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Abstract

We study sets of δ tubes in R3, with the property that not too many tubes can be contained
inside a common convex set V . We show that the union of tubes from such a set must have
almost maximal volume. As a consequence, we prove that every Kakeya set in R3 has Minkowski
and Hausdorff dimension 3.
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1 Introduction

A Kakeya set is a compact subset of Rn that contains a unit line segment pointing in every direction.
The Kakeya set conjecture asserts that every Kakeya set in Rn has Minkowski and Hausdorff
dimension n. This conjecture was proved by Davies [5] when n = 2, and is open in three and higher
dimensions. See [17, 28] for an introduction to the Kakeya conjecture and a survey of historical
progress on the problem. See [15, 16, 18, 20, 21, 27, 31] for current progress towards the conjecture
in three and higher dimensions.

The purpose of this paper is to obtain lower bounds on the volume of unions of δ-tubes (i.e. the
δ neighbourhoods of unit line segments) in R3 that satisfy certain non-clustering conditions. As a
consequence, we resolve the Kakeya set conjecture in three dimensions.

Theorem 1.1. Every Kakeya set in R3 has Minkowski and Hausdorff dimension 3.

Theorem 1.1 is a corollary of the following slightly more technical result.

Theorem 1.2. For all ε > 0, there exists K > 1 so that the following holds for all δ > 0 sufficiently
small. Let T be a set of δ-tubes contained in the unit ball in R3, and suppose that every rectangular
prism of dimensions a× b× 2 contains at most 100abδ−2 tubes from T (this is true, for example, if
the tubes in T point in δ-separated directions). For each T ∈ T, let Y (T ) ⊂ T be a measurable set
with |Y (T )| ≥ λ|T |. Then ∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ δελK
∑
T∈T

|T |. (1.1)

The Kakeya maximal function conjecture asserts that for each ε > 0, Inequality (1.1) is true for
K = 3. The Kakeya maximal function conjecture in R2 was proved by Cordoba [6]. While we do
not resolve the Kakeya maximal function conjecture in R3, the weaker statement given in Theorem
1.2 is nonetheless sufficient to obtain Theorem 1.1.

The hypothesis that each a× b×2 rectangular prism contains at most 100abδ−2 tubes from T is
a type of non-clustering condition. A close variant of this hypothesis was first introduced by Wolff
in [27], and sets of tubes that satisfy this hypothesis are said to satisfy the Wolff axioms.

1.1 Theorem 1.2 and multi-scale analysis

In [25, 26], the authors showed that Theorem 1.2 is true when the set T has a property called
stickiness (see Figure 1 (left)). Roughly speaking, T is sticky if it satisfies the non-clustering
condition from Theorem 1.2; has cardinality roughly δ−2; and for every intermediate scale δ ≤ ρ ≤ 1,
the tubes in T can be covered by a set of ρ tubes that satisfy the non-clustering condition from
Theorem 1.2 with ρ in place of δ.

Unfortunately, not every set of tubes is sticky — see Figure 1 (right) for an example. The
arrangement illustrated in Figure 1 (right) is challenging to analyze, because the ρ tubes intersect
with large multiplicity (i.e. many ρ tubes pass through a typical point), but the arrangement of
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Figure 1: Left: The tubes at scale ρ (black) satisfy the non-concentration hypothesis of Theorem
1.2, as do the (rescaled) δ tubes (blue) inside each ρ tube. Multi-scale analysis is straightforward
in this setting. This is sometimes called the “sticky” case. For clarity, not all δ tubes have been
drawn.
Right: The tubes at scale ρ do not satisfy the non-concentration hypothesis of Theorem 1.2. The
tubes at scale ρ intersect with high multiplicity, while the δ tubes inside each ρ tube are sparse.

δ tubes inside each ρ tube is sparse (i.e. the union of δ tubes inside each ρ tube only fill out a
small fraction of that ρ tube). To help us analyze this type of arrangement, in Section 1.2 we will
introduce two variants of the non-clustering hypothesis from Theorem 1.2, and two variants of the
volume estimate (1.1).

1.2 Unions of convex sets, and non-clustering

In what follows, we say a pair of sets U, V ⊂ Rn are essentially distinct if |U ∩V | ≤ 1
2 max(|U |, |V |).

T will denote a set of essentially distinct δ-tubes contained in the unit ball in R3, and |T | will
denote the volume of a δ-tube, i.e. |T | has size about δ2.

Definition 1.3. Let T be a set of δ-tubes in R3.
(A) We define CKT -CW (T) to be the infimum of all C > 0 such that

#{T ∈ T : T ⊂ W} ≤ C|W ||T |−1 for all convex sets W ⊂ R3.

We say that T obeys the Katz-Tao Convex Wolff Axioms with error CKT -CW (T) .

(B) We define CF -SW (T) to be the infimum of all C > 0 such that

#{T ∈ T : T ⊂ W} ≤ C|W |(#T) for all slabs W ⊂ R3,

where a “slab” is the intersection of the unit ball with the thickened neighbourhood of a (hyper)
plane. We say that T obeys the Frostman Slab Wolff Axioms with error CF -SW (T).

Remark 1.4.
(A) A note on etymology. The terms “Katz-Tao” and “Frostman” refer to different types of non-
concentration conditions; they are the analogues of the well-studied non-concentration conditions
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|E ∩B| ≤ (r/δ)2 and |E ∩B| ≤ r2|E|, where E ⊂ Rn is a δ-separated set and B is a ball of radius
r. An arrangement of tubes arising from a Kakeya set, i.e. a set of δ-tubes with one tube pointing
in each δ-separated direction, obeys both the Katz-Tao Convex Wolff Axiom and Frostman Slab
Wolff Axiom with error ≲ 1. The terms “convex” and “slab” refer to the class of sets for which the
non-clustering condition is imposed. The term “Wolff axioms” suggests that the above definition
is an analogue of the Wolff axioms from [27].

(B) The above definitions are two special cases of a non-clustering condition (Definition 1.3′) that
will be defined in Section 4.2. In Definition 1.3′, both tubes and convex sets (resp. slabs) are
replaced by more general objects.

(C) If T is non empty, then by taking W to be a δ × 1 × 1-slab containing a tube of T, we can see
CF -SW (T) ≤ C implies #T ≥ C−1δ−1.

Next, we introduce two Kakeya-type volume estimates for unions of tubes in R3. These are
analogues of Inequality (1.1) that are carefully formulated to be amenable to induction on scale.
In what follows, we use the notation (T, Y )δ to denote a collection T of essentially distinct δ-tubes
in R3, and a shading of these tubes, i.e. for each T ∈ T, Y (T ) is a subset of T . For λ > 0, we say
(T, Y )δ is λ dense if

∑
T∈T |Y (T )| ≥ λ

∑
T∈T |T |.

Definition 1.5. Let σ, ω ≥ 0.

• We say that Assertion D(σ, ω) is true if the following holds:
For all ε > 0, there exists κ, η > 0 such that the following holds for all δ > 0. Let (T, Y )δ
be δη dense and obey the Katz-Tao Convex Wolff Axioms and Frostman Slab Wolff Axioms,
both with error at most δ−η. Then∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδω+ε(#T)|T |
(
(#T)|T |1/2

)−σ
. (1.2)

• We say that Assertion E(σ, ω) is true if the following holds:
For all ε > 0, there exists κ, η > 0 such that the following holds for all δ > 0. Let (T, Y )δ be
δη dense. Then ∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδω+εm−1(#T)|T |
(
m−3/2ℓ(#T)|T |1/2

)−σ
, (1.3)

where m = CKT -CW (T) and ℓ = CF -SW (T).

Let us examine the numerology in the estimates (1.2) and (1.3). First, in the special case σ = ω,
Assertion D(σ, σ) yields the estimate∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδε(#T)−σ
∑
T∈T

|T |,

i.e. it says that there are ≲ δ−ε(#T)σ tubes passing through a typical point of the union
⋃
Y (T )

(for general σ and ω, this quantity is about δσ−ω−ε(#T)σ). For σ > 0 small, this means that the
tubes in the union

⋃
Y (T ) are almost disjoint. In the arguments that follow, it will be helpful to

consider situations where σ and ω are not necessarily equal.
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The shape of the estimate (1.2) is motivated in part by the following consideration. To begin
our induction on scale argument, we would like to prove that E(σ, 0) holds for some σ ∈ (0, 2/3].
When σ = 1/2 and ω = 0, Inequality (1.2) becomes the estimate∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδ1/2+ε(δ2#T)1/2.

This is essentially Wolff’s hairbrush bound from [27] (here we make use of the fact that T obeys
the Frostman Slab Wolff Axioms with small error; see Appendix B for details).

Assertion D(σ, ω) is a special case of Assertion E(σ, ω). We will explain the shape of the final
bracketed term of Inequality (1.3). To understand the term ℓ, it is helpful to consider the following
scenario. Suppose we know that Assertion D(σ, ω) is true. Let δ < ρ < 1, and let T be a set of δ
tubes of cardinality (ρ/δ)2 that are contained inside a common ρ tube, which we will denote by Tρ.
Suppose that the tubes in T obey the Katz-Tao Convex Wolff Axioms with error roughly 1. This
implies that CF -SW (T) ∼ ρ−1.

For T ∈ T (and hence T ⊂ Tρ), we will write T Tρ to denote the image of T under the affine
transformation that anisotropically dilates Tρ by a factor of ρ−1 in its two “short” directions, and
translates the image to the unit ball. After this rescaling and translation, the tubes in T become
δ/ρ tubes that satisfy the Katz-Tao Convex Wolff Axioms and Frostman Slab Wolff Axioms, both
with error roughly 1. Applying Assertion D(σ, ω) to this rescaled collection of tubes, we obtain the
volume bound ∣∣∣ ⋃

T∈T
T Tρ

∣∣∣ ≥ κ(δ/ρ)ε(#T)|T Tρ |
(
(#T)|T ρ|1/2

)−σ
.

Undoing the anisotropic rescaling and translation (which distorted volumes by a factor of ρ2) and
noting that |T Tρ | ∼ ρ2|T |, we can rewrite this as∣∣∣ ⋃

T∈T
T
∣∣∣ ≳ κδε(#T)|T |

(
ℓ(#T)|T |1/2

)−σ
, where ℓ = CF -SW (T) ∼ ρ−1.

As a second justification for the term ℓ, note that for every set T of δ tubes, we must always
have CF -SW (T)(#T)|T |1/2 ≥ 1. This is because we can always select a slab W of thickness |T |1/2
that contains at least one tube from T. This observation also explains the choice to write |T |1/2
rather than δ; any convex set S ⊂ R3 of diameter 1 can be contained in a slab of thickness |S|1/2.
Later in the proof we will consider generalizations of Assertion E(σ, ω) in which tubes are replaced
by more general families of convex sets.

To understand the terms m−1 and m−3/2 in Inequality (1.3), it is helpful to consider the following
scenario. Suppose we know that Assertion D(σ, ω) is true. Let T be a set of δ tubes that obey the
Frostman Slab Wolff Axioms with error roughly 1, and the Katz-Tao Convex Wolff Axioms with
error m >> 1. Let ρ = m1/2δ, and suppose that there exists a set Tρ of ρ tubes, each of which
contains m|Tρ||T |−1 = m2 tubes from T. Observe that this is the maximum number of essentially
distinct δ tubes that can fit inside a ρ tube. In particular, the union of the δ tubes inside each
ρ tube fill out essentially all of the ρ tube. We have #Tρ = m−2(#T) = m−1(|T |/|Tρ|)(#T),
i.e. (#Tρ)|Tρ| = m−1(#T)|T |. It is straightforward to compute that CKT -CW (Tρ) ≲ 1. Applying
Assertion D(σ, ω) and using the fact that the union of δ tubes inside each ρ tube fill out most of
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the ρ tube, we obtain the volume bound∣∣∣ ⋃
T∈T

T
∣∣∣ ∼ ∣∣∣ ⋃

Tρ∈Tρ

Tρ

∣∣∣ ≥ κρω+ε(#Tρ)|Tρ|
(
#Tρ)|Tρ|1/2

)−σ

= κρω+εm−1(#T)|T |
(
m−3/2(#T)|T |1/2

)−σ
.

1.3 From Assertions D and E to the Kakeya set conjecture

Clearly E(σ, ω) =⇒ D(σ, ω). In Section 6, we will show that the reverse implication also holds:

Proposition 1.6. Let 0 ≤ σ ≤ 2/3, ω ≥ 0. Then E(σ, ω) ⇐⇒ D(σ, ω).

As mentioned above, our proof uses induction on scale. In brief, if E(σ, ω) is true, then we will
use this fact at many locations and scales to prove that D(σ, ω′) is true for some ω′ < ω (observe
that smaller values of ω are better). The precise statement is as follows.

Proposition 1.7. There exists a function g : [0, 2/3] × (0, 1] → (0, 1] so that the following is true.
Let 0 ≤ σ ≤ 2/3, ω > 0. Then E(σ, ω) =⇒ D(σ, ω − g(σ, ω)).

Propositions 1.6 and 1.7 lead to a self-improving property for E(σ, ω) (or equivalently, for
D(σ, ω)). Since the collections of tubes in the definitions of E and D are essentially distinct and
are contained in the unit ball, we always have #T ≲ δ−4, and thus we can “trade” an improvement
in ω for an improvement in σ. In particular, Proposition 1.7 tells us that E(σ, ω) =⇒ D(σ −
g(σ, ω)/4, ω).

By applying Propositions 1.6 and 1.7, we can upgrade an initial estimate D(σ, ω) to the improved
estimate D(σ − g(σ, ω)/4, ω). We can then iterate this process. In order to begin the iteration,
we must prove that D(σ, ω) is true for some ω > 0 and 0 ≤ σ ≤ 2/3. In [27], Wolff proved that
every Kakeya set in Rn has Hausdorff dimension at least n+2

2 . In Appendix B, we will use a similar
argument to show that D(1/2, 0) is true:

Proposition 1.8. D(1/2, 0) is true.

Beginning with Proposition 1.8 and then iterating Propositions 1.6 and 1.7, we conclude the
following.

Theorem 1.9. The statements D(0, 0) and E(0, 0) are true.

Proof. Fix ω > 0. By Proposition 1.8, we have that D(1/2, 0) and hence D(1/2, ω) is true. If
D(σ, ω) is true for some σ ∈ [0, 2/3], then so is D(σ′, ω) for all σ′ ∈ [σ, 2/3]. Using Propositions
1.6 and 1.7, we conclude that the set {σ ∈ [0, 2/3] : D(σ, ω) is true} is relatively open in the metric
space [0, 2/3]. On the other hand, it is straightforward to verify from Definition 1.5 that this set is
also relatively closed in [0, 2/3]. We conclude that D(σ, ω) is true for all σ ∈ [0, 2/3], so in particular
D(0, ω) is true.

A similar argument shows that D(0, 0) is true; we have shown that D(0, ω) is true for every
ω > 0. On the other hand, the set {ω ≥ 0: D(0, ω) is true} is relatively closed in the metric space
[0,∞). We conclude that D(0, 0) is true. By Proposition 1.6 we have that E(0, 0) is true.

The conclusion of Theorem 1.9 can be rephrased as follows
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Corollary 1.10. For all ε > 0, there exists K so that the following holds for all δ > 0 sufficiently
small. Let (T, Y )δ be λ-dense. Then∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ δελKm−1(#T)|T |, where m = CKT -CW (T). (1.4)

Theorem 1.2 is now a special case of Corollary 1.10 — the hypotheses of Theorem 1.2 ensure
that CKT -CW (T) ≤ 1000.

1.4 Proof philosophy, and previous work on the Kakeya set conjecture in R3

In [16], Katz,  Laba, and Tao proved that every Kakeya set in R3 has upper Minkowski dimension
at least 5/2 + c for a (small) absolute constant c > 0. To do this, they analyzed the structure of
a (hypothetical) Kakeya set in R3 that has upper Minkowski dimension close to 5/2. They proved
that such a Kakeya set, or more precisely, the set of δ tubes arising from such a Kakeya set, must
have three structural properties that they named “planiness,” “graininess,” and “stickiness.” Katz,
 Laba, and Tao then showed that a Kakeya set possessing these structural properties must have
dimension at least 5/2 + c.

In a talk and accompanying blog post [24] in 2014, Tao described a potential approach developed
by Katz and Tao for solving the Kakeya problem. The Katz-Tao program proceeds as follows. First,
one must show that a (hypothetical) counter-example to the Kakeya conjecture in R3, i.e. a Kakeya
set with dimension strictly less than 3, must have the structural properties planiness, graininess,
and stickiness. Second, these properties are used to obtain increasingly precise statements about
the multi-scale structure of the Kakeya set. Third, results from discretized sum-product theory, in
the spirit of Bourgain’s discretized sum-product theorem [4], are used to show that a Kakeya set
with this type of multi-scale structure cannot exist.

When Tao shared the Katz-Tao program for solving the Kakeya conjecture in R3, some progress
had already been made towards the first step described above. The Bennett-Carbery-Tao multilin-
ear Kakeya theorem [1] implied that every (hypothetical) counter-example to the Kakeya conjecture
in R3 must be plany. In [9], Guth proved that every (hypothetical) counter-example to the Kakeya
conjecture in R3 must be grainy. Stickiness, however, appeared to be more challenging.

The trilogy of papers [25, 26], and the present paper, can be thought of as a realization of the
Katz-Tao program. In [25], the authors sidestepped the First step of the Katz-Tao program, and
tackled the Second and Third steps. More precisely, the authors showed that every sticky Kakeya
set in R3 (i.e. a Kakeya set possessing the structural property of stickiness) must have Hausdorff
dimension 3. This result is called the Sticky Kakeya Theorem. See [25, §1.1] for a discussion of
the proof of this theorem, and how this proof compares to the strategy outlined in the Katz-Tao
program.

In [26], the authors showed that every (hypothetical) Kakeya set in R3 with Assouad dimension
strictly less than 3 must be sticky. More precisely, they showed that if there exists a Kakeya
set K with dim A(K) < 3, then there must also exist a Kakeya set K ′ with dim A(K ′) < 3 that
possesses a multi-scale self-similarity property similar to stickiness. The authors then used (a mild
generalization of) the Sticky Kakeya Theorem to conclude that such a Kakeya set cannot exist. In
particular, the Sticky Kakeya theorem from [25] assumed that the tubes from a Kakeya set point in
different directions; in [26] the authors generalized this theorem to the weaker assumption that the
tubes satisfy the Wolff axioms at every scale (a precise definition is given in Section 6). Note that
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since the Assouad dimension of a set can be larger than its Minkowski or Hausdorff dimension, the
results in [26] did not resolve the Kakeya set conjecture in R3.

In the present paper, we take this line of reasoning to its conclusion. We show that if T is a
set of δ tubes that makes the estimate (1.2) from Assertion D(σ, ω) tight for some σ and ω, then T
must have a multi-scale self-similarity property similar to stickiness. Specifically, at many scales ρ
between δ and 1, it is possible to cover T by a family of ρ tubes that obey Katz-Tao Convex Wolff
Axioms (recall Definition 1.3) with small error. We then use a generalization of the Sticky Kakeya
Theorem to show that the estimate (1.2) from Assertion D(σ, ω) can only be tight for such a set
T if σ and ω are both 0. As we have already seen in Section 1.2, this implies that every Kakeya
set in R3 (and indeed, every set satisfying the Wolff axioms) must have Minkowski and Hausdorff
dimension 3.

1.5 A vignette of the proof

Proposition 1.7 is the most important step in the proof of Theorem 1.9 (which in turn implies
Theorems 1.1 and 1.2). In this section we will discuss some of the ideas used to prove this proposition
in the key special case where the tubes are arranged as in Figure 1 (right). In Section 2 we will
give a more thorough proof sketch that mirrors the structure of the actual proof.

To simply our exposition, we will disregard factors of the form δε or δ−ε, and we will (somewhat
informally) write A ⪅ B to mean that A ≤ Cδ−εB, for some constant C that is independent of δ
and some small parameter ε > 0 that we will ignore for the purposes of this sketch.

Fix a choice of σ > 0 and ω > 0, and suppose that Assertions D(σ, ω) and E(σ, ω) are true
(roughly speaking, this says that the union of tubes has “dimension” at least 3 − σ − ω). Let T
be a set of δ tubes of cardinality roughly δ−2 that obeys the hypotheses of Assertion D(σ, ω). Our
goal is to prove that

⋃
T T has volume substantially larger than what is guaranteed by the estimate

(1.2), i.e. we wish to obtain an inequality of the form∣∣∣ ⋃
T∈T

T
∣∣∣ ⪆ δσ+ω−α, (1.5)

for some α = α(σ, ω) > 0.

Let us suppose that there exists a multiplicity µ with the property that there are about µ tubes
from T passing through each point of

⋃
T T . One way to obtain our desired volume bound (1.5) is

to instead prove the multiplicity bound

µ ⪅ δ−σ−ω+α. (1.6)

A second way to obtain (1.5) is to show there exists some scale τ >> δ such that the union
⋃

T T
has larger than expected density at scale τ . More specifically, to obtain (1.5) it suffices to show
that for a typical ball Bτ of radius τ that intersects

⋃
T T , we have a density estimate of the form∣∣∣Bτ ∩

⋃
T∈T

T
∣∣∣ ⪆ δ−α(δ/τ)σ+ω|Bτ |. (1.7)

This will be discussed in greater detail in “Step 2, Case 2” below.

If T is sticky, then for each scale δ < ρ < 1, it is possible to find a set Tρ consisting of about
ρ−2 essentially distinct ρ tubes, each of which contain about (δ/ρ)2 tubes from T. We will suppose
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instead that T is not sticky, i.e. T resembles the arrangement in Figure 1 (right). We will call this
Simplifying Assumption A. More precisely, there exists a scale δ << ρ << 1, and a set of essentially
distinct ρ tubes Tρ so that each T ∈ T is contained in at least one tube from Tρ, and each Tρ ∈ Tρ

contains about δν(ρ/δ)2 tubes from T, for some (small) ν > 0. We will try to establish Inequality
(1.6) with some small improvement α > 0.

A fine-scale estimate.
For each Tρ ∈ Tρ, define

T[Tρ] = {T ∈ T : T ⊂ Tρ} and TTρ = {T Tρ : T ∈ T[Tρ]}. (1.8)

(Recall that T Tρ is defined in the discussion following Definition 1.5). Suppose that for each
Tρ ∈ Tρ, the tubes in TTρ satisfy the hypotheses of Assertion D(σ, ω); we will call this Simplifying
Assumption B. We define µfine to be the number of tubes from TTρ passing through a typical point
of

⋃
TTρ T Tρ (it is harmless to suppose that this number is the same for each ρ tube in Tρ). Applying

Assertion D(σ, ω) to each set TTρ and recalling the discussion following Definition 1.5, we conclude
that

µfine ⪅
(δ
ρ

)σ−ω
(#T[Tρ])σ ≤

(δ
ρ

)σ−ω(
δν

ρ2

δ2

)σ
= δνσ

(ρ
δ

)σ+ω
, (1.9)

where the second inequality used our assumption that #T[Tρ] ≤ δν(ρ/δ)2.

Inequality (1.9) bounds the typical intersection multiplicity of the δ tubes inside a common ρ
tube. Next, we define the quantity µcoarse as follows: for a typical point x ∈

⋃
T T , there are about

µcoarse distinct ρ tubes Tρ ∈ Tρ with the property that x ∈
⋃

T[Tρ]
T . With this definition, we have

µ ∼ µfineµcoarse. (1.10)

In the past, researchers have considered a weaker variant of (1.10) of the form µ ≲ µfineµTρ ,
where µTρ is the number of tubes from Tρ passing through a typical point of ∪TρTρ. Our use of
the more refined estimate (1.10) is a key new ingredient in the proof.

In light of (1.9), our desired multiplicity bound (1.6) will follow if we can establish the estimate

µcoarse ⪅ ρ−σ−ω. (1.11)

Naively, we might attempt to obtain (1.11) by observing that µcoarse ≤ µTρ , and then bound-
ing the latter using Assertion E(σ, ω). However, this approach does not yield (1.11) because the
cardinality of Tρ (in this proof vignette) is substantially larger than ρ−2.

A coarse-scale estimate Step 1: a grains decomposition.
Fix a tube Tρ ∈ Tρ. Using a variant of Guth’s grains decomposition from [9], we can suppose
that the δ/ρ tubes in TTρ arrange themselves into “grains,” i.e. rectangular prisms of dimensions
δ/ρ× c× c, with c ≥ ρ

δ (#T[Tρ])−1 (Note that our hypotheses on the size of #T[Tρ] guarantees that
c >> δ/ρ). Here and throughout, we will adopt the convention that when referring to a rectangular
prism of dimensions a× b× c, we will always have a ≤ b ≤ c.

This means that we can cover ETρ =
⋃

TTρ T Tρ by a set of (mostly) disjoint rectangular prisms of
dimensions δ/ρ×c×c, each of which have large intersection with ETρ , in the sense that |G∩ETρ | ⪆
|G|, for each such prism G; see Figure 2 (left).

Undoing the anisotropic rescaling associated to Tρ that was described above, we have that⋃
T[Tρ]

T can be covered by a set of (mostly) disjoint rectangular prisms of dimensions δ × ρc × c;
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Figure 2: Left: The set of tubes TTρ and the grains {G}. For clarity, we have only drawn the grains
and tubes that intersect the black tube (and even most of these have been omitted; the set of red
tubes passing through the red grain fill out a substantial portion of the red grain, and similarly for
the other grains); the situation is similar for each tube in TTρ .
Right: The image of Figure 2 (left) after undoing the anisotropic rescaling associated to Tρ. The
dimensions of each grain have changed from δ/ρ× c× c to δ × ρc× c.

see Figure 2 (right). The same statement is true for each Tρ ∈ Tρ. Let P denote the set of all such
δ× ρc× c prisms, from all ρ tubes in Tρ. In order to bound µcoarse, it suffices to bound the typical
intersection multiplicity of the prisms in P.

A coarse-scale estimate Step 2: intersection multiplicity of the grains.
Each δ × ρc × c prism in P has an associated tangent plane, which is well-defined up to accuracy
δ/(ρc). Suppose that the prisms in P intersect “tangentially,” in the sense that whenever two
prisms P, P ′ ∈ P intersect, their corresponding tangent planes agree up to accuracy δ/(ρc). We
will call this Simplifying Assumption C. This means that for each point x, the set of prisms from
P containing x are contained in a common prism of dimensions roughly δ/ρ × c × c. Thus we
can partition P into sets, P =

⋃
Pi, with the property that if two prisms intersect then they are

contained in a common set, and the δ × ρc × c prisms in each set Pi are contained in a common
prism □i of dimensions roughly δ/ρ× c× c; see Figure 3 (left).

Fix a set P ′ from the partition of P described above, and let □ be the associated δ/ρ × c × c
prism. The image of each P ∈ P ′ under the anisotropic rescaling sending □ to the unit cube will be
a prism of dimensions roughly ρ×ρ×1 (see Figure 3 (right)). Since a ρ×ρ×1 prism is comparable
to a ρ tube, we will abuse notation slightly and pretend that this set of prisms is actually a set of ρ
tubes; we will call this set T̃. Our task of estimating µcoarse now reduces to estimating the typical
intersection multiplicity of the tubes in T̃.

A priori, we do not know anything about the structure of the set T̃. A key new idea of our paper

11



Figure 3: Left: two sets of δ × ρc × c prisms from the partition of P (blue and red, respectively),
and the associated δ/ρ× c× c prisms □ and □ that contain them.
Right: The anisotropic rescaling that maps the blue δ/ρ × c × c prism □ to the unit cube maps
each blue δ × ρc× c prism to a ρ× ρ× 1 prism (this is comparable to a ρ tube).

is a structure theorem that finds a set W of convex sets such that W obeys (a suitable analogue
of) the Katz-Tao Convex Wolff Axioms with error ⪅ 1, and for each W ∈ W, the set

T̃[W ] = {T̃ ∈ T̃ : T̃ ⊂ W}

satisfies the following key properties:

1. The cardinality estimate #T̃[W ] ≈ CKT -CW (T̃) · |W |/|T̃ | (here |T̃ | ∼ ρ2 denotes the volume of
a tube from T̃).

2. For every convex set U ⊂ W , we have #T̃[U ] ⪅ |U |
|W |#T̃[W ].

See Figure 5 for an illustration of this process, and Proposition 4.6 for a precise statement.

Let’s analyze a special case to see what these two properties mean. Suppose for a moment
that W is a τ tube for some ρ < τ < 1, then Item 1 says that after rescaling W to a unit cube,
T̃[W ] becomes a set of ρ/τ -tubes of cardinality ⪆ CKT -CW (T̃)(τ/ρ)2. Item 2 is a non-concentration
condition on these tubes that was first introduced in [26]; families of tubes obeying this non-
concentration condition are said to satisfy the Frostman Convex Wolff Axioms. For example,
Items 1 and 2 are satisfied if the following holds: in each ρ/τ -separated direction, we have roughly
CKT -CW (T̃) many parallel ρ/τ -tubes. This type of tube arrangement was previously considered
by Wolff [29], and volume estimates for unions of tubes satisfying these properties are called X-
ray estimates. The Assertion E(σ, ω), in particular E(1/2, 0), is a generalization of Wolff’s X-ray
estimate from [29]. As a consequence, we should expect

⋃
T̃[W ] T̃ to have a large volume if CKT -CW (T̃)

is substantially greater than 1. See Case 2 below for more details.

Our argument now splits into three cases.

Case 1: CKT -CW (T̃) ⪅ 1. In this case, W consists of a single convex set, which is comparable to the
unit ball. To simplify this proof vignette, we will suppose that T̃ satisfies the Frostman Slab Wolff
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Axioms with error ⪅ 1, and thus T̃ satisfies the hypothesis of Assertion D(σ, ω); this simplification
can be justified using certain rescaling arguments that we will not detail here. In particular, this
means that #T̃ ⪅ ρ−2, and thus we can apply Assertion D(σ, ω) to obtain the desired estimate

µcoarse ⪅ ρσ−ω(#T̃)σ ⪅ ρ−σ−ω.

Case 2: CKT -CW (T̃) ≫ 1, and each W ∈ W has thickness t ≫ δ. To handle this case, we will
consider the following analogy. Suppose that T is a set of δ tubes of cardinality mδ−2, for some
m ≫ 1. Suppose furthermore that T satisfies the Katz-Tao Convex Wolff Axioms with error m,
and the Frostman Slab Wolff Axioms with error ∼ 1. Then Assertion E(σ, ω) says that

⋃
T T has

volume ⪆ mσ/2δσ+ω, which is substantially larger than δσ+ω. We apply a similar argument to the
set of tubes T̃[W ] to conclude that for each W ∈ W, the union

⋃
T̃[W ] T̃ has large volume (see also

the discussion of the two properties above). Undoing the re-scaling described in the previous step
(and illustrated in Figure 3), we obtain a scale δ << τ << δ/ρ ≥ (here τ depends on t and the
orientation of W with respect to □) with the property that for a typical point x ∈

⋃
T T , the ball

Bτ = B(x, τ) has a large intersection with
⋃

T T . This means that we obtain an inequality of the
following form: ∣∣∣Bτ

⋂( ⋃
T∈T

T
)∣∣∣ ⪆ CKT -CW (T̃)σ/2(δ/τ)σ+ω|Bτ |. (1.12)

This is precisely (1.7), provided CKT -CW (T̃) ≥ δ−2α/σ (this is what we mean by CKT -CW (T) ≫ 1).

Next, let Tτ be a set of essentially distinct τ tubes with the property that each T ∈ T is
contained in some tube from Tτ , and suppose that each Tτ ∈ Tτ contains about (#T)/(#Tτ ) tubes
from T. It is straightforward to compute that CF -SW (Tτ ) ⪅ 1 (indeed, this is inherited from T),
and that CKT -CW (Tτ ) ≈ (#Tτ )|Tτ | (this latter quantity is ≥ 1, since CKT -CW (T) ⪅ 1 and thus at
least |Tτ |−1 essentially distinct τ tubes are needed to cover the tubes in T). Applying the estimate
E(σ, ω) to Tτ , we conclude that∣∣∣ ⋃

Tτ∈Tτ

Tτ

∣∣∣ ⪆ τω
(

(#Tτ )|Tτ |2
)σ/2

⪆ τω+σ.

For the last inequality, we used the estimate #Tτ ⪆ |Tτ |−1, which follows from the hypotheses
CKT -CW (T) ⪅ 1 and #T ∼ δ−2. Pairing this scale−τ estimate with our previously discussed
estimate (1.12) inside balls of radius τ , we obtain (1.5):∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ⪆ ∣∣∣ ⋃
Tτ∈Tτ

Tτ

∣∣∣ · CKT -CW (T̃)σ/2
(
δ

τ

)σ+ω

⪆ δω+σCKT -CW (T̃)σ/2.

Case 3: CKT -CW (T̃) ≫ 1, and each W ∈ W has thickness ≈ δ. In this case, the grains in P can be
replaced by larger prisms—these are the (rescaled) convex sets coming from W. This process may
change ρ and also change the dimensions of the grains. We iterate the argument described above
with our new ρ and larger grains. If we repeatedly find ourselves in Case 3 with each iteration,
then the grains become wider and wider. Suppose for the moment that after a sufficient number of
iterations, both ρ and c have size ≈ 1. Then

⋃
T T is organized into a union of δ×1×1-slabs. From

here, a straightforward geometric argument (analogous to Cordoba’s proof of the Kakeya maximal
function conjecture in the plane) shows that

∣∣⋃
T T

∣∣ ≈ 1. If instead c ≪ 1, then a different Cordoba
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type geometric argument and the assumption that µ ≫ 1 (if this assumption fails, then we are done)
allows us to enlarge c, and we iterate the argument again.

Justifying the simplifying assumptions.
We will briefly justify Simplifying Assumptions A – C. First, if Simplifying Assumption A fails,
then we can directly prove (1.5) by using the sticky Kakeya theorem; see Section 10 for details.
In general, Simplifying Assumption B might not hold, but if it fails, then either it is possible to
directly prove (1.5), or else it is possible to find an intermediate scale between δ and ρ at which
the assumption holds; this introduces additional steps and complexity to the argument, but does
not fundamentally change the flavor of the proof.

If Simplifying Assumption C fails, then we can use a straightforward Cordoba-type geometric
argument to show that for a typical prism P0 ∈ P, the union of prisms P ∈ P that intersect P0 fill
out (most of) a thickened neighbourhood of P0. This in turn means that for a typical tube T0 ∈ T,
the union

⋃
T T fills out (most of) a thickened neighbourhood of T0. We can then argue as in Case

2 (described above) to obtain (1.6).

In the table below, we summarize some of the geometric objects that appeared in the arguments
from Section 1.5.

object cardinality dimensions
bounding
box

union
size

desired
union size

multiplicity
desired
multiplicity

T δ−2 δ × δ × 1 1 × 1 × 1 ⪆ δσ+ω ⪆ δσ+ω−α ⪅ δ−σ−ω ⪅ δ−σ−ω+α

T[Tρ] δν(δ/ρ)−2 δ × δ × 1 ρ× ρ× 1 ⪅ δνσ
(
δ
ρ

)−σ−ω

P δ × cρ× c
δ
ρ×c×c
(if tangential)

µcoarse ⪅ ρ−σ−ω

T̃ ρ× ρ× 1 1 × 1 × 1 µcoarse ⪅ ρ−σ−ω

1.6 Tube doubling and Keleti’s line segment extension conjecture

In this section we will discuss further consequences of Theorem 1.9. We begin by introducing the
Tube Doubling Conjecture (see e.g. [10, Conjecture 15.19]). In what follows, if T is a δ tube in Rn,
then T̃ denotes the 2-fold dilate of T . Besicovitch constructed a set T of roughly δ−1 tubes in R2

for which ∣∣∣ ⋃
T∈T

T̃
∣∣∣ ≳ log(1/δ)

log log(1/δ)

∣∣∣ ⋃
T∈T

T
∣∣∣. (1.13)

This construction was adapted by Fefferman [8] to show that the ball multiplier is unbounded on
Lp for p ̸= 2. The Tube Doubling Conjecture asserts that up to sub-polynomial factors, Inequality
(1.13) is tight. One formulation is as follows.

Conjecture 1.11. Let n ≥ 2 and ε > 0. Then the following is true for all δ > 0 sufficiently small.
Let T be a set of δ tubes in Rn. Then ∣∣∣ ⋃

T∈T
T̃
∣∣∣ ≤ δ−ε

∣∣∣ ⋃
T∈T

T
∣∣∣. (1.14)

Conjecture 1.11 is known in dimension two, and open in three and higher dimensions. As a
consequence of Theorem 1.9, we resolve Conjecture 1.11 in R3.
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Theorem 1.12. The Tube Doubling Conjecture is true in R3.

We will discuss the proof of Theorem 1.12 in Section 12. The Tube Doubling Conjecture is
closely related to Keleti’s Line Segment Extension Conjecture [22]. In the statement that follows,
if ℓ is a line segment (by definition, line segments have positive length), then ℓ̃ denotes the line
containing ℓ.

Conjecture 1.13. Let L be a set of line segments in Rn. Then

dim
( ⋃

ℓ∈L
ℓ̃
)

= dim
( ⋃

ℓ∈L
ℓ
)
.

In [23], Keleti and Máthé proved that the Kakeya set conjecture in Rn implies Conjecture 1.13
in Rn. As a consequence, Theorem 1.1 has the following corollary.

Theorem 1.14. Conjecture 1.13 is true in R3.
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2 A sketch of the proof

Our goal in this section is to briefly outline the major steps in the proofs of Propositions 1.6 and
1.7. To simplify the exposition in this proof sketch, we will gloss over many technical details and
make a number of white lies. For example, we will pretend that every shading Y (T ) ⊂ T is just
the trivial shading Y (T ) = T . At the same time, we will pretend that each point x ∈

⋃
T∈T T is

always contained in the same number of tubes from T, and similarly for other collections of tubes,
rectangular prisms, etc. In the same spirit as in Section 1.5, we will disregard factors of the form
δε or δ−ε, and we will (somewhat informally) write A ⪅ B to mean that A ≤ Cδ−εB, for some
constant C that is independent of δ and some small parameter ε > 0 that we will ignore for the
purposes of this sketch (in Section 3 we will give a precise definition of the relation ⪅, which will be
used for the remainder of the proof). In the actual proof there are myriad parameters (of which ε
is an example), and navigating the precise interplay between these parameters is a major technical
challenge in the paper. This issue will be entirely ignored in the proof sketch.

Finally, in this proof sketch it will be helpful to introduce “informal versions” of certain def-
initions and theorems that occur later in the paper. These informal versions are intentionally
imprecise, and often are not literally true. These informal statements will be superseded by their
formal counterparts that occur later in the paper. With these caveats, we now proceed as follows.

2.1 Proposition 1.6: Assertions D and E are equivalent

Our first goal is to prove Proposition 1.6. To do this, we will iterate the following lemma:
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Lemma 6.4, informal version. Let 0 < ω < ω′, and suppose that both D(σ, ω) and E(σ, ω′) are
true. Then E(σ, ω′ − α) is true, where α > 0 depends only on the quantities ω and ω′ − ω.

To prove Proposition 1.6, we fix ω and σ and suppose that D(σ, ω) is true. The statement
E(σ, 2) is trivially true, since the volume of

⋃
T T is bounded below by the volume of a single tube.

We then iterate Lemma 6.4 multiple times to conclude that E(σ, ω + ε) is true for every ε > 0, and
thus E(σ, ω) is true.

The idea behind Lemma 6.4 is as follows. Given a set T of δ tubes, our goal is to establish the
estimate ∣∣∣ ⋃

T∈T
T
∣∣∣ ⪆ δω

′−αm−1(#T)|T |
(
m−3/2ℓ(#T)|T |1/2

)−σ
, (2.1)

with m = CKT -CW (T) and ℓ = CF -SW (T). For simplicity we will pretend that every collection
of tubes always satisfies CF -SW (T) ⪅ 1. Removing this assumption introduces a few additional
difficulties that we will not discuss here.

If CKT -CW (T) ⪅ 1, then T satisfies the hypotheses of D(σ, ω), and thus we can apply the estimate
D(σ, ω) to T and immediately obtain (2.1). Suppose instead that CKT -CW (T) = m >> 1. This means
that there is a convex set W that contains at least m|W |δ−2 tubes from T. The convex set W
must have diameter ≥ 1 (since it contains at least one tube), and wlog we can suppose that it has
diameter ∼ 1 (since the tubes in T are contained in the unit ball). Thus we may suppose that W is
comparable to a rectangular prism of dimensions a× b× 1, for some δ ≤ a ≤ b ≤ 1. We will focus
on the most interesting case, which is when a and b have similar size, i.e. W is comparable to a ρ
tube for some δ ≤ ρ ≤ 1.

Motivated by the above discussion, let us explore what happens when CKT -CW (T) = m >> 1;
there is a scale δ << ρ << 1; and a set Tρ of ρ tubes, each of which contains about m(ρ/δ)2 tubes
from T. It is straightforward to verify that CKT -CW (Tρ) = O(1): if a convex set W contains N
tubes from Tρ, then it contains about Nm(ρ/δ)2 tubes from T. On the other hand, W can contain
at most m|W |/δ2 tubes from T; see Figure 4. Note that this situation is in some sense the opposite
of the problematic situation described in Section 1.1 (and illustrated in Figure 1 (right)); in that
Section, we considered the scenario where there are many (i.e. far more than ρ−2) ρ tubes, each of
which contains few (i.e. far fewer than (ρ/δ)2) δ tubes.

We have just shown that Tρ satisfies the hypotheses of D(σ, ω), and thus∣∣∣ ⋃
Tρ∈Tρ

Tρ

∣∣∣ ⪆ ρω(#Tρ)|Tρ|
(

(#Tρ)|Tρ|1/2
)−σ

. (2.2)

(In the above, we write |Tρ| ∼ ρ2 to denote the volume of a ρ tube). On the other hand, for each
Tρ ∈ Tρ, the (re-scaled) δ tubes inside Tρ will satisfy the Katz-Tao Convex Wolff Axioms with error
about m, i.e. CKT -CW (TTρ) ≲ m = CKT -CW (T).

Applying the estimate (1.3) from Assertion E(σ, ω′), we conclude that∣∣∣ ⋃
TTρ∈TTρ

T Tρ

∣∣∣ ⪆ (δ
ρ

)ω′

m−1(#T[Tρ])|T Tρ |
(
m−3/2(#T[Tρ])|T Tρ |1/2

)−σ
. (2.3)

Inequality (2.2) says that about ρ−3+ω(#Tρ)|Tρ|
(

(#T)ρ|Tρ|1/2
)−σ

distinct ρ balls are needed

to cover
⋃

T T , and the RHS of (2.3) gives a lower bound for the density of
⋃

T T inside a typical
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Figure 4: Tρ (black), and T (blue). For clarity, we have only drawn the tubes from T inside two
ρ tubes. Note that the ρ tubes are (comparatively) sparse, while the tubes in T[Tρ] are densely
packed. The situation is similar to that in Figure 1 (left), except that the set of (rescaled) δ tubes
inside each ρ tube are very dense, and thus CKT -CW (TTρ) is large.

ρ ball from this collection. Combining these estimates and noting that (#Tρ)(#T[Tρ]) = #T and
|Tρ||T Tρ | = |T |, we conclude that∣∣∣ ⋃

T∈T
T
∣∣∣ ⪆ ρω−ω′

δω
′
m−1(#T)|T |

(
m−3/2(#T)|T |1/2

)−σ
. (2.4)

If ρ < δζ for some ζ > 0 bounded away from 0, then (2.4) is precisely (2.1), with α = ζ(ω′ − ω).

This concludes the proof of Lemma 6.4 and hence Proposition 1.6, except that in our proof we
assumed the existence of a set of ρ tubes that satisfies the following properties:

(a) CKT -CW (Tρ) = O(1).

(b) Each ρ tube Tρ contains about m|Tρ|/|T | tubes from T, where m = CKT -CW (T).

(c) The sets in Tρ are tubes, i.e. they have dimensions ρ× ρ× 1.

(d) ρ << 1, in the sense that ρ = δζ for some ζ > 0 bounded away from 0.

Unfortunately, given a set of δ tubes T, it need not be the case that such a set of ρ tubes
satisfying the above properties will always exist. Consider, for example, the case where T is an
arrangement of δ tubes of cardinality δ−5/2, we define s = δ5/8, and each of the roughly s−4

essentially distinct s tubes in B(0, 1) ⊂ R3 contains one δ tube from T. Examples of this type are
called the well-spaced case. For such a set T, there does not exist a scale ρ satisfying Items (a) –
(d) above. Note, however, that a slightly different statement is true for this arrangement: There
are scales δ ≤ τ ≤ ρ, and sets of τ and ρ tubes Tτ and Tρ that satisfy the following:

(i) T has cardinality about m|T |−1, where m = CKT -CW (T).

(ii) CKT -CW (Tρ) ≲ (#Tρ)|Tρ|.

(iii) Each ρ tube Tρ satisfies CKT -CW (TTρ
τ ) = O(1), and #TTρ

τ ∼ |T Tρ
τ |−1 = (ρ/τ)2.
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(iv) Each τ tube Tτ satisfies CKT -CW (TTτ ) ≲ (#T[Tτ ])|T Tτ |.

(v) τ << ρ, in the sense that τ = δζρ for some ζ > 0 bounded away from 0.

For the well-spaced example described above, we would have m = δ−1/2, τ = δ, ρ = δ1/4, Tτ = T,
and Tρ is a maximal set of ρ−4 essentially distinct ρ tubes.

The arguments described above can be adapted to this situation: By Item (ii), the ρ tubes
satisfy the hypothesis of Assertion E(σ, ω), and thus we obtain the volume estimate∣∣∣ ⋃

Tρ∈Tρ

Tρ

∣∣∣ ⪆ ρω
′
(#Tρ)σ/2|Tρ|σ. (2.5)

Note that the RHS of (2.5) is precisely the estimate (1.3) from Assertion E(σ, ω′) (ignoring the
multiplicative constant κ), with m = (#Tρ)|Tρ| and ℓ = O(1).

By Item (iii), the τ tubes inside each ρ tube satisfy the hypotheses of Assertion D(σ, ω), and
thus for each ρ tube Tρ we obtain the volume estimate∣∣∣ ⋃

T
Tρ
τ ∈TTρ

τ

T
Tρ
τ

∣∣∣ ⪆ (τ
ρ

)ω
|T Tρ

τ |σ/2. (2.6)

Note that the RHS of (2.6) is precisely the estimate (1.2) from Assertion D(σ, ω), with #TTρ
τ =

|T Tρ
τ |−1.

Finally, by Item (iv), the δ tubes inside each τ tube satisfy the hypothesis of Assertion E(σ, ω′),
and thus for each τ tube Tτ we obtain the volume estimate∣∣∣ ⋃

TTτ∈TTτ

T Tτ

∣∣∣ ⪆ ( δ
τ

)ω′

(#T[Tτ ])σ/2|T Tτ |σ. (2.7)

If the τ tubes are evenly distributed among ρ tubes, and the δ tubes are evenly distributed
among the τ tubes, then we may suppose that for each τ tube Tτ and each ρ tube Tρ, we have

(#TTτ )(#TTρ
τ )(#Tρ) = #T. Thus we can combine (2.5), (2.6), and (2.7) to obtain the following

analogue of (2.4): ∣∣∣ ⋃
T∈T

T
∣∣∣ ⪆ (τ

ρ

)ω−ω′

δω
′
(#T)σ/2|T |σ

=
(τ
ρ

)ω−ω′

δω
′
m−1(#T)|T |

(
m−3/2(#T)|T |1/2

)−σ
,

(2.8)

where the second equality used Item (i). By Item (v) we have τ/ρ < δζ , and thus we obtain (2.1)
with α = ζ(ω′ − ω), as desired.

To prove Lemma 6.4 (and hence Proposition 1.6), we show that for every arrangement of δ
tubes, at least one of the following must hold.

(A) There is a set of ρ tubes satisfying Items (a) - (d) above.

(B) There are sets of τ and ρ tubes satisfying Items (i) - (v) above.

(C) The tubes in T can be efficiently packed inside rectangular prisms of dimensions s × t × 1,
with s << t.
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(D) The tubes in T satisfy the Frostman Convex Wolff Axioms at every scale (see Definition 6.1).

To establish the above polychotomy, in Section 4 we develop a general theory for “factoring”
collections of convex sets in Rn. Given a set of δ tubes T, this allows us to find a collection of
convex sets W that satisfies the analogues of Items (a) and (b) above with W in place of Tρ. If
these convex sets have dimensions s× t×1 with s << t, then this gives us Item (C). If instead s ∼ t,
then the convex sets in W are almost tubes. We apply arguments of this type at several carefully
chosen scales to show that at least one of Items (A) – (D) must hold.

The arguments described thus far establish the desired inequality (2.1) in the case where (A)
or (B) holds. In Section 5 we show that Inequality (2.1) holds in Case (C); this is done using a
careful rescaling argument. Finally, Case (D) is precisely the setting where we can apply the Sticky
Kakeya Theorem (as generalized in [26]) to immediately conclude that T satisfies (2.1).

This concludes the proof sketch of Proposition 1.6. We now turn to Proposition 1.7.

2.2 A two-scale grains decomposition

In Sections 7 and 8, we study the structure of arrangements of δ tubes for which the estimate (1.2)
from Assertion D(σ, ω) is (almost) tight, i.e. sets of δ tubes that satisfy the hypotheses of Assertion
D(σ, ω), and also satisfy an inequality of the form∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ⪅ δω(#T)|T |
(
(#T)|T |1/2

)−σ
.

We will assume for now that such a set T exists, and at the end of Section 2 we will arrive at a
contradiction. With care, this contradiction will remain when the term δω is replaced by δω−ν for
ν > 0 a small positive number.

In [9], Guth proved that under mild “broadness” hypotheses, every union of δ tubes
⋃

T T in
R3 can be written as a disjoint union of rectangular prisms of dimensions δ × c × c, with c ≥
((#T)|T |1/2)−1; see Figure 2 (left). This lower bound on c is interesting when #T is substantially
smaller than |T |−1 (recall that |T | has size roughly δ2). At the opposite extreme, if #T has size
about |T |−1/2 (this is the smallest possible cardinality for T that is allowable, given the broadness
hypotheses mentioned above), then grains have dimensions roughly δ×1×1. We remark that Guth’s
methods also yield a stronger bound of the form c ≥ µ((#T)|T |1/2)−1, where µ is the number of
tubes from T that pass through a typical point, but this stronger bound won’t be needed here.

