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Abstract

We study sets of § tubes in R3, with the property that not too many tubes can be contained
inside a common convex set V. We show that the union of tubes from such a set must have
almost maximal volume. As a consequence, we prove that every Kakeya set in R? has Minkowski
and Hausdorff dimension 3.

Contents

1 Introduction
1.1 Theorem 1.2 and multi-scale analysis . . . . . .. .. .. ... ... .. ...
1.2 Unions of convex sets, and non-clustering . . . . . . ... ... . ... ... .....
1.3 From Assertions D and &£ to the Kakeya set conjecture . . . . . ... ... ... ...
1.4 Proof philosophy, and previous work on the Kakeya set conjecture in R3 . . . . . . .
1.5 A vignette of the proof . . . . . . . . . ..
1.6 Tube doubling and Keleti’s line segment extension conjecture . . . . . ... ... ..

1.7 Thanks . . . . . . e

2 A sketch of the proof

arXiv:2502.17655v1 [math.CA] 24 Feb 2025

2.1 Proposition 1.6: Assertions D and & are equivalent . . . . . .. ... ... ... ...
2.2 A two-scale grains decomposition . . . . .. ... L
2.3 Refined induction on scales . . . . . .. ..

2.4 Multi-scale structure, Nikishin-Stein-Pisier factorization, and Sticky Kakeya . . . . .

3 Notation
3.1 Convex sets and shadings . . . . . . .. .. .. L L L e

3.2 Table of notation . . . . . . . . . e

*Courant Institute of Mathematical Sciences, New York University. New York, NY, USA.
TDepartment of Mathematics, The University of British Columbia. Vancouver, BC, Canada.

14
15

15
15
19
21
22



4 Wolff Axioms and Factoring Convex Sets 25

4.1 Definitions: Wolff axioms and covers . . . . . . . . .. ... L L oo 25
4.2 Factoring Convex Sets . . . . . . . . . . .o 26
4.3 Convex Sets and the Frostman Slab Wolff Axioms . . . . . ... ... ... ..... 31
4.4 The Frostman Slab Wolff Axioms and Covers . . . . . ... ... ... ... ..... 34

5 Factoring tubes into flat prisms 36
5.1 A few frequently used Cordoba-type L? arguments . . . . . . . .. ... ....... 38
5.1.1 A volume estimate for slabs . . . . . . . . . .. ... L 38

5.1.2 Tangential vs transverse prism intersection . . . .. . . ... ... ... ... 39

5.2 Assertions F, &, and € are equivalent . . . . ... .. 42
5.3 Proof of Proposition 5.1: Tubes that factor through flat boxes . . . . . . . . ... .. 46
5.4 Proof of Proposition 5.2: Factoring at two scales . . . . . . ... ... ... ..... 49
5.5 Tubes organized into toslabs . . . . . . ... Lo 49

6 Assertions D and £ are equivalent 51
6.1 Proof of Proposition 6.3: A factoring trichotomy . . . .. ... ... .. ... .... 56

7 A two-scale grains decomposition for tubes in R? 60
7.1 Broadness . . . . . . . .. 63
7.2 Broadness and the Frostman Slab Wolff axioms . . . . . .. ... ... ... ..... 66
7.3 The iteration base case: Guth’s grains decomposition . . . . . . . . .. .. ... ... 69
7.4 Moves #1, #2, #3: Parallel structure . . . . . . . . . . ... ... ... 70
7.5 Using Moves #1, #2, #3 to prove Proposition 7.5 . . . . . . . . .. ... ... ... 72

8 Moves #1, #2, and #3 74
8.1 Move #1: Replacing grains with longer grains to ensure ¢ > 0¢2(#T,)/(#T) . ... T4
8.2 Move #2: Replacing square grains with longer grains . . . . . . . .. ... ... ... 74
8.3 Move #3: Replacing grains with wider grains with small C}?TC,_CW ........... 85

9 A refined induction-on-scales argument 100

10 Sticky Kakeya for tubes satisfying the Katz-Tao Convex Wolff Axioms at every

Scale 103
10.1 Nikishin-Stein-Pisier Factorization and the Convex Wolff Axioms . . . . . . . . . .. 105
11 Multi-scale analysis and the proof of Proposition 1.7 110
12 Tube Doubling 114



A A grains decomposition for tubes in R? 115

B Wolff’s hairbrush argument and the proof of Proposition 1.8 125

1 Introduction

A Kakeya set is a compact subset of R” that contains a unit line segment pointing in every direction.
The Kakeya set conjecture asserts that every Kakeya set in R"™ has Minkowski and Hausdorff
dimension n. This conjecture was proved by Davies [5] when n = 2, and is open in three and higher
dimensions. See [17, 28] for an introduction to the Kakeya conjecture and a survey of historical
progress on the problem. See [15, 16, 18, 20, 21, 27, 31] for current progress towards the conjecture
in three and higher dimensions.

The purpose of this paper is to obtain lower bounds on the volume of unions of d-tubes (i.e. the
§ neighbourhoods of unit line segments) in R? that satisfy certain non-clustering conditions. As a
consequence, we resolve the Kakeya set conjecture in three dimensions.

Theorem 1.1. Every Kakeya set in R3 has Minkowski and Hausdorff dimension 3.

Theorem 1.1 is a corollary of the following slightly more technical result.

Theorem 1.2. For all e > 0, there exists K > 1 so that the following holds for all § > 0 sufficiently
small. Let T be a set of 6-tubes contained in the unit ball in R3, and suppose that every rectangular
prism of dimensions a x b x 2 contains at most 100abd~2 tubes from T (this is true, for example, if
the tubes in T point in §-separated directions). For each T € T, let Y (T) C T be a measurable set
with |Y(T')| > MT'|. Then

\ U Y(T)‘ > 6 A3 7. (1.1)

TeT TeT

The Kakeya maximal function conjecture asserts that for each £ > 0, Inequality (1.1) is true for
K = 3. The Kakeya maximal function conjecture in R? was proved by Cordoba [6]. While we do
not resolve the Kakeya maximal function conjecture in R3, the weaker statement given in Theorem
1.2 is nonetheless sufficient to obtain Theorem 1.1.

The hypothesis that each a x b x 2 rectangular prism contains at most 100abd—2 tubes from T is
a type of non-clustering condition. A close variant of this hypothesis was first introduced by Wolff
in [27], and sets of tubes that satisfy this hypothesis are said to satisfy the Wolff axioms.

1.1 Theorem 1.2 and multi-scale analysis

In [25, 26], the authors showed that Theorem 1.2 is true when the set T has a property called
stickiness (see Figure 1 (left)). Roughly speaking, T is sticky if it satisfies the non-clustering
condition from Theorem 1.2; has cardinality roughly §2; and for every intermediate scale § < p < 1,
the tubes in T can be covered by a set of p tubes that satisfy the non-clustering condition from
Theorem 1.2 with p in place of 4.

Unfortunately, not every set of tubes is sticky — see Figure 1 (right) for an example. The
arrangement illustrated in Figure 1 (right) is challenging to analyze, because the p tubes intersect
with large multiplicity (i.e. many p tubes pass through a typical point), but the arrangement of



Figure 1: Left: The tubes at scale p (black) satisfy the non-concentration hypothesis of Theorem
1.2, as do the (rescaled) § tubes (blue) inside each p tube. Multi-scale analysis is straightforward
in this setting. This is sometimes called the “sticky” case. For clarity, not all 4 tubes have been
drawn.

Right: The tubes at scale p do not satisfy the non-concentration hypothesis of Theorem 1.2. The
tubes at scale p intersect with high multiplicity, while the § tubes inside each p tube are sparse.

d tubes inside each p tube is sparse (i.e. the union of § tubes inside each p tube only fill out a
small fraction of that p tube). To help us analyze this type of arrangement, in Section 1.2 we will
introduce two variants of the non-clustering hypothesis from Theorem 1.2, and two variants of the
volume estimate (1.1).

1.2 Unions of convex sets, and non-clustering

In what follows, we say a pair of sets U, V C R" are essentially distinct if [UNV| < 3 max(|U/|, [V]).
T will denote a set of essentially distinct J-tubes contained in the unit ball in R?, and |T'| will
denote the volume of a é-tube, i.e. |T| has size about 6.

Definition 1.3. Let T be a set of -tubes in R3.
(A) We define Crr.cw (T) to be the infimum of all C' > 0 such that

#{TeT:TCcW}<C|W|IT|™' for all convex sets W C R.
We say that T obeys the Katz-Tao Convex Wolff Axioms with error Cxr.cw (T) .
(B) We define Cr_siw (T) to be the infimum of all C' > 0 such that
#{T €T: T C W} <C|W|(#T) for all slabs W C R3,

where a “slab” is the intersection of the unit ball with the thickened neighbourhood of a (hyper)
plane. We say that T obeys the Frostman Slab Wolff Axioms with error Cp_gy (T).

Remark 1.4.
(A) A note on etymology. The terms “Katz-Tao” and “Frostman” refer to different types of non-
concentration conditions; they are the analogues of the well-studied non-concentration conditions



|[ENB| < (r/§)? and |[EN B| < r?|E|, where E C R" is a d-separated set and B is a ball of radius
r. An arrangement of tubes arising from a Kakeya set, i.e. a set of J-tubes with one tube pointing
in each d-separated direction, obeys both the Katz-Tao Convex Wolff Axiom and Frostman Slab
Wolff Axiom with error < 1. The terms “convex” and “slab” refer to the class of sets for which the
non-clustering condition is imposed. The term “Wolff axioms” suggests that the above definition
is an analogue of the Wolff axioms from [27].

(B) The above definitions are two special cases of a non-clustering condition (Definition 1.3) that
will be defined in Section 4.2. In Definition 1.3/, both tubes and convex sets (resp. slabs) are
replaced by more general objects.

(C) If T is non empty, then by taking W to be a § x 1 x 1-slab containing a tube of T, we can see
Cr.sw(T) < C implies #T > C~ 161

Next, we introduce two Kakeya-type volume estimates for unions of tubes in R3. These are
analogues of Inequality (1.1) that are carefully formulated to be amenable to induction on scale.
In what follows, we use the notation (T, Y)s to denote a collection T of essentially distinct J-tubes
in R3, and a shading of these tubes, i.e. for each T € T, Y(T) is a subset of T. For A > 0, we say
(T,Y)s is X dense if Y peq [Y(T)| 2 A per | T

Definition 1.5. Let o,w > 0.

o We say that Assertion D(o,w) is true if the following holds:
For all € > 0, there exists x,n > 0 such that the following holds for all 6 > 0. Let (T,Y)s
be §" dense and obey the Katz-Tao Convex Wolff Axioms and Frostman Slab Wolff Axioms,
both with error at most §~"7. Then

U Y(@)| 2 so ) (i)~ (1.2)

TeT

o We say that Assertion E(o,w) is true if the following holds:
For all € > 0, there exists k,7 > 0 such that the following holds for all § > 0. Let (T,Y)s be
0" dense. Then

U Y] 2 68 Em H) T (20T [T]12) 7, (1.3)
TeT

where m = Cxr.cw(T) and £ = Cr_gw (T).

Let us examine the numerology in the estimates (1.2) and (1.3). First, in the special case 0 = w,
Assertion D(o, o) yields the estimate

Uy z s Y1,

TeT TeT

i.e. it says that there are < §7¢(#T)“ tubes passing through a typical point of the union |JY(T')
(for general o and w, this quantity is about 67~“~¢(#T)?). For ¢ > 0 small, this means that the
tubes in the union | JY (7) are almost disjoint. In the arguments that follow, it will be helpful to
consider situations where o and w are not necessarily equal.



The shape of the estimate (1.2) is motivated in part by the following consideration. To begin
our induction on scale argument, we would like to prove that £(e,0) holds for some o € (0,2/3].
When o = 1/2 and w = 0, Inequality (1.2) becomes the estimate

\ U Y(T>\ > RGATE(PHT) 2,
TeT

This is essentially Wolff’s hairbrush bound from [27] (here we make use of the fact that T obeys
the Frostman Slab Wolff Axioms with small error; see Appendix B for details).

Assertion D(o,w) is a special case of Assertion £(o,w). We will explain the shape of the final
bracketed term of Inequality (1.3). To understand the term ¢, it is helpful to consider the following
scenario. Suppose we know that Assertion D(o,w) is true. Let 6 < p < 1, and let T be a set of §
tubes of cardinality (p/§)? that are contained inside a common p tube, which we will denote by T,.
Suppose that the tubes in T obey the Katz-Tao Convex Wolff Axioms with error roughly 1. This

implies that Cp_gyw (T) ~ p~ L.

For T € T (and hence T C T,), we will write T7» to denote the image of T" under the affine
transformation that anisotropically dilates 7, by a factor of p~!in its two “short” directions, and
translates the image to the unit ball. After this rescaling and translation, the tubes in T become
d/p tubes that satisfy the Katz-Tao Convex Wolff Axioms and Frostman Slab Wolff Axioms, both
with error roughly 1. Applying Assertion D(o,w) to this rescaled collection of tubes, we obtain the
volume bound

ur

TeT

> w(6/p)° (#T)|T7% | (#T)|T7/?) 7.

Undoing the anisotropic rescaling and translation (which distorted volumes by a factor of p?) and
noting that |T7¢| ~ p?|T|, we can rewrite this as

] 9 T‘ > 16%(#T)|T) (LHT)|TY/2) ™, where £ = Cyg (T) ~ p L.
TeT

As a second justification for the term ¢, note that for every set T of § tubes, we must always
have Cp_gw (T)(#T)|T|*/? > 1. This is because we can always select a slab W of thickness |T'|'/?
that contains at least one tube from T. This observation also explains the choice to write |T'|/2
rather than §; any convex set S C R? of diameter 1 can be contained in a slab of thickness |S|'/2.
Later in the proof we will consider generalizations of Assertion £(o,w) in which tubes are replaced
by more general families of convex sets.

To understand the terms m "' and m~3/2 in Inequality (1.3), it is helpful to consider the following
scenario. Suppose we know that Assertion D(o,w) is true. Let T be a set of § tubes that obey the
Frostman Slab Wolff Axioms with error roughly 1, and the Katz-Tao Convex Wolff Axioms with
error m >> 1. Let p = m'/2§, and suppose that there exists a set T, of p tubes, each of which
contains m|T,||T|~* = m? tubes from T. Observe that this is the maximum number of essentially
distinct § tubes that can fit inside a p tube. In particular, the union of the § tubes inside each
p tube fill out essentially all of the p tube. We have #T, = m™2(#T) = m *(|T|/|T,)(#T),
Le. (#T,)|T,] = m~Y(#T)|T|. It is straightforward to compute that Cxr.cw(T,) < 1. Applying
Assertion D(o,w) and using the fact that the union of § tubes inside each p tube fill out most of



the p tube, we obtain the volume bound

U]~ U 5]z s G
TeT T,€T,

= rp” e (#T)|T| (m =2 (#T)|T|V?) 7.

1.3 From Assertions D and £ to the Kakeya set conjecture

Clearly £(o,w) = D(o,w). In Section 6, we will show that the reverse implication also holds:

Proposition 1.6. Let 0 <0 <2/3, w>0. Then £(0,w) <= D(o,w).

As mentioned above, our proof uses induction on scale. In brief, if £(o,w) is true, then we will
use this fact at many locations and scales to prove that D(o,w’) is true for some w’ < w (observe
that smaller values of w are better). The precise statement is as follows.

Proposition 1.7. There exists a function g: [0,2/3] x (0,1] — (0, 1] so that the following is true.
Let 0 <0 <2/3, w>0. Then E(o,w) = D(o,w — g(o,w)).

Propositions 1.6 and 1.7 lead to a self-improving property for £(o,w) (or equivalently, for
D(o,w)). Since the collections of tubes in the definitions of £ and D are essentially distinct and
are contained in the unit ball, we always have #T < 6~%, and thus we can “trade” an improvement
in w for an improvement in o. In particular, Proposition 1.7 tells us that £(o,w) = D(o —
glo,)/4,).

By applying Propositions 1.6 and 1.7, we can upgrade an initial estimate D(o,w) to the improved
estimate D(0 — g(o,w)/4,w). We can then iterate this process. In order to begin the iteration,
we must prove that D(o,w) is true for some w > 0 and 0 < o < 2/3. In [27], Wolff proved that
every Kakeya set in R™ has Hausdorff dimension at least ”T*Q In Appendix B, we will use a similar
argument to show that D(1/2,0) is true:

Proposition 1.8. D(1/2,0) is true.

Beginning with Proposition 1.8 and then iterating Propositions 1.6 and 1.7, we conclude the
following.

Theorem 1.9. The statements D(0,0) and £(0,0) are true.

Proof. Fix w > 0. By Proposition 1.8, we have that D(1/2,0) and hence D(1/2,w) is true. If
D(o,w) is true for some o € [0,2/3], then so is D(¢’,w) for all ¢’ € [0,2/3]. Using Propositions
1.6 and 1.7, we conclude that the set {o € [0,2/3]: D(0o,w) is true} is relatively open in the metric
space [0,2/3]. On the other hand, it is straightforward to verify from Definition 1.5 that this set is
also relatively closed in [0,2/3]. We conclude that D(o,w) is true for all o € [0,2/3], so in particular
D(0,w) is true.

A similar argument shows that D(0,0) is true; we have shown that D(0,w) is true for every
w > 0. On the other hand, the set {w > 0: D(0,w) is true} is relatively closed in the metric space
[0,00). We conclude that D(0,0) is true. By Proposition 1.6 we have that £(0,0) is true. O

The conclusion of Theorem 1.9 can be rephrased as follows



Corollary 1.10. For all € > 0, there exists K so that the following holds for all § > 0 sufficiently
small. Let (T,Y )5 be A\-dense. Then

‘ U Y(T)‘ > AU HT)T],  where m = Crpow(T). (1.4)
TeT

Theorem 1.2 is now a special case of Corollary 1.10 — the hypotheses of Theorem 1.2 ensure
that Cxr.cw (T) < 1000.

1.4 Proof philosophy, and previous work on the Kakeya set conjecture in R3

In [16], Katz, Laba, and Tao proved that every Kakeya set in R? has upper Minkowski dimension
at least 5/2 4 ¢ for a (small) absolute constant ¢ > 0. To do this, they analyzed the structure of
a (hypothetical) Kakeya set in R? that has upper Minkowski dimension close to 5/2. They proved
that such a Kakeya set, or more precisely, the set of § tubes arising from such a Kakeya set, must
have three structural properties that they named “planiness,” “graininess,” and “stickiness.” Katz,
Laba, and Tao then showed that a Kakeya set possessing these structural properties must have
dimension at least 5/2 + c.

In a talk and accompanying blog post [24] in 2014, Tao described a potential approach developed
by Katz and Tao for solving the Kakeya problem. The Katz-Tao program proceeds as follows. First,
one must show that a (hypothetical) counter-example to the Kakeya conjecture in R?, i.e. a Kakeya
set with dimension strictly less than 3, must have the structural properties planiness, graininess,
and stickiness. Second, these properties are used to obtain increasingly precise statements about
the multi-scale structure of the Kakeya set. Third, results from discretized sum-product theory, in
the spirit of Bourgain’s discretized sum-product theorem [4], are used to show that a Kakeya set
with this type of multi-scale structure cannot exist.

When Tao shared the Katz-Tao program for solving the Kakeya conjecture in R3, some progress
had already been made towards the first step described above. The Bennett-Carbery-Tao multilin-
ear Kakeya theorem [1] implied that every (hypothetical) counter-example to the Kakeya conjecture
in R? must be plany. In [9], Guth proved that every (hypothetical) counter-example to the Kakeya
conjecture in R? must be grainy. Stickiness, however, appeared to be more challenging.

The trilogy of papers [25, 26], and the present paper, can be thought of as a realization of the
Katz-Tao program. In [25], the authors sidestepped the First step of the Katz-Tao program, and
tackled the Second and Third steps. More precisely, the authors showed that every sticky Kakeya
set in R3 (i.e. a Kakeya set possessing the structural property of stickiness) must have Hausdorff
dimension 3. This result is called the Sticky Kakeya Theorem. See [25, §1.1] for a discussion of
the proof of this theorem, and how this proof compares to the strategy outlined in the Katz-Tao
program.

In [26], the authors showed that every (hypothetical) Kakeya set in R? with Assouad dimension
strictly less than 3 must be sticky. More precisely, they showed that if there exists a Kakeya
set K with dim 4(K) < 3, then there must also exist a Kakeya set K’ with dim 4(K’) < 3 that
possesses a multi-scale self-similarity property similar to stickiness. The authors then used (a mild
generalization of) the Sticky Kakeya Theorem to conclude that such a Kakeya set cannot exist. In
particular, the Sticky Kakeya theorem from [25] assumed that the tubes from a Kakeya set point in
different directions; in [26] the authors generalized this theorem to the weaker assumption that the
tubes satisfy the Wolff axioms at every scale (a precise definition is given in Section 6). Note that



since the Assouad dimension of a set can be larger than its Minkowski or Hausdorff dimension, the
results in [26] did not resolve the Kakeya set conjecture in R3.

In the present paper, we take this line of reasoning to its conclusion. We show that if T is a
set of ¢ tubes that makes the estimate (1.2) from Assertion D(o,w) tight for some o and w, then T
must have a multi-scale self-similarity property similar to stickiness. Specifically, at many scales p
between § and 1, it is possible to cover T by a family of p tubes that obey Katz-Tao Convex Wolff
Axioms (recall Definition 1.3) with small error. We then use a generalization of the Sticky Kakeya
Theorem to show that the estimate (1.2) from Assertion D(o,w) can only be tight for such a set
T if o0 and w are both 0. As we have already seen in Section 1.2, this implies that every Kakeya
set in R (and indeed, every set satisfying the Wolff axioms) must have Minkowski and Hausdorff
dimension 3.

1.5 A vignette of the proof

Proposition 1.7 is the most important step in the proof of Theorem 1.9 (which in turn implies
Theorems 1.1 and 1.2). In this section we will discuss some of the ideas used to prove this proposition
in the key special case where the tubes are arranged as in Figure 1 (right). In Section 2 we will
give a more thorough proof sketch that mirrors the structure of the actual proof.

To simply our exposition, we will disregard factors of the form §° or ¢, and we will (somewhat
informally) write A < B to mean that A < C0~°B, for some constant C' that is independent of §
and some small parameter € > 0 that we will ignore for the purposes of this sketch.

Fix a choice of 0 > 0 and w > 0, and suppose that Assertions D(o,w) and E(o,w) are true
(roughly speaking, this says that the union of tubes has “dimension” at least 3 — o — w). Let T
be a set of § tubes of cardinality roughly 62 that obeys the hypotheses of Assertion D(o,w). Our
goal is to prove that (J; 7" has volume substantially larger than what is guaranteed by the estimate
(1.2), i.e. we wish to obtain an inequality of the form

‘ U T‘ > gotw—a (1.5)
TeT
for some a = a(o,w) > 0.

Let us suppose that there exists a multiplicity p with the property that there are about u tubes
from T passing through each point of J; 7. One way to obtain our desired volume bound (1.5) is
to instead prove the multiplicity bound

pS eIt (1.6)

A second way to obtain (1.5) is to show there exists some scale 7 >> § such that the union | J; T’
has larger than expected density at scale 7. More specifically, to obtain (1.5) it suffices to show
that for a typical ball B, of radius 7 that intersects | J; T, we have a density estimate of the form

)BT n Y T’ > 6798 /7)7 | B, . (1.7)
TeT
This will be discussed in greater detail in “Step 2, Case 2”7 below.

If T is sticky, then for each scale § < p < 1, it is possible to find a set T, consisting of about

p~2 essentially distinct p tubes, each of which contain about (§/p)? tubes from T. We will suppose



instead that T is not sticky, i.e. T resembles the arrangement in Figure 1 (right). We will call this
Simplifying Assumption A. More precisely, there exists a scale § << p << 1, and a set of essentially
distinct p tubes T, so that each T' € T is contained in at least one tube from T,, and each T, € T,
contains about §”(p/d)? tubes from T, for some (small) v > 0. We will try to establish Inequality
(1.6) with some small improvement a > 0.

A fine-scale estimate.
For each T}, € T, define

TT,) ={T €T:TCT,} and T = {77 T cT[T,]}. (1.8)

(Recall that 77 is defined in the discussion following Definition 1.5). Suppose that for each
T, € T,, the tubes in T7r satisfy the hypotheses of Assertion D(o,w); we will call this Simplifying
Assumption B. We define pigpe to be the number of tubes from T?» passing through a typical point
of Ugr, T7 (it is harmless to suppose that this number is the same for each p tube in T,). Applying
Assertion D(o,w) to each set T?» and recalling the discussion following Definition 1.5, we conclude

that S S 2, e
o2 () = (O B) (@ o

where the second inequality used our assumption that #T[T,] < §(p/d)>.

Inequality (1.9) bounds the typical intersection multiplicity of the ¢ tubes inside a common p
tube. Next, we define the quantity jicoarse as follows: for a typical point € | J; T, there are about
Heoarse distinct p tubes T, € T, with the property that x € U’]I‘[Tp] T. With this definition, we have

M~ MfineMcoarse- (1 . 10)

In the past, researchers have considered a weaker variant of (1.10) of the form p < pginepit,
where pr, is the number of tubes from T, passing through a typical point of Ur,T,. Our use of
the more refined estimate (1.10) is a key new ingredient in the proof.

In light of (1.9), our desired multiplicity bound (1.6) will follow if we can establish the estimate
Hcoarse é P_U_w- (111)

Naively, we might attempt to obtain (1.11) by observing that ficoarse < pir,, and then bound-

ing the latter using Assertion £(o,w). However, this approach does not yield (1.11) because the
cardinality of T, (in this proof vignette) is substantially larger than p—2.

A coarse-scale estimate Step 1: a grains decomposition.

Fix a tube 7, € T,. Using a variant of Guth’s grains decomposition from [9], we can suppose
that the §/p tubes in T?» arrange themselves into “grains,” i.e. rectangular prisms of dimensions
§/pxcxc, with ¢ > &(#T[T,])~" (Note that our hypotheses on the size of #T[T},] guarantees that
¢ >> §/p). Here and throughout, we will adopt the convention that when referring to a rectangular
prism of dimensions a x b X ¢, we will always have a < b < c.

This means that we can cover Bz, = (Jpz, T' To by a set of (mostly) disjoint rectangular prisms of
dimensions §/p x ¢ x ¢, each of which have large intersection with Er,, in the sense that |GN E7,| £
|G|, for each such prism G; see Figure 2 (left).

Undoing the anisotropic rescaling associated to T}, that was described above, we have that
UT[T,,] T can be covered by a set of (mostly) disjoint rectangular prisms of dimensions § x pc X ¢;

10



Figure 2: Left: The set of tubes T?» and the grains {G}. For clarity, we have only drawn the grains
and tubes that intersect the black tube (and even most of these have been omitted; the set of red
tubes passing through the red grain fill out a substantial portion of the red grain, and similarly for
the other grains); the situation is similar for each tube in T7¢.

Right: The image of Figure 2 (left) after undoing the anisotropic rescaling associated to T),. The
dimensions of each grain have changed from §/p X ¢ X ¢ to 6 X pc X c.

see Figure 2 (right). The same statement is true for each T, € T,,. Let P denote the set of all such
0 X pc x c prisms, from all p tubes in T,. In order to bound ficoarse, it suffices to bound the typical
intersection multiplicity of the prisms in P.

A coarse-scale estimate Step 2: intersection multiplicity of the grains.

Each § x pc x ¢ prism in P has an associated tangent plane, which is well-defined up to accuracy
d/(pc). Suppose that the prisms in P intersect “tangentially,” in the sense that whenever two
prisms P, P’ € P intersect, their corresponding tangent planes agree up to accuracy d§/(pc). We
will call this Simplifying Assumption C. This means that for each point z, the set of prisms from
P containing = are contained in a common prism of dimensions roughly §/p x ¢ x ¢. Thus we
can partition P into sets, P = |JP;, with the property that if two prisms intersect then they are
contained in a common set, and the § X pc x ¢ prisms in each set P; are contained in a common
prism [J; of dimensions roughly §/p x ¢ X ¢; see Figure 3 (left).

Fix a set P’ from the partition of P described above, and let [J be the associated §/p X ¢ X ¢
prism. The image of each P € P/ under the anisotropic rescaling sending [ to the unit cube will be
a prism of dimensions roughly p X p x 1 (see Figure 3 (right)). Since a p X p x 1 prism is comparable
to a p tube, we will abuse notation slightly and pretend that this set of prisms is actually a set of p
tubes; we will call this set T. Our task of estimating ficoarse NOW reduces to estimating the typical
intersection multiplicity of the tubes in T.

A priori, we do not know anything about the structure of the set T. A key new idea of our paper

11
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Figure 3: Left: two sets of § x pc x ¢ prisms from the partition of P (blue and red, respectively),
and the associated d/p X ¢ x ¢ prisms [J and [J that contain them.

Right: The anisotropic rescaling that maps the blue §/p x ¢ x ¢ prism [ to the unit cube maps
each blue § x pc X ¢ prism to a p X p x 1 prism (this is comparable to a p tube).

is a structure theorem that finds a set WV of convex sets such that W obeys (a suitable analogue
of) the Katz-Tao Convex Wolff Axioms with error < 1, and for each W € W, the set

TW]={T €T: T cW}
satisfies the following key properties:

1. The cardinality estimate HTW] =~ Cxrcw(T)-|W|/|T| (here |T| ~ p? denotes the volume of
a tube from T).

2. For every convex set U C W, we have #T[U] < %#T[W]

See Figure 5 for an illustration of this process, and Proposition 4.6 for a precise statement.

Let’s analyze a special case to see what these two properties mean. Suppose for a moment
that W is a 7 tube for some p < 7 < 1, then Item 1 says that after rescaling W to a unit cube,
T[W] becomes a set of p/7-tubes of cardinality 2 Cyxr.cw (T)(7/p)?. Ttem 2 is a non-concentration
condition on these tubes that was first introduced in [26]; families of tubes obeying this non-
concentration condition are said to satisfy the Frostman Convex Wolff Axioms. For example,
Items 1 and 2 are satisfied if the following holds: in each p/7-separated direction, we have roughly
C’KT,CW('E‘) many parallel p/7-tubes. This type of tube arrangement was previously considered
by Wolff [29], and volume estimates for unions of tubes satisfying these properties are called X-
ray estimates. The Assertion £(o,w), in particular £(1/2,0), is a generalization of Wolff’s X-ray

estimate from [29]. As a consequence, we should expect Uﬁ‘[W} T to have a large volume if Cyr_ o (']T)
is substantially greater than 1. See Case 2 below for more details.

Our argument now splits into three cases.

Case 1: Cxr.ow(T) £ 1. In this case, W consists of a single convex set, which is comparable to the
unit ball. To simplify this proof vignette, we will suppose that T satisfies the Frostman Slab Wolff
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Axioms with error $ 1, and thus T satisfies the hypothesis of Assertion D(o,w); this simplification
can be justified using certain rescaling arguments that we will not detail here. In particular, this
means that #T < p~2, and thus we can apply Assertion D(o,w) to obtain the desired estimate

Peoarse = P° (#T)7 S p 7%,

Case 2: Crr.cw(T) > 1, and each W € W has thickness t > 6. To handle this case, we will
consider the following analogy. Suppose that T is a set of § tubes of cardinality md—2, for some
m > 1. Suppose furthermore that T satisfies the Katz-Tao Convex Wolff Axioms with error m,
and the Frostman Slab Wolff Axioms with error ~ 1. Then Assertion £(o,w) says that (J 7" has
volume 2 m?/259+% which is substantially larger than 677%. We apply a similar argument to the
set of tubes T[W] to conclude that for each W € W, the union UT[W] T has large volume (see also
the discussion of the two properties above). Undoing the re-scaling described in the previous step
(and illustrated in Figure 3), we obtain a scale 6 << 7 << 0/p > (here 7 depends on ¢ and the
orientation of W with respect to 00) with the property that for a typical point z € |J; T, the ball
B, = B(z,7) has a large intersection with J; 7. This means that we obtain an inequality of the
following form:

BN (U 7)| 2 Croron()7/26/7)71 B, (112)

TeT

This is precisely (1.7), provided Crr.cw (T) > 672%/7 (this is what we mean by Crr.cw (T) > 1).

Next, let T, be a set of essentially distinct 7 tubes with the property that each T' € T is
contained in some tube from T,, and suppose that each T, € T, contains about (#T)/(#T;) tubes
from T. It is straightforward to compute that Cr sw (T;) S 1 (indeed, this is inherited from T),
and that Cxr.ow(Tr) =~ (#T,)|T;| (this latter quantity is > 1, since Cxr.cw(T) S 1 and thus at
least |T|~! essentially distinct 7 tubes are needed to cover the tubes in T). Applying the estimate
E(o,w) to T, we conclude that

U

T-€T,

/2
2 (T P) T 2 e

For the last inequality, we used the estimate #T, % |T-|~!, which follows from the hypotheses
Cxr-ow(T) S 1 and #T ~ 2. Pairing this scale—7 estimate with our previously discussed
estimate (1.12) inside balls of radius 7, we obtain (1.5):

(Urm|z| U o erandr? (2)

T
TeT T-€T,
% 5w+cr CKT-CW (T)U/Q )

Case 3: Cxr.ow(T) > 1, and each W € W has thickness ~ 6. In this case, the grains in P can be
replaced by larger prisms—these are the (rescaled) convex sets coming from W. This process may
change p and also change the dimensions of the grains. We iterate the argument described above
with our new p and larger grains. If we repeatedly find ourselves in Case 3 with each iteration,
then the grains become wider and wider. Suppose for the moment that after a sufficient number of
iterations, both p and ¢ have size ~ 1. Then J; T is organized into a union of 6 x 1 x 1-slabs. From
here, a straightforward geometric argument (analogous to Cordoba’s proof of the Kakeya maximal
function conjecture in the plane) shows that } Ur T ! ~ 1. If instead ¢ < 1, then a different Cordoba
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type geometric argument and the assumption that x> 1 (if this assumption fails, then we are done)
allows us to enlarge c, and we iterate the argument again.

Justifying the simplifying assumptions.

We will briefly justify Simplifying Assumptions A — C. First, if Simplifying Assumption A fails,
then we can directly prove (1.5) by using the sticky Kakeya theorem; see Section 10 for details.
In general, Simplifying Assumption B might not hold, but if it fails, then either it is possible to
directly prove (1.5), or else it is possible to find an intermediate scale between § and p at which
the assumption holds; this introduces additional steps and complexity to the argument, but does
not fundamentally change the flavor of the proof.

If Simplifying Assumption C fails, then we can use a straightforward Cordoba-type geometric
argument to show that for a typical prism Py € P, the union of prisms P € P that intersect P, fill
out (most of) a thickened neighbourhood of Fy. This in turn means that for a typical tube Ty € T,
the union (J; 7 fills out (most of) a thickened neighbourhood of T. We can then argue as in Case
2 (described above) to obtain (1.6).

In the table below, we summarize some of the geometric objects that appeared in the arguments
from Section 1.5.

object| cardinality | dimensions bounding UTHOD debjlred. multiplicity desu.ed' .

box size union size multiplicity
T 52 Sx6x1 [1x1x1 |Zéte [ Zeotva | S5 S oTwta
T(T,] | 6¥(6/p) 2 | dxdx1 |pxpx1 < §vo (é)“"“’

~ P
)
dxXepxe | P rexe Hcoarse g p 7Y

(if tangential)

T pxpx1l | 1x1x1 Lcoarse Sp 7

1.6 Tube doubling and Keleti’s line segment extension conjecture

In this section we will discuss further consequences of Theorem 1.9. We begin by introducing the
Tube Doubling Conjecture (see e.g. [10, Conjecture 15.19]). In what follows, if T"is a ¢ tube in R",
then T denotes the 2-fold dilate of T'. Besicovitch constructed a set T of roughly 6~! tubes in R?

for which
Ur U7

This construction was adapted by Fefferman [8] to show that the ball multiplier is unbounded on
LP for p # 2. The Tube Doubling Conjecture asserts that up to sub-polynomial factors, Inequality
(1.13) is tight. One formulation is as follows.

log(1/5)

< loglog(1/6) (1.13)

Conjecture 1.11. Letn > 2 and e > 0. Then the following is true for all § > 0 sufficiently small.
Let T be a set of § tubes in R™. Then

‘UT’<5

’ (1.14)

Conjecture 1.11 is known in dimension two, and open in three and higher dimensions. As a

consequence of Theorem 1.9, we resolve Conjecture 1.11 in R3.
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Theorem 1.12. The Tube Doubling Conjecture is true in R3.

We will discuss the proof of Theorem 1.12 in Section 12. The Tube Doubling Conjecture is
closely related to Keleti’s Line Segment Extension Conjecture [22]. In the statement that follows,
if £ is a line segment (by definition, line segments have positive length), then ¢ denotes the line
containing £.

Conjecture 1.13. Let L be a set of line segments in R™. Then
dim<UE) :dim<U€).
¢eL 73

In [23], Keleti and Mathé proved that the Kakeya set conjecture in R™ implies Conjecture 1.13
in R™. As a consequence, Theorem 1.1 has the following corollary.

Theorem 1.14. Conjecture 1.13 is true in R3.
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2 A sketch of the proof

Our goal in this section is to briefly outline the major steps in the proofs of Propositions 1.6 and
1.7. To simplify the exposition in this proof sketch, we will gloss over many technical details and
make a number of white lies. For example, we will pretend that every shading Y (T') C T is just
the trivial shading Y'(7') = T. At the same time, we will pretend that each point x € (Jpcp T is
always contained in the same number of tubes from T, and similarly for other collections of tubes,
rectangular prisms, etc. In the same spirit as in Section 1.5, we will disregard factors of the form
6 or ¢, and we will (somewhat informally) write A 5 B to mean that A < C§ ¢B, for some
constant C' that is independent of § and some small parameter ¢ > 0 that we will ignore for the
purposes of this sketch (in Section 3 we will give a precise definition of the relation 5, which will be
used for the remainder of the proof). In the actual proof there are myriad parameters (of which e
is an example), and navigating the precise interplay between these parameters is a major technical
challenge in the paper. This issue will be entirely ignored in the proof sketch.

Finally, in this proof sketch it will be helpful to introduce “informal versions” of certain def-
initions and theorems that occur later in the paper. These informal versions are intentionally
imprecise, and often are not literally true. These informal statements will be superseded by their
formal counterparts that occur later in the paper. With these caveats, we now proceed as follows.

2.1 Proposition 1.6: Assertions D and £ are equivalent

Our first goal is to prove Proposition 1.6. To do this, we will iterate the following lemma:
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Lemma 6.4, informal version. Let 0 < w < W', and suppose that both D(o,w) and E(o,w’) are
true. Then E(o,w’ — a) is true, where a > 0 depends only on the quantities w and w' — w.

To prove Proposition 1.6, we fix w and o and suppose that D(o,w) is true. The statement
&(0,2) is trivially true, since the volume of | J; T is bounded below by the volume of a single tube.
We then iterate Lemma 6.4 multiple times to conclude that £(o,w + ¢€) is true for every £ > 0, and
thus £(o,w) is true.

The idea behind Lemma 6.4 is as follows. Given a set T of § tubes, our goal is to establish the
estimate L
U 7|z 8 m i (mo e ) (2.1)
TeT
with m = Cxr.ew(T) and ¢ = Cprsw(T). For simplicity we will pretend that every collection
of tubes always satisfies Crsw(T) < 1. Removing this assumption introduces a few additional
difficulties that we will not discuss here.

If Cxr.cw(T) < 1, then T satisfies the hypotheses of D(o,w), and thus we can apply the estimate
D(o,w) to T and immediately obtain (2.1). Suppose instead that Cxr.cw (T) = m >> 1. This means
that there is a convex set W that contains at least m|W|6~2 tubes from T. The convex set W
must have diameter > 1 (since it contains at least one tube), and wlog we can suppose that it has
diameter ~ 1 (since the tubes in T are contained in the unit ball). Thus we may suppose that W is
comparable to a rectangular prism of dimensions a x b x 1, for some § < a < b < 1. We will focus
on the most interesting case, which is when a and b have similar size, i.e. W is comparable to a p
tube for some § < p < 1.

Motivated by the above discussion, let us explore what happens when Cyr.ow (T) = m > 1;
there is a scale § << p << 1; and a set T, of p tubes, each of which contains about m(p/d)? tubes
from T. It is straightforward to verify that Crr.cow(T,) = O(1): if a convex set W contains N
tubes from T, then it contains about Nm(p/§)? tubes from T. On the other hand, W can contain
at most m|W /82 tubes from T; see Figure 4. Note that this situation is in some sense the opposite
of the problematic situation described in Section 1.1 (and illustrated in Figure 1 (right)); in that
Section, we considered the scenario where there are many (i.e. far more than p=2) p tubes, each of
which contains few (i.e. far fewer than (p/§)?) § tubes.

We have just shown that T, satisfies the hypotheses of D(o,w), and thus

| U |z G (#T)T,2) 22)

T,€T,

(In the above, we write |T,| ~ p? to denote the volume of a p tube). On the other hand, for each
T, € T,, the (re-scaled) § tubes inside 7, will satisfy the Katz-Tao Convex Wolff Axioms with error
about m, i.e. Crrcw (T??) <m = Crrcw(T).

