从此走进深度人生 Deep net, deep life.

分类: 社会分析

  • 刘权:均衡性原则的具体化

    引言

    均衡性原则(Der Grundsatz der Angemessenheit)是公法“帝王原则”比例原则的子原则之一,它要求公权力行为手段增进的公共利益与其造成的损害成比例,故均衡性原则又称为狭义比例原则。某个能实现正当目的的手段虽然是最小损害的,但如果其所促进的公共利益与其所造成的损害不成比例,对公民权利造成过度损害,就不符合均衡性原则。可见,均衡性原则并非片面强调公共利益至上,它要求公权力行为者在追求公共利益的同时,认真对待公民权利,审慎权衡相关利益。

    然而,对于究竟什么是均衡性,多大程度上的均衡才算符合狭义的比例性,目前的均衡性原则并没有给出具体的答案。正如德国学者洛塔尔·希尔施贝格(Lothar Hirschberg)所认为,“均衡性原则只是一个形式的原则,它本身并没有提供实质的内容标准而使决定作出”,不容怀疑的是,“均衡性原则是‘形式的’、‘语义空洞的’”,其“并没有从正面具体而一义性地解决‘什么是比例’的问题”。因而,当代英国著名公法学者保罗·克雷格(Paul Craig)认为,均衡性原则具有“较大的不确定性”。我国学者柳砚涛等认为,由于客观衡量尺度和理性适用方法的缺失,导致均衡性原则的适用带有明显的主观性。

    在我国现阶段,公权力并没有得到很好地规范与约束,裁量滥用现象还十分普遍。中共中央、国务院联合发布的《法治政府建设实施纲要(2015-2020年)》明确提出:“细化、量化行政裁量标准,规范裁量范围、种类、幅度。”在全面推进依法治国建设法治政府的新时代背景下,深入研究均衡性原则的具体化,细化、量化均衡性权衡的具体标准,对规范与约束裁量权的正当行使,保障我国公民的人性尊严,提升公权行为的可接受性,具有重要意义。

    一、均衡性原则具体化的必要性

    作为一项法律原则,具有高度抽象性的均衡性原则,为其适用者留下了较大的权衡空间,以便在某种程度上可以脱离法律规则的约束,从而可能有利于实现个案裁量正义。“均衡性原则使法官在当时的情况下作出公正的判决成为可能,并且可以缓和抽象的法律规定的生硬性。”但过于抽象的均衡性原则容易造成法律不确定性的危险,破坏法律的明确性与安定性,可能会对当代全球国家的民主与法治产生严重的破坏性,从而可能造成比例原则掩盖下的“暴力统治”。

    首先,过于抽象的均衡性原则存在主观裁量滥用的危险。均衡性原则没有为权衡者提供较为具体的权衡法则,在适用过程中容易产生非理性。“所有的自由裁量权都可能被滥用,这仍是个至理名言。”对于某个手段究竟是否具有均衡性,立法者、行政者、司法者均具有巨大的主观权衡空间,为了使自己的行为“正当化”,很有可能会滥用均衡性原则,以符合狭义比例原则为“幌子”而不当限制公民权利。因而,甚至有学者认为,均衡性原则具有“欺骗性”。

    其次,过于抽象的均衡性原则还存在利益衡量不足的弊端。由于缺乏直接的均衡性分析工具,其适用者在面对有助于实现目的的众多手段时,往往无法客观科学地评估不同手段所促进的公共利益收益究竟有多大,所造成的损害究竟是多少,从而也就无法客观权衡某个手段所促进的公共利益与其所造成的损害究竟是否成比例,进而导致立法者所制定的法律,行政者作出的行政决策、行政行为等备受争议,可接受性低。

    再次,过于抽象的均衡性原则还可能存在“结果导向性”的分析,容易导致司法专断或腐败。在个案中,法官可能首先站在公民的立场,也可能首先站在立法者、行政者的立场而事先确立一个“结果”,然后再进行所谓的“均衡性分析”。因而,有学者甚至认为,“法官事实上是在用比例原则来证立判决结果。所以适用比例原则并不是为了进行原则判断,而是用来证立所想要达到的结果。”虽然不能说这种事先确定好的“结果”总是不正确的,但却存在恣意与专横的危险。“结果导向性”的分析可能使法官对事实与法律问题进行过于自信的判断,从而可能导致司法专断,也可能为法官追求金钱等非法目的创造条件,从而可能导致司法腐败。

    “均衡性原则在根本上是否符合作出法律决定所要求的客观性和可靠性,是值得怀疑的。”相比于比例原则的其他几个子原则,均衡性原则受到了更为“严厉的批判”。由于存在巨大的权衡空间,均衡性原则容易造成主观裁量滥用、客观利益衡量不足和“结果导向性”分析等弊端。然而,不能因为均衡性原则中的权衡存在非理性,就对其价值产生怀疑,甚至主张拋弃均衡性原则。“必须在法治的视域中寻求比例原则中利益衡量的具体法则,此可谓比例原则的关键课题之一。”为了减少均衡性原则适用的非理性,有效发挥其应有的规范功能,应当不断推进均衡性原则的具体化,“通过各种方法明确不确定法律概念的要求”,积极探索均衡性权衡的具体约束因素与客观标准,从而使均衡性原则中的权衡理性化,最终有效实现公共利益与公民权利二者之间的均衡。

    二、均衡性原则具体化的比较法考察

    对于究竟该如何具体化均衡性原则,法院并没有给出比较明确的答案。在德国,法院常用“均衡的”“理智的”“期待可能性”等具有高度抽象性的词语来裁定某个手段具有均衡性,或者常用“超出比例”“不得过度负担”“不具有期待可能性”等不确定性否定词语来裁决某项手段不具有均衡性。例如,在比例原则形成标志的药房案中,联邦宪法法院认为:“如果对基本权利的限制会造成过度负担和不具有期待可能性,那么就是违宪的。”

    在我国,在少数适用均衡性原则的案例中,法官也没有给出如何判断均衡性的具体法则。例如,在杨政权与肥城市房产管理局信息公开上诉案中,法官在判决书中写到:“当涉及公众利益的知情权和监督权与申请保障性住房人一定范围内的信息隐私相冲突时,应将保障房的公共属性放在首位,使获得这一公共资源的公民让渡部分个人信息,既符合比例原则,又利于社会的监督和保障房制度的健康发展。”法官显然进行了均衡性权衡,但法官并没有详细论证为什么涉及公众利益的知情权和监督权高于隐私权,即法官没有给出均衡性权衡的具体标准和论证过程,使得该判决的说服力大大降低。

    由此可见,司法实践并没有为均衡性原则的适用提供足够的判断均衡性与否的客观标准。学者近些年来开始不断尝试具体化均衡性原则的方法,他们从不同角度提出了一些使均衡性原则的适用更具有理性的方法。但是对于究竟该如何具体化均衡性原则,并没有形成一个统一的结论。归结起来,具体化均衡性原则的方法主要可分为两种模式:一种是从权衡者的角度出发,以德国学者罗伯特·阿列克西(Robert Alexy)为代表的数学计算模式;另一种是从当事人的角度出发,以加拿大学者戴维·M·贝蒂(David M. Beatty)为代表的事实问题商谈模式。

    (一)权衡者进路:数学计算模式

    阿列克西认为,要解决权利与权利、权利与权力之间的冲突,实质权衡必不可少,但权衡又容易产生非理性,所以主要通过权衡而得以适用的均衡性原则需要被具体化。

    1.第一权衡法则和简单分量公式

    对于具体化均衡性原则中权衡的方法,阿列克西提出了权衡法则(Law of Balancing):“对一个原则的未满足程度或损害程度越大,满足另外一个原则的重要性就必须越大。”此权衡法则为实质的权衡法则(Substantive Law of Balancing),可称为第一权衡法则。由于阿列克西认为权利即是原则,所以第一权衡法则也可以表述为:“对一个权利的未满足程度或损害程度越大,满足另外一个权利的重要性就必须越大。”

    根据权衡法则,权衡可以分为三个步骤:(1)确定一个原则的未满足程度或损害程度;(2)确定满足另一个相冲突的原则的重要性;(3)确定满足相冲突的原则的重要性是否能证立对另一个原则的未满足程度或损害程度。据此,阿列克西提出了简单形式的分量公式(Weight Formula):

    2.简单分量公式适用的实例

    对于简单分量公式的具体适用,阿列克西举了德国联邦宪法法院泰坦尼克判例。《泰坦尼克》是一份发行量很大的讽刺性杂志,该杂志先是将一个截瘫的后备役军官描述为“天生杀人犯”,后又将其描述为“跛子”。该后备役军官遂起诉《泰坦尼克》杂志。最终杜塞尔多夫地区上诉法院判决《泰坦尼克》杂志败诉,命令该杂志支付损害赔偿金。该杂志不服提起宪法诉愿。联邦宪法法院对杂志一方的表达自由和后备役军官的一般人格权进行了均衡性权衡。

    联邦宪法法院认为,《泰坦尼克》杂志给很多人都取了绰号,这一背景使“天生杀人犯”的描述不可能被视为“对人格权不合法的、严重的、非法的侵犯”。所以阿列克西认为,根据法院的评估,对人格权的干涉顶多是中度的(m),甚至可能仅仅是轻度的(l)。而对于杜塞尔多夫地区上诉法院判决的损害赔偿金,联邦宪法法院认为,这将改变杂志未来的办刊风格,因而是对表达自由的“持久的”或严重的侵犯。换言之,联邦宪法法院认为保护表达自由的重要性是重度的(s)。因而,在此案中,依据分量公式,人格权的具体分量Wi,j的结果小于1,所以人格权不优于表达自由权,也就是“天生杀人犯”的描述对人格权的侵犯符合均衡性原则。而对于“跛子”的描述,联邦宪法法院认为是对人格权的严重侵犯,但表达自由也是如此重要,即对人格权的侵犯是重度的(s),保护表达自由的重要性也是重度的(s),所以人格权的具体分量Wi,j的结果等于1,此时就无法通过分量公式判断人格权是否优于表达自由权,联邦宪法法院则直接认定二者可以抵消。因此,对“跛子”这一描述的不正当性并未得到证立。

    3.第二权衡法则和完全分量公式

    简单分量公式没有考虑原则的抽象分量。对于原则的抽象分量,如果他们相同时,就可以忽略。一旦原则的抽象分量不同时,就应当考虑,所以在分量公式中应当加入原则Pi抽象分量Wi和原则Pj抽象分量Wj。另外,由于经验事实认定的不准确性,所以也不能忽略经验前提的可靠性。对原则Pi未满足程度或损害程度的经验前提的可靠性可用Ri代表,对原则Pj实现程度的经验前提的可靠性可用Rj代表。因此,完全形式的分量公式为:

    在对经验前提的可靠性进行赋值时,阿列克西提出了第二权衡法则:“对一项基本权利的干涉越大,其经验前提的可靠性就必须越大”。第二权衡法则属于认识的权衡法则(Epistemic Law of Balancing)。它是对经验事实认定的确定性的判断。对分量公式不同的变量赋值后,就可以进行计算。为了尽量避免僵局的出现,阿列克西又提出了更为精细的刻度划分,即双重的三刻度模式。对权利限制可以分为九重刻度:(1)轻度的轻度(ll);(2)轻度的中度(lm);(3)轻度的重度(Is);(4)中度的轻度(ml);(5)中度的中度(mm);(6)中度的重度(ms);(7)重度的轻度(sl);(8)重度的中度(sm);(9)重度的重度(ss)。对这九重刻度的赋值,分别为20、21、22、23、24、25、26、27、28

    为了增加均衡性原则权衡的理性,德国学者马提亚斯·克莱特(Matthias Klatt)、莫里茨·迈斯特(Moritz Meister)在《比例原则的宪法结构》一书中,也试图运用相似的分量公式,精确化均衡性原则的适用。与双重的三刻度相似,我国台湾地区学者汤德宗提出了“阶层式比例原则”,将比例原则的审查分为三阶六层:(1)低标(合理审查基准,又可细分为低低标、中低标和高低标);(2)中标(中度审查基准,又可细分为低中标和高中标);(3)高标(严格审查基准)。

    (二)当事人进路:事实问题商谈模式

    为了减少权衡的非理性,以阿列克西为代表的具体化均衡性原则的模式主要走的是权衡者进路,也就是试图运用具体的权衡法则与数学计算公式,为权衡者提供客观具体的权衡规则与标准,从而规范均衡性原则的权衡。而加拿大当代著名法学家戴维·M·贝蒂则从当事人进路出发,避开了数学计算的方式,将均衡性原则的适用转化为事实问题。

    贝蒂对比例原则评价非常高,他认为比例原则是法律的终极规则。贝蒂认为,通过转化为事实问题视角适用比例原则,可以去除法官在适用均衡性原则的主观性与不确定性。“采取当事人观点优先的视角,法院在任何案件中都不会有某种哲学的或道德上的偏袒。”基于当事人视角,贝蒂认为,适用比例原则不能给任何一方以优先地位,既不能以权利优先,也不能以公共利益优先,而且在适用时也不能通过成本收益分析等数学计算方法。在案件中,法官仅仅只是监督者,而非权衡者。“通过将冲突中人们最重要的利益和观点转为为事实问题,而非解释问题或道德问题,法院成为商谈的监督者。”

    在个案商谈中,法官的角色是认真对待和平等听取当事人的每一种意见,为每一方当事人提供平等的关切与尊重。堕胎是否为谋杀、同性恋是否可以结婚、医疗保险是否违宪等争议,都可以转化为事实问题,由当事人各方进行平等辩论。由此,均衡性原则的适用就变成了当事人对事实问题的商谈,“当法官坚持事实时,法官的个人情感在案件中就永远无法发挥作用。”因此,贝蒂认为以当事人为视角,将道德哲学领域的价值问题转化为事实问题,法官可以作出客观公正的判决。

    (三)两种模式的各自优势与缺陷

    1.阿列克西式具体化模式的优势与缺陷

    以阿列克西为代表的从权衡者进路具体化均衡性原则的模式具有重要意义。在判断某个手段是否具有均衡性时,通过运用权衡法则与分量公式,权衡者能够更加技术性地考虑某项手段对权利的干涉强度、相冲突的权利或公共利益实现的重要性、经验前提的可靠性,从而使得均衡性原则的权衡更具有可操作性,进而使得权衡结果更加具有相对客观性。

    但是,在某种程度上,阿列克西的分量公式只是一个花哨的数学公式。立法者在立法时,行政者在制定行政规则和重大行政决策时,或许偶尔会运用分量公式,但司法者却不大可能运用,因为司法者更倾向并擅长于法律演绎与推理。即使均衡性原则的适用者能运用其进行计算,由于对变量进行刻度赋值没有准确的标准,在赋值时存在较大的随意性与主观性,特别是“在衡量与比较原则的抽象分量时,由于缺乏规范论证,当原则的抽象分量不同时,阿列克西的权衡模式几乎不起作用”。对于如何判断和确定经验前提的可靠性也论证不足。因而,即使运用权衡法则与分量公式具体化均衡性原则的权衡,也存在很大的主观性。

    2.贝蒂式具体化模式的优势与缺陷

    以贝蒂为代表的当事人视角,在某种程度上有利于解决均衡性原则的主观性与不确定问题。因为在均衡性原则的具体适用过程中,对于手段所促进的公共利益大小,作为当事人之一的立法者、行政者更专业,因而更能作出准确的判断;而对于手段的损害性程度,作为另一方当事人的权利被侵害方会感受更为深切,更能感知利益损害究竟有多大、价值侵犯究竟有多深。所以与阿列克西的路径相反,贝蒂的路径“并不依靠外部评价标准”。通过当事人视角,由当事人对冲突中的争议问题进行辩论,并承担举证责任,在某种程度上可能会有利于事实的发现,从而有助于法官依据准确的事实作出更加客观公正的判决。

    均衡性原则无法将争议中的所有问题都转化为事实问题,很多规范问题与价值问题无法转换为事实问题,最终决定的作出仍然无法回避实质权衡。贝蒂本人也认识到,法官在运用比例原则时需要自身评价:“由于当事人可能过度深陷案件,他们有夸大主张的倾向,所以法官有必要对相关法律做自己的评价。”对于最终判决的作出,贝蒂也认为,“比例原则要求法官以谁获得了最大收益和谁承担了最多损失的视角来评价任何法律、规制与裁决的正当性”。因此,均衡性原则的适用离不开法官的主观评价和判断,需要法官通过权衡进行最后“决断”。

    而且,对于均衡性原则的适用如何转化为事实问题、如何对事实问题进行比较等等问题,贝蒂都没有给出详细的答案。在贝蒂眼中,权利并不具有本位性,不具备德沃金所说的“王牌”地位,这与当代民主宪政国法治理念不相符合。况且,权利具有本位性也是比例原则自身内在的规范逻辑,离开权利本位性,比例原则就如同无源之水,无本之木。贝蒂否定成本收益分析等科学计算方法在比例原则中的适用也是站不住脚的。虽然法律问题的解决不能完全依赖于科学,但恰当地运用精确的科学分析工具,是非常有利于规范和指引均衡性原则权衡的。

    三、反思:均衡性原则的本质与功能

    由上可见,无论是以权衡者为进路,试图通过运用分量公式进行数学计算的具体化模式,还是以当事人为视角,试图通过商谈的具体化模式,都无法完全消除均衡性原则适用的主观性过大和不确定性问题。为了均衡性原则的理性适用,必须寻找具体化均衡性原则的第三条道路。而欲重新构建科学的均衡性原则的具体化模式,首先需要准确地认识均衡性原则的本质及其功能。

    (一)均衡性原则的本质:目的必要性原则

    均衡性原则本质上属于目的必要性原则,它是分析某个正当目的究竟有没有必要运用某个最小损害性手段予以实现的原则。作为“四阶”比例原则的最后一个子原则,均衡性原则要求分析手段所促进的公共利益与其所造成的损害是否成比例。如果运用某个最小损害性手段实现某个正当目的所促进的公共利益很大,收益与损害是成比例的,那么从社会整体福利角度来讲,该正当目的就有必要去实现;如果运用某个最小损害性手段实现某个正当目的所促进的公共利益很小,但损害很大,收益与损害不成比例,那么该最小损害性手段就不应当被采纳,该正当目的就没必要实现了。

    因此,均衡性原则虽然形式上是在分析手段的均衡性,但实质上是在选定好某个有助于正当目的实现的最小损害性手段后,继续判断某个正当目的有无必要实现的原则。换言之,均衡性原则其实是在判断实现某个正当目的是否成本太大、收益太小。如果成本太大,收益与成本不成比例,就没必要实现目的,反之则有必要实现目的。

    将均衡性原则视为目的必要性原则,似乎与实践相反。在实践中,立法者、行政者在选择某项手段之前,可能往往会首先进行目的必要性分析。但这种必要性分析只是初步的,也往往是不可靠的,因为在手段没有确定之前,目的必要性分析只是等同于目的重要性分析,此种分析会片面地认为目的越重要,就是越必要的。而实际上可能并非如此。尽管某个目的很重要,但如果可用的手段会造成很大的损害,会造成收益与损害明显不成比例的情况,那么此目的尽管很重要,也可能是不必要实现的。相反,如果某个目的初看起来不太重要,但如果通过采用某个最小损害性手段实现此目的,可能带来很大的收益,那么此目的也可能是有必要实现的。因此,目的必要性分析必须在手段确定后才能准确地进行,也就是在进行了手段适当性和必要性分析确定出一个最小损害性手段后,才能准确地判断某个正当目的有无实现的必要。

    (二)均衡性原则的功能

    作为目的必要性分析原则,均衡性原则的直接作用在于判断某项正当目的有无实现的必要性。均衡性原则主要有两大功能:第一,保障权利不被过度侵害;第二,促进社会整体福利。

    1.保障权利不被过度侵害

    均衡性原则的产生是德国形式法治国向实质法治国转变的结果。作为一种实质的利益权衡法则,均衡性原则是对最小损害性原则的补充完善,是对权利保障的更高标准,能起到保障公民权利不被过度侵犯的功能。即使某项手段是“最小损害性的”,但对当事人来说也可能是过于严厉的。“就基本权而言,无法容许一个系争手段虽属适当、相同有效之最小侵害,但却明显地失其比例性之法益侵害。”均衡性原则可以更进一步保障权利,因为根据均衡性原则,如果某项最小损害的手段过度侵犯了公民权利,造成的损害与促进的公共利益不成比例,就是不正当的。

    禁止过度侵害权利是德国基本法的明确规定。“如果法律或行政措施所加负担或义务对个人来说是不能合理忍受的——不能期待的,即所加负担在考虑当事人人格、个人尊严和尊重个人、经济关系的情形下,显然是过度的要求或负担时,那么,这个措施就不合比例。”德国联邦宪法法院经常以“不具有期待可能性”“不得造成过度负担”等为理由作出判决,否定过度侵犯公民权利的手段。因而,从公民角度来看,均衡性原则的功能在于保障权利不被过度侵害。

    2.促进社会整体福利

    通过均衡性原则分析,比较某项手段的成本、收益,有利于否定成本大、收益小的手段,减少收益很小或几乎没有收益但成本很大的手段的运用。均衡性原则损益均衡的要求,类似于经济学上的卡尔多-希克斯标准(Karldor-Hicks Standard),在某种程度上体现了效能原则。因而从公权力行为者角度来看,通过判断某个正当目的是否值得去实现,在保障权利不被过度侵害的同时,均衡性原则还可以促进社会整体福利。

    但通过均衡性原则并不能选择出最大净收益的手段。因为对手段的均衡性分析是在必要性分析后,面对的只是一个最小损害的手段,其任务就是判断该手段带来的收益与损害是否成比例,以确保手段能增进社会整体福利,但无法保证手段可以获得最大净收益。为了克服此缺陷,我国台湾地区学者黄昭元认为:“在适用顺序上,反而应该将必要性原则与损益平衡原则对调,也就是让法院先就各种可能手段与目的进行衡量,然后再就所筛选出的数种手段进行必要性原则的审查。”

    是否应当将均衡性原则置于必要性原则审查之前存有争议。将均衡性原则置于必要性原则之前,确实可能先挑选出有较大净收益的一些手段,然后再从这些手段中挑选出一个最小损害的手段。但该手段可能会对公民造成损害过大。因为先进行均衡性分析,就可能提前否定一些收益相对较小、损害也相对较小的手段,在此之后的必要性分析所选择的手段就可能是损害较大的。而不求手段的最大净收益,只求手段的最小损害性,正是比例原则的核心要义。所以将均衡性原则置于必要性原则之前,是有悖于比例原则的规范逻辑的。

    因此,尽管均衡性原则并不积极追求净收益最大的手段,但其可以否定损益不均衡的手段,阻止成本大、收益小的目的的实现,从而有利于促进社会整体福利。

    四、均衡性原则具体化的新模式构建

    是否合乎比例需要得到客观的度量,如果这一问题不能得到很好的解决,“所谓合乎比例的判断只能沦为一种主观的估计、推测”。均衡性原则的本质是目的必要性分析,而要客观判断某个正当目的是否有必要实现,一般需要进行成本收益分析。“引入一些交叉学科的方法就成为获取最佳利益衡量结果的‘破冰’之举”,“将经济学的‘成本—收益’分析引入比例行政原则”,可以有效消除过于抽象的均衡性原则适用存在的非理性缺陷。

    均衡性原则的适用离不开权衡,而“权衡是印象主义的”,权衡必然导致恣意。推进均衡性原则的具体化,首先需要从权衡者角度完善权衡方法,寻找可操作性的分析技术,从而指导并规范权衡;手段的均衡性与否,直接涉及当事人的权利保障,所以更需要从当事人角度引入商谈机制,制约权衡者的权衡。因此,应当改进数学计算模式和事实问题商谈模式,既不应只约束权衡者,也不能只寄希望于当事人,而应当以权衡者和当事人为共同视角,构建均衡性原则具体化的新模式:通过吸收成本收益分析方法,并借助于均衡性判断公式,计算出某个最小损害性手段所促进的公益与所造成的损害的比例值,再根据均衡性判断法则,具体权衡该最小损害性手段是否具有均衡性。

    (一)引入成本收益分析方法判断均衡性

    将数学计算方法运用到法学领域,可以更加准确地进行定性分析。“使一些原本复杂、散乱的法学命题定律化,甚至数学模型化,从而大大地增加了这些理论和命题的科学性和可操作性,给人耳目一新之感。”而作为目的必要性原则的均衡性原则,通过准确的成本收益分析,量化拟实现的某个目的可能耗费的成本和获取的收益,再对成本、收益进行具体的比较权衡,才可能使均衡性原则适用中的权衡更加理性,从而正确地判断某个正当目的究竟有无必要实现。

    原德国联邦宪法法院法官迪特·格林(Ditter Grimm)认为,均衡性原则“就是成本收益分析,它要求在基本权利利益与因权利受损而产生的公共利益之间进行平衡”。我国学者认为,比例原则“实质就是要求收益不小于成本的‘成本—收益’分析”,“对比例原则中的狭义比例原则,可以从成本与收益分析的角度考虑。”我国台湾地区学者蔡茂寅也认为:“比例原则既然强调损害与目的间不得显失均衡,则其权衡必然是以同质性之价值相互比较为前提,因之免不了须做量化、金钱化的工作,以求能客观进行权衡。”

    近些年来,在司法实践中,国内外越来越多的司法案例已经提出,有必要通过成本收益分析方法来判断均衡性。例如,在Pfizer Animal Health SA v. Council一案中,欧洲法院认为,为了正确地判断争论的是非曲直,将成本收益分析与比例原则联系起来是适当的。在分析推理中,法院认为应当依据成本收益分析,判断风险管制所产生的侵害与不采取任何行为的益处是否不成比例。

    通过成本收益分析方法判断手段的均衡与否,并不只是一个理论假设。早在百余年前,经济学上的成本收益分析方法就已经在美国法上得到了运用,近些年来有不断强化的趋势,其已被实践反复证明是一种相对科学的规制影响分析工具。成本收益分析为决策者提供了一套相对比较严密的数学计算方法,能较为准确地量化政府拟采用的某个手段可能耗费的成本和可能获取的收益,进而有利于决策者作出理性的决定。

    准确的确立手段的成本与收益,是成本收益分析方法的关键。虽然目前在美国行政法上,对某个手段成本、收益的大小,存在市场评估法和非市场评估法,但根据这些方法得出的成本、收益的大小,很多时候仍然不够准确。在适用均衡性原则时,为了更加客观地发现不同手段的成本与收益,应当引入当事人的商谈机制,确立商谈性成本收益分析方法。通过商谈扩大“信息基础”,认清“公共物品的真实货币价值”,确立“适当的折现率与愿意支付的成本”。而且,在一些复杂疑难案件中,某个手段的“真实损害”究竟有多大、“真实收益”究竟是多少,只有让当事人都参与进来,进行充分的平等辩论沟通,或许才能最终发现一个“合乎情理或相对正确”的答案。

    (二)均衡性原则中的成本:权利损害成本与财政支出成本

    必要性原则关注的是手段对公民的最小损害性,必要性原则中的手段的成本仅是指权利损害成本,即手段给公民造成了多大的损害。实行手段耗费的财政支出成本,则不属于必要性原则的分析范围。但是,均衡性原则不应当只关注权利损害成本。学者蒋红珍认为:“如果说传统均衡审查中‘正的收益’基本保持不变,那么‘负的成本’,却从原来考虑手段对基本权利限制的层面,还要拓展到手段自身的成本耗费上。”

    “均衡性原则需要判断手段与目的是否成比例:与收益有关的成本是否过度。”关注手段的财政支出成本,已逐渐得到了法院的重视。在Schwerbehindertengesetz案中,德国联邦宪法法院认为:“如果某个可替代性的手段对权利损害更小,但要求更多的行政成本,与目的间不具有均衡关系,这个手段也应当被排除。”类似地,在Rückkehrgebot für Mietwagen案中,联邦宪法法院也认为,虽然对权利是更小损害,但如果要求更多的行政成本,不具有期待可能性,也应当否定此项手段。在其他一些案件中,联邦宪法法院也有许多相似表述。

    不当地耗费财政支出成本对纳税人权利的损害。作为目的必要性分析的均衡性原则应当分析权利损害成本是否过大,还应当分析手段的财政支出成本。如果某项手段对公民的权利损害成本很小,但实施此项手段所耗费的人力、物力、财力等财政支出成本过大,甚至可能会造成政府财政困难,产生不可期待的负担,也同样可能是不符合均衡性原则的。政府的财力并不是无限的,特别是在当今的风险行政和生态行政中,政府更应当把有效的财力运用到风险规制与环境治理上,减少不必要的规制与治理。

    因此,从均衡性原则的本质与功能出发,应当对均衡性原则中的损害作广义的理解。即均衡性原则所要求的“手段造成的损害与公共利益成比例”中的“损害”,应当理解为手段对公民造成的直接损害和对纳税人造成的间接损害。在进行均衡性原则分析时,应当同时关注权利损害成本和财政支出成本,二者不可偏废。如此一来,均衡性原则既能保障公民权利不被过度侵害,也能保证财政支出成本不被过度耗费。

    (三)均衡性判断公式与均衡性判断法则

    判断某个手段与目的之间是否存在均衡性关系,实际上就是判断某个手段的成本与收益是否成比例。为了准确地判断手段的均衡性,限缩均衡性原则适用者的权衡空间,需要借助于均衡性判断公式(Equilibrium Formula):

    E表示实施某个手段的总成本与总收益的比例值,即手段均衡性的大小,Cr表示实施某个手段的权利损害成本,Cf表示实施某个手段所耗费的财政支出成本,B表示实施某个手段所带来的公共利益收益。对于成本CrCf和收益B的具体计算方法,可以借鉴相对比较成熟的成本收益分析方法中的市场评估法和愿意支付、愿意接受等非市场评估法等经济学方法。

    通过均衡性判断公式,可以计算出实施某个手段的总成本与总收益的比例值,但要准确判断某个手段是否均衡,还需要借助于均衡性判断法则:“实施某项手段的总成本与总收益的比例值越小,该手段具有均衡性的可能性就越大,该手段的可接受性也就越大。”

    结合均衡性判断公式和均衡性判断法则,可以进一步得出具体化均衡性原则的一系列规则:如果实施某项手段的总成本与总收益的比例值越接近于0,则表明实施该手段的所带来的公共利益收益相对于成本就越大,该手段具有均衡性的可能性与可接受性就越大;如果实施某项手段的总成本与总收益的比例值越接近于1,则表明实施该手段的所带来的公共利益收益相对于成本就越小,该手段具有均衡性的可能性与可接受性就越小;如果实施某项手段的总成本与总收益的比例值等于1,则表明实施该手段的所带来的公共利益收益等于成本,此时该手段就处于均衡性的临界点,其可接受性需要进一步综合判断;如果实施某项手段的总成本与总收益的比例值大于1,则表明实施该手段的所带来的公共利益收益小于成本,该手段一般不具有均衡性。

    通过正确运用均衡性判断公式与均衡性判断法则,可以在更大程度上使均衡性原则的权衡具体化。借助于均衡性判断公式,可以计算出实施某个手段的总成本与总收益的比例值,再通过均衡性判断法则,就可能较为客观地判断某个手段所促进的公共利益与其所造成的损害究竟是否成比例。立法者、行政者面对众多可能有助于实现正当目的的手段时,其在进行均衡性权衡时的恣意就会减少许多;法官受均衡性判断法则的约束,均衡性权衡也不会再那么任性,从而减少司法专横和腐败。

    (四)均衡性原则具体化的限度:和成本收益分析的比较

    比例原则和成本收益分析都是一种决策性分析工具,都是一种利益衡量方法。权衡者运用均衡性原则进行权衡,实际上是或多或少地在进行成本收益分析,甚至有学者认为,比例原则本身就是“成本效益分析的另一种表达”。

    但是,均衡性判断和成本收益分析二者之间还是存在很大的不同。详言之,成本收益分析更加强调效率,更加注重收益的最大化,它要求政府尽可能采用能够取得最大净收益的措施;而作为比例原则子原则之一的均衡性原则,则更加强调公平,其首要关注的是权利不被过度侵害而非效率,正如我国学者高秦伟所言:“传统行政法背景下产生的比例原则,更多的是关注行政权力的控制,而对于行政机关如何作出适应经济社会发展的裁量则无法提供任何积极的意见以及有效率、效能的考量等。”

    尽管存在差别,但均衡性原则和成本收益分析可以相互调和。“利益衡量诉求的量化计算方法,在那些可以转化为货币的利益衡量领域,的确可以发挥作用。在一些特定案件中,通过引入偏重于定量分析的更客观化、精确化的成本收益分析方法,不仅有利于客观量化多元化的利益,使各种可替代性方案具有共同的可比较的数字化基础,能在某种程度上有效约束裁量的恣意与专横,进而使均衡性权衡更加客观,提升现代行政的效能。

    值得注意的是,虽然偏重于定量分析的成本收益分析,有助于克服偏重于定性分析的均衡性原则的缺陷,但定量分析绝不能取代定性分析,成本收益分析不应当成为均衡性判断的全部。在个案中,权衡者除了应当首要考虑均衡性判断公式的结果外,还应当综合考虑被侵犯权利的种类、公共利益的类型、目的实现的时机等其他因素。因而,均衡性判断公式与均衡性判断法则并非对决策起决定性作用,而是起重要辅助性作用。在一般情形下,权衡者应当根据均衡性判断公式与均衡性判断法则,来判断某个手段是否具有均衡性,但如果出现例外不遵守时,权衡者必须给出令人特别信服的理由。法律是追求善良公平的艺术。因而不能过于强调效率而牺牲公平,不能在任何情形下都将均衡性权衡简化为单纯的数字比较,否则均衡性判断就容易陷入工具理性与功利主义的泥淖。

    结语

    现代国家可以说是一个权衡国家,权衡无处不在。然而,权衡是一把双刃剑。“权衡国家对自由具有双重效应:更大的机会和更大的危险。”均衡性原则权衡有利于公权力行为者进行充分的法律推理、道德推理与价值判断,从而可能更好地保护公民的权利与自由。但与此同时,权衡也为权力滥用留下了空间,更大的裁量意味着更大的危险。“任何裁量权的行使都必须有一定的判断标准,否则就会导致裁量权的滥用或不当。”无论立法者、行政者还是司法者,在进行均衡性裁量时,都应当受具体法则的约束。中共中央发布的《关于全面推进依法治国若干重大问题的决定》特别强调:“必须以规范和约束公权力为重点。”因此,规范裁量权的行使,具体化均衡性原则的权衡,克服其由于过于抽象模糊而存在的不确定性缺陷,不仅有助于减少腐败,而且有利于充分保障人权。

    自最高人民法院作出中国适用比例原则第一案判决后,比例原则开始逐渐出现在我国的司法判决中。我国已有法官认识到了均衡性原则和成本收益分析的关系。例如,在郭建军与诸暨市国土资源局土地管理行政处罚纠纷上诉案中,法官在判决书中这样写道:“行政执法中行政裁量必须遵循执法成本和执法收益的均衡,应当符合比例原则……行政机关必须选择相对成本最小的执法手段,选择对行政相对人最小侵害的方式,从而使行政执法的成本与执法收益相一致。可以看出,我国法官逐渐认识到行政机关在适用均衡性原则进行权衡时,应当注重成本、收益,应当选择成本最小、侵害最小的手段。该案例对于均衡性原则在我国的具体化无疑具有重要价值,它不仅有利于指引并规范行政机关的均衡性裁量,而且还有助于指引并规范法官的均衡性权衡。

    本文转自《法学家》2017年第2期、《法学家》公众号

  • 万俊人:现代正义论范式及其改进——以罗尔斯、森、纽斯鲍姆为例[节]

    自古至今,公平正义始终是人类最质朴且最普遍的社会期待。数百年的现代社会实践似乎离这一社会期待依旧遥远,日益严重的非正义现实严重背离了人类正义理想,让人们深陷正义的迷茫。这大概是近半个多世纪以来,关于正义主题的哲学意识被不断唤醒且日趋强烈的根本缘故。

    所谓正义,至少可以从政治、法律、伦理和道德等诸多实践规范性学科的视角予以界定,其最一般的政治哲学定义是指基于权利与义务之对等分配而实现的社会公平正义秩序/规范,以及社会公民自觉内化并承诺正义秩序或规范的公正美德。大凡哲言正义者,无非基于两种考量:其一可谓之上限目的论的正义理念论,即基于对人类良序社会的理想预期而论正义的理想目标及其达成,远者如古希腊哲学家柏拉图的《理想国》,近者如罗尔斯的《正义论》。其二可谓之下限或底线道义论的正义实在论,即基于非正义现实批判而论社会正义的实际改进与规范实践,远者如古印度法理学中的“niti”(正义),近者如森的《正义的理念》和部分意义上纽斯鲍姆的《正义的前沿》。耐人寻味的是,几乎每一种正义理论的提出和凸显都与其所处时代及其非正义的现实直接相关,在诸多实践哲学话题中,公平正义即使不是唯一受其特定时空之社会反面镜像所直接驱动的,也肯定与其特定时空的反面现实有着最直接且最强之相关性,而且社会非正义状况愈严重,人们对正义的吁求便愈强烈。无论是出于上限目的论的正义理念论,还是基于下限或底线道义论的正义实在论,作为实践哲学的核心主题,正义从来都是伦理学家和政治哲学家们思想争锋的焦点,古今中外,概莫能外,只不过于今尤甚。

    最近半个多世纪以来,正义主题的论争不仅牵动了几乎整个哲学伦理学等诸多人文社会科学,而且也深刻影响着现代人类生活世界。如何解析这一现象,不仅关乎如何把握最近半个多世纪的政治哲学和伦理学自身的学术演进,更关乎如何理解这一时期生活世界本身的社会意义和人类社会的未来前景。问题是,究竟是什么原因促使正义成为我们时代的突出主题且持续凸显和延展?仅仅是半个多世纪的时间,一种哲学理论或主题便展现如此快速蔓延且持续成为学界与社会共同关注的焦点,大概可与文艺复兴至启蒙运动的人道主义、18-19世纪的英国功利主义学说、20世纪前中期的世界社会主义思潮和20世纪中后期的“现象学—存在主义运动”相提并论。如果说,20世纪中后期美国社会诸种矛盾的激化直接催生了罗尔斯的正义理论,并促使欧美哲学发生实践哲学的“关键性扭转(转向)”(“a pivotal twist”,哈贝马斯语),那么,驱动正义理论自身不断拓展——无论这一拓展被看作是不断改进的过程,还是内含某种或某些重大改变甚或更替的后果——的原因又是什么?进而,人们有理由进一步追问:这一拓展过程给政治哲学和伦理学究竟带来了怎样的理论影响?

    一、制度正义重建: 公平正义的社会普适道义原则

    1971年,罗尔斯《正义论》的出版被公认为是现代哲学界的一个标志性事件,它扭转了20世纪西方(尤其英美)哲学长时段沉浸于理论分析而疏于实践哲学的基本趋势,正义问题成为时代的哲学主题,创造了几乎整个哲学社会科学界的“罗尔斯产业”(Rawls’ industry)之学术景观。罗尔斯正义论的鼎兴并非偶然,其个人经历及其自觉的时代反思促使他最终聚焦并洞开现代社会正义的问题症结:制度性非正义及其校正。罗尔斯本人参加太平洋战争的切身经历和他对于第二次世界大战后欧美社会的观察分析,使他敏锐地意识到其所处时代最具危机和挑战意味的社会病症:诸如,为何人类历史上最为惨烈的两次世界大战都首先在“自由民主国家”之间爆发?为何以自由民主著称于世的美国直到20世纪60年代末还爆发以黑人为主流的少数族裔“民权运动”(civil rights movements)?为何在20世纪60-70年代的自由民主国家,青年一代不仅没有因为社会经济的增长繁荣而感受生活的快乐,反而会成为“垮掉的一代”(a broken generation)?凡此种种,在罗尔斯的哲学思考中渐渐汇聚成社会伦理暨政治哲学的严肃课题:即使在一个政治民主、经济繁荣的现代国家,若缺乏基本的社会公平正义,再多的财富和收入都无法消除社会冲突,也无法建立“一个良序社会”(a well-ordered society),更甭说维持其长治久安了。现代自由民主社会最为缺乏的不是社会财富的生产和效用的“充量化”(maximization),而是基于社会公平正义的普遍道义规范,作为普遍社会道义规范基础的基本制度架构,以及,由此所构成并长久维持的“社会稳定性”(social stability)。换言之,在罗尔斯看来,现代社会的“首要美德”或最高成就不是任何形式的社会总体化功效及其最大化增长,而是如何基于公平正义的原则分配或分享社会的“基本善品”,也就是社会基本自由、平等、权利、义务、财富和收入、自尊等的公平分享或分担,以及最为重要的是,确保自由民主社会长治久安的正义制度。

    通过反省近代以来长期支配西方实践哲学传统的社会契约论和功利主义学说,罗尔斯断定,它们已无法满足现代自由民主国家对于正义秩序和公平制度的内在需求。传统的社会契约论已失去其令人信服的理论力量,而无论功利最大化到何种程度,单纯总体功利(价值)目的及其实现都因无法解决社会分配不公而难以建构现代社会持久稳定的正义秩序。任何良序社会的根基只能诉诸基于社会公平正义的普遍道义原则,而非功利或效用的最大化原则。社会契约论有助于现代民主国家在文化多元条件下达成普遍正义的原则共识,因为社会契约精神——亦即自由平等的协商精神——更适宜于社会公平正义原则的规范要求。然而,在罗尔斯看来,近代社会契约理论——无论是霍布斯、洛克式的,还是卢梭式的,甚或是康德式的——都不足以充分证成现代民主国家所需要的制度正义。它们或因过于消极而难以充分阐明作为一种积极的社会组织化成果的“社会合作体系”之国家理念,仿佛缔结社会契约或建立国家只不过是人类为了克制自身本性的“根本恶”——即自私本性——以摆脱恶劣的自然状态而不得不做出的被动选择;或因过于倚赖于传统自然法观念而缺少新理论的充分证明,使得原有的社会契约无法为任何普适的现代社会道义原则提供充分必要的理论论证,因之必须给予理论重铸和改进,使其获得充分的理论合理性和普遍有效性,成为足以证成“作为公平的正义”(justice as fairness)这一核心正义观的合理有效方式。于是,罗尔斯首要的哲学工作便是改进近代西方社会契约论,以建构其“高度康德式的”新社会契约论。

    与传统社会契约论不同,新社会契约论不再从某种基于“趋利避害”之人性本恶假设的“自然状态”出发,而是基于一种信息预制过滤,也就是罗尔斯所谓的“原初状态”(an original position)下的正义原则认同。在“原初状态”中,参与社会契约的每一个人都被遮蔽于“无知之幕”(the veil of ignorance)背后,不仅相互“无知”彼此的实际差别,而且“互无利益关涉”(mutual disinterested),毫不介意诸如起点差异可能带来的契约预知困境或结果偏颇,仅仅依据参与各方对公平正义这一核心理念的广泛认同,达成并承诺正义之基本原则体系。罗尔斯的论证逻辑次序是:首先确认并确信无人反对“作为公平的正义”这一核心理念;其次就基本正义原则系统达成基本共识,以便为建构“一个良序社会”奠定正义的制度基础或“社会基本结构”(basic social structure);最后是如何践行正义基本原则规范的规导问题和实践操作(策略步骤)问题。

    罗尔斯《正义论》的中心主题便是,基于“作为公平的正义”之核心理念,证成社会制度之正义安排所依据的两个正义原则。该原则系统的“最初表述”是:“第一原则:每个人对与其他人所拥有的最广泛之平等的基本自由体系相容的类似自由体系都应有一种平等的权利。第二原则:社会和经济的不平等应这样安排,使它们(1)被合理地期望适合于每一个人的利益;并且(2)依系于地位和职务向所有人开放。”经过反复讨论和充分论证,正义原则系统的“最后陈述”变为:“第一原则:每个人对与所有人所拥有的最广泛之平等的基本自由体系相容的类似自由体系都有一种平等的权利。第二原则:社会和经济的不平等应这样安排,俾使它们(1)在与正义的储存原则一致的情况下,适合于最少数最少受惠者的最大利益;并且(2)依系于机会公平平等条件下的职务和地位对所有人开放。”

    正义原则的“最初表述”堪称西方自由主义传统观念体系的精确复述:第一原则表达自由与平等;第二原则表达普遍的自由平等和机会均等;其“最后陈述”则在保留普遍自由平等和机会均等之外,给正义第二原则新增了一项特别内容:即优先考虑社会最少数最弱者最受益的制度安排。正义第一原则是针对“每个人”的最广泛平等自由原则,属于根本的“宪法权利”(constitutional rights),是自由主义基本信条的最新表述。正义第二原则分为两部分:其(1)为“差异原则”,即在符合代际正义之“正义储存”原则的前提下,社会基本制度的安排应以最有利于处于社会最不利地位的最少数弱者为优先考量,也就是对社会弱者的制度倾斜,是人为设计的“制度偏好”;其(2)可以简述为机会均等开放,即所有社会公共机会对所有人平等开放。第二原则由两部分共同构成,后半部分可以看作是对机会均等主张的确切表述,而前半部分则是罗尔斯正义原则的新增,也是其正义论中最具独创性和影响力的亮点,集中体现了“作为公平的正义”这一核心理念的普遍平等主义价值取向。然而,恰恰是在这一点上,罗尔斯的正义论在赢得广泛理论赞誉和社会实践影响的同时,也引发了最多的理论争议,构成其最大理论压力:一方面,在第二原则内部,差异原则的制度偏好与机会均等的制度安排本身存在内在张力,不仅是在直觉的意义上,而且在具体的制度安排上,人们难以同时兼顾既确保机会均等又做到最有利于最少数社会弱者的最大利益之倾斜式制度安排,因为任何制度安排的倾斜都意味着机会开放供给本身的不均等。另一方面,就整个正义原则系统而言,差异原则与正义第一原则即普遍平等的自由原则也相互冲突,因为正义第一原则并未给差异原则所要求的制度偏好留下任何特殊余地或可以证成的“充足理由”(good reason[s]),既然普遍平等,便无特殊关照。

    罗尔斯当然不会看不到这些理论悖论。为此,他花费了巨大的精力来消除人们的质疑。罗尔斯首先申言,基于正义原则主导的制度安排所遵循的是普遍理性主义的社会道义论而非功利主义所坚持的价值目的论,因此它必须突破后者不可普遍化的局限,将社会正义制度的基点从高限“最大化”(maximization)降低为“底线最大化(普适化)”(mini-maximization),即一种兜底式的或惠顾尽可能多数人的普遍正义的制度安排,这是“差异原则”的宗旨所在。因为无论是在理论上还是在实践中,社会效用总量的最大化都不一定确保社会最大多数人都能得到公平的份额,更甭说因各种主客观原因可能造成的极少数社会弱者被边缘化,甚至被遗忘。其次,罗尔斯明确开出了一份社会“基本善(品)清单”(the list of primary goods),包括确保每一个社会个体过上“体面生活”所不可缺少的平等自由(权利)、基本收入和财富、人格尊严等。罗尔斯认为,任何“基本善(品)”的差别化分配,尤其是财富和收入的差别化分配,只有在其同时有利于改善社会弱者的前提下才具有普遍公平正义的道义性。否则,即便该分配合理合法,也未必正当合义。当然,“基本善(品)清单”的开列本身也表明,制度分配对极少数社会弱者的“惠顾”也并非毫无限度,它仅限于“基本善(品)清单”之内的制度分配。同时,为了回应激进自由主义和保守主义对“差异原则”的诘难,罗尔斯通过其“词典式次序”的自我辩护,证明其正义原则并未违背自由主义的基本信条。诺齐克等较为激进的自由主义思想家认为,罗尔斯的“差异原则”明显违反了个人自由权利神圣不可侵犯这一自由主义根本信条,且无法在不违背此一信条的情况下证成差异原则及其实践的正当合理性,若无“校正正义”(justice of correcting)“转移正义”(justice of transferring)的限制,任何通过制度安排所实施的权利转让(重新分配)都不正义。对此,罗尔斯反复申明,尽管“差异原则”表达了对惠顾少数处于最不利地位者的制度关照,但就整个正义原则体系而论,第一原则优先于第二原则,在第二原则的两部分之间,机会均等原则又优先于差异原则,最重要的是,正义原则体系内的这种优先性次序一如词典中诸词条的排序一样不可更改,否则,该辞典便无法使用。同样,正义的两个基本原则及其第二原则两个部分之间,也具有不可更改的次序规定。可问题是,如若这样,“差异原则”所诉求的惠顾少数弱者的制度偏好诉求又如何可能?

    如果说,光复现代实践哲学堪称罗尔斯正义论的最大贡献,那么,通过更新社会契约论而建构的普遍理性主义社会道义论,以及由此提出并证成的“差异原则”,当是其正义论本身最大的政治伦理贡献了。毕竟,差异原则所体现的社会底层关怀乃是近代以来欧美自由社会长期存在的社会难题,更符合第二次世界大战后欧美社会对福利资本主义的普遍期许。然而,时过境迁,罗尔斯正义论本身所显露出来的理论不足似乎同其学术理论贡献一样令人瞩目,其所造成的理论困惑和实践困难亦难以为其理论自身所消解。最主要的问题包括但不限于:(1)一种基于信息约束甚或“信息茧房”式预设的新社会契约论是否比传统社会契约论更具解释力和说服力?即便如此,又是否合理?无论如何,人为地设置“原初状态”下的“信息约束”与自由民主的政治原则相抵牾。(2)仅仅通过某种基于“差异原则”而设置的制度安排是否能够真正实现社会的普遍正义?即令部分为真,比如说,凭借制度安排或“政府二次分配”(厉以宁语),使得少数社会弱者可凭相对稳定的制度“特供”,获得社会制度资源或公共善品的优惠,从而使其生活获得某些改善。然而,这样的社会改进是否可持续?“差异原则”本身是否正义?如何才能不忤逆公平正义的“自由平等”要求?因为中外许多经验教训都表明,即便是制度偏好式照顾或“制度扶贫”,也很容易停留于我们所说的“治标”层次,难以达到“治本”目标。而且,制度倾斜不仅存在合法正当的法律依据和政治正当性辩护问题,而且还存在诸如在多大程度上以何种恰当方式来实施制度倾斜?如何确认哪些社会成员属于“处在社会最不利地位者”等复杂议题,其中牵涉甚多,很难单纯凭借制度调整的齐一化方式就能解决之。很明显,因天灾人祸、生理缺陷或外在自然环境等不可控因素所导致的贫穷,同好吃懒做、投机失败、因“黄、赌、毒”等不良嗜好而“自作孽”式的贫穷肯定不可同等对待。与此类似,凭借某种阶段性制度安排而获得的资源优惠或制度便利,同最终依靠自身主体能力增强和自主奋斗而获得的自我改善也不能相提并论。易言之,弱者之为弱者不单是一个结果判断问题,还有其自身的主客观原因的分析解决问题。改善弱者生活状态乃至其命运也不只是改善外部资源供给的问题,还有且更重要的是改善其自身生存能力和生活方式的问题。若简单从事,所谓制度正义就只具有罗尔斯本人所担心的“权宜之计”(modus vivendi)的意义,甚至会导致某些额外的衍生性非正义后果。(3)罗尔斯公开申言,其正义论不仅适用于“自由民主的”资本主义国家,而且可以适用于“社会主义国家”,可他晚年出版的《万民法》一书却将不同的国家划分为五种类型,并坚持认为,“差异原则”只适合于“自由民主国家”而不适合其他“非自由民主国家”,这一明显缺乏融贯性的理论立场得不到国际语境的支持,更何况该立场同其正义论所主张的普遍道义论立场能否相互契合,更是一个大问题。历史地看,这些问题既是罗尔斯正义论本身的问题,又是罗尔斯留给当代政治哲学的待解难题。

    二、可行能力进路: 社会契约论与社会选择理论比较

    赞赏或批评罗尔斯正义论的现代哲学家和思想家甚多,但能直接对之做出关键性甚或替代性改进的当属其哈佛哲学系同事和朋友阿玛蒂亚·森。凭借对罗尔斯正义论的多学科透视分析,森在综合其多年有关罗尔斯《正义论》探讨和正义问题研究的基础上,于2009年发表其正义研究的总结性成果《正义的理念》(The Idea of Justice)专著,全面清算并改进了罗尔斯的正义论,堪称罗尔斯《正义论》之后又一部现代正义论经典。在当代哲学乃至整个人文社会科学界,森大概是最懂罗尔斯的学术知己和思想大家之一,也是能以独特的理论批评和创造性改进,来表达其学术敬意并证明其与罗尔斯之间崇高学术友谊的真诚道友。森对罗尔斯的敬仰如此真诚,在《正义的理念》一书的扉页上,他特别题词:“为了纪念约翰·罗尔斯”,并在该书第二章“罗尔斯及其超越”的结语中满含深情地写道:“……我们不能让罗尔斯的正义思考模式陷入一种理智‘停滞’。我们必须从罗尔斯那里获得的丰富思想中吸取有益的养分,然后继续前行,而不是‘休假’。我们需要‘正义’(justitia),而非‘休假’(justitium)。”

    沿着罗尔斯重开的正义论道路继续前行,表明了森的学术志向和理论确信:罗尔斯的正义探究必须坚持,因为今天的我们和我们的时代对正义的理智思考不仅必要,而且更为急迫。同时他也清醒地意识到,罗尔斯的正义论模式并非正义探究的终点,而是新的开始。罗尔斯的社会契约论进路只是现代诸种可行进路之一种,而且很可能还不是最具理论说服力和现实解释力的。在《正义的理念》一书“前言”,森指出,启蒙运动孕育了多种现代政治哲学的探究路数,那些具有引领力的政治哲学家们对正义问题发出了不同的声音。最具影响且持久有力的探究进路有两种:一种聚精会神于探明“完美正义的社会安排”,将“正义制度”(just institutions)视为正义探究的头等大事,因而以不同的方式编织“一种假设的 ‘社会契约’”,从17世纪的霍布斯、洛克,中经卢梭、康德,直到当代罗尔斯莫不如此,该进路一直占据着现代西方正义理论的主流地位。另一种与之颉颃的进路则更关注人的实际生活状态和社会行为选择,并对之作出比较分析,更关注实际存在的社会非正义现实及其可能的改变方式,包括社会改进和社会革命,而不只是停留于对理想正义的社会构想,从18世纪的亚当·斯密、稍后的孔多塞、边沁、密尔(旧译“穆勒”)、马克思,到20世纪中叶“社会选择理论”的经济学先导阿罗(Kenneth Arrow)等人均是如此。自然,作为亚当·斯密的当代继承者,森开诚布公地把自己归列于这一进路上的忠实同路人。

    基于对社会选择理论优于社会契约论的理论确信,森首先将批评的矛头指向罗尔斯正义论的前提预设,认为罗尔斯所信奉的社会契约论进路并不合理,即使经过罗尔斯“擢升”后的新社会契约论,也未能达到更高合理性,犯了“先验制度主义”(transcendental institutionalism)的错误。罗尔斯假设,出于建构“良序社会”的目的,人们需要首先就正义的基本原则达成一致,这就需要他们首先超脱各种人际或群际差异,包括人生起点、生活境遇、个人主体条件,以便超越因诸种差异而产生的意见纷争,仿佛每一个参与社会契约的人都预先自觉罩上一层“无知之幕”,以此形成各社会成员得以开始的齐一化“原初状态”。从“同一起跑线”出发,大家才有可能对基于“作为公平的正义”这一核心理念所形成的正义原则体系达成共识——即:无论如何,一种能够体现公平正义的社会总是值得人类社会期待的,进而人们按照正义的基本原则体系来建构“良序社会”所必需的正义制度体系,这正是罗尔斯把正义珍视为社会制度之“第一美德”(the first virtue)的根本原因。然而,在森看来,这种前提假设既缺乏充足的逻辑理由,也没有任何现实可能。即使为了缔结公平正义的社会,也没有任何理由预先假定所有参与缔结契约的人都必须从“同一起跑线”出发,甚至为了“平整”(海德格尔术语)所有参与者的实际差别而强行给所有人罩上“无知之幕”。寻求结果的一致不是预设起点齐一的正当理由,更非充足理由。恰恰相反,任何社会契约的达成都是在厘清差异、相互妥协的前提下实现的,即所谓异中求同,同中存异。无差别的契约不是真正的契约,而是静止的无过程的想象性社会认同。现实生活中,既不可能强行制造“无知之幕”,也不存在一种无差别、“无利益关涉”的所谓“原初状态”。任何强制性加罩“无知之幕”的做法都是一种武断的“信息限制”,以此造成的“原初状态”无异于“信息茧房”,这显然不是“自由民主的国家”该有的选择。

    可见,社会契约论并不是证成现代正义制度和正义原则体系的最佳方式,远不如社会选择理论更适合切入和解释现代正义问题。森指出:“一种正义理论必须针对实际可行的选择而论,而不只是让我们总沉溺于一种想象的、不可信的、无比壮美的世界而无法自拔。”任何合理可行的正义理论首先必须是从社会实际出发,针对现实生活中的非正义事实做出真实可行的理论反应,而非基于正义理想的美好想象,预定某种完型原则。罗尔斯显然落入了“高限”理想目的论的窠臼,无法避免地重复其理论前辈(如,康德)所遭遇的“先验制度主义”困境:它预设我们可以对个体行为和社会行为预先做出完全充分的评估,并借此预先制定一套完美的正义评价标准。可事实恰好相反,人类从来都是因为面临非正义的社会现实且无法回避,才开始思考和探寻社会正义制度和正义原则的。因此森断定,先验制度主义的“完全评估”之难正是社会行为选择理论的现实比较优势所在。“社会选择理论”(social choice theory)最早诞生于18世纪法国大革命时期,产生于人们对卢梭抱怨的人类不平等社会现实做出激进反应的“革命时刻”,它首先由巴黎著名数学家波达(Jean-Charles de Borda)和社会学家孔多塞(Marquis Condorcet)发明,也正是“通过他们对一群不同个人的个体评价之集合性学科调查”,社会选择理论才得以提出。社会正义及其实现的确同社会制度及其与个体行为模式的相互依赖性作用有关,但人类社会的制度选择具有某种“依势而定的本性”(contingent nature),人们无法穷尽对各种差异性个体行为的评估检测,却可以从实际存在的社会非正义现实中发现问题,在多种比较分析后做出切实可信的相对客观的比较评估,以此作为探寻建构社会正义的合理起点。森的结论是:“一种先验的进路本身无法讨论增进正义、无法为了更公正的社会而比较诸种替代性选择议案,它有的只是从一种先验进路跳跃到一个完美世界的乌托邦式议案。”与之相对,社会选择理论从各种现实具体的非正义问题——诸如,饥饿、贫穷、文盲、酷刑、种族不平等、妇女屈从、任意监禁、医疗保健政策中的排斥性不公等问题——及其解决入手,寻找并分析造成这些实际非正义后果的各种原因,选择并比较各种实际可能或可行的解决方案。这使得社会选择理论从一开始就具有新旧社会契约论都缺少的理论合理性和实际应用优势。

    森当然理解罗尔斯优先考量正义制度的理论初衷:现代社会日趋开放的公共性使得社会制度(规范体系)具有越来越重要的基础地位,社会的公共化程度愈高,其对于公共规范体系及其普遍效应的依赖性也随之升高。然而森敏锐地发现,现代政治哲学家们也会因此容易迷恋某种“制度性原教旨主义观点”(institutionally fundamentalist view),不仅把社会正义的诉求简单寄托于制度正义或正义制度的“路径依赖”,而且把正义制度本身当成了全部正义实践的实际明证。事实上,制度正义仅仅是人类实现社会正义的外部条件,尽管正义的制度条件极为根本,甚至具有前提性和基础性地位,也不能因此将制度正义与社会正义的实现混为一谈。要真正实现社会正义,还必须将制度正义的规范约束落实到社会实践之中,转化为所有社会成员的正义行动。易言之,“我们必须寻求的是增进正义的制度,而不是把制度本身当作正义的表现,后者可能反映了一种制度性的原教旨主义观点”。

    如果说选择从社会契约论的进路切入正义主题是罗尔斯正义论的前提误置,那么这一前提误置既是误导其落入“先验制度主义”窠臼的理论前因,也导致其正义原则推导失误的理论后果。前提预制的问题蕴含后续推导和结论也出问题。实际上,罗尔斯基于其改进后的社会契约论所推导出来的正义原则,甚至是其推导过程本身都说明了这一点。森将罗尔斯正义原则及其推导问题概括为六个方面:“(1)由于[罗尔斯]只集中关注一个完美正义社会的认同,因而忽略了对有关正义之比较性问题的严肃回应。(2)[罗尔斯]按照只关注‘正义制度’的正义原则来制定正义的要求,却忽略了更广阔的社会现实视野。(3)忽略了一国行动和选择可能对他国人民造成的负面影响,没有任何必要的制度安排以倾听那些受到影响的他国人民的声音。(4)没有任何矫正狭隘地域性价值的系统程序,而任何社会一旦与世界脱钩,都极容易受到这些狭隘地域性价值的影响。(5)排除了这样一种可能性:即便是在原初状态下,由于不同个人理性选择的政治规范和政治价值(而不是由于他们在所属利益上的)差异多样,他们也会继续采取某些殊为不同的原则作为合适的正义原则,甚至是在经过大量公共讨论之后还会如此。还有(6)没有给这样一种可能性留下任何余地:尽管存在假设的社会契约,有些人也不会总是‘合乎理性地’行动,而这可能会影响到所有社会安排的适当性(当然也包括制度选择),通过强行使用一概而论的假设:即所有人都会遵从一种特殊的‘合乎理性的’行为规范,[罗尔斯]把这一问题完全简单化了。”

    这六个方面的质疑不单关乎正义原则的推导,更关乎罗尔斯正义论的“狭隘地域主义”问题。在森看来,罗尔斯的正义论完全忽视了国际语境因而只具有“一国”或“某一社会”的内部适用性。坦诚地说,森对罗尔斯正义论的这些质疑看似温和,实则是颠覆性的,至少动摇了罗尔斯正义论的理论基础,揭橥了罗尔斯正义论的狭隘地域主义局限。这促使森进一步质疑罗尔斯著名的“基本善(品)清单”和罗尔斯晚年对“万民法”所做的最后也是最不成功的探究,并提出了自己的替代性方案。可见,对于罗尔斯的正义论来说,森的正义论更多的是批判性甚至革命性的,因而也是替代性的。正是通过深刻反省和批判罗尔斯的正义论,森才得以确立自己独特的“正义理念”,这便是他基于“可行能力进路”的正义论。与罗尔斯基于社会契约论所证成的制度正义论相对,森的正义论以个人可行能力为中心。“可行能力进路”(capability approach)是森的正义论的核心概念,其基本含义是指个人的“可行能力发挥”(capability functioning),“是个人做他或者她有理由珍视之事的能力”,具体包含个人实际可行的能力和该能力实际发挥的作用两个层面。早在1980年,森首次在其以“为了何种平等?”(Equality for what?)为题的“坦纳人类价值讲座”(Tanner Lecture on Human Value)中,提出“可行能力”概念,并在随后发表的著述中不断充实延展,以致后来成为森的政治经济学、伦理学和政治哲学中融会贯通的关键概念和基本方法。实际上,这一概念的提出首先是针对罗尔斯的“基本善(品)清单”的。以清单形式开列社会公共分配的基本善品是罗尔斯的一大发明,对现代实践哲学和诸多人文社会科学影响极大,甚至也影响到现代政府管理和公共政策操作。然而在森看来,与其开列一份“基本善(品)清单”,不如开出一份“基本可行能力清单”来得更为真实,更具实际可操作性。因为,公益善物的清单一如宴会餐桌上的食品清单,但对于社会大众来说,比宴会餐桌上诱人的食品清单更为实在的,是获得参加宴会的资格和食用餐桌上美味佳肴的能力,正如人们常说的那样,比机会均等的制度允诺更为实在的是人们获取并实现机会的能力。

    森并不完全认可罗尔斯“清单”的内容设定,尤其质疑将“财富和收入”列入“基本善(品)清单”的正当合理性。在森看来,罗尔斯的这份“基本善(品)清单”中,有些是根本政治制度(国家宪法)所确定的公民之基本权利,如,个人的平等自由(权利)、人格尊严、机会均等;有些则是人们社会行为的结果,如,财富和收入;不分青红皂白地将它们一概而论是不合适的。把个人正当合法获得的财富和收入列入制度分配的基本善(品)清单是否充分正当仍有争议,比如,通过国家税收制度,尤其是高额累进税制来实施国民收入和财富的调节,就存在税收征收的范围、额度、方式等诸多争议。再者,公共机会的分配实际只具有前提形式意义,不具备实质性正义价值,如前所述,比机会均等更重要的是人们获取并实现均等机会的能力。只要我们稍微观察一下人才市场的“公开招聘”情形就会发现,面对有限开放的职位,为什么有些人能够获取并有效实现机会,而另一些人却无法获取,甚至从一开始起就丧失获取机会的资质?事实上,机会对所有人公平开放是一回事,能否获取并实现公平开放的机会则是另一回事,前者仅具有形式的意义,唯后者才具有实质性意义,两者不可混为一谈。

    森承认,任何一种政治哲学或伦理学都需要一种“信息焦点”(an informational focus)或前提预制,因此开列某种清单确乎必要。但对于关乎正义的政治哲学或伦理学来说,首要的工作不是从某种理想前提或终极结果出发来展开分析推导,因为选择从“社会实现的视角”(theperspectiveofsocialrealizations)出发,远比从“最终积累性结果”(the perspective of accumulating results)的视角出发更为优越可靠。实际上,人类社会的正义追寻总是从减少或消除现实生活中的非正义和反正义现象开始的。这种“社会实现的视角”所必需的,首先是对非正义现实的比较评估,是改变这些非正义现状的具体行动,以及,更为重要的是人们实施这种社会改变的行动能力。个人的可行能力直接关乎其自由(权利)及其实现之充分性程度,增强和改善个人的可行能力,意味着实现、增强或扩大个人的自由权利,这远比增加机会、财富和收入等社会资源更为根本,也更具社会正义的实践价值。罗尔斯一方面强调平等自由在两个正义原则中的优先排序,另一方面却又强调诸如机会、财富和收入这类社会资源的制度性再分配,实际上这两个方面不仅无法同时兼顾,而且极可能顾此失彼、“两头不讨好”。导致这种两难困境的原因至少有二:一是自由主义本身固有的自由与平等之间的张力;二是本文前所述的罗尔斯两个正义原则本身、它们之间,甚至正义第二原则的两个部分之间都存在难以消解的紧张。就前一方面而言,自由与平等二者所强调的价值取向并不能自然契合。自由所表达的是个人作为行动主体的权利自主与责任自律,而平等所表达的是不同权利主体之间的人格平等与平等相待;自由更强调个人主体的权利及其自主实现,而平等则更强调主体间平等相待的义务;两者之间相互制约。在资源有限的既定情形下,不同主体之间的自由权利及其实现,必定构成某种形式——或多或少、直接或间接——的竞争关系,既不可能是“利益无涉的”(disinterested),也不可能自然形成所谓“双赢”(win-win)或者同时兼顾、同等满足的理想局面。森认为,造成罗尔斯正义论的诸多难题的原因,除了社会契约论进路的局限、先验制度主义的前提误置、正义原则推导的六大疑问和“基本善(品)清单”的错开等原因之外,还由于其福利主义的社会偏好和地域主义的视域局限。“差异原则”的立意在于对社会少数弱者的制度援助,这诚然有利于彰显罗尔斯普遍道义论的政治伦理立场。然则,当罗尔斯将“财富和收入”列入其“基本善(品)清单”并强调基于财富和收入之重新分配的重要性时,人们难免对其制度分配或再分配的社会正义性产生警觉和怀疑,因为任何对财富和收入的制度性调节都可能面临一个难题:它不单关乎罗尔斯所说的基于代际正义考量的“储存正义”,更关乎同代人之间的“转移正义”和“校正正义”,也就是诺齐克反复追问罗尔斯的那个难以回答的问题:以何种方式且在何种程度上对人们的财富和收入进行制度调节才是正当合法的?正义社会并不必然等同于福利社会。

    对于罗尔斯正义论的狭隘地域主义,大概是森最感不满的地方。罗尔斯反复申明其正义论仅限于“自由民主社会或民族”(liberal democracy societies or peoples),而对于其他“非自由非民主的社会或民族”(non-liberal and non-democracy states or peoples)则存而不论。这一学术立场受到包括他门下弟子(比如,Thomas Pogge)在内的许多学者的质疑。这促使晚年的罗尔斯有些仓促地写出《万民法》(The Law of Peoples,1999)一书,然而却并未改变其基本立场。在这部小册子中,罗尔斯似乎做出了些微让步,将其正义原则的推导从“自由民主社会”扩及“体面的协商等级制社会”(decent consultation hierarchy society),但仍不乐意谈论其他“非自由非民主的社会”。更有甚者,他甚至把世界上所有的社会或民族划分为五种类型——即:自由民主社会、体面的协商等级制社会、法外国家(outlaw states)、身负诸种不利条件之重负的社会(societies burdened by unfavorable conditions)和仁慈的专制主义社会(societies that are benevolent absolutisms),他不仅坚持认为差异原则不适合于“非自由非民主的社会”,而且主张当“法外国家”对“自由民主社会”构成直接威胁时,后者甚至可以采取“先发制人”的行动打击“法外国家”,以消除任何可能危及自由民主社会的危险境况。森认为,罗尔斯正义论的这种域外限制导致他无法达成其所标榜的普遍道义论目标,也不合乎自由主义的开放平等理想。森明确指出,民主并不仅仅是属于“西方的理智遗产”(Western intellectual inheritance),也是人类自古有之的国家治理经验或政治方式。我们不能把民主简单地等同于“选举+投票”,民主的本义是基于罗尔斯本人所说的“公共理性”的协商治理方式。因此,任何声称普遍合理的正义理论都不应该只限定于所谓“自由民主国家”区域,而应当放眼全球,寻求一种真正普适的全球正义。

    依森之见,全球正义应该基于普遍人权理念而非“差异原则”。他写道:“人权真的是关乎应该做什么的强烈的伦理宣言。”它至少直接引发两个问题:其一,人权的内容和可行性;其二,包含在人权宣言中的伦理主张的可行性。这是罗尔斯的正义论未能给予充分关注因而陷于地域主义的重要原因,也是基于可行能力进路的正义理论彰显其强大解释力的主要优势所在。事实上,由于森长期对印度等南亚国家和非洲地区广泛存在的饥荒、贫穷展开独到深入的政治经济学研究,并借助其受命承担的联合国相关项目的研究咨询,积累了丰富的有关国际人权之实际状况的研究经验,直接见证了这些个案研究所呈现的非正义现实,因而获得了比罗尔斯更为开阔的全球视野。

    与西方许多人权理论家不同,森既不认同将人权观念抽象化、甚或原则律法化的抽象律法主义方式,也不认同贬低人权观念或将之任意意识形态化的文化特殊主义方式。他幽默地写道:“如果说,边沁把权利(rights)视为‘法律的孩子’,那么哈特实际上把人权(human rights)当作了法律的父母:他们驱动具体的立法。”真实的情形是,人权既不属于有待父母监护的“孩子”,也不属于拥有孩子监护特权的“父母”,而是属于作为父亲、母亲和孩子的每一个真实的个人。人权的本质即每一个人的自由权利及其实现,而作为全球正义之伦理主张的人权应当具有“全球律令”(global imperatives)的意义。在《正义的理念》卷终,森总结道,我们应当基于实现人类普遍人权的信念而非仅仅基于“自由民主社会”的有限地域,来建构全球正义,摆脱霍布斯曾经诅咒的那种“污秽、野蛮、短命”的“自然状态”,“逃避孤立不仅可能对人类生活的品质是重要的,而且也能对理解并呼应人类所忍受的其它灾难作出强有力的贡献”。摆脱孤立,走向团结,是森对人类普遍正义的真诚呼吁,也是其正义理论的最终目标。

    综合观之,选取基于社会选择理论的可行能力进路切入正义主题,以替代罗尔斯基于社会契约论的先验制度主义进路;进而从人类社会广泛存在的非正义现实的分析比较出发,摒弃理想化的“完全评估”方式,正视“非完全评估”的具体事实;并以现实个体的可行能力及其实现条件为基点,来建立实际可检测的个人“可行能力清单”,以替代罗尔斯的“基本善(品)清单”;最后将正义论视域扩展到全球正义而非罗尔斯的“自由民主社会或民族”,以突破现代西方正义论的“狭隘地域主义视域”,构成了森关于正义的基本理念。公平地说,森对罗尔斯正义论的批判解析是深刻的,所提出的上述替代方案也是令人信服的,在某种意义上,与其说森的正义论是对罗尔斯正义论的巨大改进,毋宁说是更新后者的替代方案,因之足以成为现代正义论范式改进的标志性成果。

    三、正义的前沿: 残障者、国际、诸物种的正义视野

    森从一条新的理论进路建构了一种足以替代罗尔斯正义论的正义新论。然而,作为普遍平等主义价值观的倡导者,森仍然坚信罗尔斯“作为公平的正义”这一核心价值理念,赞赏罗尔斯关注社会弱者的“最起码之最大化”的普遍化正义所表达的温和自由主义立场,因此,他对罗尔斯正义论的改进更多的是方法论的,而并非根本价值立场上的。借用罗尔斯的话说,森仍然是用一种新的“完备性的”正义之政治哲学替代罗尔斯的正义论。同时,森的替代性理论也仍然是开放的、尚未完成的,最显而易见的是,关于“可行能力清单”的明细化和理论证成;关于全球正义的具体展开及其证成;关于正义行为主体(人类的和非人类的)的平等承认和证成;等等。对于这些问题的解答构成了另一位当代杰出政治哲学家和伦理学家纽斯鲍姆的正义论之基本主题。

    纽斯鲍姆的学术著述极为丰富,在当代哲学同仁中鲜有比肩,其正义论的代表作是《正义的前沿:残障、国籍、物种成员资格》(Frontier of Justice, Disability Nationality, Species Membership,简称《正义的前沿》)。作者的特别献词也是“为了纪念罗尔斯”。从该书的献词和标题即见其理论抱负:作者开始正义主题探究的起点正是罗尔斯正义论探究的终点,其直接目标是扩展罗尔斯正义论的视域并将之推进到正义理论研究的“前沿”,也就是扩展到不单罗尔斯而且包括森在内的绝大多数正义论者都未(敢)涉猎的、包括不健全者和残障者、跨国籍全球公民、非人类生物在内的几乎所有生命主体。在《正义的前沿》的“致谢”中,纽斯鲍姆坦陈:“我的目标是对罗尔斯提出批判,我之所以单独挑出罗尔斯的理论进行批判,是因为他的理论是社会契约论传统中最强有力的政治理论,同时也因为他的理论是西方政治哲学传统中最杰出的理论。我关注的焦点是罗尔斯本人认为的、那些没有被解决的问题,这些问题对他的理论构成了挑战,他不确定他自己的理论能否解决这些问题。”“我的最终目标是扩展罗尔斯理论的核心观念,以解决这些新问题。尽管我认为,这种扩展肯定要在很大程度上改变他源自社会契约论传统的那部分理论,但我相信,当我们试图解决这些新的棘手的问题时,他这一理论本身、它的那些原则及其直觉性基础,都会给我们提供非常好的引导。我满怀尊敬、友爱和悲伤,谨将此书献给约翰·罗尔斯。”

    纽斯鲍姆对正义的关注虽然直接源自罗尔斯正义论批判,但其思想脉动却早有先兆,其早年古典学和美德伦理学研究已为其正义理论埋下伏笔。她和森一样,相信从可行能力进路切入正义主题远比社会契约论更合理更有效。与森有所不同的是,纽斯鲍姆选择可行能力进路的理论考量,并非仅仅是基于人类社会评价的不完全性所形成的社会比较和行为选择理论,而是她对人类生命乃至所有个体生命(物)本身固有的生命脆弱性、社会关系依赖性的本源性洞见:个体生命的脆弱乃是一种相较于其他所有外部正义条件或正义环境都更为根本,也更为深刻的正义之形上根源。纽斯鲍姆的成名作是《善的脆弱性——古希腊悲剧与哲学中的运气与伦理》(2001),但读懂此书的人都不难从中读出,纽斯鲍姆所谓“善的脆弱性”其实不过是个人生命脆弱性的美德伦理学表述,蕴含所有个体生命及其命运的脆弱性。从古希腊悲剧中的每一个人物到作为人类强者的罗马帝国皇帝马可·奥列留无一例外。然而社会契约论根本没有、甚或无法触及这一根本问题。纽斯鲍姆的学术涉猎十分广泛,跨越多学科论域,但始终牵引其思想的主线从来都没有偏离过生命脆弱性这一根本问题。《善的脆弱性》关注的焦点是,人生充满大量人类无法凭借自身的能力和意愿自主控制的偶然性,不得不任由“运气”(luck)决定,当然也仰赖社会的正义秩序和生命个体间的伦理互助。与之相关的两个问题是:其一,既然个体的生命和能力如此有限,以至于每一个人都不得不依赖于他人或诸多外部条件,那么,人际关系或生命主体与诸外部要素的关联究竟如何,将直接或间接关乎人类如何且在多大程度上能够克服自身的脆弱性。其二,诚如柏拉图、亚里士多德等诸多哲学先贤所言,人本身既拥有“理性自足的灵魂”,也具有“非理性的欲望和激情”,如何将激情欲望化为积极的生命动力,且如何料理人性之理性与非理性的关系,同样关乎人类如何且在多大程度上能够克服自身的生命脆弱性。

    社会契约论之所以无法帮助我们解决这些根本问题,首先是因为,它忽略了人固有且无法消除的非理性和动物性,因而无法理解人类与其他生物的关联,也不能公正地对待非人类生物。任何不顾非人类生物的正义理论充其量只能是人类中心主义的副产品。其次,它只考虑所谓正常“理性人”,即罗尔斯所说的那些“整个一生都能充分合作的社会成员”,忽略了人类中并不具备充分合作能力的特殊弱者。任何对老弱病残缺乏特殊关照的正义理论,既不可能真正健全普遍,也不可能获得普遍的道义力量。最后,社会契约论因其对特殊社会语境的内在要求或制度偏好,难以建构跨越国际(国籍)的全球普适正义理论。在经济全球化的当代世界,任何只考虑某一国家或某一特殊国际区域的正义理论必定是“不合时宜的”,用森的术语来说,是“狭隘地域主义”的。如果说,森对一种基于社会选择理论的可行能力进路优于社会契约论的确信,主要是因为罗尔斯社会契约论本身的诸多缺陷,诸如先验制度主义预制、人为的信息限制、“乌托邦式的道德完善论”;那么,纽斯鲍姆对能力进路的确信则有着更为深远的政治哲学和美德伦理学理由,那就是基于对人、人性、人类生命乃至所有生物命运的脆弱性考量,将正义的主题意义提升到哲学本体论层面,使之超越了现代普遍理性主义规范伦理学和制度政治哲学,也超越了当代美德伦理学。纽斯鲍姆曾批评美德伦理学家麦金太尔既“反理论”又“反理性”,批评其老师威廉斯“反理论”但“不反理性”,将当代美德伦理学区分为三种:“(1)那些既支持伦理理论化又支持理性在人类事务中的丰富作用的思想家;(2)那些支持理性在人类事务中有许多作用但拒斥了伦理理论化事业的思想家;(3)那些很想削弱理性在伦理生活中的适用范围的思想家。”她宣称自己“属于第一个群体的美德理论家”。

    正是以这种形上本体追求的哲学姿态,纽斯鲍姆提出并论证了自己的可行能力进路和“核心人类能力清单”,将正义主题的论域扩展到残障人、国际(籍)和诸生物物种三大未竟领域,也是她所谓“正义的前沿”。森曾将其可行能力进路界定为人所能做事的能力及其功能发挥。与之相比,纽斯鲍姆对可行能力进路的界定更为哲学。虽然她早在1986年便同森一起探讨过这一概念,但她正式独立界定并标举这一概念还是在其《女性与人类发展》(2000)一书中。该书对人的可行能力的界定分为实践哲学(政治哲学+美德伦理学)和存在本体论两个层次:在前一层次,“可行能力”意指“我们能够做什么(can do)”;在后一层次上,“可行能力”意指“我们能够成为什么样的人(can be)”。纽斯鲍姆相信,这样界定的“可行能力进路”既优于罗尔斯的社会契约论方法,也避免了森的“可行能力进路”概念所隐含的单纯从空间或经济学意义上(行动能力及其功能发挥)来理解可行能力的局限。因为它不仅“扩展和补充”了罗尔斯正义论在残障者、国籍和物种成员资格这三大新问题上的理论缺失,“恢复”了格劳修斯基于自然法的政治理论,而且“为法律和公共政策提供了更合理的指导”,因而为一种更普适有效的新正义理论提供了更坚实的前提。由此,纽斯鲍姆进一步提出了两个重要的理念:一个是“核心人类能力清单理念”;另一个是“每一种能力门槛理念”。所谓“核心人类能力”,是指每一个人获取基本正义生活和行动的基本能力,没有这些基本能力,人既无法履行其自由权利,也无法确保有尊严的“体面生活”(decent life)。所谓“每一种能力门槛”,是指每一个人所应具有的每一种基本可行能力的最低标准。一个社会若无法保障其所有公民获得这些最基本的可行能力,则该社会就不是“完全正义的社会”。纽斯鲍姆将这些基本能力归纳为十种,以此作为其“核心人类能力清单”,包括“生命”,“健康身体”,“身体完整”,“感觉、想象和思考”,“情感”,“实践理性”,“依存”(包括“具有自尊和不被羞辱的社会基础”和“能够被当作与其他人具有平等价值的、有尊严的个体来对待”两方面),“其他物种”,“玩耍”,“对自身环境的控制”(包括“政治的”和“物质的”两方面)。“它们都被视为一种对社会正义的最低限度解释的一部分:一个社会,若不能在某一恰当的门槛层次,对所有公民保证这些能力,那么,不论[该社会]多么繁华,它都不是一个完全正义的社会。”

    “核心人类能力清单”是直接针对罗尔斯的“基本善(品)清单”而开列的,其内容也多有不同:在纽斯鲍姆的清单中,首要的是“生命”本身而非作为结果赋予的自由平等权利,需要平等对待的是每一个人类个体而非具有某种特殊公民资格的社会成员之“不被羞辱的”尊严,这是一种普遍而根本的生命人格而非特殊的政治资格。“健康的身体”和“身体完整”之所以进入“核心能力”的清单,是为她将正义论域扩展到残障者铺垫前提——正是由于身体残障,才使得残障者的正义具有优先性,非如此正义论无法承诺“普遍道义论”的要求。人的情感和欲望以及类似于“玩耍”的自由活动能力也应当列入“人类核心能力清单”,否则,既无法理解人的社会“依存”关系,更难理解人类生命自身的“脆弱性”“偶然性”和“关系依赖性”。至于“其他物种”和人类“对自身环境的控制”则明确指向非人类生物正义和自然环境正义,它们是正义论主题的应有之义。纽斯鲍姆深信,“核心人类能力清单”足以体现“完全普世”“跨文化”和“尊重多元主义规范”的基本理念,并进一步给出六点解释:(1)该清单是“开放的、不断完善的和不断思考的”,可依据不同情况进行必要增减。(2)该清单同样可以为“公民及其立法者和法庭的审查与审议行为留出空间”,也就是为罗尔斯所偏好的“程序正义”留有余地。(3)它表达了一种“偏袒的道德观”,亦即特别关注残障者、多元文化和非人类生物的道义公平。(4)它“保护了多元主义”。(5)它开列的“核心物品”不可让步,“没有讨论的余地”。(6)它可以“作为全世界政治原则的一个良好的基础”。总之,“它坚持人们应该把所有的资格作为正义的核心条件来追求。它可以合理地被定义为正义所要求的一整套的资格,没有一种资格可以替代另一种资格”。易言之,无论残障者还是正常人,也无论人类还是非人类生物,所有生命主体一律平等,没有例外。

    这份“核心人类能力清单”面向所有生命,无分国际种族,也无分生命物种。它基于一切生命(物)的脆弱和依存(赖)之普遍本性,具有较罗尔斯“基本善(品)清单”和森“可行能力”概念更为彻底的普适规范性。而且,除了正常人的正义考量之外,残障者的社会正义问题还特别涉及两个特殊问题:第一,“存在公平对待不健全者的问题”,因之需要对他们做出“特殊的社会安排”。第二,“对依赖者提供关怀的人的负担”问题。残障者或社会弱者无疑是对社会和他人的依赖程度较高的社群,他们需要社会给予“特殊安排”和关照,但人们在注意这一问题时往往容易忽略问题的另一面:即那些照顾“依赖者”的人所承担的额外道义负担问题。任何社会道义或责任的承诺都不是无代价的,承诺者必须付出相应的成本或代价,对残障者或其他物类的特殊关照义务则需要付出额外的成本或代价,更值得人们关注。纽斯鲍姆敏锐地观察到,在日常生活中,女性常常扮演着提供这类特殊关怀的主要角色,无论在家庭里,还是在社会公益事业中,大都如此。然而,这些关怀者同样也是需要给予公平对待的关怀对象。

    那些生活于较差生活条件下的非发达国家的人们,同样是需要我们公平对待乃至特殊关怀的人类社群,不应也不能排除在外。纽斯鲍姆引用联合国开发计划署《2000年人类发展报告》的数据,针对不同国家之间的贫富差距、人均寿命差距、识字率等方面的差距日益扩大且扩大速度不断加快的事实,指出全球正义问题不仅不可忽略,而且需要提供新的理论和新的解决方案。她认为,罗尔斯的正义论之所以难以解决全球正义问题,根本原因是其社会契约论的缺陷,因为它既限制了参与社会契约的成员身份或资格,也因其过于“经济功利主义”或迷恋于“财富和收入”等“社会基本善(品)”的再分配而无法超越富裕资本主义的国家界限,因之无法料理全球正义难题。纽斯鲍姆把罗尔斯的社会契约理论归类于仅仅局限于“自由民主国家”或“富裕国家”的“两阶段契约”理论,亦即自由民主国家内部契约阶段和自由民主国家外部或“万民法”契约阶段,而如果必须通过社会契约论方式来合理有效地料理全球正义问题的话,就必须建构另一种社会契约论,也就是纽斯鲍姆谓之的“全球契约”。然而,她指出:“全球契约似乎更难成功。如果不摆脱契约论,就无法为从较富裕国家再分配到较贫困国家的做法提供辩护。”可见,纽斯鲍姆根本不相信社会契约论可以解决全球正义问题,合理有效地料理全球正义问题,必须寻找新的理论架构和方法,一种基于可行能力的“人类发展进路”才是克服当代诸种流行正义论之固有缺陷的新希望。

    与社会契约论的新老版本不同,“人类发展进路”吸取格劳修斯等人的自然法思想,既不从“民族—国家”及其由此衍生的“国家公民资格”(所谓“国籍”)出发,也不从“财富和收入”及其社会制度的再分配出发,而是回归最基本的人性理念,即人格尊严和人类社会性。“对格劳修斯而言,包括国家主权本身在内的国际社会中的所有权利资格,最终都源于人的尊严和社会性。”“人类发展进路”的基点和目标是世界和平和全人类的合作发展,这才是真正普遍的。如果说,全球正义确实需要达成某种形式的“全球契约”,那也不是基于“互利契约”,而毋宁是基于互助合作+和平发展的人类共识。纽斯鲍姆坦陈:“通过把国家的固定性设想为他的出发点,罗尔斯继而且实际上已然阻止了关于国家间的经济不平等和权力不平等的一切仔细思量。他已然从哲学上认可了世界上强大的国家——特别是美国——所做的任何事情:不管在人权问题、环境问题还是在经济政策问题上,不管是回应世界其他地方的处境还是回应国际协议和条约,它们都假装自己的体系是固定不变且具有决定性的,并且竭尽全力抵制关于在它们内部作改变的所有要求。”“然而,在现实世界中,我们看到了这种伎俩的真实面目:一种对严重问题漠不关心的、傲慢的思维方式,这种做法应受到谴责。人们不应在哲学上尊重它。”纽斯鲍姆清醒地意识到,我们现存的世界“并不是一个体面的、有着最低正义的世界,除非我们能保证这个世界上的所有人都能够在某种恰当的水平上具有那十种能力”。因此,关于全球正义的探讨“应当选择可行能力而不是富裕程度、效益或对个人的资源分配状况等,作为衡量的标准”。易言之,应当从每一个人的基本权利、尊严和平等开始,在此意义上,“可行能力进路与人类权利进路紧密相连”。我们可以怀疑,在一个多元文化/文明的世界上,不同国家和地区的人们有着不同的财富分配标准和评判标准,但却可以相信,无论身在何方,也无论我们有着怎样不同的生活条件、文化信念或宗教信仰,对于人类自由(权利)、尊严、平等合作,一定会有相同或相似的价值判断与价值确信,“毕竟,在当今的世界上,没有什么地方不流行人权观念、人类尊严和人类平等的观念以及平等合作的观念”。与之相类,我们不应且不能期待建构某种全球化的政治制度甚至是“世界国家”,任何企图建构这类政治制度或政治国家的尝试都是危险的。但我们可以合理期待,在保障每一个国家的国家主权之前提下,建立具有普适规范意义的“全球结构”(the global structure)或世界基本秩序。纽斯鲍姆由此推导出“全球结构的十大原则”:(1)避免国内政治永远无法逃避的“责任之过度决定”;(2)“应该在促进人类可行能力这一限制范围内尊重国家主权”;(3)富裕国家有责任将自己GDP(国内生产总值)中的相当一部分实质地赠送给贫穷国家;

    (4)跨国公司有责任在其运行地区促进人类可行能力;(5)全球经济的主要结构必须经过精心设计,以公平地对待贫穷国家和发展中国家;(6)应当培育一种薄的、分散却有力的全球性公共领域;(7)所有制度和大多数个体都应当关注各个国家和地区所存在的弱势群体问题;(8)关怀病患者、老人、儿童和残障者应当成为世界共同体的一个重点;(9)应当将家庭视为一个珍贵但非“私人性的”领域;(10)所有制度和个人都有责任支持教育,并将教育视为当前能使弱势群体具有可行能力的关键。总之,“如果我们的世界将要成为一个体面的世界,我们现在就必须承认,我们是相互依赖的世界公民,我们在这个世界中因相互友谊和对相互利益的追求、并凭借同情和自利以及对所有人都具有的人类尊严的热爱而走到一起,即便我们在与他人的合作中一无所获。或者更确切地说,我们从中获得的世界上最伟大的东西是:参与一个正义且具有道德体面的世界。”

    如果说,对于残障者和人类的正义要求源自我们普遍具有的人权、人格尊严和平等关系等主体同一性,因而具有其内在主体性根据的话,那么,对于非人类生物的正义要求又源自何处?这是纽斯鲍姆正义论所关注的第三个“前沿问题”,我将之概括为非人类生物在正义论证中的主体性缺席难题。纽斯鲍姆援引亚里士多德和西塞罗等古希腊罗马自然哲学家的教诲,并借援于印度素食主义的观念资源,反驳了从斯多亚派到康德、罗尔斯的观点,力图证明其非人类生物正义的主张。她指出,当西塞罗不忍目睹罗马竞技场上勇士庞培斗杀大象的残忍景象时,曾愤怒地写道,大象本是人类的社会伙伴(societas)。在亚里士多德的自然哲学中,“自然是一种连续的统一体,所有生物都值得尊重,它们甚至是奇迹”。因此,所有生物都应当像人类一样受到尊重。用印度喀拉拉邦高等法院《奈尔诉印度联邦案》(1999年第155号)的诉讼词来说,“非人类动物能够有尊严的存在”,“如果人类有权拥有种种根本权利,为什么动物就不能拥有呢?”然而康德的回答却是,对于那些“低于我们和高于我们的存在”,我们没有“直接的义务”,只有“间接的义务”。在康德看来,动物是“低于我们”的存在,上帝或神灵是“高于我们”的存在,它们并不具备和人类相同的人格尊严。罗尔斯虽然承认人类不能残忍地对待动物,而应该对它们有足够的同情和爱护,因为它们也能感知痛苦和快乐,但他和康德一样坚持认为,由于动物缺乏人类所具有的道德特性和道德能力,没有形成社会“正义感的能力”和“善观念的能力”,所以“不能要求我们给那些缺乏这种能力的生物提供不折不扣的正义”。很显然,在康德和罗尔斯看来,能否把正义的范围扩展到非人类生物,关键在于非人类生物自身的主体性缺失:它们没有作为道德主体的人类所具有的道德意识和道德能力,因而无法与人类之间形成康德所说的“直接的义务”,即使所谓“动物正义”和“正义环境”,也只能限于人类基于同情友好对它们所抱有的“间接的义务”。纽斯鲍姆承认,人类与非人类生物之间的“不对称性”实在太大,以至于在人类、特别是现代人类流行的哲学思维中,很难给非人类生物的正义问题留下足够的讨论空间。康德坚持的“人是目的”、其他一切都只能作为人类实现其目的的手段这一价值立场,在纽斯鲍姆看来只是一种人类中心主义偏见。事实上,与人类的依赖性不同,“动物可能是非常独立的,而且可能以自己的方式是很自由的;尽管有些动物依赖人,但有很多并不依赖。”只不过“在权力和资源方面,它们肯定与人类是不平等的,这种不平等性意味着,人类在寻求一种互利的契约时会直接忽略它们”。不仅如此,人类通常还以代理者的姿态代表它们的利益,以其代表自居。然则,这种人类代理行为本身是非正义的,也没有足够充足的理由和根据。现代正义哲学忽略非人类生物正义的主要原因有二:一是“康德式的个人观”,即执着于“人是目的”的人类中心主义信条;二是“社会契约状态的结构”,即认为非人类生物无法作为自由(权利)主体与人类建构互利合作的契约关系。但纽斯鲍姆确信,这样的哲学论证是不具备充分正当性的。她指出:“正义范畴是基本权利范畴。”她的可行能力进路“将动物看作是主体和目的”,而非只是人类同情和保护的对象。易言之,非人类生物本身自许其生命目的,同人类一样也是具有自由行动权利和可行能力的行为主体。这是为什么非人类生物同样具有其正义权利的根本理由所在。

    纽斯鲍姆注意到当代那些承认或倾向于承认“动物权利”的新理论,包括当代著名的“偏好功利主义”伦理学家彼得·辛格尔(Peter Singer),后者从一种偏好结果的新型功利主义立场,提出“解放动物”“保护动物”的道德伦理吁求。但纽斯鲍姆认为,无论边沁式的还是辛格尔式的,所有形式的功利主义都不足以支持非人类生物正义的主张,而且现有的可行能力进路本身也不足以阐明物种正义问题,必须予以扩展。幸运的是,尽管“可行能力进路当前的形式并没有解决非人类动物的正义问题”,但它基于“人类尊严和值得获得这种尊严的生活等观念”,因而“适合于进一步扩展”。如果说生物物种的规范一如人类的规范都具有其评价性特性,那么,探索尊重包括非人类生物在内的所有生命而非仅限于人类生命的尊严和生活意义,便是扩展可行能力进路之理论视域的价值方向。“因为在尊敬人类力量的背后有着一种更普遍的态度,这种态度对于能力进路而言是基础性的,而且它与那种驱动康德式伦理学的尊敬并不相同。对于康德而言,只有人性与理性才值得尊敬与钦佩,自然的其他部分不过是一系列的工具。与此相反,可行能力进路与生物学家亚里士多德一起判定说,自然界中所有复合式的生命都是绝妙的、令人惊叹的。”在此前提下,可行能力进路的扩展还需要确立一种新的伦理判断:不得妨碍任何生命的功能发挥(functioning),不得侵犯任何“活生生的有机体的尊严”。“如果一种生物的繁荣被另一种有害主体所阻碍,那就是一种错误。”正是基于这一伦理判断或价值立场,可行能力进路便“通过类比和扩展,社会合作的目的应当是:有尊严地一起生活在世界上,在这个世界上,许多物种都要繁荣。”而且“与契约主义不同,这种进路涉及对动物的直接的正义责任;它并没有使这些责任衍生于或后于我们对人类同胞所负有的那些义务。它将动物当作对象和主体,而不仅仅是同情的对象。与功利主义不同,它尊重每一个独立的生物,拒绝将不同生命和不同种类的生命之善相加。没有一种生物被当作实现其他生物或社会整体之目的的手段”。所有这一切都基于可行能力进路始终如一的根本信条:自由、尊严和平等之核心权利都内在于一个根本的生命目的:“有尊严的生活”。

    四、远非结论的结论: 正义论新范式之可能预期

    毫无疑问,纽斯鲍姆对正义主题和论域的前沿扩展是前所未有的,其所获得的理论成就不单令人瞩目,而且饱含巨大的理论推进潜能。首先,她对可行能力进路本身的哲学提升——不仅作为“能行”(can do)也作为“能在”(can be)——极大地丰富和提升了森对这一新理念和新方法的政治哲学阐发,使这一理念和方法获得了更具普适性也更具哲学形上解释力的理论力量和实践潜能。其次,纽斯鲍姆开出的“核心人类能力清单”和“最低门槛”既实现了森所预期的能力清单化愿景,也具体落实了罗尔斯的底线道义论原则,并且充分考虑了这一清单本身的多种潜在可能性,将之确定为一份仍然开放可调的清单和门槛,为正义理论的进一步拓展打开了新的空间。再次,一种基于生命(物)价值与尊严而扩展的正义论,突破了康德—罗尔斯式的也是西方主流的社会契约论模式,使得有关社会弱势群体,尤其是残障者的正义研究,超越了常规道德情感主义,甚至是伦理慈善论的伦理直觉层次,获得了更为充分的哲学本体论和道德主体论证成。当她选择从人之“能行”与“能在”两个向度来界定人的“可行能力”时,便为这一理论证成找到了哲学本体论和道德形上基础。我以为,这是当代伦理学得以突围的新方向。最后,尽管比较而言,纽斯鲍姆对非人类生物正义的理论扩展仍然略显仓促,譬如,她至少还需要论证(1)非人类物种究竟如何获得其自成目的性和主体性?(2)假设非人类生物的确拥有其自成目的性的主体能力,又当如何处理非人类生物主体目的与人类主体目的之间的价值关系?(3)如果仅仅从权利视角看待非人类生物的正义问题,又如何解释现代环境保护的责任主体?凡此种种,似乎仍待深究。即令如此,纽斯鲍姆对非人类物种正义的论域扩展和已有洞见,已然大大拓展和深化了迄今为止的相关理论,代表当今有关非人类生物正义研究的最新成果。

    回到本文的主题:罗尔斯、森、纽斯鲍姆三人的正义论同样毫无疑问地代表着现代正义理论复兴—迭代—扩展的理论递进轨迹,而从三种现代正义论范式及其连续递进轨迹中,我们不难发现这样几个值得关注的理论特征:首先,现代正义论始于制度正义的公共建构,可是,和制度正义同样重要的是人们实现正义的可行能力。同样,人类追求正义的目的也不仅仅在于对稳定生活秩序和制度保障条件的外部需求,更在于克服人生、人性乃至所有生命固有“脆弱性”或“依存性”这一内在目的本身。其次,无论是罗尔斯对社会契约论的方法论重构,还是森和纽斯鲍姆提出的可行能力进路之方法论替代,都集中反映出一个重要的哲学问题:在现代开放多元的文明/文化情势下,在所谓“高限”目的论与“低限或底线”道义论两种进路之间,寻求某种新的综合或创新仍然是可能或可行的。最后,现代正义论三种范式的嬗变表明,正义理论的建构本身仍然是开放的、有待改进和完善的,新的正义论范式依然合理可期,甚至也是必须的。三种现代正义论的不断改进和更替既是现代西方政治哲学和政治伦理的自我更新,更是现代社会对正义之内在诉求本身的快速变化所致。20世纪中后期罗尔斯所面对的时代问题是被西方自称为的“失序”和“非理性”问题,因而重建现代生活秩序和公共理性便成为罗尔斯直面的思想主题。跨世纪前后的经济全球化浪潮前所未有,由此引发的全球性经济发展差距、“南方国家贫困”、国际地区性战乱、“难民潮”、生态环境危机等亦前所未有,因之,“全球正义”和“环境正义”等问题日益凸显,正义理论的视域和论域得以扩展,扩展的时速与规模也前所未有,所有这些都是推进现代正义理论快速嬗变的根本原因。

    本文转自《北京大学学报(哲学社会科学版)》2025年第3期

  • 黄金兰:常识在司法裁判方法中的运用价值

    引言

    常识是我们日常生活中使用频率颇高的词,《现代汉语词典》将其简单释义为“普通知识”。作为常识的知识之所以“普通”,是因为它们乃一般人都能通晓和掌握的。那么,何以一般人都能通晓?主要是因为,常识通常源于人类的共同经验。作为共同经验的常识,不仅可以被大多数社会成员所经历或体验,还可以在他们之间进行有效传递和传承,从而被社会普遍接纳和吸收。因而,从根本上讲,常识是一种人类经验,与一般意义上的经验不同,它们乃集体经验。它们并非为某个人或某些人所独有,而几乎为一个社会中的所有人所共享。在英文中,常识一般用common knowledge来表达,维基百科对它的解释是每个人或几乎每个人都知道的知识。这一定义同样揭示出常识所具有的共通性与共享性。

    基于常识的定义及其基本属性,我们可以进一步推导出常识在实践运用中具有如下特点:第一,不证自明性。由于常识乃一个社会的共同经验,人们要么会在生命的某个阶段或某种情境中经历或感受到,要么可以从同代人或父辈那里自然而然地接受或传承到,因而,我们对它们不需要证明。第二,可以作为论证或推理的当然前提。由于常识具有不证自明的属性,因此,我们在实践运用中,可以将其作为当然成立的前提来进行论证或推理,而无需对该前提本身予以证成。第三,建基于常识基础上的判断具有更强的可接受性。由于常识的人所共知性,因而,人们对其不仅共知,而且容易产生观念上的认同和情感上的共鸣。所有这些,都决定了以常识为基础的判断,相对于建立在其他基础上的判断,更容易为人们所认可和接受。或者说,其具有更强的“观念合法性”。

    常识所具有的不证自明等特点,使其在司法裁判中经常被法官所援引。截至2025年1月27日,在北大法宝司法案例检索系统中以“法院认为”为检索项,以“常识”为检索词,可以找到70 152篇相关判决。这一庞大的数字说明,常识在司法裁判中被援引的频率非常高,它已然成为法官裁判的重要依凭。然而,尽管司法实践对常识的引用如此普遍,从理论上去探讨常识对于司法裁判意义的研究却很少,且多是就常识对于司法裁判的意义展开讨论。本文试图立基于司法裁判的具体方法,去证成常识对于司法裁判的重要价值。无论是在法律发现、法律解释还是法律论证中,常识都发挥着重要的功能。它不仅是法律发现的基本场域,也是当然解释的前提条件,还能充当法律论证的重要依凭。在司法裁判过程中,法官若能兼顾常识,则司法正义的理想便能获得更好的实现。

    一、常识是法律发现的基本场域

    司法过程中的法律发现,是法官为案件寻找裁判依据的过程。有学者认为,法律发现有广义和狭义之分。“广义的法律发现,在外延上有两个方面:其一是在法律当中发现法律;其二是在法律之外发现法律。在法律当中发现法律可以称之为法律的内部发现。”“狭义的法律发现,即法律的外部发现,是指法官在现行法律中无法找到可适用于当下案件的具体规定时,挪移目光于法律之外,在案件事实或与案件事实相关的其他社会规范,譬如政府政策以及社团纪律、社会风俗习惯等民间规范中寻找当下案件的裁判依据。”我们未必全然赞成该学者关于法律发现的具体界定,但其提出的法律发现之两种路径或两个领域——法律之内发现法律与法律之外发现法律,却是颇具启发意义的。这一观点或提法,与国内外相关研究中关于法律渊源的认识正好吻合。从司法角度看,法律渊源就是法官发现法律的场所,也有学者将其表述为“法律渊源是裁判规范的集合体,法官从中发现裁决案件所需要的裁判依据和裁判理由”。而这一集合体的范围具体包括哪些?在美国法学家格雷看来,法官在制定构成法律的规则时所依据的那些法律材料和非法律材料,包括立法机关颁布的法令、司法先例、专家意见、习惯、道德原则以及公共政策原则等,都属于法律渊源的范畴。罗斯也指出,那些影响法官构造审判规范的所有因素的集合体,便是法律渊源的范围,它们既可以是法律成品如制定法,也可以是半成品如先例和习惯,还可以只是一些粗糙的原材料如理性。国内学者的最新研究也表明,作为司法裁判过程中裁判依据的来源,法律渊源包括两个部分,即效力渊源和认知渊源。其中,效力渊源是用以鉴别裁判依据之法律效力的事实或来源,它可以证成法官的裁判何以是有效的司法裁判;而认知渊源则是用以鉴别裁判依据之内容的事实或来源,凭借它,法官能合乎逻辑地推导出裁判结论。换句话说,效力渊源帮助解决司法裁判的法律效力问题,而认知渊源则帮助解决司法裁判的合理性问题;无论是效力渊源还是认知渊源,都是法律渊源的重要组成部分,它们共同造就司法裁判的权威性。

    国内外学界关于法律渊源的研究表明,在司法裁判的过程中,法官不仅需要在法律之内寻找判决依据,还需要从法律之外更广阔的社会空间寻找裁判理由。无论是格雷意义上的非法律材料,还是罗斯意义上的半成品或粗糙原材料,抑或国内学者所说的认知渊源,都属于法律之外的、能够证成法官裁判结论合理性的重要渊源。一般认为,这些渊源主要包括习惯、法理学说、道德原则、理性等,最新研究将法律行为也纳入其中。在笔者看来,既然习惯和法律行为都可以作为法的渊源,那么常识也当然可以成为法的渊源。原因在于,习惯一般是地方性或族群性的,法律行为则主要是个人性的,而常识则是社会共知、共通的。既然地方性、族群性乃至个人性的规范都可以作为法的渊源,那么,作为社会所共知、共通的常识成为法的渊源也便理所当然。从这一角度来看,常识作为法的渊源,与理性作为法的渊源具有同样的合理性和正当性,因为二者都具有超越地域和族群的属性。

    那么,作为法的渊源的常识,对于法律生活具有怎样的意义和价值呢?从根本上讲,常识乃法律的社会渊源,它构筑了法律主体部分的观念和知识基础。同时,当法律规定出现模糊时,它也是用以澄清法律模糊的重要依据。此外,当法律规定出现空缺时,它还可以成为漏洞补充的重要材料。

    (一)常识是法律的重要社会渊源法律

    不可能凭空产生,任何时代的法律都有着深厚的社会渊源。它既要与这个社会基本的物质生活状况相符,也不能违背社会总体的知识、规范和价值体系。而常识,正是这些知识、规范和价值体系的重要组成部分。我们甚至可以说,在常识的背后,实际上隐藏着我们全部的行为准则,至少隐含并规定着用以支撑这些行为准则的基本理念和社会价值观。也因此我们可以认为,法律就其绝大部分内容而言,都是对于常识的某种形式或某个侧面的表达。例如,民法中的诚实信用和公平交易原则反映的就是那些使交易基本秩序得以维护,进而促成交易健康、持续发展的那些常识;又如,刑法中关于刑事处罚的诸多规定,便是人们生活常识中朴素报应观的直接表达;再如,程序法中关于回避的制度规定,也是基于这样一个基本的生活常识,即人们对自己的亲人、朋友及有利害关系之人,难免会因情感偏好或利益考量而不能作出公允的决策。此处随意列举的几个例子,都折射出法律中的诸多原则和制度规定无不彰显着人们最简单、朴素的生活常识。即便是那些高度专业化和技术化的制度规定,尽管乍看起来远远超出了一般人之常识范围,须具备特定专业知识背景之人方能有效理解和把握,然而实际上,其中的总体制度框架以及蕴含于这些制度中的原则和精神,却一定是与常识相互融贯的。例如,一些调整信息技术的制度规定,尽管其中的操作性规程往往超越了普通人的常识和理解,但关于技术的拥有、使用和转让等的相关法律原则和制度规定,却依然是民法中基本原则和基本制度的具体运用,而正如前述,这些制度和原则,本身便是生活常识的特定形式的表达。

    正是因为法律中的绝大部分内容直接或间接来自常识,因而在一般情况下,合法与合理都可以合而为一,只有在少数情况下才会出现不相容或直接冲突。由此,我们还可以进一步认为,法律与常识的关系有些类似于富勒所讲的法律与道德的关系。在富勒看来,法律本身就是道德,只不过,它是从最低点出发的道德即“义务的道德”,“它确立了使有序社会成为可能或者使有序社会得以达致其特定目标的那些基本规则”,也正是在这一意义上富勒认为,“道德使法律成为可能”。富勒的这一论断,同样适用于法律与常识的关系。套用富勒的话,我们可以说常识使法律成为可能。这是因为,法律本身就是生活常识的再现,不仅如此,它还是法律取之不尽、用之不竭的重要渊源。正因为常识乃法律之社会渊源,因而,当我们在法律之内发现法律时,与其说我们发现的是国家制定的法律,不如说是人们的生活常识。

    (二)常识可以用来释明法律模糊

    法律常常表现出的不明确或模糊性,乃法律难以摆脱的宿命。首先,这是由语言本身的特点所决定的。哈特认为,人类语言存在确定的意义中心和不确定的意义边缘,这必然会导致语言中“空缺结构”的存在。法律语言作为人类语言之一种,也当然具有此种特点。当案件事实正好位于法律语言之不确定意义边缘时,法律的模糊性便凸显出来。蒂莫西进一步将语言的模糊性区分为语义模糊和语用模糊。前者是指语词或概念本身具有的模糊性——这相当于哈特所说的“空缺结构”;后者则是它们在使用过程中因语用环境的不同而出现的模糊。这意味着,无论是语词本身还是在它们的使用过程中,都很容易产生模糊——这从语言学角度解释了法律何以会出现模糊。其次,法律的模糊性从根本上还源于人类自身能力的局限。哈特指出,“我们是人,不是神”,人类立法始终难以摆脱两种困境:“其一是我们对事实的相对无知;其二是我们对目的的相对模糊。”因此,理性不足的人类面对千姿百态的生活事实以及深藏于现象背后而无法自动彰显的目的及意义,往往会表现出力不从心。也因此,法律规定本身及其目的和意义总难免会出现模糊。

    当特定案件中待适用的法律出现模糊时,我们必须对这些模糊之处予以阐明,方能妥善解决当下案件。如何阐明?有研究者指出,法律解释、法律推理和法律论证中的各种不同方法,都能够起到阐明法律模糊的功能。笔者并不否认这些方法所具有的意义,然而必须指出的是,方法固然重要,但仅仅依靠方法本身,很多时候并不足以奏效。也就是说,当我们运用法律解释、法律推理和法律论证等方法去阐明法律模糊时,我们的解释、推理和论证都需要某种依据。而能够充当此类依据的,可以是法律原则或立法目的,也可以是社会道德或理论学说,还可以是生活常识。在不少案件中,法官都是运用常识来对法律规范的模糊之处予以阐明的。

    例如,在一个围绕食用油配料的纠纷中,待适用的法律条款出现了模糊,法官正是运用生活常识来阐明这一法律模糊的。在该案中,某食用油生产厂家在其所生产的一款食用调和油外包装上特别强调了“橄榄”二字,并配有橄榄图形,却未在配料表中标明橄榄油的添加量。该案的核心争议在于,厂家是否应在该产品的配料表中标明橄榄油的添加量?根据《预包装食品标签通则》的相关规定:“如果在食品标签或食品说明书上特别强调添加了某种或数种有价值、有特性的配料,应标示所强调配料的添加量。”那么,本案中的橄榄油是否属于此处所谓“有价值、有特性的配料”?由于该法并未对何为“有价值、有特性的配料”予以明确界定(事实上这也不可能做到),因而,此处出现了法律模糊。那么,法官是如何阐明这一模糊的呢?判决书中指出:“一般来说,橄榄油的市场价格或营养作用均高于一般的大豆油、菜籽油等,因此,如在食用调和油中添加了橄榄油,可以认定橄榄油是‘有价值、有特性的配料’。”从判决书的这一表述可以看出,法官正是运用生活常识,来阐明何谓“有价值、有特性的配料”这一模糊法律规定。根据一般人的生活常识,一个物品的价值及其独特性通常可以透过它的价格和功用显现出来:价格越高、功能越好,意味着它越有价值,也越独特。由于橄榄油在价格和营养价值上均高于普通的大豆油和菜籽油,因而属于该法所说的“有价值、有特性的配料”,进而可以适用该法的相关规定。

    (三)常识可以用来填补法律漏洞

    人类理性的有限性与社会生活的流变性之矛盾的永恒存在,决定了法律漏洞在法律生活中的在所难免。当法律漏洞出现时,法官须采取必要措施以填补漏洞,从而及时有效地解决纠纷。总体来说,常见的补漏方法包括类推适用、法律续造(即法官造法)以及法律的外部发现。在这三种方法中,前两者的局限及不足较为明显,也更容易遭致非议和诟病。其中,类推适用由于与刑法中的罪刑法定原则相背离,因而,至少在刑事领域,其适用是受到限制的。而法官造法与权力分立的现代法治原则不符,因而通常情况下不被允许(至少理论上如此)。类推适用及法官造法之局限的明显存在,使得漏洞补充的第三种方法(即法律的外部发现)之意义凸显出来。当待决案件找不到相关法律规定时,法官可以将视线投向法律之外,从政策、习惯、先例、法学理论、道德原则以及生活常识中发现法律,从而有效地解决当下案件。

    既有关于法律发现和法律渊源的讨论中,政策、习惯、先例、法理学说、道德原则等已多有人论及,也由于它们不是本文要讨论的重点,因而,此处主要就常识对于漏洞补充的意义进行说明。当法律漏洞出现时,如果法官穷尽前文列举的所有规范性依据仍不能解决当下案件,他便可以将目光转向常识寻找裁判依据。与此同时,当法官依据前述规范却不足以合理、恰当地解决当下案件时,他可以在采用前述规范的同时将常识纳入其中,让所有这些规范依据共同发挥作用,从而使案件得以妥善解决。

    当然,并非所有的常识都可以当然地用于解决案件。常识要充当特定案件的裁判依据,必须具备一些先在的条件。其一,它必须与当下案件处于同一社会场域中。布迪厄指出:“在高度分化的社会里,社会世界是由大量具有相对自主性的社会小世界构成的,这些社会小世界就是具有自身逻辑和必然性的客观关系的空间,而这些小世界自身特有的逻辑和必然性也不可化约成支配其他场域运作的那些逻辑和必然性。”分散于不同社会场域的常识,其有效性和说服力往往仅限于所处的具体场域,一旦越出该场域便不再适用。用布迪厄的话来说:“只有在与一个场域的关系中,一种资本才得以存在并且发挥作用。”因此,当我们用常识来填补法律漏洞时,必须首先保证它与案件事实处于相同的社会场域中,唯有如此,其规范意义才能有效释放。其二,它必须与当下案件具有逻辑上的对应关系。常识除了要与案件事实处于同一场域外,还应当与后者形成一种逻辑上的涵摄关系。通常,一个法律规范要适用于特定案件,从逻辑上讲,其规范内容必须能够完整地涵摄案件事实;倘若这种涵摄关系不存在,便是出现了法律漏洞。因而,用以补充法律漏洞的常识必须与案件事实之间具有此种涵摄关系,否则,补漏功能将不可能实现。就这一意义而言,我们用常识来进行漏洞补充,实际上就是用其与案件事实之间的涵摄关系去弥补和替代法律与案件事实之间的涵摄关系。

    在司法实践中,用常识来填补法律漏洞的案例并不罕见。例如,在健康保险中,对于保险合同订立之前被保险人已经患有的疾病(简称“既往症”),保险公司无需承担赔偿责任。但对于“既往症”具体包括哪些,保险法并未作出规定,一般保险公司的保险条款也只是以列举的方式为“既往症”设定范围。显然,这种列举不可能穷尽所有的疾病。在某健康保险纠纷中,双方争议的焦点便集中于既往症是否应包括肥胖:保险公司主张,被保险人在投保前就出现肥胖,后期的住院治疗乃因肥胖所致,所以拒绝承担保险责任;而被保险人则认为,肥胖并不属于保险领域中的“既往症”,因而不能适用保险责任免除条款。然而,对于肥胖是否属于“既往症”,法官找不到相关的法律依据,也就是说,这里出现了法律漏洞。此时,法官该当何为?从最终的判决结论看,法官是通过援引常识来解决这一案件的。判决书中指出:“就常识而言,肥胖并不属于疾病,很难纳入既往症的范畴,故某某公司关于林某系因肥胖既往病住院治疗的上述理由不能成立,本院不予支持。”很明显,法官在这里正是通过对常识的引用,才妥善地处理了案件。

    二、常识是当然解释的前提条件

    常识不仅是法官发现法律的基本场域,在法律解释过程中,法官也往往需要依靠常识才能更好地阐明法律。在各种法律解释方法中,当然解释对常识的倚重最为明显,因而此处的论证将主要就当然解释来展开。正是凭借对常识的运用,当然解释才具有了现实可能性。不仅如此,在当然解释中引入常识,还能为解释设定必要的限定,从而避免解释陷入随意和泛化的风险。为了更好地论证此处的观点,我们有必要先从当然解释的概念及其推理依据说起。

    (一)当然解释及其推理依据

    所谓当然解释,是指“在所面临的案件缺乏可以适用的法条时,通过参照各种事项,从既有的法条获得指针,对案件适用既有法条的一种解释” 。当然解释的核心要义,就在于唐律所讲的“举重以明轻”和“举轻以明重”。其中,举重以明轻是针对排除违法而言,即如果法律明确规定某种行为不违法,则那些相对更“轻”的行为(即具有更小危害性的行为)当然也不应被认定为违法。举轻以明重则是针对认定违法而言,即如果一种危害较小的行为都被认定为违法,则那些危害更大的行为,即便未被法律明确列举出来,也应当被认定为违法。正如张明楷所说:“当然解释有两种样态: 就某种行为是否被允许而言,采取的是举重以明轻的判断;就某种行为是否被禁止而言,采取的是举轻以明重的判断。”

    由此可见,当然解释能否适用,根本上取决于对特定行为危害性程度的权衡。而解释者依据什么来进行权衡?这涉及当然解释的推理依据问题。综观既有研究,关于当然解释的推理依据大体包括以下三种:一是形式逻辑,二是规范意旨,三是事物的本质。其中,规范意旨和事物的本质,绝大多数研究者将其列入当然解释的推理依据。而对于形式逻辑,则不同研究者持不同的看法。在陈兴良看来,当然解释必须同时满足事理上的当然与逻辑上的当然方能进行:“当然解释之当然,是事理上的当然与逻辑上的当然的统一,两者缺一不可。事理上的当然是基于合理性的推论,逻辑上的当然是指解释之概念与被解释之事项间存在种属关系或者递进关系。仅有事理上的当然,而无逻辑上的当然,在刑法中不得作当然解释。”所谓“事理上的当然”,是指当然解释的作出应当符合相应法律的规范意旨及待决事项的本质;而“逻辑上的当然”,则指法律中所包含的基准事实与待决事实之间必须存在逻辑上的种属关系或递进关系。这意味着当然解释的推理依据同时包括以上三种,即形式逻辑、规范意旨和事物的本质。而另一些研究者则认为,当然解释并不要求待决事实与基准事实之间存在逻辑上的种属关系或递进关系。如有人指出,“将种概念解释为包含在属概念之内,不属于当然解释的范畴,而是文理解释。如将组织他人卖淫中的‘他人’解释为包括男人,这不是当然解释,而是文理解释”;同时,“在形式逻辑中,概念之间的关系中没有递进关系的说法,只有概念的传递性,……即使概念间存在传递性,也不能认为据此作出的当然解释就符合形式逻辑的要求”。笔者基本赞同这一观点,即当然解释中的待决事实与基准事实之间通常不存在逻辑上的种属关系,如果二者间存在这种关系,则针对该法律条文的解释属于广义文义解释的范畴,而不是当然解释。同时,笔者也认为,递进关系是一种极为含糊和宽泛的关系,因此,说当然解释的作出必须要求解释项与被解释项之间具有一种递进关系,相当于什么也没说。更准确的说法或许是,二者之间存在一种可比较的关系,也即基准事实与待决事实之间可以进行一种行为或事实状态上的轻重比较。而这种比较的展开以及最终结论的得出,则与相关法律之规范意旨及相应行为或事实状态的本质密切相关。这意味着,当然解释的依据主要是规范意旨和事物的本质。

    那么,在当然解释中,我们如何才能恰当地捕捉法律的规范意旨,以及通过什么才能更好地探寻事物的本质?在本文看来,这两项工作的展开,很大程度上都仰赖于生活常识。

    (二)常识有助于确定法律的规范意旨

    对于法律规范立法旨趣的探寻,是当然解释展开的必要前提。然而,从现实角度看,立法旨趣却充满了不确定性。哲学解释学的研究早已表明,对作品意义的探索,充满了无限的可能性。换句话说,一部作品的意义,并不取决于它的作者,而更多地存在于读者的理解和解释之中,所谓“作品完成之后,作者就死了”。法律作为立法者的作品,同样如此,从它被完成的那一刻起,便与作者发生脱离,它具有怎样的意义,直接取决于用法者从中解读出什么意义。而由于理解前见的差异,用法者所解读出来的意义,基本上是人言人殊的。尤其是对于法律规范意旨的探讨,充满了更多的可能性。例如,对于“公园禁止带狗入内”这样一条规定,不同的人可能会解读出完全不同的规范意旨:一个注重环境卫生的人,会以为这是为了保持公园环境的洁净;一个看重安全的人,会认为这是出于安全的考虑;一个对动物皮毛过敏的人,可能会将其解读为是为了在公园中减少过敏原;而一个狗狗爱好者,则会认为这条规范不可理喻,进而认为其规范意旨在道德上是恶的。诸如此类,不一而足。可以说,人们之间的差异有多少,对于规范意旨的解读和态度就有多少。

    在进行当然解释时,我们如何才能大体圈定特定条文的规范意旨,以便作出能否适用当然解释的决定呢?显然,在进行这一判断时,我们不能简单用社会中一部分成员的解读去否定另外一些人的解读,因为这不具有道德上的正当性。伽达默尔说:“我们身上总是带着印痕,谁也不是一张白纸。”个人身上印痕的不同必然带来理解上的差异,而从价值判断的角度讲,我们无法得出结论说谁的理解更优、谁的理解更劣。当然,承认每个人的理解具有同样的重要性,又会带来另一个问题,那就是共识永远无法达成。或许,根据这个社会中大部分人所拥有的知识和理性(也即常识)来探寻特定条文的规范意旨,不仅具有道德上的正当性,也更具现实的可操作性。之所以道德上正当,是因为从人所共知的常识出发,而不是从单个人的前见出发,可以照顾到这个社会中绝大部分人的情感、利益和需要。而之所以可操作,是因为与单个人理解之见仁见智不同,建基于常识的判断,通常更容易达成共识。

    同样以“公园禁止带狗入内”这一规定为例。根据大部分人的常识,狗具有一定的人身攻击性,因而,从这一禁止性规定中解读出安全这一规范意旨,当是没有问题的。基于这一规范意旨,凡是比狗具有更强人身攻击性的动物,如狼、老虎、狮子等则当然被禁止入内。同时,根据另一常识,狗通常会随地大小便,因而很容易给公园的环境卫生造成破坏,因而,从该规定中解读出环境卫生这一规范意旨也大体可以成立。基于这一规范意旨,凡可能给公园环境带来更大破坏性的动物,如牛、羊、骆驼等当然也不能入内。那么,我们能否因为一部分人对动物皮毛过敏,就解读出这一规定是为了给公园减少过敏原呢?根据常识,不同的人可能会对不同的东西过敏,宠物、食品、特定的物品或气味都可能成为过敏原,有人甚至会对冷空气过敏。如果将减少过敏原解读成“禁止带狗入内”的规范意旨,那么,所有可能引发过敏的东西,都不能进入公园。遛鸟的人不能带鸟入内,因为鸟的皮毛容易引发过敏;身上喷有香水的人也不能入内,因为有人会对香水过敏……最基本的常识提醒我们,这种当然解释很荒谬。它不仅荒谬,而且不具有道德上的正当性——你对皮毛过敏何以成为限制我去公园遛鸟的理由?以及,凭什么我喷了香水就不能进入公园?同时,这样的当然解释也会导致共识永远无法达成,因为几乎人人可以为该条文找到不同的规范意旨,从而各执一词。而只有从常识出发,才能避免用单个人或少数人的观点去否定其他人观点所带来的弊端,并使规范意旨的最终确定具有了操作上的可能。

    (三)常识有助于探寻事物的本质

    在当然解释中,我们除了需要探寻规范意旨外,还须对事物的本质进行认识。这主要是因为,“事物的本性(本质)与规范的宗旨并非完全等同。大体而言,之所以‘能够’得出当然解释结论,是基于事物的本性;之所以‘应当’得出当然解释的结论,则是基于规范的宗旨。”因而,如果说对特定法律条文规范意旨的探寻可以证成当然解释的必要性,那么,对事物本质的探索则为当然解释提供了可能性。可以说,在适用当然解释时,无论是“举重以明轻”还是“举轻以明重”,都必然包含着对事物属性的基本判断。那么,在进行此种判断时,我们需要以及能够以什么作为依凭?

