从此走进深度人生 Deep net, deep life.

分类: 自然科学

  • Richard Dawkins 《The Genetic Book of the Dead_ A Darwinian Reverie》

    Contents
    1 Reading the Animal
    2 ‘Paintings’ and ‘Statues’
    3 In the Depths of the Palimpsest
    4 Reverse Engineering
    5 Common Problem, Common Solution
    6 Variations on a Theme
    7 In Living Memory
    8 The Immortal Gene
    9 Out Beyond the Body Wall
    10 The Backward Gene’s-Eye View
    11 More Glances in the Rear-View Mirror
    12 Good Companions, Bad Companions
    13 Shared Exit to the Future

    1 Reading the Animal

    You are a book, an unfinished work of literature, an archive of descriptive history. Your body and your genome can be read as a comprehensive dossier on a succession of colorful worlds long vanished, worlds that surrounded your ancestors long gone: a genetic book of the dead. This truth applies to every animal, plant, fungus, bacterium, and archaean but, in order to avoid tiresome repetition, I shall sometimes treat all living creatures as honorary animals. In the same spirit, I treasure a remark by John Maynard Smith when we were together being shown around the Panama jungle by one of the Smithsonian scientists working there: ‘What a pleasure to listen to a man who really loves his animals.’ The ‘animals’ in question were palm trees.

    From the animal’s point of view, the genetic book of the dead can also be seen as a predictor of the future, following the reasonable assumption that the future will not be too different from the past. A third way to say it is that the animal, including its genome, embodies a model of past environments, a model that it uses to, in effect, predict the future and so succeed in the game of Darwinism, which is the game of survival and reproduction, or, more precisely, gene survival. The animal’s genome makes a bet that the future will not be too different from the pasts that its ancestors successfully negotiated.

    I said that an animal can be read as a book about past worlds, the worlds of its ancestors. Why didn’t I use the present tense: read the animal as a description of the environment in which it itself lives? It can indeed be read in that way. But (with reservations to be discussed) every aspect of an animal’s survival machinery was bequeathed via its genes by ancestral natural selection. So, when we read the animal, we are actually reading past environments. That is why my title includes ‘the dead’. We are talking about reconstructing ancient worlds in which successive ancestors, now long dead, survived to pass on the genes that shape the way we modern animals are. At present it is a difficult undertaking, but a scientist of the future, presented with a hitherto unknown animal, will be able to read its body, and its genes, as a detailed description of the environments in which its ancestors lived.

    I shall have frequent recourse to my imagined Scientist Of the Future, confronted with the body of a hitherto unknown animal and tasked with reading it. For brevity, since I’ll need to mention her often, I shall use her initials, SOF. This distantly resonates with the Greek sophos, meaning ‘wise’ or ‘clever’, as in ‘philosophy’, ‘sophisticated’, etc. In order to avoid ungainly pronoun constructions, and as a courtesy, I arbitrarily assume SOF to be female. If I happened to be a female author, I’d reciprocate.

    This genetic book of the dead, this ‘readout’ from the animal and its genes, this richly coded description of ancestral environments, must necessarily be a palimpsest. Ancient documents will be partially over-written by superimposed scripts laid down in later times. A palimpsest is defined by the Oxford English Dictionary as ‘a manuscript in which later writing has been superimposed on earlier (effaced) writing’. A dear colleague, the late Bill Hamilton, had the engaging habit of writing postcards as palimpsests, using different-colored inks to reduce confusion. His sister Dr Mary Bliss kindly lent me this example.

    Besides his card being a nicely colorful palimpsest, it is fitting to use it because Professor Hamilton is widely regarded as the most distinguished Darwinian of his generation. Robert Trivers, mourning his death, said, ‘He had the most subtle, multi-layered mind I have ever encountered. What he said often had double and even triple meanings so that, while the rest of us speak and think in single notes, he thought in chords.’ Or should that be palimpsests? Anyway, I like to think he would have enjoyed the idea of evolutionary palimpsests. And, indeed, of the genetic book of the dead itself.

    Both Bill’s postcards and my evolution palimpsests depart from the strict dictionary definition: earlier writings are not irretrievably effaced. In the genetic book of the dead, they are partially overwritten, still there to be read, albeit we must peer ‘through a glass darkly’, or through a thicket of later writings. The environments described by the genetic book of the dead run the gamut from ancient Precambrian seas, via all intermediates through the mega-years to very recent. Presumably some kind of weighting balances modern scripts versus ancient ones. I don’t think it follows a simple formula like the Koranic rule for handling internal contradictions – new always trumps old. I’ll return to this in Chapter 3.

    If you want to succeed in the world you have to predict, or behave as if predicting, what will happen next. All sensible prediction must be based on the past, and much sensible prediction is statistical rather than absolute. Sometimes the prediction is cognitive – ‘I foresee that if I fall over that cliff (seize that snake by its rattling tail, eat those tempting belladonna berries), it is likely that I will suffer or die in consequence.’ We humans are accustomed to predictions of that cognitive kind, but they are not the predictions I have in mind. I shall be more concerned with unconscious, statistical ‘as-if’ predictions of what might affect an animal’s future chances of surviving and passing on copies of its genes.

    This horned lizard of the Mojave, whose skin is tinted and patterned to resemble sand and small stones, embodies a prediction, by its genes, that it would find itself born (well, hatched) into a desert. Equivalently, a zoologist presented with the lizard could read its skin as a vivid description of the sand and stones of the desert environment in which its ancestors lived. And now here’s my central message. Much more than skin deep, the whole body through and through, its very warp and woof, every organ, every cell and biochemical process, every smidgen of any animal, including its genome, can be read as describing ancestral worlds. In the lizard’s case it will no doubt spin the same desert yarn as the skin. ‘Desert’ will be written into every reach of the animal, plus a whole lot more information about its ancestral past, information far exceeding what is available to present-day science.

    The lizard burst out of the egg endowed with a genetic prediction that it would find itself in a sun-parched world of sand and pebbles. If it were to violate its genetic prediction, say by straying from the desert onto a golf green, a passing raptor would soon pick it off. Or if the world itself changed, such that its genetic predictions turned out to be wrong, it would also likely be doomed. All useful prediction relies on the future being approximately the same as the past, at least in a statistical sense. A world of continual mad caprice, an environmental bedlam that changed randomly and undependably, would render prediction impossible and put survival in jeopardy. Fortunately, the world is conservative, and genes can safely bet on any given place carrying on pretty much as before. On those occasions when it doesn’t – say after a catastrophic flood or volcanic eruption or, as in the case of the dinosaurs’ tragic end when an asteroid-strike ravaged the world – all predictions are wrong, all bets are off, and whole groups of animals go extinct. More usually, we aren’t dealing with such major catastrophes: not huge swathes of the animal kingdom being wiped out at a stroke, but only those variant individuals whose predictions are slightly wrong, or slightly more wrong than those of competitors within their own species. That is natural selection.

    The top scripts of the palimpsest are so recent that they are of a special kind, written during the animal’s own lifetime. The genes’ description of ancestral worlds is overlain by modifications and detailed refinements scripted since the animal was born – modifications written or rewritten by the animal’s learning from experience; or by the remarkable memory of past diseases laid down by the immune system; or by physiological acclimatisation, to altitude, say; or even by simulations in imagination of possible future outcomes. These recent palimpsest scripts are not handed down by the genes (though the equipment needed to write them is), but they still amount to information from the past, called into service to predict the future. It’s just that it’s the very recent past, the past enclosed within the animal’s own lifetime. Chapter 7 is about those parts of the palimpsest that were scribbled in since the animal was born.

    There is also an even more recent sense in which an animal’s brain sets up a dynamic model of the immediately fluctuating environment, predicting moment to moment changes in real time. Writing this on the Cornish coast, I take envious pleasure in the gulls as they surf the wind battering the cliffs of the Lizard peninsula. The wings, tail, and even head angle of each bird sensitively adjust themselves to the changing gusts and updraughts. Imagine that SOF, our zoologist of the future, implants radio-linked electrodes in a flying gull’s brain. She could obtain a readout of the gull’s muscle-adjustments, which would translate into a running commentary, in real time, on the whirling eddies of the wind: a predictive model in the brain that sensitively fine-tunes the bird’s flight surfaces so as to carry it into the next split second.

    I said that an animal is not only a description of the past, not just a prediction of the future, but also a model. What is a model? A contour map is a model of a country, a model from which you can reconstruct the landscape and navigate its byways. So too is a list of zeros and ones in a computer, being a digitised rendering of the map, perhaps including information tied to it: local population size, crops grown, dominant religions, and so on. As an engineer might understand the word, any two systems are ‘models’ of each other if their behavior shares the same underlying mathematics. You can wire up an electronic model of a pendulum. The periodicity of both pendulum and electronic oscillator are governed by the same equation. It’s just that the symbols in the equation don’t stand for the same things. A mathematician could treat either of them, together with the relevant equation written on paper, as a ‘model’ of any of the others. Weather forecasters construct a dynamic computer model of the world’s weather, continually updated by information from strategically placed thermometers, barometers, anemometers, and nowadays above all, satellites. The model is run on into the future to construct a forecast for any chosen region of the world.

    Sense organs do not faithfully project a movie of the outer world into a little cinema in the brain. The brain constructs a virtual reality (VR) model of the real world outside, a model that is continuously updated via the sense organs. Just as weather forecasters run their computer model of the world’s weather into the future, so every animal does the same thing from second to second with its own world model, in order to guide its next action. Each species sets up its own world model, which takes a form useful for the species’ way of life, useful for making vital predictions of how to survive. The model must be very different from species to species. The model in the head of a swallow or a bat must approximate a three-dimensional, aerial world of fast-moving targets. It may not matter that the model is updated by nerve impulses from the eyes in the one case, from the ears in the other. Nerve impulses are nerve impulses are nerve impulses, whatever their origin. A squirrel’s brain must run a VR model similar to that of a squirrel monkey. Both have to navigate a three-dimensional maze of tree trunks and branches. A cow’s model is simpler and closer to two dimensions. A frog doesn’t model a scene as we would understand the word. The frog’s eye largely confines itself to reporting small moving objects to the brain. Such a report typically initiates a stereotyped sequence of events: turning towards the object, hopping to get nearer, and finally shooting the tongue towards the target. The eye’s wiring-up embodies a prediction that, were the frog to shoot out its tongue in the indicated direction, it would be likely to hit food.

    My Cornish grandfather was employed by the Marconi company in its pioneering days to teach the principles of radio to young engineers entering the company. Among his teaching aids was a clothesline that he waggled as a model of sound waves – or radio waves, for the same model applied to both, and that’s the point. Any complicated pattern of waves – sound waves, radio waves, or even sea waves at a pinch – can be broken down into component sine waves – ‘Fourier analysis’, named after the French mathematician Joseph Fourier (1768–1830). These in turn can be summed again to reconstitute the original complex wave (Fourier synthesis). To demonstrate this, Grandfather attached his clothesline to rotating wheels. When only one wheel turned, the rope executed serpentine undulations approximating a sine wave. When a coupled wheel rotated at the same time, the rope’s snaking waves became more complex. The sum of the sine waves was an elementary but vivid demonstration of the Fourier principle. Grandfather’s snaking rope was a model of a radio wave travelling from transmitter to receiver. Or of a sound wave entering the ear: a compound wave upon which the brain presumably performs something equivalent to Fourier analysis when it unravels, for example, a pattern even as complex as whispered speech plus intrusive coughing against the background of an orchestral concert. Amazingly, the human ear, well, actually, the human brain, can pick out here an oboe, there a French horn, from the compound waveform of the whole orchestra.

    Today’s equivalent of my grandfather would use a computer screen instead of a clothesline, displaying first a simple sine wave, then another sine wave of different frequency, then adding the two together to generate a more complex wiggly line, and so on. The following is a picture of the sound waveform – high-frequency air pressure changes – when I uttered a single English word. If you knew how to analyse it, the numerical data embodied in (a much-expanded image of) the picture would yield a readout of what I said. In fact, it would require a great deal of mathematical wizardry and computer power for you to decipher it. But let the same wiggly line be the groove in which an old-fashioned gramophone needle sits. The resulting waves of changing air pressure would bombard your eardrums and be transduced to pulse patterns in nerve cells connected to your brain. Your brain would then without difficulty, in real time, perform the necessary mathematical wizardry to recognise the spoken word ‘sisters’.

    Our sound-processing brain software effortlessly recognises the spoken word, but our sight-processing software has extreme difficulty deciphering it when confronted with a wavy line on paper, on a computer screen, or with the numbers that composed that wavy line. Nevertheless, all the information is contained in the numbers, no matter how they are represented. To decipher it, we’d need to do the mathematics explicitly with the aid of a high-speed computer, and it would be a difficult calculation. Yet our brains find it a doddle if presented with the same data in the form of sound waves. This is a parable to drive home the point – pivotal to my purpose, which is why I said it twice – that some parts of an animal are hugely harder to ‘read’ than others. The patterning on our Mojave lizard’s back was easy: equivalent to hearing ‘sisters’. Obviously, this animal’s ancestors survived in a stony desert. But let us not shrink from the difficult readings – the cellular chemistry of the liver, say. That might be difficult in the same way as seeing the waveform of ‘sisters’ on an oscilloscope screen is difficult. But nothing negates the main point, which is that the information, however hard to decipher, is lurking within. The genetic book of the dead may turn out to be as inscrutable as Linear A or the Indus Valley script. But the information, I believe, is all there.

    The pattern to the right is a QR code. It contains a concealed message that your human eye cannot read. But your smartphone can instantly decipher it and reveal a line from my favourite poet. The genetic book of the dead is a palimpsest of messages about ancestral worlds, concealed in an animal’s body and genome. Like QR codes, they mostly cannot be read by the naked eye, but zoologists of the future, armed with advanced computers and other tools of their day, will read them.

    To repeat the central point, when we examine an animal there are some cases – the Mojave horned lizard is one – where we can instantly read the embodied description of its ancestral environment, just as our auditory system can instantly decipher the spoken word ‘sisters’. Chapter 2 examines animals who have their ancestral environments almost literally painted on their backs. But mostly we must resort to more indirect and difficult methods in order to extract our readout. Later chapters feel their way towards possible ways of doing this. But in most cases the techniques are not yet properly developed, especially those that involve reading genomes. Part of my purpose is to inspire mathematicians, computer scientists, molecular geneticists, and others better qualified than I am, to develop such methods.

    At the outset I need to dispel five possible misunderstandings of the main title, Genetic Book of the Dead. First is the disappointing revelation that I am deferring the task of deciphering much of the book of the dead to the sciences of the future. Nothing much I can do about that. Second, there is little connection, other than a poetic resonance, with the Egyptian Books of the Dead. These were instruction manuals buried with the dead, to help them navigate their way to immortality. An animal’s genome is an instruction manual telling the animal how to navigate through the world, in such a way as to pass the manual (not the body) on into the indefinite future, if not actual immortality.

    Third, my title might be misunderstood to be about the fascinating subject of Ancient DNA. The DNA of the long dead – well, not very long, unfortunately – is in some cases available to us, often in disjointed fragments. The Swedish geneticist Svante Pääbo won a Nobel prize for jigsawing the genome of Neanderthal and Denisovan humans, otherwise known only from fossils; in the Denisovan case only three teeth and five bone fragments. Pääbo’s work incidentally shows that Europeans, but not sub-Saharan Africans, are descended from rare cases of interbreeding with Neanderthals. Also, some modern humans, especially Melanesians, can be traced back to interbreeding events with Denisovans. The field of ‘Ancient DNA’ research is now flourishing. The woolly mammoth genome is almost completely known, and there are serious hopes of reviving the species. Other possible ‘resurrections’ might include the dodo, passenger pigeon, great auk, and thylacine (Tasmanian wolf). Unfortunately, sufficient DNA doesn’t last more than a few thousand years at best. In any case, interesting though it is, Ancient DNA is outside the scope of this book.

    Fourth, I shall not be dealing with comparisons of DNA sequences in different populations of modern humans and the light that they throw on history, including the waves of human migration that have swept over Earth’s land surface. Tantalisingly, these genetic studies overlap with comparisons between languages. For example, the distribution of both genes and words across the Micronesian islands of the Western Pacific islands shows a mathematically lawful relationship between inter-island distance and word-resemblance. We can picture outrigger canoes scudding across the open Pacific, laden with both genes and words! But that would be a chapter in another book. Might it be called The Selfish Meme?

    The present book’s title should not be taken to mean that existing science is ready to translate DNA sequences into descriptions of ancient environments. Nobody can do that, and it’s not clear that SOF will ever do so. This book is about reading the animal itself, its body and behaviour – the ‘phenotype’. It remains true that the descriptive messages from the past are transmitted by DNA. But for the moment we read them indirectly via phenotypes. The easiest, if not the only, way to translate a human genome into a working body is to feed it into a very special interpreting device called a woman.

    The Species as Sculpture; the Species as Averaging Computer

    Sir D’Arcy Thompson (1860–1948), that immensely learned zoologist, classicist, and mathematician, made a remark that seems trite, even tautological, but it actually provokes thought. ‘Everything is the way it is because it got that way.’ The solar system is the way it is because the laws of physics turned a cloud of gas and dust into a spinning disc, which then condensed to form the sun, plus orbiting bodies rotating in the same plane as each other and in the same direction, marking the plane of the original disc. The moon is the way it is because a titanic bombardment of Earth 4.5 billion years ago hived off into orbit a great quantity of matter, which then was pulled and kneaded by gravity into a sphere. The moon’s initial rotation later slowed, in a phenomenon called ‘tidal locking’, such that we only ever see one face of it. More minor bombardments disfigured the moon’s surface with craters. Earth would be pockmarked in the same way but for erosive and tectonic obliteration. A sculpture is the way it is because a block of Carrara marble received the loving attention of Michelangelo.

    Why are our bodies the way they are? Partly, like the moon, we bear the scars of foreign insults – bullet wounds, souvenirs of the duellist’s sabre or the surgeon’s knife, even actual craters from smallpox or chickenpox. But these are superficial details. A body mostly got that way through the processes of embryology and growth. These were, in turn, directed by the DNA in its cells. And how did the DNA get to be the way it is? Here we come to the point. The genome of every individual is a sample of the gene pool of the species. The gene pool got to be the way it is over many generations, partly through random drift, but more pertinently through a process of non-random sculpture. The sculptor is natural selection, carving and whittling the gene pool until it – and the bodies that are its outward and visible manifestation – is the way it is.

    Why do I say it’s the species gene pool that is sculpted rather than the individual’s genome? Because, unlike Michelangelo’s marble, the genome of an individual doesn’t change. The individual genome is not the entity that the sculptor carves. Once fertilisation has taken place, the genome remains fixed, from zygote right through embryonic development, to childhood, adulthood, old age. It is the gene pool of the species, not the genome of the individual, that changes under the Darwinian chisel. The change deserves to be called sculpting to the extent that the typical animal form that results is an improvement. Improvement doesn’t have to mean more beautiful like a Rodin or a Praxiteles (though it often is). It means only getting better at surviving and reproducing. Some individuals survive to reproduce. Others die young. Some individuals have lots of mates. Others have none. Some have no children. Others a swarming, healthy brood. Sexual recombination sees to it that the gene pool is stirred and shaken. Mutation sees to it that new genetic variants are fed into the mingling pool. Natural selection and sexual selection see to it that, as generation succeeds generation, the shape of the average genome of the species changes in constructive directions.

    Unless we are population geneticists, we don’t see the shifting of the sculpted gene pool directly. Instead, we observe changes in the average bodily form and behaviour of members of the species. Every individual is built by the cooperative enterprise of a sample of genes taken from the current pool. The gene pool of a species is the ever-changing marble upon which the chisels, the fine, sharp, exquisitely delicate, deeply probing chisels of natural selection, go to work.

    A geologist looks at a mountain or valley and ‘reads’ it, reconstructs its history from the remote past through to recent times. The natural sculpting of the mountain or valley might begin with a volcano, or tectonic subduction and upthrust. The chisels of wind and rain, rivers and glaciers then take over. When a biologist looks at fossil history, she sees not genes but things that eyes are equipped to see: progressive changes in average phenotype. But the entity being carved by natural selection is the species gene pool.

    The existence of sexual reproduction confers on The Species a very special status not shared by other units in the taxonomic hierarchy – genus, family, order, class, etc. Why? Because sexual recombining of genes – shuffling the pack (American deck) – takes place only within the species. That is the very definition of ‘species’. And it leads me to the second metaphor in the title of this section: the species as averaging computer.

    The genetic book of the dead is a written description of the world of no particular ancestral individual more than another. It is a description of the environments that sculpted the whole gene pool. Any individual whom we examine today is a sample from the shuffled pack, the shaken and stirred gene pool. And the gene pool in every generation was the result of a statistical process averaged over all those individual successes and failures within the species. The species is an averaging computer. The gene pool is the database upon which it works.

    2 ‘Paintings’ and ‘Statues’

    When, like that Mojave Desert lizard, an animal has its ancestral home painted on its back, our eyes give us an instant and effortless readout of the worlds of its forebears, and the hazards that they survived. Here’s another highly camouflaged lizard. Can you see it on its background of tree bark? You can, because the photograph was taken in a strong light from close range. You are like a predator who has had the good fortune to stumble upon a victim under ideal seeing conditions. It is such close encounters that exerted the selection pressure to put the finishing touches to the camouflage’s perfection. But how did the evolution of camouflage get its start? Wandering predators, idly scanning out of the corner of their eye, or hunting when the light was poor, supplied the selection pressures that began the process of evolution towards tree bark mimicry, back when the incipient resemblance was only slight. The intermediate stages of camouflage perfection would have relied upon intermediate seeing conditions. There’s a continuous gradient of available conditions, from ‘seen at a distance, in a poor light, out of the corner of the eye, or when not paying attention’ all the way up to ‘close-up, good light, full-frontal’. The lizard of today has a detailed, highly accurate ‘painting’ of tree bark on its back, painted by genes that survived in the gene pool because they produced increasingly accurate pictures.

    We have only to glance at this frog to ‘read’ the environment of its ancestors as being rich in grey lichen. Or, in another of Chapter 1’s formulations, the frog’s genes ‘bet’ on lichen. I intend ‘bet’ and ‘read’ in a sense that is close to literal. It requires no sophisticated techniques or apparatus. The zoologist’s eyes are sufficient. And the Darwinian reason for this is that the painting is designed to deceive predatory eyes that work in the same kind of way as the zoologist’s own eyes. Ancestral frogs survived because they successfully deceived predatory eyes similar to the eyes of the zoologist – or of you, vertebrate reader.

    In some cases, it is not prey but predators whose outer surface is painted with the colours and patterning of their ancestral world, the better to creep up on prey unseen. A tiger’s genes bet on the tiger being born into a world of light and shade striped by vertical stems. The zoologist examining the body of a snow leopard could bet that its ancestors lived in a mottled world of stones and rocks, perhaps a mountainous region. And its genes place a future bet on the same environment as cover for its offspring.

    By the way, the big cat’s mammalian prey might find its camouflage more baffling than we do. We apes and Old World monkeys have trichromatic vision, with three colour-sensitive cell types in our retinas, like modern digital cameras. Most mammals are dichromats: they are what we would call red-green colour-blind. This probably means they’d find a tiger or snow leopard even harder to distinguish from its background than we would. Natural selection has ‘designed’ the stripes of tigers, and the blotches of snow leopards, in such a way as to fool the dichromat eyes of their typical prey. They are pretty good at fooling our trichromat eyes too.

    Also in passing, I note how surprising it is that otherwise beautifully camouflaged animals are let down by a dead giveaway – symmetry. The feathers of this owl beautifully imitate tree bark. But the symmetry gives the game away. The camouflage is broken.

    I am reduced to suspecting that there must be some deep embryological constraint, making it hard to break away from left-right symmetry. Or does symmetry confer some inscrutable advantage in social encounters? To intimidate rivals, perhaps? Owls can rotate their necks through a far greater angle than we can. Perhaps that mitigates the problem of a symmetrical face. This particular photograph tempts the speculation that natural selection might have favoured the habit of closing one eye because it reduces symmetry. But I suppose that’s too much to hope for.

    Subtly different from ‘paintings’ are ‘statues’. Here the animal’s whole body resembles a discrete object that it is not. A tawny frogmouth or a potoo resembling a broken stump of a tree branch, a stick caterpillar sculpted as a twig, a grasshopper resembling a stone or a clod of dry soil, a caterpillar mimicking a bird dropping, are all examples of animal ‘statues’.

    The working difference between a ‘painting’ and a ‘statue’ is that a painting, but not a statue, ceases to deceive the moment the animal is removed from its natural background. A ‘painted’ peppered moth removed from the light-coloured bark that it resembles and placed on any other background will instantly be seen and caught by a predator. In this photograph, the background is a soot-blackened tree in an industrial area, which is perfect for the dark, melanic mutant of the same species of moth that you may have noticed less immediately by its side. On the other hand, the masquerading Geometrid stick caterpillar photographed by Anil Kumar Verma in India, if placed on any background, would have a good chance of still being mistaken for a stick and overlooked by a predator. That is the mark of a good animal statue.

    Although a statue resembles objects in the natural background, it does not depend for its effectiveness on being seen against that background in the way that a ‘painting’ does. On the contrary, it might be in greater danger. A lone stick insect on a lawn might be overlooked, as a stick that had fallen there. A stick insect surrounded by real sticks might be spotted as the odd one out. When drifting alone, the leafy sea dragon’s resemblance to a wrack might protect it, at least more so than its seahorse cousin whose shape in no way mimics a seaweed. But would this statue be less safe when nestling in a waving bed of real seaweed? It’s a moot question.

    Freshwater mussels of the species Lampsilis cardium have larvae that grow by feeding on blood, which they suck from the gills of a fish. The mussel has to find a way to put its larvae into the fish. It does it by means of a ‘statue’, which fools the fish. The mussel has a brood pouch for very young larvae on the edge of its mantle. The brood pouch is an impressive replica of a pair of small fish, complete with false eyes and false, very fish-like, ‘swimming’ movements. Statues don’t move, so the word ‘statue’ is strictly inappropriate, but never mind, you get the point. Larger fish approach and attempt to catch the dummy fish. What they actually catch – and it does them no good – is a squirt of mussel larvae.

    This highly camouflaged snake from Iran has a dummy spider at the tip of its tail. It may look only half convincing in a still picture. But the snake moves its tail in such a way that it looks strikingly like a spider scuttling about. Very realistic indeed, especially when the snake itself is concealed in a burrow with only the tail tip visible. Birds swoop down on the spider. And that is the last thing they do. It is worth reflecting on how remarkable it is that such a trick has evolved by natural selection. What might the intermediate stages have looked like? How did the evolutionary sequence get started? I suppose that, before the tip of the tail looked anything like a spider, simply waggling it about was somewhat attractive to birds, who are drawn to any small moving object.

    Both ‘paintings’ and ‘statues’ are easy-to-read descriptions of ancestral worlds, the environments in which ancestors survived. The stick caterpillar is a detailed description of ancient twigs. The potoo is a perfect model of long-forgotten stumps. Except that they are not really forgotten. The potoo itself is the memory. Twigs of past ages have carved their own likeness into the masquerading body of that caterpillar. The sands of time have painted their collective self-portrait on the surface of this spider, which you may have trouble spotting.

    ‘Where are the snows of yesteryear?’ Natural selection has frozen them in the winter plumage of the willow ptarmigan.

    The leaf-tailed gecko recalls to our minds, though not his, the dead leaves among which his ancestors lived. He embodies the Darwinian ‘memory’ of generations of leaves that fell long before men arrived in Madagascar to see them, probably long before men existed anywhere.

    The green katydid (long-horned grasshopper) has no idea that it embodies a genetic memory of green mosses and fronds over which its ancestors walked. But we can read at a glance that this is so. Same with this adorable little Vietnamese mossy frog.

    Statues don’t always copy inanimate objects like sticks or pebbles, dead leaves, or tree branch stubs. Some mimics pretend to be poisonous or distasteful models, and inconspicuous is precisely what they are not. At first glance you might think this was a wasp and hesitate to pick it up. It’s actually a harmless hoverfly. The eyes give it away. Flies have bigger compound eyes than wasps. This feature is probably written in a deep layer of palimpsest that, for some reason, is hard to over-write. The largest anatomical difference between flies and wasps – two wings rather than four (the feature that gives the fly Order its Latin name, Diptera) – is perhaps also difficult to over-write. But maybe, too, that potential clue is hard to notice. What predator is going to take the time to count wings?

    Real wasps, the models for the hoverfly mimicry, are not trying to hide. They’re the opposite of camouflaged. Their vividly striped abdomen shouts ‘Beware! Don’t mess with me!’ The hoverfly is shouting the same thing, but it’s a lie. It has no sting and would be good to eat if only the predator dared to attack it. It is a statue, not a painting, because its (fake) warning doesn’t depend on the background. From our point of view in this book, we can read its stripes as telling us that the ecology of its ancestors contained dangerous yellow-and-black stripy things, and predators that feared them. The fly’s stripes are a simulacrum of erstwhile wasp stripes, painted on its abdomen by natural selection. Yellow and black stripes on an insect reliably signify a warning – either true or false – of dire consequences to would-be attackers. The beetle to the right is another, especially vivid example.

    If you came face to face with this, peering at you through the undergrowth, would you start back, thinking it was a snake?

    It isn’t peering and it isn’t a snake. It’s the chrysalis of a butterfly, Dynastor darius, and chrysalises don’t peer. As a fine pretence of the front end of a snake, it’s well calculated to frighten. Never mind that rational second thoughts could calculate that it’s a bit on the small side to be a dangerous snake. There exists a distance – still close enough to be worrying – at which a snake would look that small. Besides, a panicking bird has no time for second thoughts. One startled squawk and it’s away. Having more time for reflection, the Darwinian student of the genetic book of the dead will read the caterpillar’s ancestral world as inhabited by dangerous snakes. Some caterpillars, whose rear ends pull the same snake trick, even move muscles in such a way that the fake eyes seem to close and open. Would-be predators can’t be expected to know that snakes don’t do that.

    Eyes are scary in themselves. That’s why some moths have eyespots on their wings, which they suddenly expose when surprised by a predator. If you had good reason to fear tigers or other members of the cat family, might you not start back in alarm if suddenly confronted with this, the so-called owl moth of South East Asia?

    There exists a distance – a dangerous distance – at which a tiger or a leopard would present a retinal image the same size as a close-up moth. OK, it doesn’t look very like any particular member of the cat family to our eyes. But there’s plenty of evidence that animals of various species respond to dummies that bear only a crude resemblance to the real thing – scarecrows are a familiar example, and there’s lots of experimental evidence as well. Black-headed gulls respond to a model gull head on the end of a stick, as though it were a whole real gull. A shocked withdrawal might be all it takes to save this moth.

    I am amused to learn that eyes painted on the rumps of cattle are effective in deterring predation by lions.

    We could call it the Babar effect, after Jean de Brunhoff’s lovable and wise King of the Elephants, who won the war against the rhinoceroses by painting scary eyes on elephant rumps.

    What on Earth is this? A dragon? A nightmare devil horse? It is in fact the caterpillar of an Australian moth, the pink underwing. The spectacular eye and teeth pattern is not visible when the caterpillar is at rest. It is screened by folds of skin. When threatened, the animal pulls back the skin screen to unveil the display, and, well, all I can say is that if I were a would-be predator, I wouldn’t hang about.

    PHOTO: HUSEIN LATIF

    The scariest false face I know? It’s a toss-up between the octopus on the left and the vulture on the right. The real eyes of the octopus can just be seen above the inner ends of the ‘eyebrows’ of the large, prominent false eyes. You can find the real eyes of the Himalayan griffon vulture if you first locate the beak and hence the real head. The false eyes of the octopus presumably deter predators. The vulture seems to use its false face to intimidate other vultures, thereby clearing a path through a crowd around a carcase.

    Some butterflies have a false head at the back of the wings. How might this benefit the insect? Five hypotheses have been proposed, of which the consensus favourite is the deflection hypothesis: birds are thought to peck at the less vulnerable false head, sparing the real one. I slightly prefer a sixth idea, that the predator expects the butterfly to take off in the wrong direction. Why do I prefer it? Perhaps because I am committed to the idea that animals survive by predicting the future.

    Paintings and statues aimed at fooling predators constitute the nearest approach achieved by any book of the dead to a literal readout, a literal description of ancestral worlds. And the aspect of this that I want to stress is its astounding accuracy and attention to detail. This leaf insect even has fake blemishes. The stick caterpillar (here) has fake buds.

    I see no reason why the same scrupulous attention to detail should not pervade less literal, less obvious parts of the readout. I believe the same detailed perfection is lurking, waiting to be discovered, in internal organs, in brain-wiring of behaviour, in cellular biochemistry, and other more indirect or deeply buried readings that can be dug out if only we could develop the tools to do so. Why should natural selection escalate its vigilance specifically for the external appearance of animals? Internal details, all details, are no less vital to survival. They are equally subject to becoming written descriptions of past worlds, albeit written in a less transparent script, harder to decipher than this chapter’s superficial paintings and statues. The reason paintings and statues are easier for us to read than internal pages of the genetic book of the dead is not far to seek. They are aimed at eyes, especially predatory eyes. And, as already pointed out, predatory eyes, vertebrate ones at least, work in the same way as our eyes. No wonder it is camouflage and other versions of painting and sculpture that most impress us among all the pages of the book of the dead.

    I believe the internally buried descriptions of ancestral worlds will turn out to have the same detailed perfection as the externally seen paintings and statues. Why should they not? The descriptions will just be written less literally, more cryptically, and will require more sophisticated decoding. As with the ear’s decoding of Chapter 1’s spoken word ‘sisters’, the paintings and statues of this chapter are effortlessly read pages from books of the dead. But just as the ‘sisters’ waveform, when presented in the recalcitrant form of binary digits, will eventually yield to analysis, so too will the non-obvious, non-skin-deep details of animals and their genes. The book of the dead will be read, even down to minute details buried deep inside every cell.

    This is my central message, and it will bear repeating here. The fine-fingered sculpting of natural selection works not just on the external appearance of an animal such as a stick caterpillar, a tree-climbing lizard, a leaf insect or a tawny frogmouth, where we can appreciate it with the naked eye. The Darwinian sculptor’s sharp chisels penetrate every internal cranny and nook of an animal, right down to the sub-microscopic interior of cells and the high-speed chemical wheels that turn therein. Do not be deceived by the extra difficulty of discerning details more deeply buried. There is every reason to suppose that painted lizards or moths, and moulded potoos or caterpillars, are the outward and visible tips of huge, concealed icebergs. Darwin was at his most eloquent in expressing the point.

    It may be said that natural selection is daily and hourly scrutinising, throughout the world, every variation, even the slightest; rejecting that which is bad, preserving and adding up all that is good; silently and insensibly working, whenever and wherever opportunity offers, at the improvement of each organic being in relation to its organic and inorganic conditions of life. We see nothing of these slow changes in progress, until the hand of time has marked the long lapse of ages, and then so imperfect is our view into long past geological ages, that we only see that the forms of life are now different from what they formerly were.

    3 In the Depths of the Palimpsest

    It’s all very well for me to say an animal is a readout of environments from the past, but how far into the past do we go? Every twinge of lower-back pain reminds us that our ancestors only 6 million years ago walked on all fours. Our mammalian spine was built over hundreds of millions of years of horizontal existence when the working body depended on it – depended in the literal sense of hanging from it. The human spine was not ‘meant’ to stand vertically, and it understandably protests. Our human palimpsest has ‘quadruped’ boldly written in a firm hand, then over-written all too superficially – and sometimes painfully – with the tracery of a new description – biped. Parvenu, Johnny-come-lately biped.

    The skin of Chapter 1’s Mojave horned lizard proclaimed to us an ancestral world of sandy, stony desert, but that world was presumably recent. What can we read from the palimpsest about earlier environments? Let’s begin by going back a very long way. As with all vertebrates, lizard embryos have gill arches that speak to us of ancestral life in water. As it happens, we have fossils to tell us that the watery scripts of all terrestrial vertebrates, including lizards, date back to Devonian times and then back to life’s marine beginning. The poetic point has often been made – I associate it with that salty, larger-than-life intellectual warrior JBS Haldane – that our saline blood plasma is a relic of Palaeozoic seas. In a 1940 essay called ‘Man as a Sea Beast’, Haldane notes that our plasma is similar in chemical composition to the sea but diluted. He takes this as an indication, not a very strong one in my reluctant opinion (‘reluctant’ because I like the idea), that Palaeozoic seas were less salty than today’s:

    As the sea is always receiving salt from the rivers, and only occasionally depositing it in drying lagoons, it becomes saltier from age to age, and our plasma tells us of a time when it possessed less than half its present salt content.

    The phrase ‘tells us of a time’ resonates congenially with the title of this book. Haldane goes on:

    we pass our first nine months as aquatic animals, suspended in and protected by a salty fluid medium. We begin life as salt-water animals.

    Whatever the plausibility of Haldane’s inference about changing salinity, what is undeniable is this. All life began in the sea. The lowest level of palimpsest tells a story of water. After some hundreds of millions of years, plants and then a variety of animals took the enterprising step out onto the land. Following Haldane’s fancy, we could say they eased the journey by taking their private sea water with them in their blood. Animal groups that independently took this step include scorpions, snails, centipedes and millipedes, spiders, crustaceans such as woodlice and land crabs, insects (who later took a further giant leap into the air) and a range of worms who, however, never stray far from moisture to this day. All these animals have ‘dry land’ inscribed on top of the deeper marine layers of palimpsest. Of special interest to us as vertebrates, the lobefins, a group of fish represented today by lungfish and coelacanths, crawled out of the sea, perhaps initially only in search of water elsewhere but eventually to take up permanent residence on dry land, in some cases very dry indeed. Intermediate palimpsest scripts tell of juvenile life in water (think tadpole) accompanying adult emergence on land.

    That all makes sense. There was a living to be made on land. The sun showers the land with photons, no less than the surface of the sea. Energy was there for the taking. Why wouldn’t plants take advantage of it via green solar panels, and then animals take advantage of it via plants? Do not suppose that a mutant individual suddenly found itself fully equipped genetically for life on land. More probably, individuals of an enterprising disposition made the first uncomfortable moves. This was perhaps rewarded by a new source of food. We can imagine them learning to make brief, snatch-and-grab forays out of water. Genetic natural selection would have favoured individuals who were especially good at learning the new ploy. Successive generations would have become better and better at learning it, spending less and less time in the sea.

    The general name for learned behaviour becoming genetically incorporated is the Baldwin Effect. Though I won’t discuss it further here, I suspect that it’s important in the evolution of major innovations generally, perhaps including the first moves towards defying gravity in flight. In the case of the lobe-finned fishes who left the water in the Devonian era around 400 million years ago, there are various theories for how it happened. One that I like was proposed by the American palaeontologist AS Romer. Recurrent drought would have stranded fishes in shrinking pools. Natural selection favoured individuals able to leave a doomed pool and crawl overland to find another one. A point in strong favour of the theory is that there would have been a continuous range of distances separating the pools. At the beginning of the evolutionary progression, a fish could save its life by crawling to a neighbouring pool only a short distance away. Later in evolution, more distant pools could be reached. All evolutionary advances must be gradual. A suffocating fish’s ability to exploit air requires physiological modification. Major modification cannot happen in one fell swoop. That would be too improbable. There has to be a gradient of step-by-step small improvement. And a gradient of distances between pools, some near, some a bit further, some far, is exactly what is needed. We shall meet the point again in Chapter 6 and the astonishingly rapid evolution of Cichlid fishes in Lake Victoria. Unfortunately, Romer prefaced his theory by quoting evidence that the Devonian was especially prone to drought. When this evidence was called into question, Romer’s whole theory suffered in appreciation. Unnecessarily so.

    In whatever way the move to the land happened, profound re­design became necessary. Water really is a very different environment from airy land. For animals, the move out of water was accompanied by radical changes in anatomy and physiology. Watery scripts at the base of the palimpsest had to be comprehensively over-written. It is the more surprising that a large number of animal groups later went into reverse, throwing their hard-won retooling to the winds as they trooped back into the water. Among invertebrates, the list includes pond snails, diving bell spiders, and water beetles. The water that they re-invaded is fresh water, not sea. But some vertebrate returnees, notably whales (including dolphins), sea cows, sea snakes, and turtles, went right back into the salted marine world that their ancestors had taken such trouble to leave.

    Seals, sea lions, walruses, and their kin, also Galapagos marine iguanas, only partially returned to the sea, to feed. They still spend much time on land, and breed on land. So do penguins, whose streamlined athleticism in the sea is bought at the cost of risible maladroitness on land. You cannot be a master of all trades. Sea turtles laboriously haul themselves out on land to lay eggs. Otherwise, they totally recommitted to the sea. As soon as baby turtles hatch in the sand, they lose no time in racing down the beach to the sea. Lots of other land vertebrates moved part-time into fresh water, including snakes, crocodiles, hippos, otters, shrews, tenrecs, rodents such as water voles and beavers, desmans (a kind of mole), yapoks (water opossums), and platypuses. These still spend a good deal of time on land, taking to the water mainly to feed.

    Sea turtle

    You might think that returnees to water would unmask the lower layers of palimpsest and rediscover the designs that served their ancestors so well. Why don’t whales, why don’t dugongs, have gills? Their embryos, like the embryos of all mammals, even have the makings of gills. It would seem the most natural thing in the world to dust off the old script and press it into service again. That doesn’t happen. It’s almost as though, having gone to such trouble to evolve lungs, they were reluctant to abandon them, even if, as you might think, gills would serve them better. Given gills, they wouldn’t have to keep coming to the surface to breathe. But rather than revive the gill, what they did was stick loyally to the lung, even at the cost of profound modifications to the whole air-breathing system, to accommodate the return to water.

    They changed their physiology in extreme ways such that they can stay under water for over an hour in some cases. When whales do come to the surface, they can exchange a huge volume of air very quickly in one roaring gulp before submerging again. It’s tempting to toy with the idea of a general rule stating that old scripts from lower down the palimpsest cannot be revived. But I can’t see why this should in general be true. There has to be a more telling reason. I suspect that, having committed their embryological mechanics to air-breathing lungs, the repurposing of gills would be a more radical embryological upheaval, more difficult to achieve than rewriting superficial scripts to modify the air-breathing equipment.

    Sea snakes don’t have gills, but they obtain oxygen from water through an exceptionally rich blood supply in the head. Again, they went for a new solution to the problem, rather than revive the old one. Some turtles obtain a certain amount of oxygen from water via the cloaca (waste disposal plus genital opening), but they still have to come to the surface to breathe air into their lungs.

    Steller’s sea cow

    Never parted from the buoyant support of water, whales are freed to evolve in massively (indeed so) different directions from their terrestrial ancestors. The blue whale is probably the largest animal that ever lived. Steller’s sea cows (see previous page), extinct relatives of dugongs and manatees, reached lengths of 11 metres and masses of 10 tonnes, larger than minke whales. They were hunted to extinction in the eighteenth century, soon after Steller first saw them. Like whales, sea cows breathe air, having failed to rediscover anything equivalent to the gills of their earlier ancestors. For reasons just discussed, that word ‘failed’ may be ill-advised.

    Ichthyosaurs were reptilian contemporaries of the dinosaurs, with fins and streamlined bodies, and with powerful tails, which were their main engines of propulsion: like dolphins, except that ichthyosaur tails would have moved from side to side rather than up and down. The ancestors of whales and dolphins had already perfected the mammalian galloping gait on land, and the up-and-down motion of dolphin flukes was naturally derived from it. Dolphins ‘gallop’ through the water, unlike ichthyosaurs, who would have swum more like fish. Otherwise, ichthyosaurs looked like dolphins and they probably lived pretty much like dolphins. Did they leap exuberantly into the air – wonderful thought – wagging their tails like dolphins (but from side to side)? They had big eyes, from which we might guess that they probably didn’t rely on sonar as the small-eyed dolphins do. Ichthyosaurs gave birth to live babies in the sea, as we know from a fossil ichthyosaur who unfortunately died during the act of giving birth (see above). Unlike turtles, but like dolphins and sea cows, ichthyosaurs were fully emancipated from their terrestrial heritage. So were plesiosaurs, for there’s evidence that they were livebearers too. Given that viviparity has evolved, according to one authoritative estimate, at least 100 times independently in land reptiles, it seems surprising that sea turtles, buoyant in water but painfully heavy on land, still labour up the sands to lay eggs. And that their babies, when they hatch, are obliged to flap their perilous way down to the sea, running a gauntlet of gulls, frigate birds, foxes, and even marauding crabs.

    Ichthyosaur died while giving birth

    Sea turtles revert to land to lay their eggs, in holes that they dig in a sandy beach. And an arduous exertion it is, for they are woefully ill-equipped to move out of water. Seals, sea lions, otters, and many other mammals whom we’ll discuss in a moment, spend part of their time in water and are adapted to swimming rather than walking, which makes them clumsy on land, though less so than sea turtles. As already remarked, the same is true of penguins, who are champions in water but comically awkward on land. Galapagos marine iguanas are proficient swimmers, but they can manage a surprising turn of speed on land too, when fleeing snakes. All these animals show us what the intermediates might have been like, on the way to becoming dedicated mariners like whales, dugongs, plesiosaurs, and ichthyosaurs.

    Tortles and turtoises – a tortuous trajectory

    Turtles and tortoises are of special interest from the palimpsest point of view, and they deserve special treatment. But first I have to dispel a confusing quirk of the English language. In British common usage, turtles are purely aquatic, tortoises totally terrestrial. Americans call them all turtles, tortoises being those turtles that live on land. In what follows, I’ll try to use unambiguous language that won’t confuse readers from either of the two nations ‘separated by a common language’. I’ll sometimes resort to ‘chelonians’ to refer to the entire group.

    Land tortoises, as we shall see, are almost unique in that their palimpsest chronicles a double doubling-back during the long course of their evolution. Their fish ancestors, along with the ancestors of all land vertebrates including us, left the sea in Devonian times, around 400 million years ago. After a period on land they then, like whales and dugongs, like ichthyosaurs and plesiosaurs, returned to the water. They became sea turtles. Finally, uniquely, some aquatic turtles came back to the land and became our modern dry-land (in some cases very dry indeed) tortoises. This is the ‘double doubling-back’ that I mentioned. But how do we know? How has the uniquely complicated palimpsest of land tortoises been deciphered?

    We can draw a family tree of extant chelonians, using all available evidence including molecular genetics. The diagram below is adapted from a paper by Walter Joyce and Jacques Gauthier. Aquatic groups are shown in blue, terrestrial in orange. I’ve taken the liberty of colouring the ‘ancestral’ blobs blue when the majority of their descendant groups are blue. Today’s land tortoises constitute a single branch, nested among branches consisting of aquatic turtles.

    This suggests that modern land tortoises, unlike most land reptiles and mammals, have not stayed on land continuously since their fish ancestors (who were also ours) emerged from the sea. Land tortoises’ ancestors were among those who, like whales and dugongs, went back to the water. But, unlike whales and dugongs, they then re-emerged back onto the land. I suppose this means I should reluctantly admit that American terminology has something going for it. As it turns out, what we British call tortoises are just sea turtles who turned turtle and returned to the land. They’re terrestrial turtles. No, I can’t do it. My upbringing leads me to go on calling them tortoises, but I’ll curb my tendency to wince at a phrase like ‘desert turtles’. In any case, what is interesting from the point of view of the genetic book of the dead is this: where reversals are concerned, land tortoises appear to have the most complicated palimpsests of all, with the largest number of almost perverse-seeming reversals.

    Modern land tortoise

    Moreover, it appears that our modern land tortoises may not be the first of their kind to achieve this remarkable double doubling-back. What looks like an earlier case occurred in the Triassic era. Two genera, Proganochelys and Palaeochersis, date way back to the first great age of dinosaurs, indeed long before the more spectacular and famous giant dinosaurs of the Jurassic and Cretaceous. It appears that they lived on land. How can we know? This is a good opportunity to return to our ‘future scientist’ SOF, faced with an unknown animal, and invite her to ‘read’ its environment from its skeleton. Fossils present the challenge in earnest because we can’t watch them living – whether swimming or walking – in their environment.

    Proganochelys

    So, what might SOF say of those enigmatic fossils, Proganochelys and Palaeochersis? Their feet don’t look like swimming flippers. But can we be more scientific about this? Joyce and Gauthier, whom we’ve already met, used a method that can point the way for anyone who wants to quantitatively decipher the genetic book of the long dead. They took seventy-one living species of chelonians whose habitat is known, and made three key measurements of their arm bones, the humerus (upper arm), the ulna (one of the two forearm bones), and the hand, as a percentage of total arm length. They plotted them on triangular graph paper. Triangular plotting makes convenient use of a proof in Euclidean geometry. From any point inside an equilateral triangle, the lengths of perpendiculars dropped to the three sides add up to the same value. This provides a useful technique for displaying three variables when the three are proportions that add up to a fixed number such as one, or percentages that add up to 100. Each coloured point represents one of the seventy-one species. The perpendicular distances of a point from each of the three lines of the big triangle represent the lengths of their three skeletal measurements. And when you colour-code the species according to whether they live in water or on land, something significant leaps off the page. The coloured points elegantly separate out. Blue points represent species living in water, yellow points species living on land. Green points represent genera that spend time in both environments and they, satisfyingly, occupy the region between the blues and yellows.

    So now, the interesting question is, where do the two ancient fossil species, Palaeochersis and Proganochelys, fall? They are represented by the two red stars. And there’s little doubt about it. The red stars fall among the yellow points, the dry-land species of modern tortoises. They were terrestrial tortoises. The two stars fall fairly close to the green points, so maybe they didn’t stray far from water. This kind of method shows one way in which our hypothetical SOF might ‘read’ the environment of any hitherto unknown animal – and hence read the environment in which its ancestors were naturally selected. No doubt SOF will have more advanced methods at her disposal, but studies such as this one might point the way.

    Palaeochersis and Proganochelys, then, were landlubbers. But had they stayed on land ever since their (and our) fishy ancestors crawled out of the sea? Or did they, like modern land tortoises, number sea turtles among their forebears? To help decide this, let’s look at another fossil. Odontochelys semitestacea lived in the Triassic, like Palaeochersis and Proganochelys but earlier. It was about half a metre long, including a long tail, which modern chelonians lack. The ‘Odonto’ in the generic name records the fact that it had teeth, unlike all modern chelonians, who have something more like a bird’s beak. And the specific name semitestacea testifies to its having only half a shell. It had a ‘plastron’, the hard shell that protects the belly of all chelonians, but it lacked the domed upper shell. The ribs, however, were flattened like those that support the shell in a normal chelonian.

    The fossil was discovered in China and described by a group of scientists led by Li Chun. They believe Odontochelys, or something like it, is ancestral to all chelonians and that the turtle shell evolved ‘from the bottom up’. They referred to the Joyce and Gauthier paper on forelimb proportions and concluded that Odontochelys was aquatic. In case you’re wondering what was the use of half a shell, sharks (who have been around since long before any of this story) often attack from below, so the armoured belly might have been anti-shark. If we accept this interpretation, it again suggests that the chelonian shell evolved in water. Against land predators we would not expect that the breastplate should be the first piece of armour to evolve. Quite the reverse. Odontochelys was probably something like a swimming lizard, a sort of Galapagos marine iguana but armoured with a large ventral breastplate.

    Although it’s controversial, the Chinese scientists favour the view that an aquatic turtle like Odontochelys, with its half shell, was ancestral to chelonians. Like all reptiles, it would have been descended from terrestrial, lizard-like ancestors, perhaps something like Pappochelys. If they are right that the chelonian shell evolved, Odontochelys-style, from the bottom up in shark-infested waters, what can we say about Palaeochersis and Proganochelys out on the land?

    Odontochelys

    It would seem that these represent an earlier emergence from water, an earlier incarnation of doubling-back terrestrial tortoises, to parallel today’s behemoths of Galapagos and Aldabra, who evolved from a later generation of aquatic turtles. In any case, the group we know as land tortoises stand as poster child for the very idea of an elaborate palimpsest. Not only did they leave the water for the land, return to water, and then double back onto the land again. They may even have done it twice! The doubling-back was achieved first by the likes of Proganochelys, and then again, independently, by our modern land tortoises. Maybe some went back to water yet again. It wouldn’t surprise me if some freshwater terrapins represent such a triple reversal, but I know of no evidence. Even one doubling-back is remarkable enough.

    Pappochelys

    If this giant Galapagos tortoise could sing a Homeric epic of its ancestors, its DNA-scored Odyssey would range from ancient legends of Devonian fishes, through lizard-like creatures roaming Permian lands, back to the sea with Mesozoic turtles, and finally returning to the land a second time. Now that’s what I call a palimpsest!

    Giant Galapagos tortoise

    Who Sings Loudest

    I said in Chapter 1 that the palimpsest chapter would return to the question of the relative balance between recent scripts and ancient ones. It is time to do so. You might conjecture something like the scriptural rule for internal Koranic contradictions: later verses supersede earlier ones. But it’s not as simple as that. In the genetic book of the dead, older scripts of the palimpsest can amount to ‘constraints on perfection’.

    Famous cases of evolutionary bad design, such as the vertebrate retina being installed back to front, or the wasteful detour of the laryngeal nerve (see below), can be blamed on historical constraints of this kind.

    ‘Can you tell me the way to Dublin?’

    ‘Well, I wouldn’t start from here.’

    The joke is familiar to the point of cliché, but it strikes to the heart of our palimpsest priority question. Unlike an engineer who can go back to the drawing board, evolution always has to ‘start from here’, however unfavourable a starting point ‘here’ may be. Imagine what the jet engine would look like if the designer had had to start with a propellor engine on his drawing board, which he then had to modify, step by tinkering step, until it became a jet engine. An engineer starting with the luxury of a clean drawing board would never have designed an eye with the ‘photocells’ facing backwards, and their output ‘wires’ being obliged to travel over the surface of the retina and eventually dive through it in a blind spot on their way to the brain. The blind spot is worryingly large, although we don’t notice it because the brain, in building its constrained virtual reality model of the world, cunningly fills in a plausible replacement for the missing patch on the visual field. I suppose such guesswork could be dangerous if a hazard happened to fall on the blind spot at a crucial moment. But this piece of bad design is buried deep in embryology. To change it in order to make the end product more sensible would require a major upheaval early in the embryonic development of the nervous system. And the earlier in embryology it is, the more radical and difficult to achieve. Even if such an upheaval could at length be achieved, the intermediate evolutionary stages on the way to the ultimate improvement would probably be fatally inferior to the existing arrangement, which works, after all, pretty well. Mutant individuals who began the long trek to ultimate improvement would be out-competed by rivals who coped adequately with the status quo. Indeed, in the hypothetical case of reforming the retina, they would probably be totally blind.

    You can call the backwards retina ‘bad design’ if you wish. It’s a legacy of history, a relic, an older palimpsest script partially over-written. Another example is the tail of humans and other apes, prominent in the embryo, shrunk to the coccyx in the adult. Also faintly traced in the palimpsest is our sparse covering of hair. Once useful for heat insulation, it is now reduced to a relic, still retaining its now almost pointless erectile properties in response to cold or emotion.

    The recurrent laryngeal nerve in a mammal or a reptile serves the larynx. But instead of going directly to its destination, it shoots straight past the larynx, on its way down the neck into the chest, where it loops around a major artery and then rushes all the way back up the neck to the larynx. If you think of it as design, this is obviously rotten design. The length of the detour in the giant dinosaur Brachiosaurus would have been about 20 metres. In a giraffe it is still impressive, as I witnessed at first hand when, for a Channel Four documentary called Inside Nature’s Giants, I assisted in the dissection of a giraffe, who had unfortunately died in a zoo. Who knows what inefficiencies or outright errors might have resulted from the transmission delay that such a detour must have imposed. But natural selection is not wantonly silly. It wasn’t originally bad design in our fishy ancestors when the nerve in question went straight to its end organ – not larynx, for fish don’t have a larynx. Fish don’t have a neck either. When the neck started to lengthen in their land-dwelling descendants, the marginal cost of each small lengthening of the detour was small compared to what would have been the major cost of radically reforming embryology to re-route the nerve along a ‘sensible’ path, the other side of the artery. Mutant individuals who began the embryologically radical evolutionary journey towards re-routing the laryngeal nerve would have been out-competed by rival individuals who made do with the working status quo. There’s a very similar example in the routing of the tube connecting testis to penis. Instead of taking the most direct route, it loops over the tube connecting kidney to bladder: an apparently pointless detour. Once again, the bad design is a constraint buried deep in embryology and deep in history.

    Recurrent laryngeal nerve

    ‘Buried deep in embryology and deep in history’ is another way of saying ‘buried deep under layers of younger scripts in the palimpsest’. Far from a ‘Koranic’ type of rule in which ‘Later trumps Earlier’, we might be tempted to toy with the reverse, ‘Earlier trumps Later’. But that won’t do either. The selection pressures that winnowed our recent ancestors are probably still in force today. So, to change the metaphor from a book to a cacophony of voices, the youngest voice, in its youthful vigour, might have something of a built-in advantage. Not an overriding advantage, however. I’d be content with the more cautious claim that the genetic book of the dead is a palimpsest made up of scripts ranging from very old to very young and including all intermediates between. If there are general rules governing relative prominence of old versus young or intermediate, they must wait for later research.

    Biologists have long recognised morphological features that lie conservatively in basal layers of the palimpsest. An example is the vertebrate skeleton: the dorsally placed spinal column, with a skull and tail at the two ends, the column made of serially segmented vertebrae through which runs the body’s main trunk nerve. Then the four limbs that sprout from it, each consisting of a single, typically long bone (humerus or femur) connected to two parallel bones (radius/ulna, tibia/fibula); then a cluster of smaller bones terminating in five digits. It’s always five digits in the embryo, although in the adult some may be reduced or even missing. Horses have lost all but the middle digit, which bears the hoof (a massively enlarged version of our nail). A group of extinct South American herbivores, the Litopterns, included some species, such as Thoatherium (left), which independently evolved almost exactly the same hoofed limb as the horse (right). The two limbs have been drawn the same size for ease of comparison, but Thoatherium was considerably smaller than a typical horse, about the size of a small antelope. Think of the horse in the picture as a Shetland pony!

    LitopternHorse

    Arthropods have a different Bauplan (building plan or body plan), although they resemble vertebrates in their segmented pattern of units repeated fore-and-aft in series. Annelid worms such as earthworms, ragworms, and lugworms also have a segmented body plan, and they share with arthropods the ventral position of the main nerve. This difference in position of the body’s main nerve has led to the provocative speculation that we vertebrates may be descended from a worm who developed the habit of swimming upside down – a habit that has been rediscovered by brine shrimps today. If this is so, the ‘basic’ vertebrate Bauplan may not be quite as basic as we thought.

    Brine shrimp

    But, important and even stately as such morphological bauplans are, morphology has become overshadowed by molecular genetics when it comes to reading the lower layers of biological palimpsests in order to reconstruct animal pedigrees. Here’s a neat little example. South American trees are inhabited by two genera of tree sloths, the two-toed and the three-toed. There was also a giant ground sloth, which went extinct some ten or twelve thousand years ago, just recently enough to supply molecular biologists with DNA. Since the two tree sloths are so alike, in both anatomy and behaviour, it was natural to suppose that they are closely related, descended from a tree-dwelling ancestor quite recently, and more distantly related to the giant ground sloth. Molecular genetics now shows, however, that the two-toed tree sloth is closer to the giant sloth – all 4 tonnes of it – than it is to the three-toed tree sloth.

    Long before modern molecular taxonomy burst onto the scene, morphological evidence aplenty showed us that dolphins are mammals not fish, for all that they look and behave superficially like large fish – mahi-mahi are indeed sometimes called ‘dolphinfish’ or even ‘dolphins’. But although science long knew that dolphins and whales were mammals, no zoologist was prepared for the bombshell released in the late twentieth century by molecular geneticists when they showed, beyond all doubt, that whales sprang from within the artiodactyls, the even-toed, cloven-hoofed ungulates. The closest living cousins of hippos are not pigs, as I was taught as a zoology undergraduate. They are whales. Whales don’t have hooves to cleave. Indeed, their land ancestors probably didn’t actually have cloven hooves, but broad four-toed feet, as hippos do today. Nevertheless, they are fully paid-up members of the artiodactyls. Not even outliers to the rest of the artiodactyls but buried deep within them, closer cousins to hippos than hippos are to pigs or to other animals who actually have cloven hooves. A staggering revelation that nobody saw coming. Molecular gene sequencing may have other shocks in store for us yet.

    Just as a computer disc is littered with fragments of out-of-date documents, animal genomes are littered with genes that must once have done useful work but now are never read. They’re called pseudogenes – not a great name, but we’re stuck with it. They are also sometimes called ‘junk’ genes, but they aren’t ‘junk’ in the sense of being meaningless. They are full of meaning. If they were translated, the product would be a real protein. But they are not translated. The most striking example I know concerns the human sense of smell. It is notoriously poor compared with that of coursing hounds, seal-hunting polar bears, truffle-snuffling sows, or indeed the majority of mammals. You’d be right to credit our ancestors with feats of smell discrimination that would amaze us if we could go back and experience them. And the remarkable fact is that the necessary genes, large numbers of them, are still with us. It’s just that they are never read, never transcribed, never rendered into protein. They’ve become sidelined as pseudogenes. Such older scripts of the DNA palimpsest are not only there. They can be read in total clarity. But only by molecular biologists. They are ignored by the natural reading mechanisms of our cells. Our sense of smell is frustratingly poor compared to what it could be if only we could find a way to turn on those ancient genes that still lurk within us. Imagine the high-flown imagery that mutant wine connoisseurs might unleash. ‘Black cherry offset by new-mown hay in the attack, with notes of lead pencil in the satisfying finish’ would be tame by comparison.

    Hippos are closer cousins to whales than to any other ungulates

    The analogy between genome and computer disc is a more than usually close one. If I invite my computer to list the documents on my hard disc, I see an orderly array of letters, articles, chapters of books, spreadsheets of accounts, music, holiday photos, and so on. But if I were to read the raw data as it is actually laid out on the disc, I would face a phantasmagoria of disjointed fragments. What seems to be a coherent book chapter is made up of here a scrap, there a fragment, dotted around the disc. We think it’s coherent only because system software knows where to look for the next fragment. And when I delete a document, I may fondly imagine it has gone. It hasn’t. It’s still sitting where it was. Why waste valuable computer-time to expunge it? All that happens when you delete a document is that the system software marks its territory on the disc as available to be over-written by other stuff, as and when the space is needed. If the territory is not needed it will not be over-written and the original document, or parts of it, will survive – legible but never actually read – like the smell pseudogenes that we still possess but don’t use. This is why, if you want to remove incriminating documents from your computer, you must take special steps to expunge them completely. Routine ‘deletion’ is not proof against hackers.

    Pseudogenes are a lucid message from the past: a significant part of the genetic book of the dead. If she hadn’t already deduced it from other cues, SOF would know, from the graveyard of dead genes littering the genome, that our ancestors inhabited a world of smells richer than we can imagine. The DNA tombstones are not only there, the lettering on them is more or less clear and distinct. Incidentally, these molecular tombstones are a huge embarrassment to creationists. Why on earth would a Creator clutter our genome with smell genes that are never used?

    This chapter has been mainly concerned with deep layers of the palimpsest, the legacies of more ancient history. In the next four chapters we turn to layers nearer the surface. This amounts to a look at the power of natural selection to override the deep legacies of history. One way to study this is to pick out convergent resemblances between unrelated animals. Another way is ‘reverse engineering’. To which we now turn.

    4 Reverse Engineering

    One of the central messages of this book – that the meticulously detailed perfection we see in the external appearance of animals pervades the whole interior too – obviously rests on an assumption that something approaching perfection is there in the first place. There, and to be expected on Darwinian grounds. It’s an assumption that has been criticised and needs defending, which is the purpose of the next three chapters.

    The most prominent critics of what they called ‘adaptationism’ were Richard Lewontin and Stephen Gould, both at Harvard, both distinguished, in their respective fields of genetics and palaeontology. Lewontin defined adaptationism as ‘That approach to evolutionary studies, which assumes without further proof that all aspects of the morphology, physiology and behavior of organisms are adaptive optimal solutions to problems.’ I suppose I am closer to being an adaptationist than many biologists. But I did devote a chapter of The Extended Phenotype to ‘Constraints on Perfection’. I distinguished six categories of constraint, of which I’ll mention five here.

    1. Time lags (the animal is out of date, hasn’t yet caught up with a changing environment). Quadrupedal relics in the human skeleton supply one example.
    2. Historical constraints that will never be corrected (e.g. recurrent laryngeal nerve, back-to-front retina).
    3. Lack of available genetic variation (even if natural selection would favour pigs with wings, the necessary mutations never arose).
    4. Constraints of costs and materials (even if pigs could use wings for certain purposes, and even if the necessary mutations were forthcoming, the benefits are outweighed by the cost of growing them).
    5. Mistakes due to environmental unpredictability or malevolence (e.g. when a reed warbler feeds a baby cuckoo it is an imperfection from the point of view of the warbler, engineered by natural selection on cuckoos).

    If such constraints are allowed for and admitted, I think I could fairly be called an adaptationist. There remains the point, which will occur to many people, that certain ‘aspects of the morphology, physiology and behavior of organisms’ may be too trivial for natural selection to notice them. They pass under the radar of natural selection. If we are talking about genes as molecular geneticists see them, then it is probably true that most mutations pass unnoticed by natural selection. This is because they are not translated into a changed protein, therefore nothing changes in the organism. They are literally neutral, in the sense of the Japanese geneticist Motoo Kimura, not mutations at all in the functional sense. It’s like changing the font in which an instruction is printed, from Times New Roman to Helvetica. The meaning is exactly the same after the mutation as it was before. But Lewontin had sensibly excluded such cases when he specified ‘morphology, physiology and behavior’. If a mutation affects the morphology, physiology, or behaviour of an animal, it is not neutral in the trivial ‘changing the font’ sense.

    Nevertheless, some people still have an intuitive feeling that many mutations are probably still negligible, even if they really do affect morphology, physiology, or behaviour. Even if there’s a real change visible in the animal’s body, mightn’t it be too trivial for natural selection to bother about? My father used to try to persuade me that the shapes of leaves, say the difference between oak shape and beech shape, couldn’t possibly make any difference. I’m not so sure, and this is where I tend to part company with the sceptics like Lewontin. In 1964, Arthur Cain (my sometime tutor at Oxford) wrote a polemical paper in which he forcefully (some might say too forcefully) argued the case for what he called ‘The Perfection of Animals’. On ‘trivial’ characters, he argued that what seems trivial to us may simply reflect our ignorance. ‘An animal is the way it is because it needs to be’ was his slogan, and he applied it both to so-called trivial characters and to the opposite – fundamental features like the fact that vertebrates have four limbs and insects have six. I think he was on firmer ground where so-called trivial characters were concerned, for instance in the following memorable passage:

    But perhaps the most remarkable functional interpretation of a ‘trivial’ character is given by Manton’s work on the diplopod [a kind of millipede] Polyxenus, in which she has shown that a character formerly described as an ‘ornament’ (and what could sound more useless?) is almost literally the pivot of the animal’s life.

    Even in those cases where the character is very close to being genuinely trivial, natural selection may be a more stringent judge than the human eye. What is trivial to our eyes may still be noticed by natural selection when, in Darwin’s words, ‘the hand of time has marked the long lapse of ages’. JBS Haldane made a relevant hypothetical calculation. He assumed a selection pressure in favour of a new mutation so weak as to seem trivial: for every 1,000 individuals with the mutation who survive, 999 individuals without the mutation will survive. That selection pressure is much too weak to be detected by scientists working in the field. Given Haldane’s assumption, how long will it take for such a new mutation to spread through half the population? His answer was a mere 11,739 generations if the gene is dominant, 321,444 generations if it is recessive. In the case of many animals, that number of generations is an eye-blink by geological standards. A relevant point is that, however seemingly trivial a change may be, the mutated gene has very many opportunities to make a difference – via all the thousands of individuals in whose bodies it finds itself over geological time. Moreover, even though a gene may have only one proximal effect, because embryology is complicated, that one primary effect may ramify. As a result, the gene appears to have many seemingly disconnected effects in different parts of the body. These different effects are called pleiotropic, and the phenomenon is pleiotropism. Even if one of a mutation’s effects was truly negligible, it’s unlikely that all its pleiotropic effects would be.

    With all due recognition to the various constraints on perfection, I think a fair working hypothesis is one that, surprisingly, Lewontin himself expressed, admittedly long before his attacks on adaptationism: ‘That is the one point, which I think all evolutionists are agreed upon, that it is virtually impossible to do a better job than an organism is doing in its own environment.’

    Some biologists prefer to say natural selection produces animals that are just ‘good enough’ rather than optimal. They borrow from economists the term ‘satisficing’, a jargon word that they love to namedrop. I’m not a fan. Competition is so fierce, any animal who merely satisficed would soon be out-competed by a rival individual who went one better than satisficing. Now, however, we have to borrow from engineers the important notion of local optima. If we think of a landscape of perfection where improvement is represented by climbing hills, natural selection will tend to trap animals on the top of the nearest relatively low hill, which is separated from a high mountain of perfection by an impassable valley. Going down into the valley is the metaphor for getting temporarily worse before you can get better. There are various ways, known to both biologists and engineers, whereby hill-climbers can escape local optima and make their way to ‘broad, sunlit uplands’, though not necessarily to the highest peak of all. But I shall leave the topic now.

    Engineers assume that a mechanism designed by somebody for a purpose will betray that purpose by its nature. We can then ‘reverse engineer’ it to discern the purpose that the designer had in mind.

    Reverse engineering is the method by which scientific archaeologists reconstructed the purpose of the Antikythera mechanism, a mesh of cogwheels found in a sunken Greek ship dating from about 80 BC. The intricate gearing was exposed by modern techniques such as X-ray tomography. Its original purpose has been reverse engineered as an ancient equivalent of an analogue computer, designed to simulate the movement of heavenly bodies according to the system of epicycles later associated with Ptolemy.

    Reverse engineering assumes that the object facing us had a purpose in the mind of a competent designer, a purpose that can be guessed. The reverse engineer sets up a hypothesis as to what a sensible designer might have had in mind, then checks the mechanism to see if it fits the hypothesis. Reverse engineering works well for animal bodies as well as for man-made machines. The fact that the latter were deliberately designed by conscious engineers while the former were designed by unconscious natural selection makes surprisingly little difference: a potential for confusion readily exploited by creationists with their characteristically eager appetite for it. The grace of a tiger and of its prey could not easily, it would seem, be bettered:

    What immortal hand or eye
    Could frame thy fearful symmetry.

    Indeed, animals sometimes seem too symmetrically designed, to their own detriment: remember the owl pictured in Chapter 2.

    Darwin had a section of Origin of Species called ‘Organs of extreme perfection and complication’. It’s my belief that such organs are the end products of evolutionary arms races. The term ‘armament race’ was introduced to the evolution literature by the zoologist Hugh Cott in his book on Animal Coloration published in 1940, during the Second World War. As a former officer in the regular army during the First World War, he was well placed to notice the analogy with evolutionary arms races. In 1979, John Krebs and I revived the idea of the evolutionary arms race in a presentation to the Royal Society. Whereas an individual predator and its prey run a race in real time, arm races are run in evolutionary time, between lineages of organisms. Each improvement on one side calls forth a counter-improvement on the other. And so the arms race escalates, until called to a halt, perhaps by overwhelming economic costs, just like military arms races.

    Antelopes could always outrun lions, and vice versa, but only by counter-productive investment of too much ‘capital’ in leg muscles at the expense of other calls on investment in, say, milk production. If the language of ‘investment’ sounds too anthropomorphic, let me translate. Individuals who excel in running speed would be out-competed by slightly slower individuals who divert resources more usefully, from athletic legs into milk. Conversely, individuals who overdo milk production are out-competed by rivals who economise on milk production and put the energy saved into running speed. To quote the economists’ hackneyed saw, there’s no such thing as a free lunch. Trade-offs are ubiquitous in evolution.

    I think arms races are responsible for every biological design impressive enough to, in the words of David Hume’s Cleanthes, ravish ‘into admiration all men who have ever contemplated them’. Adaptations to ice ages or droughts, adaptations to climate change, are relatively simple, less prone to ravish into admiration because climate is not out to get you. Predators are. So are prey, in the indirect sense that, the more success prey achieve at evading capture, the closer their would-be predators come to starvation. Climate doesn’t menacingly change in response to biological evolution. Predators and prey do. So do parasites and hosts. It is the mutual escalation of arms races that drives evolution to Cleanthean heights, such as the feats of mimetic camouflage we met in Chapter 2, or the sinister wiles of cuckoos that will amaze us in Chapter 10.

    And now for a point that at first sight seems negative. Whereas animals look beautifully designed on the outside, as soon as we cut them open, we seem superficially to get a different impression. An untutored spectator of a mammal dissection might fancy it a mess. Intestines, blood vessels, mesenteries, nerves seem to spill out all over the place. An apparent contrast with the sinewy elegance of, say, a leopard or antelope when seen from outside. On the face of it, this might seem to contradict the conclusion of Chapter 2. The central point stated there was that the perfection typical of the outer layer must pervade every internal detail as well. Now compare your heart with the village pump, which seems neatly and simply fit for purpose. Admittedly, the heart is two pumps in one, serving the lungs on the one hand and the rest of the body on the other. But you could be forgiven for wondering whether a more minimally elegant pump might profitably have been designed.

    Each eye sends information to the brain on the opposite side. Muscles on the left side of the body are controlled by the right side of the brain and vice versa. Why? I suppose we are again dealing with ancient scripts long buried in low strata of the palimpsest. Given such deep constraints, natural selection busily tinkers with the upper-level scripts, making good, as far as possible, the inevitable imperfections imposed by deeper levels. The backwards wiring of the vertebrate retina is well compensated by post-hoc making good. You might think that ‘from such warped beginnings nothing debonair can come’. The great German scientist Hermann von Helmholtz is said to have remarked that if an engineer had produced the eye for him, he would have sent it back. Yet after tweaking, ‘in post’ as movie-makers say, the vertebrate eye can become a fine piece of optical kit.

    Two pumps

    Why do animals look obviously well designed on the visible outside but apparently less so inside? Does the clue reside in that word ‘visible’? In the case of Chapter 2’s camouflage, and also ornamental extravaganzas like the peacock’s fan, (human) eyes are admiring the external appearance of the animal, and (peahen or predator) eyes are doing the natural selection of external appearance: similar vertebrate eyes in both cases. No wonder external appearance looks more perfectly ‘designed’ than internal details. Internal details are every bit as subject to natural selection, but they don’t obviously look that way because it is not selection by eyes.

    That explanation won’t do for the streamlined flair of a sprinting cheetah, or its equally graceful Tommy prey. Those beauties did not evolve for the delectation of eyes but to satisfy the lifesaving requirements of speed. Here it would seem to be the laws of physics that impose what we perceive as elegance: as it is for the aerodynamic grace of a fast jet plane. Aesthetics and functionality converge on the same stylish elegance.

    I confess that I find the interior of the body bewilderingly complex. I might even go so heretically far as to dismiss it as a mess. But I am a naive amateur where internal anatomy is concerned. A consultant surgeon whom I have consulted (what else should one do with a consultant?) assures me in no uncertain terms that, to his trained eye, internal anatomy has a beautiful elegance, everything neatly stowed away in its proper place, all shipshape and Bristol fashion. And I suspect that ‘trained eye’ is exactly the point. In Chapter 1, I contrasted the ear’s effortless deciphering of the spoken word ‘sisters’ with the eye’s fumbling impotence to see anything beyond a wavy line on an oscilloscope. My eye sees elegance on the outside. Then when I cut an animal open, my amateur eye contemplates only a mess. The trained surgeon sees stylish perfection of design, inside as well as out. It is, at least partly, the story of ‘sisters’ all over again. Yet there is more to be said. Something about embryology.

    Veins, nerves, arteries, lymphatic system – a whole armful of complexity

    The sceptic vocally doubts whether it can really matter whether this vein in the arm passes over or under that nerve. Maybe it doesn’t in the sense that, if their relationship could be reversed with a magic wand, the person’s life might not suffer, and might even improve. But I think it does matter in another sense – the sense that solved the riddle of the laryngeal nerve. Every nerve, blood vessel, ligament, and bone got that way because of processes of embryology during the development of the individual. Exactly which passes over or under what may or may not make a difference to their efficient working, once their final routing is achieved. But the embryological upheaval necessary to effect a change, I conjecture, would raise problems, or costs, sufficient to outweigh other considerations. Especially if the embryological upheaval strikes early. The intricate origami of embryonic tissue-folding and invagination follows a strict sequence, each stage triggering its successor. Who can say what catastrophic downstream consequences might flow from a change in the sequence – the kind of change necessary to re-route a blood vessel, say.

    Moreover, perhaps Darwinian forces have worked on human perception to sharpen our appreciation of external appearances as opposed to internal details. At all events, I revert with confidence to the conclusion of Chapter 2. It is entirely unreasonable to suppose that the chisels of natural selection, so delicately adept at perfecting external and visible appearance, should suddenly stop at the animal’s skin rather than working their artistry inside. The same standards of perfection must pervade the interior of living bodies, even if less obviously to our eyes. To dissect the non-obvious and make it plain will be the business of future zoological reverse engineers, and it is to them that I appeal.

    Ideally, reverse engineering is a systematic scientific project, perhaps involving mathematical models in the sense discussed in Chapter 1. More usually, at present at least, it involves intuitive plausibility arguments. If the object in question has a lens in front of a dark chamber, focusing a sharp image on a matrix of light-sensitive units at the back of the chamber, any person living after the invention of the camera can instantly divine the purpose for which it evolved. But there will be numerous details that will matter and will require sophisticated techniques of reverse engineering, including mathematical analysis. In this chapter our reverse engineering is mostly of the intuitive, common sense kind, like the example of the eye and the camera.

    Reverse engineering is supplemented by comparison across species. If SOF is confronted with a hitherto unknown animal, she can read it both by pure reverse engineering (‘a device designed by an engineer to do such-and-such would probably look rather like this’) and also by comparison with known species (‘this organ looks like an organ in so-and-so species that we already know, and it probably is used for the same purpose’).

    An indirect version of reverse engineering can be used to infer aspects of an animal that cannot be seen, for example when all we have is fossils. We have no fossil evidence about the heart of a dinosaur. But fossils tell us that some sauropods such as Brontosaurus and the even larger Sauroposeidon had extraordinarily long necks. The CGI artists of Jurassic Park beautifully illustrated the dominant view that they reached up to browse tall trees. Like giraffes, only more so. Now the engineer steps in and invokes simple laws of physics to dictate that the heart would have had to generate very high pressure in order to push blood to the height of the animal’s brain when plucking leaves from a high tree. You can’t suck water through a straw that’s more than 10.3 metres tall, even if your sucking is powerful enough to generate a perfect vacuum in the straw. Sauroposeidon’s head probably overtopped its heart by about that much, which gives an idea of the pressure that the heart would have had to generate to push blood up to the head. Without ever seeing a fossilised sauropod heart, the engineer infers that it must have generated especially high pressure. Either that or that they didn’t browse trees at all.

    I can’t resist reflecting that the difficulty of pumping blood to a head so high might have been partially responsible for those large dinosaurs outsourcing some brain functions to a second ‘brain’, in the pelvis. Also, I never miss an excuse to quote Bert Leston Taylor’s delightfully witty poem on the subject.

    Behold the mighty dinosaur,
    Famous in prehistoric lore,
    Not only for his power and strength
    But for his intellectual length.

    You will observe by these remains

    The creature had two sets of brains –

    One in his head (the usual place),

    The other at his spinal base,

    Thus he could reason A priori

    As well as A posteriori.

    No problem bothered him a bit

    He made both head and tail of it.

    So wise was he, so wise and solemn,

    Each thought filled just a spinal column.

    If one brain found the pressure strong

    It passed a few ideas along.

    If something slipped his forward mind

    ’Twas rescued by the one behind.

    And if in error he was caught

    He had a saving afterthought.

    As he thought twice before he spoke

    He had no judgment to revoke.

    Thus he could think without congestion

    Upon both sides of every question.

    Oh, gaze upon this model beast,

    Defunct ten million years at least.

    The pelvic ‘brain’ would have been about on a level with the heart, and impressively much lower than the head.

    Alas, there are no sauropods for us to test such ideas, and we must make do with the next best thing, which is the giraffe. Though not in the same league as a giant dinosaur, the giraffe’s head is quite lofty enough to require an abnormally high blood pressure, out of the ordinary for a mammal. And the following graph bears out the expectation.

    I have plotted mean arterial blood pressure against the logarithm of body mass for a range of mammals from mouse to elephant. It’s best to use logarithms for the weights – otherwise it would be hard to fit mouse and elephant on the same page, with intermediate animals conveniently spread out between. The dotted line is the straight line that best fits the data. The line slopes upwards – larger animals tend to have higher blood pressure. Most species are pretty close to the line, meaning that their blood pressure is close to typical for their weight. But the big exception is the giraffe, which is far above the line. Its blood pressure is way higher than it ‘should be’ for an animal of its size. Surprisingly, other evidence shows that the giraffe heart is not especially large. It seems to be prevented from enlarging in evolution by the need to share the body cavity with large herbivorous guts. It achieves the extra-high blood pressure in a different way, by a greater density of heart muscle cells, an improvement that probably imposes costs of its own. Without ever seeing a Brontosaurus heart, we can predict that it too would have stood way above the line in the equivalent graph for reptiles.

    The teeth of a hitherto unknown animal speak volumes, and this is fortunate because teeth, being necessarily hard enough to crunch food, are also hard enough to outlast anything else in the fossil record. Some important extinct species are known only from teeth. In the rest of this chapter, we shall use teeth and other biological food-processing devices as our example of choice. Look at this ancient skull. The first thing you notice is the scary canine teeth. You might reverse engineer these as being good for either fighting rivals or stabbing prey to death and holding onto them. Seeking further evidence, you might then look at the other teeth near the back of the jaw, the molars. They don’t mesh surface-to-surface in the way that ours or a horse’s do, but shear past each other like scissors as the jaws close. They seem designed to slice rather than to mill. This says ‘carnivore’. Well, obviously. But it’s only obvious because we are rather good at intuitive reverse engineering, and because we have living large carnivores like lions and tigers for comparison. It does no harm to make the reasoning explicit.

    Sabretooth

    Animals, perhaps because they are themselves made of meat, find meat relatively easy to digest, and carnivore intestines tend to be appropriately short. If SOF were handed an unknown animal, very long intestines would signal ‘herbivore’ to her. I’ll return to this. Meat, moreover, demands relatively little pre-processing with teeth before digestion. Cutting off substantial chunks to be swallowed whole is sufficient. Plants may be easier to catch than animals – they don’t run away – but they make up for it by being harder to process once you’ve caught them. Plant cells are different from animal cells. They have thick walls toughened by cellulose and silica. For this and other reasons, herbivores need to grind their food into tiny pieces before it is ready to pass into the gut for further breaking up chemically into even smaller pieces. Herbivore teeth are millstones which, like the mills of God, grind slowly and they grind exceeding small. Carnivore teeth don’t resemble millstones and they don’t grind. They cut, shearing through fibrous tissues.

    Looking at the back teeth of the above skull, then, we confirm our initial diagnosis from the dagger-like canines, and convincingly reverse-engineer our scary specimen as telling a tale of ancestral carnivores. Moving to the rest of the skull, we note that the articulation of the lower jaw allows only up-and-down movement suitable for scissoring food, not side-to-side movement such as would be needed for milling. Up and down is putting it mildly: the sheer size of the gape is formidable. As you’ll have guessed, this is the skull of a sabretooth cat, often called sabretooth tiger, although it could just as well be called sabretooth lion. It was a big cat, Smilodon, not closer to any particular modern big cat than to any other. Contemporaneous with Smilodon, there were true lions in America, now extinct, bigger than Smilodon, bigger than African lions.

    How did Smilodon use those formidable fangs? It’s notable that among modern carnivores, the cat family (Felidae) runs to long canine teeth more than the dog family (Canidae), despite the name ‘canine’ for the teeth. A plausible reason is as follows. Canids are mostly pursuit-hunters. They run their prey down to exhaustion. When they finally catch up with it, the poor spent creature is in no state to escape. Killing it is not a problem. Just start eating! Felids, on the other hand, tend to be stalkers and ambushers. Their prey, when they first pounce upon it, is fresh and in a strong position to escape. Either a swift killing stab or an inescapable grip is desirable, and long penetrating canines answer both needs. Among living cats, the clouded leopard sports the nearest approach to the sabres of Smilodon. Clouded leopards spend much of their time in trees and drop on their prey. Long, sharp daggers would be especially suited to subduing an animal taken by surprise from above, not ‘heated in the chase’ and in full possession of its powers.

    Turning to other parts of the skull of Smilodon, we notice that the eye sockets point forward, indicating binocular vision, useful for pouncing on prey and no good for seeing danger creeping up from behind. Sabretooths had no need to watch their back. Herbivorous animals, whose ancestors became ancestors by virtue of noticing would-be killers, tend to have lookout eyes pointing sideways, giving almost 360° vision, calculated to spot a predator stalking from any direction.

    Clouded leopard

    So now, suppose you are presented with the skull below. It’s obviously very different. The eyes look sideways, as if scanning all around for danger while not being especially concerned with what is ahead. Probably an animal with a need to fear predation, then. The incisor teeth at the front look well suited to cropping grass. Most noticeable are the back teeth. They are broad grinders rather than sharp slicers, and they meet their opposite numbers in a precise fit when the jaws close. Their whole shape with its articulation is well suited to grinding plant food into very small pieces, again confirming the suspicion that this animal’s genes survived in a world of grass or other plant food. And the lower jaw, unlike that of Smilodon, moves sideways as well as up and down, a good milling action. This fossil is Pliohippus, an extinct horse that lived in the Pliocene, probably in mortal fear of Smilodon.

    Pliohippus

    The contrast between the skulls of the carnivorous sabretooth and the herbivorous horse is stark and clear. There was an animal called Tiarajudens, one of those we used to call a mammal-like reptile (nowadays we’d call it an early mammal), which flourished perhaps 280 million years ago, before the great age of dinosaurs. It had impressive sabretooth canines, much like Smilodon, which indicate a carnivorous diet similar to that of the formidable cat. But the back teeth suggest that, along with other animals to whom it was related, it was in fact a herbivore. So, we have a mismatch. Why would a creature with grinding back teeth have canine teeth like Smilodon? Perhaps Tiarajudens was a herbivore equipped with daggers for defence against predators. Or perhaps, like modern walruses, for fighting against rivals of its own species, as elephants use their gigantic tusks (elephant tusks are enlarged incisor teeth, not canines as in walruses).

    Walrus

    Walruses have been seen using their (upper canine) tusks to lever themselves out of the water and to make holes in the ice. Anyway, Tiarajudens stands as a cautionary warning against over-hasty reverse engineering, looking at only one thing, in this case the canine teeth.

    Hedgehog

    Some mammals such as shrews and small bats eat insects. Dolphins eat fish. Though technically carnivorous, the dental demands of these diets are different. Insectivorous teeth are neither grinders nor cutters but piercers. They tend to have sharp points, well suited to piercing the external skeletons of insects. If SOF’s unknown specimen sported piercing teeth like those of this hedgehog, she’d suspect that its ancestors survived on a diet of insects and other arthropods. And that is correct, but they like earthworms too. Ants and termites are a special case (see below).

    Common dolphin

    Gavial

    And now here’s the skull of a dolphin (top), and a gavial (bottom), to show typical fish-eating teeth and jaws. These two fish-eaters, a mammal and a crocodilian, have independently evolved pretty much the same dentition and jaw shape, an example of convergent evolution (which is the topic of Chapter 5). What’s the reverse-engineering explanation for this convergent resemblance? Fish-eaters, unlike, say, lions, are usually much larger than their prey. They don’t need to grind or cut or pierce their prey. Their prey is small enough to swallow whole. Long rows of small, pointed teeth are well equipped to grasp a slippery, soft fish and prevent it from escaping. And the slender jaws can snap shut on the fish without expelling a rush of water that might propel it out of harm’s way.

    Ichthyosaur

    If you were lucky enough to stumble upon a fossil like the above, you could apply the lesson of the previous paragraph: fish-eater. It’s an ichthyosaur such as we met in Chapter 3, a contemporary and relative of dinosaurs, member of a large group that went extinct somewhat earlier than the last of the dinosaurs. Both reverse engineering, and comparison with the dolphin and gavial pictures, speak to us loud and clear: its ancestors ate fish.

    Killer whales (Orca) and sperm whales can be thought of as giant dolphins. They too eat prey smaller than themselves, and they too have long rows of dolphin-like teeth but hugely enlarged. Sperm whales have them only in the lower jaw (very occasionally in the upper jaw, and we may take this as a vestigial relic). Killer whales have them in both jaws. All other large whales, the so-called baleen whales, are filter feeders, sieving krill (crustaceans). They have no teeth at all (though, revealingly, their embryos have them and never use them). Their huge baleen filters are made of keratin, like hooves, fingernails, and rhinoceros horn. The reverse engineer would have no trouble in diagnosing a baleen whale as a trawler. Actually, they are better than trawlers, for they will target a huge aggregation of krill, and gulp it in with copious quantities of sea water, which is then forced out through the curtain of baleen, trapping the krill.

    Ants and termites are colossally numerous. A specialist capable of penetrating an ant nest’s formidable defences can hoover up a bonanza of food denied to an ordinary insectivore like a hedgehog. And their dentition is correspondingly specialised. For this purpose, by the way, termites are honorary ants. Mammals who preferentially eat ants and/or termites are all called anteaters. There’s a group of three South American mammals whose name in English is ‘anteater’: the Giant Anteater, the Lesser Anteater, and the Silky Anteater.

    Giant Anteater

    Tamandua

    Giant Anteater

    Pangolin

    Armadillo

    Echidna

    The Giant Anteater’s scientific name, Myrmecophaga, is simply Greek for ‘anteater’. You will already have concluded that, since other mammals also specialise in eating ants, ‘Anteater’ is not a great name for a taxonomic group. I’ll use a capital letter for the three South American ‘Anteaters’ and a lower-case letter for other mammals who eat ants (or termites).

    The South American Anteaters push the anteating habit to its extreme. The skulls of two of them, Tamandua and the Giant Anteater Myrmecophaga, are pictured at the top of the page opposite. Notice the extreme prolongation of the snout and the total absence of teeth. You’d hardly recognise the Giant Anteater’s skull as a skull at all. All anteaters show the same features, if to a lesser extent. The pangolin has no teeth and a moderately long snout. Armadillos have a longer snout and rather small teeth. The aardvark or antbear of Africa has back teeth, but no teeth at all along most of its long snout. Myrmecobius, the numbat, marsupial anteater of Australia, has a long, pointy head. It has teeth but doesn’t use them for eating except in infancy. Adults seem to use them only for gripping and preparing nest material.

    Tachyglossus, the spiny anteater or echidna of Australia and New Guinea, is as distant as you can get from all the above while still being a mammal. It’s an egg-laying mammal like the platypus, a leftover from the ‘mammal-like reptiles’ of the ancient supercontinent of Gondwana. But unlike the platypus, with which it shares deep palimpsest features, it does, as its English name suggests, eat ants and termites. And its rather weird-looking skull does indeed have a long, slender snout and no teeth. Let’s not get carried away, however. A slightly longer snout is possessed by the related echidna genus, Zaglossus, and Zaglossus eats almost nothing but earthworms. Evidently, we must be careful before we jump too precipitately to the conclusion that ‘long snout’ necessarily means anteater. Anteating is not the only habit capable of writing ‘long snout’ in the palimpsest.

    What else might SOF use to diagnose an animal as an anteater? Myrmecophaga, the Giant Anteater of South America, whose hugely elongated skull we have already seen, has a giant-sized sticky tongue, which it can protrude to a length of 60 cm, having deployed its formidable claws to break into an ant or termite nest. Huge numbers of the insects stick to the tongue and are drawn in before the tongue shoots out again. Despite its great length, the tongue flicks out and in again at high speed, more than twice per second. Though none can quite match Myrmecophaga, creditably long, sticky tongues are also found, convergently evolved, in aardvarks and the unrelated aardwolves, who, unlike other members of the hyaena family, specialise in eating termites. Pangolins, too, have convergently evolved a long sticky tongue. That of the giant pangolin can be 40 cm long and is attached way back near the pelvis instead of to the hyoid bone in the throat, like ours. A pangolin can extend its tongue deep inside an ants’ nest, skilfully steering through the labyrinth of tunnels, turning left, turning right, leaving no subterranean avenue unexplored. Tamanduas also have a long sticky tongue but, in this case, their evolution was not independent of Myrmecophaga. They surely inherited the long tongue from their shared ancestor, also an anteater. The egg-laying spiny anteater too has a long, sticky tongue, and this time it really is convergent. As is that of the numbat, the marsupial anteater.

    There are also physiological resemblances among anteating mammals, notably a low metabolic rate and low body temperature, convergently evolved enough times to impress our hypothetical SOF. However, a low metabolic rate is not exclusively diagnostic of an ant-eating habit. Sloths, befitting their name, also have a low metabolic rate. So do koalas, whom you could regard as a kind of marsupial equivalent of sloths. Both live up trees, eating relatively un-nutritious leaves, and both are slow moving, you might even say lethargic. The convergence doesn’t extend to both ends of the alimentary canal, however. Koalas defecate more than a hundred times per day, while sloths hold the record for the other extreme. They defecate about once per week, maybe because they laboriously climb down from the tree in order to do so.

    Some of my reverse-engineering conjectures could be wrong. They are only provisional, to illustrate the point that the teeth of an animal, if properly read, will tell a story. In many cases, a story of ancient grassland prairies or leafy forests. Or, if the teeth resemble those of Smilodon or the clouded leopard, they speak to us of ambush and stalking. No doubt, if we could read them, every tooth we find could plunge us ever deeper into more specific, detailed stories. Teeth are enamelled archives of ancient history.

    Teeth constitute the first food processor in the conveyor belt of digestion. The revealing differences between carnivores and herbivores continue on into the gut. Weight for weight, plants are not so nutritious as meat, so cows, for example, need to graze pretty continuously. Food passes through them like an ever-rolling stream, and they defecate some 40 or 50 kilograms per day. Plant stuff being so different from their own bodies, herbivores need help from chemical specialists to digest it. Those specialist chemists, some of whom were honing their skills perhaps a billion years before animals came on the scene at all, include bacteria, archaea (formerly classified as bacteria but actually far separated from them), fungi, and (what we used to call) protozoa. Ruminants such as cows and antelopes do their fermentation in a different way from horses and rabbits, and at different ends of the gut, but all rely on help from micro-organisms. As already mentioned above, herbivores have longer guts than carnivores, and their guts are complicated by elaborate blind alleys and fermentation chambers, specially fashioned to house symbiotic micro-organisms. Ruminants have the added complication of sending the food back for reprocessing by the teeth for a second time after it’s been swallowed – chewing the cud.

    Herbivore gutCarnivore gut

    There is one bird, the hoatzin of South America, which eats nothing but leaves, the only bird to do so. And – an example of convergent evolution, the process we’ll meet in the next chapter – the hoatzin resembles ruminant mammals in having lots of little gut chambers in which are housed bacteria wielding the necessary chemical expertise to digest leaves. Incidentally, there’s a widely believed myth that the hoatzin is unique among birds in retaining ancient claws in the front of the wing, like the Jurassic ‘intermediate’ fossil Archaeopteryx. It’s true that hoatzin chicks have these primitive claws, but so do the chicks of many other birds, as David Haig pointed out to me. He went on to suggest that this mythic meme is popular among both biologists and creationists, who respectively want Archaeopteryx to be, and not to be, an ‘evolutionary intermediate’. No animal exists to be primitive for the sake of it, nor to serve as an evolutionary intermediate. The claws are useful to the chicks, who used them for clambering back into a tree when they fall.

    Tiktaalik

    By the same token animals don’t exist for the sake of ‘moving on to the next stage in evolution’. The Devonian fossil Tiktaalik is widely touted as a transition between fish and land vertebrates. So it may be, but being transitional is not a way to earn a living. Tiktaalik was a living, breathing, feeding, reproducing creature, which should be reverse-engineered as such – not as a half-way stage on the way to something better.

    What of our own teeth and jaws, our own guts, and those of our near relatives? What tales of long-gone ancestral meals do they tell? Comparison of our Homo sapiens lineage with extinct hominins such as Paranthropus (Australopithecusrobustus and boisei shows a marked trend over time towards shrinkage of both jaws and teeth in our sapiens lineage. The ribcage of those robust old hominins could accommodate a large vegetarian gut. They were evidently less carnivorous than we are, equipped with large plant-milling teeth, strong grinding jaws, and correspondingly powerful jaw muscles. Even though the muscles themselves have not fossilised, their bony attachments, sometimes culminating in a vertical (‘sagittal’) crest like a gorilla’s to increase their purchase, speak to us eloquently of generations of plant roughage. Our own jaw muscles don’t reach so high up the side of our head and we have no bony crest.

    The primatologist Richard Wrangham has promoted the intriguing hypothesis that the invention of cooking was the key to human uniqueness and human success. He makes a persuasive case that our reduced jaws, teeth, and guts are ill-suited to either a carnivorous or a herbivorous diet unless a substantial proportion of our food is cooked. Cooking enables us to get energy from foods more quickly and efficiently. For Wrangham it was cooking that led to the dramatic evolutionary enlargement of the human brain, the brain being by far the most energy-hungry of our organs. If he’s right, it’s a nice example of how a cultural change (the taming of fire) can have evolutionary consequences (the shrinking of jaws and teeth).

    Birds have no teeth, nor bony jaws. Surprising as it sounds, they may have lost them to save weight – an important concern in a flying animal – replacing them with light, horny beaks. The word ‘mandible’ is used for both parts of the beak – the upper mandible and the lower mandible. Beaks can tear but they can’t chew. Birds do the equivalent of chewing with the gizzard, a muscular chamber of the gut, often containing hard gastroliths – stones or grains of sand that the bird swallows to help with the milling process. Ostriches swallow appropriately large stones, up to 10 cm. Being flightless, they don’t have to worry so much about weight. Even larger stones found with fossil birds such as the giant moas of New Zealand are identified as gastroliths by their polished surfaces – polished by the grinding action in the gizzard.

    1. Macaw

    2. Crossbill

    3. Spoonbill

    4. Eagle

    5. Skimmer

    6. Hummingbird

    Beaks vary greatly, and speak to us eloquently of different ways of procuring food. Their variety has been compared with the set of pliers in a mechanic’s toolkit. Pointed beaks delicately select small targets such as single seeds or grubs. Parrot beaks are robust nutcrackers or large seed crushers, and the curved upper mandible with its pointed tip is used as something like a hand. Caged parrots can often be seen climbing on the bars, levering themselves up with the beak as if it were a hand. In the wild they use the same trick in trees. Hummingbird beaks are long tubes for imbibing nectar. Imperious, hooked eagle beaks rip flesh from carcases. Woodpecker beaks hammer like high-powered pneumatic drills, pounding rhythmically into trees in search of larvae. They have specially reinforced skulls to cope with the shock of hammering. Flamingo beaks are upside-down filters for small crustaceans, the bird world’s nearest approach to the krill-sieving baleen of whales. Oystercatchers use their long, pointed beaks to chisel into mussels and other shellfish. Curlews use theirs to probe mud for worms and shellfish. Spoonbills have flat paddle-like bills that they sweep from side to side, at the same time using their feet to stir up mud and expose small animals lurking in it. Skimmer beaks are even more specialised. The lower mandible is longer than the upper. The bird flies close to the water with the mouth open and the tip of the lower mandible skimming the surface. When it hits a fish, the beak snaps shut, trapping the fish. Pelicans have a voluminous pouch of skin under the beak, which nets fish.

    Nestling birds who are fed by their parents don’t need beaks to do anything other than gape. Their beaks are grotesquely wide, with brightly coloured linings – advertising surfaces garishly designed to out-compete their siblings for parental largesse. The huge difference from adult beaks of the same species reminds us that juvenile needs can be very different from adult ones, a principle writ large by caterpillars and butterflies, tadpoles and frogs, and many other examples where larval forms occupy a completely different niche from the adults they become.

    GALAPAGOS FINCHES

    Large ground finch

    Medium ground finch

    Small tree finch

    Green warbler finch

    Crossbills sport a weird crossover of upper and lower jaw beaks, which is helpful in prying apart the scales of pinecones. Insectivorous birds have differently shaped beaks from seed-eaters. And specialists on seeds of different sizes have correspondingly different beaks, the differences making total sense from a reverse-engineering point of view. The evolution of such differences is the subject of a beautiful and still proceeding long-term study of ‘Darwin’s Finches’ on one of the smaller Galapagos Islands by Peter and Rosemary Grant, and their collaborators.

    Galapagos is matched as a Pacific island showcase of Darwinian evolution by the archipelago of Hawaii. Both island chains are volcanic and very young by geological standards. The biology of Hawaii differs in being more contaminated by humans, and by the other invasions for which humans are to blame. The evolutionary divergence of Hawaiian honeycreepers (below) shows a variety of beaks that outdoes even that of the Galapagos finches (above). There are eighteen surviving species (more than twice that number have gone extinct), all apparently descended from a single species of Asian finch, probably looking not unlike a Galapagos finch. The range of bill types that has evolved in such a short time is astonishing.

    Some have retained the seed-eating habits of the ancestor, and still look finch-like with stout, stubby beaks. Others have modified their beaks for nectar-sipping, like African sunbirds rather than like New World hummingbirds. Yet others, with long downward-curving beaks, are probers for insects. Of these, the so-called ‘I’iwi’ (below) has a sharp, stout, stabbing lower mandible, which hammers into bark. Then the long curved upper mandible, which has been held out of the way during the hammering, comes into action to probe insects out of the cracks. The Maui parrotbill uses its powerful callipers to crush twigs and rip off bark in search of insects.

    HAWAIIAN HONEYCREEPERS

    Laysan finch

    Kakawahie (extinct)

    ‘Akiapola’au

    ‘I’iwi

    Heron beaks are long fishing spears, stabbing down into the water with sudden precision. The African black heron uses its wings to shade its field of view, which would otherwise be troubled by reflections from the rippling water surface. It dramatically sweeps its black wings across its body, laughably recalling a black-cloaked villain in Victorian melodrama. A separate problem for anyone spearfishing from above is refraction at the water surface – the illusion that makes oars look bent. There is some evidence that herons and kingfishers adjust their aim to compensate. The archer fishes of Southeast Asia face the same problem in reverse. They lurk under water and shoot insects sitting on tree branches above the surface, by squirting a sudden jet of water straight at the target. That’s remarkable enough in itself. Even more so, they seem to compensate for refraction, like herons but in the other direction.

    Archer fish

    Reverse engineering, then, is one method by which we can read the body of an animal. Another method is to compare it with other animals, both related and unrelated. We used this method to some extent in this chapter. When the genetic books of unrelated animals spell the same message about their environment and way of life, we call it convergence. Convergent resemblances can be spectacular, as we’ll see in the next chapter.

    5 Common Problem, Common Solution

    This book’s main thesis is that every animal is a written description of ancestral worlds. It rests upon the hidden assumption – well, not so very hidden – that natural selection is an immensely powerful force, carving the gene pool into shape, deep down among the smallest details. As we saw in Chapter 2, among the most convincing evidence for the power of natural selection is the perfection of camouflage, the consummate detail with which some animals resemble their (ancestral) environment, or resemble an object in that environment. Equally impressive is the detailed resemblance of an animal to another, unrelated animal, because both have converged on the same way of life. Matt Ridley’s How Innovation Works documents how our greatest human innovations have been hit upon many times independently by inventors in different countries, working in ignorance of each other’s efforts. Just the same is true of evolution by natural selection. This chapter is about convergent evolution as an eloquent witness to the power of natural selection.

    Despite appearances, the animal above opposite is not a dog. It is an unrelated marsupial, Thylacinus, the Tasmanian wolf (often called Tasmanian tiger, for no better reason than the stripes). In (what hindsight can now see as) a heinous crime against nature, the Tasmanian government in 1888 put a bounty on thylacine heads. The last one to be seen in the wild was infamously shot in 1930 by someone called Wilf Batty. He must have known it was almost extinct, though he couldn’t have known his victim was the last one. I suppose in 1930 people still didn’t care about such things, a poignant example of what I have called the shifting moral Zeitgeist. A captive specimen called Benjamin survived in Hobart Zoo until 1936. Thylacinus is one of the best-known examples of convergence. It looked like a dog because it had the same way of life as a dog. Its skull especially is so like a dog’s that it is a favourite trick question in zoology student examinations. Such a favourite, indeed, that in my year at Oxford they gave us a real dog skull as a double bluff, assuming that we’d automatically plump for Thylacinus.

    Thylacine

    Rhinoceros beetle

    You’d never mistake this for a rhinoceros. But if you watched two rhinoceros beetles fighting, and then two rhinoceroses, you’d realise that convergent resemblances can vault over many orders of magnitude of body size. A fight is a fight is a fight, and a horn is a handy weapon at any size. The same goes for stag beetles and stags, with a somewhat dramatic embellishment. Stag beetles, but not stags, can lift their rivals high in the air on the prongs of their ‘antlers’.

    PacaChevrotain

    On the left is a paca, a rodent from the rainforests of South and Central America. To its right is a chevrotain or ‘mouse deer’, an even-toed ungulate that lives in Old World forests. They look like each other convergently because they have similar ways of life. In Africa, the niche is filled by a small ungulate, in South America, by a large rodent.

    Armadillos are South American mammals, armoured against predators. When threatened, they roll up into a ball. The picture to the left shows the three-banded armadillo, which rolls up with especially compact elegance. In one of its illustrative quotations, the Oxford English Dictionary startlingly records that ‘Formerly the armadillo was used in medicine, being swallowed as a pill in its rolled-up state.’ Quite a stretch! Until you realise that ‘armadillo’ in this 1859 quotation referred not to the mammal but to a convergent crustacean, a woodlouse, whose Latin name Armadillidium means ‘little armadillo’. Armadillo itself is a Spanish word, a diminutive of armado or ‘armed’. So Armadillidium is a diminutive of a diminutive, a double diminutive. The commonality of name speaks to the power of convergent evolution. As befits its vernacular name of ‘pill bug’, in its rolled-up state you could indeed swallow a woodlouse whole, although as to its alleged medicinal value, I shall not comment. The mammalian armadillo and the crustacean Armadillidium have converged in their evolution, independently hitting on the same protective habit, albeit at very different sizes, rolling themselves into a ball.

    The Latin language has the virtue of condensing into one word what might take three in a language such as English. Latin even has a specialised verb, glomero, meaning ‘I roll into a ball’ (from which we get English words like conglomerate and agglomerate). And Glomeris is the scientific name of yet another animal that rolls itself into a ball, and is also called ‘pill’ in vernacular English. It is not a crustacean but a millipede, the ‘pill millipede’, a member of the order Glomerida. As if that wasn’t enough, two different orders of millipede have independently converged on the roll-up pill body. In addition to the order Glomerida, members of the order Sphaerotheriida (Greek ‘spherical beast’) look just like Glomeris and indeed like Armadillidium, except that they are bigger.

    Pill woodlousePill millipede

    Pill woodlouse (above left) and pill millipede (above right) provide what may be my favourite example – in a strong field – of convergent evolution. They are almost indistinguishable when you see them crawling along, or when they roll into a ball. But the one is a crustacean, related to shrimps and crabs, while the other is a myriapod, related to centipedes. To make sure which is which, I have to turn them over. The crustacean has only one pair of legs per segment, making seven pairs in all. The millipede has many more legs, two pairs per segment. These two deeply different ‘pill’ animals look extremely alike in their surface palimpsest layers because they make their living in the same kind of way and in the same kind of place. Starting from widely separated ancestors they converged, in evolutionary time, on very similar end points.

    Giant isopod

    The deep palimpsest layers show that one is unmistakeably an isopod crustacean, the other a myriapod. Isopods are an important group of crustaceans, and they include members who grow to alarmingly large size on the sea bottom. We shall refer to them again in the next chapter, which goes to town on crustaceans.

    Latin isn’t the only language to impress with its parsimony. The Malay noun pengguling means ‘one who rolls up’ and from it we get the name pangolin. We met the pangolin in the previous chapter. You might mistake it for a large, animated fir cone. It is not closely related to any other mammals but is out in its own order, Pholidota. That name comes from a Greek word meaning ‘covered with scales’, and an alternative English name for pangolin is ‘scaly anteater’. The scales are made of keratin, like hooves and fingernails. They aren’t as hard as the bony armour plates of armadillos.

    However, when it comes to glomerising, pangolins perhaps outdo armadillos, pill woodlice, and pill millipedes. According to a report by a biologist on the island of Siberut in Indonesia, a pangolin ran away from him to the top of a steep slope, then formed itself into a ball and rolled down the slope at a speed of about 3 metres per second, twice as fast as a pangolin can run. The witness of this event interpreted the rolling down the hill as a normal response to predation. I reluctantly wonder if it might have been accidental.

    There seems to be no doubt as to the effectiveness of rolling up as protection. Lions engage in futile endeavours to penetrate a pangolin’s defence. The pangolin’s enviable insouciance makes one wonder why other hunted animals don’t adopt the same strategy – the tortoise or armadillo strategy – instead of frantically fleeing. I suppose armour is expensive to make, but then so are long, well-muscled, fast-running legs. And it’s not a good argument – though possibly true – that if all antelopes, say, were to jettison speed for armour-plated roll-ups, lions on their side of the evolutionary arms race would come up with a counter-strategy. What might be a better argument is that the first individual antelopes to essay rudimentary, and still inadequate, armour would suffer compared with unencumbered rival antelopes disappearing in a cloud of dust.

    Lion thwarted by pangolin

    Two of the best-known examples of convergent evolution, too familiar to need detailed illustration yet again, are flight and eyes. The laws of physics allow the possibility of using energy to stay aloft for indefinite periods, and the wing has been independently and convergently invented five times: by insects, pterosaurs, birds, bats, and … human technology.

    Eyes have been independently evolved many dozens of times, to nine basic designs. The convergent similarity between the camera, the vertebrate eye, and the cephalopod eye has become almost legendary. Here I’ll just mention that the most revealing difference – the vertebrate retina but not the mollusc one being wired up backwards – is a difference at a deep palimpsest level. This is another way of saying there’s a fundamental difference in their embryology. The vertebrate eye develops mostly as an outgrowth of the brain, while the cephalopod eye develops as an invagination from the outside. That difference lies deep down among the oldest palimpsest layers.

    A less familiar example of convergence, compound eyes, have also evolved independently several times. Some bivalve molluscs have a form of compound eye, as do some tube-dwelling annelid worms. These are convergent on each other and on the more highly developed compound eyes of crustaceans, insects, trilobites, and other arthropods. Camera eyes have one lens, which focuses an upside-down image on a retina. The image of a compound eye, if you can call it an image, is the right way up. Think hunting dragonfly, with its pair of large hemispheres, each a cluster of tubes radiating outwards in different directions. Whichever tube sees the target, that’s the direction to fly in order to catch it.

    A familiar sight throughout both North and South America is the ‘turkey vulture’. It looks like a vulture, behaves like a vulture, lives the life of a vulture, feeding on carrion that it finds, like a vulture, with a sense of smell keener than is typical among birds. But it is not a vulture. Or rather, it has converged on vulturehood independently of true vultures. But wait, who is to say that Old World vultures are any more ‘true’ than New World turkey vultures? Americans might see the priority differently. Let us call both of them vultures, in enthusiastic recognition of convergent evolution and its impressive power to mislead.

    We could settle much the same argument about which are the ‘true’ porcupines. Old World and New World porcupines are both rodents. But within the very large order of rodents, they are not particularly closely related, and they evolved their spiny defences independently. The two pictures show a leopard about to suffer the same punishment from an Old World porcupine as the dog has endured from a New World porcupine.

    Contrary to legend, no porcupine shoots its quills. But they do have a quick-release mechanism so that a predator injudicious enough to molest a porcupine comes away with a face full of quills. New World quills prolong the agony by means of backward-facing barbs, which make them difficult to remove. This detail is not shared by the otherwise convergent Old World porcupines but it is convergent, at a much smaller scale, on the barbs of bee stings (American stingers).

    Dog after approaching New World porcupine

    Leopard approaching Old World porcupine

    The sting of a bee, unlike a porcupine quill, is double. There are two barbed blades rubbing against each other with the venom running between them. The two move alternately against each other, sawing their way into the victim. Both are serrated with backward-pointing barbs like those on a New World porcupine quill. The sting is a modified ovipositor, a tube for egg-laying. Porcupine quills are modified hairs. Bees are not the only insects whose ovipositors are serrated. In cicadas (which don’t sting), the serrations, and the bee-like alternate sawing action of the two blades, serve to dig the ovipositor (egg-laying tube) into (for example) a tree, where the eggs are laid.

    The sting of a bee, derived from the ovipositor and therefore possessed only by females, is a hypodermic syringe for injecting venom. The hypodermic venom injector has evolved convergently in eleven different animal groups by my count (probably more than once independently in some groups): in insects, scorpions, snakes, lizards, spiders, centipedes, stingrays, stonefish, cone shells, and the hind-leg claw of the male duckbilled platypus. The stinging cells, ‘cnidoblasts’, of jellyfish are miniature harpoons that shoot out on the ends of threads, and inject venom. Among plants, stinging nettles have miniature hypodermic syringes.

    The short spikes of hedgehogs are like the long quills of porcupines in being modified hairs. And these too have arisen independently at least three times. There are spiky tenrecs in Madagascar, which look remarkably like hedgehogs although they are not members of the same Order as hedgehogs. They are Afrotheres, related to elephants, aardvarks and dugongs. A third convergence is provided by the spiny anteaters of Australia and New Guinea. Egg-layers, they are as distant from hedgehogs and tenrecs as it is possible to be while still being mammals. They too are covered with spikes, again modified hairs.

    We have seen that porcupine quills are a nice example of convergent evolution, independently arisen within the rodents. So-called flying squirrels also arose twice independently in different families of rodents, the true squirrels, and the so-called scaly-tails or anomalures. We know they evolved their gliding habit independently of each other because the closest relatives of both, within the rodents, are not gliders. It’s the same way we know New World and Old World porcupines are convergent, again within the large order of rodents.

    Not surprisingly, the gliding skill has evolved convergently in a number of vertebrates. The picture shows four mammal examples, including the two rodents just mentioned. The colugo of the Southeast Asian forests is sometimes called the flying lemur, but it isn’t a lemur (all true lemurs come from Madagascar, though that’s not what makes the colugo a non-lemur) and it doesn’t really fly, although it is perhaps a more accomplished glider than the others in the picture. The sugar glider, although it looks extremely like a flying squirrel, is actually a marsupial from Australasia, one of several ‘flying phalangers’. Despite the startlingly close resemblance between sugar glider and flying squirrel, we know that one is a marsupial and the other a rodent, because of deeper layers of palimpsest. For example, the female phalanger has a pouch, the squirrel a placenta.

    1. Colugo

    2. Flying squirrel

    3. Marsupial sugar glider

    4. Anomalure
    (Not to scale)

    The Australian marsupial fauna provides many other examples of convergent evolution, of which perhaps the most famous is the extinct thylacine or Tasmanian wolf, already mentioned. The picture opposite shows a selection of comparisons between Australian marsupials and their placental equivalents in the rest of the world. These include a pair of anteaters and a pair of ‘mice’. The marsupial ‘mole’ of Australia resembles not only the familiar Eurasian mole but also the ‘golden mole’ of South Africa. Also very mole-like, among the rodents there are the zokors of Asia.

    All these ‘moles’ independently adopted the same burrowing way of life, all have adapted their hands into powerful spades and all four look pretty alike. So convincing is the convergence that the golden moles were once classified as moles until it was realised that they belong to a radically different branch of (African) mammals, the Afrotheria, together with elephants, aardvarks, and manatees. Eurasian moles, by contrast, are Laurasiatheres, related to hedgehogs, horses, dogs, bats, and whales. Rodent zokors are related to the blind mole rats, who are thoroughly committed to subterranean life and look like moles, but, as you might expect from a rodent, they dig with their teeth rather than their hands. The family tree, overleaf, showing the affinities of four ‘moles’ is quite surprising.

    PLACENTAL MAMMALSMARSUPIALS
    DogThylacine
    European moleMarsupial mole
    MouseMarsupial mouse
    Flying squirrelSugar glider
    TamanduaNumbat

    Independently evolved ‘moles’

    Impressive as are the convergences of Australian marsupials with a whole variety of placental mammals, we mustn’t overlook the exceptions. Kangaroos don’t look very like the African antelopes with whom they share a way of life. They easily might have converged. But they didn’t. They diverged, mostly because they early committed themselves to a different gait for travelling fast. I suppose there was a time when the ancestors of either could have adopted the hopping gait of a kangaroo or the galloping gait of an antelope. Both gaits are fast and efficient, a least after many generations of evolutionary perfecting. But once an evolutionary lineage starts down a path like hopping or galloping, it is difficult to change. ‘Commitment’ really is a thing, in evolution. Once a lineage of mammals had advanced some way along the hopping gait path, any mutant that tried to gallop would have been out-competed. Perhaps its front legs were already too short. Conversely, in a lineage that was somewhat committed to galloping, a mutant that tried to hop would clumsily fail. There’s no rule that says placental mammals couldn’t have taken the kangaroo route. Indeed, there are rodents whose ancestors travelled that path very successfully. A colleague teaching zoology at the University of Nairobi said in a lecture that there were no kangaroos in Africa. This was denied by a student who excitedly claimed to have seen a small one. What he had seen was a springhaas or springhare, a rodent that looks and hops just like a wallaby, complete with foreshortened arms and enlarged, counterbalancing tail.

    Springhare

    If you could witness an ichthyosaur sporting in Mesozoic waves, you’d be irresistibly reminded of dolphins. A classic case of convergent evolution. On the other hand, your time machine might also present to you a plesiosaur. Far from looking like a dolphin or an ichthyosaur, it doesn’t resemble anything else you ever saw. Ichthyosaurs and plesiosaurs are both descended from land reptiles that went back to the sea. But they started out along, and then became ‘committed to’, alternative paths towards efficient swimming ‘gaits’. Ichthyosaurs rediscovered the ancient side-to-side tailbeat of their fish ancestors. They probably passed through a phase resembling the serpentine wavy motion of Galapagos marine iguanas. Plesiosaurs, instead, relied like sea turtles on their limbs, all four of which became huge flippers. Once committed, both ichthyosaurs and plesiosaurs became increasingly dedicated to their respective evolutionary pathways. And ended up looking extremely different.

    Convergently evolved animals are not necessarily contemporaries. In North America in the Eocene period there were mole-like subterranean animals, the Epoicotheriids, with mole-like digging hands, not closely related to any living burrowers but belonging to the pangolin family, Pholidota. I’d be surprised if there weren’t dinosaur ‘moles’, but I must confess I don’t know of any. There were smallish dinosaurs such as Oryctodromeus who dug burrows, but I don’t know of any who could be called convergent on moles.

    Then there were the so-called ‘false sabretooths’. We’ve already met Smilodon, the sabretooth ‘tiger’, that large, robust and doubtless frightening cat, which went extinct along with most of the American megafauna at the end of the Pleistocene era, only about 10,000 years ago, when man discovered America. What is less well known is that Smilodon was not the only member of the order Carnivora to evolve such terrifying fangs. Thirty million years earlier, spanning the Oligocene epoch, lived a group called Nimravids. The Nimravids were not cats but an older group within the Carnivora, and they independently evolved stabbing canine teeth just like those of Smilodon. Nimravids are sometimes called false sabretooths. False? Tell that to the early horse Mesohippus and the other terrified victims of those giant daggers. Those ‘false’ sabretooths were living, breathing, snarling, pouncing, probably strong-smelling carnivores, to whose victims they would have seemed anything but false. Another extinct group of ‘false sabretooths’, the Barbourofelids, lived in the Miocene epoch, later than the Nimravids but earlier than Smilodon, and convergently occupying the same niche.

    ‘False’ sabretooth – Nimravid

    Given that the Carnivora have endowed us with three independently evolved sabretooths at different times in geological history, we might even feel a little let down if there were no marsupial sabretooth. And sure enough, South America rose to the occasion.

    Marsupial sabretooth – Thylacosmilus

    The marsupial Thylacosmilus looks to have been nearly as formidable as Smilodon and the other convergent sabretooths of the Carnivora. On the other hand, it was a bit smaller.

    Convergences between animals and human technology can be especially impressive, as we saw in the case of the camera and the vertebrate or octopus eye. Though the discovery was originally thought an outrageous hoax, it is now well accepted that bats hunting by night have their own version – ‘echolocation’ – of what submariners have converged upon under the name ‘sonar’ – using echoes of their own sounds to detect targets. Bats are divided into two main groups, the small Microchiroptera, and the large Megachiroptera (‘fruit bats’ and ‘flying foxes’). Microchiropteran bats ‘see’ with their ears. They have highly sophisticated echolocation, good enough to hunt fast-flying insects. The brain pieces together a detailed model of the world, including insect prey, by a highly sophisticated real-time analysis of the echoes of the bats’ own shrieks. When a bat is cruising, its cries just tick over. But when homing in on a moth, which is likely to be taking evasive action, the sounds come out as a rapid-fire stutter like a machine gun. Since each pulse gives the bat an updated picture of the world, machine-gun repetition enables it to cope with a moth’s high-speed twists and turns. The higher the pitch, the shorter the wavelength by definition. And only short wavelengths can resolve a detailed picture. That means ultrasound: too high, mostly way too high, for us to hear. Young people can hear the lower end of the bat’s frequency range. I nostalgically remember them from my youth as sounding like something between a click and a squeak. We can use instruments called bat detectors, which translate ultrasound into audible clicks.

    Slightly less well known is the fact that dolphins and other toothed whales (sperm whales, killer whales) do the same thing, also using ultrasound, and they are up there with bats in sophistication. A more rudimentary form of echolocation has also evolved in shrews, and in cave-nesting birds at least twice independently: in South American oilbirds and Asian cave swiftlets (of bird’s-nest soup fame). The birds don’t use ultrasound: their cries are low enough for us to hear. Some megachiropterans also use a less precise form of echolocation, but they generate their clicks with their wings rather than with the voice. This too must be seen as yet another convergent evolution of echolocation. One genus of Megachiroptera echolocates using the voice, like Microchiroptera but not so skillfully. Interestingly, molecular evidence indicates that one group of Microchiroptera, the Rhinolophids, are more closely related to Megachiroptera than they are to other Microchiroptera. This would seem to suggest that the Rhinolophids evolved their advanced sonar convergently with the other Microchiroptera. Either that or the majority of Megachiroptera lost it.

