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Abstract

McKay’s conjecture (1971) on character degrees was reduced by Isaacs—Malle-Navarro (2007)
to a so-called inductive condition on characters of finite quasisimple groups [[IMNO7], thus open-
ing the way to a proof of McKay’s conjecture using the classification of finite simple groups.
After [Ma07], [Ma08], [S12], [CS13], [KS16], [MS16], [CS1T7a], [CS17b], [CS19], [S23al, [S23b],
we complete here the last step of a proof with an analysis of the representations of certain nor-
malizers Ng(S) in G = GF' of maximal d-tori S (d > 3) of the ambient simple simply-connected
algebraic group G of type D; (I = 4) for which F' is a Frobenius endomorphism. To establish
the so-called local conditions A(d) and B(d), we introduce a certain class of F-stable reductive
subgroups M < G of maximal rank where M° is of type D;; x D;_;; with M/M?® of order 2.
They are an efficient substitute for Ng(S) or the local subgroups in non-defining characteristic
relevant to McKay’s abstract statement. For a general class of those subgroups M¥ we describe
their characters and the action of Aut(G* )y on them, showing in particular that Irr(M?') and
Irr(GF) share some key features in that regard.

With this established, McKay’s conjecture is now a theorem stating McKay’s equality: For
any prime £, any finite group has as many irreducible complex characters of degree prime to £
as the normalizers of its Sylow ¢-subgroups.
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Introduction

The main theorem of this paper is as follows.

Theorem A Let X be a finite group, ¢ a prime and S a Sylow {-subgroup of X. Let Irry(X)
denote the set of complex irreducible characters of X whose degree is prime to £. Then

|l (X)] = [Trre (Nx (5))]- (MK)

Every algebraist will have identified John McKay’s conjecture on character degrees of finite
groups. This paper provides the last of many steps in a proof of this conjecture using the
classification of finite simple groups (CFSG). The other steps are mainly contained in the papers
[IMNO7], [Ma07], [Ma08], [S12], [CS13], [KS16], [MS16], [CS1T7a], [CS17Db], [CS19], [S23a], [S23Db],
adding more than 400 pages to the CFSG and the background knowledge on representations of
quasisimple groups — thus fulfilling Jon Alperin’s prediction that “we have here a very easily
stated congjecture about all finite groups which is not easily decided from a possible classification
of all simple groups” [AT6].

The McKay conjecture

McKay’s equality (MK) relates two numbers, one global in the sense that it pertains to X, the
other local in that it is the same for the ¢-local subgroup Nx(S5).

It seems to originate in McKay’s research on character tables of sporadic simple groups
[MIKT71], an interest that would also lead him to the “Eg-observation" [MIK80, p. 185] and the
so-called “(monstrous) Moonshine” on the character degrees of the Monster sporadic group (see
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[CoNo79]). It could now be argued that the idea itself of the McKay Conjecture owes a lot to
the CFSG as a project, and its proof now draws from the CFSG as a theorem.

While a proof of (MK) as elementary as the statement itself seems unattainable, a legitimate
wish is to find more structural statements implying character theoretic ones like (MK), (AWC)
below or Dade’s conjecture [Da92, Conj. 6.3]. This direction of research is exemplified by Broué’s
conjecture [Br90a, Conj. 6.1 for blocks with abelian defect, see [Rou23| for a recent survey of
the issues raised. However, once those character theoretic equalities are checked (see [S17] for
a reduction of Dade’s conjecture), they may well be helpful in establishing module theoretic
statements, using arguments in the vein of [Br90b, Thm 1.1].

Early results and perspectives

Soon after the conjecture was sketched by McKay and made precise by Alperin, important
verifications of (MK) followed: For symmetric groups and ¢ = 2 already in [Mac71| and [MK72],
for a large class of solvable groups by Isaacs in [Is73], for general linear groups in characteristic
¢ in |A76], for other finite groups of Lie type in characteristic ¢ by Green—Lehrer—Lusztig in
[GLL76], for symmetric groups and general linear groups for arbitrary primes by Olsson in
[O76]. A strong form of (MK) was proven for ¢-solvable groups by Wolf [Wo78|.

The statement (MK) itself has similarities with the so-called Harish-Chandra theory of cusp
forms for finite groups of Lie type [Sp70]. Fix G = G a finite reductive group of Lie type
where F': G — G is a Frobenius endomorphism defining the reductive group G over a finite
field. For an F-split Levi subgroup L of G and a so-called cuspidal character \ € Irr(L% ),
parabolic induction allows us to define a subset Irr(G*, (L, \)) € Irr(G") which turns out to
be parametrized via

Irr(GF, (L, \)) «— Irr(Ngr (L, )/LE) (HC)

thanks to the Howlett—Lehrer—Lusztig theory of Hecke algebras (see for instance [GM, Thm
3.2.5]). This was generalized in the wake of the determination of ¢-blocks as partitions of Irr(G)
for a classical group G in characteristic p # ¢ by Fong—Srinivasan [FoSr82], [FoSr86], [FoSr89).
In this generalization formalized by Broué-Malle-Michel in all types, see [BMM93], one gets for
any integer d > 1 similar subsets of unipotent characters £(G*', (L, \)) where L (non F-split
but still F-stable when d # 1) is the centralizer of a so-called d-torus [BM92]| of G and A is a
so-called d-cuspidal unipotent character of LY. The above (HC) is then true up to replacing
parabolic induction by the Lusztig functor RE in the definition of Irr(GF, (L, ).

In the meantime, a cluster of conjectures emerged around McKay’s, starting with Alperin’s
weight conjecture [A87]. Considering Brauer characters of a finite group X with respect to the
prime /¢, the conjecture posits that

[IBr(X)| = |Alp,(X)] (AWC)

where Alp,(X) is the set of X-conjugacy classes of pairs (@, 7) with @ an ¢-subgroup of X and

7 an element of Irr(Nx (Q)/Q) with codegree |[Nx (Q)|/7(1)|Q| prime to £. Knorr and Robinson
reduced (AWC) to a remarkable statement about ordinary characters, see [KnRo89|, [N, Thm
9.24]. This was in turn generalized by E.C. Dade into a broad conjecture [Da92, Conj. 6.3]
implying both (MK) and (AWC), see [N, Thms 9.26 and 9.27].

This and the many refinements brought to Dade’s conjecture lead Broué to introduce a
strengthened version including all the extra refinements known in 2006 [Br06|, which he referred
to as MAKRODINU (an acronym from the names of the authors of [MKT71], [A87], [KnRo89),
[Da92], [IN], [Uno04]). See [Tu08] and [NO4| for other refinements. All suggest equivalences of
algebras of a geometric nature over f-adic rings of coefficients. Indeed, Broué’s own conjecture
on ¢-blocks with abelian defect [Br90a, Conj. 6.1] asserts an equivalence of derived module
categories

D(B) = D(b) (ADC)
between an ¢-block B of a finite group with abelian defect and its Brauer correspondent b, where
both blocks are seen as algebras over Z;. See [Ok00] for the case of SLa(¢™), [ChR0S, Thm 7.6]
for the case of symmetric groups, [CR13, Thm 4.33] for a proof in some cases of principal blocks

using CFSG.
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A conjecture made (quasi) simple

In reducing (MK) to a statement about simple groups, it seems impossible not to involve
quasisimple groups, i.e. perfect groups G such that G/Z(G) is simple. To illustrate why,
consider even the alternating groups: characters of 2, (n = 5) are not of much help to find
faithful characters of their double covers 22(,, let alone to prove counting statements about
them.

In a major breakthrough, the reduction theorem by Isaacs—Malle-Navarro for McKay’s con-
jecture [IMNO7] appeared in 2007. It introduces a so-called “inductive McKay condition”, for-
mally stronger than (MK), which, once checked for a given ¢ and all quasisimple groups G,
implies (MK) for ¢ and any finite group X. See the surveys [Til4], [KM19], [Mal7b] and the
book [N] for developments after [[MNO7]. This condition was reformulated in terms of centrally
isomorphic character triples, a notion devised by Navarro and the second author [NS14], see [N,
Def 10.14].

Let us recall that a character triple is any (A, X, x) with finite groups X < A and x € Irr(X)
an irreducible character of X invariant under the conjugation action of A on X, a terminology
due to Isaacs [Is, Ch. 11]. The inductive condition (iMK) for a finite group X and a prime / is
as follows (see Definition 2.5 below for the relation >. between character triples).

First, we assume the group theoretic condition that for a Sylow f-subgroup S of X there
exists Nx (S) < N < X such that N is stable under the stabilizer I := Aut(X)g of S in Aut(X),
with N # X when Nx(S) # X, and second, that
(iMK) there exists a I'-equivariant bijection

Irry (X)) — Irrpr (N)

such that (X x Ty, X, x) =¢ (N x Ty, N,x’) whenever x — x’.

The group N can be taken to be Nx(S) but it is important to keep the freedom in many
quasisimple groups to choose a nicer overgroup N. Then the Reduction Theorem 2.10 below
simply states that for a given prime ¢, once (iMK) is checked for all quasisimple groups X, then
it is true for any finite group, see [Ro23a, Thm BJ. It is clear by induction that (iMK) implies
McKay’s equality (MK).

It is this (iMK) that we indeed prove for all finite groups and primes.

Theorem B Let X be a finite group and ¢ a prime. For any Sylow {-subgroup S of X and
I':= Aut(X)g there exists a I'-equivariant bijection

Q:Irrp(X) — Irrp (Nx (5)),

such that every x € Irry (X)) satisfies

(X A anX’X) Zc (NX(S) X FX’NX(S)’Q(X))'

Quasisimple groups of Lie type

Whenever Out(X) is cyclic then (iMK) above boils down to an equivariant bijection y — x’
such that x and x’ have similar restriction to Z(X). This essentially reduces (iMK) for this type
of quasisimple groups to cases previously checked for (MK), see [Ma08, §3, §5]. It then remains
to check (iMK) for quasisimple groups of Lie type, thus making the proof of Theorem A a Lie
theoretic effort.

The reformulation of the inductive condition of [IMNO7]| in terms of character triple equiv-
alences originated in [S12|, and the main application given there was to check (iMK) for qua-
sisimple groups of Lie type whose defining characteristic are the same prime £.

After that, the main question is, of course, to prove (iMK) in the cases where X is a
quasisimple group of Lie type in characteristic p # £.

Apart from a few exceptions, the universal coverings of simple groups of Lie type are of the
form G = G where G is a simple simply connected linear algebraic group endowed with a
Frobenius endomorphism F': G — G defining G over a finite field of order g, a power of p. To
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account for so-called diagonal automorphisms one defines the inclusion G < G associated to a
so-called regular embedding G < G of the algebraic groups. One also defines F acting on G
as a group of field and graph automorphisms of GG, so that G = [C:’, CNJ] and G x E induces the
whole of Aut(G) on G.

In such a situation, we define the integer d;(q) as the multiplicative order of ¢ mod ¢ when
¢ > 3, mod 4 when ¢ = 2. To check (iMK) an important idea from [Ma07]| is to take for N the
normalizer in G = G¥' of a Sylow dy(q)-torus S of G. The strong relation between Ng(S) and
a Sylow (-subgroup of G is ensured by Broué-Malle’s results [BM92] and a remark of the first
author [Ca94]. Let us mention that the relevance of dy(g)-tori to the ¢-local analysis of G goes
much deeper, see [Br06, §4], [Ro23b].

Proving (iMK) for the non-defining primes

Malle and the second author checked the inductive condition (iMK) for the prime 2 and all
quasisimple groups in [MS16], thus proving McKay’s equality (MK) for the prime 2. Proving
(iMK) for the prime 2 is made simpler by (HC) providing an equivariant bijection and by the
fact that character triples (A, X, x) are easier to describe whenever X is perfect and |A/X] is
prime to x(1), see [Is, 6.25].

Returning to the general case, the choice of a bijection

Irry (G) — Irrp (V) ()

has been described in [Ma07| drawing mainly on [BMM93| augmented with a discussion of
character degrees in (HC) to give a common indexing set to both sides of (€2), see also [S09],
[S10a] and [S10b] for the N-side. This choice of the map being relatively settled, the main effort
to check (iMK) for quasisimple groups then adresses the control of the character triples on
either side and the action of Out(G) using a method introduced as [S12, Thm 2.12| and recalled
here through the variant Proposition 2.12.

Recall the choice of N as Ng(S) for S a Sylow dy(g)-torus of G. Through an elementary
application of Clifford theory, the representations of N are strongly related with the ones of
Cq(S) once certain extendibility questions are solved.

For any given d > 1 and Sylow d-torus S of (G, F) we single out in [CS19] the following
conditions where

~

N =Ng(8) > N =Ng(S) <N = Ngg(S).

A(CQ There is an N-stable N -transversal in Irr(N) where each element extends to its stabilizer
mn N.

B(d). Every 0 € Irr(N) u Irr(Cx(S)) extends to its stabilizer Ny. In the case of 0 € Irr(Cx(S))

this can be done in an Irr(N/N) x Na(8)-equivariant way.

For large values of d — forcing S = {1} — the condition A(d) becomes a quite challenging
condition entirely about Irr(G) that can also be written as follows (see [S23b, Sect. 1.C]):

A(0). Any element of Irr(G) has a G-conjugate x such that (CNJE)X = éXEX and x extends to
GE,.

For ¢ > 3 and prime to ¢, what has been said above explains why (iMK) for G and ¢ is then
implied by the conjunction of A (), A(d(q)) and B(dy(q)), see [CS19, 2.4].

Condition A(o0) was finally reached in all types as [S23b, Thm A]. As noted in [CS19, 3.5]
the stabilizer statement in A(o0) settles the question of determining the action of Out(G) on
Irr(G) for all quasisimple groups G. This question has been a natural one since the completion
of the CFSG. The answer, and in fact the stronger A(o0), is expected to have applications to
any counting conjecture, see already [FeSp23] or [Ru24] through [Ru22|. The proof of A(c0) for
all types is spread in [CS17al, [CS17b], [CS19], [S23a], [S23b] (see also [Tal8|, [Mal7a]) with the
main part being devoted to the types D and 2D. We refer to the introductions of those papers
for the most challenging issues raised and the methods used.
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The present paper

The above leaves us to prove the conditions A(d) and B(d) for every d > 1 and all groups G
of Lie type. In types not D nor 2D this is done in [CS17a], [CS17b], [CS19], accounting for the
most technical part of those texts. The main goal of the present paper is to show A(d) and B(d)
in types D and D.

In Chapter 2 we recall more precisely than above the setting, the background results, and
some of the main notation. In Section 2.A the results concern general character theory and in
particular the existence of extensions of characters. Then we state the condition (iMK) in terms
of centrally isomorphic character triples. We also recall the main criterion used in types already
solved, Proposition 2.12 being a slightly generalized form that will be useful later. General finite
groups of Lie type are introduced in Section 2.C with their generators and automorphisms. We
then define the conditions A (d) and B(d) matching the criterion for (iMK) just mentioned. We
also comment on the case of groups of type D and the important inclusion G < G of a group of
type D; into a group of type B; with a common maximal torus.

In Chapter 3 we extend some of the results of [S23b|. We start by studying the centralizers
of semisimple elements in D; SC( p) for I > 4. This leads to further results on the characters of
D;sc(q) and 2Dl,Sc(q). This includes groups of ranks < 3 that will appear when dealing with
local subgroups and will help us to give a uniform treatment in the part of Chapter 5 dealing
with characters. An important feature is the partition

Ir(G) =TuEuD

deduced naturally from A(o0) in terms of stabilizers and extendibility of those characters with
respect to G < GE. In Sections 3.C and 3.D we get precise results on stabilizers and kernels of
characters specific to each of the three subsets above, see Theorem 3.16.

In the proofs of the local Conditions A(d) and B(d) for types other than D and 2D, the
discussion splits into two main cases according to whether or not the Levi subgroup C := Cg(S)
is a torus, the solution in the latter case — non-regular d’s — usually using A (c0) in smaller ranks.
Here we will have to use more than just A(c0) in a slightly different dichotomy also introducing
an overgroup of Ng(S) in Chapter 5

In Chapter 4, the Conditions A(d) and B(d) are proven first for integers d > 3 that are
additionally doubly reqular for (G, F). The integer d is called doubly regular if C and C :=
Cg(S) are tori (hence equal) when S is a Sylow d-torus of (G, F). The proof in that case is
simpler than the usual regular case in other types and takes advantage of the case of type B;
being already known from [CS19]. This finally ensures (iMK) for quasisimple groups G of
type D; or 2D; and primes £ such that dy(q) is doubly regular for (G, F), see Theorem 4.1.

In the non-doubly regular case, where C is not a torus, we bring here a simplification that
would also simplify the proofs given for other types and helps keeping the case of types D and 2D
to a reasonable size. We introduce a finite group M, a subgroup of G where F” is a version of F
slightly altered to fit the technicality of the non-doubly regular case (notation is slightly different
in Chapters 5 and 6). This group is isomorphic to a subgroup M’ of G containing Ngr (S) and
normalizing K := G n [C,C] and K} := [Cq(K}), Ca(K5)]. The groups K/ := KF (i = 1,2)
are of types D in possibly small ranks and their images K; in G define a central product K;.K>
which is normal of index 2 or 4 in M. We then use the knowledge of the character theory of K
and K3 gathered from [S23b] and Chapter 3 to derive crucial information about Irr(M). The
groups M and M being defined from M similarly to N and N of 1.E above from N, we establish
a theorem that reads roughly as follows (the precise statement is Theorem 5.20).

Theorem C There exists some M-stable M-transversal T(M) in Irr(M) such that moreover
any element of T(M) extends to its stabilizer in M.

In fact a larger class of groups M with no reference to an integer d is defined in Section 5.A.
The relevance of this class of subgroups to the non-doubly regular case is given in the trichotomy
of Lemma 5.8, showing how Theorem C along with Theorem 4.1 and the known case of cyclic
defect [[(S16] essentially exhaust all cases to consider. The action of automorphisms on M is
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given in Section 5.B. Afterwards, we study the stabilizers and extendibility of the characters of
M in Section 5.C. The proof of Theorem C as Theorem 5.20 is our Sections 5.D-E where we
discuss several relevant subsets of Irr(M) defined according to the restriction of characters to
K{.K), and the various subsets T;, E;, and D; of Irr(K;) selected from the description given in
[S23D].

From there the end of the proof of Conditions A(d) and B(d) in Chapter 6 uses the fact that
d is doubly regular for (Ki, F’) where M° is a central product K;.Kjs of F’-stable simple simply-
connected groups of type D. Let S’ be a Sylow d-torus of (Ky, F’). Thanks to Chapter 4, (iMK)
holds in K", thus providing a bijection Q: Irrp (K1) — Irry(Ng, (S')) with strong properties
in terms of the > relation, providing more character correspondences and establishing a version
of A(x0) for Npg(S')F, see Section 6.A. This is completed in Section 6.C with results showing
that indeed Ng(S’) < M and translating the results obtained for (G, F’) into similar ones for
(G, F) with a special care for automorphisms. This essentially completes the proof of A(d).
Meanwhile, Section 6.B establishes B(d) by applying results on the Clifford theory for (M°)¥ /
gathered in Section 5.E.
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Background results

The aim of this chapter is twofold. On the one hand, we recall some notation used later, as well
as the inductive McKay condition (iMK), with a criterion for verifying it in 2.D. We also state
the relevant results for groups of Lie type that ensure part of the required assumptions. We
conclude with some group-theoretic results for groups of type D;.

Characters and extensions

Our notation tries to be as classical as possible, some being recalled in [S23b, 1.A]. We are
dealing a lot with situations where X < A are finite groups and x € Irr(X) is invariant under
the conjugation action of A, i.e. y € Irr(X)?. Extendibility is then a major issue.

Notation 2.1 Let X < A be finite groups. Let X < Irr(X) and ¢ € Irr(A).

We denote by Irr(A | X) the set of irreducible components of induced characters x* for
X € X, and by Irr(¢]) the set of irreducible components of the restriction ] .

We say that maximal extendibility holds with respect to X < A for X, if X is A-stable
and every x € X extends to its stabilizer A,. When this occurs, an extension map is any
A-equivariant A: X — Ly <r<alrr(Z) such that for any x € X', A(x) € Irr(A,) is an extension
of x. Such a map (in particular satisfying A-equivariance) always exists as soon as maximal
extendibility holds with respect to X < A for X. When no set X is specified, maximal
extendibility with respect to X < A means it holds for X' = Irr(X).

We denote by Lin(X) the set of linear characters of X.

Whenever maximal extendibility holds with respect to X < A for a subset X’ of Irr(X), let
Cliff(A | &) be the set of A-conjugacy classes of pairs (x,n) with x € X and n € Irr(A4, | 1x).
After an extension map A has been chosen, Clifford theory (see for instance [N, Sect. 1.8]) leads
to the bijection

CLff(A | X) = Tir(A | X) by (x,n) — (AQ)m)™. (2.1)

This fact and its variants are key for exploring the characters of local subgroups such as the
group M defined later in the paper.
Let us gather here some situations where extendibility is ensured.
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Proposition 2.2 Assume X < A.

(a) If A/X Z(A) is cyclic, then maximal extendibility holds with respect to X < A.

(b) If A/X is abelian and maximal extendibility holds with respect to X < A, then for any
subgroup X < J < A we have maximal extendibility with respect to X < J and to
J <A

(c) Let n =1 and denote by S,, the corresponding symmetric group. If maximal extendibil-
ity holds with respect to X < A for some set T < Irr(X) then it holds with respect to
X" <A S, for the subset T™ := {x1 X -+ X xn | xi € T} of Irr(X™).

(d) If X is abelian and E < A satisfies A = X FE, then maximal extendibility holds with
respect to X < A for {\ € Lin(X) | M[E\, Ex] n X) = 1}. The latter is the whole
Irr(X) when in addition maximal extendibility holds for E n X < E, e.g. when A is a
semidirect product A =X x E.

(e) Let x € Irr(X) and assume A = XV where V < A issuch that xo := x|y~ x € Irr(VnX)
and extends to some Xo € Irr(V, ). Then x extends to A, = XV, and there exists some
X € Irr(XV,) extending x with X] = Xo-

Proof. For (a), use |Is, Cor. 11.22]. For (c), see [S23b, Lem. 2.6]. For (e), see [S10b, Lem. 4.1].

In (b) only maximal extendibility with respect to J < A is nontrivial. But then we can use
the fact that since A/X is abelian then maximal extendibility is equivalent to elements of Irr(A)
having multiplicity-free restrictions to X, see for example [S23b, 1.A]. But then restrictions to
J can’t have any multiplicity > 2.

For (d) note first that [X, F)] is a subgroup of ker(\). So if moreover A([Ey, Ex] n X) =1
then indeed [Ay, Ax] N X < ker()) since Ay = XE). We can then change X < A, into
X/(X n[Ax, Ax]) SAy/[A, Ay] thus reducing the problem to the case when Aj is abelian. The
extension problem is then easy. When in addition maximal extendibility holds for £ n X < E,

then for any A € Irr(X), one has A|, . x = X}E . for some (linear) character A of Ey < BN,
and therefore A\([Ex, E\] n X) = 1 since A([Ex, E)]) = 1. ]

When a semidirect product B x C acts on a group X we are interested in characters of X
whose stabilizer in BC' decomposes as B'C’ with B’ < B and C’ < C. This property can be
given a different formulation in terms of C-stable B-transversals ([S23a, Lem. 1.3]). See also
the reformulation of the A(co) condition in 2.17 or Proposition 2.12(iii).

The following statement allows to deduce an extension map from a given extension map for
a given transversal.

Proposmon 2.3 Assume X < A < A with X < A. Let AO < A with A = AAO and A = AgX
for Ag := AO N A. Let Xg := AO N X and assume A/Ay =~ X /X, abelian.

Assume maximal extendibility holds with respect to Xo < X and assume there is an
ﬁo—equivariant extension map with respect to Xy < Ag for T an zzl\o—stable X-transversal of
Irr(Xp).

Then X < A satisfies maximal extendibility with a Lin(A/Ag) x Ag-equivariant extension
map A. Namely when p € Irr(X), a € Ay and X € Lin(A/Ay) is seen as character of A then

~

A(p*) = Ap)* and  A(Nyp) = A4, Alp).
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Proof. We essentially recall the proof of [CS19, Thm
4.2]. Let A be the extension map with respect to
Xo 9 Ap for T. Let p € Irr(X). By the transver-
sality property of T, p lies over a unique character
po € T < Irr(Xp). Since maximal extendibility is as- Ao A
sumed with respect to Xg < X, Clifford theory en-
sures that there exists an extension py € Irr(X,,)
of po with p5¥ = p, see (2.1). Note that accord-
ing to Proposition 2.2(e) there exists a common ex-
tension pf, of pp and A(po)]Aﬁ0 to X, A5 Then

/\A / X : AO X
(ho) ]y = (pO]Xpo) = p since A, = XA; and
A,y = X (Ag)p, holds by the assumption on T as re-
called before the Proposition. So A(p) := (pj)?* is an
extension of p to A,. It is then easy to check from its
construction and the Ao -equivariance of A that A is Xo

Lin(A/Ag) x Ag-equivariant. O

The following statement describes situations where the stabilizer of a character writes as a
semidirect product and has extensions whose stabilizers have analogous properties.

Lemma 2.4 Let A be a finite group, X < A and X <A such that X < X and )NC/X is abelian.
Suppose that there exists a subgroup ¥ < A such that A= )?Y X =Y X and Y/X is
abelian. Let L <A with L = J(Y n L) for J := X A L and abelian L/X. Let ¢ € Irr(X) with
Ay X¢Y¢. Assume that ¢ extends to X¢ and to (Y¢) for every ¢ € Irr(Jy | ¢).

(a) Then ¢ extends to Jy and every extension gg of ¢ to Jy satisfies
(Ap)g = X5(Ye) 5

(b) Every k € Irr(J | ¢) satisfies ()NEY)“ = )z,.iY,.i and extends to JY,.
(c) Every x € Irr(L | ¢) satisfies (XY'), = X, Y, and extends to LY,.
(d) Let z € Z(A) n'Y. Assume that ¢ has an extension ¢’ to (Y¢>)$ with z € ker(¢'). Then

every x € Irr(L | ¢) has an extension to LY, that contains z in its kernel.

Note that Y} in this situation stabilizes J,4 and hence acts on Irr(Jy | ¢). Now (Y3) ¢ denotes
the stabilizer of ¢ in Y. By this construction (Yy) 3 does not in general contain .Jy, the group
on which ¢ is defined.

Proof. We first prove part (a): As J < X and ¢

extends to Xy by assleption it is clear that ¢ extends \

to Jy. Let B € Irr(Xy4) be an extension of . Then

¢ and B]Jd) are extensions of ¢ so ¢ = A(f]; ) for

some A € Lin(J,/X). Since X/X is abelian, A is X¢—
invariant, but then A(5];,) = ¢ is also X 4-invariant, X L Y

ie., )Z'q; = )~(¢. As \ / \
N - J
XoYy = Ag = (Ag)3 = X5, \ YL
X

this implies (A¢)<;5 X- (Y¢) as required.

Let now x = (qS) . As ¢ extends to Y$ there exists some extension 5 of $ to ZA = J¢Y$ for

Z = JY according to Proposition 2.2(c). Because of ZA = J¢Y¢, we have JYA = JY 7, and

(¢)”%4 is an extension of k to Z, = JY,. Then every extensmn of ¢ to Z5 = (JY)¢ defines by
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induction a character of Z, = JY,. This proves the statement in (b).
Since L/Y is abelian, we see that every extension & of k to Ly is Yy-invariant. The character
x = &% is irreducible and Y-invariant. The group Az contains Y = Y. Recall A, = X’HYH and
hence
Y, =Y: < Az < A, = X,.Y,.

This shows Az = XYz, implying A, = )Z'XYX. Let K be an extension of & to Z,, which exists
as k extends to Z, and Y /X is abelian. Then &%~ is irreducible and an extension of y. This
proves part (c).

For part (d), by assumption we have that ¢ extends to Y$ such that z is contained in the
kernel of some extension or equivalenty that ¢ extends to Z $/ (z). By the above construction,

¢ extends to J¢Y$/ (z) and hence x = (R)’ extends to Z./(z) and accordingly x = K" extends
to Z,/(z). O

Character triples and inductive McKay condition

Character triples (A, X,x) (where X < A and x € Irr(X)?) and certain relations on them
help characterizing the situations where y does not extend to A. See [Isa, 11.24| for some early
occurrence of the notion and Definition 2.5 below for the relation >.. We recall more recent
results and a reduction theorem for McKay’s conjecture in that language (see [N], [S18], [Ro23a]).