    这里有必要先对“事物的本质”这一概念进行认识。在德国学者考夫曼看来,事物的本质是沟通生活事实与法律规范之间的桥梁,它“是一种观点,在该观点中存在与当为互相遭遇,它是现实与价值互相联系(对应)的方法论上所在”。伽达默尔也强调:“从法律意义上说,‘事物的本质’这一概念并不指派别之间争论的问题,而是指限制立法者任意颁布法律、解释法律的界限。诉诸事物的本质,就是转向一种与人的愿望无关的秩序,而且,意味着保证活生生的正义精神对法律字句的胜利。”博登海默则更明确地指出,事物的本质可能源于某种固定的和必然的人的自然状况,也可能源于某种物理性质所具有的必然的给定特性,还可能植根于某种人类政治和社会生活制度的基本属性之中,甚而至于可能立基于人们对构成某个特定社会形态之基础的基本必要条件或前提条件的认识。从以上学者的论述可以看出,事物的本质具有沟通事实与规范的功能,它能够限定立法者、法律解释者的任意和专断。与此同时,它又是一个极为复杂的概念,因而也是一个极难认识的事物,因为它与人的自然状况及生活属性、事物的物理属性、人类政治的基本属性乃至作为整个人类社会存在基础的那些条件都密切相关。因而,对于这样一个复杂事物的探索,我们不能仅仅依靠抽象的理性,正如以赛亚·伯林所言:“尽管人类社会的表层部分是清晰可见的,但它仅仅是巨大冰山的一角,而未知的大部分在海平面以下。”由于理性往往只能投射到事物本质之冰山一角,因而,我们需要同时借助我们的经验、直觉和常识。这意味着,当我们在当然解释中探寻事物的本质时,必须将视线移出法律字句之外,而更多地根据生活常识。

    我们还以“公园禁止带狗入内”为例。当这一条文的规范意旨被确定后,我们需要对特定动物的属性作出判断,方可决定其是否适用于该条款的当然解释。考虑到其规范意旨主要在于保护游客人身安全和公园环境两个方面,因而我们必须对待解释事项的安全属性和卫生状况进行考察,而这种考察需同时结合狗的相关属性(基准事实)来进行判断。首先,解释者应以狗的人身攻击性为基准,结合待适用动物的人身攻击性,来判断其是否适用于这一条款。根据经验和常识,蛇、老虎、狮子等的人身攻击性明显要大于狗,按照“举轻以明重”的适用原则,这些动物当然适用于这一条款;而其他动物,诸如鸟或鱼,虽然也可能具有一定的攻击性,但其攻击性却明显要低于狗,因而可以排除适用。其次,解释者还应以狗对环境卫生的破坏程度为基准,结合其他动物的环境影响度来判断其是否适用。根据常识,牛、骆驼等对环境卫生的破坏性要明显大于狗,因而,按照“举轻以明重”的适用原则,它们当然应被禁止进入公园。不难看出,所有这些判断的作出,都需要我们对特定生物的特性和生活习惯有常识化的了解,而一旦缺乏这些基本的了解,这种判断将变得不可能,因而当然解释也无法进行。

    三、常识是法律论证的重要依凭

    司法裁判中任何一个法律决定的作出,都需要进行充分的法律论证。不仅作为裁决之大、小前提的法律和事实需要论证,大、小前提之间的对应关系也需要论证,最终的裁判结论更需要论证。而法律论证所要解决的问题,便是法律决定的合法性与合理性问题。其中的合法性,是指法律决定的作出要符合实在法的规定;而合理性则是指裁判结论应当具有价值判断上的正当性与适切性,以及对于相关诉讼参与人乃至广大社会主体的可接受性。那么,如何才能实现司法决定的合法性与合理性目标呢?这涉及法律论证的方式问题。

    (一)法律论证的主要方式

    既有研究所涉及的法律论证方式主要有两种:一是形式逻辑,二是法律修辞。在严格法治时代,人们普遍认为,法官裁决的作出就是一个三段论形式逻辑的推演过程,因而,法律论证的过程也就是法律推理的过程。正是在此意义上,“很多人把法律论证也说成是法律推理”。笔者以为,虽然在形式法治那里,法律论证即法律推理,但二者不能等同。更贴切的说法是,法律推理是法律论证的一种方式,二者构成手段与目的的关系。“法律论证是法律推理的目的和任务,正是为了论证某种观点、主张和法律决定的正确与合法,才有必要运用推理的手段。”而之所以在严格法治时代,人们通常将法律论证等同于法律推理,是因为在当时的法制领域,法典理性主义和严格的权力分立思想一度盛行。法典理性主义认为,通过运用人的理性,“可以发现一个确定的、永恒的原则体系。从这个原则体系出发,通过纯粹的逻辑运算,一个包罗万象甚至连每个细节都完美无缺的法律体系可以推导出来。”此种理论,会给人们造成这样一种印象,在任何案件中,作为司法裁判之大前提的法律都不仅是现成的,而且是完美无缺的,它非但能有效涵括作为小前提的案件事实,还能与后者形成一种完整的对应关系。因此,司法裁决的过程自然就是一个轻而易举的三段论推理过程,裁决者需要做的就是将这一推理过程呈现出来。也因此,法律论证的过程完全可以替换成法律推理的过程。而严格的权力分立思想,尤其是滥觞于法国的相互隔离式权力分立理论及制度设计,则要求法官只能充当法律的喉舌,这意味着他们在司法裁决过程中只能运用形式逻辑机械地适用法律,而不允许对其进行创造性适用。否则,便违背了权力分立的基本理念,从而构成对司法权的滥用。简言之,法典理性主义与严格的权力分立理论,共同决定了严格法治时代形式逻辑作为主要或正统的法律论证方式。

    尽管主流观点要求法官只能运用形式逻辑来裁决案件,但司法的现实却不可避免地会偏离理论研究及制度设计者们的主观愿望。事实上,法官从来都不会仅仅通过形式逻辑来解决当下案件,要形成一个恰当的判决,他们一定需要借助于形式逻辑之外的其他法律论证手段。当司法实践与法学理论之间的这种偏离达到极端严重的程度时,必然会使理论作出调整和改变,以回应法律现实的需要。20世纪初自由法学对先前概念法学的反叛,以及二战后价值法学对法律实证主义的胜利,都是对现实司法实践的有力回应,也是为克服严格法治之弊而作出的改变。此种回应和改变,不仅完善了人们关于司法过程的理论认识,也使得司法裁决在满足合法性要求的同时,能够更好地兼顾合理性与适切性。而此种对裁决合理性的追求,尤其得益于佩雷尔曼的新修辞学。它的出现及其在法学领域的运用,使法律修辞作为一种新的法律论证手法获得广泛研究与重视。法律修辞在司法过程中的运用,使法律论证以一种更加饱满的方式展开,从而使司法裁决能够更好地兼顾合法性与合理性。在司法过程中,如果说形式逻辑主要解决的是司法裁决的合法性问题,那么,法律修辞则主要解决裁决的合理性与适切性问题。当然,法律修辞的运用,除有助于增强司法裁决的合理性这一实体目标外,从形式上看,它还有别于冰冷的法律推理过程,而是以一种更生动也更容易让人理解和接受的方式将法律决定呈现出来。这主要是因为,法律修辞突出情景思维,并注重语言的感染力,它可以使法律论证过程以一种“动之以情、晓之以理”的方式展开。这样一种说理方式,较之于生硬的法律说教,更具有亲和力,因而也更易于为人们所接受。

    既然形式逻辑有助于实现司法裁决的合法性,而法律修辞又能够支撑司法裁决的合理性,这是否意味着法律论证方法有形式逻辑和法律修辞便已然足够?约翰逊指出,一个好的论证,应当以“理性说服”作为最终目的。至于如何验证这一目的是否实现,他认为可以通过三种方法,即先验方法、经验方法和语用学方法。对于约翰逊的这一观点,我们可以换一个角度进行思考。既然对论证结果的检验,可以从先验、经验和语用学三个角度展开,那么,反过来说,一个好的论证当然也应至少从这三个角度进行。很显然,在法律论证中,形式逻辑属于先验方法,而法律修辞则属于语用学方法。那么,法律论证中的经验方法又是什么?笔者以为,常识的运用恰恰是一种经验方法。在法律论证中,为了得出一个好的论证结果,我们除了需要运用形式逻辑和法律修辞外,还须巧妙地运用人们生活中的常识。可以说,基于常识的法律论证是一种非常独特而有效的经验论证方法。那么,它的独特性和有效性体现在哪里?

    (二)基于常识的法律论证之优势

    在法律论证中,如果仅仅运用形式逻辑,不仅从直观感受上容易使论证过程显得冰冷和生硬,最终结果有时也难免会导致推理结果的实质非正义。而常识的引入,可以有效地克服这两方面的问题。一方面,倘若法官在适用形式逻辑时能伴之以常识式的说理,则原本冰冷的法律逻辑和生硬的法律说教能够以一种生动形象的方式呈现出来。同时,通过诉诸一般常识,也容易让人们产生心理上的共鸣,从而提升判决的可接受性。另一方面,当严格适用法律明显不义时,法官需要作出价值衡量,而常识恰恰是价值衡量的先决条件和论证依据。价值衡量的前提在于严格适用法律会导致裁判结果的明显不正义,那么,法官根据什么来判断它明显不义?可以说,在进行此种判断时,法官所直接依据的往往是那些朴素的生活常识,这意味着生活常识的运用是法官进行价值衡量的先决条件。有研究者指出:“批判性检验是判定法律论证是否具有合理性和司法判决是否具有可接受性的试金石和操作性标准,因此,批判性检验理所当然地成为合理法律论证的有机组成部分。”由此可见,用于作出此种批判性检验的通常不是某种理论或教条,而是人们生活中的常识。同时,当法官运用价值衡量方法来对案件作出最终裁决时,他负有论证此种裁决为正当的义务。在这一论证中,常识也往往充当着重要的论证依据。莫里森说:“科学家的程序并不依赖从实在事实归纳出的理论,而是依赖对各种问题提出的试探方案的证伪。”他的这一判断同样适用于司法过程中的价值衡量。对于法官来说,价值衡量首先是一项证伪的工作。他必须首先证明严格适用法律可能导致的问题,才能为价值衡量提供必要性基础。而能够让证伪充满力量的,通常不是理论,而是经验,而常识恰恰是极为重要的人类经验。在完成了证伪之后,法官还须进一步展开对引入某种价值作为裁决依据的正当性之证成。毫无疑问,在从事这一工作时,法官不能仅仅就价值论价值,而必须结合经验才能使论证显得饱满而富有说服力。这里的经验,通常不是法官个人的经验,而是社会的共同经验,也即人所共知的常识。简言之,无论是法官决定诉诸价值衡量方法,还是将这一方法真正付诸实施,都离不开常识的运用。

    除修复形式逻辑外,常识的运用还可以克服法律修辞的一些可能弊端。由于“修辞属于影子的世界(柏拉图主义者会这么看),是一个近似的、概率的、看法的、最好也不过是有保证的信念的世界,是一个说说的世界,而不是一个有明晰愿景和终极真理的世界”,因而,对于修辞在司法实践中的运用,我们必须保持足够的警惕。修辞的滥用以及过度修辞的存在,都可能给法官提供上下其手的空间。波斯纳指出:“当修辞道德化时,司法意见的修辞分析就成了老牌律师的把戏,成为用来恭维赞同自己观点的法官的把戏。”这句话可以进一步引申为:当修辞泛化时,司法裁决就成了法官们的把戏,成为他们以是为非、以非为是的把戏。众所周知,在西方,法律修辞的兴起,是在经历了严格法治时代(概念法学、严格的三段论推理)之后的产物,其本身是为了克服严格法治的僵化。这是因为,“根据法律思维的逻辑推理只能解决对错的问题,但解决不了恰当性或正当性的问题。所以一些非形式逻辑的方法被安放在法律方法论系统中。……合理性的问题可以通过许多角度解决,但对判断和理性的证成与恰当表达,则非法律修辞学莫属。”可以说,法律修辞这样一种“非逻辑的、非科学的、非经验的说服方法”,恰恰是为了克服西方严格法治之弊而出现于历史舞台的。然而,到目前为止,我们并没有经历一个彻底的严格法治时代,因而,法律修辞在中国的出现,其使命感和问题意识并不十分明显。国内法律修辞热的出现,除少部分原因是国内法学研究从宏大叙事向微观论证的转向,以及司法裁决可接受性问题的凸显外,更多地是研究动向上的“跟风”。因此,法律修辞在中国,不仅先天不足,而且有些动机不纯。同时,考虑到法律修辞的运用不可避免地会带有个人的喜好和价值偏向,如何让修辞不至于沦为法官上下其手的工具,便是法治追求者们应该认真思考的问题。也因此,我们在尊重法官运用法律修辞的同时,也应特别强调其法律论证的理性和经验成分。这里的理性,主要就是形式逻辑的推理,而经验则主要是常识式的判断。在这两种论证方式中,如果说逻辑推理所承担的论证意义主要辐射于法律职业共同体(如案件代理律师),那么,常识式的论证,其意义除了影响案件的代理律师,还能有效地使论证结果为案件当事人及普通社会大众理解和接受。因此,法官在法律论证过程中,即便采用了法律修辞的手法,但只要他能够同时兼顾法律推理和经验论证,法律修辞便不至于成为其滥用职权的工具和掩护,从而也不至于给案件当事人及整个法治秩序造成严重伤害。

    (三)常识是内部证成及外部证成的重要依凭

    阿列克西指出,法律论证由内部证成和外部证成两部分构成。具体来说,“内部证成处理的问题是,判断是否从为了证立而引述的前提中逻辑地推导出来;而外部证成的对象是这个前提的正确性问题。”从阿列克西的论述可以看出,在内部证成中,人们主要运用逻辑推理的方法,“法律判断必须至少从一个普遍性的规范连同其他命题逻辑地推导出来”。在这里,所谓普遍性规范,就是指具有普适意义的实在法规范;而所谓其他命题,则主要是指关涉案件具体个性的那些经验性命题。这二者分别关联着三段论逻辑推理中的大、小前提,而在这两个前提基础上推导出来的结论也就是最终的判决结果。在内部证成中,法官需要先构筑出用以推理的大、小前提,也即审判规范和案件事实。由此可见,无论是审判规范的构建还是案件事实的查明,都须借助常识而展开。其中,构建审判规范的过程,实际上就是法律发现的过程——关于常识在法律发现中的作用,前文已有论及。而案件事实的查明,更是法官大量运用常识的结果。我们甚至可以说,离开常识的运用,法官要么无法查明案件真相,要么便容易造成冤假错案。可见,常识对于内部证成之小前提的构建,同样具有不言而喻的重要意义。而内部证成之最后环节,就是根据大、小前提,运用演绎逻辑的方法推导出裁判结论的过程。在这一环节,法官需要用到的主要是形式逻辑的方法,常识在这里基本不发挥作用。简言之,在法律论证之内部证成中,常识主要用于构筑三段论推理的大、小前提,也即审判规范的构建和案件事实的查明。

    那么,常识在外部证成中又具有怎样的价值呢?在回答这一问题之前,我们需要先了解外部证成的证明对象。阿列克西将外部证成的对象归结为推理前提的正确性问题,具体来说包括三个方面:实在法规则,经验命题以及那些既非实在法规则、又非经验命题的前提。阿列克西还强调,这三个对象分别对应不同的证立方法:实在法规则的证立,需仰赖对该规则是否符合其所属的实在法秩序之有效标准的判断;经验命题的证立,则不仅需要借助经验科学的方法,还需要通过某种公理以及诉讼中的证明规则;而那些既非经验命题、亦非实在法规则之前提的证立,则与实在法规则和经验命题本身的证立相互缠绕。对于第三个对象的证立,需要作进一步解释。前文已述,对实在法规则的证立,涉及实在法秩序之有效性标准问题,由于该标准的有效性并非不证自明,因此,我们还需要对这一标准本身的正当性予以阐释和说明,而这便属于对“既非实在法规则,亦非经验命题”的前提之证立。同时,在对经验命题进行证立的过程中,会牵涉到证明标准的问题,而证明标准本身亦非不证自明,它同样需要某种恰当性证成,这一证成也属于对“既非实在法规则,亦非经验命题”的前提之证立。

    在外部证成的三个对象中,对实在法规则的证立,主要是通过法教义学意义上的法律解释规则的运用(在普通法系,则体现为对判例适用规则的运用);对经验命题的证立,则更多地需依靠经验本身,它不仅包括经验科学如物证技术,还包括人们的日常生活经验;而对那些既非实在法规则、亦非经验命题的证立,诸如实在法秩序有效性标准本身的正当性问题以及证明标准的恰当性问题等,则往往需要更广泛的论证依据,通常表现为理性、经验抑或某种主义或理论。由此可见,在外部证成的三个证立对象中,由于对实在法规则的证立主要依靠法教义学方法,常识在这里的作用并不十分明显;但其他两个对象的证成,却为常识的运用提供了广阔的舞台。这是因为,对经验性命题的证立,本身便建立在经验之上。这其中,物证技术及其适用与人们的经验密不可分。物证技术本身便是人们反复经验(包括日常经验和专业经验)的结果。而将这些技术用于对特定物品或痕迹的认定,同样需要常识的支撑。对于证人证言的采信,也需要借助常识。可以说,离开了常识,对于证言真实性的判断基本上无从谈起。不仅如此,对那些既非经验命题、亦非实在法规则的前提之证立,也很大程度上需要仰赖常识。以证据规则本身的恰当性问题为例,对举证责任的分配规则以及特定非法证据排除规则的证立,都必须从常识出发,才能达到充分而富有说服力的论证效果。这方面最典型的例子,便是作为非法证据排除之理论基础的“毒树之果”理论。这一理论虽然看似很“理论”,但其论证所采用的却是常识化的叙述方式。从经验和常理来看,有毒之树结出的果实必然有毒,以此类推,以非法方式获得的证据,必将对相关当事人的权利造成伤害,因而必须排除适用。可以说,非法证据排除规则的这一常识性证成,相对于那些纯理论或纯思辨性论证,在饱满度和说服力上都更能达到理想的效果。

    四、结语:兼顾常识的司法才是真正的Justice

    人们生活中的常识,不仅构成了法律的基础,乃立法取之不尽、用之不竭的源泉,在司法过程中还是法官在制定法、先例、政策、习惯等法律渊源之外法律发现的重要场域。与此同时,常识在法律解释和法律论证过程中,也有着广阔的用武之地。尤其在当然解释中,唯有依托常识,法律规范的立法意旨才可能被捕捉到,待决事项的本质也才能被探寻。而在法律论证中,常识充当着法律论证的重要依凭。其重要性不仅在于,与形式逻辑难以避免的刻板和僵化不同,常识在司法裁判中的运用,可以使法律决定在合法性与合理性之间实现恰当的均衡;而且在于,与法律修辞容易出现的虚华和天马行空相异,它使法律论证以一种饱满而接地气的风格呈现出来,从而避免陷入过度修辞的泥淖。

    由于常识在司法裁判中具有如此重要的地位,因此,我们要做的,不仅是消极地承认它的重要性,进而赋予其在司法活动中的“合法性”;更重要的还在于,应以一种积极的姿态去努力营造适宜的观念和制度氛围,让司法成为常识活跃的舞台。唯有如此,法律模糊才能被更好地阐明,法律漏洞才能获得更好的弥补,司法中的恣意和任性才能得到更好的遏制,司法裁决的合法性与合理性也才能得到更好的兼顾,以及最终地,法律决定才能更易于为人们所接受。就这一意义而言,只要我们承认,任何真实的案件都处于特定的社会背景之下,那么,无论是在法律发现、法律解释还是法律论证过程中,法官都应当将目光溢出单纯的法律规范与案件事实之外,从更广阔的社会背景尤其是生活常识中寻求支撑因素。换言之,只有兼顾常识的司法,才是有生命力的司法,也才是真正的justice。

    本文转自《厦门大学学报(哲学社会科学版)》2025年第2期

  • 王迎龙:我国辩护律师职业伦理的模式选择与完善路径

    随着刑事司法的转型发展,我国律师制度与刑事辩护制度处于不断变革的状态,引导着刑事辩护律师职业伦理体系的构建与完善。辩护律师的职业伦理对于律师在刑事诉讼中的执业行为起到规范引领的作用,形塑着整个辩护律师群体的道德伦理与行为规范,其作用不可谓不重大。所谓伦理,是指人与人之间的行为准则,律师伦理就是律师在执业行为当中应当遵守的行为规范。辩护律师的职业伦理是调整辩护律师同当事人、公检法等办案机关之间关系的一套行为规范准则。其中,调整辩护律师与当事人之间关系的职业规范是辩护律师职业伦理的重中之重。目前,虽然《刑事诉讼法》《律师法》等相关法律对辩护律师职业伦理作出了相关规定,但在司法实践中仍然出现了与律师职业伦理相悖的一些现象。例如,近年来作为辩护律师群体内的“死磕派”律师引起人们对律师执业行为的反思,律师可否通过“死磕”的极端方式来维护当事人的合法利益等等。司法实践中出现的刑事辩护诸多新问题表明,我国刑事辩护律师的职业伦理亟待进行整合转型。本文在厘清辩护律师职业伦理历史发展脉络的基础上,通过对域外法治国家关于辩护律师职业伦理的经验借鉴,对我国刑事辩护律师职业伦理的转型发展提出建议。

    一、我国辩护律师的角色定位与历史发展

    我国刑事辩护制度历经多次法律修订取得了长足的发展,已建立起相对完善的辩护律师职业伦理规范体系:一是在基本法律层面的《律师法》和《刑事诉讼法》中规定了辩护律师的一些权利、义务与责任;二是全国律协和各地律协出台的律师执业行为规范文件。辩护律师职业伦理作为指引律师执业行为的理念与规范,与刑事辩护制度的发展息息相关。结合我国刑事辩护制度的整体发展,可以将我国刑事辩护律师职业定位与伦理发展划分为以下四个阶段。

    第一阶段:辩护律师定位为“国家法律工作者”。随着1979年我国《刑事诉讼法》的出台,刑事辩护制度重新建立起来。1980年全国人大常委会通过《中华人民共和国律师暂行条例》,标志着首部关于律师执业的全国规范性文件的出台。该条例第1条规定:“律师是国家的法律工作者,其任务是对国家机关、企业事业单位、社会团体、人民公社和公民提供法律帮助,以维护法律的正确实施,维护国家、集体的利益和公民的合法权益。”根据该条规定,律师被定位为“国家法律工作者”。第3条还规定:“律师进行业务活动,必须以事实为根据,以法律为准绳,忠实于社会主义事业和人民的利益。”由此可见,律师属于“国家法律工作者”,第一要务是维护国家、社会与人民的利益,至于犯罪嫌疑人、被告人的合法利益,则要置于国家和集体之后。此外,当时的律师管理体制类似于公务员的行政管理体制,律师均具有正式的国家编制,属于公务员序列,由司法行政部门统一进行管理,经费也由国家财政统一调配。在此背景下,律师类似于国家公务人员,由国家统一管理,其执业行为也应当是为了国家与集体的利益而进行,目的在于维护法律的正确实施,保障司法公正,而非出于维护犯罪嫌疑人、被告人的合法利益。

    第二阶段:辩护律师定位为“为社会提供法律服务的执业人员”。随着我国改革开放的启动,市场经济迅速发展,带动了刑事司法体制的改革,辩护律师作为“国家法律工作者”的职业定位越来越不符合司法实践的需求。尤其是,1996年《刑事诉讼法》修订引入了控辩之间的“对抗式”内容,强调控辩之间平等对抗。在此背景下,辩护律师作为国家的法律工作人员,由于承担了过多的国家义务,而无法客观公正地与被追诉人一起与控诉方进行平等对抗,不符合司法实践的现实需求。因此,1996年《律师法》正式通过,成为规范律师执业行为的正式法律文件,《中华人民共和国律师暂行条例》失去效力。《律师法》第2条明确规定,“本法所称的律师,是指依法取得律师执业证书,为社会提供法律服务的执业人员”。此时,律师的身份功能发生转变,维护当事人合法权益的功能逐渐受到重视。在律师的角色定位以及执业要求中,“当事人合法权益的维护”被置于“维护法律正确实施”之前,并且律师的利益冲突规则、保守职业秘密规则、禁止随意拒绝辩护规则等执业规则得到初步确立。同时,维护国家与集体利益不再是律师执业的首要任务,其社会公共利益义务要求有所降低,律师宣传社会主义法制的任务也被删除。该法条明确将律师的职业定位从“国家法律工作者”发展为“为社会提供法律服务的执业人员”,律师的职业伦理开始转型,不再强调律师对于国家与社会利益的维护,而是强调对当事人的服务,与公安司法机关工作人员的身份属性相互区分。

    第三阶段:辩护律师定位为“为当事人提供法律服务的执业人员”。随着刑事司法体制改革的深化与律师法律服务市场的发展,《律师法》在2007年进行了修订。此次修订将律师职业定位从之前的“为社会提供法律服务的执业人员”修改为“为当事人提供法律服务的执业人员”,完全脱离了具有行政彩色的国家干预,明确了当事人才是律师提供法律服务的对象,维护当事人的合法利益是律师的第一职责。此外,在律师的管理体制上,自律性的律师管理机构即律协承担了主要职责。一方面,除了保留的少数公职律师外,律师不再占用国家编制,国家财政也不予以支持,成为完全自负盈亏的市场主体;另一方面,律协负责具体的律师行业的管理,各律协的领导也都由执业律师担任,司法行政机关只进行宏观指导,不插手具体业务管理。

    第四阶段:辩护律师职业伦理的最新发展。随着市场经济的飞速发展与司法体制改革的进一步深入,在刑事辩护制度改革的带动下,辩护律师职业伦理也产生了新的变化。2000年《律师办理刑事案件规范》第5条规定:“律师担任辩护人或为犯罪嫌疑人提供法律帮助,依法独立进行诉讼活动,不受委托人的意志限制。”根据该条规定,律师辩护不受犯罪嫌疑人、被告人的意志左右,能够进行独立的辩护活动。在一定程度上,该规定来源于当时关于辩护律师的职业定位,即律师不仅是当事人合法权益的维护者,还要维护法律正确实施与司法公正,因此不受当事人的意志左右。《律师办理刑事案件规范》在2017年修订时删除了该条,并规定:“律师在辩护活动中,应当在法律和事实的基础上尊重当事人意见,按照有利于当事人的原则开展工作,不得违背当事人的意愿提出不利于当事人的辩护意见。”该规定表明辩护律师在刑事诉讼中不仅要维护当事人的合法利益,而且要尊重当事人的意志,不得违背当事人的意愿作出对其不利的辩护。辩护律师职业伦理趋向以当事人的利益和意志为中心,这是我国刑事律师辩护职业伦理的重大进展。

    通过上述梳理可以看出,我国辩护律师职业伦理正在经历国家影响逐渐减弱,当事人利益逐渐成为律师工作中心的发展过程。当然,国家影响的减弱并不意味着消失,我国《律师法》第2条仍然规定律师在维护当事人合法权益的同时,要维护法律正确实施与社会公平和正义。但是,法律规范没有明确规定律师对于当事人忠诚义务的边界,导致辩护律师在维护当事人合法权益与上述义务发生冲突时,无法有效引导执业行为。而且,有关规定也不尽合理。如《律师办理刑事案件规范》规定律师“不得违背当事人的意愿提出不利于当事人的辩护意见”,是否表明当提出有利于当事人的辩护意见时,律师可以违背当事人的意愿?近年来,司法实践中经常出现辩护律师因违反职业规范受到惩戒的案例。例如,北京周某律师在安徽吕某三案中,因通过微博披露了侦查人员对犯罪嫌疑人实施的刑讯逼供行为,最终被北京市朝阳区司法局给予停止执业一年的行政处罚。该案例中,辩护律师向社会揭露办案人员采取的刑讯逼供行为,根本目的在于维护当事人的合法权益,从根本上也维护了社会的公平与正义。但是该行为最终被定性为违反律师执业规范。因此,随着我国刑事司法体制的改革与进步,我国辩护律师职业伦理的建构仍然有待完善。

    二、辩护律师职业伦理的两种模式与域外经验

    (一)辩护律师职业伦理的两种模式

    “尊重和保障人权是全人类的共同价值。”放眼世界范围内各个法治国家的刑事辩护制度,可以将律师法律职业伦理大致划分为忠诚义务模式与公益义务模式两种模式。

    1.忠诚义务模式

    忠诚义务在绝大多数国家被看作辩护律师职业伦理的首要义务。所谓忠诚义务模式,是指将律师的职业定位为当事人利益的维护者,任何辩护活动都必须以维护当事人的利益为首要宗旨。在忠诚义务模式下,律师是当事人的诉讼代理人,必须完全听从当事人的意志,以维护当事人的利益为核心任务,类似于民事诉讼中的诉讼代理人。美国主流的辩护律师伦理可以归为此种模式。该模式具有以下特点:

    一是在诉讼地位上,辩护律师附属于当事人,作为当事人的代理人参与诉讼,不得违背当事人的意志发表辩护意见。如在美国,辩护律师职业伦理的主要内容是党派性和中立性。所谓党派性,是指律师以客户的利益为首要保障对象进行辩护,即使律师的做法侵害了公共利益,但此时的选择在道德上依然是正确的。所谓中立性,是指律师不就客户的目标作道德评估,而只是衡量在法律上是否具有充足的机会来实现它。因此,律师必须以当事人的意志为主,在诉讼地位上从属于当事人,以维护当事人的利益为首要任务。

    二是在权利来源上,辩护律师享有的诉讼权利来源于当事人的委托与授权,而非法律直接授予。由于权利直接来源于当事人而非法律规定,辩护律师应当始终围绕以当事人为中心,遵循当事人的意志开展辩护。在美国,除非辩护律师得到明确授权,一切与诉讼结果相关的重要事项的决定权都由当事人本人决定,否则辩护律师无权发表意见。辩护律师只能自主决定一些诉讼策略性或技术性的事项。

    三是在利益冲突上,辩护律师应当以维护当事人的利益为主。在刑事诉讼过程中,辩护律师可能面临多种利益冲突,最常见的是当事人利益与公共利益之间的利益冲突。在此情形下,美国奉行完全的忠实义务模式中,律师应当以当事人利益为重,为当事人负责而无须对公共利益负责。因此,美国刑事辩护律师往往更加注重当事人利益的保障,而不惜以牺牲公共利益为代价。

    四是在退出辩护上,辩护律师解除委托辩护的自由受到严格限制。辩护律师与当事人签订委托合同后,解除或终止委托关系受到法律严格限制,不得随意退出。只有在一些特定情形下,辩护律师才可以退出,必要时甚至还需要法官同意。对律师退出辩护的严格限制,意味着即使当事人的要求不尽合理甚至不合法,律师也不能把工作擅自交给他人,或者随意退出辩护。严格限制律师随意退出辩护,旨在避免因律师退出辩护而损害当事人的合法利益,从而最大限度地保障当事人的利益。

    以美国为典型的忠诚主义模式突出了以当事人利益为核心的价值理念,强调律师作为当事人的代理人,以当事人的利益和意志为行动准则,甚至不惜以牺牲公共利益为代价。这种模式的优势在于能够最大限度地保障当事人的利益。并且,在此基础上建立起来的律师行业的商业化程度较高,有利于创造健全的法律服务市场,在律师行业内形成优胜劣汰的良性竞争。但是物极必反,律师职业伦理的忠诚义务模式也存在一些弊端,长期受到社会各界的诟病。在美国,“有关辩护人在刑事诉讼中的角色定位以及由此所引发的职责争论的历史,就如同辩护人的历史一样悠久”。该模式之弊端主要体现在以下三个方面:

    一是律师职业伦理与大众伦理发生冲突。忠诚义务模式过于强调当事人的利益,使得律师职业伦理与大众伦理处于紧张状态,时常发生扞格。以1973年美国著名的纽约快乐湖谋杀案为例。在本案中,被告人向其两名辩护律师透露了被害人尸体存放地点的线索,但是基于律师的法律职业伦理,两名律师拒绝向警方透露尸体的下落。虽然被害人的尸体最终被警方找到,但是两名律师受到社会大众的口诛笔伐。形成鲜明对比的是,两名律师得到律师界的高度评价,甚至被认为是律师界的英雄。此案中集中反映出律师在过于注重维护当事人利益时,其职业伦理可能与大众伦理之间形成矛盾。我国学者将忠诚义务模式下律师的法律职业伦理特指归结为一种“非道德性”,认为律师“职业伦理逐渐脱离大众道德评价和个体道德体验的轨道,变得与道德的差距越来越大,甚至成为与大众道德评价与个体道德体验毫无关联的执业行为规范”。“非道德性”的概括本身就表明了一种价值判断,即忠诚义务模式下律师职业伦理脱离了大众的道德评判,具有一种非道德性。这种非道德性在法律领域来看并非不正当,但是从社会领域来说很难与社会大众的一般伦理相一致,因此具有非正当性。

    二是无益于刑事诉讼程序目的的实现。刑事诉讼为了解决已经发生的刑事纠纷,对实施犯罪行为的人进行惩罚,但同时对参与刑事诉讼的当事人进行权利保障。辩护律师在此过程中不仅应当维护当事人的利益,还应当对法庭具有一定帮助作用,即帮助发现案件真实,促进公平正义之实现。然而,辩护律师热衷于对当事人利益的过度维护,无论利益是否正当,甚至通过制造虚假证据试图干扰司法公正,此种情况下律师不仅无助于实现司法公正,还会颠倒黑白,丧失最起码的公平正义的精神。

    三是律师丧失独立性,辩护制度滑向工具主义。在忠诚义务模式下,律师依附于当事人而存在,沦为实现当事人利益的一种工具。律师还要完全遵循当事人的意志,无法依据专业的法律知识进行独立辩护,其专业判断与自主性仅体现在一些技术性的诉讼决策上,使得辩护制度丧失了专业性与独立性。同时,律师对待法律采取一种工具性的态度,即不考虑辩护行为是否与法律相抵触,只是工具性地操作法律法规,采取任何可以实施的手段。律师辩护制度的工具化,也将导致社会对于律师行业整体评价与律师社会地位的下降,进而引发律师法律职业的危机。

    2.公益义务模式

    公益义务模式与忠诚义务模式相对,是指律师执业行为除了维护当事人的利益,还要维护社会公共利益,帮助法庭正确地发现真实情况与适用法律。德国是公益义务模式的典型代表,律师被视为“独立的司法机关”,同时忠诚于当事人与法官。该模式具有以下特点:

    一是在诉讼地位上,辩护律师具有独立于当事人的诉讼地位。辩护律师作为“独立的司法机关”,而非当事人的代理人,具有法庭辅助人的性质,以帮助法庭发现案件真实。在刑事诉讼中,辩护律师并非以当事人唯命是从,其可以以自己的名义参与诉讼活动,独立作出认为有利于当事人的诉讼行为,即使该行为违背了当事人的意志。如被告人认为自己精神正常,辩护律师仍然可以申请对其进行精神病鉴定;被告人不希望证人出庭,辩护律师仍可以申请该证人出庭。然而,德国辩护律师的独立性常常使律师与当事人之间存在紧张关系,当事人有权随时与委托律师解除委托关系。因此,当辩护律师与当事人观点不一致时,虽然辩护律师具有独立性,不必遵循当事人的意志,但是为了辩护的顺利进行,一般要和当事人进行协商,说服当事人听从自己的意见,或者改变观点遵循当事人的意志。

    二是在权利来源上,律师的辩护权由法律直接赋予,而非当事人授予。在德国,辩护律师“以自己的名义参与诉讼,行使辩护人的权利,并对自己的辩护行为承担责任”。法律规范将律师视为司法制度的组成部分,而不仅仅是当事人的代理人。辩护律师可以独立地开展辩护活动,而不受当事人意志的约束,并且有义务帮助法庭发现案件事实真相。

    三是在执业行为中,受到更多公益义务的限制。在德国刑事诉讼中,只要不损害当事人利益和社会公正,辩护律师就有权进行辩护。德国学者笼统地指出:“律师工作的内容及界限依相关私人及公众利益的权衡而定。”相较于美国的律师同行,德国律师要承担更多公益义务。例如,律师不得作虚假供述,不得阻碍法庭发现案件客观真相。又如,如果辩护律师知道事实上当事人实施了犯罪行为,只能基于证据不足提出无罪意见而不能提出证明无罪的意见。总之,辩护律师同时受到忠诚义务与公益义务的约束,并且后者总体上占据优势。

    四是在利益冲突上,要求辩护律师兼顾公共利益与当事人利益。在德国,辩护律师既要努力维护当事人的利益,又不能因执业行为损害公共利益。当两者出现无法调和的冲突时,公共利益的保障要优先于当事人利益。在代理过程中面临利益冲突时,律师也会因损害司法程序适当性的外观而受到处罚,哪怕已经征得客户同意。由此可见,德国辩护律师须同时承担忠诚义务与公益义务,当面临利益冲突时,对于后者的保障要优于前者。

    由于忠诚义务模式相对公益义务模式并不以当事人的利益为核心,而注重公共利益的维护,在一定程度上弥补了上述忠诚义务模式的缺陷。公益义务模式强调辩护律师的独立性,并不完全为了当事人的利益行事,也不完全遵循当事人的意志。相较于忠诚义务模式,公益义务模式更加有利于法庭发现案件真实,因为律师已经不仅是单纯的当事人的代理人,而是作为司法机关的有机组成部分,负有维系司法公正之实现的职责。公益义务模式具有以下三个方面优势:一是辩护律师承担了维护公共利益的职责,帮助法庭发现案件真实,可以最大限度地实现司法公正,维护社会公平正义;二是律师作为“独立的司法机关”,能够获得司法机关的重视与认可,如允许律师充分阅卷与调查取证,有利于律师辩护活动的开展,在一定程度上也有利于当事人;三是有助于规范辩护律师的执业行为。公益义务模式对辩护律师课加了较高的道德标准,要求律师必须遵循一定的标准行为,这为律师形成规范的职业伦理划定了标准。如果单纯强调律师的忠诚义务,使律师沦为当事人的利益代理人,则律师有可能为了当事人的利益而不择手段,扰乱法律服务市场甚至司法的公正。

    然而,绝对的公益义务模式多强调辩护律师对公益义务的保障,可能导致对当事人利益保障的忽视,存在以下问题:一是削弱当事人对辩护律师的信任。公益义务模式下辩护律师对法庭负有“真实义务”,要帮助法庭发现客观真实,而且辩护律师基于公益义务无须遵循当事人的意志,这在一定程度上削弱了两者之间的信任与联系。二是辩护律师受到公益义务的严格限制,可能无法充分发挥辩护职能,导致当事人利益受损。辩护律师享有独立的辩护地位,辩护意见可能与当事人意志相悖,从而无法发挥辩护合力,影响辩护的作用与效果。三是不利于律师行业的长远发展。公益义务模式对律师课加了过多的客观义务,而忽视了律师作为商业主体的特质,违背了资本市场的运作规律,在一定意义上属于国家对资本的行政干预,在长远来看不利于律师行业的发展。

    (二)辩护律师职业伦理模式分野的制度基础

    在分析了世界范围内辩护律师两种不同的职业伦理模式的内容及各自优、缺点的基础上,有必要进一步思考为何会出现如此不同的律师职业伦理,即两种不同的辩护律师职业伦理模式各自产生发展的制度基础。从深层次发掘辩护律师职业伦理发展的制度因素,能够为我国辩护律师职业伦理的完善提供参考。

    第一,律师制度历史发展传统的区别。对于本国律师职业伦理的形塑而言,律师制度的历史发展传统至关重要。在美国现代化过程中,资本主义力量在社会发展中起到主导作用。在资本的主导下,美国较早形成了规模化的商业性市场,各行各业都参与到良性的市场竞争之中,通过优胜劣汰而形成高度的职业化。律师作为专门为当事人提供法律服务的商业主体,在这一过程中也逐渐职业化。

    在法律服务市场的竞争中,律师执业行为的规范主要依靠律师自律与行业规范,而并非依靠政府,因此律师在这一过程中较少地受到公共力量的影响,其在公共义务的承担上与其他职业没有太大的区别。律师作为一项服务行业,与其他服务行业并无本质区别,都树立了顾客利益至上的职业伦理。只是后来基于律师法律服务行业的特殊性,在以忠诚义务为原则的基础上设置了若干的例外,以缓解当事人利益与公共利益之间的冲突。

    在发展传统上,德国与美国的法律职业存在不同。在德国,法律职业包括法官、检察官以及律师,其发展由公共行政力量主导并控制,通过科层式的行政管控方式管理法律职业。所以,在德国早期,律师一开始就被视为政府工作人员,承担一定的司法职能。虽然后期经过社会化,律师不再具有公务人员的身份,但是科层式的发展传统仍然深刻地影响了律师法律职业传统。辩护律师仍然具有辅助法庭的功能,同时维护着当事人利益与公共利益。

    第二,刑事诉讼模式的差异。在刑事诉讼中辩护律师同法官与检察官具有紧密的联系,他们之间不同的关系构成了不同的诉讼模式。而辩护律师的职业伦理是调整律师执业行为的规范准则。因此,不同的诉讼模式也决定了不同的辩护律师职业伦理。美国奉行当事人主义诉讼模式,由控辩双方主导诉讼进程,遵循“平等武装”原则,通过实质平等对抗帮助法庭发现案件真实。当事人主义诉讼模式下,辩护律师作为具有专门法律知识的人,被赋予了帮助当事人与控方进行实质对抗的重要任务。因此,辩护律师在职业伦理上要求以当事人的利益为核心,帮助当事人充分实现辩护权,为控辩双方的平等对抗创造条件。高度的当事人主义对客观真实的追究并不强烈,反而更加关注诉讼真实,更加强调在保障当事人辩护权实现的基础上推进案件真实的发现。

    德国系职权主义诉讼模式的典型代表,在刑事诉讼程序中由法官而非当事人主导诉讼进程,辩护方对诉讼进程与事实发现的影响较低。职权主义诉讼模式通过法官等司法官员职权的积极发挥去探明案件真相,辩护律师在一定程度上也被视为这一机制的组成部分,而非通过与控方的对抗去探明真相。职权主义诉讼模式侧重于实质真实的发现,辩护律师也被要求承担一定的真实义务,以促进实质真实的发现。

    第三,律师培养方式的不同。律师的培养方式对律师法律职业伦理的养成也产生了重要影响。在美国,律师的自治组织律师协会主导了律师的培养。律师协会不仅负责制定律师职业伦理规范,而且带头推动法律职业伦理教育标准文本的起草,并倡导法学院开设法律职业伦理课程。美国律师培养的律师协会主导方式,以律师职业道德培养为主要内容,而如何处理律师与当事人之间的委托关系是职业伦理的主要内容。同样受到此种职业伦理教育成长起来的检察官、法官充分理解并认同此种律师法律职业伦理,因此在诉讼过程中也会认可律师基于职业伦理而对当事人利益进行维护。

    在德国,法律职业的培养并非以律师为中心,而是以法官为中心。各个法律职业,无论是检察官、律师还是高级公务员都需要接受以培养公正的法官为主要目的建立起来的法律职业教育。虽然2003年改革突破了以法官为中心的传统德国法学教育,但长期以来形成的以法官为中心的传统法律职业教育仍然有深刻的影响,在法律职业伦理中对公共利益的维护仍然占据重要地位。

    (三)忠诚义务与公益义务的调和

    基于上述分析,忠诚义务模式与公益义务模式各有利弊。总体上看,忠诚义务模式以美国为代表,而公益义务模式以德国为代表。但是,极端地强调辩护律师只维护当事人的利益或只维护公共利益的律师职业伦理在任何国家都是不存在的。无论是在美国还是在德国,均强调律师同时具有维护当事人利益与公共利益的义务,只不过是有所侧重,当存在利益冲突时,更加强调维护哪一方的利益而已。尤其是,当前世界范围内,当事人主义诉讼模式与职权主义诉讼模式相互融合已发展为一种趋势,在此影响下辩护律师职业伦理的两种模式也随之有相互融合的发展迹象。美国的辩护律师职业伦理中存在一种“法庭职员理论”。根据这一理论,律师是法庭的职员(officer of the court),律师是司法制度的重要一环,并且承担着重要的职责。该理论类似于德国关于律师是“独立司法机关”的观点,强调律师对于法庭负有职责。在该理论的影响下,律师的真实义务逐渐被重视起来,不仅仅是对抗制中的角色。辩护律师既要忠实于当事人,对于法庭也负有一定的真实义务。同样,在德国,对过于强调公共利益的辩护律师职业伦理理论的反思,促进了律师作为“限制的机关”理论、“一方利益代理人”理论以及“契约理论”的发展。这些理论的共同点在于一致强调辩护律师应当加强当事人的利益维护,在公共利益方面有所限制。

    日本是忠诚义务与公益义务相互融合的典型代表。二战之前,日本无论是在诉讼模式上还是在辩护律师职业伦理上,都与德国相似,强调辩护律师对公共利益的维护。二战后,日本当局引入美国当事人主义诉讼模式,诉讼程序的制度性改革也对辩护律师职业伦理产生影响。辩护律师不仅要对法庭承担真实义务,还要维护当事人的合法利益,对当事人履行忠诚义务。例如,《日本律师法》第1条规定,“律师在保持自由且独立立场的基础上,对委托人具有诚实履行职责的义务”。基于这一立场,日本学者提出了一种基于混合的辩护律师职业伦理的椭圆理论,即像椭圆具有两个中心一样,辩护律师同时具有对委托人的忠诚义务和对法庭的真实义务,辩护律师的任何职业行为均应在这两者之间进行选择和平衡。辩护律师需要在两点之间保持平衡,既要忠于事实,也不能背叛当事人。相较于德国的公益义务模式,日本强调辩护律师对当事人利益的保障,在延续职权主义诉讼模式传统的同时,加强辩护律师与当事人之间的联系,强化两者之间的信任与配合。

    然而,在日本两种义务相互融合的椭圆理论中,当面临利益冲突时,辩护律师如何抉择也面临困境。对此学者们提出了不同的理论简介,如有学者认为,辩护律师的真实义务仅仅是消极的真实义务即不得积极实施歪曲事实的行为,不负有积极协助发现真实的义务;也有学者认为椭圆的两个中心点应当被安置在同等的位置上。关于这一问题,日本学界尚无统一定论。在司法实践中的做法通常是,律师应该努力劝导被告人根据客观事实提出辩护意见。在日本律师看来,如此行为并不是为了协助法院发现真实,而是为了最终履行积极的诚实义务。

    三、我国辩护律师职业伦理的困境与突破

    目前,我国辩护律师职业伦理融合了忠诚义务与公益义务两部分内容。根据《律师法》第2条的规定,一方面,律师职业被定位为为当事人提供法律服务的执业人员,明确了律师服务的主体为当事人而非国家与社会,因此律师应当以维护当事人合法利益为主要目标;另一方面,律师在维护当事人合法利益的同时,必须承担一定的真实义务,保障公共利益的实现,维护社会的公平与正义。其中,律师维护的是当事人的合法利益而非非法利益,不能通过悖离事实与法律的非法手段而为当事人谋求利益。同时,律师同司法工作人员一样受到“以事实为根据,以法律为准绳”基本原则的严格限制,不得弄虚作假,需要在法定范围内履行执业行为,且以不损害当事人合法利益为底线标准。辩护律师不得随意泄露当事人的隐私秘密,也不能无法定理由随意拒绝或退出辩护等。

    (一)双中心职业伦理模式的困境

    陈瑞华教授将我国当前辩护律师职业伦理称为“双中心理论”,意思是指律师应当同时履行忠诚义务与公益义务,立法层面没有高下之分,当事人利益与公共利益应当并重。这种双中心理论其实是在律师职业伦理中确立了两套体系,即辩护律师在刑事诉讼中既要维护委托人的利益,也要维护国家与社会的利益。从历史发展来看,我国这种双中心式的辩护律师职业伦理的形成具有一定合理性,与律师的职业定位从“国家法律工作者”发展到“社会法律工作者”,再发展到“法律服务工作者”是一脉相承的。此种模式改变了我国过于注重公益义务的传统理念与做法,确立了忠实义务与公益义务两个职业伦理的中心并重,同时强调当事人利益与公共利益的维护,引导着刑事辩护制度与律师制度向合理的方向发展。而且,如上文分析,我国将忠实义务与公益义务相互融合的辩护律师职业伦理符合世界法治国家律师职业伦理的发展趋势,具有一定的科学性与合理性。然而,我国的双中心职业伦理模式将忠诚义务与公益义务并列在一起,会导致辩护律师在执业行为中面临利益冲突时无所适从,导致了司法实践中辩护律师的职业伦理困境。

    首先,双中心职业伦理模式的含混性。双中心职业伦理模式实际上是一种忠诚义务与公益义务并重的模式,两者并无孰先孰后,在面临冲突时也没有提供解决冲突的方案和指引。这种貌似全面的理论,其实在逻辑上非常空洞,所提出的是一种似是而非的命题,对于两个相对立的主张何者优先的问题进行了回避。当辩护律师在执业过程中面临具体的利益冲突时,究竟是选择优先维护当事人的利益还是国家与社会的利益,当前双中心的辩护律师职业伦理无法提供有效指引。基于此,我国学者对辩护律师职业伦理进行了深刻的反思。陈瑞华教授基于对双中心理论的反思,提出了一种“单一中心模式”,主张以维护委托人的合法利益为辩护律师的唯一目的,以忠诚义务作为律师的职业伦理内核。季卫东教授认为:“律师还是应该忠于客户的,应该成为真正值得当事人信任和委托的‘权利卫士’,尤其是在刑事辩护案件中,更需要有那么一点为客户上刀山、下火海也在所不辞的胆识。”

    其次,保密义务与公益义务的冲突。保密义务是忠诚义务的派生义务,是指律师基于建立的“委托人—律师”法律关系而享有作证豁免特权以及履行相应的保密义务。我国《刑事诉讼法》第46条以及《律师法》第38条均对此作了规定。但与此同时,《刑事诉讼法》第120条规定了对于侦查人员的提问有如实回答的义务。因此,保密义务与公益义务便发生了法律适用上的冲突,辩护律师处于一个两难选择的尴尬境地,选择保密义务则有损法律的尊严,与律师追求的公平正义的法律信仰难以兼容;而放弃保密义务则有违律师的执业道德,破坏辩护律师与犯罪嫌疑人、被告人的信任关系,进而导致律师制度失去其赖以生存的基础。

    最后,真实义务的限度问题。真实义务是公益义务的派生义务,是指律师除了维护当事人的合法权益外,还应当负有发现案件真实的义务。我国《律师法》第2条规定,律师应当维护法律正确实施与社会公平和正义,也包含了对于真实义务的要求,与律师在维护当事人利益的忠诚义务之间存在扞格。但是,法律没有对律师履行真实义务的限度作出明确规定,这就造成司法实践中律师在维护当事人合法利益与发现案件真实之间存在两难境地。

    (二)法律约束下忠诚义务模式的完善

    忠诚义务与公益义务是辩护律师职业伦理中的两项核心内容,缺失任何一项都是不完整的。从域外经验来看,世界各国将忠诚义务与公益义务进行调和已呈一种发展趋势。陈瑞华教授主张的“单一中心模式”虽然将委托人利益与忠诚义务作为核心职业伦理,但是具体看其主张内容,辩护律师仍然受到公益义务的约束。如其认为,律师在忠诚义务的约束之外,还受到外部的一些其他法律限制,如不得通过实施贿赂、请托送礼、不当解除等方式来为委托人谋求利益,这些实际上都是公益义务的一些要求。因此,笔者认为,我国辩护律师职业伦理的混合模式在性质上是正当的,只是在忠实义务与公益义务之间缺乏必要的界分,并且缺乏面临利益冲突时的规则指引。基于此,笔者主张我国辩护律师职业伦理的完善应当在双中心模式的基础上有所侧重,即优先强调辩护律师的忠诚义务,并附加一定限度的公益义务。笔者将这种职业伦理称为法律约束下的忠诚义务模式,意指辩护律师在职业活动中首先要忠诚于当事人,以维护当事人的合法利益为第一要务,同时要受到法律的有效约束,承担一定限度的公益义务,不能采取非法手段或维护当事人的非法利益。具体而言,可以从以下几个方面贯彻辩护律师在法律约束下的忠诚义务模式。

    首先,辩护律师应当以积极维护当事人的合法利益为优先项。毋庸置疑,同域外国家律师职业伦理相同,忠诚义务也是我国辩护律师的首要职业伦理,对当事人合法利益的维护也是辩护律师在诉讼活动中的首要职责。“让律师不做有损当事人利益的事情可能有助于提升案件处理结果的总体准确性,即使这样可能会妨碍对某一特定案件的正确处理。换句话说,律师对当事人的忠诚可以被看作在国家的眼前目标与长远目标之间存在差异性的情况下按照后者优先的原则作出的调整,而不是被视为在个人利益与国家利益之间发生冲突的情况下作出的支持前者的安排。”当然,律师维护的只能是当事人的合法利益,如果是一些非法利益,辩护律师要受到公益义务的限制。

    其次,辩护律师应当承担尊重当事人意志的消极义务。我国《刑事诉讼法》第37条规定:“辩护人的责任是根据事实和法律,提出犯罪嫌疑人、被告人无罪、罪轻或者减轻、免除其刑事责任的材料和意见,维护犯罪嫌疑人、被告人的诉讼权利和其他合法权益。”根据该条规定,在我国刑事诉讼中,辩护律师的辩护权利由法律赋予,享有独立辩护的权利,在一定程度上能够充分发挥辩护律师的辩护作用。然而,刑事诉讼过程中辩护律师与当事人的意见有可能发生冲突,在此情况下辩护律师的专业性意味着当事人听从辩护律师的意见可能更有利于专门利益的维护。但是,这并不意味着辩护律师可以完全无须遵循当事人的意志开展辩护。当律师辩护意见与当事人意志存在冲突时,辩护律师首先应当尽最大努力与当事人进行沟通、协商,利用专业法律知识说服当事人,争取在辩护意见上达成一致意见。如果律师努力协商后仍然没有和当事人达成一致意见,辩护律师应当以维护当事人的合法利益为主要目的,而不受当事人的个人意志约束。简言之,辩护律师的忠诚义务并非系对当事人的言听计从,而是忠诚于维护当事人的合法利益这一职责。例如,当事人认为自己无罪,但律师认为其是罪轻,进行无罪辩护反而适得其反,可以基于专业判断作罪轻辩护。如果当事人坚决反对,此种情形下律师可以选择退出辩护,否则必须尊重当事人的意志,在“委托人—律师”契约关系下按照当事人的意愿履行辩护职责。

    再次,辩护律师维护当事人利益需要受到法律约束,同时承担一定限度的公益义务。辩护律师在承担忠诚义务以维护当事人利益的同时,应当承担以下几个方面的公益义务,作为忠诚义务的限度或边界:第一,维护司法工作人员的廉洁性义务。辩护律师不得向司法工作人员行贿、承诺给予不正当利益、有不正当往来等行为。第二,消极的维护真实义务。辩护律师不得为了维护当事人利益实施妨碍司法公正的行为,如毁灭、伪造证据,教唆、威胁、引诱证人作伪证或改变证言等。实体真实在理论上可以分为积极实体真实与消极实体真实,如日本学者平野龙一博士指出,“实体真实也分成积极的和消极的两种倾向。积极的实体真实主义主张,既然实施了犯罪,就必须发现它、认识它,毫无遗漏地给予处罚;消极的实体真实主义主张不处罚无辜者”。辩护律师所追求的实体真实应当属于消极实体真实。第三,维护法庭秩序的义务。辩护律师在法庭上应当听从法官指挥,不得对司法人员实施人身攻击、有辱人格尊严、聚众哄闹法庭等扰乱法庭秩序的行为。第四,防止发生严重社会危害的义务。辩护律师得知当事人还有其他正在或者将要实施的危害社会的犯罪行为,应当及时向有关部门报告,以防止严重社会危害的发生。

    最后,完善辩护律师职业行为法律规范。法律规范对于律师职业行为具有规范引导的作用。目前法律中的某些规定直接引起了律师与当事人的利益冲突,导致了辩护律师忠诚义务与公益义务的抵牾,因此需要进一步修订完善。例如,《刑事诉讼法》第120条规定,犯罪嫌疑人对于侦查人员的提问有如实回答的义务。依此推导,犯罪嫌疑人委托的辩护律师面对国家机关的调查取证亦有如实作证义务,这显然有违辩护律师的忠诚义务,因此有必要删除第120条中犯罪嫌疑人应当如实回答的规定。

    此外,我国辩护律师职业伦理中忠诚义务与公益义务的冲突无法避免。当面临利益冲突时,在法律约束下的忠诚义务模式指引下,辩护律师应当以维护当事人的合法利益为首要职责,但是在此过程中又要受到公益义务的限制。但问题是,在辩护律师维护当事人的合法利益过程中,执业行为应当受到何种限制?或者说,若当事人的合法权益受到办案机关侵害时,辩护律师如何能够最大限度地维护当事人的利益?边界在哪里?是否可以采取如“死磕式”的手段进行维权?笔者认为,在维护当事人合法权益时,辩护律师应秉承忠诚义务的以下三个基本原则:

    首先,辩护律师应当诉诸诉讼内的救济途径。我国《刑事诉讼法》及有关司法解释已经规定了一些权利救济手段,包括申诉、控告、复议、上诉等。如《刑事诉讼法》第49条规定:“辩护人、诉讼代理人认为公安机关、人民检察院、人民法院及其工作人员阻碍其依法行使诉讼权利的,有权向同级或者上一级人民检察院申诉或者控告。”第117条也规定当事人和辩护人、诉讼代理人、利害关系人对于司法机关及其工作人员的一系列违法性行为,有权向该机关申诉或者控告。由此可见,法律规范已经为当事人及其辩护人对违法行为的监督提供了权利救济途径。辩护律师在寻求救济时,首先应当通过诉讼内的法律手段,在穷尽法律手段仍无法对当事人合法权益的侵害行为进行救济时,才具有考虑采取诉讼外救济手段的正当性。

    其次,辩护律师诉讼外的维权行为应符合公序良俗原则。公序良俗原则是民法中的一项基本原则,全称为“公共秩序与善良风俗”,旨在规范民事主体的行为,确保其符合社会公共利益和道德风尚。本文认为,辩护律师在选择诉讼外的维权行为时也应当遵循公序良俗原则,结合维权手段与案件具体情形、司法公正可能遭受的损害等因素进行综合考量,不能采取有违社会公益与道德风尚的行为。实践中,一些辩护律师通过网络发声,披露相关办案机关的违法行为,如果是在穷尽诉讼内救济之后没有得到相应救济,为了维护委托人的合法利益采取了程度适宜的维权行为,只要未违背公序良俗的要求,未扭曲事实或诽谤他人,也未造成严重后果,应当认定该行为符合辩护律师职业伦理,不应动辄予以处罚。

    最后,辩护律师应当遵循有效辩护原则。一般而言,如果有明确的法律依据,辩护律师辩护意见被法庭接受的可能性就较大。如果没有法律依据,仅仅是辩护律师的胡搅蛮缠,或者是一些瑕疵性的违法行为,对案件定罪量刑并无根本性影响,这种情况下,辩护律师没有必要反复纠缠。辩护律师应当严格依照法律规定对当事人合法权益提出辩护意见,同时要用法庭比较认可的方式提出,这样才能最大限度地维护当事人合法利益。通过“死磕”等方式,看似是不顾后果地维护当事人的权益,但是是否被法庭认可并在结局上有利于当事人,存在很大的不确定性。因此,律师应当遵循有效辩护的理念,谨慎使用诉讼内与诉讼外的辩护手段,最大限度地维护当事人的合法利益,同时要维护司法公正与社会公正,做到必要的平衡。

    本文转自《法学杂志》2025年第3期 

  • 王中原:竞争性选举的智能转型:动力机制、技术过程与政治影响

    一、导言

    技术与政治的关系是政治学长期关注的重大议题。现代政治的组织模式、运行过程和关系形态无不受到前沿技术的深刻影响,成为推动政治系统变革和演化的重要动力。伴随生成式人工智能(generative AI)和交互式人工智能(conversational AI)等新兴智能技术的崛起,竞争性选举正步入新一轮技术进化周期。当前,无论在美国、英国、加拿大、新西兰等发达民主国家,还是波兰、阿根廷、菲律宾、印度尼西亚等新兴民主国家,新兴智能技术在选举领域的运用方兴未艾,西式民主正进入“智能选举3.0”时代。新阶段,竞争性选举广泛使用生成式AI、交互式AI以及各项衍生智能技术,推动选举内容策略和传播策略的迭代革新,进而对竞争性民主的过程和质量产生深远影响。

    智能技术对政治选举的影响是复线性的。一方面,新技术运用适当,可以提升选举管理效率、增强选民联结、促进选民参与、辅助弱势选民、激发民主活力。另一方面,新技术运用失当,则会带来诸多选举失范风险,包括负面竞选、信息失真、选民欺骗、选民压制、代表偏差、选举暴力等。当前,新一代智能技术的选举影响正朝哪个方向发展?智能科技通过哪些机制重构选举过程?如何把握好智能技术与选举民主的复杂关系?是亟须研究的重要政治学课题。

    2024年是世界选举高峰年,全球70余个国家或地区举行了竞选性选举,预计超30亿选民参加投票。值此之时,跨模态人工智能技术在继ChatGPT等生成式AI开启新纪元后,取得突破性进展。大选年与新技术交汇,将激起怎样的政治浪潮?带来哪些政治影响?国际社会对AI干预选举的广泛忧虑已然浮现。自2023年以来,各国媒体对AI技术在选举中被滥用的相关报道和讨论显著增长(见图1)。2023年8月一项跨国调查显示,法国、英国、德国分别有57%、70%、71%的受访者对新兴智能技术可能干预本国选举表示担忧。2024年初,达沃斯世界经济论坛在其发布的《全球风险报告》中,更是将AI干预选举列为当年最紧迫的全球政治风险。

    在此背景下,本文将以竞争性选举的智能化转型为切入口,结合西式选举政治的最新发展态势,分析智能科技嵌入政治场域的传导机制,考察生成式AI和交互式AI重塑西方选举的技术原理、作用路径和典型场景,剖析新兴智能科技对竞争性选举实现其政治功能的深层影响。竞争性选举是西式民主的根基,智能科技的突破为我们洞见和研判当前西方政治发展的新动向提供了绝佳视角,同时推动我们从前沿科技出发,重新审视经典的政治学概念和理论,开启新的技术政治学研究议程。

    图片

    二、智能技术嵌入选举场域的历史进程和传导动因

    竞选性选举的智能演化经历了三个关键阶段(见表1)。“智能选举1.0”时代,候选人和竞选团队主要借助大数据分析获取信息,辅助制定选举策略和部署选举活动,以期提升选举募捐和选票动员的效能。“智能选举2.0”时代,政党和候选人运用“算法瞄准”技术,实施精准的选民画像和个性化的政治广告推送,试图干预或引导投票行为。“智能选举3.0”时代,政党和候选人启用生成式AI和交互式AI,生产大规模、低成本、高质量、多模态的竞选素材,并灵活高效地与选民进行场景化和私域化的交流互动,进而塑造选民偏好的形成、表达和认同过程。概言之,智能科技对政治选举产生极强的弥散性影响。前沿科技驱动选举技术的快速迭代,改变西式选举的行动者联盟、组织逻辑和竞选策略,影响竞选性选举承担现代政治功能。

    图片

    竞争性选举诉诸新兴智能技术是西方“竞选白炽化”和“选举商业化”两大趋势的合力使然。商业营销手段被广泛植入选举实践,政治参与者急切需要利用前沿技术来提升竞争优势,使得前沿技术从科技和商业领域传导至政治领域的周期急剧缩短,由此产生智能技术在选举场域的溢出效应。

    在需求侧,选举竞争日趋白炽化,推动新技术的政治转化。其一,竞争性选举的专业化和组织化程度日益提高,竞选团队通常由竞选经理(campaign manager)统筹,并分设募资、政策传播、活动组织、选民联系、数据分析等功能小组。其中数据团队的地位与影响力近年来不断攀升,对借助前沿技术优化选战策略的需求与日俱增。其二,激烈的竞争压力促使政党和候选人诉诸新技术路径以谋求优势。当现有技术手段触及功能极限时,将最前沿的生成式AI和交互式AI纳入竞选武库就成为理性之选。一旦某方率先采用智能技术并获得竞选红利时,其他竞争者便会产生技术焦虑,进而引发智能选举的“囚徒困境”。在这种非合作、互不信任的博弈环境下,各方均预期对手会先行使用新科技,因而自身选择先发制人成为最优策略。因此,博弈的最终结果是竞选各方纷纷拥抱新技术,加速智能技术在选举场域的扩散。

    在供给侧,竞选活动高度商业化,加速智能技术向选举领域渗透。其一,政治营销将商业领域的技术手段和竞争策略引入选举。选举竞争与市场竞争高度相似,商战中的推销产品、引导消费和维护客户黏性等策略与选战中宣传候选人、动员选票和维系选民关系等机制完全通用。因此,商业场景涌现的新兴技术和营销手段能够快速切换至选举场域,确保了智能选举的技术供给。其二,选举市场本身就构成一类典型的商业市场,诸多从事政治咨询和智能服务的科技公司专注政治市场这条“垂直赛道”。它们融合选票利益最大化与商业利益最大化,开发专门面向政治场景的技术应用和分析工具,并向政治客户兜售智能产品和技术服务。当新技术方案在种子用户中试验成功时,科技公司将吸引更多选举客户,从而加速选举智能化进程。

    综上所述,在需求拉动与供给驱动的双重作用下,以生成式AI和交互式AI技术为代表的新一代人工智能技术将迅速且全面地扩散到西方选举场域,引发新一轮智能选举浪潮。诚然,智能技术嵌入选举过程并非完全负面,且在不同选举制度和监管体系下呈现不同的应用样态。然而,在党派政治极化加剧和技术规制缺位的大背景下,加之新一代人工智能诸多技术特性的影响,使得智能选举3.0时代的竞选活动面临更高的失范风险,对选举公正和民主质量产生冲击,并制约竞选性选举诸多政治功能的发挥。

    三、智能技术驱动选举变革的技术机理和影响机制

    新一代智能技术如何影响竞争性选举?作为人工智能领域的前沿技术,生成式AI和交互式AI在选举领域具有广阔的应用前景,其通过革新选举的内容策略和传播策略带来传统竞选模式的深刻变革。两者甚至相互赋能、彼此强化,并与其他智能技术(如虚拟现实、深度伪造)叠加运用,进一步造就新的选举生态。正如OpenAI首席执行官山姆·阿尔特曼(Sam

    Altman)在2023年5月的美国国会听证会上坦言,他深忧大语言模型等前沿智能技术将被滥用于操纵、说服和定制化影响选民。当前,智能选举的失范现象已不仅见诸美国、加拿大、荷兰、新西兰等发达民主国家,亦蔓延至波兰、菲律宾、阿根廷、肯尼亚、尼日利亚等转型民主国家。

    (一)生成式AI驱动选举内容策略转型

    生成式人工智能是一类复杂的智能技术系统,其基于已有数据的模式和结构进行学习与训练,搭建和微调模型,从而能够根据输入的提示或指令(prompts)智能生成新的文本、图像、声音、视频、代码等内容。主流的生成式AI系统包括基于Transformer架构的ChatGPT、GPT-4和Claude,专注于图像生成的Stable Diffusion、Midjourney和DALL-E,以及擅长跨模态视频生成的Sora等。生成式AI本质上是一类概率模型,其原理在于根据训练数据的参数和模式去预测和生成最大概率的输出内容。这种概率特性赋予生成内容以多样性,但同时也内嵌了输入端的前置性偏见(built-inbias)和输出端的准确性偏差。生成式AI将深刻改变选举内容策略,引领以智能生成内容为主导的新型竞选模式。它为选举宣传和选民动员提供了丰富的新式素材,其输出内容具有逼真性、创造性、个性化及多样化等特征,生成过程具有高速度、大规模、低成本、多模态和跨语言等优势,有效克服了“智能选举2.0”时代的素材贫乏、形式单调、内容同质、效率不佳等诸多问题。

    生成式AI为智能选举3.0时代的政治沟通和行为干预提供了全新的工具,驱动选举内容策略变迁。其一,瞄准式内容生成。生成式AI可以根据目标对象和任务要求快速生成与选民特质和偏好高度匹配的个性化内容,并结合WebGPT技术主动搜索和回应选民需求,实现瞄准式动员。例如,模仿某位候选人的风格,创作瞄准不同选民群体的竞选宣传素材,如针对20岁拉丁裔女大学生选民的拉票广告或者针对70岁农场主选民的小额捐款邮件。2023年英国议会补选期间,候选人利用生成式AI撰写多样化的竞选纲领,以此吸引选民支持。其二,鼓动性内容生成。生成式AI能够依据选民的情感分析和人格测绘生成更具情绪感染力的竞选素材,借助“情绪引爆”更有效地激化选民的希冀和恐惧、喜好和厌恶、欢欣和愤怒,并转化为特定的投票意向。例如,在2023年新西兰选举中,新西兰国家党通过在社交媒体上传播由AI生成的逼真图像,展示抢劫犯在珠宝店肆虐的场景,以引发选民对犯罪问题和移民问题的焦虑。其三,欺骗性内容生成。生成式AI能够定向生成高度逼真的虚假内容,甚至融合深度伪造技术创造以假乱真的信息,这些虚假内容通过网络迷因和计算宣传等方式快速传播,旨在诱导、欺骗和迷惑选民。举例来说,2023年5月,一段由AI生成的虚假视频在网络流传,声称希拉里·克林顿支持佛罗里达州长德桑蒂斯竞选总统。其四,攻击性内容生成。生成式AI能够生成高度形象化的政治谬讯、恶讯和仇恨言论,用以诋毁竞争对手并发起负面竞选攻势。例如,2023年斯洛伐克选举前两天,一段由AI生成的仿真录音在社交媒体广泛传播,谎称是斯洛伐克进步党领导人在讨论如何操纵选举和贿赂选票。诚然,智能生成技术本身并不直接导致选举异化。然而,当前选举竞争的白炽化和选举活动的商业化正驱使着生成式AI应用“多快好省”地创作更具欺骗性、攻击性和说服力的选举内容,从而改变选民投票决策的信息环境。

    就技术原理而言,搭建选举场景的生成式AI可分为五个关键技术环节(如图2)。第一,数据收集和预处理。即获取选举相关的各类数据集,包括选民资料、竞选材料、社交媒体信息、新闻报道、政策文本等语料,并对训练数据进行预处理,如数据清洗、特征提取、词向量化等,以便将数据转换为模型可处理的格式。第二,模型设计和训练。根据需求分析和目标设定选择生成式AI的模型框架,例如基于生成对抗网络(GAN)的模型、基于Transformer架构的模型、扩散模型。然后利用预处理后的数据对选举AI模型进行预训练,识别数据的内在结构和关联规律,并调整内部参数以优化模型。以文本生成为例,模型通过识别输入序列中的上下文信息来预测下一个词句或生成连贯的文本。第三,模型微调(fine-tuning)。完成初始训练后,可使用额外数据或特定提示信息(targeted prompts)对模型进行微调,以增进其对选举场景和任务目标的理解,引导模型生成更符合竞选期望的多样化内容。第四,生成过程。针对特定的受众群体和传播平台,向模型输入提示或指令,并通过不断调整和优化这些指令,生成所需的选举内容。例如,生成大量个性化的政策承诺、选举海报、宣传口号、社交媒体推文、电子邮件、宣传视频、虚拟头像等。此外,还可运用多模态生成技术,处理多个输入模态或模态组合(集合图像、文本、音频和视频),生成极具表现力和感染力的竞选内容。第五,系统迭代。利用使用者的交互和反馈数据以及人工的标注和评估信息,借助奖励模型(reward model)引导选举AI系统学习更好的策略,并在实际应用中不断进行优化迭代。这包括通过扩充训练数据集提高模型的泛化能力,利用迁移学习加速模型在新任务上的学习过程,开展提示工程和超参数配置调优提升模型性能。

    图片

    上述AI系统的搭建过程存在较大的操纵空间,潜藏着选举失范的多重风险。其一,在数据收集和预处理环节,竞选者可以选择性地收集、标注和抽取符合某类意识形态或政策倾向的有偏数据,甚至创建合成数据(synthetic data)或进行语料污染,以改变训练数据的平衡性。其二,在模型训练环节,竞选者可以通过模型框架设计、参数调整、任务定义等手段定向训练有偏数据(targeted training),使其更贴合特定选举需求。其三,在模型微调环节,竞选者可以输入针对选举细分场景的偏见数据,或引导模型学习特定类型的信息,使其更好地执行下游任务。其四,在生成环节,竞选者可以利用提示工程、检索增强生成等技术手段来训导模型,使其更好地识别和响应用户意图,并按照预期的方向生成内容。其五,在模型迭代阶段,竞选者可以运用偏向性的人工评价、户用反馈以及立场宣誓来奖励模型,以增强模型在特定选举任务上的生成效果。

    主流的生成式AI系统出于伦理和安全考量,对政治类问题和伤害性指令(harmful prompt)施加了技术限制,并制定了严格的使用规范。然而,这绝非意味着智能技术实现了选举隔离。事实上,生成式AI在选举中的应用变得更为隐秘且缺乏监督。首先,研发突破使得生成式AI的技术门槛逐渐降低,更多主体能够掌握此类技术或通过“越狱攻击”突破技术限制。部分开源代码和商业API服务进一步提高了技术可及性。例如,TUSK公司调用OpenAI的API服务开发了一款名为GIPPR的保守派AI系统,该系统在移民、堕胎、气候变化和国家安全等议题上明确支持共和党。其次,政党、咨询公司、竞选团队完全有能力研发和部署内部专属(in-house)的生成式AI系统,以更好地服务其意识形态和选举需求,并且能够规避外部监管。综上所述,在选举竞争白炽化和选举活动商业化的背景下,政党和候选人有动机且有能力利用生成式AI实施新的内容策略,以期影响选举结果。

    (二)交互式AI驱动选举传播策略变革

    智能生成的内容如何触达和影响选民?近年来,交互式AI的兴起为选举传播和选民说服提供了新的策略选择。交互式AI整合了自然语言处理(NLP)、深度学习、对话管理和人机交互等前沿技术,能够识别用户意图、处理复杂场景、进行上下文推理,从而实现与人类的自然对话和智能交互。交互式AI包括五个核心技术环节:(1)语音或文本输入。用户通过语音或者文字开启与AI系统的交互。(2)意图和情绪解析。AI系统通过自然语言处理和深度学习理解用户输入,识别意图和语境。(3)对话管理。使用状态机、规则引擎、强化学习等方法设计和控制交互流程,决定AI系统如何响应用户输入、合成回应、请求更多信息或引导用户明确需求。(4)输出呈现。生成个性化的智能响应,以语音、图像或多模态形式呈现给用户,实现智能、灵活和高效的多轮会话。(5)迭代优化。通过用户反馈收集、对话状态跟踪、交互数据分析,优化对话模型和交互流程,改进系统性能。

    交互式AI的技术革新正在引领选举传播策略的变迁,塑造智能时代全新的竞选交互模式。相对于传统传播模式,交互式AI对选举沟通的重塑体现在以下五个方面。其一,选民意图识别和多轮会话。传统聊天机器人依赖线性的规则引擎和预定义的模式匹配,而交互式AI则采用更复杂的模型算法和交互流程,能够通过语境分析和上下文推理来理解、记忆并预测选民意图。同时,其支持跨语言跨模态的多轮对话流程,可实现更加紧密持续的选民互动。其二,情感识别和精准响应。交互式AI能够感知选民的情绪状态和心理倾向,在交互中提供投票相关的情感支持和行为引导,并根据反馈实时调整对话策略,实现富有感染力和说服力的选民动员。其三,多模态交互。交互式AI支持多种媒介形式,融合语音、文字、图像、视频等多模态交互功能,能够调动选民的多重感官体验,完成更加灵活高效的信息传递和选民说服。其四,虚拟人格建构。交互式AI可以创建数字候选人或虚拟意见领袖,根据特定人物形象、话语风格、政策立场和选举策略打造虚拟的候选人分身,与选民在虚拟空间保持全天候的政治互动和情感联系,或参与舆论引导和虚假信息应对。其五,精细化动员。交互式AI能够更加精准地响应选民的需求和情绪,择机提供更具说服力的捐款和投票建议,并基于自适应技术不断优化其沟通性能和动员效果。概言之,交互式AI的发展和运用(结合生成式AI的内容支持)克服了智能选举20时代的政治沟通短板,包括人格特质弱、感知能力差、沟通格式化、内容同质化等问题,加速重构选举传播策略。

    交互式AI已经广泛应用于智能选举的诸多场景,对竞争性选举的交互过程带来深远影响。首先,交互式AI在竞选管理中发挥着重要作用,诸如智能募款系统、AI竞选经理、竞选会话机器人、数字志愿者、民调AI等应用。这些交互式AI扮演多重竞选功能,不仅支持竞选团队筹集资金和规划策略,而且有助于候选人建立选民联系,理解选民的诉求和关切,追踪、分析和预测选举舆情,并提供自动化的互动响应。此外,它们还能够精准分析选民特征和行为模式,以便有效说服选民采取支持行动。举例来说,Momentum Campaigns公司开发的超个性化智能筹款系统,在2022年美国中期选举中为民主党超过1000场次的竞选活动提供了AI服务。

    其次,交互式AI赋能数字候选人,提升竞选效率。数字候选人是利用自然语言处理、机器学习和多模态合成等人工智能技术创建的虚拟政治候选人,通常具备逼真的外貌、表情和人格特征,以代理或真实身份参与选举活动。交互式AI与数字候选人完成身份绑定,能够自动监测虚假信息、提供政策解释、参与话题讨论,以及回应选民的问题和需求,增强情感联系。AI赋能的政治智能体不仅能够在应用程序、社交媒体和网站平台上更加敏捷地与选民展开互动,还可以通过虚拟活动、网络直播和互动游戏等创新形式接触和影响目标受众。例如,在2022年丹麦选举中,数字候选人Leader Lars正式参选国会议员。在2020年美国总统大选中,拜登团队借助Amplify.ai公司开发的交互式AI与选民进行密切互动,并精准动员支持者。

    最后,交互式AI与计算宣传集成,显著改变选民决策的信息环境。交互式AI与社交媒体平台、社交机器人和自动化账号等深度互嵌,将激发选举领域的计算宣传和虚假信息传播。竞选团队能够借助交互式AI的人格化交互能力,搭配生成式AI提供的多模态内容,以提升计算传播的说服性、渗透性和隐匿性。恶意行动者甚至会利用交互式AI系统直接操纵选举信息。具体而言,交互式AI接入社交媒体平台,通过自动化评论、回复和私信等方式放大社交媒体上的互动,并依托情感识别和互动数据分析开展瞄准式宣传,引导选民的态度和行为。更有甚者,交互式AI赋能社交机器人和虚拟意见领袖,推动虚假信息的自动化传播和网络舆论的精细操控,以及刻画虚假共识。例如,2022年菲律宾大选和2024年印度大选中,科技公司启用大量自动化账号和社交机器人,协助特定候选人传播海量智能生成的竞选资讯,从而影响选民决策。

    概言之,交互式AI正在深刻改变候选人与选民的互动方式,重塑选举信息的传播策略。诚然,智能工具应用得当,将有望提升选民教育,优化选民沟通,激活选民参与,增强选民联系。然而,交互式AI也引发了虚假信息、认知操控和行为干预等问题,对选举公平性构成挑战。尤其在政治极化和监管缺位的大背景下,政党和候选人受到选举竞争白炽化和选举活动商业化的驱使,倾向于利用交互式AI实施虚假信息传播、选民诱导、选民压制,甚至动员选举暴力。

    四、智能选举的范式演进和政治影响

    竞争性选举是西式民主政治的核心制度,其旨在通过制度化的方式聚合选民偏好,实现政治权力有序更替、政治合法化、政治代表、政治参与、权力约束等关键政治功能。在智能选举3.0时代,新一代人工智能正在重组选举行动者联盟,重塑竞选的组织模式和行动策略。生成式AI和交互式AI等技术使得选举内容的生产和传播呈现出低成本高质量、快速度大规模、跨平台多场景、自动化个性化、交互性渗透性、持续性隐匿性、多语言多模态等特征,从而深刻改变选民偏好的形成、表达和认同过程,影响偏好聚合结果即选举结果的准确性、代表性和合法性,对竞争性选举的政治功能产生潜在制约(见图3)。

    图片

    (一)新的选举行动者联盟

    候选人、政党、科技公司、咨询公司、关键支持者以及国外力量围绕智能工具形成新的选举行动者联盟,该联盟的出现将改变西方选举的组织模式、力量格局和竞争态势,进而影响竞争性选举的政治参与功能和政治代表功能。其一,“选举个人化”趋势加剧,生成式AI和交互式AI将候选人置于选举中心,为候选人服务的智能技术团队成为统筹选举的“中台”,针对候选人个人的宣传、动员、攻击被智能技术放大。例如,2023年波兰大选期间,公民纲领党在竞选广告中使用AI工具编制和传播虚假录音,攻击在任总理。其二,传统大党优势日益凸显。政党在智能选举3.0时代成为技术协调中枢,传统大党能够开发专属本党的生成式AI系统和交互式AI系统,凭借其数据基础、组织能力和募资实力在技术密集型选举中占据明显优势,更易获取“智能选举红利”。例如,为迎战2024年印度大选,印度人民党决定聘用2万余名IT专业人士,并在全国组建了225个数据中心,以运用新兴智能技术生成和传播竞选短视频。

    其三,新的技术利益集团涌现。AI开发公司、政治咨询公司、数据分析公司、算法服务商、跨国平台公司等新兴力量将深度介入选举过程,将技术能力转化为政治影响力。在智能选举3.0时代,政治市场成为智能科技公司争夺的细分赛道,商业市场竞争将催化政治市场竞争。技术公司在助推智能技术转化为选举效能的同时,本身也成为新的政治利益集团。其四,积极行动者影响升级。借助生成式AI和交互式AI,狂热选民更有机会和能力影响选举过程。他们能够以更加高效智能的方式加入虚假信息的共同生产和分布式传播,形成极具攻击力的外围行动力量。概言之,新的智能选举联盟掌握更强的技术势能,重塑政治参与机会和政治代表格局。

    (二)新的策略选项

    新兴智能技术为参与选举竞争的各方提供了全新的策略选项,加剧选举过程中的信息操控和策略角力,影响竞争性选举的民意聚合功能和诉求表达功能。其一,政党或候选人在利用智能技术提升选举组织效率和选民动员效果的同时,亦可联合生成式AI驱动的内容策略与交互式AI驱动的传播策略(见图2),展开负面攻势和认知作战,干预民意的聚合过程。尤其当选举博弈中的一方率先运用智能工具谋求竞争优势并由此获益时,各方将加入智能选举的军备竞赛,推动负面竞选的循环升级和技术策略的跨国效仿。

    其二,选票利益最大化策略与商业利益最大化策略彼此共振。政党或候选人为抢占技术红利,争相通过内部研发或外部采购在竞选中嵌入智能工具,掀起选举智能技术的装备竞赛。科技公司或咨询公司为争夺政治市场,竞相开发更加精密的智能选举工具,提供全方位的智能竞选方案和计算宣传服务(propaganda-as-a-service)。例如,2024年巴西大选在即,一些科技公司推出智能选举产品,通过设置多样化的功能模块和定价区间,满足竞选客户的差异化需求。

    (三)新的影响路径

    竞争性民主旨在通过选举过程测量选民偏好,并将公认的测量结果转化为具有合法性的执政契约。然而,新兴智能技术正在重塑选民偏好的形成、表达和认同过程,从而制约竞争性选举的合法性功能和权力继替功能。

    其一,在偏好形成阶段,生成式AI可以生产具有强烈倾向性和煽动性的信息乃至各类谬讯、误讯和恶讯,并借助交互式AI的计算传播快速且精准地触达目标群体。这势必改变选民面临的信息环境,影响其情绪、态度和认知,进而干扰选民偏好的形成过程。例如,2023年尼日利亚大选期间,大量充满仇恨、煽动性、虚假信息的内容通过AI技术生成,并借助社交机器人在社交媒体上广泛传播。一些候选人竟不惜提供金钱、政府合同或政治职位等作为交换条件,试图获取这些智能技术支持,以期影响选民的投票偏好。因此,上述过程正将选举的功能从偏好测量转变为偏好塑造,从民意代表转变为民意操控,损害选举作为权力继替合法渠道的基本功能。

    其二,在偏好表达阶段,政党或候选人能够借助生成式AI和交互式AI等新兴技术,更加精准地针对不同群体如中间选民、摇摆选区选民等实施差异化说服,动员自身支持者通过党派信息生产、网络声援、捐款、投票等方式更积极地表达支持偏好。与此同时,实施更具瞄准式的选民压制,运用智能技术生产和传播虚假信息、仇恨言论乃至污名化内容,诱导对方支持者放弃捐款或投票。例如,在2024年美国总统初选期间,有极端右翼团体利用人工智能模拟生成了总统拜登的声音,并冒充其发起自动电话,敦促选民不要参加该次选举。总之,上述做法无疑会影响不同群体的投票率,扭曲整体选民的偏好表达过程,进而损害选举结果的代表性和合法性。

    其三,在偏好认同阶段,选举结果是选民偏好的集体呈现,民主政体的有序运转依赖于参选各方及其支持者能够认同并接受选举结果。然而,生成式AI和交互式AI恐被滥用于编织和传播大量涉及选举舞弊或选举操弄的虚假信息甚至阴谋论,例如买卖选票的录音、填塞票箱的画面等,借此否定选举程序的公正性和选举结果的真实性。这些高度逼真、貌似权威的AI生成内容,能够借助交互式AI的计算宣传迅速形成舆论声势,刺激支持者拒绝认同选举结果并采取抗议活动。例如,2022年肯尼亚大选开票期间,社交媒体出现了各种由AI生成和传播的虚假选举结果,并宣称选举委员会为某总统候选人多计了9200张选票,引发了选民对投票结果的高度质疑。因此,智能工具滥用将损害选举结果的公信力,甚至可能升级为选举暴力,危及民主选举的合法根基和政治权力的和平交替。

    五、结语

    选举智能化正在成为西式民主制度的新现实。以生成式AI和交互式AI为代表的新一代人工智能技术正迅速渗透竞争性选举过程,开启“智能选举30”时代。新兴智能技术在赋能选举组织效率的同时,正对选举民主带来诸多负面冲击。尤其在西方政治极化的大背景下,选举竞争白炽化和选举活动商业化趋势日益加剧,新的“智能选举行动者联盟”试图利用生成式AI和交互式AI变革竞选的内容策略和传播策略,实施对选民偏好的精准塑造,对偏好表达的策略筛选,对偏好认同的系统干预。在缺乏有效规制和治理的情形下,新兴智能技术的滥用将深刻影响发达民主国家的选举公正、选举诚信与选举生态,危及转型民主国家的民主巩固和政治稳定,势必对竞争性选举的政权有序更替、政治合法化、政治代表、政治参与、权力约束等政治功能产生严重冲击。竞争性选举不仅是西式民主制度的根基,而且是主流政治理论的源泉,例如民意聚合理论、政治代表理论、合法性理论、问责理论、回应性理论、政权继替理论等无不建基于“自由且公正”的选举。鉴于新一代人工智能的选举应用及其潜在影响,我们需要从技术政治学的角度重新审视西方经典理论。

    全球各界广泛认识到新兴智能技术对民主政治发展构成的严峻挑战,并尝试提出相应的治理方案。然而,各国由于政治制度、法律体系和监管框架的显著差异,对AI政治影响的治理理念和应对策略有所不同,呈现出不同程度的治理能力和民主韧性。当前,无论是各国国内层面还是国际层面,就如何开展政治领域的人工智能治理尚存在巨大分歧。国际组织、民族国家、政治党派、科技公司、社会团体、学术机构和社会大众对智能技术治理的意识形态和诉求偏好并非同步,加之政治立场和商业利益的驱使,各方在规制体系、治理策略和监管尺度等众多领域仍处于激烈博弈当中,折射出人工智能技术与民主政治发展之间的复杂张力。

    智能选举的兴起和发展为中国政治学观察竞争性民主的未来走向、研判海外选举的政治风险、重构政治学理论和话语体系提供了绝佳切入点,未来可以开启更多富有创新的研究议程。在实证研究方面,可重点考察以下问题:新兴智能技术在不同政治制度下产生的异质化影响;智能技术对特定选举结果的因果影响及其定量测度;选民对智能选举的态度及其对政治参与的影响;未来AI智能体对选举生态和政治秩序的重塑;智能选举引发政治风险和区域动荡的预测;各国及政党在应对智能选举冲击的治理策略及其决定因素等。在理论研究方面,学界亟须深入探索如下问题:选举智能化对西式民主理论的解构与重构;智能选举对政治极化的影响及其理论蕴涵;智能技术冲击下政民关系、政商关系乃至民主形态的新型理论构建。深入把握人工智能技术与民主政治发展之间的复杂动态,具有重要的实践和理论意义。

    本文转自《政治学研究》2025年第1期

  • 汪继华:赵作海案件始末

    楔子:赵作海案件经过全社会轰轰烈烈的关注,随着六名刑讯逼供的公安干警被起诉到人民法院,经办此案的各级办案人员受到不同程度的行政处分,赵作海得到超出现有法律规定的物质补偿,即将曲终人散,告一段落。笔者作为当时的承办主诉检察官,有幸经历这一现代版拍案惊奇。一个普通的刑事案件,回想起来却又那样的惊心动魄、心有余悸。作为亲历者,我想有责任将一个真实的赵作海案件公诸于世,让真相暴露于阳光之下,让民众了解到真实的案情,也为立法者、司法者、研究人员提供一个真实的案件资料,以便于从该案件的各个方面吸取教训,尽量避免再发生错案。

    一、一石激起千层浪

    公元2010年5月2日中午,好不容易等到的一个假期。像许多公务员一样,我也停下匆匆的脚步,展开紧皱的眉头,与妻儿一起走在繁华的街道上,悠闲地享受家人相聚的天伦之乐。

    叮铃铃……,手机上显示一个陌生的河南省柘城县固定电话号码。

    “不接!”看到妻子神色不悦,我坚持不接这个电话。

    铃声再次固执地响起,还是那个号码。“可能又是法律咨询电话,不知道是假期吗?坚决不接。”我嘀咕道。

    作为律师,经常接到法律咨询电话。我自认为比较有涵养,一般都耐心地解答这样的匿名咨询。也有特殊情况,曾经有一个咨询者凌晨4点拨我手机。我没好气质问为什么现在打电话,他竟然回答:现在打电话费用低!令人哭笑不得。

    不一会儿,信息来了。我一看,是柘城县检察院一位领导,“有急事,速回电话!”

    我心里一愣,立即回拨。

    “怎么不接电话呀?”

    “对不起,街上声音嘈杂,没听见。有事吗?”

    “出事了,赵振裳回来了!”

    “赵振裳是谁?”我心里想,赵振裳回来跟我有什么关系!

    “你忘了,赵作海杀人分尸案件,你办的。赵振裳是这个案件的被害人,现在回来了。”对方急促地说道。

    “赵作海故意杀人案……,好像有这个案件,时间太长,记不清了……,怎么回事?”

    “赵作海故意杀人,那个案件的被害人赵振裳,前天回来了。”

    “他不是被杀死了吗,怎么又回来了……消息确切吗?”

    “是真的,公安局已经去村里核实了,确实是赵振裳。”

    “那不出大事了!”

    “那麻烦了,你知道就行了,别给外人说,现在消息还在封闭。”

    手机挂断了。我头一直懵,大脑高速运转,搜索赵作海案件的每一个信息。

    作为一个工作十三年的主诉检察官,经办过近百起重特大案件,临场监督过数十名罪犯被执行死刑,辞职后又从事了近十年刑事辩护的律师,我当然知道被害人回来的严重后果是什么--这意味着看守所的大门已经向所有办理赵作海案件的司法人员敞开了。

    爱人感到我情绪不对,急问发生什么事?我说有一个案件,可能有点问题,你们玩吧,对不起,我要回办公室。

    也来不及解释,我飞速回到办公室,打开电脑,寻找一些与本案有关的记录。一些断断续续有关赵作海的信息,像碎片漂浮在一条由宽变窄河流上,逐渐在我眼前浮现、集中……。

    二、争风吃醋惹祸根

    1998年,某日,商丘市人民检察院公诉处内勤交给我几本卷宗--赵作海故意杀人案件。

    地市级检察院公诉处受理的刑事案件,主要是俗称可能判处“三大刑”(即死刑、死刑缓期二年执行、无期徒刑)的案件。我们经常办理大案、要案,对于故意杀人案件,并不感到惊奇。

    公安机关报送的案情十分简单:1997年10月31日22时许,赵作海在同村村民杜小花(化名)家,被同村村民赵振裳用刀砍中头部。赵作海跑回家中,赵振裳追赶至赵作海家门口,赵作海反身与赵振裳厮打。在厮打过程中,赵作海将刀夺下,刺中赵振裳胸部,致其死亡。后赵作海为掩盖罪行,将赵振裳尸体头部、四肢肢解,将其身体的胸部部分投入本村一机井内,其他部分烧掉。

    通过阅卷,认定本案的证据有:

    1、被告人赵作海九次有罪供述。赵作海九次供述综合说明其作案过程是:

    “我与本村村民杜小花存在不正当关系。1997年10月31日晚上,我又到她家中,发生关系后已经熄灯,并没有入睡。大约到夜里十一、二点左右,我听见堂门被人推开了。那人走到床前,划着火柴。我看见是赵振裳,手里拿着一把刀,向我连砍几刀。我用手挡着,我的头上、胳膊上都被刀砍伤了。赵振裳砍我后,就跑出堂屋门。我赶紧起身穿上衣服,出来后赵振裳就在后边追我。我跑到我家门口,赵振裳追上来。我看跑不掉了,就回身与其厮打。在厮打的过程中,我用我随身带的刀子刺中赵振裳的腹部或者是胸部,将赵振裳杀死。我当时浑身是血,回到家后,我爱人看到我身上都是血,问我咋回事?我说:“你别问了,对不住你,丢人!”我爱人也没有再问,想让我去医院,我说没事。我身上都是血,没有睡床上。院内有一个烟叶炕(农村烘烤烟叶的低层建筑),我就拿着被子睡在烟叶炕里。当夜,我把赵振裳拉到院子里,想把他的尸体解开,扔出去。我就用刀子把赵振裳头部、胳膊、大腿割开,我找到我爱人为了装粮食用盛化肥的袋子缝制一个大袋子,把赵振裳的身子装进去,用我家的架子车拉到村子外边扔到机井里。我怕人将来发现,又在村外找到打场用的石磙,推到架子车上,投到机井里。回来后又把赵振裳的四肢和头烧掉。因为院内有血,我又用点土把它盖好。第二天,我让我爱人到村诊所拿点药。我把赵振裳的衣服放到了烟叶炕里,后来烧掉了。

    2、杜小花证言:承认与赵作海、赵振裳均存在不正当关系,同时证明那天晚上赵作海在我家中,我们发生关系后,大约到晚上十一、二点,还没有休息,已经熄灯了。这时我听见堂屋门被跺开,有人进来。那个人走到床前划着火柴,我看到是赵振裳,他拿着刀,就往赵作海头上砍,砍后就跑了。赵作海穿上衣服出去撵。以后发生的事,我就不知道了。后来的几天,我没有见过赵作海,我也没有问过。但从那天起,我再也没有见过赵振裳。我也没有问过赵作海赵振裳为什么不见了。

    3、赵作海妻子赵晓起证明:1997年冬天的一天晚上十一、二点,我都睡了。赵作海回家后,我见到他满身是血,就问是怎么回事,他不说原因,只是说你别问了,丢人。当天晚上他就自己睡烟叶炕里边了。第二天我到村诊所给他拿的药,他自己包扎的。后来,我发现我缝装粮食用的化肥袋子不见了。同时证明那几天,赵振裳不知道为什么不见了。

    4、赵作海的哥哥及其他村民证明赵作海在当时那个时间里头上有伤。

    5、赵振裳的侄子赵作印证明赵振裳失踪的时间,发现赵振裳失踪时家里比较乱,好像被盗了。同时证明怀疑是赵作海杀的,并且曾经向柘城县公安局老王集派出所报案。柘城县公安局因为没有发现尸体,也没有立案。

    6、诊所医生证明赵作海的妻子确实在那个时间给赵作海拿过药。

    7、其他村民证明村里传言赵作海、赵振裳与杜小花均存在不正当关系。

    8、现场勘查笔录、照片等其他证据。

    9、法医关于尸体高度腐败,无法作出有价值鉴定的说明。

    10、赵晓起辨认笔录,通过辨认包尸体的化肥袋子,认定这个袋子就是俺家的,而且还是我缝的,其中的针脚是我用黑线缝的。

    通过阅卷可以认定,下列证据证明赵作海存在重大杀人嫌疑:

    1、赵作海曾经做过九次有罪供述,而且第一次有罪供述是在1998年5月9日晚上,他被柘城县公安局控制一夜后承认杀人的事实。一般而言,在这么短的时间内,作出有罪供述,客观性较大。

    2、赵作海确实与杜小花存在不正当关系,不排除因争风吃醋而产生杀人动机。

    3、赵振裳确实是在二人厮打当天晚上失踪,这是事实不会巧合。如果尸体不是赵振裳,那么赵振裳哪里去了?这个尸体是谁?

    4、赵作海在赵振裳失踪时头部和身上有受伤的事实。这一事实不但有赵作海供述,还有其妻子、孩子、村民等证据证明,事实清楚,证据充分。

    5、赵晓起通过辨认包尸体的化肥袋子,认定这个袋子就是她家的,而且还是本人缝的,该细节印证了赵作海杀人后毁灭证据的事实。

    根据现有证据,基本可以确认赵作海是故意杀人重大嫌疑犯。

    三、如此纠结为哪般?

    赵振裳“复活”后,真相大白于天下。无能、白痴、笨蛋、蠢猪等各种肮脏的字眼都倾泻在办案人员头上。不理解这么简单的案件,怎么能够办错!恨不能把当时的办案人员都拉出去枪毙,方解心头之恨。客观地说,这确实有点事后诸葛之嫌。各大媒体采访我,问我当时是不是确信赵作海是冤枉的,是不是因为自己正确意见不被采纳而冲冠一怒,愤然辞职。我知道,这是很好地炒作自己的机会,尤其是作为律师职业,更需要这样的炒作。这样做会让公众或许对我多一些赞誉,但会招致法律人的耻笑,因为这简直是在毫不脸红地吹牛。说实话,我当时也认为,不能排除赵作海有重大的犯罪嫌疑。重大嫌疑,不等于案件事实清楚、证据确实充分。根据当时的证据,案件确实在关键情节和细节上的疑点,这是对一个人证据意识、法律意识、办案经验、分析判断、决断能力等综合素质的考量。

    根据当时的证据,该案存在如下问题:

    1、被害人是谁。认定赵作海故意杀人,必须达到事实清楚、证据确实充分,才能定案。换句话说,是认定赵作海故意杀害赵振裳事实清楚、证据确实充分,必须查明是赵振裳被杀了。怎么认定赵振裳死了?怎么认定这具不完全的尸体就是赵振裳,这个问题不解决,一切都无从谈起。《刑事诉讼法》规定,刑事案件立案的条件是两个:一、有犯罪事实存在。二、需要追究刑事责任。本案符合立案条件,确实有犯罪事实存在,犯罪事实就是有人被杀了。但尚达不到起诉的标准,不能认定就是赵振裳。尽管赵振裳的失踪与此案有着某种联系,但达不到同一认定的标准。

    2、赵作海与赵振裳再次发生打架的可能性有多大,是否客观?

    根据当时赵作海供述和杜小花证言,赵振裳朝赵作海头上砍几刀后就跑了。赵作海穿上衣服后出来,追上赵振裳,二人发生厮打。当时天气已冷,赵作海穿上衣服也需要一定的时间,此时赵振裳已经跑了,赵作海怎么能追上?只有一点,就是赵振裳在外边等待赵作海。如果赵振裳需要继续对赵作海实施侵害的话,为什么还要从杜小花屋里跑出来呢?直接趁赵作海没有穿衣服且没有防备情况下继续砍击不更方便吗?赵作海人高马大,赵振裳瘦弱矮小,如果等到赵作海出来再与其搏斗,赵作海情急之下,必然拼死一搏,赵振裳岂是对手?

    3、赵作海到底用哪把刀杀害的赵振裳?

    赵作海供述中,有时供述是夺过赵振裳的刀子将赵振裳杀死,有时供述用自己随身携带的刀子将赵振裳杀死。赵作海去与她人约会,还需要携带凶器吗?据赵作海供述,携带凶器是为了防身。杜小花的丈夫外出打工,赵作海携带刀具是为了防谁呢?两把刀又在哪里呢?

    4、根据现有尸体,骨折部位有砍的痕迹,根据赵作海交代的凶器,一般难以形成如此形状。

    5、赵振裳的头部和四肢去向不明。

    一般而言,故意杀人案件,既然被告人供述了杀人事实,是会把有关物证供述清楚的。赵作海已经供述了将赵振裳的上身投入了井中,已经没有必要再隐瞒头颅、四肢、作案凶器的去向,却为什么不供述其他部位隐藏地点呢?赵作海开始供述四肢投入河中,后来又供述是埋在地里,最后又供述埋在地里不放心,怕被人发现,将尸体又挖出来烧掉。好像是故意要把尸体说到无法查找的程度才肯罢休,令人生疑。

    6、赵作海在受伤的情况下,将那么重的石磙推到架子车上,将三个石磙投入井中,似乎不太可能。每个石磙大小重量不一,最大的重约三四百斤,赵作海是否能够搬动。

    7、证人证明,赵振裳在失踪时,其家中十分混乱,门也没有关,似乎有被盗的迹象。一般情况下,赵振裳出来要教训赵作海,不可能也没有必要将家中搞得十分混乱。赵振裳是孤身一人,家中并不富裕,受到盗窃的可能性不大,况且在其家中没有发现失窃的大件物品。赵作海杀人后,也没有必要到赵振裳家中去,已经将赵振裳杀死了,还去其家干什么呢?

    8、关于赵作海的九次供述,存在如下疑点:1>供述之间关于案件情节存在很多细节上的差别。2>赵作海对现场的供述,是在公安机关发现无头尸案后制作的,不排除诱供的可能性。3>赵作海在被刑事拘留后,并没有被羁押在看守所,而是在公安机关办案地点停留一个月,不排除逼供、诱供的可能性。4>赵作海供述是逐渐与本案件证据吻合的,真实性值得怀疑。

    请各位注意,上述疑问仅仅是推测,除确认尸体是赵振裳外,其他疑问都不必然成为确认赵作海无罪的证据。比如事后有人提出,赵作海是否能够搬动石磙?一般情况下不能搬动,但赵作海身体高大强壮,生命攸关,情急之下,把架子车推到石磙下边,将石磙推到车上去,是完全有可能的。再说,是不是有其他人配合而赵作海不予供述,不能排除。赵作海供述前后细节方面前后矛盾,这在很多重大案件中经常出现,被告人总是在侦查初期为逃避法律制裁而作虚假供述,随着证据的完善供述逐渐一致和稳定。将赵作海不予羁押到看守所而是控制在公安机关的办案地点,这是《刑事诉讼法》、公安部《办理刑事案件程序规定》所允许的,是公安机关办理重大刑事经常采取的方式,不能因此就怀疑所有供述都是虚假的。关于刑讯逼供问题,在被告人翻供的案件中,绝大部分被告人都是提出刑讯逼供,能因此都认定存在刑讯逼供而推翻其供述吗?……

    毕竟案件存在很多疑点,针对卷宗中存在的问题和赵作海的翻供,我列出了详细的退回补充侦查提纲,将此案经柘城县人民检察院退回柘城县公安局补充侦查。其中主要问题是如何确认尸体是赵振裳,甚至提出在赵振裳父母坟墓里提取遗骸,进行DNA鉴定。

    四、成败只在一念间

    为了解决这些问题,柘城县公安局进行了补查,对细节问题进行了说明。由于没有解决主要问题,我进行了二次退卷。二次退卷,就只有一点了,如何确定尸体就是赵振裳?赵振裳没有结婚,没有孩子,父母已去世多年,身份确认只有进行DNA鉴定,但对比鉴定缺乏检材。无奈,柘城县公安局只有开棺提取赵振裳父母的遗骨,先后到公安部、沈阳、重庆等地权威鉴定机构对赵振裳父母的遗骨与尸体进行DNA比对。因赵振裳父母去世时间较长,无法得出DNA图谱,鉴定搁浅。我们曾经考虑用赵振裳兄弟姐妹的DNA作检材,经咨询,当时DNA鉴定条件有限,对兄弟姐妹之间DNA对比技术尚不成熟,致使确认尸体身份工作陷入僵局。

    转眼时间已到了1999年,最高人民检察院为了提高办案质量和效率,推行主诉检察官办案负责制,即在检察长领导下,在公诉部门实行的以主诉检察官为主要责任人的检察官办案制度。这是一项重大的检察制度改革,商丘市人民检察院十分重视,设置复杂的考核程序。经过笔试、口试、实庭观摩、诉辩对抗、案件评查等,最终在“两市六县两区”的检察机关中选拔了商丘检察史上第一批共16人的主诉检察官(其中三人因特殊贡献免试)。我有幸以第一名的成绩入选,至今仍引为自豪。客观而言,此次选拔的主诉检察官队伍,确实代表了当时商丘公诉最高水平。

    以前公诉机关办案程序是承办人负责,处长审核,检察长决定。此种办案制度,弱化了承办人办案能力,分散了办案的责、权、利(荣誉而物质利益),不利于发挥承办人的主观能动性。主诉检察官制度的推行,有利于改变这一现状。

    主诉检察官的权力,简单说就是个人可以决定对某个案件结果,起诉或者退查,可以签发起诉书,在某些方面相当于检察长的权力。事实上并非如此,仍然受到各种制约。已经习惯了被领导的主诉检察官们,还不习惯、不适应地位的提升,领导们似乎也不习惯权力的下放。随着主诉检察官的增多,批捕部门主办检察官、自侦部门主侦检察官的设置,客观状况发生一定的变化,主诉检察官制度已逐渐褪去光环,黯然失色。

    最高检察机关毕竟要推行这一改革,当时的主诉检察官们还是非常珍惜这一荣誉,着实高兴了一阵子。在具体案件中,主诉检察官发挥自己的作用有了制度上的依据。主诉检察官如果坚持自己的意见,签发法律文书后,主管检察长或者检察长不敢轻易改动。

    时间推移,赵作海案件并没有新的重大进展,作为办案人员,我面临抉择。

    这样一个故意杀人案件,杀人分尸,情节特别恶劣,如果证据确实充分,只有一个结果--死刑立即执行,判处死刑缓期二年执行都没有理由。如果坚持不起诉意见,必然会招致非议。案件这么多证据,公安机关对确认赵振裳的工作已经尽了最大努力,穷尽所有方法。不起诉,这个案件怎么办,公安机关会有什么看法?如果起诉,万一错了怎么办?

    在平时工作中,我开过这样一个玩笑:“如果现在起诉了,万一将来赵振裳回来了,问题就严重了?”

    可客观现实是,结合目前证据,这个尸体是赵振裳的可能性非常大,周围各村也没有失踪人口的报案信息。如果他真是赵振裳,仅因为失去鉴定条件就坚持不起诉的意见,岂不是放纵了犯罪,目前这么多有罪的证据怎么解释?

    这是一个令我非常为难的案件,主诉检察官负责制更让我感到责任重大,左右为难。如果不是主诉检察官,完全可以因能力有限把矛盾上交给领导,现在要求我必须做出决断。

    这是考察一个法律人综合素质的时候,需要做出决断,尽管这个决断或者是错误的。根据法律规定,鉴于案件没有达到事实清楚、证据确实充分的程度,无法排除其他可能性,还是坚持了事实不清、证据不足的意见。给处长和主管副检察长汇报后,领导非常支持,决定如果再不能确认尸体就是赵振裳,拒绝收案,由公安机关自行处理。

    万没想到,一念之差险些断送自己的命运。一个不经意的谨慎,无意中蹚过了雷区。如果当时我将赵作海案件起诉到法院,法院也不会判决无罪,结果仍和现在一样,作出留有余地的判决,判处赵作海死刑缓期二年执行。现在的我,将可能和其他公安干警一样,被推到审判席上,成为被告人,诀别我热爱的这个神圣的法律职业。

    如此可怕!

    基于各种原因,我于2001年5月辞职,辞职前有关部门也协调过此案,因我们顶着压力,仍坚持证据不足的意见,案件就此搁置。

    五、众说纷纭解真相

    赵作海昭雪后,民众和专家提出很多问题,有关发言人遮遮掩掩。在此,我对提出的异议解释如下:

    1、当时检察机关对公安机关刑讯逼供为什么没有调查取证?

    赵作海无疑受到了刑讯逼供,这是无可辩驳的事实。那么作为检察机关侦查监督科(当时称批捕科)、公诉处的办案人员,具体地说,就是我,为什么不予查处?

    刑讯逼供的现象较多。承认这一事实的存在,是一个法律人应有的良知。我们经常见到报道侦查机关破案文章时使用“加大审讯力度”“经过几昼夜的心理战”等字眼。“加大审讯力度”是什么意思?为什么要加大审讯力度而不从外围寻找证据?这里边是否暗含着刑讯逼供?什么叫“几昼夜的心理战”,心理战与变相刑讯逼供有何区别?都值得思考!

    我曾经参加过某省法学会会议,关于刑讯逼供问题,与会专家学者与公安干警发生争议,火药味特浓。法学专家对刑讯逼供颇为愤青,道:公安干警刑讯逼供时,如果犯罪嫌疑人是自己的兄弟姐妹,作何感想?当时一个省公安厅刑警总队的副队长反唇相讥:如果你的姐妹被拐卖了,犯罪嫌疑人明知被拐卖妇女的去向,就是不说,你作何感想?

    刑讯逼供现象多发生在流窜作案、多次作案、惯犯、累犯、重大恶性犯罪等案件的侦破中。这些案件,如果不采取特殊的审讯方式,你给犯罪嫌疑人一杯茶,一根烟,和颜悦色,让其作出有罪供述,简直是痴心妄想!也许专家说,宁愿放纵,也不能违法办案,这叫毒树之果,我们不但要砍掉它,更要摒弃果实。这是对的,但当公安干警面对强大的社会压力、治安压力、被害人的压力、领导的压力、新闻媒体的压力,难免采取一些特殊手段。所以,检察机关对刑讯逼供行为往往是睁一眼闭一眼,只要别出事,别出大事,存在一点刑讯逼供行为也就算了。即使出了事,只要侦查机关能够摆平,也不会追究刑事责任。如果一个检察官发现刑讯逼供行为就启动侦查监督程序,查处公安干警刑讯逼供行为,根本不可能,干不几天就得调离岗位。理想和现实是有距离的。

    我没有统计过,但我知道,在公诉人岗位上工作了8年,无论是重大刑事案件还是职务犯罪、经济犯罪案件,只要犯罪嫌疑人翻供,绝大部分理由就是被刑讯逼供,你怎么办?你总不能每一个案件都查处吧!

    更何况公检法办案人员,特别是县级和地市级司法机关的工作人员,由于经常接触,相互之间已经非常熟悉,称兄道弟。公安机关辛辛苦苦侦破了案件,你不但不将案件起诉,反而先查侦查人员是否存在刑讯逼供,这怎么可能呢?

    解决刑讯逼供问题不是没有办法,比如让律师提前介入、看守所与公安机关分离、赋予犯罪嫌疑人、被告人沉默权等等。1996年《刑事诉讼法》修改后,专家们喊得声嘶力竭,律师们奔走呼号,讨论会一个接一个,结果如何?立法者无可奈何、司法者我行我素,律师们逐渐也就变得麻木不仁、习以为常。所以,解决刑讯逼供是一个系统的、综合工程,非一个机构、一部法律、一个制度所能为之。近期内若不出现杜培武、佘祥林、聂树斌、赵作海等重大冤案,改变刑讯逼供现象不知还要等到何时?

    我曾经办过一个刑事案件,中级人民法院的刑事判决书都认定了本案存在刑讯逼供,被告人关于故意杀人的有罪供述不能作为证据使用,结果是以故意伤害罪对被告人判处了死刑。任何人都没有受到刑事追究,破案者反而立功受奖。

    司法实践中,当被告人在法庭上提出被刑讯逼供时,审判人员往往问供述是否属实。如果被告人回答基本属实。审判人员就说属实不就完了,其他问题不要多说。甚至有的审判人员说,他们为什么不打别人,为什么打你呀?当律师提出刑讯逼供时,审判人员也往往说,刑讯逼供不属于本案的审理范围,禁止律师发言。这都是不应当正常却再正常不过的事情。

    2、公安机关为什么不惜违法获取赵作海的供述?

    《刑事诉讼法》第四十六条规定:“对一切案件的判处都要重证据,重调查研究,不轻信口供。只有被告人供述,没有其他证据的,不能认定被告人有罪和处以刑罚;没有被告人供述,证据充分确实的,可以认定被告人有罪和处以刑罚。”个别检察院曾经作秀,“零口供”定案,事实上,没有口供很多案件是行不通的。

    司法人员对证据分析、论证、判断能力确实有待提高,侦查意识不强、技能低下、设备落后,远远不适应侦查工作的需要。大量的刑事案件,证据的调取往往是中心开花,即根据犯罪嫌疑人供述获取其他证据,尤其是物证。不可否认,这种办法确实存在一定的效果。面对形形色色、品种繁多的刑讯逼供,意志坚强者能有几人?往往会供述犯罪事实,侦查人员以此获取其他证据,轻松破案。也有无法忍受痛苦,胡说八道,造成错案,毕竟这是少数。很多刑事案件,只要是犯罪嫌疑人承认了,一切都好办,否认或者翻供,案件就难办。所以,侦查机关想方设法取得口供,刑讯逼供、诱供、骗供、变相威胁等花样繁多、手段翻新、层出不穷。只要犯罪嫌疑人供述了,侦查人员就万事大吉。由于过于重视口供,反而侦查人员疏于对其他证据的调取,造成重要证据灭失,形成疑难案件。对于重大刑事案件,涉及判处死刑,审判人员往往更加重视口供,没有口供就不敢判处死刑,有了口供就敢判处死刑,口供就这么重要!

    赵作海如果不翻供,死定了!

    3、公检法为什么如此配合,将一个无罪之人判刑入狱。

    我国的《刑事诉讼法》第七条规定:“人民法院、人民检察院和公安机关进行刑事诉讼,应当分工负责,互相配合,互相制约,以保证准确有效地执行法律。”我不是法学专家,我就不明白,公检法之间为什么还要互相配合?这一条早应当修改!分工负责、互相制约是对的。什么叫互相配合?怎么配合?配合还怎么监督、怎么制约?实践中,往往是配合多,制约少,更谈不上监督。往往是涉及自己部门利益时,才谈到制约。比如,赃款、赃物的移送,就开始相互制约,都要把赃款、赃款留自己上缴财政,因为财政能够返还,自己花钱方便。更何况公检法还要受政法委的领导,佘祥林、赵作海等冤案不都是政法委协调后,公检法配合的结果吗?

    4、是不是司法人员的业务素质低下,导致错案发生。

    赵作海案件是政法委组织公检法精英们开会,最后拍板起诉,不能说他们业务素质低下。但在司法机关,特别是基层公检法,确实存在业务素质不适用工作需要的情况。首先是司法人员待遇低下,著名民法专家徐国栋先生说“无财产即无人格”,有点过,但非常有法律意义。司法官待遇如此低下,要他们在利益的诱惑下像孔老夫子一样,“不义富且贵,于我如浮云”,简直是痴人说梦!饿着肚子搞业务的人,的确不多。其次,司法机关把不住进人关。司法机关虽然待遇低,但地位高,仍然是求职者的香饽饽,有权有钱者能进,无权无钱者难入。其实能进去公检法的人,并不需要这点微薄的工资养家糊口,他们需要的是这身官服显威避难,或者让自己的家人有一个避风港。再次,在升职方面,谁要是说业务好能占到决定因素的50%,你信,反正我是不信。特别经济不发达地区,业务再好,一辈子能混个科室正职就不错了,单位副职只有想想的份。看看坐在单位主席台的,不是空降兵就是官二代、富二代。在司法机关,除作秀外,搞业务研究、学习方面与律师相比,差远了。据说北京海淀区人民法院都快成女子法院了,业务较好的男同志为了经济利益,“叛变”到律师队伍中去。业务素质不高,提高案件质量就变成了天方夜谭。

    我说的是一般现象,不是指本案。我说的是过去,不是现在,希望不要对号入座。

    5、赵作海被超期羁押,为什么不释放?

    一位记者采访我时问,既然认为赵作海故意杀人事实不清,证据不足,为什么不释放?

    对于实务人员来说,这个问题十分天真。按照《刑事诉讼法》的规定,二次退查仍达不到起诉条件的,应当变更强制措施,取保候审。看似简单的问题,其实非常复杂,释放赵作海简直是不可能的事。中国超期羁押非常普遍,比比皆是,既有立法问题,也有执法问题。你见过因超期羁押而受到刑事追究的吗?原最高人民检察院副检察长赵登举2003年7月22日说:“超期羁押属于违法羁押,本质上就是非法拘禁,是侵犯在押人员的合法权益,损害法律尊严和公安司法机关声誉的违法行为,是没有严格执法、执法不公的表现。超期羁押的背后有时还存在着职务犯罪问题。”此言一出,着实吓了公安一跳,结果不过如此。按照法律规定,公检法都有释放的权力,但谁都不会这样去做,超期羁押仍是家常便饭。至今我还没有见过一起因超期羁押以非法拘禁罪追究刑事责任的案件。对赵作海刑讯逼供的干警被逮捕,至今尚未宣判,不也正在被超期羁押吗?

    赵作海才超期羁押三年,不算长。我承办的贾然基故意杀人案件,羁押了十年。1991年9月8日被逮捕,执行死刑是2001年。试想,一个人在十几个平方米房间里,一待就是十年,什么概念!1998年我作为审查起诉人员被领导安排处理积案,亲自进行侦查、审讯(可没有刑讯逼供哦)贾然基。功夫不负有心人,终于发现案件漏洞,找到了隐藏7年的杀人凶器。七年还能找到杀人凶器,公安机关没有想到,审查起诉人员还能有如此的侦查技能。为此,我还立功三等功一次。平心而论,这个案件不应当判处死刑立即执行。

    重大刑事案件,除非出现象佘祥林、赵作海案件被害人“死而复生”的情形,否则一般不会放人。1997《刑事诉讼法》规定的无罪推定原则,在基层司法人员的脑海中还没有普及。人犯羁押了那么长时间,侦查机关调查了这么多证据,怎么释放?你个人是不是有什么问题?是不是收受了贿赂?无罪释放涉及一系列问题,被害方上访、国家赔偿、错案追究、司法机关形象等等。

    6、商丘市政法委是罪魁祸首吗?

    在赵作海案件中,最受责难的,第一个是柘城县公安局,第二个就是商丘市政法委。是政法委协调出留有余地的判决,酿成错案。尤其是时任商丘市政法委书记王师灿接受记者电话采访时说:“我平时都不问案件,我不是学法律的,我学煤矿和矿山机电。” 似乎更令人愤恨,学煤矿和矿山机电的人当政法委书记,不是占着茅坑不拉屎吗?其实不然。商丘市政法委协调一个超期羁押三年多的案件有什么过错呢?如果有过错,是司法程序设置问题。至于煤矿专业的做政法委书记,也不能过于苛求,全国公安机关、检察机关、人民法院、政法委等单位的一把手,扒扒捡捡,有多少是学法律的出身?不都是外行领导内行吗?

    谁任政法委书记,结果都一样,这是体制使然。政法委协调案件,特别是重大案件,参加者是政法委员会的成员。该委员会的组成,也都是公检法主管刑事业务领导和业务精英。讨论发言时,政法委书记不可能先发言直接拍板定案。一定是参加会议的人员先发言,最后书记决定。试想,赵作海案件协调会召开时,如果与会人员大部分认为事实不清、证据不足,不符合“两个基本”(即基本事实清楚,基本证据确实充分),王师灿不懂法律,他敢拍板起诉吗?

    我不是为政法委和政法委书记开脱,我也与王师灿没有任何关系。他若认识我,说不定我也不会辞职了,呵呵。我只是想说明,真正使赵作海受害的,是体制,是司法体制,他不是一个人。像鲁迅小说《祝福》的祥林嫂,虽然死了,却不知道凶手是谁?

    7、商丘市中级人民法院办案人员该受到处罚吗?

    案发后,商丘市中级人民法院合议庭成员、庭长、参与此案的审委会委员,均受到不同程度的处分。他们有点冤!无论谁审理此案,结果都一样。政法委已经定案了,留有余地的判决,商丘市人民检察院都必须在20日内将此案起诉,法院还有发言的权利吗?谁办案结果都一样,正如公诉人郑磊说的一样,除非你辞职!

    贺卫方先生在评价黄金高、李庄案件主办法官,批评他们:公平无法实现时,你们至少还有保持沉默的权利。他们能沉默吗?他们要工作、要生活、要吃饭、要养家糊口,让他们跳出三界外,不在五行中,可能吗?

    我对贺卫方这样的战士佩服得五体投地,中国确实缺乏这样的战士。如果中国法律人都像贺卫方那样,别说都像,能有一千个贺卫方,哎哟,美国人民不得吓个半死,向中国年年纳贡、岁岁来朝、俯首称臣。奥巴马那小子也不会那么猖狂、到处指手画脚,一副人权祖师爷的派头。小奥恨不得一天三声胡爷爷,孙子似的小心伺候着。上帝不叫咱这样欺负人,贺卫方只能有一个。

    六们干警至今还在囹圄之中,赵作海冤枉了十一年,与之相比,又算得了什么呢?

    六、屈打成招铸冤案

    赵作海显然被刑讯逼供了,具体如何被刑讯逼供的,成为一个谜。根据归案的柘城县办案干警供述,对赵作海体罚较少。然而根据赵作海本人的供述,确实受到非人的折磨,触目惊心。法院定案,依据的是法律事实,即依据证据认定的事实,而不是真实的事实。真正的事实已经过去,无法确定。刑讯逼供犯罪事实的认定,法院不会因办案干警不供述就否定刑讯逼供的存在,也不会全部按照赵作海的认定。赵作海被刑讯逼供的情形,无法恢复,只有摘录赵作海本人的陈述,让大家评判:

    1 9 9 7年农历9月3 0日晚上,我去俺村杜小花家和她发生关系后,睡那了。到了十一、二点,我看到有人划火柴,一看是赵振裳,他就用刀砍我的头部,我用手迎,他砍伤我的头部和右胳膊。然后我就跑了,从那以后我就没见过赵振裳。

    具体时间我忘了,在我村西地机井内捞出来一具尸体。第二天晚上公安局的人把我传到老王集派出所,问是不是我杀的,我说我都不知道是谁。他们说是赵振裳,我说不是我杀的。他们就打我的头,打我的人有好几个,都是谁我记不清了。还让我喝了什么水,我喝了后,就昏迷了。二、三天后,我被带到公安局。他们天天都问我赵振裳是不是你杀的,不承认就打。还说:承认就不打了。在打我时,有人喊一个叫李德岭的,其他就不知道了。后来,实在没有办法,我就承认杀了赵振裳。

    他们用棍打我,还用枪敲我的头,还对我拳打脚踢。打我时,让我按照他们的意思说,重复一次又一次。然后记好笔录,让我签字,我不签也不行,就签了,想着只要能不受罪,咋着都行。

    他们每一班都是两三个人问我,把我铐在桌子腿上和椅子腿上。我说没有杀人就打我。他们不让我吃饱饭,不让我睡觉。我一喝他们给我的水就晕。公安局的人给我打开手铐,我也站不起了,就啥也不知道了,光感觉头上跟放炮的一样,咚咚响。

    还有人点着我说: “打你个不承认的!”还有人说: “再不承认,我落黑用车拉出去你,一脚把你跺下去,就说你逃跑了,一枪打死你!”就这样,我实在受不了了,生不如死,就承认杀赵振裳了。

    记录的是一个30多岁的年轻孩子,都是他一个人记录。记后就给我念,我说不对就打我。后来我也不看了,也不给我念了,有笔录我就说对,就签字,实在不知道的我就编,让我按手印我就按。这样承认以后,就不怎么打我了。因为头和胳膊找不着,我就瞎编地方。他们找不到,我还是编。后来,实在没有办法,我就说烧了。我说烧了以后,基本上就不打我了。

    在刑警大队几天,他们叫我吃剩下的菜,一天两顿。让我吃一个馍,有时给我点菜。

    我被打孬了,就找机会逃跑。正好有一天,我趁他们不备,找到了手铐的钥匙,打开手铐,就跑了。因为我不知道路,在县城不熟悉,也不知道走到一个啥地方,就睡着了。结果,还是被他们抓着了。

    在看守所里,我没有说我被冤枉的事,因为我怕挨打。在检察院的人提审我时,我也没有敢说我被打的,我害怕让公安人员知道了还打我。开庭时,我说有人打我了,都是我瞎编的,他们不信后来就判刑了。

    我想上诉,但后来想,上诉也没有用。还不如早点到监狱里,听看守所犯人说,监狱里生活好,还有自由,我就干脆不上诉了,赶快投牢算了。我在监狱里也没有申诉,申诉啥,再申诉也没有用,也没有相信我。我也没有文化,我就想着,赶快减刑。我还听说申诉挣不到分,不给减刑,所以也不申诉了,天底下哪里没有冤死的鬼呀。

    看到办案干警轻描淡写、相互推卸责任的供述,会有人认为赵作海供述是不是太夸张了。虽然刑讯逼供的情节,只有赵作海一人供述,还达不到事实清楚、证据确实充分的程度。民众宁愿相信,赵作海的陈述是真实的,否则,不会酿成如此大错。

    七、一失足成千古恨

    如此重大冤案,必须有人负责,各级有权机关依职权查处此案。柘城县公安局办案干警刑讯逼供赵作海案件,由商丘市人民检察院于2 010年5月1 1日立案侦查,犯罪嫌疑人丁中秋因涉嫌玩忽职守于2 01 0年5月1 5日被商丘市人民检察院取保候审。犯罪嫌疑人罗明珠于2 01 0年5月1 3日被商丘市人民检察院决定刑事拘留,2 010年5月1 4日被商丘市人民检察院取保候审。犯罪嫌疑人王松林于2 01 0年5月2 7日被商丘市人民检察院决定刑事拘留,2 01 0年6月5日被商丘市人民检察院取保候审;犯罪嫌疑人郭守海于2 01 0年5月1 2日被商丘市人民检察院决定刑事拘留,2 01 0年5月2 5日被河南省人民检察院批准逮捕,2 01 0年6月8日被商丘市人民检察院取保候审;犯罪嫌人周明晗于2 01 0年5月1 2日被商丘市人民检察院决定刑事拘留,2 01 0年5月2 5日被河南省人民检察院批准逮捕;犯罪嫌疑人司崇兴因涉嫌刑讯逼供于2 01 0年6月9日睢县人民检察院立案侦查,2 010年6月1 1日被睢县人民检察院取保候审。

    2010年10月22日河南省睢县人民法院偷偷地以不公开开庭的方式公开开庭审理此案。尽管如此,审判庭前群众门庭若市,旁听票却洛阳纸贵,一票难求。公开开庭的案件,依法应当允许旁听,但就是不让你听,你能怎么样!这已经是中国审判一个非常普通的现象。

    开庭后,案件又石沉大海,涉嫌刑讯逼供的干警及家属焦急地盼望着不可预测的结果。各种版本的判决内容在商丘大地上流传,有罪的,无罪的,缓刑的,免予刑事处分的,部分实刑部分缓刑的。新闻媒体也在热切地等待着,盼望着。好像一颗定时炸弹,一旦刑事判决书下发,立即引爆,又可以热闹一番。

    然而,半年过后,此案突然被指定到开封市龙亭区人民法院管辖。2011年9月15日,案件刚起诉到龙亭区人民法院,已经被取保候审的干警全部被关押进开封市看守所。到底是凡取保候审的被告人到龙亭区法院后均必须收监呢?还是基于本案的特殊性呢?不得而知。

    2011年10月18日,开封菊花节开幕式举行。2011年10月18日,开封市龙亭区人民法院在一个不足40平米的微型法庭里,“公开”开庭审判这起在全国都有影响的大案,这本身就很滑稽。欲旁听者甚众,但洛阳无纸,只好悻悻然去观赏花枝招展的菊花节了。

    庭审无非是走个程序罢了。大家也都知道,不要说是龙亭区人民法院,就是开封市中级人民法院,也不能决定案件的走向。在中国,检察官不能坚持自己的意见,审判员不能保持自己的立场,再正常不过。法庭成了摆设,法官成了挂线木偶,公正就变成水中月、镜中花。

    从2011年9月15日至今,半年过去了,涉嫌刑讯逼供的警察们早已被超期羁押了。这就是中国特色的法律制度,赵作海超期羁押三年才被判决,不知道他们是否也要被关押到三年之后才有结果。

    看官方报纸、观新闻联播、听领导讲话总感觉振奋人心,形势一片大好。可大家不是生活在新闻联播里,总感觉现实不是那么回事,不知道什么地方出了问题。法律像一个唯唯诺诺的小媳妇,经常挨打受气,还要装出一副我本幸福的样子,哪里有尊严可言!长官意志、以言代法、以政代法、以纪代法、以……代法。有些事不知道谁说了算,让你打找不到手,哭找不到坟头,还到处都充斥着“老子就这样,你能把老子怎么样?”无赖模样。

    关于刑讯逼供干警如何判决,是个难题。

    八、如此难题谁能解

    也许有人会问,七名涉嫌刑讯逼供的公安干警如何处理,是个难题吗?造成这么大的冤案,判刑不就完了吗?