    Small bats and toothed whales are in a class of their own. Their sonar is of such high quality that ‘seeing with their ears’ scarcely exaggerates what they do. Echolocation using ultrasound provides them with a detailed picture of their world, which bears comparison with vision. We know this through experimental testing of bats’ ability to fly fast between thin wires without hitting them. I have even published the speculation (probably untestable, alas) that bats ‘hear in color’. I stubbornly maintain that it’s plausible, because the hues that we perceive are internally generated labels in the brain, whose attachment to particular wavelengths of light is arbitrary. When bat ancestors gave up on eyes, substituting echoes for light, the internal labels for hues would have gone begging, left hanging in the brain with nothing to do. What more natural than to commandeer them as labels for echoes of different quality? I suppose you might call it an early exploitation of what some humans know as ‘synaesthesia’.

    In one of modern philosophy’s most cited papers, Thomas Nagel didactically asked, ‘What is it like to be a bat?’ One of his points was that we cannot know. My suggestion is that it is perhaps not so very different from what it’s like to be us, or another visual animal like a swallow. Pursuing a point from Chapter 1, both swallows and bats build up an internal virtual reality model of their world. The fact that swallows use light, while bats use echoes, to update the model from moment to moment is less important than the nature and purpose of the internal model itself. This is likely to be similar in the two cases, because it is used for a similar purpose – navigation in real time between obstacles, and detection of fast-moving prey. Swallows and bats need a very similar internal model, a three-dimensional one, inhabited by moving insect targets. Both are champion insect hunters on the wing, swallows by day and then, at nightfall, the bats take over. If my speculation is right, the similarity may extend to the use of colors to label objects in the model, even in the case of bats ‘seeing with their ears’. Incidentally, each swallow eye has two foveas (regions of special acuity – our eyes have only one, which we use for reading etc.), probably one for distance and one for close vision. Instead of bifocal glasses they have bifocal retinas.

    The James Webb Telescope presents us with stunning images of distant nebulae, glowing clouds of red, blue and green. Color is used to represent wavelength of radiation. But the colours in the photographs are false. They use color to represent different wavelengths, but they actually lie in the invisible infrared part of the spectrum. And my point is that the brain’s convention for representing visible light of different wavelengths is just as arbitrary. One is tempted to feel dissatisfied by false colour images such as those from the James Webb Telescope: ‘But is that really what it looks like? Is the telescope telling the truth, or are we being fobbed off with false colours?’ The answer is that we are always being ‘fobbed off’ when we look at anything. If you must talk about false colours, everything you ever see – a rose, a sunset, your lover’s face – is rendered in the brain’s own ‘false’ colours. Those vivid or pastel hues are internal concoctions manufactured by the brain as coded labels for light of different wavelength. The truth lies in the actual wavelength of electromagnetic radiation. The perceived hue is a fiction, whether it is the false colour rendering of a James Webb photograph, or whether it is the labels that the brain generates to tag the wavelengths of light hitting the retina. My conjecture about bats ‘hearing in colour’ makes use of the same idea of internally perceived hues being arbitrary labels.

    Doctors use ultrasound to ‘look’ through the body wall of a pregnant woman and see a black-and-white moving image of her developing foetus. The computer uses the ultrasound echoes to piece together an image compatible with our eyes. There is anecdotal evidence that dolphins pay special attention to pregnant women swimming with them. It seems plausible that they are doing with their ears what doctors do with their instruments. If this is so, they could presumably also ‘see’ inside female dolphins and detect which ones are pregnant. Might this skill be useful to male dolphins choosing mates? No point inseminating a female who is already pregnant.

    Bats and dolphins evolved their echo-analysing skills independently of each other. In the family tree of mammals, both are enveloped by relatives who don’t do echolocation. A strong convergence, and another powerful demonstration of the power of natural selection. And now for a point that’s especially telling for the genetic book of the dead. There’s a type of protein called prestin, which is intimately involved in mammal hearing. It’s expressed in the cochlea, the snail-shaped hearing organ in the inner ear. As with all biological proteins, the exact sequence of amino acids in prestins is specified by DNA. And, also as is usual, the DNA sequence is not identical in different species. Now here’s the interesting point. If you construct a family tree of resemblance based on the genome as a whole, whales and bats are far apart, as you’d expect: their ancestors have been evolving independently of one another since way back in the age of dinosaurs. If, however, you ignore all genes except the prestin gene – if you construct a tree of resemblance based on prestin sequences alone – something remarkable emerges. Dolphins and small bats cluster together with each other. But small bats don’t cluster together with non-echolo-cating large bats, to whom they are much more closely related. And dolphins don’t cluster together with baleen whales, which, although related to them, don’t echolocate. This suggests that SOF could read the prestin gene of an unknown animal and infer whether it (more precisely its ancestors) lived and hunted in conditions where ultrasonic sonar would be useful: night, dark caves, or other places where eyes are useless, such as the murky water of the Irrawaddy river or the Amazon. I’d like to know whether the two echolocating bird species have bat-like prestins.

    This finding on bats and dolphins – the specific resemblance of their prestin genes – strikes me as a pattern for a whole field of future research on the genetic book of the dead. Another example concerns flight surfaces in mammals. Bats fly properly, and marsupial flying phalangers glide, using stretched flaps of skin that catch the air. There’s a specific complex of genes, shared by both bats and marsupial phalangers, which is involved in making the skin flaps. It will be interesting to know whether the same genes are shared by the other gliding mammals that we met earlier in this chapter, so-called flying lemurs and the two groups of rodents that independently evolved the gliding habit.

    It would be nice to look in the same kind of way at those animals who have returned from land to water – of which whales are only the most extreme example, along with dugongs and manatees. Do returnees to water have genes in common that are not shared by non-aquatic mammals? What other features do they share? Many aquatic mammals and birds have webbed feet. If our hypothetical SOF is presented with an unknown animal who has webbed feet, she can safely ‘read’ the feet as saying, ‘Water in the recent ancestral environment.’ But that’s obvious. Can we be systematic in our search for less obvious signals of water in the genetic book of the dead? How many other features are diagnostic of aquatic life? Are there some shared genes, such as we saw in the case of prestin for sonar, and skin flaps in bats and sugar gliders? There are probably lots of shared features buried deep in an aquatic animal’s physiology and genome. We have just to find them. We can get a sort of negative clue by looking at genes that were made inactive when terrestrial animals took to the water. Just as humans have a large number of smell genes inactivated (see here), whale genomes contain several inactivated genes, whose inactivation has been interpreted as beneficial when diving to great depths.

    We could proceed along the following lines. We borrow from medical science the technique known as GWAS (genome-wide association study). The idea of GWAS is lucidly and conversationally explained by Francis Collins, former Director of the Human Genome Project, as follows:

    What you do for a genome-wide association study is find a lot of people who have the disease, a lot of people who don’t, and who are otherwise well matched. And then, searching across the entire genome … you try to find a place where there is a consistent difference. And if you’re successful – and [you’ve] got to be really careful about the statistics here, so that you don’t jump on a lot of false positives – it allows you to zero in on a place in the genome that must be involved in disease risk without having to guess ahead of time what kind of gene you’re going to find.

    Substitute ‘lives in water’ for ‘disease’, and ‘species’ for ‘people’, and you have the procedure I am here advocating. Let’s call it ‘Interspecific GWAS’ or IGWAS.

    Gather a large number of mammals known to be aquatic. Match each one with a related mammal (the more closely related the better) who lives on land, preferably in dry conditions. We might start with the following list of matched pairs, and the list could be extended.

    Water voleVole
    Water shrewShrew
    DesmanMole
    PlatypusEchidna
    Water tenrecLand tenrec
    OtterBadger
    SealWolf
    YapokOpossum
    Polar bearBrown bear

    To do the IGWAS, you would now look at the genomes of all the animals and try to pinpoint genes shared by the left-hand column and not by the right-hand column. Until all those animals have had their genomes sequenced, and until mathematical techniques are up to the task, proceed with a non-genomic version of IGWAS as follows. Go to work taking measurements of all the animals. Measure all the bones. Weigh the heart, the brain, the kidneys, the lungs, etc., all these weights being expressed relative to total body weight (to correct for absolute size, which is unlikely to be of much interest). By the same token, the bone measurements should be expressed as a proportion of something, just as, in the chelonian example of Chapter 3, the bone lengths were expressed as a proportion of total arm length. Measure the body temperature, blood pressure, the concentrations of particular chemicals in the blood, measure everything you can think of. Some of the measurements might not be continuously varying quantities like centimetres or grams: they might be ‘yes or no’, ‘present or absent’, ‘true or false’.

    Feed all the measurements into a computer. And now for the interesting part. We want to maximise the discrimination between aquatic mammals and their terrestrial opposite numbers. We want to discover which measurements discriminate them, pull them apart. At the same time, we want to identify those features that unite all aquatic mammals, however distantly related from each other. Webbing between the toes will presumably emerge as a good discriminator, but we want to find the non-obvious discriminators, biochemical discriminators, ultimately gene discriminators. Where genomic comparisons are concerned, the GWAS methods already developed for medical purposes will serve. A possible graphic method is a version of the triangular plot of tortoise and turtle limbs that we saw in Chapter 3. Another graphic method is drawing pedigrees with genetic convergences coloured in.

    A refinement of IGWAS might order species along an ecological dimension. You could, perhaps, string mammals out along a dimension of aquaticness, from whales and dugongs at one extreme to camels, desert foxes, oryxes, and gundis at the other. Seals, otters, yapoks and water voles would be intermediate. Or we might explore a dimension of arboreality. We might conclude that a squirrel is a rat who has moved a measurable distance along the dimension of arboreality. Are moles, golden moles and marsupial moles situated at one extreme on a dimension of fossoriality. Could we distribute birds along a dimension from flightless cormorants and emus who never fly, at one extreme, to albatrosses at the other, or, even more extreme, to swifts, who even copulate on the wing? Having identified such ‘dimensions’, could we look for trends in gene frequency as you move along from one extreme to the other. I can immediately foresee alarming complications. The dimensions would interact with other dimensions, and we’d have to call in experts with mathematical wings to fly through multi-dimensional spaces. My own sadly amateur ventures, limited to three dimensions, and using computer simulation rather than mathematics, are in my book Climbing Mount Improbable, especially the chapter called ‘The Museum of All Shells’.

    A group at Carnegie Mellon University in Pittsburgh performed a model example of what I call (they don’t) IGWAS. What they studied was not aquaticness but hairlessness in mammals. Most mammals are hairy, and all had hairy ancestors, but if you survey the mammal family tree you notice that hairlessness pops up sporadically among unrelated mammals. See the diagram, which shows a few of the sixty-two species whose genomes were examined.

    Sporadic distribution of hair loss among mammals

    Whales, manatees, pigs, walruses, naked mole rats, and humans have all lost their hair more or less completely (yellow names in the diagram). And, which is important, independently of each other in many cases. We can tell this by looking at the hairy closer relatives from among whom they sprang. You remember that echolocating bats and echolocating whales had something else in common – their prestin gene. Do the genomes of the naked species have a gene for hairlessness that they share with each other? The answer is literally no. But only literally. The truth is equally interesting. It turns out that we and other naked species still retain the ancestral genes that make hairs. But the genes have been disabled. And disabled in different ways. What is convergent is the fact of being disabled, but the details are not shared. Incidentally, we again have here a problem for creationists. If an intelligent designer wished to make a naked animal, why would he equip it with genes for making hair and then disable them? Chapter 3 mentions the similar example of the human sense of smell: the olfactory sense genes of our mammal ancestors still lurk within us, but they have been turned off.

    One of my favourite examples of convergent evolution is that of weakly electric fish. Two separate groups of fish, Gymnotids in South America and Gymnarchids in Africa, have independently and convergently discovered how to generate electric fields. They have sense organs all along the sides of the body, which can detect distortions that objects in the environment cause in the electric fields. It is a sense of which we can have no awareness. Both groups of fish use it in murky water where vision is impossible. There’s just one difficulty. The normal undulating movements typical of fish fatally compromise the analysis of the electric fields measured along the body. It is necessary for the fish’s body to maintain a rigid stance. But if their body is rigid, how do they swim? By means of a single longitudinal fin traversing the whole length of the body. The body itself, with its row of electrical sensors, stays rigid, while the single longitudinal fin alone performs the sinuous movements typical of fish locomotion. But there’s one revealing difference. In the South American fish, the longitudinal fin runs along the ventral surface, while in the African fish it runs along the back. In both groups of fish, the undulating waves can be thrown into reverse: the fish swim backwards and forwards with apparently equal facility.

    The ‘duck bill’ of the platypus and the huge, flat ‘paddle’ sticking out of the front end of the paddlefish (Polyodontidae) are both covered with electrical sensors, convergently and independently evolved. In this case the electric fields they pick up are generated, inadvertently, by the muscles of their prey. There is a long-extinct trilobite that also had a huge paddle-like appendage like that of the paddlefish. Its paddle was studded with what look like sense organs, and it seems probable that this represents yet another convergence.

    A ringed plover’s eggs and chicks lie out on the ground, defenceless except for their camouflage. A fox approaches. The parent is much too small to put up any kind of resistance. So it does an astonishing thing. It attempts to lure the predator away from the nest by offering itself as a bigger prize than the nest. It limps away from the nest, pretending to have a broken wing, simulating easy prey. It flutters pathetically on the ground, wings outstretched, sometimes with one wing stuck incongruously in the air. There’s no assumption that it knows what it is doing or why it is doing it (although it may). The minimal assumption we need make is that natural selection has favoured ancestors whose brains were genetically wired up to perform the distraction display, and perfect it over generations. Now, why tell the story in this chapter on convergent evolution? It’s because the broken wing display has arisen not once but many times independently in different families of birds. The diagram on the following page is a pedigree of birds, wrapped around in a circle so it fits on the page. Birds who perform the broken wing display are coloured in red, those who don’t in blue. You can see that the habit is distributed sporadically around the pedigree, a lovely example of convergent evolution.

    My final example of convergence will lead us into the next chapter. More than 200 species, belonging to thirty-six different fish families, practise the ‘cleaner’ trade. They remove surface parasites and damaged scales from the bodies of larger ‘client’ fish. Each individual cleaner fish has its own cleaning station, and its own loyal clients who return repeatedly to the same ‘barber’s shop’ on the reef. This site tenacity is important in keeping the benefit exclusively mutual: the cleaner eats the parasites and worn-out scales from the skin of particular client fish, and the client refrains from eating its particular benefactor. Without individual site fidelity, and therefore repeat visits, clients would have no incentive to refrain from eating the cleaner – after being cleaned, of course. Sparing a cleaner would benefit fish in general, including competitors of the sparer. Natural selection doesn’t ‘care’ about general benefit. Quite the contrary. Natural selection cares only about benefit to the individual and its close relations, at the expense of competitors. A bond of individual loyalty between particular cleaner and particular client therefore really matters, and it is achieved by site tenacity. Some cleaners even venture inside the mouth of a client to pick its teeth – and survive to repeat the service on the client’s next visit. Cleaner fish advertise their trade and secure their safety by a characteristic dance, often enhanced by a striped pattern – the fishy equivalent of the striped pole insignia of a human barber’s shop. This constitutes a safe-conduct pass.

    Broken wing display

    The remarkable ‘broken wing display’ crops up again and again in different bird groups (shown in red). Striking testimony to the power of natural selection.

    The interesting point for this chapter is that the cleaner habit has evolved many times convergently, not only many times independently in fish but many times in shrimps too. As before, the client fish abide by the covenant and refrain from eating their cleaner shrimps, in just the same respectful way as for cleaner fish. In many cases, cleaner shrimps sport a similar stripe, the ‘barber’s pole’ insignia. It is to the benefit of all that all the ‘barber’s pole’ badges should look similar.

    When swimming in the sea, you would be well advised to steer clear of the sharp-toothed jaws of the moray eel. Yet here is a shrimp, calmly picking its teeth. Note, yet again, the red stripe or ‘barber’s shop pole’, telling the moray, ‘Don’t eat me, I’m your special cleaner. You and I have a mutual relationship. You’ll need me again.’ Does the shrimp feel fear as it trustingly enters those formidable jaws? Does some equivalent of ‘trust’ pulsate through its cephalic ganglion? I doubt it, but not everyone would agree. Do you?

    Moray eel and cleaner shrimp

    Not only has the habit evolved independently – convergently – in fish and shrimps. It has evolved convergently many times within shrimps, just as it has many times within fish. Even within one family of shrimps, the Palaemonidae, the cleaner trade is practised by sixteen different species, having evolved within the Palaemonidae five times independently. Here’s how we know the five evolutions were independent of each other. The method again serves as a model for how we ever know instances of evolution are independent of each other. Look at the family tree of the Palaemonidae, constructed with the aid of molecular genetic sequencing. It contains sixty-eight species of shrimp. Those species that practise the fish-cleaning trade have a little fish symbol by them. There are sixteen species of palaemonid cleaner shrimps. But many of the sixteen cannot be said to have evolved the habit independently. For example, the three species of Urocardella are all cleaners, but the picture warns us against counting them as independent: they probably inherited it from their common ancestor.

    Six members of the genus Ancyclomenes are cleaners, but again we must make the conservative assumption that they inherited it from their common ancestor – and that the habit has been lost in A.aqabaiA.kuboiA.luteomaculatus, and A.venustus. Using this conservative approach, we conclude that the cleaning habit evolved independently in five palaemonid genera but not in all species of those five genera. And the story doesn’t end with the Palaemonidae. Two other families of shrimps not shown in the diagram, the Hippolytidae (see moray eel picture above) and the Stenopodidae, also have many species of cleaner.

    The Cambridge palaeontologist Simon Conway Morris has treated convergent evolution more vividly and thoroughly than anyone else. In his wittily written Life’s Solution he points out that convergent evolution is commonly sold as amazing, astounding, uncanny, etc., but there is no need for this. Far from being especially amazing, it’s exactly what we should expect of natural selection. Convergent evolution is, nevertheless, great for confounding armchair philosophers and others who underestimate the power of natural selection and the magnificence of its productions. In addition to 110 densely packed pages of massively researched endnotes and references to the biological literature, Life’s Solution has three indexes: a general index, a name index and – this must surely be unique – a ‘convergences index’. It runs to five double-column pages and around 2,000 examples of convergence. Of course, not all of them are as impressive as the pillbugs, the moles, the gliders, the sabretooths, or the fish-cleaners but even so …

    Independent evolution of cleaners

    Convergent evolution can be so impressive, it makes you wonder how we know the resemblance really is convergent. That’s the power of natural selection, the immense yet subtle power that underpins the whole idea of the genetic book of the dead. Pill woodlouse and pill millipede, alike as two pills, how do we know one is a crustacean, the other a distant myriapod? There are numerous tell-tale clues. The deep layers of the palimpsest are never completely over-written. The glyphs of history keep breaking through. And, if all else fails, molecular genetics cannot be denied.

    Convergence of animals with widely separated histories is one manifestation of the power of selection to write layer upon layer of the palimpsest. Another is its converse: evolutionary divergence from a common historic origin, natural selection seizing a basic design and moulding and twisting it into an often bizarre range of functionally important shapes. The next chapter goes there.

    6 Variations on a Theme

    As we saw in Chapter 3, molecular comparison conclusively shows that whales are located deep within the even-toed ungulates, the artio­dactyls. By ‘located deep within’, I mean something very specific and surprising. It’s worth repeating. We’re talking about much more than just a shared ancestor, with the whales going one way, and the artiodactyls the other. That would not have been surprising. ‘Deep within’ means that some artiodactyls (hippos) share a more recent ancestor with whales than they share with the rest of the artiodactyls whom they much more strongly resemble. This has been known for more than twenty years, but I still find it almost incredible, so overwhelming is the submersion under surface layers of palimpsest. Of course, this doesn’t mean whales’ ancestors were hippos or even resembled hippos. But whales are hippos’ closest living relatives.

    What is it that’s so special about whales, so special that new writings in their book of the dead so comprehensively obliterated almost every trace of that earlier world, of grazing prairies and galloping feet, which must lie buried far down in the palimpsest? How did the whales manage to diverge so completely from the rest of the artiodactyls? How were they able so comprehensively to escape their artiodactyl heritage?

    The answer probably lies in that word ‘escape’. Cattle, pigs, antelopes, sheep, deer, giraffes, and camels are relentlessly disciplined by gravity. Even hippos spend significant amounts of time on land, and indeed can accelerate their ungainly bulk to an alarming speed. The land-dwelling artiodactyl ancestors of whales had to submit to gravity. In order to move, land mammals must have legs stout enough to bear their weight. A land animal as big as a blue whale would need legs half way to Stonehenge pillars, and it’d have a hard time surviving, with heart and lungs smothered suffocatingly by the body’s own weight. But in the sea, whales shook off gravity’s tyranny. The density of a mammal body is approximately that of water. Gravity never goes away, but buoyancy tames it. When their artiodactyl ancestors took to the water, whales shed the need for leggy support, and the fossil evidence beautifully lays out the intermediate stages.

    A major milestone marks the point where, like dugongs and manatees but unlike seals and turtles, whales gave up returning to land even to reproduce. That was the final release from gravity, as buoyancy totally took over. Whales were free to grow to prodigious size, literally insupportable size. A whale is what happens when you take an ungulate, cut it adrift from the land and liberate it from gravity. All manner of other modifications followed in the wake of the great emancipation, and they richly defaced the ancient palimpsest. Forelegs became flippers, hind limbs disappeared inside and shrank to tiny relics, the nostrils moved to the top of the head, two massive horizontal flukes – lobes stiffened not by bone but by dense fibrous tissue – sprouted sideways to form the propulsive organ. Numerous profound alterations of physiology and biochemistry allowed deep diving, and hugely prolonged intervals between breaths. Whales switched from a (presumed) herbivorous diet to one dominated by fish, squid, and – in the case of the baleen whales – filtered shoals of krill in lavish quantities.

    Fish, too, are allowed by buoyancy to adopt bizarre shapes (see pictures here), which gravity on land would forbid. In the case of teleost (bony as opposed to cartilaginous) fish, the buoyancy is perfect, owing to that exquisite device, the swim-bladder, buried deep within the body. By manipulating the amount of gas in the swim-bladder, the fish is able to adjust its specific gravity and achieve perfect equilibrium at whatever happens to be its preferred depth at any time.

    I think that’s what makes a home aquarium such a restful furnishing for a room. You can dream of drifting effortlessly through life, as a fish drifts through water in perpetual equilibrium. And it is the same hydrostatic equilibrium that frees fish to assume such an extravaganza of shapes. The leafy sea dragon trails clouds of glorious fronds, and you feel you could almost identify the species of wrack that those fronds mimic. You must peer deep between them to discern that they are parts of a fish: a modified sea horse – which is itself a distorted caricature of the ‘standard fish’ design of more familiar cousins such as trout and mackerel.

    Most predatory fish actively seek and pursue prey, and this expends a considerable proportion of the energy obtained from the food caught. Angler fish, of which there are several hundred species sitting on the sea bottom, save energy by luring prey to come to them. The anglers themselves are superbly camouflaged. A fishing rod (modified fin spine) sprouts from the head. At its tip is a lure or bait, which the angler fish waves around in a tempting manner. Unsuspecting prey are attracted to the bait, whereupon the angler opens its enormous mouth and engulfs the prey. Different species of angler favour different baits. With some it resembles a worm, and it jiggles about plausibly as the angler waves its rod. Angler fish of the dark deep sea harbour luminescent bacteria in the tip of the rod. The resultant glowing lure is very attractive to other deep-sea fish, and invertebrate prey such as shrimps. Convergently, snapping turtles rest with their mouth open, wiggling their tongue like a worm, as bait for unsuspecting prey fish.

    Sea horses and angler fish are extreme exponents of the adaptive radiation of teleost fish. They also, in their different ways, sport unusual sex lives. The sex life of angler fish is nothing short of bizarre. Everything I said in the previous paragraph applies to female angler fish only. The males are tiny ‘dwarf males’, hundreds of times smaller than females. A female releases a chemical, which attracts a dwarf male. He sinks his jaws into her body, then digests his own front end, which becomes buried in the female’s body. He becomes no more than a small protuberance on her, housing male gonads from which she extracts sperm when she needs to. It is as though she becomes a hermaphrodite, except that ‘her’ testes possess a different genotype from her own, having invaded from outside in the form of the dwarf male locked into her skin.

    Lionfish

    Weedy sea dragon

    Marlin

    Leafy sea dragon

    Trumpet fish

    Sunfish

    Gulper eel

    Seahorse

    Puffer

    Sloane’s viper fish

    Ghost pipefish

    Angler fish

    Freed by buoyancy from the constraints of gravity, fish were able to evolve an astonishing variety of shapes

    Many species of fish are livebearers – females get pregnant like mammals and give birth to live young. Sea horses are unusual in that it’s the male who gets pregnant, carries the young in a belly pouch, and eventually gives birth to them. Do you wonder, then, how we define him as male? Throughout the animal and plant kingdoms, the male sex is easily defined as the one that produces lots of small gametes, sperms, as opposed to fewer, larger, eggs.

    Adaptive radiation means evolutionary divergence fanning out from a single origin. It is seen in an especially dramatic way when new territory suddenly becomes available. When, 66 million years ago, a celestial catastrophe cleared 76 per cent of all species from the planet, the stage was wide open for mammalian understudies to step into the dinosaurs’ vacated costumes. The subsequent adaptive radiation of mammals was spectacular. From the small, burrowing creatures who survived the devastation, probably by hibernating in safe little underground bunkers, a comprehensive range of descendants, ranging hugely in size and habit, appeared in surprisingly quick time.

    On a smaller scale and a much shorter timescale, a volcanic island can spring up suddenly (suddenly by the standards of geological time) through volcanic upwelling from the bottom of the sea. For animals and plants it is virgin territory, barren, untenanted, open to exploitation afresh. Slowly (by the standards of a human lifetime) the volcanic rock crumbles and starts to make soil. Seeds fly in on the wind, or are transported by birds and fertilised with their droppings. From being a black lava desert, the island greens. Winged insects waft in, and tiny spiders parachuting under floating threads of silk. Migrating birds are blown off course, land for recuperation, stay, reproduce; their descendants evolve. Fragments of mangrove drift in from the mainland, and the occasional tree uprooted by a hurricane. Such freak raftings carry stowaways – iguanas, for instance. Step by accidental step, the island is colonised. And then descendants of the colonists evolve, rapidly by geological standards, diversifying to fill the various empty niches. Diversification is especially rich in archipelagos, where driftings between islands happen more frequently than from the mainland to the archipelago. Galapagos and Hawaii are textbook examples.

    A volcano is not the only way new virgin territory for evolution can open up. A new lake can do it too. Lake Victoria, largest lake in the tropics and larger than all but one of the American Great Lakes, is extremely young. Estimates range from 100,000 years to a carbon-dated figure of only 12,400 years. The discrepancy is easily explained. Geological evidence shows that the lake basin formed about 100,000 years ago, but the lake itself has dried up completely and refilled several times. The figure of 12,400 years represents the age of the latest refilling, and therefore the age of the current lake in its large geography. And now, here is the astonishing fact.

    There are about 400 species of Cichlid (pronounced ‘sicklid’) fish in Lake Victoria, and they are all descended from probably as few as two founder lineages that arrived from rivers within the short time that the lake has existed. The same thing happened earlier in the other great lakes of Africa, the much deeper Lakes Tanganyika and Malawi. Each of the three lakes has its own unique radiation of Cichlid fishes, different from, but parallel to, the others.

    Nimbochromis livingstoniiLamprologus lemairii

    Here’s a slightly macabre example of this parallelism. In Lake Malawi (where I spent my earliest bucket-and-spade beach holidays), there is a predatory fish called Nimbochromis livingstonii. It lies on the bottom of the lake pretending to be dead. It even has light and dark blotches all over its body, giving the appearance of decomposition. Deceived into boldness, small fish approach to nibble at the corpse, whereupon the ‘corpse’ suddenly springs into action and devours the small fish. This hunting technique was thought to be unique in the animal kingdom. But then exactly the same trick was discovered in Lake Tanganyika, the other great Rift Valley lake. Another Cichlid fish, Lamprologus lemairii, has independently, convergently, hit upon the same death-shamming trick. And it has the same blotchy appearance, suggestive of death and decay. In both lakes, adaptive radiation independently hit upon the same somewhat gruesome way of getting food. Along with dozens of other ways of life, independently discovered in parallel in the two similar lakes.

    My old friend, the late George Barlow, vividly described the three great lakes of Africa as Cichlid factories. His book, The Cichlid Fishes, makes fascinating reading. The Cichlids have so much to teach us about evolution in general and adaptive radiation in particular. Each of the three great lakes has its own, independently evolved radiation of several hundred Cichlid species. All three lakes tell the same story of explosive Cichlid evolution, yet the three histories unfolded entirely independently. All three began with a founder population of very few species. Each of the three followed a parallel evolutionary course of massive radiation into a huge variety of ‘trades’ or ways of life – the same great range of trades being independently discovered in all three lakes.

    You might think the oldest lake would have the most species. After all, it’s had the longest time to evolve them. But no. Lake Tanganyika, easily the oldest at about 6 million years, has only (only!) 300 species. Victoria, a baby of only 100,000 years, has about 400 species. Lake Malawi, intermediate in age at between 1 and 2 million years, has the largest species count, probably around 500, although some estimates exceed 1,000. Moreover, the size of the radiation seems unrelated to the number of founder species. The huge radiations in Victoria and Malawi trace back substantially to only one lineage of Cichlids, the Haplochromines. The relatively venerable Lake Tanganyika’s approximately 300 species appear to stem from twelve different founder lineages, of which the Haplochromines are only one.

    What all this suggests is that young Lake Victoria’s dramatic explosion of species is the model for all three lakes. All three probably took only tens of thousands of years to generate several hundred species. After the explosive beginning, the typical pattern is probably to stabilise the number, or it may even decrease, such that the final number of species is not correlated with the age of the lake, or with the number of founder species. The Cichlids of Lake Victoria show how fast evolution can proceed when it dons its running shoes. We cannot expect that such an explosive rate is typical of animals in general. Think of it as an upper bound.

    And when you work it out, even Lake Victoria’s feat is not quite so surprising as first appears. Although the lake in its present form is only some 12,400 years old, I’ve already mentioned that a lake filled the same shallow basin 100,000 years ago. In the intervening years it has largely dried up several times and refilled, the latest such episode occuring with the refill of 12,400 years ago. Lake Malawi shows how dramatically these lake levels can fall and rise. Between the fourteenth and nineteenth centuries, the water level was more than 100 metres lower than today. Unlike Lake Victoria, however, it came nowhere close to drying up altogether. In its Rift Valley chasm, it is nearly ten times as deep as Victoria. In shallow Lake Victoria, as each drying cycle occurred, the lowering of the water level would have left numerous ponds and small lakes, these becoming reunited at the next iteration of the refill cycle. The temporary isolation of the fish trapped in the residual ponds and small lakes enabled them to evolve separately – no gene flow between ponds. At the next refill of the cycle, they were reunited, but by then they would have drifted apart genetically, too far to interbreed with those who had been stranded in other ponds. If this is correct, the drying/refilling alternation provided ideal conditions for speciation (the technical term for the evolutionary origin of a new species, by splitting of an existing species). And it means that, from an evolutionary point of view, we could regard the true age of Lake Victoria as 100,000 years, not 12,400. Still very young.

    Given 100,000 years to play with, what sort of interval between speciation events would yield 400 species, starting, hypothetically, with a single founding species? Is 100,000 years long enough? Here’s how a mathematician might reason: a back-of-the-envelope calculation, making conservative assumptions throughout, to be on the safe side. There are two extremes, two bounds bracketing the possible rate of speciation, depending on the pattern of splitting. The most prolific pattern (an improbable extreme) is where every species splits into two, yielding two daughter species which, in turn, split into two. This pattern yields exponential growth of species numbers. It would take only between eight and nine speciation cycles to yield 400 species (29 is 512). An interval of 11,000 years between speciations would do the trick. The least prolific pattern (also an improbable extreme) is where the founder species ‘stays put’ and successively throws off one daughter species after another. This would require far more speciation events, about 400, to reach the tally of 400 species: a speciation event every 250 years. How to estimate a realistic intermediate between these two extremes? A simple average (arithmetic mean) gives an estimate of between 5,000 and 6,000 years between speciations, which is enough time. Our mathematician, however, might be more cautious and recommend the geometric mean (multiply the two numbers together and take the square root). One reason to prefer it is that it captures the stronger influence of an occasional very bad year. This more conservative estimate asks for an interval of about 1,600 years between speciations. Somewhere between the two estimates is plausible, but let’s bend over backwards to be cautious and use the estimate of 1,600 years. Cichlid fish typically reach sexual maturity in under two years, so let’s again be conservative and assume a two-year generation time. Then we’d need about 800 fish generations between speciation events, in order to generate 400 species in 100,000 years. Eight hundred generations is enough for plenty of evolutionary change.

    How do I know 800 generations is plenty of time? Again, mathematicians can do back-of-the-envelope calculations to assist intuition. One calculation that I like was done by the American botanist Ledyard Stebbins. Imagine that natural selection is driving mouse-sized animals towards larger size. Stebbins, too, bent over backwards to be conservative, by assuming a very weak selection pressure, so weak that it could not be detected by scientists working in the field, trapping mice and measuring them. In other words, natural selection in favour of larger size is assumed to exist but to be so slight and subtle that it is below the threshold of detectability by field researchers. If the same undetectably weak selection pressure were maintained consistently, how long would it take for the mice to evolve to the size of an elephant? The answer Stebbins calculated was about 20,000 generations, the blink of an eye by geological standards. Admittedly, it’s a lot more than our 800 generations, but we weren’t talking about anything so grandiose as mice turning into elephants. We were only talking about Cichlid fishes changing enough to be incapable of interbreeding with other species. Moreover, Stebbins’s assumptions, like ours, were conservative. He assumed a selection pressure so weak that you couldn’t measure it. Selection pressures have actually been measured in the wild, for example on butterflies. Not only are they easily detectable, they are orders of magnitude stronger than the sub-threshold, under-the-radar pressure assumed by Stebbins. I conclude that 100,000 years is a comfortably long time in Cichlid evolution, easily enough time for an ancestral species to diversify into 400 separate species. That’s fortunate, because it happened!

    Incidentally, Stebbins’s calculation is an instructive antidote to sceptics who think geological time is not long enough to accommodate the amount of evolutionary change we observe. His 20,000 generations to wreak the change from mouse to elephant is so short that it would ordinarily not be measurable by the dating methods of geologists. In other words, a selection pressure too weak to be detectable by field geneticists is capable of yielding major evolutionary change so fast that it could look instantaneous to geologists.

    The crustaceans are another great group of mostly aquatic animals with spectacular evolutionary radiations, from much more ancient common sources. In this case, it is the modification of a shared anatomy that impresses. Rigid skeletons permit movement only if built up of hinged units, bones in the case of vertebrates, armoured tubes and casings in the case of crustaceans and other arthropods. Because these bones and tubes are rigid and articulated, there is a finite number of them, each one a unit that can be named and recognised across species. The fact that all mammals have almost the same repertoire of nameable bones (206 in humans) makes it easy to recognise evolved differences as distortions of each named bone: ulna, femur, clavicle, etc. The same is true of crustacean skeletal elements, with the bonus that, unlike bones, they are externally visible.

    The great Scottish zoologist D’Arcy Thompson took six species of crab and looked at just one unit of the skeleton, the main portion of the body armour, the carapace, of each.

    GeryonCorystes
    ChorinusScyramathia
    LupaParalomis

    He arbitrarily chose one of the six, it happened to be Geryon (far left), and drew it on a rectangular grid. He then showed that he could approximate the shape of each of the other five, simply by distorting the grid in a mathematically lawful way. Think of it as drawing one crab on a sheet of stretched rubber, then distorting the rubber sheet in mathematically specified directions to simulate five other shapes. These distortions are not evolutionary changes. The six species are all contemporary. No one species is ancestral to any other, they share ancestors who are no longer with us. But they show how easily changes in embryonic development (altered gradients of growth rates, for instance) can yield an illuminating variety of crustacean form with respect to one part of the exoskeleton. D’Arcy Thompson did the same thing with many other skeletal elements including human and other ape skulls.

    Of course, bodies are not drawn on anything equivalent to stretched rubber. Each individual develops afresh from a fertilised egg. But changes in growth rates, of each part of the developing embryo, can end up looking like the distortions of stretched rubber. Julian Huxley applied D’Arcy Thompson’s method to the relative growth of different body parts in the developing embryo. Such embryological changes are under genetic control, and evolutionary changes in gene frequencies generate evolutionary variety, again looking like stretched rubber. And of course it isn’t just the carapace. The same kind of evolutionary distortion is seen in all the elements of the crustacean body (and the bodies of all animals but often less obviously). You can see how the same parts are present in each specimen, just emphasised to different degrees. The differential emphasis is achieved by different growth rates in different parts of the embryo.

    Crustaceans are exceedingly numerous. With characteristic wit, the Australian ecologist Robert May said, ‘To a first approximation, all species are insects,’ yet it has been calculated that there are more individual copepods (crustacean water fleas) than there are individual insects in the world. The painting opposite, by the zoologist Ernst Haeckel (1834–1919), Darwin’s leading champion in Germany, is a dazzling display of the anatomical versatility of the copepods.

    Wondrous copepods from Ernst Haeckel’s Art Forms in Nature

    Mantis shrimp

    Here’s a typical adult crustacean, a mantis shrimp. Well, mantis shrimps (Stomatopods) are typical with respect to their body plan, which, together with their colourful beauty, is why I’ve chosen one for this purpose. But they include some formidable customers who are far from typical in one alarming respect. They pack a punch, literally. With vicious blows from club-like claws, they smash mollusc shells in nature, while in captivity the blow from a large smasher, travelling as fast as a small-calibre rifle bullet, will shatter the glass of your aquarium tank. The energy released is so great that the water boils locally and there is a flash of light. You don’t want to mess with a mantis shrimp, but they’re a wonderful example of the diverse modification of the basic crustacean body plan.

    Mantis shrimps are not to be confused with the (literally) stunning ‘pistol shrimps’ or ‘snapping shrimps’ (Alpheidae), who in their way also beautifully illustrate the diversity of crustacea. These have one enlarged claw, somewhat bigger than the other. They snap the enlarged claw with terrific force, generating a shock wave – a violent pulse of extreme high pressure immediately followed by extreme low pressure in its wake. The shock wave stuns or kills prey. The noise is among the loudest heard in the sea, comparable to the bellows and squeaks of large whales. Muscles are too slow to generate high-speed movement such as the snapping claws of pistol shrimps or the punching clubs of mantis shrimps (or indeed the jump of a flea). They store energy in an elastic material or spring, and then suddenly release it – the catapult or bow-and-arrow principle.

    Crustacea dazzle with diversity. But it is a constrained diversity. To repeat the point, which is the reason I chose crustaceans for this chapter, you can in every species easily recognise the same parts. They are connected to each other in the same order, while differing hugely in shape and size. The first thing you notice about the basic crustacean body plan is that it is segmented. The segments are arrayed from front to rear like a goods train with trucks (American freight train with wagons or cars). The segmentation of centipedes and millipedes is even more obviously train-like because most of their segments are the same. A mantis shrimp or a lobster is like a train whose trucks are the same in a few respects (wheels, bogies, and coupling hooks, say) but different in other ways (cattle wagons, milk tanks, timber carriers, etc.).

    Crustaceans in their evolution achieve astonishing variety by changing the trucks over evolutionary time, while never losing sight of the train. Varied as they are, the segments of a mantis shrimp are still visibly a train built to the same pattern as any other crustacean, each bearing a pair of limbs that fork at the tip. The claw of a crab or lobster is a conspicuous example of the fork. As you move from front to rear of the animal, the paired appendages consist of antennae, various kinds of mouth parts, claws, then four pairs of legs. Move backwards further, and the segments of a lobster or mantis shrimp’s abdomen each have small, jointed appendages called swim-merets underneath, on both sides, each often ending in a little paddle. In a lobster or, even more so, a crab, the segments of the thorax and head are hidden beneath a shared cover, the carapace. But their segmentation is betrayed by the appendages, walking legs in the case of four of them, antennae, large claws and mouth parts at the front end. The rear end of the abdomen, the guard’s van (American caboose) of the train, has a special pair of flattened appendages called uropods. When I first visited Australia, I was intrigued to see, laid out in a buffet, what they call bay bugs. These have what look like uro-pods at the front end as well as the rear, a sort of crustacean version of Doctor Dolittle’s Pushmi-Pullyu, but with two rear ends instead of two heads. This is not all that surprising, as we shall now see.

    The segmentation of arthropods and vertebrates was once thought to have evolved independently. No longer, and thereby hangs a fascinating tale, a tale that is true too of other segmented animals such as annelid worms. Just as the segments are arrayed in series from front to rear like a train, so the genes controlling the segments are arrayed in series along the length of a chromosome. This revolutionary discovery overturned the whole attitude to zoology that I had learned as a student, and I find it wonderful. To pursue the railway analogy, there’s a train of gene trucks in the chromosome to parallel the train of segment trucks in the body.

    It’s been known for more than a century that mutant fruit flies can have a leg growing where an antenna ought to be. That mutation is called antennapedia for obvious reasons, and it breeds true. There are other dramatic mutations in fruit flies, for example bithorax, which has four wings like normal insects, instead of the two-winged pattern that gives flies their name, Diptera. These major mutations are all explained by changes in the sequentially arranged genes in the ‘chromosome train’. When I first saw that bay bug in a Great Barrier Reef restaurant, I immediately wondered whether bay bugs had originally evolved by a mutation similar to antennapedia, in this case duplicating uropods at the front end of the animal.

    This kind of effect has been neatly shown by Nipam Patel and his colleagues. They work on a marine crustacean called Parhyale, belonging to the Amphipod order. I remember being fascinated by the hundreds of small amphipods in the cold stream on our farm, in the course of which my parents dug out a pool for us to swim. The swarms of exuberantly jumping ‘sandhoppers’ that we so often encounter on beaches are another familiar example. We met iso-pods, in the flattened shape of ‘pill bugs’, in the previous chapter. Amphipods are different. They are flattened left to right rather than back to belly. And, in Parahyale and many others, their appendages are far from all the same. Some of their legs point in what seems to be the ‘wrong’ direction. Three of the ‘trucks’ appear to be ‘coupled’ up backwards (red shading in left picture on the next page). Patel and his colleagues, by means of ingenious manipulations of the genes controlling the trucks of the train, were able to change the three reversed segments, coupling the trucks so that all the limbs faced in the same direction (right picture). The way this works is that the three backwards segments are replaced by duplicates of the three segments in front of them. The Patel group achieved equally interesting manipulations of other segments but the work, though fascinatingly ingenious, would take us too far afield.

    ILLUSTRATION: KALLIOPI MONOYIOS

    We vertebrates too are segmented, but in a different way. This is obvious in fish, and it remains pretty clear in our ribs and vertebral column. Snakes carry it to an extreme – sort of like centipedes but with internal ribs instead of external legs. We now understand the embryological mechanism whereby segments are multiplied up. Surprisingly, actually rather wonderfully, it has turned out to be pretty much the same in vertebrates and arthropods. Hence, we understand how it is that different snake species evolve radically different numbers of vertebrae ranging from around 100 to more than 400 – compared to our thirty-three. Vertebrae, whether or not they sprout ribs, all have similar coupling mechanisms to the neighbouring ‘trucks of the train’, and all have similar blood vessels, and sensory and motor nerves, connected to the spinal cord, which passes through them. As I just mentioned, one of the most revolutionary discoveries of recent zoology is that the embryological mechanisms underlying segmentation in arthropods and vertebrates, deep in the lower levels of their palimpsests, are tantalisingly similar. Once again, the truly beautiful fact is that in both groups, genes are laid out along chromosomes in the same order as the segments that they influence.

    Although crustaceans all follow the segmented plan boldly written in the depths of the palimpsest, the ‘trucks’ vary so extravagantly that the simile of the train can become rather strained. Sometimes many of the segments join together to form a singular body, as in crabs. Often the appendages sprouting from the segments vary spectacularly, ranging from the formidable claws near the front of a lobster, or the punching clubs of a mantis shrimp, to the swimmerets arrayed under the abdomen. Crustaceans range in size from ‘water fleas’ at less than 1 millimetre to the Japanese spider crab Macrocheira with a limb span that can reach 3 metres (10 feet). Frightening as this creature might be to meet, it is harmless to humans. Imagine the handshake of a lobster, or the punch of a mantis shrimp, that size!

    Japanese spider crab

    Crabs can be thought of as lobsters with a truncated tail (abdomen) curled up under the main body, so you don’t see it unless you upend the animal. The crab abdomen bears a passing resemblance to the ape/human coccyx, both being made of a handful of segments from an ancestral tail squashed up. Hermit crabs are strictly not crabs, but belong in their own group (Anomura) within the crustacea. Their abdomen is not squashed up underneath them as in true crabs, but soft and curled round to one side, to fit the discarded mollusc shells that hermit crabs inhabit. The process by which they choose their shells, and compete with one another for favoured shells, is fascinating in its own right. But that’s another story. In this chapter they serve as yet another illustration of the wonderful diversity of crustaceans.

    The larvae of crustaceans show the group’s diversity at least as gloriously as the adults. But still the basic train design is palpable throughout. Perhaps even more dramatically than in the case of adult crustaceans, it is as though natural selection pulled, pushed, kneaded, or distorted the various segments of the body with wild abandon. Different species of crustacean pass through nameable larval stages, free-living animals in their own right, often leading a very different life from the adults – as caterpillars live very differently from butterflies among the insects. The zoea is one such larval type. It is the last stage before the adult, in crabs, lobsters, crayfish, shrimps, bay bugs, and their kind – the decapod crustaceans.

    Overleaf is a page full of assorted zoeas to show how easily the basic crustacean plan can be stretched and bent around in evolution, as though made of modelling clay. What I take away from these exquisite little creatures is that all have the same parts, they just vary the relative sizes and shapes of those parts. They all look like distorted versions of each other. That’s what evolutionary diversification is all about, and the crustacea show it as plainly as any animal group. You can match up the corresponding parts in all the species, and can clearly see how the different species have pulled, stretched, twisted, swelled, or shrunk the same parts in different ways over evolutionary time. It is wondrous to behold, you surely agree.

    Crustacean larvae. Always the same parts, yet pulled and pushed in different directions

    Zoeas may look a little like the adults they are to become. But they need to survive in a very different world, usually the world of plankton, and their bodies are versatile enough to evolve into all sorts of unlikely distortions – written in surface layers of the palimpsest. Many of them sport long spikes, presumably to make them difficult to swallow. The impressive spikes of the planktonic zoea at top middle are nowhere to be seen in the typical adult crab it is to become. Truth be told, the adult in this case is not easily seen at all under the sea urchin that it habitually carries around on its back – presumably to gain protection via the urchin’s own spikes. Notice the long, prominent abdomen of the larva, with its easily discerned segments. As with all crabs, the adult abdomen is neither long nor prominent but tucked discreetly under the thorax.

    An earlier larval stage than the zoea, found in most crustacean life cycles, is the nauplius larva. Unlike zoeas, which bear some sort of resemblance to the adult they will become, naupliuses have an appearance all their own. There’s another larval stage possessed by some crustaceans, the cyprid larva, presumably so called because it resembles the adult of a water flea called Cypris. Perhaps the adult Cypris is an example of the overgrown larva phenomenon, which is a fairly common way for evolution to progress. Below is the cyprid larva of a member of the rather obscure crustacean sub-class, Facetotecta.

    Facetotectan larva

    This larva is unmistakeably crustacean, with a head shield, and abdominal segments bearing typically crustacean forked appendages. From 1899, when the larvae were first discovered, until 2008, nobody knew what adult facetotectans looked like. And they still have never been seen in the wild. What happened in 2008 was that a group of experimentalists succeeded in persuading larvae to turn into a precursor of the adult. They did it by means of hormone treatment. The subtitle of their paper is ‘Towards a solution to a 100-year-old riddle’. The adults turn out to be soft, unarmoured, slug-like or worm-like creatures with no visible segments and no appendages, presumably parasites, although nobody knows who their victims are. You wouldn’t know, to look at them, that they are crustaceans at all. This experiment recalls a similar one by Julian Huxley with axolotls in 1920. Axolotls are vertebrates, members of the Amphibia. They look like tadpoles; indeed they are tadpoles, but sexually mature tadpoles, and they reproduce. They evolved from larvae who would once have turned into salamanders. The adult stage of their life history was cut off during their evolution, as the larvae became sexually capable. By treating them with thyroid hormone, Julian Huxley succeeded in turning them into the salamanders that their ancestors once were. This experiment may have inspired his younger brother Aldous Huxley to write his novel After Many a Summer, in which an eighteenth-century aristocrat discovered how to cheat death – and developed, 200 years later, into a shaggy, long-armed ape humming a Mozart aria. We humans are ‘larval’ apes!

    Those slug-like facetotectans are yet another manifestation of crustacean diversity. They must be descended from adults who had segments and limbs like any respectable crustacean. But the most characteristically crustacean scripts of the palimpsest have been almost completely obliterated by parasitic over-writing, while being retained in the larva. Degenerative evolution of this kind is common in parasites hailing from many parts of the animal kingdom. Within the crustacea, it is also shown to an extreme in certain members of the barnacle family, though not the typical barnacles that encrust rocks at the seaside and prick your bare feet when you walk on them.

    As a boy on a seaside holiday, I remember being frankly incredulous when my father told me barnacles are really crustaceans. I thought they were molluscs because, well, they look like molluscs. Nothing like crustaceans, anyway, until you look carefully inside. The barnacles that cling close to rocks look like miniature limpets, while goose barnacles look like mussels on stalks. So how do we know they are really crustaceans? Look inside. Or see Darwin’s own drawing above and you find a shrimp-like creature lying on its back and sweeping the water with its comb-like limbs to filter out swimming morsels of food. As we have by now come to expect, the larvae of barnacles are more unmistakeably crustacean than the adults. Before the adult settles down to its sedentary permanence, it is a free-swimming larva in the plankton. On the left is the nauplius larva of Semibalanus, a small rock barnacle with, for comparison, the nauplius larva of a shrimp, Sicyonia.

    Barnacle larvaShrimp larva

    Barnacles don’t encrust only rocks. To a barnacle, a whale would seem like a gigantic mobile rock. Not surprisingly, some barnacles make their home on the surface of whales, and there are species of barnacle who live nowhere else. Others ride on crabs, and some of them, especially Sacculina, evolved into the most extreme examples of divergence from normal crustacean form. They moved, in evolutionary time, from the outside of the crabs to the inside, and became internal parasites bearing no apparent resemblance to a barnacle – or even any kind of animal. Parasites often evolve in a direction that could fairly be called degeneration, and Sacculina is an extreme example of this. I shall return to it in the final chapter.

    There are many groups of animals that I could have chosen to illustrate evolutionary divergence and variation on a theme. Fish and crustaceans do it perhaps more spectacularly than any other groups, and I chose especially the larvae of crustaceans, partly because, living in the plankton as most of them do, they are less familiar than adult lobsters, crabs, and prawns. I regret that in this book I have been able to show only a small number of them. See the splendid Atlas of Crustacean Larvae, published by Johns Hopkins University Press, for the full and amazing range of diversity that these mesmerising little creatures display. Sir Thomas Browne (1605–82) was unaware of them when he wrote the following, about bees, ants, and spiders, but crustacean larvae might have moved him to even greater eloquence.

    Ruder heads stand amazed at those prodigious pieces of nature, Whales, Elephants, Dromedaries and Camels; these I confess, are the Colossus and Majestick pieces of her hand but in these narrow Engines there is more curious Mathematicks, and the civilitie of these little Citizens more neatly sets forth the wisdome of their Maker.

    7 In Living Memory

    The most recent scripts, those in the top layer of the palimpsest, are those written during the animal’s own lifetime. I said that the genes inherited from the past can be seen as predicting the world into which an animal is going to be born. But genes can predict only in a general way. Conditions change on a timescale faster than the generational turnover with which natural selection can cope. Many details are usefully filled in during the animal’s own lifetime, mostly by memories stored in the brain, as opposed to the genetic book of the dead, in which ‘memories’ are written in DNA. Like gene pools, brains store information about the animal’s world, information that can be used to predict the future, and hence aid survival in that world. But brains can do it on a swifter timescale. Strictly speaking, where learning – indeed, this whole chapter – is concerned, we are talking not about the genetic book of the dead but about the non-genetic book of the living. However, as we shall see, naturally selected genes from the past prime the brain to learn certain things rather than others.

    The gene pool of a species is sculpted by the chisels of natural selection, with the result that an individual, programmed as it is by a sample of genes drawn from the well-carved gene pool, tends to be good at surviving in environments that did the carving: that is, an averaged set of ancestral environments. An important part of the body’s equipment for survival is the brain. The brain – its lobes and crevices, its white matter and grey matter, its bewildering byways of nerve cells and highways of nerve trunks – is itself sculpted by natural selection of ancestral genes. The brain is subsequently changed further by learning, during the animal’s lifetime, in such a way as to improve yet further the animal’s survival. ‘Sculpting’ might not seem so appropriate a word here. But the analogy between learning and natural selection has impressed many, not least BF Skinner, a leading – if controversial – authority on the learning process.

    Skinner specialised in the kind of learning called operant conditioning, using a training apparatus that later became known as the Skinner Box. It’s a cage with an electrically operated food dispenser. An animal, often a rat or a pigeon, gets used to the idea that food sometimes appears in the automatic dispenser. Built into the wall of the box is a pressable lever or a peckable key. Pressing the lever or key causes food to be delivered, not every time but on some automatically scheduled fraction of occasions. Animals learn to operate the device to their advantage. Skinner and his associates have developed an elaborate science of so-called operant conditioning or reinforcement learning. Skinner Boxes have been adapted to a wide variety of animals. I once saw a film of a rotund gourmand, in a specially reinforced Skinner Box, noisily exercising the lever-bashing skill of his bulbous pink snout. I found it endearing, and I hope the pig enjoyed it as much as I enjoyed the spectacle.

    You can train an animal to do almost anything you like, by operant conditioning, and you don’t have to use the automated Skinner Box apparatus. Suppose you want to train your dog to ‘shake hands’, that is, politely raise his right front paw as if to be shaken. Skinner called the following technique ‘shaping’. You watch the animal, waiting until he spontaneously makes a move that you perceive as being slightly in the right direction: an incipient, tentative, upward movement of the right front paw, say. You then reward him with food. Or perhaps not with food but with a signal such as the sound of a ‘clicker’, which he has previously been taught to associate with a food reward. The clicker is known as a secondary reward or secondary reinforcement, where the food is the primary reward (primary reinforcement). You then wait until he moves his right front paw a little further in the right direction. Progressively, you ‘shape’ his behaviour closer and closer to the target you have chosen, in this case ‘shaking hands’. You can use the same shaping technique to teach a dog to do all manner of cute tricks, even useful ones like shutting the door when there’s a cold draught and you are too lazy to get out of your armchair. It is elaborations of the same shaping technique that erstwhile circus trainers employed to teach bears and lions to do undignified tricks.

    I think you can see the analogy between behaviour ‘shaping’ and Darwinian selection, the parallel that so appealed to Skinner and many others. Behaviour-shaping by reward and punishment is the equivalent of shaping the bodies of pedigree dogs by artificial selection – domestic breeding. The gene pools of pedigree cattle, sheep, and cats, of racehorses and greyhounds, pigs and pigeons, have been carefully sculpted by human breeders over many generations to improve running speed, milk or wool yield, or in the case of dogs, cats, and pigeons, aesthetic appeal according to various more-or-less bizarre standards. Darwin himself was an enthusiast of the pigeon fancy, and he devoted an early chapter of On the Origin of Species to the power of artificial selection to modify domestic animals and plants.

    Now, back to shaping in Skinner’s sense. The animal trainer has a particular end result in mind, such as handshaking in a dog. She waits for spontaneous ‘mutations’ (please note well the quotation marks) of behaviour thrown by an individual animal and selects which ones to reward. As a consequence of the reward, the chosen spontaneous variant is then ‘reproduced’ by the animal itself in the form of a repetition. Next, the trainer waits for a new ‘mutant’ (again please don’t ignore the quotation marks) extension of the desired behaviour. When the dog spontaneously goes a little further in the desired direction of the handshake, she rewards him again. And so on. By a careful regimen of selective rewards, the trainer shapes the dog’s behaviour progressively towards a desired end.

    The analogy with genetic selection is evident and was expounded by Skinner himself. But so far, the analogy is with artificial selection. How about natural selection? What role does reinforcement learning play in the wild, where there are no human trainers? Does the analogy with reward learning extend from artificial selection to natural selection. How does reward learning improve the animal’s survival?

    Darwin bridged the gap from domestic breeding to natural selection with his great insight that human breeders aren’t necessary. Human selective breeders – let’s call them gene pool sculptors – are replaced by natural sculptors: the survival of the fittest, differential survival in wild environments, differential success in attracting mates and vanquishing sexual rivals, differential parenting skills, differential success in passing on genes. And just as Darwin showed that we don’t need a human breeder, the analogy with learning does without a human trainer. With no human trainers, animals in the wild learn what’s good for them and shape their behaviour so as to improve their chances of survival.

    ‘Mutation’ consists of spontaneous trial actions that might be subject to ‘selection’ – i.e. reward or punishment. The rewards and punishments are doled out by nature’s own trainers. When a hen scratches the ground with her feet, the action has a good chance of uncovering food of some kind, perhaps a grub or a seed. And so ground-scratching is rewarded, and repeated. When a squirrel bites the kernel of a nut, it’s hard to crack unless held at a particular angle in the teeth. When the squirrel spontaneously discovers the right angle of attack, the nut cracks open, the squirrel is rewarded, the correct alignment of the teeth on the nut is remembered and repeated, and the next nut is cracked more quickly.

    Much depends on the rewards that nature doles out. Food is not the only reward that we can use, even in the lab. Once, for a research project that I needn’t go into, I wanted to train baby chickens to peck differently coloured keys in a Skinner Box. There were reasons not to use food as reward, so I used heat instead. The reward was a two-second blast from a heat lamp, which the chicks found agreeable, and they readily learned to peck keys for the heat reward. But now we need to face the question, what, in general, do we mean by ‘reward’? As Darwinians, we must expect that natural selection of genes is ultimately responsible for determining what an animal treats as rewarding. It’s not obvious what will be rewarding, however obvious it might seem to us because we are animals ourselves.

    We may define a reward as follows. If a random act by an animal is reliably followed by a particular sensation and if, in consequence, the animal tends to repeat the random act, then we recognise that sensation (presence of food or warmth or whatever it is) as a reward by definition. If a Skinner Box delivered not food or heat but an attractive and receptive member of the opposite sex, I have no doubt that it would – at least under some circumstances – fit the definition of a reward: an animal in the right hormonal condition would learn to press a key to obtain such a reward. A mother animal, cruelly deprived of her child, would learn to press a key to restore access. And the child would learn to press a key to obtain access to its lost mother. I know of no direct evidence for any of those guesses, nor for my conjecture that a beaver would treat access to branches, stones, and mud suitable for dam-building as a reward by the above definition. And a crow in the nesting season would define access to twigs as a reward. But as a Darwinian, in all those cases I make the prediction with a modicum of confidence.

    Brain scientists are able to implant electrodes painlessly in the brains of animals, through which they can stimulate the brain electrically. Normally they do this in order to investigate which parts of the brain control which behaviour patterns. The experimenter controls an animal’s behaviour by passing weak electric currents. Stimulate a chicken’s brain here, and the bird shows aggressive behaviour. Stimulate a rat’s brain there, and the rat lifts its right front paw. The neurologists James Olds and Peter Milner conceived a variant of the technique. They handed the switch over to the rat. By pressing a lever, rats were able to stimulate their own brain. Olds and Milner discovered particular areas of the brain where self-stimulation by rats was highly rewarding: the rats appeared to become addicted to lever-pressing. Not only did electrical stimulation in these brain regions fulfil the definition of a reward. It did so in a big way. When the electrodes were inserted in these so-called pleasure centres, rats would obsessively press the switch, to the extent of unfortunately neglecting other vital activities. They would sometimes press the lever at a rate of 7,000 presses per hour, would ignore food and receptive members of the opposite sex and go for the lever instead, would run across a grid delivering electric shocks in order to get at the lever. They would press the lever continually for twenty-four hours until the experimenters removed them for fear they’d die of starvation. The experiments have been repeated on humans with similar results. The difference is that humans could verbalise what it felt like:

    A sudden feeling of great, great calm … like when it’s been winter, and you have just had enough of the cold, and you go outside and discover the first little shoots and know that spring is finally coming.

    Another woman (and you have to wonder whether the experiment was approved by an ethics committee)

    quickly discovered that there was something erotic about the stimulation, and it turned out that it was really good when she turned it up almost to full power and continued to push on her little button again and again … she often ignored personal needs and hygiene in favor of whole days spent on electrical self-stimulation.

    Rat addict

    It seems plausible that natural selection has wired up animal brains in such a way that external stimuli or situations that are good for the animal (which will vary from species to species) are internally connected to the ‘pleasure centres’ discovered by Olds and Milner.

    Punishment is the opposite of reward. If an action is reliably followed by a stimulus X and, as a consequence, the animal becomes less likely to repeat the action, then X is defined as a punishment. In the laboratory, psychologists sometimes use electric shock as punishment. More humanely (I guess) they use a ‘time out’ – an interval during which the animal is denied access to reward. Dog trainers (the practice is frowned upon by many experts, rightly in my opinion) sometimes smack an animal as punishment. When I was at boarding school (and this practice is now not only frowned upon but illegal) my friends and I were from time to time caned by the headmaster, hard enough (astonishing as it now seems) to leave bruises that took weeks to heal (and were admired at bath-time like battle scars). What my offences were I have now forgotten, but I’m sure I didn’t forget while I was still at the school and within range of Slim Jim and Big Ben, the two canes in the headmaster’s quiver. My probability of repeating the offence undoubtedly decreased. Therefore, beatings were punishments by definition, as well as by the intention of the headmaster.

    In nature, bodily injury is perceived as painful. If an action is followed by pain, the probability of repeating that action goes down. Not only is that how we define punishment: it also explains what pain is for, in the Darwinian sense. Injury often presages death and hence failure to reproduce. Therefore, the nervous system defines bodily injury as painful.

    Sometimes pain is endured when offset by reward. We’ve already seen that rats will endure painful electric shock to get to the self-stimulation lever. The punishment of a bee sting may be offset by the reward of honey. The taste of honey is such an intense reward that many animals, including bears, honey badgers, raccoons, and human hunter-gatherers, are prepared to endure the pain for the sake of it. Rewards and punishments trade off against each other, just as mutually opposing natural selection pressures trade off against each other.

    The Darwinian interpretation of pain as a warning not to repeat the preceding action has ethical implications. In our treatment of non-human animals, on farms and hunting fields, in slaughterhouses and bullrings, we are apt to assume that their capacity to suffer is less than ours. Are they not less intelligent than we are? Surely this means they feel pain, if at all, less acutely than us? But why should we assume that? Pain is not the kind of thing you need intelligence to experience.

    The capacity to feel pain has been built into nervous systems as a warning, an aid to learning not to repeat actions that caused bodily damage and might next time lead to death. So, if a species is less intelligent, might its pain need to be more agonising, rather than less? Shouldn’t humans, being cleverer, get away with less painful pain in order to learn not to repeat the self-harming action? A clever animal, you might think, could get away with a mild warning, ‘Er, probably a good idea not to do that again, don’t you think?’ Whereas a less intelligent animal would need the sort of dire warning that only excruciating pain can deliver. How should this affect our attitude towards slaughterhouses and agricultural husbandry? Should we not, at very least, give our animal victims the benefit of the doubt? It’s a thought, to put it at its mildest!

    Rewards and punishments, pleasure and pain, are so familiar and obvious to us as human animals that you probably wonder why I am labouring the topic in this chapter. Here is where things start to become less obvious and more interesting. The brain’s choice of what shall constitute reward and what punishment is not fixed in stone. It is ultimately determined by genetic natural selection. Animals come into the world equipped with genetically granted definitions of reward and punishment. These definitions have been made by natural selection of ancestral genes. Any sensation associated with an increased probability of death will become defined as painful. A dislocated limb in the wild dramatically increases the probability of death. And it is intensely painful, as I recently and very vocally testified, all the way to the hospital. It has certainly made me take great care to avoid risking a repeat. Copulation increases the probability of reproduction, and genetic selection has consequently made the accompanying sensations pleasurable – which means rewarding. It has been suggested, with support from rat experiments and from the self-stimulating woman mentioned above, that sexual pleasure is directly linked to the ‘pleasure centres’ discovered by Olds and his colleagues. Presumably other sensations, too, could be so linked by natural selection.

    I conjecture that by artificial selection you could breed a race of pigeons who enjoy listening to Mozart but dislike Stravinsky. And vice versa. After many generations of selective breeding, perhaps spread over several human lifetimes, the birds would be genetically equipped with a definition of reward such that they would learn to peck a key that caused a recording of Mozart to be played, and would learn to peck a key that caused a recording of Stravinsky to be switched off. And of course, the experiment would be incomplete unless we also bred a line of pigeons who treated Mozart as punishment and Stravinsky as reward. Let’s not get pedantic as to whether it is really Mozart that they’d treat as rewarding. The learned preference would probably generalise from Mozart to Haydn! The only point I am trying to make is that the definitions of what is rewarding and what is punishing are not carved in stone. They are carved in the gene pool and therefore potentially changeable by selection.

    As a corollary, I conjecture that, by artificial selection, you could (though I wouldn’t wish to, and it might take an unconscionable number of generations) breed a race of animals who regarded what had previously been pain as rewarding. By definition, it would no longer be pain! It would be cruel to release them into their species’ natural environment because, of course, they would be unfitted to survive there – that’s the whole point. But the mere fact that they enjoy what normal members of their species would call pain is not cruel – because, however hard it is for us to imagine, at least within the confines of my thought experiment, they enjoy it! Anyway, the more interesting conclusion is that, in a state of nature, it is natural selection that determines what is reward and what is punishment. My thought experiment was devised to dramatise that conclusion.

    Experimental psychologists have long known that you can train an animal to treat as a reward something that previously had neutral value for the animal. As mentioned above, it’s called secondary reinforcement, and an example is the clicker used by dog trainers. But secondary reinforcement is not what I’m talking about here, and I really want to emphasise that. I’m not talking about secondary reinforcement, but about genetically changing the very definition of what constitutes primary reinforcement. I conjecture that we could achieve it by breeding, as opposed to training. I called it a conjecture because the experiment has not, as far as I know, been done. I’m now talking about selectively breeding animals in such a way as to change their own genetically instilled definition of what constitutes a primary reward in training. To repeat my suggestion above, I predict that by artificial selection you could in principle breed a race of animals who would treat bodily injury as rewarding.

    Douglas Adams carried the point to a wonderful comedic reductio in The Restaurant at the End of the Universe. Zaphod Beeblebrox’s table was approached by a large bovine creature, who announced himself as the dish of the day. He explained that the ethical problem of eating animals had been solved by breeding a species that wanted to be eaten and was capable of saying so. ‘Something off the shoulder, perhaps, braised in a white wine sauce?’

    Birds don’t naturally listen to human music, so my Mozart/Stravinsky flight of fancy may seem implausible. But do they have a music of their own? A respected ornithologist and philosopher named Charles Hartshorne suggested that we should regard birdsong as music, appreciated aesthetically by the birds themselves. He may not have been wrong, as I shall soon argue.

    The role of learning and genes in the development of birdsong has been intensively studied, especially by WH Thorpe, Peter Marler, and their colleagues and students. Many birds learn to imitate the song of their father or other members of their own species. Spectacular feats of mimicry by the likes of mynahs and lyre birds are an extreme. In addition to mimicking other species such as kookaburras (‘laughing jackass’), lyre birds have been recorded by David Attenborough giving remarkably convincing imitations of car alarms, camera shutters (with or without a motor drive), the chainsaws of lumberjacks and the mixed noises of a building site. I have even heard it said, but have failed to verify it, that lyre birds can distinctly mimic Nikon versus Canon camera shutters. Such virtuoso mimics incorporate an amazing variety of such sounds in an ample repertoire.

    This raises the question of why many songbirds have large repertoires in the first place. Individual male nightingales can sport more than 150 recognisably distinct songs. Admittedly that’s an extreme, but the general phenomenon of song repertoires demands an explanation. Given that song serves to deter rivals and attract mates, why not stick to one song? Why switch between alternatives? Several hypotheses have been proposed. I’ll mention just my favourite, the ‘Beau Geste’ hypothesis of John Krebs.

    In the adventure yarn of that name by PC Wren, an outnumbered unit of the French Foreign Legion was beleaguered in a desert fort, and the commander beat off the opposing force with a spectacular bluff.

    As each man fell, throughout that long and awful day, [the commander] had propped him up, wounded or dead, set the rifle in its place, fired it, and bluffed the Arabs that every wall and every embrasure and loophole of every wall was fully manned.

    Krebs’s hypothesis is that the bird with a large repertoire is pretending his territory is already occupied to the full. He is, as it were, mimicking the sounds that would emerge from an area if it were already overpopulated with too many members of his species. This deters rivals from attempting to set up their territory in the area. The more densely populated an area is, the less will it benefit an individual to settle there. Above a certain critical density, it pays an individual to leave and seek territory elsewhere, even an otherwise inferior territory. So, by pretending to be many nightingales, an individual nightingale seeks to persuade others to find a different place to set up his territory. In the case of lyre birds, the sound of a chainsaw is just another addition to the repertoire, the size of which conveys the message: ‘Go away, there’s no future for you here, the place is fully occupied.’

    Virtuoso impressionists like lyre birds, mynahs, parrots, and starlings are outliers. Probably they are just manifesting, in extreme form, the normal way young birds learn their species song – imitating their fathers or other species members. The point of learning the correct species song is to attract mates and intimidate rivals. And now we return to our discussion of the definition of a reward: how natural selection defines what will be treated as reward and what punishment.

    In an experiment by JA Mulligan, three American song sparrows (Melospiza melodia) were reared by canaries in a soundproof room so that they never heard the song of a song sparrow. When they grew up, all three produced songs that were indistinguishable from those of typical wild song sparrows. This shows that song sparrow song is coded in the genes. But it is also learned. In the following special sense. Young song sparrows teach themselves to sing, with reference to a built-in template, a genetically installed idea of what their song ought to sound like.

    What’s the evidence for this? It is possible surgically, under anaesthetic and I trust painlessly, to deafen birds. This has been done, with both song sparrows and the related white-crowned sparrows, Zonotrichia leucophrys. If birds of either species are deafened as adults, they continue to sing almost normally: they don’t need to hear themselves sing. As adults, that is. If, however, they are deafened when three months old, too young to sing, their song when they reach adulthood is a mess, bearing little resemblance to the correct song. On the template hypothesis, this is because they have to teach themselves to sing, matching their random efforts against the template of correct song for the species. There’s an interesting difference between the two species. Whereas the song sparrow never needs to hear another bird sing – its template is innate – the white-crowned sparrow makes a ‘recording’ of white-crowned sparrow song, early in life, long before it starts to develop its own song. Once the template is in place, whether innate as in the song sparrow or recorded as in the white-crowned, the nestlings then use it to teach themselves to sing.

    Doves and chickens push this to an extreme: they don’t need to listen to themselves, ever. Ring dove (also known as barbary dove) squabs, who have been surgically rendered completely deaf, later develop vocalisations that are just like those of intact doves. That the behaviour is innate is further testified by the fact that hybrid doves coo in a way that is intermediate between the parental species’ coos. As we shall see in Chapter 9, young crickets (nymphs), before they achieve their final moult to become adults, can artificially be induced to display nerve-firing patterns identical to their species song patterns, even though nymphs never sing. And hybrid crickets have a song that is intermediate between the two parental species.

    But I want to get back to the sparrows. As we have seen, they teach themselves to sing by listening to their own random babblings, and repeating those fragments that are rewarded by a match to a template – whether the template is genetically built-in (song sparrow), or a ‘recording’ (white-crowned sparrow) remembered from infancy. Did you notice this means that a sound that matches the template is a reward by our definition? We have identified a new kind of reward to add to food and warmth. The song template is a much more specialised kind of reward. It’s easy to see how food (relief of hunger pangs) and warmth (relief of cold discomfort) would be general, non-specific rewards. Indeed, psychologists of the early twentieth century delighted in reducing all rewards to one simple formula, which they called ‘drive reduction’. Hunger and thirst were seen as examples of ‘drives’, analogous to forces driving the animal. A particular pattern of sounds, complicated and characteristic enough to be recognised, by ornithologists and birds alike, as belonging to one species and one species alone, is a reward of a very different kind from generalised drive-reduction. And, I would personally add, of a much more interesting kind. As a student I tried to read up that rat psychology literature, and I’m sorry to admit that I found it rather boring compared to the zoology literature on wild animals.

    The ethologist Keith Nelson once gave a conference talk with the title ‘Is bird song music? Well, then, is it language? Well, then, what the hell is it?’ It isn’t language: not rich enough in information, and it doesn’t seem to be grammatical in the sense of possessing a hierarchical nesting of ‘clauses’ enclosing ‘sub-clauses’. Hartshorne, as I mentioned previously, thought it was music, and I think there’s a sense in which he was right. I believe we can make a case that birds have an aesthetic sense, which responds to song. I think there’s also a sense in which it works like a drug. In what follows, I am drawing on a pair of papers that I wrote jointly with John Krebs some years ago, about animal signals generally. We were critically responding to a then prevalent idea that animal signals function to convey useful information from the sender to the recipient, for the mutual benefit of both. For example, ‘I am a male of the species Luscinia megarhynchos, I am in breeding condition, and I have a territory over here.’ The gene’s-eye view of evolution, then quite novel, did not sit well with ‘mutual benefit’. Krebs and I followed the gene’s-eye view to a more cynical view of animal signals, substituting the idea of manipulation of the receiver by the signaller. ‘You are a female of the species Luscinia megarhynchos. COME HITHER! COME HITHER! COME HITHER!’

    When an animal seeks to manipulate an inanimate object, it has only one recourse – physical power … But when the object it seeks to manipulate is itself another live animal there is an alternative way. It can exploit the senses and muscles of the animal it is trying to control … A male cricket does not physically roll a female along the ground and into his burrow. He sits and sings, and the female comes to him under her own power.

    Now, you might object, surely the female should respond to male song in this way only if it benefits her. But we regarded the relationship between signaller and signallee as an arms race, run in evolutionary time. Perhaps she does put up some sales-resistance. But that provokes the male, on the other side of the arms race, to up the ante: increase the intensity of his signal. And now we come to another strand to the argument, which Krebs and I advanced in the second of our two papers. This concerns what we called ‘mind-reading’. Any animal in a social encounter can benefit itself by predicting (behaving as if predicting) the behaviour of another. There are all kinds of give-away clues. If a male dog raises his hackles, this is an involuntary indicator of an aggressive mood. Responding appropriately to such give-aways is what we dubbed ‘mind-reading’. Humans can become quite adept at mind-reading in this sense, making use of such cues as shifty eyes or fidgety fingers. And now, to bring the argument full circle, an animal who is the victim of a mind-reader can exploit the fact of being mind-read, in such a way as to render inappropriate the very word ‘victim’. A male, for instance, might manipulate a female by ‘feeding’ her mind-reading machinery, perhaps with deceptive cues. This is just to say that where victimhood is concerned, manipulation is not a one-way street. Mind-reading turns the tables. And then manipulation potentially turns them back again, against the mind-reader.

    On this view animal signals, to repeat, evolve as an arms race between mind-reading and manipulation, an arms race between salesmanship and sales-resistance. In those cases where the sender benefits from being mind-read and the receiver benefits from being manipulated, we suggested that the ensuing signal should shrink to a ‘conspiratorial whisper’. Why escalate a signal when there is no push-back. Conversely – the opposite of a conspiratorial whisper – loud, conspicuous, vivid signals will arise where the recipient does not ‘want’ to be manipulated. In such cases the arms race, in evolutionary time, escalates towards exaggeration on the part of the sender, to combat increased ‘sales-resistance’ on the part of the receiver.

    Why, you might wonder, should there ever be ‘sales-resistance’? It’s most easily seen in the case of the arms race between the sexes. You might think it’s always a good idea for males and females to get together and coordinate. You’d be wrong, and for an interesting reason. Ultimately because sperms are smaller and more numerous (‘cheaper’) than eggs, females need to be choosier than males. A male is more likely to ‘want’ to mate with a female than the female will ‘want’ to mate with him. Females pay a higher cost if they mate with the wrong male than males pay if they mate with the wrong female. In extreme cases, there is no such thing as the wrong female. Hence males are more likely to escalate salesmanship when trying to persuade females. And females more likely to favour sales-resistance. Where you see high-amplitude signals – bright colours, loud sounds – that means there’s probably sales-resistance. Where there’s no sales-resistance, signals are likely to sink to a conspiratorial whisper. Conspicuous signals are costly, if not in energy, in risk of attracting predators or alerting prey.

    I’ve been a bit terse in condensing two full-sized papers into four paragraphs. It should become clearer when I now apply it to birdsong. Birdsong is too loud and conspicuous to be a ‘conspiratorial whisper’, so let’s go for the other extreme: increased sales-resistance fomenting exaggerated efforts to manipulate. Is birdsong an attempt to manipulate the behaviour of females and other males: an attempt to change their behaviour to the advantage of the singer?

    If biologists wish to manipulate the behaviour of a bird, what can they do? This chapter has already introduced one possibility that birds themselves, unfortunately for them, cannot do: electrical stimulation of another’s brain through implanted electrodes. The Canadian surgeon Wilder Penfield pioneered the technique on human patients whose brains were undergoing surgery for other reasons. By exploring different parts of the cerebral cortex, he was able to jerk specific muscles into action like a puppeteer pulling strings. When he drew a map of which parts of the brain pulled which muscles, it looked like a caricature of a human body, the so-called ‘motor homunculus’ (there’s also a ‘sensory homunculus’ on the left-hand side of the picture, which looks rather similar). The grotesque exaggeration of the homunculus’s hand goes some way towards explaining the formidable skill of a concert pianist, for example. And the large brain area given over to the lips and tongue is no doubt related to speech. The German biologist Erich von Holst, working with chickens in a deeper part of the brain, the brain stem, was able to control what might be called the bird’s ‘mood’ or ‘motivation’, resulting in changes to the observed behaviour, including ‘guiding hen to nest’ and ‘uttering call warning of predator’. I repeat that these operations are painless, by the way. There are no pain receptor nerves in the brain.

    Now, a male nightingale might well ‘wish’ he could implant electrodes in a female’s brain and control her behaviour like a puppet. He can’t do that, he’s no von Holst, and he has no electrodes. But he can sing. Might song have something like the same manipulative effect? No doubt he might benefit, if only he could inject hormones into her bloodstream. Again, he can’t literally do that. But evidence on ring doves and canaries suggests that birds can do something close to it. Male doves vigorously court females with a display called the bow-coo. The bow is a characteristic movement resembling an un­usually obsequious human bow, and it is accompanied by an equally characteristic coo, consisting of a staccato note followed by a purring glissando. A week’s exposure to a bow-cooing male reliably causes massive growth of a female’s ovary and oviduct, with accompanying changes in sexual, nest-building, and incubation behaviour. This was shown by the American animal psychologist Daniel S Lehrman. Lehrman went on to show that the behaviour of male ring doves has a direct effect on the hormones circulating in female bloodstreams. Parallel work by Robert Hinde and Elizabeth Steel in Cambridge on nest-building behaviour in female canaries showed the same thing.

    The ring dove and canary type experiments have not been done on nightingales, but it probably is generally the case that male birdsong changes the hormonal state of females. Male song manipulates female behaviour, as though the male had the power to inject her with chemicals, presumably nightingales no less than other species.

    My heart aches, and a drowsy numbness pains

    My sense, as though of hemlock I had drunk,

    Or emptied some dull opiate to the drains

    One minute past, and Lethe-wards had sunk.

    John Keats was not a bird, but his brain was a vertebrate brain like a female nightingale’s. The male nightingale song drugged him – almost to death in his poetic fancy. If it can so intoxicate the mammal Keats, might it not have a yet more powerful effect on the vertebrate brain that it was designed to beguile, the brain of another nightingale? To answer yes, we hardly need the testimony of the dove and canary experiments. I believe natural selection has shaped the male nightingale’s song, perfecting its narcotic power to manipulate the behaviour of a female, presumably by causing her to secrete hormones.

    But now, let’s return to learning, and the deafening experiments. The evidence shows that young white-crowned sparrows and song sparrows teach themselves to sing with reference to a template. Young white-crowneds need to hear song in order to make their ‘recording’ of the template. But any old song won’t do. They have to hear the song of their own species. This shows that, even when the template is recorded, there is an innate component to it, built in by the genes. And in the case of the song sparrow, it doesn’t even need to be recorded.

    I suggested above that birdsong might be appreciated as music, enjoyed aesthetically by the birds themselves. We are now in a position to spell out the argument. The male teaches himself to sing by comparing his ‘random’ burblings against a template. The template serves as reward, positively reinforcing those random attempts that happen to match it. Reflect, now, that the male songster has a brain much like the female he later hopes to manipulate. When he teaches himself to sing, he is finding out which fragments of song appeal to a bird of his own species (himself … but later, a female). What is that, if not the employment of aesthetic judgment?

    Burble. I like it (conforms to my template). Repeat it.

    Burble warble. Ooooh, that’s even better. I like that very much.

    It really turns me on. Repeat that too. YES!

    What turns him on will probably turn a female on too, for they are, after all, members of the same species with the same typical brain of the species. At the end of the developmental period when the final adult song has been perfected, it will be equally beguiling to the singer himself and his female target. He learns to sing whichever phrases turn him on. There seems no powerful reason to deny that both enjoy an aesthetic experience – as did John Keats when he heard the nightingale.

    We’ve come a long way from the idea of reward as generalised ‘drive reduction’. And we’ve arrived at what I think is a much more interesting place. The lesson of these experiments on birdsong is that reward can be a highly specific stimulus, or stimulus-complex, ultimately laid down by genes: what Konrad Lorenz, one of the fathers of ethology, dubbed the ‘Innate Schoolmarm’.

    If this is right, we should predict the following result in a Skinner Box. A young song sparrow who has never heard song should learn to peck a key that yields the sound of song sparrow, but no other species’ song. That hasn’t been done, but various similar experiments have. Joan Stevenson found that chaffinches preferred to settle on a perch attached to a switch that turned on chaffinch song. However, the control sound for comparison was white noise, not the song of another species. Her chaffinches, moreover, were not naive but wild caught. Her method was adopted by Braaten and Reynolds with hand-reared, naive zebra finches and using starling song for comparison instead of white noise. They showed a clear preference for perches that played zebra finch song rather than starling song. It would be nice to do a big experiment with, say, naive young songbirds of six different species, with six perches, each perch playing one of the six songs. We should predict that each species should learn to sit on the perch that played their own species song. It wouldn’t be an easy experiment. Hand-rearing baby songbirds is hard work. A neat design might be to give each baby to foster parents of one of the other six species.

    The template of song sparrows is innate. The ‘recorded’ template of young white-crowned sparrows, laid down early in life before they start singing, looks like the kind of learning called ‘imprinting’, most closely associated with Konrad Lorenz and his pursuing geese. Imprinting was first recognised in nidifugous baby birds.

    Nidifugous, from the Latin, means ‘fleeing the nest’. Nidifugous hatchlings start life equipped with warm and protective downy feathers and well-coordinated limbs. Examples are ducklings, goslings, moorhen chicks, chicken chicks, ground-nesting species generally. Within hours of hatching, as soon as their feathers are dry, nidifugous chicks are up and about, walking competently, looking around alertly, pecking at food prospects, and dogging parental footsteps. The opposite of nidifugous is nidicolous. All songbirds are nidicolous. Nidicolous bird species typically nest in trees. The babies are helpless, naked, incapable of walking (they’re in a nest balanced up a tree, where would they walk to?), incapable of feeding themselves but with a huge gaping beak, a begging organ into which their parents tirelessly shovel food. Many seabirds such as gulls are nidifugous in that they hatch with downy feathers and don’t gape for food. But they are dependent on the parents bringing food that they regurgitate for the chicks.

    Mammals, too, have their own equivalent to nidifugous (think gambolling lambs; and wildebeest calves must follow the herd on the day they’re born) and nidicolous (baby mice are hairless and helpless). Man is a nidicolous species. Our babies are almost completely helpless. There has been an evolutionary trade-off between a pressure towards a bigger brain, conflicting with the difficulty of being born imposed by a large head. The result was to push our babies towards being born earlier, before the head became insufferably (for the mother) large to push out. The result was to make us even more helplessly nidicolous than other ape species.

    Nidifugous species, both mammals and birds, are in danger if they become separated from their parent(s), and this is where imprinting comes in. Nidifugous babies, as soon as they hatch, do something equivalent to taking a mental photograph of the first large moving object they see. They then follow it about, at first very closely, then venturing gradually further away as they grow older. The first moving object they see is usually their parent, so the system works fine in nature. Goslings hatched in an incubator, however, tend to imprint on a human carer, for example Konrad Lorenz.

    The idea of imprinting in mammals is imprinted in child minds by the nursery rhyme ‘Mary had a little lamb’ (Everywhere that Mary went / The lamb was sure to go). Imprinted animals, both birds and mammals, often retain their mental photograph into adulthood and attempt to mate with creatures (such as humans) who resemble it. One of the reasons zoos have difficulty with breeding is that the frustrated animals hanker after their keepers.

    Imprinting may or may not be a special kind of learning. Some say it’s just a special case of ordinary learning. It’s controversial. Either way, it’s a nice example of a recent, ‘top layer’ palimpsest script. The genes could have equipped the animal with a built-in image or specification of precisely what to follow, what to mate with, what song to sing. Instead, they equip the animal with rules for colouring in the details.

    Reinforcement learning and imprinting are not the only kinds of learning by which an animal, during its own lifetime, supplements the inherited ancestral wisdom. Elephants make important use of traditional knowledge. The brains of old matriarchs contain a wealth of knowledge about such vital matters as where water can be found. Young chimpanzees learn from their elders skills such as using a stone as a hammer to crack nuts, and preparing a twig to probe termite nests. The handover from adept to apprentice is a kind of inheritance, but it is memetic, not genetic. This is why these skills are practised in particular local areas and not others. The skill of sweet potato washing in Japanese macaques is another example. So is pecking through the foil or cardboard lids of milk bottles by British tits, in the days when milk was delivered daily on the doorstep. In this case, the skill was seen to radiate geographically outwards from focal points, in the manner of an epidemic.

    What else equips animals to improve on their genetic endowment, apart from learning? Perhaps the most important example of a ‘memory’ not mediated by the brain is the immune system. Without it, none of us would have survived our first infection. Immunology is a huge subject, too big for me to do it justice in this book. I’ll say a few words, just enough to make the point that genes don’t attempt the impossible task of equipping bodies with information about all the bacteria, viruses, and other pathogens that they might ever encounter. Instead, genes furnish us with tools for ‘remembering’ past infections, forearming us against future infection. We carry not just the genetic book of the dead (the ancestral past) but a special molecular book in which is written a continually updated medical record of our infections and how we dealt with them.

    Geese imprinted on Konrad Lorenz. A special kind of learning, which casts light on the mind of birds

    Bacteria, too, suffer from infection – by viruses called bacteriophages, or phages for short – and they have their own immune system, which is rather different from ours. When a bacterium is infected, it stores a copy of part of the viral DNA within its own single circular chromosome. These copies have been called ‘mug shots’ of criminal viruses. Each bacterium sets aside a portion of its circular chromosome as a kind of library of these mug shots. The mug shots will later be used to apprehend criminals in the form of the same or related viruses making a reappearance. The bacterium makes RNA copies of the mug shots. These RNA images of ‘criminal’ DNA are circulated through the interior of the bacterial cell. If a virus of a familiar type should invade, the appropriate mug shot RNA binds to it, and special protein enzymes cut up the joined pair, rendering the virus harmless.

    The bacterium needs a way to label the mug shots, so they aren’t confused with its own DNA. They are labelled by the presence of adjacent nonsense sequences of DNA, which are palindromes called CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats. Each time a bacterium is assailed by a new kind of virus, another CRISPR-flanked mug shot is added to the CRISPR region of the chromosome. It’s another story, but CRISPR has become famous because scientists have discovered a way in which the bacterial skill can be borrowed for the human purpose of editing genomes.

    The vertebrate immune system works rather differently. It’s more complicated but we too have a ‘memory’ of pathogens of the past. Our immune system is then able to mount a rapid response, should any of those old enemies venture to return. This is why those of us who have had mumps or measles can safely mingle with victims, confident that we shall not get the disease a second time. And the enormous boon of vaccination works by tricking the immune system into building up a false memory, normally by injecting either a killed strain or a weakened strain of the pathogen.

    The Covid-19 pandemic was largely stopped in its tracks, saving thousands of lives, by a wonderful new type of vaccine, the mRNA vaccine. The role of mRNA (messenger RNA) is to convey coded messages from DNA in the nucleus to where proteins are made to the code’s specification. Now, here’s how mRNA vaccines work. Instead of injecting a killed or weakened strain of the dangerous virus, a harmless protein in its jacket is first sequenced. The genetic code appropriate to that protein is then written into mRNA. The mRNA does its thing, which is to code the synthesis of protein – in this case the harmless jacket protein of the Covid virus. And then, the immune system does its thing and attacks the virus if it enters the body, recognising it by the protein in its jacket.

    What is especially interesting, in pursuit of our analogy between learning and evolution, is that the vertebrate immune system’s ‘memory’ (unlike the bacterial one) works in a kind of Darwinian way, by an internal version of natural selection, within the body. But that is another story, beyond our scope here.

    The immune system, and the brain, are the two rich data banks in which entries are written during the animal’s own lifetime, to update the genetic book of the dead, or ‘colour in the details’. More minor examples need mentioning for the sake of completeness. Darkening of the skin is a kind of memory of lying out in the sun. It provides useful screening against the damage that the sun’s rays, especially ultraviolet, can wreak, for example in causing skin cancers. This is a case where genetic and post-genetic scripts both contribute. People whose ancestors have lived many generations in fierce tropical sun tend to be born with dark skin, for example native Australians, many Africans, and people from the south of the Indian sub-continent. By contrast, those whose ancestors have lived many generations at higher latitudes are at risk from too little sun. They tend to lack Vitamin D and hence are prone to rickets. Genetic natural selection at high latitudes has therefore favoured lighter skins. That’s all written in the genetic book of the dead. But this chapter is about palimpsest scripts written after birth, and here is where suntan comes in. Browning in the sun, a post-birth ‘colouring-in’, achieves in light-skinned, high-latitude people a temporary approach towards what is written into the genome of tropical peoples. You could think of the two as short-term memory and long-term memory of sunlight.

    Another example is acclimatisation to high altitude. The higher you go, the thinner the atmosphere, where lack of oxygen causes ‘mountain sickness’, whose symptoms include headaches, dizziness, nausea, and complications of pregnancy. People whose ancestors have long lived at high altitude have evolved genetic adaptations such as elevated haemoglobin levels in the blood. Those ‘memories’ of ancestral natural selection are written in the genetic book of the dead. Interestingly, the details differ between Andean and Himalayan peoples, not surprisingly because they have independently, over 10,000 years or more, adapted to a lack of oxygen in mountainous regions widely separated from each other. There are several routes to acclimatisation, and it is not surprising that different mountain peoples have followed different evolutionary paths.

    Once again, ancestral scripts can be over-written during the animal’s own lifetime. Lowland people who move to high areas can acclimatise. In 1968, when the Olympic Games were held in Mexico City, national teams deliberately arrived early, in order to train at the high altitude (2,200 metres, more than 7,000 feet) of the Anahuac Plateau. Changes that develop during a period of weeks living at high altitude are written into the post-birth palimpsest layer. As with skin colour, they mimic the older, gene-authored scripts.

    Talking of skin colour, the ‘paintings’ of Chapter 2 were all done by ancestral genes, replaying ancestral worlds. But there are some animals who can repaint their skin on the fly, to match the changing background they happen to be sitting on at any given moment. This is another example of the non-genetic book of the living. Chameleons are proverbial, but they aren’t the top virtuosi when it comes to impromptu skin artistry. Flatfish such as plaice can change not just their colour but also their patterning. The one above is capable of changing its colour to match the yellow background on which it now sits. But you only have to take one look at it to read it as a detailed description of the lighter bottom it has just moved off, with its mottled pattern projected by shimmering light from surface ripples.

    Even flatfish are upstaged by octopuses and other cephalopod molluscs, who have perfected the art of dynamic cross-dressing to an astonishing extent. And they, uniquely in the animal kingdom, do their changes at high speed. Roger Hanlon, while diving off Grand Cayman, saw a clump of brown seaweed suddenly turn ghostly white and swim rapidly away in a puff of sepia smoke. It was an octopus, with a perfect painting of brown seaweed all over its skin. As Hanlon approached, an emergency order from the octopus brain twitched the muscles controlling the tiny bags of pigment peppering the skin. Instantaneously, the whole surface changed colour from perfect camouflage (trying not to be noticed by predators) to scary white (startling would-be predators). Finally, the puff of dark brown ink deflects the attention of would-be predators away from the fleeing octopus.

    Thaumoctopus mimicus

    Sea snake

    Thaumoctopus mimicus

    Flounder

    Hanlon saw an octopus (upper right) in Indonesian waters, Thaumoctopus mimicus, who mimicked a flounder (lower right), not just its appearance but also its behaviour, stopping and starting in jerky glides over the sand surface. What’s the point? Hanlon is unsure, but he suspects it deceives predators who like to bite off a tentacle but cannot cope with a substantial flatfish. This octopus also can put on a show with its tentacles (upper left), making each one resemble a venomous sea snake (lower left) common in tropical waters. Cephalopods can even change their skin’s texture, ruffling up or puckering it into extraordinary shapes. A colleague once dramatised their other-world strangeness by beginning a lecture on Cephalopods: ‘These are the Martians.’

    The main thesis of this book is that the animal can be read as a description of much older, ancestral environments. This chapter has shown how further details are added, on top of the ancestral palimpsest scripts. Earlier chapters invoked a future scientist, SOF, presented with an animal and challenged to read its body and reconstruct the environments that shaped it. There, we spoke only of ancestral environments, described in the genomic database and its phenotypic manifestations. In this chapter we’ve seen how SOF could supplement her reading of ancestral environments, by additional readings of the more recent past, including the other two great databases that supplement the genes, namely the brain and the immune system. Today’s doctors can read your immune system database and reconstruct a moderately complete history of the infections you have suffered – or been vaccinated against. And if SOF could read what is written in the brain (a big if, she really would have to be a scientist of the future), she could reconstruct much detail of the animal’s past environments in its own lifetime.

    Experience, either literal experience stored in the brain as memories, disease experience, or genetic ‘experience’ sculpted into the genome by natural selection, enables an animal to predict (behave as if predicting) what will happen next. But there’s one more trick that the brain can pull off in order to foretell the future: simulation, or imagination. Human imagination is a much grander affair than this but, from the point of view of an animal’s survival, and our analogy between natural selection and learning, we could regard imagination as a kind of ‘vicarious trial and error’. Unfortunately, that particular phrase has been usurped by rat psychologists. A rat in a ‘maze’ (usually just a choice between turning left or right) will sometimes physically vacillate, looking left, right, left, right before finally making up its mind. This ‘VTE’ may be a special case of imagining alternative futures, but it’s probably safest if I reluctantly surrender the phrase itself to the rat-runners and not use it here. Instead, I’ll prefer an analogy with computer simulation: the animal’s brain simulates likely consequences of alternative actions internally, thereby sparing itself the dangers of trying them out externally in the real world.

    I said the human imagination is a much grander affair. It finds expression in art and literature. Words written by one person can call up an imagined scene in the brain of another. Gertrude’s lament for Ophelia can move a reader to tears four centuries after the poet’s death. Less ambitiously, let me ask you to imagine a baboon atop a steep cliff. Someone has balanced a plank over the edge of the cliff. Resting at the far end of the plank, over the abyss, is a bunch of bananas. Imagine them, yellow and tempting. The baboon is indeed tempted to venture out along the plank. However, his brain internally simulates the consequence, sees that his extra weight would topple the plank – imagines himself tumbling to his death. So he refrains.

    Let’s now imagine a range of brains faced with the banana on the plank. First, the genetic book of the dead can build in an innate fear of heights. I myself experience a tingling of the spine, which inhibits me from walking within a metre of the edge of a precipice such as the Cliffs of Moher in Western Ireland. This, even when there’s no wind and no reason to suppose that I would fall.

    The visual cliff

    A whole genre of experimentation, the so-called ‘visual cliff’ experiment, has been devised to investigate fear of heights. The baby in the picture is quite safe: there’s strong glass over the ‘cliff’. I recently visited one of the world’s tallest buildings where one could stand on toughened glass looking down on the street far below. Perfectly safe, and I watched others walk on the glass, but I avoided doing so myself. Irrational, but innate fears are hard to conquer. Perhaps an innate fear of heights is inherited from tree-climbing ancestors who survived because they possessed it. Not everyone succumbs, of course. These New York construction workers are enjoying a relaxed lunch with evident (though incomprehensible to me) nonchalance.

    Death by falling is the crudest route through which a fear of heights might be built into animals. Another way is by learning, reinforced by pain. Young baboons who fall down smaller cliffs are not killed, but they experience pain. Pain, as we’ve seen, is a warning: ‘Don’t do that again. Next time the cliff might be higher, and it will kill you.’ Pain is a kind of vicarious, relatively safe substitute for death. Pain stands in for death in the analogy between learning and natural selection.

    The ‘detour problem’

    But now, since you are human with a human power of imagination, you are probably simulating in your brain an unusually bright baboon. He sees himself, in his own imagination, pulling the plank carefully inwards, complete with bananas. Or reaching out with a stick and nudging the bananas along the plank towards him. Probably only highly evolved brains are capable of such simulations. Even dogs (above) perform surprisingly poorly on the so-called ‘detour problem’. But if he succeeds, this imaginative baboon risks no pain and doesn’t fall to his death but does it all by internal simulation. He simulates the fall in his imagination, and consequently refrains from venturing out along the plank. He then simulates the safe solution to the problem and gets the bananas.

    I need hardly say that internal simulation of dangerous futures is preferable to the actual actions. Provided, of course, that the simulation leads to accurate prediction. Aircraft designers find it cheaper and safer to test model wings in wind tunnels rather than actual wings on real aeroplanes. And even wind tunnel models are more expensive than computer simulations or analytical calculations, if these can be done. Simulation still leaves some room for uncertainty. The maiden flight of a new plane is still an informative event, however rigorously its parts have been subjected to ordeal by wind tunnel or computer simulation.

    Once a sufficiently elaborate simulation apparatus is in place in a brain, emergent properties spring up. The brain that can imagine how alternative futures might affect survival can also, in the skull of a Dante or a Hieronymus Bosch, imagine the torments of Hell. The neurons of a Dalí or an Escher simulate disturbing images that will never be seen in reality. Non-existent characters come alive in the head of the great novelist and in those of her readers. Albert Einstein, in imagination, rode a sunbeam to his place among the immortals with Newton and Galileo. Philosophers imagine impossible experiments – the brain in a vat (‘Where am I?’), atom-for-atom duplication of a human (which ‘twin’ would claim the ‘personhood’?). Beethoven imagined, and wrote down, glories that he tragically could never hear. The poet Swinburne happened upon a forsaken garden on a sea cliff, and his imagination revived a pair of long-dead lovers whose eyes went seaward, ‘a hundred sleeping years ago’. Keats reconstructed the ‘wild surmise’ with which stout Cortez and all his men stared at the Pacific, ‘silent upon a peak in Darien’.

    The ability to perform such feats of imagination sprang, emergently, from the Darwinian gift of vicarious internal simulation within the safe confines of the skull, of predicted alternative actions in the unsafe real world outside. The capacity to imagine, like the capacity to learn by trial and error, is ultimately steered by genes, by naturally selected DNA information, the genetic book of the dead.

    8 The Immortal Gene

    The central idea of The Genetic Book of the Dead grows out of a view of life that may be called the gene’s-eye view. It has become the working assumption of most field zoologists studying animal behaviour and behavioural ecology in the wild, but it has not escaped criticism and misunderstanding, and I need to summarise it here because it is central to the book.

    There are times when an argument can helpfully be expressed by contrast with its opposite. Disagreement that is clearly stated deserves a clear reply. I could hypothetically invent the opposite of the gene’s-eye view, but fortunately I don’t need to because the diametric opposite has been put, articulately and clearly, by my Oxford colleague (and incidentally my doctoral examiner, on a very different subject long ago) Professor Denis Noble. His vision of biology is alluring, and is shared by others whose expression of it is less explicit and less clear. Noble is clear. He ringingly hits a nail on the head, but it’s the wrong nail. Here is his lucid and unequivocal statement, right at the beginning of his book Dance to the Tune of Life:

    This book will show you that there are no genes ‘for’ anything. Living organisms have functions which use genes to make the molecules they need. Genes are used. They are not active causes.

    That is precisely and diametrically wrong, and it will be my business in this chapter to show it.

    If genes are not active causes in evolution, almost all scientists now working in the fields known as Behavioural Ecology, Ethology, Sociobiology, and Evolutionary Psychology have been barking up a forest of wrong trees for half a century. But no! ‘Active causes’ is precisely what genes must be: necessarily so if evolution by natural selection is to occur. And, far from being used by organisms, genes use organisms. They use them as temporary vehicles, which they exploit in the service of journeying to future generations. This is not a trivial disagreement, no mere word game. It is fundamental. It matters.

    A physiologist of distinction, Denis Noble is captivated by the shattering complexity of the organism, of every last one of its trillions of cells. He sets out to impress his readers with the intricate co-dependency of all aspects of the living organism. As far as this reader is concerned, he succeeds. He sees every part as working inextricably with every other part in the service of the whole. In that service – and this is where he goes wrong – he sees the DNA in the nucleus of a cell as a useful library to be drawn upon when the cell needs to make a particular protein. Go into the nucleus, consult the DNA library there, take down the manual for making the useful protein, and press it into service. I devised that characterisation of Noble’s position during a public debate with him in Hay-on-Wye, and he vigorously nodded his assent. DNA, in Noble’s view, is the servant of the organism, in just the same way as the heart or the liver or any cell therein. DNA is useful to make a particular enzyme when you need it, just as the enzyme is useful for speeding up a chemical reaction … and so on.

    Dance to the Tune of Life has the subtitle ‘Biological Relativity’. Noble’s usage of ‘relativity’ has only a tenuous and contrived connection with Einstein’s, but it exactly matches that of the historian Charles Singer in A Short History of Biology:

    The doctrine of the relativity of functions is as true for the gene as it is for any of the organs of the body. They exist and function only in relation to other organs.

    Now here is Noble some ninety years later. He has the advantage over Singer in that we now know genes are DNA. But his sentiment about biological relativity, in conjunction with the quotation above, resonates perfectly with Singer’s.

    The principle of Biological Relativity is simply that there is no privileged level of causation in biology.

    I shall argue that, no matter how complicatedly interdependent the parts of a living organism are when we are talking physiology, when we move to the special topic of evolution by Darwinian natural selection there is one privileged level of causation. It is the level of the gene. To justify that is the main purpose of this chapter.

    Here’s Singer’s whole vitalistic passage from which I took the above quotation. It’s the peroration of his book and is a perfect prefiguring of Noble’s ‘relativity’.

    Further, despite interpretations to the contrary, the theory of the gene is not a ‘mechanist’ theory. The gene is no more comprehensible as a chemical or physical entity than is the cell or, for that matter, the organism itself. Further, though the theory speaks in terms of genes as the atomic theory speaks in terms of atoms, it must be remembered that there is a fundamental distinction between the two theories. Atoms exist independently, and their properties as such can be examined. They can even be isolated. Though we cannot see them, we can deal with them under various conditions and in various combinations. We can deal with them individually. Not so the gene. It exists only as a part of the chromosome, and the chromosome only as part of a cell. If I ask for a living chromosome, that is, for the only effective kind of chromosome, no one can give it to me except in its living surroundings any more than he can give me a living arm or leg. The doctrine of the relativity of functions is as true for the gene as it is for any of the organs of the body. They exist and function only in relation to other organs. Thus the last of the biological theories leaves us where the first started, in the presence of a power called life or psyche which is not only of its own kind but unique in each and all of its exhibitions.

    Watson and Crick blew that out of the water in 1953. The triumphant field of digital genomics that they initiated falsifies every single one of Singer’s sentences about the gene. It is true but trivial that a gene is impotent in the absence of its natural milieu of cellular chemistry. Here’s Noble again, bringing Singer up to date but agreeing with his sentiment:

    There really is nothing alive in the DNA molecule alone. If I could completely isolate a whole genome, put it in a petri dish with as many nutrients as we may wish, I could keep it for 10,000 years and it would do absolutely nothing other than to slowly degrade.

    Obviously a gene in a petri dish cannot do anything, and it would degrade as a physical molecule within months, let alone 10,000 years. But the information in DNA is potentially immortal, and causally potent. And that is the whole point. Never mind the physical molecule and never mind the petri dish. Let the sequence of A, T, C, G triplet codons of an organism’s genome be written on a long paper scroll. Or, no, paper is too friable. To last 10,000 years, carve the letters deep in the hardest granite. To be sure, world-spanning ranges of highland massif would still be too small, but that is a superficial difficulty. In 10,000 years, if scientists still walk the Earth, they will read the sequence and type it into a DNA-synthesising machine such as we already have in early form. They’ll have the embryological knowhow to create a clone of whoever donated the genome in the first place (just a version of the way Dolly the sheep was made). Of course, the DNA information would need the biochemical infrastructure of an egg cell in a womb, but that could be provided by any willing woman. The baby she bears, an identical twin of its 10,000-year dead predecessor, would be living repudiation of Singer and Noble.

    That the information necessary to create the twin could be carved in lifeless granite and left for 10,000 years is a truth that fills me with amazement still, even seventy years after Watson and Crick prepared us for it. Charles Singer would be forced to recant his vitalism, while Charles Darwin, I suspect, would exult.

    The point is that, transitory though physical DNA molecules themselves may be, the information enshrined in the nucleotide sequence is potentially eternal. Essential though the surrounding machinery is – messenger RNA, ribosomes, enzymes, uterus and all – they can be provided anew by any woman. But the information in an individual’s DNA is unique, irreplaceable, and potentially immortal. Carving it in granite is a way to dramatise this. But it’s not the practical way. In the normal course of events, DNA information achieves its immortality through being copied. And copied. And copied. Copied indefinitely, potentially eternally, down the generations. Of course, DNA can’t copy itself on its own. Obviously, just as a computer disc can’t copy itself without supporting hardware, DNA needs an elaborate infrastructure of cellular chemistry. But of all the molecules that are involved in the process, however essential they may be for the copying process, only DNA is actually copied. Nothing else in the body is so honoured. Only the information written in DNA.

    You might think every part of the body is replicated. Does not every individual have arms and kidneys, and are these not renewed in every generation? Yes, but you’d be utterly wrong if you called it replication in the sense that genes are replicated. Arms and kidneys don’t replicate to make new arms and kidneys. Here’s the acid test, and it really matters. Make a change to an arm, say by a fracture or by pumping iron, and the change is not propagated to the next generation. Make a change in a germline gene, on the other hand, and the mutation may long outlast 10,000 years, copied again and again down the generations.

    Before the invention of printing, biblical scriptures were painstakingly copied by scribes at regular intervals to forestall decay. The papyrus might crumble but the information lived on. Scrolls don’t replicate themselves. They need scribes, and scribes are complicated, just as the enzymes involved in DNA replication are complicated. Through the mediation of scribes/enzymes information in scrolls/DNA is copied with high fidelity. Actually, scribes might copy with lower fidelity than DNA replication can achieve. With the best will in the world human copyists make errors, and some zealous scribes were not above a little well-meant improvement. Older manuscripts of Mark 9, 29 quote Jesus as saying that a particular kind of demonic possession can be cured only by prayer. Later versions of the text, not content with mere prayer, say ‘prayer and fasting’. It seems that some zealous scribe, perhaps belonging to a monkish order that especially valued fasting, thought to himself that Jesus must surely have meant to mention fasting, how could he not? So it was scarcely taking a liberty to put the words into his mouth. DNA is capable of higher fidelity of replication than that, but even DNA is not perfect. It does make mistakes – mutations. And in one important respect, DNA is unlike the over-zealous scribe: mutation is never biased towards improvement. Mutation has no way to judge in which direction improvement lies. Improvement is judged retrospectively. By natural selection.

    So the information in DNA is potentially eternal even though the physical medium of DNA is finite. And let me repeat why this matters. Only the information contained in DNA is destined to outlive the body. Outlive in a very big way. Most animals die in a matter of years if not months or weeks. Few survive the ravages of decades, almost none centuries. And their physical DNA molecules die with them. But the information in the DNA can last indefinitely. I once attended an evolution conference in America where, at the farewell dinner, we were all challenged to produce an appropriate poem. My limerick ran as follows:

    An itinerant Selfish Gene

    Said ‘Bodies a-plenty I’ve seen.

    You think you’re so clever

    But I’ll live for ever:

    You’re just a survival machine.’

    And I raided Rudyard Kipling for the body’s reply:

    What is a body that first you take her,

    Grow her up and then forsake her,

    To go with the old Blind Watchmaker.

    I have emphasised the immortality of the gene in the form of copies. But how big is the unit that enjoys such immortality? Not the whole chromosome: it is far from immortal. With minor exceptions such as the Y-chromosome, our chromosomes don’t march intact down the centuries. They are sundered in every generation by the process of crossing over. For the purposes of this argument, the length of chromosome that should be considered significant in the long run depends upon how many generations it is allowed, by crossing over, to remain intact, when measured against the relevant selection pressures. I expressed this only slightly facetiously in my first book, The Selfish Gene, by saying that the title strictly should have been The slightly selfish big bit of chromosome and the even more selfish little bit of chromosome. A small fragment of chromosome, such as a gene responsible for programming one protein chain, can last 10,000 years. In the form of copies. But only fragments that are successful in negotiating the obstacle course that is natural selection actually do that. It’s arguable that a better book title would have been The Immortal Gene, and I have adopted it as the title of this chapter. As we shall see in Chapter 12, it is no paradox that The Cooperative Gene would also have been appropriate.

    How does a gene earn ‘immortality’? In the form of copies, it influences a long succession of bodies so that they survive and reproduce, thereby handing the successful gene on to the next generation and potentially the distant future. Unsuccessful genes tend to disappear from the population, because the bodies they successively inhabit fail to survive into the next generation, fail to reproduce. Successful genes are those with a statistical tendency to inhabit bodies that are good at surviving and reproducing. And they enjoy that statistical tendency, positive or negative, by virtue of the causal influence they exert over bodies. So, we have arrived at the reason why it was profoundly wrong to say that genes are not active causes. Active causes is precisely and indispensably what they must be. If they were not, there could be no natural selection and no adaptive evolution.

    ‘Cause’ has a testable meaning. How do we ever identify a causal agent in practice? We do it by experimental intervention. Experimental intervention is necessary, because correlation does not imply causation. We remove, or otherwise manipulate, the putative cause, and we strictly must do so at random, a large number of times. Then we look to see whether there tends to be a statistically significant change in the putative effect. To take an absurd example, suppose we notice that the church clock in the village of Runton Acorn reliably chimes immediately after that of Runton Parva. If we’re very naive, we jump to the conclusion that the earlier chiming causes the later. But of course it’s not good enough to observe a correlation. The only way to demonstrate causation is to climb up the church tower in Runton Parva and manipulate the clock. Ideally, we force it to chime at random moments, and we repeat the experiment many times. If the correlation with the Runton Acorn chiming is maintained, we have demonstrated a causal link. The important point is that causation is demonstrated only if we manipulate the putative cause, repeatedly and at random. Of course, nobody would be silly enough to actually do this particular experiment with the church clocks. The result is too obvious. I use it only to clarify the meaning of ‘cause’.

    Now back to Denis Noble’s statement that ‘Genes are used. They are not active causes.’ By our ‘church clock’ definition, genes most definitely are active causes because, if a gene mutates (a random change), we consistently observe a change in the body of the next generation – and subsequent generations for the indefinite future. Mutation is equivalent to climbing the Runton Parva tower and changing the clock. By contrast, if there is a non-genetic change in the body (a scar, a lost leg, circumcision, an exaggeratedly muscular arm due to exercise, a suntan, acquired fluency in Esperanto or virtuosity on the bassoon), we do not observe the same thing in the next generation. There is no causal link.

    Genetic information, then, is potentially immortal, is causal, and there’s a telling difference between potentially immortal genes that succeed in being actually immortal and potentially immortal genes that fail. The reason some succeed and others fail is precisely that they have a causal influence, albeit a statistical one, on the survival and reproductive prospects of the many bodies that they inhabit, through successive generations and across many bodies through populations. It’s important to stress ‘statistical’. One copy of a good gene may fail to survive to the next generation because the body it inhabits is struck by lightning or otherwise suffers bad luck. More relevantly, one copy of a good gene may happen to find itself sharing a body with bad genes, and is dragged down with them. Statistics enter in because sexual recombination sees to it that good genes don’t consistently share bodies with bad genes. If a gene is consistently found in bodies that are bad at surviving, we draw the statistical conclusion that it is a bad gene. After 10,000 years of recombining, shuffling, recombining again, a gene that remains in the gene pool is a gene that is good at building bodies: in collaboration with the other genes that it tends to share bodies with, and that means the other genes in the gene pool of the species (you may remember from Chapter 1 that the species can be seen as an averaging computer).

    In The Selfish Gene, I used the image of the Oxford vs Cambridge Boat Race, the parable of the rowers. Eight oarsmen and a cox all have their part to play, and the success of the whole boat depends upon their cooperation. They must not only be strong rowers, they must be good cooperators, good at melding with the rest of the crew. The rowers, of course, represent genes, and they are arrayed along the length of the boat, as genes are arrayed along a chromosome. It’s hard to separate the roles of the individual oarsmen, so intimate is their cooperation, and so vital is cooperative pulling together for the success of the whole boat. The coach swaps individual rowers in and out of his trial crews. Although it’s hard to judge individual performance by watching them, he notices that certain individuals consistently seem to be members of the fastest trial crews. Other individuals consistently are seen to be members of slower crews. Although single individuals never row on their own, in the long run the best rowers show their mettle in the performance of the successive boats in which they sit.

    Natural selection sorts out the good genes from the bad, precisely because of the causal influence of genes on bodies. The practical details vary from species to species. Genes that make for good swimmers are ‘good genes’ in a dolphin gene pool but not in a mole gene pool. Genes that make for good diggers are ‘good genes’ in a mole, wombat, or aardvark gene pool but not in a dolphin or salmon gene pool. Genes for expert climbing flourish in a monkey, squirrel, or chameleon gene pool but not in a swordfish, rhinoceros, or earthworm gene pool. Genes for aerodynamic proficiency flourish in a swallow or bat gene pool though not in a hippo or alligator gene pool.

    But however varied the details of ‘good’ and ‘bad’ may be from species to species, the central point remains. Depending on their causal influence on bodies, genes either survive or don’t survive to the next generation, and the next, and the next … ad infinitum. Let me put it more forcefully: any Darwinian process, anywhere in the universe – and I’m pretty sure if there’s life elsewhere in the universe it will be Darwinian life – any Darwinian process depends on trans-generational replicated information, and that information must have a causal influence on its probability of being replicated from one generation to the next. It happens that on our planet the replicated information, the causal agent in the Darwinian process, is DNA. It is wrong, utterly, blindingly, flat-footedly, downright wrong, to deny its fundamental role as a cause in the evolutionary process.

    Have I labored the point excessively? Would that it were excessive, but unfortunately there is reason to think that views such as those I have criticized here have been widely influential. Stephen Jay Gould (whose errors were consistently masked by the graceful eloquence with which he expressed them) went so far as to reduce the role of genes in evolution to mere ‘bookkeeping’. The metaphor of the bookkeeper has a dramatic appeal so seductive that it evidently seduced Gould himself. But it’s as wide of the mark as it is possible to be. It is the bookkeeper’s role to keep a passive record of transactions after they happen. When the bookkeeper makes an entry in his ledger, the entry does not cause a subsequent monetary transaction. It is the other way around.

    I hope the preceding pages have convinced you that ‘bookkeeping’ is worse than a hollow travesty of the central causal role that genes play in evolution. It is the exact opposite of the truth, a metaphor as deeply wrong as it is superficially persuasive. Gould was also a proponent of ‘multi-level selection’, and this is another respect in which he is seen as an opponent of the gene’s-eye view of evolution (see, for instance, the philosopher Kim Sterelny’s perceptive book Dawkins Versus Gould: Survival of the Fittest). Gould, and others, insisted that natural selection occurs at many levels in the hierarchy of life: species, group, individual, gene. The first thing to say about this is that although there is a persuasive hierarchy, a real ladder, the gene doesn’t belong on it. Far from being the bottom rung of a ladder, far from being on the ladder at all, the gene is set off to one side. Precisely because of its privileged role as a causal agent in evolution. The gene is a replicator. All other rungs in the ladder are vehicles, a term that I shall explain later in this chapter.

    As for higher levels of selection, there is, to be sure, a sense in which some species survive at the expense of others. This can look a bit like natural selection at the species level. The native red squirrel in Britain is steadily going extinct as a direct result of the lamentable whim of the 11th Duke of Bedford in the nineteenth century to introduce American grey squirrels. The greys out-compete the smaller reds, and also infect them with squirrel pox, to which they themselves have evolved resistance over many generations in America. Ecological replacement of a species by a competitor species looks superficially like natural selection. But the resemblance is empty and misleading. This kind of ‘selection’ does not foster evolutionary adaptation. It’s not natural selection in the Darwinian sense. You would not say that any aspect of the grey squirrel’s body or behaviour was a device to drive red squirrels extinct, whereas you might happily talk about the Darwinian function of its bushy tail, meaning those aspects of the tail that assisted ancestral squirrels to out-compete rival squirrel individuals of the same species, with a slightly different tail.

    In 1988, I published a paper called ‘The Evolution of Evolvability’. This is the closest I have come to supporting something like ‘multi-level selection’. My thesis was that certain body plans, for example the segmented body plans of arthropods, annelids, and vertebrates, are more ‘evolvable’ than others. I quote from that paper:

    I suspect that the first segmented animal was not a dramatically successful individual. It was a freak, with a double (or multiple) body where its parents had a single body. Its parents’ single body plan was at least fairly well‑adapted to the species’ way of life, otherwise they would not have been parents. It is not, on the face of it, likely that a double body would have been better adapted … What is important about the first segmented animal is that its descendant lineages were champion evolvers. They radiated, speciated, gave rise to whole new phyla. Whether or not segmentation was a beneficial adaptation during the individual lifetime of the first segmented animal, segmentation represented a change in embryology that was pregnant with evolutionary potential.

    I envisioned that my concept of ‘evolvability’ should be regarded as a property of embryology. Thus, a segmented embryology has high evolvability potential, meaning an embryology that lends itself to rich evolutionary divergence. The world tends to become populated by clades with high evolvability potential. A clade is a branch of the tree of life, meaning a group plus its shared ancestor. ‘Birds’ constitutes a clade, for all birds have a single common ancestor not shared by any non-birds. ‘Fish’ is not a clade, because the common ancestor of all fish is shared by all terrestrial vertebrates including us, who are not fish. ‘Mammals’ is a clade, but only if you include so-called ‘mammal-like reptiles’. It would be unhelpful and confusing to call the evolution of evolvability group selection. ‘Clade selection’, a coining of George C Williams, fits the bill.

    What other criticisms of the gene’s-eye view should we consider? Many would-be critics have pointed out that there is no simple one-to-one mapping between a gene and a ‘bit’ of body. Though true, that’s not a valid criticism at all, but I need to explain it because some people think it is. You know those gruesome butchers’ diagrams, where a map of a cow’s body is defaced by lines representing named ‘cuts’ of meat: ‘rump’, ‘brisket’, ‘sirloin’, etc? Well, you can’t draw a map like that for domains of genes. There’s no ‘border’ you can draw on the body, marking where the ‘territory’ of one gene ends and that of the next one begins. Genes don’t map onto bits of body; they map onto timed embryological processes. Genes influence embryonic development, and a change in a gene (mutation) maps onto a change in a body. When geneticists notice a gene’s effects, all they are really seeing is a difference between individuals that have one version (‘allele’) of the gene and individuals that don’t. The units of phenotype that geneticists count, or trace through pedigrees, traits such as the Hapsburg jaw, albinism, haemophilia, or the ability to smell freesias, loop the tongue, or disperse the froth on contact with beer, are all identified as differences between individuals. For, of course, countless genes are involved in the development of any jaw, Hapsburg or not; any tongue, loopy or not. The Hapsburg jaw gene is no more than a gene for a difference between some individuals and other individuals. Such is the true meaning whenever anyone talks of a gene ‘for’ anything. Genes are ‘for’ individual differences. And, just as the eyes of a geneticist are focused on individual differences in phenotype, so also, precisely and acutely, are the eyes of natural selection: differences between those who have what it takes to survive and those who don’t.

    As for the all-important interactions between genes in influencing phenotype, here’s a better metaphor than the butcher’s map. A large sheet hangs from the ceiling, suspended from hooks by hundreds of strings attached to different places all over the sheet. It may help the analogy to consider the strings as elastic. The strings don’t hang vertically and independently. Instead, they can run diagonally or in any direction, and they interfere with other strings by cross-links rather than necessarily going straight to the sheet itself. The sheet takes on a bumpy shape, because of the interacting tensions in the tangled cat’s-cradle of hundreds of strings. As you’ve guessed, the shape of the sheet represents the phenotype, the body of the animal. The genes are represented by the tensions in the strings at the hooks in the ceiling. A mutation is either a tug towards the hook or a release, perhaps even a severing of the string at the hook. And, of course, the point of the parable is that a mutation at any one hook affects the whole balance of tensions across the tangle of strings. Alter the tension at any one hook, and the shape of the whole sheet shifts. In keeping with the sheet model, many, if not most, genes have ‘pleiotropic’ (multiple) effects, as defined in Chapter 4.

