲珑。谁的一双绛紫缎鞋,真是绣得漂亮。

            老太太虽然不穿什么带颜色的衣裳,但也个个整齐,人人利落,手拿长烟袋,头上撇着大扁方。慈祥,温静。

            戏还没有开台,呼兰河城就热闹得不得了了,接姑娘的,唤女婿的,有一个很好的童谣:

            拉大锯,扯大锯,
            老爷(外公)门口唱大戏。
            接姑娘,唤女婿,
            小外孙也要去。
            ……

            于是乎不但小外甥,三姨二姑也都聚在了一起。

            每家如此,杀鸡买酒,笑语迎门,彼此谈着家常,说着趣事,每夜必到三更,灯油不知浪费了多少。

            某村某村,婆婆虐待媳妇。哪家哪家的公公喝了酒就耍酒疯。又是谁家的姑娘出嫁了刚过一年就生了一对双生。又是谁的儿子十三岁就定了一家十八岁的姑娘做妻子。

            烛火灯光之下,一谈谈个半夜,真是非常地温暖而亲切。

            一家若有几个女儿,这几个女儿都出嫁了,亲姊妹,两三年不能相遇的也有。平常是一个住东,一个住西。不是隔水的就是离山,而且每人有一大群孩子,也各自有自己的家务,若想彼此过访,那是不可能的事情。

            若是做母亲的同时把几个女儿都接来了,那她们的相遇,真仿佛已经隔了三十年了。相见之下,真是不知从何说起,羞羞惭惭,欲言又止,刚一开口又觉得不好意思,过了一刻工夫,耳脸都发起烧来,于是相对无语,心中又喜又悲。过了一袋烟的工夫,等那往上冲的血流落了下去,彼此都逃出了那种昏昏恍恍的境界,这才来找几句不相干的话来开头;或是:

            “你多咱来的?”

            或是:

            “孩子们都带来了?”

            关于别离了几年的事情,连一个字也不敢提。

            从表面上看来,她们并不是像姊妹,丝毫没有亲热的表现。面面相对的,不知道她们两个人是什么关系,似乎连认识也不认识,似乎从前她们两个并没有见过,而今天是第一次的相见,所以异常地冷落。

            但是这只是外表,她们的心里,就早已沟通着了。甚至于在十天或半月之前,她们的心里就早已开始很远地牵动起来,那就是当着她们彼此都接到了母亲的信的时候。

            那信上写着迎接她们姊妹回来看戏的。

            从那时候起,她们就把要送给姐姐或妹妹的礼物规定好了。

            一双黑大绒的云子卷,是亲手做的。或者就在她们的本城和本乡里,有一个出名的染缸房,那染缸房会染出来很好的麻花布来。于是送了两匹白布去,嘱咐他好好地加细地染着。一匹是白地染蓝花,一匹是蓝地染白花。蓝地的染的是刘海戏金蟾,白地的染的是蝴蝶闹莲花。

            一匹送给大姐姐,一匹送给三妹妹。

            现在这东西,就都带在箱子里边。等过了一天二日的,寻个夜深人静的时候,轻轻地从自己的箱底把这等东西取出来,摆在姐姐的面前,说:

            “这麻花布被面,你带回去吧!”

            只说了这么一句,看样子并不像是送礼物,并不像今人似的,送一点礼物很怕邻居左右看不见,是大嚷大吵着的,说这东西是从什么山上,或是什么海里得来的。哪怕是小河沟子的出品,也必要连那小河沟子的身份也提高,说河沟子是怎样地不凡,是怎样地与众不同,可不同别的河沟子。

            这等乡下人,糊里糊涂的,要表现的,无法表现,什么也说不出来,只能把东西递过去就算了事。

            至于那受了东西的,也是不会说什么,连声道谢也不说,就收下了。也有的稍微推辞了一下,也就收下了。

            “留着你自己用吧!”

            当然那送礼物的是加以拒绝。一拒绝,也就收下了。

            每个回娘家看戏的姑娘,都零零碎碎地带来一大批东西。

            送父母的,送兄嫂的,送侄女的,送三亲六故的。带了东西最多的,是凡见了长辈或晚辈都多少有点东西拿得出来,那就是谁的人情最周到。

            这一类的事情,等野台子唱完,拆了台子的时候,家家户户才慢慢地传诵。

            每个从婆家回娘家的姑娘,也都带着很丰富的东西,这些都是人家送给她的礼品。东西丰富得很,不但有用的,也有吃的,母亲亲手装的咸肉,姐姐亲手晒的干鱼,哥哥上山打猎打了一只雁来腌上,至今还有一只雁大腿,这个也给看戏小姑娘带回去,带回去给公公去喝酒吧。

            于是乌三八四的,离走的前一天晚上,真是忙了个不休,就要分散的姊妹们连说个话儿的工夫都没有了。大包小包一大堆。

            再说在这看戏的时间,除了看亲戚,会朋友,还成了许多好事,那就是谁家的女儿和谁家公子订婚了,说是明年二月,或是三月就要娶亲。订婚酒,已经吃过了,眼前就要过“小礼”的。所谓“小礼”就是在法律上的订婚形式,一经过了这番手续,东家的女儿,终归就要成了西家的媳妇了。

            也有男女两家都是外乡赶来看戏的,男家的公子也并不在,女家的小姐也并不在。只是两家的双亲有媒人从中媾通着,就把亲事给定了。也有的喝酒作乐的随便地把自己的女儿许给了人家。也有的男女两家的公子、小姐都还没有生出来,就给定下亲了。这叫做“指腹为亲”。这指腹为亲的,多半都是相当有点资财的人家才有这样的事。

            两家都很有钱,一家是本地的烧锅掌柜的,一家是白旗屯的大窝堡,两家是一家种高粱,一家开烧锅。开烧锅的需要高粱,种高粱的需要烧锅买他的高粱,烧锅非高粱不可,高粱非烧锅不行,恰巧又赶上这两家的妇人,都要将近生产,所以就“指腹为亲”了。

            无管是谁家生了男孩子,谁家生了女孩子,只要是一男一女就规定他们是夫妇。假若两家都生了男孩,都就不能勉强规定了。两家都生了女孩也是不能够规定的。

            但是这指腹为亲,好处不太多,坏处是很多的。半路上当中的一家穷了,不开烧锅了,或者没有窝堡了,其余的一家,就不愿意娶他家的姑娘,或是把女儿嫁给一家穷人。假若女家穷了,那还好办,若实在不娶,他也没有什么办法。若是男家穷了,男家就一定要娶,若一定不让娶,那姑娘的名誉就很坏,说她把谁家谁给“妨”穷了,又不嫁了。“妨”字在迷信上说就是因为她命硬,因为她某家某家穷了。以后她就不大容易找婆家,会给她起一个名叫做“望门妨”。无法,只得嫁过去,嫁过去之后,妯娌之间又要说她嫌贫爱富,百般地侮辱她。丈夫因此也不喜欢她了,公公婆婆也虐待她,她一个年轻的未出过家门的女子,受不住这许多攻击,回到娘家去,娘家也无甚办法,就是那当年指腹为亲的母亲说:

            “这都是你的命,你好好地耐着吧!”

            年轻的女子,莫名其妙地,不知道自己为什么要有这样的命,于是往往演出悲剧来,跳井的跳井,上吊的上吊。

            古语说,“女子上不了战场。”

            其实不对的,这井多么深,平白地你问一个男子,问他这井敢跳不敢跳,怕他也不敢的。而一个年轻的女子竟敢了。上战场不一定死,也许回来闹个一官半职的;可是跳井就很难不死,一跳就多半跳死了。

            那么节妇坊上为什么没写着赞美女子跳井跳得勇敢的赞词?那是修节妇坊的人故意给删去的。因为修节妇坊的,多半是男人。他家里也有一个女人。他怕是写上了,将来他打他女人的时候,他的女人也去跳井。女人也跳下井,留下来一大群孩子可怎么办?于是一律不写。只写,温文尔雅,孝顺公婆……

            大戏还没有开台,就来了这许多事情。等大戏一开了台,那戏台下边,真是人山人海,拥挤不堪。搭戏台的人,也真是会搭,正选了一块平平坦坦的大沙滩,又光滑,又干净,使人就是倒在上边,也不会把衣裳沾一丝儿的土星。这沙滩有半里路长。

            人们笑语连天,哪里是在看戏,闹得比锣鼓好像更响。那戏台上出来一个穿红的,进去一个穿绿的,只看见摇摇摆摆地走出走进,别的什么也不知道了,不用说唱得好不好,就连听也听不到。离着近的还看得见不挂胡子的戏子在张嘴,离得远的就连戏台那个穿红衣裳的究竟是一个坤角,还是一个男角,也都不大看得清楚。简直是还不如看木偶戏。

            但是若有一个唱木偶戏的这时候来在台下,唱起来,问他们看不看,那他们一定不看的,哪怕就连戏台子的边也看不见了,哪怕是站在二里路之外,他们也不看那木偶戏的。因为在大戏台底下,哪怕就是睡了一觉回去,也总算是从大戏台子底下回来的,而不是从什么别的地方回来的。

            一年没有什么别的好看,就这一场大戏还能够轻易地放过吗?所以无论看不看,戏台底下是不能不来。

            所以一些乡下的人也都来了,赶着几套马的大车,赶着老牛车,赶着花轮子,赶着小车子,小车子上边驾着大骡子。

            总之家里有什么车就驾了什么车来。也有的似乎他们家里并不养马,也不养别的牲口,就只用了一匹小毛驴,拉着一个花轮子也就来了。

            来了之后,这些车马,就一齐停在沙滩上,马匹在草包上吃着草,骡子到河里去喝水。车子上都搭席棚,好像小看台似的,排列在戏台的远处。那车子带来了他们的全家,从祖母到孙子媳,老少三辈。他们离着戏台二三十丈远,听是什么也听不见的,看也很难看到什么,也不过是大红大绿的,在戏台上跑着圈子,头上戴着奇怪的帽子,身上穿着奇怪的衣裳,谁知道那些人都是干什么的。有的看了三天大戏台子,而连一场的戏名字也都叫不出来。回到乡下去,他也跟着人家说长道短的,偶尔人家问了他说的是哪出戏,他竟瞪了眼睛,说不出来了。

            至于一些孩子们在戏台底下,就更什么也不知道了,只记住一个大胡子,一个花脸的,谁知道那些都是在做什么,比比划划,刀枪棍棒地乱闹一阵。

            反正戏台底下有些卖凉粉的,有些卖糖球的,随便吃去好了。什么黏糕、油炸馒头、豆腐脑都有,这些东西吃了又不饱,吃了这样再去吃那样。卖西瓜的,卖香瓜的,戏台底下都有,招得苍蝇一大堆,嗡嗡地飞。

            戏台下敲锣打鼓震天地响。

            那唱戏的人,也似乎怕远处的人听不见,也在拼命地喊,喊破了喉咙也压不住台的。那在台下的早已忘记了是在看戏,都在那里说长道短,男男女女的谈起家常来。还有些个远亲,平常一年也看不到,今天在这里看到了,哪能不打招呼。所以三姨二婶子的,就在人多的地方大叫起来。假若是在看台的凉棚里坐着,忽然有一个老太太站了起来,大叫着说:

            “他二舅母,你可多咱来的?”

            于是那一方也就应声而起。原来坐在看台的楼座上的,离着戏台比较近,听唱是听得到的,所以那看台上比较安静。姑娘媳妇都吃着瓜子,喝着茶。对这大嚷大叫的人,别人虽然讨厌,但也不敢去禁止,你若让她小一点声讲话,她会骂了出来:

            “这野台子戏,也不是你家的,你愿听戏,你请一台子到你家里去唱……”

            另外的一个也说:

            “哟哟,我没见过,看起戏来,都六亲不认了,说个话儿也不让……”

            这还是比较好的,还有更不客气的,一开口就说:

            “小养汉老婆……你奶奶,一辈子家里外头没受过谁的大声小气,今天来到戏台底下受你的管教来啦,你娘的……”

            被骂的人若是不搭言,过一回也就了事了,若一搭言,自然也没有好听的。于是两边就打了起来啦,西瓜皮之类就飞了过去。

            这来在戏台下看戏的,不料自己竟演起戏来,于是人们一窝蜂似的,都聚在这个真打真骂的活戏的方面来了。也有一些流氓混子之类,故意地叫着好,惹得全场的人哄哄大笑。

            假若打仗的还是个年轻的女子,那些讨厌的流氓们还会说着各样的俏皮话,使她火上加油越骂就越凶猛。

            自然那老太太无理,她一开口就骂了人。但是一闹到后来,谁是谁非也就看不出来了。

        幸而戏台上的戏子总算沉着,不为所动,还在那里阿拉阿拉地唱。过了一个时候,那打得热闹的也究竟平静了。

            再说戏台下边也有一些个调情的,那都是南街豆腐房里的嫂嫂,或是碾磨房的碾倌磨倌的老婆。碾倌的老婆看上了一个赶马车的车夫。或是豆腐匠看上了开粮米铺那家的小姑娘。有的是两方面都眉来眼去,有的是一方面殷勤,他一方面则表示要拒之千里之外。这样的多半是一边低,一边高,两方面的资财不对。

            绅士之流,也有调情的,彼此都坐在看台之上,东张张,西望望。三亲六故,姐夫小姨之间,未免地就要多看几眼,何况又都打扮得漂亮,非常好看。

            绅士们平常到别人家的客厅去拜访的时候,绝不能够看上了人家的小姐就不住地看,那该多么不绅士,那该多么不讲道德。那小姐若一告诉了她的父母,她的父母立刻就和这样的朋友绝交。绝交了,倒不要紧,要紧的是一传出去名誉该多坏。绅士是高雅的,哪能够不清不白的,哪能够不分长幼地去存心朋友的女儿,像那般下等人似的。

            绅士彼此一拜访的时候,都是先让到客厅里去,端端庄庄地坐在那里,而后倒茶装烟。规矩礼法,彼此都尊为是上等人。朋友的妻子儿女,也都出来拜见,尊为长者。在这种时候,只能问问大少爷的书读了多少,或是又写了多少字了。

            连朋友的太太也不可以过多地谈话,何况朋友的女儿呢?那就连头也不能够抬的,哪里还敢细看。

            现在在戏台上看看怕不要紧,假设有人问道,就说是东看西看,瞧一瞧是否有朋友在别的看台上。何况这地方又人多眼杂,也许没有人留意。

            三看两看的,朋友的小姐倒没有看上,可看上了一个不知道在什么地方见到过的一位妇人。那妇人拿着小小的鹅翎扇子,从扇子梢上往这边转着眼珠,虽说是一位妇人,可是又年轻,又漂亮。

            这时候,这绅士就应该站起来打着口哨,好表示他是开心的,可是我们中国上一辈的老绅士不会这一套。他另外也有一套,就是他的眼睛似睁非睁地迷离恍惚地望了出去,表示他对她有无限的情意。可惜离得太远,怕不会看得清楚,也许是枉费了心思了。

            也有的在戏台下边,不听父母之命,不听媒妁之言,自己就结了终生不解之缘。这多半是表哥表妹等等,稍有点出身来历的公子小姐的行为。他们一言为定,终生合好。间或也有被父母所阻拦,生出来许多波折。但那波折都是非常美丽的,使人一讲起来,真是比看《红楼梦》更有趣味。来年再唱大戏的时候,姊妹们一讲起这佳话来,真是增添了不少的回想……

            赶着车进城来看戏的乡下人,他们就在河边沙滩上,扎了营了。夜里大戏散了,人们都回家了,只有这等连车带马的,他们就在沙滩上过夜。好像出征的军人似的,露天为营。

            有的住了一夜,第二夜就回去了。有的住了三夜,一直到大戏唱完,才赶着车子回乡。不用说这沙滩上是很雄壮的。夜里,他们每家燃了火,煮茶的煮茶,谈天的谈天,但终归是人数太少,也不过二三十辆车子,所燃起来的火,也不会火光冲天,所以多少有一些凄凉之感。夜深了,住在河边上,被河水吸着又特别地凉,人家睡起觉来都觉得冷森森的。尤其是车夫马倌之类,他们不能够睡觉,怕是有土匪来抢劫他们的马匹,所以就坐以待旦。

            于是在纸灯笼下边,三个两个地赌钱,赌到天色发白了,该牵着马到河边去饮水去了。在河上,遇到了捉蟹的蟹船,蟹船上的老头说:

            “昨天的《打渔杀家》唱得不错,听说今天有《汾河湾》。”

            那牵着牲口饮水的人,是一点大戏常识也没有的。他只听到牲口喝水的声音呵呵的,其他的则不知所答了。

            四月十八娘娘庙大会,这也是为着神鬼,而不是为着人的。

            这庙会的土名叫做“逛庙”,也是无分男女老幼都来逛的,但其中以女子最多。

            女子们早晨起来,吃了早饭,就开始梳洗打扮。打扮好了,就约了东家姐姐、西家妹妹的去逛庙去了。竟有一起来就先梳洗打扮的,打扮好了,才吃饭,一吃了饭就走了。总之一到逛庙这天,各不后人,到不了半晌午,就车水马龙,拥挤得气息不通了。

            挤丢了孩子的站在那儿喊,找不到妈的孩子在人群里边哭,三岁的、五岁的,还有两岁的刚刚会走,竟也被挤丢了。

            所以每年庙会上必得有几个警察在收这些孩子。收了站在庙台上,等着他的家人来领。偏偏这些孩子都很胆小,张着嘴大哭,哭得实在可怜,满头满脸是汗。有的十二三岁了,也被丢了,问他家住在哪里?他竟说不出所以然来,东指指,西划划,说是他家门口有一条小河沟,那河沟里边出虾米,就叫做“虾沟子”,也许他家那地名就叫“虾沟子”,听了使人莫名其妙。再问他这虾沟子离城多远,他便说:骑马要一顿饭的工夫可到,坐车要三顿饭的工夫可到。究竟离城多远,他没有说。问他姓什么,他说他祖父叫史二,他父亲叫史成……

            这样你就再也不敢问他了。要问他吃饭没有?他就说:“睡觉了。”这是没有办法的,任他去吧。于是却连大带小的一齐站在庙门口,他们哭的哭,叫的叫,好像小兽似的,警察在看守他们。

            娘娘庙是在北大街上,老爷庙和娘娘庙离不了好远。那些烧香的人,虽然说是求子求孙,是先该向娘娘来烧香的,但是人们都以为阴间也是一样地重男轻女,所以不敢倒反天干。

            所以都是先到老爷庙去,打过钟,磕过头,好像跪到那里报个到似的,而后才上娘娘庙去。

            老爷庙有大泥像十多尊,不知道哪个是老爷,都是威风凛凛、气概盖世的样子。有的泥像的手指尖都被攀了去,举着没有手指的手在那里站着,有的眼睛被挖了,像是个瞎子似的。有的泥像的脚趾是被写了一大堆的字,那字不太高雅,不怎么合乎神的身份。似乎是说泥像也该娶个老婆,不然他看了和尚去找小尼姑,他是要忌妒的。这字现在没有了,传说是这样。

            为了这个,县官下了手令,不到初一十五,一律地把庙门锁起来,不准闲人进去。

            当地的县官是很讲仁义道德的。传说他第五个姨太太,就是从尼姑庵接来的。所以他始终相信尼姑绝不会找和尚。自古就把尼姑列在和尚一起,其实是世人不查,人云亦云。好比县官的第五房姨太太,就是个尼姑。难道她也被和尚找过了吗?这是不可能的。

            所以下令一律地把庙门关了。

            娘娘庙里比较地清静,泥像也有一些个,以女子为多,多半都没有横眉竖眼,近乎普通人,使人走进了大殿不必害怕。

            不用说是娘娘了,那自然是很好的温顺的女性。就说女鬼吧,也都不怎样恶,至多也不过披头散发的就完了,也决没有像老爷庙里那般泥像似的,眼睛冒了火,或像老虎似的张着嘴。

            不但孩子进了老爷庙有的吓得大哭,就连壮年的男人进去也要肃然起敬,好像说虽然他在壮年,那泥像若走过来和他打打,他也绝打不过那泥像的。

            所以在老爷庙上磕头的人,心里比较虔诚,因为那泥像,身子高、力气大。

            到了娘娘庙,虽然也磕头,但就总觉得那娘娘没有什么出奇之处。

            塑泥像的人是男人,他把女人塑得很温顺,似乎对女人很尊敬。他把男人塑得很凶猛,似乎男性很不好。其实不对的,世界上的男人,无论多凶猛,眼睛冒火的似乎还未曾见过。就说西洋人吧,虽然与中国人的眼睛不同,但也不过是蓝瓦瓦的有点类似猫头鹰眼睛而已,居然间冒了火的也没有。

            眼睛会冒火的民族,目前的世界还未发现。那么塑泥像的人为什么把他塑成那个样子呢?那就是让你一见生畏,不但磕头,而且要心服。就是磕完了头站起再看着,也绝不会后悔,不会后悔这头是向一个平庸无奇的人白白磕了。至于塑像的人塑起女子来为什么要那么温顺,那就告诉人,温顺的就是老实的,老实的就是好欺侮的,告诉人快来欺侮她们吧。

            人若老实了,不但异类要来欺侮,就是同类也不同情。

            比方女子去拜过了娘娘庙,也不过向娘娘讨子讨孙。讨完了就出来了,其余的并没有什么尊敬的意思。觉得子孙娘娘也不过是个普通的女子而已,只是她的孩子多了一些。

            所以男人打老婆的时候便说:

            “娘娘还得怕老爷打呢?何况你一个长舌妇!”

            可见男人打女人是天理应该,神鬼齐一。怪不得那娘娘庙里的娘娘特别温顺,原来是常常挨打的缘故。可见温顺也不是怎么优良的天性,而是被打的结果。甚或是招打的原由。

            两个庙都拜过了的人,就出来了,拥挤在街上。街上卖什么玩具的都有,多半玩具都是适于几岁的小孩子玩的。泥做的泥公鸡,鸡尾巴上插着两根红鸡毛,一点也不像,可是使人看去,就比活的更好看。家里有小孩子的不能不买。何况拿在嘴上一吹又会呜呜地响。买了泥公鸡,又看见了小泥人,小泥人的背上也有一个洞,这洞里边插着一根芦苇,一吹就响。那声音好像是诉怨似的,不太好听,但是孩子们都喜欢,做母亲的也一定要买。其余的如卖哨子的,卖小笛子的,卖线蝴蝶的,卖不倒翁的,其中尤以不倒翁最著名,也最为讲究,家家都买,有钱的买大的,没有钱的,买个小的。

            大的有一尺多高,二尺来高。小的有小得像个鸭蛋似的。无论大小,都非常灵活,按倒了就起来,起得很快,是随手就起来的。买不倒翁要当场试验,间或有生手的工匠所做出来的不倒翁,因屁股太大了,他不愿意倒下,也有的倒下了他就不起来。所以买不倒翁的人就把手伸出去,一律把他们按倒,看哪个先站起来就买哪个,当那一倒一起的时候真是可笑,摊子旁边围了些孩子,专在那里笑。不倒翁长得很好看,又白又胖。并不是老翁的样子,也不过他的名字叫不倒翁就是了。其实他是一个胖孩子。做得讲究一点的,头顶上还贴了一簇毛算是头发。有头发的比没有头发的要贵二百钱。有的孩子买的时候力争要戴头发的,做母亲的舍不得那二百钱,就说到家给他剪点狗毛贴。孩子非要戴毛的不可,选了一个戴毛的抱在怀里不放。没有法只得买了。这孩子抱着欢喜了一路,等到家一看,那簇毛不知什么时候已经飞了。于是孩子大哭。虽然母亲已经给剪了簇狗毛贴上了,但那孩子就总觉得这狗毛不是真的,不如原来的好看。也许那原来也贴的是狗毛,或许还不如现在的这个好看。但那孩子就总不开心,忧愁了一个下半天。

            庙会到下半天就散了。虽然庙会是散了,可是庙门还开着,烧香的人、拜佛的人继续地还有。有些没有儿子的妇女,仍旧在娘娘庙上捉弄着娘娘。给子孙娘娘的背后钉一个纽扣,给她的脚上绑一条带子,耳朵上挂一只耳环,给她戴一副眼镜,把她旁边的泥娃娃给偷着抱走了一个。据说这样做,来年就都会生儿子的。

            娘娘庙的门口,卖带子的特别多,妇人们都争着去买,她们相信买了带子,就会把儿子给带来了。

            若是未出嫁的女儿,也误买了这东西,那就将成为大家的笑柄了。

            庙会一过,家家户户就都有一个不倒翁,离城远至十八里路的,也都买了一个回去。回到家里,摆在迎门的向口,使别人一过眼就看见了,他家的确有一个不倒翁。不差,这证明逛庙会的时节他家并没有落伍,的确是去逛过了。

            歌谣上说:

            小大姐,去逛庙,
            扭扭搭搭走得俏,
            回来买个搬不倒。

            这些盛举,都是为鬼而做的,并非为人而做的。至于人去看戏、逛庙,也不过是揩油借光的意思。

            跳大神有鬼,唱大戏是唱给龙王爷看的,七月十五放河灯,是把灯放给鬼,让他顶着个灯去脱生。四月十八也是烧香磕头地祭鬼。

            只是跳秧歌,是为活人而不是为鬼预备的。跳秧歌是在正月十五,正是农闲的时候,趁着新年而化起装来,男人装女人,装得滑稽可笑。

            狮子、龙灯、旱船……等等,似乎也跟祭鬼似的,花样复杂,一时说不清楚。

            呼兰河这小城里边住着我的祖父。

            我生的时候,祖父已经六十多岁了,我长到四五岁,祖父就快七十了。

        我家有一个大花园,这花园里蜂子、蝴蝶、蜻蜓、蚂蚱,样样都有。蝴蝶有白蝴蝶、黄蝴蝶。这种蝴蝶极小,不太好看。好看的是大红蝴蝶,满身带着金粉。

            蜻蜓是金的,蚂蚱是绿的,蜂子则嗡嗡地飞着,满身绒毛,落到一朵花上,胖圆圆地就和一个小毛球似的不动了。

            花园里边明晃晃的,红的红,绿的绿,新鲜漂亮。

            据说这花园,从前是一个果园。祖母喜欢吃果子就种了果园。祖母又喜欢养羊,羊就把果树给啃了。果树于是都死了。到我有记忆的时候,园子里就只有一棵樱桃树,一棵李子树,因为樱桃和李子都不大结果子,所以觉得它们是并不存在的。小的时候,只觉得园子里边就有一棵大榆树。

            这榆树在园子的西北角上,来了风,这榆树先啸,来了雨,大榆树先就冒烟了。太阳一出来,大榆树的叶子就发光了,它们闪烁得和沙滩上的蚌壳一样了。

            祖父一天都在后园里边,我也跟着祖父在后园里边。祖父戴一个大草帽,我戴一个小草帽;祖父栽花,我就栽花;祖父拔草,我就拔草。当祖父下种,种小白菜的时候,我就跟在后边,把那下了种的土窝,用脚一个一个地溜平,哪里会溜得准,东一脚的、西一脚地瞎闹。有的把菜种不单没被土盖上,反而把菜子踢飞了。

            小白菜长得非常之快,没有几天就冒了芽了,一转眼就可以拔下来吃了。

            祖父铲地,我也铲地;因为我太小,拿不动那锄头杆,祖父就把锄头杆拔下来,让我单拿着那个锄头的“头”来铲。其实哪里是铲,也不过爬在地上,用锄头乱勾一阵就是了。也认不得哪个是苗,哪个是草。往往把韭菜当做野草一起地割掉,把狗尾草当做谷穗留着。

            等祖父发现我铲的那块满留着狗尾草的一片,他就问我:

            “这是什么?”

            我说:

            “谷子。”

            祖父大笑起来,笑得够了,把草摘下来问我:

            “你每天吃的就是这个吗?”

            我说:

            “是的。”

            我看着祖父还在笑,我就说:

            “你不信,我到屋里拿来你看。”

            我跑到屋里拿了鸟笼上的一头谷穗,远远地就抛给祖父了。说:

            “这不是一样的吗?”

            祖父慢慢地把我叫过去,讲给我听,说谷子是有芒针的。

            狗尾草则没有,只是毛嘟嘟的真像狗尾巴。

            祖父虽然教我,我看了也并不细看,也不过马马虎虎承认下来就是了。一抬头看见了一个黄瓜长大了,跑过去摘下来,我又去吃黄瓜去了。

            黄瓜也许没有吃完,又看见了一个大蜻蜓从旁飞过,于是丢了黄瓜又去追蜻蜓去了。蜻蜓飞得多么快,哪里会追得上。好在一开初也没有存心一定追上,所以站起来,跟了蜻蜓跑了几步就又去做别的去了。

            采一个倭瓜花心,捉一个大绿豆青蚂蚱,把蚂蚱腿用线绑上,绑了一会,也许把蚂蚱腿就绑掉,线头上只拴了一只腿,而不见蚂蚱了。

            玩腻了,又跑到祖父那里去乱闹一阵,祖父浇菜,我也抢过来浇,奇怪的就是并不往菜上浇,而是拿着水瓢,拼尽了力气,把水往天空里一扬,大喊着:

            “下雨了,下雨了。”

            太阳在园子里是特大的,天空是特别高的,太阳的光芒四射,亮得使人睁不开眼睛,亮得蚯蚓不敢钻出地面来,蝙蝠不敢从什么黑暗的地方飞出来。是凡在太阳下的,都是健康的、漂亮的,拍一拍连大树都会发响的,叫一叫就是站在对面的土墙都会回答似的。

            花开了,就像花睡醒了似的。鸟飞了,就像鸟上天了似的。虫子叫了,就像虫子在说话似的。一切都活了。都有无限的本领,要做什么,就做什么。要怎么样,就怎么样。都是自由的。倭瓜愿意爬上架就爬上架,愿意爬上房就爬上房。

            黄瓜愿意开一个谎花,就开一个谎花,愿意结一个黄瓜,就结一个黄瓜。若都不愿意,就是一个黄瓜也不结,一朵花也不开,也没有人问它。玉米愿意长多高就长多高,它若愿意长上天去,也没有人管。蝴蝶随意地飞,一会从墙头上飞来一对黄蝴蝶,一会又从墙头上飞走了一个白蝴蝶。它们是从谁家来的,又飞到谁家去?太阳也不知道这个。

            只是天空蓝悠悠的,又高又远。

            可是白云一来了的时候,那大团的白云,好像洒了花的白银似的,从祖父的头上经过,好像要压到了祖父的草帽那么低。

            我玩累了,就在房子底下找个阴凉的地方睡着了。不用枕头,不用席子,就把草帽遮在脸上就睡了。

            祖父的眼睛是笑盈盈的,祖父的笑,常常笑得和孩子似的。

            祖父是个长得很高的人,身体很健康,手里喜欢拿着个手杖,嘴上则不住地抽着旱烟管,遇到了小孩子,每每喜欢开个玩笑,说:

            “你看天空飞个家雀。”

            趁那孩子往天空一看,就伸出手去把那孩子的帽给取下来了,有的时候放在长衫的下边,有的时候放在袖口里头。他说:

            “家雀叼走了你的帽啦。”

            孩子们都知道了祖父的这一手了,并不以为奇,就抱住他的大腿,向他要帽子,摸着他的袖管,撕着他的衣襟,一直到找出帽子来为止。

            祖父常常这样做,也总是把帽放在同一的地方,总是放在袖口和衣襟下。那些搜索他的孩子没有一次不是在他衣襟下把帽子拿出来的,好像他和孩子们约定了似的:“我就放在这块,你来找吧!”

            这样地不知做过了多少次,就像老太太永久讲着“上山打老虎”这一个故事给孩子们听似的,哪怕是已经听过了五百遍,也还是在那里回回拍手,回回叫好。

            每当祖父这样做一次的时候,祖父和孩子们都一齐地笑得不得了。好像这戏还像第一次演似的。

            别人看了祖父这样做,也有笑的,可不是笑祖父的手法好,而是笑他天天使用一种方法抓掉了孩子的帽子,这未免可笑。

            祖父不怎样会理财,一切家务都由祖母管理。祖父只是自由自在地一天闲着;我想,幸好我长大了,我三岁了,不然祖父该多寂寞。我会走了,我会跑了。我走不动的时候,祖父就抱着我;我走动了,祖父就拉着我。一天到晚,门里门外,寸步不离,而祖父多半是在后园里,于是我也在后园里。

            我小的时候,没有什么同伴,我是我母亲的第一个孩子。

        我记事很早,在我三岁的时候,我记得我的祖母用针刺过我的手指,所以我很不喜欢她。我家的窗子,都是四边糊纸,当中嵌着玻璃。祖母是有洁癖的,以她屋的窗纸最白净。

            别人抱着把我一放在祖母的炕边上,我不假思索地就要往炕里边跑,跑到窗子那里,就伸出手去,把那白白透着花窗棂的纸窗给通了几个洞,若不加阻止,就必得挨着排给通破,若有人招呼着我,我也得加速地抢着多通几个才能停止。手指一触到窗上,那纸窗像小鼓似的,嘭嘭地就破了。破得越多,自己越得意。祖母若来追我的时候,我就越得意了,笑得拍着手,跳着脚的。

            有一天祖母看我来了,她拿了一个大针就到窗子外边去等我去了。我刚一伸出手去,手指就痛得厉害。我就叫起来了。那就是祖母用针刺了我。

            从此,我就记住了,我不喜欢她。

            虽然她也给我糖吃,她咳嗽时吃猪腰烧川贝母,也分给我猪腰,但是我吃了猪腰还是不喜欢她。

            在她临死之前,病重的时候,我还会吓了她一跳。有一次她自己一个人坐在炕上熬药,药壶是坐在炭火盆上,因为屋里特别地寂静,听得见那药壶骨碌骨碌地响。祖母住着两间房子,是里外屋,恰巧外屋也没有人,里屋也没人,就是她自己。我把门一开,祖母并没有看见我,于是我就用拳头在板隔壁上,咚咚地打了两拳。我听到祖母“哟”地一声,铁火剪子就掉了地上了。

            我再探头一望,祖母就骂起我来。她好像就要下地来追我似的。我就一边笑着,一边跑了。

            我这样地吓唬祖母,也并不是向她报仇,那时我才五岁,是不晓得什么的,也许觉得这样好玩。

            祖父一天到晚是闲着的,祖母什么工作也不分配给他。只有一件事,就是祖母的地榇上的摆设,有一套锡器,却总是祖父擦的。这可不知道是祖母派给他的,还是他自动地愿意工作,每当祖父一擦的时候,我就不高兴,一方面是不能领着我到后园里去玩了,另一方面祖父因此常常挨骂,祖母骂他懒,骂他擦得不干净。祖母一骂祖父的时候,就常常不知为什么连我也骂上。

            祖母一骂祖父,我就拉着祖父的手往外边走,一边说:

            “我们后园里去吧。”

            也许因此祖母也骂了我。

            她骂祖父是“死脑瓜骨”,骂我是“小死脑瓜骨”。

            我拉着祖父就到后园里去了,一到了后园里,立刻就另是一个世界了。绝不是那房子里的狭窄的世界,而是宽广的,人和天地在一起,天地是多么大,多么远,用手摸不到天空。

            而土地上所长的又是那么繁华,一眼看上去,是看不完的,只觉得眼前鲜绿的一片。

            一到后园里,我就没有对象地奔了出去,好像我是看准了什么而奔去了似的,好像有什么在那儿等着我似的。其实我是什么目的也没有。只觉得这园子里边无论什么东西都是活的,好像我的腿也非跳不可了。

            若不是把全身的力量跳尽了,祖父怕我累了想招呼住我,想让我停下来,那是不可能的,反而他越招呼,我越不听话。

            等到自己实在跑不动了,才坐下来休息,那休息也是很快的,也不过随便在秧子上摘下一个黄瓜来,吃了也就好了。

            休息好了又是跑。

            樱桃树,明是没有结樱桃,就偏跑到树上去找樱桃。李子树是半死的样子了,本不结李子的,就偏去找李子。一边在找,还一边大声地喊,在问着祖父:

            “爷爷,樱桃树为什么不结樱桃?”

            祖父老远地回答着:

            “因为没有开花,就不结樱桃。”

            再问:

            “为什么樱桃树不开花?”

            祖父说:

            “因为你嘴馋,它就不开花。”

            我一听了这话,明明是嘲笑我的话,于是就飞奔着跑到祖父那里,似乎是很生气的样子。等祖父把眼睛一抬,他用了完全没有恶意的眼睛一看我,我立刻就笑了。而且是笑了半天的工夫才能够止住,不知哪里来了那许多的高兴。把后园一时都让我搅乱了,我笑的声音不知有多大,自己都感到震耳了。

            后园中有一棵玫瑰。一到五月就开花的。一直开到六月。

            花朵和酱油碟那么大。开得很茂盛,满树都是,因为花香,招来了很多的蜂子,嗡嗡地在玫瑰树那儿闹着。

            别的一切都玩厌了的时候,我就想起来去摘玫瑰花,摘了一大堆把草帽脱下来用帽兜子盛着。在摘那花的时候,有两种恐惧,一种是怕蜂子的勾刺人,另一种是怕玫瑰的刺刺手。好不容易摘了一大堆,摘完了可又不知道做什么了。忽然异想天开,这花若给祖父戴起来该多好看。

            祖父蹲在地上拔草,我就给他戴花。祖父只知道我是在捉弄他的帽子,而不知道我到底是在干什么。我把他的草帽给他插了一圈的花,红通通的二三十朵。我一边插着一边笑,当我听到祖父说:

            “今年春天雨水大,咱们这棵玫瑰开得这么香。二里路也怕闻得到的。”

            就把我笑得哆嗦起来。我几乎没有支持的能力再插上去。

            等我插完了,祖父还是安然地不晓得。他还照样地拔着垅上的草。我跑得很远地站着,我不敢往祖父那边看,一看就想笑。所以我借机进屋去找一点吃的来,还没有等我回到园中,祖父也进屋来了。

            那满头红通通的花朵,一进来祖母就看见了。她看见什么也没说,就大笑了起来。父亲母亲也笑了起来,而以我笑得最厉害,我在炕上打着滚笑。

            祖父把帽子摘下来一看,原来那玫瑰的香并不是因为今年春天雨水大的缘故,而是那花就顶在他的头上。

            他把帽子放下,他笑了十多分钟还停不住,过一会一想起来,又笑了。

            祖父刚有点忘记了,我就在旁边提着说:

            “爷爷……今年春天雨水大呀……”

            一提起,祖父的笑就来了。于是我也在炕上打起滚来。

            就这样一天一天地,祖父,后园,我,这三样是一样也不可缺少的了。

            刮了风,下了雨,祖父不知怎样,在我却是非常寂寞的了。去没有去处,玩没有玩的,觉得这一天不知有多少日子那么长。

            偏偏这后园每年都要封闭一次的,秋雨之后这花园就开始凋零了,黄的黄、败的败,好像很快似的一切花朵都灭了,好像有人把它们摧残了似的。它们一齐都没有从前那么健康了,好像它们都很疲倦了,而要休息了似的,好像要收拾收拾回家去了似的。

            大榆树也是落着叶子,当我和祖父偶尔在树下坐坐,树叶竟落在我的脸上来了。树叶飞满了后园。

            没有多少时候,大雪又落下来了,后园就被埋住了。

            通到园子去的后门,也用泥封起来了,封得很厚,整个的冬天挂着白霜。

            我家住着五间房子,祖母和祖父共住两间,母亲和父亲共住两间。祖母住的是西屋,母亲住的是东屋。

            是五间一排的正房,厨房在中间,一齐是玻璃窗子,青砖墙,瓦房间。

            祖母的屋子,一个是外间,一个是内间。外间里摆着大躺箱,地长桌,太师椅。椅子上铺着红椅垫,躺箱上摆着硃砂瓶,长桌上列着座钟。钟的两边站着帽筒。帽筒上并不挂着帽子,而插着几个孔雀翎。

            我小的时候,就喜欢这个孔雀翎,我说它有金色的眼睛,总想用手摸一摸,祖母就一定不让摸,祖母是有洁癖的。

            还有祖母的躺箱上摆着一个座钟,那座钟是非常稀奇的,画着一个穿着古装的大姑娘,好像活了似的,每当我到祖母屋去,若是屋子里没有人,她就总用眼睛瞪我,我几次地告诉过祖父,祖父说:

            “那是画的,她不会瞪人。”

            我一定说她是会瞪人的,因为我看得出来,她的眼珠像是会转。

            还有祖母的大躺箱上也尽雕着小人,尽是穿古装衣裳的,宽衣大袖,还戴顶子,带着翎子。满箱子都刻着,大概有二三十个人,还有吃酒的,吃饭的,还有作揖的……

            我总想要细看一看,可是祖母不让我沾边,我还离得很远的,她就说:

            “可不许用手摸,你的手脏。”

            祖母的内间里边,在墙上挂着一个很古怪很古怪的挂钟,挂钟的下边用铁链子垂着两穗铁苞米。铁苞米比真的苞米大了很多,看起来非常重,似乎可以打死一个人。再往那挂钟里边看就更稀奇古怪了,有一个小人,长着蓝眼珠,钟摆一秒钟就响一下,钟摆一响,那眼珠就同时一转。

            那小人是黄头发,蓝眼珠,跟我相差太远,虽然祖父告诉我,说那是毛子人,但我不承认她,我看她不像什么人。

            所以我每次看这挂钟,就半天半天地看,都看得有点发呆了。我想:这毛子人就总在钟里边待着吗?永久也不下来玩吗?