Applying the estimate (1.3) from Assertion £(o,w’), we conclude that

= (i)wm‘“#T[TpD'TT”I (m=3@TIT )T 2) (2.3)

Inequality (2.2) says that about p‘3+w(#']l‘p)\Tp]<(#T)p|Tp\1/2) % distinet p balls are needed
to cover (J; 7', and the RHS of (2.3) gives a lower bound for the density of | J; T" inside a typical
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Figure 4: T, (black), and T (blue). For clarity, we have only drawn the tubes from T inside two
p tubes. Note that the p tubes are (comparatively) sparse, while the tubes in T[T),] are densely
packed. The situation is similar to that in Figure 1 (left), except that the set of (rescaled) 0 tubes
inside each p tube are very dense, and thus Cyr.cyw (T?) is large.

p ball from this collection. Combining these estimates and noting that (#T,)(#T[I,]) = #T and
|T,||T7%| = |T|, we conclude that

U 7| 200 m @I (m R T 2) (2.4)
TeT

If p < 6¢ for some ¢ > 0 bounded away from 0, then (2.4) is precisely (2.1), with a = ((w’ — w).

This concludes the proof of Lemma 6.4 and hence Proposition 1.6, except that in our proof we
assumed the existence of a set of p tubes that satisfies the following properties:

(@) Crrcw(Tp) = O(1).

(b) Each p tube T}, contains about m|T},|/|T| tubes from T, where m = Cxr.ow (T).
)
)

(c) The sets in T, are tubes, i.e. they have dimensions p x p x 1.

(d) p < 1, in the sense that p = ¢ for some ¢ > 0 bounded away from 0.

Unfortunately, given a set of § tubes T, it need not be the case that such a set of p tubes
satisfying the above properties will always exist. Consider, for example, the case where T is an
arrangement of § tubes of cardinality 6-5/2, we define s = §%/%, and each of the roughly s—*
essentially distinct s tubes in B(0,1) C R3 contains one § tube from T. Examples of this type are
called the well-spaced case. For such a set T, there does not exist a scale p satisfying Items (a) —
(d) above. Note, however, that a slightly different statement is true for this arrangement: There
are scales 0 < 7 < p, and sets of 7 and p tubes T; and T, that satisfy the following:

(i) T has cardinality about m|T|™1, where m = Cxr_cw (T).
(ii) CKT—CW(TP) 5 (#TP”TP"

(iii) Each p tube T}, satisfies C’KT_CW(’]I‘Z’”) =0O(1), and 4T |TT’°\ L= (p/7)2.
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(iv) Each 7 tube T; satisfies Crr.cw (TT7) < (#T[T-))| T .

(v) T << p, in the sense that 7 = §¢p for some ¢ > 0 bounded away from 0.

For the well-spaced example described above, we would have m = 6~ Y/2, 7 = §, p = 6Y/4, T, = T,
and T, is a maximal set of p~4 essentially distinct p tubes.

The arguments described above can be adapted to this situation: By Item (ii), the p tubes
satisfy the hypothesis of Assertion £(o,w), and thus we obtain the volume estimate

| U 5|2 @1, 2.5)
T,€T,

Note that the RHS of (2.5) is precisely the estimate (1.3) from Assertion £(o,w’) (ignoring the
multiplicative constant x), with m = (#T,)|T,| and ¢ = O(1).

By Item (iii), the 7 tubes inside each p tube satisfy the hypotheses of Assertion D(o,w), and
thus for each p tube T, we obtain the volume estimate

uw

TTT’J ETZ"

2 (%)wITTTPI(’/Q- (2.6)

Note that the RHS of (2.6) is precisely the estimate (1.2) from Assertion D(o,w), with #T =
T,
-7 |71

Finally, by Item (iv), the § tubes inside each 7 tube satisfy the hypothesis of Assertion &£(o,w’),
and thus for each 7 tube T we obtain the volume estimate

U

TTrTTr

2 (O)" grmyer oy, (27)

If the 7 tubes are evenly distributed among p tubes, and the § tubes are evenly distributed
among the 7 tubes, then we may suppose that for each 7 tube T and each p tube T}, we have
(#TTT)(#TZP)(#TP) = #T. Thus we can combine (2.5), (2.6), and (2.7) to obtain the following
analogue of (2.4):

Uiz ()
TET , (2.8)
=(C)" e mm T ()

where the second equality used Item (i). By Item (v) we have 7/p < 6¢, and thus we obtain (2.1)
with o = {(w' — w), as desired.

To prove Lemma 6.4 (and hence Proposition 1.6), we show that for every arrangement of ¢§
tubes, at least one of the following must hold.

(A) There is a set of p tubes satisfying Items (a) - (d) above.
(B) There are sets of 7 and p tubes satisfying Items (i) - (v) above.

(C) The tubes in T can be efficiently packed inside rectangular prisms of dimensions s x ¢ x 1,
with s << .
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(D) The tubes in T satisfy the Frostman Convex Wolff Azioms at every scale (see Definition 6.1).

To establish the above polychotomy, in Section 4 we develop a general theory for “factoring”
collections of convex sets in R™. Given a set of § tubes T, this allows us to find a collection of
convex sets W that satisfies the analogues of Items (a) and (b) above with W in place of T,. If
these convex sets have dimensions s x ¢ x 1 with s << ¢, then this gives us Item (C). If instead s ~ ¢,
then the convex sets in W are almost tubes. We apply arguments of this type at several carefully
chosen scales to show that at least one of Items (A) — (D) must hold.

The arguments described thus far establish the desired inequality (2.1) in the case where (A)
or (B) holds. In Section 5 we show that Inequality (2.1) holds in Case (C); this is done using a
careful rescaling argument. Finally, Case (D) is precisely the setting where we can apply the Sticky
Kakeya Theorem (as generalized in [26]) to immediately conclude that T satisfies (2.1).

This concludes the proof sketch of Proposition 1.6. We now turn to Proposition 1.7.

2.2 A two-scale grains decomposition

In Sections 7 and 8, we study the structure of arrangements of § tubes for which the estimate (1.2)
from Assertion D(o,w) is (almost) tight, i.e. sets of 0 tubes that satisfy the hypotheses of Assertion
D(o,w), and also satisfy an inequality of the form

| U Y] 2 e #ITI (DI

TeT

We will assume for now that such a set T exists, and at the end of Section 2 we will arrive at a
contradiction. With care, this contradiction will remain when the term §“ is replaced by 6" for
v > 0 a small positive number.

In [9], Guth proved that under mild “broadness” hypotheses, every union of § tubes (J; 7 in
R3 can be written as a disjoint union of rectangular prisms of dimensions § X ¢ x ¢, with ¢ >
((#T)|T|*/?)~1; see Figure 2 (left). This lower bound on c is interesting when #T is substantially
smaller than |T|~! (recall that |T| has size roughly 62). At the opposite extreme, if #T has size
about |T|_1/ 2 (this is the smallest possible cardinality for T that is allowable, given the broadness
hypotheses mentioned above), then grains have dimensions roughly § x 1 x 1. We remark that Guth’s
methods also yield a stronger bound of the form ¢ > u((#T)|T|'/?)~!, where u is the number of
tubes from T that pass through a typical point, but this stronger bound won’t be needed here.

First, we show that there exists a scale § << p << 1 and a set of p tubes T, so that both T, and
the rescaled sets T?» (recall (1.8)) satisfy the hypotheses of Assertion D(o,w). In addition, each
rescaled set TTr satisfies the broadness hypotheses needed to apply (a variant of) Guth’s result.
Thus we can write UT[TP] T?r as a disjoint union of rectangular prisms of dimensions §/p x ¢ x ¢,
where ¢ > ((#T[T,])|T7»|*/?)~!. Note that the grains become larger as #T[T},] becomes smaller;
this numerology will be important later in the argument. Undoing the scaling, we obtain a partition
of UT[TD] T into disjoint & X pc X ¢ rectangular prisms; we will refer to these as grains (see Figure
2 (right)), and we refer to this set of grains as ng. Let G = UTP ng' In our discussion below, we
will call G the “two scale Guth grains decomposition” of T.

Recall that in the proof vignette outlines in Section 1.5, we made Simplifying Assumption D.
We will now dicuss the technical steps needed to justify this assumption. The main goal of Section
7 is to define three “Moves,” which we will briefly describe below. After these moves have been
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applied, we obtain a new scale p with § << p << 1; a new set of p tubes T, that cover T; and a new
collection G of grains that have the following properties:

(i) Each grain has dimensions § x pc x ¢, with ¢ > ((#T[T,])|T7%|"/2)~L.

(ii) Each grain G € G is associated to a unique tube T, € T,, where G C T),, and both G and T,
point in the same direction (up to uncertainty p).

(iii) Distinct grains from G associated to the same p tube are disjoint.

(iv) For each p tube T}, we have | |G = Ugeqyz,; T where the former union is taken over the set
of grains associated to T},.

(v) Grains associated to different p tubes can intersect, but this intersection must be tangential;
i.e. the tangent planes of intersecting grains must agree up to uncertainty 6/(pc).

Item (v) means that we can cover R? by boxes of dimensions & x ¢ X ¢, so that each grain is contained

in O(1) boxes, and two grains intersect only if they are contained in a common box. If we re-scale

a box to become the unit cube, then the grains inside this box become p x p x 1 rectangular prisms,

i.e. p tubes (see Figure 2). We introduce the following notation: If (Jis a % X ¢ X ¢ box, then G5 will

denote the set of p-tubes obtained by re-scaling the grains from G inside [J. With this notation, we

can state one final property for G:
(vi) For each box [J, the p tubes in G satisfy the hypotheses of £(co,w), and Crr.cw(G7) S 1.

In a moment, we will describe the Moves needed to find a scale p; a set of p tubes T,; and a
set of grains G that satisfy Items (i) — (vi). We begin by letting G be the two scale Guth grains
decomposition of T, as described above. Items (i), (ii), (iii), and (iv) hold for this choice of G, and
properties (ii)-(iv) are preserved throughout the process.

If Item (v) fails at any point in the process, then we argue by contradiction as follows. Using a
L? argument similar to Cordoba’s proof of the Kakeya maximal function conjecture in the plane,
we can show that there exists some scale & >> § so that the “hairbrush” of a typical grain G
(i.e. the union of the grains G’ € G with G' NG # 0) fills out (most of) the d-neighbourhood of
G. Let us pretend that the hairbrush fills out all of the ¢ neighbourhood of G. Then for each &
tube T € T, the corresponding 0 tube T' = N3(T) satisfies T C Ugprep T’ Thus we can replace our
original collection of § tubes with a new collection T of fatter & tubes, and Ur T = Uz T. The new
collection of fatter tubes will satisfy the hypotheses of £(o,w) (with favorable values of CKT_CW(’]T‘)
and Cp_sw(T)), and hence we can apply the estimate £(o,w) to T and obtain a volume estimate
for ‘ UTT‘ that is superior to the estimate coming from Assertion D(o,w). But this contradicts
the assumption that the volume estimate from Assertion D(o,w) was sharp for T.

We will now describe the three Moves alluded to above. For ease of exposition, it will be helpful
to introduce these Moves in the opposite order that they are defined in Section 8.

Move #3 handles the situation when Item (vi) fails (recall the Assertion D(o,w) is sharp for
T). Using an L? argument, we show that the hairbrush of each grain G € G fills out (most of) a
wider grain G O G; these wider grains have the same “length” ¢, but a substantially larger value
of p. See Figure 14 for a visual depiction of this step.

Unfortunately, after applying Move #3, it might be the case that p has become so large that the
inequality p << 1 is no longer true. Move #2 handles this situation. Move #2 uses a L? argument
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to find a new set of grains with a new (substantially larger) length ¢, and a new p that satisfies
0 << p << 1. See Figure 10 for a visual depiction of this step.

Finally, whenever the value of p changes, so does the quantity ((#T[7}])|77%|'/2)~!. Thus after
applying Moves #2 or #3, it might be the case that ((#T[T},])|77%|'/?)~! has become much larger
than ¢, and hence Item (i) fails. Move #1 handles this case: we throw away our set G and replace it
with the two scale Guth grains decomposition of T that was described above (both Moves #2 and
#3 maintain the broadness condition needed to invoke the two scale Guth grains decomposition of
T). This gives us a new grains decomposition with the same value of p and a substantially larger
value of c.

Each of Moves #1, #2, and #3 can be applied to ensure that G satisfies (some of) the Properties
(i) — (vi) described above. Unfortunately, the application of Move #1, #2, or #3 might destroy
other Properties. However, each Move either substantially increases the “length” ¢ of the grains, or
maintains the length and substantially increases the value of p. Since ¢ and p are bounded above
by 1, the process of applying Moves #1, #2, and #3 must halt after a bounded number of steps.
The resulting grains decomposition satisfies Properties (i) — (vi).

2.3 Refined induction on scales

In Section 9 we use the two-scale grains decomposition from Section 7 to apply the estimate from
Assertion &£(o,w) at two different scales — once to the (rescaled) § tubes inside each p tube, and
once to the p tubes arising as the re-scaled grains inside each box [J, i.e. to each arrangement G&.
This is a critical step in the proof of Proposition 1.7, and the entire proof up to this point was
carefully structured in order to allow us to apply the estimate £(o,w) to Gg-.

The argument is as follows. Suppose that T is a set of  tubes for which the estimate from
Assertion D(o,w) is tight, and let T, and G be the grains decomposition described in the previous
section. Employing a small white lie, we can suppose that there is a number u so that each point
x € Uy T is contained in ~ p tubes from T. We have ’UTT‘ ~ u Y (#T)|T|, so our goal is to
obtain an upper bound for p. We will suppose there is a number pgne so that for each 7T),, each
point = € UT[Tp] T is contained in ~ pgne tubes from T[7T,]. Finally, we will suppose there is a
number ficoarse SO that each point z € |J; T = UGeg G is contained in about ficoarse grains from G.
By Items (ii) and (iv) from Section 2.2, we have u < fifineficoarse, and thus our task is to estimate
the latter two quantities.

Since each rescaled set T'r satisfies the hypotheses of Assertion D(o,w), we have the estimate
pne % (8/p) ™ (HTI)T™[2)

where #T[T,] has size roughly (#T)/(#T,) and [T7%| = |T'|/|T,|.

Our next task is to estimate pieoarse. We apply £(o,w) to each set of p tubes G, (We must use
the estimate £(o,w) rather than D(o,w), since Cr_sy (GY) might be large, which entails a separate
argument. We will gloss over this issue.) Doing so gives the estimate

lleoarse é pfw((#gD)|Tp‘l/2)a é pfw|Tp‘fU/2' (2.10)

The second inequality in (2.10) follows from the fact that CKT_CW(QD) < 1, and hence #GH =
|T,|~!. Combining (2.9) and (2.10), we conclude that

o
9

(2.9)

pE [ (@I [ITI6T)] (2.11)
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The first term in square brackets is the estimate that would follow from applying Assertion
D(o,w) directly to T. Thus (2.11) yields a superior estimate precisely when #T, >> |T,|~!. Since
we assumed that T is a set of tubes for which D(o,w) is tight, we conclude that #T, < |T,|~!.

The above step was simplified to highlight the main ideas. In reality, we actually need (and
prove) a slightly stronger statement: rather than concluding that #T, < |Tp\_1, we must instead
arrive at the estimate Cxr.cw (T,) < 1. This more difficult estimate is obtained as follows. Suppose
to the contrary that Cyxr.cw(T,) >> 1. Then we can find a convex set W so that T,[W] has
cardinality much larger than |W|/|T},| (in fact, we can find many such sets W-—see Proposition 4.6).
The argument described above is the special case when W is comparable to the unit ball. The
general case introduces technical challenges, but in light of the techniques already developed in
Sections 4 and 5 to prove Proposition 1.6 (see the discussion at the end of Section 2.1), it does not
require any additional new ideas.

2.4 Multi-scale structure, Nikishin-Stein-Pisier factorization, and Sticky Kakeya

Let us summarize the conclusion of the previous steps: if T is a set of § tubes for which the estimate
D(o,w) is tight, then there is a scale 6 << p << 1 and a set of p tubes T, with Crr.ow(T,) S 1,
so that both T, and each (rescaled) set T[T)] satisfy the hypotheses of Assertion D(o,w), and
furthermore, the estimate D(o,w) is tight for all of these arrangements of tubes.

This last conclusion means that we can iteratively apply the same argument to both T, and
each (rescaled) set T[T),]. After some pruning, we conclude that there is a sequence of closely spaced
scales § = py < py—1 < ... < pp =1 and sets {T,,}}¥; covering T, with Cir.cw(T,,) < 1 for each
index 1.

We would like to apply the Sticky Kakeya Theorem to conclude that ‘ Ur T } is almost as large
as » r|T|. Indeed, the situation described above almost matches the setup of the Sticky Kakeya
Theorem, as generalized in [26, Theorem 1.8]. Specifically, T would satisfy the hypotheses of [26,
Theorem 1.8] if #T a2 §=2. Since Cxr.cw (T) < 1, we know that #T < 6~2. Unfortunately, however,
it could be the case that #T is much smaller than 6 2.

In Section 10 we use a Nikishin-Stein-Pisier factorization argument to show that if #T << 62,
then we can construct a new set T consisting of a union of about 5_2(#T)_1 randomly translated
and rotated copies of T. This new set T will have cardinality about 6 2. Just like the original set T,
the new set T will have a sequence of covers {Tp MY with Cer. CW(’ﬁ‘p ) < 1 for each index . Hence
we can apply the Sticky Kakeya Theorem to T to conclude that ‘ UTeT T‘ 1. Since the volume of
Uy T is invariant under translation and rotation (this is a key ingredient for Nikishin-Stein-Pisier
factorization), we conclude that

U 7| 2 #T)IT). (2.12)

TeT

But if o,w > 0, then (2.12) contradicts the assumption that the estimate D(o,w) is tight for
T. We conclude that when o,w > 0, there does not exist any set T satisfying the hypotheses of
Assertion D(o,w) for which the estimate D(o,w) is tight. The quantitative version of this statement
is Proposition 1.7.
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3 Notation

In the arguments that follow, § > 0 will denote a small positive quantity. Overriding the (informal)
notation from Sections 1 and 2, we write A(d) <5 B(9) if for all ¢ > 0, there exists K. > 0 so
that A(0) < K.67°B(¢). If the role of ¢ is apparent from context, we will often write A g B. For

example if K is a constant independent of §, then log(1/§)% < 1. Similarly, eV log1/9 S 1L

In some sections of the paper, it will ease notation to fix certain variables (for example the
values of o0 and w from Definition 1.5). In such cases, we will clearly state which variables are
fixed, and use bold font throughout that section to denote these fixed variables, and also to denote
quantities that depend only on fixed variables. For example we might define 3 = ocw/100.

3.1 Convex sets and shadings

In the introduction, we defined a d-tube to be the § neighbourhood of a unit line segment. There
are several other types of convex sets that will make frequent appearances in our arguments. A
prism is a rectangular prism in R™ (usually R?); we will denote the dimensions by a x bx ¢ x ...,
with the convention that a < b < ¢ < .... Informally, we say a prism in R? is “flat” if it has
dimensions a X b X ¢ with a << b, and we say it is “square” if b and ¢ have comparable size. Finally,
we will sometimes refer to the quantities a, b, and c respectively as the “thickness,” “width,” and
“length” of a prism.

Rather than working with rectangular prisms, it will sometimes be convenient to work with
ellipsoids, or more general convex sets. This motivates the following definition, which generalizes
the definition of (T,Y)s from the introduction.

Definition 3.1. For 0 < a < b < ¢, we write (P,Y )yxpxc to denote the following pair: P is a set of
essentially distinct convex subsets of R3; for each P € P, the outer John ellipsoid of P has axes of
lengths comparable to a,b, and c respectively. Y is a shading on P, i.e. for each P € P, we have
Y(P) C P.

For example, we could write (T,Y)s as (T,Y )sxsx1. Finally, we say (P,Y )axpxc iS A dense if
>pep Y(P) 2 A pep [P
Definition 3.2. If (P,Y )axbxc iS a set of prisms and their associated shading and = € R3, we define

Py(z)={PeP:zcY(P)}.

Similarly, if P is a set of prisms (or more generally, convex sets) and no shading is present, then
we define P(z) = {P € P: z € P}.

Definition 3.3. We say a pair (P, Y') xpxc is a t-refinement of (P, Y )axpxc if P C P; Y'(P) C Y(P)
for each P € P', and > pieps [Y'(P')] > t 3 pep |Y(P)|. In practice, we will often have ¢ ~5 1, in
which case we will call it a ~5 1 refinement.

Note that if (P, Y )axbxc 18 A dense and (P, Y")oxpxc 18 a t-refinement, then #P" > Mt (#P).

Definition 3.4. If W C R3? is a convex set whose outer John ellipsoid F has dimensions a x b x ¢, we
write dir(W) € Gr(1;R3) and II(W) € Gr(2;R3) to denote the 1 and 2-dimensional subspaces of
R? spanned by the primary and secondary axes of E. We have that dir(W/) is meaningfully defined
up to accuracy b/c, and II(W) is meaningfully defined up to accuracy a/b. For example, if T is
a 0 tube, then dir(7") is meaningfully defined up to accuracy d, while II(7") is only meaningfully
defined up to accuracy 1 (i.e. II(T") is not a meaningful quantity if 7" is a ¢ tube).
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We will employ the following synecdoche notation: if P (resp. T, W, etc.) is a collection of
convex sets, each of the same volume, then we will use |P| (resp. |T'|, |W|, etc) to denote the volume
of one of these convex sets. In practice, we will abuse notation slightly and continue to employ this
notation if the sets in P have comparable (but not necessarily identical) volume.

Definition 3.5. Let W C R™ be a convex set. We define ¢y : R® — R" to be an affine-linear
transformation that maps the outer John ellipsoid of W to the unit ball. For concreteness, if
v1,...,U, are the axes of the John Ellipsoid, with lengths /1 < ... < £,, then we select ¢y so that
the j-th axis of the John Ellipsoid is mapped to the z; axis in R". If two more more axes have the
same length, then we pick an ordering arbitrarily.

If U ¢ R", we define U = ¢ (U). In particular, if U is a convex subset of W then UV is a
convex subset of the unit ball, and |[UW| ~ |U|/|W|. This is compatible with our earlier definition
of T+ from (1.8).

Definition 3.6. Let U be a collection of convex subsets of R™ and let W be a convex subset of R".
We define
UW]={UelU:UcC W},

and
uv ={u". v eumwi.

If Y is a shading on U, we will use Y to denote the corresponding shading on 4", i.e. for
each U € UV, we define YW (UW) = ¢y (Y (U)).

Remark 3.7. The expression U" should not be confused with Uy ; the latter notation will be as
follows: If U and W are sets of convex subsets of R™, then Uy, W € W will be used to denote a
set of subsets of U that are indexed by the elements of W.

3.2 Table of notation

To aid the reader, we will use certain notation conventions throughout this paper. For example,
some symbols (such as o and w) will be reserved to always have the same meaning. For future
reference, we record these notation conventions in the table below

Symbol Meaning

0, p, T These variables will denote scales. Typically § < p < 7.

a,b,c These variables will denote scales; typically the dimensions of a prism.
0 f will denote an angle

These variables will represent (typically small) exponents, i.e. they will appear

UL in the form 67, p°, etc.

o K These variables will represent (positive) multiplicative constants, i.e. || J7| >
’ k6 or Crr.ow(T) < Ko~ . Typically k£ > 0 is small and K >> 1 is large.

oW o and w and their variants o/, 7, etc. will always be quantities related to the

estimates £(o,w) and D(o,w).

In Sections 7 and 8, we will fix values of ¢ and w that are kept constant
o, w throughout that section. We use bold symbols to denote these fixed numbers,
and all subsequent quantities that depend (only) on them.
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These variables will denote convex sets. Typically T is a tube, P and G are
T,P,G,S,0| prisms of dimensions a x b X ¢, S is a slab, and [0 is a “box” of dimensions
a X ¢ X ¢. We use symbols T, P, G, S to denote sets of such objects.

T’ or Ty will denote a subset of T. Similarly Ty will denote a subset of Ty,

T, T, T ete. T will denote a new set of tubes that is related to T, but not necessarily
a subset (for example, T might consist of the 2-fold dilates of the tubes in T).
(T, Y")s (T",Y")s will denote a refinement of (T,Y)s. Similarly for (Ty,Y1)s.

4 Wolff Axioms and Factoring Convex Sets

4.1 Definitions: Wolff axioms and covers
Definition 4.1. Let U, W be collections of convex sets in R”.

(A) We say that W is a cover of U (or W covers U) if Jy ¢y U[W] = U. We will denote this by
u=<mw.

(B) We say that W is a K-almost partitioning cover (resp. partitioning cover) if it is a cover, and
furthermore each U € U is contained in at most K sets (resp. 1 set) of the form U[W].

(D) We say that W is a K-balanced cover (resp. balanced cover) if it is a cover, and furthermore
the numbers |[W|~1 EUGL{[W] |U| are comparable for all W € W, up to a multiplicative factor
of K (resp. 2).

The following is a mild generalization of Definition 1.3.

Definition 1.3'. Let U and W be collections of convexr subsets of R™.
(A) We define the Katz-Tao Wolff constant of & with respect to W to be the infimum of all C > 0
so that
Y UI<CW| for alW €W, (4.1)
UeU[w]

(B) We define the Frostman Wolff constant of ¢ with respect to W to be the infimum of all C > 0
so that
S [UI<Cw| > Ul for all W eW. (4.2)
UelU[W] veud
Remark 4.2.
(A) To ease notation, we define Cxr.cw (U) (resp. Cr.ow (U)) to be the Katz-Tao (resp. Frostman)
Wolff constant of U associated to the set W of convex subsets of R™. We define Cr_sw (U) to be the

Frostman Wolff constant of U associated to the set W of slabs in R™. Note that these definitions
are compatible with those from Definition 1.3.

(B) A set T of §-tubes obeys the Wolff axioms, in the sense of [27] (see Property (*) on p655 and
the preceding discussion) if the Katz-Tao Wolff constant of T is small with respect to the set W
consisting of all rectangular prisms of dimensions 10§ X p X ... X px 2, with 0 < d < p < 2.
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(C) For some arguments, it will be useful to consider an analogue of the above definitions where
the quantity |W| on the RHS of (4.1) is replaced by |[W N B(0,1)|/|B(0,1)|, and similarly for (4.2).
This leads to a quantity that transforms naturally under affine maps such as ¢y from Definition
3.5.

(D) Note that the above definitions continue to make sense if ¢/ is a multiset. This will be useful
in Section 10.1.

(E) If the set U # () consists of convex sets of the same size, then Cp.ow (U) < C implies that
#U > C~1|U|~L. To see this, take W to be a convex set in . Then the LHS of (4.2) equals to |U]
while the RHS of (4.2) equals to C|U|*(#U). Roughly speaking, if Cyr.cw (U) is small, then U is
“sparse”, while if Cr_cw (U) is small, then U/ is “dense.”

Remark 4.3.
(A) The Frostman Wolff constant is “inherited upwards” by covers. More precisely, if i and W are
collections of convex subsets of R™, and if W is a K-balanced cover of U, then

CF—CW(W) g KCF—CW(Z/{) and CF-SW(W) S KCF—SW (U) (43)

(B) The Katz-Tao Wolff constant is “inherited downwards” by covers. More precisely, if U is a
collection of convex subsets of R™, and if W is a convex subset of R™, then

CKT-CW(UW) - CKT-CW(U[W]) < CKT-CW (U) (4'4)

(C) The Frostman Slab Wolff Constant is “sub-multiplicative” with respect to covers. More pre-
cisely, if Y < V are collections of convex subsets of a convex set W C R", then in some situations
we have that Cp_gy (U") is controlled by maxy ey Crsw (U )Cr.siw (VV). In certain special cases,
the same is true for the Katz-Tao Convex Wolff Constant. See Section 4.4 for a precise statement.

4.2 Factoring Convex Sets

As we have observed in Remark 4.3, Frostman Wolff constants are inherited upwards, while Katz-
Tao Wolff constants are inherited downwards. The following definition will help us exploit this
observation when performing multi-scale analysis and induction on scale.

Definition 4.4. Let U and W be collections of convex subsets of R, and let K > 0.

(A) We say that W factors U from above with respect to the Katz-Tao (resp. Frostman) Convex
Wolff axioms with error K if W covers U, and W satisfies the Katz-Tao (resp. Frostman) Convex
Wolff axioms with error K.

(B) We say that W factors U from below with respect to the Katz-Tao (resp. Frostman) Convex

Wolff azioms with error K if W covers U, and for each W € W the set U" satisfies the Katz-Tao
(resp. Frostman) Convex Wolff axioms with error K.

(C) We say that W factors U from above (resp. below) with respect to the Katz-Tao (or Frostman)
Slab Wolff axioms with error K if the natural analogue of (A) (resp. (B)) holds, where the Convex
Wolff axioms are replaced by Slab Wolff axioms.
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Figure 5: Left: U is a set of tubes (red) that cluster into rectangular prisms. Right: Proposition
4.6 locates these prisms (black). The tubes in U\U’ have been X-ed out.

Remark 4.5. Definition 4.4 highlights a few special cases of a more general definition: If U, W,
and V are collections of convex subsets of R”, we can define what it means for W to factor & from
above (or below) with respect to the Katz-Tao (or Frostman) Wolff axioms with respect to V. Item
(A) and (B) in Definition 4.4 correspond to the special case where V is the collection of convex sets
in R™, while Item (C) corresponds to the case where V is the collection of slabs in R™.

Definition 1.3" was carefully formulated to allow the following result, which says that for every
collection U of convex subsets of R”, there exists some W that factors U from below with respect
to the Frostman Convex Wolff axioms, and from above with respect to the Katz-Tao Convex Wolff
axioms, both with small error. The precise statement is as follows.

Proposition 4.6. Let U be a finite set of congruent convex subsets of the unit ball in R™, each

of which contains a ball of radius §. Let K = 1007100/ log(5~1#14) (the exact shape of K is not
important; what matters is that if #U < 57190 then K <o 1)

Then there exists a set W of congruent convex subsets of R™ and a set U’ C U with the following
properties:

i) #U' > K- F#U).
ii) W is a K-balanced, K -almost partitioning cover of U', and
HU' W] > K 'Crrcw U)W U™ for each W € W. (4.5)

iii) W factors U' from above respecting the Katz-Tao Convexr Wolff Azioms with error K.

iv) W factors U from below respecting the Frostman Convex Wolff Azioms with error K.
Our proof of Proposition 4.6 will use the following “iterated graph pruning” lemma, which

allows us to prune a bipartite graph and find an induced subgraph for which every vertex has many
neighbours.
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Lemma 4.7. Let G = (AUB, E) be a bipartite graph. Then there is a sub-graph G' = (A’UB', E’)
so that #E' > #E/2; each vertex in A’ has degree at least @—a; and each vertex in B’ has degree

at least @—%.

Lemma 4.7 is proved via iteratively removing those vertices that have few neighbours. See e.g. [7]
for a proof.

Proof of Proposition 4.6.
Step 1. Let Uy C U be a set minimizing the quantity

Z/I{IIIéIZ}{ exp [(log :&&3’)2} Crr-cwU). (4.6)
20

Since Crr.cw (Up) > 1, we have

exp [<log ::}Z))Q] < exp [<log ;;Z))Z} CKT—CW(Z/{O) < CKT—CW(Z/{) < #U.

Re-arranging,

#Uy > e~ VIsHD (), (4.7)
Observe that if U’ C Uy with #U’' > L(#Up), then
2(#U)\? / #U 2 / #U N2
> > _— .
exp [(log o ) } Cxrcw(U') > exp [(10g #L[’) } Crr-cw(U') > exp [(1083 #Uo) ] CKT-CW(UO)
Re-arranging and using (4.7),
Cxr.cwU) > koCxr.cw(Uy), where kg = e~ 2log 2y/log(#U) (4.8)

Step 2. Select closed convex sets W1, W, ... in R and sets Uy D U D ... according to the following
procedure. Beginning with j = 1, we select W, to maximize! the quantity #U;_1[W;]/|W;|. By
the definition of Crr.cw (Uj—1), we can select such a W; so that

W]

#ujfl[WJ] = CKT-CW(ujfl) |U| .

(4.9)
(Recall that |U| is the volume of a set from ; all such sets have identical volume). Define U; =
Uj—1\U;—1[W;]. Continue this process until #U; < 1 (#U).
Let Wy = {Wl, ceey Wj_l}. Then
1
#( U UO[W]) = #(UNy) > 5 (#U). (4.10)
WeWws

Furthermore, for each i = 1,...,j, we have #U; 1 > %(#L{O), and hence by (4.9) and (4.8),

W;
‘|U’| > KJOCKT—CW(UO)

Wil
U]

#ui—l[vvi] = Ckrcw (ui—l) (4.11)

1Since U is a finite set of compact sets, such a maximizer exists; however the proof would work equally well if we
merely approximate the maximum within a constant factor.
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Hence if W' C W), to compare #(Uwiewf L{O[Wi]> and Dy ey #U[Wil,

CKT—CWU
W S wis S il =#( L] eaiwi)

Wiew’ Wiew’ Wiew’
Cyr. U,
S#( U Z/{O[Wi]>§ Z #UO[WZ‘]SIW Z |Wil.
Wiew’ W;ew’ W,enw’

(4.12)
The equality in (4.12) uses the critical fact that if i # ¢/, then U;—1[W;] and Uy _1 [Wy] are disjoint.

Step 3. Each W € W, has a John ellipsoid whose axes have lengths /¢1,...,¢,. Since each set
Up[W] is non-empty and each U € Uy contains a ball of radius §, we have that ¢; > § for each i.
Since the sets in U are contained in the unit ball, we may suppose that ¢; < 2 for each i. Thus
by dyadic pigeonholing and (4.10), there exist ay, ..., a, and a set Wi C Wy, so that the following
two items hold:

(i) Each W € W) has a John ellipsoid whose axes have lengths ¢1 < ly... < £, with ¢; € [a;/2, a;).

(i) ( U thiw ) (100] log 8]) ™" (o). (4.13)
wews
Replace each W by a congruent copy of Wy—an ellipsoid whose axes have lengths aq,...,a,, and

denote the corresponding set W,. Observe that (4.13) remains true with W, in place of Wy, and
(4.12) remains true for all sets W' C Whs, though the first inequality has been weakened by a
factor of 2" on the RHS. Define Us = Uy )y, Uo[W] (recall that a sequence sequence Uy, Us, . ..
was defined earlier, and hence Us was previously defined, but this is a harmless abuse of notation);
we have that the cardinality of s is bounded below by the RHS of (4.13).

Since Up[W] = Us[W] for all W € W, by applying (4.12) (beginning with the final inequality,
and then using the first few inequalities) with YW = W, we conclude that

H{UW) €Uy x Wo: UC W= > #U[W] < CKT‘CUVT(UO) S w
e wew: (4.14)

< 2%51#( U UO[W]) = g ().

Wews

In the above estimate, (4.12) was used to obtain the first and second inequalities, while the final
equality follows from the definition of Us.

Step 4. Construct the bipartite incidence graph (Z,Us x Wa) whose edges consist of those pairs
(U, W) with U C W. This graph has the following properties:

(i) Z has at most 2"k, (#U2) edges.
(ii) Each U € U, has at least one neighbour.

(iii) Each W € Wy has between 2 "koClr.cw Uo)[Wol|U|™1 and Crr.cw (Uo)|[Wol|U|™! neigh-

bours.
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Note that Items (i) and (iii) imply that

_ Us)|U|
W < 2R U)Wl

(4.15)

We will construct an induced subgraph of (Z,Us x Wh) as follows. First, remove all U € U,
with more than 2”“/—;6 ! neighbours, and denote the resulting induced subgraph by (Zs,Us x Wh);
by Items (i) and (ii), we have #Us > %#Lfg, and #Zs > #Us. Next, apply Lemma 4.7 (iterated
graph pruning) to (Zs,Us x Ws). Denote the resulting induced subgraph by (Z', U’ x W).

Step 5. We will verify that &’ and W satisfy Conclusions (i)—(iv) of Proposition 4.6. For Conclusion
(i), we have

WU > S (HT) = 5o (1) > 5ot () > S0 (Hke) > K (#),

since #Usy is bounded below by the RHS of (4.13); #Uy is bounded below by (4.7); and K was
defined in the statement of Proposition 4.6.

For Conclusion (ii), Since each U € U’ has at most K neighbours in (Z', U’ x W), we have
that W is a K-almost partitioning cover of U’. It remains to verify (4.5). Since #U'[W] <
Crr.cw (U W||U|7Y, it will then follow that W is a K-balanced cover of U’. By Lemma 4.7
followed by (4.15), for each W € W, we have

) > ) (o) 2 (on) (v i )

> (272" 5) Crrcow (Uo) [ Wo | [U|

(4.16)

Since Z/{/ C Z/[O, we haVe CKT—CW (Z/ll) S CKT—CW(Z/{O)-

For Conclusion (iii), let V' C R™ be a convex set. Since each U € Us has at most 2”+1/<61
neighbours and (Z', U’ x W) is an induced subgraph of (Zs,Us x W), each U € U’ is contained in
at most 2"+ 1k " sets U'[IW], we have

H#UV] =2 ko Y H#UW] = (27%7568) Crercw Uo) [Wol U (#WIV]), (4.17)
Wew[v]

where the final inequality used (4.16). On the other hand,
#U'V] < Crerow U V]|[Wol (4.18)
Comparing (4.17) and (4.18), we see that #W[V] < K|V ||[Wp| ™!, as desired.
Finally, for Conclusion (iv), let W € W and let V' C W be a convex set. Then
#U'W)V] < #U'V] < CrrowW)VIIU] (4.19)
Comparing (4.19) and (4.5) (which we verified using (4.16)), we conclude that
#UW)IV] < KIV|IWITH(#U'TW]).

This is precisely the statement that CF,CW((Z/{’ )W) < K. O
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4.3 Convex Sets and the Frostman Slab Wolff Axioms

The goal of this section is to prove that after a refinement, every collection of convex sets can be
partitioned into non-interacting pieces, each of which (after an appropriate rescaling) satisfies the
Frostman Slab Wolff axioms. The precise statement is as follows.

Proposition 4.8. For alln > 2, > 0, there exists n > 0 and k, K > 0 so that the following holds
for all 6 > 0. Let U be a collection of closed convex subsets of the unit ball in R™, each of which
contains a ball of radius §. For each U € U, let Y(U) C U be a shading with |Y (U)| > é"|U]|.

Then there exists a set U' C U; sets Y'(U') C Y(U'), U € U'; and a set W of closed convex
subsets of R™ with the following properties:

i) W factors U from below with respect to the Frostman Slab Wolff axioms with error §—¢.

it) The setsU'[W], W € W do not interact, in the sense that the sets { Uvrewwn Y'(U"), W e W}
are disjoint.

iii) The subset U' and the refined shading Y’ preserve most of the mass of the original collection
(U,Y), in the sense that

> YW 2 k6*(log #U)™5 Y |U. (4.20)

velt’ veu
Proposition 4.8 will rely on the following consequence of Brunn’s theorem:

Lemma 4.9. Let U C R™ be a convez set, let H C R™ be a hyperplane, and let s > 0, t € (0,1].
Suppose that [U N Ns(H)| = t|U|. Then U C Nk, ,/1(H), where K,, depends only on n.

Proof. Without loss of generality we may suppose that the hyperplane H is given by {z; = 0}.

Let f(t) = |[UN{x; = t}]ﬁ (here | - | denotes (n — 1)-dimensional Lebesgue measure), and let
I = supp(f). Our task is to show that |I| < K,s/t.

By Brunn’s theorem, f is concave on I. The result now follows by comparing the estimates
t{U| = [UNNs(H)| < (2s)(sup f)" ! and |U| > K,|I|(sup f)"! (the latter is a consequence of the
concavity of f). O

Combining Lemma, 4.9 with a Cordoba-style L? argument, we obtain the following.

Lemma 4.10. Let A € (0,1], let U be a collection of closed convex subsets of the unit ball in
R™, each of which contains a ball of radius 6. For each U € U, let Y(U) C U be a shading with
Y(U)| = AU

Then there exists a set U' C U; sets Y'(U) C Y(U), U € U'; and a set S of infinite slabs
(i.e. the s-neighbourhood of a hyperplane in R™) with the following properties:

i) S is a partitioning cover of U'.

i) If S € S has thickness s, then the (rescaled) sets U'[S] have Frostman Slab Wolff constant
O(s71). More concretely, if S C S is a s X 2 X ... X 2 slab that contains the convez sets from

U'[S], then Cp.sw(U®) < s71.

iti) The sets Uyeys) Y'(U), S €S are pairwise disjoint.
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w) |Y'(U)| > 3|U| for each U € U, and

> Uz log(A T TINY U (4.21)

vel’ uecu

Proof.
Step 1. Define Uy = U, and define Yy(U) = Y (U) for each U € Uy. Fori =1,..., let S; = N, (H;)
be a slab maximizing the quantity

sstY Ul (4.22)

Uel; 1 [Sl]

Let U9 = U;_1[S;]; by the maximality of S;, we have that /() satisfies Conclusion (ii) from Lemma
4.10.

For each U € U;_1, define Y;(U) = Y;_1(U)\S;, and define
A
U = {U € th 1 1Yi(U)| = 5101},

In particular, U NUD = 0.

Step 2. We claim that

> NS Slog\ o) D (U (4.23)

Ueld;_1 veu®

We verify (4.23) as follows. Since Yo ) |U| > 36", the contribution from those U € U;— with
|U N S| < IA"(#U) ™1 is negligible. For each dyadic ¢ € [JA"(#U) 1, 1] we have

doounsist Y U<t > U

Ucl;_1 Uel;_1 UEUZ'71[NKn5,i/t(Hi)]
|[UNS|~t|U| [UNS|~t|U| (4.24)
<K, Y, |[U=K, > U
Ueld;—1[S;] Ueu(d

The second inequality follows from the containment
{U eEU;_1: ‘U N S| ~ t’U|} C {U S u'—l[NKns/t(Hi)]}

for an appropriately chosen constant K,, depending on n; this is Lemma 4.9. The third inequality
used the maximality of S;, in the sense of (4.22). (4.23) now follows from summing (4.24) over
dyadic values of t.