    A balance of tensions

    For practical reasons, geneticists like to study the minority of genes that do have definable, seemingly singular effects, like Gregor Mendel’s smooth or wrinkled peas, for example. But even such ‘major genes’ often have a surprisingly miscellaneous collection of other pleiotropic effects, sprinkled seemingly at haphazard around the body. And it’s not surprising that this should be so: genes exert their effects at many stages of embryonic development. It’s only to be expected, therefore, that they’ll have pleiotropic consequences even at opposite ends of the body. A change in tension at one hook leads to a comprehensive shapeshift, all over the whole sheet.

    There’s no one-to-one mapping, then, from single gene to single ‘bit’ of body. We have no butcher’s map here. But not by a jot or even a tittle does this fact threaten the gene’s-eye view of evolution. However pleiotropic, however complicated and interactive the effects of a gene may be, you can still add them all up to derive a net positive or net negative effect of a change (mutation) in its influence on the body: a net effect on its chances of surviving into the next generation. Such causal influences on a gene’s own survival in the gene pool come unscathed through the complications, notwithstanding numerous interactions with other genes – the other genes with which it jointly affects the tensions in all the strings. When the gene in question mutates, the whole shape of the sheet may shift, with perhaps lots of pleiotropic changes all over the body. But the net effect of all these changes, in different parts of the body, and in interaction with many other genes, must be either positive or negative (or neutral) with respect to survival and reproduction. That is natural selection.

    The tension in the genetic strings is affected too by environmental influences. See these as yet more strings tugging from the side, rather than from hooks in the ceiling. The developing animal is, of course, influenced by the environment as well as by the genes, always in interaction with the genes. But again, this doesn’t matter one iota to the gene’s-eye view of evolution. To the extent that, under available environmental conditions, a change in a gene causes a change in that gene’s chances of making it through the generations (either positive or negative), natural selection will occur. And natural selection is what the gene’s-eye view is all about.

    So much for that criticism of the gene’s-eye view. What else do we have? Granted that genes are active causes in evolution, it is the whole individual body that we observe behaving as an active agent. This fact, too, is often wrongly seen as a weakness of the gene’s-eye view. Yes, of course, it is the whole animal who possesses executive instruments with which to interact with the world – legs, hands, sense organs. It’s the whole animal who restlessly searches for food, trying first this avenue of hope, then switching to another, showing all the symptoms of questing appetite until consummation is reached. It is the individual animal who shows fear of predators, looks vigilantly up and around, jumps when startled, runs in evident terror when pursued. It is the individual animal who behaves as a unitary agent when courting the opposite sex. It is the individual animal who skilfully builds a nest, and works herself almost to death caring for her young.

    The animal, the individual animal, the whole animal, is indeed an agent, striving towards a purpose, or set of purposes. Sometimes the purpose seems to be individual survival. Often it is reproduction and the survival of the individual’s children. Sometimes, especially in the social insects, it is the survival and reproduction of relatives other than children – sisters and nieces, nephews and brothers. My late colleague WD Hamilton (he of the palimpsest postcard in Chapter 1) formulated the general definition of the exact mathematical quantity that an individual under natural selection is expected to maximise as it engages in its purposeful striving. It includes individual survival. It includes reproduction. But it includes more, because genes are shared with collateral relatives, and gene survival can therefore be fostered by enabling the survival and reproduction of a sister or a nephew. He gave a name to the exact quantity that an individual organism should strive to maximise: ‘inclusive fitness’. He condensed his difficult mathematics into a long and rather complicated verbal definition:

    Inclusive fitness may be imagined as the personal fitness which an individual actually expresses in its production of adult offspring as it becomes after it has been first stripped and then augmented in certain ways. It is stripped of all components which can be considered as due to the individual’s social environment, leaving the fitness which he would express if not exposed to any of the harms or benefits of that environment. This quantity is then augmented by certain fractions of the quantities of harm and benefit which the individual himself causes to the fitnesses of his neighbours. The fractions in question are simply the coefficients of relationship appropriate to the neighbours whom he affects: unity for clonal individuals, one-half for sibs, one-quarter for half sibs, one-eighth for cousins … and finally zero for all neighbours whose relationship can be considered negligibly small.

    Pretty convoluted? A bit hard to read? Well, it has to be convoluted because inclusive fitness is a hard idea. It’s necessarily convoluted in my view because looking at it from the individual’s point of view is an unnecessarily convoluted way of thinking about Darwinism. It all becomes blessedly simple if you dispense with the individual organism altogether and go straight to the level of the gene. Bill Hamilton himself did this in practice. In one of his papers, he wrote:

    let us try to make the argument more vivid by attributing to the genes, temporarily, intelligence and a certain freedom of choice. Imagine that a gene is considering the problem of increasing the numbers of its replicas, and imagine that it can choose between causing purely self-interested behaviour by its bearer … and causing ‘disinterested’ behaviour that benefits in some way a relative.

    See how clear and easy to follow that is, compared to the previous quotation on inclusive fitness. The difference is that the clear passage adopts the gene’s-eye view of natural selection. The difficult passage is what you get when you re-express the same idea from the point of view of the individual organism. Hamilton gave his blessing to my half-humorous informal definition: ‘Inclusive fitness is that quantity that an individual will appear to be maximising, when what is really being maximised is gene survival.’

    RoleMaximises
    GeneReplicatorSurvival
    OrganismVehicleInclusive fitness

    Bill Hamilton

    The individual organism, in my terminology, is a ‘vehicle’ for survival of copies of the ‘replicators’ that ride inside it. The philosopher David Hull got the point after an extensive correspondence with my then student Mark Ridley, but he substituted the word ‘interactor’ for my ‘vehicle’. I never quite understood why. Depending on your preference you can see either the vehicle or the replicator as the agent that maximises some quantity. If it’s the vehicle, then the quantity maximised is inclusive fitness, and rather complicated. But equivalently, if it’s the replicator, the quantity maximised is simple: survival. I don’t want to downplay the importance of vehicles as units of action. It is the individual organism who possesses a brain to take decisions, based on information supplied by senses, and executed by muscles. The organism (‘vehicle’) is the unit of action. But the gene (‘replicator’) is the unit that survives. On the gene’s-eye view, the very existence of vehicles should not be taken for granted but needs explaining in its own right. I essayed a kind of explanation in ‘Rediscovering the Organism’, the final chapter of The Extended Phenotype.

    Replicators (on our planet, stretches of DNA) and vehicles (on our planet, individual bodies) are equally important entities, equally important but they play different, complementary roles. Replicators may once have floated free in the sea but, to quote The Selfish Gene, ‘they gave up that cavalier freedom long ago. Now they swarm in huge colonies, safe inside gigantic lumbering robots’ (individual bodies, vehicles). The gene’s-eye view of evolution does not play down the role of the individual body. It just insists that that role (‘vehicle’) is a different kind of role from that of the gene (‘replicator’).

    Successful genes, then, survive in bodies down the generations, and they cause (in a statistical sense) their own survival by their ‘phenotypic’ effects on the bodies that they inhabit. But I went on to amplify the gene’s-eye view by introducing the notion of the extended phenotype. For the causal arrow doesn’t stop at the body wall. Any causal effect on the world at large – any causal effect that can be attributed to the presence of a gene as opposed to its absence, and that influences the gene’s chances of survival, may be regarded as a phenotypic effect, of Darwinian significance. It has only to exert some kind of statistical influence on the chances, positive or negative, on that gene’s surviving in the gene pool. I must now revisit the extended phenotype, for it is, to me, an important part of the gene’s-eye view of evolution.

    Alternative titles for The Selfish Gene, all true to its content

    9 Out Beyond the Body Wall

    Imagine the furore if Jane Goodall reported seeing chimpanzees building an amazing stone tower in a forest clearing. They meticulously select stones of the correct shape for the purpose, rotating each one until it snugly fits neighbouring stones. Then the chimps cement it securely in place before picking out another stone. They evidently like to use two radically different sizes of stones, small ones to build the walls themselves, and much larger ones to provide outer fortification and structural strength, the all-important supporting walls. The discovery would be a sensation, headline news, the subject of breathless BBC discussions. Philosophers would jump on it, there’d be passionate debates about personhood, moral rights, and other topics of philosophical moment. The tower is ill-suited to housing its builders. If not functional, then, is it some kind of monument? Does it have ritual or ceremonial significance like Stonehenge? Does the tower show that religion is older than mankind? Does it threaten the uniqueness of man?

    The edifice pictured is a real animal construction, but not one built by chimpanzees; the reality is much smaller, and it doesn’t stand up like a monument but lies flat on the bottom of a stream. It is the house of a little insect, the larva of a caddis fly, Silo pallipes. Caddis adults fly in search of mates and live only a few weeks, but their larvae grow for up to two years under water, living in mobile homes that they build for themselves out of materials gathered from their surroundings, cementing them with silk that they secrete from glands in the head. In the case of Silo pallipes (see top left of picture) the building material is local stone. Its astonishing building skills were unravelled by Michael Hansell, now our leading expert on animal architecture in general.

    These larvae are master masons. Just look at the delicate placing of the small stones between the carefully chosen large ones buttressing the sides. Hansell showed how they select stones, choosing by size and shape but not by weight. Ingenious experiments in whichhe removed parts of the house showed how the larvae fit appropriate stones in the gaps, and cement them in place. Just as impressive is the log house at top right of the picture. This was built not by a caddis larva but by a caterpillar, a so-called bagworm. Caddises in water and bagworms on land have converged independently on the habit of building houses from materials that they gather from their surroundings. The picture shows a selection of caddis and bagworm houses.

    If only chimps had the skills of a caddis larva…

    The word ‘phenotype’ is used for the bodily manifestation of genes. The legs and antennae, eyes and intestines are all parts of the caddis’s phenotype. The gene’s-eye view of evolution regards the phenotypic expression of a gene as a tool by which the gene levers itself into the next generation – and, by implication, an indefinite number of future generations. What this chapter adds is the notion of the extended phenotype. Just as the shell of a snail is part of its phenotype, its shape, size, thickness, etc. being affected by snail genes, so the shape, size, etc. of a stone caddis house or twiggy bagworm cocoon are all manifestations of genes. Because these phenotypes are not part of the animal’s own body, I refer to them as extended phenotypes.

    These elegant constructions must be the products of Darwinian evolution, no less than the armoured body wall of a lobster, a tortoise, or an armadillo. And no less than your nose or big toe. This means they have been put together by the natural selection of genes. Such is the Darwinian justification for speaking of extended phenotypes. There must be genes ‘for’ the various details of caddis and bagworm houses. This means only that there must be, or have been, genes in the insects’ cells, variants of which cause variation in the shape or nature of houses. To conclude this, we need assume only that these houses evolved by Darwinian natural selection, an assumption that no serious biologist would dispute, given their elegant fitness for purpose. The same is true of the nests of potter wasps, mud dauber wasps, and ovenbirds. Built of mud rather than living cells, they are extended phenotypes of genes in the bodies of the builders.

    While their grasshopper cousins sing with serrated legs, male crickets sing with their wings, scraping the top of one front wing against a rough ‘file’ on the underside of the other front wing. Among their songs, the ‘calling song’ is loud enough to attract females within a certain radius, and to deter rival males. But what if it could be amplified, widening the catchment area for pulling females? Some kind of megaphone, perhaps? We use a megaphone as a simple directional amplifier, which works by ‘impedance matching’. No need to go into what that means, except to say that, unlike an electronic amplifier, it adds no extra energy. Instead, it concentrates the available energy in a particular direction. Could a cricket grow a megaphone out of its horny cuticle – a phenotype in the conventional sense? Like the remarkable backwards-facing trombone of the dinosaur Parasaurolophus, which probably served as a resonator for its bellowings. Crickets could have evolved something like that. But an easier material was to hand, and mole crickets exploited it.

    CADDISBAGWORM

    EXTENDED PHENOTYPES BUILT OF MUD

    Potter wasp

    Mud dauber

    Ovenbird

    Mole crickets, as their name suggests, are digging specialists. Their front legs are modified to form stout spades, strongly resembling those of moles, albeit on a smaller scale. The similarity, of course, is convergent. Some species of mole crickets are so deeply committed to underground life that they cannot fly at all. Given that a mole cricket could benefit from a megaphone, and given that it digs a burrow, what more natural than to shape the burrow as a megaphone? In the case of Gryllotalpa vineae it is a double megaphone, like an old-fashioned clockwork gramophone with two horns. Henry Bennet-Clark showed that the double horn concentrates the sound into a disc section rather than letting it dissipate in all directions as a hemisphere. Bennet-Clark was able to hear a single Gryllotalpa vineae (a species he discovered himself) from 600 metres away. The range of no ordinary cricket comes close.

    Parasaurolophus

    Assuming it’s as beautifully functional as it seems to be, the mole cricket’s megaphone must have evolved by natural selection, as a step-by-step improvement, in just the same way as the digging hand or as any part of the cricket’s own body. Therefore, there must be genes controlling horn shape, just as there are genes controlling wing shape or antenna shape. And just as there are genes controlling the patterning of cricket song itself. If there were no genes for horn shape, there would be nothing for natural selection to choose. Once again, remember that a gene ‘for’ anything is only ever a gene whose alternative alleles encode a difference between individuals.

    Mole cricketMole

    Mole cricket with double megaphone burrow

    Now, when contemplating the double megaphone (or, for that matter, the houses of caddises and bagworms) you might be tempted to say something along the following lines. Cricket burrows are not like wings or antennae. They are the product of cricket behaviour, whereas wings and antennae are anatomical structures. We are accustomed to the idea of anatomical structures being under the control of genes. Can the same be said of behaviour, of cricket digging behaviour, or the sophisticated stonemasonry behaviour of a caddis larva? Yes, of course it can. And there is nothing to stop it being said of artifacts that are produced by the behaviour. The artifacts are just one further step in the causal chain from gene to protein to … a long cascade of processes in the embryo, culminating in the adult body.

    There are numerous studies of the genetics of behaviour, including, as it happens, the genetics of cricket song. I want to discuss this work because, weirdly, behaviour genetics arouses a scepticism never suffered by anatomical genetics. Cricket song (though not specifically mole cricket song) has been the subject of penetrating genetic research by David Bentley, Ronald Hoy, and their colleagues in America. They studied two species of field cricket, Teleogryllus commodus from Australia and Teleogryllus oceanicus, also Australian but found in Pacific islands too. Adult crickets who have been brought up in isolation from other crickets sing normally. Nymphs who have not yet undergone their final moult to adulthood never sing, but in the laboratory their thoracic ganglia can be induced to emit nerve impulses with a time-pattern identical to the species song pattern. These facts strongly suggest that the instructions for how to sing the species song are coded in the genes. And those genes must be relevantly different in the two species, for their song patterns are different. This is beautifully confirmed by hybridisation experiments.

    In nature these two Teleogryllus species don’t interbreed, but they can be induced to do so in the laboratory. The diagram, from Bentley and Hoy, shows the songs of the two species and of various hybrids between them. All cricket songs are made up of pulses separated by pauses. T.oceanicus (A in the picture) has a ‘chirp’ consisting of about five pulses followed by a series of about ten ‘trills’, each trill always made up of two pulses, closer to each other than the pulses of the chirp. We hear a rhythmic repetition pattern of trills. To my ears the trills sound slightly quieter than the chirps. After about ten of these double-pulse trills there’s another chirp. And the cycle repeats rhythmically, over and over again indefinitely. T.commodus (F) has a similar pattern of alternating chirps and trills. But instead of a series of ten or so double-pulse trills, there is only one long trill or perhaps two, between chirps.

    Songs of pure bred and hybrid crickets

    Now to the interesting question: what about the hybrids? Hybrid songs (C and D) are intermediate between those of the two parent species (A and F). It makes a difference which species is the male (compare C with D), but we needn’t go into that here, interesting though it is for what it might tell us about sex chromosomes. In any case, hybrid song is a beautiful confirmation of genetic control of a behaviour pattern. Further evidence (B and E) comes from crossing hybrids with each of the two wild species (what geneticists call a backcross). If you compare all five songs, you’ll note a satisfying generalisation: hybrid songs resemble the two wild species’ songs in proportion to the number of genes the hybrid individual has inherited from each species. The more oceanicus genes an individual has, the more its song resembles wild oceanicus rather than commodus. And vice versa. As your eyes move down the page from oceanicus towards commodus, the more you detect resemblance to commodus song. This suggests that several genes of small effect (‘polygenes’) sum their effects. And what is not in doubt is that the species-specific song patterns that distinguish these two species of crickets are coded in the genes: a nice example of how behaviour is just as subject to genetic control as anatomical structures are. Why on earth shouldn’t it be? The logic of gene causation is identical for both. Both are products of a chain of causation, with the behaviour having one more link in the chain.

    You could do a similar study of the genetics of megaphone-building behaviour. But you might as well go to the next step in the causal chain, the megaphone itself. Do a genetic study of differences between megaphones. They are extended phenotypes of mole cricket genes. This has not been done, but nothing prevents it. Again, nobody has studied the genetics of caddis houses, but there’s no reason why they shouldn’t, although there might be practical difficulties in breeding them in the lab. Michael Hansell was once giving a talk at Oxford, on the building behaviour of caddis larvae. In passing, he was lamenting his failed attempts to breed caddises in the lab, for he wished he could study their genetics. At this, the Professor of Entomology growled from the front row: ‘Haven’t you trrrried cutting their heads off?’ It seems that the insect brain exercises inhibitory influences such that beheading can be expected to have a releasing effect.

    If you were to succeed in breeding caddises in captivity, you could systematically select changes in caddis houses over generations. Or you could artificially select for mole cricket megaphone size or shape, generation by generation, breeding from those individuals whose horns happen to be wider, or deeper, or of a different shape. You could breed giant megaphones, just as you might breed giant antennae or mandibles.

    That would be artificial selection, but something like it must have happened through natural selection. Whether by artificial or natural selection, the evolution of larger megaphones could come about only by differential survival of genes for megaphone size. For the megaphone to have evolved in the first place as a Darwinian adaptation, there had to be genes for megaphone shape. The notion of the extended phenotype is a necessary part of the gene’s-eye view of evolution. The extended phenotype should be an uncontroversial addition to Darwinian theory.

    But aren’t those ‘genes for megaphone shape’ really genes for altered digging behaviour, which is part of the ‘ordinary’ phenotype of the cricket? Aren’t genes for caddis house shape ‘really’ genes for building behaviour, that is to say, ‘ordinary’ phenotypic manifestations within the body? Why talk about ‘extended’ phenotypes outside the body at all? Well, you could equally well say that the genes for altered digging behaviour are ‘really’ genes for changed wiring in the ganglia in the thorax. And genes for changes in the thoracic ganglia are, in turn, ‘really’ genes for changes in cell-to-cell interactions in embryonic development. And they, in turn, are ‘really’ … and so on back until we hit the ultimate ‘really’. Genes are really really really only genes for changed proteins, assembled according to the rules for translating the sixty-four possible DNA triplet codons into twenty amino acids plus a punctuation mark. I repeat, because it is important, we have here a chain of causation whose first steps (DNA codons choosing amino acids) are knowable, whose final step (megaphone shape) is observable and measurable, and whose intermediate steps are buried in the details of embryology and nerve connections – perhaps inscrutable but necessarily there. The point is that any one of those many intermediate steps in the chain of causation could be regarded as ‘phenotype’, and could be the target of selection, artificial or natural. There is no logical reason to stop the chain at the animal’s body wall. Megaphone is ‘phenotype’, every bit as much as nerve-wiring is phenotype. Every one of those steps, both in the cricket’s body and extended outside it, can be regarded as caused by gene differences. Just the same is true of the chain of causation leading from genes to caddis house, even though the behavioural step, the actual building itself, involves sophisticated trial and error in the selection of suitable stones and rotating them into position to fit the existing structure. And now to advance the argument a stage further. The extended phenotype of a gene can reach into the body of a different individual.

    Natural selection doesn’t see genes for digging behaviour directly, nor does it see neuron circuitry directly, nor indeed megaphone shape directly. It sees, or rather hears, song loudness. Gene selection is what ultimately matters, but song loudness is the proxy by which gene selection is mediated, via a long series of intermediates. But even song loudness is not the end of the causal chain. As far as natural selection is concerned, song loudness only matters insofar as it attracts females (and deters males, but let’s not complicate the argument). The causal chain extends to a radius where it exerts an influence on a female cricket. This has to mean that a change in female behaviour is part of the extended phenotype of genes in a male cricket. Therefore, the extended phenotype of a gene can reside in another individual. The general point I am aiming towards is that the phenotypic expression of a gene can extend even to living bodies other than the body in which the genes sit. Just as we can talk of a gene ‘for’ a Hapsburg lip, or a gene ‘for’ blue eyes, so it is entirely proper to talk of a gene (in a male cricket) ‘for’ a change in another individual’s behaviour (in this case a female cricket).

    We saw in Chapter 7 that song in male canaries and ring doves has a dramatic effect on female ovaries. They swell hugely, with a corresponding rush of hormones and all that it entails. The consequent changes in female behaviour and physiology are in truth phenotypic expression of male genes. Extended phenotypic expression. You may deny it only if you deny Darwinian selection itself.

    Ears are not the only portals into a female dove’s brain through which a male’s genes might exert an extended phenotypic influence. Male birds of many species glow with conspicuous colours. These cannot be good for individual survival, but they are still good for the survival of the genes that fashioned them. They achieve this good by assisting individual reproduction at the expense of individual survival. With few exceptions, it is males that sacrifice their personal longevity on the altar of gene survival, through sexually attractive coloration. In those species such as pheasants or birds of paradise, where males dazzle, females are usually drabber in colour, often well camouflaged. Bright coloration in males is favoured, either through attracting females or through besting rival males. In both cases, the naturally selected genes for bright coloration have extended phenotypic expression in the changed behaviour of other individuals. I don’t know whether exposure to a male peacock fan causes peahen ovaries to change, as male dove bow-cooing song does to female dove ovaries. It wouldn’t surprise me. I’d even be surprised if it didn’t.

    Unfortunately, predators tend to have eyes like the eyes of the females whom the male is seeking to impress. What is conspicuous to one will probably be conspicuous to all. It’s worth it to the male, or rather to the genes that coloured him. Even if his finery costs him his life, it can already have paid its way in previous success with females. But is there some way a male bird could manipulate females via their eyes without calling attention to himself? Could he shed his dangerously conspicuous personal phenotype, offloading it to an extended phenotype at a safe distance from his own body? ‘Shed’ and ‘offload’, of course, must be understood over evolutionary time. We aren’t talking about shedding feathers in an annual moult, although that happens too – perhaps for the same reason. Black-headed gulls, for instance, shed their conspicuously contrasting face masks as soon as the breeding season is over.

    Bower birds are a family of birds inhabiting the forests of New Guinea and Australia. Their name comes from a remarkable and unique habit. They build ‘bowers’ to seduce females. The skills needed to build a bower could be seen as a distant derivative of nest-building skills, and perhaps ultimately derived from them. But the bower is emphatically not a nest. No eggs are laid in it, no chicks reared there. Female bower birds build nests to house eggs as other birds do, and their nests don’t resemble male bowers.

    The bower’s sole purpose is to attract females, and males take enormous pains in their creation. First, they clear stray leaves and other debris from the arena in which the bower is to be built. Then the bower itself is assembled from twigs and grass. The details vary from species to species. Some resemble a Robinson Crusoe hat, some a grand archway, others a tower. The final stage of bower design is, I think, the most remarkable of all. The ground in front of and under the bower is colourfully and – I can’t resist saying – tastefully decorated. The male gathers decorative objects – coloured berries, flowers, even bottle tops. Movies of male bower birds at work irresistibly remind me of an artist putting the finishing touches to a canvas, standing back, head cocked judgmentally, then darting forward to make a delicate adjustment, standing back again and surveying the effect with head on one side before darting forward again. That is what emboldened me to use a word like ‘tastefully’. It is hard to resist the impression that the bird is exercising his aesthetic judgement in perfecting a work of art. Even if the decorated bower is not to every human’s taste, or even every female bower bird’s, the ‘touching up’ behaviour of the male almost forces the conclusion that the male has taste of his own, and he is adjusting his bower to meet it.

    Remember the discussion in Chapter 7, where I suggested that when male songbirds learn to sing, they are exercising their own aesthetic judgement? The evidence shows, you’ll remember, that young birds burble at random, choosing, by reference to a template, which random fragments to incorporate into their mature song. The male, I argued, has a similar brain to a female of his own species. Not surprisingly, therefore, whatever appeals to him can be expected to appeal to her. The development of song in the young bird could be regarded as a work of creative composition in which the male adopts the principle of ‘whatever turns me on will probably appeal to a female too’. I see no reason to refrain from a similar aesthetic interpretation of bower-building. ‘I like the look of a heap of blue berries just there. So there’s a good chance that a female of my own species will like it too … And perhaps a single red flower over there … or, no, it looks better here … and better still, slightly to the left, and why not set it off with some red berries?’ Of course, I am not literally suggesting that he thinks it through in so many words.

    Species differ as to their preferred decoration colours, as well as the shape of their bowers. The satin bower bird (here) goes for blue, a fact that may be connected with the blue-black sheen of his plumage, or the species’ brilliant blue eyes. The male satin bower bird who built this bower has discovered blue drinking straws and bottle tops, and laid out a rich feast of blue to delight the female eye. More soberly, the Great Bower Bird, Chlamydera nuchalis, says it with shells and pebbles (opposite).

    The bower is an extended phenotype of genes in the body of the male bower bird. An external phenotype, which presumably has the advantage that its extravagance is not worn on the body and therefore will not call predators’ attention to the male himself. I do not know whether exposure to a more than usually magnificent bower stimulates a hormone surge in the blood of a female, but again the research on ring doves and canaries would lead me to expect this.

    We are accustomed to thinking of genes as being physically close to their phenotypic targets. Extended phenotypes can be large, and far distant from the genes that cause them. The lake flooded by a beaver’s dam is an extended phenotype of beaver genes, extended in some cases over acres. The songs of gibbons can be heard a kilometre away in the forest, howler monkeys as much as five kilometres: true genetic ‘action at a distance’. These vocalisations have been favoured by natural selection because of their extended phenotypic effect on other individuals. Chemical signals can achieve a great range among moths. Visual signals require an uninterrupted line of sight, but the principle of genetic action at a distance remains. The gene’s-eye view of evolution necessarily incorporates the idea of the extended phenotype. Natural selection favours genes for their phenotypic effects, whether or not those phenotypic effects are confined to the body of the individual whose cells contain the genes.

    In 2002, Kim Sterelny, editor of the journal Biology and Philosophy, marked the twentieth anniversary of the publication of The Extended Phenotype by commissioning three critical appraisals, plus a reply from me. The special issue of the journal came out in 2004. The criticisms were thoughtful and interesting, and I tried to follow suit in my reply, but all this would take us too far afield here. I concluded my piece with a humorously grandiose fantasy about the building of a future Extended Phenotypics Institute. This pipedream edifice was to have three wings, the Zoological Artifacts Museum (ZAM), the laboratory of Parasite Extended Genetics (PEG), and the Centre for Action at a Distance (CAD). The subjects covered by ZAM and CAD have dominated this chapter. PEG must wait till the final chapter. Parasites often exert dramatic extended phenotypic effects on their hosts, manipulating the host’s behaviour to the parasite’s advantage, often in bizarrely macabre ways. The parasite doesn’t have to reside in the body of the host, so there is an overlap with CAD, the Action at a Distance wing. Cuckoo chicks are external parasites who exert extended phenotypic influence over the behaviour of their foster parents. And cuckoos are so fascinating they deserve a chapter of their own. For a different reason, now to be explained.

    10 The Backward Gene’s-Eye View

    The previous two chapters constituted my short reprise of the gene’s-eye view of evolution as I explained it in The Selfish Gene and The Extended Phenotype. I want, now and in the next chapter, to offer the gene’s-eye view in another way, a way that is particularly suitable for The Genetic Book of the Dead. This is to imagine the view seen by a gene as it ‘looks’ backwards at its ancestral history. A vivid example concerns the cuckoo. To which deplorable bird we now turn.

    ‘Deplorable bird’? Of course I don’t really mean that. The phrase amused me in a Victorian bird book belonging to my Cornish grandparents, where it referred to the cormorant. Each page of the book was devoted to one species. When you turned to the cormorant’s page, the very first sentence to greet you was, ‘There is nothing to be said for this deplorable bird.’ I can’t remember what grudge the author held against the cormorant. He might have had better grounds with the cuckoo, which is certainly deplorable from the point of view of its foster parents but, as a Darwinian biologist, I think it is a supreme wonder of the world. ‘Wonder’, yes, but there’s also an element of the macabre in the spectacle of a tiny wren devotedly feeding a chick big enough to swallow it whole.

    Everyone knows that cuckoos are brood parasites who trick nesting birds of other species into rearing their young. ‘Cuckoo in the nest’ is proverbial. John Wyndham’s The Midwich Cuckoos, about aliens implanting their young in unwitting human wombs, is one of several works of fiction whose titles sound the cuckoo motif. Then there are cuckoo bees, cuckoo wasps, and cuckoo ants who, in their own hexapod ways, hijack the nurturing instincts of other species of insect. The cuckoo fish, a kind of catfish from Lake Tanganyika, drops its eggs among the eggs of other fish. In this case the hosts are ‘mouthbreeders’, fish belonging to the Cichlid family who take their eggs and young into their own mouths for protection. The cuckoo fish’s eggs and later fry are welcomed into the unsuspecting host’s mouth, and tended as lovingly as the mouthbreeder’s own.

    Plenty of bird species have independently evolved their own versions of the cuckoo habit, for example the cowbirds of the New World, and cuckoo finches of Africa. Within the cuckoo family itself (Cuculidae), 59 of the 141 species parasitise other species’ nests, the habit having evolved there three times independently. In this chapter, unless otherwise stated, for the sake of brevity I use the name cuckoo to mean Cuculus canorus, the so-called common cuckoo. Alas, it’s not common anymore, at least in England. I miss their springtime song even if their victims don’t, and was delighted to hear it on a recent visit to a beautiful, remote corner of western Scotland where it ‘shouts all day at nothing’. My main authority – indeed today’s world authority – is Professor Nick Davies of Cambridge University. His book Cuckoo is a delightful amalgam of natural history and memoir of his field research on Wicken Fen, near Cambridge. Described by David Attenborough as one of the country’s greatest field naturalists, he achieves heights of lyrical word-painting unsurpassed in the literature of modern natural history:

    North towards the horizon is the eleventh-century cathedral of Ely, which sits on the raised land of the Isle of Ely, from where Hereward led his raids against the Normans. In the early mornings, when the mist lies low, the cathedral appears as a great ship, sailing across the fens.

    The ruthlessness of the cuckoo begins straight out of the egg. The newly hatched chick has a hollow in the small of the back. Nothing sinister about that, you might think. Until you are told the sole use to which it is put. The cuckoo nestling needs the undivided attention of its foster parents. Rivals for precious food must be disposed of without delay. If it finds itself sharing the nest with either eggs or chicks of the foster species, the hatchling cuckoo fits them neatly into the hollow in its back. It then wriggles backwards up the side of the nest and tosses the competing egg or chick out. There is, of course, no suggestion that it knows what it’s doing, or why it is doing it, no feelings of guilt or remorse (or triumph) in the act. The behavioural routine simply runs like clockwork. Natural selection in ancestral generations favoured genes that shaped nervous systems in such a way as to play out this instinctive act of (foster) fratricide. That is all we can say.

    And there’s no more reason to expect the foster parents to know what they are doing when they fall for the cuckoo’s trick. Birds are not little feathered humans, seeing the world through the lens of intelligent cognition. It makes at least as much sense to see the bird as an unconscious automaton. This helps us understand the otherwise surprising behaviour of foster parents. A pioneering cinematographer of the cuckoo’s dark ways was Edgar Chance, avid ornithologist of the early twentieth century. By Nick Davies’s account of his film, a mother meadow pipit appeared totally unconcerned as it watched its own precious offspring being murdered by the cuckoo chick in its nest. The mother then left on a foraging trip, as if nothing untoward had happened. When she returned, she pointlessly fed her chick as it lay dying on the ground. From a human cognitive point of view, her behaviour makes no sense: neither the impassive watching of the initial murder nor the subsequent futile feeding of the doomed chick. We shall meet this point again and again throughout the chapter.

    The name ‘cuckoo’ is derived from the simple, two-note tune of the male bird’s song, so simple indeed that some ornithologists downgrade it from ‘song’ to ‘call’ (on parallel grounds to the hysterically unpopular downgrading of Pluto to sub-planet status). The cuckoo’s song (or call) is commonly described as dropping through a minor third, but I’m happy to quote no less an authority than Beethoven in support of my hearing it as a major third. His famous cuckoo in the Pastoral Symphony descends from D to B Flat. Whether major or minor, whether song or call, it is simple – and perhaps has to be simple because the male never gets a chance to learn it by imitation. A cuckoo never meets either biological parent. It knows only its foster parents, who could belong to any of a variety of species, each with its own song, which the young cuckoo must not learn. So the male cuckoo’s song has to be hard-wired genetically, and a kind of common sense concludes, not very confidently, that it should therefore be simple.

    Now we approach the remarkable story that earns the cuckoo its place in a chapter on genes ‘looking backwards in time’. Cuckoo eggs mimic the colour and patterning of the other eggs in the particular foster nest in which they sit. And they mimic them even though many different foster species are involved, with very different eggs. Here is a clutch of six brambling eggs plus one cuckoo egg. The only way I, and doubtless you, can tell which one is the cuckoo egg is by its slightly larger size.

    At first sight, such egg mimicry might seem no more remarkable than the ‘paintings’ of Chapter 2. Well, that’s quite remarkable enough! But now look at the next picture showing a parasitised nest of meadow pipit eggs.

    Again, you can spot the tell-tale size of the cuckoo egg. But what is really noticeable is that the cuckoo egg in the second picture is dark with black speckles like meadow pipit eggs, whereas the cuckoo egg in the first picture is light and with rusty speckles like brambling eggs. Meadow pipit eggs are dramatically different from brambling eggs. Yet cuckoo eggs achieve a near-perfect colour match in each of the two nests.

    Once again, the mimicry might seem par for the course, all of a piece with the lizard, frog, spider, or ptarmigan ‘paintings’ of Chapter 2. It would indeed be relatively unremarkable if the cuckoos that parasitise bramblings were a different species from the cuckoos that parasitise meadow pipits. But they aren’t. They’re the same species. Males breed indiscriminately with females reared by any foster species, so the genes of the whole species are mixed up as the generations pass. That mixing is what defines them all as of the same species. Different females, all belonging to the same species and consorting with the same males, parasitise redstarts, robins, dunnocks, wrens, reed warblers, great reed warblers, pied wagtails, and others. But each female parasitises only one of those host species. And the remarkable fact is that (with a few revealing exceptions) the eggs of each female cuckoo faithfully mimic those of the particular host in whose nest she lays them. The only consistent betrayer is that cuckoo eggs are slightly larger than the host eggs that they mimic. Even so, they are smaller than they ‘should’ be for the size of the cuckoo itself. Presumably, if the pressure to mimic drove them to be any smaller, the chicks would be penalised in some way. The actual size is a compromise between pressure to be small to mimic the host eggs, and an opposite pressure towards the larger optimum for the cuckoo’s own size.

    I doubt that you’re wondering why egg mimicry benefits the cuckoos. Foster parents are mostly very good at spotting cuckoo eggs, and they often eject them. A cuckoo egg of the wrong colour would stand out like a sore thumb. Actually, that’s an unusually poor cliché. Have you ever seen a sore thumb, and did it stand out? Let’s initiate a new simile. Stands out like a baseball at Lord’s? Like a Golden Delicious in a basket of genuinely delicious apples? Just look at that cuckoo egg in the brambling nest and imagine transplanting it into the meadow pipit nest. Or vice versa. The host birds would unhesitatingly toss it out. Or, if tossing it out is too difficult, abandon the nest altogether. Such discrimination is not a surprise when you consider that bird eyes are acute enough to perfect the exquisitely detailed painting of lichen-mimicking moths and stick-mimicking caterpillars.

    Foster parents, then, whether as automata or cognitively, can be expected to provide the selection pressure that explains why it might benefit cuckoo eggs to show such beautiful egg mimicry. They throw out eggs that don’t look like their own. But what is surprising, hugely so, is that cuckoos, all of one intrabreeding species, manage to mimic the eggs of many different foster parent species. To drive home the point, here’s yet another example: a reed warbler nest with, once again, wonderful egg mimicry by the single, slightly larger cuckoo egg.

    These beautiful examples force us back to the central question of this whole discussion. How is it possible for female cuckoos, all belonging to the same species and all fathered by indiscriminate males, to produce eggs that match such a range of very different host eggs? Are we to believe that female cuckoos take one look at the eggs in a nest and take a decision to switch on some kind of alternative egg-colouring mechanism in the lining of the oviduct? That is improbable, to say the least. There are women who might love to control, by sheer willpower and for very different reasons, the behaviour of their own oviduct. But it’s not the kind of thing willpower does. And, with the best will in the world, it’s not clear how will will power it.

    What is the true explanation for the female cuckoo’s apparent versatility? Nobody knows for sure, but the best available guess makes use of a peculiarity of bird genetics. As you know, we mammals determine our sex by the XX / XY chromosome system. Every woman has two X-chromosomes in all her body cells, so all her eggs have an X-chromosome. Every man has an X- and a Y-chromosome in all his body cells. Therefore, half his sperms are Y sperms (and would father a son when coupled with a necessarily X egg) and half are X sperms (would father a daughter when coupled with a necessarily X egg). Less well known is that birds have a similar system, but it evidently arose independently because it is reversed. The chromosomes are called Z and W instead of X and Y, but that’s not important. What matters is that in birds females are ZW and males are ZZ. That’s opposite to the mammal convention, but otherwise the principle is the same. Whereas the Y-chromosome passes only down the male line in mammals, in birds the W chromosome passes only down the female line. The W comes from the mother, the maternal grandmother, the maternal maternal great grandmother and so on back through an indefinite number of female generations.

    Now recall the title of this chapter: ‘The Backward Gene’s-Eye View’. It’s all about genes looking back at their own history. Imagine you are a gene on the W-chromosome of a cuckoo, looking back at your ancestry. Not only are you in a female bird today, you have never been in a male bird. Unlike the other genes on ordinary chromosomes (autosomes), which have found themselves in male and female bodies equally often down the ages, the ancestral environments of the W-chromosome have been entirely confined to female bodies. If genes could remember the bodies they have sat in, the memories of W-chromosomes would be exclusively of female bodies not male ones. Z-chromosomes would have memories of both male and female bodies.

    Hold that thought while we look at a more familiar kind of memory: memory by the brain, individual experience. It is a fact that female cuckoos remember the kind of nest in which they were reared, and choose to lay their own eggs in nests of the same foster species. Unlike the improbable feat of controlling your own oviduct, remembering early experience is exactly the kind of thing bird brains are known to do. When they come to choose a mate, as we saw in Chapter 7, birds of many species refer back to a kind of mental photograph of their parent, which they filed away in memory after their first encounter on hatching (‘imprinting’): even if – in the case of incubator-hatched goslings, for instance – what they later find attractive is Konrad Lorenz. To remember Lorenz, parental plumage, father’s song, or foster-parent’s nest – it’s all the same kind of problem. The same imprinting brain mechanism works well enough in nature even if, in captivity, it misfires.

    I think you can see where this argument is going. Each female mentally imprints on the same foster nest as her mother; and therefore her maternal grandmother; and her maternal maternal great grandmother. And so on back. And her childhood imprinting leads her to choose the same kind of nest as her female forebears. So, she belongs to a cultural tradition going exclusively down the female line. Among females there are robin cuckoos, reed warbler cuckoos, dunnock cuckoos, meadow pipit cuckoos, etc., each with their own female tradition. But only females belong to these cultural traditions. Each cultural line of females is called a gens – plural gentes. A female may belong to the meadow pipit gens, or the robin gens, or the reed warbler gens, etc. Males don’t belong to any gens. They are descended from – and they father – females of all gentes indiscriminately.

    Finally, we put these two strands of thought together, again in the light of the chapter’s title. With the exception of W-chromosome genes, all the genes in a female cuckoo look back through a chain of ancestors belonging to every gens that’s going. W-chromosomes aside, gentes are not genetically separate like true races, because males confound them. Only W-chromosome genes are gens-specific. Only W-chromosomes look back on ancestors of a particular gens to the exclusion of any other. We talked of two kinds of memory: genetic memory and brain memory. See how the two coincide where W-chromosome genes are concerned!

    With respect to the W-chromosome, and only the W-chromosome, gentes are separate genetic races. So – I think you’ve already completed the argument yourself – if the genes that determine egg coloration and speckling are carried on the W-chromosome, it would solve the riddle we began with, the riddle of how it’s possible for the females of one species of cuckoo to mimic the eggs of a wide variety of host species. It isn’t willpower that chooses egg colour, it’s W-chromosomes.

    You will have guessed that it’s not as simple as that. Things seldom are in biology. Although female cuckoos have a strong preference for their natal nest type when they come to lay, they occasionally make a mistake and lay in the ‘wrong’ nest, different from their natal nest. Presumably that’s how new gentes get their start. And not all gentes achieve good egg mimicry. Dunnock (hedge sparrow) eggs are a beautiful blue. But cuckoo eggs in dunnock nests aren’t blue (left). They aren’t even ‘trying’ to be blue, we might say. The cuckoo egg in the picture stands out like a sore … like a bloodhound in a pack of dachshunds. Are cuckoos, perhaps, constitutionally incapable of making blue eggs? No. Cuculus canorus in Finland has achieved a most beautiful blue, in perfect mimicry of redstart eggs (right). So why don’t cuckoo eggs mimic dunnock eggs? And how do they get away with it? The answer is simple, although it remains puzzling. Dunnocks are among several species that don’t discriminate, don’t throw out cuckoo eggs. They seem blind to what looks to us glaringly obvious. How is this possible, given that other small songbirds have powers of discrimination acute enough to perfect the finishing touches to the egg mimicry achieved by their respective gentes of female cuckoos? And given that bird eyes are capable of perfecting the detailed mimicry of stick caterpillars, lichen-mimicking moths, and the like?

    Cuckoos and their hosts, as with stick caterpillars and their predators, are engaged in an ‘evolutionary arms race’ with one another. As mentioned in Chapter 4, arms races are run in evolutionary time. It’s a persuasive parallel to human arms races, which are run in ‘technological time’, and a lot faster. The aerial swerving and dodging chases of Spitfires and Messerschmitts were run in real time measured in split seconds. But in the background and more slowly, in factories and drawing-offices in Britain and Germany, races were run to improve their engines, propellers, wings, tails, weaponry, etc., often in response to improvements on the other side. Such technological arms races are run over a timescale measured in months or years. The arms races between cuckoos and their various host species have been running for thousands of years, again with improvements on each side calling forth retaliatory improvements in the other.

    Nick Davies and his colleague Michael Brooke suggest that some gentes have been running their respective arms races for longer than others. Those against meadow pipits and reed warblers are ancient arms races, which is why both sides have become so good at outdoing the other – and therefore why the cuckoo eggs are such good mimics. The arms race against dunnocks, they suggest, has only just begun. Not enough time for the dunnocks to evolve discrimination and rejection. And not enough time for the dunnock gens of cuckoos to evolve the appropriate blue colour.

    If it’s true that cuckoos have only just ‘moved into’ dunnock nests, we must suppose that these ‘pioneer’ cuckoos have ‘migrated’ from another host species, presumably one with rusty-spotted grey eggs because that’s the egg colour of the ‘newly arrived’ dunnock gens of cuckoo. I suppose this is how any new gens gets its start. But don’t be misled by ‘pioneer’ and ‘migrated’. It would not have been any kind of bold decision to sally forth into fresh nests and pastures new. It would have been a mistake. As we’ve seen, cuckoos do indeed occasionally lay an egg in the wrong kind of nest, a nest appropriate to a different gens. Their egg then really does stand out like a … invent your own substitute for the sore thumb cliché. Natural selection normally penalises such blunders, we can presume, pretty promptly. But what if it’s a new host species that hasn’t yet been ‘invaded’ by cuckoos. The new host species is naive. They haven’t hitherto had any reason to throw out mismatched eggs. Once again, remember, birds are not little feathered humans with human judgement. The arms race has yet to get properly under way. And the host species can expect to remain naive while the arms race is yet young. But how young is young? Strangely enough, we are not totally without evidence bearing on the question, as Nick Davies points out.

    Call the witness Geoffrey Chaucer. In The Parlement of Foules (1382), the cuckoo is reproached: ‘Thou mordrer of the heysugge on the braunche that broghte thee forth.’ Another name for dunnock is hedge sparrow or, in Middle English, heysugge (heysoge, heysoke, eysoge). This would seem to suggest that cuckoos were already parasitising dunnocks in the fourteenth century, when Chaucer wrote. Is 650 years long enough for an arms race to reach some sort of perfection of mimicry? Perhaps not, given that, as Davies points out, only 2 per cent of dunnock nests are parasitised. Maybe, then, the selection pressure is so weak that a 600-year-old arms race is indeed young.

    I prefer to add two further suggestions. The first concerns identification. Did Chaucer really mean dunnock when he said heysugge? When we say ‘sparrow’ we normally mean the house sparrow, Passer domesticus, not the hedge sparrow or dunnock, Prunella modularis. Yet the English word ‘sparrow’ is used for both. To many who are not avid twitchers, all little brown birds (LBBs) look much the same, and we might even sink so low as to call them all ‘sparrows’. I can’t help wondering whether Chaucer was using ‘heysugge’ to mean LBB rather than specifically Prunella modularis?

    My second suggestion is more biologically interesting. If we think carefully about it, there’s no reason, is there, to suppose that there’s only one cuckoo gens for each host species? Maybe Chaucer’s gens of dunnock cuckoos has died out, and a new gens of dunnock cuckoos is just beginning its arms race. Perhaps other gentes of dunnock cuckoos have perfect egg mimicry today, but have not come to the notice of ornithologists. There would be no relevant gene flow between them because males don’t have W-chromosomes.

    Claire Spottiswoode and her colleagues are running a parallel study of an unrelated South African finch, which convergently evolved the cuckoo habit. The cuckoo finch, Anomalospiza imberbis, lays its eggs in the nests of grass warblers. Different gentes of cuckoo finch mimic the eggs of different grass warbler species. There is genetic evidence that what distinguishes the gentes is indeed their W-chromosomes, which reinforces the idea that the same thing is going on in cuckoos. As Dr Spottiswoode points out, this doesn’t have to mean that every detail of all the egg colours is carried on the W-chromosome. In both cuckoos and cuckoo finches, genes for making all the different egg colours have very probably been built up on other chromosomes (‘autosomes’) over many generations, and are carried by all the gentes and passed on by males as well as females. The W-chromosome need only have switch-genes – genes that switch on or off whole suites of genes carried on autosomes. And the relevant autosomal genes would be carried by males as well as females.

    This is indeed how sex itself is determined. If you have a Y-chromosome, you have a penis. If you have no Y-chromosome, you have a clitoris instead. But there’s no reason to suppose that the genes that influence the shape and size of a penis are confined to the Y-chromosome. Far from it. It’s entirely plausible that they are scattered over many autosomes. There’s no reason to doubt that a man may inherit genes for penis size from his mother as well as from his father. Presence or absence of a Y-chromosome determines only which alternative suite of genes on autosomes will be switched on. For most purposes you can think of the entire Y-chromosome as a single gene that switches on suites of other genes on autosomes elsewhere in the genome. A point of terminology: members of these suites of autosomal genes are called ‘sex-limited’ as distinct from ‘sex-linked’. Sex-linked genes are those that are actually carried on the sex-chromosomes themselves.

    Probably the best guess towards a solution of the riddle of cuckoo egg mimicry is that suites of genes on lots of chromosomes determine egg coloration and spotting. These are equivalent to ‘sex-limited’, and we may call them ‘gens-limited’. They are switched on or off by the presence or absence of one or more genes on the W-chromosome, genes that, by analogy, we can call ‘gens-linked’. All cuckoo autosomes may have suites of genes for mimicking a whole repertoire of host eggs. W-chromosomes contain switch genes that determine which suite of genes is turned on. And it is W-chromosomes that are peculiar to each gens of females, W-chromosomes that look back at their history and see a long line of nests of only one foster species.

    This interpretation of egg mimicry in cuckoos is my introduction to the topic of the backward gene’s-eye view, genes looking over their shoulder at their own ancestry. Here’s a similar but more complicated example involving fish and the Y-chromosome. Different kinds of fish display a bewildering variety of sex-determining systems. Some don’t use sex chromosomes at all but determine sex by external cues. Some fish are like birds in that females are XY and males are XX. Others are like us mammals: males are XY, females XX. Among these are small fish of the genus Poecilia, which includes mollies and guppies among popular aquarium fish. One species, Poecilia parae, has a remarkable colour polymorphism, which affects only the males. Polymorphism means that there are different genetically determined colour types coexisting in the population (in this case five colour patterns) and the proportions of the different types remain stable in the population through time. All five male morphs can be found swimming together in South American streams. There’s only one female morph: females look alike.

    Since the polymorphism affects only one sex, we can call them five gentes, by analogy with the cuckoos, with the difference that in these fish it’s the males who are separated by gens. The picture shows the five male types plus a female at the bottom. Three of the five male types have two long stripes like tramlines. Between the tramlines there is colour, and I’ll call them reds, yellows, and blues respectively. These three ‘tramliners’ can, for many purposes, be lumped together. The fourth type has vertical stripes. They’re officially named ‘parae’, but confusingly that’s also the name of the whole species. I’ll call them ‘tigers’. The fifth type, ‘immaculata’, is relatively plain grey, like females but smaller, and I’ll call them ‘greys’.

    Tigers are the largest. They behave aggressively, chasing rival males away, and copulating with females by force. Greys are the smallest, and they manage to copulate only by occasionally sneaking up on females opportunistically. When they get away with it, it seems to be because otherwise aggressive males mistake them for females, which they do indeed resemble. Greys have the largest testes, presumably capable of producing the most sperm, perhaps to take advantage of their scarce opportunities to use it. Red, yellow, and blue tram-liners are of intermediate size. Rather than rape or sneak, they court females in a civilised manner, displaying their respective coloured flanks.

    Tiger
    Grey
    Blue
    Yellow
    Red
    Female

    Male ‘gentes’ in fish?

    Now here’s where the parallel to cuckoos kicks in. Evidence suggests that colour morph inheritance runs entirely down the male line. In every case studied, sons belong to the same type as their father, and therefore paternal grandfather, paternal paternal great grandfather, etc. Their mother has no genetic say in the matter, and nor does their maternal grandfather, etc., even though each one belongs to one colour gens or another. This suggests the hypothesis that the five types of males differ with respect to their Y-chromosomes – just as gens-inheritance in female cuckoos seems to be carried on the W-chromosome. The details of colour pattern and behaviour of the male fish may be carried in suites of genes on autosomes (gens-limited). But the genes determining which gens an individual belongs to (and presumably which suite of colour and pattern genes on other chromosomes is switched on) seem to be gens-linked, that is, carried on the Y-chromosome.

    Researchers are doing fascinating work on mate choice in these fish and are homing in on what maintains the polymorphism. It seems that each of the five male types has an equilibrium frequency, fitting the definition of a true polymorphism. If its frequency falls below the equilibrium, it is favoured and therefore becomes more frequent in the population. If its frequency rises too high, it is penalised and its frequency decreases. This so-called ‘frequency-dependent selection’ is a known way for polymorphisms to be maintained in a population. How might it work in practice? The details are not yet clear but might look something like this. The grey sneakers benefit from being mistaken for females. If they become too frequent, perhaps the real females or aggressive tigers get ‘wise’ to them. How about the tigers themselves? If they get too frequent, they waste time fighting each other instead of mating. This might give the greys more opportunity to sneak matings. As for the three ‘tramliners’, who court females in a gentlemanly manner by flashing their vividly coloured flanks, there is some evidence that females prefer rarer types. This would fit the ‘equilibrium frequency’ idea, although it’s not clear why females should exhibit such a preference. More research is needed and is under way now. I am grateful to Dr Ben Sandkam, formerly of the University of British Columbia and now at Cornell, for sharing with me his thoughts on these matters.

    Now let’s again apply the backward-looking technique of this chapter. Every male of Poecilia parae can look back through a long line of male ancestors, all belonging to the same gens as him, and all sharing the same Y-chromosome. This is what makes it possible for suites of genes for colour patterning and associated behaviour to become switched on in separate gentes of males, despite their sharing the same ancestors in the female line. The gene’s-eye view of the past comes into its own again, as with the cuckoos. Autosomal genes, governing characteristics other than gens-specific colour, look back on ancestors of all gentes.

    Returning to cuckoos, the ‘looking back’ ploy can help us answer another riddle, and it’s an even tougher one. Although most host species are very good at distinguishing cuckoo eggs from their own (how else could natural selection have perfected cuckoo egg mimicry?), they turn out to be lamentably bad later, failing to notice that the growing cuckoo fledgling is an impostor. Even though it dwarfs them, in most cases grotesquely so. A tiny warbler is in danger, you might think, of being swallowed whole by its monstrous foster child. Foster parents, of whatever species, end up dwarfed by the cuckoo nestling into whom they tirelessly shovel food, working every devoted daylight hour to do so. How do the cuckoo nestlings get away with such a transparent, over-the-top deception? Once again, we have to be more than usually on our guard against anthropomorphism. Do not ask whether the bird’s behaviour makes sense from a human-like cognitive perspective. Of course it doesn’t. Ask instead about selection pressures acting on ancestral genes that control the development of behavioural automatisms.

    A warbler feeding a cuckoo

    Even given this preliminary, I must admit that available answers to the riddle epitomised by the picture on the previous page remain unsatisfying, compared to the explanations that I am accustomed to offering in my books. And indeed, compared to the explanation of egg mimicry. But here’s the best explanation – or series of partial explanations – I can find. We return to the idea of the arms race. In our 1979 paper, John Krebs and I considered ways in which an arms race might end in ‘victory’ for one side (here again, the quotation marks are strongly advised). We identified two principles, the ‘Life Dinner’ and the ‘Rare Enemy’ principle. These are closely related, maybe just different aspects of the same thing.

    In one of Aesop’s Fables, a hound was pursuing a hare, got tired and gave up. Taunted for his lack of stamina, the hound replied, ‘It’s all very well for you to laugh, but we had not the same stake at hazard. He was running for his life, but I was only running for my dinner.’

    As in military arms races, predators and prey must balance design improvements and resources against economic costs. The more they put into servicing the arms race – muscles, lungs, heart, the machinery of speed and endurance – the less is available for other aspects of life such as making eggs or milk, building up fat reserves for the winter etc. In the language of Darwinism, Aesop’s hares have been subject to stronger selection to invest resources into the arms race than the hounds. There is an asymmetry in the cost of failure – loss of life versus mere loss of dinner. The failed predator lives to pursue another prey. The failed prey has fled its last pursuer. But now, notice how we can say the same thing more piercingly in the language of the genetic book of the dead. The predator’s genes can look back on ancestors many of whom were outrun by prey. But not one of the prey’s ancestors was outrun by a predator. At least not before it had passed on its genes. Plenty of predator genes can look back on ancestors who failed to outrun prey. Not a single prey gene can look back on ancestors who had lost a race against a predator.

    Apply the Life Dinner Principle to the cuckoo nestling and its host. The cuckoo nestling can look back on an unbroken line of ancestors, literally not a single one of whom was outwitted by a discriminating host. If it had been, it would not have become an ancestor. Cuckoo genes for failing to fool hosts are never passed on. But genes that lead foster parents to fail to notice cuckoos? Plenty of hosts who were fooled by cuckoos could live to breed again. Genetic tendencies among hosts to be fooled by cuckoos can be passed on. Genetic tendencies among cuckoos to fail to fool hosts are never passed on. It’s the Life Dinner Principle in operation.

    Moreover, the host can look back on ancestors many of whom may never have met a cuckoo in their lives. In Nick Davies and Michael Brooke’s long-running study on Wicken Fen, only 5 to 10 per cent of reed warbler nests were parasitised by cuckoos. And this brings us to the Rare Enemy Effect. Cuckoos are comparatively rare. Most reed warblers, wagtails, pipits, dunnocks, etc. probably get through their lives and successfully reproduce without ever encountering a cuckoo. They may look back on many ancestors who never encountered a cuckoo in their lives. But every single cuckoo looks back at an unbroken line of ancestors who successfully fooled a host into feeding them. Asymmetries of this kind could favour ‘victory’ such that even a monstrous cuckoo nestling gets away with fooling its diminutive foster parent. The selection pressure to outwit cuckoos is weak compared to the selection pressure on cuckoos to do the outwitting.

    Another parable with an Aesopian flavour is the fable of the boiled frog. A frog dropped into very hot water might do anything in its power to jump out. But a frog in cold water that is slowly heated up does not notice until it is too late. When the baby cuckoo first hatches, the deceiver is indistinguishable from the real thing. As it gradually grows, there is no one day when it suddenly becomes obvious that it’s a fake. Just as there’s never a day when a baby becomes a child; or a child a teenager; or a middle-aged man old. Every day, it looks much the same as the day before. Perhaps this helps the outwitting. Note that the boiled frog effect doesn’t apply to eggs. A cuckoo egg suddenly appears in the nest. It doesn’t gradually become more and more imposterish like a cuckoo nestling.

    In another pair of papers already mentioned, Krebs and I proposed that animal communication in general can be seen as manipulation. I discussed this in Chapter 7 in connection with nightingale song bewitching John Keats. Birdsong is known to cause female gonads to swell. This is an example of what we called manipulation. It will not always be to the female’s advantage to submit to it. There will be an arms race between salesmanship and sales-resistance, each side escalating in response to the other. What tricks of salesmanship might the cuckoo nestling employ, in response to the sales-resistance of the host? They’d need to be pretty powerful to outweigh the eventually incongruous mismatch in size between foster parent and cuckoo nestling. But that’s no argument against their existence.

    All nestlings open their gapes wide and squawk their appeals for food. If you’re a baby reed warbler, say, the louder you cry, the more likely you are to persuade your parent to drop food into your gape rather than a sibling’s (and there is indeed good Darwinian reason for competition among siblings, even real gene-sharing siblings). On the other hand, loud vocalisation costs vital energy. This applies to baby birds as much as to adults. In one study of wrens at Oxford, the researcher allowed himself to speculate that a male literally sang himself to death. The calling rate and loudness of a baby reed warbler will normally be regulated to an optimum level: enough to compete with siblings, but not so much as to overtax itself or attract predators. The oversized baby cuckoo needs as much food as four young reed warblers. It urges the foster parent on by sounding like a clutch of reed warbler chicks rather than just one very loud reed warbler chick.

    Among the ingenious field experiments done by Nick Davies, he and his colleague Rebecca Kilner put a blackbird nestling in a reed warbler nest. The young blackbird was about the same size as a cuckoo nestling. The reed warblers fed it, but at a lower rate than they would normally feed a baby cuckoo. Then the experimenters played their masterstroke: a sound recording of a baby cuckoo piped through a little loudspeaker next to the nest, switched on whenever the baby blackbird was seen to beg. Now the reed warbler adults upped the rate with which they fed the blackbird chick, to a rate appropriate to a baby cuckoo – the same rate as for a clutch of baby reed warblers. And indeed, a recording of four baby reed warblers crying had the same effect. It would seem that baby cuckoo squawks have evolved to become a super-stimulus. Super-stimuli are well attested in experiments on bird behaviour. My old maestro Niko Tinbergen reported that oystercatchers, offered a choice, will preferentially attempt to incubate a dummy egg eight times the volume of their own egg. It’s called a supernormal stimulus. Something like this is what we’d expect as the culmination of an evolutionary arms race, with escalating salesmanship on the cuckoo’s side keeping pace with escalating sales-resistance on the part of the foster parents.

    How about a visual equivalent of such a super-stimulus? The open beak of all nestlings is conspicuous, often bright yellow, orange, or red. Doubtless such bright coloration persuades the parents to drop food in, the brighter the gape the greater the chance of their favouring this gape rather than a sibling’s. Reed warbler chicks have a yellow gape. Davies and colleagues found that reed warbler parents gauge their food-fetching efforts according to the total area of yellowness gaping at them in the nest, and also to the rate of begging cries. Cuckoo chicks have a red gape. Is this, perhaps, a stronger stimulus than yellow? An experiment with painted gapes failed to support the hypothesis. Is the cuckoo gape, then, larger than a reed warbler chick’s gape? Yes, cuckoo chicks have a bigger gape than any one reed warbler chick. But its area is not equal to the sum of four reed warbler chicks – perhaps closer to two. Cuckoo chicks use sound to compensate for this, and by two weeks of age a cuckoo chick sounds like a clutch of reed warbler chicks. The combination of a somewhat bigger gape than one reed warbler chick’s, together with supernormal begging cries, is just enough to persuade the adult reed warblers to pump into the cuckoo chick as much food as they would normally bring to a whole clutch of their own chicks. Once again, we could see the supernormal begging call as the end product of an escalating arms race between salesmanship and sales-resistance.

    A cardinal feeding a goldfish

    That birds are susceptible to large gapes – even the alien gape of a fish – is shown by the well-attested observation of a cardinal (an American bird) repeatedly dropping food into the open mouth of a goldfish. We view the scene through human eyes and think, how absurd, how could a bird be so stupid? But the example of the oystercatcher sitting on the giant egg should warn us that human eyes are precisely what we should not trust. We have no right to be sarcastic. Birds are not little humans, cognitively aware of what they are doing and why they are doing it. And after all, a human male can be sexually aroused by a supernormal caricature of a female, even though he is well aware that it is a drawing on two-dimensional paper, with unnaturally exaggerated features, and a fraction of normal size. The baby cuckoo has no idea what it is doing when it tosses eggs out of the nest. Think of it as a programmed automaton. The oystercatcher does not know why it sits on a giant egg. Think of it as a pre-programmed incubation machine. And in the same way, think of a parent bird as a robot mother, programmed to drop food into wide-open gapes, however ridiculous it may seem to us when the gape belongs to a fish. Or to the giant imposter who is a nestling cuckoo.

    If cuckoo nestlings have a supernormal gape, mimicking two ordinary chicks, there’s an Asian cuckoo, Horsfield’s hawk cuckoo, Cuculus fugax, that goes one better. It has the visual equivalent of a clutch of gapes. In addition to its yellow gape, it has a pair of dummy gapes: a patch of bare skin on each wing, the same yellow colour as the real gape. It waves the wing patches about, usually one at a time, next to the real gape. The foster parent (a species of blue robin was the host in this Japanese study by Dr Keita Tanaka) is stimulated by the double whammy of gape plus patch. Dr Tanaka has kindly sent me several photographs plus some amazing film footage. As soon as the foster parent flies in, the cuckoo chick dramatically raises its right wing and waves it about. The gesture reminds me of a swordsman raising his shield to intercept an attack. But this analogy has it exactly wrong. The point is not to repel but to attract. One film even shows the robin vigorously stuffing food up against the yellow patch on the upheld right wing, before turning and shoving it into the wide-open gape instead. The Japanese researchers ingeniously blacked out the wing patch, and this reduced the feeding rate by the robins. There’s a similar story for another brood parasite, the whistling hawk cuckoo, Hierococcyx nisicolor, in China. Like the Horsfield’s hawk cuckoo, the nestlings have yellow wing patches that they display in the same way, to fool foster parents.

    So much for cuckoos, not deplorable because a true wonder of nature and natural selection. Now, let’s see what else we can do with the notion of genes looking over their shoulder.

    Horsfield’s hawk cuckoo with fake gape on wing

    11 More Glances in the Rear-View Mirror

    Where once they would have talked of the good of the species, nowadays essentially all serious biologists studying animal behaviour in the wild have adopted what I am calling the gene’s-eye view. Whatever the animal is doing, the question these modern workers ask is, ‘How does the behaviour benefit the self-interested genes that programmed it?’ David Haig, now at Harvard University, is one of those pushing this way of thinking towards the limit, illuminating a great diversity of topics, including some important ones that doctors should care about, such as problems of pregnancy.

    Among other things, Haig noticed a lovely example of genes looking backwards – actually at the immediate past generation. There’s a phenomenon called genomic imprinting. A gene can ‘know’ (by a chemical marker) whether it came from the individual’s father or mother. As you can imagine, this radically changes the ‘strategic calculations’ whereby a gene looks after its own self-interest. Haig shows how genomic imprinting changes how a gene views kin. Normally, a gene for kin altruism should regard a half-sibling as equivalent to a nephew or niece – half the value of a full sib or offspring. But if the altruistic gene ‘knows’ it came from the mother and not the father, it should see a maternal half-sibling as equal to its own offspring, or to a normal full sibling. The other way round if it ‘knows’ it came from the father. It should then see the maternal half-sibling as equivalent to an unrelated individual. Genomic imprinting opens up a whole lot of ways in which genes within an individual can come into conflict with one another, the topic of Burt and Trivers’ book Genes in Conflict. Haig goes so far as to blame warring genes for the familiar psychological sensation of being pulled in two directions at once, as in short-term gratification versus longer-term benefit. Genomic imprinting provides a stark example of how a gene might look in the ‘rear-view mirror’. Other examples constitute the topics of this chapter.

    A gene on a mammalian Y-chromosome ‘looks back’ at an immensely long string of ancestral male bodies and not a single female one, probably as far back as the dawn of mammals if not further. Our mammal Y-chromosome has been swimming in testosterone for perhaps 200 million years. But if Y-chromosomes look back at only male bodies, what about X-chromosomes? If you are a gene on an X-chromosome, you might come from the animal’s father, but you are twice as likely to come from its mother. Two-thirds of your ancestral history has been in female bodies, one-third in male bodies. If you are a gene on a chromosome other than a sex chromosome, an autosome, half your ancestral history was in female bodies, half in male bodies. We should expect many autosomal genes to have sex-limited effects, programmed with an IF statement: one effect whenever they find themselves in a male body, a different effect when in a female body.

    But when any gene looks back at the male bodies that it has inhabited, what it sees will not be a random sample of male bodies but a restricted sub-set. This is because the average male is often denied the Darwinian privilege of reproduction. A minority of males monopolises the mating opportunities. Most females, on the other hand, enjoy close to the average reproductive success. Red deer stags with large antlers prevail in fights over access to females. So when a red deer gene looks back at its male ancestors, it will see the minority of male bodies that are topped by abnormally large antlers.

    Even more extreme is the asymmetry shown by seals, especially Mirounga, the elephant seal. There are two species: the southern elephant seal, which I have seen, close enough to touch (though I would not), on the remote island of South Georgia, and the northern elephant seal, which Burney Le Boeuf has thoroughly studied on the Pacific beaches of California. Like many mammals, elephant seals have harem-based societies but they carry it to an extreme. Successful males, ‘beachmasters’, are gigantic: up to 4 metres long and weighing 2 tonnes. Females are relatively small and are gathered into harems, which may typically number as many as fifty ‘belonging to’, and vigorously defended by, a single dominant male. Most of the males in the population have no harem, and either never reproduce or bide their time hoping to sneak an occasional copulation, as well as aspiring eventually to get big and strong enough to displace a beachmaster. In one report from Le Boeuf’s long-term California study of northern elephant seals, only eight males inseminated an astonishing 348 females. One male inseminated 121 females, while the great majority of males had no reproductive success at all. An elephant seal gene on a Y-chromosome looks back at, not just a long sequence of male bodies, but specifically at the overgrown, blubbery, belching, bloated bodies of a tiny minority of dominant, harem-holding beachmasters: highly aggressive males, over-endowed with testosterone and with the dangling trunks used as living trombones to resonate roars that intimidate other males. On the other hand, an elephant seal gene will look back at a succession of female bodies that are close to the average.

    Do you find something puzzling about the fact that only a small minority of males does almost all the fathering? Isn’t it terribly wasteful? Think of all those bachelor males, consuming a fat slice of the food resources available to the species, yet never reproducing. A ‘top-down’ economic planner with species welfare in mind would protest that most of those males shouldn’t be there. Why doesn’t the species evolve a skewed sex ratio such that only a few males are born: just enough males to service the females, the same number of males as would normally hold harems? They wouldn’t have to fight each other, they’d all get a harem as a matter of automatic entitlement, just for being male. Wouldn’t a species with such an economically sensible, planned economy prevail over the present, wildly uneconomical, strife-ridden species? Wouldn’t the planned economy species win out in natural selection?

    Sexual inequality on the beach

    Yes, if natural selection chose between species. But, contrary to a widespread misunderstanding, it doesn’t. Natural selection chooses between genes, by virtue of their influence on individuals. And that makes all the difference. If the sensible planned economy were to come about by Darwinian means, it would have to be through the natural selection of genes controlling the sex ratio. This is not impossible. A gene could bias the number of X sperms versus Y sperms produced by males. Or it could favour selective abortion of some male foetuses. Or it could favour starving some baby sons to death and keeping just a favoured few. Never mind how it does it, just call this hypothetical gene the Planned Economy Gene, pegged to top-down common sense.

    Imagine a planned economy population where most of the individuals are female, say one male for every ten females. This is the kind of population our sensible economist would expect to see. It is economically sensible because food is not wasted on males who are never going to reproduce. Now imagine a mutant gene arising, a mutation that biases individuals towards having sons. Will this male-favouring gene spread through the population? Alas for the planned economy, it certainly will. In the planned economy, females outnumber males ten to one, so a typical male can expect ten times as many descendants as a typical female. It’s a bonanza for males. The son-biased mutant gene will spread rapidly through the population. And the males will have good reason to fight. It’s the flip side of our observation that our hypothetical gene looks back at a successful minority of male bodies, not at an average sample of male bodies.

    Will the population sex ratio swing right round to the opposite extreme and become male-biased? No, natural selection will stabilise the sex ratio we actually see, a 50/50 sex ratio (but see the important reservation below) with a minority of harem-holding males and a majority of frustrated bachelors. Here’s why. If you have a son, there’s a good chance he’ll end up a disconsolate bachelor who’ll give you no grandchildren. But if your son does end up a harem-holder, you’ve hit the jackpot where grandchildren are concerned. The expected reproductive success of a son, averaged over his slim chance of the jackpot plus the much greater chance of bachelor misery, equals the expected average reproductive success of a daughter. Equal sex ratio genes prevail, even though the society they create is so horribly uneconomical. Sensible as it sounds, the ‘planned economy’ cannot be favoured by natural selection. In this respect at least, natural selection is not a ‘sensible’ economist.

    I said that selection would stabilise the sex ratio at 50/50 but I added a cautionary reservation. There are various reasons for that caution, and they are important. Here’s one of them. Suppose it costs twice as much to rear a son as to rear a daughter. To equip a son to fight off rivals and win a harem, he must be big. Being big doesn’t come free. It costs food. If a mother seal must suckle a son for longer than a daughter, if a son costs twice as much as a daughter to rear, the ‘choice’ facing the mother is not ‘Shall I have a son or a daughter’ but ‘Shall I have a son or two daughters?’ The general principle, first clearly understood by RA Fisher, is that the sex ratio stabilised by natural selection is 50/50 measured in economic expenditure on daughters versus economic expenditure on sons. That will amount to 50/50 in numbers of male and female bodies, only if the cost of making sons and daughters is the same. Fisher’s principle balances what he called parental expenditure on sons versus daughters. This may cash out in the form of equal numbers of males and females in the population, but only if sons and daughters are equally costly to rear. There are other complications, some pointed out by WD Hamilton, but I won’t stay to deal with them.

    Elephant seals are an extreme example of a principle that typifies many mammal species. Females tend to have nearly the same reproductive success as each other, close to the population average, while a minority of males enjoys a disproportionate monopoly of reproduction. In statistical language, mean reproductive success of males and females is equal, but males tend to have a higher variance in reproductive success. And, to return to the title of this chapter, the ancestral females that genes ‘look back on’ will be close to the average. But they’ll look back on an ancestral history dominated by a minority of males: that minority endowed with whatever it takes in the species concerned – large antlers, fearsome canine teeth, sheer bodily bulk, courage, or whatever it might be.

    ‘Courage’ can be given a more precise meaning. Any animal must balance the short-term value of reproducing now against its own long-term survival to reproduce in the future. A brutal fight against a rival male may end in victory and a harem. But it may end in death, or serious injury which presages death. Courage is at a premium. Risking death is worthwhile because the stakes for a male are so high: a huge number of pups to his name if he wins, zero and perhaps death if he loses. A female seal would give higher priority to surviving to reproduce next year. She only has one pup in a year, so she’ll maximise her reproductive success by surviving herself. Natural selection would favour females who are more risk-averse than males; would favour males who are more courageous or foolhardy. Males are biased towards a high-stakes high-risk strategy. This is probably why males tend to die younger. Even if they’re not killed in battle, their whole physiology is skewed towards living to the full while young, even at the expense of living on at all when old.

    A complication is that, in some species, including elephant seals, subordinate males sneak surreptitious matings at the risk of punishment from dominant males. They may adopt a particular strategy known as the ‘sneaky male’ strategy. This means that as a Y-chromosome looks back at its history, it will see mostly a river of dominant harem-holders but also a side rivulet, that of the sneaky males. And now, a change of topic.

    As will be apparent by now, my late colleague WD Hamilton had a restless and highly original curiosity, which led him to solve many outstanding riddles in evolutionary theory, problems that lesser intellects never even recognised as problems. A naturalist from boyhood, he noticed that many insect species come in two distinct types which could be named ‘dispersers’ and ‘stay-at-homes’. Dispersers typically have wings. ‘Stay-at-homes’ often don’t. It’s surprising how many species of insects have both winged and wingless members, seemingly in balanced proportion. If you like human parallels, think of human families in which one brother comfortably inherits the farm while the other brother emigrates to the far side of the world in search of an improbable fortune. In the case of plants, dandelion seeds with their fluffy parachutes are ‘winged’ dispersers, while other members of the daisy family have, to quote Hamilton, ‘a mixture of winged and wingless within a single flower head’.

    To stolid common sense, it seems intuitively obvious that if parents live in a good place (and they probably do live in a good place, or they wouldn’t have succeeded in becoming parents), the best strategy for an offspring must be to stay in the same good place. ‘Stay at home and mind the family farm’ would seem to be the watchword, and that was the conventional wisdom among most evolutionary theorists before Bill Hamilton. Bill suspected, by contrast, that selection would favour a balance between stay-at-homes and dispersers, the point of balance varying from species to species. He enlisted the help of his mathematical colleague Robert May, and together they developed mathematical models that supported his intuition.

    My own, less mathematical way to express Bill’s intuition is in terms of the gene’s-eye view of the past. No matter how favourable the ‘family farm’ – the environment in which parents have flourished – it is sooner or later going to be subject to a catastrophe: a forest fire perhaps, or a disastrous flood or drought. So, as a gene looks back at the history of ‘the family farm’, the parental, grandparental, and great grandparental generations may indeed have flourished there. The success story might go back an unbroken ten or even twenty generations. But eventually, if it looks far enough back into the past, the stay-at-home gene will eventually hit one of those catastrophes.

    The disperser gene may look back on the recent past as one of comparative failure: life on the family farm was milk and honey. But if we look back sufficiently far, we come to a generation where only the disperser gene, the gene for wild wanderlust, made it through. There’s also the anthropomorphic point that wanderlust occasionally strikes gold.

    Naked mole rat

    I perhaps went too far when in 1989 I published a speculation about naked mole rats, but it serves to dramatise the point. Naked mole rats are small, spectacularly ugly (by human aesthetics) African mammals, who live underground. They are famous among biologists as the nearest mammalian approach to social insects: ants and termites. They live in large colonies of as many as 100 individuals in which only one female, the ‘queen’, normally reproduces, and she is fecund enough to compensate for the near sterility of all the other females, who function as ‘workers’. A colony can extend through a huge network of 2 or 3 miles of burrows, gathering underground tubers as food.

    This much has become lore among biologists intrigued by the obvious similarity to social insects. However, one discrepancy always worried me. Although the ants and termites that we ordinarily see are wingless, sterile workers, their underground nests periodically erupt in a boiling mass of winged reproductive individuals of both sexes. These fly up to mate, after which the newly fertilised young queens settle down, lose their wings (in many cases even biting them off), dig a hole, and attempt to found a new underground nest with the aid of sterile, wingless worker daughters (and sons in the case of termites). The winged castes are Hamilton’s dispersers, and they are an essential part – indeed, the essential part – of the biology of social insects. You could say they are what the whole social insect enterprise is all about. Why don’t naked mole rats have an equivalent? Their lack of a dispersal phase is something approaching a scandal!

    Not literally winged dispersers! Even I am not foolhardy enough to predict rodents with wings. But I did wonder, and still do, whether there might be a dispersal phase that nobody has spotted yet. In 1989 I wrote: ‘Is it conceivable that some already known hairy rodent, running energetically above ground and hitherto classified as a different species, might turn out to be the lost caste of the naked mole rat?’ My idea for a hitherto unrecognised dispersal caste may not have much going for it, but it is at least testable, a virtue that scientists value highly. The genome of the naked mole rat has been sequenced. If my hypothetical dispersal phase were ever discovered, some hairy mole rats should turn out to have the same genes.

    I admitted the implausibility of my suggestion. How could such a hypothetical creature have been overlooked by biologists? However, I went on to make a comparison with locusts. Locusts are the terrifying ‘wanderlust’ phase of harmless ‘stay-at-home’ grasshoppers. They look different from grasshoppers and behave very differently. They are the very same grasshoppers but (oh, in a moment) they change. The genes of a harmless grasshopper have the capacity, when the conditions are right, to change (change utterly, and a terrible beauty is born). The devastating effects are all too well known. My point is that locust plagues only occasionally happen. It just takes the right conditions. Perhaps the dispersal phase of the naked mole rat has yet to erupt during the decades since biologists have been around to study the species? No wonder it has never yet been seen. Perhaps it would take only a crafty hormone injection … and a naked mole rat could become its own hairy, scurrying (though not, I suppose, winged) dispersal phase.

    Another change of topic before we leave the backwards gene’s-eye view. There are two ways in which we can look back at a family tree. Conventional pedigrees trace ancestry via individuals. Who begat whom? Which individual was born of which mother? The most recent individual ancestor shared by the late Queen Elizabeth II and her husband Prince Philip was Queen Victoria. But you can also trace the ancestry of a particular gene, and you will have guessed that this is the alternative manner of tale I want to tell here. Genes, like individuals, have parent genes and offspring genes. Genes, as well as individuals, have pedigrees, family trees. But there is a significant difference between a ‘people tree’ and a ‘gene tree’. An individual person has two parents, four grandparents, eight great grandparents, etc. So a people tree is a vast ramification as you look backwards in time. Any attempt to draw it out completely will soon get out of hand. The best way to visualise it is not on paper but zooming around a computer screen. Not so the gene tree. A gene has only one parent, one grandparent, one great grandparent, etc. A gene tree is therefore a simple linear array streaking back in time, whereas a people tree bifurcates its way unmanageably into the past. This is not so when you look forwards in time, by the way. A gene can have many offspring but only ever one parent. Looking forwards, gene trees branch and branch. But this chapter is all about looking backwards.

    A particular sub-lethal gene, haemophilia, has plagued the royal families of Europe ever since the early nineteenth century. The gene tree of royal haemophilia is simple and fits the page comfortably. The equivalent people tree would want several square metres of paper to be legible. The royal haemophilia gene can be traced back to a particular individual ancestor, Queen Victoria, one of whose two X-chromosomes bore the gene. The mutation occurred, to quote Steve Jones’s mordant phrase, ‘in the august testicles’ of her father, Edward, Duke of Kent. One of Victoria’s four sons, Prince Leopold, suffered from haemophilia. The other sons, including Edward VII and his descendants such as our present monarch, King Charles III, beat the odds and were lucky to escape. Leopold survived to the age of thirty, long enough to have a daughter, Princess Alice of Albany, who inevitably carried the gene on one of her X-chromosomes. Her son Prince Rupert of Teck realised his 50 per cent probability of being afflicted and died young.

    Royal haemophilia

    Of Victoria’s five daughters, three (at least) inherited the gene. Princess Alice of Hesse passed it on to her son, Prince Friedrich, who died in infancy, and to two daughters, Irene and Alexandra, who passed it on to three haemophiliac grandsons of Alice, including the Tsarevich Alexey of Russia. Irene married her first cousin Henry, a common practice among royals and generally not a good idea because of inbreeding depression. But inbreeding depression was not responsible for the fact that two of their sons, Waldemar and Heinrich, suffered from haemophilia: they got it on their X-chromosome from their mother, and she’d have been equally likely to pass it on, whomever she married, cousin or not (unless the cousin was himself haemophiliac, in which case 50 per cent of her daughters would actually suffer from the disease itself). Another of Victoria’s daughters, Princess Beatrice bequeathed the gene to her daughter the Queen of Spain, and on into the Spanish Royal Family, to the resentment, I gather, of the Spanish.

    Tracing back the gene tree of the royal haemophilia gene, all lines coalesce in Victoria. And indeed, there is a flourishing branch of mathematical genetic theory called Coalescent Theory in which you look back at the history of a genetic variant in a population and trace the most recent common ancestor of that gene – the coalescent gene upon which all lines converge as you look back. Forget about individuals, look through the skin to the genes within, and you can trace two copies of a particular gene back in time until you hit the ancestor in whom they coalesce. That coalescence point is the ancestral individual in which the gene itself divided into two copies, which then went their separate ways in two siblings and eventually two lines of descendants. If you make purifying assumptions like random mating, no natural selection, and everybody has two children, the coalescent tree has an expected form that mathematicians can calculate in theory. In reality, of course, those assumptions are violated, and that’s when it becomes interesting. Royal families, for example, typically violate the assumption of random mating. Protocol and political expediency constrain them to marry each other.

    Coalescent theory is an important part of modern population genetics, and very relevant to this chapter on the backwards gene’s-eye view, but the mathematics is outside my scope here. I will discuss one intriguing example: a particular study of one man’s genome – as it happens, my genome, although that isn’t why I find it intriguing. It is a remarkable fact that you can make powerful inferences about the demographic history of an entire population using the genome of just a single individual. For a rather odd reason, I was one of the earliest people in Britain to have their entire genome (as opposed to the relatively small sample done by the likes of ‘23-and-Me’) sequenced. I handed the data disc over to my colleague Dr Yan Wong, and he included a clever analysis of it in the book that we co-authored, The Ancestor’s Tale (2016). It’s rather tricky to explain, but I’ll do my best.

    In every cell of my body swim twenty-three chromosomes inherited intact from my father and twenty-three from my mother. Every (autosomal) paternal gene has an exact opposite number (allele) on the corresponding maternal chromosome, but my father John’s chromosomes and my mother Jean’s chromosomes float intact and aloof from each other in all my cells. Now, here’s where it gets tricky. Take a particular gene on a John chromosome and allow it to look back at its ancestral history. Now take its opposite number (‘allele’) on the equivalent Jean chromosome, and allow it to look back in the same way. It’s the same principle as tracing the royal haemophilia gene back to Victoria. But, in this case, it is not haemophilia that is being traced, we’re looking a lot further back, and we have no hope of identifying a named individual like Victoria. We could do it with any pair of alleles, one on a John chromosome and the other on a Jean chromosome. And not just one such pair but (a sample of the) many.

    Sooner or later, each gene pair, as they look back, is bound to converge on a particular individual in whom a gene once split to form the ancestor of the John gene and the ancestor of the Jean gene. I really do mean a particular individual ancestor who lived at a particular time and in a particular place. This individual had two children, one of whom was John’s ancestor and the other Jean’s ancestor. But we’re talking about a different ancestral individual – different time and place – for each Jean/John gene pair. For each gene pair, there must have been two siblings, one carrying the ancestral Jean gene and the other the ancestral John gene.

    There are many overlapping people-tree routes that trace my father and my mother back to different shared ancestors. But for each of my John genes there is only one path linking it to the shared ancestor of my corresponding Jean gene. Gene trees are not the same as people trees. Each gene pair coalesces in a particular ancestor, at a particular moment in the past. You can let each pair of my genes look back, and you can find a different coalescence point in each case. You can’t literally identify the exact coalescence point for any given gene pair. But what you can do, using the mathematics of coalescent theory, is estimate when it occurred. When Dr Wong did this with my genome, he found that a large majority coalesced somewhere around 60,000 years ago, say 50,000 to 70,000.

    And how should this concordance be interpreted? It means that my ancestors suffered a population bottleneck around that time. Very likely, yours did too. As my John genes and my Jean genes look back at their history, during most of those millennia they see a picture of outbreeding. But somewhere around 60,000 years into the past, the effective population size narrowed to a bottleneck. When the population is smaller, the Jean and John lineages are more likely to find themselves in a shared ancestor, simply by chance. That is why my gene pairs tend to coalesce around that time. Indeed, the coalescence data from my genome, on its own, making use of no other data, can be translated into the above graph of effective population size plotted against time. It is presumably typical for Europeans. The faint grey line shows the equivalent for an individual Nigerian, whose ancestors, it would seem, were not subject to the same bottleneck. I confess to an obscure satisfaction that, of the two co-authors of a book, one was able to use the genome of the other to make a quantitative estimate of prehistoric demography affecting not just one individual but millions.

    What else can genes tell us as they look back at their history? Zoologists are accustomed to drawing family trees of animals, and calculating which species are close cousins of other species, and which distant. Among ape species, for example, chimpanzees and bonobos are our closest living relatives, and those two species are exactly equally close to us. They are equally close because they share an ancestor with each other some 3 million years ago, and that ancestor shares an ancestor with us about 6 million years ago (see below). Gorillas are the outgroup, a more distant relative of the rest of us African apes. The ancestor we share with gorillas lived longer ago, perhaps 8 or 9 million years.

    GORILLACHIMPBONBOHUMAN

    On the previous page is the conventional way to draw a family tree, an organism-based family tree. But we can also draw a family tree from the point of view of a gene, looking back at its own history. The organism tree is unequivocal. Chimps and bonobos are close cousins of each other, and we are their closest relatives apart from each other. But while that is indeed a fact from the point of view of the whole organism, it is not necessarily the case when it is genes that look in the rear-view mirror. True, a majority of genes would ‘agree’ with each other and with the ‘people tree’ of the traditional zoologist. Nevertheless, it is perfectly possible that, from the point of view of some particular genes, the family tree could look very different. As on the opposite page, perhaps. The majority of our genes agree with the ‘people tree’. But when the gorilla genome was published in 2012, it turned out that ‘Humans and chimpanzees are genetically closest to each other over most of the genome, but the team found many places where this is not the case. Fifteen per cent of the human genome is closer to the gorilla genome than it is to chimpanzee, and 15 per cent of the chimpanzee genome is closer to the gorilla than human.’ I hope you agree that his kind of conclusion is an interesting product of the ‘backward gene’s-eye view’.

    Such an anomaly could occur even within one small family. Two brothers, John and Bill, share the same parents, Enid and Tony, and the same four grandparents: Arthur and Gertrude, the parents of Enid, and Francis and Alice, the parents of Tony. (Sex chromosomes apart) each of the brothers received exactly half his genes from each of their shared parents. That’s because each is the product of exactly one egg from Enid and one sperm from Tony. And each brother received a quarter of his genes from each of the four shared grandparents, but in this case the figure is only approximate. It’s not exactly a quarter. Through the vagaries of chromosomal crossing-over, the sperm from Tony that conceived John could, by chance, have contained mostly Alice’s genes rather than Francis’s. The sperm from Tony that conceived Bill could have contained a preponderance of Francis’s genes rather than Alice’s. The egg from Enid that gave rise to John could have contained mostly Arthur’s genes, while the egg from Enid that gave rise to Bill contained a preponderance of Gertrude’s genes. It’s even theoretically possible (though vanishingly improbable) that John received all his genes from two of his grandparents, and none from the other two. Thus, the gene’s-eye view of closeness of relatedness can differ from the individual’s-eye view. The individual’s-eye view sees all four grandparents as equal contributors.

    BONOBOCHIMPGORILAHUMAN

    And the same is true of all generations prior to the immediate parental generation. Although you are quite probably descended from William the Conqueror, it is also quite likely that you have inherited not a single gene from him. Biologists tend to follow the historic precedent of tracing ancestry at the level of the whole individual organism: every individual has one father and one mother, and so on back. But the John/Bill, gorilla/chimpanzee comparison of the previous paragraphs will prove, I believe, to be the tip of an iceberg. More and more, we shall see pedigrees being drawn up from the genes’ point of view as opposed to the individual organism’s. An example is the discussion of the prestin gene in Chapter 5. Such a trend is obviously highly congenial to this book, stressing, as it does, the gene’s-eye view.

    The last topic I want to deal with in this chapter on the backwards gene’s-eye view is Selective Sweeps. Among the messages from the past that the genes of a living animal whisper to us, if only we could hear them, many tell of ancient natural selection pressures. That, indeed, is what I mean by the genetic book of the dead, but here I am talking about a particular kind of signal from the past, one that geneticists have learned how to read. Present-day genes send statistical ‘signals’ of natural selection pressures. A gene pool that has recently undergone strong selection shows a certain characteristic signature. Natural selection leaves its mark. A Darwinian signature. Here’s how.

    Two genes that sit close to one another on a chromosome tend to travel together through the generations. This is because chromosomal crossing over is relatively unlikely to split them: a simple consequence of their proximity to each other. If one gene is strongly favoured by natural selection it will increase in frequency. Of course, but mark the sequel. Genes whose chromosomal position lies close to a positively selected gene will also increase in frequency: they ‘hitch-hike’. This is especially noticeable when the linked genes are neutral – neither good nor bad for survival. When a particular region of a chromosome contains a gene that is under strong selection in its favour, the geneticist notices a diminution in the amount of variation in the population, specifically in the hitch-hiking zone of the affected chromosome. Because of the hitch-hiking, natural selection of one favoured gene ‘sweeps’ away the variation among nearby neutral genes. This ‘selective sweep’ then shows up as a ‘signature’ of selection.

    I find the ‘backwards’ way of looking at ancestral history illuminating. But the most important ‘experience’ that a gene can ‘look back on’ is easily overlooked because it hides in plain view. It is the companionship of other genes of the species: other genes with which it has had to share a succession of bodies. I am not talking here about genes being linked close to each other on the same chromosome. I am now talking about shared membership of the same gene pool, and hence of many individual bodies. This companionship is the topic of the next chapter.

    12 Good Companions, Bad Companions

    The previous chapter could be expanded with an indefinite number of examples of the backward gene’s-eye view. Genes look back on a series of environments variously characterised by trees, soil, predators, prey, parasites, food plants, water holes, etc. But the external environment is only part of the story. It leaves out the most important kind of ‘experience’ of a gene. Far more important is the experience of rubbing shoulders with all the other genes in a long succession of bodies: partners through dynasties of mutual collaboration in the subtle arts of building bodies. That is the central point of this chapter.

    The genes within any one gene pool are travelling bands of good companions, journeying together, and cooperating with each other down the generations. Genes in other gene pools, gene pools belonging to other species, constitute parallel bands of travelling companions. These bands do not include the genes of other species. That is precisely how biologists like to define a species (although the definition sometimes blurs in practice, especially when new species are being born).

    Sexual reproduction validates the very notion of a species, more precisely the notion of a gene pool: a pool of genes like a stirred pool of water. The gene pool is thoroughly stirred in every generation by sexual reproduction, but it doesn’t mix with any other such pool – pools belonging to other species. Children resemble their parents but, because the gene pool is stirred, they resemble them only slightly more than they resemble any random member of the species – and much more than they resemble a random member of another species. The gene pool of each species sloshes about in a watertight compartment of its own, isolated from all others.

    As I said, that is part of the very definition of a ‘species’, at least the most widely adopted definition, the one codified by that lofty patriarch among evolutionists, Ernst Mayr (1904–2005):

    Species are groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups.

    Fossils, being dead to the possibility of actually interbreeding – beyond breeding at all – force a retreat to Mayr’s ‘potentially’. When we say that Homo erectus was a separate species, distinct from modern Homo sapiens, the Mayr definition would be interpreted as meaning, ‘If a time machine enabled us to meet Homo erectus, we would be incapable of interbreeding with them.’ A niggling difficulty arises over ‘incapable’. There are species that can be persuaded to interbreed in captivity but would not choose to do so in the wild. Chapter 9’s example of the two crickets Teleogryllus oceanicus and commodus is only one of several. Even if we were capable of interbreeding with Homo erectus, say by artificial insemination, would we – or they – choose to do so by the normal, natural means? Never mind, that is a detail that might concern a pernickety taxonomist or philosopher, but we can pass it by.

    If, as most anthropologists believe, we descend from Homo erectus, there must have been intermediates during the transitional phase: intermediates that would defy classification. Nobody who has thought it through would suggest that suddenly a sapiens baby was born to proud erectus parents. Every animal ever born throughout evolutionary history would have been classified in the same species as its parents, not only by the interbreeding criterion but by all sensible criteria. That fact – though it troubles some minds – is totally compatible with the fact that Homo sapiens is descended from Homo erectus, those two species being distinct species incapable – let us presume – of breeding with each other. It’s also compatible with the fact that you are descended from a lobe-finned fish, with every intermediate along the way being a member of the same species as its parents and its children.

    Moreover, when a species splits into two daughter species in the process known as speciation, there is bound to be an interregnum when the two are still capable of interbreeding. The split originates accidentally, imposed perhaps by a geographic barrier such as a mountain range or a river or stretch of sea. It is probable that chimpanzees and bonobos started to go their separate evolutionary ways when two sub-populations found themselves on opposite sides of the Congo river. The two populations were physically prevented from interbreeding – the flow of genes was halted by the flow of water between them. For a while, they could potentially interbreed, and maybe occasionally did so when an individual inadvertently crossed the river on a floating log. But the geographically imposed lack of gene flow freed them to evolve in separate directions. Those different directions could have been guided by natural selection, or unguided in a process of random drift. It doesn’t matter, the point is that the compatibility between their genes gradually declined until a stage was reached when, even if they should chance to meet, they could no longer interbreed in actuality. The initial geographic barrier doesn’t necessarily come about through an environmental change like an earthquake diverting a river. Geography can stay the same while a pregnant female, for instance, gets accidentally washed ashore on a deserted island. Or the other side of a river.

    But why, in any case, do the genes of two separated populations tend to become incompatible as companions, thereby preventing interbreeding? One reason is that the two sets of chromosomes need to pair off in the process of meiosis, when gametes are made. If they become sufficiently different, say on opposite sides of a barrier, hybrids, if any, would be unable to make gametes. They might live, but could not reproduce. Another reason – back to the central point of this chapter – is that genes, on either side of the barrier, are naturally selected to cooperate with other genes on the same side, but not the other. After enough time has elapsed in physically enforced separation, two gene pools become so incompatible that interbreeding becomes impossible even if the physical barrier is removed. Chimpanzees and bonobos haven’t quite reached that stage. Hybrids can be born in captivity.

    There doesn’t have to be a distinct barrier, like a river, for geographically based speciation to occur. A mouse in Madrid never meets a mouse in Vladivostok but there could well be continuous local gene flow across the 12,000-kilometre gap between them. Given enough time, their descendants could diverge genetically until they could no longer interbreed even if they should somehow contrive to meet. Speciation would have occurred, the barrier being nothing more than sheer distance rather than an unswimmable river or sea, or an impassable desert or mountain range, and despite continuous gene flow locally across the entire range. We have here the spatial equivalent of the temporal continuum between Homo erectus and Homo sapiens. In both cases the extremes never meet. Yet in both cases there can be an unbroken chain of intermediates happily breeding all the way across the range: range in space for the example of the mice; range in time for the example of erectus and sapiens.

    Occasionally, the chain of intermediates wraps around in a circle, bites itself in the tail, and we have a so-called ‘ring species’. Salamanders of the genus Ensatina live all around the four edges of California’s Central Valley but don’t cross the valley. If you start sampling at the southern end of the valley and work your way up the west side to the north, go eastwards across the north end of the valley, then down the eastern side and back around to your starting point, you notice a fascinating thing. The salamanders all along your route around the edge of the valley can interbreed with their neighbours. Yet they gradually change as you go around, and when you arrive back at your starting point, the ‘last’ species of the ring cannot interbreed with the ‘first’. A ring species is a rare case where you can see laid out in the spatial dimension the kind of evolutionary change that you could see along the time dimension if only you lived long enough.

    Such considerations render pointless all heated arguments about whether or not closely related animals, living or fossil, belong to the same species. It is a necessary consequence of evolution that there must be, or must have been, intermediates that you cannot forcibly assign to either species. It would be worrying if it were otherwise. But of course most species in existence are clearly distinct from most other species by any criterion, because of the long time that has elapsed since their ancestors diverged. As for the grey areas where potential interbreeding is even an issue, and where species definition is problematical, this chapter will not treat them further.

    Where external environments are concerned, the genes of a mole speak to us of damp, dark, moist tunnels, of earthy smells, of earthworms and beetle larvae crawling between tangled rootlets and filaments of fungal mycelium and mycorrhizae. The genes of a squirrel have a very different ancestral autobiography, a tale of airy greenery, waving boughs, acorns, nuts, and sunlit glades to be crossed between trees. We could weave a similar list for any species. The point of this chapter, on the other hand, is that the genes’ external ‘experience’ of damp, dark soil, or forest canopy, grassy plains, coral reefs, the deep sea, or whatever it might be, is swamped by the more immediate and salient internal experiencing of other genes in the stirred gene pool. This chapter is about the ‘good companions’ with which the genes have travelled and collaborated, in body after body since earlier times: parting from and re-joining, ever encountering and re-encountering familiar sets of companion genes, collaborating in the difficult arts of building livers and hearts, bones and skin, blood corpuscles and brain cells. The details will be tweaked by ‘external’ pressures: the best heart, kidney, or intestine for a burrowing vermivore is doubtless not the same as the best heart, kidney, or intestine for a tree-climbing nut-lover. But a centrally important quality of a successful gene will be the ability to collaborate with the other genes of the shared gene pool, be it mole, squirrel, hedgehog, whale, or human gene pool.

    Every biochemistry lab has on its wall a huge chart of metabolic pathways, a bewildering spaghetti of chemical formulae joined by arrows. Below is a simplified version in which chemicals are represented by blobs rather than having their formulae spelled out. The lines represent chemical pathways between the blobs. This particular diagram refers to the gut bacterium Escherichia coli, but something similar, and just as bewildering, is going on in your cells.

    Every one of those hundreds of lines is a chemical reaction performed inside a living cell, and each one is catalysed by an enzyme.

    Every enzyme is assembled under the influence of a specific gene (or often two or three genes, because the enzyme molecule may have several ‘domains’ wrapped around each other, each domain being a protein chain). The genes that make these enzymes must cooperate, must be good companion genes in the sense of this chapter.

    All mammals have almost exactly the same set of over 200 named bones, connected in the same order, but differing in size and shape. We saw the principle in the crustaceans of Chapter 6. And the same is true of the metabolic pathways diagrammed above. They are almost the same in all animals but different in detail. And, although they may be engaged in joint enterprises that are similar, the cartels of mutually compatible genes will not be compatible with parallel cartels evolving in other lineages: antelope cartels versus lion cartels, say. Antelopes and lions both need metabolic pathways in all their cells, and both need hearts, kidneys, and lungs, but they’ll differ in details appropriate to herbivores versus carnivores. And more obviously so in teeth, intestines, and feet, for reasons we’ve covered already. If they were somehow to mix in the same body, they wouldn’t work well together.

    I shall say that two separate gene pools, for instance an impala gene pool and a leopard gene pool, represent two separate ‘syndicates’ of ‘cooperating’ genes. Building a body is an embryological enterprise of immense complexity, involving feats of cooperation between all the genes in the active genome. Different kinds of body require different embryological ‘skills’, perfected over evolutionary time by different suites of mutually compatible genes: compatible with members of their own syndicate but incompatible with other syndicates simultaneously being built in other gene pools. These cooperating cartels are assembled over generations of natural selection. The way it works is that each gene is selected for its compatibility with other genes in the gene pool, and vice versa. So cartels of mutually compatible, cooperating genes build up. It is tempting but misleading to speak of alternative cartels being selected as whole units versus other cartels as whole units. Rather, cartels assemble themselves because each member gene is separately selected for its compatibility with other genes within the cartel, which are themselves being selected at the same time.

    Within any one species, genes work together in embryological harmony to produce bodies of the species’ own type. Other cartels in other species’ gene pools self-assemble, and work together to produce different bodies. There will be carnivore cartels, herbivore cartels, burrowing insectivore cartels, river-fishing cartels, tree-climbing, nut-loving cartels, and so on. My main point in this chapter on ‘Good Companions’ is that by far the most important environment that a gene has to master is the collection of other genes in its own gene pool, the collection of other genes that it is likely to meet in successive bodies as the generations go by. Yes, the external ecosystem furnished by predators and prey, parasites and hosts, soil and weather, matters to the survival of a gene in its gene pool. But of more pressing moment is the ecosystem provided by the other genes in the gene pool, the other genes with which each gene is called upon to cooperate in the construction and maintenance of a continuing sequence of bodies. It is an easily dispelled paradox that my first book, The Selfish Gene, could equally well have been called The Cooperative Gene. Indeed, my friend and former student Mark Ridley wrote a fine book with that very title. In his words, which I’d have been pleased to have written myself,

    The cooperation between the genes of a body did not just happen. It required special mechanisms for it to evolve, mechanisms that arrange affairs such that each gene is maximally selfish by being maximally cooperative with the other genes in its body.

    As inhabitants of today’s technologically advanced world, we are aware of the power of cooperation between huge numbers of specialist experts. SpaceX employs some 10,000 people, cooperating in the joint enterprise of launching massive rockets into space and – even more difficult – bringing them back and gently landing them in a fit state to be re-used. Many different specialists are united in intimate cooperation: engineers, mathematicians, designers, welders, riveters, fitters, turners, computer programmers, crane operators, quality control checkers, 3-D printer operators, software coders, inventory control officers, accountants, lawyers, office workers, personal assistants, middle managers, and many others. Most of the experts in one field have little understanding of what experts in other parts of the enterprise do, or how to do it. Yet the feats that we humans can achieve when thousands of us deploy our complementary skills, in well-oiled collaboration but in ignorance of each other’s role, are staggering.

    The human genome project, the James Webb Telescope, the building of a skyscraper or a preposterously oversized cruise ship, these are stunning achievements of cooperation. The Large Hadron Collider at CERN brings together some 10,000 physicists and engineers from more than 100 countries, speaking dozens of languages, working smoothly together to pool their diverse expertise. Yet these huge accomplishments of mass cooperation are more than matched by the nine-month collaborative enterprise of building each one of us in our mother’s womb: a feat of cooperation among billions of cells, belonging to hundreds of cell types (different ‘professions’), orchestrated by about 30,000 intimately cooperating genes, exceeding the personnel count we find in a large human enterprise such as SpaceX. Cooperation is key, in both building a body and building a rocket.

    The genes that build a body must cooperate with all the other companions that the sexual lottery throws at them as the generations go by. They must cooperate not only with the present set of companions, those in today’s body. In the next generation, they’ll have to cooperate with a different sample of companions drawn from the shared gene pool. They must be ready to cooperate with all the alternative genes that march with them down the generations within this gene pool – but no other gene pool. This is because Darwinian success, for a gene, means long-term success, travelling through time over many generations, in many successive bodies. They must be good travelling companions of all the genes in the stirred gene pool of the species.

    The 1957 film of JB Priestley’s novel The Good Companions had an accompanying song with a not uncatchy tune, of which the refrain was,

    Be a good companion,
    Really good companion,
    And you’ll have good companions too.

    It is a song whose evoked mutualism suits the travelling troupe of genes, which constitutes the active gene pool of a species such as ours. Sexual recombination of genes gives meaning to the very existence of the ‘species’ as an entity worth distinguishing with a name at all. Without it, as is the case with bacteria, there is no distinct ‘species’, no clear way to divide the population with confidence into discrete nameable groups. It is sexual reproduction that confers identity on the species. Some bacterial types are not far from being a big smear, grading into each other as they promiscuously share genes. The attempt to assign discrete species names to such bacteria is a losing battle in a way that doesn’t apply to animals like us, where sexual exchange is limited to sexual encounters between a male and a female of the same species – and no other species by definition. As already stated, where fossils are concerned we have to guess, based on their anatomical similarity, whether they would have been able to interbreed when they were alive. This involves subjective judgement, which is why naming fossils such as Homo rhodesiensis and Homo heidelbergensis is a matter of aggravated controversy between ‘lumpers’ and ‘splitters’. But notwithstanding naming disagreements, which can even become acrimonious, we remain confident that the gene pool surrounding every one of those fossils was a troupe of travelling companions isolated from other gene pools – even though imperfectly isolated during episodes of speciation. Bacteria largely deny us that confidence. So-called ‘species’ of bacteria are not clearly delimited.

    Every working gene, ‘expert’ in rendering up its own contribution to the collaborative building of an embryo, is confined to its own gene pool. Repeated cooperation among successive samples drawn from the same troupe of travelling companions has selected genes largely incapable of working beneficially with members of other troupes. Not entirely, as we see from headlined examples like jellyfish genes transplanted into cats and making them glow in the dark. Genes are normally not put to that kind of test. Mules and hinnies, ligers and tigons, are almost always sterile. Their sets of travelling companions are still compatible enough to collaborate in building strong bodies. But their compatibility breaks down when it comes to chromosomal pairing-off in meiosis, the process of cell division that makes gametes. Mules can pull a cart, but they can’t make fertile sperms or eggs.

    Nature doesn’t transplant antelope genes into leopards. If it did, a few might work normally. There are broad similarities between the embryologies of all mammals, and all mammals doubtless share genes for making most layers of the mammalian palimpsest. But that doesn’t undermine this chapter. Those genes concerned with what makes a leopard a predator, and an antelope its herbivorous prey, would not work harmoniously together. In childishly crude terms, leopard teeth wouldn’t sit well with antelope guts and antelope feeding habits. Or vice versa. In the language of this chapter, companions that travel well together in one gene pool would not be good companions in the other. The collaboration would fail.

    The principle is illustrated by an old experiment of EB Ford, the eccentrically fastidious aesthete from whom I learned my undergraduate genetics. Most practical geneticists work on lab animals or plants, breeding fruit flies or mice in the laboratory. But Ford walked a minority path among geneticists. He and his collaborators monitored evolutionary change in gene pools, in the wild. A lifelong authority on butterflies and moths, he went out into the woods and fields, heaths and marshes of Britain, waving his butterfly net and sampling wild populations. He inspired others to do the same kind of thing with wild fruit flies, wild snails and flowers, as well as other species of butterflies and moths. He founded a whole discipline called Ecological Genetics and wrote the book of that title. The piece of work that I want to talk about here was a field study of wild populations of lesser yellow underwing moths, in Scotland and some of the Scottish islands. Ford knew it as Triphaena comes, but it is now called Noctua comes, following the strict precedence rules of zoological nomenclature.

    The species is polymorphic, meaning there are at least two genetically distinct types coexisting in significant proportions in the wild. Not in England, however, nor in much of mainland Scotland, where all the lesser yellow underwings look like the pale upper one in the picture. But in some of the Scottish islands there exists, in significant numbers, a second morph, of darker colour, called curtisii, evidently named after the entomologist and artist John Curtis (1791–1862). I thought it fitting to use Curtis’s own painting of the curtisii morph and the cowslip, and I asked Jana Lenzová to paint in the light morph to complete the picture.

    Dark and light morphs of lesser yellow underwing

    The difference between the two morphs is controlled by a single gene, which we can call the curtisii gene. Curtisii is nearly dominant. This means that if an individual has either one curtisii gene (‘heterozygous’) or two curtisii genes (‘homozygous for curtisii’), it will be dark. If dominance were complete, heterozygous individuals with one curtisii gene would look exactly the same as homozygotes with two. Curtisii being only nearly dominant, the heterozygotes are almost the same as the curtisii homozygotes but slightly lighter. Heterozygotes are always darker than individuals homozygous for the standard comes gene, which is therefore called recessive.

    Like his mentor Ronald Fisher, whom we’ve already met, Ford liked to speak of ‘modifiers’, genes whose effect is to modify the effects of other genes. According to Fisher’s theory of dominance, to which Ford subscribed, when a gene first springs into existence by mutation, it is typically neither dominant nor recessive. Natural selection subsequently drives it towards dominance or recessiveness via the gradual accumulation, through the generations, of modifiers. Dominance is not a property of a gene itself, but a property of its interactions with its companion modifiers.

    Modifiers don’t change the major gene itself. What they change is how it expresses itself, in this case its degree of dominance. The language of this chapter would say that a major gene such as curtisii has modifiers among its ‘good companions’, which affect its dominance, meaning its tendency to express itself when heterozygous. For reasons we needn’t go into, natural selection favoured a significant proportion of dark curtisii morphs on certain Scottish islands. And one way this favour showed itself, according to the theory of Fisher and Ford, was by selection in favour of modifiers that increased its dominance.

    Barra is an island in the Outer Hebrides, west of Scotland. Orkney, north of Scotland, is an archipelago 340 kilometres from Barra as the crow flies, and too far for the moth to fly. Ford collected and studied moths from both these locations. Both have mixed populations of Lesser Yellow Underwings, the normal pale form living alongside significant numbers of dark curtisii morphs. Breeding experiments, with both Barra and Orkney moths, separately confirmed the dominance of curtisii within both islands. However, when Ford took moths from Barra and crossed them with moths from Orkney, he got a remarkable result. The dominance broke down. It disappeared. No longer did Ford see tidy Mendelian segregation of dark versus light forms. Instead there was a messy spectrum of intermediates. Dominance had disappeared.

    What had evidently happened was this. Dominance on Barra had evolved by an accumulation of mutually compatible modifiers, good Barra companions. Dominance on Orkney had independently and convergently evolved by a different consortium of modifier genes, good Orkney companions. When Ford bred across islands, the two sets of modifiers couldn’t work together. It was as though they spoke different languages. To work properly, each modifier needed its normal set of good companions, the set that had been built up over generations of selection on the different islands. That’s what being good companions is all about, and Ford’s experiment dramatically demonstrates a principle that I believe to be general. The ‘major’ gene, curtisii, is the same on both Barra and Orkney. However, for all that a gene itself is the same, its dominance can be built up in more than one way by different consortia of modifiers. This seems to have been the case with curtisii on different islands.

    There’s a potential fallacy lurking here. It’s easy to presume that the Barra good companions lie close to each other on a chromosome and therefore segregate as a unit. And likewise, the Orkney consortium of good companions. That kind of thing can happen, and Ford and his colleagues discovered it in other species. Natural selection can favour inversions and translocations of bits of chromosome that bring good companions closer to each other. Sometimes they end up so close that they are called a ‘supergene’, so close that they are rarely separated by crossing over. This is an advantage, and the translocations and inversions that contribute to the building of a supergene are favoured by natural selection. But if Ford’s modifiers had been clustered together as a supergene in the case of his yellow underwings, he wouldn’t have got the results that he did.

    Supergenes can be demonstrated in the lab by breeding large numbers of individuals for many generations until suddenly, by a freak of chromosomal crossing-over, the supergene is split. But the supergene phenomenon is not necessary for good companionship, and there’s no reason to suppose it applies in this case of the lesser yellow underwing. The suites of cooperating modifiers could lie on different chromosomes all over the genome. Separately, in their respective island gene pools, they were assembled by natural selection as good team workers in each other’s presence. In this case, they work well together to increase the dominance of the curtisii gene. But the principle is more general than that. We don’t have to subscribe to the Fisher/Ford theory of dominance in particular.

    Natural selection favours genes that work together in their own gene pool, the gene pool of their species. Genes that go with being a carnivore (say, genes for carnivorous teeth) are naturally selected in the presence in the same gene pool of other ‘carnivorous genes’ (say genes for short carnivorous intestines whose cells secrete meatdigesting enzymes). At the same time, on the herbivore side, genes for flat, plant-milling teeth flourish in the presence of genes for long, complicated guts that provide havens for plant-digesting micro-organisms. Once again, the alternative suites of genes may be distributed all over the genome. There’s no need to assume that they cluster together on any particular chromosome.

    Unfortunately, good companionship sometimes breaks down. It is even subject to sabotage. We’ve already met ways in which the genes within a body can be in conflict with one another. The uneasy pandemonium of genes within the genome, sometimes cooperating, sometimes disputing, is captured in Egbert Leigh’s ‘Parliament of Genes’. Each acts ‘in its own self-interest, but if its acts hurt the others, they will combine together to suppress it.’

    Cell division within the body is vulnerable to occasional ‘somatic’ mutation. Of course it is. How could it not be? We are familiar with the idea that random copying errors, mutations, produce the raw material for natural selection between individuals. Those ‘germline’ mutations occur in the formation of sperms and eggs, and they are then inherited by an individual’s children. These are the mutations that play an important role in evolution. But most acts of cell division occur within the body – somatic as opposed to germline mutation – and they too are subject to mutation. Indeed, the mutation rate per mitotic division is higher than for meiotic division. We should be thankful our immune system is so good at spotting the danger early. Most somatic mutations, like most germline mutations, are not beneficial to the organism. Sometimes they are beneficial to themselves but bad for the organism, in which case they may engender malignant tumours – cancers. Subsequent natural selection within the tumour can generate a progression through increasingly ominous ‘stages’ of cancer. I shall return to this.

    We can think of the (somatic) cells in a developing embryo as having a family history within the body, springing from their grand ancestor, the single fertilised egg cell of a few months or weeks previous. At any stage in this history of descent, starting with the embryo and on throughout the rest of life, somatic mutation can occur. Vertebrate development is the product of countless cell divisions, so embryologists have found it convenient to trace cell lineages in a simpler organism. The tiny roundworm Caenorhabditis elegans has only 959 cells. It was the genius of the great molecular biologist Sydney Brenner to pick this animal out as the ideal subject for a genre of research that has since spread to dozens of labs throughout the world. Its embryo at one of its developmental stages has precisely 558 cells. Every one of those 558 cells has its own ‘ancestral’ sequence within the developing embryo. The pedigree of each of those 558 cells within the embryo has been painstakingly worked out (illustration below). Necessarily, it’s impossible to print the details legibly on one page of a book, but you can expand it here (https://www.wormatlas.org/celllineages.html) and get an idea of the diverging pedigree of cells in the embryo, consisting of ‘families’ and ‘sub-families’. If you could read the labels by the side of families of cells, you’d see things like ‘intestine’, ‘body muscle’, ‘ring ganglion’. We shall have need to return to that idea of families of cells procreating in the embryo.

    Now, if that’s what the cellular pedigree looks like for a mere 558 roundworm cells, just think what it must look like for our 30 to 40 trillion cells. Similar labels – muscle, intestine, nervous system, etc. – could be affixed to cells in a human embryo (opposite). This is true even though the pedigrees are not determined so rigidly in a vertebrate embryo, and we can’t enumerate a finite tally of named cells. It’s important to stress that these different families of cells within the developing embryo are, until something goes wrong, genetically identical. If they weren’t, they might not cooperate. When something goes wrong and they’re no longer genetically identical, well that’s when there’s a risk of their becoming bad companions. And then there’s a risk of their evolving, by natural selection within the body, to become very bad companions indeed: cancers.

    As you can see on the diagram on the facing page, after some early cell generations within the embryo, the pedigree of our cells splits into three major families: the ectoderm, the mesoderm, and the endoderm. The ectoderm family of cells is destined to give rise, further down the line, to skin, hair, nails, and those hugely magnified nails that we know as hooves. Ectodermal derivatives also contribute the various parts of the nervous system. The endoderm family of cells branches to give rise to sub-families that eventually make the stomach and intestines; and other sub-families that make the liver, lungs, and glands such as the pancreas. The mesoderm dynasty of cells spawns numerous sub-families, which branch again and again to produce muscle, kidney, bone, heart, fat, and the reproductive organs, although not the germline, which is early hived off and sequestered for its privileged destiny, on down the generations.

    Somatic mutants apart, every one of the cells in the expanding pedigree has the same genome, but different genes are switched on in different tissues. That is to say they are epigenetically different while being genetically the same (see the relevant endnote if popular hype has confused you as to the true meaning of ‘epigenetics’). Liver cells have the same genes as muscle cells, but once they pass beyond a certain stage in embryonic development, only liver-specific genes are active there. And the liver ‘family’ of cells in the pedigree goes on dividing until the liver is complete. They then stop dividing. The same applies to all the ‘families’, which each have their own stopping time. Cells must ‘know’ when to stop dividing. And that is where trouble can step in.

    With an important reservation, the number of cell generations before the arresting of cell division varies from tissue to tissue and is typically between forty and sixty. That may seem surprisingly few. But remember the power of exponential growth. Fifty liver cell generations, if each one was a division into two (fortunately it isn’t) would yield a liver the size of a large elephant. Different cell lines stop dividing after different limits, producing end organs of different sizes. You can see how important it is for each cell line to know when to stop dividing.

    Cactus with somatic mutation

    Every one of the 30 trillion cells in a body was made by a cell division. And every one of those cell divisions is vulnerable to somatic mutation. Now we come to that ‘important reservation’, the one relevant to the topic of bad companions. The cells in a lineage are genetically identical only if no somatic mutation intervenes during the lineage’s successive generations. Most somatic mutations are harmless. But what if a somatic mutation arises in a cell such that it changes its behaviour and refuses to stop dividing? Its lineage in the ‘family tree’ doesn’t come to a disciplined halt, but goes on reproducing out of control. The daughter cells of the mutant cell inherit the same rogue mutation, so they too divide. And their daughter cells inherit the rogue gene, so … This is the kind of thing that produces weird growths such as adorns the cactus opposite.

    Let’s follow the subsequent history of a rogue cell’s descendants, for example in a human. Reproducing for an indefinite number of generations without discipline, these cells will now be subject to a form of natural selection. Why say ‘a form of’? It is natural selection, plain and simple. The rogue cells will be subject to natural selection, every bit as Darwinian as the natural selection that chooses the fastest pumas or pronghorns, the prettiest peacocks or petunias, the most fecund codfish or dandelions. Rogue somatic mutant cells can evolve, by natural selection within the body, into cancers that spread menacingly (‘metastasis’) to other parts of the body. Now natural selection of cells within the tumour will favour those that become better cancers. What does ‘better’ mean, for a cancer? They become expert, for example, at usurping a large blood supply to nurture themselves. The whole subject, fascinating, disturbing, and not at all surprising to a Darwinist, is expounded in books such as Athena Aktipis’s The Cheating Cell, and The Society of Genes by Itai Yanai and Martin Lercher.

    Since cancers evolve by natural selection (within the body), we should treat their evolutionary adaptations in just the same way we might treat the adaptations of pronghorn or codfish, except that the ecological environment is the interior of a (say) human body instead of the sea or an open prairie. This chapter’s discussion of Good Companions has prepared us for the idea of an ecology of genes within the body, to parallel the more conventional idea of an external ecology. And that internal ecology is also the setting where bad companions can thrive. An important difference is that natural evolution in the open sea or prairie goes on into the indefinite future. The evolution of a cancer tumour ends abruptly with the death of the patient, whether that death is caused by the cancer or something else. The cancer evolves to become better and better at (as an inadvertent by-product) killing itself. This, too, should not surprise. Natural selection, as I’ve said over and over, has no foresight. A tumour cannot foresee that increased malignancy will eventually kill the tumour itself. Natural selection is the blind watchmaker. Despite ending with the death of the organism, the number of generations of cell division in a tumour is large enough to accommodate constructive evolutionary change. Constructive from the point of view of the cancer. Destructive for the patient. Athena Aktipis’s book artfully treats the evolution of cancer cells in the body in just the kind of way we might treat the evolution of buffalos or scorpions in the Serengeti.

    Cancer cells, then, or rather the mutant genes that turn cells cancerous, are one kind of ‘bad companion’. Another type is the so-called segregation distorter. Sperms and eggs – gametes – are ‘haploid’ cells you’ll remember, having only one copy of each gene, instead of two like normal body cells. The special kind of cell division called meiosis makes haploid gametes (having only one set of chromosomes) out of diploid cells, which have two sets of chromosomes, one set from the individual’s mother and another set from the father. It is only when gametes are made by meiosis that the two sets meet each other in the same chromosome. Meiosis performs an elaborate shuffle, cutting and pasting exchanged portions of paternal and maternal chromosomes into a new set of mixed-up chromosomes. Every gamete is unique, having different assortments of paternal and maternal genes in each of its (twenty-three in humans) chromosomes. The result of the shuffle is that each gene from the diploid set of (forty-six in humans) chromosomes has a 50 per cent chance on average of getting into each gamete.

    The ‘phenotypic effect’ of a gene commonly shows itself somewhere in the body – it might affect tail length or brain size or antler sharpness. But what if a gene were to arise that exerted its phenotypic effect on the process of gamete production itself? And what if that effect was a bias in gamete production such that the gene itself had a greater than 50 per cent chance of ending up in each gamete? Such cheating genes exist – ‘segregation distorters’. Instead of the meiotic shuffle resulting in a fair deal to each gamete as it normally does, the deal is biased in favour of the segregation distorter. The distorter gene has a greater than even chance of ending up in a gamete.

    You can see that if a rogue segregation distorter were to arise it would tend, other things being equal, to spread rapidly through the population. The process is called meiotic drive. The rogue gene would spread, not because of any advantage to the individual’s survival or reproductive success, not because of benefit of any kind in the conventional sense, but simply because of its ‘unfair’ propensity to get itself into gametes. We could see meiotic drive as a kind of population-level cancer. A special case of a segregation distorter is the ‘driving Y-chromosome’, that is, a gene on a Y-chromosome whose effect on males is to bias them towards producing Y sperms and therefore male offspring. If a driving Y arises in a population, it tends towards driving it extinct for lack of females: population-level cancer indeed. Bill Hamilton even suggested that we could control the yellow fever mosquito by deliberately introducing a driving male into the population. Theoretically, the population should drastically shrink through lack of females.

    Other ways have been suggested to control pests by ‘driving genes’. I’ve already mentioned in Chapter 8 the crass irresponsibility of the 11th Duke of Bedford in introducing grey squirrels, native to America, into Britain. He not only released them in his own estate, Woburn Park, but made presents of grey squirrels to other landowners up and down the country. I suppose it seemed like a fun idea at the time, but the consequence is the wiping-out of our native red squirrel population. Researchers are now examining the feasibility of releasing a driving gene into the grey squirrel gene pool. This would not be carried on the Y-chromosome but would produce a dearth of females in a slightly different way. The authors of the idea are mindful of the need to be careful. We want to drive the grey squirrel extinct in Britain but not in America where it belongs and where it would have stayed but for the Duke of Bedford.

