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The McKay Conjecture on character degrees
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Abstract

McKay’s conjecture (1971) on character degrees was reduced by Isaacs–Malle–Navarro (2007)
to a so-called inductive condition on characters of finite quasisimple groups [IMN07], thus open-
ing the way to a proof of McKay’s conjecture using the classification of finite simple groups.
After [Ma07], [Ma08], [S12], [CS13], [KS16], [MS16], [CS17a], [CS17b], [CS19], [S23a], [S23b],
we complete here the last step of a proof with an analysis of the representations of certain nor-
malizers NGpSq in G “ G

F of maximal d-tori S (d ě 3) of the ambient simple simply-connected
algebraic group G of type Dl (l ě 4) for which F is a Frobenius endomorphism. To establish
the so-called local conditions Apdq and Bpdq, we introduce a certain class of F -stable reductive
subgroups M ď G of maximal rank where M

˝ is of type Dl1 ˆ Dl´l1 with M{M˝ of order 2.
They are an efficient substitute for NGpSq or the local subgroups in non-defining characteristic
relevant to McKay’s abstract statement. For a general class of those subgroups MF we describe
their characters and the action of AutpGF qMF on them, showing in particular that IrrpMF q and
IrrpGF q share some key features in that regard.

With this established, McKay’s conjecture is now a theorem stating McKay’s equality : For
any prime ℓ, any finite group has as many irreducible complex characters of degree prime to ℓ
as the normalizers of its Sylow ℓ-subgroups.
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1 Introduction

The main theorem of this paper is as follows.

Theorem A Let X be a finite group, ℓ a prime and S a Sylow ℓ-subgroup of X. Let Irrℓ1pXq
denote the set of complex irreducible characters of X whose degree is prime to ℓ. Then

|Irrℓ1pXq| “ |Irrℓ1pNXpSqq|. pMKq

Every algebraist will have identified John McKay’s conjecture on character degrees of finite
groups. This paper provides the last of many steps in a proof of this conjecture using the
classification of finite simple groups (CFSG). The other steps are mainly contained in the papers
[IMN07], [Ma07], [Ma08], [S12], [CS13], [KS16], [MS16], [CS17a], [CS17b], [CS19], [S23a], [S23b],
adding more than 400 pages to the CFSG and the background knowledge on representations of
quasisimple groups – thus fulfilling Jon Alperin’s prediction that “we have here a very easily
stated conjecture about all finite groups which is not easily decided from a possible classification
of all simple groups” [A76].

1.A The McKay conjecture
McKay’s equality (MK) relates two numbers, one global in the sense that it pertains to X, the
other local in that it is the same for the ℓ-local subgroup NXpSq.

It seems to originate in McKay’s research on character tables of sporadic simple groups
[MK71], an interest that would also lead him to the “E8-observation" [MK80, p. 185] and the
so-called “(monstrous) Moonshine” on the character degrees of the Monster sporadic group (see
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[CoNo79]). It could now be argued that the idea itself of the McKay Conjecture owes a lot to
the CFSG as a project, and its proof now draws from the CFSG as a theorem.

While a proof of (MK) as elementary as the statement itself seems unattainable, a legitimate
wish is to find more structural statements implying character theoretic ones like (MK), (AWC)
below or Dade’s conjecture [Da92, Conj. 6.3]. This direction of research is exemplified by Broué’s
conjecture [Br90a, Conj. 6.1] for blocks with abelian defect, see [Rou23] for a recent survey of
the issues raised. However, once those character theoretic equalities are checked (see [S17] for
a reduction of Dade’s conjecture), they may well be helpful in establishing module theoretic
statements, using arguments in the vein of [Br90b, Thm 1.1].

1.B Early results and perspectives
Soon after the conjecture was sketched by McKay and made precise by Alperin, important
verifications of (MK) followed: For symmetric groups and ℓ “ 2 already in [Mac71] and [MK72],
for a large class of solvable groups by Isaacs in [Is73], for general linear groups in characteristic
ℓ in [A76], for other finite groups of Lie type in characteristic ℓ by Green–Lehrer–Lusztig in
[GLL76], for symmetric groups and general linear groups for arbitrary primes by Olsson in
[O76]. A strong form of (MK) was proven for ℓ-solvable groups by Wolf [Wo78].

The statement (MK) itself has similarities with the so-called Harish-Chandra theory of cusp
forms for finite groups of Lie type [Sp70]. Fix G “ G

F a finite reductive group of Lie type
where F : G Ñ G is a Frobenius endomorphism defining the reductive group G over a finite
field. For an F -split Levi subgroup L of G and a so-called cuspidal character λ P IrrpLF q,
parabolic induction allows us to define a subset IrrpGF , pL, λqq Ď IrrpGF q which turns out to
be parametrized via

IrrpGF , pL, λqq ÐÑ IrrpNGF pL, λq{LF q pHCq

thanks to the Howlett–Lehrer–Lusztig theory of Hecke algebras (see for instance [GM, Thm
3.2.5]). This was generalized in the wake of the determination of ℓ-blocks as partitions of IrrpGq
for a classical group G in characteristic p ‰ ℓ by Fong–Srinivasan [FoSr82], [FoSr86], [FoSr89].
In this generalization formalized by Broué–Malle–Michel in all types, see [BMM93], one gets for
any integer d ě 1 similar subsets of unipotent characters EpGF , pL, λqq where L (non F -split
but still F -stable when d ‰ 1) is the centralizer of a so-called d-torus [BM92] of G and λ is a
so-called d-cuspidal unipotent character of LF . The above (HC) is then true up to replacing
parabolic induction by the Lusztig functor RG

L
in the definition of IrrpGF , pL, λqq.

In the meantime, a cluster of conjectures emerged around McKay’s, starting with Alperin’s
weight conjecture [A87]. Considering Brauer characters of a finite group X with respect to the
prime ℓ, the conjecture posits that

|IBrpXq| “ |AlpℓpXq| pAWCq

where AlpℓpXq is the set of X-conjugacy classes of pairs pQ,πq with Q an ℓ-subgroup of X and
π an element of IrrpNXpQq{Qq with codegree |NXpQq|{πp1q|Q| prime to ℓ. Knörr and Robinson
reduced (AWC) to a remarkable statement about ordinary characters, see [KnRo89], [N, Thm
9.24]. This was in turn generalized by E.C. Dade into a broad conjecture [Da92, Conj. 6.3]
implying both (MK) and (AWC), see [N, Thms 9.26 and 9.27].

This and the many refinements brought to Dade’s conjecture lead Broué to introduce a
strengthened version including all the extra refinements known in 2006 [Br06], which he referred
to as MAKRODINU (an acronym from the names of the authors of [MK71], [A87], [KnRo89],
[Da92], [IN], [Uno04]). See [Tu08] and [N04] for other refinements. All suggest equivalences of
algebras of a geometric nature over ℓ-adic rings of coefficients. Indeed, Broué’s own conjecture
on ℓ-blocks with abelian defect [Br90a, Conj. 6.1] asserts an equivalence of derived module
categories

DpBq – Dpbq pADCq

between an ℓ-block B of a finite group with abelian defect and its Brauer correspondent b, where
both blocks are seen as algebras over Zℓ. See [Ok00] for the case of SL2pℓmq, [ChR08, Thm 7.6]
for the case of symmetric groups, [CR13, Thm 4.33] for a proof in some cases of principal blocks
using CFSG.
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1.C A conjecture made (quasi) simple
In reducing (MK) to a statement about simple groups, it seems impossible not to involve
quasisimple groups, i.e. perfect groups G such that G{ZpGq is simple. To illustrate why,
consider even the alternating groups: characters of An (n ě 5) are not of much help to find
faithful characters of their double covers 2An, let alone to prove counting statements about
them.

In a major breakthrough, the reduction theorem by Isaacs–Malle–Navarro for McKay’s con-
jecture [IMN07] appeared in 2007. It introduces a so-called “inductive McKay condition”, for-
mally stronger than (MK), which, once checked for a given ℓ and all quasisimple groups G,
implies (MK) for ℓ and any finite group X. See the surveys [Ti14], [KM19], [Ma17b] and the
book [N] for developments after [IMN07]. This condition was reformulated in terms of centrally
isomorphic character triples, a notion devised by Navarro and the second author [NS14], see [N,
Def 10.14].

Let us recall that a character triple is any pA,X,χq with finite groups X EA and χ P IrrpXq
an irreducible character of X invariant under the conjugation action of A on X, a terminology
due to Isaacs [Is, Ch. 11]. The inductive condition (iMK) for a finite group X and a prime ℓ is
as follows (see Definition 2.5 below for the relation ěc between character triples).

First, we assume the group theoretic condition that for a Sylow ℓ-subgroup S of X there
exists NXpSq ď N ď X such that N is stable under the stabilizer Γ :“ AutpXqS of S in AutpXq,
with N ‰ X when NXpSq ‰ X, and second, that
(iMK) there exists a Γ-equivariant bijection

Irrℓ1pXq Ñ Irrℓ1pNq

such that pX ¸ Γχ,X, χq ěc pN ¸ Γχ, N, χ
1q whenever χ ÞÑ χ1.

The group N can be taken to be NXpSq but it is important to keep the freedom in many
quasisimple groups to choose a nicer overgroup N . Then the Reduction Theorem 2.10 below
simply states that for a given prime ℓ, once (iMK) is checked for all quasisimple groups X, then
it is true for any finite group, see [Ro23a, Thm B]. It is clear by induction that (iMK) implies
McKay’s equality (MK).

It is this (iMK) that we indeed prove for all finite groups and primes.

Theorem B Let X be a finite group and ℓ a prime. For any Sylow ℓ-subgroup S of X and
Γ :“ AutpXqS there exists a Γ-equivariant bijection

Ω : Irrℓ1pXq Ñ Irrℓ1pNXpSqq,

such that every χ P Irrℓ1pXq satisfies

pX ¸ Γχ,X, χq ěc pNXpSq ¸ Γχ,NXpSq,Ωpχqq.

1.D Quasisimple groups of Lie type
Whenever OutpXq is cyclic then (iMK) above boils down to an equivariant bijection χ ÞÑ χ1

such that χ and χ1 have similar restriction to ZpXq. This essentially reduces (iMK) for this type
of quasisimple groups to cases previously checked for (MK), see [Ma08, §3, §5]. It then remains
to check (iMK) for quasisimple groups of Lie type, thus making the proof of Theorem A a Lie
theoretic effort.

The reformulation of the inductive condition of [IMN07] in terms of character triple equiv-
alences originated in [S12], and the main application given there was to check (iMK) for qua-
sisimple groups of Lie type whose defining characteristic are the same prime ℓ.

After that, the main question is, of course, to prove (iMK) in the cases where X is a
quasisimple group of Lie type in characteristic p ‰ ℓ.

Apart from a few exceptions, the universal coverings of simple groups of Lie type are of the
form G “ G

F where G is a simple simply connected linear algebraic group endowed with a
Frobenius endomorphism F : G Ñ G defining G over a finite field of order q, a power of p. To
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account for so-called diagonal automorphisms one defines the inclusion G E rG associated to a
so-called regular embedding G ď rG of the algebraic groups. One also defines E acting on rG
as a group of field and graph automorphisms of G, so that G “ r rG, rGs and rG ¸ E induces the
whole of AutpGq on G.

In such a situation, we define the integer dℓpqq as the multiplicative order of q mod ℓ when
ℓ ě 3, mod 4 when ℓ “ 2. To check (iMK) an important idea from [Ma07] is to take for N the
normalizer in G “ G

F of a Sylow dℓpqq-torus S of G. The strong relation between NGpSq and
a Sylow ℓ-subgroup of G is ensured by Broué–Malle’s results [BM92] and a remark of the first
author [Ca94]. Let us mention that the relevance of dℓpqq-tori to the ℓ-local analysis of G goes
much deeper, see [Br06, §4], [Ro23b].

1.E Proving (iMK) for the non-defining primes
Malle and the second author checked the inductive condition (iMK) for the prime 2 and all
quasisimple groups in [MS16], thus proving McKay’s equality (MK) for the prime 2. Proving
(iMK) for the prime 2 is made simpler by (HC) providing an equivariant bijection and by the
fact that character triples pA,X,χq are easier to describe whenever X is perfect and |A{X| is
prime to χp1q, see [Is, 6.25].

Returning to the general case, the choice of a bijection

Irrℓ1pGq Ñ Irrℓ1pNq pΩq

has been described in [Ma07] drawing mainly on [BMM93] augmented with a discussion of
character degrees in (HC) to give a common indexing set to both sides of pΩq, see also [S09],
[S10a] and [S10b] for the N -side. This choice of the map being relatively settled, the main effort
to check (iMK) for quasisimple groups then adresses the control of the character triples on
either side and the action of OutpGq using a method introduced as [S12, Thm 2.12] and recalled
here through the variant Proposition 2.12.

Recall the choice of N as NGpSq for S a Sylow dℓpqq-torus of G. Through an elementary
application of Clifford theory, the representations of N are strongly related with the ones of
CGpSq once certain extendibility questions are solved.

For any given d ě 1 and Sylow d-torus S of pG, F q we single out in [CS19] the following
conditions where

rN “ N rGpSq DN “ NGpSq E pN “ NGEpSq.

Apdq. There is an pN -stable rN -transversal in IrrpNq where each element extends to its stabilizer
in pN .
Bpdq. Every θ P IrrpNq Y IrrpC rGpSqq extends to its stabilizer rNθ. In the case of θ P IrrpC rGpSqq

this can be done in an Irrp rN{Nq ¸ N rGEpSq-equivariant way.

For large values of d – forcing S “ t1u – the condition Apdq becomes a quite challenging
condition entirely about IrrpGq that can also be written as follows (see [S23b, Sect. 1.C]):

Ap8q. Any element of IrrpGq has a rG-conjugate χ such that p rGEqχ “ rGχEχ and χ extends to
GEχ.

For ℓ ě 3 and prime to q, what has been said above explains why (iMK) for G and ℓ is then
implied by the conjunction of Ap8q, Apdℓpqqq and Bpdℓpqqq, see [CS19, 2.4].

Condition Ap8q was finally reached in all types as [S23b, Thm A]. As noted in [CS19, 3.5]
the stabilizer statement in Ap8q settles the question of determining the action of OutpGq on
IrrpGq for all quasisimple groups G. This question has been a natural one since the completion
of the CFSG. The answer, and in fact the stronger Ap8q, is expected to have applications to
any counting conjecture, see already [FeSp23] or [Ru24] through [Ru22]. The proof of Ap8q for
all types is spread in [CS17a], [CS17b], [CS19], [S23a], [S23b] (see also [Ta18], [Ma17a]) with the
main part being devoted to the types D and 2D. We refer to the introductions of those papers
for the most challenging issues raised and the methods used.
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1.F The present paper
The above leaves us to prove the conditions Apdq and Bpdq for every d ě 1 and all groups G
of Lie type. In types not D nor 2D this is done in [CS17a], [CS17b], [CS19], accounting for the
most technical part of those texts. The main goal of the present paper is to show Apdq and Bpdq
in types D and 2D.

In Chapter 2 we recall more precisely than above the setting, the background results, and
some of the main notation. In Section 2.A the results concern general character theory and in
particular the existence of extensions of characters. Then we state the condition (iMK) in terms
of centrally isomorphic character triples. We also recall the main criterion used in types already
solved, Proposition 2.12 being a slightly generalized form that will be useful later. General finite
groups of Lie type are introduced in Section 2.C with their generators and automorphisms. We
then define the conditions Apdq and Bpdq matching the criterion for (iMK) just mentioned. We
also comment on the case of groups of type D and the important inclusion G ď G of a group of
type Dl into a group of type Bl with a common maximal torus.

In Chapter 3 we extend some of the results of [S23b]. We start by studying the centralizers
of semisimple elements in Dl,scpFpq for l ě 4. This leads to further results on the characters of
Dl,scpqq and 2Dl,scpqq. This includes groups of ranks ď 3 that will appear when dealing with
local subgroups and will help us to give a uniform treatment in the part of Chapter 5 dealing
with characters. An important feature is the partition

IrrpGq “ T \ E \ D

deduced naturally from Ap8q in terms of stabilizers and extendibility of those characters with
respect to GE rGE. In Sections 3.C and 3.D we get precise results on stabilizers and kernels of
characters specific to each of the three subsets above, see Theorem 3.16.

In the proofs of the local Conditions Apdq and Bpdq for types other than D and 2D, the
discussion splits into two main cases according to whether or not the Levi subgroup C :“ CGpSq
is a torus, the solution in the latter case – non-regular d’s – usually using Ap8q in smaller ranks.
Here we will have to use more than just Ap8q in a slightly different dichotomy also introducing
an overgroup of NGpSq in Chapter 5.

In Chapter 4, the Conditions Apdq and Bpdq are proven first for integers d ě 3 that are
additionally doubly regular for pG, F q. The integer d is called doubly regular if C and C :“
C
G

pSq are tori (hence equal) when S is a Sylow d-torus of pG, F q. The proof in that case is
simpler than the usual regular case in other types and takes advantage of the case of type Bl
being already known from [CS19]. This finally ensures (iMK) for quasisimple groups G

F of
type Dl or 2Dl and primes ℓ such that dℓpqq is doubly regular for pG, F q, see Theorem 4.1.

In the non-doubly regular case, where C is not a torus, we bring here a simplification that
would also simplify the proofs given for other types and helps keeping the case of types D and 2D

to a reasonable size. We introduce a finite group M , a subgroup of GF 1
where F 1 is a version of F

slightly altered to fit the technicality of the non-doubly regular case (notation is slightly different
in Chapters 5 and 6). This group is isomorphic to a subgroup M 1 of GF containing NGF pSq and
normalizing K

1
2 :“ G X rC,Cs and K

1
1 :“ rCGpK1

2q,CGpK1
2qs. The groups K 1

i :“ K
F
i (i “ 1, 2)

are of types D in possibly small ranks and their images Ki in G
F 1

define a central product K1.K2

which is normal of index 2 or 4 in M . We then use the knowledge of the character theory of K1

and K2 gathered from [S23b] and Chapter 3 to derive crucial information about IrrpMq. The

groups xM and ĂM being defined from M similarly to pN and rN of 1.E above from N , we establish
a theorem that reads roughly as follows (the precise statement is Theorem 5.20).

Theorem C There exists some xM -stable ĂM -transversal TpMq in IrrpMq such that moreover

any element of TpMq extends to its stabilizer in xM .

In fact a larger class of groups M with no reference to an integer d is defined in Section 5.A.
The relevance of this class of subgroups to the non-doubly regular case is given in the trichotomy
of Lemma 5.8, showing how Theorem C along with Theorem 4.1 and the known case of cyclic
defect [KS16] essentially exhaust all cases to consider. The action of automorphisms on M is
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given in Section 5.B. Afterwards, we study the stabilizers and extendibility of the characters of
M in Section 5.C. The proof of Theorem C as Theorem 5.20 is our Sections 5.D-E where we
discuss several relevant subsets of IrrpMq defined according to the restriction of characters to
K 1

1.K
1
2 and the various subsets Ti, Ei, and Di of IrrpKiq selected from the description given in

[S23b].
From there the end of the proof of Conditions Apdq and Bpdq in Chapter 6 uses the fact that

d is doubly regular for pK1, F
1q where M

˝ is a central product K1.K2 of F 1-stable simple simply-
connected groups of type D. Let S1 be a Sylow d-torus of pK1, F

1q. Thanks to Chapter 4, (iMK)
holds in K

F 1

1
, thus providing a bijection Ω1 : Irrℓ1pK1q Ñ Irrℓ1pNK1

pS1qq with strong properties
in terms of the ěc relation, providing more character correspondences and establishing a version
of Ap8q for NMpS1qF

1
, see Section 6.A. This is completed in Section 6.C with results showing

that indeed NGpS1q ď M and translating the results obtained for pG, F 1q into similar ones for
pG, F q with a special care for automorphisms. This essentially completes the proof of Apdq.
Meanwhile, Section 6.B establishes Bpdq by applying results on the Clifford theory for pM˝qF

1

gathered in Section 5.E.
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2 Background results

The aim of this chapter is twofold. On the one hand, we recall some notation used later, as well
as the inductive McKay condition (iMK), with a criterion for verifying it in 2.D. We also state
the relevant results for groups of Lie type that ensure part of the required assumptions. We
conclude with some group-theoretic results for groups of type Dl.

2.A Characters and extensions
Our notation tries to be as classical as possible, some being recalled in [S23b, 1.A]. We are
dealing a lot with situations where X E A are finite groups and χ P IrrpXq is invariant under
the conjugation action of A, i.e. χ P IrrpXqA. Extendibility is then a major issue.

Notation 2.1 Let X EA be finite groups. Let X Ď IrrpXq and ψ P IrrpAq.
We denote by IrrpA | X q the set of irreducible components of induced characters χA for

χ P X , and by IrrpψsXq the set of irreducible components of the restriction ψsX .
We say that maximal extendibility holds with respect to X E A for X , if X is A-stable

and every χ P X extends to its stabilizer Aχ. When this occurs, an extension map is any
A-equivariant Λ: X Ñ \XďIďAIrrpIq such that for any χ P X , Λpχq P IrrpAχq is an extension
of χ. Such a map (in particular satisfying A-equivariance) always exists as soon as maximal
extendibility holds with respect to X E A for X . When no set X is specified, maximal
extendibility with respect to X EA means it holds for X “ IrrpXq.

We denote by LinpXq the set of linear characters of X.

Whenever maximal extendibility holds with respect to X E A for a subset X of IrrpXq, let
CliffpA | X q be the set of A-conjugacy classes of pairs pχ, ηq with χ P X and η P IrrpAχ | 1Xq.
After an extension map Λ has been chosen, Clifford theory (see for instance [N, Sect. 1.8]) leads
to the bijection

CliffpA | X q
„
ÝÑ IrrpA | X q by pχ, ηq ÞÑ pΛpχqηqA. (2.1)

This fact and its variants are key for exploring the characters of local subgroups such as the
group M defined later in the paper.

Let us gather here some situations where extendibility is ensured.
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Proposition 2.2 Assume X EA.
(a) If A{X ZpAq is cyclic, then maximal extendibility holds with respect to X EA.
(b) If A{X is abelian and maximal extendibility holds with respect to X EA, then for any

subgroup X ď J ď A we have maximal extendibility with respect to X E J and to
J EA.

(c) Let n ě 1 and denote by Sn the corresponding symmetric group. If maximal extendibil-
ity holds with respect to X E A for some set T Ď IrrpXq then it holds with respect to
Xn EA ≀ Sn for the subset Tn :“ tχ1 ˆ ¨ ¨ ¨ ˆ χn | χi P Tu of IrrpXnq.

(d) If X is abelian and E ď A satisfies A “ XE, then maximal extendibility holds with
respect to X E A for tλ P LinpXq | λprEλ, Eλs X Xq “ 1u. The latter is the whole
IrrpXq when in addition maximal extendibility holds for E X X E E, e.g. when A is a
semidirect product A “ X ¸ E.

(e) Let χ P IrrpXq and assume A “ XV where V ď A is such that χ0 :“ χsV XX P IrrpV XXq
and extends to some rχ0 P IrrpVχq. Then χ extends to Aχ “ XVχ and there exists some
rχ P IrrpXVχq extending χ with rχsVχ “ rχ0.

Proof. For (a), use [Is, Cor. 11.22]. For (c), see [S23b, Lem. 2.6]. For (e), see [S10b, Lem. 4.1].

In (b) only maximal extendibility with respect to J E A is nontrivial. But then we can use
the fact that since A{X is abelian then maximal extendibility is equivalent to elements of IrrpAq
having multiplicity-free restrictions to X, see for example [S23b, 1.A]. But then restrictions to
J can’t have any multiplicity ě 2.

For (d) note first that rX,Eλs is a subgroup of kerpλq. So if moreover λprEλ, Eλs XXq “ 1

then indeed rAλ, Aλs X X ď kerpλq since Aλ “ XEλ. We can then change X E Aλ into
X{pXX rAλ, AλsqEAλ{rAλ, Aλs thus reducing the problem to the case when Aλ is abelian. The
extension problem is then easy. When in addition maximal extendibility holds for E X X E E,

then for any λ P IrrpXq, one has λsEXX “ rλ
U
EXX

for some (linear) character rλ of Eλ ď EλsEXX

and therefore λprEλ, Eλs XXq “ 1 since rλprEλ, Eλsq “ 1.

When a semidirect product B ¸ C acts on a group X we are interested in characters of X
whose stabilizer in BC decomposes as B1C 1 with B1 ď B and C 1 ď C. This property can be
given a different formulation in terms of C-stable B-transversals ([S23a, Lem. 1.3]). See also
the reformulation of the Ap8q condition in 2.17 or Proposition 2.12(iii).

The following statement allows to deduce an extension map from a given extension map for
a given transversal.

Proposition 2.3 Assume X EAE pA with X E pA. Let pA0 ď pA with pA “ A pA0 and A “ A0X

for A0 :“ pA0 XA. Let X0 :“ pA0 XX and assume A{A0 – X{X0 abelian.
Assume maximal extendibility holds with respect to X0 E X and assume there is an

pA0-equivariant extension map with respect to X0 E A0 for T an pA0-stable X-transversal of
IrrpX0q.

Then X EA satisfies maximal extendibility with a LinpA{A0q ¸ pA0-equivariant extension
map rΛ. Namely when ρ P IrrpXq, a P pA0 and λ P LinpA{A0q is seen as character of A then

rΛpρaq “ rΛpρqa and rΛpλsX ρq “ λsAχ
rΛpρq.
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Proof. We essentially recall the proof of [CS19, Thm
4.2]. Let Λ be the extension map with respect to
X0 E A0 for T. Let ρ P IrrpXq. By the transver-
sality property of T, ρ lies over a unique character
ρ0 P T Ď IrrpX0q. Since maximal extendibility is as-
sumed with respect to X0 E X, Clifford theory en-
sures that there exists an extension rρ0 P IrrpXρ0q
of ρ0 with rρX

0
“ ρ, see (2.1). Note that accord-

ing to Proposition 2.2(e) there exists a common ex-
tension ρ1

0
of rρ0 and Λpρ0qsArρ0

to Xρ0Arρ0 . Then

pρ1
0qAρ

T
X

“ pρ1
0sXρ0

qX “ ρ since Aρ “ XArρ0 and

Aρ0 “ Xρ0pA0qρ0 holds by the assumption on T as re-

called before the Proposition. So rΛpρq :“ pρ1
0qAρ is an

extension of ρ to Aρ. It is then easy to check from its

construction and the pA0-equivariance of Λ that rΛ is
LinpA{A0q ¸ pA0-equivariant.

pA

✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉

pA0 A

✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉

A0 X

✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉

X0

The following statement describes situations where the stabilizer of a character writes as a
semidirect product and has extensions whose stabilizers have analogous properties.

Lemma 2.4 Let A be a finite group, XEA and rXEA such that X ď rX and rX{X is abelian.
Suppose that there exists a subgroup Y ď A such that A “ rXY , X “ Y X rX and Y {X is
abelian. Let L⊳A with L “ JpY XLq for J :“ rX XL and abelian L{X. Let φ P IrrpXq with
Aφ “ rXφYφ. Assume that φ extends to rXφ and to pYφqpφ for every pφ P IrrpJφ | φq.

(a) Then φ extends to Jφ and every extension pφ of φ to Jφ satisfies

pAφqpφ “ rXpφpYφqpφ.

(b) Every κ P IrrpJ | φq satisfies p rXY qκ “ rXκYκ and extends to JYκ.
(c) Every χ P IrrpL | φq satisfies p rXY qχ “ rXχYχ and extends to LYχ.
(d) Let z P ZpAq X Y . Assume that φ has an extension φ1 to pYφqpφ with z P kerpφ1q. Then

every χ P IrrpL | φq has an extension to LYχ that contains z in its kernel.

Note that Yφ in this situation stabilizes Jφ and hence acts on IrrpJφ | φq. Now pYφqpφ denotes

the stabilizer of pφ in Yφ. By this construction pYφqpφ does not in general contain Jφ, the group

on which pφ is defined.

Proof. We first prove part (a): As J ď rX and φ

extends to rXφ by assumption it is clear that φ extends

to Jφ. Let β P Irrp rXφq be an extension of φ. Then
pφ and βsJφ are extensions of φ so pφ “ λpβsJφq for

some λ P LinpJφ{Xq. Since rX{X is abelian, λ is rXφ-

invariant, but then λpβsJφq “ pφ is also rXφ-invariant,

i.e., rXpφ “ rXφ. As

rXφYφ “ Aφ ě pAφqpφ ě rXpφ,

this implies pAφqpφ “ rXpφpYφqpφ as required.

A

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

❅❅
❅❅

❅❅
❅❅

Z

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧
⑧⑧
⑧⑧

rX

❄❄
❄❄

❄❄
❄❄

L

❄❄
❄❄

❄❄
❄❄

❄

⑧⑧
⑧⑧
⑧⑧
⑧⑧

Y

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

J

❅❅
❅❅

❅❅
❅

X

Y X L

Let now κ “ ppφqJ . As φ extends to Ypφ there exists some extension rφ of pφ to Zpφ “ JφYpφ for

Z “ JY according to Proposition 2.2(c). Because of Zpφ “ JpφYpφ, we have JYpφ “ JYκ “ Zκ and

prφqJZ pφ is an extension of κ to Zκ “ JYκ. Then every extension of pφ to Zpφ “ pJY qpφ defines by
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induction a character of Zκ “ JYκ. This proves the statement in (b).
Since L{Y is abelian, we see that every extension rκ of κ to Lκ is Yκ-invariant. The character

χ “ rκL is irreducible and Yκ-invariant. The group Arκ contains Yrκ “ Yκ. Recall Aκ “ rXκYκ and
hence

Yκ “ Yrκ ď Arκ ď Aκ “ rXκYκ.

This shows Arκ “ rXrκYrκ, implying Aχ “ rXχYχ. Let pκ be an extension of rκ to Zκ, which exists
as κ extends to Zκ and Y {X is abelian. Then pκZκ is irreducible and an extension of χ. This
proves part (c).

For part (d), by assumption we have that φ extends to Ypφ such that z is contained in the

kernel of some extension or equivalenty that φ extends to Zpφ{ xzy. By the above construction,

pφ extends to JφYpφ{ xzy and hence κ “ ppκqJ extends to Zκ{ xzy and accordingly χ “ rκL extends

to Zχ{ xzy.

2.B Character triples and inductive McKay condition
Character triples pA,X,χq (where X E A and χ P IrrpXqA) and certain relations on them
help characterizing the situations where χ does not extend to A. See [Isa, 11.24] for some early
occurrence of the notion and Definition 2.5 below for the relation ěc. We recall more recent
results and a reduction theorem for McKay’s conjecture in that language (see [N], [S18], [Ro23a]).

By a classical application of Schur’s lemma, each character triple pA,X,χq defines a projective
representation P : A Ñ GLχp1qpCq whose restriction to X is a linear representation affording the
character χ, see [Is, Ch. 11], [N, Def. 5.2].

Definition 2.5 — Centrally isomorphic character triples [N, Def. 10.14]. Let
pA,X,χq and pH,M,χ1q be two character triples with CApXq ď H ď A, A “ XH, and
H XX “ M . We write

pA,X,χq ěc pH,M,χ1q,

if two projective representations P and P 1 of A and H associated with χ and χ1 exist such
that the factor sets of P and P 1 coincide on H ˆ H and such that for every x P CApXq, the
matrices Ppxq and P 1pxq are scalar matrices to the same scalar.

When dealing with ěc the following lemma will be useful.

Lemma 2.6 Let X EA and H ď A with A “ XH and CApXq ď H. We write M :“ X XH.
Let χ P IrrpXq and χ1 P IrrpMq.
(a) Then

pA,X,χq ěc pH,M,χ1q,

if there exist rχ P IrrpAq and rχ1 P IrrpHq with rχsX “ χ, rχ1sM “ χ1 and Irrp rχs
CApXqq “

Irrp rχ1s
CApXqq.

(b) Assume pA,X,χq ěc pH,M,χ1q. Let κ P IrrpCApXqq. Then χ has an extension to
A that belongs to IrrpA | κq if and only if χ1 has an extension to H that belongs to
IrrpH | κq.

(c) Assume pA,X,χq ěc pH,M,χ1q and let J be a group with X ď J ď A. Then
pJ,X, χq ěc pJ XH,M,χ1q

Proof. Parts (a) and (b) follow from Lemma 2.15 of [S18]. Part (c) is straightforward.