By a classical application of Schur’s lemma, each character triple (A, X, x) defines a projective
representation P: A — GLX(l)((C) whose restriction to X is a linear representation affording the
character x, see [Is, Ch. 11], [N, Def. 5.2].

Definition 2.5 — Centrally isomorphic character triples [N, Def. 10.14]. Let
(A, X,x) and (H,M,x') be two character triples with C4(X) < H < A, A = XH, and
Hn X =M. We write

(4, X,x) =c (H,M,X),

if two projective representations P and P’ of A and H associated with x and x’ exist such
that the factor sets of P and P’ coincide on H x H and such that for every z € C4(X), the
matrices P(z) and P’(x) are scalar matrices to the same scalar.

When dealing with >, the following lemma will be useful.

Lemma 2.6 Let X <A and H < A with A = XH and C4(X) < H. We write M := X n H.
Let x € Irr(X) and x' € Irr(M).
(a) Then
(AaX’X) >C (Ha M,X/),
if there exist X € Irr(A) and X' € Irr(H) with X|y = X, X'y = X" and Irr(X] ¢, (x)) =
Irr()z’]CA(X)).

(b) Assume (A, X,x) =. (H,M,x"). Let k € Irr(C4(X)). Then x has an extension to
A that belongs to Irr(A | k) if and only if X' has an extension to H that belongs to
Irr(H | k).

(c) Assume (A, X,x) =. (H,M,x") and let J be a group with X < J < A. Then
(J,X,x) =c(JnH,M,Y)

Proof. Parts (a) and (b) follow from Lemma 2.15 of [S18|. Part (c) is straightforward. O

Let us now recall the inductive McKay condition (iMK) from our introduction.

Definition 2.7 (iMK) Let X be a finite group, ¢ a prime, S a Sylow f-subgroup of X and
I':= Aut(X)s. We say that X satisfies the inductive McKay condition (iMK) for the prime
¢ whenever
(a) there exists Nx(S) < N < X such that N is stable under I', with N # X when
Nx(S) # X, and
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(b) there exists a I'-equivariant bijection
QX,g: II‘I‘g/ (X) — II‘I‘g! (N)

such that (X xT'y, X, x) = (N xT'y, N,Qx (x)) for any x € Irrpy(X).

In our later considerations, when proving (iMK) for a given X it will be crucial to use the
fact that it is known already for certain subgroups of X.

An important tool to deal with character triple equivalences is the following Butterfly The-
orem [S18, Thm 2.16], [N, Thm 10.18|. It is crucial to navigate through various variants of
(iIMK).

Theorem 2.8 Let (A, X, x) and (H, M, x') be two character triples with
(4,X,X) 2 (H, M, X).

We assume that X < A’ and define k: A — Aut(X), ': A’ — Aut(X) the maps induced by
conjugation. If k(A) = k'(A’) then

(A, X,X) Zc (& R(H), M, X)).

Remark 2.9 (Relation with [IMNO7]). Let ¢ be a prime and let X be the universal covering of
a finite simple group X := X/Z(X). As an application of the above one can see that X satisfies
the inductive McKay condition of [IMNO7, §10] for £ if, and only if, X satisfies the condition
(iMK) of Definition 2.7 for £. See also a version of the reduction theorem of [IMN07| using the
>, relation in [N, Def. 10.23, Thm 10.26].

Indeed, as explained in [S12, Prop. 2.3], X satisfies the conditions (1-8) of [IMNO7, §10] if
and only if the group theoretic conditions of Definition 2.7(a) are satisfied by X, ¢, a Sylow
¢-subgroup S of X, along with a subgroup N, and there is an Aut(X)g-equivariant bijection
Q: Irrp (X) — Irrp (N) such that each pair (y, (x)) satisfies the condition (cohom) introduced
in Definition 2.4 of [S12]. The latter means that there exists a group A with G := X/Z < A
for Z := ker(x) n Z(G) = ker(£2(x)) n Z(G) such that, by the construction in the proof of [S12,
Prop. 2.8], A induces the whole Aut(X)s, on X/Z, and the characters Y and Q(x) of X/Z
and N := N/Z associated with x and Q(x) have extensions to A, resp. N(N) lying above
the same € € Irr(C4(G)). According to Lemma 2.6(a) and thanks also to the group theoretic
properties of N and X, this condition (cohom) is equivalent to the existence of an overgroup
A of G inducing Aut(X)s, on X/Z and such that

(A,G,%) . (N4(N), N, 200).
But then the Butterfly Theorem 2.8 implies that
((X/2) % Aut(X) s X/Z,X) Ze (N/2) % Aut(X)s5, N/Z, (X)),
It is then trivial to lift that into the relation
(X 3 Aut(X)gs,y, X, x) =c (N 3 Aut(X)g,y, N, Q(x))
defining (iMK).

The above is key to rephrase Isaacs—Malle-Navarro’s reduction theorem on the McKay con-
jecture as the following criterion taken from [Ro23a].

Theorem 2.10 Let ¢ be a prime. If any universal covering X of a finite nonabelian simple
group (see [GLS, Def 5.1.1|) satisties the above (iMK) for ¢, then any finite group satisfies it.

Proof. To see the equivalence between this and [Ro23a, Thm B] we must, for X the universal
covering of a nonabelian simple group, replace the overgroup X x I' in our (iMK) by any
overgroup A. As noted in the comment after Conjecture A in [Ro23a], this is a straightforward
application of the above Lemma 2.6(c) and the Butterfly Theorem 2.8. O

11
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Theorem 2.11 Let £ be a prime and X the universal covering of a finite simple group X. If
¢ > 5, assume X is not a group of Lie type D or 2D in characteristic # ¢. Then X satisfies
the above (iMK) for /.

Proof. By the Classification of Finite Simple Groups, a finite nonabelian simple group is either
an alternating group, a sporadic group or a simple group of Lie type, see [Asch, Ch. 47]. We have
seen in Remark 2.9 that for the universal cover X of a simple group and a prime ¢, the condition
(iMK) is equivalent to the simple group X /Z(X) satisfying the inductive McKay condition of
[IMNO7]. This is the condition checked in [Ma08, Thm 3.1 and Thm 5.1] for alternating groups
and sporadic groups. For simple groups of Lie type in characteristic ¢, this is checked as [S12,
Thm 1.1]. For ¢ = 2 and all types, this is the main result of [MS16]. For £ = 3 and all types, see
[S23b, Thn C] and its proof. For other cases of groups of Lie type, [IMNO7, Ch. 16 and 17] covers
the types 2Bs and 2Gs, [CS13, Thm A] covers the types 3Dy, Eg, Fy, 2Fy, and Ga, [CS17a] the
types A and 2A, [CS17b] the type C, [CS19, Thm A] the types B, Eg, 2Eg and E;. This clearly
leaves out only types D or 2D for primes ¢ > 5 different from the defining characteristic. O

In the cases reviewed in the above proof, (iMK) was mostly ensured via the criterion [S12,
Thm 2.12] leading to the conditions A(c0), A(d) and B(d) described in the Introduction, see
also Theorem 2.21. At some point we will need the following slight reinterpretation of [S12, Thm
2.12].

Proposition 2.12 Let G>G > N and E be finite groups, such that E acts on G normalizing
G, Ng(N) = N, Cg,, x(G) = 7(G), G x E = GN and G = GN, where N := Na&(N) and
N :=Ngg(N). Let G < Irr(G) and N < Irr(N) be N N-stable. Assume the following:
(i) The quotient G/G is abelian. Maximal extendibility holds with respect to G < G for G
and with respect to N < N for N.
(ii) Denoting G := Irr(G | G) and N := Irr(N | N), there exists some Lin(G/G) x N-
equivariant bijection
1:G— N,
such that ?2(5 A Irr(G | §) = N ATrr(N | €) for every ¢ € Irr(Z(G)).
(iii) There exists some E-stable G-transversal Go in G, such that every x € Gy extends to
GE,.
(iv) There exists some N-stable N-transversal Ny in N, such that every ¢ € Njy extends to
Ny,
Then there exists some NN -equivariant bijection

Q:G— N,

such that N L
(GE)y,G,x) Zc (NN)y, N,Q(x))  for every x € G.

Proof. The proof is essentially the same as the one of Theorem 2.12 in [S12]. Let us comment
on the differences between the two statements. In [S12] the focus was on the characters in
Irry (G) for some prime ¢ but the degree of the characters did not play any role in the arguments
used. The group theoretical assumptions in [S12, Thm 2.12] are also related to a prime ¢ and the
corresponding Sylow subgroup but they are only used through the fact that N is self-normalizing
in G along with GE = GN and G = GN in GE. The assumptions made in (iii) and (iv) are
equivalent to the original assumptions of [S12, Thm 2.12| in terms of stabilizers thanks to [S23a,
Lemma 1.4].

The proof of [S12, Thm 2.12] then yields a NN -equivariant bijection Q : G — A such that
for any x € G the pair (x,Q(x)) satisfies the condition (cohom) introduced in Definition 2.4 of
[S12]. Then our discussion is very similar to the one given in Remark 2.9 above. The condition
(cohom) implies then that there exists a group A with G := G/Z < A for Z := ker(x) n Z(G)

such that A has the same image as G(NUV)X in Aut(G), and the characters X and Q(x) of G
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and N := N/Z deflations of x and Q(x) satisfy

(4,G,X) = (Nz(N), N, Q(x)).
Now taking into account the Butterfly Theorem 2.8 we get
(GE)y/2,G/Z.X) zc (NN)y/Z,N/Z,9(x)).

The sought for relation ((éE)X, G,x) =c ((NN)X,N, Q(x)) is then an easy consequence of
the definition of >.. O

Groups of Lie type, generators and automorphisms

We now make more precise the notation for G, G, E and the conditions A (), A(d) and B(d)
from our Introduction. Additional notation will be given in Section 2.E for type D.

Let p be a prime, ¢ = p/ for some f > 1, F be an algebraic closure of Fy, the field with ¢
elements. We consider G a simple simply connected linear algebraic group over F with the choice
of a maximal torus and a Borel subgroup T < B, thus fixing a root system ®(G, T) with a basis
A. There is a presentation by the generators X (t1), Na(t2) 1= Xa (t2)X_o(—t5 )Xa(t2) € Ng(T)
and h,(t2) := ny(ta)n, (1)~ € T for a € ®(G, T), t1 € F, and t5 € F*, subject to the Chevalley
relations, see [GLS, Thm 1.12.1|. In particular the commutator formula [GLS, Thm 1.12.1(b)]
has consequences that we use repeatedly, see also 2.24(d) below.

2.13 If o, 8 € ®(G, T) are such that (Za + Z3) n ®(G,T) = {+«, £}, then

[xa(t). 35 (t)] = 1

for any t,t' € F. This is in particular the case if a L 3 in type D, or in type B with o L 3
and S a long root.

We denote by F, the bijective endomorphism of G sending any x,(t) to x,(t*). We denote
by E(G) the group of abstract group automorphisms of G generated by Fj, and the graph
automorphisms of type X.5(t) — X5 (t) for t e F, 0 € A, e € {1,—1} and 6 — ¢’ is a symmetry
of the Dynkin diagram of A.

We denote by F': G — G a Frobenius endomorphism defining some F,-structure on G pre-
serving T < B, ie. F = Flf o o with o some graph automorphism (possibly trivial) as above.
We denote by £ the Lang map on G defined by £(g) = g ' F(g) for g € G.

Let E(GY) be the image of Cpg)(F) in Aut(G) by restrictions to G = G*. The kernel of
the latter is the subgroup generated by F' (see |GLS, Lem. 2.5.7]), so for instance stabilizers
E(GF)g for F-stable subsets S of G make sense.

We assume chosen a so-called regular embedding G < G with G also defined over F, with
Frobenius endomorphism F' extending the one of G, and such that Z(é) is connected and
G = GZ(G). We can assume that the action of E(G) extends to G, see [MS16, Sect. 2] or
[GM, Prop. 1.7.5|. The action of GF on GF by conjugation provides all diagonal automorphisms
of GF', while GF x E(GF) can be formed and induces the whole Aut(G¥) on G¥ in the general

case where GI' is quasisimple not of type Bs, Go or Fy, see [GLS, Thm 2.5.12].

Notation 2.14 — Diagonal automorphisms of G*. Concerning Out(G*), note that Cg - (GF) =

Z(GF) = Z(G)F (see [BOG, Lem. 6.1]) with GNZ(G) = Z(G). Therefore (N}F/GFCéF(GF) =
(G Z(G)F /GF Z(G)F is isomorphic to the group of cofixed points Z(GF) := Z(G)/[Z(G), F]
by Lang’s theorem, the map being explicitly gz — ¢ 'F(g)[Z(G), F] whenever g € G,
z € Z(G) with gz € GF. Thus, the group Z(GF) x E(GF) acts on Irr(GF).

Note that | Z(G)¥'| = | Z(G)/[Z(G), F]| and indeed since Z(G) is either cyclic or of order 4,
the two groups Z(G)¥ and Z(G)/ [Z(G), F'] are isomorphic even as E(GT)-groups.
We often abbreviate G := GF and G := GF'.

13
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Notation 2.15 — Overgroups G. A slightly different way of dealing with diagonal automor-
phisms of G!" is as follows, see [S23a, Rem. 1.16(a)]. From the fact that Cq(G!) = Z(G) (and
therefore Z(G*') = Z(G)¥) recalled above, it is easy to see that Ng(GF) = L71(Z(G)) < G.
We set
G = L7Y(Z(G)).

Observe more generally that GF' = £71(1) < £71(Z) < G with |IL7Y(2)/GF| = |Z| for any
subgroup Z < Z(G). Moreover G induces on G the whole group of diagonal automorphisms
of G since é/Z(G) ~ (G/Z(G))F by the natural map. We denote by E(é) < Aut(é)
the restriction of Cpq)(F) to G. Then, in a way similar to GF x E(GT), the overgroup
G x E(é) induces the whole Aut(G!") on G¥'. Note however that Cg (@) = Z(GF)

GFE(G)
while Cg 2 (G) = Z(G) <F]é>

Remark 2.16. Note that in the above construction, one has G < GF* for e the exponent of the
finite group Z(G) x E’ where E’ is the subgroup of Aut(Z(G)) generated by Flyg)- Indeed, if
ge G and g7'F(g9) = z € Z(G), then g~ F¢(g9) = 2F(2) ... F®"1(2) can be written as (zF)*F~¢
in Z(G) % E'.

The conditions (iMK), A(d) and B(d)
Following the road map sketched by Proposition 2.12 we review the choices of groups CNJ, N to
be made and how the assumptions translate for a quasisimple group (~)f Lie type.

The choice for the group of G of Proposition 2.12 is obviously G, while E is E(GF) in

the notation of the preceding section. Assumption 2.12(iii) has the following generalization,
introduced in [CS17b].

2.17 — Condition. A(c0): There exists some E(G)-stable G-transversal T in Irr(G), where
every x € T extends to GE(G)y.

For the equivalence between the above version of A(o0) and the version in terms of stabilizers
used in the Introduction, see [S23a, Lem. 1.3].

Theorem 2.18 — [S23b, Theorem A]. Condition A(0) holds for any simple simply con-
nected G and Frobenius endomorphism F'.

Let us fix d > 1. Recall the notion of (F-stable) d-tori in (G, F'), see [MT, Def. 25.6] and
the corresponding Sylow theory. R R

Let S be a Sylow (i.e. maximal) d-torus in G. Let N := Ngr(S), N := Ngrggr)(S), N :=
Ngr(S) and C = Cegr(S). We recall the following conditions already seen in our introduction:

2.19 — Condition A(d). There exists some N-stable N-transversal M in Irr(N), where
every x € M extends to (GFE(G!))g .

2.20 — Condition B(d). (a) Maximal extendibility holds with respect to N < N and C<
N.
(b) There exists some Lin(C:’ /G) x N -equivariant extension map A with respect to C' < N.

For ¢ an odd prime not dividing ¢, denote by d := dy(q) the multiplicative order of ¢ in
(Z/¢Z)*. Then the strong relation between d-tori and ¢-subgroups allows us to choose N as above
to apply Proposition 2.12 with conditions A (d) and B(d) essentially completing the assumptions
2.12(i) and (iv). We get

Theorem 2.21 — [CS19, Thm 2.4]. Assume that ¢ is a prime with £ { 6q, G¥'/Z(GT) is
simple and G is its universal covering group. Assume B(d,(q)) and A(dy(q)) are satisfied.
Then the condition (iMK) of Definition 2.7 holds for G and ¢, taking for N the subgroup
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‘ Na(S)F where S is a Sylow dy(q)-torus of (G, F). ‘

Proof. Since A(o0) is always satisfied thanks to Theorem 2.18, [CS19, Thm 2.4| tells us that
the inductive McKay Condition of [IMNO7] is satisfied for the simple group G¥/Z(G¥") and
the prime ¢ with the above choice of N. But we have seen that it is equivalent to (iMK) in
Remark 2.9. O

Remark 2.22. If d € {1,2}, G = D;«(F) and F is a Frobenius endomorphism of G such that
G =D§_ (q), then the Conditions A(d) and B(d) are known for (G, F), see [MS16, Thm 3.1].

l,sc

The curious case of types D; and B;

In addition to what has been said about general groups G with G simple simply connected, we
introduce here more notation, in particular related to the inclusion G < G where G has type
D; and G type B for some [ > 4, see also [S10a, 10.1], [MS16, 2.C], [S23a, Sect. 2.A].

Let eq,...,e; be the orthonormal basis of the I-dimensional Euclidean vector space (—Déleei
(l=4). Set I ={1,...,1} and

d = {ieziej ‘ Z‘ajelai ;é]} QE:: {iei7ieiiej ‘ 17] GLZ. ;é]}

These are root systems of type D; and By, respectively, with bases A := {a1, as,...,q;} and A :=
{@1,a9,...,q;}, where a1 = €1 + e, @1 = €1 and «; :=¢; —e;—1 (i = 2), see [GLS, Rem. 1.8.8].
Let G := B« (F) be the simple simply connected linear group with root system ® = ®(G, T) for
some maximal torus T. We recall x,(#1), ny(t2) and h,(ts) its Chevalley generators, where o €
@, t1 € Fand t, € F*. We denote by X,, the group x,(F), N := (n,(t) | a € ®,t e F*) = Ng(T)
and W := N/T the Weyl group of G together with the canonical epimorphism p: N — W. As
explained in [S10a, 10.1] and [MS16, 2.C]| the subgroup G := (X, | a € ®) is a simply connected
simple group over F with same maximal torus T = T and the root system ® = ®(G, T) of type
D;. We set N := Ng(T), W := N/T and the surjection p: N — W,

For I < [ and ( € F* we set h;(¢) := [ [,; he, ({)-

We assume chosen @ € F* with @w? = —1. We set nj :=n,, (@) € Ng(T). The Chevalley
relations give easily the following statement.

Lemma 2.23 — [MS16, 2.C]. Let v : G —> G be the graph automorphism defined by
Xea; (1) — Xgag(t) forteF, e =+1,i€land (o], ay,05,0),...,0)) = (a2, 01,03, 04, ..., o).
Then nS normalizes G and induces v on it, namely ~(x) = ™ for any x € G.

Set f>1,q:=p/, Fe {sz, Fg o} a Frobenius endomorphism of G. Then in the standard

notation G = Dl6 s

(p’) where € = 1 or —1 according to F' = Flf or Flf o~. The extension of F'
to G is chosen as follows. If F' = sz then F is defined the same on the generators x,(t) as in

the preceding section. By contrast when F' = Flf o~ we define F := Fg o7 where 7 is the inner

automorphism of G defined by 7(z) = 2™ for z € G. In both cases G' — BLSC(pf ).

We denote by E(G) the subgroup of E(G) generated by F, and 7. We denote by E(GT),
respectively F (é), the corresponding subgroup of E(G"), respectively £ (é)

We describe below properties related to the centers of G and Gf'. This can be easily deduced
from [GLS, Thm 1.12.6].

2.24 (a) According to [GLS, Table 2.2]| the center of G is the 2-group generated by h;(w)
and hg := hq, (_1)h042(_1) = he1(_1) = (n(i)2_
(b) We have (hoy = [£(G), ] = UGE(G)) = ().
(¢) |Z(GF)| = 4 if and only if p # 2 and
(i) e=1and 4| (¢—1),; or
(ii) e=—1and 41 (¢ — 1)I, in particular 2 1 f.
In all other cases: | Z(GY)| = ged(2,q — 1).
(d) if a, 8 € ®(G, T) are both short roots and o L 3, then [n,(t),ng(t')] = ho for any
t,t' e F*, see [S07, Bem. 2.1.7].

15
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Centralizers of semisimple elements and consequences for Irr(G*)

From now on the groups G, G = G are as defined in Section 2.2 and we use the notation
introduced there for groups of type D.

The aim of this chapter is to complement the results of [S23b] on elements of Irr(G) that
don’t extend to their stabilizer in GE(G). We introduce the sets E and D in Definition 3.9
that will be of constant use in Chapter 5. Through the equivariant Jordan decomposition of
characters of [S23b, Thm B], analyzing elements of E U D leads us to a study of centralizers of
semisimple elements in the adjoint group of G. This extends the results of [CS24]. It will be
also of some use in our study of relative Weyl groups in Section 4.D.

Our main theorem is Theorem 3.16 dealing with kernel and stabilizers of characters outside
the transversal T from Theorem 2.18. This includes a study of characters of groups of rank
1 <k <3, called G}, in 3.D, that occur naturally in centralizers of Sylow d-tori.

Centralizers of semisimple elements

We describe here properties of the centralizers of semisimple elements sy € Dy« (F). We keep
G = Spiny(F), F, T, and the notation for the associated roots as in Section 2.E.

Notation 3.1 Let m: G — H be the adjoint quotient of G with F},, v and F" acting accordingly
also on H. Let mg0: G = Spiny;(F) — SO (IF) be the the natural morphism with kernel (hg),
see 2.24.

For every I < [ we set Ry :== ® n{e;|i€ly;, Rf == ®n Ry = ® n{e;|iel), and
T;:=Tn{(X,|aeRy).

Remark 3.2. (a) Whenever ty,...,t; € F*, then Wso(ﬂizl h,, (t;)) has the eigenvalues {¢;2 |
i €l} as an element of SO9(IF), see the description of mgo (he,(#;)) in [GLS, 2.7].

(b) Let sg € G be semisimple. According to [FoSr89, 2A], sy and sphg are G-conjugate if and
only if 1 and —1 are both eigenvalues of mg0(sg). Using then (a) above, an element sy € T
is G-conjugate to sohg if and only if so can be written as [[; he, (t;) with {1, @} < {£¢ |
i€l}.

3.3 — Weyl groups and parabolic subgroups. We denote by Sy; the subgroup of the
permutation group of [ U — whose elements o satisfy o(—z) = —o(z) for any x € LU —[. The
Weyl group W = Ng(T)/T can be identified with Si; as in [GLS, Rem. 1.8.8] or [S23a, 2.B.

We write SEI for the normal subgroup of W consisting of permutations o with even
| =1~ o(l)|. This coincides with W = Ng(T)/T.

If I < [, then the ordinary symmetric group Sy can be identified with the (parabolic)
subgroup 8}3 of W = Sy, fixing every element of [\I and stabilising I. For example 8}3 is the
trivial group if |I| = 1. We define SY; := W n SB.

Given a partition M of a set M < [ we set S& =[] e SP the direct product of subgroups
SP with I e M.

3.4 — Elements of T and the action of the Weyl group. The elements ¢(h,, (t) |t € F*,ie )
generate T. Chevalley relations show

l

l
H = [ [Pe.(®)

i=1

if and only if t;/t; = +1 for every ¢ € [ and 1_[
by s up to multiplication with —1.
The Weyl group W = &4, acts on those elements in the following way:

t/t; = 1. So the value of each ¢; is determined

i=1"

l

! o l ,
(Hhei (ti))(%ij) = hej (tj_Q) H hei (tl) and (Hhei (tl))(kk) = hek (tk’ ey’ tk H hez
i=1

el i=1 iel\{k,k’}
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| where j, k. k' €l with k # k.
From the action of W on T described above we easily get the following.

Lemma 3.5 Let F < F* be a set of representatives in F* under x — —zx and inversion
x +— o' and such that {1,w} < F. Then every s € T has some W -conjugate s’ such that

l

s' e H he, (t;) <h0> )

i=1
where t; € F for every i € [.

The corresponding centralizers are then described as follows. Note that whenever X1, Xo < X
are finite groups with [X7, Xo] = 1 we write X;.X5 for the central product of the groups X3
and Xo.

Lemma 3.6 Let s’ be as in Lemma 3.5. We write I¢(s') := {i | t; € {£(}} for ( € F. We
abbreviate I := I1(s'), I := I5(s') and set R := | | (1 oy {€i — €5 | 4,1" € Ic(s) with i #
i'}. Then Cg(s') is a central product of reductive groups normalized by T:

CG(S/) = Cl-Cw-CR’,
where

Cl = <T[1,Xa | Q€ R[1>,
Co =(T;_,X,|a€ R, ) and
CR’ = <Tl\(fwufl)’Xa | o€ R/>

Then, for N := Ng(T) the group Wy := Cn(s')/T satisfies

D D B
Wo =82y % S < [ Siey
ceF\{1,}

Proof. We can compute the centralizer of s’ from the root system as in [C, 3.5.3|, noting that
the first statement reduces to the one about Weyl groups that can in turn be checked thanks to
3.4 above.

Another way is to follow [FoSr89, 1.13] noting that Cg(s’) is connected and therefore
Ca(s) = wgg(cgom(m)(s’)). The groups C;, C5 and Cpg then correspond to the orthogo-
nal groups on the eigenspaces associated with 1 and w, while Cg corresponds to the other
eigenspaces of mgo(s’) in F2, O

The following statement is used to apply later Proposition 4.9 in the calculations of relative
Weyl groups. We denote by E(H) the group of automorphisms of H generated by F, and ~.

We use the term d-regular in the sense of [B, Ch. 5| and [Sp74] for certain elements of W,
see also Definition 4.2 below.

Corollary 3.7 Let ¢y be the automorphism of the character lattice X (T), such that F acts
there as qpo. Let T’ be a maximal torus of H, let s € T' and set C := Cy(s) = T,
P :=Ng(T')/T'. Let d > 1 be an integer and S be a Sylow d-torus of (H, F').
(a) We have
P~8P; xS, xSP,

for some J,J' < 1 with J nJ' = & and some partition I of [\(J u J').

(b) Assume additionally Cg(S) is a torus and s € Cg(S)¥". Then Cu(S) < C and there ex-
ists some d-regular element wggy € W normalising P such that Cp(wyy) is isomorphic
to Nc(S)F/CH(S)F

(c) Keep the assumptions about s and S from (b). Set K := Ny7(P) and C = Curwpmr)(s)-
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There is a morphism

Né(S)/CH(S)F — CK(w@0)7
that induces an isomorphism Ng(S) /Cu(S)! = Cp(wey).

Proof. Without loss of generality, we can assume that s = m(s’) where s’ is as in Lemma 3.6
which then gives us the structure of the Weyl group of Cg(s’), hence (a).

The maximal torus of G corresponding to Cg(S) is the centralizer of a Sylow d-torus. This
torus is obtained from a maximally split torus by twisting with wyg, where wepq is some regular
element of W g of order d, see [C, §3.3] and [GM, 3.5.7]. The quotient No(S)¥'/Cgr (S) is there-
fore isomorphic to Cp(w¢p) according to [C, 3.3.6], which gives (b). The group Ngg,.,,(S)/Ca(S)
is isomorphic to W. With the standard discussion, see the proof of [C, 3.3.6], we easily get the
statement in (c). O

An automorphism of the centraliser of a semisimple element

The adjoint group H being the dual of the simply-connected group G, Lusztig’s Jordan decom-
position of characters associates with each element of Irr(Dj .(¢)) the H’ -orbit of a pair (s, ®),
where s € HY is semisimple and ¢ is a unipotent character of Cggr(s). Under some assumptions
on s we find an automorphism of H fixing s and related to the graph automorphism v of
Dj ..(q). This result complements the ones of [C524].