    赵振裳回来后,商丘司法机关风声鹤唳。公检法参加办理赵作海案件的司法人员战战兢兢,尤其是涉嫌刑讯逼供的公安干警作为首要被问责者被推到风口浪尖。的确,如果没有本案最初的刑讯逼供,冤案就不会发生。对于柘城县公安局参加办案的干警,构成刑讯逼供罪,理论上和法律上均没有问题。是否追究责任,却成为焦点。

    民众不会太明白,既然他们刑讯逼供,造成冤案,为什么是否追究其刑事责任,反而成为问题呢?这就涉及到《刑法》关于追诉时效的问题。

    所谓追诉时效,就是人犯了罪之后,经过一定的年限,就不再判刑的制度。当然,如果犯罪后潜逃、逃避侦查或者被害人控告司法机关该立案而不立案,不存在追诉时效问题。这是世界各国都有的,不是中国独创。

    《刑法》第八十七条规定:犯罪经过下列期限不再追诉:(一)法定最高刑为不满五年有期徒刑的,经过五年;……。所谓不再追诉,就是虽然构成犯罪,不能再追究刑事责任,再直白地说,不能再判他们的刑。

    《刑事诉讼法》第十五条规定:有下列情形之一的,不追究刑事责任,已经追究的,应当撤销案件,或者不起诉,或者终止审理,或者宣告无罪:

    ……(二)犯罪已过追诉时效期限的。

    然而,对于这样一个在全国及全世界都有重大影响的案件,对刑讯逼供者如果不立案,恐怕难以服众。至于将来是否能够起诉和判刑,以后再说吧。河南司法机关来不及论证追诉时效问题,就开始了一场轰轰烈烈纠错运动。拘留逮捕公安办案干警,追究政法委、检察院、法院办案人员的法律责任和政纪责任,一时间人心惶惶。

    《刑法》第二百四十七条规定:“司法工作人员对犯罪嫌疑人、被告人实行刑讯逼供或者使用暴力逼取证人证言的,处三年以下有期徒刑或者拘役。”也就是说,公安干警虽构成刑讯逼供罪,最高刑是三年有期徒刑,追诉期是五年。从刑讯逼供之日至赵作海被宣告无罪,已经十一年,远远超过五年的规定,不应当再追究他们的刑事责任。

    面对如此大的压力,不追究行吗?反正《国家赔偿法》有规定,因超过追诉时效而不追究刑事责任的被告人,即使被刑事拘留和逮捕,国家也不会赔偿。公检法专业人员认为,此案明显已经超过追诉时效,不应当立案、起诉和审判。可面对天下汹汹之口,此时,谁又敢坚持自己的意见呢?就像当年论证赵作海是否构成犯罪一样。论证是否应当追究刑事责任是小事,如何向社会交代是大事。

    刑讯逼供是否超过了追诉时效,确实存在一定的争议,这也是睢县人民法院和开封市龙亭区人民法院开庭审理在法庭上唯一的重大问题。

    检察院认为:刑讯逼供的行为没有超过追诉时效,理由是:

    1、刑讯逼供的行为虽然发生在1998年,但结果却是发生在2010年,故不存在追诉时效问题。

    2、赵作海在检察机关提讯时和人民法院开庭时已经反映了公安机关刑讯逼供的事实,但司法机关没有查处,应当视为赵作海已经提出了控告,故本案不受追诉时效的限制。

    辩护人认为:刑讯逼供的行为已经超过追诉时效。理由是:

    1、刑讯逼供属行为犯,追诉时效的起算点应当从刑讯逼供行为完成之日。刑讯逼供行为发生在1998年,到2003年追诉时效到期。

    2、赵作海故意杀人案在诉讼期间,没有对刑讯逼供的警察提出过控告,故追诉时效不能中断。

    我认为,要论证本案刑讯逼供案件是否已经超过追诉时效,有两个问题需要考证:

    一>追诉时效从何时起算?

    根据《刑法》条文规定:追诉期限从犯罪之日起计算;犯罪行为有连续或者继续状态的,从犯罪行为终了之日起计算。

    本案的犯罪之日是什么时间?刑讯逼供行为是否有连续或继续状态?这是本案应当讨论的问题。刑讯逼供是行为犯,即只要较为严重的刑讯逼供行为一经实施,即构成犯罪既遂。刑讯逼供行为结束,犯罪行为也即结束。本案刑讯逼供罪成立于1998年,应当没有问题。案件造成的社会影响,不是刑讯逼供罪的构成要件。换句话说,即使没有造成影响,刑讯逼供罪仍然成立,故把在全国造成影响作为刑讯逼供罪起算点,有故意入罪、强词夺理之嫌。

    二>赵作海是否对刑讯逼供行为提出过控告。

    刑法规定第八十八条第二款规定:“被害人在追诉期限内提出控告,人民法院、人民检察院、公安机关应当立案而不予立案的,不受追诉期限的限制。”如果赵作海对刑讯逼供人提出过控告,司法机关应当立案而不予立案的,本案可以不受追诉时效的限制。

    赵作海是否明确提出过控告,是本案的关键问题。如果提出过,不受追诉时效的限制;如果没有提出过,则本案过了追诉时效。

    问题是赵作海在检察机关和法院开庭时,提出过自己曾受到刑讯逼供行为,是否视为提出控告?

    控告是指机关、团体、企事业单位和个人向司法机关揭露违法犯罪事实或犯罪嫌疑人,要求依法予以惩处的行为。控告具有目的性、针对性、程序性的特征,故应当区分控告与辩解、反驳的区别。

    控告权是宪法规定的权利,法律一经公布,视为公民应当知晓。赵作海虽然受到刑讯逼供行为,由于仅是在检察机关、人民法院审判时作为自己的一种无罪的辩解理由,并没有提出控告请求。无论赵作海是基于对法律的失望还是无知,没有控告是事实,不应当因此视为控告而无限延长本案追诉时效。

    由于该案刑讯逼供是否超过追诉时效问题,至今尚未解决,涉案干警最长的已经被羁押近二年,远远超出《刑事诉讼法》规定的时间。赵作海被羁押三年才判刑,莫非他们也要被羁押三年?

    王立军重庆“打黑”时,贺卫方教授提出异议,曾撰文给王立军说:“一旦沦为阶下囚,他也许幡然醒悟,深刻地感受到,没有独立的司法,没有一个人是安全的。”事实果然如此,又是一语成谶!

    赵作海案件最终的有罪判决,并不是司法独立的结果。同样,决定刑讯逼供警察命运的,也不是司法机关。

    九、案中有案破迷局

    赵作海案件的惊奇之处,就是案中有案。

    赵振裳回来了,赵作海“杀”的人是谁,必须查清。柘城县公安局在新任局长高圣伟的带领下,顶着压力,忍辱负重,在不到一个月的时间里,将此案成功侦破,一雪前耻。

    经深入侦查和技术鉴定,于5月14日检验确定死者为1998年9月12日晚外出后失踪的商丘市睢阳区包公庙乡十字河村东五组村民高宗志。柘城县老王集尹楼村人李海金、商丘睢阳区张庄村人杨明福、张祥良有重大作案嫌疑。三人在媒体报道赵作海无罪释放后,分头潜逃外地。专案组立即展开追捕,2010年5月14日,犯罪嫌疑人杨明福在商丘市区被抓获;5月22日,犯罪嫌疑人李海金在天津被抓获;5月24日,犯罪嫌疑人张祥良在辽宁省沈阳市被抓获。

    经审讯和调查证实,李海金因与受害人高宗志在山东菏泽做月饼生意期间产生矛盾,便怀恨在心,预谋将其杀死。1998年9月12日晚,李海金指使杨明福、刘院喜(2006年5月24日因抢劫杀人被判处死刑)先到李海金所在的村边等候,李海金、张祥良将高宗志约至离李海金家不远的本村西地,将高杀害、肢解并抛尸。为掩盖尸体,四人在作案后又将三块石磙推入扔放尸体躯干的机井内。

    赵振裳回来之前,恐怕在这个世界上,除赵作海本人外,只有李海金、杨明福、张祥良、刘院喜知道赵作海是冤枉的,只有他们知道赵振裳没有死。

    赵振裳流落他乡,他不知道自己也处于危险之中。李海金等人四处打听他的消息,他们知道,赵振裳回来之日,就是他们罪行暴露之时。只有做掉赵振裳,才是最安全的。他们同样也在时时追寻赵振裳的消息。如果他们先一步知道赵振裳回来,案件又会是另外一种情形。

    刘院喜2006年因为抢劫杀人被执行死刑,如果他当时交代了赵作海案件的真实情况,肯定会因重大立功而刀下留人,只是他放弃了这个机会。

    赵振裳回来了!李海金、杨明福、张祥良罪行终于败露,自知大限将至,四散奔跳。这才是法网恢恢,疏而不漏,十年之后,终于没有逃脱法律的制裁。

    出来混,迟早要还的。

    十、张冠李戴惹非难

    赵作海冤狱平反后,我着实十分恐慌。2010年5月3日我得到赵振裳回来的消息,晚上网查询只有三四条信息,5月4日早上再次查询,已经铺天盖地、如瘟疫般几何级地增长到十几万条。冤案的发生震惊社会各界,数亿网民开始人肉搜索赵作海案件的办案人员,声讨之声甚嚣尘上。全国各大媒体记者云集商丘、柘城,大有黑云压城城欲摧之势,有关司法人员、发言人噤若寒蝉。

    5月7日新华社郑州分社记者李丽静把我传唤到商丘市天宇大酒店,进行极其严厉的采访。面对上千旁听人员的法庭我没有胆怯过,然而这次,我害怕了。我切实感觉到,国家级媒体的记者,两个字--牛!

    “你是赵作海的办案人员吗?”

    “是。”

    “你在办理赵作海案件中,认为案件事实清楚吗?”

    “事实不清楚,我已经两次退查了”

    “你认为赵作海案件中是否存在刑讯逼供行为?”

    “应当有刑讯逼供行为,当时情况记不清了,时间太长了。”

    “你认为赵作海一个人能搬动那沉的石磙吗?”

    “应当不能,也不好说”

    “你到现场去核实了吗?”

    “没有。”

    “这么大的一个案件,你为什么不去核实呢?”

    “记不清了,因为公诉部门案件多,核实证据的情况很少,我们的工作主要是审查,不是侦查。”

    “赵作海已经超期羁押了,为什么不释放呢?”

    “这么大的凶杀案,放人不是简单的事情,我做不了主。”

    “好好想想,你有什么责任?”

    “我有责任,案件没有审查细致,没有及时督促公安机关释放赵作海。”

    ……

    这是我平生第一次受到“审讯”。“审讯”的结果,第二天李大记者还是作出了错误的报道,认定赵作海案件的公诉人是汪继华和郑磊。由于没有注明我是前期承办人,公诉人是郑磊,于是,我的手机、办公电话在网上被公开,每天全国各地的辱骂、恐吓电话不断。手机不能关机,否则就是被捕。亲戚、朋友、同学也打来电话表示关切。无奈,我在天涯社区发表了澄清文章,内容如下:

    关于办理赵作海案件的澄清声明

    近日,因柘城县赵作海故意杀人案件被河南省高级人民法院改判无罪,各大媒体相继报道。有报道称我是该案件出庭支持公诉的公诉人,并要求追究我的法律责任。关于本人办案情况的内容,确有不实之处。为澄清事实,声明如下:

    一、本人在商丘市人民检察院工作之时,确实审查过赵作海案件。经审查,认为案件事实不清,证据不足,并作出了退回公安机关补充侦查的决定。其中,在退回补充侦查提纲中,首要问题就是查明涉案尸体是不是被害人赵振晌(裳)。

    二、2001年5月份左右,我辞去检察官职务,从事律师工作,该案转由他人办理。该案2002年5月份开庭,我不可能是本案的公诉人,更不可能出庭支持公诉。赵作海案件起诉书和刑事判决书均不显示本人姓名,故媒体称我是该案的公诉人与事实不符。

    我接受媒体的报道和监督,但也请媒体尊重案件事实。如发现不实报道,将保留追究其法律责任的权利。

                     汪继华

                  二〇一○年五月十日

    2010年5月12日10时30分,我正在律师事务所办公室工作,突然门被推开,十余名来自各大媒体的记者不约而同,破门而入。不由分说,长枪短炮支起来开始采访,唯恐我逃之夭夭。我遂向他们澄清事实,随后媒体才逐渐报道了真相。

    十一、当代奇案怨者谁

    公安机关办理此案的侦查人员,据我所知,都是当时柘城县公安局侦查经验丰富的干警,不能因为办错了赵作海案件就抹杀他们以往的成绩。柘城县公安局副局长丁中秋,开封警校毕业后,一步步由刑警队员、刑警队副队长、队长、做到主管刑事侦查的副局长,应当说是经验丰富。罗明珠,一个出身农家的孩子,1988年毕业于开封市警察学校,分配后一直从事侦查工作。没有所谓的后台,靠自己扎实的业务登上刑警队长的职位,后因工作成绩优异,被调到商丘市公安局工作。李德领1988年开封警校毕业,是柘城县公安局公认的破案能手,从警期间,破获多起大、要案,多次立功受奖。事后有一个记者到李德领家中,十分惊讶其陈设的简单与俭朴。郭守海是一个老实巴交的干警,一个老预审员,工作认真踏实。司崇兴等其他人员也都是在公安战线工作多年,具有很强的办案能力。当然,是他们共同铸成错案,责任应当依法处理。除此之外,还是应当从方方面面深刻分析一下造成错案的原因。

    赵作海得到了超额赔偿,刑讯逼供的干警身陷囵圄,凡经历此案的检察官、法官均受到相应处分,我和后来接手案件的郑磊因辞职从事律师工作幸免于难,但案件反思不能就此结束。各大媒体进行了大量的报道和炒作,中国最高司法机关也为此出台的两个重要的司法解释《关于办理死刑案件审查判断证据若干问题的规定》《关于办理刑事案件排除非法证据若干问题的规定》,似乎已经十分到位。其实这些都是表面的原因,不亲身经历此案,是无法理解深层次的内容。

    凡重大刑事冤案之发生,内容虽有不同,造成的原因却是相同的:

    1、案件存在特殊事实迷惑了侦查人员的眼睛。

    实践中明知非嫌疑人而故意造成重大冤狱的,极少。造成重大冤案,往往是案件出现某种巧合,使侦查人员偏离了正确的侦查方向。以赵作海案件为例,赵振裳砍击赵作海致其受伤,赵振裳第二天离奇出走,没有告知任何人。同一时期,有人故意杀人后将尸体投入该村井中,死者家人又不报案,多个情节出现了惊人巧合。赵振裳又是单身,无法进行DNA对比等等,一系列的事实发生成为认定赵作海犯罪的有力证据。

    佘祥林案件也具有异曲同工之处。

    当然,也许有人会说,案件都那么容易破获,三岁小孩都当警察了?人的认识能力是有限的,加之特殊的法治环境、个案特殊情况、文化意识等各方面因素,出现冤案是必然的,是正常的,冤案多了就不正常了。

    2、都存在刑讯逼供或变相刑讯逼供。

    几乎所有重大刑事冤案,都存在刑讯逼供。刑讯逼供在我国根深蒂固,历史悠久。当我们听到“不动大刑,量你不招”“大刑伺候”的戏词时,除冤案外,并不感到愤慨。若为查获犯罪事实而对无赖之人动刑,反而认为理所应当,大快人心。对于法律实务界人士而言,刑讯逼供几乎成了潜规则,只不过不愿意公开承认罢了。

    由于刑讯逼供造成了很多冤案,甚至造成犯罪嫌疑人自杀、残疾、伤害等严重后果。刑讯逼供现象近期也发生了变化,一方面比以前少了一些;另一方面,行为隐蔽、方式多变、不留痕迹,不留证据。对重大刑事案件,刑讯逼供的目的不是诱供,不是让犯罪嫌疑人在笔录上签字,而是通过刑讯逼供,得到侦查机关事前没有获取的证据。

    云南杜培武案件,对杜培武刑讯逼供的正是他昔日的同事。虽然我辞职已经十年,现在仍对检察官职业崇敬有加,凡看到“检察”二字,都倍感亲切。我始终觉得公诉人才应当是我一生的舞台,才是我真正的事业。我从来没有把公诉人看成对手,与他们同台献技时,我把任何一个公诉人都当作朋友,甚至感觉他是我的同事,大家是在不同的角度来探讨、分析问题,而不是在竞技。我很难想象,警察对警察如此无情,何况还是同事,“本是同根生,相煎何太急”。

    3、过于相信侦查机关调取的人证材料,包括证人证言、被害人陈述、犯罪嫌疑人供述。

    我做了八年公诉人,与公安机关刑警、预审人员、检察院反贪污、渎职侦查人员经常接触。由于这种感情关系,很难让人怀疑他们调取的人证材料是假的,存在刑讯逼供、诱供、骗供行为。好像认为,他们是公正的,是以办案为目的,与各方都不存在利害关系,没有必要刑讯逼供。相反,即使被告人提出刑讯逼供问题,由于案件的处理与其存在利害关系,往往认为是在撒谎,是在推卸责任,除非能提出确凿的证据。公诉机关、审判机关也往往轻信侦查机关的解释、说明,轻视犯罪嫌疑人、被告人的供述。

    赵作海案件,为什么在政法委专门协调会时,商丘政法业务骨干多数人认为赵作海构成犯罪,主要是基于以下几点:1>赵作海的九次有罪供述。2>赵振裳三年不见踪影。3>周围没有死亡人员的报案记录。4>二人当晚确实发生过争斗。5>最迷惑人的是赵作海的妻子赵晓起辨认笔录,竟然辨认出自己连线的针脚,细节虽小,最容易引起司法人员的注意。

    虽然长期以来,在司法实践中存在重实体、轻程序的现象。我还是能坚持跳出现实,保持清醒的头脑,虽不能拨云见日,关键时刻能冷静、坚持、独立思考,从而作出决断。如,在我办理刑事案件中,我向来不重视公安机关的破案说明、破案报告等主观性内容的证据。除了侦查机关职权范围内产生的证明内容外,比如户籍证明、行政处罚证明等其职能范围形成的资料,一般其出具的书证不作为重要的定案依据。比如公安机关出具的无刑讯逼供的证据、证据取得程序的说明、犯罪嫌疑人投案自首的证明、传唤的证明、破案说明、侦破经过、确定犯罪嫌疑人的说明等。这些东西,容易加入侦查人员主观臆断的内容。

    早在1997年新修改的《刑事诉讼法》刚刚实施,我就写了一篇文章《违背证据合法性的表现形式》,提出证据的证明力和证据力划分的法律意义,注意到过于重视公安机关的办案说明不利于对案件的分析。特意提出侦查机关的办案说明因其存在证据的违法性,不应予以采用。该文曾经引起河南省检察院的重视,将文章刊登在省检察院内部通讯中。

    4、有关机关协调的结果。

    公检法三机关相互配合,协调是一大特色。协调的情形主要有:证据不足的案件,需要处理;侦查人员说明自己不存在刑讯逼供;赃款、财物的移送;敏感案件(黑社会案件、邪教案件、危害国家安全案件、影响局部安定团结的案件、上访案件、群体诉讼案件)的定罪量刑。协调的方式有:相互之间的协调、政法委、纪委、政府部门领导下的协调、上下级之间等等。我们看到了政法委协调造成了一些冤狱,但也不能否认在中国目前法制不健全的情况下,这种协调存在的价值所在。

    协调一词本身就是人治社会法制领域的副产品,它注入了很多人为化的因素,赋予执法者更多的自由裁量空间,破坏了法律的严肃性,与法制原则背道而驰。

    十二、猛药厚味治沉疴

    赵作海冤案发生,教训沉痛。屡屡发生此类冤案,思考就不应当停留在某一个案件上,或表面上、书本上、程式上泛泛而谈,应当挖掘更深层次的东西,这样冤者受冤才有价值,国家巨额赔偿才有意义,才可能避免出现更多“赵作海”。

    一、作为检察院和法院的办案人员,要重视对证据的核实,尤其是对人证真实性的核实。

    目前全国报道的重大刑事冤案,均是检察机关和审判机关的工作人员,过于相信公安机关所获取的人证。云南杜培武、湖北佘祥林、河南赵作海、河北聂树斌等故意杀人案件,应当说,在审查起诉和审判环节,办案人员都看出了案件端倪,注意到被告人供述自身和证言、被害人陈述之间存在的矛盾性,都没有引起足够重视。为什么?因为太相信公安机关调取证据的真实性。我不否认绝大部分侦查人员都是兢兢业业、踏踏实实,以查明案件事实为目的进行调查取证;我也不否认,有极个别人员为了邀功请赏促成案件,先入为主,主观臆断,甚至造假证、作伪证,最终酿成冤案。

    在个别地区,公安机关以破案率、逮捕率、判决率作为办案人员升迁的标准,甚至以此实施末位淘汰制,逼得公安干警不得不造假,刑讯逼供、制造假案,甚至引诱犯罪。

    的确,要求检察院审查起诉的人员对每个案件都赋予他们核实证据的任务,困难重重。一般都是发现问题后,退回侦查机关补充侦查,实在难以解决,再进行核实。刑事诉讼的直接言词原则,要求检察官、法官只有亲自见到证人,亲历调取证据的过程,才能增强对证据认定的准确性。要求检察官核实证据,完善证人出庭作证制度,势在必行。

    2012年《刑事诉讼法》对此方面进行了完善,但愿能彻底实施。

    二、应当严厉禁止刑讯逼供行为。

    如何禁止,我认为有以下几点:

    1、取消立法上给刑讯逼供提供的便利条件。

    要根治刑讯逼供,其中之一就是要限制侦查人员接触犯罪嫌疑人。赵作海在被宣布刑事拘留后,一个月没有被送到看守所,如此状态下,保护其权利成为一句空话。可是,公安机关对赵作海一个月不送到看守所羁押的行为并不违法。1996《刑事诉讼法》并没有规定讯问犯罪嫌疑人必须在看守所进行。《公安机关办理刑事案件程序规定》(1998年修正)第一百七十六条规定:“提讯在押的犯罪嫌疑人,应当填写《提讯证》,在看守所或者公安机关的工作场所进行讯问。”言外之意,公安机关可以随意将犯罪嫌疑人提出审讯而不受任何限制。试想,这种情况下想不刑讯逼供都难。

    其实,早在1991年公安部《中华人民共和国看守所条例实施办法》(试行) 公通字〔1991〕87号规定非常合理又实际,该办法第二十三条规定:

    “ 提讯人犯,除人民法院开庭审理或者宣判外,一般应当在看守讯问室进行。提讯人员不得少于二人。

    因侦查工作需要,提人犯出所辨认罪犯、罪证或者起赃的,必须持有县级以上公安机关、国家安全机关或者人民检察院领导的批示,凭加盖看守所公章的《提讯证》或者《提票》,由二名以上办案人员提解。

    不符合上述两款规定的,看守所应当拒绝提出人犯。”

    该条对所外讯问规定的十分合理和规范,只有辨认罪犯、罪证或起赃才可以经领导审批提出看守所。可惜的是,已经因与公安部《公安机关办理刑事案件程序规定》(1998年修正)解释相抵触而失效。

    立法者已经注意到这一点,在2012年《刑事诉讼法》中有所体现,但还不十分完善。

    2、将看守所交由司法行政机关主管。

    我始终不明白,看守所由公安机关管辖有什么好处?只有一个,有利于公安机关侦查工作的进行。仅一个“有利于”当然不行,不搞时髦的“三个有利于”,至少应当是“两个有利于”兼顾才对:有利于公安机关侦查和有利于保护犯罪嫌疑人合法权利。看守所不是监狱,没有油水可捞,公安部干吗非要抱着它不放呢?难道将看守所交给司法行政机关就不利于公安机关侦查吗?我实在看不出来。尽管理论界要求看守所与公安机关分离的呼声很高,实务界置之不理。

    我在做律师后方知道,想以刑讯逼供理由推翻非法证据,相当难,难于上青天。侦查人员否定刑讯逼供,一纸无刑讯逼供的证明就能为法官所采信。律师调查犯罪嫌疑人入所体验情况,看守所理都不理,一边玩去!调查同号犯证人,律师没有途径。律师在看守所对犯罪嫌疑人伤情拍照,看守所都不允许。只有在法庭上空喊,忽悠一下当事人,法官和公诉人还说你没有证据?胡说八道!诬蔑神圣的人民警察。所以,律师想通过刑讯逼供翻案,只有“侧身西望长咨嗟”。

    3、严厉处罚刑讯逼供行为。

    看一下全国冤案知多少,受到追究有多少,就知道刑讯逼供为何如此盛行了?有法不依,不如无法,婊子立了牌坊更危害更大。法律对于刑讯逼供规定很全面,处罚轻的有《公务员》法、《人民警察法》等,重的有《刑法》规定的刑讯逼供罪。可是,谁查?没法查!又要求破案率、逮捕率,又要限期破案,好不容易刑讯逼供破案了,皆大欢喜,谁还理会是否存在刑讯逼供?

    如何严厉处罚刑讯逼供行为,我没有想到有什么好的办法。

    领导对于刑讯逼供的态度,如同父母“嗔骂”孩子:妈的,这小子!表面上是责备,实际上是满心欢喜。

    4、坚决排除刑讯逼供所获取的证据。

    刑讯逼供所获取的证据,被称为“毒树之果”。司法实践对于“毒树之果”的态度是,放任毒树的疯长,享受甘甜的果实。最高人民法院关于执行《中华人民共和国刑事诉讼法》若干问题的解释法释[1998]23号第六十一条规定:“严禁以非法的方法收集证据。凡经查证确实属于采用刑讯逼供或者威胁、引诱、欺骗等非法的方法取得的证人证言、被害人陈述、被告人供述,不能作为定案的根据。”最高人民法院、最高人民检察院在赵作海冤案昭雪后,又陆续作出了一些新的司法解释,2012年《刑事诉讼法》对此也作了规定。至于能否实施,我们拭目以待。

    砍掉毒树,毁灭毒果,才能真正实现司法公正。

    三、坚持司法人员独立性。

    司法独立是司法公正的根本保障。虽然刑事诉讼法规定的司法独立原则,在目前政治体制下,根本无法实现。虽然中国政体是“一府两院”工作体制,根本上不是那么回事。司法机关的婆婆太多,同级党委、政法委、纪检会、组织部、同级政府,司法机关都必须俯其鼻息。财政局、人事局、编委同样能制约司法机关。公安机关有时也能凌驾于检察院、法院之上,近时期为了加强稳定,公安机关负责人能够担任同级党委的常委,甚至由同级政府副职兼任公安局长,检察长、法院院长担任同级党委常委的,有吗?虽然可以有,但没有。上述因素制约,司法机关如何能够独立?在内部,责权不明,案件有了矛盾交给领导,有了荣誉大家一哄而上。案件出了问题,找不到真正的决策者,胡乱打几板子了事。

    四、正确对待无罪案件。

    唯物主义告知我们,世界是可知的,但人的认识能力是有限的。我们不希望出现错案,出现错案却是正常的,不出现错案反而不正常。破不了案件也是正常的,案件必破反而不正常。事实上,我们看到的是,公、检、法三机关对于无罪案件都讳莫如深。有的检察院甚至“以零无罪”作为最高目标。自从王胜俊担任最高法院院长后,最高法工作报告中,再也看不到无罪判决的数字。肖扬任院长期间,根据最高法工作报告,2004年全年判处罪犯767951人,2996名被告人依法宣告无罪,无罪率为0.0037%;2005年全年判处罪犯844717人,2162名刑事被告人无罪,无罪率为0.003%。2006年没有公布判处的贪污贿赂人数,故总人数无法计算,但仅1713名刑事被告人无罪,无罪率更低。片面追求无罪率的恶果很多,刑讯逼供就是其中之一。由于对无罪案件没有正确的态度,导致司法机关侵犯人权、变通执法、刑讯逼供等违法现象发生。

    我做律师以来,成功为十余起案件被告人做无罪辩护,包括故意杀人犯、贪污贿赂等重大犯罪,却很少拿到无罪判决书,为什么?司法机关见不得无罪判决书,无罪就可能影响前程甚至头上乌纱。于是司法机关怪象横生:不破案就不立案,可判可不判的,从轻判决;实在不行,找个“口袋罪名”免予刑事处罚;确实无罪的,法、检两家沟通,检察院撤回起诉,侦查机关取保候审,案件无限期搁置,既不撤案,也不起诉。受冤枉者拿不到国家赔偿,要么认倒霉,要么开始漫漫上访路,年轻人变神经,年老的耗死在上访路上。

    后记:觉醒、呐喊与战斗

    上中学时学过鲁迅的小说《祝福》,问老师祥林嫂是谁杀死的?老师说:死于封建礼教的摧残。随着阅历丰富,越来越感觉到似有可疑。祥林嫂在鲁四老爷家打工,鲁四老爷虽然看不起她,还是收留了她。祥林嫂在他家生活的结果是“而且白胖了”,鲁四老爷是杀人凶手吗?应当不是。婆婆将祥林嫂从鲁四老爷家抢走,卖给贺老六,祥林嫂几欲自尽。但祥林嫂与贺老六婚后生活很稳定,很幸福,又生了宝宝阿毛,婆婆也不应当杀人凶手。随着贺老六、阿毛相继离她而去,祥林嫂再次来到鲁四老爷家,鲁四老爷虽然很不情愿,仍没有将她拒之门外,只是更加看不起她。与祥林嫂同为仆人的柳妈,为了丰富祥林嫂的精神世界,好心地劝她捐了一条门槛,似乎也没有恶意。作者“我”在祥林嫂走投无路时,诠释了“地狱”之说,一家人在地狱是可能见面的,让她在绝望中精神上依稀有了微渺的希望,似乎也不是杀人凶手。祥林嫂最终是死了,到底是谁杀了她?

    赵作海受冤了,这是事实。谁导演了这桩冤案?有人说,是办案的公安干警!如果你们不刑讯逼供,怎会发生如此冤案?干警会说是领导让我们加大审讯力度,并且一口咬定尸体就是赵振裳。哪个公安局不刑讯逼供,为什么只抓我们?领导会说:我说加大审讯力度,并没有要你们刑讯逼供!有人说检察院是干什么的,为什么没有把好关呢?如果你们不批捕赵作海哪会有此事?检察院会说:赵作海案件,别说是当时,就是现在,如果不是赵振裳回来,将此案让100个批捕处长去审查,也只有一个答案,批捕!有人说,公诉处也有责任,为什么要起诉?公诉处说我已经两次退查了,是你们公安不放人,与我何干!后来起诉是政法委决定的,我们只有执行的份。是政法委的责任吗?政法委说:是大多数人的意见决定起诉和留有余地判决的,我们只是履行一下程序。如果你们都不同意起诉,我们会拍板吗?法院更不要提了,政法委都决定的,我们还能提什么意见?!……

    是谁导演的冤案,你认为呢?

    祥林嫂的悲剧不是身体的死亡,而是心死!但愿赵作海案件不要让民众对中国的法制死心。鲁迅说过,中国人就是搬动一张桌子,也要付出血的代价。寄希望于他人失去自由和生命,自己狗安于藩篱之下,结果是人人自危、强盗横行、民族颓废、国家衰亡。做一个堂堂正正的中国人,仅有一颗公平、正义、良善之心是不够的。正如温家宝总理所说:“任何一项改革必须有人民的觉醒”,觉醒、呐喊与战斗才是中国的希望。

                  二○一二年四月二十二日

  • 安东尼・德・雅赛:自由秩序下“选择”的三个基本原则

    与普遍流行的观点相反,政治的基本问题并不是自由、公正,或平等。这几个问题都是派生出来的问题。从最深刻的意义上讲,政治的基本问题是选择问题,即谁为谁选择什么。我们在选择问题上的主张决定着我们能够接受或不能接受哪些政治理论。我要说的是,自由主义者必须认为以下三个论断是正确的,一定不能赞同与它们相矛盾的政治原则,不论这些政治原则多么亲切,多么无害。

    1. 个人能够选择,并且只有个人才能选择

    这条原则将被称为“个人主义原则”。这条原则的真理取决于限定“选择”这个词的含义。这里所说的选择,含义不仅仅是从若干相互排斥的选择方案中选取一个,因为按照这种解释,一群动物,一群人,一个团体,总之任何看上去可以协调行动的集合体,都可以“选择”。我们这条原则所说的选择是含义更有限的选择,指的是对赞成和反对每一选择方案的理由(大致的收益和成本)进行思考的结果,不论思考多么仓促,多么简单。个人之所以被认为能够思考选取某一选择方案而不选取另一选择方案的理由,就因为有一个普遍接受的假定,那就是只有个人才有思维能力。群体、团体、国家,都不能思考,或只能在比喻的意义上思考。

    谈到“个人主义原则”,我立刻就想到了这么几项内容:

    首先,我们可以看到的是,只有个人能够做出经过思考的选择,而不是只有个人做出经过思考的选择。不论是随随便便的选择,还是不用脑子的反射性选择,都不违背这条原则。然而不论个人是否做出经过思考的选择,既然他们具有这么做的能力,他们也就应该对自己所做的选择负有责任。它们所拒绝的选择方案的贫乏,并不能免除他们对于自己所选择的那个方案所负有的责任。这不是任何其他人为他们选择的,更不是“社会”或“制度”为他们选择的,因为没有任何这样的实体能够选择。

    其次,如果赞成和反对的理由都被强制所压倒,个人就不对自己的选择负有责任,或者只是负有部分责任。不论强制是否合法,都是如此。没有强制才会有责任,因为没有强制,一个人的行为才能保持完好无损。

    第三,要么个人选择与集体(或“社会”)选择的对立是一个没有任何确定意义的比喻,要么集体选择也一定是个人选择的结果,尽管是间接的个人选择。出于这一原因,这条原则要求把方法论上的个人主义当作研究社会现象之原因的唯一恰当途径。研究为什么在某种物质环境下会出现某种形势,说到底就是研究为什么个人会做出这种选择。历史发展的规律或阶级动因和民族动因都解释不了这样的问题。

    第四,这条原则只意味着应对没有强制的选择负有责任,而不意味着没有强制的选择就是合理的。一个人可以考虑不同的选择方案,但他不是必须这么做;他也可以考虑每一个选择方案,但却不选择他认为最好的方案。前一种情况违背了一个无力的合理性要求,后一种情况则违背了一个有力的合理性要求。不过这条原则并不要求满足关于合理选择的任何具体要求。

    2. 个人能够为自己选择,为别人选择,或者既为自己也为别人选择。

    我们将称这一原则为“政治原则”,并从论证其名称着手解释这一原则。

    如果一个人只能为他自己选择,那么他只能选择那些他能够“承受”其成本的选择方案。他可以上教堂,但他不能专门建一座教堂。如果他不是太穷的话,他可以买一辆汽车,但即使他相当富有,他也不能把汽车要使用的道路都买下来。对于他来说,只有三类事物可供选择。

    一类是不求报酬的事物,即上天或同胞的馈赠。在这种情况下,他自己对上天的奉献以及他自己对同胞的馈赠都不是直接的、对等的回报,都不是旨在产生收入的支出。在某些原始社会,没有报酬的馈赠是一个人的“预算”的主要部分。到了中世纪和现代,对于只能为自己选择的人来说,主要有两类事物可供选择。一类是可以分割的事物,这类事物可以分割成很小的单位,一直小到能够适合他的时间、精力和财力“预算”的程度。星期天到教堂做弥撒就是这样一个可以分割的大事物的小单位,这个可以分割的大事物被称为“宗教仪式”。同样,一辆汽车也是一个大事物的小单位,这个大事物就是“汽车库存”。一个单个的个人不可能选择这类事物的整体,但是既然这类事物是可以分割的,他就能够选择其中的某些部分。如果把这类事物分割成可以接受的部分需要费点心思的话,有时就会出现以此为业的人。例如一个企业家就有可能“买下”一条道路,再把道路的使用分割成小单位,这就有了从一个收费站到另一个收费站的行驶路段。

    还有一类事物则是不可分割的,教堂就是一个恰当的例子。教堂可能不会接受“企业”待遇(如果只允许付钱的教徒进入教堂,教堂就失去了其主要意义),至于如果个人只能为他们自己而不能为别人选择,教堂还能不能建起来,这还是个尚未解决的问题。多数人不能强迫少数人做出贡献,只有自愿的和意见一致的团体才能共同承担起像修建教堂这样的任务。

    在这样一个世界里,如果一个个人不能把他自己的选择强加给别人,他也不会遇到别人把选择强加给他的危险。换句话说,每个个人都是独立自主的。然而自主权因人而异,每个人都承受自己所做选择的机会成本。直截了当地说,除非发横财,所有人都要为自己所得到的东西付出代价。不能让一个人为别人得到的东西付出代价,也不能让别人为这个人得到的东西付出代价。总之,这个世界将是一个只有免费的馈赠和可以相互接受的交换的世界,就像一个自发的、没有规范的市场经济,在这种经济中,消费者和生产者都是独立自主的,施舍行为可能受到地位平等的人的鼓励,但并没有通过强制而成为义务。

    一旦允许为他人选择,一切就都改变了。所有在物质上行得通的选择方案,不论其规模大小,都可采纳。从原则上说,只要能够得到必不可少的资源,一个个人就可以为足够多的他人选择修建教堂。不用说,修建教堂的情况也适用于所有其它不论支付者还是未支付者都可以享用的。

    现在还没有到研究公共利益的时候,不过我们在第六章里将不得不探讨一下这个问题。也许像某些人所说的那样,整个这一范畴都是虚构的,是左倾的经济学家和社会批评家们想象出来的;实际上只要允许普通的市场机制运行起来,从教堂、交通信号灯和军队到知识和法律,所有这些利益就都能够得到充足的供应。我个人倾向于(不过不那么强烈)与此相反的观点,不过我不想在这里论证。眼下只要注意到这样一点就足够了:即使某些利益可以通过交换机制来提供,但实际上却是由非市场的集体选择提供的,而且是免费向所有申请人(如法律保护)或某一特定层面的一切人(如公办学校之对学龄儿童)开放的。如此提供的利益就是事实上的公共利益,这就像当初那个像鸭子一样摇摇摆摆和嘎嘎叫的鸟就是鸭子。至于它们的内在性质是否允许表现为公共利益的利益表现为私人利益,则没有争论。

    到这个简短的迂回结束之时,我们为什么提出把为他人选择作为“政治原则”,也许就比以前要明白些了。如果这条原则不成立,就不可能有什么既是非一致的又是有约束力的集体选择了。因此也就不可能有政治,而只有市场了。

    如果这条原则成立,不可分割的大型利益就可以为许多人统一选择,其成本可以由许多人分担。然而受益者和贡献者显然不必是同一个人,任何人都不必为他所得到的东西付出确切的代价,甚至不必付出大约的代价。某些人得到的多,付出的少;另一些人得到的少,付出的多。这无疑正是集体选择所要产生的结果,而且这一结果并不是集体选择追求其它结果的一个副产品,而是集体选择的主要目标。在能够为他人选择,因而能够为一个社会内的不同集团带来得和失的人当中,有些人内心深处怀有再分配的倾向,这种倾向也许就是驱动政治的主要力量。

    一个不考虑为他人作选择之可能性的自由主义理论,将是一个去掉了本质的理论。这样的理论从根本上来说是自由意志论,或者像某些人所说的那样,是无政府主义,而不是自由主义。我们的目标并不是捍卫自由意志论——自由意志论有足够的论据照顾自己——而是重新阐述自由主义,把国家和政治在自由主义理论中的位置更加明确地确定下来。这就有了“政治原则”。对于这一原则所招致的恶果——强制、“多数专制”、利益集团的激烈竞争——应该施加强有力的制约。找不到能够达到预期目的的制约办法是自由主义秩序唯一的致命弱点。

    3. 选择的意义在于选取所偏爱的选择方案

    这条原则将被称为“无支配原则”,其意思是如果选择的结果是获得一个“被支配的”选择方案,选择就没有意义。所谓“被支配的”选择方案,就是一个在一系列相互排斥的选择方案中比任何其它选择方案都差的选择方案。再说一遍,这并不是说人们绝不选择被支配的方案,而只是说选择被支配的方案就是浪费选择能力。

    这条原则中所说的“偏爱”,是经济学家们倾向于使用的广义的“偏爱”。对于经济学家们来说,偏爱就是一个人宁愿要一个东西或做一件事而不要另一个东西或做另一件事的若干原因的总和。偏爱与一个人出于任何数量的可能原因在可供他采纳的一系列选择方案的排列顺序中为某一选择方案安排的位置是一个意思。在日常用语中,“偏爱”通常是狭义的偏爱,即“更喜欢”。这个意思往往为一个人在决定他宁愿做什么时可能考虑的其它原因,如道德义务、长远利益等,留有余地。经济学家的“偏爱”把所有有效的原因都归了类,因此使用起来更“经济”,但绝不预先判断选择者的动机。选择者也许是一个严于律己的禁欲主义者,也许是一个放纵自己的享乐主义者,还有可能是个时而这样、时而那样的人。

    对于“被支配的”选择方案,需要详细解释一番。如果一个人在两个都可选取的选择方案中选取较差的那个,那还不如让一台没有规律的机器来做这一选择。自觉的、经过思考的选择的内在意义,恰恰就是得到比一个无规律的机器能所提供的结果更好的结果。如果我们依赖机器,我们就有接受较差的、被支配的选择方案的风险,而经过思考的选择就是要减少这种风险。选择的能力(这种能力本身是人类其它更基本的能力的综合,包括感觉、评估、预感、决定,以及其它一些能力等)尽管也许还不完美,但却是人们获得他们更想要的东西的最佳手段。总的来说,它能够使自己的内在要求得到满足,而现在还想象不出任何其它机制能够做到这一点。

    如果说不使用这一能力是一种浪费的话,那么压制这一能力就是错误的了。其最明显的错误就在于,使一个人选取一个他本来可以不选取的被支配的选择方案是对这个人的伤害。他所遭受的伤害是双重的:既损害了他的利益,又侵犯了他的选择自由。

    然而压制选择能力之所以是错误的,还有一个更抽象的、虽不那么明显但却同样重要的原因,这就是无缘无故地压制人的任何能力都是错误的。基督教徒会说,其错误就在于违背了上帝对人的设计。世俗的伦理观念则沿着大致相同的思路,以一个人的完整性为理由。当一个人的能力因他人试图改变他的愿望——也许是要使他更有“社会性”——而被阻止达到其预期目的时,这个人的完整性就被破坏了。这是一个独特的伤害,与他被迫选取较小的利益而不选取较大的利益所受到的那种伤害不一样。

    如果同意说“无支配”原则是一条不言自明的原则,那么这条原则对家长作风是一个隐含的排斥。然而我们为什么要排斥家长作风呢?有些人,如果让他们自己做出选择的话,他们就会搞得一塌糊涂。为什么在事实确实如此的情况下,家长作风还是错误的呢?关于因明显缺乏某些构成选择的基本能力而不能做出选择的人,严格的自由主义没有明确的论述。关于酒鬼、吸毒者、精神病患者等,严格的自由主义没有提供强制性的指导。然而对于显然能够做出选择的人来说,严格的自由主义是排斥家长作风的。排斥家长作风显然不能以任何直接的、结果决定论的理由予以辩护。自由主义并不是论述直接的和具体的方式改善人们处境的理论,而是论述一个社会——一个人们最有可能会改善自己处境的社会——的组织原则的理论。如果说它有一个结果决定论的辩护理由的话,那就是这个更长远的和间接的理由。当然,它还有一个非结果决定论的辩护理由,但是这个理由不必拿来批驳家长作风。

    家长作风受到了松散自由主义的“损害”原则的谴责。不过,尽管该原则令人感兴趣,但在所有其它没有家长作风问题的情况下,它却不能有效地保护个人选择。它可以被颠倒过来,直至听起来好象是在提倡为了某些人的更大利益而把较差的选择强加给另一些人。“无支配”原则则不仅有一种力量,可以更精确地击中比家长作风更大的目标,而且用罗纳德·德沃尔金那个关于弹道的比喻来说,还有击中这种目标的“射程”。“无支配”原则不仅谴责某甲为某乙的利益而替某乙做出选择,而且同样严厉地谴责以任何其它理由,包括再分配的目标,以及关于目标和利益的完整主义观点等,把被支配的选择方案强加于人。被第二条原则承认为一个事实上的可能性和一个明显的威胁的东西,即政治,第三条原则似乎认为是有悖情理的,是有违正确使用天然能力的。

    为防止人们认为不可能有任何政治不在一定程度上消除个人选择的主要意义,我们必须把再往前走就会面临的转弯处提前说一下。第三条原则留下了一个缺口,需要到那个转弯处加以探索。如果有这么一类选择方案,个人觉得比任何其它相互排斥的选择方案更可取,但除非别人也做出同样选择,否则就不可能得到,那么在这种情况下,政治作为专门处理这类选择方案的集体选择,就可能符合“无支配”原则。至于这类选择方案可能是哪些,人们如何辨别出是否确实存在这类选择,则都是似乎还没有明确和可靠答案的问题。就严格的自由主义的第三条原则而言,其主要的和(正如我所相信的)具有澄清作用的效果,恰恰就是把一盏探照灯对准这些真正特殊的选择方案,这盏探照灯就是带着怀疑和批判的眼光进行研究。

    本文选编自《重申自由主义》

  • 陈家琪:价值判断与道德判断

    1

    黑格尔是在《小逻辑》的“概念论”中讲到“判断”问题的。他的大意是这样的:哲学是一种概念性的认识,概念论基本上是哲学唯心论的观念。他强调了为什么说概念是自由的原则,因为概念本身就是生命的原则,它体现了一种创造性的形式,即把自身所隐含、所潜伏着的内容在实现自身的过程中都展现出来。所以概念的运动就是发展,就是展现,就是实现;如果只把概念看作“形式”,只讲形式逻辑,就理解不了概念为什么是活生生的精神。

    那么“判断”又是什么呢? 判断就是对概念的各环节予以区别,然后再把区别开来的环节连接起来。“下判断,就是规定概念”。规定,主要就是主词、谓词和系词之间的关系。系词“是”标明主词就是谓词,也就是说概念的普遍性就是它的特殊性。比如当我们说“上帝是精神”时,或者说“天就是天道、天理”时,还可以接着问“精神是什么”“天道、天理是什么”,总之就是要给原初词(上帝或天)以规定,通过规定使其特殊化,并用一个“是”来说明对其的规定性、特殊化就是原初的普遍性。事物的运动、发展就是一个不断通过规定性、特殊化来实现自身所具有的原初的普遍性的过程。所以概念就是自由,就是生命,就是运动、发展和实现。这一观念背后所必然导致的历史发展的客观规律性及目的性,我们权且不去评论它的是非功过,我在本文中所关注的只是它对“客观性”或“对象性”的强调,因为这与我们所要讨论的价值判断与道德判断是否也具有这样的客观性有关。

    马克斯·韦伯曾要求我们应该把事实判断与价值判断区分开来,他所说的“价值中立”是指社会科学(严格来说应该是人文学科)工作者在对自然与社会现象的观察、探索和解释过程中,只陈述事实,而摈弃价值判断和个人的好恶,采取一种“不偏不倚”的态度,因而在社会科学研究中只管真假,而与对错、好恶无关。但我们发现这其实很难,或根本做不到。比如我们今天如何描述俄乌战争? 如何记述哈以冲突的起源、发展和现状?我们到底如何才能做到“不偏不倚”的态度? 只要我们看一下所有国内外有关这些事件的报道,尽管都似乎在“只管真假,而与对错、好恶无关”,其实所有报道的价值立场就会同时体现在描述事实的文字中。因为对文字必须有选择,而选择其实就指的是个人立场或情感上的选择,而且认为这种选择本身就是认“真”的。大家也都知道,所谓“不偏不倚”只是一种理论上的说法,只要对任何具体事宜进行“事实上的描述”(且不论实际的行为),就都会标明作者政治或道德上的立场与观念。这实际上也规定着言论自由的边界。

    黑格尔认为真假、对错都是对象自身所具有的,而不能成为个人立场与情感上的选择。他喜欢举的例子如“这朵玫瑰花是红的”,“这幅画很美”,其实就不仅仅只是“事实上的判断”,也不仅仅只关涉真假问题。且不论“美不美”是个太复杂的问题,免不了与个人的美感或审美经验有关,就以“红”而言,还有深红、浅红之别,而且“红”这个字本身在历史长河中就已经具有了某种隐喻的意义,就与“白”“黄”“绿”“蓝”一样,已经不再只是“事实上的色彩”。就是“事实上的色彩”,科学家们在显微镜下看到的色彩也和我们肉眼所看到的不一样。更何况俄乌战争、围绕以色列问题的中东战局。一百个人眼中有一百个哈姆雷特,哪一个是只讲“真假”的哈姆雷特或只与“真假”相关的莎士比亚? 对这些问题,英国思想家麦凯(Mackie)在他的《伦理学:发明对与错》中已有详尽论述。书的具体内容这里就不多说了,后面还要具体讨论。引起我们注意的,倒是“发明”与“发现”之别。“对与错”就伦理学中的道德判断而言是被“发明”出来的,那么在价值判断中的“真与假”呢? 英语中的“价值”(value)更多被用于“价格”“估价”,也就是说,它涉及的是对“对象”(客体)到底有无价值(值多少钱)的一种评估。比如金银铜铁锡钛镍锰这些矿产的价值,就是被我们逐渐发现的,还有我们身边的许多人,也许一开始并未注意,但渐渐地,我们就会在他或她身上发现以前所未发现的许多价值,就与一件古董或古代藏品的价值也是日渐被人们所发现的一样。我们对这些被发现的价值几乎不能做“道德评价”;而且,我们也几乎无法排除这里面确实有真假之别。

    2

    瑞典思想家约纳斯·奥尔松(Jonas Olson,同时在牛津大学、圣安德鲁斯大学、蒙特利尔等大学兼职)在《道德错误论:历史、批判、辩护》(Moral Error Theory)中主要讨论的就是麦凯的《伦理学:发明对与错》,同时也讨论了休谟、罗素、维特根斯坦等这些我们都比较熟悉的一些哲学家们大体一致的一个观念。这种观念认为,道德只是人内在情感的外在投射,他称之为“道德投射主义”(moral projectivism)。道德判断总是包含着事实和对事实的道德属性这两个方面的认知。所谓“道德错误论”就是指误把自己的好恶情感体验当成了对独立于人的外部事物的认知。尽管我的好恶情感投射到了外部事物(事实)上,但这并不一定就表达了我的道德观念,这属于“温和的道德错误论”,如果认为我的情感体验就是道德事实和道德标准,那就是“标准的道德错误论”。前者还承认情感体验是一种非认知的判断,后者则断定任何对情感体验的道德判断均为假。小的如“踢狗”“吐痰”,大的如“折磨”“谋杀”。休谟说,只要我们只单纯地就事论事,是无法做出道德判断的,“直到他转向他自己心中的反思以及发现在他心中涌起的对这一行为的厌恶的一种情感时”,他才可能说这些事实都是恶。所以“对休谟而言,基本的元伦理学主张就是:道德是一种关于情感的事物,我们如何用语言来口头表达这种情感是一件很偶然的事情”。而且,道德赞赏和厌恶的情感部分是因为,只有当我们将自己置于公正的、同情的旁观者位置时,我们才会具有这样一些情感。于是,我们就看到尼采认为道德只是劣等人群的发明(他针对的是基督教);马克思认为道德有阶级性,现有的道德观念大都体现的是资产阶级道德的虚伪性;罗素说,当我们使用谓词“好”“好的”时,认为这是这个事物所具有的属性,而且独立于我们的心智,其实,“好”或“好的”只是我们对其正面的认可情感的相似性的表达。维特根斯坦则认为类似的道德判断毫无意义,比如当我们说“幸福是好的”时,“幸福”是否存在? 这其实才是真正的问题。我们说“张三是好人”,“这是一瓶好酒”,只表明它符合或相对满足了自己所预先设定的某种标准。而这些标准,本质上来说都具有某种“古怪性”(queenness)的特征,就如有些人认为吃了猪肉、狗肉就会怎么怎么样一样。当然,也包括各种繁复的宗教仪式在内,其实都具有某种“古怪性”。

    “道德投射主义”的基本观念就是:第一,我们将道德的不正当性视为世界的某种客观特征;第二,我们对这种误以为的客观属性有了某种情感体验,比如讨厌、恶心等,于是就有了不认可、不喜欢的态度;第三,但这种不喜欢、不认可的态度并不是客观存在的东西,当我们说它们在道德上是不正当的时,其实是误判了事物或世界。最低限度的道德投射主义就是把个人心理上的不喜欢、不认可说成是外部事物自身所具有的属性,把内在的情感体验说成是独立于个人心情、好恶的感知(休谟喜欢用“印象”这个词)。当我们看见插在水杯中的筷子弯折时,只要拿出来,我们就会“发现”并承认它们其实没有折断;但当我们厌恶一些人随地吐痰、在公众场合大声说话,或用脚踢狗、虐待动物时,我们能让他们“发现”并承认自己是不正当的吗? 当我们在“真假”之外“发明”出了“对错”之后,“对错”就越来越变得比“真假”更重要;而且,温和的道德投射者们还会承认事实判断与道德判断的区分(甚至如我这篇文章一样把价值判断与道德判断也区分开来),而标准的道德投射者们则会坚持认为道德判断的非认知性,不承认道德判断有“真假”“正当不正当”的问题。

    总之,对道德错误论者来说,如休谟所言,美德与邪恶不是物体的特质,只是我们头脑中的感知(印象)。美德只是我们个人特殊的一种满足感,比如扶危济困、仗义执言,客观上帮助了别人,之所以被称为美德,是因为它其实更重要的是满足了自身情感上的需要。

    亚当·斯密在《道德情操论》中是承认道德的客观实在性的,但他同时认为,如果我们不大声疾呼,人们就看不到或意识不到这种道德的客观实在性。这种大声疾呼,其实就是一种启蒙。但当休谟告诉我们,这种疾呼的目的是为了唤醒我们头脑中的某种感知能力,或能带给我们一种助人为乐的自我满足感时,又何尝不也是一种启蒙?

    反正,正如霍布斯所言,理性而又自利的人类为了走出“丛林法则”,结束人与人之间的战争状态,就不得不“发明”一整套的道德体系,为的是确立上下尊卑的道德秩序,使人类有所遵守,有所约束。前不久我去浙江桐庐,看了重修的“孝义荻浦”的牌坊,还有给“渌渚周雄”所修的纪念馆,据说全国许多地方都有给周雄所修建的“周公庙”,就是为了弘扬他身上所体现出来的“忠孝”二字。而如此宣扬的结果,就是希望这些地方均表现得民风淳朴,孝义成俗,社会稳定,买卖公平,是大家都想生活的地方。

    3

    道德错误论,然后呢?

    奥尔松在他的《道德错误论》一书的最后,用不多的篇幅专门讨论了“如果我们承认了道德错误论”,承认了“道德投射主义”,那么然后呢?

    然后就会导致“道德废除主义”或“道德虚构主义”吗? 人们就会说:好吧,我们承认那些道德词汇都是人们“发明”出来的,也承认道德并非客观事物的属性,而是表达因我们的喜好而加上去的附加物,那么又怎么样呢? 难道我们就不能“假装”它们就是客观的,也包括假装承认有上帝存在,承认“人做什么,老天都看在眼里”,这样不就会让一切都变得更好一些吗?

    无论道德废除主义还是道德虚构主义都是不行的。因为它只会使人变得更心口不一,虚伪变态。奥尔松说,我们在生活中最怕的,就是:第一,因为“折磨人是不正当的”这只是人类的一个发明,客观上并不存在对不对的问题,于是就放肆折磨人;而结果,这种折磨说不定哪一天就会落到自己头上。第二,把道德词汇当成了必须抢占的道德高地,于是使自己俨然成为道德的客观化身,有了对一切人和事进行道德评价的资本。马克思曾在《道德化的批判与批判化的道德》中说,这种对道德高地的抢占,就是唐·吉诃德与桑科的合为一体,是“卤莽式的愤怒,愤怒式的卤莽;庸夫俗子以自己的道德高尚而自鸣得意”。

    奥尔松认为,他是支持“道德保留主义”的,其实全部理由也是同一个休谟给出的。第一,习惯是改造人的头脑并植入一种良好性情的有力手段。人必须有自己对美好生活的向往,并尝试着努力去过一种自己想过的生活,这样一来,人就会习惯于这种自己想过的生活。比如相信上帝存在,你就真的去相信,不是假装,也不是为了某种图利,只是觉得这是自己所想过的一种生活。那么你就会过上自己所愿意的生活。第二,我们一定要把人际的事与个人的事区分开来。在人际中,发现人与事的独特价值和遵循前人所发明出来的道德观念都是不可或缺的。当然,无论是价值的判断还是道德判断,都首先要求概念的清晰;而概念的清晰度又是通过不断地判断(规定、特殊化、具体化)体现出来的。比如,道德断言在生活中之所以离不了,尽管都无法证实,但都是可以从其概念中推导出来的,如从“财产”中推导出财产法,从对“教育”这一概念的理解中推导出教育的目的、手段等。任何清晰的道德断言都具有某种命令性,如“偷窃是不道德的”,它是就偷窃这一事实判断的清晰、明确而言的,它的反面就是“人是可以偷窃的”,那么你自己就很可能成为被偷窃的对象。第三,人际的事要求个人具有某种自我控制力,这种控制力的养成离不了人际的道德交流,其中就包括“道德错误论”的各种观点,只有这样,人才有自我选择的意识。说到底,人有自我选择的能力,或者说人有自由意志,这种能力是在政治与道德、公共空间与私人关系、外在约束与自我控制的对立与冲突中体现出来的。“道德保留主义”的意图就是让传统、习俗、人际的约束与自我控制结合起来,培养自己的性情,发现别人的价值,使自己能过上一种自己所喜欢、所愿意过的生活。

    本文刊登于《伦理学术16——作为生活艺术的哲学与康德式美德伦理》第212-218页

  • 林辉煌:贫困的能力结构——一个解释框架

    中国的脱贫攻坚战,到2020年已经进入尾声。但是,作为一个社会问题,贫困尤其是相对贫困依然会以各种形态存在于2020年之后的中国社会。如何巩固脱贫攻坚战的既有成果、预防返贫及新型贫困形态的产生、有效治理相对贫困,是2020年之后贫困治理工作的关键所在。为此,我们必须从既有的扶贫经验出发,进一步在理论层面上厘清贫困的属性与生产机制。

    一、收入、消费与贫困

    学界在界定贫困问题的时候,一般都是围绕收入展开的。然而因为被调查者倾向于隐藏自身的真实收入,导致收入的测算有可能被低估。因此一些学者提出,采用消费/支出变量来测量贫困状况更为真实可靠。以消费为变量,可以对贫困进行不同的分类:在所有时间内都保持低消费的是持久性贫困,由于消费的跨期变动而导致的贫困为暂时性贫困,由于平均消费持续低迷的是慢性贫困。也有学者结合收入和消费两个变量重新理解贫困的类型,将家庭的收入和消费都低于贫困线标准的状态称为持久性贫困,将家庭的收入低于贫困线而消费高于贫困线的状态称为暂时性贫困,而将家庭收入高于贫困线、但是消费低于贫困线的状态称为选择性贫困。根据消费来测量贫困可能存在两个问题:第一,收入低于贫困线而消费高于贫困线的家庭,不一定是因为既有资产较多,也有可能是通过举债来消费,其自身的真实消费能力不一定很高;第二,收入高于贫困线而消费低于贫困线的家庭,如果消费是可以自行控制的,仅仅是因为生活习惯或宗教习惯而保持低消费水平,那么就没有理由将其视为贫困户。

    以收入指标为基础,我们可以进一步讨论贫困的属性。绝对贫困理论认为,贫困是一种客观的存在,而不仅仅是比较(相对)的产物或想象(主观)的产物。当家庭的可支配收入不足以维持家庭成员身体正常功能所需的“最低”或“基本”数量的生活必需品集合(主要包括食品、衣服等),这种生计资源的匮乏状态就是一种典型的绝对贫困,亦即生计贫困。生计贫困的概念始于20世纪初期,用来描述一个家庭难以生存的绝对困境。从生物学的角度来看,维持生存需要最基本的营养条件,而这些营养条件是可以精准测量并转化为基本的收入指标。到20世纪中期,考虑到贫困家庭的社会需求和人力资本积累的需要,诸如公共卫生、教育和文化设施等社会保障内容被加入绝对贫困的收入测度中,由此产生了基本需求的概念。所以,作为真实存在、触手可及的贫困,一般被描述为家庭基本需求的匮乏,人们可以利用绝对贫困线来测度贫困的广度和深度。大致而言,家庭基本需求包括食物、穿戴等基本生存需求,以及基础教育、基本医疗、基本住房等基本社会需求;贫困所描述的正是家庭可支配收入低于家庭基本需求成本的一种状态。

    根据家庭基本需求的成本,可以合理确定贫困线的水平,具体方法包括预算标准法、食物支出份额法、马丁法和食物-能量摄取法等。从现有贫困线的确定方法来看,主要依据的是食物支出,强调食物在维持家庭成员身体能量的作用是贫困线确定的基础。虽然非食物支出在贫困线的确定过程也被考虑进去,但是基本上都属于家庭基本生存需求,至于教育、医疗、住房等基本社会需求的成本则较少在贫困线的确定中得到充分反映。换言之,官方的绝对贫困线标准常常低于实际的家庭基本需求成本。

    如果说绝对贫困测量的主要是家庭收入无法满足基本需求的一种匮乏状态,那么相对贫困测量的主要是社会的不平等;相对贫困不再基于基本需求,而是基于社会比较。如果所有家庭都能够实现其基本需求,那么还存在贫困问题吗?相对贫困理论要回答的就是这个问题。根据该理论,那些在物质和生活条件上相对于他人匮乏的状态就是相对贫困。相对贫困关注的不仅仅是物质条件在客观上的差异,还有因为这种差异所可能带来的社会排斥与相对剥夺感。经济发展所带来的贫富差距的扩大,以及这一差距所带来的严重的社会和政治紧张局面,对社会凝聚力具有极大的破坏性。贫富差距剧增以及相对贫困的形成,实质上是整个社会资源分配不平等所导致的相对窘迫状态。

    相对贫困的测量,一般以相对贫困线为标准。而相对贫困线的制定方法主要有以下四种:第一种是预算标准法,即由专家所研究的贫困群体的代表根据社会认可的生活水平制定的收入贫困线;第二种是社会指标法,即通过计算群体成员的剥夺程度、依据收入和剥夺程度的关系来计算贫困线;第三种是ELE法(extended linear expenditure system),即以拓展线性支出系统为理论基础制定的贫困线;第四种是收入法,即以社会收入集中趋势的一定比例作为相对贫困线,如均值和中位数,比如世界银行认为只要是低于平均收入1/3的社会成员即可视为相对贫困人口,欧盟则将收入水平位于中位收入60%之下的人口归入相对贫困人口。

    前文的讨论主要涉及贫困问题的两个层面,即贫困的客观性问题和贫困的测量指标问题。关于贫困第三个层面的讨论是如何测量总体贫困,即如何对穷人进行“加总”,这是制定减贫政策的必要前提。

    对穷人的“加总”,就是把对个别穷人的描述变成某种贫困的测量。流行的做法是,先计算穷人人数,再计算穷人人数相对于社会总人数的比率。这种数人头的方法(head-count measure)实际上测度的是贫困发生率,这在阿玛蒂亚·森看来至少存在两大缺陷:第一,没有考虑穷人收入低于贫困线的程度(贫困深度),在不影响富人收入的情况下,整体穷人的收入减少并不会改变对穷人的人数度量;第二,对穷人之间的收入分配不敏感,尤其是当收入从一个穷人向富人转移时,穷人的人数度量也不会增加。以贫困发生率为基础制定出来的减贫政策,往往导致扶贫资源分配上的“劫贫济富”效应。因为这一类减贫政策的评价标准主要是降低贫困发生率(减少贫困人口数量),而实现该目标最有效的方式就是集中资源优先扶助那些收入接近贫困线的较“富裕”的贫困人口,忽视最贫困的人口。

    为避免上述问题,总体贫困的测度应当包含三个维度,即贫困广度(贫困人口数相对于总人口数的比率)、贫困深度(贫困人口收入与贫困线之间的差距)、贫困强度(收入在贫困人口间的分配)。利用森构建的公式,即为P=H{I+(1-I)G},P是总体贫困度量,H是贫困人口比率,I是收入缺口比率,G是穷人之间收入分配的基尼系数。Sen指数确立了贫困指数研究的基本框架,后续的研究者虽然提出很多其他指数,但是除了SST指数(Sen-Shorrocks-Thon)和FGT指数(Foster、Greer & Thorbecke)外,在测量性能上明显超越Sen指数的几近于无。SST指数克服了Sen指数在连续上的不足并消除了Sen指数在转移公理上的局限性,而FGT指数对贫困深度的反映更直接、更细致,且拥有Sen指数和SST指数所没有的加性分解性(Additive decomposability axiom)。

    无论是Sen指数,还是SST指数和FGT指数,都是在一个特定时间点静态地度量家庭的贫困状况,而没有将家庭的未来福利或风险因素考虑进去。针对这个问题,近年来兴起了有关贫困脆弱性的研究,揭示了非贫困家庭陷于贫困的风险可能性。从这个意义上讲,贫困脆弱性是一种前瞻性的测量,测度的是家庭暴露于未来风险而给家庭生存发展可能带来的影响。

    实际上,贫困脆弱性的理论需要解决两个层面的问题。第一是贫困的本质问题,即回答未来的贫困是什么?在这一点上,贫困脆弱性与收入贫困并无二致,都是将贫困界定为家庭收入无法充分满足家庭基本需求的一种匮乏状态或相较于其他社会成员的相对匮乏状态。第二层面的问题,就是研究可能导致未来家庭陷于贫困的风险因素,本质上就是对致贫因素的研究。在这一点上,贫困脆弱性的研究开启了下一节有关资产和能力的研究。

    二、资产、能力与贫困

    上一节主要讨论贫困的属性问题,即个体贫困的识别指标、贫困的客观性以及总体贫困的测度。这一节将从既有的资产理论和能力理论入手,讨论贫困生产的机制。

    资产理论认为,资产的匮乏是贫困之所以发生的根源。我们应当超越以前那种将减贫政策集中在收入和消费基础上的做法,更多关注储蓄、投资和资产的积累,建立以资产为基础的福利政策,寻求社会政策与经济发展的有效整合。以资产为基础的政策设计,不仅仅是针对家庭,而且也针对社区。

    资产理论相信,建立以资产积累为核心的社会政策,比紧紧盯着收入的政策更有利于促进经济社会的发展,从长期来看,一种投资驱动的经济要远优于消费驱动的经济。拥有资产被认为能够改善经济稳定性,将人们与可行有望的未来相联系,有助于中产阶级的形成和壮大,培育能够进行财富积累、长期思维、具备积极的公民性的现代家庭。英国于2005年建立了儿童信托基金,赋予所有在英国出生的新生儿一份个人存款账户,而且对低收入家庭给予了更多的补助,这是全球第一个全民性的(所有儿童)、进步性的(穷人获得更多补助)、以资产为基础的社会政策。新加坡的中央公积金则是全世界内容最丰富的以资产为基础的社会政策。

    我们可以将收入和资产置于同一个连续统的两端,收入的关键尺度是稳定性,资产的关键尺度是限定性,收入和资产在连续统的中间几乎会合——一种稳定的权利收入在很大程度上相当于一种完全限定性资产。私人或公共来源的权利收入是最稳定的收入,比如基于残疾或孤寡的补贴。完全限定性资产由个人拥有,但是个人不能直接占有这些资产,比如退休养老金。个人退休账户,则属于部分限定性资产。对所有形式的金融证券、房地产和其他资产的投资,属于非限定性资产。(见图1)

    图1 收入与资产的连续统

    资产在形态上包括有形资产和无形资产,它们共同构成了家庭收入的来源。有形资产主要包括货币储蓄、不动产、机器、家庭耐用品等。无形资产主要包括享有信贷、人力资本、文化资本、非正式社会资本或社会网络等。

    作为影响收入的关键因素,资产的分布状况在很大程度就决定了贫困的分布状况。一般来说,资产不平等的国家,其收入不平等的情况通常也比较严重。在发展中国家,收入不平等的一种重要关联因素是土地分配的不平等。自然资源的贫乏或开发利用不足,在很大程度上造成了区域性的贫困;低水平的人力资本,则使得贫困人口几乎被锁定在一个经济社会低度发展甚至停滞的恶性循环之中。

    由此可见,资产的多寡可以解释家庭可支配收入的来源。但是,资产理论作为贫困生产的解释机制,也存在不足之处。经验表明,对于权利和能力缺失的人群而言,即使拥有房子和土地等资产也不一定能够确保其过上富足的生活。这意味着存在一个权利结构和能力结构的问题,它们的缺失很可能会影响资产的收入转化率。所谓“能力”,看起来似乎与资产理论中的政治资本和部分人力资本、社会资本类同,然而在阿玛蒂亚·森看来,这些都属于个人资源的范畴。森的能力理论认为,所有资源都还存在一个转化的问题,而转化率受到权利和能力整体设置的影响。也就是说,资源和能力应作为两个理论范畴区分开来。按此分析,对资产与贫困关系的解释并不具有必然性,最后往往要回到能力的问题上。

    正是基于对以资源(尤其是收入)为基础的减贫政策的不满,森提出了能力贫困的概念。在他看来,贫困必须被视为是一种对基本能力的剥夺,而不仅仅是收入低下;贫困应当被视为达到某种最低可接受的目标水平的基本能力的缺失;换言之,贫困并不是个体福利少,而恰恰是缺少追求个体福利的能力;如果我们只关注收入的多少,那么剥夺的程度就可能被低估,因此有必要明确引入能力缺失的概念。如果我们将能力作为贫困的属性来理解森的能力理论,很容易陷入过度抽象化以致于难以测量贫困的困境之中;在这里,森的能力理论存在解释层次错位的问题。为避免这一问题,我们可以从贫困生产的角度来从新解读森的能力理论,即把能力的匮乏视为贫困产生的原因而非贫困的属性。这样一种解读方法不仅不会减损森的理论贡献,而且能够使其能力理论的论述层次更为清晰。

    森的能力理论包含着一对关系紧密的概念,“生活内容”和“能力”。“生活内容”既包括最基本的生活内容,如获得良好的营养供应、避免那些本可避免的死亡和早夭等;也包括更为复杂的成就,如获得自尊、能够参与到社会活动中等等。而与“生活内容”概念密切相连的是可实现生活内容的“能力”概念,它表示人们能够获得的各种生活内容(包括某种生存状态与活动)的不同组合,反映了人们能够选择过某种类型的生活的自由。这些“生活内容”,在很大程度上可以视为“家庭基本需求”;而“能力”则是家庭基本需求能否得到满足的原因。

    受到森的能力贫困理论的影响,联合国在1997年《人类发展报告》中提出一个度量贫困的新指标,即“人类贫困指数(HPI:Human Poverty Index)”。根据人类贫困指数,在发展中国家,贫困是由未存活到40岁的人的百分比、文盲率、缺乏保健服务和安全饮用水的人所占的百分比,以及5岁以下的儿童体重不足的人所占的百分比来衡量的;发达国家则是由未存活到60岁的人的百分比,功能性文盲率、收入低和长期失业来衡量。2000/2001年世界银行的《世界发展报告》也吸收了能力贫困概念,将贫困定义为福利被剥夺的状态,它不仅指收入地位和人力发展不足,还包括人对外部冲击的脆弱性,以及缺乏发言权、权利被社会排斥在外。

    从相对贫困的角度来看,贫困的本质是一个不平等的问题,贫困的治理则是对平等的合理恢复。在很大程度上,收入和资产的平等分配都可以归结为德沃金的资源平等问题,与此相对应的则是森的能力平等,这是针锋相对的两种平等理论。两种平等理论的分歧在于:第一,资源平等关注的是个人所拥有的资源是否平等,而能力平等关注的则是资源转化能力是否平等。第二,资源平等主张排除原生运气对分配的影响,使人们在非人格资源(如土地、房屋等)上达到平等,并对人格资源(健康、才能等)处于不利地位者进行补偿;能力平等认为不仅应该关注资源的分配问题,更应注重由社会环境以及偏见等因素所造成的不平等。第三,资源平等对人际相异性的问题视而不见,而能力平等则强调人际相异性的重要。大略而言,资源平等更为关切的是程序上的平等,只要对资源进行最大限度的平等配置(包括对初始条件不平等的弥补)即可,至于资源本身的使用效果则无需予以考虑;能力平等则更强调实质平等,因此要关注资源转化(为自由)的能力是否平等,以及由于社会结构本身的问题所可能造成的不平等。

    能力理论对贫困产生的原因做出了深刻的分析,贫困的治理不仅仅是资源能否平等配置的问题,更是资源能否平等转化为“生活内容”亦或“自由”的问题。但是,森的能力理论也存在自身的困境。第一,能力的概念过于抽象,没有明确具体的内容,这在一定程度上降低了该理论对具体贫困问题的解释力以及在具体政策制定中的指导意义。第二,森的能力理论不能有效解释家庭基本需求成本,因而无法全面解释贫困生产的机制。

    三、贫困的能力结构

    对于贫困生产的讨论,能力是一个关键的概念。为了克服森的可行能力理论所存在的问题,我们需要重构能力的理论框架,将能力概念操作化,同时引入社区和国家的视角,从而尝试对家庭基本需求成本的产生和控制作出解释。我们将改造后的理论称为“贫困的能力结构”,它不否定在贫困生产过程中个体主观能动性的作用,但是更为强调结构本身的决定性作用。引入新的主体之后,能力结构理论被操作为家庭能力、社区能力和国家能力三个层面,他们共同作用于家庭可支配收入和家庭基本需求成本,从而形塑了贫困的生产机制。之所以不把个体因素纳入能力结构体系之中,是因为个体因素在很大程度上取决于家庭能力的影响,个体是否聪明、健康、努力,最终都可以归因于家庭、社区和国家的结构性作用。

    贫困的形成,首要原因在于家庭能力的匮乏,无法获得足够的收入来满足家庭基本需求。家庭能力主要包含知识能力、健康能力和交往能力等;家庭能力水平越高,家庭可支配收入越高。知识能力可以用家庭平均受教育水平(或家庭成员受教育的最高水平)来衡量。健康能力可以用家庭平均健康水平(营养、身高、寿命、患病情况等)来衡量。交往能力可以用家庭社会网络的规模来衡量。社会网络的规模越大,家庭的社会支持度越高,可以获得的资源(经济救济、工作机会)越多。知识能力、健康能力、交往能力既可能相互强化,在家庭资源有限的约束下,三者也存在竞争关系。例如,在家庭资源匮乏的情况下,投入教育的资源增多,意味着投入健康和社会交往的资源就会减少。

    在现代国家建设中,社区能力的本质在于实现社区需求与国家资源的有效对接,从而为社区成员提供公共服务和公共品的能力。社区能够提供越多、越好的公共品,家庭的可支配收入就有可能得到提升,而家庭基本需求成本则有可能得以降低,从而减少贫困发生的可能性。社区能力可以进一步分解为三种能力,即表达能力、整合能力和执行能力。表达能力是指社区作为一个整体表达意见和需求的能力,可以通过表达人数和表达渠道来衡量表达能力的强弱。整合能力是指社区作为一个整体对不同意见、不同利益进行协商并使之达成一致的能力,可以通过协商次数和协商达成一致的次数来衡量整合能力的强弱。执行能力是指社区作为一个整体将社区公共意志落到实处的能力,可以通过治理钉子户的效果和公共品建设是否如期完成来衡量执行能力的强弱。社区的表达能力、整合能力、执行能力环环相扣,互相渗透。在社区公共意志的整合、执行过程中,实际上也离不开表达能力的基础性作用;而充分的社区表达,实际上也能起到一定的整合功能,社区执行能力的有效实现,在本质上就是对不同意见的再整合;充分的社区表达与有效的社区整合,最终将有利于推动社区公共意志的执行。

    与社区能力类似,国家能力的核心功能在于有效提供公共产品,区别在于,在现代社会,由国家提供的公共品更为广泛、更具基础性。国家能力越强,能够提供越多、越好的公共品,一方面可以提高家庭可支配收入,另一方面可以降低家庭基本需求的成本。国家能力还可以具体细分为四种能力,即渗透能力、动员能力、统筹能力和治理能力。渗透能力是指政府自上而下投入人力、财力的能力,衡量标准是人力、财力的投入量和效果。动员能力是指政府动员人力、财力的能力,衡量标准是因政府动员而新增的人力、财力的数量和效果。统筹能力是指政府对既有资源进行优化配置、公平分配的能力,衡量标准是政府统筹既有资源的数量、效果以及统筹层级与统筹需求的匹配程度。治理能力是指政府与社会对接的能力,衡量标准是政府与社会互动的频率和效果。渗透能力、动员能力、统筹能力、治理能力构成统一的国家能力体系,缺少哪一方面,国家的公共品建设都不容易实现。渗透能力、动员能力、统筹能力分别涉及政府对资源的投放、筹集和配置,而这三个方面都离不开治理能力来沟通国家与社会的关系;而国家与社会良性互动的能力,则是在政府投放、筹集和配置资源的过程中逐渐形成与强化的。

    贫困往往不是哪一种能力的匮乏单独造成的,而是在家庭能力、社区能力和国家能力的共同作用下产生的。因此有必要仔细分析这三种能力之间的相互作用。

    家庭的教育水平、健康水平越高,交往能力越强,社区作为一个整体越有可能充分表达和整合不同意见,并且将形成的合作方案落到实处,从而推动社区公共品的建设。社区能力越强,越有可能将国家资源引入社区、形成公共产品,从而为提升家庭的教育、健康和交往水平提供条件。有些政府项目虽然已经到达村口,但是因为村民无法达成一致意见或者无法有效治理钉子户,结果导致项目进不了村,农民享受不了相应的国家资源。良好的社区能力,不仅能够带来公共产品的有效落地,还有助于抑制不合理的社会交往成本,使人情不至于异化。

    家庭能力越强,越有可能与国家形成良好的互动,准确表达家庭发展的内在需求,使国家资源的投放更具针对性。换言之,现代化的国家建设,离不开现代化的家庭基础。而家庭能力的发展与积累,更离不开国家能力的支撑。国家对资源的筹集、配置与投放,是家庭享受良好教育和医疗条件的重要保障;减少医疗和教育方面的“非收入贫困”,公共部门进行有针对性的干预具有关键性的作用。从这个意义上讲,家庭能力的匮乏,本质上是国家能力不足的后果。

    国家资源的投放要最大程度发挥效用,需要准确回应社会需求,这就离不开社区能力的作用。社区能力的本质在于搜集、整合、执行分散农户的需求,只有当社区能力足够强,方能将这些分散的需求整合起来并实现与国家资源的有效对接。离开社区,让国家直接与个体家庭打交道,既无效率也不现实。社区能力的发展与积累,也离不开强有力的国家支持。社区的功能就在于实现国家资源与社会需求的有效对接,如果没有国家资源的持续性输入,社区能力往往会逐渐萎缩。

    作为能力结构的三个维度,家庭能力、社区能力、国家能力在贫困生产与治理过程中共同发挥作用。家庭能力的积累,很大程度上取决于家庭资源的配置模式。若家庭资源只够维持基本的生存需求,而没有更多的资源投入到教育、健康和社会交往上,那么家庭能力就不可能得到发展。因此,发展家庭能力,需要国家资源的有效介入,比如建立良好的教育系统、医疗系统、水利系统、社保系统等,将国家投放的教育资源、医疗资源、水利资源、社保资源等转化为家庭能力发展的资源,从而降低风险和冲击带来的影响、防止贫困的发生。然而,国家资源不可能直接渗透到家庭,这些资源需要通过社区这一中介发挥作用。换言之,家庭发展需要什么样的资源,只能借助社区的整合得以表达,从而实现需求与资源的对接;国家资源往往以公共品的形式发挥作用,而这些公共品要真正落地,也离不开有效的社区支持。

    四、贫困治理与现代国家转型

    贫困的形成,直接原因是家庭可支配收入不足以支付家庭基本需求成本。而低收入水平和高昂的家庭基本需求成本,从根本上讲是能力结构的缺陷造成的。国家能力、社区能力和家庭能力的不足,导致家庭成员一方面没有能力获得好的工作机会(从而获得稳定的收入),另一方面却要支付不合理的基本需求成本。从这个意义上讲,贫困治理应当聚焦于能力结构的进一步完善,从国家能力、社区能力、家庭能力三个维度出发,巩固既有的减贫成果,构建一套预防贫困、治理相对贫困及返贫问题的有效制度。

    完善能力结构的过程,实际上也是现代国家的转型过程。现代国家的主要特征是,第一,国家能够提供有效的公共品建设;第二,良好的社会自治水平;第三,公民较高的国家认同。这三个特征分别反映了国家、社区和家庭的能力发展水平。

    现代国家被要求承担越来越多的公共品建设职能,实现公共资源的有效配置和公平配置。配合这一职能的改革,是财税制度的集权化,越来越多的财税资源由政府(中央政府)掌控。这些资源的有效、公平配置,离不开强有力的国家能力。可以认为,国家能力是整个能力结构的核心,恰似整个经济社会建设的发动机。通过国家能力这一发动机,各项公共资源不断输入到社区和家庭,逐渐转化为社区能力和家庭能力。因此,贫困治理关键就看国家资源是否有效提升了社区能力和家庭能力。

    现代国家不应是简单的、全盘官僚化的国家,更不是警察国家,由国家完全控制和按计划分配所有资源;现代国家的核心标志应当是国家资源(意志)与社会需求的有效对接。要实现这一对接,离不开社区的中介作用。如果说现代国家建设的宗旨是更好地造福于民众,那么国家能力的意义就在于将国家资源转化为家庭可持续发展的内生能力。而实现这一转化的重要媒介就是社区,通过社区能力这一转化器,分散的家庭需求可以整合起来对国家资源提出要求,国家资源也能够通过社区来准确回应家庭的需求。社区能力的积累,一方面要借助国家的资源,回应民众需求,另一方面也需要保持自身的主体性,而不至于演变成为国家官僚层级的一部分,或者是民众需求的简单传输器。社区能力建设的关键就在于能够实现民众与国家的有效对话,通过对话使双方学会合理妥协与良性合作的技能,共同完成公共品的建设。

    现代国家,说到底就是现代家庭和现代公民。这意味着家庭应具备内生发展的能力,能够利用国家提供的各项公共品,提升家庭成员的受教育水平、健康水平和社会交往水平,并在这个过程中形成良好的现代国家认同。换言之,现代家庭不是简单地接受国家资源(等靠要),而是具备将这些资源转化为发展的能力。需要指出的是,家庭能力的积累,除了发挥主观能动性之外,更需要国家层面的政策制度设计和社区层面的有效整合机制。可以认为,贫困的生产首先源于家庭能力的不足,而家庭能力的不足则根源于社区能力和国家能力的不足。

    总言之,贫困治理不应是简单的国家资源输入(到家庭),而需要建立家庭能力的积累机制;而家庭能力的有效积累,则离不开社区能力和国家能力的支持。减贫政策,不应简单地着眼于家庭收入表面的提升,而应当直接回应贫困的生产机制,致力于解决致贫的根本原因。换言之,减贫政策只有解决了贫困的原因,即推动家庭、社区和国家三层能力的持续积累,才能真正减少贫困、预防贫困。传统的减贫政策很大程度上只是一种临时性的、事后的补偿机制,无法通过能力建设来抵御贫困的风险。从这个意义上讲,能力结构的理论框架作为一个整体,既是理解贫困生产的关键,也是制定减贫政策的理论基础。当然,三种能力的水平在很大程度上受制于国家和地区的经济社会发展状况,能力建设本身也需要大量的资源投入。因此,应当历史地看待能力结构的问题,而不应急于求成;如何科学合理地布局家庭能力、社区能力和国家能力的发展,是另外一项值得深入探讨的课题。

    本文转自《乡村治理评论》2024年第2期

  • 余少祥:论社会法的本质属性[节]

    一、体现社会法本质的基本范畴

    范畴及其体系是衡量人类在一定历史时期理论发展水平的指标,也是一门学科成熟的重要标志。社会法的基本范畴是社会法的概念、性质及结构体系等内容的本质体现,这是当前学术界研究相对薄弱的环节。社会法的基本范畴经历了从社会保护、社会保障到社会促进,从生存性公平到体面性公平的演变,体现了社会法不同于其他部门法的本质特征。

    (一)国内立法史视角

    一直以来,我国社会法的基本范畴都是社会保护,主要体现为对特定弱势群体的生活救济和救助。到了近代,开始探索社会保障制度。新中国成立尤其是新时代以来,社会促进逐渐成为社会法的新追求。

    在我国古代,虽然没有系统的社会法制度体系,但很早就有关于社会救济的思想和行为记载,如《礼记·礼运》提出“使老有所终,壮有所用,幼有所长,鳏寡孤独废疾者,皆有所养”;《墨子》主张“饥者得食,寒者得衣,劳者得息”。在制度方面,《礼记·王制》言及夏、商、周各代对聋、哑等残障人士“各以其器食之”。在西周,六官中地官之下设大司徒,专门负责灾害救济。春秋战国时期,增加了“平籴、通籴”等措施。两宋之后,居养机构发展较为完善,有福田院、居养院等多种形式。此外,还有用于赈灾的名目众多的仓储体系,如汉有常平仓,唐有义仓,两宋有惠民仓、社仓,元有在京诸仓、御河诸仓,明有预备仓等。但总体上看,这些救助措施均非法定义务。统治者赈灾济困乃是一种怀柔之术,是为巩固皇权的收买人心之举,与现代意义的社会法相距甚远。

    我国真正开启社会立法的是北洋政府。清末搞得沸沸扬扬的修宪和制订法律的活动,催生了民法、刑法等一批法律法规,却没有一部关于社会救济和保障民众生活的法律。1923年,北洋政府颁布《矿工待遇规定》,首次引入“劳动保险”概念,可谓我国社会法的破壳之作。可惜,这些法令因战乱和时局动荡刚实施便很快夭折。南京国民政府建立后,先后颁布《慈善团体监督法》《救灾准备金法》《最低工资法》等。从抗日战争起,以国民政府社会部成立为标志,社会立法渐趋完备。1943年《社会救济法》颁布,奠定了民国社会法的基石。这一时期,《社会保险法原则》《职工福利社设立办法》等先后公布,为探索社会保障进行了有益尝试,社会法发展开始迈入现代化门槛。但由于内战不断、政局不稳、政令不畅,加上官僚买办资本的抵制,这些法令并没有得到有效实施。

    新中国成立后,我国实行的是计划经济体制和单位对职工生老病死全包的政策。直到20世纪80年代,民众的基本生活保障仍是由国家和集体组织承担。90年代起,随着向市场经济转型,一部分群体开始从单位人向“社会人”转变。为确保这部分民众的基本生活来源,我国开始建立社会保障制度,先后颁布《残疾人保障法》(1990)、《劳动法》(1994)、《城市居民最低生活保障条例》(1999)等社会法规。进入21世纪后,相继出台了《劳动合同法》(2007)、《社会保险法》(2010)等社会立法。新时代以来,又陆续推出《慈善法》(2016)、《法律援助法》(2021)等,加上之前的《红十字会法》(1993)、《就业促进法》(2007),社会促进逐渐成为立法的关键词。从总体上看,我国当代社会立法是制度变迁的产物,而非在市场发展中形成的,因此与西方国家有所不同。

    (二)国外立法史视角

    社会法是舶来品,深受欧美日等工业国家影响,因此探求社会法的概念、范畴与体系等,离不开对外国法制的比较观察。从总体上看,国外社会法范畴也经历了社会保护、社会保障和社会促进的演进。

    英国是世界上最早实行社会立法的国家,其目的是为脆弱群体提供社会保护。1388 年,金雀花王朝制定了一部《济贫法案》。1531年,亨利八世又颁布了一部《名副其实救济法》,规定老人和缺乏能力者可以乞讨,地方当局将根据良心从事济贫活动。这两个法案与1601年伊丽莎白《济贫法》相比,影响较小。后者诞生于“羊吃人”的圈地运动时期,旨在“将不附任何歧视性的工作给有工作能力的人”,后为很多国家效仿。1563年,英国颁布了历史上第一部《劳工法》,1802—1833年又颁布5个劳动法案,覆盖了几乎所有工业部门,确立了现代劳动保护体系及基本原则。1834年,英国政府出台《济贫法修正案》,史称“新济贫法”。这些立法孕育着社会法的丰富遗产,具有鲜明的时代性、体系性和结构性特征。此后欧洲其他工业化国家纷纷仿效英国,建立起自己的社会保护制度。

    世界上最早实行社会保险立法的是德国。19世纪中后期,俾斯麦政府采取“胡萝卜加大棒”政策,一面对工人阶级反抗实施残酷镇压,一面通过社会保险对其安抚,相继出台了《疾病保险法》(1883)、《工伤保险法》(1884)等法规。由于社会保险法适应了工业化对劳动力自由流动的需求,解决了劳动者生活的后顾之忧,在社会法体系中占有重要地位。但西方社会法真正完成的标志是1935年美国《社会保障法》施行,这是社会保障概念在世界上首次出现。之后,社会法的发展开始进入一个新的历史阶段——为社会成员提供普遍福利,其典型标志是英国“贝弗里奇计划”实施。由于该计划被逐步纳入立法,标志着英国社会法走向完备和成熟。第二次世界大战后西方各国在推行社会立法时,不同程度借鉴了《贝弗里奇报告》模式,使得西方社会法的福利化转型最终完成。

    20世纪60年代,西方国家普遍解决了生存权问题,社会促进开始成为立法的重要权衡。除了传统的慈善法大量兴起外,扶贫法和反歧视法逐渐形成新的热潮。以美国为例,1964年约翰逊政府通过《经济机会法》,宣布“向贫困宣战”,此外还实施了社区行动计划、学前儿童启蒙教育计划等。其他国家如英国的《儿童扶贫法案》、法国的“扶贫计划”和德国的《联邦改善区域结构共同任务法》等在促进落后地区经济社会发展方面也起到了重要作用。在反歧视方面,美国、英国、欧盟和日本都有完备的立法。尤其是美国,仅反就业歧视法就多达十余部,且有大量判例具有重要立法价值。这一时期,日本的《反对性别歧视法》(1975)、瑞典的《男女机会均等法》(1980)等纷纷出台。根据反歧视法的差别待遇原则,都是为了促进国民获得实际平等地位,实现社会实质公平。

    (三)学术研究史视角

    我国社会法研究肇始于民国初期。1949年以后,又分为“大陆”和“台湾地区”两个支系,前者的探索早于后者,而且在一定程度上沿袭了民国的传统。从学术史上看,学术界在某些观点上取得了较大共识,但核心范畴略有差异。

    民国的社会保护和社会幸福说。多数民国学者认为,社会法是救济和保护社会弱者之法。如李景禧提出,社会法是“为防止经济弱者地位的日下,调整了暂时的矛盾”。陆季藩指出,社会法是“以保护劳动阶级或社会弱者为目标”的法。林东海认为,凡是“解决社会上之经济的不平等问题”的立法,都是社会法。杨智提出,社会法是“以增进及保护社会弱者之利益为目的”的法。也有学者主张,社会法包含一般社会福利。如张蔚然提出,社会法是“关于国民经济生活之法”。卢峻认为,社会法的目标是“使社会互动关系或社会连立关系”达到最高目标。黄公觉则明确提出,广义社会法“指一切关于促进社会幸福的立法”,狭义社会法仅指“为促进社会里的弱者或比较不幸者的利益或幸福之立法”。

    大陆的劳动保护与社会保障说。1993年,中国社会科学院法学研究所在一份报告中将社会法解释为“调整因维护劳动权利、救助待业者而产生的各种社会关系的法律规范的总称”。这是新中国学术界首次系统阐述这一概念。最高人民法院2002年编纂的《社会法卷》认为,“坚持社会公平、维护社会公共利益、保护弱势群体的合法权益”是“社会法的主要特点”。在学术界,多数学者将社会法定义为调整劳动与社会保障关系的法律。如张守文认为,社会法“具有突出的保障性”,主要是“防范和化解社会风险和社会危机,保障社会安全和社会秩序”;赵震江等认为,社会法是“从整个社会利益出发,保护劳动者,维护社会稳定”,包括“社会救济法、社会保障法和劳动法等”。从中国社会法学研究会历次年会讨论的情况来看,劳动法、社会保障法、慈善法属于社会法的观点已被普遍接受。

    台湾地区的社会安全和生活安全说。很多台湾学者从社会保护出发,将社会法称为社会安全法。如王泽鉴认为,社会法“系以社会安全立法为主轴所展开的”。钟秉正认为,社会法是“以社会公平与社会安全为目的之法律”,“以消除现代工业社会所产生的各种不公平现象”。也有学者明确提出社会法是生活安全法。如郝凤鸣认为,社会法是“以解决与经济生活相关之社会问题为主要目的”,“藉以安定社会并修正经济发展所造成的负面影响”;陈国钧认为,社会法旨在保护某些特殊人群的“经济生活安全”,或用以促进“社会普遍福利”,这些法规的集合被称为社会法或社会立法。总之,在台湾学术界,社会法集中指向与社会保护、社会保障和社会福利等相关的社会安全或生活安全法。

    二、决定社会法本质的要素分析

    事物的本质和发展方向是由核心要素决定的,在讨论社会法的本质之前,我们先分析决定其本质的核心要素。如前所述,社会法产生的根源是社会的结构性矛盾,尤其是市场化带来诸多社会问题,使得国家不得不运用公权力干预私人经济,达到保障民众生存权、化解社会矛盾的目的。在一定意义上,政治国家、经济社会和历史文化等要素在社会法本质形成过程中起到了决定性作用。

    (一)政治国家要素

    作为国家在干预私人领域过程中形成的全新法律门类,社会法与传统的自由权、自由市场经济体制以及民主法治国家理念存在一定冲突。正是国家职能的转变决定了社会法的内在精神和本质,使人民受益于国家的关照。

    1.从消极国家到积极国家

    在古典自由主义时期,政府主要承担“守夜人”角色。资本主义发展到垄断阶段以后,不但造成市场机制失灵,而且难以维持社会稳定。于是,社会上层开始形成一种共识,即通过国家干预,改良资本主义制度,以消除暴力革命的隐患。正如马克思和恩格斯指出,“资产阶级中的一部分人想要消除社会弊病”,“但是不要由这些条件必然产生的斗争和危险”。按照黑格尔的阐述,国家的目的在于“谋公民的幸福”,否则它“就会站不住脚的”。在这种情形下,国家这只“看得见的手”开始不断发挥作用,以平衡不同社会群体的需求,积极国家随之诞生。因此,国家干预并非理论家的发明,而是在历史进程中实际发生的,即对抗已重新采取直接的国家干涉主义形式,国家进一步成为社会秩序的干预者。

    国家干预社会生活是通过社会立法实现的,直接决定了社会法的性质和宗旨。由于国家不得不采取干涉主义的社会立法来做社会救济的工具,于是在法律上体现为,国家对于任何人都有保障其基本生活的义务。从立法宗旨来看,旨在打破弱肉强食的丛林法则,将社会贫富分化控制在一个可以承受的动态合理范围之内。比如,通过劳资立法,克服自由资本主义无节制地追求高额利润造成的社会分裂等严重后果。事实上,国家实行经济社会干预,不是否认私人利益和个人需求,而是将其重整到更高的全社会层面,即运用国家的力量实现个人的特殊利益与社会整体利益的统一。因此,社会法表面上是社会性的,实质上是政治性的,是一种典型的政治法学,它发轫于人对国家的依附性,发生于国家对共同体内每个人的幸福所负有的法律责任,使国民的生活安全得到有效保障。

    2.从社会国到福利国家

    积极国家进一步引发从消极自由到积极自由的发展。也就是说,国家不仅有保障公民基本自由不受侵犯的消极义务,更有保障公民基本生存与安全的积极义务,这也是社会发展进步的重要标志。在这一背景下,政府不再像以前一样仅仅囿于维护社会秩序,或对出现的问题进行决策干预,而是更进一步转换为保障人民具有人格尊严和最低生存条件的给付行政。通过给付行政,政府承担了涵盖广泛的计划性的行为、社会救济与社会保障等任务。尤其是在工业社会条件下,国民享有基本权利和事实自由的物质基础并不在于他们为社会作过什么贡献,而根本上依赖于政府的社会给付。正是给付行政成就了今天的社会国,即一个关照社会安全与民生福祉的国家。社会法便是为实现社会国的目标任务形成的法律体系,而社会国原则又为立法者干预私人领域提供了合法性依据。

    19世纪末20世纪初,随着垄断资本主义发展,社会本位的法理念开始取代个人本位的法思想并居于支配地位。这一时期,政治国家与市民社会的矛盾在法律上体现的结构也发生了新变化,使得国家在向国民承诺下不断增加福利范围。1942年,英国“贝弗里奇计划”首次采用福利国家称谓,通过财产重新配置,为公民提供基本生活保障。二战之后,这一思想主宰了西方的正统观念,很多国家确认促进民生幸福是公民的重要社会权利,对广泛和普遍的社会福利而言同样如此,国家承担了民众直接或间接的生活责任。可见,政治国家不但有力地推动了社会法的发展,而且决定了其福利化方向,最大限度地消除了各阶级之间的对抗冲突以及社会革命的危险,促进了社会公正公平,有效维护了社会稳定。

    (二)经济社会要素

    工业革命以后,资本主义的新信念是唯物质主义的,即只要物质财富足够多,一切社会问题都会自动消失。事实上,纯粹的市场机制无法解决社会公平、效率以及经济长期稳定等重要问题。由于市场体系造成了巨大的社会混乱,如果不深刻调整,市场机制也将被摧毁。因此,资产阶级国家被迫用法律来防止资本主义剥削过度的现象,通过社会立法去收拾资本和市场留下的烂摊子,出现了以社会法为核心、旨在对冲和矫治市场化不利后果的社会保护运动,结果连最纯正的自由主义者也承认,自由市场的存在并不排斥对政府干预的需要。正如罗斯福在1938年向国会提交的一份“建议”中指出:“我们奉行的生活方式要求政治民主和以营利为目的的私人自由经营应该互相服务、互相保护——以保证全体而不是少数人最大程度的自由。”

    经济民主理论认为,经济问题与伦理问题密切相关,人类经济生活应满足高尚、完善的伦理道德方面的欲望。社会法倡导社会保险、社会救济、劳工保护等社会权利,以解决资本主义发展中日益严峻的社会问题。一方面,要保障每个人拥有获取扩展其能力的物质条件和自我实现的机会;另一方面,要在支持扩大国家给付的理由与加重政府财政负担的结果之间进行权衡。可见,社会法的产生不单纯是对民众生活的保护,也是产业制度有效运行和社会存续的必需。因此,社会法在本质上是由资本主义的结构性矛盾决定的,是这一矛盾在法学层面的反映。因此,社会法与市民法同属资本主义的法,它不否认市场经济。

    与此同时,社会要素也深刻地影响着社会法的本质。随着工业革命深入发展,市场为社会创造了巨额财富,也制造了大量贫困。正如马克思恩格斯所说,“劳动生产了宫殿,但是给工人生产了棚舍”。1848年,《共产党宣言》发表,整个欧洲为之震动。恩格斯明确指出:平等不仅应“在国家的领域中实行”,还应当“在社会的、经济的领域中实行”。这一时期,各种社会主义思潮如德国的社会民主党运动、法国的工团社会主义、巴枯宁与蒲鲁东的无政府主义等纷纷发出社会改革的呼吁。由此看来,近现代社会实际上受到了一种双向运动支配,其一是经济自由主义原则,其二是社会保护原则,二者交互作用。应该说,社会法的产生正是对社会无序发展及其大量不良后果进行矫正的反向运动。

    从本质上看,社会保险、社会救助等均是由社会再分配决定的,其目的是使社会上的富人与穷人达成一种建立稳定秩序的合作。如德国当时的社会保险立法受到普遍赞成,资方认为可以抵消暴力革命,劳方则视其为实现社会主义的第一阶段。这一共识不断巩固和积累,成为重要的社会支持手段。美国学者卡尔多等在社会福利的基础上,还提出一种社会补偿理论,认为从受益者新增收益中拿出一部分补偿受损者,就实现了帕累托改进。总之,社会再分配是以生存权和社会公平为法理基础,这是社会法最重要的价值理念,体现了生产关系变革和社会法的发展进步。而且,社会法的发达程度是由经济社会发展水平决定的。一方面,所有的社会权利实现都依赖于经济发展指数和财政状况;另一方面,它限制资本主义的非人道压榨和剥削,却使资本家在所谓合法范围内得以充分发展。

    (三)历史文化要素

    社会是由历史事实的总和所规定的、经验地形成的人类质料,作为最具解释力的最新法理范式,社会法标志着人类政治文明、法治文明和社会现代化达到了空前高度,历史意义深远。历史法学派明确指出,法是以民族的历史传统为基础生成的事物,是从特殊角度观察的人类生活。萨维尼详细考察了德国法,认为法的素材“发源于国民自身及其历史的最内在本质”,因而受历史决定。马克思认为,历史意味着现实的个人通过生产实践活动进行物质创造,并逐渐认识世界、改造世界;而“表现在某一民族的政治、法律、道德、宗教”等“语言中的精神生产”也是“人们物质行动的直接产物”。因此,法律是历史的产物,是世世代代的人活动的结果。可见,马克思历史观的内核在于,从历史和现实出发考察法律的形成和本质,并将市民社会理解为整个历史和社会立法的基础。

    德国是现代社会法的发源地,其社会立法极大地丰富、发展和完善了现代法律体系。从实践中看,德国社会法受历史因素的影响是广泛而深远的。如1794年《普鲁士普通邦法》规定,国家有义务对那些为了共同利益而被迫牺牲其特殊权利和利益的人进行补偿。以此为源头,德国逐渐孕育出公益牺牲原则,成为社会补偿法的理论渊源。为了应对二战受害人及其遗属的供养问题,德国出台了《联邦供养法》,并逐步演变为对各类暴力行为受害人的补偿。再如,德国法律有一个苛情救济制度,主要是为恐怖和极端犯罪受害人提供人道主义款项,但受害人无法主动主张这一权利。2013年,第十八届议会提出,要制订新的受害人补偿和社会补偿法。不久,柏林恐怖袭击案发生,使得改革进程急剧加速。如今,服民役者、因接种疫苗身体受损者均被纳入社会补偿范围,使其社会法体系日臻完备。

    文化也是社会法本质形成的重要决定因素。马克思指出,“权利决不能超出社会的经济结构以及由经济结构制约的社会的文化发展”,因为文化是现代社会思想的特殊元素,奠定了一整套理解和解释人类行为的规则。社会文化决定论甚至认为,人类及社会制度的形成,由各种文化价值和社会机构决定。尤其是法律文化,决定了一国法律的内在逻辑,以及历史进程中积累下来并不断创新的群体性法律认知、价值体系、心理态势和行为模式。客观地说,很多法律特性只有通过法律文化才能得到解释,如德国、英国、美国和法国法的不同。因此,法律既存在于一个与传统相通的整体之中,又存在于一个与他物相关联而形成的民族精神的整体之中,他们共同构成了法律的文化意义的经纬。

    决定社会法本质的文化要素有法律观念、传统和制度等,如俾斯麦立法是德国留给世界最宝贵的政治遗产,是法律文化的最高层次。此外,法律理论的影响也是不言而喻的。一是社会连带理论。如社会连带主义法学提出,连带关系要求个人对其他人负有义务,每个人都依靠与他人合作才可能过上满意的生活成为社会保险法的理论基础。二是公民权利理论。如马歇尔提出,公民权利“是福利国家核心概念”,成为福利立法的理论基石。三是差别平等理论。这一理论认为,财富和权力的不平等,只有最终能对每个人的利益,尤其是在对地位最不利的社会成员的利益进行补偿的情况下才是正义的。这些文化元素对社会法本质形成起到了重要的决定作用。因此,如果剥夺了文化要素,社会法就不是今天的样子,也不可能实现生活安全的社会化和国家化。

    三、社会法本质的理论证成

    作为独立的学科名称和专门法学术语,社会法有特定的语意内涵、独立的研究对象和独特的法律本质,应立足于中国的历史和现实文化,借鉴国外经验,构建具有中国特色的社会法理论。并非所有与社会或社会问题相关的法律都是社会法,它以为每一个社会成员提供适当的基本生活条件为使命,因此不仅仅是现代社会场域的法,也是应对现代社会的法。

    (一)社会法是弥补私法不足的法律体系

    私法和市场竞争必然孕育着贫富分化与社会危机。为了挽救资产阶级统治秩序,资本主义国家遂通过社会立法来修正某些私法原则,限制完全的自由竞争,矫正私法和自由放任的市场经济带来的负面后果。

    1.私法公法化与公法私法化

    近代私法推定法律关系发生在身份平等且充分自由的人们之间,对市场经济的保障是十分必要的,至少对于市场主体来说形成了私人平等。所谓私人平等,就是人格与资格平等、机会均等。因此,在经济交往中,只要不采取欺诈、强迫等手段,各方都可以自由地追求利益最大化,国家作为中介人和社会契约的执行者只有保护个体权利不受侵害的消极义务,没有促进个体利益的积极义务。但是,这种抽象平等忽略了人们在天赋能力、资源占有、社会地位等方面的实际差异,结果产生了事实上的不自由、不平等,不可避免地出现“贫者愈贫,富者愈富”的马太效应。正是私法调整机制的不足以及所有权绝对和个人本位法思想泛滥,导致社会弱者生存困难、劳动者生存状况不断恶化和劳资对立等严重社会后果,迫切需要对私法意思自治、形式平等、契约自由等原则进行修正。

    由于私法和市场机制不能自动解决社会贫困、失业等问题,在法律发展中出现了私法公法化和公法私法化现象,逐渐形成社会法这一以实现社会实质公平为目的、以公私法融合为特征的新型法律部门。这是因为,单纯的公法容易导致过多限制经济自由的危险,单纯的私法又无法影响经济活动的全部结构。所谓私法公法化,是国家运用公共权力调整一些原本属于私法的社会关系,使私法带有公法的色彩和性质;所谓公法私法化,是国家以私人身份出现在法律关系中,将私法手段引入公法关系,使国家成为私法的主体和当事人。这种公共权力介入私人领域的做法就是公私法融合,并随之产生与公私法并列的第三法域。按照共和主义的观点,在私人对个人基本权利产生实质性支配关系时,国家有义务帮助个人对抗这种支配,此时基本权利经由国家介入得以保全。

    2.社会法对市民法的修正

    如前所述,市民法(即民法)有益于资源有效配置与财富公正分配,但由于各主体掌握的信息、谈判能力和经济力量等不同,交易结果不一定公平。在现实中,很多人认识到法律的基本精神是有利于强者而非弱者,市民法确立的平等协商、契约自由等原则在实践中形同虚设。一方面,它忽视了个体的现实差异;另一方面,市民法上的“人”是一种超越实际存在、拟制化的抽象人,已逐渐丧失伦理性与社会正当性基础。从法史可知,对人的看法在很大程度上决定着法律的发展趋势和方向。20世纪下半叶起,新的利益前所未有地逼迫着法律,要求以社会立法的形式得到承认,法律也越来越多地确认其存在,将空前大量的权利提高到受法律保护的地位。正是源于此种法理论的立法被称为社会法,这一变化也体现了从市民法到社会法、从近代法到现代法原理的重大转换。

    与市民法不同,社会法更关注人的具象性与实力差异,由此很多学者从市民法修正角度来阐释社会法,将社会矫正思想置于自由主义的平等思想之上。如沼田稻次郎提出,社会法是以“对建立在个人法基础上的个人主义法秩序所存在弊端的反省”为特征的法。事实上,社会法对市民法的修订主要体现为生存权保障,具体而言就是对财产权绝对、契约自由、平等协商等原则的限制,一些学者称之为民法社会化或现代化,是不准确的。社会法对民法的修正是系统化的,在法律理念、原则、方法和调整的法律关系上有显著不同。总之,社会法是传统市民法不足的产物,正如马克思所说,立法者“不是在创造法律,不是在发明法律,而仅仅是在表述法律,他用有意识的实在法把精神关系的内在规律表现出来”。

    (二)社会法调整的是实质不平等的社会关系

    由于私法本身无法推动不平等的社会关系向实质平等转变,以公权力矫正不平等就成为必然选择。社会法正是通过对不平等的社会关系实行区别对待和差异化调整,增强弱者与强者抗衡的力量,实现实质意义的平等和公平。

    1.从形式平等到实质不平等

    私法的形式平等旨在确立绝对财产权和缔约自由权,使个人通过市场机制选择追逐利益最大化,并承担由此带来的后果。但是,这种平等作为近代民主政治的理念不是实质性的,而是舍弃了当事人不同经济社会地位的人格平等和机会均等,并非事实上的平等。恩格斯说:“劳动契约仿佛是由双方自愿缔结的”,这种“只是因为法律在纸面上规定双方处于平等地位而已”,“这不是一个普通的个人在对待另一个人的关系上的自由,这是资本压榨劳动者的自由”。拉德布鲁赫在《法学导论》中写道: “这种法律形式上的契约自由,不过是劳动契约中经济较强的一方——雇主的自由”,“对于经济弱者……则毫无自由可言”。因此,所谓契约自由和所有权绝对,事实上已成为压迫和榨取的工具。

    尽管私法形式正义要求按照法律规定分门别类以后的平等对待,但它并未告诉人们,应该怎样或不该怎样分类及对待,如果机械地贯彻形式平等原则,就容易产生许多弊病。一方面,总会有一些人处于强势地位,一些人居于劣势地位;另一方面,强者常常利用优势地位欺压弱者,形成实际上的不平等关系。以劳动关系为例,如果不对契约双方进行一定干预,劳动者通常被迫同意雇主的苛刻条件而建立不平等劳动关系。由于市场本身无法克服这一现象,必然带来一系列社会利益冲突,甚至导致严重的社会危机。正是自由主义无序发展导致19世纪出现垄断与无产、奢侈与赤贫、餍饫与饥馑的严重对立现象,因此必须对形式平等导致的实质不平等进行矫正,通过社会法规制,平衡各种社会矛盾和利益冲突。

    2.从实质不平等到实质平等

    为了达到实质平等,资产阶级国家开始通过社会立法适当保护社会弱者,抑制社会强者。与民法不同,社会法既有私法调整方法,也有公法调整方法,因为单靠私法规范不能达到目的,必须运用公法的强制性规范予以支持才能实现权利的真正保障。作为反思法律形式平等的必然结果,社会法主要是以社会基准法和倾斜保护的方式对平等主体间不平衡的利益关系予以适度调节,设定一些法律禁止或倡导的方面,体现了马克斯·韦伯所称“现代法的反形式主义”趋势,是一种“回应型法”或称“实质理性法”。其法理基础是,为了校正形式平等所造成的实质不平等,对个人生存和生活条件进行实际保障。当然,这种积极义务是辅助性的,只是对形式平等的缺陷和不足进行必要修正和补充,并没有取代和全面否定形式平等,正如社会法没有取代和完全否定民法一样。

    由此可见,社会法调整的乃是实质不平等的社会关系,旨在纠正市场经济所导致的必然倾斜。所谓实质平等,是国家针对不同人群的事实差异,采取适当区别的对待方式,以缩小由于形式平等造成的社会差距。为了实现这一目标,立法者一方面关注平等人格背后人们在能力、条件、资源占有等方面的不平等,并以倾斜保护方式实现人与人之间的和谐;另一方面重视为人们提供必需的基本生活保障,使得立法的目标变成了结果的平等。有鉴于此,社会法上的社会保障并非临时性救济,也不是政府“信意”为之,而是法律赋予的强制性义务。总之,社会法是近现代社会实质不平等的产物和反映,以应对私法产生的“市场失灵”和过度社会分化等问题。马克思说:“人们按照自己的物质生产率建立相应的社会关系,正是这些人又按照自己的社会关系创造了相应的原理、观念和范畴。”

    (三)社会法通过基准法机制发挥作用

    与民法不同,社会法有一个基准法机制即最低权利保障,它提供了一种在社会的基本制度中分配权利和义务的办法,即将弱者的部分权利规定为强者或国家和社会的义务,以矫正实质意义的不平等,缩小社会差距。

    1.以基准法保障底线

    所谓社会基准法,是将弱者的部分利益,抽象提升到社会层面,以法律的普遍意志代替弱者的个别意志,实现对其利益的特殊保护。具体就是,以立法形式规定过去由各方约定的某些内容,使弱者的权利从私有部门转移到公共部门,实现这部分权利法定化和基准化。比如,国家规定最低工资、最低劳动条件、最低生活保障标准等都是基准法,因其具有公法的法定性和强制性,任何团体和个人契约都不能与之相违背或通过协议改变。社会基准法在初次和再次分配中都有体现,如最低工资法属于初次分配,最低生活保障法属于再次分配。在一定程度上,社会基准法是对私法所有权绝对、等价有偿、契约自由等原则的限制和修正,通常被认为是推行某种“家长制”统治的结果,因为要实现从社会的富有阶层向贫困阶层进行资源再分配,将不可避免地侵犯到财产权的绝对性。

    社会基准法克服了弱者交易能力差、其利益常被民法意思自治方式剥夺的局限,在一定程度上改变了强弱主体力量不均衡状态。但是,它没有完全排除私法合意,即在基准法之上仍按契约自由原则,由市场和社会调节,这是社会法与其他部门法的显著不同。也就是说,当事人的约定只要不违反基准法,国家并不干预,个人和团体契约可以继续发挥作用。因此,社会法规范既有公法的强制性,也有私法的任意性,通过基准法限制某种利己主义的表达,通常被视为一种由统治权力强加于个人的必要。社会法与行政法的共同点在于,都实行强制性规范,但社会法是一种底线控制,没有完全排除契约自由。社会法与民法的共同点在于都尊重契约自由,但前者对契约自由作用有所限制,后者是当事人完全意思自治,任何外力干预都被视为违法或侵权。

    2.以义务规范体现权利

    社会基准法的另一种表现形式是,以义务规范体现权利。这也是社会法的显著特征之一,即立足于强弱分化人的真实状况,用具体的不平等的人和团体化的人重塑现代社会的法律人格,用倾斜保护方式明确相对弱势一方主体的权利,严格规定强势一方主体的义务,实现对社会弱者和民生的关怀。因此,社会法重在对私权附以社会义务,授予权利也是使相对人承担义务的手段。以社会保障法为例,社会救助、社会优抚、社会福利等主要由国家提供,社会保险则由雇主、雇员和国家共同负担,并规定为国家和社会义务,以保障民众的基本生活权利。由此,现代国家已成为新的财产来源之一,民众的生存权不再建立在民法传统意义上的私人财产所有权之上,而是立足于国家提供的生存保障与社会救济的基础之上。

    社会法上的权利义务之所以不一致,是因为社会生活中客观存在一种不对等性,法律对当事人的权利义务设定就有所不同。具体就是,通过后天弥补,以法律形式向弱者适当倾斜。因此,社会法不关心穷人对自己的困境负多大责任,赋予其社会保障权也不以承担义务为前提条件。其实质是,将民众和社会弱者的基准权利规定为国家和社会的义务,因此与一些学者所谓义务本位不同。如欧阳谿认为,社会法“在于促进社会生活之共同利益”,“必以社会为本位”。事实上,封建主义和资本主义以义务为本位的法律,只不过是多数人尽忠于少数人的义务而已。不仅如此,社会法对所有权设定义务并不以权利滥用或过错为条件,限制的也不是个体而是类权利,限制方式包括使所有权负有更多义务,向弱者适当倾斜等,与民法的禁止权利滥用原则并不相同。

    (四)社会法的根本目标是生活安全

    不同于民法维护交易安全、刑法维护人身和财产安全、行政法维护国家安全,社会法旨在维护民众的生活安全,保障其社会性生存。它基于保护社会脆弱群体而产生,形成了不同类型、内容丰富、功能互补的制度体系。

    1.社会法:维系民生之法

    社会法的内在精神是保护民生福祉,也就是保障人民的生活、群众的生计和社会安全。马克思指出:“人们为了能够‘创造历史’,必须能够生活,但是为了生活,首先就需要吃喝住穿以及其他一些东西。”从本质来看,社会法的终极目标是,确保每个公民都能过上合乎人的尊严的生活,保障民众免于匮乏的自由。其核心在于,保护某些特别需要扶助人群的经济生活安全,促进社会大众的普遍福利;其实质是,对市场经济中的失败者以及全体国民予以基本的生存权保障,以此促进整个社会的和谐稳定。笔者曾将理解社会法的关键词概括为“弱者的生活安全”“提供社会福利”“国家和社会帮助”,极言之即“生活安全”。由于社会法建立了一种弱者保护机制和利益分配的普遍正义立场,通常称为民生之法。

    社会法保障民众的生活安全有一个从部分社会到全体社会的发展过程。早期社会法仅仅是维护特殊群体的生活安全,认为社会法保护的是经济上处于从属地位的劳动者阶级这一特殊具体的主体。随着社会的发展,社会法的调整范围从弱者的生存救济拓展到普遍社会福利,实现了从部分社会到全体社会的转换。汉斯·F.察哈尔对此有过精辟总结,认为狭义社会法是“以保护处于经济劣势状况下的一群人的生活安全所”;广义社会法是“以改善大众生活状况促进社会一般福利”。从功能学上看,社会法有利于消融社会对抗、冲突,实现国家和社会安全,即通过保障民众的基本生存权利,扩大社会福利范围,增加公共服务数量,使每一个人都能获得某种程度的生活幸福感。

    2.社会法的最高本体和逻辑结构

    社会法主要通过行政给付保障民众的生活安全,这就要求国家直接提供诸如食品、救济金、补贴等基本条件,使人们在任何情况下都能维持起码的生活水准,这是社会法的最高本体。社会法上的给付分为间接给付和直接给付,如政府在工资、工时、工作条件等方面对企业进行规制,是一种间接给付;国家为保障民众生存而进行社会救助、社会保险、社会优抚补偿等,是直接给付。二者均指向国家积极义务所蕴含的实质平等。一方面,社会法上的给付是法定的,其依据必须是国家所颁布的实在法,而不能单纯地依靠宪法,因此无法律则无社会给付;另一方面,在社会给付法律关系中,国家事实上是给付主体和“财产的公众代理人”,这既是一种公共职能,也是一种国家义务。

    通过行政给付,社会法确认和保护民众的生存权、社会保险权与福利权等,最终形成系统化、不同类型的结构体系。一是社会保护法,即保护妇女、未成年人、残疾人、老年人、劳工等脆弱群体的法规概称。目前,国际社会普遍将社会保护的重点确定为在社会保障体系中得不到充分保护的人。二是社会保障法,即国家用来应对全体社会成员因疾病、生育、工伤、失业和年老等引起收入减少或中断后造成经济和社会困境的法规总称,包括社会保险、社会救助、社会优抚与补偿法等。三是社会促进法,即某一类社会立法,能够促进社会实质正义、社会效用和福利等普遍提升,使公民的生活更加富足、便捷、安定,如慈善法、反歧视法、扶贫法等。这是社会法的三个基本类型,都蕴含行政给付,也都以保障民众的生活安全为目标,在本质上是一致的。

    四、围绕社会法本质的体系建构

    自新中国成立尤其是改革开放后,我国社会法建设取得了很大成就,但相比之下仍然是最为落后的法律部门。由于起步较晚,研究还不充分,至今没有形成相对系统的社会法体系。如何从本质上对社会法以概念清晰、理论坚实、结构严整、逻辑缜密的方式进行体系化建构,并外化为全面有序的法规系列,是推动我国社会法实践和经济社会稳定发展必须解决的重要问题。

    (一)加强社会法科学民主立法

    参照发达国家经验,一方面,我国社会法最大的问题是基本法律缺失,本应是“四梁八柱”的社会救助法、医疗保障法、社会福利法、社会补偿法等仍不见踪影。在社会法分支领域,亦存在诸多盲点,如集体协商与集体合同法、反就业歧视法等尚未出台,涉及平台劳动者保护的法规亦鲜有问世。另一方面,一些法规存在矛盾和冲突。

    针对上述问题,宜在现有法规基础上,以保障民生和共同富裕为导向,进一步完善社会法体系。当前,我国民众在就业、养老、医疗、居住等方面仍存在很多困难,亟待通过立法解决。而且,要促进社会法规范和制度衔接。以社会救助和社会保险为例,我国和美国都实行分立模式,但美国没有社会保险的居民可以得到相应社会救助保障。在英国,1909 年的《扶贫法》要求政府在实行社会救助的同时,通过强制性社会保险使失业人员得到生活救济。在解决法规冲突方面,我国《立法法》确立了两项制度:一是直接解决机制,即“新法优于旧法”“上位法优于下位法”“特别法优于一般法”;二是间接解决机制,即将无法适用处理规则的冲突纳入送请裁决范围,区分法定和酌定情形,由有权机关裁决。此外,也可以运用利益衡量方法化解法律规范冲突,填补法律漏洞。

    同时,提高立法质量。由于种种原因,我国社会法普遍存在立法质量不高问题,主要表现为立法层级低、碎片化严重、落后于实践发展等。以社会保障法为例,除了《社会保险法》,其他都是行政法规和部门规章。由于法规权威性不足,我国社会保障发展明显受限。因此,提高立法层级,建立覆盖面广的法规体系非常重要。从《社会保险法》来看,也存在很多问题。一是占全国人口一半的农民、没有就业的城镇居民、公务员和军人等保险都是“由国务院另行规定”,没有体现全民性;二是其内容远远落后于实践,如城居保与新农合、生育保险与医疗保险已合并,机关事业单位已纳入社会保险,社会保险费明确由税务部门征收,但《社会保险法》均没有体现。由于社会法立法质量不高,不仅没有解决好贫富差距问题,而且在某种意义上使贫富差距逐渐扩大。

    要改变这种状况,必须深入推进社会法科学立法、民主立法。科学立法的核心在于根据社会发展需要,制定符合实际情况的社会法制度。事实上,一项法律只有切实可行,才会产生效力。以最低生活保障法为例,对救济款实行“一刀切”是不科学的,一些发达国家通常采用一种负所得税法,即按照被保障人收入实行差额补助,可以借鉴。所谓民主立法,就是在立法决策、活动中,坚持人民主体性地位,“要把体现人民利益、反映人民愿望、维护人民权益、增进人民福祉落实到依法治国全过程”。需要说明的是,我国社会法意在保障民众的基本生存权,将贫富分化控制在一定范围内,并非“福利超赶”或“泛福利化”,否则会“导致社会活力不足”,阻碍人们的积极性和创造性。

    (二)提升社会法行政执法效能

    社会法行政执法分为两项:一是行政给付,二是行政监察。前者为积极执法,由政府主动履行法定义务;后者为消极执法,实行不告不理原则。在行政执法中,如果当事人违法,还会产生相应的行政、民事和刑事责任。

    1.充分发挥行政给付功能

    社会法行政执法的主要内容是行政给付,这是社会法与传统部门法最显著的区别,体现了法律思想从形式正义到实质正义的追求。但从我国行政给付情况看,重视和保障弱势群体利益的特征并不明显。党的二十届三中全会明确提出,要加强普惠性、基础性、兜底性民生建设。近年来,尽管国家采取了大量措施解决民生问题,但相对贫穷问题依然存在,民生保障还存在薄弱环节。一方面,行政给付中社会保护和社会促进支出很少;另一方面,城乡和地区之间差异较大。在经济发达地区和效益好的单位,给付标准高,在落后地区和效益不好的单位,给付标准低,形成一种反向歧视。不仅如此,有的地方仍存在“人情保”“关系保”等现象,使得法定的行政给付和社会保障功能大打折扣。

    社会法上的行政给付有一个重要特点是,社会化程度越高,保障功效越好,体现的管理制度越公平。我国正处于社会转型期,为更好防范和化解新的社会矛盾,亟待建立公平的行政给付制度体系。一是政府积极主动执法。社会法所保障的社会权利与政治权利不同,政府不积极作为就很难实现。以残疾人保障为例,他们有着特殊的生理和社会需求,需要额外帮助和政府主动作为。当然,社会保护给付并不否定NGO和私人机构的作用,因为政府也会失灵。二是建立行政给付统筹与协调制度。以社会救助为例,目前最低生活保障和临时救助由民政部门负责,特定失业群体救助由人社部门负责,教育类救助由教育部门负责,且救助给付审批程序烦琐,耗时过长,有待改进。三是坚决惩治行政给付中的腐败行为,真正建立群众满意的阳光下的给付制度。

    2.减少行政立法,加强监察职能

    我国社会法有一个重要特点是,法律条文多是原则性、指导性规定,软法性质明显,在立法中授权政府部门另行制定法规或规章的情况很常见。由此,行政部门实际上扮演了执法和立法主体的双重角色。以劳动法为例,由于没有处理好原则与规则的关系,很多规范仍以行政法规和部门规章的形式出台。以社会保险法为例,很多现行制度没有在法律中体现,而是由国务院及其部委的“决定”“通知”等规定。例如,有关养老保险费缓缴、基本养老保险待遇、工伤和医疗保险先行支付与追偿等,都是由国务院文件规定,没有法定标准。甚至一些体制性问题如社保转移接续、社保费征缴主体等都是由行政机关协调解决。

    在我国社会法执法中,应“去行政化”,使其回归监察定位。一是建立健全的监察体制。目前,劳动和社会保障监察已进入实操,但仍存在机构名称设置不规范不统一、规格不一致等问题。二是执法必严。社会法执法不严现象也应纠正,如基本养老保险全国统筹是《社会保险法》明文规定的,但至今省级统筹的目标仍未实现。为此,要大力推动执法权限和力量下沉,以适应社会法执法的实际需要。三是改进执法方式,逐步解决执法中的不作为、乱作为问题,将权力关进制度的笼子。

    (三)推进社会法司法化

    我国社会法在司法机制上仍存在很多空白,例如,社会保护和社会促进法体现的主要是宣示性权利,很少在法院适用。事实上,只有在社会权利受到法院或准司法机构保护的时候,社会法才能真正发挥稳定器的作用。

    1.社会法司法化的限度

    社会法上的诉权并非完全的权利,而是受到了一定限制。一方面,有关社会权的诉讼不可能扩展到尚未纳入法律保护的领域;另一方面,即便有些权利已经纳入法律保护,也不是完全可诉的。这也是社会法区别于其他部门法的显著特征。首先,社会权与自由权有很大区别。社会权需要国家采取积极措施才能实现,自由权只要国家不干预即能实现。其次,国家对国民的责任有一定限度。社会法上的国家责任是由法律明确规定的,是一种有限责任。再次,由司法决定行政给付有违权力分立理念。社会法的行政给付传统上都是由立法和行政机关作出裁量,如果司法过度侵入,会被认为危及民主制度和权力分工体系。最后,由立法和行政机关决定公共资源分配有现实合理性。由于社会法上的权利保护与大量资金投入有关,请求权客体(财政资源)的有限性直接决定了其诉讼的限制性。

    但是,这并不意味着社会法上的权利是不可诉的,承认一部分权利的可诉性,可以促进国家履行其承诺的积极义务。以社会保障权为例,对于公民依法享有的社会保险、社会福利等待遇,当事人可以起诉;对于基准法和约定权益受到侵犯,也可以起诉。如1970年的戈德伯格诉凯利案中,美国联邦最高法院明确指出,社会福利可以请求法院救济。在英国和法国,社会法诉讼由社会保障法庭解决,德国则设立了专门的社会法院。但是,对政府确立的给付标准、最低工资标准等不满意,则不能起诉,因其在很大程度上是由政治而非司法决定。这也是社会法与其他部门法最重要的区别之一。如在1956年日本朝日诉讼案中,原告认为每月600日元不符合宪法规定的最低生活条件,但由于被告日本政府的解释理由更充分,导致“原告的诉讼请求无疾而终”。

    2.社会法司法化的实践进路

    确立公益诉讼和诉讼担当人制度。由于社会权益被侵害的后果不限于某个当事人,而是包含不特定多数人甚至公共社会,非利害关系人亦可起诉。比如,印度建立了一种公益诉讼模式,即只要是善意的,任何人都可以为受害人起诉。在社会法诉讼中,还有诉讼担当人和集团诉讼概念,也是对民事诉讼主体资格的突破和超越。如在集体合同争议中,工会是诉讼担当人和唯一主体,其他任何组织和个人都无权起诉。诉讼担当人与民法上的委托代理人不同,当事人不能解除其担当关系。此外,集团诉讼也是社会法的另一种诉讼机制。20世纪90年代,利用集团诉讼处理劳动保护、社会保险等纠纷成为潮流。对于诉讼请求较小的当事人来说,如果起诉标的比诉讼费用少,当事人就倾向于集团诉讼。

    实行举证责任倒置制度。社会法司法机制同样体现了向弱者倾斜的理念。20世纪以来,在大量司法实践中,诞生了社会法另一个独特的司法机制——举证责任倒置。以工伤事故为例,法律明确规定由雇主承担举证责任;在欠薪案中,劳动者对未付工资的事实不负举证责任,都体现了对劳动者的特殊保护。这一点从工作场所中雇员给雇主造成损失和雇主给雇员造成损失承担责任以及举证责任的“非对等性”也可以看出。再如,就业歧视在美国等国家是违法的,当事人只要表明歧视发生时的情况即可,此后举证责任就转移到雇主那里,否则就构成歧视,在行政给付、社会保护等案例中也是如此。举证责任倒置主要是对弱者实行最大限度的司法保护,应确立为我国社会法基本的司法制度。

    设置专门法庭或适用简易程序。在司法程序上,社会法争议亦有别于一般民事诉讼。以劳动司法为例,很多国家设置了行政裁判前置程序,以及两项重要原则:一是缩短劳动争议审限,二是劳资同盟介入。因此,社会法司法一般审限较短,程序也简单。由于当事人的诉讼请求与生存权和健康权等息息相关,如果像债权、物权一样按照民事案件审理,期限都在半年或一年以上,这种马拉松式的诉讼显然与权利人生存的现实需要是不相容的,很可能危及其生存。因此,对于社会法诉讼中一些耗时长、成本高的案件,为了节省社会成本和当事人的开支,应当使争议得到迅速和经济的处理,因此,可以借鉴一些国家的成功经验,设置专业裁判所或专门法庭,适用简易程序审理。

    本文转自《中国社会科学》2024年第11期

  • 朱振:逝者能够拥有权利吗?