Let us now recall the inductive McKay condition (iMK) from our introduction.

Definition 2.7 (iMK) Let X be a finite group, ℓ a prime, S a Sylow ℓ-subgroup of X and
Γ :“ AutpXqS . We say that X satisfies the inductive McKay condition (iMK) for the prime
ℓ whenever
(a) there exists NXpSq ď N ď X such that N is stable under Γ, with N ‰ X when

NXpSq ‰ X, and
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(b) there exists a Γ-equivariant bijection

ΩX,ℓ : Irrℓ1pXq Ñ Irrℓ1pNq

such that pX ¸ Γχ,X, χq ěc pN ¸ Γχ, N,ΩX,ℓpχqq for any χ P Irrℓ1pXq.

In our later considerations, when proving (iMK) for a given X it will be crucial to use the
fact that it is known already for certain subgroups of X.

An important tool to deal with character triple equivalences is the following Butterfly The-
orem [S18, Thm 2.16], [N, Thm 10.18]. It is crucial to navigate through various variants of
(iMK).

Theorem 2.8 Let pA,X,χq and pH,M,χ1q be two character triples with

pA,X,χq ěc pH,M,χ1q.

We assume that X E A1 and define κ : A Ñ AutpXq, κ1 : A1 Ñ AutpXq the maps induced by
conjugation. If κpAq “ κ1pA1q then

pA1,X, χq ěc pκ1´1κpHq,M, χ1q.

Remark 2.9 (Relation with [IMN07]). Let ℓ be a prime and let X be the universal covering of
a finite simple group X :“ X{ZpXq. As an application of the above one can see that X satisfies
the inductive McKay condition of [IMN07, §10] for ℓ if, and only if, X satisfies the condition
(iMK) of Definition 2.7 for ℓ. See also a version of the reduction theorem of [IMN07] using the
ěc relation in [N, Def. 10.23, Thm 10.26].

Indeed, as explained in [S12, Prop. 2.3], X satisfies the conditions (1-8) of [IMN07, §10] if
and only if the group theoretic conditions of Definition 2.7(a) are satisfied by X, ℓ, a Sylow
ℓ-subgroup S of X, along with a subgroup N , and there is an AutpXqS -equivariant bijection
Ω: Irrℓ1pXq Ñ Irrℓ1pNq such that each pair pχ,Ωpχqq satisfies the condition (cohom) introduced
in Definition 2.4 of [S12]. The latter means that there exists a group A with G :“ X{Z E A

for Z :“ kerpχq X ZpGq “ kerpΩpχqq X ZpGq such that, by the construction in the proof of [S12,
Prop. 2.8], A induces the whole AutpXqS,χ on X{Z, and the characters χ and Ωpχq of X{Z
and N :“ N{Z associated with χ and Ωpχq have extensions to A, resp. NApNq lying above
the same ǫ P IrrpCApGqq. According to Lemma 2.6(a) and thanks also to the group theoretic
properties of N and X, this condition (cohom) is equivalent to the existence of an overgroup
A of G inducing AutpXqS,χ on X{Z and such that

pA,G,χq ěc pNApNq, N,Ωpχqq.

But then the Butterfly Theorem 2.8 implies that

ppX{Zq ¸ AutpXqS,χ,X{Z,χq ěc ppN{Zq ¸ AutpXqS,χ, N{Z,Ωpχqq.

It is then trivial to lift that into the relation

pX ¸ AutpXqS,χ,X, χq ěc pN ¸ AutpXqS,χ, N,Ωpχqq

defining (iMK).

The above is key to rephrase Isaacs–Malle–Navarro’s reduction theorem on the McKay con-
jecture as the following criterion taken from [Ro23a].

Theorem 2.10 Let ℓ be a prime. If any universal covering X of a finite nonabelian simple
group (see [GLS, Def 5.1.1]) satisfies the above (iMK) for ℓ, then any finite group satisfies it.

Proof. To see the equivalence between this and [Ro23a, Thm B] we must, for X the universal
covering of a nonabelian simple group, replace the overgroup X ¸ Γ in our (iMK) by any
overgroup A. As noted in the comment after Conjecture A in [Ro23a], this is a straightforward
application of the above Lemma 2.6(c) and the Butterfly Theorem 2.8.
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Theorem 2.11 Let ℓ be a prime and X the universal covering of a finite simple group X . If
ℓ ě 5, assume X is not a group of Lie type D or 2D in characteristic ‰ ℓ. Then X satisfies
the above (iMK) for ℓ.

Proof. By the Classification of Finite Simple Groups, a finite nonabelian simple group is either
an alternating group, a sporadic group or a simple group of Lie type, see [Asch, Ch. 47]. We have
seen in Remark 2.9 that for the universal cover X of a simple group and a prime ℓ, the condition
(iMK) is equivalent to the simple group X{ZpXq satisfying the inductive McKay condition of
[IMN07]. This is the condition checked in [Ma08, Thm 3.1 and Thm 5.1] for alternating groups
and sporadic groups. For simple groups of Lie type in characteristic ℓ, this is checked as [S12,
Thm 1.1]. For ℓ “ 2 and all types, this is the main result of [MS16]. For ℓ “ 3 and all types, see
[S23b, Thn C] and its proof. For other cases of groups of Lie type, [IMN07, Ch. 16 and 17] covers
the types 2B2 and 2G2, [CS13, Thm A] covers the types 3D4, E8, F4,

2F4, and G2, [CS17a] the
types A and 2A, [CS17b] the type C, [CS19, Thm A] the types B, E6,

2E6 and E7. This clearly
leaves out only types D or 2D for primes ℓ ě 5 different from the defining characteristic.

In the cases reviewed in the above proof, (iMK) was mostly ensured via the criterion [S12,
Thm 2.12] leading to the conditions Ap8q, Apdq and Bpdq described in the Introduction, see
also Theorem 2.21. At some point we will need the following slight reinterpretation of [S12, Thm
2.12].

Proposition 2.12 Let rGDG ě N and E be finite groups, such that E acts on rG normalizing
G, NGpNq “ N , C rG¸EpGq “ Zp rGq, G ¸ E “ G pN and rG “ G rN , where rN :“ N rGpNq and

pN :“ NGEpNq. Let G Ď IrrpGq and N Ď IrrpNq be rN pN -stable. Assume the following:
(i) The quotient rG{G is abelian. Maximal extendibility holds with respect to GE rG for G

and with respect to N E rN for N .
(ii) Denoting rG :“ Irrp rG | Gq and rN :“ Irrp rN | N q, there exists some Linp rG{Gq ¸ pN -

equivariant bijection
rΩ : rG ÝÑ rN ,

such that rΩ
` rG X Irrp rG | ξq

˘
“ rN X Irrp rN | ξq for every ξ P IrrpZp rGqq.

(iii) There exists some E-stable rG-transversal G0 in G, such that every χ P G0 extends to
GEχ.

(iv) There exists some pN-stable rN-transversal N0 in N , such that every ψ P N0 extends to
pNψ.

Then there exists some rN pN -equivariant bijection

Ω : G ÝÑ N ,

such that
pp rGEqχ, G, χq ěc pp rN pNqχ, N,Ωpχqq for every χ P G.

Proof. The proof is essentially the same as the one of Theorem 2.12 in [S12]. Let us comment
on the differences between the two statements. In [S12] the focus was on the characters in
Irrℓ1pGq for some prime ℓ but the degree of the characters did not play any role in the arguments
used. The group theoretical assumptions in [S12, Thm 2.12] are also related to a prime ℓ and the
corresponding Sylow subgroup but they are only used through the fact that N is self-normalizing
in G along with GE “ G pN and rG “ G rN in rGE. The assumptions made in (iii) and (iv) are
equivalent to the original assumptions of [S12, Thm 2.12] in terms of stabilizers thanks to [S23a,
Lemma 1.4].

The proof of [S12, Thm 2.12] then yields a rN pN -equivariant bijection Ω : G ÝÑ N such that
for any χ P G the pair pχ,Ωpχqq satisfies the condition (cohom) introduced in Definition 2.4 of
[S12]. Then our discussion is very similar to the one given in Remark 2.9 above. The condition
(cohom) implies then that there exists a group A with G :“ G{Z E A for Z :“ kerpχq X ZpGq
such that A has the same image as Gp rN pNqχ in AutpGq, and the characters χ and Ωpχq of G
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and N :“ N{Z deflations of χ and Ωpχq satisfy

pA,G,χq ěc pNApNq, N,Ωpχqq.

Now taking into account the Butterfly Theorem 2.8 we get

pp rGEqχ{Z,G{Z,χq ěc pp rN pNqχ{Z,N{Z,Ωpχqq.

The sought for relation pp rGEqχ, G, χq ěc pp rN pNqχ, N,Ωpχqq is then an easy consequence of
the definition of ěc.

2.C Groups of Lie type, generators and automorphisms
We now make more precise the notation for G, rG, E and the conditions Ap8q, Apdq and Bpdq
from our Introduction. Additional notation will be given in Section 2.E for type D.

Let p be a prime, q “ pf for some f ě 1, F be an algebraic closure of Fq, the field with q

elements. We consider G a simple simply connected linear algebraic group over F with the choice
of a maximal torus and a Borel subgroup T ď B, thus fixing a root system ΦpG,Tq with a basis
∆. There is a presentation by the generators xαpt1q, nαpt2q :“ xαpt2qx´αp´t´1

2
qxαpt2q P NGpTq

and hαpt2q :“ nαpt2qnαp1q´1 P T for α P ΦpG,Tq, t1 P F, and t2 P Fˆ, subject to the Chevalley
relations, see [GLS, Thm 1.12.1]. In particular the commutator formula [GLS, Thm 1.12.1(b)]
has consequences that we use repeatedly, see also 2.24(d) below.

2.13 If α, β P ΦpG,Tq are such that pZα ` Zβq X ΦpG,Tq “ t˘α,˘βu, then

rxαptq,xβpt1qs “ 1

for any t, t1 P F. This is in particular the case if α K β in type D, or in type B with α K β

and β a long root.

We denote by Fp the bijective endomorphism of G sending any xαptq to xαptpq. We denote
by EpGq the group of abstract group automorphisms of G generated by Fp and the graph
automorphisms of type xǫδptq ÞÑ xǫδ1 ptq for t P F, δ P ∆, ǫ P t1,´1u and δ ÞÑ δ1 is a symmetry
of the Dynkin diagram of ∆.

We denote by F : G Ñ G a Frobenius endomorphism defining some Fq-structure on G pre-

serving T ď B, i.e. F “ F
f
p ˝ σ with σ some graph automorphism (possibly trivial) as above.

We denote by L the Lang map on G defined by Lpgq “ g´1F pgq for g P G.
Let EpGF q be the image of CEpGqpF q in AutpGq by restrictions to G “ G

F . The kernel of
the latter is the subgroup generated by F (see [GLS, Lem. 2.5.7]), so for instance stabilizers
EpGF qS for F -stable subsets S of G make sense.

We assume chosen a so-called regular embedding G ď rG with rG also defined over Fq with

Frobenius endomorphism F extending the one of G, and such that Zp rGq is connected and
rG “ GZp rGq. We can assume that the action of EpGq extends to rG, see [MS16, Sect. 2] or
[GM, Prop. 1.7.5]. The action of rGF on G

F by conjugation provides all diagonal automorphisms
of GF , while rGF ¸EpGF q can be formed and induces the whole AutpGF q on G

F in the general
case where G

F is quasisimple not of type B2, G2 or F4, see [GLS, Thm 2.5.12].

Notation 2.14 — Diagonal automorphisms of GF . Concerning OutpGF q, note that C rGF pGF q “

Zp rGF q “ Zp rGqF (see [B06, Lem. 6.1]) with GXZp rGq “ ZpGq. Therefore rGF {GFC rGF pGF q “

pGZp rGqqF {GF Zp rGqF is isomorphic to the group of cofixed points rZpGF q :“ ZpGq{rZpGq, F s
by Lang’s theorem, the map being explicitly gz ÞÑ g´1F pgqrZpGq, F s whenever g P G,
z P Zp rGq with gz P rGF . Thus, the group rZpGF q ¸ EpGF q acts on IrrpGF q.

Note that |ZpGqF | “ |ZpGq{rZpGq, F s| and indeed since ZpGq is either cyclic or of order 4,
the two groups ZpGqF and ZpGq{rZpGq, F s are isomorphic even as EpGF q-groups.

We often abbreviate G :“ G
F and rG :“ rGF .
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Notation 2.15 — Overgroups

(

G. A slightly different way of dealing with diagonal automor-
phisms of GF is as follows, see [S23a, Rem. 1.16(a)]. From the fact that CGpGF q “ ZpGq (and
therefore ZpGF q “ ZpGqF ) recalled above, it is easy to see that NGpGF q “ L´1pZpGqq ď G.
We set

(

G “ L´1pZpGqq.

Observe more generally that G
F “ L´1p1q E L´1pZq E

(

G with |L´1pZq{GF | “ |Z| for any

subgroup Z ď ZpGq. Moreover

(

G induces on GF the whole group of diagonal automorphisms

of G
F since

(

G{ZpGq – pG{ZpGqqF by the natural map. We denote by Ep

(

Gq ď Autp

(

Gq

the restriction of CEpGqpF q to

(

G. Then, in a way similar to rGF ¸ EpGF q, the overgroup

(

G ¸ Ep

(

Gq induces the whole AutpGF q on G
F . Note however that C rGFEpGqpGq “ Zp rGF q

while C (

GEp

(

Gq
pGq “ ZpGq

A
F s (

G

E
.

Remark 2.16. Note that in the above construction, one has

(

G ď G
F e for e the exponent of the

finite group ZpGq ¸E1 where E1 is the subgroup of AutpZpGqq generated by F s
ZpGq. Indeed, if

g P G and g´1F pgq “ z P ZpGq, then g´1F epgq “ zF pzq . . . F e´1pzq can be written as pzF qeF´e

in ZpGq ¸ E1.

2.D The conditions (iMK), Apdq and Bpdq
Following the road map sketched by Proposition 2.12 we review the choices of groups rG, N to
be made and how the assumptions translate for a quasisimple group of Lie type.

The choice for the group of rG of Proposition 2.12 is obviously rGF , while E is EpGF q in
the notation of the preceding section. Assumption 2.12(iii) has the following generalization,
introduced in [CS17b].

2.17 — Condition. Ap8q: There exists some EpGq-stable rG-transversal T in IrrpGq, where
every χ P T extends to GEpGqχ.

For the equivalence between the above version of Ap8q and the version in terms of stabilizers
used in the Introduction, see [S23a, Lem. 1.3].

Theorem 2.18 — [S23b, Theorem A]. Condition Ap8q holds for any simple simply con-
nected G and Frobenius endomorphism F .

Let us fix d ě 1. Recall the notion of (F -stable) d-tori in pG, F q, see [MT, Def. 25.6] and
the corresponding Sylow theory.

Let S be a Sylow (i.e. maximal) d-torus in G. Let N :“ NGF pSq, pN :“ NGFEpGF qpSq, rN :“

N rGF pSq and rC :“ C rGF pSq. We recall the following conditions already seen in our introduction:

2.19 — Condition Apdq. There exists some pN -stable rN -transversal M in IrrpNq, where
every χ P M extends to pGFEpGF qqS,χ.

2.20 — Condition Bpdq. (a) Maximal extendibility holds with respect to NE rN and rCE

rN .
(b) There exists some Linp rG{Gq ¸ pN -equivariant extension map rΛ with respect to rC E rN .

For ℓ an odd prime not dividing q, denote by d :“ dℓpqq the multiplicative order of q in
pZ{ℓZqˆ. Then the strong relation between d-tori and ℓ-subgroups allows us to choose N as above
to apply Proposition 2.12 with conditions Apdq and Bpdq essentially completing the assumptions
2.12(i) and (iv). We get

Theorem 2.21 — [CS19, Thm 2.4]. Assume that ℓ is a prime with ℓ ∤ 6q, GF {ZpGF q is
simple and G

F is its universal covering group. Assume Bpdℓpqqq and Apdℓpqqq are satisfied.
Then the condition (iMK) of Definition 2.7 holds for G

F and ℓ, taking for N the subgroup
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NGpSqF where S is a Sylow dℓpqq-torus of pG, F q.

Proof. Since Ap8q is always satisfied thanks to Theorem 2.18, [CS19, Thm 2.4] tells us that
the inductive McKay Condition of [IMN07] is satisfied for the simple group G

F {ZpGF q and
the prime ℓ with the above choice of N . But we have seen that it is equivalent to (iMK) in
Remark 2.9.

Remark 2.22. If d P t1, 2u, G “ Dl,scpFq and F is a Frobenius endomorphism of G such that
G
F “ Dǫ

l,scpqq, then the Conditions Apdq and Bpdq are known for pG, F q, see [MS16, Thm 3.1].

2.E The curious case of types Dl and Bl

In addition to what has been said about general groups GF with G simple simply connected, we
introduce here more notation, in particular related to the inclusion G ď G where G has type
Dl and G type Bl for some l ě 4, see also [S10a, 10.1], [MS16, 2.C], [S23a, Sect. 2.A].

Let e1, . . . , el be the orthonormal basis of the l-dimensional Euclidean vector space ‘l
i“1

Rei
(l ě 4). Set l “ t1, . . . , lu and

Φ :“ t˘ei ˘ ej | i, j P l, i ‰ ju Ď Φ :“ t˘ei,˘ei ˘ ej | i, j P l, i ‰ ju.

These are root systems of type Dl and Bl, respectively, with bases ∆ :“ tα1, α2, . . . , αlu and ∆ :“
tα1, α2, . . . , αlu, where α1 “ e1 ` e2, α1 “ e1 and αi :“ ei ´ ei´1 (i ě 2), see [GLS, Rem. 1.8.8].
Let G :“ Bl,scpFq be the simple simply connected linear group with root system Φ “ ΦpG,Tq for
some maximal torus T. We recall xαpt1q, nαpt2q and hαpt2q its Chevalley generators, where α P
Φ, t1 P F and t2 P Fˆ. We denote by Xα the group xαpFq, N :“

@
nαptq | α P Φ, t P Fˆ

D
“ N

G
pTq

and W :“ N{T the Weyl group of G together with the canonical epimorphism ρ : N ÝÑ W . As
explained in [S10a, 10.1] and [MS16, 2.C] the subgroup G :“ xXα | α P Φy is a simply connected
simple group over F with same maximal torus T “ T and the root system Φ “ ΦpG,Tq of type
Dl. We set N :“ NGpTq, W :“ N{T and the surjection ρ : N ÝÑ W .

For I Ď l and ζ P Fˆ we set hIpζq :“
ś
iPI heipζq.

We assume chosen ̟ P Fˆ with ̟2 “ ´1. We set n˝
1 :“ ne1p̟q P N

G
pTq. The Chevalley

relations give easily the following statement.

Lemma 2.23 — [MS16, 2.C]. Let γ : G ÝÑ G be the graph automorphism defined by
xǫαiptq ÞÑ xǫα1

i
ptq for t P F, ǫ “ ˘1, i P l and pα1

1, α
1
2, α

1
3, α

1
4, . . . , α

1
lq :“ pα2, α1, α3, α4, . . . , αlq.

Then n˝
1 normalizes G and induces γ on it, namely γpxq “ xn

˝
1 for any x P G.

Set f ě 1, q :“ pf , F P tF fp , F
f
p ˝ γu a Frobenius endomorphism of G. Then in the standard

notation G
F “ Dǫ

l,scpp
f q where ǫ “ 1 or ´1 according to F “ F

f
p or F fp ˝ γ. The extension of F

to G is chosen as follows. If F “ F
f
p then F is defined the same on the generators xαptq as in

the preceding section. By contrast when F “ F
f
p ˝ γ we define F :“ F

f
p ˝ γ where γ is the inner

automorphism of G defined by γpxq “ xn
˝
1 for x P G. In both cases G

F
“ Bl,scpp

f q.

We denote by EpGq the subgroup of EpGq generated by Fp and γ. We denote by EpGF q,

respectively Ep

(

Gq, the corresponding subgroup of EpGF q, respectively Ep

(

Gq.

We describe below properties related to the centers of G and G
F . This can be easily deduced

from [GLS, Thm 1.12.6].

2.24 (a) According to [GLS, Table 2.2] the center of G is the 2-group generated by hlp̟q
and h0 :“ hα1

p´1qhα2
p´1q “ he1p´1q “ pn˝

1
q2.

(b) We have xh0y “ rZpGq, γs “ ZpGEpGqq “ ZpGq.
(c) |ZpGF q| “ 4 if and only if p ‰ 2 and

(i) ǫ “ 1 and 4 | pq ´ 1ql; or
(ii) ǫ “ ´1 and 4 ∤ pq ´ 1ql, in particular 2 ∤ f .
In all other cases: |ZpGF q| “ gcdp2, q ´ 1q.

(d) if α, β P ΦpG,Tq are both short roots and α K β, then rnαptq,nβpt1qs “ h0 for any
t, t1 P Fˆ, see [S07, Bem. 2.1.7].
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3 Centralizers of semisimple elements and consequences for IrrpGF q

From now on the groups G, G “ G
F are as defined in Section 2.E and we use the notation

introduced there for groups of type D.
The aim of this chapter is to complement the results of [S23b] on elements of IrrpGq that

don’t extend to their stabilizer in GEpGq. We introduce the sets E and D in Definition 3.9
that will be of constant use in Chapter 5. Through the equivariant Jordan decomposition of
characters of [S23b, Thm B], analyzing elements of E Y D leads us to a study of centralizers of
semisimple elements in the adjoint group of G. This extends the results of [CS24]. It will be
also of some use in our study of relative Weyl groups in Section 4.D.

Our main theorem is Theorem 3.16 dealing with kernel and stabilizers of characters outside
the transversal T from Theorem 2.18. This includes a study of characters of groups of rank
1 ď k ď 3, called Gk in 3.D, that occur naturally in centralizers of Sylow d-tori.

3.A Centralizers of semisimple elements
We describe here properties of the centralizers of semisimple elements s0 P Dl,scpFq. We keep
G “ Spin2lpFq, F , T, and the notation for the associated roots as in Section 2.E.

Notation 3.1 Let π : G Ñ H be the adjoint quotient of G with Fp, γ and F acting accordingly
also on H. Let πSO : G “ Spin2lpFq Ñ SO2lpFq be the the natural morphism with kernel xh0y,
see 2.24.

For every I Ď l we set RI :“ Φ X xei | i P IyZ , RI :“ Φ X RI “ Φ X xei | i P IyZ and
TI :“ T X

@
Xα | α P RI

D
.

Remark 3.2. (a) Whenever t1, . . . , tl P Fˆ, then πSOp
śl
i“1

heiptiqq has the eigenvalues tt˘2

i |
i P lu as an element of SO2lpFq, see the description of πSOpheiptiqq in [GLS, 2.7].

(b) Let s0 P G be semisimple. According to [FoSr89, 2A], s0 and s0h0 are G-conjugate if and
only if 1 and ´1 are both eigenvalues of πSOps0q. Using then (a) above, an element s0 P T

is G-conjugate to s0h0 if and only if s0 can be written as
ś
i heiptiq with t1,̟u Ď t˘t˘1

i |
i P lu.

3.3 — Weyl groups and parabolic subgroups. We denote by S˘l the subgroup of the
permutation group of lY ´l whose elements σ satisfy σp´xq “ ´σpxq for any x P lY ´l. The
Weyl group W “ N

G
pTq{T can be identified with S˘l as in [GLS, Rem. 1.8.8] or [S23a, 2.B].

We write SD
˘l for the normal subgroup of W consisting of permutations σ with even

| ´ l X σplq|. This coincides with W “ NGpTq{T.
If I Ď l, then the ordinary symmetric group SI can be identified with the (parabolic)

subgroup SB
I of W “ S˘l fixing every element of lzI and stabilising I. For example SB

I is the
trivial group if |I| “ 1. We define SD

˘I :“ W X SB
I .

Given a partition M of a set M Ď l we set SB
M “

ś
IPM SB

I the direct product of subgroups
SB
I with I P M.

3.4 — Elements of T and the action of the Weyl group. The elements xheiptq | t P Fˆ, i P ly
generate T. Chevalley relations show

lź

i“1

heiptiq “
lź

i“1

heipt
1
iq

if and only if t1i{ti “ ˘1 for every i P l and
śl
i“1

t1i{ti “ 1. So the value of each ti is determined
by s up to multiplication with ´1.

The Weyl group W “ S˘l acts on those elements in the following way:

` lź

i“1

heiptiq
˘pj,´jq

“ hej pt
´2

j q
lź

i“1

heiptiq and
` lź

i“1

heiptiq
˘pk,k1q

“ hekptk1qhek1 ptkq
` ź

iPlztk,k1u

heiptiq
˘
,
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where j, k, k1 P l with k ‰ k1.

From the action of W on T described above we easily get the following.

Lemma 3.5 Let F Ď Fˆ be a set of representatives in Fˆ under x ÞÑ ´x and inversion
x ÞÑ x´1, and such that t1,̟u Ď F . Then every s P T has some W -conjugate s1 such that

s1 P
lź

i“1

heipt
1
iq xh0y ,

where t1i P F for every i P l.

The corresponding centralizers are then described as follows. Note that wheneverX1,X2 ď X

are finite groups with rX1,X2s “ 1 we write X1.X2 for the central product of the groups X1

and X2.

Lemma 3.6 Let s1 be as in Lemma 3.5. We write Iζps1q :“ ti | t1i P t˘ζuu for ζ P F . We
abbreviate I1 :“ I1ps1q, I̟ :“ I̟ps1q and set R1 :“

Ů
ζPFzt1,̟utei ´ ei1 | i, i1 P Iζps1q with i ‰

i1u. Then CGps1q is a central product of reductive groups normalized by T:

CGps1q “ C1.C̟.CR1 ,

where

C1 :“ xTI1 ,Xα | α P RI1y ,

C̟ :“ xTI̟ ,Xα | α P RI̟y and

CR1 :“
@
TlzpI̟YI1q,Xα | α P R1

D
.

Then, for N :“ NGpTq the group Ws1 :“ CNps1q{T satisfies

Ws1 “ SD

˘I1ps1q ˆ SD

˘I̟ps1q ˆ
ź

ζPFzt1,̟u

SB

Iζps1q.

Proof. We can compute the centralizer of s1 from the root system as in [C, 3.5.3], noting that
the first statement reduces to the one about Weyl groups that can in turn be checked thanks to
3.4 above.

Another way is to follow [FoSr89, 1.13] noting that CGps1q is connected and therefore
CGps1q “ π´1

SO
pC˝

SO2lpFqps
1qq. The groups C1, C̟ and CR1 then correspond to the orthogo-

nal groups on the eigenspaces associated with 1 and ̟, while CR1 corresponds to the other
eigenspaces of πSOps1q in F2l.

The following statement is used to apply later Proposition 4.9 in the calculations of relative
Weyl groups. We denote by EpHF q the group of automorphisms of HF generated by Fp and γ.

We use the term d-regular in the sense of [B, Ch. 5] and [Sp74] for certain elements of W ,
see also Definition 4.2 below.

Corollary 3.7 Let ϕ0 be the automorphism of the character lattice XpTq, such that F acts
there as qϕ0. Let T

1 be a maximal torus of H, let s P T
1 and set C :“ C˝

H
psq ě T

1,
P :“ NCpT1q{T1. Let d ě 1 be an integer and S be a Sylow d-torus of pH, F q.
(a) We have

P – SD
˘J ˆ SD

˘J 1 ˆ SB
I ,

for some J, J 1 Ď l with J X J 1 “ H and some partition I of lzpJ Y J 1q.
(b) Assume additionally CHpSq is a torus and s P CHpSqF . Then CHpSq ď C and there ex-

ists some d-regular element wϕ0 P Wϕ0 normalising P such that CP pwϕ0q is isomorphic
to NCpSqF {CHpSqF .

(c) Keep the assumptions about s and S from (b). SetK :“ NW pP q and pC :“ CHF¸EpHF qpsq.
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There is a morphism
N pCpSq{CHpSqF ÝÑ CKpwϕ0q,

that induces an isomorphism NCpSqF {CHpSqF – CP pwϕ0q.

Proof. Without loss of generality, we can assume that s “ πps1q where s1 is as in Lemma 3.6
which then gives us the structure of the Weyl group of CGps1q, hence (a).

The maximal torus of G corresponding to CHpSq is the centralizer of a Sylow d-torus. This
torus is obtained from a maximally split torus by twisting with wϕ0, where wϕ0 is some regular
element of Wϕ0 of order d, see [C, §3.3] and [GM, 3.5.7]. The quotient NCpSqF {CHF pSq is there-
fore isomorphic to CP pwϕ0q according to [C, 3.3.6], which gives (b). The group NH¸xγypSq{CHpSq

is isomorphic to W . With the standard discussion, see the proof of [C, 3.3.6], we easily get the
statement in (c).

3.B An automorphism of the centraliser of a semisimple element
The adjoint group H being the dual of the simply-connected group G, Lusztig’s Jordan decom-
position of characters associates with each element of IrrpDǫ

l,scpqqq the H
F -orbit of a pair ps, φq,

where s P H
F is semisimple and φ is a unipotent character of CHF psq. Under some assumptions

on s we find an automorphism of H
F fixing s and related to the graph automorphism γ of

Dǫ
l,scpqq. This result complements the ones of [CS24].

When dealing with the semidirect product G¸EpGq, recall that we consider any element of
GEpGqzG (or HEpHqzH) as an element of AutpGq whence the notation σpgq for the product
σgσ´1 whenever σ P GEpGqzG, g P G. Recall the element h0 P ZpGq from 2.24(a). We use the
notation Gss and Hss to denote the sets of semisimple elements of G and H.

Proposition 3.8 Let s0 P Gss be such that F ps0q P s0 xh0y and s0 is G-conjugate to s0h0.
Set s “ πps0q P H

F
ss.

Then there exist some a P H
F with sa

0
“ s0h0, some γ1 P H

F γ, and F -stable connected
reductive subgroups C1 and C2 of H such that

(i) C˝
H

psq “ C1.C2 (central product);
(ii) rγ1, s0s P xh0y and therefore γ1psq “ s;
(iii) raγ1,C1s “ 1, and
(iv) rγ1,C2s “ 1.

Proof. Note that the statement is essentially about H which is a quotient of G{ xh0y “ SO2lpFq.
The automorphism γ is induced by conjugation by the element n˝

1 P G thanks to Lemma 2.23,
so the considerations below could be seen as happening in G{ xh0y “ SO2l`1pFq thus making
more concrete the commutation arguments used.

Let T0 be an F -stable maximal torus of G with s0 P T0. Since all maximal tori of G

are G-conjugate, there exists some inner automorphism ι0 : G ¸ EpGq ÝÑ G ¸ EpGq with
ι0pT0q “ T.

Now 3.4 implies that ι0ps0q is NG¸xγypTq-conjugate to some element of the xh0y-coset

p
śl
i“1

heipt
1
iqq xh0y with all t1i’s in F . So there is some ι1 : G ¸ EpGq ÝÑ G ¸ EpGq, which is

the conjugation by some element of G ¸ xγy such that ι1pT0q “ T and

s1 :“ ι1ps0q P

˜
lź

i“1

heipt
1
iq

¸
xh0y

with all t1i’s in F . Then CGps1q can be written as

CGps1q “ C
1
1.C

1
R1 .C

1
̟,

where C1
1
, C1

R1 and C1
̟ are defined as in 3.6.

Since s0 and s0h0 are G-conjugate we can assume without loss of generality that t11 “ ˘1

and t1l “ ˘̟ thanks to Remark 3.2 (b).
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We have ι1pF q P GF in GEpGq since ι1 is an inner automorphism there and EpGq “
GEpGq{G is abelian. Moreover ι1pF q P NGpTqF since F pT0q “ T0 implies ι1pF qpTq “ T. Let
n P NGpTq be such that ι1pF q “ nF .

The assumption rs0, F s P xh0y implies rs1, ι1pF qs “ rι1ps0q, ι1pF qs P xh0y by 2.24(b). Then
πSOps1q is fixed under the Frobenius endomorphism nF “ ι1pF q of SO2lpFq and its eigenspaces
are permuted by nF as the corresponding eigenvalues. From the definition of C1

1, C
1
̟ and C

1
R1 ,

we get that their images under πSO are ι1pF q-stable.
Note that h0 P TI for any nonempty I Ď l and therefore C

1
1

“ π´1

SO
pπSOpC1

1
qq and C

1
̟ “

π´1

SO
pπSOpC1

̟qq while C
1
R1 also contains h0 unless it is trivial. So from what we have seen in

SO2lpFq we get that C
1
1
, C1

̟ and C
1
R1 are all ι1pF q-stable.