When dealing with the semidirect product G x E(G), recall that we consider any element of
GE(G)\G (or HE(H)\H) as an element of Aut(G) whence the notation o(g) for the product
ogo~! whenever 0 € GE(G)\G, g € G. Recall the element hg € Z(G) from 2.24(a). We use the

notation Ggs and Hgg to denote the sets of semisimple elements of G and H.

Proposition 3.8 Let sy € Ggs be such that F(so) € so{hoy and sg is G-conjugate to sphg.
Set s = 7(sg) € HE.
Then there exist some a € HY with s& = soho, some ' € H'~, and F-stable connected

reductive subgroups C; and Cqy of H such that

(i) Ci(s) = C1.Cy (central product);

(ii) [+, s0] € (ho) and therefore ~'(s) = s;

(iii) [av',C1] =1, and

(iv) [,Cs) = 1.

Proof. Note that the statement is essentially about H which is a quotient of G/{hg) = SOy (F).
The automorphism = is induced by conjugation by the element n$ € G thanks to Lemma 2.23,
so the considerations below could be seen as happening in G/{(hg) = SOg,1(F) thus making
more concrete the commutation arguments used.

Let Ty be an F-stable maximal torus of G with sy € T(. Since all maximal tori of G
are G-conjugate, there exists some inner automorphism ¢y : G x E(G) — G x E(G) with
Lo (TO) =T.

Now 3.4 implies that to(s0) is Ng¢qy(T)-conjugate to some element of the (hg)-coset
(TT 2, he, (t) <hod with all £’s in F. So there is some ¢1 : G x E(G) — G x E(G), which is
the conjugation by some element of G x {7) such that ¢1(Ty) = T and

l
s = 11(s0) € (H hei(t;)> (ho)
=1

with all ¢/’s in F. Then Cg(s’) can be written as
Cg(s') = C|.C.CL,

where C7, C,, and C/, are defined as in 3.6.
Since sp and sphg are G-conjugate we can assume without loss of generality that ¢ = +1
and t; = +w thanks to Remark 3.2 (b).
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3.C

We have ¢1(F) € GF in GE(G) since (1 is an inner automorphism there and E(G) =
GE(G)/G is abelian. Moreover ¢1(F') € Ng(T)F since F(Ty) = Ty implies ¢1(F)(T) = T. Let
n € Ng(T) be such that ¢1(F) = nF.

The assumption [sg, F'| € (ho) implies [s',t1(F)] = [t1(s0),t1(F)] € {(hg) by 2.24(b). Then
mso(s’) is fixed under the Frobenius endomorphism nF = 11(F') of SO (F) and its eigenspaces
are permuted by nF as the corresponding eigenvalues. From the definition of C}, C, and C',,
we get that their images under 7go are ¢1 (F)-stable.

Note that hg € T; for any nonempty I € [ and therefore C| = mgd(ms0(C})) and CL, =
Tso(mso(CL,)) while C/, also contains hg unless it is trivial. So from what we have seen in
SO (F) we get that C’l, C., and C', are all ¢;(F')-stable.

What we said above about ¢1(F) = nF implies that n € Ng(T) can be written in the
form nq(ng)? nw(nQ)”n where ny € C/, ng € C_, nj :=n,,(w) € G, ng :=n,,(w) € njG,
i1,12 € {0,1} and n’ € C5(C1.CL).

Since C}, C., are Connected 11 (F)-stable, Lang’s Theorem ([MT, 21.7]) implies that there
exists some ¢ € Cg(s’) such that (11(F))¢ = vF where v = (n3)%(n$)2n’. Let 1: GE(G) —>
GE(G) be defined by ¢(z) = ¢1(z)¢. Then «(F) = vF and «(GF) = «(G*F). Note that
t(sg) = () =4

We have a’ := n$n$ € G by checking its class mod T. Moreover using 3.4 we get s’ = s'hg
while [a’,C/,] = 1 thanks to Chevalley’s commutator formula. Note also that [F,a'] € (ho).
Let us now take

w?

a:=7(""(d)), Cp:=m("(C}) and Cy:=7(1""(Ch)) for C, = Cl.CL.

We clearly have C3;(s) = m(Cg(s0)) = 7017 (Ca(s)) =m0 (C}.Cl,.CL) = C;Co.

Recall F € {F,,vF,}. For F' := (F) = vF we have [F',d'] = [F,d][v,d’] € (hy) since
[n',a'] € (ho), see 2.24(d). Therefore a € HE'.

Recall that v and n§ induce the same automorphism on G. Hence we get [y, C)] = [n], Ch] =
1 thanks to the Chevalley commutator formula, and analogously [a'y, C|] = [n{n3y,C}] = 1.
Applying 7 o171, this gives our claim (iii)—(iv) that [C1,av'] = [C2,7'] = 1 in HE(H), where
7' € HE(H) is the image of :7!(y) € GE(G) under m. Note that [y, 7(s')] = 1 since [n{,s] €
(ho) by 3.4, hence (ii).

It remains to show that 7' € Hv. By its definition, v/ € Hy. Additionally vF commutes
with v in HE(H), as 2.24 implies [y, 7(v)] = 7([n],n']) = 1. Now 7 € Cpy(vF) = Ca(c(F))
implies 7' € Ca(F) = HI'y. This completes our proof. O

Consequences on characters of D;4.(q)

Let (G,F) and E(G) be given as in 2.E. We assume that a regular embedding G_< G is
chosen such that E(G) acts on G. This implies that F' and therefore E(GF) acts on GF The
A () property of Theorem 2.18 was originally introduced as saying that any element of Irr(GF")
has a GF-conjugate x such that (GFE(GF)) = GFE(GF) and y extends to GI'E(GT),,
see [S12, Thm 2.12(v)| and our Introduction. This condition on x defines a subset T < Irr(GF)
that we complete below into a partition

Ir(GF)=TUuEULD

that will be crucial in our description of Irr(G"). This will be particularly useful when studying
characters of certain local subgroups where G is replaced by groups Gy, for k < [ (see 3.D)
occuring as [L, L] for L a minimal d-split Levi subgroup of our G.

Most of the properties we single out revolve around the value of characters at hg (see 2.24)
and the action of the diagonal outer automorphism associated with hg through Notation 2.14.
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Definition 3.9 Let T, E and D be the following subsets of Irr(G!'):

T = {x ’ (GFE(GF)), = GFE(GF), and x extends to GFE(GF)X} ,
E = {X ‘ ((N}FE(GF))X = éiE(GF)X and x has no extension to G¥ E(G'), }, and
D= {x[(@E@G"), # GIEG), |,

so that Irr(GF) = T 1 EuD. B

We also define B := T~ (|J,.5“E) and D' := T n (,.5 D).
Notation 3.10 Let ¢ € T with F(£) = hot and set G := GF <%> = G n L7 ((hp)), where
L:G — G is given by 2 — 2 1 F(x).

In the following, we prove that any element of EUE U D U’ is contained in a 7y-stable G-
orbit, and is lying under a ~-invariant character of G <® This generalizes [S23a, Prop. 4.3]
where € = 1, x is cuspidal, hg € ker(x) and Ng(GT), < GI' (¢ </>

Theorem 3.11 Let | > 4, e € {£1}, G := Dy (F) with GF = Df _(q).
(a) Let x € EUE'. Then hg € ker(x) while x is invariant under and extends to G¥ <f, 7).
(b) Let x e D uD'. Then hg € ker(x) and x” = x' # x or x? = x according to x € D or /.

Here are some first properties coming mostly from the structure of the outer automorphism
group of GF'.

Lemma 3.12 Recall Z(G) = Z(G)/[Z(G), F] and its action on Irr(GF) by diagonal outer
automorphisms (see Notation 2.14).

(a) If x €D, then |Z(G) : Z(G)y| = 4 and hg € ker(x).

(b) If x € E, then hg € ker(x), x” = x and E(G)X = </ﬁ0> for ho = ho[Z(G), F] € Z(G).

Proof. First we prove part (a), so assume X € D. We abbreviate Z =7 (G) andE = E(G). By
Theorem 2.18 there is X’ = x* with z € Z such that (ZE),, = Z,E,,. Since x € D, one has
(ZE), # ZyE, while

(ZE)y)* = (ZE)y. (3.1)

This forces ZFE to be nonabelian and therefore |Z] = 4. Then F acts trivially on Z(G) and
7 = Z(G) = Z(G)F. Also one can’t have Z , = (hg) since the latter is central in ZE. But
by (3.1) above neither z nor zhy belongs to Z,., forcing ZX/ = 1, hence our statement that
\Z - ZX| = 4. Since (EE)X/ = E,s can’t centralize z, let us take ¢’ € E,, with ¢’ # %€’ € (ZE)X
Concerning ker(x) note that [Z(G),e'] = (ho) by 2.24 and therefore [Z,€'] = (ho) in Z since
[Z,¢'] # 1. Then €Y’ = x/ implies (ho) < ker(y’) and also (ho) < Z(G)  ker(y') = Z(G) n
ker(x*) = Z(G) n ker(x) since diagonal automorphisms act trivially on Z(G).

Next, we prove part (b). Let x € E. Note that by Proposition 2.2(a) and the definition of E
this forces E(G!"), to be noncyclic. Then x7 =y, F = sz for some even f and x € Irr(GF)P
for a subgroup D < E(GF) satisfying [S23b, Hyp. 5.5]. Now our claims that hg € ker(x) and

~

Zy = </ﬁ0> are known from [523b, Lem. 5.11 and Prop. 5.21]. O

Let us recall briefly Lusztig’s parametrization of Irr(G!") (for (G, F) any reductive group
defined over ;). Let (G*, F'*) be dual to (G, F') in the sense of [DM20, Def. 11.1.10] or [GM,
1.5.17). Then the partition of Irr(G!") into Lusztig’s rational series is

Ir(GH) = | |&(GF,[s
|_|
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where [s] ranges over the G*¥' *—conjugacy classes of semisimple elements s € G*F™*. We set
Uch(GF) = £(GF,[1]). Moreover for any s € G, one has a bijection

E(GF,[s]) = Uch(Cax(s)F") := Irr(Cax (5) | £(Cgs (s), [1]))

thus allowing us to associate to each y € Irr(GF) a G*™ _class of pairs (s, ¢) with s € G*:;* and
¢ € Uch (Cg+(s)F™). This Jordan decomposition of characters can be chosen to be Out(GF)-
equivariant when G is simple simply connected, see [S23b, Thm B].

The definition of Lusztig series in terms of Deligne-Lusztig generalized characters R,(r;,(é?)
allows us to check that all elements of £(G!",[s]) have the same restriction to Z(G'), see [B06,
Prop. 9.11]. We also recall in the next lemma some standard related facts. The proof is basic
theory of dual groups (see more details in proofs of [NT'13, Lem. 4.4(ii)| and [B0O6, Lem. 9.14]).
We state everything in the case where G is as defined in 2.E and (G*, F*) can then be taken to

be (H, F'), thus resulting in more identifications.

Lemma 3.13 The duality between (H, F') and (G, F) induces an E(G*")-equivariant isomor-
phism
Lin(Z(G")) = Z(G)/[Z(G), F].

If s e HE, so € 771(s) n G and x € E(GF,[s]), then [sg, F][Z(G), F] corresponds to the
element of Irr(X]Z(GF)).

We can now prove Theorem 3.11.

Proof of Theorem 3.11. We let x € EUE 0D U, In view of the claim made and [Z(G),~] <
(hoy (see 2.24) we can assume x € Eu D uD’. We have hg € ker(x) thanks to Lemma 3.12.

Let s € HL and sp € 771(s) n G with x € £(GF,[s]). Set Irr( x|z gyr) =t {§}. Then
&(ho) = 1, hence ¢ is y-fixed by 2.24. Now Lemma 3.13 implies that [sg, F'] is 7-fixed, hence an
element of (hgy) by 2.24 again.

Let us show that s = sohg for some g € G. Using the injective map wy: An(s) =
Cu(s)/Cgx(s) — Z(G) from [S23b, (1.5)], this means by definition that we must prove that
ho is in the image B(s) of ws. To see this note that by Lemma 3.12 again, Z (GF), is trivial
or generated by the class of hg. Taking ¥ € Irr(GF | x) and seeing B(s)f" as acting by linear
characters on Irr(GF) (see [$23b, Not. 2.14]), one has by Clifford theory that B(s)fg is the

orthogonal of Z(GF), (see [S23b, Lem. 2.13(c)]). Therefore hg € B(s)§ which gives our claim.

All assumptions of Proposition 3.8 are now satisfied. Let a € HF', 4/ € H v, C; and C, be
such that Cgy(s) = C1Cs (central product) be as there.

*

~ F ~
Let § € G*  such that ¥ € £(GY,[3]) with § — s by the natural projection and let

¢ € Uch(Cg (3)F") that can also be seen as a character of Uch(C§y(s)F) be associated to ¥ by
the Jordan decomposition J of [S23b, Prop. 2.15]. From the definition of w, [S23b, Equ. (1.5)],
¢ is c-invariant under any ¢ € Cyr(s) with s§ = sphg since AH(S)g = ws_l(B(s)fg) and we have
seen that hg € B(s)fi;. Then ¢* = ¢.

Let us show that ¢ is also «/-invariant. Restrictions induce a bijection
Uch(Cfr(s)") = Ueh(Cy) x Uch(C3), by ¢+ (d1,62)

see [S23b, 1.10]. Let ¢1 x ¢ the character corresponding to ¢. Then ¢% = ¢ implies ¢¢ = ¢; for
i = 1,2 and therefore ay’ fixes ¢1 and ¢o thanks to Proposition 3.8(iii) and (iv). Then it also
fixes ¢ by the above bijection and we get our claim that

By the E(G¥)-equivariance of .J and its compatibility with G¥-orbits on Irr(GF) (see [$23b,
Prop. 2.16]) we finally get that the GF-orbit containing y is y-stable, as 4/ € H'y. By the
definition of T, this also implies x = x” whenever x € T, which is the case when y € D). If on the
contrary y € D, then ¥’ := x9 € T for some g € G and we can’t have x = X7 since this would
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imply gyg~1y~! e é§ — GZ(GF) and therefore that [g, GFE(GF)] < GF Z(GF) thanks to
the structure of Z(GF) x E(GF). But then x would have the same stabilizer as x’ € T. So
x? # x and therefore y? = 97 = XtA by 2.24. This gives the two cases of our statement (b).
Assume now y € E and therefore Ng (G, x) = G by Lemma 3.12(b). Recall that [, so] € (ho)
according to Proposition 3.8. Then we can apply [S23b, Cor. 6.6] and obtain that x has some
extension Y to G that is ~-invariant. This gives our claim (a). O

Remark 3.14. The above proof gives the following slightly stronger statement: if x € Irr(GF |
Lengy): 1If Gf # G and Gf is y-stable, then every X € Irr(<GF,i> | X) is y-invariant.

Characters of D5 (q) with 1 <k <

k,sc

In the following we establish a slight generalization of Theorem 3.11 including groups of rank
< 3 that appear naturally when studying d-split Levi subgroups of G, see Theorem 3.16. The
groups added to the picture are essentially semisimple simply connected of type Ay x Ay or As
but we need some results about them that are not formally contained in the A(co) condition
known already for groups of type A, see |[CS17a, Thm 4.1]. For those groups the proofs are an
adaptation of what has been done in the preceding section.

For I < [ recall hy: F* — T, hg = hy;(—1) defined in 2.5, and ® DR 2R =®n Ry
from Notation 3.1.

Notation 3.15 For k€, let Ty := T n (X, | a € Ry) and
GE:: TE<X04 | OéGRE>.

Let F' e {Fy,vF,}, G = Gg 4 Gy = E;ﬁl(<h0,hk(w)>) N Gy, and E(éﬁ) =

(Mg, Flg, ) < Aut(Gy).
We define the subsets T, E, E/, D, and D as in Definition 3.9, namely :

Ty = {X € Irr(Gy) (Cv? E(éﬁ))x = (éﬁ)xﬁ(éﬁ)x and y extends to GEE(CVJE)X },

B, = {x e In(Gy) | (GoB(Gy)x = (G E(Gy), and x¢Tx |, Ep=Ten (| “Ep)

-

:BEGk

E(Gy), |, and Dy =Te o (| “Dy).

=

Dy = {x & In(Gy) | (GLE(Gy))y # (G

:L'EGE

The following statement now covers all ranks > 1. We keep [ > 4 and k € [.

Theorem 3.16 Let iy, € T}, be such that F(ty) = hoty.
(a) In every éﬁ—orbit in Irr(Gy,) there exists some x with (éﬁﬂ(éﬁ))x = (é&)xﬁ(ék)x and
X extends to Ghﬁ(éﬁ)x.
(b) Let x € Ex UK. Then ho € ker(x) and x is invariant under and extends to Gy, <?E’ 7).
(c) Let x € Dy u Dy. Then hy € ker(x) and x7 = X?& # x or X7 = x according to x € Dy, or
x € .

Proof. (1) Note that for k > 4 the groups G}, are just of the type studied before with [ = k
since Ty, < (Xqo | @€ Ry) by the Steinberg relations as soon as k > 2 and therefore Gy, =
<Xa | a € RE> is the derived subgroup of the Levi subgroup TGy hence of type Dy o thanks
to [MT, 12.14]. The action of CVJE on characters of Gy, induces all and only diagonal outer
automorphisms, so the stabilizer statement of (a) is covered by Theorem 2.18. The extension
statement is also a consequence of the extension statement of Theorem 2.18 since the groups
E(G) and E(é@) are such that E(Gj) — E(éﬁ) with a kernel K acting trivially on Gj, and
therefore if x € Irr(G},) extends to a character x’ of Gy x E(Gj)y = (Gi % E(ég)x)/K then one



The McKay Conjecture on character degrees

can inflate X" into a character of Gy, E(ég)x also extending x. As for statements (b) and (c),
they are covered by Theorem 3.11.

There remains to prove the theorem in the cases where k € {1,2,3}. Set € = 1 or —1 according
to F' = Iy or vFy.

(2) Let us assume k = 1. The group G is a torus of dimension 1. Then every x € Irr(G;) is
linear, hence extends to its stabilizer in the semidirect product G1 E (él ) by Proposition 2.2(d).
This gives (a) since él acts trivially on G;. Note also that E; = D; = (.

(3) Next, we study the case where k € {2,3}. Formally one could argue that for £k = 3 the
proof of Theorem 2.18 could be transferred and still applies but we give here an independent
proof that does not require to check that the relevant parts of [S23b] apply for k = 3. Recall that
by (1) above Tj, < (Xq | @€ Ry,) and Gy, is then a simply connected group of type A x A;
or As. We get that Gy = SL(F) x SLa(F) and Gz = SL4(F) with F), acting as « — 2 on
matrix entries, while v acts by swapping the two components in the first case and by the graph
automorphism of order 2 preserving the usual torus/Borel subgroups of 2.C above in the second
case, see also the proof of [S23a, Lem. 5.30]. It follows that

SLa(q) x SLa(q) if e =1,
SLa(q?) if e =—1,

SL4(q) if e = 1,

G .
- SU4(q) ife=—1.

lle

and G3 = { (3.2)

Note that Cv?E acts by diagonal automorphisms of G. Applying [CS17a, Thm 4.1] to types Ay
(SLy) and Ag gives our claim (a) in the cases k = 3 and (k,€) = (2, —1), using what has been said
in (1) about the E(G}) versus E(éﬁ) question. In the case of (k,€) = (2,1), [CS17a, Thm 4.1]
indeed shows that there exists an (¥}, )-stable GL3(g)-transversal in Irr(SLa(g)). This implies that
Ty contains some {F},,v)-stable ég—transversal. Moreover the group GE(G) being a subgroup
of the wreath product SLa(q) (F,) Ca, the extendibility claim holds by Proposition 2.2(c). We
then get part (a) in all cases.

(4) We now turn to statements (b), (c) in cases when k£ = 2,3 and make some preliminary
remarks.

Notice first that whenever Z(Gj) = Z(Gyg)¥ is of order < 2 then (a) and the commutativity
of (CVJE/Z(GE)GE) X E(éﬁ) imply that T = Irr(Gy) and therefore E; = D = ¥, so (b) and (c)
are trivial.

So we assume that Z(G}) is of order 4, and in particular ¢ is odd. Then Z(Gy) = Z(Gy) and
therefore hg € [, Z(Gy)] since hg = [v,hy(w)], see 2.24. This implies that the second part of
(b) or (c) implies also that hg € ker x. This is because, if x is invariant under the composition of
a diagonal automorphism with ~, then its restriction to Z(Gy) = Z(Gy) has the same property
and indeed the restriction of x to Z(Gy) is y-invariant, hence is trivial on [, Z(Gg)].

Concerning (b), as in the proof of Theorem 3.11(b), notice that one can consider Ej; alone.

From now on we omit the index k.

(5) Assume k = 2. If e = —1, we have |Z(G)| = 2 so (b) and (c) are trivial as said in (4).
So we assume € = 1. Then the group G is isomorphic to SLa(g) x SLa2(q), see above. What has
been said about the wreath product action of  implies E = ¢ hence (b).

To prove (c) let’s take x € D and let xo be a é—conjugate of x such that yo € T. That the
stabilizers of x and xo are distinct implies that E(G)y, £ Cg(e)(Z(G)) = {Fp) and xp is not
G-invariant. The character Xo € Irr(SLa(g) x SLa(q)) being now written as xi.x2, we see that
at least one of {x1,x2} is not GLa(g)-invariant. But E(G),, < (F)) implies that xg is invariant
under some element of v (F,), leading to x; and x2 being both not GLy(g)-invariant.

Now every character of SLa(g) that is not GLa(g)-invariant is (F}, )-invariant, see the character
table of SLa(¢q) in [B, Table 5.4|. So we get that x; and x2 are both (F))-invariant. We
can conclude that yq is (Fp,7)-invariant, which implies the second case of (c). Noting that
[Fp, Z(G)] = 1 we also get that since xo = x* for some z € é, X is Fp-invariant. This implies that
it can’t be y-invariant, by the definition of D. Then x7 = XtA since [z,7] € <®G = L7((ho)).
This finishes the proof of (c).

From now on, we assume k = 3 and we consider the regular embedding G = SL4(F) < G =
GL4(F) with extended Frobenius F' defined by the same formula on matrix entries. The action
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of G on G is also induced by the one of G = GF and the action of t is also the one of any ¢ € G
corresponding with hg = —1Id4 in the isomorphism G/GZ(G) =~ Z(G)/[Z(G),F] = Z(G) =
Z(G), the last equalities a consequence of | Z(G)| = 4.

(6) We consider first the case where k = 3 and ¢ = —1. Note that E (é) is cyclic thus implying
E = & and (b) trivially. Concerning (c) note that | Z(G)| = 4 implies 4 | (¢ + 1) and ¢ = pf with
an odd f > 1. Then E(G)2 = (y) and E(G)y = (Fpy) = Cg)(Z(G)). Let xeDand xo€ T a
G-conjugate of . Then E(G),, < C £(¢)(Z(G)) since otherwise any G-conjugate would also be
in T. This forces (v) = E(G)2 < E(G)y. We get x7 = x but also xJ # xo since the stabilizers of
x and xo in (G/GZ(G)) x E(G) =~ Z(G)E(G) can’t have the same Sylow 2-subgroup, otherwise
they would be equal, the 2'-part being central. This implies x] = x/ for some ¢ € [, é]\G Z(CNJ)
hence our claim (c¢) since [Z(G),~] = {(ho).

(7) From now on we assume k = 3 and € = 1, so that G = SL4(q).

For part (c) we consider a character y € D. The arguments used to prove Lemma 3. 12( )
apply also here and we get that the G-orbit of x has 4 elements. Let us show that this G-
orbit is y-stable. Let ¥ € Irr(GL4(q) | x). The fact that Gx G7Z(@G) implies that ¥ is
in a Lusztig series £(GL4(q),[S]) such that the centralizer of the image of § in PGL4(q) has
a component group of order 4 (see for instance [S23b, Prop. 2.15|). This implies that the
eigenvalues of 5 are an orbit under the multiplication by the 4th root of unity w. But then the
transpose-inverse automorphism 7 of GL4(¢) sends § to some conjugate times a scalar. This
means that X7 is in the same Lusztig series as some AX with A\ € Lin(GL4(q)) by the action of
automorphisms on Lusztig series in the connected center case ([S23b, Prop. 2.15| again). But
those Lusztig series have a single element since the centraliser of § is a torus. So X and X7 have
the same restriction to G = SL4(q) which gives our claim. We then proceed like in the end of
the proof of Theorem 3. 16(b). The above 1mphes that if yo = % is an element of T for some
ze Z(G) = G/Z( )G then X3 = x§ for some 2 € Z(G). This implies X§ = x§ = xo by the
definition of T, hence the second case of (c). Concerning the first case, note that x¥ = x would
imply that zwz_l “le z(G) — 1 and in turn that z centralizes v hence the whole Z(G).E(G).
But then #yo = x would have the same stabilizer as xg. So x” ;é x and this implies x7 = XA
since [Z (G),~] is the group of order 2 generated by the image of 7. We have proven part (c) in
this case.

(8) We keep k = 3, e = 1 and address (b). Let x € E. We then have (éE(G))X = éXE(G)X
with x not extending to GE(G)y. This forces E(G) to be non-cyclic, hence ¢ to be a square and
F to act trivially on Z(G). It also implies that E(G), is not cyclic and therefore v € E(G)y.
As pointed out in (4) above this implies hg € ker X

First we show that G ¢ {GZ(G),G}. Let ' € T be a G-conjugate of x (which exists by
(a)). The equality G = G is not possible as then y = y’ € T.

Assume next that GX =G Z(G) or equivalently GX = G and hence éx’ = (G. By definition
of T we have (éﬁ(é))xx = Gﬂ(é)xl and x’ has an extension to GE(G),/. Via E(Cv?)/<F]é> =

E(G) we see that ¥/ extends to some Y’ € Irr(GE(é)X/) such that <h0, F]é> < ker(¥). Let us

write xy = x'* for some t € G. We have
(GE(G))y = (GE(G)X’)t = G(E(G)x’)t

with also (é E(é))x = éxﬂ(é)x Then [7,t] € G since the above implies Gv* € GE( )
G~. Then [[v,t],F] = [[F,~],t] = 1 and by the Three-Subgroup lemma [Asch, (8.7)] [ ]

Cye)(7) = <ho). Since x # X' we actually have [F,t] = hg and we can assume ¢ = ¢. If now
X = (x ’)tA then X := ()?’)’?is an extension of x to GE(G) with (hg, F> = (hg, hoF'y < ker(X). In
particular F € ker(Y). Via E(G)/{(F) = E(G) the character § defines also an extension of x to
GE(G)y, contradlctlng x € E. This contradiction establishes our claim that G ¢ {GZ(G),G},
or equivalently that GX has index 2 in G while being also ~-stable.

Let s e IjF be such that y € £(G, [s]). Denote H = G* = GLy(F). As in the above proof of
(c), let € H and ¥ € Irr(GL4(q) | x), such that X € £(GL4(q),[5]). Then |G, : GZ(G)| = 2
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implies
[Am(s)f| = 2, (3.3)

where ¢ := \IIGF( ) € Uch(Cg(3)F) is associated to X via Jordan decomposition of characters

wE L £(GF [3]) — Uch(Cy(3)F), see [S23b, Prop. 2.15).

Assume [Ag(s)| = 4. Then as in the discussion made for (c) one gets that C(5) is a torus
and ¢ is the trivial character. This leads to AH(s)g = Au(s)f' = Au(s) since I acts trivially
on Z(G) hence on Ag(s). This contradicts (3.3) above.

We therefore get that

An(s) = AH(s)g and has order 2. (3.4)

Like for Theorem 3.11(a), our aim is to apply [S23b, Cor. 6.6] whose original proof was for
type D but is easily seen to apply to our G. We have proven assumptions (i) and (ii) of [S23b,
Cor. 6.6]. Letting : Hy = [H, H] — H be the canonical surjection SLy(F) — PGLy(F), there
remains to show that there exists v* € Hfy such that v*(s, ¢) = (s,¢) and [sg,7*] € {(ho) for
some (in fact any) so € 71(s). The first part is ensured by the equivariant Jordan decomposition
for type A (see [CS17a, Thm 8.2] or [S23b, Thm BJ), so we concentrate on the second point,
namely having [771(s),v*] < (ho).