First, we show that there exists a scale δ << ρ << 1 and a set of ρ tubes Tρ so that both Tρ and
the rescaled sets TTρ (recall (1.8)) satisfy the hypotheses of Assertion D(σ, ω). In addition, each
rescaled set TTρ satisfies the broadness hypotheses needed to apply (a variant of) Guth’s result.
Thus we can write

⋃
T[Tρ]

T Tρ as a disjoint union of rectangular prisms of dimensions δ/ρ × c × c,

where c ≥ ((#T[Tρ])|T Tρ |1/2)−1. Note that the grains become larger as #T[Tρ] becomes smaller;
this numerology will be important later in the argument. Undoing the scaling, we obtain a partition
of

⋃
T[Tρ]

T into disjoint δ × ρc × c rectangular prisms; we will refer to these as grains (see Figure

2 (right)), and we refer to this set of grains as GTρ . Let G =
⋃

Tρ
GTρ . In our discussion below, we

will call G the “two scale Guth grains decomposition” of T.

Recall that in the proof vignette outlines in Section 1.5, we made Simplifying Assumption D.
We will now dicuss the technical steps needed to justify this assumption. The main goal of Section
7 is to define three “Moves,” which we will briefly describe below. After these moves have been
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applied, we obtain a new scale ρ with δ << ρ << 1; a new set of ρ tubes Tρ that cover T; and a new
collection G of grains that have the following properties:

(i) Each grain has dimensions δ × ρc× c, with c ≥ ((#T[Tρ])|T Tρ |1/2)−1.

(ii) Each grain G ∈ G is associated to a unique tube Tρ ∈ Tρ, where G ⊂ Tρ, and both G and Tρ

point in the same direction (up to uncertainty ρ).

(iii) Distinct grains from G associated to the same ρ tube are disjoint.

(iv) For each ρ tube Tρ, we have
⊔
G =

⋃
T∈T[Tρ]

T , where the former union is taken over the set
of grains associated to Tρ.

(v) Grains associated to different ρ tubes can intersect, but this intersection must be tangential;
i.e. the tangent planes of intersecting grains must agree up to uncertainty δ/(ρc).

Item (v) means that we can cover R3 by boxes of dimensions δ
ρ×c×c, so that each grain is contained

in O(1) boxes, and two grains intersect only if they are contained in a common box. If we re-scale
a box to become the unit cube, then the grains inside this box become ρ×ρ×1 rectangular prisms,
i.e. ρ tubes (see Figure 2). We introduce the following notation: If □ is a δ

ρ ×c×c box, then G□ will
denote the set of ρ-tubes obtained by re-scaling the grains from G inside □. With this notation, we
can state one final property for G:

(vi) For each box □, the ρ tubes in G□ satisfy the hypotheses of E(σ, ω), and CKT -CW (G□) ⪅ 1.

In a moment, we will describe the Moves needed to find a scale ρ; a set of ρ tubes Tρ; and a
set of grains G that satisfy Items (i) – (vi). We begin by letting G be the two scale Guth grains
decomposition of T, as described above. Items (i), (ii), (iii), and (iv) hold for this choice of G, and
properties (ii)-(iv) are preserved throughout the process.

If Item (v) fails at any point in the process, then we argue by contradiction as follows. Using a
L2 argument similar to Cordoba’s proof of the Kakeya maximal function conjecture in the plane,
we can show that there exists some scale δ̃ >> δ so that the “hairbrush” of a typical grain G
(i.e. the union of the grains G′ ∈ G with G′ ∩ G ̸= ∅) fills out (most of) the δ̃-neighbourhood of
G. Let us pretend that the hairbrush fills out all of the δ̃ neighbourhood of G. Then for each δ
tube T ∈ T, the corresponding δ̃ tube T̃ = Nδ̃(T ) satisfies T̃ ⊂

⋃
T ′∈T T

′. Thus we can replace our

original collection of δ tubes with a new collection T̃ of fatter δ̃ tubes, and
⋃

T T =
⋃

T̃ T̃ . The new

collection of fatter tubes will satisfy the hypotheses of E(σ, ω) (with favorable values of CKT -CW (T̃)
and CF -SW (T̃)), and hence we can apply the estimate E(σ, ω) to T̃ and obtain a volume estimate
for

∣∣⋃
T T

∣∣ that is superior to the estimate coming from Assertion D(σ, ω). But this contradicts
the assumption that the volume estimate from Assertion D(σ, ω) was sharp for T.

We will now describe the three Moves alluded to above. For ease of exposition, it will be helpful
to introduce these Moves in the opposite order that they are defined in Section 8.

Move #3 handles the situation when Item (vi) fails (recall the Assertion D(σ, ω) is sharp for
T). Using an L2 argument, we show that the hairbrush of each grain G ∈ G fills out (most of) a
wider grain G̃ ⊃ G; these wider grains have the same “length” c, but a substantially larger value
of ρ. See Figure 14 for a visual depiction of this step.

Unfortunately, after applying Move #3, it might be the case that ρ has become so large that the
inequality ρ << 1 is no longer true. Move #2 handles this situation. Move #2 uses a L2 argument
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to find a new set of grains with a new (substantially larger) length c, and a new ρ that satisfies
δ << ρ << 1. See Figure 10 for a visual depiction of this step.

Finally, whenever the value of ρ changes, so does the quantity ((#T[Tρ])|T Tρ |1/2)−1. Thus after
applying Moves #2 or #3, it might be the case that ((#T[Tρ])|T Tρ |1/2)−1 has become much larger
than c, and hence Item (i) fails. Move #1 handles this case: we throw away our set G and replace it
with the two scale Guth grains decomposition of T that was described above (both Moves #2 and
#3 maintain the broadness condition needed to invoke the two scale Guth grains decomposition of
T). This gives us a new grains decomposition with the same value of ρ and a substantially larger
value of c.

Each of Moves #1, #2, and #3 can be applied to ensure that G satisfies (some of) the Properties
(i) – (vi) described above. Unfortunately, the application of Move #1, #2, or #3 might destroy
other Properties. However, each Move either substantially increases the “length” c of the grains, or
maintains the length and substantially increases the value of ρ. Since c and ρ are bounded above
by 1, the process of applying Moves #1, #2, and #3 must halt after a bounded number of steps.
The resulting grains decomposition satisfies Properties (i) – (vi).

2.3 Refined induction on scales

In Section 9 we use the two-scale grains decomposition from Section 7 to apply the estimate from
Assertion E(σ, ω) at two different scales — once to the (rescaled) δ tubes inside each ρ tube, and
once to the ρ tubes arising as the re-scaled grains inside each box □, i.e. to each arrangement G□.
This is a critical step in the proof of Proposition 1.7, and the entire proof up to this point was
carefully structured in order to allow us to apply the estimate E(σ, ω) to G□.

The argument is as follows. Suppose that T is a set of δ tubes for which the estimate from
Assertion D(σ, ω) is tight, and let Tρ and G be the grains decomposition described in the previous
section. Employing a small white lie, we can suppose that there is a number µ so that each point
x ∈

⋃
T T is contained in ∼ µ tubes from T. We have

∣∣⋃
T T

∣∣ ∼ µ−1(#T)|T |, so our goal is to
obtain an upper bound for µ. We will suppose there is a number µfine so that for each Tρ, each
point x ∈

⋃
T[Tρ]

T is contained in ∼ µfine tubes from T[Tρ]. Finally, we will suppose there is a

number µcoarse so that each point x ∈
⋃

T T =
⋃

G∈G G is contained in about µcoarse grains from G.
By Items (ii) and (iv) from Section 2.2, we have µ ≲ µfineµcoarse, and thus our task is to estimate
the latter two quantities.

Since each rescaled set TTρ satisfies the hypotheses of Assertion D(σ, ω), we have the estimate

µfine ⪅ (δ/ρ)−ω
(

#T[Tρ]|T Tρ |1/2
)σ

, (2.9)

where #T[Tρ] has size roughly (#T)/(#Tρ) and |T Tρ | = |T |/|Tρ|.
Our next task is to estimate µcoarse. We apply E(σ, ω) to each set of ρ tubes G□. (We must use

the estimate E(σ, ω) rather than D(σ, ω), since CF -SW (G□) might be large, which entails a separate
argument. We will gloss over this issue.) Doing so gives the estimate

µcoarse ⪅ ρ−ω
(
(#G□)|Tρ|1/2

)σ
⪅ ρ−ω|Tρ|−σ/2. (2.10)

The second inequality in (2.10) follows from the fact that CKT -CW (G□) ⪅ 1, and hence #G□ ⪅
|Tρ|−1. Combining (2.9) and (2.10), we conclude that

µ ⪅
[
δ−ω

(
(#T)|T |1/2

)σ][|Tρ|(#Tρ)
]−σ

. (2.11)
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The first term in square brackets is the estimate that would follow from applying Assertion
D(σ, ω) directly to T. Thus (2.11) yields a superior estimate precisely when #Tρ >> |Tρ|−1. Since
we assumed that T is a set of tubes for which D(σ, ω) is tight, we conclude that #Tρ ⪅ |Tρ|−1.

The above step was simplified to highlight the main ideas. In reality, we actually need (and
prove) a slightly stronger statement: rather than concluding that #Tρ ⪅ |Tρ|−1, we must instead
arrive at the estimate CKT -CW (Tρ) ⪅ 1. This more difficult estimate is obtained as follows. Suppose
to the contrary that CKT -CW (Tρ) >> 1. Then we can find a convex set W so that Tρ[W ] has
cardinality much larger than |W |/|Tρ| (in fact, we can find many such sets W—see Proposition 4.6).
The argument described above is the special case when W is comparable to the unit ball. The
general case introduces technical challenges, but in light of the techniques already developed in
Sections 4 and 5 to prove Proposition 1.6 (see the discussion at the end of Section 2.1), it does not
require any additional new ideas.

2.4 Multi-scale structure, Nikishin-Stein-Pisier factorization, and Sticky Kakeya

Let us summarize the conclusion of the previous steps: if T is a set of δ tubes for which the estimate
D(σ, ω) is tight, then there is a scale δ << ρ << 1 and a set of ρ tubes Tρ with CKT -CW (Tρ) ⪅ 1,
so that both Tρ and each (rescaled) set T[Tρ] satisfy the hypotheses of Assertion D(σ, ω), and
furthermore, the estimate D(σ, ω) is tight for all of these arrangements of tubes.

This last conclusion means that we can iteratively apply the same argument to both Tρ and
each (rescaled) set T[Tρ]. After some pruning, we conclude that there is a sequence of closely spaced
scales δ = ρN < ρN−1 < . . . < ρ0 = 1 and sets {Tρi}Ni=1 covering T, with CKT -CW (Tρi) ⪅ 1 for each
index i.

We would like to apply the Sticky Kakeya Theorem to conclude that
∣∣⋃

T T
∣∣ is almost as large

as
∑

T |T |. Indeed, the situation described above almost matches the setup of the Sticky Kakeya
Theorem, as generalized in [26, Theorem 1.8]. Specifically, T would satisfy the hypotheses of [26,
Theorem 1.8] if #T ≈ δ−2. Since CKT -CW (T) ⪅ 1, we know that #T ⪅ δ−2. Unfortunately, however,
it could be the case that #T is much smaller than δ−2.

In Section 10 we use a Nikishin-Stein-Pisier factorization argument to show that if #T << δ−2,
then we can construct a new set T̂ consisting of a union of about δ−2(#T)−1 randomly translated
and rotated copies of T. This new set T̂ will have cardinality about δ−2. Just like the original set T,
the new set T̂ will have a sequence of covers {T̂ρi}Ni=1 with CKT -CW (T̂ρi) ⪅ 1 for each index i. Hence

we can apply the Sticky Kakeya Theorem to T̂ to conclude that
∣∣⋃

T∈T̂ T
∣∣ ⪆ 1. Since the volume of⋃

T T is invariant under translation and rotation (this is a key ingredient for Nikishin-Stein-Pisier
factorization), we conclude that ∣∣ ⋃

T∈T
T
∣∣ ⪆ (#T)|T |. (2.12)

But if σ, ω > 0, then (2.12) contradicts the assumption that the estimate D(σ, ω) is tight for
T. We conclude that when σ, ω > 0, there does not exist any set T satisfying the hypotheses of
Assertion D(σ, ω) for which the estimate D(σ, ω) is tight. The quantitative version of this statement
is Proposition 1.7.
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3 Notation

In the arguments that follow, δ > 0 will denote a small positive quantity. Overriding the (informal)
notation from Sections 1 and 2, we write A(δ) ⪅δ B(δ) if for all ε > 0, there exists Kε > 0 so
that A(δ) ≤ Kεδ

−εB(δ). If the role of δ is apparent from context, we will often write A ⪅ B. For

example if K is a constant independent of δ, then log(1/δ)K ⪅ 1. Similarly, e
√

log 1/δ ⪅ 1.

In some sections of the paper, it will ease notation to fix certain variables (for example the
values of σ and ω from Definition 1.5). In such cases, we will clearly state which variables are
fixed, and use bold font throughout that section to denote these fixed variables, and also to denote
quantities that depend only on fixed variables. For example we might define β = σω/100.

3.1 Convex sets and shadings

In the introduction, we defined a δ-tube to be the δ neighbourhood of a unit line segment. There
are several other types of convex sets that will make frequent appearances in our arguments. A
prism is a rectangular prism in Rn (usually R3); we will denote the dimensions by a× b× c× . . . ,
with the convention that a ≤ b ≤ c ≤ . . .. Informally, we say a prism in R3 is “flat” if it has
dimensions a× b× c with a << b, and we say it is “square” if b and c have comparable size. Finally,
we will sometimes refer to the quantities a, b, and c respectively as the “thickness,” “width,” and
“length” of a prism.

Rather than working with rectangular prisms, it will sometimes be convenient to work with
ellipsoids, or more general convex sets. This motivates the following definition, which generalizes
the definition of (T, Y )δ from the introduction.

Definition 3.1. For 0 < a ≤ b ≤ c, we write (P, Y )a×b×c to denote the following pair: P is a set of
essentially distinct convex subsets of R3; for each P ∈ P, the outer John ellipsoid of P has axes of
lengths comparable to a, b, and c respectively. Y is a shading on P, i.e. for each P ∈ P, we have
Y (P ) ⊂ P .

For example, we could write (T, Y )δ as (T, Y )δ×δ×1. Finally, we say (P, Y )a×b×c is λ dense if∑
P∈P |Y (P )| ≥ λ

∑
P∈P |P |.

Definition 3.2. If (P, Y )a×b×c is a set of prisms and their associated shading and x ∈ R3, we define

PY (x) = {P ∈ P : x ∈ Y (P )}.

Similarly, if P is a set of prisms (or more generally, convex sets) and no shading is present, then
we define P(x) = {P ∈ P : x ∈ P}.
Definition 3.3. We say a pair (P ′, Y ′)a×b×c is a t-refinement of (P, Y )a×b×c if P ′ ⊂ P; Y ′(P ) ⊂ Y (P )
for each P ∈ P ′, and

∑
P ′∈P ′ |Y ′(P ′)| ≥ t

∑
P∈P |Y (P )|. In practice, we will often have t ≈δ 1, in

which case we will call it a ≈δ 1 refinement.

Note that if (P, Y )a×b×c is λ dense and (P ′, Y ′)a×b×c is a t-refinement, then #P ′ ≥ λt(#P).

Definition 3.4. If W ⊂ R3 is a convex set whose outer John ellipsoid E has dimensions a× b× c, we
write dir(W ) ∈ Gr(1;R3) and Π(W ) ∈ Gr(2;R3) to denote the 1 and 2-dimensional subspaces of
R3 spanned by the primary and secondary axes of E. We have that dir(W ) is meaningfully defined
up to accuracy b/c, and Π(W ) is meaningfully defined up to accuracy a/b. For example, if T is
a δ tube, then dir(T ) is meaningfully defined up to accuracy δ, while Π(T ) is only meaningfully
defined up to accuracy 1 (i.e. Π(T ) is not a meaningful quantity if T is a δ tube).
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We will employ the following synecdoche notation: if P (resp. T, W, etc.) is a collection of
convex sets, each of the same volume, then we will use |P | (resp. |T |, |W |, etc) to denote the volume
of one of these convex sets. In practice, we will abuse notation slightly and continue to employ this
notation if the sets in P have comparable (but not necessarily identical) volume.

Definition 3.5. Let W ⊂ Rn be a convex set. We define ϕW : Rn → Rn to be an affine-linear
transformation that maps the outer John ellipsoid of W to the unit ball. For concreteness, if
v1, . . . , vn are the axes of the John Ellipsoid, with lengths ℓ1 ≤ . . . ≤ ℓn, then we select ϕW so that
the j-th axis of the John Ellipsoid is mapped to the xj axis in Rn. If two more more axes have the
same length, then we pick an ordering arbitrarily.

If U ⊂ Rn, we define UW = ϕW (U). In particular, if U is a convex subset of W then UW is a
convex subset of the unit ball, and |UW | ∼ |U |/|W |. This is compatible with our earlier definition
of T Tρ from (1.8).

Definition 3.6. Let U be a collection of convex subsets of Rn and let W be a convex subset of Rn.
We define

U [W ] = {U ∈ U : U ⊂ W},

and
UW = {UW : U ∈ U [W ]}.

If Y is a shading on U , we will use Y W to denote the corresponding shading on UW , i.e. for
each UW ∈ UW , we define Y W (UW ) = ϕW (Y (U)).

Remark 3.7. The expression UW should not be confused with UW ; the latter notation will be as
follows: If U and W are sets of convex subsets of Rn, then UW , W ∈ W will be used to denote a
set of subsets of U that are indexed by the elements of W.

3.2 Table of notation

To aid the reader, we will use certain notation conventions throughout this paper. For example,
some symbols (such as σ and ω) will be reserved to always have the same meaning. For future
reference, we record these notation conventions in the table below

Symbol Meaning

δ, ρ, τ These variables will denote scales. Typically δ ≤ ρ ≤ τ .

a, b, c These variables will denote scales; typically the dimensions of a prism.

θ θ will denote an angle

ε, η, ζ, α
These variables will represent (typically small) exponents, i.e. they will appear
in the form δη, ρε, etc.

κ,K
These variables will represent (positive) multiplicative constants, i.e. |

⋃
T | ≥

κδε or CKT -CW (T) ≤ Kδ−η. Typically κ > 0 is small and K >> 1 is large.

σ, ω
σ and ω and their variants σ′, σ̃, etc. will always be quantities related to the
estimates E(σ, ω) and D(σ, ω).

σ, ω
In Sections 7 and 8, we will fix values of σ and ω that are kept constant
throughout that section. We use bold symbols to denote these fixed numbers,
and all subsequent quantities that depend (only) on them.
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T, P,G, S,□
These variables will denote convex sets. Typically T is a tube, P and G are
prisms of dimensions a × b × c, S is a slab, and □ is a “box” of dimensions
a× c× c. We use symbols T,P,G,S to denote sets of such objects.

T′,T1, T̃
T′ or T1 will denote a subset of T. Similarly T2 will denote a subset of T1,
etc. T̃ will denote a new set of tubes that is related to T, but not necessarily
a subset (for example, T̃ might consist of the 2-fold dilates of the tubes in T).

(T′, Y ′)δ (T′, Y ′)δ will denote a refinement of (T, Y )δ. Similarly for (T1, Y1)δ.

4 Wolff Axioms and Factoring Convex Sets

4.1 Definitions: Wolff axioms and covers

Definition 4.1. Let U ,W be collections of convex sets in Rn.

(A) We say that W is a cover of U (or W covers U) if
⋃

W∈W U [W ] = U . We will denote this by
U ≺ W.

(B) We say that W is a K-almost partitioning cover (resp. partitioning cover) if it is a cover, and
furthermore each U ∈ U is contained in at most K sets (resp. 1 set) of the form U [W ].

(D) We say that W is a K-balanced cover (resp. balanced cover) if it is a cover, and furthermore
the numbers |W |−1

∑
U∈U [W ] |U | are comparable for all W ∈ W, up to a multiplicative factor

of K (resp. 2).

The following is a mild generalization of Definition 1.3.

Definition 1.3′. Let U and W be collections of convex subsets of Rn.
(A) We define the Katz-Tao Wolff constant of U with respect to W to be the infimum of all C > 0
so that ∑

U∈U [W ]

|U | ≤ C|W | for all W ∈ W. (4.1)

(B) We define the Frostman Wolff constant of U with respect to W to be the infimum of all C > 0
so that ∑

U∈U [W ]

|U | ≤ C|W |
∑
U∈U

|U | for all W ∈ W. (4.2)

Remark 4.2.
(A) To ease notation, we define CKT -CW (U) (resp. CF -CW (U)) to be the Katz-Tao (resp. Frostman)
Wolff constant of U associated to the set W of convex subsets of Rn. We define CF -SW (U) to be the
Frostman Wolff constant of U associated to the set W of slabs in Rn. Note that these definitions
are compatible with those from Definition 1.3.

(B) A set T of δ-tubes obeys the Wolff axioms, in the sense of [27] (see Property (∗) on p655 and
the preceding discussion) if the Katz-Tao Wolff constant of T is small with respect to the set W
consisting of all rectangular prisms of dimensions 10δ × ρ× . . .× ρ× 2, with 0 < δ ≤ ρ ≤ 2.
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(C) For some arguments, it will be useful to consider an analogue of the above definitions where
the quantity |W | on the RHS of (4.1) is replaced by |W ∩B(0, 1)|/|B(0, 1)|, and similarly for (4.2).
This leads to a quantity that transforms naturally under affine maps such as ϕW from Definition
3.5.

(D) Note that the above definitions continue to make sense if U is a multiset. This will be useful
in Section 10.1.

(E) If the set U ̸= ∅ consists of convex sets of the same size, then CF -CW (U) ≤ C implies that
#U ≥ C−1|U |−1. To see this, take W to be a convex set in U . Then the LHS of (4.2) equals to |U |
while the RHS of (4.2) equals to C|U |2(#U). Roughly speaking, if CKT -CW (U) is small, then U is
“sparse”, while if CF -CW (U) is small, then U is “dense.”

Remark 4.3.
(A) The Frostman Wolff constant is “inherited upwards” by covers. More precisely, if U and W are
collections of convex subsets of Rn, and if W is a K-balanced cover of U , then

CF -CW (W) ≲ KCF -CW (U) and CF -SW (W) ≲ KCF -SW (U). (4.3)

(B) The Katz-Tao Wolff constant is “inherited downwards” by covers. More precisely, if U is a
collection of convex subsets of Rn, and if W is a convex subset of Rn, then

CKT -CW (UW ) = CKT -CW (U [W ]) ≤ CKT -CW (U). (4.4)

(C) The Frostman Slab Wolff Constant is “sub-multiplicative” with respect to covers. More pre-
cisely, if U ≺ V are collections of convex subsets of a convex set W ⊂ Rn, then in some situations
we have that CF -SW (UW ) is controlled by maxV ∈V CF -SW (UV )CF -SW (VW ). In certain special cases,
the same is true for the Katz-Tao Convex Wolff Constant. See Section 4.4 for a precise statement.

4.2 Factoring Convex Sets

As we have observed in Remark 4.3, Frostman Wolff constants are inherited upwards, while Katz-
Tao Wolff constants are inherited downwards. The following definition will help us exploit this
observation when performing multi-scale analysis and induction on scale.

Definition 4.4. Let U and W be collections of convex subsets of Rn, and let K > 0.

(A) We say that W factors U from above with respect to the Katz-Tao (resp. Frostman) Convex
Wolff axioms with error K if W covers U , and W satisfies the Katz-Tao (resp. Frostman) Convex
Wolff axioms with error K.

(B) We say that W factors U from below with respect to the Katz-Tao (resp. Frostman) Convex
Wolff axioms with error K if W covers U , and for each W ∈ W the set UW satisfies the Katz-Tao
(resp. Frostman) Convex Wolff axioms with error K.

(C) We say that W factors U from above (resp. below) with respect to the Katz-Tao (or Frostman)
Slab Wolff axioms with error K if the natural analogue of (A) (resp. (B)) holds, where the Convex
Wolff axioms are replaced by Slab Wolff axioms.
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Figure 5: Left: U is a set of tubes (red) that cluster into rectangular prisms. Right: Proposition
4.6 locates these prisms (black). The tubes in U\U ′ have been X-ed out.

Remark 4.5. Definition 4.4 highlights a few special cases of a more general definition: If U , W,
and V are collections of convex subsets of Rn, we can define what it means for W to factor U from
above (or below) with respect to the Katz-Tao (or Frostman) Wolff axioms with respect to V. Item
(A) and (B) in Definition 4.4 correspond to the special case where V is the collection of convex sets
in Rn, while Item (C) corresponds to the case where V is the collection of slabs in Rn.

Definition 1.3′ was carefully formulated to allow the following result, which says that for every
collection U of convex subsets of Rn, there exists some W that factors U from below with respect
to the Frostman Convex Wolff axioms, and from above with respect to the Katz-Tao Convex Wolff
axioms, both with small error. The precise statement is as follows.

Proposition 4.6. Let U be a finite set of congruent convex subsets of the unit ball in Rn, each

of which contains a ball of radius δ. Let K = 100ne100
√

log(δ−1#U) (the exact shape of K is not
important; what matters is that if #U ≤ δ−100, then K ⪅δ 1).

Then there exists a set W of congruent convex subsets of Rn and a set U ′ ⊂ U with the following
properties:

i) #U ′ ≥ K−1(#U).

ii) W is a K-balanced, K-almost partitioning cover of U ′, and

#U ′[W ] ≥ K−1CKT -CW (U ′)|W ||U |−1 for each W ∈ W. (4.5)

iii) W factors U ′ from above respecting the Katz-Tao Convex Wolff Axioms with error K.

iv) W factors U ′ from below respecting the Frostman Convex Wolff Axioms with error K.

Our proof of Proposition 4.6 will use the following “iterated graph pruning” lemma, which
allows us to prune a bipartite graph and find an induced subgraph for which every vertex has many
neighbours.
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Lemma 4.7. Let G = (A⊔B,E) be a bipartite graph. Then there is a sub-graph G′ = (A′⊔B′, E′)
so that #E′ ≥ #E/2; each vertex in A′ has degree at least #E

4#A ; and each vertex in B′ has degree

at least #E
4#B .

Lemma 4.7 is proved via iteratively removing those vertices that have few neighbours. See e.g. [7]
for a proof.

Proof of Proposition 4.6.
Step 1. Let U0 ⊂ U be a set minimizing the quantity

min
U ′⊂U
U ′ ̸=∅

exp
[(

log
#U
#U ′

)2]
CKT -CW (U ′). (4.6)

Since CKT -CW (U0) ≥ 1, we have

exp
[(

log
#U
#U0

)2]
≤ exp

[(
log

#U
#U0

)2]
CKT -CW (U0) ≤ CKT -CW (U) ≤ #U .

Re-arranging,

#U0 ≥ e−
√

log(#U)(#U). (4.7)

Observe that if U ′ ⊂ U0 with #U ′ ≥ 1
2(#U0), then

exp
[(

log
2(#U)

#U0

)2]
CKT -CW (U ′) ≥ exp

[(
log

#U
#U ′

)2]
CKT -CW (U ′) ≥ exp

[(
log

#U
#U0

)2]
CKT -CW (U0).

Re-arranging and using (4.7),

CKT -CW (U ′) ≥ κ0CKT -CW (U0), where κ0 = e−2 log 2
√

log(#U). (4.8)

Step 2. Select closed convex sets W1,W2, . . . in Rn and sets U1 ⊃ U2 ⊃ . . . according to the following
procedure. Beginning with j = 1, we select Wj to maximize1 the quantity #Uj−1[Wj ]/|Wj |. By
the definition of CKT -CW (Uj−1), we can select such a Wj so that

#Uj−1[Wj ] = CKT -CW (Uj−1)
|Wj |
|U |

. (4.9)

(Recall that |U | is the volume of a set from U ; all such sets have identical volume). Define Uj =
Uj−1\Uj−1[Wj ]. Continue this process until #Uj <

1
2(#U0).

Let W0 = {W1, . . . ,Wj−1}. Then

#
( ⋃

W∈W0

U0[W ]
)

= #(U0\Uj) >
1

2
(#U0). (4.10)

Furthermore, for each i = 1, . . . , j, we have #Ui−1 ≥ 1
2(#U0), and hence by (4.9) and (4.8),

#Ui−1[Wi] = CKT -CW (Ui−1)
|Wi|
|U |

≥ κ0CKT -CW (U0)
|Wi|
|U |

. (4.11)

1Since U is a finite set of compact sets, such a maximizer exists; however the proof would work equally well if we
merely approximate the maximum within a constant factor.
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Hence if W ′ ⊂ W0, to compare #
(⋃

Wi∈W ′ U0[Wi]
)

and
∑

Wi∈W ′ #U0[Wi],

κ0
CKT -CW (U0)

|U |
∑

Wi∈W ′

|Wi| ≤
∑

Wi∈W ′

#Ui−1[Wi] = #
( ⊔

Wi∈W ′

Ui−1[Wi]
)

≤ #
( ⋃

Wi∈W ′

U0[Wi]
)
≤

∑
Wi∈W ′

#U0[Wi] ≤
CKT -CW (U0)

|U |
∑

Wi∈W ′

|Wi|.

(4.12)

The equality in (4.12) uses the critical fact that if i ̸= i′, then Ui−1[Wi] and Ui′−1[Wi′ ] are disjoint.

Step 3. Each W ∈ W0 has a John ellipsoid whose axes have lengths ℓ1, . . . , ℓn. Since each set
U0[W ] is non-empty and each U ∈ U0 contains a ball of radius δ, we have that ℓi ≥ δ for each i.
Since the sets in U are contained in the unit ball, we may suppose that ℓi ≤ 2 for each i. Thus
by dyadic pigeonholing and (4.10), there exist a1, . . . , an and a set W1 ⊂ W0, so that the following
two items hold:

(i) Each W ∈ W1 has a John ellipsoid whose axes have lengths ℓ1 ≤ ℓ2 . . . ≤ ℓn with ℓi ∈ [ai/2, ai).

(ii) #
( ⋃

W∈W1

U0[W ]
)
≥ (100| log δ|)−n(#U0). (4.13)

Replace each W by a congruent copy of W0—an ellipsoid whose axes have lengths a1, . . . , an, and
denote the corresponding set W2. Observe that (4.13) remains true with W2 in place of W1, and
(4.12) remains true for all sets W ′ ⊂ W2, though the first inequality has been weakened by a
factor of 2n on the RHS. Define U2 =

⋃
W∈W2

U0[W ] (recall that a sequence sequence U1,U2, . . .
was defined earlier, and hence U2 was previously defined, but this is a harmless abuse of notation);
we have that the cardinality of U2 is bounded below by the RHS of (4.13).

Since U0[W ] = U2[W ] for all W ∈ W2, by applying (4.12) (beginning with the final inequality,
and then using the first few inequalities) with W ′ = W2 we conclude that

#{(U,W ) ∈ U2 ×W2 : U ⊂ W} =
∑

W∈W2

#U0[W ] ≤ CKT -CW (U0)

|U |
∑

W∈W2

|W |

≤ 2nκ−1
0 #

( ⋃
W∈W2

U0[W ]
)

= 2nκ−1
0 (#U2).

(4.14)

In the above estimate, (4.12) was used to obtain the first and second inequalities, while the final
equality follows from the definition of U2.

Step 4. Construct the bipartite incidence graph (I,U2 ×W2) whose edges consist of those pairs
(U,W ) with U ⊂ W . This graph has the following properties:

(i) I has at most 2nκ−1
0 (#U2) edges.

(ii) Each U ∈ U2 has at least one neighbour.

(iii) Each W ∈ W2 has between 2−nκ0CKT -CW (U0)|W0||U |−1 and CKT -CW (U0)|W0||U |−1 neigh-
bours.
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Note that Items (i) and (iii) imply that

#W2 ≤ 22nκ−2
0

(#U2)|U |
CKT -CW (U0)|W0|

. (4.15)

We will construct an induced subgraph of (I,U2 × W2) as follows. First, remove all U ∈ U2

with more than 2n+1κ−1
0 neighbours, and denote the resulting induced subgraph by (I3,U3 ×W2);

by Items (i) and (ii), we have #U3 ≥ 1
2#U2, and #I3 ≥ #U3. Next, apply Lemma 4.7 (iterated

graph pruning) to (I3,U3 ×W2). Denote the resulting induced subgraph by (I ′,U ′ ×W).

Step 5. We will verify that U ′ and W satisfy Conclusions (i)–(iv) of Proposition 4.6. For Conclusion
(i), we have

#U ′ ≥ κ0
2n+1

(#I ′) ≥ κ0
2n+3

(#I3) ≥
κ0

2n+3
(#U3) ≥

κ0
2n+4

(#U2) ≥ K−1(#U),

since #U2 is bounded below by the RHS of (4.13); #U0 is bounded below by (4.7); and K was
defined in the statement of Proposition 4.6.

For Conclusion (ii), Since each U ∈ U ′ has at most K neighbours in (I ′,U ′ × W), we have
that W is a K-almost partitioning cover of U ′. It remains to verify (4.5). Since #U ′[W ] ≤
CKT -CW (U ′)|W ||U |−1, it will then follow that W is a K-balanced cover of U ′. By Lemma 4.7
followed by (4.15), for each W ∈ W, we have

#U ′[W ] ≥ 1

4

(
#I3

)(
#W2

)−1
≥ 1

4

(1

2
#U2

)(
2−2nκ20

CKT -CW (U0)|W0|
(#U2)|U |

)
≥

(
2−2n−4κ20

)
CKT -CW (U0)|W0||U |−1.

(4.16)

Since U ′ ⊂ U0, we have CKT -CW (U ′) ≤ CKT -CW (U0).

For Conclusion (iii), let V ⊂ Rn be a convex set. Since each U ∈ U3 has at most 2n+1κ−1
0

neighbours and (I ′,U ′ ×W) is an induced subgraph of (I3,U3 ×W2), each U ∈ U ′ is contained in
at most 2n+1κ−1

0 sets U ′[W ], we have

#U ′[V ] ≥ 2−n−1κ0
∑

W∈W[V ]

#U ′[W ] ≥
(
2−3n−5κ30

)
CKT -CW (U0)|W0||U |−1(#W[V ]), (4.17)

where the final inequality used (4.16). On the other hand,

#U ′[V ] ≤ CKT -CW (U ′)|V ||W0|−1. (4.18)

Comparing (4.17) and (4.18), we see that #W[V ] ≤ K|V ||W0|−1, as desired.

Finally, for Conclusion (iv), let W ∈ W and let V ⊂ W be a convex set. Then

#(U ′[W ])[V ] ≤ #U ′[V ] ≤ CKT -CW (U ′)|V ||U |−1. (4.19)

Comparing (4.19) and (4.5) (which we verified using (4.16)), we conclude that

#(U ′[W ])[V ] ≤ K|V ||W |−1(#U ′[W ]).

This is precisely the statement that CF -CW

(
(U ′)W

)
≤ K.
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4.3 Convex Sets and the Frostman Slab Wolff Axioms

The goal of this section is to prove that after a refinement, every collection of convex sets can be
partitioned into non-interacting pieces, each of which (after an appropriate rescaling) satisfies the
Frostman Slab Wolff axioms. The precise statement is as follows.

Proposition 4.8. For all n ≥ 2, ε > 0, there exists η > 0 and κ,K > 0 so that the following holds
for all δ > 0. Let U be a collection of closed convex subsets of the unit ball in Rn, each of which
contains a ball of radius δ. For each U ∈ U , let Y (U) ⊂ U be a shading with |Y (U)| ≥ δη|U |.

Then there exists a set U ′ ⊂ U ; sets Y ′(U ′) ⊂ Y (U ′), U ′ ∈ U ′; and a set W of closed convex
subsets of Rn with the following properties:

i) W factors U ′ from below with respect to the Frostman Slab Wolff axioms with error δ−ε.

ii) The sets U ′[W ], W ∈ W do not interact, in the sense that the sets
{⋃

U ′∈U ′[W ] Y
′(U ′), W ∈ W

}
are disjoint.

iii) The subset U ′ and the refined shading Y ′ preserve most of the mass of the original collection
(U , Y ), in the sense that ∑

U ′∈U ′

|Y ′(U ′)| ≥ κδε(log #U)−K
∑
U∈U

|U |. (4.20)

Proposition 4.8 will rely on the following consequence of Brunn’s theorem:

Lemma 4.9. Let U ⊂ Rn be a convex set, let H ⊂ Rn be a hyperplane, and let s > 0, t ∈ (0, 1].
Suppose that |U ∩Ns(H)| = t|U |. Then U ⊂ NKns/t(H), where Kn depends only on n.

Proof. Without loss of generality we may suppose that the hyperplane H is given by {x1 = 0}.

Let f(t) = |U ∩ {x1 = t}|
1

n−1 (here | · | denotes (n − 1)-dimensional Lebesgue measure), and let
I = supp(f). Our task is to show that |I| ≤ Kns/t.

By Brunn’s theorem, f is concave on I. The result now follows by comparing the estimates
t|U | = |U ∩Ns(H)| ≤ (2s)(sup f)n−1 and |U | ≥ Kn|I|(sup f)n−1 (the latter is a consequence of the
concavity of f).

Combining Lemma 4.9 with a Cordoba-style L2 argument, we obtain the following.

Lemma 4.10. Let λ ∈ (0, 1], let U be a collection of closed convex subsets of the unit ball in
Rn, each of which contains a ball of radius δ. For each U ∈ U , let Y (U) ⊂ U be a shading with
|Y (U)| ≥ λ|U |.

Then there exists a set U ′ ⊂ U ; sets Y ′(U) ⊂ Y (U), U ∈ U ′; and a set S of infinite slabs
(i.e. the s-neighbourhood of a hyperplane in Rn) with the following properties:

i) S is a partitioning cover of U ′.

ii) If S ∈ S has thickness s, then the (rescaled) sets U ′[S] have Frostman Slab Wolff constant
O(s−1). More concretely, if S̃ ⊂ S is a s× 2 × . . .× 2 slab that contains the convex sets from

U ′[S], then CF -SW (U ′S̃) ≲ s−1.

iii) The sets
⋃

U∈U ′[S] Y
′(U), S ∈ S are pairwise disjoint.
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iv) |Y ′(U)| ≥ λ
2 |U | for each U ∈ U ′, and∑

U∈U ′

|U | ≳ log(λ−1δ−1#U)−1λ
∑
U∈U

|U |. (4.21)

Proof.
Step 1. Define U0 = U , and define Y0(U) = Y (U) for each U ∈ U0. For i = 1, . . ., let Si = Nsi(Hi)
be a slab maximizing the quantity

s−1
i

∑
U∈Ui−1[Si]

|U |. (4.22)

Let U (i) = Ui−1[Si]; by the maximality of Si, we have that U (i) satisfies Conclusion (ii) from Lemma
4.10.

For each U ∈ Ui−1, define Yi(U) = Yi−1(U)\Si, and define

Ui =
{
U ∈ Ui−1 : |Yi(U)| ≥ λ

2
|U |

}
.

In particular, Ui ∩ U (i) = ∅.

Step 2. We claim that ∑
U∈Ui−1

|U ∩ Si| ≲ log(λ−1δ−1#U)
∑

U∈U(i)

|U |. (4.23)

We verify (4.23) as follows. Since
∑

U∈U(i) |U | ≥ λ
2 δ

n, the contribution from those U ∈ Ui−1 with
|U ∩ Si| ≤ 1

4λδ
n(#U)−1 is negligible. For each dyadic t ∈ [14λδ

n(#U)−1, 1] we have∑
U∈Ui−1

|U∩S|∼t|U |

|U ∩ Si| ≲ t
∑

U∈Ui−1

|U∩S|∼t|U |

|U | ≤ t
∑

U∈Ui−1[NKnsi/t(Hi)]

|U |

≤ Kn

∑
U∈Ui−1[Si]

|U | = Kn

∑
U∈U(i)

|U |.
(4.24)

The second inequality follows from the containment{
U ∈ Ui−1 : |U ∩ S| ∼ t|U |

}
⊂

{
U ∈ Ui−1[NKns/t(Hi)]

}
for an appropriately chosen constant Kn depending on n; this is Lemma 4.9. The third inequality
used the maximality of Si, in the sense of (4.22). (4.23) now follows from summing (4.24) over
dyadic values of t.

Step 3. We halt the procedure described above when UN = ∅. Define U ′ =
⊔N

i=1 U (i), and for each
U ∈ U ′, define Y ′(U) = Yi−1(U), where i is the unique index so that U ∈ U (i). Conclusions (i)
and (iii) follow immediately from the above construction, as does the fact that |Y ′(U ′)| ≥ λ

2 |U
′| for

each U ′ ∈ U ′. Conclusion (ii) was already verified in Step 1.

It remains to verify (4.21). We claim that each U ∈ U = U0 contributes at least λ
2 |U | to the

sum
N∑
i=1

∑
U∈Ui−1

|U ∩ Si|,
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in the sense that
∑

i:U∈Ui−1
|U ∩ Si| ≥ λ

2 |U |. Indeed, suppose that j > 0 is the smallest index with

U ̸∈ Uj , and hence |Y (U)\
⋃j

i=1 Si| < λ
2 |U |. But since |Y (U)| ≥ λ|U |, this means that

j∑
i=1

|U ∩ Si| ≥
λ

2
|U |,

as claimed.

We conclude that
N∑
i=1

∑
U∈Ui−1

|U ∩ Si| ≥
λ

2

∑
U∈U

|U |. (4.25)

Comparing (4.23) and (4.25), we obtain (4.21).

Proposition 4.8 follows from repeatedly applying Lemma 4.10. We now turn to the details.

Proof of Proposition 4.8. Let λ = 1
4δ

η. After discarding those U ∈ U with |Y (U)| < λ|U |, we may
suppose that U satisfies the hypotheses of Lemma 4.10.

Let U0 = U and for each U ∈ U0, let Y0(U) = Y (U). Let P0 = {B(0, 1)}, and let W0 = ∅. The
set P0 corresponds to convex sets that still need to be “processed” by Lemma 4.10, while W0 will
hold the convex sets that satisfy the hypotheses of Proposition 4.8.

We will iteratively construct sets Ui ⊂ Ui−1 and Yi(U) ⊂ Yi−1(U); a set Wi ⊃ Wi−1 of convex
subsets of B(0, 1); and a set Pi of convex subsets of B(0, 1) such that the following properties hold:

1. For each W ∈ Wi, CF -SW

(
UW
i

)
≲ δ−ε (recall UW

i = ϕW (Ui[W ])).

2. For each P ∈ Pi, |P | ≤ δiε|B(0, 1)|.

3. Wi ⊔ Pi is a partitioning cover of Ui.

4. The sets
⋃

U∈Ui[V ] Yi(U) are pairwise disjoint, as V ranges over the convex sets in Pi ⊔Wi.

5. |Yi(U)| ≥ 2−iλ|U | for each U ∈ Ui.

6.
∑

V ∈Pi∪Wi

∑
U∈Ui[V ]

|Yi(U)| ≳ log(δ−1#U)iλi
∑
U∈U

|U |.

These six items are trivially satisfied when i = 0. For the i-th step, begin by setting Wi = Wi−1,
Pi = ∅, and Ui =

⋃
W∈Wi−1

Ui−1[W ], Yi(U) = Yi−1(U) for each U ∈ Ui.

For each P ∈ Pi−1, apply Lemma 4.10 (with 2−(i−1)λ in place of λ) to each collection UP
i−1 =

ϕP (Ui−1[P ]) of ellipsoids, and their associated shadings ϕP (Yi−1(U)). We obtain a collection of
slabs S, a set U ′

i−1[P ] ⊂ Ui−1[P ], and a shading, which we denote by Yi(U), on the ellipsoids in
U ′
i−1[P ]. Add the ellipsoids in U ′

i−1[P ] and their associated shading Yi(U) to Ui. Next, we consider
each slab S ∈ S in turn.

• If a slab S ∈ S has thickness ≥ δε, then this corresponds to a convex set W = P ∩ ϕ−1
P (S)

for which CF -SW

(
(U ′

i−1[P ])W
)
≲ δ−ε. Add this set to Wi.
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• If a slab S ∈ S has thickness ≤ δε, then this corresponds to a convex set P ′ = P ∩ϕ−1
P (S) for

which
|P ′| ≤ δε|P | ≤ δε

(
δ(i−1)ε|B(0, 1)|

)
= δiε|B(0, 1)|.

Add this set to Pi.

After this procedure has been performed for each P ∈ Pi−1, Properties 1 and 2 are immediate,
while Properties 3-6 follow from their counterparts in Lemma 4.10.

We halt the process when the output PN = ∅. Since each U ∈ U has volume at least δn, the
above procedure must halt after at most n/ε steps. We let W = WN , U ′ = UN , and Y ′(U) = YN (U).
To obtain (4.20), η must be selected sufficiently small so that δNη ≤ δε, i.e. η ∼ ε2/n and K ∼ n/ε
will suffice.

4.4 The Frostman Slab Wolff Axioms and Covers

In this section we will state and prove a precise version of Remark 4.3(C). We first consider the
Frostman Slab Wolff Axioms.

Lemma 4.11. Let W ⊂ Rn be a convex set and let U and V be collections of convex subsets of W ,
with U ≺ V and #U [V ] ≤ K(#U)/(#V) for each V ∈ V. Suppose that each set in U has the same
volume, and similarly for V. Finally, suppose that each set in UW has diameter ≥ 1/100.

Then
CF -SW (UW ) ≲ log(2 + |UW |−1)K

(
sup
V ∈V

CF -SW (UV )
)(

CF -SW (VW )
)
. (4.26)

Proof. First, to simplify notation we may suppose wlog that W = B(0, 1); indeed, both the hy-
potheses and conclusion of Lemma 4.11 remain unchanged if we replace W by WW (the latter is
comparable to B(0, 1)); replace U by UW ; and replace V by VW . In particular, each set in U now
has diameter ≥ 1/100.

Fix a truncated, thickened hyperplane S = Ns(H) ∩ B(0, 1), with U [S] ̸= ∅ (so in particular
s ≥ |U |/Kn, where Kn is a constant depending only on the dimension n). We may suppose that
s ≤ 2, since otherwise we can replace Ns(H) by a hyperplane of the form N2(H

′), which has the
same intersection with B(0, 1).

Since U ≺ V, we have

U [S] =
⋃
V ∈V

U [V ∩ S] =
⋃

t dyadic

⋃
V ∈V

|V ∩S|∼t|V |

U [V ∩ S], (4.27)

where the first union ranges over dyadic values of t between |U ||B(0, 1)|−1 and 1 (this range is
sufficient, since if |V ∩ S| < |U ||B(0, 1)|−1|V | < |U |, then U [V ∩ S] = ∅). Observe that there are
≲ log(2 + |U |−1) dyadic values of t in this range.

Since U [S] ̸= ∅ and each element of U has diameter ≥ 1/100, we have diam(S∩B(0, 1)) ≥ 1/100,
and hence

|Ns/t(H) ∩B(0, 1)| ∼ s/t ∼ t−1|S| for all t ∈ [s, 1]. (4.28)

Next, let V ∈ V with |V ∩ S| ∼ t|V |. This means that |(V ∩ S)V | ∼ t. We have
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#U [V ∩ S] = #{U ∈ U : U ⊂ V ∩ S}
= #{U ∈ U [V ] : U ⊂ V ∩ S}
= #{UV ∈ UV : UV ⊂ (V ∩ S)V }
≤ CF -SW (UV )|(V ∩ S)V |(#U [V ])

≲ t
(

sup
V ∈V

CF -SW (UV )
)(

K
#U
#V

)
.

(4.29)

On the other hand, by Lemma 4.9 we have

#{V ∈ V : |V ∩ S| ∼ t|V |} ≤ #{V ∈ V : V ⊂ NKns/t(H)}
≲ CF -SW (V)|B(0, 1) ∩NKns/t(H)|(#V)

≲ t−1CF -SW (V)|S|(#V),

(4.30)

where the final inequality used (4.28).

Using (4.29) and (4.30) to control the cardinality of the union (4.27), we conclude that

#U [S] ≲
∑

t dyadic

(
t−1CF -SW (V)|S|(#V)

)(
t
(

sup
V ∈V

CF -SW (UV )
)(
K

#U
#V

))
≲ K1|S|(#U), K1 = log(2 + |U |−1)K

(
sup
V ∈V

CF -SW (UV )
)(

CF -SW (V)
)
.

Next we consider Remark 4.3(C) for the Katz-Tao Convex Wolff Axioms. We will restrict
attention to the special case where the convex sets in question are tubes.

Lemma 4.12. Let 0 < δ ≤ ρ ≤ 1. Let T be a multiset of δ-tubes and let Tρ be a cover of T. Then

CKT -CW (T) ≲
(

sup
Tρ∈Tρ

CKT -CW (TTρ)
)(

CKT -CW (Tρ)
)
. (4.31)

Proof. Let W ⊂ R3 be a convex set with T[W ] ̸= ∅. Replacing W by W ∩B(0, 1) and then enlarging
W by a constant factor, we may assume that W is a prism of dimensions a× b× 2. Since Tρ covers
T, we have

T[W ] =
⋃

Tρ∈Tρ

(T[Tρ])[W ] =
⋃

Tρ∈Tρ

T[Tρ ∩W ]. (4.32)

Observe that if T[Tρ∩W ] ̸= ∅, then Tρ∩W must contain a unit line segment, and thus Tρ ⊂ N3ρ(W ).

Let ã = min(a, ρ) and b̃ = min(b, ρ). Observe that

|N3ρ(W )| ∼
(ρ
ã

)(ρ
b̃

)
|W |,

and thus

#Tρ[N3ρ(W )] ≤ CKT -CW (Tρ)
|N3ρW |
|Tρ|

≲ CKT -CW (Tρ)
|W |
ãb̃

. (4.33)

On the other hand, if T[Tρ ∩W ] is non-empty, then Tρ ∩W is a convex set of dimensions bounded
by 2ã× 2b̃× 1, and thus

#T[Tρ ∩W ] ≲ CKT -CW (T[Tρ])
|Tρ ∩W |

|T |
≲ CKT -CW (TTρ)

ãb̃

|T |
. (4.34)

(4.31) now follows by combining (4.32), (4.33), and (4.34).
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5 Factoring tubes into flat prisms

In this section, we will explore what happens when Proposition 4.6 is applied to a set T of δ-
tubes. Recall that Proposition 4.6 outputs a refinement T′ ⊂ T and a set W of convex sets. If
CF -CW (T) = 1, then W = {B(0, 1)}. On the other hand, if CKT -CW (T) = 1, then W = T. If both
CKT -CW (T) and CF -CW (T) are large, then W will consist of a collection of convex sets, each of which
are comparable to a rectangular prism of dimensions a× b× 1, for some δ ≤ a ≤ b ≤ 1. The goal of
this section is to explore the following theme: if the prisms in W are flat, in the sense that a << b,
then the union

⋃
T will have larger volume than predicted by the estimate (1.3) from Assertion

E(σ, ω). The precise statement is as follows.