What we said above about ι1pF q “ nF implies that n P NGpTq can be written in the
form n1pn˝

1qi1n̟pn˝
2qi2n1, where n1 P C

1
1, n̟ P C

1
̟, n˝

1 :“ ne1p̟q P G, n˝
2 :“ nelp̟q P n˝

1G,
i1, i2 P t0, 1u and n1 P C

G
pC1

1.C
1
̟q.

Since C
1
1, C

1
̟ are connected ι1pF q-stable, Lang’s Theorem ([MT, 21.7]) implies that there

exists some c P CGps1q such that pι1pF qqc “ vF where v “ pn˝
1qi1pn˝

2qi2n1. Let ι : GEpGq ÝÑ
GEpGq be defined by ιpxq “ ι1pxqc. Then ιpF q “ vF and ιpGF q “ ιpGvF q. Note that
ιps0q “ ps1qc “ s1.

We have a1 :“ n˝
1n

˝
2 P G by checking its class mod T. Moreover using 3.4 we get s1a1

“ s1h0
while ra1,C1

R1 s “ 1 thanks to Chevalley’s commutator formula. Note also that rF, a1s P xh0y.
Let us now take

a :“ πpι´1pa1qq, C1 :“ πpι´1pC1
1qq and C2 :“ πpι´1pC1

2qq for C
1
2 “ C

1
R1 .C

1
̟.

We clearly have C˝
H

psq “ πpCGps0qq “ π ˝ ι´1pCGps1qq “ π ˝ ι´1pC1
1.C

1
R1 .C1

̟q “ C1C2.
Recall F P tFq, γFqu. For F 1 :“ ιpF q “ vF we have rF 1, a1s “ rF, a1srv, a1s P xh0y since

rn1, a1s P xh0y, see 2.24(d). Therefore a P H
F .

Recall that γ and n˝
1 induce the same automorphism on G. Hence we get rγ,C1

2s “ rn˝
1,C

1
2s “

1 thanks to the Chevalley commutator formula, and analogously ra1γ,C1
1
s “ rn˝

1
n˝
2
γ,C1

1
s “ 1.

Applying π ˝ ι´1, this gives our claim (iii)–(iv) that rC1, aγ
1s “ rC2, γ

1s “ 1 in HEpHq, where
γ1 P HEpHq is the image of ι´1pγq P GEpGq under π. Note that rγ, πps1qs “ 1 since rn˝

1
, s1s P

xh0y by 3.4, hence (ii).
It remains to show that γ1 P H

Fγ. By its definition, γ1 P Hγ. Additionally vF commutes
with γ in HEpHq, as 2.24 implies rγ, πpvqs “ πprn˝

1, n
1sq “ 1. Now γ P CHγpvF q “ CHγpιpF qq

implies γ1 P CHγpF q “ H
Fγ. This completes our proof.

3.C Consequences on characters of Dl,scpqq

Let pG, F q and EpGF q be given as in 2.E. We assume that a regular embedding G ď rG is
chosen such that EpGq acts on rG. This implies that F and therefore EpGF q acts on rGF . The
Ap8q property of Theorem 2.18 was originally introduced as saying that any element of IrrpGF q
has a rGF -conjugate χ such that p rGFEpGF qqχ “ rGF

χEpGF qχ and χ extends to G
FEpGF qχ,

see [S12, Thm 2.12(v)] and our Introduction. This condition on χ defines a subset T Ď IrrpGF q
that we complete below into a partition

IrrpGF q “ T \ E \ D

that will be crucial in our description of IrrpGF q. This will be particularly useful when studying
characters of certain local subgroups where G is replaced by groups Gk for k ď l (see 3.D)
occuring as rL,Ls for L a minimal d-split Levi subgroup of our G.

Most of the properties we single out revolve around the value of characters at h0 (see 2.24)
and the action of the diagonal outer automorphism associated with h0 through Notation 2.14.
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Definition 3.9 Let T, E and D be the following subsets of IrrpGF q:

T “
!
χ

ˇ̌
ˇ p rGFEpGF qqχ “ rGF

χEpGF qχ and χ extends to G
FEpGF qχ

)
,

E “
!
χ

ˇ̌
ˇ p rGFEpGF qqχ “ rGF

χEpGF qχ and χ has no extension to G
FEpGF qχ

)
, and

D “
!
χ

ˇ̌
ˇ p rGFEpGF qqχ ‰ rGF

χEpGF qχ

)
,

so that IrrpGF q “ T \ E \ D.
We also define E1 :“ T X

` Ť
xP rG

xE
˘

and D1 :“ T X
` Ť

xP rG
xD

˘
.

Notation 3.10 Let pt P T with F pptq “ h0pt and set pG :“ G
F

@pt
D

“ G X L´1pxh0yq, where

L : rG ÝÑ rG is given by x ÞÑ x´1F pxq.

In the following, we prove that any element of EYE1 YDYD1 is contained in a γ-stable rGF -
orbit, and is lying under a γ-invariant character of GF

@pt
D
. This generalizes [S23a, Prop. 4.3]

where ǫ “ 1, χ is cuspidal, h0 P kerpχq and NGpGF qχ ď G
F

@pt
D
.

Theorem 3.11 Let l ě 4, ǫ P t˘1u, G :“ Dl,scpFq with G
F – Dǫ

l,scpqq.

(a) Let χ P E Y E1. Then h0 P kerpχq while χ is invariant under and extends to G
F

@pt, γ
D
.

(b) Let χ P D Y D1. Then h0 P kerpχq and χγ “ χ
pt ‰ χ or χγ “ χ according to χ P D or D1.

Here are some first properties coming mostly from the structure of the outer automorphism
group of GF .

Lemma 3.12 Recall rZpGq “ ZpGq{rZpGq, F s and its action on IrrpGF q by diagonal outer
automorphisms (see Notation 2.14).
(a) If χ P D, then | rZpGq : rZpGqχ| “ 4 and h0 P kerpχq.

(b) If χ P E, then h0 P kerpχq, χγ “ χ and rZpGqχ “
A

ph0
E

for ph0 “ h0rZpGq, F s P rZpGq.

Proof. First we prove part (a), so assume χ P D. We abbreviate rZ “ rZpGq andE “ EpGq. By
Theorem 2.18 there is χ1 “ χz with z P rZ such that p rZEqχ1 “ rZχ1Eχ1 . Since χ P D, one has

p rZEqχ ‰ rZχEχ while

`
p rZEqχ

˘z
“ p rZEqχ1 . (3.1)

This forces rZE to be nonabelian and therefore | rZ| “ 4. Then F acts trivially on ZpGq and
rZ “ ZpGq “ ZpGqF . Also one can’t have rZχ1 “ xh0y since the latter is central in rZE. But

by (3.1) above neither z nor zh0 belongs to rZχ1 , forcing rZχ1 “ 1, hence our statement that

| rZ : rZχ| “ 4. Since p rZEqχ1 “ Eχ1 can’t centralize z, let us take e1 P Eχ1 with e1 ‰ ze1 P p rZEqχ.

Concerning kerpχq note that rZpGq, e1s “ xh0y by 2.24 and therefore r rZ, e1s “ xh0y in rZ since
r rZ, e1s ‰ 1. Then e1

χ1 “ χ1 implies xh0y ď kerpχ1q and also xh0y ď ZpGq X kerpχ1q “ ZpGq X
kerpχzq “ ZpGq X kerpχq since diagonal automorphisms act trivially on ZpGq.

Next, we prove part (b). Let χ P E. Note that by Proposition 2.2(a) and the definition of E

this forces EpGF qχ to be noncyclic. Then χγ “ χ, F “ F
f
p for some even f and χ P IrrpGF qD

for a subgroup D ď EpGF q satisfying [S23b, Hyp. 5.5]. Now our claims that h0 P kerpχq and
rZχ “

A
ph0

E
are known from [S23b, Lem. 5.11 and Prop. 5.21].

Let us recall briefly Lusztig’s parametrization of IrrpGF q (for pG, F q any reductive group
defined over Fq). Let pG˚, F ˚q be dual to pG, F q in the sense of [DM20, Def. 11.1.10] or [GM,
1.5.17]. Then the partition of IrrpGF q into Lusztig’s rational series is

IrrpGF q “
ğ

rss

EpGF , rssq
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where rss ranges over the G
˚F˚

-conjugacy classes of semisimple elements s P G
˚F˚

. We set
UchpGF q “ EpGF , r1sq. Moreover for any s P G

˚
ss

F˚
, one has a bijection

EpGF , rssq
„
ÝÑ UchpCG˚psqF

˚
q :“ IrrpCG˚psqF

˚
| EpC˝

G˚ psqF
˚
, r1sqq

thus allowing us to associate to each χ P IrrpGF q a G
˚F˚

-class of pairs ps, φq with s P G
˚F˚

ss
and

φ P Uch pCG˚ psqF
˚

q. This Jordan decomposition of characters can be chosen to be OutpGF q-
equivariant when G is simple simply connected, see [S23b, Thm B].

The definition of Lusztig series in terms of Deligne–Lusztig generalized characters RG

T1pθq
allows us to check that all elements of EpGF , rssq have the same restriction to ZpGF q, see [B06,
Prop. 9.11]. We also recall in the next lemma some standard related facts. The proof is basic
theory of dual groups (see more details in proofs of [NT13, Lem. 4.4(ii)] and [B06, Lem. 9.14]).
We state everything in the case where G is as defined in 2.E and pG˚, F ˚q can then be taken to
be pH, F q, thus resulting in more identifications.

Lemma 3.13 The duality between pH, F q and pG, F q induces an EpGF q-equivariant isomor-
phism

LinpZpGF qq – ZpGq{rZpGq, F s.

If s P H
F
ss, s0 P π´1psq X G and χ P EpGF , rssq, then rs0, F srZpGq, F s corresponds to the

element of Irrpχs
ZpGF qq.

We can now prove Theorem 3.11.

Proof of Theorem 3.11. We let χ P EYE1 YDYD1. In view of the claim made and r rZpGq, γs ď
xh0y (see 2.24) we can assume χ P E Y D Y D1. We have h0 P kerpχq thanks to Lemma 3.12.

Let s P H
F
ss

and s0 P π´1psq X G with χ P EpGF , rssq. Set Irrpχs
ZpGqF q “: tξu. Then

ξph0q “ 1, hence ξ is γ-fixed by 2.24. Now Lemma 3.13 implies that rs0, F s is γ-fixed, hence an
element of xh0y by 2.24 again.

Let us show that s
g
0

“ s0h0 for some g P G. Using the injective map ωs : AHpsq :“
CHpsq{C˝

H
psq Ñ ZpGq from [S23b, (1.5)], this means by definition that we must prove that

h0 is in the image Bpsq of ωs. To see this note that by Lemma 3.12 again, rZpGF qχ is trivial

or generated by the class of h0. Taking rχ P Irrp rGF | χq and seeing BpsqF as acting by linear
characters on Irrp rGF q (see [S23b, Not. 2.14]), one has by Clifford theory that BpsqFrχ is the

orthogonal of rZpGF qχ (see [S23b, Lem. 2.13(c)]). Therefore h0 P BpsqFrχ which gives our claim.

All assumptions of Proposition 3.8 are now satisfied. Let a P H
F , γ1 P H

F γ, C1 and C2 be
such that C˝

H
psq “ C1C2 (central product) be as there.

Let rs P ĂG˚
F˚

such that rχ P Ep rGF , rrssq with rs ÞÑ s by the natural projection and let
φ P UchpC rG˚ prsqF˚

q that can also be seen as a character of UchpC˝
H

psqF q be associated to rχ by

the Jordan decomposition rJ of [S23b, Prop. 2.15]. From the definition of ωs [S23b, Equ. (1.5)],
φ is c-invariant under any c P CHF psq with sc0 “ s0h0 since AHpsqFφ “ ω´1

s pBpsqFrχ q and we have

seen that h0 P BpsqFrχ . Then φa “ φ.
Let us show that φ is also γ1-invariant. Restrictions induce a bijection

UchpC˝
HpsqF q

„
ÝÑ UchpCF

1 q ˆ UchpCF
2 q, by φ ÞÑ pφ1, φ2q

see [S23b, 1.10]. Let φ1 ˆφ2 the character corresponding to φ. Then φa “ φ implies φai “ φi for
i “ 1, 2 and therefore aγ1 fixes φ1 and φ2 thanks to Proposition 3.8(iii) and (iv). Then it also
fixes φ by the above bijection and we get our claim that

ps, φqγ
1

“ ps, φq.

By the EpGF q-equivariance of rJ and its compatibility with rGF -orbits on IrrpGF q (see [S23b,
Prop. 2.16]) we finally get that the rGF -orbit containing χ is γ-stable, as γ1 P H

F γ. By the
definition of T, this also implies χ “ χγ whenever χ P T, which is the case when χ P D1. If on the
contrary χ P D, then χ1 :“ χg P T for some g P rGF and we can’t have χ “ χγ since this would



22 Marc Cabanes and Britta Späth

imply gγg´1γ´1 P rGF
χ “ GZp rGF q and therefore that rg, rGFEpGF qs ď G

F Zp rGF q thanks to

the structure of rZpGF q ¸ EpGF q. But then χ would have the same stabilizer as χ1 P T. So

χγ ‰ χ and therefore χγ “ χrg,γs “ χ
pt by 2.24. This gives the two cases of our statement (b).

Assume now χ P E and therefore NGpG,χq “ pG by Lemma 3.12(b). Recall that rγ1, s0s P xh0y
according to Proposition 3.8. Then we can apply [S23b, Cor. 6.6] and obtain that χ has some
extension pχ to pG that is γ-invariant. This gives our claim (a).

Remark 3.14. The above proof gives the following slightly stronger statement: if χ P IrrpGF |
1xh0yq: If rGF

χ ‰ rGF and rGF
χ is γ-stable, then every rχ P Irrp

@
G
F ,pt

D
| χq is γ-invariant.

3.D Characters of Dǫ
k,scpqq with 1 ď k ď l

In the following we establish a slight generalization of Theorem 3.11 including groups of rank
ď 3 that appear naturally when studying d-split Levi subgroups of G, see Theorem 3.16. The
groups added to the picture are essentially semisimple simply connected of type A1 ˆ A1 or A3

but we need some results about them that are not formally contained in the Ap8q condition
known already for groups of type A, see [CS17a, Thm 4.1]. For those groups the proofs are an
adaptation of what has been done in the preceding section.

For I Ď l recall hI : F
ˆ Ñ T, h0 “ ht1up´1q defined in 2.E, and Φ Ě RI Ě RI “ Φ X RI

from Notation 3.1.

Notation 3.15 For k P l, let Tk :“ T X
@
Xα | α P Rk

D
and

Gk :“ Tk

@
Xα | α P Rk

D
.

Let F P tFq, γFqu, Gk :“ G
F
k E Ğk :“ L´1

F p
@
h0,hkp̟q

D
q X Gk, and Ep

(

Gkq :“A
γs (

Gk
, Fps (

Gk

E
ď Autp

(

Gkq.

We define the subsets T, E, E1, D, and D1 as in Definition 3.9, namely :

Tk “
!
χ P IrrpGkq

ˇ̌
ˇ p

(

GkEp

(

Gkqqχ “ p

(

Gkq
χ
Ep

(

Gkq
χ

and χ extends to GkEp

(

Gkqχ

)
,

Ek “
!
χ P IrrpGkq

ˇ̌
ˇ p

(

GkEp

(

Gkqqχ “ p

(

Gkq
χ
Ep

(

Gkq
χ

and χ R Tk

)
, E1

k “ Tk X p
ď

xP

(

Gk

xEkq

Dk “
!
χ P IrrpGkq

ˇ̌
ˇ p

(

GkEp

(

Gkqqχ ‰ p

(

Gkq
χ
Ep

(

Gkq
χ

)
, and D1

k “ Tk X p
ď

xP

(

Gk

xDkq.

The following statement now covers all ranks ě 1. We keep l ě 4 and k P l.

Theorem 3.16 Let ptk P Tk be such that F pptkq “ h0ptk.
(a) In every

(

Gk-orbit in IrrpGkq there exists some χ with p

(

GkEp

(

Gkqqχ “ p

(

GkqχEp

(

Gkqχ and

χ extends to GkEp

(

Gkqχ.
(b) Let χ P Ek Y E1

k. Then h0 P kerpχq and χ is invariant under and extends to Gk
@ptk, γ

D
.

(c) Let χ P Dk Y D1
k. Then h0 P kerpχq and χγ “ χ

ptk ‰ χ or χγ “ χ according to χ P Dk or
χ P D1

k.

Proof. (1) Note that for k ě 4 the groups Gk are just of the type studied before with l “ k

since Tk ď
@
Xα | α P Rk

D
by the Steinberg relations as soon as k ě 2 and therefore Gk “@

Xα | α P Rk
D

is the derived subgroup of the Levi subgroup TGk hence of type Dk,sc thanks

to [MT, 12.14]. The action of

(

Gk on characters of Gk induces all and only diagonal outer
automorphisms, so the stabilizer statement of (a) is covered by Theorem 2.18. The extension
statement is also a consequence of the extension statement of Theorem 2.18 since the groups

EpGkq and Ep

(

Gkq are such that EpGkq ÑÑ Ep

(

Gkq with a kernel K acting trivially on Gk and

therefore if χ P IrrpGkq extends to a character χ1 of Gk ¸EpGkqχ “ pGk ¸Ep

(

Gkqχq{K then one
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can inflate χ1 into a character of Gk ¸Ep

(

Gkqχ also extending χ. As for statements (b) and (c),
they are covered by Theorem 3.11.

There remains to prove the theorem in the cases where k P t1, 2, 3u. Set ǫ “ 1 or ´1 according
to F “ Fq or γFq.

(2) Let us assume k “ 1. The group G1 is a torus of dimension 1. Then every χ P IrrpG1q is

linear, hence extends to its stabilizer in the semidirect product G1Ep

(

G1q by Proposition 2.2(d).

This gives (a) since

(

G1 acts trivially on G1. Note also that E1 “ D1 “ H.
(3) Next, we study the case where k P t2, 3u. Formally one could argue that for k “ 3 the

proof of Theorem 2.18 could be transferred and still applies but we give here an independent
proof that does not require to check that the relevant parts of [S23b] apply for k “ 3. Recall that
by (1) above Tk ď

@
Xα | α P Rk

D
and Gk is then a simply connected group of type A1 ˆ A1

or A3. We get that G2 “ SL2pFq ˆ SL2pFq and G3 “ SL4pFq with Fp acting as x ÞÑ xp on
matrix entries, while γ acts by swapping the two components in the first case and by the graph
automorphism of order 2 preserving the usual torus/Borel subgroups of 2.C above in the second
case, see also the proof of [S23a, Lem. 5.30]. It follows that

G2 –

#
SL2pqq ˆ SL2pqq if ǫ “ 1,

SL2pq2q if ǫ “ ´1,
and G3 –

#
SL4pqq if ǫ “ 1,

SU4pqq if ǫ “ ´1.
(3.2)

Note that

(

Gk acts by diagonal automorphisms of Gk. Applying [CS17a, Thm 4.1] to types A1

(SL2) and A3 gives our claim (a) in the cases k “ 3 and pk, ǫq “ p2,´1q, using what has been said

in (1) about the EpGkq versus Ep

(

Gkq question. In the case of pk, ǫq “ p2, 1q, [CS17a, Thm 4.1]
indeed shows that there exists an xFpy-stable GL2pqq-transversal in IrrpSL2pqqq. This implies that

T2 contains some xFp, γy-stable rG2-transversal. Moreover the group GEpGq being a subgroup
of the wreath product SL2pqq xFpy ≀ C2, the extendibility claim holds by Proposition 2.2(c). We
then get part (a) in all cases.

(4) We now turn to statements (b), (c) in cases when k “ 2, 3 and make some preliminary
remarks.

Notice first that whenever ZpGkq “ ZpGkqF is of order ď 2 then (a) and the commutativity

of p

(

Gk{ZpGkq.Gkq ¸Ep

(

Gkq imply that T “ IrrpGkq and therefore Ek “ Dk “ H, so (b) and (c)
are trivial.

So we assume that ZpGkq is of order 4, and in particular q is odd. Then ZpGkq “ ZpGkq and
therefore h0 P rγ,ZpGkqs since h0 “ rγ,hkp̟qs, see 2.24. This implies that the second part of
(b) or (c) implies also that h0 P kerχ. This is because, if χ is invariant under the composition of
a diagonal automorphism with γ, then its restriction to ZpGkq “ ZpGkq has the same property
and indeed the restriction of χ to ZpGkq is γ-invariant, hence is trivial on rγ,ZpGkqs.

Concerning (b), as in the proof of Theorem 3.11(b), notice that one can consider Ek alone.
From now on we omit the index k.
(5) Assume k “ 2. If ǫ “ ´1, we have |ZpGq| “ 2 so (b) and (c) are trivial as said in (4).

So we assume ǫ “ 1. Then the group G is isomorphic to SL2pqq ˆ SL2pqq, see above. What has
been said about the wreath product action of γ implies E “ H hence (b).

To prove (c) let’s take χ P D and let χ0 be a

(

G-conjugate of χ such that χ0 P T. That the
stabilizers of χ and χ0 are distinct implies that EpGqχ0

ę CEpGqpZpGqq “ xFpy and χ0 is not

(

G-invariant. The character χ0 P IrrpSL2pqq ˆ SL2pqqq being now written as χ1.χ2, we see that
at least one of tχ1, χ2u is not GL2pqq-invariant. But EpGqχ0

ę xFpy implies that χ0 is invariant
under some element of γ xFpy, leading to χ1 and χ2 being both not GL2pqq-invariant.

Now every character of SL2pqq that is not GL2pqq-invariant is xFpy-invariant, see the character
table of SL2pqq in [B, Table 5.4]. So we get that χ1 and χ2 are both xFpy-invariant. We
can conclude that χ0 is xFp, γy-invariant, which implies the second case of (c). Noting that

rFp,ZpGqs “ 1 we also get that since χ0 “ χz for some z P

(

G, χ is Fp-invariant. This implies that

it can’t be γ-invariant, by the definition of D. Then χγ “ χ
pt since rz, γs P

@pt
D
G “ L´1pxh0yq.

This finishes the proof of (c).
From now on, we assume k “ 3 and we consider the regular embedding G “ SL4pFq ď rG “

GL4pFq with extended Frobenius F defined by the same formula on matrix entries. The action
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of

(

G on G is also induced by the one of rG “ rGF and the action of pt is also the one of any rt P rG
corresponding with h0 “ ´ Id4 in the isomorphism rG{GZp rGq – ZpGq{rZpGq, F s “ ZpGq “
ZpGq, the last equalities a consequence of |ZpGq| “ 4.

(6) We consider first the case where k “ 3 and ǫ “ ´1. Note that Ep

(

Gq is cyclic thus implying
E “ H and (b) trivially. Concerning (c) note that |ZpGq| “ 4 implies 4 | pq`1q and q “ pf with
an odd f ě 1. Then EpGq2 “ xγy and EpGq21 “ xFpγy “ CEpGqpZpGqq. Let χ P D and χ0 P T a
rG-conjugate of χ. Then EpGqχ0

ň CEpGqpZpGqq since otherwise any rG-conjugate would also be

in T. This forces xγy “ EpGq2 ď EpGqχ. We get χγ “ χ but also χγ
0

‰ χ0 since the stabilizers of

χ and χ0 in p rG{GZp rGqq ¸EpGq – ZpGqEpGq can’t have the same Sylow 2-subgroup, otherwise
they would be equal, the 21-part being central. This implies χγ

0
“ χt

0
for some t P rγ, rGszGZp rGq

hence our claim (c) since rZpGq, γs “ xh0y.

(7) From now on we assume k “ 3 and ǫ “ 1, so that G “ SL4pqq.

For part (c) we consider a character χ P D. The arguments used to prove Lemma 3.12(a)
apply also here and we get that the rG-orbit of χ has 4 elements. Let us show that this rG-
orbit is γ-stable. Let rχ P IrrpGL4pqq | χq. The fact that rGχ “ GZp rGq implies that rχ is
in a Lusztig series EpGL4pqq, rrssq such that the centralizer of the image of rs in PGL4pqq has
a component group of order 4 (see for instance [S23b, Prop. 2.15]). This implies that the
eigenvalues of rs are an orbit under the multiplication by the 4th root of unity ̟. But then the
transpose-inverse automorphism γ0 of GL4pqq sends rs to some conjugate times a scalar. This
means that rχγ0 is in the same Lusztig series as some λrχ with λ P LinpGL4pqqq by the action of
automorphisms on Lusztig series in the connected center case ([S23b, Prop. 2.15] again). But
those Lusztig series have a single element since the centraliser of rs is a torus. So rχ and rχγ have
the same restriction to G “ SL4pqq which gives our claim. We then proceed like in the end of
the proof of Theorem 3.16(b). The above implies that if χ0 “ χz is an element of T for some
z P rZpGq “ rG{Zp rGqG then χ

γ
0

“ χz
1

0 for some z1 P rZpGq. This implies χγ
0

“ χz
1

0 “ χ0 by the
definition of T, hence the second case of (c). Concerning the first case, note that χγ “ χ would
imply that zγz´1γ´1 P rZpGqχ “ 1 and in turn that z centralizes γ hence the whole rZpGq.EpGq.

But then zχ0 “ χ would have the same stabilizer as χ0. So χγ ‰ χ and this implies χγ “ χ
pt

since r rZpGq, γs is the group of order 2 generated by the image of pt. We have proven part (c) in
this case.

(8) We keep k “ 3, ǫ “ 1 and address (b). Let χ P E. We then have p rGEpGqqχ “ rGχEpGqχ
with χ not extending to GEpGqχ. This forces EpGq to be non-cyclic, hence q to be a square and
F to act trivially on ZpGq. It also implies that EpGqχ is not cyclic and therefore γ P EpGqχ.
As pointed out in (4) above this implies h0 P kerχ.

First we show that rGχ R tGZp rGq, rGu. Let χ1 P T be a rG-conjugate of χ (which exists by

(a)). The equality rGχ “ rG is not possible as then χ “ χ1 P T.

Assume next that rGχ “ GZp rGq or equivalently

(

Gχ “ G and hence

(

Gχ1 “ G. By definition

of T we have p

(

GEp

(

Gqqχ1 “ GEp

(

Gqχ1 and χ1 has an extension to GEpGqχ1 . Via Ep

(

Gq{
A
F s (

G

E
“

EpGq we see that χ1 extends to some rχ1 P IrrpGEp

(

Gqχ1q such that
A
h0, F s (

G

E
ď kerprχ1q. Let us

write χ “ χ1t for some t P

(

G. We have

p

(

GEp

(

Gqqχ “ pGEp

(

Gqχ1qt “ GpEp

(

Gqχ1 qt

with also p

(

GEp

(

Gqqχ “

(

G χEp

(

Gqχ. Then rγ, ts P G since the above implies Gγt Ď GEp

(

GqXGγ “
Gγ. Then rrγ, ts, F s “ rrF, γs, ts “ 1 and by the Three-Subgroup lemma [Asch, (8.7)] rF, ts P
CZpGqpγq “ xh0y. Since χ ‰ χ1 we actually have rF, ts “ h0 and we can assume t “ pt. If now

χ “ pχ1qpt, then pχ :“ prχ1qpt is an extension of χ to GEp

(

Gqχ with xh0, F y
pt “ xh0, h0F y ď kerprχq. In

particular F P kerprχq. Via Ep

(

Gq{ xF y “ EpGq the character pχ defines also an extension of χ to
GEpGqχ, contradicting χ P E. This contradiction establishes our claim that rGχ R tGZp rGq, rGu,

or equivalently that rGχ has index 2 in rG while being also γ-stable.

Let s P H
F be such that χ P EpG, rssq. Denote rH “ rG˚ “ GL4pFq. As in the above proof of

(c), let rs P rHF and rχ P IrrpGL4pqq | χq, such that rχ P EpGL4pqq, rrssq. Then | rGχ : GZp rGq| “ 2
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implies

|AHpsqFφ | “ 2, (3.3)

where φ :“ Ψ
rGF

rs prχq P UchpC rHprsqF q is associated to rχ via Jordan decomposition of characters

Ψ
p rGF q
rs : Ep rGF , rrssq ÝÑ UchpC rHprsqF q, see [S23b, Prop. 2.15].

Assume |AHpsq| “ 4. Then as in the discussion made for (c) one gets that C rHprsq is a torus
and φ is the trivial character. This leads to AHpsqFφ “ AHpsqF “ AHpsq since F acts trivially
on ZpGq hence on AHpsq. This contradicts (3.3) above.

We therefore get that

AHpsq “ AHpsqFφ and has order 2. (3.4)

Like for Theorem 3.11(a), our aim is to apply [S23b, Cor. 6.6] whose original proof was for
type D but is easily seen to apply to our G. We have proven assumptions (i) and (ii) of [S23b,
Cor. 6.6]. Letting π : H0 “ r rH, rHs Ñ H be the canonical surjection SL4pFq Ñ PGL4pFq, there
remains to show that there exists γ˚ P H

F γ such that γ˚ps, φq “ ps, φq and rs0, γ
˚s P xh0y for

some (in fact any) s0 P π´1psq. The first part is ensured by the equivariant Jordan decomposition
for type A (see [CS17a, Thm 8.2] or [S23b, Thm B]), so we concentrate on the second point,
namely having rπ´1psq, γ˚s Ď xh0y.

Let s0 P π´1psq Ď H0 “ SL4pFq lifting s. Then |AHpsq| “ 2 from (3.4) above implies that
the eigenvalues of s0 is closed under multiplication with ´1. Let κ, κ1 be two of them, such that
tκ,´κ, κ1,´κ1u is the set of all eigenvalues of s0 with multiplicities. Because of detps0q “ 1 we get
κ1 “ ˘κ´1 and hence the set of eigenvalues is tκ,´κ, κ´1,´κ´1u. Writing „ for the conjugation
in H0 “ SL4pFq, which for semisimple elements coincides with conjugation in GL4pFq, we see
from the eigenvalues that

s0 „ s´1

0
„ γ˚ps0q.

Since γ˚psq “ s then γ˚ps0q “ ωs0 for some ω P Fˆ, and s0 „ ωs0 by the above. This
forces in turn ω “ ˘1 since AHpsq has order 2. So γ˚ps0q “ ˘s0 and we get our claim that
rπ´1psq, γ˚s Ď xh0y “ t˘ Id4u.

The following definition explains what we mean by groups of type D in ranks ď 3, thus
allowing to say that Gk above has type Dǫ

k,scpqq. This will be used mainly in Chapters 5 and 6.

Definition 3.17 Assume k P t1, 2, 3u and ǫ “ ˘1. Then we denote by Dk,scpFq the subgroup
Gk of G “ D4,scpFq defined in Notation 3.15. We also write Dǫ

k,scpqq for G
F
k where F is

such that G
F “ Dǫ

4,scpqq. Then we get the isomorphisms with groups of type A and a torus
recalled in (3.2) of the above proof.

We gather some extra statements that will be used alongside Theorem 3.16.

Lemma 3.18 Assume k and ptk are like in Theorem 3.16. If χ P IrrpGkq is such that p

(

Gkqχ ď

Gk
@ptk

D
, then p

(

GkEp

(

Gkqqχ ď Gk
@ptk

D
Ep

(

Gkq.

Proof. As in the proof of Lemma 3.12 we abbreviate rZ “

(

Gk{Gk , E “ Ep

(

Gkq, ph0 the class

of ptk. Note that ph0 is central in the semidirect product rZ ¸ E thanks to 2.24 and that E

also acts trivially on rZ{
A

ph0
E

since this is of order 2. By Theorem 3.16(a) there exists z P rZ
such that p rZEqzχ “ Z0E0 with Z0 ď rZ and E0 ď E. Since rZ is abelian we have Z0 “

rZ X Z0E0 “ p rZ X Z0E0qz “ rZ X pZ0E0qz “ rZ X p rZEqχ “ rZχ ď
A

ph0
E

by our hypothesis. Then

p rZEqχ “ pZ0E0qz ď p
A

ph0
E
Eqz ď

A
ph0

E
E since we have seen that r rZ,Es ď

A
ph0

E
.