Let so € 7 1(s) € Hy = SLy(F) lifting s. Then |Ag(s)| = 2 from (3.4) above implies that
the eigenvalues of sq is closed under multiplication with —1. Let x, ” be two of them, such that

{k, —k, k', —K'} is the set of all eigenvalues of sy with multiplicities. Because of det(sg) = 1 we get

k' = +x~! and hence the set of eigenvalues is {k, —r, k!, —x~1}. Writing ~ for the conjugation

in Hyp = SL4(F), which for semisimple elements coincides with conjugation in GL4(F), we see
from the eigenvalues that

so ~ 361 ~ v*(s0)-

Since v*(s) = s then v*(sg) = wsp for some w € F*, and sy ~ wsg by the above. This
forces in turn w = +1 since Ap(s) has order 2. So v*(sp) = +so and we get our claim that

[771(s),7*] = Chop = {£ 1da}. O

The following definition explains what we mean by groups of type D in ranks < 3, thus
allowing to say that G}, above has type Dj, SC( ). This will be used mainly in Chapters 5 and 6.

Definition 3.17 Assume k € {1,2,3} and € = £1. Then we denote by D, s(IF) the subgroup
G of G = Dy(F) defined in Notation 3.15. We also write D¢ _ (q) for GI' where F is

k,sc
such that G = Z,Sc(q). Then we get the isomorphisms with groups of type A and a torus
recalled in (3.2) of the above proof.

We gather some extra statements that will be used alongside Theorem 3.16.

Lemma 3.18 Assume k and t}, are like in Theorem 3.16. If x € Trr(Gy,) is such that (CVJE)X <
Gk <tk> then GkE(Gk) Gk <tk>E Gk

Proof. As in the proof of Lemma 3.12 we abbreviate Z = éE/Gﬁ , E = E(ég), ho the class
of ?E Note that hg is central in the semidirect product Z x E thanks to 2.24 and that E

also acts trivially on Z / </ﬁo> since this is of order 2. By Theorem 3.16(a) there exists z € Z
such that (ZE)ZX = ZoEy with Zy < 7 and Ey < E. Since 7 is abelian we have Zy =
7 A ZoEy = (2 N ZyEy)* = Zn (ZoEp)* = 7 (ZE)X = EX < <Eo> by our hypothesis. Then
(ZE) (ZoEp)* <h0> E)* <Eo> FE since we have seen that [2, E] < <’ﬁ0>. O

I Lemma 3.19 Assume k € [, then maximal extendibility holds with respect to G}, < é&

25



26

4.A

Marc Cabanes and Britta Spath

Proof. 1f k > 3, then the statement is [S23a, Thm 1.17] thanks to our description of Gy, given
in the proof of Theorem 3.16. When k = 1 then é& is abelian, while when k& = 2 and F' = Fjy

the quotient éE/GE is cyclic and Proposition 2.2(a) applies. When k = 2 and F' = Fj then
Ga = SLa(q) x SL2(q) < Ngp,, ) (SL2(q)) % Nsr,(r)(SL2(¢)) and we have again the cyclic quotient
situation on each factor. O

The doubly regular case

In this chapter, we prove the inductive McKay condition (iMK) for the group G = Df_ (q)
of Section 2.E and an odd prime ¢ under an arithmetic assumption on dy(g), the order of q in
(Z/¢Z)*. This condition of being a doubly regular number for (G, F'), see Definition 4.4 below,
ensures that the Sylow ¢-subgroups of G have abelian centralizers in G = Disc(q) but also in
the overgroup G = Bjs(q). The criterion for (iMK) is the one of Theorem 2.21 through the
conditions A(d) and B(d) of 2.19 and 2.20 defined for (G, F') and any integer d > 1, relating in
particular to Sylow d-tori of G as recalled in Section 2.D.

The main result of the present chapter is as follows.

Theorem 4.1 Let G = D§_.(q) for | > 4, ¢ = £1, q a prime power. Let d > 3 and S be a
Sylow d-torus of (G, F').

even when ¢€=1,

2
Assume that d | 21 and the ratio L is
d odd when €= —1,

(in other words d is a doubly regular integer for (G, F'), see Definition 4.4). Then:
(a) Conditions A(d) and B(d) from Section 2.D hold for (G, F).
(b) If ¢ is an odd prime with £ 1 q and dy(q) = d, then (iMK) from Definition 2.7 holds for
GY and ¢ with respect to N = Ng(S)*".
(c) (iMK) holds for D ,.(¢q) and any prime .

Note that for d € {1,2} and primes ¢ = 2 or odd with dy(q) € {1, 2} the above points (a) and (b)
are known from [MS16, Thm 1].

The proof will use a criterion for A(d) and B(d) from [CS17b] devised for the more general
case where d is a regular number for (G, F'), see Proposition 4.3 below. This will split the proof of
Theorem 4.1(a) into two parts. Section 4.C deals with the Tits subgroup (n,(1) | @ € (G, T)) <
Ng(T). Then Section 4.D shows properties of the relative Weyl groups Ng (S, £)¥/Cq(S)F for
S a Sylow d-torus of G and ¢ € Irr(Cg(S)F). The proof of Theorem 4.1 concludes in Section 4.,
After that we derive some consequences of the constructions made, in particular correspondences
of characters not necessarily of ¢/-degrees, that will be useful later in Section 6.A.

The conditions A(d) and B(d) for regular numbers

Let (G, F') be a simple simply connected algebraic group defined over a finite field F, as in
Section 2.C. We recall the choice of a maximal torus and Borel subgroup T < B both F-stable
and the associated notation. Let

p: Na(T) — W(G,T) = Ng(T)/T

be the canonical surjection onto the Weyl group. We see the latter as acting on the euclidean
vector space V = R® X (T), abbreviating the image of W (G, T) as W < GL(V). We recall
©0 € Nar,v) (W), the element of GL(V) such that I induces gy on X (T), see [MT, Def. 22.10].
Writing F' = Flf o o for o a graph automorphism as in Section 2.C, ¢g corresponds to the
symmetry of the basis of the root system that defines o.

For regular elements of Weyl groups and regular numbers we refer to [B, Ch. 5] and [Sp74].
For the relation with d-tori, see [MT, Thm 25.10] and [GM, Sect. 3.5]|.
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Definition 4.2 — Regular elements of W . An element of Wy is called regular if it has an
eigenvector in C ® V which is not contained in the reflecting hyperplane to any o € ®(G, T).
It is called (-regular if this eigenvector is for the eigenvalue ¢ € C*. The integers d > 1 such
that there is a (-regular element in Wpg with ¢ of order d are called the regular numbers for
(W, ¢0), or equivalently for (G, F). An important property in relation with the polynomial
order of F-stable subgroups of G is that d is a regular number for (G, F) if and only if a
Sylow d-torus S of G is such that Ca(S) is a torus |[GM, Example 3.5.7]. In particular we
get that if wpy € Wipg is (-regular for some ¢ of order d and if v € p~!(w) then the Sylow
d-torus of (T,uF') is a Sylow d-torus of (G, uF).

See [S10a, Table 1] for a list of regular numbers for each type of (W, ¢g).

Keeping the pair (G, F) of arbitrary type, we define the extended Weyl group (or Tits
subgroup, see [Tits]) already mentioned V := (n,(1) | a € ®(G,T)) < Ng(T) and the toral
group H =V n T. They are both finite and we clearly have p(V) = W(G,T) = V/H.

Recall the choice of a regular embedding G < G and the group E(G) acting on both G and
G, see Section 2.C. We set T = Z((N})T. We form the semidirect product G x E(G) and see its
elements outside of G as acting on G.

Here is the slight variant of the criterion [CS19, Thm 4.3| for A(d) and B(d) of Section 2.D
that we will use.

Proposition 4.3 Let d > 1 be a regular number for (G, F'). Assume there exists an element
u € V such that, denoting by S the Sylow d-torus of (T, uF'), the following properties hold:

(1) p(u)po € Wy is a (-regular element of Wq for some ¢ € C* of order d;

(ii) p(Vd) = Wy with V; := VuE and Wy = Cw(p(u)(po).

(iii) Set Vy = (VE(G))“F /(uF) = Vy = Hy := H"Y'. There exists an extension map A

with respect to Hy <V such that
(iii.1) Ag is Vy-equivariant; and
(iii.2) if E(GF) is not cyclic, then for any A € Irr(Hy), Ag()\) extends to (Vy)y.
(iv) Set T := T“F = Cg(S)*F, N := Ng(S)*F, N := Nag(q)(S)** /(uF) and Wy := N/T.
For € € Irr(T"F) set We = Ng/T g IA((g) = (I//I\/d)ng Then for every & € Irr(T4F),
maximal extendibility holds for W d K (€ ).

(v) Maximal extendibility holds with respect to N I N := Ng(S)“F.
Then conditions A(d) and B(d) from 2.19 and 2.20 are satisfied by (G, F).

Proof. We abbreviate T' := T"F. The first point of the definition of B(d) in 2.20 is given by (v).
For the second point in B(d), i.e., an equivariant form of maximal extendibility for T < N , it is
a consequence of the assumptions (i), (i) and (iii), as explained in the proof of [CS19, Thm 4.2,
see also Proposition 2.3.

We now turn to A(d). Note that the proposition reproduces [CS19, Thm 4.3| verbatim except
for (iv). We follow below the original proof of A(d) combining the ones of [CS17a, Prop. 5.13|
and [CS17b, Thm 4.3]. We only stress the differences due to our simpler assumption (iv).

Assumption (iii) along with Proposition 2.3 yield an ]V—equivariant extension map A for
T < N, see also Proposition 4.8(e) below. Let us recall also that if £ € Irr(T) = Lin(T) and
&= E]T, then NE < N¢ and both are normal in ]/\75. For every t € T the character vy € Lin(Ng)
defined by

A = A
satisfies 14(Nz) = 1. For a fixed ¢ € Irr(T) the map t — 14 is a surjection T — Irr(Ne/Ng) =
Lin(N¢/N, g) with kernel i\(g). Clifford theory (2.1) provides an N-equivariant parametrization

II: P — Irr(NV)
(&m) — (A"

of Irr(IV) by the set P of N-conjugacy classes of pairs ({,7) with £ € Irr(T") and 7 € Irr(Wg). By
the above one clearly has I1(£, )t = TI(&, niy) for every t € T.
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Letting now x € Irr(N) we must check (NN )xo = ZVXO Z’\\TXO for some T-conjugate xq of x.
We choose (£,7) as above such that x = II(§,n). Let £ € Irr(T') be an extension of . Let
Ny € Irr(n]Wg). By the assumption (iv), 19 extends to K (&), and hence there exists some

extension 7y of 1y to (W¢),, that further extends to K (E)m. The character 1/ := ﬁgv €is K(€ o~
invariant and irreducible thanks to Clifford theory (2.1), so (£, 7’) is another pair as above and
we can define o := II(¢,7/) € Irr(N). Note that xq is in the T-orbit of y by the surjectivity of
t — 14 recalled above.

Let © € (]V]V)XO By the properties of II we can assume x = nn with n € ]Vg and 1 € ]’\\75
after factoring out an element of N. Then n = tn with ¢ € T and n € N¢. Arguing as in the
proof of [CS17a, Prop. 5.13] we get

xo =T ) = T(E o)™ = TI(E, (1 11)"")
= TI(&, ('v)™) using (7)™ = 7 since n e Ne.

This implies 77/ = (1'1;)" and therefore 7 stabilizes n]WE. Accordingly n € ]Vg and nT €

Wg[? (E)m. By what was recalled above, 7 is fi-invariant. This yields II(¢,7/)" = II(&,7) and
therefore x € Nonxo as claimed.

It remains to show that yo extends to ]VXO. By assumption 7y extends to K ({N )no and hence

m
there exists some extension 7o of 7jo to (Ny, ¢)n,/T since the latter is a subgroup of K (§)y,. The

induced character (ﬁo)f( © is the extension of n' required in the end of the proof of [CS17b, Thm
4.3] and denoted there as Res%‘E (n) e Irr(ﬁgm). O
&n

Doubly regular numbers and Sylow tori
We now focus on the case when G = D;«(F) and G = B, «(F) with G < G, with Frobenius

endomorphism F: G — G, F = F]G and GI" = Di..(q) < G" = Bisc(q) as in 2.E. As in
[S10a, S10b, MS16] we derive the results in type D; by some transfer of the analogous results
in G. We also assume that d > 3 satisfies the assumption of Theorem 4.1. In view of the list
of regular numbers in types D and B, see for instance [S10a, Table 1], it corresponds to the

following.

Definition 4.4 — Doubly regular integers for Dzsc(q). An integer d > 3 is called doubly
reqular for (G, F) if d is regular for both (G, F) and (G, F), i.e. d | 2] with ratio satisfying
(—1)% =€

This is equivalent to the property that the centralizer in G of a Sylow d-torus of (G, F) is a
(maximal) torus. Using Definition 4.2, this can be checked by noting that the ratio of polynomial
orders Pg #(X)/Pg,r(X) is XY X" + €), not divisible by the d-th cyclotomic polynomial if d is
doubly regular.

Recall we identify the Weyl group W of type B; with S4;, where for a set I € Z+, St denotes
the group of permutations 7 of I Ly —I with w(—i) = —n (i) for every i € I and S4; corresponds
to I = 1. Recall also W the normal subgroup of W corresponding to the Weyl group of type D;.
Then g associated with F': G — G is 1 if e = 1, while ¢ = p(nj) = (1,—1) € W when e = —1.
We collect some statements on regular elements of W in the following.

Lemma 4.5 Let d > 1 be an integer and (g a primitive d-th root of unity.
(a) The set of (4-regular elements of W forms a W -orbit.
(b) weox = (1,2,...,1,—1,...,—I+1, 1) is a Coxeter element of W. Every regular element
w of W is conjugate to a power of wcee. If the order of w is d, every w-orbit in [ U —1
has length d.

(c) Ifw is a regular element of W and I < [ is a union of w-orbits, then the projection w;

of w to S41 is a regular element of order d of Sy.

(d) Assume d = 3 is doubly regular for (G, F). If w is a regular element of W of order d,

then it is a (4-regular element of W .
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Proof. Part (a) follows from the definition, see also [B, 5.14.1]. Part (b) follows from Appendix
1 of [BM97] or from Remark 3.2 of [S10b]. For Part (c), recall that d is a regular number for
W and therefore d | 21 according to Table 1 of [S10a]. Now the projection w; of w is a regular
element of S4j since the orbits of w and wy on +1 have the structure required in Remark 3.2 of
[S10Db]. Part (d) is again derived from the characterization of (4-regular elements given in Table
1 of [S10D]. O

In the following, we assume d to be doubly regular for (G, F') and show that Proposition 4.3
applies in that situation to establish Theorem 4.1(a). We check first assumptions (i)-(iii) of
Proposition 4.3 in 4.C and assumptions (iv) and (v) in 4.D.

The doubly regular case. Extended Weyl groups

Now we define for the verification of Proposition 4.3 an element u € (n,(1) | o € ®(G,T)).
Recall that we have chosen w to be a primitive ged(2,q — 1)2-th root of unity, see 2.E.

Notation 4.6 Recall V = (ny(1) | € ®(G,T)), H = VnTandset V<V :=(n,(1) |ae ®(G,T)) <

Ng(T)*». Let vg € V be chosen as in [CS19, Sect. 5.A], i.e.

21

0B = (Mg (Dnag (1) ey (1) # - and set = yw) = [The,@) e T

with w € F*, a primitive ged(2, g — 1)3-th root of unity with w? = w. Let

. {(vB)t ife= 1, (41)

(vB)'ng, ()™ if e = —1.

Let Vy=V nG* and H; = V; AT as in 4.3.

Basic properties of the Tits subgroup imply the following.

Lemma 4.7 (a) VG =V and VT =
ged(2,q — 1)! with V/H =W, V/H = W.
(b) n61(1)t = N, (1)h€1 (w2) = Ng, (w) =nj.
(c) ueV =V"

V n'T = H is elementary abelian of order

Proof. From the Chevalley relations or [Tits|, we know for any type that the group V =
(ny(1) | € (G, T)) is generated by the ng(1) for § € A in the notation of Section 2.C.
Those elements satisfy ng(1)? = hs(—1) and the braid relations. From the Coxeter presen-
tation of W(G,T) it is then easy to see that H is the direct product Ilsea (hs(—1)), with
V/H =~ W(G,T) by p. We get (a) by applying this simultaneously to G and G, noting that
VAT >V AT but have same cardinality.

(b) is clear from the definitions given in Section 2.C and e;(t) = w*® = w when e; (i € [)
is seen as an element of ®(G,T) € X(T). One shows similarly that n,(1)! = n,(£1) when
a = *e; + ej with 7 # j in [. This implies Vt=V.

When € = 1 the assumption that d is doubly regular implies that 2[/d is even and therefore
vp € V since all squares of elements of V are in V. When € = —1 we have vg € V\V = n,, (1)V
since ng, (1)ng, (1) ng,(1) € VAV and 2//d is odd. But then (b) implies vg.'n,, ()™t €
n., (1)Vne, (1)~ = V and we get our claim that u € V! = V. This finishes the proof of (c). O

2

We now prove the requirements (i)—(iii) of Proposition 4.3 in a form slightly weakened for
rank 4, replacing F(G) with E(G) as defined in Section 2.E.

Proposition 4.8 Let w €V be as in (4.1). Let @g be defined from F as in 4.2. Then
(a) p(u)po Iis a (g-regular element of Wy for some primitive (complex) d-th root (4 of 1;

(b) p(Va) = Cw(p(u)po);
(c) there exists a Cy g(q)(ul)-equivariant extension map Ao with respect to Hy <V and,

29
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(d) if e = 1, then Ay can be chosen such that for every A € Irr(Hy), Ag(\) extends to an
irreducible character of Cy () (uF)x/{uF).

(e) Recall N = Ng(T). There is a Cnyp(q)(ul)-equivariant extension map with respect
to T*F < N“F.

Proof. Set Vi = Cy("(uF)) = Cy(vp) as in [CS19, Sect. 5.B], Hy = VynT =V Cp(*(uF)) =
V n T* = Hy thanks to Lemma 4.7(a). By Lemma 2.23, Wy and Wp(n{) are equal when
¢ = —1. Regarding p(u)po we have p(u)po = p(*vp) = p(vp) and this is a (4-regular element in

W g since it is one in W as proven in [CS19, Lem. 5.4]. Again, by [CS19, Lem. 5.4] the groups
N = Ng(T) and T satisfy N (T)"sEV, or equivalently

p(Va) = C (p(vB)). (1)

On the other hand V; = Cy (uF) = Cy+((vB)!) = (Cy(vg))! by Lemma 4.7(c) and therefore
p(Va) = p(V¥E) = Cy(p(vB)) as claimed. This ensures parts (a) and (b).

According to [CS19, Thm 5.5] maximal extendibility holds with respect to Hy = Hg < Vy,
hence also with respect to Hy ngt. Let Ap be an extension map with respect to Hy ngt, which
can be assumed to be th—equivariant. Since V; =V n GUF =Vin GUF and th VA GUF,
we have V; < th. Then maximal extendibility holds with respect to Hy <V; with the extension
map Ag defined by Ag(A) = Ap(A)]y, for A € Irr(Hy). Moreover, Ag is V,'-equivariant. So,
to obtain our claim (c) about equivariance, it suffices to show that the automorphisms of Vj
induced by Cyg(q)(uF) are also induced by V) = Cyt(uF). Since [Fp,v] = [Fp, V] = 1 one
has Cy g(g)(uF) = Cyyy(uF) (Fp) where Cyy(uF) = Cy(uF) = Vg or Cyypy(uF) = Vglny)
for some n € V. It now suffices to show that nnj e V,'. Observe first that V' = V{ny) by
Lemma 4.7(b) and therefore V' () acts on Vv by inner automorphisms. Then ny commutes with
uF and therefore with (vg)! from the definition of u in Notation 4.6. Then nnj commutes with
(vB)!, therefore nnj € Cvt((’UB)t) — V. So the action of ny on V is also induced by an element
of V;'. This proves (c).

For part (d), let m,: C := Cyg(q)(uF) — Cygg)(uF)/{uF) be the quotient map. One has
Tu(C)x = Tu(C)ag(n) by the equivariance of Ag we have just proved. So to get our claim it suffices
to show that Ag(A) extends to its stabilizer in 7, (C). Now it extends first to m,(Va {Fp))aon) =
Tu((Va) ao () (Fp) since Fy acts trivially on V. But now my,((Va)a,(x) (Fp)) has index < 2 in
7u(C) () since VE(G) B>V (Fp) has index 2 and therefore the intersections with G have
index < 2 and the same holds in turn for the stabilizers of Ag(A) there. Then Proposition 2.2(a)
gives our claim.

We now turn to (e). Set T := T*, N := N“F'. Point (b) implies TV; = N while point (c)
gives us the extension map Ay with respect to Hg < V. According to Proposition 2.3, we then
get an extension map A with respect to T'IN, where for all A € Irr(T') and since ], € Irr(Hy),

ANy, = Ao(Alp,):

Since Ag is Cy g(g)(uF)-equivariant, A is therefore also Cy p(q)(ul')-equivariant.

So to get our claim about equivariance it is enough to show that Cnpg(q) (uF') acts on T
by elements of Cy g(q)(uF). A sufficient condition is that T*¥'Cy g(q)(uF) = Cnp(c)(uF), in
G x E(G). We clearly have T < T”FCVE(G)(uF) < Cng(g)(ul) and using Lang’s theorem
the quotient mod T satisfies

Cvie) (uF)/Hq < Cwp(a)(uF).

We have to show that this is an equality. Since E(G) = (v, F},,) with F, acting trivially on both
V and W, it suffices to show Cy .y (ulF')/Hq = Cyyyy(uF). As seen before, the term on the
right is Cy;(p(uF)) = Cy7(B(vs)). On the other hand Cy(yy(uF) = Cyyy(vh) 3 ny implies
nnj € G (vh) in the notation of the proof of (c) above. This gives our claim by equation

(1). O
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4.D The doubly regular case. Relative Weyl groups

Our next step in the proof of Theorem 4.1 through the criterion in Proposition 4.3 leads us
to study certain subgroups of the so-called relative Weyl groups W(\) := Ngur (T, ) for A €
Irr(T“F) and u as in Notation 4.6. In the following, we ensure assumption (iv) of Proposition 4.3.

As in [CS19, Sect. 6.1-2|, we determine W (A) using computations in the dual group, see
also the proof of [MS16, Thm 3.17]. The character A corresponds to some semisimple element
s € HY which centralizes a Sylow d-torus. As before, we assume that d > 3 and that d is doubly
regular in the sense of Definition 4.4.

Let us recall from 3.3 the notation W = Sy > W = S8, and for I < [, the (parabolic)
subgroup 8}3 of W = Sy fixing every element of [\I and stabilizing I. We also recall the
notation Sﬁ = [Tiem 8}3 > [[;ey Sr for any partition M = wreml of a subset M < [. Recall
SEI =W n 8}3.

" The following statement on permutation groups is key for ensuring assumption 4.3(iv).

Proposition 4.9 Let | > 1, J',J"” < [ disjoint (possibly empty) subsets, I a partition of
L\(J, ) J”), o
P::SEJ’XS—‘EJ”XS]F<W7

K := Ny(P) and w € K a regular element of W seen as reflection group in GLg(R®). Then
maximal extendibility holds with respect to Cp(w) < Cg(w).

Note that in general P is not a parabolic subgroup of W.
Proof. Let d be the order of w and set
Py := Cp(w) and Ky := Cx(w).

Let us first determine the group K. Let 7€ S}?U 7 be such that

- 7=1if |J]#|J"], or

() =J" 2 =14 || = |
Let S < SlB be the subgroup of permutations 7 with

- m() =1,

- w(i) < w(i') for every I € I and i,i’ € T with ¢ <, and

- (i) =i foreveryie J u J".

Any element of W normalizing P must have an image in the symmetric group on [ stabilizing
J"u J" and its complement, so it’s easy to see that the determination of K boils down to the
cases where J' U J" =1, or J = J" = J. We get in the general case

K= Nw(P) = ((SiJ’ X SiJ”) X <T>) X (H <S}3,—ld[>> xS < Si(J’UJ”) X Si‘UIe]II'
Iel

It is clear that the question splits along the orbits of K on [, the assumption of regularity
remaining thanks to Lemma 4.5(c). We now assume that K is transitive on [ and treat separately
the following cases

la. J' =1,
Ib. JJuJ" =1and |J'| = |J|,
2. J' =J" = & and all elements of T have same cardinality.

(1) Assume now J' u J” = [, so that

PZSEJ/ XSEJ" < K = (SiJl XSiJ”) >4<’7'> 3 w.
Assume first that w(J' v —J') = J" U —J’. Then we can write w as w'w” with v’ € S4
and w” € 84 y». This leads to Py = P x P}, where Pj:= Cgp (w') and P := Cgp (w"). Set
- iJ/ iJ//

ﬁ{) :=Cs, ,(w') and Fg = Cs, ,(w").
In case (1a) above, i.e. J' = [, then the sought maximal extendibility holds by Proposi-
tion 2.2(a) since ﬁ/O/PO’ is cyclic of order < 2.
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Assume now (1b), i.e. |J'| = [J"| = 1/2. We first keep w(J' v —J') = J U —J'". According
to Lemma 4.5, w’ and w” are regular elements of the same order of S; ; and Sy j», respectively.
As all regular elements of W of the same order are W-conjugate by Lemma 4.5(a), there exists
some involution 75 € Sy; with (w')™ = w”. Then Ko = (Pj x Py) » (10> and Proposition 2.2(c)
applies.

Assume now w(+J’') = +J”. Note that w? is regular as well according to Lemma 4.5(b). By
the structure of regular elements recalled in Lemma 4.5(b), if Pj := CSEJ, (w?), then P} and Py

are isomorphic via x — x - .
Set ﬁg = CgiJ,(wz) and Aﬁg ={pp” | pe ﬁg}. We observe Ky = Cg(w) = <Aﬁg,w>

with w € Z(Kjp). We have maximal extendibility with respect to Pj < ?/0 by Proposition 2.2(a),
and therefore also with respect to Py < Aﬁg by the above description. But now, since w €
Z(Kp), any character of an intermediate group A is stable under w and extends to A{w) by
Proposition 2.2(a) again. This shows maximal extendibility with respect to Py <JKy = Aﬁg (w).
(2) We now consider the cases where J' = J” = ¢f and K permutes transitively the elements
of I
We have seen that

PZS]I 4 K= <H<S}3,ld[>> xS 3 w,

Iel

where S < Sy is the subgroup preserving I and the ordering on each subset I € I. Note that w
acts on I since w stabilizes P. Recall that d is the order of w.

Assume now that all w-orbits in I have the same length b (a divisor of d). Set w’ := w® € S47.
Note that w’ is again a regular element according to Lemma 4.5(b). For each I € I let w} € Sy
be the permutation induced by w’. Note that w} is a regular element of Si; according to
Lemma 4.5(c), where we consider S1; as a reflection group of type By

The element w® can be written as the product of elements w} € Sty (I € I). Every w) is
regular of order %. We write O for the set of w-orbits in I and for every O € O let us fix some
2 wb—l

w .

IOEO.Wedeﬁner:SiIO—>Siuleolbyxr—>x-xw-x T .

For O € O set Pr, := CSIO (w’lo) and Po := Ao(Pr,). The group Fy is the direct product
of the groups Pp (O € O).

Recall K = Nw(P) = (HIE]I <S], —id]>) x S. Set K] = C<317_id1>(w’1) and KO =
(Ao (K1,),wo) < Ko where wp is the projection of w on Sy Ureo I+

Since all regular elements of order % are conjugate, we find a subgroup S’ < K such that
Ky={(Ko|0e€O)yxS,

where S >~ Sjo|- Note that wo € Z(Ko) by the definition of K.

We can then conclude as in the end of (1) above that maximal extendibility holds with
respect to Po < Ko since Ao (K,)/Po = K, /P, is cyclic and wo is central in Ko. Then we
can get maximal extendibility with respect to Py < K\ by Proposition 2.2(c).