            外国人在呼兰河的土语叫做“毛子人”。我四五岁的时候,还没有见过一个毛子人,以为毛子人就是因为她的头发毛烘烘地卷着的缘故。

            祖母的屋子除了这些东西,还有很多别的,因为那时候,别的我都不发生什么趣味,所以只记住了这三五样。

            母亲的屋里,就连这一类的古怪玩意也没有了,都是些普通的描金柜,也是些帽筒、花瓶之类,没有什么好看的,我没有记住。

            这五间房子的组织,除了四间住房一间厨房之外,还有极小的、极黑的两个小后房。祖母一个,母亲一个。

            那里边装着各种样的东西,因为是储藏室的缘故。

            坛子罐子、箱子柜子、筐子篓子。除了自己家的东西,还有别人寄存的。

            那里边是黑的,要端着灯进去才能看见。那里边的耗子很多,蜘蛛网也很多。空气不大好,永久有一种扑鼻的和药的气味似的。

            我觉得这储藏室很好玩,随便打开哪一只箱子,里边一定有一些好看的东西,花丝线、各种色的绸条、香荷包、搭腰、裤腿、马蹄袖、绣花的领子。古香古色,颜色都配得特别地好看。箱子里边也常常有蓝翠的耳环或戒指,被我看见了,我一看见就非要一个玩不可,母亲就常常随手抛给我一个。

            还有些桌子带着抽屉的,一打开那里边更有些好玩的东西,铜环、木刀、竹尺、观音粉。这些个都是我在别的地方没有看过的。而且这抽屉始终也不锁的。所以我常常随意地开,开了就把样样似乎是不加选择地都搜了出去,左手拿着木头刀,右手拿着观音粉,这里砍一下,那里画一下。后来我又得到了一个小锯,用这小锯,我开始毁坏起东西来,在椅子腿上锯一锯,在炕沿上锯一锯。我自己竟把我自己的小木刀也锯坏了。

            无论吃饭和睡觉,我这些东西都带在身边,吃饭的时候,我就用这小锯,锯着馒头,睡觉做起梦来还喊着:

            “我的小锯哪里去了?”

            储藏室好像变成我探险的地方了。我常常趁着母亲不在屋我就打开门进去了。这储藏室也有一个后窗,下半天也有一点亮光,我就趁着这亮光打开了抽屉,这抽屉已经被我翻得差不多的了,没有什么新鲜的了。翻了一会,觉得没有什么趣味了,就出来了。到后来连一块水胶、一段绳头都让我拿出来了,把五个抽屉通通拿空了。

            除了抽屉还有筐子笼子,但那个我不敢动,似乎每一样都是黑洞洞的,灰尘不知有多厚,蛛网蛛丝的不知有多少,因此我连想也不想动那东西。

            记得有一次我走到这黑屋子的极深极远的地方去,一个发响的东西撞住我的脚上。我摸起来抱到光亮的地方一看,原来是一个小灯笼,用手指把灰尘一划,露出来是个红玻璃的。

            我在一两岁的时候,大概我是见过灯笼的,可是长到四五岁,反而不认识了。我不知道这是个什么。我抱着去问祖父去了。

            祖父给我擦干净了,里边点上个洋蜡烛,于是我欢喜得就打着灯笼满屋跑,跑了好几天,一直到把这灯笼打碎了才算完了。

            我在黑屋子里边又碰到了一块木头,这块木头是上边刻着花的,用手一摸,很不光滑,我拿出来用小锯锯着。祖父看见了,说:

            “这是印帖子的帖板。”

            我不知道什么叫帖子,祖父刷上一片墨刷一张给我看,我只看见印出来几个小人,还有一些乱七八糟的花,还有字。祖父说:

            “咱们家开烧锅的时候,发帖子就是用这个印的,这是一百吊的……还有五十吊的、十吊的……”

            祖父给我印了许多,还用鬼子红给我印了些红的。

            还有带缨子的清朝的帽子,我也拿了出来戴上。多少年前的老大的鹅翎扇子,我也拿了出来吹着风。翻了一瓶莎仁出来,那是治胃病的药,母亲吃着,我也跟着吃。

            不久,这些八百年前的东西,都被我弄出来了。有些是祖母保存着的,有些是已经出了嫁的姑母的遗物,已经在那黑洞洞的地方放了多少年了,连动也没有动过。有些个快要腐烂了,有些个生了虫子,因为那些东西早被人们忘记了,好像世界上已经没有那么一回事了。而今天忽然又来到了他们的眼前,他们受了惊似的又恢复了他们的记忆。

            每当我拿出一件新的东西的时候,祖母看见了,祖母说:

            “这是多少年前的了!这是你大姑在家里边玩的……”

            祖父看见了,祖父说:

            “这是你二姑在家时用的……”

            这是你大姑的扇子,那是你三姑的花鞋……都有了来历。

            但我不知道谁是我的三姑,谁是我的大姑。也许我一两岁的时候,我见过她们,可是我到四五岁时,我就不记得了。

            我祖母有三个女儿,到我长起来时,她们都早已出嫁了。

            可见二三十年内就没有小孩子了。而今也只有我一个。实在的还有一个小弟弟,不过那时他才一岁半岁的,所以不算他。

            家里边多少年前放的东西,没有动过,他们过的是既不向前、也不回头的生活。是凡过去的,都算是忘记了,未来的他们也不怎样积极地希望着,只是一天一天地平板地、无怨无尤地在他们祖先给他们准备好的口粮之中生活着。

            等我生来了,第一给了祖父无限的欢喜,等我长大了,祖父非常地爱我,使我觉得在这世界上,有了祖父就够了,还怕什么呢?虽然父亲的冷淡,母亲的恶言恶色,和祖母的用针刺我手指的这些事,都觉得算不了什么。何况又有后花园!

            后园虽然让冰雪给封闭了,但是又发现了这储藏室。这里边是无穷无尽地什么都有,这里边保藏着的都是我所想象不到的东西,使我感到这世界上的东西怎么这样多!而且样样好玩,样样新奇。

            比方我得到了一包颜料,是中国的大绿,看那颜料闪着金光,可是往指甲上一染,指甲就变绿了,往胳臂上一染,胳臂立刻飞来了一张树叶似的。实在是好看,也实在是莫名其妙,所以心里边就暗暗地欢喜,莫非是我得了宝贝吗?

            得了一块观音粉。这观音粉往门上一划,门就白了一道,往窗上一划,窗就白了一道。这可真有点奇怪,大概祖父写字的墨是黑墨,而这是白墨吧。

            得了一块圆玻璃,祖父说是“显微镜”。它在太阳底下一照,竟把祖父装好的一袋烟照着了。

            这该多么使人欢喜,什么什么都会变的。你看它是一块废铁,说不定它就有用,比方我捡到一块四方的铁块,上边有一个小窝。祖父把榛子放在小窝里边,打着榛子给我吃。在这小窝里打,不知道比用牙咬要快了多少倍。何况祖父老了,他的牙又多半不大好。

            我天天从那黑屋子往外搬着,而天天有新的。搬出来一批,玩厌了,弄坏了,就再去搬。

            因此使我的祖父、祖母常常地慨叹。

            他们说这是多少年前的了,连我的第三个姑母还没有生的时候就有这东西。那是多少年前的了,还是分家的时候,从我曾祖那里得来的呢。又哪样哪样是什么人送的,而那家人家到今天也都家败人亡了,而这东西还存在着。

            又是我在玩着的那葡蔓藤的手镯,祖母说她就戴着这个手镯,有一年夏天坐着小车子,抱着我大姑去回娘家,路上遇了土匪,把金耳环给摘去了,而没有要这手镯。若也是金的银的,那该多危险,也一定要被抢去的。

            我听了问她:

            “我大姑在哪儿?”

            祖父笑了。祖母说:

            “你大姑的孩子比你都大了。”

            原来是四十年前的事情,我哪里知道。可是藤手镯却戴在我的手上,我举起手来,摇了一阵,那手镯好像风车似的,滴溜溜地转,手镯太大了,我的手太细了。

            祖母看见我把从前的东西都搬出来了,她常常骂我:

            “你这孩子,没有东西不拿着玩的,这小不成器的……”

            她嘴里虽然是这样说,但她又在光天化日之下得以重看到这东西,也似乎给了她一些回忆的满足。所以她说我是并不十分严刻的,我当然是不听她,该拿还是照旧地拿。

            于是我家里久不见天日的东西,经我这一搬弄,才得以见了天日。于是坏的坏,扔的扔,也就都从此消灭了。

            我有记忆的第一个冬天,就这样过去了。没有感到十分地寂寞,但总不如在后园里那样玩着好。但孩子是容易忘记的,也就随遇而安了。

            第二年夏天,后园里种了不少的韭菜,是因为祖母喜欢吃韭菜馅的饺子而种的。

            可是当韭菜长起来时,祖母就病重了,而不能吃这韭菜了,家里别的人也没有吃这韭菜的,韭菜就在园子里荒着。

            因为祖母病重,家里非常热闹,来了我的大姑母,又来了我的二姑母。

            二姑母是坐着她自家的小车子来的。那拉车的骡子挂着铃铛,哗哗啷啷地就停在窗前了。

            从那车上第一个就跳下来一个小孩,那小孩比我高了一点,是二姑母的儿子。

            他的小名叫“小兰”,祖父让我向他叫兰哥。

            别的我都不记得了,只记得不大一会工夫我就把他领到后园里去了。

            告诉他这个是玫瑰树,这个是狗尾草,这个是樱桃树。樱桃树是不结樱桃的,我也告诉了他。

            不知道在这之前他见过我没有,我可并没有见过他。

            我带他到东南角上去看那棵李子树时,还没有走到眼前,他就说:

            “这树前年就死了。”

            他说了这样的话,是使我很吃惊的。这树死了,他可怎么知道的?心中立刻来了一种忌妒的情感,觉得这花园是属于我的,和属于祖父的,其余的人连晓得也不该晓得才对的。

            我问他:

            “那么你来过我们家吗?”

            他说他来过。

            这个我更生气了,怎么他来我不晓得呢?

            我又问他:

            “你什么时候来过的?”

            他说前年来的,他还带给我一个毛猴子。他问着我:

            “你忘了吗?你抱着那毛猴子就跑,跌倒了你还哭了哩!”

            我无论怎样想,也想不起来了。不过总算他送给我过一个毛猴子,可见对我是很好的,于是我就不生他的气了。

            从此天天就在一块玩。

            他比我大三岁,已经八岁了,他说他在学堂里边念了书的,他还带来了几本书,晚上在煤油灯下他还把书拿出来给我看。书上有小人、有剪刀、有房子。因为都是带着图,我一看就连那字似乎也认识了,我说:

            “这念剪刀,这念房子。”

            他说不对:

            “这念剪,这念房。”

            我拿过来一细看,果然都是一个字,而不是两个字,我是照着图念的,所以错了。

        我也有一盒方字块,这边是图,那边是字,我也拿出来给他看了。

            从此整天地玩。祖母病重与否,我不知道。不过在她临死的前几天就穿上了满身的新衣裳,好像要出门做客似的。说是怕死了来不及穿衣裳。

            因为祖母病重,家里热闹得很,来了很多亲戚。忙忙碌碌不知忙些个什么。有的拿了些白布撕着,撕得一条一块的,撕得非常地响亮,旁边就有人拿着针在缝那白布。还有的把一个小罐里边装了米,罐口蒙上了红布。还有的在后园门口拢起火来,在铁火勺里边炸着面饼了。问她:

            “这是什么?”

            “这是打狗饽饽。”

            她说阴间有十八关,过到狗关的时候,狗就上来咬人,用这饽饽一打,狗吃了饽饽就不咬人了。

            似乎是姑妄言之、姑妄听之,我没有听进去。

            家里边的人越多,我就越寂寞,走到屋里,问问这个,问问那个,一切都不理解。祖父也似乎把我忘记了。我从后园里捉了一个特别大的蚂蚱送给他去看,他连看也没有看,就说:

            “真好,真好,上后园去玩去吧!”

            新来的兰哥也不陪我时,我就在后园里一个人玩。

            祖母已经死了,人们都到龙王庙上去报过庙回来了。而我还在后园里边玩着。

            后园里边下了点雨,我想要进屋去拿草帽去,走到酱缸旁边(我家的酱缸是放在后园里的),一看,有雨点啪啪地落到缸帽子上。我想这缸帽子该多大,遮起雨来,比草帽一定更好。

            于是我就从缸上把它翻下来了,到了地上它还乱滚一阵。这时候,雨就大了,我好不容易才设法钻进这缸帽子去。因为这缸帽子太大了,差不多和我一般高。

            我顶着它,走了几步,觉得天昏地暗。而且重也是很重的,非常吃力。而且自己已经走到哪里了,自己也不晓得,只晓得头顶上啪啪啦啦地打着雨点,往脚下看着,脚下只是些狗尾草和韭菜。找了一个韭菜很厚的地方,我就坐下了,一坐下这缸帽子就和个小房似的扣着我。这比站着好得多,头顶不必顶着,帽子就扣在韭菜地上。但是里边可是黑极了,什么也看不见。

            同时听什么声音,也觉得都远了。大树在风雨里边被吹得呜呜的,好像大树已经被搬到别人家的院子去似的。

            韭菜是种在北墙根上,我是坐在韭菜上。北墙根离家里的房子很远的,家里边那闹嚷嚷的声音,也像是来在远方。

            我细听了一会,听不出什么来,还是在我自己的小屋里边坐着。这小屋这么好,不怕风,不怕雨,站起来走的时候,顶着屋盖就走了,有多么轻快。

            其实是很重的了,顶起来非常吃力。

            我顶着缸帽子,一路摸索着,来到了后门口,我是要顶给爷爷看看的。

            我家的后门坎特别高,迈也迈不过去,因为缸帽子太大,使我抬不起腿来。好不容易两手把腿拉着,弄了半天,总算是过去了。虽然进了屋,仍是不知道祖父在什么方向,于是我就大喊。正在这喊之间,父亲一脚把我踢翻了,差点没把我踢到灶口的火堆上去,缸帽子也在地上滚着。

            等人家把我抱了起来,我一看,屋子里的人,完全不对了,都穿了白衣裳。

            再一看,祖母不是睡在炕上,而是睡在一张长板上。

            从这以后祖母就死了。

            祖母一死,家里继续着来了许多亲戚。有的拿着香、纸,到灵前哭了一阵就回去了,有的就带着大包小包的来了就住下了。

            大门前边吹着喇叭,院子里搭了灵棚,哭声终日,一闹闹了不知多少日子。

            请了和尚道士来,一闹闹到半夜,所来的都是吃、喝、说、笑。

            我也觉得好玩,所以就特别高兴起来。又加上从前我没有小同伴,而现在有了。比我大的,比我小的,共有四五个。

            我们上树爬墙,几乎连房顶也要上去了。

            他们带我到小门洞子顶上去捉鸽子,搬了梯子到房檐头上去捉家雀。后花园虽然大,已经装不下我了。

            我跟着他们到井口边去往井里边看,那井是多么深,我从未见过。在上边喊一声,里边有人回答。用一个小石子投下去,那响声是很深远的。

            他们带我到粮食房子去,到碾磨房去,有时候竟把我带到街上,是已经离开家了,不跟着家人在一起,我是从来没有走过这样远。

            不料除了后园之外,还有更大的地方,我站在街上,不是看什么热闹,不是看那街上的行人车马,而是心里边想:是不是我将来一个人也可以走得很远?

            有一天,他们把我带到南河沿上去了,南河沿离我家本不算远,也不过半里多地。可是因为我是第一次去,觉得实在很远。走出汗来了。走过一个黄土坑,又过一个南大营,南大营的门口,有兵把守门。那营房的院子大得在我看来太大了,实在是不应该。我们的院子就够大的了,怎么能比我们家的院子更大呢,大得有点不大好看了,我走过了,我还回过头来看。

            路上有一家人家,把花盆摆到墙头上来了,我觉得这也不大好,若是看不见人家偷去呢!

            还看见了一座小洋房,比我们家的房不知好了多少倍。若问我,哪里好?我也说不出来,就觉得那房子是一色新,不像我家的房子那么陈旧。

            我仅仅走了半里多路,我所看见的可太多了。所以觉得这南河沿实在远。问他们:

            “到了没有?”

            他们说:

            “就到的,就到的。”

            果然,转过了大营房的墙角,就看见河水了。

            我第一次看见河水,我不能晓得这河水是从什么地方来的?走了几年了。

            那河太大了,等我走到河边上,抓了一把沙子抛下去,那河水简直没有因此而脏了一点点。河上有船,但是不很多,有的往东去了,有的往西去了。也有的划到河的对岸去的,河的对岸似乎没有人家,而是一片柳条林。再往远看,就不能知道那是什么地方了,因为也没有人家,也没有房子,也看不见道路,也听不见一点音响。

            我想将来是不是我也可以到那没有人的地方去看一看。

            除了我家的后园,还有街道。除了街道,还有大河。除了大河,还有柳条林。除了柳条林,还有更远的,什么也没有的地方,什么也看不见的地方,什么声音也听不见的地方。

            究竟除了这些,还有什么,我越想越不知道了。

            就不用说这些我未曾见过的。就说一个花盆吧,就说一座院子吧。院子和花盆,我家里都有。但说那营房的院子就比我家的大,我家的花盆是摆在后园里的,人家的花盆就摆到墙头上来了。

            可见我不知道的一定还有。

            所以祖母死了,我竟聪明了。

            祖母死了,我就跟祖父学诗。因为祖父的屋子空着,我就闹着一定要睡在祖父那屋。

            早晨念诗,晚上念诗,半夜醒了也是念诗。念了一阵,念困了再睡去。

            祖父教我的有《千家诗》,并没有课本,全凭口头传诵,祖父念一句,我就念一句。

            祖父说:

            “少小离家老大回……”

            我也说:“少小离家老大回……”

            都是些什么字,什么意思,我不知道,只觉得念起来那声音很好听。所以很高兴地跟着喊。我喊的声音,比祖父的声音更大。

            我一念起诗来,我家的五间房都可以听见。祖父怕我喊坏了喉咙,常常警告着我说:

            “房盖被你抬走了。”

            听了这笑话,我略微笑了一会工夫,过不了多久,就又喊起来了。

            夜里也是照样地喊,母亲吓唬我,说再喊她要打我。

            祖父也说:

            “没有你这样念诗的,你这不叫念诗,你这叫乱叫。”

            但我觉得这乱叫的习惯不能改,若不让我叫,我念它干什么。每当祖父教我一个新诗,一开头我若听了不好听,我就说:

            “不学这个。”

            祖父于是就换一个,换一个不好,我还是不要。

            “春眠不觉晓,处处闻啼鸟。

            夜来风雨声,花落知多少。”

            这一首诗,我很喜欢,我一念到第二句,“处处闻啼鸟”那“处处”两字,我就高兴起来了。觉得这首诗,实在是好,真好听,“处处”该多好听。

            还有一首我更喜欢的:

            “重重叠叠上楼台,几度呼童扫不开。
            刚被太阳收拾去,又为明月送将来。”

            就这“几度呼童扫不开”,我根本不知道什么意思,就念成“西沥忽通扫不开”。

            越念越觉得好听,越念越有趣味。

            还当客人来了,祖父总是呼我念诗的,我就总喜念这一首。

            那客人不知听懂了与否,只是点头说好。

            就这样瞎念,到底不是久计。念了几十首之后,祖父开讲了。

            “少小离家老大回,乡音无改鬓毛衰。”

            祖父说:

            “这是说小的时候离开了家到外边去,老了回来了。乡音无改鬓毛衰,这是说家乡的口音还没有改变,胡子可白了。”

            我问祖父:

            “为什么小的时候离家?离家到哪里去?”

            祖父说:
            “好比爷像你那么大离家,现在老了回来了,谁还认识呢?‘儿童相见不相识,笑问客从何处来。’小孩子见了就招呼着说:你这个白胡子老头,是从哪里来的?”

            我一听觉得不大好,赶快就问祖父:

            “我也要离家的吗?等我胡子白了回来,爷爷你也不认识我了吗?”

            心里很恐惧。

            祖父一听就笑了:

            “等你老了还有爷爷吗?”

            祖父说完了,看我还是不很高兴,他又赶快说:

            “你不离家的,你哪里能够离家……快再念一首诗吧!念‘春眠不觉晓’……”

            我一念起“春眠不觉晓”来,又是满口的大叫,得意极了。完全高兴,什么都忘了。

            但从此再读新诗,一定要先讲的,没有讲过的也要重讲。

            似乎那大嚷大叫的习惯稍稍好了一点。

            “两个黄鹂鸣翠柳,一行白鹭上青天。”

            这首诗本来我也很喜欢的,黄梨是很好吃的。经祖父这一讲,说是两个鸟,于是不喜欢了。

            “去年今日此门中,人面桃花相映红。

            人面不知何处去,桃花依旧笑春风。”

            这首诗祖父讲了我也不明白,但是我喜欢这首。因为其中有桃花。桃树一开了花不就结桃吗?桃子不是好吃吗?

            所以每念完这首诗,我就接着问祖父:

            “今年咱们的樱桃树开不开花?”

            除了念诗之外,还很喜欢吃。

            记得大门洞子东边那家是养猪的,一个大猪在前边走,一群小猪跟在后边。有一天一个小猪掉井了,人们用抬土的筐子把小猪从井里吊了上来。吊上来,那小猪早已死了。井口旁边围了很多人看热闹,祖父和我也在旁边看热闹。

            那小猪一被打上来,祖父就说他要那小猪。

            祖父把那小猪抱到家里,用黄泥裹起来,放在灶坑里烧上了,烧好了给我吃。

            我站在炕沿旁边,那整个的小猪,就摆在我的眼前。祖父把那小猪一撕开,立刻就冒了油。真香,我从来没有吃过那么香的东西,从来没有吃过那么好吃的东西。

            第二次,又有一只鸭子掉井了,祖父也用黄泥包起来,烧上给我吃了。

            在祖父烧的时候,我也帮着忙,帮着祖父搅黄泥,一边喊着,一边叫着,好像拉拉队似的给祖父助兴。

            鸭子比小猪更好吃,那肉是不怎样肥的。所以我最喜欢吃鸭子。

            我吃,祖父在旁边看着。祖父不吃。等我吃完了,祖父才吃。他说我的牙齿小,怕我咬不动,先让我选嫩的吃,我吃剩了的他才吃。

            祖父看我每咽下去一口,他就点一下头,而且高兴地说:

            “这小东西真馋。”或是:“这小东西吃得真快。”

            我的手满是油,随吃随在大襟上擦着,祖父看了也并不生气,只是说:

            “快蘸点盐吧,快蘸点韭菜花吧,空口吃不好,等会要反胃的……”

            说着就捏几个盐粒放在我手上拿着的鸭子肉上。我一张嘴又进肚去了。

            祖父越称赞我能吃,我越吃得多。祖父看看不好了,怕我吃多了,让我停下,我才停下来。我明明白白地是吃不下去了,可是我嘴里还说着:

            “一个鸭子还不够呢!”

            自此吃鸭子的印象非常之深,等了好久,鸭子再不掉到井里。我看井沿有一群鸭子,我拿了秫秆就往井里边赶,可是鸭子不进去,围着井口转,而且呱呱地叫着。我就招呼了在旁边看热闹的小孩子,我说:

            “帮我赶哪!”

            正在吵吵叫叫的时候,祖父奔到了,祖父说:

            “你在干什么?”

            我说:

            “赶鸭子,鸭子掉井,捞出来好烧吃。”

            祖父说:

            “不用赶了,爷爷抓个鸭子给你烧着。”

            我不听他的话,我还是追在鸭子的后边跑着。

            祖父上前来把我拦住了,抱在怀里,一面给我擦着汗一面说:

            “跟爷爷回家,抓个鸭子烧上。”

            我想:不掉井的鸭子,抓都抓不住,可怎么能规规矩矩贴起黄泥来让烧呢?于是我从祖父的身上往下挣扎着,喊着:
            “我要掉井的!我要掉井的!”

            祖父几乎抱不住我了。

            一到了夏天,蒿草长没大人的腰了,长没我的头顶了,黄狗进去,连个影也看不见了。

            夜里一刮起风来,蒿草就刷拉刷拉地响着,因为满院子都是蒿草,所以那响声就特别大,成群结队地就响起来了。

            下了雨,那蒿草的梢上都冒着烟,雨本来下得不很大,若一看那蒿草,好像那雨下得特别大似的。

            下了毛毛雨,那蒿草上就迷漫得朦朦胧胧的,像是已经来了大雾,或者像是要变天了,好像是下了霜的早晨,混混沌沌的,在蒸腾着白烟。

            刮风和下雨,这院子是很荒凉的了。就是晴天,多大的太阳照在上空,这院子也一样是荒凉的。没有什么显眼耀目的装饰,没有人工设置过的一点痕迹,什么都是任其自然,愿意东,就东,愿意西,就西。若是纯然能够做到这样,倒也保存了原始的风景。但不对的,这算什么风景呢?东边堆着一堆朽木头,西边扔着一片乱柴火。左门旁排着一大片旧砖头,右门边晒着一片沙泥土。

            沙泥土是厨子拿来搭炉灶的,搭好了炉灶,泥土就扔在门边了。若问他还有什么用处吗,我想他也不知道,不过忘了就是了。

            至于那砖头可不知道是干什么的,已经放了很久了,风吹日晒,下了雨被雨浇。反正砖头是不怕雨的,浇浇又碍什么事。那么就浇着去吧,没人管它。其实也正不必管它,凑巧炉灶或是炕洞子坏了,那就用得着它了。就在眼前,伸手就来,用着多么方便。但是炉灶就总不常坏,炕洞子修得也比较结实。不知哪里找的这样好的工人,一修上炕洞子就是一年,头一年八月修上,不到第二年八月是不坏的,就是到了第二年八月,也得泥水匠来、砖瓦匠来,用铁刀一块一块地把砖砍着搬下来。所以那门前的一堆砖头似乎是一年也没有多大的用处。三年两年的还是在那里摆着。大概总是越摆越少,东家拿去一块垫花盆,西家搬去一块又是做什么。不然若是越摆越多,那可就糟了,岂不是慢慢地会把房门封起来的吗?

            其实门前的那砖头是越来越少的。不用人工,任其自然,过了三年两载也就没有了。

            可是目前还是有的。就和那堆泥土同时在晒着太阳,它陪伴着它,它陪伴着它。

            除了这个,还有打碎了的大缸扔在墙边上,大缸旁边还有一个破了口的坛子陪着它蹲在那里。坛子底上没有什么,只积了半坛雨水,用手攀着坛子边一摇动:那水里边有很多活物,会上下地跑,似鱼非鱼,似虫非虫,我不认识。再看那勉强站着的,几乎是站不住了的已经被打碎了的大缸,那缸里边可是什么也没有。其实不能够说那是“里边”,本来这缸已经破了肚子,谈不到什么“里边”“外边”了,就简称“缸碴”吧!在这缸碴上什么也没有,光滑可爱,用手一拍还会发响。小时候就总喜欢到旁边去搬一搬,一搬就不得了了,在这缸碴的下边有无数的潮虫。吓得赶快就跑。跑得很远地站在那里回头看着,看了一回,那潮虫乱跑一阵又回到那缸碴的下边去了。

            这缸碴为什么不扔掉呢?大概就是专养潮虫。

            和这缸碴相对着,还扣着一个猪槽子,那猪槽子已经腐朽了,不知扣了多少年了。槽子底上长了不少的蘑菇,黑森森的,那是些小蘑;看样子,大概吃不得,不知长着做什么。

            靠着槽子的旁边就睡着一柄生锈的铁犁头。

            说也奇怪,我家里的东西都是成对的,成双的。没有单个的。

            砖头晒太阳,就有泥土来陪着。有破坛子,就有破大缸。

            有猪槽子就有铁犁头。像是它们都配了对,结了婚。而且各自都有新生命送到世界上来。比方坛子里的似鱼非鱼,大缸下边的潮虫,猪槽子上的蘑菇等等。

            不知为什么,这铁犁头,却看不出什么新生命来,而是全体腐烂下去了。什么也不生,什么也不长,全体黄澄澄的。

            用手一触就往下掉末,虽然它本质是铁的,但沦落到今天,就完全像黄泥做的了,就像要瘫了的样子。比起它的同伴那木槽子来,真是远差千里,惭愧惭愧。这犁头假若是人的话,一定要流泪大哭:“我的体质比你们都好哇,怎么今天衰弱到这个样子?”

            它不但它自己衰弱,发黄,一下了雨,它那满身的黄色的色素,还跟着雨水流到别人的身上去。那猪槽子的半边已经被染黄了。

            那黄色的水流,直流得很远,是凡它所经过的那条土地,都被它染得焦黄。

            我家是荒凉的。

            一进大门,靠着大门洞子的东壁是三间破房子,靠着大门洞子的西壁仍是三间破房子。再加上一个大门洞,看起来是七间连着串,外表上似乎是很威武的,房子都很高大,架着很粗的木头的房架。柁头是很粗的,一个小孩抱不过来。都一律是瓦房盖,房脊上还有透窿的用瓦做的花,迎着太阳看去,是很好看的。房脊的两梢上,一边有一个鸽子,大概也是瓦做的,终年不动,停在那里。这房子的外表,似乎不坏。

            但我看它内容空虚。

            西边的三间,自家用装粮食的,粮食没有多少,耗子可是成群了。

            粮食仓子底下让耗子咬出洞来,耗子的全家在吃着粮食。

            耗子在下边吃,麻雀在上边吃。全屋都是土腥气。窗子坏了,用板钉起来,门也坏了,每一开就颤抖抖的。

            靠着门洞子西壁的三间房,是租给一家养猪的。那屋里屋外没有别的,都是猪了。大猪小猪,猪槽子,猪粮食。来往的人也都是猪贩子,连房子带人,都弄得气味非常之坏。

            说来那家也并没有养了多少猪,也不过十个八个的。每当黄昏的时候,那叫猪的声音远近得闻。打着猪槽子,敲着圈棚,叫了几声,停了一停。声音有高有低,在黄昏的庄严的空气里好像是说他家的生活是非常寂寞的。

            除了这一连串的七间房子之外,还有六间破房子,三间破草房,三间碾磨房。

            三间碾磨房一起租给那家养猪的了,因为它靠近那家养猪的。

            三间破草房是在院子的西南角上,这房子它单独地跑得那么远,孤伶伶的,毛头毛脚的,歪歪斜斜地站在那里。

            房顶的草上长着青苔,远看去,一片绿,很是好看。下了雨,房顶上就出蘑菇,人们就上房采蘑菇,就好像上山去采蘑菇一样,一采采了很多。这样出蘑菇的房顶实在是很少有。我家的房子共有三十来间,其余的都不会出蘑菇,所以住在那房里的人一提着筐子上房去采蘑菇,全院子的人没有不羡慕的,都说:

            “这蘑菇是新鲜的,可不比那干蘑菇,若是杀一个小鸡炒上,那真好吃极了。”

            “蘑菇炒豆腐,嗳,真鲜!”

            “雨后的蘑菇嫩过了仔鸡。”

            “蘑菇炒鸡,吃蘑菇而不吃鸡。”

            “蘑菇下面,吃汤而忘了面。”

            “吃了这蘑菇,不忘了姓才怪的。”

            “清蒸蘑菇加姜丝,能吃八碗小米子干饭。”

            “你不要小看了这蘑菇,这是意外之财!”

            同院住的那些羡慕的人,都恨自己为什么不住在那草房里。若早知道租了房子连蘑菇都一起租来了,就非租那房子不可。天下哪有这样的好事,租房子还带蘑菇的。于是感慨唏嘘,相叹不已。

            再说站在房间上正在采着的,在多少只眼目之中,真是一种光荣的工作。于是也就慢慢地采,本来一袋烟的工夫就可以采完,但是要延长到半顿饭的工夫。同时故意选了几个大的,从房顶上骄傲地抛下来,同时说:

            “你们看吧,你们见过这样干净的蘑菇吗?除了是这个房顶,哪个房顶能够长出这样的好蘑菇来。”

            那在下面的,根本看不清房顶到底那蘑菇全部多大,以为一律是这样大的,于是就更增加了无限的惊异。赶快弯下腰去拾起来,拿到家里,晚饭的时候,卖豆腐的来,破费二百钱捡点豆腐,把蘑菇烧上。

            可是那在房顶上的因为骄傲,忘记了那房顶有许多地方是不结实的,已经露了洞了,一不加小心就把脚掉下去了,把脚往外一拔,脚上的鞋子不见了。

            鞋子从房顶落下去,一直就落在锅里,锅里正是翻开的滚水,鞋子就在滚水里边煮上了。锅边漏粉的人越看越有意思,越觉得好玩,那一只鞋子在开水里滚着,翻着,还从鞋底上滚下一些泥浆来,弄得漏下去的粉条都黄忽忽的了。可是他们还不把鞋子从锅里拿出来,他们说,反正这粉条是卖的,也不是自己吃。

            这房顶虽然产蘑菇,但是不能够避雨。一下起雨来,全屋就像小水罐似的,摸摸这个是湿的,摸摸那个是湿的。

            好在这里边住的都是些个粗人。

            有一个歪鼻瞪眼的名叫“铁子”的孩子。他整天手里拿着一柄铁锹,在一个长槽子里边往下切着,切些个什么呢?初到这屋子里来的人是看不清的,因为热气腾腾的这屋里不知都在做些个什么。细一看,才能看出来他切的是马铃薯。槽子里都是马铃薯。

            这草房是租给一家开粉房的。漏粉的人都是些粗人,没有好鞋袜,没有好行李,一个一个的和小猪差不多,住在这房子里边是很相当的,好房子让他们一住也怕是住坏了。何况每一下雨还有蘑菇吃。

            这粉房里的人吃蘑菇,总是蘑菇和粉配在一道,蘑菇炒粉,蘑菇炖粉,蘑菇煮粉。没有汤的叫做“炒”,有汤的叫做“煮”,汤少一点的叫做“炖”。

            他们做好了,常常还端着一大碗来送给祖父。等那歪鼻瞪眼的孩子一走了,祖父就说:

            “这吃不得,若吃到有毒的就吃死了。”

            但那粉房里的人,从来没吃死过,天天里边唱着歌,漏着粉。

            粉房的门前搭了几丈高的架子,亮晶晶的白粉,好像瀑布似的挂在上边。

            他们一边挂着粉,也是一边唱着的。等粉条晒干了,他们一边收着粉,也是一边地唱着。那唱不是从工作所得到的愉快,好像含着眼泪在笑似的。

            逆来顺受,你说我的生命可惜,我自己却不在乎。你看着很危险,我却自己以为得意。不得意怎么样?人生是苦多乐少。

            那粉房里的歌声,就像一朵红花开在了墙头上。越鲜明,就越觉得荒凉。

            正月十五正月正,

            家家户户挂红灯。

            人家的丈夫团圆聚,

            孟姜女的丈夫去修长城。

            只要是一个晴天,粉丝一挂起来了,这歌音就听得见的。

            因为那破草房是在西南角上,所以那声音比较地辽远。偶尔也有装腔女人的音调在唱“五更天”。

            那草房实在是不行了,每下一次大雨,那草房北头就要多加一只支柱,那支柱已经有七八只之多了,但是房子还是天天地往北边歪。越歪越厉害,我一看了就害怕,怕从那旁边一过,恰好那房子倒了下来,压在我身上。那房子实在是不像样子了,窗子本来是四方的,都歪斜得变成菱形的了。门也歪斜得关不上了。墙上的大柁就像要掉下来似的,向一边跳出来了。房脊上的正梁一天一天地往北走,已经拔了榫,脱离别人的牵掣,而它自己单独行动起来了。那些钉在房脊上的椽杆子,能够跟着它跑的,就跟着它一顺水地往北边跑下去了;不能够跟着它跑的,就挣断了钉子,而垂下头来,向着粉房里的人们的头垂下来,因为另一头是压在檐外,所以不能够掉下来,只是滴里郎当地垂着。

            我一次进粉房去,想要看一看漏粉到底是怎样漏法。但是不敢细看,我很怕那椽子头掉下来打了我。

            一刮起风来,这房子就喳喳地山响,大柁响,马梁响,门框、窗框响。

            一下了雨,又是喳喳地响。

            不刮风,不下雨,夜里也是会响的,因为夜深人静了,万物齐鸣,何况这本来就会响的房子,哪能不响呢。

            以它响得最厉害。别的东西的响,是因为倾心去听它,就是听得到的,也是极幽渺的,不十分可靠的,也许是因为一个人的耳鸣而引起来的错觉。

            比方猫、狗、虫子之类的响叫,那是因为它们是生物的缘故。可曾有人听过夜里房子会叫的。谁家的房子会叫,叫得好像个活物似的,嚓嚓的,带着无限的重量,往往会把睡在这房子里的人叫醒。

            被叫醒了的人,翻了一个身说:

            “房子又走了。”

            真是活神活现,听他说了这话,好像房子要搬了场似的。

            房子都要搬场了,为什么睡在里边的人还不起来,他是不起来的,他翻了个身又睡了。

            住在这里边的人,对于房子就要倒的这回事,毫不加戒心,好像他们已经有了血族的关系,是非常信靠的。

            似乎这房一旦倒了,也不会压到他们,就像是压到了,也不会压死的,绝对地没有生命的危险。这些人的过度的自信,不知从哪里来的,也许住在那房子里边的人都是用铁铸的,而不是肉长的。再不然就是他们都是敢死队,生命置之度外了。

            若不然为什么这么勇敢?生死不怕。

            若说他们是生死不怕,那也是不对的。比方那晒粉条的人,从杆子上往下摘粉条的时候,那杆子掉下来了,就吓他一哆嗦。粉条打碎了,他还没有敲打着。他把粉条收起来,他还看着那杆子,他思索起来,他说:

            “莫不是……”

            他越想越奇怪,怎么粉打碎了,而人没打着呢。他把那杆子扶了上去,远远地站在那里看着,用眼睛捉摸着。越捉摸越觉得可怕。

            “唉呀!这要是落到头上呢。”

            那真是不堪想象了。于是他摸着自己的头顶,他觉得万幸万幸,下回该加小心。

            本来那杆子还没有房椽子那么粗,可是他一看见,他就害怕。每次他再晒粉条的时候,他都是躲着那杆子,连在它旁边走也不敢走,总是用眼睛溜着它,过了很多日才算把这回事忘了。

            若下雨打雷的时候,他就把灯灭了,他们说雷扑火,怕雷劈着。

            他们过河的时候,抛两个铜板到河里去,传说河是馋的,常常淹死人的,把铜板一摆到河里,河神高兴了,就不会把他们淹死了。

            这证明住在这嚓嚓响着的草房里的他们,也是很胆小的,也和一般人一样是颤颤惊惊地活在这世界上。

            那么这房子既然要塌了,他们为什么不怕呢?