Lemma 3.19 Assume k P l, then maximal extendibility holds with respect to Gk E

(

Gk.
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Proof. If k ě 3, then the statement is [S23a, Thm 1.17] thanks to our description of Gk given

in the proof of Theorem 3.16. When k “ 1 then

(

Gk is abelian, while when k “ 2 and F “ Fqγ

the quotient

(

Gk{Gk is cyclic and Proposition 2.2(a) applies. When k “ 2 and F “ Fq then
G2 “ SL2pqq ˆSL2pqqENSL2pFqpSL2pqqq ˆNSL2pFqpSL2pqqq and we have again the cyclic quotient
situation on each factor.

4 The doubly regular case

In this chapter, we prove the inductive McKay condition (iMK) for the group G
F “ Dǫ

l,scpqq
of Section 2.E and an odd prime ℓ under an arithmetic assumption on dℓpqq, the order of q in
pZ{ℓZqˆ. This condition of being a doubly regular number for pG, F q, see Definition 4.4 below,
ensures that the Sylow ℓ-subgroups of GF have abelian centralizers in G “ Dǫ

l,scpqq but also in

the overgroup G “ Bl,scpqq. The criterion for (iMK) is the one of Theorem 2.21 through the
conditions Apdq and Bpdq of 2.19 and 2.20 defined for pG, F q and any integer d ě 1, relating in
particular to Sylow d-tori of G as recalled in Section 2.D.

The main result of the present chapter is as follows.

Theorem 4.1 Let G
F “ Dǫ

l,scpqq for l ě 4, ǫ “ ˘1, q a prime power. Let d ě 3 and S be a
Sylow d-torus of pG, F q.

Assume that d | 2l and the ratio
2l

d
is

#
even when ǫ “ 1,

odd when ǫ “ ´1,

(in other words d is a doubly regular integer for pG, F q, see Definition 4.4). Then:
(a) Conditions Apdq and Bpdq from Section 2.D hold for pG, F q.
(b) If ℓ is an odd prime with ℓ ∤ q and dℓpqq “ d, then (iMK) from Definition 2.7 holds for

G
F and ℓ with respect to N “ NGpSqF .

(c) (iMK) holds for Dǫ
4,scpqq and any prime ℓ.

Note that for d P t1, 2u and primes ℓ “ 2 or odd with dℓpqq P t1, 2u the above points (a) and (b)
are known from [MS16, Thm 1].

The proof will use a criterion for Apdq and Bpdq from [CS17b] devised for the more general
case where d is a regular number for pG, F q, see Proposition 4.3 below. This will split the proof of
Theorem 4.1(a) into two parts. Section 4.C deals with the Tits subgroup xnαp1q | α P ΦpG,Tqy ď
NGpTq. Then Section 4.D shows properties of the relative Weyl groups NGpS, ξqF {CGpSqF for
S a Sylow d-torus of G and ξ P IrrpCGpSqF q. The proof of Theorem 4.1 concludes in Section 4.E.
After that we derive some consequences of the constructions made, in particular correspondences
of characters not necessarily of ℓ1-degrees, that will be useful later in Section 6.A.

4.A The conditions Apdq and Bpdq for regular numbers
Let pG, F q be a simple simply connected algebraic group defined over a finite field Fq as in
Section 2.C. We recall the choice of a maximal torus and Borel subgroup T ď B both F -stable
and the associated notation. Let

ρ : NGpTq ÝÑ W pG,Tq “ NGpTq{T

be the canonical surjection onto the Weyl group. We see the latter as acting on the euclidean
vector space V “ R b XpTq, abbreviating the image of W pG,Tq as W ď GLpVq. We recall
ϕ0 P NGLpVqpW q, the element of GLpVq such that F induces qϕ0 on XpTq, see [MT, Def. 22.10].

Writing F “ F
f
p ˝ σ for σ a graph automorphism as in Section 2.C, ϕ0 corresponds to the

symmetry of the basis of the root system that defines σ.

For regular elements of Weyl groups and regular numbers we refer to [B, Ch. 5] and [Sp74].
For the relation with d-tori, see [MT, Thm 25.10] and [GM, Sect. 3.5].
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Definition 4.2 — Regular elements of Wϕ0. An element of Wϕ0 is called regular if it has an
eigenvector in Cb V which is not contained in the reflecting hyperplane to any α P ΦpG,Tq.
It is called ζ-regular if this eigenvector is for the eigenvalue ζ P Cˆ. The integers d ě 1 such
that there is a ζ-regular element in Wϕ0 with ζ of order d are called the regular numbers for
pW,ϕ0q, or equivalently for pG, F q. An important property in relation with the polynomial
order of F -stable subgroups of G is that d is a regular number for pG, F q if and only if a
Sylow d-torus S of G is such that CGpSq is a torus [GM, Example 3.5.7]. In particular we
get that if wϕ0 P Wϕ0 is ζ-regular for some ζ of order d and if u P ρ´1pwq then the Sylow
d-torus of pT, uF q is a Sylow d-torus of pG, uF q.

See [S10a, Table 1] for a list of regular numbers for each type of pW,ϕ0q.
Keeping the pair pG, F q of arbitrary type, we define the extended Weyl group (or Tits

subgroup, see [Tits]) already mentioned V :“ xnαp1q | α P ΦpG,Tqy ď NGpTq and the toral
group H “ V X T. They are both finite and we clearly have ρpV q “ W pG,Tq – V {H.

Recall the choice of a regular embedding G ď rG and the group EpGq acting on both G and
rG, see Section 2.C. We set rT “ Zp rGqT. We form the semidirect product rG¸EpGq and see its
elements outside of rG as acting on G.

Here is the slight variant of the criterion [CS19, Thm 4.3] for Apdq and Bpdq of Section 2.D
that we will use.

Proposition 4.3 Let d ě 1 be a regular number for pG, F q. Assume there exists an element
u P V such that, denoting by S the Sylow d-torus of pT, uF q, the following properties hold:

(i) ρpuqϕ0 P Wϕ0 is a ζ-regular element of Wϕ0 for some ζ P Cˆ of order d;
(ii) ρpVdq “ Wd with Vd :“ V uF and Wd :“ CW pρpuqϕ0q.
(iii) Set pVd :“ pV EpGqquF { xuF y ě Vd ě Hd :“ HuF . There exists an extension map Λ0

with respect to Hd E Vd such that
(iii.1) Λ0 is pVd-equivariant; and
(iii.2) if EpGF q is not cyclic, then for any λ P IrrpHdq, Λ0pλq extends to ppVdqλ.

(iv) Set T :“ T
uF “ CGpSquF , N :“ NGpSquF , pN :“ NGEpGqpSquF { xuF y and xWd :“ pN{T .

For rξ P IrrprTuF q set Wrξ :“ Nrξ{T E pKprξq :“ pxWdq rξs
T

. Then for every rξ P IrrprTuF q,

maximal extendibility holds for Wrξ E
pKprξq.

(v) Maximal extendibility holds with respect to N E rN :“ N rGpSquF .
Then conditions Apdq and Bpdq from 2.19 and 2.20 are satisfied by pG, F q.

Proof. We abbreviate rT :“ rTuF . The first point of the definition of Bpdq in 2.20 is given by (v).
For the second point in Bpdq, i.e., an equivariant form of maximal extendibility for rT E rN , it is
a consequence of the assumptions (i), (ii) and (iii), as explained in the proof of [CS19, Thm 4.2],
see also Proposition 2.3.

We now turn to Apdq. Note that the proposition reproduces [CS19, Thm 4.3] verbatim except
for (iv). We follow below the original proof of Apdq combining the ones of [CS17a, Prop. 5.13]
and [CS17b, Thm 4.3]. We only stress the differences due to our simpler assumption (iv).

Assumption (iii) along with Proposition 2.3 yield an pN -equivariant extension map Λ for
T E N , see also Proposition 4.8(e) below. Let us recall also that if rξ P Irrp rT q “ Linp rT q and

ξ :“ rξ
U
T
, then Nrξ ENξ and both are normal in pNξ. For every t P rT the character νt P LinpNξq

defined by
Λpξqt “ Λpξqνt

satisfies νtpNrξq “ 1. For a fixed rξ P Irrp rT q the map t ÞÑ νt is a surjection rT Ñ IrrpNξ{Nrξq “

LinpNξ{Nrξq with kernel rTΛpξq. Clifford theory (2.1) provides an pN -equivariant parametrization

Π : P Ñ IrrpNq

pξ, ηq ÞÝÑ pΛpξqηqN

of IrrpNq by the set P of N -conjugacy classes of pairs pξ, ηq with ξ P IrrpT q and η P IrrpWξq. By

the above one clearly has Πpξ, ηqt “ Πpξ, ηνtq for every t P rT .
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Letting now χ P IrrpNq we must check p rN pNqχ0
“ rNχ0

pNχ0
for some rT -conjugate χ0 of χ.

We choose pξ, ηq as above such that χ “ Πpξ, ηq. Let rξ P Irrp rT q be an extension of ξ. Let
η0 P IrrpηsW rξ

q. By the assumption (iv), η0 extends to pKprξqη0 and hence there exists some

extension rη0 of η0 to pWξqη0 that further extends to pKprξqη0 . The character η1 :“ rηWξ

0
is pKprξqη0-

invariant and irreducible thanks to Clifford theory (2.1), so pξ, η1q is another pair as above and
we can define χ0 :“ Πpξ, η1q P IrrpNq. Note that χ0 is in the rT -orbit of χ by the surjectivity of
t ÞÑ νt recalled above.

Let x P p rN pNqχ0
. By the properties of Π we can assume x “ rnpn with rn P rNξ and pn P pNξ

after factoring out an element of N . Then rn “ tn with t P rT and n P Nξ. Arguing as in the
proof of [CS17a, Prop. 5.13] we get

χ0 “ Πpξ, η1q “ Πpξ, η1qrnpn “ Πpξ, pη1νtq
npnq

“ Πpξ, pη1νtq
pnq using pη1qn “ η1 since n P Nξ.

This implies η1 “ pη1νtq
pn and therefore pn stabilizes ηsW rξ

. Accordingly pn P pNξ and pnT P

Wξ
pKprξqη0 . By what was recalled above, η1 is pn-invariant. This yields Πpξ, η1qpn “ Πpξ, η1q and

therefore x P rNχ0

pNχ0
as claimed.

It remains to show that χ0 extends to pNχ0
. By assumption η0 extends to pKprξqη0 and hence

there exists some extension pη0 of rη0 to p pNχ
0
,ξqη0{T since the latter is a subgroup of pKprξqη0 . The

induced character ppη0q
pKprξq is the extension of η1 required in the end of the proof of [CS17b, Thm

4.3] and denoted there as Res
pNξ
pNξ,η

ppηq P Irrp pNξ,ηq.

4.B Doubly regular numbers and Sylow tori
We now focus on the case when G “ Dl,scpFq and G “ Bl,scpFq with G ď G, with Frobenius

endomorphism F : G Ñ G, F “ F
T
G

and G
F “ Dǫ

l,scpqq ď G
F

“ Bl,scpqq as in 2.E. As in
[S10a, S10b, MS16] we derive the results in type Dl by some transfer of the analogous results
in G. We also assume that d ě 3 satisfies the assumption of Theorem 4.1. In view of the list
of regular numbers in types D and B, see for instance [S10a, Table 1], it corresponds to the
following.

Definition 4.4 — Doubly regular integers for Dǫ
l,scpqq. An integer d ě 3 is called doubly

regular for pG, F q if d is regular for both pG, F q and pG, F q, i.e. d | 2l with ratio satisfying

p´1q
2l
d “ ǫ.

This is equivalent to the property that the centralizer in G of a Sylow d-torus of pG, F q is a
(maximal) torus. Using Definition 4.2, this can be checked by noting that the ratio of polynomial
orders P

G,F pXq{PG,F pXq is X lpX l ` ǫq, not divisible by the d-th cyclotomic polynomial if d is
doubly regular.

Recall we identify the Weyl groupW of type Bl with S˘l, where for a set I Ď Zą0, S˘I denotes
the group of permutations π of I \ ´I with πp´iq “ ´πpiq for every i P I and S˘l corresponds
to I “ l. Recall also W the normal subgroup of W corresponding to the Weyl group of type Dl.
Then ϕ0 associated with F : G Ñ G is 1 if ǫ “ 1, while ϕ0 “ ρpn˝

1q “ p1,´1q P W when ǫ “ ´1.
We collect some statements on regular elements of W in the following.

Lemma 4.5 Let d ě 1 be an integer and ζd a primitive d-th root of unity.
(a) The set of ζd-regular elements of Wϕ0 forms a W -orbit.
(b) wCox :“ p1, 2, . . . , l,´1, . . . ,´l`1,´lq is a Coxeter element of W . Every regular element

w of W is conjugate to a power of wCox. If the order of w is d, every w-orbit in l Y ´l
has length d.

(c) If w is a regular element of W and I Ď l is a union of w-orbits, then the projection wI
of w to S˘I is a regular element of order d of S˘I .

(d) Assume d ě 3 is doubly regular for pG, F q. If w is a regular element of W of order d,
then it is a ζd-regular element of Wϕ0.
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Proof. Part (a) follows from the definition, see also [B, 5.14.1]. Part (b) follows from Appendix
1 of [BM97] or from Remark 3.2 of [S10b]. For Part (c), recall that d is a regular number for
W and therefore d | 2l according to Table 1 of [S10a]. Now the projection wI of w is a regular
element of S˘I since the orbits of w and wI on ˘I have the structure required in Remark 3.2 of
[S10b]. Part (d) is again derived from the characterization of ζd-regular elements given in Table
1 of [S10b].

In the following, we assume d to be doubly regular for pG, F q and show that Proposition 4.3
applies in that situation to establish Theorem 4.1(a). We check first assumptions (i)-(iii) of
Proposition 4.3 in 4.C and assumptions (iv) and (v) in 4.D.

4.C The doubly regular case. Extended Weyl groups
Now we define for the verification of Proposition 4.3 an element u P xnαp1q | α P ΦpG,Tqy.
Recall that we have chosen ̟ to be a primitive gcdp2, q ´ 1q2-th root of unity, see 2.E.

Notation 4.6 Recall V “ xnαp1q | α P ΦpG,Tqy,H “ VXT and set V ď V :“
@
nαp1q | α P ΦpG,Tq

D
ď

N
G

pTqFp . Let vB P V be chosen as in [CS19, Sect. 5.A], i.e.

vB :“
`
ne1p1qnα2

p1q ¨ ¨ ¨nαlp1q
˘ 2l
d and set t “ hlpωq “

lź

i“1

heipωq P T

with ω P Fˆ, a primitive gcdp2, q ´ 1q3-th root of unity with ω2 “ ̟. Let

u :“

#
pvBqt if ǫ “ 1,

pvBqtne1p̟q´1 if ǫ “ ´1.
(4.1)

Let Vd “ V X G
uF and Hd “ Vd X T as in 4.3.

Basic properties of the Tits subgroup imply the following.

Lemma 4.7 (a) V X G “ V and V X T “ V X T “ H is elementary abelian of order
gcdp2, q ´ 1ql with V {H – W , V {H – W .

(b) ne1p1qt “ ne1p1qhe1pω2q “ ne1p̟q “ n˝
1.

(c) u P V “ V t.

Proof. From the Chevalley relations or [Tits], we know for any type that the group V “
xnαp1q | α P ΦpG,Tqy is generated by the nδp1q for δ P ∆ in the notation of Section 2.C.
Those elements satisfy nδp1q2 “ hδp´1q and the braid relations. From the Coxeter presen-
tation of W pG,Tq it is then easy to see that H is the direct product ΠδP∆ xhδp´1qy, with
V {H – W pG,Tq by ρ. We get (a) by applying this simultaneously to G and G, noting that
V X T ě V X T but have same cardinality.

(b) is clear from the definitions given in Section 2.C and eiptq “ ω2 “ ̟ when ei (i P l)
is seen as an element of ΦpG,Tq Ď XpTq. One shows similarly that nαp1qt “ nαp˘1q when
α “ ˘ei ˘ ej with i ‰ j in l. This implies V t “ V .

When ǫ “ 1 the assumption that d is doubly regular implies that 2l{d is even and therefore
vB P V since all squares of elements of V are in V . When ǫ “ ´1 we have vB P V zV “ ne1p1qV
since ne1p1qnα2

p1q ¨ ¨ ¨nαlp1q P V zV and 2l{d is odd. But then (b) implies vB.
t
ne1p̟q´1 P

ne1p1qV ne1p1q´1 “ V and we get our claim that u P V t “ V . This finishes the proof of (c).

We now prove the requirements (i)–(iii) of Proposition 4.3 in a form slightly weakened for
rank 4, replacing EpGq with EpGq as defined in Section 2.E.

Proposition 4.8 Let u P V be as in (4.1). Let ϕ0 be defined from F as in 4.2. Then
(a) ρpuqϕ0 is a ζd-regular element of Wϕ0 for some primitive (complex) d-th root ζd of 1;
(b) ρpVdq “ CW pρpuqϕ0q;
(c) there exists a CV EpGqpuF q-equivariant extension map Λ0 with respect to Hd E Vd and,
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(d) if ǫ “ 1, then Λ0 can be chosen such that for every λ P IrrpHdq, Λ0pλq extends to an
irreducible character of CV¸EpGqpuF qλ{ xuF y.

(e) Recall N “ NGpTq. There is a CN¸EpGqpuF q-equivariant extension map with respect

to T
uF EN

uF .

Proof. Set Vd :“ CV ptpuF qq “ CV pvBq as in [CS19, Sect. 5.B], Hd “ VdXT “ V XCTptpuF qq “
V X T

uF “ Hd thanks to Lemma 4.7(a). By Lemma 2.23, Wϕ0 and Wρpn˝
1q are equal when

ǫ “ ´1. Regarding ρpuqϕ0 we have ρpuqϕ0 “ ρptvBq “ ρpvBq and this is a ζd-regular element in
Wϕ0 since it is one in W as proven in [CS19, Lem. 5.4]. Again, by [CS19, Lem. 5.4] the groups

N “ N
G

pTq and T satisfy N
vBF

:“ pTqvBFVd or equivalently

ρpVdq “ CW pρpvBqq. p1q

On the other hand Vd “ CV puF q “ CV tppvBqtq “ pCV pvBqqt by Lemma 4.7(c) and therefore
ρpVdq “ ρpV uF q “ CW pρpvBqq as claimed. This ensures parts (a) and (b).

According to [CS19, Thm 5.5] maximal extendibility holds with respect to Hd “ Hd E Vd,

hence also with respect to HdEVd
t
. Let ΛB be an extension map with respect to HdEVd

t
, which

can be assumed to be Vd
t
-equivariant. Since Vd “ V X G

uF
“ V t X G

uF
and Vd

t
“ V

t
X G

uF
,

we have VdEVd
t
. Then maximal extendibility holds with respect to HdEVd with the extension

map Λ0 defined by Λ0pλq “ ΛBpλqsVd for λ P IrrpHdq. Moreover, Λ0 is Vd
t
-equivariant. So,

to obtain our claim (c) about equivariance, it suffices to show that the automorphisms of Vd
induced by CV EpGqpuF q are also induced by Vd

t
“ C

V
tpuF q. Since rFp, γs “ rFp, V s “ 1 one

has CV EpGqpuF q “ CV xγypuF q xFpy where CV xγypuF q “ CV puF q “ Vd or CV xγypuF q “ Vd xnγy

for some n P V . It now suffices to show that nn˝
1

P Vd
t
. Observe first that V

t
“ V xn˝

1
y by

Lemma 4.7(b) and therefore V xγy acts on V
t
by inner automorphisms. Then nγ commutes with

uF and therefore with pvBqt from the definition of u in Notation 4.6. Then nn˝
1 commutes with

pvBqt, therefore nn˝
1

P C
V
tppvBqtq “ Vd

t
. So the action of nγ on Vd is also induced by an element

of Vd
t
. This proves (c).

For part (d), let πu : C :“ CV EpGqpuF q Ñ CV EpGqpuF q{ xuF y be the quotient map. One has
πupCqλ “ πupCqΛ0pλq by the equivariance of Λ0 we have just proved. So to get our claim it suffices
to show that Λ0pλq extends to its stabilizer in πupCq. Now it extends first to πupVd xFpyqΛ0pλq “
πuppVdqΛ0pλq xFpyq since Fp acts trivially on Vd. But now πuppVdqΛ0pλq xFpyq has index ď 2 in

πupCqΛ0pλq since V EpGq D V xFpy has index 2 and therefore the intersections with G
uF have

index ď 2 and the same holds in turn for the stabilizers of Λ0pλq there. Then Proposition 2.2(a)
gives our claim.

We now turn to (e). Set T :“ T
uF , N :“ N

uF . Point (b) implies TVd “ N while point (c)
gives us the extension map Λ0 with respect to Hd E Vd. According to Proposition 2.3, we then
get an extension map Λ with respect to T EN , where for all λ P IrrpT q and since λsHd P IrrpHdq,

ΛpλqspVdqλ
“ Λ0pλsHdq.

Since Λ0 is CV EpGqpuF q-equivariant, Λ is therefore also CV EpGqpuF q-equivariant.

So to get our claim about equivariance it is enough to show that CNEpGqpuF q acts on T

by elements of CV EpGqpuF q. A sufficient condition is that T
uFCV EpGqpuF q “ CNEpGqpuF q, in

G ¸ EpGq. We clearly have T
uF ď T

uFCV EpGqpuF q ď CNEpGqpuF q and using Lang’s theorem

the quotient mod T
uF satisfies

CV EpGqpuF q{Hd ď CWEpGqpuF q.

We have to show that this is an equality. Since EpGq “ xγ, Fpy with Fp acting trivially on both
V and W , it suffices to show CV xγypuF q{Hd “ CW xγypuF q. As seen before, the term on the
right is CW pρpuF qq “ CW pρpvBqq. On the other hand CV xγypuF q “ CV xγypvt

B
q Q nγ implies

nn˝
1 P C

V
tpvt

B
q in the notation of the proof of (c) above. This gives our claim by equation

(1).
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4.D The doubly regular case. Relative Weyl groups
Our next step in the proof of Theorem 4.1 through the criterion in Proposition 4.3 leads us
to study certain subgroups of the so-called relative Weyl groups W pλq :“ NGuF pT, λq for λ P
IrrpTuF q and u as in Notation 4.6. In the following, we ensure assumption (iv) of Proposition 4.3.

As in [CS19, Sect. 6.1–2], we determine W pλq using computations in the dual group, see
also the proof of [MS16, Thm 3.17]. The character λ corresponds to some semisimple element
s P H

F which centralizes a Sylow d-torus. As before, we assume that d ě 3 and that d is doubly
regular in the sense of Definition 4.4.

Let us recall from 3.3 the notation W “ S˘l D W “ SD
˘l and for I Ď l, the (parabolic)

subgroup SB
I of W “ S˘l fixing every element of lzI and stabilizing I. We also recall the

notation SB
M “

ś
IPM SB

I –
ś
IPM SI for any partition M “ \IPMI of a subset M Ď l. Recall

SD
˘I :“ W X SB

I .
The following statement on permutation groups is key for ensuring assumption 4.3(iv).

Proposition 4.9 Let l ě 1, J 1, J2 Ď l disjoint (possibly empty) subsets, I a partition of
lzpJ 1 Y J2q,

P :“ SD
˘J 1 ˆ SD

˘J2 ˆ SB
I ď W,

K :“ NW pP q and w P K a regular element of W seen as reflection group in GLRpRΦq. Then
maximal extendibility holds with respect to CP pwq E CKpwq.

Note that in general P is not a parabolic subgroup of W .

Proof. Let d be the order of w and set

P0 :“ CP pwq and K0 :“ CKpwq.

Let us first determine the group K. Let τ P SB
JYJ 1 be such that

- τ “ 1 if |J 1| ‰ |J2|, or
- τpJ 1q “ J2, τ2 “ 1 if |J 1| “ |J2|

Let S ď SB
l be the subgroup of permutations π with

- πpIq “ I,
- πpiq ă πpi1q for every I P I and i, i1 P I with i ă i1, and
- πpiq “ i for every i P J 1 Y J2.
Any element of W normalizing P must have an image in the symmetric group on l stabilizing

J 1 Y J2 and its complement, so it’s easy to see that the determination of K boils down to the
cases where J 1 Y J2 “ l, or J 1 “ J2 “ H. We get in the general case

K “ NW pP q “ ppS˘J 1 ˆ S˘J2q ¸ xτyq ˆ

˜ź

IPI

@
SB
I ,´ idI

D
¸

¸ S ď S˘pJ 1YJ2q ˆ S˘YIPII .

It is clear that the question splits along the orbits of K on l, the assumption of regularity
remaining thanks to Lemma 4.5(c). We now assume that K is transitive on l and treat separately
the following cases
1a. J 1 “ l,
1b. J 1 Y J2 “ l and |J 1| “ |J2|,
2. J 1 “ J2 “ H and all elements of I have same cardinality.

(1) Assume now J 1 Y J2 “ l, so that

P “ SD
˘J 1 ˆ SD

˘J2 E K “ pS˘J 1 ˆ S˘J2q ¸ xτy Q w.

Assume first that wpJ 1 Y ´J 1q “ J 1 Y ´J 1. Then we can write w as w1w2 with w1 P S˘J 1

and w2 P S˘J2. This leads to P0 “ P 1
0 ˆ P 2

0 , where P 1
0 :“ CSD

˘J1
pw1q and P 2

0 :“ CSD

˘J2
pw2q. Set

P
1
0 :“ CS˘J1 pw

1q and P
2
0 :“ CS˘J2 pw2q.

In case (1a) above, i.e. J 1 “ l, then the sought maximal extendibility holds by Proposi-

tion 2.2(a) since P
1
0{P 1

0
is cyclic of order ď 2.
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Assume now (1b), i.e. |J 1| “ |J2| “ l{2. We first keep wpJ 1 Y ´J 1q “ J 1 Y ´J 1. According
to Lemma 4.5, w1 and w2 are regular elements of the same order of S˘J 1 and S˘J2 , respectively.
As all regular elements of W of the same order are W -conjugate by Lemma 4.5(a), there exists

some involution τ0 P S˘l with pw1qτ0 “ w2. Then K0 “ pP
1
0 ˆP

2
0q ¸ xτ0y and Proposition 2.2(c)

applies.
Assume now wp˘J 1q “ ˘J2. Note that w2 is regular as well according to Lemma 4.5(b). By

the structure of regular elements recalled in Lemma 4.5(b), if P 1
0 :“ CSD

˘J1
pw2q, then P 1

0 and P0

are isomorphic via x ÞÑ x ¨ xw.

Set P
1
0 :“ CS˘J1 pw

2q and ∆P
1
0 :“ tppw | p P P

1
0u. We observe K0 “ CKpwq “

A
∆P

1
0, w

E

with w P ZpK0q. We have maximal extendibility with respect to P 1
0
E P

1
0 by Proposition 2.2(a),

and therefore also with respect to P0 E ∆P
1
0 by the above description. But now, since w P

ZpK0q, any character of an intermediate group A is stable under w and extends to A xwy by

Proposition 2.2(a) again. This shows maximal extendibility with respect to P0EK0 “ ∆P
1
0 xwy.

(2) We now consider the cases where J 1 “ J2 “ H and K permutes transitively the elements
of I.

We have seen that

P “ SI E K “

˜ź

IPI

@
SB
I ,´ idI

D
¸

¸ S Q w,

where S ď S˘l is the subgroup preserving I and the ordering on each subset I P I. Note that w
acts on I since w stabilizes P . Recall that d is the order of w.

Assume now that all w-orbits in I have the same length b (a divisor of d). Set w1 :“ wb P S˘I.
Note that w1 is again a regular element according to Lemma 4.5(b). For each I P I let w1

I P S˘I

be the permutation induced by w1. Note that w1
I is a regular element of S˘I according to

Lemma 4.5(c), where we consider S˘I as a reflection group of type B|I|.

The element wb can be written as the product of elements w1
I P S˘I (I P I). Every w1

I is
regular of order d

b
. We write O for the set of w-orbits in I and for every O P O let us fix some

IO P O . We define ∆O : S˘IO ÝÑ S˘
Ť
IPO I

by x ÞÝÑ x ¨ xw ¨ xw
2

¨ ¨ ¨ xw
b´1

.
For O P O set PIO :“ CSIO

pw1
IO

q and PO :“ ∆OpPIOq. The group P0 is the direct product
of the groups PO (O P O).

Recall K “ NW pP q “ p
ś
IPI xSI ,´ idIyq ¸ S. Set KI :“ CxSI ,´ idIypw1

Iq and KO :“
x∆OpKIOq, wOy ď K0 where wO is the projection of w on S˘

Ť
IPO I

.

Since all regular elements of order d
b

are conjugate, we find a subgroup S1 ď K such that

K0 “ xKO | O P Oy ¸ S1,

where S1 – S|O|. Note that wO P ZpKOq by the definition of K0.
We can then conclude as in the end of (1) above that maximal extendibility holds with

respect to PO EKO since ∆OpKIOq{PO – KIO{PIO is cyclic and wO is central in KO. Then we
can get maximal extendibility with respect to P0 EK0 by Proposition 2.2(c).

Assume not all w-orbits on I have same cardinality. For b ě 1 dividing d, let Ib be the set of
I P I such that b is the smallest divisor of d with wbp˘Iq “ ˘I. Then K0 is the direct product
of groups KIb :“ K0 X S˘Ib (b ě 1) while P0 is the direct product of its intersections with those
factors. We are then reduced to the case of a single b treated above.

We are now back with pG, F q, T and a doubly regular d ě 3 as in Section 4.C. Recall also
the regular embedding G ď rG “ Zp rGqG with F extended to rG and rT “ Zp rGqT. The element
u P NGpTq from Notation 4.6 is chosen such that T is the centralizer of a Sylow d-torus of
pG, uF q by Definition 4.2.

We show below that in this case of a doubly regular d the above proposition about centralizers
in Weyl groups essentially implies the point (iv) in Proposition 4.3. The proof goes through
a recasting of the question inside the dual group following ideas from [MS16, §3.D], [CS19,
§6].
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Corollary 4.10 Let rλ P IrrprTuF q. Set W :“ NGpTq{TEW :“ NGxγypTq{T and λ :“ rλ
U
TuF

.

Then maximal extendibility holds for W
uF
rλ EW

uF
λ .

Proof. As explained in the proof of [CS19, Prop. 6.2], the duality between rG ě G and
rH ։ G

˚ “ H with Frobenius endomorphism uF allows us to associate pT, λq to pT˚, sq
and prT, pλq to prT˚, psq with rs P prT˚quF and rs ÞÑ s. The stabilizers W

uF
rλ E W

uF
λ become

CWprsquF E CWpsquF , see also [CS13, Cor. 3.3]. Note that everything is now written inside H

since C rHprsq{Zp rHq “ C˝
H

psq. We denote by C˝
W

psq :“ NC˝
H

psqpT
˚q{T˚ the Weyl group of the

latter. The automorphism γ acts on H and G and we can see als W as NH¸xγypT
˚
q{T

˚
such

that W
uF
λ corresponds via duality to C

W
psquF , hence we study W uF

λ ⊳W
uF
λ via

C˝
WpsquF E C

W
psquF .

Note W xγy “ W is a Weyl group of type Bl. In the latter this rewrites as CP puϕ0qECKpuϕ0q
where P “ C˝

W
psq, K “ C

W
psq and P EK. By Corollary 3.7(a), P has the structure studied

in Proposition 4.9 above, as d was doubly regular for pG, F q and hence uϕ0 is a regular element
of W. So Proposition 4.9 indeed gives our claim.

4.E Proof of Theorem 4.1
In order to complete the proof of Theorem 4.1 we now essentially have to check condition (v) of
Proposition 4.3 and that groups of type D4 satisfy the condition (iMK) for all primes.

For the first point we keep the notation of Notation 4.6.

Lemma 4.11 Maximal extendibility holds with respect to NGpTquF EN rGprTquF .

Proof. Let us abbreviate T “ T
uF , N :“ NGpTquF , rT “ rTuF , rN :“ N rGprTquF “ N rT . Note

that since rN{N is abelian, maximal extendibility can be proven by ensuring that the restriction
of any irreducible character of rN to N is multiplicity-free (see for example [S23b, 1.A]).