    Bad companions, at least in the form of cancers, force themselves upon our forebodings. But for our purposes in this book, it is the gene’s role as good companion that we must thrust to prominence. It remains for the last chapter to pin down exactly what makes them cooperate. Fundamentally, it is, I maintain, the fact that they share an exit route from each body into the next generation.

    Good companions dressed for field work: RA Fisher and EB Ford. See endnote for my suspicion that this is a historic photogaph.

    13 Shared Exit to the Future

    Purveyors of scientific wonder like to surprise us with the prodigious – disturbing to some – numbers of bacteria inside our bodies. We’re accustomed to fearing them but most of them are, in the words of Jake Robinson’s title, Invisible Friends. Mostly in the gut, estimates vary from 39 trillion to 100 trillion, the same order of magnitude as the number of our ‘own’ cells, where 40 trillion is a round-number estimate. Between a half and three-quarters of the cells in your body are not your ‘own’. But that doesn’t take account of the mitochondria. These miniature metabolic engine-rooms swarm inside our cells and the cells of all eucaryotes (that is, all living creatures except bacteria and archaea). It is now established beyond doubt that mitochondria originated from free-living bacteria. They reproduce by cell division like bacteria, and each has its own genes in a ring-shaped chromosome, again like bacteria. In fact, let us not mince words, they are bacteria: symbiotic bacteria that have taken up residence in the hospitable interior of animal and plant cells. We even know, from DNA-sequence evidence, which of today’s bacteria are their closest cousins. The number of mitochondria in your body is many trillions.

    The bacteria that became mitochondria brought with them much essential biochemical expertise, the research and development of which was presumably accomplished long before they became incorporated as proto mitochondria. Their main role in our cells is the combustion of carbon-based fuel to release needed energy. Not the violent high-speed combustion of fire, of course, but a slow, orderly, trickle-down oxidation. Not only are you a swarm of bacteria, you couldn’t move a muscle, see a sunset, fall in love, whistle a tune, despise a demagogue, score a goal, or invent a clever idea without the unceasing activation of their chemical knowhow, expert tricks cobbled together by natural selection choosing between rival bacteria in a lost pre-Precambrian sea.

    The interiors of plant cells swarm with green chloroplasts, which also are descended from bacteria (a different group, the so-called cyanobacteria). Like mitochondria, chloroplasts are bacteria in every sensible meaning of the word. Again like mitochondria, they brought with them a formidable dowry of biochemical wizardry, in this case photosynthesis. Virtually all life on Earth is ultimately powered by energy radiated from the gigantic nuclear fusion reactor that is the sun. It is captured by photosynthesis in chloroplast-equipped solar panels such as leaves, and is subsequently released in the chemical factories that are mitochondria, in all of us. Solar photons that fall on the sea are captured not by leaves but by single-celled green organisms. Whether on land or at sea, solar energy is the base of all food chains. I think the only exceptions are those strange communities whose ultimate source of energy is hot springs, undersea ‘smokers’ and such conduits of heat from the Earth’s interior.

    Our mitochondria couldn’t do without us, just as we wouldn’t survive two instants without them. We are joined deep in mutual amity. Our genes and their genes are good companions that have travelled in lockstep over 2 billion years, each naturally selected to survive in an environment furnished by the other. Most of the genes that originated in their bacterial forebears have long since either migrated into our own chromosomes or been laid off as redundant. But why are mitochondria, and some other bacteria, so benign towards us, while other bacteria give us cholera, tetanus, tuberculosis, and the Black Death? My Darwinian answer is as follows. It is an example of the take-home message of the whole chapter. Mitochondrial genes and ‘own’ genes share the same exit route to the future. That is literally true if we are female, or if we for the moment overlook the fact that mitochondria in males have no future. The key to companionable benevolence, I shall show, or its reverse, is the route by which a gene travels from a present body into a body of the next generation.

    Mitochondria and chloroplasts may be the earliest examples of bacteria being coopted into animals, but they are not the only ones. Here’s a much more recent re-enactment of those ancient incorporations, and it is highly congenial to the thesis of the gene’s-eye view. The embryonic development of vertebrate eyes requires a protein called IRBP, which facilitates the separation of retinal cells from one another and helps them to see better. In a large survey of more than 900 species, IRBPs were found in every vertebrate examined, plus Amphioxus, a small, primitive creature related to vertebrates, although it lacks a backbone. But of the 685 invertebrate species, the only one with a molecule resembling IRBP was an amphipod crustacean, Hyalella. Among plants, a single species, Ricinus communis, the castor oil plant, has something like an IRBP. And there’s a little cluster of fungi too. Molecules resembling IRBPs are ubiquitous among bacteria.

    A family tree of IRBP-like molecules shows a richly branched pedigree among bacteria, paralleling that of the vertebrates in which they live, both pedigrees springing from a single point. The isolated pop-ups (crustacean, fungi, and plant) also spring from within the bacterial tree, but widely separated parts of it. This is good evidence of horizontal gene transfer from various bacteria into the eucaryote genome. The evidence strongly suggests that vertebrate IRBPs are ‘monophyletic’, all descended from a single ancestor, which means a single jump from a bacterium right at the base of vertebrate evolution. Ever since that event, the genes concerned have been passed vertically down the generations. This is like the bacteria that became mitochondria, although mitochondrial ancestors were whole bacteria, not single genes.

    I want to give a general name to bacteria that are transmitted from host to host in host gametes: verticobacter, because they pass vertically down the generations. The ancestors of mitochondria and of chloroplasts are prime examples of verticobacters. Verticobacters can infect another organism only by riding inside its gametes into its children. By contrast, a typical ‘horizontobacter’ might pass by any route from host to host. If it lives in the lungs, for instance, we may suppose its method of infection is via droplets coughed or sneezed into the air and breathed in by its next victim. A horizontobacter doesn’t ‘care’ whether its victim reproduces. It only ‘wants’ its victim to cough (or sneeze, or make bodily contact by hands, lips, or genitals), and it works to that end – ‘works’ in the sense that its genes have extended phenotypic effects on the host’s body and behaviour, driving the host to infect another host. A verticobacter, by contrast, ‘cares’ very much that its ‘victim’ shall successfully reproduce, and ‘wants’ it to survive to reproduce. Indeed, ‘victim’ is scarcely the appropriate word, which is why I protected it behind quotation marks. This is, of course, because a verticobacter’s ‘hope’ of future transmission lies in the offspring of the host, exactly coinciding with the ‘hopes’ of the host itself. Therefore, if a verticobacter’s genes have extended phenotypic effects on the host, they will tend to agree with the phenotypic effects of the host’s own genes. In theory a verticobacter’s genes should ‘want’ exactly the same thing as the host’s genes in every detail.

    The pertussis (whooping cough) bacterium is a good example of a horizontobacter. It makes its victims cough, and it passes through the air to its next victim, in droplets emitted by the cough. Cholera is another horizontobacter. It exits the body via diarrhoea into the water supply, whence it ‘hopes’ to be imbibed by somebody else, drinking contaminated water. It doesn’t ‘care’ if its victims die, and it has no ‘interest’ in their reproductive success.

    The notion of a parasite’s ‘wanting’ its victim to do something needs explaining, and this again is where the extended phenotype comes in, as promised at the end of Chapter 8. The parasitology literature is filled with macabre stories of parasites manipulating host behaviour, usually changing the behaviour of an intermediate host to enable transmission to the next stage in the parasite’s complicated life cycle. Many of these stories concern worms rather than bacteria, but they convey the principle I am seeking to get across. ‘Horsehair worms’ or ‘gordian worms’, belonging to the phylum Nematomorpha, live in water when adult, but the larvae are parasitic, usually on insects. The insect hosts being terrestrial, the gordian larva needs somehow to get into water so it can complete its life cycle as an adult worm. Infected crickets are induced to jump, suicidally, into water. An infected bee will dive into a pond. Immediately the gordian worm bursts out and swims away, the crippled bee being left to die. This is presumably a real Darwinian adaptation on the part of the worm, which means that there has been natural selection of worm genes whose (‘extended’) phenotypic effect is a change in insect behaviour.

    Here’s another example, this time involving a protozoan parasite, Toxoplasma gondii. The definitive host is a cat, and the intermediate host is a rodent such as a rat. The rat is infected via cat faeces. Toxoplasma then needs the infected rat to be eaten by a cat, to complete its life cycle. It insinuates itself into the rat’s brain and manipulates the rat’s behaviour in various ways to that end. Infected rats lose their fear of cats, specifically their aversion to the smell of cat urine. Indeed, they become positively attracted to cats, though apparently not to non-predatory animals, or predators that don’t attack rats. There is some evidence that they lose fear in general, owing to increased production of the hormone testosterone. Whatever the details, it’s reasonable to guess that the change in rat behaviour is a Darwinian adaptation on the part of the parasite. And therefore an extended phenotype of Toxoplasma genes. Natural selection favoured Toxoplasma genes whose extended phenotypic effect was a change in rat behaviour.

    The infected snail’s bulging eyes are a tempting target for birds

    Leucochloridium is a fluke (flatworm), parasitic on birds. Its intermediate host is a snail, and it needs to transfer itself from snail to bird. The snails that it infects are largely nocturnal, while the birds who are the next host feed by day. The worm manipulates the behaviour of the snail to make it go out by day. But that is only the beginning of the snail’s troubles. One of the life-history stages of the worm invades the eye stalk of the snail, which swells grotesquely, and seems to pulsate vividly along its length.

    This is said to make the eye stalk look like a little crawling caterpillar. Be that as it may, it certainly renders the eye stalks conspicuous, and birds readily peck them off. Infected snails also move around more actively than unparasitised ones. The snail is not killed but only blinded. It is able to regenerate its eye stalks to pulsate another day and perhaps be again plucked off. The fluke, for good measure, castrates its snail victim. And that’s an interesting story in its own right. ‘Parasitic castration’ is common enough to be a named thing. It is practised by a wide variety of parasites from around the animal kingdom, including protozoa, flatworms, insects, and various other crustaceans. Including Sacculina, the parasitic barnacle that I introduced in Chapter 6 and promised to return to.

    Sacculina is perhaps the most extreme example of the ‘degenerative’ evolution typical of parasites. Darwin, in his monographs on barnacles, which distracted him for eight of the twenty years when he might have published on evolution, misdiagnosed the affinities of Sacculina. And who can blame him? Just take a look at it. The externally visible part of Sacculina is a soft bag clinging to the underside of a crab. Most of the ‘barnacle’ consists of a branching root system permeating the inside of the unfortunate crab’s body. Eventually, it fills the body so completely that if you could sweep away the crab and leave only the Sacculina, this is what you might see.

    This is not a crab

    How do we know that this system of branching rootlets, this sprawling entity that looks like a plant or fungus, is really a barnacle? How do we even know it’s a crustacean? The various larval stages of the life cycle give it away. The nauplius larva is followed by the cyprid larva, and both are unmistakeably crustacean. As if final clinching were needed, Sacculina’s genome has now been sequenced. ‘It is written’, as the Muslims say: ‘Crustacean’.

    Sacculina larvae

    The first organs that Sacculina attacks are the crab’s reproductive organs. This is the ‘parasitic castration’ that I mentioned above. Barnacles themselves are sometimes castrated by parasitic crustaceans; marine isopods related to woodlice. So, what is the point of parasitic castration? Why would a parasite head straight for the gonads of its host, before eating other organs?

    As with all animals, the host’s ancestors have been naturally selected to fine-tune a delicate balance between the need to reproduce (now) and the need to survive (to reproduce later). A parasite such as Sacculina, however, has no interest in assisting its host to reproduce. This is because its genes don’t share the host genes’ exit route to the future. Sacculina genes ‘want’ to shift the host’s ‘balance’ towards surviving, to carry on feeding the parasite. Like a docile, castrated ox being fattened up, the crab is forced by the parasite to renounce reproduction and become a maintained source of food.

    The situation reverses in those cases where parasites – ‘verticoparasites’ – pass to the next host generation in the gametes of the host. Verticoparasites infect only the offspring of their individual hosts rather than potential hosts at large. The genes of a verticoparasite share the ‘exit route’ of the host genes, so their extended phenotypic effects will agree with the host genes’ phenotypic effects. Exercise our usual cautious licence to personify, and consider the ‘preferred options’ of a verticoparasite such as a verticobacter. It travels inside the eggs of a host directly into the host’s child. Here, the interests of parasite and host coincide, and their genes ‘agree’ about the optimal host anatomy and behaviour. Both ‘want’ the host to reproduce, and survive to reproduce. Once again, if the genes of vertically transmitted parasites have extended phenotypic effects on their hosts, those effects should coincide, in perfect agreement and in every detail, with the phenotypic effects of the host animal’s ‘own’ genes.

    Mitochondria are an extreme example of a verticoparasite. Long transmitted vertically down the generations inside host eggs, they became so amicably cooperative that their parasitic origins are hard to spot, and were long overlooked. A horizontoparasite such as Sacculina has opposite ‘preferences’. It has no ‘interest’ in its host’s successful reproduction. Whether or not a horizontoparasite ‘cares’ about its host’s survival depends on whether it can benefit from it, presumably, as in the case of Sacculina, by feeding on the living host. If, by castration, it can shift the balance of the host’s internal economy away from reproduction and towards survival, so much the better.

    The tapeworm Spirometra mansanoides doesn’t castrate its mouse victims but it achieves a similar result. It secretes a growth hormone, which makes them grow fatter than normal mice. And fatter than the optimum achieved by natural selection of mouse genes seeking a balance between growth and reproduction. Tribolium beetles normally develop through a succession of six larval moults, increasing in size, before they eventually change into an adult. A protozoan parasite, Nosema whitei, when it infects Tribolium larvae, suppresses the change to adult. Instead, the larva continues to grow through as many as six extra larval moults, ending up as a giant grub, weighing more than twice as much as the maximum weight of an uninfected larva. Natural selection has favoured Nosema genes whose extended phenotypic effect was a dramatic doubling in Tribolium fatstock weight, achieved at the expense of beetle reproduction.

    A small tapeworm, Anomotaenia brevis, needs to get into its definitive host, a woodpecker. It does so via an intermediate host, an ant of the species Temnothorax nylanderi, which has the habit of collecting woodpecker droppings to feed to its larvae. Tapeworm eggs are often present in the droppings, and can therefore find themselves being eaten by ant larvae. The parasite then has an interesting effect on the ant’s behaviour when it becomes adult. It refrains from work and is fed by unparasitised workers. Parasitised ants also live longer, up to three times longer, than normal ants. This increases their chance of being eaten by a woodpecker – which benefits the tapeworm.

    There are parasitic flukes who persuade their snail victim to develop a thicker shell than normal. Shells are presumably an adaptation to protect the snail and prolong its life. But a shell, like any other part of the body, is costly to make. In the personal economics of snail development, the price of thickening the shell is presumably paid out of non-shell pockets, such as those committed to reproduction. Natural selection of snails has built up a delicate balance between survival and reproduction. Too thin a shell jeopardises survival. Too thick a shell, although good for survival, takes economic resources away from reproduction. The fluke, not being a vertically transmitted parasite, ‘cares nothing’ for snail reproduction. It ‘wants’ the snail to shift its priorities towards individual survival. Hence, I suggest, the thickened shell. In extended phenotype language, natural selection favours genes in the fluke that exert a phenotypic effect on the snail, upsetting its carefully poised balance. The thickening of the shell is an extended phenotype of fluke genes, benefiting them but not the snail’s own genes. This case is interesting as an example of a parasite apparently – but only apparently – doing its host a good turn. It strengthens the snail’s armour and perhaps prolongs its life. But if that were really good for the snail, the snail would do it anyway, without the ‘help’ of a parasite. The snail balances a finely judged internal economy. Too lavish spending on survival impoverishes reproduction. The parasite unbalances the snail’s economy, pushing it too far in the direction of survival at the expense of reproduction.

    According to the gene’s-eye view of life that I advocate, genes take whatever steps are necessary to propagate themselves into the distant future. In the case of ‘own’ vertically transmitted genes, the steps taken are phenotypic effects on the form, workings, and behaviour of ‘own’ bodies. Genes take those steps because they inherit the qualities of an unbroken, vertically travelling line of successful genes that took the same steps through the ancestral past – that is precisely why they still exist in the present. All of our ‘own’ genes are good companions that agree with each other about what the best steps are. Everything that helps one member of the genetic cartel into the next generation automatically helps all the others. All ‘agree’ about the goal of whatever it is they variously do to affect the phenotype. And why do they agree? Precisely because, in every generation, they share with each other the same exit route into the next generation. That exit route is the gametes – the sperms and eggs – of the present generation. And now we return to verticobacters and other verticoparasites. They have exactly the same exit route as the host’s own genes, and therefore exactly the same interests at heart.

    The genes of a verticobacter look back at the same history of ancestral bodies as its host’s own genes. Verticobacter genes have the same reason to behave as good companions towards our own genes as our own genes have towards each other. If an animal benefits from fast-running legs and efficient lungs for running, then its internal verticobacters will also benefit from the same things. If a verticobacter has an extended phenotypic effect on running speed, that effect will be favoured only if it is positive from the organism’s point of view too. The interests of host and bacterium coincide in every particular. A horizontobacter, on the other hand, might be more likely to ‘want’ its victim, when pursued, to cough with exhaustion – coughing being exactly what the horizontobacter needs in order to get itself passed on to another victim. Or another horizontobacter might want its victim to mate more promiscuously than the optimum ‘desired’ by the host’s own genes, thereby maximising contact with another host, and hence opportunities for infection. An extreme horizontobacter might devour the host’s tissues completely, reducing it to a bag of spores which eventually bursts, scattering them to the winds, where they may find fresh hosts to conquer.

    A verticobacter ‘wants’ its victims to reproduce successfully (which means, as we saw earlier, that ‘victims’ is not really an appropriate word). Its ‘hopes’ for the future precisely coincide with those of its host. Its genes cooperate with those of the host to build a strong body surviving to reproductive age. Its genes help to endow the host with whatever it takes to survive and reproduce; with skill in building a nest, diligence in gathering food for the infants, success in fledging them at the right time to prepare to reproduce the next generation, and so on. If a verticobacter happens to have an extended phenotypic effect on a host bird’s plumage, natural selection could favour verticobacter genes that brighten the feathers to make the host more attractive to the opposite sex. Verticobacter genes and host genes will ‘agree’ in every respect.

    Exactly the same argument applies to viruses, of course. And now we approach the twist in the tail of this chapter and this book. Any virus that travels from human (for example) generation to generation via our sperms or eggs will have the same ‘interests’ as our ‘own’ genes. Whatever colour, shape, behaviour, biochemistry is best for our ‘own’ genes will also be best for (let’s call them) verticoviruses. Verticovirus genes will become good companions of our own genes, accounting for the familiar fact that viruses can help us as well as harm us. Horizontovirus genes, by contrast, don’t care if they kill their victims, so long as they get passed on to new victims by their route of choice – coughing, sneezing, handshaking, kissing, sexual intercourse, whatever it is.

    A good example of a horizontovirus is the rabies virus. It is transmitted via the foaming saliva of its victims, whom it induces to bite other animals thereby infecting their blood. It also leads its victims, for example ‘mad’ dogs, to roam far and wide (and out in the midday sun), rather than stay, perhaps sleeping, within their normal home range. This helps the virus by spreading it over a larger geographical area.

    What would be a good real example of a verticovirus? It has been estimated that about 8 per cent of the human genome actually consists of viral genes that have, over the millions of years, become incorporated. Among these ‘retroviruses’, some are inert but others have effects that are beneficial. For example, it has been suggested that the evolutionary origin of the mammalian placenta was the result of a beneficial cooperation with an ‘endogenous’ retrovirus that succeeded in writing itself into the nuclear DNA. LP Villarreal, a leading virologist, has gone so far as to suggest that ‘viruses were involved in most all major transitions of host biology in evolution’, and ‘From the origin of life to the evolution of humans, viruses seem to have been involved … So powerful and ancient are viruses, that I would summarize their role in life as “Ex virus omnia” (from virus everything).’

    And now, can you see where I am finally going in this chapter? In what sense are our ‘own’ genes different from benign, good companion viruses? Why not push to the ultimate reductio? Why not see the entire genome as a huge colony of symbiotic verticoviruses? This is not a factual contribution to the science of virology. Nothing so ambitious. It’s more like an expansion of what we might mean by ‘virus’ – rather as ‘extended phenotype’ was an expansion of what we might mean by ‘phenotype’. Our ‘own’ genes are verticoviruses, good companions held together and cooperating because they share the same exit route to the next generation. They cooperate in the shared enterprise of building a body whose purpose is to pass them on. Viruses as we normally understand the word, and computer viruses, are algorithms that say ‘Duplicate me’. An elephant’s ‘own’ genes are algorithms that say, in the words of an earlier book of mine, ‘Duplicate me by the roundabout route of building an elephant first’. They are algorithms that work only in the presence of the other genes in the gene pool. They are equivalent to an immense society of cooperating viruses.

    I’m not just saying that our genome consists of ‘endogenous retroviruses’ (ERVs) that were once free, infected us, and then became incorporated into the chromosomes. That is true in some cases and it is important, but it’s not what this final chapter is suggesting. Lewis Thomas also didn’t mean what I now mean, although I would love to borrow his poetic vision in pushing the climax of my book.

    We live in a dancing matrix of viruses; they dart, rather like bees, from organism to organism, from plant to insect to mammal to me and back again, and into the sea, tugging along pieces of this genome, strings of genes from that, transplanting grafts of DNA, passing around heredity as though at a great party.

    The phenomenon of ‘jumping genes’, too, is congenial to my vision of a genome as a cooperative of verticoviruses. Barbara McClintock won a Nobel Prize for her discovery of these ‘mobile genetic elements’. Genes don’t always hold their place on a particular chromosome. They can detach themselves, then splice themselves in at a distant place in the genome. Some 44 per cent of the human genome consists of such jumping genes or ‘transposons’. McClintock’s discovery of jumping genes conjures a vision of the genome as a society, like an ants’ nest: a society of viruses held together only by their shared exit route, and hence shared future and shared actions calculated to secure it.

    My suggestion is that the important distinction we need to make is not ‘own’ versus ‘alien’ but vertico versus horizonto. What we normally call viruses – HIV, coronaviruses, influenza, measles, smallpox, chickenpox, Rubella, rabies – are all horizonto viruses. That, precisely, is why many of them have evolved in a direction that damages us. They pass from body to body, via routes that are all their own, by touch, in the breath, by genital contact, in saliva, or whatever it is, and not via the gametic routes with which our own genes traverse the generations. Viruses that share the same genetic destiny as our own genes have no reason to dissent from good companionship. On the contrary. They stand to gain from the survival and successful reproduction of every shared body they inhabit, in exactly the same way as our own genes do. They deserve to be considered ‘our own’ in an even more intimate sense than mitochondria, for mitochondria pass down the female line only. And, from this point of view, our ‘own’ genes are no more ‘own’ than a retrovirus that has become incorporated into one of our chromosomes and stands to be passed on to the next generation by exactly the same sperm or egg route as any other genes in the chromosome.

    I cannot emphasise strongly enough that I am not suggesting that all our genes were once independent viruses that later ‘came in from the cold’ and, as retroviruses, ‘joined the club’ of our own nuclear genome. That is known of some 8 percent of our genes, it may be true of many more, it is interesting and important, but it is not what I am talking about here. My point is rather to downplay the distinction between ‘own’ and ‘other’, and to emphasise instead the distinction between vertico and horizonto.

    Our entire genome – more, the entire gene pool of any species of animal – is a swarming colony of symbiotic verticoviruses. Once again, I’m not talking only about the 8 percent of our genome that consists of actual retroviruses, but the other 92 percent as well. They are good companions precisely because they are vertically transmitted, and have been for countless generations. This is the radical conclusion towards which this chapter has been directed. The gene pool of a species, including our own, is a gigantic colony of viruses, each hell-bent on travelling to the future. They cooperate with one another in the enterprise of building bodies because successive, temporary, reproduce-and-then-die bodies have proved to be the best vehicles in which to undertake their vertical Great Trek through time. You are the incarnation of a great, seething, scrambling, time-travelling cooperative of viruses.

  • 让-巴普蒂斯特·德·帕纳菲厄《沙滩上的智人:带着人类演化史去度假》

    目录
    序言
    第一章 起源
    起立,猴子! “大有可为”的基因突变 开始双足行走 双足行走有何好处?
    第二章 南方古猿
    汤恩幼儿 露西 “开枝散叶”的南方古猿 傍人
    第三章 原始人类
    在人属诞生之前 怎样才算人类? 最初的人属 最初的工具 容量与日俱增的大脑 直立人是个大个子 多种用途的两面器 新面貌 “开枝散叶”的原始人
    第四章 去往世界尽头
    走出非洲 改变 最初的欧洲人 狩猎与传统 火的掌控
    第五章 其他人属物种
    欧洲的尼安德特人 尼安德特文化 尼安德特艺术家 冰期的幸存者 丹尼索瓦人 弗洛里斯的“霍比特人” 其他人属物种的结局
    第六章 最初的智人
    智人的出现 既是智人又是现代人! 伊甸园 起源问题
    第七章 征服地球
    从非洲到美洲 迁徙造就智人 旧石器时代晚期的文化 新人类?
    第八章 史前时代的结束
    中石器时代 大型动物的灭绝 新石器时代革命 基因变化 迁移
    结语 今天的智人
    过去的痕迹 基因的多样性 人类种族存在吗? 未来的人类 控制演化的痴心妄想

    序言

    智人(Homo sapiens)是现今人类的祖先,大约在30万年前出现在非洲。在智人诞生前的数百万年里,非洲大陆上生活着一些双足行走的人科动物,它们的后代就是我们所说的智人了。在不断演化的过程中,一些人科动物彼此隔离,隔离的时间足够久之后,演化出了不同的物种。在历史上的许多时候,地球上同时生活着不止一种人类。

    在过去的几十年里,由于古人类学家的辛勤努力,我们得以重建这一段人类历史,并绘制了人类的遗传树(古人类学家称之为系统发生树),其繁茂程度是前人所无法想象的。我们人类是如何从“人丁兴旺”的大家族中脱颖而出的?我们人类的演化是渐进式的还是跃迁式的?在演化过程中,我们是在什么时候,又是怎么成为今天意义上的人类的?这些问题里的一部分已经找到了答案,或至少找到了部分答案,但是这些答案又引发了新的问题。

    从西班牙的“骨坑”到南非的斯泰克方丹洞穴,从格鲁吉亚的德玛尼西遗址到印度尼西亚的弗洛里斯岛,考古新发现层出不穷。得益于越发精细的考古挖掘技术,我们得以想象祖先生存的环境是什么模样。如今,我们也能够对岩石内部进行探测,进而揭示颅骨化石最微小的细节。而通过对化石进行化学分析,我们可以了解远古生物的饮食习惯。不过,真正意义上的革新,是对史前人类进行DNA(脱氧核糖核酸)分析。即便这种方法问世尚不足十年,古生物遗传学也已经取得了惊人的研究成果,比如确认了一个无人设想过的物种的存在,抑或是提供了不同种的人类曾经相互杂交的证据。时至今日,我们身上仍留有这段历史的痕迹。

    无论是在社会层面还是政治层面,人类起源都是个敏感话题。如今,许多人仍然坚信宗教神话,不愿意面对冷冰冰的化石骨骸证据,不愿意相信人类源自动物的事实,不愿意承认人性是缓慢习得的。古人类学的历史,也是我们人类社会的历史。某些国家的研究人员在培养民族自豪感的目标驱动下,试图寻找某种比其他人更古老或更灵巧的古人类,以回溯本民族起源而非人类起源。

    诚然,我们今天讲述的故事,未来可能会发生改变。未来的新发现,或将充实这套叙事,或将把某些篇章整个推倒重写。古人类学有助于我们理解我们是谁,并把人类作为一个具有多样性的整体来思考。我们之所以痴迷于研究自身的演化史,是因为它不但揭示了我们的起源,还揭示了我们的本性。

    地质时期和文化年表
    根据骨骼化石确定的不同人亚族的分布时期图

    第一章 起源

    黑猩猩和人类有许多相似之处,比如二者拥有一个最近共同祖先,由这个共同祖先分化而来。直至21世纪,我们才对自己的远祖——第一批原始人类——有了更加清晰的认识。

    起立,猴子!

    人类的祖先是一种哺乳动物,浑身毛发,长着尾巴和尖尖的耳朵,生活在旧世界,很可能过着树栖生活。 ——达尔文,1871

    原始人类中可是有不少名人的,比如露西(Lucy,距今320万年),但我们的历史未必就要从露西开始写起。我们也可以把厚厚的家谱翻到30万年前,最早的智人降生的时刻;或者再往前翻到距今700万到1 000万年,最早的人亚族诞生时。我们还可以继续向前追溯:距今5 500万年,最早的灵长目动物登场;距今2.2亿年,最早的哺乳动物出现;大约5.5亿年前,最早的脊椎动物产生。

    从动物学角度说,我们属于人亚族(Hominina)。人亚族包括了与黑猩猩亲缘关系更远、与现代人类亲缘关系更近的所有灵长目动物,比如南方古猿。自最早的人亚族诞生之时起,我们的历史便与现今依然存活于世的其他动物分道扬镳,因此,将关注点聚焦于最早的人亚族是个不错的选择。

    根据古生物学和分子生物学数据,人类和黑猩猩的最近共同祖先生活在距今500万至1 000万年的非洲。之所以年代估算出现这么大的差值,是因为两门学科的研究成果无法就此达成一致:化石遗存显示最近共同祖先生活在700万到800万年前(甚至可能更早),但分子生物学的研究结果表明其生活在距今500万年到700万年之间。或许,以下事实能够解释出现这种现象的原因:在与祖先物种分化后,两个支系有过杂交,由此导致两个支系的分化期变长。

    关于这个最近共同祖先,除了它可能群居且茹素外,我们所知甚少。我们不知道它究竟是四足行进还是双足行走。如果它四足行进,那么人亚族就是自行发展出了双足行走的典型特征;如果它双足行走,那就意味着更古老的灵长目动物早就开始依赖双腿行动了,而后来的黑猩猩则退回了一种特殊的四足行进方式——移动时以双手第二指骨的背部作为支撑[即“指背行走”(knuckle-walking)]。

    虽然我们依然不甚了解这个最近共同祖先,但化石的存在使我们得以管窥它的面貌。2000年,古人类学家马丁·皮克福德(Martin Pickford)和布里吉特·森努特(Brigitte Senut)共同描述了属于一个新物种的骨化石,这个新物种名叫图根原人(Orrorin tugenensis),生活在600万年前的肯尼亚。根据股骨颈的内部结构,皮克福德和森努特猜测,图根原人经常双足行走。图根原人生活在森林里,擅长攀缘树枝。

    一年后,研究员米歇尔·布鲁内特(Michel Brunet)宣布,在乍得发现了生活在700万年前的乍得沙赫人(Sahelanthropus tchadensis)的一块头盖骨,并将其命名为“图迈”。根据枕骨大孔(指颅骨底部的孔,大脑通过此孔与脊髓相连)的位置,“图迈”似乎也靠双足行走。人类的枕骨大孔位于颅骨下方、脊柱正上方。黑猩猩的枕骨大孔则位于颅骨靠后的位置,与四足动物一样。

    黑猩猩与人类的枕骨大孔对比图

    然而,由于化石非常不完整,很难确定“图迈”在人亚族演化史中的位置。因此,部分古人类学家更倾向于将“图迈”归入日后演化为黑猩猩甚至大猩猩的谱系。我们之所以无法给“图迈”的演化位置下定论,是因为处于猿类和人类分化期前后的人科物种都具有很大的相似性。如果对“图迈”颅骨发现地找到的股骨加以分析,或许能够更加精确地确定它在灵长目演化树上的位置。

    另一个有趣的化石来自地猿(Ardipithecus),其年代更近,保存也更完整。美国古人类学家蒂姆·D. 怀特(Tim D. White)对埃塞俄比亚多个发掘点出土的数以千计的整骨和碎骨进行了长达15年的精心研究,随后于2009年对这些可追溯到440万年前的地猿化石进行了解读。根据地猿化石周围的动物化石推断,地猿生活在森林里,身高约1.2米,既能行走又能攀缘。地猿长有对生的大脚趾,但不如黑猩猩的灵活。虽然双腿移动起来比大猩猩还要容易一些,但是地猿的双臂和指骨长而弯曲的手指非常适于树栖生活。地猿的犬齿强健有力,具有明显的祖先特征(直接遗传自祖先),脑容量接近黑猩猩。一些人认为地猿是南方古猿(和人类)的直系先祖,另一些人则将地猿视为远房表亲,与黑猩猩的亲缘关系更近。

    最初的人亚族分布图

    人猿总科、人科、人亚族

    在灵长目动物中,失去了祖先的长尾而拥有了尾椎的猴子都被归入人猿总科(Hominoidea)。该科包括了原康修尔猿(Proconsul,2 300万年前生活在非洲)的全部后代和十来个现存物种:长臂猿、猩猩、大猩猩、黑猩猩、倭黑猩猩和人类。

    原康修尔猿是第一批失去尾巴的猴子之一,也是人猿总科的祖先

    除了尾椎之外,人猿总科的独特之处还在于手骨及肩胛骨的结构。人猿总科对应的是猴总科,即“旧世界猴”,后者依然长有长尾(尾巴并没有在进化过程中丧失)。至于美洲的“新世界猴”则属于阔鼻小目(Platyrrhini),是与前述两者亲缘关系更远的灵长目类群。

    最近几十年,根据在亲缘关系、灭绝物种化石和DNA方面层见叠出的研究成果,人猿总科内部的分类经常出现变动。如今,人科(Hominidae)包括了猩猩、大猩猩、黑猩猩、倭黑猩猩、人类和许多化石物种。

    至于人亚族,指的是人科内部与人类亲缘关系较近、与黑猩猩亲缘关系较远的全部物种。古人类学家一共描述过二十来种,包括乍得沙赫人、南方古猿、傍人,以及人属(Homo)的多个物种,比如能人(Homo habilis)、直立人(Homo erectus)、尼安德特人(Homo neanderthalensis)或智人。人们认为,这些物种都是双足行走的。

    “大有可为”的基因突变

    借助化石,我们能够了解最早的人亚族的大致面貌。现如今,我们拥有了一个与此迥异的补充性信息来源,那就是DNA。近些年来,基因测序已经成了生物学和古生物学的惯用研究手段(参见第10页《DNA、基因、突变》)。

    人类和黑猩猩分化后,基因突变导致二者的DNA有所不同。已经发现的突变现象有:点突变(比如碱基A替换为碱基C),DNA片段缺失和重复,以及内部重组(人类和黑猩猩的染色体数量不同)。

    一些基因突变并没有产生明显的后果,另一些可就是导致人类区别于黑猩猩的“元凶”了。通过对比人类和黑猩猩的基因组,人们希望能够确定导致二者演化分离的遗传事件。

    在人类和黑猩猩的分化过程中,共同祖先某些DNA片段的遗失或失活似乎发挥了重要作用。人们发现,在一种参与合成肌球蛋白(肌肉收缩所必需的一种蛋白质)的基因上,人类和黑猩猩有所不同。基因MYH16负责合成一种咀嚼肌特有的肌球蛋白。然而,人类体内的MYH16基因却失活了。或许,正是这个突变导致了人类支系的下颌变小。

    一些突变可能导致行为上的变化。比如,人类失去了形成触须(粗壮的感觉毛,包括黑猩猩在内的许多哺乳动物都有)和阴茎刺(覆盖在黑猩猩阴茎表面的小型角蛋白突起)的基因。失去阴茎刺会使阴茎敏感度降低,交配时间延长(黑猩猩可是出了名的快枪手)。另外,我们还知道,失去阴茎刺的灵长目往往都是单配偶型物种。

    这一变化也关系到人类和猿类的其他区别,比如:人类在排卵期开始前不再有身体上的变化,以及出现乳房和光滑脸庞等第二性征。使得交配时间延长的基因突变或许改变了人亚族的生活方式,强化了雄性与雌性之间的纽带,而这一纽带正是实现社会凝聚、更好地保护后代的关键因素。

    DNA、基因、突变

    我们体内的每个细胞都含有46条染色体。所谓的染色体,就是扭曲折叠的DNA细丝。人类的基因组(也就是全部的DNA)由32亿个排成链状的核苷酸组成,核苷酸分为A、T、C、G四种。所谓的DNA测序,就是确定一个个核苷酸的排列顺序(比如AGATCC)。在不同物种之间或同一物种的不同个体之间,都可以进行核苷酸序列对比。

    基因是细胞为了生产自身活动所需分子而转录的DNA片段。人类拥有2万个基因,其中包含了人体发育和细胞正常工作所需的全部信息。DNA的其他部分在调节这套转录系统时起着至关重要的作用,可以控制基因的“表达”(也就是基因的活动)。实际上,在不同的发育阶段或不同类型的细胞里,基因活性也有高有低。

    突变指偶然发生的DNA序列改变。基因发生突变时,其活性往往也会改变。每个基因都可能因为先前发生的突变而存在多种变体,即所谓的等位基因。

    如果某个基因突变导致生殖细胞(卵子或精子)发生变化,而该生殖细胞又成功受胎,那这个突变将出现在由此细胞孕育而成的新个体的所有体细胞里(不过仅存在于新个体自身一半的生殖细胞内)。这样一来,突变就能一代代传递下去。每个生物个体都带有从亲代遗传而来的100到200个新的突变,不过大部分突变都没有产生什么显性影响。

    开始双足行走

    从四足行进过渡到双足行走是人亚族历史上的重大事件,因为两足的移动方式使其有别于绝大部分近亲[不过还有一些与人亚族无关联的灵长目动物也发展出了两足行走的能力,比如生存于800万年前的山猿(Oreopithecus)]。人类家族中出现的这一现象该怎么解释呢?

    首先,这一移动方式的改变意味着身体骨架的全面重组,并且影响到了胚胎的发育。足部形成足弓,以支撑身体的全部重量。大脚趾与其他脚趾并列,再也不能与其他脚趾构成钳形。脚踝关节和膝盖关节得以强化,同时髋关节位置发生变化,使得双腿更加靠近身体重心线。为了使上半身保持竖直状态,需要强壮的肌肉;强壮的肌肉又塑造了我们的臀部,而臀部可说是典型的人类演化创新。骨盆呈盆状展开,上托腹腔脏器,下承大腿肌肉。除此以外,骨盆还须满足分娩的需要。双重限制之下,人类的妊娠期变短,使胎儿出生时颅骨发育不全,以便顺利通过骨盆入口。腰椎位于脊柱的底端,在强度提升的同时也变得更宽更短。枕骨大孔移动至颅骨正下方,大大减轻了支撑头部的颈部肌肉的负荷(参见第4页插图)。

    在布里吉特·森努特和苏珊娜·K. S. 索普(SusannahK. S. Thorpe)等众多古人类学家看来,树栖(指一生中的大部分时间都栖息在树上)的人科动物或许最先发展出了双足行走的特征。我们的直系祖先恰恰生活在森林里,它们应该不是四足行进的,且极有可能习惯于攀缘!我们已经发现,作为现存树栖特征最为明显的猿类,猩猩在踏上柔软树枝时会尽量增加腿部的伸展幅度,与人类在有弹性的地面上奔跑时的肢体反应别无二致,而其他猴子的做法却恰恰相反。由此推断,地面上的双足行走应该是由树上的双足行走发展出来的。古生物学家称此现象为在树上进行的“直立姿势预适应”。

    另有一些研究人员认为,是四足攀爬的猴类最先发展出了双足行走能力。远古人亚族[比如拉密达地猿(Ardipithecus ramidus)]的骨骼研究结果似乎证明了这一论断,因为远古人亚族的腕骨与现存四足灵长目动物的腕骨相似。还有一些研究人员则认为,双足行走最先出现在半水栖人科动物身上,然而迄今为止,尚未发现任何支持这种假说的化石!

    但是,不管怎么样,我们都不应这样设想:人类从四足姿势“站起来”,历经数百万年,本着主观意愿,终于获得了我们今日了不起的直立行走姿势。首先,我们探讨的是解剖学意义上的进化,自从生命起源以来,在所有动物物种身上已经产生了不胜枚举的类似例证。达成某种目标(无论结果多么有益)并不需要诉诸意愿,哪怕只是无意识的。解剖学层面的演化创新或许在日后具有很大的益处,然而,以此益处为基础建立起来的解释体系却是不可接受的,因为进化只是进化,并不能预见物种将来需要什么!如果一定要给出一个达尔文式的解释,那就需要探究向着双足行走演进过程中的每个阶段分别带来了什么好处。有朝一日能够跑马拉松这样的好处可就不要提了,以双足姿势行走能比祖先移动时间更长这种朴实的小优势可能更合理。

    人科动物演进图

    似是而非的图画

    这幅著名的图画诞生于1965年。画面上,四足行进的猴子在前进过程中渐渐站立起来,并朝着越来越像人类的方向演化:先是原始猴子,然后是南方古猿,接着是原始人类,再往后是尼安德特人,接下来是克罗马农人(Cro-Magnons),最后是大步迈向未来的现代人。

    这幅从猴到人的行进图来自时代生活图书公司(Time-Life Books)出版的图书《早期人类》(The Early Man)。毋庸置疑,这幅插图在普及演化思想方面确实发挥了作用。可不幸的是,它在多个层面上都传达了错误的信息。首先,这幅插图给人的感觉是,这些灵长动物无一例外地朝着智人的方向前进,仿佛成为人类是它们不可避免的终极演化结果。其次,插图里的几个物种,并非一个就是另一个的后代:人类的演化不是直进式的,而是分支式的,在演化的过程中,许多物种都消失在了历史长河里,并没有留下任何后代。

    双足行走有何好处?

    成为人类,是从脚开始的。 ——安德烈·勒鲁瓦-古朗(André Leroi-Gourhan),1982

    双足行走大有好处。首先,在探索周围环境时,双足行走成本更小。实际上,从能量消耗的角度上看,双足行走比四足行进更加经济。在速度相同的条件下,人消耗的能量仅为黑猩猩的四分之一。其实,黑猩猩也能双足行走;不过由于关节构造更适于四足行进,黑猩猩在两种移动方式下的能量消耗是相等的。

    在1000万年前,全球气温略有下降,尤为重要的是,天气变得更加干燥。气候变化导致非洲广大的茂密森林消失不见,取而代之的是稀树草原和稀疏森林。一些人科动物选择继续在森林里度日,另一些则着手开发新的资源。在不同以往的环境条件下,后者充分利用了自身双足行走的能力,并在自然演化的作用下强化和巩固了这种移动方式。

    在比森林更加开阔的环境里,站起来的好处或许就是看得远。然而,虽然是四足行进,狒狒却在稀树草原生活得如鱼得水。所以,站起来看得远并不是个非常充分的解释。另有一些假说将关注的焦点集中在大范围分散的食物来源上。事实上,在这种情况下,能够自由移动并将采集到的食物带给族群中的其他成员,着实是很有好处的。我们发现,与双足行走相伴而来的,是食谱的变化——块根和块茎在食物中占的比例更大了——这一显著变化导致了牙釉质加厚。与此相反,喜食水果或嫩叶的动物,比如大猩猩,牙釉质就偏薄。

    另一个问题则涉及双足行走与制造工具之间的关系。双足行走是否通过解放双手促进了第一批石质工具的诞生呢?这个问题也可以反过来问:制造工具的需求是否促进了向双足行走的过渡呢?一些日本古人类学家倾向于后一种假说。他们认为,首先是双手变得灵巧,而且这一过程与双足行走是没有关联的。

    另外,还有一种可能性。人类手指和脚趾中最为粗壮的当属大拇指和大脚趾,而它们的“发展壮大”可能是同一个演化机制作用的结果。采用双足行走姿态后,自然选择强烈作用于脚趾之上,这种强化转而又作用于拇指,进而使得双手更加灵巧。

    一些古人类学家,如美国的欧文·拉夫乔伊(OwenLovejoy),将双足行走的出现与向单配偶制的转变关联起来。最初的人亚族开始双足行走后,脑容量增大导致营养需求增加,雌性可能不得不分散到广阔的地域里寻找高能量的食物。雌性的分散可就苦了雄性,“妻妾成群”的雄性绞尽脑汁,只为了避免自己的配偶靠近其他雄性……单配偶制在我们的演化谱系中早早出现的假说,满足了保守的美国卫道士(如果他们凑巧还是演化论的支持者)的期望,但与实际情况却是背道而驰的。首先,脑容量增大是在几百万年后才发生的。其次,还需要考虑生物的性别二态性(sexual dimorphism)。所谓的性别二态性,指的是同一物种的雌性和雄性在身材和外形上的差异。在这一方面,我们对人亚族始祖一无所知。不过,继之而来的南方古猿具有非常明显的性别二态性,这与实行单配偶制的社会形式似乎并不匹配。

    事实上,在灵长目动物中,两性之间体形差异过大的会形成“后宫型”社会组织形式,在这种社会里,一个雄性严格掌控一群雌性。正因如此,雄性大猩猩比雌性大猩猩要大得多,也重得多,这是激烈的性竞争导致的结果。雄性因为身体强壮、犬齿硕大而占据统治地位。于是,自然选择的天平向最为健壮的雄性倾斜,它们也得以将自身特征传给下一代。在大猩猩和狒狒中,雄性通过炫耀犬齿的方式来吓唬或制服竞争对手。相比之下,雌性的犬齿就非常小。而在黑猩猩族群中,社会结构更加灵活,虽然雄性也居于主导地位,但并不像大猩猩那么专横霸道,性别二态性也不如大猩猩那么明显。至于奉行单配偶制的长臂猿,它们的雌性和雄性具有相同的大小,犬齿也都很小。

    在人亚族中,双足行走的发展与犬齿的减小是分不开的。南方古猿依然表现出比较明显的性别二态性,而在最初的人属物种中性别二态性已经有所降低,这就说明,在最初的人属物种中,雄性之间的争斗相对没有那么激烈,而单配偶制或许也更为普遍。

    另一种假说则着眼于性选择。这里的性选择,不以雄性的好勇斗狠为基础,而以雌性做出的选择为基础——这在动物界可谓是屡见不鲜。雌性或许对自然而然保持直立姿势的雄性青眼有加,进而使得整个族群越来越趋于双足行走(因为这些雄性更多地将基因传了下去),随后,双足行走又因为在寻找食物上具有无可比拟的优势而得到进一步巩固与强化。

    在人亚族向着双足行走演化的过程中,多种相得益彰的因素很有可能共同发挥了作用,比如:生活环境的改变,解放双手的优势,社会纽带的巩固,以及妙不可言的性!

    人类演化:达尔文vs拉马克

    在最近出版的一部著作里,我们还能读到这样的说法:尼安德特人的颌骨强健有力且向前凸出,是因为它们“重度使用”牙齿。现在,没有任何已知机制能够解释,为什么器官会因为被使用或不被使用而演化。某个个体的器官可以发生改变,但是这种改变并不能传给后代,这与19世纪初期拉马克所持的观点(如“用进废退”)恰恰相反。同样,外部环境的约束并不会直接塑造器官。

    然而,想通这一点却实属不易。人们更乐于相信:之所以发展出双足行走的能力,是为了解放双手,并让祖先能够运用同期出现的大容量的大脑制造工具;或者反过来,大脑的演化注定是为了让我们能够制造工具,更何况我们的双手已经因双足行走得到了解放,而后者只是一种从属的演化适应而已。

    在很长的时间里,拉马克的观点一直是法国动物学界和史前研究中的主流:我们祖先的演化,是朝着明确的方向进行的,也是有着明确的目标的,这个目标便是“人化”。后来,虽然这种定向演化(大概是在神的意志下发生的)的观点并未完全消弭于无形,但是进化理论和达尔文思想已经渐渐传播开来。如今,绝大多数古人类学家会通过自然选择或性选择理论来理解人亚族在数百万年里所经历的种种变化。

    根据进化理论,生物的DNA偶然发生突变,而突变可在生物的种群中引发解剖学上的、生理上的或行为上的改变。当改变对生物个体有利时,生物个体便有更多生存和繁殖的机会,这种改变也就更有可能传给后代,并随着一代一代的繁殖而传遍整个种群。这个机制被称为自然选择;自然选择在整个生物界里屡见不鲜,而且形式多种多样。那种认为我们的祖先摆脱了演化规律约束的想法,是完全站不住脚的。

    第二章 南方古猿

    在500万年前至100万年前,南方古猿和它们的亲戚傍人在非洲稀树草原上繁衍生息。在很长一段时间里,对于这些双足行走的猿人,人们的了解只限于著名的露西女士。不过,自21世纪初期开始,骨骸化石的发现激增,让我们对这些人亚族物种有了更好的了解。

    汤恩幼儿

    第一个登上人类系统发生树的南方古猿,是绰号“汤恩幼儿”(Taung Child)的幼猿。“汤恩幼儿”的化石发现于南非汤恩的采石场,澳大利亚人类学家雷蒙德·达特(Raymond Dart)于1925年对其进行了描述。雷蒙德·达特确认“汤恩幼儿”是具有惊人特征的幼猿,认为它是猿和人之间的过渡物种,并将其命名为南方古猿非洲种(Australo-pithecus africanus)。

    雷蒙德·达特展示“汤恩幼儿”的颅骨

    “汤恩幼儿”的颅骨化石带有天然形成的脑模。雷蒙德·达特还指出,“汤恩幼儿”是双足行走的。现在,人们认为,“汤恩幼儿”是在230万年前被一只猛禽杀死的,殁年仅4岁。在当时的学界,雷蒙德·达特受到了激烈的抨击,人们期待中的“缺失环节”应该是一种有着猿的身体和类似人的大脑的生物,可大脑似猿而牙齿似人的“汤恩幼儿”与人们的预期相去甚远。而且,人们一直在亚洲而不是非洲寻找这个所谓的“缺失环节”。

    随着新的化石接连出土,比如1947年在南非斯泰克方丹出土的普莱斯夫人(Mrs. Ples)颅骨化石,达特的观点逐渐被研究人员所接受。刚出土的时候,普莱斯夫人被命名为德兰士瓦迩人,后来才被确认与“汤恩幼儿”属于同一物种。普莱斯夫人为双足行走的猿人,身高约1.1米,臂长腿短,脑容量约为450毫升至500毫升,略大于黑猩猩脑。

    普莱斯夫人,为南方古猿非洲种,出土于南非斯泰克方丹

    1997年,古人类学家罗纳德·J. 克拉克(Ronald J. Clark)在斯泰克方丹发现了一具近乎完整的南方古猿非洲种(或邻近物种)的骨架,并将其命名为“小脚”,其生活年代距今370万年。罗纳德·J. 克拉克认为,“小脚”是雌性古猿,身高约1.3米,去世时约30岁。由于骨骸被封存在极其坚硬的矸石之中,人们在20年之后才将它取出,直至2017年才对它进行了描述。

    寻找缺失环节

    “缺失环节”的概念诞生于19世纪,指的是能够解释从一种形态向另一种形态(比如从“猿”到人)过渡的缺失物种化石。正如其名称(猿人)所示,欧仁·杜布瓦(EugèneDubois)发现的直立猿人(Pithecanthropus erectus,后来归入直立人;参见第77页第四章)本来有望成为“缺失环节”,但它与史前史学家彼时的想象实在是天差地别。

    时至今日,“缺失环节”的概念已遭彻底弃用。一方面,演化不再被视为由一个一个的物种组成的演化链条,而是被视为枝杈繁多的演化树。另一方面,如果仅仅考察一个世系(即演化树的一个分支),那么它必然总有一些缺失环节,也就是说,总是会缺少某些从一个物种到另一个物种的转变阶段。实际上,由于化石化是极为罕见的现象,肯定不会所有的演化中间形态都能保留下来,特别是当演化速度非常快的时候(在地质年代的尺度上)。

    自达尔文提出演化论以来,反对者便试图利用“过渡物种”的明显缺失来反对达尔文的观点。然而,古生物学家已经发现了为数众多的“过渡物种”,比如始祖鸟,这种具有爬行动物特征的鸟类说明了小型恐龙是怎样演化为鸟类的。达尔文尚在人世时,人们便已经对始祖鸟进行了描述,随后也发现了大量的中间物种。但是,在反对达尔文的人眼中,过渡物种总是欠缺的。对缺失环节的找寻,也只能以失败告终。

    欧仁·杜布瓦于1891年发现的直立猿人(或爪哇人)遗骨

    现在,人们在欧仁·杜布瓦发现的直立猿人附近又发现了大量化石。在这些化石上,原始特征和衍生特征、祖先特征和演化创新相互镶嵌,导致其演化位置很难被确认,加之化石数量众多,形成了不止一条演化链,所以现在的问题已经不是有环节缺失,反而是环节太多了!

    露西

    同一时期,另一副骨骸化石的发现使南方古猿的存在成为全世界普遍接受的观点。这副骨骸于1974年11月24日在莫里斯·塔伊布(Maurice Taieb)、伊夫·柯本斯(Yves Coppens)、唐纳德·约翰松(DonaldJohanson)组织的埃塞俄比亚科考活动中被发现,并被编号为AL 288,后来根据披头士乐队的歌曲《缀满钻石天空下的露西》得名露西。

    这件南方古猿化石标本包含大约40%的骨架,是当时发现的最为完整的远古人科生物化石。露西属于南方古猿阿法种(Australopithecus afarensis),现在已经发现了属于这个物种的300余件化石(几乎都是碎片)。

    在410万年至290万年前,这些南方古猿生活在东非的稀树草原上。相应地,与人类相比,露西的双臂较长、双腿较短。露西既能双足行走又过着树栖生活,肩膀和手臂的构造非常适于攀缘;骨盆较大、股骨向内,使得行走时更加稳定。大脚趾偏离其他脚趾,靠脚掌外侧支撑全部体重;脚跟高高隆起,像黑猩猩一样。膝盖不能完全展开,导致它行走时比人类消耗更多的能量。

    露西的骨骸,已有330万年的历史

    露西主要食用水果和树叶,或许也吃小型动物,尤其是白蚁和容易捕捉的昆虫,它们富含营养物质,往往也数量众多。此外,在2010年,人们发现了一些食草动物骨骼,同时出土的还有南方古猿化石,在这些食草动物的骨骼上发现的切割痕迹,令人不禁猜想露西所属的南方古猿可能也有食腐行为,也就是说吃死亡动物尸体上的肉。这也意味着,露西曾经使用石质工具切割肌腱(参见《最初的工具》)。

    露西通常被视为年轻的雌性古猿,身高约1.05米。这一物种的雄性平均身高为1.35米、雌性为1.1米,体重为25千克至45千克。它们颅骨较小(脑容量约400毫升),额头后缩,面部前凸。犬齿很小,具有现代特征;臼齿较大,更具原始特点。牙上覆着厚厚的牙釉质,以免牙齿快速磨损。牙齿在颌骨上呈圆弧状排列,曲度介于猿类的平行牙弓和人类的抛物线牙弓之间。

    南方古猿阿法种的性别二态性相当明显。因此可以猜想,雄性之间的竞争极为激烈。幼崽的发育很可能比较缓慢,就像现存的猿类一样,而且亲代(雌性古猿?)照顾子代的时间很长。牙齿的化验结果表明,雌性在发育期后会改变食谱,而雄性却不会。为了解释这个现象,人们提出了如下的假说:雌性在成年后会离开原生族群并加入另一个族群,和现存的黑猩猩一样。

    南方古猿阿法种和智人的颅骨对比

    关于南方古猿阿法种的演化位置,人们曾展开激烈争论。虽然知名度高,但露西未必就是我们的祖先!30年前,众多美国研究人员将露西定为我们的先祖,可伊夫·柯本斯认为它只是我们的“姑婆”,代表一个已经灭绝的旁系。另一些研究人员则认为露西与傍人有亲缘关系(参见第43页)。如今,随着已被描述的南方古猿物种的增多,露西的演化位置很难有定论,更何况研究人员尚未就某些化石是否属于该物种达成共识。

    年代测定

    化石的年代与化石物种间是否存在亲缘关系无关:年代更古老的人亚族未必就是年代更近者的祖先!但精确测定化石年代对更好地理解物种演化至关重要。早先的年代测定只能给出相对年代:由于沉积物一层层沉积,从理论上说,在沉积物上层发现的化石比在其下层发现的化石年代更近。

    今天,借助多种技术,我们已经可以确定化石的“绝对”年代,在时间的长河里将其精确定位。不少技术以石头或物质的天然辐射性为基础,碳—14年代测定法就是其中的典型代表。

    碳元素以多种同位素的形式存在,其中包括普通的碳—12和稀有的放射性碳—14。植物利用空气中的二氧化碳进行光合作用时,会同时将这两种不同形式的碳元素吸收进体内。当植物被食草动物吃掉或食草动物被食肉动物吃掉的时候,食草动物或食肉动物也会将这些碳元素吸收进自己体内。在它们死亡以后,碳—14会慢慢衰变成为氮—14。碳—14的半衰期为5 734年,换句话说,碳—14需要花上5 734年才能失去一半的放射性。这么一来,通过测定骨头或木炭中两种碳同位素的比例,我们就能确定骨头或木炭的年代。不过,如果测定对象的年代在4万年以上,这个方法的测定结果就会非常不精确,因为碳—14的残余量还不到初始量的1%。

    为了测定更加古老的骨头或岩石的年代,我们可以使用其他同类型的“原子钟”。比如:铀—钍定年法适用于测定50万年前的骨骸或石笋的年代,钾—氩定年法可用于确定几百万年前的火山岩的年代。

    除此以外,还有基于其他物理原理的测定方法,比如:基于熔岩固结时磁性矿物记录的地磁场变化的古地磁法(paleo-magnetism);通过测量曾经经受高温的矿物在再次受热时发出的光以确定矿物年代的热释光法(thermoluminescence),这种方法适用于燧石和陶器;还有与热释光法原理相似但用于测定牙釉质、富碳化石(石笋、珊瑚等)或沉积石英颗粒年代的电子自旋共振法(Electron Spin Resonance,ESR)。

    “开枝散叶”的南方古猿

    如果一小部分弱小的原始人种群没有在非洲稀树草原残酷命运(或物种灭绝)的屡次打击中幸存下来,那智人就不会出现并迁徙到世界的各个角落。 ——斯蒂芬·J. 古尔德(Stephen J. Gould),1996

    自“汤恩幼儿”出土以来,研究人员已经描述了为数众多的物种(参见第v页图),其中绝大多数发现于非洲大陆的南部和东部,年代在450万年前至200万年前。在这段漫长的历史时期里,有些物种不断演化并获得了全新的特征(即“直进演化”),或分成两个种群并逐渐分化直至形成两个新的物种(即“分支演化”),南方古猿家族的兴盛部分来源于此。

    其间,这些物种中的某几种在同一时期生活在同一地区。它们之间可能并不会为了食物或其他有用资源展开直接竞争。否则,竞争通常会导致两个物种中的一个消亡或转化。有些人已经描述了居于不同生态位的物种在齿系上的细微差别,这些细微差别正是这个物种假说的有力支撑。

    直进演化和分支演化——互补的两种演化方式

    人们认为,最古老的人亚族物种主要吃素,与现存主食水果和嫩叶的猿类似。但是,这并不妨碍黑猩猩吃白蚁并主动猎杀小型猿猴。南方古猿是否在树林中捕猎,现在已经不得而知,但是它们大概还是会吃昆虫和容易捕捉的小动物。

    属与种

    博物学家为每个现存物种或化石物种都取了由两部分组成的学名。这么一来,所有的南方古猿都拥有了相同的属名Australopithecus(即南方古猿属),这个属名说明了它们之间的相似性和亲缘关系。在南方古猿属下,存在多个“种”,比如南方古猿阿法种和南方古猿非洲种。

    对于现存动物,“种”是互为亲代子代的或能够彼此交配繁衍后代的生物个体的集合。对于化石物种或古生物种,这些标准就不适用了:首先,我们无法考察它们的繁衍能力;其次,即便它们之间曾存在亲缘关系,在漫长的时间里它们也能变得足够不同,使人们将它们视为不同的物种。

    通常情况下,如果新发现的骨骸与已知骨骸不同,便可确定为新物种(但也有例外,比如丹尼索瓦人就是通过DNA检测确定的,参见第106页《丹尼索瓦人》)。但是,仅仅凭借几块残骨便给某个人亚族生物取个种名往往很难做到,因为原始人种非常相似,往往只有几处骨头是某个物种特有的。在确定物种时,还需要考虑性别差异和发育过程中的变异。因此,原本分别定名为腊玛古猿(Ramapithecus)和西瓦古猿(Sivapithecus)的两个生物,后来被确定为同一物种的雄性个体和雌性个体。

    另外,我们对物种的实际变异性所知甚少。如果拥有大量化石,还可以通过统计对比将某个化石归入某个类群。可是,当化石数量稀少且多为碎片的时候,判断的武断性就不可避免地增加了。

    最后,还有一个不在科学范畴之内的现象:发现人亚族遗骨需要耗费大量心血和精力,这就导致研究人员往往会夸大新化石的特征并给化石取个新名字。这种操作有助于研究人员获得资金支持,尤其是当研究人员声称发现的是人类祖先的化石的时候,不过,这也导致本已相当复杂的系统发生树更加“枝繁叶茂”。所以,在科学出版物里,常常会有物种随着研究人员的偏好和科学知识的进步出现而后又消失的现象。实际上,学界历来将研究人员分为“分裂派”和“归并派”,前者倾向于利用似乎与其他物种有所区别的细枝末节创造新物种,后者倾向于考虑物种的自然变异性,将不同物种归并汇总,但是归并范围往往极为宽泛(参见第72页《“开枝散叶”的原始人》)。

    除上文所述的南方古猿阿法种和南方古猿非洲种外,再略举几例南方古猿属的其他有趣物种。

    南方古猿湖畔种(Australopithecus anamensis

    南方古猿湖畔种是根据在东非发现的化石描述的,经测定,其化石年代为420万年前至380万年前。南方古猿湖畔种身高约1.4米,生活在相当湿润的林地里,在双足行走方面比露西更强。下颌又长又窄,颇具原始特点;牙齿细小,更有现代特征。一些古人类学家认为,南方古猿湖畔种可能是人属的祖先。正因如此,有人提议将其改名为非洲前人(Praeanthropus africanus)。

    黑猩猩、南方古猿湖畔种和现代人的下颌对比
    南方古猿加扎勒河种(Australopithecus bahrelghazali

    1995年,米歇尔·布鲁内特率队在乍得发现了一块下颌骨化石,后将其命名为南方古猿加扎勒河种,昵称为“阿贝尔”(Abel)。这是唯一一种在非洲东部和南部以外地区发现的南方古猿,生活在360万年前。在这一时期,撒哈拉还是广袤的森林和稀树草原。南方古猿加扎勒河种可能并不是一个不同以往的物种,不过,这块下颌骨化石证明,南方古猿的领地范围比已知化石的分布区域更广。

    南方古猿惊奇种(Australopithecus garhi

    生活在距今250万年的埃塞俄比亚的南方古猿惊奇种,于1997年由埃塞俄比亚古人类学家伯海恩·阿斯法(Berhane Asfaw)率领的研究团队发现,它们拥有较小的脑容量和巨大的牙齿。化石的共同发现者蒂姆·怀特猜想,南方古猿惊奇种有可能是我们的祖先。但是,它们与最初的人类生活在同一时期的事实,并不足以提高这种假设的说服力。

    南方古猿近亲种(Australopithecus deyiremeda

    南方古猿近亲种于2011年发现于埃塞俄比亚,生活年代为340万年前,无论在地理区域上还是生活年代上,都可以视为露西的邻居。南方古猿近亲种的颌骨粗壮,牙齿形状也和露西不同,这说明其食谱略有不同。

    南方古猿源泉种(Australopithecus sediba

    在南非马拉帕(Malapa)发现了两个保存状况相当完好的骨骼化石之后,李·伯杰(Lee Berger)于2010年描述了这个年代很晚近的物种(生活于200万年前至180万年前)。源泉种的大脑较小,但与其他南方古猿相比更加不对称,因此与人属更加接近。其骨盆比较宽,通常认为这与颅骨变大有关。胸腔呈锥形,上窄下宽,手臂可以做大幅度的动作,非常适于攀缘。脚跟具有原始特征,与猿人的脚跟相似,但脚踝比其他南方古猿更具现代特征。同样,源泉种的双手拇指较长、指节末端增宽;通常认为这是源泉种手巧的一个证明,也是它与人类更接近的一个特征。最后,源泉种的牙齿比阿法种小。

    这种原始特征和全新特征(所谓的“衍生特征”)叠加的现象被称为“镶嵌演化”。演化并不会同步地触及所有器官,这就导致很难确定物种在人亚族系谱图上的精确位置。除此之外,还有一个难题:发现的两副骸骨中,一副属于年幼的雄性,其解剖学特征尚未最终定型,因为在个体的发育过程中许多骨头会发生变形。骸骨的发育模拟结果显示,其成年后的体形与南方古猿非洲种接近。正因如此,有一些人将源泉种视为非洲种的“接班人”,而非洲种在之后就灭种了,并没有留下直系后代。另一些人则与化石发现者一样将源泉种视为直立人可能的祖先,所以将它的种加词定为“sediba”,这在当地语言里正是“源泉”的意思。

    南方古猿和傍人分布图

    然而,源泉种本身也是年代相当近的物种了。在源泉种尚存活于世的时候,人属已经在非洲大地上生活几十万年了。只是,迄今发现的最为古老的化石也只是些碎片,化石的身份也非常有争议(参见第51页《最初的人属》)。此外,源泉种可能诞生得更早,但是至今尚未发现相关遗迹。

    平脸肯尼亚人(Kenyanthropus platyops

    1999年,古人类学家米芙·利基(Meave Leakey)在肯尼亚的洛迈奎(Lomekwi)发掘点发现了一个颅骨,经测定其年代为340万年前。这个颅骨的面部扁平,与下颌前凸的南方古猿反差非常明显,特征上更接近古老的人属成员鲁道夫人。米芙·利基对其进行了描述,并因为它与其他物种差异甚大而为其取了新的属名“平脸肯尼亚人”。但是,由于在沉积压力作用过程中发生了形变,围绕这一颅骨化石的争议很大。

    1976年,另一类型化石的发现点燃了研究人员的热情。在这一年,玛丽·利基(Mary Leakey)在坦桑尼亚莱托里(Laetoli)地区发现了南方古猿的脚印。370万年前,三只南方古猿列队前进,在火山灰中留下了脚印,火山灰硬化后便将脚印保存了下来。这些脚印为南方古猿双足行走提供了补充证据。

    南方古猿的脚印,莱托里(坦桑尼亚),距今370万年

    上述这些南方古猿物种中,一种将不断演化,最终产生最初的人类,另一种——也有可能是同一种——则演化成了傍人。还有一些继续维持原先的生活,直至彻底消亡在历史的长河里,没有留下任何子孙后代。

    傍人

    20世纪下半叶发现的部分南方古猿因颅骨硕大而被描述为“粗壮”型,其他的则相应地被描述为“纤细”型。随后,这些“粗壮”型南方古猿被归入广为接受的傍人属(Paranthropus)。

    头大、颌沉是傍人的典型特征。傍人臼齿巨大,适于咀嚼质地坚硬且纤维丰富的食物。牙齿化验结果显示,一种傍人特别爱吃比嫩叶或水果坚硬得多的草本植物。草中往往富含二氧化硅,这也在傍人的牙齿上留下了非常典型的磨损痕迹。在傍人种群里,雄性比雌性大很多,而且与雄性大猩猩一样,颅骨上存在骨嵴,而骨嵴正是强壮的咀嚼肌的固着点。可是,虽然发现了为数众多的傍人颅骨化石,傍人的其他骨骼是什么情况,我们依然知之甚少。

    在埃塞俄比亚发现的埃塞俄比亚傍人(Paranthro-pus aethiopicus)是最古老的傍人物种,生活在270万年前至230万年前。随后,鲍氏傍人(Paranthropus boi-sei)在东非出现,并一直生存至120万年前。第三种傍人名叫粗壮傍人(Paranthropus robustus),220万年前至100万年前生活于南非,有人认为它们应是南方古猿非洲种的后代。这三种傍人的确拥有一些共同特征,但它们的亲缘关系并没有那么明显。生活在相似环境中的物种能够演化出相似的特征,这种趋同现象在动物演化史上屡见不鲜,有时候确实容易与遗传得来的物种相似性混淆。

    无论如何,到了距今约100万年时,所有的傍人都消失得一干二净,没有留下任何子孙后代。或许,与众不同的饮食习惯使傍人难以适应气候变化和环境改变?或许,人类在傍人的灭绝过程中发挥了某种作用?事实上,傍人的确曾与其他人亚族物种,即人属的成员在这个星球上共同生活过。

    第三章 原始人类

    在很长的一段时间里,人们一直认为,人类演化史是简单的线性历史:南方古猿演化为一种原始人,也就是能人;能人接着演化为具有现代身体的直立人,而直立人正是智人的直系祖先。然而,近些年来的考古发现对上述每个阶段都提出了质疑,同时勾勒了一幅更加复杂的演化图景。

    在人属诞生之前

    按照现代演化论的原则,人类起源的研究不能简单归纳为寻找假定存在的人类祖先。怎么就能够确信某个化石代表了某个物种的祖先呢?对于动物物种,古生物学家倾向于探寻它们之间的亲缘关系,而不考虑物种在时间上的先后顺序。如果化石显示两个物种具有相同的衍生特征(即解剖结构上的创新性状),我们就认为这两个物种有亲缘关系。这两个物种也就拥有共同祖先,不过,在大多数情况下,共同祖先都不是明确的,尽管某些化石可能与其相近。这种研究方法就是所谓的“支序分类”法,由此可以得到更加严谨、更便于客观探讨的系统发生树(展现物种之间的亲缘关系)。

    涉及我们的物种时,人们往往会将科学理论的严谨性搁置一旁,因为将某个化石定位到人类的演化世系中具有极大的象征意义。无论是对还是错,直系祖先总比绝后表亲更引人关注。在众多的南方古猿和邻近物种(肯尼亚人、傍人等)中找出谁是现代人类谱系的真正起源、谁是最初的人属物种的祖先,确实很有诱惑力。

    于是,古人类学家对化石进行探测,以图确定最为“类人”的特征。他们随即遇到了几个难题。一方面,由于遗骨不完整,往往缺少能够确定物种演化位置的有用要素。另一方面,如果采取这种人类中心视角的话,那每个物种都同时呈现出原始特征和“现代”特征,即更加类人的特征(参见《既是智人又是现代人!》)。

    最后,正如我们前面提到的,在相似的环境压力作用下,演化可使得多个物种发生相似的改变。换言之,某个物种身上出现现代特征,并不能证明这个物种就是我们的先祖。因此,尽管都曾制造石质工具,但多个人亚族物种并没有因此被列入我们祖先的行列。

    怎样才算人类?

    即便能够确定某种南方古猿最有可能是人类支系的起源,也无助于找到下面这个重要问题的答案:在演化过程中,这个物种是什么时候变成人的?是不是存在某些明确无误的特征,能够将其鉴别为人类而不是南方古猿?

    对古生物学家而言,这个问题马虎不得,因为他们要给发现的化石取名。物种的名称不是没有利害关系的。属名取为“南方古猿”还是“人”,这里面的差别很大,关系到能不能引起公众、记者和能为后续挖掘工作提供资金支持的机构的注意!当然了,按说不应该有这些顾虑的,但实际上这些顾虑的影响不容忽视。

    这个问题不但是哲学问题(是否存在“人类特性”?),也是生物学问题(鉴于黑猩猩与人类的基因相近度,是否应将黑猩猩归入人属?),还是古人类学问题:从什么时候起,或变化积累到什么程度,某个人科物种就可以被算作人属了?这个问题也可以反过来问:从现代人开始回溯历史,最早在过去的哪个时刻我们的祖先就能被视为人类了?

    自史前研究开始以来,许多人回答了这些问题。他们给出的答案里,往往借用了略显老套的“人类特性”。随着动物行为学、古人类学、神经学和分子生物学等多个学科不断取得新的进步,这些答案也很快地落伍了。

    我们举两个例子。使用工具长期被视为典型的人类特征,但有些动物也会使用工具,比如黑猩猩(用木棍捕捉白蚁、用石头砸开坚果)、海豚(用海绵保护自己的吻突),甚至某些鸟类(用刺捕捉树皮下的蛴螬)。早在南方古猿独自在稀树草原上纵横的时候,就已经出现了最为古老的石质工具(参见第55页《最初的工具》)。另一个例子是大脑的增大。无论是在我们的历史中,还是对我们现今在动物界的地位而言,这个现象都非常重要,在某个时期甚至曾经合理化了“脑容量界值”(cerebral rubicon)的概念:脑容量低于某个值的,就是猿;脑容量高于某个值的,就是人。可是,无论是工具还是脑容量,类似的标准都必须摒弃,因为它们过于简化,没有真正的用处。

    无论是基因还是解剖学特征,由于各器官以不同的速度演化,很难制定显而易见的临界标准——只要达到了这个标准,猿就应被称为人。在实际操作中,古人类学家根据的是一整套特征,其中包括了在化石上经常能够观察到的特征,比如脑容量或牙齿的大小和形态。但是,学界始终无法取得普遍共识;关于多个原始人种的分类,就一直未曾达成一致。

    最初的人属

    1961年,玛丽·利基和路易·利基(Louis Leakey)在坦桑尼亚的奥杜韦发现了一个人亚族生物的颅骨和手骨的化石碎片,这个生物生活在大约180万年前,与当时已知的南方古猿和傍人都不同。此前不久,他们在同一个挖掘点发现了一些石质工具和一个傍人的骨骼化石,并认为是这个傍人制造了这些工具。但是,新化石的发现改变了整个局面。这个新发现的人亚族生物,手掌更加类人,臼齿也比较小;初步估计脑容量约为600毫升,比南方古猿的脑容量大;指骨像黑猩猩一样呈弯曲状,但末端指节变宽,应该便于抓握物体。与此前发现的傍人相比,这个人亚族生物似乎更像是石质工具的打造者。它被命名为能人。

    在接下来的几年里,古人类学家发现了许多新的原始人遗骨,不过这些遗骨具有不同的特征,似乎有必要将它们定义为新的物种,也就是后来的鲁道夫人(Homo rudolfensis,意为来自鲁道夫湖的人。鲁道夫湖即现在的图尔卡纳湖)。鲁道夫人体形更高大、面部更扁平。经测定,全部遗骨的年代都在大约230万年前至180万年前。到了2015年,在埃塞俄比亚的勒迪—戈拉鲁(Ledi-Geraru)发现的半个下颌骨化石,似乎将人属的诞生时间向前推了50万年,即距今280万年。

    能人和智人的颅骨对比

    同南方古猿的化石一样,能人的化石也不完整,往往呈碎片化,这导致复原工作很有争议。这些化石是属于两个不同的物种呢,还是属于一个具有很大形态多样性的种群呢?此外,这些人属生物表现出的明显性别二态性,使问题变得更加复杂。不过,这样一来,在化石上观察到的差异就可以部分地归为雌雄两性的差异。最近,人们甚至开始质疑它们是否应该被归入人属了。有些古人类学家认为,许多化石其实属于南方古猿,而真正的人属稍晚才会出现。

    另一个难题是,我们对这些人属生物的颅后骨骼(即除了颅骨和颌骨外的全部骨骼)所知甚少。目前,尚未发现与露西同样完整的骨骸。根据已经出土的骨骼化石碎片,我们发现的是比南方古猿稍大也更善于双足行走的人亚族生物,尽管它们依然保留了部分树栖生活习性。它们拥有更短的大脚趾,行走起来更有效率,也具有了能够缓冲震荡的足弓。

    地域偏见

    年代在200万年以上的人亚族化石全都发现于非洲,这为人属的非洲起源假说奠定了基础。实际上,这些人亚族化石几乎全部出土于东非(从埃塞俄比亚到坦桑尼亚,特别是肯尼亚)。在南非,化石往往发现于洞穴中,那时候的人亚族生物不过是大型猫科动物的口中餐。由于滑坡和流水造成地层扰动,很难确定南非发现的化石的年代。

    与此相反,在东非,连续不断的火山喷发让年代测定变得较为简单。半沙漠的自然环境为确定化石位置提供了极大的便利。更何况,东非的地质条件也非常有利。地壳板块运动导致地壳岩层断裂、分离,进而造就了漫长的东非大裂谷,大部分考古研究工作都是在东非大裂谷的两侧展开的。在大裂谷的形成过程中,沉积层发生倾斜,原先无法企及的地层现在触手可及。呈现在古人类学家面前的,是几十万年间形成的连续沉积层,而且还是在很小的面积内。

    而在占非洲大陆面积95%以上的撒哈拉以南非洲,考古研究完全不能开展或很难开展。在又湿又热的森林地区,不但底层土壤难以企及,化石也往往因为环境不利于保存而消失不见。再往北,在撒哈拉沙漠里,考古工作非常辛苦,但也会结出累累硕果;乍得沙赫人“图迈”和南方古猿加扎勒河种的发现就是最好的证明。至于北非,对最初的人类化石来说,那片土地还是太年轻了。

    其实,在具有相应年头且可能含有丰富化石的地方,只要努力寻找就能挖到人亚族化石。从目前人亚族化石的发现地来看,东非还不足以被视为不容置疑的人属“摇篮”。

    最初的工具

    2015年,在肯尼亚图尔卡纳湖畔的洛迈奎挖掘点,出土了最为古老的石质工具,都是粗糙凿成的,其中有石锤和用作石砧的巨大石块,年代为大约330万年前。

    洛迈奎的原始工匠使用的制造技术相当简单:直接用要加工的石块(即所谓的“石核”)撞击石砧。这个技术被称为“撞击法”,可以加工锋利的石片,尽管很难对加工成果进行精细的控制。其实,石匠的目的可能只是获得石片,石核不过是锤击产生的残留物。但无论如何,这种加工行为意味着它们对所需物品产生了心理表征。

    由于这个时候人属尚未登上人亚族演化的舞台,所以这些工具不可能是人属物种制造的。那时候,在非洲大陆上活跃的人亚族物种只有南方古猿,尤其是南方古猿阿法种(即露西所属的物种)和平脸肯尼亚人。不但没有任何证据能够将这些工具与某个特定的人亚族物种联系起来,而且制造石器的生产工艺也曾被不同物种(包括人类演化谱系以外的物种)屡次加以改进和完善。

    能人的工具制造精度更高。这些被称为“砾石砍砸器”的石质工具,至少一侧具有锋利的刃口。能人制造工具时,通常是一手握着加工对象,一手握着石锤。加工产生的碎片也能为之所用。这些砍砸器定义了人类有史以来的第一个石器文化——奥杜韦文化(Oldowan,以其发现地奥杜韦命名)。

    锋利石片的生产,可能为能人日后的成功提供了助力,使它们在获取更加多样化的食物方面拥有了巨大的优势。实际上,这些石质工具表明,它们越来越适应食肉的饮食习性。

    属于奥杜韦文化的石质工具

    容量与日俱增的大脑

    同南方古猿的情况一样,人属的诞生似乎也与气候变化有关。在大约290万年前至240万年前,气候变得更加凉爽也更加干燥,由此导致森林的面积进一步缩小,并分割成更加开阔、更加多样的栖息地。

    与南方古猿相比,人属物种的食物种类更杂,肉类和脂肪所占的比例也更高。人属物种确曾取食尸体上的肉,但并不能因此认为它们拥有猎杀水牛和其他大型动物的能力,这更多的是食腐行为(指食用意外死亡的动物或大型食肉动物杀死的猎物的尸体),而且还要与鬣狗和秃鹫争抢才行。借助手中锋利的石质工具,它们能够切断肌腱获取兽肉,并砸开骨头食用骨髓。

    富含蛋白质和脂类的动物性食物的增加,或许与人亚族大脑的增大有所关联。实际上,大脑重量虽然仅占人类体重的2%,能量消耗却占人体能量消耗总量的20%左右(当然是在不做体力劳动的情况下)。大脑大,就需要进食营养格外丰富的食物。

    拥有大容量的大脑有什么好处呢?同双足行走一样,我们不能用大脑在几百万年后才显现的优点对此加以解释。一般而言,灵长目动物的大脑比羚羊和猫科动物的大脑更发达。这个特点与寻找食物没有关系,与危机四伏的野外生活也没有关系,而是与灵长目的社会组织形式有关。分辨敌我、日常协作、构建长期联盟关系等等,构成了个体间纷繁复杂的关系,而这又要求对族群内部关系有深入的了解和理解。对南方古猿来说,在面对比森林更加凶险的开阔环境时,抱团生活会安全很多。这样一来,由于能够促使族群成员之间建立深入合作关系,较大的大脑就具有了演化优势。

    但是,安全也是要付出代价的!发达的大脑需要营养更加丰富的动物性食物。动物性食物更容易消化,其吸收过程对肠道造成的负担小,肠道消耗的能量相应地更少,由此节省下来的能量正好可为大脑所用。如果大脑能够更加高效地运转,就能够找到更多的食物来源或者制造有助于获取食物的工具。这是发达的大脑带来的第一个良性循环!其产生的第二个良性循环如下:较大的大脑有助于族群成员搭建良好的社会关系,反过来,良好的社会关系确保了它们更好地开发利用环境,比如,通过共享新资源等方式。在今天看来,这些相互作用至少部分解释了人属为什么会出现。

    脑容量

    通过某个人亚族生物的颅骨化石,可以大致估算其脑容量大小。在同一个物种内部,脑容量的差异非常大(人类的脑容量为1000毫升至2000毫升,最大值几乎是最小值的两倍),也根本不可能知道每个个体的实际脑容量。

    在物种之间,平均脑容量的差异比较大:黑猩猩的平均脑容量为400毫升,明显与我们人类(平均脑容量为1350毫升)不同。不过,在对比时还应考虑两个物种的身材差异,因为黑猩猩比人类小很多。理论上说,脑容量随着身材的增加而增加,但二者并非成正比例关系。人类的大脑只占体重的2%,鼩鼱的大脑却能占到体重的10%!

    因此,在比较两个物种时,更多的是对比它们的脑化指数。所谓的脑化指数,指的是动物的实际脑大小与根据体重得出的预期脑大小之间的比值。人类的脑化指数比其他物种高,约为7.5,这说明人类的大脑比同等体形的哺乳动物的预期脑要大七八倍。黑猩猩的脑化指数为2.5,海豚的脑化指数为5.3。

    与南方古猿相比,最初的人属生物不但拥有更大的大脑,还拥有更大的身体。其实,直至大约50万年前,人亚族的大脑主要都是随着身材的增大而增大的。在那之后的脑容量才是真正地增加了。

    无论是脑容量还是脑化指数,都不足以描述人属身上实际发生的变化。其他因素与智力(这里简单理解为解决新问题的能力)的关联更紧密,比如大脑皮层(即大脑表层灰质)神经元的数量及功能(即神经元与其他神经元连接的能力或神经冲动的传导速度)。

    脑同样在颅骨上留下了自己的印记,这就为我们提供了一些与脑的构造有关的信息,比如大脑各个脑叶的相对大小或左脑与右脑的差异。人类的演化同样伴随着脑部结构的改变,这些改变可能与脑容量的增加具有同样重要的意义,但是化石并没有给出大脑构造的相关细节(除非化石中保留了DNA,参见《既是智人又是现代人!》)。

    直立人是个大个子

    1984年,纳利奥科托美(Nariokotome)男孩(又称“图尔卡纳男孩”)的发现,使我们对最早人类的了解向前迈出了一大步。这是一副近乎完整的骨架(只缺了手和脚),其生理特征与我们更加接近。

    这个骸骨化石可以追溯至大约150万年前,由理查德·利基(Richard Leakey)考古队的卡莫亚·基穆(Kamoya Kimeu)在图尔卡纳湖畔发现。图尔卡纳男孩死亡时仅有8岁,身高刚过1.5米。成年后,身高或许将达到1.7米,甚至更高。一开始,人们认为它已经11岁了,而且身材更加高大,但牙齿化验结果显示,它的发育速度比人类快了不止一星半点——才到8岁,它就几乎完成了身体发育!与南方古猿相比,它的骨骼与人类更加相似,四肢比例非常接近人类。骨盆和股骨的结构说明它善于行走甚至能够奔跑,但论起攀缘树木或许就不是祖先的对手了。2009年,人们在肯尼亚发现了这一物种的脚印,其中不少与智人的脚印难以区分。

    图尔卡纳男孩的颅骨相对较小,面部向前凸出。牙齿比人类粗大,但与能人相比还是有所减小。眼眶上方有粗壮的眉骨,额头后倾,几乎没有下巴。

    凭着800毫升左右的脑容量,直立人的演化程度比能人略高,但直立人的身材可比能人高大得多。不过,与能人相比,直立人的大脑更加不对称,布罗卡区和韦尼克区(对人类语言能力至关重要的两个脑部区域)比较发达,但这并不意味着直立人具有语言能力,因为那还需要咽喉的结构满足条件才行。然而,化石并未给出与咽喉结构有关的任何信息。

    直立人和智人的颅骨对比

    最开始,人们将图尔卡纳男孩确定为直立人(迄今为止还没有发现如此完整的直立人骸骨)。随后,一些古人类学家认为,同亚洲发现的直立人相比,图尔卡纳男孩足够不同,完全可以视之为另一个物种。最终,图尔卡纳男孩被定名为匠人(Homo ergaster),并被视为亚洲直立人的非洲先辈。

    无论被称为匠人还是直立人,该人属物种自190万年前起便生活在非洲大地上。人们曾经认为它们是能人的后代,不过人们已经发现了二者的同时代化石(距今约150万年),这说明它们曾经在这个星球上共存了至少50万年。或许,生活方式的不同削弱了相互之间的竞争。与直立人相比,能人的食性更加偏向素食。

    同步加速器带来的发现

    X射线微断层扫描(X-ray microtomography)可以非常精确地探测骨化石内部且不会损坏化石。在牙齿上取得的研究结果格外引人注意。随着生物个体不断发育,坚硬无比的牙釉质在牙齿表面逐渐沉积。借助同步加速器,可以发现以细纹形式存在的牙釉质沉积。这么一来,就能确定生物个体生命中重大事件的发生日期,比如出生或断奶,因为这些事件都会在牙釉质中留下痕迹。

    通过对牙齿微观结构的观察,我们发现南方古猿的发育速度很快,与黑猩猩的发育速度很接近。图尔卡纳男孩的发育速度相对缓慢,但与我们人类还是大有不同。

    多种用途的两面器

    如果我们在定义自己的物种时坚信历史和史前史所示的人类和智慧长久以来的特征,那我们或许不会自称智人,而会自称工匠人(Homo faber)。

    ——亨利·伯格森(Henri Bergson),1920

    与图尔卡纳男孩同时出土的还有一些砍砸器,和能人制造的砾石砍砸器类似。不过,在这个时期,非洲大陆上已经出现了新的工具——两面器。所谓的两面器,是指加工成杏仁状的石头,多多少少呈椭圆形或三角形,两个侧面做了对称加工,两面之间是锋利的刃口。

    迄今为止发现的两面器最早可追溯至大约170万年前,都是直立人制造的。直立人还制造了与两面器类似的手斧,二者的区别在于,手斧的一个面未经加工,且刃口几乎与其自身中轴垂直。制造过程中产生的碎片,直立人也不会丢弃,而是通过打磨将其改造成较小的工具。

    属于阿舍利文化的石质工具

    根据1872年在圣阿舍利(法国亚眠下辖地区)发现的两面器,人们将这个文化命名为“阿舍利文化”(Acheulian)。阿舍利文化紧接奥杜韦文化而来,但二者的石器制造技术在时间和空间上都有所重叠。奥杜韦文化和阿舍利文化共同定义了旧石器时代早期。

    人们先后在近东和印度发现了两面器,其历史可追溯至大约150万年前。欧洲最早的两面器诞生于距今65万年前后。阿舍利文化在大概30万年前逐渐被最初的智人和尼安德特人特有的莫斯特文化(Mousterian)所取代。

    两面器的产生是重大技术变革的结果。这是因为两面器的制造有两个前提:首先,要事先对所需工具有精确的初步设想;其次,要拥有比制造砾石砍砸器更高超的手艺。在两面器中,史前史学家还看到了有美感的外观,以及创造对称形工具的主观意愿,而这可比制造单纯满足具体用途的工具要复杂很多。

    另外,对于直立人怎么使用两面器,我们依然没有头绪。当然了,两面器能用来切割肌腱、剥离关节或砸开骨头以获取骨髓,为直立人食用尸体提供了极大的便利;在牛尸上进行的试验也为此提供了佐证。但是,两面器的造型多种多样,想必还有其他用途,比如挖掘土地、砍斫树干、刺穿皮肤甚或击打对手(参见《狩猎与传统》)……此外,还可以通过不断的打磨对工具进行改造并改变其用途。

    随后,在距今50万年前后,出现了以骨头或鹿角制成的“柔软”手锤,这使得打磨的精度更高。借助这种手锤,直立人使用在远方发现的奇石精心制造了用于祭祀或象征威望的两面器。

    新面貌

    猴子共有193种,其中192种身披毛发,唯一一种全身光滑无毛的猴子自称为智人。 ——德斯蒙德·莫里斯(Desmond Morris),1960

    有些古人类学家,比如丹尼尔·E. 利伯曼(DanielE. Lieberman),将直立人的奔跑能力视作人类世系演化的关键因素。出色的体能加上可用作武器的先进工具,使直立人成了人类历史上第一个真正的猎手。

    在稀树草原上,许多动物跑得比人快,但能与人类一样长时间奔跑的却少之又少。人类的真正特长其实是耐力!我们可以非常容易地想象直立人通过追逐而累垮猎物的画面。当然,这里说的猎物可不是那些体形庞大的野兽,而是羚羊或野兔这样的小动物。

    直立人之所以善于奔跑,是因为获得了修长双腿之外的新特征。直立人身材更加苗条,胸腔更加呈圆锥状。由于摄取的植物性食物减少,它们的肠道变得更短,腹部也变小了。由于身处热带,它们应当出汗很多。汗液的蒸发快速消散了肌肉运动产生的热量,这是调节体温的有效方式,而动物往往因为不能这样调节体温而耐力受限。

    直立人大量出汗,是因为皮肤上有数以百万计的汗腺,这意味着直立人已经失去了祖先曾长有的绝大部分毛发。至于人类是什么时候失去毛发的,化石没有给出任何信息,但失去毛发与善于奔跑有所关联并非毫无根据的假设。

    为了了解得更多一些,我们可以问问……虱子!所有灵长目动物的身上都有寄生虫。在今天的人类身上,甚至生活着好几种不同类型的虱子:头虱、体虱、阴虱。这几种虱子之间互有亲缘关系,与黑猩猩或大猩猩身上的虱子也有相似之处。通过分析它们的DNA,我们得到了与人类演化有关的非常有趣的信息。事实上,头虱和体虱是近亲,十来万年前才开始分化,而它们的分化可能与衣物的诞生有关。另外,它们与生活在黑猩猩身上的虱子还有共同祖先,这个共同祖先生活在大约560万年前,而人类和黑猩猩两个支系差不多就是在这个时候分道扬镳的。

    人科物种身上虱子的系统发生树

    至于阴虱,则与生活在大猩猩身上的虱子亲缘关系较近,二者在约330万年前发生分化。在此之前,虱子应当可以轻而易举地在人亚族和大猩猩族之间传播,至于传播途径,或许是人亚族和大猩猩族重复使用每日在树下形成的枯枝落叶层。不过,两种虱子的分化表明其生存环境变得有所不同,这或许与第一批人属失去毛发脱不了干系。于是,原本生活在大猩猩身上的虱子继续在大猩猩的每一寸毛发中繁衍生息,而生活在人属身上的虱子最终选择蜗居在阴部。这么说来,失去毛发应当比人类诞生还要稍早一些!

    毛发的减少还产生了另一个结果。赤道地区光照强烈,这就要求对皮肤提供强有力的保护,以使其免受危险的紫外线的伤害。在毛发的保护下,南方古猿的皮肤可能呈浅色,就像经常在现存猿猴身上观察到的一样。而原始人裸露在外的皮肤中快速积累了大量黑色素,在保护皮肤的同时,这种物质还或多或少给现代人类皮肤着色。

    “开枝散叶”的原始人

    迄今发现的原始人属物种遗骸,构成了一幅马赛克镶嵌画,各个物种随着最新的解读、重建和发现改变着自己的位置。如上所述,人们已经描述了能人、鲁道夫人和直立人,这三个物种似乎曾经共存,或者至少在某些时期共存。

    有些研究人员质疑是否应当将人属分成几个物种。他们的主要依据是1991年至2005年在格鲁吉亚德玛尼西发现的工具和骸骨,其中有五个保存相当完好的颅骨,均可以上溯至大约180万年前。第五个颅骨,代号为D4500,与五年前出土的一个下颌骨极为相配,其脑容量约为550毫升,接近能人的最小脑容量,面部与直立人类似,牙齿则与鲁道夫人相仿。另外四个颅骨的脑容量稍大,为630毫升至700毫升。这些颅骨和颌骨均具有镶嵌演化特点;兼而有之的原始特征和衍生特征,将它们与同一时代的全部人属物种(能人、鲁道夫人、匠人)关联起来。

    然而,这些在同一个地方发现的属于同一个时代的颅骨大有可能属于同一个种群。最初对它们进行描述的研究人员认为,这些颅骨在不同的地点出土,彼此之间差异很大,应被视为五个不同的物种。实际上,它们的差异之处应归因于年龄的不同:牙齿分析结果表明,一个颅骨的主人当属“英年早逝”,而另一个牙齿掉光的颅骨,显然来自一个垂暮老者。此外,还应当考虑它们的性别和种群内部的个体变异性。

    2013年,颅骨的发现者——大卫·罗德基帕尼泽(David Lordkipanize)及其同事——发布了关于这个种群的分析报告。在他们看来,在个体变异性方面,这个种群足以与人类或黑猩猩等量齐观。正因如此,他们提议将这一时期的人属生物全部划入同一个物种——直立人。不过,由于忽略了与其他地区出土的化石的实际差异,这种“一刀切”的归并方式没有得到全体古人类学家的赞同。

    德玛尼西出土的五个颅骨的3D复原图

    2013年,美国古人类学家李·R. 伯格(Lee R. Berger)带领考古队在南非的新星(Rising Star)洞穴——距离他发现南方古猿源泉种的地方仅有1 000米远——发现了大量的骨骼化石。总数超过1 500件,来自至少15个年龄各异的个体,通过拼凑可以得到几乎完整的骷髅。这一发现——至少在数量上——堪称古人类学史上最为重大的发现,也为“枝繁叶茂”的人类演化树增添了新的枝叶。

    与南方古猿类似,这些骸骨兼具原始特征和现代特征,身材短小,脑容量也小(约为500毫升),乃至于李·R. 伯格将其视为新物种,命名为纳莱迪人(Homo naledi),并将其视为人类的潜在祖先。纳莱迪人的手臂适于攀缘,但双手似乎能够进行精细操作,髋关节与露西类似,双足则极具现代特征。同南方古猿源泉种一样,纳莱迪人也表现出兼具原始特征和衍生特征的镶嵌演化现象。而某些骨头,比如股骨,则带有在南方古猿和现代人身上都前所未见的独特细节特征。

    一般而言,骸骨大量累积是掠食者进食或地下河冲刷造成的。由于遗址里没有发现羚羊或其他动物的骸骨,李·R. 伯格断定这个遗址应当是纳莱迪人丧葬行为的结果。不过,绝大多数专家都不认同这个假说,因为如果这个假说成立,那就意味着纳莱迪人已经学会了使用火,否则它们是无法抵达洞穴底部的,然而,迄今为止尚未发现脑容量那么小的人亚族成员会使用火。

    起初,经过测定,骸骨的年代为大约200万年至100万年前,这就很难确定其在人属中的演化位置了。2017年人们进行了第二次测定,确定其年代仅为大约30万年前,这样一来,解释它们在人类系谱图中的位置变得更加复杂。尽管骸骨数量众多,但这些年代上的问题使众多研究人员不得不就纳莱迪人的演化位置乃至其是否仍可被归为人属进行激烈的辩论。此外,在尚未于科学期刊中详细描述考古发现前,李·R. 伯格就将其大肆展示并发表在大众杂志上,学界对此也是持保留态度的。

    第四章 去往世界尽头

    如今,智人已经遍布全球。所有的发现和证据都令人猜想人类起源于非洲。如果果真如此,那我们还需要弄明白下面这两个问题:我们的祖先是怎么迁移并占领其他大陆的?这些迁移的原始人在现代人的诞生过程中发挥了什么样的作用?

    走出非洲

    解决方法路上找。 ——古代谚语,传为第欧根尼所言

    许许多多的考古发现将人类祖先走出非洲并逐渐占领欧亚大陆新地盘的日期向前推,而且越推越远。

    虽然已经成了约定俗成的用语,但是“走出非洲”这个说法并非没有缺陷。“走出非洲”,给人的感觉像是一蹴而就,而事实上,我们的祖先是追随着角马或斑马迁徙的脚步逐渐扩大自己的分布区域的。角马或斑马的迁徙受制于气候变化,追随着它们的步伐,以打猎和采集为生的原始人便得以探索新的地域。或许,这些原始人也曾短暂地面临人口增加的压力。其探索行为并非出于自愿或事先规划,而是时快时慢的整体移动,在几千年间不断持续进行,且在个体层面几乎难以察觉。即便每一代人的移动距离可能都不到10千米,在几万年的持续迁移中,还是有些原始人能够到达远东的,而大部分年代测定技术的精度甚至还达不到几万年。

    在红海和里海之间的德玛尼西(位于格鲁吉亚)发现的人属物种化石证明,远在大约180万年前,原始人的足迹便已踏上欧亚大陆。它们使用的工具不过是造型简单的砾石砍砸器,与能人制造的工具类似。还有人提出,人类走出非洲大陆的日期其实更早。2016年,在印度北部的马索尔(Masol)挖掘点出土的牛科动物骸骨上发现了食腐的痕迹。随着这些骸骨出土的也有砾石砍砸器,其年代甚至可以追溯至距今260万年。

    改变

    在迁移过程中,原始人面临着与非洲大陆截然不同的生活环境。生活环境、生活方式及周围物种的不同,导致它们沿着不同的演化路径分化,尤其是在出现了长期的地理隔离后。领地的不断扩大,伴随着纷繁丛杂的演化,最终导致多个人属物种的诞生。

    1891年,欧仁·杜布瓦在印度尼西亚的特立尼尔(Trinil)挖掘点发现了历史上第一个直立人化石,并将其命名为直立猿人。随后,在爪哇岛发现了这个物种的其他骸骨,比如可以追溯至大约80万年前的桑吉兰(Sangiran)颅骨。从1921年到1937年,在北京附近的周口店出土了属于同一物种的大量骸骨,起初人们将其命名为中国猿人(昵称“北京人”)。可惜,二战期间,这些化石在运往美国的途中全都消失在了茫茫大海上。

    到了20世纪50年代,古人类学家达成了共识,将在亚洲发现的这些化石全部归为“直立人”。直立人五官粗犷:眉骨粗壮,眼眶后侧颅骨缩小,额头后倾,臼齿较大,几无下巴(参见第62页插图)。颅骨向后伸长,像是在枕骨上盘起的发髻。颅骨骨壁极为厚实。脑容量通常在800毫升至1 100毫升之间(如果将德玛尼西发现的化石也考虑进来,那这个数值还要减小)。颅盖的形状很有特点。直立人的颅骨骨壁向着头顶的方向收缩,而智人颅骨的最宽处位于头颅中部。

    然而,亚洲的直立人与非洲的直立人并无根本性的差异。1978年在中国云南大理发现的距今26万年的颅骨与在赞比亚发现的年代稍古老些的卡布韦(Kabwe)颅骨及在希腊发现的佩特拉罗纳(Petralona)颅骨非常相似。这些相似之处令人猜想,直立人在旧世界广泛分布,且没有出现大的分化。尽管四散在世界各地,直立人各个群落之间的基因交流或许仍在进行,并没有发生具有决定性意义的中断。

    最初的欧洲人

    欧洲最为古老的人亚族化石是2018年在西班牙奥尔塞(Orce)发现的一颗人亚族生物牙齿,其年代约为距今140万年。除此化石孤本以外,已经证实的最为古老的欧洲人亚族骸骨发现于西班牙阿塔普埃尔卡(Ata-puerca)的几个矿层里。

    在“象坑”(Sima del Elefante)里,出土了几个人亚族骸骨化石和一些人亚族活动的痕迹,还有几件奥杜韦风格的工具。经测定,这些骸骨化石的年代为距今120万年,被认为是直立人。与此相比,邻近的格兰多利纳(Gran Dolina)洞穴的骸骨更加丰富,共出土了距今78万年的约80件骨骼碎片。由于与直立人的骨骼稍有不同,这些骨骼碎片被命名为前人(Homo ante-cessor,又称先驱人)。前人使用的工具也是砾石砍砸器,没有一丁点儿两面器的特点。2013年,在英国黑斯堡(Happisburgh)的海滩上发现了同一年代的脚印,研究认为是两个成年原始人和几个儿童留下的。

    凭着另一个年代更近的矿层,阿塔普埃尔卡挖掘点享誉世界,这便是被称为Sima de los Huesos的“骨坑”。自1984年开始挖掘以来,坑中已经出土了几个完整颅骨和6800余件其他骨骼,它们属于距今大约43万年的至少28个个体。今天,这些古人类被命名为海德堡人(Homo heidelbergensis),其身材高大强壮,男性平均身高为1.7米,女性平均身高为1.57米,男女之间的身高差与我们差不多。海德堡人能够制造阿舍利风格的两面器。

    海德堡人的骸骨兼具原始特征和衍生特征:它们拥有与直立人相似的粗犷面部;两个眼眶上方均有眉骨,但直立人的两个眉骨是连在一起的;脑容量为1 230毫升,比亚洲直立人的脑容量平均值高出很多。一些解剖学特征,比如不明显的颧骨,令人将它们与稍晚时候生活于同一地区的尼安德特人关联起来(参见第94页《欧洲的尼安德特人》)。此外,DNA分析结果也显示海德堡人可能是尼安德特人的直接祖先。

    另一些在欧洲发现的年代更近的化石也表现出类似的特征,比如亨利·德·拉姆利(Henry de Lumley)团队于1969年在法国东比利牛斯省阿拉戈(Arago)洞穴发现的距今45万年至30万年的陶塔维尔人(TautavelMan),或在德国发现的施泰因海姆(Steinheim)颅骨和在希腊发现的佩特拉罗纳颅骨。许多专家都将它们视为海德堡人。在一些研究人员看来,海德堡人是严格意义上的欧洲人种,是从至少100万年前来到欧洲的直立人发展而来的“前尼安德特人”。在演化过程中,这些直立人想必经过了前人阶段。

    假说一 人属多个物种的两种系统演化关系假说
    假说二 人属多个物种的两种系统演化关系假说

    然而,即便直立人、前人、海德堡人这几个不同的类群相继出现并生活在同一地区,却没有任何证据表明它们互为亲代子代。理论上讲,一些类群非常可能灭绝且没留下任何后代,并被来自其他地方的新种群所取代。

    于是,另一些研究人员就认为,直立人至少曾经两次向欧洲移民。第一拨移民在120万年前抵达欧洲,它们是前人的祖先,但在60万年前的大冰期期间全部消失了。或许,来自非洲的原始人取代了它们;这些原始人是尼安德特人的祖先,拥有更大的大脑并带来了阿舍利文化。

    在这种情况下,海德堡人就是一个欧非物种。在大约30万年前,海德堡人在欧洲诞下了尼安德特人(以及丹尼索瓦人),并在非洲诞下了智人。在此需要明确说明一下,某些被视为海德堡人的化石,特别是卡布韦颅骨,最初被命名为罗德西亚人(Homo rhodesiensis)。许多专家提议将二者统一归入海德堡人名下,但另一些人仍坚持将二者区分开来的做法。

    狩猎与传统

    无论是晚期直立人还是海德堡人,它们都是优秀的猎手,能够猎杀大型动物,比如马甚或犀牛。也是它们最先在长矛上安装尖利的石头以增强杀伤力。在英国博克斯格罗夫(Boxgrove)曾经发现了一块似乎曾被燧石刺穿的马肩胛骨,其年代为距今50万年。

    同样,在德国的舍宁根(Schöningen)发现了三件40万年前制作的标枪。标枪为木质,长达两米,保存状况极佳。标枪被精心切削成流线型,重心位于距前端三分之一处,以便投掷。

    猎杀大型猎物是一项非常复杂的活动,需要参与者之间的高度配合。某些研究人员认为,这项活动证明了参与者之间还存在精心设计的沟通语言。在“骨坑”中曾经出土了两块舌骨。舌骨位于咽部上方,是舌头肌肉和咽喉肌肉的附着点,在产生语言的过程中发挥着重要作用。阿塔普埃尔卡发现的舌骨与尼安德特人和智人的舌骨相仿,但这并不足以证明海德堡人拥有语言。

    另一个问题涉及埋葬行为。同样是在“骨坑”,所有的骸骨都集中在同一个地点。一些研究人员猜想,它们是在死后被有意丢进坑里的,而且一同丢进坑里的还有漂亮的红黄色两面器。不过,有确切证据的安葬行为是在更近的年代(大约距今10万年)才发生的。

    在出土的骸骨中,有个颅骨的额骨上有两处骨折。根据对骨折情况的详细研究,这个人应当是在致命的搏斗中被敌人用同一件武器两次猛击头部而死的。这么一来,这个颅骨可以算是一桩最古老悬案的证据了。

    许多挖掘点都发现了食人的痕迹。在格兰多利纳洞穴发现的骸骨中,不少被斩首,骨头上布满被砍的痕迹,还被砸开以吸食骨髓,处理方式和动物(野牛或鹿)骨头别无二致。究竟是为了生存而不得不食人还是祭祀性的食人,现在已经不得而知。由于许多受害者都是儿童,人们猜想当时的原始人视邻近部落的年轻人为捕猎对象。这种行为在陶塔维尔也有发现,在当时似乎相当普遍且并未随着时间的推移而消失。

    火的掌控

    乌拉穆尔人(Oulhamr)逃进了可怕的黑夜里。他们痛苦不堪、筋疲力尽,在圣火已灭的终极灾难面前,一切似乎都失去了意义。 ——J.H. 罗斯尼·埃内,1911

    火,是人类驾驭自然的最古老象征之一。在能够自行生火前,我们的祖先或许先是学会了如何掌控并利用雷电或火山喷发引发的火。

    迄今为止,考古学家已经发现了许许多多与火有关的遗迹,有木炭,也有因受热而崩裂的石头。不过,区分自然火灾的痕迹和人工生火的遗迹已非易事,证明某个火堆的确是某个原始人类点燃的更是难上加难。

    在南非奇迹洞(Wonderwerk Cave)发现的古老篝火遗迹(可追溯至距今100万年)似乎是烤炙骨头留下的。原始人应当是使用了取自大自然的火来烹饪肉食。如此一来,有些研究人员认为,人类开始烹饪食物的时间远远早于炉灶的出现。但是,依然无法确定这个时期的原始人是否确实学会了使用火。

    生火方法

    原始人主要使用两种方法生火。第一种方法利用两块木头相互剧烈摩擦产生的热量引燃干草,遗憾的是,用来取火的木制工具几乎没有留存下来。第二种方法利用的是燧石突然摩擦富含硫化铁的石头时产生的火花(两块燧石相互摩擦是没有用的),这种生火工具出现的年代较晚(距今不到3万年),留下的遗迹也极为罕见。

    已经确认的最古老的炉灶出现在距今约40万年,人们在法国布列塔尼的梅奈兹——德雷冈(Menez-Dregan)遗址和中国北京的周口店遗址都发现了原始人搭建的炉灶。这些炉灶呈圆形,以煅烧后的石头垒成,炉灶中有灰烬和木炭,还伴有其他原始人类活动的痕迹,比如动物骸骨或石质工具。

    当然,火有着多种用途。火可以驱散掠食动物,可以温暖并照亮营地或住所,可以加热矛尖使其变硬,可以为石头切削提供便利,还可以弄熟食物并有助于保存肉或鱼。对于来到了高纬度地区的原始人而言,燃起的篝火延长了它们在日落后或冬天里的交流时间,进而在它们的社会化过程中发挥了某种作用。

    烹饪食物时会散发出诱人的香味。不能生吃的食物在弄熟后也会变得美味可口。火还能降低因食物腐坏或感染致病微生物而导致中毒的风险。另外,弄熟之后,块根和块茎的咀嚼和消化消耗的体能更少,也更容易消化吸收,并为机体提供更多的能量。原始人就不必再花费大量时间寻找食物。这样看来,煮熟食物与人属大脑的增大和牙齿的减小或许有着一定的关系。

    第五章 其他人属物种

    我们智人的祖先曾与其他人属并肩同行。显而易见,这些人属与我们的祖先拥有相同的远祖,但在进化的道路上,它们与我们的祖先分道扬镳了。也许,我们的祖先和它们都视彼此为同类,并曾共同生儿育女,但由于差别实在太大,不能合而为一。这些“其他的人属”,在我们的历史上书写了迷人的篇章,使我们得以遐想自己可能会成为的模样。尼安德特人在大约4万年前灭绝了,而我们的祖先则生存了下来。比起它们的存在,尼安德特人的灭绝更令我们着迷。

    欧洲的尼安德特人

    在“其他人属”中,尼安德特人是当今最为知名的,或许也是与我们最接近的。一个半世纪以来,史前史学家就尼安德特人与我们的异同展开了旷日持久的探讨,与我们如此相似却又和我们如此陌生的尼安德特人,深深地吸引了公众的注意。

    在很长的一段时间内,尼安德特人被视为我们的祖先。后来,尼安德特人被降格为近亲,成为智人下面的一个亚种。再后来,尼安德特人被从智人中分离出去,成为与我们不同的新物种。1997年,通过分子生物学领域的研究,人们先是确认了尼安德特人与人类的分野,随后发现了两个物种之间的杂交特征。

    根据“骨坑”出土化石的DNA分析结果,在大约76.5万年前至55万年前,智人(现代人的直系祖先)

    根据西班牙“骨坑”出土化石的DNA分析确定的现代人类、尼安德特人和丹尼索瓦人的共同起源示意图

    和尼安德特人的共同祖先海德堡人生活在非洲的某个地方(参见第140页《史前DNA》)。海德堡人是直立人的后代,但与直立人并无太大不同,只是比直立人稍微高大一些,也稍微更像人类一些。海德堡人的一些后代后来到了欧洲,并在欧洲继续演化,最终形成了尼安德特人。

    尼安德特人在演化过程中也发生了变化:生活在10万年前的尼安德特人与生活在40万年前的前尼安德特人是有所区别的,尽管后者已经具有了某些标志性的特征。为了更好地与智人相区分,人们往往描述的都是后者,它们的化石是19世纪发现的史前原始人化石的组成部分。

    尼安德特人和智人的颅骨对比

    与同时代的智人相比,尼安德特人的个头较小(男性身高1.7米、女性身高1.6米)。尼安德特人面容粗犷,骨头厚实,肌肉强健。与我们相比,尼安德特人的颅骨较大但偏低,呈伸长状,平均脑容量比我们大,为1 500毫升。相应地,尼安德特人的面部较大,且向前凸出,鼻子大而长,颧骨不太明显,额头后倾,下巴也向后倾斜,与智人的外貌迥异。

    尼安德特文化

    最为古老的尼安德特人生活在阿舍利文化时期,能够制造两面器。到了大约30万年前,在继续制造两面器的同时,尼安德特人开发了新技术,即“勒瓦娄哇”(Levallois)切削技术(以在巴黎近郊勒瓦卢瓦采石场发现的石质工具命名)。原石(或石核)经过一系列击打除去碎屑后,再一击定型,得到设想的工具。

    使用这种切削方法时,不但要对所用材料有很好的了解,还要拥有相当的手艺。这种方法增加了用一个石核制造出的工具的数量。由勒瓦娄哇切削技术得到的石片和尖状器定义了一个全新的石器文化——莫斯特文化。从时间上看,莫斯特文化对应的是距今30万年至4万年的旧石器时代中期。

    勒瓦娄哇切削技术器
    属于莫斯特文化的石质工具

    莫斯特文化在欧洲与尼安德特人相关联,在非洲却与早期智人相对应。究竟是欧洲的尼安德特人还是非洲的早期智人发明了这项制造技术,我们无从知晓。是它们分别独立发明了这项技术吗?还是它们之间的接触实现了新技术的传播呢?而2018年在印度发现的距今38.5万年的勒瓦娄哇风格的工具,更是使得笼罩在这项技术上的迷雾变得越发浓重。

    尼安德特人非常关注所用燧石的属性。人们发现,尼安德特人通常只开采居住地附近的石头(5千米范围内),却将制造的工具携带到很远的地方(超过50千米)。它们占据了许多岩洞作为住所。或许,它们在露天自建的住所都是轻型建筑,所以没有留下任何痕迹。在它们的住所里,炉灶很常见,也使用了很长时间。

    为了将尖状器固定在长矛上,尼安德特人会使用桦树的树皮制作黏胶,为此,需要按照精确的程序将树皮缓慢加热至一个相当低的温度。尼安德特人猎杀驯鹿和野马,也不放过原牛(现存家牛的祖先)和犀牛这些凶猛的动物。骸骨化石显示,一些尼安德特人曾经骨折,其伤痕形状与今天的牛仔驯服野牛时骨折的伤痕相仿。领地偏北的尼安德特人占据了和狼类似的生态位,食物中有丰富的动物性食物。

    领地偏南的尼安德特人主要以植物、蘑菇和小动物(鸟、龟、鱼等)为食。由于冰期导致海平面变化,尼安德特人在海岸上的大部分居住点都消失了,但西班牙南部洞穴中发现的遗迹说明,这一食性在尼安德特人的演化历史上发挥了重要作用。尼安德特人能够用火烹饪食物,但并不是一直都这么做,也不是每个地方的尼安德特人都会这么做。一些古人类学家猜想,尼安德特人并不会生火,所以在某些居住点或在某些时期没有炉灶。不过,也有可能是因为在罕有木材的草原上很难维持火焰的持续燃烧吧。

    人们同样注意到,尼安德特人身上没有智人拥有的AHR基因变体。肉类在烧烤时会产生有害分子(致癌的多环芳烃类物质),而AHR基因的作用就是降低这些物质的有害影响。智人似乎经历了AHR基因的强烈选择,尼安德特人则没有。

    此外,与它们之前的(和之后的)人属生物一样,尼安德特人也经常有食人行为,正如法国阿尔代什省的穆拉——盖尔西(Moula-Guercy)遗址所示。

    牙垢的用处

    骨头部分由胶原蛋白构成。在胶原蛋白中,氮原子以不同形式(无放射性的同位素)存在,尤其是异常丰富的氮—14和非常稀少的氮—15。氮—14和氮—15这两种同位素所占的比例因个体死前十年间的饮食不同而异。实际上,植物中会富集少量的氮—15,食草动物中富集的氮—15比植物中稍微多一些,食肉动物中富集的氮—15又比食草动物中多一些。借助同位素化学的研究方法,能测定元素的比例。尽管年代久远,化石中依然含有少量的胶原蛋白,由此便可测定氮—14和氮—15的含量。氮—15含量高的,就说明食性偏肉食。

    此外,提取化石中的DNA并对其进行分析测序是另外一项应用日益广泛的化学技术。有待提取并测序的不是骨头中的DNA,而是牙垢中甚或洞穴土壤中含有的DNA。牙垢能够提供与食物相关的信息。即使在洞穴里没有发现任何骨骸,也可以弄清楚谁曾在洞穴里居住过或者什么东西曾经在洞穴里被吃掉。我们就是这样识别出了鬣狗和熊——后者常居住在洞穴里——以及猛犸象、犀牛、驯鹿和马,当然还有人类。虽然尼安德特人没有留下任何可见的遗迹,但我们依然发现它们曾经在洞穴里待过。

    同样,通过分析身份不明的残骨的蛋白质(其实是古蛋白质组),也能弄清楚残骨属于什么物种,如果是人亚族的残骨,还可以弄明白它与已知谱系的基因相近度。

    尼安德特艺术家

    在几十万年的历史期间,尼安德特人的切削技术几乎没有任何改变。不过,在大约4.5万年前,差不多在第一批智人抵达欧洲的时候,不少文化上的创新横空出世。这些创新是文化同化现象,还是尼安德特人对智人技术的模仿,抑或是演化将尼安德特人推向了新的方向,现在已经不得而知。至今,史前史学家仍在就此进行激烈的争论。

    其实,上述问题只是尼安德特人禀赋大辩论的冰山一角。在很长一段时间内,人们一直认为,迥异于智人的尼安德特人虽然拥有硕大的脑袋,但并不能进行创新,也没有任何艺术才能。然而,近期的发现对这种负面看法提出了质疑。

    在意大利的一处尼安德特人居住地,人们发现了被拔去了羽毛的鸟的骸骨。这些鸟不是普通的鸟,而是秃鹫和胡兀鹫,它们的肉又硬又难闻。即便不了解尼安德特人的口味偏好,也可以猜想它们不是为了食用鸟肉而是要用鸟羽做饰品。

    同样,尼安德特人也使用红赭石,有可能是为了装饰自己的身体或者在岩壁上作画。2018年,人们在西班牙发现了距今6.5万年(比智人抵达欧洲的时间早2万年)的岩画,这被认为是尼安德特人的作品,它们不但画了动物和几何符号,还留下了自己的手掌印。

    不过,这处遗址的年代测定仍有争议,但另一处遗址的年代测定却是确凿无疑的。2017年,在法国的布吕尼凯勒(Bruniquel)洞穴里,发现了用石笋建造的环形建筑。经测定,其年代为距今约17.5万年,彼时在欧洲大地上生活的人亚族物种只有尼安德特人。为了完成这些功能未知的环形建筑,它们还点燃了木头和骨头取火。

    最后,许多的墓葬证明,尼安德特人会保护亡者的尸体。由于它们不像后来的智人那样在掩埋亡者时埋入陪葬品,我们也不清楚它们是否会为亡者组织葬礼。

    冰期的幸存者

    由于某些历史原因——史前史研究始于西欧,大部分尼安德特人遗址都是在西欧发现的,但那里仅占尼安德特人疆域的五分之一,实际上,尼安德特人的活动范围直至西伯利亚边缘。它们曾在欧洲和中亚生活了几十万年,度过了好几次冰期和温暖的间冰期,曾在泰晤士河畔猎杀河马,也曾在西伯利亚追逐长毛犀牛。气候变化有时是非常迅速的剧变,持续不超过一代人的时间。

    尼安德特人的栖息地时常被严酷的气候弄得支离破碎,人口数量也经历了数次明显的衰减。据估计,整个欧洲范围内的尼安德特人总数不超过6 000,这减少了不同族群之间的交流,或许还限制了文化演化的可能性。DNA测序结果显示,在西伯利亚发现的一位女性尼安德特人是近亲交配的产物(父母是同父异母或同母异父的兄妹或姐弟,甚至是舅甥或叔侄),而且近亲结合在它的祖上非常频繁。气候条件和隔绝状态似乎塑造了它们的历史。

    尼安德特人的解剖特征或生理特征,究竟是隔离的体现还是适应生活环境的结果呢?人们猜想,粗壮的身材和短小的四肢是它们适应寒冷气候的结果,因为这种身形能够减少热量散失。在它们的DNA里,也找到了适应环境的体现(参见第140页《史前DNA》)。在尼安德特人体内,参与黑色素合成的MRC1基因拥有一个让其效率降低的突变。这意味着,尼安德特人皮肤和头发的颜色比非洲远祖的更浅。它们生活的地区光照较弱,患皮肤癌的风险较低,但缺乏维生素D的风险有所升高。而皮肤黑色素含量较低的话,有助于吸收维生素D合成所需的紫外线。

    丹尼索瓦人

    从今天起,我们可以大声宣布,人类类群比我们想象的更加多种多样、更加人丁兴旺,而且在演化过程中,同样也受到放之四海而皆准的生物规律的约束。 ——马塞兰·布勒(Marcellin Boule)

    如上所述,60万年前抵达欧洲的海德堡人似乎是尼安德特人的祖先。根据“骨坑”出土骸骨的DNA分析结果,海德堡人还有另一个后代——丹尼索瓦人!