Proposition 5.1. Let ω > 0, 0 < σ ≤ 2/3, and suppose E(σ, ω) is true. Then for all ε > 0, there
exists κ, η > 0 so that the following holds for all δ > 0. Let (T, Y )δ be δη dense. Let δ ≤ a ≤ b ≤ 1,
and let W be a δ−η balanced cover of T consisting of congruent copies of an a× b× 2 prism.

(A) Suppose that W factors T from below with respect to the Frostman Convex Wolff axioms and
from above with respect to the Katz-Tao Convex Wolff axioms, both with with error δ−η. Sup-
pose as well that W is a δ−η-balanced, δ−η-almost partitioning cover of T, and that #T[W ] ≥
δηCKT -CW (T) |W |

|T | for each W ∈ W (this condition is satisfied, for example, if W is the output when

Proposition 4.6 is applied to T). Then∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω+ε

( b

a

)ω
m−1(#T)|T |

(
m−3/2ℓ(#T)|T |1/2

)−σ
, (5.1)

where m = CKT -CW (T) and ℓ = CF -SW (T).

(B) Suppose that W factors T from above and below with respect to the Frostman Convex Wolff
Axioms, both with error ≤ δ−η. Suppose as well that W satisfies the Katz-Tao Convex Wolff axioms
at scale b in the following sense: for all W ∈ W we have CKT -CW (W[Nb(W )]) ≤ δ−η. Then∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδω+ε
( b

a

)ω(
(#T)1/2|T |

)σ
. (5.2)

Note that (5.2) agrees with (5.1) when CKT -CW (T) = (#T)|T |, in which case both CF -CW (T) and
CF -SW (T) have size ∼ 1.

In Section 9 we will need the following mild generalization of Proposition 5.1(A).

Proposition 5.2. Let ω > 0, 0 < σ ≤ 2/3, and suppose E(σ, ω) is true. Then for all ε > 0, there
exists κ, η > 0 so that the following holds for all 0 < δ ≤ ρ ≤ a ≤ b ≤ 1. Let (T, Y )δ be δη dense and
let Tρ be a δ−η balanced cover of T. Let W be a δ−η balanced cover of Tρ consisting of congruent
copies of an a× b× 2 prism.

Suppose that Tρ factors T from below with respect to the Frostman Slab Wolff Axioms with error
ℓ′. Suppose that W factors Tρ from above with respect to the Katz-Tao Convex Wolff axioms and
from below with respect to the Frostman Convex Wolff axioms, both with error δ−η. Then∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδω+ε
( b

a

)ω
m−1(#T)|T |

(
m−3/2ℓℓ′(#T)|T |1/2

)−σ
, (5.3)

where m = CKT -CW (T) and ℓ = CF -SW (T).
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Proposition 5.1(A) is the special case of Proposition 5.2 where ρ = δ and Tρ = T.

The main goal of Section 5 is to prove Propositions 5.1 and 5.2. A second goal is to introduce
two cousins of the estimate E(σ, ω), and to show that these three estimates are equivalent. The first
estimate is (formally) weaker: it is the special case of the estimate E(σ, ω) when ℓ has size about 1.

Definition 5.3. We say that Assertion Ẽ(σ, ω) is true if the following holds:
For all ε > 0, there exists κ, η > 0 such that the following holds for all δ > 0. Let (T, Y )δ be δη

dense, and suppose CF -SW (T) ≤ δ−η. Then∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω+εm−1(#T)|T |

(
m−3/2(#T)|T |1/2

)−σ
, (5.4)

where m = CKT -CW (T).

The second estimate is (formally) stronger: it is a generalization of the estimate E(σ, ω) where
δ-tubes are replaced by congruent convex sets of diameter 1.

Definition 5.4. We say that Assertion F(σ, ω) is true if the following holds:
For all ε > 0, there exists κ, η > 0 such that the following holds for all 0 < a ≤ b ≤ 1. Let
(P, Y )a×b×1 be aη dense. Then∣∣∣ ⋃

P∈P
Y (P )

∣∣∣ ≥ κaεbωm−1(#P)|P |(m−3/2ℓ(#P)|P |1/2)−σD−σ, (5.5)

where

m = CKT -CW (P), ℓ = CF -SW (P), and D = max
P∈P

sup
ρ∈[a,b]

|P |
|Nρ(P )|

(
#P[Nρ(P )]

)1/2
. (5.6)

Remark 5.5. When σ ∈ (0, 2/3], the term

m−1(#P)|P |(m−3/2ℓ(#P)|P |1/2)−σD−σ

is always at most 1. To see this, since #P ≤ m|P |−1 and σ ∈ (0, 2/3], it remains to show that
((#P)|P |)1/2l−1|P |1/2 ≤ D. This is true because #P ≤ #P[Nb(P )] · b−4 ≤ D2b−2a−2, and ℓ ≥ 1.

Remark 5.6. If P is non-empty, then by selecting ρ = a we see that the quantity D = D(P) from
(5.6) is always ≳ 1. In general, D can be as large as (b/a)1/2: when ρ = b, it is possible for about
(b/a)3 essentially distinct a × b × 1 prisms to fit inside the b tube Nb(P ). If this happens, then
the RHS of (5.6) becomes ab

b2
(b/a)3/2 = (b/a)1/2. However, there are several important situations

where we can guarantee that D has size roughly 1. We describe three of these below.

Situation 1. If a = b, then since the prisms in P are essentially distinct, we have #P(Na(P )) ∼ 1
and hence D ∼ 1. In particular, this means that F(σ, ω) =⇒ E(σ, ω).

Situation 2. Suppose that for each P ∈ P, we have CKT -CW (P[Nb(P )]) ≤ K, for some K ≥ 1. This
means that the Katz-Tao Convex Wolff constant of P might be large, but if we restrict attention
to those prisms P ′ contained inside a tube of diameter b, then the Katz-Tao Convex Wolff constant
of P ′ is small (this is the setup for Item (B) of Proposition 5.1). Then for each ρ ∈ [a, b] and P ∈ P
we have #P[Nρ(P )] ≲ K ρ·b·1

a·b·1 = K ρ
a , and hence D ≲ K1/2.

Situation 3. Let T be a set of essentially distinct δ-tubes contained in a s× t× 2 prism W , with
0 < s ≤ t ≤ 2. Let P = ϕW (T). Then the sets in P are comparable to rectangular prisms of
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dimensions a × b × 2 with a = δ/t and b = δ/s. Let us estimate the quantity D = D(P) for this
arrangement. For each ρ ∈ [a, b] and each P ∈ P, #P[Nρ(P )] counts the number of δ-tubes from
T contained inside a rectangular box of dimensions roughly δ × (δρ/a) × 2. Since the tubes in T
are essentially distinct, at most O

(( (δρ/a)
δ

)2)
= O

(
ρ2/a2

)
tubes from T can be contained in such a

box, i.e. D ≲ supρ∈[a,b]
(
ab
ρb

)(ρ
a

)
= 1.

5.1 A few frequently used Cordoba-type L2 arguments

In this section, we will explore several variants of the following argument: To show that a union⋃
P∈P P is large, it suffices to show that the quantity ∥

∑
P∈P χP ∥22 =

∑
P,P ′∈T |P ∩ P ′| is small,

and then use Cauchy-Schwartz to conclude that∣∣∣ ⋃
P∈P

P
∣∣∣ ≥ ( ∑

P∈P
|P |

)2 / ∥∥∥ ∑
P∈P

χP

∥∥∥
2
.

This argument was used by Cordoba [6] to prove the Kakeya maximal function conjecture in R2,
so we will call this style of argument a “Cordoba-type L2 argument.”

5.1.1 A volume estimate for slabs

In this section we will use a Cordoba-type L2 argument to estimate the volume of a union of slabs.
The precise statement is as follows.

Lemma 5.7. Let δ, λ > 0. Let S be a collection of δ × 1 × . . .× 1 slabs (n.b. these slabs need not
be essentially distinct), and let Y be a λ-dense shading on S. Let m = CKT -CW (S). Then∣∣∣ ⋃

S∈S
Y (S)

∣∣∣ ≳ | log δ|−1m−1λ2(#S)|S|. (5.7)

Proof. Fix S ∈ S. By Lemma 4.9 (applied to the outer John ellipsoid of each element of S), we
have that for each t ∈ [δ, 1], we have

#{S′ ∈ S : |S ∩ S′| ∼ t|S|} ≤ #{S′ ∈ S : S′ ⊂ NCδ/t(S)} ≲ m
δ

t
|S|−1 ∼ m

t
,

where C = C(n) depends only on n. Thus∥∥∥∑
S∈S

χY (S)

∥∥∥2
2
≤

∥∥∥∑
S∈S

χS

∥∥∥2
2
≲

∑
S∈S

∑
δ≤t≤1
t dyadic

∑
S′∈S

|S∩S′|∼t|S|

t|S|

≲
∑
S∈S

∑
δ≤t≤1
t dyadic

(m
t

)
t|S| ≲ | log δ|m(#S)|S|.

(5.8)

Let E =
⋃

S∈S Y (S). Using Cauchy-Schwartz, we have(
λ|S|(#S)

)2
≤

(∫
χE

∑
S∈S

χY (S)

)2
≤ |E|

∥∥∥∑
S∈S

χY (S)

∥∥∥2
2
. (5.9)

The result now follows by comparing (5.8) and (5.9).
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We will highlight a few instances where Lemma 5.7 will be helpful.

• (S, Y ) is δη dense, and CF -CW (S) ⪅δ δ
−η. Then the RHS of (5.7) is ⪆δ δ

3η.

• R is a set of δ × 1 rectangles inside a ρ× 2 rectangle W : we will apply Lemma 5.7 to RW .

• T is a set of δ-tubes inside a 100δ × b× 1 prism W : we will apply Lemma 5.7 to TW .

5.1.2 Tangential vs transverse prism intersection

The next result says that if a collection of a× b× 1 prisms intersect transversely, in the sense that
their tangent planes make large angle at a typical point of intersection, then the union of these
prisms fills out a large fraction of a thickened neighbourhood of these prisms. The precise statement
is Lemma 5.10 and Corollary 5.13 below. Before stating that result, we need a few definitions.

Definition 5.8. Let W ⊂ Rn, let Y (W ) ⊂ W be a shading, and let δ > 0. We say that the shading
Y (W ) is regular at scales ≥ δ if for each x ∈ Y (W ) and each r ∈ [δ, 1], we have

|Y (W ) ∩B(x, r)| ≥ (100 log(1/δ))−1|Y (W )|
( |B(x, r) ∩W |

|W |

)
. (5.10)

If the quantity δ is apparent from context, then we will omit it and say that Y (W ) is regular.

The next lemma says after a harmless refinement, every shading has a regular subshading. This
is Lemma 2.7 from [19]; see also [26, Lemma 2.3].

Lemma 5.9. Let W ⊂ Rn and let Y (W ) be a shading. Then there is a regular shading Y ′(W ) ⊂
Y (W ) with |Y ′(W )| ≥ 1

2 |Y (W )|.

The next result says that if a prism P0 is incident to many prisms that intersect P0 non-
tangentially, then the union of these prisms fills out a thickened neighbourhood of P0.

Lemma 5.10. Let 0 < a ≤ b ≤ c and let λ > 0. Let P0 be a a× b× c prism with shading Y0(P0).
Let (P, Y )a×b×c be a set of prisms and their associated shading. Suppose that |Y0(P0)| ≥ λ|P0|;
|Y (P )| ≥ λ|P | for each P ∈ P; and each shading Y (P ) is regular, in the sense of Definition 5.8.

Let θ ∈ [ab , 1], and suppose that

θ ≤ θmin :=
a

b
+ inf

x∈Y0(P0)
sup

P∈PY (x)
∠
(
Π(P0),Π(P )

)
.

Then ∣∣∣Nbθ(P0) ∩
⋃
P∈P

Y (P )
∣∣∣ ⪆a λ4|Nbθ(P0)|. (5.11)

Remark 5.11. The exponent λ4 in (5.14) is not important — the exponent λ100 would work equally
well for our applications of Lemma 5.10.

Proof. The argument is similar in spirit to Wolff’s hairbrush argument from [27]. After dyadic
pigeonholing, we can select a number θ1 ∈ [θ, 1] and a set Y ′

0(P0) ⊂ Y0(P0) with |Y ′
0(P0)| ⪆a |Y0(P0)|

so that
sup

P∈PY (y)
∠
(
Π(P0),Π(P )

)
∼ θ1 for each y ∈ Y ′

0(P0).
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P0
Nbθ(P0)

Figure 6: The geometry of Lemma 5.10. For each x ∈ Y0(P0), there is a prism (red) from P that
intersects P0 at x at angle at least θmin. For clarify, only two such prisms have been drawn. The
union of these (red) prisms fills out a large fraction of every b-ball centered at a point of P0.

Applying Lemma 5.9 (and further refining Y ′
0(P0) by a factor of 2), we may suppose that Y ′

0(P0) is
regular.

Let b′ = b θ
θ1

; note that a ≤ b′ ≤ b. Divide P0 into sub-prisms of dimensions a× b′ × b′; we have

that ⪆ λ |P |
a(b′)2 of these sub-prisms intersect Y (P ). Thus to obtain (5.14), it suffices to show that

for each x ∈ Y ′(P0), we have∣∣∣Nbθ

(
P0 ∩B(x, b′)

)
∩

⋃
P∈P

Y (P )
∣∣∣ ⪆a λ3(bθ)(b′)2. (5.12)

Fix a choice of x ∈ Y ′(P0). Our goal is to show that (5.12) holds for this choice of x. Let
E = Y ′(P0)∩B(x, b′). Since the shading Y ′(P0) is regular, we have |E| ⪆a λa(b′)2. For each y ∈ E,
let Py ∈ PY (y) be a prism with ∠(Π(P0),Π(P )) ∼ θ1.

B(x, b′) ∩
⋃

y∈E Py is contained in a prism of dimensions comparable to bθ × b′ × b′ that is
concentric with the a × b′ × b′ prism B(x, b′) ∩ P ; denote this bθ × b′ × b′ prism by Q. Then
ϕQ(B(x, b′)∩P ) is comparable to a prism of dimensions a

bθ × 1× 1. For notational convenience, we

will select coordinates so that this prism is given by P̃ = [0, a
bθ ] × [0, 1] × [0, 1].

For each y ∈ E, we have that ϕQ(B(x, b′) ∩ Py) is comparable to a a
bθ × 1 × 1 prism, and each

such prism intersects the (z2, z3)-plane with angle ∼ 1, i.e. the projection of the normal vector vy
of this prism to the (z2, z3) plane has magnitude ≳ 1. Since the shading of each Py ∈ P is regular,
we have that ϕQ

(
Y (Py)∩B(x, b′)

)
is a subset of the prism ϕQ

(
Py ∩B(x, b′)

)
that has density ⪆a λ.

After pigeonholing, we can select a set E′ ⊂ E with |E′| ≳ |E|, so that for each y ∈ E′,
ϕQ

(
Py ∩B(x, b′)

)
is comparable to a a

bθ × 1× 1 prism whose normal vector vy makes angle ≤ 1/100
with some fixed unit vector v, and the projection of v to the (z2, z3) plane has magnitude ≳ 1. Let
v′ be the projection of v to the (z2, z3) plane.

By Fubini, we can find a line segment L ⊂ [0, a
bθ ] × [0, 1] × [0, 1] pointing in direction v′, with

|L ∩ ϕQ(E′)| ≥ |ϕQ(E′)|; here the left | · | denotes one-dimensional Lebesgue measure, while the
right | · | denotes three-dimensional Lebesgue measure. Let y1, . . . , yN , N ≳ bθ

a |L ∩ ϕQ(E′)| ⪆a λ bθ
a

be a a
bθ -separated subset of L ∩ ϕQ(E′), and let

S =
{
ϕQ

(
Pyi ∩B(x, b′)

)
: i = 1, . . . , N

}
.

S is a set of convex subsets of R3, each of which is comparable to a a
bθ × 1 × 1 slab. Each S ∈ S

has a ⪆a λ-dense shading (the shading is the set ϕQ

(
Y (Pyi) ∩ B(x, b′)

)
), so in particular the pair

(S, Y ) a
bθ

×1×1 is ⪆a λ dense.
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We claim that CKT -CW (S) ≲ 1. To verify this, let W ⊂ R3 be a convex set, and suppose
#{S ∈ S : S ⊂ W} = M . We need to show that

M ≲ |W ||S|−1. (5.13)

If M = 0 there is nothing to prove. If M = 1, then clearly |W | ≥ |S|. Suppose instead that M ≥ 2.
Then |W ∩ L| ≥ (M − 1) a

bθ ≥ M
2bθ ≳ M |S|, since W ∩ L contains at least M points on L that are

a
bθ -separated. On the other hand, since S[W ] is non-empty, we know that W contains a a

bθ × 1 × 1
prism S ∈ S[W ] whose normal direction makes angle ≤ 1

50 with the direction of v (whose projection
to the (z2, z3)-plane is v′, i.e. the direction of L). Since W is convex, W contains the convex hull
of S ∪ (W ∩L), which has three-dimensional volume ≳ |W ∩L| ≳ M |S|. Thus |W | ≳ M |S|, which
gives (5.13).

Applying Lemma 5.7 (a Cordoba-type L2 argument for slabs), we conclude that∣∣∣ ⋃
S∈S

Y (S)
∣∣∣ ⪆a λ2(#S)|S| ⪆a λ2

(
λ
bθ

a

)( a

bθ

)
= λ3.

To conclude the proof, we verify that∣∣∣Nbθ

(
P0 ∩B(x, b′)

)
∩

⋃
P∈P

Y (P )
∣∣∣ ≥ ∣∣∣Nbθ

(
P0 ∩B(x, b′)

)
∩

⋃
y∈E′

Y (Py)
∣∣∣

≥ (bθ)(b′)2
∣∣∣ϕQ

(
B(x, b′) ∩

⋃
y∈E′

Y (Py)
)∣∣∣

≥ (bθ)(b′)2
∣∣∣ϕQ

(
B(x, b′) ∩

N⋃
i=1

Y (Pyi)
)∣∣∣

≥ (bθ)(b′)2
∣∣∣ ⋃
S∈S

Y (S)
∣∣∣ ⪆a λ3(bθ)(b′)2.

This establishes (5.12), as desired.

In practice, we will often use Lemma 5.10 in situations where each prism in P0 ∈ P satisfies the
hypotheses of the lemma. The following definitions help make that precise.

Definition 5.12. Let (P, Y )a×b×c be a collection of prisms and their associated shading, and let
x ∈

⋃
P∈P Y (P ). We define

θ(x) =
a

b
+ sup

P,P ′∈PY (x)
∠(Π(P ),Π(P ′)),

where PY (x) = {P ∈ P : x ∈ Y (P )}. We define

θmin = inf θ(x),

where the infimum is taken over all x ∈
⋃

P∈P Y (P ). Note that θmin depends on the pair
(P, Y )a×b×c. The choice of P and Y will be apparent from context.

Be considering each prism P0 ∈ P in turn, Lemma 5.10 now has the following corollary

Corollary 5.13. Let 0 < a ≤ b ≤ c, λ > 0. Let (P, Y )a×b×c be a set of prisms and their associated
shading. Suppose that each shading Y (P ) is regular, in the sense of Definition 5.8, and satisfies
|Y (P )| ≥ λ|P |. Then for each P0 ∈ P, we have∣∣∣Nbθmin

(P0) ∩
⋃
P∈P

Y (P )
∣∣∣ ⪆a λ4|Nbθmin

(P )|. (5.14)
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5.2 Assertions F , E, and Ẽ are equivalent

As noted in Remark 5.6, Situation 1, we have F(σ, ω) =⇒ E(σ, ω) =⇒ Ẽ(σ, ω). In this section
we will prove that the reverse implications hold. More precisely, we have the following.

Proposition 5.14. Let 0 < σ ≤ 2/3, ω > 0. Then F(σ, ω) ⇐⇒ E(σ, ω) ⇐⇒ Ẽ(σ, ω).

The goal of Section 5.2 is to prove Proposition 5.14. We begin with several lemmas that describe
the structure of arrangements of rectangular prisms. Recall the quantity θmin from Definition 5.12.
When θmin ∼ 1, then a typical pair of intersecting prisms intersect transversely, and by Corollary
5.13 this means that each prism can be replaced by a thickened neighbourhood that is comparable
to an a-tube. In the next lemma, we will analyze what happens when θmin is small. I.e. we consider
a collection of a× b× 1 prisms P that intersect tangentially, in the sense that their tangent planes
make small angle at a typical point of intersection.

Informally, the argument is as follows. We will begin by describing three Moves, which we will
then apply repeatedly. Note that these are not the Moves described in Section 2.2 — those Moves
will be described in Sections 7 and 8.

Since the tangent plane of a prism is constant along the entire prism, this means that the
collection of prisms can be partitioned into smaller sub-collections P1, . . . ,PN , where for each
index i, the normal vector of the tangent plane of each prism in Pi makes small angle with a fixed
unit vector vi. If Pi and Pj are two such sub-collections, then the corresponding sets

⋃
P∈Pi

P
and

⋃
P∈Pj

P are mostly disjoint. We can cover the prisms in each set Pi by a set of slabs whose
tangent planes have normal vector vi. We then rescale and continue this process inside each slab.
This is Move #1.

Next, we can apply Proposition 4.8 (factoring with respect to the Frostman Slab Wolff Axioms)
to further break our collection of prisms into sub-collections, each of which satisfy the Frostman
Slab Wolff Axioms with small error. This is Move #2.

Finally we apply Lemma 5.9 (every shading has a regular sub-shading). This is Move #3.

We iteratively apply Moves 1, 2, and 3 until our set of prisms P has been covered by a set W of
convex subsets of R3, so that each set PW satisfies the hypotheses of Corollary 5.13 with θmin about
1, and PW satisfies the Frostman Slab Wolff Axioms with error about 1. The precise statement is
as follows.

Lemma 5.15. For all ε > 0, there exists η, c > 0 so that the following holds for all 0 < a ≤ b ≤ 1.
Let (P, Y )a×b×1 be aη dense. Then there exists a refinement (P ′, Y ′)a×b×1 with

∑
P ′∈P ′ |Y ′(P ′)| ⪆a

aε
∑

P∈P |P | and cover W of P ′ by congruent convex sets, such that the following holds.

(A) The shading Y ′ is regular, in the sense of Definition 5.8.

(B) W is a ≈a 1 balanced cover of P ′, and factors P ′ from below with respect to the Frostman
Slab Wolff axioms, with error a−ε.

(C) All of the convex sets in
⋃

W∈W P ′W have the same dimensions up to a multiplicative factor
of 2, i.e. each one is comparable (after a suitable rigid transformation) to a common convex
set P̃ (see Remark 5.16 below).

(D) For each W ∈ W, the sets P ′W and their associated shading satisfy θmin ≥ aε, in the sense
of Definition 5.12.
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(E) The sets
⋃

P ′∈P ′[W ] Y
′(P ), W ∈ W are pairwise disjoint.

Remark 5.16. Note that even though the prisms in P (resp. W) all have the same dimensions, it
could happen that the prisms in PW have differing dimensions — see Figure 7 for an example of
this phenomena. Conclusion (C) (which is achieved by pigeonholing) ensures that this does not
happen.

01-1W1

P1

ϕW1

ϕW1(P1)

W2

P2

ϕW2

ϕW2(P2)

Figure 7: An example where the convex sets P1 and P2 are congruent, and U1 and U2 are congruent,
but ϕU1(P1) and ϕU2(P2) are not congruent.

Proof. The main ideas of the proof were already outlined above; in brief, we apply Moves 1, 2, and
3 described above, in that order. We iteratively repeat this process until Conclusions (A), (B), (D),
and (E) of Lemma 5.15 are satisfied. Each iteration increases the volume of each surviving convex
set by at least a−ε. On the other hand, each convex set initially had volume ab ≥ a2, and at each
step all convex sets are contained inside the unit ball, and thus have volume at most O(1). Hence
the iterative process detailed above halts after at most 2/ε steps. If η > 0 is chosen sufficiently
small (depending on ε), then the resulting refinement will satisfy

∑
P ′∈P ′ |Y ′(P ′)| ⪆a aε

∑
P∈P |P |.

Finally, we dyadically pigeonhole the set P ′ to select a refinement that satisfies Conclusion (C).

We are now ready to prove Proposition 5.14. The idea is as follows. Given a set (P, Y )a×b×1 of
prisms, we apply Lemma 5.15 to cover a refinement of P by a collection of convex sets W, and then
apply Corollary 5.13 to each collection PW — this gives us a collection of b̃ tubes associated to PW ,
for some b̃ ≥ b. The collection of b̃ tubes satisfies the Frostman Slab Wolff axioms with error ⪅ 1,
and satisfies the Katz-Tao Convex Wolff axioms with some error m̃ that we will analyze later. We
now apply the estimate Ẽ(σ, ω) to this collection of b̃ tubes, and then undo the transformation ϕW .

Summing the contributions from each W ∈ W, we obtain an estimate for
∣∣∣⋃Y (P )

∣∣∣ that becomes

better as m̃ becomes larger. Thus we are faced with the task of estimating the size of m̃ — this
quantity is closely related to the quantity D from (5.6). We now turn to the details.

Proof of Proposition 5.14. It suffices to prove that Ẽ(σ, ω) =⇒ F(σ, ω). Fix 0 < σ ≤ 2/3, ω > 0,
and suppose Ẽ(σ, ω) is true. Fix ε > 0. Then there exists η0 > 0 so that the volume estimate (5.4)
holds for all pairs (T, Y )δ that are δη0 dense and satisfy CF -SW (T) ≤ δ−η0 .

Let κ, η > 0 be quantities to be determined below. Let 0 < a ≤ b ≤ 1 and let (P, Y )a×b×1 be
aη dense. Our goal is to prove that∣∣∣ ⋃

P∈P
Y (P )

∣∣∣ ≥ κaεbωm−1(#P)|P |(m−3/2ℓ(#P)|P |1/2)−σD−σ, (5.15)

with m, ℓ, and D as defined in (5.6).
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Step 1. Let η1 be a small quantity to be determined later (we will select η1 very small compared
to η0, and η very small compared to η1). We will choose η > 0 sufficiently small so that we can
apply Lemma 5.15 with η1/4 in place of ε to (P, Y )a×b×1. Denote the output of that lemma by
(P1, Y1)a×b×1 and W. By Conclusion (B) of Lemma 5.15 we have CF -SW (PW

1 ) ≤ a−η1/4 for each
W ∈ W1. By Conclusion (E) of Lemma 5.15, we have∣∣∣ ⋃

P∈P
Y (P )

∣∣∣ ≥ ∑
W∈W

∣∣∣ ⋃
P∈P1[W ]

Y1(P )
∣∣∣. (5.16)

By Conclusion (C) of Lemma 5.15, there are numbers ã ≤ b̃ ≤ 1 with b̃ ≥ b so that for each
W ∈ W and each PW ∈ PW

1 , PW is comparable to a ã × b̃ × 1 prism. Conclusions (A) and (D)
of Lemma 5.15 say that for each W ∈ W, the pair (PW

1 , Y W
1 )ã×b̃×1 satisfies the hypotheses of

Corollary 5.13, and hence we can apply Corollary 5.13 to conclude that for each PW ∈ PW
1 we have∣∣∣Nb̃(P

W ) ∩
⋃

P ′W∈PW
1

Y W
1 (P ′W )

∣∣∣ ≳ aη1 |Nb̃(P
W )|. (5.17)

In words, (5.17) says the following: for each PW ∈ PW
1 , the set Nb̃(P

W ) is comparable to a b̃-tube.

This b̃-tube has almost full intersection with the union of shadings
⋃

P ′W∈PW
1

Y W
1 (P ′W ). See Figure

6 for an illustration of this situation.

Step 2. As noted above, each set Nb̃(P
W ) is comparable to a b̃ tube. Let TW be a maximal,

essentially distinct subset of {Nb̃(P
W ) : PW ∈ PW

1 }. For each T ∈ TW , define the shading

Y (T ) = T ∩
⋃

PW∈PW
1

Y W
1 (PW ).

Then (5.17) says that (TW , Y )b̃ is ≳ aη1 dense. After pigeonholing and refining W and TW (which
induces a refinement on PW

1 ), we can ensure that #PW
1 [T ] is roughly the same (up to a factor of 2)

for each T ∈ TW ,W ∈ W. Abusing notation, we continue to refer to these refined sets as W,TW

and PW
1 .

At this point, TW is a balanced cover of PW
1 , and we still have CF -SW (PW

1 ) ⪅a a−2η1 . Since TW

is a balanced cover of PW
1 , by Remark 4.3(A) (i.e. Frostman Wolff constants are inherited upwards),

we have that ℓ̃ := maxW∈W CF -SW (TW ) ⪅a a−2η1 . Finally, define m̃ := maxW∈W CKT -CW (TW ).

Step 3. At this point, we have covered our set of prisms P1 by a collection of convex sets W. For
each rescaled set PW

1 , we have located a collection of tubes TW , whose shadings are almost full.
The relation between the volumes of these objects is as follows:∣∣∣ ⋃

P∈P1[W ]

Y1(P )
∣∣∣ ∼ |W |

∣∣∣ ⋃
PW∈PW

1

Y W
1 (PW )

∣∣∣ ≥ |W |
∣∣∣ ⋃
T∈TW

Y (T )
∣∣∣. (5.18)

Our next task is to estimate the volume of
⋃

TW
Y (T ). First we consider the case where b̃ ≤ aε/5.

In this case, (TW , Y )b̃ is ≳ b̃5η1/ε dense, and CF -SW (TW ) ⪅a b̃−10η1/ε. If η1 is selected sufficiently
small depending on η0 and ε (for example, η1 = εη0/20 will suffice), then we can apply the estimate
Ẽ(σ, ω) with ε/2 in place of ε to conclude that∣∣∣ ⋃

T∈TW

Y (T )
∣∣∣ ≳ b̃ω+ε/2m̃−1(#TW )|T |

(
m̃−3/2ℓ̃(#TW )|T |1/2

)−σ

⪆a aε/2+2η1σbωm̃−1(#TW )|T |
(
m̃−3/2(#TW )|T |1/2

)−σ
.

(5.19)
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On the other hand, if b̃ ≥ aε/5, then the estimate (5.19) follows from the fact that for every T ∈ TW

we have ∣∣∣ ⋃
T∈TW

Y (T )
∣∣∣ ≥ |Y (T )| ≳ aη1 b̃2 ≥ aε/2, (5.20)

which is stronger than (5.19).

Step 4. We have estimated the volume of
⋃

TW
Y (T ) for each W ∈ W. Our next task is to combine

these estimates in order to estimate the volume of
⋃

P∈P Y (P ).

We know that each prism W ∈ W has the same dimensions up to a factor of 2; call these
dimensions s× t× 1. Then for each W ∈ W and each T ∈ TW , we have that ϕ−1

W (T ) is comparable

to a rectangular prism of dimensions sb̃× tb̃× 1.

Let P̂W = {ϕ−1
W (T ) : T ∈ TW }, i.e. P̂W is a set of sb̃ × tb̃ × 1 prisms contained in W ; |T | ∼

|P̂ |/|W |; and #P̂W = #TW . For each W ∈ W and each P̂ = ϕ−1
W (T ) ∈ P̂W , define the natural

shading Ŷ (P̂ ) = ϕ−1
W (Y (T )).

(5.16) allows us to combine the (rescaled) volume estimates (5.18) and (5.19) from each W ∈ W.
Defining P̂ =

⊔
P̂W , we have∣∣∣ ⋃

P∈P
Y (P )

∣∣∣ ⪆a |W |
∑

W∈W

[
aε/2+η1σbωm̃−1(#P̂W )

|P̂ |
|W |

(
m̃−3/2(#P̂W )

( |P̂ |
|W |

)1/2)−σ]
.

≈a aε/2+η1σbωm̃−1(#P̂)|P̂ |
(
m̃−3/2 #P̂

#W

( |P̂ |
|W |

)1/2)−σ
.

(5.21)

Step 5. To understand the RHS of (5.21) we must estimate m̃. Recall that in Step 2, we have
pigeonholed to ensure that #PW

1 [T ] is roughly the same for each T ∈ TW , W ∈ W. Thus each
P̂ ∈ P̂ satisfies #P1[P̂ ] ≈a

#P1

#P̂
. Thus we have

m̃ ⪅a m
|P̂ |
|P |

#P̂
#P1

. (5.22)

Thus we can estimate the RHS of (5.21) as follows.∣∣∣ ⋃
P∈P

Y (P )
∣∣∣ ⪆a aε/2+η1σbωm−1(#P1)|P |

(
m−3/2

( |P |
|P̂ |

#P1

#P̂

)3/2 #P̂
#W

( |P̂ |
|W |

)1/2)−σ

⪆a aε/2+3η1bωm−1(#P)|P |
(
m−3/2(#P)|P |1/2

)−σ

·
[
(#W)|W |1/2

]σ[ |P |
|P̂ |

(#P
#P̂

)1/2]−σ
.

(5.23)

In the above computation, we used the fact that #P1 ⪆a δ−η1(#P).

Step 6. Compare the RHS of (5.23) with (5.15). It remains to analyze the final two terms on the
RHS of (5.23). We begin with the penultimate term. Since the sets in W are convex and have
diameter ∼ 1, each W ∈ W is contained in a slab of volume O(|W |1/2). Thus

#P1[W ] ≲ CF -SW (P)|W |1/2(#P).
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Since #P1[W ] ≈a
#P1

#W ⪆a aη1 #P
#W , we conclude that (#W)|W |1/2 ⪆a aη1CF -SW (P)−1 = aη1ℓ−1.

Step 7. We now turn to the final term on the RHS of (5.23). Recall that P is a collection of prisms
of dimensions a × b × 1, while P̂ is a collection of prisms that all have the same, but unknown,
dimensions sb̃× tb̃× 1 — call these dimensions a′ × b′ × 1, with a ≤ a′ ≤ b′ and b′ ≥ b. Our desired
estimate (5.15) will follow from (5.23) and the estimate

|P |
|P̂ |

(#P
#P̂

)1/2
≲ D = max

P∈P
sup

ρ∈[a,b]

|P |
|Nρ(P )|

(
#P[Nρ(P )]

)1/2
. (5.24)

Fix P̂ ∈ P̂. Let P† be a maximal set of essentially distinct min(a′, b) × b× 1 prisms contained
in P̂ , so that each P ∈ P[P̂ ] is contained in at least one P † ∈ P†. We claim that

#P† ∼ (|P̂ |/|P †|)2. (5.25)

Indeed, when a′ ≤ b, the RHS of (5.25) is (b′/b)2 and the numerology comes from the fact that a
b′ × 1 rectangle can be filled with about (b′/b)2 essentially distinct b × 1 rectangles. When a′ ≥ b
the RHS of (5.25) is (a′b′/b2)2, and the numerology comes from the fact that a a′ × b′ × 1 prism
can be filled with about (b′/a′)2 essentially distinct a′ × a′ × 1 tubes, and each of these tubes can
be filled with about (a′/b)4 essentially distinct b× b× 1 tubes.

By the definition of D, we have D ≥ |P |
|P †|

(
#P[P †]

)1/2
, i.e. #P[P †] ≤

(
D |P †|

|P |
)2
. Thus by (5.25),

#P[P̂ ] ≲
( |P̂ |
|P †|

)2
#P[P †] ≲

( |P̂ |
|P †|

)2(
D
|P †|
|P |

)2
,

which is (5.24).

5.3 Proof of Proposition 5.1: Tubes that factor through flat boxes

With Proposition 5.14 in hand, we are now ready to prove Proposition 5.1. Fix ω > 0, 0 < σ ≤ 2/3,
and suppose E(σ, ω) is true (and thus by Proposition 5.14, F(σ, ω) is true). Let κ, η > 0 be small
quantities to be specified below. Let (T, Y )δ be δη dense, let δ ≤ a ≤ b ≤ 1, and let W be a set of
congruent copies of an a× b× 2 prism W0, as described in the statement of Proposition 5.1.

Step 1. After dyadic pigeonholing, we can find a refinement (T1, Y1)δ of (T, Y )δ with
∑

T∈T1
|Y1(T )| ⪆δ∑

T∈T |Y (T )|, and a subset W1 ⊂ W so that for each W ∈ W1 and each x ∈
⋃

T∈T1[W ] Y1(T ), we
have ∣∣∣B(x, a) ∩

⋃
T∈T

Y (T )
∣∣∣ ∼ λ|B(x, a)|, with λ ≥ |W |−1

∣∣∣ ⋃
T∈T1[W ]

Y1(T )
∣∣∣, (5.26)

where the “density” λ = λ(W ) is the same (up to a factor of 2) for all W ∈ W. In words,
(5.26) says that if we blur the shading

⋃
T1[W ] Y1(T ) at scale a (for example by convolving with the

characteristic function of B(0, a)), then each point in the shading has density ∼ λ.

After further pigeonholing, we can ensure that each set (T1[W ], Y1)δ, W ∈ W1 is ≈δ δ
O(η) dense;

W1 is a ≈δ δ
−O(η) balanced cover of T1; and each set TW

1 obeys the Frostman Convex Wolff axioms
with error ⪅δ δ

−O(η). Abusing notation, we will continue to refer to the output of this pigeonholing
by (T1, Y1)δ and W1.
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Step 2. Fix W ∈ W1. Then (TW
1 , Y W

1 )δ/b×δ/a×1 is a collection of convex sets, each comparable to

a δ/b× δ/a× 1 prism, with a δO(η)-dense shading. We first consider the case where b ≥ δ1−ε/100, so
δ/b ≤ δε/100. In this case, the shading on (TW

1 , Y W
1 )δ/b×δ/a×1 is (δ/b)O(η)/ε dense. If η is selected

sufficiently small, then we can apply the estimate F(σ, ω) with ε/2 in place of ε (recall that F(σ, ω)
is true in light of Proposition 5.14) to conclude that∣∣∣ ⋃

TW∈TW
1

Y W
1 (TW )

∣∣∣ ≥ κε
(δ
b

)ε/2(δ
a

)ω
m−1

W (#TW )|TW |
(
m

−3/2
W ℓW (#TW )|TW |1/2

)−σ
, (5.27)

where mW = CKT -CW (TW ) and ℓW = CF -SW (TW ) ≤ CF -CW (TW ) ⪅δ δ−O(η). Recall as well that
|TW | ∼ |T |/|W |. Note that the estimate F(σ, ω) involves the additional term “D” defined in (5.6),
but as discussed in Remark 5.6, Situation 3, we have D ≲ 1.

Since CF -CW (TW ) ⪅δ δ−O(η), we have that mW ⪅δ δ−O(η)|TW |(#TW ), and thus (5.27) allows
us to estimate the density λ (recall that λ was defined in (5.26)):

λ ≥
∣∣∣ ⋃
TW∈TW

Y W (TW )
∣∣∣ ⪆δ κε

(δ
b

)ε/2
δO(η)

(δ
a

)ω(
(#TW )1/2|TW |

)σ
. (5.28)

Note that Inequality (5.28) is currently only valid when b ≥ δ1−ε/100. Next we consider the
case where b < δ1−ε/100, so each TW ∈ TW

1 has dimensions comparable to d1 × d2 × 1 for some
1 ≥ d2 ≥ d1 ≥ δε/100. This is true because

λ ≥ |Y W (TW )| ≥ δO(η)|TW | ≥ δε/50+O(η) ≥ δε/10.

Step 3. For each W ∈ W1, define the shading

Ỹ1(W ) = W ∩Na

( ⋃
T∈T1[W ]

Y1(T )
)
.

By (5.26), we have ∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≳ λ

∣∣∣ ⋃
W∈W1

Ỹ1(W )
∣∣∣. (5.29)

Our next task is to show that (W1, Ỹ1)a×b×1 is δO(η) dense. The argument is shown in Figure 8.
Fix W ∈ W. Since (TW

1 , Y W
1 ) is ⪆ δO(η) dense, we can select a refinement so that each T ∈ T1[W ]

satisfies |Y1(T )| ⪆ δO(η)|T |. After pigeonholing, we can select a set Ta of essentially distinct a-tubes
that form a ≈δ 1 balanced cover of T1[W ]. Since (TW

1 , Y W
1 ) satisfies the Frostman Convex Wolff

axioms with error ⪅δ δ−O(η), we have that Ta satisfies the Frostman Convex Wolff axioms with
error ⪅δ δ−O(η). The shading Ya(Ta) = Ta ∩ Na

(⋃
T∈T[W ] Y1(T )

)
is ≈δ δO(η) dense. Applying

Lemma 5.7 to (TW
a , Y W

a )a/b×1×1 and then undoing the scaling ϕW , we conclude that∣∣∣W ∩Na

( ⋃
T∈T1[W ]

Y1(T )
)∣∣∣ ≥ ∣∣∣ ⋃

Ta∈Ta

Ya(Ta)
∣∣∣ ⪆δ δ

O(η)|W |.

Step 4. It remains to estimate the RHS of (5.29). We first consider the case where a ≤ δε/100. In
this case, (W1, Ỹ1)a×b×1 is aO(η/ε) dense. If η is selected sufficiently small depending on ε, then we
can apply the estimate F(σ, ω) to conclude that∣∣∣ ⋃

W∈W1

Ỹ1(W )
∣∣∣ ≥ κεa

ε/2bωm̃−1(#W1)|W |
(
m̃−3/2ℓ̃(#W1)|W |1/2

)−σ
, (5.30)
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Figure 8: Each a-tube in Ta (blue tubes) contains at least one δ-tube from T1[W ] (red tube); this
δ-tube has a dense shading (red dots), which in turn gives us a dense shading on the a-tube that
contains it (blue balls; for clarify we have only drawn these for one of the tubes in Ta). Finally,
since W (black box) has thickness a, and the a-tubes inside W satisfy a (rescaled) Frostman Convex
Wolff axioms, an L2 argument says that the union of a-tubes has almost full volume.

where m̃ = CKT -CW (W1) and ℓ̃ = CF -SW (W1). Note that the estimate F(σ, ω) involves the additional
term “D” defined in (5.6). However, we claim that both both Parts (A) and (B) of Proposition
5.1, we have

D ≲ δ−η. (5.31)

We verify this claim as follows. In Part (A) of Proposition 5.1, we have the hypothesis that
CKT -CW (W) ≤ δ−η. As discussed in Remark 5.6, Situation 1, this ensures that D ≲ δ−η. In Part
(B) of Proposition 5.1, we have the hypothesis that

CKT -CW (W[Nb(W )]) ≤ δ−η for all W ∈ W.

As discussed in Remark 5.6, Situation 2, this ensures that D ≲ δ−η. This establishes (5.31).

In summary, we have established (5.30) when a ≤ δε/100. If instead a > δε/100, then (5.30)
follows from the estimate ∣∣∣ ⋃

W∈W1

Ỹ1(W )
∣∣∣ ≳ δε/20 ≳ δε/20m̃−1(#W1)|W |. (5.32)

Combining (5.28), (5.29), and (5.30) (when a ≤ δε/100) or (5.32) (when a ≥ δε/100), we conclude
that∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ⪆δ δ

ω+ε+O(η)−ε2/200
( b

a

)ω
m̃−1(#W1)|W |

(
m̃−3/2ℓ̃(#W1)|W |1/2

)−σ(( #T
#W1

)1/2 |T |
|W |

)σ

= δω+ε−ε2/300
( b

a

)ω
m̃−1(#W1)|W |

(
m̃−3/2ℓ̃(#W1)

3/2|W |3/2(#T)−1/2|T |−1
)−σ

.

(5.33)

Step 5. It remains to analyze the RHS of (5.33). Our analysis will differ for Parts (A) and (B)
of Proposition 5.1. We begin with Part (A). We have m̃ ≲ δ−η, and since W1 is a ≈δ δ−O(η)

balanced cover of T1, by Remark 4.3(A) (i.e. Frostman Wolff constants are inherited upwards)
we have δη ℓ̃ ⪅δ CF -SW (T) = ℓ. Since W is a δ−η-balanced, δ−η-almost partitioning cover of T,

#T[W ] ≥ δηCKT -CW (T) |W |
|T | for each W ∈ W, and W1 is a refinement of W, we have (#W1)|W | ⪆δ

δηm−1(#T)|T |. The RHS of (5.33) becomes

δω+ε
( b

a

)ω
m−1(#T)|T |

(
m−3/2ℓ(#T)|T |1/2

)−σ
,
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as claimed.

Next we consider part (B). We have m̃ ⪅δ δ
−η|W |(#W) ⪅δ δ

−η|W |(#W1), and ℓ̃ ⪅δ δ
−η. Thus

the RHS of (5.33) becomes

δω+ε
( b

a

)ω(
(#T)1/2|T |

)σ
.

This concludes the proof of Proposition 5.1.

5.4 Proof of Proposition 5.2: Factoring at two scales

The proof of Proposition 5.2 is almost identical to the proof of Proposition 5.1. Rather than
present a more complicated unified proof of the two results, for clarity of exposition we have opted
to instead briefly sketch the proof of Proposition 5.2 and highlight where the two proofs differ.

We begin by refining the shading (T, Y )δ to find a subset (T1, Y1)δ that has at least average
density on balls of radius a; this is the analogue of (5.26). By Lemma 4.11, we have that for each
W ∈ W, CF -SW (TW ) ⪅δ⪅δ CF -SW (TTρ) · CF -SW (TW

ρ ) ⪅δ δ
−ηℓ′. Thus the analogue of (5.27) is∣∣∣ ⋃

TW∈TW
1

Y W
1 (TW )

∣∣∣ ≳ (δ
b

)ε/2(δ
a

)ω
m−1(#TW )|TW |

(
m−3/2(δ−ηℓ′)(#TW )|TW |1/2

)−σ
, (5.34)

where m = CKT -CW (T), and this gives us the following analogue of (5.28):

λ ⪆δ

(δ
b

)ε/2
δO(η)

(δ
a

)ω
m−1(#T[W ])|T |

(
m−3/2ℓ′(#TW )|TW |1/2

)−σ
. (5.35)

The next step is to define a dense shading on W; it is here that we use the fact that W factors
Tρ from below with respect to the Frostman Convex Wolff axioms with error ≤ δ−η — this allows
us to use the same argument as in Step 3 from the proof of Proposition 5.1 to show that the shading
Ỹ1(W ) is δO(η) dense.

Finally, we have the following analogue of (5.30):∣∣∣ ⋃
W∈W1

Ỹ1(W )
∣∣∣ ≳ aε/2bωm̃−1(#W1)|W |

(
m̃−3/2ℓ̃(#W)|W |1/2

)−σ
, (5.36)

where m̃ = CKT -CW (W1) ≤ δ−η (by hypothesis) and ℓ̃ = CF -SW (W1) ⪅ δ−ηℓ (by Remark 4.3(A) ).

Combining (5.35) and (5.36) (using the same argument that was used to obtain (5.33)), we
conclude that ∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≳ δε+ω
( b
a

)ω
m−1(#T)|T |

(
m−3/2ℓℓ′(#T)|T |1/2

)−σ
.

5.5 Tubes organized into to slabs

We conclude this section by using the tools developed thus far to prove the following. Let (T, Y )δ
be a set of tubes and their associated shading. Suppose that for each T ∈ T, there is a δ × b × 1
slab S ⊃ T that has large intersection with

⋃
T Y (T ). Then provided CKT -CW (T) is small,

⋃
T Y (T )

has larger volume than one would expect from the estimate E(σ, ω); the estimate becomes better
as CKT -CW (T) becomes smaller and b becomes larger. The precise statement is as follows.
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Lemma 5.17. Let ω > 0, σ ∈ [0, 2/3] and suppose E(σ, ω) is true. For all ε > 0, there exist
κ, η > 0 so that the following holds for all δ > 0. Let (T, Y )δ be a set of tubes and their associated
shading. Let b ≥ δ and suppose that for each T ∈ T there exists a δ × b × 1 prism S ⊃ T with∣∣S ∩

⋃
T∈T Y (T )

∣∣ ≥ δη|S|. Then∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδεbωm−1(#T)|T |

(
m−1ℓ(#T)|T |1/2

)−σ
( |S|
|T |

)σ/2
, (5.37)

where m = CKT -CW (T) and ℓ = CF -SW (T).

Remark 5.18. Note that the exponent of m in (5.37) is only mσ−1, rather than the usual estimate
m(3/2)σ−1 from E(σ, ω). While this is likely not optimal, in practice we will only apply Lemma 5.17
with m of size about 1, so the distinction will not be important.

Proof. After pigeonholing, we can select a ≈δ 1 refinement (T1, Y1)δ of (T, Y )δ and a set S of
essentially distinct δ × b× 1 slabs with the following properties:

• For each T ∈ T1 with corresponding slab S(T ), there is a slab S ∈ S comparable to S(T ).
We denote this by T ∼ S

• There is an integer N so that each slab in S, there are between N and 2N tubes T ∈ T1 with
T ∼ S.

Abusing notation, we will replace each slab in S with its 10-fold dilate. Then

(i) S covers T1,

(ii) #T[S] ≥ N for each S ∈ S.

(iii) #S ∼ N−1(#T1).

(iv) The shading Y (S) = S ∩
⋃

T∈T Y (T ) is ≳ δη dense.

From Items (ii) and (iii) we conclude that

CF -SW (S) ≲ CF -SW (T1) ⪅δ δ
−ηℓ,

and

CKT -CW (S) ≲ CKT -CW (T1)
#S
#T1

|S|
|T |

⪅δ δ
−ηm

#S
#T

|S|
|T |

. (5.38)

We would like to use Proposition 5.14 and apply the estimate F(σ, ω) to obtain a lower bound
for the volume of

⋃
Y (S). Before doing so, we should estimate the quantity D from (5.6). By

Remark 5.6, Situation 2, and (5.38), we have

D ≲
(

sup
S∈S

CKT -CW (S[Nb(S)])
)1/2

⪅δ

(
δ−ηm

#S
#T

|S|
|T |

)1/2
.
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If η, κ > 0 are chosen sufficiently small depending on ω, σ, and ε, then we can apply the estimate
F(σ, ω) to conclude that∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ ∣∣∣ ⋃
S∈S

Y (S)
∣∣∣

≥ κδε/2bωCKT -CW (S)−1(#S)|S|
(
CKT -CW (S)−3/2CF -SW (S)(#S)|S|1/2

)−σ
D−σ

⪆δ κδ
ε/2+2ηbωm−1(#T)|T |

(
m−1ℓ(#T)|T |1/2

)−σ(
m1/2 |S|

|T |
(#S)1/2

(#T)1/2
D−1

)σ

⪆δ κδ
ε/2+2ηbωm−1(#T)|T |

(
m−1ℓ(#T)|T |1/2

)−σ( |S|
|T |

)σ/2
.