Step 3. We halt the procedure described above when Uy = (). Define U’ = UZJ\;1 UD and for each
U € U, define Y'(U) = Y;_1(U), where i is the unique index so that U € Y. Conclusions (i)
and (iii) follow immediately from the above construction, as does the fact that |Y'(U’)| > 3|U’| for
each U’ € U'. Conclusion (ii) was already verified in Step 1.

It remains to verify (4.21). We claim that each U € U = Uy contributes at least %\U| to the

sum N
Y. > lunsi,

i=1 Uel;_1
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in the sense that >, ;e |[UNSi| > 2|U|. Indeed, suppose that j > 0 is the smallest index with
U ¢ U;, and hence |Y(U)\Ug:1 Si| < 3|U|. But since |Y (U)| > AU, this means that

g A
S wns| > U,

i=1
as claimed.
We conclude that
Y A
2 2 lUnSi=3 3 Ul (4.25)
=1 Uel;—1 veu
Comparing (4.23) and (4.25), we obtain (4.21). O

Proposition 4.8 follows from repeatedly applying Lemma 4.10. We now turn to the details.

Proof of Proposition 4.8. Let A = 167, After discarding those U € U with |Y (U)| < A|U|, we may
suppose that U satisfies the hypotheses of Lemma 4.10.

Let Uy = U and for each U € Uy, let Yo(U) =Y (U). Let Py = {B(0,1)}, and let Wy = ). The
set Py corresponds to convex sets that still need to be “processed” by Lemma 4.10, while Wy will
hold the convex sets that satisfy the hypotheses of Proposition 4.8.

We will iteratively construct sets U; C U;—1 and Y;(U) C Y;—1(U); a set W; D W;_1 of convex
subsets of B(0,1); and a set P; of convex subsets of B(0,1) such that the following properties hold:

1. For each W € W, Crsw (U}Y) S 67° (recall UV = dw (Ui [W))).

2. For each P € P;, |P| < §%|B(0,1)].

3. W; UP; is a partitioning cover of U;.

4. The sets Uy ey, Yi(U) are pairwise disjoint, as V' ranges over the convex sets in P; UW;.

5. |Y;(U)| > 27iA|U| for each U € U;.
6. . D MO) 2o #) N Y (UL

VEPUW; Uelt;[V] Ueu

These six items are trivially satisfied when ¢ = 0. For the i-th step, begin by setting W; = W,_1,
'Pi = @, and Z/lz = UWEWFl Z/[i_l[W], YZ(U) = Y;_l(U) for each U € le

For each P € P;_1, apply Lemma 4.10 (with 2=~ ) in place of A) to each collection Z/lf:l =
¢p(Ui—1[P)) of ellipsoids, and their associated shadings ¢p(Y;—1(U)). We obtain a collection of
slabs S, a set U]_,[P] C U;—1[P], and a shading, which we denote by Y;(U), on the ellipsoids in

! 1[P]. Add the ellipsoids in U]_,[P] and their associated shading Y;(U) to U;. Next, we consider
each slab S € § in turn.

e If a slab S € S has thickness > §¢, then this corresponds to a convex set W = P N d);,l(S)
for which Cr_sw (U/_1[P])") < 67°. Add this set to W.
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e If aslab S € S has thickness < ¢°, then this corresponds to a convex set P’ = PN ¢p'(S) for
which . '
|P'| < &|P| < 65 (6 14| B(0,1)]) = 6%|B(0,1)].

Add this set to P;.

After this procedure has been performed for each P € P;_1, Properties 1 and 2 are immediate,
while Properties 3-6 follow from their counterparts in Lemma 4.10.

We halt the process when the output Py = (). Since each U € U has volume at least 6™, the
above procedure must halt after at most n/e steps. Welet W =Wy, U' = Uy, and Y'(U) = Yy (U).
To obtain (4.20), n must be selected sufficiently small so that §V7 < 6, i.e. n ~ &?/n and K ~ n/e
will suffice. O

4.4 The Frostman Slab Wolff Axioms and Covers

In this section we will state and prove a precise version of Remark 4.3(C). We first consider the
Frostman Slab Wolff Axioms.

Lemma 4.11. Let W C R” be a convez set and let U and V be collections of convex subsets of W,
withU <V and #UV| < K(#U)/(#V) for each V € V. Suppose that each set in U has the same
volume, and similarly for V. Finally, suppose that each set in UV has diameter > 1/100.

Then
Crsw (UY) < log(2 + |UW|*1)K( sup cF_SW(uV)) (C’F_SW(VW)). (4.26)
vey

Proof. First, to simplify notation we may suppose wlog that W = B(0, 1); indeed, both the hy-
potheses and conclusion of Lemma 4.11 remain unchanged if we replace W by WW (the latter is
comparable to B(0,1)); replace U by U W. and replace ¥V by VW. In particular, each set in I now
has diameter > 1/100.

Fix a truncated, thickened hyperplane S = Ng(H) N B(0,1), with U[S] # 0 (so in particular
s > |U|/K,,, where K, is a constant depending only on the dimension n). We may suppose that
s < 2, since otherwise we can replace Ng(H) by a hyperplane of the form No(H'), which has the
same intersection with B(0,1).

Since U <V, we have

=Juvns= (J U uwvns, (4.27)

Vey t dyadic
1% ﬂS |~t|V|

where the first union ranges over dyadic values of ¢ between |U||B(0,1)|7! and 1 (this range is
sufficient, since if |V N S| < |U||B(0,1)|7YV]| < |U|, then U[V N S] = 0). Observe that there are
<log(2 + |U|7Y) dyadic values of ¢ in this range.

Since U[S] # () and each element of U has diameter > 1/100, we have diam(SNB(0,1)) > 1/100,
and hence
INy/e(H) N B(0,1)] ~ s/t ~t7'|S| forall t € [s,1]. (4.28)

Next, let V € V with [V N S| ~ ¢|V|. This means that |(V N .S)V| ~t. We have
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#UV NS =#{UcU: U cCVNS}
= #{U cU[V]: U cV NS}
=#{UV eUV: UV c (VNS
< Crsw UV N S)Y [(#UV])

St ( ‘S/'lg)) Cr.sw (Uv)> (Kiﬁ) .

(4.29)

On the other hand, by Lemma 4.9 we have
#V eV VS| ~tV[} <#{V eV: V C Ng, ¢ (H)}
S Crsw(V)|B(0,1) N N, ¢ (H)|(#V) (4.30)
S t_lcF—SW(V)‘S‘(#V)7
where the final inequality used (4.28).
Using (4.29) and (4.30) to control the cardinality of the union (4.27), we conclude that

-1 su e
#U[S]Std%ic (£ Crne IS1#0) (1510 e V) (K 55))
S KSI#U), Ky =1log(2+ U)K ((sup Crosw®")) (Crsw (). O

Vey

Next we consider Remark 4.3(C) for the Katz-Tao Convex Wolff Axioms. We will restrict
attention to the special case where the convex sets in question are tubes.

Lemma 4.12. Let 0 <6 < p < 1. Let T be a multiset of 6-tubes and let T, be a cover of T. Then

Crrow(T) S (TSlel%T) CKT—CW(TTP)) (CKTfCW(TP))‘ (4.31)

Proof. Let W C R? be a convex set with T[W] # (. Replacing W by WNB(0, 1) and then enlarging
W by a constant factor, we may assume that W is a prism of dimensions a X b x 2. Since T, covers
T, we have

W)= | (mmhwl= |J T, nw (432)
T,€T, T,€T,
Observe that if T[T,NW] # 0, then T,NW must contain a unit line segment, and thus T, C N3,(WW).

Let @ = min(a, p) and b = min(b, p). Observe that
Py (P
|N3p(W)‘ ~ (5) (T) ’W‘v
b
and thus
[N, | Wi
|T5] ab

On the other hand, if T[T, " W] is non-empty, then T, "W is a convex set of dimensions bounded
by 2a x 2b x 1, and thus

#Tp[N?)p(W)] < CKT-CW(TP) N CKT—CW(TP) (4'33)

#T(T, " W] S Crrow(T[T})]) T S CKT,CW(TTP)TT’. (4.34)
(4.31) now follows by combining (4.32), (4.33), and (4.34). O
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5 Factoring tubes into flat prisms

In this section, we will explore what happens when Proposition 4.6 is applied to a set T of 6-
tubes. Recall that Proposition 4.6 outputs a refinement T C T and a set W of convex sets. If
Cr.ow(T) =1, then W = {B(0,1)}. On the other hand, if Cxr.cw(T) = 1, then W = T. If both
Cxr.cw(T) and Crcw (T) are large, then W will consist of a collection of convex sets, each of which
are comparable to a rectangular prism of dimensions a x b x 1, for some § < a < b < 1. The goal of
this section is to explore the following theme: if the prisms in W are flat, in the sense that a << b,
then the union |J7T will have larger volume than predicted by the estimate (1.3) from Assertion
E(o,w). The precise statement is as follows.

Proposition 5.1. Let w > 0, 0 < 0 < 2/3, and suppose E(o,w) is true. Then for all € > 0, there
exists k,m > 0 so that the following holds for all 6 > 0. Let (T,Y)s be 6" dense. Let 6§ <a <b<1,
and let W be a 67" balanced cover of T consisting of congruent copies of an a X b X 2 prism.

(A) Suppose that W factors T from below with respect to the Frostman Convex Wolff axioms and
from above with respect to the Katz-Tao Convexr Wolff axioms, both with with error §7". Sup-
pose as well that W is a 0~ "-balanced, §~"-almost partitioning cover of T, and that #T[W] >
5”CKT_CW(T)% for each W € W (this condition is satisfied, for example, if W is the output when
Proposition 4.6 is applied to T ). Then

(U Y @) = w0 (2) m G (20T 7]/2) 7 (5.1)
TeT

where m = Cxrow(T) and £ = Cp_gw (T).

(B) Suppose that W factors T from above and below with respect to the Frostman Convexr Wolff
Axioms, both with error < 0~". Suppose as well that VW satisfies the Katz-Tao Convex Wolff axioms
at scale b in the following sense: for all W € W we have Cxr.cw (W[Ny(W)]) <67 ". Then

Uy @) = s (2) (@ 2im)”. (52)
TeT

Note that (5.2) agrees with (5.1) when Cxrow (T) = (#T)|T|, in which case both Cr_cw (T) and
Cr.sw(T) have size ~ 1.

In Section 9 we will need the following mild generalization of Proposition 5.1(A).

Proposition 5.2. Let w > 0, 0 < 0 < 2/3, and suppose E(o,w) is true. Then for all € > 0, there
exists k,n > 0 so that the following holds for all0 < § < p<a <b<1. Let (T,Y)s be " dense and
let T, be a 6" balanced cover of T. Let W be a 6" balanced cover of T, consisting of congruent
copies of an a X b X 2 prism.

Suppose that T, factors T from below with respect to the Frostman Slab Wolff Axioms with error
V', Suppose that W factors T, from above with respect to the Katz-Tao Convex Wolff azioms and
from below with respect to the Frostman Convex Wolff axioms, both with error 6~". Then

byw Y
U Y| 2 ke (2) T HDIT (mo e (T 1)) (5.3)
TeT

where m = Cxr.cw(T) and £ = Cp_sw (T).
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Proposition 5.1(A) is the special case of Proposition 5.2 where p =6 and T, = T.

The main goal of Section 5 is to prove Propositions 5.1 and 5.2. A second goal is to introduce
two cousins of the estimate (o, w), and to show that these three estimates are equivalent. The first
estimate is (formally) weaker: it is the special case of the estimate £(o,w) when ¢ has size about 1.

Definition 5.3. We say that Assertion &(o,w) is true if the following holds:
For all € > 0, there exists k,n > 0 such that the following holds for all § > 0. Let (T,Y)s be §7
dense, and suppose Cr_sw (T) < §7". Then

| U YD) > o= m DT (m 22 (#DITI2) (5.4)
TeT
where m = Cxrow (T).

The second estimate is (formally) stronger: it is a generalization of the estimate £(o,w) where
d-tubes are replaced by congruent convex sets of diameter 1.

Definition 5.4. We say that Assertion F(o,w) is true if the following holds:
For all € > 0, there exists x,n > 0 such that the following holds for all 0 < a < b < 1. Let
(P,Y)axbx1 be a dense. Then

U Y(P)| = kabem™ (#P)|P|(m/20#P)|P|/2) =" D, (5:5)
peP

where

1/2

m = Crrow(P), ¢=Crsw(P), and D =max sup ‘P‘ (#P[NP(P)])

5.6
B I N (P)] (5.6)

Remark 5.5. When o € (0,2/3], the term
m” ! (#P)|P|(m™*2(#P)|P|/) =" D~

is always at most 1. To see this, since #P < m|P|~! and o € (0,2/3], it remains to show that
(#P)|P)'/2171|P|'/? < D. This is true because #P < #P[Ny(P)] - b=* < D*b~2a~2, and £ > 1.

Remark 5.6. If P is non-empty, then by selecting p = a we see that the quantity D = D(P) from
(5.6) is always > 1. In general, D can be as large as (b/a)'/?: when p = b, it is possible for about
(b/a)? essentially distinct a x b x 1 prisms to fit inside the b tube Ny(P). If this happens, then
the RHS of (5.6) becomes l‘f—é’(b/a)3/2 = (b/a)'/2. However, there are several important situations

where we can guarantee that D has size roughly 1. We describe three of these below.

Situation 1. If a = b, then since the prisms in P are essentially distinct, we have #P(Ny(P)) ~ 1
and hence D ~ 1. In particular, this means that F(o,w) = &£(o,w).

Situation 2. Suppose that for each P € P, we have Crr.cw (P[Ny(P)]) < K, for some K > 1. This
means that the Katz-Tao Convex Wolff constant of P might be large, but if we restrict attention
to those prisms P’ contained inside a tube of diameter b, then the Katz-Tao Convex Wolff constant
of P’ is small (this is the setup for Item (B) of Proposition 5.1). Then for each p € [a,b] and P € P

we have #P[N,(P)] S K% = K2, and hence D < K'/2.

Situation 3. Let T be a set of essentially distinct d-tubes contained in a s x ¢t x 2 prism W, with
0<s<t<2 LetP = ¢w(T). Then the sets in P are comparable to rectangular prisms of
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dimensions a x b x 2 with a = §/t and b = §/s. Let us estimate the quantity D = D(P) for this
arrangement. For each p € [a,b] and each P € P, #P[N,(P)] counts the number of é-tubes from
T contained inside a rectangular box of dimensions roughly § x (dp/a) x 2. Since the tubes in T

are essentially distinct, at most O((%)% = O(p2 / a2) tubes from T can be contained in such a
box, i.e. D < SUD pe[a,b] (Z—Z) (5) =1.

5.1 A few frequently used Cordoba-type L? arguments

In this section, we will explore several variants of the following argument: To show that a union
Upep P is large, it suffices to show that the quantity || Y pep xPl5 = > p prer [P N P'| is small,
and then use Cauchy-Schwartz to conclude that

NERGE

This argument was used by Cordoba [6] to prove the Kakeya maximal function conjecture in R?,
so we will call this style of argument a “Cordoba-type L? argument.”

5.1.1 A volume estimate for slabs

In this section we will use a Cordoba-type L? argument to estimate the volume of a union of slabs.
The precise statement is as follows.

Lemma 5.7. Let §, A > 0. Let S be a collection of § x 1 x ... x 1 slabs (n.b. these slabs need not
be essentially distinct), and let Y be a A-dense shading on S. Let m = Cxr.cw(S). Then

| U Y(9)] 2 Noga| " 'm™ A2 (#S)IS). (5.7)
Ses

Proof. Fix S € S. By Lemma 4.9 (applied to the outer John ellipsoid of each element of S), we
have that for each ¢ € [, 1], we have

6, m
#{9' € 8:|SNS|~t|S]} <#{F €8: 8 C Nesp(S)} S m¥|S| LN -

where C' = C(n) depends only on n. Thus

SoelelSulss x % us

Ses 6<t<L1 S’'c
t dyadic \SﬁS’|~t|S|

(5.8)
S| trS| < |log |m(#8)|S|.
SeSsS i<t<1
t dyadic

Let £ = Uges Y (S). Using Cauchy-Schwartz, we have

(usi#) < ([ szxm) < 18l X v 5. (59)

The result now follows by comparing (5.8) and (5.9). O
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We will highlight a few instances where Lemma 5.7 will be helpful.

e (S,Y) is 67 dense, and Cr.cw(S) S5 077, Then the RHS of (5.7) is Zs 6°7.
e R is aset of § x 1 rectangles inside a p x 2 rectangle W: we will apply Lemma 5.7 to RW.

e T is a set of d-tubes inside a 1006 x b x 1 prism W: we will apply Lemma 5.7 to T

5.1.2 Tangential vs transverse prism intersection

The next result says that if a collection of a x b X 1 prisms intersect transversely, in the sense that
their tangent planes make large angle at a typical point of intersection, then the union of these
prisms fills out a large fraction of a thickened neighbourhood of these prisms. The precise statement
is Lemma 5.10 and Corollary 5.13 below. Before stating that result, we need a few definitions.

Definition 5.8. Let W C R", let Y (W) C W be a shading, and let 6 > 0. We say that the shading
Y (W) is regular at scales > § if for each z € Y/(W) and each r € [0, 1], we have

|B(:C,T)OW|>

Y(W)n B(z,r)| = (10010g(1/5))*1|Y(W)\( W

(5.10)

If the quantity 0 is apparent from context, then we will omit it and say that Y (W) is regular.

The next lemma says after a harmless refinement, every shading has a regular subshading. This
is Lemma 2.7 from [19]; see also [26, Lemma 2.3].

Lemma 5.9. Let W C R™ and let Y (W) be a shading. Then there is a regular shading Y (W) C
Y (W) with [Y'(W)| > §[Y (W)].

The next result says that if a prism Fy is incident to many prisms that intersect Py non-
tangentially, then the union of these prisms fills out a thickened neighbourhood of Fj.

Lemma 5.10. Let 0 <a <b<c andlet A\ > 0. Let Py be a a X b x ¢ prism with shading Yo(Fp).
Let (P,Y )axbxe be a set of prisms and their associated shading. Suppose that |Yo(Po)| > AN Py|;
|Y'(P)| > A|P| for each P € P; and each shading Y (P) is regular, in the sense of Definition 5.8.

Let 0 € [§,1], and suppose that

a
0 <Opin:=—+ iInf sup Z(II(Fy),II(P)).
b 2eYo(Po) pepy (x) ( (Fo), I ))
Then
ijg(Po) n U Y(P)( >0 X Nyo (Po). (5.11)
PeP

Remark 5.11. The exponent A\* in (5.14) is not important — the exponent A% would work equally
well for our applications of Lemma 5.10.

Proof. The argument is similar in spirit to Wolff’s hairbrush argument from [27]. After dyadic
pigeonholing, we can select a number 61 € [0, 1] and a set Y{j(Py) C Yo (Py) with Y (Py)| Za [Yo(FPo)|
so that

sup Z(II(Py),II(P)) ~ 61 for each y € Y(Py).
PePy (y)
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Figure 6: The geometry of Lemma 5.10. For each x € Yy(FP), there is a prism (red) from P that
intersects Py at = at angle at least 0,;,. For clarify, only two such prisms have been drawn. The
union of these (red) prisms fills out a large fraction of every b-ball centered at a point of Pp.

Applying Lemma 5.9 (and further refining Y{j/(Py) by a factor of 2), we may suppose that Y{j(P) is
regular.

Let 0’ = bg- 0 : note that a < o < b. Divide P, into sub-prisms of dimensions a x b’ x b’; we have

that £ A éb’|)2 Of these sub-prisms intersect Y (P). Thus to obtain (5.14), it suffices to show that
for each x € Y'(Py), we have

’Nbg(Po NB.b)n | Y(P)‘ > X3 (00) ()2, (5.12)
Pep

Fix a choice of z € Y'(FPy). Our goal is to show that (5.12) holds for this choice of . Let
E =Y'(Py)NB(z,b). Since the shading Y'(F) is regular, we have |E| Z, Aa(b')%. For each y € E,
let P, € Py(y) be a prism with Z(II(Fy), II(P)) ~ 6.

B(z,b) N Uyep Py is contained in a prism of dimensions comparable to b0 x b’ x b that is
concentric with the a x ¥/ x b’ prism B(z,0) N P; denote this b6 x b’ x b’ prism by @. Then
¢q(B(x,b') N P) is comparable to a prism of dimensions 7 x 1 x 1. For notational convenience, we

will select coordinates so that this prism is given by P = [0, 9] < [0,1] x [0,1].

For each y € E, we have that ¢q(B(x,b") N P,) is comparable to a ;5 x 1 x 1 prism, and each
such prism intersects the (22, 23)-plane with angle ~ 1, i.e. the projection of the normal vector v,
of this prism to the (22, z3) plane has magnitude 2 1. Since the shading of each P, € P is regular,
we have that qZ)Q( (Py)NB(z,V )) is a subset of the prism ¢¢ (Py N B(z, b’)) that has density Z, .

After pigeonholing, we can select a set ' C E with |E'| 2 |E|, so that for each y € E’,
¢q(PyNB(xz,V)) is comparable to a ¢4 x 1 x 1 prism whose normal vector v, makes angle < 1/100
with some fixed unit vector v, and the projection of v to the (22, z3) plane has magnitude = 1. Let
v be the projection of v to the (22, 23) plane.

By Fubini, we can find a line segment L C [0, &] x [0,1] x [0, 1] pointing in direction v’, with
LN ¢gg(E")| > |pg(E')|; here the left | - | denotes one-dimensional Lebesgue measure, while the
right | - | denotes three-dimensional Lebesgue measure. Let y1,...,yn, N 2 %]L Noo(E")| Ra )\%

be a g;-separated subset of L N ¢q(E’), and let
S={¢q(P,NBx,V)):i=1,....N}.

S is a set of convex subsets of R3, each of which is comparable to a 36 X 1 x 1slab. Each S € S
has a T4 A- dense shading (the shading is the set ¢g (Y (Py,) N B(z,b'))), so in particular the pair
(S, Y) Ly 1x1 18 Za A dense.
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We claim that Cxr.cw(S) < 1. To verify this, let W C R3 be a convex set, and suppose
#{Se€S8:SCW} =M. We need to show that

M < |Ws|~L. (5.13)

If M = 0 there is nothing to prove If M =1, then clearly |W| > |S|. Suppose instead that M > 2.
Then WNL| > (M—1)5 > 2b0 2 M|S|, since W N L contains at least M points on L that are
sg-separated. On the other hand, since S[W] is non—empty, we know that W contains a ;53 x 1 x 1
prism S € S[W] whose normal direction makes angle < £ Wlth the direction of v (whose projection
to the (22, z3)-plane is v/, i.e. the direction of L). Slnce W is convex, W contains the convex hull
of SU(W N L), which has three-dimensional volume 2 |[W N L| 2 M|S|. Thus |W| 2 M|S|, which
gives (5.13).

Applying Lemma 5.7 (a Cordoba-type L? argument for slabs), we conclude that

U Y(9)] 20 X28)18] 20 2 (A
SeS

a

) = A3,
To conclude the proof, we verify that

’Nbg(Po NB(x,v)n Y(P)‘ > ‘Nbg(Po NB(z,v)n |J Y(Py)(

PeP yeE’

> (b0)(V)2] b0 (B z)n | Y(P )‘
yeR'
N

> (00)(1)*|oq(Bla,t) 0 JY(R)),
=1

> 00) )| J Y(9)| 20 N (00) (V). =

SeS

This establishes (5.12), as desired.

In practice, we will often use Lemma 5.10 in situations where each prism in Py € P satisfies the
hypotheses of the lemma. The following definitions help make that precise.

Definition 5.12. Let (P,Y )axbxc be a collection of prisms and their associated shading, and let
r € Upep Y (P). We define

O(x) ==+ sup Z(I(P),TI(P")),
b pprepy(a)

where Py (z) ={P € P: z € Y(P)}. We define
Omin = inf 0(z),

where the infimum is taken over all x € (Jpop Y (P). Note that Onin depends on the pair
(P,Y)axbxe- The choice of P and Y will be apparent from context.

Be considering each prism Py € P in turn, Lemma 5.10 now has the following corollary

Corollary 5.13. Let 0 <a <b<c, A\ > 0. Let (P,Y)axbxe be a set of prisms and their associated
shading. Suppose that each shading Y (P) is regular, in the sense of Definition 5.8, and satisfies
|Y (P)| > M|P|. Then for each Py € P, we have

Niguin(P0) 0 ¥ (P)| Za M| Nigy (P (5.14)
PeP
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5.2 Assertions F, £, and £ are equivalent

As noted in Remark 5.6, Situation 1, we have F(o,w) = &(0,w) = &(o,w). In this section
we will prove that the reverse implications hold. More precisely, we have the following.

Proposition 5.14. Let 0 < 0 <2/3, w > 0. Then F(o,w) <= E(0,w) <= g(a,w).

The goal of Section 5.2 is to prove Proposition 5.14. We begin with several lemmas that describe
the structure of arrangements of rectangular prisms. Recall the quantity Oy, from Definition 5.12.
When 60nin ~ 1, then a typical pair of intersecting prisms intersect transversely, and by Corollary
5.13 this means that each prism can be replaced by a thickened neighbourhood that is comparable
to an a-tube. In the next lemma, we will analyze what happens when 6y, is small. I.e. we consider
a collection of a x b x 1 prisms P that intersect tangentially, in the sense that their tangent planes
make small angle at a typical point of intersection.

Informally, the argument is as follows. We will begin by describing three Moves, which we will
then apply repeatedly. Note that these are not the Moves described in Section 2.2 — those Moves
will be described in Sections 7 and 8.

Since the tangent plane of a prism is constant along the entire prism, this means that the
collection of prisms can be partitioned into smaller sub-collections Py, ..., Py, where for each
index i, the normal vector of the tangent plane of each prism in P; makes small angle with a fixed
unit vector v;. If P; and P; are two such sub-collections, then the corresponding sets J pep, P
and J Pep; P are mostly disjoint. We can cover the prisms in each set P; by a set of slabs whose
tangent planes have normal vector v;. We then rescale and continue this process inside each slab.
This is Move #1.

Next, we can apply Proposition 4.8 (factoring with respect to the Frostman Slab Wolff Axioms)
to further break our collection of prisms into sub-collections, each of which satisfy the Frostman
Slab Wolff Axioms with small error. This is Move #2.

Finally we apply Lemma 5.9 (every shading has a regular sub-shading). This is Move #3.

We iteratively apply Moves 1, 2, and 3 until our set of prisms P has been covered by a set W of
convex subsets of R?, so that each set PV satisfies the hypotheses of Corollary 5.13 with 0.,;, about
1, and PV satisfies the Frostman Slab Wolff Axioms with error about 1. The precise statement is
as follows.

Lemma 5.15. For all € > 0, there exists n,¢ > 0 so that the following holds for all0 < a <b < 1.
Let (P,Y )axbx1 be a” dense. Then there exists a refinement (P',Y")qxpx1 with Y- prepr Y (P)| Ra
a® Y pep |P| and cover W of P’ by congruent convex sets, such that the following holds.

(A) The shading Y' is regular, in the sense of Definition 5.8.

(B) W is a =, 1 balanced cover of P', and factors P' from below with respect to the Frostman

Slab Wolff axioms, with error a™¢.

(C) All of the convex sets in |y ¢y P have the same dimensions up to a multiplicative factor
of 2, i.e. each one is comparable (after a suitable rigid transformation) to a common conver
set P (see Remark 5.16 below).

(D) For each W € W, the sets P'W and their associated shading satisfy Omin > af, in the sense
of Definition 5.12.
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(E) The sets Uprepw)Y'(P), W € W are pairwise disjoint.

Remark 5.16. Note that even though the prisms in P (resp. W) all have the same dimensions, it
could happen that the prisms in P have differing dimensions — see Figure 7 for an example of
this phenomena. Conclusion (C) (which is achieved by pigeonholing) ensures that this does not
happen.

dw, (Pr) dw, (P2)

Figure 7: An example where the convex sets P; and P are congruent, and U; and Us are congruent,
but ¢y, (P1) and ¢, (P2) are not congruent.

Proof. The main ideas of the proof were already outlined above; in brief, we apply Moves 1, 2, and
3 described above, in that order. We iteratively repeat this process until Conclusions (A), (B), (D),
and (E) of Lemma 5.15 are satisfied. Each iteration increases the volume of each surviving convex
set by at least a. On the other hand, each convex set initially had volume ab > a?, and at each
step all convex sets are contained inside the unit ball, and thus have volume at most O(1). Hence
the iterative process detailed above halts after at most 2/e steps. If n > 0 is chosen sufficiently
small (depending on ¢), then the resulting refinement will satisfy > p/cp/ [Y'(P')| Ra a° > pep | P)-
Finally, we dyadically pigeonhole the set P’ to select a refinement that satisfies Conclusion (C). [

We are now ready to prove Proposition 5.14. The idea is as follows. Given a set (P,Y )axpx1 of
prisms, we apply Lemma 5.15 to cover a refinement of P by a collection of convex sets VW, and then
apply Corollary 5.13 to each collection PW — this gives us a collection of b tubes associated to PV,
for some b > b. The collection of b tubes satisfies the Frostman Slab Wolff axioms with error <1,
and satisfies the Katz-Tao Convex Wolff axioms with some error m that we will analyze later. We
now apply the estimate E (0,w) to this collection of b tubes, and then undo the transformation ¢y .
Summing the contributions from each W € W, we obtain an estimate for ‘ U Y(P)‘ that becomes

better as m becomes larger. Thus we are faced with the task of estimating the size of m — this
quantity is closely related to the quantity D from (5.6). We now turn to the details.

Proof of Proposition 5.14. It suffices to prove that g(a,w) = F(o,w). Fix 0 <0 <2/3, w>0,
and suppose (o, w) is true. Fix € > 0. Then there exists 79 > 0 so that the volume estimate (5.4)
holds for all pairs (T,Y)s that are 6™ dense and satisfy Cp_gw (T) < 6770,

Let x,n > 0 be quantities to be determined below. Let 0 < a < b < 1 and let (P,Y )yxpx1 be
a" dense. Our goal is to prove that

U Y (P)| 2 racbem @R PIm ¥ 2e(#P) P12 D7, (5.15)
peP

with m, ¢, and D as defined in (5.6).
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Step 1. Let 11 be a small quantity to be determined later (we will select 77 very small compared
to no, and n very small compared to 71). We will choose 1 > 0 sufficiently small so that we can
apply Lemma 5.15 with 7;/4 in place of € to (P,Y )axpx1- Denote the output of that lemma by
(P1,Y1)axsx1 and W. By Conclusion (B) of Lemma 5.15 we have Cp_gy (P}Y) < a=™/* for each
W € W,. By Conclusion (E) of Lemma 5.15, we have

) U Y(P)‘ >3 ‘ U Yl(P)’. (5.16)

pPepP WeWw PeP[W)]

By Conclusion (C) of Lemma 5.15, there are numbers a < b < 1 with b > b so that for each
W e W and each PV € P}V, PV is comparable to a @ x b x 1 prism. Conclusions (A) and (D)
of Lemma 5.15 say that for each W € W, the pair (P{/V,Ylw)dxl;xl satisfies the hypotheses of
Corollary 5.13, and hence we can apply Corollary 5.13 to conclude that for each P" € P}V we have

NPy | YVP™)| Z am INy(PTY). (5.17)
PWeplV
In words, (5.17) says the following: for each P" € P}, the set N;(P") is comparable to a b-tube.

This b-tube has almost full intersection with the union of shadings J P Pl YW(P'W). See Figure
6 for an illustration of this situation.

Step 2. As noted above, each set NB(PW) is comparable to a b tube. Let Ty be a maximal,
essentially distinct subset of {N;(PW): PV € P{V}. For each T € Ty, define the shading

Y(I)=Tn [J YW@

PWeplV
Then (5.17) says that ('JI‘W, Y); is 2 a™ dense. After pigeonholing and refining W and Ty, (which
induces a refinement on P}"), we can ensure that #P}"[T] is roughly the same (up to a factor of 2)

for each T' € Ty, W € W. Abusing notation, we continue to refer to these refined sets as W, Ty,
and P}V.

At this point, Ty is a balanced cover of P}V, and we still have Cp_sw (P}") Sa =27 Since Ty
is a balanced cover of PV, by Remark 4.3(A) (i.e. Frostman Wolff constants are inherited upwards),
we have that ¢ := maxyycyy Cr. sw(Tw) Sa a”?™. Finally, define m := maxy ey Cxr.cw (Tw).

Step 3. At this point, we have covered our set of prisms P; by a collection of convex sets WW. For
each rescaled set P}V, we have located a collection of tubes Ty, whose shadings are almost full.
The relation between the volumes of these objects is as follows:

‘ U v ‘N\W|‘ U YWPW)‘>|W\} U v ‘ (5.18)
PEP W] PWepW TeTy

Our next task is to estimate the volume of UTW Y (T). First we consider the case where b < a/b.

In this case, (Tw,Y); is 2 b°M/¢ dense, and Crsw(Tw) Za p-1om/e 1f m is selected sufficiently
small depending on 7y and € (for example, 11 = eny/20 will suffice), then we can apply the estimate
&(o,w) with €/2 in place of € to conclude that

| U v 2 e ) ) (2T 11 2)
TETw (5.19)

Za @/ H T () | T (2 (4T ) [T?)
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On the other hand, if b > a°/5, then the estimate (5.19) follows from the fact that for every T' € Ty
we have

U YD)z v (@) 2 a8 = a2, (5.20)
TeTw

which is stronger than (5.19).

Step 4. We have estimated the volume of U, Y (') for each W € W. Our next task is to combine
these estimates in order to estimate the volume of |Jpcp Y'(P).

We know that each prism W € W has the same dimensions up to a factor of 2; call these
dimensions s X t x 1. Then for each W € W and each T € Ty, we have that d)ﬁ,l (T') is comparable
to a rectangular prism of dimensions sb X tb x 1.

Let Py = {63 (T): T € Ty}, ie. Py is a set of sb x tb x 1 prisms contained in W; |T| ~
|P|/|[W|; and #Pyw = #Tyw. For each W € W and each P = o (T) € Py, define the natural
shading Y (P) = ¢yt (Y/(T)).

(5.16) allows us to combine the (rescaled) volume estimates (5.18) and (5.19) from each W € W.
Defining P = | | Pw, we have

‘PU Y(P)‘ Za WD [ae/”m"bwﬁl1(#75w)‘|£‘|<m3/2(#75W)<|!Wf’|’>1/2>—0}
- e L (5.21)
s a2 ) Pl (o 2 () )

Step 5. To understand the RHS of (5.21) we must estimate m. Recall that in Step 2, we have
pigeonholed to ensure that #PYV [T] is roughly the same for each T' € Ty, W € W. Thus each
P € P satisfies #P1[P] ~, L. Thus we have

#P
- |P| #P
m e M 0.22
~ " [Pl 4P 0:22)
Thus we can estimate the RHS of (5.21) as follows.
- sy (|PL#PL\S2 #P ([P \1/2\ 0
Y(P Za 6/2+7710‘bw 1 P 3/2 |7A 5
‘PLGJP ( )’N “ m (#Pul ’(m (|p| #73) #W(!W\) )
,%a a£/2+3n1bwm—1(#7p)’P’ (m_g/Q(#P)’P’UZ)_U (5.23)
or|P| /4P /210
AEWIWE = (P :
| I'l7Gs)

In the above computation, we used the fact that #P; Zq 6~ (#P).

Step 6. Compare the RHS of (5.23) with (5.15). It remains to analyze the final two terms on the
RHS of (5.23). We begin with the penultimate term. Since the sets in WV are convex and have
diameter ~ 1, each W € W is contained in a slab of volume O(|W|'/2). Thus

#P1W] S Crosw (P)|W[Y2(#P).
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Since #P1[W] =, iﬁ& Za ami—@, we conclude that (#W)|W|/2 Z, am Cp.gw(P)~! = ame~1.

Step 7. We now turn to the final term on the RHS of (5.23). Recall that P is a collection of prisms
of dimensions a x b x 1, while P is a collection of prisms that all have the same, but unknown,
dimensions sb x tb x 1 — call these dimensions @’ x b’ x 1, with a < @’ < b and ¥ > b. Our desired
estimate (5.15) will follow from (5.23) and the estimate

@<ﬂ>1/2<1) 1P|

|P‘ #75 = max sup

1/2
PeEP pelab] |NP(P)‘

(#P[N,(P))]) (5.24)

Fix P e P. Let Pl be a maximal set of essentially distinct min(a’,b) x b X 1 prisms contained
in P, so that each P € P[P] is contained in at least one P € PT. We claim that

#PY ~ (|P|/|PY))%. (5.25)

Indeed, when a' < b, the RHS of (5.25) is (b'/b)? and the numerology comes from the fact that a
b x 1 rectangle can be filled with about (b'/b)? essentially distinct b x 1 rectangles. When a’ > b
the RHS of (5.25) is (a/b//b?)?, and the numerology comes from the fact that a a’ x &’ x 1 prism
can be filled with about (b'/a’)? essentially distinct a’ x @’ x 1 tubes, and each of these tubes can
be filled with about (a’/b)* essentially distinct b x b x 1 tubes.

By the definition of D, we have D > %(#P[PT])UQ, i.e. #P[P1] < (DHP—T")Q. Thus by (5.25),

#plPl < (ALY apie < (LY (DD

which is (5.24). O

5.3 Proof of Proposition 5.1: Tubes that factor through flat boxes

With Proposition 5.14 in hand, we are now ready to prove Proposition 5.1. Fixw > 0, 0 < 0 < 2/3,
and suppose £(o,w) is true (and thus by Proposition 5.14, F(o,w) is true). Let x,7 > 0 be small
quantities to be specified below. Let (T,Y )s be 6" dense, let § < a < b <1, and let W be a set of
congruent copies of an a x b x 2 prism Wy, as described in the statement of Proposition 5.1.

Step 1. After dyadic pigeonholing, we can find a refinement (T, Y1) of (T, Y)s with > per, [Y1(T)] Zs
> rer [Y(T)], and a subset Wi C W so that for each W € Wy and each © € Uper, ) Y1(T), we
have
‘B(x, an Y(T)‘ ~ N B(z,a)|, with \> |W|_1‘ U v
TET TET, W]

, (5.26)

where the “density” A = A(W) is the same (up to a factor of 2) for all W € W. In words,
(5.26) says that if we blur the shading g,y Y1(T) at scale a (for example by convolving with the
characteristic function of B(0,a)), then each point in the shading has density ~ A.

After further pigeonholing, we can ensure that each set (T1[W],Y1)s, W € Wy is =5 69 dense;
Wi is a =5 690D balanced cover of Ty; and each set "JI“{V obeys the Frostman Convex Wolff axioms
with error s 6-9  Abusing notation, we will continue to refer to the output of this pigeonholing
by (T, Y1)s and W;.
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Step 2. Fix W € W;. Then (T‘fV, Y1W)6/bx5/ax1 is a collection of convex sets, each comparable to
a §/bx &/ax 1 prism, with a §°-dense shading. We first consider the case where b > §'=5/190 50
§/b < §¢/190 In this case, the shading on (T}’V,Ylw)g/bxg/axl is (6/b)OM/e dense. If 7 is selected
sufficiently small, then we can apply the estimate F(o,w) with £/2 in place of ¢ (recall that F(o,w)
is true in light of Proposition 5.14) to conclude that

U A 2 () i T I (g P T ) T (s27)

b
TWeTWV

where my = Crr.cw (TV) and lyy = Crsw (TV) < Crow(TV) Ss 67°M. Recall as well that
|TW| ~ |T|/|W|. Note that the estimate F(o,w) involves the additional term “D” defined in (5.6),
but as discussed in Remark 5.6, Situation 3, we have D < 1.

Since Cr.cw (TV) S5 6790 we have that my S5 6O |TW|(#TW), and thus (5.27) allows

~
~

us to estimate the density A (recall that A was defined in (5.26)):

z| U Y| ze ()00 ) (@) (5.28)

b
TWETW
Note that Inequality (5.28) is currently only valid when b > §1-¢/100 " Next we consider the
case where b < §17¢/100 50 each TW e ']1“1/‘/ has dimensions comparable to di X do x 1 for some

1>dy>di > 5¢/190  This is true because

A > |YW(TW)| > (50(17)‘TW| > 56/504—0(77) > 55/10.

Step 3. For each W € W, define the shading

Vi(W) =W mNa( U Yl(T)).

TeT[W]
By (5.26), we have
‘ U Y(T)‘ > A} U f/l(W)). (5.29)
TeT Wwewr

Our next task is to show that (Wi, 171)axbx1 is 69 dense. The argument is shown in Figure 8.
Fix W € W. Since (T}, Y}") is Z 69 dense, we can select a refinement so that each T' € Ty[W]
satisfies |Y1(T)| Z 6™ |T|. After pigeonholing, we can select a set T, of essentially distinct a-tubes
that form a a5 1 balanced cover of Ty[W]. Since (T}",Y\V) satisfies the Frostman Convex Wolff
axioms with error $s 60 we have that T, satisfies the Frostman Convex Wolff axioms with
error s 69 The shading Yo(To) = Ty N Na(UTeT[W} Yl(T)) is ~5 690 dense. Applying

Lemma 5.7 to (TV,Y"V), /bx1x1 and then undoing the scaling ¢y, we conclude that

won( U nm)|z| U v

TET[W] T,€T,

25 50(’7)|W|.