    丹尼索瓦人的发现时间是2010年,发现方式非常独特,因为我们对它们的了解仅限于DNA。它们的名字取自西伯利亚的丹尼索瓦洞穴(Denisova Cave)。为了测定一个尼安德特人的基因组序列,研究人员在丹尼索瓦洞穴里提取了一些骨骼。但是,一块指骨中发现了意料之外的DNA,这个DNA既不属于智人又不属于尼安德特人,但是与尼安德特人的DNA比较接近。最终,研究人员得出结论,这个DNA属于一个新的物种,但是,除了这块指骨和一颗具有原始特征的牙齿以外,我们对这个物种的形态一无所知。人们将这一物种命名为丹尼索瓦人。在大约4万年前,这些丹尼索瓦人来过这个洞穴。

    丹尼索瓦人于大约43万年前与尼安德特人分化。DNA显示,丹尼索瓦人的种群数量较为庞大,或许占据了很大一片区域,说不定直至东南亚。此外,丹尼索瓦人的DNA里含有尼安德特人和智人的DNA里没有的未知基因。这些基因有可能是它们通过与直立人杂交而获得的;直立人在此之前很久就走出非洲,并在亚洲一直生活到比我们想象中更晚的时期。

    我们对丹尼索瓦人的外貌一无所知,因为迄今为止尚未发现任何丹尼索瓦人的骨骼化石;我们对丹尼索瓦人的文化也一无所知,因为尚未发现任何与它们有关联的原始工具。一些古人类学家提出,某些神秘的化石应该属于丹尼索瓦人,比如在中国辽宁金牛山发现的一具女性骨骼化石或1982年在印度发现的距今至少24万年的讷尔默达(Narmada)头盖骨化石(这个化石最初被认为属于晚期直立人或早期智人,随后被归为海德堡人)。不过,这些纯属假说,丹尼索瓦人身上依然迷雾重重。

    弗洛里斯的“霍比特人”

    2003年,由澳大利亚和印度尼西亚研究人员组成的联合考古队在印度尼西亚的弗洛里斯岛发现了人亚族生物的化石。它们的颅骨有些类似爪哇直立人,不过非常小,脑容量只有380毫升;个头只有1米高,脚却大得出奇。研究人员根据托尔金的小说《魔戒》将它们昵称为“霍比特人”。

    这些化石可追溯至距今5万年,后来被命名为弗洛里斯人(Homo floresiensis)。尽管身材矮小,但它们并不是南方古猿,况且它们还能制造石质工具。一些古人类学家认为它们是直立人的后代,这些直立人到达亚洲之后由于隔离而演化出了矮小的形态。另一些古人类学家则觉得它们更像智人,是在更早的年代迁移到岛上的。2016年,在弗洛里斯岛上又发现了一块更小的下颌骨,其年代为距今70万年,似乎与直立人有亲缘关系。

    生活在岛屿上的许多动物的身材都会缩小,生物学家将这一现象称为“岛屿侏儒症”。食草动物会向着矮小的方向演化,因为矮小的个头使它们能够轻而易举地在比大陆贫瘠的岛屿上发现食物。弗洛里斯岛上的古象(大象的亲戚)肩高只有1.8米,而附近大陆上的古象肩高甚至能达到4米。或许,正是这种现象导致了弗洛里斯人身材矮小。

    其他人属物种的结局

    在5万年前,地球上生活着数个人属物种:尼安德特人、丹尼索瓦人、弗洛里斯人及其他幸存的原始人类,当然还有智人。但如今,只剩下了我们智人,其他人属物种都消失不见了。是什么原因导致它们灭绝的?是气候变化,还是智人入侵?我们只能对尼安德特人的灭绝提出几种假说。至于其他几个物种,我们的了解太过零碎。根据我们的DNA里留存的痕迹,丹尼索瓦人在智人到达亚洲后就消失了,对于丹尼索瓦人的历史,我们所知仅限于此。

    尼安德特人在欧洲生活了几十万年,度过了4次冰期和4次间冰期,直至智人的到来。尽管偶尔因为严寒和干旱背井离乡,尼安德特人还是很好地适应了环境。然而,尼安德特人的数量太少,而且散布在广阔无垠的领地上,由此导致近亲结合极为常见,这不利于它们适应新的状况,比如其他人属物种的到来。

    在大约4万年前,或许还要晚一些,尼安德特人灭绝了。具体的灭绝日期尚不可考,因为人们依然无法确定某些遗址的归属。另外,尼安德特人不是同时灭绝的。在西班牙南部(尼安德特人占据的最后一片领地),尼安德特人或许继续存在了几千年,但这里发现的遗址的年代测定结果并未得到所有专家的认可。极有可能,尼安德特人和智人曾在欧洲共同生活了好几千年。

    为了解释尼安德特人的灭绝原因,人们提出了各种假说。比如,剧烈的火山喷发(3.9万年前发生于意大利的火山喷发,火山灰一直飘到了俄罗斯)引发了突如其来的气候变化,最终导致了尼安德特人的灭绝;但是智人早在这次喷发之前就到达了欧洲。或者,智人传播了传染病,而尼安德特人对此没有免疫力;但是,尼安德特人种群散居各地,人口密度非常低,传染病是怎么扩散起来的呢?再或者,尼安德特人是被智人直接屠杀至灭绝的;就我们对自己所属物种的了解,这个假说倒也站得住脚,不过,已经发现的尼安德特人骸骨上鲜有直接暴力留下的痕迹,而且,如果真是智人将尼安德特人赶尽杀绝,尼安德特人又怎么可能继续生存几千年之久呢?

    尼安德特人和智人处于竞争状态:它们猎杀同样的动物,栖身在同样的岩洞之下。即便二者没有直接冲突,这终归不是长久之计,其中之一必然要出局。不过,尼安德特人有个优势——它们生活在祖祖辈辈一直生活的环境中。当然了,这些也都是猜想。有人提出,智人比尼安德特人更能适应环境,在必要的时候,能够从猎杀大型猎物转为捕杀小动物或捕鱼。可是,人们在尼安德特人身上也发现了这样的饮食习惯。

    或许,尼安德特人比智人低的生育率导致了竞争的加剧。同样,死亡率的不同进一步扩大了二者之间的差距。人们由此猜想,由于成年尼安德特人的大量死亡,只有极少的幼儿得到了祖父母的照顾,由此导致幼儿的存活率低,年轻人能够学到的生存技能也很有限。这就是所谓的“祖母假说”,不过这一假说缺乏证据的支撑。

    上文所述的这些要素,每一个单独拿出来都不足以导致尼安德特人灭绝,但每一个都能够弱化本就非常稀少的尼安德特人种群。或许,应将上述各种要素综合起来考虑:严重的人口危机和偶发的种族冲突,增加了尼安德特人在与智人竞争时的劣势,最终导致了尼安德特人的灭绝?

    第六章 最初的智人

    在尼安德特人、丹尼索瓦人和直立人踏遍欧亚大陆的每个角落的时候,人类的演化在非洲仍在继续。根据各种可能性,最初的智人正是诞生于非洲。数不胜数的化石和基因证据,为智人的演化史提供了支撑。然而,在成功使别人信服之前,研究人员遭到了不少的反对,而且,这些反对意见往往并不是科学上的,而是哲学或政治层面上的。

    智人的出现

    至少30万年前,最初的智人似乎出现在了非洲大地上。让—雅克·于布兰(Jean-Jacques Hublin)和阿卜杜勒瓦希德·本—恩赛尔(Abdelouahed ben-Ncer)的考古队2017年在摩洛哥的杰贝尔依罗(Jebel Irhoud)挖掘点发现的两个颅骨就可以追溯至这个年代。与众多其他化石一样,这两个颅骨兼具祖先特征和衍生特征。颅骨的牙齿很小,还有下巴和颧骨,同较平的面部一样,都是很现代的特征。牙齿的发育细节也说明他们拥有与我们相近的发育时序。

    两个颅骨的脑容量分别是1 300毫升和1 400毫升(现代人的平均脑容量为1 350毫升),但颅骨呈伸长状,这是一个明显的祖先特征。这两个远古智人骨头粗大,眉骨相当粗壮,面部也如海德堡人一样很大。然而,形态学统计分析的结果将这些细节归为智人颅骨变异性的范畴,这让他们成了已知最古老的智人。

    3D复原

    借助X射线微断层扫描技术(参见第63页《同步加速器带来的发现》),可以获得物体表面或内部结构的3D图像。这样一来,就能以虚拟的方式摆弄碎片,而无须将其从脉岩中取出,以免毁坏。此外,我们还能看到隐藏在骨骼内部的结构,比如内耳小骨。沉积层在化石上施加的压力会导致化石产生形变;而通过计算,我们就能够对形变进行校正,继而可以采用3D打印技术复制扫描对象。

    颅骨的数字化还有另一个好处。它能使解剖测量工作变得更加容易,还能借助统计工具对颅骨进行对比从而得出较为客观的结果。我们甚至能够量化个体发育带来的形态变化,并通过儿童颅骨来推测创建成人颅骨的3D图像。就像DNA测序技术出现时一样,新技术工具势必会带来能够处理更多信息的数码工具。

    扫描杰贝尔依罗挖掘点发现的化石后完成的早期人类颅骨3D复原

    在这个发现之前,人们将智人的诞生追溯至更晚近的年代。在南非的弗洛里斯巴德(Florisbad)以及埃塞俄比亚的奥莫基比什(Omo Kibish)和赫托(Herto)也曾发现具有类似特征的化石,其年代分别为26万年前、19.5万年前和16万年前。这些化石将智人的诞生地定位在东非,而杰贝尔依罗发现的化石似乎否定了这一结论。无论如何,数量稀少的化石不足以在时间和空间上精确定位某个事件,比如新物种的诞生(参见第53页《地域偏见》)。

    我们可以平行对比尼安德特人和智人的历史。这两个物种都向着脑容量大的方向演化,都发展出了比祖先更加复杂的文化。但是,除去骨骼上的差异外,智人的演化史上究竟发生了什么与众不同的故事呢?

    考虑到人亚族演化过程中体重有所增加,人亚族大脑的增大实际开始于约50万年前,而且尼安德特人和智人都曾经历这一过程。然而,DNA的对比显示,尼安德特人和智人在一些重要方面发生了分化,特别是神经系统的发育和功能。这些基因突变中的一部分,至今仍存在于现在的大多数人身上,这表明,这些突变受到了强烈的正向选择。

    正是通过孩子,我们才真正成为人。 ——让-雅克·于布兰,2017

    人们已经发现的突变里,有一些关系到胎儿的大脑皮层发育,另一些则参与神经元连接形成或与神经冲动传导的基因有关。此外,还有在语言和说话能力的习得过程中非常活跃的FOXP2基因。尼安德特人和智人拥有的FOXP2基因为同一版本,且与祖先的不同。不过,智人身上出现了调节FOXP2基因表达的突变,在语言演化过程中,它或许发挥了某种作用。

    胎儿和儿童各个发育阶段延长,是智人演化史上的关键事件。在一些古人类学家看来,这一转变实际上是一种形式的“幼态持续”。所谓的“幼态持续”,指的是生物个体在性成熟后仍然保留幼年特征。这种现象,在许多物种的演化过程中屡见不鲜,但在智人中,实际上并没有真正意义上的“幼态持续”。不过,胎儿的早产和幼年的延长,极大地提高了我们的学习能力,这在我们的演化史上产生了重大的影响。鉴于我们一生都保留着幼年的行为,比如难以满足的好奇心和对游戏的喜爱,说我们是“幼态持续”倒也站得住脚。

    既是智人又是现代人!

    接下来,非洲的智人一点一点获得了与我们相近的特征:骨骼较轻,颅骨较圆且稍小,面部缩小且更扁,下巴因颌骨和面部变小而显得突出。这些变化不是同步出现的:在面部获得更为现代的形态之后很久,颅骨才具有了现在的样子。

    智人诞生的具体细节尚不可考,那能否至少明确智人哪里与祖先不同并确定使其成为新物种的特征呢?根据以往的经验,这并不复杂:只要注意到我们独有的特征在骨骼化石上的出现或消失即可。

    不过,事情可没有那么简单!首先,尽管我们是“现代人”,但我们依然保留了一些原始特征,比如凹陷的眼眶使颧骨突显,而这些特征早就出现在南方古猿身上了!与此相反,尼安德特人颧骨较平的脸孔倒是个新的特征(即“衍生特征”),也就是说更“现代”!此外,最初的智人留下来的化石不但少之又少,而且同其他人亚族物种的化石一样,往往兼具原始特征和衍生特征。

    这个问题或许看上去无关紧要,但其实牵连甚广。实际上,当人们试图制定原始智人颅骨与现代人颅骨的区别标准时,就有将某些现代人颅骨排除在现代人范畴之外的风险,最终导致人们毫无根据地判定不同种族的现代性。过去种种将人类分门别类的尝试导致了什么后果,我们都很清楚(参见第177页《人类种族存在吗?》)。

    其实,并不存在公认的能将智人与其他人属物种区分开来的智人定义。自从DNA分析揭示了智人曾与尼安德特人和丹尼索瓦人杂交以来,这个问题变得更加复杂。实际上,一些古人类学家认为,应当扩大对我们所属物种的定义范围,将曾与智人杂交的全部物种涵盖进来。这种做法回归了生物物种的严格定义(物种是“互为亲代子代的或能够彼此交配繁衍后代的生物个体的集合”)。这些古人类学家主张将智人、尼安德特人、丹尼索瓦人归为同一个物种,这个物种下还将包括智人、尼安德特人、丹尼索瓦人的共同祖先海德堡人,甚至直立人。

    在动物界,杂交是平常现象,比如,由共同祖先新近分化而来的两个姐妹物种之间往往存在杂交现象。在大多数情况下,杂交后代的生殖能力较低或根本不能生育,由此导致两个物种难以融合或不能融合。不过,杂交可能性的存在,并不妨碍动物学家将物种区分开来,尼安德特人和智人就属于这种情形。

    此外,如果真的将我们这一物种的定义扩展至涵盖全部人属生物,那这个壮大的物种将具有比目前的智人或任何其他灵长目物种高得多的变异性。为了区分不同形态的人类,就得创造同等数量的亚种,这可一点儿也没有简化人属的“术语库”!所以,大部分古人类学家都认为,应当将智人这个名称保留给解剖学意义上的现代人。

    伊甸园

    众多研究人员认为,原始智人和现代人之间存在不连续性。根据他们的观点,人类演化史上应当有过“瓶颈期”,也就是导致物种多样性显著降低并改变物种演化路径的人口数量锐减期。

    这些研究人员的主要依据是,最古老的智人骸骨彼此之间差异非常大,而且与现今的人类相比更加多样化。同样,人类历史悠久,但人类的基因多样性却没有预期的那么高,人口数量可能是造成这种情况的原因之一。在大约20万年前至15万年前,或许是巨型火山喷发而引发的极端天气,导致智人陷入了繁衍的瓶颈期。智人的数量或许从接近1万锐减至寥寥数百。有些人甚至精确提出,我们的祖先随后逃到了非洲的最南端,那里当时属于地中海气候,环境条件更加宜居。

    也正是在南非,我们发现了智人在大约7.5万年前生活的遗址,这些遗址颠覆了我们对智人行为和能力的看法。滨海的布隆波斯(Blombos)洞穴里出土了为数众多的物品,类似物品通常被视为年代更近的人属物种所特有。当时生活在这个地区的智人善于利用海洋资源。他们用骨头或石头制作的尖锥捕杀登上海岸的海狮;他们采集贝类并在贝壳上钻孔,很有可能是为了制作项链;他们还在石头上刻画几何符号,这些符号也是人类历史上最古老的象征或美学作品之一。

    另一个证据来自现代人的线粒体DNA(mtDNA)。在对比了全球各地采集的线粒体DNA后,人们发现,现代人的线粒体DNA来自生活在大约20万年前(后重新测定为距今17万年至10万年之间)的共同祖先。换句话说,我们或许能够追溯到全体人类的祖先了!至少,当上述研究结果在1987年公布于世时人们是这样宣称的。很快,这个共同祖先就被冠以“线粒体夏娃”的绰号。随后,对Y染色体DNA的分析研究让人们找到了生活于大约14万年前的“亚当”。

    实际上,即便线粒体夏娃将她的线粒体遗传给了全体现代人,她也并非所有人类的祖先,也不是第一个女性智人。与线粒体夏娃同时代的其他女性也属于我们的直系尊亲,只不过她们的线粒体在她们通过儿子而非女儿参与种族繁衍的过程中被清除了。线粒体夏娃的唯一特殊性,在于她是我们现在可以通过母系血统追溯到的唯一女性。尽管如此,线粒体夏娃还是证明了人类非洲起源的唯一性,在非洲也观察到了最为多样化的线粒体。Y染色体亚当也是一样,他确定了人类的父系血统,当然了,这一血统也来源于非洲。

    线粒体DNA

    线粒体DNA指线粒体内含有的DNA。线粒体存在于大部分细胞内,是细胞内部化学反应所需能量的制造过程所不可或缺的细胞器。线粒体DNA的特殊性在于,它只能通过女性一代一代传递下去。实际上,在受精时,精子的线粒体会消失,只有来自母亲的线粒体会遗传给后代。因此,通过分析线粒体DNA就能追溯物种的母系血统。

    对于人类,同样可以跟踪Y染色体携带的DNA,因为Y染色体仅能通过父系遗传。

    在实际研究中,分析的对象是男性单倍群(haplogroup)或女性单倍群,即Y染色体或线粒体含有的DNA的特定片段,人们会对现代人或化石的单倍群的DNA序列进行对比。

    这便是所谓的“走出非洲”模型或“伊甸园”模型,得出这些研究成果的研究人员和报道它们的记者显然受到了“伊甸园”这一《圣经》用词的启示。《新闻周刊》(Newsweek)杂志曾经以《追寻亚当和夏娃》为标题出刊,并配有一对非洲黑人夫妇的插图,这幅插图可把有些读者给惹恼了!

    不过,即便这种方式能够回溯人类的历史并确定人类的起源,也未必就能确定智人曾经有过人口危机。其实,所谓的瓶颈期可能是文化层面上的,比如说,某些智人是否比其他智人更倾向于过游民生活(并在接下来的人类历史中发挥极为重要的作用),或在种群繁衍上取得了更大的成功。

    起源问题

    现存人类种族之间在外表上的差异曾使史前史学家提出人类多重起源假说,即每个“人种”——黑种人、白种人、黄种人——分别是一种猿的后代(参见第177页《人类种族存在吗?》)。不过,这种观点与现代进化理论并不相符。其实,随着时间的推移,来自同一祖先物种的多个姐妹物种会变得越来越不一样,以至于最终不能彼此交配繁衍后代。尽管类似的生活方式偶尔会使不同物种产生类似的外表或行为,但这种趋同现象并不能让它们彼此融合或形成单一物种。如果存在多种猿类且每种猿类分别演化形成了一个拥有巨大脑袋的双足行走的亚种,那么这些亚种之间的差异会比父代物种之间的差异更大。这些亚种也不会彼此融合为新的单一物种,因为经过数百万年的分化后,这种杂交已经不具有基因上的可能性。所以,黑猩猩和猩猩不能互相杂交,它们的后代也不能。

    到了20世纪60年代,人类“多重起源”观点卷土重来,不过这次的形式不像之前那么极端了。有些人认为,原始人在一两百万年前出现在非洲,随后逐渐散布到整个欧亚大陆,并在各地形成了当今世上的“各大人种”。他们以“枝形烛台”模型来解释这种假说。源自非洲的现代人散布到世界各地以后,通过多次杂交一点一点地将当地的原始人变成了现代人。

    智人多地起源假说——“枝形烛台”模型

    有些中国古人类学家持这种观点,并得到了一些美国和法国古人类学家的支持。这些中国古人类学家一心想要证明,亚洲人自古以来便扎根于亚洲,并没有接受来自非洲的现代人基因或其他有限的外来基因。所以,1978年于中国陕西发现的距今26万年的大荔人头骨被他们描述为“沿着亚洲连续的演化世系”从原始亚洲直立人衍生而来的原始直立人。他们的依据是颅骨的一些解剖特征,但是这个假说里也含有其他考量。

    另一些古人类学家则支持与此相反的人类“单一起源”假说。他们认为,人类是在更晚近的时代(距今不到10万年)走出了非洲,而且仅仅经历了短期的“隔离”。这就是所谓的“走出非洲”模型,现代人和化石的DNA分析结果大都支持这个模型。由于欧亚大陆上的原始人类种群都被走出非洲的现代人所替代,所以这种模型也被称为“替代假说”。

    枝形烛台模型偶尔也会再次被推到台前。2006年发现的属于印度直立人的讷尔默达头盖骨化石,就曾被称为“印度现代人的可能祖先”。

    同样,研究者针对最近在印度马索尔出土的年代非常久远的工具提出假说,认为它们由某种亚洲猿类的后代制造。在生物学层面上,很难想象人属居然出现在数百万年来与人亚族生物分隔两地的另一科灵长动物中。

    智人单一起源假说——“走出非洲”模型

    在人们发现了晚期智人(现代智人)曾经与走出非洲的第一批原始人的后代杂交后,单一起源观点也稍稍恢复了一点生命力。但是,即便能够解释某些解剖学特征或遗传学特征,这些杂交史曾发挥的作用似乎非常有限。来自其他物种的大多数基因都经过了严苛的筛选。

    第七章 征服地球

    在大约10万年前,智人“在解剖学层面上已经具有现代特征”,也就是说,他们的骨骼在各个方面上都与现代人的骨骼相似。正是在这个时期,智人走出非洲。这一次,在征服全球之前,他们不会停下自己的脚步!在这一过程中,智人将遇到另外一些人属物种,它们在智人之前便生存在地球上,并曾按它们自己的方式演化。

    从非洲到美洲

    紧随着不计其数的其他人属物种的脚步,智人也扩大了自己的狩猎范围并走出了非洲。迄今发现的最古老的智人遗址中,有以色列的斯虎尔(Skhul)洞穴和卡夫泽(Qafzeh)洞穴,其年代为大约12万年前至8万年前。智人曾在这两个洞穴里居住并埋葬死去的同伴。洞穴里发现了成人和儿童的骸骨,还有鹿角。一些骸骨曾用赭石上色,说明下葬时举行了葬礼。洞穴里出土的钻孔贝壳则被视为最古老的装饰品之一。

    智人或许过去曾路过这里,或者来到这里的时间比我们想象的更早。2018年在以色列米斯利亚(Misliya)洞穴中发现的距今约18.5万年的半块颌骨似乎恰恰说明了这一点。另外,基因方面的数据也令人猜想,智人曾在距今20万年至10万年间数次离开非洲。然后,在大约7万年至6万年前,更庞大或者说更成功的一拨移民离开非洲并远渡重洋,在人类历史上首次抵达了澳大利亚和美洲的海岸。

    一旦到了中东,就没有什么能够阻挡智人继续向东迁移的脚步了(尽管他们只留下了寥寥无几的迁移痕迹)。在历史上,他们必然曾经多次走过这条路。除此以外,还存在其他可能的迁移路线,比如取道直布罗陀,不过这条路线似乎在较晚的时候才被启用。另一些智人走的是“南路”,经由红海最窄之处的曼德海峡前往阿拉伯半岛,接下来,在横渡波斯湾以后,就有可能沿着海岸抵达印度和东南亚。当时的海平面比现在低,印度尼西亚的大部分地区都可以经陆路到达。

    为什么人类再次踏上探索世界的征途呢?有些史前史学家提出假说,认为智人的这次迁移与印度尼西亚多巴火山的喷发有关。他们猜想,在大约7.5万年前,多巴火山的灾难性喷发导致了全球气温显著降低并且持续了很长时间。不过,无论是在火山喷发的年代上还是在火山喷发对环境和智人演化的实际影响上,这个假说的争议都非常大。

    每次迁移事件,既不是单个猎人的个人行为,也不是整个种族的全员外逃。踏上迁徙之路的是规模不大的群体,每次只有几十个人,通常认为只有25人,差不多是6户人家,这也是以狩猎和采集为生的族群的通常规模。大多数踏上迁徙之路并走出非洲的族群无疑已经灭绝了。在中国发现的一些遗址,是智人早就到来的见证,不过,这些智人随后就灭绝了,没有留下子孙后代。

    但是,另一些族群却繁衍壮大,成了今天人类的祖先,因为我们每个人或多或少都遗传了他们的某些基因。特别是,在我们的线粒体DNA内就能找到它们的踪迹(参见第123页《线粒体DNA》)。为此,人们定位了单倍群(即特定的DNA片段)上基因突变的准确位置。这些突变数量繁多,因区域而异。通过对比突变的序列,就能根据智人种群随着时间推移散居世界各地的情况来追溯突变的历史。研究发现,L3线粒体单倍群是由一个更加古老的单倍群发生突变后于8.4万年前出现在非洲的。人们在非洲发现了多种多样的单倍群,其中就有L3单倍群。世界其他地方的L3单倍群都是由非洲的L3单倍群衍生而来的,最初的变体出现在大约6.3万年前。换言之,现在非洲以外的所有人类都是一个携带L3单倍群的非洲智人种群的后代。

    2015年,在湖南道县遗址出土了智人的牙齿,人们由此猜想智人或在大约10万年前至8万年前就已经来到了中国,尽管这个时间仍有争议。不过,一些智人确于大约6.5万年前至5万年前抵达了澳大利亚,他们想必是划着用树干挖成的独木舟漂洋过海而来的。或许,是雷暴引燃灌木丛产生的烟雾吸引了智人远渡重洋来到这块新的土地上?

    再往北,来到了东北亚的智人也在大约1.5万年前趁着海平面降低徒步穿越了白令海峡。他们在抵达了彼时正处于冰川期的美洲后是怎么在恶劣的环境中继续探索之路的,我们不得而知。或许他们取道了两块大陆冰川之间的一条走廊?又或者,他们沿着海岸航行直到发现了较为温暖的海岸?无论如何,他们在南方发现了广阔无垠的处女地和数不胜数的猎物:有乳齿象(美洲的一种猛犸象),还有大群的野牛。这些智人就是后来的古印第安人,能制造燧石工具或精细切割黑曜石,他们的文化以美国新墨西哥州克洛维斯(Clovis)村的名字命名为克洛维斯文化。

    他们中的一些人继续探索,直到抵达巴塔哥尼亚(位于今天的阿根廷)和火地岛(现在的南美大陆最南端的群岛)。有些史前史学家提出,他们迁移并定居这里的年代更早,应在大约3万年前。另外一些人甚至认为人类抵达美洲的时间还要再早,依据是在大约13万年前被石块砸开的乳齿象骨骸。

    在东扩良久以后,智人于距今大约4.5万年的时候开始西征。彼时的欧洲正处于最后一个冰期,恶劣的气候或许减慢了智人的脚步,相比之下,亚洲南部的环境更加接近他们所熟悉的生活环境。一些研究人员认为,当时生活在欧洲的尼安德特人成了阻挠智人西征的另一个“障碍”,好在尼安德特人数量稀少,智人能够轻而易举地跨越这个“障碍”。

    迁徙造就智人

    如今,在我们身上的每个细胞和每个分子里,都能找到演化的痕迹。 ——弗朗索瓦·雅各布,1981

    自大约10万年前起,尼安德特人也曾在近东地区活动,有时候甚至与智人生活在相同的地点。尼安德特人和智人制造相差无几的工具,也都有埋葬逝者的习惯。很有可能,这两个物种的男男女女就是在这个地区邂逅彼此并生儿育女的。其实,尼安德特人和现代人的基因组对比显示,不同人属物种之间曾经杂交繁殖,而这导致了物种之间的基因交换(参见第140页《史前DNA》)。

    今天,非洲以外的智人携带着1%至4%的尼安德特基因。由于每个人携带的尼安德特基因不完全相同,遗传学家斯万特·帕博(Svante Pääbo)估计,尼安德特人基因组的20%至40%仍在我们体内延续。反过来,尼安德特人体内也有来自智人的基因。不过,尼安德特基因在智人基因组中比例很低的事实说明,尼安德特人和智人并未发生普遍的融合。或许,二者的杂交后代繁殖力低下,阻止了“外来”基因在物种中的扩散。

    现代非洲人的基因组里没有这些尼安德特DNA,这就说明两个物种的种间杂交发生在智人走出非洲、移居欧亚大陆和美洲之后。留在非洲的智人未曾遇到尼安德特人,即便后来有些尼安德特基因通过从欧洲向非洲回迁的智人传到了北非。

    进入智人体内的新基因随后发生了突变并改变了序列,进而变得与尼安德特人的初始基因有所不同。通过研究突变的数量,就能够确定杂交发生的年代。研究结果表明,杂交可能发生在大约10万年前,那时两者在近东地区比邻而居;抑或是在大约6万年前至5万年前,原先留在非洲的智人最终走出非洲之时。因此,根据4.5万年前生活于西伯利亚的一个智人的DNA研究结果,他的先祖曾在他出生前1.3万年至0.7万年就已经经历过杂交。罗马尼亚的欧亚瑟洞(Pestera cu Oase,意为“骨头洞”)里出土了生活于约4万年前的智人骸骨(这是欧洲已知最古老的智人),他体内的尼安德特DNA占比是现代人的3倍;从他往前追溯就能发现,他4至6代前的祖先还是尼安德特人!不过,这个智人似乎没有留下后代,因为现代人的基因组里已经没有了他的遗传特征。

    人属物种的种间杂交繁殖不止于此。丹尼索瓦人也曾将它们的一些基因传给了智人,这些智人的后代后来移居到了澳大利亚、巴布亚新几内亚和菲律宾。在亚洲大陆居民和美洲原住民的体内也发现了丹尼索瓦人的基因,不过数量很少。更加惊人的是,遗传学家在丹尼索瓦人的基因组里发现了未知DNA的遗存,据猜测,这些未知DNA来自更加古老的人属物种,可能是亚洲直立人。同样,一些非洲民族的DNA里携带着明显源于其他依然不为人知的人属物种的序列,这些人属物种应当是在距今70万年时与海德堡人的先祖分道扬镳,最终在距今3.5万年时灭绝。

    人属物种的杂交

    上述杂交对智人可能是有利的,比如杂交使智人能够更快地适应高纬度地区更寒冷的环境。智人没有等待自然选择去利用偶尔发生的有利突变,而是直接利用了其他物种中经过数十万年的演化逐渐获得了必要适应性特征的既有基因。这种有用基因(或其等位基因)在物种间转移的现象,被称为适应性基因渗入。如果突变产生的新等位基因在种群中频繁出现,我们就视之为正突变。

    我们的祖先利用了其他物种的这种“非自愿援助”,特别是作用于皮肤、免疫系统和消化系统等方面的基因。比如,在杀灭病毒过程中发挥作用的stat2基因就是尼安德特人送给我们祖先的。直至今日,在欧亚大陆,10%的人仍携带这个基因,而在美拉尼西亚这一比例还要更高。尼安德特基因的引入,使我们的祖先能更好地抵御他们在非洲没有遇到过的不同微生物引发的感染。Toll样受体(Toll-like receptors,TLR)属于免疫系统蛋白质,至今仍奋战在抵抗细菌和寄生虫入侵的最前线;而在为Toll样受体编码的基因中,有两个源自尼安德特人,一个与丹尼索瓦人的基因类似。

    中国藏族人似乎从丹尼索瓦人那里获得了有助于适应高原生活的基因。在寒冷的环境中,棕色脂肪组织能够产生热量。居于中国南部的纳西族以及生活在西伯利亚东北部的雅库特人和鄂温人都拥有在棕色脂肪组织的发育中发挥作用的TBX15基因,而这个基因也来自或许非常适应冰川气候的丹尼索瓦人。

    我们每个人身上都带着尼安德特人的痕迹。 ——斯万特·帕博

    我们DNA的一些区域受到尼安德特基因渗入(即基因转移)的影响甚小,要么是因为尼安德特基因提高了不育的风险,要么是因为尼安德特基因的存在会由于形态上或社会上的原因导致负向选择。X染色体携带着与男性生育能力有关的重要基因,它含有的尼安德特DNA微乎其微,似乎种间杂交产生的变化都已被自然选择所抹去。基因的携带者生殖能力较低的话,就不能将自己的性状遗传下去——自然选择往往就是这么简单!同样的,对语言能力至关重要的FOXP2基因区域里也没有来自尼安德特人的基因。可以想见,携带这种尼安德特式突变的智人将失去舌灿莲花的能力,也就很难找到另一半了(不过我们没有任何证据)。

    另外,并非所有来自尼安德特人的基因都大有用处或不再有用。SLC16A11基因来自尼安德特人,它的等位基因与罹患糖尿病风险的升高有关,在美洲原住民身上非常常见,在亚洲人身上也有发现。不过,这个基因在尼安德特人身上具有什么功效,我们就不得而知了。

    史前DNA

    1997年,遗传学家斯万特·帕博与同事完成了人类历史上首次尼安德特人DNA片段测序(参见第10页《DNA、基因、突变》)。自此以后,对古代DNA的分离与提纯技术取得了长足的进步。2010年,斯万特·帕博与同事分析了3个生活于距今约4万年的尼安德特人的基因组,证明了现代人的细胞内存在尼安德特人的DNA。2016年,DNA分析确认了西马·德·洛斯·乌埃索斯骸骨坑内发现的可追溯至距今43万年的骸骨实为前尼安德特人,并确定了它们的起源。

    在人类中,据估算每个核苷酸每年的基因突变率约为0.5×10-9。根据两个基因组之间的差异,可以计算出二者开始分化的时间。显而易见,估算结果只是近似值,不过可以借助化石的年代加以校准。

    对古代DNA进行分析还能获得人口方面(通过每个基因的等位基因的多样性)和社会方面(比如给定社会里的近亲结合程度)的信息。

    旧石器时代晚期的文化

    在距今大约4.5万年,晚期智人来到了欧洲。在同一时期,工具的制造发生了重大变化,从尼安德特人(及较古老的智人)的莫斯特文化过渡到了奥瑞纳文化(Aurignacian)。对史前史学家而言,人类文明从旧石器时代中期过渡到了旧石器时代晚期。

    智人发明了新的切削技术,可以将石核加工成大量细长的船底形石叶或小石叶。他们制造了多种多样的工具,比如刮削器、端刮器、石锥、雕刻器等等。此外,智人还用硬质动物材料(如骨头或象牙)制作标枪枪尖用于狩猎,史前史学家由此观察到了人类与其他生物的决裂;这些学者认为,尼安德特人不使用硬质动物材料制造武器,因为它们不愿使用以动物身体材料制成的武器猎杀猎物。

    这些新欧洲人依然以狩猎采集为生。根据在目前仍以打猎和采集为生的极少数部落(如卡拉哈里沙漠的桑人或亚马孙流域的美洲原住民)中观察到的结果,可以猜想那时候只有男人猎杀大型动物。最为常见的猎物是驯鹿,不过人们也发现了大量其他动物,如马、原牛、盘羊、犀牛、猛犸象等,各遗址发现的动物都有所不同。女人则捕捉小动物(如蜗牛、蜥蜴、鸟等),采集鸟蛋,捡拾贝壳。此外,她们还会采集各种植物、块茎、可食用块根、野果、蘑菇等。尽管打猎提供了大量的肉类和脂肪,但女人的采集收获往往在智人的食物中占据较大的比例。

    各个地区和时期的工具、武器和日用品有所不同。根据史前史学家的划分,欧洲先后出现了以下文化。

    奥瑞纳文化(距今4.5万年至2.6万年):将燧石切割成狭长石叶的技术已经普及,用木头或鹿角制成的“柔软”手锤也被普遍使用。与石质手锤相比,木质手锤或鹿角手锤精度更高,智人可以用它们敲打燧石块制造石片。人们还发现了用牙齿或贝壳制成的首饰。人类历史上最古老的小雕像也诞生于这个时期,比如德国福格尔赫德出土的动物牙雕或者霍伦斯坦因——施塔德尔洞穴发现的狮子人牙雕。或许,狗的驯化也可以追溯到这个时期。

    属于奥瑞纳文化的工具
    牙雕小马(德国福格尔赫德)

    格拉维特文化(Gravettian,距今2.7万年至1.9万年):工具以带柄长直石叶为典型代表。在遗址里发现了被称为“维纳斯”的女性小雕像,雕像往往造型非常夸张,可能是生殖力的象征,比如在奥地利发现的维伦多夫的维纳斯和在法国朗德省发现的布拉桑普伊(Brassempouy)妇人小雕像。

    维伦多夫的维纳斯(奥地利,距今2.5万年)
    梭鲁特文化“月桂叶形”燧石叶

    梭鲁特文化(Solutrian,距今2万年至1.6万年):在这个时期,生活于法国和西班牙的智人制造细长的“月桂叶形”燧石叶,并采用压制法而非锤击法加以精修。最大的石叶可能用作装饰或象征威望。他们还发明了投掷器,能以较高的准头将标枪投射至很远的距离。在这个时期的遗址里,还发现了欧洲历史上最早的骨针。

    马格德林文化(Magdalenian,距今1.7万年至1万年):马格德林文化分布甚广,且有多个变体,从葡萄牙至波兰皆有发现。这个时期的工具愈加精巧且多样,出现了用作箭头的三角尖形器。当时的智人能用骨头或象牙制作鱼叉,还能制作鱼钩。他们还用驯鹿角制成“穿孔棍”,或许是用来将受热弯曲的木制标枪矫直,抑或是用来拉紧帐篷上的绳索。他们还制作了乐器,比如用鸟骨做的穿孔骨笛。

    某些属于这个时期的遗址反映了当时人类的生活面貌,不过我们却很难将这些人与史前时期挂钩。俄罗斯的松基尔(Sungir)遗址可追溯至距今3.2万年。在这个遗址里,埋葬着一个成年男人和两个青少年的骸骨。下葬的时候,他们身穿兽皮衣服,上缀数以千计由猛犸象牙雕成的珠子,每颗珠子的制作都得花上至少一个小时的工夫;腰缠饰以狐狸犬齿的腰带;还戴着象牙手镯、贝壳项链和垂饰。墓穴中还摆放了象牙标枪、武器和小雕像作为陪葬品。这些惊人的财富说明了墓穴中的三人生前拥有很高的社会地位,也说明了他们生活在一个组织严密、阶级分明的社会里。DNA分析结果显示,这三个人有亲缘关系,但并不是直系亲属。

    克罗马农

    在当代人的想象里,“克罗马农”几乎是“史前人类”的同义词。实际上,克罗马农是法国多尔多涅省韦泽尔山谷中的一个天然洞穴的名字。1868年修建公路时,人们在洞穴中进行挖掘,发现了5个人的骸骨、石质工具和动物骨骼,之后,史前史学家路易·拉尔泰(Louis Lartet)对其进行了描述。

    这处遗址是个墓葬,共埋了5个智人的骸骨,其中3个男人、1个女人、1个儿童,年代为大约2.8万年前。3个男人中,一个身高接近1.8米,肌肉极为发达。由于他的牙齿已经全部掉光,人们给他取了个绰号叫“老头”,不过他死亡的时候可能只有50来岁。一同出土的工具则属于奥瑞纳文化。

    由于这些化石名气甚高,“克罗马农”这个名字便在很长时间里被用来指称生活于距今4.5万年至1万年间的旧石器时代晚期的人类。如今,人们多使用“智人”或“解剖学意义上的现代人”这两个名称。

    与之前的时期不同,旧石器时代晚期出现了大量描绘动物的作品,或涂或刻,以各种材料为载体。男人(或女人)雕刻木头、骨头和象牙,并在岩壁上涂画壮观的壁画。尽管尼安德特人似乎也曾作画,但岩画创作在旧石器时代晚期变得更加频繁。

    然而,绘画风格并无显著发展。肖维(Chauvet)岩洞的壁画创作于大约3.5万年至3万年前,远早于创作于距今1.7万年的拉斯科(Lascaux)洞穴岩画,但前者所表现出来的智力水平和艺术才能与后者完全相同。尽管欧洲最先发现并研究了岩画,但岩画艺术并非欧洲独有。在印度尼西亚的苏拉威西岛多个洞穴的岩壁上,发现了距今4万年时画上去的手印和动物。有可能,生活于当时人类疆域两端附近(从西欧到澳大利亚)的智人独立完成了各自的第一批艺术作品。不过,也有可能,岩画创作只是随着智人移居世界各地时传播开来的一项古老传统。

    澳大利亚原住民素有在峭壁上和不深的洞穴里绘画的传统,而且将这个传统延续至今。他们会定期翻新古老的作品,所以无法准确确定作品的初创时期,不过,画上沉积的赭石和黑赤铁矿石可追溯至距今5万年至4万年。也许有一天,我们会发现澳大利亚第一批居民的画作呢。

    在他们的作品里,有些描绘的是关于人类起源的原住民神话,有些讲述的是他们群体生活的某些场景。各地的岩画或许具有不同的含义。欧洲的岩画以动物为主角,并配有各种几何符号、手印和女阴,人的形象少得可怜。某些岩画似乎与狩猎有关(比如拉斯科洞穴岩壁上受伤的野牛),但狩猎并不是非常重要的创作主题。岩画上的动物中有狮子和鬣狗,不过它们并非用来食用,而作为主要猎物的驯鹿,出现的数量却少得可怜。

    肖维岩洞石壁上的原牛、马和犀牛(法国,距今3.3万年)

    一些洞穴的污泥中留下了脚印,比如法国的佩什梅尔(Pech Merle)洞穴或蒂克·德·奥杜贝尔(Tucd’Audoubert)洞穴,脚印的大小说明曾有年轻人进来过,可能是为了进行启蒙教育。尽管我们提到的往往都是男性“艺术家”,但是,根据岩壁上的手印(以嘴吹赭石的方法绘制),女性似乎也参与了岩画的创作。

    新人类?

    旧石器时代晚期的艺术作品突出表现了智人生活的巨大变化:他们探索的疆域远超前辈曾经抵达的边界。与此同时,由于新技术或新文化习俗的出现,日常用品的制作也迅速发生了改变。而在过去的几十万年里,制作技术未曾有过大的变动。

    这些翻天覆地的变化是智人过往历史的简单延续吗?还是说,智人的演化经历了一次质的飞跃,否则该怎样解释这种突飞猛进呢?人们猜想,在大约5万年前至4万年前,智人的创造能力和语言能力由于脑组织结构的改变而提高,进而引发了一场迅速席卷全球的“人类革命”。

    然而,智人突然之间取代尼安德特人,成了在欧洲发生的主要变化。如果摒弃传统史前史学的欧洲中心论,同时以同样的重视程度审视世界的其他角落,就会发现亚洲和非洲所经历的是渐进式的过渡。在过去,一些信号被视为从尼安德特人的旧石器时代中期向智人的旧石器时代晚期过渡的标志;而近些年来,不计其数的考古发现否认了它们与此过渡进程的相关性。在奥瑞纳文化诞生前,生活在非洲的智人就已经在制造骨质尖状器了,还能用针缝制衣物,佩戴项链或其他饰品,以及在洞穴岩壁上作画(参见第122页提及布隆波斯洞穴的段落)。

    上述两种模型并非截然不同。智人的很多新行为,其实在过去就已出现,只是形式没有那么丰富罢了。显然,在深入地下洞穴绘制无与伦比的岩画前,肖维岩洞里的创作者曾花费数年光阴在洞外学习绘画技术、改进绘画姿势,但是他们的学习过程并没能保留下来。同样,虽然他们的前人也没有留下任何遗迹,但他们的行为或许只是在延续一项非常古老的传统。

    晚期智人

    我们偶尔会用Homo sapiens sapiens(即“晚期智人”)这个称呼,不过,重复两遍sapiens(本义为“聪明的”),不但累赘,更显自负,那为什么会起这么个名称呢?在原则上,拉丁文三名法用于物种的亚种;所谓的亚种,指与同一物种的其他种群存在地理隔离且表现出不同特征的种群。人们假定(或者已经证实),被称为亚种的种群可与同一物种的其他种群互相交配并繁殖可育后代。“亚种”的说法有时很实用,尽管“种”的概念本身已然很复杂且有争议。

    在古生物学上,往往很难赋予化石物种精确的种名,亚种的定义也就没有任何意义,因为无法证实已经灭绝的动物是否能够互相交配并繁殖可育后代。不过,在考察物种时,不但要从空间的维度考虑,还要从时间的维度考虑;亚种的概念,不但有助于凸显化石之间的相近性,还有助于设想它们之间存在直接亲代关系。不过,这么一来,就要考虑不断变化的物种定义的问题。而在此基础上,还要考虑亲代关系的问题;但是,由于通常情况下根本无法建立亲代关系,所以演化分类时不将其纳入考虑。

    史前史学家引入智人这个名称,是为了与尼安德特人做区分;那时的学界还将二者视为同一物种。当时,尼安德特人被称为尼安德特智人,而将尼安德特人变成智人的近亲,也算是为尼安德特人“正名”。今天看来,尼安德特人和智人之间互相交配并繁殖可育后代的能力似乎非常有限,仍将二者归为同一物种已成无稽之谈。所以,我们将二者加以区分。

    不过,一些古人类学家意欲将智人分为早期智人和晚期智人(现代智人)两个亚种。所以,埃塞俄比亚赫托发现的可追溯至距今16万年的颅骨被命名为长者智人(Homo sapiens idaltu),这个名称说明他与解剖学意义上的晚期智人相近但有所区别。长者智人被视为罗德西亚人和智人的过渡种。长者智人,尽管字面意思似乎已经非常明确,但其定义并不明确:长者智人在何时变成晚期智人?判断标准又是什么?

    如果长者智人向晚期智人的转变非常迅速,比如经历了生物学和文化两个方面的质的飞跃,那或许能够确定转变发生的年代和方式。

    第八章 史前时代的结束

    随着最近一次大冰期的结束,气候再次改变了人类的演化历程。新的文明,也就是我们现今的文明,取代了旧石器文明。正是在这一时期,人类开始改变环境:森林变成了农田,奶牛替代了原牛。在大约1万年前,当最初的牧民开始建造最初的村落时,我们生活的这个世界诞生了。

    中石器时代

    大约1.5万年前,全球气候开始变暖。尽管有过最近一次突然袭来的大冰期,全球变暖仍在1.2万年前变成常态(我们现在仍处于温暖的间冰期)。几百年间,地球平均气温升高了8摄氏度,大气也变得更加湿润。撒哈拉沙漠成了稀树草原,欧洲则森林遍布。巨大的冰盖融化产生的水涌入海洋,导致海平面上升了120米。

    在中石器时代,以打猎和采集为生的智人适应了与其生活在旧石器时代晚期的祖先大相迥异的生活条件。较为温暖的气候深刻地改变了地球的面貌。冻原和荒原消失不见,松树林和橡树林先后取而代之。一些动物,比如原牛和马,适应了新的生活环境;另一些动物则消失了。驯鹿迁往北边,猛犸象从此灭绝,取而代之的是鹿、野猪和野兔。比起之前的冰期,野生动物更加丰富多样,这使我们的祖先得以长时间定居在同一个地方。

    对于中石器时代猎人的生活方式,我们知之甚少,因为当时的环境条件不利于遗址的保存。不过,我们还是发现了重大的文化变迁。当时的智人能将石头加工成主要用作箭尖的“小石叶”。由于在森林里弓箭比投掷器更加实用,所以弓箭的使用相当普遍。在法国,岩画艺术似乎走向了倒退;在西班牙,却诞生了新的岩画风格,作者非常乐于在作品中表现人的形象。

    在海边,贝类采集几乎具备工业规模,堆积在海岸上的贝壳就像一座座沙丘。他们还用编织的渔网或捕鱼篓捕鱼,建造独木舟在江河湖海上航行。也是这个时期,人类首次定居在科西嘉和克里特等地中海岛屿。

    西班牙东部的岩画作品(中石器时代)

    大型动物的灭绝

    在冰期结束时,大量物种灭绝,尤其是那些被归为大型动物的物种,即体重超过45千克的动物。由于体形较大,它们在考古遗址中的消失是显而易见的。这次灭绝是全球现象,从欧亚大陆的猛犸象,到南美洲的大地懒,还有澳大利亚的袋狮,都未能幸免。

    几十年来,两个灭绝假说一直针锋相对,那就是气候变化假说和人类活动假说。前者认为,气候变暖改变了植被状况。然而,食草动物往往比较专一,吃草的猛犸象不能改为吃树叶。驯鹿等物种已经北迁,以寻找可以接受的生存环境,但对于猛犸象和长毛犀牛来说,这是不可能的,因为气候变暖已经导致适合它们生存的寒冷荒原消失殆尽。

    然而,上面这些并不足以解释全部的物种灭绝事件和灭绝速度。对于人类活动假说而言,单单看到人类到来和某个物种消失之间的模糊巧合是远远不够的,还要证明人类的的确确猎杀了这个物种。除此以外,还需要确定人类到来和物种消失的准确年代。如果物种灭绝在人类到来之前,那人类就与物种的灭绝没有任何干系。如果物种灭绝在人类到来之后,那人类在物种灭绝中负有责任的可能性就会增加,但这未必就是确凿无疑的事实。

    体形大的物种往往繁殖率较低,而对繁殖率较低的动物而言,哪怕很低的猎杀压力也足以导致它们灭绝,牛顿巨鸟就是个很好的例证。牛顿巨鸟是生活在澳大利亚的一种不会飞的鸟,体重超过200千克。2015年,在200多个距今5.4万年至4.3万年的遗址上,发现了具有炭化痕迹的牛顿巨鸟的蛋壳。然而,要在蛋壳上留下类似的炭化痕迹需要很高的温度。因此,有些人认为,这些痕迹排除了仅仅是灌木丛起火这一种可能性。人类收集鸟蛋(或许还猎杀成鸟),似乎成了导致牛顿巨鸟灭绝的原因。另外,澳大利亚还生活着另一种名叫鸸鹋的善于奔跑的走禽。虽然人类也食用鸸鹋的蛋,但这种体形比牛顿巨鸟小很多的鸟并未灭绝。

    在同一时期灭绝的物种还有重达半吨的巨袋鼠、重达2吨的巨袋熊和身长达7米的巨蜥(与科莫多巨蜥有亲缘关系,体形为科莫多巨蜥的3倍大)。它们或许不是被澳大利亚的第一批居民直接消灭的,但此间的巧合着实令人不安。

    史前巨袋熊复原像

    同样的故事也发生在许多岛屿物种身上,比如新西兰的恐鸟和马达加斯加的象鸟。同样未能逃过一劫的,还有北美洲的乳齿象及南美洲的雕齿象和大地懒。不过,雕齿象和大地懒的种群在人类到来之前就已经因为气候变化而变得脆弱不堪。

    在人类定居于新发现的岛屿和大陆前,生活在那里的动物与人类从未有过接触。即便不像南太平洋的物种那样一动不动地看着水手靠近并杀掉自己,它们也毫不适应人类这个新型掠食者的狩猎技术。非洲和欧亚大陆的情形则与此不同,在气候变化中躲过一劫的物种没有再遭遇其他不测,最终存活了下来(直至现代人对它们展开了血腥的大屠杀,从鲸到犀牛都是如此;这里仅举几例大型动物)。

    新石器时代革命

    在一些地区,比如近东,中石器时代更像是个过渡期。在大约1万年前,生活在这些地区的智人渐渐转为定居,并用原生黏土建造了人类最早的房屋。他们依然像从前一样栽种作物,有豌豆、扁豆、小麦、黑麦,不过采用了更加系统化的栽种方式。他们制造了必需的工具——带有燧石刀刃的木柄镰刀,并挑选了最适应他们的播种技术或收割技术的品种。在打猎的同时,他们还开始饲养动物,先是盘羊和野山羊,然后是原牛和野猪,后面两个最后被驯化为奶牛和家猪。

    在地中海东岸(包括以色列、黎巴嫩和现土耳其的一部分)及底格里斯河和幼发拉底河流域(叙利亚和伊拉克),考古学家发现了这些人类活动留下的无数遗迹。这个地区呈新月状,土地肥沃,物产丰富,因而得了“肥沃新月”的美称。稍晚以后,世界其他地方的智人经历了相同的过渡期,不过他们栽种的作物和饲养的动物都有所不同:作物有土豆、水稻或高粱,动物则有火鸡、羊驼或骆驼。

    这种全新的生活方式与过去的截然不同,以至于人们将两种文化间的过渡期称为“新石器时代革命”。以打猎和采集为生的迁徙部落向以耕作和养殖为业的定居农民的转变尽管花费了数千年才完成,但是对自然环境和人类自身都产生了极为重大的影响。

    在新石器时代,智人继续加工燧石制造“小石叶”,然后将小石叶挨个摆放整齐,用来制成镰刀和小刀的刀刃。此外,他们还制造石斧并对其进行打磨(新石器时代过去也被称为“磨制石器时代”)。再往后,他们用翡翠(一种在阿尔卑斯山脉发现的绿色石头)制作礼斧,而礼斧之后将在从西西里岛到爱尔兰的整个欧洲范围内流通。

    他们早就知道怎样把黏土塑造成型,还懂得通过加热使其硬化。定居之后,他们制造了陶器以储藏谷物,这就降低了单纯依赖野生作物作为谷物来源的供应风险。不过,食用谷物也造成了一些后果。为了获得面粉,就需要磨碎谷物颗粒。妇女承担了这项任务。她们跪在地上,用石杵将谷物颗粒在磨盘上碾碎,一碾就是几个小时。长时间的碾磨在她们的骨骼上留下了痕迹,引起了脊柱和大脚趾变形。另外,臂骨结构说明她们的手臂肌肉和当今的划船冠军一样强健有力,而她们的脊柱由于头部长时间承受很大的负荷而发生了形变。

    杰尔夫·阿合玛尔(Jerf el-Ahmar)遗址(叙利亚,距今9 000年)

    随着时间的推移,村落里的人口数量逐渐增加。由于人们不再频繁迁移,生活垃圾慢慢地污染了水源。霍乱和斑疹伤寒等疾病变得愈加严重。与动物杂居一处,也成了寄生虫和细菌传播的重要原因。苍蝇和家鼠渐渐适应了这种对它们生存非常有利的环境,寄居于人类粮仓的老鼠则成了寄生虫和多种疾病的传染源。

    在新石器时代,智人的牙齿饱受新食物之苦。由于唾液中含有淀粉酶,谷物中的淀粉自入口时便开始消化,消化产生的糖类导致龋齿。在这个时期的骸骨上,能观察到明显的龋齿数量的增加。

    基因变化

    我们或许会认为,比起数百万年的人亚族历史或数十万年的智人历史,仅数千年的新石器时代在人类演化过程中没有发挥任何作用。不过,在短暂的新石器时代里,人类经历的生活方式变化产生了强大的选择压力。

    从体格上看,与祖先相比,新石器时代的智人身材较小,不过这似乎并不是基因演化的结果。生活条件的变化,比如较大的劳动强度(对于孩童也是一样)或虽然丰富但与机体不相适应的饮食,足以对此加以解释。

    也正是在饮食方面我们观察到了显性基因变化。我们出生时能够制造乳糖酶,这种酶能分解母乳中含有的乳糖。在随后的发育中,我们将失去制造乳糖酶的能力。由于哺乳动物成年后原则上不再食用奶,肠道细胞便不再制造失去用处的乳糖酶。

    新石器时代,农民饲养牧羊、山羊和奶牛,它们提供的鲜奶是有益食品。不过由于缺乏乳糖酶,成年智人不能很好地消化吸收鲜奶。在人类细胞里,负责制造乳糖酶的是LCT基因。大约8 000年前,生活在高加索地区的一个智人的LCT基因发生了突变。这改变了LCT基因的活性,使它在成年智人体内仍能正常制造乳糖酶。这一突变在欧亚大陆的智人种群中迅速扩散。如今,75%的欧洲人体内都有这个突变。在至少四个非洲智人种群(比如马萨伊人)中,也独立发生了类似突变。

    这些突变的快速选择证明,通过遗传从父母处得到突变的人确实具有演化优势,存活率也大大提高。所以,可以这样猜想:在年成不好的时候,奶可以作为智人(包括成年智人)的重要食物。另一种假设是,奶可以提供维生素D。既然智人有可能因为继承了祖先的深色皮肤而无法制造足够的维生素D,那么他们就要依赖动物奶来满足自身需求。

    在谷物消化方面也发生了类似现象。谷物富含淀粉,在淀粉酶的作用下,淀粉可以转化为糖类。一些地区的农民适应了这种饮食,与狩猎采集者相比,谷物成了他们更加重要的食物来源。他们的后代比祖先更多地携带了AMY1基因,进而能够制造更多的淀粉酶并以更快的速度消化淀粉。

    迁移

    农民需要木头建造房舍、烹煮食物,不久以后,他们还要燃烧木材烧制陶器。为了获得木头,他们砍伐了村落周围的树林,又不留给树足够长的生长时间以恢复树林。我们已经发现,在某些遗址里,房梁的直径呈逐渐减小之势。山羊的数量越来越多,也对树木的再生造成了危害。在每年播种前,农民都会通过焚烧清除土地上的植被(即所谓的“刀耕火种”),最终导致村落周围地区的沙化。然后,农民就会遗弃旧的村落,另觅环境退化较不严重的地方建设新家园。

    此外,随着游民生活走向终结、食物供应日益稳定,农民的人口数量也与日俱增,这就需要更多的土地播种作物、饲养动物。于是,农民开始从近东地区向各个方向迁移,并将他们的技术传遍各地,尤其是位于西北方向的欧洲。

    根据考古学家的描述,农民的迁移主要有两条路线。一些人沿着地中海北岸迁移,最终抵达了西班牙。他们留下的遗址里有饰有几何图案的陶器,这些图案是他们用名为鸟蛤(Cardium)的软体动物的壳镶嵌制成的,正因如此,他们的文化得名为“鸟蛤陶文化”。凭借饲养的绵羊和山羊,他们将小麦、大麦和扁豆带到了欧洲。

    在北边,另一些人顺着中欧的多瑙河迁移,最终抵达了布列塔尼。他们制作的陶器上带有不同的花纹,后世称之为“线纹陶文化”。他们的迁移给欧洲带来了奶牛和家猪。他们建造的房屋呈长方形,墙壁使用木材和泥土,房顶覆以茅草。

    鸟蛤陶文化也好,线纹陶文化也好,它们其实代表了智人的移民潮。不过,这些移民活动极为缓慢,几乎察觉不到,用了4000年时间才抵达大西洋岸边。在迁移的道路上,代表了新石器文明的农民遇到了以打猎和采集为生的人群。但这一次不存在杂交的问题了,因为他们都是智人。不过,他们说的语言不同,生活方式也完全不同。他们在多大程度上相互融合或相互冲突,现在已经不得而知。这两种情形或许都曾经发生;不过,在文化层面上,新石器文化在世界各地都成了主流,中石器时代的生活方式渐渐地消失了。

    考古遗址见证了新石器文化在欧洲的推进过程。在法国阿韦龙省特雷耶(Treilles)发现的新石器时代墓地中,出土了24个埋葬于5 000年前的智人骸骨化石,他们的DNA就是印证。线粒体DNA和Y染色体给出了他们母系和父系血统的相关信息。根据研究结果,这24个人都是近亲,父系血统起源于地中海,可能来自土耳其的阿纳托利亚,母系血统则可以追溯至在旧石器时代生活于法国的人类种群。

    在两种文明的碰撞和冲突中,代表了新石器文明的农民似乎更加暴力。人们在德国的塔尔海姆(Talheim)发现了7 000年前发生的屠杀留下的遗迹,男人、女人、孩童共计34人惨死于弓箭或石斧之下,骸骨上的伤痕正是新石器文明制造的武器造成的。而在法国阿尔萨斯地区阿克奈姆(Achenheim)的一处遗址里,出土了6个人的化石遗骸,他们死于斧子击打造成的多处骨折。凶手把他们的左臂都砍了下来,要么是作为战利品,要么是为了证明自己高效的屠杀能力。但是遗址里没有发现女人的骸骨,这或许意味着凶手的突袭并未大获全胜。村落里发现了300座储存粮食的筒仓,或许这就是凶手发动袭击的原因吧。在旧石器时代的遗址里,带有箭伤的骸骨并不鲜见,但到了新石器时代,暴力留下的痕迹明显增加,这种情况或许与定居生活带来的财富积累有关。

    新石器文明,我们社会的基础,曾经是一个希望。然而,直至今日,我们的历史仍未达到预想的高度。 ——让·纪莱讷(Jean Guilaine)

    在德国黑克斯海姆(Herxheim)的线纹陶文化遗址里,考古学家发现了许多人类被烹煮和食用的遗迹。这种食人行为可能是仪式性的,用来纪念死亡的同伴,或是庆祝消灭敌人。

    与新石器时代的开端一样,新石器时代的结束也是个渐进的过程,其间发生了多个重要但不同步的事件。比如,大城市的出现——在距今5 500年时即出现了拥有近5万居民的美索不达米亚古城乌鲁克(Uruk)——就可以视为其标志性事件之一。最早的牛拉战车和最早的青铜器也在这一时期诞生。不过,史前时代结束和历史开始的真正标志是书写的登场:大约5400年前,人类历史上最早的书写系统出现在近东地区。然而,新石器时代虽然在近东地区宣告结束,却在西欧继续延续了几千年。直到距今4 000年,西欧才告别了新石器时代,正式迈入了青铜时代。

    结语 今天的智人

    如今生活在地球上的70亿现代人,都是10万年前居住在非洲的几千个智人的后代。我们现在具有的大部分特征都是从这些智人身上遗传而来的,不过,自从分散到世界各地之后,我们的祖先并没有停止演化。他们生活在多种多样的环境中,与其他人邂逅,改变了自己的生活方式后又被生活方式所改变。我们现在拥有的多样性,正是这段历史带来的遗产。

    过去的痕迹

    人类在扩张至所有大陆后的几千年里,继续积累基因突变,以适应生活环境和加强文化特色。基因交流从未中断,尤其是在地理上相邻的种群之间。此外,许多事件也促进了基因组的重组,比如征服战争、探险活动、奴隶贸易、经济移民、旅游观光等等。

    在近代历史(从地质学意义上说,为最近的5万年)上,人类产生了各种各样的差异:身高、肤色、体毛形态、糖尿病倾向等等。这些多样性里,一部分是人类适应环境而产生的,不过并非所有特征都是适应的结果。在与世隔绝的小种群里,比如在岛屿上,可能会发生遗传漂变现象(genetic drift),某些基因频率会在没有经历自然选择,也就是没有刻意适应环境的情况下发生变化。在所罗门群岛的美拉尼西亚人中就观察到了这种现象。那里的美拉尼西亚人都拥有深色皮肤和金色头发。这种所罗门群岛岛民独有的特征与TYRP1基因的突变有关,而在北欧居民身上发现的控制金发的基因则与此不同。

    某些身体特征并非仅由基因决定。人的身高不仅取决于基因,还取决于童年时期的生活方式。因此,身高并不是完全由遗传决定的。的确,在20世纪,欧洲男性和女性的身高有所增加,但这并非人类演化产生的变化,而是生活方式改变的结果——儿童不再下矿工作,与过去相比,他们吃得更好,睡得更多。不过,这种改变是可逆的。如果回归19世纪的生活方式,那人类的身高或许会平均减少10厘米至20厘米!然而,人群之间的身高差异与环境适应是有部分关系的。因纽特人的矮小身材就与极地的严寒气候不无关系,因为这种身材能减少热量损失。但是,其他因素也发挥了作用,比如对某些身体特征的文化偏好。

    肤色显然与环境有关。紫外线能引发皮肤癌变,皮肤里的黑色素能防御紫外线的伤害,而黑色素含量高的话,肤色就会较深。此外,黑色素还能避免叶酸的分解,无论是对孕妇体内胎儿的神经系统发育还是对男人精子的产生,叶酸都发挥着重要作用。与此相反,在光照强度较弱的地区,颜色较浅的皮肤有利于更好地合成维生素D,不过合成过程中还是需要一定量的紫外线的。

    纬度和黑色素含量之间存在很大的关联。在人体内,黑色素的合成大约受10个基因的控制,其中每个基因都存在几种变体,各个变体的活性有高有低。通常情况下,自然选择根据当地的光照情况影响这些基因的分布。可是,演化从未跟上智人迁移的速度。所以,尽管在欧洲生活了成千上万个年头,人类在很长时间内依然保留了继承自祖先的深色皮肤。

    这些情况,是切达人(Cheddar man)的基因告诉我们的。切达人生活于距今1万年的英格兰,彼时尚处于中石器时代。切达人有着深色的皮肤(因为黑色素含量很高)和蓝色的眼睛,与7 000年前生活在西班牙的另一批人毫无二致。(但两种人之间没有任何亲缘关系!)SLC24A5基因参与人体内黑色素的合成,在不久以后欧洲智人皮肤淡化的过程中,这个基因发挥了重要作用。其实,在大约6 000年前,随着第一批近东农民的到来,SLC24A5的等位基因Alal 11 Thr就在欧洲出现了。另一些研究表明,当时生活在斯堪的纳维亚的智人拥有较浅的肤色,这或许是来自中亚的外来基因造成的。在旧石器时代晚期,欧洲的智人尽管为数不多,但无疑表现出了很强的多样性。很有可能,克罗马农人的肤色远比我们通常想象的要黑得多。

    这么看来,相对较低的光照强度似乎并未造成太大的选择压力,或许是因为以打猎和采集为生的智人从食物中获得了足量的维生素D。

    相反,到了新石器时代,智人的食谱变得较为贫乏。当北方的智人转而从事农耕生活时,肤色变白就变得至关重要,这也是SLC24A5基因的变体在智人种群中迅速传播开来的原因。到了今天,95%的欧洲人体内都含有这个变体。

    至于蓝色眼睛,或许是性选择的功劳。从遗传学角度来看,存在好几种不同的蓝色眼睛;不过,在欧洲,蓝色眼睛这一特征与1万年前至6 000万年前出现的单一基因突变有关。但是,这个远不如肤色重要的特征为什么会被选择并遗传下来呢?这是因为,与蓝色眼睛相关的基因突变也在肤色变白过程中发挥了作用,尽管作用微乎其微。不过,这个理由似乎不足以确保这个突变的传播。会不会是这个突变位于某个重要基因附近,所以只是搭了后者的便车才得以遗传下来呢?虽然达尔文对这些基因一无所知,但他还是给我们提供了另一种解释。我们知道,稀有特征会带来非同寻常的吸引力。因此,拥有蓝色眼睛的人可能会留下更多的子孙后代,也就是更多蓝眼睛特征的携带者!

    当然了,文化偏好在其他方面发挥了作用,比如现代人的体毛差异。在体毛方面,人类表现出明显的性别二态性,这无疑与我们远祖的偏好有关。不过,男人有胡子而女人没胡子,是因为女人偏爱有胡子的男人还是因为男人喜欢没胡子的女人导致的呢?同样,现代人今天具有的多样性,也正是人们择偶品味不尽相同产生的结果。

    基因的多样性

    人类的DNA由32亿个核苷酸排列而成,这些核苷酸是分子的组成部分。在这其中,只有大约500万个核苷酸是因人而异的。换句话说,任意两个人在遗传物质上的相似程度达99.6%。从基因角度考虑的话,人与人之间的差异程度比黑猩猩之间的差异程度要小。

    不同种群在这些个体突变的频率上存在差异。个体突变的频率导致了种群之间的差异。没有任何基因突变只存在于一个种群中并且出现在这个种群的每个个体身上。换言之,任何个体变异都不是某个大陆或某个种群所独有的。

    另外,许多研究结果表明,同一种群的个体之间的基因多样性要大于两个不同大陆上的两个不同种群之间的平均基因变异性。任何特定的种群内部都包含人类整体基因多样性的80%。尽管从外表上看不出来,但来自卡拉哈里沙漠的两个布须曼人之间的基因差异可能比一个欧洲人和一个亚洲人之间的基因差异更大。

    个体之间的差异很小,但并非随机分布。尽管不存在某个种群独有的标记,但是,以个体变异的特定组合为基础,我们可以相当容易地将某个DNA归于某个大陆。与此相反,知道了某个个体的来源并不能让我们了解这个个体的基因情况。

    对数千人进行的基因研究表明,人类存在几个大的地理类群。其中一项研究将人类分为以下7个不同类群:撒哈拉以南非洲人、欧洲人、中东人、中亚和南亚人、东亚人、大洋洲人以及美洲原住民。另一项研究则将人类分为以下3个不同类群:撒哈拉以南非洲人,欧洲、北非和西南亚人,亚洲其他部分、大洋洲和美洲人。

    整体而言,基因相似性和地理邻近性之间存在很强的一致性。南北方向上观察到的基因变异性高于东西方向上观察到的基因变异性,这也与环境适应性随着纬度增加而更加明显的情况相符。

    人类种族存在吗?

    无论是在历史上还是在文化上,人类多样性的问题都关系到种族是否存在。显然,这是个非常敏感的问题,因为在人类的历史上,物种分类往往与划分种族等级甚至灭绝某些种族的企图有关联。政治利益或经济利益常常隐藏在伪科学的考量身后。

    在德国纳粹于20世纪推行种族灭绝政策之后,联合国大会于1965年通过了《消除一切形式种族歧视国际公约》。在法国,种族并非官方认可的类别,官方甚至禁止进行任何将人群以“种族”划分的调查。在其他许多国家却不是这种情况,那里的居民必须明确自己的种族归属。通常情况下,我们已经不再按传统方式将人们划分为白种人、黑种人、黄种人这三大种族,而是将人们划入根据肤色和地理来源等标准人为构建的类别[比如在美国就存在黑人(非裔)、白人、西班牙裔、美洲原住民等类别]。

    今天的生物学已经不再认可传统种族的存在,并将传统的种族划分视为毫无逻辑,不但无用还往往有害。然而不争的事实是,大多数人仍会提及种族。即便人类无法分类,但“人类种族不存在”的论断似乎也是在挑战基本常识。这么一来,科学可就站到我们对世界认知的对立面了(生物学并不是唯一出现这种情况的领域,地球和太阳的相对运动就是另一个例子)。

    该怎么理解科学知识和一般感知之间的矛盾呢?在面对极为多变的集合时,我们本能地倾向于找出有利于进行信息组织的极端情形,偶尔会将数量上更多的中间情形抛在脑后。挪威人显然与日本人不同,我们也能够准确无误地将来自这两个群体的任何一个个体归入其中一个群体。不过,此举并不意味着给“挪威人种”和“日本人种”甚或“白种人”和“黄种人”下了定义,因为如此一来,就等于将从西欧到远东的其他民族都置于一边了,而他们显然不能被列入“挪威人种”或“日本人种”中的任何一类。

    传统的“三大人种”划分依据的标准只有一个,那就是肤色,而肤色实际上是不同种群分别独立获得的。这意味着,非洲、印度和澳大利亚的黑肤色种群与各自比邻而居的浅肤色种群的亲缘关系比他们彼此之间的亲缘关系更近。

    显而易见,最先试图定义种族的人类学家不得不先建立子类,然后再把子类继续细分,以至于产生了几十个“种族”,而最终这些“种族”还是不免与族群、种群或民族混为一谈。这些“种族”便成了所谓的“原始意象”(archetype)——它们以形态、地缘、文化、宗教标准建立,不具备任何精确性,而且没有任何生物学层面的事实依据。

    生物学上的“种族”(race)概念

    在生物学家眼中,race指野生物种内部与其他种群相互隔离且在大小、外形或行为上有明显区别的群体。这个术语差不多是品种(更多地用于植物)或亚种的同义词。这也是与亲本物种分化的一个阶段,最终可能导致新物种的出现。

    race一词的另一个含义是指通过严格控制家养动物的繁殖,获得非常独特的动物,比如暹罗猫或奥布拉克奶牛。

    这两个定义中的任何一个都不适用于我们人类,因为人类的繁殖并不受控,而且人类个体并非相互隔离。

    不过,有些科学家和企业家提出,“种族”概念具有潜在的医疗利益。实际上,随着DNA测序新技术的诞生,人们可以考虑开发基于基因的个性化药物,这样既能虑及病人对不同病原体的易感性,又能虑及他们对治疗的不同反应。英国和中国正在实施的旨在建立巨型遗传信息库的“十万人基因组”计划正是希望实现这个目标。一些专门从事DNA测序的公司正在推动建立基因组图谱,以详细说明我们基因组中存在的所有潜在的有害突变。

    某些疾病在特定种群中更加常见。比如,在阿什肯纳兹犹太人中,BRCA—1基因和BRCA—2基因上发生的特殊突变增加了乳腺癌的风险;在撒哈拉以南的非洲人中,能够引发镰状细胞性贫血的基因突变则更加常见(因为这个突变能够保护携带者免遭疟疾的困扰)。有些实验室提供“人种”检测,据称能让受测对象知道祖先的地理起源。制药业开发了针对特定种族的专用药,比如因为开发过程缺乏科学严谨性、概念模糊带来重大风险而在2005年引起很大争议的拜迪尔(BiDil)。

    一棵交了好运的树上长出了一根出人意料的树枝,这根树枝上又发出了出人意料的枝杈,这个枝杈上又萌出了一个小小的细枝,这个细枝就是智人。 ——斯蒂芬·J. 古尔德,1989

    不过,即便某些疾病只在特定种群中高发,也不能证明这些疾病是由基因决定的。还存在着与病人的社会背景或文化背景有关的可预见因素。在医学上,病人的直系尊亲是远比病人所属“种族”更有用的信息,何况“种族”更多是个文化概念,而非生物学事实。按这种逻辑,在欧洲或在美国,双亲分别为欧洲裔和非洲裔的儿童在文化上会被视为“黑人”,但这种划分并未给出一丁点儿生物学层面上的依据。

    基因组学在医学上的另一个应用,是将人类的演化纳入疾病研究的考量范畴之中,这正是演化医学的基础。而演化医学的一个目标就是弄明白旧石器时代选择的基因可能对当今人类造成怎样的负面影响,毕竟我们的生活条件和饮食习惯都与祖先的截然不同。

    未来的人类

    由于人类的历史伴随着重大的解剖特征变化和心理变化,我们禁不住设想人类未来将如何演化。我们很自然地会循着两个看似符合逻辑的方向设想:首先是过去经历的转变在未来的延续,然后是对现代环境和新的生活条件的适应。按照这个思路,未来的人类将拥有硕大无比的头颅、虚弱不堪的身体、高度发达的手指(用于敲打微型键盘)和适于观看屏幕的双眼。

    这种观点建立在对演化机制缺乏了解的基础上(参见第19页《人类演化:达尔文vs拉马克》)。即便我们真的需要,我们也没有理由获得更加修长、更加强壮、更加灵活的手指,除非自然选择发挥作用并有利于偶尔获得这些特征的人生存和繁衍(而且这些特征还须是源于基因的特征)。而现在,似乎还未具备这些条件,在很长的时间里,我们的手指恐怕还要保留现在的外形和能力。

    至于头颅,须知演化是受限于解剖结构的。我们可以设想拥有硕大无比的头颅(和硕大无比且更加出色的大脑)的个体在日常生活中占据优势并且子孙满堂。但这样一来,分娩将会更加艰难,除非胎儿较早出生,可这样就增加了早产的风险,或者骨盆将发生改变,但那样又面临干扰双足行走的风险。

    另外有一种可能发生的演化,虽然比较不明显但时常被提及,那便是智齿的演化。智齿是我们的第三臼齿,在发育过程中萌出较晚,萌出时往往令人难受,须由牙医拔除。约有20%的人只长部分智齿或完全不长智齿。我们祖先颌骨的减小阻碍了第三臼齿的正常萌出,引发了龋齿、肿块,甚至导致邻近牙齿或颌骨的破坏。在旧石器时代,这些情况都是可能导致死亡的。因此,智齿被置于强烈的负向选择之下。但在今天,这个负向选择已经消失,至少在发达国家是如此。在没有负向选择的情况下,即便基因突变持续累积,演化也不会再朝着特定方向进行了。

    然而,没有任何理由认为,我们将会抵达演化终点并将不再继续发生转变。现如今全球人口已达70亿,自旧石器时代以来,人类的多样性显著增加,基因突变在基因组中持续累积,而自然选择也不再像过去那样严苛。我们的婴儿死亡率大大降低,我们生产药物对抗致命疾病,在现代医学的帮助下,本身不孕不育的夫妻也有了繁衍后代的可能。这么一来,人类究竟有哪些实际的演化可能性呢?

    有些方面依然在自然选择的作用之下。每当细菌或病毒引发流行病的时候,人们就会发现有些人具有天然的抵抗力;与此相反,如果是严重的流行病,另一些人就会因此而丧命。在这种情况下,自然选择以粗暴的方式发挥作用,一些人失去生命而另一些得以幸存。流行病结束后,由于死亡率不同,具有抵抗力的人群占比上升,种群整体对这种流行病的抵御能力便有所上升。

    由人类免疫缺陷病毒(HIV)引起的艾滋病(AIDS)就是如此。在人类免疫缺陷病毒攻击人体淋巴细胞时,CCR5基因会发挥作用,其变体CCR5—Δ32能够阻断病毒。在亚洲西部和欧洲,10%的人拥有CCR5—Δ32变体,人们猜想,这个变体是因为能够保护人体免受另一种恶性疾病(或许是天花)的侵害而在过去被选择的。在非洲,这个变体更加鲜见,但在得了艾滋病的人群中,它正因为艾滋病的较高致死率而经历着强烈选择。

    同样的,人群中可能存在一些对合成分子较不易感的个体。而某些合成分子(比如内分泌干扰物)似乎是造成发达国家不孕不育率上升的罪魁祸首。那么,对这些合成分子的抵抗性将自动成为正向选择的目标,因为具备抵抗性的人类个体拥有更高的生殖能力。不过,这需要人类长时间接触这些合成分子才行。我们还是祈祷这种情况不要发生,否则人类的演化可就要告终了!

    这类不太引人注意的生理演化可能伴有更为明显的诱发变异,但至少要在几个世纪后才能看见。至于更加显而易见的解剖特征变化,就需要等待更久,可能要等上几千年,而那时人类的生活环境如何,现在的我们是无法想象的。

    从长远来看,在以百万年为单位计量的物种演化进程中,只要充分考虑人类现在的身体结构和实际发挥作用的生物学原理,我们大致可以预见人类将会发生的任何改变。至于在科幻小说里,一切皆有可能!

    控制演化的痴心妄想

    自19世纪以来,优生学企图通过对生育的“科学”控制来达到改良人类的目的。优生学往往带有浓厚的种族主义色彩;德国纳粹在20世纪实施的种族灭绝政策,还有对数百万人实施的绝育政策(如20世纪70年代前的瑞典或美国),使得优生学成为一门臭名昭著的学科。

    随着医疗辅助生殖技术和DNA测序技术的进步,优生主义观点悄悄卷土重来了。当人们试图避免将携带严重遗传病的胚胎植入女性子宫的时候,没有人会表示不满;借助同样的技术,父母还能为未来的孩子选择理想的基因。人类基因组大规模测序项目还有另一个目的,那就是找出在其他方面发挥作用的基因,比如体型、肤色、智力甚或性格。

    这些项目既虚幻又危险。说它们虚幻是因为,第一,我们成为什么样的人并不完全由基因控制,社会环境和家庭环境的作用或许更大;第二,基因的“质量”往往取决于携带者的生活条件。说它们危险,则是因为基因选择能力很容易转变成社会控制。在胚胎或胎儿性别检测成为可能之后,有些国家的男婴出生量急剧增多。最后,在胚胎上实施的任何操作都会产生长期影响,因为会波及被“选择”或改造的个体的子孙后代。今天,大多数国家禁止改造人类胚胎,但是资金或政治上的压力或许会在某一天突破伦理上的障碍。

    另一种意识形态,超人类主义,旨在通过合成生物学、神经学、纳米技术或计算机科学等学科的结合,超越人类现有的生理极限。超人类主义不仅要修复人类机体,还要“提升”人类的体能和智力。与旨在改良人类本性的优生学相反,超人类主义考虑的首先是个体。不过,一些超人类主义者也提出了着眼整个人类物种未来的远期目标,比如无限延长我们的寿命。

    近代史上,引导人类演化、打造“新人类”的尝试往往涉及种族灭绝或屠杀不符合标准的群体。这些梦想(或梦魇)无助于解决人类面临的各种问题,如资源过度开采、人口过剩、疾病流行、贫困等等。如果真想改变人类,我们首先应该倾向于改变人与世界的关系,还要充分考虑到人类这一物种所具有的种种多样性。

    术语表

    (DNA)序列 组成DNA的腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种碱基的精确排列顺序。
    DNA 脱氧核糖核酸,为包含生物发育和功能所需信息的分子。人类DNA由32亿个核苷酸(分为A、T、C、G四种)构成。细胞内的DNA分布在多个称为染色体的细丝上。
    阿舍利文化 距今140万年至20万年的文化,以制造两面器为特征,往往与直立人和海德堡人有关联。
    奥杜韦文化 是人类创造的最古老文化(距今约330万年至130万年),以制造粗糙的砍砸器为特征。
    傍人 南方古猿的全部邻近物种,拥有粗壮的骨骼和硕大的臼齿,在约100万年前灭绝。
    测序 测定个体的一个DNA片段或全部DNA的序列。
    单倍群 多个基因组成的DNA片段,其序列视个体或种群不同而不同。由于单倍群为DNA片段通过累积突变而衍生得来,通过研究可以回溯单倍群之间的亲缘关系。
    等位基因 一个基因往往有多个序列相异的变体,这些变体被称为等位基因。变体的活性有高有低,甚至可能完全失活。
    分支演化 以物种共有的新特征(即“衍生特征”)为基础的系统发生树构建方法。
    古人类学 以人类起源和演化为研究对象的学科。
    古生物种 仅能通过化石了解的已经消失的动物或植物物种。
    基因 含有细胞所需物质(往往是蛋白质)的制造所需信息的DNA片段。
    基因组 物种的全部DNA。DNA分为细胞核DNA和线粒体DNA。个体的基因组即个体的基因型。
    旧石器时代 史前时代最古老的时期,开始于约300万年前人属和最初的石质工具的出现,结束于1.2万年前冰期末期。
    旧石器时代早期 与奥杜韦文化和阿舍利文化对应的时期。
    旧石器时代中期 始于大约30万年前。在欧洲,该时期与尼安德特人及莫斯特文化有关。
    旧石器时代晚期 在欧洲,与智人有关,开始于距今约4万年,结束于距今约1万年的冰期结束之时。
    旧世界 欧洲、非洲和亚洲,与曾被称为新世界的美洲相对应。这个名称诞生于欧洲人发现澳大利亚和南极洲之前。
    两面器 对称的切削石块,往往呈杏仁形,用作工具或武器。
    灵长目 全部的猿、狐猴及二者的共同祖先。
    莫斯特文化 尼安德特人和非洲早期智人创造的文化。
    染色体 携带个体遗传信息的DNA细丝。
    人科 包括所有猿类的灵长目动物科,包括猩猩、黑猩猩、倭黑猩猩、大猩猩、人类及其祖先。
    人亚族 包含与智人的亲缘关系比与黑猩猩的亲缘关系更近的灵长目动物亚族,包括乍得沙赫人、图根原人、南方古猿、傍人及人属的全部物种。
    山猿 在意大利和东非发现的可追溯至距今900万年至700万年的一种已经灭绝的灵长目动物。某些古生物学家认为它能双足行走,不过双足行走对它的重要性仍未有定论。
    适应 在演化过程中动物或植物随着环境变化而改变的现象。
    适应性基因渗入 基因渗入指基因从一个物种向另一个物种的转移,比如基因在尼安德特人和智人杂交时发生的转移。当发生转移的基因对个体有用且通过正向选择在其基因组里保留时,即为适应性基因渗入。
    手锤 以石头、骨头或鹿角制成的用于切削石头的工具,用其反复敲打石块可获得石片。
    突变 DNA序列的改变。突变是偶然发生的,是等位基因和单倍群存在的原因。基因发生突变时,往往其活性会改变。
    物种 在生物学上,指互为亲代子代的或能够彼此交配繁衍后代的生物个体的集合;前述标准在古生物学上不适用,在古生物学中,人们根据化石的解剖特征确定物种。
    系统发生树 一种呈现自祖先物种演化而来的多个物种之间的亲缘关系的树状图。可为某个生物类群(如脊椎动物、哺乳动物)或某些物种(如人亚族、人属)构建系统发生树。
    线粒体DNA 线粒体中含有的DNA。线粒体为负责制造能量的细胞器。只有女性能通过卵细胞将线粒体DNA遗传下去。
    镶嵌演化现象 化石物种通常表现出同时具有原始特征和衍生特征的现象。实际上,演化并非以同样的速度作用于所有器官上。所以,有些灭绝的人亚族物种虽然已能双足行走(演化创新),但大脑仍与其祖先相似。
    小石叶 以燧石或黑曜石制成的小型工具,往往安装在支撑物上(如鱼叉、鱼钩等)。
    新石器时代 在距今约1万年的近东地区紧接中石器时代而来的时期,在此期间,随着农业和畜牧业的发展,原先以狩猎和采集为主的经济被以农业生产为主的经济所取代。
    性别二态性 同一物种的雌性个体和雄性个体的解剖学差异(性器官除外)。
    衍生特征 表现形式与祖先不同且在演化过程中发生了改变的特征,又称“派生特征”。人类的非对生大脚趾为一种衍生特征,因为这个特征仅在人类世系中出现并使人类有别于其他灵长目动物。
    演化 自生命在地球上起源以来物种诞生和转变的历史。
    幼态持续 物种演化过程中发育时间顺序改变导致的成年期仍保留幼年特征的现象。
    原康修尔猿 一种已经灭绝的灵长动物,最古老的化石可追溯至大约2 300万年前的中新世。
    爪哇人 欧仁·杜布瓦于1891年在爪哇发现的化石,起初被命名为直立猿人,最终在1950年被归为直立人。
    正向选择 在物种演化过程中,基因组的改变(比如发生突变)有利于携带者生存或繁殖的,称为正向选择;突变缩短了携带者生命或降低了携带者生殖力的,称为负向选择。
    中石器时代 上承冰期结束时的旧石器时代、下启动植物被大量驯化的新石器时代的时期,以狩猎、捕鱼和采集以及小石叶的制造为特征。
    转录 细胞使用DNA携带的信息制造所需分子的机制。
    祖先特征 表现形式与祖先相同的特征,又称“原始特征”或“祖传特征”。人类的对生大拇指为一种祖先特征,因为从至少5 000万年前起所有灵长目动物都具有了这个特征。
    最近共同祖先 两个物种共有的最近的祖先物种,通常不得而知。

  • 马特·里德利《基因组》(节选)

    目录
    第一号染色体 生命
    第二号染色体 物种
    第三号染色体 历史
    第四号染色体 命运
    第五号染色体 环境
    第六号染色体智慧
    第七号染色体本能
    X和Y染色体 冲突
    第八号染色体自身利益
    第九号染色体疾病
    第十号染色体压力
    第十一号染色体个性
    第十二号染色体自我组装
    第十三号染色体史前
    第十四号染色体永生
    第十五号染色体性别
    第十六号染色体记忆
    第十七号染色体死亡
    第十八号染色体疗法
    第十九号染色体预防
    第二十号染色体政治
    第二十一号染色体优化人种论
    第二十二号染色体自由意志

    第一号染色体 生命

    一切归于腐朽之物皆源于他方 一个接一个地,我们抓住生命的气息而后死亡 如同产生于物质之海的泡沫上升、破裂、重归海洋 ——亚历山大·波普:《论人类》

    太初有“词”。这个词以自己携带的信息充斥了整个海洋,永不停息地复制它自己。这个词发现了如何重组化学物质,以便抓住熵的潮流中微小的逆流并给它们以生命。这个词把我们这个星球上的陆地从布满灰尘的地狱变成了郁郁葱葱的天堂。最终,这个词到达了鼎盛期,巧夺天工地造出了一种粥样的、被称为人脑的机器。这个机器发现并意识到了这个词的存在。

    每次我这么想的时候,我的那个粥样的机器就翻腾个不停。地球有40亿年的历史,我却幸运地活在当今这个时代;地球上有500万个物种,我却幸运地生为一个有意识的人;地球上有60亿人,我却荣幸地生在发现了这个“词”的国家;在地球所有的历史、地理环境与生物环境中,偏偏就在我出生的5年前、距离我出生的地方只有200英里处,我这个物种的两个成员发现了DNA的结构,从而揭示了宇宙中最大、最简单而又最惊人的秘密。如果你愿意,你可以嘲笑我的激情,就当我是个可笑的物质至上者吧:居然对一个缩写词(指DNA)都肯倾注这么大的热情。不过,跟着我到生命的源头去看看吧,我希望我能够让你相信这个词是多么迷人。

    1794年,博学的诗人、医生伊拉斯谟·达尔文(Erasmus Darwin)这样问道:“远在动物存在之前,地球和海洋就充满了植物;远在某种动物存在之前,其他动物就已存在。在这种情况下,我们能否假设:所有的有机生命都源自于,且仍然产生于,同一种有活性的纤维?”这样一个猜想在那个时代被提出来,让人惊愕。不仅仅是因为“所有有机生命都有共同来源”。这一大胆假说比他的孙子查尔斯·达尔文有关这一题材的书还早了65年,也是因为“纤维”这一古怪的用词。确实,生命的秘密就是在一条纤维里。

    但是,一根纤维怎么就能创造出有生命的东西?生命是不大好定义的,但是所有生命都有两种能力:复制自己的能力和制造秩序的能力。有生命的东西都能够造出跟自己差不太多的拷贝:兔子生兔子,蒲公英生蒲公英。但是兔子还会干一些别的。它们吃的是草,却能将其转化成兔子的骨与肉,不知怎么一来,就在混沌随机的世界里造出了有秩序有复杂性的身体。它们并没有违反热力学第二定律——在一个封闭的系统里所有事物都倾向于从有序变成无序。这是因为兔子不是一个封闭系统。兔子是靠消耗大量能量才得以建立一个有序的、复杂的局部结构——它的身体的。用爱尔温·薛定谔(物理学家,《生命是什么》的作者)的话说:生命是从环境里“把秩序喝进来”的。

    生命的两种能力,关键都在于信息。复制的能力之所以有可能存在,是因为存在一种“配方”,里面有制造一个新的身体所需要的信息。兔子的卵就带有组装一只新兔子的指南。通过新陈代谢来创造秩序同样也靠的是信息——用来建造和维修制造秩序的机器的指南。一只有生殖能力和代谢能力的成年兔子,是由它的生命纤维预先规划设计好的,正如一个蛋糕是在烘蛋糕的配方里就规划设计好了。这个想法可以直接追溯回亚里士多德。他曾说过,鸡的“概念”是隐含在鸡蛋里的,而橡树把自己的计划直接传达给了橡实。亚里士多德的这种模糊的信息学观念,在被物理学与化学埋没了多年之后,又被现代遗传学重新发现。麦克斯·德尔布吕克(Max Delbruck)(遗传学家)曾开玩笑地说:这位古希腊哲人应该因为发现了DNA而被追授诺贝尔奖。

    DNA的纤维就是信息,是一种用化学物质的密码写成的信息,每一个字母都是一种化学物质。而且,DNA密码事实上是用一种我们能够理解的方式写的,这真有点令人大喜过望。就像书面英语一样,遗传密码是写在一条直线上的线性语言;就像书面英语一样,遗传密码是数码式的,意思是说每一个字母都同等重要。更有甚者,DNA的语言比英语简单多了,因为它的字母表里只有四个字母,按惯例被称为A、C、G和T。

    当我们现在知道了基因就是用密码写的“配方”之后,就很难想象在过去只有那么少的人曾经想到过这一可能性。20世纪的上半叶有一个没有被回答的问题在生物学里一再出现:什么是基因?当时,基因简直是神秘莫测。让我们回到——不是DNA对称结构被发现的1953年,而是此前10年——1943年。10年之后在破解DNA的秘密上做了最突出工作的人,那时候都在干别的。弗兰西斯·克里克(Francis Crick)当时在朴次茅斯(Portsmouth)那边设计水雷;只有15岁的“神童”詹姆斯·沃森(James Waston)刚刚在芝加哥大学注册读本科,而且已立志用自己的一生去研究鸟类学;莫里斯?威尔金斯(Maurice Wilkins)在美国协助研制原子弹,罗萨琳·富兰克林(Rosalind Franklin)则在替英国政府工作,研究煤的结构。(四人是在1953年发现DNA结构上贡献最大的科学家;罗萨琳因罹患癌症于1958年去世;另外三人于1962年获得诺贝尔生理学及医学奖)

    还是1943年,在奥斯维辛集中营,约瑟夫·门格尔(Josef Mengele,纳粹医生,在犯人身上进行人体实验,被称为“死亡天使”)正对孪生子们进行致命的折磨,他的“科学研究”其实是对科学研究的一种极其恶劣的嘲讽。门格尔是在试图理解遗传学,但他的优化人种论已经被证明不是正确的途径。门格尔的实验结果对他之后的科学家是没有用处的。

    1943年,在都柏林,一个从门格尔那种人手下逃出来的难民、物理学家爱尔温·薛定谔,正在圣三一学院讲授一个名为“什么是生命”的系列讲座。他是在试图定义一个问题。他知道染色体载有生命的秘密,但是他不知道染色体是怎样储存生命秘密的。“就是这些染色体……以某种密码写就的程序,储存了每一个体发育的整个模式,以及发育成熟之后每一个体应有的功能。”他说,基因那么小,小得不可能是任何其他东西,而只能是一个大分子。他的这一见解影响了一代科学家——包括克里克、沃森、威尔金斯和富兰克林——去攻克一个顿时不再是无从下手的难题。但是,已经如此接近答案的薛定谔却偏离了轨道。他认为这个大分子之所以能够成为遗传物质的载体,是由于他心爱的量子理论。而他对自己这个想法执迷的研究最后被证明是走进了一条死胡同。生命的秘密跟量子没有任何关系。关于生命的答案并不出自物理学。

    1943年,在纽约,一位66岁的加拿大科学家奥斯瓦尔德·埃弗里(Oswald Avery),正在对一个实验进行最后的调整。这个实验将决定性地证实DNA是遗传的化学表现。这之前他已经发现,仅靠吸收一种化学溶液,一种肺炎菌就能从无害转变为有害。到了1943年,埃弗里已经总结出:发生了转变的东西就是DNA。但是他在发表自己结果的时候,表达得过于谨慎,以至于一段时间之内都没几个人注意到他的成果。在1943年5月写给他兄弟罗伊的信里,埃弗里也只比以前稍稍大胆了一点:

    如果我们是正确的(当然,这一点还有待证明),那就意味着核酸(DNA)并不仅仅是结构上重要,而是功能上活跃的物质,能够决定细胞的生化活性与特性。那么,就有可能利用已知的化学物质去准确地改变细胞并使这种改变遗传下去。这是遗传学家长期的梦想。

    埃弗里几乎已经走到这一步了,不过他仍然只是从化学的角度在思考。简·巴普提斯塔·冯·赫尔蒙特(Jan Baptista van Helmont,化学家、生理学家、医生)在1648年说过:“一切生命都是化学。”但这只是一种猜想。1828年,弗雷德里克·维勒(Friedrich Wohler)说:至少有些生命是化学。那时他刚用氯化氨和银的氰化物合成了尿素,从而打破了一直以来化学的世界与生物的世界之间不可逾越的界限。在他之前,尿素是只有生物体才能制造出来的东西。“生命就是化学”这句话是对的,不过也很煞风景,就像谁说足球就是物理一样。大概计算一下,生命可以说是三种原子的化学。生物体中98%的原子都是氢、氧和碳。但是,生命整体的特性,比如说遗传性,才有意思,而不是组成生命体的每一个零件。埃弗里想象不出来,是DNA的什么化学性质使它能够载有遗传性的秘密。这个问题的答案也不是从化学来的。

    1943年,在英国布莱奇利(Bletchley),一位天才数学家艾伦·图灵(Alan Turing)正在眼看着他最有洞察力的一个想法在绝密环境下变成真实的机器。图灵论证过:数字能够自己进行运算。为了破解德国军队洛伦兹编码器的秘密,英国制造了一台建立在图灵理论上的计算机:克劳索斯。这是一台多功能机器,有可以修改的内存程序。当时没有人意识到图灵也许比任何人都更接近生命的秘密,图灵自己更是没想到。遗传,实际上就是一种可以修改的内存程序;新陈代谢就是多功能的机器。把两者连接起来的是一种密码,是以物理的、化学的,甚至是非物质的形式存在的一种抽象信息。它的秘密就在于它能够复制自己。任何能够利用这世界上的资源把这密码复制出来的事物,就是有生命的东西。这种密码最可能的存在方式是数码方式:一个数字,一个短程序,或是一个词。

    1943年在新泽西州,一个有点与世隔绝的沉静的学者,克劳德·香农(Claude Shannon),正在琢磨一个他几年前在普林斯顿大学的时候想到的想法。香农的这个想法是说,信息和熵是一个硬币的两面,两者又都与能量有紧密的联系。一个系统的熵越小,它所含的信息就越多。蒸汽机之所以能够收集煤燃烧发出的能量并把它转化为旋转运动,是因为蒸汽机本身有很高的信息含量。人体也是如此。亚里士多德的信息理论与牛顿的物理学在香农的大脑中相遇了。像图灵一样,香农也根本没有想到生物学。但是香农这一深刻的想法,却比堆积如山的物理学与化学理论更接近于“什么是生命”这一问题的答案。生命也是数码信息,是用DNA写成的。

    太初有“词”,这个词却不是DNA。DNA的出现,是在生命已经出现之后,在生物体已经把两种活动——化学反应与信息储存,新陈代谢与复制——分工进行之后。但是DNA一直存着这个“词”的一份纪录,在漫长的岁月里将其忠实地传递下来,直到今天。

    想象一下显微镜下一个人类卵子的细胞核。如果有可能的话,你可以把23对染色体按大小重新排列一下,大的在左边,小的在右边。现在在显微镜下放大一下最左边的一根——纯粹是随意地,这根染色体被称为一号染色体。每一根染色体都有一条长臂和一条短臂,由一个被称为中心体的窄节所连接。如果你仔细地读,你会发现,在一号染色体的长臂上接近中心体的地方,有一串长约120个字母(A、C、G和T四种字母)的序列,重复出现了很多次。在每两个这种序列之间,是一些没有什么规律的“文字”,但这120个字母组成的“段落”却像一段耳熟能详的乐曲一样重复出现,总共出现了100次以上。阅读这种“段落”也许就是我们与最初的“词”最接近的时候。

    这个短“段落”是一个小基因,它也许是人体内最活跃的一个基因。它的120个字母不断地被制成一小段RNA,称为5SRNA。它与其他一些RNA、一些蛋白质被仔细地缠在一起,住在一个名叫核糖体的结构里。核糖体是把DNA配方翻译成蛋白质的地方。而蛋白质又是使得DNA能够复制的东西。借用萨缪尔·巴特勒(Samuel Butler)(19世纪作家)的风格,我们可以说:蛋白质就是一个基因用来制造另一个基因的手段,基因就是蛋白质用来制造另一个蛋白质的手段。厨师需要做菜的菜谱,而菜谱也需要厨师。生命就是蛋白质和基因这两种化学物质的相互作用。

    蛋白质代表的是化学反应,是生命活动、是呼吸、是新陈代谢、是行为——生物学家们称为“表现型”的那些东西。DNA代表的是信息,是复制、是繁殖、是性活动——生物学家们称为“基因型”的那些东西。两者都不能单独存在。这是一个经典的“先有鸡还是先有蛋”的问题:是先有基因还是先有蛋白质?先有DNA是不可能的,因为DNA只是一件含有些数学信息的无生气的东西,不能催化任何化学反应,非得有其他东西帮忙不可。先有蛋白质也不可能,因为蛋白质虽然能进行化学反应,却不能精确地复制自己。这样看来,不可能是DNA创造了蛋白质,也不可能是蛋白质创造了DNA。如果不是最初的那个“词”在生命的纤维中留下了一点淡淡的痕迹,这个谜团也许会一直让人觉得奇怪和糊涂。正如我们现在已经知道的,蛋是在鸡出现之前很久就有了的(爬行类动物是所有鸟类的祖先,它们是下蛋的),现在也有越来越多的证据表明在蛋白质存在之前有RNA。

    在当代,RNA是把DNA和蛋白质这两个世界联系起来的一种化学物质。它的主要作用是把信息从DNA语言翻译成蛋白质语言。但是,从它的行事特点看来,它几乎毫无疑问地是二者的祖先。如果DNA是罗马城,RNA则是希腊;如果DNA是维吉尔(Vivgil),RNA就是荷马。

    RNA就是那个“词”。RNA留下了五条线索,使我们看到了它是先于DNA和蛋白质的。直到今天,要想改变DNA序列中的任何组成部分,都是通过改变RNA序列中相应的组成部分而完成的,没有更直接的办法。而且,DNA语言中的字母T是从RNA语言中的字母U造出来的。现代的很多酶,虽然是蛋白质,但它们要想正常发挥功能却离不开一些小的RNA分子。更有甚者,RNA与DNA和蛋白质还有不同的一点,就是RNA能够复制自己,不需要任何外界帮助:给它正确的原料,它就能将其织成一条信息链。不管你观察细胞的哪一部分,最古老最基本的功能都需要RNA的参与。基因中的信息是以RNA的形式被一种需要RNA才能正常工作的酶提取出来的。这个信息,是由一台含有RNA的机器——核糖体翻译出来的。而在翻译过程中需要的氨基酸,又是一种小小的RNA分子给搬运过来的。在所有这些之上,还要加上一条,与DNA不同的是,RNA可以做催化剂,可以把分子——包括RNA——打断或是连上。它可以把RNA分子切断、连上,造出RNA的组成成分,把一条RNA链加长。一个RNA分子甚至可以在自己身上做“手术”,把自己的某一段切除,再把两个自由端接在一起。

    20世纪80年代早期,托马斯·赛克(Thomas Cech)和西德尼·奥特曼(Sidney Altman)(他们因在RNA功能方面的工作于1989年共获诺贝尔化学奖)发现了RNA的这些惊人特性,从而彻底改变了我们对于生命起源的理解。现在看来,最早的基因,“原基因”,很有可能是复制与催化合为一体的,是一个消耗自己周围的化学物质以复制自己的“词”。它的结构很有可能就是RNA。把任意一些RNA分子放在试管里,然后一遍遍地选出它们中间催化作用最强的成员,就可以重现RNA从什么也不是到具有催化作用的“进化”过程——几乎可以说是又进行了一次生命起源。这种实验最惊人的结果之一,就是最后得到的RNA往往含有一段序列,读起来酷似核糖体RNA基因——比如说,一号染色体上的5S基因——的序列。

    在第一只恐龙出现之前,在第一条鱼出现之前,在第一条虫子、第一棵植物、第一种真菌、第一种细菌出现之前,世界是RNA的世界。这大概是40亿年前,地球刚刚形成不久,宇宙也仅仅有100亿年历史的时候。我们不知道这些“核糖生物体”是什么样子的。我们只能猜想它们是怎样“谋生”的——从化学意义上说。我们不知道在它们之前有什么,但从存留在今天的生物中的线索看来,我们可以比较肯定地说RNA世界确实存在过。

    这些“核糖生物体”面临着一个大问题。RNA是不太稳定的物质,几小时之内就可以解体。如果这些“核糖生物体”去了比较热的地方,或是试图长得比较大,它们自己的基因就会迅速坏死,遗传学家们称为“由错误而引起的灾难”。后来,它们中的一个从试验与错误中发明了一种新的、更“坚强”的RNA的变种:DNA。它还发明了一套从DNA复制RNA的系统,包括一种我们称为“原核糖体”的机器。这套系统既要快速又要准确,于是它把遗传信息连在一起的时候每次连三个字母。每个三字母的小组都带有一个标签,使得它能够更容易地被“原核糖体”找到。这个标签是氨基酸做的。很久以后,这些标签被连在一起,制成了蛋白质,而那些三个字母的“词”,则成了制造蛋白质的密码——遗传密码。(所以直到今天,遗传密码每个词都有三个字母,作为制造蛋白质的配方的一部分,每个词拼出20个氨基酸中的一个。)这样,一个更复杂的生物就诞生了。它的遗传配方储存在DNA里,它体内的各种“机器”是蛋白质做成的,而RNA则在两者之间架起一座桥梁。

    这个生物名叫露卡(Luca)——所有物种在分化之前最后的一个共同祖先。(原文是The Last Universal Common Ancestor,缩写为LUCA)它长得什么样子?住在什么地方?传统的回答是:它长得像个细菌,生活在一个离温泉比较近的温暖的水塘里,或生活在浅海湾里。不过,在过去的几年里比较时髦的做法是给露卡一个环境比较险恶的住处,因为变得越来越清楚的是,地下与海底的岩石上存在着亿万种以化学物质为养分的细菌。现在一般认为,露卡存在于地下极深的地方,存在于火成岩的裂缝里,“吃”硫、铁、氢和碳为生。直到今天,生活在地球表面的生物仍然只是地球所有生物中薄薄的一层。地下深层那些喜热细菌——也许就是造就天然气的那些物质——体内含有的碳的总量,也许是地球表面所有生物含碳量的十倍。

    不过,在试图确认最早的生命形式的时候,有一个概念上的困难。现在,绝大多数的生物都不可能从它们父母以外的任何地方得到基因了,但是过去却不一定如此。即便是今天,细菌也可以通过吞掉其他细菌来得到它们的基因。在过去某一阶段,也许有过很普遍的基因交换,甚至基因“盗窃”。很久以前,染色体可能是既多且短的,每条染色体可能只有一个基因,失也容易得也容易。如果真是如此,卡尔·沃斯(Carl Woese)(微生物学家)指出,那么这样的生物就还不是一个能够存活一阵的生物体,而只是暂时存在的一组基因。也因此,存在于我们所有人身体里的基因,也许来自很多不同的“物种”,要想把它们归类溯源是徒劳的。我们不是来自于某一个祖先,而是来自于由带有遗传物质的生物体组成的整个“社区”。正如沃斯所说,生命物质从何而来有史可循,生命却没有家族史。

    你可以把这种“我们不是来自于某个个体,而是来自于一个社区”的结论看成是一种推销集体主义精神和全局观念的、意在让人感觉良好的模糊哲学。你也可以把它看成是“自私的基因”这一理论的终极证明:在过去那些日子里,基因之间的战争比今天更甚,它们把生物体作为临时的战车,只跟生物体建立短暂的联盟,而现在的战争更像是基因与生物体组成的团队与其他团队之间的战争。这两种说法信哪一种,你自己选吧。

    就算以前有过很多露卡,我们仍然可以猜想它们以前生活在哪里,以什么为生。这里,“嗜热细菌是所有生命的祖先”这一说法出现了第二个问题。由于三位新西兰人(A.Poole、D.Jeffares和D.Penny)在1998年公布的精彩的探索工作,我们突然瞥见了一种可能性,那就是,在几乎每一本教科书上都可以看到的生物进化树,可能都是大头朝下了。那些书都肯定地说,最先出现的生物是类似于细菌的简单细胞,它们的染色体是环状的,而且每个染色体只有一份;所有其他生物的出现,都是因为多个细菌结成“团伙”,变成了复杂细胞。现在发现,也许倒过来是更有道理的。最初的现代生物一点也不像细菌,它们也不生活在温泉里或是海底深处火山通道口。它们与原生质(protozoa)很像:它们的基因组是分成片段的,有多条线性染色体而不是一条环状染色体,而且它们是“多倍体”——每一个基因都有几个备份,用来帮助改正复制中出现的拼写错误。还有,这些原生质应该是喜欢比较冷的气候。正如帕特里克·福泰尔(Patrick Forterre)(微生物学家)一直坚持的,现在看起来,细菌可能是后来才出现的,是高度简化与功能特化了的露卡的后代,是在DNA—蛋白质世界被发明之后很久才出现的。它们的把戏是把在RNA世界里形成的很多“设备”都扔掉,以便在很热的地方存活。在细胞里存留了露卡那些原始的分子特征的生物是我们;细菌比我们“进化得更高级”。

    一些“分子化石”的存在支持这个奇怪的说法,这些“分子化石”是一小点一小点的RNA:向导RNA,桥RNA,小细胞核RNA,小核小体RNA,自我剪接的内含子(这是一些不同功能的RNA)。它们在你的细胞核里转悠,干一些完全无用的事,比如说,把它们自己从基因里切出去。细菌就没有这些玩意。“细菌把这些东西给扔掉了”是比“我们发明了它们”更简约的解释。(可能让人有点吃惊的是,从原则上说,除非有其他理由,否则科学认为简单解释是比复杂解释更有可能的,这个原理在逻辑上被称为“奥卡姆剃刀”。)细菌在“侵入”很热的地方,比如说温泉或温度可达170摄氏度的地下岩层的时候,就把这些旧的RNA扔掉了。为了尽量减小由热而导致的错误,它付出的代价就是简化自身的设备。扔掉这些RNA之后,细菌发现它们的细胞中经过简化的新设备使得它们在一些繁殖速度越快越有优势的生存夹缝里——比如寄生的环境或以腐烂的动植物为生的环境——有了竞争实力。我们人类保留了那些旧的RNA,那些功能早已被其他“机器”代替了的旧“机器”的残余,一直没有把它们整个扔掉。与竞争极为激烈的细菌世界不同,我们——所有动物、植物和真菌——从来就没有遇到过如此激烈的、要简单快速才占优势的竞争。相反,我们看重的是复杂的结构、是有尽可能多的基因,而不是一台高效使用这些基因的机器。

    遗传密码中那些三个字母的词在所有生物中都是一样的。CGA的意思是精氨酸,GCG的意思是丙氨酸——在蝙蝠里、在甲虫里、在白桦树里、在细菌里,都是如此。即使是在那些古细菌(这些“古细菌”现在仍然存在)里以及那些名叫病毒的微小而又狡猾的囊状物里,它们的意思也是一样的。尽管这些古细菌有些生活在大西洋表面之下几千英尺处温度达到沸点的硫磺泉里。不管你去世界的什么地方,不管你看到的是什么动物、植物、昆虫或其他一团什么东西,只要它是有生命的,它就用的是同一个字典、理解的是同一套密码。所有的生命原是一体。除了在个别小范围内有些改动——主要是由于不明的原因而发生在有些纤毛原生动物里——之外,每一个生命体都用同样的遗传密码。我们都用的是同一种“语言”。

    这就意味着——信仰宗教的人士也许会发现这是一个有用的说法——只有一次创世纪,生命的诞生源自一个单独的事件。当然,最初的生命仍然有可能是发源于另一个星球并由太空船播撒在地球上的;也有可能最初有过千万种生命,但只有露卡在那一“锅”原始汤里那种无情的、“谁有本事谁拿”的竞争中幸存下来。但是,在60年代遗传密码被破解之前,我们不知道我们现在知道了的东西:所有生命都是一体;海带是你的远房表哥,炭疽菌是比你更发达的你的亲戚。生命的统一性是从经验中得到的事实。伊拉斯谟·达尔文当年不可思议地接近了这一事实:“所有的有机生命都源自于,且仍然产生于同一种有活性的纤维。”

    就这样,从基因组这部“书”里,我们可以读到一些简单的真理:生命的统一性,RNA的重要性,地球上最早的生命的化学特性,大的单细胞生物可能是细菌的祖先,细菌不是单细胞生物的祖先。40亿年前的生物是什么样的,我们没有化石可以研究。我们只有这部了不起的书:基因组。你的小指头上细胞里的基因,是第一个有复制功能的分子的嫡系传人。这些基因通过一条永不断裂的复制链,在复制了几十上百亿次之后到达我们这里,它们携带着的数码信息里仍然留有最早的生存竞争的痕迹。如果人类基因组可以告诉我们原始汤里发生的事情,它会告诉我们多少那之后的4000万个千年里发生的事!人类基因组是一部我们历史的纪录,它由密码写就,为运行的“机器”而写。

    第二号染色体 物种

    具有那么多高贵品质的人,肉体仍然带着他的卑微起源的抹不去的痕迹。 ——查尔斯•达尔文

    有些时候,你会对一些显而易见的东西熟视无睹。1955年以前,人们一致认为人有24对染色体。这是那种“人人都知道这是对的”的事。之所以人人都知道这是对的,是因为在1921年,有个名叫西奥菲勒斯•佩因特(Theophilus Painter)的得克萨斯人,把因为精神失常和自虐而被阉割了的两个黑人和一个白人的睾丸拿来,做成了极薄的切片,把这些切片用化学试剂固定之后,在显微镜下进行观察。佩因特试着数了这几个倒霉蛋的成精细胞里那些缠成一团的、不成对的染色体,最后得出了24这个数。“我自信这个数字是正确的”,他说。其他人之后又用其他方法重复了他的实验。所有的人都得到了24这个数。

    之后的30年,没人对这个“事实”表示过怀疑。有一组科学家还放弃了他们在人的肝脏细胞上进行的实验,因为他们在这些细胞里只找到23对染色体。另一个研究人员发明了一种把所有染色体都分离开的方法,但他仍然认为自己看到了24对染色体。直到1955年,一个印度尼西亚人庄有兴(Joe-Hin Tjio)从西班牙到瑞典去跟阿尔伯特•莱文(Albert Levan)工作,真相才被发现。

    庄和莱文使用了更好的技术,清清楚楚地看到了23对染色体。他们甚至还回过头去在一些书中的照片里数出了23对染色体,尽管照片下面的文字注明应该有24对。没有人会糊涂到不想看见事实真相的地步。(这句话在这里都含有讽刺的意味。)

    人类没有24对染色体,其实是一件叫人惊讶的事。大猩猩有24对染色体,黑猩猩也是。在猿类动物里我们是个例外。在显微镜下面,我们与其他猿类动物最大、最明显的区别,就是我们比它们少一对染色体。原因很快就弄清了,并不是猩猩的染色体到我们这儿丢了一对,而是在我们的身体里,两对猩猩的染色体融合在一起了。人类染色体中第二大的一条,二号染色体,是两条中等大小的猩猩染色体融合起来形成的。这一点,从人类染色体与相应的猩猩染色体上那些暗带的排列就可以看出来。

    教皇让•保罗二世(PopeJohn-PaulII)在1996年10月22日对天主教科学院所作的讲话中提出,古猿与现代人类之间存在一个“本体的断裂”——这个断裂点就是上帝向动物的一个分支注入了人的灵魂的时刻。这种说法可以使教廷与进化论达到和解。也许这个本体的飞跃是发生在两条猩猩染色体融合的时候吧,也许编码灵魂的基因就在人类二号染色体中间的地方?(这句话在这里都含有讽刺的意味。)

    先不提教皇了。人类这个物种怎么说也不是进化的巅峰。进化没有巅峰,进化也没有进步退步之分。自然选择不过是生命形式不断变化的过程,而变化是为了适应由物质环境和其他生命形式提供的多种机会。生活在大西洋底硫磺出口的黑烟菌,是在露卡时代之后不久就跟我们的祖先分开了的一族细菌的后裔。起码在基因水平上,这种细菌大概比一个银行职员还进化得更高级。因为这种细菌每一代都比人的一代更短,所以它有更多次机会去完善自己的基因。

    这本书只专注于一个物种——人类——的状况,但这并不说明这个物种的重要性。当然,人类是独特的。在他们的两只耳朵之间,拥有地球上最复杂的生物机器。但是复杂性并不是一切,复杂性也不是进化的目的。这个星球上的每一个物种都是独特的。独特性是一种过剩了的商品。尽管如此,我还是想在这一章里探讨一下人类的独特性,去发现我们这个物种特性的根源。原谅我的狭隘吧。起源于非洲的没毛灵长类,虽然有短暂的繁荣,但他们的故事只是生命的历史中的一个脚注。不过,在这些没毛的灵长类自己的历史里,他们的故事可是占据中心地位的。我们这个物种的独特“卖点”到底是什么呢?

    在对环境的适应上,人类是个成功者。他们也许是整个地球上数量最多的大型动物。他们有大约60亿个成员,加在一起有3亿吨生命物质。那些在数量上达到或超过人类水平的大型动物,要么是那些被我们驯化了的动物:牛、鸡、羊,要么是依赖于人类环境的动物:麻雀和老鼠。相比之下,全世界只有不到1000只山地大猩猩。即使是在我们开始屠杀它们、毁坏它们的生存环境之前,它们的数量也很可能超不过现有数量的十倍。还有,人类这个物种显示了征服多种生存环境——热的、冷的,干的、湿的,海拔高的、海拔低的,海洋、沙漠——的惊人能力。除了人之外,鹗、仓枭和燕鸥是仅有的在南极洲之外的各大洲都比较兴旺的大物种,而在各个大洲,它们的生存环境都很有限。人类在适应环境上的成功无疑是付出了高昂代价的,我们注定很快就要遇到大灾难(环境破坏):作为一个成功的物种,我们对未来真是出奇地悲观。不过到目前为止,我们还算成功。

    但是,一个惊人的事实是:我们来自于一长串失败。我们是猿,而1500万年前,面对那些“设计”得更好的猴子的竞争,猿差点儿灭绝了;我们是灵长类,而4500万年前,面对那些“设计”得更好的啮齿动物的竞争,灵长类哺乳动物差点儿灭绝了;我们是由爬行动物进化来的四足动物,但是2亿年前,面对那些“设计”得更好的恐龙的竞争,我们的爬行动物祖先差点儿灭绝了;我们是有叶状鰭的鱼的后代,但是3.6亿年前,面对那些“设计”得更好的伞状鰭鱼的竞争,有叶状鰭的鱼差点儿灭绝了;我们是脊索动物,但在5亿年前的寒武纪,面对那些非常成功的节肢动物的竞争,我们是侥幸生存下来了。我们在适应环境上的成功,是克服了那些让人胆战的困难才取得的。

    在露卡之后的这40亿年里,那个“词”在——用理查德•道金斯(Richard Dawkins,生物学家)的话说——制造“生存机器”方面变得越来越高明了。“生存机器”是那些大型的、用血肉构造成的生物体,它们善于把局部的熵减小以更好地复制自己体内的基因。它们能做到这一点,是因为它们经历了漫长的、大规模的尝试与失败:自然选择。上千亿的生物体被造出来并被试验过,只有那些达到了越来越苛刻的生存条件的生物体,才得以繁衍下去。一开始,这只是一个比较简单的、化学反应是否高效的问题:最好的生物体是那些发现了把其他化学物质转变成DNA和蛋白质的细胞。这个阶段持续了大约30亿年。其他星球上的生命在那个时候是什么样的我们不知道,但在地球上,生命好像就是不同种类的变形虫之间的竞争。在那30亿年间曾经生活过上千亿的单细胞生物,每一个生命在几天之内繁殖,然后死亡。那30亿年里发生了大量的尝试与失败。

    但是生命并没有到此为止。大约10亿年前,很突然地出现了一种新的世界秩序:更大的、多细胞的生物体被发明了,大型生27物爆炸性地大批出现。从地质学角度来看,只是一眨眼的工夫(俗称的寒武纪大爆发也许只持续了1000万到2000万年),就出现了大批结构无比复杂的生物:跑得飞快的、几乎有一英尺长的三叶虫,比这还长的拖着黏液的蠕虫,半码(1码约0.914米)长的舞动的藻类。单细胞生物仍然占据着统治地位,但是这些不认输的大型“生存机器”在给自己划出一块生存的地域。而且很奇怪,这些多细胞体获得了一些带有偶然性的成功。尽管从外太空来的陨石曾经砸到地球上,造成一些零星的倒退,而且很不幸的是,这种灾难总是倾向于灭绝更大、更复杂的生命形式,但是进化的趋势还是清晰可辨。动物存在的时间越长,它们中的一些就变得越复杂。具体地说,那些大脑最发达的动物的大脑,每一代都变得更大:古生代最大的大脑比中生代最大的要小,中生代最大的大脑比新生代最大的要小,新生代最大的大脑又比当代最大的要小。基因们发现了一种实现自己“野心”的方法:制造一种不仅仅能够生存,而且还具有智慧行为的机器。现在,如果一个基因发现自己是在一个受到了冬季暴风雪威胁的动物体内,它可以指望这个动物做些聪明的事,比如迁徙到南方,或是给自己搭个避风的住所。

    从40亿年前开始的这个让人喘不上气的“旅程”把我们带到了距现在1000万年前的时候,最初的昆虫、鱼、恐龙和鸟类都早已出现,那时地球上大脑最大(大脑与身体的比例最大)的生物可能就是类人猿一我们的祖先。距现在1000万年前的那个时候,在非洲可能有两种,甚至两种以上不同的猿。这两种猿,一种是大猩猩的祖先,另一种是黑猩猩和人类的共同祖先。大猩猩的祖先们有可能在中部非洲的一串火山区的森林里安顿了下来,从此在基因上与其他的猿隔断了。那之后的500万年间,另一种猿有了两种不同的后代,最终导致人类和黑猩猩的出现。

    我们之所以知道这段历史是因为它是写在基因里的。就在1950年,伟大的解剖学家J•Z•杨(Young)还写道:我们还不清楚人类到底是与猿来自于同一祖先,还是起源于与猿在6000万年前就分开了的另一灵长类的分支。那时还有人认为棕猩猩(orangutan)是人类最近的表亲。但是现在,我们不仅知道黑猩猩与人类分开是在大猩猩之后,还知道人类和猿的分开发生在不到1000万年前,甚至可能是不到500万年前。(现在一般认为,人的祖先与棕猩猩的祖先是在1000万〜1500万年前分开的,人的祖先与大猩猩的祖先是在600万〜800万年前分开的,而人的祖先与黑猩猩的祖先是在500万〜700万年前分开的。)物种之间的关系可以从基因中那些随机的“拼写”错误积累的速度中看出来。黑猩猩和大猩猩基因的区别比黑猩猩和人类基因的区别要大——每一个基因、每一个蛋白质序列、每一段你任意捡起来的DNA序列,都是如此。用最没有诗意的话说,一条人类DNA与一条黑猩猩的DNA组成的杂合体在比较高的温度下才能分解成两条,而大猩猩DNA与黑猩猩DNA的杂合体或人类DNA与大猩猩DNA的杂合体,在较低温度下就可分开。

    比确定谁是谁的祖先更难的,是校正分子钟以精确判断新物种出现的年代。因为猿的寿命很长,而且年龄比较大的时候才开始生育,所以分子钟走得比较慢(基因的拼写错误大多是在DNA复制的时候、在制造卵子和精子的时候产生的)。但是我们还不知道在校正分子钟的时候怎样把这个因素考虑进去,而且,基因和基因也不一样。有些DNA片段好像暗示着人类和黑猩猩分开是很久以前的事;其他的DNA,比如说线粒体DNA,又显示一个更近的日期。500万到1000万年是被普遍接受的一个范围。

    除了二号染色体是由两条猩猩的染色体融合而成之外,人类染色体和黑猩猩的染色体只有极少和极小的看得见的区别。有13条染色体是一点区别都看不出来的。如果你随机选取黑猩猩基因组里的一个“段落”,然后把它与人类基因组里相应的“段落”比较,你会发现只有个别几个“字母”是不一样的:平均每100个字母只有不到两个不同。我们就是黑猩猩,这句话有98%的准确度;

    黑猩猩就是人,这句话的可信度是98%。如果这还不能打击你的自信,那么想一想,黑猩猩97%是大猩猩,人类的97%也是大猩猩。换句话说,我们比大猩猩更像黑猩猩。

    这怎么可能呢?我跟黑猩猩之间的区别太大了。黑猩猩毛比我多,它的头的形状跟我的不同,它身体的形状跟我的不同,它的四肢跟我的不同,它发出来的声音也跟我不同。黑猩猩身上就没有一样东西是跟我有98%的相同的。可是,真是这样吗?黑猩猩和人的区别到底多大,得看跟谁比。如果你拿两个黏土做的老鼠模型,要把一个改成黑猩猩模型,另一个改成人的模型,大部分的改变会是一样的;如果你拿两个黏土做的变形虫模型,要把一个改成黑猩猩模型,另一个改成人的模型,大部分的改变会是一样的。两个模型都需要加上32个牙、四肢、每只手上五个指头、两只眼睛、肝脏;每个模型都需要毛发、干的皮肤、脊柱和中耳里的三块小骨头。从变形虫的角度说,或者从一个受精卵的角度说,人类和黑猩猩就是98%地相似。黑猩猩身体内的骨头没有一块是我们没有的;黑猩猩大脑里的化学物质没有一样是在人脑里找不到的;我们的免疫系统、消化系统、血液系统、淋巴系统、神经系统,没有哪一部分是黑猩猩没有的,反过来也是一样。

    黑猩猩大脑里的脑叶也没有哪个是我们没有的,我们的脑叶黑猩猩也都有。维多利亚时代的解剖学家理查德•欧文爵士(Sir Richard Owen),在为了抵抗自己这个物种是猿的后代这一理论所作的最后的、绝望的努力中,声称海马区小叶是人脑特有的结构,是灵魂的所在地,是神造人类的证据。这是因为从探险家保罗•杜查禄(Pauldu Chaillu)带回的来自刚果的大猩猩大脑标本里,欧文没能找到海马区小叶。托马斯•亨利•赫胥黎(Thomas Henry Huxley,19世纪生物学家,达尔文进化论的坚定捍卫者)愤怒地回应说:海马区小叶在类人猿的大脑里是存在的。“不,它是不存在的”,欧文说。“它就是存在的”,赫胥黎说。1861年间有一个短暂的时期,“海马区问题”是维多利亚治下的伦敦关注的焦点,在幽默杂志《木偶剧》和查尔斯•金斯利(Charles Kingsley)的小说《水婴》里都被讽刺过。赫胥黎的观点-今天也有很多人响应——并不仅限于解剖学:“我不是那种要把人的尊严建立在他那伟大的脚趾头上的人,也不想灌输如果类人猿有海马区小叶人类就没救了这种观念。相反,我已经尽我所能去扫掉这种‘虚荣心’。顺带说一句,在“海马区问题”上赫胥黎是对的。

    归根结底,从黑猩猩和人类的共同祖先住在非洲中部的日子到现在,人类只繁衍了不到30万代。如果你拉着你妈妈的手,她又拉着你外祖母的手,她又拉着你曾外祖母的手……这条线刚刚从纽约延伸到华盛顿,你们就已经要跟“丢失的一环”(这里指人和黑猩猩的共同祖先,目前还没有找到它的化石。)——人类与黑猩猩的共同祖先一拉手了。500万年是一段很长的时间,但是进化不是按年计算,而是按代计算。细菌要想经历这么多代只需要25年时间。

    那“丢失的一环”长得是什么样子呢?通过仔细研究人类祖先的化石,科学家们已经离答案非常近了。离“丢失的一环”最近的化石可能是一种小小的猿人的骨架,这种猿人被取名为阿底皮西卡斯(Ardipithecus),存在于距今大约400万年前。尽管有几个科学家认为阿底皮西卡斯存在于“丢失的一环”之前,这其实不太可能:阿底皮西卡斯的骨盆主要是为直立行走而“设计”的;从这种设计退化回与大猩猩和黑猩猩的骨盆相似,是极不可能的。当然,我们需要找到比阿底皮西卡斯还要早几百万年的化石,才能够准确无误地知道我们在观察阿底皮西卡斯的时候是否就是在观察人与黑猩猩的共同祖先。不过,我们通过阿底皮西卡斯可以大致猜想一下那“丢失的一环”长得什么样子:它的大脑可能比现代的黑猩猩的大脑要小;它的身体活动,在靠两条腿支撑的时候,可能与现代的黑猩猩一样灵活;它的饮食结构也许跟现代的黑猩猩差不多:以果类和其他植物为主;公的比母的个子大很多。从人类的角度来看,很难不想到这个“丢失的一环”跟黑猩猩比跟人相似。黑猩猩当然可能不同意,但是看上去,我们这一支无论如何是比黑猩猩的一支经历了更多的变化。

    与曾经生活过的每一种猿一样,这“丢失的一环”很可能是生活在森林里的:一种标准的、现代的、上新世的、以树为家的猿。在某一时刻,它们的群落分成了两支。我们知道这一点,是因为一个群落分成相互隔绝的两部分时常常引发特化(speciation,指在相对稳定的环境中充分进化以至于不再能适应其他环境):这两个部分在基因上逐渐有差别了。造成“丢失的一环”分成两支的,有可能是一座山脉,也有可能是一条河流[今天,刚果河分隔着黑猩猩和它的姐妹物种一小猩猩(bonobo),也有可能是大约500万年前形成的西部大裂谷把人类的祖先隔在了干旱的东侧。法国古生物学家伊夫•科庞(Yves Coppens)把这最后一种假设称做“东侧理论”。这方面的理论越来越不着边了。也许是当时刚形成不久的撒哈拉沙漠把我们的祖先隔在了北部非洲,而黑猩猩的祖先留在了南部。也许在500万年前,当时很干旱的地中海盆地被源自直布罗陀海峡的巨大洪水——比尼亚加拉河(美国与加拿大交界处的河流)的流量大1000倍——给淹了,这样,就突然把“丢失的一环”中的一部分给隔绝在了地中海里的一些大岛上,它们在那里以涉水捕捉鱼和有壳的海洋生物为生。这个“洪水假说”闹得沸沸扬扬,却没有任何确凿证据支持它。

    不管具体机制是什么,我们可以猜想到,我们的祖先是与其他猿隔绝的很小的一支,而黑猩猩的祖先当时则是主流的一族。这是因为从人类的基因里,我们发现人类在进化过程中经过了一个非常窄的“瓶颈”(也就是说,有一个人口数量极少的时期),比黑猩猩经过的“瓶颈”窄得多:在人类基因组里,随机的变异比黑猩猩基因组里的少得多。

    那么,让我们来勾画一下孤岛(不管是真的岛还是假的)上的这群被隔绝的动物吧。这一小群猿人开始近亲繁殖,面临着灭绝的危险,被遗传学上的“初始效应”(如果一个群体在开始的时候只有数目很少的个体,意即群体里的所有个体都是很少的几个祖先的后代,那么祖先身体里偶然产生的基因变异就会在这个群体里变得非常普遍,这就是初始效应。在一个祖先数目很多的群体里这种情形就不会发生。)所影响(这种效应使得一个很小的群落可以有很大的、完全是由偶然性造成的遗传变异)。在这一小群猿人中出现了一个很大的突变:它们的两条染色体融合起来了。从这以后,它们的繁殖就只能在自己这一群之内进行了,就算是这个“岛”跟大陆重新接合之后也是如此。它们与大陆上它们的“亲戚”杂交而生的后代是不育的。[我要瞎猜了,我们跟黑猩猩到底能不能生出有生育能力的后代?科学家们好像对我们这个物种在繁殖的孤立性方面(reproductive isolation)很缺乏好奇心嘛。]

    这个时候,其他惊人的变化开始出现了。骨架的形状开始变化,使得直立和用两条腿行走变得可能了,而这很适合于在平坦的地区长途跋涉;其他猿的行走方式更适合于在比较起伏的地区短途行走。皮肤的变化也出现了——毛越来越少,而且在热天大量出汗,这一点在猿类动物里是比较特殊的。这些特点,再加上给脑袋遮阴的一层头发,加上头皮上结构像散热器一般的血管,示意着我们的祖先已经不再生活在有树阴、多云的森林里了;它们行走在开阔的陆地上,行走在赤道上的烈日下。

    什么样的生存环境造成了我们的祖先骨架方面的巨大变化?你可以尽情地猜测。只有极少的几个说法被证明是有可能的,也只有极少的几个被证明没有可能。在那几个有可能的理论里,最可信的一个是说这些变化的发生是因为我们的祖先被隔绝在了一块比较干旱和开阔的草原。这个生存环境找上了我们,我们可没有去找它:在非洲很多地区,那个时代正是森林被热带草原取代的时候。一段时间之后,在大约离现在360万年前,从现在的坦桑尼亚的萨迪曼火山飘出来的火山灰刚开始湿润,在这些火山灰上,三个古人类有目的地从南走向北。走在最前面的是最大的那个;紧跟它的足迹的是中等大的那个;最小的那个走在它们左边一点,要甩开大步才能跟上。一段时间之后,它们短暂地停了一下,向西面偏了偏,然后又继续前行,就像你我一样直立地前行。在雷托利(位于坦桑尼亚北部。)发现的脚印化石,要多清楚就有多清楚地讲述了我们祖先直立行走的故事。

    即便如此,我们所知仍然很少。雷托利的那三个猿人是一男、一女和一个孩子,还是一个男的和两个女的?它们吃些什么?它们喜欢什么样的栖息地?由于东非大裂谷阻挡了从西面而来的潮湿的风,非洲东部在当时毫无疑问地越来越干了,但是这并不说明它们是在找干旱的地方。事实上,我们对于水的需要,我们的易出汗,我们的适应于含有大量油和脂肪的鱼类食物,还有其他一些因素(包括我们对海滨、对水上运动的喜爱),暗示着我们的祖先可能是喜欢水的。我们游泳游得相当不错。最初,我们的祖先是生活在水边的森林里或是湖边吗?