Often, we will use the following weaker version of Lemma 5.17.

Corollary 5.19. Let ω > 0, σ ∈ (0, 2/3] and suppose E(σ, ω) is true. For all ε > 0, there exist
η, c > 0 so that the following holds for all δ > 0. Let (T, Y )δ be a set of tubes and their associated
shading. Let ρ ≥ δ and suppose that for each T ∈ T there exists a ρ tube Tρ ⊃ T with

∣∣Tρ ∩⋃
T∈T Y (T )

∣∣ ≥ δη|Tρ|. Then∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδερωm−1(#T)|T |

(
m−1ℓ(#T)|T |1/2

)−σ
(ρ
δ

)σ/2
, (5.39)

where m = CKT -CW (T) and ℓ = CF -SW (T).

6 Assertions D and E are equivalent

Our goal in this section is to prove Proposition 1.6. To do so, we will need a result from [26],
which (informally) says that if a set of δ-tubes satisfies the Frostman Convex Wolff Axioms at
many different scales, then the union of these tubes must have large volume. To state the result
precisely, we recall Definition 2.12 from [26].

Definition 6.1. Let K ≥ 1, δ > 0. We say a set T of δ-tubes in R3 satisfies the Frostman Convex
Wolff Axioms at every scale with error K if the tubes in T are essentially distinct, and for every
ρ0 ∈ [δ, 1], there exists ρ ∈ [ρ0,Kρ0) and a set of ρ-tubes Tρ that satisfies the following properties.

(i) Tρ is a K-balanced partitioning cover of T.

(ii) For each Tρ ∈ Tρ, TTρ satisfies the Frostman Convex Wolff Axioms with error K.

Next we recall Theorem 5.2 from [26].

Theorem 6.2. For all ε > 0, there exists η, κ > 0 so that the following holds for all δ > 0. Let T
be a set of δ-tubes that satisfy the Frostman Convex Wolff Axioms at every scale with error δ−η,
and let Y (T ) be a δη dense shading. Then∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδε. (6.1)
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When ε < ω, the conclusion of Theorem 6.2 gives a volume estimate that is superior to the
volume estimate (1.3) from Assertion E(σ, ω). However, the hypotheses of Assertion E(σ, ω) are
weaker. The next result says that for every collection T of tubes that satisfies the Frostman Convex
Wolff axioms, at least one of the following must occur:

(A) T satisfies the hypothesis of Theorem 6.2. This is good, provided we select ε < ω.

(B) At a suitable scale, T satisfies the Katz-Tao Convex Wolff axioms with error roughly 1. This
is good, if we know that D(σ, ω1) is true for some ω1 < ω.

(C) At a suitable scale, T is factored by flat rectangular prisms, and thus satisfies the hypotheses
of Proposition 5.1. This is good, since it gives a stronger volume estimate than E(σ, ω).

The precise statement is as follows.

Proposition 6.3. Let ζ1 ≥ ζ2 ≥ ζ3 > 0. Then there exists η > 0 such that the following holds for
all δ > 0. Let T be a set of δ-tubes satisfying the Frostman Convex Wolff Axioms with error ≤ δ−η.
Then after replacing T by a ≈δ 1 refinement, at least one of the following is true.

(A) T satisfies the Frostman Convex Wolff Axioms at every scale with error δ−ζ1 , in the sense of
Definition 6.1.

(B) There exists δ ≤ τ < ρ ≤ 1, with τ ≤ δζ1/5ρ; a balanced partitioning cover Tτ of T; and a
balanced partitioning cover Tρ of Tτ such that the following is true:

(i) CF -CW (TTτ ) ≲ δ−ζ2 for each Tτ ∈ Tτ .

(ii) CKT -CW (TTρ
τ ) ≲ δ−ζ2 and #TTρ

τ ≥ δζ2(ρ/τ)2 for each Tρ ∈ Tρ.

(iii) CF -CW (Tρ) ⪅δ δ
−η.

(C) There exists δ ≤ a < b ≤ 1 with a ≤ δζ2/100b, and a set W of a × b × 1 prisms that
satisfies the hypotheses of Proposition 5.1(B): W factors T above and below with respect to
the Frostman Convex Wolff Axioms, with error O(δ−ζ3). And for each W ∈ W, we have
CKT -CW (W[Nb(W )]) ≲ δ−ζ3.

We will defer the proof of Proposition 6.3 to Section 6.3.

Using Proposition 6.3, we will prove the following weaker form of Proposition 1.6; recall that Ẽ
is defined in Definition 5.3.

Lemma 6.4. Let 0 < σ ≤ 2/3. For all ω, t > 0, there exists α > 0 so that the following holds for
all ω′ ≥ ω + t. Suppose D(σ, ω) and E(σ, ω′) are true. Then Ẽ(σ, ω′ − α) is true.

Proof. Let α = α(σ, ω, t) > 0 be a small number to be specified below. Let η, κ > 0 be small
numbers that depend on ω, ω′, and σ. Our goal is to prove that if (T, Y )δ is δη dense with
CF -SW (T) ≤ δ−η, then ∣∣∣ ⋃

T∈T

∣∣∣ ≥ κδω
′−αm−1(#T)|T |

(
m−3/2(#T)|T |1/2

)−σ
, (6.2)

with m = CKT -CW (T). Note that the estimate (6.2) is slightly stronger than the desired estimate
Ẽ(σ, ω′ −α), since there is no additional δε loss; this stronger estimate is possible since ω′ −ω > 0,
which gives us a bit of “wiggle room.”
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Step 1. Without loss of generality we may suppose that |Y (T )| ≥ δη|T | for each T ∈ T. Let
ζi = ζi(σ, ω, t), i = 1, . . . , 5 be small quantities to be chosen below; we will have ζi+1 very small
compared to ζi, and η very small compared to ζ5.

We first consider the case where there exists a subset T′ ⊂ T with #T′ ≥ δη(#T), and
CF -CW (T′) ≤ δ−ζ4 (this assumption will remain until Step 4, where we will consider the case
where no such subset exists). Abusing notation slightly, we will continue to use T to refer to this
subset. In particular, we have that

#T ⪆δ δ
η+ζ4m|T |−1, and CF -CW (T) ≤ δ−ζ4 . (6.3)

If ζ4 and η are chosen sufficiently small compared to ζ1, ζ2, ζ3, then we can apply Proposition
6.3 to (T, Y )δ, with ζ1, ζ2, ζ3 as specified above. We will select ζ1 = ζ1(ω) and η sufficiently small
so that if Conclusion (A) of Proposition 6.3 holds, then we can use Theorem 6.2 to conclude that∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≳ δω,

and hence (6.2) holds provided we choose α(ω, t) ≤ t. Henceforth we shall assume that Conclusion
(A) of Proposition 6.3 does not hold.

Step 2. Suppose that Conclusion (B) of Proposition 6.3 holds. We will define shadings Yτ and
Yρ on the sets of tubes Tτ and Tρ as follows. For each Tτ ∈ Tτ , we refine the shading on T[Tτ ] to
have average density on balls of radius τ (see (5.26) and the surrounding discussion). We define
the shading Yτ (Tτ ) to be the union of those τ -balls that intersect

⋃
T[Tτ ]

Y (T ). We perform the
analogous procedure to define Yρ (this induces a refinement on the shadings Yτ and Y ).

After these steps have been performed, (Tρ, Yρ)ρ is δO(η) dense; each pair (TTρ
τ , Y

Tρ
τ )τ/ρ is δO(η)

dense; and each pair (TTτ , Y Tτ )δ/τ is δO(η) dense. Furthermore, we have∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ (∣∣∣ ⋃

Tρ∈Tρ

Yρ(Tρ)
∣∣∣)( inf

Tρ∈Tρ

∣∣∣ ⋃
T

Tρ
τ ∈TTρ

τ

Y
Tρ
τ (T

Tρ
τ )

∣∣∣)( inf
Tτ∈Tτ

∣∣∣ ⋃
TTτ∈TTτ

Y Tτ (T Tτ )
∣∣∣). (6.4)

Our next task is to estimate the three terms on the RHS of (6.4) as follows.∣∣∣ ⋃
Tρ∈Tρ

Yρ(Tρ)
∣∣∣ ≥ δε1ρω

′(
(#Tρ)1/2|Tρ|

)σ
, (6.5)

inf
Tρ∈Tρ

∣∣∣ ⋃
T

Tρ
τ ∈TTρ

Y
Tρ
τ (T

Tρ
τ )

∣∣∣ ≥ δε1
(τ
ρ

)ω((#Tτ

#Tρ

)1/2 |Tτ |
|Tρ|

)σ
, (6.6)

inf
Tτ∈Tτ

∣∣∣ ⋃
TTτ∈TTτ

Y Tτ (T Tτ )
∣∣∣ ≥ δε1

( δ
τ

)ω′(( #T
#Tτ

)1/2 |T |
|Tτ |

)σ
, (6.7)

where ε1 = ζ1
24(ω − ω′).

First, observe that if we choose η sufficiently small, then (6.5) (resp. (6.6) or (6.7)) immediately
holds if ρ > δε1/2 (resp. δ/τ > δε1/2). This is because the volume of the union (6.5) is bounded by
the volume of a single tube. In particular, we have the following

• Either (6.5) automatically holds, or (Tρ, Yρ)ρ is ρO(η/ε1) dense and satisfies CF -CW (Tρ) ≲
ρ−2ζ2/ε1 .
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• Since ε1 ≤ ζ1/24 and τ ≤ δζ1/5ρ, each pair (TTρ
τ , Y

Tρ
ρ )τ/ρ is (τ/ρ)O(η/ε1) dense and satisfies

CKT -CW (TTρ
τ ) ≲ (τ/ρ)−2ζ2/ε1 and #TTρ

τ ≥ (τ/ρ)2ζ2/ε1(ρ/τ)2.

• Either (6.7) automatically holds, or each pair (TTτ , Y Tτ )δ/τ is (δ/τ)O(η/ε1) dense and satisfies

CKT -CW (TTτ ) ≲ (δ/τ)−2ζ2/ε1 .

If we select η and ζ2 sufficiently small, depending on ω and t (recall that t ≤ ω − ω′) (η and
ζ2 also depend on ε1, but ε1 only depends on ζ1 = ζ1(ω), ω and t), then in light of the three
bullet points above, the estimates (6.5), (6.6), and (6.7) follow from E(σ, ω′), D(σ, ω), and E(σ, ω′),
respectively.

Combining (6.4), (6.5), (6.6), and (6.7), we conclude that∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ δ3ε1

(ρ
τ

)ω−ω′

δω
′
(

(#T)1/2|T |
)σ

≥ δ
ζ1(ω−ω′)

8 δω
′
(

(#T)1/2|T |
)σ

. (6.8)

Combining (6.3) and (6.8), we verify that (6.2) holds, provided α(ω, t) ≤ ζ1t
16 ; ζ4 <

ζ1t
17 ; and η > 0 is

chosen sufficiently small. Henceforth we shall assume that Conclusion (B) of Proposition 6.3 does
not hold.

Step 3. Suppose that Conclusion (C) of Proposition 6.3 holds, i.e. there is a set W of a × b × 1
prisms, with a ≤ δζ2/100b, so that W satisfies the hypotheses of Proposition 5.1(B): W factors T
above and below with respect to the Frostman Convex Wolff Axioms with error O(δ−ζ3). And for
each W ∈ W we have CKT -CW (W[Nb(W )]) ≲ δ−ζ3 .

Let ε2 = ζ2ω/200. If ζ3 is selected sufficiently small depending on ζ2 and ε2 (both of these
numbers in turn ultimately only depend on ω and t) and if η > 0 is selected sufficiently small, then
by Proposition 5.1(B) (with ε2 in place of ε) we have∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≳ δω
′+ε2

( b

a

)ω′(
(#T)1/2|T |

)σ
≥ δω

′+ε2δ−
ζ2ω
100

(
(#T)1/2|T |

)σ
≥ δω

′− ζ2ω
200

(
(#T)1/2|T |

)σ
.

(6.9)

Combining (6.3) and (6.9), we verify that (6.2) holds, provided α(ω, t) ≤ ζ2ω
400 ; ζ4 < ζ2ω

500 ; and η > 0
is chosen sufficiently small.

Step 4. It remains to consider the case where every subset T′ ⊂ T with #T′ ≥ δη(#T) satisfies
CF -CW (T′) > δ−ζ4 . Apply Proposition 4.6 (factoring a collection of convex sets) to T, and denote

the output by T′ and W. Then Item ii) of Proposition 4.6 implies #T[W ] ≈δ CKT -CW (T′) |W |
|T | . Since

#T′ ≥ δη(#T), we have CF -CW (T′) > δ−ζ4 . We also have CF -CW (T′W ) ⪅δ 1 for each W ∈ W, from
which it follows that |W | ⪅δ δ

ζ4 (recall that the sets W ∈ W are congruent, and thus they all have
identical volume).

If the prisms in W are flat, in the sense that they are comparable to a × b × 1 prisms with
a ≤ δζ5b, then we can apply Proposition 5.1(A) with ε3 = ζ5ω

′/2 to conclude that∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≳ δω

′+ε3
( b

a

)ω′

(m′)−1(#T′)|T |
(
(m′)−3/2(ℓ′)(#T)|T |1/2

)−σ

⪆ δω
′− ζ5ω

′
2

+2ηm−1(#T)|T |
(
m−3/2(#T)|T |1/2

)−σ
.

(6.10)

54



In the second inequality, we used the fact that #T′ ≥ δη#T; ℓ′ := CF -SW (T′) ⪅ δ−η; m′ :=

CKT -CW (T′) ≤ m; and σ ≤ 2/3. We conclude that (6.2) holds, provided α(ω, t) ≤ ζ5ω
4 ≤ ζ5ω′

4 and
η > 0 is chosen sufficiently small.

Finally, we consider the case where the prisms in W are not flat, in the sense that a ≥ δζ5b.
In this case we can replace each prism W ∈ W by its b-neighbourhood, and then refine the corre-
sponding set of b-tubes Tb by a factor of (b/a)3 ≤ δ−3ζ5 (this is the number of essentially distinct
a× b× 1 prisms that can fit inside a b tube) so that the tubes in Tb are essentially distinct. Since
|W | ⪅δ δ

ζ4 and a ≥ δζ5b, we have
b ⪅δ δ

ζ4/2−ζ5 ≤ δζ4/3. (6.11)

To recap, the set Tb has the following properties.

• CKT -CW (Tb) ≲
b
aCKT -CW (W) ⪅δ δ

−ζ5 ≤ b−3ζ5/ζ4 .

• CF -SW (Tb) ≲ δ−3ζ5CF -SW (W) ⪅δ δ
−3ζ5CF -SW (T) ⪅δ δ

−3ζ5−η.

• For each Tb ∈ Tb, we have CF -CW (TTb) ≲ b
aCF -CW (TW ) ⪅δ δ−ζ5 , where W ∋ W ⊂ Tb is the

prism containing all of the tubes in T[Tb].

• For each Tb ∈ Tb, we have #TTb ⪅δ CKT -CW (W) b
a#TW ⪅δ

b
am

|W |
|T | ⪅δ δ

−2ζ5m |Tb|
|T | .

(For the second item above, we make crucial use of the fact that CF -SW (T) ≤ δ−η, which is why the
conclusion of Lemma 6.4 only says that Ẽ(σ, ω′ − α) is true, rather than the superficially stronger
statement E(σ, ω′ − α)).

Mirroring the argument in Step 2, refine the shadings Y (T ) on each set of tubes T[Tb] to have
average density on balls of radius b. We define the shading Yb(Tb) to be the union of those b-balls
that intersect

⋃
T[Tb]

Y (T ). Then (Tb, Yb)b is δη ≥ b3η/ζ4 dense. We thus have the following analogue
of (6.4): ∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ (∣∣∣ ⋃
Tb∈Tb

Yρ(Tb)
∣∣∣)( inf

Tb∈Tb

∣∣∣ ⋃
TTb∈TTb

Y Tb(T Tb)
∣∣∣). (6.12)

Let ε4 = ζ4(ω−ω′)
12 . If ζ5 and η are selected sufficiently small depending on ζ4 and ε4 (which in

turn depend on ω and t), then we can use the estimate (1.2) from Assertion D(σ, ω) to conclude
that ∣∣∣ ⋃

Tb∈Tb

Yρ(Tb)
∣∣∣ ≳ bω+ε4(#Tb)|Tb|

(
(#Tb)|Tb|1/2

)−σ
. (6.13)

Finally, we would like to obtain the estimate∣∣∣ ⋃
TTb∈TTb

Y Tb(T Tb)
∣∣∣ ≳ δε4

(δ
b

)ω′(
(#TTb)1/2

|T |
|Tb|

)σ
. (6.14)

When δ/b > δε4/2, we have that (6.14) follows from the elementary fact that the shading on each
Y (T ) is ⪆ δη dense, and the union on the LHS of (6.14) is bounded by the volume of a single
tube. On the other hand, when δ/b ≤ δε4/2, we have that (6.14) follows from the estimate (1.3)
from Assertion E(σ, ω′), provided ζ5 is chosen sufficiently small depending on ζ4 and ε4, since
CF -CW (TTb) ⪅ δ−ζ5 .
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Since #TTb ⪅ mδ−2ζ5 |T |
|Tb| for each Tb ∈ Tb (where m = CKT -CW (T)), (6.14) becomes

∣∣∣ ⋃
TTb∈TTb

Y Tb(T Tb)
∣∣∣ ≳ δε4+2ζ5

(δ
b

)ω′
m−1(#TTb)

|T |
|Tb|

(
m−3/2(#TTb)

( |T |
|Tb|

)1/2)−σ
. (6.15)

Combining (6.12), (6.13), (6.15), and (6.11), we conclude that if we select ζ5 ≤ ζ4(ω−ω′)/12, then∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ δω

′+ε4+2ζ5bω−ω′+ε4m−1(#T)|T |
(
m−3/2(#T)|T |1/2

)−σ

≥ δω
′− ζ4(ω−ω′)

12 m−1(#T)|T |
(
m−3/2(#T)|T |1/2

)−σ
.

(6.16)

We conclude that (6.2) holds, provided α(ω, t) ≤ ζ4t
12 , and η > 0 is chosen sufficiently small.

We now use Lemma 6.4 to prove Proposition 1.6.

Proof of Proposition 1.6. Let 0 ≤ σ ≤ 2/3, ω ≥ 0, and suppose that Assertion D(σ, ω) is true. Fix
t > 0 and let α = α(σ, ω, t) > 0 be the output of Lemma 6.4. Since a δ-tube has volume ∼ δ2,
we always have that E(σ, 2) is true. Now suppose that E(σ, ω′) is true for some ω′ ∈ [ω + t, 2].
Applying Lemma 6.4 followed by Proposition 5.14, we have

E(σ, ω′) =⇒ Ẽ(σ, ω′ − α) =⇒ E(σ, ω′ − α).

Iterating the above argument, we conclude that E(σ, ω′′) is true for some ω′′ ≤ ω+t, so in particular
E(σ, ω + t) is true.

However, t > 0 was arbitrary, and by the definition of E , it is clear that the set

{ω′ ∈ [ω, 2] : E(σ, ω′) is true}

is a closed interval. We conclude that E(σ, ω) is true.

This concludes the proof of Proposition 1.6, except that we must still prove Proposition 6.3.
We do this below.

6.1 Proof of Proposition 6.3: A factoring trichotomy

Step 1. We begin by regularizing the set T. Let η > 0 be a small quantity to be determined
below, with N = 1/η an integer. Define δi = δi/N , i = 1, . . . , N . By iterated pigeonholing and
replacing T by a | log δ|−N -refinement, we may suppose that for each i = 1, . . . , N there exists a set
Tδi of δi-tubes that is a balanced partitioning cover of Tδi+1

. We will call numbers of the form δi
“admissible scales.” In particular, for each admissible scale δi, we have

#T[Tδi ] ≈δ
#T
#Tδi

for every Tδi ∈ Tδi . (6.17)

Next we apply Proposition 4.6 to each set TTδi ; the output of Proposition 4.6 is a ≈ 1 refinement
of TTδi (this induces a ≈ 1 refinement of T and all sets Tδj for j > i; observe that (6.17) remains
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true after this refinement; to simplify notation, we still use Tδi and T to denote these refinement)
and a set W of convex subsets of R3. If |W | ≥ δζ1/2, then CF -CW (TTδi ) ≤ δ−ζ1/2. In this case, we
say TTδi is of Type 1. If |W | < δζ1/2, then we say we say TTδi is of Type 2.

We now proceed as follows. For each i = N − 1, . . . , 1, if at least half the sets TTδi , Tδi ∈ Tδi

are of Type 1, then we refine Tδi to only consist of those Tδi for which TTδi are of Type 1; observe
that (6.17) remains true after this refinement. We say that T has passed stage i. On the other
hand, if at least half the sets TTδi , Tδi ∈ Tδi are of Type 2, then we say that T has failed stage i.

Suppose that T passes every stage i = N − 1, . . . , 1. Then by (6.17) we have that for each
i = 1, . . . , N , the set Tδi (this consists of those δi-tubes that survived the refinements described
above) is a ≈δ 1-balanced partitioning cover of T. Furthermore, since T passed stage i, we have that
for each Tδi ∈ Tδi we have that CF -CW (TTδi ) ⪅δ δ

−ζ1/2. We conclude that T satisfies the Frostman
Convex Wolff Axioms at every scale with error O(δ−ζ1), and hence Conclusion (A) of Proposition
6.3 holds.

Step 2. Suppose that T fails some stage i ≥ 1. After pigeonholing and replacing Tδi and T by a
≈δ 1 refinement, we may suppose that there exists δ ≤ a ≤ b ≤ 1 so that for each Tδi ∈ Tδi , the
output of Proposition 4.6 applied to TTδi consists of a set WTδi

of a
δi
× b

δi
× 1 prisms that forms a

≈δ 1 balanced cover of TTδi , and factors TTδi from above (resp. below) with respect to the Katz-Tao
Convex Wolff Axioms (resp. Frostman Convex Wolff Axioms) with error ⪅δ 1.

Since the tubes in Tδi are essentially distinct, we can further refine Tδi by a ∼ 1 factor so that
every pair of distinct tubes Tδi , T

′
δi
∈ Tδi that intersect must satisfy ∠

(
dir(Tδi), dir(T ′

δi
)
)
≥ 100δi,

so in particular we have

diam(2Tδi ∩ 2T ′
δi

) ≤ 1

2
. (6.18)

Define
W =

⊔
Tδi

∈Tδi

ϕ−1
Tδi

(
WTδi

)
.

Then W is a collection of convex sets, each of which is comparable to a a × b × 1 prism. Recall
that since T failed stage i, we have that the prisms in W are substantially smaller than the tubes
in Tδi ; specifically, we have

|W | ≲ δζ1/2|Tδi |. (6.19)

We claim that the convex sets in W are essentially distinct. To verify this claim, we argue as
follows. Every pair of convex sets W,W ′ from the same set WTδi

are essentially distinct. On the
other hand, if W ∈ WTδi

and W ′ ∈ WT ′
δi

for distinct tubes Tδi and T ′
δi

, then diam(W ∩ W ′) ≤
diam(Tδi ∩ T ′

δi
) ≤ 1

2 by (6.18), from which it follows that W and W ′ are essentially distinct.

Since W is a ≈δ 1 balanced cover of T, and CF -CW (T) ⪅δ δ−η, by Remark 4.3(A) (Frostman
Wolff Axioms are inherited upwards), we have CF -CW (W) ⪅δ δ−η; we will select η > 0 sufficiently
small so that CF -CW (W) ≲ δ−ζ3 .

Step 3. Suppose that the prisms in W are flat, in the sense that a ≤ δζ2/100b. Our task is to show
that W and our refined set T satisfies the conditions of Conclusion (C) from Proposition 6.3.

Each W ∈ W came from some set WTδi
. We claim that if W ′ ∈ W satisfies W ′ ⊂ Nb(W ), then

we must have that W ′ came from the same set WTδi
, i.e.

W[Nb(W )] = (W[Tδi ])[Nb(W )] = ϕ−1
Tδi

(WTδi
)[Nb(W )]. (6.20)
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To verify this claim, we argue by contradiction: suppose instead that W ′ came from a distinct tube
T ′
δi

, then we would have W ′ ⊂ Nb(W )∩T ′
δi
⊂ 2Tδi ∩T ′

δi
, and in particular the latter set would have

diameter ≥ 1. But this is forbidden by (6.18).

(6.20) implies that

CKT -CW

(
W[Nb(W )]

)
= CKT -CW

(
(W[Tδi ])[Nb(W )]

)
≤ CKT -CW (WTρi

) ⪅δ 1.

Thus W and our refined set T satisfies the conditions of Conclusion (C) from Proposition 6.3.

Step 4. Now we consider the case where the prisms in W are not flat, in the sense that a > δζ2/100b.
Define τ to be the smallest admissible scale greater than or equal to b. Since at most O((b/a)3)
essentially distinct a × b × 1 prisms can fit inside a b-tube, and at most O(δ−4/N ) = O(δ−4η)
essentially distinct b-tubes can fit inside a τ -tube, we have that W[Tτ ] ≲ δ−4η(b/a)3 ≲ δ−4ζ2/100 for
every τ -tube Tτ (for the last inequality we select η ≤ ζ2/400). After pigeonholing T,W, and Tτ ,
we may suppose that Tτ is a balanced partitioning cover of W. We have

1 ≤ #W[Tτ ] ≲ δ−4ζ2/100 for each Tτ ∈ Tτ . (6.21)

Since CF -CW (T[W ]) ⪅δ 1 for each W ∈ W, we conclude from (6.21) that CF -CW (T[Tτ ]) ⪅δ δ
−4ζ2/100

for each Tτ ∈ Tτ ; this gives us Conclusion (B.i).

At this point, we have correctly identified the scale τ from Conclusion (B) of Proposition 6.3.
What about the scale ρ? One candidate is δi; by (6.19) we have τ ≲ δζ1/4−2ζ2/100δi ≤ δζ1/5δi, as
specified in Conclusion (B).

The scale δi satisfies some of the required properties of Conclusion (B). Recall that for each
Tδi ∈ Tδi , we have CKT -CW (W[Tδi ]) ⪅δ 1. Since |Tτ | = (b/a)|W | ≤ δ−ζ2/100|W |, by (6.21) we have

CKT -CW

(
Tτ [Tδi ]

)
≤ δ−5ζ2/100 for each Tδi ∈ Tδi . (6.22)

This is half of Conclusion (B.ii). If #Tτ

#Tδi
≥ δ100η(δi/τ)2 (in fact a weaker estimate #Tτ

#Tδi
≥ δζ2(δi/τ)2

suffices), then after a refinement, Tδi satisfies Conclusion (B.ii). Conclusion (B.iii) then follows from
Remark 4.3(A) (Frostman Wolff Axioms are inherited upwards), and we are done.

Suppose instead that #Tτ

#Tδi
< δ100η(δi/τ)2. Let ρ be the minimum of all admissible scales in

[δi, 1] for which
#Tτ

#Tρ
≥ δ100η(ρ/τ)2. (6.23)

Such a choice of ρ ∈ [ρi, 1] must exist, since CF -CW (Tτ ) ⪅δ δ−η, and hence #Tτ ⪆δ δητ−2, from
which it follows that ρ = 1 satisfies (6.23) and hence ρ = 1 is a valid candidate.

In particular, for this choice of ρ we have

δ100η(ρ/τ)2 ≤ #Tτ

#Tρ
≤ δ50η(ρ/τ)2, (6.24)

since if the RHS of (6.24) failed, then (6.23) would hold for a smaller admissible scale, which would
contradict the minimality of ρ.

Suppose for the moment that there exists a ⪆δ 1-refinement of Tτ (abusing notation, we will
continue to call this set Tτ ) such that

CF -CW

(
TTρ
τ

)
≤ δ−ζ2/2 for at least half of the tubes Tρ ∈ Tρ. (6.25)

58



Then (6.24) plus (6.25) implies that Conclusion (B.ii) holds, and Conclusion (B.iii) follows from Re-
mark 4.3(A) (Frostman Wolff axioms are inherited upwards). Thus if (6.25) is true, then Conclusion
(B) of Proposition 6.3 holds, and we are done.

Step 5. We claim that either (6.25) holds (and we are done, as discussed in the previous step), or
else Conclusion (C) of Proposition 6.3 holds.

We will verify this claim as follows. Suppose that (6.25) fails. Applying Proposition 4.6 to each
set TTρ and then undoing the scaling ϕTρ , we obtain a refinement of T[Tρ] (abusing notation, we
will continue to call this set T[Tρ]), and a set UTρ of s×t×1 prisms contained in Tρ (so in particular
t ≤ ρ) that factors T[Tρ] from below with respect to the Frostman Convex Wolff axioms with error
⪅δ 1 and each T ∈ T[Tρ] is contained in ⪅δ 1 sets U ∈ UTρ .

Pigeonhole and refine Tρ to consist of those tubes Tρ for which CF -CW

(
TTρ
τ

)
> δ−ζ2/2 (such a

refinement exists because (6.25) fails) and the corresponding sets UTρ are comparable to s× t× 1
prisms for a common pair of numbers (s, t). In particular, this implies

|U | ⪅δ δ
ζ2/2|Tρ|. (6.26)

(C.f. (6.19) when s ≥ τ . When s ≤ τ , this is true because τ ≲ δζ1/5δi ≤ δζ1/5ρ).

Suppose for the moment that s ≥ τ . Then CF -CW (TU
τ ) ⪅δ 1 by Remark 4.3(A) (Frostman Wolff

axioms are inherited upwards). By (6.24) and our hypothesis that CF -CW (TTρ
τ ) > δ−ζ2/2, we have

CKT -CW (Tτ [Tρ]) ≥ δ−ζ2/2+100η. (6.27)

We conclude that by Item ii) of Proposition 4.6,

#(T[Tρ])[U ] ⪆δ CKT -CW (T[Tρ])
( |U |
|T |

)
for each U ∈ UTρ .

Since s ≥ τ and τ is an admissible scale, we have

CKT -CW (T[Tρ]) ⪆δ
#T
#Tτ

|T |
|Tτ |

CKT -CW (Tτ [Tρ]),

and so

#(Tτ [Tρ])[U ] ⪆δ CKT -CW

(
Tτ [Tρ]

)( |U |
|Tτ |

)
≥ δ−ζ2/2+100η

( |U |
|Tτ |

)
for each U ∈ UTρ . (6.28)

We will show that
s < δζ2/100t. (6.29)

To verify (6.29), suppose to the contrary that s ≥ δζ2/100t; we will obtain a contradiction. If
s ≥ δζ2/100t then t ≤ δζ2/4ρ. By (6.28) and the fact that each tube in Tτ [Tρ] is contained in ⪅δ 1
sets U ∈ UTρ , we have

#UTρ ⪅δ
#Tτ [Tρ]

infU∈UTρ
#(Tτ [Tρ])[U ]

⪅δ δ
ζ2/2−100η(#Tτ [Tρ])

|Tτ |
|U |

≤ δ
48
100

ζ2(#Tτ [Tρ])
(τ
t

)2
,

and thus if t′ is the smallest admissible scale greater than or equal to t, then

#Tt′ ≤ #
( ⋃

Tρ∈Tρ

UTρ

)
⪅δ δ

48
100

ζ2(#Tτ )
(τ
t

)2 ≤ δ
47
100

ζ2(#Tτ )
( τ
t′
)2
. (6.30)
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From (6.30) we see that t′ ≥ δi — if not, then there would exist a t′-tube Tt′ with #Tτ [Tt′ ] ⪆δ

δ−
47
100

ζ2 |Tt′ |
|Tτ | , and this t′-tube would be contained in some δi-tube; but this violates (6.22).

Comparing (6.30) and (6.23), we see that t′ ∈ [t, δζ2/5ρ] ⊂ [δi, δ
ζ2/5ρ] is an admissible scale

that satisfies (6.24). But this contradicts the assumption that ρ was the minimal such scale. We
conclude that (6.29) must hold.

When (6.29) holds, we are in precisely the same situation as the beginning of Step 3: The set
of flat (recall (6.29)) prisms U =

⋃
Tρ∈Tρ

UTρ plays the role of W, and the set of essentially distinct

ρ-tubes Tρ plays the role of Tδi . An identical argument with the same numerology (up to harmless
δη factors) shows that Conclusion (C) of Proposition 6.3 holds.

Now suppose (6.29) does not hold, so δζ2/100t ≤ s < τ . If s ≥ τδζ2/20, then together with
s ≥ δζ2/100t,

CKT -CW (Tτ [Tρ]) ≤ δ−ζ2/4CKT -CW (UTρ) ⪅δ δ
−ζ2/4,

which is a contradiction to (6.27). So we may assume s ≤ τδζ2/20 and s ≥ δζ2/100t, and we are in
the same situation as the beginning of Step 4 with (s, t) in place of (a, b), U in place of W, and Tρ in
place of Tδi . However, we have the additional condition that s/ρ ≤ δζ2/20τ/δi; this means that the
prisms in U are substantially flatter than the prisms in W. We return to the beginning of Step 4 and
repeat the argument; we iterate this process until either Conclusion (B) or Conclusion (C) holds;
this must occur after at most 20/ζ2 iterations. Note that each iteration of this process induces a
≈δ 1 refinement of T, etc. but since this process repeats at most 20/ζ2 times, this refinement is
harmless.

7 A two-scale grains decomposition for tubes in R3

In [16], Katz,  Laba and Tao proved that every union of δ tubes in R3 coming from the discretization
of a (hypothetical) Kakeya set with upper Minkowski dimension 5/2 can be written as a union of
“grains,” (i.e. rectangular prisms) of dimensions roughly δ × δ1/2 × δ1/2. Guth [9] generalized this
result and proved that every union of δ tubes in R3 satisfying a certain broadness hypothesis can
be written as a union of grains of dimensions roughly δ × t× t, where the diameter t is related to
the number of tubes in the arrangement and the volume of their union.

The purpose of this section is to prove a structural statement for unions of δ tubes in R3, in
the spirit of the Katz- Laba-Tao and Guth results described above. This is Proposition 7.5 below.
As discussed in the introduction, Proposition 7.5 is a key step in the proof of Proposition 1.7—
Proposition 7.5 helps us find the correct scales and arrangements of convex sets to which we can
apply Assertion E(σ, ω).

In brief, Proposition 7.5 explores what happens when we cover an arrangement of δ-tubes by
ρ-tubes, apply (a variant of) Guth’s grains theorem inside each re-scaled ρ-tube, and then analyze
how the resulting grains coming from the δ tubes inside different ρ-tubes interact. The specific
hypotheses and conclusions of Proposition 7.5 are somewhat technical; they were adapted to match
the needs of the arguments in Section 9. In order to state Proposition 7.5 we will require a few
definitions.

Definition 7.1. Let λ > 0, 0 < δ ≤ ρ ≤ 1 and δ ≤ a ≤ b ≤ c with ρ = b/c. Let (T, Y )δ be a set
of δ tubes and their associated shading, and let Tρ be a balanced partitioning cover of T. We say
(P, Y )a×b×c is a robustly λ-dense two-scale grains decomposition of (T, Y )δ with regard to (wrt) Tρ

if the following is true:
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Figure 9: A tube exiting a grain through the long ends (left) vs failing to do so (middle and right).

(i) For each P ∈ P, there is a unique Tρ ∈ Tρ satisfying P ⊂ Tρ and ∠(dir(P ), dir(Tρ)) ≤ 2ρ.
This induces a partition P =

⊔
Tρ

PTρ .

(ii) For each Tρ ∈ Tρ, the sets {Y (P ) : P ∈ P ∈ PTρ} are disjoint, and we have⋃
T∈T[Tρ]

Y (T ) =
⊔

P∈PTρ

Y (P ). (7.1)

(iii) The pair (P, Y )a×b×c is λ-dense, and furthermore there exists a number µ so that for each
Tρ ∈ Tρ and each x ∈ (7.1), we have #T[Tρ]Y (x) ∼ µ.

(iv) For each Tρ ∈ Tρ and each pair T ∈ T[Tρ] and P ∈ PTρ with Y (T ) ∩ Y (P ) ̸= ∅, we have that
T exits P through the “long end” (See Figure 9), and Y (T ) ∩ P ⊂ Y (P ).

Remark 7.2. Conclusion (iv) implies that a ≥ 2δ. Usually we will be interested in the case where
a ∼ δ, though it will sometimes be useful to consider larger values of a.

Definition 7.3. Let P be a a × b × c prism. Define □(P ) to be the ac
b × c × c prism containing P

with the same center and normal direction as P (the latter condition means that Π(P ) = Π(□(P )).
Observe that both Π(P ) and Π(□(P )) are defined up to accuracy a/b.

Let P be a set of a× b× c prisms, and let W be a convex set. Define

P⟨W ⟩ = {P ∈ P : □(P ) ⊂ W}.

Note that since P ⊂ □(P ), we have P⟨W ⟩ ⊂ P[W ].

Observe that if P, P ′ are intersecting a × b × c prisms and ∠(Π(P ),Π(P ′)) ≤ K a
b for some

K ≥ 1, then the K-fold thickenings (i.e. the prisms of dimensions ac
b × c× c with the same center,

direction, and tangent plane) of □(P ) and □(P ′) are comparable up to factors of K. In particular,
if (P, Y )a×b×c is a pair of prisms and their associated shadings, with ∠(Π(P ),Π(P ′)) ≤ K a

b for all
pairs P, P ′ ∈ P for which Y (P ) ∩ Y (P ′) ̸= ∅, then we can find a set W of prisms of dimensions
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comparable to K ac
b × c× c so that each P ∈ P is contained in at least 1, and at most O(1) sets of

the form P⟨W ⟩, W ∈ W. Furthermore, the sets
{⋃

P∈P⟨W ⟩ Y (P ), W ∈ W
}

are O(1) overlapping.

In our arguments below, we will exploit the above observation when K ≤ δ−ε for a small
ε > 0. Since we will analyze each set P⟨W ⟩ individually, we will be interested in the quantity
CKT -CW (P⟨W ⟩), rather than the (potentially much larger) quantity CKT -CW (P). Each set W con-
tains at most 100K100 essentially distinct prisms of the form □(P ), and thus if K is not too large
then CKT -CW (P⟨W ⟩) is controlled by supP CKT -CW (P⟨2□(P )⟩), where 2□(P ) denotes the 2-fold
dilate of □(P ). This motivates the following definition.

Definition 7.4. Let P be a set of a× b× c prisms. Define

C loc
KT -CW (P) = max

P∈P
CKT -CW

(
P⟨2□(P )⟩

)
.

With these definitions, we can now state the main result of Section 7.

Proposition 7.5. Let ω > 0, σ ∈ (0, 2/3], and ζ ∈ (0, ω/1000). Suppose that E(σ, ω) is true.
Then there exists α, η, κ > 0 so that the following holds for all δ > 0. Let (T, Y )δ be δη dense, with
CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η. Then at least one of the following must hold.

(A)
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω−α(#T)|T |

(
(#T)|T |1/2

)−σ
.

(B) There exist the following:

– Numbers ρ and δ ≤ a ≤ b ≤ c ≤ 1, with ρ = b/c.

– A δζ refinement (T′, Y ′)δ of (T, Y )δ.

– A set Tρ of ρ tubes.

– A pair (G, Y )a×b×c.

These objects have the following properties:

(i) (T′, Y ′)δ is δζ dense, CKT -CW (T′) ≤ δ−ζ , and CF -SW (T′) ≤ δ−ζ .

(ii) Tρ is a balanced partitioning cover of T′ that factors T′ above and below with respect to
the Frostman Slab Wolff Axioms with error δ−ζ .

(iii) (G, Y )a×b×c is a robustly δζ-dense two-scale grains decomposition of (T′, Y ′)δ wrt Tρ.

(iv)
c ≥ δζ

ρ

δ

#Tρ

#Tδ
. (7.2)

(v) δ1−ω/100 ≤ ρ ≤ δω/100.

(vi) C loc
KT -CW (G) ≤ δ−ζ .

An overview for the proof of Proposition 7.5 is outlined in Section 2.2.

Fixing ω and σ. In our proof of Proposition 7.5, the values of ω > 0, σ ∈ (0, 2/3] and ζ > 0
will never change. Thus to simplify our exposition below, we will fix values of ω, σ, and ζ, which
will remain unchanged throughout Sections 7 and 8. In particular, some of our definitions (such as
Definition 7.6, which defines broadness) will depend on these quantities. By fixing them in advance,
we can suppress this dependence.

As previewed in Section 2.2, we will make crucial use Guth’s methods to find a grains decompo-
sition inside each re-scaled set TTρ . In order to apply Guth’s techniques, the tubes need to satisfy
a “broadness” condition. We describe this below.
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7.1 Broadness

For the definition that follows, we will fix β = ωζ/100.

Definition 7.6. Let δ > 0 and K ≥ 1. We say a multi-set V ⊂ Sn−1 of unit vectors in Rn is broad
with error K at scales ≥ δ if for all unit vectors v0 ∈ Rn and all r ∈ [δ, 1] we have

#{v ∈ V : ∠(v, v0) ≤ r} ≤ Krβ(#V).

More generally, let V be contained in a disk D ⊂ Sn−1 of radius ρ. We say V is broad with
error K at scales ≥ δ inside D if for all unit vectors v0 ∈ Rn and all r ∈ [δ, ρ] we have

#{v ∈ V : ∠(v, v0) ≤ r} ≤ K(r/ρ)β(#V).

Definition 7.7. Let (T, Y )δ be a collection of tubes and their associated shading, and let Tρ be a
cover of T.

(A) We say that (T, Y )δ is broad with error K if for each x ∈
⋃

T∈T Y (T ), the set of unit vectors
{dir(T ) : x ∈ Y (T )} is broad with error K at scales ≥ δ.

(B) We say that (T, Y )δ is broad with error K relative to the cover Tρ if for each Tρ ∈ Tρ, the set
(TTρ , Y Tρ)δ/ρ is broad with error K.

The next result is a variant of the “two ends” reduction. In general, a set V of unit vectors
need not be broad (with small error). However, the next result says that every set of unit vectors
is broad when localized inside ρ disks, for some value of ρ. The precise statement is as follows.

Lemma 7.8. Let δ > 0 and let V be a set of vectors in Rn pointing in δ-separated directions. Then
there exists a scale ρ ∈ [δ, 1]; a set B of disjoint balls B ⊂ Sn−1 of radius ρ; and sets VB ⊂ V ∩ B
so that the following holds.

(i) Each set VB has cardinality ≳ ρβ(#V).

(ii) VB is broad with error 100 at scales ≥ δ inside B.

(iii)
⋃

B VB ≳ (log 1/δ)−1(#V).

Proof. We will greedily construct a sequence of sets V = V0 ⊃ V1 ⊃ . . . as follows. For each index
i ≥ 1, let vi be a unit vector and ri ∈ [δ, 1] a radius that maximizes the quantity

r−β
i (#Vi−1 ∩B(vi, ri)). (7.3)

Let Wi = Vi−1 ∩ B(vi, ri) and let Vi = Vi−1\B(vi, 100ri). Note that #(Vi−1 ∩ B(vi, 3ri)) ≤
100β(#Wi). Continue this process until #Vi ≤ 1

2#V.

We claim that for each index i, each unit vector v, and each r ≥ δ, we have

#(Wi ∩B(v, r)) ≤ 100(r/ri)
β(#Wi). (7.4)

This will give Conclusion (ii). To verify (7.4), suppose to the contrary that (7.4) failed for some
pair (v, r), then this would contradict the maximality of (vi, ri) in (7.3).
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Note as well that since ri = 1 is a valid choice of r, we have #Wi ≥ rβi (#Vi−1) ≥ 1
2r

β
i (#V).

Finally, note that if ri ≤ rj ≤ 2ri, then the balls 2B(vi, ri) and 2B(vj , rj) must be disjoint.
Indeed, we may suppose that both Wi and Wj are non-empty. If i < j then we must have
B(vj , rj) ∩ B(vi, 100ri)

c ̸= ∅, while if j < i then we must have B(vi, ri) ∩ B(vi, 100rj)
c ̸= ∅. In

either case, since ri ≤ rj ≤ 2ri, this means that 2B(vi, ri) ∩ 2B(vj , rj) = ∅.

To conclude the proof, use dyadic pigeonholing to select a scale ρ ∈ [δ, 1] so that #
⋃

i : ρ/2≤ri≤ρWi ≳

(log 1/δ)−1(#V). This gives us the collection B of disjoint balls (it is harmless for us to replace
each ball B(vi, ri) with B(vi, ρ); as noted above, the balls remain disjoint).

Remark 7.9. Lemma 7.8 is similar to the standard “two-ends” broadness reduction. However,
the standard two-ends broadness reduction typically replaces V by V ∩ B for a single ρ ball B.
The resulting set has cardinality ≳ ρβ(#V). For our applications, this would have introduced an
unacceptably large reduction in the cardinality of V.

Corollary 7.10. Let (T, Y )δ be a set of δ tubes and their corresponding shading. Then there exists
a ⪆δ 1 refinement (T′, Y ′)δ of (T, Y )δ; a scale ρ ∈ [δ, 1]; and a balanced partitioning cover Tρ of
(T′, Y ′), so that the following holds:

(i) Each point x ∈ R3 is contained ⪅δ ρ
−β sets of the form

⋃
T′[Tρ]

Y ′(T ), Tρ ∈ Tρ.

(ii) T′ is broad with error ≈δ 1 relative to the cover Tρ.

Proof. Using dyadic pigeonholing, we can select a number µ ≥ 1 and a (log 1/δ)−1 refinement
(T, Y1)δ of (T, Y ) with the property that #{T ∈ T : x ∈ Y1(T )} ∼ µ for each x ∈

⋃
T∈T Y1(T ).

Apply Lemma 7.8 to each point x ∈
⋃
Y1(T ). We obtain a scale ρx ∈ [δ, 1], and a set of disjoint

ρx balls Bx (each ball in Bx is a subset of S2). After further dyadic pigeonholing we can select the
following:

• A common scale ρ;

• Multiplicities ν ≥ 1 and N ≲ ρ−β;

• A set B of ρ balls (each ball in B is a subset of S2), whose 100ρ neighbourhoods are disjoint;

• A ≳ (log 1/δ)−1 refinement (T, Y2)δ of (T, Y1)δ.

We can select the above numbers and sets so that the following property holds: for each x ∈⋃
T Y2(T ), the set of unit vectors {dir(T ) : x ∈ Y2(T )} ⊂ S2 can be covered by a union of N balls

from B, and for each such ball, we have that the set B ∩{dir(T ) : x ∈ Y2(T )} has cardinality ν and
is broad with error O(1) inside B.

After refining T by a factor of ≈δ 1, we obtain a new pair (T2, Y2)δ that is a ≈δ 1 refinement
of (T, Y2)δ, and a set Tρ of ρ tubes with the property that Tρ is a balanced partitioning cover of
T2, and furthermore the family of convex sets {3Tρ : Tρ ∈ Tρ} is a partitioning cover of T2. This
means that for each Tρ ∈ Tρ, T2[Tρ] = T2[3Tρ].

For each T ∈ T2 with T ⊂ Tρ ∈ Tρ, define

Y3(T ) = {x ∈ Y2(T ) : #{T ′ ∈ T2[Tρ] : x ∈ Y2(T
′)} ≥ κ0ν}.

Since (T2, Y2)δ is a ≈δ 1 refinement of (T, Y2)δ, if κ0 > 0 is chosen sufficiently small (depending
on the implicit constant mentioned previously), then (T2, Y3)δ is a ≈δ 1 refinement of (T2, Y2)δ.
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Furthermore, for each point x ∈
⋃

T∈T[3Tρ]
Y3(T ) =

⋃
T∈T[Tρ]

Y3(T ), we have that the set of unit

vectors {dir(T ) : T ∈ T2[3Tρ] = T2[Tρ], x ∈ Y3(T )} is broad inside B(dir(Tρ), 2ρ) with error O(1),
in the sense of Definition 7.6. We conclude that the pair (T2, Y3)δ and {3Tρ, Tρ ∈ Tρ} satisfy the
conclusions of Corollary 7.10 (with 3ρ in place of ρ).

The next result says that every pair (T, Y )δ of δ tubes and their associated shading is either
broad at some scale δ << ρ << 1, or else the tubes in (T, Y )δ are almost disjoint.

Lemma 7.11. Let δ > 0 and let (T, Y )δ be a pair of δ tubes and their associated shading. Then at
least one of the following must occur:

(A)
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ⪆δ δ

ω/2
∑
T∈T

|Y (T )|. (7.5)

(B) There is a scale ρ ∈ [δ1−ω/100, δω/100], a ≈δ 1 refinement (T′, Y ′)δ of (T, Y ), and a balanced
partitioning cover Tρ of T, so that (T′, Y ′)δ is broad with error O(1) relative to the cover Tρ.

Proof. Let r = δω/100. After replacing (T, Y )δ by a ∼ 1 refinement, we can find a partitioning
cover Tr of T. Apply Corollary 7.10 to each set (TTr , Y Tr)δ/r. After dyadic pigeonholing Tr and
T, we can suppose that the resulting scale, which we will call ρ̃, is the same for each Tr ∈ Tr.
Define ρ = ρ̃r, and let (T′, Y ′) be the ≈δ 1 refinement of (T, Y )δ consisting of the tubes and their
associated shadings coming from the conclusion of Corollary 7.10 for each Tr ∈ Tr.

Recall that the tubes Tr form a partitioning cover of T′, and for each Tr ∈ Tr, the (re-scaled) ρ
tubes coming from Corollary 7.10 form a partitioning cover of T′[Tr]. We conclude that if we define
Tρ to be the union of these ρ tubes, then Tρ is a partitioning cover of T′, and furthermore (T′, Y ′)δ
is broad with error O(1) relative to the cover Tρ.

At this point, we have constructed the pair (T′, Y ′)δ and Tρ, which satisfies all of the require-
ments for Conclusion (B) of Lemma 7.11 with one exception — we know that ρ ∈ [δ, δω/100], but
we do not know that ρ ∈ [δ1−ω/100, δω/100]. Our next task is to show that if ρ < δ1−ω/100, then
Conclusion (A) holds.