Assume not all w-orbits on I have same cardinality. For b > 1 dividing d, let I be the set of
I € T such that b is the smallest divisor of d with w®(+I) = +1. Then Kj is the direct product
of groups Ky, := Ko NS4y, (b > 1) while P is the direct product of its intersections with those
factors. We are then reduced to the case of a single b treated above. U

We are now back with (G, F'), T and a doubly regular d > 3 as in Section 4.C. Recall also
the regular embedding G < G = Z(G)G with F extended to G and T = Z(G)T. The element
u € Ng(T) from Notation 4.6 is chosen such that T is the centralizer of a Sylow d-torus of
(G, uF) by Definition 4.2.

We show below that in this case of a doubly regular d the above proposition about centralizers
in Weyl groups essentially implies the point (iv) in Proposition 4.3. The proof goes through
a recasting of the question inside the dual group following ideas from [MS16, §3.D], [CS19,
§6].
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Corollary 4.10 Let X € Irr(T%F). Set W := Ng(T)/T<IW := Ng,y(T)/T and A := X]

Then maximal extendibility holds for W%F g WKF

TuF ’

Proof. As explained in the proof of [CS19, Prop. 6.2], the duality between G > G and
H —» G* = H with Frobenius endomorphism uF allows us to associate (T,\) to (T*,s)
and (’T,X) to (T*,8) with § € (T*)“ and § — s. The stabilizers WgF <4 WY become
Cw (3)"F < Cw(s)"F, see also [CS13, Cor. 3.3]. Note that everything is now written inside H
since Cﬁ(g)/Z(fj) = Cy(s). We denote by Cyy(s) := Ncg (5 (T*)/T* the Weyl group of the
latter. The automorphism ~ acts on H and G and we can see als W as Nggy(yy (T")/T" such

that W&LF corresponds via duality to CW(s)“F , hence we study Wit < W?\F via
Ciw (8)"F < Cr(s)“E.

Note W (7) = W is a Weyl group of type B;. In the latter this rewrites as Cp(upg) < Cr (upp)
where P = Cy(s), K = Cyy(s) and P < K. By Corollary 3.7(a), P has the structure studied
in Proposition 4.9 above, as d was doubly regular for (G, F') and hence ugpy is a regular element
of W. So Proposition 4.9 indeed gives our claim. O

Proof of Theorem 4.1

In order to complete the proof of Theorem 4.1 we now essentially have to check condition (v) of
Proposition 4.3 and that groups of type Dy satisfy the condition (iMK) for all primes.
For the first point we keep the notation of Notation 4.6.

I Lemma 4.11 Maximal extendibility holds with respect to Ng(T)*“" < Né('i‘)“F.

Proof. Let us abbreviate T = T/, N := Ng(T)“F, T =T N := Né('f‘)“F = NT. Note
that since N /N is abelian, maximal extendibility can be proven by ensuring that the restriction
of any irreducible character of N to N is multiplicity-free (see for example [S23b, 1.A]).

Let us first recall the parameterization of Irr(N). We know from Proposition 4.8(e) that
there is an extension map A with respect to T'<< N. By Proposition 2.3, the map A allows us to
construct an extension map A with respect to T <A N with the property that INX(X)]NN = AN)] Ny

A

for X € Irr(f), A= ﬂT and using Ny < N, see Corollary 4.10. By Clifford theory (2.1), every
¥ € Irr(N) then writes as .

v =AQmY
for some X € Irr(T) and 7 € Irr(NX/T). Since N = TN, we observe N = N]VX and hence the
Mackey formula shows

Ul = (AOm)| Y = A" ™)™,

N3

~

where we set W(A) := N)/T, and see 7 as a character of W()) := N;/T, NX/T and NX’
respectively. (This also uses the above definition of A from A.) N

By Corollary 4.10, maximal extendibility holds with respect to W () <W () since the group
W;F considered there is an overgroup for W(A). But W(X)/W()) = N)/Ny is abelian (see the

W)

proof of Proposition 4.3), so maximal extendibility implies that 7 is multiplicity-free. But

then by Clifford correspondence, the character (A()\)(UW()‘)))N is also multiplicity-free, whence
our claim. O

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Set G = Dy4(F) (I = 4), F: G — G, d > 3 as in the assumptions.
Notice first that (a) implies (b) thanks to Theorem 2.21 since G¥/Z(G)! is always a simple
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group and [Ma08] ensures that we can take G to play the réle of its universal covering group.
So we just verify (a) and (c).

We first check (a) by establishing A (d) and B(d) through Proposition 4.3 whose assumptions
we now review. We let V' < Ng(T) and w € V as in 4.6, so that p(u)pg is a (g-regular
element of Wy thanks to Proposition 4.8(a). Then assumptions 4.3(i) and (ii) are ensured by
Proposition 4.8(a) and (b). Assumption 4.3(v) holds according to Lemma 4.11 since Cg(S) = T
with S the Sylow d-subtorus of (T, uF) imply Ng(S)*/ = Ng(T)“" and Ng(S)“F" = Ng (T)“F.

Assume now (I,¢) # (4,1), so that E(GF) = E(G!). Then assumption 4.3(iii) is ensured
by Proposition 4.8(c) and (d). Assumption 4.3(iv) amounts to a strengthening of the above
Corollary 4.10 where W = Ng.y(T)/T is replaced by the overgroup Ngg(g)(T)/T = W x (F},).
The extendibility property is preserved since F}, is central.

We now concentrate on the case of G = Dy (q) to finish checking (a) and (c). By The-
orem 2.11, we can content ourselves with taking a prime ¢ { 6¢ for (c). For (a), thanks to
Theorem 2.21, we have to check A(d) and B(d) for d = 4, the only integer doubly regular for
G' and > 3. The polynomial order of (G, F) is

P p)(X) = XP®1250:8] P,

where ®; is the i-th cyclotomic polynomial, see [C, p. 75]. For primes ¢ 1 2q such that dy(q) =
d € {3,6} we observe that ¢ > 3, ®; occurs with exponent 1 and ® 4. is not present for a > 1.
Then a Sylow /-subgroup of G is a subgroup of a Sylow d-torus, hence cyclic. For ¢-blocks
of quasisimple groups with cyclic defect groups a so-called inductive Alperin—-McKay condition
holds according to [KS16, Thm 1.1]. This provides us with a stronger version of the required
(iMK), see also 2nd paragraph of [CS19, Sect. 6.C|.

It remains to check A(4) and B(4). We resume reviewing the assumptions of Proposition 4.3,
remembering that only 4.3(iii) and 4.3(iv) were left incomplete. Let w € V, Vj = Cy(u) = Hy
from 4.6, and Vj := Cvsatyms, iy (w)/ {uly) = Vii= Cv sty By (w)/ (uly) = Vy in GP'. Note that
the centralizer of p(u) in W is a 2-group (use Lemma 4.5(b) to determine p(u)) while Hy is also
a 2-group, hence V} is also one.

What has been checked of assumption 4.3(iii) by applying Proposition 4.8(c-d) ensures that
the inclusion Hy < ‘74 satisfies maximal extendibility. Now if A € Irr(Hy), then its extension
X to (V4)x can be chosen to have the image of (F,) (central) in its kernel, see the proof of
Proposition 4.8(d). The quotient of Vi by the image of (F}) is a 2-group, while \74/ V, has order
1 or 3, so [Is, 6.28] implies that X can be chosen to be (‘74) a-invariant. It then further extends
to (‘74) A by Proposition 2.2(a). So we get maximal extendibility for Hy < Vi hence our claim
since the associated extension map can always be chosen to be 174—equivariant as recalled in
Notation 2.1.

For assumption 4.3(iv), by the argument used before when E(G!) = E(GT) it suffices
to check maximal extendibility for Cwy (u, A) < Cg (u, A) where W = NG(yqs(T)/T > W =
Ng¢»y(T)/T. We have maximal extendibility for Cw (u, 2) < Cy (u, A) thanks to Corollary 4.10.

But since Cy(u) is a 2-group, we get that Cy(u, A)/Cw (u, )) is a Sylow 2-subgroup of Cg (v, A)/Cw (u, )

while every Sylow 3-subgroup of Cg; (u, A)/Cw (u, ) is cyclic of order 1 or 3. We then get the
sought maximal extendibility for Cw (u, X) < Cg (u, A) by applying [Is, Cor. 11.31] and Propo-
sition 2.2(a). O

Extending Malle’s bijection
For later applications, we construct a character correspondence extending the one given by
(iMK) only assuming Conditions A(d) and B(d).
Proving (iMK) for Gf' and a prime ¢ not dividing 2¢ with the choice N = Ng(S)¥ for S a
Sylow dy(q)-torus of (G, F) gives us a I' := Aut(G!")g-equivariant bijection
Qgr g Irrp(GF) — Irrp (N (S)5),
which satisfies for every x € Irrp (GF') the relation

(GF % T,,GF x) =, (N Logr 000 N Qar (X))
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or any variant obtained by applying the Butterfly Theorem 2.8.
For the cases covered by Theorem 4.1(b) we get the following.

Corollary 4.12 Assume that ¢ is a prime with ¢ t 2q such that d := dy(q) is doubly regular
for (G, F) and let S be a Sylow d-torus of (G, F). Set T := Cg(S)¥ 9 N := Ng(S)F.
(a) There exists some (G E(G!"))g-equivariant extension map A with respect to T < N.
Furthermore, for every X € Irr(T'), the character A(\) extends to (GF E(GI))g ».
(b) For X\ € Irr(T') with £ 1 |[N/Ny|, the character x := Qéﬁm,z(A()\)N) belongs to T, i.e.
(GFE(GF))X = (N})ISE(GF)X and x extends to GI E(GT),.

Proof. Part (a) follows from Proposition 4.8(e) in the cases where E(Gf) = E(GF). When
GT = Dyxc(q), then d = 4 and we have seen in the proof of Theorem 4.1(a) above that maximal
extendibility holds for Hy < ‘//\21. As explained in the proof of Proposition 4.3, this implies our
claim by Proposition 2.2(e).

For (b), set A € Irr(T), ¢/ := A(\)Y. We also abbreviate G = GF <G = GF, N := Na(S)
and N := NeE(@)(S). In the notation of the proof of Proposition 4.3, we have ' = TI(&,7) for
(&,m) = (A, 1). The fact that n = 1 implies that this proof can be followed with both 7y, 7y, and
7’ being trivial and therefore y = xo. This gives

(NN)w/ - Nw/Nw/

with 9/’ extending to ]VW.
As Qg is NN-equivariant, 1 := Qalg(z//) satisfies

~

(GE(G))y = G(NN)y = G(NN)y
= G(NyNy) = G(NyNy) = (GNy) (GNy) = GuE(G)y.
As recalled above the bijection € ¢ satisfies some > .-relation that we can take to be
(GE(G))y, G, ) e (NN, N, 1),
According to Lemma 2.6(c) this implies
(GE(G)y, G, 1) Zc (Ny, N, ¢).

Now, Lemma 2.6(b) and the fact that ¢’ extends to ]%)/ allow us to see that 1) extends to
GE(G)y. O

The groups that appear above depend on the integer d but not on the prime /¢ leading to d. The
condition (iIMK) for two primes ¢ and r with the same value d give two bijections, all mapping
to some characters of N = Ngr(S). Going back to the construction of Qgr , through [Ma07]
and [CS17a, Sect. 6], we associate to a fixed d a character set G; and a bijection

Q Gy —> Irr(N),

such that
(G % Ty,G,x) =c (N xTgy), N, (x)) for every x € G

and for every prime ¢ with dy(q) = d, the map Q' restricts into Qgr , on Irry (V).
For the construction of this map we assume (G, F') to be as in Section 2.C, i.e., G might be
of type different from D.

Definition 4.13 Let (G, F') be as in Section 2.C with a regular embedding G < G. Assume
we have dual groups G* —» G* with Frobenius endomorphisms denoted by the same letter
F. Let d > 1 and let S* be a Sylow d-torus of (G*, F).

For any § € GF let £(GF,[3]) be the associated rational series of characters of G

IS

Recall Uch(Cg, (3)F) < Irr(Cg. (5)F) the set of unipotent characters and the Jordan decom-
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position map

Uch(Cg. (3)) —— E(GT, [3]),

For K* an F-stable connected reductive subgroup of G* containing S*, let Uchy(K*f)
be the set of irreducible components of Lusztig’s generalized characters Rg:*(s*)()\) for A e

Uch(Crex (S*)F).
Set N N
di=  |J &1 reUch(Ceu(®)}
3eCy (SH)E
and

Gq = U Irr(X]gr) < Trr(GF)

be the set of irreducible components of the restrictions X|gr for X € Ga.

The following proposition is an adaptation of the construction recalled in [CS17a, Sect. 6],
assuming Conditions A(d) and B(d). We give a proof in the case when d is regular for (G, F)
which simplifies a bit the notation. We later apply it only for d a doubly-regular number for
(G, F) and G = Dy« (F), where the assumptions are ensured by Theorem 4.1(a).

Prop05|t|on 4.14 Let (G, F) be asin 2.C and let d > 1. Let S be a Sylow d-torus of (G, F),
(a) Assume Condition B(d). Then there ex1sts some Lin(éF/GF) x N-equivariant bijective
map

Q' : Gg — Irr(N),

such that

(a.1) Irr(x| (ép)) = Irr(ﬁ’(xﬂ _y )) for every x € QNd, and

(a.2) V(Irr(GF | Irrp (GF))) = Ire(N | Irrp (N)) for every prime € with d = dy(q).
(b) Assume Conditions A(d) and B(d). Set T' := Aut(Gf)g. Then there exists a T'-
equivariant bijective map

Q' :G;— Irr(N)

such that
(Gx Ty, G, x) =c (N % Loy, N, (x)) for every x € Gq

and ' (Irry (G)) = Irrp(N) for every prime ¢ with dy(q) = d.

Proof. The proof essentially follows [CS17a, Sect. 6]. We first give a detailed proof for the case
where d is regular for (G, F'), allowing us to parameterise both characters via a set of pairs M.
This is the only case used in the paper, namely for G, é, etc. as defined in Section 2.E with
d doubly regular. We use the fact that centralizers of Sylow d-tori are tori in both G, G and
their dual groups. This allows us to use pairs as parameter sets.

Let Ty = Cg(S) and 'i‘:z = Cgx(S*) for S* a Sylow d-torus in G*. Both are F-stable tori

with same type the regular element p(u) € W with regard to the maximally split tori in duality
T and T*. So T, and T can be taken as effecting the duality between G and G*.

Let M be the set of pairs (8,m) where 5 € T§F and n € Irr(NCa*(g) Tﬁ)F/TﬁF).
The so-called generalized d-Harish-Chandra theory, see [GM, Sect. 4.6, implies that there
is a bijection
Uch: Irr(Ne,, 5 (T)"/T§") — Ucha(Cg. ()
1= Uch(n)

written as n — Rg‘f* (g)(l)n in the notation of [GM, Thm 4.6.21].
d
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One then defines ~
U@ M - Irr(GF) by (3,19) — Xchh(n)'

Note that QNd is defined to be its image, taking into account that Cg, (S*) = ’i‘z is a torus
and therefore Uch('i‘:‘lF) = {ljur}
d

On the other hand Condition B(d) implies there exists some Lin(G/G) N-equivariant
extension map A with respect to C <A N. Let us recall the isomorphism

N &,/T] = Neg, (T /T3,

given by a well-defined duality map i3, see the proof of [CS13, Cor. 3.3]. For n € Irr(Nc, (3)( 'T‘*)F/'i‘:‘lF)

we denote by n* = 1oz the corresponding character of Jv . We obtain a surjective map
X; ¢

UM 2 M — Trr(N) given by (3,7) — (Axr)n*)™,

which makes sense by Clifford theory (2.1). By the considerations of [CS17a] which only use
that the characters of GI' are in Qd, the maps are constant on N* -orbits, and bijections once
seen as on the quotient sets. Then one gets a bijection

Q' Gg — Irr(N) with (@ (5,n) — w3, n)

and the properties announced thanks to [CS17a, Prop. 6.3] and [CS17a, Thm 6.1] whose main
arguments are independent of the prime /.
The above follows the constructions of Section 6 of [CS17a] and uses the fact that Cgp(S) is

a torus to simplify the technical construction of )/ as otherwise the parameters used are triples.
If d is not regular for (G, F), the construction of € can be deduced from Section 6 of [CS17a]
in a similar manner by omitting the assumptions involving £.
This finishes the proof of (a).
For the proof of (b), we can apply Proposition 2.12 thanks to Conditions A(d) and B(d).
Hence, there exists a bijection
Q Gy — Irr(N),

such that
(G xTy,G,x) = (N xTy,N,Q(x)) for every x € Gg.

As V(Irr(G | Irrg (@) = Ire(N | Irre(N)) the map € satisfies Q' (Irrp (G)) = Irrp(N) by
Clifford theory. O

5 The group M. Characters and Clifford theory

From now on we work with the group G =~ D; «(F) (I = 4), seen as a subgroup of G = B «(F)
with common maximally split torus T, associated root system ® = ®(G, T) and root subgroups
X, (@ € @), see 2.E. Recall also the Frobenius endomorphism F: G — G such that Gf' =
Df . (0).

In this chapter we introduce first a finite subgroup M < G depending on some integers [1,
lo =1-11,e; = +1 and €2 = €1e. The group M has a normal subgroup M of index 2 ged(2,g—1),
which is a central product G;.G2 with G; = Dle' «(q) in the sense of Definition 3.17. In an analysis
split into two main cases, we also introduce in Section 5.3 a group E(M) acting on M that will
allow us to make statements similar to the condition A(c0) for this group M. This will involve
changing F' into a slightly different v, that proves more suitable when dealing with d-tori.
Our main aim is to deduce from the knowledge of Irr(G;), the properties of Irr(M), mainly the
statement in Theorem 5.20, an analogue of A(d) for M. We show later in Lemma 6.10 that
the integers Iy, €; can be chosen so that the associated group M contains Ngwr, (S) for a Sylow

d-torus S of (G,vF).
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The present chapter is structured as follows. First, we define the group M and investigate the
structure of M as a group, in particular, we introduce the normal subgroup My <M. Afterwards,
we introduce a group E(M) acting on M in Section 5.B.

Section 5.C starts with collecting some basic observations on the characters of M and an
approach how to study them via My, thus establishing some preliminary simplifications for
the proof of Theorem 5.20. Since My is the central product G1.G2 of two groups of type D,
we transfer in Section 5.D the results on the character sets T, E, D from Chapter 3 to the
characters of the direct factors of My. This leads to a partitioning of Irr(M) into subsets along
the Characters of My and splitting the proof of Theorem 5.20 according to those sets in Sections

5.FE and 5

The group M

In the following we introduce subgroup M of G = Dj4(F) and then set M := M*¥a defined in
a general way from the integers €1, €2, 1 and l5 as well as the prime power ¢ determining some
Frobenius endomorphism v F,. The conventions followed to define G and G in Notation 5.1 are
meant to limit the number of cases to review in proofs. The roles of G and Gy are symmetric
in the sense that a Sylow d-torus of G will eventually be assumed to be included in one of them
but both cases, G or Gg are allowed to occur, see Section 6.C. The definitions made below may
look arbitrary, but a glance at Lemma 5.8 and its proof can already provide an explanation.

For a given Frobenius endomorphism F’ of G recall the Lang map

Lp: G — G given by z — 2 1F'(z).

Notation 5.1 Let €1,ep € {1} and l1,ly > 1 with € = €1e9 and [; + I3 = [ = 5. Assume that
(i) eg=—11if e = —1; and
(11) 2 ‘ ll if 21’[ and (61,62) = (—1, —1).
For Jy =1, Jo:=01\Ji and i € {1,2}, let R, = ® n (ej | je i)y, Ri = Rin® T, =
T n{X,|a€R;), and

)T ifl; =1
" (X, | @€ R otherwise.

Following Notation 3.15, we clearly have G; = Gy, and G2 = Gy,. Recall that for k > 2
Gy, = Dy so(IF), using the notation of Definition 3.17 when k < 3 B

Recall n{ = n., (w) and set nj := n,,(w). The above and the commutators given in 2.13 and
2.24(d) yield at once the following.

Lemma 5.2 (a) [Gl, G’2] =1 G nGy = <h0> with T < G1.Go.
(b) [n3,ns5] = ho, n normalizes G; and centralizes Gs_; for i = 1,2.

If 7; (i = 1,2) denotes the automorphism of G given by conjugation with n;, then Gy is
~;-stable and ~; induces a graph automorphism on G;. Moreover, 7; defines an automorphism
of G. We also denote by v, the graph automorphism of G. Note that 72 is the concatenation
of v and an inner automorphism of G. As such 7, acts also on G and by abuse of notation we
denote this automorphism of G also by 2.

Before defining the group M > M° = G;.G9 and a slight replacement for the Frobenius
endomorphism F' we need to introduce the elements tAl, tAg eT.

l—eo

Lemma 5.3 Set v° := (n‘f)l_;1 (n$)~2 , Z; := (hy, (@), ho) and Z; := Z; Fa Fori=1,2 we
choose some t; € E;OIFq(hO) NnT n G; with t; € Z(G;), when possible. Then:
(a) ifie {1,2} and |Z;| = 2, then t; € Z;;

(b) if (e1,€2) = (—1,—1) and {|Z1|,|Z2|} = {2,4}, then t; € Z(G1) and Fy(t)) = ty;
(c) If (61,62) = (—1,—-1) and {|Z1|,|Z2|} = {2}, then one of the following holds
Fy(t) =t ‘and 2| Iy; or
(tA %\) 1t2 and 2 J( lllQ

We see that always Z; < Z(G;), and Z; = Z(G;) unless [; = 1 in which case G; is a torus.
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Proof. Observe that for every I < [, hy(w) is Fp-fixed if 4| (p — 1) or 2 | |1].

In part (a), hy,(w) € Z;\Z; and can therefore be chosen as ;.

Then consider part (b). In this case (e1,€2) = (=1, —1) and {|Z1|, | Z2|} = {2,4}. According to
2.24,{|Z1],|Z2|} = {2,4} implies that 1 and l2 have opposite parities. This leads to 211 +1s = .
The assumption in 5.1(ii) implies 2 | ;. According to 2.24, |Z;| = 2 and hence t; = hy, (@) by
(a). This proves part (b).

In part (c), we assume that (ej,e2) = (—1,—1) and |Z;| = |Z3] = 2. By part (a), we can
choose #; = h J;(w) for i = 1,2. Such an element is F)-fixed if and only if I; is even, otherwise
Fy(t;) = hoty, see 3.4. T 241, then 2 | I; by 5.1(ii) and hence F},(t1) = #;. Otherwise 2 | [ = Iy +1y

p A A ~ A
and Fp(tl 2) = t1t2 if Q'fll |

Definition 5.4 Depending on |Z;| and |Z3|, we fix elements v € G L {n]}, n € G as in the
Table 5.1 below. We also define there v € Inn(G) u {7} as the automorphism of G induced
by conjugation by v, so that

v(g) = vgv™"
for any g € G, and v extends to G as explained in Section 2.C for . We then form vF, the

corresponding endomorphism of G. From Lemma 2.23 and the choice of v in Table 5.1 one
has clearly G*f¢ =~ G =~ D§_ (¢) and

l,sc
vEF, €; .
Gi:=G, " =Dj_(q) fori=1,2

l;,sc

in the notation of Definition 3.17. We also define

M := (G1.G3)(nin3) = (G1.Go) (n) = M := M"F1 > M° := (G1.G2)""* = My := G1.Go.

(€1, €2) {|Z1], | Z2|} Condition v n Comment v
(1, 1) any 1 ning v
(—1,-1) {1} or {4} ning ning v
(=1,-1) | {2} or {2,4} 2|1 tinsng | tining v
(-1,-1) {2} 211 titansng | titynsng | 2141y implies 2|1 | v
(=1, 1) | {1}, {2} or {2,4} ny tyngns | j with |Z;] € {1,2} | ~
(=1, 1) {4} ni | tining v

Table 5.1: Choice of n, v and v

Using v we recover the groups Z; and obtain finite subgroups of G; and G as vFj-fixed
points.
Lemma 5.5 Let v be defined as in Table 5.1. Then for i = 1,2 we have
(8) Z; = 2" = (hy (@) ho)""";
(b) Lur,(t1) = Lur,(t2) = ho.

Proof. We observe v~ 1v° € Z(G1.G2)T according to Lemma 5.3. This shows parts (a) and
(b). O

I Lemma 5.6 — Structure of M. M° = M, <tA1tA2> and M = M°{n) < G"Fa. Additionally,
G1 <M and Gy < M.

Proof. The equality M° = M, <tA1f2> comes from Lang’s theorem and Lemma 5.2(a). The
inequality G*¥« # M holds since G¥%4 is perfect. We also have G; < M°{n) by the central
product structure of M° and Lemma 5.2(b).

The equality M = M°{(n) is true as soon as [vFy,,n| = 1.
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Note [nin3, F}] = 1 since n,, (@) = he,;(@)ne, (1) for any j € [ and therefore

o Loif4](p-1),
[ni ) Fp] = .
hg otherwise.
Recall [n{,nS] = hg, see Lemma 5.2(b).
If v e {1,n}, then
[wFy,m] = [0, ][ Fyy ] = [Fym] = 1.
From Table 5.1 we see that v(v°)~! € Z(G1, Go)? whenever (e1,¢e3) = (—1,—1) or equivalently
v = n. This verifies [vFy,n] = 1 whenever € = 1.

According to Table 5.1 it remains to consider the case where ¢ = —1. Then v = nj and we
observe

[vFy,n] = [ Fy, Gining] = [n5 Fy, 105 Fy, ni][ng Fy, n3] = holFy, ni][ng, nS][Fy, n3] =
= ho[Fy, n{]ho[Fy,n3] =1 by (5.1) above.

This finishes our proof. O

Lemma 5.7 — Action of T on M. Set T := L} (Z(G)) n'T, T = (TZ(G))"v , T :=
G1.Go T and t; € E;}q(h]i(YD')) N'T; for i =1,2. Then

(a) T and T induce the same automorphisms on G'Fa;

(b) Jj = <;1;2,?1,£2>T0;

(c) T and T normalize M, M°, My, G1 and Gs.

Proof. Part (a) is standard, see 2.14 and 2.15.
For part (b), we have h;(@w) = h, (w)h ,(w) and therefore t1to satisfies LyF, (t1ta) = h;(w).

By Lemma 5.6, we have T*f« = T}, <tAl?2> On the other hand T/T”F‘I is isomorphic to Z(G) by

LyF,, so we indeed get T = TvFa <%1?2,?1> since by Lemma 5.5 we are adding elements whose
images under £, r, generate Z(G), see 2.24(a).

We consider part (c¢). Recall G; <M and G < M from Lemma 5.6. Now fl acts on Gy
as a diagonal automorphism associated with ho[Z(G1),vF,] and #; acts on Gy as a diagonal
automorphism associated with h, (w)[Z(G1),vF}] in the parametrization of Notation 2.14. On
the other hand, [tAl, Go| = [t~1, G2| = 1. We can describe similarly the action of f5 and 75 on Gs.
We observe [n,tNJQ] € <?1?2>M0 = M°. Conjugation with T and T then stabilises M, T, Gy
and Go by Lemma 5.6 and we get our claim. O

Before going further into describing M and some of its automorphisms we show below the
relevance to our work around Sylow d-tori of (G, F) for d = 3. In particular we show that for
non-doubly regular d’s one can almost always build a group M such that one of the two groups
G and Gy contains a Sylow d-torus of (G,vFy) and d is doubly regular for that (G;,vFy), see
case (iii) of Lemma 5.8.

Recall that e € {1} with GI" = Dj ..(q). For ¢ € C* a primitive d-th root of unity we denote

by a(q, F)(d) the multiplicity of ¢ as a root of polynomial order
2_ —
Piam(X) = XEHX2 - 1)(X4 = 1) (X272 - 1) (X! — o),

see |GM, Table 1.3].

Lemma 5.8 We keep G = Dj..(q) with I > 5 and take d > 3. Then one of the following
three possibilities occurs:

(i) d is doubly regular for (G, F);

(ii) a(g,r)(d) <1 and therefore a(g, ry(dm) = 0 for any odd m > 3; or

(iii) there exist j € {1,2}, l1,lo > 0 and €1, €9 € {£1} with l; + Iy = [, € = €1€2 determining
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G1, G2 and v as in Notation 5.1 and Definition 5.4 such that a(g r)(d) = a(q, vr,)(d),
l; = 4 and d is doubly regular for (Gj,vFy).