    当时间合适的时候,我们的祖先戏剧性地变成了食肉动物。但在那之前,一种崭新的类人猿——实际上是几种——出现了。它们是雷托利猿人那样的生物的后代,但不是现代人类的祖先,而且它们可能是只以植物为食的。它们被称为南方古猿(robust Australopithecus,robust一词是“结实、粗壮”的意思)。在研究这些猿人的时候,基因帮不上我们,因为这一支猿人已经灭绝,也没有进化成其他物种。正如如果我们不能“阅读”基因,我们就无从得知我们与猩猩的表亲关系一样,如果我们一这里我所说的“我们”,主要是指李基—家(Louis S.B. Leakey,他的太太Mary Leakey和儿子Richard Leakey;三人都是20世纪英国著名考古学家、古人类学家,雷托利的南方古猿的脚印就是由Mary带队的一组考古学家于1976年发现的)、唐纳德•约翰逊(Donald Johanson,考古学家,于1974年在埃塞俄比亚发现了一具相当完整的古人类的骨骼,是目前为止发现的年代最古远的古人类的骨骼,被起名为“露西”(Lucy))等人一没有发现那些化石,我们就不可能知道我们曾经有过很多南方古猿这样的更近的表亲。别看南方古猿名字挺“粗壮”,其实只是指它们的下颚很结实。它们是很小的动物,比黑猩猩小,也比黑猩猩笨,但是它们的身体已经直立了,脸部也很发达:有着由巨大的肌肉支撑着的庞大的下颚。它们咀嚼很多,可能咀嚼的是草和一些比较硬的植物。为了能够更好地把植物在嘴里翻来覆去地嚼,它们的犬齿也逐渐消失了。最后,大约100万年前吧,它们灭绝了。我们可能永远不会知道太多它们的事情了。也许是我们把它们吃了呢。

    言归正传吧,当时我们的祖先是比南方古猿更大的动物,跟现代人一样大或者更大一点:它们身高接近两米,很是魁梧,就像艾伦•沃克(AlanWalker)(艾伦•沃克:当代美国考古学家。)和理查德•李基(RichardLeakey)描述的、存在于160万年前的著名的纳瑞奥科托米(Nariokotome)男孩(Nariokotomeboy,指的是在肯尼亚纳瑞奥科托米沙流地带发现的一具古人类骨骼。)的骨骼。它们已经开始使用石器工具,代替它们的牙齿。这帮家伙有着厚厚的头骨,有石头做的武器(这两者可能缺一不可),已经完全能够杀死和吃掉毫无抵抗能力的南方古猿了。在动物世界里,表亲关系一点不可靠:狮子会杀死猎豹,狼会杀死草狼。没有导演,是一些有竞争优势的自然进程把这个物种带入了后来爆炸般的成功——它们的大脑越来越大了。有些特别喜欢拿数学折磨自己的人计算过,大约每过10万年,大脑就增加1.5亿个脑细胞,当然,这个数字就像是旅游手册上常见的那种一点用处都没有的统计资料。发达的大脑、食肉、缓慢的发育、在成年之后仍然保留孩童时期的特征(光滑皮肤、小下颚、拱形的头盖骨),这些都必须同时存在。如果不吃肉,需要大量蛋白质的大脑就成了昂贵的奢侈品。如果头骨过早定型,就不会有大脑所需的空间。如果不是发育缓慢,就不可能有时间去学习如何充分发挥一个发达大脑所具备的优势。

    这整个过程可能是由性选择来推动的。除了大脑的改变之外,另外一个很大的变化也在发生。与雄性相比,雌性身材的变化很大。在现代的黑猩猩里、南方古猿里和最早的猿人化石里,雄性是雌性的一倍半大,但在现代人里这个比例小得多。在化石纪录里这个比例稳步地在降低,这是史前纪录里最受忽视的事实之一。它意味着这个物种的交配方式发生了变化。黑猩猩那种多配偶的、短暂的性关系,大猩猩那种“妻妾”成群的多“妻”制,被一种类似于一夫一妻制的形式所代替,身体大小方面性别差异的减小就是一个清晰的证据。但是,在一个一夫一妻制的系统里,雄性和雌性都会感到认真选择配偶的压力。在多妻制下,只有雌性需要小心选择配偶。配偶之间长久的纽带把每一个猿人与它的配偶在它生育期的大部分时间内都拴在一起了:质量,而不是数量,突然重要起来了。对于雄性来说,选择一个年轻的配偶突然至关重要起来,因为年轻雌性的生育能力还能保持很多年。对于异性身体上象征年轻的、如孩童般的特征的青睐,意味着对于年轻人的拱形的大头盖骨的青睐,大脑增大的过程也就从此开始。

    把我们推向习惯性的一夫一妻制,或起码是把我们往这里拉得更深一些的,是在食物方面产生的性别分工。我们发明了一种跟地球上所有其他物种都不同的性别之间的合作关系。由于女性采到的植物类食物是两性分享的,男性就赢得了从事危险的打猎活动的自由;由于男性得到的肉类食物是两性分享的,女性就可以得到高蛋白的、易于消化的食物,而不必为了自己去寻找这种食物而放弃照顾幼小的孩子。这意味着我们这个物种在干旱的非洲平原上找到了减少饥馑的生存方法。当肉类比较少的时候,植物类食物补充了不足;当干果和水果少的时候,肉类可以填充不足。这样,我们得到了高蛋白的食物,却没有必要像猫科动物那样发展出高度专门化的捕猎方法。

    通过性别分工而培养出来的一些习惯也延伸到了生活的其他方面。我们擅长分享东西,就像是有人逼着我们这么做似的。这就带来了新的好处:每个个体可以发展专门的技能。我们这个物种特有的这种在“专家”之间的分工,是我们成功适应环境的关键,因为它使得技术的发展成为可能。今天我们生活的社会在分工方面更加有独创性,涉及范围更大。

    从那个时候开始,这些变化就有一种内在的连贯性。体积大的脑子需要肉类食物(今天的素食者是靠吃豆类食品而防止缺少蛋白质的)分享食物使得吃肉的习惯变得可能(因为男性的捕猎活动可以失败)分享食物要求有个比较大的脑(如果不能有意识地记住细节,你会很容易就被一个想占便宜的家伙骗了)按照性别分工推动了一夫一妻制(一对配偶现在成了一个经济实体)一夫一妻制导致性选择的时候对于代表青春的身体特征的重视(配偶年轻有更大优势)。理论就是如此这般一圈圈地转,我们用这些螺旋形的让人宽心的理由来证明我们是怎样成为今天这样的。我们用一些非常脆弱的证据,建造了一个一碰就倒的科学房子。但是我们相信这些理论有一天是可以验证的。化石纪录显示不出多少过去动物的行为;那些骨骼太干,哪块被发现也太随机。但是基因纪录会告诉我们更多。自然选择就是基因改变其序列的过程。在改变的过程之中,那些基因留下了一份我们这个星球上40亿年的生命的纪录。它们是比尊敬的毕德(Venerable Bede)(7世纪基督教教士,因撰写基督教早期历史而闻名,有“英国历史之父”的称号。)写的手稿更为珍贵的信息来源,只要我们会解读它们。换一种说法,关于我们的过去的纪录是刻在我们的基因里的。

    基因组中大约2%的成分讲述了我们在生存环境与社会环境方面的进化与黑猩猩的有什么不同。当一个有代表性的人和一个有代表性的黑猩猩的基因组被输入到电脑里,当活跃的基因从背景“噪音”里被分离出来,当人和黑猩猩基因的区别被列成一个表之后,我们就可以瞥见,更新世时期的生存压力是怎样作用在两个具有共同起源的物种上的。人和黑猩猩相同的那些基因的功能是一些基本的生物化学反应和身体的总体设计。也许惟一的区别是那些调节激素与发育的基因。不知怎么一来,那些基因用它们的数码语言告诉人胚胎上的脚长成一个平板的东西,有脚跟,有大脚趾;同样的这些基因却告诉黑猩猩胚胎上的脚去长成一个更加弯曲的东西,不太有脚跟,脚趾更长、更能抓东西。

    试着想象一下基因是怎么做到这些的,就让人思绪起伏。虽然基因控制生长和形态是毋庸置疑的,但是它们是怎样控制生长与形态的?科学才刚刚有了一些最最模糊的线索。人类和黑猩猩之间除了基因的区别以外,两者毫无二致。那些强调人类的文化环境、否认或怀疑人与人之间、人种与人种之间基因区别的重要性的人,也同意人类与其他物种之间的区别主要是基因的区别。假设我们把一个黑猩猩的细胞核注射到一个去掉了细胞核的人类卵细胞里去,并把这个卵细胞植入一个人的子宫,生下来的婴儿(如果它能存活)在一个人类家庭长大,它会长得什么样子呢?你都用不着去做这个极端不道德的实验就会知道:它会长得像个黑猩猩。尽管它一开始有人类的细胞质,用的是人类的胎盘,在人类中间长大,但它长得一点都不会像人。

    摄影提供给我们一个有用的比喻。想象你照了一张黑猩猩的照片。要冲洗它,你要按规定的时间把它放在显影液里,但是不管你怎么费劲,你都不可能通过改变显影液的配方而得到一张人的照片。正如一张底片要被浸在显影液里,影像才能出现,一张用卵细胞中基因的数码语言写就的黑猩猩的设计图,也要有适合的环境才能成为一个成年的黑猩猩——养分、液体、食物、照料——但是它已经有了怎样成为一个黑猩猩的信息。

    同样的道理,在动物行为上就不一定对了。典型的黑猩猩的“硬件”可以在另外一个物种的子宫里组装起来,但是“软件”却有点不那么对劲了。一个被人类养大的黑猩猩的婴儿,会与被黑猩猩养大的“泰山”(美国电影《人猿泰山》里的人物,是一个英国绅士遗留在非洲的孩子,被猩猩抚养长大。)一样,在与自己物种的其他成员相处上有些糊涂。比如说,泰山就不可能学会说话,被人类养大的黑猩猩也不会去学怎样讨好那些居支配地位的动物,怎样去威吓居从属地位的动物,怎样在树上做巢或怎样抓白蚁。在行为上,仅有基因是不够的,起码对黑猩猩是如此。

    但是基因是必需的。线性数码信息中一点小小的区别就能指挥人类和黑猩猩身体上那2%的区别,如果想到这里会让你思绪起伏,那你想象一下这些信息里小小的改变就能够精确地改变黑猩猩的行为,这可能更让你思绪起伏了。我刚才随便提到了不同种类猿的交配系统——常换配偶的黑猩猩,一夫多妻的大猩猩,一夫一妻的人类。我这样做的时候是随便地假设了每个物种都有一个比较典型的做法,而这个假设就要进一步假设这个做法至少是部分受基因的影响和控制的。一堆基因,每一个都是一串四个字母的密码,怎么就能够决定一个动物是有一个还是多个配偶?答案:我一点门儿都摸不着。不过,我不怀疑基因能够做到这一点。

    基因是动物结构的配方,也是动物行为的配方。

    第三号染色体 历史

    我们发现了生命的秘密。 ——弗兰西斯•克里克(1953年2月28日)

    在1902年,阿奇博尔德•加罗德(Archibald Garrod)虽然只有45岁,他已经是英国医学界的一根顶梁柱了。他是著名教授、有爵士头衔的艾尔弗雷德•巴林•加罗德(Alfred Baring Garrod)的儿子。这位教授在痛风病——上流社会最普遍的疾病——方面的理论被认为是医学研究的胜利。阿奇博尔德•加罗德自己的医学生涯也不费力地就得到了认可,后来他因为一战期间在马尔他所做的医疗工作也被封为爵士。之后,他又得到了一项最为荣耀的奖赏:继尊敬的威廉•奥斯勒爵士(Sir William Osle,19世纪末20世纪初医学家、医学教育家,1905年起在牛津大学任教)之后,任牛津大学瑞吉尤斯(Regius)医学教授之职。

    你能够勾勒出他的形象,是不是?他是那种死板的、墨守成规的爱德华时代的人物,硬硬的领子、硬硬的嘴唇、僵硬的思维,挡在科学进步的路上。那你就错了。就在1902年,阿奇博尔德•加罗德提出了一个有些风险的假说,从而证明了他是一个远远领先于他的时代的人,而且在不知不觉中,他的手指已经放在了从古至今生物学最大谜团的答案上了。这个谜团就是:什么是一个基因?事实上,他对基因的理解如此有天才性,在他去世之后很多年才有人开始理解他的想法:一个基因就是一种化学物质的配方。这还不算,他认为自己已经发现了一个基因。

    在伦敦大欧尔茫德街圣巴托洛密欧医院工作的时候,加罗德接触到了一系列患有一种少见但不太严重的疾病——尿黑酸尿症——的病人。这些病人除了有一些如风湿痛之类的不太舒服的症状之外,他们的尿和耳垢遇到空气就会变成红色或是墨黑色,视他们的饮食情况而定。1901年,一个患有这种病的男孩的父母生了他们的第五个孩子,这孩子也有这种病。这让加罗德开始想到,这种病是否是家族遗传的。他注意到这两个病儿的父母是第一代表兄妹。于是他回过头去检查其他的病例,4个家庭中有三个是第一代表亲结婚,那17个尿黑酸尿症病人,有8个互相是第二代表亲。但是这种疾病并不是简单地从父母传给孩子,大多数病人有正常的孩子,但是这种病又会在孩子的孩子身上出现。非常幸运的是,加罗德对于最先进的生物学观念很有了解。他的朋友威廉•贝特森(William Bateson,生物学家)对于格雷戈尔•孟德尔(Gregor Mendel)的研究成果在两年前被重新发现非常激动,正在写一本巨著向公众介绍并捍卫孟德尔“主义”。这样,加罗德知道他是在跟孟德尔所说的隐性性状打交道——一种特性可以被某一代人“携带”,孩子如果从父母双方都得到这种特性的遗传,才会表现出来。他甚至引用了孟德尔用在植物上的术语,称这种人是“化学突变种”。

    这就给了加罗德一个新的想法。他想到,也许这种病之所以只发生在得到父母双方遗传的人身上,是因为有什么东西丢失掉了。因为他对于生物学与化学都很精通,他知道黑色的尿和耳垢是由于一种叫做尿黑酸的物质大量积累而造成的。尿黑酸可能是人体化学反应的一个正常产物,但是在正常人里这种物质会被降解和排出体外。之所以会大量积累,加罗德想,也许是因为降解尿黑酸所需要的催化剂没有正常工作。这个催化剂,他想,一定是用蛋白质做成的一种酶,而且一定是一种遗传物质(现在我们就会说,一个基因)的产物。在那些病人体内,这个基因制造了一种有缺陷的酶;对于那些携带者,这个缺陷没有什么害处,因为他们从父母中健康的一方得到的基因是正常的。

    这样,加罗德的大胆假说“先天代谢错误”就诞生了,假说中包含了一个意义深远的假设:基因是制造化学反应催化剂的,一个基因制造一种功能非常专门的催化剂。也许基因就是制造催化剂的机器。“先天代谢错误,”加罗德写道,“产生于代谢过程中一个步骤的错误,而代谢过程中步骤的错误又产生于一种酶的缺失或不正常的功能。”因为酶是由蛋白质组成的,它们无疑是“个体化学差异的载体”。加罗德的书于1909年出版,受到广泛的好评,但是这本书的评论家们完全曲解了他的思想。他们以为加罗德只是在谈一种罕见的疾病,而没有意识到他谈的是对所有生命都适用的基本原理。加罗德的理论被忽略了35年之后才被重新发现。那时候,遗传学中新的观点爆炸般出现,加罗德已经去世10年了。

    我们现在知道,基因的主要功能是储存制造蛋白质所需的配方。蛋白质则是完成身体内所有化学、结构、调节功能的物质:它们产生能量,抵御感染,消化食物,形成毛发,运输氧气,诸如此类。

    每一个蛋白质都是通过把一个基因携带的遗传密码翻译出来而被制造成的。这句话反过来就不一定对了:有些基因永远也不会被翻译出来用来制造蛋白质,比如说一号染色体上的核糖体RNA。不过就算是这些基因,也是被间接用来制造蛋白质的。加罗德的假说大体上是正确的:我们从父母那里得到的不是别的,是一份规模巨大的配方,用来制造蛋白质和制造蛋白质所用的机器。

    加罗德的同代人也许没有理解他的思想,不过他们起码给了他应有的荣耀。但是对于加罗德站在其肩膀上的那位“巨人”,格雷戈尔•孟德尔,我们却不能说同样的话。很难想象有比加罗德和孟德尔的背景差别更大的两个人了。孟德尔的教名为约翰孟德尔,1822年出生在莫拉维亚(Moravia)(中欧的一个地区,现在归属捷克共和国。下文的奥尔姆茨即为莫拉维亚的一个城市。-译者注)北部一个名为海恩曾多尔夫(现在叫做海诺伊斯)的小村庄。他的父亲安东租了一小片农场,靠给地主干活来抵租。约翰16岁那年,在特洛堡的文法学校里正一帆风顺的时候,父亲被一棵倒下来的树砸到,健康与生计都毁了。安东把农场转手给了自己的女婿,换些钱来支付儿子上文法学校和后来在奥尔姆茨(OlmUtz)上大学的学费。但是这样的生活太艰难了,约翰需要更有钱的人资助。最后,他当了奥古斯丁教派的修道士,开始使用格雷戈尔兄弟这一名字。他在布鲁恩[BrUnn,现在的伯尔诺(Brno)(捷克东南部城市。)产的神学院里完成了学业,成了一名神父。他按照要求做了一段时间的教区神父,不太成功。他又进了维也纳大学学习,试图成为一个科学教师,但是却没有通过考试。

    他又回到了布鲁恩,31岁,一无所成,只能在修道院里生活。他很擅长数学和象棋,有个数学脑子,也很乐天。他还是一个热情很高的园丁,从父亲那里学到了嫁接果树和授粉的方法。就是在这里,在他没有通过正规学习而得到的农业知识里,埋藏着他的洞察力的根源。当时,养牛和养苹果树的人们对于颗粒遗传学的基础已经有了一些模模糊糊的认识,但是没有人系统地研究过它。“没有一个实验的设计与深度能够使得我们有可能确定每一代里不同性状的数量,或是确定它们之间的统计关系”,孟德尔写道。你可以听见,听众已经打起鼻鼾了。

    于是,34岁的孟德尔神父在修道院的花园里,利用豌豆开始了一系列实验,前后持续了8年。这些实验包括了种植3万多棵植物,仅1860年一年就种了6000棵。这些实验最终永远地改变了世界。实验结束之后,他对自己的成就很清楚,而且把它清楚地表达出来,发表在布鲁恩自然科学学会的进展报告上。所有好的图书馆都存有这份刊物,但对他的成就的认可却迟迟没有到来。被提升为布鲁恩修道院的院长之后,孟德尔渐渐对他的花园失去了兴趣,成了一个善良、忙碌却又好像不特别敬神的神父(他在文章里提到美味佳肴的次数比提到上帝的次数还多)。他生命的最后岁月耗在了一场越来越痛苦与孤独的反对政府对修道院增收一项新的税收的运动里。孟德尔是最后一个需要交这项税的院长。在他的黄昏岁月里,也许他曾经想到过,他这一生最大的成就,可能是让一个音乐学院里天才的19岁男孩里奥•亚那谢克(Leos Janacek)(19世纪末20世纪初作曲家)当了布鲁恩合唱团的指挥。

    在花园里,孟德尔做了一些杂交实验:把不同种的豌豆拿来杂交。但是这可不是一个业余科学家的游戏,这是一个大规模的、系统的、认真设计出来的实验。孟德尔选择了七对不同种类的豌豆来杂交,圆粒的与皱粒的杂交;黄子叶的与绿子叶的杂交;鼓豆荚的与瘪豆荚的杂交;灰色豆皮的与白色豆皮的杂交;未成熟时豆荚是青色的与未成熟时豆荚是黄色的杂交;在轴上开花的与在顶端开花的杂交;长秆的与矮秆的杂交。他还杂交了多少对其他种类的豌豆,我们不得而知。这七对性状都是代代相传的,也都是由一个单个基因决定的,所以,他肯定是已经从初步结果中知道了可能的结果是什么,才选择了这七对。每一对杂交出来的后代都跟双亲中的一个一模一样。双亲中的另一个的特征似乎消失了。其实没有:孟德尔让那些杂交后代自我繁殖之后,消失的特征又在大约四分之一的“孙子”辈里出现了。他数了又数,第二代的19959棵植物中,显性特征与隐性特征的比例是14949比5010,大约是2.98比1。如罗纳德•费希尔爵士(Sir Ronald Fisher)(罗纳德•费希尔:20世纪英国统计学家、遗传学家,对统计学在生物学里的应用做出了巨大贡献。)在下一个世纪里说的,这个比例跟3接近得令人起疑。别忘了,孟德尔数学很好,而且在做实验之前,他就知道他的豌豆们应该遵从什么样的数学公式。

    像一个中了邪的人一样,孟德尔从豌豆又转向倒挂金钟和玉米等其他植物,并得到了同样的结论。他知道他发现了遗传学方面非常重要的东西:遗传的特征不会混杂起来。在遗传里有一些结实的、不可分的、量子化的、颗粒化的东西。遗传物质没有像液体一样均匀融合起来,没有像血液一样融在一起,相反,遗传物质像很多很小的宝石颗粒,暂时地混杂在一起了。事后看起来,这个原理一直是很明显的。否则,怎么解释一个家庭里可以既有蓝眼睛的孩子又有棕眼睛的孩子?达尔文虽然把自己的理论建立在遗传特性的融合性上,但是他几次暗示过这个问题。“近期以来,我倾向于猜想,”他在1857年写信给赫胥黎道:“模模糊糊、粗略地猜想,将来我们会发现,通过受精卵而完成的繁殖,是两个独特的个体的一种混合,却不是一种真正的融合……。除此之外,我想不出其他原因去解释为什么两性繁殖的后代与它们的前辈如此之相像。”

    在这个问题上达尔文很是紧张。此前他刚刚被一个苏格兰的工程学教授猛烈地抨击过。这个教授有个奇怪的名字:弗里明•詹金(Fleeming Jenkin)。他指出了一个简单而又无懈可击的事实,那就是自然选择与遗传特性的融合性是互相矛盾的。如果遗传确是通过把遗传物质均匀融合起来而完成的,那么达尔文的学说就不太可能是正确的,因为每一个新的、有生存优势的变化都会被其他因素给稀释掉。詹金用了一个故事来阐明他的观点,一个白人想通过与一个岛上的黑人生孩子而把这个岛上的人群变白。他的白人的血很快就会被稀释到无足轻重的地步。从内心说,达尔文知道詹金是对的。连素来火暴的托马斯•亨利•赫胥黎面对詹金的观点也默不作声。但是达尔文也知道,他自己的理论也是正确的。他不知道应该怎样调和这个矛盾。如果他能读到孟德尔的学说就好了。

    事后再看,很多事情都非常明显,但是仍然需要一个天才来戳穿这层纸。孟德尔的成就在于他揭示了:大部分遗传特性看上去像是融合得很好的东西,惟一的原因,是这些遗传特性是由多种“颗粒”决定的。19世纪早期,约翰•道尔顿(John Dalton,物理学家、化学家)已经证明了水是由亿万个坚硬的、不可再分的小东西——原子——组成的,从而击败了他的对手——持有连续性理论的人们。现在,孟德尔证明了生物学里的“原子理论”。生物学里的原子在过去可能被起了很多五花八门的名字,在20世纪的第一年里用过的名字就有要素、原芽、质粒、全因子、生源体、依德、异丹。不过,流传下来的是“基因”这个名字。

    44从1866年起,在四年的时间里,孟德尔不断地把自己的论文和想法寄给慕尼黑的植物学教授卡尔一魏海姆•尼亚戈利(Karl-Wilhelm Nageli)。他越来越大胆地指出自己的发现的重要性。但是在四年的时间里尼亚戈利总是误解他的意思。他居高临下地给这位执著的修道士写去礼貌的回信,告诉他去研究山柳兰。就算一个人再努力也不可能给出比这个更捣乱的建议了。山柳兰是单性生殖的,也就是说,它虽然需要花粉才能生殖,却不接受传给它花粉的“同伴”的基因。这样,杂交实验就会得出奇怪的结果。与山柳兰斗争了一阵之后,孟德尔放弃了,转而研究蜜蜂。他在蜜蜂上做了大量实验,所要结果却从来没有被找到。他是否发现了蜜蜂特殊的单倍二倍体的遗传方式呢?(雄性蜜蜂每一条染色体只有一份,是单倍体;雌蜂则每条染色体有两份,是二倍体。)

    与此同时,尼亚戈利发表了他自己论遗传学的长篇巨著。在他的文章里,他提到的自己的一项工作是孟德尔理论的一个绝好例子,但是他仍然没有明白孟德尔的理论,也没有在文章中提到孟德尔的发现。尼亚戈利知道,如果你把安哥拉猫与另一种猫交配,安哥拉猫特有的皮毛就会在下一代里消失得干干净净,但是在再下一代里又会重新出现。很难找到比这更好的例子来说明孟德尔所说的隐性性状了。

    不过,在他的有生之年,孟德尔差点儿就得到了认可。查尔斯•达尔文通常是很惯于从别人的工作里得到灵感的。他甚至给自己的一个朋友推荐过一本福克(W.O.Focke)写的书,里面引用了14篇孟德尔的文章。可是达尔文自己却好像根本没有注意到这些。孟德尔的命运是在他与达尔文都去世多年之后,在1900年被重新发现的。这是在三个不同地点几乎同时发生的。重新发现他的人——雨果•德弗里斯(Hugo DeVries)、卡尔•克伦斯(Carl Correns)和埃里奇•冯•丘歇马克(Erichvon Tschermak),三个都是植物学家,每一个人都是辛辛苦苦地在不同物种上重复了孟德尔的工作之后,才发现了孟德尔的文章。

    对于生物学界,孟德尔理论来得太突然了。进化理论中没有任何东西要求遗传“一块一块”地发生。事实上,孟德尔的学说仿佛是在破坏达尔文费尽力气试图建立的所有理论。达尔文说过,进化就是自然选择之下微小的、随机的变化的累积。如果基因是45硬邦邦的小东西,如果遗传特性可以在隐藏了一代之后又完整地出现,那么它们如何能够逐渐地、微妙地变化呢?从很多角度来说,20世纪初人们看到的是孟德尔学说打败达尔文学说。当威廉•贝特森说,颗粒遗传学的作用起码是限制了自然选择的作用时,他说出了很多人的想法。贝特森是个脑筋糊涂文风枯燥的人。他相信进化是跳跃性的,从一种生命形式跳到另一种,没有中间的过渡。为了证明这个离奇的理论,他在1894年出版了一本书,

    阐述到遗传是颗粒性的。为此,他从那以后一直受到“真正”的达尔文主义者的强烈攻击。如此说来,他对孟德尔学说张开双臂欢迎并第一个把它译成英文,就毫不奇怪了。“在孟德尔的发现里,没有任何东西是与正统的理论——亦即物种产生于自然选择——相矛盾的”,贝特森就像一个自称是惟一能够诠释圣保罗的神学家那样写道:“无论如何,现代科学的探索毫无例外地是为了除掉我们总结出来的自然规律里那些‘超自然’的成分,虽然有些时候这些探索本身就带有‘超自然’的烙印。坦率地说,不能否认,达尔文著作中的某些章节在某种程度上鼓励了对于自然选择原理的曲解与滥用。但是我感到安慰的是,我相信,如果达尔文有幸读过孟德尔的大作,他一定会立刻修改这些章节。”

    但是,正是因为这个大家都不喜欢的贝特森如此推崇孟德尔,欧洲的进化论学者们才对孟德尔的学说很是怀疑。在英国,孟德尔学派与“生物统计”学派之间激烈的冲突持续了20年。这个冲突传到了美国,不过在美国,两派之间的争论不那么激烈。1903年,美国遗传学家沃特•萨顿(Walter Sutton)发现,染色体的行为就像是孟德尔式的遗传因子:它们是一对一对的,每一对里一条来自父方一条来自母方。托马斯•亨特•摩尔根(Thomas Hunt Morgan),美国遗传学之父,了解到这个发现之后,就及时地“皈依”了孟德尔“教派”。于是,讨厌摩尔根的贝特森就放弃了自己原本正确的立场,转而攻击这个有关染色体的理论。科学的历史就是常常被这种无聊的争吵决定的。贝特森最终变得默默无闻,而摩尔根却干成了一些大事:他创立了一个成果显赫的遗传学派,遗传学上的距离单位——厘摩尔根——也是借他的名字命名的。在英国,直到1918年,罗纳德•费希尔才用自己敏捷的数学头脑消除了孟德尔学说和达尔文学说之间的矛盾。孟德尔学说非常漂亮地证明了达尔文学说的正确性,根本没有与其抵触。“孟德尔学说,”费希尔说:“给达尔文建起来的那所建筑补上了缺失的部分。”

    但是,突变的问题还是没有解决。达尔文的学说要求遗传的多样性,孟德尔的学说却提供了稳定性。如果基因就是生物学里的“原子”,改变它们岂不是像炼金术那样成了异端邪说?在这方面的突破,来自于第一次人工诱发的突变,这是由一个跟加罗德和孟德尔非常不同的人完成的。在爱德华时代的医生与奥古斯丁教派的修道士旁边,我们还得再加上一个好斗的赫尔曼•乔•穆勒(Hermann Joe Muller)。20世纪30年代,有许多聪明的犹太科技人才跨过大西洋,到美国避难,穆勒与这些人几乎各个方面都一样,只除了一点:他是向东走的。他是土生土长的纽约人,一个小型金属铸造公司老板的儿子。在哥伦比亚大学他开始热爱遗传学,但因为跟导师摩尔根合不来,在1920年去了得克萨斯大学。在对待天才的穆勒的时候,摩尔根的态度也许是有一丝排犹主义的痕迹,但是穆勒跟人闹矛盾,却是再典型不过的事。他的一生都不断跟这个吵跟那个吵。1932年,他的婚姻触礁,他的同事窃取他的思想(他自己是这么说的),他自杀未遂之后,离开得克萨斯去了欧洲。

    使穆勒得到诺贝尔奖的重大发现是基因突变可以人工诱发。这就像是欧内斯特•卢瑟福(Ernest Rutherford)先他几年而发现的,原子是可以嬗变的。也就是说,在希腊文里意思为“不可分割”的“原子”这个词,是不合适的。1926年,穆勒问自己:“在所有生命过程中,突变是否真的有一个与其他过程都不一样的特点:它是否真的不可被人工改变和控制?它是否占有一个与物理学中最近才被发现的原子嬗变相当的位置呢?”

    第二年,他回答了这个问题。通过用大剂量的X射线去“轰炸”果蝇,穆勒使它们的基因产生了突变,它们的后代出现了新的畸形。他写道:突变,“并不是一个远不可及的上帝,站在细胞遗传物质里一座坚不可摧的堡垒里跟我们开开玩笑”。就像原子一样,孟德尔的遗传颗粒一定也有一些内在的结构。它们可以被X射线改变。突变之后它们仍然是基因,只是不再是以前的基因了。

    人工诱发突变是现代遗传学的开始。1940年,两个科学家,乔治•比德尔(George Beadle)和爱德华•塔特姆(Edward Tatum),用穆勒的X射线方法造出了红面包霉菌的突变种。然后,他们发现新的突变种无法制造一种化学物质,因为它们体内有一种酶没有正常功能。他们提出了一条生物学定律,后来被证明是基本正确的:一个基因确定一种酶。遗传学家们开始不出声地唱起来了:“一个基因,一种酶。”这其实是加罗德的旧的假说以现代的、生物化学的方式的具体表达。三年之后,莱纳斯•鲍林(Linus Pauling,化学家,因在化学键和复杂分子结构方面的工作获得1954年的诺贝尔化学奖,因在反对核武器试验、扩散方面的贡献获得1962年的诺贝尔和平奖)做出了惊人的推断:一种很严重的贫血症的病因,是制造血红蛋白的基因出了错误,这种病的病人主要是黑人,他们的红细胞变成了镰刀形。这个基因错误表现得像是一个真正的孟德尔式突变。事情慢慢地明显起来了:基因是蛋白质的配方;突变就是改变了的基因制造出来的改变了的蛋白质。

    这个时候,穆勒并不在人们的视野里。1932年,他对社会主义的狂热和同样的对于有选择地繁衍人类(即优化人种论)的狂热,使他渡过大西洋去了欧洲。他希望看到精心繁殖出来的、具有马克思或列宁的特征的儿童,不过在他的书的较晚版本里,他识时务地将这一点改成了林肯或笛卡儿。他在希特勒掌权之前的几个月到了柏林。在那里,他惊恐万状地看到了纳粹分子砸毁了他的老板奥斯卡•沃格特(Oscar Vogt)的实验室,因为沃格特没有赶走在自己手下工作的犹太人。

    穆勒又向东走了一步,到了列宁格勒尼柯莱•瓦维洛夫(Nikolay Vavilov)的实验室。刚到不久,反对孟德尔学说的特洛菲姆•李森科(Trofim Lysenko)就得到了斯大林的青睐,开始迫害相信孟德尔理论的遗传学家,以巩固他自己的疯狂理论。他的理论宣称,麦子就像俄罗斯人民的灵魂一样,不必通过繁殖,只要通过训练就可以让它们适应新的环境。对于不同意这种理论的人,不应该劝说,而应该将他们枪毙。瓦维洛夫死在监狱里了。还抱有幻想的穆勒把自己的有关优化人种论的新书送了一本给斯大林。但是,听说书并没有受斯大林赏识之后,他找了个借口及时离开了苏联。他参加了西班牙内战,在国际纵队的血库工作。后来他又去了爱丁堡,跟往常一样走霉运,刚到就赶上了第二次世界大战的爆发。他发现,在没有电力供给的苏格兰冬天,在实验室里戴着手套做科研很难。他绝望地想回到美国。但是谁也不想要一个好斗易怒的社会主义者,课讲得不好,还在苏联住过。

    最后印第安纳大学给了他一份工作。第二年,他因为发现人工诱发突变而获得了诺贝尔奖。但是,基因仍然是不可捉摸的神秘玩意。基因本身是由蛋白质制造的,这就使得它能够决定蛋白质的结构这一能力显得更让人摸不着头脑,细胞里好像没有其他东西比基因更复杂更神秘了。没错,染色体上倒是有些很神秘的玩意:那个乏味的被称为DNA的核酸。1869年在德国的图宾根(Tubingen),一个名字叫做弗雷德里克•米歇尔(Friedrick Miescher)的瑞士医生,从受伤的士兵那些充满脓血的绷带里第一次分离出了DNA。米歇尔本人猜到了DNA可能是遗传的关键。1892年他写信给他叔叔的时候表现出惊人的先见之明:DNA也许传递了遗传信息,“就像在很多语言中,24到30个字母就能组成词和概念”。但是,那时候没有人注意DNA;它被认为是一种比较单调的物质:只有四种不同的“字母”,它怎么可能带有遗传信息?

    因为穆勒的缘故,一个19岁就拿到了学士学位的早熟的年轻人去了印第安纳。他就是詹姆斯•沃森。看上去他一定不像是一个解决基因这个问题的人,但他就是解决了。在印第安纳大学,像我们可以预料的那样,他跟穆勒处不来,于是他师从了意大利移民萨尔瓦多•卢里亚(SalvadorLuria)。沃森建立了一种近乎偏执的信念:基因是由DNA而不是蛋白质组成的。为了寻找证据,他去了丹麦,之后又因为对他的那些丹麦同事不满意,在1951年10月去了剑桥。机遇把他扔到了卡文迪什(Cavendish)实验室,在那里他遇到了弗兰西斯•克里克,拥有同样天才的头脑,对于DNA的重要性也是同样坚信不疑。

    之后的事情已经载入史册。克里克是早熟的反面。当时他已经35岁,却还没有拿到他的博士学位。一颗德国的炸弹炸毁了他在伦敦大学学院的仪器,使得他无法测量热水在高压下的黏性。对他来说,这倒是一种解脱。他离开自己停滞不前的物理学生涯,往生物学方面挪了几步,但是也没有得到什么成功。开始,他被剑桥的一个实验室雇用,测量细胞在外力之下吞噬了一些颗粒之后的黏性。他从这份枯燥的工作逃了出来,在卡文迪什实验室忙着学习晶体学。但是他没有耐心整天只关注自己的研究,也没有耐心只研究小的问题。他的大笑、他的自信的智慧、他的喜欢告诉别人人家正在研究的问题的答案,使他在卡文迪什实验室开始讨人嫌了。克里克也对多数人对于蛋白质的着迷隐隐地有些不满。基因的结构是个大问题,他猜测到,DNA也许是答案的一部分。受沃森的“勾引”他放弃了自己的研究,开始沉迷于DNA这个“游戏”这样,科学史上一个伟大的合作诞生了:年轻、雄心勃勃、头脑敏捷的美国人懂一些生物学,一点不费劲就成了天才却无法专注的英国人懂一些物理学。他们的合作充满友好竞争,因此也十分高产。这简直是放热反应。

    短短几个月之内,利用别人辛苦收集来却没有分析透彻的数据,他们做出了也许是从古至今最伟大的科学发现之一:他们发现了DNA的结构。即使是阿基米德从浴缸里跳出来那次,都不如沃森和克里克更有资格炫耀。克里克是这么炫耀的——1953年2月他在“鹰”酒吧里说:“我们发现了生命的秘密。’沃森被这个说法吓坏了,他还是担心他们的研究是否有什么错误。

    但是,他们没有错。一切都突然间清楚了:DNA带有一种密码,写在一条精巧的、缠绕在一起的双螺旋阶梯上,还可以是无限长的。靠着它的字母之间的化学亲和力,这个密码能够复制自己,并且清晰地写明了制造蛋白质的配方,这是通过一本当时还没有被发现的“密码手册”在DNA与蛋白质之间建立起对应关系而完成的。DNA结构的惊人成功,在于它让一切都显得那么容易,却又非常具有美感。正如理查德•道金斯所说:“在沃森一克里克之后,分子生物学的真正革命在于它变成了数码式的,……基因的‘机器语言’不可思议地与计算机语言接近。

    沃森一克里克的DNA结构发表之后一个月,英国新女王加冕,在同一天,一个英国探险队征服了珠穆朗玛峰。除了《新闻纪事》上的一条小消息外,DNA双螺旋结构的发现都没能上报纸。而今天,大多数科学家都认为它是20世纪甚至是1000年来最重要的发现。

    DNA结构发现之后,接踵而来的是很多年的让人心烦的迷惑。那个密码本身,基因借助来表达自己的那个语言,固执地保守着它的神秘。对于沃森和克里克来说,找到密码几乎是太容易了,只需要把猜测、物理学知识和灵感结合起来。破译密码却需要真正的天才。很明显这个密码是由四个字母组成的:A、C、G和T。

    而且几乎可以肯定地说,就是这个密码被翻译成了有20个字母的氨基酸,氨基酸又组成了蛋白质。但是,这是怎样完成的?在哪里、以什么方式完成的?

    在领着我们到达了最终答案的那些思路里,大多数思路来自于克里克,包括被他称为接合分子的东西-我们今天称为转导RNA。在没有任何证据的时候,克里克就认定这样的分子肯定是存在的。最后,它老老实实地露面了。不过,克里克也有过一个如此之好的想法,被称为是历史上最伟大的错误理论。克里克的“没有逗号的密码”理论比自然母亲所用的方法要优美得多。它是这样的:假设这个密码的每一个词有三个字母(如果只有两个,那么总共只能有16个不同的词,不够用)。假设密码里没有逗号,词与词之间没有空隙。现在,假设这个密码不包括那些如果你从错误的地方51开始读就会读错的词。打个布赖恩•海斯(BrianHayes)(布赖恩•海斯:美国当代科普作家,精通计算机。一译者注)用过的比方吧,先想出所有用A、S、E和T这四个字母组成的英文词:ass、ate、eat、sat、sea、see、set、tat、tea、tee。现在,把那些从错误的起点开始读就会读错的词去掉。比如说,ateateat可以被读成ateateat,也可以被读成ateateat,还可以被读成ateateat。在密码里这三种读法只能有一种。

    CCC、GGG和TTT,然后,把剩下的60个词每三个并成一组。每一组里的三个词都含有同样的字母,字母的顺序是循环的。比如,ACT、CTA和TAC是一组,因为在每一个词里面,C都跟在A后面,T跟在C后面,A跟在T后面。ATC、TCA和CAT就是另外一组了。每一组里只有一个词是用在密码里的。这样,就整整有20个词。别忘了,蛋白质的字母表里恰好有20个由氨基酸组成的字母!一个四个字母的密码给出了一个20个字母的字母表。

    克里克想让人们不要对他的理论太过认真,但他是徒劳了。“在破译密码上,我们现在的假设和推断依据不足,从理论上说,我们不应对这些推断抱有太大的信心。我们做出这个推断,只是因为它能够从合理的物理学假设出发,以一种简洁的方式给出‘20’这个有魔力的数。”但是,DNA的双螺旋结构在一开始也没有什么证据啊。兴奋的情绪出现了。有5年的时间,人人都觉得克里克的理论是正确的。

    但是,专注于理论的日子过去了。1961年,其他人都还在琢磨理论的时候,马歇尔•尼伦伯格(Marshall Nirenberg)和约翰•马太(Johann Matthaei)(尼伦伯格是20世纪美国生物学家,因为在破译遗传密码以及对于遗传密码在蛋白质合成中的作用的研究获得1968年诺贝尔生理学和医学奖。他的工作初始阶段是与德国科学家马太共同进行的。一译者注)破译了密码中的一个词。他们的方法很简单:只用U(尿嘧啶,相当于DNA里的T)造了一条RNA链,然后把它扔进了氨基酸溶液里。在这个溶液里,核糖体把苯丙氨酸缝合在一起,造出了一个蛋白质。这样,遗传密码里的第一个词被破译了:尿嘧啶代表苯丙氨酸。“没有逗号的密码”理论到底是错误的。这个理论最美的地方就在于它不会出现读码移位突变,这种突变可以由于一个字母的丢失使得这个字母之后的所有信息都失去意义。但是,大自然却选用了另一种方法,虽然稍欠优雅,却能够经受住其他错误。它含有很高的重复性:一个意思可以用很多三个字一组的词表达。

    到了1965年,所有的遗传密码都已经知道了,现代遗传学也开始了。60年代的前沿突破,到了90年代已经成了常规实验。因此,在1995年,科学可以重新回到阿奇博尔德•加罗德的那些早已去世的尿黑症病人那里,确信地说出,是哪一个基因上的哪一个“拼写”错误导致了尿黑酸尿症。这个故事是20世纪遗传学的一个缩影。别忘了,尿黑酸尿症是一种非常少见又不太有危险的疾病,用调整饮食的方法就可以比较轻易地治好。所以有很多年,科学家都没有去碰它。在1995年,两个西班牙人被它在历史上的重要性所吸引,开始了对它的研究。他们在曲霉真菌里造出了一种突变种——在苯丙氨酸的存在下,这种突变种体内会积存大量的紫色色素:尿黑酸。与加罗德的推测一致,在这个突变种里有一种蛋白质是有功能缺陷的,它叫做尿黑酸双加氧酶。这两个人用一些特殊的酶把曲霉真菌的基因组打成碎片,找出与正常霉菌基因组不同的片段,然后把这些片段里的密码读出来。这样,他们最终抓住了出问题的基因。之后,他们搜索了人类基因的资料库,试图发现是否有一个类似的人类基因可以与曲霉真菌里这个基因结成一对。他们找到了。在三号染色体的长臂上,有一段DNA字母与那个真菌里的基因的字母序列有52%的相似。从尿黑酸尿症患者体内找到这个基因,并把它和正常人体内的同一基因相比较之后,我们发现患者的这个基因在第690个字母或第901个字母上与正常基因的不同,是致病的关键。每一个病人都是因为这两个字母中的一个出了错,而导致这个基因造出的蛋白质不能发挥正常功能。

    这个基因是那些乏味基因的一个典型:在一个没意思的身体器官里造一种没什么意思的蛋白质,一旦出了问题,会导致一种没什么意思的疾病。它没有任何一方面给人惊奇或是有什么特殊之处。它跟智商或同性恋倾向没有任何关系,它没有向我们揭示生命的起源,它不是“自私的基因”它老实地遵守孟德尔定律,它既不会致死也不会致残。不管出于什么目的要达到什么目标,你都不得不承认,它在地球上所有生命里都是一样的,连面包霉菌里都有它,而且它在那里的功能跟在我们体内的功能一样。但是,制造尿黑酸双加氧酶的这个基因无愧于它在历史上占的小小的地位,因为它的故事就是遗传学本身的故事。这个没什么意思的小小基因揭示出来的美,会让格雷戈尔•孟德尔都感到炫目,因为它是他的定律的具体表现,它讲述的故事不仅是关于那些微观的、缠在一起的、结构对称的双螺旋的,也是关于那些由四个字母组成的密码的,而且还是关于所有生命在化学上的一致性的。

    第四号染色体 命运

    先生,您告诉我们的这些,只不过是科学的加尔文主义。 ——一位姓名不详的士兵在一场通俗讲座之后对威廉·贝特森说

    打开任何一份人类基因名录,你面对的,不是人类到底有多少潜能,而是一个疾病的名单。这些疾病,大部分是以一两个名不见经传的中欧医生的名字命名的。这个基因会导致尼曼—皮克氏病,那个基因能导致伍尔夫—赫茨霍尔综合症,如此种种。你会得到这么一个印象:基因是用来导致疾病的。“新的导致精神症状的基因”,一个关于基因的网站这样宣布来自科研前沿的最新消息:“导致早发性肌无力的基因、导致肾脏癌的基因被成功分离;幼儿自闭症与血清素传输基因有关;一个新的老年痴呆症基因;偏执行为的遗传学。”

    但是,用它们可能导致什么疾病来定义基因,跟用人体器官能得什么病来定义这些器官一样,有些荒唐。好像是在说:肝脏的功能是得肝硬化,心脏的功能是得心脏病,大脑的功能是中风。基因名录之所以如此,不是因为它反映了我们对于基因的了解,而是反映了我们对于基因的无知。对于某些基因来说,我们对于它们的了解仅限于它们出故障的时候会导致什么疾病,这是事实。但这只是关于这些基因的所有知识里细微得可怜的一个信息,而且还误导性极大。它导致这样一个简单的说法:“某人有伍尔夫—赫茨霍尔综合症的基因。”错!所有人都有伍尔夫—赫茨霍尔综合症的基因,除了那些——这听起来有点滑稽——有伍尔夫—赫茨霍尔综合症的病人。他们之所以有这种病,是因为这个基因从他们身体内丢掉了。在剩下的人里,这个基因起的是积极的而不是消极的作用。病人有病不是因为他们有什么特殊基因,而是他们有正常基因的突变种。

    伍尔夫—赫茨霍尔综合症如此少见又后果严重——也就是说,它的基因的作用非常关键——病人通常很年轻就死去了。但是坐落在四号染色体上的伍尔夫—赫茨霍尔综合症基因,事实上却是“致病基因”里最著名的一个,因为它与另一种非常不同的病也是联系在一起的:亨廷顿舞蹈病。这个基因的一个突变种导致亨廷顿舞蹈病;这个基因的整个丢失导致伍尔夫—赫茨霍尔综合症。我们不太了解正常情况下这个基因每天的功能是什么,但是我们对于这个基因可以怎样出错、为什么出错、在哪里出错,以及出错之后对于我们的身体后果是什么,却有无比清晰的了解。这个基因含有一个词:CAG、CAG、CAG、CAG,……这个词被重复了很多次。有时候这个词被重复6次,有时候30次,有时候100多次。你的命运、你的神智、你的生命,就都悬在这条重复的线上。如果这个词重复35次或以下,你就没事。大多数人体内这个词是重复10~15次。如果这个词重复39次以上,到了中年之后你就会慢慢开始失去平衡能力、生活逐渐变得不能自理,最后过早死亡。能力的下降先是表现在智力开始出现轻微的问题,这之后,四肢出现震颤,最后出现深度抑郁,间或有幻觉和妄想。得了这种病是没法“上诉”的:这种病无法医治。但是,这种病的病人死之前要受15~25年的折磨。很少有什么命运比这更悲惨了。事实上,一旦家族里有人出现了这种病的早期症状,那种恐惧感对于很多自己还没有得病的人来说,也是很严重的:等待疾病袭来的时候,那种压力和紧张,简直是摧毁性的。

    致病的原因在基因里,而不是其他任何地方。你要么带有亨廷顿突变,会得病;要么没有亨廷顿突变,不会得病。这种决定论、这种事先注定的命运,是加尔文做梦也没想到的。乍看上去,这简直是基因决定论的终极证明,基因决定一切,我们对其无可奈何。你吸烟也好,补维生素也好,有锻炼习惯也好,整天窝在沙发上看电视也好,都没关系。亨廷顿舞蹈病在什么年龄发作完全是由那一个基因上CAG这个词被重复的次数决定的,一点通融余地都没有。如果一个人带有39次重复,那么,有90%的可能是他在75岁的时候已经成了痴呆,按平均值来看,他会在66岁的时候出现这个疾病的第一个症状;如果带有40次重复,那么平均是在59岁发病;41次重复,54岁发病;42次重复,37岁发病。如此类推下去。那些带有50次重复的人,平均在27岁就会因病失去正常思维。这样打个比方:如果你的染色体长得能够绕赤道一圈,那么健康与发疯之间的区别只差多长出的一英寸。

    哪一种占星术也不可能如此准确,哪一种人类活动因果关系的理论也没有这么精确,不管这理论是弗洛伊德的、是马克思的、是基督教的,还是泛灵论的。《圣经·旧约》里的先知们,古代希腊那些内视的神喻代言人,英国伯尼奥·瑞吉斯(Bognor Regis)码头上那些玩着水晶球的吉卜赛算命的,不仅没有谁能够预言一个人的生活会在哪一年被毁掉,他们根本就没有假装过自己有这个能力。我们现在在对付的是一种恐怖的、残酷的、无法改变的预言。在你的基因组里有大约10亿个3个字母的词,但是,这一个词的重复次数,就决定了你是正常还是发疯。

    在1967年,歌星伍迪?格思里(Woody Guthrie)死于亨廷顿氏病,之后这种病就变得尽人皆知、臭名昭著。在1872年,它被一位名叫乔治·亨廷顿(George Huntington)的医生在长岛(Long Island)东端首次诊断出来。他注意到这种病似乎是在家族里传播的。他之后的研究发现,长岛的那几个病例是发源自新英格兰(New England)的一个大家族的一部分。在这个家族12代的历史里,可以找到1000多个病人。所有这些病人都是两个兄弟的后代,这两个人是1630年从萨佛克(Suffolk)移民来的。他们的后代中,有几个人在1693年被当成是巫婆,在萨勒姆(Salem)(萨佛克是英国东部的一个郡,新英格兰是美国东北部几个州的总称,萨勒姆则为新英格兰地区的一个城市)被烧死了。这也许是因为她们得病的症状太吓人。但是,因为这种病的症状要在病人到了中年之后才出现,也就是说,当病人有了孩子之后,所以致病的基因突变没有被自然选择淘汰掉。事实上,有几个研究还发现,带有致病的基因突变的人比起他们的没有病的兄弟姐妹来,生孩子生得更多。

    亨廷顿氏病是我们发现的第一个完全显性的人类遗传病。这意味着它跟尿黑酸尿症不一样。要出现尿黑酸尿症的症状,你必须有两份致病突变,从你双亲那里各得一份。而对于亨廷顿氏病,一份致病突变就够了。如果这个突变是来自于父亲,病就好像更加严重。在这个父亲所生的子女里,出生得越晚的孩子,基因里重复的次数越多,突变越严重。

    20世纪70年代晚期,一个意志坚定的妇女决心要找出亨廷顿氏病的基因。伍迪?格思里因亨廷顿氏病而痛苦地死去之后,他的遗孀建立了抗亨廷顿舞蹈病委员会。一个名叫米尔顿?韦克斯勒(MiltonWexler)的医生加入了她的行列,这位医生的太太和她的三个兄弟都有这种病。韦克斯勒的女儿南希(Nancy)知道自己有50%的可能带有致病突变,她着了魔一样想找到这个基因。别人劝她:还是算了,这样一个基因可能是找不到的,找这个基因就好像是在一个跟美国一样大的草堆里找一根针,她应该等几年,等科技进步之后有可能找到这个基因的时候再说。“但是,”她写道:“如果你有亨廷顿氏病,你没有时间等。”在看到一个委内瑞拉医生阿米里柯?尼格里特(AmericoNegrette)的报告之后,她在1979年飞到委内瑞拉,访问了马拉才博湖边的三个村庄:圣路易斯、巴伦其塔和拉古尼塔(SanLuis,Barranquitas,Laguneta)。马拉才博湖(LakeMaracaibo)实际上是个巨大的被陆地环绕的海湾,位于委内瑞拉的西端,在科尔地勒拉?德米里达(CordilleradeMerida)以西。

    这个地区有一个非常大的家族,在家族里亨廷顿氏病的发病率很高。据家族成员之间流传的故事,这种病是从18世纪的一个水手那里来的。韦克斯勒成功地把他们的家族病史追溯到19世纪早期一个名叫玛利亚?康色普申(MariaConcepcion)的妇女那里。这位妇女生活在帕布罗?德阿古阿(PueblosdeAgua),那里有一些由高高地立在水上的房屋组成的村庄。她是个多产的女人,她之后的八代一共有1.1万人,在1981年的时候仍有9000人活着。在韦克斯勒去访问的时候,他们中的371人患有亨廷顿氏病,另外有3600人发病的可能性在四分之一以上,因为他们的祖父母里至少有一人患有亨廷顿氏病。

    韦克斯勒有着超人的勇气。她本人就可能带有致病突变,“看着这些欢蹦乱跳的孩子,真是让人心碎,”她写道:“尽管贫穷,尽管不识字,尽管男孩子要乘着小船在波涛翻滚的湖上打鱼,又劳累又危险,尽管那么小的女孩子就要操持家务照顾生病的父母,尽管无情的疾病夺去了他们的父母、祖父母、姑姑、叔叔、表兄表妹……,他们仍然满怀希望,快乐地尽情地生活——直到疾病袭来。”

    韦克斯勒开始在草堆里捞针了。第一步,她采集了500个人的血样。“炎热、喧嚣的采血的日子。”然后,她把血样送到了吉姆?居塞拉(JimGusella)在波士顿的实验室。他开始通过测试基因标志的办法来寻找致病基因:随机选择一些DNA片段,可能与正常DNA相同,也可能不同。好运向他微笑了。到1983年年中,他不仅分离出了一个与致病基因距离很近的标志,而且确定了它是在四号染色体短臂的顶端。他知道这个基因是在基因组里那百万分之三的序列里。完事大吉了吗?没有这么快。这个基因所在的区域有100万个字母长。草堆变小了些,但还是很大。八年之后,这个基因仍然是个谜。“这项工作是无比辛苦的,”韦克斯勒的语气像是维多利亚时代的探险者:[4]“四号染色体顶端这个地区,环境极其险恶。过去的八年,我们就像是在攀登珠穆朗玛峰。”

    持之以恒得到了回报。1993年,这个基因终于被找到了。它的内容被读出来了,致病的突变被确认了。这个基因所含的配方可以制造一种被称做亨廷顿蛋白的蛋白质:因为蛋白质是在基因之后发现的,所以蛋白质就以基因命名了。CAG这个词在这个基因中部的重复,使得蛋白质的中部有一长串谷氨酰胺(在基因语言里,CAG的意思是谷氨酰胺)。对于亨廷顿氏病来说,蛋白质这一部分的谷氨酰胺越多,发病的年龄越小。

    这个对亨廷顿氏病的解释,看上去很没有说服力。如果亨廷顿蛋白的基因有问题,那为什么它在病人生命的前30年里没有表现出异常?很明显,亨廷顿蛋白的突变型是逐渐积累起来的。与早老性痴呆和疯牛病一样,在细胞里逐渐积累起来的这些黏糊糊的蛋白质团团,最后导致了细胞的死亡。这团蛋白质可能诱导了细胞的“自杀”。在亨廷顿氏病里,这主要发生在大脑里控制运动的区域,所以后果是病人的运动越来越困难越失控。

    最让人没想到的,是CAG这个词的过度重复并不是亨廷顿氏病的专利。另外有五种神经方面的疾病,也是因为所谓的“不稳定的CAG重复”而造成的,不过是在其他基因里。小脑性运动失调就是一例。还曾经有过一个奇怪的科研报告:把一长串CAG插到老鼠体内一个任选的基因里之后,老鼠出现了一种发病较晚的神经性疾病,跟亨廷顿氏病很像。所以,不管CAG的过度重复出现在什么基因里,它也许都可能导致神经疾病。还有,其他一些因神经退化而导致的疾病,也是由于一些词的过度重复而造成的,每一个这种词都以C开始以G结尾。有六种病是因为CAG重复造成的。在X染色体上有一个基因,如果CCG或CGG在它的开头部分重复了200次以上,就会导致“脆弱X综合症”。这是一种很常见的痴呆症,病人与病人之间症状区别很大。正常人的重复在60次以下,病人体内的重复可以高达1000次。在第十九号染色体上有一个基因,如果这个基因里CTG重复次数在50~1000次之间,就会出现肌萎缩症。有一打以上的疾病都是因为三个字母的词重复过多引起的,这些病被称为多谷氨酰胺病。在所有这些疾病里,比正常长度长的蛋白质都有一种倾向,就是积累成无法被降解的蛋白质块,导致它们所在的细胞死亡。这些疾病有不同症状只是因为在身体不同部位基因的表达不太一样。

    以C开头以G结尾的这些词,除了代表谷氨酰胺之外,还有什么特殊之处?一种名叫“预期效应”的现象给了人们一些启发。人们早已知道,那些患有严重亨廷顿氏病或“脆弱X综合症”的人,他们的孩子发病时间一般会早于父母,病情也更严重。预期效应是这样一种现象:父母体内的重复越长,基因复制给下一代的时候,加长的长度就越长。我们知道,这些重复的DNA会绕圈,形成一个名叫“发夹式结构”的东西。DNA喜欢自己跟自己黏在一起,形成发夹式的结构,以C开头以G结尾的词里面的C和G在“发夹”中间连接起来。当DNA复制的时候,“发夹”被打开,复制机器可能会滑一下,多余的词就被插到DNA里了。

    有个简单的比方,也许可以帮助读者理解。如果我在这句话里重复说六个词:CAG,CAG,CAG,CAG,CAG,CAG,你会不费劲地数清楚它们。但是我如果把这个词说36次:CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,CAG,我敢打赌你很容易会数错。DNA也是这样。重复的次数越多,复制机器在复制DNA的时候就越容易再插一个进去。它指在“书”页上的手指稍微一动地方,就忘了自己数到哪儿了。另外一种解释(可能两种解释都对)是说,检查复制情况的系统,被称为错配修复系统的系统,只善于查出比较小的错误,而不是这种一个词被大量重复的错误。

    这也许可以解释为什么这些疾病都是在一定年龄之后才发病。伦敦戈爱恋医院的劳拉?曼吉亚丽尼(LauraMangiarini)造出了一些转基因老鼠,它们携带有亨廷顿基因的一个片段,里面有100次CAG重复。当这些老鼠长大了的时候,在它们的所有器官里(只有一个除外),重复的次数都增加了。最多的增加了10次。那个例外的器官是小脑,是后脑里分管运动机能的部分。小脑里的细胞自从老鼠学会了走路之后就不需要再变化了,所以它们也不再进行分裂。复制错误都是在细胞分裂的时候产生的。在人体内,重复的次数在小脑里是逐渐减少的,尽管在其他器官里重复越来越多。在那些制造精子的细胞里,CAG的重复越来越多,这就解释了为什么一个人发病的年龄跟他出生时他父亲的年龄有关:父亲年龄越大,孩子发病年龄越早,病情越严重。(顺便提一句,现在人们知道,整个基因组里的基因突变率,在男性里是女性的五倍。这是因为男性DNA在男性的一生中都在不断复制以提供新鲜的精子细胞。)

    亨廷顿基因的自发突变好像在有些家族里比在其他家族里更容易出现。原因不仅仅是在这些家族里CAG的重复次数刚刚在临界值以下(比如说,在29次与35次之间)。与其他带有同样CAG重复次数的人相比,这些家族里的人基因里CAG的重复次数更容易越过临界值——容易一倍。原因仍然很简单,完全是由序列里有些什么字母决定的。比较一下这样两个人:一个人带有35次CAG重复,后面接着的是一堆CCA和CCG。如果复制DNA的机器滑了一下,加了一个CAG上去,重复次数就加了一次。另外一个人也有35次CAG重复,后面跟着一个CAA,再后面是两个CAG。如果复制DNA的机器滑了一下,把CAA读成CAG了,结果就不是多重复了一次,而是多重复了三次,因为后面已经有两个CAG等在那儿了。

    虽然我劈头盖脑地扔给你那么多有关亨廷顿基因CAG这个词的细节,好像离题越来越远,但是想一想吧,几乎所有这些知识在五年以前(这本书第一次出版是在2000年。——译者注)还没人知道呢。亨廷顿基因还没有被发现,CAG重复还没有被查出,亨廷顿蛋白还是未知物,没有人猜到亨廷顿氏病与其他神经萎缩类疾病是相关的,亨廷顿基因的突变率和突变的原因都还很神秘,也没人能解释父亲的年龄为什么对孩子的病情和发病年龄有影响。从1872~1993年,人们几乎不掌握与亨廷顿氏病有关的任何知识,只知道它是遗传的。自从1993年,有关亨廷顿氏病的知识像蘑菇云一样一夜之间就出现了,这朵蘑菇云如此之大,需要在图书馆里泡上好几天才能把这些知识都读一遍。从1993年以来,有将近100位科学家发表过与亨廷顿基因有关的研究论文。所有这些论文都是关于一个基因的,人类基因组的6万到8万个基因之一。詹姆斯?沃森和弗兰西斯?克里克在1953年打开的那个潘多拉盒子具有无比的力量,如果你还对此不太确信,亨廷顿基因的故事怎么也应该说服你了吧?跟我们从基因组里搜罗到的知识相比,我们从生物学的其他分支得到的知识顶多算是一小勺。

    尽管如此,仍然没有一例亨廷顿氏病被治愈。我宣扬了这么久的这些知识连一个怎样治疗亨廷顿氏病的建议都没有提出来。如果说这些知识对那些正在寻找疗法的人有什么影响,也许CAG重复这个一点不带感情色彩的简单病因使现实变得更加苍白了。大脑里有1000亿个细胞。我们哪能进去把每一个细胞里的CAG重复都人为缩短一些呢?

    南希?韦克斯勒讲了一个她在马拉才博湖畔作研究时一个女人的故事。这个女人到韦克斯勒的草屋去做检查,想看看自己是否有神经疾病的征兆。她看上去很健康,但韦克斯勒知道,在病人发病之前很久,亨廷顿氏病的一些细微征兆就可以被一些医学检查测出来。这个妇女无疑是有这些征兆的。但是,跟其他很多人不一样的是,这位妇女在做完检查之后,固执地问医生,结论是什么。她到底有没有病?医生反问她:你自己认为呢?她说她觉得自己很正常。医生们最终没有告诉她检查结果,只是说在做诊断之前,他们需要更多地了解她。这个女人刚刚离开房间,她的一个好朋友就冲进来了。这个朋友近乎歇斯底里地问医生:你们跟她说什么了?医生们复述了他们的话。“谢天谢地”,这位朋友说,然后解释说,这个女人曾说过,她一定要问医生诊断结果是什么,如果医生发现她有亨廷顿氏病,她马上就去自杀。

    这个故事有几个让人不安的地方。第一,是这个虚假的欢乐结局。这个女人带有亨廷顿突变,她已经被判了死刑,死刑也许由她自己执行,也许由疾病缓慢地执行。不管那些专家对她多友善,她也逃不脱自己的命运。当然,她有全权选择怎样面对她有亨廷顿氏病这个事实。就算她愿意选择自杀,这些医生也无权不告诉她事实真相。但是,医生们没有告诉她真相,也可以说是做了“正确”的事。最敏感的话题,莫过于一个关于病人是否有某种致死疾病的检查的结果;例行公事般直截了当地告诉病人检查结果,对于病人来说也许不是最好的。只报告检查结果却不给病人提供战胜疾病的办法,是给人痛苦的一种方法。不过,在这些之上,这个故事讲述的最深刻的道理,就是如果没有疗法,诊断就是没用的。那个女人认为自己是没病的。假设她还能有五年毫不知情的高兴日子,告诉她说那之后她要面对的是精神错乱一点好处也不会有。

    如果一个人眼看着自己母亲死于亨廷顿氏病,她就会知道,她本人有50%的可能会染上这种病。但是这是不对的,是不是?没有人能够得这种病的50%。她要么100%地有病,要么100%地没病,这两种情况各有50%的可能。遗传测试所能做的,只是检测风险,然后告诉她,表面上的50%,对她来说是100%还是0%。

    南希?韦克斯勒担心科学现在站在一个像第比斯(Thebes)的盲人预言家特瑞西阿斯(Tiresias)那样的位置上。特瑞西阿斯偶然看见了雅典娜(Athena)洗澡,于是她刺瞎了他的眼睛。后来雅典娜又后悔了,但是因为没有办法恢复他的视觉,她就给了他预言未来的能力。然而,具有看到未来的能力是一种可怕的命运,因为他可以看到未来,却无法改变未来。“具有智慧,却不能从这智慧获益,那么剩下的只有悲哀”,特瑞西阿斯对俄狄浦斯(Oedipus)说。或者如南希?韦克斯勒所说:“你想知道你什么时候死吗?尤其是在你没有力量改变你的命运的时候?”从1986年以来,很多有可能患亨廷顿氏病的人可以通过检查来确定自己是否带有致病突变,但是他们选择了不去知道。只有20%左右的人选择了去做检查。有点奇怪却又可以理解的是,男人选择不去做检查的是女人的三倍。男人为自己想的多,女人为孩子想的多。

    就算是那些有得病风险的人想确知自己是否有病,这里包含的伦理也很错综复杂。如果一个家庭里有一个人去做检查,他或她实际上是在替整个家庭做检查。很多父母自己并不愿去检查,但是为了孩子的缘故还是去了。而且,就算在教科书上和医学知识小手册里,对于亨廷顿氏病的错误理解也到处都是。有一个小册子告诉带有致病突变的父母说:你们的孩子有一半会得病。这是不对的:每一个孩子得病的机会是50%。跟一半孩子得病是完全不同的两码事。检查结果如何告诉受检查者也是一个敏感度极高的问题。心理学家发现,如果告诉一个人他的孩子有四分之三的可能性是健康的,而不是有四分之一的可能性有病,他通常会觉得更宽心,虽然这两种说法是一回事。

    亨廷顿氏病是遗传的一个极端。它是纯粹的宿命论,一点不受环境因素的影响。好的生活方式、好的医疗条件、健康的饮食习惯、相亲相爱的家庭、大把的钱,都于事无补。你的命运完全在你的基因里。就像奥古斯丁教派所说的,你上天堂是因为上帝的仁慈,不是因为你做了好事。它提醒我们,基因组这部伟大的书或许会告诉我们最灰暗的一些关于我们自己的知识:关于我们的命运的知识,不是那种我们可以改变的命运,而是特瑞西阿斯那样的命运。

    但是,南希?韦克斯勒对寻找致病基因如此着迷,是因为她的愿望是在找到基因之后修复它从而治愈疾病。她现在离这个目标比起十年前无疑是近多了。“我是个乐观的人,”她写道:“尽管我知道,当我们处于一个能够诊断疾病却无法治疗它的阶段的时候,我们会很痛苦,但我仍然相信关于疾病的知识最终是值得我们为之痛苦的。”

    南希?韦克斯勒自己怎样了?80年代晚期,她和姐姐爱丽丝(Alice)与父亲米尔顿曾好几次坐下来商量是否要去做检查。这些争论气氛紧张、言辞激烈、结论不明确。米尔顿反对去做检查,理由是检查的结果并不是百分之百准确,可能会出现误诊。南希本来已经下了决心要去接受检查的,但是她患病的可能是客观存在的,在现实面前她的决心慢慢“蒸发”了。爱丽丝在日记里记录了这些争论,后来写成了一本书:《探索命运》。最终,两姐妹都没有去做检查。南希现在跟她母亲被确诊的时候是同一年龄。

    第六号染色体 智慧

    遗传论者的错误,并不在于他们认为智商在某种程度上是受遗传影响的,而是他们把“遗传”与“不可避免”等同起来了。 ——斯蒂芬·杰·古尔德

    我一直在误导你们,而且一直在破坏我自己定的规矩。作为惩罚,我应该把下面这句话写100遍:
    基因的存在不是为了致病的。

    即使一个基因在坏了的时候会致病,大多数我们体内的基因都没有坏,它们只是在不同的人体内有一些区别。蓝眼珠基因不是坏了的棕眼珠基因,红头发基因也不是坏了的棕头发基因。用术语来说,它们是等位基因——是遗传信息中同一个段落的不同形式,对于环境有同样的适应性,都是“合法”存在的。它们都是正常的,正常的基因有不止一种形式。

    好了,该停止东一下西一下地拨拉那些杂草了,到了集中精力对付那丛最枝蔓缠绕的灌木的时候了,到了对付基因森林里最粗壮、最扎人、最密不透风的那丛荆棘的时候了。这就是智力的遗传性。

    这丛荆棘最有可能存在于第六号染色体上。1997年末,一个大胆的(也可能是傻大胆)科学家向全世界宣布说,他在六号染色体上找到了一个“决定智力的基因”。这确实需要勇气,因为不管他的证据多么有力,很多人根本就不相信“决定智力的基因”这种东西有可能存在,更别说相信它们真的存在了。他们之所以怀疑,不仅仅是因为在过去的几十年里这方面的科研被政治化,任何提及智力的遗传因素的人都会被人“另眼相看”,也是因为大量的生活常识说明智力有非遗传因素。自然母亲可不放心让一个或几个基因去盲目地决定我们的智力,她给了我们父母、学习、语言、文化、教育,让我们通过这些去塑造我们的智力。

    但是,罗伯特·普洛民(Robert Plomin)宣布,他和他的实验伙伴们在智力的遗传性方面做出了一项重大发现。每年夏天,都有从全美国挑选出来的一组智力超常的孩子到爱荷华州去度夏令营。这些孩子的年龄在12~14岁之间,他们之所以被选中是因为他们在做学校作业的过程中表现出相当高的天分。在去夏令营的五年之前他们接受智商测试的时候,得到的分数比99%的人都高,他们的智商高达160以上。普洛民的研究小组认为,如果有一些基因能够对人的智力有影响,那么这些孩子一定拥有这些基因的最佳形式。他们取了所有这些孩子的血样,开始用第六号染色体DNA的片段做“鱼饵”来钓智力基因这条“鱼”。(他选择了第六号染色体,是因为他从以前的研究中得到了些启发。)渐渐地,他发现这些孩子的第六号染色体长臂上有一小段DNA序列往往跟普通人的不一样。并不是每一个聪明孩子在那个地方的DNA序列都与普通人不同,但是带有这个不同序列的孩子多得足以引起研究人员的注意。这个序列位于一个名叫IGF2R基因的中间。

    智商的历史并不让人乐观。在科学史上的所有争论里,很少有像关于智慧的争论那样充满着愚蠢意见的了。我们中的很多人,也包括我自己,是带着不信任和偏见来谈这个话题的。我不知道我的智商是多少。我上学的时候测过智商,但是从来没人告诉过我我的分数。因为我当时没意识到那个测验是有时间限制的,所以我没抓紧时间做题,结果是我只来得及答了一小部分题,分数应该高不了。当然话说回来,我没意识到测验是有时间限制的,这本身就不像是聪明人干的事。这个事件让我对用一个数字来衡量人的智力这种十分粗糙的做法失去了敬意。想在半小时之内测量出智力这么一件复杂的事,在我看来很荒唐。

    事实上,最早的智商测验出发点就带着偏见。弗兰西斯·高尔顿(Francis Galton,19世纪和20世纪初探险家、人类学家、优化人种论者)最早开创了用研究孪生子来把先天能力和后天能力分开的办法,他一点不隐瞒他这样做的原因:
    我的目的是要记录不同的人之间不同的由遗传而得到的能力,家族和种族之间的不同,以了解人类历史允许我们在多大程度上用更优良的人种去代替那些不够优秀的人种,以思考用适当方法来完成此举是否是我们的义务。惟其如此,我们才能够更快地推进进化的过程,避免因为把进化完全交到自然进程的手中而引起的焦虑。
    换句话说,他想把人当成牛那样有选择地繁殖。

    但是,智商测试在美国才变得真正丑陋起来。H.H. 戈达德(Goddard,心理学家)把法国人阿尔弗雷德·比内(Alfred Binet)发明的智商测试题搬到美国来,让美国人和未来的美国人接受测试。他满不在乎地总结道:很多从国外来到美国的移民不仅仅是“白痴”,而且训练有素的专家一眼就能把这些“白痴”辨别出来。他的智商测验主观得可笑,而且题目对中产阶级和受过西方文化熏陶的人有利。有几个来自波兰的犹太人知道网球场的正中间有一个网子?他一点都不怀疑智慧是天生的:“每一个人头脑的能力和智力水平都是由精、卵细胞融合的时候染色体的结合而形成的。这之后,任何因素都不会对其有什么影响,除非是严重事故破坏了染色体。”

    持有这种观点的戈达德明摆着是不正常。但是他在政府决策过程中施展了足够大的影响,以至于他被批准去测试那些刚刚到达爱丽丝岛(美国纽约市附近的一个小岛,过去从欧洲乘船到达美国的移民要先在该岛办理入境、检疫等手续)的移民。他之后还有些人比他还极端。第一次世界大战期间,罗伯特·亚尔克斯(Robert Yerkes,比较心理学家)说服了美国陆军让他给招募来的上百万新兵进行智商测验。尽管陆军根本没有太在乎这些测验的结果,这些测验却给亚尔克斯和其他人提供了发表意见的讲坛和数据。他们的意见是,智商测验可能有很高的商业价值,对国家也很重要,因为它能够轻易快捷地把人分类。在陆军里进行的这些测验,最终影响了国会,于1924年通过了一个限制移民法案。这个法案严格限制了来自南欧和东欧的移民人数,根据是这些地区的人比在1890年以前占了美国人口大多数的北欧移民要笨。这个法案的目的跟科学没有一点关系。它更多地反映了种族的歧视与工会的地方保护主义。但是,它在智力测验这个伪科学中找到了借口。

    优化人种论的故事我要留到后面一个章节再讲,但是一点不奇怪的是,智力测验的历史背景使得大多数学者,特别是社会学者,对任何与智商测验有关的东西都有很重的不信任感。在第二次世界大战之前,钟摆摆向了与种族歧视和优化人种论相反的方向,那时候,智慧的遗传性简直成了一个禁忌。亚尔克斯和戈达德那样的人把环境对人的能力的影响忽视得如此彻底,他们居然用英文试卷来考非英语国家的人,用需要书写的试卷考那些文盲——这些人在接受考试的时候才第一次拿起笔来。他们对于遗传性的相信是如此一厢情愿,以至于后来的批评者们都认为他们的主张一点儿根据都没有。归根结底,人类是具有学习能力的。他们的智商可以受他们所受的教育的影响,所以,心理学也许应该假设智慧没有任何遗传成分:智慧完全是学习的结果。

    科学应该是通过建立假说然后试图证伪它们而前进的。但是有时候事情并不如此。20年代的基因决定论者们总是在寻找能够证明他们观点的证据,从来不去寻找可能证伪他们观点的证据,60年代的环境决定论者们也同样总是在寻找能够证明他们观点的证据,对于相反的证据,他们本应是去积极寻找,但他们却对这些证据视而不见。与常识相违的是,在智力遗传性研究这个科学的一角里,“专家”们总是比外行犯更大的错误。普通人一直就知道教育非常重要,但他们同时也一直相信人的内在能力是有差异的。反而是“专家”们荒唐地在走极端。

    没有一个智慧的定义是被普遍接受的。智慧的标志是思考的速度,还是推理的能力?是记忆力、词汇量、心算能力?是进行智力活动时精力旺盛?还是仅仅是一个人对于智力活动的追求?聪明人在某些事上可以是惊人地笨——知识面是否广、有没有心计、是否能不撞到路灯柱上,如此等等。一个在学校里成绩很差的足球运动员也许可以在瞬息之间抓住机会作一记妙传。音乐能力、语言能力、揣测别人心理的能力都是能力,但一个人不一定同时具有这些能力。霍华德?加德纳(HowardGardner)(当代美国教育学家、心理学家。——译者注)卖力地提倡过一个理论,把智慧分成许多种,每一种天赋都是一种独立存在的能力。罗伯特?斯滕伯格(RobertSternberg)(当代美国哲学家。——译者注)则提出,智慧可以分成三类:分析能力、创造力、实践能力。需要分析能力的问题是由别人提出的,问题界定得很清楚,解决问题的所有信息都已存在,只有一个正确答案,跟日常生活经验没有关系。说简单一点,就好像是学校里的考试。实际问题则要求你把问题认识清楚、表达出来。这种问题常常没有清楚的定义,缺少一些解决问题所需的信息,不一定只有一个答案,但与日常生活直接有关。巴西街头的孩子们可能有些在学校里数学不及格,但他们在日常生活所需要的数学面前却不比谁傻。对于职业赛马手来说,用智商来预测他们的成绩,结果是很不准的。如果用需要动手的模型来测智商,一些赞比亚儿童成绩会非常好,用纸和笔来测,他们的成绩就会很糟。英国孩子则正相反。

    学校注重的是分析能力,智商测验也是如此,这几乎成了定义。智商测验不论在形式和题目上有多么大的区别,它们总是青睐具有某一种特定思维的人。不过,它们还是能测出一些东西。如果你比较人们在各种智商测验里的成绩,你会发现它们有一定的一致性。统计学家查尔斯·斯皮尔曼(Charles Spearman)在1904年首先发现了这一现象,一个孩子如果在一科测验里得到高分,在其他科目里也容易得高分,各种智力能力不是独立存在,而是互相关联的。斯皮尔曼把这称为广义智慧,或者简称为g。有一些统计学家提出,g只是统计上的一种托词,只是测量人在考试中的表现的诸多方法中的一种。另外一些人则认为g是民间流传的说法的一种直接量化:在谁聪明谁不聪明这个问题上,多数人的意见往往都是一致的。不管怎么说,g无疑是管用的。在预测一个孩子今后在学校里成绩如何方面,它比几乎其他任何测量方法都准确。在g是否客观存在方面,也确有一些真正客观的证据:人们在做需要检索和找出信息的任务时,他们完成任务的速度与智商是成正比的。广义智慧在人的不同年龄惊人地一致:在6岁到18岁之间,你的智慧当然是在快速增长,但是相对于你的同龄人来说,你的智慧却是几乎不变的。事实上,一个婴儿适应一种新的感官刺激所需的时间跟他今后的智商有很强的关联。就好像是说,如果能够对一个婴儿将来受的教育有一定估计,我们就能在一个几个月大的婴儿身上看出他将来的智商。智商分数与在学校里的考试成绩有很强的关联。高智商的孩子好像能更多地吸收学校里教的那些东西。

    所有这些不是要肯定教育无用论:学校与学校之间、国家与国家之间学生在数学和其他学科上平均成绩的巨大差异,显示出教育能够取得多大的成就。“智慧基因”不是在真空里运作的,智慧需要环境刺激才能发育。

    现在,就让我们接受这个一看就有点愚蠢的关于智慧的定义:智慧就是几种智商测验的平均得分——“g”——然后看看这个定义把我们领向何处。智商测验以前很不精确,现在也离完美很远,还谈不上真正客观,因此,各种测试的结果比较一致,就更显得不可思议了。如果智商与某些基因的联系透过被马克·菲尔波特(Mark Philpott,哲学家)称为“不完美的测试之雾”都能够显现出来,那就更说明智力有很强的遗传因素。另外,现代的测试已经有了很大改进,客观性更强,也更不会使受试人的成绩因文化背景和是否懂得某种专门知识而受到影响。

    在20年代,以优化人种为目的的智商测试达到高峰,当时关于智力的遗传性还没有任何证据,它只是对人们进行智商测试的那些专家们的假设。现在已经不同了。智商(先不说智商到底是什么)的遗传性已经在两种人里检验过了:孪生子和被领养的孩子。不管你怎么看,研究结果都叫人吃惊。在什么决定了智力这个题目上,所有研究都发现,遗传占有相当重要的地位。

    在60年代的时候有一个时尚,就是把孪生子从一出生就分开,特别是如果想让别人领养他们的时候。在很多情况下,人们这样做时并没有多想,但是有些人是故意这样做的,他们的动机是科研:去检验并希望能够证实当时占主导地位的理论——人的个性取决于孩童时期的养育方式和环境,与遗传无关。最著名的例子是纽约的两个女孩,贝丝和爱咪,她们一出生就被一个极富好奇心的弗洛伊德学派心理学家分开了。爱咪的养母是个很穷的人,很胖,没有安全感,没有爱心,所以一点不奇怪地,爱咪长大之后成了一个神经质的、内向的人。这正符合弗洛伊德理论的预言。但是,贝丝也成为了这样的人,跟爱咪一模一样,尽管她的养母富有、安详、愉快而有爱心。20年之后当贝丝和爱咪重新见面的时候,她们二人性格上的差别小得简直看不出来。对于她们二人的研究,远没有证明养育在塑造我们性格方面的重要性,相反地,它证明了天性的力量。

    研究被分离开的孪生子,最初是由环境决定论者开始的。但是后来他们的对手也开始用这一方法,代表人物之一,是明尼苏达大学的托马斯?布沙尔(ThomasBouchard)。从1979年开始,他在世界各地寻找那些被分离开了的孪生子,并利用测试他们的个性与智商的机会让他们团聚。同时,其他的研究则注重于比较被收养的人与他们的养父母、亲生父母、同胞手足之间智力的差异。把所有这些研究放在一起,把成千上万人的智商测验结果集中起来,就得到了以下这个表。每一个数字都是一个百分比,代表的是两种人的智力之间的相关性,百分之百的相关性意味着两人智力完全一样,百分之零意味着两个人的智力完全无关。

    同一个人接受两次智商测验87
    在一起长大的同卵双生子86
    从小被分离开的同卵双生子76
    在一起长大的异卵双生子55
    同胞兄弟姐妹47
    父母与子女(生活在一起)40
    父母与子女(没有在一起生活过)31
    亲生父母不同却被同一个家庭收养的孩子0
    没有血缘关系又不住在一起的人0

    毫不奇怪地,相关性最大的是在一起长大的同卵双生子。他们有共同的基因、在共同的子宫里被孕育、生活在同一个家庭里,他们智商的区别与一个人做了两次智商测验的区别一样。异卵双生子虽然是在共同的子宫里被孕育,他们的基因却并不比两个普通兄弟的基因更相似,但是他们的相关系数比两个普通兄弟更相似,说明胚胎在子宫里的经历或者是孩子最初经历的家庭生活有一点点作用。但是让人目瞪口呆的结果,是那些有不同的亲生父母却被同一个家庭收养、一起成长的孩子,他们的智商分数之间的相关性是零。住在同一个家庭里对于智商一点影响也没有。

    子宫的重要性是最近才被人们认识到的。有一项研究表明,孪生子在智力方面的相似性,有20%可以归结到子宫环境上,而对于两个非孪生的兄弟姐妹来说,子宫环境对智力的影响只占5%。区别在于,孪生子不仅是在同一个子宫里被孕育,而且是在同一时间;非孪生的孩子则不是。子宫里发生的各种事件与变化对于我们智力的影响,比我们出生之后父母对我们的教育所起的作用高两倍。所以,即便是智力中可以归结到“后天”因素而不是先天因素的那一部分,也是一种早已成为过去、不可更改的后天因素。但是另一方面,属于先天因素的那些基因,直到青少年时期都在表达。所以,是先天因素,而不是后天因素,要求我们不要在一个孩子很小的时候就对他的智力下定论。

    这真是怪异之极。它简直是对基本常识的挑战:我们孩童时期读过的书、家庭成员间的对话,肯定对我们的智力有影响吧?没错,但问题不在这里。因为遗传因素可以决定在一个家庭里父母和孩子都喜欢智力活动。除了研究孪生子和被领养的孩子之外,还没有任何其他研究试图把父母的遗传与父母的教育对智力的影响分开。对孪生子和被领养的孩子的研究,在目前清楚地有利于这样一个观点:父母与孩子智力水平之间的相似性是由遗传因素决定的。对孪生子和被领养的孩子的研究当然可能会误导,因为毕竟这些研究只局限于某一类家庭。他们主要是白人中产阶层的家庭,极少有黑人或穷人家庭被列入研究之列。在美国的白人中产家庭里,如果读书范围和谈话内容大同小异,也并不是什么奇怪的事。有一项研究的对象是那些被另一种族的家庭收养的孩子,在这项研究里,人们发现孩子的智商与他们的养父母的智商有一点相关(19%)。

    但是这仍然是很小的效应。所有这些研究得到的一致结论,是你的智商大约有一半是由遗传决定的,不到五分之一是由你和你的兄弟姐妹们共同的环境——家庭——决定的。剩下的是子宫的作用、学校的作用和其他外部影响,比如朋友的影响。即使是这个结论,也有点误导。你的智商不仅随年龄会有变化,遗传因素对它的影响也会变化。现在你长大了,积累了很多经验,遗传对你智力的影响也增加了。你会说:什么?是减小吧?不是的。在儿童时期,遗传对智商的影响占51%。在你长大的过程中,你内在的智力逐渐显露出来,其他因素对你智力的影响渐渐消失。你会选择与你的能力、喜好相符的环境,而不是调整你的能力、喜好去适应环境。这证明了两个至关重要的观点:基因的影响并不是从精子和卵子结合的时候起就固定不变了,环境的影响并不是一直不断地累积的。智力是遗传的不等于它是不变的。

    在先天还是后天这个漫长的争论刚开始的时候,弗兰西斯?高尔顿用了一个也许很贴切的比喻:“很多人都这样取乐过:把小树枝扔进溪流中,观察它们随水流走的过程,观察它们怎样停止运动。一开始遇到偶然的一个小障碍,然后又是一个;以及它们的前进又是怎样被环境里的因素加速的。我们可能会认为这些因素每一个都对小树枝起了作用,认为小树枝的最终命运就是被这些微不足道的事件左右的。但是不管怎样,所有的树枝都成功地顺水流下去了,而且速度总体来说都差不多。”所以,有证据表明,让孩子接受更好的、高强度的教育确实可以戏剧般地提高孩子的智商,但这只是暂时的。小学毕业的时候,那些曾经在“好的开端”(HeadStart,是美国运行着的一个对幼儿实行早期教育的计划。——译者注)这样的早期教育班里受过教育的孩子,与其他没有上过这些班的孩子已经没有区别了。

    对于这些研究的一种批评,是它们都只研究了社会里一个阶层的家庭,因此把遗传的作用放大了一些。如果你同意这样的批评,那随之而来的就是:在一个公平的社会里,遗传的作用比在一个不公平的社会里大。事实上,一个完美的英才社会的定义,就是一个人的成就取决于他们的基因的社会,因为所有人都有同样好的环境。在身高方面,我们已经在飞速地接近这样一个状态了:在过去,营养不良使得很多孩子在长大之后没有达到他们应该达到的“遗传”高度。今天,随着儿童期营养的普遍提高,个体之间身高的差异主要是由遗传原因决定的。所以,我猜想遗传在身高方面的决定作用是在增加的。同样的说法还不能用在智力这一方面,因为在有些社会里,环境的变量——例如学校质量、家庭习惯、财富——是在变得越来越不平等,而不是越来越平等。不过不管怎么说,在公平社会里基因的作用反而更大,这听起来像个悖论。

    对于智力遗传因素的这些估量,只适用于解释个体间的差异,却不能用来解释群体间的差异。虽然遗传对于智力的影响在不同人群和种族里不一定一样,但事实证明它的影响是一样的。但是,如果因为两个个体之间智商的差异有50%是因为遗传因素,就得出结论,认为黑人的平均智商与白人的平均智商间的差异或白人与亚洲人平均智商的差异是由遗传决定的,那就犯了逻辑错误。其实,这种结论不仅在逻辑上有错误,到目前为止,与事实依据也是不符的。这样,支撑最近的一本书《钟形曲线》(20世纪90年代在美国出版的心理学书籍,探讨种族之间智力的区别及其原因。它宣称不同人种智力上的差异是由遗传决定的,有些种族的基因比其他种族优秀,因此出版之后在美国引起轩然大波。批评者认为该书曲解科学研究的成果,宣扬种族主义。——译者注)里那些观点的“栋梁”就倒塌了。黑人与白人的平均智商确有区别,但没有任何证据表明这个差异是遗传的。事实上,跨种族领养儿童的一些例子,说明在白人家庭里长大的黑人孩子,其智力与一般白人并无区别。

    如果对于一个个体来说,智力有50%是遗传的,那么肯定有些基因对智力有影响。但是我们现在说不出有多少这样的基因。关于这些基因,我们现在所能说的只是:有一些基因是可变的,也就是说,它们在不同的个体里可以以不同形式存在。遗传性与决定论是非常不同的事情。对于智力影响最大的基因完全有可能在个体之间是不变的,在这种情况下,这些基因就不会导致个体差异。比如说,我每只手上有五个手指头,大多数人也是如此。原因是我们得到的遗传配方里写明了要有五个手指头。如果我走遍世界去找只有四个手指的人,那么我找到的人里,95%以上都是因为意外事故失去了一个手指头的。我会发现,有四个手指不是因为遗传因素,几乎在所有情况下四个手指都是因为环境原因造成的。但是这不说明基因不决定手指的数量。一个基因可以决定不同的个体拥有同样的身体特征,正如基因也可以决定不同的人有不同的身体特征。罗伯特?普洛民寻找智商基因的“大海捞针行动”,只会找到那些可以用多种形式存在的基因,却找不到那些在所有个体里都一样的基因。这样,他们可能会找不到一些决定智力的关键基因。

    普洛民的第一个基因标识,六号染色体长臂上的IGF2R基因,乍看上去可不像是一个“智力”基因。在普洛民把它和智力联系在一起之前,它出名是因为它与肝癌有关。以前,它可能被称为“肝癌基因”,这显示了用一个基因可能导致什么病来命名这个基因的错误之处。将来我们总会决定:这个基因抑制癌症的功能和它对智力的影响哪个是主要的功能哪个只是“副作用”。当然了,也可能这两种功能都是副作用。由这个基因编码的蛋白质有着如此枯燥的功能,让人真怀疑是否有什么神秘之处我们还没发现。它的功能是“细胞内的传输”:把磷酸化了的溶酶体酶从高尔基体(存在于细胞内的小体,对于蛋白质和脂类分子的加工和分类在其中进行。——译者注)运到细胞表面的溶酶体中去。它是个分子水平的送货车。在有关它的功能方面,没有一个字提到脑电波之类的事。

    IGF2R是个异常庞大的基因,总共有7473个字母,但是在编码蛋白质方面有意义的那些字母分布在基因组里由9.8万个字母所组成的一段上,中间被没有意义的字母(称为内含子)打断过48次。就好像杂志上一篇文章被广告打断了48次,怪烦人的。在这个基因的中间,有一些重复的片段,它们的长度容易变化,也许会在人与人之间智力水平的不同方面起作用。因为这个基因看起来跟胰岛素之类的蛋白质及与糖的分解隐约有些关系,所以要提一下,另外一项研究发现,智商高的人的大脑利用起葡萄糖来“效率”更高。在学着玩一个名叫“叠四块”的电脑游戏的时候,高智商的人与低智商的人相比,一旦熟练之后,大脑对葡萄糖的需要量降低得更快。但是这有点像是在抓救命稻草的样子。普洛民的这个基因如果被证明真的与智力有关,也只会成为许许多多的能够用各种不同方式影响智力的基因中的一个。

    普洛民的发现,最重要的价值在于:人们可以声明,研究孪生子和被领养的孩子是太过间接的方法,不足以证明遗传因素对于智力的影响,但是面对一个随着智力水平高低而变化的基因,人们很难提出有力的反对意见。这个基因的一种形式,在爱荷华那些智力超常的孩子体内比在一般人体内多一倍,这极不可能只是偶然现象。但是它的作用肯定很小:平均来说,这个基因的这种形式只会给你的智商加4分。这就有力地说明这个基因不是什么“天才基因”。普洛民暗示过,他对爱荷华那些智力超常孩子的研究还发现了至少10个“智力基因”。但是,遗传决定智商这一说法在重新受到科学界尊重的同时,在很多角落引起的却是疑惑和惊讶。它仿佛让人们看到了二三十年代使科学声誉受损的优化人种论的幽灵。斯蒂芬?杰?古尔德就是一个对过分强调基因作用持严厉批评的人,他说过:“一个部分由遗传因素而形成的低智商者,通过适当的教育可能会有极大的改进,也可能不会。低智商是由遗传因素造成的这一点,并不足以让我们对这个人的智力下定论。”这是对的,但同时这也是麻烦所在。并不是说人们一看到遗传的作用就不可避免地都成了宿命论者。导致“阅读困难症”(一种因为神经系统原因而出现的学习困难,患儿智力正常,但无法准确、流利地识别字词,常有拼写、阅读困难。——译者注)的基因突变被发现之后,老师们并没有认为这种病没救因而放弃有病的孩子。相反,这个发现促使老师们用特殊的教学方法去教有病的孩子。

    事实上,智商测试方面最著名的先驱者法国人阿尔弗雷德?比内强烈地提倡过:智商测试的目的不是为了奖励那些有天赋的孩子,而是为了更多关注那些没有天赋的孩子。普洛民却认为自己就是一个从智商测试中受益的最好例子。在芝加哥地区他们这个大家族里,他这一代的32个孩子中,他是惟一一个上过大学的。他的好运源自于他在一次智商测试里的高分数,正是这个分数促使他的父母送他进了一所强调学业的学校。美国对这类测试的热衷与英国对它的厌恶形成鲜明的对照。短命而名誉不好的“11岁以上”考试,是英国惟一存在过的一个所有11岁以上学生都必须参加的智商测试。它的依据是西里尔·伯特(Cyril Burt,心理学家)的研究数据(有可能还是伪造的)。在英国,“11岁以上”考试在人们的记忆里是灾难性的,它把有些智力很好的孩子打入了质量不好的学校。但是在以“英才社会”自居的美国,类似测试却是那些有天赋的穷人孩子在学术上取得成就所需的敲门砖。

    也许,智商的遗传性暗示了一些完全不同的东西,这些东西一次性地证明了,高尔顿试图把先天与后天因素区别开来的努力,从观念上就错了。想想这么一个看上去愚蠢的事实:平均来讲,智商高的人比智商低的人耳朵更对称。智商高的人整个身体都更对称:脚的宽度、膝盖的宽度、手指长度、手腕宽度以及手肘宽度都与智商有关联。

    90年代早期,对于身体对称性的兴趣又复活了。这是因为它可以揭示出发育早期的一些奥秘。身体的有些不对称性,在人群里是很有规律的。例如,在大多数人体内,心脏位于胸腔的左侧。但是,另外一些不那么明显的不对称性,却是比较随机的,哪边都可以。有些人的左耳比右耳大,另外一些人却刚好相反。这种被称为“起伏性不对称”的不对称性,它的程度,是对于身体在发育过程中受到了多少压力的很敏感的量度:感染、毒素和营养不良造成的压力。智商高的人身体更对称这一事实,说明这些人在母亲子宫里和在童年时期身体所受压力比较小。也许他们的身体有更高的抗压性。这种抗压性也许也是有遗传因素的。这样,智商的遗传性也许并不是由“智慧基因”直接决定的,而是由那些抗毒素、抗感染的基因间接决定的。也就是说,是由那些与环境相互作用的基因决定的。你遗传到的不是一个高智商,而是在某种特定环境下发展出高智商的能力。如果是这样,那么怎么能把影响智力的因素分成遗传因素和后天因素呢?明明白白地是不可能的。

    支持这个理论的证据来自于所谓的“弗林效应”。詹姆斯?弗林(JamesFlynn)是一个在新西兰工作的政治学家,在80年代,他注意到这样一个现象:在世界各国,一直以来人们的智商都是在增长的,大约每十年增长三点。原因却很难确定。也许原因与身高的增长是一样的:童年时期营养的提高。危地马拉有两个村庄在几年里一直得到由外界援助的大量蛋白质补剂,十年之后再去测试,发现儿童的智商有了显著的提高,这是弗林效应在局部地区的表现。但是,在营养充分的西方国家里,人们的智商仍然是在迅速提高的。学校跟这个现象也没有什么关系。因为中断学校教育只会给人的智商带来暂时影响,而且,分数迅速上升的那些测试项目,恰好测的是学校里不教的东西。分数上升最快的,是那些测试抽象推理能力的项目。一位科学家,乌瑞克?耐瑟(UlricNeisser),(当代美国认知心理学家。——译者注)相信弗林效应的原因是当今社会日常生活中充斥着高强度的、复杂的视觉图案:动画片、广告、电影、海报、图像和其他光学显示,而这些是以书面语言的减少为代价的。儿童的视觉环境比以前丰富得多,这有助于培养他们解决视觉方面的智力测试题,而这正是智商测试里最常见的题型。

    但是,这个环境因素乍看起来很难跟研究孪生子所得出的智商高遗传性的结论调和起来。就像弗林本人说的,50年来人们的智商平均增加了15点,要么是因为50年代的人好多是傻子,要么是因为现在的人好多是天才。因为我们并没有处在文化复兴的时期,所以他认为,智商测试并没有测到人的内在能力。但是,如果耐瑟是对的,那么当今世界环境只不过是一个有利于人们发展智力中的一种——对于视觉符号的娴熟——的环境。这对于“g”这个提法(智力是综合能力)是个打击,但并没有否定不同种类的智力是有遗传性的。在200万年的人类文化之间,我们的祖先传下来了通过学习才能掌握的各地不同的习俗,人脑也许已经通过自然选择学会了怎样发现和掌握在自己本地文化里重要的技能,以及自己能够掌握得比较好的技能。一个孩子所处的环境不仅与他的基因有关,也与外界因素有关,而一个孩子有能力找到甚至创造出适合自己的环境。一个有动手能力的孩子会学习需要动手的技能;一个书虫子会去找书。也许,基因创造的是一种欲望,而不是一种能力?不管怎么说,近视的遗传性不仅来自于眼球形状的遗传性,也来自读书习惯的遗传性。因此,智力的遗传性也许不仅仅是先天能力的遗传,也是后天因素的遗传。对于由高尔顿发起的这一世纪以来关于智力遗传性的争论,这真是个内容充实又令人满意的结局。

    第七号染色体 本能

    人类本性这张“白纸”从来就不是白的。 ——W •D •汉密尔顿(W. D. Hamilton,生物学家)

    没有人怀疑基因能够影响身体结构。基因能够影响行为这个说法,却不那么容易让人接受。但是,我希望能够说服你,在第七号染色体上有一个基因,它的一个重要作用是使人拥有一种本會巨,一种在所有人类文化里都占有中心地位的本能。

    本能是一个用在动物身上的词:三文鱼会寻找它出生的那条溪流;黄蜂会做它那早已去世的父母做过的事;燕子迁移到南方过冬。这些都是本能。人类不需要对本能有太多的依靠,他们学习,他们是有创造力的、生活在文化环境里的、有意识的生物。他们做的每一件事都是自由意志、巨大的脑子和父母教育的产物。

    在20世纪里,心理学和其他社会科学里占主导地位的说法就是这样的。如果谁不这样想,谁相信人类行为有其内在性,那就等于是掉进了决定论的陷阱,就等于在一个人出生之前就给了他一个无情的宣判:他的命运是写在他的基因里的。其实,社会科学发明了很多比基因决定论更让人心惊的决定论:弗洛伊德的父母决定论、马克思的社会经济决定论、列宁的政治决定论、弗朗兹•博厄斯(Franz Boas)与玛格丽特W•D•Hamilton:20世纪英国著名生物学家。米德(Margaret Mead)的同龄人压力文化决定论、约翰•沃森和B •F •斯金纳(Skinner)的刺激一反应决定论、爱德华•萨皮尔(Edward Sapir)和本杰明•沃夫(Benjamin Whorf)的语言决定论。(弗朗兹•博厄斯:19世纪末20世纪初著名人类学家,生于德国,后来在美国从事研究工作;玛格丽特•米德是他的学生,也是20世纪初美国著名人类学家。约翰•沃森和B•F•斯金纳都是20世纪上半叶美国著名心理学家。爱德华•萨皮尔生于德国,后移民到美国,与本杰明•沃夫同为20世纪上半叶美国著名语言学家。)在一个世纪里,社会学家们告诉具有各种不同思想的人:说生物学因素决定行为就是决定论,而说环境决定行为就不违反人有自由意志的说法;动物有本能,人类则没有。这是历史上规模最大的误导行为之一。

    从1950年到1990年,环境因素决定论这座大厦轰然倒塌了。20年的精神分析法都没有能够治好的狂郁症,用一剂锂疗法就治好了,弗洛伊德的理论也就在那一时刻衰落了。(1995年,一位妇女状告她的心理医生,因为这位医生给她进行了三年多心理治疗都没有治好的病,在她服用了三个星期的百忧解(一种治疗抑郁症的药物。)之后就痊愈了。)德里克•弗里德曼(Derek Freeman)(德里克•弗里德曼:当代澳大利亚人类学家。)发现,玛格丽特•米德的理论(少年的行为有无限的可塑性,可以被文化任意塑造)是建造在主观偏见、不充分的材料以及她的那些少年研究对象恶作剧故意撒谎的基础上的。这样,文化决定论也破灭了。行为主义的破产,则源于1950年在威斯康辛州所做的一个著名实验。在这个实验里,尽管失去了妈妈的猴子幼婴只有从一个铁丝做的猴妈妈那里才能得到食物,它们仍然建立了对布做的猴妈妈的情感依恋。这违反了这样一个理论:我们哺乳动物能够对任何给我们食物的东西都建立感情。看来,喜欢柔软的母亲的感觉也许是天生的。

    在语言学里,大厦出现第一个裂缝是在诺姆•乔姆斯基(Noam Chomsky,语言学家)发表了《句法结构》一书的时候。在这本书里他阐述说,人类语言,人类行为里最有文化特征的一种行为,与文化的关系和与本能的关系一样强。乔姆斯基重新提出了一个关于语言的旧观点,亦即达尔文描述过的“掌握一种艺术的本能倾向”早期心理学家威廉*詹姆斯(Wiiliam James),小说家亨利•詹姆斯(Henry James)的兄弟,强烈地支持这样一个观点:人类的行为表明,人类比动物有更多种的本能,而不是更少。但是他的说法在20世纪的大部分时间里被忽视了。是乔姆斯基把这些理论重新发掘出来。

    通过研究人们说话的方式,乔姆斯基得到结论,认为在所有语言之间都存在着内在的一致性,因此说明人类语言存在一种共同的语法。我们都知道怎样用这种语法,但我们对我们的这种能力并无知觉。这就意味着我们的大脑里有一部分由于基因的原因先天就有特殊的、学习语言的能力。说白一些,词汇不可能是天生的,否则我们都会说同一种没有变化的语言。但是,也许一个孩子在学习了本地社会所用的词汇之后,把它们扔进了一套天生的、内在的规则里去了。乔姆斯基的证据是语言学方面的:他发现,我们说话的时候有一种规律,既不可能是父母教的,也不可能是轻易地从日常生活中倾听别人说话的过程中学会的。例如,在英文里,把一句话变成一个问题,我们得把主要动词放到句子的最前面去。可是我们怎么知道哪个动词应该被放到最前面呢?看一看这句话:“A unicorn that is eating a flower is in the garden”(花园里有一只正在吃花的独角兽)。你可以把第二个“is”挪到最前面去,变成一个问句:“Is a unicorn that is eating a flower in the garden?”但是如果你把第一个“is”挪到最前面去,句子就不通了:“Is a unicorn that eating a flower is in the garden?”区别在于,第一个“is”是一个名词词组的一部分,这个词组在大脑里引起的意象不是随便一个独角兽,而是随便一个正在吃花的独角兽。4岁的孩子,还没有学过什么是名词词组的时候,都能够很不费力地运用这个规则。他们好像就会这个规则。他们也不需要听说过或用过“A unicorn that is eating a flower”这个词组,就知道这个规则。这就是语言的美:我们所说的每一句话都几乎是一种新的组字方法。

    乔姆斯基的推测在那之后的几十年里被漂亮地证明了,证据来自许多不同领域。所有证据都可以归结到心理学家、语言学家史蒂文•平克(Steven Pinker)做出的一个结论上:为了学习人类语言,我们需要有的是人类语言的本能。频克被人戏称为第一个写出的东西别人看得懂的语言学家。他令人信服地搜集了多种证据,证明语言能力的内在性。首先,是语言的普遍性。所有人类的成员都会一种或几种语言,不同语言的语法复杂程度都差不多,

    即使是新几内亚高地上那些从石器时代就与外界隔绝的人群所使用的语言也是如此。所有人都很小心很系统地遵守那些没有被言明的语法规则,即使是没有受过教育的人、那些说话比较“俗”、说方言的人,也是如此。大城市里黑人区的“黑人英语”,其语法规则的合理性一点不少于英国女王的英语。认为一种语言比另一种语言“高级”,完全是偏见。例如,双否定“不要有人不对我干这种事”)的用法在法语里是很适当的,在英语里就是土话。但在这两种语言里,人们都是同样遵守语法规则的。

    第二,如果这些语法规则是像学习词汇那样通过模仿得到的,那么,为什么那些4岁孩子明明说“went”说得很准确,却会忽然改口说“goed”(“went”是“go”的过去时的正确形式,“goed”是小孩根据“动词后面加‘ed’就是过去时”这一规则(并不适用于所有动词)自己造出来的词。)?真实情况是,虽然我们必须教孩子读和写——在这些能力上我们可没有任何本能——他们在很小的年龄就可以不需我们帮助地学会说话。没有一个父亲或母亲会说“goed”,

    但是几乎所有孩子在儿童期某一时刻都会这么说。没有一个父亲或母亲会给孩子解释说:“杯子”这个词可以用来指所有杯状物体,而不是单指这一个特别的杯子、不是指杯子把手、不是指造杯子所用的材料、不是指用手指杯子这一动作、不是指抽象的“杯子状”,也不是指杯子的大小和温度。一个电脑如果要学会语言,必须要有一个程序,很费劲地把这些愚蠢的错误含义给过滤掉。而儿童天生就有事先编好的“程序”——本能,天生就知道哪些用法可能合适而哪些不合适。

    但是在语言本能方面,最令人吃惊的证据来自一系列在自然条件下进行的实验:让儿童给一些没有语法规则的“语言”加规则。最著名的一个例子,是德里克•比克顿(Derek Bickerton,语言学家)所作的一项研究。19世纪一组被带到夏威夷的外国劳工发明了一种不伦不类的语言——一些字和词被他们用来在他们内部交流时使用。与其他类似的混杂语言一样,这种语言缺少系统的语法规则,在表达上特别繁复,表达能力却又特别有限。但是,所有这一切在他们的孩子那一代——这些孩子们在幼年学习了这种语言——就改变了。这种混杂语言有了转调规则、字词顺序以及语法规则,成为了一种有效又有表达力的语言——一种新方言。简而言之,正如比克顿总结的,混杂语言只有在被一代孩子学过之后才能变成新方言,因为孩子具有促成这种改变的本能。

    比克顿的假说从手语那里得到了极大的支持。有这样一个例子:在尼加拉瓜,为聋儿而设的专门学校是从80年代才开始出现的。这导致了一种全新的语言的诞生。这些学校教孩子们“读”嘴形,但很不成功,不过在操场上一起玩耍的孩子们把自己在家里所用的手势凑到一起,形成了一种粗糙的混杂语言。几年之内,当更小的孩子入了学,学了这种混杂语言之后,它就被改造成了一种真正的手势语言,与一般语言一样有语法,有其复杂性、实用性和高效性。在这个例子里,又是孩子造就了语言。这个事实好像在说,儿童进入成人期之后,语言的本能就被关闭了。这就能够解释为什么成年人想学习一种新语言,或是新的口音都很困难。因为我们不再拥有语言的本能。这也能够解释为什么即使对孩子,在课堂上学法语也比到法国旅游的时候学法语难:语言的本能是在听到的语言上起作用,而不是在记住的语法规则上起作用。一个敏感期,在它之内有什么东西可以被学会,在它之外则不行,这是动物本能的明显特征。例如,苍头燕雀必须在一定年龄之内常听它自己这个物种的歌,才能够学到标准唱法。同样原理对人类也适用,则是因了一个女孩的真实而残酷的故事而被揭示的。这个女孩名叫吉妮(Genie),在洛杉矶的一个公寓里被发现的时候13岁。她从出生开始就一直被关在一个家具极少的小房间里,几乎从来没有与其他人接触过。她只会两个词:“别这样”和“不要了”。从这样的“地狱”里被解救出来之后,她很快就拥有了很大的词汇量,但是她始终没有学会语法——她已经过了学习敏感期,语言本能已经没有了。

    但是,再坏的理论也得费好大力气才能把它“枪毙”掉。语言是一种能够改变大脑的文化形式(而不是反过来)这种说法,就是长时间不死的这么个东西。尽管有一些历史上人们最熟悉的例子是支持这个说法的,但后来发现这些例子净是假的。比如说,有一个印第安部落,语言里没有时间这个词,因此这个部落的人脑子里也没有时间观念。即便如此,语言是大脑里突触形成的原因而不是结果这个说法,却在许多社会科学分支里继续流传。其实这种说法的荒谬是显然的。比如说,只有德语里有一个词:Schadenfreude,意思是把自己的欢乐建立在别人的痛苦上,但这并不意味着其他国家的人们就不懂这是一个什么概念,尽管他们的语言里没有一个专门的词。

    关于语言本能的更多证据来自多个方面,其中一个就是对儿童在他们出生后的第二年里如何发展语言能力的详细观察。不管大人直接对这些孩子说了多少话,不管是否有人教过这些孩子怎样用词,儿童语言能力的发展都要以特定的方式经过特定的阶段。对孪生子的研究也说明,语言发育早还是晚,也是有很强遗传性的。但是对于大多数人来说,语言本能的最有说服力的证据是来自于实在的科学:神经病学和遗传学。有中风患者和真实的基因做证据,反对派也不好怎么争辩。大脑里有一部分有系统地被用来进行语言处理(在大多数人的大脑里是在左半脑),即使是用手势“说话”的聋子,也是如此,尽管手语也需要用到右半脑。

    如果这一部分大脑的其中一小部分被损坏了,结果就是我们所说的“布鲁卡失语症”,即丧失使用和理解语法的能力,除非是最简单的语法。但是这些人仍然能够理解语言的含义。比如说,布鲁卡失语症患者可以很容易地回答诸如“你能用锤子切东西吗?”这样的问题,但是对于“狮子被老虎杀了,它们俩谁死了?”这样的问题,患者就很难答上来。第二个问题要求听者知道字词97顺序方面的语法规则,而这恰好是被损坏的那一部分大脑的功能。大脑的另一区域,威尔尼克区(Wernicke),如果被损坏则会出现完全相反的症状。这样的患者能够说出一大串语法结构异常丰富却完全没有意义的话。布鲁卡区(Broca)的功能看起来像是制造话语,而威尔尼克区则是在告诉布鲁卡区应该制造什么样的话语。这不是故事的全部,因为还有一些其他大脑区域也参与了语言的加工处理,比较明显的是中间岛区(insula)(这可能是阅读困难症患者大脑里出问题的地方)。

    有两种遗传的情况可以影响语目能力。一种是威廉姆斯症(Williams Syndrome),这是由第十—’号染色体上的一个基因引起的。患这种病的儿童智力水平一般很低,但是他们说起话来却既生动又内容丰富,而且健谈成癖。他们可以一直喋喋不休,用的都是复杂的词、长句子和非常讲究的句子结构。如果让他们举一个动物的例子,他们常常会选一个奇怪的动物,比如土豚(食蚁兽的一种),然后说这是猫(或狗)。他们学习语言的能力高于常人,但是代价却是理解能力:他们是智力迟钝的人。我们中的很多人都曾经认为思考就是一’种不发声的语目,但是威廉姆斯症儿童的存在,似乎说明这种想法是不对的。

    另外一个遗传情况有着与威廉姆斯症相反的症状:它使人的语言能力降低,却不明显影响其他方面的智力,至少,它对智力的其他方面没有什么系统性的影响。它被称为语言特有损害,在一场激烈的科学争论中占有中心地位。争论双方是新兴的进化心理学与旧的社会科学,争论在于是用遗传来解释行为还是用环境解释行为。处在争论中的基因,就在七号染色体上。

    这个基因是否存在,不是争论的内容。对孪生子的仔细研究,明白无误地指出语言特有损害具有极强的遗传性。这种病与出生时的神经损害没有关系,与成长过程中接触语言比较少也没有关系,也不是由于智力低下造成的。虽然各种医学检查对于这种病的定义并不完全一致,但有一些检查发现这种病的遗传性接近百分之百。也就是说,同卵双生的两个孩子,比起异卵双生的两个孩子,都有这种病的机会要大一倍。

    这个基因是在七号染色体上,这一点大家也都没有多少怀疑。1997年,牛津大学的一组科学家发现了七号染色体长臂上的一个基因标识,这个标识的一种形式总是与语言特有损害同时出现。

    这个证据虽然只是从英国的一个大家族里得到的,却很强很明确。

    那么为什么争论呢?争论的焦点是,语言特有损害到底是什么。对有些人来说,它是大脑整体的病变,影响的是语言产生中多方面的功能,主要是影响到话语从嘴里表达出来和耳朵听话语的能力。根据这个理论,病人在语言方面遇到的困难,是从这两个方面延伸出来的。对于另外一些人来说,这个理论纯属误导。当然,在很多病人身上的确存在听力与发声方面的问题,但是另外还存在一些更能引人好奇的东西,那就是这些病人真的有理解方面的问题,而这一问题与听力与发声方面的缺陷是无关的。争论双方都能同意的一件事,就是媒体把这个基因炒成是一个“语法基因”,过于简单,太不理性,是很让媒体丢面子的事。

    故事是围绕着一个英国大家庭展开的,我们称它为K家庭吧。这个家庭现有三代。一个患有语言特有损害症的妇女与一个正常男子结了婚,生下四女一男,除了一个女儿之外,所有孩子都患有语言特有损害症。这些孩子又结婚生子,在他们的总共24个孩子里,有十个有同样症状。这个家庭里的人跟心理学家们都很熟了。其他科学家们则用一系列新的检查来“争夺”他们。是他们的血液把牛津的科学家们引到了七号染色体的基因上面。牛津的这个小组是与伦敦的儿童健康研究院合作的,这两处的科学家大都是“综合病变”论的持有者,他们认为K家庭的成员表现出来的语法能力缺陷是源于他们在听、说方面的问题。他们的主要反对者和“语法病变”理论的领头人,是加拿大语言学家默娜•高布尼克(Myrna Gopnik)。