Since the tubes in Tr are essentially distinct, O(r−2) tubes can pass through a common point.
By Conclusion (i) from Corollary 7.10, we have that for each tube Tr and each x ∈ Tr we have

#{Tρ ∈ Tρ[Tr] : x ∈
⋃

T∈T′[Tρ]

Y ′(T )} ⪅δ ρ
−β ≤ δ−ω/100.

Recall β = ωζ/100 was fixed at the beginning of Section 7.1.

Finally, for each Tρ ∈ Tρ, at most (ρ/δ)2 tubes from T′[Tρ] can pass through a common point
and at most r−2 distinct Tr ∈ Tr can pass through a common point. We conclude that

#T′
Y ′(x) ≲ δ−ω/100

( ρ

δr

)2
for each x ∈ R3.

In summary, if ρ < δ1−ω/100, then Conclusion (A) holds. Otherwise, Conclusion (B) holds.

We conclude this section with two results on the union of broad sets of vectors. The first is a
straightforward result saying that a union of broad sets is broad. We omit the proof.
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Lemma 7.12. Let δ > 0, let B ⊂ Sn−1 be a disk, and let Vi, i = 1, . . . , N be sets of unit vectors
in B. Suppose that each set Vi is broad with error K at scales ≥ δ inside B. Then the multi-set⊔N

i=1 Vi is broad with error K at scales ≥ δ inside B.

The second result described how broadness combines across scales.

Lemma 7.13. Let 0 < δ < ρ ≤ 1. Let U be a set of unit vectors in Rn. For each u ∈ U , let
Vu ⊂ B(u, ρ) ⊂ Sn−1 be contained in the disk of radius ρ centered at u. Suppose that U is broad
with error K1 at scales ≥ ρ, and that each set Vu is broad with error K2 at scales ≥ δ inside B(u, ρ).
Suppose furthermore that each set Vu has comparable cardinality (up to a factor of 2). Then the
multi-set

⊔
u∈U Vu is broad with error O(K1K2) at scales ≥ δ.

Proof. Let V =
⊔

u∈U Vu. By hypothesis, there is a number M1 so that M1 ≤ #Vu ≤ 2M1 for each
set Vu. Let X = supu0

#{u ∈ U : ∠(u, u0) ≤ ρ}, where the supremum is taken over all unit vectors
u0 ∈ Sn−1. Since U is broad with error K1 at scales ≥ ρ, if we choose a unit vector u0 achieving
the above supremum, then

X ≤ #{u ∈ U : ∠(u, u0) ≤ ρ} ≤ K1ρ
β(#U),

and thus #U ≥ K−1
1 ρ−βX.

First we consider the case where r ∈ [δ, ρ]. For each unit vector v0, there are at most O(X)
vectors u ∈ U for which {v ∈ Vu : ∠(v, v0) ≤ r} is non-empty. For each such u, we have

#{v ∈ Vu : ∠(v, v0) ≤ r} ≲ K2(r/ρ)β(2M1) ≲ K1K2r
β(#U)X−1M1.

Thus the total contribution from all such u is ≲ K1K2r
β(#V), as desired.

Next we consider the case where r ∈ [ρ, 1]. Then

#{v ∈ V : ∠(v, v0) ≤ r} ≲ 2M1(#{u ∈ U : ∠(u, v0) ≤ 2r}) ≤ M1K1r
β(#U) = K1r

β(#V).

7.2 Broadness and the Frostman Slab Wolff axioms

Given a pair (T, Y )δ, Lemma 7.11 allows us to find a set Tρ for which the pairs (TTρ , Y Tρ)δ/ρ are
broad. The next result says that under suitable hypotheses, Tρ will factor T with respect to the
Frostman Slab Wolff axioms. The precise statement is as follows.

Lemma 7.14. Suppose that E(σ,ω) is true, and let ε > 0. Then there exists α, η, κ > 0 so that
the following holds for all 0 < δ ≤ ρ ≤ 1. Let (T, Y )δ be δη dense, with CKT -CW (T) ≤ δ−η and
CF -SW (T) ≤ δ−η. Let Tρ be a balanced cover of T, and suppose (T, Y )δ is broad with error δ−η

relative to the cover Tρ. Then at least one of the following must hold.

(A)
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω−α(#T)|T |

(
(#T)|T |1/2

)−σ
. (7.6)

(B) There exists a δε refinement (T′, Y ′)δ and a set T′
ρ ⊂ Tρ, so that T′

ρ factors T′ above and
below with respect to the Frostman Slab Wolff Axioms with error δ−ε.
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In brief, the proof is as follows. We apply Proposition 4.8 inside each set TTρ to cover the tubes
in T[Tρ] by prisms W, with the property that each set TW satisfies the Frostman Slab Wolff axioms
with small error, and the tubes in T[Tρ] from distinct prisms do not interact (i.e. their shadings are
almost disjoint). Each prism W is contained inside its corresponding ρ tube Tρ. If W is almost as
large as Tρ, then CF -SW (TTρ) must be almost as small as CF -SW (TW ), which in turn has size about
1. If this happens, then Conclusion (B) holds.

Suppose instead that the prisms are much smaller than Tρ; we will refer to the dimensions of
these prisms as s × t × 1, with δ ≤ s ≤ t. Since each prism is contained inside a ρ tube, we also
have t ≤ ρ. Thus if the prisms are much smaller than the ρ tubs, then in particular we must have
s << ρ.

Next, we will make use of the assumption that the tubes are broad relative to the cover Tρ in
order to show that t ∼ ρ. Since s << ρ, this means that the prisms are flat. Specifically, broadness
ensures that a typical pair of tubes passing through a common point x ∈

⋃
T∈T[Tρ]

Y (T ) make angle
roughly ρ. Such a pair of tubes is contained in a common prism W , from which it follows that W
must have “width” ρ, i.e. each prism W has dimensions roughly s× ρ× 1.

To summarize, at this point in the argument each δ tube is contained inside a flat prism W
of dimensions roughly s × ρ × 1 with s << ρ. Furthermore, at a typical point x ∈ Y (T ), there
is at least one other tube from T contained inside the same flat prism W , and this second tube
intersects T at angle roughly ρ. Thus the hairbrush of T (i.e. the union of set of tubes intersecting
T ), when restricted to the ρ

sδ neighbourhood of T , fills out a rectangular slab of dimensions roughly
δ× ρ

sδ× 1. But this is precisely the setting where Lemma 5.17 asserts that
⋃

T Y (T ) is larger than
we would expect from the estimate E(σ, ω), and thus Conclusion (A) holds. We now turn to the
details.

Proof of Lemma 7.14.
Step 1. We may suppose that ρ ≤ δε/10, or else Conclusion (B) follows by selecting a single ρ-tube
that contains at least ρ4(#T) tubes from T. We may also suppose that ρ ≥ δε/10, or else Conclusion
(B) holds trivially by taking T′ = T and T′

ρ = Tρ.

By pigeonholing and replacing Tρ by a subset Tρ,1, we can find a ≈δ 1 refinement (T1, Y1)δ of

(T, Y )δ so that Tρ,1 is a balanced cover of T1, and furthermore each set (TTρ

1 , Y ρ)δ/ρ is ⪆δ δη ⪆ρ

ρ10η/ε dense.

Let ε1 = εβ/1600. Apply Proposition 4.8 with ε1 in place of ε to each set TTρ

1 ; this gives us a

collection of convex sets WTρ that factors a (δ/ρ)ε1-fraction of TTρ

1 (abusing notation, we continue

to use TTρ

1 to denote this (δ/ρ)ε1-fraction) from below with respect to the Frostman Slab Wolff
axioms with error (δ/ρ)−ε1 ≤ δ−ε1 . We may do this, provided η > 0 is selected sufficiently small
depending on ε and ε1.

After further pigeonholing (which induces a further ≈δ 1 refinement (T2, Y2)δ of (T1, Y1) and
replaces Tρ,1 by a subset Tρ,2), we may suppose that the convex sets in ϕ−1

Tρ
(WTρ) all have common

dimensions (up to a factor of 2) for each Tρ ∈ Tρ,2; call these dimensions s × t × 1. We may also

suppose that the value of CF -SW (TTρ

2 ) is the same (up to a factor of 2) for all Tρ ∈ Tρ,2, and that
the mass

∑
T∈T[Tρ]

|Y2(T )| is the same (up to a factor of 2) for each Tρ ∈ Tρ,2.

Let W =
⋃

Tρ∈Tρ
ϕ−1
Tρ

(WTρ). To summarize, the situation is as follows:

(i) We have
∑

T∈T2[Tρ]
|Y2(T )| ⪆δ δ

ε1
∑

T∈T[Tρ]
|Y (T )| for each Tρ ∈ Tρ,2.
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(ii) We have a collection W of convex sets of dimensions s× t× 1, with T2 ≺ W ≺ Tρ.

(iii) For each Tρ ∈ Tρ,2, the sets
⋃

T2[W ] Y2(T ), W ∈ W[Tρ] are disjoint.

(iv) For each W ∈ W, we have CF -SW (TW
2 ) ≤ δ−ε1 .

By Items (ii) and (iv), for each Tρ ∈ Tρ we have

CF -SW (TTρ

2 ) ≤
(

sup
W∈W[Tρ]

CF -SW (TW
2 )

)( |Tρ|
|W |

)100
≤ δ−ε/2

( |Tρ|
|W |

)100
. (7.7)

The last term in the above inequality is an (intentionally) crude estimate for the number of essen-
tially distinct s× t× 1 prisms that can fit inside a ρ-tube.

If
(
|Tρ|
|W |

)100
≤ δ−ε/2, then Conclusion (B) holds with (T′, Y ′)δ = (T2, Y2) and Tρ = Tρ,2 and we

are done.

Step 2. We shall suppose henceforth that

|W | ≤ δε/200|Tρ|. (7.8)

Our goal is to prove the (7.6) holds for an appropriate choice of α.

Each prism in W has dimensions s× t×1, with t ≤ ρ. We claim the reverse inequality is almost
true. Specifically, we have

t ⪆δ δ
2ε1
β ρ. (7.9)

Recall from Definition 7.7 that for each Tρ ∈ Tρ,2 and each x ∈
⋃

T∈T[Tρ]
Y (T ), we have

#{T ∈ T[Tρ] : x ∈ Y (T ), ∠(v,dir(T )) ≤ r} ≤ δ−η(
r

ρ
)β#{T ∈ T[Tρ] : x ∈ Y (T )}, v ∈ S2, r ≥ δ.

(7.10)
By Item (i) above, there exists at least one point x ∈ R3 for which

#{T ∈ T2[Tρ] : x ∈ Y2(T )} ⪆δ δ
ε1#{T ∈ T[Tρ] : x ∈ Y (T )} > 0, (7.11)

and hence for this choice of x we have

#{T ∈ T2[Tρ] : x ∈ Y2(T ), ∠(v,dir(T )) ≤ r} ≤ δ−η−ε1(
r

ρ
)β#{T ∈ T2[Tρ] : x ∈ Y2(T )}, v ∈ S2, r ≥ δ.

(7.12)

On the other hand, by Item (iii) above, the tubes {T ∈ T2[Tρ] : x ∈ Y2(T )} are all contained in
a common prism W ∈ W, and thus must all make angle ≤ 2t with the direction v of this prism.
Selecting r = 2t in (7.12) and comparing with (iii), we obtain (7.9) (provided we select η ≤ ε1).

Comparing (7.8) and (7.9), we see that the prisms in W must be flat, i.e.

s ∼ t−1|W | ≲ t−1δε/200ρ2 ⪅δ δ
ε

200
− 4ε1

β t ≤ δ
ε

400 t. (7.13)

Step 3. Apply Lemma 5.9 to replace each shading Y2(T ), T ∈ T2 with a regular sub-shading
Y3(T ) ⊂ Y2(T ). Define T3 = T2. We say a point x ∈

⋃
T∈T Y (T ) has survived if

#{T ∈ T3 : x ∈ Y3(T )} ≥ κ0δ
2ε1#{T ∈ T : x ∈ Y (T )}.
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Let Y4(T ) ⊂ Y3(T ) consist of surviving points and let T4 = T3; we will choose the constant κ0
sufficiently small so that (T4, Y4)δ is a ⪆δ δ

ε1 refinement of (T3, Y3).

Observe that if the point x has survived, then there is a unique prism W ∈ W with x ∈⋃
T∈T3[W ] Y (T ), and at least two tubes T, T ′ ∈ T3[W ] with x ∈ Y3(T ), x ∈ Y3(T

′) with ∠(dir(T ),dir(T ′)) ⪆δ

δ
2ε1
β ρ.

For each T ∈ T4, let S(T ) ⊃ T be the δ× t
sδ×1 prism with coaxial line T , and plane parallel to

Π(W ), where W ∈ W is the unique prism covering T . Recall that by (7.13), we have t
sδ ≥ δ1−

ε
400 . A

Cordoba style L2 argument (see i.e. Lemma 5.7 and its proof for an example of a similar argument)
shows that for each T ∈ T4, ∣∣∣S(T ) ∩

⋃
T∈T3

Y3(T )
∣∣∣ ⪆δ δ

4ε1 |Y4(T )|
|T |

|S|.

Let b = t
sδ ≥ δ1−ε/400. Applying Lemma 5.17, we obtain Conclusion (A) for α = εω/500, provided

we select η > 0 sufficiently small.

7.3 The iteration base case: Guth’s grains decomposition

In our proof sketch from Section 2.2, we described a single-scale grains decomposition due to Guth.
In this section we will state the result precisely.

Proposition 7.15. Let ε > 0. Then there exists η, κ > 0 so that the following holds for all δ > 0.
Let (T, Y )δ be δη dense and be broad with error δ−η. Suppose that the tubes in T are contained in
a common 1 tube T1.

Then there is a δε refinement (T′, Y ′) that is δε dense and is broad with error ≤ κ−1δ−ε, and
a number µ ≥ 1 so that µ ∼ #T′

Y ′(x) for each x ∈
⋃

T′ Y ′(T ). In addition, there is a number
c ≥ κµδε(δ#T)−1; and a pair (G, Y )δ×c×c, so that (G, Y )δ×c×c is a robustly δε-dense two-scale
grains decomposition of (T′, Y ′)δ wrt {T1} (the latter is a set consisting of a single 1 tube).

Remark 7.16. Proposition 7.15 says that (G, Y )δ×c×c is a two-scale grains decomposition of (T′, Y ′)δ
wrt {T1}. A two-scale grains decomposition is defined in Definition 7.1, and Item (iv) from that
definition specifies that if Y ′(T ) ∩ Y (G) ̸= ∅, then T exits G through its long ends, in the sense of
Figure 9. Since the grains (G, Y )δ×c×c from Proposition 7.15 are square, the definition is somewhat
ambiguous in this setting. However, Proposition 7.15 is only used to prove Corollary 7.17. Thus
the 1 tube T1 should be thought of as the anisotropic rescaling of a ρ tube Tρ. What is needed is
the following: the images of the tubes in T′ under the anisotropic scaling sending T1 to Tρ must
exit the images of the grains in G through their long ends.

Proposition 7.15 is a variant of Guth’s grains decomposition from [9]. Since this precise state-
ment does not appear in [9] (the hypotheses in [9] are stated slightly differently), we will provide a
proof in Appendix A.

If (T, Y )δ is broad relative to a set of ρ tubes Tρ, then we can apply Proposition 7.15 to each
re-scaled set (TTρ , Y Tρ)δ.

Corollary 7.17. Let ε > 0. Then there exists κ, η > 0 so that the following holds for all δ > 0.
Let (T, Y )δ be δη dense and let Tρ be a balanced partitioning cover of T. Suppose that (T, Y )δ is
broad with error δ−η relative to the cover Tρ, and that

∣∣⋃
T∈T Y (T )| ≤ δε(#T)|T |.
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Then there is a δε refinement (T′, Y ′)δ of (T, Y )δ that is δε dense; a subset T′
ρ ⊂ Tρ; a number

c ≳ ρ
δ
#Tρ

#T ; and a pair (P, Y )δ×b×c with ρ = b/c that is a robustly δε-dense two-scale grains decom-

position of (T′, Y ′)δ wrt T′
ρ. Finally, (T′, Y ′)δ is broad with error ≤ κ−1δ−ε relative to the cover

T′
ρ.

Note that the estimate on the size of c in Corollary 7.17 omits the term µ (though this term
is used to compensate for the δε loss in Proposition 7.15); this is because the weaker estimate

c ≳ ρ
δ
#Tρ

#T will be sufficient in the arguments that follow.

Corollary 7.17 has two important consequences. First, when combined with Lemma 7.11, it
says that if (T, Y )δ is an arrangement for which E(σ,ω) is tight, then (T, Y )δ admits a two-scale
grains decomposition. In Section 2.2, we called this the “Guth grains decomposition” of T. The
precise statement is as follows

Lemma 7.18. Suppose that E(σ,ω) is true and let ε > 0. Then there exists α, η, κ > 0 so that the
following holds for all δ > 0. Let (T, Y )δ be δη dense, with CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η.
Then at least one of the following must hold.

(A)
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω−α(#T)|T |

(
(#T)|T |1/2

)−σ
. (7.14)

(C) There exist the following:

– A scale ρ ∈ [δ1−ω/100, δω/100].

– A δε refinement (T′, Y ′)δ of (T, Y )δ.

– A balanced partitioning cover Tρ of T′.

– Numbers δ ≤ b ≤ c with b/c = ρ and c ≳ ρ
δ
#Tρ

#T .

– A pair (P, Y )δ×b×c.

So that the following holds:

(i) (T′, Y ′)δ is broad with error ≤ δ−ε relative to the cover Tρ.

(ii) (P, Y )δ×b×c is a robustly δε-dense two-scale grains decomposition of (T′, Y ′)δ wrt Tρ.

Remark 7.19. Note that the Conclusions of Lemma 7.18 are labelled (A) and (C), rather than (A)
and (B). We chose this convention in order to have parallelism with Conclusions (A), (B), and (C)
of Moves #1, #2, and #3 below.

Lemma 7.18 will serve as the starting point for the iterative process described in Section 2.2.
In the following subsections, we will describe the three Moves in this iterative process.

7.4 Moves #1, #2, #3: Parallel structure

In the following sections, we will describe three Moves, which we will iteratively apply to the two-
scale grains decomposition that we obtained from Lemma 7.18. Each of these Moves are expressed
as a lemma, and these three lemmas have similar structure. In particular, the three lemmas have
the same hypotheses, and have similar conclusions.
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Common setup for Moves #1, #2, #3: Hypotheses
Suppose that E(σ,ω) is true and let ε ∈ (0, ζ/2]. Then there exists α, η, κ > 0 so that the following
holds for all 0 < δ ≤ 1, ρ ≥ δ1−ω/100, and all δ ≤ a ≤ b ≤ c with b/c = ρ.
Let (T, Y )δ be δη dense, with CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η. Let Tρ be a balanced
partitioning cover of T, and suppose that (T, Y )δ is broad with error δ−η relative to Tρ. Let
(P, Y )a×b×c be a robustly δη-dense two-scale grains decomposition of (T, Y )δ wrt Tρ.

Each of Moves #1, #2, and #3 will have three possible conclusions, which we label (A), (B),
and (C). Conclusion (A) is the same for all three moves.

Common setup for Moves #1, #2, #3: Conclusion (A).∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω−α(#T)|T |

(
(#T)|T |1/2

)−σ
. (7.15)

In Inequality (7.15), κ, α > 0 are the quantities from the Common setup for Moves #1, #2,
#3: Hypotheses described above.

Conclusion (B) is not identical for the three Moves, but shares many common elements. We describe
these below

Common setup for Moves #1, #2, #3: Conclusion (B).
There are δε refinements (T′, Y ′)δ and (P ′, Y ′)a×b×c of (T, Y )δ and (P, Y )a×b×c, respectively, and
a set T′

ρ ⊂ Tρ, so that the following holds.

(i) (T′, Y ′)δ is δε dense, CKT -CW (T′) ≤ δ−ε, and CF -SW (T′) ≤ δ−ε.

(ii) T′
ρ is a balanced partitioning cover of T′, and (T′, Y ′)δ is broad with error δ−ε relative to T′

ρ.

(iii) (P ′, Y ′)a×b×c is a robustly δε-dense two-scale grains decomposition of (T′, Y ′)δ wrt T′
ρ.

(iv) Moves #1, #2, #3 will have additional conclusions specific to that Move.

Conclusion (C) is not identical for the three Moves, but shares many common elements. We describe
these below
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Common setup for Moves #1, #2, #3: Conclusion (C).
There exist the following:

• Numbers ρ̃ and ã ≤ b̃ ≤ c̃ ≤ 1, with ρ̃ = b̃/c̃.

• A δε refinement (T′, Y ′)δ of (T, Y )δ.

• A set Tρ̃ of ρ̃ tubes.

• A pair (P̃, Ỹ )ã×b̃×c̃.

These objects have the following properties:

(i) (T′, Y ′)δ is δε dense, CKT -CW (T′) ≤ δ−ε, and CF -SW (T′) ≤ δ−ε.

(ii) Tρ̃ is a balanced partitioning cover of T′, and (T′, Y ′)δ is broad with error δ−ε relative to Tρ̃.

(iii) (P̃, Ỹ )ã×b̃×c̃ is a robustly δε-dense two-scale grains decomposition of (T′, Y ′)δ wrt Tρ̃.

(iv) δ1−ω/100 ≤ ρ̃ ≤ 1.

(v) Moves #1, #2, #3 will have additional conclusions specific to that Move.

Remark 7.20. Observe that Items (i), (ii), and (iii) of Conclusion (B) (resp. Items (i) – (iv) of
Conclusion (C)) say that the output (T′, Y ′)δ; T′

ρ; and (P ′, Y ′)δ×b×c (resp. Tρ̃ and (P̃, Ỹ )ã×b̃×c̃) of
Moves #1, #2, and #3 match the “input” hypotheses (i.e. the Common setup for Moves #1,
#2, #3: Hypotheses), except that exponent η has been weakened to ε. This will allow us to
iteratively apply these Moves many times.

7.5 Using Moves #1, #2, #3 to prove Proposition 7.5

We will state and prove Moves #1, #2, and #3 in Section 8. However, by using the parallel structure
described above we can already state the hypotheses and conclusions of these three moves. We do
so in the table below.

Move Lemma Conclusion (B), Item (iv) Conclusion (C), Item (v)

#1 8.1 c ≥ δζ(ρ/δ) (#Tρ/#Tδ) c̃ ≥ δ−ζc, ã = δ, and ρ̃ = ρ

#2 8.2 ρ ≤ δω/100 c̃ ≥ δ−ω/100c

#3 8.3 C loc
KT -CW (P ′) ≤ δ−ζ ρ̃ ≥ δ−ζ/1000ρ and c̃ ≥ c

We will now match the Conclusions of Proposition 7.5 to their counterparts from Moves #1,
#2, #3.

• Conclusion (A) for Moves #1, #2, #3 matches Conclusion (A) of Proposition 7.5.

• Conclusion (B), Items (i) and (iii) for Moves #1, #2, #3 matches Conclusion (B), Items (i)
and (iii), respectively, of Proposition 7.5.

• Conclusion (B), Item (ii) for Moves #1, #2, #3, plus Lemma 7.14 either yields Conclusion
(A), or Conclusion (B), Item (ii) of Proposition 7.5.
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• Conclusion (B), Item (iv) for Move #1 matches Conclusion (B), Item (iv) of Proposition 7.5.

• Conclusion (B), Item (iv) for Move #2, plus the hypothesis ρ ≥ δ1−ω/100, matches Conclusion
(B), Item (v) of Proposition 7.5.

• Conclusion (B), Item (v) for Move #3 matches Conclusion (B), Item (vi) of Proposition 7.5.

Proof of Proposition 7.5. We proceed as follows. Let η0 < η1 < . . . < ηN be a sequence of numbers
that we will determine below. Let (T, Y )δ be δη0 dense, with CKT -CW (T) ≤ δ−η0 and CF -SW (T) ≤
δ−η0 . If η0 is sufficiently small depending on η1, then we can apply the iteration base case, Lemma
7.18, with η1 in place of ε. If Conclusion (A) of Lemma 7.18 holds, then Conclusion (A) of
Proposition 7.5 holds, and we are done.

Suppose instead that Conclusion (B) of Lemma 7.18 holds. The output of Conclusion (B) is pre-
cisely the set of objects required for the Common setup for Moves #1, #2, #3: Hypotheses,
with η1 in place of η.

We now repeatedly apply Moves #1, #2, #3, with ηj+1 in place of ε at stage j. We may do so,
provided ηj is sufficiently small compared to ηj+1.

• If Conclusion (A) occurs at any point, then Conclusion (A) of Proposition 7.5 holds, and we
halt.

• If Conclusion (B) occurs for Move # i, for some i = 1, 2, 3, then we switch to a different move.

• If Conclusion (B) occurs for all three moves in succession, then Items (i), (iii), and (iv)
of Conclusion (B) of Proposition 7.5 hold. We halt and apply Lemma 7.14 to show either
Conclusion (B), Item (ii) holds, or else Conclusion (A) holds. We conclude that at least one
of Conclusion (A) or Conclusion (B) of Proposition 7.5 holds.

• If Conclusion (C) occurs for Move # i, then at least one of the following must occur:

– c does not decrease, and ρ becomes larger by δ−ζ/1000; this can occur at most 1000/ζ
times in a row.

– c becomes larger by min{δ−ζ , δ−ω/100}. This can occur at most 1/ζ+100/ω times total.

In particular, the iterative process described above must halt after at most N = 1000
ζ

(
2
ζ + 100

ω

)
steps. We will choose ηN+1 below, and then select each of ηN , ηN−1, . . . , η0 in turn. Finally, we
define η (the quantity from Proposition 7.5 ) by η = η0.

The refinement (T′, Y ′)δ, the set Tρ, and the pair (G, Y )a×b×c satisfy all of the conclusions of
Proposition 7.5, Conclusion (B), except that for Item (ii), we have not yet shown that Tρ factors
T′ from below with respect to the Frostman Slab Wolff Axioms with error δ−ζ . However, since
(T′, Y ′)δ is broad with respect to Tρ, we can apply Lemma 7.14 and conclude that either either this
is indeed the case (after replacing (T′, Y ′)δ, Tρ, and (G, Y )a×b×c by a suitable refinement), or else
Conclusion (A) of Proposition 7.5 holds.

This completes the proof of Proposition 7.5, except that we have not proved Moves #1, #2,
#3. We shall do so in the next section.
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8 Moves #1, #2, and #3

8.1 Move #1: Replacing grains with longer grains to ensure c ≥ δζ ρ
δ
(#Tρ)/(#T)

Our goal in this section is to state and prove Move #1, as described in Section 2.2 and Section 7.4.

Lemma 8.1. We assume the Common setup for Moves #1, #2, #3: Hypotheses from
Section 7.4. Then at least one of the following must hold.

(A) Conclusion (A) of the common setup for Moves #1, #2, #3.

(B) Conclusion (B) of the common setup for Moves #1, #2, #3. In addition,

(iv)
c ≥ δζ

ρ

δ

#Tρ

#Tδ
. (8.1)

(C) Conclusion (C) of the common setup for Moves #1, #2, #3. In addition,

(v) ã = δ, ρ̃ = ρ, and c̃ ≥ δ−ζc.

Proof. If Conclusion (B) fails, then we discard the cover (P, Y )a×b×c and replace it with the cover
coming from Corollary 7.17 applied to (T, Y )δ and Tρ. Conclusion (C) of Lemma 8.1 was chosen to
match the output of Corollary 7.17. Note that the prisms coming from Corollary 7.17 have length
c̃ ≥ ρ

δ
#Tρ

#T . If Conclusion (B) fails, then this quantity is ≥ δ−ζc, as claimed.

8.2 Move #2: Replacing square grains with longer grains

In this section we will use geometric arguments in the spirit of Cordoba’s proof of the Kakeya
maximal function conjecture in R2 to show the following: if (T, Y )δ has a two-scale grains decom-
position consisting of square grains, i.e. grains of dimensions a× b× c with ρ = b/c > δω/100, then
either

⋃
Y (T ) is large, or else we can construct a new two-scale grains decomposition of (T, Y )

with significantly longer grains. The precise statement is as follows.

Lemma 8.2. We assume the Common setup for Moves #1, #2, #3: Hypotheses from
Section 7.4. Then at least one of the following must hold.

(A) Conclusion (A) of the common setup for Moves #1, #2, #3.

(B) Conclusion (B) of the common setup for Moves #1, #2, #3. In addition,

(iv) ρ ≤ δω/100.

(C) Conclusion (C) of the common setup for Moves #1, #2, #3. In addition,

(v) c̃ ≥ δ−ω/100c.

Proof.
Step 1. Let 0 < ε1 < ε2 be small quantities to be chosen below. We will choose ε1 very small
compared to ε2; we will choose ε2 very small compared to ε; we will choose α, η very small compared
to ε1.
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First, we claim that either
a ≤ δ1−ε1 , (8.2)

or else Conclusion (A) immediately holds, provided we choose α and η sufficiently small depending
on ε1.

We verify this claim as follows. Suppose that (8.2) fails. Then after replacing (T, Y )δ by an
≈δ 1 refinement, we have that for each x ∈

⋃
T∈T Y (T ),∣∣∣B(x, δ1−ε1) ∩

⋃
T∈T

Y (T )
∣∣∣ ≳ δη|B(x, δ1−ε1)|.

But from this it follows (see Corollary 5.19) that Conclusion (A) holds, provided we select α ≤ ωε1/2
and η > 0 sufficiently small. Henceforth we shall suppose that (8.2) holds.

Step 2. We will regularize the set T. By dyadic pigeonholing and replacing (T, Y )δ by a ≳
(log 1/δ)−1/ε1 refinement (T1, Y1)δ, we can suppose that

(i) For each scale of the form τi = δε1i, i = 1, . . . , ε−1
1 , there exists a balanced partitioning

cover Tτi of T, and a number µi so that #(T1[Tτi ])Y1(x) ∼ µi for each Tτi ∈ Tτi and each
x ∈

⋃
T∈T1[Tτi ]

Y1(T ).

(ii) There exists a number µfine so that for each Tρ ∈ Tρ and each x ∈
⋃

T∈T1[Tρ]
Y1(T ), we have

#(T1[Tρ]Y1)(x) ∼ µfine.

(iii) For each Tρ ∈ Tρ and each x ∈
⋃

T∈T1[Tρ]
Y1(T ), we have

(#T1[Tρ])Y1(x) ≳ (log 1/δ)−1/ε1
(
#T[Tρ]Y (x)

)
.

Item (iii) implies that (T1, Y1)δ is broad with error ⪅δ δ
−η relative to Tρ.

Since the tubes in Tρ are essentially distinct, at most O(ρ−2) tubes from Tρ can pass through
a common point. We conclude that either Conclusion (B) holds, or∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≳ µ−1
fineρ

2
∑
T∈T

|Y1(T )| ≥ δ
ω
50

+ηµ−1
fine(#T)|T |.

If µfine is small, then Conclusion (A) holds. More precisely, if Conclusion (A) fails then

µfine ≥ δ−ω+ ω
50

+2η+α
(

(#T)|T |1/2
)σ

≥ δ−
24
25

ω, (8.3)

where for the final inequality we used the fact that CF -SW (T) ≤ δ−η to conclude that (#T)|T |1/2 ≥
δη. Henceforth we shall suppose that (8.3) is true.

Step 3. Let c̃ = δ−ω/100c; a bit later in the argument we will abuse notation and replace c̃ by a
number of the form Kδ−ω/100c for 1 ≤ K ≲ 1. We will describe a procedure that finds a prism P̃ of
dimensions a× ρ̃c̃× c̃, for some ρ̃ = ρ̃(P̃ ) ∈ [δ1−ω/100, δω/100], that satisfies some of the properties
from Conclusion (C). This procedure is illustrated in Figure 10. In Step 4, we will iterate this
procedure multiple times.

Recall that (T1, Y1)δ is ⪆δ δη dense. This means that for a typical tube and a typical point
x ∈ Y1(T ), we expect |B(x, c̃) ∩ Y1(T )| to have size ⪆δ δη c̃δ2. This should also hold for any
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Figure 10: Finding a prism P̃

(reasonably dense) sub-shading Y ′(T ) ⊂ Y1(T ). The next definition makes this heuristic precise:
Given a shading Y ′(T ) ⊂ T , we define Y ′

reg(T ) ⊂ Y ′(T ) to consist of those points x ∈ Y (T ) for
which

|B(x, c̃) ∩ Y ′(T )| ≥ 1

100
δ2η c̃δ2, (8.4)

i.e. Y ′
reg consists of those points where Y ′(T ) has at density at least δ2η/100 at scale c̃. Observe

that if (T1, Y
′)δ is δ2η dense, then (T, Y ′

reg) is a ∼ 1 refinement of (T1, Y
′).

With the above definition, we proceed as follows. Let (T1, Y
′)δ be any refinement of (T1, Y1)δ

that satisfies
∑

|Y ′(T )| ≥ 1
2

∑
|Y1(T )| (so in particular, (T1, Y

′)δ is ⪆δ δ
η dense).

We claim that we can select a ρ tube Tρ; a δ tube Tstem ∈ T1[Tρ]; a prism P ∈ PTρ (recall
Definition 7.1, Item (i)) and a number κ ∼ 1 so that the set

E = {x ∈ Y ′(Tstem) ∩ Y (P ) : #T1[Tρ]Y ′
reg

(x) ≥ κµfine} (8.5)

satisfies
|E| ≳ δ2ηcδ2. (8.6)

To verify this claim, let us temporarily define the refinement (T1, Y
′′)δ given by

Y ′′(T ) = Y ′(T ) ∩ {x : #T1[Tρ]Y ′
reg

(x) ≥ κµfine},

where Tρ is the unique ρ tube from Tρ containing Tstem. If κ ∼ 1 is chosen sufficiently small, then
(T1, Y

′′)δ is a 1/2 refinement of (T1, Y
′)δ. By pigeonholing we can select a tube Tstem and a point x ∈

Tstem so that the two adjacent tube segments T
(1)
seg , T

(2)
seg of length c/10 whose intersection contains x

(see Figure 11, Left) satisfy |Y ′′(Tstem)∩T
(i)
seg| ≳ δ2ηcδ2, i = 1, 2. Next, select a prism P ∈ PTρ with

x ∈ Y (P ) (by Definition 7.1, Item (ii), such P is unique); by Definition 7.1, Item (iv), at least one

of the segments T
(i)
seg must be almost contained in P , in the sense that T

(i)
seg\Nδ(x) ⊂ P (see Figure

76



T r o e

i a r  ? o

328238

Tster

Tstem

T
(1)
seg

T
(2)
seg

x

P

Tstem

T
(1)
seg

T
(2)
seg

Figure 11: Left: The two tube segments on either side of the point x. Both tube segments have
rich shadings.
Right: Since x ∈ P and Tstem exits P through its “long ends,” at least one of the tube segments

must be almost contained in P , in the sense that T
(i)
seg\Nδ(x) ⊂ P .

11, Right), and thus the set E from (8.5) contains at least one of the sets
(
Y ′′(Tstem)∩T

(i)
seg

)
\Nδ(x).

This yields the volume bound (8.6).

Since (T1, Y1)δ is broad with error ⪅δ δ
−η relative to Tρ, we have that for each x ∈ E, there are

⪆δ µfine tubes T ∈ T1[Tρ]Y ′
reg

(x) with ∠(T, Tstem) ⪆δ δη/βρ. Since each such tube intersects Tstem

in a set of dimensions at most δ× δ× δ
δη/βρ

, we conclude that there is a set H = H(Tstem) ⊂ T1[Tρ]

with the following properties:

• #H ⪆δ (µfineδ
−1c)(δη/βρ)δ2η.

• Each T ∈ H intersects P , and exits P through the “long ends.”

• Each T ∈ H satisfies |B ∩ Y ′(T )| ≳ δ2η|B ∩ T | ∼ δ2η c̃δ2, where B is the ball of radius c̃ with
the same center as P .

The second item follows from Definition 7.1 Item (iv), plus the fact that T ∈ H implies that T
and P are both associated to the same ρ tube, and Y (T ) ∩ Y (P ) ̸= ∅. The third item follows from
the fact that the set E from (8.5) was defined with respect to the shading Y ′

reg (recall (8.4) for the
definition of Y ′

reg).

As a consequence, using a ∈ [δ, δ1−ε1 ], c̃ = cδ−ω/100, and (8.3), we have∑
T∈H

|B∩Y ′(T )| ≳
(
µfineδ

−1+2η+η/βcρ
)(

δ2η c̃δ2
)
≳ µfineδ

η/β+4η+ω/100+ε1(a ·ρc̃ · c̃) ≳ δ−
1
2
ω(a ·ρc̃ · c̃),

where B is the ball of radius c̃ with the same center as P . To ensure that the final inequality holds,
we select η ≤ βω/100 and ε1 ≤ ω/100.

We claim that by pigeonholing, we can select a prism P † ⊃ P (the larger prism on the right
side of Figure 10) of dimensions 2a× 2ρc̃× c̃ so that∑

T∈H
T long end P †

|P † ∩ Y ′(T )| ≳ δ2η
∑
T∈H

T long end P †

|P † ∩ T | ≳ δ−
1
4
ω|P †|, (8.7)
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where “T long end P †” means that T exits P † through its long ends.

To verify this claim, note that for each tube T ∈ H, there exists at least one a × ρc̃ × c̃ prism
P † so that T exits P † through its long end. On the other hand, there are only ≲ (c̃/c)2 = δ−

1
50

ω

essentially distinct prisms of dimensions a × ρc̃ × c̃ that contain P . The result now follows from
pigeonholing. (Note that if T exits a prism P †

1 through its long ends, and if P †
2 is comparable to

P †
1 , then T ′ exits the 2-fold thickening of P †

2 through its long ends, where the 2-fold thickening is

the prism obtained by increasing the two smaller dimensions of P †
2 by a factor of 2. This is why

the dimension of our prisms have increased to 2a× 2ρc̃× c̃ at this step).

Apply Corollary 7.10 (finding a broad scale) to the set H with the shading P † ∩ Y ′(T ), T ∈ H.
We obtain a scale ρ̃ ∈ [δ, 1]; a set H′ ⊂ H (each T ∈ H′ exists P † through its long ends); a sub-
shading of the shadings {P † ∩ Y ′(T ), T ∈ H′}, which we will denote by YP †(T ); and a balanced
partitioning cover TH

ρ̃ of H′.

Note that YP †(T ) ⊂ P †∩Y ′(T ), and the latter set is contained in a tube segment of dimensions
comparable to δ×δ× c̃. In particular, YP †(T ) is not a δO(η) dense shading of T . However, Corollary
7.10 guarantees that the shadings are “relatively” dense inside T ∩ P †, thus∑

T∈H′

|YP †(T )| ⪆δ δ
2η c̃δ2(#H′). (8.8)

Note that (8.7) remains true if the shading P †∩Y ′(T ) on the LHS of (8.7) is replaced by YP †(T ),
provided the RHS is weakened by an additional ≈δ 1 factor, i.e. we have∑

T∈H′

|YP †(T )| ⪆δ δ
− 1

4
ω|P †|. (8.9)

We claim that
ρ̃ ≥ δ1−ω/100. (8.10)

We verify this claim as follows. Each point x ∈ P † is contained in at most (ρ̃/δ)2(ρ̃)−2β of the
shadings {YP †(T ), T ∈ H}. Thus if (8.10) failed, then by (8.9) we would have

|P †| ≥
∣∣∣ ⋃
T∈H

P † ∩ YP †(T )
∣∣∣ ⪆δ

(( ρ̃
δ

)2
(ρ̃)−2β

)−1(
δ−

1
4
ω|P †|

)
≳ δ−

1
8
ω|P †|,

which is impossible. For the final inequality, we used the assumption that β ≤ ω/100.

By (8.8) and pigeonholing, we can select T1 ∈ H′ with |YP †(T1)| ⪆δ δ
2η c̃δ2. Let Tρ̃ ∈ TH

ρ̃ be the
(unique) ρ̃ tube with T1 ∈ H′[Tρ̃]. For each x ∈ YP †(T1), the directions of the tubes in H′[Tρ̃]Y

P† (x)
are broad with error ⪅δ 1 inside the ρ̃ cap centered at dir(Tρ̃). In particular, the intersection of
each of these tubes with P † is contained in P † ∩Nρ̃c̃(T1); the latter set is contained in a 2a× ρ̃c̃× c̃
prism; call this prism P̃—this is the green prism in Figure 10. Note that since each T ∈ H′ exits
P † through its long ends, each of the tubes T ∈ H′[Tρ̃]Y

P† (x) described above exit P̃ through its
long ends.

Applying a standard Cordoba-type L2 argument2, we conclude that if we define

TP̃ = {T ∈ H′[Tρ̃] : T ∩ P̃ ̸= ∅, T exits P̃ through its long ends},
2In brief, we select a set of tubes T ′ ∈ H′ that make angle ∼ ρ̃ with T1 and intersect T1 at δ/ρ̃ separated points;

this latter collection of tubes, restricted to the 2a× ρ̃c̃× c̃ prism described above, satisfies the Katz-Tao Convex Wolff
Axioms with error ≲ 1. Each of these tubes has a shading Y ′(T ) ∩ P̃ that satisfies |Y ′(T ) ∩ P̃ | ≳ δ2η c̃δ2, and hence
the union of these shadings is almost disjoint.
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and define the shading YP̃ (T ) = YP †(T ) ∩ P̃ (note if T ∈ TP̃ , T exists P̃ through its long ends, so
YP̃ (T ) = YP †(T ), we rename it to be YP̃ (T ) just for notational convenience), then the set

Y (P̃ ) =
⋃

T∈TP̃

YP̃ (T )

satisfies |Y (P̃ )| ≳ δ4η+4ε1 |P̃ | (here the δ4ε1 loss comes from the fact that the prism P̃ is not a
δ × ρ̃c̃ × c̃ prism, but rather a 2a × ρ̃c̃ × c̃ prism with a ∈ [δ, δ1−ε1 ]). Furthermore, for each
x ∈ Y (P̃ ), the set of unit vectors {dir(T ) : T ∈ (TP̃ )YP̃

(x)} is broad with error ⪅δ 1 inside the

ρ̃-cap B(dir(P̃ ), ρ̃).

Step 4. We summarize the conclusion from Step 3. Given a refinement (T1, Y
′)δ of (T1, Y1)δ that

satisfies
∑

|Y ′(T )| ≥ 1
2

∑
|Y1(T )|, we have located the following objects:

• A scale ρ̃.

• A 2a× ρ̃c̃× c̃ prism P̃ and a shading Y (P̃ ) on this prism.

• A set of tubes TP̃ and a shading YP̃ (T ) ⊂ Y ′(T ) ∩ P̃ on these tubes.

These objects have the following properties:

• Each T ∈ TP̃ exits P̃ through its long ends, in the sense of Figure 9, Left.

• Y (P̃ ) =
⋃

T∈TP̃
YP̃ (T ), and |Y (P̃ )| ⪆δ δ

4η+4ε1 |P̃ |.

• For each x ∈ Y (P ), the tubes in (TP̃ )YP̃
(x) point in directions that are broad with error ⪅δ 1

inside the ρ̃ cap B(dir(P̃ ), ρ̃).

We will now iteratively apply the argument from Step 3. We begin by setting (T, Y ′) = (T, Y1)
and P̃0 = ∅. As long as

∑
|Y ′(T )| ≥ 1

2

∑
|Y1(T )|, we proceed as follows:

• Apply the argument from Step 3.

• Place the prism P̃ located in Step 3 into the multiset P̃0 (i.e. if the prism is already present,
then we add another copy).

• For each T ∈ TP̃ , replace the shading Y ′(T ) with Y ′(T )\YP̃ (T ).

We repeat the above steps until
∑

|Y ′(T )| < 1
2

∑
|Y1(T )|, at which point we halt.

Let us examine the output from the above procedure. First, we have∑
P̃∈P̃0

∑
T∈TP̃

|YP̃ (T )| ≥ 1

2

∑
T∈T

|Y1(T )| ⪆δ

∑
T∈T

|Y (T )|. (8.11)

After dyadic pigeonholing, we can select a multiset P̃1 ⊂ P̃0 so that each P̃ ∈ P̃1 has a common
value of ρ̃ (up to a factor of 2). Abusing notation slightly, we will denote this value by ρ̃. We will
choose P̃1 so that the bound (8.11) (the first and final terms) remains true with P̃1 in place of P̃0.

For each T ∈ T1, define Y2(T ) =
⋃

P̃ YP̃ (T ), where the union is taken over those P̃ ∈ P̃1 with
T ∈ TP̃ . For notational consistency, define T2 = T1. Then (T2, Y2)δ is an ≈δ 1 refinement of
(T1, Y1)δ.

Step 5. We will summarize the conclusion from Step 4. We have located the following objects:
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• A ≈δ 1 refinement (T2, Y2)δ of (T1, Y1)δ, which in turn is an ≈δ 1 refinement of (T, Y )δ.

• A scale ρ̃ ≥ δ1−ω/100.

• A multiset P̃1 of 2a × ρ̃c̃ × c̃ prisms, and a shading Y1(P̃ ) on these prisms (In Step 4 this
shading was called Y (P̃ )). Note that the prisms in P̃1 might not be essentially distinct.

• For each prism P̃ ∈ P̃1, a set of tubes TP̃ ⊂ T2.

These objects have the following properties:

(a) For each P̃ ∈ P̃1, each T ∈ TP̃ exits P̃ through the long ends.

(b) For each P̃ ∈ P̃1, we have Y1(P̃ ) = P̃ ∩
⋃

T∈TP̃
Y2(T ), and |Y1(P̃ )| ⪆δ δ

4η+4ε1 |P̃ |.

(c) For each P̃ ∈ P̃1 and for each x ∈ Y1(P̃ ), the tubes in (TP̃ )Y2(x) point in directions that are

broad with error ⪅δ 1 inside the ρ̃ cap B(dir(P̃ ), ρ̃).

Let us compare the above items to Conclusion (C) of Lemma 8.2. We have that Items (i) and (iv)
of Conclusion (C) are currently satisfied. We will work towards satisfying the other Items.

First, the prisms in P̃1 might not be essentially distinct. This is not a minor failure fixable
by a ∼ 1 refinement, but instead a dramatic failure — it is possible that a very large number of
prisms from P̃1 are all pairwise comparable, or even identical. We can fix this problem by merging
comparable 2a× ρ̃c̃× c̃ prisms in P̃1 into a single 4a× ρ̃(2c̃)× (2c̃) prism. We will refer to this new,
post-merger set of prisms as P̃2. Our shading Y2(P̃ ) on our newly constructed prisms is given by
the union of the shadings of the corresponding prisms from P̃1, and the set TP̃ ⊂ T2 is the union

of the sets {TP̃1
} from the corresponding prisms from P̃1.

Item (a) from the start of Step 5 might no longer hold for our newly constructed prisms P̃2,
but this is a minor failure — we can restore it by replacing each 4a × 2ρ̃(2c̃) × (2c̃) prism by the
prism of dimensions 100a× 100ρ̃c̃× 2c̃ with the same center and axes (see Figure 12). Annoyingly,
this might destroy the property that the prisms are essentially distinct, but this time, this is only
a minor failure — essential distinctness can be restored by a ∼ 1 refinement of the prisms (this
refinement induces a ∼ 1 refinement of the shading Y2 on T2). Denote the new set of prisms created
through this process by P̃3. Abusing notation slightly, we will redefine the quantities c̃, and ρ̃ and
let ã = 100a (increasing each by a ∼ 1 multiplicative factor) so that the prisms in P̃3 still have
dimensions ã× ρ̃c̃× c̃.

Note that Item (b) above continues to hold for our newly constructed prisms and their associated
shading. Crucially, Item (c) also continues to hold; this follows from Lemma 7.12 (a union of sets of
broad vectors is broad). More specifically, the sets of broad vectors through each point are disjoint
because in Step 4, for each T ∈ TP̃ , we have replaced the shading Y ′(T ) with Y ′(T ) \ YP̃ (T ), so

through each point x, there is at most one P̃ such that x ∈ YP̃ (T ). Since the sets are disjoint, their
union is a set instead of multi-set, so Lemma 7.12 implies that the union (as a set) of sets of broad
vectors is broad.

Step 6. In Step 5 we constructed a set P̃3 of essentially distinct ã× ρ̃c̃× c̃ prisms, and a shading
Y3 on these prisms. We shall refer to this pair as (P̃3, Y3)ã×ρ̃c̃×c̃. For each P̃ ∈ P̃3, we have a set
TP̃ ⊂ T2; each of these tubes exits P̃ through its long ends.
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P̃ P̃ ′

2P̃

Figure 12: The prisms P̃ and P̃ ′ are comparable, and thus both are replaced by a common 4a ×
ρ̃(2c̃) × (2c̃) prism (which happens to be 2P̃ , i.e. the 2-fold dilate of P̃ ). This creates a problem
(circled in red): A tube (green) that exits the prism P̃ ′ through its long ends might fail to exit 2P̃
through its long ends. However, this problem can be fixed by replacing the 4a× ρ̃(2c̃)× (2c̃) prism
by a slightly wider and thicker (but not taller) prism.

Our current task is to further refine the pair (P̃3, Y3)ã×ρ̃c̃×c̃ and (T2, Y2)δ to more closely match
Conclusion (C) of Lemma 8.2. Item (ii) of Conclusion (C) refers to a partitioning cover Tρ̃ of
T′. We will construct this as follows. To begin, let {Tρ̃} be a set of ρ̃ tubes with the following
properties:

• Every δ tube is contained in at least one tube from {Tρ̃}.

• For every ã × ρ̃c̃ × c̃ prism P̃ , there is at least one ρ̃ tube Tρ̃ ∈ {Tρ̃} with P̃ ⊂ Tρ̃ and
∠(dir(P̃ ),dir(Tρ̃)) ≤ 2ρ̃.

• The tubes in {Tρ̃} are weakly essentially distinct, in the following sense: for each fixed Tρ̃ ∈
{Tρ̃}, there are O(1) other tubes from {Tρ̃} that are comparable to Tρ̃.

Next, by pigeonholing the set {Tρ̃} by a O(1) factor, we can select a set Tρ̃ ⊂ {Tρ̃} that is
strongly essentially distinct, in the following sense: for each pair of distinct tubes Tρ̃, T

′
ρ̃ from Tρ̃,

we have that N100ρ̃(Tρ̃) ∩ N100ρ̃(T ′
ρ̃) has diameter at most 1/2, and in particular no δ tube can

be contained in both N100ρ̃(Tρ̃) and N100ρ̃(T ′
ρ̃). We will select the set Tρ̃ so that the following

properties hold:

(i) If we define T4 to be the set of tubes T ∈ T2 contained in some Tρ̃ ∈ Tρ̃, i.e. T4 =⋃
Tρ̃∈Tρ̃

T2[Tρ̃], and define Y4 to be the restriction of Y2 to T4, then (T4, Y4)δ is a ∼ 1 re-

finement of (T2, Y2)δ.