Step 4. It remains to estimate the RHS of (5.29). We first consider the case where a < 65/190 In
this case, (Wi, Y1 )axbx1 1S aP/e) dense. If 7 is selected sufficiently small depending on ¢, then we
can apply the estimate F(o,w) to conclude that

U 70W)| = mea26m= oW (28w w)2) (5.30)
wWew,
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Figure 8: Each a-tube in T, (blue tubes) contains at least one d-tube from T;[W] (red tube); this
d-tube has a dense shading (red dots), which in turn gives us a dense shading on the a-tube that
contains it (blue balls; for clarify we have only drawn these for one of the tubes in T,). Finally,
since W (black box) has thickness a, and the a-tubes inside W satisfy a (rescaled) Frostman Convex
Wolff axioms, an L? argument says that the union of a-tubes has almost full volume.

where m = Cxr.cw (W) and {=Crow (Wh). Note that the estimate F (o, w) involves the additional
term “D” defined in (5.6). However, we claim that both both Parts (A) and (B) of Proposition

5.1, we have
D <6 (5.31)

We verify this claim as follows. In Part (A) of Proposition 5.1, we have the hypothesis that
Crr.ow(W) < 67" As discussed in Remark 5.6, Situation 1, this ensures that D < 6~". In Part
(B) of Proposition 5.1, we have the hypothesis that

CKT-CW(W[Nb(W)]) S (5777 for all W € W.

As discussed in Remark 5.6, Situation 2, this ensures that D < §~". This establishes (5.31).
In summary, we have established (5.30) when a < /190, If instead a > 6510 then (5.30)

follows from the estimate

U 7iw)| 2 720 2 /20m (g |w). (5.32)
wews

Combining (5.28), (5.29), and (5.30) (when a < §7/1%0) or (5.32) (when a > 6°/19), we conclude
that

‘TLEJTY(T)‘ zo 5W+E+O(n)52/200(Z>wm1(#W1)!W!<Th3/2@(#)/\/1)]1/{/\1/2)_”<<##£1)1/2||§/!|>U
= ot () e W (W ) )
(5.33)

Step 5. It remains to analyze the RHS of (5.33). Our analysis will differ for Parts (A) and (B)
of Proposition 5.1. We begin with Part (A). We have m < 67", and since W, is a ~5 690
balanced cover of T, by Remark 4.3(A) (i.e. Frostman Wolff constants are inherited upwards)
we have 870 <o Crsw(T) = £. Since W is a 6~ "-balanced, §~"-almost partitioning cover of T,

#TW] > 6”CKT_CW(’]I‘)% for each W € W, and W, is a refinement of W, we have (#W)|W| Zs

§"m =L (#T)|T|. The RHS of (5.33) becomes
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as claimed.

Next we consider part (B). We have m S5 6 1|[W[(#W) S5 6|W[(#Wh), and £ s 6. Thus
the RHS of (5.33) becomes
b\w o
wte [ Y 1/2
(O (rrem)

This concludes the proof of Proposition 5.1.

5.4 Proof of Proposition 5.2: Factoring at two scales

The proof of Proposition 5.2 is almost identical to the proof of Proposition 5.1. Rather than
present a more complicated unified proof of the two results, for clarity of exposition we have opted
to instead briefly sketch the proof of Proposition 5.2 and highlight where the two proofs differ.

We begin by refining the shading (T,Y)s to find a subset (Ti,Y1)s that has at least average
density on balls of radius a; this is the analogue of (5.26). By Lemma 4.11, we have that for each
W eW, Crow(TV) S555 Crsw (TTe) - CF_SW(TZV) <6 0. Thus the analogue of (5.27) is

U 0¥ @) 2 ()72 m | (m 26 ey 4T 1?) 7L (530

b
TWeTWV
where m = Cxrcw(T), and this gives us the following analogue of (5.28):

A Zs (%)5/ “500) (g)”m”(#T[W])IT\ (320 ™) TV ) (5.35)

The next step is to define a dense shading on W; it is here that we use the fact that W factors
T, from below with respect to the Frostman Convex Wolff axioms with error < 67" — this allows
us to use the same argument as in Step 3 from the proof of Proposition 5.1 to show that the shading
Yi(W) is 69D dense.

Finally, we have the following analogue of (5.30):
U )| z a2 ) W (a2 i) w b)) (5.36)
Wew,

where 7 = Crr.ow(W1) < 6~ (by hypothesis) and £ = Cp_s (W) S 6" (by Remark 4.3(A) ).

Combining (5.35) and (5.36) (using the same argument that was used to obtain (5.33)), we
conclude that

‘ U Y(T)’ z 5£+w(§)”m_1(#T)\T](m_?’/QM’(#’]I‘)’T‘lﬂ)_U_
TeT

5.5 Tubes organized into to slabs

We conclude this section by using the tools developed thus far to prove the following. Let (T,Y)s
be a set of tubes and their associated shading. Suppose that for each T' € T, there is a § x b x 1
slab S O T that has large intersection with (J; Y'(T"). Then provided Cxr.cw (T) is small, (J; Y (T)
has larger volume than one would expect from the estimate £(o,w); the estimate becomes better
as Cxr.cw (T) becomes smaller and b becomes larger. The precise statement is as follows.
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Lemma 5.17. Let w > 0,0 € [0,2/3] and suppose E(o,w) is true. For all € > 0, there exist
k,n > 0 so that the following holds for all 6 > 0. Let (T,Y )5 be a set of tubes and their associated
shading. Let b > § and suppose that for each T € T there exists a 6 x b x 1 prism S D T with
|S N Uper Y(T)| = 67|S|. Then

@)0/ g (5.37)

U y()] = ot DT DT (1

TeT
where m = Cxr.ow(T) and £ = Cr_sw (T).

Remark 5.18. Note that the exponent of m in (5.37) is only m?~!, rather than the usual estimate
mB/27=1 from £(o,w). While this is likely not optimal, in practice we will only apply Lemma 5.17
with m of size about 1, so the distinction will not be important.

Proof. After pigeonholing, we can select a =5 1 refinement (T1,Y1)s of (T,Y)s and a set S of
essentially distinct d x b x 1 slabs with the following properties:

e For each 7' € T; with corresponding slab S(T'), there is a slab S € S comparable to S(T).
We denote this by T~ S

e There is an integer IV so that each slab in S, there are between N and 2N tubes T' € Ty with
T~S.

Abusing notation, we will replace each slab in § with its 10-fold dilate. Then

(i) S covers Ty,
(i) #

(i) 48 ~ N1 (#T1).
(iv) The shading Y'(S) = SN Uper Y(T) is 2 07 dense.

T[S] > N for each S € S.

From Items (ii) and (iii) we conclude that
CF—SW(S) ,S CF—SW(Tl) é& 5—77g,

and

#S S| - <y #SI9|
7 Pl < i
#T0 T~ #T |T|
We would like to use Proposition 5.14 and apply the estimate F(o,w) to obtain a lower bound

for the volume of |JY(S). Before doing so, we should estimate the quantity D from (5.6). By
Remark 5.6, Situation 2, and (5.38), we have

Cxrcw (S) ,S CKTfCW(Tl) (5.38)

#S |5|>1/2'

/
D % (sup Crrcw (SN 55 (57 1m 2 e

Ses ~
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If n,k > 0 are chosen sufficiently small depending on w, o, and €, then we can apply the estimate
F(o,w) to conclude that

Uym|=|Ure)

TeT SeS

> K55/2waKT-CW (3)71(#8)‘5’ <CKT_CW(S)*3/QCF_SW(S)(#8)’5’1/2> _UD*J

e/ w - - 2\"° /@M -1\7
Zs w722 )T (m e T (2 P D)

@)Uﬂ

R w07/ )T (= HDITI ) (5

Often, we will use the following weaker version of Lemma 5.17.

Corollary 5.19. Let w > 0,0 € (0,2/3] and suppose E(o,w) is true. For all € > 0, there exist
n,¢ > 0 so that the following holds for all 6 > 0. Let (T,Y)s be a set of tubes and their associated
shading. Let p > 6 and suppose that for each T' € T there exists a p tube T, D T with ’Tp N
Urer Y(T)| = 6"(T,|. Then

U v = wom ) (m™ agmyr )~ (2), (5.39)
TeT

where m = Cxr.cw(T) and £ = Cr_sw (T).

6 Assertions D and £ are equivalent

Our goal in this section is to prove Proposition 1.6. To do so, we will need a result from [26],
which (informally) says that if a set of J-tubes satisfies the Frostman Convex Wolff Axioms at
many different scales, then the union of these tubes must have large volume. To state the result
precisely, we recall Definition 2.12 from [26].

Definition 6.1. Let K > 1,8 > 0. We say a set T of é-tubes in R? satisfies the Frostman Convex
Wolff Axzioms at every scale with error K if the tubes in T are essentially distinct, and for every
po € [0, 1], there exists p € [py, Kpo) and a set of p-tubes T, that satisfies the following properties.

(i) T, is a K-balanced partitioning cover of T.

(ii) For each T}, € T,, TT» satisfies the Frostman Convex Wolff Axioms with error K.

Next we recall Theorem 5.2 from [26].

Theorem 6.2. For all ¢ > 0, there exists n,k > 0 so that the following holds for all § > 0. Let T
be a set of d-tubes that satisfy the Frostman Conver Wolff Axioms at every scale with error =",
and let Y(T') be a 6" dense shading. Then

‘ U Y(T)‘ > ke (6.1)

TeT
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When ¢ < w, the conclusion of Theorem 6.2 gives a volume estimate that is superior to the
volume estimate (1.3) from Assertion £(o,w). However, the hypotheses of Assertion £(o,w) are
weaker. The next result says that for every collection T of tubes that satisfies the Frostman Convex
Wolff axioms, at least one of the following must occur:

(A) T satisfies the hypothesis of Theorem 6.2. This is good, provided we select € < w.

(B) At a suitable scale, T satisfies the Katz-Tao Convex Wolff axioms with error roughly 1. This
is good, if we know that D(o,w;) is true for some wy < w.

(C) At a suitable scale, T is factored by flat rectangular prisms, and thus satisfies the hypotheses
of Proposition 5.1. This is good, since it gives a stronger volume estimate than £(o,w).

The precise statement is as follows.

Proposition 6.3. Let (1 > (o > (3 > 0. Then there exists n > 0 such that the following holds for
all 6 > 0. Let T be a set of -tubes satisfying the Frostman Convex Wolff Azioms with error < §~".
Then after replacing T by a =5 1 refinement, at least one of the following is true.

(A) T satisfies the Frostman Convex Wolff Azioms at every scale with error =%, in the sense of
Definition 6.1.

(B) There exists 6 < 7 < p < 1, with 7 < 6C1/5p; a balanced partitioning cover T, of T; and a
balanced partitioning cover T, of T, such that the following is true:

(i) Cp.cw(TT7) <67 for each Ty € T, .
(1) CKT_CW(TZP) <07 and H#TL > §¢ (p/7)? for each T, € T,.
(iit) Cr.ow(Tp) Zs 67"
(C) There exists 6 < a < b < 1 with a < 662/100y - and a set W of a x b x 1 prisms that
satisfies the hypotheses of Proposition 5.1(B): W factors T above and below with respect to

the Frostman Convex Wolff Azioms, with error O(6=%). And for each W € W, we have
Crr-ow (WINp(W)]) S 6.

We will defer the proof of Proposition 6.3 to Section 6.3.

Using Proposition 6.3, we will prove the following weaker form of Proposition 1.6; recall that &
is defined in Definition 5.3.

Lemma 6.4. Let 0 < 0 < 2/3. For all w,t > 0, there exists a« > 0 so that the following holds for
all ' > w+t. Suppose D(o,w) and E(o,w") are true. Then E(o,w' — «) is true.

Proof. Let a = a(o,w,t) > 0 be a small number to be specified below. Let 7,5 > 0 be small
numbers that depend on w,w’, and o. Our goal is to prove that if (T,Y)s is 6”7 dense with
Cr.sw(T) < 67", then

(U |2 s m ) (22 m?) 62)

TeT

with m = Cxr.cw(T). Note that the estimate (6.2) is slightly stronger than the desired estimate

E(o,w' — ), since there is no additional § loss; this stronger estimate is possible since w’ —w > 0,
which gives us a bit of “wiggle room.”
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Step 1. Without loss of generality we may suppose that |Y(T')| > §7|T| for each T € T. Let
¢ = Glo,w,t), i = 1,...,5 be small quantities to be chosen below; we will have ;11 very small
compared to (;, and n very small compared to (5.

We first consider the case where there exists a subset T C T with #T" > §"(#T), and
Cr.cw(T') < 6% (this assumption will remain until Step 4, where we will consider the case
where no such subset exists). Abusing notation slightly, we will continue to use T to refer to this
subset. In particular, we have that

#T 25 0" %m|T|™!, and  Crow(T) < 6%, (6.3)

If ¢4 and n are chosen sufficiently small compared to (i, (2, (3, then we can apply Proposition
6.3 to (T,Y)s, with (1, (2, (3 as specified above. We will select (; = (;(w) and 7 sufficiently small
so that if Conclusion (A) of Proposition 6.3 holds, then we can use Theorem 6.2 to conclude that

‘ U Y(T)‘ > g

TeT

and hence (6.2) holds provided we choose a(w,t) < t. Henceforth we shall assume that Conclusion
(A) of Proposition 6.3 does not hold.

Step 2. Suppose that Conclusion (B) of Proposition 6.3 holds. We will define shadings Y; and
Y, on the sets of tubes T, and T, as follows. For each T € T, we refine the shading on T[] to
have average density on balls of radlus T (see (5.26) and the surrounding discussion). We define
the shading Y7(7-) to be the union of those 7-balls that intersect gy, Y (T'). We perform the
analogous procedure to define Y, (this induces a refinement on the shadings Y and Y).

After these steps have been performed, (T,,Y,), is 890D dense; each pair (TZ" , vl )r/p 18 5O
dense; and each pair (T, Y77)s it 69 dense. Furthermore, we have
‘ U Y (T ) <‘ U Y, (T, D ( inf | YTT”(TTTp)D ( inf U YT (777 ) (6.4)
TET, |~ T, €T, .
TTPGTTP cTir
Our next task is to estimate the three terms on the RHS of (6.4) as follows.
U Yo(@)| = 670 (#T,)2|T,]), (6.5)
T,€T,
: Ty 1o, TN ((#TNV2 [T\
inf Y2 (1h7)] > g (f) (( ) ) , 6.6
T,€T, TU (T:) p #T, || 00
T.7eT?r
) N #T N2 |T| \°
f YTr (17| > 651 (7> (( ) ) 6.7
TTreTTr
where ¢ = Cl Hw—uw').

First, observe that if we choose 7 sufficiently small, then (6.5) (resp. (6.6) or (6.7)) immediately
holds if p > 6°1/2 (resp. /7 > 651 /2). This is because the volume of the union (6.5) is bounded by
the volume of a single tube. In particular, we have the following

e Either (6.5) automatically holds, or (T,,Y,), is p©/1) dense and satisfies Cp_cw(T,) <
—2(2/e1
p .

93



e Since g1 < (1/24 and 7 < (541/5/), each pair (’]I‘Z’J,YPTP)T/p i
Crrcw(Te") S (1/p) 722/ and #T77 > (1/p)*2/% (p/7)?.

e Either (6.7) automatically holds, or each pair (T7,Y7);s, is (6/7)P/=1) dense and satisfies
Crer-ow(TT7) S (8/7)72/=1,

s (1/p)°1/%1) dense and satisfies

If we select n and (s sufficiently small, depending on w and ¢ (recall that ¢ < w — w’) (n and
(2 also depend on €1, but £; only depends on (; = (1(w), w and t), then in light of the three
bullet points above, the estimates (6.5), (6.6), and (6.7) follow from &£(o,w’), D(o,w), and E(o,w’),
respectively.

Combining (6.4), (6.5), (6.6), and (6.7), we conclude that
3e1 (P W 1/2 7
o]z o0 (&) s (mm)’>

Combining (6.3) and (6.8), we verify that (6.2) holds, provided a(w,t) < $ 6 ¢y < %t, and n > 0 is

chosen sufficiently small. Henceforth we shall assume that Conclusion (B) of Proposition 6.3 does
not hold.

o (D))" (68)

Step 3. Suppose that Conclusion (C) of Proposition 6.3 holds, i.e. there is a set W of a x b x 1
prisms, with a < §2/100p 5o that W satisfies the hypotheses of Proposition 5.1(B): W factors T
above and below with respect to the Frostman Convex Wolff Axioms with error O(6=%). And for
each W € W we have Cyrcw (W[N,(W)]) < 67,

Let 9 = (ow/200. If (3 is selected sufficiently small depending on (2 and e2 (both of these
numbers in turn ultimately only depend on w and t) and if > 0 is selected sufficiently small, then
by Proposition 5.1(B) (with e2 in place of €) we have

Ura)|z e (Z)“'«#T)l/ﬂﬂ)”
TeT

5w +825 ((#T)l/z‘T’) (6'9)

> 54/~ %5 ((#T)/2|7))°.

Combining (6.3) and (6.9), we verify that (6.2) holds, provided a(w,t) < 00, G < 500; and n > 0
is chosen sufficiently small.

Step 4. It remains to consider the case where every subset T’ C T with #T" > §7(#T) satisfies

Cr.cw(T') > 6. Apply Proposition 4.6 (factoring a collection of convex sets) to T, and denote
the output by T’ and W. Then Item ii) of Proposition 4.6 implies #T[W] x5 Cxr.cw (T’ )% Since
#T' > §"(#T), we have Cr.cw (T') > 6%, We also have Cp_cw (T'V) s 1 for each W € W, from
which it follows that |[W| S5 64 (recall that the sets W € W are congruent, and thus they all have

identical volume).

If the prisms in W are flat, in the sense that they are comparable to a x b x 1 prisms with
a < §%b, then we can apply Proposition 5.1(A) with e3 = (5w’/2 to conclude that

’ U Y(T)’ Z (Sw’-i-aa (Z)w/(m/)—l(#T/)’T|((m/)—3/2(£/)(#T)|T|1/2)a
TET (6.10)

/_Cpw

L YHDIT|(m P HTITI V)™
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In the second inequality, we used the fact that #T' > 0"#T; ¢/ = Crew(T') 5 077 m/ =
Cxr.ow(T') < m; and o < 2/3. We conclude that (6.2) holds, provided a(w,t) < Q?Tw < 45:’/ and
1 > 0 is chosen sufficiently small.

Finally, we consider the case where the prisms in W are not flat, in the sense that a > §%b.

In this case we can replace each prism W € W by its b-neighbourhood, and then refine the corre-

sponding set of b-tubes T}, by a factor of (b/a)® < §73% (this is the number of essentially distinct

a X b x 1 prisms that can fit inside a b tube) so that the tubes in T} are essentially distinct. Since
|W| Ss 6% and a > 6°b, we have

b Ss 06/20 < §Cal3, (6.11)

To recap, the set T} has the following properties.

L4 CKT-CW(TI)) ,S gCKT-CW(W) sé 57% < b73<5/44~
b CF—SW(Tb) 5 5_3C50F—SW(W) é& 5_3C50F—SW(T) é& 5_3C5_77-

e For each T, € Ty, we have Cpcw (T?) < gC’F_CW('JI‘W) =6 6%, where W > W C T is the
prism containing all of the tubes in T[T}].

e For each T} € Ty, we have #T7 <5 CKT_CW(W)S#TW =6 %m% =6 5*245m%.

(For the second item above, we make crucial use of the fact that Cr_sw (T) < 67", which is why the

conclusion of Lemma 6.4 only says that £ (o,w’ — @) is true, rather than the superficially stronger
statement &(o,w’ — )).

Mirroring the argument in Step 2, refine the shadings Y (T') on each set of tubes T[T}] to have
average density on balls of radius b. We define the shading Y;(7}) to be the union of those b-balls
that intersect Upz,) Y (7). Then (Ts, Y3), is 6" > b3/ dense. We thus have the following analogue

of (6.4):
il (0 ) e,

Let g4 = 44(“5“’/). If ¢5 and 7 are selected sufficiently small depending on (4 and 4 (which in

turn depend on w and t), then we can use the estimate (1.2) from Assertion D(o,w) to conclude
that

U vam) ) (6.12)
TTo Tl

b

U Yo(@)| 2 4 TIT(#T)ITY2) . (6.13)
TyeTy

Finally, we would like to obtain the estimate

) U YTb(TTb)

TTo T

Z 554((2)“’/((#1‘%)1/2”;]’)0- (6.14)

When §/b > 6°4/2, we have that (6.14) follows from the elementary fact that the shading on each
Y(T) is £ 9" dense, and the union on the LHS of (6.14) is bounded by the volume of a single
tube. On the other hand, when §/b < §°¢/2, we have that (6.14) follows from the estimate (1.3)
from Assertion £(o,w’), provided (5 is chosen sufficiently small depending on (4 and &4, since
Crcw(TT) < 67%.
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Since #T7b < m5*2<5% for each T}, € Ty, (where m = Cxrcw(T)), (6.14) becomes

b b €4+2Cs5 Oye! b ‘T| - b |T‘ /2o
U vmam)| zee(d) A FT) e (P HT () ) T 619)

TTo cTTs

Combining (6.12), (6.13), (6.15), and (6.11), we conclude that if we select (5 < (4(w —w')/12, then

U ()| = g et 2 ey ) 1) (m 2| T2 )
TeT (6.16)

/ C4(UJ—W,)

> 0= i ) T (2 T 2)

We conclude that (6.2) holds, provided a(w,t) < %, and 77 > 0 is chosen sufficiently small. O
We now use Lemma 6.4 to prove Proposition 1.6.

Proof of Proposition 1.6. Let 0 < o < 2/3, w > 0, and suppose that Assertion D(o,w) is true. Fix
t > 0 and let @ = a(o,w,t) > 0 be the output of Lemma 6.4. Since a d-tube has volume ~ 42,
we always have that £(o,2) is true. Now suppose that £(o,w’) is true for some W' € [w + ¢,2].
Applying Lemma 6.4 followed by Proposition 5.14, we have

Elo,w) = (0,0 —a) = E(o,u —a).

Iterating the above argument, we conclude that £(o,w”) is true for some w” < w+t, so in particular
E(o,w+ 1) is true.

However, ¢t > 0 was arbitrary, and by the definition of &£, it is clear that the set
{W € [w,2]: E(o,w) is true}
is a closed interval. We conclude that £(o,w) is true. O

This concludes the proof of Proposition 1.6, except that we must still prove Proposition 6.3.
We do this below.

6.1 Proof of Proposition 6.3: A factoring trichotomy

Step 1. We begin by regularizing the set T. Let n > 0 be a small quantity to be determined
below, with N = 1/n an integer. Define §; = §/N_ i =1,...,N. By iterated pigeonholing and
replacing T by a |log 6|~V -refinement, we may suppose that for each i = 1,..., N there exists a set
Ts, of d;-tubes that is a balanced partitioning cover of Ts,, . We will call numbers of the form 9;
“admissible scales.” In particular, for each admissible scale §;, we have

T
#T(Ts,] ~s iT for every T5, € Ts,. (6.17)

i

Next we apply Proposition 4.6 to each set T7%; the output of Proposition 4.6 is a & 1 refinement
of T75: (this induces a ~ 1 refinement of T and all sets Ts; for j > i; observe that (6.17) remains
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true after this refinement; to simplify notation, we still use T, and T to denote these refinement)
and a set W of convex subsets of R3. If [W| > 61/2, then Cp.cy (TT6) < §7€1/2, In this case, we
say To is of Type 1. If |W| < 61/2, then we say we say T7% is of Type 2.

We now proceed as follows. For each i = N —1,...,1, if at least half the sets T7%, Ts, € Ts,
are of Type 1, then we refine Ts, to only consist of those T, for which T75 are of Type 1; observe
that (6.17) remains true after this refinement. We say that T has passed stage i. On the other
hand, if at least half the sets T7% Ts, € Ts, are of Type 2, then we say that T has failed stage i.

Suppose that T passes every stage i = N — 1,...,1. Then by (6.17) we have that for each
i =1,...,N, the set Ty, (this consists of those d;-tubes that survived the refinements described
above) is a ~z5 1-balanced partitioning cover of T. Furthermore, since T passed stage i, we have that
for each Ts, € Ts, we have that CF_CW(’]I‘T‘%) =0 5=61/2. We conclude that T satisfies the Frostman
Convex Wolff Axioms at every scale with error O(6~%), and hence Conclusion (A) of Proposition
6.3 holds.

Step 2. Suppose that T fails some stage ¢ > 1. After pigeonholing and replacing Ts, and T by a
~; 1 refinement, we may suppose that there exists § < a < b < 1 so that for each Tj, € Ts,, the
output of Proposition 4.6 applied to TT% consists of a set Wr, of § X § x 1 prisms that forms a

~s 1 balanced cover of T7% and factors T7% from above (resp. below) with respect to the Katz-Tao
Convex Wolff Axioms (resp. Frostman Convex Wolff Axioms) with error $s 1.

Since the tubes in T, are essentially distinct, we can further refine Ts, by a ~ 1 factor so that
every pair of distinct tubes Tj,, Téi € T, that intersect must satisfy Z(dir(Tgi), dir (T él)) > 1000;,
so in particular we have

diam (2T, N 2T},) < (6.18)

Define

Then W is a collection of convex sets, each of which is comparable to a a x b x 1 prism. Recall
that since T failed stage i, we have that the prisms in VW are substantially smaller than the tubes
in Ts,; specifically, we have

W < 6972|T5,. (6.19)

We claim that the convex sets in W are essentially distinct. To verify this claim, we argue as
follows. Every pair of convex sets W, W’ from the same set Wr;, are essentially distinct. On the
other hand, if W € Wr; and W' e Wr; for distinct tubes T, and T’Z_, then diam(W N W') <

diam(T5, N 7)) < % by (6.18), from which it follows that W and W’ are essentially distinct.

Since W is a ~; 1 balanced cover of T, and Cr.cw(T) S5 077, by Remark 4.3(A) (Frostman
Wolff Axioms are inherited upwards), we have Cr_cw (W) S5 077; we will select > 0 sufficiently
small so that Cp_cy (W) < 676,

Step 3. Suppose that the prisms in W are flat, in the sense that a < §2/199. Our task is to show
that W and our refined set T satisfies the conditions of Conclusion (C) from Proposition 6.3.

Each W € W came from some set Wr; . We claim that if W’ € W satisfies W’ C Ny(W), then
we must have that W’ came from the same set WTai, i.e.

WINL(W)] = WIT5 DINs(W)] = bz, (W )JING (W) (6.20)
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To verify this claim, we argue by contradiction: suppose instead that W’ came from a distinct tube
T3, then we would have W' C Ny(W)NTy C 2715, N7y , and in particular the latter set would have
diameter > 1. But this is forbidden by (6.18).

(6.20) implies that
Ckr-cw (W[Nb(W)]) = CKT-CW((W[T&D[NIJ(W)D < CKT-CW(WTpi) éé L
Thus W and our refined set T satisfies the conditions of Conclusion (C) from Proposition 6.3.

Step 4. Now we consider the case where the prisms in W are not flat, in the sense that a > §¢2/190p,
Define 7 to be the smallest admissible scale greater than or equal to b. Since at most O((b/a)?)
essentially distinct a x b x 1 prisms can fit inside a b-tube, and at most O(5~*N) = O(6—*7)
essentially distinct b-tubes can fit inside a 7-tube, we have that W[T,] < §=*1(b/a)? < §—4/100 for
every 7-tube T (for the last inequality we select n < (2/400). After pigeonholing T, W, and T,
we may suppose that T is a balanced partitioning cover of WW. We have

1< #WIT,] <6742/ for each T, € T,. (6.21)

Since Cr.ow (T[W]) Ss 1 for each W € W, we conclude from (6.21) that Cp_cw (T[T,]) Ss 6-4¢2/100
for each T € T;; this gives us Conclusion (B.i).

At this point, we have correctly identified the scale 7 from Conclusion (B) of Proposition 6.3.
What about the scale p? One candidate is d;; by (6.19) we have 7 < §G/A=20/1005, < 5C1L/56,  as
specified in Conclusion (B).

The scale ¢; satisfies some of the required properties of Conclusion (B). Recall that for each
Ts, € Ts,, we have Crr.cw (W[T5]) Ss 1. Since |Ty| = (b/a)|[W| < 6~¢/100|W| by (6.21) we have

Crr.cw (TT [Tgi]) < §756¢/100 o1 each Ts, € Ts,. (6.22)

This is half of Conclusion (B.ii). If #TT > 61007(§;/7)? (in fact a weaker estimate ﬁTT > 0% (6;/7)?
suffices), then after a refinement, ’]T5 sat1sﬁes Conclusion (B.ii). Conclusion (B.iii) then follows from
Remark 4.3(A) (Frostman Wolff Axioms are inherited upwards), and we are done.
Suppose instead that % < 6109(5; /7)2. Let p be the minimum of all admissible scales in
[6:,1] for which 1
#T-
#T,
Such a choice of p € [p;, 1] must exist, since Crcw (T;) Ss 677, and hence #T, Zs §7772, from
which it follows that p = 1 satisfies (6.23) and hence p =1 is a valid candidate.

> §'%(p/7)*. (6.23)

In particular, for this choice of p we have

< #Tr
#Tp

since if the RHS of (6.24) failed, then (6.23) would hold for a smaller admissible scale, which would
contradict the minimality of p.

1% (p/7)? < < 8(p/7)%, (6.24)

Suppose for the moment that there exists a g5 1-refinement of T, (abusing notation, we will
continue to call this set T;) such that

Cr.cw (']I‘ ) < §%/2 for at least half of the tubes T,€T, (6.25)
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Then (6.24) plus (6.25) implies that Conclusion (B.ii) holds, and Conclusion (B.iii) follows from Re-
mark 4.3(A) (Frostman Wolff axioms are inherited upwards). Thus if (6.25) is true, then Conclusion
(B) of Proposition 6.3 holds, and we are done.

Step 5. We claim that either (6.25) holds (and we are done, as discussed in the previous step), or
else Conclusion (C) of Proposition 6.3 holds.

We will verify this claim as follows. Suppose that (6.25) fails. Applying Proposition 4.6 to each
set T?» and then undoing the scaling ét,, we obtain a refinement of T[T}] (abusing notation, we
will continue to call this set T[7}]), and a set Uz, of s x ¢ x 1 prisms contained in T}, (so in particular
t < p) that factors T[T),] from below with respect to the Frostman Convex Wolff axioms with error
<s 1 and each T' € T[T)] is contained in S5 1 sets U € Ur,.

Pigeonhole and refine T, to consist of those tubes T, for which Cr cw (']I‘Z” ) > §C2/2 (such a
refinement exists because (6.25) fails) and the corresponding sets Uz, are comparable to s x ¢ x 1
prisms for a common pair of numbers (s,t). In particular, this implies

U S5 6221, (6.26)

(C.f. (6.19) when s > 7. When s < 7, this is true because 7 < 561/58, < 541/5p).

Suppose for the moment that s > 7. Then Cp.cw (TY) S5 1 by Remark 4.3(A) (Frostman Wolff
axioms are inherited upwards). By (6.24) and our hypothesis that Cr_cw (’]sz ) > 6%/2 we have

Crr-ow(Tr [Tp]) > §62/2+100m (6.27)

We conclude that by Item ii) of Proposition 4.6,

#(T[Tp])[U] o) CKT—CW(T[Tp]) (";{") for each U € qu'

Since s > 7 and 7 is an admissible scale, we have

#T |7

CKT-CW(T[TP]) gé #T’Tﬁ KT-CW(TT[Tp])7
and so
#(TTDU] Zs Crer-cw (T+[T)]) (||TU;”> > 5(2/2+10017(||TU;”> for each U € Ur,. (6.28)
We will show that
5 < §62/1004 (6.29)

To verify (6.29), suppose to the contrary that s > §62/100¢. we will obtain a contradiction. If
5 > §¢2/190¢ then t < §%/4p. By (6.28) and the fact that each tube in T,[T},] is contained in S 1
sets U € Ur,, we have

#T-[T)) (2/2—100 Tr| _ case, T\2
o, A EYE 20 AT gy < o@D )

and thus if ¢ is the smallest admissible scale greater than or equal to ¢, then

#Tw < #( U Ur,) S 50CH#T,)(5)" < 60C(HT,)(

T,€T,

#Ur, S5

1)2

. (6.30)
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From (6.30) we see that t’ > §; — if not, then there would exist a t'-tube Ty with #T,[Ty] Zs
§~100% I&’“, and this ¢'-tube would be contained in some d;-tube; but this violates (6.22).

Comparing (6.30) and (6.23), we see that t' € [t,6%/5p] C [8;,0%/%p] is an admissible scale
that satisfies (6.24). But this contradicts the assumption that p was the minimal such scale. We
conclude that (6.29) must hold.

When (6.29) holds, we are in precisely the same situation as the beginning of Step 3: The set
of flat (recall (6.29)) prisms U = g cr Ur, plays the role of W, and the set of essentially distinct
p-tubes T, plays the role of Ts,. An identical argument with the same numerology (up to harmless
0" factors) shows that Conclusion (C) of Proposition 6.3 holds.

Now suppose (6.29) does not hold, so §2/100¢t < s < 7. If s > 76/20 then together with
s > §¢/100¢,
CKT-CW(TT[TPD < 5_C2/4CKT-CW(UTP) é(S 5—C2/4’

which is a contradiction to (6.27). So we may assume s < 76%/20 and s > 542/10075, and we are in
the same situation as the beginning of Step 4 with (s, ¢) in place of (a,b), U in place of W, and T, in
place of Ts,. However, we have the additional condition that s/p < §¢2/207 /5, this means that the
prisms in U are substantially flatter than the prisms in W. We return to the beginning of Step 4 and
repeat the argument; we iterate this process until either Conclusion (B) or Conclusion (C) holds;
this must occur after at most 20/(s iterations. Note that each iteration of this process induces a
~s 1 refinement of T, etc. but since this process repeats at most 20/, times, this refinement is
harmless.

7 A two-scale grains decomposition for tubes in R?

In [16], Katz, Laba and Tao proved that every union of § tubes in R? coming from the discretization
of a (hypothetical) Kakeya set with upper Minkowski dimension 5/2 can be written as a union of
“grains,” (i.e. rectangular prisms) of dimensions roughly & x §%/2 x §'/2. Guth [9] generalized this
result and proved that every union of § tubes in R? satisfying a certain broadness hypothesis can
be written as a union of grains of dimensions roughly § x t x t, where the diameter ¢ is related to
the number of tubes in the arrangement and the volume of their union.

The purpose of this section is to prove a structural statement for unions of § tubes in R3, in
the spirit of the Katz-Laba-Tao and Guth results described above. This is Proposition 7.5 below.
As discussed in the introduction, Proposition 7.5 is a key step in the proof of Proposition 1.7—
Proposition 7.5 helps us find the correct scales and arrangements of convex sets to which we can
apply Assertion &(o,w).

In brief, Proposition 7.5 explores what happens when we cover an arrangement of J-tubes by
p-tubes, apply (a variant of) Guth’s grains theorem inside each re-scaled p-tube, and then analyze
how the resulting grains coming from the § tubes inside different p-tubes interact. The specific
hypotheses and conclusions of Proposition 7.5 are somewhat technical; they were adapted to match
the needs of the arguments in Section 9. In order to state Proposition 7.5 we will require a few
definitions.

Definition 7.1. Let A > 0,0 < d < p<land d <a <b<cwith p=>b/c. Let (T,Y)s be a set
of § tubes and their associated shading, and let T, be a balanced partitioning cover of T. We say

(P,Y )axbxe is a robustly A-dense two-scale grains decomposition of (T,Y)s with regard to (wrt) T,
if the following is true:
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S

Figure 9: A tube exiting a grain through the long ends (left) vs failing to do so (middle and right).

(i) For each P € P, there is a unique T, € T, satisfying P C T, and Z(dir(P), dir(7},)) < 2p.
This induces a partition P = [ |y Pr,.

(ii) For each T}, € T,, the sets {Y(P): P € P € Pr,} are disjoint, and we have

U yoy= || v@). (7.1)

TEeT[T,] PePr,

(iii) The pair (P,Y )axpxe is A-dense, and furthermore there exists a number p so that for each
T, € T, and each z € (7.1), we have #T[T},]y () ~ p.

(iv) For each T, € T, and each pair T' € T[T)] and P € Pr, with Y/(T) N Y (P) # (), we have that
T exits P through the “long end” (See Figure 9), and Y/(T')N P C Y (P).

Remark 7.2. Conclusion (iv) implies that a > 2§. Usually we will be interested in the case where
a ~ 9, though it will sometimes be useful to consider larger values of a.

Definition 7.3. Let P be a a x b x ¢ prism. Define 0J(P) to be the §° x ¢ x ¢ prism containing P
with the same center and normal direction as P (the latter condition means that II(P) = II(O(P)).
Observe that both II(P) and II((P)) are defined up to accuracy a/b.

Let P be a set of a X b x ¢ prisms, and let W be a convex set. Define
PW)={PecP:0WFP)CcW}
Note that since P C L(P), we have P(W) C P[W].

Observe that if P, P’ are intersecting a x b x ¢ prisms and Z(II(P),II(P")) < K¢ for some
K > 1, then the K-fold thickenings (i.e. the prisms of dimensions 4 x ¢ x ¢ with the same center,
direction, and tangent plane) of (J(P) and [J(P’) are comparable up to factors of K. In particular,
if (P,Y)axpxe is a pair of prisms and their associated shadings, with Z(II(P),II(P')) < K¢ for all
pairs P, P’ € P for which Y(P)NY (P’) # 0, then we can find a set W of prisms of dimensions
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comparable to K9 x ¢ x ¢ so that each P € P is contained in at least 1, and at most O(1) sets of
the form P(W), W € W. Furthermore, the sets { Upepuny Y(P), W € W} are O(1) overlapping.

In our arguments below, we will exploit the above observation when K < §~¢ for a small
e > 0. Since we will analyze each set P(W) individually, we will be interested in the quantity
Cxr.cw(P{(W)), rather than the (potentially much larger) quantity Cxr.cw (P). Each set W con-
tains at most 100K 1% essentially distinct prisms of the form C(P), and thus if K is not too large
then Cyr.ow(P(W)) is controlled by supp Crr.cw (P(20(P))), where 200(P) denotes the 2-fold
dilate of CJ(P). This motivates the following definition.

Definition 7.4. Let P be a set of a X b x ¢ prisms. Define
CRt-cw(P) = max Ciercw (P(20(P))).

With these definitions, we can now state the main result of Section 7.

Proposition 7.5. Let w > 0, o € (0,2/3], and { € (0,w/1000). Suppose that E(o,w) is true.
Then there ezists a,m, k > 0 so that the following holds for all § > 0. Let (T,Y)s be 6" dense, with
Crr.ow(T) <67 and Cr.sw (T) < 67 ". Then at least one of the following must hold.

(A) U Y(@)] 2 eI (HT)IT?)

TeT
(B) There exist the following:
— Numbers p and § <a <b<c<1, with p=>b/c.
— A ¢ refinement (T',Y")s of (T,Y)s.
— A set T, of p tubes.
A pair (G,Y )axbxe-
These objects have the following properties:

(i) (T',Y")s is 6¢ dense, Crcw(T') < 67¢, and Cp.gw (T') < 676,
(ii) T, is a balanced partitioning cover of T' that factors T’ above and below with respect to
the Frostman Slab Wolff Azioms with error 6.

(i45) (G,Y )axpxe is a robustly 6¢-dense two-scale grains decomposition of (T',Y")s wrt T,.

(iv) P #Tp

(’U) 51—0.)/100 < p < 50.}/100‘
(vi) C% o (G) <07

An overview for the proof of Proposition 7.5 is outlined in Section 2.2.

Fixing w and o. In our proof of Proposition 7.5, the values of w > 0, ¢ € (0,2/3] and { > 0
will never change. Thus to simplify our exposition below, we will fix values of w, o, and ¢, which
will remain unchanged throughout Sections 7 and 8. In particular, some of our definitions (such as
Definition 7.6, which defines broadness) will depend on these quantities. By fixing them in advance,
we can suppress this dependence.

As previewed in Section 2.2, we will make crucial use Guth’s methods to find a grains decompo-
sition inside each re-scaled set T”?. In order to apply Guth’s techniques, the tubes need to satisfy
a “broadness” condition. We describe this below.
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7.1 Broadness

For the definition that follows, we will fix 8 = w(/100.

Definition 7.6. Let § > 0 and K > 1. We say a multi-set V C S of unit vectors in R™ is broad
with error K at scales > ¢ if for all unit vectors vy € R™ and all r € [0, 1] we have

#{veV: Llv,v) <71} < KrP(#V).

More generally, let V be contained in a disk D C S ! of radius p. We say V is broad with
error K at scales > ¢ inside D if for all unit vectors vy € R™ and all r € [0, p] we have

#{veV: L(v,v) <1} < K(r/p)P(#V).

Definition 7.7. Let (T,Y)s be a collection of tubes and their associated shading, and let T, be a
cover of T.

(A) We say that (T,Y)s is broad with error K if for each x € (Jpeqp Y (1), the set of unit vectors
{dir(T"): z € Y(T')} is broad with error K at scales > 4.

(B) We say that (T,Y)s is broad with error K relative to the cover T, if for each T}, € T, the set
(T*»,Y??);, is broad with error K.

The next result is a variant of the “two ends” reduction. In general, a set V of unit vectors
need not be broad (with small error). However, the next result says that every set of unit vectors
is broad when localized inside p disks, for some value of p. The precise statement is as follows.