    1990年,高布尼克第一次提出,K家庭的人以及其他有相似病症的人,在理解英文的基本语法规则方面有问题。并不是说他们无法理解语法规则,而是他们必须有意识地、专心地去学,才能学会这些规则,而不是本能地把这些规则内化。举一个例子。如果高布尼克给一个人看一幅漫画,画上是一个想象出来的生物,还有这样的字:“这是一个wug”那么如果高布尼克给这个人看一99幅画有两个这种“生物”的漫画,边上写着:“这是……”,那么大多数人都可以在眨眼的工夫里就回答说:“wugs”(wug是瞎编的一个词,加上s即成复数形式)。但是有语言特有损害症的人大多回答不出,即使能够回答上来,也是在长时间考虑之后。英文里的复数规则是在大多数词后面加S,而他们好像不知道这个规则。但这并不妨碍患语言特有损害症的人掌握大多数词的复数形式,只是一旦遇到一个他们没有见过的新词他们就被绊倒了。而且,他们还会犯这样的错误,即在那些我们正常人不会加s的词后面加s,比如说“saess”。高布尼克推断到,这些病人把每一个词的复数形式都当做一个单独的词存在记忆里,就像我们储存那些单数的词一样。他们没有储存单数变复数的规则。

    问题当然不仅仅是在复数方面。过去时、被动语态、一些字词顺序的规则、后缀、字词组合的规则,以及所有我们下意识地就知道的英文语法规则,对于患语言特有损害症的人来说,都很困难。当高布尼克研究了那个英国的家庭,把这些结果第一次发表出来的时候,她立刻就遭到了猛烈的攻击。有一个批评家说,如果把症状归结为语言处理系统的问题,而不仅仅是语法规则的问题,是远为合理的。这是因为在说英语的人里,类似复数与过去时这样的语法形式对有口语表达障碍的人特别困难。另外两个批评家说,高布尼克是在误导读者,因为她“忘记”提及一些K家庭成员有先天性的口语表达障碍,这种障碍使他们在单个的词、音素、词汇量、语义、句法方面都有问题。他们在理解其他句法结构的时候也有问题,例如可逆被动式、跟在名词后面的修饰词、比较从句、内藏形式,等等。

    这些批评颇有一丝争夺地盘的味道。K家庭不是高布尼克的发现,她怎么敢对他们做出与以往完全不同的结论?其实,在那些对她的批评之中,起码有一部分实际上是支持了她的观点,这就是K家庭的症状在所有句法规则上都表现了出来。说语法上的困难来自口语表达问题是因为口语表达问题与语法困难是同时出现的,这就是循环论证了。

    高布尼克不是一个轻言放弃的人。她把自己的研究扩展到希腊和日本,在那里做了一些设计独到的实验,目的是要找到与K家庭同样的现象。例如,在希腊,“likos”这个词是狼的意思,“likanthropos”是狼人的意思,而“lik”,狼这个词的词根,却从来不会单独出现。但是大多数说希腊语的人都很自然地就知道,如果他们想把狼这个词的词根与一个以元音开头的词(比如说,“anthropos”)组合起来,他们应该把“likos”里的“os”去掉;而如果是要把狼这个词的词根与一个以辅音开头的词组合起来,他们需要把“likos”里的“s”去掉。听起来这好像是个复杂的规则,但正如高布尼克指出的,即使是只说英语的人也能够一下就看到这个规则的熟悉之处,我们在造新词的时候都是遵守这个规则的,比如说,“technophobia”(technophobia,对于高科技有恐惧的人。这个词是把“technology”(技术)里的“logy”去掉,与“phobia”(极度恐惧)组合成的。)。

    患有语言特有损害症的希腊人,不能掌握这个规则。他们可以学习一个词,比如“likophobia”和“likanthropos”,但是他们在认识这种词的复杂结构方面很差,不能认识到这种词是由不同的词根和后缀组成的。结果,为了补救这一缺陷,他们需要有一个比正常人大得多的词汇量。高布尼克说:“你得把这些人想象成没有母语的人。”他们学习自己的母语就像我们成年人学习一门外语一样费劲,需要有意识地吸收词汇和规则。

    高布尼克承认有些语言特有损害症患者在不需要语言的测试中也表现出低智商,但是另一方面,有些患者的智商高于平均水平。有一对异卵双生的孩子,有语言特有损害症的那个在不需要语言的方面智商高于没病的那个。高布尼克也承认,多数语言特有损害症患者在听和说方面都有问题,但她强调,并不是所有患者都有这些问题,听、说方面的问题与语法规则方面问题的巧合不能说明什么。比如,语言特有损害症在学“ball”和“bell”的时候没有困难,但他们想说“fall”的时候却常常说成“fell”。这是因为“fall”和“fell”之间的区别是语法上的,不是词汇上的(fell是fall(掉下、摔倒)的过去时,而ball(球)和bell(铃铛)是两个不同的词。)。还有,他们在区别押韵的词的时候没有问题。因此,当一个高布尼克的反对者说K家庭的人说话外人都听不懂的时候,高布尼克火冒三丈。她跟K家庭的人一起度过了很多个小时,一起聊天,吃比萨饼,一起参加家庭聚会,她说他们说话她完全听得懂。为了证明听、说能力的缺陷与语言特有损害症无关,她还设计了书写测试。例如,考虑以下两句话:“他上周得了第一名,他很高兴”,“他得了第一名,他上周很高兴”。大多数人立刻就知道第一句话是对的,而第二句话语法不对。语言特有损害症患者却认为两句话都对。很难想象这个问题跟听、说能力有什么关系。

    尽管如此,听、说能力论的那些理论家并没有放弃。最近,他们证明语言特有损害症患者在“声音屏蔽”方面有问题,也就是说,当一个纯音之前或之后出现一些噪音的时候,他们无法听到这个纯音,除非这个纯音的音量比正常人所需音量高45分贝。换句话说,语言特有损害症患者无法像正常人那样“挑出”一串大声说话的声音中那些细微的声音。那么也许他们会漏掉一些轻声说的词,比如说:“去了”中的“了”。

    但是,这个证据与其说是支持了听、说问题是语言特有损害症(包括语法问题)的根源,不如说它支持的是一个更有意思的进化方面的理论:主管听、说方面能力的大脑区域与语法区域是相邻的,在语言特有损害症中两者都有损坏。语言特有损害症是由七号染色体上的一个基因的一种特殊形式造成的,在怀孕晚期这个基因造成了大脑的损伤。核磁共振成像技术已经使我们确认了大脑损伤的存在与大致位置。一点也不奇怪,损伤发生在专管语言处理与口头表达的两个区域——布鲁卡区和威尔尼克区——之一。

    猴脑中有两个区域与人脑中的这两个区域完全对应。布鲁卡对应区是用来控制猴子脸部、喉部、嘴和舌头的肌肉运动的,威尔尼克对应区是用来识别一串声音、识别其他猴子的叫声的。这些正是语言特有损害症患者常有的语言之外的问题:控制脸部肌肉、识别声音。换一句话说,当人类的祖先第一次进化出语言本能的时候,它是从发声与声音处理的区域发展出来的。发声与声音处理的区域仍然存在,与脸部肌肉和耳朵都有连接,但是语言本能的区域在这之上发展起来,形成了一种内在能力,可以把自己这个物种其他成员所用的语法规则加在由声音而产生的词汇上。这样,尽管其他灵长类动物都不能学会语言一为此,我们得感谢那么多勤奋、有时容易上当又一厢情愿的训练员,是他们试验了所有可能的办法,才终于让我们知道黑猩猩和大猩猩是学不会语言的——语言却是与发声与声音处理有密切联系的。(但是,也并不是密切得不可分。聋人脑中,语言区的输入信号与输出信号分别给了眼睛和手。)因此,大脑的那一部分因遗传而造成的损伤,就会影响语法、口语和听力三个方面。

    这是对于威廉•詹姆斯在19世纪提出的假说的最好证明。他的假说认为,人类复杂行为的形成是因为在人类祖先的本能之上加了新的本能,而不是以学习代替本能。詹姆斯的理论在80年代晚期被一伙自称为进化心理学家的人给复活了。他们当中著名的有人类学家约翰•图拜(John Tooby)、心理学家里达•科斯米兹(Leda Cosmides)和心理语言学家史蒂文•频克。大致归纳一下他们的论点,应该是这样的:20世纪社会科学的主要目的是寻找社会环境影响我们行为的途径,我们可以把这个问题大头朝下反过来,寻找我们的内在社会本能是怎样影响社会环境的。这样,

    所有人高兴的时候都笑,焦虑的时候都皱眉,所有文化背景下的男性都发现女性身上代表年轻的特征有吸引力,这些也许都是本能的表现,而不是文化的表现。或者,浪漫爱情与宗教信仰在所有文化里的普遍性也许暗示着它们是受本能的影响,而不是传统的影响。图拜和科斯米兹提出一个假说,认为文化是个人心理的产物,个人心理不是文化的产物。还有,把先天与后天对立起来也是一个巨大的错误,因为不管学习什么,都要求一个人有内在的学习能力,学到什么是由内在因素限定的。例如,教一只猴子(或人)害怕蛇比教它害怕花容易得多,但是你还是得教它才能学会怕蛇。怕蛇是一种需要学习的本能。

    进化心理学里的“进化”二字,并不是指人们对于世代延续过程中大脑变化的兴趣,也不是指对于自然选择本身的兴趣。虽然这两者都很有意思,但它们还无法用现代手段去研究——这两者都需要非常缓慢的过程。在这里,“进化”二字指的是达尔文的理论框架的第三点:“适应”的概念。复杂的生物体内器官可以被“逆向设计”,以发现它们是被设计出来做什么用的。用同样的方法我们也可以研究复杂机器的功能。史蒂文•频克特别喜欢从兜里掏出一个用来除橄榄核的小玩意,来解释逆向设计的过程。里达•科斯米兹则倾向于用一把瑞士军刀来解释同样一个过程。在这两种情况下,除非用一件物品的功能来描述它,否则它就是没有意义的,比如说,这个刀刃是干什么的?如果在描述照相机工作原理的时候不提到它是用来拍摄图像的这样一个事实,那就是没有意义的。同样地,描述人的(或动物的)眼睛却又不提它是记录图像的,那么这就是无意义的。

    频克和科斯米兹都认为同样道理也适用于对人脑的描述。它的不同区域就像是一把瑞士军刀的不同刀刃,极可能是为了特殊功能才出现的。另外一种解释则认为,人脑的复杂性是随机的现象,人脑不同区域的不同功能只是从复杂性的物理原理中掉出来的副产品,得到这些不同功能只是因为我们很幸运。这个说法到现在还被乔姆斯基欣赏,虽然它与一切证据都矛盾。很简单,没有任何证据支持这么一个假说:你把一个由许多微处理机组成的网络做得越复杂,它所能得到的功能就越多。事实上,研究神经网络时常用的“连接学派”方法,对这个假说进行了大量探讨,这是因为这个学派被“大脑是神经元和突触组成的多用途机器”这样一个说法“误导”。结果却发现这个假说站不住脚。要想解决事先存在的问题,需要事先设计好的功能。

    这里有一个历史对我们的嘲弄。“自然界的设计”这样一个概念有一度是反对进化论的最有力论据。事实上,在19世纪上半叶,就是“自然界的设计”这样的观点阻挡住了进化论的被接受。它最出色的表达者威廉•佩利(William Paley,18世纪的神父)有过一段著名的话:如果你在地上发现一块石头,你对于它是怎么到那里的很可能会毫无兴趣。但是如果你在地上发现一块表,你不想承认也得承认,在什么地方肯定有一个钟表匠。因此,生物体精巧、功能完美的结构就是上帝存在的证据。而达尔文却天才地把同一个论据拿来支持反面观点,反驳佩利。用理查德•道金斯的话说,一个名叫自然选择的瞎眼的钟表匠,从生物体上自然出现的差异出发,一步一步地下功夫,经过几百万、上千万年,经过几百万、上千万个生物体,可以与上帝一样做到让生物体用复杂的方法来适应生存环境。达尔文的假说被证据支持得如此之好,现在,用复杂的方法来适应生存环境已经成了自然选择的最强证据。

    我们所有人都有的语言本能就是这样一个适应生存环境的复杂方法,它的优美设计使得个体之间能够清楚地交流复杂的信息。很容易就可以想见,对于在非洲平原上的我们的祖先来说,能够用其他物种都不会的复杂形式共享准确、详细的信息是多么重要。“进那个峡谷,走很短的一段,然后在水塘前那棵树那里向左拐,你会发现我们刚刚杀死的那只长颈鹿的尸体。要躲开树右边正在结果的那丛灌木,我们看见一只狮子进去了。”这样的两句话,对于听者的生存具有很大的价值。这等于是在自然选择这个“抽奖”活动里的两张奖券。但是如果不懂语法,不懂很多语法,还是听不懂。

    支持“语法是内在的”这一理论的证据多种多样。也有一些证据表明,七号染色体上的一个基因在发育中的胚胎大脑构建语言本能的过程中起了作用。这些证据很可信,但是我们仍然不知道这个基因的作用有多大。不过,大多数社会科学方面的专家仍然强烈地拒绝接受这样一个想法,即有些基因的主要用途是使人在发育过程中得到语法本能。从他们关于七号染色体上这个基因的争论就可以清楚地看出,不管有多少证据,这些社会科学家们仍然争辩说,这个基因的主要作用是使得大脑有理解语言的能力,而它在语言“本能”方面的作用不过是个副作用。在一个世纪里占主导地位的学说都是本能只属于动物,人类没有本能,在这种情况下对于语言本能的拒绝就不足为奇了。其实,如果你想一想詹姆斯的观点,即有些本能是要靠学习与接受外界刺激才能建立起来,那么这个学说就要垮台了。

    我们在这一章里跟随了进化心理学的观点,即试图用逆向设计的方法去了解人类行为是为了解决什么问题。进化心理学是一门很新却很成功的学科,它给许多领域里对于人类行为的研究都带来了威力巨大的新见解。在六号染色体那一章里谈到的行为遗传学,也是想要达到相同的目的。但是,进化心理学与行为遗传学的角度如此不同,它们是冲突的。问题是这样的:行为遗传学寻找的是个体之间的差异,并希望把这些差异与基因联系起来。进化心理学寻找的是共同的人类行为——人类行为的普遍性,在我们每个人身上都能发现的特征——并且试图了解这些行为是为什么和怎样成为了部分是本能的行为。因此,它假设个体之间没有区别,起码对于特别重要的行为是如此。这是因为自然选择的任务就是磨掉个体的差异。如果一个基因的一种形式比其他形式好得多,那么,好的这种形式很快就会成为普遍的形式,而差的那些形式就被淘汰了。因此,进化心理学得出这样一个结论:如果行为遗传学家发现哪个基因有几种不同的形式,那么这个基因肯定不会很重要,只能是个起次要作用的。行为遗传学家则反驳说,到现在为止所有被研究过的人类基因都有一种以上的形式,所以,进化心理学的论断肯定有什么地方是错的。

    也许我们在实践中会发现这两个学科的矛盾是被放大了。一个是研究具有普遍性的、常见的、人类特有的特征的遗传学,另一个是研究个体差异的遗传学。两者都有一定的真理在里面。所有的人都有语言本能,所有的猴子都没有,虽然这种本能在不同的人体内不是发展得同样好的。患有语言特有损害症的人,他们的语言能力仍然比瓦殊、扣扣、尼姆(大猩猩或黑猩猩的名字)或任何久经训练的黑猩猩和大猩猩强得多。

    行为遗传学和进化心理学得出的结论对于很多不从事科学研究的人是难以消化的。这些人用一个表面上显得很有道理的说法来表达他们感到的不可思议。一个基因,一串DNA“字母”,怎么就能导致一种行为?在一个蛋白质的配方与一种能够学习英文里过去时的能力之间,有什么我们能够想象的机制把它们联系起来?我承认,初看上去这两者之间确有一条鸿沟,说这两者是有联系的好像需要的是信心而不是理性。但是,其实并不需要如此,因为行为的遗传学从本质上来说与胚胎发育的遗传学并无区别。假设大脑里每一个区域都是通过参考发育过程中在胚胎大脑里建立的一系列化学梯度才得以发育为成年的形式,也就是说,化学梯度形成了给神经元的地图。那些化学梯度本身可以是遗传机制的产物。有些基因和蛋白质能够准确地知道它们在胚胎里的位置,这虽然难以想象却无疑是存在的。到描述第十二号染色体的时候我会讲到,这样的基因是现代遗传学研究最激动人心的发现之一。行为基因的概念并不比发育基因的概念更怪异,两者都让人费思量,但是自然从来就不会因为人类对她不理解而改变自己的方式。

    X和Y染色体冲突

    Xq28——多谢你的基因,妈妈。 ——90年代中期同性恋书店里T恤衫上的字样

    往语言学拐一下,我们就会直面进化心理学所提出的骇人理论。也许它让你有了一种不安的感觉,感到有些其他的东西在控制我们的生命,感到我们自己的能力,语言能力和心理能力,都在某一程度上是由本能所决定,而不像你以前所骄傲地认为的那样,是由你自己的意志决定的。如果是这样,那么事情马上就要变得更糟了。这一章要讲的故事也许在整个遗传学史上是最出人意料的一个。我们已经习惯了把基因想象成是配方,它们在消极地等待着整个机体的“集体决策”,以确定要不要开始转录:基因是身体的仆人。这里我们要遇到另一种现实:身体是基因的受害人、玩具,是基因的载体和战场,为的是基因自己的雄心壮志。

    比七号染色体小的那些染色体中,最大的是X染色体。X染色体是个与众不同的染色体,是不合群的家伙。跟它配对的染色体,也就是说,跟它在序列上有亲和性的染色体,不是像其他染色体那样是跟它一模一样的一条,而是Y染色体,极小,而且几乎没有活性,就像是遗传上的“马后炮”。起码在雄性哺乳动物和果蝇里,以及在雌性的蝴蝶和鸟类里是这样的。在雌性哺乳动物和雄性鸟类里,则有两条X染色体,但是它们仍然有点怪。在身体内的每一个细胞里,两条X染色体不是等量地表达自己携带的遗传信息,而是有随机选择的一条把自己卷成一个小小的卷,没有活性,被称为巴尔小体(Barrbody)。

    X和Y染色体被称为性染色体,原因很明显,因为它们几乎完全准确地确定一个人的性别。每个人都从其母亲那里得到一条X染色体,但是如果你从父亲那里拿到的是一条Y染色体,那么你就是个男的;如果你从父亲那里遗传到一条X染色体,你就是女的。有个别的例外,有人虽然有一条X染色体和一条Y染色体,但是表面看上去是女的。但是这些是特殊的例子,它们的特殊正是为普遍的规则提供了证据。因为在这些人体内,Y染色体上最重要的男性化基因要么缺失要么受了损害。

    大多数人都知道这个事实,在学校里学不了多少生物学就会接触到X和Y染色体。大多数人也知道色盲、血友病以及其他一些疾病在男性里更为常见,因为这些致病基因在X染色体上。因为男性没有一条“富余”的X染色体,他们比起女性来更易罹患由隐性基因导致的疾病。正如一位生物学家说的,男性体内的X染色体是在没有副驾驶的情况下独自飞行。但是,有些关于X和Y染色体的事情是大多数人不知道的,有些事情非常奇怪,让人不安,它们动摇了整个生物学的基础。

    在所有科学研究方面的出版物中,《皇家学会哲学通讯》是最严肃最清醒的之一。在它里面,你很少会读到这样的文字:“这样,哺乳动物体内的Y染色体很可能参与的是一场被敌人在‘枪支’上占了上风的战斗。一种合乎逻辑的结果,是Y染色体应该逃跑、躲藏起来,把所有功能并非必需的序列都扔掉。”“战斗”、“在‘枪支’上占了上风”、“敌人”、“逃跑”?我们可不认为这些是DNA应当做的事。但是同样的语言,比这稍微多一点术语,在另一篇关于Y染色体的科研论文里也出现了。那篇文章的题目是《内在的敌人:基因组间的冲突,基因位点间竞争进化(ICE),以及物种内部的红色皇后》。文章的一部分是这样的:“Y染色体与其他染色体基因位点间进化中持续不断的竞争,使得Y染色体上基因的质量由于那些有一定负面作用的突变的‘搭便车’而不断下降。Y的衰落是由于遗传上的‘搭便车’现象,但是基因位点间在进化中的竞争才是持续地推动雌雄两性之间相互对抗共同进化的催化剂。”就算以上这段话对你来说就像“爪哇国”的文字一般,有些词还是能够吸引你的注意,比如“对抗”。最近还有一本教科书,也是关于同样的题材的。书的名字很简单,叫做:《进化,40亿年的战争》。这都是怎么回事呢?

    在我们的过去,有某一时刻,我们的祖先从像两栖类动物那样让环境温度决定性别,改成了用遗传决定性别。改变的原因,也许是因为这样每一种性别的个体都可以从卵子受精就开始为自己的特殊角色而接受训练。在我们人类里,决定性别的基因使我们成为男性,如果没有这些基因就是女性,在鸟类里却正好相反。这个基因很快就在它周围吸引了一些对于男性有好处的其他基因,比如说,能够使肌肉发达的基因,或者是造成暴力倾向的基因。但是,因为这些基因是女性身体不想要的——不能浪费本来可用于抚养后代所需的能量——这些次要的基因就变得对一个性别有利而对另一性别有害。这样的基因就被称做性别对抗基因。

    当另一个基因突变抑制了两条性染色体之间进行正常的遗传物质交换的时候,难题解决了。现在,性别对抗基因就可以分道扬镳了。一个基因在Y染色体上的形式可以利用钙来造出鹿角,而它在X染色体上的形式却可以用钙造出乳汁。这样,一对中等大小的染色体,本来是各种各样“正常”基因的所在地,就被性别决定这个过程给“劫持”了,最终成为了性染色体,各自“吸引”了不同的基因。在Y染色体上积累了对雄性有好处对雌性却常有坏处的基因,在X染色体上则积累了对雌性有好处而对雄性有坏处的基因。例如,有一个新近发现的基因叫做DAX,是在X染色体上的。有极少的一些人生来是有一条X染色体一条Y染色体的,但是X染色体上却有两份DAX基因。结果就是,虽然这些人从基因角度说是男性,他们却发育成为正常的女性。我们对其原因的理解,是DAX和SRY——Y染色体上让男性成为男性的基因——是互相对抗的。一份SRY会打败一份DAX,但是两份DAX就要打败一份SRY了。

    这种基因之间互相对抗的升级是很危险的事。如果打个比方,我们可以觉察到,这两条染色体不再把对方的利益放在眼里了,就更不要提整个机体的利益了。或者更确切地说,一个基因在X染色体上的传播对X染色体可以是好事,但同时对Y染色体又是坏事;反过来也有可能。

    举一个例子吧。假设有一个基因在X染色体上出现了,它携带的配方是一种致死的毒药,只杀死带有Y染色体的精子。一个带有这个基因的男性不会比其他男性有更少的子嗣,但是他只可能有女儿,不可能有儿子。他的所有女儿都携带有这个基因,而如果他有儿子,他们是不会携带有这个基因的。于是,在他的下一代里这个基因就多了一倍。这样一个基因会传播得很迅速。如果这样一个基因停止传播,惟一的原因就是它已“杀死”了太多的男性,使物种本身的存在都受到了威胁——男性变得很稀罕。

    这是异想天开吗?根本不是。在一种学名叫做Acreaencedon的蝴蝶里,这种情况就发生了。结果就是这种蝴蝶的97%都是雌性。这只是我们所知的这种形式的进化冲突中的一例,我们称为“性染色体的推动力”。大多数已知的类似事例只限于昆虫,但是这只是因为科学家们对昆虫研究得比较详细。我在前文中引用过的那个奇怪的词,“冲突”,现在开始更加有意义了。有一个简单的统计资料:因为雌性有两条X染色体,雄性有一条X一条Y,所以在所有性染色体中有四分之三是X,只有四分之一是Y。换句话说,一条X染色体三分之二的时间是在雌性体内度过的,只有三分之一的时间是在雄性体内度过。这样,X染色体进化出攻击Y染色体能力的可能性,是Y染色体进化出攻击X染色体能力的可能性的三倍。Y染色体上的任何基因都可能受到来自一个新进化出来的X基因的攻击。结果就是Y染色体扔掉了尽可能多的基因,把剩下的“关闭”,以“跑得远远地藏起来”,剑桥大学的威廉?阿莫斯(WilliamAmos)用“科技术语”这样说。

    人类的Y染色体在关掉它的大多数基因方面做得如此之有效,使得现在的Y染色体上绝大多数都是没有编码功能的DNA,什么功能也没有,但是这样它们就不给X染色体以任何可以用来瞄准的目标。有一段短短的序列看上去像是最近才从X染色体上“溜”过来的,这是所谓的“假常染色体”区域。除此之外还有一个极为重要的基因,就是我们前面提到过的SRY基因。这个基因启动一系列的事件,导致胚胎雄性化。一个单个基因能够有这样的能力是很少见的。尽管它的作用只是类似于拨一个开关,但很多事件紧随其后。生殖器官发育得像阴茎与睾丸,身体的形状与组成变得不再像女性(在我们这个物种里所有个体一开始都被当成女性对待,但在鸟类和蝴蝶就不是这样),各种激素也开始在大脑里起作用。几年以前,《科学》杂志上曾刊登过一幅搞笑Y染色体图,声称已经找到了那些典型的男性行为的基因,这些行为包括不停地拿遥控器换电视频道、记忆和复述笑话的能力、对报纸上体育版的兴趣、沉迷于包含摧毁性行为和有人死的情节的电影,以及不会通过电话表达感情。这个搞笑图之所以好笑,是因为我们认出了它提到的这些行为都是典型的男性行为。这个笑话强化了“这些行为是由基因决定的”这种说法,而远不是在嘲笑这种说法。这个图惟一错的地方在于,并不是每一种男性行为来自于一个特殊的基因,而是所有这些行为来自于因睾丸激素等引起的大脑的普遍雄性化,其结果,就是男性在现代社会里的这些表现。这样,从某种角度来说,很多男性特有的习惯都是SRY基因的产物,因为正是SRY基因启动的一系列事件导致了大脑与身体的男性化。

    SRY基因比较特别。它的序列在不同男性体内惊人地相似:在人体内,它的序列中几乎没有点突变(也就是一个字母的区别)。在这种意义上说,SRY基因是一个没有变化的基因,从大约20万年前人类的最后一个共同祖先到现在,它就没有改变过。但是,我们的SRY基因与黑猩猩的很不同,与大猩猩的也很不同:这个基因在物种与物种之间的差别比一般基因要高十倍。跟其他活跃(也就是说,被表达的)的基因相比,SRY基因是进化最快的基因之一。

    我们怎样解释这个矛盾的现象呢?据威廉?阿莫斯和约翰·哈伍德(John Harwood)说,答案隐藏在被他们称做“有选择地清扫”的那些逃跑与藏匿之中。时不时地会有一个有推动作用的基因出现在X染色体上,依靠着能够辨认出SRY制造出来的蛋白质的能力,来攻击Y染色体。这样,任何很少见的SRY基因的突变形式,如果能够造出一种不能被识别出来的蛋白质,它就立刻有了进化优势。这种突变形式就会取代其他形式在男性体内传播。有推动作用的X染色体使性别比例向女性倾斜,而SRY的突变形式又把这个比例扳回平衡点。结局就是一种新的SRY基因形式存在于所有男性体内,没有个体之间的差别。也许,这样一种突然爆发的进化发生得如此之快,进化的纪录里都没有能够留下它的痕迹。其结果,就是制造出了在物种之间差别很大而在物种之内又几乎没有差别的SRY基因。如果阿莫斯和哈伍德是正确的,那么这样的清扫至少有一次是发生在人类祖先与黑猩猩祖先分开之后(500万~1000万年前),但又是发生在所有现代人类的最后一个共同祖先之前(20万年以前)。

    你也许会觉得有些失望。我在这一章一开始讲到的暴力与冲突变成了分子进化理论的一个细节。不要担心,我还没讲完呢,而且我很快就会把这些分子与真实的、人与人之间的冲突联系起来。

    在研究性别对抗方面,领头的学者是加利福尼亚大学圣塔克鲁斯(SantaCruz)分校的威廉?赖斯(WilliamRice),他做了一系列了不起的实验来阐明自己的观点。让我们回到一个假设中的我们远古的祖先那里,他刚刚得到了一条新的Y染色体,正在关掉那上面的许多基因,以躲避有推动力的X染色体基因。用赖斯的话说,这条新的Y染色体是对男性有利的基因的温床。因为一条Y染色体永远不可能到一个女性体内,它就可以随意地获得那些对女性非常不利的基因,只要这些基因对男性有一点点好处(如果你还认为进化是为了让整个物种得益,你就别再这样想了)。在果蝇里,(在这一点上人类也一样,)雄性射出来的液体是含有精子的内容丰富的“汤”,称做精液。精液里有蛋白质,基因的产物。它们的作用还属于未知,但是赖斯有一个很厉害的想法。在果蝇交配的过程中,这些蛋白质进入雌蝇的血液里,并且转移到其他地方,包括“她”的脑。在那里,它们的功能是降低“她”对交配的兴趣,并提高“她”的排卵率。30年以前我们会把排卵率的提高说成是对物种有利的事情:母蝇到了停止寻找性伴侣的时候了,取而代之的是“她”寻找做巢的位置,公蝇的精液使得母蝇的行为发生了变化。你可以想象,国家地理节目的解说词就是这么说的。现在,这个现象却有了一层邪恶的光环。公蝇是在试图操纵母蝇不要再去与其他公蝇交配,让“她”为了自己多产些卵,“他”这样做是受了那些性别对抗基因的指使。这些基因也许是在Y染色体上,也许是被Y染色体上的基因启动的。母蝇则在自然选择的压力之下对这样的操纵越来越抵触。最后陷入僵局。

    赖斯用了一个匠心独运的实验来验证他的想法。他在29代果蝇中,制止了母蝇抵抗力的发展,这样,他就保留了一支与其他分支不同的母蝇。同时他又通过让公蝇与另一些抵抗力越来越强的母蝇交配,使公蝇制造出越来越有效的精液蛋白质。29代之后,他把公蝇与没有抵抗力的母蝇交配。结果一目了然。公蝇的精液在操纵母蝇的行为方面是如此高效,它已经变成有毒的了,它可以把母蝇杀死。

    现在赖斯相信性别对抗在各种环境之下都是存在的,所留下的线索就是那些飞速进化的基因。例如,在一种带壳的鱼——鲍鱼里面,精子需要用一种名为细胞溶素的蛋白质,在卵子细胞表面由糖蛋白组成的“网”上钻出一些洞来。这种细胞溶素是由一个变化非常快的基因制造的(在我们人体里可能也是如此)。这也许是因为细胞溶素与糖蛋白网之间进行着“军备竞赛”。精子如果能够飞快地进入卵子,这对精子有好处,对卵子则有坏处,因为其他寄生物或是第二个精子也有可能进来。再举一个与人类关系比较大的例子,胎盘是由来自父方的变化飞快的基因控制的。以戴维?黑格为首的现代进化理论家们现在相信,胎盘更有可能是由胚胎里来自父方的基因控制的、寄生在母体内的东西。不顾母体的反对,胎盘试图控制母亲体内的血糖水平以及血压,以利于胚胎的成长。在讲第十五号染色体的章节里我们还会再回到这一点。

    但是,交配行为又是怎么回事呢?传统的观念认为,雄孔雀那繁复的尾巴是用来吸引雌孔雀的设备,而且它是依照着过去的雌孔雀的欣赏标准设计出来的。赖斯的同事布雷特?霍兰(BrettHolland)却有一种不同的解释。他认为雄孔雀的尾巴的确是进化来吸引雌性的,但这是因为雌孔雀对这种吸引方式越来越抵触。雄孔雀实际上是用交配前的展示来代替用力量强迫,而雌性用对于展示的欣赏与否来自己控制交配的频率与时间。这就能够解释出现在两种蜘蛛里的让人吃惊的现象。一种的前腿上长有一束尖刺,与交配有关。在观看雄蜘蛛展示自己前腿的录像时,雌蜘蛛会用自己的行为来表示她是否被这只雄蜘蛛撩拨得动了情。如果我们把录像加工一下,把雄蜘蛛前腿上的尖刺去掉,雌蜘蛛仍然同样有可能觉得雄蜘蛛的展示很“煽情”。但是,在另一种蜘蛛里,雄蜘蛛没有这些尖刺。如果在录像里人工加上尖刺,那么雌蜘蛛“接受”雄蜘蛛要求的机会就被增加了一倍以上。换句话说,在进化过程中雌性渐渐地“反感”了雄性的展示,而不是越来越喜欢。就这样,性别之间的选择是“勾引”基因与“抵制”基因之间的对抗的表达。

    赖斯和霍兰得到了一个让人不安的结论:越是有社会性、越是个体之间交流多的物种,越会受到性别对抗基因的影响。这是因为两性之间的交流给性别对抗基因提供了一个兴盛的场所。在地球上最有社会性、最善于交流的物种,当属人类。这样,一切豁然开朗——为什么人类的两性关系像个雷区一样,为什么男性在什么是来自女性的性骚扰这个问题上有着那么多不同的标准。从进化角度来说,驱动两性关系的不是什么对男性有利或什么对女性有利,而是什么对他们或她们的染色体有利。在过去,能够吸引女性对Y染色体是有好处的,而能够拒绝一个男性的吸引则对X染色体有好处。

    像这样的基因群之间的冲突(Y染色体上的所有基因就是一个基因群),并不只是在“性”方面才有。假设有一个基因的某种形式能够让人更易说谎(这不是一个在现实中很有可能性的假设,但是也许确实有一大批基因可以间接影响一个人是否诚实),这个基因也许会靠着把它的“主人”变成一个成功的诈骗犯而更好地繁殖自己。但是,再假设也许在另一条染色体上有另一个(或一群)基因有一种形式能够提高人辨别谎言的能力,这个基因要想更好地繁殖自己,就得使得它的拥有者避免上那些骗子的当。这两个基因会互相对抗着进化,每一个基因的进化都刺激着另一个的进化,即使这两个基因是被同一个人拥有。它们之间是赖斯和霍兰所说的“位点之间的竞争进化”(ICE)。在过去的300万年间推动人类智力进步的也许正是这样一个竞争过程。以前有一种说法,即人脑的增长会帮助我们的祖先在非洲平原上制造工具和点火,这种说法早就没人感兴趣了。取代它的是大多数进化生物学家都相信的马基亚维里(Machiavelli)16世纪意大利政治家、历史学家和政治理论家。他的理论认为,道德与政治无关,狡猾与欺骗在统治者夺得与保持权力的时候是正当的。——译者注)理论——在操纵别人和抵御操纵这两者的“军备竞赛”中,体积大的脑子是很必要的。赖斯和霍兰写到:“我们称做智力的现象,也许只是基因组之间冲突的副产品。这种冲突,是用语言做武器的进攻与防守基因之间的冲突”。

    原谅我偏题偏到智力上去了,让我们回到性上面吧。遗传学上最引起轰动、最有争议、大家争论得最激烈的发现之一,是1993年迪安·哈默(Dean Hamer)(当代美国生物学家。——译者注)宣布他发现了X染色体上的一个基因对于人的性取向有很强的影响,或者如媒体所说,一个“同性恋”基因。哈默的研究是那个时候发表的几项研究之一,它们都指向同一个结论,即同性恋有其生物学原因——而并非来自环境压力或一个人自己有意识的选择。有些研究工作是由同性恋者自己完成的,例如萨奥克研究院(Salk Institute)(位于美国加利福尼亚州的生物学研究院。——译者注)的西蒙·勒威(Simon LeVay),他们中的一些人急于在公众心目中建立一个在他们自己心目中已经牢牢扎根的概念:同性恋者是生来如此的。他们相信,如果一种生活方式由与生俱来的倾向性决定,而非由人的意志决定,那么它所遭到的偏见就会小一些。这种想法有一些道理。而且,如果同性恋确由先天因素引起,那么家长们也就不会觉得同性恋那么有威胁性了,因为,除非孩子本身已有同性恋倾向,否则孩子崇拜的人物中那些同性恋者就不会使自己的孩子也成为同性恋。事实上,那些保守的、不宽容的人最近开始攻击同性恋的遗传因素方面的证据。1998年7月29日,保守的杨女士(The Conservative Lady Young)在《每日电讯报》上写道:“我们在接受‘同性恋’是天生的这一说法时一定要谨慎,不是因为它不正确,而是因为它为那些给同性恋者争取权利的组织提供了借口。”

    但是,不管有些研究人员多么希望看到某种特定的结果,他们的研究还是客观坚实的。同性恋有高度的遗传性这一点,是无可怀疑的。例如,有一项研究,研究对象中54位有异卵双生兄弟的同性恋者中,他们的兄弟有12位也是同性恋。而研究对象中56位有同卵双生兄弟的同性恋者中,他们的兄弟有29位也是同性恋。不管是同卵还是异卵双生,孪生子的生活环境是一样的,这个结果就说明,一个或一些基因是一个男性成为同性恋者的一半原因。有一打其他的研究都得到了相似的结果。

    迪安·哈默被这个结果迷住了,开始寻找可能的基因。他和他的同事访问了110个家里有男性同性恋者的家庭,并且注意到了一些不寻常的事情。同性恋似乎是在女性中传递下来的。如果一个男人是同性恋,那么最有可能的是,在他的上一代里他父亲不是同性恋,他母亲的兄弟却是。

    这个观察立刻让哈默想到这个基因也许是在X染色体上,因为一个男性只从他的母亲一方得到一套X染色体上的基因。他比较了他研究的那些家庭里中同性恋男性与“正常”男性基因标识的区别,很快发现了一个“可疑”区域:Xq28,位于X染色体长臂的顶端。同性恋的男性中,有75%的人都带有这个基因的一种形式,而“正常”男性中,有75%的人都带有这个基因的另一种形式。从统计学角度说,我们有99%的信心相信这个结果不是巧合。之后,其他结果也证明了这个结果的可靠性,而且还排除了这个区域与女性中的同性恋倾向的关系。

    对于罗伯特?特里弗斯(RobertTrivers)这样的敏感的进化生物学家,同性恋基因有可能在X染色体上这一说法立刻让他有所联想。如果一个基因能够影响性取向,那么有一个问题就是,使人成为同性恋的那种形式很快就应该灭绝掉。但是,同性恋在当代人群里占有可观的比例。或许有4%的男性毫无疑问地是同性恋,还有更少的一些人是双性恋。因为平均来讲,同性恋的男性比“正常”男性更不可能有孩子,那么同性恋的基因就应该从很久以前就在人群中逐渐减少直到消失,除非它带有其他什么好处来弥补这一弱势。特里弗斯论述说,因为一条X染色体存在于女性体内的时间是它存在于男性体内时间的两倍,一个性别对抗的基因如果能够有助于女性的生殖能力,那么它即使对男性的生殖能力有两倍的损害,也仍然能够存留下来。比如说,假设哈默发现的基因决定女性青春期开始时的年龄,甚至是乳房的大小(记住这只是一个假设啊)。这些性质每一个都能够影响女性的生殖能力。在中世纪的时候,大乳房也许意味着更充足的奶水,或是能够嫁到一个有钱的丈夫,于是生下的孩子也就更有可能避免在婴儿期就夭折。就算同一个基因的同一种形式使得儿子觉得男性才有吸引力,因此降低男性后代的生殖能力,但是因为它给女儿带来益处,所以它仍然能够存在下来。

    在过去,同性恋与两性之间冲突的联系只是一个大胆的猜想,直到哈默的基因被发现和被解码。事实上,Xq28与性别取向之间的联系仍然有可能是误导。麦克?贝利(MichaelBailey)最近对于同性恋家族遗传性的研究就没能发现同性恋由母系遗传的倾向。另外一些科学家也没能发现哈默声称的Xq28与同性恋之间的联系。现在看来这种联系也许只存在于哈默研究过的那些家族里。哈默本人也提醒大家,在同性恋基因被真正确定之前,轻易下结论是错误的。

    而且现在又有了一个让事情变得更复杂的因素:另一种完全不同的解释同性恋的理论。现在变得越来越清楚的是,性取向与出生的顺序有关。一个男人,如果有一个或几个哥哥,那么他与那些没有兄弟姐妹、只有姐姐没有哥哥或者在家里是老大的男性相比,就更容易成为同性恋。出生顺序对性取向的影响如此之强,每多一个哥哥,一个人成为同性恋的可能性就增加三分之一。(这仍然是很低的可能性,3%再增加三分之一也只是4%。)这种现象现在已经在英国、荷兰、加拿大和美国都被发现和报道过了,而且在很多研究对象里都发现了。

    对大多数人来讲,他们首先想到的是类似于弗洛伊德理论的想法:在一个兄长很多的家庭里长大,也许兄弟之间的关系使得一个人具有了同性恋的倾向。但是,就像我们常常发现的那样,用弗洛伊德理论作为对事物的第一反应往往是错的。(在旧的弗洛伊德理论中,同性恋被认为是由一个过于保护孩子的母亲和一个有隔膜的父亲造成的,这几乎肯定地是本末倒置了。其实是儿子正在形成的女人气让父亲对儿子有了隔膜,而母亲因为要补偿儿子,就变得保护过度。)回答也许又一次存在于两性之间的对抗中。

    出生顺序对于女性同性恋倾向没有影响,她们在家庭里兄弟姐妹中的排行是随机的。这给了我们一个重要线索。除此之外,一个男人有几个姐姐也与他是否是同性恋无关。在一个已经孕育过男孩子的子宫里被孕育是一件不一般的事情,它会增加一个男人成为同性恋者的可能性。最好的解释与Y染色体上的一套三个活跃的基因有关。它们编码的蛋白质被称为H-Y次要组织相容性抗原。一个与它们相似的基因编码一种名叫抗谬氏激素的蛋白质,这种蛋白质对于人体的男性化有着至关重要的作用:它使得男性胚胎体内的谬氏小管萎缩,而谬氏小管正是子宫和输卵管的前身。这三个H-Y基因的功能是什么,还不确定。它们对于生殖器官的男性化并不是不可或缺的,有睾丸激素与抗谬氏激素就够了。H-Y基因的重要性在现在才开始显现出来。

    这三个基因编码的蛋白质之所以被称为抗原,是因为它们“挑衅”母体的免疫系统产生一种反应。其结果就是母体的免疫系统在母亲孕育下一个男孩的时候更强了。(女婴不会制造H-Y抗原,也就不会引起免疫系统的反应。)雷?布兰查尔德(RayBlanchard)是研究出生顺序对同性恋的作用的人员之一,他论述说,H-Y抗原的任务是把一些器官中的一些基因激活,特别是大脑里的一些基因。事实上,在对于老鼠的研究中人们得到了一些证据说明这个说法是正确的。如果如此,那么母亲体内强壮的免疫系统就会对大脑的男性化起部分抑制作用,但却不会影响生殖器官的男性化。这样的男性就会被其他男性吸引,或者至少是对女性不太动心。有一个实验是让年幼的老鼠对H-Y抗原免疫,与对照组相比,这样的老鼠长大之后在很大程度上不能成功地交配。但急人的是研究人员们在报告里并没有说明不能正常交配的原因是什么。同样的,在果蝇发育过程中的某个关键时期,如果把一个叫做“转化器”的基因给激活,那么雄性果蝇就只会表现出雌性果蝇的性行为。这种变化一旦发生就不可逆转了。

    人不是老鼠也不是果蝇,有足够多的证据表明人脑的性别分化在出生之后还会继续进行。除了个别例子之外,同性恋的男性并不是被禁锢在男性肉体里的女性。他们的大脑至少是被激素部分男性化了的。但是仍然有可能他们在早期的某个关键的敏感时期缺少了一些激素,而这永久性地影响到了一些功能,包括性取向。

    比尔?汉密尔顿(BillHamilton)是最早形成性别对抗这一理论的人,他明白这会多么深远地影响我们对于什么是基因的认识。他后来写道:“现在有了这样一种认识,即基因组并不是为了一个项目——生存,生孩子——而存在的一个资料库再加一个实行计划的团队,就像我以前想象的那样。它开始越来越像一个公司的会议室,是自我中心的人和派系之间权力斗争的舞台”。汉密尔顿对于基因的新的理解开始影响到他对自己的头脑的理解:

    我自己这个有意识的、看上去是不可分割的自我,结果竟与我的想象差别如此之远,我一点也不必因为怜悯自己而感到羞愧。我是被一个脆弱的联盟送到外面去的大使,带着一个四分五裂的帝国里那些心情紧张的统治者们给我的互相矛盾的命令。……当我写下这些字的时候,为了能够写下这些字,我就得装着自己是一个统一体,而在内心深处我知道这样一个统一体是不存在的。我是一个混合体,男性与女性、父辈与子辈、相互争斗的染色体片段,它们之间的冲突是在胡斯曼(Housman,诗人;塞汶河,英国最长的河流)诗中说的塞汶河(River Severn)看到凯尔特人与萨克逊人之前几百万年就形成了。

    基因之间有冲突,基因组是父辈基因与孩子的基因、男性基因与女性基因之间的战场,这样一种说法,是除了少数进化生物学家之外鲜为人知的故事。但它却深深地动摇了生物学的哲学基础。

    第八号染色体 自身利益

    我们是生存机器——糊里糊涂的、被事先编好程序的自动化机器,用来保存那些名叫基因的自私的分子。这是一个仍然让我感到目瞪口呆的事。  ——理查德•道金斯:《自私的基因》

    随着新电器而来的使用手册总是很使人恼火。它们好像永远没有你最需要的那一条信息,弄得你团团转,让你气急败坏,而且它们在从中文被翻译过来(因为在西方国家销售的电器很多是中国制造的)的过程中肯定有些内容被丢掉了。但是它们倒不会添什么东西进去,不会在你正读到要紧之处的时候忽然加五份席勒的《欢乐颂》或是一份半份套马指南。一般来说,它们也不会把一份怎样安装机器的说明重复五次,或把使用说明分成27段,每两段之间再插上好几页不相关的文字,让你连找自己想要的段落都很困难。但是这却描述了人类的视网膜细胞瘤基因。而且,就我们所知,这个基因是一个很典型的人类基因。它有27段有意义的段落,却被26页其他玩意给打断。

    自然母亲在基因组里藏了一个卑污的小秘密。每一个基因都比它所必要的更繁复,它被打断成很多不同的“段落”也叫外显子;在它们之间是长长的随机、无意义的序列(叫做内含子),有些跟这个基因完全无关的有意义的片段在内含子里大量重复。这些重复片段有时候是另外一个完全不同的(不吉利)基因。

    之所以出现这种“文字结构”上的混乱,是因为基因组是自己写自己,而且不断地加减、更改了40亿年。自己写自己的文件有着不同寻常的特性。尤其是它们很容易被别的东西当成寄生地。在这个时候打比方是有点不太沾边,但是,试想一个写使用手册的作家,他每天早晨到了自己的电脑前都会发现他文章里的各个段落都吵闹着要吸引他的注意。那些声音最大的逼着他把自己又重复了五遍,放在下一页里。结果就是,使用手册还是存在的,否则机器就永远没法组装起来了,但是其中充满了那些贪婪的像寄生虫一般的段落,它们因为作家的顺从得到了好处。

    实际上,随着电子邮件的发展,这个比喻已经不再像以前那样不着边际了。假设我发给你一份电子邮件,读起来是这样的:“注意,有一个很厉害的电脑病毒出现了;如果你打开一个标题里有‘橘子酱’的邮件,它会洗掉你的硬盘!请把这个警告转发给所有你能想到的人。”这是我编的。就我所知,到目前为止还没有名叫“橘子酱”的电子邮件在游走。但是我却有效地夺走了你的早晨,让你发出我的这个警告。我的电子邮件就是病毒。

    至此,这本书里的每一章都集中讲述了一个或一组基因,这背后的假设基因是基因组里最重要的东西。别忘了,基因是DNA的片段,是用来编码蛋白质的。但是我们的基因组里97%都不是真正的基因。它们是一大群各种各样的怪东西:有的叫伪基因,有的叫逆转录伪基因,有的叫卫星体、小卫星体、微卫星体、转座子、逆转录转座子。所有这些放在一起被统称“垃圾DNA”,有些时候也被叫做“自私DNA”,这种叫法比较准确。这些东西里有些是一种特殊的基因,但大多数就是一段一段的永远也不会被转录成蛋白质语言的DNA。因为它们的故事很自然地是接在上一章讲过的性别冲突的故事后面,所以,这一章我们就专门讲垃圾DNA。

    碰巧这是一个适合讲述垃圾DNA的地方,因为关于八号染色体我没有什么特别可说的。这可不是在暗示这是一条枯燥乏味的染色体,也不是说它没有几个基因。这只是因为我们在这条染色体上发现的基因中没有一个引起了我这个没有耐心的人的注意。

    (从它的大小来讲,八号染色体比较而言是被忽略了,它是基因图谱中被绘制得最不详细的染色体之一。)在每一条染色体上都有垃圾DNA。好笑的是垃圾DNA是人们在人类基因组里发现的第一个有真正实际的用途、在日常生活里能够用到的东西。它导致了DNA“指纹”检验。

    基因是蛋白质的配方。但是并不是所有蛋白质的配方都是受身体欢迎的。在整个人类基因组里最常见的蛋白质配方是编码一个名叫逆转录酶的蛋白质的基因。逆转录酶基因对于人体来说一点用处也没有。如果在一个受精卵刚刚形成的时候把基因组里逆转录酶基因的每一个拷贝都小心地、魔术般地去掉,这个人有可能更健康、更长寿、更快乐,而不是相反。逆转录酶基因对于一种“寄生虫”来说才是至关重要的。它是艾滋病毒的基因组里非常有用——虽然不是必不可少——的组成部分,它在艾滋病毒侵入并杀死其他生命体的能力中起着重要的作用。相反,对于人体来说,这个基因是个讨厌的、有威胁的东西。但是它却是整个基因组里最常见的基因之一。在人类的染色体上散布着几百甚至上千个拷贝。这是个让人吃惊不小的事实,就像是我们突然发现了汽车的最常见用途是逃离犯罪现场。那么这个基因为什么存在呢?

    从逆转录酶的功能里我们得到了一个线索。它把一个基因的125RNA拷贝翻录成DNA,又把这段DNA“缝”回基因组里去。它是一个基因的回程车票。利用这种方法,艾滋病毒可以把自己基因组的一部分整合到人体的基因组里去,以便更好地把自己隐蔽起来,更好地保存自己和更有效地复制自己。人类基因组里很多逆转录酶基因的拷贝之所以在那里,是因为我们能认得出来的一些

    “逆转录病毒”把它们放在了那里,在遥远的过去或是最近的时期。人类的基因组里含有几千种病毒的几乎完整的基因组,大多数现在已经不再活跃,或者最关键的基因已经缺失了。这些“人体内在的逆转录病毒”占了人类基因组的1.3%。这听起来好像不算多。但是那些“合用的”基因也只占了3%。你要是觉得你是猿猴的后代这一事实打击了你的自信,那你就试着习惯于你也是病毒的后代这个想法吧。

    但是,何不甩掉逆转录酶这个中间人呢?一个病毒的基因组完全可以去掉大部分基因,而只留下逆转录酶基因。这样,一个轻装过的病毒可以用不着那么辛苦地试图通过唾液或趁人性交的时候从一个人跑到另一个人,它就可以留在一个人的体内并且搭他的便车一代一代传下去。这是一个真正的寄生病毒。这种“逆转录转座子”比逆转录病毒还更普遍。最常见的是一串被称做LINE-1的“字母”这是一段DNA,大约1000〜6000字长,在靠近中间的地方有一份逆转录酶的完全编码。LINE-1不仅仅是多——在每一个人类基因组里面大约有10万份拷贝——而且还总集中在一起,也就是说在一条染色体上往往有好几段LINE-1紧紧挨在一起。它们占了整个基因组的14.6%,一个让人吃惊的数字。也就是说,它们比“真正”的基因多四倍。这个现象的含义很吓人。LINE-1有它们自己的回程车票。一个LINE-1可以让它自己被转录,然后造出它自己的逆转录酶,再用那个酶造出一份自己的DNA的拷贝并把它插回到基因组中随便一个位置上去。这也许就是为什么在基因组里有那么多份LINE-1。换句话说,这个重复性那么强的段126落之所以有那么多,就是因为它善于复制自己,没有其他原因。

    “一个跳蚤身上还有更小的跳蚤,它又会挨比它更小的跳蚤的咬。”如果LINE-1存在于人类的基因组里,那么又会有其他的序列寄生在它中间,把自己的逆转录酶丢掉而用LINE-1的。比LINE-1还常见的,是一种很短的段落,叫做Alu。Alu有180〜280个字母,看上去好像非常擅长用别人的逆转录酶来复制自己。在人类的基因组里,Alu也许被重复了100万次——加起来大约占整个基因组的10%。

    因为一些我们还不知道的原因,Alu的序列与一个真正基因的序列很相似,这个基因编码的是核糖体一制造蛋白质的机器——的一部分。这个基因与众不同的地方是它有一个内部启动子,也就是说,“读我”这个信号是写在基因中间的一段序列里的。这样,它就成了一个进行大量繁殖的最佳选择,因为它带有自己转录所需的信号,而没有必要把自己放在另外一个转录信号附近。结果就是每一个Alu基因可能都是一个“伪基因”。用一个通俗的比喻,伪基因就是那些生锈的基因残体,被一个很厉害的突变给扯到了水线以下,沉没了。它们现在歇息在基因海洋的底部,逐渐地长了越来越多的锈(也就是说,积累了越来越多的突变),直到它们与它们过去的样子再也不像了。举一个例子。在九号染色体上有一个很难描述的基因,如果你拿一份它的拷贝,在整个基因组里寻找与它相似的序列,你会发现有14个拷贝分布在11条染色体上:14条沉没的船体的鬼魂。它们是多余的拷贝,一个挨一个地,有了突变,不再被使用了。对于大多数基因来说可能都是如此。每一个正常的基因,都在基因组里的其他地方有一批坏了的拷贝。对于这14个拷贝来说,有意思的是它们不但在人类基因组里被找到,人们还试图在猴子基因组里寻找它们。人类体内的14份伪基因中,有3份是在旧世界猴子和新世界猴子(旧世界猴子指非洲和亚洲的猴子,新世界猴子指南美洲的猴子)分开之后才“沉没”的。科学家们激动地上气不接下气地说:这就意味着,它们从自己的编码功能上“下岗”,“只是”3500万年前的事。

    Alu疯狂地复制了自己,但是它们也是在相对较近的时期才这样做的。Alu只在灵长类动物里才被发现过,被分成五个不同的家族,有些家族只是在猩猩和人分离之后才出现(也就是说,过去的500万年之内)。其他动物有其他的大量重复的短片段,在老鼠里有一种叫B1。

    所有这些有关LINE-1和Alu的信息加在一起,是一个重要的却又在意料之外的发现。基因组里到处都是被乱丢的垃圾,甚至可以说基因组被电脑病毒那样的东西、自私的寄生序列给堵上了。它们存在的原因很简单很单纯,就是因为它们善于复制自己。我们的基因组里满是连环信件和关于橘子酱的警告。大约35%的人类基因组是各种形式的自私DNA,也就是说,要想复制我们自己的基因需要多花费35%的能量。我们的基因组太需要除虫了。

    没有人猜到这一点,没有人预见到,当我们读出生命密码的时候,我们会发现它被自私的DNA这么没有限制地利用。但是我们其实应该预见到,因为生命的所有其他层次都充满了寄生现象。动物的肠道里有虫子,血液里有细菌,细胞里有病毒,为什么在基因里不能有逆转录转座子?再说,到了70年代中期的时候,很多进化生物学家,尤其是那些对行为感兴趣的,已经意识到了自然选择的进化方式主要不是关于物种之间的竞争、不是关于群落之间的竞争,甚至也不是关于个体之间的竞争,而是关于基因之间的竞争。这些基因用个体,也有个别时候用一个群体,作为它们暂时的载体。例如,如果让一个个体要么选择一个安全、舒适、长寿的生活,要么选择有风险、辛苦、危险地繁殖后代,几乎所有动物(事实上植物也如此)都选择后者。它们为拥有后代而选择增加自己死亡的几率。实际上,它们的身体被有计划地设计了废弃的过程,叫做衰老,它使动物在达到了生育年龄之后就逐渐开始机能的衰退,或者像枪乌贼或太平洋大马哈鱼那样,马上死亡。除非你把动物的身体看成是基因的载体,看成是基因在让它们自己长生不死的竞赛中的工具,否则这些便无法解释。与给下一代以生命这个目标相比,一个个体在生育之后是否继续存活是次要的。如果基因是自私的复制机器,而身体是可以丢弃的载体(用理查德•道金斯的颇有争议的术语来说),那么当我们发现有些基因可以用不着建立自己的身体就能够复制自己的时候,我们就不会那么惊讶了。当我们发现基因组也像身体一样,充满了它们独特的生存竞争与合作,我们也就不必惊讶了。在70年代,进化第一次成了遗传学概念。

    为了解释基因组里充满了的大块大块的没有基因的区域,两组科学家在80年代提出,这些区域充满了自私的序列,它们的惟一功能就是在基因组里生存下来。“寻找其他解释的努力,’他们写道:“也许会证明不仅在学术上没有创意,最终也会是徒劳的。因为做了这么一个大胆的预言,他们在当时受到了不少嘲弄。遗传学家们当时仍然被这么一个思维上的框框束缚着:如果人的基因组里有一个什么东西,那么它肯定是为了人的目的而存在,而不是为了它自己的自私的目的。基因不过是蛋白质的配方。把它们想象成是有自己的目标与梦想的东西,没有任何道理。但是,那两组科学家的预言被精彩地验证了。基因的行为确实像是它们有自己的自私的目标,不是它们有意识地如此,而是我们回过头来研究它们的时候发现如此:看上去像有自己目标的基因繁衍下去了,而其他的基因则没有。

    一段自私的DNA并不仅仅是个过客,它的存在不仅仅是把基因组加长了一些,使得复制基因组的时候需要更多的能量。这样一段DNA对于基因的完整性是个威胁。因为自私的DNA有从一处跳到另一处的习惯,要么就把自己的一个拷贝送到新的地点去,所以它很有可能跳到一个正常工作的基因的正中间,把这个基因搞得面目全非,然后又跳到一个新的地方去,突变也就又消失了。在40年代晚期,转座子就是这么被有远见而又被人忽视的巴巴拉•麦克林托克(Barbara Mc Clintock)(巴巴拉•麦克林托克:20世纪美国遗传学家。)发现的(她最后终于在1983年得到了诺贝尔奖)。她注意到,玉米种子颜色的突变只能够用这样一种理论解释,即有些突变是在色素基因里跳进跳出的。

    在人体里,LINE-1和Alu通过跳到各种各样基因的中间而制造出了很多突变。例如,它们通过跳到凝血因子基因的中间而导致了血友病。但是,因为一些我们还没有很好理解的原因,作为一个物种,我们没有像有些其他物种那样被寄生的DNA困扰得那么厉害。大约每700个人类基因的突变里有一个是由“跳跃”的基因造成的,但是在老鼠里大约有10%的突变是由“跳跃”基因造成。跳跃基因潜在的危害有多大,被50年代一些很自然的实验在果蝇身上揭示出来了。果蝇是遗传学家心爱的实验动物。他们研究的这种果蝇学名为Drosophilamelanogaster,已经被运到全世界各地,在实验室里繁殖。它们常常会逃出来,从而遇到自然环境中其他种类的果蝇。有一种果蝇学名为Drosophilawillistoni,带有一种跳跃的基因名叫P因子。大约在1950年的时候,在南美某地,不知怎么一来(也许是通过一种吸血的尘螨),Drosophila willistoni的P因子进入了Drosophilamelanogaster。(人们对于所谓“异源器官移植”的一大担心,就是把猪或狒狒的器官移植给人的时候会不会把一种新的跳跃基因也引入到人体中去,就像果蝇中的P因子一样。)P因子从那时起就像野火一样蔓延开来,现在大多数果蝇都有P因子了,只除了1950年之前从自然界采集来又一直被与其他果蝇分开的那些。P因子是个自私的DNA,它通过破坏那些它跳上去的基因来表现出它自己的存在。逐渐地,果蝇基因组里的其他基因开始反攻了,它们发明了抑制P因子到处乱跳的手段。现在,P因子逐渐安顿下来,成了基因组里的旅客。

    人体中没有像P因子这样邪恶的东西,起码现在没有。但是,一种类似的因子在大马哈鱼中被发现了,它叫做“睡美人”。当在实验室里被引入到人类细胞里之后它呈现出蓬勃生机,充分表现出剪贴DNA的能力。类似P因子的传播那样的事,也许在人类体内的九种Alu因子那里都发生过。每一个传遍整个物种,破坏其他基因,直到其他基因确定了它们的共同利益并合力抑制了这样一个跳跃因子,这样,这个跳跃因子就安顿下来,进入了它现在的这个比较沉寂的状态。我们在人类基因组里看到的不是什么飞速发展的寄生DNA感染,而是沉睡着的许多过去的寄生DNA,每一个都曾经传播得飞快,直到基因组抑制了它们。但是基因组却没有能够把它们清理出去。

    从这个角度来说(从很多角度来说),我们比果蝇要幸运。如果你相信一种新的理论,那么我们好像有一种可以被普遍运用的功能,来抑制自私的DNA。这个抑制机能被称做胞嘧啶甲基化。胞嘧啶是遗传密码里面的那个C。把它甲基化(真的就是在它上面接一个由碳原子和氢原子组成的甲基)就使它不再被阅读和转录出来。基因组的大部分区域在大部分时间里都处于甲基化——被挡住——的状态,或者起码大部分的启动子(就是位于基因前面、转录开始的部分)是这样的。大家普遍假设甲基化的作用是把一种组织里面用不着的基因关闭,这样就使得大脑与肝脏不同,肝脏与皮肤不同,如此等等。但是另一个与之抗衡的理论正在越来越有影响力。甲基化也许与基因在不同组织里的不同表达形式一点没有关系,而与抑制转座子和基因组内部的奇生DNA有很大关系。大多数甲基化的部位都是在LINE-1和Alu这样的转座子中间。这个新的理论称,在胚胎发育早期,所有的基因都短暂地失去了甲基的保护,全都被“打开”了。接下来的,是由一些特殊的分子对整个基因组进行审查。这些分子的工作是发现那些高度重复的片段,并用甲基化来把它们关闭。在癌组织中所发生的第一件事就是基因的去甲基化。结果就是自私的DNA从它们的镣铸里被解脱出来,在癌组织里大量地表达。因为它们在破坏其他基因方面很在行,这些转座子就使得癌症变得更加厉害。根据这个理论,甲基化的作用就是抑制自私的DNA的影响。

    LINE-1的长度一般是1400个字母。Alu则一般起码是180个字母。但是,有一些序列比Alu还要短,它们也大量地积累起来,像口吃的人说话那样地不断重复。也许把这些序列也称做是寄生DNA有些不着边际,但是它们的繁殖也是通过很类似的方法进行的——也就是说,它们之所以存在是因为它们自己带有一小段序列,能够把它们自己很好地复制出来。这些短序列中的一种,在法医学和其他学科里有很实际的用处。见一见“超可变微卫星体”吧。这个小小的序列在所有染色体上都找得到。在整个基因组里它占有1000多处位置。在每一个位置上它的序列都只含有一个“词组”大约20个字母长,重复很多次。这个词组可以因位置不同而有差别,也可以在不同的人体内有不同,但是它通常含有这些核心字母:GGGCAGGAXG(X可以是任何字母)。这个序列的重要性在于它与细菌中的一段序列非常相似,而细菌中的这段序列是用来与同一物种的其他细菌交换基因的。在人体内,它似乎也是参与了促进染色体之间基因交换的过程。就好像每一个这种序列都在它的正中间写有“把我换到别处去”的字样。

    这是一个多次重复的微卫星体的例子:
    hxckswapmeaboutlopl hxckswapmeaboutloplhxckswapmeaboutlopl hxckswapmeaboutlopl hxckswapmeaboutlopl hxckswapmeaboutloplhxckswapmeaboutlopl hxckswapmeaboutlopl hxckswapmeaboutlopl hxckswapmeaboutlopl。
    在这个例子里一个序列有10次重复。在其他地方,那1000个位置上的每一处可能有一个词组的五次重复,也可能有50次重复。根据词组里的指令,细胞开始把这些词组与另一条相同染色体上同样位置的词组进行交换。但是在这个过程中细胞经常出错,以至于会增加或减少几次重复。这样,每一个序列的长度都在逐渐变化,变化的速率之快使得它们的长度在每个人体内都不一样,但是又慢得使得一个人体内这些重复的长度大多数都与他父母体内的一样。因为存在着上千个这种重复序列,结果就是,每个人都有一套独特的数字。

    1984年,亚列克•杰弗里斯(Alec Jeffreys)(生物学家)与他的实验员维基•威尔逊(Vicky Wilson)偶然地发现了微卫星体。他们当时正在研究基因的进化,方法是比较编码人类肌肉里的蛋白质——肌球蛋白——的基因与海豹肌球蛋白的区别。他们发现在这个基因的中间有一段重复序列。因为每一个微卫星体都有相同的12个“核心”字母,但是重复的次数却变化很大,把这些序列找出来并比较它们在不同个体里长度上的区别是一件相对容易的事情。结果,它们在每一个个体里的重复次数变化如此之大,每一个人都有自己独特的“基因指纹”:一串黑色的条带,就像商品上的条带码一样。杰弗里斯立刻意识到了他这个发现的重要性。他放下了一开始研究的肌球蛋白,开始探索独特的基因指纹可以有些什么用处。因为陌生人之间的基因指纹区别非常大,移民局的官员立刻就对它有了兴趣,他们可以用这个办法来判断那些申请移民的人与他们声称的自己在美国的近亲是否真的有血缘关系。基因指纹测试显示,大多数人说的都是真话,这减轻了很多人的忧虑。但是,基因指纹的另一个更戏剧性的应用还在后头呢。

    1986年8月2日,在英国莱切斯特(Leicestershire)郡一个名叫纳尔伯罗(Narborough)的小村子附近的灌木丛中发现了一个女学生的尸体。15岁的唐•阿什沃思(Dawn Ashworth)是被人强暴之后勒死的。一个星期之后,警方逮捕了一名医院的搬运工,这个年轻人名叫理查德•巴克兰(Richard Buckland),他对犯罪行为供认不讳。事情到此似乎就终止了。巴克兰理应被判有谋杀罪,然后去坐牢。但是,警方当时还急于侦破另外一粧悬案一三年之前,一个名叫琳达•曼(Lynda Mann)的女孩的命案。琳达死时也是15岁,同时她也是纳尔伯罗村人,另外,她也是遭强暴后被勒死并被弃尸荒野的。这两起谋杀是如此相似,很难想象它们不是同一个人干的。但是巴克兰却坚决不承认曼也是他杀的。

    亚列克•杰弗里斯在基因指纹方面取得重大突破的消息,通过报纸传到了警察那里。而且因为杰弗里斯就在莱切斯特工作,离纳尔伯罗只有不到10英里路程,当地的警察就与他取得了联系,询问他是否能够证明巴克兰在曼的谋杀案中也是有罪的。他同意一试。警方给他提供了从两个少女身体内取到的精液和巴克兰的血样。

    杰弗里斯没费任何力气就在三份样品里都找到了各种各样的微卫星体。一个多星期的工作之后,基因指纹就准备好了。两个少女体内的精液完全一样,肯定是来自同一个男人。就此结案?但是杰弗里斯在下一份样品里看到的事情让他非常震惊。巴克兰的血样与那两份精液的基因指纹完全不同:巴克兰不是杀人者。

    莱切斯特郡警方对此表示了强烈的抗议,他们认为杰弗里斯肯定是什么地方搞错了,才得出这么一个荒谬的结论。杰弗里斯重新分析了样品,警局法医实验室也对样品进行了分析。他们得到了同样的结论。被搞糊涂了的警察很不情愿地撤销了对巴克兰的指控。在历史上,这是第一次以DNA序列为依据宣告一个人无罪。

    但是让人揪心的疑点仍然存在。不管怎么说,巴克兰交待了犯罪的行为。如果基因指纹能够替无辜者昭雪又能抓住真凶,那才能让警察们信服呢。于是,阿什沃思死了5个月之后,警方鉴定了纳尔伯罗一带5500个男人的血液,以寻找一个与那个强奸杀人犯的精液相符的基因指纹。没有任何血样与精液的“指纹”相符。

    之后不久,一个在莱切斯特的一个糕饼店里工作的伙计,伊恩•凯利(Ian Kelly),碰巧向他的同事提到这么一件事:他虽然住得离纳尔伯罗很远,但却参加了血样鉴定,他是应糕饼店的另外一个伙计的请求,才这样做的。另外一个伙计叫科林•皮切弗克(Colin Pitchfork),住在纳尔伯罗。皮切弗克告诉凯利说,警察是想陷害自己。凯利的同事把这件事对警察又复述了一遍,于是警察就逮捕了皮切弗克。皮切弗克很快就供认,自己杀了那两个少女,但是这一次,他的口供被证明是真的:他的血样的DNA“指纹”与两具尸体上找到的精液吻合。1988年1月23日,他被判终生基因指纹检测立刻就成了法医学最可靠与最有力的武器之一。皮切弗克一案是这项技术的一次精彩过人的演示,此后数年中,它给基因指纹检测定了基调:即使是面对着似乎占压倒优势的罪证,基因指纹鉴定仍然可以为清白的人洗清罪责;仅仅是用它来威胁罪犯就可以使人招供;它惊人地准确与可靠——如果使用正确;它依靠很少的身体组织,甚至鼻涕、唾液、毛发或死去很长时间的人的尸骨,就可以完成检测。

    在皮切弗克案件之后的年代里,基因指纹鉴定走过了很长的路。仅仅在英国,截止到1998年年中,法医科学局就通过32万个DNA样品查出了2.8万名与犯罪现场的痕迹有关的人,还几乎有两倍多的样品被用来开释了无罪的人。这项技术被简化了,使得人们不再需要检查多个微卫星体,一个就可以了。这项技术也被发展得更灵敏了,极小的微卫星体或甚至“超微”卫星体都可以被用来提取出独特的“条形码”。不仅仅是微卫星体的长度,它们的序列也可以被测出来,使得DNA鉴定更加成熟。这样的DNA鉴定也在法庭上被滥用和不信任过,你可以想象在有律师掺和进来的时候就会如此。(大多数时候,对DNA鉴定的错误使用反映的是公众对于统计学的不了解,而与DNA没什么关系:如果你告诉一个陪审团,一个DNA样品与犯罪现场DNA吻合的随机概率是0.1%,而不是对他们说每1000个人里面有一个人的DNA会与犯罪现场的吻合,那么他们判被告有罪的可能性就高了三倍,而其实这两种说法是一回事。)

    DNA指纹鉴定并不仅仅是给法医学带来了革命,对其他很多学科也是如此。在1990年,它被用来鉴定从墓中挖出来的约瑟夫•门格尔的尸体的真实性。它被用来鉴定莫尼卡•莱温斯基(Monica Lewinsky)裙子上的精液到底是否是克林顿总统的。它被用来鉴定那些自称是托马斯•杰斐逊(Thomas Jefferson)私生子(美国第三任总统)的后代的那些人到底是否说了真话。在亲子鉴定这个领域它是如此被发扬光大(不管是被政府部门公开地做还是被父母亲在私下做)。在1998年,一个名叫“基因身份”的公司在全美国的高速公路旁边都树起了广告牌,上面写着:“孩子的爸爸到底是谁?请拨打1-800-DNA-TYPE。”他们每天接到300个电话,咨询他们那600美元一次的鉴定。这些电话要么是那些正在要求孩子的父亲拿抚养费的单身妈妈打的,要么是那些心存怀疑的“父亲”打的,因为他们不知道女方生的孩子究竟是不是他们的。在三分之二以上的案例里,DNA证据显示母亲是说了真话的。DNA鉴定使有些“父亲”因为发现配偶不忠而受到伤害,它却又能够使其他父亲确知自己的怀疑完全没有根据。好处是否能抵偿坏处,还是一个可以争论的话题。可以想见,当第一个DNA鉴定方面的私人公司挂牌营业的时候,在英国出现了一场媒体上的激烈争论:在英国,这样的医学技术被认为是应该由国家而不是个人所掌握。

    从一个更浪漫的角度来说,基因指纹检测在亲子测试方面的应用使我们对鸟类的歌唱有了更好的了解。你有没有注意过,鸫、知更鸟等鸣禽在春天与异性配对之后要持续地唱很长时间?对于那种鸟鸣的主要功能是吸引配偶的传统说法,这个现象简直就是当头一棒。生物学家从80年代末期开始对鸟进行DNA检测,以决定在每一个鸟巢里,哪只雄鸟是哪只幼鸟的父亲。他们很惊讶地发现,在那些“一夫一妻”制的鸟类里面,虽然一只雄鸟与一只雌鸟很忠实地互相扶助以抚养后代,雌鸟却不顾自己已有配偶这个明显的事实,还常常与邻居的雄鸟交配。不忠实、给“丈夫”戴绿帽子的现象比任何人想象得都多(这些都是非常隐秘地进行的)。DNA指纹鉴定将人们引入了一个爆炸性的研究阶段,最后产生了一个回报颇丰的理论:精子竞争。这个理论可以解释一些有趣的现象,比如说,虽然黑猩猩的身体只有大猩猩的四分之一大小,黑猩猩的睾丸却是大猩猩的四倍大。雄性大猩猩对它们的配偶是完全占有的,所以它们的精子没有竞争对手。雄性黑猩猩是与其他雄性“共有”配偶的,所以它们需要制造大量的精子、频繁交配,来增加自己做父亲的机会。这也能够解释为什么雄性的鸟在“结婚”之后叫得那么起劲,它们是在寻找“婚外恋”的机会。

    第九号染色体 疾病

    一种令人绝望的疾病需要危险的疗法。 ——盖伊·福克斯

    在第九号染色体上有一个知名度很高的基因:决定你的ABO血型的基因。在DNA指纹测试之前很久,血型测试就在法庭上出现了,因为警察有些时候会偶尔能够把犯罪嫌疑人的血液与犯罪现场的血液对上号。血液的对照是以假设犯罪嫌疑人无罪为前提的。也就是说,如果血样没对上,就证明你肯定不是杀人犯,但是如果对上了,却只能说明你有可能是杀人犯。

    这个逻辑对于加利福尼亚州的最高法院倒并没有什么影响。在1946年,它判决查理·卓别林(Charlie Chaplin)毫无疑问地是某个孩子的父亲,虽然血型鉴定表明卓别林与那个孩子的血液根本不相配,不可能是孩子父亲。不过呢,法官们从来就不太懂科学。在关于谁是父亲的官司里,与在谋杀案里一样,血液对照就像DNA鉴定和手指指纹鉴定一样,是无辜者的朋友。在有了DNA鉴定之后,血样鉴定就是多余的了。血型在输血的时候是极为重要的,但也是以一种负面形式出现:被输入了错误的血的人是会死的。血型可以给我们提供一些人类迁移方面的见识,但是它们在这一方面的作用也被其他基因取代了。所以,你现在可能觉得血型这件事很没意思,那你就错了。从1990年开始,它们的一个新的用处被发现了:它们有望让我们了解我们的基因为什么有很多种形式,以及这么多的形式是如何产生的。它们掌握着人类多样性之谜的钥匙。

    在血型方面第一个被发现也是我们了解最多的,是ABO系统。它们在1900年被首次发现,这个系统一开始有三套不同的名字,所以把人搅糊涂了:在莫斯(Moss)的术语里的Ⅰ型血与詹斯基(Jansky)的术语里的Ⅳ型血是一样的。理智逐渐占了上风,由血型的维也纳发现者卡尔·兰德斯坦纳(Karl Landsteiner)所发明的一套术语成了统一的术语:A,B,AB和O型。兰德斯坦纳形象地描述了输错血可以造成的灾难:“红血球都粘在一起了。”但是血型之间的关系不是那么简单的。A型血的人可以很安全地给A型或AB型的人献血;B型血的人可以给B型和AB型的人献血;AB型血的人只能给AB型的人献血;O型血的人可以给任何人献血——所以O型血的人被称为是万能献血者。在不同的血型背后也没有地域或种族的原因。欧洲人有大约40%是O型血,40%是A型血,15%的B型血和5%的AB型。在其他大陆上,比例也跟这个差不多,只除了在美洲有明显的不同。美洲的印第安人几乎全是O型血,只除了住在加拿大的一些部落和爱斯基摩人是例外,在加拿大的这些部落里有很多A型血的人。另外,爱斯基摩人也有些AB型和B型的人。

    直到1920年,ABO血型的遗传性才被搞清楚,到了1990年,与这些血型有关的基因才见了天日。A和B是同一个基因“共同显性”的两种形式,O是这个基因的隐性形式。这个基因在第九号染色体上,靠近长臂的顶端。它的“正文”有1062个字母长,被分成六个短的和一个长的外显子(“段落”),分散在染色体的几页——总共有1.8万个字母——上面。它是一个中等大小的基因,被五个比较长的内含子打断。这个基因编码的蛋白质是半乳糖基转移酶,也就是说,是一个能够催化化学反应的酶。

    A基因与B基因之间的区别只在1062个字母里的七个上面,这七个里面还有三个是相同意义的字母或是“不出声”的,也就是说,它们对于哪个氨基酸被选中加到蛋白质链上没有任何作用。那四个有作用的字母是第523、700、793和800个字母。在A型血的人体内这四个字母是C、G、C、G。在B型血的人体内则是G、A、A、C。另外还有其他一些极少见的区别。个别人会有几个A型的字母也有几个B型的字母,有一种极少见的A型血人是在基因末尾处丢了一个字母。但是,这四个字母的区别就足以使蛋白质上的区别大到在输错了血的时候可以引起免疫反应的程度了。

    O型血的基因与A型只有一个字母的区别,但是,这并不是一个字母被另一个字母代替,而是一个字母的被删除。在O型血的人体内,第258号字母不见了,那里本来应该有个G的。它的影响却很深远,因为它所造成的是所谓的“阅读错位”或称“移码突变”,后果很严重。(还记得吗?弗兰西斯·克里克在1957年提出的那个巧妙的“没有逗号”的密码如果是正确的,那么移码突变就不会存在了)遗传密码是三个字为一个词被念出来的,中间没有标点符号。由三个字母的词组成的一句英文也许是这样的:thefatcatsattopmatandbigdogranbitcat(胖猫坐在垫子上,大狗跑过去咬了猫)。我承认,这句话不怎么优美,但是你能理解它的意思。如果换一个字母,它仍然可以理解:thefatxatsattopmatandbigdogranbitcat。但是你如果把这个字母去掉,然后把剩下的仍然三个字母一组地念出来,那就一点意义也没有了:thefatatsattopmatandbigdogranbitcat。在那些O型血的人体内,他们的ABO基因就出了这种事。因为他们的基因在比较靠近开头的地方就缺了一个字母,那之后的信息就成了完全不同的东西。结果是一个具有不同性质的蛋白质被造了出来,它无法催化正常的化学反应。

    这听起来好像很严重,但实际上对人并没有什么影响。O型血的人在生活的各个方面都没有什么看得出来的缺陷。他们也并不会更容易得癌症,也不会在体育上不如人,也不会缺少音乐才能,等等。在优化人种论最盛行的时候,也不曾有政治家呼吁给O型血的人做绝育手术。实际上,关于血型的最可叹之处,也是它们之所以有用和在政治上又“中立”的原因,就是它们却是彻头彻尾的“隐者”,它们与人的任何事情都没有关系。

    但是,这也是事情变得有趣了的时候。如果血型既是看不见的又是中性的,它们是怎样进化到现在这种状态的呢?美洲的印第安人都是O型血,是纯粹巧合吗?乍一看上去,血型好像是中性进化论——由木村资生(Motoo Kimura)(进化生物学家)在1968年提出的理论——的一个例子:这个理论认为大多数遗传多样性的存在不是因为它们在自然选择的过程中出于某种目的被选中,而是因为它们的存在对任何事情都没有妨碍。木村的理论说,突变就像水流一样源源不断地被注入基因组之中,然后又逐渐地被基因漂移——随机变化——而去掉。也就是说,变化是随时都存在的,也并没有什么适应环境方面的重要性。100万年之后如果回到地球上来看看,人类基因组的大部分都会与现在的不同了,而且纯粹是由于中性的原因。

    “中性学派”与“选择学派”在有一段时间内都对自己的学说有忧虑。尘埃落定之后木村倒确实有了一批为数不少的跟随者。很多基因变异的后果的确是中性的。特别是当科学家们观察基因变异是如何影响蛋白质的时候,他们观察得越仔细,越发现大多数蛋白质的变化都不影响它的“活跃位点”,也就是蛋白质发挥自己功能的地方。有一种蛋白质,在两种生物体里面从寒武纪到现在积累了250个不同之处,但是只有6个对其功能有影响。

    但是我们现在知道了,血型不是像它们看起来的那样中性。在它们的背后是有一个原因的。从60年代早期到现在,逐渐变得明显起来的是血型与腹泻之间有着某种联系。A型血的孩子常常会在婴儿期得某些类型的腹泻,而其他孩子却不会;B型血的孩子则会得其他一些类型的腹泻;如此这般。80年代晚期的时候,人们发现O型血的人更容易感染霍乱。在完成了十几项研究之后,细节变得更加清晰了。除了O型血的人更易感染霍乱之外,A、B和AB型血的人在霍乱易感性上面也有区别。抵抗力最强的是AB型血的人,其次是A型血的人,再次是B型血的人。但是所有这些人都比O型血的人抵抗力强得多。AB型血的人抵抗力如此之强,他们对霍乱几乎是有免疫力的。但如果因此就说AB型血的人能够喝加尔各答(Calcutta)下水道里的水也不会有病,那就是不负责任了——他们也许会得另一种什么病——但是千真万确的是,即使导致霍乱的细菌进入这些人体内并在肠道里安顿下来,这些人都不会有腹泻。

    目前还没有人知道AB基因型是怎样给人体提供了保护以对抗人类疾病里最恶性最能致命的一种。但是它给自然选择提出了一个迷人而又直接的问题。别忘了,每一条染色体在我们的细胞里都有两份,所以,A型血的人实际上是AA,也就是说他们的两条九号染色体上各有一个A基因,而B型血的人实际上是BB。现在想象一个人群,只有这三种血型;AA、AB和BB。在抵抗霍乱方面A基因比B基因强。那么,AA的人就比BB的人可能有更多的孩子能够幸存下来。那是否B基因要从基因组里消失了呢?——这就是自然选择啊。但是这并没有发生,这是因为AB的人存活下来的可能性最高。所以,最健康的孩子是AA人和BB人的孩子。他们的所有孩子都是AB型,最抗霍乱的类型。但是如果一个AB型的人与另一个AB型的人生育后代,他们的后代里只有一半会是AB型;其他的孩子要么是AA要么是BB,后一种是最容易染上霍乱的。这是一个运气起伏不定的世界。在你这一代里最有利的组合,保证会给你一些容易染病的孩子。

    现在想象一下,如果一个镇上所有的人都是AA,只有一个新来的女人是BB,那么事情会怎么样。如果这个女人能够抵挡住霍乱,达到生育年龄,那么她会有AB型的孩子,对霍乱有免疫力。换句话说,优势总是在较少的基因型那边,所以,A和B都不会消失,因为它们中的任何一个如果少了,它就会变成“时髦”的东西,又“流行”起来。在生物学上这叫做由频率决定的选择,而这是我们的基因为什么如此多样的最常见原因之一。

    这解释了A与B之间的平衡。但是,如果O型血让你更容易感染霍乱,为什么自然选择没有让O型消失呢?答案与另一种疾病——疟疾——有关。O型血的人似乎比其他血型的人对疟疾更有抵抗力,他们好像也更不容易得一些类型的癌症。这一点生存优势也许就足以使O型基因免于灭绝了,尽管它与易得霍乱有关。一个大致的平衡就这样在血型基因的三种形式之间建立起来了。

    疾病与突变之间的联系是在40年代晚期被一个肯尼亚血统的牛津研究生安东尼·阿利森(Anthony Allison)第一个注意到的。他怀疑一种在非洲流行的名叫镰刀型贫血症的疾病发病频率也许和疟疾是否普遍有关。镰刀型贫血症的突变导致血红细胞在无氧的时候缩成一个扁镰刀形,这对于那些带有两份拷贝的人是致命的,但是对于那些只有一份的人危害并不太重。但是,那些有一份突变的人对疟疾的抵抗力很强。阿利森检验了住在疟疾高发区的非洲人的血样,发现那些带有镰刀型贫血症突变的人带有疟原虫的可能性比其他人小得多。镰刀型贫血症突变在西非一些疟疾肆虐的地方尤其普遍,在非洲裔美国人里也很普遍,这些非洲裔美国人的祖先有些是坐着贩卖奴隶的船从非洲西部来到美国的。镰刀型贫血症是现在的人类为了过去的疟疾抵抗力而付出的代价。其他形式的贫血症,例如在地中海与东南亚一些地区比较普遍的地中海贫血症,看上去对疟疾也有同样的抵抗作用,这就能解释为什么它在曾经的疟疾高发区比较普遍了。

    在这一点上,血红蛋白基因——镰刀型贫血症的突变就是这个基因上一个字母的改变——并不特殊。有一位科学家说它只是疟疾的基因防线的冰山一角,这样的基因可能多达12个,不同形式对疟疾有不同的抵抗力。在这一点上,疟疾也没有什么特殊的。起码有两个基因的不同形式对肺结核有不同的抵抗力,包括编码维生素D受体的基因,这个基因与人们对于骨质疏松症的不同的抵抗力也有关系。牛津大学的阿德里安·希尔(Adrian Hill)写道:“很自然地,我们忍不住要说,在很近的过去,自然对于肺结核抵抗力的选择,也许增加了对于骨质疏松症缺少抵抗能力的基因。”

    在那同时,人们新发现了一个类似的关系,就是囊性纤维增生这个遗传病与传染性伤寒这个遗传病之间的关系。七号染色体上CFTR基因的一种形式会引起囊性纤维增生,这是一种很危险的肺与肠道的病变。但是同时CFTR基因的这种形式又能够保护人体免受伤寒——一种由沙门氏菌引起的肠道疾病——的危害。带有一份CFTR基因的这种形式的人会得囊性纤维增生,但是他们对伤寒带来的高烧和让人虚弱的痢疾几乎是免疫的。伤寒需要CFTR基因的正常形式,才能够侵入它瞄准了的细胞;被改变了的形式缺了三个DNA字母,伤寒就达不到目的了。因为伤寒杀掉了那些带有其他形式的CFTR基因的人,它就给这种有了改变的形式施加了压力,促使了它们的蔓延。但是,因为带有两份这种改变了的CFTR基因的人能活下来就不错了,这种形式也就从来不会太普遍。就这样,一个基因的少见又恶毒的形式,因为另外一个疾病的原因,被保留下来了。

    大约每五个人里就有一个由遗传因素决定不能把ABO血型蛋白质的水溶形式释放到唾液与其他体液中去。这些“不分泌者”更容易得一些疾病,包括脑膜炎、酵母菌感染和重复发生的尿道感染。但是他们得流感或是受呼吸道合体细胞病毒影响的可能性又比一般人低。不管你往哪儿看,基因多样性背后的原因好像都与传染病有关。

    对这个话题我们只是蜻蜓点水。在过去给我们的祖先带来过极大痛苦的那些大规模的传染病——瘟疫、麻疹、天花、斑疹伤寒、流感、梅毒、伤寒、水痘,等等——把它们的痕迹留在了我们的基因里。赋予了我们抗病能力的突变繁盛起来,但是抗病能力常常是要付出代价才能换来的,代价有的很高昂(镰刀型贫血症),有的只在理论上存在(不能接受错误血型的输血)。

    实际上,直到最近,医生们仍然习惯于低估传染病的重要性。很多被普遍认为是由环境因素、职业因素、饮食习惯及偶然因素而造成的疾病,现在开始被认为是由一些人们不太了解的细菌和病毒的长期感染而造成的。胃溃疡是最精彩的一个例子。好几个医药公司因为发明了旨在对抗胃溃疡症状的新药而发了大财,但实际上只有抗生素才是惟一需要的药物。胃溃疡不是因为油腻食物、心理压力或是运气不好而造成的,它是由名叫Helicobactorpylori的螺旋菌引起的,这种细菌通常是在儿童时期就进入了人体。与此类似,现在有数据明显显示在心脏病与疱疹病毒之间可能有某种联系,各种形式的关节炎与各种病毒有关,甚至在精神分裂症或者抑郁症与一种少见的主要感染马和猫的脑病毒(称为伯尔诺脑病)之间也有关系。这些联系里,有一些或许会被发现是错的,有些可能是有病之后才引来的病毒与细菌,而不是病毒与细菌引来了病。但是,一个已经被证明了的事实是,人们在对诸如心脏病的各种疾病的遗传而来的抵抗能力上差异很大。也许基因上的不同也与对于细菌、病毒感染的抵抗力有关。

    从某种意义上说,基因组就是一份我们过去的病史的书面记录,是每一个民族每一个种族的医学圣经。美洲印第安人中O型血那么多,也许反映的是这样一个事实:霍乱与其他形式的腹泻通常是在人口密集和卫生状况差的地方出现的,而在西半球新近才有人居住的新大陆上这些疾病还没有蔓延起来。不过,霍乱本来就是一种少见的疾病,在1830年以前也许只限于恒河三角洲地带,在1830年左右才突然扩展到欧洲、美洲和非洲。我们需要一种更好的解释来说明美洲印第安人中O型血非常普遍这一让人迷惑的现象,特别是从印第安人的干尸中找到的证据表明,在哥伦布到达美洲之前,印第安人里有不少是A型或B型血的。这看上去几乎像是有一种西半球特有的生存压力使得A型和B型从人群里很快消失了。有些迹象表明原因也许是梅毒,这似乎是一种在美洲一直存在的病(在医学史的圈子里这仍然是被激烈争论的一个观点,但事实是,在1492年以前的北美人骨骼里就可以发现梅毒的损害,而在1492年以前的欧洲人骨骼里则没有)。O型血的人与其他血型的人相比,似乎对梅毒的抵抗力更强。

    现在我们来考虑一下一个很奇怪的发现,在血型与对霍乱的抵抗力之间的关系被揭示之前,这个发现是很令人不解的。假设你是一个教授,如果你让四个男人和两个女人都穿棉质的T恤衫,不许用香水和除味剂,在两个晚上之后还必须把T恤衫脱下来交给你,可能有人要嘲笑你有那么一点点性变态。如果你还请121位男人和女人来闻这些脏T恤衫的腋窝处并把它们按照对自己多么有吸引力来排个顺序,那么说婉转一点也是你这人太古怪。但是真正的科学家是不会感到尴尬的。克劳斯·维得坎德(Claus Wedekind)和桑德拉·菲里(Sandra Füri)(生物学家)就做了这么一个实验,结果他们发现,男人和女人都最喜欢(或最不讨厌)另外一个性别里与自己在基因组成上区别最大的那个成员的体味。维得坎德和菲里研究了六号染色体上的MHC基因群,它们是免疫系统用来定义什么是自我和用来识别寄生物和入侵者的。它们是可变性非常大的基因。如果其他条件都一样,那么,一只母老鼠会喜欢MHC基因与她自己区别最大的公老鼠,这是她通过闻他的尿来确定的。就是在老鼠身上的这个发现点醒了维得坎德和菲里,让他们想到,我们自己可能也仍然保有这样的能力,根据对方的基因来选择配偶。只有正在服用避孕药片的妇女才没有能够在闻T恤衫的实验中表现出对与己不同的MHC基因型的兴趣。但是我们知道避孕药片能够影响人的嗅觉。就像维得坎德和菲里说的:“没有一个人让所有的人都觉得好闻,关键在于是谁在闻谁。”

    在老鼠身上的实验被一直用远系繁殖来解释:母老鼠是在试图找到一个基因很不同的公老鼠,这样她才能生下基因变化较多的孩子,因而不会有近亲繁殖所造成的疾病。但是,也许她——还有那些闻T恤衫的人——是在做一件知道了血型的故事之后才能理解的事。记住,在霍乱期间寻找性伴侣的时候,一个AA型的人找到一个BB型的人才是最理想的,这样他们的所有孩子都会是对霍乱有抵抗力的AB型。如果同样的机制在其他基因与其他疾病那里也有作用——而且,MHC基因群又似乎是抵抗疾病的最主要地点——那么,被基因组成与自己正相反的人所吸引,就是有显见优势的事情了。

    人类基因组计划是建立在一个谬见上的。根本就没有一个“人类基因组”,在时间和空间上,都无法定义这么一个东西。在遍布于23条染色体上的几百个位点上,有着一些在每个人之间都不一样的基因。没有人可以说A型血是“正常”的而O型、B型和AB型是“不正常”。所以,当人类基因组计划发表了一个“典型”的人类基因组的时候,在九号染色体上的这个血型基因的序列应该是什么样子呢?这个计划公布的目标是发表平均的或具有“共性”的299个人的基因组。但是这在ABO基因这里就失去意义了,因为它的功能很重要的一条就是它不能够在每个人体内都一样。变化是人类基因组内在与不可分割的一部分,其实,对于任何其他基因组也是一样。

    在1999年这一个特定的时刻,给基因组拍一张快照,并且相信这代表了一幅稳定和永久的图像,这也是不对的。基因组是在变化的。基因的不同形式被疾病的起伏驱动着,它们在人群里的普遍性也在起伏。人类有一个很值得遗憾的倾向,就是夸大稳定性的作用,太过相信平衡。实际上,基因组是不断变化的动态图景。过去,生态学家相信过所谓的“高峰”植被——英国的橡树、挪威的枞树。他们现在已经学乖了。生态学与遗传学一样不是关于平衡态的学科,它们是关于变化的学科。变化,再变化,没有任何事是永远不变的。

    第一个瞥见这个道理的人可能是J.B.S. 霍尔丹(Haldane)(遗传学家),他曾试图找出人类基因如此多样的原因。早在1949年,他就推测到基因的多样性也许与寄生因素对其施加的压力有很大关系。但是,霍尔丹的印度同事苏莱士·贾亚卡尔(Suresh Jayakar),在1970年才真的把船摇动了。他认为稳定性根本就没有必要,那些寄生的因素会导致基因频率永远周而复始地变化。到了80年代,火炬传到了澳大利亚罗伯特?梅(Robert May)那里。他证实即使在一个最简单的寄生物与宿主系统里,也可能没有一个平衡状态:在一个因决定果的系统里也会永远有混沌的潮流在涌动。梅就这样成了混沌学说的奠基人之一。接力棒又传到英国人威廉·汉密尔顿(William Hamilton)那里,他发展了一些数学模型来解释有性生殖的进化,这些模型依靠的是寄生因素与宿主之间的“军备竞赛”,这种竞赛最终就会导致汉密尔顿所说的“很多基因永不安宁”。

    在70年代的某个时候,就像在那之前半个世纪发生在物理学方面的事情一样,生物学的确定性、稳定性、决定论这个旧世界坍塌了。取而代之的是,我们需要建立一个起伏不定的、变化的、不可预测的世界。我们这一代人破解的基因组密码只不过是一份不断变化的文件的一张照片。这个文件没有一个权威性的版本。

    第十号染色体 压力

    这真是一个这世界上绝对愚蠢的做法:当我们遇到败运的时候——常常由我们自己行为的过度造成——我们把我们的灾祸归罪到太阳、月亮和星星上,就仿佛我们必须是坏蛋,是天国的力量才让我们成为蠢货。……这是嫖客逃避责任的一个壮举:把自己那好色的性子说成是星星的命令。 ——威廉·莎士比亚,《李尔王》

    基因组是记载着过去的瘟疫史的圣经。我们的祖先对疟疾和痢疾的长期抗争被记录在人类基因的多样性中。你有多大机会能够避免死于疟疾,是在你的基因里与疟疾病原体的基因里事先编排好了的。你把你的队伍送出去参加竞赛,疟原虫也把它的队伍送出来。如果它们的进攻队员比你的防守队员棒,它们就赢了。抱怨你的差运气吧,你没有替补队员可换。

    但是,应该不是这样的吧?基因对疾病的抵抗能力应该是我们的最后一道防线,有各种各样比这简单的办法来打败疾病的。睡在蚊帐里面,把臭水沟抽干,吃药,在村子里撒DDT。吃好,睡好,避免精神压力,让你的免疫系统保持健康状态和在多数时候保持愉快的情绪。所有这些都与你是否会染上疾病有关。基因组可不是惟一战场。在前面几章里我进入了简化论的习惯。我把生物体拆开,把基因分离开,去辨别它们每一个有什么兴趣。但是没有一个基因是孤岛。每一个都存在于一个巨大的联盟之内,也就是身体。现在是把生物体的各部分放回到一起的时候了,现在是去探访一个“社交很广”的基因的时候了。这个基因的惟一功能就是把身体里一些不同的功能组织到一起。这个基因的存在昭示出我们有关肉体—精神的二重性是个谎言,它侵蚀着我们对人的认识。大脑、身体和基因组是被捆在一起的三个舞伴。基因组与另两者相互控制。这多少说明了为什么基因决定论是一个神秘的东西。人类基因的激活与关闭可以被有意识的与下意识的外界活动所影响。

    胆固醇是一个充满危险的词。它是心脏病的病因,是个坏东西,是红肉,你吃了就要死的。其实,把胆固醇与毒药等同起来的做法是错得不能再错了。胆固醇是身体的一个基本成分,它在一个微妙的将身体各部分组织到一起的生物化学与遗传系统里占有中心位置。胆固醇是一类很小的有机物,能溶解在脂肪里,不能溶解在水里。身体利用来自饮食的糖类合成它所需要的大部分胆固醇,没有它,人就活不下去。起码有五种至关重要的激素是由胆固醇出发制成的,每一个都有独特的功能:孕酮、醛固酮、皮质醇、睾酮和雌二醇。它们总称类固醇。这些激素与身体中的基因的关系既亲密又迷人,却也让人不安。

    类固醇激素被生命体使用了很长时间,也许比植物、动物和真菌的分道扬镳还要早。促使昆虫蜕皮的激素就是一种类固醇。在人类医学里那个被人们称为维生素D的谜一般的物质也是类固醇。有些人工合成的(或说是合成代谢)类固醇可以骗身体去抑制炎症,另外一些则可以用来强化运动员的肌肉。但是还有一些类固醇,虽然是从植物中提取出来的,却与人类的激素足够相似,可以用做口服避孕药。还有另外一些是化学公司的产品,也许它们要为被污染的水流中雄鱼雌化以及现代男人精子数目的减少负责。

    在第十号染色体上有一个基因名叫CYP17。它制造一种酶,使得身体能够把胆固醇转化成皮质醇、睾酮和雌二酮。如果没有这个酶,这个转化途径就被堵上了,那个时候,从胆固醇就只能造出孕酮和皮质酮。没有这个基因的正常形式的人无法制造出其他的性激素,所以他们就无法进入青春期之后的阶段。如果他在基因上是男性,他也会长得像个少女。

    但是先把性激素往旁边放一放,来考虑一下用CYP17造出的另一种激素:皮质醇。人体内的几乎每一个系统都用得上皮质醇,它名副其实地是一个把身体和精神结合起来的激素,因为它可以改变大脑的结构。皮质醇干预免疫系统,改变耳朵、鼻子和眼睛的灵敏度,改变各种身体机能。当你的血管里流动着很多皮质醇的时候,你就处于压力之下,这是压力的定义。皮质醇与压力几乎就是同义词。

    压力是由外部世界造成的,一个将要来临的考试、最近一个亲人的死亡、报纸上的什么吓人的消息或者因为照顾一个早老性痴呆症病人而感觉到的无休止的劳累。造成短暂压力的因素会导致肾上腺素与去甲肾上腺素的迅速上升,这两种激素使心跳加快,双脚冰凉。这两种激素在紧急情况下让身体做好“打还是跑”的准备。造成长期压力的因素激活一条不同的路径,结果是皮质醇缓慢而持续地增加。皮质醇最惊人的效应之一是它能够抑制免疫系统的工作。那些准备一个重要考试并出现了受到心理压力之后特有的生理特点的人更容易得感冒或受到其他感染,这是一个很重要的事实,因为皮质醇的效应之一就是减少淋巴细胞—白细胞的活性、数量和寿命。

    皮质醇靠激活基因来做到这一点。它只激活内含皮质醇受体的细胞里的基因,皮质醇受体则是由其他某些开关来控制的。它激活的那些基因的主要功能,是激活其他一些基因,有些时候,再激活的基因又去激活其他的基因,如此下去。皮质醇的间接影响可以多至几十甚至几百个基因。但是这个过程的开端——皮质醇的产生则是因为肾上腺皮质里有一系列的基因被激活了,它们制造出了生产皮质醇所需的酶,CYP17蛋白质就是其中之一。这是一个让人头昏眼花的复杂系统:如果我只是试着列出最基本的化学反应链,就能让你闷得要哭。所以,也许这样说就足够了:你需要几百个基因来生产和调节皮质醇并对皮质醇做出适当反应,而几乎所有这些基因的作用都是把其他基因激活或关上。这是很适时的一课,因为人类基因组里大部分基因的功能就是调节其他基因的表达。

    我说过我不会让你觉得闷,但还是让我们瞟一眼皮质醇的一个效应吧。在白细胞里,皮质醇几乎肯定参与了激活一个名叫TCF的基因,也在十号染色体上,这样,TCF就可以制造自己的蛋白质,然后用它去抑制一个名叫白介素二号的蛋白质的表达。白介素二号是一种使白细胞高度警惕、提防微生物的袭击的化学物质。所以,皮质醇会抑制你的免疫白细胞的警惕性,从而使你更容易得病。

    我想放在你面前的问题是:到底谁是管事儿的呢?是谁在一开始就把这些开关都放在了合适的位置上?又是谁决定什么时候把皮质醇释放出来?你可以说基因是管事儿的,因为身体的分化——身体内形成不同的细胞类型,在每一类型内活跃着的基因都不同——归根结底是个遗传的过程。但是这是不确切的,因为基因并不会引起生理和心理压力。一个所爱的人的死亡或是一个即将来临的考试并不与基因直接对话。它们只是经过大脑处理的信息。

    那么,大脑是管事儿的了?脑子里的下丘脑会发出一个信号,让脑垂体释放一种激素,它会告诉肾上腺皮质去制造和分泌皮质醇。下丘脑则是从大脑里有意识的那些区域接受指令,而这些区域又是从外部世界中得到信息。

    但是这也不能算是个答案,因为大脑也是身体的一部分。下丘脑之所以刺激脑垂体,脑垂体之所以刺激肾上腺皮质,并不是因为大脑认识到了这是一个很好的办法。大脑并没有设立这样一套系统,让你在要考试的时候就容易得感冒。是自然选择设立的这样一个系统(原因我稍后会解释)。而且,无论如何,这样一个系统都是非自主、无意识的举动,也就是说,是考试,而不是大脑,在主导这一切事件。如果考试才是罪魁祸首,那么我们就应该怪社会了,但是社会又是什么?也不过是很多个体的集合,于是我们就又回到身体上来了。另外,对抗压力的能力也因人而异。有些人觉得即将来临的考试非常恐怖,其他人却一路顺利。区别在什么地方?在制造、控制皮质醇与对皮质醇做出反应这一系列事件的链条上,易受压力的人与那些对压力没有什么反应的人相比,肯定有一个地方在基因上有细微的差别。但是,又是谁、是什么控制着这个基因上的差别呢?

    真正的情形是,谁也不是管事儿的。让人们习惯于这样一个事实是太难了,但是,世界充满了错综复杂的系统,它们设计巧妙,部件之间相互紧密地联系着,但是却没有一个控制中心。经济就是这样一个系统。有一个幻觉是如果有人去控制经济——决定什么产品应该由什么人在什么地方生产——它就会运转得更好。这个想法给全世界人民的健康和富裕都带来了巨大灾难,不仅是前苏联,在西方世界也是如此。从罗马帝国到欧洲国家联盟的高清晰度电视计划,由一个中心做出的应该在哪个方面投资的决定比无中心的市场调节而成的“混乱”差远了。所以,经济系统不应有控制中心,它们是由分散的因素来控制的市场。

    人体也是这样。你不是一个通过释放激素来控制身体的大脑,你也不是一个通过激活激素受体来控制基因组的身体,你也不是一个通过激活基因来激活激素来控制大脑的基因组。你同时又是以上所有这些。

    心理学里很多最古老的说法可以概括成此类错误概念。支持与反对“遗传决定论”的理论都事先假设基因组的位置是在身体之上的。但是就像我们看到的那样,是身体在需要基因的时候把它们激活,身体之所以这样做,常常是因为它是在对大脑(有时还是有意识的)对外部事件的反应做出回应。你可以只靠想象那些给人压力的场景——甚至是虚构的——就可以提高你体内的皮质醇水平。与此相似,争论一个人所受到的某种痛苦纯粹是精神上的原因还是也有部分是生理上的原因——例如ME,或叫慢性疲劳综合症,是完全不对的事情。大脑与身体是同一个系统的两个部分。如果大脑在回应心理上的压力时刺激了皮质醇的释放,而皮质醇抑制了免疫系统的活性,从而一个潜伏在体内的病毒感染得以发作起来,或是一个新的病毒得以进入身体,那么症状虽然是生理上的,原因却是心理上的。如果一种疾病影响到大脑,从而改变人的心情,那么原因虽是生理上的,症状却是心理上的。

    这个题目被称做心理神经免疫学,它正在慢慢地成为时尚。抵制它的多是医生,而把它吹得很神的是各种给人实施信心疗法的人。但是,证据却是足够真实的。长期心情不好的护士更容易得冻疮,虽然其他护士可能也带有同样的病毒。焦虑的人比起心情好的乐天派,更容易得阵发性的生殖系统疱疹。在西点军校,最容易得单核细胞增多症和得了这种病之后最容易出现严重症状的,是那些被功课压力搞得焦虑不安的学生。那些照顾早老性痴呆症患者的人(这是个压力很大的工作)的抗病T淋巴细胞要比估计的少。在三厘岛(Three Mile Island)核设施事故(1979年在美国东部宾夕法尼亚州附近三厘岛核电站发生的核泄漏事故)发生时居住在那附近的人,事故发生三年之后得癌症的比估计的多,并不是因为他们受到了放射线的伤害(他们并没有),而是因为他们的皮质醇大量增加,降低了免疫系统对癌细胞的反应。那些受到配偶死亡之痛的人,之后几个星期之内免疫力都比较低。父母如果在前一个星期里吵过架,那么他们的孩子就更容易得病毒感染。在过去的生活中有过心理压力的人,比起那些一直生活愉快的人来更容易患感冒。如果你发现这些研究有点让人难以置信,那么我告诉你,这些研究中的大多数在老鼠身上也能够得到相似结果。

    可怜的老勒内·笛卡儿(René Descartes)(17世纪数学家、科学家、哲学家),人们通常说是他发明了主宰了西方世界的身心二元论,使得我们拒绝接受精神可以影响肉体、肉体也可以影响精神这样一个观点。把这个归罪于他可不公平,这是我们大家都犯的错误。而且,不管怎样,并不都是二元论的错——这个理论本来是说有一个存在于组成大脑的物质之外的精神。我们都犯过一个比这更大的错误,犯这个错误如此容易,我们自己都没有察觉。我们直觉地假设身体里的生物化学反应是因,行为是果,我们还在思考基因对我们生活的影响的时候把这个假设推到可笑的极致。如果基因对行为有影响,那么基因就是因,就是不可变的。这个错误不仅遗传决定论者会犯,他们那些吵闹的反对者也犯,这些反对者认为行为“不是在基因里”,他们说行为遗传学所暗示的宿命论和先决论让人反感。他们给了遗传决定论者太多余地,没有对“基因是因”这个假设提出疑问,因为他们自己也做了同样的假设:如果基因是与行为有关的,那么基因肯定是在金字塔的顶端。他们忘记了,基因是需要被激活的,而外界事件——或者说,由自由意志控制的行为——可以激活基因。我们可远不是缩在我们那无所不能的基因脚下,受它们的恩赐,我们的基因经常是受我们的恩赐。如果你去玩“蹦极”,或者找一份压力很大的工作,或者持续地想象一个可怕的事情,你会提升你体内的皮质醇水平,而皮质醇就会在你的身体内跑来跑去地激活各种基因。(还有一个无可置疑的事实,就是你可以用故意而为的微笑来刺激你大脑里的“高兴中心”,就像你可以用一个愉快的想法来使你微笑一样。微笑真的会让你觉得愉快一些。生理变化可以被行为调动。)

    关于行为怎样改变基因表达,有些最好的研究是用猴子做的。很幸运的,对于那些相信进化论的人来说,自然选择是个俭省得可笑的设计师,她一旦想出了一个基因与激素的系统用来显示和对付身体所受的压力,她就很不情愿修改了。(我们的98%是黑猩猩,94%是狒狒,还记得吧?)所以,在我们体内与在猴子体内,有同样的激素用同样的方法激活同样的基因。在非洲东部有一群狒狒,它们血液中的皮质醇水平被人们仔细地研究过。雄狒狒到了一个特定年龄都惯于加入一个狒狒群。当一只年轻的雄狒狒刚刚加入一个狒狒群的时候,他变得极赋进攻性,因为他要通过打架来建立他在自己选择的这个“集体”里的地位。他的这一行为使得他这位“客人”的血液里的皮质醇浓度大幅上升,他的那些不情愿要他的“主人”们血液皮质醇浓度也上升了。随着他的皮质醇(以及睾丸酮)浓度上升,他的淋巴细胞的数量减少了,他的免疫系统直接受到了他的行为所造成的冲击。与此同时,在他的血液里,与高浓度脂蛋白(HDL)结合在一起的胆固醇越来越少。这样的现象是冠状动脉堵塞的一个经典的前兆。这个雄狒狒通过自己的自由意志在改变自己的激素水平,于是也就改变了自己体内的基因表达,这样,他便增加了自己受微生物的感染与得冠状动脉疾病的机会。

    在动物园里生活的那些得冠状动脉疾病的猴子都是在尊卑顺序里最下层的。它们被那些地位更高的同伴欺负,持续地感受到压力,血液里皮质醇浓度高,大脑里缺乏5-羟色胺,免疫系统永久性地被抑制着,它们的冠状动脉壁上积满了伤疤。到底这是为什么,仍然是一个谜。很多科学家现在相信冠状动脉疾病至少部分是由于微生物感染而引起的,例如一种球状的革兰氏阴性细菌和疱疹病毒。压力带来的是降低免疫系统对这些潜伏的感染的监视,使得它们得以繁荣起来。在这个意义上,也许在猴子那里心脏病是一种传染病,虽然压力也会有一定作用。

    人和猴子很像。在尊卑次序里靠底层的猴子容易得心脏病这一发现,是紧跟着另一个更让人吃惊的发现之后做出的。另外一个发现是:英国的公务员得心脏病的可能性是与他们在这个官僚机构里的地位有多低成正比的。一个大型、长期的研究调查了1.7万名在伦敦警察局工作的公务员,一个几乎令人无法置信的结果出现了:一个人在工作中的地位比他是否肥胖、是否吸烟和是否血压高更能准确地预示这个人是否有心脏病。一个做低级工作的人,比如清洁工,比起一个在人堆儿上面地位稳固的秘书,得心脏病的可能高几乎三倍。实际上,即使这个秘书很胖、有高血压,或者吸烟,在每一年龄段他得心脏病的可能性仍然小于一个很瘦、血压正常且不吸烟的清洁工。在60年代对100万名贝尔电话公司雇员的一个类似调查中也得到了同样的结果。

    把这个结论考虑一分钟。它把别人告诉过你的所有关于心脏病的知识都给削弱了,它把胆固醇推到了故事的角落(胆固醇高是一个危险因素,但是只在那些因为遗传原因而容易高胆固醇的人那里才是如此,而且即使对于这些人,少吃含脂肪食物的收益也很小)。它把饮食习惯、吸烟和血压——医学界喜欢把这三者说成是心脏病的生理原因——变成了间接的致病因素。它把一个陈旧和已经不太为人所信的说法变成了一个脚注,这个说法认为压力和心脏病来自于繁忙的职务高的工作,来自于喜欢快节奏生活的个性。这个说法有一丝真理在里面,但不多。科学研究把这些因素的作用都降低了,取而代之的是与生理状况无关的纯粹环境的因素:你在工作中的地位。你的心脏是否健康要看你拿的薪水怎么样。这到底是怎么回事呢?

    猴子那里有些线索。它们在尊卑次序里越低,它们就越无法控制自己的生活。公务员也如此。皮质醇浓度的提高不是看你面对的工作数量多还是少,而是看你被多少人呼来喝去。实际上你可以通过实验来演示这个效果:给两组人同样多的工作,但是命令一组人用一种规定的方法去做这个工作,必须遵守某个事先规定的进度。这一组被外界控制的人比起另外一个组来,体内因压力而释放的激素浓度更高,血压升高,心率加快。

    在对伦敦警察局雇员进行的研究开始20年之后,同一项研究在一个已经开始私有化的公众服务部门里被重复了一次。在研究一开始,公务员们都不知道失业意味着什么。事实上,当研究者们为这项研究设计问卷的时候,被调查对象对问卷中的一道题提出了异议,这道题是问他们是否害怕失去自己的工作。他们解释说,在公众服务这个行业,这个问题根本没有意义,他们最多会被转到另外一个部门去。到了1995年,他们就清楚地知道失去工作意味着什么了,三分之一以上的人已经尝过失业的滋味了。私有化的结果,是给了每个人这样一种感觉:他们的生活是受外部因素控制的。一点也不令人吃惊地,心理压力增加了,健康情况随之下降了,健康情况恶化的人数之多,无法用饮食、吸烟、喝酒方面习惯的改变来解释。

    心脏病是自己无法控制自己的生活时出现的症状,这样一个事实解释了它的出现为什么是分散的。它也能够解释为什么那么多有高级职务的人退休“享受悠闲生活”之后不久就会得心脏病。他们常常是从指挥一个办公室“沦落”到在由老伴做主的家庭环境里干一些“低级”的需要动手的活儿(洗碗、遛狗之类)。它能够解释为什么人们可以把某一种疾病甚至是心脏病的发生推迟到一个家庭成员的婚礼或是一个重大庆典之后——直到他们操持、忙碌、做出决定之后。(学生也是更容易在紧张的考试之后生病,而不是在考试期间。)它能够解释为什么失业和靠救济金生活是如此有效的让人生病的办法。在猴群里面,没有一只雄性首领是像政府的社会福利署控制那些领救济金的人那样来铁面无私地控制它属下的猴子的。它甚至有可能解释为什么那些窗户不能被打开的现代化大楼会让人容易生病,因为在老式楼房里面人们能够对自己的环境有更多的控制。

    我要再强调一遍我已经说过的话:行为远不是受我们的生物特性所控制,我们的生物特性常常是受我们的行为控制的。

    我们发现的皮质醇的特点对于其他类固醇激素也适用。睾丸酮在体内的水平与进攻性成比例。但这是因为这种激素导致进攻性,还是因为进攻性导致这种激素的释放?我们的唯物主义思维使得我们发现第一种说法比较可信。但是事实上,对于狒狒的研究表明,第二种说法却更接近于真理。心理变化先于生理变化而出现。精神驱动身体,身体驱动基因组。

    睾丸酮和皮质醇一样可以抑制免疫系统。这就解释了为什么在很多物种里雄性比雌性容易染病,染病之后的死亡率也比雌性高。免疫机制的抑制不仅仅只反映在身体对于微生物的抵抗力方面,也反映在对于大的寄生虫的抵抗力方面。牛蝇在鹿和牛的皮肤上产卵,孵出来的蛆虫先要爬进这些动物的肉里去,然后才返回到皮肤上去做一个小“窝”在里面变成蝇。挪威北部的驯鹿就特别为这种寄生虫所困扰,但在雄鹿身上又明显地比雌鹿身上更严重。平均来说,到了两岁的时候,一只雄鹿身上牛蝇的“窝”比雌鹿身上要多两倍。但是,被阉割了的雄鹿身上牛蝇的“窝”又与雌鹿差不多了。类似的模式在观察很多寄生虫的时候都会发现。例如,包括引起南美锥虫病的原生动物,人们普遍认为这种病就是达尔文长期不适的原因。在智利旅行的时候,达尔文曾被传播南美锥虫病的虫子叮咬过,他后来的一些症状也与这种病相吻合。如果达尔文是个女人,他也许就用不着花那么多时间替自己委屈了。

    但是在这里,我们从达尔文那里得到启发。睾丸酮抑制免疫系统的功能这一事实被自然选择的表弟——性别选择——给抓住并且很充分地利用了。在达尔文论进化的第二部著作《人类的由来》里,他提出了这样一个想法:就像育鸽子的人能够培养良种鸽子一样,女人也可以培养“良种”男人。如果雌性动物在连续多代里用固定的标准来选择与谁交配,她们就可以改变她们这个物种里雄性的身体形状、大小、颜色或歌声。事实上,就像我在关于X和Y染色体的那一章里讲过的,达尔文提出过,这样的事在孔雀里就发生过了。在他之后一个世纪,一系列的实验与理论研究在70年代和80年代证明了达尔文是正确的。雄性动物的尾巴、羽毛、角、歌声和身体大小都是由于一代一代的雌性动物在择偶时条件一致而逐渐形成的。

    但是为什么呢?一个雌性动物选了一个长尾巴或是大声唱歌的雄性动物,她能得到什么可以想见的好处呢?在人们的争论中,有两个受人欢迎的理论占了主要位置。一个是说,雌性动物需要迎合时尚,否则她们生的儿子可能就不会被那些迎合时尚的雌性动物选中。另一种理论是我想在这里让读者考虑的,那就是雄性体表那些“装饰物”的质量以某种方式反映了他的基因的质量,尤其是反映了他对流行疾病的抵抗力。他是在对所有愿意倾听的人说:看我是多么强壮啊,我能够长一条长长的尾巴,能够唱这么动听的歌,是因为我没有得疟疾,也没有生寄生虫。睾丸酮能够抑制免疫系统这一事实其实是帮助了雄性,使他的“话”更加真实可信。这是因为他那些“装饰物”的质量取决于他血液里睾丸酮的浓度:他体内的睾丸酮越多,他的外表就越五颜六色,身体就越大,越会唱歌,也越有进攻性。如果他能够在免疫机能被睾丸酮降低了的情况下不仅不生病,还能长一条大尾巴,那么他的基因肯定很了不起。这几乎像是免疫系统把他的基因“真相”掩盖住了,睾丸酮则把帷幕掀开,让雌性直接看看他的基因到底怎么样。

    这个理论被称做免疫竞争力缺陷,它是否正确,取决于睾丸酮对免疫系统的抑制作用是否真的不可避免。一个雄性动物无法既提高睾丸酮的浓度又使免疫系统不受影响。如果这样一个雄性动物存在,他无疑是一个巨大的成功,会留下许多后代。因为他既能长一条长尾巴又能有免疫力。因此,这个理论暗示着类固醇与免疫能力之间的联系是固定不变、不可避免的,也是非常重要的。

    但是这就更让人迷惑了。没有人能够解释为什么这个联系一开始会存在,更别说它为什么是不可避免的了。为什么身体被设计成这样,它的免疫系统要被类固醇激素抑制?这个设计意味着每当生活中的事件使你感到压力的时候,你就更容易受微生物感染,更容易得癌症和心脏病。这简直是在你倒地的时候上去踢你一脚。它意味着每当一个动物提升自己的睾丸酮浓度以与对手争夺配偶或是向异性展示自己的时候,他就更容易受微生物感染,更容易得癌症和心脏病。为什么?