Let us first recall the parameterization of Irrp rNq. We know from Proposition 4.8(e) that
there is an extension map Λ with respect to T EN . By Proposition 2.3, the map Λ allows us to

construct an extension map rΛ with respect to rT E rN with the property that rΛprλq
U
Nrλ

“ ΛpλqsNrλ

for rλ P Irrp rT q, λ :“ rλ
U
T

and using Nrλ ď Nλ, see Corollary 4.10. By Clifford theory (2.1), every

ψ P Irrp rNq then writes as

ψ “ prΛprλqηq
rN

for some rλ P Irrp rT q and η P Irrp rNrλ{ rT q. Since rN “ rTN , we observe rN “ N rNrλ and hence the
Mackey formula shows

ψsN “ pprΛpλqηq
U
Nrλ

qN “ pΛpλqηW pλqqN ,

where we set W pλq :“ Nλ{T , and see η as a character of W prλq :“ Nrλ{T , rNrλ{ rT and rNrλ,

respectively. (This also uses the above definition of rΛ from Λ.)

By Corollary 4.10, maximal extendibility holds with respect to W prλqEW pλq since the group

W
uF
λ considered there is an overgroup for W pλq. But W pλq{W prλq “ Nλ{Nrλ is abelian (see the

proof of Proposition 4.3), so maximal extendibility implies that ηW pλq is multiplicity-free. But

then by Clifford correspondence, the character
`
ΛpλqpηW pλqq

˘N
is also multiplicity-free, whence

our claim.

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Set G “ Dl,scpFq (l ě 4), F : G ÝÑ G, d ě 3 as in the assumptions.
Notice first that (a) implies (b) thanks to Theorem 2.21 since G

F {ZpGqF is always a simple
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group and [Ma08] ensures that we can take G
F to play the rôle of its universal covering group.

So we just verify (a) and (c).
We first check (a) by establishing Apdq and Bpdq through Proposition 4.3 whose assumptions

we now review. We let V ď NGpTq and u P V as in 4.6, so that ρpuqϕ0 is a ζd-regular
element of Wϕ0 thanks to Proposition 4.8(a). Then assumptions 4.3(i) and (ii) are ensured by
Proposition 4.8(a) and (b). Assumption 4.3(v) holds according to Lemma 4.11 since CGpSq “ T

with S the Sylow d-subtorus of pT, uF q imply NGpSquF “ NGpTquF and N rGpSquF “ N rGprTquF .
Assume now pl, ǫq ‰ p4, 1q, so that EpGF q “ EpGF q. Then assumption 4.3(iii) is ensured

by Proposition 4.8(c) and (d). Assumption 4.3(iv) amounts to a strengthening of the above
Corollary 4.10 where W “ NGxγypTq{T is replaced by the overgroup NGEpGqpTq{T “ WˆxFpy.
The extendibility property is preserved since Fp is central.

We now concentrate on the case of GF “ D4,scpqq to finish checking (a) and (c). By The-
orem 2.11, we can content ourselves with taking a prime ℓ ∤ 6q for (c). For (a), thanks to
Theorem 2.21, we have to check Apdq and Bpdq for d “ 4, the only integer doubly regular for
G
F and ě 3. The polynomial order of pG, F q is

PpG,F qpXq “ X12
Φ

4
1Φ

4
2Φ3Φ

2
4Φ6,

where Φi is the i-th cyclotomic polynomial, see [C, p. 75]. For primes ℓ ∤ 2q such that dℓpqq “
d P t3, 6u we observe that ℓ ą 3, Φd occurs with exponent 1 and Φdℓa is not present for a ą 1.
Then a Sylow ℓ-subgroup of G

F is a subgroup of a Sylow d-torus, hence cyclic. For ℓ-blocks
of quasisimple groups with cyclic defect groups a so-called inductive Alperin–McKay condition
holds according to [KS16, Thm 1.1]. This provides us with a stronger version of the required
(iMK), see also 2nd paragraph of [CS19, Sect. 6.C].

It remains to check A(4) and B(4). We resume reviewing the assumptions of Proposition 4.3,
remembering that only 4.3(iii) and 4.3(iv) were left incomplete. Let u P V , V4 “ CV puq ě H4

from 4.6, and pV4 :“ CV ¸xγ,γ3,Fpypuq{ xuFqy ě qV4 :“ CV ¸xγ,Fpypuq{ xuFqy ě V4 in G
F . Note that

the centralizer of ρpuq in W is a 2-group (use Lemma 4.5(b) to determine ρpuq) while H4 is also
a 2-group, hence V4 is also one.

What has been checked of assumption 4.3(iii) by applying Proposition 4.8(c-d) ensures that
the inclusion H4 E

qV4 satisfies maximal extendibility. Now if λ P IrrpH4q, then its extension
qλ to pqV4qλ can be chosen to have the image of xFpy (central) in its kernel, see the proof of

Proposition 4.8(d). The quotient of qV4 by the image of xFpy is a 2-group, while pV4{qV4 has order

1 or 3, so [Is, 6.28] implies that qλ can be chosen to be ppV4qλ-invariant. It then further extends
to ppV4qλ by Proposition 2.2(a). So we get maximal extendibility for H4 E

pV4 hence our claim
since the associated extension map can always be chosen to be pV4-equivariant as recalled in
Notation 2.1.

For assumption 4.3(iv), by the argument used before when EpGF q “ EpGF q it suffices

to check maximal extendibility for CWpu, rλq E CxWpu, λq where xW :“ NGxγ,γ3ypTq{T D W “

NGxγypTq{T. We have maximal extendibility for CWpu, rλqEC
W

pu, λq thanks to Corollary 4.10.

But since C
W

puq is a 2-group, we get that C
W

pu, λq{CWpu, rλq is a Sylow 2-subgroup of CxWpu, λq{CWpu, rλq

while every Sylow 3-subgroup of CxWpu, λq{CWpu, rλq is cyclic of order 1 or 3. We then get the

sought maximal extendibility for CWpu, rλq E CxWpu, λq by applying [Is, Cor. 11.31] and Propo-
sition 2.2(a).

4.F Extending Malle’s bijection
For later applications, we construct a character correspondence extending the one given by
(iMK) only assuming Conditions Apdq and Bpdq.

Proving (iMK) for G
F and a prime ℓ not dividing 2q with the choice N “ NGpSqF for S a

Sylow dℓpqq-torus of pG, F q gives us a Γ :“ AutpGF qS-equivariant bijection

ΩGF ,ℓ : Irrℓ1pGF q ÝÑ Irrℓ1pNGpSqF q,

which satisfies for every χ P Irrℓ1pGF q the relation

pGF ¸ Γχ,G
F , χq ěc pN ¸ ΓΩ

GF ,ℓ
pχq, N,ΩGF ,ℓpχqq
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or any variant obtained by applying the Butterfly Theorem 2.8.
For the cases covered by Theorem 4.1(b) we get the following.

Corollary 4.12 Assume that ℓ is a prime with ℓ ∤ 2q such that d :“ dℓpqq is doubly regular
for pG, F q and let S be a Sylow d-torus of pG, F q. Set T :“ CGpSqF EN :“ NGpSqF .
(a) There exists some pGFEpGF qqS-equivariant extension map Λ with respect to T E N .

Furthermore, for every λ P IrrpT q, the character Λpλq extends to pGFEpGF qqS,λ.
(b) For λ P IrrpT q with ℓ ∤ |N{Nλ|, the character χ :“ Ω´1

GF ,ℓ
pΛpλqN q belongs to T, i.e.

p rGFEpGF qqχ “ rGF
χEpGF qχ and χ extends to G

FEpGF qχ.

Proof. Part (a) follows from Proposition 4.8(e) in the cases where EpGF q “ EpGF q. When
G
F “ D4,scpqq, then d “ 4 and we have seen in the proof of Theorem 4.1(a) above that maximal

extendibility holds for H4 E
pV4. As explained in the proof of Proposition 4.3, this implies our

claim by Proposition 2.2(e).
For (b), set λ P IrrpT q, ψ1 :“ ΛpλqN . We also abbreviate G “ G

F E rG “ rGF , rN :“ N rGpSq

and pN :“ NGEpGqpSq. In the notation of the proof of Proposition 4.3, we have ψ1 “ Πpξ, ηq for
pξ, ηq “ pλ, 1q. The fact that η “ 1 implies that this proof can be followed with both η0, rη0, and
η1 being trivial and therefore χ “ χ0. This gives

p rN pNqψ1 “ rNψ1 pNψ1

with ψ1 extending to pNψ1 .

As ΩG,ℓ is rN pN -equivariant, ψ :“ Ω´1

G,ℓpψ
1q satisfies

p rGEpGqqψ “ Gp rN pNqψ “ Gp rN pNqψ1

“ Gp rNψ1 pNψ1 q “ Gp rNψ
pNψq “ pG rNψq pG pNψq “ rGψEpGqψ .

As recalled above the bijection ΩG,ℓ satisfies some ěc-relation that we can take to be

pp rGEpGqqψ , G, ψq ěc pp rN pNqψ1 , N, ψ1q.

According to Lemma 2.6(c) this implies

pGEpGqψ , G, ψq ěc p pNψ1 , N, ψ1q.

Now, Lemma 2.6(b) and the fact that ψ1 extends to pNψ1 allow us to see that ψ extends to
GEpGqψ .

The groups that appear above depend on the integer d but not on the prime ℓ leading to d. The
condition (iMK) for two primes ℓ and r with the same value d give two bijections, all mapping
to some characters of N “ NGF pSq. Going back to the construction of ΩGF ,ℓ through [Ma07]
and [CS17a, Sect. 6], we associate to a fixed d a character set Gd and a bijection

Ω1 : Gd ÝÑ IrrpNq,

such that
pG ¸ Γχ, G, χq ěc pN ¸ ΓΩ1pχq, N,Ω

1pχqq for every χ P Gd

and for every prime ℓ with dℓpqq “ d, the map Ω1 restricts into ΩGF ,ℓ on Irrℓ1pNq.
For the construction of this map we assume pG, F q to be as in Section 2.C, i.e., G might be

of type different from D.

Definition 4.13 Let pG, F q be as in Section 2.C with a regular embedding G ď rG. Assume
we have dual groups rG˚ ։ G

˚ with Frobenius endomorphisms denoted by the same letter
F . Let d ě 1 and let S

˚ be a Sylow d-torus of p rG˚, F q.
For any rs P rG˚

ss

F , let Ep rGF , rrssq be the associated rational series of characters of rGF .
Recall UchpC rG˚prsqF q Ď IrrpC rG˚ prsqF q the set of unipotent characters and the Jordan decom-
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position map

UchpC rG˚ prsqF q
„

ÝÝÝÑ Ep rGF , rrssq,
λ ÞÑ χG

s,λ.

For K
˚ an F -stable connected reductive subgroup of rG˚ containing S

˚, let UchdpK˚F q
be the set of irreducible components of Lusztig’s generalized characters RK

˚

C
K˚ pS˚qpλq for λ P

UchpCK˚pS˚qF q.
Set

rGd “
ď

rsPCĂG˚ pS˚qF
ss

tχ
rG
rs,λ | λ P UchdpC rG˚prsqF qu

and
Gd :“

ď

rχP rGd

Irrp rχs
GF q Ď IrrpGF q

be the set of irreducible components of the restrictions rχs
GF for rχ P rGd.

The following proposition is an adaptation of the construction recalled in [CS17a, Sect. 6],
assuming Conditions Apdq and Bpdq. We give a proof in the case when d is regular for pG, F q
which simplifies a bit the notation. We later apply it only for d a doubly-regular number for
pG, F q and G “ Dl,scpFq, where the assumptions are ensured by Theorem 4.1(a).

Proposition 4.14 Let pG, F q be as in 2.C and let d ě 1. Let S be a Sylow d-torus of pG, F q,
N :“ NGF pSq, pN :“ NGF¸EpGF qpSq and rN :“ N rGF pSq.

(a) Assume Condition Bpdq. Then there exists some Linp rGF {GF q¸ pN-equivariant bijective
map

rΩ1 : rGd ÝÑ Irrp rNq,

such that
(a.1) Irrpχs

Zp rGF qq “ Irrp rΩ1pχq
U
Zp rGF q

q for every χ P rGd, and

(a.2) rΩ1pIrrp rGF | Irrℓ1pGF qqq “ Irrp rN | Irrℓ1pNqq for every prime ℓ with d “ dℓpqq.
(b) Assume Conditions Apdq and Bpdq. Set Γ :“ AutpGF qS. Then there exists a Γ-

equivariant bijective map
Ω1 : Gd ÝÑ IrrpNq

such that
pG ¸ Γχ, G, χq ěc pN ¸ ΓΩ1pχq, N,Ω

1pχqq for every χ P Gd

and Ω1pIrrℓ1pGqq “ Irrℓ1pNq for every prime ℓ with dℓpqq “ d.

Proof. The proof essentially follows [CS17a, Sect. 6]. We first give a detailed proof for the case

where d is regular for pG, F q, allowing us to parameterise both characters via a set of pairs ĂM.
This is the only case used in the paper, namely for G, rG, etc. as defined in Section 2.E with
d doubly regular. We use the fact that centralizers of Sylow d-tori are tori in both G, rG and
their dual groups. This allows us to use pairs as parameter sets.

Let rTd “ C rGpSq and rT˚
d “ C rG˚pS˚q for S

˚ a Sylow d-torus in G
˚. Both are F -stable tori

with same type the regular element ρpuq P W with regard to the maximally split tori in duality
rT and rT˚. So rTd and rT˚

d can be taken as effecting the duality between rG and rG˚.

Let ĂM be the set of pairs prs, ηq where rs P rT˚
d
F and η P IrrpNCĂG˚ prsqprT˚

dqF {rT˚
d
F q.

The so-called generalized d-Harish-Chandra theory, see [GM, Sect. 4.6], implies that there
is a bijection

Uch: IrrpNCĂG˚ prsqprT˚
dqF {rT˚

d
F q Ñ UchdpC rG˚prsqF q

η ÞÑ Uchpηq

written as η ÞÑ R
CĂG˚ prsq

rT˚
d

p1qη in the notation of [GM, Thm 4.6.21].
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One then defines

ΨpGq : ĂM Ñ Irrp rGF q by prs, ηq ÞÑ χ
rG
rs,Uchpηq.

Note that rGd is defined to be its image, taking into account that C rG˚pS˚q “ rT˚
d is a torus

and therefore UchprT˚
d
F q “ t1rT˚

d
F u.

On the other hand Condition Bpdq implies there exists some Linp rG{Gq ¸ pN -equivariant
extension map rΛ with respect to rC E rN . Let us recall the isomorphism

rN
χ

rTd
rs,1

{rTF
d – NCĂG˚ prsqprT˚

dqF {rT˚
d
F ,

given by a well-defined duality map irs,1, see the proof of [CS13, Cor. 3.3]. For η P IrrpNCĂG˚ prsqprT˚
dqF {rT˚

d
F q

we denote by η˚ “ η ˝ irs,1 the corresponding character of rN
χ

rTd
rs,1

. We obtain a surjective map

ΨpNq : ĂM ÝÑ Irrp rNq given by prs, ηq ÞÑ prΛpχ
rTd
rs,1qη˚q

rN ,

which makes sense by Clifford theory (2.1). By the considerations of [CS17a] which only use
that the characters of rGF are in rGd, the maps are constant on rN˚-orbits, and bijections once
seen as on the quotient sets. Then one gets a bijection

rΩ1 : rGd Ñ Irrp rN q with ΨpGqprs, ηq ÞÑ ΨpNqprs, ηq

and the properties announced thanks to [CS17a, Prop. 6.3] and [CS17a, Thm 6.1] whose main
arguments are independent of the prime ℓ.

The above follows the constructions of Section 6 of [CS17a] and uses the fact that C rGF pSq is

a torus to simplify the technical construction of rΩ1 as otherwise the parameters used are triples.
If d is not regular for pG, F q, the construction of rΩ1 can be deduced from Section 6 of [CS17a]
in a similar manner by omitting the assumptions involving ℓ.

This finishes the proof of (a).

For the proof of (b), we can apply Proposition 2.12 thanks to Conditions Apdq and Bpdq.
Hence, there exists a bijection

Ω1 : Gd ÝÑ IrrpNq,

such that

pG ¸ Γχ, G, χq ěc pN ¸ Γχ, N,Ω
1pχqq for every χ P Gd.

As rΩ1pIrrp rG | Irrℓ1pGqqq “ Irrp rN | Irrℓ1pNqq the map Ω1 satisfies Ω1pIrrℓ1pGqq “ Irrℓ1pNq by
Clifford theory.

5 The group M . Characters and Clifford theory

From now on we work with the group G – Dl,scpFq (l ě 4), seen as a subgroup of G – Bl,scpFq
with common maximally split torus T, associated root system Φ “ ΦpG,Tq and root subgroups
Xα (α P Φ), see 2.E. Recall also the Frobenius endomorphism F : G Ñ G such that G

F “
Dǫ
l,scpqq.

In this chapter we introduce first a finite subgroup M ď G depending on some integers l1,
l2 “ l´l1, ǫ1 “ ˘1 and ǫ2 “ ǫ1ǫ. The group M has a normal subgroup M0 of index 2 gcdp2, q´1q,
which is a central product G1.G2 with Gi – Dǫi

li,sc
pqq in the sense of Definition 3.17. In an analysis

split into two main cases, we also introduce in Section 5.B a group EpMq acting on M that will
allow us to make statements similar to the condition Ap8q for this group M . This will involve
changing F into a slightly different νFq that proves more suitable when dealing with d-tori.
Our main aim is to deduce from the knowledge of IrrpGiq, the properties of IrrpMq, mainly the
statement in Theorem 5.20, an analogue of Apdq for M . We show later in Lemma 6.10 that
the integers l1, ǫ1 can be chosen so that the associated group M contains N

G
νFq pSq for a Sylow

d-torus S of pG, νFqq.
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The present chapter is structured as follows. First, we define the group M and investigate the
structure of M as a group, in particular, we introduce the normal subgroup M0EM . Afterwards,
we introduce a group EpMq acting on M in Section 5.B.

Section 5.C starts with collecting some basic observations on the characters of M and an
approach how to study them via M0, thus establishing some preliminary simplifications for
the proof of Theorem 5.20. Since M0 is the central product G1.G2 of two groups of type D,
we transfer in Section 5.D the results on the character sets T, E, D from Chapter 3 to the
characters of the direct factors of M0. This leads to a partitioning of IrrpMq into subsets along
the characters of M0 and splitting the proof of Theorem 5.20 according to those sets in Sections
5.E and 5.F.

5.A The group M
In the following we introduce subgroup M of G “ Dl,scpFq and then set M :“ M

νFq , defined in
a general way from the integers ǫ1, ǫ2, l1 and l2 as well as the prime power q determining some
Frobenius endomorphism νFq. The conventions followed to define G1 and G2 in Notation 5.1 are
meant to limit the number of cases to review in proofs. The rôles of G1 and G2 are symmetric
in the sense that a Sylow d-torus of G will eventually be assumed to be included in one of them
but both cases, G1 or G2 are allowed to occur, see Section 6.C. The definitions made below may
look arbitrary, but a glance at Lemma 5.8 and its proof can already provide an explanation.

For a given Frobenius endomorphism F 1 of G recall the Lang map

LF 1 : G ÝÑ G given by x ÞÑ x´1F 1pxq.

Notation 5.1 Let ǫ1, ǫ2 P t˘1u and l1, l2 ě 1 with ǫ “ ǫ1ǫ2 and l1 ` l2 “ l ě 5. Assume that
(i) ǫ1 “ ´1 if ǫ “ ´1; and
(ii) 2 | l1 if 2 ∤ l and pǫ1, ǫ2q “ p´1,´1q.

For J1 :“ l1, J2 :“ lzJ1 and i P t1, 2u, let Ri :“ Φ X xej | j P JiyZ, Ri :“ Ri X Φ, Ti :“
T X

@
Xα | α P Ri

D
, and

Gi :“

#
Ti if li “ 1,

xXα | α P Riy otherwise.

Following Notation 3.15, we clearly have G1 “ Gl1 and G2 – Gl2 . Recall that for k ě 2,
Gk – Dk,scpFq, using the notation of Definition 3.17 when k ď 3.

Recall n˝
1

“ ne1p̟q and set n˝
2
:“ nelp̟q. The above and the commutators given in 2.13 and

2.24(d) yield at once the following.

Lemma 5.2 (a) rG1,G2s “ 1, G1 X G2 “ xh0y with T ď G1.G2.
(b) rn˝

1
, n˝

2
s “ h0, n

˝
i normalizes Gi and centralizes G3´i for i “ 1, 2.

If γi (i “ 1, 2) denotes the automorphism of G given by conjugation with n˝
i , then Gi is

γi-stable and γi induces a graph automorphism on Gi. Moreover, γi defines an automorphism
of G. We also denote by γ1 the graph automorphism of rG. Note that γ2 is the concatenation
of γ and an inner automorphism of G. As such γ2 acts also on rG and by abuse of notation we
denote this automorphism of rG also by γ2.

Before defining the group M ě M
˝ “ G1.G2 and a slight replacement for the Frobenius

endomorphism F we need to introduce the elements pt1,pt2 P T.

Lemma 5.3 Set v˝ :“ pn˝
1q

1´ǫ1
2 pn˝

2q
1´ǫ2

2 , Zi :“ xhJip̟q, h0y and Zi :“ Z
v˝Fq
i . For i “ 1, 2 we

choose some pti P L´1

v˝Fq
ph0q X T X Gi with pti P ZpGiq, when possible. Then:

(a) if i P t1, 2u and |Zi| “ 2, then pti P Zi;
(b) if pǫ1, ǫ2q “ p´1,´1q and t|Z1|, |Z2|u “ t2, 4u, then pt1 P ZpG1q and Fpppt1q “ pt1;
(c) If pǫ1, ǫ2q “ p´1,´1q and t|Z1|, |Z2|u “ t2u, then one of the following holds

• Fpppt1q “ pt1 and 2 | l1; or
• Fpppt1pt2q “ pt1pt2 and 2 ∤ l1l2.

We see that always Zi ď ZpGiq, and Zi “ ZpGiq unless li “ 1 in which case Gi is a torus.
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Proof. Observe that for every I Ď l, hIp̟q is Fp-fixed if 4 | pp´ 1q or 2 | |I|.

In part (a), hJip̟q P ZizZi and can therefore be chosen as pti.
Then consider part (b). In this case pǫ1, ǫ2q “ p´1,´1q and t|Z1|, |Z2|u “ t2, 4u. According to

2.24, t|Z1|, |Z2|u “ t2, 4u implies that l1 and l2 have opposite parities. This leads to 2 ∤ l1`l2 “ l.
The assumption in 5.1(ii) implies 2 | l1. According to 2.24, |Z1| “ 2 and hence pt1 “ hJ1p̟q by
(a). This proves part (b).

In part (c), we assume that pǫ1, ǫ2q “ p´1,´1q and |Z1| “ |Z2| “ 2. By part (a), we can
choose pti “ hJip̟q for i “ 1, 2. Such an element is Fp-fixed if and only if li is even, otherwise
Fppptiq “ h0pti, see 3.4. If 2 ∤ l, then 2 | l1 by 5.1(ii) and hence Fpppt1q “ pt1. Otherwise 2 | l “ l1`l2
and Fpppt1pt2q “ pt1pt2 if 2 ∤ l1.

Definition 5.4 Depending on |Z1| and |Z2|, we fix elements v P G \ tn˝
1u, n P G as in the

Table 5.1 below. We also define there ν P InnpGq \ tγu as the automorphism of G induced
by conjugation by v, so that

νpgq “ vgv´1

for any g P G, and ν extends to rG as explained in Section 2.C for γ. We then form νFq the

corresponding endomorphism of rG. From Lemma 2.23 and the choice of v in Table 5.1 one
has clearly G

νFq – G
F – Dǫ

l,scpqq and

Gi :“ G
νFq
i – Dǫi

li,sc
pqq for i “ 1, 2

in the notation of Definition 3.17. We also define

M :“ pG1.G2q xn˝
1n

˝
2y “ pG1.G2q xny ě M :“ M

νFq ě M˝ :“ pG1.G2qνFq ě M0 :“ G1.G2.

pǫ1, ǫ2q t|Z1|, |Z2|u Condition v n Comment ν

p 1, 1q any 1 n˝
1n

˝
2 v

p´1,´1q t1u or t4u n˝
1
n˝
2

n˝
1
n˝
2

v

p´1,´1q t2u or t2, 4u 2 | l1 pt1n˝
1
n˝
2

pt1n˝
1
n˝
2

v

p´1,´1q t2u 2 ∤ l1 pt1pt2n˝
1
n˝
2

pt1pt2n˝
1
n˝
2

2 ∤ l1 implies 2 | l v

p´1, 1q t1u, t2u or t2, 4u n˝
1

ptjn˝
1
n˝
2

j with |Zj| P t1, 2u γ

p´1, 1q t4u n˝
1

pt1n˝
1n

˝
2 γ

Table 5.1: Choice of n, v and ν

Using v we recover the groups Zi and obtain finite subgroups of Gi and G as νFq-fixed
points.

Lemma 5.5 Let v be defined as in Table 5.1. Then for i “ 1, 2 we have
(a) Zi “ Z

νFq
i “ xhJip̟q, h0yνFq ;

(b) LνFqppt1q “ LνFqppt2q “ h0.

Proof. We observe v´1v˝ P ZpG1.G2qT according to Lemma 5.3. This shows parts (a) and
(b).

Lemma 5.6 — Structure of M . M˝ “ M0

@pt1pt2
D

and M “ M˝ xny ň G
νFq . Additionally,

G1 EM and G2 EM .

Proof. The equality M˝ “ M0

@pt1pt2
D

comes from Lang’s theorem and Lemma 5.2(a). The
inequality G

νFq ‰ M holds since G
νFq is perfect. We also have Gi EM˝ xny by the central

product structure of M˝ and Lemma 5.2(b).

The equality M “ M˝ xny is true as soon as rvFq, ns “ 1.
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Note rn˝
1n

˝
2, Fps “ 1 since nejp̟q “ hejp̟qnej p1q for any j P l and therefore

rn˝
i , Fps :“

#
1 if 4 | pp´ 1q,

h0 otherwise.
(5.1)

Recall rn˝
1, n

˝
2s “ h0, see Lemma 5.2(b).

If v P t1, nu, then
rvFq, ns “ rv, nsrFq, ns “ rFq, ns “ 1.

From Table 5.1 we see that vpv˝q´1 P ZpG1,G2qFp whenever pǫ1, ǫ2q “ p´1,´1q or equivalently
v “ n. This verifies rvFq, ns “ 1 whenever ǫ “ 1.

According to Table 5.1 it remains to consider the case where ǫ “ ´1. Then v “ n˝
1 and we

observe

rvFq, ns “ rn˝
1Fq,ptjn˝

1n
˝
2s “ rn˝

1Fq,ptjsrn˝
1Fq, n

˝
1srn˝

1Fq, n
˝
2s “ h0rFq, n

˝
1srn˝

1, n
˝
2srFq, n

˝
2s “

“ h0rFq, n
˝
1sh0rFq, n

˝
2s “ 1 by (5.1) above.

This finishes our proof.

Lemma 5.7 — Action of rT on M . Set

(

T :“ L´1

νFq
pZpGqq X T, rT :“ pTZp rGqqνFq , T0 :“

G1.G2 X T and rti P L´1

νFq
phJip̟qq X Ti for i “ 1, 2. Then

(a) rT and

(

T induce the same automorphisms on G
νFq ;

(b)

(

T “
@rt1rt2,pt1,pt2

D
T0;

(c)

(

T and rT normalize M , M˝, M0, G1 and G2.

Proof. Part (a) is standard, see 2.14 and 2.15.
For part (b), we have hlp̟q “ hJ1p̟qhJ2p̟q and therefore rt1rt2 satisfies LνFqprt1rt2q “ hlp̟q.

By Lemma 5.6, we have T
νFq “ T0

@pt1pt2
D
. On the other hand

(

T {TνFq is isomorphic to ZpGq by

LνFq , so we indeed get

(

T “ T
νFq

@rt1rt2,pt1
D

since by Lemma 5.5 we are adding elements whose
images under LνFq generate ZpGq, see 2.24(a).

We consider part (c). Recall G1 EM and G2 EM from Lemma 5.6. Now pt1 acts on G1

as a diagonal automorphism associated with h0rZpG1q, νFqs and rt1 acts on G1 as a diagonal
automorphism associated with hJ1p̟qrZpG1q, νFqs in the parametrization of Notation 2.14. On
the other hand, rpt1,G2s “ rrt1,G2s “ 1. We can describe similarly the action of rt2 and pt2 on G2.

We observe rn,rt1rt2s P
@pt1pt2

D
M0 “ M˝. Conjugation with rT and

(

T then stabilises M , T, G1

and G2 by Lemma 5.6 and we get our claim.

Before going further into describing M and some of its automorphisms we show below the
relevance to our work around Sylow d-tori of pG, F q for d ě 3. In particular we show that for
non-doubly regular d’s one can almost always build a group M such that one of the two groups
G1 and G2 contains a Sylow d-torus of pG, νFqq and d is doubly regular for that pGj , νFqq, see
case (iii) of Lemma 5.8.

Recall that ǫ P t˘1u with G
F “ Dǫ

l,scpqq. For ζ P Cˆ a primitive d-th root of unity we denote
by apG,F qpdq the multiplicity of ζ as a root of polynomial order

PpG,F qpXq “ X l2´lpX2 ´ 1qpX4 ´ 1q ¨ ¨ ¨ pX2l´2 ´ 1qpX l ´ ǫq,

see [GM, Table 1.3].

Lemma 5.8 We keep G
F “ Dǫ

l,scpqq with l ě 5 and take d ě 3. Then one of the following
three possibilities occurs:

(i) d is doubly regular for pG, F q;
(ii) apG,F qpdq ď 1 and therefore apG,F qpdmq “ 0 for any odd m ě 3; or
(iii) there exist j P t1, 2u, l1, l2 ą 0 and ǫ1, ǫ2 P t˘1u with l1 ` l2 “ l, ǫ “ ǫ1ǫ2 determining
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G1, G2 and ν as in Notation 5.1 and Definition 5.4 such that apG,F qpdq “ apGj ,νFqqpdq,
lj ě 4 and d is doubly regular for pGj , νFqq.

Proof. In the following, whenever k ě 2 and δ “ ˘1 we write ak,δpdq for the multiplicity of a
given d-th root of unity as a root of

pX2 ´ 1qpX4 ´ 1q ¨ ¨ ¨ pX2k´2 ´ 1qpXk ´ δq “ pX2 ´ 1q ¨ ¨ ¨ pX2k ´ 1q{pXk ` δq.

Then apG,F qpdq “ al,ǫpdq.
Let us check first that if al,ǫpdq ď 1, then al,ǫpdmq “ 0 for any odd m ě 3. Let ζ P Cˆ be a

dm-th root of 1. If al,ǫpdmq ě 1, then ζ is a root of X l ´ ǫ or some X2i ´ 1 for 1 ď i ď l ´ 1.
In the first case ζm is then also a root of X l ´ ǫ and since dm | 2l, d divides the even integer
2i0 “ 2l{m, so ζm is a root of X2i0 ´ 1 with 1 ď i0 ď l´ 1, leading to al,ǫpdq ě 2. In the second
case, we get dm | 2i, so ζm is a root of both X2i ´1 and X2i1 ´1 for i1 the integer i{m, implying
again al,ǫpdq ě 2.

We now assume that (i) and (ii) are not satisfied, that is al,ǫpdq ě 2 and d is not doubly
regular for pG, F q, i.e., d ∤ 2l or it does but p´1q2l{d ‰ ǫ, see Definition 4.4.

Set d0 “ d if d is odd, d0 “ d{2 if d is even. Set k :“ al,ǫpdqd0 and set δ :“ p´1qal,ǫpdq if 2 | d,
and δ “ 1 otherwise. It is easy to see that d being not doubly regular implies

al,ǫpdq “ ak,δpdq “
Y l ´ 1

d0

]
and therefore k “ d0 ¨

Y l ´ 1

d0

]
. (5.2)

This can be checked directly on the polynomials recalled above or by arguing on the form of
regular elements of order d in the Weyl groups of G and Gk, see Lemma 4.5.