            据卖馒头的老赵头说:

            “他们要的就是这个要倒的么!”

            据粉房里的那个歪鼻瞪眼的孩子说:“这是住房子啊,也不是娶媳妇要她周周正正。”

            据同院住的周家的两位少年绅士说:

            “这房子对于他们那等粗人,就再合适也没有了。”

            据我家的有二伯说:

            “是他们贪图便宜,好房子呼兰城里有的多,为啥他们不搬家呢?好房子人家要房钱的呀,不像是咱们家这房子,一年送来十斤二十斤的干粉就完事,等于白住。你二伯是没有家眷,若不我也找这样房子去住。”

            有二伯说的也许有点对。

            祖父早就想拆了那座房子的,是因为他们几次的全体挽留才留下来的。

            至于这个房子将来倒或不倒,或是发生什么幸与不幸,大家都以为这太远了,不必想了。

            我家的院子是很荒凉的。

            那边住着几个漏粉的,那边住着几个养猪的。养猪的那厢房里还住着一个拉磨的。

            那拉磨的,夜里打着梆子,通夜地打。

            养猪的那一家有几个闲散杂人,常常聚在一起唱着秦腔,拉着胡琴。

            西南角上那漏粉的则喜欢在晴天里边唱一个《叹五更》。

            他们虽然是拉胡琴、打梆子、叹五更,但是并不是繁华的,并不是一往直前的,并不是他们看见了光明,或是希望着光明,这些都不是的。

            他们看不见什么是光明的,甚至于根本也不知道,就像太阳照在了瞎子的头上了,瞎子也看不见太阳,但瞎子却感到实在是温暖了。

            他们就是这类人,他们不知道光明在哪里,可是他们实实在在地感得到寒凉就在他们的身上,他们想击退了寒凉,因此而来了悲哀。

            他们被父母生下来,没有什么希望,只希望吃饱了,穿暖了。但也吃不饱,也穿不暖。

            逆来的,顺受了。

            顺来的事情,却一辈子也没有。

            磨房里那打梆子的,夜里常常是越打越响,他越打得激烈,人们越说那声音凄凉。

            因为他单单的响音,没有同调。

            我家的院子是很荒凉的。

            粉房旁边的那小偏房里,还住着一家赶车的。那家喜欢跳大神,常常就打起鼓来,喝喝咧咧唱起来了。鼓声往往打到半夜才止,那说仙道鬼的,大神和二神的一对一答,苍凉,幽渺,真不知今世何世。

            那家的老太太终年生病,跳大神都是为她跳的。

            那家是这院子顶丰富的一家,老少三辈。家风是干净利落,为人谨慎,兄友弟恭,父慈子爱。家里绝对地没有闲散杂人。绝对不像那粉房和那磨房,说唱就唱,说哭就哭。他家永久是安安静静的。跳大神不算。

            那终年生病的老太太是祖母,她有两个儿子,大儿子是赶车的,二儿子也是赶车的。一个儿子都有一个媳妇。大儿媳妇胖胖的,年已五十了。二儿媳妇瘦瘦的,年已四十了。

            除了这些,老太太还有两个孙儿。大孙儿是二儿子的,二孙儿是大儿子的。

            因此他家里稍稍有点不睦,那两个媳妇妯娌之间,稍稍有点不合适,不过也不很明朗化。只是你我之间各自晓得。做嫂子的总觉得兄弟媳妇对她有些不驯,或者就因为她的儿子大的缘故吧。兄弟媳妇就总觉得嫂子是想压她,凭什么想压人呢?自己的儿子小,没有媳妇指使着,看了别人还眼气。

            老太太有了两个儿子,两个孙子,认为十分满意了。人手整齐,将来的家业,还不会兴旺的吗?就不用说别的,就说赶大车这把力气也是够用的。看看谁家的车上是爷四个,拿鞭子的,坐在车后尾巴上的都是姓胡,没有外姓。在家一盆火,出外父子兵。

            所以老太太虽然是终年病着,但很乐观,也就是跳一跳大神什么的解一解心疑也就算了。她觉得就是死了,也是心安理得的了,何况还活着,还能够看得见儿子们的忙忙碌碌。

            媳妇们对于她也很好的,总是隔长不短地张罗着给她花几个钱跳一跳大神。

            每一次跳神的时候,老太太总是坐在炕里,靠着枕头,挣扎着坐了起来,向那些来看热闹的姑娘媳妇们讲:

            “这回是我大媳妇给我张罗的。”或是:“这回是我二媳妇给我张罗的。”

            她说的时候非常得意,说着说着就坐不住了。她患的是瘫病,就赶快招媳妇们来把她放下了。放下了还要喘一袋烟的工夫。

            看热闹的人,没有一个不说老太太慈祥的,没有一个不说媳妇孝顺的。

            所以每一跳大神,远远近近的人都来了,东院西院的,还有前街后街的也都来了。

            只是不能够预先订座,来得早的就有凳子、炕沿坐;来得晚的,就得站着了。

            一时这胡家的孝顺,居于领导的地位,风传一时,成为妇女们的楷模。

            不但妇女,就是男人也得说:

            “老胡家人旺,将来财也必旺。”

            “天时、地利、人和,最要紧的还是人和。人和了,天时不好也好了。地利不利也利了。”

            “将来看着吧,今天人家赶大车的,再过五年看,不是二等户,也是三等户。”

            我家的有二伯说:

            “你看着吧,过不了几年人家就骡马成群了。别看如今人家就一辆车。”

            他家的大儿媳妇和二儿媳妇的不睦,虽然没有新的发展,可也总没有消灭。

            大孙子媳妇通红的脸,又能干,又温顺。人长得不肥不瘦,不高不矮,说起话来,声音不大不小。正合适配到他们这样的人家。

            车回来了,牵着马就到井边去饮水。车马一出去了,就打草。看她那长相可并不是做这类粗活的人,可是做起事来并不弱于人,比起男人来,也差不了许多。

            放下了外边的事情不说,再说屋里的,也样样拿得起来。剪、裁、缝、补,做哪样像哪样,他家里虽然没有什么绫罗绸缎可做的,就说粗布衣也要做个四六见线,平平板板。一到过年的时候,无管怎样忙,也要偷空给奶奶婆婆、自己的婆婆、大娘婆婆,各人做一双花鞋。虽然没有什么好的鞋面,就说青水布的,也要做个精致。虽然没有丝线,就用棉花线,但那颜色却配得水灵灵地新鲜。

            奶奶婆婆的那双绣的是桃红的大瓣莲花。大娘婆婆的那双绣的是牡丹花。婆婆的那双绣的是素素雅雅的绿叶兰。

            这孙子媳妇回了娘家,娘家的人一问她婆家怎样,她说都好都好,将来非发财不可。大伯公是怎样地兢兢业业,公公是怎样地吃苦耐劳。奶奶婆婆也好,大娘婆婆也好。凡是婆家的无一不好。完全顺心,这样的婆家实在难找。

            虽然她的丈夫也打过她,但她说,哪个男人不打女人呢?

            于是也心满意足地并不以为那是缺陷了。

            她把绣好的花鞋送给奶奶婆婆,她看她绣了那么一手好花,她感到了对这孙子媳妇有无限的惭愧,觉得这样一手好针线,每天让她喂猪打狗的,真是难为了她了。奶奶婆婆把手伸出来,把那鞋接过来,真是不知如何说好,只是轻轻地托着那鞋,苍白的脸孔,笑盈盈地点着头。

            这是这样好的一个大孙子媳妇。二孙子媳妇也订好了,只是二孙子还太小,一时不能娶过来。

            她家的两个妯娌之间的摩擦,都是为了这没有娶过来的媳妇。她自己的婆婆主张把她接过来,做团圆媳妇,婶婆婆就不主张接来,说她太小不能干活,只能白吃饭,有什么好处。

            争执了许久,来与不来,还没有决定。等下回给老太太跳大神的时候,顺便问一问大仙家再说吧。

            我家是荒凉的。

            天还未明,鸡先叫了;后边磨房里那梆子声还没有停止,天就发白了。天一发白,乌鸦群就来了。

            我睡在祖父旁边,祖父一醒,我就让祖父念诗,祖父就念:
            “春眠不觉晓,处处闻啼鸟。
            夜来风雨声,花落知多少?”

            “春天睡觉不知不觉地就睡醒了,醒了一听,处处有鸟叫着,回想昨夜的风雨,可不知道今早花落了多少。”

            是每念必讲的,这是我的约请。

            祖父正在讲着诗,我家的老厨子就起来了。

            他咳嗽着,听得出来,他担着水桶到井边去挑水去了。

            井口离得我家的住房很远,他摇着井绳哗啦啦地响,日里是听不见的,可是在清晨,就听得分外地清明。

            老厨子挑完了水,家里还没有人起来。

            听得见老厨子刷锅的声音刷拉拉地响。老厨子刷完了锅,烧了一锅洗脸水了,家里还没有人起来。

            我和祖父念诗,一直念到太阳出来。

            祖父说:

            “起来吧。”

            “再念一首。”

            祖父说:

            “再念一首可得起来了。”

            于是再念一首,一念完了,我又赖起来不算了,说再念一首。

            每天早晨都是这样纠缠不清地闹。等一开了门,到院子去,院子里边已经是万道金光了,大太阳晒在头上都滚热的了。太阳两丈高了。

            祖父到鸡架那里去放鸡,我也跟在那里,祖父到鸭架那里去放鸭,我也跟在后边。

            我跟着祖父,大黄狗在后边跟着我。我跳着,大黄狗摇着尾巴。

            大黄狗的头像盆那么大,又胖又圆,我总想要当一匹小马来骑它。祖父说骑不得。

            但是大黄狗是喜欢我的,我是爱大黄狗的。

            鸡从架里出来了,鸭子从架里出来了,它们抖擞着毛,一出来就连跑带叫的,吵的声音很大。

            祖父撒着通红的高粱粒在地上,又撒了金黄的谷粒子在地上。

            于是鸡啄食的声音,咯咯地响成群了。

            喂完了鸡,往天空一看,太阳已经三丈高了。

            我和祖父回到屋里,摆上小桌,祖父吃一碗饭米汤,浇白糖;我则不吃,我要吃烧苞米;祖父领着我,到后园去,趟着露水去到苞米丛中为我擗一穗苞米来。

            擗来了苞米,袜子、鞋,都湿了。

            祖父让老厨子把苞米给我烧上,等苞米烧好了,我已经吃了两碗以上的饭米汤浇白糖了。苞米拿来,我吃了一两个粒,就说不好吃,因为我已吃饱了。

            于是我手里拿着烧苞米就到院子去喂大黄去了。

            “大黄”就是大黄狗的名字。

            街上,在墙头外面,各种叫卖声音都有了,卖豆腐的,卖馒头的,卖青菜的。

            卖青菜的喊着,茄子、黄瓜、荚豆和小葱子。

            一挑喊着过去了,又来了一挑;这一挑不喊茄子、黄瓜,而喊着芹菜、韭菜、白菜……

            街上虽然热闹起来了,而我家里则仍是静悄悄的。

            满院子蒿草,草里面叫着虫子。破东西,东一件西一样地扔着。

            看起来似乎是因为清早,我家才冷静,其实不然的,是因为我家的房子多,院子大,人少的缘故。

            哪怕就是到了正午,也仍是静悄悄的。

            每到秋天,在蒿草的当中,也往往开了蓼花,所以引来了不少的蜻蜓和蝴蝶在那荒凉的一片蒿草上闹着。这样一来,不但不觉得繁华,反而更显得荒凉寂寞。

            据说,那团圆媳妇的灵魂,也来到了东大桥下。说她变了一只很大的白兔,隔三差五地就到桥下来哭。

            我玩的时候,除了在后花园里,有祖父陪着,其余的玩法,就只有我自己了。

            我自己在房檐下搭了个小布棚,玩着玩着就睡在那布棚里了。

            我家的窗子是可以摘下来的,摘下来直立着是立不住的,就靠着墙斜立着,正好立出一个小斜坡来,我称这小斜坡叫“小屋”,我也常常睡到这小屋里边去了。

            我家满院子是蒿草,蒿草上飞着许多蜻蜓,那蜻蜓是为着红蓼花而来的。可是我偏偏喜欢捉它,捉累了就躺在蒿草里边睡着了。

            蒿草里边长着一丛一丛的天星星,好像山葡萄似的,是很好吃的。

            我在蒿草里边搜索着吃,吃困了,就睡在天星星秧子的旁边了。

            蒿草是很厚的,我躺在上边好像是我的褥子,蒿草是很高的,它给我遮着荫凉。

            有一天,我就正在蒿草里边做着梦,那是下午晚饭之前,太阳偏西的时候。大概我睡得不太着实,我似乎是听到了什么地方有不少的人讲着话,说说笑笑,似乎是很热闹。但到底发生了什么事情,却听不清,只觉得在西南角上,或者是院里,或者是院外。到底是院里院外,那就不大清楚了。反正是有几个人在一起嚷嚷着。

            我似睡非睡地听了一会就又听不见了。大概我已经睡着了。

            等我睡醒了,回到屋里去,老厨子第一个就告诉我:

            “老胡家的团圆媳妇来啦,你还不知道,快吃了饭去看吧!”

            老厨子今天特别忙,手里端着一盘黄瓜菜往屋里走,因为跟我指手划脚地一讲话,差一点没把菜碟子掉在地上,只把黄瓜丝打翻了。

            我一走进祖父的屋去,只有祖父一个人坐在饭桌前面,桌子上边的饭菜都摆好了,却没有人吃。母亲和父亲都没有来吃饭,有二伯也没有来吃饭。祖父一看见我,祖父就问我:

            “那团圆媳妇好不好?”

            大概祖父以为我是去看团圆媳妇回来的。我说我不知道,我在草棵里边吃天星星来的。

            祖父说:

            “你妈他们都去看团圆媳妇去了,就是那个跳大神的老胡家。”

            祖父说着就招呼老厨子,让他把黄瓜菜快点拿来。

            醋拌黄瓜丝,上边浇着辣椒油,红的红,绿的绿,一定是那老厨子又重切了一盘的,那盘我眼看着撒在地上了。

            祖父一看黄瓜菜也来了,祖父说:

            “快吃吧,吃了饭好看团圆媳妇去。”

            老厨子站在旁边,用围裙在擦着他满脸的汗珠,他每一说话就眨巴眼睛,从嘴里往外喷着唾沫星。他说:

            “那看团圆媳妇的人才多呢!粮米铺的二老婆,带着孩子也去了。后院的小麻子也去了,西院老杨家也来了不少的人,都是从墙头上跳过来的。”

            他说他在井沿上打水看见的。

            经他这一喧哗,我说:

            “爷爷,我不吃饭了,我要看团圆媳妇去。”

            祖父一定让我吃饭,他说吃了饭他带我去。我急得一顿饭也没有吃好。

            我从来没有看过团圆媳妇,我以为团圆媳妇不知道多么好看呢!越想越觉得一定是很好看的,越着急也越觉得是非特别好看不可。不然,为什么大家都去看呢。不然,为什么母亲也不回来吃饭呢。

            越想越着急,一定是很好看的节目都看过。若现在就去,还多少看得见一点,若再去晚了,怕是就来不及了。我就催促着祖父:

            “快吃,快吃,爷爷快吃吧。”

            那老厨子还在旁边乱讲乱说,祖父间或问他一两句。

            我看那老厨子打扰祖父吃饭,我就不让那老厨子说话。那老厨子不听,还是笑嘻嘻地说。我就下地把老厨子硬推出去了。

            祖父还没有吃完,老周家的周三奶又来了,是她说她的公鸡总是往我们这边跑,她是来捉公鸡的。公鸡已经捉到了,她还不走,她还扒着玻璃窗子跟祖父讲话,她说:

            “老胡家那小团圆媳妇过来,你老爷子还没去看看吗?那看的人才多呢,我还没去呢,吃了饭就去。”

            祖父也说吃了饭就去,可是祖父的饭总也吃不完。一会要点辣椒油,一会要点咸盐面的。我看不但我着急,就是那老厨子也急得不得了了。头上直冒着汗,眼睛直眨巴。

            祖父一放下饭碗,连点一袋烟我也不让他点,拉着他就往西南墙角那边走。

            一边走,一边心里后悔,眼看着一些看热闹的人都回来了,为什么一定要等祖父呢?不会一个人早就跑着来吗?何况又觉得我躺在草棵子里就已经听见这边有了动静了。真是越想越后悔,这事情都闹了一个下半天了,一定是好看的都过去了,一定是来晚了。白来了,什么也看不见了,在草棵子听到了这边说笑,为什么不就立刻跑来看呢?越想越后悔。

            自己和自己生气,等到了老胡家的窗前,一听,果然连一点声音也没有了。差一点没有气哭了。

            等真的进屋一看,全然不是那么一回事。母亲,周三奶奶,还有些个不认识的人,都在那里。与我想象的完全不一样,没有什么好看的,团圆媳妇在哪儿?我也看不见,经人家指指点点的,我才看见了。不是什么媳妇,而是一个小姑娘。

            我一看就没有兴趣了,拉着爷爷就向外边走,说:

            “爷爷回家吧。”

            等第二天早晨她出来倒洗脸水的时候,我看见她了。

            她的头发又黑又长,梳着很大的辫子,普通姑娘们的辫子都是到腰间那么长,而她的辫子竟快到膝间了。她脸长得黑忽忽的,笑呵呵的。

            院子里的人,看过老胡家的团圆媳妇之后,没有什么不满意的地方。不过都说太大方了,不像个团圆媳妇了。

            周三奶奶说:

            “见人一点也不知道羞。”

            隔院的杨老太太说:

            “那才不怕羞呢!头一天来到婆家,吃饭就吃三碗。”

            周三奶奶又说:

            “哟哟!我可没见过,别说还是一个团圆媳妇,就说一进门就姓了人家的姓,也得头两天看看人家的脸色。哟哟!那么大的姑娘。她今年十几岁啦?”

            “听说十四岁么!”

            “十四岁会长得那么高,一定是瞒岁数。”

            “可别说呀!也有早长的。”

            “可是他们家可怎么睡呢?”

            “可不是,老少三辈,就三铺小炕……”

            这是杨老太太扒在墙头上和周三奶奶讲的。

            至于我家里,母亲也说那团圆媳妇不像个团圆媳妇。

            老厨子说:

            “没见过,大模大样的,两个眼睛骨碌骨碌地转。”

            有二伯说:

            “介(这)年头是啥年头呢,团圆媳妇也不像个团圆媳妇了。”

            只是祖父什么也不说,我问祖父:

            “那团圆媳妇好不好?”

            祖父说:

            “怪好的。”

            于是我也觉得怪好的。

            她天天牵马到井边上去饮水,我看见她好几回,中间没有什么人介绍,她看看我就笑了,我看看她也笑了。我问她十几岁?她说:

            “十二岁。”

            我说不对。

            “你十四岁的,人家都说你十四岁。”

            她说:

            “他们看我长得高,说十二岁怕人家笑话,让我说十四岁的。”

            我不知道,为什么长得高还让人家笑话,我问她:

            “你到我们草棵子里去玩好吧!”

            她说:

            “我不去,他们不让。”

            过了没有几天,那家就打起团圆媳妇来了,打得特别厉害,那叫声无管多远都可以听得见的。

            这全院子都是没有小孩子的人家,从没有听到过谁家在哭叫。

            邻居左右因此又都议论起来,说早就该打的,哪有那样的团圆媳妇一点也不害羞,坐到那儿坐得笔直,走起路来,走得风快。

            她的婆婆在井边上饮马,和周三奶奶说:

            “给她一个下马威。你听着吧,我回去我还得打她呢,这小团圆媳妇才厉害呢!没见过,你拧她大腿,她咬你;再不然,她就说她回家。”

            从此以后,我家的院子里,天天有哭声,哭声很大,一边哭,一边叫。

            祖父到老胡家去说了几回,让他们不要打她了;说小孩子,知道什么,有点差错教导教导也就行了。

            后来越打越厉害了,不分昼夜。我睡到半夜醒来和祖父念诗的时候,念着念着就听西南角上哭叫起来了。

            我问祖父:

            “是不是那小团圆媳妇哭?”

            祖父怕我害怕,说:

            “不是,是院外的人家。”

            我问祖父:

            “半夜哭什么?”

            祖父说:

            “别管那个,念诗吧。”

            清早醒了,正在念“春眠不觉晓”的时候,那西南角上的哭声又来了。

            一直哭了很久,到了冬天,这哭声才算没有了。

            虽然不哭了,那西南角上又夜夜跳起大神来,打着鼓,叮当叮当地响;大神唱一句,二神唱一句,因为是夜里,听得特别清晰,一句半句的我都记住了。

            什么“小灵花呀”,什么“胡家让她去出马呀”。

            差不多每天大神都唱些个这个。

            早晨起来,我就模拟着唱:

            “小灵花呀,胡家让她去出马呀……”

            而且叮叮当,叮叮当的,用声音模拟着打鼓。

            “小灵花”就是小姑娘;“胡家”就是胡仙;“胡仙”就是狐狸精;“出马”就是当跳大神的。

            大神差不多跳了一个冬天,把那小团圆媳妇就跳出毛病来了。

            那小团圆媳妇,有点黄,没有夏天她刚一来的时候那么黑了。不过还是笑呵呵的。

            祖父带着我到那家去串门,那小团圆媳妇还过来给祖父装了一袋烟。

            她看见我,也还偷着笑,大概她怕她婆婆看见,所以没和我说话。

            她的辫子还是很大的。她的婆婆说她有病了,跳神给她赶鬼。

            等祖父临出来的时候,她的婆婆跟出来了,小声跟祖父说:

            “这团圆媳妇,怕是要不好,是个胡仙旁边的,胡仙要她去出马……”

            祖父想要让他们搬家。但呼兰河这地方有个规矩,春天是二月搬家,秋天是八月搬家。一过了二八月就不是搬家的时候了。

            我们每当半夜让跳神惊醒的时候,祖父就说:

            “明年二月就让他们搬了。”

            我听祖父说了好几次这样的话。

            当我模拟着大神喝喝咧咧地唱着“小灵花”的时候,祖父也说那同样的话,明年二月让他们搬家。

            可是在这期间,院子的西南角上就越闹越厉害。请一个大神,请好几个二神,鼓声连天地响。

            说那小团圆媳妇若再去让她出马,她的命就难保了。所以请了不少的二神来,设法从大神那里把她要回来。

            于是有许多人给他家出了主意,人哪能够见死不救呢?

            于是凡有善心的人都帮起忙来。他说他有一个偏方,她说她有一个邪令。

        有的主张给她扎一个谷草人,到南大坑去烧了。

            有的主张到扎彩铺去扎一个纸人,叫做“替身”,把它烧了或者可以替了她。

            有的主张给她画上花脸,把大神请到家里,让那大神看了,嫌她太丑,也许就不捉她当弟子了,就可以不必出马了。

            周三奶奶则主张给她吃一个全毛的鸡,连毛带腿地吃下去,选一个星星出全的夜,吃了用被子把人蒙起来,让她出一身大汗。蒙到第二天早晨鸡叫,再把她从被子放出来。她吃了鸡,她又出了汗,她的魂灵里边因此就永远有一个鸡存在着,神鬼和胡仙黄仙就都不敢上她的身了。传说鬼是怕鸡的。

            据周三奶奶说,她的曾祖母就是被胡仙抓住过的,闹了整整三年,差一点没死,最后就是用这个方法治好的。因此一生不再闹别的病了。她半夜里正做一个噩梦,她正吓得要命,她魂灵里边的那个鸡,就帮了她的忙,只叫了一声,噩梦就醒了。她一辈子没生过病。说也奇怪,就是到死,也死得不凡。她死那年已经是八十二岁了。八十二岁还能够拿着花线绣花,正给她小孙子绣花兜肚嘴。绣着绣着,就有点困了,她坐在木凳上,背靠着门扇就打一个盹。这一打盹就死了。

            别人就问周三奶奶:

            “你看见了吗?”

            她说:

            “可不是……你听我说呀,死了三天三夜按都按不倒。后来没有办法,给她打着一口棺材也是坐着的,把她放在棺材里,那脸色是红扑扑的,还和活着的一样……”

            别人问她:

            “你看见了吗?”

            她说:

            “哟哟!你这问得可怪,传话传话,一辈子谁能看见多少,不都是传话传的吗!”

            她有点不大高兴了。

            再说西院的杨老太太,她也有个偏方。她说黄连二两,猪肉半斤,把黄连和猪肉都切碎了,用瓦片来焙,焙好了,压成面,用红纸包分成五包包起来。每次吃一包,专治惊风、掉魂。

            这个方法倒也简单。虽然团圆媳妇害的病可不是惊风、掉魂,似乎有点药不对症。但也无妨试一试。好在只是二两黄连,半斤猪肉。何况呼兰河这个地方,又常有卖便宜猪肉的。虽说那猪肉怕是瘟猪,有点靠不住。但那是治病,也不是吃,又有甚么关系。

            “去,买上半斤来,给她治一治。”

            旁边有着赞成的说:

            “反正治不好也治不坏。”

            她的婆婆也说:

            “反正死马当活马治吧!”

            于是团圆媳妇先吃了半斤猪肉加二两黄连。

            这药是婆婆亲手给她焙的。可是切猪肉是他家的大孙子媳妇给切的。那猪肉虽然是连紫带青的,但中间毕竟有一块是很红的,大孙子媳妇就偷着把这块给留下来了。因为她想,奶奶婆婆不是四五个月没有买到一点荤腥了吗?于是她就给奶奶婆婆偷着下了一碗面疙瘩汤吃了。

            奶奶婆婆问:

            “可哪儿来的肉?”

            大孙子媳妇说:

            “你老人家吃就吃吧,反正是孙子媳妇给你做的。”

            那团圆媳妇的婆婆是在灶坑里边搭起瓦来给她焙药。一边焙着,一边说:

            “这可是半斤猪肉,一条不缺……”

            越焙,那猪肉的味越香,有一匹小猫嗅到了香味而来了,想要在那已经焙好了的肉干上攫一爪。它刚一伸爪,团圆媳妇的婆婆一边用手打着那猫,一边说:

            “这也是你动得爪的吗!你这馋嘴巴,人家这是治病呵,是半斤猪肉,你也想要吃一口?你若吃了这口,人家的病可治不好了。一个人活活地要死在你身上,你这不知好歹的。这是整整半斤肉,不多不少。”

            药焙好了,压碎了就冲着水给团圆媳妇吃了。

            一天吃两包,才吃了一天,第二天早晨,药还没有再吃,还有三包压在灶王爷板上,那些传偏方的人就又来了。

            有的说,黄连可怎么能够吃得?黄连是大凉药,出虚汗像她这样的人,一吃黄连就要泄了元气,一个人要泄了元气那还得了吗?

            又一个人说:

            “那可吃不得呀!吃了过不去两天就要一命归阴的。”

            团圆媳妇的婆婆说:

            “那可怎么办呢?”

            那个人就慌忙地问:

            “吃了没有呢?”

            团圆媳妇的婆婆刚一开口,就被他家的聪明的大孙子媳妇给遮过去了,说:

            “没吃,没吃,还没吃。”

            那个人说:

            “既然没吃就不要紧,真是你老胡家有天福,吉星高照,你家差点没有摊了人命。”

            于是他又给出了个偏方,这偏方,据他说已经不算是偏方了,就是东二道街上“李永春”药铺的先生也常常用这个方单,是一用就好的,百试百灵。无管男、女、老、幼,一吃一个好。也无管什么病,头痛、脚痛、肚子痛、五脏六腑痛,跌、打、刀伤,生疮、生疔、生疖子……

            无管什么病,药到病除。

            这究竟是什么药呢?人们越听这药的效力大,就越想知道究竟是怎样的一种药。

            他说:

            “年老的人吃了,眼花缭乱,又恢复到了青春。”

            “年轻的人吃了,力气之大,可以搬动泰山。”

            “妇女吃了,不用胭脂粉,就可以面如桃花。”

            “小孩子吃了,八岁可以拉弓,九岁可以射箭,十二岁可以考状元。”

            开初,老胡家的全家,都为之惊动,到后来怎么越听越远了。本来老胡家一向是赶车拴马的人家,一向没有考状元。

            大孙子媳妇,就让一些围观的闪开一点,她到梳头匣子里拿出一根画眉的柳条炭来。

            她说:

            “快请把药方开给我们吧,好到药铺去赶早去抓药。”

            这个出药方的人,本是“李永春”药铺的厨子。三年前就离开了“李永春”那里了。三年前他和一个妇人吊膀子,那妇人背弃了他,还带走了他半生所积下的那点钱财,因此一气而成了个半疯。虽然是个半疯了,但他在“李永春”那里所记住的药名字还没有全然忘记。

            他是不会写字的,他就用嘴说:

            “车前子二钱,当归二钱,生地二钱,藏红花二钱。川贝母二钱,白术二钱,远志二钱,紫河车二钱……”

            他说着说着似乎就想不起来了,急得头顶一冒汗,张口就说红糖二斤,就算完了。

            说完了,他就和人家讨酒喝。

            “有酒没有,给两盅喝喝。”

            这半疯,全呼兰河的人都晓得,只有老胡家不知道。因为老胡家是外来户,所以受了他的骗了。家里没有酒,就给了他两吊钱的酒钱。那个药方是根本不能够用的,是他随意胡说了一阵的结果。

            团圆媳妇的病,一天比一天严重。据他家里的人说,夜里睡觉,她要忽然坐起来的。看了人她会害怕的。她的眼睛里边老是充满了眼泪。这团圆媳妇大概非出马不可了。若不让她出马,大概人要好不了的。

            这种传说,一传出来,东邻西邻的,又都去建了议,都说哪能够见死不救呢?

            有的说,让她出马就算了。有的说,还是不出马的好。

            年轻轻的就出马,这一辈子可得什么时候才能够到个头。

            她的婆婆则是绝对不赞成出马的,她说:

            “大家可不要错猜了,以为我订这媳妇的时候花了几个钱,我不让她出马,好像我舍不得这几个钱似的。我也是那么想,一个小小的人出了马,这一辈子可什么时候才到个头。”

            于是大家就都主张不出马的好。想偏方的,请大神的,各种人才齐聚,东说东的好,西说西的好。于是来了一个“抽帖儿的”。

            他说他不远千里而来,他是从乡下赶到的。他听城里的老胡家有一个团圆媳妇新接来不久就病了,经过多少名医,经过多少仙家也治不好,他特地赶来看看,万一要用得着,救一个人命也是好的。

        这样一说,十分使人感激。于是让到屋里,坐在奶奶婆婆的炕沿上。给他倒一杯水,给他装一袋烟。

            大孙子媳妇先过来说:

            “我家的弟妹,年本十二岁,因为她长得太高,就说她十四岁。又说又笑,百病皆无。自接到我们家里就一天一天地黄瘦。到近来就水不想喝,饭不想吃,睡觉的时候睁着眼睛,一惊一乍的。什么偏方都吃过了,什么香火也都烧过了,就是百般地不好……”

            大孙子媳妇还没有说完,大娘婆婆就接着说:

            “她来到我家,我没给她气受,哪家的团圆媳妇不受气,一天打八顿,骂三场。可是我也打过她,那是我要给她一个下马威。我只打了她一个多月,虽然说我打得狠了一点,可是不狠哪能够规矩出一个好人来。我也是不愿意狠打她的,打得连喊带叫的,我是为她着想,不打得狠一点,她是不能够中用的。有几回,我是把她吊在大梁上,让她叔公公用皮鞭子狠狠地抽了她几回,打得是狠着点了,打昏过去了。可是只昏了一袋烟的工夫,就用冷水把她浇过来了。是打狠了一点,全身也都打青了,也还出了点血。可是立刻就打了鸡蛋青子给她擦上了。也没有肿得怎样高,也就是十天半月地就好了。这孩子,嘴也是特别硬,我一打她,她就说她要回家。

            “我就问她:‘哪儿是你的家?这儿不就是你的家吗?’她可就偏不这样说。她说回她的家。我一听就更生气。人在气头上还管得了这个那个,因此我也用烧红过的烙铁烙过她的脚心。

            “谁知道来,也许是我把她打掉了魂啦,也许是我把她吓掉了魂啦。她一说她要回家,我不用打她,我就说看你回家,我用锁链子把你锁起来。她就吓得直叫。大仙家也看过了,说是要她出马。一个团圆媳妇的花费也不少呢,你看她八岁我订下她的,一订就是八两银子,年年又是头绳钱,鞋面钱的,到如今又用火车把她从辽阳接来,这一路的盘费。到了这儿,就是今天请神,明天看香火,几天吃偏方。若是越吃越好,那还罢了。可是百般地不见好,将来谁知道来……到结果……”

            不远千里而来的这位抽帖儿的,端庄严肃,风尘仆仆,穿的是蓝袍大衫,罩着棉袄,头上戴的是长耳四喜帽,使人一见了就要尊之为师。

            所以奶奶婆婆也说:

            “快给我二孙子媳妇抽一个帖吧,看看她的命理如何。”

            那抽帖儿的一看,这家人家真是诚心诚意,于是他就把皮耳帽子从头上摘下来了。

            一摘下帽子来,别人都看得见,这人头顶上梳着发卷,戴着道帽。一看就知道他可不是市井上一般的平凡的人。别人正想要问,还不等开口,他就说他是某山上的道人,他下山来是为的奔向山东的泰山去,谁知路出波折,缺少盘缠,就流落在这呼兰河的左右,已经不下半年之久了。

            人家问他,既是道人,为什么不穿道人的衣裳。他回答说:

            “你们哪里晓得,世间三百六十行,各有各的苦。这地方的警察特别厉害,他一看穿了道人的衣裳,他就说三问四。他们那些叛道的人,无理可讲,说抓就抓,说拿就拿。”

            他还有一个别号,叫云游真人,他说一提云游真人,远近皆知。无管什么病痛或是吉凶,若一抽了他的帖儿,则生死存亡就算定了。他说他的帖法,是张天师所传。

            他的帖儿并不多,只有四个,他从衣裳的口袋里一个一个地往外摸,摸出一帖来是用红纸包着,再一帖还是红纸包着,摸到第四帖也都是红纸包着。

            他说帖下也没有字,也没有影。里边只包着一包药面,一包红,一包绿,一包蓝,一包黄。抽着黄的就是黄金富贵,抽着红的就是红颜不老。抽到绿的就不大好了,绿色的是鬼火。抽到蓝的也不大好,蓝的就是铁脸蓝青,张天师说过,铁脸蓝青,不死也得见阎王。

            那抽帖的人念完了一套,就让病人的亲人伸出手来抽。

            团圆媳妇的婆婆想,这倒也简单、容易,她想赶快抽一帖出来看看,命定是死是活,多半也可以看出来个大概。不曾想,刚一伸出手去,那云游真人就说:

            “每帖十吊钱,抽着蓝的,若嫌不好,还可以再抽,每帖十吊……”

            团圆媳妇的婆婆一听,这才恍然大悟,原来这可不是白抽的,十吊钱一张可不是玩的,一吊钱捡豆腐可以捡二十块。

            三天捡一块豆腐,二十块,二三得六,六十天都有豆腐吃。若是隔十天捡一块,一个月捡三块,那就半年都不缺豆腐吃了。

            她又想,三天一块豆腐,哪有这么浪费的人家。依着她一个月捡一块大家尝尝也就是了,那么办,二十块豆腐,每月一块,可以吃二十个月,这二十个月,就是一年半还多两个月。

            若不是买豆腐,若养一口小肥猪,经心地喂着它,喂得胖胖的,喂到五六个月,那就是多少钱哪!喂到一年,那就是千八百吊了……

            再说就是不买猪,买鸡也好,十吊钱的鸡,就是十来个,一年的鸡,第二年就可以下蛋,一个蛋,多少钱!就说不卖鸡蛋,就说拿鸡蛋换青菜吧,一个鸡蛋换来的青菜,够老少三辈吃一天的了……何况鸡会生蛋,蛋还会生鸡,永远这样循环地生下去,岂不有无数的鸡,无数的蛋了吗?岂不发了财吗?

            但她可并不是这么想,她想够吃也就算了,够穿也就算了。一辈子俭俭朴朴,多多少少积储了一点也就够了。她虽然是爱钱,若说让她发财,她可绝对地不敢。

            那是多么多呀!数也数不过来了。记也记不住了。假若是鸡生了蛋,蛋生了鸡,来回地不断地生,这将成个什么局面,鸡岂不和蚂蚁一样多了吗?看了就要眼花,眼花就要头痛。

            这团圆媳妇的婆婆,从前也养过鸡,就是养了十吊钱的。

            她也不多养,她也不少养。十吊钱的就是她最理想的。十吊钱买了十二个小鸡仔,她想:这就正好了,再多怕丢了,再少又不够十吊钱的。

            在她一买这刚出蛋壳的小鸡子的时候,她就挨着个看,这样的不要,那样的不要。黑爪的不要,花膀的不要,脑门上带点的又不要。她说她亲娘就是会看鸡,那真是养了一辈子鸡呀!年年养,可也不多养。可是一辈子针啦,线啦,没有缺过,一年到头没花过钱,都是拿鸡蛋换的。人家那眼睛真是认货,什么样的鸡短命,什么样的鸡长寿,一看就跑不了她老人家的眼睛的。就说这样的鸡下蛋大,那样的鸡下蛋小,她都一看就在心里了。

            她一边买着鸡,她就一边怨恨着自己没有用,想当年为什么不跟母亲好好学学呢!唉!年轻的人哪里会虑后事。她一边买着,就一边感叹。她虽然对这小鸡仔的选择上边,也下了万分的心思,可以说是选无可选了。那卖鸡子的人一共有二百多小鸡,她通通地选过了,但究竟她所选了的,是否都是顶优秀的,这一点,她自己也始终把握不定。

            她养鸡,是养得很经心的,她怕猫吃了,怕耗子咬了。

            她一看那小鸡,白天一打盹,她就给驱着苍蝇,怕苍蝇把小鸡咬醒了。她让它多睡一会,她怕小鸡睡眠不足。小鸡的腿上,若让蚊子咬了一块疤,她一发现了,她就立刻泡了艾蒿水来给小鸡来擦。她说若不及早地擦呀,那将来是公鸡就要长不大,是母鸡就要下小蛋。

            小鸡蛋一个换两块豆腐,大鸡蛋换三块豆腐。这是母鸡。再说公鸡,公鸡是一刀菜,谁家杀鸡不想杀胖的。小公鸡是不好卖的。

            等她的小鸡略微长大了一点,能够出了屋了,能够在院子里自己去找食吃去的时候,她就把它们给染了六匹红的,六匹绿的,都是在脑门上。

            至于把颜色染在什么地方,那就先得看邻居家的都染在什么地方,而后才能够决定。邻居家的小鸡把色染在膀梢上,那她就染在脑门上。邻居家的若染在了脑门上,那她就要染在肚囊上。大家切不要都染在一个地方,染在一个地方可怎么能够识别呢?你家的跑到我家来,我家的跑到你家去,那么岂不又要混乱了吗?