    霍菲尔德虽然进行了影响深远的权利的逻辑分析,但他确实没有讨论权利的主体问题,而且该问题也从未构成他那个时代的重要问题。因此,美国法律学者斯莫伦斯基(Kirsten Rabe Smolensky)指出:“霍菲尔德考虑的是两个也许还活着的人之间的法律关系。他并不讨论身后的权利,或未来世代、树木、动物以及法律学者、法官或立法者可能会赋予权利的所有其他事物。虽然霍菲尔德明确指出权利必须属于人而不是物,但他并没有讨论权利人的必要和充分特征。”不但法律理论如此,目前的法律实践一般也不承认死者享有权利,但这并不影响法律对死者权益的保护力度。相关措施包括:死者生前的意愿能够受到法律的承认和保护,这不仅存在于继承法领域(遗嘱继承),而且也延伸到对身后生育权的间接承认;死者可以作为受益人而存在,比如在诽谤死者名誉的案件中,其近亲属以自己的名义提起侵权之诉,并间接保护死者名誉,这就是人格权领域的间接保护说;一般而言,人们也都负有尊重死者的义务,有时这种义务还比较强大,需要以刑罚的手段禁止对这种义务的违反,比如德国、瑞士、我国台湾地区“刑法”中均规定了诽谤死者罪。

    但学界一般都不承认这些情形为死者享有权利的证据,即使人们负有义务,这种义务也不直接对应权利,并不能由此推导出死者享有某种权利。主要理由在于:第一,作为民法之基石的权利能力理论不可能支持死者权利说;第二,死者无法自主地作出选择和决定,不可能享有权利并承担义务;第三,从权利救济上说,死者无法行使诉权,死者权利的保护有着法律技术上的障碍。本文的任务就是挑战上述看法,回应主要的反对理由,并解决相关理论难题。本文的论证表明:权利能力不构成主体享有权利的前提条件;权利理论不是死者享有权利的障碍,反而提供了一种可能性,关键在于我们如何理解权利;诉权在逻辑上不构成权利享有的前提,法律可通过技术手段解决权利救济难题。本文意图不仅从概念上,而且从道德重要性上,辩护死者在上述的某些(尽管不是所有)情形下最好被赋予权利,即死者能以自己的名义拥有权利,成为权利主体(即使不能成为法律主体),而不只是其他主体之权利的间接保护对象或单纯的受益人。

    一、现有民法保护模式的理论与实践

    从《中华人民共和国民法通则》(以下简称《民法通则》)《中华人民共和国民法总则》(以下简称《民法总则》)再到《中华人民共和国民法典》(以下简称《民法典》),关于权利能力的规定始终都是清晰的,即自然人的权利能力始于出生,终于死亡。从这一规定来看,死者似乎并没有所谓的权利可言。但是司法实践有不同的认识和表述,尤其在关于侵犯死者名誉权案中。关于死者权利(尤其死者人格权或人格利益)的保护模式,以名誉权为例,从20世纪80年代到现在,民法的规定经历了“名誉权—名誉—精神损害赔偿—名誉”等不同的表述阶段,可以说已经非常复杂了。到现在为止,我们可以把民法关于死者权益的保护概括为直接保护与间接保护相结合的模式。

    从解释论上说,民法最多承认死者可以具有法律上所保护的人格权益,而不享有权利。在民法理论上,反对承认死者为权利主体的最为重要的理由来自民事权利能力理论,葛云松是这一反对意见的主要代表,他基于既有民事权利能力理论而反对死者拥有权利。葛云松提出了许多反对理由,其中较具理论意义的有两点:第一,民事权利能力包括享受权利和承担义务两个方面的能力,对于后者而言,死者完全不具备,这似乎成了死者权利的一个障碍;第二,权利是法律所保护的利益,而死者无利益可言,死者权利的提法是社会学角度而非法学角度的,于是葛云松质疑有何社会学上的论证能够说明死者自身有利益。他把这些反对理由总结为:“保护死者自身的权利或者利益的提法与民事权利能力理论和其他基本民事制度有着不可调和的逻辑矛盾。”

    另外,我国著作权法规定,作者的署名权、修改权、保护作品完整权的保护期限不受限制。自然人的作品,其发表权的保护期是作者终生及死后50年。权利能力理论必须为这一明显的例外提供说明,于是为了理由的融贯性,葛云松甚至反对从这一规定中解读出死者也享有永久性的人身权。他认为权利本身应该得到法律的保护,但以赋予永久人身权作为保护的方式并非良好解决之道。接着,他提出了一个看似融贯的解释方式:“完全可以规定死者丧失著作人身权但是赋予行政机关对于侵害死者生前的著作人身利益的行为加以行政处罚的权力(刑法上也可以有规定),或者将著作人身权的性质视为同时为财产权并和著作财产权一起发生继承,等著作权保护期经过后,由国家以刑法或者行政法手段保护。”

    这是一种比较别扭的解释模式,也显示了权利能力理论在解释上的局限。而且,权利能力理论也是否定死者权利的一个常见的理据,值得我们认真对待。从逻辑上说,先界定权利能力的实质规定性,然后以此为根据再回过头来否定死者权利存在的可能性,确实有循环论证的嫌疑。破解循环论证的关键是从理论源头上探索权利能力理论存在的真实目的和意义,而不是死守一个僵化的概念,以此来反对任何理论和实践的改变。首先,以权利能力理论作为反对的基础甚至是前提,说明反对者在潜意识中认为,权利能力是享有权利的前提,而且应坚守其中的权利义务一致性理论。实际上,这两个方面都是成问题的,权利能力不一定是享有权利的前提,而且承担义务的能力并不是享有权利的前提。其次,与葛云松的主张相反,存在坚实的社会学和哲学上的理据来辩护死者自身有利益。这些方面既涉及我们对一些基本概念的分析,也涉及我们对人的生命存在形式之多样性的理解。下文分别讨论这两个问题。

    二、权利能力与权利享有的逻辑分离

    我们在直觉中总有一个观念,权利似乎奠基于权利能力。这个问题也要进行具体辨析,其中的“权利”和“权利能力”都有复杂的含义。权利能力有实在法的含义,也有自然法的含义。这就需要我们探讨两个重要且相关的问题:权利能力理论主要是针对什么的?它必然和权利有关吗?解答这两个问题,需要我们深度探究权利能力的概念史和思想史。

    权利能力这个概念来自德国民法典,这一术语本身就是对德文单词的翻译。迪特尔·梅迪库斯认为,一般来说,权利能力是“成为权利和义务载体的能力”,这是从消极方面来理解权利能力。这意味着,权利能力并不以行为能力为前提,有权利能力的自然人可能完全没有行为能力或欠缺行为能力。行为能力也不以权利能力为前提,比如有的无权利能力的法人或其他组织也可以通过他人来作出行为。权利能力在民诉法上对应的概念是当事人能力,即合法地成为民事诉讼的原告或被告的能力。有权利能力就有当事人能力,但是当事人能力并不预设权利能力,有些无权利能力的法人或其他组织依然可以具有当事人能力。这就表明在实在法上,权利能力与行为能力、当事人能力并没有概念上的必然关联,它并不与主体的特定性质(即能否实际地主张权利或履行义务)相联系,其主要目的是确立主体的法地位或资格。而且这一地位或资格就每一个个体而言是有规范意义的,即规定这一制度的本来意图就是确立个体的平等地位,即每一个自然人都拥有平等的权利能力或法能力。因此,权利能力概念的规范内涵与平等的价值观紧密相连,而且这一点具有源远流长的思想史渊源。

    德沃金认为,任何充分的法理论都将诉诸平等及其道德意涵(比如正义、公平和正当程序),菲尼斯对此表示赞同。但他对德沃金的核心主张提出了一个异议,即谁对谁是平等的,以及谁对谁应当作为一个平等者而受到对待。这是关于平等范围的问题,即什么范围内的“人”应该是平等的。对此,他诉诸历史的考察,这一考察对于我们理解民法上的人格或权利能力至关重要。罗马法最早触及这个问题,《法学阶梯》就指出:“正义是给予每个人其权利的稳定的和持久的意愿。”关键在于这里的“每个人”指的是什么。在《法学阶梯》中,“所有的人都是人”;而奴隶制“违反了自然法/自然权利”,“因为根据自然法/自然权利,从一开始,所有的人生而自由”。(11)显然,在自然法或自然权利的意义上,所有人的平等是正义所要求的,而奴隶制是由现实的权力因素所导致的。而且菲尼斯还认为,《世界人权宣言》第1条的表述就采取了罗马法学家的措辞:“人人生而自由,在尊严和权利上一律平等。”所以,在自然法的意义上,所有的生命体(生物人或其他主体,比如动物)都有平等的法律资格。

    对“人”本身作生物人/法律人(享有权利能力的实体)的区分一直延续到德国民法典及以后。德国民法用Person和Mensch来表述“人”,Mensch指与动物相区分的生物人,与自然人(natürliche Person)同义。Person这个词更为常用,标志在于享有权利能力,既包括自然人,也包括法人。生物人以出生为标志即享有权利能力,这主要是启蒙时代“人人生而平等”的政治诉求在法律制度上的表达,这是权利能力概念所负载的伦理价值。实际上,这一意涵经由德国《基本法》第1条第1款合并第2条第1款的规定(即《基本法》的人性尊严条款)得到了强化。关于这一点,梅迪库斯指出:“人的尊严包含着人只能是权利主体而不能是权利客体的内涵。如果人是客体的话,那么他只是奴隶。自由地发展人格的权利也只能为具有权利能力的人所享有。”梅迪库斯接着提出了一个问题:“承认每一个自然人都享有权利能力,是否渊源于同样也凌驾于《基本法》之上的某种自然法(Naturrecht) ”他接着指出,这是一个法哲学问题。他似乎持一种肯定的观点,但同时又指出,权利能力产生于自然法也不能推导出权利能力始于出生之前,也不能说德国民法典第1条是违反自然法的,因为自然法也很难说明未出生的胎儿如何成为权利义务的载体。

    实在法上权利能力构造的主要功能是确定平等的法主体资格。既然权利能力基于平等的价值并负载伦理意涵,那么权利能力之享有不取决于实在法。作为那个时代的自然法观念的创造物,权利能力具有一定的先验性。实在法的规定不构成我们思考权利能力的限制,对此朱庆育有一段论述:“如果权利能力为实证法所赋予,即意味着,实证法可将其剥夺与限制。然而,任何文明的立法,皆不得否认自然人的主体地位,不得剥夺或限制自然人的权利能力。这意味着,自然人的权利能力乃是人性尊严的内在要求,并不依赖于实证法赋予,毋宁说,实证法不过是将自然人本就具有的权利能力加以实证化,权利能力先于实证法而存在。”(19)这实际上也表明,权利能力具有双重意涵。它既有自然意涵,也是一个法律规定,即一项法律设计。权利能力必然需要在法律上有一个明确的规定,权利能力始于出生,终于死亡,几乎是各国民法的通例。

    权利能力的制度构造主要是为了解决(所有自然人的)平等问题并回应法律人格构造物不断扩展的要求,以使得法律主体可以扩展到法人、非法人组织、非人动物甚至是人工智能产品。从技术上讲,“权利能力”是一个制度性概念,本身并未穷尽我们对权利能力的理解。因此从理论上说,人出生之前的存在形态和死亡之后的存在形态本身不应成为它们是否具有权利能力的障碍。作为一个可选项,我们可以赋予它们有限的权利能力,以构造法律上的权利。就像在德国民法上,“权利能力”也有例外,比如胎儿的权利能力,这就是德国法上的“权利能力的前置”,尽管这是一种不完全的权利能力。我国也有学者主张权利能力和权利的分离说,即自然人死亡后仍可享有某些民事权利,这种分离说在承认现有权利能力不变的情况下而直接赋予死者以权利。无论是哪种形式,都表明权利能力并不构成赋予死者以自己的名义享有权利的障碍。

    总之,在逻辑上保持实在法上“权利能力/权利”构造的一致性其实是没有必要的,我们可以通过扩展具有权利能力之主体的范围,或者通过权利能力与权利在概念上的分离,来实现赋予死者法律权利的目标。无论是哪种方式,都只是破除了赋予死者以权利的障碍,而没有论证这种权利为什么能够存在,这就需要来自权利理论本身的论证。

    三、从权利能力到权利:利益论的辩护思路

    在权利的概念分析上主要有两种理论,一是意志论,二是利益论。这两种理论既是关于权利之性质的概念分析,同时又指向了辩护权利的基本理据。权利的利益论和意志论反映了更为基础的道德分歧,比如意志论强调了自觉和自主性的重要性,利益论中的利益则被用来辩护某种主张成为权利的基础。剑桥大学的法哲学家克莱默(Matthew H. Kramer)对权利的利益论和意志论的基本观点作了如下总结:“对于利益论来说,一项权利的本质就在于对权利人某些方面之福祉的规范性保护。相反,对于意志论来说,一项权利的本质就在于权利人在规范性上做出重要选择的诸多机会,而这些选择涉及其他人的行为。”据此,利益构成了权利存在的一个必要条件,尽管不是充分条件。这表明利益是权利的概念性组成部分,而且尤为重要的是,利益是外在于我们对权利人本身的理解或界定的,即利益论诉诸一个外在于权利人自身(尽管和权利人相关)的因素来界定权利的本质。意志论反对利益是构成权利之存在的必要条件,遑论充分条件。权利人的能力和许可才是必要的或充分的条件,因为这两个因素都和权利人本身的某种性质相关。而在利益论者看来,这两个因素既非必要也非充分,因为他们对权利性质的理解已经不再受权利人自身之性质的限制。

    既然意志论把对权利性质的理解限定于权利人自身的某种独特性质(比如理性或选择的能力)上,那么正如克莱默所指出的,一个必要的结果就是,动物、婴儿、昏迷的人、年老糊涂的人、死者都不再拥有任何法律权利。因为,在意志论者看来,“这些生物没有能力以基本程度的精确性和可靠性来形成或表达其意愿,而对于充分地行使执行/放弃的法律权利来说,这种精确性和可靠性是必要的。他们无法把握执行或免除一项义务意味着什么,同样,他们也不能以最起码令人满意的方式沟通关于这一事项的任何决定,即使他们曾经能够充分地做出那些决定。简言之,他们并不拥有任何法律权利,因为他们不能成为权利人”。权利的意志论在逻辑上不会承认动物、胎儿或精神上无行为能力的人享有权利,因为这些生物都无法自主地作出选择。这就在概念层面上排除了这些生物以法律权利的形式而受到保护的可能性,但这并不意味着法律不进行保护,在法律上受到保护和以权利的形式受到保护是两个不同的论题。所以意志论者也会承认,这些存在者的利益应该受到法律的保护,只是反对以法律权利之名的保护。

    于是克莱默提出一种版本的权利利益论,以抗衡以哈特为代表的权利意志论。克莱默把其版本的利益论概括为两个命题:“第一,实际享有的一项权利保护了X的一种或多种利益,这是X实际享有该项权利的必要但非充分条件;第二,X有能力或被授权要求行使或放弃行使一项权利,这一单纯的事实是X享有该项权利的既非充分、也非必要条件。”这就取消了意志在辩护权利中的重要性,也就为支持死者权利的主张消除了障碍。下文主要概述克莱默的利益论以及对死者权利的辩护,这对我们从权利理论的角度论证死者权利的正当性很有意义,因为意志论在概念上无法支持死者能以自身的名义而享有权利。

    显然,通过切割权利人的某种特定性质与权利概念论之间的必然关联,权利利益论就为在逻辑上赋予动物或死者以法律权利开辟了空间。也就是说,在概念上,权利利益论不会成为赋予死者或动物以法律权利的障碍。但利益不是一个主张成为一项法律权利的充分条件,因为利益这个概念非常宽泛。在一般意义上,我们甚至会认为,植物、古老的建筑、文物等也具有利益。有权利即有利益,但有利益不一定就存在权利。于是问题的关键就在于,要辩护死者、动物以及其他不能表达的生物值得被赋予法律上的权利,除了利益,还需要一个额外的因素。于是克莱默借鉴了拉兹的界定,去探究存在者本身所具有的道德重要性;或者用他的话说,就是“存在者的道德地位”。

    这就对利益本身又作了某种意义上的区分,有的利益只是单纯的存在,而本身不具有道德的重要性。只有具有道德重要性的利益,才可能被作为法律上的权利保护。因此在克莱默看来,利益的存在本身并不能充分地告诉我们哪些类型的存在者能够拥有权利。除了利益,我们还需要进行道德反思。对此,克莱默指出:“虽然利益论与意志论的不同之处在于,它不排除任何存在者作为潜在权利人的地位,但它并不强迫其拥护者荒谬地推断每一个存在者实际上都是一个潜在的法律权利持有人。为了避免任何这样的推论,利益论的理论家们不得不进行一些类型的道德反思……”这样的道德反思对于权利利益论来说至关重要,因为它实质性补充了利益论略显空洞的概念分析。

    在进行实质性论证之前,我们先讨论一个方法论的问题。在探寻这一道德地位的过程中,克莱默采取了一种在不同的存在者之间进行类比的方式,他曾这样详细表述这一操作方法:“为了确定这种道德地位,我们必须首先挑出一类存在者,其可以毫无争议地描述为潜在的权利人。正如上文已指出的,精神上健全的成年人就形成了这样一个阶层。任何一个最起码合理的权利理论(在任何现代西方社会)都不能否认每一个这样的成年人都是法律权利和法律资格的一位潜在拥有者。于是,我们已经确定了一系列存在者,其可以作为一个无问题的参照点。为了探究任何其他类型(与我们现在的论题相关)之存在者的道德地位,我们必须探究这些存在者和精神上健全的成年人之间的异同之处。当然,我们同时必须要探究任何这些相似和不同之处的道德重要性。”正是从这一点出发,克莱默认为,区分有生命的和无生命的东西具有根本的道德重要性,而且我们一般会赋予正活着的、曾活着的或将活着的存在者以特殊的道德重要性。虽然我们一般也会尊重无生命的自然物(比如草坪)或人造物(比如建筑或艺术品),但我们只是把它们作为对象而不是作为主体来尊重或关心它们。它们并不具有潜在权利人的地位,其中的理由就是道德的,而不是概念的;因为在道德重要性的诸多方面,这些存在者和典范性的权利人之间的相似性是非常微弱的。法律可以保护它们并使其受益,但是它们也根本无法意识到这些利益。因此,法律义务(比如“勿踏草坪”)并不是向无意识的有机体所履行的,而只是关于它们的。

    于是,问题的关键就在于论证,动物、死者或胚胎等与典范性的权利人(比如心智健全的成年人)之间在道德重要性上的相似性是明确而紧密的,以至于值得以权利的方式来保护他/她/它们。像精神病人或婴幼儿等,他们与心智健全的成年人之间的相似性是非常明显的。而死者等存在者则差异很大,正如克莱默所认为的,死者既不是有生命的,也不是有意识的,而完全停止了作为曾经之存在者的存在状态。在这种情况下,我们怎样能够在死者和心智健全的成年人之间建立相似性并把权利赋予死者?对此,克莱默认为,对于利益论的理论家来说,“关键的一步就是,把每一位死者生命结束后的一个时期纳入他或她之存在的整个过程之中。通过强调生命结束之后的那一段时期的各种因素——例如,死者对其他人和各种事件发展的持续影响,在熟悉他或认识他的人们的脑海中留下的对其回忆,以及他积累并随后遗赠或并未遗赠的一系列个人财产——我们可以突出强调死者仍然存在的各种方式。当然,死者并不是作为一个典型的完整的物质性存在者而继续存在,而是在多种面向上继续存在于其同代人和继承者的生活之中。因此,在一个特定时期内,死者在道德上可以被同化为他生前曾成为的那个人。即使人们认为死者的利益应得到少量的法律保护,他们也应该接受这样一个做法,即并非偶然地保护死者利益的法律义务,都由此赋予了死者以法律权利”。这个论证思路其实和延伸生命的看法有类似之处,但不是像生育后代之权利的那种延伸生命;也不像传记生命那样,只是强调人生在世的生命历程所具有的意义。这是另一种意义上的延伸生命和传记生命的结合,即死亡之后的那个时期似乎构成了其生命的自然延续,而且生者对身后价值和意义的期待也构成了其传记生命的重要组成部分。

    显然死者即使可以成为权利人,也是在一定时间限度内的,而不可能永远是权利人。对于这一时间期限,有两个明显的特征:一是这种时间期限在法律上没有一个统一的标准,即它是因人而异的,比如李白、莎士比亚等肯定比普通人的影响要大;二是这一时间期限具有比较强的文化依赖性,在具有不同文化背景的国家,这一时间期限也是不一样的。对于前者而言,每个人在生前的影响力是不一样的,因此其出现在其他人生活中的持久性也是不一样的;对于后者而言,这一时间期限取决于对待死者的文化态度。后者尤其具有理论意义,我们可以称之为保护期限的文化依赖性。对此,克莱默有一段集中且有深度的论述:“在一个尊崇祖先的社会里,他们身后在人们生活中的突出地位,比起来在一个基本上忽视祖先的社会里,将会明显地更加持久。因此,与后一社会的祖先相比,前一社会的祖先较适宜被更加长久地归类为潜在的权利人。这种差异的产生,并不是因为对久已逝去的祖先的崇敬态度直接赋予其良好的道德品质,而是因为这种态度使祖先突出地成为人们生活中的被感知到的存在;这反过来又赋予了祖先一种道德地位,该地位某种程度上类似于他们终其一生所拥有的那种道德地位。他们年复一年地继续成为主体,法律保护正是为了主体才设立并保有的;而不是成为客体,与客体相关的保护措施是仅仅为了满足生者才被设立的。”自古以来我们就生活在一个尊崇祖先的社会里,“曾子曰:‘慎终追远,民德归厚矣’”。但是上述所讨论的期限也不是无限制的,尽管在我们所生活的社会,祖先可能更适宜长久地作为潜在的权利人。

    其实,克莱默重在解决方法论的问题,即破除死者等特殊主体能够成为权利之主体的理论和认识障碍,但他并未详述死者为什么能够具有利益。诸如拉兹、范伯格等学者都主张利益论,他们的侧重点各不相同。这里借鉴另一位权利利益论者范伯格对这一问题的看法,来详细阐述死者利益的重要性。范伯格认为,不能够拥有利益的存在者也就不能够拥有权利,这确实是一种典型的权利利益论。因此,问题的关键就在于死者是否还拥有利益。在范伯格看来,死者在活着的时候所拥有的某些利益是能够在其死亡之后继续存在的,而且大多数活着的人对保有这种利益有着真实的兴趣,因此赋予死者以权利就不只是一种理论的虚构。在人死亡之后,完全涉己的利益一般不会再存在,比如自尊。涉人的或与公共性有关的利益就有可能在身后继续存在,范伯格称这些欲求为“以自我为中心的”,具体包括在他人面前提出自己的主张或展示自己、成为他人喜爱或尊重的对象等。他尤其提到了名誉在其中的重要性:“保持一个好的声誉的愿望,如某个社会或政治事业取得胜利的愿望,或一个人所爱的人兴旺发达的愿望,从某种意义上可以说,是在其拥有者死后还继续存在的那些利益的基础,并且可以被死亡后的事件所促进或损害。”

    从这些论述中,我们似乎可以总结出一个标准,以判断什么样的利益可以超越死亡而长久存在。根据范伯格的论述,如果一项利益在其拥有者身后还能够由死亡后的事件所促进或损害,那么这项利益就具有长久的价值。这一标准其实还是比较宽泛的,它也能够包含生前已作出决定而需要死亡后的事件加以促进的情形,比如以遗嘱的形式在身后设立基金会或捐赠财产。如果这件事的目的是比较单一的,就是设立基金会,那么在身后促成这件事,还不能说是一项严格的死者权利。如果设立基金会或捐赠财产是为了身后的名誉,那么死后的事件就存在增进或减损死者利益的情形。因此,我们可以进一步限缩范伯格的标准,严格的死者利益只涉及其死后发生的事件能够独立增进或减损其利益,而不包括生前所做决定在身后是否得以实现的情形。

    其中一个典型的例子就是名誉权,范伯格一再拿名誉权作为范例来分析。而且范伯格同样也指出了死者权利的时间限制性,以及其他社会价值对死者利益的限制。他指出:“虽然一个死者的情感确实不可能受到伤害,但是我们不能因此说,他的如下主张——即比起来所应得的评价,他不会被想成是更糟糕的——在其死亡后不能继续存在。我应当认为,几乎每个活着的人都希望在他死后,至少在其同时代人的生命时期中,拥有这一被保护的利益。我们几乎不能指望法律能保护恺撒免受历史书的诽谤。这可能会妨碍历史研究,并限制社会上有价值的表达形式。甚至在其所有者死亡之后继续存在的那些利益也不会是不朽的。”这一段论述表达了两层意思:一是,一个人生前的利益确实在其身后长久存在,并具有独立的价值,这一利益对每个活着的人来说都是重要的;二是,死者利益不是不朽的,而是有时间限制的,不但对历史人物的评价是表达自由的一部分,而且这一利益本身也会受到一些社会价值的限制。

    同时,对这种身后所存在的利益的独立性,我们也需要有一个准确和全面的理解。第一,这种利益的独立性不能割裂该利益与死者生前利益的紧密关联,或者说,这种死后的利益脱离开其生前的感受也是不能独立存在的。它构成了生者整个人生历程的内在组成部分,正是为了保护人活着时的利益才保护其死后的利益。对此,德国法上的“死者自己人格权继续作用说”体现得最为明显,论述也最为深刻。从表面上看,这里存在一个悖论,也就是范伯格所提出的那个问题:一个人怎么会被他不知道的事情伤害呢?因为死者是永久性地无意识的,他不可能对其身后发生的事有什么认知,因此似乎也不会与身后发生的事有什么利害关系。范伯格对此的解答是,即使活着的人也有很多利益被侵犯了,而他自己并不知晓;不知晓,并不影响利益本身被侵害。第二,这种独立性只是价值本身的独立性,而不是独立于其他人。正是在涉他性的、公共性的社会关系中,一个人才会产生身后的有价值的独立利益。这种利益是相互的,每一个人都可能享有。也许正是为了保护每一个人的相互的利益,才有必要在法律上保护一种独立的死者的权利。

    上文所分析的权利利益论对于辩护死者权利来说是必要的。克莱默和范伯格不仅以权利利益论来辩护死者权利,他们也在某种程度上论证了死者为什么可以具有利益,以及这种利益的复杂性,即与死者生前利益以及其他密切相关人的利益的关系、利益的时间性、利益的文化依赖性等。这些论证都是非常重要的,但是他们都没有深入论证这种利益的更为深刻的哲学基础,即对人的生命复杂性的理解。死者权利所保护的利益并不完全是一种在时间上被分割开来的利益,除特殊情形下的公共利益,这种权利主要还是为了保护死者生前的个人期待,这种期待在死后的继续存在构成了其生命完整性的内在组成部分。和胚胎等存在形态还不同的是,人在死亡之后主要表现为一种精神性存在,而胚胎毕竟还是一种物质存在形态,具有发展成为完全的人的可能性。人的社会性存在和人的法律性存在之间确实有一定的断裂,从社会性上讲,人的存在及其意义是一个连续体,人的存在是多重生命的联合。而法律/权利能力的构造只截取了其中的一段,而没有注意到多重生命这一事实。下文的论证既是对利益在生命层面的扩展与深化,也是在回应葛云松的批评,因为我们可以找到一种社会学理论来辩护死者享有权利。

    四、人的生命的多重意涵与死者名誉权保护

    我们现有的民法理论对人的生命的理解是比较单一的,是一种薄的理解,即仅仅把人的生命理解为自然生命。正是在这个意义上,民法理论把人的自然生命的开始/死亡和权利/义务的存在直接关联起来,同时又和权利的享有直接关联起来。实际上,权利能力和权利不存在直接、必然的关联。现有的民法理论难以融贯地解释或解决这个问题,不得不在坚持权利能力理论的前提下,对主体生前和死后是否拥有权利的难题作了技术上的处理。比如,胎儿的权利或著作人格权就不是民法上的典型权利,而是边缘化的权利,类似于拟制的权利。而民法对人的生命应持有一种厚的理解,即对生命本身的一种多元而丰富的理解。

    我们对生命的理解不仅是对自然生命(活着)的理解,还包括活着的人是否对其生命的其他理解内容持续地享有权利,即使在其身后这一权利也没有终止。正如上文所说,肯定死者的权利在某种意义上就承认了对延伸生命和传记生命的重视。这主要是说,生命的意义和价值也许并未随着死亡而彻底丧失,它会自然延续到死亡之后的某个时间段,而这个时间段的生命状态依然构成了人在活着的时候对生命的感知和期待。比如中国古人讲三不朽:立德、立功、立言。中国儒家伦理强调生前就要追求死后的不朽,就是这种意义上的延伸生命和传记生命相结合的具体体现。人一生的经历类似于在写自己的传记,这样一部传记在其身后也有独立的意义。人的名誉与人格紧密相连,是传记生命里最核心的内容之一。财产部分在其死后转化成了继承权,已经变成别人的财产了。死亡的性质决定了在身后能够具有人身专属性的东西就是类似“立德、立功、立言”这样的事,在现代社会这些方面主要以人格权的形式体现出来。能够体现人的传记生命的,只有和人格利益相关的诸方面,它们具有独立的价值,是对人之生命整全性理解的重要组成部分。

    这表明,名誉等人格利益是外在的,具有一定的独立性,其意义和价值能够超越死亡本身,从而具有更为久远的意义。远在古希腊时期,亚里士多德就认为:“善恶都可被认为会发生在一个死者身上……比如说,荣誉和耻辱,以及他子女或其后代的好运和厄运。”而康德对“死后好名声”的独立性进行了更为深刻的阐述,他认为好名声是一种先天的外在的归属物,尽管只是观念中的。他尤其在方法上指出,承认死者可能受到伤害,这并不是要得出一些关于未来生活之预感或与已故灵魂之不可见关系的结论。这一讨论并未超过纯粹的道德与权利关系,在人们的生活中亦可发现。在这些关系中,人们都是理智的存在者,抽离掉了物理的形态;但是人们并未只成为精神,仍可感受到来自其他人的伤害。于是康德得出了这样一个结论:“百年之后编造我坏话的人,现在就已经在伤害我;因为纯粹的法权关系完全是理智的,在它里面,一切物理条件(时间)都被抽除了,而毁誉者(诽谤者)同样应当受惩罚,就像他在我有生之年做过这事似的。”康德把“好名声”或“名誉”理解为一个先天的概念,它被抽离掉了时空等物理形态,而变成一个纯粹的理智概念。在这种纯粹法权(权利)关系中,身后的毁誉行为就和生前的行为一样。通过这种纯粹哲学的建构,康德就辩护了一个死后的好名声的独特价值以及和人生前之生活的内在关联。

    即使我们不完全认可康德讨论这个问题的方式,也会尊重并赞同康德努力的方向,即论证名誉的价值可以追溯到生者的生活。而且康德并不是通过文学化的情感描述,而是通过一种深刻的哲学论证来达到这一点的。后来的哲学家也许更多地通过一种相对经验化的方式来论证这一点,比如我们在范伯格的著述中也可以看到这一论证的影子。亚里士多德的认识也深刻影响了后来的理论家对死者独立利益的认识,如范伯格就认可亚里士多德的看法,并在现代的意义上作了发挥。他从一个假设的例子开始论述:“假设我死后,一个仇人巧妙地伪造文件,非常有说服力地‘证明’我是一个花花公子、通奸者和剽窃者,并将这一‘信息’传达给公众,包括我的遗孀、孩子和以前的同事、朋友。我已经受到了这种诽谤的伤害,还能有任何怀疑吗?在这个例子中,我在死亡时所拥有的同伴们对我持续高度尊敬的‘以自我为中心’的利益并没有因为我的死本身而受挫,而是因为死之后发生的事情而受挫。……这些事都不会使我难堪或苦恼,因为死人是不会有感情的;但所有这些事都会迫使我无法实现我曾寄予厚望的目标,并伤害到我的利益。”

    范伯格的这一段论述表达了两个主要看法:一是,死亡本身会改变名誉侵权发生的条件,认知在生前不会成为一个必要条件,而在死后会成为一个必要条件。也就是说,侵害死者利益的事情一定得是公开的,从而为人所知的。二是,死者能够拥有可能被侵犯的独立利益,而且这种独立利益与在世的亲友紧密相关,因为他们曾是其寄予厚望的对象,但这种厚望因为侵权行为而落空了。于是,斯莫伦斯基对范伯格的观点进行了如下发挥:“最低限度地说,在死亡后继续存在的利益和与死者一起逝去的利益之间的区别取决于是否存在有关特定利益的记录。记录可以存在于一个仍活着的朋友或家庭成员的脑海中,也可以是书面记录。但是,如果一项利益在死后不能为人所知,那么法律就不能保护它。”并非死后能够继续存在的所有利益都能以权利的形式而受到保护,因为这样的利益实在太广泛了,不是每一项利益都值得以法律权利的形式保护。可能成为由法律权利来保护的死者利益的,最起码是死者生前所期望的利益,而且一般来说也是能够与活着的亲友发生关联的利益,因为后者通常也是其期望的对象。

    本文转自《河南大学学报(社会科学版)》2025年第1期。

  • 阿克顿:论民族主义

    每当一个时代并存着思想的巨大发展和人们境况的普遍变化所必然造成的苦难,那些善于思辨或长于想像的人们,便会设计一个理想的社会,从中寻求一个救世良方或至少是一点精神安慰,以反抗他们实际上无力涤荡的邪恶。诗歌中总是包含着这样的理想:很久以前,或在某个遥远的地方,在西方岛国或世外桃源,天真而知足的人们远离文明社会的堕落和约束,过着传说中黄金时代的生活。此类诗作几乎千篇一律,理想世界也相差无几。然而当哲学家们构造一个想像中的国家以喻诫或改造人类时,他们的动机更明确和更迫切,他们的国家既是一个楷模,又是一种讽刺。

    柏拉图和柏罗丁,摩尔和康帕内拉,是用被现实的社会结构清除出去的素材来建构他们幻想中的社会,他们的灵感是来自现实社会的弊端。《理想国》、《乌托邦》和《太阳城》,是作者们对自己身历之境况的谴责和抗议,也是他们逃避现实、在对立的极端中寻求慰藉的避难所。它们一直没有影响力,从未从文学史变为政治史,因为一种政治思想要想获得支配芸芸众生的力量,除了对现实的不满和思辨才能之外,还需要一些别的东西。一个哲学家的设计只能调动狂热分子的政治热忱,但是无法唤起全体国民的行动;虽然压迫激起一次次激烈的反抗,就像痛苦的人发出的阵阵痉挛,然而它不能孕育成熟一个坚定的目标和复兴社会的方案,除非某种新的幸福观和当时的邪恶力量携起手来。

    宗教史提供了一个很好的例证。中世纪晚期的教派和新教之间存在着一个重大差别,它的重要性大于在那些被认为是宗教改革之先兆的学说中发现的相似之处,它也足以说明为什么后者和其他改革相比具有如此强大的生命力。威克里夫和胡斯仅反对天主教教义的某些细枝末节,而路德则抛弃教会的权威,赋予个体良知一种独立性,它必然使人持续不断地反抗。同样,在尼德兰革命、英国革命、美国独立战争或布拉班特起义(therising of Brabant)与法国大革命之间,也有类似的差别。

    1789年之前的反抗起因于具体的错误,其正当理由是一些范围明确的不满和一些公认的原则。斗争的过程中有时会提出一些新理论,但这是偶然现象,反抗暴政的重大理由是忠实于古老的法律。自从法国大革命以来,这种情况改变了,渴望铲除社会邪恶和弊端的抱负,逐渐成为遍及文明世界的持久而强大的行动力量。它们我行我素,咄咄逼人,无需先知鼓吹,无需勇士捍卫,深人民心,毫无理性,而且几乎不可阻挡。法国大革命促成了这种变化,一是因为它的理论,二是因为事件的间接影响。它教导人民说:你们的愿望和需要即是最高的公正准则。在走马灯式的权力更替中,各党派纷纷求助于民众,把他们的支持视为裁决成功之神,使得他们不仅惯于反抗而且易于专横。多个政府的垮台和领土划分的频繁变更,使永恒的尊严失去了一切立身之地。传统和惯例不再是权威的保护,革命、战争胜利以及和平协定后所产生的制度安排,一概无视既定的权利。义务和权利是分不开的,各国拒绝受制于没有保障的法律。

    在这种世界形势下,理论和行动紧密相随,现实的邪恶很容易产生反抗的学说。在自由意志的领域,自然进程之节律,受着极端行为之冲突的支配。造反的冲动促使人们从一个极端趋于另一个极端一个遥远的理想目标以其美妙唤起人们的想像,以其单纯迷惑了人们的理性。对它的追求所激发的力量,远远超过一个理性的、可能的目的所激发的力量,因为后者受到许多对立要求的制约,只能是一个合理的、可行的和适当的目的。一种极端或过分的行为,是对另一个同类行为的纠正;在民众中间,一种谬误通过和另一种谬误的对峙,促进了真理的产生。少数人不靠别人帮助无力实现重大的变革,多数人则缺乏接受纯粹真理的智慧。既然疾病多种多样,也就不存在包治百病的药方。对于那些寻求一个惩治各种具体罪恶的统一方案、一个对众多不同情况一概适用的共同计划的大众来说,只有一个抽象观念或一个理想国家的吸引力能让他们采取共同的行动。因此,既迎合人类善良愿望又迎合他们邪恶目的的虚假学说,就成了各民族社会生活中一个正常而又必要的因素。

    就其反对某些公认而明显的罪恶并承担着破坏的使命来说,这些理论是正当的。作为一种警告,或一种改变现状的威胁,它们的反对是有益的,它们能使人对错误保持清醒。不能把它们当作重建世俗社会的基础,就如同不能把药品当作食物一样;但是它们可以对社会产生有利的影响,因为它们尽管没有指明改革的措施,却指出了改革的方向。它们反对统治阶级由于自私、肆意地滥用权力而造成的事物秩序,反对人为地限制世界的自然进程而造成的事物秩序。这样的秩序缺乏理想因素和道德目的。实践中的极端不同于它所导致的理论上的极端,因为前者既专断又残暴,而后者虽然也是革命性的,同时又是有益的。前者的邪恶带有任意性,后者的邪恶带有必然性。这是发生在现存秩序与否定其合法性的颠覆性理论之间的斗争的一般特征。这样的理论主要有三种,它们分别谴责权力、财产和领土当前的分配状况,分别攻击贵族政治、中产阶级和国家政权。它们是平等主义、共产主义和民族主义,虽然来自同一个根源,反对同样的邪恶,彼此也关联甚多,但是它们并不是同时产生的。第一种理论的正式宣告者是卢梭,第二个是巴贝夫,第三个是马志尼。第三个出现的最晚,目前最有吸引力,得势的前景也最看好

    在欧洲的旧制度中,民族的权利既不为政府所承认,也不为人民所要求。王室而非民族的利益调整着边界,政府的行为一般不考虑民众的愿望。只要一切自由权利受到压制,民族独立的要求也必遭忽视。费奈隆曾言,一个君主国可能就是某位公主的一份嫁妆。欧洲大陆在18世纪对这种集体权利受到遗忘状况一言不发,因为专制主义者仅关心国家,自由主义者仅关心个人。教会、贵族、民族在那个时代的时髦理论中没有一席之地;因为它们未受到公开的攻击,它们也就没有创立什么理论来维护自己。贵族阶层保有其特权,教会保有其财产;王室利益压倒了了民族的自然倾向,消解了它们的独立性,然而又维持着它们的完整。

    民族情绪最敏感的部分并没有受到伤害。废黜君主世代相传的王位,或者吞并他的领地,被认为是侵害了所有的君主国,被认为因其亵渎了王权的神圣性质而给臣民提供了一个危险的范例。在战争中,由于战事无关乎民族,所以无需唤起民族感情。统治者之间的彬彬有礼与他们对于下层的傲慢和蔑视是相一致的。敌我两军的指挥官互相致词,没有憎恨,没有激情,战斗以壮观而高傲的队列形式展开。战争艺术成为一种优雅、博学的游戏。各君主国不仅通过一种自然的利益共同体,而且通过家族关系联结在一起。有时候,一份婚姻契约可能开启一场持久战,而更多的时候,家族关系阻止了侵略野心的萌生。当宗教战争于1648年结束之后,所有的战争都是为了获得一项继承权或某块属地,或为了反对某些国家,它们的政治制度使自身被排除在王朝国家的公法的管辖范围之外,被置于不但不再受到保护,而且令人生厌的地位。这些国家是英国和荷兰。这种情况一直持续到荷兰不再是一个共和国,英国的詹姆斯二世党人在共和45年的失败结束了王位之争。然而,有个国家仍是例外,有一个君主,其地位并不为国王们的礼法所承认。

    只要王位是通过婚姻或继承获得的,王国的关系网和正统观念就可保证它的稳定,而当时的波兰无此保证。在王朝专制主义时代,没有王室血统的君主,人民所授予的王位,都被视为反常和暴乱。波兰的制度由于有这种性质,它便被排斥在欧洲体系之外。它刺激了一种无法满足的贪欲,它使欧洲的统治家族不能够通过与它的统治者联姻以求江山永固,或不能够通过请求或继承以获得它。

    哈布斯堡家族曾与法国波旁家族争夺西班牙和印度群岛的统治权,与西班牙波旁家族争夺意大利的统治权,与维特尔斯巴赫家族争夺帝国的统治权,与霍亨索伦家族争夺西里西亚的统治权。为了获得半个意大利和德意志,对立的王室曾经发动过战争。但是对于一个不能凭借婚姻或继承对之提出要求的国家,任何王室都无望捞回损失或增长权势。由于它们不能永久性地继承,它们便用阴谋取得每次选举的胜利。在同意支持站在它们这一边的候选人之后,波兰的邻国终于制造了一个最终毁灭波兰国的傀儡工具。在此之前,尚未有任何一个民族被基督教强国剥夺其政治存在的权利;不论怎么忽视民族利益和愿望,它们仍注意掩饰蓄意歪曲法律所造成的不公。但是瓜分波兰是一次不负责任的暴行,不仅公然践踏民心,而且违背公法。在近代史上第一次出现一个大国被控制,整个民族被它的敌人瓜分的局面

    这个著名的事件,老专制主义的这次最具革命性的行径,唤醒了欧洲的民族主义思潮,沉睡的权利转化为迫切的愿望,模糊的情绪上升为明确的政治要求。埃德蒙·柏克写道:“任何一个明智或正直的人都不会赞同那次瓜分,或在思考此事时不会预见到它将给所有国家带来巨大的灾难。”此后,便有一个民族要求统一在一个国家之内——就如同一个灵魂四处找寻一个肉体,藉以开始新的生命。人们第一次听到这样的呐喊:各国的这种安排是不公正的,它们的限制是违背自然的,一个完整的民族被剥夺了组成一个独立共同体的权利。在这一权利要求能够有力地对抗其敌人的压倒性势力之前,在它于最后一次瓜分之后获得了力量克服长期的被奴役习惯和消除由于先前的混乱人们对波兰的轻视之前,古老的欧洲体系逐渐崩溃,一个新的世界兴起了。

    把波兰人变成赃物的旧专制政策有两个敌人——英国的自由精神和以其自身的武器摧毁了法国君主制的革命理论;它们以相反的方式反对民族没有集体权利的观点。当前,民族主义理论不仅是革命最强大的助手,而且是近三年来各种运动的真实本质。然而,这是一个不为法国大革命所知的新生的联盟。近代民族主义思潮的兴起部分是个顺理成章的结果,部分是对这场革命的反叛。正像忽视民族分裂的理论受到英法两种自由主义的反对一样,坚持这种做法的理论显然也来自两处不同的泉源,分别体现着1688年或1789年的特征。当法国人民推翻他们头上的种种权威,成为自己的主人时,法国面临着解体的危险:因为众意难以确知,不易取得一致。

    维尔尼奥在就审判国王展开的辩论中说:“唯有大体上体现着人民意志的法律才具有约束力,人民享有批准或废除它们的权利。人民一旦表示他们的愿望,什么国民代表机构,什么法律,都必须让路。”这种观点将社会消解为自然的因素,有可能使国家分裂,造成一种有多少共同体便有多少个共和国的局面。因为真正的共和主义,就是在整体和所有部分中实行自治的原则在一个幅员辽阔的国度,例如希腊,瑞士、尼德兰和美国,只有通过将若干独立的共同体结合为单一的联邦,才能实现真正的共和主义。因此,一个庞大的共和国若不建立在联邦制的基础之上,必定导致一个城市的统治,如罗马和巴黎,以及程度相对较轻的雅典、伯尔尼和阿姆斯特丹。换言之,一个庞大的民主国家必定或是为了统一而牺牲自治,或是用联邦制来维持统一

    历史上的法兰西随着在数百年中形成的法兰西国家一起衰落了。旧政权被摧毁了,人们以厌恶和警惕的目光看待地方权威。新的中央权威需要按照新的统一原则去建立。作为一种社会理想的自然状态,成了民族的基础。血统代替了传统;法兰西民族被视为一个自然的产物,一个人种学而非历史学上的单位。有人以为,统一体的存在无需代议制和政府,它完全独立于过去,能够随时表示或改变它的意愿。用西哀士的话说,它不再是法兰西,这个民族蜕变成了一个陌生的国家。中央权力所以拥有权威,是因为它服从全体。任何分离都违背民意。这种具有意志的权力,体现为“统一、不可分割的共和国”——在国家之上存在着一个更高的权力,它有别于并独立于它的成员;在历史上它第一次表达了抽象的民族的概念。

    就这样,不受历史约束的人民主权的概念,孕育产生了独立于历史之政治影响的民族的概念。它的形成源于对两种权威——国家的权威和传统的权威——的舍弃。从政治上和地理上说,法兰西王国是漫长历史的一系列事件的产物,缔造了国家的力量,也形成了疆域。大革命对于形成了法国边界的因素和形成了其政府的因素,却一概予以否定。民族史的每一处可被除去的痕迹和遗物——政府体制、国土的自然区划、各社会阶层、团体、度量衡和历法,皆被仔细清除。对法兰西有限制作用的历史影响受到谴责,它不再受这种限制的约束;它只承认大自然所设的限制。民族的定义是从物质世界借来的,为了避免疆域的损失,它不仅变成一种抽象定义,而且成了一个虚构定义。

    在这场运动的人种学特征中包含着一条民族原则,它是一种共同看法的来源,即革命更频繁地发生在天主教国定而非新教国家。事实上,革命多发生在拉丁族而非条顿族,因为它在一定程度上依赖一种民族冲动。只有当需要排除外来因素和推翻外来统治时,才能唤醒这种冲动。西欧经历了两次征服,一次是罗马人,一次是日耳曼人,也两次从侵略者那里接受了法律。每一次它都与征服民族相抗争。尽管两次伟大的反抗因为两次征服的特征不同而各异,但都有帝国制度的现象发生。

    罗马共和国竭力压制被征服的各个民族,使它们成为一个单一而顺从的整体。但是在此过程中,行省总督权威的增长颠覆了共和政体,各省对罗马的反抗帮助建立了帝国。恺撒的制度给予附属地以史无前例的自由权和平等的公民权,结束了民族对民族、阶级对阶级的统治。君主制受到欢迎,被当作抵制罗马民族的傲慢和贪婪的保护伞。对平等的热爱,对贵族的憎恨和对罗马所输入的专制制度的容忍,至少在高卢人那里,形成了民族性格的主要特征。但是有些民族的生命力已被残酷的共和国所扼杀,它们无一具有享受独立或开创新历史的必要素质。

    根据一种道德秩序来组织国家并建立社会的政治能力已经衰竭。在一片废墟之上,基督教领袖们找不到一个民族可以帮助教会度过罗马帝国的崩溃时期。给那个日益衰落的世界带来新的民族生命的,是毁灭这个世界的敌人。蛮族像季节性洪水一样把它淹没,然后又退去。当文明的标志再次浮出水面时,人们发现,土壤变得深厚而肥沃,洪水播下了未来国家和新社会的种子。新鲜血液带来了政治意识和能量,它体现在年轻民族支配衰老民族的能力之中,体现在有等级的自由权的确立之中。与普遍的平等权利不同,对这种自由的实际享有,必然是与权力相伴随,而且就等同于权力,人民的权利取决于多种条件,而其首要条件就是财产的分配状况。世俗社会成为一个分层组织,而非诸多原子无固定形态的结合。封建制度逐渐兴起了。

    自恺撒至克洛维的五个世纪中,罗马帝国的高卢人彻底接受了绝对权威和无差别平等的观念,以致他们无法再接受新的制度。封建制被视为外来物,封建贵族被视为一个异邦的种族,法兰西人民普遍反对它们,到罗马法和国王的权力中寻求保护。绝对君主制借助民众的支持向前发展,这构成法国历史的一个持久特征。中央权力起初是封建性的,受到臣属的豁免权和大领主的制约,但是专制愈深,就愈被民众所接受。镇压贵族和清除中间权威,成为国民的特别目的,这个目的在王冠落地之后得到了更有力的推进。13世纪以来一直努力限制贵族势力的君主制度,最终却被民众推翻。因为它的步伐过于缓慢,而且无法否定自己的根源,不能有效地摧毁它所起源的那一阶层。

    所有这些事情构成了法国大革命的独有特征——渴求平等,憎恨贵族、封建制以及与之相关的教会,不断追随罗马异教范例,镇压君主势力,颁行新法典,与传统决裂,以理想制度取代各种族在相互作用下共同形成的一切制度——所有这些都表现出反抗法兰克人入侵的一种共同类型。憎恨贵族甚于憎恨国王,厌恶特权甚于厌恶暴政;王权倾覆更多是因为它的根源而非它的腐败。没有贵族关系的君主制,即使在最不受控制的时候,在法国也深受欢迎;然而,重建王权,并以贵族力量限制和约束它的努力没有成功,因为它赖以存在的古老的条顿人传统——世袭贵族制、长子继承制和特权,已不再被容忍。

    1789年思想的实质并不是限制最高权力,而是废除中间权力。在拉丁族的欧洲人中,这些中间权力,以及享有这些权力的阶层,源自蛮族。那场自称自由主义的运动,实质上是民族主义的。倘若自由是它的目标,它的方式应当是建立独立于国家的强大权威,它的蓝本应当是英格兰。然而它的目标是平等,如1789年的法国所示,它致力于摒弃源自条顿族中的不平等因素。这是意大利、西班牙与法国共奉的目标,由此形成了拉丁国家的天然联盟。

    革命领袖们并没有意识到这场运动中的民族主义因素。起初,他们的理论似乎完全与民族主义观念相对立。他们教导说,某些普遍的政治原则放之四海而皆准;他们的理论主张不受限制的个人自由,主张意志超越于任何外在制约或义务之上。这种观点明显与民族主义理论不合,因为后者主张某些自然因素决定着国家的性格、形式和政策,于是某种命运便取代了自由。因此当解放变成镇压、共和国变成帝国的时候,民族感情并不是直接从包含着它的那场革命中发展而来的,而是首先表现为反对那场革命。

    拿破仑通过攻击俄国的民族主义、鼓励意大利的民族主义、压制德国和西班牙的民族主义而创造了权力。这些国家的君主或是被废或是被贬,一种具有法国根源、法国精神和作为法国工具的行政体系建立起来了。但人民抵制这种变革。抵抗运动受到民众支持,而且是自发产生的,因为统治者们疏于镇压或无力镇压。这场运动是民族主义性质的,因为它直接反对的对象是外来的制度。在提罗尔、西班牙,以及随后在普鲁士,人民并没有受到政府的鼓动,而是自发地行动起来,努力将革命法国的军队和观念驱除出国土之外。人们意识到那场革命中的民族主义因素,并不是由于它的兴起,而是由于它的征服。

    法兰西帝国公然竭力反对的三种事物——宗教、民族独立和政治自由——结成了一个短暂的联盟,它所掀起的强大反叛导致了拿破仑的覆灭。在这个值得纪念的联盟的影响下,一种政治精神在欧洲大陆觉醒,它坚持自由,憎恶革命,致力于恢复、发展和改良衰落的国家制度。这些思想的鼓吹者是施泰因和格雷斯,洪堡、缪勒和德·迈斯特尔。他们既痛恨旧政府的专制统治,也痛恨波拿巴主义。他们所坚持的民族权利受到二者同样的侵害。他们希望通过推翻法国的统治恢复这些民族权利。

    法国大革命的同情者并不支持在滑铁卢之役中胜利的那派势力。因为他们已经懂得把他们的学说和法国的事业联系在一起了。在英国的荷兰王室辉格党人(TheHollandHouse Whigs)、西班牙的亲法分子、意大利的缪拉党人(theMumtists)以及莱茵联盟(the Confederation of Rhine)的支持者们,将他们的爱国主义融化在他们的革命激情中,为法国势力的衰落感到惋惜。他们惊恐地看着解放战争(theWar of Deliverance)所产生的陌生的新势力,因为它们既威胁着法国的统治,也威胁着法国的自由主义。

    但是在复辟时代,要求民族和民众权利的新希望破灭了。那个时代的自由主义者所关心的并不是民族独立形式的自由,而是法国制度模式的自由。他们一致反对要求建立政府的民族。他们为了实现自己的理想,乐于牺牲民族权利,就如同神圣同盟为了专制主义的利益乐于镇压民族权利一样。

    阿克顿 | 论民族主义

    不错,塔列朗曾在维也纳声明,在所有的问题中应当优先考虑波兰问题,因为瓜分波兰是欧洲所经历的第一位的最大恶行,但是王朝利益取得了胜利。所有出席维也纳会议的政权都恢复了属地,唯独萨克森国王例外,他因忠诚于拿破仑而受到惩罚,然而在统治家族中没有代表的那些国家——波兰、威尼斯和热那亚——没有得到恢复,甚至教皇为摆脱奥地利的控制而恢复公使权也颇费周折。为旧制度所忽视的民族主义,为法国革命和拿破仑帝国所压制的民族主义,刚刚登上历史舞台,就在维也纳会议上遭到重创。这个萌发于波兰第一次被瓜分、由法国革命为其奠定理论基础、拿破仑帝国促使它短暂发作的原则,终于由于复辟时代长期的谬误,成熟为一种严密的思想体系,一种由欧洲的局势所培育并为其提供了正当理由的思想体系。

    神圣同盟中的各国政府既致力于镇压威胁着它们的革命精神,同样也致力于镇压使它们得以恢复的民族主义精神。奥地利没有从民族运动中捞到任何好处,1809年后便一直阻止它的复兴,自然充当了镇压的先锋。对1815年最后协定的任何不满,有关改良或变革的任何愿望,都被定为叛乱罪。这种制度用时代的邪恶势力来镇压良善的力量,它所招致的反抗,先是起于复辟时代,至梅特涅下台而消失,后又兴起于施瓦尔岑堡的反动统治,至巴赫和曼陀菲尔统治而结束。这种反抗源于全然不同的各种形式的自由主义的结合。在持续不断的斗争中,民族权利高于一切权利的思想逐渐获得了统治地位,成为现在革命中的主要动力。

    第一场自由主义运动,即南欧烧炭党人所发起的运动,没有特定的民族特征,但是受到西班牙和意大利的波拿巴党人的支持。其后的几年中,1813年的各种对立思想登场亮相,一场在很多方面反对革命原则的革命运动,开始为自由、宗教和民族权利而斗争。这三个方面的结合体现在爱尔兰的骚乱中,也体现在希腊、比利时和波兰革命者的身上。这些曾为拿破仑所亵渎并起来反抗过他的力量,又开始反抗复辟时代的政府。它们一直受着刀剑的压制,后来又受到条约的压制。民族主义原则给这场运动增添的是力量,而不是正义。除了在波兰之外,这场运动在各地都取得了胜利。再后来,当解放之后出现了废除协定的呼声,当泛斯拉夫主义和大希腊主义在东正教会的支持下兴盛起来的时候,它蜕化为一个纯粹的民族主义概念。这是针对维也纳协定的抵抗运动的第三阶段。这协定的脆弱性在于它没有能够根据民众的正义观或至少是一条道德准则满足民族主义的或立宪的愿望。这两种愿望本来是互相对立的,其中一种可以用作对抗另一种的屏障。

    在1813年,人民最初是为了保护他们的合法统治者起而反抗征服者,他们不愿受篡位者的统治。在1825年至1831年的期间里,他们决心不受异族的不当统治。法国的制度常常优于它所取代的制度,但是对法国人所先行使的权力,还有一些更重要的要求,民族主义的斗争首先表现为争夺合法性的斗争。在第二阶段,这种因素就不存在了。没有一个流亡君主领导着希腊人、比利时人或波兰人。土耳其人、荷兰人和俄国人并不是作为篡权者而是压迫者受到攻击——是因为他们统治不当,而非因为民族不同

    随后就是这样一个时期,它的说法很简单:民族不应当受到异族统治。权力即使是合法获得的,行使的方式也很有节制,仍被宣布为非法。民族权利就像宗教一样,在过去的联盟中发挥着部分作用,曾经支持过争取自由的斗争,现在民族却成为一个至高无上的要求,它只为自己说话,它提到统治者的权利、人民的各种自由和保护宗教,只是拿它们当借口。如果它不能和它们结合在一起,它为了获胜就不惜让民族牺牲其他事业。

    梅特涅是促成这一理论的一个主要人物,他在这方面的作用仅次于拿破仑;因为复辟时代的反民族主义特征在奥地利最为显著,民族主义发展成一种理论,有悖于奥地利的统治。拿破仑只相信自己的军队,鄙视政治道德的力量,却被这种力量打倒。奥地利在统治它的意大利属地时犯下了同样的错误。意大利王国亚平宁半岛的整个北部统一在了一个国家之下。法国人在别处压制民族感情,但他们为了保护在意大利和波兰的势力,却鼓励这种感情。当胜负之数转变的时候,奥地利便借助法国人培养的这种新情绪反对法国人。纽金特在向意大利人民的声明中宣布,他们应当成为一种独立的民族。这种精神服务于不同的主人,起初帮助摧毁了那些旧式国家,后来帮助将法国人逐出国土,再后来被查理·阿尔贝特利用来掀起一场新的革命。它服务于截然对立的政治原则和一系列各式各样的党派,它可以和一切事物相结合。它最早反对民族对民族的统治,这是它最温和、最低级的形式。后来它谴责任何包含着不同民族的国家,最终发展成为一种完善而严谨学说,即国家和民族必须共存共荣。密尔说:“政府的边界应当与民族的边界保持大体一致。一般而言,这是自由制度的必要条件。”

    我们可以从一个人的经历中,追寻到这种思想从一个模糊的愿望发展为一种政治学说的基石的外在历史进程。这个给予它生命力的人就是居塞伯·马志尼。他感到烧炭党运动不足以对抗政府的措施,便果断地把自由主义运动的基础换成了民族主义,以此赋予它新的生命。正如压迫是自由主义的学校一样,流放是民族主义的摇篮;在避难马赛时,马志尼就想到了“青年意大利”这个主意。波兰的流亡者也以同样的方式成为每一场民族运动的斗士。因为对他们而言,所有的政治权利都包含在独立的思想之中。无论他们之间有多大分歧,独立是他们共同的愿望。

    1830年以前的文学作品也促进了民族主义思想。马志尼说:“这是浪漫主义和古典主义两大流派之间激烈冲突的时代,这场冲突同样可以真实地视为自由的拥护者与权威的拥护者之间的冲突。”浪漫派在意大利为不信教者,在德国为天主教徒,但是他们对两地的民族主义史学和文学都起到了相同的促进作用。但丁在意大利的民主派那里和在维也纳、慕尼黑及柏林的中世纪复兴运动的领袖们那里,都被视为伟大的权威。但是无论是流放者,还是新派诗人和评论家的影响,都没有扩展到民众之中。它是一个没有获得民众同情和支持的宗派,是一种建立在学说而非苦难基础之上的密谋。1834年,他们在萨伏依举起造反的旗帜,提出“统一、独立、上帝和人道”的口号;人民对这些目标感到迷惑不解,对其失败也漠不关心。但是马志尼坚持不懈地进行宣传和鼓动,把他的“青年意大利”“青年欧洲”(GiodneEuropa),并于1847年建立了国际民族联盟。他在联盟成立的致词中说:“人民只明白一种观念,即统一和民族独立的观念……政府形式绝不是个国际问题,它仅仅是个民族问题。”

    1848年的革命虽然没有成功地实现民族目的,却在两个方面为日后民族主义的胜利做好了准备。第一个方面是,奥地利恢复了在意大利的权力,实行一种新的、更严格的集权统治,没有给自由留下任何希望。当这种制度确立之时,正义便站在了民族的愿望一边。在马宁的努力下,这些民族愿望以一种更完善和更高级的形式复兴了,在十年的反动时期,奥地利政府未能把依靠武力的占有转变为根据权利的占有,也没有用自由制度来创造让人忠诚的条件。它的政策从反面刺激了民族主义理论的发展。

    1859年,这种政策使法兰西斯·约瑟夫失去了所有的积极支持和同情,因为他在行动上犯下的错误,要比他的敌人的理论错误更加明显。然而,民族主义理论获得力量的真正原因在于第二个方面,即民主原则在法国的胜利以及欧洲大国对它的认可。民族主义理论包含在主张公意至高无上的民主理论中。“人类中的任何一群人,如果没有决定他们应和哪一个群体结合在一起,任何人都无法知道他们还应当自由地做什么了。”一个民族就是这样形成的。为了形成集体意志,统一是必需的;为了表达集体意志,独立是不可缺少的。对于人民主权的概念而言,统一和民族独立比罢黜君主和废除法律的权利更加重要。因为人民的幸福或国王的民意基础可以防止这类专制行为的发生。但是具有民主精神的民族不可能一直允许它的一部分属于外国,或者整个民族被分裂为同一血统的若干国家。因此,民族主义理论的出发点是划分政治世界的两条原则:否定民族权利的正统统治和肯定民族权利的革命行动;基于同一理由,它成为后者反对前者的主要武器

    在探索民族主义理论现实可见的发展过程时,我们也打算观察它的政治特征,评价它的政治价值。促成这种理论的专制统治既否定民族统一的绝对权利,又否定民族自由的权利要求。前者是民主理论的产物,后者则属于自由理论。这两种民族主义的观点分别对应着法国和英国的学说,实际上代表着政治思想中对立的两极,它们仅有名称上的联系

    在民主理论中,民族主义的基础是集体意志永恒至上,民族统一是这种意志的必要条件,其他任何势力都必须服从这种意志,对抗这种意志的任何义务都不享有权威,针对这种意志的一切反抗都是暴政。在这里,民族是一个以种族为基础的理想单位,无视外部因素、传统和既存权利不断变化着的影响。它凌驾于居民的权利和愿望之上,把他们形形色色的利益全都纳入一个虚幻的统一体;它为了满足更高的民族要求,牺牲他们的个人习惯和义务,为了维护自己的存在,压制一切自然权利和一切既定的自由。无论何时,只要某个单一的明确目标成为国家的最高目的,无论该目标是某个阶级的优势地位、国家的安全或权力、最大多数人的最大幸福,还是对一个抽象观念的支持,此时国家走向专制就是不可避免的。惟有自由要求实现对公共权威的限制,因为自由是惟一有利于所有人们的目标,惟一不会招致真心实意反抗的目标为了支持民族统一的要求,即使一个在资格上无可指摘、政策宽厚而公平的政府,也必须加以颠覆,臣民必须转而效忠于一个与他们没有情感联系、可能实际上受外来控制的权威

    另一种理论除了在反对专制国家这一点上,与这种理论没有任何共同之处,它将民族利益视为决定国家形式的一种重要因素,但不是至高无上的因素。它有别于前一种理论,因为它倾向于多姿多彩而不是千人一面,倾向于和谐而不是统一;因为它不想随心所欲地进行变革,而是谨慎地尊重政治生活的现存条件;因为它服从历史的规律和结果,而不是服从有关一个理想未来的各种渴望统一论使民族成为专制和革命之源,而自由论却把民族视为自治的保障和对国家权力过大的最终限制。被民族统一牺牲了私人权利,却受着各民族联合体的保护。

    任何力量都不可能像一个共同体那样有效地抵制集权、腐败和专制的趋势,因为它是在一个国家中所能存在的最大群体;它加强成员之间在性格、利益和舆论上一贯的共性,它以分别存在的爱国主义影响和牵制着统治者的行动。同一主权之下若干不同民族的共存,其作用相当于国家中教会的独立。它可以维护势力平衡,增进结社,形成共同意见给予臣民以约束和支持,藉此避免出现在单一权威的笼罩下四处蔓延的奴役状态。同样,它可以形成一定的公共舆论集团,形成并集中起强大的政治意见和非主权者意志的义务观念,以促进独立的发展。自由鼓励多样性,而多样性又提供了保护自由的组织手段。所有那些支配人际关系、调整社会生活的法律,皆是民族习惯多样化的结果,是私人社会的创造物。

    因此,在这些事情上不同的民族各不相同,因为是各民族自己创造了这些法律,而不是统治着他们的国家。在同一个国家中这种多样性是一道牢固的屏障,它抵制政府超出共同的政治领域侵入受制于自发规律而非立法的社会领域。这种入侵是专制政府的特征,它势必招致反抗并最终产生一种救治手段。对社会自由的不宽容是专制统治的本性,其最有效的救治手段必定是而且只能是民族的多样性,同一国家之下若干民族的共存不仅是自由的最佳保障,而且是对自由的一个验证。它也是文明的一个主要促进因素,它本身即是自然的、上帝规定的秩序,比作为近代自由主义理想的民族统一体现着更高的进步状态。

    不同的民族结合在一个国家之内,就像人们结合在一个社会中一样,是文明生活的必要条件。生活在政治联合体中较次的种族,可得到智力上更优秀的种族的提高。力竭而衰的种族通过和更年轻的生命交往而得以复兴。在一个更强大、更少腐败的种族的纪律之下,由于专制主义败坏道德的影响或民主制度破坏社会整合的作用而失去组织要素和统治能力的民族,能够得到恢复并重新受到教育。只有生活在一个政府之下,才能够产生这种富有成效的再生过程。国家就像个促进融合的大熔炉,它能够把一部分人的活力、知识和能力传递给另一部分人。如果政治边界和民族边界重合,社会就会停滞不前,民族就会陷入这样一种境地,它同不和同胞交往的人的处境没什么两样。两个人之间的差别把人类联合在一起,不仅是因为这种差别为共同生活的人提供了好处,而且因为它用一条社会或民族的纽带使社会结合在一起。使每个人都可以从他人中找到自己的利益。这或是因为他们生活在同一个政府之下,或是因为他们属于同一种族。人道、文明和宗教的利益由此得到了促进。

    异教以自己的独特性来肯定自身,而基督教以民族混合为乐事,因为真理是普遍的,而谬误却千差万别各有特点。在古代世界,偶像崇拜与民族特性形影不离,圣经中用同一词来表示这两种现象。教会的使命就是消除民族差别。在它享有无可争议的最高权威的时代,整个西欧遵从着相同的法律,所有的著述使用着相同的语言,基督之国的政体表现为一个单一的权威,它的思想统一体现在每一个大学。古罗马人扫除被征服民族的众神而完成征服,查理大帝仅凭强行废除萨克森人的异教仪式,便打败了他们的民族反抗。在中世纪,从日耳曼族和教会的共同作用中,诞生了一个新的民族体系和新的民族概念。

    民族和个人的自然属性皆被改造。在异教和未开化时代,民族之间不仅在宗教方面,而且在风俗、语言、性格上都存在着巨大差异。而根据新的法律,它们拥有着许多共同的事物,使它们彼此隔阂的古老屏障被清除了,基督教所教导的新的自治原则,使他们能够生活在共同的权威之下,且不必失却他们所珍视的习惯、风俗或法律。新的自由观使不同民族共存于同一国家之内成为可能。民族不再是古代的那种民族——同属于一个祖先的后裔,或繁衍于一个特定地域的土著,仅仅是自然和物质的存在物,是一个道德的或政治的共同体,它不是地理学或生理学意义上的单位,而是在国家的影响下,在历史进程中发展。它源于国家,而非位于国家之上。一个国家可能在时间的进程中创造一个民族,然而一个民族应当构成一个国家则有悖于近代文明的性质。一个民族是从先前独立的历史中,获得了它的权利与权力。

    在这个方面,教会赞同政治进步的趋势,尽力消除民族之间的隔阂,提醒它们彼此之间的义务,把征服和封地赐爵看作提升落后和沉沦民族的自然手段。但是,尽管它承认根据封建法律、世袭权利和遗嘱安排产生的偶然性结果,因而对民族独立毫无贡献,但是它怀着建设完善的利益共同体的热情去保护民族自由免受统一和集权之害。因为同一个敌人对双方都构成威胁:不愿容忍差别、不愿公正对待不同民族之独特个性的国家,必定出于相同的原因干涉宗教的内部事务。宗教自由与波兰和爱尔兰的解放事业发生联系,并不仅仅是当地境况的偶然结果。政教协定(theConcordot)没有使奥地利的各族臣民团结起来,乃是一种政策的自然后果,这种政策并不想保护其领地的差别和自治,而且通过给予好处来贿赂教会,而非通过给予独立来巩固教会。从宗教在近代史的这种影响中,产生了一种爱国主义的新定义。

    民族和国家之间的区别体现在爱国情感的性质中。我们与种族的联系仅仅是出于自然,我们对政治民族的义务却是伦理的。一个是用爱与本能联结起来的共同体,这种爱与本能在原始生活中极其重要和强大,但是更多地与动物性而非文明的人相联系;另一个是一种权威,它依法实行统治,制定义务,赋予社会自然关系一种道德的力量和特征。爱国主义之于政治生活,一如信仰之于宗教,它防范着家庭观念和乡土情结,如同信仰防范着狂热和迷信。它有源于私人生活和自然的一面,因为它是家庭情感的延伸,如同部落是家庭的延伸一样。

    但是就爱国主义真正的政治特征而言,它是从自我保存的本能向可能包含着自我奉献的道德义务的发展。自我保存既是一种本能,又是一种义务,从一个方面说它是自然的和无意识的,同时它又是一种道德义务。本能产生了家庭,义务产生了国家。如果民族可以不要国家而存在,只听命于自我保存的本能,它将无法自我否定、自我控制和自我牺牲,它将只把自己作为目的和尺度。但是在政治秩序中,个人利益甚至个人存在都必须牺牲给所要实现的道德目的和所要追求的政治利益。

    真正的爱国主义,即自私向奉献的发展,其显著标志在于它是政治生活的产物。种族所引起的义务感并不完全脱离它的自私和本能的基础;而对祖国的爱,如同婚姻之爱,既有物质基础也有道德基础。爱国者必须区分开他所献身的两种目的或目标。惟对祖国(country)才产生的依恋,如同惟对国家(state)才表示的服从——一种对物质强制力的服从。一个将献身祖国看作最高义务的人,与一个让所有权利都屈从于国家的人,在精神上是息息相通的,他们都否认权利高于权威

    柏克曾言,道德和政治上的国家不同于地理上的国家,二者可能是不一致的。武装反抗制宪会议(theCovention)的法国人同武装反抗国王查理的英国人一样都是爱国者,因为他们认为有一种比服从实际统治者更高的义务。柏克说:

    “在谈及法国时,在试图对付它时,或在考虑任何和它有关的计划时,我们不可能只想到一个地理上的国家,它必定是指一个道德上和政治上的国家……事实上,法兰西大于它自身——道德之法兰西不同于地理之法兰西。这所房子的主人已被赶走,强盗霸占了它。如果我们寻找作为一个共同体存在的法兰西人,即从公法的角度看,作为一个团体而存在的法兰西人(我所谓的共同体,意指有思考和决定的自由以及讨论和缔约能力的人们),我们在弗兰德尔、德国、瑞典、西班牙、意大利和英国也可发现他们。它们都有世袭君主,都有国家典章制度,都有议会。……可以肯定,如果把这些东西的半数从英国拿走,那么我也很难把剩下的东西再称为英国民族了。”

    在我们所属的国家与对我们行使政治职能的国家之间,卢梭做了类似的区分。《爱弥儿》中有一句话,很难把它的意思翻译过来,(没有国家的人,哪来的祖国)。他在一篇论述政治经济学的论文中写道:“如果国家对于国民的意义就像对于陌生人的意义,如果它仅仅给与他们对任何人都可给与的东西,人们还怎么爱自己的国家呢”也在是同样的意义上,他继续说:“(没有自由,祖国又从何说起)”。

    可见,我们只对因国家而形成的民族承担着义务,因此,也只有这种民族拥有政治权利。从人种学上说,瑞士人是法兰西族、意大利族,或日耳曼族,但是除了瑞士这个纯粹的政治民族外,没有任何民族能对他们提出哪怕是微不足道的权利要求。托斯卡纳人(theTuscan)和那不勒斯人共同的国家形成了一个民族,而佛罗伦萨和那不勒斯两地的公民彼此并不拥有一个政治共同体。还有一些国家,或是没有成功地将不同的种族凝聚为一个政治民族,或是未能摆脱一个更大的民族的控制而自成一体。奥地利和墨西哥属于前者,帕尔马和巴登属于后者。

    文明的进步几乎与这种国家无缘。为了保持民族的完整性,它们不得不以联盟或家族联姻的方式依附于某些强国,因此丧失了自己的某些独立性。它们的倾向是维持小国寡民的封闭状态,缩小居民的视野,使他们变得孤陋寡闻。在如此狭隘的地域内,政治舆论无法保持其自由与纯洁,来自更大的共同体的潮流泛滥于一个局促之地。人口较少,成分单纯,几乎无以产生对政府权力构成限制的社会自然分层或内部利益集团。政府和臣民用借来的武器抗争。政府的力量和臣民的渴望皆源于外部世界。结果,国土成为于己无益的斗争工具和战场。这些国家就像中世纪的小型共同体一样,处在大国之中,在保障自治方面发挥着一定的作用,但是它们有碍社会进步,因为社会进步依靠同一政府下不同民族的共存。

    墨西哥出现了一些狂妄和危险的民族权利要求:它们的依据不是政治传统,而仅仅是种族。在那里,依据血统划分种族,各种族并不共同聚居在不同的地区。因而,不可能将它们结合成一个国家,或改造为组成国家的成分。它们是流动的、无形的和互不关联的,无法凝成一体,或形成一个政治制度的基础。因其不可为国家所用,便得不到国家的认可。它们独特的禀性、能力、激情和情感无助于国家,因而不被重视。它们必定受到忽视,因而长久遭到虐待。东方世界实行种姓制度,避免了那些有政治要求而无政治地位的种族产生的难题。哪里仅有两个种族,哪里便是奴隶制之源。但是,如果在一个由若干小国组成的帝国里,不同种族居住于不同地域,这种结合形式最有可能建立一种高度发达的自由制度

    在奥地利,两种情况增加了这个问题的难度,但是也增加了它的重要性。几个民族的发展极不平衡,任何单一民族的力量都不足以征服或同化其他的民族。这是一些政府所能得到的最高度组织的必要条件。它们提供着最丰富多样的智力资源,提供着前进的永恒动力。提供这些动力的不仅仅是竞争,而且还是一个更进步的民族令人羡慕的成就;它们提供着最充足的自治因素,从而使国家不可能凭一己意志统治全体;它们提供着维护地方风俗和传统权利的最充分的保障。在这样的国度,自由可以取得最辉煌的成果,而集权和专制将一败涂地。

    和英国政府所解决的问题相比,奥地利政府面临的问题更棘手,因为它必须承认各民族的权利要求。由于议会制以人民的统一性为前提,所以它无法给予这些权利。因此,在不同民族混居的国家里,议会制没有满足它们的要求,因此被认为是一种不完善的自由形式。它把不为它承认的民族差别较过去更明显地呈现出来,于是它继续着旧专制主义的营生,以集权的新面目出现。因此,在那些国家,对帝国议会的权力必须像对皇帝的权力一样严加限制,而它的诸多职能必须转由地方议会和日趋衰落的地方机构承担。

    民族因素在国家中的巨大重要性,存在于这样一个事实之中:它是政治能力的基础。一个民族的性格在很大程度上决定着国家的形式和生命力。有些政治习惯和观念属于某些特定的民族,并随着民族历史的进程而发展变化。刚刚走出野蛮状态的民族,因文明的过度发展而精疲力竭的民族,皆不能拥有自我统治的手段;信奉平等或绝对君主制的民族,不可能建立一个贵族政体;厌恶私有制的民族,也缺少自由的第一要素只有依靠与一个先进种族的接触交往,才能够把这些民族中的每一个成员转变成自由社会的有效因子,国家的前途寓含于这个先进民族的力量之中。忽视这些事实、并且不从人民的性格和资质中寻求支持的制度,也不会想到应当让他们自治,而是只想使他们服从最高的命令。因此,否定民族性,意味着否定政治自由。

    民族权利的最大敌人是近代民族主义理论。这种理论在国家与民族之间划等号,实际上将处于国界之内的所有其他民族置于一种臣服的境地。它不承认这些民族与构成国家的统治民族地位平等,因为若是那样,国家就不再是民族国家了,这有悖于它的生存原则。因此,这些弱势民族或是被灭绝,或是遭受奴役,或是被驱逐,或是被置于一种依附地位,一切取决于那个总揽社会所有权利的优势民族的人道和文明程度。

    如果我们把为履行道德义务而建立自由制度视为世俗社会之鹄的,我们就必须承认,那些包容明显不同的民族而不压迫它们的国家,例如英帝国和奥地利帝国,实质上是最完善的国家。那些无民族共存现象的国家是不完善的,那些丧失了民族共存之效用的国家是衰朽的。一个无力满足不同民族需要的国家是在自毁其誉;一个竭力统一、同化或驱逐不同民族的国家是在自我戕害;一个不包含不同民族的国家缺乏自治的主要基础。因此,这种民族主义理论是历史的倒退。它是最高形式的革命思想,在它宣布已经进人的革命时代,它必定始终保持着力量。它的重要历史意义取决于以下两个主要因素:

    首先,它是一个喀迈拉(希腊神话中狮头、羊身、蛇尾的喷火女怪)。它所寻求的结果是不可能实现的。因为它从不满足,从不停歇,总是不断提出自己的要求,这使得政府甚至难以退回到促使它产生的那种状态。它所具有的严重危害和控制人们思想的巨大力量,使得为民族反抗申辩的制度也难以容忍。因此,它必须致力于实现它在理论中所谴责的东西,即作为一个主权共同体之组成部分的各不同民族的自由权利。这是其他力量起不到的一种作用;因为不仅对绝对君主制、民主制和立宪政制所共有的集权制,而且对这三种制度本身,它都有矫正作用。无论是君主制、革命政体,还是议会制度,都做不到这一点;过去所有曾经激发热情的思想都无力实现这种目的,惟民族主义可独善其功。

    其次,民族主义理论标志着革命理论及其逻辑穷竭的终点。民主的平等学说宣布民族权利至高无上,这样就越过了它本身的极限,落人自相矛盾的境地。在革命的民主阶段和民族主义阶段之间,社会主义曾经介入,并且把该学说的结论推行到荒谬的地步。但是这个阶段已经过去了。革命比它的子女更长命,它造成了进一步的后果。民族主义比社会主义更先进,因为它是一种更加独断的学说。社会主义理论致力于在近代社会施加给劳工的可怕重负下的个人生存提供帮助。它不仅是平等观念的发展,而且是一个逃避现实的不幸和饥馑的途径。不论这种解决方式多么虚假,应当拯救穷人于危难之中总是个合情合理的要求;只要为了个人安全而牺牲国家的自由,至少从理论上说便达到这个更迫切的目标。但是民族主义的目标既非自由,亦非繁荣,它把自由与繁荣都牺牲给了使民族成为国家之模型和尺度这个强制性的需要。它的进程将是以物质和道德的毁灭为标志,它的目的是使一项新发明压倒上帝的作品和人类的利益。任何变革的原则,任何可以想像的政治理论,都不可能比它更全面、更具颠覆性和更独断。它是对民主的否定,因为它对民意的表达施加限制,并用一个更高的原则取而代之。它既反对国家分裂,亦反对国家扩张;它既不许以征服结束战争,亦不许为和平寻求保障。这样,在使个人意志屈服于集体意志之后,这种革命理论使集体意志服从于它所不能掌握的条件;它毫无理性,仅仅受制于偶然的事变。

    因此,民族主义理论虽比社会主义理论更荒唐和更可恶,它在世间却有一个重要使命,它标志着两种势力,即绝对君权和革命这两个世俗自由最险恶的敌人之间的决斗,因此也标志着它们的终结

    本文摘自阿克顿所著《自由与权力》(Essays on Freedom and Power)

  • 安格斯·迪顿:美国人从医疗制度中得到了什么?

    美国人在医疗保健方面开销巨大,这些花费几乎影响经济的各个方面。医疗保健在世界各地都很昂贵,富裕国家在延长其公民生命和减少痛苦方面花费大量资金也是十分必要的,但美国的做法简直是要多糟糕就有多糟糕。

    医疗支出和健康成果

    美国的医疗费用居全球之首,但是美国的医疗制度在富裕国家中则是最差的,在近期出现的死亡流行病和预期寿命下降之前很久,这一点就已经是一个事实。提供医疗服务耗费的成本严重拖累了经济,导致工资长期停滞,这也是劫贫济富式再分配的一个典型例子,我们曾将这种现象称为“诺丁汉郡治安官式”再分配。

    美国的医疗行业并不擅长增进人民的健康,但它擅长增进医疗服务提供者的财富,其中也包括一些成功的私人医生,他们经营着极其有利可图的业务。它还向制药公司、医疗器械制造商、保险公司(包括“非营利性”保险公司)以及更具垄断性的大型医院的所有者和高管输送了巨额资金。

    这张图显示了其他国家与美国之间的差异,以及随着时间的推移,这种差异是如何扩大的。我们选择英国、澳大利亚、法国、加拿大和瑞士为参照国,代表其他富裕国家。图中的纵轴和横轴分别为预期寿命和人均医疗支出,每条曲线是由1970—2017年,这两个数字在当年的交汇点连接而成的(人均医疗支出以国际元计算,因此2017年美国的数字与此前所述的10739美元有所不同)。

    美国显然是异类。它的人均预期寿命比其他国家要低,但人均医疗支出却高了很多。1970年,即曲线开始的第一年,美国和其他国家之间的差距并不明显,美国的预期寿命并没有落后多少,医疗支出也没有高出许多,但在此之后,其他国家做得更好,推动了健康状况更快改善,并更好地控制了医疗费用的增长。瑞士是图中和美国最相近的国家,其他国家的曲线则彼此十分贴近。如果图中再加上其他富裕国家,它们的曲线看起来也会更接近那些人均支出较低的国家,而不是美国。

    另一种计算医疗费用浪费的方法是直接确定医疗支出中对美国人健康没有贡献的部分。最近的计算是,浪费的部分大约占总支出的25%,与美国和瑞士的差额大致相当。

    这个极其巨大的数字是浪费额,而不是总费用。近半个世纪以来,这种浪费一点点侵蚀着人们的生活水平。如果美国的劳工阶层不必支付这笔贡金,他们今天的生活将会好很多。

    美国人花费那么多,到底得到了什么

    考虑到如此高昂的费用,我们无疑希望美国人拥有更好的健康状况,但事实并非如此。正如我们所看到的,美国在预期寿命方面的表现并不算好,而预期寿命是衡量健康的重要指标之一。虽然除了医疗之外,还有许多因素影响预期寿命,但医疗水平在近年来已经变得越来越重要。

    2017年,美国人的预期寿命为78.6岁,西班牙语裔人口显著高于全国平均水平(81.8岁),非洲裔黑人显著低于全国平均水平(74.9岁)。这些数字低于经济合作与发展组织其他25个成员国的预期寿命。在其他成员国中,德国的预期寿命最低,为81.1岁,比美国长2.5岁,日本的预期寿命最高,为84.2岁。无论美国人从医疗制度中得到了什么,他们显然没有得到更长的寿命。

    或许美国人有别的收获?美国是一个非常富裕的国家,美国人为了获得更好的医疗服务而支付更多费用也很合理。然而,美国人并没有比其他国家更多地使用医疗服务,尽管医疗领域的工作岗位大幅增加。2007-2017年,医疗行业新增280万个就业岗位,占美国新增就业岗位的1/3,这些新增就业岗位的资金主要来自非营利部门的“利润”。

    事实上,美国的人均医生数量有所减少——美国医学会通过限制医学院的入学名额有效地确保了医生的高薪——人均护士数量的情况也基本相同。医学院的学费昂贵,这一点常常被用作说明医生有正当理由获得高薪,但如果医学院在没有名额限制的情况下接受竞争,费用无疑会降低。如果不是有体系地把合格的外国医生排除在外,医生的工资和医学院的学费都会下降。

    在实施某些治疗措施方面,美国和其他富裕国家的数字大致相同,尽管美国似乎更侧重于营利性的治疗措施。美国人似乎拥有一个更豪华的体系(像是商务舱而不是经济舱),但无论乘坐商务舱还是经济舱,乘客总是会在同样的时间到达同一目的地(在我们现在所说的情况下,如果他们的目的地是来世,那么商务舱的乘客可能更快)。与其他一些国家的病人相比,美国人等待手术(例如髋关节或膝关节置换术)或检查(例如乳房X光检查)的时间较短。等待时间较短的部分原因,可能是有很多昂贵的机械设备没有得到大量使用。美国的病房大多为单人病房或双人病房,而其他国家的病房更常见的是多人病房。

    发病率比死亡率或手术次数更难衡量,但有人曾经做过一项研究,在英国和美国进行了完全相同的健康状况调查,结果发现一系列健康状况指标(部分源于自我报告,部分来自通过化验血液得到的“硬”生化指标)表明,英国人在中年后的健康状况好于美国人。英国人在医疗上的支出不到其GDP的10%,人均医疗支出大约是美国的1/3。

    美国人对其医疗制度并不满意。2005—2010年的盖洛普世界民意调查中,只有19%的美国人对下面这个问题做出肯定答复,即“你对医疗制度或医疗体系有信心吗?”。盖洛普还询问人们是否对他们所居住的“城市或地区提供优质医疗服务的能力”感到满意。美国在这个更具体、更地方性的问题上表现得更好,77%的人给出了肯定答复,与加拿大和日本的比例大致相当,但差于其他富裕国家,也不如一些更贫穷的亚洲国家或地区,如柬埔寨、中国台湾、菲律宾、马来西亚和泰国。在瑞士,94%的人对本地提供优质医疗服务的能力表示满意,58%的人认为国家医疗制度或医疗体系运作良好。

    美国人的不满主要集中在医疗服务的不公平。根据联邦基金于2007年发布的一份报告,在“获得医疗服务、患者安全、协调、效率和公平”方面,美国在7个富裕国家中排名垫底。

    钱去哪儿了

    美国人付出了这么多,获益却这么少,这怎么可能?这些钱肯定花在了什么地方。病人花的冤枉钱变成医疗服务提供者的收入。在这里再次和其他富裕国家进行比较依然会很有用。

    医疗费用的差异在很大程度上是因为美国医疗服务价格更高,以及医疗服务提供者的工资更高。美国医生的工资几乎是其他经济合作与发展组织成员国医生平均工资的两倍。

    不过,由于医生人数相对于总人口数量下降,他们在高昂的医疗费用中所占份额有限。应医生团体和国会的要求,医学院的招生人数受到严格控制,同时外国医生难以在美国执业。2005年,美国收入最高的1%人口中,医生占16%。在这1%的前10%中,有6%是医生。美国护士的收入也相对较高,但与其他国家的差距不大。在美国,药物的价格大约是其他国家的3倍。

    在美国,服用降胆固醇药物瑞舒伐他汀每月需要花费86美元(打折后),该药在德国的月度花费是41美元,在澳大利亚只有9美元。如果你患有类风湿关节炎,你的修美乐(阿达木单抗)在美国每月需要花费2505美元,在德国是1749美元,在澳大利亚是1243美元。美国的手术费用更高。在美国,髋关节置换术的平均费用超过4万美元,而在法国,同样手术的花费大约为1.1万美元。在美国,即使同一制造商生产的相同设备,髋关节和膝关节置换的费用也比其他国家高出3倍以上。磁共振成像检查在美国要花费1100美元,但在英国只需要300美元。

    美国医生需要支付的医疗事故保险费用也更高,尽管与医院费用(33%)、医生费用(20%)和处方药费用(10%)相比,它只占医疗费用总额的2.4%,这并不算多。相对于其他富裕国家,美国的医院和医生更多地使用“高利润率和高金额”的治疗措施,如影像学检查、关节置换、冠状动脉搭桥术、血管成形术和剖宫产。

    2006年,我们两人中的一位更换了髋关节。当时,纽约一家著名的医院对一间(双人)病房的收费高达每天一万美元。病人在这间病房中能够饱览东河上船只如梭的美景,但电视节目是额外收费的,更不用说药物和治疗了。

    除了价格,还有其他应该考虑的因素。新药、新仪器和新的治疗手段不断涌现。其中有些可以拯救生命、减少痛苦,但很多并没有什么效果,但它们依然被推给病人并收取费用。这就是所谓的“过度医疗”,即投入更多资金并未带来更大程度的健康增长。

    医疗保险公司经常受到媒体的批判,尤其是当他们拒绝支付治疗费用,或者向那些认为自己已有全额保险的病人寄去令其费解的账单时。这里存在的一个大问题是,在一个私营系统中,保险公司、医生诊所和医院在管理、谈判费率和试图限制开支方面花费了巨额资金。而一个单一付款人系统,尽管根据设计不同可能存在各自的优点和缺点,但至少会节省一半以上的类似费用。导致问题出现的根源不仅在于保险公司追求利润,如果医疗制度的运行方式不同,保险公司就可以省去现在所做的大部分工作。

    最后(但并非最不重要)一点是,医院提高价格并不是因为成本上升,而是因为它们正在进行整合,从而减少或消除了竞争,并利用强大的市场势力提高价格。它们正在稳步赢得与保险公司(和公众)的战争。与面临竞争的医院相比,地方垄断性医院的收费要高出12%。此外,当一家医院与5英里内的另一家医院合并后,医院之间的竞争会减弱,而医疗服务价格会平均上涨6%。

    患者在出现急症的情况下最容易处于弱势地位,而医疗急症也越来越多地被视为和作为盈利机会。救护车服务和急诊室已经外包给医生与救护车服务公司,这些医生和救护车每天都在发送“出人意料”的医疗账单。这些服务中的许多项目并不在医保范围之内,因此即使患者被送往自己的医疗保险覆盖的医院,也需要自己支付各种急诊费用。2016年,很大一部分急诊室就诊病人支付了“意外”的救护车费用。

    随着农村地区医院的关闭,空中救护车变得越来越普遍,它们可能会带来数万美元的意外费用。当有人陷入困境,甚至失去意识时,他们没有能力就收费高低讨价还价,同时,由于不存在能够抑制价格的竞争,在这种情况下,即使病人大脑很清醒,也得乖乖按要求付钱。

    提供这些服务的公司许多由私人股权公司所有,它们非常清楚这正是漫天要价的最好时机。现在,那些追在救护车后面寻找获利机会的事故官司律师已经摇身一变,成为救护车的拥有者,交通事故的受害者在医院醒来时,会一眼看到他们的病床上贴着2000美元的账单。

    这种掠夺是一个典型例子,表明一个向上转移收入的系统是如何运作的。在这种情况下,金钱从身处困境中的病人手中转移到私人股权公司及其投资者手中。这也说明了为什么尽管资本主义在多数情况下拥有诸多优点,但却不能以一种可被社会接受的方式提供医疗服务。在医疗急症情况下,人们无法做出竞争所依赖的知情选择,正如人们在陷入对阿片类药物的依赖时,无法做出知情选择一样。

    过去由医生管理的医院现在已经改由企业高管管理,其中有些人是脱下白大褂并换上西服套装的医生,他们领着首席执行官的薪水,追求的是建立商业帝国和提高价格的最终目标。

    一个很好的例子是纽约长老会医院,它现在已经成为一个由多家曾经独立的医院组成的庞大医院集团。长老会医院是一家非营利性机构,其首席执行官史蒂文·科温博士在2014年的薪酬高达450万美元,而纽约北岸大学医院首席执行官的薪酬是其薪酬的两倍。纽约长老会医院推出了一系列制作精美的视频故事广告,这些广告在大受欢迎的《唐顿庄园》系列剧集播出之前在公共电视上播放,每一个广告都记录了一个只有在纽约长老会医院才能发生的非同寻常的康复故事。

    这些广告的目的是诱导员工要求将这家医院纳入他们的保险计划,使医院增加与保险公司谈判的能力,这有助于它提高价格,从而使科温的高薪获得保证。其他医院很快效仿,推出了类似的广告。2017年,美国医院在广告上花费了4.5亿美元。很难看出这些策略能怎样改善患者的健康。医生、医院、制药厂商和设备制造商通力合作,共同推高价格。

    高科技医用扫描设备的制造商向医生、牙医和医院提供具有吸引力的租赁和定价条款,后者使用设备,为各方带来源源不断的现金流,但并不会给病人带来明显的效果改善。或许,扫描设备(scanner)和骗子(scammer)的英文名难以区分并不是巧合。

    制药厂商也会与医院和医生合作,帮助它们开发新产品,并提高需求。2018年,著名乳腺癌研究专家何塞·贝塞尔加被迫辞去纽约纪念斯隆—凯特林癌症中心的首席医疗官一职,该医院自称是世界上最古老、最大的私人癌症治疗中心。贝塞尔加被迫辞职的原因是他未能在已发表的论文中披露潜在利益冲突,这种利益冲突来自他与生物技术初创公司和制药公司千丝万缕的财务联系。在他辞职后,这些利益冲突方中的一家—阿斯利康公司立即任命他为公司的研发主管。

    正如医院管理层所说(他们说得完全正确),医院在为病人提供新药试验,或者医生尝试帮助传播关于有效新产品的信息时,存在潜在的利益共生关系。事实上,新的癌症药物近年在降低癌症死亡率方面发挥了良好的作用。

    然而,由于患者的最大利益并不总是与制药厂商的利益相一致,因此他们自然可能想知道他们的医生到底是在为谁的利益服务,并需要确信他们的医院不仅仅是制药公司的一个分支机构。

    制药公司首席执行官们的薪水都颇为丰厚。根据《华尔街日报》2018年的一份报告,2017年,在薪酬收入排名前十的CEO中,收入最高的是艾瑞·鲍斯比,他的年薪为3800万美元,他是艾昆纬公司的CEO,该公司是一家为制药公司、保险公司和为政府提供患者信息分析服务的数据公司。排名第十的是默克公司的CEO肯尼斯·弗雷泽,年薪1800万美元。352014年,美国收入最高的部分是来自小型私营企业的利润,远远超过大公司首席执行官的薪酬,其中最具代表性的是那些私人诊所的医生。

    美国医疗服务的超额费用流向了医院、医生、设备制造商和制药厂商。从健康的角度来看,这些高达上万亿美元的费用是一种浪费和滥用,从医疗服务提供者的角度来看,它则是一笔丰厚的收入。

    本文选自安妮·凯斯和安格斯·迪顿曾的《美国怎么了:绝望的死亡与资本主义的未来》

  • JEFFREY DING《Technology and the Rise of Great Powers:HOW DIFFUSION SHAPES ECONOMIC COMPETITION》

    CONTENTS
    1    Introduction
    2    GPT Diffusion Theory  
    3    The First Industrial Revolution and Britain’s Rise
    4    The Second Industrial Revolution and America’s Ascent
    5    Japan’s Challenge in the Third Industrial Revolution 
    6    A Statistical Analysis of Software Engineering Skill Infrastructure and Computerization
    7    US-China Competition in AI and the Fourth Industrial Revolution 
    8    Conclusion

    1 Introduction

    IN JULY 2018, the BRICS nations (Brazil, Russia, India, China, and South Africa) convened in Johannesburg around a specific, noteworthy theme: “Collaboration for Inclusive Growth and Shared Prosperity in the Fourth Industrial Revolution.” The theme was noteworthy in part because of its specificity. Previous iterations of the BRICS summit, which gathers five nations that account for about 40 percent of the world’s population and 25 percent of the world’s GDP,1 had tackled fuzzy slogans such as “Stronger Partnership for a Brighter Future” and “Broad Vision, Shared Prosperity.” What stood out not only about that year’s theme but also in comments by BRICS leaders at the summit was an unambiguous conviction that the world was undergoing a momentous season of technological change—one warranting the title “Fourth Industrial Revolution.”2

    Throughout the gathering, leaders of these five major emerging economies declared that the ongoing technological transition represented a rare opportunity for accelerating economic growth. When Chinese president Xi Jinping addressed the four other leaders of major emerging economies, he laid out the historical stakes of that belief:

    From the mechanization of the first industrial revolution in the 18th century, to the electrification of the second industrial revolution in the 19th century, to the informatization of the third industrial revolution in the 20th century, rounds of disruptive technological innovation have … fundamentally changed the development trajectory of human history.3

    Citing recent breakthroughs in cutting-edge technologies like artificial intelligence (AI), Xi proclaimed, “Today, we are experiencing a larger and deeper round of technological revolution and industrial transformation.”4

    While the BRICS summit did not explicitly address how the Fourth Industrial Revolution could reshape the international economic order, the implications of Xi’s remarks loomed in the backdrop. In the following months, Chinese analysts and scholars expanded upon them, especially the connection he drew between technological disruption and global leadership transitions.5 One commentary on Xi’s speech, published on the website of the authoritative Chinese Communist Party publication Study Times, detailed the geopolitical consequences of past technological revolutions: “Britain seized the opportunity of the first industrial revolution and established a world-leading productivity advantage.… After the second industrial revolution, the United States seized the dominance of advanced productivity from Britain.”6 In his analysis of Xi’s address, Professor Jin Canrong of Renmin University, an influential Chinese international relations scholar, argued that China has a better chance than the United States of winning the competition over the Fourth Industrial Revolution.7

    This broad sketch of power transition by way of technological revolution also resonates with US policymakers and leading thinkers. In his first press conference after taking office, President Joe Biden underscored the need to “own the future” as it relates to competition in emerging technologies, pledging that China’s goal to become “the most powerful country in the world” was “not going to happen on [his] watch.”8 In 2018, the US Congress stood up the National Security Commission on Artificial Intelligence (NSCAI), an influential body that convened leading government officials, technology experts, and social scientists to study the national security implications of AI. Comparing AI’s possible impact to past technologies like electricity, the NSCAI’s 756-page final report warned that the United States would soon lose its technological leadership to China if it did not adequately prepare for the “AI revolution.”9

    Caught up in the latest technical advances coming out of Silicon Valley or Beijing’s Zhongguancun, these sweeping narratives disregard the process by which emerging technologies can influence a power transition. How do technological revolutions affect the rise and fall of great powers? Is there a discernible pattern that characterizes how previous industrial revolutions shaped the global balance of power? If such a pattern exists, how would it inform our understanding of the Fourth Industrial Revolution and US-China technological competition?

    Conventional Wisdom on Technology-Driven Power Transitions

    International relations scholars have long observed the link between disruptive technological breakthroughs and the rise and fall of great powers.10 At a general level, as Yale historian Paul Kennedy has established, this process involves “differentials in growth rates and technological change, leading to shifts in the global economic balances, which in turn gradually impinge upon the political and military balances.”11 Yet, as is the case with present-day speculation about the effects of new technologies on the US-China power balance, largely missing from the international relations literature is an explanation of how technological change creates the conditions for a great power to leapfrog its rival. Scholars have carefully scrutinized how shifts in economic balances affect global military power and political leadership, but there is a need for further investigation into the very first step of Kennedy’s causal chain: the link between technological change and differentials in long-term growth rates among great powers.12

    Among studies that do examine the mechanics of how technological change shapes economic power transitions, the standard explanation stresses dominance over critical technological innovations in new, fast-growing industries (“leading sectors”). Britain became the world’s most productive economy, according to this logic, because it was home to new advances that transformed its burgeoning textile industry, such as James Hargreaves’s spinning jenny. In the same vein, Germany’s mastery of major breakthroughs in the chemical industry is seen as pivotal to its subsequent challenge to British economic leadership. Informed by historical analysis, the leading-sector (LS) perspective posits that, during major technological shifts, the global balance of economic power tips toward “the states which were the first to introduce the most important innovations.”13

    Why do the benefits of leading sectors accrue to certain countries? Explanations vary, but most stress the goodness-of-fit between a nation’s domestic institutions and the demands of disruptive technologies. At a general level, some scholars argue that rising powers quickly adapt to new leading sectors because they are unburdened by the vested interests that have built up in more established powers.14 Others point to more specific factors, including the degree of government centralization or sectoral governance arrangements.15 Common to all these perspectives is a focus on the institutions that allow one country to first introduce major breakthroughs in an emerging industry. In the case of Britain’s rise, for example, many influential histories highlight institutions that supported “heroic” inventors.16 Likewise, accounts of Germany’s success with leading sectors focus on its investments in scientific education and industrial research laboratories.17

    The broad outlines of LS theory exert substantial influence in academic and policymaking circles. Field-defining texts, including works by Robert Gilpin and Paul Kennedy, use the LS model to map out the rise and fall of great powers.18 In a review of international relations scholarship, Daniel Drezner summarizes their conclusions: “Historically, a great power has acquired hegemon status through a near-monopoly on innovation in leading sectors.”19

    The LS template also informs contemporary discussion of China’s challenge to US technological leadership. In another speech about how China could leverage this new round of industrial revolution to become a “science and technology superpower,” President Xi called for China to develop into “the world’s primary center for science and high ground for innovation.”20 As US policymakers confront China’s growing strength in emerging technologies like AI, they also frame the competition in terms of which country will be able to generate radical advances in new leading sectors.21

    Who did it first? Which country innovated it first? Presented with technical breakthroughs that inspire astonishment, it is only natural to gravitate toward the moment of initial discovery. When today’s leaders evoke past industrial revolutions, as Xi did in his speech to the BRICS nations, they tap into historical accounts of technological progress that also center the moment of innovation.22 The economist and historian Nathan Rosenberg diagnoses the problem with these innovation-centric perspectives: “Much less attention … if any at all, has been accorded to the rate at which new technologies have been adopted and embedded in the productive process. Indeed the diffusion process has often been assumed out of existence.”23 Yet, without the humble undertaking of diffusion, even the most extraordinary advances will not matter.

    Taking diffusion seriously leads to a different explanation for how technological revolutions affect the rise and fall of great powers. A diffusion-centric framework probes what comes after the hype. Less concerned with which state first introduced major innovations, it instead asks why some states were more successful at adapting and embracing new technologies at scale. As outlined in the next section, this alternative pathway points toward a different set of institutional factors that underpin leadership in times of technological leadership, in particular institutions that widen the base of engineering skills and knowledge linked to foundational technologies.

    GPT Diffusion Theory

    In September 2020, the Guardian published an opinion piece arguing that humans should not fear new breakthroughs in AI. Noting that “Stephen Hawking has warned that AI could ‘spell the end of the human race,’ ” the article’s “author” contends that “I am here to convince you not to worry. Artificial intelligence will not destroy humans. Believe me.”24 If one came away from this piece with the feeling that the author had a rose-tinted view of the future of AI, it would be a perfectly reasonable judgment. After all, the author was GPT-3, an AI model that can understand and produce humanlike text.

    Released earlier that year by OpenAI, a San Francisco–based AI lab, GPT-3 surprised everyone—including its designers—with its versatility. In addition to generating poetry and essays like the Guardian op-ed from scratch, early users demonstrated GPT-3’s impressive capabilities in writing code, translating languages, and building chatbots.25 Six months after its launch, one compilation listed sixty-six unique use cases of GPT-3, which ranged from automatically updating spreadsheets to generating website landing pages.26 Two years later, OpenAI’s acclaimed ChatGPT model, built on an improved version of GPT-3, would set the internet aflame with its wide-ranging capabilities.27

    While the name “GPT-3” derives from a class of language models known as “generative pre-trained transformers,” the abbreviation, coincidentally, also speaks to the broader significance of recent breakthroughs in AI: the possible arrival of the next general-purpose technology (GPT). Foundational breakthroughs in the ability of computers to perform tasks that usually require human intelligence have the potential to transform countless industries. Hence, scholars and policymakers often compare advances in AI to electricity, the prototypical GPT.28 As Kevin Kelly, the former editor of WIRED, once put it, “Everything that we formerly electrified we will now cognitize … business plans of the next 10,000 startups are easy to forecast: Take X and add AI.”29

    In this book, I argue that patterns in how GPTs diffuse throughout the economy illuminate a novel explanation for how and when technological changes affect power transitions. The emergence of GPTs—fundamental advances that can transform many application sectors—provides an opening for major shifts in economic leadership. Characterized by their scope for continuous improvement, pervasive applicability across the economy, and synergies with other technological advances, GPTs carry an immense potential for boosting productivity.30 Carefully tracking how the various applications of GPTs are adopted across various industries, a process I refer to as “GPT diffusion,” is essential to understanding how technological revolutions disrupt economic power balances.

    Based on the experience of past GPTs, this potential productivity boost comes with one notable caveat: the full impact of a GPT manifests only after a gradual process of diffusion into pervasive use.31 GPTs demand structural changes across a range of technology systems, which involve complementary innovations, organizational adaptations, and workforce adjustments.32 For example, electrification’s boost to productivity materialized about five decades after the introduction of the first electric dynamo, occurring only after factories had restructured their layouts and there had been interrelated breakthroughs in steam turbines.33 Fittingly, after the release of GPT-3, OpenAI CEO Sam Altman alluded to this extended trajectory: “The GPT-3 hype is way too much … it still has serious weaknesses and sometimes makes very silly mistakes. AI is going to change the world, but GPT-3 is just a very early glimpse. We have a lot still to figure out.”34

    Informed by historical patterns of GPT diffusion, my explanation for technology-driven power transitions diverges significantly from the standard LS account. Specifically, these two causal mechanisms differ along three key dimensions, which relate to the technological revolution’s impact timeframe, phase of relative advantage, and breadth of growth. First, while the GPT mechanism involves a protracted gestation period between a GPT’s emergence and resulting productivity boosts, the LS mechanism assumes that there is only a brief window during which countries can capture profits in leading sectors. “The greatest marginal stimulation to growth may therefore come early in the sector’s development at the time when the sector itself is expanding rapidly,” William Thompson reasons.35 By contrast, the most pronounced effects on growth arrive late in a GPT’s development.

    Second, the GPT and LS mechanisms also assign disparate weights to innovation and diffusion. Technological change involves a phase when the technology is first incubated as a viable commercial application (“innovation”) and a phase when the innovation permeates across a population of potential users (“diffusion”). The LS mechanism is primarily concerned about which country dominates innovation in leading sectors, capturing the accompanying monopoly profits.36 Under the GPT mechanism, successful adaptation to technological revolutions is less about being the first to introduce major innovations and more about effectively adopting GPTs across a wide range of economic sectors.

    Third, regarding the breadth of technological transformation and economic growth, the LS mechanism focuses on the contributions of a limited number of leading sectors and new industries to economic growth in a particular period.37 In contrast, GPT-fueled productivity growth is spread across a broad range of industries.38 Dispersed productivity increases from many industries and sectors come from the extension and generalization of localized advances in GPTs.39 Thus, the LS mechanism expects the breadth of growth in a particular period to be concentrated in leading sectors, whereas the GPT mechanism expects technological complementarities to be dispersed across many sectors.

    A clearer understanding of the contours of technological change in times of economic power transition informs which institutional variables matter most. If the LS trajectory holds, then the most important institutional endowments and responses are those that support a monopoly on innovation in leading sectors. In the context of skill formation, institutional competencies in science and basic research gain priority. For instance, the conventional explanation of Germany’s industrial rise in the late nineteenth century attributes its technological leadership to investments in industrial research labs and highly skilled chemists. These supported Germany’s dominance of the chemical industry, a key LS of the period.40

    The impact pathway of GPTs brings another set of institutional complementarities to the fore. GPT diffusion theory highlights the importance of “GPT skill infrastructure”: education and training systems that widen the pool of engineering skills and knowledge linked to a GPT. When widespread adoption of GPTs is the priority, it is ordinary engineers, not heroic inventors, who matter most. Widening the base of engineering skills associated with a GPT cultivates a more interconnected technological system, spurring cross-fertilization between institutions optimized for applied technology and those oriented toward foundational research.41

    Returning to the example of late-nineteenth-century advances in chemicals, GPT diffusion spotlights institutional adjustments that differ from those of the LS mechanism. In a decades-long process, innovations in chemical engineering practices gradually enabled the chemicalization of procedures common to many industries beyond synthetic dyes, which was controlled by Germany. Despite trailing Germany in the capacity to produce elite chemists and frontier chemical research, the United States was more effective at adapting to chemicalization because it first institutionalized the discipline of chemical engineering.42

    Of course, since GPT diffusion depends on factors aside from human capital, GPT skill infrastructure represents one of many institutional forces at work. Standards-setting organizations, financing bodies, and the competitiveness of markets can all influence the flow of information between the GPT domain and application sectors.43 Since institutions of skill formation produce impacts that spill over into and complement other institutional arrangements, they comprise the focus of my analysis.44

    Assessing GPT Diffusion across Industrial Revolutions

    To test this argument, I employ a mixed-methods approach that pairs qualitative historical analysis with quantitative methods. Historical case studies permit me to thoroughly trace the interactions between technologies and institutions among great powers in previous industrial revolutions. I then explore the generalizability of GPT diffusion theory beyond the chosen set of great powers. Using data on nineteen countries from 1995 to 2020, I analyze the theorized connection between GPT skill infrastructure in software engineering and computerization rates.

    To investigate the causal processes that connect technological changes to economic power transitions, I set the LS mechanism against the GPT diffusion mechanism across three historical case studies: Britain’s rise to preeminence in the First Industrial Revolution (IR-1); America’s and Germany’s overtaking of Britain in the Second Industrial Revolution (IR-2); and Japan’s challenge to America’s technological dominance in the Third Industrial Revolution (IR-3), or what is sometimes called the “information revolution.” This case setup allows for a fair and decisive assessment of the explanatory relevance of GPT diffusion theory in comparison to LS theory. Because the IR-1 and IR-2 function as typical cases where the cause and outcome are clearly present, they are ideal for developing and testing mechanism-based theories.45 The IR-3, a deviant case in that a technological revolution is not followed by an economic power transition, provides a different but still useful way to compare the two mechanisms.

    The IR-1 (1780–1840) is a paradigmatic case of technology-driven power transition. It is well established that the IR-1’s technological advances propelled Great Britain to unrivaled economic supremacy. As for the specific causal pathway, international relations scholarship tends to attribute Britain’s rise to its monopoly over innovation in cotton textiles and other leading sectors. According to these accounts, Britain’s technological leadership in the IR-1 sprang from its institutional capacity to nurture genius inventors in these sectors. Since the publication of these field-defining works, economic and technology historians have uncovered that the impacts on British industrialization of the two most prominent areas of technological change, cotton textiles and iron, followed different trajectories. Often relying on formal econometric methods to understand the impact of key technologies, these historical accounts question the prevailing narrative of the IR-1.

    The IR-2 (1870–1914) supplies another opportunity to pit GPT diffusion theory against the LS account. International relations scholars interpret the IR-2 as a case in which Britain’s rivals challenged its economic leadership because they first introduced significant technological advances in leading sectors. Particular emphasis is placed on Germany’s ability to corner market shares in chemicals, which is linked to its strengths in scientific education and industrial research institutions. More granular data on cross-national differences in engineering education suggest that the U.S. technological advantage rested on the country’s wide base of mechanical engineers. Combined with detailed tracing of the pace and extent of technology adoption during this period, this chapter’s evidence suggests modifications to conventional understandings of the IR-2.

    In the IR-3 (1960–2000), fundamental breakthroughs in information and communication technologies presented another opening for a shift in economic leadership. During this period, prominent thinkers warned that Japan’s lead in industries experiencing rapid technological change, including semiconductors and consumer electronics, would threaten U.S. economic leadership. Influential scholars and policymakers advocated for the United States to adopt Japan’s keiretsu system of industrial organization and its aggressive industrial policy approach. Ultimately, Japan’s productivity growth stalled in the 1990s. Given the absence of an economic power transition, the primary function of the IR-3 case therefore is to provide disconfirming evidence of the two explanations. If the components of the LS mechanism were present, then the fact that an economic power transition did not occur would damage the credibility of the LS mechanism. The same condition applies to GPT diffusion theory.

    In each of the cases, I follow the same standardized procedures. First, I test three pairs of competing propositions about the key technological trajectories, derived from the different expectations of the LS and GPT mechanisms related to the impact timeframe, phase of relative advantage, and breadth of growth. Then, depending on whether the LS or GPT trajectory better accords with the historical evidence, I analyze the goodness-of-fit between the institutional competencies of leading industrial powers and the prevailing trajectory. For instance, if an industrial revolution is better characterized by the GPT trajectory, then the corresponding case analysis should show that differences in GPT skill infrastructure determine which powers rise and fall. Although I primarily distinguish GPT diffusion theory from the LS model, I also examine alternative factors unique to the particular case, as well as two other prominent explanations of how advanced economies differentially benefit from technological changes (the varieties of capitalism and threat-based approaches).

    The historical case analysis supports the explanatory power of the GPT mechanism over the LS mechanism. In all three periods, technological changes affected the rise and fall of great powers in a gradual, decades-long impact pathway that advantaged those that effectively diffused GPTs across a broad range of sectors. Education and training systems that cultivated broad pools of engineering skills proved crucial to GPT diffusion.

    Evaluating these two competing explanations requires a clear understanding of the cause and outcome that bracket both the GPT and LS mechanisms. The hypothesized cause is a “technological revolution,” or a period characterized by particularly disruptive technological advances.46 Since the shape of technological change is uneven, not all improvements in useful knowledge are relevant for power transitions.47 However, some extraordinary clusters of technological breakthroughs, often deemed industrial revolutions by historians, do have ramifications for the rise and fall of great powers.48 I am primarily interested in the pathway by which these technological revolutions influence the global distribution of power.

    The outcome variable of interest is an economic power transition, in which one great power sustains productivity growth at higher levels than its rivals. The balance of power can shift in many ways; here I focus on relative economic growth rates because they are catalysts for intensifying hegemonic rivalries.49 Productivity growth, in particular, determines economic growth over the long run. Unique in its fungibility with other forms of power, sustained economic growth is central to a state’s ability to exert political and military influence. As demonstrated by the outcomes of interstate conflicts between great powers, economic and productive capacity is the foundation of military power.50

    Lastly, the quantitative analysis supplements the historical case studies by scrutinizing the generalizability of GPT diffusion theory outside of great powers. A key observable implication of my argument is that the rate at which a GPT spreads throughout the economy owes much to that country’s institutional capacity to widen the pool of pertinent engineering skills and knowledge. Using a novel method to estimate the breadth of software engineering education at a cross-national level, I analyze the theorized connection between GPT skill infrastructure and computerization rates across nineteen advanced and emerging economies from 1995 to 2020. I supplement my time-series cross-sectional models with a duration analysis and cross-sectional regressions. Robust to many alternative specifications, my results show that, at least for computing technology, advanced economies that have higher levels of GPT skill infrastructure preside over higher rates of GPT diffusion.

    Key Contributions

    The book makes several contributions to scholarship on power transitions and the effects of technological change on international politics. First, it puts forward a novel explanation for how and when significant technological breakthroughs generate a power transition in the international system. GPT diffusion theory revises the dominant theory based on leading sectors, which holds significant sway over academic and policymaking circles. By deepening our understanding of how technological revolutions influence shifts in economic leadership, this book also contributes to long-standing debates about the causes of power transitions.51

    Second, the findings of this book bear directly on present-day technological competition between the United States and China. Emphasizing where fundamental breakthroughs are first seeded, the LS template strongly informs not only assessments of the US-China competition for technological leadership but also the ways in which leading policymakers in both countries formulate technology strategies. It is no coincidence that the three cases in this study match the three technological revolutions referenced by Chinese president Xi in his speech on the IR-4 to the BRICS summit.

    As chapter 7 explores in detail, GPT diffusion theory suggests that Xi, along with other leading policymakers and thinkers in both the United States and China, has learned the wrong lessons from previous industrial revolutions. If the IR-4 reshapes the economic power balance, the impact will materialize through a protracted period during which a GPT, such as AI, acquires a variety of uses in a wide range of productive processes. GPT skill infrastructure, not the flashy efforts to secure the high ground in innovation, will decide which nation owns the future in the IR-4.

    Beyond power transitions, Technology and the Rise of Great Powers serves as a template for studying the politics of emerging technologies. An enduring dilemma is that scholars either assign too much weight to technological change or underestimate the effects of new technologies.52 Approaches that emphasize the social shaping of technology neglect that not all technologies are created equal, whereas technologically deterministic approaches discount the influence of political factors on technological development. By first distinguishing GPTs, together with their pattern of diffusion, from other technologies and technological trajectories, and then showing how social and political factors shape the pace and direction of GPT diffusion, my approach demonstrates a middle way forward.

    Roadmap for the Book

    The book proceeds as follows. Chapter 2 fleshes out the key differences between GPT diffusion theory and the LS-based account, as well as the case analysis procedures and selection strategy that allow me to systematically evaluate these two causal mechanisms. The bulk of the evidence follows in three case studies that trace how technological progress affected economic power transitions in the First, Second, and Third Industrial Revolutions.