Recall l ě 5, d ě 3 and hence d0 ě 2. So 4 ď d0 ¨ al,ǫpdq “ k “ d0 ¨ t l´1

d0
u ď l ´ 1. Let

us show that we can choose pǫ1, l1q, pǫ2, l2q such that the assumptions from Notation 5.1 are
satisfied and pδ, kq P tpǫ1, l1q, pǫ2, l2qu. Indeed if δ “ 1 the choice pǫ1, l1q “ pδ, kq clearly satisfies
5.1(i) and (ii). If δ “ ´1 “ ǫ then one takes pǫ2, l2q “ pδ, kq while 5.1(ii) is empty. Finally, when
δ “ ´1 “ ´ǫ then 5.1(i) is empty and one can always take pǫ1, l1q or pǫ2, l2q “ pδ, kq to satisfy
the parity condition of 5.1(ii).

We then get (iii) by taking j P t1, 2u such that pǫj , ljq “ pδ, kq since (5.2) above shows that
the multiplicity of the d-th cyclotomic polynomial in the order of pGj , νFqq is the same as in
the one of pG, F q while d is clearly doubly regular for pGj , νFqq by choosing 2k “ 2d0al,ǫpdq and
δ.

The above has given a hint on how M will be used in the next chapter to verify Conditions
Apdq and Bpdq. We give below a few more group-theoretic properties of M that won’t be used
but explain that this construction is more natural, and less new, than it seems.

Remark 5.9. (a) If pl1, ǫ1q ‰ pl2, ǫ2q, then the group M is a maximal subgroup of G
νFq , a

member of the family C1 in Aschbacher’s classification, see [MT, §18].
(b) Recall πSO : G Ñ SO2lpFq the reduction mod xh0y. We have xh0y ď M and πSOpMq “

CSO2l
psq for s :“ πSOphJ2p̟qq, a centraliser of involution in SO2lpFq.

(c) Let j P t1, 2u such that lj ě 2 and therefore there exists L a νFq-stable Levi subgroup of
M

˝ such that rL,Ls “ Gj . Then M satisfies

M “ NGprL,Lsq.

Indeed, computations with the roots of G allow us to see M
˝ “ rL,LsC˝

G
prL,Lsq. This

group is normal in NGprL,Lsq and we check easily NGpM˝,G3´jq “ M
˝ xny. This leads

to
M “ NGprL,Lsq and M “ NGprL,LsqνFq .

If moreover for some odd prime ℓ, L is d-split and there exist a d-cuspidal character
ζ P UchpLνFqq for d “ dℓpqq, then pL, ζq forms a unipotent d-cuspidal pair of pG, νFqq
defining an ℓ-block B of GνFq , see [CE, Thm 22.9]. Certain subgroups of M are studied
in [CE99] and are shown to control the ℓ-fusion in B, see [CE99, Prop. 5]. When moreover
L is a minimal dℓpqq-split Levi subgroup as is the case in our applications of Ch. 6, then
M contains a Sylow ℓ-subgroup of GνFq and controls the fusion of ℓ-subgroups of GνFq .
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5.B Some groups of automorphisms of M
We now define the automorphism group EpMq as a slight variant of EpGq already encountered
in the preceding sections. We then restrict it in a manner similar to the construction of EpGq

to obtain the finite groups EpMq, EpM˝q, and other variants suitable for

(

M :“ M

(

T .
Our further considerations are divided into two cases setting apart the case corresponding to

the last line of Table 5.1. With the definition of EpGq as bijective group homorphisms we can
form the abstract group G ¸ EpGq.

Definition 5.10 Let EpMq ď G ¸ EpGq be the subgroup given by

EpMq :“

#
xFp, γy “ EpGq if n P ZpG1.G2qn˝

1n
˝
2,@

F 2
p ,pt1γ

D
otherwise.

Let EpMq, resp. Ep

(

Mq be the subgroup of Autp rGνFqq, respectively of Autp rGνFq

(

T q,
obtained by restriction of EpMq. Set

EpM˝q :“ EpMq xn, h0y ď G
νFqEpMq ď G

νFq ¸ AutpGνFqq,

so that MEpMq “ M˝EpM˝q (see Lemma 5.6). Set Ep

(

M
˝
q :“ Ep

(

M q xn, h0y ď rGνFq ¸
Autp rGνFqq.

From Lemma 5.3(a–b) it is easy to see that the first case considered above corresponds
to the first five lines of Table 5.1, while the second case corresponds to the last line where
ǫ1 “ ´ǫ2 “ ´1 and |Z1| “ |Z2| “ 4. We now gather information on those automorphism
groups, starting with the first case of the above Definition.

Hypothesis 5.11 Assume ǫ “ 1 or t|Z1|, |Z2|u ‰ t4u.

Lemma 5.12 Assume Hypothesis 5.11. Then
(a) n acts as γ1γ2 on M0 “ G1.G2.
(b) G1, G2 and xn, h0y are EpMq-stable.

(c) Ep

(

Mq stabilizes

(

T , M and

(

M . The group Ep

(

M ˝q “ Ep

(

Mq xn, h0y also stabilizes

(

Gi :“
Gi

@pti,rti
D

for i “ 1, 2.
(d) If ǫ1 “ ǫ2 “ ´1, then vFq P C

G
νFqEpMqpG

νFqq.

Proof. Part (a) follows from n P n˝
1
n˝
2
ZpG1.G2q while (b) is clear from the proof of Lemma 5.7,

see also the relations recalled in Table 5.2 below.
For part (c), we see that Fp, γ and hence EpMq stabilise ZpGq and T. This shows that

EpMq stabilises

(

T and G
νFq

(

T . For part (d) note that by the construction vFq acts trivially on
G
νFq .

For the above proof and later we need the commutators for some elements of EpM˝q. All
are easily deduced from 2.13 and 2.24(d), see also Lemma 5.3.

pǫ1, ǫ2q t|Z1|, |Z2|u v n rFp, ns rγ1, ns rFp, vs rγ1, vs
p1, 1q any 1 n˝

1
n˝
2

1 h0 1 1

p´1,´1q t1u or t4u n˝
1n

˝
2 n˝

1n
˝
2 1 h0 1 h0

p´1,´1q t2u or t2, 4u 2 | l1 pt1n˝
1
n˝
2

pt1n˝
1
n˝
2

1 1 1 1

p´1,´1q t2u 2 ∤ l1 pt1pt2n˝
1
n˝
2

pt1pt2n˝
1
n˝
2

1 1 1 1

p´1, 1q t1u, t2u or t2, 4u n˝
1

ptjn˝
1
n˝
2

rFp,ptjs h0rγ1,ptjs h0 1

Table 5.2: Commutators of some elements in MEpMq “ M˝EpM˝q
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Lemma 5.13 Assume Hypothesis 5.11. Then:
(a) EpM˝q XM˝ “ xh0y and rEpM˝q, EpM˝qs ď xh0y;
(b) For Z :“ pZ1.Z2qνFq the Sylow 2-subgroup of CEpM˝qpZq is abelian.

Proof. The inclusion rEpM˝q, EpM˝qs ď xh0y is clear from Table 5.2. We also have pn˝
1
n˝
2
q2 “ h0

by 2.24(d). Then n2 P xh0y by 2.24(b) and since n P ZpG1.G2qn˝
1
n˝
2
. The overgroup M˝ acts

by 2 or 4 diagonal automorphisms on G1.G2 while EpM˝q{ xh0y “ xγ, n xh0y , Fpy acts by the
graph and field automorphisms γ1, γ1γ2 and Fp on G1.G2. The classification of automorphisms
of quasisimple groups makes that EpM˝q XM˝ acts trivially on G1.G2 and corresponds to xh0y
since both n2, rFp, ns and rγ1, ns belong to xh0y. This proves (a).

For part (b) set C :“ CEpM˝qpZq “
@
h0,Cxγ,Fp,nypZq

D
. If |Z1| “ |Z2| “ 4, then

C P txFp, h0y , xFpγ1, h0y , xFpn, h0y , xFpnγ1, h0yu

using again the description of the automorphisms induced on G1 and G2. In all cases, C is
abelian.

Assume ǫ1 “ 1 and hence ǫ2 “ 1. By the above we can assume 2 P t|Z1|, |Z2|u and even
|Z1| “ 2. Then 2 ∤ f according to 2.24(b) and hence xγ, n, h0y is the Sylow 2-subgroup of EpM˝q.
If additionally |Z2| “ 4, then xγ, h0y is the Sylow 2-subgroup of C. If |Z1| “ |Z2| “ 2 and hence
|Z| “ 4, then C ď xn, h0y which is again abelian.

Next we consider the case where ǫ “ 1 and ǫ1 “ ǫ2 “ ´1. By assumption 2 P t|Z1|, |Z2|u.
According to Lemma 5.3, |Z1| “ 2. The results in Table 5.2 show that EpM˝q “ xFp, γ1, ny is
abelian, since the generators then commute with each other.

Next, assume ǫ “ ´1. As above, we can assume that 2 P t|Z1|, |Z2|u. If |Z1| “ 2, then
n “ pt1n˝

1
n˝
2
. According to Table 5.2, rγ1, ns “ 1 in this case and the group xγ1, n, h0y is abelian.

If additionally |Z2| “ 2, then 2 ∤ f and xγ1, n, h0y is the Sylow 2-subgroup of EpM˝q. If |Z2| “ 4,
then C “ xγ1, nFpy or C “ xγ1, Fpy. Since in this case rγ1, ns “ 1, the group xγ1, n, h0y is
abelian. It remains to consider the case where |Z1| “ 4 and |Z2| “ 2. In this case, 2 ∤ f and
n “ pt2n˝

1n
˝
2. Then the group xγ1, n, h0y is a Sylow 2-subgroup of EpM˝q and the centralizer of

Z1.Z2 in this group is xγ1n, h0y, abelian again.

Lemma 5.14 — Comparison of EpMq, EpG1q and EpG2q. Assume Hypothesis 5.11. Let
EpMq be as in Definition 5.10. For i “ 1, 2 set EpGiq :“ xγi, Fpy ď AutpGiq, and let
EM pGiq ď AutpGiq be the subgroup of automorphisms of Gi induced by EpM˝q. Then

EpG1q “ EM pG1q and EpG2q “ EM pG2q.

Proof. Recall that n acts as γ1γ2 on G1.G2, see Lemma 5.12(a). Hence EM pG1q “ xγ1, Fpy and
EM pG2q “ xγ2, Fpy. This leads to the statement.

In the following, we verify some adaptations of the above statement to the missing case
corresponding to the last line of Table 5.1.

Hypothesis 5.15 Assume ǫ “ ´1 and t|Z1|, |Z2|u “ t4u.

Recall f denotes the integer with q “ pf .

Remark 5.16. If Hypothesis 5.15 holds, then 2 ∤ f and pp´ 1q2 “ 2, see 2.24(c).

Lemma 5.17 Assume Hypothesis 5.15.
(a) Then n “ pt1n˝

1n
˝
2 acts on G2 as γ2 and n acts on G1 as a concatenation of γ1 and a

diagonal automorphism associated to h0 in the parametrization of Notation 2.14.
(b) The element pt1 from Lemma 5.3 can be chosen to be he1pζq for ζ some 2pp`1q2-th root

of 1 in Fˆ and hence rFp2 ,pt1s “ 1.
(c) EpMq is cyclic of order 2f , rn,EpMqs “ xh0y, and the groups G1, G2 and xn, h0y are

EpMq-stable.

(d) Recall

(

M :“ M

(

T and Ep

(

M q ď AutpGνFq

(

T q the subgroup obtained by restrict-
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ing EpMq to G
νFq

(

T . Then Ep

(

M q stabilizes

(

T , M , Gi
@pti,rti

D
and

(

M . Analogously,

Ep

(

Mq xn, h0y stabilizes

(

T M0.

Proof. We have v “ n˝
1

and n “ pt1n˝
1
n˝
2

as defined by the last row of Table 5.1 and the actions
are clear from Lemma 5.2(b). This gives (a).

According to Remark 5.16, pq ´ 1q2 “ pp ´ 1q2 “ 2 and pp ` 1q2 “ pq ` 1q2. So for ζ a
2pp ` 1q-th root of 1 in Fˆ, he1pζq satisfies rhe1pζq, vF s “ rhe1pζq, γF s “ he1pζ´qζ´1q “ h0.
Hence we can choose pt1 “ he1pζq. The order of ζ divides p2 ´ 1 and hence rpt1, F 2

p s “ 1. This
shows part (b).

We see that γppt1q “ he1pζ´1q “ pt´1

1
hence ppt1γq2 “ 1. Furthermore, F 2

p has odd order f as

an automorphism of GνFq , and commutes with pt1γ1. We get that EpMq is abelian, even cyclic
of order 2f since pt1γ has order 2 by the above. So we get the first claim of (c).

We have rn, F 2
p s “ 1 since rpt1, F 2

p s “ rn˝
1n

˝
2, F

2
p s “ 1 by Lemma 5.3, and we see

rn,pt1γ1s “ rpt1n˝
1n

˝
2,pt1γ1s “ rpt1n˝

1,pt1γ1srn˝
2,pt1γ1s “ h0.

This leads to rn,EpMqs “ xh0y, as claimed in (c). We see that EpMq stabilises xny. For every
i P t1, 2u, the groups Gi and Gi are

@
F 2
p ,pt1γ1

D
-stable. This completes the proof of part (c).

By definition EpMq acts on T0 and stabilises ZpGq. This implies that EpMq stabilizes

G
νFq

(

T , M and M

(

T . This shows part (d).

The following gathers results easily obtained from Lemma 5.17 and 2.24.

pǫ1, ǫ2q t|Z1|, |Z2|u v n rF 2
p , ns rpt1γ1, ns rF 2

p , vs rpt1γ1, vs

p´1, 1q t4u n˝
1

pt1n˝
1n

˝
2 1 h0 1 1

Table 5.3: Commutators of some elements in MEpMq

Lemma 5.18 Assume Hypothesis 5.15.
(a) rEpM˝q, EpM˝qs “ xh0y and EpM˝q XM˝ “ xh0y;
(b) EpM˝q{ xh0y is abelian and CEpM˝qpZ1.Z2q is abelian.

Proof. Recall that by Hypothesis 5.15, ǫ “ ´1 and t|Z1|, |Z2|u “ t4u, hence 2 ∤ f . The group
EpMq “

@
F 2
p ,pt1γ

D
is abelian according to Lemma 5.17(c). Table 5.3 implies rEpMq, ns “ xh0y.

Recall EpMqXM “ 1. Using γppt1q “ pt´1

1
from the proof of Lemma 5.17(c) and then 2.24(d),

we get n2 “ ppt1n˝
1
n˝
2
q2 “ pn˝

1
n˝
2
q2 “ h0. This gives xny X M˝ “

@
n2

D
“ xh0y, whence the

second part of (a). Together with the equality rF 2
p ,pt1γs “ 1, the results of Table 5.3 lead to

rEpM˝q, EpM˝qs “ xh0y, completing the missing part of (a).
The above implies that EpM˝q{ xh0y is abelian. We have rZ1.Z2, ns “ rZ1.Z2, γ1s “ rZ1.Z2, nγ1s “

xh0y. Considering the action of EpM˝q on Z1 and Z2 we obtain CEpM˝qpZ1q “
@
h0, F

2
p , nγ1, γ1Fp

D

and CEpM˝qpZ2q “ xh0, Fp, γ1y. This leads to CEpM˝qpZ1.Z2q “
@
h0, Fpγ1, F

2
p

D
and this group is

abelian.

Lemma 5.19 — Comparison of EpMq, EpG1q and EpG2q. Assume Hypothesis 5.15. For
i “ 1, 2 set EpGiq :“ xγi, Fpy ď AutpGiq, and let EM pGiq ď AutpGiq be the subgroup of
automorphisms of Gi induced by EpM˝q. Then EpG2q “ EM pG2q. Moreover, EpG1q and
EM pG1q are rt1-conjugate in OutpG1q.

Proof. Note that in our case νFq “ γFq “ F as endomorphism of G. Since n “ pt1n˝
1
n˝
2

acts as
γ2 on G2, we see that EpM˝q induces

@
γ, F 2

p

D
on it. But this is equivalent to xγ, Fpy since γFq

acts trivially on G
F and therefore EpG2q “ EM pG2q, as claimed.

The assumptions imply 2 ∤ f by Remark 5.16. Via the isomorphism between OutpGF q and
ZpGqF ¸ xγ, Fpy induced by the Lang map LF , the group EM pG1q corresponds to

@
h0γ, F

2
p

D
.

Note that @
γ, F 2

p

Dhl1
p̟q

“
A
γ
hl1

p̟q
, F 2

p

E
“

@
h0γ, F

2
p

D
.

This shows that EpG1q and EM pG1q are rt1-conjugate in OutpG1q since hl1p̟q “ LF prt1q.
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5.C The characters of M and their Clifford theory
The aim of the remainder of this chapter is the following statement, later used in the proof of
Condition Apdq and corresponding roughly to Theorem C of our Introduction. Recall that the
groups rT from Lemma 5.7 and EpMq from Definition 5.10 act on M . As expected we state that
the actions of rTM and EpMq on M are of “transversal nature”, and maximal extendibility holds
with respect to MEMEpMq for enough characters of M . In the case when CMEpMqpMq ‰ ZpMq
(i.e. ǫ “ 1 and ǫ1 “ ´1) we provide a needed refinement of that maximal extendibility for certain
characters having h0 in their kernel.

Theorem 5.20 Set ĂM :“ M rT .
(a) Every ĂM -orbit in IrrpMq contains a character χ such that

(i) pĂMEpMqqχ “ ĂMχEpMqχ; and
(ii) χ extends to MEpMqχ.

Equivalently (see [S23a, Lem. 1.4]), there exists some EpMq-stable ĂM -transversal TpMq
in IrrpMq, such that maximal extendibility holds with respect to MEMEpMq for TpMq.

(b) If 2 | f , ǫ “ 1, ǫ1 “ ´1, χ P TpMq and h0 P kerpχq, then the extension of χ can be
chosen to have vpF pq

f in its kernel, where F p is the image of Fp in EpMq.

Recall
M0 “ G1.G2 E M˝ “ pG1.G2qνFq “ M0

@pt1pt2
D

E M “ M˝ xny ,

with M{M0 a non-cyclic group of order 4, see Lemma 5.6.
The characters of M are studied through the characters of M0, since M0 “ G1.G2, with

Gi – D
ǫi
li,sc

pqq by Definition 5.4 and therefore much information about IrrpGiq is known from
Theorem 3.16. Characters of M are obtained from those of M0 in the following way. Recall

(

T “ L´1

νFq
pZpGqq X T and rT “ pTZpGqqνFq from Lemma 5.7.

Lemma 5.21 (a) Let φ P IrrpM0q, pφ P IrrpM˝
φ | φq and χ0 P IrrpM˝

φ xnypφ | pφq. If Mφ ‰

M0

@pt1pt2n
D
, then χ :“ χM

0
is irreducible.

(b) Maximal extendibility holds with respect to M0 EM0

(

T and M0 EM0
rT .

Note that every character φ P IrrpM0q with Mφ “ M0

@pt1pt2n
D

has the qT -conjugate character

φ1 :“ φ
rt1rt2 . The character φ1 then satisfies

Mφ1 “ pMφq
rt1rt2 “ M0

A
pt1pt2nrt1rt2

E
“ M0 xny ,

since rrt1rt2, ns P pt1pt2M0. Hence part (a) of the statement does not apply to φ but applies to φ1.

Proof. For part (a) note that the quotients M˝{M0 and xnypφM
˝
φ{M˝

φ are cyclic, see Lemma 5.6.

Therefore, the characters pφ and χ0 are extensions of φ according to Proposition 2.2(a). One has
M˝
φ xnypφ ď Mpφ. Now if M˝

φ xnypφ “ Mpφ, then χ is irreducible by Clifford theory (2.1). Clearly

Mpφ ď Mφ. Recall that M{M0 is a Klein 4-group and the subgroups of M containing M0 are M0,

M0 xny, M0

@pt1pt2n
D
, M˝ and M . The group Mφ is one of those groups. Whenever Mφ ě M˝

or Mφ “ M0 the above construction leads to Mpφ “ M˝
φ xnypφ. Otherwise Mφ “ M0

@
npt1pt2

D
, and

hence Mpφ ‰ M˝
φ xnypφ in this case. We see that χ is irreducible unless Mφ “ M0

@pt1pt2n
D
.

Next, we consider the claim in part (b). Recall the definitions of pt1,pt2,rt1 and rt2 from

Lemma 5.3 and Lemma 5.7. Set

(

Gi :“
@pti,rti, Gi

D
. When li ě 2 this is consistent with Nota-

tion 2.15 since LνFqp
@pti,rti

D
q “ ZpGiq, while when li “ 1 then

(

Gi is abelian. So Lemma 3.19

implies that maximal extendibility holds with respect to GiE

(

Gi. On the other hand, the group

(

T of 5.7 satisfies

(

T ď

(

G1.

(

G2

since

(

T “
@rt1rt2,pt1,pt2

D
pT XM0q by 5.7(b). Hence, maximal extendibility holds with respect to

G1.G2 E

(

G1.

(

G2 and M0 “ G1.G2 E

(

T pG1.G2q “ M˝ (

T . As p

(

G1.

(

G2q{pG1.G2q is abelian, this

implies maximal extendibility with respect to M˝ EM˝ (

T , see Proposition 2.2(b).
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Since rT “ pTZp rGqqνFq ď

(

T Zp rGq, we also get maximal extendibility with respect to M0 E

M0
rT and with respect to M˝ EM˝ rT .

Recall M˝ “ pG1.G2qνFq “ M0T for T :“ T
νFq , and

EpM˝q :“ EpMq xn, h0y .

Proposition 5.22 Let φ P IrrpM0q and χ P IrrpM | φq. If

(

T φ ď T
@pt1

D
and χ

pt1 “ χ, then

pĂM xMqχ “ ĂMχ
xMχ where xM “ MEpMq.

Proof. Recall

(

M :“

(

T M and that Ep

(

M q stabilizes

(

M according to Lemma 5.12(c) and Lemma 5.17(d).

The automorphisms of M induced by

(

T and rT coincide, see Lemma 5.7. The automorphisms of

M induced by Ep

(

Mq and EpMq coincide. Hence our claim is equivalent to the equality

p

(

M Ep
(

Mqqχ “

(

MχEp

(

Mqχ.

We have to study the group p

(

M Ep

(

Mqqχ. We know that p

(

M Ep

(

Mqq{M is isomorphic to ZpGq ¸

Ep

(

Mq. Let U be the subgroup of ZpGq ¸ Ep
(

Mq corresponding to p

(

M Ep

(

Mqqχ{M . To get our

claim it suffices to ensure U “ pU X ZpGqq ¸ pU X Ep
(

Mqq by showing

xh0y ď U ď xh0y ¸Ep
(

Mq. (5.3)

The assumption χpt1 “ χ with LνFqppt1q “ h0 already implies the inclusion

xh0y ď U.

Next, we check U ď xh0y ¸ Ep

(

Mq. If φ1 P IrrpG1q and φ2 P IrrpG2q with φ “ φ1.φ2, then

p

(

Giqφi ď Gi
@pti

D
for some i P t1, 2u because of

(

T φ ď T
@pt1

D
, where T “ T X M˝. Without loss

of generality, we can assume p

(

G1qφ ď G1

@pt1
D
. According to Lemma 3.18, this implies

p

(

G1 ¸ Ep

(

G1qqχ ď pG1

@pt1
D

q ¸ Ep

(

G1q.

Recall from Definition 5.10 that Ep

(

Mq also defines a group of automorphisms of GνFq
(

T and

Ep

(

M
˝
q :“ Ep

(

Mq xn, h0y stabilizes

(

M
˝

“

(

T M˝. Then φ satisfies

pM0

(

T Ep

(

M
˝
qqφ ď M0

@pt1,pt2
D
Ep

(

M
˝
q.

Since χ P IrrpM | φq, this shows

Mp

(

T Ep

(

M qqχ ď Mp

(

T Ep

(

M
˝
qqφ ď pM

@pt1
D

qEp

(

Mq.

The latter corresponds to xh0y ¸Ep

(

Mq under the isomorphism p

(

M Ep

(

Mqq{M – ZpGq ¸Ep

(

Mq,
so we get (5.3) and accordingly

p

(

M Ep

(

Mqqχ “

(

MχEp

(

Mqχ.

For the proof of Theorem 5.20, we finish describing the characters of M via the ones of M0.
Notice that EpM˝q stabilizes G1 and G2.

Proposition 5.23 Let φ P IrrpM0q, pφ P IrrpM˝
φ | φq and E ď EpM˝qpφ. Let E1

i ď AutpGiq be

the group of automorphisms induced by E. Assume that for each i P t1, 2u, φi P IrrpφsGiq
extends to M0 ¸ E1

i.
(a) Then φ extends to M0E.
(b) If v P Gzt1Gu (or equivalently ǫ1 “ ǫ2 “ ´1, see Table 5.1), 2 | f and h0 P kerpφq, then

φ has an extension rφ to M0E with vFq P kerprφq.
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Proof. Note first that M0E
1 is a subgroup of pG1E

1
1
qˆpG2E

1
2
q where E1 ď AutpM0q is associated

with E and hence φ extends to M0E
1.

Set Z0 :“ ZpM0q and let tηu “ IrrpφsZ0
q “ Irrp pφ

U
Z0

q. As φ is E-invariant and hence

E1-invariant, η is E1-invariant as well.
Assume first that η extends to Z0E.
We deduce that η extends to Z0E

1, since η has degree 1 and Z0E
1 “ Z0 ¸ E1, see Proposi-

tion 2.2(d). We also observe

CM0EpM˝qpM0q “

#
Z0 xvFqy if pǫ1, ǫ2q “ p´1,´1q,

Z0 otherwise

and hence CM0E1pM0q “ Z0, since vFq P E corresponds to the trivial element in E1 whenever
pǫ1, ǫ2q “ p´1,´1q. This leads to

pM0E
1,M0, φq ěc pZ0E

1, Z0, ηq,

by Lemma 2.6(a). Theorem 2.8 then implies

pM0E,M0, φq ěc pZ0E,Z0, ηq .

Since η extends to Z0E, Lemma 2.6(b) implies that φ extends to M0E. So we get (a) whenever
η extends to Z0E.

For part (b) we already note the following. If rη is an extension of η to Z0E, then Lemma 2.6(b)
again implies that some extension rφ of φ to M0E satisfies

Irrp rφ
U
CZ0E

pM0q
q “ t rηs

CZ0E
pM0qu. (5.4)

Let us now check that η extends to Z0E.
Assume first that h0 P kerpφq. Then xh0y ď kerpηq. According to Lemma 5.13 and

Lemma 5.17, rE,Es X M˝ ď rEpM˝q, EpM˝qs X M˝ ď xh0y ď kerpφq. Proposition 2.2(d)
then implies that η extends to Z0E.

We are left to consider the case where h0 R kerpφq. Set Z :“ xh0,hJ1p̟q,hJ2p̟qyνFq and

rη P Irrp pφ
U

rZ
q. We observe that η and rη are E-invariant. On the other hand, computations

similar to 2.24(b) show rEpM˝q, Zs “ xh0y. As η is E-invariant and h0 R kerpηq this implies
E ď EpM˝qrη ď CEpM˝qpZq. According to Lemma 5.13 and Lemma 5.18 the Sylow 2-subgroup
of CEpM˝qpZq and hence of E is abelian. This shows that η has an extension to the Sylow
2-subgroup of Z0E. Additionally observe that EpM˝q{Z0 has a cyclic Hall 21-subgroup and
therefore η extends to Z0E, see [Is, Thm 11.32]. Hence our claim in all cases and this finishes
the proof of (a).

Next we ensure the statement in part (b). Here we assume v P Gzt1Gu and 2 | f , hence
pǫ1, ǫ2q “ p´1,´1q. We observe that vFq P C

G
νFqEpMqpM0q. By assumption h0 P kerpφq

and therefore h0 P kerpηq. Now η has an extension rη to Z0E that corresponds to a character of
Z0E{ xvFqy since xvFqyXZ0 ď xh0y. Hence we can assume rη to be chosen such that vFq P kerprηq.

According to (5.4), there exists an extension rφ of φ to M0Eφ with vFq P kerprφq, as required in
(b).

5.D Characters of G1 and G2

In order to prove Theorem 5.20 we split IrrpMq according to its constituents after restriction to
M0 “ G1.G2. In particular, we use the sets defined in Notation 3.15 for the subgroups Gi of
type D possibly of rank ď 3 in the sense of Definition 3.17. Proposition 5.26 enumerates in a
simplified fashion the cases that will be considered in the following sections.

Recall that the group EpMq and the associated group EpM˝q from Definition 5.10 stabilize
G1 and G2, see Lemma 5.12(b) and Lemma 5.17(d).

Recall Ep

(

M
˝
q “ Ep

(

Mq xn, h0y and

(

Gi “
@
Gi,pti,rti

D
. The group Ep

(

M
˝
q also stabilizes

(

G1

and

(

G2, see Lemma 5.12(c) and Lemma 5.17(d).
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Definition 5.24 Let i P t1, 2u and write EM p

(

Giq ď Autp

(

Giq for the group of automorphisms

of

(

Gi induced by Ep

(

M
˝
q. Let Ti, Ei and Di be the following subsets of IrrpGiq:

Ti :“
!
χ

ˇ̌
ˇ p

(

GiEM p

(

Giqqχ “ p

(

GiqχEM p

(

Giqχ and χ extends to GiEM pGiqχ

)
,

Ei :“
!
χ

ˇ̌
ˇ p

(

GiEM p

(

Giqqχ “ p

(

GiqχEM p

(

Giqχ and χ has no extension to GiEM pGiqχ

)
and

Di :“
!
χ

ˇ̌
ˇp

(

GiEM p

(

Giqqχ ‰ p

(

GiqχEM p

(

Giqχ

)
,

so that

IrrpGiq “ Ti \ Ei \ Di.

We also define E1
i “ Ti X

` Ť
xP

(

Gi

xEi
˘

and D1
i “ Ti X

` Ť
xP

(

Gi

xDi
˘
.

The set E1
i is the subset of all characters in Ti, which are

(

Gi-conjugate to an element of Ei. The

set D1
i is the subset of all characters in Ti, which are

(

Gi-conjugate to an element of Di. The def-
initions of the above character sets are analogous to those of Definition 3.9 (and Notation 3.15).
Accordingly, the characters satisfy the following statement.

Proposition 5.25 Let i P t1, 2u. Then the character sets of Definition 5.24 satisfy:
(a) Ti contains some rT -transversal in IrrpGiq.

(b) If χ P Ei Y E1
i, then h0 P kerpχq, p

(

Giqχ “ Gi
@pti

D
, χn “ χ and χ extends to Gi

@pti, γi
D
.

(c) If χ P DiYD1
i, then h0 P kerpχq, p

(

Giqχ “ Gi and every pχ P Irrp
@
Gi,pti

D
| χq is n-invariant.

More precisely χn “ χ if χ P D1
i and χnpti “ χ if χ P Di.

Moreover, EM pGiqχ is cyclic whenever χ P Di. If χ P D1
i, then pMEpMqqχ ď M0EpM˝qχ.

(d) If |Zi| “ 2, then Di “ Ei “ H and Ti “ IrrpGiq.
(e) If ǫi “ ´1, then Ei “ H. If 2 ∤ f , then E1 “ E2 “ H.
(f) If χ P IrrpGiqzEi, then χ extends to GiEM pGiqχ. If χ P Ei, then χ extends to GiE

2 for
any E2 ď EM pGiqχ with an even index |EM pGiqχ{E2|.

Proof. The groups EM pGiq and EpGiq induce the same subgroup of AutpGiq for every i P t1, 2u
unless i “ 2 and Hypothesis 5.15 holds, see Lemma 5.14 and Lemma 5.19. In those cases, the
sets obtained in Definition 3.9 (and Notation 3.15) for IrrpGiq and coincide with the present Ti,
Ei, Di via the isomorphism between Gi and Dǫi

li
pqq from Definition 5.4. If Hypothesis 5.15 holds,

then EpG1q and EM pG1q are rt1-conjugate in OutpG1q, so the sets from Definition 3.9 for IrrpGiq
are rt1-conjugate to the ones from Definition 5.24. Recall that in the case of (b) we can assume
that ǫ1 “ ǫ2 “ 1 and hence n acts as γi on Gi. In case of part (c), n acts either as γi or γipti, but
it always corresponds to an automorphism of EM pGiq by construction. This implies that parts
(a)–(c) follow from Theorem 3.16 and Lemma 3.12(a).