            小鸡上染了颜色是十分好看的,红脑门的,绿脑门的,好像它们都戴了花帽子。好像不是养的小鸡,好像养的是小孩似的。

            这团圆媳妇的婆婆从前她养鸡的时候就说过:

            “养鸡可比养小孩更娇贵,谁家的孩子还不就是扔在旁边他自己长大的,蚊子咬咬,臭虫咬咬,那怕什么的,哪家的孩子的身上没有个疤拉疖子的。没有疤拉疖子的孩子都不好养活,都要短命的。”

            据她说,她一辈子的孩子并不多,就是这一个儿子,虽然说是稀少,可是也没有娇养过。到如今那身上的疤也有二十多块。

            她说:

            “不信,脱了衣裳给大家伙看看……那孩子那身上的疤拉,真是多大的都有,碗口大的也有一块。真不是说,我对孩子真没有娇养过。除了他自个儿跌的摔的不说,就说我用劈柴棒子打的也落了好几个疤。养活孩子可不是养活鸡鸭的呀!养活小鸡,你不好好养它,它不下蛋。一个蛋,大的换三块豆腐,小的换两块豆腐,是闹玩的吗?可不是闹着玩的。”

            有一次,她的儿子踏死了一个小鸡仔,她打了她儿子三天三夜,她说:

            “我为什么不打他呢?一个鸡子就是三块豆腐,鸡仔是鸡蛋变的呀!要想变一个鸡仔,就非一个鸡蛋不行,半个鸡蛋能行吗?不但半个鸡蛋不行,就是差一点也不行,坏鸡蛋不行,陈鸡蛋不行。一个鸡要一个鸡蛋,那么一个鸡不就是三块豆腐是什么呢?眼睁睁地把三块豆腐放在脚底踩了,这该多大的罪,不打他,哪儿能够不打呢?我越想越生气,我想起来就打,无管黑夜白日,我打了他三天。后来打出一场病来,半夜三更的,睡得好好的说哭就哭。可是我也没有当他是一回子事,我就拿饭勺子敲着门框,给他叫了叫魂。没理他也就好了。”

            她这有多少年没养鸡了,自从订了这团圆媳妇,把积存下的那点针头线脑的钱都花上了。这还不说,还得每年头绳钱啦、腿带钱的托人捎去,一年一个空,这几年来就紧得不得了。想养几个鸡,都狠心没有养。

            现在这抽帖的云游真人坐在她的眼前,一帖又是十吊钱。若是先不提钱,先让她把帖抽了,哪管抽完了再要钱呢,那也总算是没有花钱就抽了帖的。可是偏偏不先,那抽帖的人,帖还没让抽,就是提到了十吊钱。

            所以那团圆媳妇的婆婆觉得,一伸手,十吊钱,一张口,十吊钱。这不是眼看着钱往外飞吗?

        这不是飞,这是干什么,一点声响也没有,一点影子也看不见。还不比过河往河里扔钱,往河里扔钱,还听一个响呢,还打起一个水泡呢。这是什么代价也没有的,好比自己发了昏,把钱丢了,好比遇了强盗,活活地把钱抢去了。

            团圆媳妇的婆婆,差一点没因为心内的激愤而流了眼泪。她一想十吊钱一帖,这哪里是抽帖,这是抽钱。

            于是她把伸出去的手缩回来了。她赶快跑到脸盆那里去,把手洗了,这可不是闹笑话的,这是十吊钱哪!她洗完了手又跪在灶王爷那里祷告了一番。祷告完了才能够抽帖的。

            她第一帖就抽了个绿的,绿的不大好,绿的就是鬼火。

            她再抽一抽,这一帖就更坏了,原来就是那最坏的,不死也得见阎王的里边包着蓝色药粉的那张帖。

            团圆媳妇的婆婆一见两帖都坏,本该抱头大哭,但是她没有那么的。自从团圆媳妇病重了,说长的、道短的、说死的、说活的,样样都有。又加上已经左次右番地请胡仙、跳大神、闹神闹鬼,已经使她见过不少的世面了。说活虽然高兴,说去见阎王也不怎样悲哀,似乎一时也总像见不了的样子。

            于是她就问那云游真人,两帖抽的都不好,是否可以想一个方法可以破一破?云游真人就说了:

            “拿笔拿墨来。”

            她家本也没有笔,大孙子媳妇就跑到大门洞子旁边那粮米铺去借去了。

            粮米铺的山东女老板,就用山东腔问她:

            “你家做啥?”

            大孙子媳妇说:

            “给弟妹画病。”

            女老板又说:

            “你家的弟妹,这一病就可不浅,到如今好了点没?”

            大孙子媳妇本想端着砚台,拿着笔就跑,可是人家关心,怎好不答,于是去了好几袋烟的工夫,还不见回来。

            等她抱了砚台回来的时候,那云游真人,已经把红纸都撕好了。于是拿起笔来,在他撕好的四块红纸上,一块上边写了一个大字。那红纸条也不过半寸宽,一寸长,他写的那字大得都要从红纸的四边飞出来了。

            他家本没有识字的人,灶王爷上的对联还是求人写的。这四个字,一模一样,好像一母所生,也许写的就是一个字。

            大孙子媳妇看看不认识,奶奶婆婆看看也不认识。虽然不认识,大概这个字一定也坏不了,不然,就用这个字怎么能破开一个人不见阎王呢?于是都一齐点头称好。

            那云游真人又命拿浆糊来。她们家终年不用浆糊,浆糊多么贵,白面十多吊钱一斤。都是用黄米饭粒来黏鞋面的。

            大孙子媳妇到锅里去铲了一块黄黏米饭来。云游真人就用饭粒贴在红纸上了。于是掀开团圆媳妇蒙在头上的破棉袄,让她拿出手来,一个手心上给她贴一张。又让她脱了袜子,一只脚心上给她贴上一张。

            云游真人一见脚心上有一大片白色的疤痕,他一想就是方才她婆婆所说的用烙铁给她烙的。可是他假装不知,问说:

            “这脚心可是生过什么病症吗?”

            团圆媳妇的婆婆连忙就接过来说:

            “我方才不是说过吗,是我用烙铁给她烙的。哪里会见过的呢?走道像飞似的,打她,她记不住,我就给她烙一烙。好在也没什么,小孩子肉皮活,也就是十天半月的下不来地,过后也就好了。”

            那云游真人想了一想,好像要吓唬她一下,就说这脚心的疤,虽然是贴了红帖,也怕贴不住,阎王爷是什么都看得见的,这疤怕是就给了阎王爷以特殊的记号,有点不大好办。

            云游真人说完了,看一看她们怕不怕,好像是不怎样怕。

            于是他就说得严重一些:

            “这疤不掉,阎王爷在三天之内就能够找到她,一找到她,就要把她活捉了去的。刚才的那帖是再准也没有的了,这红帖也绝没有用处。”

            他如此地吓唬着她们,似乎她们从奶奶婆婆到孙子媳妇都不大怕。那云游真人,连想也没有想,于是开口就说:

            “阎王爷不但要捉团圆媳妇去,还要捉了团圆媳妇的婆婆去,现世现报,拿烙铁烙脚心,这不是虐待,这是什么。婆婆虐待媳妇,做婆婆的死了下油锅,老胡家的婆婆虐待媳妇……”

            他就越说越声大,似乎要喊了起来,好像他是专打抱不平的好汉,而变了他原来的态度了。

            一说到这里,老胡家的老少三辈都害怕了,毛骨悚然,以为她家里又是撞进来了什么恶魔。而最害怕的是团圆媳妇的婆婆,吓得乱哆嗦,这是多么骇人听闻的事情,虐待媳妇世界上能有这样的事情吗?

            于是团圆媳妇的婆婆赶快跪下了,面向着那云游真人,眼泪一对一双地往下落:

            “这都是我一辈子没有积德,有孽遭到儿女的身上,我哀告真人,请真人诚心地给我化散化散,借了真人的灵法,让我的媳妇死里逃生吧。”

            那云游真人立刻就不说见阎王了,说她的媳妇一定见不了阎王,因为他还有一个办法一办就好的;说来这法子也简单得很,就是让团圆媳妇把袜子再脱下来,用笔在那疤痕上一画,阎王爷就看不见了。

            当场就脱下袜子来在脚心上画了,一边画着还嘴里咕噜咕噜地念着咒语。这一画不知费了多大力气,旁边看着的人倒觉十分地容易,可是那云游真人却冒了满头的汗。他故意地咬牙切齿,皱面瞪眼。这一画也并不是容易的事情,好像他在上刀山似的。

            画完了,把钱一算,抽了两帖二十吊。写了四个红纸贴在脚心手心上,每帖五吊是半价出售的,一共是四五等于二十吊。外加这一画,这一画本来是十吊钱,现在就给打个对折吧,就算五吊钱一只脚心,一共画了两只脚心,又是十吊。

            二十吊加二十吊,再加十吊,一共是五十吊。

            云游真人拿了这五十吊钱乐乐呵呵地走了。

            团圆媳妇的婆婆,在她刚要抽帖的时候,一听每帖十吊钱,她就心痛得了不得,又要想用这钱养鸡,又要想用这钱养猪。等到现在五十吊钱拿出去了,她反而也不想鸡了,也不想养猪了。因为她想,事到临头,不给也是不行了。帖也抽了,字也写了,要想不给人家钱也是不可能的了。事到临头,还有什么办法呢?别说五十吊,就是一百吊钱也得算着吗!不给还行吗?

            于是她心安理得地把五十吊钱给了人家了。这五十吊钱,是她秋天出城去在豆田里拾黄豆粒,一共拾了二升豆子卖了几十吊钱。在田上拾黄豆粒也不容易,一片大田,经过主人家的收割,还能够剩下多少豆粒呢?而况穷人聚了那么大的一群,孩子、女人、老太太……你抢我夺的,你争我打的。为了二升豆子就得在田上爬了半月二十天的,爬得腰酸腿疼。唉,为着这点豆子,那团圆媳妇的婆婆还到“李永春”药铺,去买过二两红花的。那就是因为在土上爬豆子的时候,有一棵豆秧刺了她的手指甲一下。她也没有在乎,把刺拔出来也就去他的了,该拾豆子还是拾豆子。就因此那指甲可就不知怎么样,睡了一夜那指甲就肿起来了,肿得和茄子似的。

            这肿一肿又算什么呢?又不是皇上娘娘,说起来可真娇惯了,哪有一个人吃天靠天,而不生点天灾的?

            闹了好几天,夜里痛得火喇喇地不能睡觉了。这才去买了二两红花来。

            说起买红花来,是早就该买的。奶奶婆婆劝她买,她不买。大孙子媳妇劝她买,她也不买。她的儿子想用孝顺来征服他的母亲,他强硬地要去给她买,因此还挨了他妈的一烟袋锅子,这一烟袋锅子就把儿子的脑袋给打了鸡蛋大的一个包。

            “你这小子,你不是败家吗?你妈还没死,你就作了主了。小兔崽子,我看着你再说买红花的!小兔崽子我看着你的。”

            就这一边骂着,一边烟袋锅子就打下来了。

            后来也到底还是买了,大概是惊动了东邻西舍,这家说说,那家讲讲的,若再不买点红花来,也太不好看了。让人家说老胡家的大儿媳妇,一年到头,就能够寻寻觅觅地积钱,钱一到她的手里,就好像掉了地缝了,一个钱也再不用想从她的手里拿出来。假若这样地说开去,也是不太好听。何况这拣来的豆子能卖好几十吊呢,花个三吊两吊的就花了吧。一咬牙,去买上二两红花来擦擦。

            想虽然是这样想过了,但到底还没有决定,延持了好几天还没有“一咬牙”。

            最后也毕竟是买了,她选择了一个顶严重的日子,就是她的手,不但一个指头,而是整个的手都肿起来了。那原来肿得像茄子的指头,现在更大了,已经和一个小冬瓜似的了。

            而且连手掌也无限度地胖了起来,胖得和张大簸箕似的。她多少年来,就嫌自己太瘦,她总说,太瘦的人没有福分。尤其是瘦手瘦脚的,一看就不带福相。尤其是精瘦的两只手,一伸出来和鸡爪似的,真是轻薄的样子。

            现在她的手是胖了,但这样胖法,是不大舒服的。同时她也发了点热,她觉得眼睛和嘴都干,脸也发烧,身上也时冷时热,她就说:

            “这手是要闹点事吗?这手……”

            一清早起,她就这样地念了好几遍。那胖得和小簸箕似的手,是一动也不能动了,好像一匹大猫或者一个小孩的头似的,她把它放在枕头上和她一齐地躺着。

            “这手是要闹点事的吧!”

            当她的儿子来到她旁边的时候,她就这样说。

            她的儿子一听她母亲的口气,就有些了解了。大概这回她是要买红花的了。

            于是她的儿子跑到奶奶的面前,去商量着要给他母亲去买红花。他们家住的是南北对面的炕,那商量的话声,虽然不甚大,但是他的母亲是听到的了。听到了,也假装没有听到,好表示这买红花可到底不是她的意思,可并不是她的主使,她可没有让他们去买红花。

            在北炕上,祖孙二人商量了一会,孙子说向她妈去要钱去。祖母说:

            “拿你奶奶的钱先去买吧,你妈好了再还我。”

            祖母故意把这句说得声音大一点,似乎故意让她的大儿媳妇听见。

            大儿媳妇是不但这句话,就是全部的话也都了然在心了,不过装着不动就是了。

            红花买回来了,儿子坐到母亲的旁边,儿子说:

            “妈,你把红花酒擦上吧。”

            母亲从枕头上转过脸儿来,似乎买红花这件事情,事先一点也不晓得,说:

            “哟!这小兔羔子,到底买了红花来……”

            这回可并没有用烟袋锅子打,倒是安安静静地把手伸出来,让那浸了红花的酒,把一只胖手完全染上了。

            这红花到底是二吊钱的,还是三吊钱的?若是二吊钱的倒给的不算少,若是三吊钱的,那可贵了一点。若是让她自己去买,她可绝对地不能买这么多,也不就是红花吗!红花就是红的就是了,治病不治病,谁晓得?也不过就是解解心疑就是了。

        她想着想着,因为手上涂了酒觉得凉爽,就要睡一觉,又加上烧酒的气味香扑扑的,红花的气味药忽忽的,她觉得实在是舒服了不少。于是她一闭眼睛就做了一个梦。

            这梦做的是她买了两块豆腐,这豆腐又白又大。是用什么钱买的呢?就是用买红花剩来的钱买的。因为在梦里边她梦见是她自己去买的红花。她自己也不买三吊钱的,也不买两吊钱的,是买了一吊钱的。在梦里边她还算着,不但今天有两块豆腐吃,哪天一高兴还有两块吃的!三吊钱才买了一吊钱的红花呀!

            现在她一遭就拿了五十吊钱给了云游真人。若照她的想法来说,这五十吊钱可该买多少豆腐了呢?

            但是她没有想,一方面因为团圆媳妇的病也实在病得缠绵,在她身上花钱也花得大手大脚的了。另一方面就是那云游真人的来势也过于猛了点,竟打抱不平起来,说她虐待团圆媳妇。还是赶快地给了他钱,让他滚蛋吧。

            真是家里有病人是什么气都受得呵。团圆媳妇的婆婆左思右想,越想越是自己遭了无妄之灾,满心的冤屈,想骂又没有对象,想哭又哭不出来,想打也无处下手了。

            那小团圆媳妇再打也就受不住了。

            若是那小团圆媳妇刚来的时候,那就非先抓过她来打一顿再说。做婆婆的打了一只饭碗,也抓过来把小团圆媳妇打一顿。她丢了一根针也抓过来把小团圆媳妇打一顿。她跌了一个筋斗,把单裤膝盖的地方跌了一个洞,她也抓过来把小团圆媳妇打一顿。总之,她一不顺心,她就觉得她的手就想要打人。她打谁呢?谁能够让她打呢!于是就轮到小团圆媳妇了。

            有娘的,她不能够打。她自己的儿子也舍不得打。打猫,她怕把猫打丢了。打狗,她怕把狗打跑了。打猪,怕猪掉了斤两。打鸡,怕鸡不下蛋。

            惟独打这小团圆媳妇是一点毛病没有,她又不能跑掉,她又不能丢了。她又不会下蛋,反正也不是猪,打掉了一些斤两也不要紧,反正也不过秤。

            可是这小团圆媳妇,一打也就吃不下饭去。吃不下饭去不要紧,多喝一点饭米汤好啦,反正饭米汤剩下也是要喂猪的。

            可是这都成了已往的她的光荣的日子了,那种自由的日子恐怕一时不会再来了。现在她不用说打,就连骂也不大骂她了。

            现在她别的都不怕,她就怕她死,她心里总有一个阴影,她的小团圆媳妇可不要死了呵。

            于是她碰到了多少的困难,她都克服了下去,她咬着牙根,她忍住眼泪,她要骂不能骂,她要打不能打。她要哭,她又止住了。无限的伤心,无限的悲哀,常常一齐会来到她的心中的。她想,也许是前生没有做了好事,此生找到她了,不然为什么连一个团圆媳妇的命都没有。她想一想,她一生没有做过恶事,面软、心慈,凡事都是自己吃亏,让着别人。虽然没有吃斋念佛,但是初一十五的素口也自幼就吃着。虽然不怎样拜庙烧香,但四月十八的庙会,也没有拉下过。娘娘庙前一把香,老爷庙前三个头,哪一年也都是烧香磕头的没有拉过“过场”。虽然是自小没有读过诗文,不认识字,但是“金刚经”“灶王经”也会念上两套。虽然说不曾做过舍善的事情,没有补过路,没有修过桥,但是逢年过节,对那些讨饭的人,也常常给过他们剩汤剩饭的。虽然过日子不怎样俭省,但也没有多吃过一块豆腐。拍拍良心,对天对得起,对地也对得住。那为什么老天爷明明白白地却把祸根种在她身上?

            她越想,她越心烦意乱。

            “都是前生没有做了好事,今生才找到了。”

            她一想到这里,她也就不再想了,反正事到临头,瞎想一阵又能怎样呢?于是她自己劝着自己就又忍着眼泪,咬着牙根,把她那兢兢业业地养猪喂狗所积下来的那点钱,又一吊一吊地,一五一十地,往外拿着。

            东家说看个香火,西家说吃个偏方。偏方、野药、大神、赶鬼、看香、扶乩,样样都已经试过。钱也不知花了多少,但是都不怎样见效。

            那小团圆媳妇夜里说梦话,白天发烧。一说起梦话来,总是说她要回家。

            “回家”这两个字,她的婆婆觉得最不祥,就怕她是阴间的花姐,阎王奶奶要把她叫了回去。于是就请了一个圆梦的。那圆梦的一圆,果然不错,“回家”就是回阴间地狱的意思。

            所以那小团圆媳妇,做梦的时候,一梦到她的婆婆打她,或者是用梢子绳把她吊在房梁上了,或是梦见婆婆用烙铁烙她的脚心,或是梦见婆婆用针刺她的手指尖,一梦到这些,她就大哭大叫,而且嚷她要“回家”。

            婆婆一听她嚷回家,就伸出手去在大腿上拧着她。日子久了,拧来拧去,那小团圆媳妇的大腿被拧得像一个梅花鹿似的青一块、紫一块的了。

            她是一份善心,怕是真的她回了阴间地狱,赶快地把她叫醒来。

            可是小团圆媳妇睡得朦里朦胧的,她以为她的婆婆可又真的在打她了,于是她大叫着,从炕上翻身起来,就跳下地去,拉也拉不住她,按也按不住她。

            她的力气大得惊人,她的声音喊得怕人。她的婆婆于是觉得更是见鬼了、着魔了。

            不但她的婆婆,全家的人也都相信这孩子的身上一定有鬼。

            谁听了能够不相信呢?半夜三更的喊着回家,一招呼醒了,她就跳下地去,瞪着眼睛,张着嘴,连哭带叫的,那力气比牛还大,那声音好像杀猪似的。

            谁能够不相信呢?又加上她婆婆的渲染,说她眼珠子是绿的,好像两点鬼火似的,说她的喊声,是直声拉气的,不是人声。

            所以一传出去,东邻西舍的,没有不相信的。

            于是一些善人们,就觉得这小女孩子也实在让鬼给捉弄得可怜了。哪个孩儿是没有娘的,哪个人不是肉生肉长的。谁家不都是养老育小……于是大动恻隐之心。东家二姨,西家三姑,她说她有奇方,她说她有妙法。

            于是就又跳神赶鬼、看香、扶乩,老胡家闹得非常热闹,传为一时之盛。若有不去看跳神赶鬼的,竟被指为落伍。

            因为老胡家跳神跳得花样翻新,是自古也没有这样跳的,打破了跳神的纪录了,给跳神开了一个新纪元。若不去看看,耳目因此是会闭塞了的。

            当地没有报纸,不能记录这桩盛事。若是患了半身不遂的人,患了瘫病的人,或是大病卧床不起的人,那真是一生的不幸,大家也都为他惋惜,怕是他此生也要孤陋寡闻。因为这样的隆重的盛举,他究竟不能够参加。

            呼兰河这地方,到底是太闭塞,文化是不大有的。虽然当地的官、绅,认为已经满意了,而且请了一位满清的翰林,作了一首歌,歌曰:

            溯呼兰,

            天然森林,

            自古多奇材。

            ……

            这首歌还配上了从东洋流来的乐谱,使当地的小学都唱着。这歌不止这两句这么短,不过只唱这两句就已经够好的了。所好的是使人听了能够引起一种自负的感情来。尤其当清明植树节的时候,几个小学堂的学生都排起队来在大街上游行,并唱着这首歌,使老百姓听了,也觉得呼兰河是个了不起的地方,一开口说话就“我们呼兰河”;那在街道上捡粪蛋的孩子,手里提着粪耙子,他还说:“我们呼兰河!”可不知道呼兰河给了他什么好处。也许那粪耙子就是呼兰河给了他的。

            呼兰河这地方,尽管奇才很多,但到底太闭塞,竟不会办一张报纸,以至于把当地的奇闻妙事都没有记载,任它风散了。

            老胡家跳大神,就实在跳得奇。用大缸给团圆媳妇洗澡,而且是当众就洗的。

            这种奇闻盛举一经传了出来,大家都想去开开眼界,就是那些患了半身不遂的,患了瘫病的人,人们觉得他们瘫了倒没有什么,只是不能够前来看老胡家团圆媳妇大规模地洗澡,真是一生的不幸。

            天一黄昏,老胡家就打起鼓来了。大缸,开水,公鸡,都预备好了。

            公鸡抓来了,开水烧滚了,大缸摆好了。

            看热闹的人,络绎不绝地来看。我和祖父也来了。

            小团圆媳妇躺在炕上,黑忽忽的,笑呵呵的。我给她一个玻璃球,又给她一片碗碟。她说这碗碟很好看,她拿在眼睛前照一照。她说这玻璃球也很好玩,她用手指甲弹着。她看一看她的婆婆不在旁边,她就起来了,她想要坐起来在炕上弹这玻璃球。

            还没有弹,她的婆婆就来了,就说:

            “小不知好歹的,你又起来疯什么?”

            说着走近来,就用破棉袄把她蒙起来了,蒙得没头没脑的,连脸也露不出来。

            我问祖父她为什么不让她玩?

            祖父说:

            “她有病。”

            我说:

            “她没有病,她好好的。”

            于是我上去把棉袄给她掀开了。

            掀开一看,她的眼睛早就睁着。她问我,她的婆婆走了没有,我说走了,于是她又起来了。

            她一起来,她的婆婆又来了,又把她给蒙了起来说:

            “也不怕人家笑话,病得跳神赶鬼的,哪有的事情,说起来,就起来。”

            这是她婆婆向她小声说的,等婆婆回过头去向着众人,就又那么说:

            “她是一点也着不得凉的,一着凉就犯病。”

            屋里屋外,越张罗越热闹了,小团圆媳妇跟我说:

            “等一会你看吧,就要洗澡了。”

            她说着的时候,好像说着别人地一样。

            果然,不一会工夫就洗起澡来了,洗得吱哇乱叫。

            大神打着鼓,命令她当众脱了衣裳。衣裳她是不肯脱的,她的婆婆抱住了她,还请了几个帮忙的人,就一齐上来,把她的衣裳撕掉了。

            她本来是十二岁,却长得十五六岁那么高,所以一时看热闹的姑娘媳妇们,看了她,都难为情起来。

            很快地小团圆媳妇就被抬进大缸里去。大缸里满是热水,是滚熟的热水。

            她在大缸里边,叫着、跳着,好像她要逃命似的狂喊。她的旁边站着三四个人从缸里搅起热水来往她的头上浇。不一会,浇得满脸通红。她再也不能够挣扎了,她安稳地在大缸里边站着,她再不往外边跳了,大概她觉得跳也跳不出来了。

            那大缸是很大的,她站在里边仅仅露着一个头。

            我看了半天,到后来她连动也不动,哭也不哭,笑也不笑。满脸的汗珠,满脸通红,红得像一张红纸。

            我跟祖父说:

            “小团圆媳妇不叫了。”

            我再往大缸里一看,小团圆媳妇没有了。她倒在大缸里了。

            这时候,看热闹的人们,一声狂喊,都以为小团圆媳妇是死了,大家都跑过去拯救她,竟有心慈的人,流下眼泪来。

            小团圆媳妇还活着的时候,她像要逃命似的。前一刻她还求救于人的时候,并没有一个人上前去帮忙她,把她从热水里解救出来。

        现在她是什么也不知道了,什么也不要求了。可是一些人,偏要去救她。

            把她从大缸里抬出来,给她浇一点冷水。这小团圆媳妇一昏过去,可把那些看热闹的人可怜得不得了,就是前一刻她还主张着“用热水浇哇!用热水浇哇!”的人,现在也心痛起来。怎能够不心痛呢,活蹦乱跳的孩子,一会工夫就死了。

            小团圆媳妇摆在炕上,浑身像火炭那般热。东家的婶子,伸出一只手来,到她身上去摸一摸,西家大娘也伸出手来到她身上去摸一摸。都说:

            “哟哟,热得和火炭似的。”

            有的说,水太热了一点,有的说,不应该往头上浇,大热的水,一浇哪有不昏的。

            大家正在谈说之间,她的婆婆过来,赶快拉了一张破棉袄给她盖上了,说:

            “赤身裸体羞不羞!”

            小团圆媳妇怕羞不肯脱下衣裳来,她婆婆喊着号令给她撕下来了。现在她什么也不知道了,她没有感觉了,婆婆反而替她着想了。

            大神打了几阵鼓,二神向大神对了几阵话。看热闹的人,你望望他,他望望你。虽然不知道下文如何,这小团圆媳妇到底是死是活,但却没有白看一场热闹,到底是开了眼界,见了世面,总算是不无所得的。

            有的竟觉得困了,问着别人,三道鼓是否加了横锣,说他要回家睡觉去了。

            大神一看这场面不大好,怕是看热闹的人都要走了,就卖一点力气叫一叫座,于是痛打了一阵鼓,喷了几口酒在团圆媳妇的脸上,从腰里拿出银针来,刺着小团圆媳妇的手指尖。

            不一会,小团圆媳妇就活转来了。

            大神说,洗澡必得连洗三次,还有两次要洗的。

            于是人心大为振奋,困的也不困了,要回家睡觉的也精神了。这来看热闹的,不下三十人,个个眼睛发亮,人人精神百倍。看吧,洗一次就昏过去了,洗两次又该怎样呢?洗上三次,那可就不堪想象了。所以看热闹的人的心里,都满怀奥秘。

            果然的,小团圆媳妇一被抬到大缸里去,被热水一烫,就又大声地怪叫了起来,一边叫着一边还伸出手来把着缸沿想要跳出来。这时候,浇水的浇水,按头的按头,总算让大家压服又把她昏倒在缸底里了。

            这次她被抬出来的时候,她的嘴里还往外吐着水。

            于是一些善心的人,是没有不可怜这小女孩子的。

            东家的二姨,西家的三婶,就都一齐围拢过去,都去设法施救去了。

            她们围拢过去,看看有没有死?

            若还有气,那就不用救。

            若是死了,那就赶快浇凉水。

            若是有气,她自己就会活转来的。若是断了气,那就赶快施救,不然,怕她真的死了。

            小团圆媳妇当晚被热水烫了三次,烫一次,昏一次。

            闹到三更天才散了场。大神回家去睡觉去了。看热闹的人也都回家去睡觉去了。

            星星月亮,出满了一天,冰天雪地正是个冬天。雪扫着墙根,风刮着窗棂。鸡在架里边睡觉,狗在窝里边睡觉,猪在栏里边睡觉,全呼兰河都睡着了。

            只有远远的狗叫,那或许是从白旗屯传来的,或者是呼兰河的南岸那柳条林子里的野狗的叫唤。总之,那声音是来得很远,那已经是呼兰河城以外的事情了。而呼兰河全城,就都一齐睡着了。

            前半夜那跳神打鼓的事情一点也没有留下痕迹。那连哭带叫的小团圆媳妇,好像在这世界上她也并未曾哭过叫过,因为一点痕迹也并未留下。家家户户都是黑洞洞的,家家户户都睡得沉实实的。

            团圆媳妇的婆婆也睡得打呼了。

            因为三更已经过了,就要来到四更天了。

            第二天小团圆媳妇昏昏沉沉地睡了一天,第三天,第四天,也都是昏昏沉沉地睡着,眼睛似睁非睁的,留着一条小缝,从小缝里边露着白眼珠。

            家里的人,看了她那样子,都说,这孩子经过一番操持,怕是真魂就要附体了,真魂一附了体,病就好了。不但她的家里人这样说,就是邻人也都这样说。所以对于她这种不饮不食、似睡非睡的状态,不但不引以为忧,反而觉得应该庆幸。她昏睡了四五天,她家的人就快乐了四五天,她睡了六七天,她家的人就快乐了六七天。在这期间,绝对地没有使用偏方,也绝对地没有采用野药。

            但是过了六七天,她还是不饮不食地昏睡,要好起来的现象一点也没有。

            于是又找了大神来,大神这次不给她治了,说这团圆媳妇非出马当大神不可。

            于是又采用了正式的赶鬼的方法,到扎彩铺去,扎了一个纸人。而后给纸人缝起布衣来穿上——穿布衣裳为的是绝对地像真人——擦脂抹粉,手里提着花手巾,很是好看。穿了满身花洋布的衣裳,打扮成一个十七八岁的大姑娘,用人抬着,抬到南河沿旁边那大土坑去烧了。

            这叫做烧“替身”,据说把这“替身”一烧了,她可以替代真人,真人就可以不死。

            烧“替身”的那天,团圆媳妇的婆婆为着表示虔诚,她还特意地请了几个吹鼓手。前边用人举着那扎彩人,后边跟着几个吹鼓手,呜哇当、呜哇当地向着大土坑走去了。

            那景况说热闹也很热闹,喇叭曲子吹的是句句双。说凄凉也很凄凉,前边一个扎彩人,后边三五个吹鼓手,出丧不像出丧,报庙不像报庙。

            跑到大街上来看这热闹的人也不很多,因为天太冷了,探头探脑地跑出来的人一看,觉得没有什么可看的,就关上大门回去了。

            所以就孤孤单单地,凄凄凉凉在大土坑那里把那扎彩人烧了。

            团圆媳妇的婆婆一边烧着还一边后悔,若早知道没有什么看热闹的人,那又何必给这扎彩人穿上真衣裳。她想要从火堆中把衣裳抢出来,但又来不及了,就眼看着让它烧去了。

            这一套衣裳,一共花了一百多吊钱。于是她看着那衣裳的烧去,就像眼看着烧去了一百多吊钱。

            她心里是又悔又恨,她简直忘了这是她的团圆媳妇烧替身,她本来打算念一套祷神告鬼的词句。她回来的时候,走在路上才想起来。但想起来也晚了,于是她自己感到大概要白白地烧了个替身,灵不灵谁晓得呢!

            后来又听说那团圆媳妇的大辫子,睡了一夜觉就掉下来了。

            就掉在枕头旁边,这可不知是怎么回事。

            她的婆婆说这团圆媳妇一定是妖怪。

            把那掉下来的辫子留着,谁来给谁看。

            看那样子一定是什么人用剪刀给她剪下来的。但是她的婆婆偏说不是,就说,睡了一夜觉就自己掉下来了。

            于是这奇闻又远近地传开去了。不但她的家人不愿意和妖怪在一起,就是同院住的人也都觉得太不好。

            夜里关门关窗户的,一边关着于是就都说:

            “老胡家那小团圆媳妇一定是个小妖怪。”

            我家的老厨子是个多嘴的人,他和祖父讲老胡家的团圆媳妇又怎样怎样了,又出了新花头,辫子也掉了。

            我说:

            “不是的,是用剪刀剪的。”

            老厨子看我小,他欺侮我,他用手指住了我的嘴,他说:

            “你知道什么,那小团圆媳妇是个妖怪呀!”

            我说:

            “她不是妖怪,我偷着问她,她头发是怎么掉了的,她还跟我笑呢!她说她不知道。”

            祖父说:“好好的孩子快让他们捉弄死了。”

            过了些日子,老厨子又说:

            “老胡家要‘休妻’了,要‘休’了那小妖怪。”

            祖父以为老胡家那人家不大好。

            祖父说:“二月让他搬家。把人家的孩子快捉弄死了,又不要了。”

            还没有到二月,那黑忽忽的、笑呵呵的小团圆媳妇就死了。是一个大清早晨,老胡家的大儿子,那个黄脸大眼睛的车老板子就来了。一见了祖父,他就双手举在胸前作了一个揖。

            祖父问他什么事?

            他说:

            “请老太爷施舍一块地方,好把小团圆媳妇埋上……”

            祖父问他:

            “什么时候死的?”

            他说:

            “我赶着车,天亮才到家。听说半夜就死了。”

            祖父答应了他,让他埋在城外的地边上。并且招呼有二伯来,让有二伯领着他们去。

            有二伯临走的时候,老厨子也跟去了。

            我说,我也要去,我也跟去看看,祖父百般地不肯。祖父说:

            “咱们在家下压拍子打小雀吃……”

            我于是就没有去。虽然没有去,但心里边总惦着有一回事。等有二伯也不回来,等那老厨子也不回来。等他们回来,我好听一听那情形到底怎样?

            一点多钟,他们两个在人家喝了酒、吃了饭才回来的。前边走着老厨子,后边走着有二伯。好像两个胖鸭子似的,走也走不动了,又慢又得意。

            走在前边的老厨子,眼珠通红,嘴唇发光。走在后边的有二伯,面红耳热,一直红到他脖子下边的那条大筋。

            进到祖父屋来,一个说:

            “酒菜真不错……”

            一个说:

            “……鸡蛋汤打得也热乎。”

            关于埋葬团圆媳妇的经过,却先一字未提。好像他们两个是过年回来的,充满了欢天喜地的气象。

            我问有二伯,那小团圆媳妇怎么死的,埋葬的情形如何。

            有二伯说:

            “你问这个干什么,人死还不如一只鸡……一伸腿就算完事……”

            我问:

            “有二伯,你多咱死呢?”

            他说:

            “你二伯死不了的……那家有万贯的,那活着享福的,越想长寿,就越活不长……上庙烧香、上山拜佛的也活不长。像你有二伯这条穷命,越老越结实。好比个石头疙瘩似的,哪儿死啦!俗语说得好,‘有钱三尺寿,穷命活不够’。像二伯就是这穷命,穷命鬼阎王爷也看不上眼儿来的。”

            到晚饭,老胡家又把有二伯他们二位请去了,又在那里喝的酒。因为他们帮了人家的忙,人家要酬谢他们。

            老胡家的团圆媳妇死了不久,他家的大孙子媳妇就跟人跑了。

            奶奶婆婆后来也死了。

            他家的两个儿媳妇,一个为着那团圆媳妇瞎了一只眼睛。因为她天天哭,哭她那花在团圆媳妇身上的倾家荡产的五千多吊钱。

            另外的一个因为她的儿媳妇跟着人家跑了,要把她羞辱死了,一天到晚的,不梳头、不洗脸地坐在锅台上抽着烟袋。有人从她旁边过去,她高兴的时候,她向人说:

            “你家里的孩子、大人都好哇?”

            她不高兴的时候,她就向着人脸吐一口痰。

            她变成一个半疯了。

            老胡家从此不大被人记得了。

            我家的背后有一个龙王庙,庙的东角上有一座大桥。人们管这桥叫“东大桥”。

            那桥下有些冤魂枉鬼,每当阴天下雨,从那桥上经过的人,往往听到鬼哭的声音。

            据说,那团圆媳妇的灵魂,也来到了东大桥下。说她变了一只很大的白兔,隔三差五地就到桥下来哭。

            有人问她哭什么?

            她说她要回家。

            那人若说:

            “明天,我送你回去……”

            那白兔子一听,拉过自己的大耳朵来,擦擦眼泪,就不见了。

            若没有人理她,她就一直哭,哭到鸡叫天明。

            我家的有二伯,性情真古怪。

            有东西,你若不给他吃,他就骂。若给他送上去,他就说:

            “你二伯不吃这个,你们拿去吃吧!”

            家里买了落花生、冻梨之类,若不给他,除了让他看不见,若让他找着了一点影子,他就没有不骂的:

            “他妈的……王八蛋……兔羔子,有猫狗吃的,有蟑螂、耗子吃的,他妈的就是没有人吃的……兔羔子,兔羔子……”

            若给他送上去,他就说:

            “你二伯不吃这个,你们拿去吃吧。”

            有二伯的性情真古怪,他很喜欢和天空的雀子说话,他很喜欢和大黄狗谈天。他一和人在一起,他就一句话没有了,就是有话也是很古怪的,使人听了常常不得要领。

            夏天晚饭后大家坐在院子里乘凉的时候,大家都是嘴里不停地讲些个闲话,讲得很热闹,就连蚊子也嗡嗡的,就连远处的蛤蟆也呱呱地叫着。只是有二伯一声不响地坐着。他手里拿着蝇甩子,东甩一下,西甩一下。

            若有人问他的蝇甩子是马鬃的还是马尾的?他就说:

            “啥人玩啥鸟,武大郎玩鸭子。马鬃,马尾,都是贵东西,那是穿绸穿缎的人拿着,腕上戴着藤萝镯,指上戴着大攀指。什么人玩什么物。穷人,野鬼,不要自不量力,让人家笑话……”

            传说天上的那颗大昴星,就是灶王爷骑着毛驴上西天的时候,他手里打着的那个灯笼。因为毛驴跑得太快,一不加小心灯笼就掉在天空了。我就常常把这个话题来问祖父,说那灯笼为什么被掉在天空,就永久长在那里了,为什么不落在地上来?