    The first two case studies, the IR-1 and IR-2, show that a gap in the adoption of GPTs, as opposed to monopoly profits from dominating LS innovations, was the crucial driver of an economic power transition. In both cases, the country that outpaced its industrial rivals made institutional adjustments to cultivate engineering skills related to the key GPT of the period. The IR-1 case, discussed in chapter 3, reveals that Britain was the most successful in fostering a wide pool of machinists who enabled the widespread diffusion of advances in iron machinery. In considering the IR-2 case, chapter 4 highlights how the United States surpassed Britain as the preeminent economic power by fostering a wide base of mechanical engineering talent to spread interchangeable manufacturing methods.

    The IR-3 case, presented in chapter 5, demonstrates that technological revolutions do not necessarily always produce an economic power transition. The fact that Japan did not overtake the United States as the economic leader would provide disconfirming evidence of both the LS and GPT mechanisms, if the components of these mechanisms were present. In the case of the LS mechanism, Japan did dominate innovations in the IR-3’s leading sectors, including consumer electronics and semiconductor components. In contrast, the IR-3 does not discredit the GPT mechanism because Japan did not lead the United States in the diffusion of information and communications technology across a wide variety of economic sectors.

    Chapter 6 uses large-n quantitative analysis to explore how GPT diffusion applies beyond great powers. Chapter 7 applies the GPT diffusion framework to the implications of modern technological breakthroughs for the US-China power balance. Focusing on AI technology as the next GPT that could transform the international balance of power, I explore the extent to which my findings generalize to the contemporary US-China case. I conclude in chapter 8 by underscoring the broader ramifications of the book.

    2 GPT Diffusion Theory

    HOW AND WHEN do technological changes affect the rise and fall of great powers? Specifically, how do significant technological breakthroughs result in differential rates of economic growth among great powers? International relations scholars have long observed that rounds of technological revolution lead to upheaval in global economic leadership, bringing about a power transition in the international system. However, few studies explore how this process occurs.

    Those that do tend to fixate on the most dramatic aspects of technological change—the eureka moments and first implementations of radical inventions. Consequently, the standard account of technology-driven power transitions stresses a country’s ability to dominate innovation in leading sectors. By exploiting brief windows in which to monopolize profits in new industries, the country that dominates innovation in these sectors rises to become the world’s most productive economy. Explanations vary regarding why the benefits of leading sectors tend to accrue in certain nations. Some scholars argue that national systems of political economy that accommodate rising challengers can more readily accept and support new industries. Leading economies, by contrast, are victims of their past success, burdened by powerful vested interests that resist adaptation to disruptive technologies.1 Other studies point to more specific institutional factors that account for why some countries monopolize leading sectors, such as the degree of government centralization or industrial governance structures.2

    An alternative explanation, based on the diffusion of general-purpose technologies (GPTs), draws attention to the less spectacular process by which fundamental innovations gradually diffuse throughout many industries. The rate and scope of diffusion is particularly relevant for GPTs, which are distinguished by their scope for continual improvement, broad applicability across many sectors, and synergies with other technological advances. Recognized by economists and historians as “engines of growth,” GPTs hold immense potential for boosting productivity.3 Realizing this promise, however, necessitates major structural changes across the technology systems linked to the GPT, including complementary innovations, organizational changes, and an upgrading of technical skills. Thus, GPTs lead to a productivity boost only after a “gradual and protracted process of diffusion into widespread use.”4 This is why more than five decades passed before key innovations in electricity, the quintessential GPT, significantly transformed manufacturing productivity.5

    The process of GPT diffusion illuminates a pathway from technological change to power transition that diverges from the LS account (figure 2.1). Under the GPT mechanism, some great powers sustain economic growth at higher levels than their rivals do because, during a gradual process spanning decades, they more intensively adopt GPTs across a broad range of industries. This is analogous to a marathon run on a wide road. The LS mechanism, in contrast, specifies that one great power rises to economic leadership because it dominates innovations in a limited set of leading sectors and captures the accompanying monopoly profits. This is more like a sprint through a narrow running lane.

    Why are some countries more successful at GPT diffusion? Building from scholarship arguing that a nation’s success in adapting to emerging technologies is determined by the fit between its institutions and the demands of evolving technologies, I argue that the GPT diffusion pathway informs the institutional adaptations crucial to success in technological revolutions.6 Unlike institutions oriented toward cornering profits in leading sectors, those optimized for GPT diffusion help standardize and spread novel best practices between the GPT sector and application sectors. Education and training systems that widen the base of engineering skills and knowledge linked to new GPTs, or what I call “GPT skill infrastructure,” are essential to all of these institutions.

    FIGURE 2.1. Causal Diagrams for LS and GPT Mechanisms

    The differences between these two theories of technological change and power transition are made clear when one country excels in the institutional competencies for LS product cycles but does not dominate GPT diffusion. Take, for example, chemical innovations and Germany’s economic rise in the late nineteenth century. Germany dominated major innovations in chemicals and captured nearly 90 percent of all global exports of synthetic dyestuffs.7 In line with the LS mechanism, this success was backed by Germany’s investments in building R&D labs and training doctoral students in chemistry, as well as a system of industrial organization that facilitated the rise of three chemical giants.8 Yet it was the United States that held an advantage in adopting basic chemical processes across many industries. As expected by GPT diffusion theory, the United States held institutional advantages in widening the base of engineering skills and knowledge necessary for chemicalization on a wide scale.9 This is when the ordinary tweakers and the implementers come to the fore, and the star scientists and inventors recede to the background.10

    The rest of this chapter fleshes out my theoretical framework. It first clarifies the outcome I seek to explain: an economic power transition in which one great power becomes the economic leader by sustaining productivity growth at higher levels than its rivals. The starting point of my argument is that the diffusion of GPTs is central to the relationship between technological change and productivity leadership. This chapter explicates this argument by justifying the emphasis on both GPTs and diffusion, highlighting the differences between the GPT and LS mechanisms. It then extends the analysis to the institutional competencies that synergize with GPT trajectories. From the rich set of technology-institution interactions identified by evolutionary economists and comparative institutionalists, I justify my focus on institutions that enable countries to widen the skill base required to spread GPTs across industries. After differentiating my argument from alternative explanations, the chapter closes with a description of the book’s research methodology.11

    The Outcome: Long-Term Economic Growth Differentials and Power Transitions

    Power transitions are to the international system as earthquakes are to the geological landscape. Shifts in the relative power of leading nations send shock waves throughout the international system. What often follows is conflict, the most devastating form of which is a war waged by coalitions of great powers for hegemony over the globe.12 Beyond heightened risks of conflict, the aftershocks of power transitions reverberate in the architecture of the international order as victorious powers remake international institutions in their own images.13

    While the power transition literature largely tackles the consequences of power transitions, I treat the rise and fall of great powers as the outcome to be explained. This follows David Baldwin’s instruction for international relations scholars “to devote more attention to treating power as a dependent variable and less to treating it as an independent variable.”14 Specifically, I explore the causes of “economic power transitions,” in which one great power sustains economic growth rates at higher levels than its rivals.15

    It might not be obvious, at first glance, why I focus on economic power. After all, power is a multidimensional, contested concept that comes in many other forms. The salience of certain power resources depends on the context in which a country draws upon them to exert influence.16 For my purposes, differentials in economic growth are the most relevant considerations for intensifying hegemonic rivalry. An extensive literature has demonstrated that changes in relative economic growth often precede hegemonic wars.17

    Moreover, changes in global political and military leadership often follow shifts in economic leadership. As the most fungible mode of power, economic strength undergirds a nation’s influence in global politics and its military capabilities.18 The outcomes of interstate conflicts bear out that economic and productive capacity is the foundation of military power.19 Paul Kennedy concludes that

    all of the major shifts in the world’s military-power balances have followed alterations in the productive balances … the rising and falling of the various empires and states in the international system has been confirmed by the outcomes of the major Great Power wars, where victory has always gone to the side with the greatest material resources.20

    How does one identify if or when an economic power transition occurs? Phrased differently, how many years does a great power need to lead its rivals in economic growth rates? How large does that gap have to reach? Throughout this book, I judge whether an economic power transition has occurred based on one great power attaining a lead in overall economic productivity over its rivals by sustaining higher levels of productivity growth rates.21 Productivity growth ensures that efficient and sustainable processes are fueling growth in total economic output. Additionally, productivity is the most important determinant of economic growth in the long run, which is the appropriate time horizon for understanding power transitions. “Productivity isn’t everything, but in the long run it is almost everything,” states Nobel Prize–winning economist Paul Krugman.22

    Alternative conceptualizations of economic power cannot capture how effectively a country translates technological advance into national economic growth. Theories of geo-economics, for instance, highlight a state’s balance of trade in certain technologically advanced industries.23 Other studies emphasize a state’s share of world-leading firms.24 National rates of innovation, while more inclusive, measure the generation of novel technologies but not diffusion across commercial applications, thereby neglecting the ultimate impact of technological change.25 Compared to these indicators, which account for only a small portion of the value-added activities in the economy, productivity provides a more comprehensive measure of economic leadership.26

    This focus on productivity is supported by recent work on power measurement, which questions measures of power resources based on economic size. Without accounting for economic efficiency, solely relying on measures of gross economic and industrial output provides a distorted view of the balance of power, particularly where one side is populous but poor.27 If national power was measured by GDP alone, China was the world’s most powerful country during the first industrial revolution. However, China’s economy was far from the productivity frontier. In fact, as the introduction chapter spotlighted, the view that China fell behind the West because it could not capitalize on productivity-boosting technological breakthroughs is firmly entrenched in the minds of leading Chinese policymakers and thinkers.

    Lastly, it is important to clarify that I limit my analysis of productivity differentials to great powers.28 In some measures of productivity, other countries may rank highly or even outrank the countries I study in my cases. In the current period, Switzerland and other countries have higher GDP per capita than the United States; before World War I, Australia was the world leader in productivity, as measured by GDP per labor-hour.29 However, smaller powers like pre–World War I Australia and present-day Switzerland are excluded from my study of economic power transitions, as they lack the baseline economic and population size to be great powers.30

    There is no exact line that distinguishes great powers from other countries.31 Kennedy’s seminal text The Rise and Fall of the Great Powers, for instance, has been challenged for not providing a precise definition of great power.32 Fortunately, across all the case studies in this book, there is substantial agreement on the great powers of the period. According to one measure of the distribution of power resources, which spans 1816 to 2012 and incorporates both economic size and efficiency, all the countries I study rank among the top six at the beginning of the case.33

    The Diffusion of GPTs

    Scholars often gravitate to technological change as the source of a power transition in which the mantle of industrial preeminence changes hands. However, there is less clarity over the process by which technical breakthroughs translate into this power shift among countries at the technological frontier. I argue that the diffusion of GPTs is the key to this mechanism. In this section, I first outline why my theory privileges GPTs over other types of technology. I then set forth why diffusion should be prioritized over other phases of technological change, especially innovation. Finally, I position GPT diffusion theory against the leading sector (LS) model, which is the standard explanation in the international relations literature.

    Why GPTs?

    Not all technologies are created equal. When assessed on their potential to transform the productivity of nations, some technical advances, such as the electric dynamo, rank higher than others, such as an improved sleeping bag. My theory gives pride of place to GPTs, such as electricity and the steam engine, which have historically generated waves of economy-wide productivity growth.34 Assessed on their own merits alone, even the most transformative technological changes do not tip the scale far enough to significantly affect aggregate economic productivity.35 GPTs are different because their impact on productivity comes from accumulated improvements across a wide range of complementary sectors; that is, they cannot be judged on their own merits alone.

    Recognized by economists and economic historians as “engines of growth,” GPTs are defined by three characteristics.36 First, they offer great potential for continual improvement. While all technologies offer some scope for improvement, a GPT “has implicit in it a major research program for improvements, adaptations, and modifications.”37 Second, GPTs acquire pervasiveness. As a GPT evolves, it finds a “wide variety of uses” and a “wide range of uses.”38 The former refers to the diversity of a GPT’s use cases, while the latter alludes to the breadth of industries and individuals using a GPT.39 Third, GPTs have strong technological complementarities. In other words, the benefits from innovations in GPTs come from how other linked technologies are changed in response and cannot be modeled from a mere reduction in the costs of inputs to the existing production function. For example, the overall energy efficiency gains from merely replacing a steam engine with an electric motor were minimal; the major benefits from factory electrification came from electric “unit drive,” which enabled machines to be driven individually by electric motors, and a radical redesign of plants.40

    Taken together, these characteristics suggest that the full impact of a GPT materializes via an “extended trajectory” that differs from those associated with other technologies. Economic historian Paul David explains:

    We can recognize the emergence of an extended trajectory of incremental technical improvements, the gradual and protracted process of diffusion into widespread use, and the confluence with other streams of technological innovation, all of which are interdependent features of the dynamic process through which a general purpose engine acquires a broad domain of specific applications.41

    For example, the first dynamo for industrial application was introduced in the 1870s, but the major boost of electricity to overall manufacturing productivity did not occur until the 1920s. Like other GPT trajectories, electrification required a protracted process of workforce skill adjustments, organizational adaptations, such as changes in factory layout, and complementary innovations like the steam turbine, which enabled central power generation in the form of utilities.42 To track the full impact of these engines of growth, one must travel the long roads of their diffusion.

    Why Diffusion?

    All technological trajectories can be divided into a phase when the technology is incubated and then first introduced as a viable commercial application (“innovation”) and a phase when the innovation spreads through a population of potential users, both nationally and internationally (“diffusion”).43 Recognizing this commonly accepted distinction, other studies of the scientific and technological capabilities of nations primarily focus on innovation.44 I depart from other works by giving priority to diffusion, since that is the phase of technological change most significant for GPTs.45

    Undeniably, the activities and conditions that produce innovation can also spur diffusion.46 A firm’s ability to conduct breakthrough R&D does not just create new knowledge but also boosts its capacity to assimilate innovations from external sources (“absorptive capacity”).47 Faced with an ever-shifting technological frontier, building competency at producing new innovations gives a firm the requisite prior knowledge for identifying and commercializing external innovations. Other studies extend these insights beyond firms to regional and national systems.48 In order to absorb and diffuse technological advances first incubated elsewhere, they argue, nations must invest in a certain level of innovative activities.

    This connection between innovation capacity and absorptive capacity could question the GPT mechanism’s attention to diffusion. Possibly, a country’s lead in GPT innovation could also translate directly into a relative advantage in GPT diffusion.49 Scholarship on the agglomeration benefits of innovation hot spots, such as Silicon Valley, support this case to some extent. Empirical analyses of patent citations indicate that knowledge spillovers from GPTs tend to cluster within a geographic region.50 In the case of electricity, Robert Fox and Anna Guagnini underscore that it was easier for countries with firms at the forefront of electrical innovation to embrace electric power at scale. The interconnections between the “learning by doing” gained on the job in these leading firms and academic labs separated nations in the “fast lane” and “slow lane” of electrification.51

    Being the first to pioneer new technologies could benefit a state’s capacity to absorb and diffuse GPTs, but it is not determinative. A country’s absorptive capacity also depends on many other factors, including institutions for technology transfer, human capital endowments, openness to trade, and information and communication infrastructure.52 Sometimes the “advantages of backwardness” allow laggard states to adopt new technologies faster than the states that pioneer such advances.53 In theory and practice, a country’s ability to generate fundamental, new-to-the-world innovations can widely diverge from its ability to diffuse such advances.

    This potential divergence is especially relevant for advanced economies, which encompass the great powers that are the subject of this research. Although innovation-centered explanations do well at sorting the advantages of technological breakthroughs to countries at the technological frontier compared to those trying to catch up, they are less effective at differentiating among advanced economies. As supported by a wealth of econometric research, divergences in the long-term economic growth of countries at the technology frontier are shaped more by imitation than innovation.54 These advanced countries have firms that can quickly copy or license innovations; first mover advantages from innovations are thus limited even in industries, like pharmaceuticals, that enforce intellectual property rights most strictly.55 Nevertheless, advanced countries that are evenly matched in their capacity for radical innovation can undertake vastly different growth trajectories in the wake of technological revolutions. Differences in diffusion pathways are central to explaining this puzzle.

    This diffusion-centered approach is especially well suited for GPTs. Since GPTs entail gradual evolution into widespread use, there is a longer window for competitors to adopt GPTs more intensively than the leading innovation center. In other technologies, first-mover benefits from pioneering initial breakthroughs are more significant. For instance, leadership in the innovation of electric power technologies was fiercely contested among the industrial powers. The United States, Germany, Great Britain, and France all built their first central power stations within a span of three years (1882–1884), their first electric trams within a span of nine years (1887–1896), and their first three-phase AC power systems within a span of eight years (1891–1899).56 However, the United States clearly led in the diffusion of these systems: by 1912, its electricity production per capita had more than doubled that of Germany, its closest competitor.57 Thus, while most countries at the technological frontier will be able to compete in the production and innovation of GPTs, the hardest hurdles in the GPT trajectory are in the diffusion phase.

    GPT Diffusion and LS Product Cycles

    GPT diffusion challenges the LS-based account of how technological change drives power transitions. The standard explanation in the international relations literature emphasizes a country’s dominance in leading sectors, defined as new industries that experience rapid growth on the back of new technologies.58 Cotton textiles, steel, chemicals, and the automobile industry form a “classic sequence” of “great leading sectors,” developed initially by economist Walt Rostow and later adapted by political scientists.59 Under the LS mechanism, a country’s ability to maintain a monopoly on innovation in these emerging industries determines the rise and fall of lead economies.60

    This model of technological change and power transition builds on the international product life cycle, a concept pioneered by Raymond Vernon. Constructed to explain patterns of international trade, the cycle begins with a product innovation and subsequent sales growth in the domestic market. Once the domestic market is saturated, the new product is exported to foreign markets. Over time, production shifts to these markets, as the original innovating country loses its comparative advantage.61

    LS-based studies frequently invoke the product cycle model.62 Analyzing the effects of leading sectors on the structure of the international system, Gilpin states, “Every state, rightly, or wrongly, wants to be as close as possible to the innovative end of ‘the product cycle.’ ”63 One scholar described Gilpin’s US Power and the Multinational Corporation, one of the first texts that outlines the LS mechanism, as “[having] drawn on the concept of the product cycle, expanded it into the concept of the growth and decline of entire national economies, and analyzed the relations between this economic cycle, national power, and international politics.”64

    The product cycle’s assumptions illuminate the differences between the GPT and LS mechanisms along three key dimensions. In the first stage of the product cycle, a firm generates the initial product innovation and profits from sales in the domestic market before saturation. Extending this model to national economies, the LS mechanism emphasizes the clustering of LS innovations and attendant monopoly profits in a single nation.65 “The extent of national success that we have in mind is of the fairly extreme sort,” write George Modelski and William Thompson. “One national economy literally dominates the leading sector during its phase of high growth and is the primary beneficiary of the immediate profits.”66 The GPT trajectory, in contrast, places more value on where technologies are diffused than where an innovation is first pioneered.67 I refer to this dimension as the “phase of relative advantage.”

    In the next stage, the product innovation spreads to global markets and the technology gradually diffuses to foreign competitors. Monopoly rents associated with a product innovation dissipate as production becomes routinized and transfers to other countries.68 Mirroring this logic, Modelski and Thompson write, “[Leading sectors] bestow the benefits of monopoly profits on the pioneer until diffusion and imitation transform industries that were once considered radically innovative into fairly routine and widespread components of the world economy.”69 Thompson also states that “the sector’s impact on growth tends to be disproportionate in its early stages of development.”70

    The GPT trajectory assumes a different impact timeframe. The more wide-ranging the potential applications of a technology, the longer the lag between its initial emergence and its ultimate economic impact. This explains why the envisioned transformative impact of GPTs does not appear straightaway in the productivity statistics.71 Time for complementary innovations, organizational restructuring, and institutional adjustments such as human capital formation is needed before the full impact of a GPT can be known. It is precisely the period when diffusion transforms radical innovations into routine components of the economy—the stage when the causal effects of leading sectors are expected to dissipate—that generates the productivity gap between nations.

    The product cycle also reveals differences between the LS and GPT mechanisms regarding the “breadth of growth.” Like the product cycle’s focus on an innovation’s life cycle within a singular industry, the LS mechanism emphasizes the contributions of a limited number of new industries to economic growth in a particular period. GPT-fueled productivity growth, on the other hand, is dispersed across a broad range of industries.72 Table 2.1 specifies how LS product cycles differ from GPT diffusion along the three dimensions outlined here. As the following section will show, the differences in these two technological trajectories shape the institutional factors that are most important for national success in adapting to periods of technological revolution.

    Table 2.1 Two Mechanisms of Technological Change and Power Transitions

    MechanismsImpact TimeframePhase of Relative AdvantageBreadth of GrowthInstitutional Complements
    LS product cyclesLopsided in early stagesMonopoly on innovationConcentratedDeepen skill base in LS innovations
    GPT diffusionLopsided in later stagesEdge in diffusionDispersedWiden skill base in spreading GPTs

    While I have highlighted the differences between GPT diffusion and LS product cycles, it is important to recognize that there are similarities between the two pathways.73 Some scholars, for example, associate leading sectors with broad spillovers across economic sectors.74 In addition, lists of leading sectors and lists of GPTs sometimes overlap, as evidenced by the fact that electricity is a consensus inclusion on both lists. Moreover, both explanations begin with the same premise: to fully uncover the dynamics of technology-driven power transitions, it is essential to specify which new technologies are the key drivers of economic growth in a particular time window.75

    At the same time, these resemblances should not be overstated. Many classic leading sectors do not have general-purpose applications. For instance, cotton textiles and automobiles both feature on Rostow’s series of leading sectors, and they are studied as leading sectors because each has “been the largest industry for several major industrial nations in the West at one time or another.”76 Although these were certainly both fast-growing large industries, the underlying technological advances do not fulfill the characteristics of GPTs. In addition, many of the GPTs I examine do not qualify as leading sectors. The machine tool industry in the mid-nineteenth century, for instance, was not a new industry, and it was never even close to being the largest industry in any of the major economies. Most importantly, though the GPT and LS mechanisms sometimes point to similar technological changes, they present very different understandings of how revolutionary technologies bring about an economic power transition. As the next section reveals, these differences also map onto varied institutional adaptations.

    GPT Skill Infrastructure

    New technologies agitate existing institutional patterns.77 They appeal for government support, generate new collective interests in the form of technical societies, and induce organizations to train people in relevant fields. If institutional environments are slow or fail to adapt, the development of emerging technologies is hindered. As Gilpin articulates, a nation’s technological fitness is rooted in the “extent of the congruence” between its institutions and the demands of evolving technologies.78 This approach is rooted in a rich tradition of work on the coevolution of technology and institutions.79

    Understanding the demands of GPTs helps filter which institutional factors are most salient for how technological revolutions bring about economic power transitions. Which institutional factors dictate disparities in GPT adoption among great powers? Specifically, I emphasize the role of education and training systems that broaden the base of engineering skills linked to a particular GPT. This set of institutions, which I call “GPT skill infrastructure,” is most crucial for facilitating the widespread adoption of a GPT.

    To be sure, GPT diffusion is dependent on institutional adjustments beyond GPT skill infrastructure. Intellectual property regimes, industrial relations, financial institutions, and other institutional factors could affect GPT diffusion. Probing inter-industry differences in technology adoption, some studies find that less concentrated industry structures are positively linked to GPT adoption.80 I limit my analysis to institutions of skill formation because their effects permeate other institutional arrangements.81 GPT skill infrastructure provides a useful indicator for other institutions that standardize and spread the novel best practices associated with GPTs.82

    It should also be noted that the institutional approach is one of three main categories of explanation for cross-country differences in economic performance over the long term.83 Other studies document the importance of geography and culture to persistent cross-country income differences.84 I prioritize institutional explanations for two reasons. First, natural experiments from certain historical settings, in which institutional divergence occurs but geographical and cultural factors are held constant, suggest that institutional differences are particularly influential sources of long-term economic growth differentials.85 Second, since LS-based accounts of power transitions also prioritize institutional adaptations to technological change, my approach provides a more level test of GPT diffusion against the standard explanation.86

    One final note about limits to my argument’s scope. I do not investigate the deeper origins of why some countries are more effective than others at developing GPT skill infrastructure. Possibly, the intensity of political competition and the inclusiveness of political institutions influence the development of skill formation institutions.87 Other fruitful lines of inquiry stress the importance of government capacity to make intertemporal bargains and adopt long time horizons in making technology investments.88 It is worth noting that a necessary first step to productively exploring these underlying causes is to establish which types of technological trajectories and institutional adaptations are at work. For instance, LS product cycles may be more closely linked to mercantilist or state capitalist approaches that favor narrow interest groups, whereas, political systems that incorporate a broader group of stakeholders may better accommodate GPT diffusion pathways.

    Institutions Fit for GPT Diffusion

    If GPTs drive economic power transitions, which institutions fit best with their demands? Institutional adaptations for GPT diffusion must solve two problems. First, since the economic benefits of GPTs materialize through improvements across a broad range of industries, capturing these benefits requires extensive coordination between the GPT sector and numerous application sectors. Given the sheer scope of potential applications, it is infeasible for firms in the GPT sector to commercialize the technology on their own, as the necessary complementary assets are embedded with different firms and industries.89 In the AI domain, as one example of a potential GPT, firms that develop general machine learning algorithms will not have access to all the industry-specific data needed to fine-tune those algorithms to particular application scenarios. Thus, coordination between the GPT sector and other organizations that provide complementary capital and skills, such as academia and competitor firms, is crucial. In contrast, for technologies that are not general-purpose, this type of coordination is less conducive and could even be detrimental to a nation’s competitive advantage, as the innovating firm could leak its technical secrets.90

    Second, GPTs pose demanding conditions for human capital adjustments. In describing the connection between skill formation and technological fitness, scholars often delineate between general skills and industry-specific skills. According to this perspective, skill formation institutions that optimize for the former are more conducive to technological domains characterized by radical innovation, while institutions that optimize for the latter are more favorable for domains marked by incremental innovation.91 GPT diffusion entails both types of skill formation. The skills must be specific to a rapidly changing GPT domain but also broad enough to enable a GPT’s advance across many industries.92 Strong linkages between R&D-intensive organizations at the technological frontier and application areas far from the frontier also play a key role in GPT diffusion. This draws attention to the interactions between researchers who produce innovations and technicians who help absorb them into specific contexts.93

    Education and training systems that foster relevant engineering skills for a GPT, or what I call GPT skill infrastructure, address both constraints. Engineering talent fulfills the need for skills that are rooted in a GPT yet sufficiently flexible to implement GPT advances in a wide range of sectors. Broadening the base of engineering knowledge also helps standardize best practices with GPTs, thereby coordinating information flows between the GPT sector and application sectors. Standardization fosters GPT diffusion by committing application sectors to specific technological trajectories and encouraging complementary innovations.94 This unlocks the horizontal spillovers associated with GPTs.95

    Indeed, distinct engineering specializations have emerged in the wake of a new GPT. New disciplines, such as chemical engineering and electrical engineering, have proved essential in widening knowledge bases in the wake of a new GPT.96 Computer science, another engineering-oriented field, was central to US leadership in the information revolution.97 These professions developed alongside new technical societies—ranging from the American Society of Mechanical Engineers to the Internet Engineering Task Force—that formulated and disseminated guidelines and benchmarks for GPT development.98

    Clearly, the features of GPT skill infrastructure have changed over time. Whereas informal associations systematized the skills crucial for mechanization in the eighteenth century, formal higher education has become increasingly integral to computerization in the twenty-first century.99 Some evidence suggests that computers and other technologies are skill-biased, in the sense that they favor workers with more years of schooling.100 These trends complicate but do not undercut the concept of GPT skill infrastructure. Regardless of the extent of formal training, all configurations of GPT skill infrastructure perform the same function: to widen the pool of engineering skills and knowledge associated with a GPT. This can take place in universities as well as in informal associations, provided these settings train engineers and facilitate the flow of engineering knowledge between knowledge-creation centers and application sectors.101

    Which Institutions Matter?

    The institutional competencies for exploiting LS product cycles are different. Historical analysis informed by this frame highlights heroic inventors like James Watt and pioneering research labs at large companies.102 Studying which countries benefited most from emerging technologies over the past two centuries, Herbert Kitschelt prioritizes the match between the properties of new technologies and sectoral governance structures. Under his framework, for example, tightly coupled technological systems with high causal complexity, such as nuclear power systems and aerospace platforms, are more likely to flourish in countries that allow for extensive state support.103 In other studies, the key institutional factors behind success in LS product cycles are education systems that subsidize scientific training and R&D facilities in new industries.104

    These approaches equate technological leadership with a state’s success in capturing market shares and monopoly profits in new industries.105 In short, they use LS product cycles as the filter for which institutional variables matter. Existing scholarship lacks an institutional explanation for why some great powers are more successful at GPT diffusion.

    Competing interpretations of technological leadership in chemicals during the late nineteenth century crystallize these differences. Based on the LS template, the standard account accredits Germany’s dominance in the chemical industry—as represented by its control over 90 percent of global production of synthetic dyes—to its investments in scientific research and highly skilled chemists.106 Germany’s dynamism in this leading sector is taken to explain its overall industrial dominance.107

    GPT diffusion spotlights a different relationship between technological change and institutional adaptation. The focus turns toward institutions that complemented the extension of chemical processes to a wide range of industries beyond synthetic dye, such as food production, metals, and textiles. Under the GPT mechanism, the United States, not Germany, achieved leadership in chemicals because it first institutionalized chemical engineering as a discipline. Despite its disadvantages in synthetic dye production and chemical research, the United States was more effective in broadening the base of chemical engineering talent and coordinating information flows between fundamental breakthroughs and industrial applications.108

    It is important to note that some parts of the GPT and LS mechanisms can coexist without conflict. A state’s capacity to pioneer new technologies can correlate with its capacity to absorb and diffuse GPTs. Countries that are home to cutting-edge R&D infrastructure may also be fertile ground for education systems that widen the pool of GPT-linked engineering skills. However, these aspects of the LS mechanism are not necessary for the GPT mechanism to operate. In accordance with GPT diffusion theory, a state can capitalize on GPTs to become the most powerful economy without monopolizing LS innovation.

    Moreover, other dimensions of these two mechanisms directly conflict. When it comes to impact timeframe and breadth of growth, the GPT and LS mechanisms advance opposing expectations. Institutions suited for GPT diffusion can diverge from those optimized for creating new-to-the-world innovations. Research on human capital and long-term growth separates the effects of engineering capacity, which is commonly tied to adoptive activities, and other forms of human capital that are more often connected to inventive activities.109 This divergence can also be seen in debates over the effects of competition on technological activity. On the one hand, Joseph Schumpeter and others have argued that monopoly structures incentivize more R&D activity because the monopolists can appropriate all the gains from technological innovation.110 On the other hand, empirical work demonstrates that more competitive market structures increase the rate of technological adoption across firms.111 Thus, while there is some overlap between these two mechanisms, they can still be set against each other in a way that improves our understanding of technological revolutions and power transitions.

    This theoretical framework differs from related work on the political economy of technological change.112 Scholars attribute the international competitiveness of nations to broader institutional contexts, including democracy, national innovation systems, and property rights enforcement.113 Since this book is limited to the study of shifts in productivity leadership at the technological frontier, many of these factors, such as those related to basic infrastructure and property rights, will not explain differences among technologically advanced nations.

    In addition, most of the institutional theories put forth to explain the productivity of nations are technology-agnostic, in that they treat all forms of technological change equally. To borrow language from a former chairman of the US Council of Economic Advisers, they do not differentiate between an innovation in potato chips and an innovation in microchips.114 In contrast, I am specific about GPTs as the sources of shifts in competitiveness at the technological frontier.

    Other theories identify key technologies but leave institutional factors at a high level of abstraction. Some scholars, for instance, posit that the lead economy’s monopoly on leading-sector innovation eventually erodes because of “ubiquitous institutional rigidities.”115 Unencumbered by the vested interests that resist disruptive technologies, rising challengers inevitably overtake established powers. Because these explanations are underspecified, they cannot account for cases where rich economies expand their lead or where poorer countries do not catch up.116

    When interpreting great power competition at the technological frontier, adjudicating between the GPT and LS mechanisms represents a choice between two different visions. The latter prioritizes being the first country to introduce novel technologies, whereas the former places more value on disseminating and transforming innovations after their inception. In sum, industrial competition among great powers is not a sprint to determine which one can create the most brilliant Silicon Valley; it is a marathon won by the country that can cultivate the closest connections between its Silicon Valleys and its Iowa Citys.

    Alternative Explanations

    Although I primarily set GPT diffusion theory against the LS model, I also consider two other prominent explanations that make specific claims about how technological breakthroughs differentially advantage leading economies. Crucially, these two lines of thinking could account for differences in GPT diffusion, nullifying the import of GPT skill infrastructure.

    Threat-Based Arguments

    According to one school of thought, international security threats motivate states to invest in science and technology.117 When confronted with more threatening geopolitical landscapes, states are more incentivized to break down status quo interests and build institutions conducive to technological innovation.118 Militaries hold outsized influence in these accounts. For example, Vernon Ruttan argues that military investment, mobilized against war or the threat of war, fueled commercial advances in six technologies designated as GPTs.119 Studies of the success of the United States and Japan with emerging technologies also stress interconnections between military and civilian technological development.120 I group these related arguments under the category of threat-based theories.

    Related explanations link technological progress with the balance of external threats and domestic roadblocks. Mark Taylor’s “creative insecurity” theory describes how external economic and military pressures permit governments to break from status quo interest groups and promote technological innovation. He argues that the difference between a nation’s external threats and its internal rivalries determines its propensity for innovation: the greater the difference, the greater the national innovation rate.121 Similarly, “systemic vulnerability” theory emphasizes the influence of external security and domestic pressures on the will of leaders to invest in institutions conducive to innovation, as well as the effect of “veto players” on their ability to do so.122

    Certainly, external threats could impel states to invest more in GPTs, and military investment can help bring forth new GPTs; however, there are several issues with adapting threat-based theories to explain differences in GPT diffusion across great powers. First, threat-based arguments tend to focus on the initial incubation of GPTs, as opposed to the gradual spread of GPTs throughout a national economy. During the latter phase, a great deal of evidence suggests that civilian and military needs can greatly conflict.123 Besides, some GPTs, such as electricity in the United States, developed without substantial military investment. Since other civilian institutions could fill in as strong sources of demand for GPTs, military procurement may not be necessary for spurring GPT diffusion. Institutional adjustments to GPTs therefore can be motivated by factors other than threats. Ultimately, to further probe these points of clash, the impact of security threats and military investment must be traced within the historical cases.

    Varieties of Capitalism

    The “varieties of capitalism” (VoC) explanation highlights differences among developed democracies in labor markets, industrial organization, and interfirm relations and separates them into coordinated market economies (CMEs) and liberal market economies (LMEs). VoC scholars argue that CMEs are more suited for incremental innovations because their thick intercorporate networks and protected labor markets favor gradual adoption of new technological advances. LMEs, in contrast, are more adept at radical innovation because their fluid labor markets and corporate organization make it easier for firms to reorganize themselves around disruptive technologies. Most relevant to GPT diffusion theory, VoC scholars argue that LMEs incentivize workers to acquire general skills, which are more accommodative to radical innovation, whereas CMEs support industry-specific training, which is more favorable for incremental innovation.124

    It is possible that differences between market-based capitalism and strategically coordinated capitalism account for GPT diffusion gaps between nations. Based on the expectations of the VoC approach, LMEs should be more likely to generate innovations with the potential to become GPTs, and workers in LMEs should possess more general skills that could spread GPTs across firms.125 Examining the pattern of innovation during the information revolution, scholars find that the United States, an LME, concentrated on industries experiencing radical innovation, such as semiconductors and telecommunications, while Germany, a CME, specialized in domains characterized by incremental innovation, such as mechanical engineering and transport.126

    Despite bringing vital attention to the diversity of skill formation institutions, VoC theory’s dichotomy between general and industry-specific skills does not dovetail with the skills demanded by specific GPTs.127 Cutting across this sometimes arbitrary distinction, the engineering skills highlighted in GPT diffusion theory are specific to a fast-evolving GPT field and general enough to transfer ideas from the GPT sector across various sectors. Software engineering skills, for instance, are portable across multiple industries, but their reach is not as ubiquitous as critical thinking skills or mathematics knowledge. To address similar gaps in skill classifications, many political economists have appealed for “a more fine-grained analysis of cross-national differences in the particular mix of jobs and qualifications that characterize different political economies.”128 In line with this move, GPT skill infrastructure stands in for institutions that supply the particular mix of jobs and qualifications for enabling GPT diffusion. The empirical analysis provides an opportunity to examine whether this approach should be preferred to the VoC explanation for understanding technology-driven power transitions.

    Research Methodology

    My evaluation of the GPT and LS mechanisms primarily relies on historical case studies, which allow for detailed exploration of the causal processes that connect technological change to economic power transitions. Employing congruence-analysis techniques, I select cases and assess the historical evidence in a way that ensures a fair and rigorous test of the relative explanatory power of the two mechanisms.129 This sets up a “three-cornered fight” among GPT diffusion theory, the rival LS-based explanation, and the set of empirical information.130

    The universe of cases most useful for assessing the GPT and LS mechanisms are technological revolutions (cause) that produced an economic power transition (outcome) in the industrial period. Following guidance on testing competing mechanisms that prioritize typical cases where the cause and outcome are clearly present, I investigate the First Industrial Revolution (IR-1) and the Second Industrial Revolution (IR-2).131 Both cases featured clusters of disruptive technological advances, highlighted by some studies as “technological revolutions” or “technology waves.”132 They also saw economic power transitions, when one great power sustained growth rates at substantially higher levels than its rivals.133 I also study Japan’s challenge to American economic leadership—which ultimately failed—in the Third Industrial Revolution (IR-3). This deviant case can disconfirm mechanisms and help explain why they break down.134

    These cases are highly crucial and relevant for testing the GPT mechanism against the LS mechanism. All three cases favor the latter in terms of background conditions and existing theoretical explanations. Scholarship has attributed shifts in economic power during this period to the rise of new leading sectors.135 Thus, if the empirical results support the GPT mechanism, then my findings would suggest a need for major modifications to our understanding of how technological revolutions affect the rise and fall of great powers. The qualitative analysis appendix provides further details on case selection, including the universe of cases, the justification for these cases as “most likely cases” for the LS mechanism, and relevant scope conditions.136

    This overall approach adapts the methodology of process-tracing, often conducted at the individual or micro level, to macro-level mechanisms that involve structural factors and evolutionary interactions.137 Existing scholarship on diffusion mechanisms, which the GPT mechanism builds from, emphasizes the influence of macro-level processes. In these accounts the diffusion trajectory depends not just on the overall distribution of individual-level receptivity but also on structural and institutional features, such as the degree of interconnectedness in a population.138 This approach aligns with a view of mechanistic thinking that allows for mechanisms to be set at different levels of abstraction.139 As Tulia Falleti and Julia Lynch point out, “Micro-level mechanisms are no more fundamental than macro-level ones.”140

    To judge the explanatory strength of the LS and GPT mechanisms, I employ within-case congruence tests and process-tracing principles to evaluate the predictions of the two theoretical approaches against the empirical record.141 In each historical case, I first trace how leading sectors and GPTs developed in the major economies, paying particular attention to adoption timeframes, the technological phase of relative advantage, and the breadth of growth—three dimensions that differentiate GPT diffusion from LS product cycles.142

    For example, my assessment of the two mechanisms along the impact time-frame dimension follows consistent procedures in each case.143 To evaluate when certain technologies were most influential, I establish when they initially emerged (based on dates of key breakthroughs), when their associated industries were growing fastest, and when they diffused across a wide range of application sectors. When data are available, I estimate a GPT’s initial arrival date by also factoring in the point at which it reached a 1 percent adoption rate in the median sector.144 Industry growth rates, diffusion curves, and output trends all help measure the timeline along which technological breakthroughs substantially influenced the overall economy. The growth trajectory of each candidate GPT and LS is then set against a detailed timeline of when a major shift in productivity leadership occurs.

    I then turn to the institutional factors that could explain why some countries were more successful in adapting to a technological revolution, with a focus on the institutions best suited to the demands of GPTs and leading sectors.145 If the GPT mechanism is operative, the state that attains economic leadership should have an advantage in institutions that broaden the base of engineering human capital and spread best practices linked to GPTs. Additional evidence of the GPT diffusion theory’s explanatory power would be that other countries had advantages in institutions that complement LS product cycles, such as scientific research infrastructure and sectoral governance structures.

    These evaluation procedures are effective because I have organized the competing mechanisms “so that they are composed of the same number of diametrically opposite parts with observable implications that rule each other out.”146 This allows for evidence in favor of one explanation to be doubly decisive in that it also undermines the competing theory.147 In sum, each case study is structured around investigating a set of four standardized questions that correspond to the three dimensions of the LS and GPT mechanisms as well as the institutional complements to technological trajectories (table 2.2).148

    table 2.2 Testable Propositions of the LS and GPT Mechanisms

    DimensionsKey QuestionsLS PropositionsGPT Propositions
    Impact timeframeWhen do revolutionary technologies make their greatest marginal impact on the economic balance of power?New industries make their greatest impact on growth differentials in early stages.GPTs do not make a significant impact on growth differentials until multiple decades after emergence.
    Key phase of relative advantageDo monopoly profits from innovation or benefits from more successful diffusion drive growth differentials?A state’s monopoly on innovation in leading sectors propels it to economic leadership.A state’s success in widespread adoption of GPTs propels it to economic leadership.
    Breadth of growthWhat is the breadth of technology-driven growth?Technological advances concentrated in a few leading sectors drive growth.Technological advances dispersed across a broad range of GPT-linked industries drive growth.
    Institutional complementsWhich types of institutions are most advantageous for national success in technological revolutions?Key institutional adaptations help a state capture market shares and monopoly profits in new industries.Key institutional adaptations widen the base of engineering skills and knowledge for GPT diffusion.

    In each case study, I consider alternative theories of technology-driven power transitions. Countless studies have examined the rise and fall of great powers. My aim is not to sort through all possible causes of one nation’s rise or another’s decline. Rather, I am probing the causal processes behind an established connection between technological advances in each industrial revolution and an economic power transition. The VoC framework and threat-based theories outline alternative explanations for how significant technological advances translated into growth differentials among great powers. Across all the cases, I assess whether they provide a better explanation for the historical case evidence than the GPT and LS mechanisms.

    I also address case-specific confounding factors. For example, some scholars argue that abundant inputs of wood and metals induced the United States to embrace more machine-intensive technology in the IR-2, reasoning that Britain’s slower adoption of interchangeable parts manufacturing was an efficient choice given its natural resource constraints.149 For each case, I determine whether these types of circumstantial factors could nullify the validity of the GPT and LS mechanisms.

    In tracing these mechanisms, I benefit from a wealth of empirical evidence on past industrial revolutions, which have been the subject of many interdisciplinary inquiries. Since the cases I study are well-traversed terrain, my research is primarily based on secondary sources.150 I rely on histories of technology and general economic histories to trace how and when technological breakthroughs affected economic power balances. Notably, my analysis takes advantage of the application of formal statistical and econometric methods to assess the impact of significant technological advances, part of the “cliometric revolution” in economic history.151 Some of these works have challenged the dominant narrative of previous industrial revolutions. For instance, Nick von Tunzelmann found that the steam engine made minimal contributions to British productivity growth before 1830, raising the issue that earlier accounts of British industrialization “tended to conflate the economic significance of the steam engine with its early diffusion.”152

    I supplement these historical perspectives with primary sources. These include statistical series on industrial production, census statistics, discussions of engineers in contemporary trade journals, and firsthand accounts from commissions and study teams of cross-national differences in technology systems. In the absence of standardized measures of engineering education, archival evidence helps fill in details about GPT skill infrastructure for each of the cases. In the IR-1 case, I benefit from materials from the National Archives (United Kingdom), the British Newspaper Archive, and the University of Nottingham Libraries, Manuscripts, and Special Collections. My IR-2 case analysis relies on collections based at the Bodleian Library (United Kingdom), the Library of Congress (United States), and the University of Leipzig and on British diplomatic and consular reports.153 In the IR-3 case analysis, the Edward A. Feigenbaum Papers collection, held at Stanford University, helps inform US-Japan comparisons in computer science education.

    My research also benefits greatly from new data on historical technological development. I take advantage of improved datasets, such as the Maddison Project Database.154 New ones, such as the Cross-Country Historical Adoption of Technology dataset, were also beneficial.155 Sometimes hype about exciting new technologies influences the perceptions of commentators and historians about the pace and extent of technology adoption. More granular data can help substantiate or cut through these narratives. Like the reassessments of the impact of previous technologies, these data were released after the publication of the field-defining works on technology and power transitions in international relations. Making extensive use of these sources therefore provides leverage to revise conventional understandings.

    When assessing these two mechanisms, one of the main challenges is to identify the key technological changes to trace. I take a broad view of technology that encompasses not just technical designs but also organizational and managerial innovations.156 Concretely, I follow Harvey Brooks, a pioneer of the science and technology policy field, in defining technology as “knowledge of how to fulfill certain human purposes in a specifiable and reproducible way.”157 The LS and GPT mechanisms both call attention to the outsized import of particular technical breakthroughs and their interactions with social systems, but they differ on which ones are more important. Therefore, a deep and wide understanding of advances in hardware and organizational practices in each historical period is required to properly sort them by their potential to spark LS or GPT trajectories.

    This task is complicated by substantial disagreements over which technologies are leading sectors and GPTs. Proposed lists of GPTs often conflict, raising questions about the criteria used for GPT selection.158 Reacting to the length of such lists, other scholars fear that “the [GPT] concept may be getting out of hand.”159 According to one review of eleven studies that identified past GPTs, twenty-six different innovations appeared on at least one list but only three appeared on all eleven.160

    The LS concept is even more susceptible to these criticisms because the characteristics that define leading sectors are inconsistent across existing studies. Though most scholars agree that leading sectors are new industries that grow faster than the rest of the economy, there is marked disagreement on other criteria. Some scholars select leading sectors based on the criterion that they have been the largest industry in several major industrial nations for a period of time.161 Others emphasize that leading sectors attract significant investments in R&D.162 To illustrate this variability, I reviewed five key texts that analyze the effect of leading sectors on economic power transitions. Limiting the lists of proposed leading sectors to those that emerged during the three case study periods, I find that fifteen leading sectors appeared on at least one list and only two appeared on all five.163

    My process for selecting leading sectors and GPTs to trace helps alleviate concerns that I cherry-pick the technologies that best fit my preferred explanation. In each historical case, most studies that explicitly identify leading sectors or GPTs agree on a few obvious GPTs and leading sectors. To ensure that I do not omit any GPTs, I consider all technologies singled out by at least two of five key texts that identify GPTs across multiple historical periods.164 I apply the same approach to LS selection, using the aforementioned list I compiled.

    Following classification schemes that differentiate GPTs from “near-GPTs” and “multipurpose technologies,” I resolve many of the conflicts over what counts as a GPT or leading sector by referring to a set of defining criteria.165 For instance, while some accounts include the railroad and the automobile as GPTs, I do not analyze them as candidate GPTs because they lack a variety of uses.166 I support my choices with empirical methods for LS and GPT identification. To confirm certain leading sectors, I examine the rate of growth across various industry sectors. I also leverage recent studies that identify GPTs with patent-based indicators.167 Taken together, these procedures limit the risk of omitting certain technologies while guarding against GPT and LS concept creep.168 The qualitative analysis appendix outlines how I address other issues related to LS and GPT identification, including concerns about omitting important single-purpose technologies and scenarios when certain technological breakthroughs are linked to both LS and GPT trajectories.

    These considerations underscore that taking stock of the key technological drivers is only the first step in the case analysis. To judge whether these breakthroughs actually brought about the impacts that are often claimed for them, it is important to carefully trace how these technologies evolved in close relation with societal systems.

    As a complement to the historical case studies, this book’s research design includes a large-n quantitative analysis of the relationship between the breadth of software engineering skill formation institutions and computerization rates. This tests a key observable implication of GPT diffusion theory, using time-series cross-sectional data on nineteen advanced and emerging economies across three decades. I leave the more detailed description of the statistical methodology to chapter 6.

    Summary

    The technological fitness of nations is determined by how they adapt to the demands of new technical advances. I have developed a theory to explain how revolutionary technological breakthroughs affect the rise and fall of great powers. My approach is akin to that of an investigator tasked with figuring out why one ship sailed across the ocean faster than all the others. As though differentiating the winning ship’s route from possible sea-lanes in terms of trade wind conditions and course changes, I first contrast the GPT and LS trajectories with regard to the timing, phase, and breadth of technological change. Once the superior route has been mapped, attention turns to the attributes of the winning ship, such as its navigation equipment and sailors’ skills, that enabled it to take advantage of this fast lane across the ocean. In similar fashion, having set out the GPT trajectory as the superior route from technological revolution to economic leadership, my argument then highlights GPT skill infrastructure as the key institutional attribute that dictates which great power capitalizes best on this route.

    3 The First Industrial Revolution and Britain’s Rise

    FEW HISTORICAL EVENTS have shaken the world like the First Industrial Revolution (IR-1, 1780–1840). Extraordinary upheaval marked the contours and consequences of the IR-1. For the first time in history, productivity growth accelerated dramatically, allowing large numbers of people to experience sustained improvements in their living standards. Small towns transformed into large cities, new ideologies gathered momentum, and emerging economic and social classes reshaped the fabric of society. These changes reverberated in the international sphere, where the ramifications of the IR-1 included the transition to industrialized mass warfare, the decline of the absolutist state, and the birth of the modern international system.

    Among these transformations, two phenomena stand out. The first is the remarkable technological progress that inaugurated the IR-1 period. Everything was changing in part because so many things were changing—water frames, steam engines, and puddling processes not least among them. The second is Britain’s rise to unrivaled economic leadership, during which it sustained productivity growth at higher levels than its rivals, France and the Netherlands. The following sections adjudicate the debates over the exact timeline of Britain’s industrialization, but there is no doubt that Britain, propelled by the IR-1, became the world’s most advanced economic power by the mid-nineteenth century.

    No study of technological change and power transitions is complete without an account of the IR-1. For both the LS and GPT mechanisms, the IR-1 functions as a typical case that is held up as paradigmatic of technology-driven power transitions. The standard account in international relations scholarship attributes Britain’s industrial ascent to its dominance of innovation in the IR-1’s leading sectors, including cotton textiles, iron metallurgy, and steam power.1 Present-day scholarship and policy discussions often draw upon stylized views of the IR-1, analogizing present developments in information technology and biotechnology to the effects of steam power and cotton textiles in the industrial revolution.2

    A deeper inquiry into the IR-1 and Britain’s economic rise challenges many of these conventional views. First, it reveals that general-purpose transformations linked to advances in iron metallurgy diffused widely enough to significantly affect economy-wide productivity only after 1815—a timeline that aligns with the period when Britain significantly outpaced its rivals in industrialization. Other prominent advances, including the steam engine, made only limited contributions to Britain’s rise to industrial prominence in this period owing to a prolonged period of gestation before widespread adoption. Second, the IR-1 case also demonstrates that it was Britain’s advantage in extending mechanization throughout the economy, not monopoly profits from innovations in cotton textiles, that proved crucial to its industrial ascendancy. Third, the historical data illustrate that the dispersion of mechanical innovations across many sectors fueled British productivity growth. Across these three dimensions, the IR-1 case matches the GPT trajectory better than the LS trajectory.

    Since no country monopolized innovations in metalworking processes and Britain’s competitors could also absorb innovations from abroad, why did Britain gain the most from this GPT trajectory? In all countries, as technical advances surged forward, institutional adjustments raced to cultivate the skills required to keep pace. Importantly, France and the Netherlands were competitive with Britain—and even surpassed it in some respects—in scientific research infrastructure and education systems for training expert engineers. These institutional settings in France and the Netherlands, however, produced knowledge and skills that were rather divorced from practical applications.

    Britain’s comparative advantage rested on another type of skill infrastructure. It depended less on heroic innovators like James Watt, the famed creator of the modern steam engine, and more on competent engineers who could build and maintain new technological systems, as well as make incremental adaptations to implement these systems in many different settings.3 As expected by GPT diffusion theory, Britain benefited from education systems that expanded the base of mechanically skilled engineers and disseminated knowledge of applied mechanics. Britain’s competitors could not match its system for cultivating a common technical language in applied mechanics that encouraged the knowledge exchanges between engineers and entrepreneurs needed for advancing mechanization from one industry to the next.

    To trace these mechanisms, I gathered and sorted through a wealth of evidence on the IR-1. Historical accounts served as the foundational materials, including general economic histories of the IR-1, histories of influential technologies and industries like the steam engine and the iron industry, country-specific histories, and comparative histories of Britain, France, and the Netherlands. I also benefited from contemporary assessments of the IR-1’s institutional features provided by trade journals, proceedings of mechanics’ institutes, recruitment advertisements published in local newspapers, and essays by leading engineers. This evidence stems from archival materials at the British Newspaper Archive, the National Archives (United Kingdom), and the University of Nottingham Libraries, Manuscripts, and Special Collections. Triangulating a variety of sources, I endeavored to back up my claims with statistical evidence in the form of industrial output estimates, patenting rates, and detailed biographical information on British engineers.

    The assessment of the GPT and LS mechanisms against historical evidence from the IR-1 proceeds as follows. To begin, the chapter reviews Britain’s rise to industrial preeminence, which is the outcome of the case. Next, it sorts the key technological breakthroughs of the period by their potential to drive two types of trajectories—LS product cycles and GPT diffusion. I then assess whether Britain’s rise in this period is better explained by the GPT or LS mechanism, tracing the development of candidate leading sectors and GPTs in terms of impact timeframe, phase of relative advantage, and breadth of growth. If the GPT trajectory holds for this period, there should be evidence that Britain was better equipped than its competitors in GPT skill infrastructure. Another section evaluates whether the historical data support this expectation. Before concluding the chapter, I address alternative factors and explanations.

    A Power Transition: Britain’s Rise

    When did Britain ascend to industrial hegemony? The broad outlines of the story are well known. Between the mid-eighteenth century and the mid-nineteenth century, the industrial revolution propelled Great Britain to global preeminence. Although Britain did not boast the world’s largest economy—China held that title during this period—it did capitalize on the technologies of the industrial revolution to become “the world’s most advanced productive power.”4 France and the Netherlands, its economic rivals, did not keep pace with Britain’s productivity growth.

    While both the LS and GPT models agree that Britain established itself as the preeminent industrial power in this period, a clearer sense of when this shift occurred is essential for testing the explanatory power of the LS and GPT mechanisms during this period. One common view of Britain’s industrialization, brought to prominence by Rostow, depicts an accelerated takeoff into sustained growth. Rostow’s timeline dates this takeoff to the last two decades of the eighteenth century.5 In alignment with this periodization, some scholars writing in the LS tradition claim that Britain achieved its industrial ascent by the late eighteenth century.6

    A different perspective, better supported by the evidence that follows, favors a delayed timeline for Britain’s ascent to industrial preeminence. Under this view, Britain did not sustain economic and productivity advances at levels substantially higher than its rivals until the 1820s and after. To clarify the chronology of Britain’s industrial ascent, the following sections survey three proxies for productivity leadership: GDP per capita, industrialization, and total factor productivity.

    GDP PER-CAPITA INDICATORS

    Trend lines in GDP per capita, a standard proxy for productivity, confirm the broad outlines of Britain’s rise. Evidence from the Maddison Project Database (MPD) points to the decades after 1800, not before, as the key transition period (figure 3.1).7 These trends come from the 2020 version of the MPD, which updates Angus Maddison’s data and incorporates new annual estimates of GDP per capita in the IR-1 period for France, the Netherlands, and the United Kingdom.8 In 1760, the Netherlands boasted the world’s highest per-capita income, approximately 35 percent higher than Britain’s.9 The Dutch held this lead for the rest of the eighteenth century through to 1808, when Britain first overtook the Netherlands in GDP per capita. By 1840, Britain’s GDP per capita was about 75 percent higher than that of France and about 10 percent ahead of that of the Netherlands.10

    figure 3.1 Economic Power Transition in the IR-1. Source: Maddison Project Database, version 2020 (Bolt and van Zanden 2020).

    It should be noted that GDP per-capita information for the early years of the IR-1 is sometimes missing or only partially available. For years prior to 1807, the MPD bases Dutch GDP per-capita estimates on data for just the Holland region, so the Dutch economy’s decline during this time could be an artifact of changes in data sources.11 At the same time, to ensure that the MPD data can be used to provide accurate information on historical patterns of economic growth and decline, researchers have made adjustments to partial data series and consulted experts to assess their representativeness.12 Furthermore, the Holland-based data in the early 1800s already indicated a decline in Dutch GDP per capita. Although data scarcity makes it difficult to mark out exactly when Britain’s GDP per capita surpassed that of the Netherlands, the MPD remains the best source for cross-country comparisons of national income in this period.

    INDUSTRIALIZATION INDICATORS

    Industrialization indicators depict a mixed picture of when Britain sustained leadership in economic efficiency. By one influential set of metrics compiled by economic historian Paul Bairoch, Britain’s per-capita industrialization levels had grown to 50 percent higher than those of France in 1800, from a position of near-equality with France and Belgium in 1750. For scholars who map the trajectories of great powers, these estimates have assumed a prominent role in shaping the timeline of British industrial ascendance.13 For instance, Paul Kennedy employs Bairoch’s estimates to argue that the industrial revolution transformed Britain into a different kind of world power.14

    Further examination of Bairoch’s estimates qualifies their support for an accelerated timeline of Britain’s industrial ascendance. First, by limiting his definition of “industrial output” to manufacturing industry products, Bairoch excludes the contribution of notable sectors such as construction and mining, a distinction even he admits is “rather arbitrary.”15 Second, the gap between Britain and France in per-capita industrialization levels in 1800 still falls within the margin of error for Bairoch’s estimates.16

    Moreover, a delayed timeframe is supported by industrialization measures that encompass more than the manufacturing industries. In 1700, the Netherlands had a substantially higher proportion of its population employed in industry (33 percent) compared to the United Kingdom (22 percent). In 1820, the proportion of people employed in UK industry had risen to 33 percent—higher than the Dutch corresponding rate of 28 percent.17 One expert on the pre-industrial revolution in Europe notes that the Netherlands was at least as industrialized as England, if not more so, throughout the eighteenth century.18 Lastly, aggregate industrial production trends map out a post-1815 surge in British industrialization, providing further evidence that Britain did not solidify its productivity advantage until decades into the nineteenth century.19

    PRODUCTIVITY INDICATORS

    Total factor productivity (TFP) indicators, which capture the efficiency by which production factors are converted into useful outputs, further back the delayed ascent story. As was the case with trends in aggregate industrial output, TFP growth in Britain did not take off until after 1820.20 In truth, British TFP growth was very modest throughout the eighteenth century, averaging less than 1 percent per year.21

    While the paucity of reliable data on total factor productivity in France hinders cross-national comparisons in this period, some evidence suggests that Britain did not surpass the Netherlands in TFP until after 1800.22 Historian Robert Allen estimated TFP in agriculture by calculating the ratio between actual output per worker and the output per worker predicted by a country’s available agricultural population and land. On this metric for the year 1800, the Netherlands ranked higher than Britain and all other European nations.23 The Dutch also attained the highest absolute TFP in Europe for almost all of the eighteenth century.24

    Which periodization of Britain’s industrial ascent better reflects the empirical evidence? On balance, measures of per-capita GDP, industrialization levels, and total factor productivity support a deferred timeline for Britain’s industrial rise. This clarification of when an economic power transition occurred during the IR-1 provides a stable target to test the competing LS and GPT mechanisms.

    Key Technological Changes in the IR-1

    Before evaluating the LS and GPT mechanisms in greater depth, the technological elements of the IR-1 must be further specified. Hargreaves’s spinning jenny (1764), Arkwright’s water frame (1769), Watt’s steam engine (1769), Cort’s puddling process (1784), and many other significant technical advances emerged during the First Industrial Revolution. The most likely sources of GPT and LS trajectories can be identified with guidance from existing work that calls attention to key technologies and accepted criteria for these two categories. Narrowing the assessment of these two mechanisms to a limited set of technologies makes for a more viable exercise.

    Candidate Leading Sectors: Cotton Textiles, Iron, and Steam Power

    A strong degree of consensus on the leading sectors that powered Britain’s rise in the IR-1 makes it relatively easy to identify three candidate sectors: cotton textiles, iron, and steam power.25 Among these, historians widely recognize the cotton textile industry as the original leading sector of the First Industrial Revolution.26 New inventions propelled the industry’s rapid growth, as its share of total value added to British industry rose from 2.6 percent in 1770 to 17 percent in 1801.27 In characterizing the significance of the cotton industry, Schumpeter went as far as to claim, “English industrial history can, in the epoch 1787–1842 … be almost resolved into the history of a single industry.”28

    If the cotton textile industry places first in the canon of the IR-1’s leading sectors, then the iron industry follows close behind. In their account of Britain’s rise, Modelski and Thompson single out these two major industries, employing pig iron production and cotton consumption, as indicators for Britain’s leading sector growth rates.29 According to the traditional view of the IR-1, the iron and cotton industries were the only two that experienced “highly successful, rapidly diffused technical change” before the 1820s.30

    I also evaluate the steam power industry as a third possible leading sector. A wide range of LS-based scholarship identifies steam power as one of the technological foundations of Britain’s leadership in the nineteenth century.31 Most of this literature labels only the steam engine itself as the leading sector, but since leading sectors are new industries, the steam engine–producing industry is the more precise understanding of the leading sector related to major advances in steam engine technology. Compared to the iron and cotton textile industries, it is much more uncertain whether the steam engine–producing industry, which experienced relatively slow growth in output and productivity, meets the analytical criteria for a leading sector during the IR-1 case.32 Still, I include the steam engine–producing industry as a potential leading sector, leaving it to the case analysis to further study its growth trajectory.

    Candidate GPTs: Iron, Steam Engine, and the Factory System

    Since the possible sources of GPT trajectories in the IR-1 are less established, I drew on previous studies that mapped out technological paradigms in this period to select three candidate GPTs: the steam engine, mechanization based on advances in iron machinery, and the factory system.33 As a possible source of GPT-style effects, the steam engine is a clear choice. Alongside electricity and (ICT) technology, it has been described as one of the “Big Three” GPTs, appearing in nearly all catalogs of GPTs.34 Here the emphasis is on the capacity of steam engines to transform a wide variety of industrial processes across many sectors, as opposed to the potential growth of the steam engine–producing industry.

    Of the two paradigmatic industries of the IR-1, cotton and iron, the latter was a more plausible driver of GPT-style effects for Britain. As the demand for iron-made machinery grew, iron foundries development of new generations of machine tools, such as cylinder-boring machines, contributed to the creation of a mechanical engineering industry.35 This spurred the mechanization of production processes in a wide range of industries, including agriculture, food processing, printing, and textiles.36 Although both cotton textiles and iron were fast-growing industries, developments in iron better resembled a “motive branch” driving pervasive effects across the economy.37

    In addition, the late eighteenth century saw the emergence of centralized factories, which significantly increased the scale of goods production. The factory system offered the potential to change the techniques of production across many industries. One widely cited classification scheme for GPTs picks out the factory system as an “organizational GPT” in the late eighteenth to early nineteenth century period.38 Other scholars describe this organizational innovation as “one of the most fundamental changes of ‘metabolism’ in the Industrial Revolution.”39

    I also considered but ultimately decided against including developments in railroads as a candidate GPT. Among five core texts that classify GPTs across many historical periods, at least two highlighted the significance of the railroad to the IR-1.40 In my view, the railroad represented a disruptive advance, but it did not acquire the variety of uses to qualify as a GPT. Railways carried many types of freight and made new business models possible, but their function was limited to transport.41

    Sources of LS and GPT Trajectories

    Table 3.1 recaps the potential technological sources for both the GPT and LS mechanisms. It is important to clarify three points about the sorting process. First, it is notable but not surprising that the candidate leading sectors and GPTs draw from similar technological wellsprings. Both mechanisms agree that some inventions, like Cort’s puddling process for making wrought iron, mattered much more than others in terms of their impact on the economic balance of power.

    Table 3.1 Key Sources of Technological Trajectories in the IR-1

    Candidate Leading SectorsCandidate GPTs
    Cotton textile industryFactory system
    Iron industryMechanization
    Steam engine–producing industrySteam engine

    Where the mechanisms separate is in how this process transpired. Cort’s puddling process and other ironmaking innovations, under the GPT model, are expected to follow an impact pathway characterized by three features: an extended lag before they affect productivity growth, the spread of mechanization across the economy, and widespread complementary innovations in many machine-using industries. Under the LS model, the same technological sources are expected to affect economic growth in a way that is lopsided in the early stages of development, fueled by monopolizing iron exports, and limited to technological innovations in the iron industry.

    Second, it is still useful to classify three distinct candidate GPTs in the IR-1, despite the fact that developments in factory systems, mechanization, and steam engines were mutually reinforcing in many respects. Steam engines depended on the transition from hand-tool processes to machinery-based production systems; at the same time, the impact of steam engines on coal mining was to boost the iron industry, spurring mechanization. Yet a number of historians distinguish the expansion of mechanization in the British industrial revolution from transformations linked to the steam engine, arguing that the latter’s economic impact materialized much later than the former.42 Thus, while these candidate GPT trajectories are interconnected, it is still possible to locate various GPTs at different stages of their life cycle.

    Third, not all of these technological changes necessarily had a decisive impact on Britain’s capacity to sustain higher productivity levels than its rivals during the period of interest. They are labeled as candidates for a reason. As this chapter will show, the steam engine did not achieve widespread diffusion until after Britain had already established economic leadership. When subjected to more rigorous empirical analysis, developments in some technologies may not track well with the proposed LS and GPT trajectories for this period.

    GPT vs. LS Trajectories in the IR-1

    Spelling out possible sources of technological trajectories in the IR-1 provides a bounded terrain for testing the validity of the GPT and LS mechanisms. By leveraging differences between the two mechanisms with respect to impact timeframe, phase of relative advantage, and breadth of growth, I derive three sets of opposing predictions for how technological changes translated into an economic power transition in this period. I then assess whether, and to what extent, the developments in the IR-1 supported these predictions.

    OBSERVABLE IMPLICATIONS RELATED TO IMPACT TIMEFRAME

    When did the revolutionary technologies of the IR-1 disrupt the economic balance of power? If the impact timeframe of the LS mechanism holds, then radical technical advances in the cotton textile, iron, and/or steam engine–producing industries should have substantially stimulated British economic growth shortly after the emergence of major technological advances in the 1760s and 1770s.43 Accordingly, scholars theorize that leading sectors propelled Great Britain to industrial superiority in the late eighteenth century.44 In line with this conception of a rapid timeline, Modelski and Thompson expect that the growth of two lead industries, cotton and iron, peaked in the 1780s.45

    On the other hand, if the GPT mechanism was operational, the impact of major technological breakthroughs on Britain’s industrial ascent should have arrived on a more gradual timeline. Key advances tied to mechanization, steam power, and the factory system emerged in the 1770s and 1780s. Given that GPTs require a long period of delay before they diffuse and achieve widespread adoption, the candidate GPTs of the IR-1 should not have had substantial economy-wide repercussions until the early decades of the nineteenth century and after. I use the year 1815 as a rough cut-point to separate the accelerated impact timeframe of leading sectors from that of GPTs in this period.

    OBSERVABLE IMPLICATIONS RELATED TO THE PHASE OF RELATIVE ADVANTAGE

    The LS mechanism places high value on the innovation phase of technological change. Where major breakthroughs arise is key. Accordingly, Britain’s capacity to pioneer major technological advances should explain economic growth differentials in the IR-1. Concretely, the LS mechanism expects that Britain’s rise was fueled by its dominance of innovation in the cotton textile, iron, and steam engine–producing industries, as well as the resultant monopoly rents from exports in these sectors.

    The GPT mechanism emphasizes a less-celebrated phase of technological change. Where innovations diffuse is key. Differentials in the rate and intensiveness of GPT adoption generate the gap between an ascending industrial leader and other competitors. The GPT mechanism suggests that Britain’s rise to industrial preeminence can be traced to its superior ability to diffuse generic technological changes across the economy.

    OBSERVABLE IMPLICATIONS RELATED TO BREADTH OF GROWTH

    The last set of observable implications relate to the breadth of growth during the IR-1. As illustrated in the descriptions here of the candidate leading sectors, many accounts attribute Britain’s industrial ascent to a narrow set of critical advances.46 In one of the first texts dedicated to the investigation of technology and international relations, William Ogburn declared, “The coming of the steam engine … is the variable which explains the increase of Britain as a power in the nineteenth century.”47 According to GPT diffusion theory, Britain’s rise to industrial preeminence came from the advance of GPTs through many linked sectors.

    Taken together, these three sets of diverging predictions guide my assessment of the GPT mechanism against the LS mechanism. I make expectations specific to the IR-1 case by using the relevant information on particular technologies and the timeline of British industrialization. Table 3.2 lays out the specific, testable predictions that provide the framework of evaluation in the following sections.

    Table 3.2 Testable Predictions for the IR-1 Case Analysis

    Prediction 1: LS (impact timeframe)The cotton textile, iron, and/or* steam engine–producing industries made a significant impact on Britain’s rise to industrial preeminence before 1815.
    Prediction 1: GPTMechanization, the steam engine, and / or the factory system made a significant impact on Britain’s rise to industrial preeminence only after 1815.
    Prediction 2: LS (relative advantage)Innovations in cotton textile, iron, and/or the steam engine–producing industries were concentrated in Britain.British advantages in the production and exports of textiles, iron, and/or steam engines were crucial to its industrial superiority.
    Prediction 2: GPTInnovations in iron, the steam engine, and/or the factory system were not concentrated in Britain.
    British advantages in the diffusion of mechanization, steam engines, and/or the factory system were crucial to its industrial superiority.
    Prediction 3: LS (breadth of growth)Productivity growth in Britain was limited to the cotton textile, iron, and/or steam engine – producing industries.
    Prediction 3: GPTProductivity growth in Britain was spread across a broad range of industries linked to mechanization, the steam engine, and/or the factory system.
    * The operator “and/or” links all candidate leading sectors and GPTs because it could be the case that only some of these technologies drove the trajectories of the period.

    Impact Timeframe: Delayed Surge vs. Fast Rise of British Industrialization

    The painstaking reconstruction of temporal chronology is at the heart of tracing mechanisms. Tremendous technological changes occurred during this period, but when exactly did they make their mark on Britain’s industrial superiority? The period when significant technological innovations emerge often does not match up with the time when their impacts are felt. Unfortunately, when drawing lessons from the IR-1 on the effect of technology on international politics, scholars have conflated the overall significance of certain technologies with near-immediate impact.48 Establishing a clear timeline of when technological changes catalyzed a shift in productivity leadership during the IR-1 is therefore an important first step in comparing the LS and GPT mechanisms.

    DIVERGING TIMELINES: COTTON VS. IRON

    Time-series data on the output growth of twenty-six industries that accounted for around 60 percent of Britain’s industrial production help differentiate the growth schedules of the cotton textiles and iron industries. According to these data, the major upswing in British industrialization took place after 1815, when the aggregate growth trend increased from 2 percent to a peak of 3.8 percent by 1825. In line with the expectations of the LS model, the cotton textile industry grew exceptionally fast following major technological innovations in the 1760s, but from the 1780s there was a deceleration in the output growth of cotton textiles. Based on the relatively early peak of the cotton industry’s expansion, David Greasley and Les Oxley conclude that “it appears unlikely that cotton played the major role in the post-1815 upswing in British industrialization.”49

    Following a completely different trajectory, growth in iron goods was more in line with the GPT model. Starting in the 1780s, the growth rate of the British iron industry accelerated to a peak of about 5.3 percent in the 1840s.50 “Compared to cotton textiles, change in iron was gradual, incremental, and spread out over a longer period of time,” Espen Moe writes.51 With a limited role for cotton, the gradual expansion of the iron industry led Britain’s post-1815 industrial surge, as its trend output tracked much more closely with that of aggregate industry. In sum, the cotton industry followed the growth path of a leading sector, whereas developments in the iron industry reflected the impact timeline of a GPT.

    The timing of Britain’s mechanization, linked to the expanded uses of iron in machine-making, also aligned with the GPT trajectory. The first metalworking tools for precision engineering, including Wilkinson’s boring mill of 1774 and Maudslay’s all-iron lathe, appeared in the late eighteenth century, but they would remain in a “comparatively rudimentary state” until about 1815.52 According to accounts of qualified engineers and the 1841 Select Committee on Exportation of Machinery, over the course of the next two decades improvements and standardization in such machine tools ushered in a “revolution” in machine-making.53 The gradual evolution of the mechanical engineering industry provides additional support for a delayed impact timeframe for mechanization. According to British patent data from 1780 to 1849, the share of mechanical engineering patents among the total number of patents increased from an average of 18 percent in the decade starting in 1780 to a peak of 34 percent in the one starting in 1830.54

    DELAYED, OUT-OF-PERIOD EFFECTS: STEAM ENGINE AND FACTORY SYSTEM

    Compared to mechanization, the steam engine had not diffused widely enough through Britain’s economy by the mid-nineteenth century to make a substantial impact on overall industrial productivity. Detailed investigations of steam engine adoption have forced a reassessment of commonly held assumptions about the rapid impact of steam power on British productivity growth.55 According to one growth accounting analysis, which compares the impact of steam against water power as a close substitute source of power, steam power’s contribution to British productivity growth was modest until at least the 1830s and most influential in the second half of the nineteenth century.56 This revised impact timeframe conflicts with international relations scholarship, which advances faster trajectories for steam’s impact as a leading sector.57

    Steam engine adoption was slow. In 1800, thirty years after Watt patented his steam engine, there were only about thirty-two engines operating in Manchester, which was a booming center of industrialization.58 Even into the 1870s, many important sectors in the British economy, such as agriculture and services, were virtually unaffected by steam, as most of steam power’s applications were concentrated in mining and in cotton textiles.59 During the period when LS accounts expect its peak growth, the steam engine could not claim generality of use.

    The process by which the steam engine gained a broad variety and range of uses entailed complementary innovations that followed many years after the introduction of Watt’s steam engine. It took sixty years for steam to become the prime driver of maritime transport; that was made possible only after cumulative enhancements to the power of steam engines and the replacement of paddle wheels by screw propellers, which increased the speed of steam-powered ships.60 Watt’s original low-pressure design engines consumed large amounts of coal, which hindered widespread adoption. After 1840, aided by inventions such as the Lancashire boiler and discoveries in thermodynamics, it became economically viable to deploy steam engines that could handle higher pressures and temperatures.61 In sum, steam power may be the quintessential example of the long delay between the introduction of a GPT and significant economy-wide effects.

    It is worth assessing whether interconnections between developments in steam and those in iron and cotton give grounds for an earlier impact trajectory.62 Yet both forward and backward linkages were limited in the early stages of the steam engine’s evolution. Regarding the latter, the steam engine–producing industry did not substantially stimulate the iron industry’s expansion. In the late 1790s, at a peak in sales, Boulton and Watt steam engines consumed less than 0.25 percent of Britain’s annual iron output.63 Forward linkages to textiles, the most likely sector to benefit from access to cheaper steam power, were also delayed. Steam-powered inventions in textiles did not overtake water-powered textile processes until after 1830.64 Of course, over the long run steam power was a critical technological breakthrough that changed the energy budget of the British economy.65 However, for investigating the mechanisms that facilitated Britain’s rise to become the clear productivity leader in First Industrial Revolution, the steam engine played a modest role and most of its effects were out-of-period.

    A similar timeline characterizes the progression of the factory system, another candidate GPT considered for this period. The factory system diffused slowly and took hold in only a limited number of trades during the time when Britain was establishing its industrial preeminence. The British textile industry, as the earliest adopter of this organizational innovation, had established nearly five thousand steam- or water-powered factories by the 1850s.66 Other industries, however, were much slower to adopt the factory system. In the first decades of the nineteenth century, small workshops and domestic production still dominated the metal trades as well as other hardware and engineering trades.67

    Moreover, factories were still relatively small even into the mid-nineteenth century, and some industries adopted a mixed factory system in which many processes were outsourced to household workers.68 It was not until steam power overtook water power in the 1830s and 1840s as a source of power in factories that the subsequent redesigns of factory layouts led to large gains in productivity.69

    What does this clarified chronology of technological impacts in the IR-1 mean for the explanatory power of the GPT and LS mechanisms? Of the three candidate leading sectors, only cotton textiles, which expanded rapidly and peaked in terms of output growth in the 1780s and 1790s, followed the impact timeframe of a leading sector. As figure 3.2 shows, by 1814 British cotton exports had already surpassed 75 percent of the value they would attain in 1840. Yet Britain sustained productivity growth rates at higher levels than its rivals only in the first decades of the nineteenth century. Thus, the period when cotton should have made its greatest impact on Britain’s industrial ascent does not accord with the timeline of Britain’s industrialization surge.

    The hurried timeline of the LS mechanism contrasts with the more delayed impact of other technological advances. As predicted by the GPT mechanism, all three candidate GPTs—mechanization, the steam engine, and the factory system—had little impact on Britain’s industrial rise until after 1815. In fact, the diffusion timelines for the steam engine and factory system were so elongated that their impact on Britain’s rise to industrial preeminence was limited in this period. In 1830, steam engine adoption, as measured by total horsepower installed, was only one-quarter of the 1840 level, whereas by 1830 the level of iron production had reached about 50 percent of its corresponding value in 1840 (see figure 3.2). This is consistent with the steady expansion of mechanization across industry in the early decades of the 1800s as the GPT trajectory most attuned with the timing of Britain’s rise to economic leadership.

    figure 3.2 Technological Impact Timeframes in the IR-1. Note: British cotton exports, iron production, and steam engine adoption over time. Source: Robson 1957, 331–35; Mitchell 1988, 280–81; Crafts 2004, 342.

    Phase of Relative Advantage: Diffusion of Iron vs. Monopoly Profits from Cotton

    Thus far, the empirical evidence has presented a bird’s-eye view of the overall timeline of technological change and industrialization in the IR-1, but there are two other dimensions on which the GPT and LS trajectories diverge. According to the expectations of the LS mechanism, the phase of technological development central to Britain’s relative economic rise was its dominance of key innovations in cotton textiles, iron, or the steam engine. The GPT mechanism predicts, in contrast, that Britain’s advantage in the diffusion of mechanization, the steam engine, or the factory system was the key driver.

    The rest of this section tests two sets of predictions derived from the diverging assumptions of the two mechanisms. First, regarding the geographic clustering of major technological breakthroughs in the IR-1, I assess whether innovations in candidate leading sectors and GPTs were concentrated in Britain. Next, regarding the comparative consequences of these technologies, I evaluate whether Britain’s industrial superiority drew more from its advantages in the production and exports of the IR-1’s leading sectors or from its advantage in the diffusion of the IR-1’s GPTs.

    INNOVATION CLUSTERING IN THE IR-1’S BREAKTHROUGHS

    Did Britain dominate innovation in the leading sectors of the IR-1? At first glance, there is no question that radical advances in candidate leading sectors clustered in Britain. This list includes Watt’s steam engine, Arkwright’s water frame, Cort’s puddling process, and many more. Per one analysis of 160 major innovations introduced during the nineteenth and twentieth centuries, Britain was home to 44 percent of major innovations from 1811 to 1849—a rate that was double that of the closest competitor (the United States at 22 percent).70

    Further investigation into British superiority in technological innovation paints a more mixed picture. According to another list of technical advances by country of origin, Britain accounted for only 29 percent of major innovations in the years from 1826 to 1850, a period that corresponds to when it cemented its productivity leadership.71 Moreover, the European continent introduced many significant innovations, including the Jacquard loom, mechanical flax spinning, chlorine bleaching, the Leblanc soda–making process, and the Robert continuous papermaking machine.72 France, in particular, generated many of the major industrial discoveries, such as in chemicals, clocks, glass, papermaking, and textiles.73

    Thus, some scholars argue that Britain’s comparative edge was in more incremental improvements. Reflecting on technological creativity in the IR-1, economic historian Joel Mokyr argues, “Britain seems to have no particular advantage in generating macroinventions … the key to British technological success was that it had a comparative advantage in microinventions.”74 A proverb from the time captured this distinction: “For a thing to be perfect it must be invented in France and worked out in England.”75 This suggests that digging deeper into the different phases of technological development can help uncover the roots of Britain’s industrial leadership.

    MONOPOLY PROFITS VS. DIFFUSION DEFICIT

    First, as was the case with the period when they made their impact, developments in cotton and iron followed very different paths with respect to the phase of technological change that determined economic differentials. Britain’s cotton textile industry, the most likely source of monopoly profits, grew faster than other industries before 1800, and it sold most of its goods abroad. Technological innovations such as the spinning jenny and the water frame triggered exponential increases in the efficiency of cotton production, and Britain’s cotton output increased by 2,200 percent from 1770 to 1815.76 From 1750 to 1801, cotton’s share of Britain’s major exports increased from 1 percent to 39.6 percent.77

    Certainly, the growth of British cotton exports was remarkable, but what was the impact of associated monopoly rents on overall growth differentials? Supported by improved quantitative estimates of the cotton industry’s impact on the British economy, historians generally accept that the cotton industry was much more significant for enhancing Britain’s trade balance than for boosting its economic productivity.78 According to one estimate, between 1800 and 1860, the cotton industry accounted for 43 percent of the threefold increase in the value of exports but only 8 percent of the threefold increase in national income.79

    Overall, exports constituted a small proportion of British economic activity during the IR-1. From 1770 to 1841, British exports as a percentage of overall industrial demand increased only from 13 to 16 percent.80 Now, these figures probably underrate trade as a critical engine of growth for Britain in the IR-1, as they ignore gains from the reinvestment of profits from overseas trade.81 But the impact of reinvestment has been challenged, and it is not apparent why reinvestments from exports were more important than reinvestments from the profits generated by domestic production.82

    The iron industry’s impact on Britain’s economic rise did not run through monopoly profits from innovation. From 1794 to 1796, British ironmakers contributed 11 percent of Britain’s manufacturing exports. This proportion actually declined to just 2 percent by the 1814–1816 period and stayed around that rate into the 1830s.83 It is also questionable whether Britain held a relative advantage in iron exports during the late eighteenth century, which is when LS accounts expect monopoly profits to drive British industrialization.84 In fact, British industries continued to rely on imports of high-grade iron from Sweden and Russia well into the nineteenth century.85

    An alternative pathway, captured by the GPT trajectory, posits that Britain’s advantage came from the diffusion of iron machinery advances across a wide range of sectors. To trace this trajectory, it is necessary to pay more attention to what a prominent historian of the IR-1 calls one of the astonishing things about the phenomenon: the gap between “innovation as ‘best practice’ technique and the diffusion of innovation to become ‘representative’ technique.”86

    Britain was more successful than its industrial rivals in the diffusion of mechanization. Contemporary observers from the European continent often remarked upon Britain’s ability to bridge this gap between best practice and representative practice.87 Writing in 1786 in their Voyages aux Montagnes, French observers F. and A. de la Rochefoucauld-Liancourt, commenting on Britain’s relative advantage in the widespread adaptation of the use of iron, noted

    the great advantage [their skill in working iron] gives them as regards the motion, lastingness and accuracy of machinery. All driving wheels and in fact almost all things are made of cast iron, of such a fine and hard quality that when rubbed up it polishes just like steel. There is no doubt but that the working of iron is one of the most essential of trades and the one in which we are most deficient.88

    But France’s deficiency in iron machinery was not a product of its lack of access to key innovations. In fact, France was the world’s center of science from the late eighteenth century until the 1830s.89 Rather, as the following quote illustrates, Britain’s industrial rivals fell behind in “diffused average technology” and the “effective spread of technical change more widely.” Economic historian Peter Mathias writes:

    It is remarkable how quickly formal knowledge of “dramatic” instances of new technology, in particular steam engines, was diffused, and how quickly individual examples of “best-practice” technology in “show piece” innovations were exported. The blockage lay in the effective spread of technical change more widely—diffused average technology rather than single instances of best-practice technology in “dramatic” well-publicized machines.90

    Advances in iron metallurgy played a crucial role in a GPT trajectory that spread from a sector that improved the efficiency of producing capital goods. The GPT trajectory unfolds as the technology becomes more general-purpose through interactions between the upstream capital goods sector and the user industries that enlarge the range of applications. Rosenberg’s depiction of this type of system highlights the nineteenth-century American machine tool industry as the innovative capital goods sector.91 In this case, Britain’s metal-processing works were the crucial wellspring. Specifically, technical advances in iron fed into metalworking industries from which broadly similar production processes diffused over a large number of industries.92 Maxine Berg, a professor of history at the University of Warwick, pinpoints these industries as the “prime mechanism for technological diffusion.”93

    Scholars also identify Watt’s improved steam engine as a potential source of both LS- and GPT-based effects. Here I focus on testing the LS prediction about the steam engine–producing industry because the previous section showed that the steam engine and the factory system, as candidate GPTs, diffused too slowly to make a meaningful impact on the economic power transition in the IR-1.

    It is tough to make a case that the growth of the steam engine–producing industry generated a substantial source of monopoly profits for Britain. Equipped with an exclusive patent, James Watt and Matthew Boulton set up a firm in 1775 to sell steam engines.94 In the period from 1775 to 1825, however, the firm sold only 110 steam engines to overseas customers.95 By 1825, France and the United States were manufacturing the Watt engine and high-pressure engines at more competitive prices, and overseas demand declined sharply.96 Thus, the international sales history of this firm severely weakens the significance of the monopoly profits associated with the innovation of the steam engine.97

    In sum, the evidence from this section supports two conclusions. British advantages in the production and export of iron, steam engines, and cotton textiles (the best representative of the LS trajectory) had muted effects on its overall industrialization and productivity advances. Second, the contributions of technological breakthroughs in iron metallurgy and steam power to Britain’s industrial rise track better with the GPT mechanism, based on relative advantages in widespread technological diffusion as opposed to monopoly profits from innovation.

    Breadth of Growth: Complementarities of Iron vs. Spillovers from Cotton Textiles

    The breadth of growth in the IR-1 is the last dimension on which the LS and GPT trajectories disagree. Was Britain’s industrial rise driven by technological changes confined to a narrow range of leading sectors, or was it based on extensive, complementary innovations that enabled the spread of GPTs? Making use of data on sectoral sources of productivity growth, trade flows, and patents, I evaluate these competing propositions about the breadth of technological change in the industrial revolution.

    WIDESPREAD PRODUCTIVITY GROWTH

    In differentiating between the narrow view and the broad view of technical change during the IR-1, a natural starting point is to estimate the contribution of various industries to British productivity growth. Deirdre McCloskey’s calculations of sectoral contributions to productivity growth support the broad view. Though cotton accounted for a remarkable 15 percent of Britain’s total productivity growth, nonmodernized sectors still drove the lion’s share (56 percent) of productivity gains.98

    Manufacturing trade data provide another testing ground. If other manufacturing industries outside of textiles and iron were technologically stagnant during the first fifty years of the nineteenth century, then British competitiveness in these industries should decline relative to textiles and iron. The narrow view implies that Britain should have imported other manufactures. Peter Temin’s analysis of British trade data, however, finds the opposite. Throughout the first half of the nineteenth century, British manufacturing exports matched the increase in cotton exports throughout the first half of the nineteenth century.99 In a wide range of manufactures, such as arms and ammunition, carriages, glass, and machinery and metals, Britain held a clear comparative advantage. This pattern points to some general pattern of change that spanned industries. “The spirit that motivated cotton manufactures extended also to activities as varied as hardware and haberdashery, arms, and apparel,” Temin concludes.100

    The patent record also depicts a landscape of extensive technological change.101 From 1780 to 1840, about 80 percent of all patented inventions came from outside the textiles and metals industries.102 Per Christine MacLeod’s data on British patents covering the 1750–1799 period, most capital goods patents originated from sectors outside of textile machinery and power sources.103 As summed up by historian Kristine Bruland, the historical evidence supports “the empirical fact that this was an economy with extensive technological change, change that was not confined to leading sectors or highly visible areas of activity.”104

    GPTS AND COMPLEMENTARY INNOVATIONS

    At this point, indicators of the multisectoral spread of innovation in the IR-1 should not be sufficient to convince a skeptical reader of the GPT mechanism’s validity. Broad-based growth could be a product of macroeconomic factors, such as sound fiscal and monetary policy or labor market reforms, rather than a GPT trajectory.105 Proving that the dispersion of technological change in Britain’s economy reflected a GPT at work requires evidence that connects this broad front to mechanization.106

    Input-output analysis, which sheds light on the linkages between industries, suggests that improvements in the working of iron had broader economic significance. To better understand the interrelationships among industries during the industrial revolution, Sara Horrell, Jane Humphries, and Martin Weale constructed an input-output table for the British economy in 1841. Across the seventeen industries included in the analysis, the two industries most closely associated with mechanization—metal manufacture and metal goods—scored the highest on combined backward and forward linkages.107 These two domains were “lynchpins of linkage effects.”108

    Patent indicators confirm these results. When patents are grouped according to standard industry taxonomies, the resulting distribution shows that the textile industry contributed to 15 percent of the patents issued between 1711 and 1850, making it the most inventive industry in aggregate terms.109 However, when patents are sorted by general techniques as opposed to industry sectors, the same data reveal the underlying drive force of mechanical technology: it is linked to almost 50 percent of all British patents during this period.110

    Along all three dimensions of technological trajectories in the IR-1, the process-tracing evidence bolsters the validity of the GPT mechanism. First, slower-moving developments in mechanization lined up with a delayed timeline of Britain’s industrialization. Other candidate leading sectors and GPTs either peaked too early (cotton) or got started too late (steam engine, factory system). Second, Britain gained its industrial dominance from a relative advantage in widespread adoption of iron metalworking and linked machinery. Third, the benefits from this GPT advantage circulated throughout the economy, rather than remaining concentrated in the iron industry.

    The standard explanation of how the IR-1 gave rise to a power transition, as captured by the LS mechanism, analyzes technological change at the level of industries that grow faster than others. The historical evidence reveals the limitations of these industry taxonomies. Instead, advantages in the diffusion of production machinery—a general pattern of change that extended across a wide range of economic activities—propelled Britain to industrial dominance.111

    Institutional Complementarities: GPT Skill Infrastructure in the IR-1

    Having mapped Britain’s industrial rise to a GPT trajectory linked to mechanization, there is still a need to explain why Britain was best positioned to exploit this trajectory. If other countries at the technological frontier can also cultivate mechanical innovations at home and absorb them from abroad, why were Britain’s competitors unable to benefit from the diffusion of metalworking processes to the same extent? This section supports an explanation based on Britain’s institutional competencies in widening the pool of engineering skills and knowledge linked to mechanization.

    Which types of institutions for skill provision were most conducive to national success in the IR-1? One common refrain is that Britain’s leadership was rooted in the genius of individual innovators like James Watt, and such genius did not transfer as quickly across borders during the IR-1.112 Though recent scholarship has weakened this view, many influential histories center on the “heroic” inventors of the industrial revolution.113 Consistent with the LS template, this view focuses on the institutions that helped drive heroic invention in Britain, such as the development of a patent system.114

    The pathway by which mechanization propelled Britain’s industrial ascent, established as a GPT trajectory in the previous section, emphasizes another set of institutions for skill formation. In line with GPT diffusion theory, Britain owed its relative success in the IR-1 to mechanics, instrument-makers, and engineers who could build machines according to blueprints and improve upon them depending on the application context. Under this view, the institutions that trained the “tweakers” and “implementers,” rather than those that cultivated genius inventors, take center stage.115

    Widening the Base of Mechanical “Tweakers” and “Implementers”

    At first, rapid advances in precise metalworking exposed a skills shortage in applied mechanics. Beginning in the 1770s, a cascade of recruitment advertisements in local newspapers sought out an “engine-maker” or a “machine-maker.”116 Reflecting on this skills mismatch, the president of Britain’s Institute of Civil Engineers stated that the use of cast iron in machine parts “called for more workmen than the millwright class could supply.”117

    A number of institutional adjustments helped Britain meet this demand for mechanically skilled tweakers and implementers. Initially, Britain benefited from a flexible apprenticeship system that empowered workers in related domains to get trained in applied mechanics.118 Thus, to develop the workforce to build and maintain the machinery of the IR-1, Britain could draw from a wide pool of blacksmiths, millwrights, gunsmiths and locksmiths, instrument-makers, mechanics, and toolmakers.119

    In addition, institutes dedicated to broadening the base of mechanical expertise helped diffuse ironmaking and machine-making skills. Starting in the 1790s, private and informal initiatives created a flurry of trade associations that supported a new class of mechanical and civil engineers and helped connect them with scientific societies and entrepreneurs.120 Critical centers included the Andersonian Institution in Glasgow, the Manchester College of Arts and Sciences, the School of Arts in Edinburgh, the Mechanical Institution in London, the Society for the Diffusion of Useful Knowledge, and hundreds of mechanics’ institutes.121 These institutes helped to absorb knowledge from foreign publications on science and engineering, recruit and upskill new mechanical engineers from a variety of trades, and spread mechanical engineering knowledge more widely.122

    It is important to note that these institutional features differed from those more suited to the “heroic inventor” model. In Britain’s cotton textile industry, the classic leading sector of the IR-1, the key institutional complements deviated greatly from the education and training systems that widened the base of mechanical expertise in the IR-1. Collating information from biographies of British engineers, online databases, and detailed economic histories, Ralf Meisenzahl and Joel Mokyr constructed a database of 759 British individuals who made incremental improvements to existing inventions during the industrial revolution.123 Notably, based on their analysis of interactions between tweakers and their institutional surroundings, they found that the textile industry was an outlier in terms of protectiveness over intellectual property rights and reluctance to share information about new techniques. Less than one-tenth of tweakers in textiles published their knowledge to a broader audience or joined professional societies, in stark contrast to the two-thirds of tweakers in mechanically inclined fields who did so.124 Over 80 percent of the tweakers who were active primarily in textiles took out at least one patent, compared to just 60 percent for tweakers overall.125

    These trends in applied mechanics underscore the significance for British mechanization of “collective invention,” a process that involved firms sharing information freely with one another and engineers publishing technical procedures in journals to spur the rapid diffusion of best-practice techniques. According to one analysis of how various districts adapted to the early phases of industrialization, areas that practiced collective invention often cultivated “a much higher degree of technological dynamism than locations which relied extensively on the patent system.”126

    Britain’s Comparative Advantage over France and the Netherlands in GPT Skill Infrastructure

    Britain’s competitors also grasped the significance of Britain’s wide pool of mechanical skills. Whereas codified knowledge crisscrossed western Europe and North America via patent specifications, global exchanges among scientific societies, and extensive visits by foreign observers to British workshops and industrial plants, the European continent struggled greatly to absorb tacit knowledge, especially the know-how embodied in the practical engineering skills of British mechanical tweakers and implementers.127 France and the Netherlands fiercely poached British engineers, as the transfer of tacit knowledge in the fields of large-scale ironworking and machine construction almost always necessitated the migration of skilled workers from Britain.128 “It was exactly in the skills associated with the strategic new industries of iron and engineering that [Britain’s] lead over other countries was most marked,” argues Mathias.129

    Why did this repository of engineering skills develop more fruitfully in Britain than in its industrial rivals? A growing body of evidence suggests that Britain’s institutions better adapted its distribution of skills to mechanization. Britain’s institutional advantage was rooted in the system of knowledge diffusion that connected engineers with entrepreneurs, cities with the countryside, and one social class with another. Institutes that trained mechanics took part in a broader “mushrooming of associations” that spread technical knowledge in early-nineteenth-century Britain.130 By the mid-nineteenth century, there were 1,020 such associations in Britain, with a total membership of approximately 200,000; clearly, these networks are essential to any explanation that links human capital to Britain’s industrial ascent.131 Compared to their peers on the continent, British mechanics had superior access to scientific and technical publications.132 As a result, the British system of the early nineteenth century had no match in its abundance of people with “technical literacy.”133

    The French system, by way of comparison, lacked similar linkages and collaborations between highly educated engineers and local entrepreneurs.134 Though France produced elite engineers at schools like the École Polytechnique, it trained too few practitioners to widen the base of mechanical skills.135 For example, Napoleon’s early-nineteenth-century reform of France’s higher education system encouraged the training of experts for narrow political and military ends, thereby limiting the ability of trainees to build connections with industry.136 These reforms and other industrial policies directed French engineers toward projects associated with luxury industries and specialized military purposes, which “tended to become locked away from the rest of the economy in special enclaves of high cost.”137 To illustrate, through the mid-1830s, only one-third of École Polytechnique graduates entered the private sector.138 France’s system for disseminating mechanical knowledge and skills was vastly inferior to that of the British.

    The Netherlands also failed to develop a base of mechanical skills that linked scientific research to practical ends. In some mechanical sciences, the Dutch generated plenty of potentially useful innovations, even pioneering key breakthroughs that eventually improved the steam engine.139 Yet the Dutch struggled to translate these scientific achievements into practical engineering knowledge because they trailed the British in forming institutional settings that made widespread knowledge of applied mechanics possible. Records of Dutch educational systems, the dearth of societies that held lectures and demonstrations for mechanical learning, and the materials available at libraries in technical colleges all “reflected a profound lack of interest in applied mechanics.”140 In his study of Dutch technological leadership, Karel Davids argues that, during the first three-quarters of the eighteenth century, “collaboration between science and industry in the Netherlands failed to merge in the very period that relations between the two became rapidly closer in Britain.”141

    Britain’s advantage in GPT diffusion was not rooted in its higher education system, which lagged far behind the French education system during the IR-1 period.142 France had already established more than twenty universities before the French Revolution. The French system of higher technical education, from the late eighteenth century through the 1830s, had no rival. The Grande Écoles system, including the elite École Polytechnique (established in 1794), trained expert scientists and engineers to take on top-level positions as industrial managers and high-level political personnel.143 Up until 1826, England had set up only two universities, Oxford and Cambridge. These institutions made limited contributions to training the workforce necessary for industrialization. One study with a sample of 498 British applied scientists and engineers born between 1700 and 1850 found that only 50 were educated at Oxford or Cambridge; 329 were not university-educated.144

    At this point, curiosity naturally leads us to ask why Britain accumulated an advantage in GPT skill infrastructure. Due to practical constraints of time and space, I acknowledge but do not delve into the deeper causes for the notable responsiveness of Britain’s institutions to the skill demands of mechanization. In surveying valuable lines of inquiry on this subject, chapter 2 points to government capacity to adopt long time horizons and reach intertemporal bargains. In the IR-1 case, two specific factors are also worthy of consideration. Attributing Britain’s later success to pre-industrial training practices, some studies suggest that Britain’s apprenticeship system allowed for agile and flexible adaptation to fluctuations in the demand for skills, especially in mechanical trades.145 Looking even further back, other scholars probe the geographical origins of Britain’s mechanical skills, underscoring the lasting effects of Britain’s adoption of watermills in the early Middle Ages.146

    Alternative Explanations of Britain’s Rise

    The history of the IR-1 is certainly not a neglected topic, and the literature features enthusiastic debates over a wide range of possible causes for Britain’s rise. Prominent explanations tie Britain’s early industrialization to population growth,147 demand and consumption standards,148 access to raw materials from the colonies,149 slavery,150 and trade.151 The obvious concern is that various contextual factors may confound the analysis of the LS and GPT mechanisms.

    I am not rewriting the history of the IR-1. I am drawing from one particularly influential and widely held view of the IR-1—that technological advances drove Britain’s industrial ascent—and investigating how technological change and institutional adaptations produced this outcome. The most relevant alternative factors, therefore, are those that provide a different interpretation of how technologies and institutions coevolved to result in Britain’s industrial hegemony. Although I primarily focus on the LS mechanism as the most formidable alternative explanation to the GPT diffusion theory, other explanations also warrant further investigation.

    Threat-Based Explanations

    Threat-based theories assert that external threats are necessary to incentivize states to innovate and diffuse new technologies. Did Britain owe its technological leadership to war and its military’s impetus to modernize? During the IR-1 period, Britain was embroiled in the Revolutionary and Napoleonic Wars (1793–1815), a near-continuous stretch of conflicts involving France and other European states. If threat-based explanations stand up in the IR-1 case, then the historical record should show that these wars made an essential and positive contribution to Britain’s adoption of iron machinery and mechanization.

    Some evidence supports this argument. By 1805, the British government’s needs for iron in the war effort accounted for 17 percent of the total British iron output in 1805.152 This wartime stimulus to iron production facilitated improvements in iron railways, iron ships, and steam engines.153 In particular, military investments in gunmaking produced important spin-offs in textiles and machine tools, most famously encapsulated by Watt’s dependence on John Wilkinson’s cannon boring techniques to make the condenser cylinders for his steam engine.154

    On the flip side, war’s disruptive costs are likely to have offset any stimulus to Britain’s mechanization. Aside from Wilkinson’s cannon boring device and some incremental improvements, wartime pressures did not produce any major technological breakthroughs for the civilian economy.155 Military needs absorbed productive laborers from Britain’s civilian economy, resulting in labor shortages.156 War also limited both the domestic demand for iron, by halting investment in construction, agriculture, and other industries, and the foreign demand for British iron, by cutting off foreign trade. Historian Charles Hyde notes, “In the absence of fighting, overall demand for iron might have been higher than it was.”157

    Furthermore, any temporary benefits that accrued to Britain’s iron industry in wartime were wiped out in the transition to peacetime. In one influential text, historian Thomas Ashton reviewed how each of the wars of the eighteenth century, including the Revolutionary and Napoleonic Wars, affected Britain’s iron industry.158 He observed a similar pattern in each case. At first, the outbreak of hostilities boosts demand for iron in the form of armament, and trade disruptions protect domestic producers against foreign competitors. This initial boom is followed by a severe crash, however, when the iron industry adjusts to the conflict’s aftermath. A trade depression follows. Converting foundries to make plowshares instead of cannons incurs heavy losses, made even more painful by the fact that war conditions promoted “feverish” developments that were unsustainable in the long run.159

    On a more fundamental level, threat-based theories have limited leverage in explaining Britain’s relative rise because its economic competitors were also embroiled in conflicts—in many cases, against Britain. The Dutch fought Britain in the fourth Anglo-Dutch War (1780–1784) as well as in the Napoleonic Wars.160 Of course, during this time, France was Britain’s main military opponent. Thus, since the Netherlands and France also faced a threatening external environment, the net effect of the war on economic growth differentials should have been minimal.161 If anything, since France fought on many more fronts than Britain during this period, proponents of threat-based explanations would expect France to have experienced more effective and widespread diffusion of iron machinery throughout its economy. The case analysis clearly discredits that expected outcome.

    VoC Explanations

    Can Britain’s particular brand of capitalism account for its technological rise? The varieties of capitalism (VoC) approach posits that liberal market economies (LMEs) are particularly suited to radical innovation. Consistent with this framework, international political economy scholars emphasize that Britain’s free market economy supported gains in rapidly changing technological domains like consumer goods, light machine tools, and textiles.162 During the IR-1 period, Britain began to develop the institutional features that would cement it as a LME, including decentralized collective bargaining and high levels of corporatization.163 Most pertinent to GPT diffusion theory, VoC scholars expect LMEs like Britain to excel at cultivating general skills, which help transfer GPT-related knowledge and techniques across firms.

    Taking measure of Britain’s human capital development in general skills in this period is therefore central to evaluating whether its technological leadership can be explained by its form of capitalism. Overall, estimates of literacy rates and school attendance demonstrate that the general level of human capital in Britain was notably low for an industrial leader.164 British literacy rates for males were relatively stagnant between 1750 and 1850, and average literacy rates in Britain were much lower than rates in the Netherlands and barely higher than those in France around the turn of the nineteenth century.165 In fact, general levels of educational attainment in Britain, as measured by average years of schooling, declined from around 1.4 years in 1740 to 1.25 years in 1820.166 Contrary to VoC theory’s expectations, Britain did not hold an advantage in general skills during this period.

    The VoC explanation’s applicability to the IR-1 period is further limited by issues with designating Britain as the only LME in this period. Like Britain, the Netherlands functioned as a relatively open economy and exhibited tendencies toward economic liberalism, but it was not able to adapt and diffuse significant technological changes.167 Though France is now considered a coordinated market economy, in the early nineteenth century it took on some of the characteristics of LMEs by implementing capital market reforms and trade liberalization.168 The VoC approach therefore struggles to resolve why these two LMEs diverged so greatly in their adaptation to mechanization.

    Case-Specific Factors

    Among other factors specific to the IR-1 setting, one alternative explanation emphasizes Britain’s fortunate geographic circumstances. More specifically, classic works have argued that proximity to plentiful coalfields was essential to British industrialization.169 These natural resource endowments enabled the expansion of coal-intensive industries, such as the iron industry. In this line of thinking, the fact that coal was cheaper in Britain than elsewhere in Europe explains why Britain was the first to sustain productivity leadership.170

    The relationship between coal and industrialization does not necessarily undermine the GPT mechanism. For one, in principle, Britain’s competitors could also have effectively leveraged coal resources. The southern provinces of the Netherlands were located close to Belgian coalfields.171 Over the course of the eighteenth century, Dutch industry had mostly shifted to coal, and away from peat stocks, as a key source of energy.172 Even if Britain’s industrial rivals had to pay more by importing coal, the expected productivity gains associated with adopting new technologies should have outweighed these costs. Moreover, GPT skill infrastructure could have mediated the relationship between coal and mechanization, as Britain’s edge in metalworking skills spurred the adoption of new coal-using technologies, which strengthened the connection between proximity to coal and economic growth.173

    Summary

    In many ways, the industrial revolution marked an exceptional transformation. It is to any number of historical trends what the birth of Jesus is to the Gregorian calendar—an inflection point that separates “before” and “after.” For my purposes, however, the industrial revolution is a typical case showing how technological revolutions influence the rise and fall of great powers. Evidence from great powers’ different adaptations to technological changes in this period therefore helps test GPT diffusion theory against the LS mechanism.

    In sum, GPT diffusion theory best explains why Britain led Europe’s industrial transformation in this period. Britain effectively capitalized on general-purpose improvements in mechanization owing to its institutional advantages that were conducive to widening the pool of mechanical skills and knowledge. According to GPT diffusion theory, countries like this disproportionately benefit from technological revolutions because they adapt more successfully to the GPT trajectories that transform productivity. In line with these expectations, Britain was more successful than its industrial rivals in sustaining long-term economic growth, which became the foundation of its unrivaled power in the early and mid-nineteenth century.

    On the flip side, this chapter’s case analysis undercuts the LS-based explanation. The timeframe for when leading sectors were expected to stimulate Britain’s productivity growth did not align with when Britain’s industrialization took off. Britain’s economic ascent owed more to the widespread adoption of iron metalworking and linked production machinery than to monopoly profits from cotton textiles. The key institutional complements were not those that produced heroic inventions—Britain’s rivals held their own in these areas—but rather those that fostered widespread knowledge of applied mechanics.

    Do these findings hold in other periods of technological and geopolitical upheaval? The IR-1 was one of the most extraordinary phases in history, but it was not the only era to attain the title of an “industrial revolution.” To further explore these dynamics, it is only appropriate to turn to the period some have labeled the Second Industrial Revolution.

    4 The Second Industrial Revolution and America’s Ascent

    IN THE LATE nineteenth and early twentieth centuries, the technological and geopolitical landscape transformed in ways familiar to observers of today’s environment. “AI is the new electricity” goes a common refrain that compares current advances in machine intelligence to electrical innovations 150 years ago. Those fundamental breakthroughs, alongside others in steel, chemicals, and machine tools, sparked the Second Industrial Revolution (IR-2), which unfolded from 1870 to 1914.1 Studies of how present-day technological advances could change the balance of power draw on geopolitical competition for technological leadership in the IR-2 as a key reference point.2

    Often overshadowed by its predecessor, the IR-2 is equally important for investigating causal patterns that connect technological revolutions and economic power transitions. The presence of both cause and outcome ensures a fruitful test of the GPT and LS mechanisms. The beginning of the period featured remarkable technological innovations, including the universal milling machine, the electric dynamo, the synthesis of indigo dye, and the internal combustion engine. According to some scholars, one would be hard-pressed to find another period with a higher density of important scientific advances.3 By the end of the period, Britain’s decline and the rise of Germany and the United States had yielded a new balance of economic power, which one historian describes as a “shift from monarchy to oligarchy, from a one-nation to a multi-nation industrial system.”4 Arguably, British industrial decline in the IR-2 was the ultimate cause of World War I.5

    International relations scholars hold up the IR-2 as a classic case of a power transition caused by LS product cycles.6 According to this view, Britain’s rivals cornered market shares in the new, fast-growing industries arising from major technological innovations in electricity, chemicals, and steel.7 Specifically, scholars argue that Germany surpassed Britain in the IR-2 because it was “the first to introduce the most important innovations” in these key sectors.8 Analysis of emerging technologies and today’s rising powers follows a similar template when it compares China’s scientific and technological capabilities to Germany’s ability to develop major innovations in chemicals.9 Thus, as a most likely case for the LS mechanism, which is favored by background conditions and existing theoretical explanations, the IR-2 acts as a good test for the GPT mechanism.

    Historical evidence from this period challenges this conventional narrative. No country monopolized innovation in leading sectors such as chemicals, electricity, steel, and motor vehicles. Productivity growth in the United States, which overtook Britain in productivity leadership during the IR-2, was not dominated by a few R&D-based sectors. Moreover, major breakthroughs in electricity and chemicals, prominent factors in LS accounts, required a protracted process of diffusion across many sectors before their impact was felt. This made them unlikely key drivers of the economic rise of the United States before 1914.

    Instead, the IR-2 case evidence supports GPT diffusion theory. Spurred by inventions in machine tools, the industrial production of interchangeable parts, known as the “American system of manufacturing,” embodied the key GPT trajectory.10 The United States did not lead the world in producing the most advanced machinery; rather, it had an advantage over Britain in adapting machine tools across almost all branches of industry. Though the American system’s diffusion also required a long gestation period, the timing matches America’s industrial rise. Incubated by the growing specialization of machine tools in the mid-nineteenth century, the application of interchangeable parts across a broad range of manufacturing industries was the key driving force of America’s relative economic success in the IR-2.11

    Since a nation’s efficacy in adapting to technological revolutions is determined by how well its institutions complement the demands of emerging technologies, the GPT model of the IR-2 highlights institutional factors that differ from those featured in standard accounts. LS-based theories tend to highlight Germany’s institutional competencies in scientific education and industrial R&D.12 In contrast, the case analysis points toward the American ability to develop a broad base of mechanical engineering skills and standardize best practices in mechanical engineering. Practice-oriented technical education at American land-grant colleges and technical institutes enabled the United States to take better advantage of interchangeable manufacturing methods than its rivals.

    This chapter’s evidence comes from a variety of sources. In tracing the contours of technological trajectories and the economic power transition in this period, I relied on histories of technology, categorization schemes from the long-cycle literature, general accounts of economic historians, and revised versions of historical productivity measures. I investigated the fit between institutions and technology in leading economies using annual reports of the US Commissioner of Education, British diplomatic and consular reports, cross-national data on technological diffusion, German engineering periodicals, and firsthand accounts from inspection teams commissioned to study related issues.13 My analysis benefited from archival materials based at the Bodleian Library’s Marconi Archives (United Kingdom), the Library of Congress (United States), and the University of Leipzig and from records of the British Foreign Office.

    This chapter proceeds as follows. I begin by chronicling the economic power transition that took place during the IR-2 to clarify that the United States, not Germany, ascended to industrial preeminence. I then identify the key technological breakthroughs, which I sort according to their ties to GPT and LS trajectories. Along the dimensions of impact timeframe, phase of relative advantage, and breadth of growth, this chapter demonstrates that the GPT trajectory aligns better with how the IR-2 enabled the economic rise of the United States. Next, I evaluate whether differences in GPT skill infrastructure can account for the American edge over Britain and Germany in interchangeable manufacturing methods. Toward the chapter’s end, I also tackle alternative explanations.14

    A Power Transition: America’s Ascent

    To begin, tracing when an economic power transition takes place is critical. In 1860, Britain was still at the apogee of its industrial power.15 Most historians agree that British industrial preeminence eroded in the late nineteenth century. By 1913, both the United States and Germany had emerged as formidable rivals to Britain with respect to the industrial and productive foundations of national power. According to Paul Kennedy’s influential account, before World War I Britain was “in third place,” and “in terms of industrial muscle, both the United States and imperial Germany had moved ahead.”16 Aided with more data than was available for the IR-1 case, I map the timeline of this economic power transition with various measures of industrial output and efficiency.

    In the IR-2 case, clarifying who surpassed Britain in economic efficiency takes on added gravity. Whereas in the IR-1 Britain separated itself from the rest, both the United States and Germany challenged British industrial power in the IR-2. But studies of this case often neglect the rise of the United States. Preoccupied with debates over whether Germany’s overtaking of Britain sparked World War I, the power transition literature has directed most of its attention to the Anglo-German competition for economic leadership.17 Some LS-based accounts explain only Germany’s rise in this period without investigating America’s ascent.18

    As the rest of this section will show, Germany and the United States both surpassed Britain on some measures of economic power, but the United States emerged as the clear productivity leader. Therefore, any explanation of the rise and fall of technological leadership in this period must be centered on the US experience. The following sections trace the contours of the IR-2’s economic power transition with a range of indicators for productivity leadership, including GDP per capita, industrialization, labor productivity, and total factor productivity.

    GDP PER-CAPITA INDICATORS

    Changes in total GDP over the course of the IR-2 provide a useful departure point for understanding changes in the balance of productive power. At the beginning of the period in 1871, Germany’s economy was around three-quarters the size of the British economy; by the end of the period, in 1913, Germany’s economy was approximately 14 percent larger than Britain’s. The growth trajectory of the American economy was even starker. Over the same time period, overall economic output in the United States increased from 1.2 times to around 3.4 times that of Britain’s total GDP.19 This trend is further confirmed by the growth rates of overall GDP for the three countries. In the period between 1870 and 1913, the US GDP grew roughly 5.3 times over, compared to 3.3 for Germany and 2.2 for the United Kingdom.20

    While gross economic size puts countries in contention for economic leadership, the most crucial outcome is sustained economic efficiency. Compared to total output, trend lines in real GDP per capita mark out a broadly similar picture of the IR-2 period, but they also differ in two significant respects (figure 4.1). First, whereas the United States was already the largest economy by total output in 1870, the United Kingdom maintained a slight lead in real GDP per capita over the United States in the 1870s. The United Kingdom’s average GDP per capita over the decade was about 15 percent higher than the US equivalent.21 US GDP per capita was roughly on par with Britain’s throughout the 1880s and 1890s, but the United States established a substantial lead starting around 1900.22

    FIGURE 4.1. Economic Power Transition during the IR-2. Source: Maddison Project Database, version 2020 (Bolt and van Zanden 2020).

    Second, in contrast to trend lines in aggregate economic output, Germany did not surpass Britain in GDP per capita before World War I. Germany certainly closed the gap, as its GDP per capita increased from around 50 percent of British GDP per capita in 1870 to around 70 percent in the years before World War I. However, Germany never even came close to overtaking the United Kingdom in GDP per capita during this period.23 This is an important distinction that justifies the focus on US technological success in the IR-2, since surpassing at the technological frontier is a different challenge than merely catching up to the technological frontier.

    INDUSTRIALIZATION INDICATORS

    Industrialization indicators back up the findings from the GDP per-capita data. The United States emerged as the preeminent industrial power, boasting an aggregate industrial output in 1913 that equaled 36 percent of the global total—a figure that exceeded the combined share of both Great Britain and Germany.24 More importantly, the United States became the leading country in terms of industrial efficiency, with a per-capita industrialization level about 10 percent higher than Britain’s in 1913.25

    Once again, the emphasis on productivity over aggregate output reveals that the economic gap between Germany and Britain narrowed but did not disappear. In aggregate terms, Germany’s share of the world’s industrial production rose to 16 percent in 1913. This eclipsed Britain’s share, which declined from 32 percent of the world’s industrial production in 1870 to just 15 percent in 1913.26 However, Germany did not overtake Britain in industrial efficiency. In 1913, its per-capita industrialization level was about 75 percent of Britain’s.27 The magnitude of this gap was approximately the same as the gap between German per-capita GDP and British per-capita GDP.

    PRODUCTIVITY INDICATORS

    Lastly, I consider various productivity statistics. Stephen Broadberry’s work on the “productivity race” contains the most comprehensive and rigorous assessments of productivity levels in Britain, Germany, and the United States in this period.28 Comparative statistics on labor productivity line up with findings from other indicators (figure 4.2). The United States surpassed Britain in aggregate labor productivity during the 1890s or 1900s, whereas Germany’s aggregate labor productivity increased relative to but did not fully overtake Britain’s over the IR-2 period.29

    FIGURE 4.2. Comparative Labor Productivity Levels in the IR-2. Source: Broadberry 2006, 110.

    Another set of productivity indicators, Maddison’s well-known and oft-cited historical data on comparative GDP per hour worked, supports Broadberry’s comparative measures of labor productivity levels.30 According to Maddison’s estimates of the average rate of productivity growth from 1870 to 1913, the American and German economies were both growing more productive relative to the British economy. The growth rate of America’s GDP per hour worked was 1.9 percent compared to 1.8 percent for the German rate and 1.2 percent for the UK rate.31

    It should be noted that the United Kingdom may have retained a total factor productivity lead in this period. Based on 1909 figures, the last measurements available before World War I, the US aggregate TFP was a little over 90 percent of Britain’s. By 1919, US aggregate TFP was nearly 10 percent larger than Britain’s.32 The United States could have surpassed Britain in overall TFP before World War I, but the data do not clearly demonstrate this outcome. Still, the TFP data track well with the general trends found in other measures of economic efficiency, including a marked increase in US TFP in the 1890s and 1900s as well as a steady narrowing of the gap between UK and German TFP throughout the period. Issues related to the availability, reliability, and comparability of capital stock estimates during this period, however, caution against concluding too much from the TFP trends alone.33

    Albeit with some caveats, the general thrust of evidence confirms that the United States overtook Britain in productivity leadership around the turn of the twentieth century. In productive efficiency, Germany significantly narrowed the gap but did not surpass Britain. A clarified picture of the outcome also helps guide the assessment of the LS and GPT mechanisms. In contrast to work that focuses on Anglo-German rivalry in this period, I prioritize explaining why the United States became the preeminent economic power. Moreover, if GPT diffusion theory holds for this period, it should also explain why the United States was more successful than Germany in overtaking Britain in productivity during this period.

    Key Technological Changes in the IR-2

    Which technological changes could have sparked the economic power transition before World War I? The IR-2 was an age of dizzying technological breakthroughs, including but not limited to the electric dynamo (1871), the first internal combustion engine (1876), the Thomas process for steel manufacturing (1877), and the synthesis of indigo dye (1880).34 Tracking down how every single technical advance could have affected the growth differentials among Britain, Germany, and the United States is an unmanageable task. I narrow the scope of analysis to the most likely sources of LS and GPT trajectories based on previous scholarship that calls attention to the significance of certain technological developments in the IR-2. Once confirmed to meet the established criteria for leading sectors and GPTs, these technological drivers serve as the fields of reference for assessing the validity of the GPT and LS mechanisms in this case.

    Candidate Leading Sectors

    I focus on the chemicals, electrical equipment, motor vehicles, and steel industries as the leading sectors of the IR-2. These choices are informed by scholars who study the implications of technological change during this period from a LS perspective. The first three sectors feature in the standard rendering of the IR-2 by prominent historical accounts, which centers major discoveries in chemistry and electricity as well as the invention of the internal combustion engine.35 Among those who study the effect of technological revolutions on the balance of power, there is near-consensus that the chemicals and electrical industries were technologically advanced, fast-growing industries during this time.36 Some scholars also identify the automobile industry as a key industry in this period.37 Others reason, however, that automobiles did not emerge as a leading sector until a later period.38

    The automobile, chemicals, and electrical industries all experienced prodigious growth during the IR-2, meeting the primary qualification for leading sectors. According to statistics from the US census, the percentage increase in value added by manufacture in each of the chemicals, electrical, and automobile industries was much higher than the average across all industries from 1899 through 1909. In fact, the automobile and electrical equipment industries boasted the two highest rates of percentage growth in value added over this period among sectors with a market size over $100 million.39

    I also consider developments in steel as a possible source of leading-sector product cycles. It is hard to ignore the explosive growth of the steel industry in both Germany, where it multiplied over 100-fold from 1870 to 1913, and the United States, where it multiplied around 450 times over the same period.40 In addition, many scholars list steel as one of the leading sectors that affected the economic power balance in the IR-2.41 Rostow identifies steel as part of “the classic sequence” of “great leading sectors.”42 In sum, I consider four candidate leading sectors in this period: the automobile, chemicals, electrical equipment, and steel industries.

    Candidate GPTs

    I analyze chemicalization, electrification, the internal combustion engine, and interchangeable manufacture as potential drivers of GPT-style transformations in the IR-2. Of these four, electricity is the prototypical GPT. It is “unanimously seen in the literature as a historical example of a GPT.”43 Electricity is one of three technologies, alongside the steam engine and information and communications (ICT) technology, that feature in nearly every article that seeks to identify GPTs throughout history.44 Electrical technologies possessed an enormous scope for improvement, fed into a variety of products and processes, and synergized with many other streams of technological development. Empirical efforts to identify GPTs with patent data provide further evidence of electricity as a GPT in this period.45

    Like advances in electricity, clusters of innovations in chemicals and the internal combustion engine not only spurred the rapid growth of new industries but also served as a potential source of GPT trajectories. Historians of technology pick out chemicalization, alongside electrification, as one of two central processes that transformed production routines in the early twentieth century.46 Historical patent data confirm that chemical inventions could influence a wide variety of products and processes.47

    In line with GPT classification schemes by other scholars, I also evaluate the internal combustion engine as a candidate GPT, with the potential to replace the steam engine as a prime mover of many industrial processes.48 After its introduction, many believed that the internal combustion engine would transform a range of manufacturing processes with smaller, divisible power units.49

    Lastly, I examine the advance of interchangeable manufacture, spurred by innovations in machine tools, as a candidate GPT in this period. Though the machine tool industry was neither new nor especially fast-growing, it did play a central role in extending the mechanization of machine-making first incubated in the IR-1. The diffusion of interchangeable manufacture, or the “American system,” owed much to advances in turret lathes, milling machines, and other machine tools that improved the precision of cutting and shaping metals. Rosenberg’s seminal study of “technological convergence” between the American machine tool industry and metal-using sectors highlighted how innovations in metalworking machines transformed production processes across a wide range of industries.50 Following Rosenberg’s interpretation, historians recognize the nexus of machine tools and mechanization as one of the key technological trajectories during this period.51

    Sources of LS and GPT Trajectories

    I aimed to include as many candidate technological drivers as possible, provided that the technological developments credibly met the criteria of a leading sector or GPT.52 All candidate leading sectors and GPTs I study in this period were flagged in multiple articles or books that explicitly identified leading sectors or GPTs in the IR-2 period, which helped provide an initial filter for selection. This allows for a good test of the GPT diffusion mechanism against the LS product cycles mechanism.53 This sorting process is an important initial step for evaluating the two mechanisms, though a deeper excavation of the historical evidence is required to determine whether the candidates actually made the cut.

    table 4.1 Key Sources of Technological Trajectories in the IR-2

    Candidate Leading SectorsCandidate GPTs
    Steel industryInterchangeable manufacture
    Electrical equipment industryElectrification
    Chemicals industryChemicalization
    Automobile industryInternal combustion engine

    There is substantial overlap between the candidate GPTs and leading sectors in the IR-2, as reflected in table 4.1, but two key distinctions are worth emphasizing. First, one difference between the candidate GPTs and leading sectors is the inclusion of machine tools in the former category. The international relations scholarship on leading sectors overlooks the impact of machine tools in this period, possibly because the industry’s total output did not rank among the largest industries, and also because innovation in machine tools was relatively incremental.54 One survey of technical development in machine tools from 1850 to 1914 described the landscape as “essentially a series of minor adaptations and improvements.”55 Relatedly, the steel industry, commonly regarded as an LS, is not considered a candidate GPT. Under the GPT mechanism, innovations in steel are bound up in a GPT trajectory driven by advances in machine tools.

    Second, even though some technological drivers, such as electricity, are considered both candidate leading sectors and candidate GPTs, there are different interpretations of how developments in these technological domains translated into an economic power transition. In the case of new electrical discoveries, control over market share and exports in the electrical equipment industry represents the LS trajectory, whereas the gradual spread of electrification across many industries stands in for the GPT trajectory. Two trajectories diverge in a yellow wood, and the case study evidence will show which one electricity traveled.56

    GPT vs. LS Trajectories in the IR-2

    Equipped with a better grasp of the possible technological drivers in the IR-2, I follow the same procedures used in the previous chapter to assess the validity of the GPT and LS mechanisms.

    OBSERVABLE IMPLICATIONS RELATED TO THE IMPACT TIMEFRAME

    GPT diffusion and LS product cycles present two competing interpretations of the IR-2’s impact timeframe. The LS mechanism expects growth associated with radical technological breakthroughs to be explosive in the initial stages. Under this view, off the back of major breakthroughs such as the first practical electric dynamo (1871), the modern internal combustion engine (1876), and the successful synthesis of indigo dye (1880), new leading sectors took off in the 1870s and 1880s.57 Then, according to the expected timeline of the LS mechanism, these new industries stimulated substantial growth in the early stages of their development, bringing about a pre–World War I upheaval in the industrial balance of power.58

    The GPT trajectory gives a different timeline for when productivity benefits from major technological breakthroughs were realized on an economy-wide scale. Before stimulating economy-wide growth, the candidate GPTs that emerged in the 1880s—tied to advances in electricity, chemicals, and the internal combustion engine—required many decades of complementary innovations in application sectors and human capital upgrading. These candidate GPTs should have contributed only modestly to the industrial rise of the United States before World War I, with impacts, if any, materializing toward the very end of the period.