Lemma 7.8. Let d > 0 and letV be a set of vectors in R™ pointing in 0-separated directions. Then
there exists a scale p € [0,1]; a set B of disjoint balls B C S™! of radius p; and sets Vg C VN B
so that the following holds.

(i) Each set Vg has cardinality > pP(#)V).
(ii) Vp is broad with error 100 at scales > 0 inside B.
(iii) Ug VB 2 (log 1/6)7H(#V).

Proof. We will greedily construct a sequence of sets ¥V = Vy D V1 D ... as follows. For each index
i > 1, let v; be a unit vector and r; € [J, 1] a radius that maximizes the quantity

ri P (#Vio N Bl 1), (7.3)

Let W; = V-1 N B(v;,r;) and let V; = V;_1\B(v;, 100r;). Note that #(V;—1 N B(v;,3r;)) <
1008 (#W;). Continue this process until #V; < %#V.

We claim that for each index i, each unit vector v, and each r > §, we have
#(W; N B(v, 7)) < 100(r /)P (#W)). (7.4)

This will give Conclusion (ii). To verify (7.4), suppose to the contrary that (7.4) failed for some
pair (v, r), then this would contradict the maximality of (v;,r;) in (7.3).
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Note as well that since r; = 1 is a valid choice of r, we have #W; > r?(#Vi_l) > %T?(#V).
Finally, note that if r; < 7; < 2r;, then the balls 2B(v;, ;) and 2B(v;,r;) must be disjoint.
Indeed, we may suppose that both WW; and W; are non-empty. If i < j then we must have
B(vj,r;) N B(v;, 100r;)¢ # (0, while if j < ¢ then we must have B(v;,7;) N B(v;, 1007;)¢ # (. In

either case, since r; < r; < 2r;, this means that 2B(v;, ;) N 2B(vj,7;) = 0.

Vv

To conclude the proof, use dyadic pigeonholing to select a scale p € [d, 1] so that # | J,. p/2<r:<p Wi

(log 1/8)71(#V). This gives us the collection B of disjoint balls (it is harmless for us to replace
each ball B(v;,r;) with B(v;, p); as noted above, the balls remain disjoint). O

Remark 7.9. Lemma 7.8 is similar to the standard “two-ends” broadness reduction. However,
the standard two-ends broadness reduction typically replaces V by V N B for a single p ball B.
The resulting set has cardinality > pP(#V). For our applications, this would have introduced an
unacceptably large reduction in the cardinality of V.

Corollary 7.10. Let (T,Y)s be a set of § tubes and their corresponding shading. Then there exists
a Zs5 1 refinement (T',Y")s of (T,Y)s; a scale p € [0,1]; and a balanced partitioning cover T, of
(T, Y"), so that the following holds:

(i) Each point x € R? is contained S5 p~° sets of the form Ur i, Y'(T), T, € Tp.

(ii) T is broad with error ~;5 1 relative to the cover T,.

Proof. Using dyadic pigeonholing, we can select a number p > 1 and a (log1/8)~! refinement
(T,Y1)s of (T,Y) with the property that #{7" € T: x € Y1(T)} ~ p for each x € Jpey Y1(T).
Apply Lemma 7.8 to each point z € |JY1(T'). We obtain a scale p, € [§,1], and a set of disjoint
pz balls B, (each ball in B, is a subset of S2). After further dyadic pigeonholing we can select the
following:

e A common scale p;

e Multiplicities v > 1 and N < p=B;

e A set B of p balls (each ball in B is a subset of S?), whose 100p neighbourhoods are disjoint;
e A > (log1/§)~! refinement (T, Y3)s of (T, Y7)s.

We can select the above numbers and sets so that the following property holds: for each z €
Ur Y2(T), the set of unit vectors {dir(T): z € Y2(T)} C S? can be covered by a union of N balls
from B, and for each such ball, we have that the set BN {dir(T"): = € Y2(T)} has cardinality v and
is broad with error O(1) inside B.

After refining T by a factor of ~s 1, we obtain a new pair (Tq, Y2)s that is a a5 1 refinement
of (T, Y2)s, and a set T, of p tubes with the property that T, is a balanced partitioning cover of
T2, and furthermore the family of convex sets {37,: T, € T,} is a partitioning cover of To. This
means that for each T, € T,, To[T),] = T2[3T),).

For each T' € Ty with T' C T, € T,, define
YEJ)(T) = {1’ S YQ(T)i #{T’ S TQ[TP]Z x € YQ(T,)} > KJQV}.

Since (Tg,Y2)s is a ~5 1 refinement of (T,Y3)s, if Ko > 0 is chosen sufficiently small (depending
on the implicit constant mentioned previously), then (Ts,Y3)s is a =5 1 refinement of (Ts,Y3)s.
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Furthermore, for each point z € UTeT[3T,,] Y3(T) = UTeT[T,,] Y3(T'), we have that the set of unit
vectors {dir(T): T € T9[3T,] = T2[T,], = € Y3(T)} is broad inside B(dir(T}),2p) with error O(1),
in the sense of Definition 7.6. We conclude that the pair (T2, Y3)s and {37,,T, € T,} satisfy the
conclusions of Corollary 7.10 (with 3p in place of p). O

The next result says that every pair (T,Y)s of § tubes and their associated shading is either
broad at some scale § << p << 1, or else the tubes in (T,Y)s are almost disjoint.

Lemma 7.11. Let § > 0 and let (T,Y)s be a pair of § tubes and their associated shading. Then at
least one of the following must occur:

(4) ( 9 Y(T)‘ 25 6% 3 [Y(1). (7.5)

TeT TeT

(B) There is a scale p € [61~«/100 §w/100) "4 ~5 1 refinement (T',Y")s of (T,Y), and a balanced
partitioning cover T, of T, so that (T',Y")s is broad with error O(1) relative to the cover T,,.

Proof. Let r = /190, After replacing (T,Y)s by a ~ 1 refinement, we can find a partitioning
cover T, of T. Apply Corollary 7.10 to each set (T, Y7Tr); /r- After dyadic pigeonholing T, and
T, we can suppose that the resulting scale, which we will call p, is the same for each T, € T,.
Define p = pr, and let (T’,Y”’) be the a5 1 refinement of (T,Y)s consisting of the tubes and their
associated shadings coming from the conclusion of Corollary 7.10 for each T, € T,.

Recall that the tubes T, form a partitioning cover of T', and for each T, € T, the (re-scaled) p
tubes coming from Corollary 7.10 form a partitioning cover of T'[T}]. We conclude that if we define
T, to be the union of these p tubes, then T, is a partitioning cover of T’, and furthermore (T',Y”)s
is broad with error O(1) relative to the cover T,.

At this point, we have constructed the pair (T’,Y”)s and T,, which satisfies all of the require-
ments for Conclusion (B) of Lemma 7.11 with one exception — we know that p € [§,6«/19], but
we do not know that p € [§17«/100 §@/100]  Our next task is to show that if p < §'«/100 then
Conclusion (A) holds.

Since the tubes in T, are essentially distinct, O(r~2) tubes can pass through a common point.
By Conclusion (i) from Corollary 7.10, we have that for each tube T, and each x € T, we have

I, eTT]:xe | Y(I)} S p P <o/
T[T,

Recall 8 = w(/100 was fixed at the beginning of Section 7.1.

Finally, for each T}, € T,, at most (p/§)? tubes from T’[T,] can pass through a common point
and at most 2 distinct 7, € T, can pass through a common point. We conclude that

2
#Ty/ (z) < 6*“’/100(5ﬁ> for each z € R3.

,
In summary, if p < 617%/190 then Conclusion (A) holds. Otherwise, Conclusion (B) holds. [J

We conclude this section with two results on the union of broad sets of vectors. The first is a
straightforward result saying that a union of broad sets is broad. We omit the proof.
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Lemma 7.12. Let 6 > 0, let B C S"! be a disk, and let V;, i = 1,..., N be sets of unit vectors
in B. Suppose that each set V; is broad with error K at scales > ¢ inside B. Then the multi-set
|_|£i1 V; is broad with error K at scales > § inside B.

The second result described how broadness combines across scales.

Lemma 7.13. Let 0 < 6 < p < 1. Let U be a set of unit vectors in R™. For each uw € U, let
V. C B(u,p) C 8" be contained in the disk of radius p centered at w. Suppose that U is broad
with error K1 at scales > p, and that each set V,, is broad with error Ko at scales > § inside B(u, p).
Suppose furthermore that each set V,, has comparable cardinality (up to a factor of 2). Then the
multi-set | |, e, Vu is broad with error O(K1K3) at scales > 4.

Proof. Let V =| |, Vu- By hypothesis, there is a number M; so that M; < #V, < 2M; for each
set Vy. Let X =sup,, #{u € U: Z(u,up) < p}, where the supremum is taken over all unit vectors
up € S™ 1. Since U is broad with error K at scales > p, if we choose a unit vector ug achieving
the above supremum, then

X < #{ueld: L(u,ug) < p} < K1pP(#U),

and thus #U > K; 'p™PX.

First we consider the case where r € [d, p]. For each unit vector vy, there are at most O(X)
vectors u € U for which {v € V,,: Z(v,v9) < r} is non-empty. For each such u, we have

#{v e Vy: L(v,v) <1} < Ko(r/p)P(2My) < K1 KorP(#U)X 1 M.
Thus the total contribution from all such u is < K; KorP(#)V), as desired.

Next we consider the case where r € [p,1]. Then

#{veV: Llv,vg) <ry S2My(#{u e U: L(u,v) < 2r}) < MiK 7P (#U) = KirP(#V). O

7.2 Broadness and the Frostman Slab Wolff axioms

Given a pair (T,Y)s, Lemma 7.11 allows us to find a set T, for which the pairs (T», YTP)(;/p are
broad. The next result says that under suitable hypotheses, T, will factor T with respect to the
Frostman Slab Wolff axioms. The precise statement is as follows.

Lemma 7.14. Suppose that E(o,w) is true, and let € > 0. Then there exists a,n,k > 0 so that
the following holds for all 0 < 6 < p < 1. Let (T,Y)s be 0" dense, with Cxr.cw(T) < 57" and
Crsw(T) < 67" Let T, be a balanced cover of T, and suppose (T,Y)s is broad with error §~"
relative to the cover T,. Then at least one of the following must hold.

(4) | U Y ()] 2 so= @) T (#T)|T)2) 7 (7.6)

TeT

(B) There exists a 6° refinement (T',Y")s and a set T, C T,, so that T), factors T' above and
below with respect to the Frostman Slab Wolff Azioms with error 6—¢.
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In brief, the proof is as follows. We apply Proposition 4.8 inside each set T”» to cover the tubes
in T[T}] by prisms W, with the property that each set TW satisfies the Frostman Slab Wolff axioms
with small error, and the tubes in T[T}] from distinct prisms do not interact (i.e. their shadings are
almost disjoint). Each prism W is contained inside its corresponding p tube T,. If W is almost as
large as T, then Cp_sw (T?7) must be almost as small as Cp_gyw (TY), which in turn has size about
1. If this happens, then Conclusion (B) holds.

Suppose instead that the prisms are much smaller than 7),; we will refer to the dimensions of
these prisms as s x t x 1, with § < s < t. Since each prism is contained inside a p tube, we also
have t < p. Thus if the prisms are much smaller than the p tubs, then in particular we must have
5 << p.

Next, we will make use of the assumption that the tubes are broad relative to the cover T, in
order to show that t ~ p. Since s << p, this means that the prisms are flat. Specifically, broadness
ensures that a typical pair of tubes passing through a common point = € UTeT[T,,] Y (T') make angle
roughly p. Such a pair of tubes is contained in a common prism W, from which it follows that W
must have “width” p, i.e. each prism W has dimensions roughly s x p x 1.

To summarize, at this point in the argument each § tube is contained inside a flat prism W
of dimensions roughly s x p x 1 with s << p. Furthermore, at a typical point z € Y (T'), there
is at least one other tube from T contained inside the same flat prism W, and this second tube
intersects T at angle roughly p. Thus the hairbrush of T (i.e. the union of set of tubes intersecting
T'), when restricted to the £6 neighbourhood of T, fills out a rectangular slab of dimensions roughly
6 x 26 x 1. But this is precisely the setting where Lemma 5.17 asserts that | J; Y'(T') is larger than
we would expect from the estimate £(o,w), and thus Conclusion (A) holds. We now turn to the
details.

Proof of Lemma 7.14.
Step 1. We may suppose that p < §5/19, or else Conclusion (B) follows by selecting a single p-tube
that contains at least p*(#T) tubes from T. We may also suppose that p > 6¢/10_or else Conclusion
(B) holds trivially by taking T' = T and T/, = T,.

By pigeonholing and replacing T, by a subset T, 1, we can find a =5 1 refinement (T1,Y7)s of
(T,Y)s so that T, is a balanced cover of Ty, and furthermore each set (Tip”, YP)sp 18 Z5 0" Zp
p'0/¢ dense.

Let &1 = ¢(3/1600. Apply Proposition 4.8 with £ in place of ¢ to each set ']I‘lTp ; this gives us a
collection of convex sets Wr, that factors a (§/p)*!-fraction of TlTp (abusing notation, we continue

to use T{p to denote this (§/p)c!-fraction) from below with respect to the Frostman Slab Wolff
axioms with error (§/p)~¢t < §~1. We may do this, provided n > 0 is selected sufficiently small
depending on ¢ and €7.

After further pigeonholing (which induces a further ~;s 1 refinement (T9,Y3)s of (Tq,Y7) and
replaces T, 1 by a subset T, 2), we may suppose that the convex sets in ¢;;(WTP) all have common
dimensions (up to a factor of 2) for each T, € T 2; call these dimensions s x t x 1. We may also

suppose that the value of C’F_SW(T;F”) is the same (up to a factor of 2) for all T, € T, 2, and that
the mass ZTGT[TP] |Y5(T")| is the same (up to a factor of 2) for each T, € T, .

Let W = UTp €T, qﬁi}(WTP). To summarize, the situation is as follows:

(i) We have > rep, g, [Y2(T) s 0% >_rerr,) Y (T)] for each T, € Ty 5.
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(ii) We have a collection W of convex sets of dimensions s x ¢ x 1, with Ty < W < T,,.
(ili) For each T), € Ty2, the sets Uy, Y2(T), W € WIT}] are disjoint.

(iv) For each W € W, we have Cp_gyw (TY) < §—¢1.

By Items (ii) and (iv), for each T, € T, we have

T, w |Tp| 100 —e/2 |Tp’ 100
Crow(Ty’) < (WsupT Crrsw (T} )>(|W\) < (|W|) . (7.7)
EWIT}]

The last term in the above inequality is an (intentionally) crude estimate for the number of essen-
tially distinct s x ¢ x 1 prisms that can fit inside a p-tube.

100
If (%) < §7¢/2 then Conclusion (B) holds with (T",Y”)s = (T2, Y2) and T, = T, 2 and we

are done.
Step 2. We shall suppose henceforth that
W] < 65/2%|T,|. (7.8)

Our goal is to prove the (7.6) holds for an appropriate choice of a.

Each prism in W has dimensions s x t x 1, with ¢ < p. We claim the reverse inequality is almost
true. Specifically, we have

2¢e
tZ56P p. (7.9)
Recall from Definition 7.7 that for each T, € T, 2 and each x € UTe’Jl‘[T,,] Y(T), we have

LT € T[T,): x € Y(T), L(v,dix(T)) <7} < 5*77(%)%3#@ €TT,): z € V(T)}, veS? r>0.

(7.10)
By Item (i) above, there exists at least one point z € R3 for which

#{T € Ta[T),): x € Ya(T) 2o 0T € TT,: z €Y (T)} >0, (7.11)
and hence for this choice of x we have
#{T € To[T)): v € Yo(T), L(v,dir(T)) <7} < 5‘"‘51(%)ﬁ#{T € To[T,): x € Yao(T)}, wve 82, r > 0.

(7.12)

On the other hand, by Item (iii) above, the tubes {T" € Ty[T,]: x € Y2(7T')} are all contained in
a common prism W € W, and thus must all make angle < 2¢ with the direction v of this prism.
Selecting r = 2¢ in (7.12) and comparing with (iii), we obtain (7.9) (provided we select n < 7).

Comparing (7.8) and (7.9), we see that the prisms in W must be flat, i.e.

£ 4e £
5 t*1|W| < t7155/200p2 éa 52*00*7175 < §a00t, (7.13)

Step 3. Apply Lemma 5.9 to replace each shading Y5(7T'), T' € Ty with a regular sub-shading
Y3(T') C Yao(T'). Define T3 = To. We say a point x € Jpor Y (T') has survived if

H{T €Ty: x € Y3(T)} > kod* ' #{T € T: z € Y(T)}.
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Let Y4(T) C Y3(T) consist of surviving points and let T4 = T3; we will choose the constant g
sufficiently small so that (T4, Ys)s is a L5 0°* refinement of (T3, Y3).

Observe that if the point x has survived, then there is a unique prism W € W with x €
Urery) Y (1), and at least two tubes T, 1" € Ts[W] with o € Y3(T'), x € Y3(1") with Z(dir(7), dir(1")) Zs
52%p.

For each T' € Ty, let S(T) D T be the § x £§ x 1 prism with coaxial line T', and plane parallel to
II(W), where W € W is the unique prism covering T'. Recall that by (7.13), we have 2(5 > 5100, A
Cordoba style L? argument (see i.e. Lemma 5.7 and its proof for an example of a similar argument)
shows that for each T' € Ty,

Y (T
sy U v zs 0t D g
TeTs |T|

Let b= 2(5 > §17¢/400  Applying Lemma 5.17, we obtain Conclusion (A) for a = ew /500, provided
we select 1 > 0 sufficiently small. O

7.3 The iteration base case: Guth’s grains decomposition

In our proof sketch from Section 2.2, we described a single-scale grains decomposition due to Guth.
In this section we will state the result precisely.

Proposition 7.15. Let € > 0. Then there exists n,x > 0 so that the following holds for all § > 0.
Let (T,Y)s be 8" dense and be broad with error 6~". Suppose that the tubes in T are contained in
a common 1 tube Tj.

Then there is a 6° refinement (T',Y") that is 6° dense and is broad with error < k~'57¢, and
a number 1 > 1 so that p ~ #T%,(x) for each x € Jp Y'(T). In addition, there is a number
c > kpdc(6#T)™; and a pair (G,Y )sxexe, 50 that (G,Y )sxexe 95 a robustly 6¢-dense two-scale
grains decomposition of (T',Y")s wrt {T1} (the latter is a set consisting of a single 1 tube).

Remark 7.16. Proposition 7.15 says that (G, Y )sxexc is a two-scale grains decomposition of (T', Y”)4
wrt {T1}. A two-scale grains decomposition is defined in Definition 7.1, and Item (iv) from that
definition specifies that if Y/(T') N Y (G) # 0, then T exits G through its long ends, in the sense of
Figure 9. Since the grains (G, Y )sxexc from Proposition 7.15 are square, the definition is somewhat
ambiguous in this setting. However, Proposition 7.15 is only used to prove Corollary 7.17. Thus
the 1 tube 77 should be thought of as the anisotropic rescaling of a p tube 7,,. What is needed is
the following: the images of the tubes in T’ under the anisotropic scaling sending 77 to T, must
exit the images of the grains in G through their long ends.

Proposition 7.15 is a variant of Guth’s grains decomposition from [9]. Since this precise state-
ment does not appear in [9] (the hypotheses in [9] are stated slightly differently), we will provide a
proof in Appendix A.

If (T,Y)s is broad relative to a set of p tubes T,, then we can apply Proposition 7.15 to each
re-scaled set (T7r, Y 7r)s.

Corollary 7.17. Let € > 0. Then there exists K, > 0 so that the following holds for all § > 0.
Let (T,Y)s be 6" dense and let T, be a balanced partitioning cover of T. Suppose that (T,Y )s is
broad with error 6" relative to the cover T,, and that | Uper Y (T)| < 6%(#T)[T.
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Then there is a 6° refinement (T',Y")s of (T,Y)s that is 0° dense; a subset ’I[‘;, C T,; a number

¢z §7ﬂf’ ; and a pair (P,Y )sxpxe With p =0b/c that is a robustly 6°-dense two-scale grains decom-

position of (T',Y")s wrt T),. Finally, (T',Y")s is broad with error < =167 relative to the cover
.
P

Note that the estimate on the size of ¢ in Corollary 7.17 omits the term p (though this term
is used to compensate for the 0° loss in Proposition 7.15); this is because the weaker estimate

cz g*ﬂf will be sufficient in the arguments that follow.

Corollary 7.17 has two important consequences. First, when combined with Lemma 7.11, it
says that if (T,Y)s is an arrangement for which £(o,w) is tight, then (T,Y")s admits a two-scale
grains decomposition. In Section 2.2, we called this the “Guth grains decomposition” of T. The
precise statement is as follows

Lemma 7.18. Suppose that E(o,w) is true and let € > 0. Then there exists a,n, Kk > 0 so that the
following holds for all 6 > 0. Let (T,Y )5 be 6" dense, with Cxr.cw(T) < 677 and Cpgw (T) < 07",
Then at least one of the following must hold.

(4) | U Y ()] 2 s @) T (#7127 (7.14)

TeT
(C) There exist the following:
A scale p € [51—40/1007 5w/100]'

— A 6° refinement (T",Y")s of (T,Y)s.

— A balanced partitioning cover T, of T'.

— Numbers 6 <b < c withb/c=p and ¢ = g;ﬂf’.
— A pair (P,Y )sxbxe-

So that the following holds:

(i) (T",Y")s is broad with error < §~¢ relative to the cover T,,.

(ii) (P,Y)sxbxe is a robustly 6°-dense two-scale grains decomposition of (T',Y")s wrt T,.

Remark 7.19. Note that the Conclusions of Lemma 7.18 are labelled (A) and (C), rather than (A)
and (B). We chose this convention in order to have parallelism with Conclusions (A), (B), and (C)
of Moves #1, #2, and #3 below.

Lemma 7.18 will serve as the starting point for the iterative process described in Section 2.2.
In the following subsections, we will describe the three Moves in this iterative process.

7.4 Moves #1, #2, #3: Parallel structure

In the following sections, we will describe three Moves, which we will iteratively apply to the two-
scale grains decomposition that we obtained from Lemma 7.18. Each of these Moves are expressed
as a lemma, and these three lemmas have similar structure. In particular, the three lemmas have
the same hypotheses, and have similar conclusions.
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Common setup for Moves #1, #2, #3: Hypotheses

Suppose that (o, w) is true and let € € (0,{/2]. Then there exists «, n,x > 0 so that the following
holds forall 0 < § <1, p > 51_“’/100, and all 6 <a <b<cwithb/c=p

Let (T,Y)s be 87 dense, with Cxr.cw(T) < 67" and Crsw(T) < 67", Let T, be a balanced
partitioning cover of T, and suppose that (T,Y)s is broad with error §=7 relative to T,. Let
(P,Y )axbxe be a robustly 0”7-dense two-scale grains decomposition of (T,Y)s wrt T),.

Each of Moves #1, #2, and #3 will have three possible conclusions, which we label (A), (B),
and (C). Conclusion (A) is the same for all three moves.

Common setup for Moves #1, #2, #3: Conclusion (A).

U Y| 2 sowe i (T /2) (7.15)

TeT

In Inequality (7.15), K, > 0 are the quantities from the Common setup for Moves #1, #2,
#3: Hypotheses described above.

Conclusion (B) is not identical for the three Moves, but shares many common elements. We describe
these below

Common setup for Moves #1, #2, #3: Conclusion (B).
There are 6° refinements (T',Y")s and (P, Y")axpxce of (T,Y)s and (P,Y )axbxe, respectively, and
a set T/, C T,, so that the following holds.

(i
(ii

) (T",Y")s is 6¢ dense, Cxr.cw (T') < 67¢, and Cp gy (T') < 57°.
)

(iif) (P’,Y")axbxc is a robustly d°-dense two-scale grains decomposition of (T',Y”)s wrt T,
)

(
T, is a balanced partitioning cover of T', and (T’,Y”)s is broad with error §=¢ relative to T,.

(iv) Moves #1, #2, #3 will have additional conclusions specific to that Move.

Conclusion (C) is not identical for the three Moves, but shares many common elements. We describe
these below

71



Common setup for Moves #1, #2, #3: Conclusion (C).
There exist the following;:

e Numbers pand @ < b < é< 1, with j = b/é.
e A 4° refinement (T',Y”)s of (T,Y)s.
e A set T; of p tubes.
e A pair (ﬁ’?)&xlsxé‘
These objects have the following properties:
(i) (T",Y")s is 6° dense, Cxr.cw (T') <67, and Crgw (T') < 67°.
(i) T; is a balanced partitioning cover of T, and (T’,Y”); is broad with error 6 ¢ relative to Tp.
(i) (P,Y).

axbxz 18 a robustly d°-dense two-scale grains decomposition of (T",Y")s wrt T.

(iV) 51—(..;/100 < ,5 <1.

(v) Moves #1, #2, #3 will have additional conclusions specific to that Move.

Remark 7.20. Observe that Items (i), (ii), and (iii) of Conclusion (B) (resp. Items (i) — (iv) of
Conclusion (C)) say that the output (T',Y")s; T; and (P',Y')sxpxe (resp. T5 and (P,Y); ;. z) of
Moves #1, #2, and #3 match the “input” hypotheses (i.e. the Common setup for Moves #1,
#2, #3: Hypotheses), except that exponent 1 has been weakened to . This will allow us to
iteratively apply these Moves many times.

7.5 Using Moves #1, #2, #3 to prove Proposition 7.5

We will state and prove Moves #1, #2, and #3 in Section 8. However, by using the parallel structure
described above we can already state the hypotheses and conclusions of these three moves. We do
so in the table below.

Move| Lemma Conclusion (B), Item (iv) Conclusion (C), Item (v)
#1 8.1 c>0%(p/0) (#T,/#Ts) ¢>0Cc,a=0dand p=p
#2 8.9 p < §w/100 é> 0w 100,

#3 |83 Cloe (P <67 ¢ p>06¢/100, and é > ¢

We will now match the Conclusions of Proposition 7.5 to their counterparts from Moves #1,
#2, #3.
e Conclusion (A) for Moves #1, #2, #3 matches Conclusion (A) of Proposition 7.5.

e Conclusion (B), Items (i) and (iii) for Moves #1, #2, #3 matches Conclusion (B), Items (i)
and (iii), respectively, of Proposition 7.5.

e Conclusion (B), Item (ii) for Moves #1, #2, #3, plus Lemma 7.14 either yields Conclusion
(A), or Conclusion (B), Item (ii) of Proposition 7.5.
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e Conclusion (B), Item (iv) for Move #1 matches Conclusion (B), Item (iv) of Proposition 7.5.

e Conclusion (B), Item (iv) for Move #2, plus the hypothesis p > §1=w/100 matches Conclusion
(B), Item (v) of Proposition 7.5.

e Conclusion (B), Item (v) for Move #3 matches Conclusion (B), Item (vi) of Proposition 7.5.

Proof of Proposition 7.5. We proceed as follows. Let 19 < 71 < ... < ny be a sequence of numbers
that we will determine below. Let (T,Y)s be ™ dense, with Cxr.ow (T) < 07 and Cp.sw (T) <
0~ If ng is sufficiently small depending on 7;, then we can apply the iteration base case, Lemma
7.18, with 7, in place of . If Conclusion (A) of Lemma 7.18 holds, then Conclusion (A) of
Proposition 7.5 holds, and we are done.

Suppose instead that Conclusion (B) of Lemma 7.18 holds. The output of Conclusion (B) is pre-
cisely the set of objects required for the Common setup for Moves #1, #2, #3: Hypotheses,
with 7 in place of 7.

We now repeatedly apply Moves #1, #2, #3, with ;1 in place of € at stage j. We may do so,
provided 7; is sufficiently small compared to 7j41.

e If Conclusion (A) occurs at any point, then Conclusion (A) of Proposition 7.5 holds, and we
halt.

e If Conclusion (B) occurs for Move # i, for some ¢ = 1,2, 3, then we switch to a different move.

e If Conclusion (B) occurs for all three moves in succession, then Items (i), (iii), and (iv)
of Conclusion (B) of Proposition 7.5 hold. We halt and apply Lemma 7.14 to show either
Conclusion (B), Item (ii) holds, or else Conclusion (A) holds. We conclude that at least one
of Conclusion (A) or Conclusion (B) of Proposition 7.5 holds.

e If Conclusion (C) occurs for Move # i, then at least one of the following must occur:

— ¢ does not decrease, and p becomes larger by 6-¢/1900; this can occur at most 1000/¢
times in a row.

— ¢ becomes larger by min{6—¢,§~«/1%0} This can occur at most 1/¢ +100/w times total.

In particular, the iterative process described above must halt after at most N = @(% + 12—0)
steps. We will choose nyy1 below, and then select each of nn,nn_1,...,70 in turn. Finally, we

define 7 (the quantity from Proposition 7.5 ) by 1 = ny.

The refinement (T",Y”)s, the set T,, and the pair (G,Y )axpx. satisfy all of the conclusions of
Proposition 7.5, Conclusion (B), except that for Item (ii), we have not yet shown that T, factors
T’ from below with respect to the Frostman Slab Wolff Axioms with error §=¢. However, since
(T",Y")5 is broad with respect to T,, we can apply Lemma 7.14 and conclude that either either this
is indeed the case (after replacing (T’,Y”)s, T,, and (G,Y )axbxc by a suitable refinement), or else
Conclusion (A) of Proposition 7.5 holds.

This completes the proof of Proposition 7.5, except that we have not proved Moves #1, #2,
#3. We shall do so in the next section. ]
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8 Moves #1, #2, and #3

8.1 Move #1: Replacing grains with longer grains to ensure ¢ > (5C§(#Tp)/(#’]l‘)

Our goal in this section is to state and prove Move #1, as described in Section 2.2 and Section 7.4.
Lemma 8.1. We assume the Common setup for Moves #1, #2, #3: Hypotheses from
Section 7.4. Then at least one of the following must hold.

(A) Conclusion (A) of the common setup for Moves #1, #2, #3.

(B) Conclusion (B) of the common setup for Moves #1, #2, #3. In addition,

(iv) cP#l,
c>9 5#’]1‘;)' (8.1)

(C) Conclusion (C) of the common setup for Moves #1, #2, #3. In addition,

(v) a=06, p=p, and & > 6 Cc.

Proof. If Conclusion (B) fails, then we discard the cover (P,Y ),xpxc and replace it with the cover
coming from Corollary 7.17 applied to (T,Y)s and T,. Conclusion (C) of Lemma 8.1 was chosen to
match the output of Corollary 7.17. Note that the prisms coming from Corollary 7.17 have length

¢ > giﬂ;{. If Conclusion (B) fails, then this quantity is > 6~ ¢, as claimed. O

8.2 Move #2: Replacing square grains with longer grains

In this section we will use geometric arguments in the spirit of Cordoba’s proof of the Kakeya
maximal function conjecture in R? to show the following: if (T, Y )s has a two-scale grains decom-
position consisting of square grains, i.e. grains of dimensions a x b x ¢ with p =b/c > 6«/100 then
either | JY (T) is large, or else we can construct a new two-scale grains decomposition of (T,Y)
with significantly longer grains. The precise statement is as follows.

Lemma 8.2. We assume the Common setup for Moves #1, #2, #3: Hypotheses from
Section 7.4. Then at least one of the following must hold.

(A) Conclusion (A) of the common setup for Moves #1, #2, #3.

(B) Conclusion (B) of the common setup for Moves #1, #2, #3. In addition,
(i) p < 6«/100,

(C) Conclusion (C) of the common setup for Moves #1, #2, #3. In addition,

(v) &> /100,
Proof.
Step 1. Let 0 < €1 < €2 be small quantities to be chosen below. We will choose £; very small

compared to €2; we will choose g2 very small compared to ¢; we will choose «, 77 very small compared
to e1.
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First, we claim that either
a<sTe, (82)

or else Conclusion (A) immediately holds, provided we choose v and 7 sufficiently small depending
on ¢eq.

We verify this claim as follows. Suppose that (8.2) fails. Then after replacing (T,Y)s by an
~s 1 refinement, we have that for each x € (Jpr Y (T),

B(z, 6"~ n | Y(T)| 2 1 B(w,8"~)).
TeT

But from this it follows (see Corollary 5.19) that Conclusion (A) holds, provided we select a < wey/2
and n > 0 sufficiently small. Henceforth we shall suppose that (8.2) holds.

Step 2. We will regularize the set T. By dyadic pigeonholing and replacing (T,Y)s by a =
(log1/6)~ /¢t refinement (Ty,Y})s, we can suppose that

(i) For each scale of the form 7, = 6%, i =
cover T, of T, and a number p; so that #

x € UTG’]Tl }Yl( )-

(ii) There exists a number fine so that for each T, € T, and each z € UTeTl[Tp] Y1(T), we have

#(Tl{TP]Yl)(m) ~ Ufine-
(iii) For each T}, € T, and each € Uper, [r,) Y1(T), we have

1,.. 51 , there exists a balanced partitioning
(T1[T%])y; () ~ p; for each Tr, € T, and each

(#T1[T)vi (x) Z (log 1/8) /= (#T(T, v ().

Item (iii) implies that (Tq,Y1)s is broad with error s 677 relative to T,.

Since the tubes in T, are essentially distinct, at most O(p~?2) tubes from T, can pass through
a common point. We conclude that either Conclusion (B) holds, or

U YD) 2 pikp® 30 (D] = 65410 L (#T) T,
TeT TeT

If fifine is small, then Conclusion (A) holds. More precisely, if Conclusion (A) fails then

4

Llfine > 5—w+g’f0+277+a ((#T)‘T|1/2>a > 5—3—5@" (8.3)

where for the final inequality we used the fact that Cp_gyy (T) < 6~ to conclude that (#T)|T|"/? >
0". Henceforth we shall suppose that (8.3) is true.

Step 3. Let ¢ = §~«/10¢; a bit later in the argument we will abuse notation and replace é by a
number of the form K§~«/100¢ for 1 < K < 1. We will describe a procedure that finds a prism P of
dimensions a x jé x &, for some p = p(P) € [§17«/100 §«/100] that satisfies some of the properties
from Conclusion (C). This procedure is illustrated in Figure 10. In Step 4, we will iterate this
procedure multiple times.

Recall that (T1,Y7)s is Zs 0" dense. This means that for a typical tube and a typical point
r € Yi(T), we expect |B(x,¢) N Yi(T)| to have size Zs §7¢6%. This should also hold for any
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Figure 10: Finding a prism P

(reasonably dense) sub-shading Y’(T') C Y1(T). The next definition makes this heuristic precise:
Given a shading Y'(T') C T, we define Y, (T) C Y'(T) to consist of those points z € Y(T') for
which

1
B(x,&) NY/(T)| > —§21e6> 4

i.e. Yy, consists of those points where Y’(T') has at density at least §27/100 at scale ¢. Observe
that if (T1,Y”)s is 6 dense, then (T,Y,,) is a ~ 1 refinement of (Ty,Y”).

With the above definition, we proceed as follows. Let (T1,Y”)s be any refinement of (Tq,Y7)s
that satisfies > |Y/(T)| > 5 3 |Y4(T)]| (so in particular, (Tq,Y”)s is Zs 67 dense).

We claim that we can select a p tube T),; a ¢ tube Tiem € T1[T)]; a prism P € Pr, (recall
Definition 7.1, Item (i)) and a number x ~ 1 so that the set

E={x € Y (Tyem) NY(P): #T [Tolvy, (2) = Kptfine} (8.5)

satisfies
|E| > 6%1c6>. (8.6)

To verify this claim, let us temporarily define the refinement (T1,Y")s given by

Y'(T) =Y (T) N {z: #T1[T,)y: (¥) > Kptfine}

reg

where T}, is the unique p tube from T, containing Ttem. If £ ~ 1 is chosen sufficiently small, then
(T1,Y")s is a 1/2 refinement of (Tq,Y")s. By pigeonholing we can select a tube Tytem and a point z €
Tstem SO that the two adjacent tube segments Ts(gg? , S(fg) of length ¢/10 whose intersection contains x
(see Figure 11, Left) satisty |Y"(Txtem) ﬂTs(e%| 2 6%1ch?, i = 1,2. Next, select a prism P € Pr, with
x € Y(P) (by Definition 7.1, Item (ii), such P is unique); by Definition 7.1, Item (iv), at least one
of the segments Ts(e% must be almost contained in P, in the sense that Ts(e%\N(s(:n) C P (see Figure
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é/ T

Figure 11: Left: The two tube segments on either side of the point z. Both tube segments have
rich shadings.

Right: Since x € P and Tytem exits P through its “long ends,” at least one of the tube segments
must be almost contained in P, in the sense that Ts(e%\Ng(a:) C P.

11, Right), and thus the set E from (8.5) contains at least one of the sets (Y"(Tytem) ﬂTs(gg;)\N(;(x).
This yields the volume bound (8.6).

Since (T4, Y1)s is broad with error S5 67" relative to T,, we have that for each x € E, there are
2o Wine tubes T € T [TP]Yr’eg (x) with Z(T, Tstem) Zs 6"/Bp. Since each such tube intersects Tyem
in a set of dimensions at most § x § x %, we conclude that there is a set H = H(Tstem) C T1[T))
with the following properties:

o HH Zs (Hined 1) (018 p)5%0.
e Each T € H intersects P, and exits P through the “long ends.”

e Each T € H satisfies |[BNY'(T)| 2 627|B N T| ~ §27¢6%, where B is the ball of radius ¢ with
the same center as P.

The second item follows from Definition 7.1 Item (iv), plus the fact that 7" € H implies that T
and P are both associated to the same p tube, and Y (T') NY (P) # (). The third item follows from
the fact that the set E from (8.5) was defined with respect to the shading Y,,, (recall (8.4) for the
definition of Y., ).

reg

As a consequence, using a € [§,0'7%1], & = cd~/100 and (8.3), we have

Z |B N Y,(T)’ Z (Mﬁne5_1+2n+n/ﬁcp) <5277552) 2 ,U'ﬁne(577/'64_477-’_“)/100+81 (a -pc- 5) Z 5_%“) (a -pc- 6)7
TeH

where B is the ball of radius ¢ with the same center as P. To ensure that the final inequality holds,
we select n < Bw/100 and €1 < w/100.

We claim that by pigeonholing, we can select a prism P! O P (the larger prism on the right
side of Figure 10) of dimensions 2a x 2pé X ¢ so that

S PtnYmize Y. |PInT P, (8.7)
TeH TeH
T long end Pt T long end Pt
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where “T" long end P!” means that T exits P! through its long ends.

To verify this claim, note that for each tube T" € H, there exists at least one a X p¢ X ¢ prism
Pt so that T exits P! through its long end. On the other hand, there are only < (¢/c)? = 5 50%
essentially distinct prisms of dimensions a X p¢ x ¢ that contain P. The result now follows from
pigeonholing. (Note that if T exits a prism PlT through its long ends, and if PQT is comparable to
Pf , then T exits the 2-fold thickening of PQJr through its long ends, where the 2-fold thickening is
the prism obtained by increasing the two smaller dimensions of PZJr by a factor of 2. This is why
the dimension of our prisms have increased to 2a x 2p¢ x ¢ at this step).

Apply Corollary 7.10 (finding a broad scale) to the set H with the shading Pt NY’(T), T € H.
We obtain a scale p € [0,1]; a set H' C H (each T € H' exists P' through its long ends); a sub-
shading of the shadings {PT N Y'(T),T € H'}, which we will denote by Yp:(T); and a balanced
partitioning cover ’]I‘%" of H'.

Note that Ypt (T) € PTNY’(T), and the latter set is contained in a tube segment of dimensions
comparable to § x § x & In particular, Yp:(T) is not a 6 dense shading of T. However, Corollary
7.10 guarantees that the shadings are “relatively” dense inside 7' N PT, thus

D Vi (T)| Zs 02126% (#H). (8.8)
TeH'

Note that (8.7) remains true if the shading PTNY’(T") on the LHS of (8.7) is replaced by Yp: (T),
provided the RHS is weakened by an additional a5 1 factor, i.e. we have

S Vi (T)] 25 671 |P. (8.9)
TeH

We claim that
p > olmw/100, (8.10)

We verify this claim as follows. Each point z € P is contained in at most (5/8)%(p)~2# of the
shadings {Yp:(T'), T € H}. Thus if (8.10) failed, then by (8.9) we would have

P 2| U P ave ()] 25 ((6)7)7%) " (57311 2 6-3Pl,
TeH

which is impossible. For the final inequality, we used the assumption that 3 < w/100.

By (8.8) and pigeonholing, we can select 77 € H' with |Yp: (T1)| Zs 627¢6%. Let T; € T%’t be the
(unique) p tube with Ty € H'[Tj]. For each x € Ypi(T1), the directions of the tubes in H'[T;]y , (z)
are broad with error <5 1 inside the p cap centered at dir(7;). In particular, the intersection of
each of these tubes with P! is contained in PTn Nj&(Th); the latter set is contained in a 2a x pé x é
prism; call this prism P—this is the green prism in Figure 10. Note that since each T' € H’ exits
Pt through its long ends, each of the tubes T € H’ [T5ly,; () described above exit P through its
long ends.