We now show that EM pGiqχ is cyclic whenever χ P Di. Let χ1 P D1
i be in the

(

Gi-orbit of χ.

Recall that this

(

Gi-orbit is of length 4. Via the identification

(

GiEM p

(

Giq{pGiC (

GiEM p

(

Giq
pGiqq – ZpGF q ¸ EM pGiq,

the group p

(

GiEM p

(

Giqqχ1 then corresponds to a subgroup of EM pGiq and p

(

GiEM pGiqqχ corre-
sponds to a subgroup of the formEM pGiq

z for some z P ZpGF qz xh0y “ ZpGF qzCZpGF qpEM pGiqq.
The group EM pGiqχ corresponds then to a subgroup of EM pGiq X EM pGiq

z which is cyclic by
a straight-forward discussion.

The inclusion pMEpMqqχ “ pM˝EpM˝qqχ ď M0EpM˝qχ follows from the fact that M˝ acts
by diagonal automorphisms on Gi and EpM˝q acts by EM pGiq on Gi, while χ P D1

i Ď Ti. Recall
that χ is in this situation not stable under any non-inner diagonal automorphism.

For the proof of (d), assume |Zi| “ 2. Then ZiEM pGiq coincides with Zi xγi, Fpy and is
abelian. Then (a) implies Ti “ IrrpGiq and Di “ Ei “ H as also explained in (4) of the proof of
Theorem 3.16.
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For part (e), assume first Hypothesis 5.11. Then EM pGiq acts by
@
γi, Fps

G
νFq

D
, which is

cyclic whenever 2 ∤ f or ǫi “ ´1. This then implies that every character of Gi extends to its
stabilizer in GiEM pGiq by Proposition 2.2(a), and we get Ei “ H. This is (e) in that case.

Assume now that Hypothesis 5.15 holds and therefore 2 ∤ f . Then EM pG1q “
@pt1γ, F 2

p

D
and

EM pG2q “ xγ2, Fpy both act cyclically on G
νFq . Then E1 “ E2 “ H again as above.

Part (f) is clear for χ P Ti. If χ P Di the group EM pGiqχ is cyclic by part (c). Otherwise if
χ P Ei, then the group E2 is either cyclic or contains γi since EM pGiq{ xγy is cyclic. In the latter
case, let F 1 P EM pGiqχ be such that EM pGiqχ “ xF 1, γiy and E2 ď

@
pF 1q2, γi

D
. Every extension

rχ of χ to Gi xγiy is not F 1-invariant by the definition of Ei, but since F 1 can only permute the
two extensions of χ we see that rχ is pF 1q2-invariant and hence χ extends to GiE

2.

Because of the central product structure M0 “ G1.G2 with G1 X G2 “ xh0y (see Lemma 5.2),
any subsets G1 Ď IrrpG1q and G2 Ď IrrpG2q define

G1.G2 :“ tχ1.χ2 | χi P Gi with Irrpχ1sxh0yq “ Irrpχ2sxh0yqu Ď IrrpM0q.

Recall

(

T :“ L´1

νFq
pZpGqq X T and EpM˝q “ EpMq xn, h0y by the definition in Lemma 5.13

and Lemma 5.18. The following statement allows us to divide the proof of Theorem 5.20 into
cases.

Proposition 5.26 — Properties of rT -orbits in IrrpM0q. Let φ1 P IrrpM0q. There exists some
t P rT such that φ “ pφ1qt satisfies one of the following properties:

(i) φ P T1.T2; or
(ii) φ P E1

1.E2 \ D1
1.D2 \ D1

1.E2 \ E1.D
1
2 with t|Z1|, |Z2|u “ t4u.

Proof. Recall that the action of

(

T on G
νFq coincides with the action of rT . Set φ1

i P IrrpGiq such
that φ1 “ φ1

1
.φ1

2
. Recall IrrpGiq “ Ti \Ei \Di , see Definition 5.24, with Ei “ Di “ H whenever

|Zi| ‰ 4 as recalled in the preceding proof.
Assume φ1

1
and all its rT -conjugates belong to T1. In this case, Proposition 5.25(a) allows

us to choose x P rT so that pφ1
2
qx P T2 additionally, and therefore φ1.φ2 :“ pφ1

1
.φ1

2
qx P T1.T2, as

claimed in (i).
Outside of (i), we see then that there is a rT -conjugate pφ1, φ2q of pφ1

1
, φ1

2
q in pE1

1
\ D1

1
q ˆ

pE2 \ D2q, also forcing |Z1| “ |Z2| “ 4. This gives (ii) up to the case pφ1, φ2q P E1
1

ˆ D2.

Proposition 5.25 implies E1
1 “ E

rt1
1

and D
rt2
2

“ D1
2. Hence if φ1.φ2 P E1

1.D2, a

(

T -conjugate of φ1.φ2
is contained in E1.D

1
2. But this is also a rT -conjugate, so we are in the case (ii).

The above case (i) implies a familiar transversality of stabilizers.

Lemma 5.27 Every φ P T1.T2 satisfies p rTEpM˝qqφ “ rTφEpM˝qφ.

Proof. For i P 2, set φi P IrrpGiq with φ “ φ1.φ2. Let us denote by F
piq
p the automorphism

of M0 “ G1.G2, that acts trivially on G3´i and as Fp on Gi. Recall that Ti was defined

using EM p

(

Giq which acts as EM pGiq on Gi, hence φi P IrrpφsGiq satisfies p

(

GiEM p

(

Giqqφi “

p

(

GiqφiEM p

(

Giqφi .

In order to verify the statement, we have to prove that for every rg P

(

T and e P EpM˝q with
φrge “ φ, one has φrg “ φe “ φ in the first place.

Since

(

T ď T
@rt1,rt2,pt1,pt2

D
and EpM˝q acts as EM pGiq on Gi, one may find rgi P

(

Gi, ei P

EM pGiq such that rg “ rg1rg2 and e acts as e1e2 on M0. Then pφ1φ2qrge “ φ1φ2 implies φrgiei
i “ φi

for i “ 1, 2 by restriction. From the definition of the sets Ti we now get φrgi
i “ φeii “ φi and

therefore our claim that φrg “ φ “ φe1e2 “ φe.

Proposition 5.26 above clearly leads to checking Theorem 5.20 by considering successively
rT -orbits in IrrpMq containing an element in IrrpM | T1.T2q, IrrpM | E1

1.E2q or IrrpM | D1
1.D2 \

D1
1.E2 \ E1.D

1
2q, see the next two sections.

Beforehand we have nevertheless to prove a statement about maximal extendibility. Recall
ĂM :“ M rT .
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Proposition 5.28 Maximal extendibility holds with respect to M E ĂM “ rTM .

Proof. Set χ P IrrpMq. Assume first that

(

Tχ{T is cyclic. Then since rT ď

(

T Zp rGq by the

definition of

(

T in Lemma 5.7 and therefore ĂM ď

(

M Zp rGq, we have that ĂMχ{MpĂM X Zp rGqq is

cyclic. Then χ extends to ĂMχ by Proposition 2.2(a).

We now assume that

(

Tχ{T is not cyclic. Then

(

Tχ “

(

T and we can assume χrt1rt2 “ χ
pt1 “ χ.

Set φ P IrrpχsM0
q, then φ

rt1rt2 is in the M -orbit of φ since φrt1rt2 also belongs to IrrpχsM0
q. For

φi P IrrpGiq with φ “ φ1.φ2, we see that the M -orbit of φi is rti-stable. Therefore, the
@
n,pti

D
-orbit

of φi is rti-stable. On the other hand, Proposition 5.25(b) and (c) implies that every
@
n,pti

D
-orbit

containing some ψ1 P Di \ D1
i \ Ei \ E1

i is not rti-stable. Accordingly φi P TizpE1
i Y D1

iq. Taken
together, we see that φ P T1.T2 and therefore

p rTEpM˝qqφ “ rTφEpM˝qφ

by Lemma 5.27. In particular Mφ ‰ M0

@pt1pt2n
D

and Lemma 5.21(a) then ensures that χ “ rφM ,

where rφ is an extension of φ to Mpφ for some extension pφ P IrrpM˝
φq of φ. Lemma 5.21(b) tells

us that maximal extendibility holds with respect to M0 ⊳M0
rT , so the character rφ extends to

M0
rTφ. According to Proposition 2.2(e), there exists an extension ψ of rφ to rTrφMpφ. The character

ψ
M rT pφ is by this construction an extension of χ to M rTχ as required.

5.E Proof of Theorem 5.20. Characters in IrrpM | T1.T2q
In this section we begin the verification of Theorem 5.20 through studying IrrpMq as a union of
sets IrrpM | X q for the various subsets X Ď IrrpM0q singled out in Proposition 5.26. Here we
start with IrrpM | T1.T2q.

Recall

(

T :“ L´1

νFq
pZpGqq,

(

M
˝
:“

(

T M˝, EpM˝q :“ EpMq xn, h0y, Ep

(

M
˝
q :“ Ep

(

Mq xn, h0y,

xM :“ MEpMq and xM0 :“ M0EpM˝q.
In our situation, Lemma 5.27 leads to the following.

Lemma 5.29 Let φ P IrrpM0q and pφ P IrrpM˝
φ | φq. Assume:

(i) φ satisfies p

(

T Ep

(

M
˝
qqφ “

(

T φEp

(

M
˝
qφ or equivalently pxM0

rT qφ “ pxM0qφ
rTφ;

(ii) φi P IrrpφsGiq extends to M0EM pGiqφi for every i P t1, 2u.
Then:
(a) Every χ P IrrpM | φq satisfies pĂM xMqχ “ ĂMχ

xMχ and extends to xMχ.

(b) Every κ P IrrpM˝ | φq satisfies pĂM xMqκ “ ĂMκ
xMκ and extends to xMκ.

(c) If in addition ǫ1 “ ǫ2 “ ´1 (or equivalently v P Gzt1Gu) and 2 | f (hence t|Z1|, |Z2|u “
t2u according to 2.24(c)), then every χ P IrrpM | φq with h0 P kerpχq has an extension

rχ to xMχ “ MEpMqχ with vFq P kerprχq.

Proof. We apply Lemma 2.4 with A :“ rT xM , X “ M0, rX :“ rTM0, Y :“ xM0 and L :“ M

and φ as the character. We know that maximal extendibility holds with respect to M0 EM0
rT

according to Lemma 5.21(b) and therefore φ extends to M0
rTφ.

The quotient rTM0{M0 “ rT {p rT XM0q is abelian. The assumption (ii) implies that φ extends

to pxM0qpφ for pφ P IrrpM˝
φ | φq, see Proposition 5.23. The group xM0{M0 “ pM0EpM˝qq{M0 is

isomorphic to a subgroup of EpM˝q{pEpM˝q X M˝q and EpM˝q{pEpM˝q X M˝q is abelian as
rEpM˝q, EpM˝qs ď M˝ according to Lemma 5.13 and Lemma 5.18, respectively.

In combination with the assumption (i), we see that all assumptions of Lemma 2.4 are
satisfied and the statements in (a) and (b) follow then from (b) and (c) of Lemma 2.4.

It remains to consider the case where 2 | f , ǫ1 “ ǫ2 “ ´1 and h0 P kerpχq. As seen before,

Proposition 5.23(b) tells us that φ has an extension to pxM0qpφ with xvFqy in its kernel. Then the

statement in (c) follows from Lemma 2.4(d) with z “ vFq.

In a first application of this statement we verify Theorem 5.20 for ĂM -orbits containing some
character in IrrpM | T1.T2q. Part (b) of the following statement is useful for the proof of
Condition Bpdq.
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Proposition 5.30 — Stabilizer and extensions of IrrpM | T1.T2q. Let φ P T1.T2.
(a) Then every character χ P IrrpM | φq satisfies

(i) pĂM xM qχ “ ĂMχ
xMχ; and

(ii) χ extends to some rχ P IrrpxMχq such that vFq P kerprχq whenever v P Gzt1Gu and
h0 P kerpχq.

(b) Maximal extendibility holds with respect to M˝ E xM “ MEpMq for IrrpM˝ | T1.T2q.
(c) If 2 | f , ǫ1 “ ǫ2 “ ´1 and χ P IrrpM | T1.T2q with h0 P kerpχq, then χ extends to

MEpMqχ{ xνFqy.

Proof. Recall

(

Gi :“
@
Gi,pti,rti

D
and EM p

(

Giq is the subgroup of Autp

(

Giq induced by Ep

(

M
˝
q, see

Definition 5.10. According to Lemma 5.27 , pxM0
rT qφ “ pxM0qφ

rTφ. Let φi P Ti be such that

φ “ φ1.φ2. By the definition of Ti the character φi satisfies p

(

GiEM p

(

Giqqφi “ p

(

GiqφiEM p

(

Giqφi
and extends to GiEM pGiqφi .

Hence the assumptions from Lemma 5.29 are satisfied and its part (a) then implies that every
χ P IrrpM | φq satisfies

pĂM xMqχ “ ĂMχ
xMχ

and extends to MEpMqχ. This ensures part (a). Parts (b) and (c) are now clear from the rest
of Lemma 5.29.

5.F Proof of Theorem 5.20. Above the other characters of M0

In this section we study ĂM -orbits O in IrrpMq with O X IrrpM | T1.T2q “ H. According to
Proposition 5.26, O then contains a character χ1 P IrrpM | φq for some φ P E1

1.E2 \ D1
1.D2 \

D1
1.E2 \ E1.D

1
2, while |Z1| “ |Z2| “ 4.

Proposition 5.31 Assume |Z1| “ |Z2| “ 4. Let φ P E1
1.E2 \ D1

1.D2 \ D1
1.E2 \ E1.D

1
2. Then

every χ P IrrpM | φq satisfies

(i) pĂM xMqχ “ ĂMχ
xMχ and

(ii) χ extends to xMχ “ MEpMqχ.

Proof. Set φ “ φ1φ2 with φi P IrrpGiq for i “ 1, 2. We are going to prove the following points
for at least one χ P IrrpM | φq.

(1) χ
pt1 “ χ;

(2) Mφ P tM0,M0 xny ,Mu and φ extends to some χ0 P IrrpMφ | φq, and
(3) if φi P Ei and we denote by E1

i ď AutpGiq the subgroup induced by EpM˝qχ0
, then the

index |EM pGiqφi{E
1
i| is even.

(4) pMEpMqqφ ď M0EpM˝q or Mφ “ M .

Let us see first how those points imply our Proposition. Since ĂM xM acts trivially on M{M0

it suffices to prove the points (i) and (ii) for some χ P IrrpM | φq to have them for all. Set
Ti :“ T X Gi. Then φi P Di Y D1

i Y Ei Y E1
i. According to Proposition 5.25 (b) and (c)

the inclusion Ti
@pti,rti

D
φi

ď Ti
@pti

D
holds and h0 P kerpφq. This implies

(

T φ ď T
@pt1

D
since

(

T “ pT1.T2q
@pt1,pt2,rt1rt2

D
according to Lemma 5.7. Then (1) implies pĂM xM qχ “ ĂMχ

xMχ according
to Proposition 5.22.

By (2), Mφ P tM0 xnyφ ,Mu and χ “ χM0 for some extension χ0 P IrrpMφ | φq of φ, see also
Lemma 5.21(a). Let E1

i ď AutpGiq be induced by EpM˝qχ0
. Note that E1

i ď EM pGiqφi , and φi P
IrrpGiq extends to GiEM pGiqφi according to Proposition 5.25(f), whenever φi P IrrpGiqzEi. If i P
t1, 2u with φi P Ei, then by (3) the group E1

i has even index in EM pGiqφi and φi extends to GiE
1
i

according to Proposition 5.25(f). Hence φ extends to M0EpM˝qχ0
according to Proposition 5.23.

Moreover pMEpMqqχ0
ď Mχ0

EpM˝qχ0
follows from (4), since pMEpMqqχ0

“ MEpMqχ0
in

case χ0 is an extension of φ to M , or pMEpMqqχ0
ď pMEpMqqφ ď M0EpM˝qφ. Then this

implies that χ0 extends to pMEpMqqχ0
“ xMχ0

, according to Proposition 2.2(e). Inducing this
extension of χ0 gives an extension of χ as required in (ii).

After recalling the consequences of Proposition 5.25 we first check (1), (2) and (4) in each of
the four cases for φ. We finally show (3).
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Indeed Proposition 5.25 implies for the character φi:

T0
@
n,pti

D
φi

“

$
’&
’%

T0 xnyφi if φi P D1
i,

T0
@
npti

D
φi

if φi P Di,

T0
@
n,pti

D
φi

if φi P Ei \ E1
i.

This leads to

Mφ “

$
’&
’%

M if φ P E1
1.E2,

M0 xny if φ P E1.D
1
2 \ D1

1.E2,

M0 if φi P D1
1.D2.

(5.5)

Hence in all cases Mφ “ M˝
φ xnypφ for pφ P IrrpM˝

φ | φq. According to Proposition 2.2(a), φ extends
to Mφ, whenever Mφ ‰ M .

Let now first pφ1, φ2q P E1
1

ˆE2 and hence Mφ “ M . Note that E1
1

‰ H and E2 ‰ H implies
pǫ1, ǫ2q “ p1, 1q, 2 | f and 4 | pq ´ 1q, see Proposition 5.25(d) and (e). Consequently, v “ 1 and
n “ n˝

1n
˝
2 by the definition of v and n in Table 5.1.

According to Proposition 5.25(b), every extension pφi of φi to Gi
@pti

D
is γi-invariant. This

implies pφn
˝
i

i “ pφi according to Lemma 2.23 and then we find a character ψi P IrrpGi
@pti, n˝

i

D
{ xh0yq

that is an extension of φi. Since G1

@pt1, n˝
1

D
{ xh0y ˆG2

@pt2, n˝
2

D
{ xh0y is isomorphic to

pG1

@pt1, γ1
D

{ xh0yq ˆ pG2

@pt2, γ2
D

{ xh0y q,

the character ψ1.ψ2 first defines a character of M
@pt1

D
and via restriction we obtain a

@pt1
D
-

invariant character χ P IrrpM | φ1.φ2q. We see that χ is an extension of φ to M and χ
pt1 “ χ,

ensuring (1), (2) and (4).
If pφ1, φ2q P D1

1 ˆ D2 or equivalently φ P D1
1.D2, then this implies Mφ “ M0. By Clifford

theory (2.1), the character χ P IrrpM | φq satisfies χ “ φM . As φ is pt2n-invariant, the character
χ seen as a character of M is pt1-invariant due to Mpt1 “ Mpt2n. This ensures (1) and (2).
Considering the action of MEpMq on G1 and φ1 P D1

1 (see Proposition 5.25(c)), we see that
pMEpMqqφ ď M0EpM˝q, ensuring (4).

Assume next that pφ1, φ2q P D1
1 ˆ E2 and hence Mφ “ M0 xny, see (5.5). This implies (2).

Then 2 | f according to Proposition 5.25(e) and hence Hypothesis 5.15 does not hold. This leads

to n2 “ h0 and provides the

(

T -equivariant isomorphism

M0 xny { xh0y – pG1.G2q xγ1γ2y { xh0y .

Note that φ2 extends to G2

@pt2, γ2
D

according to Proposition 5.25(b) and hence every extension

of φ2 to G2 ¸ xγ2y is pt2-invariant. An extension of φ1 to G1 xγ1y and an extension of φ2 define an
extension rφ of φ to M0 xny. Because of rG1 xγ1y ,pt2s “ 1, rφ is pt2-invariant. We observe that rφ can
be taken as χ0 and χ “ rφM . By construction, χ is pt2-invariant. Since pt1pt2 P M by Lemma 5.6
this leads to χ

pt1 “ χ, as required in (1). As above, we derive from φ1 P D1
1 that (4) holds.

If φ1.φ2 P E1.D
1
2
, then the same argument applies and ensures (1), (2) and (4).

Finally, we prove (3), i.e. 2 | rEM pGjqφj : E1
js whenever j P t1, 2u with φj P Ej. We can

assume xM{M to be non-cyclic and φ1.φ2 P pE1
1
.E2q\pE1.D

1
2
q\pD1

1
.E2q. This implies ǫ1 “ ǫ2 “ 1.

Fix j P t1, 2u with φj P Ej and let j1 P t1, 2uztju. In our situation we observe φj1 P Tj1 and
φnj1 “ φj1 according to Proposition 5.25.

Writing F p P EpMq for the image of Fp, we let ai be a divisor of the order of F p such that

F aip generates
@
F p

D
φi

. By definition EM pGjqφj “
@

pF
aj
p q, γj

D
, and every extension of φj to

Gj ¸ xγjy is not F
aj
p -invariant because of φj P Ej. Analogously EM pGj1qφj1 “

A
pF

aj1

p q, γj1

E
and

the extension of φj1 to Gj1 ¸
@
γj1

D
is F

aj1

p -invariant as φj1 P Tj1.
Because of ǫ1 “ ǫ2 “ 1 we have n “ n˝

1n
˝
2 and there exists an isomorphism between

pG1 xγ1yq{ xh0y ˆ pG2 xγ2yq{ xh0y and xG1, G2, n, γ1y { xh0y. The extensions rφ1 and rφ2 define
an extension rφ of φ to M0 xny with

EpM˝qrφ “ xn, γy
´A
F

2aj
p

E
X

A
F
aj1

p

E¯
.



The McKay Conjecture on character degrees 53

Recall that E1
j denotes the subgroup of AutpGjq induced by EpM˝qχ0

, where χ0 is an extension

of φ to Mφ. Without loss of generality, we can assume that χ0 is an extension of rφ and hence
EpM˝qχ0

ď EpM˝qrφ. We then see that E1
j has an even index in EM pGjqφj “

@
γj , F

aj
p

D
as

required for (3).

The above pretty much finishes the verification of Theorem 5.20:

Proof of Theorem 5.20. Let O be an ĂM -orbit in IrrpMq, χ1 P O and φ1 P Irrpχ1sM0
q. According

to Proposition 5.26 there is some t P rT such that φ :“ pφ1qt is contained in

T1.T2 \ E1
1.E2 \ D1

1.D2 \ D1
1.E2 \ E1.D

1
2.

The case φ P E1
1
.E2 \ D1

1
.D2 \ D1

1
.E2 \ E1.D

1
2

is only relevant if additionally t|Z1|, |Z2|u “ t4u.
Set χ :“ pχ1qt and hence χ P O. By the choice of φ we see that

χ P IrrpM | T1.T2q Y IrrpM | E1
1.E2 \ D1

1.D2 \ D1
1.E2 \ E1.D

1
2q.

Characters of these sets have been studied in Proposition 5.30 and Proposition 5.31, respec-
tively. Consequently pĂM xMqχ “ ĂMχ

xMχ, and χ extends to MEpMqχ. This gives part (a) of
Theorem 5.20.

Assume next ǫ1 “ ǫ2 “ ´1 and 2 | f . According to 2.24 we see that t|Z1|, |Z2|u “ t2u and
therefore IrrpM0q “ T1.T2. Then IrrpMq “ IrrpM | T1.T2q and we get part (b) of Theorem 5.20
from Proposition 5.30.

6 The Conditions Apdq and Bpdq

Now we use the results on the character theory of the group M from the previous section to
establish Conditions Apdq and Bpdq from 2.19 and 2.20 for an integer d ě 3 fixed throughout the
whole chapter. Condition Apdq is about the character theory of NGpS1qF , where S

1 is a Sylow d-
torus of pG, F q. Lemma 5.8 shows that outside of the “doubly regular” case treated in Chapter 4,
we can essentially replace NGpS1qF by a group M as in Chapter 5: In the setting of Section 5.A
a Sylow d-torus of pG, νFqq can be taken as a subgroup of either G1 or G2, and d is doubly
regular there. Character correspondences between a subset of IrrpMq and IrrpNGpS1qF q allow
us to transfer statements on IrrpMq to IrrpNGpS1qF q via centrally isomorphic character triples.
These are constructed using results from the doubly regular case, where (iMK) was already
shown, see Theorem 4.1. As a second step in Section 6.B, we use character correspondences to
define an extension map, later verifying Condition Bpdq.

Proving Theorem 6.9 finishes the proof of Apdq and Bpdq. From this we derive (iMK) for
quasisimple groups of type Dl, the final step of the proof of Theorem B and indeed McKay’s
equality.

6.A Character Correspondences
In the following, we continue using the notation introduced in Section 5 around the group M .
We establish a character correspondence between some characters of M and one of its subgroups
under the assumption 6.1 that essentially sums up the case (iii) of Lemma 5.8. This allows us to
deduce some results about IrrpNGpS1qF q for some Sylow d-torus S

1 of pG, F q. In order to apply
the results of Section 4 we assume the following.

Assumption 6.1. Let d be an integer with d ě 3. Assume that d is doubly regular (see Defini-
tion 4.4) for pGj , νFqq for some j P t1, 2u with lj ě 4.

Notation 6.2 Let j P t1, 2u be such that d is doubly regular for pGj , νFqq. Set K1 :“ Gj ,

K2 :“ G3´j , ǫ
1
1 :“ ǫj “ ǫǫ1

2, l
1
1 :“ lj “ l ´ l12, Ki “ K

νFq
i , EM pK1q :“ EM pGjq, EM pK2q :“

EM pG3´jq (see Lemma 5.14 and Lemma 5.19) and let S be a Sylow d-torus of pK1, νFqq. We
associate with S the groups

N1 :“ NK1
pSq, N :“ NM pSq, pN :“ NMEpMqpSq and rN :“ N

M rT pSq,
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where rT :“ pTZp rGqqνFq .

Assumption 6.1 implies that (iMK) holds for K1 and ℓ with respect to N1, whenever ℓ is
an odd prime with d “ dℓpqq, see Theorem 4.1. Recall that AutpK1q is induced by bijective
endomorphisms of G commuting with F , see Section 2.C, and hence AutpK1q acts on the set of
F -stable subgroups of K1. The group Γ1 :“ AutpK1qS is therefore well-defined and according
to Theorem 4.1(b) there exists a Γ1-equivariant bijection

Ω˝
1 : Irrℓ1pK1q ÝÑ Irrℓ1pN1q,

such that

pK1 ¸ Γ1,ψ,K1, ψq ěc pN1 ¸ Γ1,Ω˝
1

pψq, N1,Ω
˝
1pψqq for every ψ P Irrℓ1pK1q.

Since K1 “ K
νFq
1

– D
ǫ1
1

l1
1
,sc

pqq according to Definition 5.4, and the integer d “ dℓpqq is doubly

regular for pK1, νFqq, Proposition 4.14 defines a character set GdpK1q Ď IrrpK1q and provides
us with a character correspondence extending Ω˝

1.
Recall K1 E M by Lemma 5.6(d). In the following, we continue to use the group EpMq

from Lemma 5.6(d), which acts by definition also on ĂM :“ rTM . The following gives a char-
acter correspondence between some characters of K1 and characters of N1 “ NK1

pSq, which is
additionally Γ1-equivariant. Recall that here we use the order relation on character triples from
Section 2.B.

Proposition 6.3 We keep Assumption 6.1 and follow Notation 6.2.
(a) Let GdpK1q Ď IrrpK1q be the set from Definition 4.13. There exists some Γ1-equivariant

bijection
Ω1 : GdpK1q

„
ÝÑ IrrpN1q,

such that

pK1 ¸ Γ1,χ1
,K1, χ1q ěc pN1 ¸ Γ1,Ω1pχ1q, N1,Ω1pχ1qq for every χ1 P GdpK1q.

(b) Set A :“ ĂMEpMq. Then every χ1 P GdpK1q satisfies

pAχ1
,K1, χ1q ěc pNApSqχ1

, N1,Ω1pχ1qq for every χ1 P GdpK1q.

(c) Let J be a group with K1 ď J EA “ ĂMEpMq. Then there exists an NApSq-equivariant
bijection

Π : IrrpJ | GdpK1qq ÝÑ IrrpNJ pSqq

such that every ψ P IrrpJ | GdpK1qq satisfies

pAψ, J, ψq ěc pNApSqΠpψq,NJpSq,Πpψqq.

In particular
(i) If ψ P IrrpJ | GdpK1qq and ψ1 :“ Πpψq, then Aψ “ JNApSqψ1 . For any J ď U ď A,

the character ψ extends to U if and only if ψ1 extends to NU pSq.
(ii) Let φ1 P GdpK1q and φ2 P IrrpCJpK1qq such that φ1.φ2 is a well-defined irreducible

character of K1.CJpK1q. Then

ΠpIrrpJ | φ1.φ2qq “ IrrpNJpSq | Ω1pφ1q.φ2q. (6.1)

Proof. According to Proposition 4.14, the bijection Ω1 exists as required in (a). Recall K1 E

ĂMEpMq by Lemma 5.7(c). According to the Butterfly Theorem 2.8, part (a) implies (b), see
also Remark 2.9. In Part (c), the existence of a bijection Π satisfying the ěc relation and (ii) is
a consequence of (a) and (b) thanks to [Ro23a, Prop. 2.4] and the construction described there.
Property (i) follows from Lemma 2.6(b).

We continue using Assumption 6.1 and the notation above. We deduce from Ω1 and its
properties the following bijection. The next statement ensures Condition Apdq later, via an
isomorphism between G

F and G
νFq . Recall N :“ NM pSq, rN :“ NĂM pSq and pN :“ NMEpMqpSq.
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Theorem 6.4 We keep Assumption 6.1. There exists some pN -stable rN -transversal TpNq in
IrrpNq such that maximal extendibility holds with respect to N E pN for TpNq. Additionally
if 2 | f , ǫ “ 1 and ǫ1 “ ´1, then every χ P TpNq with h0 P kerpχq has an extension rχ to pNχ

with vFq P kerprχq.

Proof. Recall xM :“ MEpMq and ĂM :“ M rT . According to Theorem 5.20(a) there exists some
xM -stable ĂM -transversal TpMq in IrrpMq, such that every χ P TpMq extends to xMχ. On the
other hand GdpK1q is by definition AutpK1q-stable. Set T1pMq :“ TpMq X IrrpM | GdpK1qq.
Since EpMq and rT permute the Sylow d-tori of pK1, νFqq and all Sylow d-tori of pK1, νFqq are

K1-conjugate (see [MT, Thm 25.11]) we see MEpMq “ M pN and ĂM “ M rN . Therefore, T1pMq
is also a pN -stable rN -transversal in IrrpM | GdpK1qq.

For J :“ M and A :“ xM ĂM , we apply Proposition 6.3(c) and obtain the bijection

Π : IrrpM | GdpK1qq ÝÑ IrrpNM pSqq

with the properties stated there. Then Π is pN rN -equivariant as NApSq “ pN rN . Note that the
set TpNq :“ ΠpT1pMqq is a pN -stable rN -transversal in IrrpNq by the equivariance of Π. Let
ψ1 P TpNq and set ψ :“ Π´1pψ1q P T1pMq. By the properties of T1pMq, we see that ψ extends

to its stabiliser in xM . Furthermore by the properties of Π we have

pMEpMqψ,M,ψq ěc p pNψ, N, ψ
1q.

According to Lemma 2.6(b), ψ1 extends to pNψ1 , since ψ extends to xMψ.

Note that in the case of 2 | f , ǫ “ 1 and ǫ1 “ ´1, every ψ1 P TpNq with h0 P kerpψ1q has an
extension rψ1 to pNψ1 with vFq P kerp rψ1q, as ψ has the analogous property by Theorem 5.20(b).

The following helps to ensure the first part of Condition Bpdq from 2.20.

Corollary 6.5 Maximal extendibility holds with respect to N E rN .

Proof. As in the above proof of Theorem 6.4 we apply Proposition 6.3(c) with J :“ M and use
the bijection Π : IrrpM | GdpK1qq ÝÑ IrrpNq with

ppĂMEpMqqψ ,M,ψq ěc pp pN rNqψ1 , N, ψ1q

for any ψ1 P IrrpNq and ψ :“ Π´1pψ1q.

By Lemma 2.6(c) this restricts to

pĂMψ,M,ψq ěc p rNψ1 , N, ψ1q.

Recall that according to Proposition 5.28, ψ extends to ĂMψ, since maximal extendibility holds

with respect to M E ĂM . According to Lemma 2.6(b) this implies that ψ1 extends to rNψ1 .