Proof. In the following, whenever k£ > 2 and § = +1 we write ay 5(d) for the multiplicity of a
given d-th root of unity as a root of

(X2 -1)(X* 1) (X*2_D)(XF-6) = (X2 —1)--- (X% - 1)/(XF +9).

Then a(G,F)(d) = al7€(d).

Let us check first that if a;(d) < 1, then a;(dm) = 0 for any odd m > 3. Let ( € C* be a
dm-th root of 1. If a;(dm) > 1, then ( is a root of X' — € or some X% — 1 for 1 <i <1l - 1.
In the first case (™ is then also a root of X! — ¢ and since dm | 2I, d divides the even integer
2ip = 2l/m, so (™ is a root of X% —1 with 1 < i <[ — 1, leading to a(d) > 2. In the second
case, we get dm | 2i, so (" is a root of both X% —1 and X2" _1 for i the integer i/m, implying
again a;(d) > 2.

We now assume that (i) and (ii) are not satisfied, that is a;¢(d) = 2 and d is not doubly
regular for (G, F), i.e., d 12l or it does but (—1)2/¢ # €, see Definition 4.4.

Set do = d if d is odd, dy = d/2 if d is even. Set k := a; (d)dp and set § := (—1)%<@D if 2| d,
and § = 1 otherwise. It is easy to see that d being not doubly regular implies

-1 -1

aje(d) = aps(d) = {d—oJ and therefore k& = dp - {—J (5.2)

do

This can be checked directly on the polynomials recalled above or by arguing on the form of
regular elements of order d in the Weyl groups of G and Gy, see Lemma 4.5.

Recall | > 5, d > 3 and hence dg > 2. So 4 < dy - a;(d) = k = dp - [l;—olj <1—1. Let
us show that we can choose (e1,l1), (€2,l2) such that the assumptions from Notation 5.1 are
satisfied and (6, k) € {(e1,11), (€2,12)}. Indeed if § = 1 the choice (e1,11) = (0, k) clearly satisfies
5.1(i) and (ii). If § = —1 = € then one takes (e2,l2) = (0, k) while 5.1(ii) is empty. Finally, when
d = —1 = —e then 5.1(i) is empty and one can always take (e1,l;) or (ea,l2) = (J,k) to satisfy
the parity condition of 5.1(ii).

We then get (iii) by taking j € {1,2} such that (¢;,l;) = (0,k) since (5.2) above shows that
the multiplicity of the d-th cyclotomic polynomial in the order of (Gj,vFy) is the same as in
the one of (G, F') while d is clearly doubly regular for (G;,vF;) by choosing 2k = 2dya; (d) and
J. O

The above has given a hint on how M will be used in the next chapter to verify Conditions
A(d) and B(d). We give below a few more group-theoretic properties of M that won’t be used
but explain that this construction is more natural, and less new, than it seems.

Remark 5.9. (a) If (I1,e1) # (I2,€2), then the group M is a maximal subgroup of G*f4, a
member of the family C; in Aschbacher’s classification, see [MT, §18|.
(b) Recall mg0: G — SO (F) the reduction mod (hg). We have (hy) < M and mgo(M) =
Cso,,(s) for s := mgo(hy, (w)), a centraliser of involution in SOy (F).
(c) Let j € {1,2} such that [; > 2 and therefore there exists L a vF,-stable Levi subgroup of
M?° such that [L,L] = G;. Then M satisfies

M = NG([L’ L])

Indeed, computations with the roots of G allow us to see M° = [L,
group is normal in Ng([L,L]) and we check easily Ng(M°, G3_;) =
to

L] C%([L,L]). This
M?°{n). This leads

M = Ng([L,L]) and M = Ng([L, L])"%e.

If moreover for some odd prime ¢, L is d-split and there exist a d-cuspidal character
¢ € Uch(L*¥7) for d = dy(q), then (L,() forms a unipotent d-cuspidal pair of (G,vF})
defining an ¢-block B of G*f4  see [CE, Thm 22.9]. Certain subgroups of M are studied
in [CE99] and are shown to control the ¢-fusion in B, see [CE99, Prop. 5]. When moreover
L is a minimal d;(q)-split Levi subgroup as is the case in our applications of Ch. 6, then
M contains a Sylow ¢-subgroup of G4 and controls the fusion of /-subgroups of G*%4.

41
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5.B Some groups of automorphisms of M
We now define the automorphism group E(M) as a slight variant of E(G) already encountered
in the preceding sections. We then restrict it in a manner similar to the construction of E(G)
to obtain the finite groups E(M), E(M°®), and other variants suitable for M:=MT.
Our further considerations are divided into two cases setting apart the case corresponding to
the last line of Table 5.1. With the definition of E(G) as bijective group homorphisms we can
form the abstract group G x E(G).

Definition 5.10 Let E(M) < G x E(G) be the subgroup given by

E(M) = (Fp,v) = E(G) if neZ(G1.Ga)nins,
o <F§, t17> otherwise.

Let E(M), resp. E(M ) be the subgroup of Aut(G”F‘Z), respectively of Aut(é”pq T’),
obtained by restriction of E(M). Set

E(M?) := E(M){n,ho) < G"™E(M) < G"™1 » Aut(G""),

so that ME(M) = M°E(M°) (see Lemma 5.6). Set E(]VIO) = E(]VI) (n,ho) < GFa x
Aut(GVFa),

From Lemma 5.3(a-b) it is easy to see that the first case considered above corresponds
to the first five lines of Table 5.1, while the second case corresponds to the last line where
€1 = —€g = —land |Z;| = |Z3] = 4. We now gather information on those automorphism
groups, starting with the first case of the above Definition.

Hypothesis 5.11 Assume € = 1 or {|Z1],|Z2|} # {4}.

Lemma 5.12 Assume Hypothesis 5.11. Then
(a) n acts as y1y2 on My = G1.Gs.
(b) Gl, Go and {(n, h0> are E(M ) stable.
(c) E(M ) stabilizes T, M and M. The group E(M ) = E(M) {n, hy) also stabilizes G, =
G; <tz,t > fori=1,2.
(d) Ife; = e = —1, then vFy € CGVFqE(M)(G”F‘Z).

Proof. Part (a) follows from n € nin$ Z(G1.Gz) while (b) is clear from the proof of Lemma 5.7,
see also the relations recalled in Table 5.2 below.
For part (c), we see that F),, v and hence E(M) stabilise Z(G) and T. This shows that

E(M) stabilises T and G*F1 T For part (d) note that by the construction vFj acts trivially on
GVfa. O

For the above proof and later we need the commutators for some elements of E(M®). All
are easily deduced from 2.13 and 2.24(d), see also Lemma 5.3.

(€1, €2) {121; 1221} v n_ | [Fpnl| Danl | 5] | [nv]

(1,1) any 1 ning 1 ho 1 1
(—1,-1) {1} or {4} ning ning 1 ho 1 ho
(—1,-1) {2} or {2,4} 210 t1n1n2 t1n1n2 1 1 1 1
(—1, —]_) {2} 2 'f ll tthTLlTLQ tth’I’LlTLQ 1 1 1 1
(CL1) | {1}, {2} or (2,4} w | Gming | [Fuf) | hlnd) | ke | 1

Table 5.2: Commutators of some elements in ME(M) = M°E(M°)
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Lemma 5.13 Assume Hypothesis 5.11. Then:
(a) E(M®) ~ M? = (ho) and [E(M®), E(M?)] < (hop;
(b) For Z := (Zy.Z2)"* the Sylow 2-subgroup of Cpse)(Z) is abelian.

Proof. The inclusion [E(M°), E(M°)] < {ho) is clear from Table 5.2. We also have (njn3)? = ho
by 2.24(d). Then n? € (hg) by 2.24(b) and since n € Z(G1.G2)nin5. The overgroup M° acts
by 2 or 4 diagonal automorphisms on G;.Ge while E(M®)/{hoy = {y,n{ho),F,) acts by the
graph and field automorphisms 71, 712 and F, on G1.Ga. The classification of automorphisms
of quasisimple groups makes that E(M°) n M° acts trivially on G1.G2 and corresponds to (hg)
since both n?, [F,,n] and [vy1,n] belong to (hg). This proves (a).

For part (b) set C := Cgue)(Z) = <h0,C<%Fp,n>(Z)>. If |Z1| = |Z2| = 4, then

C € {{Fp, hoy,{Epy1, hoy ,{Epn, ho)y , {Fpnyr, ho)}

using again the description of the automorphisms induced on G; and Gs. In all cases, C is
abelian.

Assume €¢; = 1 and hence €3 = 1. By the above we can assume 2 € {|Z],|Z2|} and even
|Z1| = 2. Then 2t f according to 2.24(b) and hence (v, n, ho) is the Sylow 2-subgroup of E(M?).
If additionally |Z2| = 4, then (7, ho) is the Sylow 2-subgroup of C. If |Z;| = |Z3| = 2 and hence
|Z| = 4, then C < {(n, hgy which is again abelian.

Next we consider the case where € = 1 and €; = e5 = —1. By assumption 2 € {|Z1], |Z2]}.
According to Lemma 5.3, |Z;| = 2. The results in Table 5.2 show that E(M®) = (F,,y1,n) is
abelian, since the generators then commute with each other.

Next, assume ¢ = —1. As above, we can assume that 2 € {|Z1|,|Z2|}. If |Z1| = 2, then
n = tAlncl’ng According to Table 5.2, [y1,n] = 1 in this case and the group {71, n, hg) is abelian.
If additionally |Z2| = 2, then 2 1 f and {71, n, ho) is the Sylow 2-subgroup of E(M°). If |Zs| = 4,
then C' = (y1,nF,) or C = {(y1,Fp,). Since in this case [y;,n] = 1, the group {y1,n, ho) is

abelian. It remains to consider the case where |Z1| = 4 and |Z3| = 2. In this case, 2 t f and
n = toning. Then the group (v1,n, hy) is a Sylow 2-subgroup of E(M°) and the centralizer of
Z1.Z5 in this group is (y1n, hg), abelian again. O

Lemma 5.14 — Comparison of E(M), E(G1) and E(G2). Assume Hypothesis 5.11. Let
E(M) be as in Definition 5.10. For i = 1,2 set E(G;) := (v, Fp) < Aut(G;), and let
En(G;) < Aut(G;) be the subgroup of automorphisms of G; induced by E(M?°). Then

E(G1) = Ep(Gh) and E(G2) = E(G2).

Proof. Recall that n acts as y1y2 on G1.G2, see Lemma 5.12(a). Hence E,;(G1) = (71, F)) and
E,/(G2) = (72, Fp). This leads to the statement. O

In the following, we verify some adaptations of the above statement to the missing case
corresponding to the last line of Table 5.1.

Hypothesis 5.15 Assume € = —1 and {|Z1|,|Z2|} = {4}.

Recall f denotes the integer with ¢ = p7.
Remark 5.16. If Hypothesis 5.15 holds, then 21 f and (p — 1)2 = 2, see 2.24(c).

Lemma 5.17 Assume Hypothesis 5.15.

(a) Then n = tAln(l’ng acts on G as o and n acts on (G1 as a concatenation of y; and a
diagonal automorphism associated to hg in the parametrization of Notation 2.14.

(b) The element t; from Lemma 5.3 can be chosen to be h,, (¢) for ¢ some 2(p+ 1)g-th root
of 1 in F* and hence [sz,tAl] = 1.

(c) E(M) is cyclic of order 2f, [n, E(M)] = {hy), and the groups Gy, Gz and {n, hgy) are
E(M)-stable.

(d) Recall M = MT and E(M) < Aut(G¥fa T) the subgroup obtained by restrict-
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ing E( ) to G"FaT. Then E(M ) stabilizes T, M, G; <t,,t> and M. Analogously,
EM )<n ho) stabilizes T M.

Proof. We have v = nj and n = t1n1n2 as defined by the last row of Table 5.1 and the actions
are clear from Lemma 5.2(b). This gives (a).

According to Remark 5.16, (¢ — 1) = (p —1)2 = 2 and (p+ 1)2 = (¢ + 1)2. So for ¢ a
2(p + 1)-th root of 1 in F*, h,, (¢) satisfies [he, (¢),vF] = [he,(¢),7F] = he (C ¢™Y) = hye.
Hence we can choose t; = he, (¢). The order of ¢ divides p?> — 1 and hence [t ] 1. This

shows part (b).

We see that v(f1) = he, (¢71) = #; ! hence (£;7)? = 1. Furthermore, F? has odd order f as
an automorphism of G¥*¢, and commutes with tAl’yl. We get that E(M) is abelian, even cyclic
of order 2f since tAly has order 2 by the above. So we get the first claim of (c).

We have [n, F2] = 1 since [tAl,Fp] [nn3, F7] = 1 by Lemma 5.3, and we see

[n,tAﬂl] = [tAlncfngatﬂl] = [tlni,?ﬂl][ng,?ﬂl] = ho.

This leads to [n, E(M)] = {hg), as claimed in (c). We see that E(M) stabilises (n). For every

i € {1,2}, the groups G; and G, are <F§, 5171>—Stable. This completes the proof of part (c).
By definition E(M) acts on Ty and stabilises Z(G). This implies that E(M) stabilizes

G"Fa T, M and M T. This shows part (d). O

The following gathers results easily obtained from Lemma 5.17 and 2.24.

| (e.e0) [{|Z1Z1 [ v | n [[[FZn] ] [y, n] [ [F20] ] [, 0] |
(L] 4 [miftmms ] 1 ] ke [ 1 [ 1 ]

Table 5.3: Commutators of some elements in M E (M)

Lemma 5.18 Assume Hypothesis 5.15.
(a) [E(M®), E(M?)] = (hoy and E(M?) n M® = (ho);
(b) E(M?)/<ho) is abelian and Cgpo)(Z1.22) is abelian.

Proof. Recall that by Hypothesis 5.15, ¢ = —1 and {|Z1|,|Z2|} = {4}, hence 2 { f. The group
= < t17> is abelian according to Lemma 17(c). Table 5.3 implies [E(M),n] = {hg).
Recall E( )AM = 1. Using v(t;) = #; ! from the proof of Lemma 5.17(c) and then 2.24(d),
we get n? = (5nsng)? = (n$n$)? = hg. This gives (n) N M° = (n?*) = (hg), whence the
second part of (a). Together with the equality [Fg,aﬂ = 1, the results of Table 5.3 lead to
[E(M®), E(M®)] = (hg), completing the missing part of (a).
The above implies that E(M°)/{hg) is abelian. We have [Z1.Z2,n] = [Z1.Z5, 71] [Z1.Z9,n71] =
(hg). Considering the action of E(M°) on Z; and Z, we obtain CE(MQ) (Z1) <h0, , Y1, 71Fp>
and Cg(nre)(Z2) = <ho, Fp,71)- This leads to Cg(are)(Z1.22) <h0, Y1 p> and this group is
abelian. O

Lemma 5.19 — Comparison of E(M), E(G;) and E(G2). Assume Hypothesis 5.15. For
i = 1,2 set E(G;) 1= {vi, Fp) < Aut(G;), and let E,;(G;) < Aut(G;) be the subgroup of
automorphisms of G; induced by E(M®). Then E(G2) = E»;(G2). Moreover, E(G1) and
E,;(Gy) are ti-conjugate in Out(Gy).

Proof. Note that in our case vy, = vF, = I’ as endomorphism of G. Since n = ?ﬂ”ﬁfng acts as
72 on Ga, we see that E(M°) induces (v, F5> on it. But this is equivalent to {7y, F},) since yFy
acts trivially on G" and therefore E(Gs) = E,,(G2), as claimed.

The assumptions imply 21 f by Remark 5.16. Via the isomorphism between Out(G*') and
7Z(G)F (v, F,) induced by the Lang map Lp, the group E,;(G) corresponds to <h0*y, Fz?

Note that W N
< i (@ <'Y 1, (@ §> — <h0%Fp2

This shows that E(G;) and EM(Gl) are £1-conjugate in Out(Gy) since hy, (w) = Lr(t). O
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5.C

The characters of M and their Clifford theory

The aim of the remainder of this chapter is the following statement, later used in the proof of
Condition A(d) and corresponding roughly to Theorem C of our Introduction. Recall that the
groups T' from Lemma 5.7 and E(M) from Definition 5.10 act on M. As expected we state that
the actions of TM and E (M) on M are of “transversal nature”, and maximal extendibility holds
with respect to M <M E(M) for enough characters of M. In the case when Cy;pary (M) # Z(M)
(i.e. € =1and e; = —1) we provide a needed refinement of that maximal extendibility for certain
characters having hg in their kernel.

Theorem 5.20 Set M := MT.
(a) Every M-orbit in Irr(M) contains a character x such that
() (ME(M))y = MyE(M), ; and
(ii) x extends to ME(M),.
Equivalently (see [S23a, Lem. 1.4]), there exists some E(M)-stable M-transversal T(M)
in Irr(M), such that maximal extendibility holds with respect to M IM E(M) for T(M).
(b) If 2| f,e =1, = —1, x € T(M) and hy € ker(x), then the extension of x can be
chosen to have U(Ep)f in its kernel, where I,, is the image of Fy, in E(M).

Recall
My =G1.Gy < M° = (G1.Go)""* = My (titay < M = M°{n),

with M /My a non-cyclic group of order 4, see Lemma 5.6.
The characters of M are studied through the characters of M, since My = G1.G9, with

Gi = Dy’ (q) by Definition 5.4 and therefore much information about Irr(G;) is known from

Theorem 3.16. Characters of M are obtained from those of My in the following way. Recall
T = E;}q(Z(G)) AT and T = (T Z(G))"*e from Lemma 5.7.

Lemma 531 (a) Let ¢ € Irr(Mo), ¢ € Irr(Mg | ¢) and xo € Irr(Mg <n>$ | ¢). If My #
My <t1t2n>, then x := ng is irreducible.
(b) Maximal extendibility holds with respect to My < My T and My < MOZN’.

Note that every character ¢ € Irr(My) with My = M <tAl?2n> has the T—conjugate character
¢ := ¢"12. The character ¢’ then satisfies

My = (M¢)$1$2 = My <75Al7?2nt~1t~2> = Mo{n),
since [f1t2,n] € 11 My. Hence part (a) of the statement does not apply to ¢ but applies to ¢'.
Proof. For part (a) note that the quotients M° /M, and <n>$ Mg /Mg are cyclic, see Lemma 5.6.

Therefore, the characters $ and x( are extensions of ¢ according to Proposition 2.2(a). One has
M; <n>$ < M. Now if My <n>$ = Mg, then x is irreducible by Clifford theory (2.1). Clearly
Mq; < My. Recall that M /My is a Klein 4-group and the subgroups of M containing My are M,
My {n), My <tAltAgn>, M*® and M. The group My is one of those groups. Whenever My > M°
or My = My the above construction leads to M$ = My <n>$ Otherwise My = M <ntAltAg>, and
hence M(g # Mg <n>$5 in this case. We see that x is irreducible unless My = My <tAltAgn>

Next, we consider the claim in part (b). Recall the definitions of ?1,?2,%1 and fy from
Lemma 5.3 and Lemma 5.7. Set CVJZ = <%\i,t~i,Gi>. When [; > 2 this is consistent with Nota-
tion 2.15 since E,,pq(<tAi,t~i>) = 7Z(G;), while when [; = 1 then él is abelian. So Lemma 3.19
implies that maximal extendibility holds with respect to G; < éz On the other hand, the group
T of 5.7 satisfies o

T < G1.Go

since T' = <t~1t~2, t1, %\2> (T n My) by 5.7(b). Hence, maximal extendibility holds with respect to
G1.Go 4 G1.Gy and My = G1.Go I T(G1.Gy) = M°T. As (G1.G2)/(G1.Gs) is abelian, this
implies maximal extendibility with respect to M° < M° T, see Proposition 2.2(b).
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Since T = (TZ(G))"Fa < TZ(@N), we also get maximal extendibility with respect to My <
MyT and with respect to M° < M°T. O

Recall M° = (G1.G2)""* = MoT for T := T""%, and
E(M?) := E(M){n, ho).

Proposition 5.22 Let ¢ € Irr(My) and x € Irr(M | ¢). If Zv’d) < T<f1> and XtAl = X, then
(MM), = MM, where M = ME(M).

Proof. Recall M := T M and that E (]\7 ) stabilizes M according to Lemma 5.12(c) and Lemma 5.17(d).
The automorphisms of M induced by Tand T coincide, see Lemma 5.7. The automorphisms of
M induced by E(M) and E(M) coincide. Hence our claim is equivalent to the equality

(M E(M)), = M E(M),.

We have to study the group (M E(M )) We know that (1 E(M ))/M is 1somorph1c to Z(G) x
E(M) Let U be the subgroup of Z(G) x E(M) correspondlng to (ME ))X/M To get our
claim it suffices to ensure U = (U n Z(G)) x (U n E(M)) by showing

(hoy < U < (o) x E(M). (5.3)
The assumption XtAl = x with £, F, (t1) = hg already implies the inclusion

Choy < U.

Next, we check U < (hgy) x E(]VI) If ¢1 € Irr(G1) and ¢y € Irr(Ga) with ¢ = ¢1.¢2, then
(Gi)g; < Gy <a> for some i € {1,2} because of Ty < T<tA1>, where T' = T n M°. Without loss
of generality, we can assume (é1)¢ < Gy <tAl> According to Lemma 3.18, this implies

(G1 % E(Gh))y < (G1{h)) % B(G)).

Recall from Definition 5.10 that E(M ) also defines a group of automorphisms of G*f4 T and
E(M ) :=E(M )<n, hg) stabilizes M~ =T M°. Then ¢ satisfies

(MyT E(3 )y < Mo (B, T2y E()
Since x € Irr(M | ¢), this shows
M(T E(M)), < M(TE(M ))y < (M{B))E

The latter corresponds to {(hgy) » E(M) under the isomorphism (]\71 E(M))/M ~ 7(G) x E(M),
so we get (5.3) and accordingly

(M E(M)), = M E(M),. 0

For the proof of Theorem 5.20, we finish describing the characters of M via the ones of M.
Notice that E(M°) stabilizes G; and Gs.

Proposition 5.23 Let ¢ € Irr(M)), $e Irr(Mj | ¢) and E < (MO) Let E! < Aut(G;) be
the group of automorphisms induced by E. Assume that for each i € {1,2}, ¢; € Irr(¢]s,)
extends to My x E!.
(a) Then ¢ extends to MyE.
(b) Ifve G\{lg} (or equivalently ¢; = ea = —1, see Table 5.1), 2 | f and hg € ker(¢), then
¢ has an extension ¢ to ME with vF, € ker(%).
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5.D

Proof. Note first that MyE’ is a subgroup of (G1 E}) x (G2 E%) where E' < Aut(M) is associated
with £ and hence ¢ extends to MyE'.
Set Zy := Z(Mp) and let {n} = Irr(¢],,) = Irr((ﬂz ). As ¢ is E-invariant and hence
0

E’-invariant, 7 is E’-invariant as well.

Assume first that 7 extends to ZyFE.

We deduce that n extends to ZygE’, since n has degree 1 and ZyE' = Zy x E’, see Proposi-
tion 2.2(d). We also observe

ZO <?}Fq> if (61,62) = (—1, —1),

Coopne)(Mo) = {ZO otherwise

and hence Cygpr(Moy) = Zo, since vFy; € E corresponds to the trivial element in E’ whenever
(€1,€2) = (—1,—1). This leads to

(MOE,7 M07 ¢) Zc (ZOE/7 ZO7 77)7
by Lemma 2.6(a). Theorem 2.8 then implies
(MOE, Mo, Qb) Zc (ZOEa Zy, 77) :

Since 7 extends to ZyE, Lemma 2.6(b) implies that ¢ extends to MyE. So we get (a) whenever
1 extends to ZyE.

For part (b) we already note the following. If 7] is an extension of ) to ZyE, then Lemma 2.6(b)
again implies that some extension <;~5 of ¢ to MyFE satisfies

(O] ) = Mgty (5.4)

Let us now check that n extends to ZyE.

Assume first that hy € ker(¢). Then (hgy < ker(n). According to Lemma 5.13 and
Lemma 5.17, [E,E] n M° < [E(M®),E(M°)] n M° < <{hp) < ker(¢). Proposition 2.2(d)
then implies that 1 extends to ZpE.

We are left to consider the case where ho ¢ ker(¢). Set Z := (hg,hy, (@), hy,(w))** and

A~

7 e Irr((ﬁ]z). We observe that n and 7 are E-invariant. On the other hand, computations
similar to 2.24(b) show [E(M°®),Z] = {hy). As n is E-invariant and hy ¢ ker(n) this implies
E < E(M°)y < Cge)(Z). According to Lemma 5.13 and Lemma 5.18 the Sylow 2-subgroup
of Cgey(Z) and hence of E is abelian. This shows that 1 has an extension to the Sylow
2-subgroup of ZpE. Additionally observe that E(M°)/Zy has a cyclic Hall 2’-subgroup and
therefore 1 extends to ZpFE, see [Is, Thm 11.32|. Hence our claim in all cases and this finishes
the proof of (a).

Next we ensure the statement in part (b). Here we assume v € G\{lg} and 2 | f, hence
(e1,€2) = (=1,—1). We observe that vFy € Cguryppy)(Mo). By assumption hg € ker(¢)
and therefore hg € ker(n). Now 1 has an extension 7] to ZyE that corresponds to a character of
ZoE/ {vF,) since (vFy)n Zy < {(hg). Hence we can assume 7] to be chosen such that vFy € ker (7).
According to (5.4), there exists an extension 6 of ¢ to MyEy with vF, € ker((z), as required in
(b). O

Characters of G; and G5

In order to prove Theorem 5.20 we split Irr(M) according to its constituents after restriction to
My = G1.G2. In particular, we use the sets defined in Notation 3.15 for the subgroups G; of
type D possibly of rank < 3 in the sense of Definition 3.17. Proposition 5.26 enumerates in a
simplified fashion the cases that will be considered in the following sections.

Recall that the group E(M) and the associated group E(M®) from Definition 5.10 stabilize
G1 and Gy, see Lemma 5.12(b) and Lemma 5.17(d).

Recall E(MO) = E(]VI) {n, hy)y and G; = <Gi,?¢,ﬂ>. The group E(M ) also stabilizes Gy

and Gy, see Lemma 5.12(c) and Lemma 5.17(d).
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Definition 5.24 Let i € {1,2} and write £,,(G;) < Aut(G;) for the group of automorphisms
of éz induced by E(]VI ). Let T;, E; and D; be the following subsets of Irr(G;):

T, :— {X ’ (GiBp(Gi))x = (Gi) B (Gy),, and y extends to GiEy (Gi)y }

E, .= {X ’ (GiE )y (Gi))y = (Gi), B (Gi), and y has no extension to GiEM(Gi)X} and
D; = {X ’(ézEM(éz))X 7 (éi)XEM(éi)x}’

so that

IH‘(GZ') = Tz L EZ L ]Dz

We also define E} = T; n (Umeél “”IEZ) and ; =T; n (Umeél x]Di).

The set E! is the subset of all characters in T;, which are éi—conjugate to an element of E;. The

set D} is the subset of all characters in T;, which are éi—conjugate to an element of ;. The def-
initions of the above character sets are analogous to those of Definition 3.9 (and Notation 3.15).
Accordingly, the characters satisfy the following statement.

Proposition 5.25 Let i € {1,2}. Then the character sets of Definition 5.24 satisty:

(a) T; contains some T-transversal in Irr(G;).

(b) If x € E; U EL, then hg € ker(x), (él)x =G <fl>, x" = x and x extends to Gj <fl,'y,>

(c) If x € D;UD), then hg € ker(x), (é,)x = G; and every X € Irr(<Gi, fl> | X) is n-invariant.
More precisely x™ = x if x € D and X"fi =y if x € D;.
Moreover, E ;(G})y is cyclic whenever x € D;. If x € D, then (M E(M)), < MoE(M°)y.

(d) If |Z;| = 2, then D; = E; = & and T; = Irr(G;).

(e) If e, =—1, then E; = . If 24 f, then E; = Ey = (.

(f) If x € Irr(G;)\E;, then x extends to G, E,;(G;)y. If x € E;, then x extends to G;E" for
any E" < E);(G;)y with an even index |E,;(G;)y/E"|.