            这话题,我看祖父也回答不出的,但是因为我的非问不可,祖父也就非答不可了。他说,天空里有一个灯笼杆子,那才高呢,大昴星就挑在那灯笼杆子上。并且那灯笼杆子,人的眼睛是看不见的。

            我说:

            “不对,我不相信……”

            我说:

            “没有灯笼杆子,若是有,为什么我看不见?”

            于是祖父又说:

            “天上有一根线,大昴星就被那线系着。”

            我说:

            “我不信,天上没有线的,有为什么我看不见?”

            祖父说:

            “线是细的么,你哪能看见,就是谁也看不见的。”

            我就问祖父:

            “谁也看不见,你怎么看见啦?”

            乘凉的人都笑了,都说我真厉害。

            于是祖父被逼得东说西说,说也说不上来了。眼看祖父是被我逼得胡诌起来,我也知道他是说不清楚的了。不过我越看他胡诌我就越逼他。

            到后来连大昴星是灶王爷的灯笼这回事,我也推翻了。我问祖父大昴星到底是个什么?

            别人看我纠缠不清了,就有出主意的让我问有二伯去。

            我跑到了有二伯坐着的地方,我还没有问,刚一碰了他的蝇甩子,他就把我吓了一跳。他把蝇甩子一抖,嚎唠一声:

            “你这孩子,远点去吧……”

            使我不得不站得远一点,我说:

            “有二伯,你说那天上的大昴星到底是个什么?”

            他没有立刻回答我,他似乎想了一想,才说:

            “穷人不观天象。狗咬耗子,猫看家,多管闲事。”

            我又问,我以为他没有听准:

            “大昴星是灶王爷的灯笼吗?”

            他说:

            “你二伯虽然也长了眼睛,但是一辈子没有看见什么。你二伯虽然也长了耳朵,但是一辈子也没有听见什么。你二伯是又聋又瞎,这话可怎么说呢?比方那亮亮堂堂的大瓦房吧,你二伯也有看见了的,可是看见了怎么样,是人家的,看见了也是白看。听也是一样,听见了又怎样,与你不相干……你二伯活着是个不相干……星星,月亮,刮风,下雨,那是天老爷的事情,你二伯不知道……”

            有二伯真古怪。他走路的时候,他的脚踢到了一块砖头,那砖头把他的脚碰痛了。他就很小心地弯下腰去把砖头拾起来,他细细地端详着那砖头,看看那砖头长得是否不瘦不胖合适,是否顺眼。看完了,他才和那砖头开始讲话:

            “你这小子,我看你也是没有眼睛,也是跟我一样,也是瞎模糊眼的。不然你为啥往我脚上撞,若有胆子撞,就撞那个耀武扬威的,脚上穿着靴子鞋的……你撞我还不是个白撞,撞不出一大二小来,臭泥子滚石头,越滚越臭……”

            他和那砖头把话谈完了,他才顺手把它抛开去,临抛开的时候,他还最后嘱咐了它一句:

            “下回你往那穿鞋穿袜的脚上去碰呵。”

            他这话说完了,那砖头也就啪嗒地落到了地上。原来他没有抛得多远,那砖头又落到原来的地方。

            有二伯走在院子里,天空飞着的麻雀或是燕子若落了一点粪在他的身上,他就停下脚来,站在那里不走了。

            他扬着头。他骂着那早已飞过去了的雀子,大意是:那雀子怎样怎样不该把粪落在他身上,应该落在那穿绸穿缎的人的身上。

            不外骂那雀子糊涂瞎眼之类。

            可是那雀子很敏捷地落了粪之后,早已飞得无影无踪了,于是他就骂着他头顶上那块蓝瓦瓦的天空。

            有二伯说话的时候,把“这个”说成“介个”。

            “那个人好。”

            “介个人坏。”

            “介个人狼心狗肺。”

            “介个物不是物。”

            “家雀也往身上落粪,介个年头是啥年头。”

            还有,有二伯不吃羊肉。

            祖父说,有二伯在三十年前他就来到了我们家里,那时候他才三十多岁。

            而今有二伯六十多岁了。

            他的乳名叫有子,他已经六十多岁了,还叫着乳名。祖父叫他:“有子做这个。”“有子做那个。”

            我们叫他有二伯。

            老厨子叫他有二爷。

            他到房户、地户那里去,人家叫他有二东家。

            他到北街头的烧锅去,人家叫他有二掌柜的。

            他到油房去抬油,人家也叫他有二掌柜的。

            他到肉铺子上去买肉,人家也叫他有二掌柜的。

            一听人家叫他“二掌柜的”,他就笑逐颜开。叫他“有二爷”叫他“有二东家”,叫他“有二伯”,也都是一样地笑逐颜开。

            有二伯最忌讳人家叫他的乳名,比方街上的孩子们,那些讨厌的,就常常在他的背后抛一颗石子,掘一捧灰土,嘴里边喊着“有二子”“大有子”“小有子”。

            有二伯一遇到这机会,就没有不立刻打了过去的,他手里若是拿着蝇甩子,他就用蝇甩子把去打。他手里若是拿着烟袋,他就用烟袋锅子去打。

            把他气得像老母鸡似的,把眼睛都气红了。

            那些顽皮的孩子们一看他打了来,就立刻说:“有二爷,有二东家,有二掌柜的,有二伯。”并且举起手来作着揖,向他朝拜着。

            有二伯一看他们这样子,立刻就笑逐颜开,也不打他们了,就走自己的路去了。

            可是他走不了多远,那些孩子们就在后边又吵起来了,什么:

            “有二爷,兔儿爷。”

            “有二伯,打桨杆。”

            “有二东家,捉大王八。”

            他在前边走,孩子们还在他背后的远处喊。一边喊着,一边扬着街道上的灰土,灰土高飞着一会工夫,街上闹成个小旋风似的了。

        有二伯不知道听见了这个与否,但孩子们以为他是听见了的。

            有二伯却很庄严地,连头也不回地一步一步地沉着地向前走去了。

            “有二爷……”老厨子总是一开口“有二爷”,一闭口“有二爷”地叫着。

            “有二爷的蝇甩子……”

            “有二爷的烟袋锅子……”

            “有二爷的烟荷包……”

            “有二爷的烟荷包疙瘩……”

            “有二爷吃饭啦……”

            “有二爷,天下雨啦……”

            “有二爷快看吧,院子里的狗打仗啦……”

            “有二爷,猫上墙头啦……”

            “有二爷,你的蝇甩子掉了毛啦。”

            “有二爷,你的草帽顶落了家雀粪啦。”

            老厨子一向是叫他“有二爷”的。惟独他们两个一吵起来的时候,老厨子就说:

            “我看你这个‘二爷’一丢了,就只剩下个‘有’字了。”

            “有字”和“有子”差不多,有二伯一听正好是他的乳名。

            于是他和老厨子骂了起来,他骂他一句,他骂他两句。越骂声音越大。有时他们两个也就打了起来。

            但是过了不久,他们两个又照旧地好了起来。又是:

            “有二爷这个。”

            “有二爷那个。”

            老厨子一高起兴来,就说:

            “有二爷,我看你的头上去了个‘有’字,不就只剩了‘二爷’吗?”

            有二伯于是又笑逐颜开了。

            祖父叫他“有子”,他不生气,他说:

            “向皇上说话,还称自己是奴才呢!总也得有个大小。宰相大不大,可是他见了皇上也得跪下,在万人之上,在一人之下。”

            有二伯的胆子是很大的,他什么也不怕。我问他怕狼不怕?

            他说:

            “狼有什么怕的,在山上,你二伯小的时候上山放猪去,那山上就有狼。”

            我问他敢走黑路不敢?

            他说:

            “走黑路怕啥的,没有愧心事,不怕鬼叫门。”

            我问他夜里一个人,敢过那东大桥吗?

            他说:

            “有啥不敢的,你二伯就是愧心事不敢做,别的都敢。”

            有二伯常常说,跑毛子的时候(日俄战时)他怎样怎样地胆大。全城都跑空了,我们家也跑空了。那毛子拿着大马刀在街上跑来跑去,骑在马身上,那真是杀人无数。见了关着大门的就敲,敲开了,抓着人就杀。有二伯说:

            “毛子在街上跑来跑去,那大马蹄子跑得呱呱地响。我正自己煮面条吃呢,毛子就来敲大门来了,在外边喊着:‘里边有人没有?’若有人快点把门打开,不打开毛子就要拿刀把门劈开的。劈开门进来,那就没有好,非杀不可……”

            我就问:

            “有二伯你可怕?”

            他说:

            “你二伯烧着一锅开水,正在下着面条。那毛子在外边敲,你二伯还在屋里吃面呢……”

            我还是问他:

            “你可怕?”

            他说:

            “怕什么?”

            我说:

            “那毛子进来,他不拿马刀杀你?”

            他说:

            “杀又怎么样!不就是一条命吗?”

            可是每当他和祖父算起账来的时候,他就不这么说了。他说:

            “人是肉长的呀!人是爹娘养的呀!谁没有五脏六腑。不怕,怎么能不怕!也是吓得抖抖乱颤……眼看着那是大马刀,一刀下来,一条命就完了。”

            我一问他:

            “你不是说过,你不怕吗?”

            这种时候,他就骂我:

            “没心肝的,远的去着罢!不怕,是人还有不怕的……”

            不知怎么的,他一和祖父提起跑毛子来,他就胆小了,他自己越说越怕。有的时候他还哭了起来。说那大马刀闪光湛亮,说那毛子骑在马上乱杀乱砍。

            有二伯的行李,是零零碎碎的,一掀动他的被子就从被角往外流着棉花,一掀动他的褥子,那所铺着的毡片,就一片一片地好像活动地图似的一省一省地割据开了。

            有二伯的枕头,里边装的是荞麦壳。每当他一抡动的时候,那枕头就在角上或是在肚上漏了馅了,哗哗地往外流着荞麦壳。

            有二伯是爱护他这一套行李的,没有事的时候,他就拿起针来缝它们。缝缝枕头,缝缝毡片,缝缝被子。

            不知他的东西,怎那样地不结实,有二伯三天两天地就要动手缝一次。

            有二伯的手是很粗的,因此他拿着一颗很大的大针,他说太小的针他拿不住的。他的针是太大了点,迎着太阳,好像一颗女人头上的银簪子似的。

            他往针鼻里穿线的时候,那才好看呢,他把针线举得高高的,睁着一个眼睛,闭着一个眼睛,好像是在瞄准,好像他在半天空里看见了一样东西,他想要快快地拿它,又怕拿不准跑了,想要研究一会再去拿,又怕过一会就没有了。于是他的手一着急就哆嗦起来,那才好看呢。

            有二伯的行李,睡觉起来,就卷起来的。卷起来之后,用绳子捆着。好像他每天要去旅行的样子。

            有二伯没有一定的住处,今天住在那咔咔响着房架子的粉房里,明天住在养猪的那家的小猪倌的炕梢上,后天也许就和那后磨房里的冯歪嘴子一条炕睡上了。反正他是什么地方有空他就在什么地方睡。

            他的行李他自己背着,老厨子一看他背起行李,就大嚷大叫地说:

            “有二爷,又赶集去了……”

            有二伯也就远远地回答着他:

            “老王,我去赶集,你有啥捎的没有呵?”

            于是有二伯又自己走自己的路,到房户的家里的方便地方去投宿去了。

            有二伯的草帽没有边沿,只有一个帽顶,他的脸焦焦黑,他的头顶雪雪白。黑白分明的地方,就正是那草帽扣下去被切得溜齐的脑盖的地方。他每一摘下帽子来,是上一半白,下一半黑。就好像后园里的倭瓜晒着太阳的那半是绿的,背着阴的那半是白的一样。

            不过他一戴起草帽来也就看不见了。他戴帽的尺度是很准确的,一戴就把帽边很准确地切在了黑白分明的那条线上。

            不高不低,就正正地在那条线上。偶尔也戴得略微高了一点,但是这种时候很少,不大被人注意。那就是草帽与脑盖之间,好像镶了一趟窄窄的白边似的,有那么一趟白线。

            有二伯穿的是大半截子的衣裳,不是长衫,也不是短衫,而是齐到膝头那么长的衣裳。那衣裳是鱼蓝色竹布的,带着四方大尖托领,宽衣大袖,怀前带着大麻铜钮子。

            这衣裳本是前清的旧货,压在祖父的箱底里,祖母一死了,就陆续地穿在有二伯的身上了。

            所以有二伯一走在街上,都不知他是哪个朝代的人。

            老厨子常说:

            “有二爷,你宽衣大袖的,和尚看了像和尚,道人看了像道人。”

            有二伯是喜欢卷着裤脚的,所以耕田种地的庄稼人看了,又以为他是一个庄稼人,一定是插秧了刚刚回来。

            有二伯的鞋子,不是前边掉了底,就是后边缺了跟。

            他自己前边掌掌,后边钉钉,似乎钉也钉不好,掌也掌不好,过了几天,又是掉底缺跟仍然照旧。

        走路的时候拖拖的,再不然就趿趿的。前边掉了底,那鞋就张着嘴,他的脚好像舌头似的,每一迈步,就在那大嘴里边活动着;后边缺了跟,每一走动,就踢踢趿趿地脚跟打着鞋底发响。

            有二伯的脚,永远离不开地面,母亲说他的脚下了千斤闸。

            老厨子说有二伯的脚上了绊马锁。

            有二伯自己则说:

            “你二伯挂了绊脚丝了。”

            绊脚丝是人临死的时候挂在两只脚上的绳子。有二伯就这样地说着自己。

            有二伯虽然作弄成一个耍猴不像耍猴的,讨饭不像讨饭的,可是他一走起路来,却是端庄、沉静,两个脚跟非常有力,打得地面咚咚地响,而且是慢吞吞地前进,好像一位大将军似的。

            有二伯一进了祖父的屋子,那摆在琴桌上的那口黑色的座钟,钟里边的钟摆,就常常格棱棱、格棱棱地响了一阵就停下来了。

            原来有二伯的脚步过于沉重了点,好像大石头似的打着地板,使地板上所有的东西,一时都起了跳动。

            有二伯偷东西被我撞见了。

            秋末,后园里的大榆树也落了叶子,园里荒凉了,没有什么好玩的了。

            长在前院的蒿草,也都败坏了而倒了下来。房后菜园上的各种秧棵,完全挂满了白霜。老榆树全身的叶子已经没有多少了,可是秋风还在摇动着它。天空是发灰的,云彩也失了形状,好像被洗过砚台的水盆,有深有浅,混沌沌的。这样的云彩,有的带来了雨点,有时带来了细雪。

            这样的天气,我为着外边没有好玩的,我就在藏乱东西的后房里玩着。我爬上了装旧东西的屋顶去。

            我是登着箱子上去的,我摸到了一个小琉璃罐,那里边装的完全是黑枣。

            等我抱着这罐子要下来的时候,可就下不来了。方才上来的时候,我登着的那箱子,有二伯站在那里正在开着它。

            他不是用钥匙开,他是用铁丝在开。

            我看着他开了很多时候,他用牙齿咬着他手里的那块小东西……他歪着头,咬得格格拉拉地发响。咬了之后又放在手里扭着它,而后又把它触到箱子上去试一试。

            他显然不知道我在棚顶上看着他。他既打开了箱子,他就把没有边沿的草帽脱下来,把那块咬了半天的小东西就压在帽顶里面。

            他把箱子翻了好几次,红色的椅垫,蓝色粗布的绣花围裙,女人的绣花鞋子……还有一团滚乱的花色的丝线,在箱子底上还躺着一只湛黄的铜酒壶。

            有二伯用他满都是脉络的粗手把绣花鞋子、乱丝线抓到一边去,只把铜酒壶从那一堆之中抓出来了。

            太师椅上的红垫子,他把它放在地上,用腰带捆了起来。

            铜酒壶放在箱子盖上,而后把箱子锁了。

            看样子好像他要带着这些东西出去,不知为什么,他没有带东西,他自己出去了。

            我一看他出去,我赶快地登着箱子就下来了。

            我一下来,有二伯就又回来了,这一下子可把我吓了一跳。因为我是在偷墨枣,若让母亲晓得了,母亲非打我不可。

            平常我偷着把鸡蛋馒头之类,拿出去和邻居家的孩子一块去吃,有二伯一看见就没有不告诉母亲的,母亲一晓得就打我。

            他先提起门旁的椅垫子,而后又来拿箱子盖上的铜酒壶。

            等他掀着衣襟把铜酒壶压在肚子上边,他才看到墙角上站着的是我。

            他的肚子前压着铜酒壶,我的肚子前抱着一罐墨枣。他偷,我也偷,所以两边害怕。

            有二伯一看见我,立刻头盖上就冒着很大的汗珠。他说:

            “你不说么?”

            “说什么……”

            “不说,好孩子……”他拍着我的头顶。

            “那么,你让我把这琉璃罐拿出去。”

            他说:“拿罢。”

            他一点没有阻挡我。我看他不阻挡我,我还在门旁的筐子里抓了四五个大馒头,就跑了。

            有二伯还在粮食仓子里边偷米,用大口袋背着,背到大桥东边那粮米铺去卖了。

            有二伯还偷各种东西,锡火锅、大铜钱、烟袋嘴……反正家里边一丢了东西,就说有二伯偷去了。有的东西是老厨子偷去的,也就赖上了有二伯。有的东西是我偷着拿出去玩了,也赖上了有二伯。还有比方一个镰刀头,根本没有丢,只不过放忘了地方,等用的时候一找不到,就说有二伯偷去了。

            有二伯带着我上公园的时候,他什么也不买给我吃。公园里边卖什么的都有,油炸糕,香油掀饼,豆腐脑,等等。他一点也不买给我吃。

            我若是稍稍在那卖东西吃的旁边一站,他就说:

            “快走罢,快往前走。”

            逛公园就好像赶路似的,他一步也不让我停。

            公园里变把戏的、耍熊瞎子的都有,敲锣打鼓,非常热闹。而他不让我看。我若是稍稍地在那变把戏的前边停了一停,他就说:

            “快走罢,快往前走。”

            不知为什么他时时在追着我。

            等走到一个卖冰水的白布篷前边,我看见那玻璃瓶子里边泡着两个焦黄的大佛手,这东西我没有见过,我就问有二伯那是什么?

            他说:

            “快走罢,快往前走。”

            好像我若再多看一会工夫,人家就要来打我了似的。

            等来到了跑马戏的近前,那里边连喊带唱的,实在热闹,我就非要进去看不可。有二伯则一定不进去,他说:

            “没有什么好看的……”

            他说:

            “你二伯不看介个……”

            他又说:

            “家里边吃饭了。”

            他又说:

            “你再闹,我打你。”

            到了后来,他才说:

            “你二伯也是愿意看,好看的有谁不愿意看。你二伯没有钱,没有钱买票,人家不让咱进去。”

            在公园里边,当场我就拉住了有二伯的口袋,给他施以检查,检查出几个铜板来,买票这不够的。有二伯又说:

            “你二伯没有钱……”

            我一急就说:

            “没有钱你不会偷?”

            有二伯听了我那话,脸色雪白,可是一转眼之间又变成通红的了。他通红的脸上,他的小眼睛故意地笑着,他的嘴唇颤抖着,好像他又要照着他的习惯,一串一串地说一大套的话。但是他没有说。

            “回家罢!”

            他想了一想之后,他这样地招呼着我。

            我还看见过有二伯偷过一个大澡盆。

            我家院子里本来一天到晚是静的,祖父常常睡觉,父亲不在家里,母亲也只是在屋子里边忙着,外边的事情,她不大看见。

            尤其是到了夏天睡午觉的时候,全家都睡了,连老厨子也睡了。连大黄狗也睡在有阴凉的地方了。所以前院,后园,静悄悄地一个人也没有,一点声音也没有。

            就在这样的一个白天,一个大澡盆被一个人掮着在后园里边走起来了。

            那大澡盆是白洋铁的,在太阳下边闪光湛亮。大澡盆有一人多长,一边走着还一边咣郎咣郎地响着。看起来,很害怕,好像瞎话儿上的白色的大蛇。

            那大澡盆太大了,扣在有二伯的头上,一时看不见有二伯,只看见了大澡盆。好像那大澡盆自己走动了起来似的。

            再一细看,才知道是有二伯顶着它。

            有二伯走路,好像是没有眼睛似的,东倒一倒,西斜一斜,两边歪着。我怕他撞到了我,我就靠住了墙根上。

            那大澡盆是很深的,从有二伯头上扣下来,一直扣到他的腰间。所以他看不见路了,他摸着往前走。

            有二伯偷了这澡盆之后,就像他偷那铜酒壶之后的一样。

            一被发现了之后,老厨子就天天戏弄他,用各种的话戏弄着有二伯。

            有二伯偷了铜酒壶之后,每当他一拿着酒壶喝酒的时候,老厨子就问他:

            “有二爷,喝酒是铜酒壶好呀,还是锡酒壶好?”

            有二伯说:

            “什么的还不是一样,反正喝的是酒。”

            老厨子说:

            “不见得罢,大概还是铜的好呢……”

            有二伯说:

            “铜的有啥好!”

            老厨子说:

            “对了,有二爷。咱们就是不要铜酒壶,铜酒壶拿去卖了也不值钱。”

            旁边的人听到这里都笑了,可是有二伯还不自觉。

            老厨子问有二伯:

            “一个铜酒壶卖多少钱?”

            有二伯说:

            “没卖过,不知道。”

            到后来老厨子又说五十吊,又说七十吊。

            有二伯说:

            “哪有那么贵的价钱,好大一个铜酒壶还卖不上三十吊呢。”

            于是把大家都笑坏了。

            自从有二伯偷了澡盆之后,那老厨子就不提酒壶,而常常问有二伯洗澡不洗澡,问他一年洗几次澡,问有二伯一辈子洗几次澡。他还问人死了到阴间也洗澡的吗?

            有二伯说:

            “到阴间,阴间阳间一样,活着是个穷人,死了是条穷鬼。穷鬼阎王爷也不爱惜,不下地狱就是好的。还洗澡呢!别玷污了那洗澡水。”

            老厨子于是说:

            “有二爷,照你说的穷人是用不着澡盆的啰!”

            有二伯有点听出来了,就说:

            “阴间没去过,用不用不知道。”

            “不知道?”

            “不知道。”

            “我看你是明明知道,我看你是昧着良心说瞎话……”老厨子说。

            于是两个人打起来了。

            有二伯逼着问老厨子,他哪儿昧过良心。有二伯说:

            “一辈子没昧过良心。走得正,行得端,一步两脚窝……”

            老厨子说:

            “两脚窝,看不透……”

            有二伯正颜厉色地说:

            “你有什么看不透的?”

            老厨子说:

            “说出来怕你羞死!”

            有二伯说:

            “死,死不了;你别看我穷,穷人还有个穷活头。”

            老厨子说:

            “我看你也是死不了。”

            有二伯说:

            “死不了。”

            老厨子说:

            “死不了,老不死,我看你也是个老不死的。”

            有的时候,他们两个能接续着骂了一两天。每次到后来,都是有二伯打了败仗。老厨子骂他是个老“绝后”。

            有二伯每一听到这两个字,就甚于一切别的字,比“见阎王”更坏。于是他哭了起来,他说:

            “可不是么!死了连个添坟上土的人也没有。人活一辈子是个白活,到了归终是一场空……无家无业,死了连个打灵头幡的人也没有。”

            于是他们两个又和和平平地、笑笑嬉嬉地照旧地过着和平的日子。

            后来我家在五间正房的旁边,造了三间东厢房。

            这新房子一造起来,有二伯就搬回家里来住了。

            我家是静的,尤其是夜里,连鸡鸭都上了架,房头的鸽子、檐前的麻雀也都各自回到自己的窝里去睡觉了。

            这时候就常常听到厢房里的哭声。

            有一回父亲打了有二伯。父亲三十多岁,有二伯快六十岁了。他站起来就被父亲打倒下去,他再站起来,又被父亲打倒下去。最后他起不来了,他躺在院子里边了,而他的鼻子也许是嘴还流了一些血。

            院子里一些看热闹的人都站得远远的,大黄狗也吓跑了,鸡也吓跑了。老厨子该收柴收柴,该担水担水,假装没有看见。

            有二伯孤伶伶地躺在院心,他的没有边的草帽,也被打掉了,所以看得见有二伯的头部的上一半是白的,下一半是黑的,而且黑白分明的那条线就在他的前额上,好像西瓜的“阴阳面”。

            有二伯就这样自己躺着,躺了许多时候,才有两个鸭子来啄食撒在有二伯身边的那些血。

            那两个鸭子,一个是花脖,一个是绿头顶。

            有二伯要上吊。就是这个夜里,他先是骂着,后是哭着,到后来也不哭也不骂了。又过了一会,老厨子一声喊起,几乎是发现了什么怪物似的大叫:

            “有二爷上吊啦!有二爷上吊啦!”

            祖父穿起衣裳来,带着我。等我们跑到厢房去一看,有二伯不在了。

            老厨子在房子外边招呼着我们。我们一看南房梢上挂了绳子。是黑夜,本来看不见,是老厨子打着灯笼我们才看到的。

            南房梢上有一根两丈来高的横杆,绳子在那横杆上悠悠荡荡地垂着。

            有二伯在哪里呢?等我们拿灯笼一照,才看见他在房墙的根边,好好地坐着。他也没有哭,他也没有骂。

            等我再拿灯笼向他脸上一照,我看他用哭红了的小眼睛瞪了我一下。

            过了不久,有二伯又跳井了。

            是在同院住的挑水的来报的信,又敲窗户又打门。我们跑到井边上一看,有二伯并没有在井里边,而是坐在井外边离开井口五十步之外的安安稳稳的柴堆上。他在那柴堆上安安稳稳地坐着。

            我们打着灯笼一照,他还在那里拿着小烟袋抽烟呢。

            老厨子、挑水的、粉房里的漏粉的都来了,惊动了不少的邻居。

            他开初是一动不动。后来他看人们来全了,他站起来就往井边上跑。于是许多人就把他抓住了。那许多人,哪里会眼看着他去跳井的。

            有二伯去跳井,他的烟荷包、小烟袋都带着,人们推劝着他回家的时候,那柴堆上还有一枝小洋蜡,他说:

            “把那洋蜡给我带着。”

            后来有二伯“跳井”“上吊”这些事,都成了笑话,街上的孩子都给编成了一套歌在唱着:“有二爷跳井,没那么回事。”“有二伯上吊,白吓唬人。”

            老厨子说他贪生怕死,别人也都说他死不了。

            以后有二伯再“跳井”“上吊”也都没有人看他了。

            有二伯还是活着。

            我家的院子是荒凉的,冬天一片白雪,夏天则满院蒿草。

            风来了,蒿草发着声响,雨来了,蒿草梢上冒烟了。

            没有风,没有雨,则关着大门静静地过着日子。

            狗有狗窝,鸡有鸡架,鸟有鸟笼,一切各得其所。惟独有二伯夜夜不好好地睡觉。在那厢房里边,他自己半夜三更地就讲起话来。

        “说我怕‘死’,我也不是吹,叫过三个两个来看!问问他们见过‘死’没有!那俄国毛子的大马刀闪光湛亮,说杀就杀,说砍就砍。那些胆大的、不怕死的,一听说俄国毛子来了,只顾逃命,连家业也不要了。那时候,若不是这胆小的给他守着,怕是跑毛子回来连条裤子都没有穿的。到了如今,吃得饱,穿得暖,前因后果连想也不想,早就忘到九霄云外去了。良心长到肋条上,黑心痢,铁面人……”

            “……说我怕死,我也不是吹,兵马刀枪我见过,霹雷,黄风我见过。就说那俄国毛子的大马刀罢,见人就砍,可是我也没有怕过,说我怕死……介年头是啥年头……”

            那东厢房里,有二伯一套套地讲着,又是河沟涨水了,水涨得多么大,别人没有敢过的,有二伯说他敢过。又是什么时候有一次着大火,别人都逃了,有二伯上去抢了不少的东西。又是他的小时候,上山去打柴,遇见了狼,那狼是多么凶狠,他说:

            “狼心狗肺,介个年头的人狼心狗肺的,吃香的喝辣的。好人在介个年头,是个王八蛋兔羔子……”

            “兔羔子,兔羔子……”

            有二伯夜里不睡,有的时候就来在院子里没头没尾地“兔羔子、兔羔子”自己说着话。

            半夜三更的,鸡鸭猫狗都睡了。惟独有二伯不睡。

            祖父的窗子上了帘子,看不见天上的星星月亮,看不见大昴星落了没有,看不见三星是否打了横梁。只见白煞煞的窗帘子被星光月光照得发白通亮。

            等我睡醒了,我听见有二伯“兔羔子、兔羔子”地自己在说话,我要起来掀起窗帘来往院子里看一看他。祖父不让我起来,祖父说:

            “好好睡罢,明天早晨早早起来,咱们烧苞米吃。”

            祖父怕我起来,就用好话安慰着我。

            等再睡觉了,就在梦中听到了呼兰河的南岸,或是呼兰河城外远处的狗吠。

            于是我做了一个梦,梦见了一个大白兔,那兔子的耳朵,和那磨房里的小驴的耳朵一般大。我听见有二伯说“兔羔子”,我想到一个大白兔,我听到了磨房的梆子声,我想到了磨房里的小毛驴,于是梦见了白兔长了毛驴那么大的耳朵。

            我抱着那大白兔,我越看越喜欢,我一笑笑醒了。

            醒来一听,有二伯仍旧“兔羔子、兔羔子”地坐在院子里。后边那磨房里的梆子也还打得很响。

            我梦见的这大白兔,我问祖父是不是就是有二伯所说的“兔羔子”?

            祖父说:

            “快睡觉罢,半夜三更不好讲话的。”

            说完了,祖父也笑了,他又说:

            “快睡罢,夜里不好多讲话的。”

            我和祖父还都没有睡着,我们听到那远处的狗吠,慢慢地由远而近,近处的狗也有的叫了起来。大墙之外,已经稀疏疏地有车马经过了,原来天已经快亮了。可是有二伯还在骂“兔羔子”,后边磨房里的磨倌还在打着梆子。

            第二天早晨一起来,我就跑去问有二伯,“兔羔子”是不是就是大白兔?

            有二伯一听就生气了:

            “你们家里没好东西,尽是些耗子。从上到下,都是良心长在肋条上。大人是大耗子,小孩是小耗子……”

            我不知道他说的是什么,我听了一会,没有听懂。

            他的儿子也和普通的小孩一样,七个月出牙,八个月会爬,一年会走,两年会跑了。

            磨房里边住着冯歪嘴子。

            冯歪嘴子打着梆子,半夜半夜地打,一夜一夜地打。冬天还稍微好一点,夏天就更打得厉害。

            那磨房的窗子临着我家的后园。我家的后园四周的墙根上,都种着倭瓜、西葫芦或是黄瓜等类会爬蔓子的植物;倭瓜爬上墙头了,在墙头上开起花来了,有的竟越过了高墙爬到街上去,向着大街开了一朵火黄的黄花。

            因此那磨房的窗子上,也就爬满了那顶会爬蔓子的黄瓜了。黄瓜的小细蔓,细得像银丝似的,太阳一来了的时候,那小细蔓闪眼湛亮,那蔓梢干净得好像用黄蜡抽成的丝子,一棵黄瓜秧上伸出来无数的这样的丝子。丝蔓的尖顶每棵都是掉转头来向回卷曲着,好像是说它们虽然勇敢,大树,野草,墙头,窗棂,到处地乱爬,但到底它们也怀着恐惧的心理。

            太阳一出来了,那些在夜里冷清清的丝蔓,一变而为温暖了。于是它们向前发展的速率更快了,好像眼看着那丝蔓就长了,就向前跑去了。因为种在磨房窗根下的黄瓜秧,一天爬上了窗台,两天爬上了窗棂,等到第三天就在窗棂上开花了。

            再过几天,一不留心,那黄瓜梗经过了磨房的窗子,爬上房顶去了。

            后来那黄瓜秧就像它们彼此招呼着似的,成群结队地就都一齐把那磨房的窗给蒙住了。

            从此那磨房里边的磨倌就见不着天日了。磨房就有一张窗子,而今被黄瓜掩遮得风雨不透。从此那磨房里黑沉沉的,园里,园外,分成两个世界了。冯歪嘴子就被分到花园以外去了。

            但是从外边看起来,那窗子实在好看,开花的开花,结果的结果。满窗是黄瓜了。

            还有一棵倭瓜秧,也顺着磨房的窗子爬到房顶去了,就在房檐上结了一个大倭瓜。那倭瓜不像是从秧子上长出来的,好像是由人搬着坐在那屋瓦上晒太阳似的。实在好看。

            夏天,我在后园里玩的时候,冯歪嘴子就喊我,他向我要黄瓜。

            我就摘了黄瓜,从窗子递进去。那窗子被黄瓜秧封闭得严密得很,冯歪嘴子用手扒开那满窗的叶子,从一条小缝中伸出手来把黄瓜拿进去。

            有时候,他停止了打他的梆子,他问我,黄瓜长了多大了?西红柿红了没有?他与这后园只隔了一张窗子,就像离着多远似的。

            祖父在园子里的时候,他和祖父谈话。他说拉着磨的小驴,驴蹄子坏了,一走一瘸。祖父说请个兽医给它看看。冯歪嘴子说,看过了,也不见好。祖父问那驴吃的什么药?冯歪嘴子说是吃的黄瓜籽拌高粱醋。

            冯歪嘴子在窗里,祖父在窗外,祖父看不见冯歪嘴子,冯歪嘴子看不见祖父。

            有的时候,祖父走远了,回屋去了,只剩下我一个人在磨房的墙根下边坐着玩,我听到了冯歪嘴子还说:

            “老太爷今年没下乡去看看哪!”

            有的时候,我听了这话,我故意地不出声,听听他往下还说什么。

            有的时候,我心里觉得可笑,忍也不能忍住,我就跳了起来了,用手敲打着窗子,笑得我把窗上挂着的黄瓜都敲打掉了。而后我一溜烟地跑进屋去,把这情形告诉了祖父。祖父也一样和我似的,笑得不能停了,眼睛笑出眼泪来,但是总是说,不要笑啦,不要笑啦,看他听见。有的时候祖父竟把后门关起来再笑。祖父怕冯歪嘴子听见了不好意思。

            但是老厨子就不然了。有的时候,他和冯歪嘴子谈天,故意谈到一半他就溜掉了。因为冯歪嘴子隔着爬满了黄瓜秧的窗子,看不见他走了,就自己独自说了一大篇话,而后让他故意得不到反响。

            老厨子提着筐子到后园去摘茄子,一边摘着一边就跟冯歪嘴子谈话。正谈到半路,老厨子蹑手蹑足地,提着筐子就溜了,回到屋里去烧饭去了。

            这时冯歪嘴子还在磨房里大声地说:

            “西公园来了跑马戏的,我还没得空去看,你去看过了吗?老王。”

            其实后花园里一个人也没有了,蜻蜓、蝴蝶随意地飞着,冯歪嘴子的话声,空空地落到花园里来,又空空地消失了。

            烟消火灭了。

            等他发现了老王早已不在花园里,他这才又打起梆子来,看着小驴拉磨。

            有二伯一和冯歪嘴子谈话,可从来没有偷着溜掉过。他问下雨天,磨房的房顶漏得厉害不厉害?磨房里的耗子多不多?

            冯歪嘴子同时也问着有二伯,今年后园里雨水大吗?茄子、芸豆都快罢园了吧?

            他们两个彼此说完了话,有二伯让冯歪嘴子到后园里来走走,冯歪嘴子让有二伯到磨房去坐坐。

            “有空到园子里来走走。”

            “有空到磨房里来坐坐。”

            有二伯于是也就告别走出园子来。冯歪嘴子也就照旧打他的梆子。

            秋天,大榆树的叶子黄了,墙头上的狗尾草干倒了,园里一天一天地荒凉起来了。

            这时候冯歪嘴子的窗子也露出来了。因为那些纠纠缠缠的黄瓜秧也都蔫败了,舍弃了窗棂而脱落下来了。

            于是站在后园里就可看到冯歪嘴子,扒着窗子就可以看到在拉磨的小驴。那小驴竖着耳朵,戴着眼罩,走了三五步就响一次鼻子,每一抬脚那只后腿就有点瘸,每一停下来,小驴就用三条腿站着。

            冯歪嘴子说小驴的一条腿坏了。

            这窗子上的黄瓜秧一干掉了,磨房里的冯歪嘴子就天天可以看到的。

            冯歪嘴子喝酒了,冯歪嘴子睡觉了,冯歪嘴子打梆子,冯歪嘴子拉胡琴了,冯歪嘴子唱唱本了,冯歪嘴子摇风车了。只要一扒着那窗台,就什么都可以看见的。

            一到了秋天,新鲜黏米一下来的时候,冯歪嘴子就三天一拉磨,两天一卖黏糕。黄米黏糕,撒上大芸豆,一层黄,一层红,黄的金黄,红的通红。三个铜板一条、两个铜板一片地用刀切着卖。愿意加红糖的有红糖,愿意加白糖的有白糖。加了糖不另要钱。

            冯歪嘴子推着单轮车在街上一走,小孩子们就在后边跟了一大帮,有的花钱买,有的围着看。

            祖父最喜欢吃这黏糕,母亲也喜欢,而我更喜欢。母亲有时让老厨子去买,有的时候让我去买。

            不过买了来是有数的,一人只能吃手掌那么大的一片,不准多吃,吃多了怕不能消化。

            祖父一边吃着,一边说够了够了,意思是怕我多吃。母亲吃完了也说够了,意思是怕我还要去买。其实我真的觉得不够,觉得再吃两块也还不多呢!不过经别人这样一说,我也就没有什么办法了,也就不好意思喊着再去买,但是实在话是没有吃够的。

            当我在大门外玩的时候,推着单轮车的冯歪嘴子总是在那块大黏糕上切下一片来送给我吃,于是我就接受了。

            当我在院子里玩的时候,冯歪嘴子一喊着“黏糕”“黏糕”地从大墙外经过,我就爬上墙头去了。

            因为西南角上的那段土墙,因为年久了出了一个豁,我就扒着那墙豁往外看着。果然冯歪嘴子推着黏糕的单轮车由远而近了。来到我的旁边,就问着:

            “要吃一片吗?”