6.B Another extension map

The aim of this section is to build a version of the extension map required in the second part of
Condition Bpdq, see 2.20. As before, we only verify an analogue for subgroups of rGνFq . Recall
M˝ :“ pG1.G2qνFq and EpM˝q :“ EpMq xny. We write TpKiq for the set from Definition 5.24
with our choice of K1 “ Gj and K2 “ G3´j . We choose TpK2q to be an EM pK2q-stable subset

of TpK2q, which is at the same time a rT -transversal in IrrpK2q. (This is possible according to
Proposition 5.25(a).) In the diagrams below double bars stand for normal inclusions.
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xM

M˝

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
M0EpM˝q

■■■■■■■■■■

■■■■■■■■■■

M0 “ K1.K2

▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

In the groups xM , M0EpM˝q, M0 and M˝,
introduced before we consider their normal-
izers of S. Note that there is a well-defined
action of EpMq and EpM˝q on the νFq-
stable tori of G and hence the stabilizer of
S in those groups is well-defined.
Set N˝ :“ NM˝pSq and pN˝ :“
NM0EpM˝qpSq. Note that N˝ X pN˝ “
NM0

pSq since M˝ X M0EpM˝q “ M0 by
Lemma 5.13(a) and Lemma 5.18(a).

By its definition TpK2q is also pN˝-stable and
is some rT -transversal in IrrpK2q. Recall the
description of the action of M0EpM˝q and,
therefore, of pN˝ on K1 in Lemma 5.14 and
Lemma 5.19, respectively. This allows us to
transfer the result from Section 4.E and we ob-
tain an pN˝-equivariant extension map Λ1 for
CK1

pSq ENK1
pSq.

pN

N˝

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧ pN˝

❅❅❅❅❅❅❅❅

❅❅❅❅❅❅❅❅

N1.K2

●●●●●●●●●

●●●●●●●●●

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

Lemma 6.6 We follow Notation 6.2, keeping Assumption 6.1. Recall N1 “ NK1
pSq. Let

C1 :“ CK1
pSq and let Λ1 be the pN˝-equivariant extension map with respect to C1 EN1 from

Corollary 4.12(a).
Let λ P IrrpC1q, φ2 P TpK2q with λph0qφ2p1q “ λp1qφ2ph0q, so that λ.φ2 P IrrpC1.K2q and

Λ1pλqN1 .φ2 P IrrpN1.K2q are well defined.
Then any ψ P IrrpN˝ | Λ1pλqN1 .φ2q extends to its stabilizer in pN . Moreover, pNψ “ N˝ pNτ

for tτu “ IrrpC | λ.φ2q X IrrpψsCq.

Proof. Let

Ω1 : GdpK1q
„
ÝÑ IrrpN1q,

and

Π : IrrpM˝ | GdpK1qq
„
ÝÑ IrrpN˝q

be the bijections from Proposition 6.3(c)
obtained by choosing M˝ as J and
ĂMEpMq as A.
Set χ :“ Π´1pψq. By definition,
ψ P IrrpN˝ | Λ1pλqN1 .φ2q and, there-
fore, χ P IrrpM˝ | Ω´1

1
pΛ1pλqN1q.φ2q

thanks to (6.1) in Proposition 6.3.
By Corollary 4.12(b), the character
Ω´1

1
pΛ1pλqN1q of K1 satisfies

Ω´1

1
pΛ1pλqN1q P TpK1q.

xM

χ M˝

⑤⑤⑤⑤⑤⑤⑤⑤⑤

⑤⑤⑤⑤⑤⑤⑤⑤⑤ pN

M0

✇✇✇✇✇✇✇✇✇✇

✇✇✇✇✇✇✇✇✇✇

N˝

⑤⑤⑤⑤⑤⑤⑤⑤⑤

⑤⑤⑤⑤⑤⑤⑤⑤⑤

⑤⑤⑤⑤⑤⑤⑤⑤⑤

⑤⑤⑤⑤⑤⑤⑤⑤⑤

ψ

K1

✇✇✇✇✇✇✇✇✇

✇✇✇✇✇✇✇✇✇

N1.K2

✈✈✈✈✈✈✈✈✈✈

✈✈✈✈✈✈✈✈✈✈

C τ

Λ1pλqN1 N1

①①①①①①①①①

①①①①①①①①①

C1.K2

✈✈✈✈✈✈✈✈✈✈

✈✈✈✈✈✈✈✈✈✈

λ.φ2

C1

①①①①①①①①①

①①①①①①①①①
λ

We now get χ P IrrpM˝ | T1.T2q in the notation of Definition 5.24 and for this character,

Proposition 5.30(b) tells us that χ extends to xMχ. By Proposition 6.3(c.i) we see that then also

ψ extends to pNψ.

We now have to compute pNτ . Clifford theory implies that pNψ ď pNψsC
“ N pNτ and hence it

remains to ensure pNψ ě pNτ . Note first that C1.K2 has index 2 or 1 in C. By Clifford theory,
then τ is either an extension of λ.φ2 or equals pλ.φ2qC .

Assume that τ is an extension of λ.φ2 to C. Then there exists a common extension rτ of
τ and Λ1pλqspN1qτ

.φ2 to pN1qτC according to Proposition 2.2(e). As Λ1 is pN˝-equivariant, the

character Λ1pλqspN1qτ
.φ2 is p pN˝qλ.φ2-invariant. Then the character rτ is C pN˝

τ “ pNτ -invariant,
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since pN˝
λ.φ2

C “ pN τ sC1.K2

ě pNτ . Note that ψ “ rτN˝
and hence ψ is pNτ -invariant.

Now assume that τ “ pλ.φ2qC . Then rτ :“ pΛ1pλq.φ2qCpN1qτ is irreducible and an extension
of τ . We observe again that rτ by the construction using Λ1 is C pN˝

λ.φ2
-invariant and rτN “ ψ by

Clifford theory. It remains to see that C pN˝
λ.φ2

“ pNτ .

In order to see this equality, we compare the actions of C and pN˝ on C1.K2. While C induces
a diagonal automorphism onK2 and can also be induced by conjugation with an element of rT , pN˝

acts on K2 as an element of EM pK2q. Recall φ2 P TpK2q and TpK2q is a pN˝-stable rT -transversal
in IrrpK2q. According to [S23a, Lem. 2.3], the properties of TpK2q lead to p pN˝ rT qφ2 “ pN˝

φ2
rTφ2 ,

and hence

pC pN˝qφ2 “ Cφ2
pN˝
φ2
.

Since C1 ď ZpCq we obtain that

pNλ.φ2 “ pC pN˝qλ.φ2 “ Cφ2
pN˝
λ.φ2

.

As τ “ pλ.φ2qC and pN “ pN˝C, this leads to

pNτ “ C pNλ.φ2 “ CpCφ2
pN˝
λ.φ2

q “ C pN˝
λ.φ2

.

Hence in all cases rτ is pNτ -invariant, implying that ψ is pNτ -invariant, as well.

General Clifford theory shows that pNψ “ N pNτ,rτ . Taking into account that rτ is pNτ -invariant

we obtain the equality pNψ “ N pNτ .

Above, before Lemma 6.6, we have defined TpK2q Ď TpK2q and the former is by defini-
tion an M0EpM˝q-stable rT -transversal in IrrpK2q. Recall C :“ CM pSq and pN :“ NMEpMqpSq.

Proposition 6.7 — Extension map with respect to CMpSq ENM pSq. Set rC :“ CĂM pSq.

(a) The set IrrpC | TpK2qq forms an pN -stable rC-transversal in IrrpCq, in particular p rC pNqρ “
rCρ pNρ for every ρ P IrrpC | TpK2qq.

(b) There exists some pN -equivariant extension map Λ with respect to C E N for IrrpC |
TpK2qq.

Proof. For part (a) observe that TpK2q is EpM˝q-stable. Furthermore, because of rN1,K2s “
1, we get that the set IrrpC | TpK2qq is C pN1-stable. The group pN induces the same outer
automorphisms ofK2 as C pN1. Hence, IrrpC | TpK2qq is pN -stable. Since TpK2q is a rT -transversal,
IrrpC | TpK2qq is a rC-transversal in IrrpCq. This ensures part (a).

For the proof of part (b), we show that maximal extendibility holds with respect to C E pN
for IrrpC | TpK2qq. This will imply the existence of an associated pN -equivariant extension map
and by restriction we will actually get our claim with respect to C EN .

Let τ P IrrpC | TpK2qq and show that it extends to pNτ . Note that with λ P IrrpC1q and
φ2 P Irrpτ sK2

qXTpK2q Lemma 6.6 applies. Let rτ be the pNτ -invariant extension toNτ constructed

in the proof of Lemma 6.6. Then ψ “ rτN˝
and ψ extends to some rψ P Irrp pNψq.

By Clifford correspondence (2.1), some character τ 1 P Irrpp pNψqτ | τq satisfies τ 1 pNψ “ rψ.

Recall that by Lemma 6.6 we have pNψ “ N pNτ and hence p pNψqτ “ pNτ . Taking into account the

degrees, we see that τ 1 is an extension of τ and, by construction, even of rτ to pNτ . This finishes
our proof.

Next we establish a statement implying later Condition Bpdq via the isomorphism between G
F

and G
νFq . Recall that S denotes a Sylow d-torus of pK1, νFqq, rC :“ CĂMpSq, rN :“ NĂM pSq and

N :“ NM pSq.

Proposition 6.8 — Extension map with respect to CĂMpSq E NĂM pSq. We keep Assump-

tion 6.1 and follow Notation 6.2. There exists some Linp rN{Nq ¸ pN -equivariant extension
map rΛ with respect to rC E rN .
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Proof. We wish to apply Proposition 2.3 with X “ rC, A “ rN , pA “ pN rC, and X0 “ C, A0 “ N ,
pA0 “ pN . The conclusion of Proposition 2.3 provides exactly the extension map we need with
the properties claimed. We now review the assumptions of Proposition 2.3.

We have CE rC with an abelian quotient since ĂM “ M rT . The other group theoretic assump-
tions are clear.

To check that maximal extendibility holds with respect to C E rC, notice first that rC,Cs “
rK2,K2s “ rK2,K2sνFq since K2 is either simple simply connected or a torus. On the other
hand rC “ pK2CK1

pSqZp rGqqF , so maximal extendibility holds with respect to rC,Cs E rC by
classical results (see for instance [CE, Thm 15.11]). But then it also holds with respect to CE rC
by Proposition 2.2(b).

We also have an pN -equivariant extension map with respect to C E N for IrrpC | TpK2qq
thanks to Proposition 6.7(b) above.

So we have all the required assumptions and Proposition 2.3 gives our claim.

6.C Turning to groups related to Sylow d-tori
The aim of the following is the proof of Theorem 6.9, namely the proof of Conditions Apdq and
Bpdq for pG, F q in the case where d ě 3 is not doubly-regular for pG, F q, thus complementing
Theorem 4.1.

First we choose integers l1, l2, ǫ1, ǫ2 as in Lemma 6.10 with regard to d and pG, F q and
determine a corresponding group M as in Notation 5.1. For this group M we see that the
statements from the two preceding sections apply, where characters of NM pSq were studied for
some Sylow d-torus S of pG, νFqq. We see in Lemma 6.10 that S is a Sylow d-torus of pG, F q
and that NM pSq “ N

G
νFq pSq.

Then we establish in Lemma 6.11 an isomorphism ι between G
νFq and G

F , as well as between
G
νFqEpMq and G

FEpGF q in most cases. Denoting N :“ NM pSq, rN :“ NĂM pSq, S1 :“ ιpSq,

N 1 :“ NGF pS1q and rN 1 :“ NGF pS1q, we show how ι makes the rN -transversal in IrrpNq from
Theorem 6.4 into a rN 1-transversal in IrrpN 1q as required by Apdq.

Theorem 6.9 Let pG, F q be as in 2.E such that G
F “ Dǫ

l,scpqq and d an integer such that
d ě 3, apG,F qpdq ě 2 and d is not doubly regular for pG, F q in the sense of 4.4. Let S

1 be a

Sylow d-torus of pG, F q, C 1 :“ CGF pS1q, rC 1 :“ C rGF pS1q, N 1 :“ NGF pS1q, pN 1 :“ NGFEpGF qpS
1q

and rN 1 :“ N rGF pS1q. Then the following hold.

(a) There exists an pN 1-stable rN 1-transversal TpN 1q in IrrpN 1q, such that every ψ P TpN 1q
extends to its stabilizer in pN 1.

(b) Maximal extendibility holds with respect to N 1 E rN 1.
(c) There exist some pN 1-stable rC 1-transversal T1 in IrrpC 1q and an pN 1-equivariant extension

map with respect to C 1 EN 1 for T1.
(d) There exists some Linp rN 1{N 1q ¸ pN 1-equivariant extension map with respect to rC 1 E rN 1.

In particular, Conditions Apdq and Bpdq from Section 2.D hold for G
F .

We have first the following.

Lemma 6.10 We assume the situation of Theorem 6.9.
(a) We can choose integers l1, l2, ǫ1, ǫ2, an element v P G as in Notation 5.1 and Defini-

tion 5.4, and groups G1,G2, M and M such that:
(i) M satisfies Assumption 6.1 for d.
(ii) Let ν be the automorphism of G and rG associated to v as in Definition 5.4. If

K1 P tG1,G2u is given as in 6.2 and S is a Sylow d-torus of pK1, νFqq, then S is a
Sylow d-torus of pG, νFqq.

(b) Then the group M satisfies additionally

NGpSqνFq ď M “ M
νFq , N rGpSqνFq ď ĂM, and

NGEpMqpSqνFq ď MEpMq “ M
νFqEpMq.
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Proof. The assumptions of Theorem 6.9 clearly happen only in the third case of Lemma 5.8. In
this case, there exist j P t1, 2u, v P G, l1, l2 ą 0 and ǫ1, ǫ2 P t˘1u with l1 ` l2 “ l, ǫ “ ǫ1ǫ2 as
in Notation 5.1 and Definition 5.4 such that for the thereby defined groups G1,G2 and M , a
Sylow d-torus S of pK1, νFqq is a Sylow d-torus of pG, νFqq, where K1 “ Gj . This gives (a) and
(b).

The proof of NGpSqνFq ď M “ M
νFq in (c) uses the description of minimal d-split Levi

subgroups CGpSq of pG, νFqq and their associated relative Weyl groups pNGpSq{CGpSqqνFq in
[S10b] and [GM, Ch. 3.5]. Recall M˝ “ K1.K2 a central product of νFq-stable groups. Since d
is doubly regular for pK1, νFqq we see that T1 :“ CK1

pSq is a torus and

CM˝pSq “ T1.K2.

From the description of the root system of the Levi subgroup C :“ CGpSq (see [S10b, §7] and
[GM, Example 3.5.15]) we get first

CM˝pSq “ C.

There essentially remains to show that the relative Weyl groups have same order in G
νFq and

M . Denoting d0 and apG,νFqqpdq as in the proof of Lemma 5.8, we abbreviate the latter as a.
The relative Weyl groups being insensitive to the center of G, we can use the considerations of
[GM, Ch. 3.5] in classical groups G{ xh0y “ SO2lpFq. From the end of the description in [GM,
Example 3.5.15] (where d0 is denoted as e) we get

|NGpCqνFq{CνFq | “ p2d0qa ¨ a! and |NK1
pK1 X Cq{pK1 X Cq| “

1

2
p2d0qa ¨ a!. (6.2)

Note that NGpCqνFq “ NGpSqνFq since S is the only Sylow d-torus of Z˝pCq and for the
same reason NK1

pK1 X Cq “ NK1
pSq. The latter implies in turn that the second equality in

(6.2) above yields

|NM˝pSqνFq{CνFq | “ |pNM˝ pSq{CqνFq | “ | pNK1
pSq{pK1 X CqqνFq | “

1

2
p2d0qa ¨ a!. (6.3)

By the theory of Sylow d-tori ([MT, Thm 25.11]) all Sylow d-tori of pM˝, νFqq are M˝-
conjugate and hence |NM pSq{NM˝ pSq| “ |M :M˝| “ 2. Combining this with (6.3) and the first
equality of (6.2), we get |NMpSqνFq | “ |NGpSqνFq | and therefore NGpSqνFq “ NMpSqνFq ď M

as claimed.
The F -stable torus S is contained in an F -stable maximal torus rY of M˝ Zp rGq that is at

the same time a maximal torus of rG. We have rGνFq “ rYνFqG
νFq and therefore N rGpSqνFq “

rYνFqNGpSqνFq ď p rYMqνFq “ pZp rGqMqνFq “ ĂM by the inclusion proved before.
By the definition of EpMq, we see easily that K1 is EpMq-stable and hence the K1-orbit of

S is EpMq-stable. Hence

NGEpMqpSqνFq ď NGpSqνFqK1EpMq ď MEpMq.

This implies NGEpMqpSqνFq ď MEpMq.

Results from 6.B concern subgroups of GνFq and for the proof of Theorem 6.9 we construct an
isomorphism between G

νFq and G
F . Recall that EpGq is the group of abstract automorphisms

of rG generated by Fp and γ.

Lemma 6.11 Recall EpGF q is the subgroup of AutpGF q obtained by restriction of EpGq.
(a) Assume pǫ, ǫ1, ǫ2q “ p1,´1,´1q or equivalently v P Gzt1Gu. Let x P G be an element

such that pvFqq
x “ Fq “ F . (Such an element exists according to Lang’s Theorem.)

Then conjugation with x defines an isomorphism

ι : rG ¸ EpGq ÝÑ rG ¸EpGq by y ÞÑ yx “ yry, xs

such that ιpGνFqq “ G
F and ιp rGνFqq “ rGF . Recall EpMq “ EpGνFqq “ xFp, γy ď

Autp rGνFqq from Definition 5.10.
(i) If t|Z1|, |Z2|u ‰ t4u, then ιpGνFqEpMqq “ G

FEpGq with ιpvFqq “ Fq inducing an
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isomorphism G
νFqEpMq{ xh0, vFqy – G

FEpGF q{ xh0y.
(ii) If t|Z1|, |Z2|u “ t4u, then the groups of automorphisms of GF induced by ιpGνFqEpMqq

and G
FEpGq are conjugate by a diagonal automorphism. Moreover EpGF q is

cyclic.
(b) Assume pǫ, ǫ1, ǫ2q “ p1, 1, 1q or pǫ, ǫ1, ǫ2q “ p´1,´1, 1q with t|Z1|, |Z2|u ‰ t4u. Recall

EpMq ď AutpGνFqq defined as in the preceding case. The identity map ι : rG¸EpGq ÝÑ
rG ¸ EpGq induces an isomorphism between G

FEpMq and G
FEpGF q.

(c) Assume that Hypothesis 5.15 holds so that νFq “ F . Let pt P G be some element with
F pptq “ pth0 and recall EpMq “

@
F 2
p ,ptγ

D
ď G

F ¸ AutpGF q from Definition 5.10. Then

the outer automorphism groups of G
F induced by EpMq and EpGF q are conjugate

by a diagonal automorphism. Moreover, an inner automorphism of rGF induces an
isomorphism between G

FEpMq and G
FEpGF q.

(d) In all cases there exists some isomorphism

ι1 : rG ¸EpGq ÝÑ rG ¸ EpGq by y ÞÑ yx
1

“ yry, x1s

induced by conjugation with an element of x1 P rG, such that

ι1p rGνFqEpMqq “ rGFEpGq, ι1p rGνFqq “ rGF and ι1pGνFqEpMqq “ G
FEpGq.

Then one of the following holds:
(d.i) ι1 induces an isomorphism between G

νFqEpMq and G
FEpGF q;

(d.ii) ι1 induces an isomorphism between G
νFqEpMq{ xh0, vFqy and G

FEpGF q{ xh0y; or
(d.iii) EpGF q is cyclic.

Proof. For part (a) we assume pǫ, ǫ1, ǫ2q “ p1,´1,´1q and therefore F “ Fq and v P G. We get

clearly ιpvFqq “ Fq in the semidirect product rG ¸ EpGq with ιp rGq “ rG, ιpGvFq q “ G
F and

ιp rGvFq q “ rGF . Table 5.2 states

rFp, vs “ 1 and rγ1, vs “

#
1 if t|Z1|, |Z2|u ‰ t4u,

h0 if t|Z1|, |Z2|u “ t4u.
(6.4)

As in [S23b, Prop. 3.6(b)] or using the Three-Subgroup Lemma [Asch, (8.7)], rFp, vs “ 1 implies
ιpFpq P G

FFp.
In the first case of (6.4) above where rγ1, vs “ rγ1, vFqs “ 1, we then have rrx, F s, γ1s “

rrF, γ1s, xs “ 1 and get analogously rrγ1, xs, F s “ 1 or equivalently ιpγ1q P γ1G
F “ G

F γ1.
This ensures the statement in (a.i) as follows: The group EpMq is defined as subgroup of
AutpGvFq q hence EpMq “ EpMq{

@
F 2
q

D
, since ǫ1 “ ´1. Now

@
F 2
q , vFq

D
“ xvFq, h0y because of

pvFqq
2 “ h0F

2
q . Note ιpxvFq, h0yq “ xFq, h0y. This implies then the stated isomorphism.

In order to get (a.ii) we now assume pǫ1, ǫ2q “ p´1,´1q and t|Z1|, |Z2|u “ t4u. The latter
leads to 2 ∤ l1l2 and 2 ∤ f according to 2.24, which then ensures that EpGF q is cyclic. As above
ιpFpq P G

FFp. By construction, we also have ιpγ1q “ γ1g for g :“ rγ1, xs P G. We get

ιpGvFqEpMqq “ G
F xFp, γ1gy . (6.5)

From rγ1, vFqs “ h0 in (6.4) and ιpvFqq “ F “ Fq we obtain

h0 “ ιph0q “ ιprγ1, vFqsq “ rγ1g, Fqs “ rg, Fqs.

Therefore, ιpγ1q “ γ1g induces on G
Fq the product of γ1 and a diagonal automorphism of

G
Fq associated with h0rZpGq, F s. Let rt P G with Fqprtq “ rthlp̟q. Since 2 | l “ l1 ` l2 we

have rFp,hlp̟qs “ 1 by 2.24(c.i) and therefore rrrt, Fqs, Fps “ rrFq, Fps,rts “ 1. Then by the

Three-Subgroup Lemma again we get F rt
p P G

FFp. This leads to

pGF xFp, γ1yq
rt “ G

F xFp, γ1gy (6.6)

since we also have rtγ1 P G
Frtg. The latter can be seen from the action of γ1 on the group of

diagonal outer automorphisms of GF corresponding to its action on ZpGF q, a group of order 4
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where only h0 and 1 are fixed (see 2.24(b)). We now get the statement in (a.ii) from (6.5) and
(6.6).

For part (b) the assumptions imply that G
νFq “ G

F and EpGF q “ EpMq. Part (c) is clear
from Lemma 5.19.

Now in part (d) we define ι1 as ι, whenever ιpGνFqEpMqq “ G
FEpGq. It remains to consider

the cases of (a.ii) and (c) and define ι1 as the combination of ι with conjugation with some element
t P G with LF ptq “ hlp̟q. Then ι1 satisfies

ι1p rGνFqEpMqq “ rGFEpGq, ι1p rGνFqq “ rGF and ι1pGνFqEpMqq “ G
FEpGq.

In the case of (a.1), ι1 induces an isomorphism between GνFqEpMq{ xh0, vFqy and GFEpGF q{ xh0y
as stated in (d.ii). In case of (a.2), EpGF q is cyclic. In case of (b), ι1 is the identity (map) and
hence G

νFqEpMq and G
FEpGF q are isomorphic as stated in (d.i). In the case of part (c),

EpGF q is also cyclic.

In the next step, we can finally verify Conditions Apdq and Bpdq.

Proof of Theorem 6.9. Let ǫ P t˘1u such that GF “ Dǫ
l,scpqq. According to Lemma 6.10 we can

choose the groups M and K1, as well as v P G and the corresponding ν P G \ tγu, so that
Assumption 6.1 is satisfied. Let S be a Sylow d-torus of pK1, νFqq. Then S is also a Sylow
d-torus of pG, νFqq and N

G
νFq pSq ď M , see Lemma 6.10(c).

Let ι1 : rG¸EpGq ÝÑ rG¸EpGq be the isomorphism of Lemma 6.11(d) with ι1pGνFqq “ G
F .

Then ι1pSq is a Sylow d-torus of pG, F q and we can assume ι1pSq “ S
1 by G

F -conjugacy of Sylow
d-tori. Set rN :“ N rGνFq pSq and rN 1 “ N rGF pS1q “ ι1p rNq. Analogously, set pN 5 :“ NMEpMqpSq and

p pN 1q5 “ NGFEpGqpS
1q. According to Lemma 6.10(b), we have NMEpMqpSq “ N

G
νFqEpMqpSq and

hence p pN 1q5 “ ι1p pN 5q.
Let TpNq Ď IrrpNq be the set from Theorem 6.4, hence an pN -stable rN -transversal. Note

that pN is a quotient of pN 5. The set TpN 1q, the image of TpNq under ι1 is then a p pN 1q5-stable
rN 1-transversal in IrrpN 1q. This shows the first part of (a) of our theorem.

Let χ P TpN 1q. Then χ extends to its stabilizer in pN 1 for pN 1 “ NGFEpGF qpS
1q, whenever

EpGF q and hence pN 1{N 1 is cyclic, see Proposition 2.2(a). If pN 1
χ{N 1 is non-cyclic, then h0 P

kerpχq. Then ι1 maps pN{ xvFq, h0y to pN 1{ xh0y. Let χ0 P TpNq be the character mapped to χ

via ι. Then χ0 extends to its stabilizer in pN{ xh0y. By the isomorphisms of Lemma 6.11(d.i) or
(d.ii), we see that also χ extends to its stabilizer in pN 1.

Since maximal extendibility holds with respect to N ⊳ rN according to Corollary 6.5, ι1pNq “
N 1 and ι1p rNq “ rN 1, maximal extendibility also holds with respect to N 1 ⊳ rN 1. This is (b).

For the part (c) note that N rGνFq pSq ď ĂM from Lemma 6.10(b) implies that rC 1 “ ιpC rGνFq pSqq “

ιp rCq and rN 1 “ ιp rN q, where rC :“ CĂMpSq. Using similar applications of ι1, part (c) follows from
Proposition 6.7. Analogously, Proposition 6.8 implies part (d).

The more general construction of M allows us to get the following statement where G, F ,
rG are as in Section 2.E.

Proposition 6.12 Let d ě 3 and let S1 be a (not necessarily maximal) d-torus of pG, F q. Let
T

1 be an F -stable maximal torus containing S
1. Assume that there exists a root subsystem

R1 of ΦpG,T1q of type Dl1
1

(l11 ě 4), such that K1 :“ xXα | α P R1y is F -stable, S
1 is a

Sylow d-torus of pK1, F q and d is doubly regular for pK1, F q. Assume that there exists some
pN 1-stable N rGF pS1q-transversal in IrrpNGF pS1qq where we denote pN 1 :“ NGF¸EpGF qpS

1q.
Then we have the following.

(a) There exist a pT1 Zp rGqqF -transversal K2 in IrrprCGF pK1q,CGF pK1qsq and some pN 1-
stable extension map with respect to CGF pS1q EN 1 for IrrpCGF pS1q | K2q.

(b) There exists some pN 1-stable rN 1-transversal TpN 1q in IrrpN 1q, such that maximal ex-
tendibility holds with respect to N 1 E pN 1 for TpN 1q.

(c) There exists some Irrp rGF {GF q¸ pN 1 -equivariant extension map with respect to C rGF pS1qE
rN 1.
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(d) Maximal extendibility holds with respect to N 1 E rN 1.

Proof. This follows from the more general construction of M when choosing ǫ1 and l1. If we

choose ǫ1
1 and l11 such that K

F
1 – D

ǫ1
1

l1
1
,sc

pqq and set l12 :“ l ´ l11, ǫ
1
2 “ ǫǫ1

1 in Lemma 6.10, then

the above construction again leads to a group M and v P G. Therefore, ιpMq contains some
G
F -conjugate of N 1. Then the arguments for the proof of Theorem 6.9 apply again and show

our claims.

6.D Proof of McKay’s equality and Theorem B
We conclude by drawing the consequences from the above.

Theorem 6.13 Let q be a power of a prime and let ℓ be a prime not dividing 2q. Then (iMK)
holds for the quasisimple groups Dǫ

l,scpqq (l ě 4, ǫ P t˘1u) and ℓ.

Proof. Let pG, F q be as in 3.15 such that G
F “ Dǫ

l,scpqq. Thanks to Theorem 4.1(c) we can

assume l ě 5. Then the quotient G
F {ZpGF q is simple non-abelian and G

F is its universal
covering group, see [GLS, Thm 6.1.4].

Let d “ dℓpqq be the order of q in Fˆ
ℓ . We can assume d ě 3 by Theorem 2.21 and Re-

mark 2.22.

Note that if Φm is the m-th cyclotomic polynomial (m ě 1), then ℓ | Φmpqq if and only
if m “ dℓa for some a ě 0, see [Ma07, Lem. 5.2(a)]. Recall that by the definition of the
multiplicities apG,F qpmq the following equation holds

|GF | “ ql
2´l

ź

mě1

Φmpqq
apG,F qpmq

.

If apG,F qpdq ď 1, then as recalled in Lemma 5.8(ii), apG,F qpdℓ
aq “ 0 for any a ě 1, and

therefore a Sylow ℓ-subgroup of GF is included in some Sylow d-torus of G. This d-torus has
rank apG,F qpdq ď 1, so the Sylow ℓ-subgroup of GF is cyclic (this also accounts for the case where

ℓ ∤ |GF |). According to [KS16, Thm 1.1] the so-called inductive Alperin–McKay condition holds
for every ℓ-block of GF , since such a block has a cyclic defect group. As seen already in the
proof of Theorem 4.1 this implies that (iMK) holds for G

F and ℓ.

We now assume that apG,F qpdq ě 2 and we can check (iMK) by establishing Conditions
Apdq and Bpdq from 2.19 and 2.20 thanks to Theorem 2.21. If d is doubly regular for pG, F q
the claim follows from Theorem 4.1.

In the remaining cases, ℓ ∤ q, d is not doubly regular for pG, F q and apG,F qpdq ě 2. By
Lemma 5.8, the assumptions of Theorem 6.9 are satisfied and according to this result, Apdq and
Bpdq do hold for the group G

F .

Theorem A is clearly a consequence of Theorem B, so we concentrate on the latter.

Proof of Theorem B. Combining the above and Theorem 2.11 we know that the universal cov-
ering group of any finite simple group satisfies (iMK) for any prime. Theorem 2.10 then implies
that any finite group satisfies (iMK) for any prime. This means that for any finite group X,
any prime ℓ and any Sylow ℓ-subgroup S ď X, there is a Γ “ AutpXqS-stable subgroup N such
that NXpSq ď N ď X with N ‰ X whenever NXpSq ‰ X, and a Γ-equivariant bijection

Irrℓ1pXq Ñ Irrℓ1pNq such that pX ¸ Γχ,X, χq ěc pN ¸ Γχ1 , N, χ1q (6.7)

for each χ ÞÑ χ1 by the above bijection. But Theorem B claims that this is true for NXpSq in
place of N . We show this by induction on |X{NXpSq|, the case of a normal S being trivial.

By induction one may assume that there is a Γ1 “ AutpNqS-equivariant bijection

Irrℓ1pNq Ñ Irrℓ1pNXpSqq
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with pN ¸ Γ1
χ1 , N, χ

1q ěc pNXpSq ¸ Γ1
χ2 ,NXpSq, χ2q for each χ1 ÞÑ χ2. The latter bijection is

also Γ-equivariant since Γ1 in AutpNq contains the image Γ0 of Γ and the second ěc relation
implies pN ¸ Γ0

χ1 , N, χ
1q ěc pNXpSq ¸ Γ0

χ2 ,NXpSq, χ2q by restriction (Lemma 2.6(c)). Then by
the Butterfly Theorem 2.8 pN ¸ Γχ1 , N, χ1q ěc pNXpSq ¸ Γχ2 ,NXpSq, χ2q. Combined with the
first ěc relation (6.7), it gives by transitivity of the ěc relation

pX ¸ Γχ, N, χq ěc pNXpSq ¸ Γχ2 ,NXpSq, χ2q

for each χ ÞÑ χ1 ÞÑ χ2. So we get the claim of Theorem B by composition of the two bijections
we have.
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EpĞq, 15
extension map, 7

F : G Ñ G, 13
F, 13
f , 15

F , 15
F , 17
Fp, 13

Fq, 13

G, 13

G, 15
G, 15
G1.G2, 49

Gk, 22
γ, 15
Γ1, 54

γi, 38
G, 13
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