(ii) Similarly to the previous item, if we define P̃4 to be the set of prisms P̃ ∈ P̃3 with the property
that there exists Tρ̃ ∈ Tρ̃ with P̃ ⊂ Tρ̃ and ∠(dir(P̃ ), dir(Tρ̃)) ≤ 2ρ̃, and define

Y4(P̃ ) = Y3(P̃ ) ∩
⋃

T∈TP̃∩T4

Y4(T ), (8.12)
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then (P̃4, Y4)ã×ρ̃c̃×c̃ is a ≳ 1 refinement of (P̃3, Y3)ã×ρ̃c̃×c̃.

(a) A consequence of Item (i) is that Tρ̃ is a partitioning cover of T4, and in fact more is true:
the sets {N100ρ̃(Tρ̃) : Tρ̃ ∈ Tρ̃} form a partitioning cover of of T4.

(b) A consequence of Item (ii) is that for each P̃ ∈ P̃4, there is a unique Tρ̃ ∈ Tρ̃ that satisfies
the two properties P̃ ⊂ Tρ̃ and ∠(dir(P̃ ), dir(Tρ̃)) ≤ 2ρ̃. This induces a partition

P̃4 =
⊔
Tρ̃

(P̃4)Tρ̃ . (8.13)

(C.f. Definition 7.1, Item (i).)

(c) A consequence of Items (i) and (ii) is that if Tρ̃ ∈ Tρ̃, P̃ ∈ (P̃4)Tρ̃ , and T ∈ TP̃ ∩T4, then T ∈
T4[Tρ̃]. This is because T exits P̃ through its long ends, and hence ∠(dir(T ), dir(P̃ )) ≤ 10ρ̃.

Our next task is to estimate the quantity
∑

P̃∈P̃4
|P̃ |. Let τi be the scale from Step 2 satisfying

δε1ρ ≤ τi < ρ. Since (P̃4, Y4)ã×ρ̃c̃×c̃ is ⪆δ δ
4η+4ε1 dense, we have∑

P̃∈P̃4

|P̃ | ⪅δ δ
−4η−4ε1

∑
P̃∈P̃4

|Y4(P̃ )|

= δ−4η−4ε1
∑

Tρ̃∈Tρ̃

∣∣∣ ⊔
P̃∈(P̃4)Tρ̃

Y4(P̃ )
∣∣∣

≤ δ−4η−4ε1
∑

Tρ̃∈Tρ̃

∣∣∣ ⋃
T∈T4[Tρ̃]

Y4(T )
∣∣∣

≲ δ−4η−4ε1
∑

Tρ̃∈Tρ̃

(
µ−1
i

∑
T∈T1[Tρ̃]

|Y1(T )|
)

= δ−4η−4ε1µ−1
i

∑
T∈T1

|Y1(T )|

≲ δ−4η−4ε1µ−1
i

∑
T∈T2

|Y2(T )|.

(8.14)

For the third line we used (8.12). For the fourth line, we used the fact that each ρ̃ tube contains
some τi-tube and Item (i) in Step 2. For the last line, we used (8.11) and the definition of Y2(T ) =⋃

P̃ YP̃ (T ).

Step 7.

We would like to show that after a suitable refinement, (P̃4, Y4)ã×ρ̃c̃×c̃ is a robustly δε-dense
two-scale grains decomposition of (T4, Y4)δ wrt Tρ̃, in the sense of Definition 7.1. Currently, the
biggest obstacle is Item (ii) from Definition 7.1. In particular, it need not be the case that the sets
{Y4(P̃ ) : P̃ ∈ (P̃4)Tρ̃} are pairwise disjoint.

We will fix this problem as follows. We claim that either Conclusion (A) of Lemma 8.2 is
true (and thus we are done), or there exists a refinement (T5, Y5)δ of (T4, Y4), and a refinement
(P̃5, Y5)ã×ρ̃c̃×c̃ of (P̃4, Y4)ã×ρ̃c̃×c̃ with the following properties:

• For each Tρ ∈ Tρ, the sets {Y5(P̃ ) : P̃ ∈ (P̃5)Tρ̃} are pairwise disjoint (here (P̃5)Tρ̃ = P̃5 ∩
(P̃4)Tρ̃ ; recall (8.13)).

82



• (P̃5, Y5)ã×ρ̃c̃×c̃ is a ⪆δ δ
ε2 refinement of (P̃4, Y4)ã×ρ̃c̃×c̃.

• The pair (T5, Y5)δ is a ⪆δ δε2 refinement of (T4, Y4)δ, where T5 = T4, and the shading Y5 is
given by

Y5(T ) = Y4(T ) ∩
⋃

P̃∈(P̃5)Tρ̃
T∈TP̃∩T4

Y5(P̃ ), (8.15)

where Tρ̃ is the unique ρ̃ tube containing T .

• For each Tρ̃ ∈ Tρ̃, we have ⋃
T∈T5[Tρ̃]

Y5(T ) =
⊔

P̃∈(P̃5)Tρ̃

Y5(P̃ ). (8.16)

We will prove this claim in Step 8 below. Let us accept this claim for the moment.

The pair (P̃5, Y5)ã×ρ̃c̃×c̃ and (T5, Y5)δ now satisfy Items (i), (ii), and (iv) from Definition 7.1.
Items (i) and (ii) are immediate. We can verify Item (iv) as follows: If T and P̃ are associated to
a common ρ tube, and if Y5(T ) ∩ Y5(P̃ ) ̸= ∅, then we must have T ∈ T4 ∩ TP̃ , and hence we have

that T exits P̃ through its long end, and also Y5(T ) ∩ P̃ ⊂ Y5(P̃ ) (this follows from the definition
of the shading Y5 from (8.15)), as desired.

It remains to obtain Item (iii) from Definition 7.1. By dyadic pigeonholing, there is a number
µ; a set T′

ρ̃; and an ≈δ 1 refinement (T6, Y6)δ of (T5, Y5)δ so that the following holds:

• T′
ρ̃ is a balanced partitioning cover of T6.

• For each Tρ̃ ∈ T′
ρ̃ and each x ∈

⋃
T∈T6[Tρ̃]

Y6(T ), we have #
(
(T6[Tρ̃])Y6(x)

)
∼ µ.

Let P̃6 =
⋃

Tρ̃∈T′
ρ̃
(P̃5)Tρ̃ and let Y6(P̃ ) ⊂ Y5(P̃ ) be the shading so that (8.16) continues to hold

with (T6, Y6)δ in place of (T5, Y5)δ, and (P̃6, Y6)ã×ρ̃c̃×c̃ in place of (P̃5, Y5)ã×ρ̃c̃×c̃.

The triple (T6, Y6)δ, (P̃6, Y6)ã×ρ̃c̃×c̃, and Tρ̃ continue to satisfy Items (i), (ii), and (iv) from
Definition 7.1. To verify Item (iii), we need to estimate the density of the shading on (P̃6, Y6)ã×ρ̃c̃×c̃.
From (8.14), we have ∑

P̃∈P̃6

|P̃ | ⪅δ δ
−4η−4ε1µ−1

i

∑
T∈T2

|Y2(T )|. (8.17)

Note that µ ≲ µiδ
−2ε1 (recall that µi is the multiplicity associated to scale τi, which was chosen
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in Step 6). Thus we can compute∑
P̃∈P̃6

|Y6(P̃ )| =
∑

Tρ̃∈T′
ρ̃

∣∣∣ ⊔
P̃∈(P̃6)Tρ̃

Y6(P̃ )
∣∣∣

=
∑

Tρ̃∈T′
ρ̃

∣∣∣ ⋃
T∈T6[Tρ̃]

Y6(T )
∣∣∣

≳
∑

Tρ̃∈T′
ρ̃

(
µ−1

∑
T∈T6[Tρ̃]

|Y6(T )|
)

≳ µ−1
i δ2ε1

∑
T∈T6

|Y6(T )|

⪆δ µ
−1
i δε2+2ε1

∑
T∈T6

|Y2(T )|.

(8.18)

Comparing (8.17) and (8.18), we conclude that (P̃6, Y6)ã×ρ̃c̃×c̃ is ⪆δ δ4η+6ε1+ε2 ≥ δ2ε2 dense.
We now select ε2 sufficiently small (depending on ε) so that this quantity is ≥ δε. We conclude
that Conclusion (C) of Lemma 8.2 holds.

This concludes the proof of Lemma 8.2, except that we must still prove the Claim stated at the
beginning of Step 7. We will do this below.

Step 8. Our final task is to prove the Claim from Step 7. For notational convenience, we will abuse
notation and rename the set (P̃4, Y4)ã×ρ̃c̃×c̃ as (P̃, Y )ã×ρ̃c̃×c̃. Informally, the idea is as follows: If
the shadings {Y (P̃ ) : P̃ ∈ P̃Tρ̃} have small overlap, then we can refine these these shadings to be

disjoint. On the other hand, if the shadings have large overlap, then since the prisms in P̃Tρ̃ are

essentially distinct and all satisfy ∠(dir(P̃ ),dir(Tρ̃)) ≲ ρ̃, we have that the prisms in P̃Y (x) (i.e. the
prisms passing through a typical point) must have differing tangent planes (i.e. there must exist
prisms P̃ , P̃ ′ ∈ P̃Y (x) for which ∠(Π(P̃ ),Π(P̃ ′)) is large). We then apply Lemma 5.10 to show that
the thickened neighbourhood of a typical prism in P̃ has large intersection with

⋃
P̃∈P̃ Y (P̃ ), and

this in turn means that the thickened neighbourhood of a typical tube in T4 has large intersection
with

⋃
T Y (T ). By Corollary 5.19, this yields Conclusion (A) of Lemma 8.2. We now turn to the

details.

Using Lemma 5.9 (every shading has a regular sub-shading), we may select a ≳ 1 refinement
(P̃ ′, Y ′)ã×ρ̃c̃×c̃ with the property that each shading Y ′(P̃ ), P̃ ∈ P̃ ′ is regular (recall Definition 5.8)
and satisfies |Y ′(P̃ )| ⪆δ δ

4η+4ε1 |P̃ |.
After dyadic pigeonholing, we may suppose there exists a number ν and a ⪆δ refinement

(P̃ ′′, Y ′′)ã×ρ̃c̃×c̃ of (P̃ ′, Y ′)ã×ρ̃c̃×c̃ so that for each Tρ̃ ∈ Tρ̃ and each point x ∈
⋃

P̃∈(P̃ ′′)Tρ̃
Y ′′(P̃ ), we

have #((P̃ ′′
Tρ̃

)Y ′′(x)) ∼ ν.

First, we will consider the case where

ν ≥ δ−ε2 . (8.19)

We will show that Conclusion (A) of Lemma 8.2 is true for a suitably chosen value of α. Observe
that the prisms in ((P̃ ′)Tρ̃)Y ′(x) are essentially distinct, and they all satisfy ∠(dir(Tρ̃), dir(P̃ )) ≤ 2ρ̃.
Furthermore, they all (by definition) pass through the common point x. Thus for each point
x ∈

⋃
P̃∈(P̃ ′′)Tρ̃

Y ′′(P̃ ), there must exist a pair of prisms P̃ , P̃ ′ from this set with

∠
(
Π(P̃ Tρ̃), Π

(
(P̃ ′)Tρ̃

))
≳ ν1/2(ã/(ρ̃c̃)).
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(For comparison, Π(P̃ Tρ̃) and Π
(
(P̃ ′)Tρ̃

)
are defined up to uncertainty ã/(ρ̃c̃) ).

From the above discussion, we see that for each Tρ̃ ∈ Tρ̃, each P̃0 ∈ P̃ ′′
Tρ̃

and each x ∈ Y ′′(P̃0),
we have

sup
P̃∈((P̃ ′

Tρ̃
)Y ′ (x))

∠
(
Π(P̃

Tρ̃

0 ),Π(P̃ Tρ̃)
)
≳ ν1/2ã/(ρ̃c̃),

and thus
inf

x∈Y ′′(P̃0)
sup

P̃∈((P̃ ′
Tρ̃

)Y ′ (x))

∠
(
Π(P̃

Tρ̃

0 ),Π(P̃ Tρ̃)
)
≳ ν1/2ã/(ρ̃c̃).

But this is precisely the condition we need to apply Lemma 5.10 with λ ≈δ δ
4η+4ε1 . Let P̃ ′′′ be the

set of those prisms P̃0 ∈ P̃ ′′ satisfying |Y ′′(P̃0)| ⪆δ δ
4η+4ε1 . Undoing the scaling, we conclude that

for each P̃0 ∈ P ′′′ we have∣∣∣Nν1/2ã(P̃0) ∩
⋃
P̃∈P̃

Y (P̃ )
∣∣∣ ⪆δ δ

16η+16ε1 |Nν1/2ã(P̃0)|. (8.20)

But this means that after refining (T4, Y4)δ by an ≈δ 1 factor, there is a pair (T′
4, Y

′
4)δ so that

for each x ∈
⋃

T∈T′
4
Y ′
4(T ), we have∣∣∣B(x, ν1/2ã) ∩

⋃
T∈T

Y (T )
∣∣∣ ⪆δ δ

O(η+ε1)|B(x, ν1/2ã)|. (8.21)

By Corollary 5.19 (and using (8.19)), we conclude that Conclusion (A) holds, provided α ≤ ωε2/2,
and provided ε1 and η are selected sufficiently small (depending on ω, ε2, and the implicit constant
on the RHS of (8.21)).

Finally, we will consider the case where (8.19) fails, i.e.

ν ≤ δ−ε2 . (8.22)

This means that for each Tρ̃ ∈ Tρ̃, the sets {Y ′′(P̃ ) : P̃ ∈ (P̃ ′′)Tρ̃} are ≤ δ−ε2 overlapping. By

pigeonholing, we can select a refinement (P̃5, Y5)ã×ρ̃c̃×c̃ of (P̃4, Y4)ã×ρ̃c̃×c̃ satisfying the four Items
listed in Step 7.

8.3 Move #3: Replacing grains with wider grains with small C loc
KT -CW

Lemma 8.3. We assume the Common setup for Moves #1, #2, #3: Hypotheses from
Section 7.4. Then at least one of the following must hold.

Suppose that E(σ,ω) is true and let ε > 0. Then there exists α, η, c > 0 so that the following
holds for all 0 < δ ≤ ρ ≤ 1, and all δ ≤ a ≤ b ≤ c with b/c = ρ.

Let (T, Y )δ be δ
η dense, with CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η. Let Tρ be a balanced parti-

tioning cover of T, and suppose that (T, Y )δ is broad with error δ−η relative to Tρ. Let (P, Y )a×b×c

be a robustly δη-dense two-scale grains decomposition of (T, Y )δ wrt Tρ.

Then at least one of the following must hold.

(A) Conclusion (A) of the common setup for Moves #1, #2, #3.

(B) Conclusion (B) of the common setup for Moves #1, #2, #3. In addition,
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(iv) C loc
KT -CW (P ′) ≤ δ−ζ.

(C) Conclusion (C) of the common setup for Moves #1, #2, #3. In addition,

(v) c̃ ≥ c, δ−ζ/400ρ ≤ ρ̃ ≤ 1.

Proof. Step 1. Let 0 < ε1 < · · · < ε4 be small quantities to be chosen below. We will choose εi
very small compared to εi+1 for each i = 1, . . . , 3; we will choose ε4 very small compared to ε; we
will choose α, η very small compared to ε1.

First, we may suppose that
a ≤ δ1−ε1 , (8.23)

or else Conclusion (A) immediately holds, provided we choose α and η sufficiently small depending
on ε1. The argument is identical to the argument in Step 1 of the proof of Lemma 8.2.

Next we will regularize the set T. By dyadic pigeonholing and replacing (T, Y )δ by a ≳
(log 1/δ)−1/ε1 refinement (T1, Y1)δ, we can suppose that

(a) For each scale of the form τi = δε1i, i = 1, . . . , ε−1
1 , there exists a “density” λi so that∣∣∣B(x, τi) ∩

⋃
T∈T

Y (T )
∣∣∣ ∼ λi|B(x, τi)| for every x ∈

⋃
T∈T1

Y1(T ). (8.24)

(b) For each i = 1, . . . , ε−1
1 , there is a pair (Tτi , Yτi)τi that is ⪆δ δ

η dense. Furthermore, Tτi is a
balanced partitioning cover of T1; and for each Tτi we have

Yτi(Tτi) ⊂ Tτi ∩
⋃

T∈T1

Nτi(Y1(T )).

From the above items, we have that CF -SW (Tτi) ≲ CF -SW (T1) ≲ (log 1/δ)−1/ε1δ−η, and

CKT -CW (Tτi) ≲ CKT -CW (T1)
#Tτi

#T1

|Tτi |
|T |

.

If η > 0 is selected sufficiently small depending on ε1, then we can apply the estimate E(σ,ω) (with
ε1 in place of ε) to conclude that∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≳ δ2ε1λiτ
ω
i CKT -CW (Tτi)

−1(#Tτi)|Tτi |
(
CKT -CW (Tτi)

−3/2CF -SW (Tτi)(#Tτi)|Tτi |1/2
)−σ

⪆δ δ
2ε1+O(η)

[
λi

(τi
δ

)ω( |Tτi |(#Tτi)
1/2

|T |(#T)1/2

)σ]
δω(#T)|T |

(
(#T)|T |1/2

)−σ

⪆ δ3ε1
[
λi

(τi
δ

)ω |Tτi |σ/2

|T |σ/2

]
δω(#T)|T |

(
(#T)|T |1/2

)−σ
.

(8.25)

For the last inequality, we used the fact that CKT -CW (T1) ⪅δ δ−η, and so (#T)/(#Tτi) ⪅δ

δ−η|Tτi |/|T |. In particular, if there is an index i for which λi

(
τi
δ

)ω |Tτi |
σ/2

|T |σ/2 is substantially larger

than 1, then we will obtain Conclusion (A) of Lemma 8.3.
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Step 2. Let P1 = P. For each P ∈ P1, define Y1(P ) = Y (P ) ∩
⋃

T∈T1[Tρ]
Y1(T ), where Tρ ∈ Tρ is

the unique ρ tube with P ∈ Tρ and ∠(dir(P ), dir(Tρ)) ≤ 2ρ. Since (T1, Y1)δ is an ≈δ 1 refinement
of (T, Y )δ, by Definition 7.1 Items (ii) and (iii) we have that (P1, Y1)a×b×c is a ≈δ 1 refinement of
(P, Y )a×b×c.

Apply Lemma 5.9 (every shading has a regular sub-shading) to each shading Y1(P ), P ∈ P1.
This gives us a regular sub-shading Y2(P ) ⊂ Y1(P ). Let P2 ⊂ P1 be those prisms for which
|Y2(P )| ≥ δ2η|P |; we have that (P2, Y2)a×b×c is a ≳ 1 refinement of (P1, Y1)a×b×c.

Let P3 = P2. By dyadic pigeonholing, we can select a number θ0 ∈ [ab , 1] and a (log 1/δ)−1

refinement (P3, Y3)a×b×c of (P2, Y2)a×b×c so that for each x ∈
⋃

P∈P3
Y3(P ), we have θ(x) ∼ θ0,

where θ(x) is as defined in Definition 5.12.

We first consider the case where θ0 ≥ δ−ε1(a/b). Our goal is to show that Conclusion (A) holds.
Let P ′

3 ⊂ P3 be the set of those prisms for which |Y3(P0)| ≥ 1
100δ

2η|P0|. Then for each x ∈ Y3(P0),
we have

a

b
+ sup

P∈P2

∠(Π(P0),Π(P )) ≳ θ0.

We have |Y3(P0)| ≥ 1
100δ

2η|P0|; each P ∈ P2 satisfies |Y2(P )| ≥ 1
100δ

2η|P0|; and Y2(P ) is regular.
Thus we can apply Lemma 5.10 (with Y3(P0) in place of Y0(P0) and (P2, Y2)a×b×c in place of
(P, Y )a×b×c) to conclude that∣∣∣Nbθ0(P0) ∩

⋃
P∈P

Y (P )
∣∣∣ ⪆δ δ

8η|Nbθ(P0)|. (8.26)

Recall that (8.26) holds for each P0 ∈ P ′
3, and (P ′

3, Y3)a×b×c is a ⪆δ 1 refinement of (P, Y )a×b×c.
After replacing (P ′

3, Y3)a×b×c by a further ∼ 1 refinement (P ′
3, Y

′
3)a×b×c, we can suppose that for

each x ∈
⋃

P∈P ′
3
Y ′
3 , we have ∣∣∣Nbθ0(x) ∩

⋃
P∈P

Y (P )
∣∣∣ ⪆δ δ

8η|Nbθ0(x)|.

Finally, if (T1, Y
′
1)δ is the refinement of (T1, Y1)δ induced by (P ′

3, Y
′
3)a×b×c, then by Defini-

tion 7.1, Item (ii), (T1, Y
′
1)δ is a ≈δ 1-refinement of (T1, Y1)δ, and for each x ∈

⋃
T∈T′

1
Y ′
1(T ) we

have ∣∣∣Nbθ0(x) ∩
⋃

T∈T′
1

Y (T )
∣∣∣ ⪆δ δ

8η|Nbθ0(x)|. (8.27)

Since bθ0 ≥ δ−ε1a, by Corollary 5.19 we see that Conclusion (A) holds, provided we select η > 0
sufficiently small depending on ε1, and select α ≤ ε1ω/2.

Henceforth we shall suppose that θ0 ≤ δ−ε1(a/b), i.e.

sup
x

sup
P,P ′∈(P3)Y3 (x)

∠
(
Π(P ), Π(P ′)

)
≤ δ−ε1(a/b). (8.28)

Step 3. Recall the discussion following Definition 7.3 (the quantity “K” in that discussion is
δ−ε1 in this context); after replacing (P3, Y3)a×b×c by a ∼ 1 refinement, which we will denote by
(P4, Y4)a×b×c (which in turn induces a ∼ 1 refinement (T4, Y4)δ of (T1, Y1)δ), we can find a set U
of pairwise distinct prisms of dimensions δ−ε1 ac

b × c× c so that the following holds.
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(a) The sets {P4⟨U⟩ : U ∈ U} are a partition of P4.

(b) The sets
{⋃

P∈P4⟨U⟩ Y4(P ) : U ∈ U
}

are disjoint.

Each U ∈ U is a prism of dimensions δ−ε1 ac
b × c × c = δ−ε1 a

ρ × c × c. Thus for each U ∈ U ,

there is a set {Z} of ≲ δ−3ε1 prisms of dimensions comparable to a
ρ × c× c with the property that

for each P ∈ P4⟨U⟩, there is a prism Z from this collection with □(P ) ⊂ Z (recall that ρ = b/c,
and thus □(P ) is a prism of dimensions comparable to a

ρ × c× c).

Let ZU be a prism of dimensions comparable to a
ρ × c× c that maximizes

#{P ∈ P4 : □(P ) ⊂ Z},

so in particular #P4⟨ZU ⟩ ≳ δ3ε1(#P4⟨U⟩). Let Z = {ZU : U ∈ U}; let P5 =
⋃

U∈U P4⟨ZU ⟩; and let
Y5 be the restriction of Y4 to P5. Then (P5, Y5)a×b×c is a ≳ δ3ε1 refinement of (P4, Y4)a×b×c, and
we have the following analogue of Items (a) and (b).

(a′) The sets {P4⟨Z⟩ : Z ∈ Z} become a partition of P5.

(b′) The sets
{⋃

P∈P5⟨Z⟩ Y5(P ) : Z ∈ Z
}

are disjoint.

For each Z ∈ Z, the sets in (P5⟨Z⟩)Z are convex sets of dimensions comparable to ρ × ρ × 1,
i.e. the sets are comparable to ρ tubes. To record this useful fact, we will define (T̃Z , Ỹ5)ρ =
((P5⟨Z⟩)Z , Y Z

5 )ρ×ρ×1.

After replacing (P5, Y5)a×b×c and Z with ≈δ 1 refinements, we may suppose that each set T̃Z

has approximately the same size (up to a factor of 2) for each Z ∈ Z, and similarly each set
|Ỹ5(T̃ )| has approximately the same size for each T̃ ∈ T̃Z . Furthermore, we can suppose that
each pair (T̃Z , Ỹ5)ρ is ⪆δ δη dense (indeed, recall that (P, Y )a×b×c is δη dense; (P4, Y4)a×b×c is a
⪆δ 1-refinement of (P, Y )a×b×c; and (P5⟨Z⟩, Y5)a×b×c is a ≈δ 1 refinement of (P4⟨Z⟩, Y4)a×b×c).

Step 4. For notational convenience, we will fix a prism Z ∈ Z. In what follows, we will find
certain quantities (for example certain scales, multiplicities, etc.), and navigate between different
cases depending on the specifics of the arrangement T̃Z . However, by pigeonholing the set Z, we
may suppose that all quantities described below are the same (up to a factor of 2) for each Z ∈ Z,
and thus the same cases occur for each Z ∈ Z.

Apply Proposition 4.6 (factoring convex sets) to T̃Z . We obtain a number m ≥ 1; a ≈δ 1
refinement T̃′

Z of T̃Z , and a partitioning cover WZ of T̃′
Z consisting of congruent prisms; we shall

denote the dimensions of these prisms by s× t× 1 (since each prism contains at least one tube, we
know that the longest dimension is ∼ 1). We have that WZ factors T̃′

Z from below with respect to
the Frostman Convex Wolff Axioms, and from above with respect to the Katz-Tao Convex Wolff
Axioms, both with error ⪅δ 1. Finally,

CKT -CW (T̃′
Z) ≤ m, and #T̃′

Z [W ] ≈δ m
|W |
|T̃ |

for each W ∈ WZ . (8.29)

We first consider the case where
m ≤ δ−ζ . (8.30)

Our goal is to show that Conclusion (B) of Lemma 8.3 holds.
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As described at the beginning of Step 4, we can suppose that (8.30) is true for at least half the
prisms Z ∈ Z. Let P6 ⊂ P5 be given by P6 =

⋃
Z ϕ−1

Z (T̃′
Z), where the union is taken over those

prisms in Z for which (8.30) holds (note that P6 ⊂ P5, since each tube in T̃′
Z ⊂ T̃Z is the image of

a prism from P5 under the map ϕZ). Let Y6 be the restriction of Y5 to P6.

We have that (P6, Y6)a×b×c is a ⪆δ 1 refinement of (P5, Y5). Undoing the scaling ϕZ , we have
that for each P ∈ P6,

CKT -CW

(
P6⟨2□(P )⟩

)
≲ sup

Z∈Z
CKT -CW (P6⟨Z⟩) ≤ m.

We conclude that
C loc

KT -CW (P6) ≲ m.

Applying a final dyadic pigeonholing, we can select a ≈δ 1 refinement (P ′, Y ′)a×b×c of (P6, Y6)a×b×c

(this in turn induces a ⪆δ δ3ε1 refinement (T′, Y ′)δ of (T4, Y4)δ) and a set T′
ρ ⊂ Tρ so that the

following holds: T′
ρ is a balanced partitioning cover of (T′, Y ′)δ, and (P ′, Y ′)a×b×c is a robustly

≈δ δ
3ε1-dense two-scale grains decomposition of (T′, Y ′)δ wrt T′

ρ.

Since C loc
KT -CW (P ′) ≲ m, Conclusion (B), Item (iv) of Lemma 8.3 is satisfied. (P ′, Y ′)a×b×c

satisfies Conclusion (B), Item (iii) by construction. (T′, Y ′)δ satisfies Conclusion (B), Item (i),
provided ε1 is chosen sufficiently small depending on ε. Finally, since

#
(
T′[Tρ]Y ′(x)

)
⪆δ δ

3ε1#(T[Tρ])Y (x) for every Tρ ∈ T′
ρ and every x ∈

⋃
T∈T′[Tρ]

Y ′(T ),

and since (by hypothesis) (T, Y )δ is broad with error δ−η relative to Tρ, we conclude that (T′, Y ′)δ
is broad with error ⪅δ δ

−η−3ε1 relative to T′
ρ. We will select η and ε1 sufficiently small so that this

quantity is ≤ δ−ε. This verifies Conclusion (B), Item (ii) 3.

In summary, if (8.30) holds, then Conclusion (B) of Lemma 8.3 is satisfied. Henceforth we will
suppose that (8.30) fails, i.e.

m > δ−ζ . (8.31)

Step 5. In Step 4, we fixed a choice of prism Z ∈ Z. We will continue to fix this choice of Z, and
in additional we will fix a choice of W ∈ WZ . As in Step 4, we can assume (by dyadic pigeonholing)
that all relevant scales, multiplicities, etc. are approximately the same (up to a factor of 2) for each
Z ∈ Z and each W ∈ WZ).

In the arguments that follow, we will analyze the pairs (T̃′
Z [W ], Ỹ5)ρ constructed in Step 4. For

notational convenience, we will refer to such a pair as (T̃, Ỹ )ρ. Recall that this pair is ⪆δ δ
η dense;

the cardinality of T̃ is given by (8.29); and m satisfies (8.31). In particular, we have

CF -CW (T̃W ) ⪅δ 1. (8.32)

Apply Corollary 7.10 (finding a broad scale) to the set T̃. Denote the “output” scale of this
Corollary by τ (in Corollary 7.10, this output scale is called ρ, but that variable is already in use).
Abusing notation, we will continue to use (T̃, Ỹ )ρ to refer to the output of Corollary 7.10. Thus

3To be precise, we can only ensure that the error is ≤ δ−ε provided δ > 0 is sufficiently small, depending on the
implicit constant in the above ⪆ notation. However if this fails then Conclusion (A) holds, provided we select κ > 0
sufficiently small.
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there is a set Tτ that forms a balanced partitioning cover of T̃, and (T̃, Ỹ )ρ is broad with error ⪅δ 1
relative to Tτ . Furthermore,

the sets
⋃

T̃∈T̃[Tτ ]

Ỹ (T̃ ), Tτ ∈ Tτ are ≲ τ−β overlapping. (8.33)

We claim that
τ ≥ ρ1−ω/8, (8.34)

or else Conclusion (A) of Lemma 8.3 holds, and we are done. To verify this claim, note that if
(8.34) failed, then the sets {Ỹ (T̃ ) : T̃ ∈ T̃} are ≲ ρ−ω/4τ−β ≤ δ−ω/2 overlapping; but this fact,
combined with Item (b′) from Step 3, gives Conclusion (A) of Lemma 8.3.

Step 6. We would like to apply the estimate E(σ,ω) to each set (T̃Tτ , Ỹ Tτ )ρ/τ . However, we do

not currently have a good estimate for CF -SW (T̃Tτ ). To fix this problem, apply Proposition 4.8
(factoring convex sets with respect to the Frostman Slab Wolff Axioms) to each set (T̃[Tτ ], Ỹ )ρ,
with ε2 in place of ε. We can do so, provided ε1 and η is selected sufficiently small compared to ε2.
This gives us a ⪆δ δ

ε2 refinement (T̃′[Tτ ], Ỹ ′)ρ of (T̃[Tτ ], Ỹ )ρ, and a family of convex subsets of Tτ ,
which we denote by VTτ , that factors T̃′[Tτ ] from below with respect to the Frostman Slab Wolff
Axioms with error δ−ε2 . In addition,

the sets
⋃

T̃∈T̃′[V ]

Ỹ ′(T̃ ), V ∈ VTτ are disjoint. (8.35)

After pigeonholing, we may suppose that the sets in VTτ have the same dimensions, and fur-
thermore these dimensions are common across all Tτ ∈ Tτ . Denote these dimensions θ × τ ′ × 1.
Since V ⊂ Tτ , we must have τ ′ ≤ τ . We claim that this inequality is almost tight, in the sense that

δε2/βτ ⪅δ τ
′ ≤ τ. (8.36)

To verify this claim, note that (T̃, Ỹ )ρ is broad with error ⪅δ 1 relative to the cover Tτ . Since
(T̃′[Tτ ], Ỹ ′)ρ is a ⪆δ δ

ε2 refinement of (T̃[Tτ ], Ỹ )ρ, by pigeonholing there is at least one point x for
which the tubes in T̃′

Y ′(x) point in directions that are broad with error ⪅δ δ−ε2 inside a cap of
radius τ . This means that there are at least two tubes from this set that make an angle ⪆δ δ

ε2/βτ .
On the other hand, by (8.35) we have that the pair of tubes described above must be contained in
a common θ × τ ′ × 1 prism. This establishes (8.36).

Let T̃′ be the union of the sets T̃′[Tτ ], as Tτ ranges over the elements of Tτ . Let Ỹ ′ be the
associated shading on T̃′ coming from the pairs (T̃′[Tτ ], Ỹ ′)ρ. Abusing notation, we will rename
this pair (T̃, Ỹ )ρ. At this point in the argument, this pair is ⪆δ δ

η+ε2 ≥ δ2ε2 dense.

Step 7. We first consider the case where the prisms VTτ from Step 6 are almost tubes, in the sense
that

θ ≥ δζ/10τ ′. (8.37)

If (8.37) is true, then each set T̃V consists of prisms of dimensions ρ
τ ′×

ρ
θ×1. The pair (T̃V , Ỹ V )ρ/τ ′×ρ/θ×1

is ⪆δ δ
2ε2 dense. Let us suppose for the moment that

ρ ≤ δ
√
ε2 . (8.38)

If we select ε2 sufficiently small so that ε2 ≤ 1
2

√
ε2βω, and hence 8ε2β√

ε2βω−8ε2
≤ 16

√
ε2

ω , then by

(8.34) and (8.36), we have δ2ε2 ≥
( ρ
τ ′

) 32
√
ε2

ω .
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Thus if ε2 is chosen sufficiently small compared to ε3 and ω, and if (8.38) is true, then we
can apply the estimate F(σ,ω) (recall Definition 5.4 and Remark 5.6, Situation 3) to estimate the
volume of each (rescaled) set (T̃V , Ỹ V )ρ/τ ′×ρ/θ×1, with ε3 in place of ε and 32

√
ε2/ω in place of η.

This gives the estimate∣∣∣ ⋃
T̃∈T̃[V ]

Ỹ V (T̃ V )
∣∣∣ ≳ δε3

(ρ
θ

)ω
m̃−1(#T̃[V ])|T̃ V |

(
m̃−3/2ℓ̃(#T̃[V ])|T̃ V |1/2

)−σ
, (8.39)

where we define

m̃ = CKT -CW (T̃[V ]) ≤ CKT -CW (T̃) ≤ m and ℓ̃ = CF -SW (T̃[V ]) ≲ δ−ε2 . (8.40)

(for the first inequality, we used (8.29)). On the other hand, if (8.38) is false, then (8.39) follows
from the fact that the LHS of (8.39) is bounded below by the volume of a single shading |Ỹ V (T V )|,
and we can select a tube with volume

|Ỹ V (T V )| ⪆ δ2ε2 |T V | = δ2ε2
ρ2

τ ′θ
≥ δ2ε2ρ2 ≥ δ3ε2 ≥ δε3 . (8.41)

Since σ ∈ (0, 2/3], by Remark 5.5 and Remark 5.6, Situation 3,

m̃−1(#T̃[V ])|T̃ V |
(
m̃−3/2ℓ̃(#T̃[V ])|T̃ V |1/2

)−σ
≲ 1. (8.42)

Combining (8.41) and (8.42) establishes (8.39) in the case where (8.38) is false. We conclude
that (8.39) holds, independently of whether (8.38) is true or false.

Undoing the scaling ϕV and substituting the values of m̃ and ℓ̃ from (8.40), we have∣∣∣ ⋃
T̃∈T̃[V ]

Ỹ (T̃ )
∣∣∣ ≳ δ2ε3

(ρ
θ

)ω
m−1(#T̃[V ])|T̃ |

(
m−3/2(#T̃[V ])

|T̃ |1/2

|V |1/2
)−σ

. (8.43)

By (8.33), (8.35) (recall that we have renamed Ỹ ′ as Ỹ ), and (8.43), we have∣∣∣ ⋃
T̃∈T̃

Ỹ (T̃ )
∣∣∣ ≳ τβ

∑
Tτ∈Tτ

∑
V ∈VTτ

∣∣∣ ⋃
T̃∈T̃[V ]

Ỹ (T̃ )
∣∣∣

≳ δ2ε3+β
(ρ
θ

)ω
m−1(#T̃)|T̃ |

(
m−3/2(#T̃[V ])

|T̃ |1/2

|V |1/2
)−σ

.

(8.44)

Next, by (8.32) and using the fact that (T̃′[Tτ ], Y ′)ρ is a ⪆δ δ
ε2 refinement of (T[Tτ ], Ỹ )ρ, we have

that CF -CW (T̃W ) ⪅δ δ
−2ε2 . By (8.29), #T̃ ⪆δ δ

2ε2
(
m |W |

|T̃ |

)
. Since

#T̃[V ] ≤ CF -CW (T̃W )
|V |
|W |

(#T̃) ⪅δ δ
−2ε2 |V |

|W |

(
m
|W |
|T̃ |

)
,

using (8.31), (8.36), (8.37), and (8.44) we conclude that∣∣∣ ⋃
T̃∈T̃

Ỹ (T̃ )
∣∣∣ ⪆δ δ

2ε3+β−ζσ/2
(ρ
θ

)ω
m−1(m

|W |
|T̃ |

)|T̃ |
(
m−1

(
m
|V |
|T̃ |

) |T̃ |1/2
|V |1/2

)−σ

⪆δ δ
2ε3+β−ζσ/4

(ρ
θ

)ω+σ
|W |.

(8.45)
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Step 8. Let us analyze (8.45). First, the set on the LHS of (8.45) is contained in W , which is a
prism of dimensions s× t× 1. Second, the quantities ε3 and β are chosen after ζ and σ, so we can
select the former quantities to ensure that δ−2ε3+β−ζσ/4 ≥ δ−ζσ/5.

Thus by pigeonholing, we can select a ball B of radius θ (recall that ρ ≤ θ ≤ s) with the
property that ∣∣∣B ∩

⋃
T̃∈T̃

Ỹ (T )
∣∣∣ ⪆ δ−ζσ/5

(ρ
θ

)ω+σ
|B|. (8.46)

Recall that at the beginning of Step 4 we fixed a prism Z ∈ Z. The set of ρ tubes T̃ are the
images of prisms from P3⟨Z⟩ under the linear map ϕZ . Let B† = ϕ−1

Z (B), where B is the ball
described above. Then B† is an ellipsoid of dimensions θ a

ρ × θc× θc. By (8.46), we have∣∣∣B† ∩
⋃

P∈P1

Y1(P )
∣∣∣ ⪆ δ−ζσ/5

(ρ
θ

)ω+σ
|B†|. (8.47)

Let 1 ≤ i ≤ ε−1
1 be the index so that δiε1 ≤ θ a

ρ < δ(i−1)ε1 . Such an index exists since θ ∈ [ρ, 1] and

δ ≤ a
ρ = ac

b ≤ c ≤ 1. Recall that we defined τi = δiε1 , so θa/ρ ≤ τiδ
−ε1 implies ρ/θ ≥ δε1a/τi ≥

δ1+ε1/τi. Then there exists a ball Bτi of radius τi, so that

λi ≥
∣∣∣Bτi ∩

⋃
T∈T1

Y1(T )
∣∣∣|Bτi |−1 ≥ δ3ε1−ζσ/5

(ρ
θ

)ω+σ
≥ δ4ε1−ζσ/5

( δ

τi

)ω |T |σ/2

|Tτi |σ/2
. (8.48)

Combining (8.25) and (8.48), we conclude that Conclusion (A) of Lemma 8.3 holds, provided we
select ε1 ≤ 1

100ζσ and select α sufficiently small.

This concludes our analysis of the case where (8.37) holds (the analysis of this case began at
the start of Step 7). Henceforth we shall suppose that (8.37) fails.

Step 9. We shall now return to the start of Step 7, except, instead of assuming (8.37), we will
instead suppose that

θ < δζ/10τ ′. (8.49)

Informally, (8.49) says that the prisms V ∈ VTτ are flat.

Recall that in Steps 4 and 5, we fixed a prism Z ∈ Z and a prism W ∈ WZ . In this step, we
will fix a τ tube Tτ ∈ Tτ and a θ × τ ′ × 1 prism V ∈ VTτ . Define T† = T̃[V ] and let Y † be the
restriction of Ỹ to T†. Thus (T†, Y †)ρ is a set of ρ tubes contained in V , and

CF -SW ((T†)V ) ⪅δ δ
−ε2 . (8.50)

After pigeonholing, we may suppose that (T†, Y †)ρ is ⪆δ δ2ε2 dense. For each “stem” T †
0 ∈ T†,

define the “hairbrush”
H(T †

0 ) = {T † ∈ T† : Y †(T †
0 ) ∩ Y †(T †) ̸= ∅}.

We claim that for each tube T †
0 ∈ T†, the set

N(τ ′/θ)ρ(T †
0 ) ∩

⋃
T †∈H(T †

0 )

Y †(T †) (8.51)

is contained in a rectangular prism of dimensions comparable to ρ × (τ ′/θ)ρ × 1; we will call this

rectangular prism X = X(T †
0 ). This claim follows from straightforward geometric considerations

— See Figure 13. Define Y (X) to be the set (8.51), so Y (X) ⊂ X.
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X(T †
0 )

T †
0 V

Figure 13: All tubes (red) in this figure intersect the stem tube T †
0 (black). Since each tube is

contained in the θ× τ ′×1 prism V , each tube makes angle ≲ θ/τ ′ with the plane Π(V ). Since each

red tube intersect T †
0 , the union of these tubes, intersected with the (τ ′/θ)ρ neighbourhood of T †

0 ,

are contained in the prism X = X(T †
0 ) (green) of dimensions θ

τ ′ · ( τ
′

θ )ρ× ( τ
′

θ )ρ× 1 = ρ× ( τ
′

θ )ρ× 1.

Next, we claim that if ε2 is chosen sufficiently small compared to ε3, then for a ⪆δ 1 fraction of

the tubes T †
0 ∈ T† we have

|Y (X)| ⪆δ δ
ε3 |X|, where X = X(T †

0 ). (8.52)

The estimate (8.52) says that the shading Y (X) is ⪆δ δ
ε3 dense. This is a standard Cordoba-type

L2 argument. In brief, let Y ‡(T †) ⊂ Y †(T †), T † ∈ T† be a regular shading, in the sense of Definition

5.8, with |Y ‡(T †)| ≥ 1
2 |Y

†(T †)|. By pigeonholing, a ⪆δ 1 fraction of the tubes T †
0 ∈ T† satisfy

|{x ∈ Y †(T †
0 ) : #T†

Y ‡(x) ≥ 1

4
#T†

Y †(x)}| ⪆δ δ
2ε1 |T †

0 |. (8.53)

For each point x in the set on the LHS of (8.53), we can select a tube T † ∈ T† with x ∈ Y ‡(T )

and ∠(dir(T †
0 ), dir(T †)) ⪆δ τ (recall that in Step 5, we refined our pair (T̃, Ỹ )ρ to be broad with

error ⪅δ 1 relative to Tτ ). We now choose a δ/τ -separated set of points from the LHS of (8.53),
and consider the corresponding tubes {T †}. Since each shading Y ‡(T †) is regular, we have that the
sum of the volumes of these shadings, restricted to X, has volume ⪆δ δ

2ε1 |X|:∑
{T †}

|Y ‡(T †) ∩X| ⪆δ δ
2ε1 |X|.

Finally, we use a Cordoba-style L2 argument to show that the corresponding shadings {Y ‡(T )} are
almost disjoint inside X; this gives (8.52).

Abusing notation, we will refine T† so that each T † ∈ T† satisfies (8.52). By dyadic pigeonholing
and replacing T† by a ≈δ 1 refinement (abusing notation, we will continue to refer to this set as

T†), we can select a number M and a set X of essentially distinct ρ× τ ′ρ
θ × 1 prisms of cardinality

#X = M−1(#T†), so that

(a) For each X ∈ X , there are ∼ M tubes T † ∈ T† with T † ⊂ X and X(T †) comparable to X.

Denote this latter set by T†
X .
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(b) Each set T†[X], X ∈ X has the same cardinality (up to a factor of 2).

Note that T†
X ⊂ T†[X], but the two sets need not be equal; it could be the case that #T†[X] is

much larger than #X . In particular, T† =
⊔

X∈X T†
X , but X might not be a partitioning cover of

T†. For example, there could exist a tube in T†[X] that is contained in a different prism V ′; such a

tube will be also be contained in the set T†
X′ , where X ′ a prism with orientation compatible with

V ′ (recall Figure 13). In particular, it is possible that X and X ′ intersect transversely.

Step 10. In Step 9 we fixed a choice of τ tube Tτ ∈ Tτ and a θ × τ ′ × 1 prism V ∈ VTτ . We
then constructed a pair (X , Y )

ρ× τ ′
θ
ρ×1

. The set X depended on the choice of prism V ∈ VTτ ; we

will highlight this dependence by writing XV . In this step we will analyze the interaction between
different collections XV .

Define V =
⋃

Tτ∈Tτ
VTτ . Note that V is a set of θ× τ ′×1 prisms contained in W (the set W was

fixed at Step 5). The quantity M from Step 9 depends on the choice of V , but after pigeonholing
and refining V we may suppose that this number is the same (up to a factor of 2) for every V ∈ V.

We will first consider the case where

#T†
X ∼ M ≤ δ−ζ/100 |X|

|T †|
. (8.54)

We will show that Conclusion (A) of Lemma 8.3 holds.

Recall from Figure 13 that the prisms X ∈ XV and V have compatible orientations, in the
sense that XV is a prism of dimensions comparable to ρ

θ × ρ
θ × 1. Thus we will refer to the set

(X V
V , Y V ) ρ

θ
× ρ

θ
×1) as (T ρ

θ
,V , YV ) ρ

θ
.

We claim that

the sets
{ ⋃

X∈XV

Y (X), V ∈ V
}

are ≤ δ−β overlapping. (8.55)

This claim follows from combining (8.33) and (8.35) (and noting that τ−β ≤ δ−β).

Observe that for each V ∈ V, we have

CF -SW (T ρ
θ
,V ) ⪅δ δ

−2ε2 . (8.56)

This is because CF -SW (T̃V ) ⪅δ δ−2ε2 (recall that V factors T̃ from below with small error with
respect to the Frostman Slab Wolff Axioms), and by Item (b) from Step 9, each X ∈ XV contains
the same number (up to a factor of 2) of tubes from T̃[V ]. This means that CF -SW (X V

V ) ⪅δ δ
−2ε2 ,

which is precisely (8.56).

Define

m ρ
θ

= mM−1 |X|
|T̃ |

, (8.57)

where m is as defined in (8.29), and |X| = ρ × τ ′

θ ρ × 1 = τ ′

θ ρ
2 is the volume of a prism from XV .

We have

CKT -CW (T ρ
θ
,V ) ⪅δ mM−1 |X|

|T̃ |
≤ m ρ

θ
. (8.58)

Finally, we compute ∑
V ∈V

(#T ρ
θ
,V ) ⪆δ M

−1#T̃[W ] ⪆ mM−1 |W |
|T̃ |

, (8.59)
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where W is the prism fixed at Step 5, and the final inequality used (8.29).

Fix a choice of V ∈ V. Applying the estimate E(σ,ω) to (T ρ
θ
,V , YV )ρ/θ with ε4 in place of ε

and using (8.56), we have∣∣∣ ⋃
T ρ

θ
∈T ρ

θ
,V

YV (T ρ
θ
)
∣∣∣ ⪆δ δ

ε4+2ε2
(ρ
θ

)ω
m−1

ρ
θ

(#T ρ
θ
,V )|T ρ

θ
|
(
m

−3/2
ρ
θ

(#T ρ
θ
,V )|T ρ

θ
|1/2

)−σ
.

(8.60)

In the above inequality, we used (8.58) plus the fact that σ ≤ 2/3 (the latter inequality allows us
to replace CKT -CW (T ρ

θ
,V ) with the potentially larger quantity m ρ

θ
). Undoing the scaling ϕV and

using (8.55), we conclude that∣∣∣ ⋃
T̃∈T̃

Y (T̃ )
∣∣∣ ≥ ∣∣∣ ⋃

V ∈V

⋃
X∈XV

Y (X)
∣∣∣

≥ δβ
∑
V ∈V

∣∣∣ ⋃
X∈XV

Y (X)
∣∣∣

≥ δβ
|X|
|T ρ

θ
|
∑
V ∈V

∣∣∣ ⋃
T ρ

θ
∈T ρ

θ
,V

YV (T ρ
θ
)
∣∣∣

⪆δ δ
β |X|
|T ρ

θ
|
· δε4+2ε2

(ρ
θ

)ω
m−1

ρ
θ

( ∑
V ∈V

#T ρ
θ
,V

)
|T ρ

θ
|
(
m

−3/2
ρ
θ

(
sup
V ∈V

#T ρ
θ
,V

)
|T ρ

θ
|1/2

)−σ

⪆δ δ
β+2ε4 |X|

|T ρ
θ
|
·
(ρ
θ

)ω
m−1

ρ
θ

(
mM−1 |W |

|T̃ |

)
|T ρ

θ
|
(
m

−3/2
ρ
θ

(
sup
V ∈V

#T ρ
θ
,V

)
|T ρ

θ
|1/2

)−σ
,

(8.61)

where the final inequality used (8.59). Substituting (8.57) and simplifying, we obtain

LHS (8.61) ⪆δ δ
β+2ε4 |X|

|T ρ
θ
|
·
(ρ
θ

)ω(
mM−1 |X|

|T̃ |

)−1(
mM−1 |W |

|T̃ |

)
|T ρ

θ
|

·
((

mM−1 |X|
|T̃ |

)−3/2(
sup
V ∈V

#T ρ
θ
,V

)
|T ρ

θ
|1/2

)−σ

⪆δ δ
β+2ε4

(ρ
θ

)ω
|W |

(
mM−1 |X|

|T̃ |

)σ/2((
mM−1 |X|

|T̃ |

)−1(
M−1(sup

V ∈V
#T̃[V ])

)
|T ρ

θ
|1/2

)−σ

⪆δ δ
−σζ/4

(ρ
θ

)ω
|W |

(
m−1 |T̃ |

|X|
(
#T̃[V ]

)
|T ρ

θ
|1/2

)−σ
,

(8.62)

where the second inequality used the fact that #T ρ
θ
,V ∼ M−1(#T̃[V ]) for each V ∈ V = V, and

the third inequality used (8.31), (8.54), |T †| = |T̃ |, and the fact that β and ε4 are small compared
to σζ.