Applying a standard Cordoba-type L? argument?, we conclude that if we define
Ty ={T € H[T;]: TN P#0, T exits P through its long ends},

2In brief, we select a set of tubes T’ € H' that make angle ~ p with T} and intersect T} at 6/j separated points;
this latter collection of tubes, restricted to the 2a x p¢ x ¢ prism described above, satisfies the Katz-Tao Convex Wolff
Axioms with error < 1. Each of these tubes has a shading Y’ (T) N P that satisfies |Y'(T) N P| > §2"&2, and hence
the union of these shadings is almost disjoint.
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and define the shading Y5 (T') = Yp+(T) N P (note if T € T p, T exists P through its long ends, so
Y5(T) = Ypi(T'), we rename it to be Y5(T") just for notational convenience), then the set

Y(P)= | Yp(T)
TeT;

satisfies |V (P)| > %141 |P| (here the 6% loss comes from the fact that the prism P is not a
0 x pc X ¢ prism, but rather a 2a x p¢ x ¢ prism with a € [6,617¢1]). Furthermore, for each
x € Y(P), the set of unit vectors {dir(T): T € (Tp)y,(x)} is broad with error s 1 inside the

p-cap B(dir(P), p).

Step 4. We summarize the conclusion from Step 3. Given a refinement (Ty,Y”)s of (T, Y1)s that
satisfies Y [Y/(T)| > 33 |[Ya(T)|, we have located the following objects:

e A scale p.
e A 2a x jpé x ¢ prism P and a shading Y (P) on this prism.
o A set of tubes T and a shading Y(T) C Y'(T) N P on these tubes.

These objects have the following properties:

e Each T' € T exits P through its long ends, in the sense of Figure 9, Left.

o Y(P)=Urer, Yp(T), and |Y(P)| 25 6741 |P).

e For each x € Y(P), the tubes in (T )y, () point in directions that are broad with error S 1
inside the j cap B(dir(P), p).

We will now iteratively apply the argument from Step 3. We begin by setting (T, Y'") = (T, Y1)
and Py = 0. As long as Y [Y/(T)| > 1 3 |Y1(T)|, we proceed as follows:

e Apply the argument from Step 3.

e Place the prism P located in Step 3 into the multiset P (i.e. if the prism is already present,
then we add another copy).

e For each T € T, replace the shading Y'(7T") with Y'(T)\Yx(T).
We repeat the above steps until > |Y'(T)| < 2 3 |Y1(T)|, at which point we halt.
Let us examine the output from the above procedure First, we have

SN V() = ZlYl 25 > IY(T) (8.11)

Pepo TET 5 2 fet TeT

After dyadic pigeonholing, we can select a multiset P; C Py so that each P € P; has a common
value of p (up to a factor of 2). Abusing notation slightly, we will denote this value by p. We will
choose P; so that the bound (8.11) (the first and final terms) remains true with P; in place of Py.

For each T € Ty, define Y2(T") = |Jp Y5(T'), where the union is taken over those P € Py with
T € Tp. For notational consistency, define Ty = T;. Then (Ts,Y2)s is an ~s 1 refinement of
(T, Y1)s-

Step 5. We will summarize the conclusion from Step 4. We have located the following objects:
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A =5 1 refinement (T9,Y2)s of (T1,Y7)s, which in turn is an ~s 1 refinement of (T,Y)s.

A scale p > §l—w/100,

e A multiset P; of 2a X pé x ¢ prisms, and a shading Y} (P) on these prisms (In Step 4 this
shading was called Y (P)). Note that the prisms in P; might not be essentially distinct.

For each prism P € Py, a set of tubes Tp C To.
These objects have the following properties:

(a) For each P € Py, each T € T exits P through the long ends.
(b) For each P € Py, we have Y;(P) = PN UTGTP Yo(T), and |Y1(P)| Zs 64141 |P|.

(¢) For each P € P; and for each x € Y (P), the tubes in (T 5)y,(x) point in directions that are
broad with error < 1 inside the p cap B(dir(P), p).

Let us compare the above items to Conclusion (C) of Lemma 8.2. We have that Items (i) and (iv)
of Conclusion (C) are currently satisfied. We will work towards satisfying the other Items.

First, the prisms in P; might not be essentially distinct. This is not a minor failure fixable
by a ~ 1 refinement, but instead a dramatic failure — it is possible that a very large number of
prisms from P; are all pairwise comparable, or even identical. We can fix this problem by merging
comparable 2a x pé X & prisms in P; into a single 4a x 5(2¢) x (2¢) prism. We will refer to this new,
post-merger set of prisms as Py. Our shading Y5 (]5) on our newly constructed prisms is given by
the union of the shadings of the corresponding prisms from Py, and the set T p C Ty is the union
of the sets {T } from the corresponding prisms from Py.

Item (a) from the start of Step 5 might no longer hold for our newly constructed prisms Po,
but this is a minor failure — we can restore it by replacing each 4a x 2p(2¢) x (2¢) prism by the
prism of dimensions 100a x 100p¢ x 2¢ with the same center and axes (see Figure 12). Annoyingly,
this might destroy the property that the prisms are essentially distinct, but this time, this is only
a minor failure — essential distinctness can be restored by a ~ 1 refinement of the prisms (this
refinement induces a ~ 1 refinement of the shading Y on T3). Denote the new set of prisms created
through this process by Ps. Abusing notation slightly, we will redefine the quantities ¢, and p and
let @ = 100a (increasing each by a ~ 1 multiplicative factor) so that the prisms in P3 still have
dimensions @ X pc X ¢.

Note that Item (b) above continues to hold for our newly constructed prisms and their associated
shading. Crucially, Item (c) also continues to hold; this follows from Lemma 7.12 (a union of sets of
broad vectors is broad). More specifically, the sets of broad vectors through each point are disjoint
because in Step 4, for each T' € T, we have replaced the shading Y'(T') with Y'(T) \ Y5(T), so
through each point x, there is at most one P such that z € Y5(T). Since the sets are disjoint, their
union is a set instead of multi-set, so Lemma 7.12 implies that the union (as a set) of sets of broad
vectors is broad.

Step 6. In Step 5 we constructed a set P3 of essentially distinct @ x p¢ x ¢ prisms, and a shading
Y3 on these prisms. We shall refer to this pair as (Ps, Y3)axpexe. For each P € Ps, we have a set
Tz C Ta; each of these tubes exits P through its long ends.
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Figure 12: The prisms P and P’ are comparable, and thus both are replaced by a common 4a x
p(2¢) x (2¢) prism (which happens to be 2P, i.e. the 2-fold dilate of P). This creates a problem
(circled in red): A tube (green) that exits the prism P’ through its long ends might fail to exit 2P
through its long ends. However, this problem can be fixed by replacing the 4a x 5(2¢) x (2¢) prism
by a slightly wider and thicker (but not taller) prism.

Our current task is to further refine the pair (7537 Y3)axpexe and (To, Y2)s to more closely match
Conclusion (C) of Lemma 8.2. Item (ii) of Conclusion (C) refers to a partitioning cover T; of
T’. We will construct this as follows. To begin, let {7} be a set of p tubes with the following
properties:

e Every ¢ tube is contained in at least one tube from {7}5}.

e For every a X pc x ¢ prism P, there is at least one j tube T; € {T5} with P cC T and
Z(dir(P),dir(Tp)) < 2p.

e The tubes in {T;} are weakly essentially distinct, in the following sense: for each fixed T} €
{T};}, there are O(1) other tubes from {7} that are comparable to T}.

Next, by pigeonholing the set {T;} by a O(1) factor, we can select a set T; C {7} that is
strongly essentially distinct, in the following sense: for each pair of distinct tubes 15, T ,1) from Tj,
we have that Nioos(T5) N Nioos(T;) has diameter at most 1/2, and in particular no ¢ tube can
be contained in both Nigos(7j) and Nigos(T5). We will select the set Tj; so that the following
properties hold:

(i) If we define T4 to be the set of tubes T" € Ty contained in some T; € Tj, ie. Ty =
_m~_Ts|[T5|, and define Y; to be the restriction of Y5 to Ty, then (T4,Ys)s is a ~ 1 re-
T;€T; 2
finement of (T2, Y2)s.

(ii) Similarly to the previous item, if we define Py to be the set of prisms P € P with the property
that there exists T; € T; with P C T and Z(dir(P),dir(75)) < 2p, and define

Yi(P)=Y3(P)n | Ya(D), (8.12)
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then (754, n)&xﬁéxé is a Z 1 refinement of (753,Y3)a><ﬁ5><5.

(a) A consequence of Item (i) is that Tj is a partitioning cover of T4, and in fact more is true:
the sets {N1005(15): T € T;} form a partitioning cover of of Tj.

(b) A consequence of Item (ii) is that for each P € Py, there is a unique T; € T; that satisfies
the two properties P C T and Z(dir(P),dir(75)) < 2p. This induces a partition

Pa=| |(Pa)1,. (8.13)

Ts
(C.f. Definition 7.1, Item (i).)

(c) A consequence of Items (i) and (ii) is that if T; € Tj, P € (754)T,;, and T' € Tz NTy, then T €
T4[T;]. This is because T exits P through its long ends, and hence Z(dir(T), dir(P)) < 10.

Our next task is to estimate the quantity 2156754 |I5| Let 7 be the scale from Step 2 satisfying
0%1p < 1; < p. Since (754,Y4)aX55X5 is 25 641741 dense, we have

Pl gs ot Y V(P
]56754 ]56754
:5747]*451 Z ’ |—| Y4(P)‘

T5€Ts  Pe(Pa)r,

< §dn—der Z ‘ U Y4(T)‘

T;€T; TeTa[T})] (8.14)

o N (w7 Y M)

T5€Ts TeT,[T7]
= g Ny (7))

TeT,

SN " Y(T).
TeT2

For the third line we used (8.12). For the fourth line, we used the fact that each p tube contains
some 7;-tube and Item (i) in Step 2. For the last line, we used (8.11) and the definition of Y2(T) =

Up Y5(T).
Step 7.

We would like to show that after a suitable refinement, (754,Y4)a>< jexé is a robustly 0°-dense
two-scale grains decomposition of (T4, Ys)s wrt T, in the sense of Definition 7.1. Currently, the
biggest obstacle is Item (ii) from Definition 7.1. In particular, it need not be the case that the sets
{Yy(P): P ¢ (734)T,3} are pairwise disjoint.

We will fix this problem as follows. We claim that either Conclusion (A) of Lemma 8.2 is
true (and thus we are done), or there exists a refinement (T5,Y5)s of (T4,Ys), and a refinement
(755, Y},)&Xﬁgxg of (754, Y4)a><55><5 with the following properties:

° F(~)r each T), € T,, the sets {YE)(P) P c (755)T5} are pairwise disjoint (here (755)T/3 = Ps N
(Pa)r,; recall (8.13)).
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° (755,Y5)a><,35><5 is a %5 6°2 refinement of (754, Y4)[1><,35><5.

e The pair (Ts,Y5)s is a L5 0°* refinement of (T4, Ys)s, where Ts = T4, and the shading Y5 is
given by

V(1) =Yam)n |J Y(P), (8.15)

where T} is the unique p tube containing T'.

e For each T; € Tj5, we have

U wo= || w@). (8.16)

TeTs [Tﬁ] ﬁE('Ps)Tﬁ

We will prove this claim in Step 8 below. Let us accept this claim for the moment.

The pair (Ps, Y5)axgexe and (Ts, Ys)s now satisfy Ttems (i), (i), and (iv) from Definition 7.1.
Ttems (i) and (ii) are immediate. We can verify Item (iv) as follows: If T and P are associated to
a common p tube, and if Y5(T) N Y5(P) # 0, then we must have 7' € T4 N T, and hence we have
that T exits P through its long end, and also Y3(T) N P C Y3(P) (this follows from the definition
of the shading Y5 from (8.15)), as desired.

It remains to obtain Item (iii) from Definition 7.1. By dyadic pigeonholing, there is a number
15 a set T’ﬁ; and an ~s 1 refinement (T, Ys)s of (T5,Y5)s so that the following holds:

o T% is a balanced partitioning cover of Te.

e For each T; € T and each x € UTeTG[Tﬁ] Ys(T), we have #((Ts[Tp5))ys () ~ p.

Let Pg = UTﬁGT/~(755)Tﬁ and let Y5(P) C Y5(P) be the shading so that (8.16) continues to hold
p ~ ~
with (T, Ys)s in place of (Ts, Ys5)s, and (Ps, Ys)axsexe in place of (Ps, Ys)axgexe-

The triple (Tq, Ys)s, (Ps, Ys)axaxa, and T continue to satisfy Items (i), (ii), and (iv) from
Definition 7.1. To verify Item (iii), we need to estimate the density of the shading on (Ps, Ys)ax sexe-
From (8.14), we have

D Pl 67t Y Ya(T)]. (8.17)

PePs TET,

Note that g < ;6721 (recall that p; is the multiplicity associated to scale 7;, which was chosen
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in Step 6). Thus we can compute

S @)= | [ v®)

PePg TﬁeT:; ]56(756)7*[)

=3 U v

T/;ET:; TeTs [Tﬁ]

23 (0 X W) (8.18)

T;€T) TeTe[T}5]

Z 0% Y |Ye(T)]
TeTg

Ry 0N V(T
TeTg

Comparing (8.17) and (8.18), we conclude that (756,Y6)axﬁgxg is 25 o4ntbertez > 5222 dense.
We now select €9 sufficiently small (depending on ¢) so that this quantity is > 6. We conclude
that Conclusion (C) of Lemma 8.2 holds.

This concludes the proof of Lemma 8.2, except that we must still prove the Claim stated at the
beginning of Step 7. We will do this below.

Step 8. Our final task is to prove the Claim from Step 7. For notational convenience, we will abuse
notation and rename the set (Py, Ya)axpexz as (P, Y )axsexe. Informally, the idea is as follows: If
the shadings {Y (P): P € 75T,;} have small overlap, then we can refine these these shadings to be
disjoint. On the other hand, if the shadings have large overlap, then since the prisms in 75T5 are
essentially distinct and all satisfy Z(dir(P),dir(7T5)) < p, we have that the prisms in Py (2) (i.e. the
prisms passing through a typical point) must have differing tangent planes (i.e. there must exist
prisms P, P’ € Py (z) for which /(II(P), I(P')) is large). We then apply Lemma 5.10 to show that
the thickened neighbourhood of a typical prism in P has large intersection with | J Pep Y (P), and
this in turn means that the thickened neighbourhood of a typical tube in T4 has large intersection
with Jp Y(T'). By Corollary 5.19, this yields Conclusion (A) of Lemma 8.2. We now turn to the
details.

_ Using Lemma 5.9 (every shading has a regular sub:sha@ing)l we may select a > 1 refinement
(P',Y")axpexe with the property that each shading Y'(P), P € P’ is regular (recall Definition 5.8)
and satisfies |Y’(P)| Zs 647741 P).

} After dyadic pigeonholing, we may suppose there exists a number v and a o) refinement
(P",Y")axpexe of (P, Y")axpexe so that for each T € T; and each point x € Uﬁ’e(ﬁ”) Y (P), we

75
have #(('Péiﬁ)y/l (x)) ~ v.
First, we will consider the case where
v>4 2. (8.19)

We will show that Conclusion (A) of Lemma 8.2 is true for a suitably chosen value of a. Observe
that the prisms in ((P’)7;)y~(z) are essentially distinct, and they all satisfy /(dir(7}), dir(P)) < 2p.
Furthermore, they all (by definition) pass through the common point x. Thus for each point

zely Pe(P)r, Y"(P), there must exist a pair of prisms P, P’ from this set with
L(U(PT?), TL((P'Y%)) 2 vM2(a/(5).
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(For comparison, II(PT7) and H((P’ )77) are defined up to uncertainty a/(pé) ).

From the above discussion, we see that for each T; € Tj, each B e 75£p’p and each x € Y (]50),
we have
sup  Z(TI(P"), TI(P"7)) 2 v'/%a/ (@),
Pe((Pr;)y (x))
and thus
inf sup  Z(I(B)?),TI(PT7)) = v"/%a/ (5é).
v€Y(FD) Pe((Pr, )y (2))

But this is precisely the condition we need to apply Lemma 5.10 with A ~5 647741, Let P be the
set of those prisms Py € P” satisfying |Y" ()| Zs §4n+4e1 - Undoing the scaling, we conclude that
for each Py € P"” we have

Nyi/za(Po) 0 () Y(P)| 25 817190 N 10 (Po)]. (8.20)
PcP
But this means that after refining (T4, Y1)s by an =~ 1 factor, there is a pair (T, Y})s so that
for each x € UTeTﬁl Y/(T), we have

B(z,v"?a)n | Y(T)‘ >5 000+e) | Bz, 1/2q)). (8.21)
TeT
By Corollary 5.19 (and using (8.19)), we conclude that Conclusion (A) holds, provided a < wes/2,

and provided €1 and 7 are selected sufficiently small (depending on w, £2, and the implicit constant
on the RHS of (8.21)).

Finally, we will consider the case where (8.19) fails, i.e.

v <6, (8.22)

This means that for each T; € Tj, the sets {Y”(P): P

S
pigeonholing, we can select a refinement (755,Y5),~1X pexe Of (P4, Ya)axexe satisfying the four Items
listed in Step 7. O

(P )1} are < §7°2 overlapping. By
7545

8.3 Move #3: Replacing grains with wider grains with small (!¢

KT-CW

Lemma 8.3. We assume the Common setup for Moves #1, #2, #3: Hypotheses from
Section 7.4. Then at least one of the following must hold.

Suppose that E(o,w) is true and let € > 0. Then there exists a,n,c > 0 so that the following
holds for all0 <0 < p <1, and all 6 <a <b < c with b/c = p.

Let (T,Y)s be 0" dense, with Cxr.cw(T) < 67" and Crsw(T) < 67". Let T, be a balanced parti-
tioning cover of T, and suppose that (T,Y)s is broad with error 6" relative to T,. Let (P,Y )axbxe
be a robustly §"-dense two-scale grains decomposition of (T,Y)s wrt T,.

Then at least one of the following must hold.

(A) Conclusion (A) of the common setup for Moves #1, #2, #3.
(B) Conclusion (B) of the common setup for Moves #1, #2, #3. In addition,
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(i) €15 oy (P') < 675,
(C) Conclusion (C) of the common setup for Moves #1, #2, #3. In addition,

(v) é>¢, 6740, <5< 1.

Proof. Step 1. Let 0 < g1 < --- < g4 be small quantities to be chosen below. We will choose ¢;
very small compared to €;41 for each ¢ = 1,...,3; we will choose €4 very small compared to €; we
will choose «a, n very small compared to €;.

First, we may suppose that
a< s, (8.23)

or else Conclusion (A) immediately holds, provided we choose « and 7 sufficiently small depending
on €1. The argument is identical to the argument in Step 1 of the proof of Lemma 8.2.

Next we will regularize the set T. By dyadic pigeonholing and replacing (T,Y)s by a 2
(log1/6)~ /¢t refinement (T, Y})s, we can suppose that

(a) For each scale of the form 7; = 6%, i = 1,... ,61_1, there exists a “density” A; so that
‘B(x,n-) N U Y(T)‘ ~ \|B(z,7;)| for every x € U Yi(T). (8.24)
TeT TET,
(b) For each i = 1,...,e7", there is a pair (T,,,Ys,),, that is Z5 6”7 dense. Furthermore, T, is a

balanced partitioning cover of T;; and for each T, we have

Yo () € T | No(Yi(D)).
TeT,

From the above items, we have that Cr_ow (T;,) S Cr.sw(T1) < (log1/d)~ 1/e15=n and

#T-, |17,
#Tq |T

CKT CW( ) CKT cw (Tl)

If n > 0 is selected sufficiently small depending on &1, then we can apply the estimate £(o, w) (with
e1 in place of €) to conclude that

’ U Y(T) ‘ > 0%\, i7" Crrcw(Tr) ™ (#TTz)’TTZ’(CKT ow(Tr)™ S/ZCF_SW(’]I‘TZ.)(#']TTZ_)’TH’1/2>_a
TeT

2 200 n(5)° ('T,T\((ﬂ;f/lz) o (@)

2 5% [u(3) L e temm (mim )

(8.25)

For the last inequality, we used the fact that Cyxr.cw(T1) S5 077, and so (#T)/(#T.) <s
w o/

d~MT,,|/|T|. In particular, if there is an index ¢ for which )\Z(%) 11,177

|T|o/?
than 1, then we will obtain Conclusion (A) of Lemma 8.3.

is substantially larger
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Step 2. Let P; = P. For each P € Py, define Y1(P) =Y (P)N UTeTl[T,,] Y1(T), where T, € T, is
the unique p tube with P € T}, and Z(dir(P),dir(7},)) < 2p. Since (T1,Y1)s is an ~; 1 refinement
of (T,Y)s, by Definition 7.1 Items (ii) and (iii) we have that (P1, Y1)axbxc iS @ 5 1 refinement of
(P, Y)axbxc-

Apply Lemma 5.9 (every shading has a regular sub-shading) to each shading Y1(P), P € P;.
This gives us a regular sub-shading Y>(P) C Yi1(P). Let P» C P; be those prisms for which
|Y2(P)| > 6%7| P|; we have that (P2, Y2)axbxe is a > 1 refinement of (P, Y1)axpxe-

Let P3 = P,. By dyadic pigeonholing, we can select a number 6y € [%,1] and a (log1/§)~!

refinement (Ps, Y3)axpxe Of (P2, Y2)axbxe SO that for each x € UPEP3 Y3(P), we have 6(x) ~ 6,
where 6(x) is as defined in Definition 5.12.

We first consider the case where 6y > 671 (a/b). Our goal is to show that Conclusion (A) holds.
Let P} C P3 be the set of those prisms for which |Y3(Pp)| > 135027/ Po|. Then for each z € Y3(P),
we have

24 sup Z(TI(Py), TI(P)) 2 fo.
b PePs

We have |Y3(Py)| > 55021 Po|; each P € Py satisfies [Y2(P)| > 1556%7|Pol; and Y(P) is regular.
Thus we can apply Lemma 5.10 (with Y3(FPp) in place of Yy(FPy) and (P2, Y2)axsxe in place of

(P,Y )axbxe) to conclude that

[Noa(Po) 1 | Y(P)| s 8% Noa(P). (8.26)
PeP

Recall that (8.26) holds for each Py € Pj, and (P§, Y3)axbxc is a Zs 1 refinement of (P, Y )axpxe-
After replacing (P35, Y3)axbxe by a further ~ 1 refinement (P4, Yy)axpxe, We can suppose that for
cach z € Upep, Yy, we have

Nigy(@) 1 | Y (P)] Z5 6 Nigy )]
PeP

Finally, if (T1,Y{)s is the refinement of (Ty,Y7)s induced by (P4, Y3)axpxe, then by Defini-
tion 7.1, Ttem (ii), (T1,Y{)s is a =5 l-refinement of (Tq,Y7)s, and for each x € Urer, Y{(T) we
have

Noa(@) 0 Y(T)| 25 871Ny (). (8.27)
TeT)

Since bfy > §~1a, by Corollary 5.19 we see that Conclusion (A) holds, provided we select 7 > 0
sufficiently small depending on ¢, and select a < g3w /2.
Henceforth we shall suppose that 6y < 67¢!(a/b), i.e.

sup sup Z(I(P), II(P")) <67 (a/b). (8.28)
z P, P'€(P3)y, ()

Step 3. Recall the discussion following Definition 7.3 (the quantity “K” in that discussion is
0~ ¢! in this context); after replacing (Ps,Y3)axpxe by a ~ 1 refinement, which we will denote by
(P4, Ya)axbxe (which in turn induces a ~ 1 refinement (T4, Ys)s of (T1,Y1)s), we can find a set U
of pairwise distinct prisms of dimensions 6714 X ¢ x ¢ so that the following holds.
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(a) The sets {P4(U): U € U} are a partition of Py.
(b) The sets {UP€P4<U> Yi(P): U € U} are disjoint.

Each U € U is a prism of dimensions 6~ X ¢ X ¢ = 5‘51% x ¢ X ¢. Thus for each U € U,
there is a set {Z} of < 731 prisms of dimensions comparable to ¢ x ¢ x ¢ with the property that
for each P € P4(U), there is a prism Z from this collection with O(P) C Z (recall that p = b/c,
and thus CJ(P) is a prism of dimensions comparable to 5 xex c).

Let Zy be a prism of dimensions comparable to % X ¢ X ¢ that maximizes
#{P e Py,: O(P) C Z},

so in particular #P4(Zy) 2 631 (#Py(U)). Let Z = {Zy: U € U}; let Ps = Uyey PalZu); and let
Y5 be the restriction of Y; to Ps. Then (Ps, Y5)axpxe is a = 6351 refinement of (Py, Yi)axbxe, and
we have the following analogue of Items (a) and (b).

(a') The sets {P4(Z): Z € Z} become a partition of Ps.

(b’) The sets {UP€P5<Z> Y5(P): Z € Z} are disjoint.

For each Z € Z, the sets in (P5(Z))? are convex sets of dimensions comparable to p x p x 1,
i.e. the sets are comparable to p tubes. To record this useful fact, we will define (Tz,ffg))p =
((735<Z>)Z7Y5Z)p><p><1-

After replacing (Ps, Ys5)axpxe and Z with ~s 1 refinements, we may suppose that each set 'JTZ
has approximately the same size (up to a factor of 2) for each Z € Z, and similarly each set
|Y5(T)| has approximately the same size for each T € Tyz. Furthermore, we can suppose that
each pair (']T‘Z,l}5)p is Z5 0" dense (indeed, recall that (P,Y )oxbxc is 07 dense; (Pa, Ya)axpxe is a
2o 1-refinement of (P,Y )axbxc; and (P5(Z), Ys)axbxc is a =5 1 refinement of (Pa(Z), Yia)axbxc)-

Step 4. For notational convenience, we will fix a prism Z € Z. In what follows, we will find
certain quantities (for example certain scales, multiplicities, etc.), and navigate between different
cases depending on the specifics of the arrangement T,. However, by pigeonholing the set Z, we
may suppose that all quantities described below are the same (up to a factor of 2) for each Z € Z,
and thus the same cases occur for each Z € Z.

Apply Proposition 4.6 (factoring convex sets) to Tz. We obtain a number m > 1; a ~ 1
refinement 'ﬁ"Z of Tz, and a partitioning cover Wy of ’]T’Z consisting of congruent prisms; we shall
denote the dimensions of these prisms by s x ¢ x 1 (since each prism contains at least one tube, we
know that the longest dimension is ~ 1). We have that Wy factors ’f['/Z from below with respect to
the Frostman Convex Wolff Axioms, and from above with respect to the Katz-Tao Convex Wolff
Axioms, both with error <5 1. Finally,

- ~ w
Cxrcw(Ty) <m, and #T,[W]~s m’|T| for each W € Wy. (8.29)

We first consider the case where
m < 6¢. (8.30)

Our goal is to show that Conclusion (B) of Lemma 8.3 holds.
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As described at the beginning of Step 4, we can suppose that (8.30) is true for at least half the
prisms Z € Z. Let Ps C Ps be given by Ps = |J, qﬁ}l(’ﬁ"z), where the union is taken over those
prisms in Z for which (8.30) holds (note that Ps C Ps, since each tube in T/, C Ty is the image of
a prism from Ps under the map ¢z). Let Y be the restriction of Y5 to Pg.

We have that (Pg, Ys)axbxe is a Zs 1 refinement of (Ps,Ys). Undoing the scaling ¢z, we have
that for each P € Pg,

Crr.cw (P@(QD(P)>) S sup Crr.ew (Ps(Z)) < m.
ZeZ

We conclude that
C?;_CW(P(i) 5 m.

Applying a final dyadic pigeonholing, we can select a ~5 1 refinement (P, Y”)qxpxe Of (Ps, Y6)axbxe
(this in turn induces a Zs 6°** refinement (T',Y”); of (T4,Ys)s) and a set T/, C T, so that the
following holds: 'JI‘;) is a balanced partitioning cover of (T',Y")s, and (P’,Y")uxpxe is a robustly
A5 6°91-dense two-scale grains decomposition of (T',Y”)s wrt T,

Since C%¢ .,.(P") < m, Conclusion (B), Item (iv) of Lemma 8.3 is satisfied. (P’,Y")axpxec
satisfies Conclusion (B), Item (iii) by construction. (T’,Y”)s satisfies Conclusion (B), Item (i),
provided &7 is chosen sufficiently small depending on e. Finally, since

#(T'[T,)y () Zs 6° #(T[T,))y (x) for every T, € T), and every x € U Y'(T),
TeT'[T,]

and since (by hypothesis) (T,Y)s is broad with error 6" relative to T,, we conclude that (T’,Y”)s
is broad with error Ss 6~"731 relative to T),. We will select n and &1 sufficiently small so that this
quantity is < §~¢. This verifies Conclusion (B), Item (ii) 3.

In summary, if (8.30) holds, then Conclusion (B) of Lemma 8.3 is satisfied. Henceforth we will
suppose that (8.30) fails, i.e.
m > ¢, (8.31)

Step 5. In Step 4, we fixed a choice of prism Z € Z. We will continue to fix this choice of Z, and
in additional we will fix a choice of W € W;. As in Step 4, we can assume (by dyadic pigeonholing)
that all relevant scales, multiplicities, etc. are approximately the same (up to a factor of 2) for each
Z € Z and each W € Wy).

In the arguments that follow, we will analyze the pairsN(T’Z [W],Ys), constructed in Step 4. For
notational convenience, we will refer to such a pair as (T,Y),. Recall that this pair is s 6”7 dense;
the cardinality of T is given by (8.29); and m satisfies (8.31). In particular, we have

Crew(TV) S5 1. (8.32)

Apply Corollary 7.10 (finding a broad scale) to the set T. Denote the “output” scale of this
Corollary by 7 (in Corollary 7.10, this output scale is called p, but that variable is already in use).
Abusing notation, we will continue to use (T,Y), to refer to the output of Corollary 7.10. Thus

3To be precise, we can only ensure that the error is < §~¢ provided § > 0 is sufficiently small, depending on the
implicit constant in the above Z notation. However if this fails then Conclusion (A) holds, provided we select x > 0
sufficiently small.

89



there is a set T, that forms a balanced partitioning cover of T, and (T,Y) p is broad with error $s 1
relative to T,. Furthermore,

the sets U Y(T), T,eT, are <7 P overlapping. (8.33)
TeT[Ty]

We claim that
T > plTe/s, (8.34)

or else Conclusion (A) of Lemma 8.3 holds, and we are done. To verify this claim, note that if
(8.34) failed, then the sets {Y(T): T € T} are < p~«/*7=8 < §~%/2 overlapping; but this fact,
combined with Item (b’) from Step 3, gives Conclusion (A) of Lemma 8.3.

Step 6. We would like to apply the estimate £(o,w) to each set (']NI'TT,XN/TT)p/T. However, we do
not currently have a good estimate for Cp_gy (T77). To fix this problem, apply Proposition 4.8
(factoring convex sets with respect to the Frostman Slab Wolff Axioms) to each set (T[T],Y),,
with €5 in place of €. We can do so, provided €1 and 7 is selected sufficiently small compared to es.
This gives us a Zs 0°2 refinement (T'[T}],Y"), of (T[T}],Y),, and a family of convex subsets of T},
which we denote by Vr., that factors T'[T;] from below with respect to the Frostman Slab Wolff

Axioms with error §7¢2. In addition,

the sets U Y'(T), V eVr are disjoint. (8.35)
TeT' V]

After pigeonholing, we may suppose that the sets in Vr_ have the same dimensions, and fur-
thermore these dimensions are common across all 7, € T,. Denote these dimensions 6 x 7 x 1.
Since V C T, we must have 7/ < 7. We claim that this inequality is almost tight, in the sense that

5°2/Pr SsT < T (8.36)

To verify this claim, note that ('TI',}N/)p is broad with error $s 1 relative to the cover T,. Since
(T'[T;],Y"), is a Zs 0°2 refinement of (T[T}],Y),, by pigeonholing there is at least one point = for
which the tubes in T}, (x) point in directions that are broad with error S5 §=°2 inside a cap of
radius 7. This means that there are at least two tubes from this set that make an angle Z; 652/Br
On the other hand, by (8.35) we have that the pair of tubes described above must be contained in
a common 6 x 7/ x 1 prism. This establishes (8.36).

Let T/ be the union of the sets T [T;], as T ranges over the elements of T,. Let Y’ be the
associated shading on T’ coming from the pairs (T'[T7],Y"),. Abusing notation, we will rename
this pair (T,Y),. At this point in the argument, this pair is Z5 67752 > §%°2 dense.

Step 7. We first consider the case where the prisms Vr_ from Step 6 are almost tubes, in the sense
that
6 > 6107/ (8.37)

If (8.37) is true, then each set TV consists of prisms of dimensions £ x£x1. The pair (TV, }N/V)p/T/Xp/gxl
is Z5 622 dense. Let us suppose for the moment that

p < Ve, (8.38)

If we select e sufficiently small so that g5 < %\/EQ,Bw, and hence \/Efgsffi = < 16;52, then by
32,/55

(8.34) and (8.36), we have 6% > (£)
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Thus if €2 is chosen sufficiently small compared to €3 and w, and if (8.38) is true, then we
can apply the estimate F(o,w) (recall Definition 5.4 and Remark 5.6, Situation 3) to estimate the
volume of each (rescaled) set (’fFV, YY) o/ xp/0x1; With 3 in place of ¢ and 32,/22/w in place of 7.
This gives the estimate

U 7Y@V z o (8) m @Ry (m 2 Tviey ) T (839)
TeT[V]
where we define
= Crrow(TV]) < Crrow(T) <m  and 7= Cpgw (T[V]) < 672 (8.40)

(for the first inequality, we used (8.29)). On the other hand, if (8.38) is false, then (8.39) follows
from the fact that the LHS of (8.39) is bounded below by the volume of a single shading |Y'V(TV)],
and we can select a tube with volume

2
‘YV(TV)’ g 5252|TV| 52&2 i 52&2p2 > 53&2 > 5¢3. (8.41)

Since o € (0,2/3], by Remark 5.5 and Remark 5.6, Situation 3,
V)TV (ST T S (3.42)

Combining (8.41) and (8.42) establishes (8.39) in the case where (8.38) is false. We conclude
that (8.39) holds, independently of whether (8.38) is true or false.

Undoing the scaling ¢y and substituting the values of m and { from (8.40), we have

P11/2 o
> 52e3 -1y T —3/2( |T‘
| U V(D) 2 8% () GEVDITI (m = GEV]) ) (8.43)
TeTlv
By (8.33), (8.35) (recall that we have renamed Y as Y), and (8.43), we have
B
Urd[z~ 3 3 | U vd)
TeT T:eTr VeVr, TGT[V] (8 44)
w [/2\ —o ‘
> s2ea+8 (P 1N (o —3/2 (LT T
o (9) " (#T”T‘(m (#T[V])|V|1/2>

Next, by (8.32) and using the fact that (T'[T,],Y”), is a Zs 6°2 refinement of (T[T;],Y),, we have

that Cp.ow (TV) S5 67222, By (8.29), #T Zs 52¢2 (m%) Since

- - Vv ~ Vv wW
#T(V] < OFCW<TW>|‘W’|<#T> S 5_2€2|V[/’|<m’|T~|’>,

using (8.31), (8.36), (8.37), and (8.44) we conclude that

| > s2e3+B8-Ca/2( P @ |W| -1 m |T|1/2 -7
‘TLGJTIY(T) o0 (9) m ( T|)T|(m (m‘ﬂ |V\1/2)

(8.45)
> s2e54B-Ca/a(P\YTT w
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Step 8. Let us analyze (8.45). First, the set on the LHS of (8.45) is contained in W, which is a
prism of dimensions s x t x 1. Second, the quantities €3 and 3 are chosen after ¢ and o, so we can
select the former quantities to ensure that §—2es+8-¢Ca/4 > §-¢Ca /5

Thus by pigeonholing, we can select a ball B of radius 6 (recall that p < 6 < s) with the
property that
~ w+o
’Bm U Y(T)( 207l (%) Bl (8.46)
~ ~ 0
TeT
Recall that at the beginning of Step 4 we fixed a prism Z € Z. The set of p tubes T are the

images of prisms from P3(Z) under the linear map ¢z. Let Bf = ¢,'(B), where B is the ball
described above. Then B is an ellipsoid of dimensions 9% X Oc x Oc. By (8.46), we have

+
‘BT n YI(P)‘ > 5—40/5(5)‘” °|B]. (8.47)
PePy
Let 1 <i< efl be the index so that %! < 9% < 6G=De1 Such an index exists since 6 € [p, 1] and
0 < % = % < ¢ < 1. Recall that we defined 7; = 61, so fa/p < ;675" implies p/0 > 6°ta/7; >
§1*e1/7;. Then there exists a ball B;, of radius 7;, so that

w |T|o/2
5) 7 (8.48)

+
\ > ‘Bﬂ N U Yl(T)‘|BTZ|_1 > 6381_C0/5 (B)w o > 5451—@7/5 (7 -
TEeT, b i/ Tl

Combining (8.25) and (8.48), we conclude that Conclusion (A) of Lemma 8.3 holds, provided we
select 1 < ﬁ{o and select « sufficiently small.

This concludes our analysis of the case where (8.37) holds (the analysis of this case began at
the start of Step 7). Henceforth we shall suppose that (8.37) fails.

Step 9. We shall now return to the start of Step 7, except, instead of assuming (8.37), we will

instead suppose that
0 < §¢/107, (8.49)

Informally, (8.49) says that the prisms V' € Vr_ are flat.

Recall that in Steps 4 and 5, we fixed a prism Z € Z and a prism W € Wz. In this step, we
will fix a 7 tube T € T and a 6 x 7/ x 1 prism V € Vr,. Define T" = T[V] and let YT be the
restriction of Y to TT. Thus (TT,YT), is a set of p tubes contained in V, and

Crsw((THY) 5 672 (8.50)

After pigeonholing, we may suppose that (']I‘T,YT)p is Z5 6%°2 dense. For each “stem” TJ e T,
define the “hairbrush”
H(T)) = {T" e TV YI(T)) n Y T(TT) # 0}.

We claim that for each tube TOT e Tt, the set
Neop(ThHn | v (8.51)
THeH(T])

is contained in a rectangular prism of dimensions comparable to p x (7//0)p x 1; we will call this

rectangular prism X = X (T(;r ). This claim follows from straightforward geometric considerations
— See Figure 13. Define Y (X) to be the set (8.51), so Y (X) C X.
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Figure 13: All tubes (red) in this figure intersect the stem tube Tg (black). Since each tube is
contained in the § x 7/ x 1 prism V, each tube makes angle < /7" with the plane II(V'). Since each
red tube intersect Tg , the union of these tubes, intersected with the (7//6)p neighbourhood of TOT,
are contained in the prism X = X(TJ) (green) of dimensions % . (%/)p X (%/)p x1=px (%/)p x 1.

Next, we claim that if 5 is chosen sufficiently small compared to €3, then for a s 1 fraction of
the tubes Tg e Tt we have

Y (X)| 26 0°%|X|, where X = X(T}). (8.52)

The estimate (8.52) says that the shading Y (X) is Zs 03 dense. This is a standard Cordoba-type
L? argument. In brief, let Y*(T'T) C YT(TT), TT € T' be a regular shading, in the sense of Definition
5.8, with [Y*(TT)| > L|YT(TT)|. By pigeonholing, a Z5 1 fraction of the tubes Tg € T' satisfy

1
o € YI(T]): #T4(2) 2 J#T) (@)} s 85I, (8.53)

For each point x in the set on the LHS of (8.53), we can select a tube Tt € TT with 2 € Y*(T)
and A(dir(Tg), dir(TT)) Zs 7 (recall that in Step 5, we refined our pair (T,Y), to be broad with
error 5 1 relative to T;). We now choose a §/7-separated set of points from the LHS of (8.53),
and consider the corresponding tubes {TT}. Since each shading Y*(7T'1) is regular, we have that the
sum of the volumes of these shadings, restricted to X, has volume X5 6% |X|:

> YHTH N X| Zs 67X,

{71}
Finally, we use a Cordoba-style L? argument to show that the corresponding shadings {Y*(T)} are
almost disjoint inside X; this gives (8.52).

Abusing notation, we will refine TT so that each T € T' satisfies (8.52). By dyadic pigeonholing
and replacing TT by a =~ 1 refinement (abusing notation, we will continue to refer to this set as

T1), we can select a number M and a set X' of essentially distinct p x % x 1 prisms of cardinality
#X = M~ (#TT), so that

(a) For each X € X, there are ~ M tubes TT € Tt with 7T ¢ X and X(TT) comparable to X.
Denote this latter set by TE(.
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(b) Each set TT[X], X € X has the same cardinality (up to a factor of 2).

Note that "JI‘TX C TT[X], but the two sets need not be equal; it could be the case that #TT[X] is
much larger than #X. In particular, TT = | | Xex T}, but X might not be a partitioning cover of
Tt. For example, there could exist a tube in TT[X] that is contained in a different prism V’; such a
tube will be also be contained in the set ']I‘er,, where X' a prism with orientation compatible with
V' (recall Figure 13). In particular, it is possible that X and X’ intersect transversely.

Step 10. In Step 9 we fixed a choice of 7 tube T, € T, and a § x 7/ x 1 prism V € V.. We
then constructed a pair (X ,Y)p The set X depended on the choice of prism V € Vr_; we

X %’ px1’
will highlight this dependence by writing Xy,. In this step we will analyze the interaction between
different collections Xy .

Define V = ;. cp_Vr,. Note that V is a set of 6 x 7/ x 1 prisms contained in W (the set W was
fixed at Step 5). The quantity M from Step 9 depends on the choice of V', but after pigeonholing
and refining V we may suppose that this number is the same (up to a factor of 2) for every V € V.

We will first consider the case where
RY

T ~ M < §¢/100 21
A =0

(8.54)

We will show that Conclusion (A) of Lemma 8.3 holds.