    Critically, one candidate GPT should have produced substantial economic effects during this period. Unlike other GPT trajectories, interchangeable manufacture had been incubated by earlier advances in machine tools, such as the turret lathe (1845) and the universal milling machine (1861).59 Thus, by the late nineteenth century, interchangeable manufacturing methods should have diffused widely enough to make a significant impact on US industrial productivity.

    OBSERVABLE IMPLICATIONS RELATED TO THE PHASE OF RELATIVE ADVANTAGE

    When spelling out how the IR-2 produced an economic power transition, the two mechanisms also stress different phases of technological change. According to the LS mechanism, Britain’s industrial prominence waned because it lost its dominance of innovation in the IR-2’s new industries. The United States and Germany benefited from monopoly profits accrued from being lead innovators in electrical equipment, chemical production, automobiles, and steel. In particular, Germany’s industrial rise in this period draws a disproportionate share of attention. Many LS accounts attribute Germany’s rise to its dominance of innovations in the chemical industry, “the first science-based industry.”60 Others emphasize that the American global lead in the share of fundamental innovations after 1850 paved the way for the United States to dominate new industries and become the leading economy in the IR-2.61

    The GPT mechanism has different expectations regarding the key determinant of productivity differentials. Where innovations are adopted more effectively has greater significance than where they are first introduced. According to this perspective, Britain lost its industrial preeminence because the United States was more effective at intensively adopting the IR-2’s GPTs.

    OBSERVABLE IMPLICATIONS RELATED TO BREADTH OF GROWTH

    Finally, regarding the breadth of growth, the third dimension on which the two mechanisms diverge, the LS trajectory expects that a narrow set of modernized industries drove productivity differentials, whereas the GPT trajectory holds that a broad range of industries contributed to productivity differentials. The US growth pattern serves as the best testing ground for these diverging predictions, since the United States overtook Britain as the economic leader in this period.

    Table 4.2  Testable Predictions for the IR-2 Case Analysis

    Prediction 1: LS (impact timeframe)The steel, electrical equipment, chemicals, and/or* automobile industries made a significant impact on the rise of the United States to productivity leadership before 1914.
    Prediction 1: GPTElectrification, chemicalization, and/or the internal combustion engine made a significant impact on the rise of the United States to productivity leadership only after 1914.The extension of interchangeable manufacture made a significant impact on the rise of the United States to productivity leadership before 1914.
    Prediction 2: LS (phase of relative advantage)Innovations in the steel, electrical equipment, chemicals, and/or automobile industries were concentrated in the United States.German and American advantages in the production and export of electrical equipment, chemical products, automobiles, and/or steel were crucial to their industrial superiority.
    Prediction 2: GPTInnovations in machine tools, electricity, chemicals, and/or the internal combustion engine were not concentrated in the United States.
    American advantages in the diffusion of interchangeable manufacture were crucial to its productivity leadership.
    Hypothesis 3: LS (breadth of growth)Productivity growth in the United States was limited to the steel, electrical, chemicals, and/or automotive industries.
    Hypothesis 3: GPTProductivity growth in the United States was spread across a broad range of industries linked to interchangeable manufacture.
    *The operator “and/or” links all the candidate leading sectors and GPTs because it could be the case that only some of these technologies drove the trajectories of the period.

    The two explanations hold different views about how technological disruptions produced an economic power transition, related to the impact timeframe of new advances, the phase of technological change that yields relative advantages, and the breadth of technology-fueled growth. Based on the differences between the LS and GPT mechanism across these dimensions, I derive three sets of diverging predictions for how technological changes contributed to relative shifts in economic productivity during this period. Table 4.2 collects these predictions, which structure the case analysis in the following sections.

    Impact Timeframe: Gradual Gains vs. Immediate Effects from New Breakthroughs

    The opening move in assessing the LS and GPT mechanisms is determining when the IR-2’s eye-catching technological advances actually made their mark on leading economies. Tracking the development timelines for all the candidate leading sectors and GPTs of the IR-2 produces two clear takeaways. First, innovations related to electricity, chemicals, and the internal combustion engine did not make a significant impact on US productivity leadership until after 1914. Second, advances in machine tools and steel—the remaining candidate GPT and leading sector, respectively—contributed substantially to US economic growth before World War I; thus, their impact timeframes fit better with when the United States overtook Britain as the preeminent economic power.

    DELAYED TIMELINES: CHEMICALS, ELECTRICITY, AND THE INTERNAL COMBUSTION ENGINE

    Developments in chemicals, electricity, and internal combustion provide evidence against the LS interpretation. If the LS mechanism was operational in the IR-2, advances in chemicals should have made a significant impact on US productivity leadership before World War I.62 Yet, in 1914, the United States was home to only seven dye-making firms.63 Major US chemicals firms did not establish industrial research laboratories like those of their German counterparts until the first decade of the twentieth century.64 Terry Reynolds, author of a history of the American Institute of Chemical Engineers, concludes, “Widespread use of chemists in American industrial research laboratories was largely a post–World War I phenomenon.”65 Thus, it is very unlikely that chemical innovations made a meaningful difference to growth differentials between the United States and Britain before 1914.

    At first glance, the growth of the German chemical industry aligns with the LS model’s expectations. Germany was the first to incorporate scientific research into chemical production, resulting in the synthesis of many artificial dyes before 1880.66 Overtaking Britain in leadership of the chemical industry, Germany produced 140,000 tons of dyestuffs in 1913, more than 85 percent of the world total.67

    While Germany’s rapid growth trajectory in synthetic dyes was impressive, the greater economic impacts of chemical advances materialized after 1914 through a different pathway: “chemicalization,” or the spread of chemical processes across ceramics, food-processing, glass, metallurgy, petroleum refining, and many other industries.68 Prior to key chemical engineering advances in the 1920s, industrial chemists devoted limited attention to unifying principles across the manufacture of different products. The rapid expansion of chemical-based industries in the twentieth century owed more to these later improvements in chemical engineering than earlier progress in synthetic dyes.69 Ultimately, these delayed spillovers from chemicalization were substantial, as evidenced by higher growth rates in the German chemical industry during the interwar period than in the two decades before World War I.70

    Electrification’s impact timeframe with respect to US productivity growth mirrored that of chemicalization. Scholarly consensus attributes the US productivity upsurge after 1914 to the delayed impact of the electrification of manufacturing.71 From 1880 to 1930, power production and distribution systems gradually evolved from shaft and belt drive systems driven by a central steam engine or water wheel to electric unit drive, in which electric motors powered individual machines. Unit drive became the predominant method in the 1920s only after vigorous debates in technical associations over its relative merits, the emergence of large utilities that improved access to cheap electricity, and complementary innovations, like machine tools, that were compatible with electric motors.72

    Quantitative indicators also verify the long interval between key electrical advances and electrification’s productivity boost. Economic geographer Sergio Petralia has investigated the causal relationship between adoption of electrical and electronic (E&E) technologies, operationalized as E&E patenting activity in individual American counties and the per-capita growth of those counties over time. One of his main findings is that the effects of E&E technology adoption on growth are not significant prior to 1914.73 This timeline is confirmed by a range of other metrics, including the energy efficiency of the American economy, electric motors’ share of horsepower in manufacturing, and estimates of electricity’s total contribution to economic growth.74

    The diffusion of internal combustion engines across application sectors was also slow. Despite its initial promise, the internal combustion engine never accounted for more than 5 percent of the generation of total horsepower in US manufacturing from 1869 to 1939.75 In 1900, there were only eight thousand cars in the entire United States, and the U. motor vehicle industry did not overtake its French competitor as the world’s largest until 1904.76 Furthermore, the turning point for the mass production of automobiles, Ford’s installation of a moving assembly line for making Model Ts, did not occur until 1913.77

    KEY TIMINGS: MACHINE TOOLS AND STEEL

    When assigning credit to certain technologies for major upheavals in global affairs, awe of the new often overwhelms recognition of the old. Based on the previous analysis, it is unlikely that new breakthroughs in electricity, chemicals, and internal combustion fueled the economic power transition that transpired in this period. Instead, careful tracing reveals the persevering impact of earlier developments in machine tools.78 During the IR-2, technical advances in machine tools were incremental, continuous improvements that helped disseminate transformative breakthroughs from the mid-nineteenth century, such as the turret lathe and the universal milling machine.79

    Profiles of key application sectors and quantitative indicators validate the GPT mechanism’s expected impact timeframe for machine tools. Marking 1880 as the date when “the proliferation of new machine tools in American industry had begun to reach torrential proportions,” Rosenberg outlines how three application sectors—sewing machines, bicycles, and automobiles—successively adopted improved metal-cutting techniques from 1880 to 1910.80 As the American system took hold, the number of potential machine tool users multiplied 15-fold, from just 95,000 workers in 1850 to almost 1.5 million in 1910.81 Patenting data identify the last third of the nineteenth century as the period when extensive technological convergence characterized the machine tool industry and application sectors.82

    FIGURE 4.3. Technological Impact Timeframes in the IR-2. Note: US chemical production, horsepower from electric central stations, and machine intensity over time. Source: Murmann 2003; US Census Bureau 1975.

    Figure 4.3 depicts the diverging impact timeframes of interchangeable manufacturing methods, electrification, and chemicalization. Machine intensity substantially increased from 1890 to 1910, as measured by horsepower installed per persons employed in manufacturing. By contrast, the United States did not experience significant increases in electrical and chemical production until after 1910.

    Of all the candidate leading sectors, the steel industry best fits the expectations of the LS mechanism regarding when industries transformed by radical innovations stimulated growth in the rising powers. Just as the 1780s were a period when the technological conditions for cotton production were transformed, the mid-nineteenth century featured major breakthroughs in the steel industry that allowed for the mass production of steel, such as the Siemens-Martin open-hearth furnace (1867) and Bessemer converter (1856).83 Over the course of the IR-2 period, the United States and Germany quickly exploited these breakthroughs in steelmaking to massively boost steel production.

    The overtaking of Britain by both Germany and the United States in total steel production by the early 1890s matches the timeline of Britain’s overall economic decline.84 Paul Kennedy cites Germany’s booming steel output as a key factor driving its industrial rise; by 1914, German steel output was larger than that of Britain, France, and Russia combined.85 Likewise, US steel output grew from one-fifth of British production in 1871 to almost five times more than British steel output in 1912.86 Given these impressive figures, the next section investigates the American and German advantages in steel production in further detail.

    Phase of Relative Advantage: The American System’s Diffusion

    The second dimension on which the GPT and LS trajectories differ relates to the phase of technological change that accounted for the relative success of the United States in the IR-2. Cross-country historical evidence on the IR-2’s technological drivers illustrates that the United States had true comparative advantages over other advanced economies that were rooted in its absorption and diffusion capabilities.

    INNOVATION CLUSTERING IN STEEL, ELECTRICITY, CHEMICALS, AND/OR MOTOR VEHICLES?

    In electricity, industrial powers fiercely contested innovation leadership as the United States, Germany, Great Britain, and France all built their first central power stations, electric trams, and alternating current power systems within a span of nine years.87 However, the United States clearly led in diffusing these systems: US electricity production per capita more than doubled that of Germany, the next closest competitor, in 1912. Along this metric of electrification, Britain’s level was just 20 percent of the US figure.88

    To be clear, Britain fell behind in adopting electrification, even though it introduced some of the most significant electrical innovations.89 In 1884, for example, British inventor Charles Parsons demonstrated the first steam turbine for practical use, an essential step for commercializing electric power, but this technology was more rapidly and widely adopted in other countries.90 The British Institution of Electrical Engineers aptly captured this phenomenon in an 1892 resolution: “Notwithstanding that our countrymen have been among the first in inventive genius in electrical science, its development in the United Kingdom is in a backward condition, as compared with other countries, in respect of practical application to the industrial and social requirements of the nation.”91

    In chemicals, the achievements of both the US and German chemical industries suggest that no single country monopolized innovation in this sector. Germany’s synthetic dye industry excelled not because it generated the initial breakthroughs in aniline-violet dye processes—in fact, those were first pioneered in Britain—but because it had perfected these processes for profitable exploitation.92 Similar dynamics characterized the US chemical industry.93

    In most cases, the United States was not the first to introduce major innovations in leading sectors. Many countries introduced major innovations in chemicals, electricity, motor vehicles, and steel during this period (table 4.3).94 Across the four candidate leading sectors, American firms pioneered less than 30 percent of the innovations. Contrary to the propositions of the LS mechanism, innovations in steel, electricity, chemicals, and motor vehicles were spread across the leading economies.

    table 4.3 Geographic Distribution of Major Innovations in Leading Sectors, 1850–1914

    ChemicalsElectricityMotor VehiclesSteel
    France2111
    Germany3330
    Great Britain1311
    United States2310
    Various other countries0102
    Sole US share25%27%17%0%
    Source: Van Duijn 1983, 176–79 (compilation of 160 innovations introduced during the nineteenth and twentieth centuries).

    Moreover, the limited role of electrical and chemical exports in spurring American growth casts further doubt on the significance of monopoly profits from being the first to introduce new advances.95 The British share of global chemical exports almost doubled the US share in 1913.96 Overall, the United States derived only 8 percent of its national income from foreign trade in 1913, whereas the corresponding proportion for Britain was 26 percent.97 Even though the United States was the quickest to electrify its economy, Germany captured around half of the world’s exports in electrical products.98

    If monopoly profits from innovation clustering in any leading sector propelled the industrial rise of the United States and Germany, it would be the steel industry. Both nations made remarkable gains in total steel output over this period, and scholars commonly employ crude steel production as a key indicator of British decline and the shifting balance of industrial power in the decades before World War I.99 Thus, having established the delayed impact of the electrical, chemical, and automobile industries in this period, the steel industry takes on an especially large burden for the LS mechanism’s explanatory power in this period.

    Yet Britain capitalized on many major innovations in steelmaking, including the Talbot furnace, which became essential to producing open-hearth steel.100 Moreover, trade patterns reveal that Britain still held a comparative advantage in the export of steel between 1899 and 1913.101 How to square this with Germany’s dominance in total steel output?

    The prevailing wisdom takes total steel output figures to stand for superior American and German technological know-how and productivity.102 In truth, new steelmaking processes created two separate steel industries. Britain shifted toward producing open-hearth steel, which was higher in quality and price. According to the British Iron Trade Association, Britain produced about four times more open-hearth steel than Germany in 1890.103 On the other hand, Germany produced cheap Thomas steel and exported a large amount at dumping prices. In fact, some of Germany’s steel exports went to Britain, where they were processed into higher-quality steel and re-exported.104 In sum, this evidence questions what one scholar deems “the myth of the technological superiority and outstanding productivity of the German steel industry before and after the First World War.”105

    AMERICAN MACHINE TOOLS—GPT DIFFUSION ADVANTAGE

    Though new industries like electricity and chemicals hog much of the spotlight, developments in machine tools underpin the most important channel between differential rates of technology adoption and the IR-2’s economic power transition. After noting the importance of the electrical and chemical industries during the period, British historian Eric Hobsbawm elevates the importance of machine tools: “Yet nowhere did foreign countries—and again chiefly the USA—leap ahead more decisively than in this field.”106

    In line with the expectations of GPT diffusion theory, comparative estimates confirm a substantial US lead in mechanization in the early twentieth century. In 1907, machine intensity in the United States was more than two times higher than rates in Britain and Germany.107 In 1930, the earliest year for which data on installed machine tools per employee are available, Germany lagged behind the United States in installed machine tools per employee across manufacturing industries by 10 percent, with a significantly wider gap in the tools most crucial for mass production.108

    This disparity in mechanization was not rooted in the exclusive access of the United States to special innovations in machine tools. In terms of quality, British machine tools were superior to their American counterparts throughout the IR-2 period.109 German firms also had advantages in certain fields like sophisticated power technology.110 Rather, the distinguishing feature of the US machine tool industry was excellence in diffusing innovations across industries.111 Reports by British and German study trips to the United States provide some of the most detailed, reliable accounts of transatlantic differences in manufacturing methods. German observers traveled to the United States to learn from their American competitors and eventually imitate American interchangeable manufacturing methods.112 British inspection teams reported that the US competitive edge came from the “adaptation of special apparatus to a single operation in almost all branches of industry”113 and “the eagerness with which they call in the aid of machinery in almost every department of industry.”114

    Fittingly, one of the most colorful denunciations of American innovation capacity simultaneously underscored its strong diffusion capacity. In an 1883 address to the American Association for the Advancement of Science, Henry Rowland, the association’s vice president, denigrated the state of American science for its skew toward the commercialization of new advances. Rowland expressed his disgust with media representations that upheld the “obscure American who steals the ideas of some great mind of the past, and enriches himself by the application of the same to domestic uses” over “the great originator of the idea, who might have worked out hundreds of such applications, had his mind possessed the necessary element of vulgarity.”115 Yet, it was America’s diffusion capacity—in all its obscurity and vulgarity—that sustained its growth to economic preeminence.

    Breadth of Growth: The Wide Reach of Interchangeable Manufacture

    What were the sources of American productivity growth in the IR-2? The pattern of American economic growth is most pertinent to investigate because the United States overtook Britain in productivity leadership during the IR-2. Regarding the breadth of economic growth, the LS trajectory expects that American productivity growth was concentrated in a narrow set of modernized industries, whereas the GPT trajectory holds that American productivity growth was dispersed across a broad range of industries. Sector-level estimates of total factor productivity (TFP) growth provide useful evidence to assess these diverging propositions.

    WIDESPREAD PRODUCTIVITY GROWTH

    The historical data support GPT diffusion theory’s expectation of pervasive US productivity growth. John Kendrick’s detailed study of US productivity growth in this period depicts a relatively balanced distribution. Among the industries studied, nearly 60 percent averaged between 1 and 3 percent increases in output per labor-hour from 1899 to 1909.116 Broad swathes of the US economy, outside of the leading sectors, experienced technological change. For instance, the service sector, which included segments of the construction, transport, wholesale, and retail trade industries, played a key role in the US capacity to narrow the gap with Britain in productivity performance.117

    R&D-centric sectors were not the primary engines of US growth. In a recent update to Kendrick’s estimates, a group of researchers estimated how much of US productivity growth was driven by “great inventions sectors,” a designation that roughly corresponds to this chapter’s candidate leading sectors.118 They found that these sectors accounted for only 29 percent of U.S. TFP growth from 1899–1909.119 Despite employing 40 percent of all research scientists in 1920, the chemical industry was responsible for only 7 percent of US TFP growth throughout the following decade.120

    MACHINE TOOLS AND BROADLY DISTRIBUTED PRODUCTIVITY GROWTH

    Broad-based productivity growth in the US economy does not necessarily mean that a GPT was at work. Macroeconomic factors or the accumulation of various, unconnected sources of TFP growth could produce this outcome. Therefore, if the GPT trajectory captures the breadth of growth in the IR-2, then the historical evidence should connect broadly distributed productivity growth in the United States to developments in machine tools.

    The extension of the American system boosted productivity in a wide range of sectors. Applications of this system of special tools reshaped the processes of making firearms, furniture, sewing machines, bicycles, automobiles, cigarettes, clocks, boots and shoes, scientific instruments, typewriters, agricultural implements, locomotives, and naval ordnance.121 Its influence covered “almost every branch of industry where articles have to be repeated.”122 Per a 1930 inventory of American machine tools, the earliest complete survey, nearly 1.4 million metalworking machines were used across twenty industrial sectors.123 In his seminal study of American productivity growth during this period, Kendrick identifies progress in “certain types of new products developed by the machinery and other producer industries [that] have broad applications across industry lines” as a key source of the “broad, pervasive forces that promote efficiency throughout the economy.”124

    The breadth of productivity spillovers from machine tools was not boundless. Machine-using industries constituted a minority of the manufacturing industries, which themselves accounted for less than one-quarter of national income.125 However, users of new machine tools extended beyond just manufacturing industries. Technologically intensive services, such as railroads and steam transportation, also benefited significantly from improved metalworking techniques.126 In agriculture, specialized machine tools helped advance the introduction of farm machinery such as the reaper, which revolutionized agricultural productivity.127

    In describing how machine tools served as a transmission center in the US economy, Rosenberg describes the industry as a pool of skills and technical knowledge that replenishes the economy’s machine-using sectors—that is, an innovation that addresses one industry’s problem gets added to the pool and becomes available, with a few modifications, for all technologically related industries.128 As sales records from leading machine tool firms show, many application sectors purchased the same type of machine. In 1867, Brown and Sharpe Manufacturing Company sold the universal milling machine, just five years after its invention, not only to machinery firms that made tools for a diverse range of industries but also to twenty-seven other firms that produced everything from ammunition to jewelry.129 In this way, the machine tool industry functioned, in Rosenberg’s words, as “a center for the acquisition and diffusion of new skills and techniques in a machinofacture type of economy.”130

    Indeed, advances in machine tools had economy-wide effects. The social savings method estimates how much a new technology contributed to economic growth, compared to a counterfactual situation in which the technology had not been invented.131 Referencing this method to differentiate between the impacts of new technologies in this period, economic historian Joel Mokyr puts forward the American system of manufacturing as the most important:

    From a purely economic point of view, it could be argued that the most important invention was not another chemical dye, a better engine, or even electricity.… There is one innovation, however, for which “social savings” calculations from the vantage point of the twentieth century are certain to yield large gains. The so-called American System of manufacturing assembled complex products from mass-produced individual components. Modern manufacturing would be unthinkable without interchangeable parts.132

    Institutional Complementarities: GPT Skill Infrastructure in the IR-2

    With confirmation that the pattern of technological change in the IR-2 is better characterized by the GPT trajectory, the natural next step is to probe variation among leading economies in adapting to this trajectory. Why was the United States more successful than Britain and Germany in adapting to the demands of interchangeable manufacture? According to GPT diffusion theory, the historical evidence should reveal that the US edge was based on education and training systems that broadened and systematized mechanical engineering skills. These institutional adaptations would have resolved two key bottlenecks in the spread of interchangeable manufacture: a shortage of mechanical engineering talent and ineffective coordination between machine tool producers and users.

    Widening the Base of Mechanical Engineers

    Which institutions for skill formation were most central to the ability of the United States to take advantage of new advances in machine tools? Established accounts of economic rivalry among great powers in the IR-2 focus on skills linked to major innovations in new, science-based industries. Emphasizing Germany’s advantage in training scientific researchers, these studies attribute Germany’s technological success in this period to its investments in R&D facilities and advanced scientific and technical education.133 Such conclusions echo early-twentieth-century British accounts of Germany’s growing commercial prowess, which lauded German higher education for awarding doctorates in engineering and its qualitative superiority in scientific research.134

    American leadership in the adoption of interchangeable manufacturing methods was beholden to a different set of institutions for skill formation. Progress in this domain did not depend on new scientific frontiers and industrial research laboratories.135 In fact, the United States trailed both Britain and Germany in scientific achievements and talent.136 Widespread mechanization in the United States rested instead on a broad base of mechanical engineering skills.

    Alongside the development of more automatic and precise machine tools throughout the nineteenth century, this new trajectory of mechanization demanded more of machinists and mechanical engineers. Before 1870, US firms relied on informal apprenticeships at small workshops for training people who would design and use machine tools.137 At the same time, engineering education at independent technical schools and traditional colleges and universities did not prioritize mechanical engineers but were mostly oriented toward civil engineering.138 Yet craft-era methods and skills were no longer sufficient to handle advances that enhanced the sophistication of machine tools.139 Thus, in the mid-eighteenth century, the US potential for mechanization was significantly constrained by the need for more formal technical instruction in mechanical engineering.

    Over the next few decades, advances on three main fronts met this need for a wider pool of mechanical engineering expertise: land-grant schools, technical institutes, and standardization efforts. In 1862, the US Congress passed the first Morrill Land-Grant Act, which financed the creation of land-grant colleges dedicated to the agricultural and mechanical arts. Although some of these schools offered low-quality instruction and initially restricted their mission to agricultural concerns, the land-grant funds also supported many important engineering schools, such as the Massachusetts Institute of Technology (MIT) and Cornell University.140 The number of US engineering schools multiplied from six in 1862, when the Morrill Act was passed, to 126 in 1917.141 These schools were especially significant in widening the base of professional mechanical engineers. In 1900, out of all students pursuing mechanical engineering at US higher education institutions, 88 percent were enrolled in land-grant colleges.142

    The establishment of technical institutes also served demands for mechanical engineering training. Pure technical schools like the Worcester Polytechnic Institute, founded in 1868, and the Stevens Institute of Technology, founded in 1870, developed mechanical engineering curricula that would become templates for engineering programs at universities and colleges.143 Embedded with local and regional businesses, technical institutes developed laboratory exercises that familiarized students with real-world techniques and equipment. In this respect, these institutes and land-grant colleges “shared a common belief in the need to deliver a practice-oriented technical education.”144

    Another significant development in the spread of mechanical engineering knowledge was the emergence of professional engineering societies that created industrial standards. The most prominent of these were the American Society of Mechanical Engineers (ASME), founded in 1880, the American Section of the International Association for Testing Materials, set up in 1898, and the Franklin Institute, which became America’s leading technical society around the start of the IR-2.145 As these associations coordinated to share best practices in mechanical engineering, they improved knowledge flows between the machine tool industry and application sectors.146 Standardization in various machine processes and components, such as screw threads, helped spread mechanization across disparate markets and communities.147

    It should be emphasized that these efforts were effective in producing the skills and knowledge necessary for advancing mechanization because they broadened the field of mechanical engineering. Mechanical engineering instruction at land-grant schools and technical institutes and through professional associations allowed for more students to become “average engineers,” as opposed to “the perpetuation of a self-recognized elite.”148 Recent research finds that this diffused engineering capacity produced enduring benefits for American industrialization. By collecting granular data on engineering density for the United States at the county level, William Maloney and Felipe Caicedo capture the engineering talent spread across various US counties in 1880 and parse the effect of engineering capacity on industrial outcomes decades later. They find that there is a statistically significant, positive relationship between the level of engineering density in 1880 and the level of industrialization decades later.149

    The Comparative Advantage of the United States over Britain and Germany in GPT Skill Infrastructure

    Both Britain and Germany fell short of the US standard in GPT skill infrastructure. For Britain, the key gap was in the supply of mechanical engineering talent. British educational institutions and professional bodies fiercely guarded the apprenticeship tradition for training mechanical engineers.150 For instance, the University of Oxford did not establish an engineering professorship until 1908.151 Meanwhile, American engineers systematically experimented with machine redesigns, benefiting from their training at universities and technical institutes.

    These diverging approaches resulted in stark differences in skill formation. In 1901, probably around 2,600 students were enrolled in full-time higher technical education in the United Kingdom.152 Limiting this population to those in their third or fourth year of full-time study—an important condition because many UK programs, unlike German and American institutions, did not progress beyond two years of study—leaves only about 400 students.153 By comparison, in mechanical engineering programs alone, the United States in 1900 had 4,459 students enrolled in higher technical education.154 Controlling for population differences, the United States substantially outpaced Britain in engineering density, as measured by the number of university-educated engineers per 100,000 male laborers.155

    Germany developed a more practical and accessible form of higher technical education than Britain. From 1870 to 1900, enrollments in the German technische Hochschulen increased nearly fourfold, from 13,674 to 32,834 students.156 Alongside the technische Mittelschulen (technical intermediate schools comparable to American industrial trade schools and lower-level engineering colleges), the technische Hochschulen cultivated a broad base of mechanical engineers.157 Germany’s system of technical education attracted admirers from around the world. Some went there to study in the schools, and others went to study how the school system worked, with the aim of borrowing elements of the German model.158

    Germany’s problems were with weak linkages between mechanical engineering education and industrial applications. Key German standards bodies and technical colleges prioritized scientific and theoretical education at the expense of practical skills—a trend “most pronounced in mechanical engineering.”159 According to an expert on German standard-setting in this period, “no national standards movement was inaugurated in [the machine industry] until after the outbreak of [World War I].”160 German experts on engineering education, intent on reforming technical instruction to get engineers more experience with factor organization and project management in the field, recommended, for example, that practical training courses be offered in partnerships with engineering associations.161 Articles in the Zeitschrift des Vereines Deutscher Ingenieure (Journal of the Association of German Engineers) lamented that the technische Hochschulen and technical universities were not equipping students with practical skills to operate in and manage factories and workshops.162 These issues slowed Germany’s incorporation of interchangeable parts and advanced machine tools.

    A report by Professor Alois Riedler of the Technical University of Berlin, who was commissioned by the Prussian Ministry of Education to tour American engineering schools in the 1890s, illustrates the differences in engineering education between the United States and Germany. According to Riedler, extensive practical training and experience with shop and laboratory applications were distinctive features of an American engineering education. To substantiate differences in practical instruction between engineering departments in the two countries, Riedler analyzed the time allocated to theoretical and practical instruction across four-year courses of study.163 Compared to their German peers, American students spent far more time on exercises in mechanical technical laboratories and other types of practical training (figure 4.4). In the Technische Universität Berlin (Technical University Berlin), practical exercises in the laboratory and shop accounted for less than 6 percent of total instruction time over a four-year course of study.164 In contrast, engineering students at Cornell University spent more than one-third of their course engaged in laboratory study and shopwork. As a consequence of reports by Riedler and others, German institutions began establishing laboratories for mechanical engineering around 1900.165

    FIGURE 4.4. Comparison of Curricula at German and American Engineering Schools (1893). Source: US Bureau of Education (BOE) 1895, 684–86. Note: In this BOE report, the German schools are labeled Technological University in Austria, Technological University in Prussia, and Technological University in South Germany. A reasonable assumption, informed by background research, is that these refer to Technical University Wien, Technical University Berlin, and Technical University of Munich, respectively. Though TU Wien is in Austria, it is used to illustrate trends in German engineering education because many German schools saw it as an influential model.

    It should be made clear that, in the United States, institutional adaptations to new opportunities presented by interchangeable manufacture were not rooted in cultivating highly skilled scientific talent. The best and brightest American scientists furthered their education at European universities.166 Even proponents of American engineering education concluded that “strictly scientific and intellectual education in American technological schools” did not even match “the average of a secondary industrial school” in Germany.167 According to one study conducted by the National Association of German-American Technologists, an organization that regularly circulated ideas between the two countries, German technical institutes held an edge over their US peers in research on different technologies in mechanical engineering.168

    The deeper roots of US institutions’ greater effectiveness at adapting to the skill formation needs of interchangeable manufacture cannot be fully explored here. The legacy of the Morrill Act certainly looms large, as do the contributions of a diverse set of institutional adaptations unrelated to that groundbreaking federal policy, including independent centers like the Franklin Institute, technical high schools, professional associations, and specialized engineering programs initiated at preexisting universities.169 Other potential sources for the US advantage in GPT skill infrastructure include its openness to foreign technicians and the unique challenges and culture of the American frontier.170

    LS-Based Theories and Chemical Engineering

    Analyzing the education and training systems for chemical advances provides a secondary test to determine which institutions are most apt to bring national success in technological revolutions.171 LS accounts typically point to Germany’s innovation capacity as the key determinant of its competitiveness in chemicals, especially in the key segment of synthetic dye production.172 To extend this lead in synthetic dyes, Germany profited from leading industrial research labs and scientific education institutions, which employed the world’s top academic chemists and produced about two-thirds of the world’s chemical research.173

    By comparison, the US capacity to innovate in chemicals was weak. From 1901 to 1930, only one American researcher received a Nobel Prize in Chemistry, while German and British researchers captured almost three-fourths of the Nobel Prizes in Chemistry in that span.174 In 1899, German publications accounted for half of all citations in American chemical journals, essentially double the share credited to American publications.175 At the same time, American scholarship barely registered in Europe-based chemistry journals, where the best research was published. According to one analysis of references in Annual Reports on the Progress of Chemistry, an authoritative British review journal, American publications accounted for only 7 percent of the citations in 1904.176

    As was the case with machine tools, effective adaptation to new chemical technologies in the United States rested on a different set of institutional competencies. Despite trailing Germany in chemical breakthroughs and top chemists, the United States pioneered a chemical engineering discipline that facilitated the gradual chemicalization of many industries. A crucial step in this process was the emergence of unit operations, which broke down chemical processes into a sequence of basic operations (for example, condensing, crystallizing, and electrolyzing) that were useful to many industries, including ceramics, food processing, glass, metallurgy, and petroleum refining.177 American institutions of higher education, most notably MIT, quickly adopted the unit operations model and helped cultivate a common language and professional community of chemical engineering.178 As Rosenberg and Steinmueller conclude, “American leadership in introducing a new engineering discipline into the university curriculum, even at a time when the country was far from the frontier of scientific research, was nowhere more conspicuous than in the discipline of chemical engineering early in the 20th century.”179

    In contrast, Germany was slow to develop the infrastructure for supporting chemical engineers. Up through the interwar period, the chemical engineering profession “failed to coalesce in Germany.”180 Chemical engineering did not become a distinct academic subject area in Germany until after the Second World War.181 Because German universities did not equip chemists with engineering skills, the burden of training chemists was shifted to firms.182 Additionally, the German chemical industry maintained a strict division of labor between chemists and mechanical engineers. The lack of skill systematization resulted in more secrecy, less interfirm communication, and a failure to exploit externalities from common chemical processes.183

    The United States reaped the spoils of technological convergence in chemicalization not just because it trained large numbers of chemical engineers but also because it strengthened university-industry linkages and standardized techniques in chemical engineering.184 Without the connective tissue that promotes information flows between the chemical sector and application sectors, a large base of chemical engineers was insufficient. Britain, for instance, was relatively successful at training chemical engineers during the interwar period; however, the weak links between British educational institutions and industrial actors limited the dissemination of technical knowledge, and the concept of unit operations did not take hold in Britain to the degree that it did in America.185 Additionally, professional engineering associations in the United States, including the American Institute of Chemical Engineers, advanced standardization in the chemical industry—an initiative not imitated in Britain until a decade later.186 Unlike their American peers, it was not until after World War II that British chemical engineers saw themselves as “members of a professional group that shared a broad commonality cutting across the boundary lines of a large number of industries.”187

    Since substantial, economy-wide benefits from these chemical breakthroughs did not materialize until after the end of the IR-2 period, it is important to not overstate these points. Nonetheless, tracing which country best exploited chemical innovations through the interwar period can supplement the analysis of institutional complementarities for machine tools.188 Evidence from the coevolution of chemical technologies and skill formation institutions further illustrates how institutional adaptations suited to GPT trajectories differed from those suited to LS trajectories.

    Alternative Factors

    Like its predecessor, the IR-2 has been the subject of countless studies. Scholars have thoroughly investigated the decline of Britain and the rise of the United States and Germany, offering explanations ranging from immigration patterns and cultural and generational factors to natural resource endowments and labor relations.189 My aim is not to sort through all possible causes of British decline. Rather, I am tracing the mechanisms behind an established connection between the IR-2’s technological breakthroughs and an economic power transition. Thus, the contextual factors most likely to confound the GPT diffusion explanation are those that provide an alternative explanation of how significant technological changes translated into the United States supplanting Britain in economic leadership. Aside from the LS mechanism, which has been examined in detail, the influence of international security threats and varieties of capitalism deserve further examination.

    Threat-Based Explanations

    How did external threats influence technological leadership in the IR-2? Scholars have argued that US military investment, mobilized against the threat of a major war, was crucial to the development of many GPTs.190 US national armories’ subsidization of the production of small arms with interchangeable parts in the early nineteenth century was crucial, some studies argue, to the diffusion of the American system to other industries in the second half of the century.191

    Though firearms production provided an important experimental ground for mechanized production, military support was not necessary to the development of the American system of manufacturing. Questioning the necessity of government funding and subsidies for the spread of the American system, one study credits the development of interchangeable manufacture to four civilian industries: clock manufacturing, ax manufacturing, typewriter manufacturing, and watch manufacturing.192 In particular, the clock industry played a crucial role in diffusing mechanized production practices. More attuned to the dynamics of the civilian economy than the small arms manufacturers, clockmakers demonstrated that interchangeable manufacture could drastically increase sales and cut costs.193 In his definitive study of the history of American interchangeable parts manufacture, David Hounshell concludes that “the sewing machine and other industries of the second half of the 19th century that borrowed small arms production techniques owed more to the clock industry than to firearms.”194

    Military investment and government contracting did not provide long-term sources of demand for interchangeable manufacturing methods.195 Over the course of the IR-2, the small arms industry’s contribution to American manufacturing declined, totaling less than 0.3 percent of value added in American industry from 1850 to 1940.196 Thus, arguments centered on military investment neglect that the spread of the American system, not its initial incubation, is the focal point for understanding how the IR-2 catalyzed an economic power transition.197

    Another threat-based argument posits that countries that face more external threats than internal rivalries will achieve more technological success.198 In the IR-2 case, however, the United States was relatively isolated from external conflicts, while the United Kingdom and Germany faced many more threats (including each other).199 Moreover, the United States was threatened more by internal rivalries than by external enemies at the beginning of the IR-2, as it had just experienced a civil war.200 This argument therefore provides limited leverage in the IR-2 case.

    VoC Explanations

    What about the connection between America’s particular type of capitalism and its economic rise? Rooted in the varieties of capitalism (VoC) tradition, one alternative explanation posits that the United States was especially suited to embrace the radical innovations of the IR-2 because it exhibited the characteristics of a liberal market economy (LME). GPT diffusion theory and VoC-based explanations clash most directly on points about skill formation. The latter’s expectation that LMEs like the United States should excel at cultivating general skills could account for US leadership in GPT diffusion during this period.201

    The empirical evidence casts doubt on this explanation. In the early twentieth century, the leading nations had fairly similar levels of enrollment rates in elementary and post-elementary education. In 1910, enrollment rates for children ages five to nineteen in the United States was about 12 percent lower than Britain’s rate and only 3 percent higher than Germany’s.202 Years of education per worker increased by essentially the same proportion in both Britain (by a factor of 2.2) and the United States (by a factor of 2.3) between 1870 and 1929.203 In terms of higher education expenditures per capita, the two countries were essentially tied.204 Differences in the formation of general skills cannot account for the technological leadership of the United States in this period.205

    Moreover, the degree to which the United States fully embraced the characteristics of LMEs is disputed. In the view of studies that position the United States as a model for managerial capitalism in this period, US industrial governance structures enabled the rise of giant managerialist firms.206 This approach primarily sees America’s rise to industrial preeminence through the most visible actors in the American system of political economy: oligopolies in the automobile, steel, and electrical industries. There was significant diversity, however, in firm structure. Though many giant corporations did grow to take advantage of economies of scale and capital requirements in some mass-produced goods (such as automobiles), networks of medium-sized firms still dominated important segments of these new industries, such as the production of electric motors. One-third of the fifty largest manufacturing plants in the United States made custom and specialty goods.207 From 1899 to 1909, sectors that relied on batch and custom production, including machine tools, accounted for one-third of value added in manufacturing.208 No specific brand of capitalism fulfilled the demands of production across all domains.209

    Case-Specific Factors

    Another traditional explanation highlights American natural resource abundance as a key factor in transatlantic differences in mechanization. Compared to its European competitors, the benefits to the United States derived from its endowment of natural resources, such as plentiful supplies of timber, biased its manufacturing processes toward standardized production.210 “The American turn in the direction of mass production was natural,” claims one influential study of diverging approaches to mechanization in this period.211

    The extent to which natural resource endowments determined transatlantic differences in technological trajectories is disputed. Undeterred by natural resource differences, German engineers and industrialists frequently used American machine tools and imitated US production technology.212 In fact, around the early twentieth century, the level of machine intensity in German industries was catching up to the rate in American industries.213 The US-Germany gap in mechanization was more about Germany’s struggles in proficiently using advanced tools, not the choice of methods shaped by natural resource endowments. Crucially, skill formation and embedded knowledge about working with new machinery influenced the efficient utilization of American capital-intensive techniques.214

    Summary

    The standard version of the Second Industrial Revolution’s geopolitical aftershocks highlights Germany’s challenge to British power. Germany’s relative economic rise, according to this account, derived from its advantage in industrial research and scientific infrastructure, which enabled it to capture the gains from new industries such as electricity and chemicals. However, a range of indicators emphasize that it was the United States, not Germany, that surpassed Britain in productivity leadership during this period. The US industrial ascent in the IR-2 illustrates that dominating innovation in leading sectors is not the crucial mechanism in explaining the rise and fall of great powers. Britain’s decline was not a failure of innovation but of diffusion. As the renowned economist Sir William Arthur Lewis once mused, “Britain would have done well enough if she merely imitated German and American innovations.”215

    Indeed, the IR-2 case further supports the conclusion that capacity to widely diffuse GPTs is the key driver of long-term growth differentials. The US success in broadening its talent base in mechanical engineering proved critical for its relative advantage in adapting machine tools across a broad range of industries. Like all GPT trajectories, this process was a protracted one, but it aligns better with when the United States surpassed Britain in productive leadership than the more dramatic breakthroughs in chemicals, electricity, and automobiles. To further investigate how the LS mechanism breaks down and why the GPT mechanism holds up, we turn to the high-tech competition in the twentieth century between the United States and Japan—or what some label the Third Industrial Revolution.

    5 Japan’s Challenge in the Third Industrial Revolution

    IN THE TWO previous cases, an industrial revolution preceded a shift in global leadership. Britain established its economic dominance in the early nineteenth century, and the United States took the mantle in the late nineteenth century. During the last third of the twentieth century (1960–2000), the technological environment underwent a transformation akin to the First and Second Industrial Revolutions. A cluster of information technologies, connected to fundamental breakthroughs in computers and semiconductors, disrupted the foundations of many industries. The terms “Third Industrial Revolution” (IR-3) and “Information Age” came to refer to an epochal shift from industrial systems to information-based and computerized systems.1 Amid this upheaval, many thought Japan would follow in the footsteps of Britain and the United States to become the “Number One” technological power.2

    Of the countries racing to take advantage of the IR-3, Japan’s remarkable advances in electronics and information technology garnered a disproportionate share of the spotlight. “The more advanced economies, with Japan taking the lead in one industry after another, [were] restructuring their economies around the computer and other high tech industries of the third industrial revolution,” Gilpin wrote.3 In the late 1980s and early 1990s, a torrent of works bemoaned the loss of US technological leadership to Japan.4 In a best-selling book on US-Japan relations, Clyde Prestowitz, a former US trade negotiator, declared, “Japan has … become the undisputed world economic champion.”5

    Japan’s dominance in the IR-3’s leading sectors was perceived as a threat to international security and to US overall leadership of the international system.6 Former secretary of state Henry Kissinger and other prominent thinkers warned that Japan would convert its economic strength into threatening military power.7 Per a 1990 New York Times poll, 58 percent of Americans believed that Japan’s economic power was more of a threat to American security than the Soviet Union’s military power.8

    Historical precedents loomed over these worries. US policymakers feared that falling behind Japan in key technologies would, like relative declines experienced by previous leading powers, culminate in an economic power transition. Paul Kennedy and other historically minded thinkers likened the US position in the 1980s to Britain’s backwardness a century earlier: two industrial hegemons on the brink of losing their supremacy.9 Often alluding to the LS mechanism, these comparisons highlighted Japan’s lead in specific industries that were experiencing significant technological disruption, such as consumer electronics and semiconductors. As David Mowery and Nathan Rosenberg wrote in 1991, “Rapidly growing German domination of dyestuffs helped to propel that country into the position of the strongest continental industrial power. The parallels to the Japanese strategy in electronics in recent decades are striking.”10

    Many voices called for the United States to mimic Japan’s keiretsu system of industrial organization and proactive industrial policy, which they viewed as crucial to the rising power’s success with leading sectors.11 Kennedy’s The Rise and Fall of the Great Powers attributed Japan’s surge in global market shares of high-tech industries to R&D investments and the organizing role of the Ministry of International Trade and Industry (MITI).12 These claims about the basis of Japan’s leadership in the information revolution relied on LS product cycles as the filter for the most important institutional factors.

    The feared economic power transition, however, never occurred. To be sure, Japanese firms did take dominant positions in key segments of high-growth industries like semiconductors and consumer electronics. Additionally, the Japanese economy did grow at a remarkable pace, averaging an annual 2.4 percent increase in total factor productivity (TFP) between 1983 and 1991. However, Japan’s TFP growth stalled at an average of 0.2 percent per year in the 1990s—a period known as its “lost decade.” By 2002, the per capita GDP gap between Japan and the United States was larger than it had been in 1980.13 Becoming the world’s leading producer in high-tech industries did not catalyze Japan’s overtaking of the United States as the leading economy.

    The IR-3 case is particularly damaging for LS-based explanations. Japan took advantage of the IR-3’s opportunities by cornering the market in new, technologically progressive industries, fulfilling the conditions posited by the LS mechanism for Japan to become the foremost economic power. Yet, as the case study evidence will reveal, an economic power transition did not occur, even though all these conditions were present. The Japanese challenge to American technological leadership in the last third of the twentieth century therefore primarily functions as a deviant, or falsifying, case for the LS mechanism.14

    By contrast, the IR-3 case does not undermine the GPT mechanism. Since Japan did not lead the United States in the diffusion of general-purpose information technologies, the conditions for an economic power transition under the GPT mechanism were absent in the IR-3. Since there could be many reasons why an economic power transition does not occur, the absence of a mechanism in a negative case provides limited leverage for explaining how technology-driven economic power transitions occur. Still, the IR-3 case evidence will show that LS theory expects an outcome that does not occur—a US-Japan economic power transition—in part because it fails to account for the relative success of the United States in GPT diffusion. This advantage stemmed from its superior ability to cultivate the computer engineering talent necessary to advance computerization. In that regard, this deviant case can help form better mechanism-based explanations.15

    Surprisingly, few scholars have revisited claims that Japan’s leadership in leading sectors meant that it was on its way to economic preeminence.16 Decades of hindsight bring not just perspective but also more sources to pore over. Revised estimates and the greater availability of data help paint a more granular picture of how the US-Japan productivity gap evolved in this period. To narrow down the crucial technological trajectories, I pieced together histories of semiconductors and other key technologies, comparative histories of technological development in the United States and Japan, and general economic histories of the IR-3. In addition, I leveraged bibliometric techniques to estimate the number of universities in both countries that could supply a baseline quality of software engineering education. Surveys on computer utilization by Japanese agencies, presentations on computer science education by Japanese and American analysts at international meetings, documents from the Edward A. Feigenbaum Papers collection, and back issues of Nikkei Computer (日経コンピュータ) at the Stanford University East Asia Library all helped flesh out the state of GPT skill infrastructure in the IR-3.

    The evaluation of the GPT and LS mechanisms against historical evidence from the IR-3 proceeds as follows. The chapter first makes clear that a US-Japan economic power transition did not take place. Subsequently, it reviews and organizes the technological breakthroughs of the IR-3 into candidate leading sectors and GPTs. It then examines whether all the components of the GPT or LS mechanism were present. Since the outcome did not occur in this case, it is important to trace where the mechanisms break down. All the aspects of the LS mechanism were present in the IR-3, but the GPT mechanism was not operational because Japan fell behind the United States in diffusing information technologies across a broad range of sectors. Based on this evidence, the next section explains why institutional explanations rooted in LS trajectories are unconvincing. Before turning to alternative factors and explanations, the chapter analyzes whether GPT skill infrastructure was a factor in sustained US technological leadership.

    A Power Transition Unfulfilled: Japan’s Rise Stagnates

    In a 1983 article for Parade, the Pulitzer Prize–winning journalist David Halberstam described Japan’s industrial ascent as America’s “most difficult challenge for the rest of the century” and “a more intense competition than the previous political-military competition with the Soviet Union.”17 By the end of the century, however, the possibility of Japan displacing the United States as the technological hegemon was barely considered, let alone feared.18 The economic power transition that accompanied the IR-1 and IR-2 did not materialize in this case. Indeed, most indicators presented a clear trend: Japan’s economy catches up in the 1980s, stagnates in the 1990s, and ultimately fails to overtake the US economy in productivity leadership.

    GDP PER-CAPITA INDICATORS

    During the three decades after 1960, Japan’s economy experienced remarkable growth, reaching a GDP per capita in 1990 that was 81 percent of the US mark that year. In the following ten years, known as Japan’s “lost decade,” Japan’s growth in GDP per capita stalled. By 2007, Japan’s GDP per capita had dropped back down to 73 percent of that of the United States (figure 5.1).

    INDUSTRIALIZATION INDICATORS

    Comparative industrialization statistics tell a similar story. In terms of global manufacturing output, Japan gained on the United States through the 1970s and 1980s and nearly matched the United States, at 20 percent of global manufacturing output, in the early 1990s. Japan’s share of global manufacturing output subsequently declined to around 10 percent in 2010, while the US share increased in the 1990s and held at 20 percent until 2010.19 In manufacturing industries, Japan’s labor productivity growth from 1995 to 2004 averaged only 3.3 percent, whereas the United States averaged 6.1 percent in the same metric.20

    FIGURE 5.1. Japan’s Catch-up to the United States in GDP per Capita Stalls in the 1990s. Note: Real GDP per capita in 2011$ prices. Source: Maddison Project Database, version 2020 (Bolt and van Zanden 2020).

    PRODUCTIVITY INDICATORS

    Productivity statistics also reveal a general trend of convergence without overtaking. From a total factor productivity of just half that of the United States in 1955, Japan’s TFP grew steadily. By 1991, the productivity gap between the United States and Japan was only 5 percent. As was the case with the GDP per capita and industrialization figures, Japan’s productivity growth then slowed, and the gap between the United States and Japan widened during the 1990s (figure 5.2). Throughout this decade, Japan averaged just 0.2 percent annual TFP growth.21 By 2009, Japan’s TFP dropped to only 83 percent of the US figure. The US-Japan labor productivity gap followed a similar course.22

    FIGURE 5.2. Japan’s Catch-up to the United States in Productivity Stalls in the 1990s. Source: Jorgenson, Nomura, and Samuels 2018, 18.

    Key Technological Changes in the IR-3

    Parsing through the different trajectories of technological change is a necessary first step to determine whether the LS and GPT mechanisms were operative in this period. This task is complicated by the tremendous technological changes that emerged in the IR-3, such as the first microprocessor (1971), the production of recombinant DNA (1972), the VHS format for video recording (1976), and the first personal computer (1981). Guided by past scholars’ efforts to map the key nodes of the information revolution as well as analytic measures for leading sectors and GPTs, this section takes stock of key technological drivers that affected the US-Japan economic power balance.

    Candidate Leading Sectors

    Amid a shifting technological landscape, the most likely sources of LS trajectories were information and communications technologies (ICTs). Certainly, scholars have highlighted technological developments in a wide range of industries as possible leading sectors, including lasers and robotics.23 Nonetheless, Japan’s success in the computer, consumer electronics, and semiconductor industries was most relevant for its prospects of overtaking the United States as the foremost economic power. In each of these three leading sectors, Japan dominated the production of key components.24

    All three relatively new industries achieved extraordinary growth off the back of technological breakthroughs, fulfilling the established criteria for leading sectors. In the US economy during the 1980s, computer and data-processing services ranked as the fastest-growing industries in terms of jobs added.25 After Japan’s MITI identified semiconductors and computers as strategic industries in 1971, both industries experienced extremely high growth rates in the next two decades.26 The US electronics industry also experienced a remarkable surge during the late twentieth century, growing thirty times faster than other manufacturing industries by some estimates.27 These trends in computers and electronics held across advanced industrialized countries.28

    Candidate GPTs

    Given that the IR-3 is often known as the “information revolution,” clusters of ICT innovations naturally serve as the most likely sources of GPT trajectories. Efforts to map this era’s GPTs specifically highlight computers,29 semiconductors,30 and the internet.31 Each of these technological domains exhibited great scope for improvement and complementarities with other technologies.

    Because advances in computers, semiconductors, and the internet were all closely connected, I group technological developments in these three domains under “computerization,” the process in which computers take over tasks such as the storage and management of information. This is consistent with other studies that identify the general category of ICT as the GPT operative in this period.32 The growing prevalence of software-intensive systems enabled computers to become more general-purpose. Computerization also benefited from advances in both semiconductors, which reduced costs for investments in IT equipment, and the internet, which connected computers in efficient networks.33

    Sources of LS and GPT Trajectories

    In sum, the IR-3’s candidate leading sectors and GPTs all revolved around ICTs (table 5.1). Other technical advances in lasers, new sources of energy, and biotechnology also drew attention as possible sources of LS and GPT trajectories. I do not trace developments in these technologies because their potential was largely unrealized, at least within the context of US-Japan economic competition during the IR-3.

    Though candidate leading sectors and GPTs converge on ICTs, they diverge on the key trajectories. The GPT perspective emphasizes the process by which firms transfer tasks and activities to computers. In contrast, LS accounts spotlight the growth of key industry verticals. For example, the consumer electronics industry fits the mold of previous candidate leading sectors like automobiles and cotton textiles, which were large and fast-growing but limited in their linkages to other industries. Taking stock of candidate leading sectors and GPTs merely functions as a preliminary filter. The rest of the chapter will further flesh out the differences between the LS- and GPT-based explanations of how these technologies affected the US-Japan economic rivalry.

    table 5.1 Key Sources of Technological Trajectories in the IR-3

    Candidate Leading SectorsCandidate GPTs
    Computer industryComputerization
    Consumer electronics industry
    Semiconductor industry

    GPT vs. LS Mechanisms: The (Non) Spread of ICTs across Japan’s Economy

    In both the IR-1 and IR-2 cases, a technological revolution sparked a shift in global economic leadership. The case analyses aimed to determine whether the historical evidence fit better with observable implications derived from the GPT or LS mechanism. Revolutionary technological breakthroughs also occurred in the IR-3, but an economic power transition never occurred. Thus, if the case study reveals that Japan dominated innovation in the computer, consumer electronics, and semiconductor industries, then this would provide disconfirming evidence against the LS mechanism. Likewise, if the historical evidence shows that Japan led the way in computerization during this period, this would undermine GPT diffusion theory.

    LS Mechanism Present: Japan Dominates the Production of Key ICTs

    A bevy of evidence establishes that the LS mechanism was operative during the IR-3. From the mid-twentieth century through the 1980s, Japan captured a growing global market in new industries tied to major technological discoveries in semiconductors, consumer electronics, and computers. In dynamic random-access memory (DRAM) chips, one of the highest-volume verticals in the semiconductor industry, Japanese firms controlled 76 percent of the global market share.34 By one US federal interagency working group estimate, from 1980 to 1987 the United States lost the lead to Japan in more than 75 percent of critical semiconductor technologies.35

    Japanese industry also gained competitive advantages in consumer electronics. From 1984 to 1990, US firms lost global market share in thirty-five of thirty-seven electronics categories as Japanese firms took over the production of many electronic products.36 Japan occupied dominant shares of global production of color televisions and DVDs.37 It was also the first economy to commercialize high-definition television (HDTV) systems, a highly touted part of the consumer electronics market.38

    A similar trend held in computers, especially in computer hardware components like flat panel displays.39 The US trade balance in computers with Japan turned from a surplus in 1980 into a $6 billion deficit by 1988.40According to the Yearbook of World Electronics Data, in 1990 Japan’s share of global computer production eclipsed the share held by the United States, which had previously led the world.41

    Comparisons of LS growth rates also indicate that Japan was poised to overtake the United States as the economic leader. In an International Organization article published in 1990, Thompson posited that average annual growth rates in leading sectors across major economies heralded shifts in economic leadership. Over the nineteenth century, Britain’s growth rate in leading sectors peaked in the 1830s before flattening between 1860 and 1890, a period when the United States and Germany outstripped Britain in LS growth rates.42 Crucially, Thompson’s data showed that Japan outpaced the United States in growth rates within leading sectors from 1960 to 1990.43 Linking these historical trends, Thompson identified Japan as America’s main competitor for “systemic leadership.”44

    Comprehensive assessments of Japan’s relative industrial strength support this account of LS growth rates. US government, academic, and industry entities issued a plethora of reports warning of Japan’s growing global market share and exports in key technologies. One review of six such reports, all published between 1987 and 1991, found a growing consensus that US capabilities in many of these technologies were declining relative to Japan’s.45 A 1990 US Department of Commerce report on trends in twelve emerging technologies, including supercomputers, advanced semiconductor devices, and digital imaging technology, projected that the United States would lag behind Japan in most of these technologies before 2000.46 The 1989 MIT Commission on Industrial Productivity’s Made in America: Regaining the Productive Edge serves as a particularly useful barometer of Japan’s position in leading sectors.47 Made in America argued that the United States was losing out to Japan in eight manufacturing sectors, including consumer electronics, semiconductors, and computers. As business historian Richard Langlois summarizes, “By the mid-1980s, by most accounts, America had ‘lost’ consumer electronics and was in imminent danger of losing semiconductors and computers.”48

    Some argued that Japan’s advantage in these leading sectors was rooted in certain institutional arrangements. Observers regularly pointed to Japan’s keiretsu system, which was structured around large, integrated business groups, as the key institutional factor in its success in high-tech industries. The MIT Commission’s Made in America report, for instance, questioned whether the US system of industrial organization could match up against “much stronger and better organized Japanese competition.”49 This aligned with a common narrative in the mid-1980s that “American firms should become more like Japanese firms.”50

    Others pointed to Japan’s industrial policy, coordinated by MITI, as the key institutional competency that explained Japan’s success in leading sectors. Academics and policymakers pushed for the United States to imitate Japan’s industrial policy approach, which they perceived as effective because of MITI’s ability to strategically coordinate R&D investments in key technologies.51 For instance, scholars regarded the “Fifth Generation Project,” a national initiative launched by MITI in 1982, as a stepping-stone to Japan’s building of the world’s most advanced computers.52 The American aversion to industrial policy and a decentralized economic policymaking apparatus, by comparison, was alleged to be detrimental to innovation in the IR-3’s new technologies.

    By the turn of the millennium, such arguments were no longer being put forward. Despite capturing key LS industries and rapidly catching up to the United States in the 1980s, Japan did not ultimately overtake the United States as the lead economy. Contrary to the expected outcome of the LS mechanism, Japan’s control of critical sectors in semiconductors and consumer electronics did not translate into strong, sustained economic growth. This outcome challenges the LS mechanism’s validity in the IR-3 case.

    An Absent GPT Mechanism: The United States Leads Japan in ICT Diffusion

    Does evidence from the IR-3 also discredit the GPT mechanism? If the components of the GPT mechanism, like the LS mechanism, were present during this period, this would weaken the explanatory power of GPT diffusion theory. However, in contrast to its success in key leading sectors, Japan lagged in adopting computerized technologies. Thus, GPT diffusion theory would not expect Japan to have overtaken the United States in the IR-3.

    To account for sustained US economic leadership in the IR-3, this section traces the developments of the IR-3 in the United States and Japan across the three dimensions that differentiate GPT from LS trajectories. First, relative to the LS mechanism, the impact timeframes of the IR-3’s technological breakthroughs are more elongated. Developments in ICTs did not spread to a wide range of economic applications until the 1990s. Second, though Japan excelled in the production of computers and electronics, it fell behind in the general pace of computerization across the economy. Lastly, Japan’s advantages were concentrated in a narrow range of ICT-producing industries, whereas the United States benefited from broad-based productivity growth.

    IMPACT TIMEFRAME

    The advance of computerization, like past GPT trajectories, demanded a prolonged period of organizational adaptation and complementary innovations. It is reasonable to date the computerization GPT’s emergence as the year 1971—the year when Intel introduced the microprocessor, which greatly expanded the functionalities of computers.53 It was also the year when the share of information technology equipment and software reached 1 percent in the net capital stocks of the median sector in the US economy.54 Before then, during the 1960s, mainframe computers powered by integrated circuits serviced only a limited range of commercial purposes, such as producing bank statements and managing airline reservations. With the internet’s rise in the 1990s, new information and communication networks further spread computerization to different business models, such as e-commerce.55 Alongside this stream of complementary technical advances, firms needed time to build up their computer capital stock and reorganize their business processes to match the needs of information technology.56

    Computers traveled a gradual and slow road to widespread use. By the late 1980s, many observers bemoaned the computer revolution’s failure to induce a surge of productivity growth. In 1987, the renowned economist Robert Solow distilled this “productivity paradox” in a famous quip: “We see the computers everywhere but in the productivity statistics.”57 A decade later, however, the growing adoption of information technology triggered a remarkable surge in US productivity growth.58 It took some time, but the American economy did eventually see the computers in the productivity statistics.

    The landscape of US-Japan technology competition looks very different when accounting for the elongated lag from computerization’s arrival to its widespread diffusion. Japan’s control over key segments of ICT production in the 1970s and 1980s did not correspond to an advantage in GPT diffusion. A more patient outlook illuminates that the delayed impact of computerization aligns with when the United States extended its productivity lead over Japan. After 1995, while Japan’s economic rise stalled, labor and total factor productivity grew rapidly for a decade in the United States. The difference was that the United States benefited greatly from an ICT-driven productivity acceleration.59

    FIGURE 5.3. The US-Japan Computerization Gap Widens in the 1990s. Source: Milner and Solstad 2021; Comin 2010, 381.

    PHASE OF RELATIVE ADVANTAGE

    If the GPT mechanism was operative for Japan’s rise in the IR-3, Japan should have led the United States in computerization. Though Japan continued to contest US leadership in the production of certain computer architectures and devices, it failed to keep up with the United States in the adoption of computers across industries. As figure 5.3 reveals, the gap between the United States and Japan in computerization widened in the 1990s. In fact, South Korea, which lagged behind Japan in generating new innovations in computer systems, surpassed Japan in its computer usage rate during the 1990s. Taken together, these indicators suggest that Japan’s problem was with GPT diffusion, not innovation.

    The pathway by which ICTs drove the US-Japan productivity gap is particularly revealing. In sectors that produced ICTs, Japan’s TFP acceleration was similar to the US trajectory; however, in sectors that intensively used IT, Japan’s TFP growth lagged far behind that of its rival.60 In particular, US ICT-using service industries adapted better to computerization. In terms of labor productivity growth in these industries, the United States experienced the strongest improvement out of all OECD countries from the first half of the 1990s to the second half of the decade.61 The contribution of ICT-using services to Japan’s labor productivity growth, by contrast, declined from the first half to the second half of the decade.62

    Japan eventually adopted the GPT trajectory associated with ICT. Like all advanced economies at the frontier, Japan could draw from the same technology pool as America. Using a growth accounting framework that accounts for cyclical factors, Takuji Fueki and Takuji Kawamoto trace Japan’s post-2000 resurgence in TFP growth to the extension of the ICT revolution to a broader range of IT-using sectors.63 By then, however, Japan was at least five years behind the United States in taking advantage of computerization.

    BREADTH OF GROWTH

    Alongside the dispersion of ICTs throughout the US economy, the sources of productivity growth also spread out. In the United States, spillovers from ICT advances, especially in services, contributed to economy-wide TFP growth. Industry-level patterns of TFP growth reveal that US productivity growth became noticeably more broad-based after 1995, a trend that accelerated further after 2000.64

    In contrast, Japan’s advantages in the IR-3 were concentrated in a narrow range of sectors. After 1995, Japanese productivity growth remained localized, only transitioning to a more broad-based pattern after 2000.65 Michael Porter’s exhaustive account of national competitiveness across leading economies describes Japan as a “study in contrasts,” with some of the most internationally competitive industries found side by side with some of the most uncompetitive.66 The hype over Japan’s success in leading sectors induced some analysts to generalize from a few exceptional industrial sectors while overlooking developments in struggling sectors.67

    LS Mechanisms and “Wintelism”

    Some international political economy scholars divide trends in US competitiveness into a phase of relative decline in the leading sectors of the 1980s (consumer electronics, computer hardware, and parts of the semiconductor industry) and a period of resurgence in the new leading sector of the 1990s (software electronics).68 This explanation for why Japan’s LS advantage did not convert into an economic power transition could conceivably restore credibility to the LS mechanism. However, even this generous interpretation fails to capture the dynamics of the IR-3.69

    Consider one prominent line of LS-based thinking that emphasizes US advantages in adapting to “Wintelism,” a type of industrial structure best suited for new advances in software electronics. Wintelism, a portmanteau of “Windows” and “Intel,” refers to the transformation of the computer industry from a vertically integrated oligopoly into a horizontally segmented structure dominated by components providers with controlling architectural standards, such as Intel and Microsoft.70 Compared to Japan, the US institutional environment was more supportive of horizontal, specialized value-chains in software electronics. It is put forward that Japan’s inability to adapt to the Wintelist industrial paradigm explains why it was unable to overtake the United States as the leading economy.71

    The Wintelism argument falls prey to general issues with the LS mechanism.72 Like LS accounts of Japan’s advantage in semiconductors and consumer electronics in the 1980s, the Wintelism argument still places too much value on ICT-producing industries. Capturing profit shares in the global software electronics industry is not the same as translating new advances in software electronics into economy-wide growth.73 The pathway from new technologies to overall productivity growth involves much more than just the success of companies like Microsoft and Intel.

    Indeed, as a GPT diffuses more widely, large monopolists may hinder coordination between the GPT and application sectors. Both Microsoft and Intel, for instance, often restricted sharing information about their technology roadmaps, thereby hindering complementary innovations and adoption of microelectronics in applications sectors such as automobiles. In fact, regulatory and technological forces were necessary to limit the influence of dominant firms and encourage the development of complementary technologies, which were crucial to widening the GPT trajectory of computerization.74 It is conceivable that the United States could have achieved a greater rate of computerization if its computer industry had not been dominated by two firms that held key architectural standards.

    Overall, hindsight is not kind to LS-based accounts of Japan’s institutional advantages in the IR-3. While matching institutional competencies to particularly significant technological trajectories is a sound approach, the LS trajectory fails to capture how technological changes opened opportunities for an economic power transition. Japan’s industrial structure and sectoral targeting policies reaped economic gains that were temporary and limited to specific industries.75 To understand why the United States gained lasting and broad-based advantages from computerization, a different set of institutional complementarities must be explored.

    Institutional Complementarities: GPT Skill Infrastructure in the IR-3

    In line with GPT diffusion theory, institutional adaptations that widened the base of computer engineering skills and knowledge proved crucial to the enduring technological leadership of the United States in the IR-3.76 Computerization required not just innovators who created new software architectures but also programmers who undertook more routine software engineering tasks. It was the US ability to tap into a more expansive pool of the latter that fueled a more intensive pace of computerization than in Japan.

    Widening the Base of Computer Engineers

    GPTs generate an imbalance between the possibility of sweeping changes across many domains and the constraints of existing skills. Historically, engineering disciplines have developed procedures for adapting new GPT-linked knowledge across localized applications and expanded access to such knowledge to a broader set of individuals. Similarly, the key element of the American GPT skill infrastructure in the IR-3 was the development of a computer science discipline—the latest in a line of engineering disciplines that have emerged in the wake of GPTs.77

    US education effectively adapted to changes in the computerization trajectory. The recognition of computer science as an independent discipline, as evidenced by the early and rapid growth of computer science departments in the United States, helped systematize the knowledge necessary for the spread of computerization.78 Led by top universities and the Association of Computing Machinery (ACM), US institutions piloted new training programs in computer science. In 1968, the ACM published an influential and forward-looking curriculum that helped colleges organize their computing education.79 These adaptations converted the practical experience from developers of new computer and software breakthroughs into general, accessible knowledge.80

    The development of this GPT skill infrastructure met significant hurdles. In the 1970s, the US computer science discipline struggled to meet demands for software engineering education in the midst of conflicts over the right balance between theory-oriented learning and hands-on programming work.81 Reacting to this situation, the ACM’s 1978 curriculum revision directed computer science toward application-based work, stating that programming exercises “provide a philosophy of discipline which pervades all of the course work.”82 Industry pressure and the US Department of Defense’s Software Engineering Institute, a partnership established with Carnegie Mellon University in 1984, expanded the number of software engineering specializations at universities.83 Teaching capacity was another inhibiting factor. Computer science departments had to limit course enrollments because they could not fill the faculty positions to meet exploding student demand, resulting in a decline in computer science enrollments in the mid-1980s.84

    Though the process was not seamless, overall trends reflect the US success in widening the pool of engineering skills and knowledge for advancing computerization. From 1966 to 1996, the number of undergraduate computer science degrees awarded annually in the United States grew from 89 to about 24,500.85 In 1986, at its peak during this period, computer science accounted for 12.5 percent of all science and engineering degrees awarded in the United States.86 According to benchmarking efforts by the Working Group for Software Engineering Education and Training, US institutions accounted for about one-third of the world’s bachelor’s degree programs in software engineering in 2003.87 Throughout this period, the United States also benefited from a system open to tapping foreign software engineering talent.88

    The US Comparative Advantage over Japan in GPT Skill Infrastructure

    Did GPT skill infrastructure factor decisively in Japan’s inability to keep pace with the United States in the diffusion of ICTs? Varying data reporting conventions, especially the fact that Japanese universities subsumed computer science under broader engineering fields, make it difficult to precisely quantify the US-Japan gap in software engineering skills.89 One narrative that gained momentum in the late 1980s accredited Japan’s success in high-tech manufacturing industries to its quantitative advantage in engineers. A National Science Foundation (NSF) report and two State of the Union addresses by President Ronald Reagan endorsed this belief.90 For example, the NSF’s 1997 special report on Japan’s scientific and technological capabilities declared, “By 1994, with roughly one-half the population, Japan produced more engineering and computer science degrees at the undergraduate level than the United States.”91 Such statements blended computer science degrees with all categories of engineering education.

    Computer science–specific data reveal the US edge in ICT human resources. According to data from Japan’s Information Technology Promotion Agency, Japan awarded about 16,300 computer science and mathematics bachelor’s degrees in 2009, while the United States awarded 63,300 of these types of degrees that same year.92 One survey by the Japanese Information Technology Services Industry Association found that only 3.6 percent of college graduates who entered Japan’s information service industry in April 1990 received their degree from a computer science department.93 By counting immigrants entering computer-related professions and total university graduates in ICT software and hardware fields, one study estimated annual inflows into the US and Japanese ICT labor pools. In 1995, these inflows into the US ICT labor pool outpaced those in Japan by 68 percent. By 2001, this gap between the two countries’ annual inflows of ICT talent had reached almost 300 percent.94 Therefore, in the years when the US advantage in ICT diffusion was most pertinent, the skill gap between the United States and Japan in computer and software engineering talent grew even wider.95

    Moreover, a computer science degree in Japan did not provide the same training as one in America. First, Japanese universities were slow to adapt to emerging trends in computer science. In both 1997 and 2007, the Information Processing Society of Japan modeled its computing curriculum revisions on American efforts that had been made six years earlier.96 The University of Tokyo, Japan’s leading university, did not establish a separate department of computer science until 1991, which was twenty-six years later than Stanford.97 Overly centralized governance of universities also inhibited the development of computer science as an independent discipline in Japan.98 As Jeffrey Hart and Sangbae Kim concluded in 2002, “The organizational and disciplinary flexibility of US universities in computer science has not been matched in any of the competing economies.”99

    Software engineering presented a particular challenge for Japan. In 1988, the Japanese-language industry journal Nikkei Computer surveyed six thousand Japanese firms that used office computers. Situated outside the computer industry, these firms were involved in a broad range of fields, including materials manufacturing, finance, services, government, and education. More than 80 percent of the responding companies disclosed shortages of software programmers and designers.100 On average, outside firms provided one-quarter of their information technology personnel, and their reliance on outsourcing was magnified for programmers, system designers, and application managers.101 A nonprofit foundation for ICT development in Japan reported similar barriers to computer utilization in 1991. The survey found that companies relied heavily on computer personnel, especially software engineers, dispatched temporarily from other organizations.102 Small and medium-sized software departments, which could not afford to invest in on-the-job training, were especially disadvantaged by the lack of formal software engineering education in Japan.103

    Bibliometric techniques can help substantiate the gap between the United States and Japan in skill infrastructure for software engineering. I analyzed around seven thousand publications from 1995 in the Web of Science Core Collection’s “Computer Science, Software Engineering” category.104 To gauge the breadth of institutional training in software engineering, I counted the number of Japanese and American universities that employed at least one researcher represented in this dataset. According to my estimates, the United States boasted 1.59 universities per million people that met this baseline quality of software engineering education, while Japan only had 1.17 universities per million people. This amounts to a gap of around 40 percent.

    Lastly, weak industry-university linkages in computer science hampered Japan’s development of GPT skill infrastructure. Imposing centralized control over universities, the Japanese Ministry of Education, Science, and Culture (MESC) inhibited cooperation between new departments of information science and the corporate labs where much of the computing talent was concentrated.105 Japanese researchers regularly complained about the size of MESC grants, as well as the ministry’s restrictions on their ability to seek alternative funding sources. Japan’s overall budget level for university facilities in 1992 remained the same as it was in 1975. Additional government funds went instead to independent centers of excellence, diverting resources away from efforts to broaden the pool of training institutions in software engineering.106

    Alternative Factors

    How do alternative explanations perform in this case? A range of factors beyond GPT skill infrastructure could have influenced diverging rates of ICT diffusion in the United States and Japan. I focus on the role of external threats and varieties of capitalism because they present alternative mechanisms for how states adapted differently to the technological revolution that occurred in the IR-3.

    Threat-Based Explanations

    Threat-based theories struggle to account for differences in the US and Japanese technological performance in this period. A “cult of vulnerability” permeated Japan’s leaders over this period as they coped with tensions in East Asia and the oil crises of the 1970s.107 Likewise, the growth of the US “national security state,” fueled by the dangers of the Cold War, functioned as “the secret to American innovation.”108 Under his creative insecurity framework, Taylor holds up both Japan and the United States as exemplars of the IR-3 period, reasoning that they both partly owed their technological success to the galvanizing effects of a threatening international environment.109 General threat-based explanations therefore cannot explain differences in technological outcomes between the United States and Japan, namely, why the United States was more successful in ICTs than Japan.

    A related argument points to the significance of US military procurement for computerization. As was the case with its influence on the American system of manufacturing in the IR-2, the US military provided the demand for initial investments in computers and semiconductors. In the 1940s and 1950s the US military was a key patron behind computing breakthroughs.110 Assured by large military procurements, innovative firms undertook risky, fundamental research that produced spillovers to many other industries. For instance, the first all-purpose electronic digital computer, the University of Pennsylvania’s electronic numerical integrator and calculator (ENIAC), was developed during World War II. The ENIAC was supported by funding from the Army Ballistics Research Laboratory, and the first program run on the computer was a simulation of the ignition of the hydrogen bomb.111

    In place of the military, could other entities have served as a large demand source for ICTs? Commercial entities like Bell Labs and IBM also developed fundamental breakthroughs in ICTs. According to Timothy Bresnahan and Manuel Trajtenberg, it was “only a coincidence” that US government demand played such a pivotal role in semiconductor development.112 Others argue that while commercial advances in semiconductors and computers would likely still have occurred absent the impetus of military funding, they would have emerged after substantial delay.113

    Resolving this debate depends on one’s view of the key stage in computerization. Those who emphasize the importance of military procurement often hold up the importance of first-mover advantages in the American computer industry.114 However, decades after the military helped develop the first computers and transistors, Japan had cornered the market in many related industries. The significance of military procurement is diminished when a GPT’s dissemination, as opposed to its emergence, is taken as the starting point. By 1960, the start of the IR-3 period, ICT development in the United States was already much less reliant on military support. In 1955, the demand for Bell’s transistors from two large telephone networks alone was nearly ten times more than from all military projects.115 In fact, as the commercial sector increasingly drove momentum in ICTs, military involvement arguably hindered continued advances in the commercial sector, as there was tension between the different technical cultures.116

    On balance, the most significant aspect of the military’s involvement in the advance of computerization in the United States was its role in building up GPT skill infrastructure. The US military played a key role in cultivating the computer science discipline in its early years. Beginning in the 1960s, defense agencies supported academic research in computer science, such as the aforementioned Software Engineering Institute, which created centers of excellence and broadened the base of computer science education.117 From 1977 through the mid-1980s, defense funding supported more than half of academic computer science R&D.118 At the same time, military investment in computer science did not come without downsides. Defense funding was concentrated in elite research universities at the cutting edge of the field, such as Carnegie Mellon and Stanford, whereas nondefense government funding supported computer science education across a wider range of US universities.119 On the effects of military computer science funding, Stanford professor Terry Winograd wrote, “It has resulted in a highly unequal situation in which a few schools have received almost all the resources. Although this may have led to more effective research in the short run, it has also been a factor contributing to the significant long-term shortage of trained computer researchers.”120

    VoC Explanations

    The varieties-of-capitalism (VoC) approach provides another possible explanation for why the US economy benefited more than Japan’s from the innovations of the IR-3.121 According to the VoC framework, firms in coordinated market economies (CMEs) provide industry-specific training that is more conducive to incremental innovation, whereas worker training in more general skills in liberal market economies (LMEs) proves more favorable for radical innovations. VoC scholars point to some evidence from the international pattern of innovation during the IR-3 that supports these expectations. Based on patent data from 1983–1984 and 1993–1994, Peter Hall and David Soskice find that Germany, a CME, specialized in technology classes characterized by incremental innovation, whereas the United States, an LME, specialized in domains characterized by radical innovation.122 Therefore, the VoC perspective expects that Japan, a CME like Germany, was unable to keep up with the United States in the IR-3 because high-tech sectors such as computer software and biotechnology demanded radical innovations.123

    This VoC-derived explanation provides an incomplete account of the IR-3 case. First, comprehensive empirical investigations into the innovative performance of CMEs and LMEs, especially the success of Japan as a radical innovator, undermine the explanatory power of VoC theory for the IR-3 period. Hall and Soskice’s initial analysis was based on four years of data on patent counts from only two countries, the United States and Germany. Taylor’s more extensive analysis, which covered thirty-six years (1963–1999) of patent counts and forward citations for all LME and CME countries, found that the predictions of VoC theory are not supported by the empirical data.124 In fact, contrary to the expectations of the VoC explanation, Japan was a leader in radical innovation, ranking second only to the United States in patent counts weighted by forward citations, which are a strong proxy for the radicalness of innovations.125

    Second, VoC theory does not make distinctions between different types of general skills, which varied in their significance to national success in the IR-3. Regarding general training in terms of foundational schooling, Japan was making substantial improvements in average years of schooling, enrollment ratio, and access to higher education.126 GPT diffusion theory specifies the key general skills as those that best suited the advance of computerization. Consistent with these expectations, the case study evidence points to the US-Japan gap in software engineering, a set of general skills that permeated sectoral boundaries, as the crucial factor in US success with widespread computerization.

    Case-Specific Factors

    Other factors unique to the IR-3 case deserve further consideration. Among these alternative explanations, one popular theory was that Japan’s kanji system (Chinese-based characters) contributed to its slow adoption of computers.127 Marshall Unger, a specialist in the Japanese writing system, highlighted difficulties with representing kanji in computerized formats, which resulted in higher costs for storing data and for word-processing functions.128 American computers had to handle only ninety-five printable characters, whereas Japanese personal computers needed to store six thousand Japanese characters.129 Not only did language differences increase the cost of Japanese computers, but they also prevented Japanese adopters from using off-the-shelf computers from the United States, as these did not support Japanese language functions.

    While particularities of the Japanese language may have initially hindered Japan’s computerization, it is important not to overstate the impact of this language barrier. In a review of this theory, another expert on computational linguistics argued that Unger overemphasized the additional overhead and speed costs associated with Japanese writing systems.130 Moreover, users and companies adapted over time. By the end of the 1980s, advances in processor technology allowed computers to support the greater word-processing demands of Japanese language systems.131 Therefore, during the critical years when the US-Japan computerization gap widened, the impact of the kanji system was less pronounced.

    Summary

    Through much of the late twentieth century, it was only a matter of time until Japan achieved economic preeminence—at least in the eyes of many analysts and scholars. Invoking the assumptions of the LS mechanism, they expected that this economic power transition would be brought about by Japan’s advantages in new sectors such as consumer electronics, semiconductor components, and computer hardware. Today, after Japan’s decade-long slowdown in productivity growth, there is virtually no discussion of it overtaking the United States as the leading economic power.

    Looking back, one might be tempted to conclude that history has vindicated past critics who labeled the claims of Japan’s imminent ascension to technological hegemony as “impressionistic,”132 as well as the retrospective analyses that called out such projections for being “premature.”133

    This chapter’s conclusions suggest a more nuanced interpretation. It is not that the prognoses of LS-based accounts were overeager or overly subjective. The real issue is that they were based on faulty assumptions about the pathway by which technological advances make economic power transitions possible. Indeed, the IR-3 case provides strong negative evidence against the LS mechanism, revealing that the expected outcome of an economic power transition failed to materialize in part because of the US advantage in GPT diffusion. The relative success of the United States in diffusing the trajectory of computerization across many ICT-using sectors, in line with GPT diffusion theory, was due to institutional adaptations to widen the skill base in computer engineering. In sum, the US advantage in GPT diffusion accounts for why the economic power transition expected by the LS account failed to transpire.

    6 A Statistical Analysis of Software Engineering Skill Infrastructure and Computerization

    I HAVE ARGUED that the shape of technological change is an overlooked dimension of the rise and fall of great powers. Most researchers point to various institutions to explain why some countries experience more scientific and technological progress than others. A central insight of this book is that the institutional factors most relevant for technological leadership depend on whether key technological trajectories map onto GPT diffusion or LS product cycles. GPT diffusion theory posits that great powers with better GPT skill infrastructure, defined as the ability to broaden the engineering skills and knowledge linked to a GPT, will more effectively adapt to technological revolutions.

    This chapter evaluates a key observable implication of GPT diffusion theory. The expectation is that where there is a wider pool of institutions that can train engineering talent related to a GPT, there will be more intensive rates of GPT diffusion. Using data on computerization and a novel approach to estimate the number of universities that provide quality software engineering education in a country, this chapter first tests the theorized connection between GPT skill infrastructure and GPT adoption on time-series cross-sectional data for 19 advanced and emerging economies from 1995 to 2020. I supplement this panel analysis with two additional tests: a duration model of the speed by which 76 countries achieved a certain computerization threshold, as well as a cross-sectional regression of data on 127 countries averaged over the 1995–2020 period. While the historical case studies verified this relationship among great powers, large-n quantitative analysis allows us to explore how GPT diffusion applies beyond the chosen case studies.

    To preview the findings, the evidence in this chapter backs GPT diffusion theory. Countries better positioned to widen their base of software engineering skills preside over higher rates of computer adoption. This relationship holds even when accounting for other factors that could affect computerization and different specifications of the independent and dependent variables. This chapter proceeds by operationalizing computerization rates and skill infrastructure in software engineering and then statistically testing the relationship between the two variables.

    Operationalizing the Independent Variable: GPT Skill Infrastructure in Software Engineering

    My key independent variable is skill infrastructure connected to computerization. The computer, a prototypical GPT, represents a natural choice for this type of inquiry, as engineering education data for many past GPTs is nonexistent for many countries.1 Plus, enough time has passed for us to see the effects of computerization. The statistical analysis focuses on the effects of skill formation institutions in software engineering, the computer science discipline tasked with training generalists in computing technology.2 Concretely, this chapter’s measure of GPT skill infrastructure captures the breadth of a country’s pool of software engineering skills and knowledge.

    Efforts to measure the GPT skill infrastructure in software engineering face three challenges. First, standardized measures of human capital in computer science across countries are not available. The UNESCO Institute for Statistics (UIS) collects internationally comparable data on technicians and researchers in various fields, but this dataset does not include information specific to computer science and has limited temporal coverage.3 Second, variation across countries in the format of computer science education undercuts some potential benchmarks, such as undergraduate enrollments in computer science programs. In some countries, computer science education is subsumed under a broad engineering category, not recognized as a separate degree course.4 Lastly, comparisons of computer science education struggle to account for the quality of such training. International rankings of universities for computer science garner media coverage, but they rely on subjective survey responses about reputation and largely concentrate on elite programs.5

    To the extent possible, my measure of GPT skill infrastructure addresses these obstacles. The goal is to operationalize engineering-oriented computer science education in a way that can be standardized across countries and accounts for differences in the format and quality of computer science education. My novel approach estimates the number of universities in each country that can be reasonably expected to provide a baseline quality of software engineering education. To establish this baseline in each country, I count the number of universities that employ at least one researcher who has published in a venue indexed by the Web of Science (WoS) Core Collection’s category on “Computer Science, Software Engineering.” In this category, the WoS citation database extends back to 1954 and allows for reliable cross-country comparisons based on institutional affiliations for published papers and conference proceedings.6 This approach is also insulated from distinctions related to whether certain degrees count as “computer science” programs or as “general engineering” courses. A particular university’s naming scheme has no bearing; as long as an institution retains at least one researcher who has published in the software engineering field, it counts in the GPT skill infrastructure measure.

    To gather data on the number of universities that contribute to software engineering skill formation around the world, I analyze 467,198 papers from the WoS Core Collection’s “Computer Science, Software Engineering” category published between the years 1995 and 2020. I use the Bibliometrix open-source software to derive institutional and country affiliations from this corpus.7 Specifically, I collect the university and country affiliations for the corresponding authors of all 467,198 publications. For each country, I count the number of distinct university affiliations. Hypothetically, if country X’s researchers were all concentrated at a single center of excellence, it could boast more researchers represented in the corpus than country Y but still score lower on my metric. For making comparisons across countries, the number of distinct university affiliations is a better indicator of a country’s access to a broad pool of training institutions for software engineering, which is central to GPT skill infrastructure.

    FIGURE 6.1. Software Engineering Skill Infrastructure by Country (2007). Source: Author’s calculations based on Web of Science Core Collection database.

    I estimate a country’s GPT skill infrastructure in a particular year by averaging its score on this metric in that year along with its scores in the two previous years. This step provides checks against the risk that developments specific to a particular year—a conference cancellation, for example—may muddle the measure. To illustrate country distributions on this metric, figure 6.1 depicts the number of universities that meet my baseline for software engineering skill formation in G20 countries for one of the middle years in the dataset.

    As with all bibliometric research, given the bias toward English-language papers in publication datasets, this method could undercount publications from non-English-speaking countries.8 Fortunately, this linguistic bias found in social science papers is less pronounced in engineering and mathematics papers, which comprise my dataset.9 Another factor that mitigates this bias is the very low standard for quality engineering education. Even if an institution’s researchers publish a substantial portion of their writings in a non-English language, as long as just one publication landed in the WoS “Computer Science, Software Engineering” category, that institution would still count in my definition of GPT skill infrastructure.

    I considered other measures of software engineering skills, but none were suitable for this type of analysis. Data on the number of full-time equivalent telecommunication employees, collected by the ITU, shed some light on the distribution of ICT skills in various economies. Concretely, this indicator captures the total number of people employed by telecommunication operators for the provision of fixed-telephone, mobile-cellular, and internet and data services.10 The rationale is that the number of employees in this critical ICT services industry represents the broader pool of software engineering talent in a country. However, since this measure is biased toward specialists who develop and install computer technologies and other ICTs, it overlooks many engineers who intensively use ICTs in their work, even if they are not involved in developing software and computing tools.11

    The time coverage of other measures was limited. For instance, the International Telecommunication Union (ITU) database on ICT skills like programming or coding in digital environments only goes back to 2019.12 In its Global Competitiveness Index, the World Economic Forum surveys business executives on the digital skills of their country’s population, but this data series starts in 2017.13

    Operationalizing the Dependent Variable: Computerization Rates

    Divergences among nations in scientific and technological capabilities have attracted a wide range of scholarship. While my focus is on the overall adoption rate of GPTs within economies, many scholars and government bodies have made significant contributions to quantifying national rates of innovation, often based on patenting activity, publications, and R&D investments.14 Cross-national data on the diffusion of specific technologies, by comparison, has been sparse.15 The Cross-country Historical Adoption of Technology (CHAT) dataset, which documents the intensity with which countries around the world use fifteen historically significant technologies, has helped address this deficiency.16 Other studies of cross-national technology adoption gaps quantify the diffusion of the internet and government uses of information technology.17

    My primary measure of computerization is the proportion of households with a computer. These data are sourced from the International Telecommunication Union’s World Telecommunication/ICT Indicators (WTI) database.18 In this dataset, access to a computer includes use of both desktop and portable computers but excludes devices with some computing ability, such as TV sets and mobile phones.19 By estimating the number of households in a country with access to a computer, this measure elucidates cross-country differences in the intensity of computerization. Though observations for some countries start in 1984, there is limited coverage before 1995, which serves as the initial year for the data collection effort detailed in this chapter.

    After the ITU was tasked with supplying indicators for access to ICTs around the world—a crucial target of the United Nations’ Millennium Development Goals (MDG) adopted in 2000—the agency started to track the number of personal computers by country.20 The ITU produces computer usage figures through two methods. First, when available, survey data from national and supranational statistical offices (such as Eurostat) are used. Though the MDG initiative has encouraged national statistical offices to help the ITU in monitoring ICT access, data coverage is still incomplete. If data on the number of households with a computer are unavailable for a country in one year, the ITU makes an estimate based on computer sales and import figures, adjusted to incorporate the average life of a computer as well as other related indicators, such as the number of computer users. For example, the computer usage indicator for Latvia comes from Eurostat in 2013, an ITU estimate in 2014, and the Central Statistical Bureau of Latvia in 2015.

    Despite its limitations, I prefer the ITU’s computerization indicator over alternative measures. Francesco Caselli and Wilbur John Coleman examine the determinants of computer adoption across a large sample of countries between 1970 and 1990. To estimate the intensive margin of diffusion, they use the value of a country’s computing equipment imports per worker as a proxy for its computer investment per worker.21 However, imports do not account for a country’s computer investments sourced from a domestic computer industry; this is an issue that becomes more salient in the later years of the dataset.22

    A more optimal indicator would estimate computer access and usage among businesses, since such economic activity is more likely to produce productivity improvements than household use. I examined a few alternatives. The CHAT dataset employs the number of personal computers per capita, which is one of three measures highlighted by the authors as conveying information on GPTs.23 However, this indicator still does not capture the degree of computerization in productive processes, as opposed to personal use, and has limited temporal coverage compared to the ITU’s household computerization measure.24 The OECD collects some data on ICT access and usage by businesses, but this effort did not start until 2005 and covers only OECD countries.25

    Fortunately, it stands to reason that a country’s household computer adoption can serve as a proxy for its computerization rates in business activities. In the appendix, I provide further support for this claim. Comparing the available data on household and business computerization for twenty-six countries between 2005 and 2014, I find a strong correlation between these two variables (correlation coefficient = 0.8).26

    Summary of Main Model Specifications

    To review, this chapter tests whether GPTs diffuse more intensively and quickly in countries that have institutional advantages in widening the pool of relevant engineering skills and knowledge. The first hypothesis reads as follows:

    H1: Countries with higher levels of GPT skill infrastructure in software engineering will sustain more intensive computerization rates.

    With country-years as the unit of analysis, I estimate time-series cross-sectional (TSCS) models of nineteen countries over twenty-six years. Quantitative analysis permits an expansion of scope beyond the great powers covered in the case studies. As outlined in the theory chapter, differences in GPT skill infrastructure are most relevant for economies that possess the absorptive capacity to assimilate new breakthroughs from the global technological frontier.27 Since less-developed economies are often still striving to build the baseline physical infrastructure and knowledge context to access the technological frontier, variation in GPT skill infrastructure among these countries is less salient. Thus, I limit the sample to nineteen G20 countries (the excluded member is the European Union), which represent most of the world’s major industrialized and emerging economies.

    Before constructing TSCS regressions, I first probe the relationship between GPT skill infrastructure in software engineering and computerization rates. Prior to the inclusion of any control variables, I plot the independent and dependent variable in aggregate to gauge whether the hypothesized effect of GPT skill infrastructure is plausible. The resulting bivariate plot suggests that there could be a strong, positive relationship between these two variables (figure 6.2).28

    The basic trend in figure 6.2 provides evidence for the contention that countries better equipped with computer science skill infrastructure experience higher rates of computerization. Although these preliminary results point to a strong relationship between these two variables, further tests are needed to rule out unseen confounders that could create spurious correlations and influence the strength of this relationship. TSCS regression analysis facilitates a deeper investigation of the relationship between GPT skill infrastructure and computerization.

    FIGURE 6.2. Software Engineering Skill Infrastructure and Computerization. Source: Author’s calculations, available at Harvard Dataverse: https://doi.org/10.7910/DVN/DV6FYS.

    To control for factors that could distort the relationship between computer-related skill infrastructure and computerization, I incorporate a number of control variables in the baseline model. Rich countries may be able to spend more on computer science education; additionally, they also more easily bear the expenses of adopting new technologies, as exemplified by large disparities between developed and developing countries in information technology investment levels.29 The inclusion of GDP per capita in the model accounts for economic development as a possible confounder. I use expenditure-side real GDP at current purchasing power parities (PPPs), which is best suited to comparing relative living standards across countries. A country’s total population, another control variable, addresses the possibility that larger countries may be more likely to benefit from network effects and economies of scale, which have been positively linked to technology adoption.30 I also include the polity score for regime type. Research suggests that democratic governments provide more favorable environments for technology diffusion, and studies have confirmed this connection in the specific context of internet technologies.31

    Finally, the baseline model includes two control variables that represent alternative theories of how technological changes differentially advantage advanced economies. First, I include military spending as a proportion of GDP in the regressions. The case studies have interrogated the influential view that military procurement is an essential stimulus for GPT adoption.32 By examining the relationship between military spending and computerization across a large sample of countries, the statistical analysis provides another test of this argument. Moreover, the varieties of capitalism (VoC) scholarship suggests that liberal market economies (LMEs) are especially suited to form the general skills that could aid GPT adoption across sectors. Therefore, the baseline model also controls for whether a country is designated as an LME according to the VoC typology.33

    In terms of model specification, I employ panel-corrected standard errors with a correction for autocorrelation, a typical method for analyzing TSCS data.34 Given the presence of both autocorrelation and heteroskedasticity, I estimate linear models on panel data structures using a two-step Prais-Winsten feasible generalized least squares procedure.35

    Time-Series Cross-Sectional Results

    Table 6.1 gives the results of the three initial models, which provide further support for the theoretical expectations.36 Model 1 incorporates controls that relate to economic size and level of development. Model 2 adds a control variable for regime type. Lastly, model 3 includes a variable that represents a prominent alternative theory for how technological breakthroughs can differentially advantage certain economies. This also functions as the baseline model. In all three models, the coefficient on the GPT skill infrastructure measure is positive and highly statistically significant (p < .05).

    Table 6.1 Results of Time-Series Cross-Sectional Models

    Dependent Variable
    Computerization
    (1)(2)(3)
    GPT skill infrastructure3.760**4.064***4.227**
    (1.643)(1.676)(1.666)
    GDP per capita29.754***29.319***29.435***
    (3.760)(3.737)(3.789)
    Total population6.969***7.046***6.781***
    (1.625)(1.654)(1.549)
    Polity score−0.456−0.472*
    (0.295)(0.277)
    Military spending−0.940
    (2.413)
    Liberal market economy−2.194
    (3.961)
    Constant−374.599***−368.051***−361.885***
    (60.452)(61.173)(58.374)
    Observations383370370
    Note: Standard errors in parentheses.
    *p < .10; **p < .05; ***p < .01

    The effect of GPT skill infrastructure on GPT adoption is also substantively significant. Given the coefficient of the GPT skill infrastructure measure in the baseline model,37 a 1 percent increase in the universities per 100,000 people that provide software engineering education results in an increase of the computerization rate by 0.042 percentage points.38 Though the substantive effect seems small at first glance, its magnitude becomes clear when contextualized by differences in GPT skill infrastructure across the sample. For example, in China over this time period, the average number of universities per 100,000 people that met my baseline for GPT skill infrastructure was 0.040. The corresponding figure for the United States was 0.248. According to the coefficient estimate for GPT skill infrastructure, this difference of 520 percent corresponds to a difference of nearly 22 percentage point units in the computerization rate.

    It should be noted that only two control variables, economic development and population, came in as statistically significant in the baseline model. As expected, wealthier countries and more populous countries presided over more intensive adoption of computing technologies. The null result for regime type is worth highlighting, as the effects of democracy on technology adoption are disputed.39 Finally, contrary to the expectations of competing explanations to GPT diffusion theory, the effects of military spending and VoC are insignificant. This is consistent with the findings from the historical case studies.

    Quantitative appendix table 1 displays the results after incorporation of three additional controls. First, trade linkages expose countries to advanced techniques and new ideas, opening the door to technology diffusion. A high level of trade openness has been associated with more intensive adoption of information technologies.40 Relatedly, there is evidence that a country’s openness to international trade has a positive and sizable effect on various measures of innovation, including high-technology exports, scientific publications, and patents.41 Second, higher urban density has been linked to faster diffusion of technologies such as the television and the internet.42 Model 8 incorporates a trade openness variable and an urbanization variable.

    Third, patterns at the regional level could shape how computerization spreads around the world. Scholars have identified such regional effects on the diffusion of ideas, policies, and technologies.43 In model 9, I assess spatial dynamics with dummy variables for the following regions: East Asia and Pacific; Europe and Central Asia; Latin America and Caribbean; the Middle East and North Africa; North America; South Asia; and sub-Saharan Africa.44 The positive effect of GPT skill infrastructure on computerization stays strong and highly statistically significant across these two models.

    To ensure that the results were not determined by my choice of independent variable, I constructed an alternative specification of GPT skill infrastructure. Reanalyzing data on 467,198 software engineering publications, I counted the number of distinct authors for each country, as a proxy for the breadth of researchers who could foster human capital in software engineering. Though I still maintain that the primary specification best captures software engineering skill infrastructure, this alternative construction guards against possible issues with institution-based indicators, such as problems with institutional disambiguation and nonstandardized author affiliations.45 With this alternative specification, the estimated effect of GPT skill infrastructure on computerization remains positive and significant for the baseline model as well as for models with additional controls.46

    Duration Analysis

    When it comes to whether great powers can harness the potential of GPTs for productivity growth, the speed of adoption—not just the intensity of adoption—is pertinent. In the historical case studies, technological leaders adapted more quickly to industrial revolutions because of their investments in widening the base of engineering knowledge and skills associated with GPTs. This leads to the second hypothesis.

    H2: Countries with higher levels of GPT skill infrastructure in software engineering will experience faster levels of computer adoption.

    In testing this hypothesis, the dependent variable shifts to the amount of time it takes for a country to reach a particular computerization rate. A critical step is to establish both the specific computerization rate that constitutes successful “adoption” of computers as well as when the process of diffusion begins. Regarding the former, I count the “first adoption” of computerization as when the proportion of households with a computer in a country reaches 25 percent. This approach is in line with Everett Rogers’s seminal work on the S-shaped curve for successful diffusion of an innovation, which typically takes off once the innovation reaches a 10 to 25 percent adoption rate.47 For the duration analysis, since many of the countries enter the dataset with levels of computer adoption higher than 10 percent, the 25 percent level threshold is more suitable.48

    I take 1995 as the starting point for the diffusion of computers as a GPT. Though an earlier date may be more historically precise, the 1995 date is more appropriate for modeling purposes, as the data on computerization rates for countries before this time are sparse. In a few cases, a country clearly achieved the 25 percent computerization threshold before 1995.49 As a practical measure to estimate the duration models, I assume that the time it took for these countries to adopt computers was one year. Right-censoring occurs with the last year of data, 2020, as many countries still had not reached the 25 percent computerization rate.

    Using these data, I employ a Cox proportional hazards model to estimate the time it takes for countries to reach a 25 percent computerization rate based on the start date of 1995. Often used by political scientists to study conflict duration or the survival of peace agreements, duration models are also commonly used to investigate the diffusion of new technologies and to determine why some firms take longer to adopt a certain technology than others.50 Freed from the demands of TSCS analysis for yearly data, the duration analysis expands the county coverage, incorporating all upper-middle-income economies or high-income economies, based on the World Bank’s income group classifications.51 The resulting sample, which excludes countries that never attained the 25 percent computerization threshold, includes seventy-six countries.

    Table 6.2 reports the estimated coefficients from the duration analysis. Positive coefficients match with a greater likelihood of reaching the computerization threshold. I use the same explanatory variable and controls as the baseline model from the TSCS analysis. These variables all enter the model with their measures in 1995. Model 4a takes the 25 percent computerization rate as the adoption threshold, while model 4b adjusts it to 20 percent to ensure that this designation is not driving results.

    Table 6.2  Time to Computerization by Country

    Dependent Variable
    25% Threshold(4a)20% Threshold(4b)
    GPT skill infrastructure0.673***0.517***
    (0.137)(0.119)
    GDP per capita1.186***1.110***
    (0.335)(0.288)
    Total population0.1270.062
    (0.085)(0.074)
    Polity score0.0220.024
    (0.025)(0.023)
    Military spending0.017−0.042
    (0.218)(0.198)
    Liberal market economy0.7600.785
    (0.503)(0.493)
    N (number of events)76 (74)83 (83)
    Likelihood ratio test (df = 6)112.9***111.2***
    Note: Standard errors in parentheses.
    *p < .10; **p < .05; ***p < .01

    As the models demonstrate, the effect of GPT skill infrastructure on the speed by which countries achieve computerization is positive and highly statistically significant, providing support for hypothesis 2. Based on model 4a’s hazard ratio for the independent variable (1.96) for a given year, a tenfold increase in software engineering university density doubles the chances of a country reaching the computerization threshold.52 These results hold up after introducing additional control variables (quantitative appendix table 3).53

    A Cross-Sectional Approach: Averages across the 1995–2020 Period

    As an additional check, I collapse the panel dataset into cross-sectional averages of GPT skill infrastructure and computerization over the 1995–2020 period in a large sample of countries. In certain aspects, cross-sectional evidence could be more appropriate for comprehending the impact of features, like skill formation institutions, that are difficult to capture in yearly intervals because they change gradually.54 This approach allows for more countries to be included, as the yearly data necessary for TSCS analysis were unavailable for many countries. Limiting the sample based on the same scope conditions as the duration analysis leaves 127 countries.

    I also include the same set of controls used in the previous analyses of the panel data: GDP per capitatotal populationregime typemilitary spending, and liberal market economies. I employ ordinary least squares (OLS) regression to estimate the model. Since both a scale-location plot and a Breausch-Pagan test demonstrate that heteroskedasticity is not present in the data, it is appropriate to use an OLS regression estimator with normal standard errors.

    The results of the regression analysis provide further support for the theoretical expectations. To recap, the independent variable is the estimated average skill infrastructure for software engineering between 1995 and 2020, and the dependent variable is the average computerization rate during the same period. Since analyzing bibliographic information on yearly software engineering publications for 127 countries is a demanding exercise, I estimated the average number of universities that nurture software engineering skills based on publications for the two middle years (2007, 2008) in the dataset, instead of deriving this average based on publication data across the entire time range.55 Table 6.3 displays the results, with the incremental inclusion of control variables, also averaged over the period 1995–2020, across three models.56 The coefficient on the GPT skill infrastructure measure remains positive and highly statistically significant across all three models (p < .01).

    Table 6.3 GPT Skill Infrastructure Predicts More Computerization

    Dependent Variable
    Computerization
    (5)(6)(7)
    GPT skill infrastructure3.211***3.737***3.761***
    (0.528)(0.609)(0.649)
    GDP per capita16.617***15.536***14.977***
    (1.564)(1.723)(1.812)
    Total population−1.647***−0.739−0.831*
    (0.440)(0.485)(0.500)
    Polity score−0.066−0.070
    (0.147)(0.180)
    Military spending0.577
    (1.604)
    Liberal market economy5.017
    (4.269)
    Constant−83.099***−86.165***−79.773***
    (20.577)(22.316)(23.636)
    Observations127112110
    R20.8120.8330.834
    Note: Standard errors in parentheses.
    *p < .10; **p < .05; ***p < .01

    I perform several additional tests to confirm the robustness of the results. I first include the same additional controls used in the preceding TSCS analysis. Quantitative appendix table 4 shows that the main findings are supported. One limitation of models that rely on cross-sectional averages is endogeneity arising from reverse causality. In other words, if greater diffusion of computers throughout the economy spurs more investment in institutions that broaden the pool of software engineers, then this could confound the baseline model’s estimates. To account for this possibility, in model 16 in quantitative appendix table 5, I operationalize GPT skill infrastructure using the estimate for the year 1995, the start of the period, instead of its average level over the 1995–2020 period.57 Thus, this model captures the impact of GPT skill infrastructure in 1995 on how computerization progressed over the remaining sample years.58 The effect remains positive and statistically significant.

    While this chapter’s primary aim is to investigate empirical patterns expected by GPT diffusion theory, the quantitative analysis can also probe whether computerization is positively influenced by institutions that complement LS product cycles. To that end, I add a control variable that stands in for the institutional competencies prioritized by the LS model.59 Measures of computer exports and ICT patents serve as two ways to capture a country’s ability to generate novel innovations in the computer industry.60 In the resulting analysis, the LS-linked variables do not register as statistically significant.61

    These results should be interpreted with care. In many cases, measures of institutional capacity to build a strong, innovative computer sector may be highly correlated with measures of GPT skill infrastructure. Because the statistical approach struggles to differentiate between the causal processes that connect these two features and computerization, the historical case studies take on the main burden of comparing the GPT diffusion and LS mechanisms against each other. Still, the inclusion of variables linked with the LS mechanism does suggest that, in the context of computerization, there is ineffectual evidence that the presence of a strong leading sector spills over into other sectors and generates multiplier effects—a key observable implication of LS accounts.62 Additionally, these models drive home the importance of differentiating between institutions linked to innovative activities (in the sense of introducing new products and processes) and engineering-oriented institutions, like GPT skill infrastructure, which are more connected to adoptive activities.63

    Summary

    Using a variety of statistical methods, this chapter tested the expectation that countries better equipped to widen the base of engineering talent in a GPT will be more successful at diffusing that GPT throughout their economies. The combination of TSCS models, duration analysis, and cross-sectional regressions lends credence to the strength of the relationship between GPT skill infrastructure and computerization. The results hold across a range of additional tests and robustness checks.

    There are two major limitations to this chapter’s approach. First, the statistical analysis should be interpreted mainly as an independent evaluation of GPT diffusion theory, not as an additional comparison between GPT diffusion theory and the causal pathway linked to LS product cycles. In the large-scale statistical analysis, indicators linked with the LS mechanism can also be associated with higher computerization rates, making it difficult to weigh the two explanations against each other. The rich historical detail in the case studies therefore provides the prime ground for tracing causal mechanisms.

    Second, this chapter evaluates only one aspect of GPT skill infrastructure. A more comprehensive assessment would include not just the capacity to widen the pool of software engineering talent, which was the independent variable in this analysis, but also the strength of information flows between the GPT sector and application sectors. For instance, in the IR-2 case, both the United States and Germany trained large numbers of mechanical engineers, but American technological institutes placed more emphasis on practical training and shop experience, which strengthened connections between the US mechanical engineering education system and industrial application sectors. Building on data collection efforts that are starting to measure these types of linkages, such as the proportion of publications in a technological domain that involve industry-academia collaborations, future research should conduct a more complete assessment of GPT skill infrastructure.64

    Notwithstanding these limitations, the quantitative analysis backs a key observable implication of GPT diffusion theory: advanced economies’ level of GPT skill infrastructure is strongly linked to GPT adoption rates. Not only does this provide some initial support for the generalizability of this book’s central argument beyond just great powers, but it also gives further credibility to GPT diffusion theory’s relevance to US-China competition today.

    7 US-China Competition in AI and the Fourth Industrial Revolution

    THE FIRST MACHINE to defeat a human Go champion; powerful language models that can understand and generate humanlike text; a computer program that can predict protein structures and enable faster drug discovery—these are just a few of the newest discoveries in AI that have led some to declare the arrival of a Fourth Industrial Revolution (IR-4).1 As for the latest geopolitical trends, China’s rise has been the dominant story of this century as national security establishments grapple with the return of great power competition. Located squarely at the intersection of these two currents, the US-China technological rivalry has become an inescapable topic of debate among those interested in the future of power—and the future itself.

    Who will lead the way in the Fourth Industrial Revolution? To answer this question, leading thinkers and policymakers in the United States and China are both drawing lessons from past technology-driven power transitions to grapple with the present landscape. Unfortunately, as this chapter argues, they have learned the wrong lessons. Specifically, the leading-sector perspective holds undue influence over thinking about the relationship between technological change and the possibility of a US-China power transition. Yet careful tracing of historical cases and statistical analysis have revealed that the GPT mechanism provides a better model for how industrial revolutions generate the potential for a power transition. When applied to the IR-4 and the evolving US-China power relationship, GPT diffusion theory produces different insights into the effects of the technological breakthroughs of today on the US-China power balance, as well as on the optimal strategies for the United States and China to pursue.

    This chapter sketches out the potential impacts of today’s emerging technologies on the US-China power balance. I first describe the current productivity gap between the United States and China, with particular attention to concerns that the size of this gap invalidates analogies to previous rising powers. Next, I review the array of technologies that have drawn consideration as the next GPT or next LS. Acknowledging the speculative nature of technological forecasting, I narrow my focus to developments in AI because of its potential to revitalize growth in ICT industries and transform the development trajectories of other enabling technologies.

    The essence of this chapter is a comparison of the implications of the LS and GPT mechanisms for how advances in AI will affect a possible US-China economic power transition. In contrast to prevailing opinion, which hews closely to the LS template, GPT diffusion theory suggests that the effects of AI on China’s rise will materialize through the widespread adoption of AI across many sectors in a decades-long process. The institutional factors most pertinent to whether the United States or China will more successfully benefit from AI advances are related to widening the base of AI-related engineering skills and knowledge. I also spell out how the implications of GPT diffusion theory for the US-China power balance differ from those derived from alternative explanations.

    The objective here is not to debate whether China will or will not catch up to the United States, or whether technological capabilities are more significant than all other considerations that could affect China’s long-term economic growth. Rather, this chapter probes a more limited set of questions: If emerging technologies were to significantly influence the US-China economic power balance, how would this occur? Which country is better positioned to take advantage of the Fourth Industrial Revolution? What would be the key institutional adaptations to track?2

    A Power Transition in Progress?

    Over the past four decades, there has been no greater shift in the global economic balance than China’s rise. China is either already the world’s largest economy, if measured by purchasing power parity (PPP) exchange rates, or is projected to soon overtake the United States, based on nominal exchange rates.3 China’s impressive economic growth has led many to proclaim that the era of US hegemony is over.4

    Economic size puts China in contention with the United States as a great power competitor, but China’s economic efficiency will determine whether a power transition occurs. Countries like Switzerland outpace the United States on some measures of economic efficiency, but they lack the economic size to contend. Other rising powers, such as India, boast large economies but lag far behind in economic efficiency. Mike Beckley concludes: “If the United States faces a peer competitor in the twenty-first century … it will surely be China.”5 For this conditional to be true, China’s productivity growth is critical.6 This is not the first time in history that China has boasted the world’s largest economy; after all, it held that distinction even as Britain was taking over economic leadership on the back of the First Industrial Revolution.

    Where does China currently stand in comparison to the productivity frontier? Based on 2018 figures, China’s real GDP per capita (at 2010 PPPs) is about 30 percent that of the United States.7 From 2000 to 2017, China’s total factor productivity (TFP) never surpassed 43 percent of US TFP (figure 7.1).8 In 2015, labor productivity in China remained at only 30 percent of that in the United States, though this figure had doubled over the past two decades.9

    These numbers suggest that China sits much further from the productivity frontier than past rising powers. If the US-China power relationship is fundamentally different from those in previous eras, the relevance of conclusions from previous cases could be limited.10 For instance, in the early years of the IR-1, Britain was only slightly behind the Netherlands, the productivity leader at the time. The United Kingdom’s GDP per capita was 80 percent of Dutch GDP per capita in 1800.11 Similarly, at the beginning of the IR-2, the United States trailed Britain in productivity by a small margin. In 1870, labor productivity and TFP in the United States were 90 percent and 95 percent, respectively, of labor productivity and TFP in Britain.12 During the 1870s, average GDP per capita in the United Kingdom was about 15 percent higher than average GDP per capita in the States.13

    FIGURE 7.1. US-China Productivity Gap (2000–2017). Source: Penn World Table version 9.1; Feenstra, Inklaar, and Timmer 2015.

    Still, that China could surpass the United States in productivity leadership is not outside the realm of possibility.14 The IR-3 case is a better comparison point for the current productivity gap between the United States and China. In 1960, the start of the IR-3 case, Japanese GDP per capita was 35 percent of US GDP.15 At the time, Japan’s TFP was 63 percent of US TFP, and Japan’s labor productivity was only 23 percent of US labor productivity, a lower proportion than the China-US ratio at present.16 Despite the initial chasm, the TFP gap between the United States and Japan narrowed to only 5 percent in 1991.17

    Indeed, productivity growth is crucial for China to sustain its economic rise in the long term. For the 1978–2007 period, Xiaodong Zhu decomposed the sources of China’s economic growth into labor deepening, human capital, capital deepening, and total factor productivity growth. He found that growth in TFP accounted for 78 percent of China’s growth in GDP per capita.18 The burden on TFP improvements will only increase, given the diminishing impact of other drivers of China’s growth miracle, such as urbanization and demographic dividends.19

    Whether China can sustain productivity growth is an open question. Plagued by inefficient infrastructure outlays, China’s aggregate TFP growth declined from 2.8 percent in the decade before the global financial crisis to 0.7 percent in the decade after (2009–2018).20 If calculated using alternative estimates of GDP growth, China’s TFP growth was actually negative from 2010 to 2017, averaging −0.5 percent.21 This productivity slowdown is not unique to China. Even before the 2008 global financial crisis, there was a slowdown in TFP growth among advanced economies due to waning effects from the information and communications technologies (ICTs) boom.22 China’s labor productivity growth also decelerated from 8.1 percent in 2000–2007 to 4.2 percent in 2011–2019, but the later period’s slowed growth rate was still six times greater than the US labor productivity growth rate in the same period.23

    Adaptation to technological advances will be central to China’s prospects of maintaining high rates of productivity growth. China’s leaders worry about getting stuck in the “middle-income trap,” a situation in which an economy is unable to advance to high-income status after it exhausts export-driven, low-cost manufacturing advantages. Many studies have stressed the linkage between China’s capacity to develop and absorb emerging technologies and its prospects for escaping the middle-income trap.24 The Chinese government also increasingly pushes the development and adoption of information technology and other cutting-edge technologies as a way to increase TFP.25 Thus, tracking China’s future productivity growth necessitates a better understanding of specific technological trajectories in the current period.

    Key Technological Changes in the IR-4

    ICTs, the key technological drivers of the IR-3, are still at the heart of the IR-4. From visionaries and daydreamers to economists and technology forecasters, there is a wide-ranging consensus that AI will breathe new life into the spread of digitization. The World Economic Forum calls AI the “engine that drives the Fourth Industrial Revolution.”26 Kai-Fu Lee, the former head of Google China, boldly asserts, “The AI revolution will be on the scale of the Industrial Revolution but probably larger and definitely faster.”27 To further explore AI’s role in the IR-4, I examine this technological domain as a source of both GPT and LS trajectories.

    Candidate Leading Sectors

    LS accounts forecast that in future waves of technological change ICTs will continue to drive economic transformation. According to one analysis of US-China technological rivalry in the twenty-first century, ICTs are “widely regarded as the current leading sector.”28 I reviewed five key texts that predicted future leading sectors, all written by scholars who study historical cycles of technological change and global leadership transitions.29 These forecasts also highlight other candidate leading sectors, including lasers and new sources of energy, but they converge on ICTs as the leading sector of the next wave of technological disruption.

    Informed by the LS model, AI’s effects on global technological competition are often framed through its potential to open up new opportunities for latecomers to catch up and leapfrog advanced countries in key segments like AI chips. China’s national AI development plan outlines its ambition to become the world’s leading center of innovation in AI by 2030.30 Scholars analyze China’s capacity to develop global intellectual monopolies in certain AI applications and enhance independent innovation in AI so as to guard against other countries leveraging weaponized interdependence.31 Descriptions of China’s AI strategy as aimed toward seizing “the commanding heights” of next-generation technologies reflect the belief that competition in AI will be over global market shares in strategic sectors.32

    Candidate GPTs

    Among the possible GPTs that could significantly impact a US-China economic power transition, AI stands out. Like the literature on leading sectors, the GPT literature also converges on ICTs as a continued driver of technological revolution. Kenneth Carlaw, Richard Lipsey, and Ryan Webb, three pioneers of GPT-based analysis, identify programmable computing networks as the basic GPT that is driving the modern ICT revolution.33 Crucially, AI could open up a new trajectory for this ICT revolution. Recent breakthroughs in deep learning have improved the ability of machines to learn from data in fundamental ways that can apply across hundreds of domains, including medicine, transportation, and other candidate GPTs like biotechnology and robotics. This is why AI is often called the “new electricity”—a comparison to the prototypical GPT. Economists regard it as the “next GPT”34 and “the most important general-purpose technology of our era.”35

    Several studies have found evidence for a GPT trajectory in AI. One study, using a novel dataset of preprint papers, finds that articles on deep learning conform with a GPT trajectory.36 Using patent data from 2005 to 2010 to construct a three-dimensional indicator for the GPT-ness of a technology, Petralia ranks technological classes based on their GPT potential.37 His analysis finds that image analysis, a field that is closely tied to recent advances in deep learning and AI, ranks among the top technological classes in terms of GPT-ness.38 Another effort employs online job posting data to differentiate among the GPT-ness of various technological domains, finding that machine learning technologies are more likely to be GPTs than other technologies such as blockchain, nanotechnology, and 3D printing.39

    To be sure, forecasts of future GPTs call attention to other technological trends as well. Other studies have verified the GPT potential of biotechnology.40 Robotics, another candidate GPT for the IR-4, could underpin “the next production system” that will boost economy-wide productivity, succeeding the previous one driven by information technology.41 While my primary reasons for limiting my analysis to AI are based on space constraints as well as on its prominence in the surrounding literature, it is also important to note that developments in both biotechnology and robotics are becoming increasingly dependent on advances in deep learning and big data.42

    The Limits of Technological Foresight

    Unlike exercises to pinpoint key technologies of previous industrial revolutions, which benefited from hindsight, identifying technological drivers in the IR-4 is a more speculative exercise. It is difficult to find true promise amid the hype. The task is made harder by the fact that even experts and technological forecasting bodies regularly miss the next big thing. In 1945, a team led by Dr. Theodore von Kármán, an eminent aerospace engineer, published Toward New Horizons, a thirty-two-volume text about the future of aviation. The study failed to foresee major new horizons such as the first human in space, intercontinental ballistic missiles (ICBMs), and solid-state electronics—all of which emerged within fifteen years.43 In the early 1990s, the US Army conducted a technology forecast assessment to identify the technologies most likely to transform ground warfare in the next century. When the forecast was evaluated in 2008 by the Army’s senior scientists and engineers, it graded out at a “C.” Among its most significant misses was the development of the internet.44

    I am no Cassandra. It is very possible that if I were writing this book in 2000, this chapter would focus on the promise of nanotechnology, not AI. At that time, President Bill Clinton had just unveiled the National Nanotechnology Initiative. In a 2003 speech, Philip J. Bond, the undersecretary for technology at the Department of Commerce at the time, declared:

    Nano’s potential rises to near Biblical proportions. It is not inconceivable that these technologies could eventually achieve the truly miraculous: enabling the blind to see, the lame to walk, and the deaf to hear; curing AIDS, cancer, diabetes and other afflictions; ending hunger; and even supplementing the power of our minds, enabling us to think great thoughts, create new knowledge, and gain new insights.45

    Decades later, there is a collective exhaustion around the hype surrounding nanotechnology, a phenomenon one scientist calls “nanofatigue.”46

    One lesson that stands out from mapping the technological landscape in past industrial revolutions is that the most significant GPTs of an era often have humble origins. In the IR-2, new innovations in electricity and chemicals garnered the most attention, but America’s economic rise owed more to advances in machine tools that were first introduced decades earlier. In the same way, “old” GPTs like electricity could still shock the world.47 Today there is still a lot of potential for expanded industrial electrification, which could have a major impact on productivity.48 Similarly, high-capacity battery technologies could transform productivity on a broad scale.49 Interestingly, patent data also demonstrate the continued importance of electrical technologies. Among the top ten GPT candidates as ranked by Petralia’s indicator of “GPT-ness,” there were as many technological classes in the electrical and electronic category as there were in the computers and communications category.50

    For my purposes, it is reassuring that developments in AI also draw on a long history. In the United States, the legitimization of AI as an important field of research dates back to the 1960s.51 Thus, though the rest of the chapter takes AI as the most important GPT for the near future, it does so with a humble mindset, acknowledging that looking forward to the future often starts with digging deeper into the past.

    The GPT vs. LS Mechanisms in the IR-4

    There has been no shortage of speculation about whether the United States or China is better fit for the new AI revolution. Each week it seems there is a new development in the “AI arms race” between the two nations.52 Many believe that China is an AI superpower on the verge of overtaking the United States in the key driver of the IR-4.53 As the following sections will show, these discussions tend to follow the LS template in their assumptions about the trajectory of AI development and key institutional adjustments.

    Conversely, GPT diffusion theory provides an alternative model for how AI could affect the US-China power balance, with implications for the optimal institutional adaptations to the AI revolution. I conclude that, if the lessons of past industrial revolutions hold, the key driver of a possible US-China economic power transition will be the relative success of these nations in diffusing AI throughout their economies over many decades. This technological pathway demands institutional adaptations to widen the base of AI engineering skills and knowledge. While recognizing that international competition over AI is still in the early innings, this chapter outlines a preliminary framework for assessing which country’s roster is better equipped for success.

    Impact Timeframe: The Decisive Years in the US-China AI Competition

    If guided by the LS mechanism, one would expect the impacts of AI on US-China power competition to be very significant in the early stages of the technology’s trajectory. Indeed, many prominent voices have articulated this perspective. Consider, for example, a report titled “Is China Beating the US to AI Supremacy?,” authored by Professor Graham Allison, the director of Harvard Kennedy School’s Belfer Center for Science and International Affairs and Eric Schmidt, former CEO of Google and cochair of the National Security Commission on Artificial Intelligence (NSCAI). For Allison and Schmidt, the decisive years in US-China AI competition are just around the corner. Assuming that AI advances will be rapidly adopted across many economic domains, their aim is to “sound an alarm over China’s rapid progress and the current prospect of it overtaking the United States in applying AI in the decade ahead.”54 Shaped by a similar framework, other influential texts also predict that China’s productivity boost from AI will come to fruition in the 2020s.55

    If GPT diffusion theory serves as the basis for analysis, these influential texts severely underestimate the time needed for economic payoffs from AI. Historical patterns of GPT advance have borne out that, even in early adopter countries, it takes at least three or four decades for these fundamental technologies to produce a significant productivity boost.56

    Using this pattern as guidance, we can roughly project AI’s impact timeframe, after establishing an initial emergence date for this GPT. In 2012, the AlexNet submission to ImageNet, a competition that evaluates algorithms on large-scale image classification, is widely recognized as spurring this current, deep learning–based paradigm of AI development.57 If using the metric of when a GPT achieves a 1 percent adoption rate in the median sector, the AI era probably began in the late 2010s.58 As of 2018, according to the most recent census survey on the extent of AI adoption in the US economy, only 2.75 percent of firms in the median sector reported using AI technologies.59 Thus, regardless of which arrival date is used, if AI, like previous GPTs, requires a prolonged period of gestation, substantial productivity payoffs should not materialize until the 2040s and 2050s.60

    Of course, other factors could affect AI’s expected impact timeframe, including the possibility that the general process of technological adoption is accelerating. Some evidence indicates that the waiting time for a significant productivity boost from a new GPT has decreased over time.61 Lee argues that the AI revolution will be faster than previous GPT trajectories owing to the increasingly frictionless distribution of digital algorithms and more mature venture-capital industry.62 Nevertheless, preliminary evidence suggests that AI will face similar implementation lags as previous GPTs, including bottlenecks in access to computing resources, human capital training, and business process transformations.63

    Phase of Relative Advantage: Innovation-centrism and China’s AI Capabilities

    Debates about China’s scientific and technological power reduce complex dynamics to one magic word—“innovation.”64 Whether China can generate novel technologies is often the crux of debates over China’s growing scientific and technological capabilities and a potential US-China power transition.65 For David Rapkin and William Thompson, the prospect of China overtaking the United States as the leading power is dependent on “China’s capacity to innovate”—specifically as it relates to revolutionary technological changes that allow challengers to leapfrog the leader in economic competition.66 “If … China’s innovativeness continues to lag a considerable distance behind that of the US, then China overtaking the US might wait until the twenty-second century,” they posit.67 China’s innovation imperative, as Andrew Kennedy and Darren Lim describe it in language common to LS analysis, is motivated by “monopoly rents generated by new discoveries.”68

    Innovation-centric views of China’s AI capabilities paint an overly optimistic picture of China’s challenge to US technological leadership. Allison and Schmidt’s Belfer Center paper, for instance, emphasizes China’s growing strength in AI-related R&D investments, leading AI start-ups, and valuable internet companies.69 Likewise, the NSCAI’s final report suggests that China is poised to overtake the United States in the capacity to generate new-to-the-world advances in AI, citing shares of top-cited, breakthrough papers in AI and investments in start-ups.70 These evaluations match up with viewpoints that are bullish on China’s overall technological capabilities, which also point to its impressive performance along indicators of innovation capacity, such as R&D expenditures, scientific publications, and patents.71

    Some other comparisons of US and Chinese AI capabilities arrive at the opposite conclusion but still rely on the LS template. For instance, two Oxford scholars, Carl Frey and Michael Osborne, have likened claims that China is on the verge of overtaking the United States in AI to overestimates of Japan’s technological leadership in computers in the 1980s. In their view, just like Japan, China will fail to overtake the United States as the world’s technological leader because of its inability to produce radical innovations in AI. In fact, they claim, the prospects are even bleaker this time around: “China, if anything, looks less likely to overtake the United States in artificial intelligence than Japan looked to dominate in computers in the 1980s.”72

    If analysis of US-China competition in AI was centered on GPT diffusion theory, it would focus more on China’s capacity to widely adopt AI advances. In this scenario, it is neither surprising nor particularly alarming that China, like other great power contenders such as Japan in the IR-3, Germany in the IR-2, and France in the IR-1, contributes to fundamental innovations. No one country will corner all breakthroughs in a GPT like AI. The key point of differentiation will be the ability to adapt and spread AI innovations across a wide array of sectors.