            而我也不说吃,也不说不吃。但我也不从墙头上下来,还是若无其事地待在那里。

            冯歪嘴子把车子一停,于是切好一片黏糕送上来了。

            一到了冬天,冯歪嘴子差不多天天出去卖一锅黏糕的。

            这黏糕在做的时候,需要很大的一口锅,里边烧着开水,锅口上坐着竹帘子。把碾碎了的黄米粉就撒在这竹帘子上,撒一层粉,撒一层豆。冯歪嘴子就在磨房里撒的,弄得满屋热气蒸腾。进去买黏糕的时候,刚一开门,只听屋里火柴烧得噼啪地响,竟看不见人了。

            我去买黏糕的时候,我总是去得早一点。我在那边等着,等着刚一出锅,好买热的。

            那屋里的蒸气实在大,是看不见人的。每次我一开门,我就说:

            “我来了。”

            冯歪嘴子一听我的声音就说:

            “这边来,这边来。”

            有一次母亲让我去买黏糕,我略微地去得晚了一点,黏糕已经出锅了。我慌慌忙忙地买了就回来了。回到家里一看,不对了。母亲让我买的是加白糖的,而我买回来的是加红糖的。当时我没有留心,回到家里一看,才知道错了。

            错了,我又跑回去换。冯歪嘴子又另外切了几片,撒上白糖。

            接过黏糕来,我正想拿着走的时候,一回头,看见了冯歪嘴子的那张小炕上挂着一张布帘。

            我想这是做什么,我跑过去看一看。

            我伸手就掀开布帘了,往里边一看,呀!里边还有一个小孩呢!

            我转身就往家跑,跑到家里就跟祖父讲,说那冯歪嘴子的炕上不知谁家的女人睡在那里,女人的被窝里边还有一个小孩,那小孩还露着小头顶呢,那小孩头还是通红的呢!

            祖父听了一会觉得纳闷,就说让我快吃黏糕罢,一会冷了,不好吃了。

            可是我哪里吃得下去。觉得这事情真好玩,那磨房里边,不单有一个小驴,还有一个小孩呢。

            这一天早晨闹得黏糕我也没有吃,又戴起皮帽子来,跑去看了一次。

            这一次,冯歪嘴子不在屋里,不知他到哪里去了,黏糕大概也没有去卖,推黏糕的车子还在磨盘的旁边扔着。

            我一开门进去,风就把那白布帘吹开了,那女人仍旧躺着不动,那小孩也一声不哭。我往屋子的四边观查一下,屋子的边处没有什么变动,只是磨盘上放着一个黄铜盆,铜盆里泡着一点破布,盆里的水已经结冰了,其余的没有什么变动。

            小驴一到冬天就住在磨房的屋里,那小驴还是照旧地站在那里,并且还是安安敦敦地和每天一样地抹搭着眼睛。其余的磨房里的风车子、罗柜、磨盘,都是照旧地在那里待着,就是墙根下的那些耗子也出来和往日一样地乱跑,耗子一边跑着还一边吱吱喳喳地叫着。

            我看了一会,看不出所以然来,觉得十分无趣。正想转身出来的时候,被我发现了一个瓦盆,就在炕沿上已经像小冰山似的冻得鼓鼓的了。于是我想起这屋的冷来了,立刻觉得要打寒颤,冷得不能站脚了。我一细看那扇通到后园去的窗子也通着大洞,瓦房的房盖也透着青天。

            我开门就跑了,一跑到家里,家里的火炉正烧得通红,一进门就热气扑脸。

            我正想要问祖父,那磨房里是谁家的小孩。这时冯歪嘴子从外边来了。

            戴着他的四耳帽子,他未曾说话先笑一笑的样子,一看就是冯歪嘴子。

            他进了屋来,他坐在祖父旁边的太师椅上,那太师椅垫着红毛哔叽的厚垫子。

        冯歪嘴子坐在那里,似乎有话说不出来,右手不住地摸擦着椅垫子,左手不住地拉着他的左耳朵。他未曾说话先笑的样子,笑了好几阵也没说出话来。

            我们家里的火炉太热,把他的脸烤得通红的了。他说:

            “老太爷,我摊了点事……”

            祖父就问他摊了什么事呢?

            冯歪嘴子坐在太师椅上扭扭歪歪的,摘下他那狗皮帽子来,手里玩弄着那皮帽子。未曾说话他先笑了,笑了好一阵工夫,他才说出一句话来:

            “我成了家啦。”

            说着冯歪嘴子的眼睛就流出眼泪来,他说:

            “请老太爷帮帮忙,现下他们就在磨房里呢!他们没有地方住。”

            我听到了这里,就赶快抢住了,向祖父说:

            “爷爷,那磨房里冷呵!炕沿上的瓦盆都冻裂了。”

            祖父往一边推着我,似乎他在思索的样子。我又说:

            “那炕上还睡着一个小孩呢!”

            祖父答应了让他搬到磨房南头那个装草的房子里去暂住。

            冯歪嘴子一听,连忙就站起来了,说:

            “道谢,道谢。”

            一边说着,他的眼睛又一边来了眼泪,而后戴起狗皮帽子来,眼泪汪汪地就走了。

            冯歪嘴子刚一走出屋去,祖父回头就跟我说:

            “你这孩子当人面不好多说话的。”

            我那时也不过六七岁,不懂这是甚么意思,我问着祖父:

            “为什么不准说,为什么不准说?”

            祖父说:

            “你没看冯歪嘴子的眼泪都要掉下来了吗?冯歪嘴子难为情了。”

            我想可有什么难为情的,我不明白。

            晌午,冯歪嘴子那磨房里就吵起来了。

            冯歪嘴子一声不响地站在磨盘的旁边,他的掌柜的拿着烟袋在他的眼前骂着。掌柜的太太一边骂着,一边拍着风车子,她说:

            “破了风水了,我这碾磨房,岂是你那不干不净的野老婆住的地方!青龙白虎也是女人可以冲的吗!冯歪嘴子,从此我不发财,我就跟你算账;你是什么东西,你还算个人吗?你没有脸,你若有脸你还能把个野老婆弄到大面上来,弄到人的眼皮下边来……你赶快给我滚蛋……”

            冯歪嘴子说:

            “我就要叫他们搬的,就搬……”

            掌柜的太太说:

            “叫他们搬,他们是什么东西,我不知道。我是叫你滚蛋的,你可把人糟蹋苦了……”

            说着,她往炕上一看:

            “唉呀!面口袋也是你那野老婆盖得的!赶快给我拿下来。我说冯歪嘴子,你可把我糟蹋苦了。你可把我糟蹋苦了。”

            那个刚生下来的小孩是盖着盛面口袋在睡觉的,一齐盖着四五张,厚墩墩地压着小脸。

            掌柜的太太在旁边喊着:

            “给我拿下来,快给我拿下来!”

            冯歪嘴子过去把面口袋拿下来了,立刻就露出孩子通红的小手来,而且那小手还伸伸缩缩地摇动着,摇动了几下就哭起来了。

            那孩子一哭,从孩子的嘴里冒着雪白的白气。

            那掌柜的太太把面口袋接到手里说:

            “可冻死我了,你赶快搬罢,我可没工夫跟你吵了……”

            说着开了门缩着肩膀就跑回上屋去了。

            王四掌柜的,就是冯歪嘴子的东家,他请祖父到上屋去喝茶。

            我们坐在上屋的炕上,一边烤着炭火盆,一边听到磨房里的那小孩的哭声。

            祖父问我的手烤暖了没有?我说还没烤暖,祖父说:

            “烤暖了,回家罢。”

            从王四掌柜的家里出来,我还说要到磨房里去看看。祖父说,没有什么的,要看回家暖过来再看。

            磨房里没有寒暑表,我家里是有的。我问祖父:

            “爷爷,你说磨房的温度在多少度上?”

            祖父说在零度以下。

            我问:

            “在零度以下多少?”

            祖父说:

            “没有寒暑表,哪儿知道呵!”

            我说:

            “到底在零度以下多少?”

            祖父看一看天色就说:

            “在零下七八度。”

            我高兴起来了,我说:

            “嗳呀,好冷呵!那不和室外温度一样了吗?”

            我抬脚就往家里跑。井台,井台旁边的水槽子,井台旁边的大石头碾子,房户老周家的大玻璃窗子,我家的大高烟囱,在我一溜烟地跑起来的时候,我看它们都移移动动的了,它们都像往后退着。我越跑越快,好像不是我在跑,而像房子和大烟囱在跑似的。

            我自己觉得我跑得和风一般快。

            我想那磨房的温度在零度以下,岂不是等于露天地了吗?

            这真笑话,房子和露天地一样。我越想越可笑,也就越高兴。

            于是连喊带叫地也就跑到家了。

            下半天冯歪嘴子就把小孩搬到磨房南头那草棚子里去了。

            那小孩哭的声音很大,好像他并不是刚刚出生,好像他已经长大了的样子。

            那草房里吵得不得了,我又想去看看。

            这回那女人坐起来了,身上披着被子,很长的大辫子垂在背后,面朝里,坐在一堆草上不知在干什么。她一听门响,她一回头,我看出来了,她就是我们同院住着的老王家的大姑娘,我们都叫她王大姐的。

            这可奇怪,怎么就是她呢?她一回头几乎是把我吓了一跳。

            我转身就想往家里跑,跑到家里好赶快地告诉祖父,这到底是怎么回事?

            她看是我,她就先向我一笑。她长的是很大的脸孔,很尖的鼻子,每笑的时候,她的鼻梁上就皱了一堆的褶。今天她的笑法还是和从前的一样,鼻梁处堆满了皱褶。

            平常我们后园里的菜吃不了的时候,她就提着筐到我们后园来摘些茄子、黄瓜之类回家去。她是很能说能笑的人,她是很响亮的人。她和别人相见之下,她问别人:

            “你吃饭了吗?”

            那声音才大呢,好像房顶上落了喜鹊似的。

            她的父亲是赶车的,她牵着马到井上去饮水,她打起水来,比她父亲打得更快,三绕两绕就是一桶。别人看了都说:

            “这姑娘将来是个兴家立业好手!”

            她在我家后园里摘菜,摘完临走的时候,常常就折一朵马蛇菜花戴在头上。

            她那辫子梳得才光呢,红辫根,绿辫梢,干干净净,又加上一朵马蛇菜花戴在鬓角上,非常好看。她提着筐子前边走了,后边的人就都指指划划地说她的好处。

            老厨子说她大头大眼睛长得怪好的。

            有二伯说她膀大腰圆的带点福相。

            母亲说她:

            “我没有这么大的儿子,有儿子我娶她,这姑娘真响亮。”

            同院住的老周家三奶奶则说:

            “哟哟,这姑娘真是一棵大葵花,又高又大,你今年十几啦?”

            周三奶奶一看到王大姐就问她十几岁?已经问了不知几遍了,好像一看见就必得这么问,若不问就好像没有话说似的。

        每逢一问,王大姐也总是说:

            “二十了。”

            “二十了,可得给说一个媒了。”

            再不然就是:

            “看谁家有这么大的福气,看吧,将来看吧。”

            隔院的杨家的老太太,扒着墙头一看见王大姐就说:

            “这姑娘的脸红得像一盆火似的。”

            现在王大姐一笑还是一皱鼻子,不过她的脸有一点清瘦,颜色发白了许多。

            她怀里抱着小孩。我看一看她,她也不好意思了,我也不好意思了。我的不好意思是因为好久不见的缘故,我想她也许是和我一样吧。我想要走,又不好意思立刻就走开,想要多待一会又没有什么话好说的。

            我就站在那里静静地站了一会,我看她用草把小孩盖了起来,把小孩放到炕上去。其实也看不见什么是炕,乌七八糟的都是草,地上是草,炕上也是草,草捆子堆得房梁上去了。那小炕本来不大,又都叫草捆子给占满了。那小孩也就在草中偎了个草窝,铺着草盖着草地就睡着了。

            我越看越觉得好玩,好像小孩睡在喜鹊窝里了似的。

            到了晚上,我又把全套我所见的告诉了祖父。

            祖父什么也不说。但我看出来祖父晓得的比我晓得的多的样子。我说:

            “那小孩还盖着草呢!”

            祖父说:

            “嗯!”

            我说:

            “那不是王大姐吗?”

            祖父说:

            “嗯。”

            祖父是什么也不问,什么也不听的样子。

            等到了晚上在煤油灯的下边,我家全体的人都聚集了的时候,那才热闹呢!连说带讲的。这个说,王大姑娘这么的,那个说王大姑娘那么着……说来说去,说得不成样子了。

            说王大姑娘这样坏,那样坏,一看就知道不是好东西。

            说她说话的声音那么大,一定不是好东西。哪有姑娘家家的,大说大讲的。

            有二伯说:

            “好好的一个姑娘,看上了一个磨房的磨倌,介个年头是啥年头!”

            老厨子说:

            “男子要长个粗壮,女子要长个秀气。没见过一个姑娘长得和一个抗大个的(抗工)似的。”

            有二伯也就接着说:

            “对呀!老爷像老爷,娘娘像娘娘,你没四月十八去逛过庙吗?那老爷庙上的老爷,威风八面,娘娘庙上的娘娘,温柔典雅。”

            老厨子又说:

            “哪有的勾当,姑娘家家的,打起水来,比个男子大丈夫还有力气。没见过姑娘家家的那么大的力气。”

            有二伯说:

            “那算完,长的是一身穷骨头穷肉,那穿绸穿缎的她不去看,她看上了个灰秃秃的磨倌。真是武大郎玩鸭子,啥人玩啥鸟。”

            第二天,左邻右舍的都晓得王大姑娘生了小孩了。

            周三奶奶跑到我家来探听了一番,母亲说就在那草棚子里,让她去看。她说:

            “哟哟!我可没那么大的工夫去看的,什么好勾当。”

            西院的杨老太太听了风也来了,穿了一身浆得闪光发亮的蓝大布衫,头上扣着银扁方,手上戴着白铜的戒指。

            一进屋,母亲就告诉她冯歪嘴子得了儿子了。杨老太太连忙就说:

            “我可不是来探听他们那些猫三狗四的,我是来问问那广和银号的利息到底是大加一呢,还是八成?因为昨天西荒上的二小子打信来说,他老丈人要给一个亲戚拾几万吊钱。”

            说完了,她庄庄严严地坐在那里。

            我家的屋子太热,杨老太太一进屋来就把脸热得通红。母亲连忙打开了北边的那通气窗。

            通气窗一开,那草棚子里的小孩的哭声就听见了,那哭声特别吵闹。

            “听听啦,”母亲说,“这就是冯歪嘴子的儿子。”

            “怎么的啦?那王大姑娘我看就不是个好东西,我就说,那姑娘将来好不了。”杨老太太说,“前些日子那姑娘忽然不见了,我就问她妈:‘你们大姑娘哪儿去啦?’她妈说:‘上她姥姥家去了。’一去去了这么久没回来,我就有点觉景儿。”

            母亲说:

            “王大姑娘夏天的时候常常哭,把眼圈都哭红了。她妈说她脾气大,跟她妈吵架气的。”

            杨老太太把肩膀一抱说:

            “气的,好大的气性,到今天都丢了人啦,怎么没气死呢。那姑娘不是好东西,你看她那双眼睛,多么大!我早就说过,这姑娘好不了。”

            而后在母亲的耳朵上嘁嘁喳喳了一阵,又说又笑地走了。把她那原来到我家里来的原意,大概也忘了。

            她来是为了广和银号利息的问题,可是一直到走也没有再提起那广和银号来。

            杨老太太,周三奶奶,还有同院住的那些粉房里的人,没有一个不说王大姑娘坏的。

            说王大姑娘的眼睛长得不好,说王大姑娘的力气太大,说王大姑娘的辫子长得也太长。

            这事情一发,全院子的人给王大姑娘做论的做论,做传的做传,还有给她做日记的。

            做传的说,她从小就在外祖母家里养着,一天尽和男孩子在一块,没男没女。有一天她竟拿着烧火的叉子把她的表弟给打伤了。又是一天刮大风,她把外祖母的二十多个鸭蛋一次给偷着吃光了。又是一天她在河沟子里边采菱角,她自己采的少,她就把别人的菱角倒在她的筐里了,就说是她采的。说她强横得不得了,没有人敢去和她分辩,一分辩,她开口就骂,举手就打。

            那给她做传的人,说着就好像看见过似的。说腊月二十三,过小年的那天,王大姑娘因为外祖母少给了她一块肉吃,她就跟外祖母打了一仗,就跑回家里来了。

            “你看看吧,她的嘴该多馋。”

            于是四边听着的人,没有不笑的。

            那给王大姑娘做传的人,材料的确搜集得不少。

            自从团圆媳妇死了,院子里似乎寂寞了很长的一个时期,现在虽然不能说十分热闹,但大家都总要尽力地鼓吹一番。虽然不跳神打鼓,但也总应该给大家多少开一开心。

            于是吹风的,把眼的,跑线的,绝对地不辞辛苦,在飘着白白的大雪的夜里,也就戴着皮帽子,穿着大毡靴,站在冯歪嘴子的窗户外边,在那里守候着,为的是偷听一点什么消息。若能听到一点点,哪怕针孔那么大一点,也总没有白挨冻,好做为第二天宣传的材料。

            所以冯歪嘴子那门下在开初的几天,竟站着不少的探访员。

            这些探访员往往没有受过教育,他们最喜欢造谣生事。

            比方我家的老厨子出去探访了一阵,回家报告说:

            “那草棚子才冷呢!五风楼似的,那小孩一声不响了,大概是冻死了,快去看热闹吧!”

            老厨子举手舞脚的,他高兴得不得了。

            不一会他又戴上了狗皮帽子,他又去探访了一阵,这一回他报告说:

            “他妈的,没有死,那小孩还没冻死呢!还在娘怀里吃奶呢。”

            这新闻发生的地点,离我家也不过五十步远,可是一经探访员们这一探访,事情本来的面目可就大大的两样了。

            有的看了冯歪嘴子的炕上有一段绳头,于是就传说着冯歪嘴子要上吊。

            这“上吊”的刺激,给人们的力量真是不小。女的戴上风帽,男的穿上毡靴,要来这里参观的,或是准备着来参观的人不知多少。

            西院老杨家就有三十多口人,小孩不算在内,若算在内也有四十口了。就单说这三十多人若都来看上吊的冯歪嘴子,岂不把我家的那小草棚挤翻了吗!

        就说他家那些人中有的老的病的,不能够来,就说最低限度来上十个人吧,那么西院老杨家来十个,同院的老周家来三个:周三奶奶,周四婶子,周老婶子,外加周四婶子怀抱着一个孩子,周老婶子手里牵着个孩子——她们是有这样的习惯的,那么一共周家老少三辈总算五口了。

            还有粉房里的漏粉匠,烧火的,跑街送货的等等,一时也数不清是几多人,总之这全院好看热闹的人也不下二三十。

            还有前后街上的,一听了消息也少不了来了不少的。

            “上吊”?为啥一个好好的人,活着不愿意活,而愿意“上吊”呢?大家快去看看吧,其中必是趣味无穷,大家快去看看吧。

            再说开开眼也是好的,反正也不是去看跑马戏的,又要花钱,又要买票。

            所以呼兰河城里凡是一有跳井投河的,或是上吊的,那看热闹的人就特别多,我不知道中国别的地方是否这样,但在我的家乡确是这样的。

            投了河的女人,被打捞上来了,也不赶快地埋,也不赶快地葬,摆在那里一两天,让大家围着观看。

            跳了井的女人,从井里捞出来,也不赶快地埋,也不赶快地葬,好像国货展览会似的,热闹得车水马龙了。

            其实那没有什么好看的,假若冯歪嘴子上了吊,那岂不是看了很害怕吗!

            有一些胆小的女人,看了投河的、跳井的,三天五夜地不能睡觉。但是下次,一有这样的冤魂,她仍旧是去看的。看了回来就觉得那恶劣的印象就在眼前,于是又是睡觉不安,吃饭也不香。但是不去看,是不行的。第三次仍旧去看,哪怕去看了之后,心里觉得恐怖,而后再买一匹黄钱纸、一扎线香到十字路口上去烧了,向着那东西南北的大道磕上三个头,同时嘴里说:

            “邪魔野鬼可不要上我的身哪,我这里香纸的也都打发过你们了。”

            有的谁家的姑娘,为了去看上吊的,回来吓死了。听说不但看上吊的,就是看跳井的,也有被吓死的。吓出一场病来,千医百治地治不好,后来死了。

            但是人们还是愿意看,男人也许特别胆子大,不害怕,女人却都是胆小的多,都是乍着胆子看。

            还有小孩,女人也把他们带来看,他们还没有长成为一个人,母亲就早把他们带来了。也许在这热闹的世界里,还是提早地演习着一点的好,免得将来对于跳井上吊太外行了。

            有的探访员晓得了冯歪嘴子从街上买来了一把家常用的切菜的刀,于是就大放冯歪嘴子要自刎的空气。

            冯歪嘴子,没有上吊,没有自刎,还是好好地活着。过了一年,他的孩子长大了。

            过年我家杀猪的时候,冯歪嘴子还到我家里来帮忙的,帮着刮猪毛。到了晚上他吃了饭、喝了酒之后,临回去的时候,祖父说,让他带了几个大馒头去。他把馒头挟在腰里就走了。

            人们都取笑着冯歪嘴子,说:

            “冯歪嘴子有了大少爷了。”

            冯歪嘴子平常给我家做一点小事,磨半斗豆子做小豆腐,或是推二斗上好的红黏谷做黏糕吃,祖父都是招呼他到我家里来吃饭的。就在饭桌上,当着众人,老厨子就说:

            “冯歪嘴子少吃两个馒头吧,留着馒头带给大少爷去吧……”

            冯歪嘴子听了也并不难为情,也不觉得这是嘲笑他的话,他很庄严地说:

            “他在家里有吃的,他在家里有吃的。”

            等吃完了,祖父说:

            “还是带上几个吧!”

            冯歪嘴子拿起几个馒头来,往哪儿放呢?放在腰里。馒头太热,放在袖筒里怕掉了。

            于是老厨子说:

            “你放在帽兜子里啊!”

            于是冯歪嘴子用帽兜着馒头回家去了。

            东邻西舍谁家若是办了红白喜事,冯歪嘴子若也在席上的话,肉丸子一上来,别人就说:

            “冯歪嘴子,这肉丸子你不能吃,你家里有大少爷的是不是?”

            于是人们说着,就把冯歪嘴子应得的那一份的两个肉丸子,用筷子夹出来,放在冯歪嘴子旁边的小碟里。来了红烧肉,也是这么照办。来了干果碟,也是这么照办。

            冯歪嘴子一点也感不到羞耻,等席散之后,用手巾包着,带回家来,给他的儿子吃了。

            他的儿子也和普通的小孩一样,七个月出牙,八个月会爬,一年会走,两年会跑了。

            夏天,那孩子浑身不穿衣裳,只戴着一个花兜肚,在门前的水坑里捉小蛤蟆。他的母亲坐在门前给他绣着花兜肚子。

            他的父亲在磨房打着梆子,看管着小驴拉着磨。

            又过了两三年,冯歪嘴子的第二个孩子又要出生了。冯歪嘴子欢喜得不得了,嘴都闭不上了。

            在外边,有人问他:

            “冯歪嘴子又要得儿子了?”

            他呵呵笑着。他故意地平静着自己。

            他在家里边,他一看见他的女人端一个大盆,他就说:

            “你这是干什么,你让我来拿不好么!”

            他看见他的女人抱一捆柴火,他也这样阻止着她:

            “你让我来拿不好么!”

            可是那王大姐,却一天比一天瘦,一天比一天苍白,她的眼睛更大了,她的鼻子也更尖了似的。冯歪嘴子说,过后多吃几个鸡蛋,好好养养就身子好起来了。

            他家是快乐的。冯歪嘴子把窗子上挂了一张窗帘,这张白布是新从铺子里买来的。冯歪嘴子的窗子,三五年也没有挂过帘子,这是第一次。

            冯歪嘴子买了二斤新棉花,买了好几尺花洋布,买了二三十个上好的鸡蛋。

            冯歪嘴子还是照旧地拉磨,王大姐就剪裁着花洋布做成小小的衣裳。

            二三十个鸡蛋,用小筐装着,挂在二梁上。每一开门开窗的,那小筐就在高处游荡着。

            门口一来担挑卖鸡蛋的,冯歪嘴子就说:“你身子不好,我看还应该多吃几个鸡蛋。”

            冯歪嘴子每次都想再买一些,但都被孩子的母亲阻止了,冯歪嘴子说:

            “你从生了这小孩以来,身子就一直没养过来。多吃几个鸡蛋算什么呢!我多卖几斤黏糕就有了。”

            祖父一到他家里去串门,冯歪嘴子就把这一套话告诉了祖父。他说:

            “那个人才俭省呢,过日子连一根柴草也不肯多烧。要生小孩子,多吃一个鸡蛋也不肯。看着吧,将来会发家的……”

            冯歪嘴子说完了,是很得意的。

            七月一过去,八月乌鸦就来了。

            其实乌鸦七月里已经来了,不过没有八月那样多就是了。

            七月的晚霞,红得像火似的,奇奇怪怪的,老虎、大狮子、马头、狗群。这一些云彩,一到了八月,就都没有了。那满天红洞洞的、那满天金黄的、满天绛紫的、满天朱砂色的云彩,一齐都没有了。无论早晨或黄昏,天空就再也没有它们了,就再也看不见它们了。

            八月的天空是静悄悄的,一丝不挂。六月的黑云,七月的红云,都没有了。一进了八月,雨也没有了,风也没有了。白天就是黄金的太阳,夜里就是雪白的月亮。

            天气有些寒了,人们都穿起夹衣来。

            晚饭之后,乘凉的人没有了。院子里显得冷清寂寞了许多。

            鸡鸭都上架去了,猪也进了猪栏,狗也进了狗窝。院子里的蒿草,因为没有风,就都一动不动地站着。因为没有云,大昴星一出来就亮得和一盏小灯似的了。

            在这样的一个夜里,冯歪嘴子的女人死了。第二天早晨,正过着乌鸦的时候,就给冯歪嘴子的女人送殡了。

            乌鸦是黄昏的时候,或黎明的时候才飞过。不知道这乌鸦从什么地方来,飞到什么地方去,但这一大群遮天蔽瓦的,吵着叫着,好像一大片黑云似的从远处来了,来到头上,不一会又过去了。终究过到什么地方去,也许大人知道,孩子们是不知道的,我也不知道。

            听说那些乌鸦就过到呼兰河南岸那柳条林里去的,过到那柳条林里去做什么?所以我不大相信。不过那柳条林,乌烟瘴气的,不知那里有些什么,或者是过了那柳条林,柳条林的那边更是些个什么。站在呼兰河的这边,只见那乌烟瘴气的、有好几里路远的柳条林上,飞着白白的大鸟。除了那白白的大鸟之外,究竟还有什么,那就不得而知了。

            据说乌鸦就往那边过,乌鸦过到那边又怎样,又从那边究竟飞到什么地方去,这个人们不大知道了。

            冯歪嘴子的女人是产后死的,传说上这样的女人死了,大庙不收,小庙不留,是将要成为游魂的。

            我要到草棚子去看,祖父不让我去看。

            我在大门口等着。

            我看见了冯歪嘴子的儿子,打着灵头幡送他的母亲。

            灵头幡在前,棺材在后,冯歪嘴子在最前边,他在最前边领着路向东大桥那边走去了。

            那灵头幡是用白纸剪的,剪成络络网,剪成胡椒眼,剪成不少的轻飘飘的穗子,用一根杆子挑着,扛在那孩子的肩上。

            那孩子也不哭,也不表示什么,只好像他扛不动那灵头幡,使他扛得非常吃力似的。

            他往东边越走越远了。我在大门外看着,一直看着他走过了东大桥,几乎是看不见了,我还在那里看着。

            乌鸦在头上呱呱地叫着。

            过了一群,又一群,等我们回到了家里,那乌鸦还在天空里叫着。

            冯歪嘴子的女人一死,大家觉得这回冯歪嘴子算完了。

            扔下了两个孩子,一个四五岁,一个刚生下来。

            看吧,看他可怎样办!

            老厨子说:

            “看热闹吧,冯歪嘴子又该喝酒了,又该坐在磨盘上哭了。”

            东家西舍的也都说冯歪嘴子这回可非完不可了。那些好看热闹的人,都在准备着看冯歪嘴子的热闹。

            可是冯歪嘴子自己,并不像旁观者眼中的那样地绝望,好像他活着还很有把握的样子似的。他不但没有感到绝望已经洞穿了他,因为他看见了他的两个孩子,他反而镇定下来。

            他觉得在这世界上,他一定要生根的。要长得牢牢的。他不管他自己有这份能力没有,他看看别人也都是这样做的,他觉得他也应该这样做。

            于是他照常地活在世界上,他照常地负着他那份责任。

            于是他自己动手喂他那刚出生的孩子,他用筷子喂他,他不吃,他用调匙喂他。

            喂着小的,带着大的,他该担水,担水;该拉磨,拉磨。

            早晨一起来,一开门,看见邻人到井口去打水的时候,他总说一声:

            “去挑水吗!”

            若遇见了卖豆腐的,他也说一声:

            “豆腐这么早出锅啦!”

            他在这世界上他不知道人们都用绝望的眼光来看他,他不知道他已经处在了怎样的一种艰难的境地。他不知道他自己已经完了。他没有想过。

            他虽然也有悲哀,他虽然也常常满满含着眼泪,但是他一看见他的大儿子会拉着小驴饮水了,他就立刻把那含着眼泪的眼睛笑了起来。

            他说:

            “慢慢地就中用了。”

            他的小儿子,一天一天地喂着,越喂眼睛越大;胳臂,腿,越来越瘦。

            在别人的眼里,这孩子非死不可。这孩子一直不死,大家都觉得惊奇。

            到后来大家简直都莫名其妙了,对于冯歪嘴子的这孩子的不死,别人都起了恐惧的心理,觉得这是可能的吗?这是世界上应该有的吗?

            但是冯歪嘴子一休息下来就抱着他的孩子,天太冷了,他就烘了一堆火给他烤着。那孩子刚一咧嘴笑,那笑得才难看呢,因为又像笑,又像哭。其实又不像笑,又不像哭,而是介乎两者之间的那么一咧嘴。

            但是冯歪嘴子却喜欢得不得了了。

            他说:

            “这小东西会哄人了。”

            或是:

            “这小东西懂人事了。”

            那孩子到了七八个月才会拍一拍掌。其实别人家的孩子到七八个月,都会爬了,会坐着了,要学着说话了。冯歪嘴子的孩子都不会,只会拍一拍掌,别的都不会。

            冯歪嘴子一看见他的孩子拍掌,他就眉开眼笑的。

            他说:

            “这孩子眼看着就大了。”

            那孩子在别人的眼睛里看来,并没有大,似乎一天更比一天小似的。因为越瘦那孩子的眼睛就越大,只见眼睛大,不见身子大,看起来好像那孩子始终也没有长似的。那孩子好像是泥做的,而不是孩子了,两个月之后,和两个月之前,完全一样。两个月之前看见过那孩子,两个月之后再看见,也绝不会使人惊讶,时间是快的,大人虽不见老,孩子却一天一天地不同。

            看了冯歪嘴子的儿子,绝不会给人以时间上的观感。大人总喜欢在孩子的身上去触到时间,但是冯歪嘴子的儿子是不能给人这个满足的。因为两个月前看见过他那么大,两个月后看见他还是那么大。还不如去看后花园里的黄瓜,那黄瓜三月里下种,四月里爬蔓,五月里开花,五月末就吃大黄瓜。

            但是冯歪嘴子却不这样的看法,他看他的孩子是一天比一天大。

            大的孩子会拉着小驴到井边上去饮水了。小的会笑了,会拍手了,会摇头了。给他东西吃,他会伸手来拿。而且小牙也长出来了。

            微微地一咧嘴笑,那小白牙就露出来了。

        尾声

            呼兰河这小城里边,以前住着我的祖父,现在埋着我的祖父。

            我生的时候,祖父已经六十多岁了,我长到四五岁,祖父就快七十了。我还没有长到二十岁,祖父就七八十岁了。祖父一过了八十,祖父就死了。

            从前那后花园的主人,而今不见了。老主人死了,小主人逃荒去了。

            那园里的蝴蝶,蚂蚱,蜻蜓,也许还是年年仍旧,也许现在完全荒凉了。

            小黄瓜,大倭瓜,也许还是年年地种着,也许现在根本没有了。

            那早晨的露珠是不是还落在花盆架上,那午间的太阳是不是还照着那大向日葵,那黄昏时候的红霞是不是还会一会工夫会变出来一匹马来,一会工夫会变出来一匹狗来,那么变着。

            这一些不能想象了。

            听说有二伯死了。

            老厨子就是活着年纪也不小了。

            东邻西舍也都不知怎样了。

            至于那磨房里的磨倌,至今究竟如何,则完全不晓得了。

            以上我所写的并没有什么幽美的故事,只因它们充满我幼年的记忆,忘却不了,难以忘却,就记在这里了。

            1940年12月20日香港完稿。

      7. 李杏果:发达市场经济国家劳动关系三方协商机制的经验与启示

        三方协商机制是政府、雇主组织和工会就经济社会政策和劳资关系协调等进行信息沟通、协商谈判和促进合作的制度安排,是国际劳工组织大力提倡的社会对话形式。我国的劳资矛盾随着市场经济的发展逐渐显性化,政府在构建协调劳动关系制度的进程中,引入三方协商机制这一国际通行的制度。全国人大常委会于1990年、2001年先后批准了《促进履行三方协商国际劳工标准公约》《劳动行政管理:作用、职能及组织公约》,推动在我国建立三方协商机制。2001年,原劳动与社会保障部与全总、中企联/中企协举行全国协调劳动关系三方会议第一次会议,在我国国家层面建立起三方协商会议制度。三方协商机制其后被写入《工会法》《劳动合同法》《劳动争议调解仲裁法》《企业劳动争议处理条例》《企业最低工资规定》等法律法规政策中。政府的强力推动和稳定的制度保障,促使我国三方协商机制向前发展。2018年,中国工会十七大提出要“推动完善协调劳动关系制度机制。做实省、市、县三级地方及产业的协调劳动关系三方机制,并向乡镇(街道)、经济开发区、高新技术园区延伸。”目前我国已经建立起涵盖国家、省(区)、市(县)、县(区)、街道(乡镇、社区)五级的三方协商机制,拥有建设、海上、港口等国家级产业三方机制和多个省级、地市级、县级产业三方机制,形成了较为稳定的人社部门、工会和企联/企协、工商联的“三方四家”结构,有些地方还探索拓展了三方协商的主体构成。

        在研究层面,文献回顾发现,尽管劳动关系日益成为我国社会科学研究的热点,但是学界对三方协商机制的研究相对较少。李德齐指出,三方协商机制在我国从培育到完善,需要经历一个艰辛的探索过程[1]。乔健认为,我国目前的三方协商机制是在政府机构与准政府机构之间进行的功能性协调机制,其存在诸多问题[2]。杨观来认为,我国的三方协商机制在调节劳资关系中作用效率低,并对其原因进行了分析[3]。阿梅娜·阿布力米提认为,我国工会在三方协商机制中存在角色定位不准等问题[4]。石晓天从劳动政策过程的视角,认为三方协商机制存在法律地位不明确、协商内容有限、信息公开不充分等问题[5]。孙芮认为,我国三方协商机制中政府过度干预劳资双方,不利于化解私营企业的劳资冲突[6]。李丽林和袁青川认为,我国三方协商机制沿袭了政府主导的协调劳动关系的传统方式,存在职能窄、无法满足现实需求的问题,我国应在借鉴国外经验的基础上,进行深化改革[7]24-25。

        基于政府主导下的强制性制度变迁,我国自上而下建立起覆盖全国的三方协商制度框架,但在实际运行中,三方协商机制却不同程度地存在政府定位不准、雇主组织和工会组织代表性不强、三方协商运行机制不健全、涵盖议题范围窄、形式协商大于实质协商等问题,无法适应市场经济条件下的社会利益协调,制约了劳动领域全过程人民民主的发展。本文拟剖析发达市场经济国家的经验,结合我国实际,提出完善我国三方协商机制的建议,推动我国劳动领域治理的现代化。

        一、法团主义:理解发达市场经济国家劳动关系三方协商机制的基础

        发达市场经济国家劳动关系三方协商的基础是法团主义(corporatism)。它是一种由国家协调的、资本和劳动力之间进行妥协和合作的体系[8]。法团主义代表着这样的社会政治过程:具有垄断性、受国家认可、数量有限、代表各方利益的功能团体与政府间就公共政策的输出进行协商谈判,以争取优惠政策,并通过提供成员的合作配合,保障公共政策的执行[9]。

        霍布斯鲍姆(Eric J.Hobsbawm)认为,法团主义在意识形态上源于欧洲中古世纪或封建社会一种右派势力的“组织化国家统制”(organic statism);组织化社会中,虽然各种团体具有不同的社会角色和功能,但却能够被国家统制形成集体行动;它以经济团体的代表权取代自由主义民主政治[10]。这样的统合派政权出现在葡萄牙、奥地利和西班牙等国家。第二次世界大战后,欧洲许多国家面临复兴经济、在世界格局中避免被边缘化的挑战,能有效整合社会力量、化解阶级冲突的法团主义再次复兴。20世纪70年代,施密特系统地概括了法团主义。他把法团主义看作由组织化功能团体参与的利益代表系统:这个利益代表系统中,各功能团体有明确的责任(义务),有数量限制;不具有竞争性,具有功能区分;被国家承认,赋予该领域的垄断性代表地位;作为交换,国家对这些功能团体的利益表达、领导人选择和组织支持等进行一定程度的控制[11]。

        法团主义既是利益代表系统,又是一种协商决策、促进共识政治的民主实践模式。在这一决策过程中,功能团体与国家间建立起制度化的公共政策协商,国家赋予其参与公共政策的合法地位,同时这些团体必须承诺并制约成员行动,实现与国家合作,保障政策的执行[12]。法团主义模式所代表的国家与利益集团关系不同于多元主义,如表1所示。法团主义关注的是特定利益集团与国家的制度化联结,是国家主导下的利益协商;其主要目标在于统合利益集团间的利益;国家主动介入,承认各功能团体的代表权和影响决策的合法地位,将其纳入政策过程;利益集团将会员诉求传递到国家决策体制,使决策体现成员利益;各功能团体以妥协为导向,在影响政治的同时,有义务约束成员的过激行为,确保各方形成的政策和协议得到贯彻落实。

        塞厄罗夫对24个工业化国家的比较研究表明,挪威、瑞典、奥地利、丹麦、瑞士、以色列、荷兰、比利时、日本、芬兰、德国等国家的法团主义程度深[13]。在发达市场经济国家中,基于法团主义的劳动关系治理实践,其典型代表是劳动关系三方协商机制。米什拉更是将法团主义与三方协商机制划等号,认为法团主义就是政府、工会和雇主组织为实现特定经济社会目标而构建的三方伙伴主义,是国家与主要利益集团之间的制度化合作[14]。