Recall from Figure 13 that the prisms X € Ay and V have compatible orientations, in the
Py P

sense that XV is a prism of dimensions comparable to 5 X g x 1. Thus we will refer to the set
(X, YY) ppsn) as (Tg v, Yi)e.
We claim that
the sets { U Y(X), Ve V} are < 6P overlapping. (8.55)
XeXy

This claim follows from combining (8.33) and (8.35) (and noting that 73 < §=8).
Observe that for each V' € V, we have

Crsw(Tey) S5 0752 (8.56)

This is because CF,SW(TV) <6 6722 (recall that V factors T from below with small error with
respect to the Frostman Slab Wolff Axioms), and by Item (b) from Step 9, each X € Xy contains
the same number (up to a factor of 2) of tubes from T[V]. This means that Cr_gw (XY) S5 6722,
which is precisely (8.56).

Define
M1 @

ok
where m is as defined in (8.29), and |X| = p x %/p x1= %pQ is the volume of a prism from Xy .
We have

me =m (8.57)

X
Crer-ew(Tg ) SomM l’m’ < my. (8.58)
Finally, we compute
- W
S (#Tp ) 2 MW 2 mM l‘m', (8.59)



where W is the prism fixed at Step 5, and the final inequality used (8.29).

Fix a choice of V' € V. Applying the estimate £(o,w) to (T§7v,YV)p/g with €4 in place of ¢
and using (8.56), we have

U Yy (Te)

Tp€Tp
F eV

w _ —o
2 07022 (£) g (T )Ty | (2 (T )T 12)

0 (8.60)

In the above inequality, we used (8.58) plus the fact that o < 2/3 (the latter inequality allows us
to replace CKT.cw(Tg v) with the potentially larger quantity mg). Undoing the scaling ¢y and
using (8.55), we conclude that

Ur@[z]J U v

TeT Vey XeXy

zaﬁz( U Y(X)‘

Vey XeXxy
> XS Y
Ty ()
vey TpETpV

5ﬁ||z{i|| seert (§) gt (30 #T5 5] (mg™” (o #Tg.) Ty12)

2 082 X () my (m M—l’| ")lT \(mp3/2(sup#1rp T 12) 7

‘Tp‘ 0 0
(8.61)
where the final inequality used (8.59). Substituting (8.57) and simplifying, we obtain
> ﬁ+254ﬂ_ P\¢ XN 1w
LHS (8.61) 250 7] (0) (mM !TI) (mM |T|)|T§|
) _1 | X\ 3/2 12\ ¢
(= ) ey 1)
> B+2¢ _1|X[\e/2 XN = 12\ ¢
o220 () i (marS2) T ((mae5) (1 g #T0VD) 7 )
ol/4 Tl = 12\ 7
25 077 (5) I (m™! gy REWDITE V)
(8.62)

where the second inequality used the fact that #T, - ~ M “L(#T[V]) for each V € V =V, and
the third inequality used (8.31), (8.54), |TT| = |T|, and the fact that 3 and £, are small compared
to o (.

Observe that the set on the LHS of (8.62) is contained in [W], while the RHS involves the term
|[W|. Thus (8.62) gives a lower bound for the density of ( J7.4 Y (T') inside W. This bound contains

the term 6~7¢/4 — this quantity is much larger than 1, and this will eventually allow us to conclude
that Conclusion (A) of Lemma 8.3 holds.
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Let us analyze the final term in brackets (---)~7. We have

e L ) 2y 2 < o T (8 ) iy

X X| |
< T VI, W 12
Som (m=—=))|Ts|
!X!<\W| !T|> (8.63)
WVl e
T |
X
_b
p7

where the second inequality used (8.32) and (8.29).
Combining (8.62) and (8.63), we conclude that

Uiz (). o

TeT

Step 11. We can now argue similarly to our reasoning in Step 8. The set on the LHS of (8.64)
is contained in W, which is a prism of dimensions s x t X 1, with § < p < 8 < s < 1. Thus there
exists a ball By of radius 6 so that

‘BG N U~ Y(T)‘ i& 570'4/4(§>w+0'|30‘.
TeT

Recall that at the beginning of Step 4 we fixed a prism Z € Z. The set of p tubes T are the images
of prisms from P3(Z) under the linear map ¢z. Let Bf = gzb}l(Bg); Bt is an ellipsoid of dimensions
9% X B¢ x B¢, which satisfies

wto
i U | 205,
TheTy

This is the analogue of (8.47). An identical argument (in particular, note that a € [4, 1]) shows that
Conclusion (A) of Lemma 8.3 holds, provided we select &« < a¢/10. This concludes our analysis of
the case where (8.54) holds.

Step 12. We shall now return to the start of Step 10, except, instead of assuming (8.54), we will
instead suppose that

X
M > 6—4/100’|T||. (8.65)

We summarize the situation thus far:

e We have fixed a choice of Z € Z (these are prisms of dimensions % X cxc)and W e Wjy.

e We have a set T of p tubes contained in W.
e We have a set V of § x 7/ x 1 prisms contained in W.

e Foreach V €V, we have a set Xy of px %px 1 prisms, and a partition T[V] = Uxex, (T[V])x.
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e Each set (T[V])x has cardinality roughly M, where M satisfies (8.65).

e We have a shading Y on T so that (T,Y), is Zs 022 dense.

Let X = Uy ¢y Av (this is a slight abuse of notation, since in Step 9 we defined X’ to be a set of
the form Xy, where the prism V' was fixed in advance). To simplify notation, define Tx = (T[V])x,
where V' is the (unique) prism for which X € Xy. Since (T,Y), is Zs 022 dense, after a harmless
refinement of X we > may suppose that each pair (T X, Y) is Zs 8222 dense, where Y is the restriction
of the shading on T to the set Tx.

Apply Corollary 7.10 (finding a broad scale) to each pair (Tx,Y) p, for each X € X'. This yields
a scale p and a Zs 1 refinement (T’X, Y') , that is broad with error <5 1 with regard to a balanced
partitioning cover of p tubes.

After dyadic pigeonholing and refining the set X', we can suppose that the scale g from Corollary
7.10 is the same for each prism X. We claim that
525 67C/200, (8.66)

N

To verify this claim, observe that for each X € X, the sets {Y'(T): T € Ty} are Ss (7//5)P(5/p)
overlapping. This is because the tubes from ']?["X whose shadings pass through a common point z
must point in directions confined to a p x 7/ region in the unit sphere S? C R3 (we identify S? with
the set of directions of tubes in R?). Since these tubes are essentially distinct and pass through a
common point, they must point in p separated directions. Thus at most p/p tubes can point in
directions confined to a p x j region in S? (this corresponds to those p tubes contained in a single
p tube), and at most (7//p5)? distinct 5 tubes can contribute to the count. This implies that

N8 /p

/ > P ! ¢/200

U r@|z (5)7(5) X @z s (Z)ix)
TeT, TeT),

where the second inequality used (8.65) and 3 < ¢/200. Since the set on the LHS is contained in

X, we obtain (8.66), as claimed.

Next, for each prism X € X there exists a set {U} of essentially distinct p x p x 1 prisms, each
of which are contained in X, so that these sets form a partitioning cover of T’X, and for each such
U, the pair (T [U],Y"), is broad with error Ss 1 relative to the cap of diameter j centered at the
point dir(U). See Figure 14.

For each such prism U, define

TeT [U]

Then a Cordoba-style L? argument shows that for each prism U for which (T’ [U],Y") o 18 Zs 022
dense (here Y’ denotes the restriction of the shading on T’ to T [U]), we have |Y (U)| Zs 0%2|U]|.
Let U denote the set of all prisms U for which this holds, as X ranges over the elements of X.
Note, however, that the prisms in &/ need not be essentially distinct.

Step 13. Our task in this step is to unwind the various transformations and rescalings from
the previous step, and to understand what the prisms U (and their associated shadings Y (U))
correspond to in the original space in which the tubes T and prisms P reside.

97



Pl

A nm/ & \\\\\ A‘\“\ \
L

7

57%p

Figure 14: We find a set of p x px 1 prisms (blue) inside X (black prism), which forms a partitioning
cover of T’y (red lines). A typical pair of tubes from T’ inside a common (blue) p x p x 1 prism
intersect at angle roughly p.

In Step 12, we fixed a choice of Z € Z and W € Wy. Recall that T comes from (P5(Z))%, and
is a set of p x p x 1-tubes. We obtained a set U = Uz of p x p x 1 prisms (this U is different
from the set U in Step 3, the latter U was defined to introduce Z and only appeared within Step
3), and a shading Y (U) on these prisms. These prisms are contained inside W. Undoing the linear
transformation ¢z, we have a set ¢§1(Z/{W z) of prisms. After pigeonholing, we may assume that
these prisms are of dimensions @ x b x ¢, for some @ > a and b > b. Since the linear transformation
¢ distorts volume by a factor of (a/p)c?, we have that (ab) = acp. The dimensions @, b depend on
the choice of W and Z, but after pigeonholing, we may suppose that these values are the same (up
to a factor of 2) for all Z € Z and all W € W;. We claim (provided e3 is chosen sufficiently small
compared to €3) that either

a<0 a, (8.67)

or else Conclusion (A) of Lemma 8.3 holds (provided « is chosen sufficiently small, depending on
€3). The argument is identical to the argument in Step 1 of Lemma 8.2; we refer the reader there
for details.

Henceforth we shall assume that (8.67) holds. Abusing notation, we will re-define p = b/c; this
re-definition might decrease the value of p by as much as 6°¢, and (8.66) might be weakened to
p > 67¢/490, With this re-definition of 5, we clearly have b = jc.
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Let
Q= U U o, Uzw).

ZeZWeWy

For each Q € Q of the form Q = ¢,'(U), define the shading Y(Q) = ¢, (Y/(U)) and define the

set Po C P[Q] as ¢, (T [U]), where X is the p x %p x l-prism associated to U (see Step 12).
Summarizing our conclusions thus far, we have the following.

e Each Q) € Q is a prism of dimensions a x b x ¢, with b= pc.

o For each @ € Q, there is a set Po C P[Q]. Define P’ = JocoPg- There is a shading
Y/(P) C Y(P), so that (P',Y")axpxe is a Zs 022 refinement of (P, Y )yxpxe-

e Each @ € Q has a shading Y (Q) given by

Y@= Y.

PcPg
We have |Y(Q)| Zs 65°2|Q| for each Q € Q.

e For each Q € Q and each z € Y(Q), the prisms P € Py with € Y/(P) point in directions
that are broad with error <y 1 inside a cap of radius l~)/ c centered at dir(Q) (these correspond
to the tubes ']~I"X[U] and their associated shading, which are broad with error s 1 inside the
p X px1prism U).

e The refinement of (T,Y)s induced by the refinement (P, Y")axpxe Of (P, Y )axpxe is Zs 0252
dense. If we denote this refinement by (T, Y”)s, then (by the definition of being an induced

refinement) we have
Uvym=U v
TeT QeQ

The pair (Q,Y);, ;. has some of the desired properties from Conclusion (C) of Lemma 8.3.
Observe that for each Q € Q, dir(Q) is defined up to uncertainty p. Thus after a refinement of Q
and T', we can find a set of p tubes T; and a partition Q = |—|T,;e?1‘,5 Qr;, so that each @ € Qr; is
contained in T} and satisfies Z(dir(Q), dir(7})) < p.

Fix a prism Q € Qr, and a point z € Y(Q). The set of prisms P € Py with € Y’'(P) point
in directions that satisfy Z(dir(P),dir(Q)) < p, and this set of directions is p-separated and broad
with error <5 1 at scales > p inside a cap of diameter p centered at dir(Q). For each such P
(contained in a p tube T}), the set of tubes T' € T[T},] with z € Y’(T) are broad with error S5 622
at scales > 0, inside a cap of diameter p centered at dir(P). Thus by Lemma 7.13 (broadness
combines across scales) and Items (ii) and (iii) of Definition 7.1, we have that the set of tubes
T € T associated to the point z € Y (Q) point in directions that are broad with error s d~22 at
scales > § inside a cap of diameter p centered at dir(Q).

Note that even though the conclusion of Lemma 7.13 is a statement about multi-sets, here
it is also true in the sense of sets. Indeed, Item (ii) of Definition 7.1 says that for each point
z € Ugeo, Y(Q), we have that the sets {dir(7") : T € T[T)] and z € Y'(T) N Y'(P)} are disjoint,

p

as P ranges over the elements of UQer Pq that are contained in 7). In particular, we can
p

construct a set Tj; of p tubes that covers T’, so that (T',Y”)s is broad with error S5 622 relative
to Tﬁ.
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Step 14.

We would like to show that (T',Y”")s, Q and its associated shading Y, and T satisfy Conclusion
(C) from Lemma 8.3. First, the prisms in @ might not be essentially distinct. This can be fixed,
however, using the same argument as was employed in Step 5 from the proof of Lemma 8.2. In
brief, we merge comparable prisms from Q into a single prism. Denote the resulting set of prisms
by P; these are essentially distinct prisms of dimensions comparable to a x bx c. Let Y be the
shading on the prisms of P obtained by taking the union of the shadings Y(Q), QC P. We define

Pp = U Pg.

QeQ

QCP
Note that if P € Pp, then Z(dir(P), dir(P)) < b/c = p. Thus after enlarging @ and b by a constant
factor if needed, we can ensure that if (i): 77N P # (), (ii): T exists P through its long ends, and
(ili): P € Pp, then TNP # () and T exists P through its long ends. At this point, the pair (T',Y”);
and (P, Y/)axl}m satisfy some of the requirements of Conclusion (C) from Lemma 8.3. The situation
matches the setup at the end of Step 5 in the proof of Lemma 8.2.

We now proceed with the same argument that was used in Steps 6 — 8 from the proof of Lemma
8.2. We conclude that either Conclusion (A) of Lemma 8.3 holds (this is the same as Conclusion
(A) of Lemma 8.2), or else there is a set T; and a further refinement of (T’,Y”)s and (P, Y)axbXC
that satisfies Items (i), (ii), and (iii) of Conclus10n (C) from Lemma 8.3 (Items (i), (ii), and (iii)
of Conclusion (C) from Lemma 8.2). Note that Item (iv) Conclusion (C) is also satisfied, since
p > 0-¢/400, We conclude that Conclusion (C) from Lemma 8.3 holds. O

9 A refined induction-on-scales argument

The goal in this section is to show that if (T,Y)s is a set of é-tubes, then either | J; Y (T') has larger
volume than one would expect from the estimate (1.3) from Assertion (o, w), or else there exists a
scale § << p << 1 and a set of p tubes that factors T above and below with respect to the Katz-Tao
Convex Wolff Axioms and Frostman Slab Wolff Axioms. The precise statement is as follows.

Proposition 9.1. Let w,{ > 0 and o € (0,2/3], and suppose that E(o,w) is true. Then there
exists a,n,k > 0 so that the following holds for all 6 > 0. Let (T,Y)s be 6" dense, and suppose
that Cxr.cw(T) <677 and Cr_sw (T) < 7. Then at least one of the following must hold.

4) U Y (1)| = woem @) (#T)IT) 7. (9.1)

TeT

(B) There exists a refinement (T',Y")s of (T,Y)s that is 6¢ dense, a number p € [§1~«/100 §w/100]
and a set T, that factors T" above and below with respect to both the Katz-Tao Convex Wolff
Azioms and the Frostman Slab Wolff Azioms, both with error < 6.

Proof. Step 1. Let €1,€9,e3 be small numbers to be chosen below. We will select €1 very small
compared to €2 and &5 very small compared to €3. These numbers depend on w, o, and (. We will
select n and « very small compared to ¢;.

Apply Proposition 7.5 (two scale grains decomposition) to (T,Y) with ;1 in place of ¢, and let
a1 = a1(w,0,e1) be the output of that proposition. If Conclusion (A) of Proposition 7.5 holds,
then (9.1) is true (provided we select a < 1), and we are done.
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Next, suppose Conclusion (B) of Proposition 7.5 holds. Let p, ¢, (T1,Y1)s, Tp, and (G,Y)ax pexc
be the output from Proposition 7.5, Conclusion (B).

Apply Proposition 4.6 (factoring convex sets) to T,. We obtain a ~, 1 refinement of T,, which
in turn induces a ~, 1 refinement of (T, Y7)s (abusing notation, we will continue to refer to these
objects as T, and (T, Y7)s) and a collection Z of congruent convex sets that factors T, from above
with respect to the Katz-Tao Convex Wolff Axioms and from below with respect to the Frostman
Convex Wolff Axioms, both with error <, 1. Furthermore,

#T,1Z] Zp Cxerow(T,)|Z||T,| ™' for each Z € Z. (9.2)

If Crrow(T,) < 5~¢, then provided we select e; < /2, we have that (Ty,Y;) and T, satisfy
Conclusion (B) of Proposition 9.1, and we are done. Indeed; by Remark 4.3(A) we have Cr_sw (T,) S

~

Crsw(T1) Ss 6™t < §7¢, while by Remark 4.3(B) we have CKT_CW(TlT”) S Crrow(T) <077
for each T, € T).

Step 2. We now consider the case where Cxrcw (T)) > §=¢, and hence

#T,[Z] =6 ||TZ|‘ for each Z € Z. (9.3)
P

Our goal is to show that Conclusion (A) of Proposition 9.1 holds, provided o > 0 is chosen
appropriately.
First, we claim that either Conclusion (A) of Proposition 9.1 holds, or else the prisms in Z are

almost tubes. Indeed, let t x 6 x 2 be the dimensions of the prisms in Z. If €; is chosen sufficiently
small depending on s, w, and o, then by applying Proposition 5.2 with 5 in place of &, we have

U v z 6= (0) @nmismm ), (94)

TeT,

where the implicit constant depends on e5. In particular, we may suppose that
t > 6%%0, (9.5)

or else Conclusion (A) of Proposition 9.1 holds, provided 3 < e3w/2 and a < e3w/2. Replace each
t x 0 x 2 prism Z € Z with its coaxial #-tube. After dyadic pigeonholing and replacing (T1,Y1)s
and T, with a ~; 1 refinement, we can find a balanced cover Ty of T, that factors Ty from below
with respect to the Frostman Convex Wolff Axioms and from above with respect to the Katz-Tao
Wolff Axioms, both with error g5 67°3.

(9.3) implies that for each Ty € Ty we have #T,[Ty] Zs 053 °(0/p)?, and hence

#Tp X5 677°(0/p)*(#To).- (9.6)
Step 3. For each Ty € Ty, define
Or, = U gr,-
T,€T,[Ty]

We claim that either Conclusion (A) holds (for a suitably chosen value of o), or else there is a /25 1
refinement of (G,Y)axpexc so that the following holds: a € [4, §17¢1] and for each Ty € Ty and each
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G € Gr,, the set of grains G’ € G, with Y(G) NY (G’) # 0 is contained in a prism of dimensions
comparable to 991722 e x ¢ (compare this with the dimensions of G, which are a x pc x ¢). The
argument is identical to the argument in Steps 1 and 2 from Lemma 8.3; we refer the reader to
those Steps for details.

We shall suppose henceforth that for each Ty € Ty and each G € Gr,, the set of grains G’ € G,
with Y(G) NY(G’) # 0 is contained in a prism of dimensions comparable to 9517—52 x Oc x c.

Step 4. By dyadic pigeonholing we can find a number g, and a =5 1 refinement of (T1, Y7)s and
T, so that for each T, € T, and each @ € Urper,j7,) Y1(T), we have

i ((Tl [TP])YI (‘7;)) ~ HUfine-

We can choose these refinements so it continues to be the case that (’H‘lT” , YlT” )s/p is Zs 0°1 dense
and CF_SW(TlT”) <o 07° for each T, € T, (recall that we still have C’KT_CW(']I‘lTP) <o)

If 1 is chosen sufficiently small depending on e9, then we can apply the estimate £(o,w) to
conclude that for each T, € T,, we have

0\ w T -0

LU |z O emmhi (#nimh ()7

TET:[T}) P 2ol

1l4p
where the implicit constant depends on €9, and hence by (9.6),
0\ —w—¢e2 #Tl o\° 9% 5\ —w #Tl (Sp o
< (2 ) < estoC( = il St
Hiine ~ (p) (#TP p) SR (p) (#Tg 92> ' (07)

Step 5. In previous applications of induction on scale, the estimate (9.7) would be paired with
a multiplicity estimate on the tubes in T,. Our innovation, however, is to pair the estimate (9.7)
with a multiplicity estimate on G.
After refining the pair (G,Y )axpexe by a =5 1 factor (this in turn refines (T1,Y7)s by a similar
quantity), we can find a number fiyedium S0 that for each Ty € Ty and each x € UGegT Y(G), we
6

have

#{G € ngf S Y(G)} ~ HUmedium-

Our task is to estimate fmeqium- Recalling the conclusion of Step 3, we can cover Ty by rectan-
gular prisms P of dimensions comparable to 9517—52 X fc x ¢, so that every pair of grains G, G’ € Gr,
with Y(G)NY (G’) # 0 are contained in a common prism. Let P denote this set of prisms; then for
each P € P, Qﬁ is a set of prisms, each of which has dimensions roughly g X g x 1 (more precisely,
each prism in gﬂ has dimensions comparable to s x t X 1, where s,t € [5525, g]; this additional §%2
factor will be harmless). After pigeonholing, we may assume that the lengths s and ¢ are the same
for every Ty € Ty and every P € P.

We have CKT_CW(Q{}DG) < 6752009 L, (G) < 07517%2 ) while
Crsw(Gh) < Crow(Gh) < Crrow(Gh)(p/0)2(#G5 )71 < 6751 722(p/0) "2 (465 )7L,

If €9 is selected sufficiently small depending on e3, w, and o, then we can apply Assertion &(o,w)
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to conclude that

| U YPen)| = () reewan)an ([0 2#en) 7 [#eh ] [I671)

0
GPegr,
2 (5) 62 (#0E)IGTI(5)",
and thus
Hmedium éé 6_263 (g)_w_0~ (98)

Step 6. At this point, we have estimated the quantities pfne and pimedium- The former allows us
to control the number of § tubes that contribute to (a specific point in) a grain, while the latter
allows us to control the number of grains that contribute to (a specific point in) a 6 tube.

It remains to place a dense shading on Ty and obtain a corresponding multiplicity estimate for
the number of @ tubes that contribute to (a specific point in) R3. After dyadic pigeonholing, we
can refine (T1,Y1)s and T, so that for each Ty € Ty and each @ € Urper, i, Y1(T'), we have that

|B(z,0) N Urer, 1, Y (T)] has roughly the same volume. Let Y (7p) = Ty N N9(UTe'J1‘1[T0} Yi(T));
then (Tp,Y )y is Zs5 0°* dense. After further pigeonholing we can find a number ficoarse SO that

#(To)y (z) ~ feoarse for each z € U Y (Ty).
TyeToy

By Remark 4.3(A), we have Cr_sw (Tp) S Crsw(T) S5 07°1, and Crpow (To) S 63 Cxrcw(Z) Ss
073, Thus if &1 is chosen sufficiently small compared to e9, then we can apply £(o,w) to conclude
that

| U Y@ z 0= o) [l (#T0) [T 2)

TyeTo

and hence o
Heonrse S 0777275 (#T)0) (9.9)

Combining (9.7), (9.8), and (9.9), we conclude that for each x € R? we have

#{T €Tz e }/I(T)} < Hfine Hmedium Mcoarse

o 9.10
é 5—4&3+UC(5—w ((#T)é) ) ( )
We conclude that .
U y@)| zs oot gmofr) (@)
TeT
Since #T1 Zs 61 (#T), we have that Conclusion (A) holds, provided we select €3 < 0(/10 and
a < o(/10. O

10 Sticky Kakeya for tubes satisfying the Katz-Tao Convex Wolff
Axioms at every Scale

In Section 6, we recalled a version of the Sticky Kakeya Theorem that was proved in [26]; this is
Theorem 6.2. Theorem 6.2 applies to families of tubes that satisfy the Frostman Convex Wolff
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Axioms at every scale, in the sense of Definition 6.1. In this section, we will prove an analogue of
Theorem 6.2 for sets of tubes that satisfy the Katz-Tao Convex Wolff Axioms at every scale.

Definition 10.1. Let K > 1,0 > 0. We say a set T of essentially distinct d-tubes satisfies the Katz-
Tao Wolff Azioms at every scale with error K if for every po € [6, 1], there exists p € [po, Kpo) and
a set of p-tubes T, that satisfies the following properties.

(i) T, is a K-balanced partitioning cover of T.

Theorem 10.2. For all € > 0, there exists n,k > 0 so that the following holds for all § > 0. Let
T be a set of 6-tubes that satisfy the Katz-Tao Convexr Wolff Axioms at every scale with error §— ",
and let Y(T) be a 6" dense shading. Then

‘ U Y(T)) > k0% (#T)|T. (10.1)

TeT

In the next section, we will combine Theorem 10.2 with Proposition 9.1 to prove Proposition
1.7. Theorem 10.2 is proved by combining Theorem 6.2 with the following Nikishin-Stein-Pisier
Factorization type result.

Proposition 10.3. Let e > 0. Then there exists K.,n > 0 so that the following holds for all § > 0.
Let T be a non-empty set of 6 tubes inside the unit ball in R that satisfy the Katz-Tao Convex
Wolff axzioms at every scale with error 6~". Then there exist rigid transformations Ai,..., An,
N < K (#T)"YT|™! so that each set A;(T) is contained inside B(0,2), and Uf\il Ai(T) contains a
subset of essentially distinct tubes that satisfies the Frostman Conver Wolff Axzioms at every scale
with error K.07¢.

Proof of Theorem 10.2 using Proposition 10.3. Fix ¢ > 0 and let n = n(e) > 0 be a small quantity
to be determined below. Let (T,Y)s be 0" dense, and suppose that T satisfies the Katz-Tao Wolff
Axioms at every scale with error 6~"7. After a harmless refinement we may suppose |Y (T)| > §2|T)|
for each T € T.

Apply Proposition 10.3 with a small value €1 in place of e. We may do this, provided 7 is
selected sufficiently small depending on £1. Let T C Uf\; 1 4;i(T) be the output from Proposition
10.3. Note that each T € T is of the form T = A;(T) for some index i and some T € T, and hence
we can define the shading Y (T') = A;(Y(T)); we have |Y(T)| = |Y(T)| > 6*"|T|, and hence (T,Y);
is 62" dense.

If &1 and n are chosen sufficiently small depending on ¢, then we can apply Theorem 6.2 to
conclude that

N Uy = i) U 4r ()| = | [VJ U a@)| = | U 7@ = s
1=1T€T

TeT i=1 TeT

Re-arranging and noting that N < K (#T)~!|T|~!, we obtain (10.1), with x = k. K_ ' O

It remains to prove Proposition 10.3. We will do so below.
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10.1 Nikishin-Stein-Pisier Factorization and the Convex Wolff Axioms

We begin with a single-scale version of Proposition 10.3. We first need the following definition.

Definition 10.4. We say that a set T of § tubes is regular with granularity 7 € [4, 1] if for every
scale p € [8,1] of the form p = 7, £ € N, we have that T has a balanced partitioning cover by p
tubes.

Definition 10.5. For p > 0, we define %A, to be the set of rigid transformations A: R3 — R3 that
satisfy |Ax — x| < p for all x € B(0,1).

Lemma 10.6. For all ¢ > 0, there exists n > 0 and K; > 1 so that the following holds for all
0<0<p<1 Let K,M > 1 and let Ty,...,Tx be sets of § tubes in B(0,1) C R3, each of
cardinality at most M. Suppose that the tubes in each set T; are regular with granularity 6", and
furthermore each set T; is contained in a p tube.

Then there exists a set of rigid transformations A C A, with #A = [AZ;ZJ , so that

CKT_CW<A|€|AA(TJ-)> < K.07%(log(2 + K))Crrow(T;), j=1,.... K. (10.2)

Remark 10.7. Note that for distinct A, A’ € A, the sets A(T;) and A’(T;) might contain common
tubes, and thus the disjoint union on the LHS of (10.2) should be interpreted as a multiset. By
Remark 4.2(D), the LHS of (10.2) is well-defined.

Proof.
Stepfl. Define § = 0/p. First, we may suppose that M < 672, or else we can define A = {I} (here
I: R® — R3 is the identity map) and we are done. Similarly, we may suppose p > 617¢/2 or else
we can define A to be [AZ;ZQ] infinitesimally perturbed copies of I, and (10.2) follows from the fact
that
CKT.CW< |_| A(Tj)> < (#A)CKT—CW(Tj)-
AcA

Fix an index j € [1,..., K] and let T = T;. By hypothesis, all of the tubes in T are contained
in a common p tube, which we will denote by T},. Fix numbers § < a < b < 2p, with both a and b
of the form 6. Let v > 1 be a power of 2. By hypothesis, T has a balanced partitioning cover T,.

Let W, be a maximal set of essentially distinct a x b x 2 prisms, each of which satisfy #T[W] €
[l/%, 2yﬁ¥a). Note that each W € W, is contained in N2,(7},). Observe that if W is an a x b x 2
prism and T' € T[T,] with T C W, then T, C 2W. In particular, since T, is a balanced partitioning

cover of T, we have

#T,[2W] >v/2 for each W € W,,.

Each tube T, € T, is contained in <

b
~ a
double-counting we have

essentially distinct 2a x 2b x 4 prisms. Thus by

#Wy S <#Ta)§v*. (10.3)

The above estimate is useful when v is not too large. When V% > Crr.cw(T)(ab)|T|7, then
W, = 0.

Step 2. We say two rigid motions A, A" € 2, are d-separated if there exists a point = € B(0,1) with
|A(z) — A'(x)| > 6. Let ng be a maximal d-separated subset of 2,; we have #Qlf, ~ 676 =66/p5.
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Let
2

P
N=2 {M(SJ (10.4)
and let Aq,..., Ay be chosen uniformly and independently at random from 912. We have
P(#{A1,..., AN} > N/2) > 3/4, (10.5)

where #{A41,..., Ax} denotes the number of distinct rigid motions in the set {A,..., An}.
Fix a a x b x 2 prism Wy. We would like to estimate the probability that

(|_| A(T)) W] 2 K67/ (10(2 + K))Crcrcw (T)|WolIT| ", (10.6)
i.e. we would like to estimate the probability that
Z#T Wo))] = K67/ (log(2 + K))Crer-cw (T)|Wo||T| " (10.7)

Note that if (10.7) occurs, then by pigeonholing, there must be some dyadic v so that

#{(W,i) € W, x {1,...,N}): A4;(W) is contained in 10Wy} > Z,, (10.8)
where
Z, = (41og(1/5))*1K65*5/2(1og(2+K))CKT_CW(T)1WO|1T|*1( sup #T[W ])_1. (10.9)
Wew,

We may suppose that

#T
o #TW)~ v,

< Crr-cw (T)(ab)|T| 71, (10.10)

since otherwise W, = (), and thus it is impossible for either of Inequality (10.8) or (10.7) to be true.
Since |Wy| = 2ab, we can use (10.10) to bound Z,. We conclude that

Z, > (2log(1/8)) "' K.675/*(log(2 + K)).
We will choose the constant K. sufficiently large so that Z, > 2, and in particular
Zy—1~ 2, (10.11)
This will be relevant in Step 3 when we apply Chernoft’s inequality.

Step 3. We will estimate the probability that (10.8) occurs for a fixed choice of v and Wy. For
two a x b x 2 prisms W, Wy, both of which are contained inside No,(7},) we have that the number
of Ae Ql‘sp for which A(W) is comparable to Wy (or equivalently, A~ (W) is comparable to W) is
< 6 %a2b2pmin{a/b, p}. We will write this as 6 %a2b? min{a/(bp),1} < 6 %a2b?, where we define
a=ua/pand b=b/p.

The reason for this numerology is as follows. Without loss of generality, assume Wy = [0, a] X
[0,06] x [0,2]. Then a rigid motion A is determined by A(v;) with vg = (0,0,0),v; = (0,1,0),vy =
(0,0,1). Since A € Qli, the number of d-separated choice for A(vg) is < w ~ ‘%—bgp. Once
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A(vp) is fixed, the number of d-separated choices for A(vy) is < g—g. Once A(vp), A(ve) are fixed,
the number of §-separated choices for A(vy) is < min{%, p}6~1.

Thus if we define X; to be the event that there exists W € W, such that A;(W) is comparable
to Wy, then ) ) )
P(X;) S 67000 - #A)- #W, S @V (F#W). (10.12)

~

Since the prisms in W, are essentially distinct, there can exist at most O(1) W € W, such that
A;(W) is comparable to Wj. Thus by linearity of expectation, we have

E(#{(W,z) € W, x{1l,...,N}): A;(W) is comparable to Wg})

—E(Xi 4 ...+ Xy)
S Na*b (#W,)
<9 P 7272
< 2| 5 |20 ()
On the third line we used (10.12); on the fourth line we used (10.4) and (10.3).
Define X = X; + ...+ Xu. Recalling (10.9) and (10.11), we have
2

P
Mé§?

7= ]E(Z)V() > log(1/8) " K.67%/*(log(2 + K))Crer-cow (T)|Wo||T| (2{

=272 -1
|a%* sup #T(W]- (W)
wew,
~lpr 5—¢/2 ~1 P> 7 ai2b -1
2 log(1/8) " Ko~/ (10g(2 + K))Cer-cw (DIWolI T ™ (2] 5 |20~ (#T))
2 log(1/0) ' K67*/*(log(2 + K))
On the second line we used (10.3) and the inequality #T[W] ~ V%; on the third line we used

the fact that [T ~ 62 and the fact that @ = a/p; and on the final line we used the fact that
Crrcw(T) > 1, 0% < 4, [Wy| = 2ab, and #T < M.

Hence we can apply the multiplicative Chernoff’s inequality to conclude that

ev—1 )IE(X)

- S e B0 = 7% < (24 k) os /TR < el op K57/,
Y

~

P(X > 7,) < (

-1

For the second inequality, we used the fact that K. is sufficiently large, EYW <eVforall d >0
and K > 1.

Step 4. There are log(1/d) choices of v; at most a=3b~! < §=% essentially distinct prisms Wp;
and 772 choices of numbers (a,b). Thus the probability that there exists some prism W C
Ns,(T,) of dimensions a x b x 2 for some pair a < b of the form 7 for which (10.6) holds is
< 00K lexp[—K.07¢/3]. We will select K, sufficiently large so that this quantity is at most
(2K)~!. If no such prism exists, then provided n < £/4 we have

N
CKT_CW( || Ai(T)) < K.67%(log(2 + K))Crercw(T). (10.13)
=1

Indeed, for every prism W C R? of dimensions a x b x 2, we can select a prism W’ C W of dimensions
a' x b x 2 with @/, of the form 6 and [W'| < §=21|W| < 6~¢/2|W|.
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In particular, we have that (10.13) holds with probability at least 1 — (2K)~!. Since there are
K sets of tubes Ty,..., Tk, we conclude that with probability at least 1/2, we have that (10.13)
is true for every set Ty,..., Txg. Finally, by (10.5), we have that the probability that #A4 > N/2
and (10.13) is true for every set Ty,..., Tk is at least 1/4. We conclude that there exists a choice

of A1,..., Ay and a set A C {41,... An} of cardinality [1‘522-‘ so that (10.2) holds. O

Lemma 10.6 has the following consequence.

Corollary 10.8. For all € > 0, there exists n > 0 and K. > 1 so that the following holds for all
0<6<p<1. LetT be a set of d-tubes, and let T, be a balanced partitioning cover of T. Suppose
that for each T, € T,, we have that TTr is reqular with granularity (5/p)".

Then there exists a set of rigid transformations A with #A = 2 [ﬁ%p %] and
A(T,) C N3,(T,) foreach Ac A, T,cT,, (10.14)

so that

CKT-CW(( |_| A(T ) (N3, (T, )]) < K. °Crrow(T) for each T, € T),. (10.15)
AcA

Remark 10.9. An immediate application of Lemma 10.6 yields the slightly weaker statement

Cxr.cw (( |_| A(’]I‘[Tp]))> < K6 “Crrow(T) for each T, € T,
AcA

but (10.15) follows from the hypothesis that the tubes in T, are essentially distinct, and hence
there are < 1 tubes T, € T, for which (Lla A(T[Tﬁ’)])) [T,] is non-empty.

We are now ready to prove Proposition 10.3.

Proof of Proposition 10.3. Step 1. Fix € > 0. Let €1 > 0 be a small quantity to be chosen below.
We will choose €1 small compared to €, and 7 small compared to €1. Let T be a set of § tubes that
satisfy the Katz-Tao Convex Wolff axioms at every scale with error 6.

Provided we select 1 < ¢, there exists a number J ~ e~! and scales 1 = py > p; > ... > pj =0
with 6° < pj11/p; < 1/8 for each index j, so that the following holds: for each index j =0,...,J—1,
there is a 6~ "-balanced partitioning cover T,, of T, with Cxr.cw(T,,) < 07" Define T,, = T.

Currently, T, covers T, but unfortunately, it might not be the case that T, covers T, ;.
We can fix this as follows. We know that for each index j > 0, we have T[T}, ,] # 0 for each
Ty, ., € Tp,,. Since T,, covers T, we have that for each T, ., € T,,,,, there exists T, € T,, so
that T[T}, ,] N T[T,,] # 0, and hence T),,, N T), contains a unit line segment. But this implies
that T, ., C N2p]+1<TpJ) Thus, if we replace each set T, with {Na,, ,(T),): T, € T} for
Jj=0,...,J —1 (leaving T,, unchanged), then for each index j we have that T, covers T, ,.
It is still the case that T, is a < d "-balanced cover of T, and hence T,, is a < 5~ ?"1-balanced
cover of T, ,. Abusing notation, we will continue to refer to these sets as T,, (even though this
set is technically a collection of (p; + 2p;11) tubes; since pj11 < p;/4, this distinction will not be
important). Note that it might no longer be the case that the tubes in T,, are essentially distinct,
nor that T, is a partitioning cover of T.

Step 2.
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After dyadic pigeonholing, we can replace each set T,, by a subset (abusing notation, we will
continue to refer to this subset as T,;) so that #T,, Z #T, and the following holds for each

j=0,...,J. (To simplify notation, we define ij = N3y, (T),) and 'f['pj = {ij: Ty, €Ty} ).

(i) The tubes in 'ﬁ‘pj are essentially distinct.

T,) =T, .[T,

(ii) For each T}, € T,,, we have T il

pj+1[ Pj+1[

(iii) T,, is a balanced partitioning cover of 'f[‘pj -

iv) for each T,. € T,., we have that (T,. Toj s regular with granularity (3p;/p;i+1)™.
Pj Pj Pj+1 I

For each index j = 1,...,J, apply Corollary 10.8 with &1 in place of ¢, ij in place of T, T,,_,
in place of T, 3p; in place of 6, and 3p;/p;—1 in place of p. Let A; be the output of Corollary 10.8.

By (10.14) plus Item (ii) above, for each T), , € T,,_,, we have
|_| A(ij [ijq]) = |_| A(ij [ijfl]) - ij717 (10-16)
AcA; AcA;
and hence by Item (iii),
’]ijq covers |_| A(ij). (10.17)
AcA;

Here the disjoint union is in the sense of multi-sets.

We have
_ N T,. T,
#(( L AT)T ) > ) () 2 2 for a7y, €T, (108)
A€ A; i1 J

By (10.15), there exists C;, > 1 so that

Cxrcw (( |_| A(']T’pj)) [ij71]> < C., 6751721 for each ijq € ijfl. (10.19)
AE.Aj
Step 3. Define A = {I} and for j =1,...,.J, define
AD = {Aj0Ag0...0A;: A; € A; for each i =1,...j}.

Define A = AM); this set of transformations will be the output of Proposition 10.3.
For each index j =0,...,J, define
T, = || A(T,).
Ac AW

By (10.17), ']AI‘p].71 covers ij foreach j=1,...,J.
By (10.18), for each 1 < j < J and each T,,_, € Ty,_, we have

I T,
#T,.1T,. ] 2 ——.
PJ[ ngl] ~ |ij|
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Thus after dyadic pigeonholing, we can replace each set ij by a refinement ?AI‘;)J_ (in the sense

of multi-sets), so that ’]AT;,F , is a balanced partitioning cover of 'ﬁ‘foj for each j = 1,...,J, and for
each j=1,...,J and each T, _, € T,,_, we have

- T .
#T, (T, JNé"‘ 1

Tp,1
and hence
#T, [T 1> 577/5@ f hT T (10.20)
psLpil < 7] or each T, o ‘
Step 4. Using Lemma 4.12 and (10.19), we have
J
CKT-CVV(T ) < Crr-cw( H C L0 277 <o 2e1d

In particular, for each T € ']T; ,, there are < 57217 tubes T € ']AI‘;) , comparable to T. Recall
that J ~ 71 We Wi~11 choose ¢ sufficiently small so that 2e1.J < /4. Thus we can select a set
Tt C T,, CUgea A(Tp,) with #TT > 55/4(#']I';)J) > 0°|T|~! that consists of of essentially distinct
tubes. The set TT will be the output of Proposition 10.3.

It remains to verify that T satisfies the Frostman Convex Wolff Axioms at every scale, with
error 6~ ¢. To do so, it suffices to note that for each index j = 0,...,J — 1, we have that "JI‘;]_ is a
6~¢/427 =7 _balanced partitioning cover of TT, and thus if we choose i < £2/2, then for each ij € T;j
we can use (10.20) to conclude that

Crer-ow (T [T, |
#T1[T,,] |7

<6 Crrow (TH) < 6740 ey (T

)< O

Crow ((TH ) <

11 Multi-scale analysis and the proof of Proposition 1.7
Our goal in this section is to prove Proposition 1.7 by combining Proposition 9.1 and Theorem
10.2.