    A diffusion-centric perspective suggests that China is far from being an AI superpower. Trends in ICT adoption reveal a large gap between the United States and China. China ranks eighty-third in the world on the International Telecommunication Union’s ICT development index, a composite measure of a country’s level of networked infrastructure, access to ICTs, and adoption of ICTs.73 By comparison, the United States sits among the world’s leaders at fifteenth. Though China has demonstrated a strong diffusion capacity in consumer-facing ICT applications, such as mobile payments and food delivery, Chinese businesses have been slow to embrace digital transformation.74

    In fact, it is often Chinese scholars and think tanks that acknowledge these deficiencies. According to an Alibaba Research Institute report, China significantly trails the United States in penetration rates of many digital technologies across industrial applications, including digital factories, industrial robots, smart sensors, key industrial software, and cloud computing.75 China also significantly trails the United States in an influential index for adoption of cloud computing, which is essential to implementing AI applications.76 In 2018, US firms averaged a cloud adoption rate of over 85 percent, more than double the comparable rate for Chinese firms.77

    To be fair, China has achieved some success in adopting robots, a key application sector of AI. China leads the world in total installations of industrial robots. Aided by favorable industry composition and demographic conditions, China added 154,000 industrial robots in 2018, which was more than were installed by the United States and Japan combined.78 Based on 2021 data from the International Federation of Robotics, China outpaces the United States in robot density as measured by the number of industrial robots per 10,000 manufacturing employees.79

    However, China’s reputed success in robot adoption warrants further scrutiny. The IFR’s figures for employees in China’s manufacturing sector significantly underestimate China’s actual manufacturing workforce. If these figures are revised to be more in line with those from the International Labor Organization (ILO), China’s robot density would fall to less than 100 robots per 10,000 manufacturing employees, which would be around one-third of the US figure.80 On top of that, talent bottlenecks hamper robot diffusion in China, since skilled technicians are required to reprogram robots for specific applications.81 An unused or ineffective robot counts toward robot density statistics but not toward productivity growth.

    Breadth of Growth: Picking Winners vs. Horizontal Approaches to AI Development

    Divergent perspectives on the breadth of growth in technological revolutions also separate LS-based and GPT-based views of the US-China case. If technological competition in the IR-4 is limited to which country gets a bigger share of the market in new leading industries like AI, then direct sectoral interventions in the mold of China’s AI strategy could be successful. However, if the breadth of growth in the IR-4 follows the GPT trajectory of the three previous industrial revolutions, another approach will be more effective.

    China’s AI strategy has hewed closely to the LS model. This approach builds off a series of directives that prioritize indigenous innovation in select frontier technologies, an emphasis that first appeared in the 2006 “National Medium- and Long-Term Plan for the Development of Science and Technology” and extends through the controversial “Made in China 2025” plan.82 Since the mid-2000s, the number of sectoral industrial policies issued by the State Council, China’s cabinet-level body, has significantly increased.83 Appropriately, the State Council’s 2017 AI development plan outlined China’s ambitions to become the world’s primary innovation center for AI technology.84

    On the breadth of growth dimension, tension between GPT diffusion theory and China’s application of the LS template is rooted in differing expectations for how the economic boost from revolutionary technologies will unfold. Take, for example, China’s 2010 “Strategic Emerging Industries” (SEI) initiative, which targets seven technological sectors based on opportunities for China to leapfrog ahead in new industries.85 Oriented around assumptions that a limited number of technologically progressive industries will drive China’s future growth, the SEI defines success based on the resultant size of these industries, as measured by their value added as a share of GDP.86

    In contrast, GPT diffusion theory expects that, in the country that best capitalizes on the IR-4, productivity growth will be more dispersed. In this view, the AI industry never needs to be one of the largest, provided that AI techniques trigger complementary innovations across a broad range of industries. Relatedly, some Chinese thinkers have pushed back against industrial policies that favor narrow technology sectors. A research center under China’s own State Council, in a joint analysis with the World Bank, concluded in 2012: “A better innovation policy in China will begin with a redefinition of government’s role in the national innovation system, shifting away from targeted attempts at developing specific new technologies and moving toward institutional development and an enabling environment that supports economy-wide innovation efforts within a competitive market system.”87 The economy-wide transformation enabled by AI, if it lives up to its potential as a GPT, demands a more broad-based response.

    When it comes to technology policy, there is always a push and pull between two ends of a spectrum. Vertical industrial policy, or “picking winners,” targets certain technologies, often leading to top-down intervention to ensure that the nation’s firms are competitive in specific industries. Horizontal industrial policy promotes across-the-board technological development and avoids labeling certain technologies as more significant than others. This book argues that both camps have it partly right, at least when it comes to ensuring long-term economic growth in times of technological revolution. Picking technological winners is needed in that some technologies do matter more than others; however, the “winners” are GPTs, which require horizontal industrial policies to diffuse across many application sectors. Institutions for skill formation in AI engineering, the subject of the next section, split the difference between these two approaches.

    Institutional Complementarities: GPT Skill Infrastructure in the IR-4

    In 2014, Baidu, one of China’s leading tech giants, hired Andrew Ng away from Google, poaching the cofounder of Google’s deep learning team. Three years later, Baidu lured Qi Lu away from Microsoft, where he had served as the architect of the company’s AI strategy. Their departures were headline news and spurred broader discussions about China’s growing AI talent.88

    When Alibaba, another one of China’s tech giants, celebrated its listing on the Hong Kong stock exchange in November 2019, it showcased a different form of AI talent. In one picture of the gong-ringing celebration, Yuan Wenkai, who works for an Alibaba-owned logistics warehouse, stood third from the right. A former tally clerk who graduated from a run-of-the-mill Guangdong vocational school, Yuan holds substantial expertise in automation management. His success with boosting the sorting capacity of a logistics warehouse by twenty thousand orders per hour—responding to elevated demand during the shopping frenzy of Single’s Day (November 11)—merited an invite to the ceremony.89

    Even as AI systems exceed human-level performance at tasks ranging from playing Go to translating news articles, human talent will remain crucial for designing and implementing such systems.90 According to one global survey of more than three thousand business executives, landing the “right AI talent” ranked as the top barrier to AI adoption for companies at the frontier of incorporating AI into their products, services, and internal processes.91 But what makes up the “right AI talent”? In its distilled form, GPT diffusion theory suggests that China’s chance of leading the AI revolution rests more on the Yuan Wenkais of the world than the Andrew Ngs. The most important institutional adjustments to the IR-4 are those that widen the pool of AI engineering skills and knowledge.

    Indeed, alongside the maturation of the AI field, recent reports have emphasized skills linked to implementing theoretical algorithms in practice and in ways suited for large-scale deployment. In early 2022, the China Academy of Information and Communications Technology (CAICT), an influential research institute under the Ministry of Industry and Information Technology, published two reports that identified AI’s “engineering-ization” (工程化) as a significant trend that involves addressing challenges in transforming AI-based projects from prototypes to large-scale production.92 Relatedly, per Burning Glass job postings from 2010 to 2019, the overall increase in demand for “AI-adjacent” positions in the United States far exceeded that for “core AI” positions.93 Covering skills needed to implement AI throughout many sectors and legacy systems, this pool of AI-adjacent jobs includes positions for systems engineers and software development engineers.

    GPT Skill Infrastructure for AI: A US-China Comparison

    At present, the United States is better positioned than China to develop the skill infrastructure suitable for AI. First, the United States has more favorable conditions for expanding the number of AI engineers. According to three separate projects that mapped out the global AI talent landscape, many more AI engineers work in the United States than in any other country.94 In 2017, Tencent Research Institute and BOSS Zhipin (a Chinese online job search platform) found that the number of AI “practitioners” (从业者) in the United States far surpassed the corresponding Chinese figure. Figure 7.2 captures this gap across four key AI subdomains: natural language processing (by three times), chips and processors (by fourteen times), machine learning applications (by two times), and computer vision (by three times).95 Overall, the total number of AI practitioners in the United States was two times greater than the corresponding figure for China.96 Furthermore, data from two separate reports by LinkedIn and SCMP Research confirm that the United States leads the world in AI engineers.97

    In addition to statistics on the AI workforce, the quantity and quality of AI education is another consideration for which country is better positioned to develop GPT skill infrastructure for AI. Again, the United States leads China by a significant margin in terms of universities with faculty who are proficient in AI. In 2017, the United States was home to nearly half of the world’s 367 universities that provide AI education, operationalized by universities that have at least one faculty member who has published at least one paper in a top AI conference.98 In comparison, China had only 20 universities that met this standard. After replicating this methodology for the years 2020–2021, the US advantage is still pronounced, with 159 universities to China’s 29 universities.99

    FIGURE 7.2. A US-China Comparison of AI Practitioners in Key Subdomains. Source: Tencent Research Institute and BOSS Zhipin 2017.

    These findings contradict prominent views on the present global distribution of AI engineering talent. In his best-selling book AI Superpowers: China, Silicon Valley, and the New World Order, Kai-Fu Lee argues that the current AI landscape is shifting from an age of discovery, when the country with the highest-quality AI experts wins out, to an age of implementation, when the country with the largest number of sound AI engineers is advantaged.100 In an age of implementation, Lee concludes, “China will soon match or even overtake the United States in developing and deploying artificial intelligence.”101 Pitted against the statistics from the previous passages, Lee’s evidence for China’s lead in AI implementers is meager. His attention is concentrated on anecdotes about the voracious appetite for learning about AI by Chinese entrepreneurs in Beijing.102 While this analysis benefits from Lee’s experience as CEO of Sinovation Ventures, a venture capital fund that invests in many Chinese AI start-ups, it could also be colored by his personal stake in hyping China’s AI capabilities.

    Drawing on Lee’s book, Allison and Schmidt also assert that China is cultivating a broader pool of AI talent than the United States today. Specifically, they point out that China graduates three times as many computer science students as the United States on an annual basis.103 Yet the study on which this figure is based finds that computer science graduates in the United States have much higher levels of computer science skills than their Chinese peers. In fact, the average fourth-year computer science undergraduate in the United States scores higher than seniors from the top programs in China.104 Therefore, estimates of China’s pool of AI engineering talent will be misleading if they do not establish some baseline level of education quality. This is another reason to favor the indicators that support an enduring US advantage in AI engineers.105

    Second, as previous industrial revolutions have demonstrated, strong linkages between entrepreneurs and scientists that systematize the engineering knowledge related to a GPT are essential to GPT skill infrastructure. In the AI domain, an initial evaluation suggests that this connective tissue is especially strong in the United States. Based on 2015–2019 data, it led the world with the highest number of academic-corporate hybrid AI publications—defined as those coauthored by at least one researcher from both industry and academia—more than doubling the number of such publications from China.106 Xinhua News Agency, China’s most influential media organization, has pinpointed the lack of technical exchanges between academia and industry as one of five main shortcomings in China’s AI talent ecosystem.107

    These preliminary indicators align with assessments of the overall state of industry-academia exchanges in China. Barriers to stronger industry-academia linkages include low mobility between institutions, aimless government-sponsored research collaborations, and misguided evaluation incentives for academic researchers.108 One indicator of this shortcoming is the share of R&D outsourced by Chinese firms to domestic research institutes: this figure declined from 2.4 percent in 2010 to 1.9 percent in 2020. Over the same time period, the share of Chinese firms’ R&D expenditures performed by domestic higher education institutions also decreased from 1.2 percent to 0.4 percent.109

    Moreover, the US approach to AI standard-setting could prove more optimal for coordinating information flows between labs working on fundamental AI advances and specific application sectors. Market-mediated, decentralized standardization systems are particularly suited for advancing technological domains characterized by significant uncertainty about future trajectories, which clearly applies to AI.110 In such fields, governments confront a “blind giant’s quandary” when attempting to influence technological development through standards-setting.111 The period when government involvement can exert the most influence over the trajectory of an emerging technology coincides with the time when the government possesses the least technical knowledge about the technology. Government intervention therefore could lock in inferior AI standards compared with market-driven standardization efforts.

    In that light, China’s state-led approach to technical standards development could hinder the sustainable penetration of AI throughout its economy. For example, the Chinese central government plays a dominant role in China’s AI Industry Alliance, which has pushed to wrest leadership of standards setting in some AI applications away from industry-led standardization efforts.112 Excessive government intervention has been a long-standing weakness of China’s standardization system, producing standards not attuned to market demands and bureaucratic rivalries that undermine the convergence of standards.113 Wang Ping, a leading authority on this topic, has argued that China needs to reform its standardization system to allow private standards development organizations more space to operate, like the Institute of Electrical and Electronics Engineers in the United States and the European Committee for Electrotechnical Standardization.114

    In sum, the United States is better positioned than China to not only broaden its pool of AI engineering skills but also benefit from academia-industry linkages in AI engineering. In previous industrial revolutions, these types of institutional adaptations proved crucial to technological leadership. Still, much uncertainty remains in forecasts about GPT skill infrastructure for AI, especially with regard to determining the right measures for the right AI talent. Recent studies of market demand for AI- and ICT-related jobs suggest that employers are softening their demands for a four-year degree in computer science as a requirement for such positions.115 Certificate programs in data science and machine learning that operate under the bachelor-degree level could play an important role in expanding the pool of AI engineering talent.116 Taking into account these caveats, this section’s evaluation of GPT skill infrastructure at the very least calls into question sweeping claims that China is best placed to capitalize on the IR-4.

    Reframing National AI Strategies

    The preceding conclusions offer a marked contrast with how American and Chinese policymakers devise national AI strategies. Policy proposals for pursuing US leadership in AI consistently call for more AI R&D as the highest priority. For example, the report “Meeting the China Challenge: A New American Strategy for Technology Competition,” published in 2020 by a working group of twenty-eight China specialists and experts, provided sixteen policy recommendations for how the United States should ensure its leadership in AI and three other key technological domains. The very first recommendation was for the United States to significantly expand investment in basic research, raising total R&D funding to at least 3 percent of GDP.117 The Trump administration’s “American AI Initiative,” launched to maintain US leadership in AI “in a time of global power competition,” also listed AI R&D spending as its very first policy recommendation.118

    The Chinese government also prioritizes investments in R&D, sometimes at the expense of other routes to productivity growth oriented around technology adoption and education.119 China’s five-year plan (2021–2025) aims to raise basic research spending by over 10 percent in 2021, targeting AI and six other key technological domains.120 China consistently sets and meets ambitious targets for R&D spending, but that same commitment has not extended to education funding. While China’s R&D spending as a percentage of GDP in 2018 was higher than that of Brazil, Malaysia, Mexico, or South Africa (other middle-income countries that industrialized on a similar timeline), China’s public expenditure on education as a percentage of GDP was lower than the figure in those countries.121 According to a group of experts on China’s science and technology policy, one possible explanation for this disparity between attention to R&D versus education is the longer time required for efforts in the latter to yield tangible progress in technological development.122

    As both the United States and China transition from initiating a new GPT trajectory to diffusing one across varied application sectors, investing in the broader AI-adjacent skill base will become more crucial than cornering the best and the brightest AI experts. Policies directed at widening the AI talent base, such as enhancing the role of community colleges in developing the AI workforce, deserve more attention.123 Applied technology centers, dedicated field services, and other technology diffusion institutions can incentivize and aid adoption of AI techniques by small and medium-sized enterprises.124 Reorienting engineering education toward maintaining and overseeing AI systems, not solely inventing new ones, also fits this frame.125

    A strategy oriented around GPT diffusion does not necessarily exclude support for the exciting research progress in a country’s leading labs and universities. R&D spending undoubtedly will not just help cultivate novel AI breakthroughs but also contribute to widening the GPT skill infrastructure in AI. All too often, however, boosting R&D spending seems to be the boilerplate recommendation for any strategic technology.126 GPTs like AI are not like other technologies, and they demand a different toolkit of strategies.

    Alternative Factors

    In exploring how the IR-4 could bring about an economic power transition, it is important to compare the implications derived from the GPT diffusion mechanism to those that follow from explanations stressing other factors. Consistent with the previous chapters, I first consider threat-based explanations and the varieties of capitalism (VoC) approach. I then address how US-China competition over emerging technologies could be shaped by differences in regime type, a factor that is particularly salient in this case.

    Threat-Based Explanations

    One potentially dangerous implication of threat-based explanations is that war, or manufacturing the threat of war, is necessary for economic leadership in the IR-4. Crediting the US military’s key role in spurring advances in GPTs during the twentieth century, Ruttan doubts that the United States could initiate the development of GPTs “in the absence of at least a threat of major war.”127 Extending Ruttan’s line of thinking to the US strategic context in 2014, Linda Weiss expressed concerns that the end of the Cold War, along with the lack of an existential threat, removed the impetus for continued scientific and technological innovation. Specifically, she questioned “why China has not yet metamorphosed into a rival that spurs innovation like the Soviet Union and Japan.”128 Weiss only needed a little more patience. A few years later, the narrative of a US-China “Tech Cold War” gained momentum as both sides of the bilateral relationship trumped up threats to push national scientific and technological priorities.129

    GPT diffusion theory strongly refutes the notion that manufacturing external threats is necessary for the United States or China to prevail in the IR-4. An external menace did not drive the rise of the United States in the IR-2. Across all cases, military actors were involved in but not indispensable to spurring the development of GPTs, as many civilian entities also fulfilled the purported role of military investment in providing a large initial demand for incubating GPTs. Furthermore, threat-based interpretations extend only to the moment when one country stimulates the first breakthroughs in a GPT. Even if stoking fears can galvanize support for grand moonshot projects, these do not determine which country is able to benefit most from the widespread adoption of advances in GPTs like AI. That hinges on the more low-key toil of broadening the engineering skill base and advancing interoperability standards in GPTs—not fearmongering.

    VoC Explanations

    Applying the VoC framework to US-China competition in AI gives more ambiguous results. The VoC approach states that liberal market economies (LME)—prototypically represented by the United States—are more conducive to radical innovation than coordinated market economies (CME).130 It is unclear, however, whether China fits into the VoC framework as a CME or LME. While some label China a CME, others characterize it as an LME.131 This disputed status speaks to the substantial hybridity of China’s economy.132 China has been treated as a “white space on the map” of VoC scholarship, which was originally developed to classify different forms of advanced capitalist economies.133 This makes it difficult to derive strong conclusions from VoC scholarship about China’s ability to adapt to the IR-4’s radical innovations.

    The same holds if we focus on the skill formation aspect of the VoC framework. China’s education system emphasizes training for general skills over vocational skills.134 In this respect, it is similar to LMEs like the United States, which means VoC theory provides limited leverage for explaining how the IR-4 could differentially advantage the United States or China. On this topic, GPT diffusion theory points to differences in AI engineering education as more significant than distinctions based on the CME-LME models.

    Case-Specific Factors: Regime Type

    What is the effect of regime type on technological leadership in the IR-4? The distinction between authoritarian China and the democratic United States takes center stage in arguments about the future of great power rivalry.135 Regime type could also influence the specific aspect of great power competition that GPT diffusion tackles—whether one great power is able to sustain productivity growth at greater rates than its rivals by taking advantage of emerging technologies. Some evidence suggests that, owing to investments in inclusive economic institutions, democracies produce more favorable conditions for growth than autocracies.136 Additionally, empirical work shows that democracies outgrow autocracies in the long run because they are more open to absorbing and diffusing new techniques.137 Other studies find, more specifically, that internet technologies diffuse faster in democracies, possibly because nondemocracies are threatened by the internet’s potential to empower antigovernment movements.138

    On the other hand, the impact of democracy on technological progress and economic growth is disputed. Drawing on data from fifty countries over the 1970–2010 period, Taylor finds that regime type does not have a strong relationship with national innovation rates, as measured by patenting rates.139 One review of the econometric evidence on democracy and growth concludes that “the net effect of democracy on growth performance cross-nationally over the last five decades is negative or null.”140 Moreover, China’s rapid economic growth and adoption of internet technologies stands out as an exception to general claims about a democratic advantage when it comes to leveraging new technologies as sources of productivity growth. Contrary to initial expectations, incentives to control online spaces have made some autocratic regimes like China more inclined to spread internet technologies.141 Other scholars point out that the stability of China’s authoritarian regime has encouraged substantial contributions to R&D and technical education, the type of investments in sustained productivity growth typically associated with democracies.142

    It is not within the scope of this chapter to settle these debates.143 Still, the juxtaposition of the GPT and LS mechanisms does speak to how regime type could shape US-China competition in the IR-4. Though the conventional wisdom links democracy to freewheeling thought and capacity for innovation, the most important effects of regime type in US-China technological competition during the IR-4, under the GPT diffusion framework, may materialize through changes in GPT skill infrastructure. Democracies tend to be more politically decentralized than autocracies, and decentralized states could be more responsive to the new demands for engineering skills and knowledge in a particular GPT. This accords with evidence that new technologies consistently diffuse more quickly in decentralized states.144

    Summary

    How far can we take GPT diffusion theory’s implications for the US-China case? I have presented support for the GPT mechanism across a range of historical case studies, each of which covers at least four decades and two countries. At the same time, it is necessary to acknowledge limitations in translating lessons from past industrial revolutions and power transitions to the present.

    To begin, it is important to clarify that my findings directly address the mechanism by which technological breakthroughs enable China to surpass the United States in economic productivity.145 The scenario in which China overtakes the United States as the most powerful economy is different from one in which the US-China power gap narrows but does not fully disappear. Scholars have rightly noted that the latter scenario—“posing problems without catching up,” in the words of Thomas Christensen—still significantly bears on issues such as Taiwan’s sovereignty.146 Even so, the possibility of China fully closing the power gap with the United States is especially crucial to study. When rising and established powers are close to parity, according to power transition theory, the risk of hegemonic war is the greatest.147 China’s ability to sustain economic growth also affects its willingness and ability to exert influence in the international arena.

    Next, GPT diffusion theory speaks to only one pathway to productivity leadership. The historical case studies have demonstrated that institutional responses to disruptive technological breakthroughs play a key part in economic power transitions. However, China’s prospects for long-term economic growth could also hinge on demographic and geographic drivers.148

    A number of factors could affect whether lessons from the past three industrial revolutions extend to the implications of present-day technological advances for a US-China power transition. The most plausible transferability issues can be grouped into those that relate to the nature of great power competition and those that relate to the nature of technological change.

    First, as put forward by Stephen Brooks and William Wohlforth, China’s rise in the twenty-first century could face structural barriers that did not exist in previous eras.149 Relying in part on data from 2005–2006, they argue that the present gap between the United States and China in military capabilities, as captured in long-term investments in military R&D, is much larger than past gaps between rising powers and established powers.150 Arguably, the US-China gap in military expenditures has narrowed to the extent that comparisons to historical distributions of military capabilities are more viable. In 2021, China accounted for 14 percent of global military expenditures. This updated figure, albeit still much lower than the US share (38 percent), reflects China’s military modernization efforts over the past two decades during a time of declining US military spending.151 This ratio is more comparable to distributions of military capabilities in the historical periods analyzed in the case studies.152

    Another structural barrier China faces is that the growing complexity of developing and deploying advanced military systems now makes it more difficult for rising powers to convert economic capacity into military capacity than it was in the past.153 There are a few reasons why it is still relevant to study China’s ability to convert the technological breakthroughs of the IR-4 into sustained productivity growth. To start, rising states could still benefit from the steady diffusion of some complex military technologies connected to advances in the commercial domain, such as armed uninhabited vehicles.154 In addition, military effectiveness does not solely derive from extremely complex systems like the F-22 stealth fighter. Converting production capacity to military strength could be more relevant for China’s investments in asymmetric capabilities and those suited for specific regional conflicts, such as ground-based air defense systems and the rapid replacement of naval forces.155 Lastly, there remains a strong connection between economic development and countries’ capabilities to “produce, maintain, and coordinate complex military systems.”156

    As for the second set of transferability issues, the technological landscape itself is changing. Accelerated globalization of scientific and technological activities may reduce the likelihood of adoption gaps between advanced economies when it comes to emerging technologies.157 Despite these considerations, there are also compelling reasons to think that the nature of technological change in this current period only magnifies the importance of GPT diffusion theory. Cross-country studies indicate that while new technologies are spreading between countries faster than ever, they are spreading to all firms within a country at increasingly slower rates. Networks of multinational firms at the global technology frontiers have reduced cross-national lags in the initial adoption of new technologies, but the cross-national lags in the “intensive adoption” of new technologies, as measured by the time between the technologies’ initial adoption to intensive penetration throughout a country, has only grown.158 These trends give more weight to the GPT mechanism.

    Finally, even if the rise and fall of great technologies and powers is fundamentally different in the twenty-first century, previous industrial revolutions still exert substantial influence in the minds of academics and policymakers.159 To justify and sustain their agendas, influential figures in both the United States and China still draw on these historical episodes. At the very least, this chapter submits different lessons to be learned from these guiding precedents.

    When some of the leading thinkers of our era declare that the AI revolution will be more significant than the industrial revolution, it is difficult to not get caught up in their excitement. Somehow, every generation winds up believing that their lives coincide with a uniquely important period in history. But our present moment might not be so unprecedented. Unpacking how AI could influence a possible US-China power transition in the twenty-first century requires first learning the lessons of GPT diffusion from past industrial revolutions.

    8 Conclusion

    STUDIES OF HOW TECHNOLOGY interacts with the international landscape often fixate on the most dramatic aspect of technological change—the eureka moment. Consistent with this frame, the standard explanation for the technological causes of economic power transitions emphasizes a rising power’s ability to dominate profits in leading sectors by generating the first implementation of radical inventions. This book draws attention, in contrast, to the often unassuming process by which an innovation spreads throughout an economy. The rate and scope of diffusion is particularly relevant for GPTs—fundamental advances like electricity or AI that have the potential to drive pervasive transformation across many economic sectors.

    Based on the process of GPT diffusion, this book puts forward an alternative theory of how and when significant technological breakthroughs generate differential rates of economic growth among great powers. When evaluating how technological revolutions affect economic power transitions, GPTs stand out as historical engines of growth that can provide major boosts to national productivity. Though each is different, GPTs tend to follow a common pattern: after multiple decades of complementary innovations and institutional adaptations, they gradually diffuse across a broad range of industries. Everything, everywhere, but not all at once.

    This impact pathway markedly diverges from existing theories based on leading sectors. Akin to a sprint on a narrow lane, great power competition over leading sectors is framed as a race to dominate initial breakthroughs in the early growth periods of new industries. In contrast, GPT diffusion theory proposes that by more effectively adopting GPTs across many application sectors, some great powers can sustain higher levels of productivity growth than their competitors. Like a marathon on a wide road, great power competition over GPTs is a test of endurance.

    Disruptive technological advances can bring about economic power transitions because some countries are more successful at GPT diffusion than others. A nation’s effectiveness at adapting to emerging technologies is determined by the fit between its institutions and the demands of those technologies. Thus, if economic power transitions are driven by the GPT trajectory, as opposed to LS product cycles, the institutional adaptations that matter most are those that facilitate information exchanges between the GPT sector and application sectors, in particular the ability of nations to widen the engineering skill base linked to a new GPT.

    Three historical case studies, designed and conducted in a way to assess the explanatory power of the GPT mechanism against the LS mechanism, provide support for GPT diffusion theory. The case studies cover periods characterized by both remarkable technological change—the “three great industrial revolutions” in the eyes of some scholars—and major fluctuations in the global balance of economic power.1 Overall, the case study evidence underscores the significance of GPT diffusion as the key pathway by which the technological changes associated with each industrial revolution translated into differential rates of economic growth among the great powers.

    In the case of Britain’s rise to economic preeminence during the First Industrial Revolution, expanded uses of iron in machine-making spurred mechanization, the key GPT trajectory. The gradual progression of mechanization aligned with the period when Britain’s productivity growth outpaced that of France and the Netherlands. Britain’s proficiency in adopting iron machinery across a wide range of economic activities, rather than export advantages from dominating innovation in leading sectors such as cotton textiles, proved more central to its industrial ascent. Though its industrial rivals boasted superior systems of higher technical education for training expert scientists and top-flight engineers, Britain benefited from mechanics’ institutes, educational centers like the Manchester College of Arts and Sciences, and other associations that expanded access to technical literacy and applied mechanics knowledge.

    The Second Industrial Revolution case also favors the GPT mechanism’s explanation of why certain great powers better adapt to periods of remarkable technological change. The LS mechanism focuses on Germany’s discoveries in new science-based industries, such as chemicals, as the driving force behind its catching up to Britain before World War I. However, the United States, emerging as the preeminent economic power during this period, was more successful than Germany in exploiting the technological opportunities of the Second Industrial Revolution. Enabled by innovations in machine tools, the extension of interchangeable manufacturing techniques across many American industries functioned as the key GPT trajectory that fueled the rise of the United States. Scientific infrastructure or industrial R&D capabilities, areas in which the United States lagged behind its industrial rivals, cannot account for its advantage in adopting special-purpose machinery across nearly all branches of industry. Rather, the United States gained from institutional adaptations to widen the base of mechanical engineering talent, including through the expansion of technical higher education schools and the professionalization of mechanical engineering.

    Evidence from the US-Japan rivalry amid the information revolution exposes more gaps in the LS account. During the late twentieth century Japan captured global market shares in new fast-growing sectors such as consumer electronics and semiconductor components, prompting many to predict that it would overtake the United States as the leading economic power. Yet such an economic power transition, an inevitability based on the expectations of the LS mechanism, never occurred. Instead, the United States sustained higher rates of economic growth than Japan owing, in part, to greater spread of computerization across many economic sectors. Japan’s productivity growth kept up with the US rate in sectors that produced information technology but lagged far behind in sectors that intensively used information technology. Once again, differences in institutional adaptations to widen the GPT skill base turned out to be significant. While Japanese universities were very slow to adapt their training to the demand for more software engineers, US institutions effectively broadened the pool of such skills by cultivating a separate discipline of computer science.

    As a supplement to the case studies, I conducted a large-n statistical analysis to test whether countries with superior GPT skill infrastructure preside over higher rates of GPT diffusion. Leveraging time-series cross-sectional data on software engineering education and computerization rates in nineteen countries (the G20 economies) across twenty-five years, the quantitative analysis confirmed this crucial expectation derived from GPT diffusion theory. I found less support for other factors often assumed to have a positive effect on an economy’s broader technological transformation, including institutional factors linked to securing LS product cycles. This empirical test validates a core component of GPT diffusion theory across a sample of the world’s major emerging and developed economies.

    Main Contributions

    First, at its core, Technology and the Rise of Great Powers introduces and defends GPT diffusion theory as a novel explanation for how and when technological change can lead to a power transition. Historical case studies and statistical analysis substantiate the explanatory power of GPT diffusion theory over the standard explanation of technology-driven power transitions based on leading sectors, which exerts enduring influence in policy and academic circles.2 In doing so, the book answers the call by scholars such as Michael Beckley and Matthew Kroenig for the international relations field to devote more attention to the causes of power transitions, not just their consequences.3

    By expounding on the significance of GPT skill infrastructure, the book points toward next steps to better understanding the politics behind some of the most significant technological advances in human history. To investigate why some countries are more successful in cultivating GPT skill infrastructure, promising avenues of research could tap into existing work that concentrates on centralization, inclusiveness of political institutions, government capacity to adopt long time horizons, and industrial organization.4 In these efforts, being careful to differentiate between various pathways by which technological changes make their mark, as this book does with the GPT and LS mechanisms, will be especially important when underlying political factors that satisfy the demands of one type of technological trajectory run counter to the demands of another.

    Future work should also probe other institutional factors beyond GPT skill infrastructure that contribute to cross-national differences in GPT adoption. This opens up a universe of institutions that are often ignored in innovation-centered accounts of technological leadership, including gender gaps in engineering education,5 transnational ethnic networks that facilitate technology transfer,6 and “technology diffusion institutions,” such as standard-setting organizations and applied technology centers.7

    In positioning the LS mechanism as the main foil to the GPT mechanism, my intention is to use this clash between theories to productively advance our understanding of the rise and fall of great technologies and powers. Contestation should not be misread as disparagement. In one sense, GPT diffusion theory builds on previous scholarship about leading sectors, which first identified the need to flesh out more specific linkages between certain technological advances and more highly aggregated economic changes in the context of power transitions.8 Testing, revising, and improving upon established theories is essential to gradual yet impactful scientific progress—not so unlike the incremental, protracted advance of a GPT.

    Second, the book’s central argument also suggests revisions to assessments of power in international politics. Recognizing that scientific and technological capabilities are becoming increasingly central to a nation’s overall power, researchers tend to equate technological leadership with a country’s ability to initiate “key ‘leading sectors’ that are most likely to dominate the world economy into the twenty-first century.”9 For instance, an influential RAND report, “Measuring National Power in the Postindustrial Age,” proposes a template for measuring national power based on a country’s capacity to dominate innovation cycles in “leading sectors.”10 In this effort, the authors draw directly from LS-based scholarship: “The conceptual underpinnings of this template are inspired by the work of Schumpeter, Rostow, Gilpin, Kennedy, and Modelski and Thompson.”11 This study has gained considerable traction in academic and policymaking circles, inspired further workshops on national power, and has been called “the definitive US study on CNP [Comprehensive National Power].”12

    Contrary to these approaches, this book submits that evaluations of scientific and technological power should take diffusion seriously. Assessments that solely rely on indicators of innovation capacity in leading sectors will be misleading, especially if a state lags behind in its ability to spread and embed innovations across productive processes. A more balanced judgement of a state’s potential for technological leadership requires looking beyond multinational corporations, innovation clusters like Silicon Valley, and eye-popping R&D numbers to the humble undertaking of diffusion. It shines the spotlight on a different cast of characters: medium-sized firms in small towns, engineers who tweak and implement new methods, and channels that connect the technological frontier with the rest of the economy.

    In an article published in the Review of International Political Economy journal, I illustrated the value of this diffusion-oriented approach in gauging China’s scientific and technological capabilities.13 Preoccupied with China’s growing strength in developing new-to-the-world advances, existing scholarship warns that China is poised to overtake the United States in technological leadership. This is mistaken. There is still a large gap between the United States and China when it comes to the countries’ readiness to effectively spread and utilize cutting-edge technologies, as measured by penetration rates of digital technologies such as cloud computing, smart sensors, and key industrial software. When the focus shifts away from impressive and flashy R&D achievements and highly cited publications, China’s “diffusion deficit” comes to light. Indeed, a diffusion-centric assessment indicates that China is much less likely to become a scientific and technological superpower than innovation-centric assessments predict.

    Relatedly, the GPT diffusion framework can be fruitfully applied to debates about the effects of emerging technologies on military power. Major theories of military innovation focus on relatively narrow technological developments, such as aircraft carriers, but the most consequential military implications of technological change might come from more fundamental advances like GPTs. In an article that employs evidence from electricity’s impact on military effectiveness to analyze how AI could affect the future of warfare, Allan Dafoe and I challenge studies that predict AI will rapidly spread to militaries around the world and narrow gaps in capabilities.14

    Third, as chapter 7 spells out in detail, GPT diffusion theory provides an alternative model for how revolutionary technologies, in particular AI, could affect the US-China power balance. This, in turn, implies different optimal policies for securing technological advantage. Drawing on the LS template, influential thinkers and policymakers in both the United States and China place undue emphasis on three points: the rapid timeframe of economic payoffs from AI and other emerging technologies; where the initial, fundamental innovations in such technologies cluster; and growth driven by a narrow range of economic sectors.

    GPT diffusion theory suggests diverging conclusions on all three dimensions. The key technological trajectory is the relative success of the United States and China in adopting AI advances across many industries in a gradual process that will play out over multiple decades. It will be infeasible for one side to cut the other off from foundational innovations in GPTs. The most important institutional factors, therefore, are not R&D infrastructure or training grounds for elite AI scientists but rather those factors that widen the skill base in AI and enmesh AI engineers in cross-cutting networks with entrepreneurs and scientists.15

    Yet, the United States is fixated on dominating innovation cycles in leading sectors. When it comes to their grand AI strategy, US policymakers are engrossed in ensuring that leading-edge innovations do not leak to China, whether by restricting the immigration of Chinese graduate students in advanced technical fields or by imposing export controls on high-end chips for training large models like GPT-3 and ChatGPT.16 A strategy informed by GPT diffusion theory would, instead, prioritize improving and sustaining the rate at which AI becomes embedded in a wide range of productive processes. For instance, in their analysis of almost 900,000 associate’s degree programs, Center for Security and Emerging Technology researchers Diana Gehlhaus and Luke Koslosky identified investment in community and technical colleges as a way to unlock “latent potential” in the US AI talent pipeline.17 This recommendation accords with an OECD working paper on the beneficial effects of a wider ICT skills pool on digital adoption rates across twenty-five European countries. The study finds that “the marginal benefit of training for adoption is found to be twice as large for low-skilled than for high-skilled workers, suggesting that measures that encourage the training of low-skilled workers are likely to entail a double dividend for productivity and inclusiveness.”18

    At the broadest level, this book demonstrates a method to unpack the causal effects of technological change on international politics. International relations scholars persistently appeal for the discipline to better anticipate the consequences of scientific and technological change, yet these demands remain unmet. By one measure, between 1990 and 2007, only 0.7 percent of the twenty-one thousand articles published in major international relations journals explicitly dealt with the topic of science and technology.19 One bottleneck to researching this topic, which Harold Sprout articulated back in 1963, is that most theories either grossly underestimate the implications of technological advances or assume that technological advance is the “master variable” of international politics.20

    This book shows that the middle ground can be a place for fruitful inquiry. Technology does not determine the rise and fall of great powers, but some technological trends, like the diffusion of GPTs, do seem to possess momentum of their own. Social and political factors, as represented by GPT skill infrastructure, shape the pace and direction of these technological trajectories. This approach is particularly useful for understanding the effects of technological change across larger scales of time and space.21

  • 张英洪:北京周边村庄调研的情况

    顺义区赵全营镇东绛洲营村调研报告

    一、村庄基本情况

    顺义区赵全营镇东绛洲营村是北京郊区一个比较普通的北方村庄,全村总面积约1600亩(其中被征地约300余亩)。2018年底,该村常住人口370人、110户,其中外来人口近100人,这些外来人口主要是在附近空港企业上班租住在村内的人口。全村耕地面积680.3亩(其中基本农田508亩),林地186亩(含平原造林80亩),园地15亩,水面40.47亩。2000年该村以1999年12月31日为时间节点完成了承包地确权,当时参加土地确权的户籍人口289人,人均确权地3.03亩。

    2018年该村集体总收入279.89万元(比2017年的230.9万元增加48.99万元),其中财政补贴奖励138.37万元(比基2017年的155.6万元减少了17.23万元);村集体全年总支出240.65万元(比2017年的218.8万元增加了21.85万元)。2018年,该村农民人均纯收入3.16万元,在全区处于中上水平。

    近十年来,该村有过三次小规模的征地。第一次征地发生在2010年,因空港C区建设征收土地153亩,每亩征地补偿费9万元;第二次征地发生在2013年,也是因为空港C区建设征收土150余亩,每亩征地补偿费11万元;第三次征地发生在2017年,因修建京沈客运高铁专线征收土地近5亩,每亩征地补偿费20万元。在空港C区建设二次征地中,根据北京市政府2004年148号令,相应确定该村农转非人员共37人(其中第一次16人,第二次21人)。京沈客运高铁专线征收土地将给该村一个劳动力转非指标。该村有土地征收补偿费1498万多元,专账管理,村里可以使用征收补偿费的利息用于发放村民福利。2018年利息约21万元,其中70%分配给村民福利,30%留作村集体使用。

    该村产业主要是籽种、花卉、苗圃,其中花卉以种植蝴蝶兰为主,面积150多亩,具备一定的规模。该村确权地的流转分两种情况:一种是村民自主流转,约200多亩;另一种是村民将确权地统一流转给村集体,由村集体再流转出去。2014年该村确定的流转给村集体的土地流转费为每亩1200元,至今没有调整土地流转费标准。2018年村里发放给村民的土地流转费76万元。全村有劳动力160多人,基本上都外出打工。村里只有2户村民自家种植苗圃,面积不到10亩,其他村民都将土地流转出去了。

    该村曾有三家从事冲压件加工生产的工业企业,解决本村二三十村民就业,加上附近村民,共约六七十村民就业。村里每年除了收取上述三家企业约27亩的土地租金外,还可以从三家企业获得20多少万元的税收返还收入。2017年因环保督查,这三家企业被关闭,现该村已没有工业企业。

    该村共有中共党员26名,其中4名离退休党员。仅有的三户低收入户已于2018年脱低。该村2名低保户董克立、王长青,均存在智障,每月领取家庭保障资金1485元。

    2018年该村完成了违章建筑拆除后,相应加强了环境整治和绿化工作。从直观上看,该村绿化总体较好,村庄规划建设有序,环境卫生优良。村里还建立了一套村民福利制度,2018年全村发放村民福利费48.83万元。

    该村有房姓、董姓、张姓、丁姓等姓氏。我随意走到村民房晓兴的家里与之聊天,生于1965年的房晓兴只有两口子在家,他们唯一的闺女已经嫁到通州区,10多亩土已经流转给村集体。房晓兴是该村2名保洁员之一,村里另设有6名专职巡防员,加强村内治安和环境等方面工作。村书记张亚军已任村书记25年,带领该村获得的荣誉不少,其中有首都绿色村庄、首都文明村、北京市民主法治示范村等荣誉称号。

    二、存在的主要问题

    经过初步的调研,我发现该村存在的问题可以分为具体问题、发展问题和深层问题三个方面。

    (一)具体问题

    一是停车位问题。该村村民自购小车较多,目前没有划出正式的停车位,存在一些随意停车和其他不规范的现象,影响村容,也产生一些不方便之处。

    二是建筑垃圾处理问题。村里主要有生活垃圾和建筑垃圾两大类,对于生活垃圾,已经实行户整理、村收集、镇运输,镇村每天收集运输生活垃圾二次,可以说生活垃圾的处理已不成问题。现在关键是建筑产生的渣土垃圾的处理比较困难,一些建筑垃圾处理点对于土多一点的建筑垃圾拒绝回收,一般垃圾运输车也不准上公路,需专用建筑垃圾车才能上路运输,这些问题有一定的普遍性。

    三是煤改电设备补偿问题。2015年该村列入煤改电试点村,每户村民花费7000元用于购买煤改电设备。而2016年、2017年在全镇推广煤改电项目时,煤改电设备全部免费配送给村民。这使该村村民感到明显的不公平。为平息民怨,村里从村集体资金里对每户村民进行了补偿,但上级至今未对该村进行相应补偿。

    (二)发展问题

    一是设施农业发展问题。2018年以来的“一刀切”式的大棚房清理,导致该村设施农业受到毁灭性打击。该村反映,作为假借设施农业之名行建房之实的“大棚户”,的确应该严格清理,但真正从事蔬菜种植的大棚,则需要建设一定比例的配套操作房间,才能正常开展农业生产。2018年8月底,原驻在该村的顺义区三农研究会建设的有关大棚和房屋被全部拆除。有的规定蔬菜大棚内的作业小道不超过60公分宽,但相应的农用小推车往往超过60公分。这些政策明显脱离实际。

    二是生猪饲养问题。2018年以来,随着非洲猪瘟的爆发,该村对2处养猪场所进行了清退,对202头生猪进行了无害化处理。现在该村已无一家养猪。村民养猪受到了严格限制。

    三是闲置厂房土地利用问题。该村因环保问题而关闭的三家工业企业,占地近30亩,现完全闲置。如何利用好这些村内的集体建设用地,发展壮大集体经济,是一个大课题。

    四是农民合作社发展问题。目前该村尚未建立农民专业合作社,这在花卉等乡村产业中,不能很好地组织农民参与和发展。

    (三)深层问题

    一是人口老龄化问题。2018年该村有60岁以上的老人65人,到2019年增加到71人,老龄化率为19.18%,村庄人口老龄化问题相当突出。这个问题具有相当的普遍性。如何使老年人老有所养,是一个重大的民生问题。

    二是村庄空心化问题。该村中青年人基本上都外出打工谋生,留在村内的多是一些老人。我们在村内溜达时,发现村庄虽然很整洁宁静,绿化也很好,但就是没见到年轻人,我只见到一些老人在晒太阳或聊天。村庄空心化同样具有普遍性。没有年轻人的村庄,就难以有生机活力和持续发展。

    三是治理现代化问题。村集体经济组织在乡村治理中的功能和作用发挥的不够明显,村民参与治理的积极性和创造性比较缺乏。村庄治理的制度化、规范化、程序化有待于进一步健全完善。

    三、几点建议

    该村存在的一些问题,有的是村庄本身可以解决的,有的则是村庄自身无法解决的,需要从国家、政府以及社会等层面加以合力解决。

    (一)针对具体问题的建议:一是与有关交通部门联系,做好村内停车位的规范化划分和有序化管理工作。二是与上级党委政府和有关部门联系反映,统筹解决建筑垃圾的回收处理工作。三是继续向上级党委政府争取解决煤改电相关设备费用补贴问题。

    (二)针对发展问题的建议:一是改变“一刀切”式的大棚房清理方式,根据实事求是的原则,既做到坚决制止利用发展设施农业违规建设大棚房现象,又做到立足设施农业发展实际,制定有利于真正发展设施农业的相关政策。二是应当允许村民自愿饲养生猪,减少过多的行政干预,尊重农民的生产生活习性,克服农村工作的官僚主义、形式主义。三是新修订的《土地管理法》规定,允许集体经营性建设用地在符合规划、依法登记并经本集体经济组织三分之二以上成员或村民体表同意的条件下,通过出让、出租等方式交由集体经济组织以外的单位或个人直接使用。该村可以依此新规定,为产业发展利用好闲置厂房土地。四是根据该村籽种、花卉等产业发展实际,相应建立农民专业合作社,提高农民的组织化程度,扩大农民就业,增加农民收入。

    (三)针对深层问题的建议:一是全面废止长期控制人口的计划生育政策,真正将自主生育权还给村民家庭,加快建立鼓励生育的政策体系,切实降低生育成本和教育成本;加强老有所养政策制度体系建设,在村里尽快建立老年餐厅,解决老年人就餐问题,同时建立健全老人照料服务体系和老人社会福利制度,保障老有所养。二是加快破除城乡二元体制,推动乡村振兴,实现城乡融合发展,实现人口和其他要素在城乡之间的双向自由流动,构建返乡人员自由选择的政策制度环境。三是创新集体经济组织建设,发挥集体经济组织在乡村治理中的应有作用;健全党组织领导的自治、法治、德治相结合的乡村治理体系,把权力关进制度的笼子里,确保高度集中起来的村庄公共权力置于法律和村民的监督制约之下,防止和惩治村庄腐败。特别是要防止任性而不负责的公共权力摧毁农业、折腾村庄、压制村民,要敬畏乡村发展的文化基因和内在规律,尊重农民的生产生活自主权,维护社会公平正义,着力实现乡村善治。

    2019年9月13日

    从“蚁族”聚居村到现代都市区——北京市海淀区唐家岭村城市化转型的调查与思考

    唐家岭村隶属于北京市海淀区西北旺镇,20世纪90年代以来北京快速的城市化,推动了唐家岭村从传统乡村到城乡结合部,再到现代大都市社区的历史性飞跃。

    一、基本情况:曾经著名的“蚁族”聚居村

    2009年底,唐家岭村户籍人口3364人,其中非农业户籍人口2039人、农业户籍人口1325人,外来人口5万多人。外来人口相当一部分是在唐家岭村附近中关村企业上班的大学毕业生,他们被称为“蚁族”。

    2010年5月,作为全市城乡结合部50个重点改造村之一的唐家岭村,以村民代表大会方式通过自主制定的全村腾退改造方案。2018年10月,唐家岭村委会建制被撤销,结束了村居并存的历史。截至2020年底,唐家岭社区常住户籍人口1335户3550人,辖区内居住总人口12939人;村域总面积483.06公顷,其中基本农田19.26公顷、园地141.41公顷、林地19.26公顷、规划用地231.58公顷、交通运输用地52.42公顷、水域及水利设施用地16.49公顷、其他用地2.64公顷。

    二、唐家岭村城市化转型的主要做法

    (一)实行旧村腾退搬迁上楼,集中建设唐家岭新城

    2010年唐家岭地区正式启动整体改造工程,2012年7月开始回迁上楼。根据腾退安置政策,唐家岭村安置房面积按村民原有宅基地面积1:1置换。被腾退搬迁户家庭人均面积不足50平方米的,可按人均50平方米补足。唐家岭村腾退搬迁方案还规定了相关奖励政策。村民腾退旧村建成的唐家岭新城,占地面积11.7公顷,总建筑面积约为34.74万平方米,共18栋住宅3159套,居住户籍人口1335户。

    (二)推进农村集体产权制度改革,成立股份经济合作社

    唐家岭村以2010年12月31日为时点进行了清产核资,确认唐家岭村集体资产总额455412161.49元,净资产45514861.17元。唐家岭村股权设置包括集体股与个人股,集体股占10%、个人股占90%,全村共有1796人享有基本份额,股东去世与继承人合并入股,最终入股股东1791人。

    2016年,唐家岭村经济合作社转制成立唐家岭村股份经济合作社。2019年12月,唐家岭村股份经济合作社完成农村集体经济组织登记赋码换证工作。2020年,唐家岭村股份社股东每年每股分红高达4万元。

    (三)实行整建制农转非,实现农民身份市民化

    进入21世纪以来,唐家岭村集体土地先后被征收1710亩,现在尚有集体土地4170亩。自2004年7月1日施行《北京市建设征地补偿办法》后,唐家岭村征地转非和整建制农转非均依此实施“逢征必转”“逢征必保”政策。在2006年前,唐家岭村征地转非306人;2006年,唐家岭村两次征地分别完成劳动力转非473人和200人,劳动力转非费用为3376.8万元;2011年,唐家岭村完成921人征地转非,劳动力转非费用为6431.6万元;2015年12月,唐家岭村进行最后一次280人的整建制转非,劳动力转非费用为709万元。2006年以后唐家岭村取得征地批复的土地1703.662亩,征地补偿金额为128334.805万元。

    唐家岭村征地转非和整建制农转非一共涉及2180人,农转非费用共计29945万元,人均农转非费用13.7万元。其中:劳动力转非涉及1871人,劳动力转非费用共计13475万元,人均转非费用7.2万元;超转人员309人,缴纳超转费用16470万元,人均53.3万元。由于唐家岭地区整体转非时间比较早,且为了节约转非成本,唐家岭村前期优先安排了超转人员转非工作,所以人均53.3万元看起来相对不高。但是根据海淀区西北旺镇2020年整建制转非的6个村来看,一名超转人员最高转非费用高达766万元。

    (四)创新集体土地入市方式,率先建设集体公共租赁住房

    2012年,唐家岭村经批准,在全国率先开展利用集体产业用地建设公租房试点。唐家岭村公租房建筑面积73749.92平方米,共建成1498套公租房。按照有关要求,唐家岭公租房项目纳入政府保障性住房规划和年度计划,按照每平方米每月55元的价格整体租赁给海淀区住房保障办公室。2017年,唐家岭公租房项目正式移交海淀区住保办统一管理和配租。截至2021年底,唐家岭公租房居住率达到90%,居住在公租房里的人员基本上都是附近企事业单位的工作人员。2020年,唐家岭村股份经济合作社从公租房项目中收取租金4933万元。

    (五)发挥集体经济组织主体作用,发展壮大集体经济

    唐家岭村在城市化转型进程中,充分发挥集体经济组织即村经济合作社、村股份经济合作社在集体经济发展中的主体作用。2012年,经北京市政府和海淀区政府批准的唐家岭产业园项目,就是利用集体土地建设的产业园,总用地面积103680.97平方米。唐家岭产业园项目由唐家岭村经济合作社开发建设,建设总投资11亿元。2011年4月,唐家岭村与西北旺镇下属企业北京百旺种植园签订为期20年的土地租赁合同,租赁面积为448亩,年租金为179.2万元。截至2020年底,唐家岭村集体经济总收入1亿多元。

    (六)撤销村委会,实现村庄治理社区化

    2002年,唐家岭地区就设立了唐家岭社区居委会。2019年2月,海淀区人民政府正式批复撤销唐家岭村民委员会建制。唐家岭撤村后,唐家岭村股份经济合作社与社区居委会联合办公,各司其职,共同推进工作。股份社的主要职能是发展壮大集体经济,促进集体资产保值增值,切实维护股东合法权益;居委会的职能是办理社区居民的公共事务和公益事业,组织开展社区便民利民服务、公益服务和志愿互助服务等。当社区在服务居民的过程中,出现经费缺口,股份社通过股东代表大会决议,可以向社区提供活动经费。

    三、思考与启示

    唐家岭村城市化转型提供的最大启示,就是要实现从城乡二元体制中的传统城市化转向城乡一体的新型城市化。

    (一)农村集体产权制度改革是维护和发展农村集体和农民财产权利的有效方式

    北京市按照“撤村不撤社、资产变股权、农民当股东”的思路和原则推进农村集体产权制度改革,比较公平合理地维护了农村集体和农民群众的财产权利,坚持和发展了新型集体经济,这是城市化进程中城中村和城郊村实现城市化转型发展最为重要的基本经验。唐家岭村的城市化转型就是坚持和受益于这条基本经验。

    但国家层面支持农村集体产权制度改革的税收政策法律建设滞后和缺位比较突出。农村集体产权制度改革过程中可能涉及的增值税、企业所得税、土地增值税、资产转移所涉税收、回迁房和农民安居工程所涉税收、集体收益分配税收(红利税)等,都缺乏相应的税收政策法律支持。为深化农村集体产权制度改革,国家层面应当尽快研究出台支持集体产权制度改革和农村集体经济发展的税收制度、财政制度、金融制度,应当减免农村集体产权制度改革中相关税收,加大财政金融支持。

    (二)农村集体经济组织是社区投资建设、经济发展和治理的重要主体

    唐家岭村集体经济组织在城市化转型发展中发挥了不可替代的作用,主要体现在三个方面:一是发挥了村庄投资开发建设主体作用。唐家岭村经济合作社(股份经济合作社)及其所属公司承担了唐家岭村腾退改造和投资开发建设的重要任务,这就保障了村集体和村民成为村庄城市化建设的主体。二是承担了集体经济发展壮大的主体责任。唐家岭村经济合作社(股份经济合作社)及其所属公司负责集体产业园区建设和其他集体经济发展责任,这与那些将集体经济组织排除在外的村庄经济建设模式形成鲜明对比。三是发挥了社区治理的重要作用。无论是撤村前的村庄社区还是撤村后的城市社区,集体经济组织都是社区治理的重要主体之一,特别是在村庄城市化转型中,集体经济组织具有其他组织都难以具备的文化纽带、情感维系、经济依赖、服务保障等生活共同体功能。

    但集体经济组织的发展仍然面临不少问题,需要与时俱进地改革完善。一方面,从外部环境上说,亟须加快构建集体经济组织公平发展的制度环境。另一方面,从内部治理来说,应当高度重视集体经济组织内部治理体系和治理能力现代化建设,维护和发展集体经济组织成员的民主权利和财产权利。

    (三)集体建设用地入市是增强村庄自主发展的重大制度创新

    农村集体建设用地入市是一项让多方受益的重大制度创新成果。一是实现了城乡结合部地区村庄从低端的“瓦片经济”向中高端的“租赁经济”的成功转型;二是为城乡结合部地区大量外来就业人口提供了相对体面的居住需要;三是为发展壮大集体经济提供了有保障、低风险、可持续的收入来源。

    随着新修订的《土地管理法》及《土地管理法实施条例》施行,已于2004年7月1日施行的《北京市建设征地补偿安置办法》与上位法及实际情况极不相符,亟须全面系统地加以修改。一是建议由市人大常委会组织开展《北京市建设征地补偿安置办法》的修改工作,统筹兼顾,超越部门利益的羁绊,保障地方立法的公正性和权威性。二是适应乡村振兴和新型城市化发展的现实需要,调整和改变长期以来土地增减挂钩的政策做法,保障和规范城乡结合部地区村庄以及传统乡村地区产业用地的需求。三是保障农村集体经济组织利用集体经营性建设用地入市的自主权,规范集体经营性建设用地入市相关程序,制定公平合理的集体经营性建设用地入市税费政策,保障集体经济组织及其成员依法合理享有集体经营性建设用地入市的收益。

    (四)城乡一体化的制度供给是新型农村城市化的迫切需要

    在城乡二元体制尚未破除的情况下,农村城市化模式的基本内容:一是通过政府强制征地,将农村集体土地变性为国有土地,然后在国有土地上进行开发建设;二是通过征地农转非或整建制农转非,将农业户籍身份转变为非农业户籍身份;三是农村集体和农民缴纳巨额费用,将转非农民纳入城镇社会保障体系。唐家岭村的城市化转型,既体现了新型城市化的创新探索,又带有深刻的传统城市化模式的烙印。

    新时期推进农村新型城市化,必须坚持和体现城乡一体化发展的根本要求。

    一是贯彻落实城乡统一的户籍制度改革政策,停止实行征地农转非和整建制农转非政策。2014年7月国务院《关于进一步推进户籍制度改革的意见》以及2016年9月北京市政府印发的《关于进一步推进户籍制度改革的实施意见》,都明确规定建立城乡统一的户口登记制度,取消农业户口和非农业户口的划分,统一登记为居民户口。因此,征地农转非和整建制农转非已经失去了基本的政策前提,建议尽快修改《北京市建设征地补偿安置办法》中有关“逢征必转”的规定,不再实行征地农转非和整建制农转非。公安部门应当依据城乡统一的户口政策,免费将全市户籍居民户口统一更改登记为居民户口。全市城乡居民只有居住地和职业之分,不再有农业户口和非农业户口之别。

    二是贯彻落实《土地管理法》和《土地管理法实施条例》,缩小征地范围,保障和规范集体建设用地入市。建议尽快修改《北京市建设征地补偿安置办法》有关建设征地的规定,严格遵守因公共利益需要征收农民集体土地的规定;明确和规范农村集体经济组织使用集体建设用地兴办企业或者与其他单位、个人以土地使用权入股、联营等形式共同兴办企业的相关规定,保障和赋予农村集体经济组织更多的土地发展权,发展壮大集体经济,促进共同富裕。随着城市化和城乡一体化的发展,一个重要现象是,城市也有农村集体土地,也有农业产业;农村也有国有土地,也有非农产业。因此有关“城市土地属于国有、城市郊区和农村土地属于集体所有”的静止性法律规定应当重新认识和调整。

    三是加快推进和实现城乡基本公共服务均等化,改变“逢征必保”政策体系。在城乡统一的社会保障制度建立之前确立的“逢征必保”政策已经不合时宜,建议尽快废止《北京市建设征地补偿安置办法》有关“逢征必保”的规定及其延伸的超转人员生活和医疗保障规定,统一走城乡基本公共服务均等化之路。应当明确的是,不管是否被征地,农民都应有平等享有社会保障的权利。应当按照城乡基本公共服务均等化的政策路径加快提高农民社会保障水平。建议将城镇职工和城乡居民两套基本医疗保险、基本养老保险政策,统一整合为不分城乡、身份和职业的基本医疗保险和基本养老保险。为加快补齐农民社会保障短板,建议从土地出让收入中设立专项资金用于提高农民社会保障水平,可以优先补齐撤村建居地区农民社会保障与市民社会保障的差距。

    四是统筹推进城市化中的撤村与建居工作,将社区公共服务供给纳入公共财政保障体系。撤村与建居是城市化中的重大问题,涉及多个职能部门方方面面的工作,需要统筹兼顾,相互衔接。城市化进程中撤销村委会后,原村委会负责的社区公共管理和公共服务事务应当有序移交给社区居委会负责,相关公共产品供给费用应当纳入公共财政保障范围。撤村后保留和发展起来的集体经济组织在社区公共治理中承担重要职责,政府应当对集体经济组织所承担的社区公共服务给予相应的财政补贴,或减免相关税费,合理减轻集体经济组织的社会性负担。

    百年辛庄变新庄——北京市昌平区兴寿镇辛庄村的调查思考与建议(节)

    作为北京市昌平区兴寿镇所辖21个行政村之一的辛庄村,有着数百年的建村历史,曾是一个十分普通平凡的北方村庄,但在2023年10月召开的北京市“百村示范、千村振兴”工程动员部署会上,辛庄村入选全市首批19个、昌平区唯一一个乡村振兴示范创建村行列。为探究辛庄村近十多年来的发展密码,助推乡村振兴示范村创建工作,展望首都乡村未来前景,2023年10月—12月,笔者先后7次到该村调研,发现辛庄村发展的一条重要路径是“环境好、人才聚、村庄兴”,展现出的一条重要特征是“一村涵容一学校,一校激活一村庄”,深藏其中的一条活乡兴村密码是“开放、包容、融合”。辛庄村在发展特色草莓产业的基础上,积极营造优良环境吸引向上学校等城市要素进村发展,向上学校则以丰富的人才资源助力辛庄村发展,实现了城乡要素优势互补、有机结合,推动了城乡融合发展的村庄实践。入选全市首批乡村振兴示范村创建行列后,辛庄村应当立足北京城市战略定位,坚持首善标准,着眼于建设中华民族现代文明,高起点高标准高品位推进乡村振兴示范村创建工作,努力建设成为一个拥有莓好产业、美丽乡村、美好生活、美学品格、美满幸福,具有高国民素质、高文明程度、高生活品质的首都发达村庄。

    一、基本情况

    辛庄村位于北京市昌平区兴寿镇东部,村域面积3407亩,其中农用地1671亩,集体建设用地985.4亩。在农用地中,耕地1075亩、园地546亩、林地46亩、其他农用地4亩。在集体建设用地中,农村宅基地600.8亩,共有宅基地360宗;现有集体经营性建设用地11.5亩。2011年6月8日,辛庄村完成农村集体产权制度改革,成立村股份经济合作社,共有股东1259人,股东实行静态管理。产改时点量化全村集体资产总额4268.8万元(含资源性资产)。2021年全村股金分红104.6万元,2022年股金分红85.96万元。截至2022年12月底,全村常住人口1670人,其中辛庄村户籍户数543户,户籍人口1013人,其中农业户319户626人,60岁以上人口340人。村“两委”干部9人,党员102人,村民代表47人。2022年村集体经营性收入227.2万元,农民人均所得19662元;2023年上半年村集体经营性收入191.3万元,农民人均所得10157元。

    20世纪90年代以来,在快速城市化进程中,辛庄村年轻人纷纷离开村庄进城谋生求发展,村庄成为老人的留守之地。与许多村庄一样,辛庄村属于典型的空巢老人村庄。但这个传统的普通村庄,最近十多年来发生了巨大的变化,从一个老人留守的空心村发展成为网红打卡村,这主要缘起于辛庄村顺应城市化和逆城市化发展的需要,积极营造优良的环境,吸引一批批市民下乡进村,使城市要素与乡村资源、现代文明与农耕文明有机结合与融合发展,从而催生了该村从一个十分普通的村庄跻身到全市乡村振兴示范创建村的历史性飞跃。新时代的辛庄村是辛勤的新老村民在城市化与逆城市化并存的城乡融合发展大潮流中共同创造出来的新村庄。

    二、主要做法

    辛庄村所在的昌平区是首都西北部生态屏障,确立了建设科教引领、文旅融合、宜居宜业生态城市的发展目标;所在的兴寿镇有“北京草莓第一镇”之称。在昌平区委、区政府统筹推动和兴寿镇党委、政府的直接领导下,辛庄村结合自身实际,主动适应城乡融合发展大势,积极营造优良的宜居宜业环境,团结和带领新老村民群众走上了一条“环境好、人才聚、村庄兴”的发展之路。该村的主要做法有以下几方面。

    (一)引进民办学校扎根,开启自然教育兴村新起点

    十多年前,辛庄村积极引进以自然教育为理念的民办教育机构向上学校进村扎根发展,从此开启了该村教育兴村的新起点。向上学校(原名南山艺术学园)创办于2009年,最初由20多位创办者选择昌平区小汤山镇讲礼村办学,当时只有3个班58名学生。2012年7月,向上学校搬至办学环境更好的昌平区兴寿镇辛庄村的果满地扎根发展。在当年一些地方对市民进村创业并不欢迎甚至歧视排挤的情况下,辛庄村李志水书记却以开放包容的胸襟引进向上学校(2022年南山艺术学园与昌平向上学校合并,统称为向上学校,另保留南山艺术幼儿园),并为向上学校(南山学园)的生存和发展提供了许多便利条件,创造了适宜的创业生活环境。向上学校(南山学园)是由一批心怀自然教育理想、向往乡村田园生活的市民,到乡村寻找宜学宜居环境而创办的新式民办教育机构。他们推崇和践行自然教育,秉持以人为本、注重身体和心灵整体健康和谐发展的全人教育理念,注重传承和弘扬我国道法自然、天人合一的自然观以及源远流长的农耕文化传统,深得不少对城市生活感到焦虑和厌倦的市民们的认同。当年辛庄村“两委”干部在一家民企老板拟高价租地建私人庄园与几个市民只能低价租地办学之间,最终决定将村里一块30亩地以年租金45万元租给了相对更少租金的向上学校(南山学园)。当时村干部认为在村里办文化教育要比建私人庄园更好。正是村干部这个非常正确的选择,在成就了向上学校(南山学园)的同时,也成就了辛庄村。俗话说“栽下梧桐树,引得凤凰来。”辛庄村“两委”栽的“梧桐树”就是营造了吸引城市要素进村的良好环境,而向上学校(南山学园)就是辛庄村引来的“金凤凰”。向上学校(南山学园)最初在辛庄村办学时只有6名学前教育的学生,2023年已发展到330多名学生、80多名全职教师。该校授课老师均为大专以上学历,其中本科学历占46%,研究生以上学历占22%。向上学校(南山学园)是辛庄村最近十多年取得突破性发展极为重要的发动机和动力源。拥有高学历、高收入的向上学校(南山学园)学生家长们常年租住在该村生活和创业,日积月累汇聚成了该村文化教育兴村的强大能量。

    (二)开展人居环境整治,树起生态健康立村新标杆

    为改变当年村庄人居环境比较恶劣的状况,为向上学校(南山学园)师生、新老村民营造干净卫生舒适的人居环境,辛庄村“两委”干部与向上学校(南山学园)学生家长们共同开展了村庄人居环境整治行动。2016年3月,向上学校(南山学园)学生家长杨婧、唐莹莹等7位妈妈率先在村里组成“净公益”环保小组,开展“减塑环保”行动,坚持不用、少用塑料袋、纸杯等一次性物品。2016年6月9日,辛庄村全面启动垃圾分类工作,全村取消垃圾堆放点和垃圾桶,实行“两桶两箱分类法”,走在了全市乃至全国农村生活垃圾分类的前列。所谓“两桶两箱垃圾分类法”,就是全村各户在家中将厨余垃圾放一桶、其他生活垃圾放一桶,将有毒有害垃圾放一箱、可回收物品放一箱。村委会分别对应“两桶两箱”进行收集,实现垃圾不落地。经过两年努力,辛庄村人居环境显著改善,成功创建了农村生活垃圾分类的“辛庄模式”。2021年4月辛庄村被评为北京市生活垃圾分类示范村。2018年兴寿镇以辛庄村为样板,在全镇其他20个村推广生活垃圾分类工作,形成了农村生活垃圾分类的“兴寿模式”。2019年,辛庄村“两委”根据兴寿镇党委、政府统一工作部署,集中开展了村庄环境治理,拆除了私搭乱建,进一步改善了村容村貌。2020年1月4日,向上学校(南山学园)学生家长们联络中国生物多样性保护与绿色发展基金会良食基金在村里举办“新年食尚发布会暨辛庄良食节”活动,传递健康饮食和环保文化,提倡绿色有机食品,倡导安全健康生活。2021年1月,辛庄村被评为“首都文明村镇”,村党支部书记李志水被授予“首都环保达人”称号。2021年1月8日,在《新京报》第14届“感动社区人物评选颁奖典礼”上,杨婧获得感动社区人物金奖。

    (三)营造乡村创业环境,形成人才产业兴村新气象

    辛庄村“两委”为向上学校(南山学园)的师生及学生家长们不断营造良好的就学就业创业创新环境,实现了新老村民的和谐共生与生产生活的良性循环。2020年至2022年,在新冠疫情的影响下,越来越多来自北京中心城区乃至全国各地的高知人群为躲避疫情、远离都市,纷纷将孩子送到辛庄村里的向上学校(南山学园)学习,自己则租住村民闲置房子生活和创业。据初步统计,到2023年12月,辛庄村向上学校(南山学园)吸引了来自全国各地近400名学生、200多户新村民,在新村民中有7名博士、72名硕士、125名本科、59名党员齐聚辛庄村生活创业。传统村庄自身不可能培养产生并留住如此多数量、高素质的人才群,这为人才兴村提供了最为宝贵的人才资源。正因为辛庄村为各种高素质人才提供了良好政治生态和人文环境,从而将一个曾经寂静的空巢老人村激活成了创客云集、业态繁多的产业兴旺村。截至2023年12月底,该村共有外来创客70余家,其中教育培训11家、餐饮14家、民宿12家、医疗健康7家、非遗手工7家、超市6家、咖啡馆4家、糕点茶艺4家、露营营地1家、农业企业8家,新村民带来社会资本投资累计达1.2亿元。新村民的创业与生活,每年为村庄创造租金收入1053万元,明显带动了本村原住村民就业增收、拉动了农特产品的生产销售、提升了村庄教育文化品位。辛庄村创客创业的影响力也辐射到周边的东新城村、西新城村、上苑村、下苑村等9个村。辛庄村每两周举办一次环保市集,形成了京郊网红一条街,每次环保市集吸引1000人左右的体验消费者。草莓是该村主要种植作物和特色支柱产业,辛庄村依托2013年3月就开始举办的北京农业嘉年华,推动了全村草莓的种植、销售和农旅体验等活动。“昌平草莓”是国家地理标志产品,兴寿镇被称为“北京草莓第一镇”。昌平草莓看兴寿,兴寿草莓看辛庄。辛庄村在2003年就开始种植近300亩的红颜草莓。2023年底,全村现有温室草莓大棚518栋,种植面积310.8亩,草莓总产量486吨,总产值1742.86万元。此外,该村还有蔬菜大棚28栋,种植面积42亩;苹果种植面积146亩。经过多年的发展,辛庄村已初步形成了以绿色有机草莓为主导的乡村特色种植业与以民办教育为带动的乡村都市型服务业这两大产业集群相互促进、相得益彰、共同发展的特色产业兴村新格局。

    (四)推行共建共生共享,绘就和美乡村治理新画卷

    目前,新村民与辛庄村原住民大约各占村庄常住人口的一半,新老村民共同构成了新时期辛庄村的生活共同体。辛庄村“两委”秉持共建共生共享理念,积极搭建有助于村“两委”干部与新老村民、新村民与老村民、村庄内部与外部世界、能人创业与共同富裕、农耕文化与现代文明共创共生、相得益彰的“五色金桥”,营造了良好的村内政治生态和村庄人文环境,丰富了村民的七彩生活,展现了具有自身特色的共建共生共享的生动实践,为村庄的持久发展奠定了基础。一是坚持党建引领,搭建红色服务桥。村“两委”为新村民创业与生活提供租房、租地、用水、修路、停车等各方面服务,为老村民提供出租房屋、销售农产品、就业、养老等方面服务。积极组织新老村民参与村庄人居环境整治等各项公共事务和公益事业。二是立足自然环保,搭建绿色生态桥。村“两委”紧紧依靠新老村民,村立崇尚自然、敬畏生命的自然教育观、生态产业观,共同开展“净塑环保——垃圾不落地”活动,发展绿色有机草莓产业,推行绿色低碳生活。三是着眼人才兴村,搭建青色人才桥。一方面,吸引优秀人才来村里投资兴业,千方百计为新村民营造更加优良的创业生活环境,充分发挥新村民普遍具有高学历、高收入、高品位的优势,弥补村里人才严重不足的短板,特别聘请向上学校(南山学园)副校长为村长助理,发挥了十分重要的人才智力支撑作用。另一方面,积极培育原住民中的致富带头人,选派年轻人参加抖音乡村致富带头人培训,鼓励和欢迎新乡贤回村参加“我的家乡我建设”活动。四是凝聚社会力量,搭建橙色公益桥。充分发挥荣誉村民、友好商户、向上青年等社会力量,支持和引导志愿者发起和参与环保、良食、孝老、助残、文化、教育、阅读等公益活动。2023年2月,在第十二届书香中国·北京阅读季书香京城系列评选中,辛庄村荣获“书香社区”奖。五是实现融合发展,搭建蓝色和谐桥。辛庄村将党组织领导下的自治、法治、德治相结合的治理理念和方法融入到村庄日常生产生活之中,助推乡风文明建设,传承纯朴民风,建设平安村庄,促进新老村民和谐共生、融合发展。2022年12月,辛庄村被评为北京市民主法治示范村。

    三、思考和建议

    最近十多年来,辛庄村实现了从京郊一个普通村庄到脱颖而出跻身全市首批乡村振兴示范村创建行列的第一次历史性飞跃,开放、包容、融合是其发展的活村密码。未来几年,辛庄村需要实现从全市乡村振兴示范创建村到建成产业强、乡村美、农民富的全市乡村振兴示范村以及村强民富、生态宜居、数字乡村、文化繁盛、文明善治的全市乡村振兴样板村的新飞跃,同样离不开开放、包容、融合的兴村要诀。开放容融活乡兴村。为使辛庄村在全市乡村振兴示范村创建中实现高质量的全面振兴,努力建成高水平的首都发达村庄,形成“中国辛庄”的乡村品牌,我们重点提出如下几方面的思考和建议。

    (一)紧扣北京城市战略定位,着力将辛庄村规划建设成为体现“四个中心”功能建设、提高“四个服务”水平的首都特色村

    首都乡村既是展现北京“四个中心”战略定位、履行“四个服务”的广阔空间,又是展示中国文明形象及北京首善标准的重要窗口。首都乡村,是伟大社会主义祖国的首都乡村、迈向中华民族伟大复兴的大国首都乡村、国际一流的和谐宜居之都乡村。建设首都乡村,就是要充分体现北京“四个中心”功能建设、“四个服务”的基本职责。

    在制定辛庄村示范村创建规划时,要提高站位,拓宽视野,将北京“四个中心”的战略定位和“四个服务”的基本职责融入到示范村创建规划之中,着力建设首都特色村。

    一是在政治中心功能规划建设上,要高度重视、因地制宜将京郊乡村作为承担国家政务活动的重要场所进行高品位的规划建设。可以考虑将辛庄村作为具有中国农味、北京韵味、乡村品味的一个重要乡村场景,规划建设体现中国特色、展现首都特点、呈现草莓特征的现代生态农场,突出规划建设北京草莓研学第一村、城乡融合发展示范村、生态文明建设样板村,为承接有关国家政务活动营造重要的乡村平台。

    二是在文化中心功能规划建设上,要弘扬和建设辛庄村世代相传的中华传统农耕文化,依托有机草莓和向上学校(南山学园),开设辛庄文化大讲堂,建立乡村振兴专家团,建设草莓文化馆、草莓文创研学园,推动草莓文化、自然教育文化、都市农业文化、城乡融合文化、乡村艺术美学等规划建设。重点要围绕提高国民素质和社会文明程度,推动形成文明乡风、良好家风、淳朴民风,创新新时代文明实践站建设方式,利用重要传统民俗节日,持续举办为村里老人贴春联、送月饼、百家宴、村晚等创意文旅活动,助推学习型村庄、书香村庄、和谐村庄、草莓艺术村庄、美学村庄建设,形成体现社会全面进步、人的全面发展的现代城乡融合新文明。

    三是在国际交往中心功能规划建设上,充分发挥辛庄村自然田园风光、悠久农耕文化、城乡融合发展、多元文化共生的独特魅力,围绕“自然学堂、莓好辛庄,在辛庄看见未来村庄”定位,突出有机草莓、自然教育、乡村文化的主题,以开放、包容、融合的心态和视野将辛庄村规划建设成为具有国际交往活动重要功能的乡村大舞台之一,为官方与民间丰富多彩的国际交往活动提供京郊田园式的国际知名乡村品牌“中国辛庄”。

    四是在国际科技创新中心功能规划建设上,对接昌平未来科学城、农业中关村,围绕有机草莓、自然教育、农文旅研等特色优势,将辛庄村纳入乡村科技研发基地和科技应用示范区,突出数字乡村的建设、应用与示范;依托有机草莓、向上学校(南山学园),拓展农业科学、自然科学教育,强化科学普及,培育科学精神,弘扬科学文化。实施科技+农业、科技+乡村等“科技+”系列工程,加强乡村数字新基建,提升村庄产业发展和村庄治理的数字化水平。

    五是在提高“四个服务”水平规划建设上,关键是要结合乡村特有功能、立足辛庄村实际,发展高质量的生态农业和乡村服务业,重点是要提供有机草莓等优质安全的农副产品、崇尚自然的现代全人教育、观光休闲的田园美景、旅游体验的乡村生活、宜居宜业宜游的乡村软硬环境,努力将辛庄村打造成为北京有机草莓第一村、食品安全第一村、自然教育第一村、营商环境第一村、北京服务第一村。

    (二)把握大都市郊区化发展趋势,切实将辛庄村规划建设成为率先实现城乡融合发展的典型示范村

    城市化和逆城市化并存是当前我国经济社会发展呈现的共同特征。简单地说,城市化就是农民进城,逆城市化就是市民下乡。作为超大城市,北京的逆城市化现象早在21世纪初就已显现,具体表现为郊区化,郊区化是特大城市中心城区人口向郊区扩散的现象,是逆城市化在大城市郊区的呈现方式。北京的逆城市化现象既有政府主导的以疏解北京非首都核心功能为重点的京津冀协同发展战略,也有市民自发选择离开中心城区到郊区乡村居住生活与创业就业的自觉行动。辛庄村就是在北京逆城市化即郊区化发展大势中因市民下乡进村而发展起来的新村庄。逆城市化为促进城乡融合发展提供了强大动力和宝贵机遇。推动城市化和逆城市化,以作为全市首批乡村振兴乡村创建村,辛庄村要在率先实现城乡融合发展上走在前列,做出示范。

    一是着力落实和创新户口登记制度,实现城乡居民户口身份上的平等和自由迁徙。实现城乡融合发展,既要打开城门,让农民进城成为新市民;也要打开村门,让市民下乡成为新村民。作为一个统一的现代国家,我们要建立健全全国城乡统一、开放、平等、公正的制度体系和制度框架,其中包括实现城乡居民户口身份上的平等和自由迁徙。应当将国务院和北京市有关户籍制度改革的最新政策意见真正落到实处,取消农业户籍与非农业户籍、本地户籍与外地户籍的划分,按常住人口居住地统一登记居民户口。在城市化和逆城市化进程中,农民选择进城就业居住生活就将其登记为城镇居民户口,市民选择下乡创业居住生活就将其登记为乡村居民户口。坚持户口随人走,社保随人转,从根本上解决人户分离问题。人始终是一个地区经济社会发展最重要最宝贵的第一资源,随着人口老龄化和少子化的加剧,人口资源的极端重要性将更加突显出来。建议取消“外来人口”“流动人口”的称谓,统一将进城的农民称之为新市民、进村的市民称之为新村民。辛庄村原住民中的年轻人大量进城就业居住生活,而留守在村里的老年人很难支撑村庄的可持续发展,新村民已经成为该村发展最为重要的生力军。为此,要将辛庄村常住人口中的新村民户口统一登记为辛庄村居民。切实保障城乡人口自由流动和迁徙,是从根本上破解乡村衰败、实现乡村振兴的战略举措。

    二是加大公共产品和公共服务供给,实现城乡基本公共服务均等化和便利化。目前辛庄村常住人口中新老村民大致各占一半,属于大城市郊区率先呈现城乡融合发展自然形态的村庄,与传统村庄以及传统城区的人口结构形态完全不同,这对于城乡融合型村庄的公共产品供给和基本公共服务均等化、便利性提出了新的现实要求。在示范村创建中,既要加强乡村产业项目、村庄风貌提升项目、公共服务设施项目等硬件规划建设供给,更要突出加强乡村基本公共服务项目、乡村文化建设项目、乡村公共治理项目等政策法律法规制度软件的规划建设供给。第一,在村庄风貌提升和公共服务设施规划建设方面,要尊重自然,守护传统,敬畏文化,保护村庄特有的物质文化和非物质文化遗产,让村民望得见山、看得见水、记得住乡愁。因地制宜进行村庄微改造、精提升,加强“无废村庄”建设,重点加强村庄污水有效处理和达标排放,提升生活垃圾以及生产垃圾有效处理水平,强化美化、亮化,建设美丽庭院,实现村庄森林化、花园化、田园化、艺术化,进一步提升生态宜居水平,展现“诗意栖居”的新境界。第二,在乡村教育文化方面,要把优先发展农村教育文化事业落到实处,坚持公办教育和民办教育并重,强化教育兴村理念。在公办教育上,要加大教育投入,在实行免费义务教育的基础上,对学前教育、高中教育也要尽快实行免收学费和杂费,建立学生免费午餐制度,保障学生吃得安全放心。建立普惠性的学生福利和家庭教育福利制度。大力创新教育方式,加强自然教育、通识教育、乡村艺术美学等教育,着力解决教育严重内卷化问题,大幅度减轻学生及其家长作业负担。在民办教育上,首先要着力解决向上学校(南山学园)继续发展所面临的一些现实问题,创造更加优良的办学政策制度环境。第三,在村庄公共文化建设上,加强公共文化设施建设,加大村庄公共文化产品和服务供给,传承弘扬乡村文化,加强乡村文化遗产保护,推动艺术乡村建设,规划建设村民俗博物馆、村文化馆、村图书馆、村史馆,组织编纂村史。结合有机草莓、自然教育、农文旅研、城乡融合等特点,举办百家宴、村晚、草莓品鉴会等乡村文化艺术活动,结合草莓和自然教育元素丰富农民丰收节活动内容,以“文”的艺术、“美”的力量推动文化兴村。第四,在医疗养老等社会保障方面,着眼村庄常住人口需求,加强村社区卫生服务站投入建设,方便新老村民就近方便就医,并朝着免费医疗的目标不断提高村民就医报销比例。2023年北京市城乡居民基础养老金标准为每人每月924元,福利养老金标准为每人每月839元,合计为每人每月1863元,与城镇职工养老金的差距较大。针对农村人口老龄化的实际,参照城镇职工养老标准以及台湾农民养老标准,加大健康养老服务投入建设,不断提高农村基础养老金和福利养老金标准,缩小城乡养老待遇差距,提高村民老有所养水平。

    三是积极适应城乡融合发展的趋势和需要,改革和创新有利于城乡要素自由流动的体制机制。2019年4月,《中共中央 国务院关于建立健全城乡融合发展体制机制和政策体系的意见》,明确提出要坚决破除妨碍城乡要素自由流动和平等交换的体制机制壁垒,促进各类要素更多向乡村流动,在乡村形成人才、土地、资金、产业、信息汇聚的良性循环,为乡村振兴注入新动能。全面推进乡村振兴面临的突出问题是,城市要素在向乡村流动时,作为城乡二元体制重要一元的传统农村封闭性体制机制没有相应地得到系统性改革和创新,造成了比较突出的制度改革严重滞后于实践发展的畸形社会现象,亟须解放思想,将改革开放进行到底。第一,健全农民市民化、市民村民化的机制。顺应城市化、逆城市化和城乡融合发展的大趋势,全面改革城乡二元体制,加快建立健全城乡统一、平等、开放、公平的制度体系,同步提升城市包容性和乡村包容性,确保农民进城变市民、市民下乡当村民。在实施乡村振兴战略中,要系统性地将下乡进村居住生活和创业就业的市民作为当地新村民来改革完善相关政策制度。第二,按照“三权分置”要求创新土地制度。放活和保障农村承包土地经营权,让更多新村民通过土地流转获得土地经营权而成为新农人。在解决新村民住宅问题上,按照宅基地所有权、资格权、使用权“三权分置”要求,近期要放活农村宅基地和农民房屋的使用权,赋予新村民租住原居民闲置宅基地和房屋的使用权,并予以颁证保护。依法保障原住民的土地承包经营权、宅基地使用权、集体收益分配权不受侵害。第三,深化农村集体产权制度改革,创新集体经济组织经营管理方式。随着人口自然老化与流动,已完成农村集体产权改革所确定和固化的原初集体经济组织成员(股东)将日趋减少甚至最后消失。必须与时俱进增补新村民作为集体经济组织成员,才能有效延续和维护集体经济组织的可持续发展。可以创设集体经济组织新成员(新股东)身份,明确相应的权利义务,做到既不侵害原集体经济组织成员(股东)的正当权益,又有利于集体经济组织吸收新成员(股东)后的可持续发展。对标集体经济组织特别法人定位和新村民的优势资源,加大村党支部办好村集体经济组织力度,在村集体经济组织下设立公司和专业合作社,建立平台公司,推进乡村经营,从新村民中优先选拔任用乡村经营优秀人才。可借鉴浙江经验设立强村富民公司,负责村庄产业发展和农产品品牌打造、乡村休闲观光体验旅游、承接村庄工程建设和管护、物业服务等事项;结合本村实际设立和发展草莓合作社、自然教育合作社、旅游合作社、住房合作社等。通过基层组织创新和制度创新,发展壮大新型集体经济,造福村民群众,促进共同富裕。

    (三)深入贯彻绿色发展理念,明确将辛庄村规划建设成为生态涵养区乡村绿色产业发展的健康典范村

    绿色发展理念是尊重自然、顺应自然、保护自然的生态文明理念,是建设健康环境、守护健康生活、保障健康身心的理念。辛庄村要立足生态涵养区功能定位实现绿色发展,重点是要突出以有机草莓为主导的乡村特色型种植业、以民办教育为带动的乡村都市型服务业这两大特色支柱产业,明确“莓好产业、自然教育、农文旅研”等乡村产业发展定位,推动和实现生态产业化、产业生态化、乡村艺术化、艺术乡村化,打造食品安全、生态文明、城乡融合、村民共富的核心竞争力,建设绿色发展的健康村庄。

    一是紧密结合全市“五子”联动要求实践绿色发展。辛庄村要主动参照或参与全市“五子”联动,以绿色发展为主线,以有机草莓、自然教育、农文旅研、乡村治理等为重点,推动乡村产业和乡村生活的生态化、绿色化、艺术化、健康化。第一,在参照国际科技创新中心建设中,强化科技赋能,积极对接“三城一区”(中关村科学城、怀柔科学城、未来科学城和北京经济技术开发区)主平台,引进科技要素入村,提升科技素养,为乡村振兴示范村创建插上科技的翅膀,重点引进和发展有利于有机草莓、自然教育、农文旅研、乡村治理等生态产业高质量发展和民生改善的科学技术,主动与国家和市属科研院所、国有企业合作,多方面开展科技示范项目,建设以有机草莓、自然教育等为主题的现代设施农业园区、自然教育园区、草莓研学园区,提升草莓、教育、文旅等乡村产业发展的科技含量和健康保障水平。第二,在参照“两区”即国家服务业扩大开放综合示范区、中国(北京)自由贸易试验区建设上,强化改革赋能,重在深化乡村绿色产业领域改革开放,发展有机草莓等高质量的乡村绿色产业以及自然教育等新型乡村服务业,建设市场化、法治化、国际化的乡村营商环境和开放型的乡村绿色发展体制机制。第三,在参照全球数字经济标杆城市建设上,强化数字赋能,推动现代信息技术在有机草莓、自然教育、农文旅研、乡村治理等生态农业和乡村生产生活领域的应用,着力促进数字技术与有机草莓、自然教育、农文旅研等乡村绿色产业深度融合。推动数字化赋能生态农业、数字化赋能乡村振兴、数字化赋能乡村健康服务、数字化赋能乡村治理。发展乡村数字普惠金融,更好满足创客等乡村经营主体的金融服务需求。第四,在参与以供给侧结构性改革创造新需求上,强化质量赋能,重点是大力发展以绿色有机草莓为代表的生态农业、以自然教育为引领的乡村新型服务业,打造绿色有机草莓生产加工品牌,为村庄生活人群和其他消费者提供绿色有机的农副产品,大力推行草莓、蔬菜、玉米等农作物的绿色有机种植和加工,推广自然教育、有机面包店、有机咖啡店、有机茶馆、有机餐厅和有机民宿等发展,率先建设首都健康有机乡村。第五,在参与以疏解北京非首都功能为“牛鼻子”推动京津冀协同发展中,迫切需要将京郊乡村与北京城市副中心、河北雄安新区一道作为疏解非首都功能的“鼎立三足”之一进行统筹规划建设。从全市层面看,一方面要加强顶层设计,将京津冀协同发展战略与首都乡村振兴战略有机结合起来推动乡村绿色发展,通过承接疏解的非首都功能促进京郊乡村振兴,以京郊乡村振兴助推京津冀协同发展。另一方面在制定政府主导非首都功能疏解到京郊乡村政策制度的同时,高度重视制定市场自主的非首都功能疏解到京郊乡村的政策制度。从辛庄村层面看,一方面要更加积极主动承接从市中心城区自主疏解到村里有利于绿色发展的城市要素,为向上学校(南山学园)等众多来自都市的乡村创客排忧解难,进一步营造可以预期、长期稳定的制度环境;另一方面要主动参与京津冀协同发展,在京津冀大范围内加强生态农业合作发展、农文旅研合作共享,扩大和形成辐射京津冀的村庄生产生活圈。

    二是充分利用村庄周边特有的外部优势资源推动绿色发展。跳出村庄看村庄,以更宽广的视野将辛庄村周边特有的外部优势资源纳入规划建设之中。辛庄村距北京大杨山国家森林公园10.3公里,可以将辛庄村作为北京大杨山国家森林公园周边的休闲旅游体验度假村进行规划建设。辛庄村北靠燕山山脉,京密引水渠穿村而过,可借此做好绿色发展的山水大文章,开辟登山健身步道,发展乡村体育;规划建设燕山文化艺术馆、京密引水渠博物馆、艺术馆。主动对接昌平未来科学城,为在辛庄看见未来村庄注入科学元素与活力因子。通过引进科技元素发展科技农业、开设科技小院、建设科技之村。依托距北京农业嘉年华3.6公里的区位优势,大力发展有机草莓品牌和其他有机农业品牌,建设草莓研学园、有机农业园。辛庄村距离中国国家版本馆3.5公里,可借助中国国家版本馆优势,强化文化赋能,实现联动发展,传承弘扬中华优秀传统文化,发展乡村绿色农耕文化,建设辛庄村史馆、乡村博物馆、乡村文化馆、民俗艺术馆,组织编修村史村志,推动绿色文化兴村。

    三是切实立足本村农味乡情优势和现有基础提升绿色发展。进一步提升人居环境整治水平,实施农村生活垃圾分类“辛庄模式”提升工程,规划建设环保主题公园,在新的起点上发挥全市农村生活垃圾分类示范村带动效应,大力开展村庄绿化、美化行动,推动乡村美学发展,大幅度提高村庄林木花草覆盖率,建设首都森林村庄、花园村庄、艺术村庄,营造乡村“诗意的栖居”。调整优化生态涵养区产业禁限目录,发展与生态涵养功能相适应的绿色产业,拓展绿色产业发展空间,落实有机草莓等绿色产业用地保障,推行村庄全域绿色有机农产品生产和精加工,积极创建农产品质量安全村、食品安全村、饮食安全村,保障新老村民和游客“舌尖上的安全”。促进有机草莓和自然教育的深度融合,进一步提升有机草莓品牌建设,打造北京草莓研学第一村,形成有机草莓+自然教育+城乡文化融合发展的新模式。持续推进京郊网红一条街建设,提升吸引广大市民参与体验的乡村网红市集的内涵和品质。加强与周边从事有机农产品生产加工的村庄、合作社、农场、企业等建立有机农产品生产销售联盟。充分发挥向上学校(南山学园)的资源优势,持续推动自然教育等乡村新型服务业的发展,规划建设产学研一体的自然教育园区,设立创客中心,切实为乡村创客提供更优良的法治化营商环境,展现“北京服务”的乡村样板。在加大财政资金支持示范村创建的同时,通过优化村庄营商环境,吸引金融资金、社会资本参与乡村振兴。积极对接各类金融机构,引导金融机构进村入户,紧密结合绿色有机草莓等生态农业发展、乡村创客等新型服务业需求,在乡村大地上做好科技金融、绿色金融、普惠金融、养老金融、数字金融支持示范村创建五篇大文章。推动金融机构为辛庄村有机农业发展、美丽乡村建设、人居环境改善、乡村创客创业、村民共同富裕等提供金融服务支持,着力建设金融惠农示范村、金融兴村示范村。加大政策性农业保险扩面、增品、提标工作力度,将草莓等有机农产品种植纳入农业保险,发挥农业保险在稳定新老农人从事农业生产的经营收入预期,建设农业保险示范村。

    (四)着眼于建设中华民族现代文明,全力将辛庄村规划建设成为现代价值观引领乡村文明新风尚的善治样板村
    一是要彰显和推行开放包容融合的善治之要。
    二是要坚持和践行自治法治德治的善治之道。
    三是要保障和发展人权产权治权的善治之本。

    本文转自《北京农村经济》2024年第1期、第2期

  • 陈洁:内幕交易特殊侵权责任的立法逻辑与规则设计

    自2005年《中华人民共和国证券法》(以下简称《证券法》)首次规定内幕交易民事赔偿责任至今20年间,我国证券市场内幕交易行政处罚的案件数量逐渐增多,但由法院作出裁决的内幕交易民事赔偿案件却寥寥无几。究其因,由于最高人民法院就内幕交易民事赔偿尚未出台类似虚假陈述侵权损害赔偿的司法解释,致使证券法中内幕交易民事赔偿责任条款因其过于原则更多起到宣言性作用。而推究最高人民法院未能出台内幕交易民事赔偿司法解释的深层次原因,主要有二:一是基础法理层面。理论界与实务界对内幕交易民事责任存在认识分歧,诸如是否需要构建内幕交易民事责任制度、内幕交易民事责任制度要达到何种法律效果等根本性问题,至今难以达成共识。二是技术规则层面。由于传统侵权责任制度规范难以直接适用于内幕交易侵权范畴,因此,关于内幕交易侵权行为的性质、内幕交易侵权责任的构成要件、内幕交易行为给投资者造成的损失怎样计算等问题,业界亦存在诸多分歧。

    鉴于最高人民法院现已明确启动内幕交易民事赔偿责任司法解释工作,为此,暂时搁置学理层面的争议,尽力厘清内幕交易民事赔偿制度的立法逻辑,并大力推进规则层面的体系化、规范化已是当务之急。为此,本文无意于在理论层面过多纠结于业界对内幕交易民事责任“肯定说”“否定说”的争论,而只是在认可内幕交易民事责任作为资本市场基础性制度构成并获得政策性选择的前提下,从有效防范和制裁内幕交易行为,充分保护投资者权益的视角出发,尝试解析我国内幕交易民事赔偿责任制度的构建逻辑,以及与立法逻辑相照应的且具有可操作性的核心规则设计,以期为我国内幕交易民事赔偿责任司法解释的出台贡献绵薄之力。

    一、追究内幕交易侵权责任的逻辑起点

    综观关于内幕交易民事赔偿责任的基础法理争议,主要有三点:一是内幕交易是否给投资者造成损害?二是内幕交易究竟侵犯了投资者什么权利?三是内幕交易民事赔偿的请求权基础是什么?这三个问题其实也是追究内幕交易侵权责任的逻辑起点。

    (一)内幕交易是否给投资者造成损害

    实务界对内幕交易民事赔偿责任持“否定论”的一个重要理由是,内幕交易确实对公平市场秩序造成危害,但是市场危害性不能当然推导出个别投资者民事索赔的正当性,因为内幕交易行为不会对个别投资者的个人权益造成损害。该观点进一步认为,内幕交易攫取的并不是某个或者某些可确定的特定投资者的利益,而是不特定投资者所共同代表的公共利益。对此,笔者以为,内幕交易对证券市场造成的损害是普遍的且严重的,它既给证券市场规则造成一般性的损害,也给投资者利益造成具体损害;既给所有的投资者造成普遍损害,也给具体投资者造成个别损害。此外,内幕交易也对证券的发行者造成了损害。

    内幕交易对投资者造成的损害,其实包括两个方面:一般损害和具体损害。1.一般损害是指投资者在一个规则受到损害的市场上从事交易,其实所有的市场投资者都承担了交易风险。析而言之,当掌握了内幕信息的人(以下简称“内幕人员”)利用内幕信息从事证券交易以求获利或者避损,其行为本身会减少其他投资者获利的机会。因为在证券市场中,投资既有亏损的时候,也有盈利的时候,盈亏相抵之后即为投资的净回报率。如果一般投资者亏损的概率保持不变,而盈利的概率却因为内幕人员参与交易而减少了,投资的净回报率显然就会降低,这样就间接地伤害了广大的投资者。这些损害虽然是难以计量的,但确是所有市场投资者所面临的风险。2.具体损害是指在一个具体的证券交易中,利用内幕信息进行交易的内幕人员获得了利益,而作为其交易相对人的投资者则受到了损害。客观上,在与内幕人员进行交易时,投资者会受到额外损害,这个损害就是内幕人员获得内幕交易所得的超过利润部分。内幕人员的额外收入,不是基于其自身的努力,诸如其对市场的分析调查或者其他生产性活动等,而是以其他投资者的损害为代价,内幕人员的所得正是对方所失。更进而言之,由于内幕信息的获得机会与对内幕信息的控制程度有关,而市场中往往只有大投资者才能够控制内幕信息并预防内幕交易,因此内幕交易的所得往往是以中小投资者的损失为代价的。这种损害取决于内幕交易发生的可能性,危害的大小与可能性的大小成正比。因此,严格禁止内幕交易,可以确保投资者之间处于实质平等的地位,有利于保护投资者权益。

    综上,由于内幕人员是在获取了内幕信息的情况下作出交易决策,因此可以推定如果内幕人员不知悉内幕信息,就不会实施交易,或者至少不会以相同的价格或者在时间区间实施交易。因此,内幕交易使内幕人员与普通投资者处于形式上平等而实质上不平等的地位,内幕人员实质上是从市场上攫取了本来不应当有的交易机会。这种不应当有的交易机会,既给不特定投资者造成一般损害,也给特定投资者造成了具体损害,同时还从根本上破坏了证券市场规则统一、地位平等、方式公平和机会均等的基本结构与功能要素。

    (二)内幕交易侵犯了投资者什么权利

    证券内幕交易本质上是个别内幕信息知情人利用信息优势与普通投资者开展的不公平交易行为。内幕人员与普通投资者交易,内幕人员必然具有更多的获利避损机会,而与其作相反交易的投资者则难免因此受损。在这样的交易中,内幕人员究竟侵犯了投资者什么权利呢?主流观点认为,内幕交易侵犯了股东知情权和公平交易权。对此,笔者以为,这个知情权的概念过于狭窄且定位有所偏差,内幕交易实际上侵犯了投资者公平信息获取权。

    首先,股东知情权与投资者公平信息获取权的差异。股东知情权是公司法上的概念,投资者公平信息获取权是证券法上的概念。尽管证券法与公司法都调整公司与其股东之间的关系,但是,公司法所调整的是公司与其股东之间的关系,证券法则调整证券发行主体与投资者之间的关系。在公司法结构框架下,公司法将公司与其股东之间的关系,以及基于这种关系而确定的公司董事、监事和高级职员与股东的关系,作为公司的内部关系来调整。但证券法则将股东(除了法定的内部人外)视为发行股票公司的“外部人”,将作为发行人的公司与投资者之间的关系作为外部关系来调整。这种调整模式差异的根源在于,证券法上的投资者包括公司现有股东和潜在的股东,其范围要大于公司法上股东的范围。公司法保护股东的权益,包括股东知情权,主要是对私益(特定股东的利益)的保护,而证券法所保护的投资者权益则更具有公益(不特定投资者的利益)的性质。公司法调整公司与股东之间的关系以股东平等为原则,证券法调整公司与股东之间的关系也以股东平等为原则,但证券法上的这一原则是投资者平等原则在特定范围中的应用,其所强调的是股东重大信息了解权的平等(如信息披露制度)和股东投资机会的平等。鉴于证券法所要实现的是证券市场的公平性与秩序性,所以,内幕交易实质上损害了投资者公平信息获取权。尽管公平信息获取权与股东知情权之间存在密切联系,甚至有相当重合,但二者的权利主体范围、权利性质还是有差异的。

    其次,内幕交易是否侵犯了投资者的公平交易权?这个问题的回答其实取决于公平信息获取权与公平交易权的关系解释。如前所述,证券法与公司法是两个相对独立的法域,各自具有不同的质的规定性。股东知情权的规制,是为了维护公司现存股东的股东权益公平合法的实现;对投资者的保护,以及对证券信息披露实施环节的规制,是为了维护投资者(包括公司的潜在股东)权益安全与公平的实现。在证券市场上,投资者是依据其所掌握的证券市场信息进行交易决策,为此证券法规定了严格的追求效率的信息披露制度。但投资者在公平获取信息之后能否作出最优投资决策,则不是证券法所要规制的问题。就内幕交易而言,内幕信息的重大性使其必然对证券市场价格产生重要影响,因此该信息是投资者对发行公司进行投资判断或者对该公司股票市场价格进行判断的依据。换言之,投资者与内幕人员不平等的核心是获取信息权。正是由于信息获得的差异,导致投资者投资决策的差异。至于公平交易权,它只是损害公平信息获取权附带的结果,损害了公平信息获取权必然损害公平交易权。因此,就内幕交易而言,投资者的公平交易权并非其直接侵害的对象,而是侵害投资者公平信息获取权的附属,故不应将公平信息获取权与公平交易权等同视之。事实上,在资本市场上,包括操纵市场、程序化交易等方式可能直接损害的是投资者的公平交易权。

    (三)内幕交易损害赔偿的请求权基础

    内幕交易民事赔偿责任是指违反《证券法》第53条规定的义务而产生的侵权损害赔偿责任,因此,内幕交易民事赔偿责任的性质是基于违反法定义务而产生的侵权之债。不过,在内幕交易侵权行为认定上,将内幕交易视为“欺诈”的观点相当盛行。对此,笔者以为,民事侵权法上的欺诈,欺诈者要有捏造事实或隐瞒真相的行为。而在发生内幕交易的场合,内幕人员对内幕信息的隐瞒,与欺诈行为中隐瞒真相的通常意义有所不同。其一,内幕人员并不一定是信息披露义务人,相反,在内幕信息公开之前,因职务或业务而获得内幕信息的人要负有保密义务,因此,对于内幕人员不将内幕信息透露给相对人的情形,不能全然认定为违法;其二,在证券集中市场上进行交易,内幕人员只需表示以特定价格买卖特定数量的特定证券,即可根据证券买卖的成交原则成就交易,内幕人员与相对人之间并无交流内幕信息的必要与机会。所以,在法律上不应当把内幕交易定性为欺诈行为,而应当定性为法律所禁止的不正当交易行为。

    关于内幕交易民事责任的请求权基础,对内幕交易民事责任持“否定论”的观点认为,内幕交易侵犯的是股东知情权,知情权不属于民事权利范畴,故投资者无法受到救济。其具体论证的过程是,原《侵权责任法》第2条第2款以列举加兜底的方式确定了18种代表性的“人身、财产权益”,但内幕交易的侵权客体皆无直接对应的权利类型。民法典相较于此前侵权责任法,其并没有以列举加兜底的方式来界定“人身、财产权益”,而是在第1164条中概括规定“侵权责任编”调整对象为“因侵害民事权益产生的民事关系”,知情权能否被“民事权益”这一概念所涵摄值得探讨。

    对此,笔者以为,民法典之所以放弃原侵权责任法列举加兜底的确定“人身、财产权益”的方式,而采用“民事权益”的宽泛表述,就是考虑到民事权益多种多样,立法难以穷尽,而且随着社会、经济的发展,还会不断有新的民事权益被纳入侵权法的调整范围。《民法典》第五章“民事权利”中第125条“投资性权利”规定:“民事主体依法享有股权和其他投资性权利”,结合公司法的规定,股权的内容通常包括股利分配请求权、公司剩余财产分配请求权、知情权等,所以,股东知情权以及由此延伸的投资者公平信息获取权作为投资性权利当然属于“民事权益”的范畴。

    此外,从体系化视角出发,尽管民法典总则编对民事权利的类型化进行重构,并通过分编对类型化的民事权利之变动和保护(包括救济)予以全面具体的规定,然而,某些民事主体因自身特征而享有的其他民事权利,包括知识产权、股权等投资性权利,民法典分编难以提供周到的保护。为此,就必须通过民商事单行法对民法典分编“无暇顾及”的“具体民事权利”提供保护,而且《民法典》第11条就此专门规定了“特别法优先”的法律适用规则。因此,对于同一事项,民商事单行法对民法典总则编或分编的相应规定作细化规定的,如补充性规定、限制性规定或例外规定的,应适用其规定。

    就股东知情权或投资者公平信息获取权而言,鉴于民法典总则编与公司法、证券法原则上是“抽象与具体”、“一般与特殊”的逻辑关系,股东知情权或投资者公平信息获取权涉及公司法、证券法的具体规定,尤其是《证券法》第53条明确规定:“内幕交易行为给投资者造成损失的,应当依法承担赔偿责任”。因此,依据“特别法优先”的法律适用规则,内幕交易侵权责任请求权问题就应当交由公司法、证券法单独处理,而不必机械纠结于民法典总则编的规定。

    二、内幕交易特殊侵权责任的逻辑结构

    最高人民法院于2015年12月24日发布的《关于当前商事审判工作中的若干具体问题》(以下简称《若干规定》)针对“虚假陈述、内幕交易和市场操纵行为引发的民事赔偿案件”提出,“在实体方面要正确理解证券侵权民事责任的构成要件。要在传统民事侵权责任的侵权行为、过错、损失、因果关系四个构成要件中研究证券侵权行为重大性、交易因果关系特殊的质的规定性。”该《若干规定》表明,最高人民法院是将内幕交易违法行为视为侵权行为并要求适用民事侵权责任的四大构成要件。但是,基于内幕交易侵权行为的特殊性,立法上是否应将其定性为特殊侵权行为并确立特殊的责任构成机制是内幕交易民事赔偿司法解释无法回避的基础性问题。

    (一)内幕交易特殊侵权行为的定位逻辑

    从侵权责任的基本法理出发,任何违法行为给他人利益造成损害,均须承担民事赔偿责任,因此,侵权民事责任的承担,并不以法律有明文规定为必要。但就特殊侵权行为而言,则必须依据法律的规定来认定。一般侵权行为与特殊侵权行为的识别,法技术层面判断的关键在归责原则。按一般法理,民法以过错责任为原则,若法律特别规定某类主体或某类行为须承担过错推定责任或无过错责任的,就可以认定是特殊侵权行为。而法律在一般侵权责任之外,要特别设置过错推定责任、无过错责任的特殊侵权规则,主要是考虑到案件双方力量失衡,某些特殊情形中要求受害人承担举证责任是不切实际或者颇为困难的,所以必须采用特殊归责原则以平衡双方利益,也体现对弱势受害人的倾斜保护。

    就内幕交易侵权行为而言,在我国当前规范意义的立法中,从证券法到相关司法解释,均未对内幕交易侵权责任的归责原则予以特殊规定,所以在实然层面,我国内幕交易侵权行为目前的定性应为一般侵权行为。但从内幕交易行政处罚和刑事责任追究的角度考察,2007年中国证券监督管理委员会(以下简称“证监会”)出台的《证券市场内幕交易行为认定指引(试行)》(证监稽查字〔2007〕1号,以下简称《内幕交易认定指引》)以及最高人民法院于2011年7月13日下发的《关于审理证券行政处罚案件证据若干问题的座谈会纪要》(法〔2011〕225号,以下简称《纪要》),都在试图根据内幕交易主体距离内幕信息的远近距离、对获取内幕信息的难易程度以及“知悉”内幕信息途径的不同,对内幕人员“知悉、利用内幕消息”的认定做分层次的推定规定。再从市场实践来看,不管行政执法还是刑事司法,执法机构在内幕交易事实认定中广泛适用推定规则是显而易见的。对此,笔者以为,我国有关内幕交易侵权责任的现行立法过于简单,尚未确立内幕交易特殊侵权行为的救济机制,因此无法实现保护投资者的目的。如果未来要在立法政策层面实现对内幕交易受害人的民事赔偿责任保护,并使《证券法》第53条规定的民事责任条款能够具体落地,就必须从内幕交易行为的特殊性出发,将其认定为特殊侵权行为,并规定过错推定等特殊归责原则。这也是此次出台内幕交易司法解释的出发点和落脚点。

    其一,内幕交易行为的特殊性。内幕交易行为技术性很强且兼具隐匿性。证监会曾指出,内幕交易案件“参与主体复杂,交易方式多样,操作手段隐蔽,查处工作难度很大。随着股指期货的推出,内幕交易更具隐蔽性、复杂性。”客观而言,在证券集中市场上,证券交易由计算机自动撮合成交,内幕人员只需在交易软件上下单,即可根据证券买卖的成交原则,以特定价格买卖特定数量的特定证券。由于是在非面对面的交易市场环境下,内幕人员与其交易相对人之间根本没有机会交流相关的内幕信息,因此投资者实难发现其与内幕人员之间的信息不对称。

    其二,内幕交易行为造成损害的特殊性。内幕交易行为的侵害对象,往往是不特定的投资者,因此,内幕交易行为造成的损害具有涉众性。此外,证券市场瞬息万变,投资者的损失是市场多种因素综合造成的。内幕交易行为造成损害的表现与计算具有复杂性,确定内幕交易侵权责任造成的损失需要运用更多的证券市场专业知识。而如何区分因内幕交易侵权行为造成的损害和正常市场风险带来的损害是证券损害赔偿的主要难点之一。

    其三,内幕人员与普通投资者之间力量的不平衡。与普通投资者相较,内幕人员往往掌握优势的信息和良好的技术、知识、经验,因而普通投资者在证券市场中处于弱势地位。加上内幕交易行为的技术性、隐蔽性等特征,权利受到侵害的投资者需要承担证明受到的损害与内幕交易行为具有因果关系,往往举证难度很大。在此情况下,由作为被告方的内幕人员举证证明投资者遭受的权利侵害并非因内幕交易而是由其他因素导致,无疑降低了受害方投资者的举证难度,亦对促进投资者进行民事权利救济具有关键性作用。

    综上,由于证券市场的特殊性以及内幕交易行为的特殊性,若按照一般侵权责任规则,要求投资者承担内幕交易与其损害之间的因果关系的举证责任,对于绝大多数投资者而言是“不可承受之重”。为保护弱势的公众投资者,增强公众投资者对资本市场公正的信心,就需要“通过无过错责任或者过错推定之下对特定侵权领域受害人权益做出特别的保护,在民事领域的行为自由与权益保护之间划分出不同于一般侵权行为的责任与行为之边界。”就内幕交易民事赔偿案件而言,应将内幕交易定性为特殊侵权行为并采取特殊侵权责任的构造模式,即内幕交易的归责原则应主要适用过错推定原则和无过错责任原则。鉴于内幕交易的主观构成要件必须是故意,无过错行为不构成内幕交易,而且内幕交易也存在免责事由,因此内幕交易的归责原则应该是过错推定规则,不适用无过错责任。概言之,内幕交易特殊侵权行为的立法模式才能体现出立法上对投资者保护,也体现出立法政策上对内幕人员与投资者之间利益平衡的考量。

    (二)内幕交易特殊侵权行为归责原则的特殊性

    如前所述,内幕交易侵权行为应定性为特殊侵权行为,内幕交易侵权行为的归责原则为过错推定原则。在过错推定原则下,一般行为人只要证明自己没有过错就可免责。不过,就内幕交易侵权责任的归责原则而言,其又具有特殊性。

    其一,内幕交易行为人只要证明自己没有故意,就可以免责。关于过错,侵权法上过错的基本形态可分为故意和过失,其中,故意可分为恶意和一般故意,过失可分为重大过失、一般过失和轻微过失。但在最高人民法院《关于审理证券市场虚假陈述侵权民事赔偿案件的若干规定》(法释〔2022〕2号,以下简称《虚假陈述新司法解释》)中,为了对中介机构的连带责任予以限缩,《虚假陈述新司法解释》将《证券法》第85条规定中的“过错”限定为“故意和重大过失”。就内幕交易而言,《证券法》第50条规定,“禁止证券交易内幕信息的知情人和非法获取内幕信息的人利用内幕信息从事证券交易活动”,这里的“利用”表明内幕人员必须有意识地使用内幕信息才构成内幕交易行为,即内幕交易构成要件中的主观方面只能是故意,过失不构成内幕交易。因此,内幕交易行为人只要证明自己不是故意,即便可能存在过失,也不构成内幕交易,也就无需承担内幕交易侵权损害赔偿责任。

    其次,内幕交易行为的类型化导致其归责原则存在差异。根据《证券法》第53条之规定,内幕交易在客观上具有三种表现形式,一是内幕信息知情人利用内幕信息买卖证券或者根据内幕信息建议他人买卖证券;二是内幕信息知情人向他人泄露内幕信息,使他人利用该信息进行内幕交易;三是非法获取内幕信息的人通过不正当手段或者其它途径获得内幕信息,并根据该信息买卖证券或者建议他人买卖证券。简言之,内幕交易行为通常是由内幕信息知情人实施的,但现实中也有不少非法获取内幕信息的人通过某种途径获得内幕消息并根据该信息从事内幕交易行为。《证券法》第50条规定:“禁止证券交易内幕信息的知情人和非法获取内幕信息的人利用内幕信息从事证券交易活动。”据此规定,无论是内幕信息知情人还是非法获取内幕信息的人,凡是利用内幕信息从事证券交易均可构成内幕交易行为,即构成内幕交易行为的实质在于是否利用内幕信息进行内幕交易,而不在于是否系内幕人员所为。但是,在实施规制内幕交易的制度措施时,对内幕信息知情人和非法获取内幕信息的人在规制原理与方式上是有所不同的。对于内幕信息知情人从事内幕交易予以禁止和制裁,其法理依据在于其不正当利用了在职务上或业务上的便利和优势地位。对于非传统内幕人员如非法获取内幕信息的人,禁止和制裁其从事内幕交易的法律依据,在于其盗用了公司的信息资产。就公司法层面而言,传统内幕信息知情人与公司之间存在基于身份联结形成的信义关系,基于其特殊地位、职责以及能够直接接触到内幕信息,这些人应当承担比一般人(如非法获取内幕信息的人)更高程度的信托责任与注意义务,因而在举证责任分配方面,内幕信息的法定知情人应承担更严格的举证责任。申言之,鉴于行为人距离内幕信息越近就越容易获取内幕信息,因此监管机构需要证明其内幕交易的内容就越少,甚至部分内容可以采取推定方式;随着行为人距离内幕信息越来越远,其推定方式受限,证明难度增加,故需要区别对待。具体体现在内幕交易侵权责任归责原则上,不同行为主体基于身份的差异承担的举证责任应该是差异化的。对于内幕信息的法定知情人从事内幕交易,可以实行过错推定,即只要内幕信息没有公开,内幕人员从事相关证券买卖的,即可认定其在从事内幕交易并且具有利用内幕交易谋利的过错。而对于内幕信息的法定知情人以外的人,认定其从事内幕交易,应当由投资者证明该事实存在,归责原则亦应实行过错原则。不过,在实践中,由于内幕交易的隐蔽性,投资者往往只能在监管机构对内幕交易实施行政处罚的“前置程序”后才提起民事赔偿诉讼。因此,内幕交易的存在以及内幕人员的过错问题实际上已经由监管机构予以解决了。

    三、“同时交易规则”的引入与适用

    (一)“同时交易规则”的确立

    凡是内幕交易必有受损害的投资者,但因内幕交易具有隐蔽性,很难在证券市场主体中辨别出与内幕交易行为人直接交易的投资者,因此,即便想对内幕交易提起集团诉讼,仅在确定和寻找适格原告这一环节就非常困难。为解决内幕交易侵权责任之难题,1988年美国修订《证券交易法》第20A条规定,“(a)任何人违反本款及其规则、规章,在掌握重要未披露信息时买卖证券,对任何在违反本款的证券买卖发生的同时,购买(违反以出售证券为基础时)或出售(违反以购买证券为基础时)了同类证券的人在有管辖权的法院提起的诉讼承担责任。”从该规定可以看出,那些掌握了内幕消息而在市场上从事交易者,必须对在同时期从事相反买卖的投资者负担民事赔偿责任。这一规定确立了“同期反向交易者”标准,同时解决了内幕交易因果关系推定以及原告的范围问题。

    对域外实践经验考察,“同时交易规则”的适用难点主要在于对“同时”的认定。从美国联邦地区法院的司法判例来看,大致有三种标准:第一种是要求必须是与内幕交易之后且同一天的反向交易者;第二种是要求必须是内幕交易之后三个交易日内的反向交易者,理由是交易结算采取T+2模式;第三种则是在少部分案件中,法院将“同期”的时限宽限至6-10个交易日,但没有说明理由和裁决依据。总的来看,美国司法实践对于“同期交易”的解释比较严格,大部分案件还是限制在同一交易日或者按照结算规则可以合理解释的同期范围内。

    就我国而言,“同时交易规则”已经在光大证券“乌龙指”事件引发的内幕交易民事赔偿案中被参考。对此,笔者以为,我国的内幕交易司法解释可以直接以推理的方式划出内幕交易行为的相对人范围,即在一定期间同时作与内幕交易相反买卖的投资者,具体指内幕交易行为人买入证券,则同时作卖出该证券的投资者;内幕交易行为人卖出证券,则同时作买入该证券的投资者。至于“同时交易”的确定问题,应该指内幕信息发生至公开之间的一段期限。如此规定,可能导致出现如下现象:1.有些投资者的交易可能发生在内幕交易行为人实施交易之前,即成为内幕交易的相对人。这在证券法上是应当允许存在的立法效果。因为内幕信息发生后,知情人员要么应当依法公开信息,要么依法禁止交易。如果知情人员违反规定进行了内幕交易,在内幕信息发生后但在内幕交易行为发生之前作相反买卖的投资者,同样会受到内幕交易的侵害。2.作为内幕交易相对人的投资者及其交易数量,可能远远多于内幕交易应有的相对人及其交易数量。这在证券法上也是应当允许的立法效果。因为作内幕交易相反买卖的投资者虽然远远多于内幕交易应有的相对人,但每一个作相反买卖的投资者都可能或多或少地受到内幕交易的损害。何况这种规定既可方便对内幕交易受害人的认定,又有对内幕交易行为的惩罚意义。不过,鉴于每个内幕交易案件具体情形不同,在司法实践中可以由法官对于“同期交易”的严格或宽松解释作必要的自由裁量。

    (二)“同时交易规则”与内幕交易损害赔偿请求权人的认定

    追究内幕交易的损害赔偿责任,首先要确定可以通过民事诉讼要求内幕交易者赔偿损失的投资者范围。如前所述,美国通过一系列判例法和成文法,使内幕交易民事诉讼的原告逐步限制在“同时交易者”。我国台湾地区“证券交易法”借鉴美国之规定,第157条之一规定,“违反法律关于禁止内幕交易规定之人,对善意从事相反买卖之人负损害赔偿责任。”

    与美国立法相较,我国台湾地区“证券交易法”似乎强调了内幕交易损害赔偿请求权人的“善意”问题。“所谓善意从事相反买卖之人,系指在证券集中交易市场与店头市场不知或非可得而知该公司内幕人员利用未经公开之内部消息,从事该公司之上市股票或上柜股票买卖之事实,而于内幕人员买入时,其正逢卖出,或内幕人员卖出时,其正逢买入而受有损害之人,包括在此项消息公开后开始买进而发生损害,或是在此项消息公开前卖出而产生价格差额损失之人”,“另善意从事相反买卖者虽系委托经纪商以行纪名义买入或卖出者,亦视为善意从事相反买卖之人。”其实,尽管美国《证券交易法》第20A条未提及善意问题,但针对内幕交易损害赔偿请求权人的资格问题,美国1981年上诉法院的判例中就曾指出,依据证券交易的性质,内幕人员为内幕交易时之卖出或买入行为,即为对在交易同时为相反竞价买卖行为的善意投资者的有效要约或承诺行为,因而,在当时为相反买卖的善意投资者均可被认为是内幕交易的当事人,也为恶意获利企图的牺牲者。由此,在证券市场中与内幕交易进行交易的善意投资者,是内幕交易的受害者,具有对内幕交易人提起损害赔偿之诉的资格。

    就我国而言,为了落实内幕交易民事赔偿责任制度,使其既要能够有力地制裁内幕交易行为,又要便于在司法实务中适用,采取“善意”+“同时作相反交易的规则”确定内幕交易受害人(即内幕交易损害赔偿请求权人)范围,是一种可资参照的制度建构思路。1.按照同时作相反交易的规则,内幕交易的受害人不限于与内幕交易行为人有直接交易联系的人,即并不是内幕交易行为人所卖出的特定证券的直接购买人,也不是内幕交易行为人所购买的特定证券的直接出售人。只要与内幕交易行为人作同种类证券的相反买卖时,即内幕交易卖出某种证券时,其他投资者正好作该种证券的买进,或者内幕交易行为人买进某种证券时,其他投资者正好作该种证券的卖出,即可认定为该内幕交易行为的受害人。2.作与内幕交易行为人相反的证券买卖,应当是与内幕交易行为同时发生的。不过,法律对于证券交易活动的“同时”,应当是有一定时间长度的时限。如果从内幕信息发生至公开之间的这段期限比较长,为避免可能的滥诉,实务中也可以将“同时”自内幕交易者进行的第一笔内幕交易开始计算,并将之限定在与内幕交易的同一个交易日内。当然,立法上还可以赋予法官根据具体的交易情形对“同时”加以分析判断并作出必要的时间长度限缩。3.“善意”是指投资者必须不知道内幕交易的存在,并非为了要求赔偿或其他非法目的而进行证券买卖。4.以“善意”与“同时作相反交易规则”作为认定受害人的标准,不同于民法上的一般规则,须以法律有明确规定为必要。因此,只有内幕交易侵权赔偿司法解释明确规定内幕交易受害人的认定规则,才能确定内幕交易损害赔偿请求权人即原告的范围,在司法实务中才能得以据此适用。

    (三)“同时交易规则”与因果关系的推定

    因果关系认定是内幕交易民事赔偿责任的核心问题。一方面,只有能够证明因果关系的投资者才有资格提起侵权赔偿诉讼;另一方面,因果关系也是决定投资者能获得多少赔偿的重要因素。这两个方面其实体现为两层因果关系,一是内幕交易行为和受损投资者投资行为之间的交易因果关系;二是内幕交易行为和受损投资者损失之间的损失因果关系。

    在虚假陈述情形下,各国立法大都利用市场欺诈理论来实现信赖推定,从而解决交易因果关系问题。简言之,在一个有效的证券市场中,如果所有因虚假陈述导致的不真实和具有欺诈性的信息都反映在证券的市场价格上,那么,所有接受了该证券市场价格从事交易的投资者都可以被看作是信赖了所有不真实和具有欺诈性的信息,从而推定投资者信赖了虚假陈述。因此,投资者只要证明其所投资的证券价格受到虚假陈述行为的影响而不公正,即可认为投资者的损失与虚假陈述行为之间存在因果关系。

    在内幕交易侵权责任中,如前所述,美国判例及立法确立的同时交易原则表明,只要原告属于和内幕交易同时反向交易者,法律就确认其所受损害与内幕交易行为之间存在因果关系,从而赋予原告要求内幕交易者赔偿其损失的权利。

    比较虚假陈述与内幕交易侵权责任因果关系推定的背后逻辑,二者其实是一脉相承的。依据美国内幕交易规范的法理,内幕交易之所以应予以处罚,并非因为内幕交易的行为人因知悉内幕消息而交易,而是因其知悉内幕消息,未经揭露而交易的缘故。因此,禁止内幕交易的本质,乃属于“单纯之隐匿”(pure omission)。从这个意义上说,内幕交易与遗漏型虚假陈述性质颇为相似。为此,在具有里程碑性质的1974年联邦第二巡回区Shapiro v.Merrill Lynch案中,法院援引了最高法院在遗漏型虚假陈述中推定对未披露信息之信赖和因果关系存在的1972年Affiliated Ute Citizens案之先例,在此基础上进而推定了因果关系在未披露内幕信息的内幕交易者和其他交易者之间存在。此判例确立了事实因果关系可由于其他理性投资者会因为知晓未披露信息的内容而改变交易决定而建立。

    对上述推定论证,当然有不同的声音。其中核心反对观点认为,在非“面对面交易”情况下,不知情的投资者并不是基于内幕交易者的引诱,而是独立作出的交易决策,因此内幕交易影响了原告的交易决策并认定存在交易因果关系的论断显然是不成立的。此外,内幕人员并不一定是信息公开义务人,并不负有公开信息之义务,甚至在内幕信息公开之前,因职务或业务而获得内幕信息的人要负有保密义务。因此,对于内幕人员不将内幕信息透露给相对人的情形,不能认定为违法。