        在奥地利、比利时、丹麦、法国、荷兰等发达市场经济国家中,国家具有与社会伙伴协商解决社会问题的历史传统。19世纪中后期,为缓解劳资矛盾、维持社会秩序,欧洲国家的政府开始重视工人参与。1848年,法国建立卢森堡委员会,吸引工人参与政府的政策制定。第一次世界大战后,政府寻求与工会和雇主合作,以缓解通货膨胀压力;20世纪20年代,在丹麦、法国、阿根廷、墨西哥等国家。已经出现依法批准设立的劳资双方或三方性制度安排,以解决劳资争议,或参与更大范围的政策执行[15]。第二次世界大战后,欧洲国家的领导人借助三方合作进行战后重建。1948年,比利时设立中央经济理事会(the Central Economic Council);1950年,挪威设立协调委员会(Coordinating Commission);三方合作的制度安排旨在通过将有组织的利益纳入政府决策,实现工资控制和工业和平[16]。20世纪五六十年代,三方协商机制不仅涉及经济社会发展规划、工资和收入政策。还进一步扩展到人力资源规划、培训、职业安全卫生等专业领域。60年代后,国际劳工组织通过三方协商的国际劳工公约和建议书,推动三方协商机制在更大范围的发展。70年代末以来,三方协商机制关注的不仅是工资和工作时间等核心劳动关系议题,而是就许多经济社会政策议题进行协商[17]。随着发达市场经济国家经济增速放缓,三方协商关注的议题从稳定工资水平转变为如何提高生产率和在全球市场中的竞争力。

        总之,法团主义对劳动关系做出了重要贡献[18]:首先,它将狭义的劳资关系制度置于更广泛的社会背景下。为此,对劳动关系制度的研究,需要重视国家这一变量,基于国家作用以及特定时期内国家对劳动问题的管制来进行解释。其次,它将劳工问题从产业领域转移到了政治领域,将注意力集中在结果上,劳资分配问题可以通过国家福利转移和社会保障等解决,这减少了将罢工作为讨价还价武器的必要性。法团主义理念下三方协商机制的发展为发达市场经济国家回应经济社会变革挑战、调控组织化利益冲突、增进劳资和谐做出了重要贡献,在满足工会工资调节需求的同时,也为市场经济国家带来经济增长、低失业率和低通货膨胀率等宏观经济效果。

        二、发达市场经济国家劳动关系三方协商机制的经验

        国际劳工组织指出。三方协商机制的作用发挥需要满足以下条件:民主基础和结社自由;强有力的、合法的、独立的、有代表性的劳工组织和雇主组织;各方参与社会对话的政治意愿、责任感和承诺;适当的制度性支持;三方协商的实践和经验[19]44。在解决市场经济条件下劳资关系问题的过程中,发达国家积累了丰富的三方协商机制运作经验。

        (一)政府角色定位准确,重视劳资双方的协商

        市场经济条件下,劳资矛盾凸显对经济和社会秩序的破坏促使各国政府重视劳资关系协调机制建设,通过搭建社会对话平台和三方协商机制,推动社会利益均衡,化解劳资冲突,维护社会团结。政府在三方机制中多强调尊重市场经济规律,注重合理确定自身角色定位,在政府一市场一社会关系中发挥服务作用。政府并不过分主导三方协商,而是注重发挥劳资双方代表的作用。政府作用具体体现为:构建三方协商机制的制度框架,确立三方协商的运行规则;政府保障劳资双方的政治参与和协商权利,使劳资双方进行充分的沟通、协商和谈判;在协商谈判陷入僵局时,政府居中调解、斡旋,敦促劳资双方妥协让步和促成共识;政府保障协商后签署的三方协议的合法性、权威性,监督政策执行,确保各方遵守和落实承诺。

        劳资双方之间的对话协商是三方协商机制的基础,这在欧洲具有悠久的历史,是其经济社会现代化和民主发展的组成部分,是许多国家延续至今的传统。在从农业国向工业国转型的过程中,挪威出现了自下而上、自发成立的全国性工会和雇主组织。其中,挪威总工会(LO)成立于1899年,挪威雇主协会(NAF)成立于1900年。工会和雇主组织能够充分代表工人和雇主利益,为会员所认可,具有代表性。尽管双方在很多问题上存在分歧,但双方都认可协商与合作的重要性。1907年,工会和雇主组织第一次签署产业层面的集体合同,对冶金行业的工资、计件工作、工作时间进行规制。劳资双方的合作推动劳、资、政三方协商的建立和发展。1935年,挪威成立由国家调解员、工会联合会和雇主联合会组成的三方委员会,考察每周40小时工作制的引入对制造业产生的影响[20]。发达国家的实践表明,劳资双方组织的强代表性是三方协商机制的根基:劳资双方的协商谈判是三方协商机制的重心;政府掌舵和服务作用的发挥,是三方协商机制的保证。这些要素保障着发达市场经济国家中的实质协商,帮助政府实现协调社会利益、预防和抑制劳资冲突、推动共识政治的目标。

        (二)组织机构健全,综合性和专业性三方协商机构共同作用

        发达市场经济国家的三方协商以正式的组织机构作为保障:一是设立涵盖各方面议题的综合性三方协商机构,如经济和社会理事会、全国社会对话理事会、劳动咨询委员会、国家三方委员会等;二是针对专门性劳动事务,成立由三方构成的、专业协商机构;三是设立专门的办事机构,负责三方协商机制的日常运行。

        在法国,经济、社会和环境委员会是涵盖各方面议题的综合性三方协商机构,其下设有劳动和就业、教育文化交流、女性权利和性别平等、环境、经济和金融、欧洲和国际事务、可持续土地管理、社会事务和卫生、前瞻和公共政策评估11个工作组,负责相应领域的具体问题。国家集体谈判委员会、中央就业委员会、个体争议产业法庭中央委员会、职业教育社会进步和就业中央委员会等是针对具体问题成立的专门性三方协商机构[7]19。在挪威,存在工资协议政府联络委员会、工资协议技术计算委员会、劳动和养老金政策理事会等多个专门性三方协商机构。在日本,劳动政策理事会作为专门机构,旨在审议、讨论涉及劳动政策的重要事宜,向厚生劳动大臣或相关政府当局提供咨询和建议。劳动委员会则作为独立的、专门性三方协商机构,负责处理劳资争议、审查和处理不当劳动行为。其中,处理全国和跨地区重大劳动争议案件以及审议各地劳动委员会作出的决定等事宜,由中央劳动委员会负责;地方劳动委员会则负责处理辖区内的劳动争议案件[21]。在韩国,经济、社会及劳动理事会是综合性三方协商机构,其根据议程、产业、社会阶层或特定事宜,设立体面工作、社会保障网、职业安全卫生、劳动关系发展、数字转型与劳动未来、金融行业委员会、养老金改革和老龄收入保障特别委员会等多个专门委员会,协商解决具体事宜。三方协商机制设有秘书处,作为三方协商日常运行的办事机构。秘书处的规模不一,小的有十多名雇员(如芬兰),大的则有一百多名雇员(如荷兰)[22]。

        (三)包容性强,容纳多个工会、雇主组织参加三方协商

        许多国家存在多个工会和雇主组织,在三方协商的制度安排中,这些国家往往通过一定的议事规则和议席安排,将多个工会联合会以及雇主组织纳入三方协商机制中。韩国经济、社会及劳动理事会包括雇主联合会(KEF)和工商联合会(KCCI)两大雇主组织的代表,以及劳动组合总联盟(FKTU)和民主劳动组合总联盟(KCTU)等主要工会组织代表。挪威将四大工会联合会——挪威总工会(LO)、职业工会联合会(YS)、专业人员工会联盟(Unio)、专业协会联合会(Akademikerne)和主要雇主联合会——工商联合会(NHO)、企业联合会(Virke)、雇主协会联合会(Spekter)、地方和区域政府联盟(KS)的代表纳入工资协议技术计算委员会以及其他专门性劳动力市场三方委员会。这样的制度安排,提升了社会伙伴的代表性,赋予这些国家的三方协商机制更强的民主性,最大限度实现劳资利益协调。

        (四)政府部门代表多元化,并不局限于劳动部门

        三方协商机制的政府方,许多国家往往不局限于负责劳动事务的政府部门,而是让财政部、商业部以及教育与培训部等多个相关政府部门加入,共同担任政府代表。丹麦经济理事会中的政府代表包括丹麦政府和中央银行。挪威工资协议技术计算委员会中的政府代表来自劳动和社会事务部、统计署、财政部以及地方政府和现代化部。韩国经济、社会及劳动理事会的政府代表是战略和财政部、就业和劳动部;贸易、工业和能源部长作为特别成员参加全体委员会。在遏制新冠病毒大流行期间,日本、葡萄牙和西班牙参加三方机制的政府代表不仅包括劳工部长,还包括负责经济、旅游、交通和基础设施等特定部门的部长。

        在部长之外,有的国家甚至由政府首脑亲自参加全国一级的三方协商。日本首相或者副首相参加劳、资、政三方会议。挪威工资协议政府联络委员会中,政府方面的代表包括首相和内阁大臣,并由首相担任主席。新冠疫情大流行期间,在法国、西班牙、韩国,国家总统、政府首脑或议会议长均参与新冠疫情应对的三方协商机制,充分体现高层领导对三方协商机制的认可和政治承诺。

        (五)重视社会代表,吸纳劳资之外其他利益代表和专家参与

        发达市场经济国家具有将更多利益相关方纳入协商和政策制定的民主传统。三方协商机制的代表中,除了劳、资、政代表,还往往包括其他利益群体代表和专家。意大利国家经济和劳动理事会中包括工会和雇主组织之外的其他社会组织(如妇女组织、青年和失业者组织等)和一定数量的专家代表。西班牙经社理事会的成员除劳、资代表外,还包括农业、海洋渔业、消费者、合作社等利益群体代表以及经济社会和劳工领域的专家。丹麦经济理事会成员除劳、资、政代表外,还包括独立的经济专家。匈牙利国家经社理事会成员包括五个方面的代表:经济界代表(倡议群体、雇主组织和全国商会)、劳工方(倡议群体和工会组织)、非政府组织方、科学界代表、教会方。荷兰经社理事会中除劳资双方外,还包括11名独立成员,包括独立专家、公共利益协调监督员、经济财政法律社会领域的专家(通常是大学教授);荷兰央行行长和荷兰经济政策分析局长作为独立成员参加。挪威工资协议政府联络委员会中,除劳、资、政代表外,还包括农业组织以及渔民组织等其他利益代表[20]。挪威工作时间委员会成员包括经济学家、法律专家、人力资源专家和社会科学家,这些专家独立性强,不隶属于任何社会伙伴或组织。韩国经济、社会及劳动理事会除劳、资、政三方外,还包括公共利益代表;这些公共利益代表一般是知识和经验丰富的专家。社会代表的加入,使三方协商机制在协调劳资利益的同时,能够兼顾更多利益群体,提升专业性和社会影响力,保障公共利益的实现。

        (六)三方协商议题范围广泛,通过协商优化公共政策

        霍华德J.威亚尔达指出,法团主义随着经济社会变化而变革,在后工业社会,法团主义得以重构并不断扩展领域,各利益团体以熟悉的法团主义方式与政府谈判,“政策过程中法团主义色彩依然浓厚”[23]。目前,发达国家的三方协商机制涉及议题比较广泛,与劳动有关的所有经济社会政策议题均在三方协商机制的范围内,具体包括:劳动立法和法律执行;集体谈判、劳动争议处理等劳动关系议题;职业安全卫生、工时等劳动基准议题;工资决定等工资议题;劳动力市场、就业、教育和培训等就业议题;社会保障和社会保护议题;性别平等议题;宏观经济政策、经济结构调整转型、货币、税收、财政、减贫、贸易、移民等经济和社会政策[19]83-85。三方协商涵盖议题广,作用范围大,已经成为发达市场经济国家弥合社会分歧、促进社会团结的重要机制。新冠疫情大流行期间,发达市场经济国家积极运用三方协商机制提升危机时期政策质量,确保政策有效执行,建立信任,增强社会团结。德国、瑞士政府从疫情一开始就让社会伙伴参与应对危机的政策制定。瑞士联邦政府和社会伙伴在涉及法律、财政、工作场所和产业的四个三方工作组框架内定期举行会议,制定危机应对举措。意大利政府和社会伙伴签署了三方“关于抑制和控制冠状病毒在工作场所蔓延的措施的联合议定书”,以应对危机。韩国政府及时启动社会对话和三方协商,呼吁工人和雇主组织提供必要支持;韩国政府和社会合作伙伴发表《三方宣言》,提出相关措施,保护就业,保护最易暴露于病毒的工人,减轻小企业主的税负;《卫生部门三方协议》规定劳资双方的义务,促进职业安全卫生和病人安全,防止医务人员过度劳累,改善卫生机构工作环境,保护该部门的就业[24]。

        三、三方协商机制的国际经验对我国的启示

        进入新时代,我国劳动关系的外部环境发生重大变化,人口红利下降,老龄化加剧;数字经济兴起,职工队伍的结构发生变化,制造业中的职工人数下降,共享经济下新就业形态劳动者增多;劳动关系中新旧问题交织,劳动关系趋于更加灵活化和复杂化,劳动关系模糊导致主体各方权责不清[25];职工维权和服务涉及的主体众多,并不局限于传统的劳、资、政三方。与新时代发展全过程人民民主的要求相适应,我国三方协商在主体构成、组织结构和运行机制等方面亟待重塑。我国需要从全过程人民民主的视域认识三方协商机制的价值,扩展协商的议题范围;基于党的群团改革的要求,深化群团改革,增强工会和雇主组织的群众性、代表性;坚持综合性与专业化相结合原则,扩大参与协商的主体范围,完善三方协商机制的组织结构和运行机制;适应市场经济条件下政府改革的发展趋势,合理界定三方协商机制中政府的作用,保障实质性协商,充分发挥三方协商机制在协调社会利益、发展全过程人民民主、推动劳动领域治理现代化中的作用。

        (一)从全过程人民民主的视域认识三方协商机制的价值,拓展三方协商的议题范围

        目前我国三方协商的涵盖范围窄,多局限于工资和劳动关系等议题,社会认知度和社会影响力有限,制约了三方协商机制对社会利益的调节。借鉴国际经验,结合我国实际,我们应从全过程人民民主的视域认识三方协商机制,不断拓展三方协商的议题范围,丰富三方协商的内容。第一,在理念上,三方协商机制兼具工具理性和价值理性,其不仅是集体协商、劳动争议等劳动关系问题解决的工具,更具有经济社会政策价值和民主价值。从政策过程的视角来看,经过三方协商出台的经济社会政策更科学,具有更广泛的民意基础,在实践中更容易得到执行,减少政策失灵的发生。从民主的视角来看,三方协商机制是全过程人民民主在劳动领域的重要体现,完善三方协商机制,有助于提升劳动领域民主协商、民主决策、民主管理和民主监督的水平,有助于健全劳动领域的民主治理机制。这既是发展全过程人民民主的内在要求,也是推动我国劳动领域治理现代化的必由之路。第二,在实践上,鉴于劳动关系与社会保障、就业、收入分配、宏观经济等之间存在紧密联系,我国应积极拓展三方协商的议题范围,将更多经济和社会问题纳入协商,将财政、预算和货币政策等宏观经济政策、产业政策、教育培训、就业、社会保障、职业安全与卫生、经济结构调整等与劳动者、企业有关的经济、社会议题逐步纳入三方协商的范围,以充分发挥三方协商机制在协调社会利益关系、发展全过程人民民主中的作用。

        (二)提升雇主组织代表性,保障雇主组织参与

        我国三方协商中基层雇主组织的发展较为滞后,代表性不强,主要表现为:数量庞大的非公有制中小企业缺乏有效的群体利益代表;代表社会组织的雇主组织缺乏;县以下雇主组织力量比较薄弱;地方产业协会发展不足,产业层面三方协商缺乏稳定的组织保障。国际经验表明,有效的三方协商要求工会与雇主组织均得以发展。为此,我国应持续推进基层雇主组织建设,在完善区域性雇主组织的基础上,推进行业性雇主组织建设,提升雇主组织的代表性。第一,政府要完善基层雇主组织建立和发展的制度环境,优化雇主组织的建立程序,完善雇主组织的职能、权利、义务、治理结构、运作方式等规则,使雇主组织的发展获得良好的制度保障。政府要鼓励、引导雇主以自下而上的方式建立雇主组织,尤其是数量庞大的非公有制中小企业和新社会组织,实现雇主组织的增量发展,完善雇主组织的体系和网络。第二,在存量方面,政府要深化企联/企协、工商联等准政府组织的改革,弱化官方准政府组织的行政色彩,强化其与雇主之间的沟通、联系和利益代表,提升雇主组织的群众性和对雇主群体利益的代表性、回应性,提升用人单位对这些组织的认同感。第三,在产业层面,政府要培育和发展地方产业协会,强化产业协会的能力建设,使其能够有效承接政府转移职能、参与三方协商和社会治理。产业协会的建立和发展,有助于为产业层面的三方协商提供组织保障。第四,在存量和增量雇主组织发展的基础上,要根据协商议题,因地制宜地扩大参与协商的雇主范围,扩大雇主覆盖面,保障各领域、各类型雇主组织的平等参与,畅通雇主的利益表达,提升雇主组织的利益代表性。

        (三)深化工会改革,保障工会参与

        目前我国工会组织的双重属性使工会容易产生身份偏差,弱化对职工权益的维护。深化群团改革、提升工会代表性、保障工会参与是提升三方协商效能的关键。为此,第一,要通过持续深化群团改革,克服部分工会依然存在的行政化问题,密切工会与职工的联系,增强工会的社团属性,强化其职工利益维护职能,从传统的行政化工会走向符合新时代要求、以职工为中心的群众化工会,重塑工会的功能侧重、运行机制和活动方式,夯实工会的群众基础。第二,工会要深入职工群体进行调查研究,及时发现、汇集不同领域职工的诉求,加强对职工诉求的分析、研究、提炼和归纳,在对职工利益诉求进行准确把握的基础上,确定诉求的优先次序,整合形成职工的集体性诉求,为工会有效参与奠定信息基础和研究基础,提升工会参与三方协商机制的专业性。第三,在影响职工切身利益的公共决策做出前,各级政府要赋予并保障工会决策参与权。在协商过程中,工会应强化职工代表的立场,通过各种途径和策略,表达职工诉求,保护职工权益,维护社会公正。工会向党政传递职工诉求,有助于提升我国党政主导的国家治理的社会回应性,扩大决策的信息基础,使党政及时发现并回应职工诉求,降低经济社会改革和决策失误对职工权益的不利影响,提升决策的科学化、民主化,保障以人民为中心理念的落实。

        (四)坚持综合性与专业化相结合,完善三方协商的组织机构和运行机制

        国际经验表明,成熟完备的三方协商机制需要稳定的组织保障,构建多层次、多行业、综合性与专业化相结合的运行机制。目前我国国家层面实行三方协商会议制度;北京、山东、河北、陕西、辽宁、湖北、安徽等20多个省(区、市)成立省级协调劳动关系三方委员会;有些地方建立起省、市、县三级协调劳动关系三方委员会,由政府负责同志任主任,办公室设在人力资源社会保障部门。从整体上看,我国三方协商机制的发展不平衡,组织机构和运行机制还不健全。借鉴国际经验,我国应坚持综合性与专业化相结合,完善三方协商的组织机构和运行机制。第一,要促进区域性三方协商的均衡发展,推动纵向各层级三方协商机制的实体化建设,解决编制、经费等具体问题,并使三方协调机制延伸到基层,如乡镇、街道和社区,打通民主协商的“最后一公里”,实现基层治理的民主化。第二,要在发展区域性三方协商的基础上,健全餐饮、旅游、快递等行业领域的三方协商制度,建立行业协调劳动关系三方委员会,完善运行机制,实现多层次、多领域、多行业三方协商的协调发展,充分发挥三方协商机制在社会治理中的作用。第三,提升三方协商机制的民主开放程度,在扩大劳、资、政等三方主体参与范围的基础上,根据协商议题和协商情境,吸纳更多社会利益群体代表、社会组织代表、律师、专家等的参与,健全各方参与的协商议事规则和工作流程,提升协商成效,保障协商后政策的落实,扩大三方协商的社会影响力。第四,加强各层级、各专门领域三方委员会的专业委员会建设,发展综合性与专业化相结合的三方协商机制。建立和完善劳动关系、工资分配、集体协商、社会保障等方面的专业委员会,吸纳理论和实践专家加入,激活专业委员会的作用,切实开展工作,提供专业咨询、协调、指导和服务,推动三方协商机制的专业化。

        (五)完善政府作用,保障劳资实质协商

        随着我国市场经济的发展和劳资矛盾的凸显,三方协商的重要性逐渐得到政府认可。近些年,陕西、辽宁、湖北、江西、山东、福建、河南等省均成立由副省长担任主任的省协调劳动关系三方委员会,提升协商协调的层次和力度。此外,各地还探索扩大三方协商的成员构成。江苏省在“三方四家”之外,将经济和信息化委员会纳入;辽宁省将司法厅、国资委、法院、检察院等单位纳入;内蒙古阿拉善左旗增加发展和改革委员会作为成员单位。政府对三方协商机制的重视程度不断提升,政府主导各方配合的三方格局基本形成。不过,在我国党政主导的国家治理中,三方协商也存在政府过分主导三方机制、形式协商大于实质协商、民主治理不充分等问题,削弱了劳资双方的自主性和协商成效,制约我国劳动领域的利益协调。国际经验表明,有效的三方协商以劳资双方的社会对话为基础,政府的角色限于为劳资双方协商提供制度保障和公共服务。我国三方协商机制的完善,需要顺应政府改革趋势,在提升协调力度的同时,扩大政府方的参与范围,构建整体性治理;合理界定政府作用,保障劳资实质协商。第一,适应劳动议题涉及利益广泛的特点以及政府机构改革的变化,要在人社部门之外,扩大政府方的参与主体范围,吸收国资、市场监管、经信、应急、卫健、统计、财政等更多政府部门加入,形成政府主要领导牵头、人力资源和社会保障部门负责、多个相关政府部门参加的协同治理格局。将政府方代表从人社部门升格到政府主要领导,这有助于更好统筹各相关政府部门,改变人社部门“小马拉大车”的局面,克服利益掣肘和碎片化治理,推动部门合作,提升三方协商的权威性,形成整体性治理。第二,政府要发挥规则制定优势,完善三方协商的主体权利、程序保障等制度,明确规定政府各层级、各领域涉及劳动者利益决策的民主协商程序,使三方协商成为决策的前置程序,以民主治理规范政府的权力行使,减少政府决策失误和不当干预对劳动者权益的影响,以程序民主保障实质民主。第三,在协商过程中,政府不应过分主导协商进程,而是要充分尊重劳资双方,赋权劳资双方依照章程自主开展工作,使劳资双方协商成为三方协商的基础和重中之重;政府角色由“划桨”转变为服务,通过议程安排、平台搭建,促使劳资双方进行充分的信息沟通、利益表达和对话协商;政府居中保障劳资权利,确保各主体之间地位平等、三方协商程序和规则公平;在劳资双方协商陷入僵局时,政府居中斡旋、协调,促使共识形成;政府将劳资双方意见纳入政策过程,将协商成果转化为公共政策;通过完善经济社会政策推动劳资和谐,实现公共利益。政府科学的角色定位有助于劳资双方利益的充分表达,有助于推动实质性协商,使劳动问题的治理充分体现全过程人民民主,并以民主治理保障三方协商实效和社会利益的协调。

        注释:

        ①该公约规定:“凡批准本公约的会员国应作出符合本国条件的安排,在劳动行政管理系统内,促成公共当局与最有代表性的雇主组织和工人组织、或在适当情况下与雇主代表和工人代表进行协商、合作和谈判。”

        本文转自《劳动经济与劳动关系》2024年第1期

      8. 李禹阶:中国史前宗教与社会权力的演进

        与国外相比,中华文明起源及早期国家的产生有着独特的演进路径,而这种独特演进路径又与史前宗教和社会权力的起源、发展密切相关。探讨这种社会权力的演变进程,对于深入理解中华文明起源及早期国家的产生具有重要价值。有鉴于此,本文试图在前人研究基础上对中国史前宗教与社会权力演进的复杂关系加以进一步讨论。需要说明的是,基于这一问题的重要性,目前中外学术界在这方面已经推出相当丰富的成果,关于这些成果的内容、贡献与价值,我们将在下文的相关讨论部分分别予以介绍。

        一、原始宗教的公共功能与社会权力的萌芽

        早期国家起源的路径大体有两条,即自发的道路与强制、冲突的道路,这几乎是中西方学术界的共识。美国人类学者罗伯特·L.卡内罗(Robert L. Carneiro)认为,“严谨的国家起源理论有两大类:自发的和强制的。自发论坚持认为:在历史的某一时刻,某些人群自发地、理性地、自愿地放弃他们的个人权力,并与其它群体联合起来,形成一个可以叫做国家的大型政治单位”。在对这两种国家起源理论的阐释中,卡内罗就曾重点对在西方影响颇大的“契约论”“自动论”“水源论”等进行了批评,这些批评包含着诸多合理因素。近半个世纪以来,中国学术界对于这两种类型的社会发展路径进行了探索,并有着诸多重要研究成果。但从总的趋向看,目前学术界对史前“冲突论”或“战争论”研究相对深入,而在关于“自发论”的讨论方面则仍然有较大空间,主要缺陷是未真正触及社会权力起源、发展的本质、特征及内生动力机制。实际上,即使是最早的、最简单的原始聚落,一旦构成社会组织形式,就总是隐藏着或明或隐的社会权力萌芽,以便有序开展聚落人群的生产、生活事务,而不是让人各行其是。马克思在《德意志意识形态》中指出:“它(所有制——引者注)的萌芽和最初形式在家庭中已经出现,在那里妻子和儿女是丈夫的奴隶。家庭中这种诚然还非常原始和隐蔽的奴隶制,是最初的所有制。”从某种角度看,即使是最早的社会组织形式,也有着多重交叠的由原始宗教、经济、军事、政治组织等构成的权力网络要素。但是这些政治、军事、宗教、经济等要素并不是同时出现的,而是在社会复杂化进程中先后出现的。一般而言,解决先民生存问题的历法、节气、巫医及维护聚落秩序的原始道德最早出现,而这些知识、技术及道德要素往往是在原始宗教的旗号下呈现的。当这种潜在关系反映在人的主观意识中,就形成早期聚落社会组织的突出而外显的原始宗教或巫术形式,而军事权力等则是在其后的社会进程中才逐渐呈现的。值得注意的是,人类早期社会的原始宗教与巫术往往相互混淆。近代人类学的一项重要成果,就是认为史前“巫术与宗教既是行为状态,又是信仰系统;既是社会现象,又是个人经验”。从根本上看,早期社会组织中原始而隐蔽的权力萌芽既是通过原始宗教(或巫师)的“权威”出现,也在这种“权威”发展中通过掌握公共功能的要素而不断变异、转化为早期社会权力。正因如此,进入20世纪90年代后,我国诸多学者在提到早期文明与史前社会组织发展时,都不约而同地谈到史前宗教与神权在其中的重要作用。 但是由于研究者角度、视野、对象的不同,关于该问题的探讨仍然不够深入。

        从考古资料看,在早期中国相对平等的社会中已经隐藏着由原始宗教所表现的社会权力的萌芽。例如,在距今8000年的河南舞阳贾湖遗址就发现如龟甲、骨笛、叉形器成组出现的墓葬,这些墓一般较大,随葬品较丰富。尤其是其中发现的龟甲、骨笛、契刻等有着明显宗教仪式性特征,说明墓主应该是祭祀一类的、具有一定“权威”的人物。在距今7000多年的北方内蒙古兴隆洼文化的兴隆洼遗址、辽宁阜新查海遗址中,也发现选用真玉精制的玉器如玉玦、玉钻孔匕形器、玉斧、玉锛、钻孔圆蚌等用于祭祀、占卜用的“神器”。在湖南沅水流域的高庙遗址下层,考古学家发现了距今7000年左右的大型祭祀场,面积估计达1000多平方米。在祭坛出土的陶器上发现了凤鸟负日、獠牙兽面(饕餮)纹、八角星纹及其组合图案,这些陶器有许多是精美的白陶,它们显然属于祭器一类。这些组合图案显然是当时的先民宗教信仰与太阳神崇拜的写照,它描画了巫师祭祀和沟通天、人的图景。

        从考古资料可以发现,这些聚落遗址并没有明显的财富分化迹象,而仍处于相对平等的社会阶段。在社会分层尚不发达的情况下,为什么会出现这些原始宗教遗迹以及颇受尊崇的巫师一类人物呢?实际上,这种墓葬仪式、随葬品及祭祀场所表现的正是先民群落的个体或集体性社会观念以及信仰型“权威”的存在。这是因为围绕墓葬的各种随葬“神器”及相关仪式直接或间接地反映着聚落先民的观念、信仰,是以物化载体形式表现的集体社会意识。从人类学材料看,这种集体社会意识主要来自史前先民基于现实生存条件而产生的公共服务产品的需求,而这种需求在史前社会中通常是通过原始宗教所蕴含的迷信与科学、技能相混杂的方式来实现的。例如史前宗教祭祀天地、神祇的传统,就包含着观天测地、了解节气、预告风雨雷暴、驱邪祛病,以及通过精神信仰来维护氏族、部落传统道德和习惯法等诸般内容,这些要素构成了史前先民基于生存挑战所需的对内对外的应力机制。故此,通常史前宗教都聚合了早期先民在物质与精神文化上的诸多发明、创造,并将这些早期的科技知识、生活经验融入祭祀、占卜的宗教信仰中,以获得权威属性。例如,距今8500—7800年的湖北秭归东门头遗址发现的男性太阳神石刻图像,体现出三峡地区早期天神膜拜和巫的神职意识。在距今7000多年的辽宁查海遗址中发现的用碎石块堆塑出的一条长19.7米的“石龙”,其南侧有墓葬和祭祀坑,应与天象崇拜、天文节气有关。在距今7200—6400年左右的内蒙古敖汉旗赵宝沟文化遗址,发现了神兽太阳纹、神兽月相纹、神兽星辰纹等象征天文星象的灵兽图纹,这既说明早期聚落先民的宗教信仰集中体现在与天文、天象有关的观象授时或预卜吉凶上,也说明在这种夹杂科学要素的祭祀、占星等行为中,当时的神职人员是在知识加持的原始宗教神秘面纱下获得其威望的。

        在新石器中期,聚落先民已存在有关天文、气候、节气的二分二至及使用观天测地工具的知识,如古人常常谈到的“律管候气”“测量日影”等。冯时在谈到贾湖遗址出土骨笛与“律管候气”的功能时指出,“十二律在当时很可能已经产生,而22支骨笛实际就是迄今我们所知的以骨为管的最早的骨律”。史前中国各区域考古材料证明,当时主持祭祀、观测天象的巫师多是通过祭祀、占卜和知识、经验而形成早期聚落社会中的“权威”,并成为聚落先民所尊崇的对象。所以,早期聚落社会的巫师正是从宗教活动与生产实践中获得知识素养的一批最初的神职者、天文学者、医者、工匠。而在“酋邦”式的非“强制”时代,沟通神祇与知识、经验所形成的“权威”往往孕育着早期社会权力的萌芽。这种情形一直延续到距今6000年左右的聚落社会中。例如,距今6400年左右的濮阳西水坡仰韶文化遗址中发现有壕沟、灰坑、墓葬和蚌壳摆塑的图案。特别是第45号大墓,墓主系一壮年男性,成年男性人骨架的左右两侧分别用蚌壳摆塑有龙和虎的三组图像,在墓室东、西、北三面的小龛则有为墓主殉葬的人殉。李学勤据此认为,墓室中图形和墓主的相关位置与古代人关于青龙、白虎的方位相合,表明当时已经产生四象观念。从该男子墓仪看,墓主应该是该聚落的巫师兼首领,故在他死后被给予高规格的龙、虎、人殉的祭奠仪式。

        濮阳西水坡遗址45号墓尽管有着尊崇葬仪,但关键是该聚落遗址并没有发现明显的财富或等级分化迹象,这说明原始宗教及巫师崇拜,不仅是先民的一种信仰,更是先民在天文、农学、医疗、伦理上的一种公共服务需求。这种公共服务功能是以自然法则的神秘力量呈现出的混杂着巫术、科学、经验、道德的宗教、知识、伦理的秩序体系,它并非可有可无,而是原始先民为生存所需的物质与精神的要素。由于这种公共服务产品的极端重要性,它会随着时日延续而逐渐演变为一种隐形的社会权力起源因素。

        史前中国文明正是在适应这种公共需求过程中而逐渐萌芽的。例如,五帝之前的“三皇”据说就是上知天象、节气,下明地理、水文,并能治民、卜筮、懂得乐理的一类人物。三皇之名始见《周礼·春官宗伯》:“外史……掌三皇五帝之书。”关于“三皇”的名称有不同记载。例如《风俗通义》引《尚书大传》:“遂人以火纪,火,太阳也,阳尊,故托遂皇于天;伏羲以人事纪,故托戏皇于人。……神农以地纪,悉地力,种谷疏,故托农皇于地。” 据此可知,三皇为遂人、伏羲、神农,并分别与天(皇)、人(皇)、地(皇)相对应。“三皇”传说显然与“五帝”有着重要区别。《庄子·盗跖》篇记有“有巢氏”“神农氏”等事迹,“神农之世……耕而食,织而衣,无有相害之心,此至德之隆也”。《韩非子·五蠹》有“有巢氏”“燧人氏”的记载。从诸多传世文献可以看出,“三皇”实际上是初民社会的知识精英,他们在生产、技术上对先民社会的贡献,被认为是“而民说之,使王天下”的根本原因。《越绝书》引战国时人风胡子的话说:“轩辕神农赫胥之时,以石为兵……至黄帝之时,以玉为兵……禹穴之时,以铜为兵……”尽管在各文献中对“三皇”名称、顺序的提法颇多,但由以上材料可以看出,有巢、遂人、宓戏(伏羲)、神农、赫胥氏等在神话、传说中的时序均先于“以玉为兵”的“五帝”(黄帝)时代,这与神话、传说中从黄帝起始的“五帝”以战争、礼乐为主的时代有着社会阶段上的重要界限。《战国策·赵策二》云:“宓戏(伏羲)、神农教而不诛,黄帝、尧、舜诛而不怒。”“三皇”时代的发明创造在黄帝时代也有诸多遗留,例如《世本》:“雍父作舂。宋衷曰:雍父,黄帝臣也。” 《说文解字序》:“黄帝之史仓颉……初造书契。” 但仔细分辨可以看出,“三皇”时代的创造者是他们本人,而黄帝时代的创造者则主要是其臣属。这种细微区别正反映了史前社会阶段的差异及权力起源的奥秘。张光直认为,《越绝书》“以石为兵”“以玉为兵”“以铜为兵”的分期法“很正确地将中国古代文明演进的经过的本质变化撮要出来了”,石器阶段“就大致相当于传统古史中的三皇(轩辕、神农、赫胥)”,玉器阶段则相当于“五帝(黄帝)”时代。这种认识很值得重视。

        但是,原始宗教所提供的为聚落社会服务的公共产品不会长期止步于无偿服务的范围。当人口增加、聚落组织扩大时,巫师掌握的祭祀权力和知识权力就会逐渐超越其原有界限,开始形成异化力量,构成新的权力关系,包括早期社会的经济权力关系。早期聚落生产技术发展,开始产生剩余产品。但是,从世界文明史来看,即使在剩余产品十分缺乏的阶段,当时的巫师(祭司)兼首领也开始贪婪地把持着不均衡资源的再分配权力。例如,在公元前3100年左右的苏美尔文明中,再分配权力并不是在社会资源极度丰富的情况下形成的,恰恰相反,“它使那些能够控制这一土地之人能调动数量不均衡的集体性的社会权力,并把它变成可用于反对他人的个体权力”。 所以,在原始宗教幕布遮掩下的知识、技术,都逐渐与资源的再分配权力挂钩。弗雷泽通过大量人类学实例指出:在很多地区、民族中,“巫术的施行者必然会在对他们的故弄玄虚深信不疑的社会中成为举足轻重的有影响的人物。他们当中的某些人,靠着他们所享有的声望和人们对他们的畏惧,攫取到最高权力”。 它使原始宗教与其初的公共服务目的相分裂,使过去为了应对自然界挑战而形成的知识、经验,异化为一种促进聚落社会分层的力量。距今8000—6000年左右的中国各区域大量考古材料亦证明了这个问题。因此,正是在这种精神信仰与社会的分裂、异化中,由以知识、经验而确立的巫师“权威”逐渐形成为超越先民、族众,以及聚落、聚落群范围的,高高在上的“威权”,从而产生最早的社会权力起源。

        二、社会复杂化中的宗教职能与社会权力

        从考古材料看,距今6000—4000年是史前中国各区域社会的动荡、分化期。这一时期,各区域的级差型聚落形态与早期“古城”“古国”不断涌现。例如,两湖地区从屈家岭文化开始,就不断出现规模甚大的多级聚落群及“古城”等。在中原的仰韶文化中晚期也出现典型的成组聚落与区域性大聚落群。史前中国的原始宗教正是与各区域不同的自然与人文环境密切联系的,这种不同的自然与人文环境形成不同的社会结构及主神崇拜,而这种主神崇拜的差异却深深影响着原始宗教的公共职能与权力起源和配置方式。李伯谦认为,在距今5000—4000年间,华夏史前文化出现几种不同的权力配置模式,“红山文化古国是以神权为主的神权国家,良渚文化古国是神权、军权、王权相结合的以神权为主的神权国家,仰韶文化古国是军权、王权相结合的王权国家”。 李伯谦的论断显然具有一定合理性,但是对于在这种信仰方式与权力配置的背后隐藏着当时社会结构中什么样的潜在的联系、冲突乃至博弈,还需要深入探讨。

        从世界文明史起源及发展历程看,人类最初往往奉行自然主神崇拜,而这种自然主神崇拜的具体对象又往往是太阳神崇拜。世界上大多数民族都有日神崇拜的传统,如古代埃及、两河流域、希腊、罗马以及美洲印第安部落都十分崇拜太阳神。史前中国亦如此,我们在黄河、长江流域的诸多史前文化中都能看到太阳神崇拜的遗迹。例如,距今8500—7800年的湖北秭归东门头遗址发现的男性太阳神石刻图像;在距今7000年左右的湖南高庙遗址祭坛出土陶器上象征太阳神崇拜的凤鸟负日、獠牙兽面(饕餮)纹、八角星纹及其组合图案,以及河姆渡遗址陶器上发现的“双鸟朝日”纹饰等,应是当时先民的太阳神崇拜的写照。

        但是,由于环境差异,史前中国作为先民普遍信仰的“日神”崇拜在社会复杂化中则呈现出多样化发展趋势。其中既有以祖先神为主神的信仰形式,也有千年来持续如一,将古老的太阳神崇拜传统贯穿始终,还有在社会复杂化进程中由自然主神崇拜逐渐向祖先神崇拜转型的例子。这种主神信仰对象的转变,导致这些区域的社会组织、权力配置及价值观念深刻改变。其中,最典型的则属长江下游太湖流域的良渚文化和黄河中游地区的仰韶文化。