Lemma 11.1. Leto € (0,2/3]; w,e > 0 and N > 1. Suppose that E(o,w) is true. Then there exists
n,a, k > 0 so that the following holds for all § > 0. Let (T,Y)s be 6" dense with Cxr.cw(T) <577
and Crp_sw(T) < 67". Then at least one of the following must hold.

(4) U Y@ = s @D (DT ) 7
TeT

(B) There is a 6¢ refinement (T',Y")s of (T,Y)s; a number J < 2N scales § = p; < pj_1 < ... <
po=1; and sets T,;, j=0,...,J, so that the following holds

(i) piz1/pi > 00~ w/100™ for eqch i =0,...,J — 1.

(ii) T =T,,, and T,, consists of a single 1 tube.
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Ty, Ty,
(iii) For each i = 1,...,J — 1 and each T,, , € T,, ,, we have that T, factors T, ;"

from above and below with regard to the Katz-Tao Convex Wolff Axioms and Frostman
Slab Wolff Axioms, both with error 6~¢.

Proof.

Step 1. We will prove the result by induction on N. When N = 0 there is almost nothing to
prove; since the tubes in T are contained in the unit ball, we can select a ~ 1 refinement T C T
that is contained in a single 1 tube. We have J = 1, and Conclusion (B) always holds (note that
Item (iii) of Conclusion B is vacuously true when J = 1.

Suppose now that the result has been proved for N — 1. Let # € (0,2/3] and let e,w > 0.
Let €1,€2,m,a,c > 0 be small quantities to be determined below. We will choose €; depending on
g, N,0,w; e2 small compared to €1; and 7, a, ¢ small compared to es.

Let (T,Y)s be 0" dense and satisfy Crr.ow(T) < 677 and Crgw(T) < 677, If 5 is chosen
sufficiently small depending on w, o, and €2, then we can apply the induction hypothesis with 5 in
place of ¢; let a; = ay(w, 0,62, N — 1) be the corresponding value of a.

If Conclusion (A) holds when we apply the induction hypothesis, then Conclusion (A) holds
and we are done, provided we select @ < ay. Suppose instead that Conclusion (B) holds, i.e.
there is a 6°2 refinement (T/,Y”)s; scales 6 = p; < pj_1 < ... < po = 1 with J < 2V~ and
pit1/pi > §A=w/100)% 71 31 sets T,, satisfying Conclusion (B) with &3 in place of €.

Replacing (T',Y’)s and each set T,, with a (log1/8)™7 > (log 1/6)72" refinement, we can
construct shadings Y,, on T,, so that the following holds.

(a) |Y,(Tp,)| 2 (log 1/6)72" 6", where T, is the unique tube in T, .
(b) Foreach T, € T,,, we have that (Tgﬁl , Yp?iil)piﬂ/pi is > (log 1/6)~2" 6" dense, and Y,,.Ty,)s
is a > (log1/6)~2" -refinement of (T',Y”)s.

(c) Ttem (iii) of Conclusion (B) remains true, with the error 62 weakened to < (log1/8)2" §—<2.

T,
(d) Foreachi=1,...,J—1andeach T),, , € T,, ,, we have that T,,""" is a balanced partitioning

TPi—l
cover of Ty, 1" .

(e) For each i =0,...,J — 1, the quantity

U Yﬂi+1 (Tpi+1)

T€Tp; 4 [Tp,]

is approximately the same (up to a multiplicative factor of 2) for each T, € T,,.

(f) We have
J-1 1
‘ U Y(T)‘ Z H ( sup ‘T" U Ypi+1(TPi+1) ) (11'1)
TeT i=1  Tpietp; 17pPi Ty 1 €Tps 1 [Tg]

Item (f) is obtained by selecting each shading Y, , so that the union UTpi+1 €Tpr s [T Ypiii(Tppy) C
Y,,(T},,) has approximately the same density (up to a multiplicative factor of 2) on balls of radius

pi contained in Y, (T},,). By the previous item, the RHS of (11.1) is reduced by at most a factor
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of 27 if the supremum in (11.1) is replaced by an infimum. Items (a) - (e) are obtained by dyadic
pigeonholing; we omit the details.

If €9 is chosen sufficiently small depending on 1, then for each index i and each T, € T,, we
have

1
T U Ypi+1 (Tpi+1)
T,

Tpi 11 €Tpi 11 [Tp;]

€1 v # i41 # i1 i1 -0
o (o (i, ) () () ) 7

Indeed, (11.2) follows from the estimate £(o,w); this estimate can be applied, for example, when
p”l < 6% and e is selected sufficiently small depending on w, o, and ;. If 222 > §°1 then (11.2)
follows from the elementary fact that the volume of the LHS of (11.2) is bounded below by the
volume of Y, (T},,,) for every T, . € T, [T},.].

Step 2.

1—w/100)N

We say an index i is of Type C if pj+1/p; > 2N ; in this case no further splitting

is required. If instead p;11/p; < 27N §—w/ 100)N, then apply Proposition 9.1 (refined induction on

scales) with w and o as above, and ( = ¢ to each arrangement (']I‘pr,Yplill)pZH/pl we can do this
provided €5 is chosen sufficiently small depending on w, o, N, and e. If Conclusion (A) holds for at
least one T, € T,,, then we say the index i is of Type A. Otherwise we say that the index i is of

Type B.

Suppose there exists at least one index of Type A; call this index iyp. Let ae = ag(w,o,¢) be
the output of Proposition 9.1. Then applying (11.2) to each index i # ip; using Conclusion (A)
of Proposition 9.1 to estimate the contribution from index ip; and using (11.1) to combine these
estimates, we have

e1 (Pi+1 #T i1 #T i+1 |Ti+1 1/2\ ¢
Urmlz T (e Cgpem. (g (™))
1#i0
€1 Pig+1\w—a2 #szo+1 #Tp¢0+1 |Tpi0+1 172\ ¢
(5 ( Di ) ( #T )|sz‘0+1(( #TPiO )( ’Tpio‘) ) ) (11.3)

N Ity (<#T>\T|1/2)“’

> 55121\’—(12( —w/100)N (#T)‘T|((#T)|T‘l/2)

Thus Conclusion (A) of Lemma 11.1 holds, provided we select @ < Saa(1 — w/100)Y and g1 <
27N Lay(1 — w/100)N

Step 3. Suppose instead that every index is of Type B or Type C. We will show that Conclusion

(B) of Lemma 11.1 holds. For each index i of Type B, starting with the lowest, we will perform
the following procedure. After dyadic pigeonholing, there is a number s € [(%)PW, (pfoi) 100 ]
and a set ']T;i C Ty, with #T;u Zs #T,, such that the output “p” from Proposition 9.1 is between

s and 2s for each T), € T/Pi' Define p;;1/2 = spi. Then
Pit+1/2 > 5> (Pi+1)1—1‘“ﬁ > (2—N+15(1—w/100)N*1)1—%.0 > 2—N5(1—w/100)N' (11.4)
Pi Pi
Similarly, we have
Pirt _ Pir1 Pi piv1 1 > }(pi+1)1—fm > 9= N §(1-w/100)~ (11.5)
Pit1/2 Pi Pit1/2 pi 28— 2% p;
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This verifies Item (i) from Conclusion (B) of Lemma 11.1.

Let Ty, /2 be the union of the corresponding sets from Proposition 9.1, and let
/
Tp¢+1 = U Tpin [Tpi+1/2]‘
Tpi+1/2€TPi+1/2
T), .
Then for each T}, € T),, we have that T, , factors (T}, )%ri above and below with respect to

the Katz-Tao Convex Wolff Axioms and Frostman Slab Wolff Axioms, both with error 6¢. This
verifies Item (iii) from Conclusion (B) of Lemma 11.1.

To conclude the proof, we re-index our sets T;n and Ty, , , using consecutive integers 1,2,3.. .,
and let T" =T, ,, where J' is the final index after re-indexing. Note that J' <2J —1 < 2N After
re-indexing, we still have pg = 1 and pj = §. This concludes the induction step. ]

Lemma 11.2. Let 0 € (0,2/3] and w,e > 0. Suppose that E(o,w) is true. Then there exists
n,a,k > 0 so that the following holds for all 6 > 0. Let (T,Y)s be 0" dense with Cxr.cow(T) < 07"
and Cr_sw(T) < 67". Then at least one of the following must hold.

(4) U Y@ 2 s (4T

TeT

(B) There is a 6° refinement (T, Y")s of (T,Y )s that satisfies the Katz-Tao Convexr Wolff Axzioms
at every scale with error ¢ (recall Definition 10.1).

Proof. Let 1 > 0 be a small quantity to be chosen below. Select N sufficiently large so that
(1 —w/100)"N < e. Apply Lemma 11.1 to (T,Y)s with this choice of N, with ¢; in place of ¢, and
with w, o as above. If Conclusion (A) of Lemma 11.1 holds, then Conclusion (A) of Lemma 11.2
holds and we are done.

Suppose instead that Conclusion (B) of Lemma 11.1 holds. After a harmless refinement we can
suppose that each set T, is a balanced partitioning cover of T and hence T, is a 27 < §7¢
balanced partitioning cover of T".

Pit1>

We claim that if £; is chosen sufficiently small (depending on N and €), then the output (T’,Y”)s
of Lemma 11.1 satisfies the Katz-Tao Convex Wolff Axioms at every scale with error . We verify
this as follows. Since (1 —w/100)" < ¢, for each p € [§,1] the interval [p,d~°p] contains at least
one p;. We have already noted that T, satisfies Item (i) from Definition 10.1. It remains to verify
Item (ii). Applying Lemma 4.12, we have that for each index ¢,

J
CKT-CW<T1'> g H 57251 S 572N+151.
j=it1

We will select € sufficiently small so that Cxr_cw (T;) < d7¢ for all sufficiently small § > 0. If § > 0
is not sufficiently small, then Conclusion (A) always holds, provided we select £ > 0 sufficiently
small. O

Proof of Proposition 1.7. Fix w,o > 0 and suppose that £(o,w) is true. Let 1, be the output of
Theorem 10.2 with w/2 in place of €. Let ag, 12, ca be the output of Lemma 11.2 with 7, in place of
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e. Then for every pair (T,Y)s that is 67 dense and satisfies Cxr.cw (T) < 072, Crgw (T) < 6772,
we have

U Y(@)| z g mineser gy (#mfry) (11.6)
TeT
In particular, we have that D(o,w — g(o,w)) is true, where g(o,w) = min(ag,w/2). O

12 Tube Doubling

In this section we will prove Theorem 1.12. We will prove the following slightly stronger statement.

Theorem 1.12'. For all ¢ > 0, there exists n > 0 so that the following is true for all 6 > 0
sufficiently small. Let T be a set of § tubes in R3. For each T € T, let Y(T) C T with |Y(T)| >
OMNT|. Let R > 1 and for each T € T, let Tr denote the R-fold dilate of T. Then

‘ U TR‘ < 5—633‘ U Y(T)‘. (12.1)

TeT TeT

Theorem 1.12 is the special case where Y(7T') =T and R = 2.

Proof. Step 1. First, we may suppose that the tubes in T are contained in B(0, 1) (indeed, we can
cover R3 by a set of boundedly overlapping unit balls, so that each T € T is contained in at least
one ball). Second, we may suppose that the tubes in T are essentially distinct, and in particular
#T < 6=* (indeed, we can replace T by a maximal, essentially distinct sub-collection, and this
affects the RHS of Inequality (12.1) by a constant factor).

Fix ¢ > 0. For each i = 1,2,..., we will define sets T;, T}, and W; as follows. We begin by
defining Ty = T. Define T, and W; to be the output of Proposition 4.6 applied to T;_;. Define
T; = T;—1\T},. We continue this process until Ty is empty, at which point we halt. Observe that
T= |_|ZAL , T%. For each index ¢ we have

#T; > 100_36_100 10g(6*5)(#Ti71),

As a consequence, if j — i > 2 - 1003¢100v108(67°) " then #T; < %(#Ti). Since #Tg < 674, we
conclude that the process described above must halt after < (log1/6)(2 - 1003e'00V108(77)) <5 q
steps, i.e. N 55 1.

Step 2. Fix an index j. To simplify notation, we write T = T; and W' = W).

We have that W factors T’ from above with respect to the Katz-Tao convex Wolff Axioms and

from below with respect to the Frostman Convex Wolff Axioms, both with error K < 1003¢100v108(07%),
Recall that the prisms in W’ all have the same dimensions — denote these dimensions by a x b x 1.

Let €1 > 0 be a small quantity to be chosen below. Our next task is to estimate the volume of
the tubes inside each prism from W', i.e. we wish to obtain a bound of the form

’ U Y(T)’2/<;0551|W|, (12.2)
TET W]

for some kg = Ko(e1) > 0. To do this, we will estimate the volume of the set (Jp YW(T)W; the
latter is a union of prisms of dimensions d/b x d/a x 1. By Theorem 1.9 we have that Assertion
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E(e1/10,£1/10) is true, and thus by Proposition 5.14, we have that Assertion F(g1/10,e1/10) (recall
Definition 5.4) is true. The latter assertion is helpful, since it allows us to bound the volume of
unions of prisms with three distinct dimensions (i.e. prisms that are not tubes).

For each W € W', we will apply the estimate F(¢1/10,£1/10) to the pair ((T)", Y")s /p55/ax1-
Recall that the estimate F(e1/10,e1/10) contains an additional term “D.” However, as discussed
in Remark 5.6, Situation 3, we have D ~ 1 in this setting. If n > 0 is selected sufficiently small
depending on €1, we conclude that for each W € W, we have

U YW(T)W‘ > ﬁoéel/lomfl(#T/[W]”TW’ <m73/2£(#T/[W])‘TW|1/2) —e1/10

TET'[W) (12.3)

€1/2
55 '%06 1/ ’

where m = Crxr.cw((TYWY) Ss (#T’[W])% = (#T'W)|TY|, and £ = Cpsw ((T)"). For the
second inequality, the term (m*:)’/zﬁ(#T’[W])]TW\lﬂ) can be trivially bounded by 6~4. (12.2)
now follows from (12.3) by rescaling and adjusting the constant g if necessary.

For each W € W', define Y/(W) = Upepy T5 we have V(W) C W and [Y/(W)| > ko6 for
each W € W'; we will suppose that § > 0 is chosen sufficiently small so that this quantity is > §2°1.

If &1 > 0 is chosen sufficiently small depending on e, then we can apply F(¢/10,¢/10) to
(W'Y )axbx1 (again, the term D has size at most Cxr.cw (W') <s 1, as discussed in Remark 5.6,
Situation 2) to conclude that

U Y(W)’ > 1052 (#W) W] (12.4)
wew’

Combining (12.2) and (12.4) and returning to our original notation, we have

‘ U Y(T)‘ > k62 S |, (12.5)

TET) Wew;

Step 3. We will now combine the estimates (12.5) for different values of j. Let W = Ujvzl W.
Then W covers T, and

> N1 ‘ ’ 25 K10°/2 . .
’ U Y(T)‘ >N max | | 7] 2o mi07? 3 (W] (12.6)
TeT Te’ﬂ‘;. wew

Finally, since W covers T, we have that the set of R-fold dilates {RW: W € W} covers {Tr: T €
T}, and thus

’ 9 TR( < ‘ U RW‘ < 3 rRW| =R Y Wl (12.7)
TeT wew wew wew
Inequality (12.1) now follows by comparing (12.6) and (12.7). O

A A grains decomposition for tubes in R?

Our goal in this section is to prove Proposition 7.15. For the reader’s convenience, we reproduce
it here. In what follows, recall that broadness is defined in Definition 7.7. This definition assumes
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a small parameter 8 > 0, which was defined in Section 7.1. In Section 7.1, an explicit value of 3
was chosen, which depends on w and (. In the results below, however, we will allow 8 to be any
positive number (though in R"™, we will always have 8 € (0,n—1]), and subsequent quantities (such
as 7 and K7) may depend on (. In particular, the results proved in this section are applicable in
Section 7.

Proposition 7.15. Let € > 0. Then there exists n,k > 0 so that the following holds for all § > 0.
Let (T,Y)s be 8" dense and be broad with error 6~". Suppose that the tubes in T are contained in
a common 1 tube T;.

Then there is a §° refinement (T',Y") that is 6° dense and is broad with error < k~'57¢, and
a number p > 1 so that py #T%,(x) for each x € Jp Y'(T). In addition, there is a number
c > kudS(0#T)™! and a pair (G,Y )sxexe, 0 that (G,Y )sxexe 5 a robustly 0°-dense two-scale
grains decomposition of (T',Y")s wrt {11} (the latter is a set consisting of a single 1 tube).

To prove Proposition 7.15, we shall repeatedly apply the Guth-Katz polynomial partitioning
theorem [13] to decompose a (large portion of) (J; Y (T") into a union of thin neighbourhoods of
semi-algebraic sets. This idea was first used by Guth [11, 12] in the context of the Fourier restriction
problem, and later by Guth and the second author [14] in the context of the Kakeya problem.

Before stating this result precisely, we will need several definitions. First, recall that a semi-
algebraic set is a set S C R™ that is defined by a Boolean combination of polynomial equalities and
inequalities.

Definition A.1. Let p > 0. A semi-algebraic grain of thickness p is a set of the form
G = N,(9),

where S C R? is a semi-algebraic set with dim (S) < 2. If there exists a non-zero polynomial
Q: R3 — R with S ¢ Z(Q), then we say that G is defined by a polynomial of degree at most

deg(Q).

Next, we recall the following result of Wongkew [30], which allows us to bound the volume of a
semi-algebraic grain.

Theorem A.2. Let Z = Z(Q) C R™ be an algebraic variety of dimension d. Let B C R™ be a ball
of radius . Then there exists a constant K depending only on n so that for all0 < p <7,

INy(Z N B)| < K(degQ)"p" .

Corollary A.3. Let G C R3 be a semi-algebraic grain of thickness p that is defined by a polynomial
of degree at most D. Then
|G| < D? p diam(G)>.

Next, we will need the following grains decomposition result, which is similar to Proposition 3.2
from [14].

Proposition A.4. Let ¢ > 0. Then there exists K. > 0 so that the following holds. Let E C
B(0,1) C R? be open. Then there exists

o A set G of semi-algebraic grains of thickness 1006, each of which has diameter < K,E(#g)_l/3
and is defined by a polynomial of degree at most K..
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e [For each G € G, a set Eq C ENG. The sets {Eg: G € G} are disjoint.

Furthermore, we have
> |Ea| > KZ'6°| B,
Geg

and for each G € G we have

_1. |E| . |E|
k167l El gy < ko lEL
= 0yg = Pal < KO g
Finally, for every § tube T, we have
#{G e G: TNEqg# 0} < K6 5(#G)/3. (A.1)

The above result is essentially Proposition 3.2 from [14], except that the result in [14] does not
require that the grains in G have diameter at most Ka(#g)*l/ 3. Adding this latter property is
straightforward — we simply add additional partitioning planes in the ej, e2, and es directions at
each partitioning step.

Using Proposition A.4, we have the following structure theorem about arrangements of tubes.

Lemma A.5. Let e, > 0. Then there exists K,n > 0 so that the following holds. Let (T,Y)s
be 0" dense and broad with error 6~ (and exponent ). Suppose there is a number p so that
#Ty (z) € [p,2u) for all x € Uper Y(T). Then there exists the following:

o A 6° refinement (T',Y")s of (T,Y)s.
o A partition E = E,\U...Ey of Up Y'(T).

These objects have the following properties:

(a) (i)
1< N < K6 (6u~" #T)°. (A.2)

(i) r> K~16sN—1/3,
(b) Each set E; has diameter at most 2r, and volume

K IN"1s¢

U Y(T)) < |E;| < Ko(diam(E;))%. (A.3)
TeT

c) (T',Y")s is broad with error K§~¢ (and exponent B), and #Th, () > K15 for each x €
i
Urer Y'(T).

(d) For each T € T', there exists a set {T'V} of pairwise 100r-separated tube segments TU) C T,
each of length r. This set has the following properties:

(i) Each segment TY) intersects Y'(T), and Y'(T) C | |TY).
(i) If TY) is a tube-segment, then TW) NY'(T) intersects exactly one set Ej.
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Proof.

Step 1. Let £; be a small quantity to be chosen below. Let Ty = {T" € T: |Y(T)| > %5’7|T|},
and let Y7 be the restriction of Y to Ty. Then (Ty,Y1)s is a (1/2)-refinement of (T,Y)s. Apply
Proposition A.4 to E' = Uper, Y1(T) with €1 in place of ¢, and let G and {Eg: G € G} be the
output of that Proposition.

For each T' € Ty, there are at most K.,6 1 (#G)'/3 grains G € G for which T'N Eg # 0. Define
the set of “significant” grains

Grss = {G € G+ 1T Fgl > (3 Vi(T)]) (K=,077 (#6)/) '},

Then 1
mmn || Ee|zsm@)l.
GegT,sig
Each set Y1(T') N E¢ is contained in a sub-tube of length diam(7 N E¢), and we have
ST KM (#G) Y3 < diam(T N Eg) < K, (#6) 5.

The first inequality follows from the volume bound |T' N Eg| 2 §7¢1|T \Kgll(#g)_l/ 3 while the
second follows from the diameter bound on G' coming from Proposition A.4.

Define
r= kO K (#G) 73, (A.4)

where kK ~ 1 is chosen so that each set T'N Eg has diameter at least r. Then for each grain
G € Grgig, we can choose a sub-tube Tz C T of length r, so that

T N Eg| 2 " K2 |T N Bg| 2 62725 K23 T (#6) 72 2 6mre K_ 2| T). (A.5)
Furthermore, we can choose these sub-tubes so that every pair of sub-tubes in the set {Tg: G €

Orsig } either coincide or are interior-disjoint.

Since the sets {Eg} are disjoint, the volume bound (A.5) says that for each tube T, at most
(5‘”_51K521 tubes from the set {Tz: G € Grgg} can pairwise coincide (the sets T are sub-tubes
of T, as described previously). Thus for each T' € Ty, we can select a set Y2(T") C Y1(7T') with the
following properties:

Ya(T)| 2 6121 K YA (T)).

(This follows from the first inequality in (A.5), plus the fact that at most 67" K_? can
coincide).

e There is a set {T(j)} of sub-tubes of T', each of length r. These tubes are 100r separated.
Each of these sub-tubes 7U) intersects Y(T'), and for each sub-tube T'U) there is exactly one
G € G for which Y»(T) N TW) N Eg # 0.

Step 2. In Step 1 we processed the tubes. In this step, we will process the grains in G. Fix a
grain G. Cover G by boundedly overlapping balls {B;} of radius 2r (recall that r was defined in
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Step 1). We will select a 100r-separated subset of {B;} (after re-indexing, we will denote this set
by {B;}M, for some M = M(G) > 1) so that

M
Y>> MAT)NEgNBi| 2 Y [Ya(T) N Egl. (A.6)

i=1TeT TeT

Since the balls are 100r-separated, each sub-tube T0) of length r intersects at most one ball. Thus
for each T € Ty and each sub-tube TU), there is at most one ball B; from the above collection for
which Yo(T) N TY) N Eg N B; # 0.

We perform the above operation for each G € G. Let G’ be the union of sets {B;, N G: i =
1,...,M(G)}, as G ranges over the grains in G. For each G’ € G, define Ev = G’ N E¢, where
G € G is the (unique) grain that gave rise to G’. We have that the sets { Eg/: G' € G} are disjoint.

Define Y3(T) = Yao(T) N Ugeg Ear- By (A.6) we have that (Ti,Y3)s is a 2 1 refinement of
(Ty,Y2)s, which in turn is a 2 62"+251Kg14 refinement of (T,Y)s. Furthermore, for each T € T it is
still the case that there is a set of 100r-separated sub-tubes {T°0)}, each of which has length r and

intersects Y3(T) (indeed, any sub-tubes TV) from the previous collection that fail to intersect Y3(T)
can be discarded), so that for each sub-tube T, there is exactly one G’ € ¢/ with TW) N Eqr # 0.

Step 3. Let p/ < p and let (T, Yy)s be a X5 1 refinement (we use X5 to absorb the K- * factor)
of (Ty,Y3)s with the property that #(T1)y,(z) ~ ' for each 2 € Upep, Ya(T). Since (Ty, Yy)s is a
~s 621221 refinement of (T, Y )s, we have

f Zs 82, (A7)

and hence (Tq,Y4)s is broad with error $s §7317281 and exponent 3. We will select n and &,
sufficiently small, and K sufficiently large so that (Ti,Yy)s is broad with error < K¢§7¢, and
W > K~16%u (c.f. Conclusion (c) from Proposition A.5).

For each G' € G', define Ey,, = Egr N Uper, Ya(T). After dyadic pigeonholing, we can select
a set G C G so that |E/,| is the same (up to a factor of 2) for each G’ € G”. For each T € Ty,
define }/})(T) = }/4(T) N UG//Eg// El 1"

Define N = #G”. Abusing notation, we will enumerate the elements of {E,: G” € G"} as

Ey,...,En. Since #Ty(x) ~ p and Ka_lléalv_% < |Eg| < Kglcs_‘fl;% for each G € G (the latter is
true since G was the output of Proposition A.4), we have

#G > N = #G" Zs5 6% #G. (A.8)

Define T = Ty and Y/(T) = Y5(T). This choice of (T',Y”)s satisfies Conclusion (c) from
Proposition A.5.

We have
Uvm=|]|E&,
TET i=1

and if the constant K = K(g1) (recall that ; depends on ¢) is chosen sufficiently large, then for
for each index ¢ =1,..., N we have

Ny g 87 U V(@) 5 1B < Ko(diam(E))?,
TeT TeT!
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where the final inequality is Corollary A.3. Thus we have established Conclusion (b) from Propo-
sition A.5. Recall that for each T € T’, we have a set {TW)} of tube-segments, each of which has
length r. These segments are 100r-separated. Discarding segments if necessary, we may suppose
that each tube segment T intersects Y’(T). It is still the case that for each surviving tube seg-
ments, there is exactly one index i so that Y'(T)NT") N E; # (. This establishes Conclusions (d.i)
and (d.ii).

Step 4. It remains to establish Conclusion (a) from Proposition A.5. We begin with Conclusion
(a.i), i.e. we must show that N satisfies Inequality (A.2). In Step 3 we established Conclusion (d.ii).
Combining this with (A.4) and (A.8), we conclude that for each T € T, there are S5 251 N'1/3
indices ¢ for which Y'(T) N E; # (). Thus by pigeonholing, there is an index 7 so that

(#T e T: Y'(T) N E; # 0} o 0725V N~23(#4T).
Fix this index ¢, and denote the above set by T;. We have

v({(x,T,T') € B;xT?: 2 € Y/(T)NY'(T"), Z(dir(T),dix(T)) Zs §G1H20/8Y <5 §3-Gnt2e0/8(4m,)2)
(A.9)
where v denotes the product of Lebesgue measure on E; with counting measure on "JI‘Z?. The above
inequality is justified by the observation that for each pair T,7" € T; with Z(dir(7T),dir(T")) >
§BH221)/8 e have |T NT'| < 63 Bnt2e0/8,
On the other hand, we have |E;| Zs 6°* N~ (u~16%(#T)), and since (T, Y”)s is broad with error
Ss 6311220 wwe have that for each z € F; there are > (u/)? pairs T,T' € T; so that (z,T,T") is
in the above set. We conclude that by (A.7),

po TSN T T) S5 () - (61772 NI (#T) ) S LHS (A9)
5 RHS (Ag) — 6—(3n+251)/,3+3(#Ti)2 S Kgl5_(3’7+251)/6_4‘51+3N_4/3(#T)2.

Re-arranging, we have
N1/3 é& KE21M7157(3n+251)/6767]78€1+1(#T)‘

The claimed bound on N now follows by selecting 31+ 2¢; < €3/20, and choosing K appropriately.
Finally, Conclusion (a.ii) follows from the definition of  and (A.8). O

Lemma A.5 says nothing about the shape of the sets {E;}. The next result will help us show
that a substantial portion of each set F; must be contained in the ¢ neighbourhood of a plane.
The idea is that since the volume of E; is small, each point x € E; is broad, and E; NT is dense
for each tube T' € T;, we can find many “triangles” formed by three tubes from T; that pairwise
intersect at distinct points. Since every triple of lines that pairwise intersect at distinct points must
be coplanar, this in turn forces a significant subset of F; to be planar.

Lemma A.6. Let e, > 0. Then there exists k,n > 0 so that the following holds. Let (T,Y)s be
0" dense and broad with error < §~" (and exponent ). Suppose that

‘ U Y(T)) < 5t

TeT
Then there is a plane 11 so that if we define T = {T € T: T C Nos(II)}, then there is a shading
{Y(T): T € T'} and a number u so that
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(a) #T%,(z) ~ p for each x € Upep Y'(T).

(b)
S VD) = w3 V(D). (A.10)
TeT! TeT
(c)
‘ U Y’(T)‘ > polte, (A.11)
TeT!

Proof. First, after dyadic pigeonholing and replacing (T, Y')s by a refinement, we may suppose that
there is a number p so that #Ty () ~ p for all z € Upep Y (T); we still have that (T, Y )s is Zs 6"
dense, and (T, Y)s is broad with error <5 6~". Observe that

HHIHT) S5 D V(D S| | YD) < 8"
TeT TeT

and thus
#T S5 0717270 (A.12)
Define
T ={T € T: |Y(T)| > §*"|T|},
E = {z e R®: #Ty (2) > 6"},
T ={T € T: |Y(T)NE| > §"T|}.

By double-counting we have #T" > §57(#T).

Note that for each Ty € T” and each z € Y (Ty) N E, there are > 2627y tubes T € T’ with
Y (T)NY (Ty) # 0 and Z(dir(T), dir(Tp)) > §37/P; this is because there are > 627y tubes T' € T’ with
Y(T)NY (Tp) # 0, and by broadness at most > %537’u of the tubes passing through a point = € R3
can satisfy Z(dir(T),v) < §%/8 for any fixed vector v. In particular, for each tube Tj of this type,
there are at least (6°7u)(6°7/85~1) distinct tubes T € T' with TN Ty # 0 and £(dir(T), dir(Tp)) >
§31/8 Since each such T € T’ satisfies Y (T') > 627|T| and |T' N Njw0n/6(To)| < £627|T, we conclude
that for each tube T of the type described above, we have

>, Y (T)\Nj1on/6 (To)| 2 (837308 5 =1) (821|T)) = 510/ B5p.
TeT
Y ()Y (o) 0
£(dix(T),dir(Tp)) >637/8

On the other hand,

‘ U Y(T)\N(;mn/g(To)‘ < ‘ U Y(T)‘ < 61_77,
TeT Ter
Y(T)Y (T0) 0

Z(dir(T),dir(Tp))>631/8

Thus if we define Fi, to be the set of points z € R3\ Ngi0n/5(Tp) satisfying

Z Xy (1)(7) > gHnlBy,

TeT!
Y (T)NY (To)#0
Z(dir(T),dir(Tp))>631/8
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then |Fr,| > 6'1/A+1 because #Ty (z) < p. Since (T,Y)s is broad with error 6=, for each point
x € Fy, there are > (6118 11)2 pairs T, T" € T’ satisfying
Y(T)NY(Ty) £0, Y(T) Y (T) £ 0, Y(T) N Y(T') £ 0,
Z(dir(Tp), dix(T)) > 63"/° £(dir(Tp), dix(T")) > 67/, £(dir(T), dix(T")) > 627/ (A.13)
(A T')\Nguons (To) # 0.

For each such pair, we have |Y (T)NY (T")| < |[TNT'| < §3~120/5” We conclude that for Tp fixed,
there are > (617/8 1)2(| P, | /83 12n/5%) > §230/5% 252 distinct pairs (T, T') satisfying (A.13). Thus
by (A.12) there are > §231/5% | 25-2(#T") 25 6240/5% (HT")2(#T) triples (Tp, T1,To) € T" x T/ x T’
that satisfy (A.13).

By pigeonholing, we can select a pair (T,7") which is a member of Z5 6247/ Ch (#T) such triples.

Fix this pair T,T’, and let Ty denote the set of tubes Ty so that (Tp, T, T") satisfies (A.13). We
have the following:

e T and T intersect, and make angle 2> §12n/8?,

e For each Ty € Ty, we have that Y (7Tp) intersects both 7" and 7", and makes angle > §31/8
with T and T".

e (TN T’)\Ngmn/ﬁ (To) # 0.

The above items imply that each Ty € Ty is contained in the §' 1007/ Ch neighbourhood of a plane
— this is the plane spanned by the tubes 7" and T" (the latter plane is technically not well defined,
but is instead defined up to uncertainty m < gt/ 52). In particular, there is a set of

< 52000/ g2 planes {II;} so that each T € Ty is contained in the 2§ neighbourhood of some plane
from this collection. By pigeonholing, we can select a plane II so that

Z ‘Y(T)‘ g(g (52007]/52) (52+277) (62477//82(#,]?)) 55 630077/52 Z ’Y(T)’

TeTy TeT
TCNas (1)

Define TV = {T € T: T C Nas(II)}. By pigeonholing, we can select a number p’ so that if we
define the shading Y'(T') = {z € Y/(T'): #T% (z) ~ '}, then (T",Y”)s is an =5 1 refinement of
(T',Y)s. This gives Conclusions (a) with g’ in place of p and (b). Finally, Conclusion (c) follows
by a standard Cordoba-type L? argument (making use of the fact that (T',Y")s is broad with error
§—400n/8% and exponent [3). O

Next, we record the following re-scaled variant of Lemma A.6

Corollary A.7. Let e, > 0. Then there exists k,m > 0 so that the following holds. Let 0 < § <
r <1 and let B C R? be a ball of radius v. Let (T,Y)s be broad with error =" (and exponent [3).
Suppose that Y (T) C B for each T € T, and Y peq |Y(T)| = 676%r(#T). Suppose furthermore that
the tubes in T are contained in a 1 tube T4, and that

( U Y(T)‘ < 21,
TeT

Then there is a set ' C T; a number u; a shading Y'(T) C Y(T), T € T'; a prism P of dimensions
comparable to § x v x r so that each T € T’ satisfies TN P # (), and T exists P through its long
sides, in the sense of Remark 7.16. Furthermore, we have
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(a) #T%,(z) ~ p for each x € Upep Y'(T).

(b)
ST YD) = k6D V(T (A.14)

TeT TeT

(c)
‘ U Y’(T)‘ > kairer?, (A.15)
TeT!

We are now ready to prove Proposition 7.15. In brief, we use Lemma A.5 to cover a substantial
portion of (T,Y)s by a union of disjoint sets {E;}, and then we use Corollary A.7 to trap a
substantial portion of each set F; in a prism P; of dimensions comparable to § x r x r, for an
appropriately chosen diameter r.

Proof of Proposition 7.15.
Step 1. Let dg, €1, €2 be small numbers to be chosen below. We will select dy very small compared
to €1, €1 very small compared to €3, and 1, k very small compared to ;. These numbers depend
on ¢ and 5. We may suppose that § < Jg, or else the result is immediate provided we choose k
sufficiently small so that £0°(6T)~! < §. In this case the set G consists of § x § x & balls, and there
is nothing to prove. Henceforth we shall assume that § < §g.

After dyadic pigeonholing and replacing (T, Y)s by a ~ (log1/8) ! refinement, we may suppose
there exists a number p > 1 so that #Ty (x) € [i,2p) for every x € Upep Y (T); we still have that
(T,Y)s is broad with error .

Apply Lemma A.5 to (T,Y)s with £1 in place of ¢ and § as above; we can do this, provided we
select n > 0 sufficiently small depending on €; and f. Let K;, N, (T1,Y1)s, and Ej, ..., Ex be the
output of that lemma. In particular, (Tq,Y7) is broad with error K167°!. Note that by Item (a),
we have

r> K 26% 0 (6#T) . (A.16)
Let I; denote the set of indices in {1,..., N} for which
H{T Ty Y1(T)NE; # 0} < 2N~ 1(#T),

and let Iy denote the remaining indices. For each T' € Ty, there are at most (100r)~! sets E; for
which Y1(T) N E; # 0. Thus

#Igg(QNl—l#T) 3 #(i: i(T)NE; #0) < N/2.

TeT
We conclude that #1; > N/2. For each i € I, define

TO = {T e T: Yi(T) N E; # 0}.
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We have

> M(T) N Ei| > Ky 67 pl il
TeT®@)
> qu26261N‘1‘ U Y(T)‘
TeT
> K ' NTH* (T |#T)
> K 20% PN (N /2) (| T|#T9)
Z K1_35361+n(62T)<#T(i)).

In the above, the first inequality used Conclusion (c) of Lemma A.5; the second inequality used
(A.3); the third inequality used the fact that (T,Y); is 67 dense, and #Ty(z) ~ u for each
x € |JY(T); and the fourth inequality used the fact that i € I;.

Step 2. By (A.3) we have |E;| < K(S(diam(Ei))z, and by Conclusion (b) of Lemma A.5,
diam(FE;) < 2r. Let B; be a ball of radius r that contains E;. For each T € T@ define
YO(T) = Yi(T)N E; C B;. If 6y and e; are chosen sufficiently small depending on ey and f,
then by Step 1, (T(i), Y(i))g satisfies the hypotheses of Corollary A.7. Applying this Corollary, we
obtain a set G; comparable to a § X r X r prism; a number j;; a set T’ ¢ T(®: and a sub-shading
YO(T) c YO(T), T € T, so that the following holds:

e Each T e T intersects G; and exits G; through its long ends, in the sense of Remark 7.16.

S YT 2 e 3 YO,

TeT@)! TeT®)

| U Y@ 2 mad e 2 sl
TeT®!

e For each z € Upcroy Y @&(T) we have #Tg)(/i),(x) ~ L.

After dyadic pigeonholing, we can select a number p’ and a set of indices I C I} so that p; ~ p/
for each i € I]. We will choose p/ in such a way that if we define G = {G;: i € I{}, define the
shading

Y(Gy= {J vy,

TeT@)!
and define the shading
Y2(T) =Vi(T)n|JY(G),
G

where the union is taken over those G € G for which T' € T®’ then (Tq,Y2)s is a Zs 0°2 refinement
of (T1,Y1)s, and thus a Z5 6°7°2 refinement of (T,Y)s.

Note that for each G; € G, we have Y (G;) C G; N E;, and thus the sets {Y(G): G € G} are
disjoint. Furthermore, |Y1(G)| > k26%2|G;|, and thus (G,Y )sxrxr I8 k202 dense.

We have the following:
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() Ur Y2(T) = Ugeg Y (G)-

(i) If Yo(T) N Y(G) # 0, then T exits G through its long ends, in the sense of in the sense of
Remark 7.16.

(i) If Yo(T) N Y(G) # 0, then Y5(T) N G C Y(G).

Item (iii) follows from the fact that if Yo(T') N Y (G;) # 0 for some G; € G (recall that G; is a prism
associated to a set F;), then there is a length-r sub-tube T) C T so that Yo(T)NTY) C E; C Y(Gy).
Since the sub-tubes {7V} associated to T' are 100r separated, and diam(G) < 107, we conclude
that TU) is the only sub-tube from the above collection that intersects G.

We conclude that (G,Y )sxrxr is a robustly k26°2-dense two-scale grains decomposition of
(Ty,Y2)s wrt the single 1-tube {71}. Finally, the desired bound on r is given by (A.16). O

B Wolff’s hairbrush argument and the proof of Proposition 1.8

The goal of this section is to prove Proposition 1.8. We will restate it here in an expanded form.

Proposition 1.8, expanded. For all € > 0, there exists k,n > 0 so that the following holds for
all 5§ > 0. Let (T,Y)s be §" dense, with Cxr.cw(T) < 57" and Cp.sw (T) < 6~". Then

( U Y(T)’ > d3/2HE (T2, (B.1)
TeT

Proof. The proof uses a standard “bilinear” or “robust transversality” argument to reduce to the
case where a typical pair of intersecting tubes make large angle (i.e. the unit vectors dir(7") and
dir(7") are far from parallel), followed by Wolff’s hairbrush argument. Since these arguments are
covered in detail elsewhere (see e.g. [21, §2.4]), we will just provide a brief sketch.

Fix € > 0 and let n > 0 be a small quantity to be chosen below. Let (T,Y)s be §7 dense, with
Crr.ow(T) < 67" and Cpsw(T) < 67" Applying standard reductions, we may replace (T,Y)s
by a > 0" dense refinement so that the following holds: There exists a number 6 € [§,1] so that
for each o € (Jpep Y (T), there is a vector v = v(z) so that Z(v,dir(T)) < 6 for each T' € T with
x € Y(T), and for each unit vector w € R? and each r € [§, 6], we have

#{T € Ty (z), £L(w,dix(T)) <7} < (r/0)"#Ty ().
Furthermore, there exists a balanced partitioning cover Ty of T, so that

‘UY(T)): 3 ‘ U Y(T)‘. (B.2)

TeT ToceTy TEeT[Ty]

After a further refinement, we may suppose that each set T7¢ is §7-dense. Note that T7? is a set
of §/6 tubes that satisfies the broadness condition

#{TT € T (2), Z(w, die(T7)) < r} <o (#T3, (2)),

YTo
for all unit vectors w and all € [§/6, 1]. Thus a standard application of Wolff’s hairbrush argument
[27] for 2-broad tubes shows that

U y™a@™)

T9cTTo

> §(6/3)63m (5/9)1/2 ((6/9)(#TT6)>1/2'
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By (B.2), we conclude that

’ U Y(T)‘ > §5143/21/2 Z (#TT@)uz > 557]53/291/2(#Te)l/Q(#Tl/Q)'
TeT TpeTy

(B.1) now follows from the observation that #T[Ty] < 0Crsw (T)(#T) Ss 6 2"0(#T), and thus
#Ty g(s §2ne—1, ]
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