    对此,笔者以为,欺诈市场理论就是为了解决证券市场无法像传统面对面那样来证明因果关系的困境而创造出来的。尽管在虚假陈述情形下,对信赖的证明通常表现为,只要被告负有公开义务而未公开重要信息,就认定已满足了因果关系的要求,而在内幕交易情形下,可能内幕人员并不负有信息公开义务,所以似乎无法满足信赖要求。但笔者以为,欺诈市场理论的核心就是有效市场价格包含了各种信息,投资者只要相信市场价格进行交易,就说明他信赖了市场,进而信赖了交易对手方。对内幕交易而言,其与虚假陈述核心的区别在于,虚假陈述是必须公开真实信息,但虚假陈述人违反了义务;而内幕交易是在信息公开前不能进行交易,但内幕人员违反了戒绝交易的义务。尽管二者违反的义务并不相同,但实质上都是让投资者因信赖市场而陷入错误的认识并进行了交易。就虚假陈述而言,如果知道真实信息,投资者就不会交易或不会以这样的价格进行交易;而如果知道了内幕信息,投资者同样不会交易或不会以这样的价格进行交易。所以,对投资者的损害而言,内幕交易与虚假陈述其实并没有本质的不同,或者说某种意义上内幕交易与虚假陈述确有共同之处,二者的实质区别在于,虚假陈述是在信息虚假上的主动行为,让投资者对信息的真实性产生误解而从事交易,而内幕交易则是在信息披露上的不作为行为,它让投资者在不明真相的情形下也从事交易,最终导致交易结果的不公平。因此,内幕交易侵权责任也可以效仿虚假陈述侵权责任的赔偿逻辑,基于欺诈市场理论建立起事实因果关系之推定。

    归结而言,在证券集中市场交易中,一个具体内幕交易的真正直接相对人是难以确认的,内幕交易的相对人所受损害与内幕交易行为之间的因果关系也是难以认定的。若不在立法层面直接建立因果关系推定规则,实务中就难以追究内幕交易行为人的民事责任。为此笔者建议,我国可规定对善意与内幕交易同时相反交易者推定交易因果关系成立,并进而推定损失因果关系成立,但被告能够证明原告的损失是由其他因素造成的除外。这种因果关系的推定,具有两个层面的法律意义,其一,把与内幕交易行为人同时作相反交易而产生的损失,在法律上视为与内幕交易行为有因果关系的损害;其二,对于该项因果关系,内幕交易的损害赔偿请求权人不需举证证明,投资者只要证明其作了与内幕交易同时相反的交易,法律即可推定该项因果关系存在。内幕交易行为与损害结果之间因果关系的推定,把内幕交易行为与具体的受害人及其损害在法律上连接起来,由此才使得追究内幕交易者的民事责任真正成为可能。

    四、内幕交易侵权损害赔偿的损失计算问题

    (一)内幕交易侵权损害赔偿的基本思路

    如何合理确定内幕交易的损失认定方式及赔偿金额一直是内幕交易民事审判中的难点。对于内幕交易的损害赔偿,从侵权责任法律规则填补损害的基本功能出发,内幕交易民事责任亦应坚持填补损害原则,即在原则上,投资者获得的赔偿数额不能超过其损失数额。

    但是,如前文所述,确定内幕交易中投资者权利受到侵害的损失,核心在于区分证券价格波动给投资者造成的损失中,哪一部分是由于内幕信息形成的价格波动对投资者造成的损失。但在实务中,证券价格波动受到多种因素影响,影响因素确认十分复杂且带有预测性,即使连专业的证券分析师也无法作出准确测算,更遑论由法院去进行实质性判断。

    参考成熟市场相关立法例,对内幕交易诉讼中损害赔偿额,多依据消息未公开前买入或卖出该股票之价格,与消息公开后的“合理期间”内股票价格之差额来确定。据我国台湾地区“证券交易法”第157之一规定,内幕交易损害赔偿之范围是在“就消息未公开前其买入或卖出该股票之价格,与消息公开后10个营业日收盘平均价格之差额限度内”。其中,所谓“消息未公开前其买入或卖出该股票之价格”,应指从内幕消息发生之日起到消息首次公开之日期间,违反内幕交易禁止规定者在集中交易市场或店头市场买进或卖出股票的价格。这里的“消息发生之日”,一般指公司决定或决议做成之日,相关契约签订之日等等。但对于内幕交易情节重大者,法院得依善良从事相反交易之人的请求,将责任限额提高3倍。因此,内幕交易者最高赔偿责任数额,可达到其通过内幕交易获利的3倍。

    概而言之,笔者以为,我国内幕交易司法解释关于内幕交易所造成损害数额的确定规则,应当包括以下内容:1.内幕交易受害人在特定证券交易中的单价损失幅度。即与内幕交易作相反交易时的特定证券价格,与内幕信息公开后一定期间内该证券平均价格之间的差额,就是内幕交易受害者在特定证券上遭受的损失。2.内幕交易受害人在该次交易中的损失范围。即由受害人作相反交易时买卖的证券数量,乘以单价损失幅度。3.确定内幕交易行为人的责任限额。由于内幕交易受害人是根据同时相反交易规则推定的,其损害范围及其与内幕交易行为之间的因果关系也是推定的,如果完全以充分填补损失为赔偿原则,那么发生一次内幕交易,行为人所赔偿的数额可能是天文数字。因此,法律应当确定内幕交易行为人的责任限额,以求制度公平。内幕交易行为人的责任限额,通常就是内幕交易非法所得的数额。4.通过司法调整责任限额与受损数额之间的平衡。法律可以规定法院在确定内幕交易行为人责任限额上有一定的裁量权,这样即可以根据受害人所受损失的情况、受害人的请求,以及内幕交易的情节,对内幕交易行为人的责任限额予以适当提高,既可提高受害人获得补偿的程度,又可适度加重对内幕交易人的民事制裁。

    (二)因内幕交易受损的具体损失的计算

    如前所述,受内幕交易行为的损失计算,应当是投资者买入或卖出的证券价格与内幕信息公开后该证券市场价格之间的差价损失。归纳上述经验分析,可以将内幕信息公开后10个交易日为内幕信息的市场吸收期间,即内幕信息公开经过10个交易日之后,该项公开的信息视为不再影响投资者的投资判断。当然,根据我国当前证券市场的交易量、交易换手率等具体情形,还可以对内幕信息的市场吸收期间予以更精确地确定。

    此外,内幕交易行为人的赔偿数额是否应当以其违法所得额为限的问题,笔者以为,如果相关规则设定内幕交易行为人应对内幕信息发生至公开期间作相反买卖的投资者,就其股票买入或卖出价格与内幕信息公开后10个交易日平均价格之间的差价损失进行赔偿,受内幕交易行为损害的投资者损失数额通常要大于内幕交易行为人的违法所得额。为了进一步惩罚内幕交易行为,可以规定将其赔偿额度提高至违法所得额的3倍。但是,如果这样仍然不能足额赔偿投资者损失的话,可以规定按比例赔偿的制度,即按照投资者损失额占所有投资者损失总额的比例予以赔偿。在这种情况下,如果继续坚持对投资者实行足额赔偿,可能产生新的不公平。其一,按照内幕交易行为人违法所得额的3倍赔偿给投资者,已经是对内幕交易行为人的严厉惩罚。如果继续提高赔偿额度,对内幕交易行为人亦不公平。其二,投资者的损失与内幕交易之间的因果关系,本来就是根据证券法规定而推定的,而且投资者的损失也只是部分地与内幕交易有关。按比例赔偿措施对投资者的保护力度,实际上也是十分充分的。

    五、代结论

    任何规范市场行为的法律制度,都应当根据市场活动的机制和特点而定。我国内幕交易民事赔偿责任制度的构建,也必须根据内幕交易的活动方式确定其行为构成,并设计相应的规制措施。笔者以为,立足我国当前证券市场的发展阶段以及证券市场交易的现实情形,我国内幕交易民事赔偿规则的核心规则大致如下:“内幕交易行为人应对内幕信息发生至公开期间作出相反买卖的善意投资者,就其股票买入或卖出价格与内幕信息公开后10个交易日平均价格之间的差价损失,在内幕交易行为人违法所得额度内承担赔偿责任。内幕交易违法所得额不足以赔偿投资者损失的,应受损害投资者的请求,可以将内幕交易行为人的赔偿额度提高至其违法所得额的3倍。投资者仍然得不到足额赔偿的,按照其损失数额占所有投资者损失总额的比例受偿。”该规则第1款规定了因内幕交易而造成投资者损失的计算方式,投资者损失与内幕交易的因果关系,以及内幕交易赔偿额度的一般标准。规则第2款规定了内幕交易赔偿额度的惩罚性标准,以及在内幕交易赔偿额度不足以赔偿时,对投资者赔偿数额的计算方法。

    本文来源:《法律适用》2024年第10期。

  • 《中华人民共和国黑龙江省牡丹江市中级人民法院公告》(2024.10.11)

    《人民法院报》2024年10月11日公告专版刊发黑龙江省牡丹江市中级人民法院公告,公告显示,曾任鸡西市副市长、鹤岗市副市长的李传良涉嫌贪污罪、受贿罪、挪用公款罪、滥用职权罪,案发后,扣押、冻结资金共计人民币140987.522529万元、查封1021处房产、查封土地、滩涂27宗、查封林地8宗、扣押汽车38辆、扣押机械设备10台(套),冻结18家公司股权。公告如下:

    中华人民共和国黑龙江省牡丹江市中级人民法院公告

    黑龙江省牡丹江市人民检察院没收犯罪嫌疑人李传良违法所得申请一案,本院经审查认为,有证据证明犯罪嫌疑人李传良实施了贪污、受贿、挪用公款、滥用职权犯罪,犯罪地在黑龙江省鸡西市,经黑龙江省高级人民法院、黑龙江省人民检察院指定,将没收犯罪嫌疑人李传良违法所得申请一案交由牡丹江市人民检察院申请,牡丹江市中级人民法院审判,依照《中华人民共和国刑事诉讼法》第二百九十九条之规定,于2024年9月29日立案受理。

    现予公告:

    一、犯罪嫌疑人的基本情况犯罪嫌疑人李传良,男,1963年9月27日出生于黑龙江省鸡西市,公民身份号码23030419630927423X,汉族,硕士研究生文化,鸡西市财政局原局长、鸡西市国有资产监督管理委员会办公室原主任、鸡西市原副市长、鹤岗市原副市长,户籍地黑龙江省哈尔滨市南岗区联部街47号2栋12层2号。因涉嫌犯贪污罪、受贿罪、挪用公款罪、滥用职权罪于2020年7月10日被黑龙江省监察委员会立案调查,同年9月20日被黑龙江省人民检察院批准逮捕。李传良于2018年11月15日逃匿境外,2020年12月1日黑龙江省公安厅对其发布通缉令。

    二、检察院申请内容牡丹江市人民检察院牡检没申〔2024〕1号没收违法所得申请书载明:犯罪嫌疑人李传良在担任鸡西市财政局局长、鸡西市国有资产管理委员会办公室主任、鸡西市副市长、鹤岗市副市长期间及辞去公职后,利用职务上的便利以及伙同其他国家工作人员,利用其他国家工作人员的职务便利,侵吞、骗取公共财物共计人民币292586.011967万元;利用职务上的便利,为他人谋取利益,以及利用职权或者地位形成的便利条件,通过其他国家工作人员职务上的行为,为他人谋取不正当利益,非法收受他人财物共计人民币4892.1128万元;利用职务上的便利,挪用公款共计人民币11000万元,进行营利活动;利用职务上的便利,擅自使用国有资金注册公司、擅自决定由其实际控制的公司承揽工程,违法所得及收益共计人民币7325.185136万元。犯罪嫌疑人李传良使用上述违法所得投入到其个人实际控制的公司、项目中,用于土地一级开发整理、房产开发、工程建设等以及购买房产、车辆、土地、设备等,案发后扣押、冻结资金共计人民币140987.522529万元、查封1021处房产、查封土地、滩涂27宗、查封林地8宗、扣押汽车38辆、扣押机械设备10台(套),冻结18家公司股权。(各类财产详细情况见附件清单)牡丹江市人民检察院认为,犯罪嫌疑人李传良涉嫌贪污罪、受贿罪、挪用公款罪、滥用职权罪,逃匿后被通缉一年不能到案。有证据证明前述在境内被查封、扣押、冻结的财产属于犯罪嫌疑人李传良的违法所得及收益,依法应予以追缴。依照《中华人民共和国刑事诉讼法》第二百九十八条之规定,提出没收违法所得的申请。

    三、利害关系人权利、义务犯罪嫌疑人李传良的近亲属和其他利害关系人在公告期间可以书面形式向本院申请参加诉讼,也可以委托诉讼代理人参加诉讼;李传良的近亲属申请参加诉讼,应当提供与李传良关系的证明材料;其他利害关系人申请参加诉讼,应当提供对申请没收的财产享有权利的证据材料。如不按规定申报权利,可能承担不利法律后果。

    四、公告期间本公告期间为六个月。公告期满后,本院将依法审理。联系人:杨柏苓蒋利龙通讯地址:中华人民共和国黑龙江省牡丹江市西安区西三条路339号黑龙江省牡丹江市中级人民法院。联系电话:0453-6377062邮编:157000

    附件:黑龙江省牡丹江市人民检察院申请没收财产清单

    一、资金

    1.张亚凤上交的扣押在案的资金及利息。

    2.姜伟上交的扣押在案的资金及利息。

    3.赵丽艳上交的扣押在案的资金及利息。

    4.于颖上交的扣押在案的资金及利息。

    5.鸡西市鸡煤专社保服务中心上交的扣押在案的资金及利息。

    6.鸡西市金源物业管理有限公司上交的扣押在案的资金及利息。

    7.李丽凡上交的扣押在案的资金及利息。

    8.宋雨微上交的扣押在案的资金及利息。

    9.鸡西业丰煤矿机械设备制造有限公司上交的扣押在案的资金及利息。

    10.黑龙江省三强建筑工程有限公司(鸡西市保障性安居工程基础配套设施项目部)上交的扣押在案的资金及利息。

    11.黑龙江创恒建筑工程有限公司(鸡西市保障性安居工程基础配套设施项目部)上交的扣押在案的资金及利息。

    12.黑龙江康程招标代理有限公司上交的扣押在案的资金及利息。

    13.鸡西市保障性安居工程建设中心在黑龙江鸡西农业商业银行股份有限公司账户的资金及利息。(冻结账号为730010122000104484)

    14.鸡西赫阳燃气有限公司上交的扣押在案的资金及利息。

    15.黑龙江省鹏通煤层气开发有限公司上交的扣押在案的资金及利息。

    16.沈阳焦煤鸡西盛隆矿业有限责任公司上交的扣押在案的资金及利息。

    17.黑龙江沈矿物流有限公司上交的扣押在案的资金及利息。

    18.黑龙江沈煤林木开发有限公司上交的扣押在案的资金及利息。

    19.黑龙江沈矿瓦斯发电有限公司上交的扣押在案的资金及利息。

    20.李克峰上交的扣押在案的资金及利息。

    21.崔立新上交的扣押在案的资金及利息。

    22.王明秋上交的扣押在案的资金及利息。

    23.董玉玲上交的扣押在案的资金及利息。

    24.卢井芳上交的扣押在案的资金及利息。

    25.孔令宝上交的扣押在案的资金及利息。

    26.杨君上交的扣押在案的资金及利息。

    27.刘智宏上交的扣押在案的资金及利息。

    28.解伟山上交的扣押在案的资金及利息。

    29.陈磊上交的扣押在案的资金及利息。

    30.刘洪生上交的扣押在案的资金及利息。

    31.刘德在中国银行股份有限公司账户的资金及利息。(冻结账号为170248459042)

    32.朱玉杰上交的扣押在案的资金及利息。

    33.鸡西金色农业科技有限公司上交的扣押在案的资金及利息。

    34.鸡西三元机械制造有限公司上交的扣押在案的资金及利息。

    35.鸡西元通城市燃气投资有限公司上交的扣押在案的资金及利息。

    36.黑龙江省华诚建筑安装工程有限公司上交的扣押在案的资金及利息。

    37.鸡西新能供热有限公司上交的扣押在案的资金及利息。

    38.鸡西市产权交易服务中心上交的扣押在案的资金及利息。

    39.黑龙江北唐煤矿量费监控系统工程开发有限公司上交的扣押在案的资金及利息。

    40.黑龙江绅港能源开发有限公司上交的扣押在案的资金及利息。

    41.刘立红上交的扣押在案的资金及利息。

    42.黑龙江亚润建筑工程有限公司上交的扣押在案的资金及利息。

    43.鸡西市鸿淦房地产开发有限公司上交的扣押在案的资金及利息。

    44.黑龙江安泰矿产开发有限公司上交的扣押在案的资金及利息。

    45.刘鸿雁上交的扣押在案的资金及利息。

    46.鸡西市国有企业留守处管理中心上交的扣押在案的资金及利息。

    47.鸡西市消防培训中心上交的扣押在案的的资金及利息。

    48.鸡西市矿山森林消防抢险救援大队上交的扣押在案的资金及利息。

    49.黑龙江省天源煤炭股份有限公司上交的扣押在案的资金及利息。

    50.黑龙江优丰农业开发有限公司上交的扣押在案的资金及利息。

    51.鸡西隆衡房地产开发有限公司上交的扣押在案的资金及利息。

    52.鸡西市矿山森林消防抢险救援训练中心上交的扣押在案的资金及利息。

    53.黑龙江农垦正基房地产开发有限公司上交的扣押在案的资金及利息。

    54.赵伟上交的扣押在案的资金及利息。

    55.鸡西华誉农工贸有限责任公司鸡西建筑分公司上交的扣押在案的资金及利息。

    56.孙德清上交的扣押在案的资金及利息。

    57.陈长文上交的扣押在案的资金及利息。

    58.徐玉国上交的扣押在案的资金及利息。

    59.哈尔滨市滨港投资有限公司在中国农业银行股份有限公司的资金及利息。(冻结账号为08064101040002809)

    60.北京泛华置业有限公司上交的扣押在案的资金及利息。

    61.李维上交的扣押在案的资金及利息。

    62.陈红博在中国交通银行股份有限公司账户、中国银行股份有限公司账户的资金及利息。(冻结账号为中国交通银行股份有限公司6222620910009410840、6222620910009792866账户;中国银行股份有限公司168990504834账户)

    63.吴亮靓上交的扣押在案的资金及利息。

    64.大庆百世环保科技开发有限公司上交的扣押在案的资金及利息。

    65.鸡西市宇晨房地产中介有限公司上交的扣押在案的资金及利息。

    66.徐艳华上交的扣押在案的资金及利息。

    67.黑龙江省华诚建筑安装工程有限公司鸡西分公司上交的扣押在案的资金及利息。

    68.黑龙江泛华物流产业园投资管理有限公司上交的扣押在案的资金及利息。

    69.哈尔滨市融达路桥工程有限公司鸡西分公司上交的扣押在案的资金及利息。

    70.鸡西百盛苗木繁育有限公司在龙江银行股份有限公司的资金及利息。(冻结账号为31090120000000026)

    71.罗云兵上交的扣押在案的资金及利息。

    72.鸡西泛华城市建设投资有限公司上交的扣押在案的资金及利息。

    73.黑龙江百世金融产业园管理有限公司上交的扣押在案的资金及利息。

    74.吴柏年上交的扣押在案的资金及利息。

    75.泛华北方投资管理(北京)有限公司上交的扣押在案的资金及利息。

    76.北京福瑞祥达建筑工程有限公司在中国建设银行股份有限公司账户的资金及利息。(冻结账号为1100107060005303147)

    77.黑龙江顺城投资有限公司上交的扣押在案的资金及利息。

    78.黑龙江同亨投资有限公司上交的扣押在案的资金及利息。

    79.黑龙江沈矿瓦斯发电有限公司梨树分公司上交的扣押在案的资金及利息。

    80.李明上交的扣押在案的资金及利息。

    81.刘玉松上交的扣押在案的资金及利息。

    82.任立恒上交的扣押在案的资金及利息。

    83.赵国英上交的扣押在案的资金及利息。

    84.黑龙江龙远房地产开发有限责任公司上交的扣押在案的资金及利息。

    85.董凤珍上交的扣押在案的资金及利息。

    86.黑龙江省业丰投资管理有限公司上交的扣押在案的资金及利息。

    87.鸡西阔远房地产开发有限公司上交的扣押在案的资金及利息。

    88.黑龙江正麒房地产开发公司上交的扣押在案的资金及利息。

    89.陶胜强上交的扣押在案的资金及利息。

    90.张欣上交的扣押在案的资金及利息。

    91.黑龙江省镝森房地产开发有限责任公司上交的扣押在案的资金及利息。

    92.黑龙江省龙城专用车有限公司在中国农业银行有限公司账户的资金及利息。(冻结账号为08700201040013218)

    93.鸡西市财务会计继续再教育中心上交的扣押在案的资金及利息。

    94.胡桂芝上交的扣押在案的资金及利息。

    二、房产

    1.鸡西市鸡煤机社保服务中心有限公司名下鸡西市中心塔小区一组团二期A﹢B栋转角楼-门市(12)-10门市、中心塔小区一组团-地下室-2门市、中心塔小区一组团二期A﹢B栋转角楼13号4层(办公室)、中心塔小区一组团二期工程C座-车库-7、中心塔小区一组团二期工程转角楼-门市-11、二期工程转角楼门市12,地址:鸡西市鸡冠区中心塔小区。其名下鸡西市南山办花园2-门市-1,地址:鸡西市鸡冠区电工路南山办。

    2.鸡西市鸡冠区伟沟净水设备经销处名下鸡西市鸡冠区南山一组团B座0-00201号门市、C座0-00101号门市、C座0-00102号门市、C座0-00103号门市、C座000104号门市、C座0-00105号门市、D座0-00101号门市、D座0-00102号门市、D座0-00103号门市,地址:鸡西市鸡冠区电台路南山小区一组团;其名下黄楼浴池,地址:鸡西市鸡冠区中心大街煤机厂幼儿园后黄楼浴池;其名下中心塔小区二组团1-门市(1-2)-20号、二期工程C-6号车库,地址:鸡西市鸡冠区中心塔小区;其名下鸡西市东山小区东山阳光家园17-1-9号门市,地址:鸡西市鸡冠区东山阳光家园安置小区;其名下鸡西市东山小区北山11-11号门市,地址:鸡西市鸡冠区向阳办。

    3.王宗健名下鸡西市中心塔小区二组团1号楼5单元71号住宅(产权证号S200813881)、1号楼5单元8-1号住宅(产权证号S200813952)、1号楼5单元4-2号住宅(产权证号S200813892)、1号楼5单元5-2号住宅(产权证号S200813880)、1号楼5单元6-2号住宅(产权证号S200813943)、1号楼5单元7-2号住宅(产权证号S200813885)、1号楼5单元8-2号住宅(产权证号S200813951),地址:鸡西市中心塔小区。

    4.马奎武名下鸡西市中心塔小区二组团1号楼4单元7-1号住宅(产权证号S200813886)、1号楼4单元8-1号住宅(产权证号S200813889)、1号楼4单元4-2号住宅(产权证号S200813882)、1号楼4单元5-2号住宅(产权证号S200813883)、1号楼4单元6-2号住宅(产权证号S200813884)、1号楼4单元7-2号住宅(产权证号S200813888)、1号楼4单元8-2号住宅(产权证号S200813891),地址:鸡西市鸡冠区中心塔小区。

    5.鸡西神龙煤矿机械有限公司名下鸡西市中心塔小区一组团一期(1-2)-2号门市、一组团一期(1-2)-3号门市、一组团一期(1-2)-6号门市、一组团一期(1-2)-14号门市、二组团1-13号门市、二组团1-14号门市、二组团1-15号门市、二组团1-16号门市、二组团1-17号门市、二组团1-18号门市、二组团1-19号门市、二组团1-10号门市,地址:鸡西市鸡冠区中心塔小区;其名下鸡西市向阳办黄楼13-3号门市、向阳办黄楼13-5号门市、向阳办黄楼13-6号门市、向阳办黄楼14-1号门市,地址:鸡西市鸡冠区向阳办黄楼;其名下鸡西市开元综合楼门市13号门市,地址:鸡西市鸡冠区开元综合楼;其名下鸡西市东风小区6号楼-11门市,地址:鸡西市鸡冠区向阳办。

    6.鸡西市湖泊湿地保护研究中心名下密山市兴凯湖乡湖岗的木屋2栋,产权证号:013030211(包含沐沁舍木屋2处、井房、锅炉房、宿舍),产权证号:013030212(包含湖边别墅、宿舍车库、门卫),地址:密山市兴凯湖湖西检查站后院。

    7.鸡西市兴凯湖大白鱼养殖繁育推广中心名下密山市兴凯湖水产养殖场鲤鱼港分场的木屋,鸡房权证密建字第017020040号,地址:密山市兴凯湖湖岗鲤鱼港东侧;其名下密山市兴凯湖水产养殖场鲤鱼港家属区房产,鸡房权证密建字第017020041号(包含库房、车库、办公楼、养殖房、门卫、一层别墅、二层别墅、三层别墅),地址:密山市兴凯湖湖岗鲤鱼港东侧。

    8.黑龙江省镝森房地产开发有限责任公司名下鸡西市福地洞天小区一期9号楼5号门市、7号楼17号车库、7号楼18号车库、7号楼19号车库、7号楼20号车库,地址:鸡西市鸡冠区福地洞天小区。

    9.鸡西泛华城市建设投资有限公司名下鸡西市鸡冠新城公共租赁住房项目3号楼1号车库、3号楼2号车库、3号楼3号车库、3号楼4号车库、3号楼5号车库、3号楼6号车库、3号楼7号车库、3号楼8号车库、3号楼9号车库、3号楼10号车库、3号楼11号车库、3号楼12号车库、3号楼13号车库、3号楼14号车库、3号楼15号车库、3号楼16号车库、4号楼1号车库、4号楼2号车库、4号楼3号车库、4号楼4号车库、4号楼5号车库、4号楼6号车库、4号楼7号车库、4号楼8号车库、4号楼9号车库、4号楼10号车库、4号楼11号车库、4号楼12号车库、4号楼13号车库、4号楼14号车库、4号楼15号车库、4号楼16号车库、5号楼1号车库、5号楼2号车库、5号楼3号车库、5号楼4号车库、5号楼5号车库、5号楼6号车库、5号楼7号车库、5号楼8号车库、5号楼9号车库、5号楼10号车库、5号楼11号车库、5号楼12号车库、5号楼13号车库、5号楼14号车库、5号楼15号车库、5号楼16号车库、6号楼1号车库、6号楼2号车库、6号楼3号车库、6号楼4号车库、6号楼5号车库、6号楼6号车库、6号楼7号车库、6号楼8号车库、6号楼9号车库、6号楼10号车库、6号楼11号车库、6号楼12号车库、6号楼13号车库、6号楼14号车库、7号楼1号车库、7号楼2号车库、7号楼3号车库、7号楼4号车库、7号楼5号车库、7号楼6号车库、7号楼7号车库、7号楼8号车库、7号楼9号车库、7号楼10号车库、7号楼11号车库、7号楼12号车库、7号楼13号车库、7号楼14号车库,地址:鸡冠区红星乡加油站西侧、南环路北侧;其名下鸡西泛华城市建设投资有限公司泛华创业大厦、4栋钢结构厂房,地址:鸡西市鸡冠区鸡恒路66号;其名下鸡西市鸡冠区红星乡朝阳村房产环境综合整治项目(环卫车库)1栋,地址:鸡西市鸡冠区红军办广益8-办公楼。

    10.北京泛华置业有限公司名下鸡西市鸡冠区松林小区一期1号楼1单元603住宅、一期2号楼1单元602住宅、一期2号楼2单元602住宅、一期2号楼3单元602住宅、一期2号楼5单元602住宅、一期3号楼2单元602住宅、一期3号楼1单元202住宅、一期4号楼2单元402住宅、一期4号楼2单元502住宅、一期5号楼1单元502住宅、一期5号楼2单元502住宅、一期5号楼2单元602住宅、一期6号楼1单元502住宅、一期6号楼2单元502住宅、一期6号楼3单元602住宅、一期6号楼4单元502住宅、一期7号楼2单元502住宅、一期7号楼2单元602住宅、二期9号楼1单元602住宅、二期10号楼1单元602住宅、一期1号楼2号门市、一期1号楼3号门市、一期1号楼4号门市、一期1号楼5号门市、一期1号楼6号门市、一期2号楼1号门市、一期2号楼2号门市、一期2号楼3号门市、一期2号楼4号门市、一期2号楼5号门市、一期2号楼6号门市、一期2号楼7号门市、一期3号楼2号门市、一期3号楼3号门市、一期3号楼4号门市、一期3号楼5号门市、一期4号楼1号门市、一期4号楼2号门市、一期4号楼3号门市、二期8号楼1号门市、二期8号楼2号门市、二期8号楼3号门市、二期8号楼4号门市、二期8号楼5号门市、二期8号楼6号门市、二期9号楼1号门市、二期9号楼2号门市、二期9号楼3号门市、二期9号楼4号门市、二期9号楼5号门市、二期9号楼6号门市、二期9号楼7号门市、二期9号楼8号门市、二期10号楼1号门市、二期10号楼2号门市、二期10号楼3号门市、二期10号楼4号门市、二期10号楼5号门市、二期10号楼6号门市、二期10号楼7号门市、二期11号楼1号门市、二期11号楼2号门市、二期11号楼3号门市、二期11号楼4号门市、一期1号楼1号车库、一期1号楼2号车库、一期1号楼3号车库、一期1号楼4号车库、一期1号楼5号车库、一期1号楼6号车库、一期1号楼7号车库、一期2号楼1号车库、一期2号楼2号车库、一期2号楼3号车库、一期2号楼4号车库、一期2号楼5号车库、一期2号楼6号车库、一期2号楼7号车库、一期2号楼8号车库、一期2号楼9号车库、一期2号楼10号车库、一期2号楼11号车库、一期2号楼12号车库、一期2号楼13号车库、一期2号楼14号车库、一期2号楼15号车库、一期2号楼16号车库、一期2号楼17号车库、一期2号楼18号车库、一期2号楼19号车库、一期2号楼20号车库、一期3号楼2号车库、一期3号楼3号车库、一期3号楼4号车库、一期3号楼5号车库、一期3号楼6号车库、一期3号楼7号车库、一期3号楼8号车库、一期4号楼1号车库、一期4号楼2号车库、一期4号楼3号车库、一期4号楼4号车库、一期4号楼5号车库、一期4号楼6号车库、一期4号楼7号车库、一期4号楼8号车库、一期5号楼1号车库、一期5号楼2号车库、一期5号楼3号车库、一期5号楼4号车库、一期5号楼5号车库、一期5号楼6号车库、一期5号楼7号车库、一期5号楼8号车库、一期5号楼10号车库、一期6号楼1号车库、一期6号楼2号车库、一期6号楼3号车库、一期6号楼5号车库、一期6号楼6号车库、一期6号楼7号车库、一期6号楼8号车库、一期6号楼9号车库、一期6号楼10号车库、二期8号楼1号车库、二期8号楼2号车库、二期8号楼3号车库、二期8号楼4号车库、二期8号楼5号车库、二期8号楼6号车库、二期8号楼7号车库、二期8号楼8号车库、二期8号楼9号车库、二期8号楼10号车库、二期8号楼11号车库、二期8号楼12号车库,地址:鸡西市鸡冠区松林小区。

    11.鸡西市鸿淦房地产开发有限公司名下鸡西市柳盛馨园小区9号楼2单元601住宅、8号楼5单元203住宅、1号楼4号车库、2号楼6号车库、2号楼7号车库、2号楼13号车库、2号楼16号车库、2号楼17号车库、3号楼17号车库、3号楼18号车库、3号楼19号车库、5号楼5号车库、5号楼7号车库、7号楼2号车库、7号楼3号车库、7号楼4号车库、7号楼5号车库、7号楼6号车库、7号楼7号车库、7号楼8号车库、8号楼9号车库、8号楼14号车库、8号楼15号车库、8号楼22号车库、9号楼7号车库、9号楼9号车库、10号楼1号车库、10号楼4号车库、11号楼3号车库、11号楼4号车库、11号楼5号车库、12号楼9号车库、12号楼21号车库、14号楼4号车库、14号楼5号车库、14号楼6号车库、14号楼7号车库、14号楼8号车库、14号楼9号车库、14号楼14号车库、14号楼15号车库、14号楼16号车库、14号楼17号车库、14号楼18号车库、14号楼19号车库、15号楼3号车库、15号楼4号车库、15号楼6号车库、15号楼7号车库、15号楼8号车库、15号楼9号车库、15号楼10号车库、15号楼12号车库、15号楼13号车库、15号楼16号车库、15号楼17号车库、16号楼18号车库、16号楼22号车库、16号楼24号车库、17号楼3号车库、17号楼7号车库、17号楼11号车库、17号楼12号车库、17号楼18号车库、17号楼19号车库、17号楼21号车库、17号楼20号车库、17号楼26号车库、17号楼29号车库、18号楼1号车库、18号楼11号车库、18号楼12号车库、20号楼14号车库、22号楼6号车库、22号楼8号车库、22号楼9号车库、22号楼10号车库、22号楼12号车库、22号楼17号车库、22号楼18号车库、22号楼19号车库、商务会馆11号车库、9-3车库、9-4车库,地址:鸡西市鸡冠区腾飞路北柳浪街东柳盛馨园小区。

    12.鸡西市兴凯湖国际大酒店有限公司名下鸡西市鸡冠区中心大街37号国际经贸大厦,产权证号S201501270,地址:鸡西市鸡冠区中心大街37号大厦。

    13.鸡西市产权交易服务中心名下鸡西市鸡冠区建安街东、技师学院北校区北侧残疾人综合服务中心综合楼1栋,鸡冠房字第S201408620,地址:鸡西市鸡冠区建安街东、技师学院北校区北侧残疾人综合服务中心综合楼,鸡西市残疾人联合会2号楼。

    14.王洋名下北京市昌平区定泗路88号北七家镇羊各庄世纪星城住宅小区二期(一区)0151号1层0101别墅,产权证号:X京房权证昌字第583662号,地址:北京市昌平区定泗路88号北七家镇羊各庄世纪星城住宅小区。

    15.杨桂芝名下三亚市鲁能三亚湾度假区高一区B14栋,产权证号三土房(2014)字第09996号,地址:三亚市鲁能三亚湾度假区高一别墅区B14栋。

    16.张亚杰名下三亚市凤翔路鲁能三亚湾美丽城1区1期2栋1单元1A号住宅,产权证号琼(2019)三亚市不动产权第0007112号,地址:海南省三亚市鲁能三亚湾美丽城区一期二栋一单元1A号房。

    17.金思江名下三亚市凤翔路鲁能三亚湾美丽城1区1期2栋1单元2A号住宅,产权证号三土房(2014)第09783号,地址:海南省三亚市鲁能三亚湾美丽城区一期二栋一单元2A号房。

    18.鸡西元通城市燃气投资有限公司名下鸡西市红胜花园小区B栋1101、B栋1-102、B栋1-202。地址:鸡西市鸡冠区学府街西,涌新路南;其名下鸡西市红胜花园小区C4号楼-7号车库、C4号楼-8号车库、C4号楼-9号车库、C4号楼-10号车库、C4号楼-11号车库。地址:鸡西市鸡冠区学府街西,涌新路南;其名下鸡西市唯美新城一期2-4-202室、一期3-1-201室、唯美新城二期2-3-201室、二期2-3301室、二期3-1-401室、唯美新城11-3-402室、8-11403室,鸡西市唯美新城三期16号楼1号门市,地址:鸡冠区新区建工街与涌新路交汇处唯美新城小区。

    19.黑龙江泛华物流产业园投资管理有限公司名下鸡西泛华物流园区B、C厂房,地址:鸡西市鸡冠区腾飞路北、柳浪街东;其名下鸡西泛华物流园区信息交易综合楼、发电机房、门卫室、零担用房、快递分拣中心、零担库房、仓储库房等23处房产和厂房,地址:鸡西市鸡冠区腾飞路418号物流园区。

    20.梁焕名下哈尔滨市南岗区大成街140号龙电花园H栋11层2号,产权证号:1401083332,地址:哈尔滨市南岗区大成街140号。

    21.赵成芳(又名赵成方)名下鸡西市城子河区永丰乡新兴村房产1处,二层楼房1栋,产权证号S160843号、S160844号,地址:鸡西市城子河区永丰乡新兴村。

    22.鸡西金色农业科技有限公司名下5个日光棚、1个生态餐厅、7个温室大棚以及8处房屋(产权证号C201400561号至C201400568号);地址:鸡西市城子河区长青乡良种场。鸡西市东风办教育学院住宅-6-(1-5)层,产权证号S201506763,地址:鸡西市东风办教育学院住宅-6-(1-5)层。

    23.黑龙江北唐煤矿量费监控系统工程开发有限公司名下鸡西市北唐煤矿量费监控系统工程开发有限公司厂房及办公楼,地址:鸡西市鸡恒路东太村南。

    24.鸡西隆衡房地产开发有限公司名下鸡西市信合大厦二单元1101、二单元1102、二单元2401、二单元2402、三单元1501、三单元1502、三单元1901、三单元1902、三单元2001、四单元1102、一单元1102、一单元2502、一单元2503、一单元2602、二单元1001、二单元1002、二单元1401、二单元1402、二单元1801、二单元1802、二单元2601、二单元2602、二单元2701、二单元2702、三单元1001、三单元1002、三单元1101、三单元1202、三单元1301、三单元1302、三单元1401、三单元1402、三单元1801、三单元1802、三单元2002、三单元2101、三单元2102、三单元2201、三单元2202、三单元2301、三单元2401、三单元2402、三单元2501、三单元2502、三单元2601、三单元2602、三单元2701、三单元2702、四单元1001、四单元1002、四单元1101、四单元1401、四单元1402、四单元1801、四单元1802、四单元2601、四单元2602、四单元2701、四单元2702、五单元1001、五单元1002、五单元1003、五单元1102、五单元1302、五单元1401、五单元1402、五单元1801、五单元1802、五单元2601、五单元2701、五单元2702、五单元2703、一单元1001、一单元1002、一单元1003、一单元1401、一单元1402、一单元1403、一单元1801、一单元1802、一单元1803、一单元2701、一单元2702、一单元2703号住宅。地址:鸡西市鸡冠区文化路南、西山路西信合大厦。信合大厦1层1号、1层2号、2层1号、2层2号、3层1号、3层2号、4层1号、4层2号、5层1号、5层2号、6层1号、6层2号、7层1号、7层2号、-1层1号门市,地址:鸡西市鸡冠区文化路南。信合大厦车位2-1-04号、车位-2-2-09号、车位-2-2-10号、车位2-2-12号、车位-2-2-13号、车位-2-2-14号、车位2-2-15号、车位-2-2-16号、车位-2-3-01号、车位2-3-02号、车位-2-3-03号、车位-2-3-04号、车位2-4-01号、车位-2-4-02号、车位-2-4-03号、车位2-5-01号、车位-2-5-02号、车位-2-5-03号、车位2-5-04号、车位-2-5-05号、车位-2-5-06号、车位2-6-01号、车位-2-6-05号,地址:鸡西市鸡冠区文化路南、西山路西。

    25.鸡西市嘉盈沥青搅拌有限公司名下门卫房、锅炉房、煤仓、料场及混凝土地、办公楼,地址:鸡西市鸡冠鸡密南路1号朝阳村村口沥青搅拌站,鸡西市北钢烧砖厂西侧、冷家路北。

    26.鸡西市国有资产经营管理有限公司名下天马特种耐火材料厂房产,产权证号S201104631、产权证号S201104632、产权证号S201104633、产权证号S201104634、产权证号S201104635、产权证号S201104636、产权证号S201104637、产权证号S201104638、产权证号S201104639、产权证号S201104640、产权证号S201104641、产权证号S201104642、产权证号S201104643、产权证号S201104644,地址:鸡西市鸡冠区201国道特耐厂院内。

    27.鸡西煤矿专用设备厂名下厂房,产权证号S201001968、产权证号S201001974、产权证号S201001971、产权证号G888、产权证号G875、产权证号G879、产权证号G887、产权证号G886、产权证号S201001965、产权证号G884、产权证号032960、产权证号S201001967、产权证号S201001973、产权证号S201001970、产权证号S201001969、产权证号031774、产权证号031770、产权证号031768、产权证号031782、产权证号031772、产权证号031777、产权证号031781、产权证号031765、产权证号031783、产权证号031776、产权证号031771、产权证号031769、产权证号031780、产权证号031778、产权证号031766、产权证号031775、产权证号017007,产权证号024920、产权证号S201001966、产权证号S201001972、产权证号026304、产权证号G871、产权证号031779、产权证号031767、产权证号031773,地址:鸡西市鸡冠区南山路59号。

    28.李传纲(鸡西市产权交易服务中心)名下熙雅寓C座7单元502室,地址:鸡西市鸡冠区文化路熙雅寓C座7单元502室。

    29.李继明名下勤奋二组团4单元302室,产权证号黑(2017)鸡西市不动产权第000634号,地址:鸡西市鸡冠区文化路勤奋二组团4-00302。

    30.蒋一赫名下勤奋二组团4单元402室,产权证号黑(2017)鸡西市不动产权第000635号,地址:鸡西市鸡冠区文化路勤奋二组团4-00402。

    31.刘立红名下勤奋二组团4单元1002室,地址:鸡西市鸡冠区文化路勤奋二组团4-01002,产权证号S201508613;其名下鸡西市先锋小区5号楼3-6-3住宅,产权证号S200900862,地址:鸡西市鸡冠区先锋小区。

    32.黑龙江龙远房地产开发有限公司名下勤奋二组团2单元2201住宅、勤奋二组团2单元2202住宅、勤奋二组团2单元2301住宅、勤奋二组团3单元2201住宅、勤奋二组团3单元2202住宅、勤奋二组团4单元201住宅、勤奋二组团4单元301住宅、勤奋二组团4单元401住宅、勤奋二组团4单元801住宅、勤奋二组团4单元901住宅、勤奋二组团4单元1902住宅、勤奋二组团4单元2001住宅、勤奋二组团4单元2002住宅、勤奋二组团4单元1202住宅,勤奋二组团负1层7号门市、勤奋二组团负1层8号门市、勤奋二组团负1层9号门市、勤奋二组团负1层10号门市、勤奋二组团1层1号门市、勤奋二组团1层8号门市、勤奋二组团1层9号门市,勤奋二组团地下车位A区101车位、勤奋二组团地下车位A区102车位、勤奋二组团地下车位A区103车位、勤奋二组团地下车位A区104车位、勤奋二组团地下车位A区201车位、勤奋二组团地下车位A区203车位、勤奋二组团地下车位A区205车位、勤奋二组团地下车位A区206车位、勤奋二组团地下车位B区201车位、勤奋二组团地下车位B区203车位、勤奋二组团地下车位B区204车位、勤奋二组团地下车位B区206车位、勤奋二组团地下车位C区101车位、勤奋二组团地下车位C区102车位、勤奋二组团地下车位C区103车位、勤奋二组团地下车位C区104车位、勤奋二组团地下车位C区201车位、勤奋二组团地下车位C区202车位、勤奋二组团地下车位C区203车位、勤奋二组团地下车位C区206车位、勤奋二组团地下车位D区102车位、勤奋二组团地下车位D区201车位、勤奋二组团地下车位D区202车位、勤奋二组团地下车位D区203车位、勤奋二组团地下车位D区204车位、勤奋二组团地下车位D区205车位、勤奋二组团地下车位D区206车位、勤奋二组团地下车位E区101车位、勤奋二组团地下车位E区201车位、勤奋二组团地下车位E区202车位、勤奋二组团地下车位E区203车位、勤奋二组团地下车位H区201车位、勤奋二组团地下车位H区202车位、勤奋二组团地下车位H区203车位、勤奋二组团地下车位H区204车位、勤奋二组团地下车位H区空车位、勤奋二组团地下车位H区空车位、勤奋二组团地下车位I区201车位、勤奋二组团地下车位I区203车位、勤奋二组团地下车位I区空车位、勤奋二组团地下车位I区空车位、勤奋二组团地下车位J区201车位、勤奋二组团地下车位J区203车位、勤奋二组团地下车位J区204车位、勤奋二组团地下车位J区206车位、勤奋二组团地下车位K区201车位、勤奋二组团地下车位K区202车位、勤奋二组团地下车位K区203车位、勤奋二组团地下车位K区204车位、勤奋二组团地下车位K区205车位、勤奋二组团地下车位K区206车位,1单元东侧三层独栋建筑,地址:鸡西市勤奋二组团;其名下鸡西市鸡冠区电台路南山小区一组团A栋2单元702室住宅,南山小区一组团车位2#、南山小区一组团车位3#、南山小区一组团车位4#、南山小区一组团车位7#、南山小区一组团车位8#、南山小区一组团车位10#、南山小区一组团车位11#、南山小区一组团车位12#、南山小区一组团车位13#、南山小区一组团车位14#、南山小区一组团车位17#、南山小区一组团车位18#、南山小区一组团车位19#、南山小区一组团车位20#、南山小区一组团车位21#、南山小区一组团车位22#、南山小区一组团车位24#、南山小区一组团车位25#、南山小区一组团车位26#、南山小区一组团车位27#、南山小区一组团车位28#、南山小区一组团车位29#、南山小区一组团车位30#、南山小区一组团车位31#、南山小区一组团车位34#、南山小区一组团车位35#、南山小区一组团车位36#、南山小区一组团车位37#、南山小区一组团车位38#、南山小区一组团车位39#、南山小区一组团车位40#、南山小区一组团车位41#、南山小区一组团车位42#、南山小区一组团车位43#、南山小区一组团车位44#、南山小区一组团车位45#、南山小区一组团车位46#、南山小区一组团车位47#、南山小区一组团车位48#、南山小区一组团车位49#、南山小区一组团车位50#、南山小区一组团车位51#、南山小区一组团车位52#、南山小区一组团车位53#、南山小区一组团车位54#、南山小区一组团车位55#、南山小区一组团车位56#、南山小区一组团车位57#、南山小区一组团车位59#、南山小区一组团车位60#、南山小区一组团车位61#、南山小区一组团车位62#、南山小区一组团车位63#、南山小区一组团车位64#、南山小区一组团车位69#、南山小区一组团车位70#、南山小区一组团车位71#、南山小区一组团车位72#、南山小区一组团车位73#、南山小区一组团车位74#、南山小区一组团车位75#、南山小区一组团车位76#、南山小区一组团车位77#、南山小区一组团车位78#、南山小区一组团车位79#、南山小区一组团车位80#、南山小区一组团车位81#、南山小区一组团车位82#、南山小区一组团车位83#、南山小区一组团车位84#、南山小区一组团车位85#、南山小区一组团车位86#、南山小区一组团车位87#、南山小区一组团车位88#、南山小区一组团车位89#、南山小区一组团车位90#、南山小区一组团车位91#、南山小区一组团车位92#、南山小区一组团车位93#、南山小区一组团车位94#、南山小区一组团车位95#、南山小区一组团车位96#、南山小区一组团车位97#、南山小区一组团车位98#、南山小区一组团车位101#、南山小区一组团车位103#、南山小区一组团车位104#、南山小区一组团车位105#、南山小区一组团车位106#、南山小区一组团车位107#、南山小区一组团车位108#、南山小区一组团车位109#、南山小区一组团车位110#、南山小区一组团车位111#、南山小区一组团车位112#、南山小区一组团车位113#、南山小区一组团车位114#、南山小区一组团车位116#、南山小区一组团车位117#、南山小区一组团车位118#、南山小区一组团车位119#、南山小区一组团车位123#、南山小区一组团车位124#、南山小区一组团车位125#、南山小区一组团车位126#、南山小区一组团车位127#、南山小区一组团车位128#、南山小区一组团车位129#、南山小区一组团车位130#、南山小区一组团车位131#、南山小区一组团车位132#、南山小区一组团车位133#、南山小区一组团车位134#、南山小区一组团车位135#、南山小区一组团车位136#、南山小区一组团车位137#、南山小区一组团车位138#、南山小区一组团车位139#、南山小区一组团车位140#、南山小区一组团车位141#、南山小区一组团车位142#、南山小区一组团车位143#、南山小区一组团车位144#、南山小区一组团车位145#、南山小区一组团车位146#、南山小区一组团车位147#、南山小区一组团车位148#、南山小区一组团车位149#、南山小区一组团车位150#、南山小区一组团车位151#、南山小区一组团车位152#、南山小区一组团车位153#、南山小区一组团车位154#、南山小区一组团车位155#、南山小区一组团车位156#、南山小区一组团车位157#、南山小区一组团车位158#、南山小区一组团车位159#、南山小区一组团车位160#、南山小区一组团车位161#、南山小区一组团车位162#、南山小区一组团车位163#、南山小区一组团车位15#,南山小区一组团A区3单元901住宅、南山小区一组团A区3单元902住宅、南山小区一组团B区5单元17-01住宅、南山小区一组团B区4单元1701住宅、南山小区一组团B区4单元17-02住宅、南山小区一组团B区1单元17-01住宅、南山小区一组团B区4单元16-02住宅、南山小区一组团B区2单元16-01住宅、南山小区一组团B区4单元10-01住宅、南山小区一组团B区4单元15-01住宅、南山小区一组团B区4单元14-01住宅、南山小区一组团B区4单元14-02住宅、南山小区一组团B区4单元13-01住宅、南山小区一组团B区4单元12-01住宅、南山小区一组团B区4单元11-01住宅、南山小区一组团B区4单元9-01住宅、南山小区一组团B区4单元8-01住宅、南山小区一组团B区4单元8-02住宅、南山小区一组团B区4单元7-02住宅、南山小区一组团B区4单元6-01住宅、南山小区一组团B区4单元6-02住宅、南山小区一组团B区4单元5-01住宅、南山小区一组团B区4单元5-02住宅、南山小区一组团B区4单元401住宅、南山小区一组团B区4单元4-02住宅、南山小区一组团B区4单元3-01住宅、南山小区一组团B区4单元3-02住宅、南山小区一组团C区2单元13-03住宅、南山小区一组团C区2单元5-03住宅、南山小区一组团C区2单元4-03住宅、南山小区一组团D区2单元6-02住宅、南山小区一组团D区1单元603住宅、南山小区一组团D区1单元303住宅,南山小区一组团A座104门市、南山小区一组团A座105门市、南山小区一组团A座106门市、南山小区一组团A座107门市、南山小区一组团B座101门市、南山小区一组团B座102门市、南山小区一组团B座103门市、南山小区一组团B座105门市、南山小区一组团B座106门市、南山小区一组团B座107门市、南山小区一组团B座108门市、南山小区一组团B座109门市,地址:鸡西市鸡冠区电台路南山小区一组团。

    33.鸡西阔远房地产开发有限公司名下鸡西市城子河区长青综合楼1-201室住宅、鸡西市城子河区长青综合楼1-202室住宅、鸡西市城子河区长青综合楼1-301室住宅、鸡西市城子河区长青综合楼1-401室住宅、鸡西市城子河区长青综合楼1402室住宅、鸡西市城子河区长青综合楼1-502室住宅、鸡西市城子河区长青综合楼1-601室住宅、鸡西市城子河区长青综合楼1-602室住宅、鸡西市城子河区长青综合楼2-302室住宅、鸡西市城子河区长青综合楼2-401室住宅、鸡西市城子河区长青综合楼2-402室住宅、鸡西市城子河区长青综合楼2-501室住宅、鸡西市城子河区长青综合楼2-502室住宅、鸡西市城子河区长青综合楼2-601室住宅、鸡西市城子河区长青综合楼2-602室住宅、鸡西市城子河区长青综合楼3-201室住宅、鸡西市城子河区长青综合楼3-202室住宅、鸡西市城子河区长青综合楼3-301室住宅、鸡西市城子河区长青综合楼3-302室住宅、鸡西市城子河区长青综合楼3-401室住宅、鸡西市城子河区长青综合楼3-402室住宅、鸡西市城子河区长青综合楼3501室住宅、鸡西市城子河区长青综合楼3-502室住宅、鸡西市城子河区长青综合楼3-601室住宅、鸡西市城子河区长青综合楼3-602室住宅、鸡西市城子河区长青综合楼4-201室住宅、鸡西市城子河区长青综合楼4-202室住宅、鸡西市城子河区长青综合楼4-301室住宅、鸡西市城子河区长青综合楼4-302室住宅、鸡西市城子河区长青综合楼4-401室住宅、鸡西市城子河区长青综合楼4-402室住宅、鸡西市城子河区长青综合楼4-501室住宅、鸡西市城子河区长青综合楼4-502室住宅、鸡西市城子河区长青综合楼4-601室住宅、鸡西市城子河区长青综合楼4-602室住宅、鸡西市城子河区长青综合楼5-201室住宅、鸡西市城子河区长青综合楼5-202室住宅、鸡西市城子河区长青综合楼5-301室住宅、鸡西市城子河区长青综合楼5302室住宅、鸡西市城子河区长青综合楼5-401室住宅、鸡西市城子河区长青综合楼5-402室住宅、鸡西市城子河区长青综合楼5-501室住宅、鸡西市城子河区长青综合楼5-502室住宅、鸡西市城子河区长青综合楼5-601室住宅、鸡西市城子河区长青综合楼5-602室住宅、鸡西市城子河区长青综合楼6-201室住宅、鸡西市城子河区长青综合楼6-202室住宅、鸡西市城子河区长青综合楼6-301室住宅、鸡西市城子河区长青综合楼6-302室住宅、鸡西市城子河区长青综合楼6-401室住宅、鸡西市城子河区长青综合楼6-402室住宅、鸡西市城子河区长青综合楼6-501室住宅、鸡西市城子河区长青综合楼6-502室住宅、鸡西市城子河区长青综合楼6-601室住宅、鸡西市城子河区长青综合楼6-602室住宅,鸡西市城子河区长青综合楼4号门市、鸡西市城子河区长青综合楼8号门市、鸡西市城子河区长青综合楼9号门市,地址:鸡西市城子河区长青综合楼。

    34.鸡西市中城建房地产开发有限公司名下鸡西市滴道区同乐六组团3号楼5号门市、鸡西市滴道区同乐六组团3号楼6号门市、鸡西市滴道区同乐六组团3号楼7号门市、鸡西市滴道区同乐六组团3号楼8号门市、鸡西市滴道区同乐六组团4号楼4号门市、鸡西市滴道区同乐六组团4号楼5号门市、鸡西市滴道区同乐六组团9号楼113号门市、鸡西市滴道区同乐六组团9号楼114号门市、鸡西市滴道区同乐六组团9号楼115号门市、鸡西市滴道区同乐六组团9号楼116号门市、鸡西市滴道区同乐六组团7号楼4号门市、鸡西市滴道区同乐六组团7号楼6号门市、鸡西市滴道区同乐六组团7号楼14号门市、鸡西市滴道区同乐六组团7号楼15号门市,地址:鸡西市滴道区同乐六组团(金街花园)。

    35.陈彦彬名下北京市通州区八里桥京铁潞园1号楼3单元2504室住宅,地址:北京市通州区八里桥京铁潞园1号楼3单元2504室。

    36.董凤珍名下鸡西市鸡冠区向阳办东风委4035-1-2-4住宅,地址:鸡西市鸡冠区向阳办东风委。

    37.王立明名下鸡西市鸡冠区南山办跃进鸡西大学1-1-1-103住宅,产权证号S200707622,地址:鸡西市鸡冠区南山办跃进委鸡西大学。

    38.刘泓弢名下鸡西市电工路商住楼-2-7-1住宅,产权证号S200702951,地址:鸡西市鸡冠区电工路商住楼。

    39.黑龙江正麒房地产开发有限公司名下鸡西市鸡兴东路北中国银行西鸡西市消防培训中心综合楼及附属设施,产权证号S201408904,地址:鸡西市鸡冠区消防培训中心综合楼西侧。其名下尼斯花园A1栋4处住宅、A2栋4处住宅、A3栋4处住宅、B1栋4处住宅、B2栋4处住宅、B3栋4处住宅、B4栋6处住宅、C1栋4处住宅、C2栋4处住宅、C3栋4处住宅、C4栋6处住宅,地址:鸡西市鸡冠区鸡兴东路、鸡西气象局东侧。

    40.黑龙江沈矿瓦斯发电有限公司名下独栋鸡西市鸡冠区广益城农贸市场北侧办公楼1栋(鸡西市交通运输局原办公楼),产权证号G5235,地址:鸡西市鸡兴东路北、中国人民银行西。

    41.陈红博名下河北省固安县大卫城三期孔雀城大卫城乐园4栋1单元1层0107门市,地址:河北省固安县大卫城三期孔雀城大卫城乐园4栋1单元1层0107门市。

    42.黑龙江省华诚建筑安装工程有限公司名下兴凯湖新开流景区5处木屋餐厅,地址:密山市兴凯湖新开流观景台东侧。

    三、车辆

    1.鸡西滨港特种车有限公司名下车辆,品牌型号夏工XG951,牌照号CXG00951C0L1A9165。

    2.鸡西滨港特种车有限公司名下车辆,品牌型号夏工XG955,牌照号XG955CXG00955P0L1C2231。

    3.鸡西滨港特种车有限公司名下车辆,品牌型号夏工XG955,牌照号CXG00955K0L1C2232。

    4.鸡西滨港特种车有限公司名下车辆,品牌型号夏工XG955,牌照号CXG00955T0L1B3379。

    5.鸡西滨港特种车有限公司名下车辆,品牌型号钩机,牌照号SH350SMT350A5P00BH3036。

    6.鸡西滨港特种车有限公司名下车辆,品牌型号山推SD16,牌照号AA126720。

    7.鸡西滨港特种车有限公司名下车辆,品牌型号山推SD16,牌照号AA126998。

    8.李克峰名下车辆,品牌型号白色雷克萨斯5700,牌照号黑A8570F。

    9.董国政名下车辆,品牌型号白色丰田兰德酷路泽5700,牌照号黑G7868E。

    10.李彬名下车辆,品牌型号福特嘉年华,牌照号黑G8K267。

    11.杨贵春名下车辆,品牌型号福特嘉年华,牌照号黑G6K700。

    12.郑鑫名下车辆,品牌型号大众辉腾,牌照号黑A923DZ。

    13.黑龙江省鹏通煤层气开发有限公司名下车辆,品牌型号东风皮卡,牌照号黑G12180。

    14.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号本田雅阁,牌照号黑G06729。

    15.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号依维柯,牌照号黑G08078。

    16.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号依维柯,牌照号黑G06829。

    17.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号依维柯,牌照号黑G06866。

    18.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号别克轿车,牌照号黑G81090。

    19.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号长城汽车,牌照号黑G08106。

    20.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号沈阳金杯,牌照号黑GB5017。

    21.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号长城汽车,牌照号黑G08137。

    22.沈阳焦煤鸡西盛隆矿业有限责任公司名下车辆,品牌型号沈阳金杯,牌照号黑GG2396。

    23.黑龙江沈矿瓦斯发电有限公司名下车辆,品牌型号大众辉腾,牌照号黑GG5507。

    24.鸡西泛华城市建设投资有限公司名下车辆,品牌型号庆铃皮卡,牌照号黑G13736。

    25.鸡西泛华城市建设投资有限公司名下车辆,品牌型号本田汉兰达,牌照号黑G07969。

    26.鸡西泛华城市建设投资有限公司名下车辆,品牌型号大众桑塔纳,牌照号黑G07976。

    27.鸡西泛华城市建设投资有限公司名下车辆,品牌型号大众桑塔纳,牌照号黑G09692。

    28.鸡西泛华城市建设投资有限公司名下车辆,品牌型号大众桑塔纳,牌照号黑G09597。

    29.鸡西泛华城市建设投资有限公司名下车辆,品牌型号大众桑塔纳,牌照号黑G04711。

    30.鸡西泛华城市建设投资有限公司名下车辆,品牌型号大众桑塔纳,牌照号黑G04448。

    31.鸡西泛华城市建设投资有限公司名下车辆,品牌型号别克GL8,牌照号黑G08757。

    32.鸡西泛华城市建设投资有限公司名下车辆,品牌型号别克昂科威,牌照号黑G04447。

    33.鸡西泛华城市建设投资有限公司名下车辆,品牌型号别克昂科威,牌照号黑G04066。

    34.鸡西泛华城市建设投资有限公司名下车辆,品牌型号现代格瑞,牌照号黑G08878。

    35.鸡西泛华城市建设投资有限公司名下车辆,品牌型号五菱宏光,牌照号黑GU4966。

    36.鸡西泛华城市建设投资有限公司名下车辆,品牌型号五菱宏光,牌照号黑G08796。

    37.鸡西泛华城市建设投资有限公司名下车辆,品牌型号五菱宏光,牌照号黑G09708。

    38.鸡西泛华城市建设投资有限公司名下车辆,品牌型号铲车,牌照号柳工50。

    四、土地、滩涂

    1.鸡西市阔远房地产开发有限公司名下鸡西市鸡冠区财政局培训中心北、学府街东,学府街09-01号地块,面积27858平方米。

    2.鸡西泛华城市建设投资有限公司名下鸡西市鸡冠区文成街东、规划路南,A-60-01-b号净地,面积10015平方米。

    3.鸡西市德帮物贸有限公司名下鸡西市污水处理厂西侧2012-12号地块A-01号土地,面积14154平方米。

    4.黑龙江北唐煤矿量费监控系统工程开发有限公司名下鸡恒路东、鸡西永金液化气有限公司南侧,鸡冠国用(2013)第200052号土地,面积38100平方米。

    5.黑龙江省北方建成汽车贸易有限公司名下鸡西市鸡冠西端南侧,宗地号3-23-47号土地,面积154198平方米。

    6.黑龙江优丰农业开发有限公司名下租赁鸡西市城子河区永丰乡永平村土地,面积21571平方米。

    7.郭立星名下租赁鸡西市城子河区永丰乡永平村水域滩涂,面积44800平方米。

    8.鸡西金色农业科技有限公司名下租赁鸡西市良种场地块800亩(面积533336平方米)。

    9.黑龙江正麒房地产开发有限公司名下鸡西市鸡兴东路北中国银行西106/18/166地块(A-50),面积34985平方米。

    10.鸡西市中城建房地产开发有限公司名下鸡西市鸡冠区长征街东、涌新路北,鸡冠新区二期A-64-2号地块净地,面积61497平方米。

    11.鸡西市中城建房地产开发有限公司名下鸡西市鸡冠区长征街东、涌新路北,鸡冠新区二期A-66-2号地块净地,面积66724平方米。

    12.鸡西市阔远房地产开发有限公司名下鸡西市鸡冠区兴国东路北、冉昭街东,鸡冠区东A-02、东A-03、东A-04号A02-B-4-3地块,面积25681平方米。

    13.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北,鸡冠区2015-08号A-01(腾飞北路)地块,面积130162平方米。

    14.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北,鸡冠区2015-08号F-03(腾飞北路)地块,面积12911平方米。

    15.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北,柳浪街(鸡冠区2015-08号地块A-04地块)道路工程,面积25493平方米。

    16.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北,鸡冠区2015-08号A02(腾飞北路)地块,面积43992平方米。

    17.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北,鸡冠区2015-08号E-05-a(腾飞北路)地块,面积16531平方米。

    18.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北,鸡冠区2015-08号E05-b(腾飞北路)地块,面积2375平方米。

    19.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北、柳浪街东,鸡冠区2015-08号D-01地块,面积91296平方米。

    20.黑龙江泛华物流产业园投资管理有限公司名下鸡西市鸡冠区腾飞路北、柳浪街西,挂2016-9号,面积15423平方米。

    21.鸡西泛华城市建设投资有限公司名下鸡西市沈阳煤业(集团)鸡西盛隆矿业有限责任公司西侧,2011-30号A-07-5号地块,面积41118平方米。

    22.鸡西泛华城市建设投资有限公司名下鸡西市文成街西前进路北,鸡冠新区二期A-68-2号地块,面积3655平方米。

    23.鸡西泛华城市建设投资有限公司名下鸡西市鸡恒路西汽车产业园内,鸡西(鸡冠)工业新城B-03-4号地块,面积4579平方米。

    24.张亚凤名下租赁鸡西市和平林场沈家沟土地(120.69亩),面积80460平方米。

    25.鸡西滨港特种汽车有限公司名下鸡西市鸡冠区2011-30A-11号地块、鸡西市鸡冠区2011-30A-01号地块、鸡西市鸡冠区2011-30A-03号地块,三块土地共计面积137006平方米。

    五、林地

    1.哈尔滨市滨港投资有限公司名下鸡西市梨树区碱场矿林地18557亩(12371395.19平方米)。

    2.黑龙江优丰农业开发有限公司名下租赁鸡西市团山子水库西岸林地980亩(653336.6平方米)。

    3.黑龙江沈煤林木开发有限公司名下租赁鸡西市鸡冠区原立新矿樟子松、落叶松林地699亩(466002.33平方米)。

    4.黑龙江沈煤林木开发有限公司名下租赁鸡西市鸡冠区原立新矿樟子松林地144亩(96000.48平方米)。

    5.黑龙江沈煤林木开发有限公司名下租赁鸡西市鸡冠区原立新矿落叶松林地105亩(70000.35平方米)。

    6.鸡西盛隆矿业有限责任公司鸡东林场名下租赁小和平林场II区永和施业区、软阔叶混交林24825亩(16550082.75平方米)。

    7.黑龙江省青山煤矿林场名下租赁黑龙江省林口县(市)亚河公社(镇)青山煤矿林场26220亩(17480087.4平方米)。

    8.鸡西市园林绿化中心名下鸡西市鸡冠区太阳升村苗圃用地及表面栽种树木246860平方米。

    六、设备黑龙江绅港能源开发公司名下的2000KW太阳能光伏发电设备、蒸汽型吸收式热泵(水源热泵)、冷渣机。

    七、股权

    1.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江沈矿瓦斯发电有限公司100%股权。

    2.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江沈矿物流有限公司100%股权。

    3.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西泛华城市建设投资有限公司100%股权。

    4.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江泛华物流产业园投资管理有限公司100%股权。

    5.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江绅港能源开发有限公司100%股权。

    6.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西市湖泊湿地保护研究中心100%股权。

    7.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西兴凯湖大白鱼养殖繁育推广中心100%股权。

    8.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西隆衡房地产开发有限公司100%股权。

    9.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西阔远房地产开发有限公司100%股权。

    10.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江龙远房地产开发有限责任公司100%股权。

    11.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江北唐煤矿量费监控系统工程开发有限公司100%股权。

    12.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江优丰农业开发有限公司100%股权。

    13.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西金色农业科技有限公司100%股权。

    14.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江安泰矿产开发有限公司100%股权。

    15.犯罪嫌疑人李传良名下个人实际持有、控制的黑龙江省鹏通煤层气开发有限公司100%股权。

    16.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西元通城市燃气投资有限公司100%股权。

    17.犯罪嫌疑人李传良名下个人实际持有、控制的鸡西滨港特种汽车有限公司100%股权。

    18.犯罪嫌疑人李传良名下个人实际持有、控制的沈煤鸡西隆丰矿山机械制造有限公司鸡东林场100%股权。

  • 下岗记述

    一、概念、数字与由来

    1990年代初期,有些地方出现“停薪留职”,有些地方“厂内待业”,有些地方出现“放长假”“两不找”等现象。90年代中后期,下岗职工问题作为一种社会经济现象开始突显。

    据2000年、2003年《中国统计年鉴》,1995-1997年国有单位职工人数变化不大,分别为10955万人、10949万人,10766万人。从1998年开始,人数就开始暴跌:1998年,8809万人;1999年,8336万人;到2002年,这项数据已落至6924万人。 6年间,国有单位职工减少将近4000万。与此同时,城镇集体单位职工人数也呈大幅下降之势,从1995年的3076万人变为2002年的1071万人,减少2000万。下岗人员增多,城镇登记失业率攀升,1995年2.9%,2002年4.0%。

    1996年,中国社会科学院研究院冯兰瑞认为:如果再加上城镇新增长劳动力、农民工等,“九五期间”,失业率可能达到21.4%。

    据2002年2月劳动和社会保障部发布的全国下岗职工报告:1998-2000年,全国国有企业共发生下岗职工2137万人。其中1998年年初为691.8万人,当年新增562.2万人;1999年上年结转610万人,当年新增618.6万人;2000年上年结转652万人,当年新增444.6万人。

    从总量上看,三年间年度下岗职工总量呈下降趋势。从地域分布看,下岗职工主要集中在老工业基地和经济欠发达地区,东北三省占25%;从行业分布看,主要集中在煤炭、纺织、机械、军工等行业。

    2001年初,国有企业(含国有联营企业、国有独资公司)下岗职工为657.3万人,当年新增234.3万人,减少376.2万人,增减相抵,2001年末实有下岗职工515.4万人。2001年底,国有企业再就业服务中心实有下岗职工463.6万人,进再就业服务中心比例为89.9%。

    1996年中央经济工作会议,朱镕基做总结讲话分析了三大行业的冗员情况。首先是煤矿行业: “我记得统配煤矿是360万人,顶多有120万人就足够啦,多了240万人,人工成本占吨煤成本的三分之一。” 然后是铁路系统: “铁路系统现在也是亏损的一塌糊涂,去年亏损100亿元,也是因为300多万人有100多万人就够了。” 最后是粮食系统:“粮食系统更不得了,现在有400多万人。前几天,我请了国家粮食局的一些老同志来座谈当前的粮食问题。大家都感到过去300万人,现在400万人,减一半都没有问题。”

    改制“三转”(政府转换产权,职工转换身份,企业转换机制)中,国企职工转换为失业人员,通过“买断工龄”下岗,签订《解除劳动合同书》后领取当地上一年平均工资三倍安置费(1~2万元)。

    二、社会影响

    1997年10月-11月,江西省社科院社会学所对南昌市下岗职工进行调查发现,490多人中,45.7%月收入低于120元,30.4%在120-200元之间,14.9%在201-400元之间,大部分属于低收入人群。

    1999年,一份对多地下岗职工的调查显示:“(下岗工人)80%-90% 是进入社会职业声望较低的传统零售、服务业,以及过去是以农民工为主体的苦脏累岗位或临时就业岗位。”

    2003年《中国改革》刊载了一篇李培林对东北抚顺、本溪等四座城市下岗职工的调查报告,其中42.6%的人认为当前社会很不公平,37.7%的人认为太不公平,至于家中的主要困难,除了吃饭,依次是:子女教育费太重,有病看不起,养老没着落,以及住房、冬天取暖、穿衣等问题。

    2006年,吉林大学一个团队走访了200多位东北下岗职工,以下是部分受访者的回答:
    “我们现在要求不高,能买米能买油,粗茶淡饭饿不死,就行了。”
    “能实实在在给点钱就啥也不说了。”
    “我们这好多两人都下岗,孩子都像你们这么大都上学呢。……我,晚上出去捡破烂去,白天卖了五块钱,够吗?这孩子生活费在哪出?我们家姑娘上大学呢,爷们还有病。白天出去捡怕人笑话,晚上出去,…欠水费,卡我电。……这法律应该欠水卡水,欠电卡电,现在卡着你老百姓,一个礼拜没有电了。”
    “……现在富的太富了,轻轻松松好几百万,穷的太穷了。以前大米八毛一斤,现在一块多一斤,什么买时都得寻思寻思。买菜一个月真是啥菜便宜买啥菜,肉是半个月吃一回……。”
    “有时都不想活了啊。没有生活来源呀……你就等着饿死,……这下岗那下岗,饭都没有吃的。孩子大了上学你能不愁吗?现在供个大学多少钱,挣多钱的孩子能上学,当父母的没能耐的,孩子大了将来上学不就完了吗?现在孩子上学交学费咱父母都累,别说上大学了。对不起孩子啊,孩子以后咋整?……”
    “现在招工,要去一个月400到500块钱,真都不如低保,采暖啥的还能给你免了,农民工干这活行,他不用考虑(采暖费,水电费,子女教育费等)……现在老板太黑,人有的是,400一个月你干不干?你不干,农民工干。就这价,农民工干也不容易。”
    “现在吧,有门道不下岗,一个月好几千,咱这样一分钱没有,你有本事,有技术没有用,老子英雄儿好汉,你爸爸厉害,你啥也不用干。”

    三、重点区域

    铁西区密布着沈阳市80%以上国有工业企业,是著名的核心工业区,拥有各类钢厂、水泵厂、电缆厂、新华印刷厂、东北制药厂等,绝对数超过1000家。保工街、卫工街、轻工街、重工街……老铁西区的大部分街道,都以“工”命名。1995年,铁西区停产、半停产企业增加到三分之一, 30多万工人中有13万人下岗。工厂因为没有太多加工订单,为保持运作,只能放一部分工人回家“休假”。

    据不完全统计,从二十世纪九十年代开始,上海先后有100多万国营工人加入下岗潮行列,庞大的工人群体因为所在工厂的关闭、转产和改制,纷纷下岗。2003年,上海市劳动和社会保障局宣布:上海市已没有下岗职工,“再就业服务中心”已全部关闭,成为首个“下岗工人”消失的城市。

    四、其他表现

    电视剧《抉择》:以山西中阳市纺织印染厂工人下岗为背景

    沈阳有一路公交车是202路,从和平区沙山发车,穿越和平、铁西、进入皇姑区段的塔湾站。据当地人讲,司机师傅都不爱跑这条线,因为这条线附近的老百姓穷,所谓“素质低”,有上车不给钱的,有骂人的,有抢座位的,有小偷小摸的……这条线路跑的是铁西区与皇姑区交界的地方,这里的下岗工人最多,那个时候有人还给202线公交命名为“下岗车”

    铁西区一时间变成了“休假”职工的“工人度假村”,铁西的应昌市场每天都有挂着牌子的下岗工人在找零工,擦玻璃、刷油漆等,人才市场最大的特点就是众多求职者都戴着白色的口罩。这些曾经的国有工人觉得丢人,不愿被人认出来。
    当时在铁西颇为流行一首诗歌——《下岗工人》:“习惯了接订单的手,今天的指间流出彷徨,装工资的口袋,今天写满空荡……”

    2011年,电影《钢的琴》上映,男主角陈桂林是位钢铁工人,下岗后组建了一支婚丧乐队,奔波于各红白喜事现场。

    期间,中国大量引进白羽鸡,养鸡业快速成长,一跃成为了世界三大白羽肉鸡生产国之一。市场上的鲜鸡供应由此达到一个可观的规模,便宜的鸡架成为下岗工人热爱的食物——由此创造了一道独特的地方菜肴,“沈阳鸡架”。

  • 张平:人工智能生成内容著作权合法性的制度难题及其解决路径

    一、问题的提出

    生成式人工智能的迅猛发展给著作权制度提出了许多新的议题,生成式人工智能的研发阶段涉及训练数据的著作权合法授权,其利用阶段涉及生成内容的作品著作权属性以及生成内容的著作权归属和侵权判断问题。学术界最先关注的是人工智能生成内容(AIGC)的作品性认定问题,产业界首先遭遇的是训练数据的合法性指控问题,而真正对著作权制度基本理论构成挑战的是人工智能内容生成机制对“思想—表达二分法”的冲击。人工智能可以快速学习人类任何在先作品,生成风格一致但表达完全不同的结果,“思想与表达”无法“二分”。对此,传统上“接触+相似”的侵权判断标准不再“灵验”。如果说“文生文”的人工智能内容生成机制还勉强可以适用现有著作权保护规则,那么在“文生图”“文生视频”“语音生图文”“语音生视频”以及未来可能出现的“文生3D”“语音生3D”等完全超越了传统“复制”“改编”“发行”概念的场景下,人工智能著作权保护体系就只剩下主张人工智能训练数据合法授权的问题,传统著作权制度无法对其进行规制。

    实际上,生成式人工智能研发阶段的训练数据和利用阶段的内容生成的焦点问题,都集中在了现有制度无法对人工智能获取训练素材和生成内容的知识产权保护规则形成统一有效的解释。其原因在于,规则所形成的规范分析逻辑并未完全契合现阶段应当呈现的市场发展逻辑,规范所构建的保护框架并未完全契合当前人工智能发展的产业政策。本文在该认知背景下,将人工智能研发阶段的训练数据和利用阶段的内容产生的过程总结为人工智能内容生成机制,将对该机制中存在的问题如人工智能生成内容的作品属性认定难题、训练数据的著作权合法性认定难题进行类型化分析,并综合性地提出有关问题的解决思路和方法。这些思路和方法并不采用打补丁式的单一化设置方案,而是综合性地尝试解决体系性认知问题,稳固思想表达二分法的基础原则,尝试提出署名和其他著作权分离的制度设计,通过合法购买与合同约定风险承担、打开预训练阶段数据获取的著作权合理使用闸口,借助避风港等互联网治理规则实现责任豁免、集体管理组织集中授权、建立开放授权的数据资源等多元化方案解决内容生成机制中存在的诸多问题,以期化解传统法律制度对人工智能发展的障碍,实现认知和解决方法上的突破。

    二、人工智能生成内容的作品属性认定及认知思路调整

    自人工智能生成内容出现以来,最先受到关注的是生成内容作品属性的问题,即对生成内容能否给予著作权保护。对于人工智能生成内容的可著作权性问题,需要从以下两个方面展开讨论:第一,现行著作权制度以“人”的智力成果作为作品起点,认定人工智能生成内容的可著作权性是否存在制度障碍。第二,若承认人工智能生成内容的可著作权性,人工智能生成的内容哪些应当被纳入著作权的客体范围,进而,生成内容与既有作品之间发生侵权纠纷时,传统的著作权侵权认定标准能否沿用的问题。即在人工智能生成内容这一场景下,如何具体进行实质性相似判断和“思想表达二分法”的适用以及调整规则认知思路的问题。

    (一)人工智能生成内容的作品属性

    人工智能生成内容能否构成作品,现有研究多聚焦生成内容是否具有独创性这一条件进行讨论。目前学术界有不同观点:一种观点持主体判断说,认为机器不能创作,不是法律保护的主体;人工智能生成内容属于应用算法、规则和模板的结果,缺乏创作的独特性,因而不能将其认定为作品。作品的前提是由自然人作者创作,作品的主体必须是自然人,该前提与作品的可著作权性紧密相关,人工智能生成内容不能满足现行著作权法对于作品的要求,难以成为著作权客体。另一种观点持客体判断说,主张应当以生成内容本身的独创性来判断其是否构成作品;对独创性的判断,只考虑人工智能生成内容的表达本身即可,无需考虑创作过程中是否包含“思想”和“人格”。也有观点认为人工智能生成内容实际上是人生成的内容,是否构成作品,应当按照著作权法上的作品标准进行判断,人工智能生成内容不具有特殊性;创作者身份不应是作品受保护的构成条件,著作权法应该考量该人工智能的生成内容与他人的作品不构成实质性相似,且采用“一般社会公众”认可的评价标准,在此前提下,该生成内容即可以作为著作权法意义上的作品加以看待。上述观点的核心争议在于作品的创作主体是否必须为自然人。

    随着现代商品经济发展,现代知识产权制度是知识商品化的产物,作者身份属性逐步淡化。诸如计算机软件、工程设计图、地图等虽不属于体现作者思想情感的作品,但也被纳入著作权法的客体范围,作品的商品化发展使得作者与作品之间的内在联系逐步分离,计算机软件受到著作权法的保护即为例证;市场主体更关心计算机软件的市场价值,著作权法将其纳入作品范围,权利属性更为明确,市场交易更为便捷,而创作的作者是谁、该计算机软件能否体现作者的个性表达等等与作者身份属性相关的问题,较难对市场主体的决定产生关键影响。同时,作品的商品化恰好契合了产业政策的要求。产业政策论以产业发展为宗旨,将知识产权设计为市场经济下的“私权”,目的在于有效激励市场主体参与竞争。人工智能生成内容的出现,意味着作品商品化发展进入了新的阶段,将人工智能生成内容纳入知识产权的设计框架,强化作品本身的市场价值,不仅符合知识产权制度的演进逻辑,而且对人工智能产业的长远发展具有重要意义。

    应当注意到的是,“主体判断说”的主要依据是《著作权法》第3条中的“智力成果”,因此学者们提出作品必须是人类的智力活动、创作活动的产物。实际上,人工智能生成内容是人机混同的智力成果。人工智能软件模型由人类设计而成。人类设定原始参数和运算逻辑,安排人工智能软件模型进行语料训练;人工智能软件模型面对输入的海量数据进行机器学习,并经人类进行反复调试达到对输出的预期标准后,最终输出生成的结果。整个过程无不体现人类的参与和安排。因此,人工智能生成内容并没有脱离著作权法的人格主义基础。同时,著作权法保护的客体范围也在不断发生变化,如游戏画面和体育赛事画面能否构成作品,曾一度成为学界争议的问题;其中赛事画面具有随机性和不可复制性,难以固定,是否能成为作品,是学界争议的核心。近年来,从我国的司法实践立场以及域外法判例发展来看,智力成果的固定性并不要求每次展示的具体形态确定,仅仅要求该画面足以被感知。相比于游戏画面和体育赛事画面,人工智能生成内容受算法的支配程度更高,输出的内容仍然在人类设定的算法框架控制之中,只是随着科技水平的提高,媒介发生了变化,但本质上还是体现了人类个性化的安排和选择。因此,探讨人工智能生成内容的可著作权性不应采用比游戏画面更高的认定标准。此外,人类使用相机拍摄的照片能否构成作品也曾引发热烈争议。争议焦点之一在于,相比于美术作品,机器工具做了更大贡献,人类对作品的贡献度不及之前;但正如“AI文生图”著作权案的判决书所说,技术的发展过程,是把人的工作逐渐外包给机器的过程。摄影技术随着科技的发展,功能愈发强大,能够在人类按下摄影键的极短时间内,对照片进行调整、修改后输出成片,但只要该照片能够满足作品的独创性要求,体现人类的个性化表达安排,仍然构成著作权法意义上的作品。而人工智能生成内容是人类通过算法运作控制机器输出的内容,照片同样是人类通过对摄像机的操作输出的画面,二者本质上都是人类操作机器工具的结果;只是随着技术迭代和创新,机器工具发生了变化而已。虽然人工智能有强大的生成能力,但从创作素材、创作过程和创作完成阶段来看,人工智能仍居于辅助性的角色,人类在创作过程中依然发挥着主导和决定性的作用。因此,探讨人工智能生成内容的可著作权性并不在于比较人类和机器对于生成结果的贡献比例,而在于探讨人类贡献的部分能否达到著作权法要求的一般的独创性标准。基于此,采用“客体判断说”这一标准来认定人工智能生成内容的可著作权性,并不存在制度障碍。

    依据“客体判断说”,独创性判断只需对作品的表达本身做客观评价。独创性包含“独立完成和创造性”两个基本要素。整体而言,人工智能生成的内容与既有表达不同,即具有独创性。具体来说,“独立完成”意味着该作品由创作者独立完成,而非抄袭的结果,既包括从无到有独立地创造出来,也包括在现有作品的基础上进行再创作。在算法规则的运作下,人工智能根据使用者输入的提示词,综合运用文本表达、图文转化等模型自主生成具体的内容,生成内容符合“独”的要求。而关于“创造性”,从立法目的来看,著作权法并不要求作品达到专利法的“创造性”高度,著作权法旨在鼓励大众追求文化发展的多样性。从司法实践来看,法院认定“独创性”的法律标准并不高,诸如聊天表情、十几秒短视频、电子红包等都能达到“独创性”的门槛,均已受到著作权法的保护。人工智能生成内容是人类经过反复的模型调试、输入海量数据进行深度学习并不断优化的结果。不同的大语言模型即使收到相同的语言指令,输出的内容也各有不同,无不体现软件开发者的个性化选择和安排。人工智能生成的内容并不只是程式化的机械输出,人工智能能够根据指令的情景要求,不断优化、修改输出的内容,呈现不同的表达结果。人工智能生成内容应与人类作品持同一认定尺度,无需另立标准、施加更严苛的认定标准。当前,诸如儿童随手涂鸦的画作、随手取景的照片等人类创作物大多能被认定构成作品,人类大量投入研发、优化的人工智能算法生成的内容也应被认定为满足“创造性”的要求。

    然而,需注意的是,人工智能生成内容是否构成作品,不可一概而论,并不是所有人工智能生成的内容都会被赋予著作权保护。个案中的人工智能生成内容所体现的个性化安排、人类参与投入的贡献度、对创作要素的选择等等不尽相同,故不宜对人工智能生成内容整体进行可著作权性认定。人工智能生成内容能否构成作品,应该具体考虑个案的不同情景,只有生成内容能达到作品的“试金石”——独创性的判断标准,达到作品的“可著作权性”要求,才可构成作品,受到我国《著作权法》的保护。

    (二)“思想—表达二分法”的再认识

    “思想—表达二分法”是著作权法对作品判断的一项基本原则,即著作权法只保护思想的表达(expression),不保护思想本身(ideas)。“思想—表达二分法”的创设逻辑是,人们学习既有作品的风格、灵感进而创作出新作品的能力十分有限,即使不保护在先作品中的思想,也并不会导致不同主体之间利益的显著失衡。然而,生成式人工智能可以在短时间内快速“学完”人类社会海量思想、知识和风格的基础上,进行无限的、全新的内容生成。人工智能参与到“创作”中,很容易瞬间学习到他人的创作思想和风格,然后输出表达完全不同而风格极其相似的结果。比如针对画家梵高的“星空”油画作品,人工智能可以生成无数的风格一致但表达完全不同的作品。基于此,在人工智能的著作权问题讨论中,“思想—表达二分法”的原则面临两大挑战:一是人工智能生成的内容哪些属于思想,哪些属于思想的表达,即应划定著作权法的保护范围。二是在人工智能生成内容的侵权判定中,“思想—表达二分法”能否继续适用。事实上,人工智能的创作行为实质上利用了人类所设定的创作方式,人工智能通过模仿人类的创作模式,学习既有作品的风格、创意,根据人类的文字指令,输出新的表达内容。其中,作品的风格、创意仍然属于思想的范畴,不具有独创性。当前,人工智能能够对相同的情境、文字指令,采用不同的、非模板化的描述,输出许多不同的表达。正如对同一主题思想,不同的人能写出不同内容的文字,人工智能相当于利用其算法规则和强大的机器学习能力实现了在短时间内围绕同一指令进行多篇写作,输出具有多样性的表达结果。因此,人工智能输出的多种表达结果如果能够满足前述“独立完成”和“创造性”的要求,即可构成作品,受到著作权法的保护。值得注意的是,当前人工智能对于思想的模仿和内容的产出已经可以达到以假乱真的程度。在此背景下,学界对于“思想—表达二分法”的讨论又进入一个高峰。关于原作品权利人主张人工智能生成内容构成侵权问题的化解,需要首先解决“思想表达二分法”划定的著作权保护范围这一基本问题。为此,应当从人工智能生成内容的全阶段进行思考。人工智能生成内容经历了“原有表达—提炼思想—新的表达”的生成过程,人工智能通过模仿原作品的风格、创意、构思、创作元素等进行了创作,这些内容属于思想的范畴,不受著作权法的保护。人工智能通过提炼原作品的“思想”部分,进行深度学习,再根据指令输出不同形式的表达,尽管外观上与原作品的表现形式类似,但生成内容已是经过算法运作后的新的表达,独立于原有表达,应当受到著作权法的保护。人类利用科学技术进步,极大地提高了学习现有作品的速度和提炼“思想”的效率,因而在认定生成内容与原作品的侵权认定判断中,应当重视“提炼思想”这一核心标准。

    另一个重要面向是,对生成内容的法律分析,应注意区分数据输入阶段和输出阶段。在数据输入阶段,有观点认为人工智能在数据训练阶段,对大量的作品样本进行学习和模仿,属于对著作权人作品集中具有独创性的创作规律的侵权性使用。在著作权侵权认定的司法实践中,法官通常采用“接触+实质性相似”这一侵权认定标准,其中“接触”原则上由原告承担证明责任,即原告需要证明被告有“接触”在先作品的条件和事实,且被告具有非正当性目的。但是,这种证明对原告而言非常困难。生成式人工智能模型训练中的作品利用,是在模型内部进行的非外显性作品利用。这就导致了即使自身作品未经授权被人工智能模型用于训练,著作权人实际上也难以发现并提供相应的证据。根据目前实践,大模型公司并不会完全披露数据集的确切来源,原告所能提供的证据仅为大模型公司在训练过程中数据的权重和偏好及其与在先作品高度相似的生成内容。比如在纽约日报诉OpenAI和微软案中,原告提供的ChatGPT侵权行为最重要的证据,是《纽约时报》提供的100多个GPT-4输出内容和《纽约时报》报道文章高度相似的例子。通常认为,法院在构成“实质性相似”的认定中,应当以抽象过滤法为主,整体观察法为辅。但在数据训练的语境下,人工智能通过在大量既有作品中提取抽象内容,深度学习后,再添加属于公共领域的作品创作元素进行创作,对这一行为,按照传统的实质性相似的认定规则难以做出清晰判断,“思想—表达二分法”的适用范围受到严峻挑战。在输出阶段,针对人工智能生成内容是否侵犯既有作品著作权这一问题,著作权人也难以进行“实质性相似”标准的比对。生成式人工智能对于内容创作的颠覆性影响在于,其通过对在先作品思想、风格的吸收学习,以一种全新的方式,输出和既有作品相区分的内容表达。人工智能生成内容会与原作品“似曾相识”但又“似是而非”。如果按照传统的认定标准,由于学习了原作品的作品风格、模式进行创作,生成内容与原作品外观上“高度相似”,且能短时间内输出多种表达,思想与表达的界限更加模糊。相比于以往单部作品之间的认定,原作品需要与人工智能生成的多种表达进行比较,划出分界并非易事,“思想—表达二分法”原则的适用难度大大增加。

    基于此,如果按照传统的著作权侵权认定方法,既有作品的权利人将面临举证困难、难以主张权利等问题,人工智能产业也将面临训练数据合法性检验的难题。然而,数据训练是大语言模型构建的必要阶段,运用人工智能技术生成新的表达,体现了人工智能产业发展的市场价值,司法实践因此面临适用“思想—表达二分法”的巨大挑战。尽管如此,“思想—表达二分法”的基本逻辑不应受到动摇。人工智能经过学习提炼的思想可以转化为多种不同表达,社会公众在实质性相似问题的判断上并不应因为是人工智能产生的内容就会发生标准变化。如对于风格相同的画像,公众依然能够通过市场辨别出名家画作和人工智能生成的画作,故而应当继续坚持“思想—表达二分法”的底层逻辑,通过市场的调节实现对进入市场的作品的消费和甄选。

    综上,在生成式人工智能的技术背景下,与技术发展现实已经不相匹配的传统基础理论,应当进行适当的调适和发展,赋予其人工智能变革时代的新内涵,以便适应现实情况的新变化,更好满足权益保护和产业发展的需求。

    三、署名与其他著作权分离的制度设计

    在初步明确人工智能生成内容的作品可著作权性基础上,其生成内容的作者及权利归属自然成了无法回避的论题。著作权的取得方式是自动取得。对于典型的个人作品而言,作者与著作权人的身份同属一人,但对于委托作品、职务作品等特殊类型作品,两种身份又要分开讨论。因此,在人工智能生成内容的作者与权利归属的厘定中,应对作者认定与著作权归属进行分别讨论。智力成果无形性的根本特征决定了著作权依法律创设而生,因而对著作权人归属的分析应回归著作权法的设立目的。著作权法的设立目的在于保护并激发创作者创作的积极性,促进经济、科技的发展和文化、艺术的繁荣。人工智能在创造上具有超强能力,但并不会自主利用著作财产权推动知识信息的利用流动,无法实现法律赋予该权利之上的公共政策目标。倘若将权利分配给人工智能使用者,通过对使用者的著作人格权和财产权的保护,则能有效激励使用者的创作热情,使其继续利用人工智能创作出新的作品,形成一个对前端的激励和对后端权利行使的保障,构成一个有效的良性制度循环,最终达到增加社会福祉的目的。而倘若将人工智能视为著作权主体,就肯定了人工智能与人一样能够成为法律主体,那么在权利变动的意思表示、侵权责任的主体等问题上,就要为人工智能再次设定同等的权利和义务;在此背景下,如何认定人工智能的意思表示,如何判断人工智能的侵权故意等,不仅对现行法律是一个巨大的难题,而且是对伦理的颠覆性挑战。因此,无论从现行法的体系性协调,还是从著作权法的公共政策目标考量而言,将可以构成作品的生成内容的著作权归属于生成式人工智能的使用者,应是更为有效的制度选择。

    对于作者的认定,则成为在现行著作权法体系中难以突破的难题。我国著作权法中作者的身份仅限于自然人、法人和非法人组织,并不包含人工智能。但实际上,人工智能无法做出与作者身份绑定的署名行为,人工智能生成内容的标注义务也无法从著作权法上得到解释。对此,本文认为,署名与其他著作权在制度功能上存在差异,署名有必要从著作权体系中分离,对著作权利体系进行更细化的制度设置。尤其在生成式人工智能领域,署名行为与其他著作权专有权利控制行为的分离规则,应当成为厘清生成式人工智能的作者认定及归属问题的基础。

    (一)署名行为与其他著作权控制行为的分离与配置

    署名与其他著作权的分离在我国现行法关于职务作品与委托作品的规定中已有例证。根据《著作权法》第18条第2款的规定,当作品符合一般职务作品的特征时,作者对该作品享有署名权,著作权人的其他权利则由法人或非法人组织享有。委托作品同样如此,作者为受托人,委托人与受托人作为合同双方当事人可以约定著作权是否归属于委托人。可见,尽管署名权属于著作人身权,但并不必然与著作权人的身份挂钩,而是与作者这一身份挂钩。在现行著作权法规则中,署名并不必然依存于著作权,二者存在分离的可行性。究其原因,在于署名与其他著作权在制度功能上有所区分。著作人身权保护作者的名誉和身份,其中署名通过标注创作者身份以达成该目的,而发表权、修改权、保护作品完整权等人身权主要是通过对创作成果的完整性与市场化控制以保障人格利益,著作财产权则在于保障著作权人基于作品而产生和利用的经济效益。换言之,署名作为作者身份和作品之间联系的符号表达,体现作品的实际来源,而其他著作权体现的是对作品流转的控制。从署名推定的法律效果来看,署名行为意在表示实际创作者与作品的真实关系,这种关系仅由创作行为本身所决定,并不必然映射出著作权人的身份。署名行为的主体应当遵循谁创作谁署名的基本逻辑,这亦是贯彻诚实信用原则的基本体现。目前,对人工智能或人工智能生成内容的标注义务已经被多个国家和地区列为法定义务,但该类要求并未从著作权法的角度被解释为署名行为。在我国,依据《网络安全标准实践指南——生成式人工智能服务内容标识方法》的要求,标注行为被具体化为显示水印或隐式水印,实践中也采用了该做法。但如果仅要求以电子水印的方式代替法律意义上的署名,既无法涵盖纸质化的人工智能生成内容,也容易使人工智能生成内容的署名遭到技术性篡改。对人工智能生成内容的标注要求应上升到署名本质,满足实践需求并实现与著作权法的衔接。给人工智能生成内容署名并不意味着给它人格或给它法律主体地位。署名应该是一种标识,表明作品出处,是一种客观事实的反映。

    (二)生成式人工智能的特殊标识义务

    《伯尔尼公约》将署名表述为“表明作者身份的权利”(The right to identify as author, the right to claim authorship),此后多数国家在本国著作权法中将署名行为与表明作者身份行为画上了等号,但也有少数国家将署名与作者身份权分设,将署名作为表明作者身份的下属概念。因此,署名行为体现的究竟是作者身份还是创作行为本身就值得商榷。从历史沿革来看,署名最初表明的仅是创作行为,是无需意思表示的事实行为,后随着人权意识的日益发展而最终被冠以权利之名,署名权中的人格属性是在权利化过程中被后来赋予的。在法国18世纪末《表演权法》之前,署名行为的主体在世界范围内并不以具备人格精神为前提。本文认为,在目前对如何将人工智能纳入“以人为中心”的法律体系的讨论甚嚣尘上之际,对其署名的讨论可以回归到署名权利化之前,以署名行为为中心进行评判。参与创作过程的人工智能可以基于创作事实进行署名标注,这是基于未来作品流通的市场秩序考量,更是诚实信用原则的体现。在人工智能署名行为的具体展开上,应当充分考量人工智能的风险属性,其署名应受到严格限制。自然人创作作品后,仅有以何种方式署名或不署名的权利,署名权不可转让、不可放弃。对于人工智能而言,由于人工智能本身应受监督与管理,其对署名自主选择的空间应当更为狭窄。署名的目的在于避免混淆,而人工智能生成服务的标注方式又相对固定。因此,人工智能的署名不仅是不可选择、不可放弃的,而且应当是强制的,且署名人或单位要对署名的真实性与可视化承担责任。这种强制标识义务与知识产权中的商标权较为相似。尽管商标权包括利用与排他权能,但根据《商标法》第6条规定,“法律、行政法规规定必须使用注册商标的商品,必须申请商标注册,未经核准注册的,不得在市场销售”。与此相对应,我国《烟草专卖法》第19条规定“卷烟、雪茄烟和有包装的烟丝必须申请商标注册,未经核准注册的,不得生产、销售”。事实上,尽管法律提出了如果不实际使用商标有可能面临商标被撤销的风险,但是原则上,法律对商标权人是否在商品或者服务上使用注册商标并未提出强制性要求。在国家严格管理的领域中,商标权人的商标利用权能受到限制,必须在该类商品或服务中使用注册商标以建立标识、形成品牌、避免混淆。人工智能领域同样如此,不同于普通商品或服务,人工智能的技术、设备、系统和应用具有多样性、复杂性和不透明性,其对社会、经济和个人隐私会产生潜在影响,故人工智能领域的标注行为同样应当被强制。这既是人工智能的特点所决定的,也是构建技术信任与科技伦理的前提。

    (三)构建人工智能生成内容的多方权益共享机制

    署名与其他著作权的分离,反映了不同类型的社会互动和符号交换的需求。署名关注的是个人身份的确认和社会认同的建立,是一种基于个人名誉和社会地位构建的符号交换,而其他著作权则更多关注作品如何在社会和经济领域中被使用和流通,涉及更广泛的社会经济互动和符号交换。著作权法中将署名与其他著作权的分离,表明法律体系承认了作者个人身份与作品经济利用之间复杂的社会关系,并提供了一种平衡这些不同需求和互动的方式。这种分离不仅保护了实际创作者的人格利益,而且提升了作品的社会和经济利用的灵活性,照顾到了人工智能设计者、使用者及与社会公众享受多样文化生活的利益。本质上,要求对人工智能生成内容进行署名行为的目的在于突破署名行为的权利外观,实现多方权益的平衡。

    构建共享机制的更深层次原因在于,人工智能的精准有效治理并不能仅依靠公共部门,而需要多个环节的主体参与共建。仅以标识义务的实践为例,人工智能自身无法主动进行标注。从我国相关人工智能管理规定及欧盟《人工智能法》来看,人工智能的信息披露义务主体基本为人工智能服务提供者,这类主体具体指向了基础大模型开发者、垂直行业模型开发者、生成内容服务提供者等,基于人工智能生成内容的产生周期履行标注义务。因此,在人工智能服务提供者制定标注规则,人工智能服务使用者与社会公众进行标注监督的模式下,必须同时照顾好多方利益需求,才可更好地激励人工智能服务提供者更为积极地参与人工智能服务的开发与运营,更主动地进行内容标注与信息披露。

    将著作权交予人工智能使用者本身,既可以保证使用者享有作品后续的流转与利用,也可以保证使用者不会对人工智能的署名产生排斥心理。在人工智能创作的语境下,对人工智能生成内容进行署名,将其他著作权分配给使用者,可以视为一种恰当的激励性分配方案。这种安排能够鼓励技术开发者、运营者、使用者之间的合作,促进人工智能技术和应用的发展。从经济效益的角度来看,这种权利的分配有助于最大化地利用人工智能创作的潜力,促进文化产品的多样化和丰富化,实现社会总体福利的增加。尽管要求对人工智能生成内容进行署名的行为可能会增加制度设计和实施的初期成本,但从长远来看,明确的署名要求也可以减少因权利归属不清而引发的法律纠纷,降低法律执行的成本,从而减少社会的总体制度成本。知识产权制度虽可通过赋予权利人独占性的权利实现对科技创新的激励,但对于多方主体共同参与的生成式人工智能创作模式,以传统权利专有的分配方式难以照顾到各方的权益,故应对人工智能生成内容的部分权利进行二次的拆解与分配,以多方权益共享格局激励更多的个人和企业投入更多的成本促进社会创新创造。

    四、人工智能训练数据的著作权合法性障碍

    在阐明人工智能生成内容的作品属性、作者认定与权利归属等问题后,还应直面人工智能训练数据的著作权合法性障碍,剖析因技术发展而产生的法律难题。基于数据训练投喂以形成更加成熟的大模型训练效果已成为当下人工智能技术升级与模式迭代的必由路径,然而人工智能训练数据的路径不仅与现有法律秩序存在冲突,而且极大地影响了原有商业模式,冲击人们对于作品交易、数据喂养的既有认识和观念。人工智能训练数据的著作权合法性障碍具体表现为:占据著作权许可使用模式的主流方法“事前授权”式使用付费模式已难以满足海量学习模式的需求,人工智能机器学习在内容获取、内容输入与输出全阶段存在著作权侵权风险,多样化、复杂化的数据保护利益与仅进行著作权合规的不完整性之间存在矛盾。

    (一)“事前授权”式使用付费模式与海量学习模式需求不符

    基于“事前授权”的著作权使用付费模式是当下知识经济时代尊重他人智力成果、维护市场运行的基础模式,这种模式的运转本质上呈现出财产规则的运行逻辑——通过著作权法赋予著作权人一种谈判的机会与能力,使之能在市场的运作中实现智力成果的有效流转,促进创新成果的产出与知识的分享。然而,数据训练作为人工智能技术发展的底层支撑,其数据喂养规模常常达至海量,传统著作权“事前授权、使用付费”的交易模式难以满足人工智能时代海量学习的需求。本质而言,海量学习模式的出现是由于技术自身的特性以及技术发展的必然所致,知识经济时代下数据的经济价值因技术的迭代升级得以提升。就数字化技术的特性而言,文本与数据挖掘作为实现数据获取及数据分析的底层技术,其可发现性与模式识别的用途能有效地从海量的数据中获取数据价值、实现大规模数据的价值分析与趋势预测;就技术发展的必然而言,海量知识学习模式符合技术发展升级的需求,人工智能技术以及未来可能数字化技术的迭代需要以海量数据作为学习、训练的底层支撑,这种技术发展的必然趋势不仅是社会群众对于数字化时代提升生活便利及幸福感的内在需求,而且是社会公共福利及经济价值总量增长的价值需要。

    然而,海量学习模式的运转不仅仅需要大量数据的支撑,而且需要更加灵活地规范交易模式以实现知识的流转,传统的“事前授权”式使用付费模式在实践中已难以支撑海量数据学习模式的需要。在此种情况下,“事前授权”式使用付费模式与海量学习模式需求之间的不契合反映出人工智能数据训练的需求与现有著作权交易模式的不适应,这种不适应的障碍容易导致交易效率的低下、交易成本的增加,人工智能数据训练效果的不明显:首先,“事前授权”式使用付费模式容易导致数据交易流程的冗杂以及交易效率的低下。就“事前授权”的流程而言,依据《著作权法》的规定,数据需求方需要在事前获取著作权人的许可授权,以避开潜在的侵权风险。然而,数据需求方对于相关作品的授权获取并非简单的“发出要约、达成合意”的过程,往往需要经过反复的利益谈判与衡量才能获取数据主体交易的真实意思表示,交易流程的烦琐以及有限理性假设的存在往往会导致交易结果并非尽如人意,数据获取的效率也会因之降低。其次,人工智能时代下“事前授权”式使用付费模式的运作也容易产生过高的交易成本,这种交易成本主要涉及数据获取的识别成本以及数据交易的谈判成本。就识别成本而言,人工智能技术的运转需要海量数据予以支撑,这些数据不仅来源于不受著作权法保护的公共领域数据,而且包括著作权法保护范围内的作品数据,特别是高质量数据大多集成在具有著作权保护的作品之中。然而,对于著作权法保护范围内的作品数据收集不仅需要识别作品的来源及权属,而且需精准定位作品的真正著作权人,这无疑给人工智能服务提供者造成较大的交易负担。此外,就谈判成本而言,在确定所需收集的作品以及著作权人后,还需就作品数据获取的价格以及授权范围进行谈判沟通。如所获取的数据存在权属不清、来源不明的情况,人工智能服务提供者的交易成本无疑水涨船高,难以满足机器学习的数据训练需求。最后,从实践效果来看,传统的“事前授权”式使用付费模式并无法真正实现海量知识学习模式的高效运转,对于知识的获取以及数据价值的挖掘效果不佳。人工智能依托大模型应用实现海量数据处理并实现智能内容的生成,其机制运转的关键在于数据能否被大批量、成规模地获取以支撑大模型的迭代升级。数据获取作为人工智能技术应用与发展的前端,关系着数据价值挖掘是否充分以及输出结果是否客观、全面。

    传统的“事前授权”式使用付费模式已经严重阻碍了数据获取的效率,加重了人工智能服务提供者的运作负担。在追求知识增量的年代,此种交易模式已经与极速发展的知识经济时代脱节。

    (二)机器学习内容的获取、输入与输出全阶段蕴含着较大的著作权侵权风险

    生成式人工智能技术的迭代与应用需要成千上万的数据予以支撑,其数据训练的需求主要体现在数据数量、多样、质量、领域特定、多模态、实时、长期演进、平衡、合规以及多语言等方面。就数据的来源而言,人工智能所训练数据不仅来源于公共领域的作品数据,而且来源于尚在著作权保护范围内的作品数据,后一类数据的获取如未取得相应著作权人的授权,则不可避免地导致侵权风险的发生。此外,不仅仅在数据来源阶段存在著作权侵权的风险,而且数据内容的输入及输出环节都容易因违法行为的存在而侵犯著作权人的合法权利。尽管有观点认为,机器学习的各个阶段中数据的处理行为仅为对作品内容的“非作品性使用”,因此并不构成著作权侵权。然而,基于机器学习的本质,人工智能所输入及输出的内容实际上是对作品价值的深层次挖掘,本质上涉及对所收集作品数据的表达性使用,因而相应的作品使用行为如未获得著作权人的许可,则很有可能构成著作权侵权。

    一般而言,文本与数据挖掘作为人工智能机器学习的底层技术,对数据的处理基本涵盖了信息搜寻、分析等处理活动,其过程主要包含对于数据内容的获取、内容输入及最终结果输出三个主要环节。就数据内容的获取而言,主要是通过爬虫、API接口对接等数字化手段实现数据的大规模获取,并在爬取数据之后将其存储至特定的服务器中以便进行后续的数据预处理。数据内容的输入环节主要是将所收集的数据转码为相应结构化的数据,并进行清理、分类等,最终形成与需求相对应的新数据集合,实现数据内容的针对性输入,为人工智能机器学习提供基本的数据资源。内容的输出环节则主要是将所处理和分析的数据结果分享至合作方或公开至公共领域,实现数据内容价值的分享与分析结果的输出。在经历上述三大步骤之后,人工智能完成了对必要数据内容的机器学习以及分析输出。然而在数字化背景之中,以上三大技术步骤的操作难以避免地存在著作权侵权的风险。

    从所侵犯著作权专有权利的形态而言,机器学习的内容获取、数据输入以及内容输出全阶段可能侵犯著作权人的复制权、演绎权以及信息网络传播权等权能。内容获取阶段主要可能涉及对著作权人复制权的侵犯,在此阶段,人工智能往往通过爬虫技术等数据收集手段大批量地从互联网中爬取数据,其中所用技术往往是数字化形式的扫描和文本提取,如果未经著作权人许可,此种行为往往落入《著作权法》中所规定的“复制权”的范围之中,容易构成对著作权人复制权的侵犯。数据输入阶段主要可能涉及对著作权人的改编权、汇编权的侵犯。由于机器学习的需要,人工智能的训练往往需要将所收集的数据转码为相应的结构化数据,而转码的行为必不可少地涉及对原有数据内容的调整,包括对数据格式的转换修改、整理删除以及汇总等,这难免会构成对著作权人的翻译权、改编权以及汇编权的侵犯。而在最终内容输出的环节,所输出的结果常在互联网上以数字化的方式传播呈现,如果所输出的分析结果涉及原有作品的内容而未经著作权人许可,很有可能造成对著作权人信息网络传播权的侵犯。

    (三)数据保护利益的多样化与复杂化致使仅著作权合规已为不能之事

    人工智能训练数据,主要通过爬虫、API接口对接等自动化数据抓取方式高效捕获、汇聚和存储了大量数据,具有样本多样性、数据规模性等技术特征。用户数据、企业数据、公共数据等不同形态的数据都可以作为人工智能训练数据的重要来源,涉及个人信息利益、财产利益、国家公共利益等多元数据保护利益,承载着多样化、复杂化的利益内容,导致基于单一化著作权合规的规制存在合法性障碍。

    首先,用户数据承载着个人信息利益,需要接受个人信息保护的法律规制。从人工智能训练数据机制来看,用户数据在机器学习中发挥着不可替代的作用:一方面,用户数据是互联网中最广泛的数据类型,以大数据技术为支撑的人工智能训练数据在自动数据抓取阶段不可避免地会涉及对用户数据的使用与提取。另一方面,凭借对用户数据的收集与分析,机器能够完成更加拟人化的机器学习过程,使其最终的智能决策、分析结论更符合人类思维逻辑与行为方式。用户数据作为对个人身份、互联网行为特征的全方位记录,基本表现为具备可识别性的个人信息。其中,电话号码、家庭住址、职业信息等用户数据具有直接识别性,当然可以作为个人信息受到保护。相比之下,就邮箱、游戏账号等数字化虚拟用户数据而言,人工智能训练主体虽然无法凭借相关数据直接定位现实中的特定主体,但在海量数据聚合背景下,可以与其他数据相结合而识别特定自然人,因而邮箱、游戏账号等数据具有间接可识别数据用户的属性,同样属于个人信息范畴。根据《个人信息保护法》《网络安全法》等法律规定,个人作为用户数据主体,对其用户数据享有个人信息利益。人工智能训练数据应需要确保已经取得用户等个人主体的授权许可,或者确保该用户数据已经得到清洗、脱敏,符合非个人信息特征。从最新发布的《生成式人工智能服务安全基本要求》来看,保障个人信息利益已经成为人工智能服务提供者履行语料内容安全要求的重点内容之一。

    其次,企业数据之上承载个人信息利益和财产利益,需要接受个人信息保护和竞争法的法律规制。海量的用户数据经过企业等数据主体的收集与汇聚即形成规模化的企业数据。由于此类数据集合可以反映出市场客观规律,预测未来趋势,故其构成人工智能训练数据的重要来源。从人工智能训练数据的实例来看,OpenAI在训练其人工智能产品ChatGPT时,就将Raw Story Media和Alter Net Media等新闻机构的一系列新闻稿件作为人工智能训的练数据来源,并因相关数据使用行为未经机构授权许可而面临著作权侵权纠纷。企业数据承载着包括个人信息权益、财产利益等在内的多元利益形态。一方面,企业数据来源于不同的用户数据,在一定程度上可以视为对个人信息的集合。如果人工智能训练数据具备直接或间接可识别性,可被识别定位为特定自然人主体,则该数据集合之上依然承载着用户的个人信息利益。此时,人工智能训练数据需要通过个人信息保护的法律规制,以消除数据集合中潜在的对个人信息权益的侵权风险。另一方面,企业数据产生方式凝结了数据主体的劳动成果及其利益诉求。企业数据通常是企业等数据主体收集、分析、加工数据后所获得的数据集合,凝结着企业等数据主体财力、物力与人力等劳动投入,由此产生了值得产权制度保护的财产利益。目前,不同客体形态下企业数据的财产利益已经获得司法的保护与认可。在谷米诉元米案、淘宝诉美景等案中,法院即认为企业开发的数据集合能够为权利人带来现实或潜在的经济利益,具备无形财产属性,企业应当对该数据集合享有独立的财产性权益。尤其在企业数据的作品属性受到广泛质疑且企业数据财产权立法缺位的现状下,更多法院选择以《反不正当竞争法》一般条款作为规制范式,强化对企业数据中财产利益的保护。

    最后,公共数据承载着公共利益和国家利益,需要接受数据安全的法律规制。在公共数据授权运营与政务信息公开背景下,公共数据可以直接作为人工智能训练输入的数据来源。公共数据具有高可信度、获取成本低、侵权风险低等优势,有利于提高人工智能训练数据及其输出分析结果的质量。联合国贸易和发展会议2021年数字经济报告中的公共数据以“收集数据出于政府目的且主要被公共部门使用的数据范畴”为基本内涵,以公益性作为其核心价值内涵,因而承载着明显的公共利益和国家利益。一方面,公共数据作为承担社会公共职能的基础资源,具备社会公共利益属性,故对人工智能训练阶段使用和提取公共数据行为的合法性评价应当包含不得损害社会公共利益等方面。另一方面,公共数据作为由公共部门发布的官方数据信息,与金融、科技、医疗等重点领域的国家安全息息相关,因此在推进人工智能训练数据著作权合规治理的同时,还应当重点进行数据安全合规审查,以避免数据训练行为泄露或暴露与国家安全密切相关的公共数据。

    五、多元化方案解决人工智能训练数据的著作权合法性障碍

    前述问题并非单一片面的问题呈现,而是在现有体系中复杂交错实际市场活动的问题的集中反映,故解决该系列问题时,不能单独针对某一方面问题提出方案,而应当采取体系性多元化的方式化解著作权合法性的障碍。智能领域的创新离不开合规的数据处理,但人工智能训练数据的合规方案目前还未明确,如果不能解决合规问题,人工智能技术的发展将寸步难行。当前以事前授权为基础的著作权制度难以满足生成式人工智能对海量数据的训练需要,因而有必要使用多种制度工具,建立多元化的解决机制,探索针对人工智能训练数据的著作权障碍的解决方案。

    (一)合法购买数据与合同约定风险

    获取合法的高质量数据是人工智能模型合规发展的重要前提,因此事前购买高价值著作权内容,并以授权合同约定各方风险承担的交易模式是人工智能企业获取训练数据的重要方式。在特定场景下,这种事前交易模式有着保证数据质量、激励创意产业,规避侵权风险等优势,具备一定的经济效率。如在网文、有声书、数字音乐等产业领域,个人创作者往往将作品著作权的行使交予内容平台代理,人工智能开发者直接向平台购买数据即可获取海量著作权资源。一些人工智能开发者自身也是大型互联网平台,可以通过“以服务换数据”的方式免费使用用户上传的作品,并以“用户协议”等格式条款划分各方风险,要求用户自行解决数据的授权问题并承担可能的侵权责任。

    然而,由于人工智能训练数据具有数量大、规模广、价值密度低等特征,传统的数据购买模式并不能适应模型开发者对数据规模化利用的需求。目前由内容平台代理的著作权内容多为单独具有使用价值的作品,并不包括用户生成的海量数据,而后者才是人工智能训练的主要材料。同时,当前我国中文语料数据库仍存在标注标准不一致、数据重复、时效性不强等问题,数据交易机构长期处于沉寂阶段,数据交易并未出现预想中的热潮。另外,“以服务换数据”的方式仅适用于大型互联网企业,新兴企业因用户基数不足难以获取充足数据,且缺乏购买海量数据的充足资金,在数据竞争中往往处于劣势,新兴企业数据获取能力的不足加大了数据训练市场被互联网巨头垄断的风险。综上,数据交易的方式虽在特定场景具有一定的优势,但不宜作为人工智能企业获得训练数据的唯一来源。

    面向人工智能创新应用的新时代,我国数据交易市场也应积极寻求转型突破,适应企业获取训练数据的现实需求。就交易平台而言,可针对人工智能训练市场,将现有的通用数据交易所转型为“AI数据交易合同”模式,为企业训练人工智能提供定制化的训练数据。就交易标准而言,相关市场主体和监管部门可共同规范训练语料的标注标准,以便语料数据的交易流通。就合同内容而言,人工智能训练方需要遵循诚实信用原则,明确告知数据提供方相关数据的用途并获得授权,避免因超出授权范围使用数据而面临违约风险。

    (二)借用互联网治理规则提供创新机遇

    作为信息时代的关键技术,人工智能和互联网技术均改变了人们获取、处理和分享信息的模式,对知识产权制度提出了新的挑战。与互联网时代类似,目前人工智能并没有确定的发展蓝图,因此可以运用互联网治理的相关规则,在人工智能数据训练阶段打开著作权合理使用和“避风港”规则闸口,为生成式人工智能产业提供创新发展的空间。

    其一,适当打开著作权合理使用的解释范围,将生成式AI的数据预训练行为视为合理使用的一种类型。从技术逻辑出发,人工智能模型的构建分为“预训练”和“微调”两大阶段,其中预训练阶段主要是将收集到的数据输入初步模型,以便初步模型通过算法分析数据以优化模型效果。在此过程中,对数据的分析和学习仅在人工智能内部进行,并不产生同创作者竞争的内容,也不与其他公众的权益产生接触,因此不会对著作权人的作品产生替代效果,不应当受到传统著作权法的限制。从产业政策视角出发,庞大的训练数据规模是人工智能大模型生成理想结果的基础,而互联网内容的著作权则分散在各个创作者处,要求AI研发者事前逐一获得著作权人授权无疑会耗费巨大的交易成本,造成“反公地悲剧”。而合理使用制度则可减轻人工智能技术的研发负担,促进人工智能产业建设和内容创作,为社会带来更大福祉。从制度竞争的视角出发,目前欧盟《数字化单一市场版权指令》的“文本和数据挖掘例外”制度为人工智能数据训练行为提供了合理使用的依据;美国法院在谷歌和甲骨文案件中放宽了“转换性使用”的标准,特别是将机器阅读排除在著作权法之外,为后续对以转换性使用作为核心判断要素的合理使用的扩大解释提供了机会。为应对世界人工智能制度竞争浪潮,提升我国人工智能产业的国际竞争力,有必要通过合理使用制度放松模型训练中的著作权限制。

    其二,适当借鉴传统互联网内容平台中的“避风港规则”,探索建立一套适应人工智能产业发展的责任分担机制。在此机制下,生成式人工智能服务提供者应当尽可能地使用真实合规的训练数据,并在信息生成阶段设立过程性的风险预防和审查机制,尽量减少错误内容和侵权信息的输出。与此同时,还应设立投诉通知机制,允许用户和权利人就违法不良信息向人工智能服务提供者提出投诉,接到投诉后,人工智能服务提供者应当在合理期限内采取数据清理、算法调整等必要措施,避免违法内容的传播和扩散。相应地,在生成式人工智能服务提供者充分履行事前合规义务后,若因使用者恶意诱导大模型侵权或因现有技术问题无法消除违法侵权内容,则应当减轻或免除服务提供者的责任。这种以过程为中心的责任分担机制能够为人工智能开发者提供明确且有条件的免责预期,引导其主动采取合规方式,防范社会风险,稳定个体预期,促进产业发展。

    (三)通过集体管理组织解决授权难题

    在当前法律框架下,著作权集体管理是批量解决海量作品授权较为可行的方法,能够提高授权效率、减少交易主体、降低权利人协商成本和监督成本,因而受到域外多国的青睐。目前,我国已经具备音像协、音著协、文著协等五个著作权集体管理组织,此类集体管理组织可以依据集体许可标准同人工智能开发者进行谈判,代权利人发放作品使用授权,满足商用人工智能模型的数据使用需求。但是,传统的集体管理组织存在授权模式单一僵化、管理组织机制滞后、数据覆盖范围有限等问题,在智能时代面临前所未有的挑战和冲击。因此,有必要革新著作权集体管理组织制度,使其充分发挥著作权集体管理的保障效能,适应人工智能海量数据学习的现实需要。

    针对授权模式僵化的问题,我国著作权集体管理组织应当拓宽权利人对交易模式和定价机制的选择空间,允许其在将作品授权给集体管理组织后自行授权,并吸纳一部分权利人参与作品使用费的定价协商,以更灵活的选择吸引更多优质作品进入集体管理组织的“版权池”。此外,应打破单一的概括许可模式,允许著作权使用者自行选择授权模式,按照使用内容的质量和频次精准收费,满足不同类型和规模使用者的需求。针对管理组织机制滞后的问题,需要完善集体管理组织的内部治理机制。一方面,需要增强集体管理组织运作机制的透明度,让权利人和使用者明确了解组织的管理和分配规则。另一方面,应当改进集体管理组织的决策机构,确保权利人和相关专业人士,特别是人工智能等新业态从业者在组织决策中有更大的发言机会和影响力,推动著作权集体管理组织与时俱进。针对数据覆盖范围有限的问题,则可以尝试采取延展代理机制,在拓展使用者获得合法数据渠道的同时保障权利人获取报酬的机会。延展代理制度始于2012年法国知识产权法律体系,用以解决绝版图书的授权使用问题。该制度规定绝版图书的权利人应授予法国作者利益代表协会代表其行使权利,但允许作者通过事前或事后的退出机制撤回授权。而我国在《著作权集体管理条例(修订草案征求意见稿)》第4条中也提到“著作权法规定的表演权、放映权、广播权、出租权、信息网络传播权、复制权等权利人自己难以有效行使的权利,可以由著作权集体管理组织进行集体管理”“在使用者难以获取所有权利人授权的特定领域使用作品的,经国家著作权主管部门备案,由著作权集体管理组织集中管理相关权利”,这一规定与延展代理的制度内涵相契合。因此,可将某一领域的作品授权集中于著作权集体管理组织处,以集中授权的方式解决人工智能训练数据的合规难题,推动构建更加健全和可持续的知识产权良性保护生态。

    (四)利用开放授权的数据资源

    开放授权的理念始于计算机软件的“开放源代码”运动,后来在“创作共用”和“开放共享”的理念下,开放授权机制被引入了著作权领域,表现为知识共享协议(Creative Commons,简称CC许可协议)。经由知识共享协议,著作权人可在“保留绝对权利”和“公共领域捐献”之间选择作品的开放程度,如要求使用者尊重作者署名权或不得将作品用于营利性使用等。而若使用者违背知识共享协议,权利人则可以终止授权,并依据传统知识产权法律维护自身权利。生成式人工智能与知识共享协议在价值理念与实际应用上有很多契合之处。在价值理念层面,知识共享协议具有降低信息获取成本、促进创意产品交融分享的价值取向,与生成式人工智能在促进创新和内容传播等方面有相通之处。在实际应用层面,知识共享协议作为一种事前授权机制,可以有效节省人工智能创作者同著作权方协商交易的成本,在尊重作者合法权利的同时大大扩张了人工智能数据训练可利用的作品范围。目前,维基百科等主流WIKI社区均已采用CC许可协议等方式开放授权,这些开放授权的海量作品已经成为生成式人工智能训练的重要数据资源。

    然而,当前知识共享协议在我国处于早期发展阶段,目前主要应用于开放教育课程、开放获取期刊资源等领域,公众对开放授权理念的了解和认知不足。此外,我国的著作权产业发展水平同国外相比仍有差距,与开放授权配套的法律制度尚不完善,因此亟须完成知识共享协议的本土化改造以适应我国人工智能数据训练的现实需求。在著作权法律体系内部,应当明确合理使用和开放授权的关系,将人工智能训练者对作者保留著作权范围内著作权的正当使用行为认定为合理使用,以减轻人工智能训练者的侵权风险,并维持知识产权法律体系内部的一致性。例如,若商用人工智能模型利用开放授权的作品进行模型预训练,而该作品的权利人要求使用者不得将作品用于商业目的,则模型训练者仍然可以主张自己的行为构成合理使用。在管理模式上,可以参考现有开源社区的管理机制,建立服务创作者的非营利性中介组织,以监督开放授权数据资源使用者的著作权利用活动,尽可能地维护创作者权益。在侵权责任承担方面,由于当前知识共享协议效力的实现仍然依赖著作权法机制,若使用者违反CC许可协议超越范围使用授权内容,权利人只能依据《著作权法》追究使用人的著作权侵权责任,此时会大大增加权利人维权的时间成本和经济成本。因此,可尝试探索建立人工智能数据训练领域的信用惩戒制度和自律管理体系,将违背知识共享协议使用开放数据的不诚信行为纳入知识产权信用体系的监管。

    六、结语

    法律制度对人工智能发展的保障应当始终坚持以人为本的理念,这里的“人”既是人类的“人”,也是个人的“人”。在此理念的指引下,人工智能内容生成所反映的种种问题都是当下现实世界与技术演变之间的“发展之问”,著作权制度作为科技与法律相互作用、相互影响最为直观的制度规范,正面临着传统理论与现实产业发展之间的挑战,如何因地制宜地寻找适应产业发展与技术升级的规范措施成为当务之急。著作权制度自创立以来,便带着浓厚的政策色彩。人工智能生成内容的法律规制不仅与著作权人的核心利益切身相关,而且与产业发展、技术进步紧密相关。但无论新质生产力的出现对现有制度规范带来如何猛烈的冲击,著作权制度都不能成为技术进步以及经济发展的绊脚石,更不能成为人工智能新质生产力发展的拦路虎。

    因应技术发展的必要性,著作权制度理应合理回应“发展之问”所带来的种种挑战,就人工智能内容生成过程中所面临的作品认定、作者身份、权利归属以及数据训练等等难题给予多元化、多层次的解决方案,综合运用合同、互联网治理规则、著作权集体管理组织、数据资源开放授权以及法定许可制度等法律工具,由浅入深、由表及里地实现著作权制度的“去伪存真”。

    本文转自《法律科学》2024年第3期