Observe that the set on the LHS of (8.62) is contained in |W |, while the RHS involves the term
|W |. Thus (8.62) gives a lower bound for the density of

⋃
T̃∈T̃ Ỹ (T̃ ) inside W . This bound contains

the term δ−σζ/4 — this quantity is much larger than 1, and this will eventually allow us to conclude
that Conclusion (A) of Lemma 8.3 holds.
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Let us analyze the final term in brackets (· · · )−σ. We have

m−1 |T̃ |
|X|

(
#T̃[V ]

)
|T ρ

θ
|1/2 ≤ m−1 |T̃ |

|X|

(
CF -CW (T̃W )

|V |
|W |

(#T̃[W ])
)
|T ρ

θ
|1/2

⪅δ m
−1 |T̃ |

|X|

( |V |
|W |

(m
|W |
|T̃ |

)
)
|T ρ

θ
|1/2

=
|V |
|X|

|T ρ
θ
|1/2

=
θ

ρ
,

(8.63)

where the second inequality used (8.32) and (8.29).

Combining (8.62) and (8.63), we conclude that∣∣∣ ⋃
T̃∈T̃

Y (T̃ )
∣∣∣ ⪆δ δ

−σζ/4
(ρ
θ

)ω+σ
|W |. (8.64)

Step 11. We can now argue similarly to our reasoning in Step 8. The set on the LHS of (8.64)
is contained in W , which is a prism of dimensions s × t × 1, with δ ≤ ρ ≤ θ ≤ s ≤ 1. Thus there
exists a ball Bθ of radius θ so that∣∣∣Bθ ∩

⋃
T̃∈T̃

Y (T̃ )
∣∣∣ ⪆δ δ

−σζ/4
(ρ
θ

)ω+σ
|Bθ|.

Recall that at the beginning of Step 4 we fixed a prism Z ∈ Z. The set of ρ tubes T̃ are the images
of prisms from P3⟨Z⟩ under the linear map ϕZ . Let B† = ϕ−1

Z (Bθ); B
† is an ellipsoid of dimensions

θ a
ρ × θc× θc, which satisfies∣∣∣B† ∩

⋃
T1∈T1

Y1(T )
∣∣∣ ⪆δ δ

−σζ/4
(ρ
θ

)ω+σ
|B†|.

This is the analogue of (8.47). An identical argument (in particular, note that a ∈ [δ, 1]) shows that
Conclusion (A) of Lemma 8.3 holds, provided we select α < σζ/10. This concludes our analysis of
the case where (8.54) holds.

Step 12. We shall now return to the start of Step 10, except, instead of assuming (8.54), we will
instead suppose that

M > δ−ζ/100 |X|
|T̃ |

. (8.65)

We summarize the situation thus far:

• We have fixed a choice of Z ∈ Z (these are prisms of dimensions a
ρ × c× c) and W ∈ WZ .

• We have a set T̃ of ρ tubes contained in W .

• We have a set V of θ × τ ′ × 1 prisms contained in W .

• For each V ∈ V, we have a set XV of ρ× τ ′

θ ρ×1 prisms, and a partition T̃[V ] =
⊔

X∈XV
(T̃[V ])X .
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• Each set (T̃[V ])X has cardinality roughly M , where M satisfies (8.65).

• We have a shading Ỹ on T̃ so that (T̃, Ỹ )ρ is ⪆δ δ
2ε2 dense.

Let X =
⋃

V ∈V XV (this is a slight abuse of notation, since in Step 9 we defined X to be a set of

the form XV , where the prism V was fixed in advance). To simplify notation, define T̃X = (T̃[V ])X ,
where V is the (unique) prism for which X ∈ XV . Since (T̃, Ỹ )ρ is ⪆δ δ

2ε2 dense, after a harmless
refinement of X we may suppose that each pair (T̃X , Ỹ )ρ is ⪆δ δ

2ε2 dense, where Ỹ is the restriction
of the shading on T̃ to the set T̃X .

Apply Corollary 7.10 (finding a broad scale) to each pair (T̃X , Ỹ )ρ, for each X ∈ X . This yields
a scale ρ̃ and a ⪆δ 1 refinement (T̃′

X , Ỹ ′)ρ that is broad with error ⪅δ 1 with regard to a balanced
partitioning cover of ρ̃ tubes.

After dyadic pigeonholing and refining the set X , we can suppose that the scale ρ̃ from Corollary
7.10 is the same for each prism X. We claim that

ρ̃ ⪆δ δ
−ζ/200ρ. (8.66)

To verify this claim, observe that for each X ∈ X , the sets {Ỹ ′(T̃ ) : T̃ ∈ T̃′
X} are ⪅δ (τ ′/ρ̃)β(ρ̃/ρ)

overlapping. This is because the tubes from T̃′
X whose shadings pass through a common point x

must point in directions confined to a ρ× τ ′ region in the unit sphere S2 ⊂ R3 (we identify S2 with
the set of directions of tubes in R3). Since these tubes are essentially distinct and pass through a
common point, they must point in ρ separated directions. Thus at most ρ/ρ̃ tubes can point in
directions confined to a ρ× ρ̃ region in S2 (this corresponds to those ρ tubes contained in a single
ρ̃ tube), and at most (τ ′/ρ̃)β distinct ρ̃ tubes can contribute to the count. This implies that∣∣∣ ⋃

T̃∈T̃′
X

Ỹ ′(T̃ )
∣∣∣ ⪆δ

( ρ̃

τ ′

)β(ρ
ρ̃

) ∑
T̃∈T̃′

X

|Ỹ ′(T̃ )| ≥ δ−ζ/200
(ρ
ρ̃

)
|X|,

where the second inequality used (8.65) and β < ζ/200. Since the set on the LHS is contained in
X, we obtain (8.66), as claimed.

Next, for each prism X ∈ X there exists a set {U} of essentially distinct ρ× ρ̃× 1 prisms, each
of which are contained in X, so that these sets form a partitioning cover of T̃′

X , and for each such
U , the pair (T̃′

X [U ], Ỹ ′)ρ is broad with error ⪅δ 1 relative to the cap of diameter ρ̃ centered at the
point dir(U). See Figure 14.

For each such prism U , define

Y (U) =
⋃

T̃∈T̃′
X [U ]

Ỹ ′(T̃ ).

Then a Cordoba-style L2 argument shows that for each prism U for which (T̃′
X [U ], Ỹ ′)ρ is ⪆δ δ

2ε2

dense (here Ỹ ′ denotes the restriction of the shading on T̃′
X to T̃′

X [U ]), we have |Y (U)| ⪆δ δ
8ε2 |U |.

Let U denote the set of all prisms U for which this holds, as X ranges over the elements of X .
Note, however, that the prisms in U need not be essentially distinct.

Step 13. Our task in this step is to unwind the various transformations and rescalings from
the previous step, and to understand what the prisms U (and their associated shadings Y (U))
correspond to in the original space in which the tubes T and prisms P reside.

97



. . . . . . . . - - - - -

. . .

δ−
ζ
20 ρ

ρ̃
ρ

ρ

1

Figure 14: We find a set of ρ×ρ̃×1 prisms (blue) inside X (black prism), which forms a partitioning
cover of T̃′

X (red lines). A typical pair of tubes from T̃′
X inside a common (blue) ρ × ρ̃ × 1 prism

intersect at angle roughly ρ̃.

In Step 12, we fixed a choice of Z ∈ Z and W ∈ WZ . Recall that T̃ comes from (P5⟨Z⟩)Z , and
is a set of ρ × ρ × 1-tubes. We obtained a set U = UW,Z of ρ × ρ̃ × 1 prisms (this U is different
from the set U in Step 3, the latter U was defined to introduce Z and only appeared within Step
3), and a shading Y (U) on these prisms. These prisms are contained inside W . Undoing the linear
transformation ϕZ , we have a set ϕ−1

Z (UW,Z) of prisms. After pigeonholing, we may assume that

these prisms are of dimensions ã× b̃× c, for some ã ≥ a and b̃ ≥ b. Since the linear transformation
ϕZ distorts volume by a factor of (a/ρ)c2, we have that (ãb̃) = acρ̃. The dimensions ã, b̃ depend on
the choice of W and Z, but after pigeonholing, we may suppose that these values are the same (up
to a factor of 2) for all Z ∈ Z and all W ∈ WZ . We claim (provided ε2 is chosen sufficiently small
compared to ε3) that either

ã ≤ δ−ε3a, (8.67)

or else Conclusion (A) of Lemma 8.3 holds (provided α is chosen sufficiently small, depending on
ε3). The argument is identical to the argument in Step 1 of Lemma 8.2; we refer the reader there
for details.

Henceforth we shall assume that (8.67) holds. Abusing notation, we will re-define ρ̃ = b̃/c; this
re-definition might decrease the value of ρ̃ by as much as δε3 , and (8.66) might be weakened to
ρ̃ ≥ δ−ζ/400ρ. With this re-definition of ρ̃, we clearly have b̃ = ρ̃c.
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Let
Q =

⋃
Z∈Z

⋃
W∈WZ

ϕ−1
Z (UZ,W ).

For each Q ∈ Q of the form Q = ϕ−1
Z (U), define the shading Y (Q) = ϕ−1

Z (Y (U)) and define the

set PQ ⊂ P[Q] as ϕ−1
Z (T̃′

X [U ]), where X is the ρ × τ ′

θ ρ × 1-prism associated to U (see Step 12).
Summarizing our conclusions thus far, we have the following.

• Each Q ∈ Q is a prism of dimensions ã× b̃× c, with b̃ = ρ̃c.

• For each Q ∈ Q, there is a set PQ ⊂ P[Q]. Define P ′ =
⋃

Q∈Q PQ. There is a shading

Y ′(P ) ⊂ Y (P ), so that (P ′, Y ′)a×b×c is a ⪆δ δ
2ε2 refinement of (P, Y )a×b×c.

• Each Q ∈ Q has a shading Y (Q) given by

Y (Q) =
⋃

P∈PQ

Y ′(P ).

We have |Y (Q)| ⪆δ δ
8ε2 |Q| for each Q ∈ Q.

• For each Q ∈ Q and each x ∈ Y (Q), the prisms P ∈ PQ with x ∈ Y ′(P ) point in directions
that are broad with error ⪅δ 1 inside a cap of radius b̃/c centered at dir(Q) (these correspond
to the tubes T̃′

X [U ] and their associated shading, which are broad with error ⪅δ 1 inside the
ρ× ρ̃× 1 prism U).

• The refinement of (T, Y )δ induced by the refinement (P ′, Y ′)a×b×c of (P, Y )a×b×c is ⪆δ δ2ε2

dense. If we denote this refinement by (T′, Y ′)δ, then (by the definition of being an induced
refinement) we have ⋃

T∈T′

Y ′(T ) =
⋃
Q∈Q

Y (Q).

The pair (Q, Y )ã×b̃×c has some of the desired properties from Conclusion (C) of Lemma 8.3.
Observe that for each Q ∈ Q, dir(Q) is defined up to uncertainty ρ̃. Thus after a refinement of Q
and T′, we can find a set of ρ̃ tubes Tρ̃ and a partition Q =

⊔
Tρ̃∈Tρ̃

QTρ̃ , so that each Q ∈ QTρ̃ is

contained in Tρ̃ and satisfies ∠(dir(Q), dir(Tρ̃)) ≤ ρ̃.

Fix a prism Q ∈ QTρ̃ and a point x ∈ Y (Q). The set of prisms P ∈ PQ with x ∈ Y ′(P ) point
in directions that satisfy ∠(dir(P ),dir(Q)) ≤ ρ̃, and this set of directions is ρ-separated and broad
with error ⪅δ 1 at scales ≥ ρ inside a cap of diameter ρ̃ centered at dir(Q). For each such P
(contained in a ρ tube Tρ), the set of tubes T ∈ T[Tρ] with x ∈ Y ′(T ) are broad with error ⪅δ δ

−2ε2

at scales ≥ δ, inside a cap of diameter ρ centered at dir(P ). Thus by Lemma 7.13 (broadness
combines across scales) and Items (ii) and (iii) of Definition 7.1, we have that the set of tubes
T ∈ T′ associated to the point x ∈ Y (Q) point in directions that are broad with error ⪅δ δ

−2ε2 at
scales ≥ δ inside a cap of diameter ρ̃ centered at dir(Q).

Note that even though the conclusion of Lemma 7.13 is a statement about multi-sets, here
it is also true in the sense of sets. Indeed, Item (ii) of Definition 7.1 says that for each point
x ∈

⋃
Q∈QTρ̃

Y (Q), we have that the sets {dir(T ) : T ∈ T[Tρ] and x ∈ Y ′(T ) ∩ Y ′(P )} are disjoint,

as P ranges over the elements of
⋃

Q∈QTρ̃
PQ that are contained in Tρ. In particular, we can

construct a set Tρ̃ of ρ̃ tubes that covers T′, so that (T′, Y ′)δ is broad with error ⪅δ δ
−2ε2 relative

to Tρ̃.
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Step 14.

We would like to show that (T′, Y ′)δ, Q and its associated shading Y , and T̃ satisfy Conclusion
(C) from Lemma 8.3. First, the prisms in Q might not be essentially distinct. This can be fixed,
however, using the same argument as was employed in Step 5 from the proof of Lemma 8.2. In
brief, we merge comparable prisms from Q into a single prism. Denote the resulting set of prisms
by P̃; these are essentially distinct prisms of dimensions comparable to ã × b̃ × c. Let Ỹ be the
shading on the prisms of P̃ obtained by taking the union of the shadings Y (Q), Q ⊂ P̃ . We define

PP̃ =
⋃
Q∈Q
Q⊂P̃

PQ.

Note that if P ∈ PP̃ , then ∠(dir(P ),dir(P̃ )) ≲ b̃/c = ρ̃. Thus after enlarging ã and b̃ by a constant
factor if needed, we can ensure that if (i): T ∩ P ̸= ∅, (ii): T exists P through its long ends, and
(iii): P ∈ PP̃ , then T ∩ P̃ ̸= ∅ and T exists P̃ through its long ends. At this point, the pair (T′, Y ′)δ
and (P̃, Ỹ )ã×b̃×c satisfy some of the requirements of Conclusion (C) from Lemma 8.3. The situation
matches the setup at the end of Step 5 in the proof of Lemma 8.2.

We now proceed with the same argument that was used in Steps 6 – 8 from the proof of Lemma
8.2. We conclude that either Conclusion (A) of Lemma 8.3 holds (this is the same as Conclusion
(A) of Lemma 8.2), or else there is a set Tρ̃ and a further refinement of (T′, Y ′)δ and (P̃ , Ỹ )ã×b̃×c
that satisfies Items (i), (ii), and (iii) of Conclusion (C) from Lemma 8.3 (Items (i), (ii), and (iii)
of Conclusion (C) from Lemma 8.2). Note that Item (iv) Conclusion (C) is also satisfied, since
ρ̃ ≥ δ−ζ/400ρ. We conclude that Conclusion (C) from Lemma 8.3 holds.

9 A refined induction-on-scales argument

The goal in this section is to show that if (T, Y )δ is a set of δ-tubes, then either
⋃

T Y (T ) has larger
volume than one would expect from the estimate (1.3) from Assertion E(σ, ω), or else there exists a
scale δ << ρ << 1 and a set of ρ tubes that factors T above and below with respect to the Katz-Tao
Convex Wolff Axioms and Frostman Slab Wolff Axioms. The precise statement is as follows.

Proposition 9.1. Let ω, ζ > 0 and σ ∈ (0, 2/3], and suppose that E(σ, ω) is true. Then there
exists α, η, κ > 0 so that the following holds for all δ > 0. Let (T, Y )δ be δη dense, and suppose
that CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η. Then at least one of the following must hold.

(A)
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω−α(#T)|T |

(
(#T)|T |1/2

)−σ
. (9.1)

(B) There exists a refinement (T′, Y ′)δ of (T, Y )δ that is δ
ζ dense, a number ρ ∈ [δ1−ω/100, δω/100],

and a set Tρ that factors T′ above and below with respect to both the Katz-Tao Convex Wolff
Axioms and the Frostman Slab Wolff Axioms, both with error ≤ δ−ζ .

Proof. Step 1. Let ε1, ε2, ε3 be small numbers to be chosen below. We will select ε1 very small
compared to ε2 and ε2 very small compared to ε3. These numbers depend on ω, σ, and ζ. We will
select η and α very small compared to ε1.

Apply Proposition 7.5 (two scale grains decomposition) to (T, Y ) with ε1 in place of ζ, and let
α1 = α1(ω, σ, ε1) be the output of that proposition. If Conclusion (A) of Proposition 7.5 holds,
then (9.1) is true (provided we select α ≤ α1), and we are done.
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Next, suppose Conclusion (B) of Proposition 7.5 holds. Let ρ, c, (T1, Y1)δ, Tρ, and (G, Y )a×ρc×c

be the output from Proposition 7.5, Conclusion (B).

Apply Proposition 4.6 (factoring convex sets) to Tρ. We obtain a ≈ρ 1 refinement of Tρ, which
in turn induces a ≈ρ 1 refinement of (T1, Y1)δ (abusing notation, we will continue to refer to these
objects as Tρ and (T1, Y1)δ) and a collection Z of congruent convex sets that factors Tρ from above
with respect to the Katz-Tao Convex Wolff Axioms and from below with respect to the Frostman
Convex Wolff Axioms, both with error ⪅ρ 1. Furthermore,

#Tρ[Z] ⪆ρ CKT -CW (Tρ)|Z||Tρ|−1 for each Z ∈ Z. (9.2)

If CKT -CW (Tρ) ≤ δ−ζ , then provided we select ε1 ≤ ζ/2, we have that (T1, Y1) and Tρ satisfy
Conclusion (B) of Proposition 9.1, and we are done. Indeed; by Remark 4.3(A) we have CF -SW (Tρ) ≲

CF -SW (T1) ⪅δ δ−η1−ε1 ≤ δ−ζ , while by Remark 4.3(B) we have CKT -CW (TTρ

1 ) ≲ CKT -CW (T) ≤ δ−η

for each Tρ ∈ Tρ.

Step 2. We now consider the case where CKT -CW (Tρ) > δ−ζ , and hence

#Tρ[Z] ≳ δ−ζ |Z|
|Tρ|

for each Z ∈ Z. (9.3)

Our goal is to show that Conclusion (A) of Proposition 9.1 holds, provided α > 0 is chosen
appropriately.

First, we claim that either Conclusion (A) of Proposition 9.1 holds, or else the prisms in Z are
almost tubes. Indeed, let t× θ× 2 be the dimensions of the prisms in Z. If ε1 is chosen sufficiently
small depending on ε2, ω, and σ, then by applying Proposition 5.2 with ε2 in place of ε, we have∣∣∣ ⋃

T∈T1

Y1(T )
∣∣∣ ≳ δω+ε2

(θ
t

)ω
(#T)|T |

(
(#T)|T |1/2

)−σ
, (9.4)

where the implicit constant depends on ε2. In particular, we may suppose that

t ≥ δε3θ, (9.5)

or else Conclusion (A) of Proposition 9.1 holds, provided ε2 ≤ ε3ω/2 and α ≤ ε3ω/2. Replace each
t × θ × 2 prism Z ∈ Z with its coaxial θ-tube. After dyadic pigeonholing and replacing (T1, Y1)δ
and Tρ with a ≈δ 1 refinement, we can find a balanced cover Tθ of Tρ that factors Tθ from below
with respect to the Frostman Convex Wolff Axioms and from above with respect to the Katz-Tao
Wolff Axioms, both with error ⪅δ δ

−ε3 .

(9.3) implies that for each Tθ ∈ Tθ we have #Tρ[Tθ] ⪆δ δ
ε3−ζ(θ/ρ)2, and hence

#Tρ ⪆δ δ
ε3−ζ(θ/ρ)2(#Tθ). (9.6)

Step 3. For each Tθ ∈ Tθ, define

GTθ
=

⋃
Tρ∈Tρ[Tθ]

GTρ .

We claim that either Conclusion (A) holds (for a suitably chosen value of α), or else there is a ≈δ 1
refinement of (G, Y )a×ρc×c so that the following holds: a ∈ [δ, δ1−ε1 ] and for each Tθ ∈ Tθ and each
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G ∈ GTθ
, the set of grains G′ ∈ GTθ

with Y (G) ∩ Y (G′) ̸= ∅ is contained in a prism of dimensions

comparable to θδ1−ε2

ρ × θc× c (compare this with the dimensions of G, which are a× ρc× c). The
argument is identical to the argument in Steps 1 and 2 from Lemma 8.3; we refer the reader to
those Steps for details.

We shall suppose henceforth that for each Tθ ∈ Tθ and each G ∈ GTθ
, the set of grains G′ ∈ GTθ

with Y (G) ∩ Y (G′) ̸= ∅ is contained in a prism of dimensions comparable to θδ1−ε2

ρ × θc× c.

Step 4. By dyadic pigeonholing we can find a number µfine and a ≈δ 1 refinement of (T1, Y1)δ and
Tρ so that for each Tρ ∈ Tρ and each x ∈

⋃
T∈T1[Tρ]

Y1(T ), we have

#
(
(T1[Tρ])Y1(x)

)
∼ µfine.

We can choose these refinements so it continues to be the case that (TTρ

1 , Y
Tρ

1 )δ/ρ is ⪆δ δε1 dense

and CF -SW (TTρ

1 ) ⪅δ δ
−ε1 for each Tρ ∈ Tρ (recall that we still have CKT -CW (TTρ

1 ) ≤ δ−η).

If ε1 is chosen sufficiently small depending on ε2, then we can apply the estimate E(σ, ω) to
conclude that for each Tρ ∈ Tρ, we have∣∣∣ ⋃

T∈T1[Tρ]

Y1(T )
∣∣∣ ≳ (δ

ρ

)ω+ε2(#T1[Tρ])|T |
(

(#T1[Tρ])
( |T |
|Tρ|

)1/2)−σ
,

where the implicit constant depends on ε2, and hence by (9.6),

µfine ≲
(δ
ρ

)−ω−ε2(#T1

#Tρ

δ

ρ

)σ
⪅δ δ

−2ε3+σζ
(δ
ρ

)−ω(#T1

#Tθ

δρ

θ2

)σ
. (9.7)

Step 5. In previous applications of induction on scale, the estimate (9.7) would be paired with
a multiplicity estimate on the tubes in Tρ. Our innovation, however, is to pair the estimate (9.7)
with a multiplicity estimate on G.

After refining the pair (G, Y )a×ρc×c by a ≈δ 1 factor (this in turn refines (T1, Y1)δ by a similar
quantity), we can find a number µmedium so that for each Tθ ∈ Tθ and each x ∈

⋃
G∈GTθ

Y (G), we

have
#{G ∈ GTθ

: x ∈ Y (G)} ∼ µmedium.

Our task is to estimate µmedium. Recalling the conclusion of Step 3, we can cover Tθ by rectan-
gular prisms P of dimensions comparable to θδ1−ε2

ρ ×θc× c, so that every pair of grains G,G′ ∈ GTθ

with Y (G)∩Y (G′) ̸= ∅ are contained in a common prism. Let P denote this set of prisms; then for
each P ∈ P, GP

Tθ
is a set of prisms, each of which has dimensions roughly ρ

θ ×
ρ
θ × 1 (more precisely,

each prism in GP
Tθ

has dimensions comparable to s× t× 1, where s, t ∈ [δε2 ρ
θ ,

ρ
θ ]; this additional δε2

factor will be harmless). After pigeonholing, we may assume that the lengths s and t are the same
for every Tθ ∈ Tθ and every P ∈ P.

We have CKT -CW (GP
Tθ

) ≲ δ−ε2C loc
KT -CW (G) ≤ δ−ε1−ε2 , while

CF -SW (GP
Tθ

) ≤ CF -CW (GP
Tθ

) ≤ CKT -CW (GP
Tθ

)(ρ/θ)−2(#GP
Tθ

)−1 ≤ δ−ε1−2ε2(ρ/θ)−2(#GP
Tθ

)−1.

If ε2 is selected sufficiently small depending on ε3, ω, and σ, then we can apply Assertion E(σ, ω)
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to conclude that∣∣∣ ⋃
GP∈GP

Tθ

Y P (GP )
∣∣∣ ≥ (ρ

θ

)ω+ε3δ5ε2(#GP
Tθ

)|GP |
([

(ρθ)−2(#GP
Tθ

)−1
][

#GP
Tθ

][
|GP |1/2]

)−σ

⪆δ

(ρ
θ

)ω+ε3δ5ε2(#GP
Tθ

)|GP |
(ρ
θ

)σ
,

and thus
µmedium ⪅δ δ

−2ε3
(ρ
θ

)−ω−σ
. (9.8)

Step 6. At this point, we have estimated the quantities µfine and µmedium. The former allows us
to control the number of δ tubes that contribute to (a specific point in) a grain, while the latter
allows us to control the number of grains that contribute to (a specific point in) a θ tube.

It remains to place a dense shading on Tθ and obtain a corresponding multiplicity estimate for
the number of θ tubes that contribute to (a specific point in) R3. After dyadic pigeonholing, we
can refine (T1, Y1)δ and Tρ so that for each Tθ ∈ Tθ and each x ∈

⋃
T∈T1[Tθ]

Y1(T ), we have that

|B(x, θ) ∩
⋃

T∈T1[Tθ]
Y (T )| has roughly the same volume. Let Y (Tθ) = Tθ ∩ Nθ

(⋃
T∈T1[Tθ]

Y1(T )
)
;

then (Tθ, Y )θ is ⪆δ δ
ε1 dense. After further pigeonholing we can find a number µcoarse so that

#(Tθ)Y (x) ∼ µcoarse for each x ∈
⋃

Tθ∈Tθ

Y (Tθ).

By Remark 4.3(A), we have CF -SW (Tθ) ≲ CF -SW (T) ⪅δ δ
−ε1 , and CKT -CW (Tθ) ≲ δ−ε3CKT -CW (Z) ⪅δ

δ−ε3 . Thus if ε1 is chosen sufficiently small compared to ε2, then we can apply E(σ, ω) to conclude
that ∣∣∣ ⋃

Tθ∈Tθ

Y (Tθ)
∣∣∣ ≳ θω+ε2+ε3(#Tθ)|Tθ|

(
(#Tθ)|Tθ|1/2

)−σ
,

and hence
µcoarse ≲ θ−ω−ε2−ε3

(
(#Tθ)θ

)σ
. (9.9)

Combining (9.7), (9.8), and (9.9), we conclude that for each x ∈ R3 we have

#{T ∈ T1 : x ∈ Y1(T )} ≤ µfine µmedium µcoarse

⪅ δ−4ε3+σζδ−ω
(

(#T)δ
)σ

.
(9.10)

We conclude that ∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ⪆δ δ

ω+4ε3−σζ(#T1)|T |
(

(#T)|T |1/2
)−σ

.

Since #T1 ⪆δ δε1(#T), we have that Conclusion (A) holds, provided we select ε3 < σζ/10 and
α < σζ/10.

10 Sticky Kakeya for tubes satisfying the Katz-Tao Convex Wolff
Axioms at every Scale

In Section 6, we recalled a version of the Sticky Kakeya Theorem that was proved in [26]; this is
Theorem 6.2. Theorem 6.2 applies to families of tubes that satisfy the Frostman Convex Wolff
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Axioms at every scale, in the sense of Definition 6.1. In this section, we will prove an analogue of
Theorem 6.2 for sets of tubes that satisfy the Katz-Tao Convex Wolff Axioms at every scale.

Definition 10.1. Let K ≥ 1, δ > 0. We say a set T of essentially distinct δ-tubes satisfies the Katz-
Tao Wolff Axioms at every scale with error K if for every ρ0 ∈ [δ, 1], there exists ρ ∈ [ρ0,Kρ0) and
a set of ρ-tubes Tρ that satisfies the following properties.

(i) Tρ is a K-balanced partitioning cover of T.

(ii) CKT -CW (Tρ) ≤ K.

Theorem 10.2. For all ε > 0, there exists η, κ > 0 so that the following holds for all δ > 0. Let
T be a set of δ-tubes that satisfy the Katz-Tao Convex Wolff Axioms at every scale with error δ−η,
and let Y (T ) be a δη dense shading. Then∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδε(#T)|T |. (10.1)

In the next section, we will combine Theorem 10.2 with Proposition 9.1 to prove Proposition
1.7. Theorem 10.2 is proved by combining Theorem 6.2 with the following Nikishin-Stein-Pisier
Factorization type result.

Proposition 10.3. Let ε > 0. Then there exists Kε, η > 0 so that the following holds for all δ > 0.
Let T be a non-empty set of δ tubes inside the unit ball in R3 that satisfy the Katz-Tao Convex
Wolff axioms at every scale with error δ−η. Then there exist rigid transformations A1, . . . , AN ,
N ≤ Kε(#T)−1|T |−1 so that each set Ai(T) is contained inside B(0, 2), and

⋃N
i=1Ai(T) contains a

subset of essentially distinct tubes that satisfies the Frostman Convex Wolff Axioms at every scale
with error Kεδ

−ε.

Proof of Theorem 10.2 using Proposition 10.3. Fix ε > 0 and let η = η(ε) > 0 be a small quantity
to be determined below. Let (T, Y )δ be δη dense, and suppose that T satisfies the Katz-Tao Wolff
Axioms at every scale with error δ−η. After a harmless refinement we may suppose |Y (T )| ≥ δ2η|T |
for each T ∈ T.

Apply Proposition 10.3 with a small value ε1 in place of ε. We may do this, provided η is
selected sufficiently small depending on ε1. Let T̃ ⊂

⋃N
i=1Ai(T) be the output from Proposition

10.3. Note that each T̃ ∈ T̃ is of the form T̃ = Ai(T ) for some index i and some T ∈ T, and hence
we can define the shading Ỹ (T̃ ) = Ai(Y (T )); we have |Ỹ (T̃ )| = |Y (T )| ≥ δ2η|T |, and hence (T̃ , Ỹ )δ
is δ2η dense.

If ε1 and η are chosen sufficiently small depending on ε, then we can apply Theorem 6.2 to
conclude that

N
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ =

N∑
i=1

∣∣∣ ⋃
T∈T

Ai(Y (T ))
∣∣∣ ≥ ∣∣∣ N⋃

i=1

⋃
T∈T

Ai(Y (T ))
∣∣∣ ≥ ∣∣∣ ⋃

T̃∈T̃

Ỹ (T̃ )
∣∣∣ ≥ κεδ

ε.

Re-arranging and noting that N ≤ Kε(#T)−1|T |−1, we obtain (10.1), with κ = κεK
−1
ε .

It remains to prove Proposition 10.3. We will do so below.
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10.1 Nikishin-Stein-Pisier Factorization and the Convex Wolff Axioms

We begin with a single-scale version of Proposition 10.3. We first need the following definition.

Definition 10.4. We say that a set T of δ tubes is regular with granularity τ ∈ [δ, 1] if for every
scale ρ ∈ [δ, 1] of the form ρ = δτ−ℓ, ℓ ∈ N, we have that T has a balanced partitioning cover by ρ
tubes.

Definition 10.5. For ρ > 0, we define Aρ to be the set of rigid transformations A : R3 → R3 that
satisfy |Ax− x| ≤ ρ for all x ∈ B(0, 1).

Lemma 10.6. For all ε > 0, there exists η > 0 and Kε ≥ 1 so that the following holds for all
0 < δ ≤ ρ ≤ 1. Let K,M ≥ 1 and let T1, . . . ,TK be sets of δ tubes in B(0, 1) ⊂ R3, each of
cardinality at most M . Suppose that the tubes in each set Tj are regular with granularity δη, and
furthermore each set Tj is contained in a ρ tube.

Then there exists a set of rigid transformations A ⊂ Aρ with #A =
⌈ ρ2

Mδ2

⌉
, so that

CKT -CW

( ⊔
A∈A

A(Tj)
)
≤ Kεδ

−ε(log(2 + K))CKT -CW (Tj), j = 1, . . . ,K. (10.2)

Remark 10.7. Note that for distinct A,A′ ∈ A, the sets A(Tj) and A′(Tj) might contain common
tubes, and thus the disjoint union on the LHS of (10.2) should be interpreted as a multiset. By
Remark 4.2(D), the LHS of (10.2) is well-defined.

Proof.
Step 1. Define δ̃ = δ/ρ. First, we may suppose that M < δ̃−2, or else we can define A = {I} (here
I : R3 → R3 is the identity map) and we are done. Similarly, we may suppose ρ ≥ δ1−ε/2, or else

we can define A to be
⌈ ρ2

Mδ2

⌉
infinitesimally perturbed copies of I, and (10.2) follows from the fact

that
CKT -CW

( ⊔
A∈A

A(Tj)
)
≤ (#A)CKT -CW (Tj).

Fix an index j ∈ [1, . . . ,K] and let T = Tj . By hypothesis, all of the tubes in T are contained
in a common ρ tube, which we will denote by Tρ. Fix numbers δ ≤ a ≤ b ≤ 2ρ, with both a and b
of the form δℓη. Let ν ≥ 1 be a power of 2. By hypothesis, T has a balanced partitioning cover Ta.

Let Wν be a maximal set of essentially distinct a× b× 2 prisms, each of which satisfy #T[W ] ∈[
ν#T
#Ta

, 2ν#T
#Ta

)
. Note that each W ∈ Wν is contained in N2ρ(Tρ). Observe that if W is an a×b×2

prism and T ∈ T[Ta] with T ⊂ W , then Ta ⊂ 2W . In particular, since Ta is a balanced partitioning
cover of T, we have

#Ta[2W ] ≥ ν/2 for each W ∈ Wν .

Each tube Ta ∈ Ta is contained in ≲ b
a essentially distinct 2a × 2b × 4 prisms. Thus by

double-counting we have

#Wν ≲ (#Ta)
b

a
ν−1. (10.3)

The above estimate is useful when ν is not too large. When ν#T
#Ta

≥ CKT -CW (T)(ab)|T |−1, then
Wν = ∅.

Step 2. We say two rigid motions A,A′ ∈ Aρ are δ-separated if there exists a point x ∈ B(0, 1) with
|A(x) −A′(x)| ≥ δ. Let Aδ

ρ be a maximal δ-separated subset of Aρ; we have #Aδ
ρ ∼ δ̃−6 = δ6/ρ6.
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Let

N = 2
⌈ ρ2

Mδ2

⌉
, (10.4)

and let A1, . . . , AN be chosen uniformly and independently at random from Aδ
ρ. We have

P
(
#{A1, . . . , AN} ≥ N/2

)
≥ 3/4, (10.5)

where #{A1, . . . , AN} denotes the number of distinct rigid motions in the set {A1, . . . , AN}.

Fix a a× b× 2 prism W0. We would like to estimate the probability that

#
( N⊔

i=1

Ai(T)
)

[W0] ≥ Kεδ
−ε/2(log(2 + K))CKT -CW (T)|W0||T |−1, (10.6)

i.e. we would like to estimate the probability that

N∑
i=1

#T[(A−1
i (W0))] ≥ Kεδ

−ε/2(log(2 + K))CKT -CW (T)|W0||T |−1. (10.7)

Note that if (10.7) occurs, then by pigeonholing, there must be some dyadic ν so that

#
{

(W, i) ∈ (Wν × {1, . . . , N}) : Ai(W ) is contained in 10W0

}
≥ Zν , (10.8)

where

Zν =
(
4 log(1/δ)

)−1
Kεδ

−ε/2(log(2 + K))CKT -CW (T)|W0||T |−1
(

sup
W∈Wν

#T[W ]
)−1

. (10.9)

We may suppose that

sup
W∈Wν

#T[W ] ∼ ν
#T
#Ta

≤ CKT -CW (T)(ab)|T |−1, (10.10)

since otherwise Wν = ∅, and thus it is impossible for either of Inequality (10.8) or (10.7) to be true.
Since |W0| = 2ab, we can use (10.10) to bound Zν . We conclude that

Zν ≥
(
2 log(1/δ)

)−1
Kεδ

−ε/2(log(2 + K)).

We will choose the constant Kε sufficiently large so that Zν ≥ 2, and in particular

Zν − 1 ∼ Zν . (10.11)

This will be relevant in Step 3 when we apply Chernoff’s inequality.

Step 3. We will estimate the probability that (10.8) occurs for a fixed choice of ν and W0. For
two a× b× 2 prisms W,W0, both of which are contained inside N2ρ(Tρ) we have that the number
of A ∈ Aδ

ρ for which A(W ) is comparable to W0 (or equivalently, A−1(W0) is comparable to W ) is

≲ δ−6a2b2ρmin{a/b, ρ}. We will write this as δ̃−6ã2b̃2 min{ã/(b̃ρ), 1} ≤ δ̃−6ã2b̃2, where we define
ã = a/ρ and b̃ = b/ρ.

The reason for this numerology is as follows. Without loss of generality, assume W0 = [0, a] ×
[0, b] × [0, 2]. Then a rigid motion A is determined by A(vi) with v0 = (0, 0, 0), v1 = (0, 1, 0), v2 =

(0, 0, 1). Since A ∈ Aδ
ρ, the number of δ-separated choice for A(v0) is ≤ |W∩B(0,ρ)|

δ3
∼ abρ

δ3
. Once

106



A(v0) is fixed, the number of δ-separated choices for A(v2) is ≤ ab
δ2

. Once A(v0), A(v2) are fixed,
the number of δ-separated choices for A(v1) is ≤ min{a

b , ρ}δ
−1.

Thus if we define Xi to be the event that there exists W ∈ Wν such that Ai(W ) is comparable
to W0, then

P(Xi) ≲ δ̃−6ã2b̃2 · #Aδ
ρ · #Wν ≲ ã2b̃2(#Wν). (10.12)

Since the prisms in Wν are essentially distinct, there can exist at most O(1) W ∈ Wν such that
Ai(W ) is comparable to W0. Thus by linearity of expectation, we have

E
(

#{(W, i) ∈ (Wν × {1, . . . , N}) : Ai(W ) is comparable to W0}
)

= E(X1 + . . . + XN )

≲ Nã2b̃2(#Wν)

≲ 2
⌈ ρ2

Mδ2

⌉
ã2b̃2(#Wν)

On the third line we used (10.12); on the fourth line we used (10.4) and (10.3).

Define X = X1 + . . . + XN . Recalling (10.9) and (10.11), we have

γ :=
Zν

E(X)
≳ log(1/δ)−1Kεδ

−ε/2(log(2 + K))CKT -CW (T)|W0||T |−1
(

2
⌈ ρ2

Mδ2

⌉
ã2b̃2 sup

W∈Wν

#T[W ] · (#Wν)
)−1

≳ log(1/δ)−1Kεδ
−ε/2(log(2 + K))CKT -CW (T)|W0||T |−1

(
2
⌈ ρ2

Mδ2

⌉
ã2b̃2

b

a
(#T)

)−1

≳ log(1/δ)−1Kεδ
−ε/2(log(2 + K))

On the second line we used (10.3) and the inequality #T[W ] ∼ ν#T
Ta

; on the third line we used

the fact that |T | ∼ δ2 and the fact that ã = a/ρ; and on the final line we used the fact that
CKT -CW (T) ≥ 1, b̃2 ≤ 4, |W0| = 2ab, and #T ≤ M .

Hence we can apply the multiplicative Chernoff’s inequality to conclude that

P(X ≥ Zν) ≤
(eγ−1

γγ

)E(X)
≲ e−γE(X) = e−Zν ≲ (2 + K)−(log 1/δ)−1Kεδ−ε/2

≲ K−1 exp[−Kεδ
−ε/3].

For the second inequality, we used the fact that Kε is sufficiently large, eγ−1

γγ ≤ e−γ for all δ > 0
and K ≥ 1.

Step 4. There are log(1/δ) choices of ν; at most a−3b−1 ≤ δ−4 essentially distinct prisms W0;
and η−2 choices of numbers (a, b). Thus the probability that there exists some prism W ⊂
N2ρ(Tρ) of dimensions a × b × 2 for some pair a ≤ b of the form δηℓ for which (10.6) holds is
≲ δ−6K−1 exp[−Kεδ

−ε/3]. We will select Kε sufficiently large so that this quantity is at most
(2K)−1. If no such prism exists, then provided η ≤ ε/4 we have

CKT -CW

( N⊔
i=1

Ai(T)
)
≤ Kεδ

−ε(log(2 + K))CKT -CW (T). (10.13)

Indeed, for every prism W ⊂ R3 of dimensions a×b×2, we can select a prism W ′ ⊂ W of dimensions
a′ × b′ × 2 with a′, b′ of the form δℓη and |W ′| ≤ δ−2η|W | ≤ δ−ε/2|W |.
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In particular, we have that (10.13) holds with probability at least 1 − (2K)−1. Since there are
K sets of tubes T1, . . . ,TK , we conclude that with probability at least 1/2, we have that (10.13)
is true for every set T1, . . . ,TK . Finally, by (10.5), we have that the probability that #A ≥ N/2
and (10.13) is true for every set T1, . . . ,TK is at least 1/4. We conclude that there exists a choice

of A1, . . . , AN and a set A ⊂ {A1, . . . AN} of cardinality
⌈

ρ2

Mδ2

⌉
so that (10.2) holds.

Lemma 10.6 has the following consequence.

Corollary 10.8. For all ε > 0, there exists η > 0 and Kε ≥ 1 so that the following holds for all
0 < δ ≤ ρ ≤ 1. Let T be a set of δ-tubes, and let Tρ be a balanced partitioning cover of T. Suppose
that for each Tρ ∈ Tρ, we have that TTρ is regular with granularity (δ/ρ)η.

Then there exists a set of rigid transformations A with #A = 2
⌈#Tρ

#T
|Tρ|
|T |

⌉
and

A(Tρ) ⊂ N3ρ(Tρ) for each A ∈ A, Tρ ∈ Tρ, (10.14)

so that

CKT -CW

(( ⊔
A∈A

A(T)
)

[N3ρ(Tρ)]
)
≤ Kεδ

−εCKT -CW (T) for each Tρ ∈ Tρ. (10.15)

Remark 10.9. An immediate application of Lemma 10.6 yields the slightly weaker statement

CKT -CW

(( ⊔
A∈A

A(T[Tρ])
))

≤ Kεδ
−εCKT -CW (T) for each Tρ ∈ Tρ,

but (10.15) follows from the hypothesis that the tubes in Tρ are essentially distinct, and hence
there are ≲ 1 tubes T ′

ρ ∈ Tρ for which
(⊔

AA(T[T ′
ρ])

)
[Tρ] is non-empty.

We are now ready to prove Proposition 10.3.

Proof of Proposition 10.3. Step 1. Fix ε > 0. Let ε1 > 0 be a small quantity to be chosen below.
We will choose ε1 small compared to ε, and η small compared to ε1. Let T be a set of δ tubes that
satisfy the Katz-Tao Convex Wolff axioms at every scale with error δ−η.

Provided we select η ≤ ε, there exists a number J ∼ ε−1 and scales 1 = ρ0 > ρ1 > . . . > ρJ = δ
with δε ≤ ρj+1/ρj < 1/8 for each index j, so that the following holds: for each index j = 0, . . . , J−1,
there is a δ−η-balanced partitioning cover Tρj of T, with CKT -CW (Tρj ) ≤ δ−η. Define TρJ = T.

Currently, Tρj covers T, but unfortunately, it might not be the case that Tρj covers Tρj+1 .
We can fix this as follows. We know that for each index j > 0, we have T[Tρj+1 ] ̸= ∅ for each
Tρj+1 ∈ Tρj+1 . Since Tρj covers T, we have that for each Tρj+1 ∈ Tρj+1 , there exists Tρj ∈ Tρj so
that T[Tρj+1 ] ∩ T[Tρj ] ̸= ∅, and hence Tρj+1 ∩ Tρj contains a unit line segment. But this implies
that Tρj+1 ⊂ N2ρj+1(Tρj ). Thus, if we replace each set Tρj with {N2ρj+1(Tρj ) : Tρj ∈ Tρj} for
j = 0, . . . , J − 1 (leaving TρJ unchanged), then for each index j we have that Tρj covers Tρj+1 .
It is still the case that Tρj is a ≲ δ−η-balanced cover of T, and hence Tρj is a ≲ δ−2η-balanced
cover of Tρj+1 . Abusing notation, we will continue to refer to these sets as Tρj (even though this
set is technically a collection of (ρj + 2ρj+1) tubes; since ρj+1 ≤ ρj/4, this distinction will not be
important). Note that it might no longer be the case that the tubes in Tρj are essentially distinct,
nor that Tρj is a partitioning cover of T.

Step 2.
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After dyadic pigeonholing, we can replace each set Tρj by a subset (abusing notation, we will
continue to refer to this subset as Tρj ) so that #TρJ ⪆ #T, and the following holds for each

j = 0, . . . , J . (To simplify notation, we define T̃ρj = N3ρj (Tρj ) and T̃ρj = {T̃ρj : Tρj ∈ Tρj} ).

(i) The tubes in T̃ρj are essentially distinct.

(ii) For each Tρj ∈ Tρj , we have T̃ρj+1 [T̃ρj ] = T̃ρj+1 [Tρj ].

(iii) Tρj is a balanced partitioning cover of T̃ρj+1 .

(iv) for each Tρj ∈ Tρj , we have that (T̃ρj+1)Tρj is regular with granularity (3ρj/ρj+1)
η1 .

For each index j = 1, . . . , J , apply Corollary 10.8 with ε1 in place of ε, T̃ρj in place of T, Tρj−1

in place of Tρ, 3ρj in place of δ, and 3ρj/ρj−1 in place of ρ. Let Aj be the output of Corollary 10.8.

By (10.14) plus Item (ii) above, for each Tρj−1 ∈ Tρj−1 , we have⊔
A∈Aj

A(T̃ρj [T̃ρj−1 ]) =
⊔

A∈Aj

A(T̃ρj [Tρj−1 ]) ⊂ T̃ρj−1 , (10.16)

and hence by Item (iii),

T̃ρj−1 covers
⊔

A∈Aj

A(T̃ρj ). (10.17)

Here the disjoint union is in the sense of multi-sets.

We have

#
(( ⊔

A∈Aj

A(T̃ρj )
)

[T̃ρj−1 ]
)
≥ (#Aj)

( #T̃ρj

2#Tρj−1

)
≳

|Tρj−1 |
|Tρj |

for each Tρj−1 ∈ Tρj−1 . (10.18)

By (10.15), there exists Cε1 ≥ 1 so that

CKT -CW

(( ⊔
A∈Aj

A(T̃ρj )
)

[T̃ρj−1 ]
)
≤ Cε1δ

−ε1−2η for each T̃ρj−1 ∈ T̃ρj−1 . (10.19)

Step 3. Define A(0) = {I} and for j = 1, . . . , J , define

A(j) = {A1 ◦A2 ◦ . . . ◦Aj : Ai ∈ Ai for each i = 1, . . . j}.

Define A = A(J); this set of transformations will be the output of Proposition 10.3.

For each index j = 0, . . . , J , define

T̂ρj =
⊔

A∈A(j)

A(T̃ρj ).

By (10.17), T̂ρj−1 covers T̂ρj for each j = 1, . . . , J .

By (10.18), for each 1 ≤ j ≤ J and each Tρj−1 ∈ Tρj−1 we have

#T̂ρj [T̃ρj−1 ] ≳
|Tρj−1 |
|Tρj |

.
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Thus after dyadic pigeonholing, we can replace each set T̂ρj by a refinement T̂′
ρj (in the sense

of multi-sets), so that T̂′
ρj−1

is a balanced partitioning cover of T̂′
ρj for each j = 1, . . . , J , and for

each j = 1, . . . , J and each Tρj−1 ∈ Tρj−1 we have

#T̂′
ρj [T̃ρj−1 ] ≳ δη

|Tρj−1 |
|Tρj |

,

and hence

#T̂′
ρJ

[T̃ρj ] ≳ δη/ε
|Tρj |
|T |

for each T̃ρj ∈ T̂′
ρj . (10.20)

Step 4. Using Lemma 4.12 and (10.19), we have

CKT -CW (T̂′
ρJ

) ≤ CKT -CW (T̂ρJ ) ≲
J∏

j=1

(
Cε1δ

−ε1−2η
)
≲ δ−2ε1J .

In particular, for each T ∈ T̂′
ρJ

, there are ≲ δ−2ε1J tubes T ′ ∈ T̂′
ρJ

comparable to T . Recall
that J ∼ ε−1. We will choose ε1 sufficiently small so that 2ε1J < ε/4. Thus we can select a set
T† ⊂ T̂′

ρJ
⊂

⋃
A∈AA(T̃ρJ ) with #T† ≳ δε/4(#T̂′

ρJ
) ≥ δε|T |−1 that consists of of essentially distinct

tubes. The set T† will be the output of Proposition 10.3.

It remains to verify that T† satisfies the Frostman Convex Wolff Axioms at every scale, with
error δ−ε. To do so, it suffices to note that for each index j = 0, . . . , J − 1, we have that T̂′

ρj is a

δ−ε/42J−j-balanced partitioning cover of T†, and thus if we choose η < ε2/2, then for each T̃ρj ∈ T̂′
ρj

we can use (10.20) to conclude that

CF -CW

(
(T†)T̃ρj

)
≤ CKT -CW (T†)

#T†[T̃ρj ]

|T̃ρj |
|T |

≲ δ−η/εCKT -CW (T†) ≤ δ−η/ε−ε/4CKT -CW (T̂′
ρJ

) ≤ δ−ε.

11 Multi-scale analysis and the proof of Proposition 1.7

Our goal in this section is to prove Proposition 1.7 by combining Proposition 9.1 and Theorem
10.2.

Lemma 11.1. Let σ ∈ (0, 2/3]; ω, ε > 0 and N ≥ 1. Suppose that E(σ, ω) is true. Then there exists
η, α, κ > 0 so that the following holds for all δ > 0. Let (T, Y )δ be δη dense with CKT -CW (T) ≤ δ−η

and CF -SW (T) ≤ δ−η. Then at least one of the following must hold.

(A)
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω−α(#T)|T |

(
(#T)|T |1/2

)−σ
.

(B) There is a δε refinement (T′, Y ′)δ of (T, Y )δ; a number J ≤ 2N ; scales δ = ρJ < ρJ−1 < . . . <
ρ0 = 1; and sets Tρj , j = 0, . . . , J , so that the following holds

(i) ρi+1/ρi ≥ δ(1−ω/100)N for each i = 0, . . . , J − 1.