        良渚文化是环太湖流域和钱塘江流域分布的新石器时代晚期文化。在良渚文化先民中,太阳主神崇拜的传统持续千年,始终如一。在良渚文化发现的各种玉、石、骨器中,玉琮、玉璧、神徽等既是神权的象征,也蕴含着复杂的先民信仰。从良渚遗址发现的器物纹饰看,良渚社会最重要的礼器如玉器、象牙器等,几乎都装饰了神人兽面纹图像,以及见于玉琮、玉璧的各种鸟纹。目前学术界大都认为,这些神人兽面、鸟立阶梯状纹饰与日神崇拜有关。例如鸟立阶梯状边框图像,诸多学者认为该鸟与太阳神祇崇拜具有密切联系。 再如良渚的神人兽面纹中常出现在人和兽面部的典型形象是旋目形兽眼。这种兽眼在形制、力度上都颇具宗教与信仰特色,故许多学者认为良渚的神人兽面纹中的旋目形兽眼是太阳崇拜意识的表现。实际上,史前先民在宗教图腾与纹饰上雕刻“眼睛”,往往代表了神祇与人的沟通。从世界各地的人类学例证看,神祇眼睛常常是图腾崇拜的主题。在一些雅利安人神话中,太阳被视为“天眼”。南太平洋波利尼西亚群岛上,芒艾亚人的日神“拉”被认为是天神阿瓦蒂的巨眼。

        良渚文化这种日神信仰模式持续了近千年。例如在良渚中晚期的武进寺墩遗址中,M3大墓随葬大量玉璧、玉琮等,且玉琮多为上宽下窄的高节琮,从这些高节琮可以看出其与良渚早中期文化和信仰的前后相继关系。在福泉山附近的吴家场良渚后期墓葬中,发现镶插象牙镦的象牙权杖,权杖上的象牙薄片雕琢有10幅神人兽面纹,说明它与良渚早中期宗教信仰具有继承性与同一性。高城墩遗址是距良渚古城最远的高层级聚落。从玉琮等随葬器物看,良渚传统的神祇信仰仍然在高城墩延续了很长时间。这说明良渚中晚期的日神崇拜并没发生本质上的变化,其自然主神信仰延续始终。这种自然主神崇拜使“神权”在良渚文化中占有崇高地位。而其最重要特征就是,它可以通过仪式、符号和祭祀建筑等的信仰化,用超越早期社会各血缘组织之上的宗教“神圣”精神力量使社会阶级分层的对抗形式相对温和,缓解社会转型中的血腥、暴力与强制手段。总的来看,存在千年的良渚社会,内外的社会冲突与阶层竞争在统一神祇信仰中被相对消释、缓解。

        良渚作为当时最早的早期国家,其社会结构及社会权力的起源、形成及持续发展,显然有着各种特殊因素。例如,良渚文化的稻作农业所需的防御水旱灾害和合理用水、灌溉的需求,使人们必须加强各地域间的生产协作,如建造灌溉设施和大型水利工程等。此外,地处东南一隅的半闭合环境,使它有着自然的屏障,不易受到外来族群的侵扰。这使得良渚社会虽然保留了血缘氏族纽带及祖先神崇拜,但是这种现象并没有发展到与传统的太阳神信仰分庭抗礼的地步。在其社会发展过程中,传统日神信仰所包含的如掌握节气、预告风雨、驱邪祛病等,就是良渚稻作农业与其先民需要的公共服务产品。有学者曾对瑶山、汇观山两处祭坛进行了多年观察,发现早晨日出方向与祭坛的四角所指方位具有惊人的一致性。这些史前宗教蕴含的宗教和科学、迷幻和理性等功能,构成日神信仰的广泛社会基础。因此,良渚文化社会权力的起源及发展,不是由于战争、冲突的压力,而主要是先民对原始宗教提供的公共服务产品的需求。这种需求使巫师掌握的信仰与知识相结合的公共权力,久而久之会超越其原有界限,并逐渐形成与平等社会对立的力量——一种新的权力形态。

        但是,史前中原地区的情况却大相径庭。史前中原的生态与人文环境具有二元性:一方面,中原具有开放型地理地貌,内外地域都有河流、平原联结,故向来是周边各部落、族群的争战之所,名不虚传的“四达之地”;另一方面,史前中原地区原始聚落大都分布在大河流域的二、三级支流,小河的阶地、台地上,形成“小流域”“小区域”的发展格局,使史前中原地区各农业定居聚落形成了自给自足的同质化的“村社”形态。随着人口数量的成倍增长,人口与土地承载力的矛盾也显现出来,它使争夺这些阶地、台地的有限的可耕地资源的冲突不断发生。这就使史前先民聚落或聚落群往往筑垒、挖壕自守。从考古材料看,距今5500年以来,环壕聚落及聚落群大量出现。这些分布于河流、河谷两岸的二级阶地上的聚落群的分布范围多是在半径20公里的区域内,形成该聚落群的层级结构与势力范围。 在史前社会的丛林法则中,这种聚落群应是早期中原社会最原始、朴素且花费成本最低的自发性政治联盟。这种情形使史前中原的先民血缘关系及族氏认同异常突出,它使人类早期的自然主神崇拜很早就改变其属性,发展成有利于血缘组织整合、控制的祖先主神信仰,这种氏族文化传统应该是环境的产物。例如,在约公元前6000年的裴李岗时代,黄、淮流域的裴李岗文化、白家文化和后李文化中均出现有共同葬俗、排列有序的公共族葬墓地,它表明当时已有祖先崇拜和对祖先保留历史记忆的传统。它使中原先民社会很早就存在着奉天法祖、重视族类、注重世俗、崇贵轻富的文化根脉。

        在仰韶文化中晚期,当中原成为周边族群迁徙、殖民的“四达之地”时,中原地区的社会组织及信仰形式就更加偏重于崇尚实务的世俗权力的构建。这种情形表现在信仰对象的神格上,就既存在对超自然的山川、河流诸神的泛灵崇拜,更突出着对血缘性的部落祖先神的权威崇拜,同时也包括了对日益发展的世俗公共职能的图腾式敬畏。正是这几个方面构成中原先民部落、部族史前宗教的基本特点,建构了中原简朴、务实、尚贵的早期“礼”“仪”属性。这种信仰模式形成了聚落社会的世俗化、功利化特征,它将聚落首领的“先祖”“先公”作为政治体所在组织的最高神祇。由于作为祖先神崇拜的“先祖”“先公”权威必须依附在某一政治共同体上,并以该政治体的统治范围作为其信仰存在的“神性”领域,故它使社会权力开始由巫师所及的形而上宗教领域逐渐向政治共同体所及的世俗性社会领域转化,其权力属性,即神权与世俗权力的主从关系因此而转移。

        与良渚文化的“神权”模式不同,史前中原社会贯彻着早期氏族社会权力异化的两个传统,即垂涎权力的首领兼巫师对权力的着意异化和先民对宗教权威具有的公共服务功能的拥戴、敬仰。从传世文献和考古材料来看,当时被先民祭祀、膜拜的各政治共同体的“先祖”“先公”,大都为能沟通天地神祇,并有丰富知识、技能,对聚落有“功”的人物。《国语·鲁语上》:“夫圣王之制祀也,法施于民则祀之,以死勤事则祀之,以劳定国则祀之,能御大灾则祀之,能捍大患则祀之。非是族也,不在祀典。”在春秋战国时人的眼中,上古时代享受大祀的“圣王”正是对先民族群或政治共同体有“功”而受到历代先民的祭祀并列入祀典。随着史前宗教公共职能的多维演变,巫师职能也发生转化。他们既是沟通天地神祇的使者,又是聚落道德及习惯法则的维护者,也是聚落先民需求的公共产品的执掌者。例如在某一地区的史前文化遗址中常常发现不同规模的祭祀遗址,这些祭祀遗址除了祭祀天地神明外,也有着测定天文、节气的功用。如在河南巩义双槐树仰韶文化遗址发现3处夯土祭祀台遗迹,如果将这些祭坛与重要人物居住的大型建筑融合的用9个陶罐模拟的北斗九星天文遗迹相对照,可以看出祭祀与天文、历法仍是当时社会所需的主要公共职能。这种早期祭坛观天测象的功能在很多史前遗址中都能发现。

        因此,祖先主神信仰使中原地区的史前社会结构及价值观都发生根本改变。它构成一种在祖先神的“神性”信仰笼罩下的世俗王权政治及其制度范式,并表现出几个重要特征。

        其一,它是在史前宗教暨祖先神崇拜基础上发展而来,因此带着浓厚的神祇印迹。与自然主神崇拜不同,它不是神祇的人格化,而是人(先公先祖)的神格化。所以它更加注重其政治体组织、首领权力及等级秩序的合法性,同时也以这种“神性”来凝聚政治体内的先民、族众,在狂热的祖先神崇拜的“神性”氛围中开展其政治、军事、文化活动。其二,它以氏族血缘组织为基本社会细胞,并不断强化着这种血缘组织。它使祖先神信仰的内容包括着对血缘组织的强烈认同,将血缘组织的内聚、凝合看得高于一切。在这种制度模式中,血缘亲疏成为区别贵贱尊卑、决定分配消费的基本尺度,并有着导致政治体组织日益宗法化、“礼制”化的趋势。其三,它尽管以血缘组织为基础,但是却有着强烈的对由血缘组织层层叠构的政治共同体的认同感,并由此产生对该政治体首领的权力认同,注重权力机制的载体功能,也十分看重“神性”笼罩下其政治共同体的发展。其四,由于受崇拜的祖先神与该先民组织有着相互依存的关系,因此它具有强烈的维持该政治体的生存、发展,以及维护统治者权势的最高“神祇”的特性。这种“神性”原则使它注重政治体的存亡兴衰,渴望通过政治体的稳定、强大来应对阶层冲突、对外战争、自然灾害等内外挑战。因此,尽管在祖先主神崇拜中,血缘氏族组织具有排他性、内聚性取向,但是在维护由这些血缘细胞组成的政治共同体生存、发展的原则下,它又会在整体层面上具有跨越血缘、文化的对周边区域、种族开放的“天下”观念,正是这种开放性、辐射性与内聚性、向心性的对立统一,使史前中原政治共同体具备着超越文化、种族的胸襟与宏大的对“天下”的想象力。

        因此,史前中原地区的祖先神崇拜,与沿太湖流域的良渚自然主神信仰可以说是两个不同的典型。当然这种区别不是绝对的,它们仍然具有相辅相依的互融因素。它使距今5500—4000年的先民社会与神祇信仰有着多元化发展趋势。大致来说,这一时期史前各区域社会都处在动荡、分化及转型中。这种动荡、分化及转型,就包括着史前先民社会结构及权力配置、价值观念等核心要素。大概而言,红山文化、凌家滩遗址与良渚文化等应是以自然主神信仰为主的“神权”政治;而地处黄河下游的大汶口文化和长江中游的屈家岭—石家河文化则处于由自然主神信仰向祖先主神崇拜的转型过程中。例如长江中游地区,继高庙文化之后的大溪文化就出现了从太阳神祭祀到祖先神祭祀的转变。有学者认为:“太阳、鸟崇拜的起源极有可能8000年前产生于湖南省。正确的话,可以说这种祭坛就是以太阳、鸟崇拜为背景,举行稻作丰登仪式的祭坛。”但是在距今6400—5800年的城头山古城发现的大溪文化一期前段至二期前段的大型祭坛中,这种凤鸟负日、獠牙兽面(饕餮)纹、八角星纹等纹饰大大减少,而发现了由椭圆形大型土坛和超过1米深的40多个祭祀坑组成的大型祭坛,以及置放的大块“祖”形砾石。从其旁有男性大墓和成组处于显著位置的石“祖”来看,明显有祭祖先之意。故有发掘者认为:“这种大砾石,或许就是后来‘祖’的象征物。”这种情形在其后的历史进程中不断发展。例如在屈家岭文化中晚期的邓家湾遗址,就发现大型乳钉管形器和筒形器相互套接的组合器祭祀坑,多达15处以上。在邓家湾筒形器祭祀遗迹附近的东南部,发现一个中间高四周低的近圆形的土台,发掘者推测,土台及周边遗迹应该与祭祀祖先有关,“那高高屹立的筒形器如果是祖的象征,则这里或许是祭祀祖先的场所”。它说明长江中游的社会组织宗教崇拜已由自然主神崇拜而转型为祖先主神崇拜。与此相应的是,长江中游地区的史前社会结构与权力配置也发生着急剧转变,这从屈家岭—石家河文化期的诸多大型、超大型的环壕聚落群及具有防御设施的古城的大量出现可以看出。

        史前东方海岱地区亦存在由自然主神崇拜向祖先主神崇拜的转型现象。在早期海岱文化中,当地土著的东夷族群崇拜对象应是象征“日神”崇拜的凤鸟等物。大汶口文化中出土了许多鸟状陶器造型。但是这种凤鸟崇拜却在不断转化,如传世文献就记载了东夷族群对象征“日神”的鸟图腾的重视。《左传》昭公十七年记郯子谈少皞氏以鸟名官曰:“我高祖少皞挚之立也,凤鸟适至,故纪于鸟,为鸟师而鸟名。”郯子将少皞氏的鸟官制度分为天文、节气、财赋、司寇、司马等二十四种类型,并认为“自颛顼以来,不能纪远,乃纪于近。为民师而命以民事,则不能故也。”鲁昭公十七年距少皞氏时代已2000多年,郯子对这段历史的熟悉,一方面说明了作为太阳神象征的凤鸟崇拜在东夷族群已有久远传统;另一方面也说明少皞氏时代,以鸟为象征的自然神祇开始同掌握着天文、历法、民事、财赋的职官权力系统相联系的情形。它说明该时期东方先民社会的信仰和制度已出现新的特点。例如,对被后人称为“高祖”的东夷首领太皞、少皞的崇拜,本身就意味着旧时的太阳崇拜的主神信仰已向人格化、伦理化的祖先神信仰发展。因此,随着社会复杂化加速,各区域的神祇信仰对象也在转变。而这种转变的关键,即是过去原始宗教中统摄为“天事”的公共服务功能逐渐分离为“天事”与“民事”两大系统。

        马端临在《文献通考》中曾对上古这种“神事”与“民事”的二元一体关系有所阐述:“陶唐氏以前之官所治者,天事也;虞、夏以后之官所治者,民事也。太古法制简略,不可得而详知。然以经传所载考之,则自伏牺以至帝尧,其所命之官,大率为制历明时而已。……盖此数圣人者,生则知四时之事,殁则为四时之神。然太皞、炎帝、少皞、颛顼所历者四时,而句芒、祝融、蓐收、玄冥、后土,则颛顼之时始有此五人者并世而生,能任此五官之事。至帝尧时,则占中星之法,置闰余之法,渐已著明,然其命官,犹以羲、和为第一义。自是四子之后,世守其法,居其官。”马端临将陶唐氏以前和虞、夏以后作为“天事”与“民事”的分界线,正好说明了虞舜时代前后的阶级关系、权力配置、制度结构的变化。他的“天事”“民事”之论,反映了史前宗教与社会权力转型的一个关键点,即旧有的、传统的、被笼罩于原始宗教信仰中的史前政治、文化传统都发生重大变化,这就是由原始宗教对史前社会的“天人”不分的信仰控制、整合模式转化为“神权”与世俗权力分离的社会权力形态。《左传》昭公十七年记郯子所谈到的少皞鸟官制度的二十四种类型中,除了主天文、历政的“天事”之官外,其余的司徒、司马、司空、司寇、司事、工正之官,显然属于“民事”权力系统范围的内容。值得注意的是,马端临提及的人物包括太皞、炎帝、少皞、颛顼等人。这些上古部族首领正是上古历史中社会政治、文化制度变革的重要人物。例如,从神话、传说等历史记忆看,颛顼“绝地天通”的宗教改革则喻示着其时政、教即“天事”“民事”的分离。如《左传》昭公元年记此事曰:“昔高辛氏有二子,伯曰阏伯,季曰实沈……后帝不臧,迁阏伯于商丘,主辰。商人是因,故辰为商星。”“主辰”即是对辰星的观测、祭祀。辰星即大火星,大火星系二十八宿之东方苍龙七宿(角、亢、氐、房、心、尾、箕)之心宿第二宿。当时对大火星的观测、祭祀之官亦称“火正”。《国语·楚语下》:“及少皞之衰也,九黎乱德,民神杂糅……颛顼受之,乃命南正重司天以属神,命火正黎司地以属民。”由于“火正”一职,既是祭祀之官,亦是预报节气的民事之官,故而文献记其有“命火正黎司地以属民”的民事职能。它证明了旧时把持祭祀天地、主持民事的混沌之“神权”逐渐分离、转化为“神”与“民”的权力二元分割局面。

        三、史前宗教与社会权力的互动特性

        王震中认为,早期王权与宗教祭祀权、军事权、族权三者是密切相关的。其实,在世界古老文明的发展中,血缘族群始终占有十分重要的地位。例如,在古代埃及、美索不达米亚及古印度等地的社会发展中,血缘性的氏族、村社组织往往是其牢固基础。即使在古代希腊、罗马等典型的古典城邦国家,其初期发展中血缘族氏集团与地缘性公民团体仍然相互纠缠不清。而在早期中国,距今6000—4500年的聚落群大都系“庇护型”层级聚落。在这种聚落群团中,实力最强聚落的“先祖”“先公”往往是整个聚落群团的信仰主神。史前先民社会的这种祖先神信仰,对当时的社会组织和权力结构有着极为重要的意义。

        1.权力性质特征。自然主神的信仰模式会在时日流逝中将信仰神上升为最高统一神,这种统一神往往以信仰内涵作为其外延界限,由此超越氏族、部落的狭隘神祇信仰,形成超血缘、超族群、超世俗政治体的区域性宗教及神权政治体系,并与日益增长的世俗权力并驾齐驱甚或超凌其上。例如,古埃及的太阳神崇拜塑造了它的神权政治体系,而王权则需要不断以神权权威神化自身。它导致神庙和祭司权力加速膨胀,使王权与神权之间常常呈现激烈博弈。而在祖先主神信仰中,信仰主神主要是史前政治体里最高层级统治者的先公、先祖,它本质上是为了护佑地上该政治共同体的首领权力及人间统治,护佑其世袭子孙的福佑,故它是以政治权力为中心的权力与宗教体系,其世俗性特征十分明显。由于这种祖先神是以政治体范围作为它的威权领域,因此它必须以该政治体盛衰为其信仰存亡的前提,并在权力继承上有着王权神(祖)授、天道亲尊的特点。

        2.权力领域差异。在自然神崇拜中,其统治范围往往超越政治体领域,而将同一信仰但不同聚落群、古城、古国纳入共同的宗教统治范围,并主要以精神信仰方式进行社会整合与控制。例如,在太湖流域的良渚文化,由于受日神信仰的强烈影响,不同地域虽然在政治、文化上有自己的独特属性,但是超越世俗的精神信仰的控制方式,可以在统一神祇信仰下包容、融合不同血缘族群的存在,并使该社会在一千余年的历史演变中的社会整合、控制有着较为内敛、温和的特性。而中原地区的祖先神信仰所具有的世俗化特征,使最高神祇只能局限在当时的政治共同体内部权力所及的领域。例如,从新石器时代的传说、神话来看,由于祖先神崇拜具有的世俗文化特征,它和史前社会反映人类进步和与自然斗争的进取精神的传说、神话往往有着相容性。再如,中国史前关于“帝”“王”等政治体首领的传说、神话的逐渐一统化,一方面表现了《尚书·尧典》曰尧时“光被四表,格于上下……百姓昭明,协和万邦”的“万邦”林立而又呈现上下层级结构的局面。另一方面也说明处于层级结构顶端的大邦之君以“天”喻“祖”、“光被四表”的历史趋势,并在他们身上表现为浓厚的图腾化英雄主义的色彩。但是总的来看,这种权力神化并没有超过原始人知识信仰的范围和界限,泛灵禁忌的山川动植物神话始终与这些英雄为伴。由于祖先主神崇拜缺乏形而上的精神理念,大都局促在世俗权力和生老病死的人间功利祸福中,它使人们对现实人生的关切超过对自然神祇的信仰。这就从内部破坏着宗教的统一,阻碍着纯粹、抽象的“上帝神”摒弃世俗功利的出世道路的延伸,并在宗法血缘与世俗权力的结合中形成以血缘为基础的尊卑等级的“礼”及其原初制度。

        3.权力属性的特色。良渚文化虽然偏居一隅,其自然主神崇拜具有通过精神信仰而进行大规模民众动员的能力和社会整合机制。这种价值理念所建构的社会,更加注重区域统一神祇信仰的阶级压迫及公共功能的属性。在这种精神信仰与社会阶层的分裂、异化中,由以知识、经验而确立的巫师“权威”逐渐形成高高在上的“威权”,从而产生了最早的社会权力。而仰韶与龙山时期的中原,是在战争、冲突等严酷环境中成长的,故其祖先神崇拜下的权力属性常常是“神性”权威与世俗威权的结合。传说、神话中的史前部族的首领往往与祭祀、战争有关。例如黄帝,据《史记·五帝本纪》记载,轩辕之时,诸侯相侵伐,“于是轩辕乃习用干戈,以征不享,诸侯咸来宾从”。 黄帝还是一位居住天宫的众神之神,“昔者黄帝合鬼神于西泰山之上,驾象车而六蛟龙,毕方并辖……”(《韩非子·十过》)因此,在祖先神信仰中,其信仰主神与人间统治者的利益往往捆绑在一起,从而使以宗族群体或聚落的以实力为基础的占有关系用权力的方式表现出来,并形成多级聚落共同体,而权力也在这个基础上开始层级化了,即担当了聚落秩序的守卫者角色,也成为聚落发展的重要的先导性内容。

        4.权力形态内涵。良渚不同血缘的聚落人群的集合是在统一神祇信仰中完成的,它同样也构成了血缘与地缘的结合。但是这种结合主要是在统一神信仰中完成的。如绵延千年的良渚文化各地大墓中象征权力与信仰的各种玉器的式样和纹饰均甚统一,以琮、琮形器、璧为代表的巫术用器的使用方式也显示出了极为一致的宗教观念,显示了它的统一神信仰的至上性。而在中原等祖先神崇拜的区域,这种血缘与地缘的结合则是通过拟血缘形式来促进并完成的。由于祖先神信仰是以血缘为基础的神祇信仰,因此史前强势政治体扩展的一种方式就是将处于弱势的政治体纳入同一祖先神祇支配下。《尚书·舜典》所谓“慎徽五典,五典克从;纳于百揆,百揆时叙”,正说明这种大小邦国之间通过权力分层而表现出的显明的等级制度和不平等的联盟关系。这种“拟血缘”形式可能是不同血缘聚落婚姻关系的“甥舅”组合,也可能是共同塑造某一“有功”之祖先作为祭祀主神,从而形成一种拟血缘性的、层叠组合的权力授受的序列。在史前神话、传说中大量见到的这种血缘与权力授受序列便是其反映。如《史记·五帝本纪》所载,黄帝的子孙系统如玄嚣、昌意、高阳、颛顼、穷蝉、帝喾、帝挚、帝尧等,就不仅是血缘性的传承,也是史前权力授受序列的表现。这种权力传承序列通过长时段的历史记忆的选择、过滤,而将史前中华文明及其国家产生的历史编纂为血缘与权力授受的传承秩序,由此展示其获得“神”眷的正统观,它使各聚落间出现了一种可以融合的权力结构,即它们相互有统治性,也有亲密性,并以模拟性血缘关系表现出来。这种情况直到商代亦能看到。朱凤瀚曾把商代非本于自然物祖神进行了区分,认为其中包括了世系与拟血缘的三种亚型。正是这些异血缘、异姓的宗族集团,按照政治地位,通过婚姻或其他关系而构成复合制政治体。

        这种“拟血缘崇拜”往往又会塑造出一个层叠构建的祖先神,而这个共同塑造、普遍认同的祖先神又是以居于聚落群团顶层、实力最强的聚落祖先神及其人格为范本。例如,我们看到充斥上古传说与神话中的“帝”“王”世系:一方面,其祭祀主神大都具备血缘祖先神兼护佑神的双重性格;另一方面,这个祖先神及其祭祀系统随着聚落组织发展而不断处于层累式叠加之中。《国语·鲁语》有一段关于祖先崇拜与祭祀序列的记载:“故有虞氏禘黄帝而祖颛顼,郊尧而宗舜;夏后氏禘黄帝而祖颛顼,郊鲧而宗禹;商人禘喾而祖契,郊冥而宗汤;周人禘喾而郊稷,祖文王而宗武王。”这个祀典中的上古“帝”“王”,大都是某一个族氏或部族的祖先,他们虽然出自不同的地域,但是在历史层累中逐渐演变为整个中原王朝系统的受祭主神,由此充分展现了血缘与地缘结合的复合制社会结构及其权力叠加形态。如从黄帝、炎帝直至唐尧、虞舜的神格与人格看,他们既是驾龙驭虎的众神之神,又是享受禘祭的世俗人王,是炎黄部族的祖先。唐虞时期这种情况更甚。《尚书·舜典》:“舜让于德,弗嗣。正月上日,受终于文祖……月正元日,舜格于文祖”;《史记·五帝本纪》:“正月上日,舜受终于文祖。文祖者,尧大祖也。” 由于尧、舜分属不同的部落集团,所以舜所祭祀的“尧大祖”,就应该是自尧以来华夏集团普遍认同的先祖。因此,在中国文明起源中,“拟血缘崇拜”通过塑造一个“模拟化”的层累叠加的血缘祖先神,构成以早期各个部落集团最高首领为范型的共同的祖先神崇拜系统。祖先神崇拜使早期政治体形成以大邦首领的政治权力为核心,以“神权”“族权”为辅翼的权力结构。例如,在“族权”的发展上,“族权”既沉淀着厚重的血缘传承内涵,也通过此而不断催化着以“先公”“先祖”为代表的“父权”权威在先民社会组织中的强化。当这种超越性不断升华时,就超凌多神主义倾向,形成与上天同格的天神、“上帝”。同时,这种最高宗主神又反过来强化了地上世俗首领的政治、军事权力。禘是一种对祖先神的郊祭仪式,卜辞里禘写为帝,象束柴燎祭天神之形。《礼记·丧服小记》有“王者禘其祖之所自出”的说法,文献中有“禘黄帝”“帝(禘)尧”“帝(禘)舜”的说法,说明祖先神与上帝神合为一体,其祭祀的神格地位也在升华。

        四、史前宗教与军事权力的演进

        从世界古老文明的历史看,社会组织的各种权力要素,包括宗教的、经济的、军事的、政治的要素,并不是同时发生的,而是有着先后不一的阶段性特征。在初期先民社会,每一个氏族成员既是农民、猎人,也是战士。随着人口增加、资源紧张、外族侵扰等,这种局面得到了改变。军事首领及其权力产生的实质,正是因为有着需要保卫的剩余产品或者防卫外族的劫掠、侵扰而形成的强制性力量。例如在美索不达米亚,“最初的所有制是一个家族对另一个家族的剥削,财产的起源并没有伴随很多暴力”,“苏美尔国家的产生,是有限资源集中后需要军事力量的保卫,所以需要军事的集中化。这种集中化就使政治组织的权力系统开始固化,形成了正式的首领强制性权力”。 从人类学例证来看,原始社会的巫师兼首领通过知识、经济的加持而不断神化其权威,并在执行公共事务的过程中为了维护其再分配等特权而不断扩大其权力,尤其是强制性(军事)权力的属性。一般而言,早期聚落社会的这种军事权往往需要依靠巫师支持并与巫术联为一体。弗雷泽通过对诸多地区人类学实证研究,认为早期战争指挥权主要是掌握于巫师手中。他描述中非巴干达人信仰尼昂萨湖神,而这位神常常附在一位男子或妇女身上,所以“神不仅在宗教信仰和仪式等问题上而且在战争和国家政策等大事上都有最高的统治权”, 显然这个被神附身的人就是巫师。宋兆麟曾对我国西南佤族原始社会的猎头风俗进行了研究,他发现,直到20世纪初,佤族军事首领仍然是“临时选举产生的,通常由头人、巫师和老人开会推举,或者在原来的猎头英雄中占卜产生。因为过去猎头都进行占卜”, 而占卜则意味着巫师有着重要的左右军事首领选举的权力。事实上,早期社会的军事权力也是在氏族、部落的族众、平民与巫师兼首领的斗争、博弈中不断发展起来的。

        在史前中国亦能看出这种趋向。例如,在距今6000年的各区域文化遗址墓葬中,可以看到当时的高规格墓葬的仪式、葬制、随葬品大多以宗教性仪式及祭器为主,而作为象征军事权力的礼器类的斧、钺等则仅仅作为普通的武器、工具等葬具出现。如裴李岗文化的遗址墓葬中,常常能发现石斧、石铲、石刀与磨盘、磨棒等标志男女性别分工的随葬品。由于斧、铲、刀、锛等普遍出现在男性墓中,很可能这些随葬品就是当时男性族众普遍随身携带的私有工具或武器,它们标志着每个部落男子都可能既是聚落的农民、猎手,也是聚落的战士。而这些斧、铲、刀等作为随葬物并不是军事权力的象征。随着社会复杂化的发展,军事权力逐渐发展起来,使得早期原始宗教附带的军事指挥职能不断突破巫术的限制而上升为聚落首领的强制性行政权力。例如,在距今6000年之后的诸多遗址大墓中,象征军事权力的钺、斧与象征祭祀的礼仪性用器随葬一起的情形屡见不鲜,表现出其生杀予夺的重要权力属性,说明军权在祖先神崇拜的世俗性权力演进中已脱颖而出。这种情况在距今5000年左右的史前中国表现得更加明显。例如属于大汶口中晚期的花厅遗址北区墓地,发现的10座大墓中有8例人殉现象,并出土了大型玉锛、双孔大玉钺、兽面纹玉琮、刻着兽面纹的玉锥形器等,说明这些墓主大都是有着神权与军权的双重权力的人物。这也与马端临所谓“陶唐氏以前之官所治者,天事也;虞、夏以后之官所治者,民事也”的说法一致。

        这种情况使巫师兼首领逐渐改变其身份,成为手握神权、军权与族权的人物,这种权力关系更方便了聚落上层的巫师兼首领,为了满足日益增长的贪欲与权力欲,以实力大小所定的尊卑位次与神授秩序相结合,构成世俗性的官阶与超越性的神阶的进一步结合,以便于用“神权”的合法外衣增强地上王者的更广泛的世俗权力,诸如管理生产、负责资源再分配和守卫既得利益的权力等。这种权力机制使早期中国社会大大小小的巫师兼军事领袖成为各种类型政治体的显贵阶层。如史前传说中的数十个“帝”“王”式的部落集团首领,大都是在“大巫”的神化背景下彰显并履行其世俗权力的。例如,在传世文献中,黄帝、炎帝作为神化偶像,既是降魔伏怪的众神之神,也是最高的“圣”与“王”。唐虞时代的尧、舜、禹及夏初亦是如此。《史记·五帝本纪》载舜为政,“类于上帝,禋于六宗,望于山川,辩于群神”。传说中禹行“巫步”(“巫步多禹”),并被道教视为“巫步”之祖。它说明由前国家时代到早期国家的转型过程中,“酋邦”式首领由具宗教神权背景的“权威”统治向神权和世俗权合一的早期国家的“威权”统治的过渡,构成史前中国独特的权力演进道路。

        由此可以得出这样的结论,即从考古遗址的时间序列看,越是早期高规格墓葬,随葬品越是以祭祀、占卜的“神器”类为主;而随着史前社会日益复杂化,时代越往后则标志世俗权力的礼器如象征军权的斧、钺等就越多。例如,在距今6000多年的濮阳西水坡仰韶文化遗址45号大墓中,我们能够看到比较典型的蚌塑龙、虎图像的祭祀、天文等相结合的例子,但是并没有发现非实用性的象征军权的钺、斧等成组礼器,以及财富明显分化的印迹。而在山东大汶口早期遗址不同墓葬区的随葬品中的一些小墓(如M2021、M1012、M1016、M1021、M2008等)中常常发现钺和弓矢等武器。这种普遍的随葬武器的现象,说明这一时期的钺除了标志首领的军事权力,同时还是聚落战士的随身武器,甚至可能是武士荣誉的象征。它说明世俗性的集中化的军事权力并不是一开始就有的,而是在内外张力中从原始宗教的公共职能中分离出来的,并使氏族时代的全民皆兵逐渐演变为精英掌握军权的制度。例如,在距今5300年左右的郑州巩义双槐树聚落遗址,“被3重大型环壕围绕,构成严密的防御体系”,但是在双槐树遗址中心居址区内发现以九个陶罐摆放的“北斗九星”图案遗迹,表明巫师所从事的天象的观测、时令测度仍然有着非常重要的地位,而墓葬区内发现夯土祭台遗迹,其位于整个遗址的中轴线,表明祭祀、占卜活动仍然是当时日常而重要的精神活动,它和军事活动一样,构成中原政治文化传统中“祀”与“戎”的两大部分。距今4300年左右的陶寺文化,也充分表现出这种军事权力崛起时段的特征。例如,在陶寺遗址早期出土玉、石钺的80座墓葬中,除了3座大墓外,还有77座中型墓发现随葬玉、石钺,甚至在某些中型墓(如M3168)中发现的玉、石钺不乏精品。这一方面说明当时以钺随葬及相应礼制还没有十分规范;另一方面也说明了其时钺的军事象征意义而非军事权力的表征还十分明显。从时间上看,时代越晚,钺的这种军权象征意义越强。如在陶寺文化遗址能够判断年代的早晚两期的27座墓中,早期的玉、石钺形制类型较多,如平面正视为梯形、长方形、长条形等,尤其大墓中各类形制共存,表现出各异的、不相统一的形制。但至陶寺晚期,玉、石钺的形制似乎较为统一起来,多见窄长条形的器类,少见早期的其他形制同类器,同时也逐渐形成相对固定的流行形态和葬式特征。钺的这种形态象征的是一种权力演变历程,而这个历程在夏商周三代时达到高峰。正如《尚书·牧誓》记周武王伐纣誓师之时,“王左杖黄钺,右秉白旄以麾”;《仪礼·觐礼》则记曰:“天子设斧依于户牖之间,左右几。天子衮冕,负斧依”。

        由此可以归纳出史前中原等地宗教与政治关系的一个基本特征:在史前中国大多数地区,其前国家时期的社会权力大多起源于原始宗教的“神”的信仰及巫师权威。随着社会复杂化,世俗权力在“神权”,尤其是祖先神信仰的土壤中逐渐发酵。特别是维护既得利益的贪欲,使军事成为巫师兼首领群体争夺、获得某种稀缺社会资源并反对异己的一种强制性工具。这种权力工具既来自先民应对内外压力(包括抵御外辱)的“祀”与“戎”的活动中,又反过来异化成为民众对立面的强制性力量。而当社会由原始宗教的“权威”型治理转化为世俗王权的强制统治时,即离早期国家的产生不远了。

        五、早期社会权力与“礼”的法权化

        王震中曾提出史前中国文明起源中“聚落三形态演进”说,说明了在一个有限地域中单体聚落向群团模式演化的中心与多级共存的特征。实际上,这种社会组织不是聚落群人口按照贵贱等级重新编制为编户,而是各单体血缘性聚落的相互聚合,由此演化成贵贱等级及蕴含不平等所有制形态的“都鄙”结构。在这种复合制结构的“都邑邦国”中,处于最高“位次”的就是该“邦国”最高层级聚落、宗族的统治者,部分廷臣则由地方邦君来担任。传世文献所谓尧舜禹等“圣”与“王”,实际上只是“群邦”之“共主”,他们依然需要通过各级“属邦”的邦君来实现对早期国家的统治。这种层级结构的社会组织蕴含着神权、军权、族权相合一的权力网络要素。在史前社会复杂化进程中,这些权力要素逐渐进一步整合,并将社会权力与统治技术综合为一体,由此使龙山时代的“邦国”联盟通过权力分层既表现出“邦国”内部的等级尊卑,也显示出邦国之间的不平等联盟关系。但即使如此,在这种“群邦”结构中,当大“邦”之君的权力通过一种神圣形式凌驾于世俗社会之上时,由于认识到意识形态的极端重要性,故它亦采取了独特的技术手段即“礼”“礼器”等来维护其政治体制的权威。《左传》宣公三年:“昔夏之方有德也,远方图物,贡金九牧,铸鼎象物,百物而为之备,使民知神、奸……用能协于上下,以承天休。”这虽然具有传说色彩,但也反映了早期中国社会权力以“铸鼎象物”的“礼”“礼器”为标志的表现形态。早期的“礼”是一种混杂祭祀与科学、预占与经验、神性与伦理的人、神交融体系,它通过以信仰为基础的伦理规则、公共功能来对聚落秩序进行整合、维护。而当这种仪式、制度被法权化和固化后,就形成早期的以宗教信仰与世俗性政治等级相结合的礼仪规则。从大量考古材料可以看出,中国史前的礼器大都是从原始宗教的“法器”中蜕变而出的,并在功能上继承着史前宗教“法器”的诸多特征。

        由于礼从史前宗教中孕育,又服务于史前社会整合与控制目的,因此它既有强烈的超越现世的宗教特质,又有确定现世社会贵贱、尊卑的世俗性的规范功能。它使史前先民所循守的以原始宗教为主体的“习惯法”逐渐转化为以世俗性的“礼”为规则的尊卑等级的社会法则,并确定了各个阶层相应的权利、义务。《大戴礼记·三本》:“礼有三本:天地者,性之本也;先祖者,类之本也;君师者,治之本也。”它说明了礼所蕴含的形而上与形而下相结合的多重特征。早期的“礼”既是对各尊卑等级的权利、义务的规制,也是具有早期中国特色的法权表现方式。严格地说,它是由史前宗教的各项公共职能,如祭祀占卜、观测天象、预告时令、宣布征伐、维护伦理等而衍生的地上等级化的权力、义务的规定。以征伐权为例,虞舜时期的征伐、杀戮之权亦来自“神权”所授予的“圣”“王”的权力。如《尚书·甘誓》:“有扈氏威侮五行,怠弃三正,天用(夏)剿绝其命。”《墨子·非攻下》:“昔者三苗大乱,天命殛之……高阳乃命玄宫,禹亲把天之瑞令,以征有苗。”瑞令为宗教气息之礼器。在禹等执掌“王权”者看来,对内外的征伐、杀戮均是秉承“神意”,是“天命殛之”,说明直到尧舜禹时代,对内外的战争、征伐的军事权力仍然笼罩在“天命”、神祇的意志中。

        在世界各古老文明中,像古代中国的这种以世俗化的“礼制”来呈现独特的法权形式是极其少见的。这是为什么呢?正如前述,史前中国的生态与人文环境,导致定居农业社会在生产方式的同质性与组织结构上的内聚性,并很早就形成以血缘聚落为基础的复合型聚落群团的社会组织以及祖先神崇拜的原始宗教模式。这种权力形态和法权关系与古希腊罗马的阶级分层、社会权力、法权形式等“直接地和主要地从氏族社会本身内部发展起来的阶级对立中产生的”有重要区别。早期中国在没有出现血缘氏族制崩溃的情况下就直接进入早期国家,它使早期国家政治组织在设官分职等方面,继承了诸多原始社会的“大传统”,使早期中国社会权力既是神权、族权、军权三位一体的结果,也是血缘关系与阶级关系、族类(氏族、宗族、家族)关系相互渗透、混杂的产物。所以,早期中国文明与国家形成的“自发”性演进道路,正是通过原始宗教为载体,以先民实用性知识体系为内容的公共服务功能来形塑其神圣“权威”,并通过这种“神性”权威而建构了神权、军权、族权相结合的权力配置的制度范式。早期礼制及其物化形式正是彰示这种神权与王权(君权)权力属性的标志物,并由此构成中国文明起源及早期国家产生的独特路径。

        本文转自《中国社会科学》2024年第1期