Proof. The groups E,;;(G;) and E(G;) induce the same subgroup of Aut(G;) for every i € {1, 2}
unless ¢ = 2 and Hypothesis 5.15 holds, see Lemma 5.14 and Lemma 5.19. In those cases, the
sets obtained in Definition 3.9 (and Notation 3.15) for Irr(G;) and coincide with the present T;,
E;, D; via the isomorphism between G; and Dli' (q) from Definition 5.4. If Hypothesis 5.15 holds,
then E(G1) and E,;(G}) are t;-conjugate in Out(G1), so the sets from Definition 3.9 for Irr(G;)
are £1-conjugate to the ones from Definition 5.24. Recall that in the case of (b) we can assume
that € = €2 = 1 and hence n acts as «; on G;. In case of part (c), n acts either as ; or %%\i, but
it always corresponds to an automorphism of E,;(G;) by construction. This implies that parts
(a)—(c) follow from Theorem 3.16 and Lemma 3.12(a).

We now show that E,;(G;)y is cyclic whenever x € ;. Let x’ € D be in the G,-orbit of y.
Recall that this éi—orbit is of length 4. Via the identification

GiErn(G)/(GiCh )

Gy)) = Z(G") % By (Gi),

the group (éZEM(CVJZ))X/ then corresponds to a subgroup of E,;,;(G;) and (éiﬂM(Gi))X corre-
sponds to a subgroup of the form E,,(G;)? for some z € Z(G¥)\ (hy) = Z(GF)\Cz(GF) (Ep(Gh)).
The group E,;(G;)y corresponds then to a subgroup of E,;(G;) n E,,(G;)* which is cyclic by
a straight-forward discussion.

The inclusion (ME(M))y, = (M°E(M?)), < MoE(M?®), follows from the fact that M° acts
by diagonal automorphisms on G; and E(M°) acts by E,;(G;) on G;, while y € D} < T;. Recall
that y is in this situation not stable under any non-inner diagonal automorphism.

For the proof of (d), assume |Z;| = 2. Then Z;E,;(G;) coincides with Z; (v;, F),) and is
abelian. Then (a) implies T; = Irr(G;) and D; = E; = J as also explained in (4) of the proof of
Theorem 3.16.
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For part (e), assume first Hypothesis 5.11. Then E)/(G;) acts by (v, Fp|qur, ), which is
cyclic whenever 2 1 f or ¢, = —1. This then implies that every character of G extends to its
stabilizer in G;E,;;(G;) by Proposition 2.2(a), and we get E; = ¢J. This is (e) in that case.

Assume now that Hypothesis 5.15 holds and therefore 2t f. Then E,;;(G1) = <t17, p> and
E,/(G2) = {y2, F,) both act cychcally on G**a, Then E; = Ey = (¢ again as above.

Part (f) is clear for x € T;. If y € D; the group E,;(G;), is cyclic by part (c). Otherwise if
X € E;, then the group E” is either cyclic or contains ~; since E,;(G;)/ <7> is cyclic. In the latter
case, let F' € E;(G;)y be such that Ey;(G)y = (F,7i) and E” < {(F')?,7;). Every extension
X of x to G;{v;) is not F'-invariant by the definition of E;, but since F’ can only permute the
two extensions of Y we see that ¥ is (F”)%-invariant and hence y extends to G;E". U

Because of the central product structure My = G1.G2 with G1 n Gy = (hg) (see Lemma 5.2),
any subsets G1 € Irr(G1) and G € Irr(Gy) define

G1.G2 := {x1.x2 | xi € G; with Irr(x1l¢,,) = Ir(x2]epgy)} S Trr(Mo).

Recall T := L5 (Z ( (G)) n T and E(M°) = E(M){n,ho) by the definition in Lemma 5.13
and Lemma 5.18. The following statement allows us to divide the proof of Theorem 5.20 into
cases.

Proposition 5.26 — Properties of T-orbits in Irr(My). Let ¢/ € Irr(My). There exists some
t € T such that ¢ = (¢')! satisfies one of the following properties:

(i) ¢ € T1.To; or

(11) ¢ € Ell.EQ L ]D)/l]D)Q [ ]DllEQ L El]DIZ with {‘Zl‘, |Z2‘} = {4}

Proof. Recall that the action of 7' on G*F coincides with the action of T". Set ¢, € Irr(G;) such
that ¢' = @}.4,. Recall Irr(G;) = T; UE; uD; , see Definition 5.24, with E; = D; = ¢§ whenever
|Z;| # 4 as recalled in the preceding proof.

Assume ¢} and all its f—conjugates belong to T;. In this case, Proposition 5.25(a) allows
us to choose z € T' so that (#4)® € Ty additionally, and therefore ¢.¢9 := (¢].¢5)* € T1.To, as
claimed in (i).

Outside of (i), we see then that there is a T-conjugate (¢1,¢2) of (¢, ¢h) in (E; L D) x
(E2 1 Dy), also forcing |Z1| = |Z2| = 4. This gives (ii) up to the case (gbl,ng) € E| x Ds.
Proposition 5.25 implies E} = Etl and ]Dé2 = ),. Hence if ¢1.¢2 € E|. Do, a T- conjugate of ¢1.¢9
is contained in E;.D},. But this is also a T-conjugate, so we are in the case (ii). O

The above case (i) implies a familiar transversality of stabilizers.

I Lemma 5.27 Every ¢ € T1.Ty satisfies (TE(MO))¢ = f¢E(MO)¢-

Proof. For i € 2, set ¢; € Irr(G;) with ¢ = ¢1.¢2. Let us denote by F,E“ the automorphism
of My = G1.Go, that acts trivially on G3_; and as Fj, on G;. Recall that T; was defined

using EM(é,) which acts as E)/(G;) on G, hence ¢; € Irr(¢]g,) satisfies (éZEM(él))@ =

(Gi) g, Eni(Gi) g,
N In order to verify the statement, we have to prove that for every g € T and e e E(M°) with
@9¢ = ¢, one has ¢9 = ¢° = ¢ in the first place.

Since T < T<;1,;2,?1,?2> and E(M°) acts as E;;(G;) on G;, one may find g; € éi, e; €
E,,(G;) such that § = §1g2 and e acts as ejeg on My. Then (gblgbg)?’e = ¢1¢o implies qﬁgiei = ¢;
for i = 1,2 by restriction. From the definition of the sets T; we now get QS?Z = ¢7" = ¢; and
therefore our claim that ¢9 = ¢ = ¢€1¢2 = ¢°. O

Proposition 5.26 above clearly leads to checking Theorem 5.20 by considering successively
T-orbits in Irr(M) containing an element in Irr(M | T1.Ty), Irr(M | E}.Ey) or Irr(M | DDy L
D) .Ey 1 Eq.D)), see the next two sections.

Beforehand we have nevertheless to prove a statement about maximal extendibility. Recall

]\7 = MT.
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I Proposition 5.28 Maximal extendibility holds with respect to M < M =TM.

Proof. Set x € Irr(M). Assume first that TX/T is cyclic. Then since T' < TZ(@) by the
definition of T' in Lemma 5.7 and therefore M < MZ(G), we have that MX/M(M N Z(G)) is
cyclic. Then y extends to MX by Proposition 2.2(a).

We now assume that TX/T is not cyclic. Then TX = T and we can assume X’?l’?2 = X'?l = X.
Set ¢ € Irr(x],,, ), then QS’?“?? is in the M-orbit of ¢ since QS’?“?? also belongs to Irr(x]y,,). For
o; € Irr(G ) with ¢ = ¢1.¢2, we see that the M-orbit of ¢; is t;-stable. Therefore, the <n, tAi>—orbit
of ¢; is t;-stable. On the other hand, Proposition 5.25(b) and (c) implies that every {(n, tAi>—0rbit

containing some ¢’ € D; u D} U E; U E] is not t;-stable. Accordingly ¢; € T,\(E, U D). Taken
together, we see that ¢ € T;.Ty and therefore

(TE(M°))y = ToE(M°),

by Lemma 5.27. In particular My # My <t1t2n> and Lemma 5.21(a) then ensures that x = QNSM,
where ¢ is an extension of ¢ to My for some extension ¢ € Irr(M 4) of ¢. Lemma 5.21(b) tells

us that maximal extendibility holds with respect to My < MOT so the character gb extends to
MOT¢ According to Proposition 2.2(e), there exists an extension ¢ of qﬁ to T M The character

1/JMT is by this construction an extension of x to M T as required. O

Proof of Theorem 5.20. Characters in Irr(M | T;.Ts)

In this section we begin the verification of Theorem 5.20 through studying Irr(M) as a union of
sets Irr(M | X) for the various subsets X < Irr(Mp) singled out in Proposition 5.26. Here we
start with Irr(M | Tq.To).

Recall T := £} (Z(G)), M = T M°, E(M®) := E(M){(n,ho), E(M ") := E(M)(n, ho),
M := ME(M) and My := MyE(M®).

In our situation, Lemma 5.27 leads to the following.

Lemma 5.29 Let ¢ € Irr(My) and be Irr(Mg | ¢). Assume:
(i) ¢ satisfies (TE(MO))¢ = T/qu(Mo)d) or equivalently (M\OZN’)d) = (M\O)d)fd);
11 ; € Irr ) extends to MoLE i)s;, for every ¢ € {1,2%.
i1 I G d MyE,;(Gi)g, f e 11,2
Then: . .
a very x € Irr satisfies and extends to .
E Irr(M fi MM = M, M, and d M,
very K € Irr satisfies «~M, and extends to M,.
b) E Trr(M° fi MM = M.M d d M,
(c) If in addition €1 = €3 = —1 (or equivalently v € G\{lg}) and 2 | f (hence {|Z1|,|Z2|} =
according to 2.24(c)), then every x € Irr with hg € ker(x) has an extension
2 di 2.24 h Irr(M ith hg € ki h 1
X to My, = ME(M), with vF, € ker(X).

Proof. We apply Lemma 2.4 with A := TM\, X = My, X = TMO, Y = Mo and L := M
and ¢ as the character. We know that maximal extendibility holds with respect to My < MOZN’
according to Lemma 5.21(b) and therefore ¢ extends to Moib.

The quotient T'My/My = T /(T ~ My) is abelian. The assumption (ii) implies that ¢ extends
to (M\O)(g for ¢ € Irr(Mg | ¢), see Proposition 5.23. The group MO/MO = (MoE(M?®))/My is
isomorphic to a subgroup of E(M®)/(E(M°) n M°) and E(M°)/(E(M°) n M°) is abelian as
[E(M°), E(M°)] < M° according to Lemma 5.13 and Lemma 5.18, respectively.

In combination with the assumption (i), we see that all assumptions of Lemma 2.4 are
satisfied and the statements in (a) and (b) follow then from (b) and (c) of Lemma 2.4.

It remains to consider the case where 2 | f, ¢ = e = —1 and hg € ker(x). As seen before,
Proposition 5.23(b) tells us that ¢ has an extension to (Mo)(?5 with (vFy) in its kernel. Then the
statement in (c) follows from Lemma 2.4(d) with z = vFj,. O

In a first application of this statement we verify Theorem 5.20 for M-orbits containing some
character in Irr(M | T;.Tg). Part (b) of the following statement is useful for the proof of
Condition B(d).
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Proposition 5.30 — Stabilizer and extensions of Irr(M | T;.Ts). Let ¢ € T1.Ts.
(a) Then every character x € Irr(M | ¢) satisfies
(i) (MM), = M, M,; and
(ii)) x extends to some X € Irr(ﬁx) such that vF, € ker(X) whenever v e G\{lg} and
hg € ker(x).
(b) Maximal extendibility holds with respect to M° < M= ME(M) for Trr(M° | T1.Ty).
(c) If2 | f, &1 = e = —1 and x € Irr(M | T1.Ty) with hg € ker(x), then x extends to
ME(M),/ (vEy.

Proof. Recall é, = <Gi, fl,f,> and EM(é,) is the subgroup of Aut(éi) induced by E(MO), see
Definition 5.10. According to Lemma 5.27 | (MOT)¢ = (M0)¢f¢. Let ¢; € T; be such that
¢ = ¢1.¢o. By the definition of T; the character ¢; satisfies (é,EM(é,))(bZ = (é,)¢ZEM(é,)¢
and extends to G £/ (Gi)g,-

Hence the assumptions from Lemma 5.29 are satisfied and its part (a) then implies that every
X € Irr(M | ¢) satisfies

i

(MM), = M, M,
and extends to M E(M),. This ensures part (a). Parts (b) and (c) are now clear from the rest
of Lemma 5.29. O

Proof of Theorem 5.20. Above the other characters of M,

In this section we study M-orbits O in Irr(M) with O N Trr(M | T1.T2) = . According to
Proposition 5.26, O then contains a character x’ € Irr(M | ¢) for some ¢ € Ej.Ey 1 D).Dy 1
]D)IIEQ Ll Elﬂ)é, while |Zl| = |Z2| = 4.

Proposition 5.31 Assume |Z1| = |Za| = 4. Let ¢ € E|.Ey uD}.Dy 1 D). Ey u E,.D}. Then
every x € Irt(M | ¢) satisfies

(i) (MM), = M, M, and

(ii) x extends to My = ME(M),.

Proof. Set ¢ = ¢1¢2 with ¢; € Irr(G;) for i = 1,2. We are going to prove the following points
for at least one x € Irr(M | ¢).
(1) x"* =x;
(2) My e {My, Mo{ny, M} and ¢ extends to some xq € Irr(My | ¢), and
(3) if ¢; € E; and we denote by E! < Aut(G;) the subgroup induced by E(M°),,, then the
index |E,;(G;)g;/El| is even.
(4) (ME(M))y < MyE(M®) ot My = M.

Let us see first how those points imply our Proposition. Since MM acts trivially on M /M,
it suffices to prove the points (i) and (ii) for some x € Irr(M | ¢) to have them for all. Set
T, == T nG,;. Then ¢; € D; uD, UE; U EL According to Proposition 5.25 (b) and (c)
the inclusion T,<{€\,,t~1> 5 S Tl<fl> holds and hy € ker(¢). This implies Zv’d, < T<f1> since

T = (T1.T3) <tAl, to, t~1?2> according to Lemma 5.7. Then (1) implies (MJ/\Z)X = MX]\/I\X according
to Proposition 5.22.

By (2), My € {Mo{(n),, M} and x = X3! for some extension xo € Irr(My | ¢) of ¢, see also
Lemma 5.21(a). Let E < Aut(G;) be induced by E(M?),,. Note that E; < E,;(G;)e,, and ¢; €
Irr(G;) extends to G, E,,(G;)e, according to Proposition 5.25(f), whenever ¢; € Irr(G;)\E;. If i €
{1,2} with ¢; € E;, then by (3) the group E; has even index in E;;(G;)s, and ¢; extends to G; E;
according to Proposition 5.25(f). Hence ¢ extends to MyE(M?),, according to Proposition 5.23.

Moreover (ME(M))y, < My, E(M®)y, follows from (4), since (ME(M))y, = ME(M),, in
case Xo is an extension of ¢ to M, or (ME(M))y, < (ME(M))y < MoE(M°)s. Then this
implies that xo extends to (ME(M))y, = M\XO, according to Proposition 2.2(e). Inducing this
extension of xo gives an extension of y as required in (ii).

After recalling the consequences of Proposition 5.25 we first check (1), (2) and (4) in each of
the four cases for ¢. We finally show (3).

ol



52

Marc Cabanes and Britta Spath

Indeed Proposition 5.25 implies for the character ¢;:
To <’I’L>¢Z if (ﬁl € ]D);,

To{n, tAz>¢z =< To <n£>¢z if ¢; € Dy,
T, <n,tAi>¢i if ¢; € E; L EL
This leads to
M if ¢ € B} Eo,
My =< My{n) if ¢ € E1.D} L DY, E,, (5.5)
M, if ¢; € ;..

Hence in all cases My = M <n>$ for ¢ € Irr(Mg | ¢). According to Proposition 2.2(a), ¢ extends
to My, whenever My # M.

Let now first (¢1, ¢2) € E] x Ey and hence My = M. Note that E] # ¢J and Eg # ¢J implies
(€1,€62) = (1,1), 2| f and 4 | (¢ — 1), see Proposition 5.25(d) and (e). Consequently, v = 1 and
n = ning by the definition of v and n in Table 5.1

According to Proposition 5.25(b), every extension ggz of ¢; to G; <a> is ;-invariant. This
implies (’gz;’ = &; according to Lemma 2.23 and then we find a character 1; € Irr(G; <?Z, ngy /{hoy)
that is an extension of ¢;. Since Gy {(t1,n7) /(ho) x Go (t2,n3) /{hg) is isomorphic to

(G1 {tymi) /<hop) x (Ga (E2v2) / <hoy),
the character 1.1y first defines a character of M <tA1> and via restriction we obtain a <f1>—
invariant character x € Irr(M | ¢1.¢2). We see that y is an extension of ¢ to M and Xfl =X,
ensuring (1), (2) and (4).

If (¢1,¢2) € D} x Dg or equivalently ¢ € D}.Do, then this implies My = My. By Clifford
theory (2.1), the character x € Irr(M | ¢) satisfies x = ¢M As ¢ is tyn-invariant, the character
X seen as a character of M is fj-invariant due to M#; = Mton. This ensures (1) and (2).
Considering the action of ME(M) on Gy and ¢; € D) (see Proposition 5.25(c)), we see that
(ME(M))y < MoE(M°), ensuring (4).

Assume next that (¢1,¢2) € D] x Eg and hence My = My{n), see (5.5). This implies (2).
Then 2 | f according to Proposmon .25(e) and hence Hypothesis 5.15 does not hold. This leads

to n? = hg and provides the T- equivariant isomorphism

Mo {ny /<hoy = (G1.G2) {(r1v2) / <ho) -

Note that ¢9 extends to Go <fg, ")/2> according to Proposition 5.25(b) and hence every extension
of g2 to Gg (y9) is fo-invariant. An extension of $1 to Gy <71> and an extension of @2 define an
extension ¢ of ¢ to My (n). Because of [G1 (11, t] =1, dis fo- invariant. We observe that ¢ can
be taken as xo and x = qS . By construction, x is to-invariant. Since £1ty € M by Lemma 5.6
this leads to x'* =y, as requlred in (1). As above, we derive from ¢; € D} that (4) holds.

If ¢1.¢2 € Eq.D)), then the same argument applies and ensures (1), (2) and (4).

Finally, we prove (3), i.e. 2| [Ep(Gj)g, : Ej] whenever j € {1,2} with ¢; € E;. We can
assume M\/M to be non-cyclic and ¢1.¢9 € (E}.E2) 1 (Eq.D}) (D). Ey). This implies €; = €3 = 1.
Fixj € {1,2} with ¢; € E; and let j/ € {1,2}\{j}. In our situation we observe ¢; € T; and

= ¢; according to Proposmon .25.

Writing F,, € E(M) for the image of I, we let a; be a divisor of the order of I, such that
F7 generates <Ep>¢i. By definition E,/(G;)y, = <(Egj),7j>, and every extension of ¢; to

G x {v;) is not F,’-invariant because of ¢; € E;. Analogously Ey(Gjr)o, = <(Ezj'),fyj/> and

a..,
the extension of ¢ to G x <7j/> is Iy’ -invariant as ¢ € T}
Because of ¢, = €3 = 1 we have n = njnj and there exists an isomorphism between

(G1{71))/<hoy x (G2(2))/<hoy and (G1,G2,n,71) /<ho). The extensions $1 and ¢y define
an extension ¢ of ¢ to My{(n) with

B = i,y ((E ) o (B3,

]
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Recall that E; denotes the subgroup of Aut(G;) induced by E(M?),,, where xp is an extension

of ¢ to My. Without loss of generality, we can assume that xo is an extension of (E and hence
E(M?)y, < E(MO)(;5 We then see that E7 has an even index in Ej(Gj)g, = (v, Eyy as
required for (3). O

The above pretty much finishes the verification of Theorem 5.20:

Proof of Theorem 5.20. Let O be an M-orbit in Irr(M), x" € O and ¢' € Irr(x'];, ). According

to Proposition 5.26 there is some t € T such that ¢ := (¢')! is contained in
Tl.TQ [ EIIEQ [ ]DII]DQ L DIIEQ L E1D/2

The case ¢ € E|.Ey 1 D|.Dy 1 D|.Ee 1 Eq.D) is only relevant if additionally {|Z1],|Z2|} = {4}.
Set x := (x')! and hence x € O. By the choice of ¢ we see that

x € Irr(M | T1.T2) U Irr(M | Ef.Eg u DDy b D). Eg L Eq.D).

Characters of these sets have been studied in Proposition 5.30 and Proposition 5.31, respec-
tively. Consequently (MM )y = MXMX, and x extends to ME(M),. This gives part (a) of
Theorem 5.20.

Assume next €; = €2 = —1 and 2 | f. According to 2.24 we see that {|Z1|,|Z2|} = {2} and
therefore Irr(Mg) = T1.Ty. Then Irr(M) = Irr(M | T;.Ts) and we get part (b) of Theorem 5.20
from Proposition 5.30. U

The Conditions A(d) and B(d)

Now we use the results on the character theory of the group M from the previous section to
establish Conditions A (d) and B(d) from 2.19 and 2.20 for an integer d > 3 fixed throughout the
whole chapter. Condition A (d) is about the character theory of Ng(S")¥, where S’ is a Sylow d-
torus of (G, F'). Lemma 5.8 shows that outside of the “doubly regular” case treated in Chapter 4,
we can essentially replace Ng(S')!" by a group M as in Chapter 5: In the setting of Section 5.A
a Sylow d-torus of (G,vF;) can be taken as a subgroup of either G; or Gg, and d is doubly
regular there. Character correspondences between a subset of Irr(M) and Irr(Ng(S)¥) allow
us to transfer statements on Irr(M) to Irr(Ng(S")F) via centrally isomorphic character triples.
These are constructed using results from the doubly regular case, where (iMK) was already
shown, see Theorem 4.1. As a second step in Section 6.B, we use character correspondences to
define an extension map, later verifying Condition B(d).

Proving Theorem 6.9 finishes the proof of A(d) and B(d). From this we derive (iMK) for
quasisimple groups of type D;, the final step of the proof of Theorem B and indeed McKay’s
equality.

Character Correspondences

In the following, we continue using the notation introduced in Section 5 around the group M.
We establish a character correspondence between some characters of M and one of its subgroups
under the assumption 6.1 that essentially sums up the case (iii) of Lemma 5.8. This allows us to
deduce some results about Irr(Ng(S')!) for some Sylow d-torus S’ of (G, F'). In order to apply
the results of Section 4 we assume the following.

Assumption 6.1. Let d be an integer with d = 3. Assume that d is doubly reqular (see Defini-
tion 4.4) for (Gj,vEy) for some j € {1,2} with l; > 4.

Notation 6.2 Let j € {1,2} be such that d is doubly regular for (G;,vF,). Set K; := Gj,
K2 = Ggfj, 6/1 =€ = 66’2, lll = lj =1[- lé, KZ = K;Fq, EM(KI) = EM(G]), EM(KQ) =
E,/(G3—j) (see Lemma 5.14 and Lemma 5.19) and let S be a Sylow d-torus of (K, vFy). We
associate with S the groups

Ny = Ng,(8), N := Ny(S), N := Ny (S) and N := N, ~(S),

23



o4

Marc Cabanes and Britta Spath

| where T := (T Z(G))**.

Assumption 6.1 implies that (iMK) holds for K; and ¢ with respect to Nj, whenever ¢ is
an odd prime with d = dy(q), see Theorem 4.1. Recall that Aut(K7) is induced by bijective
endomorphisms of G commuting with F, see Section 2.C, and hence Aut(K) acts on the set of
F-stable subgroups of K;. The group I'y := Aut(K;)g is therefore well-defined and according
to Theorem 4.1(b) there exists a I';-equivariant bijection

Q(lj . II‘I‘(/ (Kl) —_— II‘I‘(/(Nl),
such that
(K1 X PLw,Kl,T/}) = (Nl X Fl,ﬂ?(w%va Q?(Ib)) for every 1 € Irrg/(Kl).

Since K; = K’lqu ~ Dlg,llvsc(q) according to Definition 5.4, and the integer d = dy(q) is doubly
regular for (Ki,vF,), Plroposition 4.14 defines a character set G4(K7) < Irr(K;) and provides
us with a character correspondence extending 7.

Recall K1 < M by Lemma 5.6(d). In the following, we continue to use the group E(M)
from Lemma 5.6(d), which acts by definition also on M := TM. The following gives a char-
acter correspondence between some characters of Ky and characters of Ny = N, (S), which is
additionally I';-equivariant. Recall that here we use the order relation on character triples from
Section 2.B.

Proposition 6.3 We keep Assumption 6.1 and follow Notation 6.2.
(a) Let Gq(K1) < Irr(Ky) be the set from Definition 4.13. There exists some I'1-equivariant
bijection
Ql : gd(Kl) = II‘I‘(Nl),
such that

(Kl X Fl,xlaKth) Zc (Nl A Fl,Ql(Xl)aNth(Xl)) for every xi € gd<K1)
(b) Set A:= ME(M). Then every x1 € Ga(K1) satisfies
(Axrs K1, x1) Ze (Na(S)yy, N1, (xa))  for every x1 € Ga(Kn).

(c) Let J be a group with K1 < J<JA = ME(M) Then there exists an N 4(S)-equivariant
bijection
IT: Irr(J | Ga(K1)) — Irr(N 4 (S))
such that every v € Irr(J | G4(K)) satisfies

(Ay, J,9) =c (NA(S)1(y), Ns(S), IL(1)).

In particular
(i) If € Irr(J | Gq(K1)) and o' := I1(¢)), then Ay = JNA(S)y. For any J < U < A,
the character 1) extends to U if and only if 1)’ extends to Ny (S).
(ii) Let ¢1 € Gg(K1) and ¢g € Irr(Cs(K1)) such that ¢1.¢2 is a well-defined irreducible
character of K1.Cj(K7). Then

H(II‘I‘(J | ¢1¢2)) = II‘I‘(NJ(S) ‘ Ql((ﬁl)(ﬁg) (61)

Proof. According to Proposition 4.14, the bijection € exists as required in (a). Recall K7 <
ME(M) by Lemma 5.7(c). According to the Butterfly Theorem 2.8, part (a) implies (b), see
also Remark 2.9. In Part (c), the existence of a bijection II satisfying the >, relation and (ii) is
a consequence of (a) and (b) thanks to [Ro23a, Prop. 2.4| and the construction described there.
Property (i) follows from Lemma 2.6(b). O

We continue using Assumption 6.1 and the notation above. We deduce from € and its
properties the following bijection. The next statement ensures Condition A\(d) later, via an
isomorphism between G and G**e. Recall N := Nj/(S), N := N(S) and N := Ny, g (S).
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Theorem 6.4 We keep Assumption 6.1. There exists some N-stable N-transversal T(N) in
Irr(N) such that maximal extendibility holds with respect to N < N for T(N). Additionally
if2] f,e=1and ¢, = —1, then every x € T(N) with hg € ker(x) has an extension X to ﬁx
with vF € ker(X).

Proof. Recall M = M E(M) and M := MT. According to Theorem 5.20(a) there exists some
M-stable M-transversal T(M) in Irr(M), such that every x € T(M) extends to M,. On the
other hand Gy4(K7) is by definition Aut(K;)-stable. Set T(M) := T(M) n Irr(M | G4(K7)).

Since E(M) and T permute the Sylow d-tori of (K, vFy) and all Sylow d-tori of (K;,vF)) are
Kj-conjugate (see [MT, Thm 25.11]) we see ME(M) = MN and M = MN. Therefore, T'(M)
is also a N-stable N-transversal in Irr(M | G4(K1)).

For J:= M and A := MM , we apply Proposition 6.3(c) and obtain the bijection
IT: Irr(M | Ga(K1)) — Irr(Nps(S))

with the properties stated there. Then II is NN -equivariant as N4(S) = NN. Note that the
set T(N) := I(T'(M)) is a N-stable N-transversal in Irr(N) by the equivariance of II. Let
Y € T(N) and set ¢ := II71 (') € T/(M). By the properties of T’(M), we see that 1) extends
to its stabiliser in M. Furthermore by the properties of II we have

(ME(M)thMaw) Zc (]’\}1/17 N, 1//)

According to Lemma 2.6(b), 1" extends to J/\@/, since 1) extends to M\w.
Note that in the case of 2| f, e = 1 and €; = —1, every ¢ € T(NN) with hg € ker(¢’) has an
extension ¢’ to Ny with vF, € ker(¢’), as 1 has the analogous property by Theorem 5.20(b). O

The following helps to ensure the first part of Condition B(d) from 2.20.