(ii) T′ = TρJ , and Tρ0 consists of a single 1 tube.
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(iii) For each i = 1, . . . , J − 1 and each Tρi−1 ∈ Tρi−1, we have that T
Tρi−1
ρi factors T

Tρi−1
ρi+1

from above and below with regard to the Katz-Tao Convex Wolff Axioms and Frostman
Slab Wolff Axioms, both with error δ−ε.

Proof.
Step 1. We will prove the result by induction on N . When N = 0 there is almost nothing to
prove; since the tubes in T are contained in the unit ball, we can select a ∼ 1 refinement T′ ⊂ T
that is contained in a single 1 tube. We have J = 1, and Conclusion (B) always holds (note that
Item (iii) of Conclusion B is vacuously true when J = 1.

Suppose now that the result has been proved for N − 1. Let θ ∈ (0, 2/3] and let ε, ω > 0.
Let ε1, ε2, η, α, c > 0 be small quantities to be determined below. We will choose ε1 depending on
ε,N, θ, ω; ε2 small compared to ε1; and η, α, c small compared to ε2.

Let (T, Y )δ be δη dense and satisfy CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η. If η is chosen
sufficiently small depending on ω, σ, and ε2, then we can apply the induction hypothesis with ε2 in
place of ε; let α1 = α1(ω, σ, ε2, N − 1) be the corresponding value of α.

If Conclusion (A) holds when we apply the induction hypothesis, then Conclusion (A) holds
and we are done, provided we select α ≤ α1. Suppose instead that Conclusion (B) holds, i.e.
there is a δε2 refinement (T′, Y ′)δ; scales δ = ρJ < ρJ−1 < . . . < ρ0 = 1 with J ≤ 2N−1 and

ρi+1/ρi ≥ δ(1−ω/100)N−1
; and sets Tρj satisfying Conclusion (B) with ε2 in place of ε.

Replacing (T′, Y ′)δ and each set Tρi with a (log 1/δ)−J ≥ (log 1/δ)−2N refinement, we can
construct shadings Yρi on Tρi so that the following holds.

(a) |Yρ0(Tρ0)| ≳ (log 1/δ)−2N δη, where Tρ0 is the unique tube in Tρ0 .

(b) For each Tρi ∈ Tρi , we have that (TTρi
ρi+1 , Y

Tρi
ρi+1)ρi+1/ρi is ≳ (log 1/δ)−2N δη dense, and (YρJ ,TρJ )δ

is a ≳ (log 1/δ)−2N -refinement of (T′, Y ′)δ.

(c) Item (iii) of Conclusion (B) remains true, with the error δ−ε2 weakened to ≲ (log 1/δ)2
N
δ−ε2 .

(d) For each i = 1, . . . , J−1 and each Tρi−1 ∈ Tρi−1 , we have that T
Tρi−1
ρi is a balanced partitioning

cover of T
Tρi−1
ρi+1 .

(e) For each i = 0, . . . , J − 1, the quantity∣∣∣ ⋃
T∈Tρi+1 [Tρi ]

Yρi+1(Tρi+1)
∣∣∣

is approximately the same (up to a multiplicative factor of 2) for each Tρi ∈ Tρi .

(f) We have ∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≳ J−1∏

i=1

(
sup

Tρi∈Tρi

1

|Tρi |

∣∣∣ ⋃
Tρi+1∈Tρi+1 [Tρi ]

Yρi+1(Tρi+1)
∣∣∣). (11.1)

Item (f) is obtained by selecting each shading Yρi+1 so that the union
⋃

Tρi+1∈Tρi+1 [Tρi ]
Yρi+1(Tρi+1) ⊂

Yρi(Tρi) has approximately the same density (up to a multiplicative factor of 2) on balls of radius
ρi contained in Yρi(Tρi). By the previous item, the RHS of (11.1) is reduced by at most a factor
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of 2J if the supremum in (11.1) is replaced by an infimum. Items (a) - (e) are obtained by dyadic
pigeonholing; we omit the details.

If ε2 is chosen sufficiently small depending on ε1, then for each index i and each Tρi ∈ Tρi we
have

1

|Tρi |

∣∣∣ ⋃
Tρi+1∈Tρi+1 [Tρi ]

Yρi+1(Tρi+1)
∣∣∣ ≳ δε1

(ρi+1

ρi

)ω(#Tρi+1

#Tρi

)
|Tρi+1 |

((#Tρi+1

#Tρi

)( |Tρi+1

|Tρi |
)1/2)−σ

(11.2)

Indeed, (11.2) follows from the estimate E(σ, ω); this estimate can be applied, for example, when
ρi+1

ρi
< δε1 and ε2 is selected sufficiently small depending on ω, σ, and ε1. If ρi+1

ρi
≥ δε1 , then (11.2)

follows from the elementary fact that the volume of the LHS of (11.2) is bounded below by the
volume of Yρi+1(Tρi+1) for every Tρi+1 ∈ Tρi+1 [Tρi ].

Step 2.

We say an index i is of Type C if ρi+1/ρi ≥ 2−Nδ(1−ω/100)N ; in this case no further splitting

is required. If instead ρi+1/ρi < 2−Nδ(1−ω/100)N , then apply Proposition 9.1 (refined induction on

scales) with ω and σ as above, and ζ = ε to each arrangement (TTρi
ρi+1 , Y

Tρi
ρi+1)ρi+1/ρi ; we can do this

provided ε2 is chosen sufficiently small depending on ω, σ,N, and ε. If Conclusion (A) holds for at
least one Tρi ∈ Tρi , then we say the index i is of Type A. Otherwise we say that the index i is of
Type B.

Suppose there exists at least one index of Type A; call this index i0. Let α2 = α2(ω, σ, ε) be
the output of Proposition 9.1. Then applying (11.2) to each index i ̸= i0; using Conclusion (A)
of Proposition 9.1 to estimate the contribution from index i0; and using (11.1) to combine these
estimates, we have∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≳ ∏
i=1,...,J−1

i ̸=i0

(
δε1

(ρi+1

ρi

)ω(#Tρi+1

#Tρi

)
|Tρi+1

((#Tρi+1

#Tρi

)( |Tρi+1

|Tρi |
)1/2)−σ)

·

·
(
δε1

(ρi0+1

ρi0

)ω−α2
(#Tρi0+1

#Tρi0

)
|Tρi0+1

((#Tρi0+1

#Tρi0

)( |Tρi0+1

|Tρi0
|
)1/2)−σ)

≥ δε1J
(ρi0+1

ρi0

)−α2(#T)|T |
(
(#T)|T |1/2

)−σ

≳ δε12
N−α2(1−ω/100)N (#T)|T |

(
(#T)|T |1/2

)−σ

(11.3)

Thus Conclusion (A) of Lemma 11.1 holds, provided we select α ≤ 1
2α2(1 − ω/100)N and ε1 <

2−N−1α2(1 − ω/100)N .

Step 3. Suppose instead that every index is of Type B or Type C. We will show that Conclusion
(B) of Lemma 11.1 holds. For each index i of Type B, starting with the lowest, we will perform

the following procedure. After dyadic pigeonholing, there is a number s ∈
[(ρi+1

ρi

)1− ω
100 ,

(ρi+1

ρi

) ω
100

]
and a set T′

ρi ⊂ Tρi with #T′
ρi ⪆δ #Tρi such that the output “ρ” from Proposition 9.1 is between

s and 2s for each Tρi ∈ T′
ρi . Define ρi+1/2 = sρi. Then

ρi+1/2

ρi
≥ s ≥

(ρi+1

ρi

)1− ω
100 ≥ (2−N+1δ(1−ω/100)N−1

)1−
ω

100 ≥ 2−Nδ(1−ω/100)N . (11.4)

Similarly, we have

ρi+1

ρi+1/2
=

ρi+1

ρi

ρi
ρi+1/2

≥ ρi+1

ρi

1

2s
≥ 1

2

(ρi+1

ρi

)1− ω
100 ≥ 2−Nδ(1−ω/100)N . (11.5)
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This verifies Item (i) from Conclusion (B) of Lemma 11.1.

Let Tρi+1/2
be the union of the corresponding sets from Proposition 9.1, and let

T′
ρi+1

=
⋃

Tρi+1/2
∈Tρi+1/2

Tρi+1 [Tρi+1/2
].

Then for each Tρi ∈ T′
ρi , we have that TTρi

ρi+1/2
factors (T′

ρi+1
)Tρi above and below with respect to

the Katz-Tao Convex Wolff Axioms and Frostman Slab Wolff Axioms, both with error δ−ε. This
verifies Item (iii) from Conclusion (B) of Lemma 11.1.

To conclude the proof, we re-index our sets T′
ρi and Tρi+1/2

using consecutive integers 1, 2, 3 . . .,

and let T′ = TρJ′ , where J ′ is the final index after re-indexing. Note that J ′ ≤ 2J − 1 ≤ 2N . After
re-indexing, we still have ρ0 = 1 and ρJ ′ = δ. This concludes the induction step.

Lemma 11.2. Let σ ∈ (0, 2/3] and ω, ε > 0. Suppose that E(σ, ω) is true. Then there exists
η, α, κ > 0 so that the following holds for all δ > 0. Let (T, Y )δ be δη dense with CKT -CW (T) ≤ δ−η

and CF -SW (T) ≤ δ−η. Then at least one of the following must hold.

(A)
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≥ κδω−α(#T)|T |

(
(#T)|T |1/2

)−σ
.

(B) There is a δε refinement (T′, Y ′)δ of (T, Y )δ that satisfies the Katz-Tao Convex Wolff Axioms
at every scale with error δ−ε (recall Definition 10.1).

Proof. Let ε1 > 0 be a small quantity to be chosen below. Select N sufficiently large so that
(1 − ω/100)N < ε. Apply Lemma 11.1 to (T, Y )δ with this choice of N , with ε1 in place of ε, and
with ω, σ as above. If Conclusion (A) of Lemma 11.1 holds, then Conclusion (A) of Lemma 11.2
holds and we are done.

Suppose instead that Conclusion (B) of Lemma 11.1 holds. After a harmless refinement we can
suppose that each set Tρi is a balanced partitioning cover of Tρi+1 , and hence Tρi is a 2J ≤ δ−ε

balanced partitioning cover of T′.

We claim that if ε1 is chosen sufficiently small (depending on N and ε), then the output (T′, Y ′)δ
of Lemma 11.1 satisfies the Katz-Tao Convex Wolff Axioms at every scale with error δ−ε. We verify
this as follows. Since (1 − ω/100)N < ε, for each ρ ∈ [δ, 1] the interval [ρ, δ−ερ] contains at least
one ρi. We have already noted that Tρi satisfies Item (i) from Definition 10.1. It remains to verify
Item (ii). Applying Lemma 4.12, we have that for each index i,

CKT -CW (Ti) ≲
J∏

j=i+1

δ−2ε1 ≲ δ−2N+1ε1 .

We will select ε1 sufficiently small so that CKT -CW (Ti) ≤ δ−ε for all sufficiently small δ > 0. If δ > 0
is not sufficiently small, then Conclusion (A) always holds, provided we select κ > 0 sufficiently
small.

Proof of Proposition 1.7. Fix ω, σ > 0 and suppose that E(σ, ω) is true. Let η1 be the output of
Theorem 10.2 with ω/2 in place of ε. Let α2, η2, c2 be the output of Lemma 11.2 with η1 in place of
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ε. Then for every pair (T, Y )δ that is δη2 dense and satisfies CKT -CW (T) ≤ δ−η2 , CF -SW (T) ≤ δ−η2 ,
we have ∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≳ δω−min(α2,ω/2)(#T)|T |
(

(#T)|T |
)−σ

. (11.6)

In particular, we have that D(σ, ω − g(σ, ω)) is true, where g(σ, ω) = min(α2, ω/2).

12 Tube Doubling

In this section we will prove Theorem 1.12. We will prove the following slightly stronger statement.

Theorem 1.12′. For all ε > 0, there exists η > 0 so that the following is true for all δ > 0
sufficiently small. Let T be a set of δ tubes in R3. For each T ∈ T, let Y (T ) ⊂ T with |Y (T )| ≥
δη|T |. Let R ≥ 1 and for each T ∈ T, let TR denote the R-fold dilate of T . Then∣∣∣ ⋃

T∈T
TR

∣∣∣ ≤ δ−εR3
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣. (12.1)

Theorem 1.12 is the special case where Y (T ) = T and R = 2.

Proof. Step 1. First, we may suppose that the tubes in T are contained in B(0, 1) (indeed, we can
cover R3 by a set of boundedly overlapping unit balls, so that each T ∈ T is contained in at least
one ball). Second, we may suppose that the tubes in T are essentially distinct, and in particular
#T ≲ δ−4 (indeed, we can replace T by a maximal, essentially distinct sub-collection, and this
affects the RHS of Inequality (12.1) by a constant factor).

Fix ε > 0. For each i = 1, 2, . . . , we will define sets Ti,T′
i, and Wi as follows. We begin by

defining T0 = T. Define T′
i and Wi to be the output of Proposition 4.6 applied to Ti−1. Define

Ti = Ti−1\T′
i. We continue this process until TN is empty, at which point we halt. Observe that

T =
⊔N

i=1 T′
i. For each index i we have

#T′
i ≥ 100−3e−100

√
log(δ−5)(#Ti−1),

As a consequence, if j − i ≥ 2 · 1003e100
√

log(δ−5), then #Tj ≤ 1
2(#Ti). Since #T0 ≲ δ−4, we

conclude that the process described above must halt after ≲ (log 1/δ)(2 · 1003e100
√

log(δ−5)) ⪅δ 1
steps, i.e. N ⪅δ 1.

Step 2. Fix an index j. To simplify notation, we write T′ = T′
j and W ′ = Wj .

We have that W ′ factors T′ from above with respect to the Katz-Tao convex Wolff Axioms and

from below with respect to the Frostman Convex Wolff Axioms, both with error K ≤ 1003e100
√

log(δ−5).
Recall that the prisms in W ′ all have the same dimensions — denote these dimensions by a× b× 1.

Let ε1 > 0 be a small quantity to be chosen below. Our next task is to estimate the volume of
the tubes inside each prism from W ′, i.e. we wish to obtain a bound of the form∣∣∣ ⋃

T∈T′[W ]

Y (T )
∣∣∣ ≥ κ0δ

ε1 |W |, (12.2)

for some κ0 = κ0(ε1) > 0. To do this, we will estimate the volume of the set
⋃

T′[W ] Y
W (T )W ; the

latter is a union of prisms of dimensions δ/b × δ/a × 1. By Theorem 1.9 we have that Assertion
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E(ε1/10, ε1/10) is true, and thus by Proposition 5.14, we have that Assertion F(ε1/10, ε1/10) (recall
Definition 5.4) is true. The latter assertion is helpful, since it allows us to bound the volume of
unions of prisms with three distinct dimensions (i.e. prisms that are not tubes).

For each W ∈ W ′, we will apply the estimate F(ε1/10, ε1/10) to the pair ((T′)W , Y W )δ/b×δ/a×1.
Recall that the estimate F(ε1/10, ε1/10) contains an additional term “D.” However, as discussed
in Remark 5.6, Situation 3, we have D ∼ 1 in this setting. If η > 0 is selected sufficiently small
depending on ε1, we conclude that for each W ∈ W ′, we have∣∣∣ ⋃

T∈T′[W ]

Y W (T )W
∣∣∣ ≥ κ0δ

ε1/10m−1(#T′[W ])|TW |
(
m−3/2ℓ(#T′[W ])|TW |1/2

)−ε1/10

⪆δ κ0δ
ε1/2,

(12.3)

where m = CKT -CW ((T′)W ) ⪅δ (#T′[W ]) |T |
|W | = (#T′[W ])|TW |, and ℓ = CF -SW ((T′)W ). For the

second inequality, the term
(
m−3/2ℓ(#T′[W ])|TW |1/2

)
can be trivially bounded by δ−4. (12.2)

now follows from (12.3) by rescaling and adjusting the constant κ0 if necessary.

For each W ∈ W ′, define Y (W ) =
⋃

T∈T′[W ] T ; we have Y (W ) ⊂ W and |Y (W )| ≥ κ0δ
ε1 for

each W ∈ W ′; we will suppose that δ > 0 is chosen sufficiently small so that this quantity is ≥ δ2ε1 .

If ε1 > 0 is chosen sufficiently small depending on ε, then we can apply F(ε/10, ε/10) to
(W ′, Y )a×b×1 (again, the term D has size at most CKT -CW (W ′) ⪅δ 1, as discussed in Remark 5.6,
Situation 2) to conclude that ∣∣∣ ⋃

W∈W ′

Y (W )
∣∣∣ ≥ κ1δ

ε/2(#W ′)|W |. (12.4)

Combining (12.2) and (12.4) and returning to our original notation, we have∣∣∣ ⋃
T∈T′

j

Y (T )
∣∣∣ ≥ κ1δ

ε/2
∑

W∈Wj

|W |. (12.5)

Step 3. We will now combine the estimates (12.5) for different values of j. Let W =
⋃N

j=1Wj .
Then W covers T, and∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ N−1 max
1≤j≤N

∣∣∣ ⋃
T∈T′

j

T
∣∣∣ ⪆δ κ1δ

ε/2
∑

W∈W
|W |. (12.6)

Finally, since W covers T , we have that the set of R-fold dilates {RW : W ∈ W} covers {TR : T ∈
T}, and thus ∣∣∣ ⋃

T∈T
TR

∣∣∣ ≤ ∣∣∣ ⋃
W∈W

RW
∣∣∣ ≤ ∑

W∈W
|RW | = R3

∑
W∈W

|W |. (12.7)

Inequality (12.1) now follows by comparing (12.6) and (12.7).

A A grains decomposition for tubes in R3

Our goal in this section is to prove Proposition 7.15. For the reader’s convenience, we reproduce
it here. In what follows, recall that broadness is defined in Definition 7.7. This definition assumes
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a small parameter β > 0, which was defined in Section 7.1. In Section 7.1, an explicit value of β
was chosen, which depends on ω and ζ. In the results below, however, we will allow β to be any
positive number (though in Rn, we will always have β ∈ (0, n−1]), and subsequent quantities (such
as η and K1) may depend on β. In particular, the results proved in this section are applicable in
Section 7.

Proposition 7.15. Let ε > 0. Then there exists η, κ > 0 so that the following holds for all δ > 0.
Let (T, Y )δ be δη dense and be broad with error δ−η. Suppose that the tubes in T are contained in
a common 1 tube T1.

Then there is a δε refinement (T′, Y ′) that is δε dense and is broad with error ≤ κ−1δ−ε, and
a number µ ≥ 1 so that µ

∑
#T′

Y ′(x) for each x ∈
⋃

T′ Y ′(T ). In addition, there is a number
c ≥ κµδε(δ#T)−1 and a pair (G, Y )δ×c×c, so that (G, Y )δ×c×c is a robustly δε-dense two-scale
grains decomposition of (T′, Y ′)δ wrt {T1} (the latter is a set consisting of a single 1 tube).

To prove Proposition 7.15, we shall repeatedly apply the Guth-Katz polynomial partitioning
theorem [13] to decompose a (large portion of)

⋃
T Y (T ) into a union of thin neighbourhoods of

semi-algebraic sets. This idea was first used by Guth [11, 12] in the context of the Fourier restriction
problem, and later by Guth and the second author [14] in the context of the Kakeya problem.

Before stating this result precisely, we will need several definitions. First, recall that a semi-
algebraic set is a set S ⊂ Rn that is defined by a Boolean combination of polynomial equalities and
inequalities.

Definition A.1. Let ρ > 0. A semi-algebraic grain of thickness ρ is a set of the form

G = Nρ(S),

where S ⊂ R3 is a semi-algebraic set with dim (S) ≤ 2. If there exists a non-zero polynomial
Q : R3 → R with S ⊂ Z(Q), then we say that G is defined by a polynomial of degree at most
deg(Q).

Next, we recall the following result of Wongkew [30], which allows us to bound the volume of a
semi-algebraic grain.

Theorem A.2. Let Z = Z(Q) ⊂ Rn be an algebraic variety of dimension d. Let B ⊂ Rn be a ball
of radius r. Then there exists a constant K depending only on n so that for all 0 < ρ ≤ r,

|Nρ(Z ∩B)| ≤ K(degQ)nρn−drd.

Corollary A.3. Let G ⊂ R3 be a semi-algebraic grain of thickness ρ that is defined by a polynomial
of degree at most D. Then

|G| ≲ D3 ρ diam(G)2.

Next, we will need the following grains decomposition result, which is similar to Proposition 3.2
from [14].

Proposition A.4. Let ε > 0. Then there exists Kε > 0 so that the following holds. Let E ⊂
B(0, 1) ⊂ R3 be open. Then there exists

• A set G of semi-algebraic grains of thickness 100δ, each of which has diameter ≤ Kε(#G)−1/3

and is defined by a polynomial of degree at most Kε.
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• For each G ∈ G, a set EG ⊂ E ∩G. The sets {EG : G ∈ G} are disjoint.

Furthermore, we have ∑
G∈G

|EG| ≥ K−1
ε δε|E|,

and for each G ∈ G we have

K−1
ε δε

|E|
#G

≤ |EG| ≤ Kεδ
−ε |E|

#G
.

Finally, for every δ tube T , we have

#{G ∈ G : T ∩ EG ̸= ∅} ≤ Kεδ
−ε(#G)1/3. (A.1)

The above result is essentially Proposition 3.2 from [14], except that the result in [14] does not
require that the grains in G have diameter at most Kε(#G)−1/3. Adding this latter property is
straightforward — we simply add additional partitioning planes in the e1, e2, and e3 directions at
each partitioning step.

Using Proposition A.4, we have the following structure theorem about arrangements of tubes.

Lemma A.5. Let ε, β > 0. Then there exists K, η > 0 so that the following holds. Let (T, Y )δ
be δη dense and broad with error δ−η (and exponent β). Suppose there is a number µ so that
#TY (x) ∈ [µ, 2µ) for all x ∈

⋃
T∈T Y (T ). Then there exists the following:

• A δε refinement (T′, Y ′)δ of (T, Y )δ.

• A partition E = E1 ⊔ . . . EN of
⋃

T Y
′(T ).

These objects have the following properties:

(a) (i)

1 ≤ N ≤ Kδ−ε
(
δµ−1 #T

)3
. (A.2)

(ii) r ≥ K−1δεN−1/3.

(b) Each set Ei has diameter at most 2r, and volume

K−1N−1δε
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≤ |Ei| ≤ Kδ

(
diam(Ei)

)2
. (A.3)

(c) (T′, Y ′)δ is broad with error Kδ−ε (and exponent β), and #T′
Y ′(x) ≥ K−1δεµ for each x ∈⋃

T∈T′ Y ′(T ).

(d) For each T ∈ T′, there exists a set {T (j)} of pairwise 100r-separated tube segments T (j) ⊂ T ,
each of length r. This set has the following properties:

(i) Each segment T (j) intersects Y ′(T ), and Y ′(T ) ⊂
⊔
T (j).

(ii) If T (j) is a tube-segment, then T (j) ∩ Y ′(T ) intersects exactly one set Ei.
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Proof.
Step 1. Let ε1 be a small quantity to be chosen below. Let T1 = {T ∈ T : |Y (T )| ≥ 1

2δ
η|T |},

and let Y1 be the restriction of Y to T1. Then (T1, Y1)δ is a (1/2)-refinement of (T, Y )δ. Apply
Proposition A.4 to E =

⋃
T∈T1

Y1(T ) with ε1 in place of ε, and let G and {EG : G ∈ G} be the
output of that Proposition.

For each T ∈ T1, there are at most Kε1δ
−ε1(#G)1/3 grains G ∈ G for which T ∩EG ̸= ∅. Define

the set of “significant” grains

GT,sig =
{
G ∈ G : |T ∩ EG| ≥ (

1

2
|Y1(T )|)

(
Kε1δ

−ε1(#G)1/3
)−1}

.

Then ∣∣∣Y1(T ) ∩
⊔

G∈GT,sig

EG

∣∣∣ ≥ 1

2
|Y1(T )|.

Each set Y1(T ) ∩ EG is contained in a sub-tube of length diam(T ∩ EG), and we have

δη+ε1K−1
ε1 (#G)−1/3 ≲ diam(T ∩ EG) ≤ Kε1(#G)−1/3.

The first inequality follows from the volume bound |T ∩ EG| ≳ δη+ε1 |T |K−1
ε1 (#G)−1/3, while the

second follows from the diameter bound on G coming from Proposition A.4.

Define
r = κδη+ε1K−1

ε1 (#G)−1/3, (A.4)

where κ ∼ 1 is chosen so that each set T ∩ EG has diameter at least r. Then for each grain
G ∈ GT,sig, we can choose a sub-tube TG ⊂ T of length r, so that

|TG ∩ EG| ≳ δη+ε1K−2
ε1 |T ∩ EG| ≳ δ2η+2ε1K−3

ε1 |T |(#G)−1/3 ≳ δη+ε1K−2
ε1 r|T |. (A.5)

Furthermore, we can choose these sub-tubes so that every pair of sub-tubes in the set {TG : G ∈
GT,sig} either coincide or are interior-disjoint.

Since the sets {EG} are disjoint, the volume bound (A.5) says that for each tube T , at most
δ−η−ε1K2

ε1 tubes from the set {TG : G ∈ GT,sig} can pairwise coincide (the sets TG are sub-tubes
of T , as described previously). Thus for each T ∈ T1, we can select a set Y2(T ) ⊂ Y1(T ) with the
following properties:

•
|Y2(T )| ≳ δ2η+2ε1K−4

ε1 |Y1(T )|.

(This follows from the first inequality in (A.5), plus the fact that at most δη+ε1K−2
ε1 can

coincide).

• There is a set {T (j)} of sub-tubes of T , each of length r. These tubes are 100r separated.
Each of these sub-tubes T (j) intersects Y2(T ), and for each sub-tube T (j) there is exactly one
G ∈ G for which Y2(T ) ∩ T (j) ∩ EG ̸= ∅.

Step 2. In Step 1 we processed the tubes. In this step, we will process the grains in G. Fix a
grain G. Cover G by boundedly overlapping balls {Bi} of radius 2r (recall that r was defined in
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Step 1). We will select a 100r-separated subset of {Bi} (after re-indexing, we will denote this set
by {Bi}Mi=1 for some M = M(G) ≥ 1) so that

M∑
i=1

∑
T∈T1

|Y2(T ) ∩ EG ∩Bi| ≳
∑
T∈T1

|Y2(T ) ∩ EG|. (A.6)

Since the balls are 100r-separated, each sub-tube T (j) of length r intersects at most one ball. Thus
for each T ∈ T1 and each sub-tube T (j), there is at most one ball Bi from the above collection for
which Y2(T ) ∩ T (j) ∩ EG ∩Bi ̸= ∅.

We perform the above operation for each G ∈ G. Let G′ be the union of sets {Bi ∩ G : i =
1, . . . ,M(G)}, as G ranges over the grains in G. For each G′ ∈ G′, define EG′ = G′ ∩ EG, where
G ∈ G is the (unique) grain that gave rise to G′. We have that the sets {EG′ : G′ ∈ G} are disjoint.

Define Y3(T ) = Y2(T ) ∩
⋃

G′∈G′ EG′ . By (A.6) we have that (T1, Y3)δ is a ≳ 1 refinement of
(T1, Y2)δ, which in turn is a ≳ δ2η+2ε1K−4

ε1 refinement of (T, Y )δ. Furthermore, for each T ∈ T1 it is

still the case that there is a set of 100r-separated sub-tubes {T (j)}, each of which has length r and
intersects Y3(T ) (indeed, any sub-tubes T (j) from the previous collection that fail to intersect Y3(T )
can be discarded), so that for each sub-tube T (j), there is exactly one G′ ∈ G′ with T (j) ∩EG′ ̸= ∅.

Step 3. Let µ′ ≤ µ and let (T1, Y4)δ be a ⪆δ 1 refinement (we use ⪆δ to absorb the K−4
ε1 factor)

of (T1, Y3)δ with the property that #(T1)Y4(x) ∼ µ′ for each x ∈
⋃

T∈T1
Y4(T ). Since (T1, Y4)δ is a

≈δ δ
2η+2ε1 refinement of (T, Y )δ, we have

µ′ ⪆δ δ
2η+2ε1µ, (A.7)

and hence (T1, Y4)δ is broad with error ⪅δ δ−3η−2ε1 and exponent β. We will select η and ε1
sufficiently small, and K sufficiently large so that (T1, Y4)δ is broad with error ≤ Kδ−ε, and
µ′ ≥ K−1δεµ (c.f. Conclusion (c) from Proposition A.5).

For each G′ ∈ G′, define E′
G′ = EG′ ∩

⋃
T∈T1

Y4(T ). After dyadic pigeonholing, we can select
a set G′′ ⊂ G′ so that |E′

G′ | is the same (up to a factor of 2) for each G′ ∈ G′′. For each T ∈ T1,
define Y5(T ) = Y4(T ) ∩

⋃
G′′∈G′′ E′

G′′ .

Define N = #G′′. Abusing notation, we will enumerate the elements of {E′
G′′ : G′′ ∈ G′′} as

E1, . . . , EN . Since #TY (x) ∼ µ and K−1
ε1 δε1 |E|

#G ≤ |EG| ≤ Kε1δ
−ε1 |E|

#G for each G ∈ G (the latter is
true since G was the output of Proposition A.4), we have

#G ≥ N = #G′′ ⪆δ δ
2ε1#G. (A.8)

Define T′ = T1 and Y ′(T ) = Y5(T ). This choice of (T′, Y ′)δ satisfies Conclusion (c) from
Proposition A.5.

We have ⋃
T∈T′

Y ′(T ) =
N⊔
i=1

Ei,

and if the constant K = K(ε1) (recall that ε1 depends on ε) is chosen sufficiently large, then for
for each index i = 1, . . . , N we have

N−1
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ⪅δ N

−1
∣∣∣ ⋃
T∈T′

Y ′(T )
∣∣∣ ≲ |Ei| ≤ Kδ(diam(Ei))

2,
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where the final inequality is Corollary A.3. Thus we have established Conclusion (b) from Propo-
sition A.5. Recall that for each T ∈ T′, we have a set {T (j)} of tube-segments, each of which has
length r. These segments are 100r-separated. Discarding segments if necessary, we may suppose
that each tube segment T (j) intersects Y ′(T ). It is still the case that for each surviving tube seg-
ments, there is exactly one index i so that Y ′(T )∩T (j) ∩Ei ̸= ∅. This establishes Conclusions (d.i)
and (d.ii).

Step 4. It remains to establish Conclusion (a) from Proposition A.5. We begin with Conclusion
(a.i), i.e. we must show that N satisfies Inequality (A.2). In Step 3 we established Conclusion (d.ii).
Combining this with (A.4) and (A.8), we conclude that for each T ∈ T, there are ⪅δ δ−2ε1N1/3

indices i for which Y ′(T ) ∩ Ei ̸= ∅. Thus by pigeonholing, there is an index i so that

{#T ∈ T : Y ′(T ) ∩ Ei ̸= ∅} ⪅δ δ
−2ε1N−2/3(#T).

Fix this index i, and denote the above set by Ti. We have

ν
(
{(x, T, T ′) ∈ Ei×T2

i : x ∈ Y ′(T )∩Y ′(T ′), ∠(dir(T ),dir(T )) ⪆δ δ
(3η+2ε1)/β

}
⪅δ δ

3−(3η+2ε1)/β(#Ti)
2,

(A.9)
where ν denotes the product of Lebesgue measure on Ei with counting measure on T2

i . The above
inequality is justified by the observation that for each pair T, T ′ ∈ Ti with ∠(dir(T ),dir(T ′)) ≥
δ(3η+2ε1)/β, we have |T ∩ T ′| ≲ δ3−(3η+2ε1)/β.

On the other hand, we have |Ei| ⪆δ δ
ε1N−1

(
µ−1δ2(#T)

)
, and since (T′, Y ′)δ is broad with error

⪅δ δ−(3η+2ε1), we have that for each x ∈ Ei there are ≳ (µ′)2 pairs T, T ′ ∈ Ti so that (x, T, T ′) is
in the above set. We conclude that by (A.7),

µδ2+6η+4ε1N−1(#T) ⪅δ (µ′)2 ·
(
δ4η+2ε1N−1µ′−1δ2(#T)

)
≲ LHS (A.9)

≲ RHS (A.9) = δ−(3η+2ε1)/β+3(#Ti)
2 ≲ K2

ε1δ
−(3η+2ε1)/β−4ε1+3N−4/3(#T)2.

Re-arranging, we have
N1/3 ⪅δ K

2
ε1µ

−1δ−(3η+2ε1)/β−6η−8ε1+1(#T).

The claimed bound on N now follows by selecting 3η+2ε1 < εβ/20, and choosing K appropriately.

Finally, Conclusion (a.ii) follows from the definition of r and (A.8).

Lemma A.5 says nothing about the shape of the sets {Ei}. The next result will help us show
that a substantial portion of each set Ei must be contained in the δ neighbourhood of a plane.
The idea is that since the volume of Ei is small, each point x ∈ Ei is broad, and Ei ∩ T is dense
for each tube T ∈ Ti, we can find many “triangles” formed by three tubes from Ti that pairwise
intersect at distinct points. Since every triple of lines that pairwise intersect at distinct points must
be coplanar, this in turn forces a significant subset of Ei to be planar.

Lemma A.6. Let ε, β > 0. Then there exists κ, η > 0 so that the following holds. Let (T, Y )δ be
δη dense and broad with error ≤ δ−η (and exponent β). Suppose that∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≤ δ1−η.

Then there is a plane Π so that if we define T′ = {T ∈ T : T ⊂ N2δ(Π)}, then there is a shading
{Y ′(T ) : T ∈ T′} and a number µ so that
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(a) #T′
Y ′(x) ∼ µ for each x ∈

⋃
T∈T′ Y ′(T ).

(b) ∑
T∈T′

|Y ′(T )| ≥ κδε
∑
T∈T

|Y (T )|. (A.10)

(c) ∣∣∣ ⋃
T∈T′

Y ′(T )
∣∣∣ ≥ κδ1+ε, (A.11)

Proof. First, after dyadic pigeonholing and replacing (T, Y )δ by a refinement, we may suppose that
there is a number µ so that #TY (x) ∼ µ for all x ∈

⋃
T∈T Y (T ); we still have that (T, Y )δ is ⪆δ δ

η

dense, and (T, Y )δ is broad with error ⪅δ δ
−η. Observe that

δ2+η(#T) ⪅δ

∑
T∈T

|Y (T )| ≲ µ
∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≤ δ1−ηµ,

and thus
#T ⪅δ δ

−1−2ηµ. (A.12)

Define

T′ = {T ∈ T : |Y (T )| ≥ δ2η|T |},
E = {x ∈ R3 : #T′

Y (x) ≥ δ2ηµ},
T′′ = {T ∈ T : |Y (T ) ∩ E| ≥ δ4η|T |}.

By double-counting we have #T′′ ≥ δ5η(#T).

Note that for each T0 ∈ T′′ and each x ∈ Y (T0) ∩ E, there are ≥ 1
2δ

2ηµ tubes T ∈ T′ with

Y (T )∩Y (T0) ̸= ∅ and ∠(dir(T ),dir(T0)) ≥ δ3η/β; this is because there are ≥ δ2ηµ tubes T ∈ T′ with
Y (T )∩ Y (T0) ̸= ∅, and by broadness at most ≥ 1

2δ
3ηµ of the tubes passing through a point x ∈ R3

can satisfy ∠(dir(T ), v) ≤ δ3η/β for any fixed vector v. In particular, for each tube T0 of this type,
there are at least

(
δ3ηµ

)(
δ3η/βδ−1

)
distinct tubes T ∈ T′ with T ∩ T0 ̸= ∅ and ∠(dir(T ), dir(T0)) ≥

δ3η/β. Since each such T ∈ T′ satisfies Y (T ) ≥ δ2η|T | and |T ∩Nδ10η/β (T0)| ≤ 1
2δ

2η|T |, we conclude
that for each tube T0 of the type described above, we have∑

T∈T′

Y (T )∩Y (T0) ̸=∅
∠(dir(T ),dir(T0))≥δ3η/β

|Y (T )\Nδ10η/β (T0)| ≳
(
δ3η+3η/βµδ−1

)(
δ2η|T |

)
≳ δ10η/βδµ.

On the other hand,∣∣∣ ⋃
T∈T′

Y (T )∩Y (T0 )̸=∅
∠(dir(T ),dir(T0))≥δ3η/β

Y (T )\Nδ10η/β (T0)
∣∣∣ ≤ ∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≤ δ1−η,

Thus if we define FT0 to be the set of points x ∈ R3\Nδ10η/β (T0) satisfying∑
T∈T′

Y (T )∩Y (T0 )̸=∅
∠(dir(T ),dir(T0))≥δ3η/β

χY (T )(x) ≥ δ11η/βµ,
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then |FT0 | ≥ δ11η/β+1 because #TY (x) ≲ µ. Since (T, Y )δ is broad with error δ−η, for each point
x ∈ F0, there are ≳ (δ11η/βµ)2 pairs T, T ′ ∈ T′ satisfying

Y (T ) ∩ Y (T0) ̸= ∅, Y (T ′) ∩ Y (T0) ̸= ∅, Y (T ) ∩ Y (T ′) ̸= ∅,

∠(dir(T0), dir(T )) ≥ δ3η/β, ∠(dir(T0),dir(T ′)) ≥ δ3η/β, ∠(dir(T ),dir(T ′)) ≥ δ12η/β
2
,

(T ∩ T ′)\Nδ10η/β (T0) ̸= ∅.
(A.13)

For each such pair, we have |Y (T )∩Y (T ′)| ≤ |T∩T ′| ≲ δ3−12η/β2
. We conclude that for T0 fixed,

there are ≳ (δ11η/βµ)2(|FT0 |/δ3−12η/β2
) ≳ δ23η/β

2
µ2δ−2 distinct pairs (T, T ′) satisfying (A.13). Thus

by (A.12) there are ≳ δ23η/β
2
µ2δ−2(#T′′) ⪆δ δ

24η/β2
(#T′)2(#T) triples (T0, T1, T2) ∈ T′′ × T′ × T′

that satisfy (A.13).

By pigeonholing, we can select a pair (T, T ′) which is a member of ⪆δ δ
24η/β2

(#T) such triples.
Fix this pair T, T ′, and let T0 denote the set of tubes T0 so that (T0, T

′, T ′′) satisfies (A.13). We
have the following:

• T and T ′ intersect, and make angle ≳ δ12η/β
2
.

• For each T0 ∈ T0, we have that Y (T0) intersects both T and T ′, and makes angle ≥ δ3η/β

with T and T ′.

• (T ∩ T ′)\Nδ10η/β (T0) ̸= ∅.

The above items imply that each T0 ∈ T0 is contained in the δ1−100η/β2
neighbourhood of a plane

— this is the plane spanned by the tubes T and T (the latter plane is technically not well defined,
but is instead defined up to uncertainty δ

∠(dir(T ),dir(T ′)) ≤ δ1−11η/β2
). In particular, there is a set of

≲ δ200η/β
2

planes {Πi} so that each T0 ∈ T0 is contained in the 2δ neighbourhood of some plane
from this collection. By pigeonholing, we can select a plane Π so that∑

T∈T0
T⊂N2δ(Π)

|Y (T )| ⪆δ

(
δ200η/β

2)(
δ2+2η

)(
δ24η/β

2
(#T)

)
⪆δ δ

300η/β2
∑
T∈T

|Y (T )|.

Define T′ = {T ∈ T : T ⊂ N2δ(Π)}. By pigeonholing, we can select a number µ′ so that if we
define the shading Y ′(T ) = {x ∈ Y (T ) : #T′

Y (x) ∼ µ′}, then (T′, Y ′)δ is an ≈δ 1 refinement of
(T′, Y )δ. This gives Conclusions (a) with µ′ in place of µ and (b). Finally, Conclusion (c) follows
by a standard Cordoba-type L2 argument (making use of the fact that (T′, Y ′)δ is broad with error
δ−400η/β2

and exponent β).

Next, we record the following re-scaled variant of Lemma A.6

Corollary A.7. Let ε, β > 0. Then there exists κ, η > 0 so that the following holds. Let 0 < δ <
r ≤ 1 and let B ⊂ R3 be a ball of radius r. Let (T, Y )δ be broad with error δ−η (and exponent β).
Suppose that Y (T ) ⊂ B for each T ∈ T, and

∑
T∈T |Y (T )| ≥ δηδ2r(#T). Suppose furthermore that

the tubes in T are contained in a 1 tube T1, and that∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≤ r2δ1−η.

Then there is a set T′ ⊂ T; a number µ; a shading Y ′(T ) ⊂ Y (T ), T ∈ T′; a prism P of dimensions
comparable to δ × r × r so that each T ∈ T′ satisfies T ∩ P ̸= ∅, and T exists P through its long
sides, in the sense of Remark 7.16. Furthermore, we have
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(a) #T′
Y ′(x) ∼ µ for each x ∈

⋃
T∈T′ Y ′(T ).

(b) ∑
T∈T′

|Y ′(T )| ≥ κδε
∑
T∈T

|Y (T )|. (A.14)

(c) ∣∣∣ ⋃
T∈T′

Y ′(T )
∣∣∣ ≥ κδ1+εr2. (A.15)

We are now ready to prove Proposition 7.15. In brief, we use Lemma A.5 to cover a substantial
portion of (T, Y )δ by a union of disjoint sets {Ei}, and then we use Corollary A.7 to trap a
substantial portion of each set Ei in a prism Pi of dimensions comparable to δ × r × r, for an
appropriately chosen diameter r.

Proof of Proposition 7.15.
Step 1. Let δ0, ε1, ε2 be small numbers to be chosen below. We will select δ0 very small compared
to ε1, ε1 very small compared to ε2, and η, κ very small compared to ε1. These numbers depend
on ε and β. We may suppose that δ ≤ δ0, or else the result is immediate provided we choose κ
sufficiently small so that κδε(δT)−1 ≤ δ. In this case the set G consists of δ× δ× δ balls, and there
is nothing to prove. Henceforth we shall assume that δ ≤ δ0.

After dyadic pigeonholing and replacing (T, Y )δ by a ∼ (log 1/δ)−1 refinement, we may suppose
there exists a number µ ≥ 1 so that #TY (x) ∈ [µ, 2µ) for every x ∈

⋃
T∈T Y (T ); we still have that

(T, Y )δ is broad with error δ−η.

Apply Lemma A.5 to (T, Y )δ with ε1 in place of ε and β as above; we can do this, provided we
select η > 0 sufficiently small depending on ε1 and β. Let K1, N , (T1, Y1)δ, and E1, . . . , EN be the
output of that lemma. In particular, (T1, Y1) is broad with error K1δ

−ε1 . Note that by Item (a),
we have

r ≥ K−2
1 δ2ε1(δ#T)−1µ. (A.16)

Let I1 denote the set of indices in {1, . . . , N} for which

#{T ∈ T1 : Y1(T ) ∩ Ei ̸= ∅} ≤ 2N−1r−1(#T),

and let I2 denote the remaining indices. For each T ∈ T1, there are at most (100r)−1 sets Ei for
which Y1(T ) ∩ Ei ̸= ∅. Thus

#I2 ≤
(

2N−1r−1(#T)
)−1 ∑

T∈T
#
(
i : Y1(T ) ∩ Ei ̸= ∅

)
≤ N/2.

We conclude that #I1 ≥ N/2. For each i ∈ I1, define

T(i) = {T ∈ T : Y1(T ) ∩ Ei ̸= ∅}.
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We have ∑
T∈T(i)

|Y1(T ) ∩ Ei| ≥ K−1
1 δε1µ|Ei|

≥ µK−2
1 δ2ε1N−1

∣∣∣ ⋃
T∈T

Y (T )
∣∣∣

≥ K−1
1 N−1δ2ε1+η(|T |#T)

≥ K−2
1 δ2ε1+ηN−1(Nr/2)(|T |#T(i))

≥ K−3
1 δ3ε1+η(δ2r)(#T(i)).

In the above, the first inequality used Conclusion (c) of Lemma A.5; the second inequality used
(A.3); the third inequality used the fact that (T, Y )δ is δη dense, and #TY (x) ∼ µ for each
x ∈

⋃
Y (T ); and the fourth inequality used the fact that i ∈ I1.

Step 2. By (A.3) we have |Ei| ≤ Kδ
(

diam(Ei)
)2

, and by Conclusion (b) of Lemma A.5,

diam(Ei) ≤ 2r. Let Bi be a ball of radius r that contains Ei. For each T ∈ T(i) define
Y (i)(T ) = Y1(T ) ∩ Ei ⊂ Bi. If δ0 and ε1 are chosen sufficiently small depending on ε2 and β,
then by Step 1, (T(i), Y (i))δ satisfies the hypotheses of Corollary A.7. Applying this Corollary, we
obtain a set Gi comparable to a δ× r× r prism; a number µi; a set T(i)′ ⊂ T(i); and a sub-shading
Y (i)′(T ) ⊂ Y (i)(T ), T ∈ T(i)′, so that the following holds:

• Each T ∈ T(i)′ intersects Gi and exits Gi through its long ends, in the sense of Remark 7.16.

• ∑
T∈T(i)′

|Y (i)′(T )| ≥ κ2δ
ε2

∑
T∈T(i)

|Y (i)(T )|.

• ∣∣∣ ⋃
T∈T(i)′

Y (i)′(T )
∣∣∣ ≥ κ2δ

1+ε2r2 ≳ κ2δ
ε2 |Gi|.

• For each x ∈
⋃

T∈T(i)′ Y (i)′(T ) we have #T(i)′
Y (i)′(x) ∼ µi.

After dyadic pigeonholing, we can select a number µ′ and a set of indices I ′1 ⊂ I1 so that µi ∼ µ′

for each i ∈ I ′1. We will choose µ′ in such a way that if we define G = {Gi : i ∈ I ′1}, define the
shading

Y (Gi) =
⋃

T∈T(i)′

Y (i)′(T ),

and define the shading

Y2(T ) = Y1(T ) ∩
⋃
G

Y (G),

where the union is taken over those G ∈ G for which T ∈ T(i)′, then (T1, Y2)δ is a ⪆δ δ
ε2 refinement

of (T1, Y1)δ, and thus a ⪆δ δ
ε1+ε2 refinement of (T, Y )δ.

Note that for each Gi ∈ G, we have Y (Gi) ⊂ Gi ∩ Ei, and thus the sets {Y (G) : G ∈ G} are
disjoint. Furthermore, |Y1(G)| ≥ κ2δ

ε2 |Gi|, and thus (G, Y )δ×r×r is κ2δ
ε2 dense.

We have the following:
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(i)
⋃

T Y2(T ) =
⊔

G∈G Y (G).

(ii) If Y2(T ) ∩ Y (G) ̸= ∅, then T exits G through its long ends, in the sense of in the sense of
Remark 7.16.

(iii) If Y2(T ) ∩ Y (G) ̸= ∅, then Y2(T ) ∩G ⊂ Y (G).

Item (iii) follows from the fact that if Y2(T )∩Y (Gi) ̸= ∅ for some Gi ∈ G (recall that Gi is a prism
associated to a set Ei), then there is a length-r sub-tube T (j) ⊂ T so that Y2(T )∩T (j) ⊂ Ei ⊂ Y (Gi).
Since the sub-tubes {T (j)} associated to T are 100r separated, and diam(G) ≤ 10r, we conclude
that T (j) is the only sub-tube from the above collection that intersects G.

We conclude that (G, Y )δ×r×r is a robustly κ2δ
ε2-dense two-scale grains decomposition of

(T1, Y2)δ wrt the single 1-tube {T1}. Finally, the desired bound on r is given by (A.16).

B Wolff’s hairbrush argument and the proof of Proposition 1.8

The goal of this section is to prove Proposition 1.8. We will restate it here in an expanded form.

Proposition 1.8, expanded. For all ε > 0, there exists κ, η > 0 so that the following holds for
all δ > 0. Let (T, Y )δ be δη dense, with CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η. Then∣∣∣ ⋃

T∈T
Y (T )

∣∣∣ ≥ κδ3/2+ε(#T)1/2. (B.1)

Proof. The proof uses a standard “bilinear” or “robust transversality” argument to reduce to the
case where a typical pair of intersecting tubes make large angle (i.e. the unit vectors dir(T ) and
dir(T ′) are far from parallel), followed by Wolff’s hairbrush argument. Since these arguments are
covered in detail elsewhere (see e.g. [21, §2.4]), we will just provide a brief sketch.

Fix ε > 0 and let η > 0 be a small quantity to be chosen below. Let (T, Y )δ be δη dense, with
CKT -CW (T) ≤ δ−η and CF -SW (T) ≤ δ−η. Applying standard reductions, we may replace (T, Y )δ
by a ≥ δη dense refinement so that the following holds: There exists a number θ ∈ [δ, 1] so that
for each x ∈

⋃
T∈T Y (T ), there is a vector v = v(x) so that ∠(v,dir(T )) ≤ θ for each T ∈ T with

x ∈ Y (T ), and for each unit vector w ∈ R3 and each r ∈ [δ, θ], we have

#{T ∈ TY (x), ∠(w,dir(T )) ≤ r} ≤ (r/θ)η#TY (x).

Furthermore, there exists a balanced partitioning cover Tθ of T, so that∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ =

∑
Tθ∈Tθ

∣∣∣ ⋃
T∈T[Tθ]

Y (T )
∣∣∣. (B.2)

After a further refinement, we may suppose that each set TTθ is δ3η-dense. Note that TTθ is a set
of δ/θ tubes that satisfies the broadness condition

#{T Tθ ∈ TTθ

Y Tθ
(x), ∠(w,dir(T Tθ)) ≤ r} ≤ rη

(
#TTθ

Y Tθ
(x)

)
,

for all unit vectors w and all r ∈ [δ/θ, 1]. Thus a standard application of Wolff’s hairbrush argument
[27] for 2-broad tubes shows that∣∣∣ ⋃

T θ∈TTθ

Y Tθ(T Tθ)
∣∣∣ ≳ δ(5/3)(3η)(δ/θ)1/2

(
(δ/θ)(#TTθ)

)1/2
.

125



By (B.2), we conclude that∣∣∣ ⋃
T∈T

Y (T )
∣∣∣ ≳ δ5ηδ3/2θ1/2

∑
Tθ∈Tθ

(#TTθ)1/2 ≳ δ5ηδ3/2θ1/2(#Tθ)
1/2(#T1/2).

(B.1) now follows from the observation that #T[Tθ] ≤ θCF -SW (T)(#T) ⪅δ δ−2ηθ(#T), and thus
#Tθ ⪆δ δ

2ηθ−1.
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