I Corollary 6.5 Maximal extendibility holds with respect to N < N.

Proof. As in the above proof of Theorem 6.4 we apply Proposition 6.3(c) with J := M and use
the bijection IT : Irr(M | G4(K7)) — Irr(N) with

(ME(M))y, M, ) = (NN)y, N,3')

for any ¢’ € Irr(N) and ¢ := I~ ().
By Lemma 2.6(c) this restricts to

(M¢’Ma¢) Zc (ﬁw’,Nﬂ/)/)-

Recall that according to Proposition 5.28, 1 extends to ]\7@07 since maximal extendibility holds
with respect to M < M. According to Lemma 2.6(b) this implies that ¢/’ extends to ]VW. U

Another extension map

The aim of this section is to build a version of the extension map required in the second part of
Condition B(d), see 2.20. As before, we only verify an analogue for subgroups of G¥Fa. Recall
M° := (G1.Go)" 7 and E(M®) := E(M){n). We write T(kK;) for the set from Definition 5.24
with our choice of K; = G and Ky = G3_;. We choose T(K>) to be an E,,(K>)-stable subset
of T(K>), which is at the same time a T-transversal in Irr(K5). (This is possible according to
Proposition 5.25(a).) In the diagrams below double bars stand for normal inclusions.
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In the groups ]/\4\, MyE(M°®), My and M°,
introduced before we consider their normal-

izers of S. Note that there is a well-defined
\ action of E(M) and E(M°) on the vF-
A0 stable tori of G and hence the stabilizer of
MoE(M?) S in those groups is well-defined.
/ Set  N°:=Npe(S) and N° =
kK Naeare)(S).  Note that N° A N° =
1-482 .

N, (S) since M° n MoE(M®°) = My by

Lemma 5.13(a) and Lemma 5 18( ).
By its definition T(K>) is also N°-stable and
is some T-transversal in Irr(Kj). Recall the
description of the action of MyE(M°) and,
therefore, of N° on K; in Lemma 5.14 and
Lemma 5.19, respectively. This allows us to
transfer the result from Section 4.E and we ob-

5/\

O

tain an N°-equivariant extension map A; for

CK1 (S) d NK1 (S)

Lemma 6.6 We follow Notation 6.2, keeping Assumption 6.1. Recall Ny = Nk, (S). Let
Cy := Ck,(S) and let A1 be the No—equivariant extension map with respect to C; < Ny from
Corollary 4.12(a).

Let A € II‘I‘(Cl), ¢2 € T(KQ) with )\(ho)(ﬁg(l) = A(l)(ﬁz(ho), so that )\(ﬁg € II‘I‘(Cl.KQ) and
Ay (M) € Trr(N7.K>) are well defined.

Then any 1 € Trr(N° | A1(A\)M.¢9) extends to its stabilizer in N. Moreover, f\?w — N°N,
for {1} = Irr(C | A.gp2) N Irr(9] ).

Proof. Let

N1 Ky

Ql . gd(Kl) ; II‘I‘(Nl),
and

I : Irr(M° | Gg(K7)) — Trr(N°)

be the bijections from Proposition 6.3(¢) My = N ¥
obtained by choosing M° as J and / H
ME(M) as A. / ‘ /
Set x := I !(¢). By definition, Ni1. Ky o T
¢ € Ir(N° | A1(A)M.¢y) and, there- ‘ / H /
fore, x € Irr(M° | Q7 (A1 (AN)N).¢0) /
thanks to (6.1) in Proposition 6.3. A ()N Ny C1. Ko e
By Corollary 4.12(b), the character H /
Q7 (A (MM of K satisfies /

o/ A

Ql_l(Al ()\)Nl) € T(Kl)

We now get x € Irr(M° | T;.Ty) in the notation of Definition 5.24 and for this character,
Proposition 5 3()(b) tells us that y extends to M By Proposition 6.3(c.i) we see that then also
1) extends to N¢

We now have to compute . Clifford theory implies that N¢ <N Yo =N ]Qf and hence it

remains to ensure Nw > N,. Note first that C1.K5 has index 2 or 1 in C. By Clifford theory,
then 7 is either an extension of X.¢o or equals (X.¢2)C.

Assume that 7 is an extension of A.¢9 to C. Then there exists a common extension 7 of
7 and Ai(AN)](y,), -@2 to (N1)-C according to Proposition 2.2(e). As Ay is N°-equivariant, the

character Ai(A)](y,), @2 is (]vo))\.@—invariant. Then the character 7 is C]/\\ff — N,-invariant,
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since N§ 5,C = NT]C o = N.. Note that ¢ = 7V and hence 1 is N, -invariant.
° 1-£2
Now assume that 7 = (M\.¢2)C. Then 7 := (A (N).dg)¢(N1)r is irreducible and an extensmn
of 7. We observe again that 7 by the construction using A is CN X.¢,-nvariant and 7V = ¢ by
Clifford theory. It remains to see that C’Nj\) b = NT.

In order to see this equality, we compare the actions of C' and N° on C1.K5. While C induces
a diagonal automorphism on K and can also be induced by conjugation with an element of f N°
acts on Ky as an element of E,,;(K2). Recall ¢ € T(K2) and T(K?) is a Ne-stable T- transversal
in Irr(K3). According to [S23a, Lem. 2.3|, the properties of T(K3) lead to (NOT) = N T¢2,
and hence

(CN°)g, = Cy, NG,
Since C < Z(C) we obtain that
Nxss = (CN*)rgy = Cs, N3,
As 7 = (\.¢2)¢ and N = N°C, this leads to
N, = CNy g, = C(Cy, N y,) = ON3 o,

Hence in all cases T is N -invariant, 1mply1ng that P is N -invariant, as well.
General Clifford theory shows that N¢ =N NT ». Taking into account that 7 is N -invariant
we obtain the equality Nw =N NT. O

Above, before Lemma 6.6, we have defined T(K2) < T(K3) and the former is by defini-
tion an MoE(M?°)-stable T-transversal in Irr(Kz). Recall C:= Cp(S) and N := Ny;par)(S).

Proposition 6.7 — Extension map with respect to Cj/(S) < Ny (S). Set €' := C+(8S).
(a) The set Irr(C' | T(K3)) forms an N-stable C-transversal in Irr(C), in particular (CN’N)p =
C,N, for every p e Ifr(C | T(K?2)).
(b) There exists some N-equivariant extension map A with respect to C < N for Irr(C' |

T(K3)).

Proof. For part (a) observe that T(K2) is E(M°)-stable. Furthermore, because of [N, K| =
1, we get that the set Irr(C' | T(K2)) is CNj-stable. The group N induces the same outer
automorphisms of Ky as CNy. Hence, Irr(C' | T(K2)) is N-stable. Since T(K,) is a T-transversal,
Irr(C' | T(K3)) is a C-transversal in Irr(C). This ensures part (a).

For the proof of part (b), we show that maximal extendibility holds with respect to C' < N
for Irr(C' | T(K2)). This will imply the existence of an associated N-equivariant extension map
and by restriction we will actually get our claim with respect to C' < N.

Let 7 € Irr(C' | T(K32)) and show that it extends to N,. Note that with A € Irr(C1) and
¢2 € Irr (7], ) NT(K2) Lemma 6.6 applies. Let 7 be the N,-invariant extension to N constructed

in the proof of Lemma 6.6. Then ) = 7N° and 1 extends to some 1; € Irr(N¢).
By Clifford correspondence (2.1), some character 7’ € Irr((N¢)T | 7) satisfies 7N¢ = .
Recall that by Lemma 6.6 we have Ny, = NN, and hence (Ny), = N,. Taking into account the

degrees, we see that 7/ is an extension of 7 and, by construction, even of 7 to NT. This finishes
our proof. O

Next we establish a statement implying later Condition B(d) via the isomorphism between GF
and G"F¢. Recall that S denotes a Sylow d-torus of (Kq,vF,), C := C(S), N := N(S) and
N := Ny (S).

Proposition 6.8 — Extension map with respect to C;(S) I N (S) We keep Assump-

tion 0.1 and follow Notation 6.2. There exists some Lln(N/N) x N- equivariant extension
map A with respect to C < N.
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Pmof We wish to apply Proposition 2.3 with X = C A= N A= NC and Xg=C, Ag =
AO = N. The conclusion of Proposition 2.3 provides exactly the extension map we need Wlth
the properties claimed. We now review the assumptions of Proposition 2.3.

We have C <C' with an abelian quotient since M = MT. The other group theoretic assump-
tions are clear.

To check that maximal extendibility holds with respect to C' < C', notice first that [C,C] =
[Ky, Ko] = [Ka,K3]"Fe since Ky is either simple simply connected or a torus. On the other
hand C' = (K2Cxk,(S)Z(G))F, so maximal extendibility holds with respect to [C,C] < C by
classical results (see for instance [CE, Thm 15.11]). But then it also holds with respect to C' < C
by Proposition 2.2(b).

We also have an N-equivariant extension map with respect to C' < N for Irr(C' | T(K3))
thanks to Proposition 6.7(b) above.

So we have all the required assumptions and Proposition 2.3 gives our claim. U

Turning to groups related to Sylow d-tori

The aim of the following is the proof of Theorem 6.9, namely the proof of Conditions A(d) and
B(d) for (G, F') in the case where d > 3 is not doubly-regular for (G, F'), thus complementing
Theorem 4.1.

First we choose integers [1,l2,€1,€2 as in Lemma 6.10 with regard to d and (G, F) and
determine a corresponding group M as in Notation 5.1. For this group M we see that the
statements from the two preceding sections apply, where characters of N/ (S) were studied for
some Sylow d-torus S of (G,vF,). We see in Lemma 6.10 that S is a Sylow d-torus of (G, F')
and that N/ (S) = Ngur, (S).

Then we establish in Lemma 6.11 an isomorphism ¢ between G** and G¥', as well as between
GYFaB(M) and GFE(GF) in most cases. Denoting N := Ny (S), N := N:(8), 8" := «(S),
N’ := Ngr(S') and N’ := Ngr(S'), we show how ¢ makes the N-transversal in Irr(N) from
Theorem 6.4 into a N'-transversal in Irr(N’) as required by A(d).

Theorem 6.9 Let (G, F) be as in 2.F such that G = D§_(q) and d an integer such that

l ,SC
d = 3, aig,r)(d) = 2 and d is not doubly regular for (G,F) in the sense of 4.4. Let S’ be a
Sylow d-torus of (G, F), C" := Cgr(S'), C' := Cgr(8'), N':= Ngr(S'), N = Ngrp@r)(S')
and N' := Ngx(S'). Then the following hold.
(a) There exists an N'-stable N'-transversal T(N') in Irr(N’), such that every ¥ € T(N')
extends to its stabilizer in N'.
(b) Maximal extendibility holds with respect to N’ < N'.
(¢c) There exist some N'-stable C'-transversal T’ in Irr(C") and an N'-equivariant extension
map with respect to C' < N’ for T’.
(d) There exists some Lin(N’/N') x N'-equivariant extension map with respect to C' < N'.
In particular, Conditions A(d) and B(d) from Section 2.D hold for GF'.

We have first the following.

Lemma 6.10 We assume the situation of Theorem 6.9.
(a) We can choose integers li,ls,€1,€2, an element v € G as in Notation 5.1 and Defini-
tion 5.4, and groups G1,Go, M and M such that:
(i) M satisfies Assumption 6.1 for d.
(ii)) Let v be the automorphism of G and G associated to v as in Definition 5.4. If
K, € {G1, G2} is given as in 6.2 and S is a Sylow d-torus of (Ky,vFy), then S is a
Sylow d-torus of (G,vEFy).
(b) Then the group M satisfies additionally

Na(S)"Fr < M = M"Fs, Ng(S)"F7 < M, and

Nggem)(S)"f* < ME(M) = MYf E(M).
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Proof. The assumptions of Theorem 6.9 clearly happen only in the third case of Lemma 5.8. In
this case, there exist j € {1,2}, v e G, Iy,lo > 0 and €, ez € {1} with I1 + Iy = I, € = €162 as
in Notation 5.1 and Definition 5.4 such that for the thereby defined groups Gi,Gs and M, a
Sylow d-torus S of (K1, vFy) is a Sylow d-torus of (G, vF;), where K; = G;. This gives (a) and
(b).

The proof of Ng(S)"¥s < M = M¥Fa in (c) uses the description of minimal d-split Levi
subgroups Cg(S) of (G,vF,) and their associated relative Weyl groups (Ng(S)/Cq(S))"* in
[S10b] and [GM, Ch. 3.5]. Recall M® = K;.K5 a central product of vFj-stable groups. Since d
is doubly regular for (K, vF;) we see that Ty := Ck,(S) is a torus and

Cwm=(S) = T1.Ko.

From the description of the root system of the Levi subgroup C := Cg(S) (see [S10b, §7] and
[GM, Example 3.5.15]) we get first
CMO (S) = C

There essentially remains to show that the relative Weyl groups have same order in G*¥« and
M. Denoting dy and a(G,qu)(d) as in the proof of Lemma 5.8, we abbreviate the latter as a.
The relative Weyl groups being insensitive to the center of G, we can use the considerations of
[GM, Ch. 3.5] in classical groups G/{(hg) = SOg(FF). From the end of the description in [GM,
Example 3.5.15] (where dj is denoted as e) we get

ING(C)"Fr/CFi| = (2dg)* - a! and [Nk, (Ki n C)/(Ky nC)| = =(2dp)* -al.  (6.2)

1
2

Note that Ng(C)"*s = Ng(S)"! since S is the only Sylow d-torus of Z°(C) and for the
same reason Ny, (K; n C) = Nk, (S). The latter implies in turn that the second equality in
(6.2) above yields

[Nve (8)7F7/CF| = | (Ne (8)/C) 77| = | (N, (8)/(K1 n ©))"7| = %(Qdo)“ ~al. (6.3)

By the theory of Sylow d-tori (|[MT, Thm 25.11]) all Sylow d-tori of (M°,vF;) are M°-
conjugate and hence [N/ (S)/Npse(S)| = |[M : M°| = 2. Combining this with (6.3) and the first
equality of (6.2), we get |Npp(S)"Fe| = [Ng(S)"F¢| and therefore Ng(S)"*s = Npp(S)"Fe < M
as claimed.

The F-stable torus S is contained in an F-stable maximal torus Y of M° Z(N) that is at
the same time a maximal torus of G. We have G*F¢ = Y"!aG¥Fa and therefore Né(S)”F‘I =
Y FaNg (S)"Fo < (YM)*Fa = (Z(G)M)*Fs = M by the inclusion proved before.

By the definition of E(M), we see easily that K; is E(M)-stable and hence the Kj-orbit of
S is E(M)-stable. Hence

Nermm)(8)"" < Ng(S)""*K1E(M) < ME(M).
This implies Ng g (S)"F* < ME(M). O

Results from 6.1 concern subgroups of G*¥« and for the proof of Theorem 6.9 we construct an
isomorphism between G” Fa and G, Recall that E(G) is the group of abstract automorphisms
of G generated by F, and ~.

Lemma 6.11 Recall E(GY) is the subgroup of Aut(GF") obtained by restriction of E(G).
(a) Assume (e, €1,€3) = (1,—1,—1) or equivalently v € G\{lg}. Let x € G be an element
such that (vFy)* = F, = F. (Such an element exists according to Lang’s Theorem.)
Then conjugation with x defines an isomorphism

1:GxE(G)— GxE(G) by y—y"=ylyz]

such that 1(G*Fa) = GF and (G*Fa) = GF. Recall E(M) = E(GVFa) = (Fp,v) <
Aut(G*Fa) from Definition 5.10.
(i) If{|Z1|,|Z2|} # {4}, then «(G*FaE(M)) = G¥ E(G) with «(vF,) = F, inducing an
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isomorphism G*F1E(M)/{ho,vF,) =~ GI'E(GT)/{(hp).

(i) If{|Z1|,|Z2|} = {4}, then the groups of automorphisms of G¥" induced by .(G*F«E(M))
and G E(G) are conjugate by a diagonal automorphism. Moreover E(GY) is
cyclic.

(b) Assume (¢,€1,€2) = (1,1,1) or (e,e1,€e2) = (—1,—1,1) with {|Z1|,|Z2|} # {4}. Recall
E(M) < Aut(G¥Fa) defined as in the preceding case. The identity map ¢ : GxE(G) —>
G x E(G) induces an isomorphism between GF E(M) and GF E(GF).

(c) Assume that Hypothesis 5.15 holds so that v, = F. Let t € G be some element with
F(t) = tho and recall E(M) = <FI,2,?7> < GF x Aut(GT) from Definition 5.10. Then
the outer automorphism groups of G" induced by E(M) and E(GT) are conjugate
by a diagonal automorphism. Moreover, an inner automorphism of G induces an
isomorphism between G¥ E(M) and G¥ E(GT).

(d) In all cases there exists some isomorphism

V:GXE(G) — GxEG) by y—y” =yly ]
induced by conjugation with an element of ' € é, such that
J(GPFaE(M)) = GFE(G), /(GYFe) = GF and /(GYT E(M)) = GFE(G).

Then one of the following holds:

(d.i) ' induces an isomorphism between G**1E(M) and G E(GF);
(d.ii) ¢ induces an isomorphism between G*¥1 E(M)/{hg,vF,) and G¥ E(GF)/(hg); or
(d.iii) E(GT") is cyclic.

Proof. For part (a) we assume (€, €1,€2) = (1,—1,—1) and therefore F' = Fj, and v € G. We get
clearly ((vF,) = F, in the semidirect product G x E(G) with «(G) = G, «(G*f7) = GI" and
L(G¥Fa) = GF. Table 5.2 states

it {[Z1],| 2]} # {4},

. (6.4)
ho if {|Z1],|Z2|} = {4}.

[Fp,v] =1 and [y1,v] = {

As in [S23b, Prop. 3.6(b)] or using the Three-Subgroup Lemma [Asch, (8.7)], [F},v] = 1 implies
W(F,) € GT'F,.

In the first case of (6.4) above where [v;,v] = [y1,vF,;] = 1, we then have [[z, F],y1] =
[[F,71],2] = 1 and get analogously [[y1,2],F] = 1 or equivalently t(71) € 1GI = Gy,
This ensures the statement in (a.i) as follows: The group E(M) is defined as subgroup of
Aut(G¥Fe) hence E(M) = E(M)/ <qu>, since ¢ = —1. Now <qu,qu> = (vFy, hg) because of
(vFy)? = hoF?. Note 1((vFy, hoy) = (Fy, hoy. This implies then the stated isomorphism.

In order to get (a.ii) we now assume (€1,€2) = (—1,—1) and {|Z1],|Z2|} = {4}. The latter
leads to 21 Iyl and 21 f according to 2.24, which then ensures that E(GF) is cyclic. As above
1(F,) € GI'F,. By construction, we also have ¢(vy1) = y1g for g := [y1,7] € G. We get

UG"FE(M)) = GF(F,,mg). (6.5)
From [v;,vF,] = ho in (6.4) and «(vF,) = F = F, we obtain

ho = t(ho) = e([1,vEq]) = g, Fyl = [g, Fyl.

Therefore, +(7y1) = 71g induces on Gfe the product of 7; and a diagonal automorphism of
G'a associated with ho[Z(G), F]. Let t € G with F,(f) = thy(w). Since 2 | I = I; + Iy we

have [F,h)(w)] = 1 by 2.24(c.i) and therefore [[t, F,], F,] = [[Fy, Fp],t] = 1. Then by the
Three-Subgroup Lemma again we get sz e GF F),. This leads to
(GF By 0)' = GF (g (6.6)

since we also have {7 € G¥tg. The latter can be seen from the action of 7 on the group of
diagonal outer automorphisms of G* corresponding to its action on Z(G!"), a group of order 4
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where only hy and 1 are fixed (see 2.24(b)). We now get the statement in (a.ii) from (6.5) and
(6.6).

For part (b) the assumptions imply that G*fs« = G and E(G!) = E(M). Part (c) is clear
from Lemma 5.19.

Now in part (d) we define ¢/ as ¢, whenever +(G*« E(M)) = G¥ E(G). It remains to consider
the cases of (a.ii) and (c) and define " as the combination of ¢ with conjugation with some element
t € G with Lp(t) = hy(w). Then ¢ satisfies

J(GYFREM)) = GFE(G), /(GYFe) = GT and /(G E(M)) = G'E(G).

In the case of (a.1), ¢/ induces an isomorphism between G*¥ E(M)/{hg, vF,) and GI' E(GT)/ (hg)
as stated in (d.ii). In case of (a.2), E(GY) is cyclic. In case of (b), ¢/ is the identity (map) and
hence G*!<E(M) and GFE(GF) are isomorphic as stated in (d.i). In the case of part (c),
E(GT) is also cyclic. O

In the next step, we can finally verify Conditions A(d) and B(d).

Proof of Theorem 6.9. Let e € {£1} such that GI" = D¢

isc(@). According to Lemma 6.10 we can

choose the groups M and Kj, as well as v € G and the corresponding v € G U {7}, so that
Assumption 6.1 is satisfied. Let S be a Sylow d-torus of (Ki,vFy). Then S is also a Sylow
d-torus of (G,vF) and Ngur, (S) < M, see Lemma 6.10(c).

Let // : G E(G) — G x E(G) be the isomorphism of Lemma 6.11(d) with //(G*¥¢) = GF'
Then //(S) is a Sylow d-torus of (G, F) and we can assume ¢'(S) = S’ by GF —conJugacy of Sylow
d-tori. Set N := Ngvr, (S) and N = Ngr(S) =/ (N \). Analogously, set N := = Nygov) (S) and
(N')> = Ngrpg)(S'). According to Lemma 6.10(b), we have Ny g (S) = NGVFQE(M)(S) and
hence (N')" = /(N?).

Let T(N) < Irr(NN) be the set from Theorem 6.4, hence an N-stable N-transversal. Note
that N is a quotient of N”. The set T(N’), the image of T(N) under ¢/ is then a (N')’-stable
N’-transversal in Irr(N’). This shows the first part of (a ) of our theorem.

Let x € T(N'). Then y extends to its stabilizer in N’ for N’ = = Ngrpgr)(S'), whenever
E(GF) and hence N’/N' is cyclic, see Proposition 2.2(a). If N>’</N’ is non-cyclic, then hgy €
ker(x). Then ¢/ maps N/ (vFy, ho) to N’/ {ho). Let xo € T(N) be the character mapped to ¥
via ¢t. Then yg extends to its stabilizer in J/\\f/ (ho). By the isomorphisms of Lemma 6.11(d.i) or
(d.ii), we see that also y extends to its stabilizer in N'.

Since maximal extendibility holds with respect to N < N according to Corollary 6.5, J/(N) =
N’ and /(N) = N’, maximal extendibility also holds with respect to N <« N’. This is (b).

For the part (¢ ) note that NG”Fq (S) < M from Lemma 6.10(b) implies that C’ = U(Cqur, (8)) =

(C) and N’ = ((N), where C := C~ 77(S). Using similar applications of /', part (c) follows from
Proposition 6.7. Analogously, Proposmon 6.8 implies part (d). O

_ The more general construction of M allows us to get the following statement where G, I,
G are as in Section 2.E.

Proposition 6.12 Let d > 3 and let S’ be a (not necessarily maximal) d-torus of (G, F'). Let
T’ be an F-stable maximal torus containing S’. Assume that there exists a root subsystem
R of (G, T') of type Dy (I} = 4), such that K; = (X, |a€ R') is F-stable, §' is a
Sylow d-torus of (K1, F') and d is doubly regular for (K1, F'). Assume that there exists some
N'-stable Ngr (8)-transversal in Trr(Ngr(S')) where we denote N = Ngrwp@r) (S
Then we have the following.
(a) There exist a (T'Z(G))F-transversal Ky in Irr([Cqr (K1), Cqr(K1)]) and some N'-
stable extension map with respect to Cgr(S’) I N’ for Irr(Cgr (S') | Kz).
(b) There exists some N'-stable N’ -transversal T(N') in Trr(N’), such that maximal ex-
tendibility holds with respect to N' < N’ for T(N').
(¢c) There exists some Irr(GF /GF)x N’ -equivariant extension map with respect to Cgr(8)d

N
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| (d) Maximal extendibility holds with respect to N’ < N'.

Proof. This follows from the more general construction of M when choosing ¢; and [;. If we
choose €] and I} such that Ki" =~ D;! (q) and set I} := [ — 1}, €, = e} in Lemma 6.10, then
1

the above construction again leads to a group M and v € G. Therefore, +(M) contains some
GF-conjugate of N’. Then the arguments for the proof of Theorem 6.9 apply again and show
our claims. O

Proof of McKay’s equality and Theorem B

We conclude by drawing the consequences from the above.

Theorem 6.13 Let g be a power of a prime and let ¢ be a prime not dividing 2q. Then (iMK)
holds for the quasisimple groups Df_ (q) (I = 4,e¢ € {£1}) and .

l,sc

Proof. Let (G, F) be as in 3.15 such that Gf' = Dj..(¢). Thanks to Theorem 4.1(c) we can
assume | > 5. Then the quotient G¥'/Z(G!") is simple non-abelian and G is its universal
covering group, see |GLS, Thm 6.1.4].

Let d = dy(q) be the order of ¢ in ;. We can assume d > 3 by Theorem 2.21 and Re-
mark 2.22.

Note that if ®,, is the m-th cyclotomic polynomial (m > 1), then ¢ | ®,,(¢) if and only
if m = d¢* for some a > 0, see [Ma07, Lem. 5.2(a)]. Recall that by the definition of the
multiplicities a(g,r)(m) the following equation holds

2_ ag,F)(m)
Gl =¢" " [] @m@) " .

m=1

If a(q,py(d) < 1, then as recalled in Lemma 5.8(ii), ag,r)(df*) = 0 for any a > 1, and
therefore a Sylow f-subgroup of G¥ is included in some Sylow d-torus of G. This d-torus has
rank a(q,r) (d) < 1, so the Sylow f-subgroup of G is cyclic (this also accounts for the case where
£1|GF). According to [KS16, Thm 1.1] the so-called inductive Alperin-McKay condition holds
for every (-block of G¥', since such a block has a cyclic defect group. As seen already in the
proof of Theorem 4.1 this implies that (iMK) holds for G and /.

We now assume that a(g py(d) > 2 and we can check (iMK) by establishing Conditions
A(d) and B(d) from 2.19 and 2.20 thanks to Theorem 2.21. If d is doubly regular for (G, F)
the claim follows from Theorem 4.1.

In the remaining cases, £ { ¢, d is not doubly regular for (G, F) and a(g ry(d) > 2. By
Lemma 5.8, the assumptions of Theorem 6.9 are satisfied and according to this result, A(d) and
B(d) do hold for the group G¥. O

Theorem A is clearly a consequence of Theorem B, so we concentrate on the latter.

Proof of Theorem B. Combining the above and Theorem 2.11 we know that the universal cov-
ering group of any finite simple group satisfies (iMK) for any prime. Theorem 2.10 then implies
that any finite group satisfies (iMK) for any prime. This means that for any finite group X,
any prime ¢ and any Sylow ¢-subgroup S < X, there is a I' = Aut(X)g-stable subgroup N such
that Nx(S) < N < X with N # X whenever Nx(S5) # X, and a I'-equivariant bijection

Irry(X) — Irrg(N)  such that (X x Ty, X,x) = (N xT,/,N,x) (6.7)

for each x — X’ by the above bijection. But Theorem B claims that this is true for Ny (S) in
place of N. We show this by induction on | X /Nx(S)|, the case of a normal S being trivial.
By induction one may assume that there is a IV = Aut(/N)g-equivariant bijection

Irry (N) — Irrp (Nx (S))
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with (N > I/, N,x") =c (Nx(S) » ', Nx(S), x") for each x" — x". The latter bijection is
also I-equivariant since I in Aut(N) contains the image I'V of I' and the second > relation
implies (N x I‘?(,,N, X') =c (Nx(S) x I’?(,,,NX(S),X”) by restriction (Lemma 2.6(c)). Then by
the Butterfly Theorem 2.8 (N x 'y, N, x') =. (Nx(S) x I'y»,Nx(5), x"). Combined with the
first >. relation (6.7), it gives by transitivity of the >. relation

(X X FX’N’X) Zc (NX(S) X FX”aNX(S)?X”)

for each x — x' — x”. So we get the claim of Theorem B by composition of the two bijections
we have. O
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