    不少科学家都为这个谜绞过脑汁,但是收获甚微。保罗·马丁(Paul Martin)在他关于心理神经免疫学的书《患病的意识》中,讨论并否定了两种解释。第一种解释是说,这一切只是一个错误,免疫系统与对压力的反应之间的联系只是另外某些系统的副产品。就像马丁指出的,对于人体免疫系统这样一个有着复杂的神经与化学联系的系统来说,这是一个相当不令人满意的解释。身体里很少有哪个部分是偶然形成的、多余的或是没有用处的,复杂的系统更是如此。自然选择会无情地把那些抑制免疫系统的东西砍掉,如果它们确实没有用处。

    第二种解释是说,现代生活方式制造出的压力很多是不自然的、过久的,在以前的环境里这样的压力通常都是短暂的。这个解释同样令人失望。狒狒和孔雀是生活在很自然的环境里,可是它们——以及地球上几乎所有的鸟类和哺乳动物——也因类固醇而遭到免疫抑制。

    马丁承认这是令人不解的事。他不能解释压力不可避免地抑制免疫系统这一事实。我也不能。也许,就像迈克尔·戴维斯(Michael Davies)提出的那样,免疫系统功能的降低是在半饥饿的时候——在现代社会之前这是一种很常见的生存状态——保存能量的办法。也或许,对皮质醇的反应是对睾丸酮反应的副产物(这两种物质在化学成分上非常相似),而免疫系统对睾丸酮的反应则可能是雌性动物的基因故意安排在雄性动物体内的一个机制,用来把那些对疾病的抵抗力更强的雄性与其他的区别开来。换句话说,类固醇与免疫系统的联系也许是某种性别对抗的产物,就像在X和Y染色体那一章里讨论过的一样。我觉得这种解释也不太可信,不过,你要是有本事你想一个出来。

    第十五号染色体 性别

    所有的女人都会变得和她们的母亲一样,这是她们的悲剧;没有一个男人会变得和他们的母亲一样,这是他们的悲剧。  ——奥斯卡·王尔德:《不可儿戏》

    在马德里的普拉多博物馆,挂着两副17世纪宫廷画家胡安·卡瑞尼奥·德·米兰达(Juan Carreo de Miranda)的作品,叫做“穿衣服的恶魔”与“不穿衣服的恶魔”。它们描绘的是一个过于肥胖却一点没有魔相的五岁女孩,她的名字是尤金尼亚·马蒂拉兹·维耶候(Eugenia Martinez Vallejo)。很明显地她有些什么地方不对劲:她很肥胖,对于她的年龄来说是个巨大的人,有着非常小的手和脚和形状怪异的眼睛和嘴。她活着的时候或许是在马戏团被当成畸形人展出的。现在看起来,她很明显地有着一种罕见疾病——普拉德?威利(Prader-Willi)综合症——的所有典型症状。有这种症状的儿童,出生时身体软绵绵的、皮肤苍白,不肯吸母亲的乳头,在后来的生活中却吃饭吃得要把自己撑爆,从来就不觉得饱,所以就变得肥胖。在一个例子中,一个普拉德?威利综合症患儿的父母发现自己的孩子在从商店到家的途中,坐在汽车后座上吃完了一整磅生的熏猪肉。有这种病的人长着小手小脚和欠发育的性器官,智力也有轻微迟钝。他们时不时地会大发脾气,尤其是当他们想要食物而被拒绝的时候,但是他们也有一种能力,被一位医生称为“超群的拼图(jigsaw puzzle,一种游戏,从几百、上千块碎片拼出一副完整的图)能力”。

    普拉德?威利综合症是在1956年由瑞士医生首先确诊的。有一种可能是,它只是另外一种罕见的遗传病,是我在这本书里一再保证不写的那种病,因为基因的存在不是为了致病的。但是,关于这个基因有一些十分奇怪的东西。在80年代,医生注意到,普拉德?威利综合症有时会在一个家庭里以另外一种完全不同的疾病形式出现,不同之处如此之大,可以被称为是普拉德?威利综合症的反面。这种病叫做安吉尔曼综合症。

    当哈里·安吉尔曼(Harry Angelman)在兰开郡沃灵顿(Warrington,Lanca shire)做医生的时候,他第一次意识到,他所说的那些受着罕见疾病折磨的“玩偶孩子”是患有一种遗传疾病。与普拉德?威利综合症的患儿相反,他们身体并不软,反而绷得很紧。他们很瘦、异常地活跃、失眠、头很小、下巴很长,常把他们的大舌头伸出来。他们的动作一顿一顿的,像木偶一样,但是他们有着愉快的性格,总是微笑着,并时不时爆发出一阵大笑。但是他们永远学不会说话,智力严重迟钝。安吉尔曼症患儿要比普拉德?威利症患儿少得多,但是有些时候他们在同一个家族里出现。

    很快弄清楚了,十五号染色体上的同一个区域在普拉德?威利综合症和安吉尔曼综合症患者体内都丢失了。区别则在于,在普拉德·威利综合症患者里,丢失的部分来自父亲的染色体,而在安吉尔曼综合症患者里,丢失的部分来自母亲的染色体。同一种疾病,如果是通过一个男性传到下一代,就是普拉德?威利综合症;如果通过女性传到下一代,就是安吉尔曼综合症。

    这些事实对于我们从格雷戈尔·孟德尔以来了解到的有关基因的一切真是迎头一击。它们与基因组的数码特点似乎不太相符,这就意味着一个基因不仅仅是一个基因,它还带有一些它的出身的隐秘历史。一个基因“记着”它是从父母哪一方来的,因为在卵子受精的时候它得到了一个父方或母方的印记——就像是来自某一方的基因是用斜体字写的。在这个基因呈活跃状态的每一个细胞内,带有印记的那个基因拷贝是活跃的,另一个拷贝则不表达。这样,身体就只表达来自父方的那个基因(在普拉德·威利综合症的情况下),或只表达来自母方的那个基因(在安吉尔曼综合症的情况下)。这具体是怎么发生的我们全然不知,但是我们已经开始在了解它了。它的成因,将是一个不同寻常而又大胆的进化理论所要解释的。

    80年代晚期,在费城和剑桥的两组科学家有了一个出人意料的发现。他们试图制造出只有父亲或只有母亲的老鼠。由于那时从体细胞中直接克隆老鼠还不可能(在多莉(世界上第一只克隆成功的哺乳动物)之后,情况急转直下),费城的那组便把两个受精卵的“前核”做了交换。当一个卵细胞受精的时候,带有染色体的精子细胞核进入卵细胞,却并不马上就与卵细胞核融合在一起:这两个细胞核被称为“前核”。一个灵巧的科学家可以用他的移液管“潜入”受精卵,把精子的细胞核吸出来,把另外一个卵细胞的细胞核放进去;他也可以把卵细胞核取出来,放进另外一个精子细胞核。结果是他得到了两个受精卵,从遗传角度说,一个受精卵有两个父亲,没有母亲,另一个则有两个母亲,没有父亲。剑桥的那一组用了略为不同的技术,但得到的是同样的结果。但是,这两组得到的胚胎都没有能够正常发育,很快就死在子宫里了。

    在有两个母亲的那种情况里,胚胎本身有正常的结构,但它却无法制造一个胎盘来给自己获取营养。在有两个父亲的那种情况里,胚胎制造出了一个又大又正常的胎盘,也基本上有围绕着胎儿的膜。但是,在膜里面胚胎应该在的位置上,只有一小团没有结构的细胞,看不出头在哪里。

    这些实验结果引向了一个不寻常的结论。遗传自父方的基因负责制造胎盘;遗传自母方的基因负责胚胎大部分的发育,特别是头部和大脑。为什么会是这样的?五年之后,当时在牛津的大卫?黑格认为他得到了答案。他开始重新诠释哺乳动物的胎盘,不把它当成是一个用来维持胎儿生命的母体器官,却更把它看做是胎儿的一个器官,目的是寄生于母体的血液循环,在这个过程中又不服从于任何阻挡。他注意到,胎盘实实在在地是钻进母体的血管里去,迫使血管扩张,进而又产生一些激素提高母体的血压和血糖浓度。母体的反应是通过提高胰岛素的浓度来抵御这种“入侵”。但是,如果因为什么原因,胎儿的激素没有分泌出来,母体就不需要提高胰岛素的浓度,仍然有一个正常的怀孕期。换句话说,尽管母体和胎儿有共同的目标,两者却在细节上激烈地争吵,关于胎儿可以使用母体资源的多大一部分——同以后在婴儿断奶时的冲突一模一样。

    但是,胎儿的一部分是由来自母体的基因造成的,所以它们如果发现自己有些相互冲突的利益,也不足为奇。胎儿体内来自父体的基因就没有这样的问题。它们心里没有母亲的利益,她只是为它们提供了一个家。暂时用个拟人的说法,父亲的基因不太信任母亲的基因能够造就一个侵入性足够强的胎盘,所以它们要自己来完成这项工作。因此,我们才得以在有两个父亲的胚胎里发现胎盘基因上有父方的印记。

    黑格的理论做出了一些预测,很多在短时间内就被证实了。具体地说,它预测了给基因加印记这个过程在下蛋的动物里不存在,因为一个在蛋里的基因无法影响母亲在蛋白有多大这个问题上所做的投资:在它可以影响母亲之前,它就已经离开母体了。与此相似的是,袋鼠之类的有袋动物以口袋代替胎盘,从黑格的理论出发,也不会有带有印记的基因。到现在为止,看起来黑格是对的。基因标记是有胎盘的哺乳动物与种子依靠母体才能存活的植物所特有的。

    还有,黑格很快就带着胜利感注意到,一对新近发现的带印记的老鼠基因与他预测的功能一致:控制胚胎的发育。IGF2是由一个基因造出的非常小的蛋白质,与胰岛素类似。它在发育中的胎儿体内很充足,在成人体内却不被表达。IGF2R是另外一个蛋白质,IGF2与之连接起来,但是目的是什么,还不清楚。IGF2R的存在可能只是为了除掉IGF2。现在听好,IGF2和IGF2R基因都带有标记:前者只从来自父方的染色体表达,而后者只从来自母方的染色体表达。它看起来非常像是一场小小的竞赛:来自父方的基因鼓励胚胎的发育,来自母方的基因使其发育不要过度。

    黑格的理论预测,带有标记的基因通常会在这样相互作对的基因对里被发现。在有些情况下,甚至在人体内,他的预测是正确的。人体的IGF2基因位于第十一号染色体上,带有父方的印记。如果有人偶然遗传到了两个父方的版本,他就会受拜克维斯·魏德曼(Beckwith Wiedermann)综合症的折磨,心脏和肝脏会发育得过大,肿瘤在胚胎组织里也会比较常见。尽管人体内的IGF2R基因没有印记,倒确有一个带有母方印记的基因,H19,是与IGF2作对的。

    如果带有印记的基因之所以存在,只是为了跟对方作对,那么你就应该能够把两者的表达都停掉,对胚胎的发育应该没有任何影响。你能够这样做。把所有的印记都去掉,仍然能够得到正常的老鼠。我们又回到我们所熟悉的第八号染色体了,在那里基因是自私的,它们做对自己有利,而不是对整个身体有利的事情。基因标记几乎没有任何内在的目的性(尽管很多科学家曾做过相反的猜测);它只是基因自私的理论和两性冲突的一个具体事例。

    当你开始用基因都是自私的这个方式来思考的时候,一些真正奇怪的想法就进入了你的头脑。试一试这个吧。受父方基因影响的胚胎如果与其他拥有同一个父亲的胚胎一起分享子宫环境,它们的行为会和与其他拥有另一个父亲的胚胎一起分享子宫环境时不太一样。在后一种情况下它们或许有更多的自私的父方基因。这个想法一旦被想到,做一个自然的实验来验证这个预测就是相对容易的事了。不是所有的老鼠都是一样的。在一些种类的老鼠里面,例如Peromyscusmaniculatus,母鼠与多个公鼠交配,每一窝老鼠通常都有几个不同父亲的后代。在其他种类的老鼠里,例如Peromyscuspolionatus,母鼠只与一只公鼠交配,每一窝老鼠都有同一个父亲和同一个母亲。

    那么,当你让P.maniculatus与P.polionatus交配时,会发生什么呢?这取决于哪一种是父亲哪一种是母亲。如果多配偶的P.maniculatus是父亲,幼鼠生下来的时候就有巨大的个头。如果单配偶的P.polionatus是父亲,幼鼠生下来时个头就会很小。你看出来是怎么回事了吗?maniculatus的父方基因,因为估计着自己会与跟自己不同父的其他胚胎合住在子宫里,已经被自然选择培养出了与其他胚胎争夺母体资源的能力。maniculatus的母方基因,估计着子宫里的胚胎们会为了她的资源争斗不停,被自然选择培养出了反击的能力。在事态比较温和的polionatus的子宫里,气势汹汹的maniculatus的父方基因只遇到了一点象征性的抵抗,所以,它们赢了这场竞争:如果幼鼠有多配偶的父亲,它的个头就大;如果有多配偶的母亲,个头就小。这是基因标记理论的一个很清楚的演示。

    这个故事虽然很流畅,但并不是一丝漏洞都没有。就像很多吸引人的理论一样,它好得都不像真的。具体来说,它的一个预测没有实现:带有印记的基因应该是进化得比较快的。这是因为两性之间的冲突会成为分子之间“军备”竞赛的动力,每一种分子通过暂时获得先手而获益。通过一个物种一个物种地比较带有标记的基因,没发现有这种现象。相反地,带有标记的基因似乎进化得很慢。事情看上去越来越像是这样一种情况,即黑格的理论可以解释基因标记的一部分现象,却并非全部。

    基因标记有一个很有意思的后果。在一个男人体内,来自母体的第十五号染色体带有一个记号,说明自己来自母方。但是,当他把这条染色体传给自己的儿子或女儿的时候,它必须用某种方法得到一个记号表明自己是从他体内来的,亦即父方。它必须从一个母方染色体变成父方染色体。在母亲体内有相反的工作需要进行。我们知道,这样的一个转换肯定是发生了的,因为在一小部分安吉尔曼综合症患者体内,两条染色体都没有什么不正常的地方,只除了两者的行为好像它们都来自父方似的。这些是转换没有成功的例子。它们的原因可以被追回到上一代体内的某些突变,这些突变影响一个名叫基因标记中心的东西,它是一小段离有关基因很近的DNA,通过某种方法把父方的标记放到基因上去。这个标记就是一个基因的甲基化,就是我们在第八章里谈过的那种。

    你还记得吧?字母C的甲基化是使基因变得“沉默”的方法,它被用来把那些自私的基因“软禁”起来。但是,在胚胎发育的早期,所谓的胚囊形成的时候,甲基化被去掉了,然后在发育的下一个阶段,原肠胚形成的时候,又被重新加回来。不知为什么,带有标记的基因逃过了这一过程。它们顶住了去甲基的过程。关于它们是怎样做到这一点的,有一些很有意思的线索,但是还没有任何确定的答案。

    我们现在知道,带有标记的基因躲得过去甲基这个过程,是多年以来科学家试图克隆哺乳动物时的惟一障碍。蟾蜍可以很容易地被克隆,只需要把体细胞里的基因放进一个受精卵里即可。但是在哺乳动物那里这一招就是行不通,因为一个女性体细胞内的基因组带有一些被甲基化因而不再活跃的重要基因,男性体细胞里又有另外一些不活跃的基因,这些就是带有标记的基因。所以,在基因标记被发现之后,科学家们曾很自信地宣布,克隆哺乳动物是不可能的。一只克隆出来的哺乳动物,它的有标记的基因在它出生时要么在两条染色体上都表达,要么都不表达,如此就破坏了动物细胞所需要的合适的量,也就导致了发育的失败。发现了基因标记的科学家写到:“用体细胞的核来成功克隆哺乳动物之不可能性,是顺理成章的。”

    之后,突然之间,在1997年上半年,出现了多莉,克隆的苏格兰母羊。她与后来的那些克隆是怎样避开了基因标记这个问题,还是个谜,甚至对她的创造者来说也是如此。但是看上去,在克隆过程中给她的细胞施加的处理方法中,肯定有某一部分把基因的所有标记都抹掉了。

    第十五号染色体带有标记的那一段区域带有大概八个基因。其中的一个一旦被破坏,就会造成安吉尔曼综合症,这个基因叫做UBE3A。在这个基因的旁边是两个一旦被破坏就可能造成普拉德?威利综合症的基因,一个叫SNRPN,另一个叫IPW。可能还有其他的,不过现在让我们先假设SNRPN就是罪魁。

    这两种病并不总是因为这些基因的突变而发生,它们也可以产生于另外一种“事故”。当一个卵细胞在一个妇女的卵巢里形成的时候,它通常是每一条染色体都得到一份。但是在很少见的情况里,一对来自母方的染色体没有能够分离开来,那么,卵细胞就把同一条染色体得到了两份。在精子与卵子结合之后,胚胎就有了三条同样的染色体,两条来自母亲,一条来自父亲。这种情形在高龄孕妇那里更有可能,这对受精卵来说常常是致死的。只有在这三条染色体都是第二十一号染色体——最小的染色体——的时候,胚胎才能够发育成一个可以存活的胎儿,出生之后能够存活几天以上,结果就是唐氏综合症。在其他情况下,多余出来的染色体把细胞内的生物化学反应搅得乱七八糟,使胚胎发育无法成功。

    但是,在大多数情况下,在还没有到这一步的时候,身体就已经有办法来对付这个“三倍体”问题了。它干脆扔掉一条染色体,只留下两条,就像本来应该的那样。困难在于,它这样做的时候很盲目。它无法确定自己扔掉的是两条来自母方的染色体之一,还是惟一那条来自父方的。这样盲目地扔,有66%的机会把来自母方的多余染色体扔掉,不过事故也经常发生。如果它错误地扔掉了惟一那条来自父方的染色体,那么胚胎就高高兴兴地带着两条母方染色体继续发育。在大多数情况下这没有任何关系,但是,如果那“三倍体”是第十五号染色体,你就立刻会看出来将要发生什么。两份带有母方标记的UBE3A要被表达,带有父方标记的SNRPN却一份都没有。结果,就是普拉德?威利综合症。

    表面上看来,UBE3A不是什么有趣的基因。它制造的蛋白质是一种“E3泛蛋白连接酶”,这是一类存在于某些皮肤和淋巴细胞里的、不起眼的从事“中层管理”工作的蛋白质。然后,在1997年年中,三组科学家忽然同时发现,在老鼠和人类里,UBE3A在大脑里也表达。这无异于是炸药。普拉德?威利综合症与安吉尔曼综合症的症状都表明病人的大脑有些不同寻常。更让人惊讶的是,有很强的证据表明,其他一些带有标记的基因在大脑里也很活跃。具体地说,在老鼠里,大部分的前脑看起来都是由带有母方标记的基因造出来的,而大部分的下丘脑(位于脑子的基座处),则是由带有父方标记的基因造出来的。

    这种不平衡是通过一件构想巧妙的科学工作而发现的:老鼠“镶嵌体”的创造。镶嵌体是两个具有不同基因的个体身体的融合。它们在自然条件下就会出现——你可能见过这样的人,你可能自己就是这样的人,但是除非对染色体做细致的检查,你不会意识到。两个带有不同基因的胚胎可以融合起来,然后就像它们原本是一个那样地发育。可以把它们想成是同卵双生子的反面:一个身体里有两个不同的基因组,而不是两个不同的身体带有同样的基因组。

    比较而言,在实验室里制造老鼠的镶嵌体还是很容易的,小心地把两个早期胚胎的细胞融合起来即可。但是在这里,剑桥科研小组的独创性在于,他们把一个正常的老鼠胚胎与另外一个特殊胚胎融合起来了。这个特殊的胚胎,是由一个卵细胞核给另一个卵细胞“受精”而造出来的。这样,它就只带有母亲的基因,没有一点来自父亲的贡献。结果,生出了一只脑子奇大的老鼠。当这些科学家把一个正常胚胎与一个只来自父方的胚胎(从一个卵细胞产生,但是卵细胞的细胞核被两个精子细胞的细胞核所取代了)融合起来之后,结果刚好相反:一只身子大脑袋小的老鼠。通过给母方细胞加上一个类似于无线电信号的生化“信号”,用来报告它们所在的位置,科学家们得以做出了这样一个重大发现:老鼠大脑里大部分的纹状体、脑皮质、海马区都是由这些母方细胞组成的,但是这些细胞被排斥在下丘脑之外。脑皮质是加工来自感官的信息、产生行为的地方。相比之下,父方的细胞在脑子里比较少,在肌肉里则比较多。当它们出现在脑子里的时候,它们为下丘脑、杏仁体、视前区的发育出了些力。这些区域组成了“皮质下感情系统”的一部分,负责控制感情。一位科学家罗伯特·特利沃斯(Robert Trivers)的意见是:这样的区别所反映的是脑皮质需要完成与母方的亲友好好相处这样一项任务,而下丘脑是个自大的器官。

    换句话说,如果我们相信父方的基因不放心让母方基因去造一个胎盘,那么,大脑就是母方基因不放心让父方基因去造的。如果我们像老鼠一样,我们可能就会带着母亲的思想和父亲的感情在这世界上生活(如果思想和感情可以遗传)。在1998年,另外一个带有标记的基因在老鼠体内被发现了,它有个了不起的特点,就是它能够决定一只雌老鼠的母性行为。带有这个Mest基因的正常形式的老鼠是认真照料幼鼠的好妈妈。没有这个基因的正常形式的雌老鼠仍然是正常的老鼠,只是,她们是很差劲的妈妈。她们造不出像样的窝,幼鼠出去闲逛的时候这些妈妈也不把它们招回来,幼鼠身上脏了她们也不管,总的说来,她们好像无所谓。她们的幼鼠通常会死去。无法解释的是,这个基因是从父系遗传来的。只有来自父方的拷贝才有功能,来自母方的拷贝是不活跃的。

    黑格关于胚胎发育冲突的理论无法很轻易地解释这些现象,但是,日本生物学家岩佐庸(YohIwasa)有一个理论却可以。他提出,因为父亲的性染色体决定了后代的性别——如果他传下去一条X染色体,而不是Y染色体,后代就是女性——父方的X染色体就只有在女性体内才有。因此,女性特有的行为就应该只从来自父方的X染色体上表达。如果它们也在来自母方的X染色体上表达,它们就可能也会出现在男性身上,或者它们在女性体内会被表达得太多了。这样,母性行为带有父方遗传的标记就是很合理的事了。

    对这个想法的最好证明来自于伦敦儿童健康研究院的戴维·斯库斯(David Skuse)与同事们做的一项不寻常的观察。斯库斯找到了80位患有特纳综合症的妇女与小女孩,年龄在6~25岁之间。特纳综合症是由于X染色体的部分或全部缺失而引起的。男性只有一条X染色体,女性把她们所有细胞里的一条X染色体都保持在关闭的状态。从原则上说,特纳综合症就应该在发育上没有什么作用。实际也是如此,患有特纳综合症的女孩具有正常的智力和外表。但是,她们常常在“社交适应”方面有问题。斯库斯和他的同事们决定比较两种不同的患特纳综合症的女孩:一种是丢失了来自父方的X染色体,一种则丢失了来自母方的X染色体。25名丢失了母方X染色体的女孩,明显地比55名丢失了父方X染色体的女孩要适应得更好,有着“卓越的语言和高级控制能力,这些能力调节人际间的交往”。斯库斯与同事们是通过让孩子们做标准化的认知测试和给父母调查问卷的方式来估量社交适应能力的。在问卷中,他们询问父母孩子是否有如下的表现:意识不到别人的感受,意识不到别人的烦躁和怒气,对自己行为对家人的影响毫无察觉,总是要求别人陪伴,烦躁的时候很难与之讲道理,自己的行为伤害了别人自己却意识不到,不听命令,如此等等。父母必须回答0(一点都没有)、1(有些时候有)或2(经常如此)。然后,所有12个问题的回答被加起来。所有患特纳综合症的女孩都比正常的男孩女孩的总分高,但是,丢失了父方X染色体的女孩,比起丢失了母方X染色体的女孩,分数要高出一倍多。

    从这里引出的结论是,在X染色体上某个地方有一个带有标记的基因,它在正常情况下只从父方的X染色体上表达,而这个基因通过某种方式促进社交的适应能力——例如,理解别人感受的能力。斯库斯与同事通过观察只丢失了部分X染色体的孩子,又为这种理论提供了进一步的证据。

    这项研究有两个深远的影响。第一,儿童自闭症、阅读困难症、语言障碍以及其他与人相处方面的问题都是在男孩中比在女孩中更普遍,这项研究为这样的现象提出了解释。一个男孩只从他母亲那里收到一条X染色体,也就是说,他收到了带有母方标记的一条,那么促进社交能力的这个基因就是不被表达的。在我写下这句话的时候,这个基因还没有被定位,不过,我们知道有些X染色体上的基因确是带有标记的。

    但是,第二个影响更有普遍意义。在20世纪后半期一直持续的一个有点可笑的争论是两性之间的差异,它把先天因素与环境因素对立起来了。而我们现在开始看到了这个争论结束的可能性。那些喜欢环境因素的人曾经试图否认先天因素的任何作用,而那些喜欢先天因素的人却很少否认环境因素也有作用。问题不在于环境因素是否有作用,因为没有任何一个头脑清醒的人会否认它的作用。问题在于,先天因素是否有作用。当我写这本书的时候,我的一岁女儿有一天在一个玩具童车里发现了一个塑料娃娃,她发出的那种兴奋的尖叫,是我儿子在同样年龄的时候看到过路的拖拉机时会发出的。像很多家长一样,我很难相信这只是因为我们下意识地加给了他们一些“社会规范”。在最早开始的自主活动里,男孩和女孩就有系统的差异。男孩有更强的竞争性,对机器、武器和动手做事更感兴趣,而女孩则对人、衣服和语言更感兴趣。说得更大胆一些,男人喜欢地图、女人喜欢小说可不仅仅是后天培养的结果。

    不管怎么说,一个完美的(虽然人们没有意识到它的残酷)的实验已经被那些只相信环境因素的人做了。60年代,在温尼佩格(Winnipeg,加拿大的一个城市),一个失败的包皮切除手术给一个小男孩留下了一个严重损坏了的阴茎,后来医生决定把它切掉。他们决定,通过阉割、手术和激素治疗等方法把这个男孩变成女孩。约翰变成了琼,她穿了裙子,玩了布娃娃。她长大成了一个年轻女子。1973年,一个弗洛伊德派的心理学家,约翰·莫尼(John Money),突然对公众宣布,琼是一个适应得很好的少年人,她的例子也就结束了一切猜测:性别角色是通过社会环境建立的。

    一直到了1997年,才有人去核对事实。当米尔顿·戴蒙德(Milton Diamond,性别研究专家)和济茨·西格孟德森(Keith Sigmundson,心理学家)找到了琼的下落的时候,他们找到的是一个娶了一位女子、生活幸福的男人。他的故事与莫尼的说法非常不同。在他还是孩子的时候,他就总是深深地为什么事情感到非常不快乐,他总是想穿裤子,想跟男孩子混在一起,想站着撒尿。在14岁的时候,他的父母告诉了他发生过的事情,这让他松了一口气。他停止了激素治疗,把名字又改成了约翰,恢复了一个男性的生活,通过手术切除了乳房,在25岁的时候,他与一个女子结婚,并成了她的孩子的继父。他曾经被当成是性别由社会环境决定的证明,他却证明了这个理论的反面:先天因素在性别的决定上是有作用的。动物学的证据一直是指向这个方向的:在大多数物种里,雄性行为与雌性行为有着很系统的差异,这些差异有着先天成分。大脑是有先天性别的器官。从基因组、有标记的基因、与性别相关的行为诸方面得来的证据,现在都指向同一个结论。

    第十六号染色体 记忆

    遗传为修改它自己提供了方法。 ——詹姆斯•马克•鲍德温,1896

    人类基因组是一部书。一个有经验的技术员通过通读并认真对待不寻常的地方,比如基因标记,就可以造出一个完整的人体。如果有正确的阅读与诠释的方法,一个有能力的现代弗兰肯斯坦(小说《弗兰肯斯坦》中的主人公,是一个医学院的学生;玛丽•雪莱是该书的作者)也可以做到这一点。但是,之后又怎样呢?它可以造出一个人体,并注之以生命之泉,但是,如果“他”要真正地生活,“他”就不仅仅需要存在,还需要做到其他一些什么。“他”需要对外界因素适应、变化、做出反应。“他”需要获得自己的独立性。“他”需要摆脱弗兰肯斯坦的控制。有一种感觉就是,基因们必然失去对它们所创造出来的生命的控制,就像玛丽•雪莱(Mary Shelley)的小说里那个不幸的医学院学生那样。它们必须给“他”自由,让“他”找到“他”自己的生活之路。基因组并不告诉心脏应该什么时候跳动,也不告诉眼睛什么时候应该眨,也不告诉思维什么时候应该思想。即使基因确实为人的性格、智力和人性规定一些变量,并且是以惊人的准确性规定了这些变量,它们知道什么时候应该把权力下放。这里,在第十六号染色体上,存在着一些重要的放220权者:允许学习和记忆的基因。

    也许在很惊人的程度上,我们人类是由我们的基因的“意志”决定的,但是,在更大的程度上我们是由我们一生中所学到的东西决定的。基因组是处理信息的计算机,它通过自然选择从周围世界吸收有用的信息,然后把这些信息汇入它自己的设计图中。进化在信息处理方面慢得要命,常常需要好几代才能够产生一点变化。因此,基因组发现,发明一种快得多的机器对它很有帮助,这就一点也不奇怪了。这个机器的工作是在几分钟甚至几秒钟之间从周围世界里提取信息,并把它整合到自己的行为里去。这个机器就是大脑。你的基因组给你提供了神经,告诉你什么时候你的手被烫到了。你的大脑则给你提供把手从炉台上拿开的动作。

    “学习”是神经科学和心理学的范畴,它是本能的反面。本能是遗传决定的行为,学习则是由经验来调节的行为。心理学中的行为学派在20世纪的大部分时间里都希望我们相信这两者没有什么共同之处。但是,为什么有些事情是通过学习得到的,有些却来自于本能?詹姆斯•马克•鲍德温(James Mark Boldwin)——这一章里的英雄人物——是19世纪一个很不起眼的美国进化理论家。他在1896年写了一篇文章,总结了一场哲学争论。他的文章在当时没有什么影响,事实上,在那之后的91年里也没有什么影响。但是,幸运的是,在80年代晚期,一组计算机科学家把它从默默无闻之中翻了出来,他们认为,他的理论对他们面临的如何教计算机学习的问题有很大的相关性。

    鲍德温试图解释的问题是:为什么有些事情是一个人在他的一生里学习到的,而不是事先设计好的本能。有一个被广泛认同的信念,那就是:学习是好的,本能是坏的,或者说,学习是更先进的,而本能是更原始的。因此,人类的一个标志就是:所有那些对于动物来说是很自然的事情,我们人类都需要学习。人工智能的研究者们遵循着这个传统,很快就把学习放到了最重要的位置上:他们的目的是要造出有多种用途、能够学习的机器。但是这不过是一个事实上的错误。人类通过本能得到的,与动物通过本能得到的一样多。我们爬行、站立、行走、哭泣、眨眼时那种下意识的方式,与一只鸡的方式也差不多。只是在我们移植到动物本能之上的那些事情上,我们才使用学习这一方法:诸如阅读、开车、去银行存款、购物等事情。“意识的主要作用”鲍德温写道:“是使儿童学习遗传没有给他们的东西。

    而且,通过迫使我们学习什么事情,我们把自己放在了一个有选择性的环境里,这个环境很看重一个人把学到的东西变成直觉从而在将来能够用本能来解决问题。这样,学习就慢慢为本能让路。我在讲述第十三号染色体时谈到过,产奶动物的养殖给身体出了一个难题:消化不了的乳糖。第一个解决办法是文化上的:制造奶酪,但是后来身体进化出了一个内在的解决方法,即把乳糖酶的制造持续到成年。如果不识字的人在足够长的时期内在繁殖后代方面处于劣势,也许最终识字都会变成一种内在的特性。实际上,因为自然选择的过程就是从环境中提取有用的信息并把它在基因里储存起来,你也许可以把人类基因组看成是40亿年以来积累起来的学习成果。

    但是,把学到的事情变成本能的优势是有限度的。在口头语言这个例子里,我们有很强的语言本能,但这是一个可塑性很强的本能。如果自然选择一路干到底,甚至把词汇也搞成是本能的东西,那就明显地是发疯了。如果那样,语言就会成为一个太没有可变性的工具:没有一个词用来指代计算机,我们就必须把它描绘成“当你与它交流时它能够思考的东西”同样地,自然选择想到了(原谅我这种目的论的说法)要给迁徙的鸟类一个用星座导航的系统,但是这个系统不是完全装配好的。因为岁差的缘故,正北的方向是在逐渐变化的。鸟类的每一代都能够通过学习来校正自己的星座罗盘,这是生死攸关的事。

    鲍德温效应是文化进化与遗传进化之间微妙的平衡。它们不是事物的相反两面,而是伙伴的关系,它们互相影响,以求达到最好的效果。一只鹰可以从父母那里学到生存本领,从而更好地适应自己的生存环境。一只布谷鸟则必须把所有本事都建立在本能之中,因为它永远见不到自己的父母。(布谷鸟自己不孵卵,而是把卵产在别的鸟的巢里)它必须在从蛋里出生之后的几小时之内就把所寄居的鸟窝里养父母的孩子赶走;必须在幼年时期就迁徙到非洲适合它生活的地方,并且要在没有父母带领的情况下完成;它必须发现怎样找到毛毛虫并以它们为食;必须在第二年春天返回自己的出生地;必须给自己找到一个配偶;必须为自己的孩子找到一个合适的有主儿的巢。这些都靠的是一系列本能的行为,再加上一次次谨慎的从经历里的学习。

    就像我们小看了人类大脑对本能的依靠程度,我们也小看了其他动物学习的能力。例如,人们已经揭示出野蜂从自己的经历中学到很多如何从不同种类的花里采集花蜜的本事;如果只练习过在一种花上采蜜,它们见到另一种花时就会不知所措,直到练习过一阵。但是,只要它们知道怎样对付一种花,它们对付起形状相似的花来就更容易。这就证明了它们不仅仅只是记住了每一种花的特性,而是总结出了一些抽象的原理。

    另外一个从与野蜂一样的低等动物那里得到的动物学习的著名例子是海参。很难想象有比它更卑微更简单的动物了。它既不怎么动又小、又简单、又不出声。它有个极小的脑,它的一生中就是进食与交配,从来不精神紧张。让人羡慕。它既不会迁移也不会交流,不会飞也不会思考。它只是存在着。与布谷鸟甚至是野蜂比起来,它的生活太容易了。如果简单动物运用本能、复杂动物学习这一理论是正确的,那么,海参什么也用不着学。

    但是,它能够学习。如果一股水流射到它的鳃上,它会把鳃收回去。但是如果一股股水持续地喷到它的鳃上,这个收回的举动就逐渐停止了。海参对它认定的“假情报”不再做出反应。它“习惯”了。这当然不是学什么微积分,但是它同样也是学习。反过来,如果在水喷到鳃上之前先给它一次电击,海参会学着把自己的鳃收回得更多——一个叫做“敏化”的现象。它还可以像巴甫洛夫那些著名的狗一样形成条件反射:它可以在感到一股非常轻微的水流时就收回自己的鳃,如果这轻微的水流与一次电击总是同时出现。之后,这轻轻的水流本身就导致使海参飞快地把自己的鳃收回去,虽然在通常情况下这样轻微的水流不足以使海参收鳃。换句话说,海参有能力像狗或人那样学习:习惯、敏化、“联想”学习。但是它们甚至不用它们的脑。这些反射与能够修改它们的学习过程发生在腹部神经节,在这些黏糊糊的动物肚子上的一个小小的神经系统“中转站”在这些实验背后的人,埃里克•坎德尔(Eric Kandel,生物学家,因为在学习的细胞机制方面的工作,与另外两位科学家分享了2000年诺贝尔生理学和医学奖),动机并不是要跟海参过不去。他想要理解学习的最基本机制。学习是什么?当大脑(或腹部神经节)形成了一种新的习惯或改变了它的一种行为的时候,神经细胞里发生了什么?中枢神经系统里有很多神经细胞,电信号在每一个细胞里游走,另外,还有很多突触,它们是神经细胞之间的“桥梁”当神经系统里的一个电信号到达一个突触的时候,它必须要先变成一个化学信号,然后才能以电信号的形式继续旅行,就像火车上的旅客需要搭渡轮过海峡一样。坎德尔的注意力很快就集中在神经细胞之间的这些突触上了。学习似乎是在改变它们的特性。这样,当海参习惯于一个假情报的时候,接受感官信息的神经细胞与移动鳃的神经细胞之间的突触被以某种方式弱化了。反过来,当海参对某种刺激敏化了的时候,这个突触就被加强了。慢慢地,坎德尔与同事们巧妙地逼近了海参脑子里的一个分子,它位于突触弱化或强化的中心。这个分子叫做环化腺苷酸(cyclic AMP)。

    坎德尔与他的同事们发现了一串围绕着环化腺苷酸的化学反应。我们先忽略它们的正式名字,先想象有一串化学物质名字就叫A、B、C……:
    A造出B,
    B造出C,
    C打开一个叫做D的通道,
    这样就使得更多的E进入了细胞内部,
    E延长了释放F的时间,
    F就是把信号送过突触以到达下一个神经细胞的神经递质。
    现在,凑巧的是C也激活一个名叫CREB的蛋白质,激活的方式是改变它的形状。动物如果缺少这种被激活的CREB,仍然可以学习,但是学到的东西大约一小时之后就不再记得了。这是因为CREB—旦被激活就使其他基因开始表达,从而改变突触的形状和功能。以这种方式被改变的基因叫做CRE基因,意思是环化腺苷酸反应因子。如果我讲得比这还细,我会把你闷得扔下这本书直奔离你最近的惊险小说,不过再忍受一下,事情马上又会变得简单起来了。

    事情会变得如此简单,现在是跟“笨伯”见面的时候了。笨伯是一种带有突变的果蝇,它学不会这么一件事:某种气味出现之后总会出现电击。它是在70年代被发现的,是一连串“学习突变”中的第一个,这些“学习突变”的发现,是通过用射线照射果蝇然后让它们完成一些简单的学习任务,然后繁殖那些完成不了这些任务的果蝇而得到的。其他的突变种果蝇随着“笨伯”之后陆续被发现了,它们叫做“白菜”“健忘”“萝卜”“小萝卜”“大萝卜”等等。(这又一次说明,果蝇遗传学家在给基因起名字方面所享有的自由,比人类遗传学家的要大得多。)现在总共有17个“学习突变”在果蝇中被发现了。受到坎德尔研究海参成果的提醒,冷泉港实验室(美国生物学实验室,由发现了DNA结构的詹姆斯•沃森指导)的梯姆•塔利(Tim Tully)开始研究这些突变的果蝇到底是什么地方不对劲。让塔利和坎德尔高兴的是,在这些突变种果蝇体内被损坏了的基因都与制造或响应环化腺苷酸有关。

    塔利接着提出,如果他能够彻底毁掉果蝇的学习能力,那么他也应该可以改变或加强它的学习能力。通过去掉制造CREB蛋白质的基因,他造出了一种可以学习却记不住自己学了什么的果蝇——学到的东西很快就从记忆里消失了。很快地,他又得到了另外一种果蝇,它们学习得如此之快,某种气味之后会有电击这样一个信息,它们只要学一遍就会了,而其他果蝇通常要学十遍才会。塔利描述这些果蝇说它们有照相机一般的记忆。但是,这些果蝇远远算不上聪明,它们在总结规律方面很差劲。它们就像这样一个人:因为他骑自行车在晴天摔了一跤,以后他就拒绝在有太阳的时候骑自行车。

    记忆出众的人,比如著名的俄国人谢拉什维斯基(Sherashevsky),就经历过这样的问题。他们的脑子里充满了那么多的小知识,使得他们常常只见树木不见森林。智慧要求的是把什么该记住什么该忘掉恰当地结合起来。我常常遇到这样一个现象:我能容易地记起——也就是说,能够认出——我读过某一段文章或听过某一段广播节目,可是我背不出它们的内容。它们的记忆是用某种方式藏在我的意识够不着的地方。也许,对于那些记忆超群的人来说它们没有藏得这么好。

    塔利相信CREB处于学习与记忆机制的中心地位,是一种有控制权的基因,它使其他基因开始表达。这样,为理解学习而进行的探索最终变成了对基因的探索。动物有学习的能力而并不是只依靠本能,这一发现并没有让我们逃脱基因的“暴政”,我们只不过发现了,最好的理解学习的方法是了解基因和它们的产物是怎样使得学习能够进行的。

    到现在,如果你得知CREB不仅是在海参和果蝇里才有,就应该不是什么让你吃惊的事了。在老鼠体内有一个几乎是一模一样的基因,失掉CREB基因的突变种老鼠也已经被造出来了。就像预测的那样,这些老鼠学不会简单的东西,比如说,记住眼睛看不见的水下平台在游泳池里的什么地方(这是老鼠学习实验中很标准的“折磨”它们的方法),或者记住什么食物是安全的。通过把反义的CREB基因——它可以在短期内抑制CREB基因——注射到老鼠的大脑里去,老鼠可以变得有短暂的失忆。相反的是,如果它们的CREB基因异常活跃,它们就会是超级的学习能手。

    老鼠与人的距离,从进化角度说也仅仅是毫发之间。我们人类也有CREB基因。人类的CREB基因本身是在第二号染色体上,但是帮助它正常工作的一个重要同盟——CREBBP——却就在这里——第十六号染色体上。与第十六号染色体上另外一个名叫a-整合蛋白的学习基因一起,CREBBP给了我一个(不怎么充分)的理由,把学习这个题目单列成一章。

    在果蝇里,环化腺苷酸系统似乎在一个叫做蘑菇体的大脑区域里异常活跃,它是果蝇大脑里突出来的一堆神经细胞,它们组成了一个伞菌形状的结构。如果一只果蝇的脑子里没有蘑菇体,那么这样的果蝇通常学不会气味与电击之间的联系。CREB和环化腺苷酸似乎就是在蘑菇体里工作。它们具体是怎样工作的直到现在才开始变得清楚起来。通过系统地寻找其他没有学习能力和没有记忆的突变种果蝇,休斯顿的罗纳德*戴维斯(Ronald Davis)、麦克尔•格洛特维尔(Michael Grotewiel)与他们的同事找到了另外一种突变种果蝇,他们给它取名叫“沃拉多”(对于“沃拉多”,他们给了一个很有用的解释。在智利语里它是一种俗语,意思跟“心不在焉”和“健忘”相近,一般用来形容教授)。就像“笨伯”、“白菜”和“萝卜”一样,沃拉多果蝇学习起来很困难。但是,与其他基因不同的是,沃拉多好像跟CREB和环化腺苷酸都没有关系。它是a-整合蛋白中一个部分的配方,这个蛋白质存在于蘑菇体里,似乎在把细胞聚集在一起这个方面有一些作用。

    为了检验这是不是一个“筷子基因”(请看第十一号染色体那一章),除了改变记忆之外是否还有很多其他功能,休斯顿的科学家们做了一件很巧妙的事。他们拿一些自身的“沃拉多”基因被除掉的果蝇,插进去一个与“热激”基因——这个基因在突然受热的时候就开始表达——连在一起的“沃拉多”基因。他们小心地把这两个基因进行了排列,使得“沃拉多”基因只在热激基因表达之后才能够有功能。在温度低的情况下,这样的果蝇没有学习能力。但是,在给了它们一个热刺激三小时之后,它们忽然变成了学习能手。再过几个小时之后,在热刺激已经成为过去的时候,它们又失去了学习能力。这意味着在学习发生的那一瞬间需要“沃拉多”基因,它不是一个仅仅是在建造学习所需的构制时才需要的基因。

    沃拉多基因的任务是把细胞聚集在一起,这个事实提出了一个吸引人的假设,那就是记忆也许真的就是把细胞之间的连接变得更加紧密。当你学什么东西的时候,你改变了你的大脑里的网路,在以前没有连接或只有很弱连接的地方产生新的或更强的连接。我当然可以接受这种有关学习和记忆的说法,但是我很难想象我的关于“沃拉多”一词词义的记忆就是几个神经细胞之间突触连接更加紧密。这真让人百思不得其解。我感觉到,科学家们把学习与记忆的问题“简化”到了分子层次上之后,不仅远远没有把这个问题的神秘性消除,而且在我面前打开了一种新的吸引人的神秘:这个神秘就是,试图想象神经细胞之间的连接不仅给记忆提供了一种机制,而且它们本身就是记忆。它与量子物理是同样给人刺激的神秘,比欧异家板(从神灵世界里获取信息的装置)和飞碟刺激得多了。

    让我们往这个神秘性里再走得更深一些。沃拉多的发现暗示了这样一个假设:整合蛋白对于学习和记忆是至关重要的,但是,这样的暗示以前就有过了。到了1990年的时候,我们已经知道有一种抑制整合蛋白的药会影响记忆力。具体地说,这个药对一种名叫长效强化的过程起干扰作用,而长效强化似乎在记忆的产生中有着重要作用。在大脑基部的深处有一个结构叫做海马区(hippocampus,在希腊语里是海马的意思),海马区的一部分叫做阿蒙角(这个名字来源于埃及与羊相关的神。亚历山大大帝在神秘地造访了利比亚的斯瓦赫(Siwah)绿洲之后,称阿蒙是自己的父亲)。在阿蒙角里有数量众多的“金字塔”细胞(注意这持续不断的埃及风格),它们把其他感觉神经细胞的信息收集到一起。一个“金字塔”细胞很难“开火”(“开火”在这里指神经细胞送出一个电信号),但是如果有两个独立的信息同时输入,它们共同的努力就会使“金字塔”细胞产生电信号。一旦产生过一次电信号,它就容易再次产生了,但是这只是当它接到最初使它开火的那两个信息的时候,其他的输入信号没有用。这样,眼睛里看到金字塔和耳朵里听到“埃及”这个词能够结合起来使一个“金字塔”细胞产生电信号,在这两者之间产生一种联系记忆。但是,关于海马的念头虽然可能也与同一个“金字塔”细胞是连接在一起的,却没有用同一种方式被“加强”,因为它与另外两种信息没有同时到达。这是一个长效强化的例子。如果你用过于简单化的方式把这个“金字塔”细胞想象成是埃及的记忆,那么它现在就可以被金字塔的画面或“埃及”这个词,但不是海马这个词,诱发而产生电信号。

    长效强化,例如海参的学习,绝对需要突触性质的改变,在“埃及”这个例子里,就需要输入信号的细胞和金字塔细胞之间突触的改变。这个改变几乎肯定要跟整合蛋白有关。奇怪的是,抑制整合蛋白并不干扰长效强化的形成,但是的确影响它形成之后的保存。整合蛋白可能真的是把突触“绑”在一起。

    不久之前我曾经很随意地暗示过,“金字塔”细胞可能就是记忆。这是瞎说。你童年时期的记忆甚至都不在海马区里,而是在新皮质里。存在于海马区内部和附近的是形成新的长期记忆所需的机制。“金字塔”细胞大概是以某种方式把新形成的记忆送到它最终存在的那个区域里去。我们之所以如此认为,是因为两个出色却偏偏倒霉的年轻人,他们在50年代遇到了古怪的事故。第一个年轻人在科学文献里以他名字的简称H.M.而被人所知,为了避免因为一次自行车事故而引起的癫痫发作,他的大脑的一部分被切除了。第二个人被称做N.A.,是空军里的雷达技师。有一天他在做一个模型的时候,忽然转过身来,而他的一个同事正在玩一把假剑,碰巧就在那个时刻把剑往前一伸,剑从N.A.的鼻孔穿进去,进了他的脑子。

    这两个人直到今天仍然受健忘症的折磨。他们可以很清楚地记起从他们小时候到出事之前几年的事情。他们可以很短期地记住眼前发生的事——如果在他们记住这些事和回忆这些事之间不再用其他事来干扰他们。但是,他们无法形成新的长期记忆。他们认不出一个每天都见的人的面孔,也学不会记住回家的路。在N.A.的情况里(他是症状较轻的一个),他没法看电视,因为一播广告,他就忘了广告之前演的是什么了。

    H.M.可以很好地学习一项新的技能并不把它忘掉,但是他却想不起来自己曾经学过这项技能。这意味着“程序”记忆是在一个与关于事实或事件的“陈述”记忆不同的地点形成的。这个区别通过研究另外三个年轻人得到了证实。这三个年轻人对事实与事件有严重的健忘症,但是他们上学期间学习阅读、写作和其他技能却没有遇到什么困难。在做脑部扫描的时候,发现这三个人的海马区都非常之小。

    但是,除了记忆是在海马区形成的之外,我们还可以说得更具体一些。H.M.和N.A.受到的损伤暗示了另外两个大脑区域与记忆形成之间的关系:H.M.还缺少中心颞叶,而N.A.缺少一部分间脑。从这里得到启示,神经科学家们在寻找最重要的记忆区域时逐渐把范围缩小到了一个主要区域:鼻周皮质。在这里,来自视觉、嗅觉、听觉及其他感觉器官的信息经过处理成为记忆,也许通过CREB的帮助而完成。之后,信息被送到海马区,然后又送到间脑,暂时储存。如果某个信息被认为是值得永久储存的,它就以长期记忆的形式被送回新皮质储存起来:这就是那个奇怪的瞬间,你忽然用不着查某个人的电话号码,而是自己就能想起来了。记忆从中心颞叶传到新皮质的过程似乎有可能是在夜间睡觉的时候发生的:在老鼠脑子里,中心颞叶的细胞在睡觉时特别活跃。

    人类大脑是一个比基因组还更令人惊叹的机器。如果你喜欢数量化的东西,那么,大脑里有上万亿的突触,而基因组只有上十亿的碱基对,大脑的质量以千克计,而基因组则以微克计。如果你喜欢几何学,那么,大脑是一个三维的逻辑机器,而不是一230个数码式的一维机器。如果你喜欢热力学,那么,大脑在工作的时候产生大量的热量,就像一个蒸汽机一般。对于生物化学家来说,大脑需要成千上万种不同的蛋白质、神经递质以及其他化学物质,并不仅仅是DNA的四种核苷酸。对于没有耐心的人来说,

    我们真的是眼睁睁地看着大脑在不断改变,突触不断地变化以产生新学来的记忆,而基因组的变化比冰山移动还慢。对于热爱自由意志的人来说,一个名叫经验的无情的园丁对我们大脑里神经网络所进行的修整对于它的正常功能有着至关重要的作用,而基因组只是把事先定好的信息放送出来,比起大脑来,没有什么变化余地。从各种角度来看,有意识、由自由意志控制的生活似乎都比自动化的、基因决定的生活更有优势。但是,正如詹姆斯·马克·鲍德温意识到而又被今天研究人工智能的书呆子们所欣赏的,这样的两分法是错误的。大脑由基因制造出来,它有多好取决于它内在的设计。它被设计成一个能够被经验修改的机器,这是写在基因里的。基因是怎样做到这一点的,这个秘密是当代生物学面临的最大挑战之一。但是毫无疑问,人类大脑是基因的神通的最好纪念碑。它标志着一个出色的领导者知道应该在何时把权力下放。基因组就知道应该何时把权力下放。

    第十七号染色体 死亡

    为自己的祖国而死既甜蜜又光荣。——荷雷斯(公元前65〜8年,罗马诗人、讽刺文学作家)

    古老的谎言。——威尔弗雷德•欧文(20世纪英国诗人)

    如果学习是在大脑细胞之间建立新的联系,它也同时是失去旧的联系。在出生的时候,大脑细胞之间的连接太多了,随着大脑的发育,很多连接被丢掉了。比如说,在最初的时候,每一侧的视觉皮质都与到达每一只眼睛的一半信息有连接。通过很剧烈的调整,才使得它们成为这样一种情况:一侧接受来自右眼的信息,另一侧接受来自左眼的信息。经验导致了那些不必要的连接衰弱、消失,也因此把大脑从一个多用途的机器变成了很专门的机器。就像一个雕塑家把一块大理石削来凿去以形成人形那样,环境也把多余的突触去掉以使大脑功能更强。在一个瞎眼的幼年哺乳动物或者眼睛一辈子被遮住的动物那里,这样的调节从来不会发生。

    但是,这个过程除了突触连接消失之外,还有其他意义。它还意味着整个细胞的死亡。有着不正常形式的ced-9基因的老鼠不能正常发育,因为它大脑里多余的细胞不能履行他们的职责而死去。这样的老鼠最终会有一个结构不正常、负担过重、不能正常运转的大脑。民间流传的说法总喜欢强调一个恐怖的(却没有意义的)统计数字,即我们每天要失去100万个大脑细胞。在我们幼年的时候,甚至当我们在子宫里的时候,我们确实以很快的速度失去脑细胞。如果我们没有失去这些细胞,我们就永远也不可能思考。

    受到ced-9之类的基因刺激之后,不必要的细胞就大规模地自杀(其他ced基因在身体的其他器官里引发细胞自杀)。这些要死的细胞顺从地遵守一个精确的程序。在肉眼难见的线虫里,发育中的胚胎有1090个细胞,但是,它们中的131个会在发育过程中自杀,在成年线虫体内剩下959个细胞。它们好像是牺牲自己来换取身体的更大利益。“为自己的祖国而死既甜蜜又光荣”,它们高喊着口号英雄般地逝去了,就像战士们冲上凡尔登(第一次世界大战时德军与法军激烈交战之地,双方死亡将士各达40万人)的峰顶,或是工蜂自杀性地蜇入侵者。这样的比喻远不是只有表面的相似。身体内细胞之间的关系在事实上非常像是蜂巢里蜜蜂之间的关系。你体内细胞的祖先曾经一度是独立的个体,在大约6亿年前,它们在进化过程中决定要合作。这与5000万年以前社会性的昆虫决定要合作几乎是一样的:遗传上关系很近的个体意识到,如果它们把繁殖后代变成一项专门的工作,效率就会高得多,在细胞那里,它们把这项工作交给了生殖细胞,在蜜蜂那里,这项工作交给了蜂王。

    这个比喻如此之好,进化生物学家们开始意识到合作精神是有限度的。就像凡尔登的战士们偶尔被逼得不得已,会不顾集体利益地叛变。如果工蜂们得到机会,它们也会繁殖自己的后代。只有其他工蜂的警惕性可以阻止它们。蜂王通过与多只雄蜂交配来保证大多数的工蜂都只是半个姐妹(一个蜂群里的工蜂都是同一只蜂王与不同雄蜂的后代,同母不同父),因此,它们在繁殖后代方面也就没有多少共同的兴趣。这样,蜂王就能保证工蜂对她忠心,而不是工蜂之间彼此忠心。身体里的细胞也是如此。叛变是个永恒的问题。细胞们经常忘记它们对“国家”的职责,即为生殖细胞服务。它们经常要复制自己。不管怎么说,每一个细胞都来自一代一代传下来的生殖细胞,在整整一代里都不分裂是很违反本性的。也就因此,在每一个器官里、每一天里,都有细胞打破秩序重新开始分裂,就好像它抵御不了基因要复制自己的古老召唤。如果这个细胞的分裂不能被制止,结果就是我们所说的癌症。

    但是,通常它是会被制止的。以癌症为后果的叛变是如此古老的问题,所有身体比较大的动物都在细胞里带有一套精巧的开关,在细胞发现自己变得具有癌症性质的时候,这套装置可用来引起细胞自杀。最著名和最重要的开关,事实上自从它在1979年被发现以来也可能是被人们谈论得最多的人类基因,是TP53,就在第十七号染色体的短臂上。这一章就是要通过一个主要功能是防止癌症产生的基因,来讲述癌症的非凡故事。

    在理查德•尼克松(Richard Nixon)(当时的美国总统)1971年宣布对癌症宣战的时候,科学家们甚至还不知道敌人是谁,只除了一个明显的事实:癌症是细胞组织过多的生长。大多数癌症明显地既不是来自传染也不是来自遗传。传统说法是癌症不是一种疾病,而是一群多种多样的病变,由多种原因引起,这些原因多数来自外部。扫烟囱会因炭灰而染上阴囊癌;X光技术员和广岛原子弹的幸存者因为辐射而得白血病;吸烟的人因吸烟而得肺癌;造船厂工人则因接触石棉纤维而得肺癌。在各种癌症之间可能没有共同的联系,如果有,也许就是免疫系统没有能够抑制肿瘤。传统的说法就是这样。

    但是,两项齐头并进的研究开始得出了一些新的认识,它们最终把我们领到了在认识癌症方面的革命。第一个是在60年代加利福尼亚州布鲁斯•爱姆斯(Bruce Ames)的发现。他发现,很多导致癌症的化学物质和辐射,例如煤渣和X射线,都有一个重要的共同点:它们都很有效地损坏DNA。爱姆斯瞥见了这样一个可能性:癌症是基因的病变。

    第二个突破很早就开始了。在1909年,佩顿•劳斯(Peyton Rous)(1966年获诺贝尔生理学和医学奖)发现有肉瘤的鸡可以把病传给一只健康的鸡。他的工作在很大程度上被忽略了,因为几乎没有什么证据表明癌症是有传染性的。但是,在60年代,一连串的动物癌症病毒被发现了,第一个就是劳斯肉瘤病毒。劳斯最终在86岁高龄的时候获颁诺贝尔奖,以表彰他的先见之明。人类癌症病毒不久也被发现了,变得明显了的是好多类的癌症,例如宫颈癌,实际上是部分地由于病毒感染而引起的。

    把劳斯肉瘤病毒送到基因测序机里,我们发现它带有一个特殊的导致癌症的基因,现在被称为src。其他类似的癌基因很快就从其他癌病毒里被发现了。与爱姆斯一样,病毒学家们开始意识到了癌症是基因的病变。在1975年,癌症研究领域被折腾了个底儿朝天,因为人们发现src根本就不是一个病毒基因。它是一个我们都有的基因,鸡、老鼠、人类体内都有。劳斯肉瘤病毒是从它的宿主那里偷走了这个基因。

    比较传统的科学家很不愿意接受癌症是基因病变的事实:不管怎么说,除了极个别的例子之外,癌症并不遗传。他们忘记了基因并不只存在于生殖细胞里,在一个生命的一生里,基因在所有其他器官里都有用处。在身体的一个器官里的基因病变,即使不是在生殖细胞里,仍然是基因病变。到了1979年,已经有从三种不同肿瘤里得到的DNA在老鼠体内诱发了类似癌症的细胞生长,这样就证明了基因本身可以导致癌症。

    从一开始就很清楚什么样的基因会是癌基因——鼓励细胞生长的基因。我们的细胞拥有这样的基因,所以我们才能够在子宫里生长,能够在儿童时代生长,能够在之后的生活中愈合伤口。但是,至关重要的一点是这些基因大多数时候都应该是关闭着的。如果它们很容易就可以被开启,结果就是灾难性的。我们的身体里有100万亿个细胞,而且更新很快,因此,在一生的时间里癌基因有很多机会可以被开启,即使没有导致突变的吸烟、日光照射等因素从旁鼓励。但是幸运的是,身体拥有一些基因,它们的任务就是识别细胞的过度生长,并使其停止。这些基因最早是由牛津的亨利•哈里斯(Henry Harris)在80年代中期发现的,被人们称为肿瘤抑制基因。它们是癌基因的对立面。癌基因在开启的时候导致癌症,肿瘤抑制基因则在被关闭的时候导致癌症。

    它们用各种方式履行自己的职责,最突出的是在细胞生长、分裂周期的某一时刻把它“关押”起来,并且,可以这么说吧,只有当这个细胞的一切许可证都备齐了之后,才把它放出来。所以,要想进到下一步,一个肿瘤必须要有一个细胞是具有同时开启了的癌基因与关闭了的肿瘤抑制基因的。这就已经不太可能了,但这还没完。要摆脱控制、自由生长,肿瘤现在还需要通过一个决心更大的检查站,那里的哨兵是一个基因,它能够察觉细胞内的异常活动并给其他基因签发命令,把这个细胞从内部解体:细胞的自杀。这个基因就是TP53。

    最初,当TP53在1979年被邓迪(Dundee)的戴维•莱恩(David Lane)发现的时候,人们以为它是一个癌基因,后来它被认出是一个肿瘤抑制基因。1992年的一天,莱恩和他的同事彼得•霍尔(Peter Hall)在酒馆里聊TP53的时候,霍尔伸出自己的手臂,愿意用自己做实验来验证TP53是不是肿瘤抑制基因。拿到动物实验的许可证需要几个月的时间,但是在一个志愿者身上做实验却立刻可以进行。霍尔通过辐射把自己的胳膊一次一次地弄出了小小的伤口,莱恩则在之后的两星期内取了霍尔伤口处的活体样品。

    他们发现,在受到辐射之后,p53——由TP53制造出来的蛋白质——水平显著上升,清楚地证明这个基因对能够导致癌症的伤害有反应。之后,莱恩开始研究以p53作为临床克癌药物的可能性,在本书出版的时候,第一批志愿者要开始服用p53。事实上,邓迪的癌症研究进展如此之快,p53眼看就要成为这个苏格兰台河(Tay)河口边小城的第三大著名产品了,前两个是黄麻和橘子酱。

    TP53基因上的突变几乎是致命的癌症最典型的特征。在所有人类癌症的55%中,TP53都被损坏了。在肺癌里,这个比例上升到90%以上。那些出生时的两份TP53基因中有一份就已经不正常的人,有95%的机会要得癌症,而且通常在年龄很小的时候就得癌。举一个例子,就说结肠和直肠癌吧。这个癌症的开始,是因为一个突变破坏了一个名叫APC的肿瘤抑制基因。如果生长中的息肉又出现了第二个突变,使得一个癌基因RAS被开启,它就变成一个所谓的“腺瘤”。如果这时它再出现第三个突变,破坏一个现在还没有被确认的肿瘤抑制基因,腺瘤就成为一个问题更严重的肿瘤。现在,它就有了得到第四个突变的危险。第四个突变如果发生在TP53基因上,它就把肿瘤变成恶性的癌。相似的“多次打击”模型在其他种类的癌症里也适用,TP53突变常常发生在最后一步。

    你现在就可以看出来,为什么在肿瘤生长的早期就下诊断是那么重要。一个肿瘤越大,它就越有可能已经得到了下一个突变,不仅因为概率的原因,也是因为肿瘤内细胞的快速繁殖很容易引起基因传递过程中的错误,导致突变。特别容易得某些癌症的人经常在“促突变”基因上有突变,它们通常鼓励突变的出现(在关于第十三号染色体的那一章里讨论过的乳腺癌基因BRCA1和BRCA2,也许就是乳房特有的促突变基因)。这些人也有可能已经带有了一份有问题的肿瘤抑制基因。肿瘤就像兔子似的,很容易受到既快又强的进化压力。就像繁殖得最快的兔子很快就会在一个养兔场里占上风一样,在每个肿瘤里繁殖最快的细胞会迅速占上风,排挤掉那些更加稳定的细胞。就像带有突变的兔子能够钻进地洞躲避恶棍,也就因此很快能够排挤掉那些只会坐在开阔地里的兔子,肿瘤抑制基因里的突变如果能够使细胞分裂不被抑制,它就很快能够挤掉其他突变而占上风。肿瘤所处的环境在选择肿瘤抑制基因里的突变时,真的就像是外界环境选择兔子。突变最终在一些情况下出现并不是什么神秘的事。突变是随机的,选择却不是。

    与此类似的是,现在我们也清楚了为什么癌症这种病主要是老年病,年龄每增加十年,癌症出现的几率就翻一番。在10%〜50%的人体内(具体数字与所居住的国家有关),癌症最终会绕过各种肿瘤抑制基因,也包括TP53,会让我们得上这种可怕的而且可能会致死的疾病。这其实是预防医学成功的一个标志,起码在工业化的国家里,它除掉了其他那么多致死的因素使人能够长寿,不过这个说法不会给我们什么安慰。我们活得越长,我们的基因里就积攒了越多的错误,在同一个细胞里一个癌基因被开启、三个肿瘤抑制基因被关上的可能性就越大。这种情况出现的几率是不可想象的小,但是我们一生中造出来的细胞的数目又是不可想象的大。就像罗伯特•温伯格(Robert Weinberg)(当代美国生物学家,癌症研究方面的先驱之一)说过的:C5]“每10亿亿次细胞分裂中出现一次致命的恶性事故,看起来不太坏嘛。”

    让我们近距离看看TP53吧。它有1179个字母长,编码的是一个简单蛋白质的配方。p53在正常情况下很快就会被其他酶降解掉,它的半衰期只有20分钟。在这种状况下p53是不活跃的。但是,当接到一个信号之后,p53的制造就迅速加快,而它的降解也几乎停止了。这个信号还很神秘,对于它到底是什么,还有争议,但是DNA的损坏是它的一部分。被损坏了的小段DNA好像用某种方式提醒了p53。像一个刑事案件的破案小组或突击队一样,p53匆忙地进入战斗位置。下一步发生的,是p53掌握整个细胞的控制权,就像汤米•李•琼斯(Tommy Lee Jones)或哈维•凯特尔(Harvey Keitel)(两人都是好莱坞电影明星)演的那些角色一样,来到事故现场说:“我们是联邦调查局,从现在开始由我们接管了。”p53主要靠着激活其他的基因来告诉细胞做两件事之一:要么停止繁殖,停止复制它的DNA直到损伤被修复,要么自杀。

    另外一个有了麻烦的标志也会提醒p53,那就是如果细胞开始缺氧,这是判断一个细胞是否成为了癌细胞的依据。在一个正在生长的癌细胞团内部,血液供应可能会跟不上,细胞就开始窒息。恶性癌症可以克服这个困难,它给身体送出一个信号,使其把更多的血管伸到肿瘤里去——最初,癌症的希腊名字就来自于它的特征鲜明、像螃蟹腿一样的血管结构。(癌症的英文名字cancer来自于希腊文里的“螃蟹”一词)新的抗癌药物里最有前景的一些就是要阻止血管的形成。但是,有些时候p53会在血液供应到来之前就意识到发生了什么,就会杀死癌细胞。在血液供应不良的器官里的癌,比如说皮肤癌,就必须在其生长早期把p53干掉,它才能够生长。这就是为什么色素瘤如此危险。

    一点也不奇怪,p53得到了“基因组卫士”的昵称,甚至被叫做“基因组的守护天使”。TP53好像是在编码集体利益,它就像一个士兵嘴里含的自杀药片,当它发现这个士兵要叛变了,它就开始融化。以这样方式进行的细胞自杀叫做“程序性死亡”,这个词来源于希腊语“秋天树叶的掉落”(英文为apoptosis,三名科学家因为在发现其机制方面的贡献而获得2002年诺贝尔奖)。它是身体对付癌症最重要的武器,是最后一道防线。事实上,程序性死亡如此之重要,现在已经逐渐清楚,所有抗癌疗法之所以有效,都只是因为它们改变了p53及其同伴,因而引发程序性死亡。以前人们认为放射疗法和化学疗法之所以有用是因为它们可以有选择地杀死正在分裂的细胞——它们可以在细胞复制自己DNA的时候将其破坏。但是,如果真是如此,为什么这些疗法对有些肿瘤不起作用?在癌症发展的过程中有一个时刻,过了之后这些疗法就不再有效了——肿瘤不再因为放射疗法或化学疗法而缩小。为什么会是这样?如果这些疗法杀死正在分裂的细胞,它们应该在任何时刻都有效呀。

    在冷泉港工作的斯科特•洛(Scott Lowe),对此有一个巧妙的答案。他说,这些疗法确实给DNA带来一些小小的损伤,但不足以杀死细胞。事实上,这些损伤刚好能够提醒p53,然后p53会告诉细胞采取自杀行动。所以,化学疗法和放射疗法就像疫苗一样,它们是促使身体帮助自己的疗法。有些很不错的证据支持他这个理论。放射疗法和三种化学疗法——5-氟尿嘧啶、依多波塞(etoposide)、阿霉素都能够促使在实验室里被病毒癌基因感染的细胞进行程序性死亡。而且,当对这些疗法有反应的癌症复发并对这些疗法不再起反应的时候,同时发生的是一个突变将TP53给破坏了。与此类似的是,那些对疗法反应最小的癌症色素癌、肺癌、结肠癌、直肠癌、膀胱癌、前列腺癌——通常它们那里的TP53早就被突变了。某些种类的乳腺癌也对疗法不起反应:TP53被破坏了的那些。

    这些见识对于癌症的治疗相当重要。医学的一个重要分支一直以来是在一个错误的理解之下开展的。医生们不应该寻找能够杀死正在分裂的细胞的物质,而应该寻找能够使细胞自杀的物质。这不是说化学疗法整个就没有效果,但它只是由于偶然原因才有效。现在,既然医学研究知道了自己在干些什么,结果就会更给人以希望。从短期来说,它给人的希望是很多癌症病人可能不会死得那么痛苦。通过检查来判断TP53是否已经被破坏,医生们很快就可以事先知道化学疗法是否会起作用。如果不会,那么病人和他们的家庭就不必再因错误的希望而受折磨了,这种错误的希望在今天是这些病人临终前几个月非常典型的特点。

    癌基因在没有被突变的情况下是动物一生中细胞生长与繁殖所必需的:皮肤需要被不断更新,新的血液细胞需要产生,伤口要被修复,如此等等。抑制潜在癌症的机制必须允许例外的情况,使得正常的生长和繁殖得以进行。细胞必须经常得到许可而进行分裂,而且,只要它们在合适的时候停止,它们就必须具备鼓励分裂的基因。这是如何完成的,现在刚刚变得清楚起来。如果我们是在观察一个人工制造的东西,我们会得到结论说:它的背后有一个聪明得近乎可怕的设计者。

    这里的关键又是程序性死亡。癌基因是导致分裂与生长的基因,但是很让人吃惊的是,它们中有几个也激发细胞死亡。在这几个基因中有一种叫做MYC,它既可以激发细胞分裂也可以激发细胞死亡,但是,它发出的死亡信号暂时被外界的因素——存活信号——抑制住了。当这些存活信号被用完了之后,死亡就占了上风。这好像是设计者意识到了MYC能够误入歧途,所以一开始就给它设了一个陷阱,使得任何发了疯的细胞都会在存活信号被用光的时候自杀。这个聪明的设计师还往前多走了一步,把三个不同的癌基因——MYC、BCL-2和RAS——拴在了一起,使得它们互相控制。只有在三者都正常工作的时候,正常的细胞生长才可以进行。用发现了这些相互关系的科学家们的话说:“离开了这些支持,陷阱就露出来了,受了影响的细胞要么被杀死,要么就奄奄一息,两者都不再有(癌症的)威胁。”

    p53和癌基因的故事就像我这本书的大部分内容一样,对“遗传研究有危险”以及“遗传研究应该停止”的说法是个挑战。这个故事也对这样一个观点——简化论科学,也就是把系统拆成部分以理解它们的做法,是有问题和徒劳的——提出了很强的挑战。癌症医学是把癌症作为一个整体的医学研究,虽然从事这方面研究的人们既勤奋又聪明,也有大量的经费,它所取得的成果,相比于以简化论为基础的遗传研究几年来所取得的成果,真是少得可怜。事实上在最初,测定整个人类基因组序列的号召之一来自于意大利诺贝尔奖得主若罗纳托•都贝科(Renato Dulbecco),在1986年,他提出这是打赢对癌症的战争的惟一途径。现在我们对于癌症这个西方世界里最残酷、最常见的杀手,终于有了得到真正的治愈方法的切实希望,这是人类历史上的第一次,而这来自于简化论、遗传研究以及它们带给我们的认识。那些认为这些研究有危险的人应该记住这一条。

    自然选择在选定了一个解决问题的方法之后,常常也用它去解决其他问题。程序性死亡除了清理掉癌细胞之外,也还有其他用途。它在对抗普通的传染病方面也有用处。如果一个细胞发现它被某种病毒感染了,它就可以为了整个身体的利益而杀死自己(蚂蚁和蜜蜂也会因为整个蚁群或蜂群的利益而这样做)。有很好的证据表明,有些细胞确实这么做。不可避免的是,有些证据也表明一些病毒进化出了一种方法使得这样的细胞自杀不会出现。爱泼斯坦一巴尔(Epstein-Barr)病毒可以导致腮腺炎或单核细胞增多症,它带有一个暂时休眠的细胞膜蛋白质,其任务似乎就是制止被感染的细胞所表现出来的任何自杀倾向。人类乳头状瘤病毒是宫颈癌的起因,它带有两个基因,它们的任务就是关闭TP53和另外一个肿瘤抑制基因。

    我在四号染色体那一章里谈到过,亨廷顿氏病就是无计划的、过多的脑细胞的程序性死亡,而这些细胞一旦死亡就无法被补充——这就是为什么有些大脑损伤是不可逆的。这在进化角度来说很合情合理,因为与皮肤细胞不同,每一个脑细胞都是被很仔细地塑造、训练的富于经验的“接线员”。用一个没有经验、没有受过训练、形状不定的细胞来代替它比无用还要糟糕。当病毒进入神经细胞的时候,神经细胞不会接到自杀的指令。但是因为某种还不完全清楚的原因,病毒本身有时候引发神经细胞的自杀。例如,在致命的脑炎a病毒那里,就是这么个情况。

    程序性死亡还可以被用来制止除癌症之外的其他细胞叛变,比如由转座子引起的基因的改变。有些很好的证据表明,卵巢和精囊里的生殖细胞分别处于卵泡细胞和塞尔托里细胞的监视之下,它们的任务就是察觉细胞的自私性并在其出现的时候引发程序性死亡。例如,在一个5个月大的人类胚胎的卵巢里,有着大约700万个生殖细胞。到了她出生的时候,就只有200万个了。在这200万个里,只有400个左右会在她的一生中进入排卵过程。剩下的大多数都通过程序性死亡被除掉了。这个过程铁面无私地执行优化人种的政策,给任何不够完美的细胞都下达自杀的命令(身体是个独裁统治的地方)。

    同样的原则可能也适用于大脑,在那里,ced-9和其他基因在发育过程中除掉了大量细胞。任何工作得不太好的细胞又是为了集体利益而被牺牲掉了。所以,通过程序性死亡除去神经细胞不仅仅使学习成为可能,它也保持了细胞的平均质量。在免疫细胞那里可能也发生了类似的事情,即用程序性死亡无情地除去细胞。

    程序性死亡是个没有中央控制的行为。没有一个计划中心,没有一个“中央政治局”来决定哪个细胞该死哪个可以留着。这是它美妙的地方。就像胚胎发育一样,它从每一个细胞对自己的了解得到收获。只有一个概念上的困难:程序性死亡是如何进化来的?如果在受到感染、具有癌的性质或有了捣蛋基因的时候,一个细胞就会杀死自己,那么它就没有办法把自己的优点传给子孙。这个问题被称为“神风之谜”(神风是第二次世界大战时期日本自杀式敢死队的名称,在无法用常规手段打击敌舰时队员们驾驶飞机撞向敌舰),它可以用一种群体选择的形式解决:如果程序性死亡进行得比较好,那么整个身体就比那些程序性死亡进行得不好的身体要有更大的优势,前者因此就把好的特点传给它们后代的细胞。但是这就意味着程序性死亡系统在一个人的一生中无法进步,因为在一个身体之内它无法通过自然选择而进化。我们只能守着我们从遗传得到的细胞自杀机制。

    第十八号染色体 疗法

    我们的疑惑是叛徒它让我们惧怕尝试而失去我们本可以得到的果实 ——威廉•莎士比亚《一报还一报》

    当公元第三个千年来临之际,我们第一次处在了可以修改我们的遗传密码的位置。它不再是珍贵的手稿,它现在被存在软盘上。我们可以切下一些部分,加进一些部分,重新组合段落,或者重写某些词。这一章是关于我们是怎样做这些事情的、我们是否应该做,以及为什么在我们就要这样做的时候我们似乎失去了勇气,而强烈地想要把整个文字处理器扔掉,坚持说遗传密码应该保持它的神圣不可侵犯性。这一章是关于基因的操纵的。

    对大多数外行来说,遗传研究的明显目的——如果你愿意也可以说是最终的奖赏——就是通过基因工程造出的人。有一天,也许是几个世纪以后,这意味着会有一些人身上带有新发明出来的基因。现在,它意味着一个借了别人基因的人,或者从动物或植物那里借了基因的人。这样的事情可能吗?而且,如果可能,在伦理上行得通吗?

    想一想在第十八号染色体上的一个基因,它能够抑制结肠癌。我们在上一章里已经与它有过一面之交了:它是一个位置还没有被完全确定的肿瘤抑制基因。人们曾经认为它是一个名叫DCC的基因,但是我们现在知道DCC的任务是在脊柱里引导神经生长,与抑制肿瘤一点关系也没有。这个肿瘤抑制基因与DCC挨得非常近,但它仍然难以捉摸。如果你生下来时就已经有了这个基因的不正常形式,你得癌症的几率就会大大增加。一个未来的基因工程师能不能像取出汽车上一个坏了的火花塞那样把它给拿出来,用好的零件来代替它呢?很快,答案就会变得肯定。

    我的年龄使我在开始新闻业生涯的时候还在用真正的剪刀剪纸张,用真正的糨糊贴它们。现在,要把段落挪来挪去的时候,我会用微软的好人们做得很合适的小小的软件里的符号来指示它们做同样的剪贴。(我刚刚把这一段从下一页里挪过来。)但是,原理是一样的:为了挪文字,我把它们剪下来,再把它们贴到另外一个地方。

    对基因内容做同样的事,也需要剪刀和糨糊。幸运的是,自然界为了她自己的目的已经把两者都发明了。糨糊是名叫连接酶的东西,每当它遇到松散的DNA句子的时候,它就把它们缝到一起。剪刀叫做限制性内切酶,是1968年在细菌里发现的。它们在细菌细胞里的作用是以切碎病毒的基因来打败它们。但是,很快显现出来的是,跟真正的剪刀不同,限制性内切酶事儿很多:它只是在遇到一串特定的字母序列的时候才能够把DNA切开。我们现在知道400种不同的限制性内切酶,每一种识别不同的DNA字母序列,然后把那一处切开。它们就像是一把剪刀只在找到“限制”这个词的时候才把纸剪开。

    1972年,斯坦福大学的保罗•伯格(Paul Berg)用限制性内切酶在试管里把两段病毒DNA对半切开,然后用连接酶把它们以新的排列组合方式又连接起来。他就这样造出了第一个人工“重组”DNA。现在,人类可以做反转录病毒做了很久的事情了:把一个基因插到染色体上去。在那之后的一年之内,第一个基因工程细菌产生了:这是带有从蟾蜍里拿出来的一个基因的一种肠道细菌。

    当时立刻有了一阵公众的忧虑,而且并不仅限于外行。科学家们自己也认为在急着去利用这项新的技术之前暂停一下是对的。在1974年,他们呼吁暂时停止所有的基因工程研究,这仅仅是给公众的忧虑之火又煽了些风:如果科学家都担心得要让研究停下来,那肯定有什么事是值得担心的。自然把细菌基因放在细菌里,把蟾蜍基因放在蟾蜍里,我们是谁,要把它们换过来?后果是否很可怕呢?1975年在阿西洛玛(Asilomar)(美国加利福尼亚州海滨度假村,很多科学会议在此举行)举行的一次会议经过讨论搞出了一份安全方面的意见,使得美国的基因工程在一个联邦委员会的指导下小心翼翼地重新开始。科学在当自己的警察。公众的紧张情绪似乎逐渐消失了,不过,在90年代中期它又相当突然地复活了,这一次的聚焦点不是安全,而是伦理。

    生物技术诞生了。一开始是基因能泰克,然后有西特斯和百奥真(都是生物技术公司的名字),然后其他公司纷纷崛起,来利用这些新技术。在这些新兴企业面前的是一个充满可能性的世界。细菌可以被引诱来制造人体蛋白,用于医药、食品或工业。不过,当人们发现大部分人类蛋白质都不能由细菌很好地造出来,以及我们对人类蛋白质知之甚少,在医药上对它们还没有大量需求的时候,失望就逐渐地浮现了。尽管有大量的风险投资,为它们的持股者赢了利的只是诸如“应用生物系统”等给其他人制造仪器的公司。产品还是有的。到了80年代末期的时候,细菌制造的人体生长激素就代替了从死尸大脑里取出来的既昂贵又不安全的同类产品。在伦理和安全方面的担心到目前为止被证明是没有根据的:在30年来的基因工程中,没有任何或大或小的环境或公共健康事故是由于基因工程实验引起的。到目前为止,一切良好。

    同时,基因工程对科学的影响比对商业的影响要大。现在克隆基因是可能的(在这里,这个词的意思与尽人皆知的那个意思不一样):在人类基因组这个“稻草堆”里分离出一个基因这样的一根“针”把它放入细菌里去,长出几百万份,这样使得它们能够被纯化,它们的序列能够被读出来。通过这个方法,存“书”很多的人类DNA图书馆被建起来了,它们存着成千上万相互之间有重叠的人类基因组片段,每一种的数量都够用来进行研究。

    就是从这些图书馆里,人类基因组计划中的人们拼凑出了基因组的全部文字。这个计划开始于80年代末期,有着一个野心大得近于荒唐的目标:在20年内读出整个人类基因组。在之后的14年里,没有什么进展。然后在一年之内,新的基因测序仪器就完成了任务。2000年6月26日,人类基因组计划宣布它得到了人体的完整草稿。

    实际上,人类基因组计划是被“撞”进了这个声明。一个中学肄业生、前职业冲浪运动员、越南战争老兵克雷格•文特尔(Craig Venter)分享了功劳。文特尔曾经三次把遗传学翻了个底儿朝天。第一次,他发明了一种快速寻找基因的方法,专家说这不会成功。它却成功了。去了私人公司之后,他又发明了一种快速测序的技术,叫做“霰弹法”它把基因组打成随机的碎片,然后通过各片之间的重合部分把它们按正确的顺序重新组装起来。专家们又说这不会成功,而他事实上已经在用它给一个细菌基因组测序了。

    这样,当文特尔在1998年5月宣布他要第一个为人类基因组测序并把结果申请专利时,人类基因组计划内部出现了很严重的惊恐情绪。英国的威尔康姆信托基金会通过资助剑桥附近的桑格中心而资助了该计划的三分之一,它对文特尔的回应是提高“赌注”它给由公众资金扶持的这个项目注入了更多资金,并要求把它的完成日期提前。桑格的头儿,约翰•萨尔斯顿(John Sulston),领头开展了一场影响很大的宣传,反对在他看来文特尔在研究最后关头为寻求商业利益而进行的“海盗”行为。最后,冷静的头脑占了上风,2000年6月,宣布了一个“平局”。

    但是,还是回到操作上去吧。把一个基因放到一个细菌里去是一回事,把它插到人体里去又是另一回事。细菌很高兴吸收那些叫做质粒的环状DNA,把它们当做自己的DNA—样接受。还有,每一个细菌都只有一个细胞。人有100万亿个细胞。如果你的目标是从遗传上摆布一个人,那你需要在每一个相关的细胞里都插进一个基因,或者从单细胞的受精卵开始。

    即使如此,在1970年发现的逆转录病毒能够从RNA制造DNA拷贝,突然使得“基因疗法”似乎是个可行的目标了。一个逆转录病毒带有由RNA写成的信息,基本上是这样的意思:“做一份我的拷贝,把它缝到你的染色体里去。一个实施基因疗法的人只需要拿来一个逆转录病毒,切掉几个它的基因(特别是那些使它在第一次插进染色体后变得有传染性的),放进一个人类基因,然后用它感染病人。病毒开始工作,把基因插到体细胞里,嘿,你就有了一个转基因人。

    在整个80年代早期,科学家们都在担心这样一个程序的安全性。逆转录病毒也许会工作得太好了,不仅感染普通细胞,也感染生殖细胞。逆转录病毒也许会用某种方法重新获得它那些丢失了的基因,变成恶性;也或者它会使得身体本身的基因变得不稳定而引发癌症。任何事都可能发生。在1980年,当一位研究血液病的科学家马丁•克莱因(Martin Cline)违背了他的承诺,把一段无甚害处的重组DNA放入了一个受遗传血液病地中海贫血症折磨的以色列人体内(尽管不是通过逆转录病毒)的时候,对于基因疗法的恐惧被煽得更厉害了。克莱因丢了工作与名誉;他的实验结果从未被发表。每一个人都同意,就算不说别的,人体实验的时机也还不成熟。

    但是,老鼠实验被证明是既让人宽心又让人失望。基因疗法远远没有不安全,却更有可能不会成功。每一种逆转录病毒只能感染一种细胞组织;需要细心的包装才能把基因放进它的套子里去;它着陆在随便一条染色体上的随便一个什么地方,而且常常不被激活;而且,身体的免疫系统被传染病的“突击队”事先提示了一下,不会漏过一个笨手笨脚、科学家自制的逆转录病毒。

    还有,到80年代早期为止,被克隆出来的人类基因如此之少,即使能够使逆转录病毒成功地工作,也没有什么明显的候选基因要放进逆转录病毒里去。

    不过,到了1989年,几个里程碑被越过了。逆转录病毒把兔子基因带入了猴子细胞;它们把克隆出来的人类基因送入了人体细胞;它们还把克隆的人类基因带入了老鼠细胞。三个大胆又有雄心的人-弗伦奇•安德森(French Anderson)、麦克尔•布雷斯(Michael Blaese)和史蒂文•罗森伯格(Steven Rosenberg)(这三个人均为当代美国生物学家,基因疗法的创始人)——认为人体实验的时机成熟了。在一场既漫长且有时很痛苦的与美国联邦政府重组DNA指导委员会进行的斗争中,他们试图得到在癌症晚期病人身上做实验的许可。他们的理由带出了科学家和医生对于什么有优先权的不同考虑。在纯科学家看来,人体实验显得仓促和不成熟;对于惯于见到病人因癌症而死的医生来说,仓促一些是很自然的。“我们为什么这么匆忙?”在一次会议上安德森问到:“在这个国家里每一分钟有一个病人死于癌症。自从146分钟之前我们开始这场讨论,已经有146个病人死于癌症。最后,在1989年5月20日,委员会给予了许可,两天以后,一个马上要死于黑色素瘤的卡车司机——莫里斯•孔茨(Maurice Kuntz)——接受了第一个特意引入(并被批准)的新基因。它并不是被设计来使他痊愈的,甚至都不会在他的身体里永久停留;它仅仅是一种新的癌症疗法的助手。一种特殊的白细胞在他的体外被繁殖了,它们在渗透入并吃掉肿瘤方面很不错。在把它们注射回体内之前,医生们用带有一个小小的细菌基因的逆转录病毒感染了这些细胞。这样做的目的只是为了使它们能够在病人体内跟踪这些细胞,指出它们去了哪里。孔茨去世了,在这个实验里什么让人吃惊的事也没有发生。但是,基因疗法开始了。

    到了1990年,安德森和布雷斯又回到了委员会面前,带着一份更有雄心的计划。这一次,要注射的基因真的会是能够治病的,并不仅仅是一个身份标签。目标是一种极其少见的遗传病,叫做严重综合免疫缺失(SCID),它使得儿童面对感染无法展开免疫防御,致病原因是所有白细胞的迅速死亡。这样的孩子面对的是不断地受感染不断生病的短暂生命,除非他们是被放置在无菌的罩子里,或是因为幸运寻得了一个骨髓型相配的亲戚而得到完全的骨髓移植。这个病是由第二十号染色体上一个名叫ADA基因的一个“拼写”错误造成的。

    安德森与布雷斯的建议是从一个SCID孩子体内取出一些白细胞,拿一个用新的ADA基因武装起来的逆转录病毒感染它们,然后再把它们输入孩子体内。他们的建议又一次遇到了麻烦,但是这一次的反对来自另外一个方向。到了1990年,有一种治疗SCID的方法,叫做PEG-ADA,它的组成部分是巧妙地向血液里输送——不是ADA基因——ADA蛋白质,这是用等价的基因在牛体内合成的。就像治疗糖尿病的方法(注射胰岛素)或治疗血友病的方法(注射血凝因子)一样,SCID被蛋白质疗法(注射PEG-ADA)攻克了。基因疗法还有什么必要呢?

    在新技术刚刚诞生的时候,它们常常显得无可救药地缺乏竞争力。最早的铁路比当时存在的运河昂贵得多,不可靠得多。只是随着时间,新的发明才会逐渐降低它自己的花费或是提高它的效应,达到能够比得上旧技术的地步。基因疗法也是如此。蛋白质疗法在治疗SCID上赢得了竞赛,但是它要求每月一次在臀部注射,很不方便,也很贵,并且一生都要坚持治疗。如果基因疗法能够成功,它会把所有这些都用一次治疗代替——给身体重新安装上它本来就应该有的基因。

    在1990年9月,安德森与布雷斯得到了“前进”的许可,他们用基因工程改造过的ADA基因治疗了阿山蒂•德西尔瓦(Ashanthi DeSilva),一个三岁的小女孩。那是一个立竿见影的成功。她的白细胞数目增加了两倍,她的免疫球蛋白数目大大提高,她的身体开始制造正常人四分之一的ADA蛋白。不能说基因疗法使她痊250愈了,因为她已经接受了PEG-ADA,并且还在继续接受。但是,基因疗法成功了。今天,全世界四分之一以上的SCID儿童已经接受过基因疗法。没有一个人是确确实实被治愈到能够停止使用PEG-ADA的程度,但是还没有什么副作用。

    其他病会很快加入SCID,列入已经被逆转录病毒基因疗法攻打过的疾病名单,包括家族性高胆固醇血症、血友病和囊性纤维化。但是,癌症毫无疑问是主要目标。1992年,肯尼斯•卡尔沃(Kenneth Culver)(当代美国生物学家)尝试了一个有勇气的实验,第一次把带有想要的基因的逆转录病毒直接注射入人体(与此相对应的是用病毒感染在体外培养的细胞,再把这些细胞重新输入人体)。他把逆转录病毒直接注射进了20个人的脑瘤里。把任何东西注射进大脑里听起来都够吓人的,更别说是逆转录病毒了。但是,等你听到逆转录病毒里有什么再说吧。每一个逆转录病毒里都有一个从疱疼病毒里提取出来的基因。肿瘤细胞把逆转录病毒吸收进去,然后表达疱疹病毒的基因。届时,卡尔沃医生再让病人服用治疗疱疹的药物;而这药物就攻击了癌症细胞。在第一个病人身上它似乎成功了,但是在那之后的五个病人里有四个没有成功。

    这些是基因疗法最初的日子。有些人认为有一天它们会像今天的心脏移植那样常规。但是,要想说基因疗法是否是战胜癌症的战术,或者,那些以抑制血管生成、抑制端粒酶或p53为基础的疗法,哪一种能够赢得这场比赛,现在还为时过早。不管结论如何,在历史上癌症疗法从来没有像现在这样看上去充满希望,这几乎都是因为新的遗传学的缘故。

    这样的体细胞基因疗法已经不再那么有争议了。当然,关于安全的担心还是有的,但是几乎没有人能够想出一个从伦理出发的反对意见。它只是另一种形式的治疗方法,没有一个人,在目睹朋友或亲戚因为癌症而接受了化学治疗或放射治疗之后,会从那些没有什么根据的安全考虑出发,对相对来讲可能没有什么痛苦的基因疗法有什么不情愿。加进去的基因会离那些形成下一代的生殖细胞远远的;这个担心已经被牢固地消除了。但是,生殖细胞基因疗法一在那些能够被传到后代去的地方改变基因,对人类来说还是彻头彻尾的禁忌一在某种意义上来说要容易实施得多。在90年代里导致了新一轮抗议的,就是以转基因大豆和转基因老鼠形式出现的生殖细胞基因疗法。借用贬损它的人所用的一个词来说,它是弗兰肯斯坦技术(弗兰肯斯坦从不同尸体上肢解不同的部分合成为一个有生命的“人”,结果这个丑陋的“人”成为一个为害人类的强大的怪物。弗兰肯斯坦为了消除自己行为的恶果而追杀怪物,最后与自己的作品同归于尽)

    植物基因工程迅速发展有几个原因。第一个是商业的:多年以来,农夫们都为新品种的种子提供了一个需求迫切的市场。在史前时期,传统的培养方法把麦子、稻子和玉米从野生的草变成了产量高的庄稼,这完全是通过操纵它们的基因完成的,虽然那些早期的农民肯定不知道他们做的是这么一件事。在现代,虽然从1960年到1990年,世界人口翻了一番,但同样的技术使粮食产量提高了两倍,人均粮食产量提高了百分之二十多。热带农业的“绿色革命”在很大程度上是一个遗传学现象。但是,所有这些都是盲目完成的,有目标的、精心的基因操纵能够取得的成就会比这大多少?植物基因工程的第二个原因是植物可以被相当容易地克隆和繁殖。你不可能拿从老鼠身上切下来的一块去长出一只新老鼠,你在很多植物那里却可以。但是,第三个原因是个幸运的意外。一种名叫土壤杆菌的细菌已经被发现了,它有一种不寻常的特点,就是能够用名叫Ti质粒的小型环状DNA感染植物,这些Ti质粒把自己融合到植物染色体里去。土壤杆菌是现成的载体:只需往质粒里加一些基因,把它涂到叶子上,等到感染确实发生之后,用叶子的细胞再长出新的植物。现在,这个植物会用自己的种子把新基因一代代传下去。这样,在1983年,最初是一株烟草,然后是一株牵牛花,再然后是一株棉花,都以这种形式成为转基因植物。

    谷类植物对土壤杆菌的感染有抵抗力,它们需要等到一个更粗糙的方法的发明:基因们名副其实地是被装在微小的金粒上用火药或是粒子加速器射进细胞里的。这个技术现在已经成了所有252植物基因工程的标准技术。它引起的发明有放在架子上不容易烂的西红柿,不受棉铃虫蛀蚀的棉花,能够抵抗科罗拉多甲虫的土豆,能够抵抗玉米螟虫的玉米,以及其他很多转基因植物。

    这些植物从实验室挪到大田实验,又成为商品出售,过程中没打几个嗑巴。有时候,实验没有成功——1996年,棉铃虫严重毁坏了应该是有抵抗力的棉花;有时候,它们招来了环境保护人士的抗议。但是,从来没有出过“事故”当转基因庄稼被运过大西洋时,它们遇到了更强烈的环保人士的抵制。特别是在英国,那里的食品安全检验者们自从“疯牛病”之后就失去了公众的信任。转基因食品在美国已经成为常规食品的三年之后,在1999年,它在英国突然成了了不得的事。更有甚者,蒙森托(Europe Monsanto,农业技术公司,研制出很多转基因食品)在欧洲犯了一个错误,它首先推行的作物对它自己公司生产的没有选择性的杀植物剂——“围捕”——有抵抗力。这使得农夫可以用“围捕”来除草。这样一种操纵自然、鼓励使用除草剂和赚取商业利益的组合,激怒了很多环保主义者。环保恐怖分子开始捣毁油料作物的试验田,并穿着弗兰肯斯坦的服装到处游行。这个问题成了绿色和平组织的三大担忧之一,这无疑是信奉公众的权利与智慧的标记。

    像通常情况一样,媒体迅速地把争论两极化了,极端分子们在午夜电视节目上冲对手大喊大叫,一些采访逼着人们做出简单回答:你支持还是反对基因工程?这场争论的最低点,是一位科学家被迫早早退休,因为在一个歇斯底里的电视节目中有人声称他证明了加有凝集素的土豆对老鼠有害。后来,由“地球之友”组织起来的一些同事证明了他的“清白”。他的结果与其是说明了基因工程是否安全,不如说是说明了凝集素——这是一种已知的动物毒素——是否安全。是媒体混淆了它所传达的信息。把砒霜放到烧锅里会使里面煮的东西变得有毒,但是这并不意味着所有烹调都是危险的。

    同样道理,基因工程与工程里涉及到的基因一样安全或危险。有些安全,有些危险。有些对环境无害,有些对环境有害。对“围捕”有抵抗力的油菜也许对环境不友好,因为它鼓励除草剂的使用,或者把抵抗力传给杂草。能够抵抗昆虫的土豆对环境友好,因为它们需要更少的杀虫剂,使撒杀虫剂的拖拉机需要更少的柴油、运送杀虫剂的卡车损耗更少的路面,等等。对于转基因作物的反对,是出于对新技术的仇恨而不是对环境的热爱,它们在很大程度上故意忽略这样一些事实:千千万万的安全性实验已经做过了,没有得到过意外的坏结果;现在已经知道,在不同物种之间——尤其是在微生物之间一进行的基因交换,比我们所料想的要普遍得多,所以,这个原理没有一点不“自然”的地方;在基因改造之前,植物的育苗就包含有有意或偶然地用伽马射线对种子的照射,以引起突变;基因改造的主要后果是提高对疾病与害虫的抵抗力以减小对于化学喷雾的依赖;粮食产量的迅速增长对环境是有好处的,因为减轻了开荒种地的压力。

    这个问题的政治化造成了荒唐的结果。在1992年,世界上最大的种子公司“先锋”把巴西果的一个基因引入了大豆。本意是想弥补大豆里一种名叫甲硫氨酸的化学物质的“先天不足”,使得大豆对于那些以它为主食的人来说成为更为健康的食品。但是,很快就发现,世界上有很少的一些人对巴西果过敏,于是,“先锋”试验了它的转基因大豆,证明它们也能够引起这些人的过敏反应。在这个时候,“先锋”通知了负责机构,发表了他们的发现,并放弃了最初的计划。尽管计算表明,这个新的大豆过敏可能每年最多杀死两个美国人,却有可能把世界上数以万计的人从营养不良中解脱出来,他们还是这样做了。但是,这个事情并没有成为商业集团小心谨慎的一个例子,相反,这个故事被环保人士重新包装之后,被当成一个揭示基因工程的危险性和商业集团不顾一切的贪婪心的故事来讲。

    尽管如此,甚至在有那么多项目出于小心而被取消的情况下,一个比较可靠的估计是,到了2000年,在美国出售的作物种子里有50%〜60%是经过基因改造的。不管是好是坏,转基因作物是在这儿呆下去了。

    转基因动物也是如此。把一个基因放入一只动物里使它及它的后代被永久地改变,现在已经与改变植物一样容易了。你只需要把基因给插进去。用一个非常细的玻璃移液管把基因吸进去,在老鼠交配的12小时以后,把移液管的尖端捅进一个还处在单细胞阶段的老鼠胚胎里去,确定移液管的尖端进入了两个细胞核之一,然后轻轻一按。这个技术还远远不够完美:这样出来的老鼠只有大约5%能够表达外来的基因,在其他动物比如牛中,成功的就更少了。但是在那5%里得到的结果是外来基因整合到了某一条染色体的一个随机位置上的“转基因老鼠”。

    “转基因老鼠”在科研上是含金的沙子。它们使得科学家能够发现基因的作用是什么以及为什么。加进去的新基因不需要是来自老鼠的,它可以来自于人体:跟电脑不同,几乎所有生命体都能够运用任何类型的“软件”。例如,一只特别容易得癌症的老鼠可以通过引进人类的第十八号染色体而重新变得正常,这也是最早证明第十八号染色体上有一个肿瘤抑制基因的证据之一。但是,与加进去一整条染色体相比,更常见的是只加一个基因。

    微观注射正在为另一个更精巧的技术让路,它有一个明显的优势:可以把基因安插到一个精确的位置上。一个三天大的老鼠胚胎含有一些叫做胚胎干细胞的细胞,又称为ES细胞。如果这些细胞之一被取出来,注射进一个基因,那么,就像马里奥•卡佩255基(Mario Capecchi)(当代美国生物学家)在1988年首先发现的那样,细胞会在这个基因应在的位置上把染色体切开,把新基因放进去,把这个位置上原来的基因取下来。通过在电场里让细胞上的孔洞短期张开的方法,卡佩基把从老鼠里克隆出来的一个癌基因int-2放进了一个老鼠细胞,并且观察了新基因找到有故障的基因并将其换下来的过程。这个方法被称为“同源基因重组”它利用了这样一个事实,即修复破损的DNA的机制常常是用另一配对染色体上富余的那个基因作为模板。细胞错误地把新的基因当成了模板,照着它去修复了自己的基因。这样改变之后,就可以把这个ES细胞放回胚胎里,长成一个“镶嵌体老鼠”——它体内的一部分细胞带有新的基因。

    同源基因重组不仅允许基因工程师修补基因,也允许他们做相反的事情:用安插有问题的基因去故意破坏正常工作的基因。

    这样做的结果是所谓的“剔除”老鼠,它们是在有一个基因不能“出声”的情况下长大的,这可以更好地让那个基因的真正功能显露出来。记忆机制的发现(参见第十六号染色体那一章),就要在很大程度上归功于“剔除”老鼠,其他生物学分支也是如此。

    转基因动物并不是只对科学家才有用。转基因羊、牛、猪和鸡都有商业方面的应用。有一个人类的凝血因子已经引进到羊的体内,这样做是希望它可以从羊奶里被大量提取出来,用于治疗血友病。(顺便说一句,进行了这项工作的科学家克隆了多莉羊并在1997年早些时候把它展示给一个大惊失色的世界。)魁北克的一个公司拿了使蜘蛛能够结网的基因,把它放进山羊体内,希望能够从山羊奶里提取成丝蛋白质并把它们纺成丝。另外一个公司把它的希望寄托在鸡蛋上,指望着把它变成生产各种有价值的人类需要的产品的工厂,从药品到食品添加剂。但是,即使这些半工业化的应用失败,转基因技术也会改造动物的繁殖,就像它改造了植物的繁殖一样,它可以生产出有更多肌肉的肉牛,有更多奶的奶牛,或者是下的蛋味道更好的鸡。

    这些听起来都很容易。制造转基因人或“剔除”人的技术上的障碍,对于一个设备精良的实验室里的一组优秀科学家来说,变得越来越微不足道了。从原理上说,从现在开始的几年之后,你也许可以从你自己的身体里取出一个完整的细胞,在一个特定染色体的一个特定位置上插进一个基因,把细胞核转到一个自身细胞核被去掉了的卵细胞里,然后从这样造成的胚胎里长出一个人来。这个人会是一个你本人的转基因克隆,在其他任何方面都与你一模一样,惟一例外的是——举个例子说——在让你秃头的那个基因处有另外一种形式的基因。你还可以用这个克隆人体内的ES细胞长出一个多余的肝脏来替换你体内被酒精损坏了的那个。或者你可以在实验室里长出一些人类的神经细胞用来试验新的药物,这样就可以饶过实验动物的性命了。或者,如果你发疯得够厉害,你可以把财产留给你的克隆,然后放心地自杀,知道你的一部分仍然存在,但是经过了些许改进。没有人需要知道这个“人”是你的克隆。如果他年龄大了之后你们之间的相似处越来越多,他不秃顶这一点就可以消除别人的怀疑。

    所有这些都还不可能——人类ES细胞刚刚被发现——但是它不会在将来很长时间里都不可能。当克隆人体成为可能的时候,它是否符合伦理?作为一个自由的个体,你拥有你自己的基因组,没有任何政府可以使它成为国家财产,没有公司可以把它买下来,但是这是否就给了你权力把它加之于另一个个体身上?(一个克隆人是另一个个体。)又能否去改变它?到目前为止社会好像倾向于把自己绑住以抵御这些诱惑,暂时停止克隆人和生殖细胞基因疗法,给胚胎研究设立严格的界限,放弃医学上的可能成就以避免未知事物可能会带来的恐怖。我们已经把科幻电影里福斯特式(德国民间传说中的人物,因只顾眼前快乐不计后果而把自己的灵魂卖给魔鬼)的布道,即干扰自然进程就会招致凶暴的报复,牢牢地刻进了脑子里。我们变得谨慎了,或者说起码作为有投票权利的人我们更谨慎了。作为消费者,我们很可能有不同的做法。克隆很可能不257是由于多数人赞成而发生,而是由于少数人的行为。毕竟试管婴儿就大致是这样发生的。社会从来就没有决定可以允许试管婴儿;它只是慢慢习惯了这样的想法,即那些绝望地想要试管婴儿的人有办法搞到他们。

    与此同时,现代生物学大量提供给我们的嘲弄之一,就是如果你在第十八号染色体上的肿瘤抑制基因有问题,那你就忘掉基因疗法吧。一个更简单的预防措施也许就在我们手边。新的研究表明,有些人的基因会增加他们得直肠癌的可能性,但含有大量阿司匹林和不成熟的香蕉的饮食,可能会为他们提供保护。诊断是基因上的,疗法却不是。在基因诊断之后实施传统疗法,也许是基因组给医学带来的最大好处。

    第十九号染色体 预防

    99%的人一点儿都不理解这场革命来得有多快。 ——史蒂夫•福多尔(Steve Fodor),爱菲梅特利克斯(生物技术公司)的总裁

    任何医疗技术的进步都带来一个道德难题,冲击着我们这个物种。如果这个技术可以挽救生命,那么,即使有风险相伴,不发展和应用它也是道德上的错误。在石器时代,我们除了眼睁睁看着亲人死于天花之外,别无他法;在琴纳(Jenner)完善了疫苗接种技术之后,如果我们还是眼睁睁看着亲戚死于天花,那我们就是不负责任。在19世纪,我们除了眼看父母向肺结核屈服之外,别无选择;在弗莱明(Fleming)发现了青霉素之后,如果我们没有把将要死亡的肺结核病人送去看医生,那是我们的疏忽。(作者此处所举例子不恰当,因为青霉素治不了肺结核)对于个体适用的,对于国家和群体就更适用。富国不能够再忽视夺去了穷国里无数儿童生命的流行性腹泻,因为我们再也不能说医学对此没有办法。口服补水疗法(腹泻之所以危险是因为身体如果因此脱水过多就会造成机能不正常,严重时可以死亡)给了我们良知。因为有些事情是我们可以做的,我们就必须做。

    这一章是关于最常见的两种疾病的基因诊断,这两种病,一种是快速无情的杀手,另一种是缓慢又没完没了的盗取记忆者:冠心病和早老性痴呆症。我相信,我们在运用影响这两种疾病的基因的知识方面有一种危险,就是我们过于吹毛求疵、过于谨慎了,因此,我们就面临着另一种危险:拒绝人们接触到能够挽救生命的研究,从而犯下道德上的错误。

    有一个家族的基因,叫做载脂蛋白基因,或APO基因。他们基本上有四种,叫做A、B、C和——很奇怪的——E,尽管每一种在不同染色体上会有不同的形式。我们最感兴趣的是APOE,它凑巧位于第十九号染色体上。要理解APOE的工作,需要离题一点,谈谈胆固醇和甘油三酯的习惯。当你吃一盘熏肉和鸡蛋的时候,你吸收进很多脂肪,跟它们一起进来的是胆固醇——能够溶于脂肪的物质,很多激素都是从它开始造出来的(见第十号染色体那一章)。肝脏把这些东西消化掉,送它们进入血液循环,以让它们被送到其他器官里去。因为它们不溶于水,胆固醇和甘油三酯必须被名叫脂蛋白的蛋白质“背着”通过血液。在旅途开始的时候,送货的卡车叫做VLDL,是非常低浓度脂蛋白的意思,它装着胆固醇和脂肪。当它卸下它的一些甘油三酯的时候,它就变成了低浓度脂蛋白,或叫LDL(这是“坏的胆固醇”)。最后,在把胆固醇送到地方之后,它又变成高浓度脂蛋白,HDL(这是“好的胆固醇”),又回到肝脏去接受下一批货。

    APOE蛋白(叫做apo-s)的任务是把VLDL与一个需要甘油三酯的细胞上的受体介绍给对方;APOB蛋白(或说是apo-P)的任务,是卸胆固醇时做同样的工作。这样,很容易就可以看出,APOE和APOB是与心脏病有关基因的主要候选者。如果它们不正常工作,胆固醇与脂肪就留在血液里,慢慢会在动脉壁上累积起来,成了动脉粥样硬化。APOE基因被“剔除”了的老鼠即使吃正常的老鼠食物也会得动脉粥样硬化。制造脂蛋白与细胞上受体的基因也能够影响胆固醇和脂肪在血液里的行为,影响心脏病的发生。一种遗传的易得心脏病的特性叫做家族性高胆固醇血症,是胆固醇受体基因上一个罕见的“拼写错误”的结果。

    APOE之所以特殊,在于其非常“多态”我们并不是所有人都有同一形式的APOE基因,只有很少见的例外。相反,APOE就像眼睛的颜色一样:它有三个常见的类型,叫做E2、E3和E4。因为这三类在从血液里取出甘油三酯的效率有所不同,它们在是否易得心脏病方面也不同。在欧洲,E3是“最好”与最常见的一种:80%以上的人起码有一份E3,39%的人有两份。但是,有两份E4的那7%的人很早就有心脏病的危险比别人高得多,有两份E2的那4%的人也是如此,虽然得病的方式略有不同。

    但这是一个全欧洲的平均数。跟其他许多多态性相似,APOE的多态性也有着地理上的趋势。在欧洲,往北走得越远,E4就变得越常见,而E3变得越少(E2是大致不变的)。在瑞典和芬兰,E4的出现频率几乎是在意大利的三倍。因此,冠心病的频率也大致是意大利的三倍。再往远走,差异还更大。大约有30%的欧洲人至少有一份E4;东方人拥有E4的比例最低,在15%左右;美国的黑人、非洲人和波利尼西亚人中,这个比例是40%以上;新几内亚人是50%以上。这也许部分地反映了过去几千年中饮食里脂肪和肥肉的数量。在一段时间里我们已经知道,新几内亚人在吃自己的传统饮食,即甘蔗、芋头和偶尔从负鼠和树袋鼠那里得到的瘦肉时,几乎不得心脏病。但是,只要他们在露天矿上找到工作并开始吃西方的汉堡包与炸薯片时,他们很早就得心脏病的危险便飞快上升了——比大多数欧洲人快得多。

    心脏病是可以预防也可以治疗的疾病。特别那些有E2基因的人对高脂肪、高胆固醇的饮食非常敏感,换句话说,只要他们接受警告,远离这样的食品,他们就可以很容易地被治好。这是极有价值的基因信息。通过简单的基因诊断以挑出那些有得病危险的人并着重于他们的治疗,有多少生命可以挽救,有多少早期的心脏病可以避免啊。

    基因筛选并不会自动导致人工流产或基因疗法这些极端的解决办法,一个不祥基因的诊断会越来越多地导致不那么极端的治疗方法:去吃人造黄油以代替真黄油,去上健美操课。医学界应该尽快就学会不要警告所有人都避免高脂肪饮食,而是要挑出那些能够从这样的警告里获益的人,让剩下的人放松下来大吃冰激凌吧。这也许与医学界谨慎的直觉相反,却与希波克拉底誓言(希波克拉底是古希腊医师,被誉为西方医学之父,认为医师所医治的不仅是疾病,而且是病人。希波克拉底每次行医,必先吟诵自己的把为病家谋幸福作为第一目的的誓言。希波克拉底誓言被视为医德的基础)不矛盾。

    但是,我把你带到APOE这里,主要不是为了写心脏病的,尽管我感到我仍然在违反自己的规定,因为我要写另一种病了。APOE是被研究得最多的基因之一,原因不在于它在心脏病里的作用,而在于它在另一种更邪恶、更无法治疗的疾病中的重要作用:早老性痴呆症。伴随着年龄在很多人那里出现的是摧毁性的记忆与性格的丧失一这在很少的一些年轻人那里也同样会出现,它被归结为各种因素,环境的、病理的,或是偶然原因。诊断早老性痴呆症的症状是大脑细胞里无法溶解的蛋白质“硬块”的出现,它的生长会损坏细胞。病毒感染曾经一度被怀疑是病因,头部经常受打击也同样被怀疑为病因,铝在硬块中的存在使得铝锅有一段时间成了怀疑对象。传统的经验是说,遗传与这种病没有什么关系或只有很少的关系。有一本教科书很坚定地说:“它不是遗传病。”

    但是,就像基因工程的发明者之一保罗•伯格所说:“所有疾病都是遗传病”,即使当它也受其他因素影响的时候。终于,在伏尔加德国人(18世纪离开德国到俄国伏尔加地区定居的人。19世纪末,由于资源不足,很多人被送到西伯利亚。伏尔加德国人一直以来很贫困并受到严格的控制,20世纪以来更受到了深重的迫害)现在美国的后裔中,找到了早老性痴呆症以高频率出现的家谱,而且,到了90年代早期,有三个基因被与早发性早老性痴呆症联系起来了。这三个基因,一个在第二十一号染色体上,两个在第十四号染色体上。但是,在1993年,一个比这重要得多的发现是第十九号染色体上的一个基因似乎与老年人的早老性痴呆症有联系,也就是说,老年人中的早老性痴呆症也有部分遗传基础。很快,犯有“罪行”的基因就被找到了,不是别的,正是APOE。

    一个血脂基因与一种大脑疾病之间的联系不应该是这样让人惊讶的。说到底,早老性痴呆症患者常常胆固醇也高,这已经被发现了有一阵儿了。不过,它们之间联系的密切性让人吃了一惊。

    “坏”的基因形式在这里又是E4。在特别容易得早老性痴呆症的家族里,没有E4基因的那些人得这种病的几率是20%,平均发病年龄是84岁。那些有一份E4基因的人,发病几率上升到47%,平均发病年龄降低到75岁;那些有两份E4基因的人,发病几率是99%平均发病年龄是68岁。换句话说,如果你带有两份E4基因(7%的欧洲人就是如此),你最终得早老性痴呆症的几率大大高于一般人。有些人仍然能够逃过这样的命运——事实上,有一项研究就发现了一个有两份E4的86岁老人,他还保留着他所有的智慧。在很多没有显现出记忆衰退的人当中,早老性痴呆症那经典的硬块仍然存在,它们在带有E4基因的人体内也比带有E3基因的人体内更严重。那些起码带有一份E2基因的人比带有E3基因的人更不容易得早老性痴呆症,尽管他们之间的区别很小。这不是偶然的副产物,也不是统计的巧合:这看上去像是这个病的机理的关键所在。

    回想一下,E4在东方人里很少,在白人里常见一些,而在非洲人里更常见,在新几内亚的美拉尼西亚人(Melanisian)中最为常见。随之而来的应该是早老性痴呆症也遵从这样一个梯度,但是,事情并不这么简单。相比于E3/E3的人,得早老性痴呆症的相对危险在E4/E4的白人里比E4/E4的黑人和拉丁美洲人里都高得多。也许,是否容易得早老性痴呆症还受其他基因影响,而这些基因在不同的种族之间有所不同。而且,E4的效果在女性中似乎比在男性中更强。不仅仅有更多女性得早老性痴呆症,而且E4/E3的女性与E4/E4的人有同样的得病危险。在男性当中,有一份E3就可以降低危险。

    你也许在想,为什么E4还能够存在,更别说还以这么高的频率而存在。如果它既加剧心脏病又加剧早老性痴呆症,它当然应该已经在很早以前就被更无害的E3和E2灭绝掉了。我则倾向于这样来回答这个问题:高脂肪的饮食直到最近以前还是非常少见的,它对冠状动脉的副作用几乎不重要,而早老性痴呆症对于自然选择来说根本是不相关的,因为它不仅仅是发生在那些得病之前很早就已经把孩子抚养成人的人身上,而且在人们受到它袭击的那个年龄,大多数石器时代的人早就死了。但是,我不太肯定这是不是一个好的回答,因为多肉多奶酪的饮食在世界上的某些部分已经存在很久了——长得足够让自然选择去做它的工作了。我怀疑E4在身体里还有另外一个我们不知道的功能,在这个功能上它比E3强。记住:基因的存在不是为了导致疾病。

    E4与更常见的E3之间的区别在于:基因的第334个字母是G而不是A,E3与E2之间的区别是第472个字母是G而不是A。这样的结果是:E2蛋白质比E4多了两个半胱氨酸,而E4比E2多了两个精氨酸,E3介于两者之间。这些细微的变化,在一个有897个字母长的基因上,足够改变APOE蛋白质工作的方式。那个工作到底是什么,还很模糊,但是有一个理论是说,它的作用是稳定另外一个名字叫tau的蛋白质,而tau的作用又可能是保持一个神经细胞的管状“骨架”的形状。tau对于磷酸盐很有亲和性,而磷酸盐却阻止它做自己的工作;APOE的工作就是让tau别碰磷酸盐。另外一个理论是说,APOE在大脑里的工作与它在血液里的工作有相似之处。它带着胆固醇走在脑细胞之间和脑细胞内部,使得脑细胞可以建造和修理它们那些脂肪不能穿过的细胞膜。第三个较为直接的理论是说,不管APOE的工作是什么,E4都对一种淀粉状p多肽有很强的亲和力,而这正是积累在早老性痴呆症患者神经细胞里的东西,APOE则以某种方法帮助这些具有毁灭性的硬块的形成。

    这些细节有一天会变得重要,但是现在,重要的事实是我们突然掌握了一种作预测的方法。我们可以检测个体的基因,做出相当好的预言来预测他们是否会得早老性痴呆症。遗传学家埃里克•兰德(EricLander)最近提出了一个让人震惊的可能性。我们现在知道罗纳德•里根(Ronald Reagan)就有早老性痴呆症,现在回想起来,似乎有可能他还在白宫里的时候就有了此病的早期症状。假设在1979年一个又肯干又有倾向性的记者急于发现某种方法来丢里根这个总统候选人的脸,假设他抄走了一张里根用来擦过嘴的纸巾并检测了上面的DNA(先忽略这样的检测当时还没有出现这一事实吧)。假设他发现了这个历史上年龄第二大的总统候选人很有可能在任职期间患上早老性痴呆症,并把他的发现在他的报纸上刊登出来。

    这个故事刻画了基因测试所带来的对于公民自由的威胁。当问到我们是否应该提供APOE测试给那些好奇地想知道自己是否会得早老性痴呆症的人,大多数医学界人士都回答:否。最近,在深思熟虑之后,英国在这方面最好的思想库——纳菲尔德生物伦理委员会(Nuffield Council on Bioethics)——也做出了同样的结论。检查某人是否患有一种无药可治的病,说得再好听,也是值得怀疑的。它可以为那些没有E4基因的人买来安心,但却付出了高昂的代价:那些有两份E4基因的人几乎无疑会得到无药可治的痴呆症的“判决”。如果这样的诊断是绝对可靠的,那么(就像南希•韦克斯勒对于亨廷顿氏病所说的——见第四号染色体那一章),这样的检测可能对人的打击更大。另一方面,亨廷顿氏病这265样的测试,起码不会误导人。但是在不是那么肯定的情况下,比如说APOE的例子,这种测试的价值就更低了。你仍然可以——如果你非常幸运一有两份E4基因却活到很大年纪都没有症状,正如你仍然可以——如果你运气非常差——没有E4基因而在65岁的时候患上早老性痴呆症。因为有两份E4这样一个诊断既不是患早老性痴呆症的充分条件也不是必要条件,又因为这病无法治疗,别人不应该向你提供基因测试,除非你已经有了这个病的症状。

    一开始,我认为所有这些理由都很让人信服,但是现在我不这么肯定了。说到底,给人提供HIV病毒检测(只要他们自己想要)被认为是符合伦理的,虽然艾滋病(直到最近以前)是无药可治的。艾滋病并不是HIV感染之后的必然结果:有些人虽然有HIV感染却能够无限期地存活。不错,在HIV的例子里,社会还有另外一个愿望,就是阻止HIV感染的传播,而这在早老性痴呆症里就没有。但是,我们在这里考虑的是有患病危险的那些个体而不是整个社会。纳菲尔德委员会是通过不言明地把基因测试和其他测试区分开的方法来对待这个问题的。一份报告的作者菲奥娜•考尔迪科特(Fiona Caldicott)夫人说,把一个人容易得某种疾病的特点归结于他的基因组成,可以扭曲人们的态度。它使人们错误地相信遗传的影响是至关重要的,这使得他们忽略社会以及其他因素,而这又使得与精神疾病联系在一起的耻辱更多了。

    这是一个被不恰当地运用了的恰当的观点。纳菲尔德委员会是在使用双重标准。心理分析学家和精神病学家对于精神疾病提供“社会”解释,他们只需要最薄弱的证据就可以得到执照去行医,而这些解释与遗传解释一样可能让一些人显得更耻辱。这些“社会”解释持续繁荣,而“伟大正义”的生物伦理学却把另外一些有根据的诊断定为“非法”,只因为它们是基因方面的解释。在努力寻找理由去禁止用基因作解释却又允许用社会作解释大行其道的时候,纳菲尔德委员会甚至采用了这样的方法:称APOE4检测的预测能力“非常低”。这是一个奇怪的用词方法,因为在E4/E4与E3/E3之间,得病的危险有11倍的区别。就像约翰•麦道克斯引用APOE这个例子来阐明他的观点时评论的一样:有些根据,使人怀疑医生们在向他们的病人提供不受欢迎的基因信息时很鋳躇,也因此而没有抓住有价值的机会,……这种鋳躇有时有些过度。”

    另外,尽管早老性痴呆症没有治愈方法,现在已经有药物来减轻一些症状,也可能有一些可以让人们使用的预防措施去防止得病,虽然这些措施有多大价值还不确定。一个人使用所有的预防措施难道不是更好吗?如果我有两份E4,我可能很愿意知道,这样我可以做志愿者去试验新的药物。对于那些在行为上放纵自己从而会增加得病机会的人来说,这样的检测无疑是有意义的。例如,现在已经很明显,带有两份E4基因的职业拳击手得早发性早老性痴呆症的机会如此之大,拳击手们的确是被告知他们最好是去作检测,如果发现自己有两份E4基因就不要再搞拳击了。每六个拳击手中就有一个在40岁之前会得震颤麻痹或是早老性痴呆症——在微观上它们的症状是相似的,但是致病基因却不同——很多人,包括穆罕默德•阿里(Mohammed Ali)(穆罕默德•阿里:美国20世纪著名黑人拳击手,奥运会冠军),得病的年龄还要更早。在那些得早老性痴呆症的拳击手中,E4基因不同寻常地常见,在那些受到过头部伤害,之后又发现神经细胞里有硬块的人当中,也是如此。

    在拳击手那里出现的事情,在其他头部会受冲击的运动里可能也会出现。有一些道听途说的证据表明很多优秀的足球运动员在上了年纪之后过早地衰老——最近的一些伤心的例子是英国倶乐部队的丹尼•布兰茨弗劳尔(Danny Blanch flower)、乔•默瑟(JoeMercer)和比尔•佩斯利(BillPaisley),被这些证据提醒,神经学家们已经开始研究在这些运动员中早老性痴呆症的普遍性。有人计算出,一个足球运动员在一个赛季里平均要顶头球800次,对头部的损害和磨损可以是很可观的。荷兰的一项研究确实发现足球运动员比起其他项目的运动员来有更严重的记忆衰退,挪威的一项研究则发现了足球运动员脑部损伤的证据。在这里又有这样的可能,即如果E4/E4纯合子起码在选择职业时能够知道自己面临很高的危险,还是有可能受益的。我是经常把头撞在门框上的一个人,因为建筑师没有把它们设计得高到让个子高的人也能走过,我自己也在想,我的APOE基因是什么样子的。也许我也应该去测试一次。

    测试还可以有其他价值。起码有三种新的早老性痴呆症药物在发展和试验阶段。已经使用的药物,泰克林(tacrine),现在我们知道它对于带有E3或E2基因的人要比对带有E4基因的人效果好。基因组一次又一次地把“个体差异”这一课给我们上到家了。人类的多样性是它最重要的信息。但是在医学界,人们仍然明显地不情愿把人当做个体来治疗,而愿意把人当成群体来治疗。对一个人合适的治疗方法也许对另外一个人就不合适。饮食上的建议可以挽救一个人的生命,对另外一个人却可能一点用处都没有。将来会有这么一天,医生在给你开一大堆药之前先要检查一下你带有的是哪一种基因。这样的技术已经在被开发了,一个加利福尼亚的小公司爱菲梅特利克斯与其他公司一道试图把一整个基因组的基因序列都放到一个硅片上去。有一天,我们也许每人都会随身带着这样一个芯片,医生的电脑通过它就可以读出任何基因,这样,医生就可以更好地使他的处方适应我们的情况。

    也许你已经感觉到了这样做的问题是什么——以及专家们对于APOE检测过于谨慎的真正原因。假设我真的有E4/E4,而且我是一个职业拳击手。我因此有比一般人高得多的可能会发作心绞痛和早发性早老性痴呆症。假设我今天不是去看医生,而是去见一个医疗保险代理商,想搞一份新的人寿保险以配合我的房屋抵押,或者是搞一份新的医疗保险以应对将来的疾病。我拿到一份表格,被要求填写对这样一些问题的回答:我是否吸烟,喝多少酒,是否有艾滋病,体重多少,是否有心脏病的家族史——这是个遗传问题。每一个问题都设计得用来把我归类到一个特殊的风险级别,这样,我才可以得到一个既可以让保险公司赢利又仍然有竞争力的报价。很合乎逻辑的事是,保险公司很快也会要求看看我的基因,问问我是E4/E4还是有一对E3。它担心我也许是因为从最近的一次基因检测中知道我自己肯定要完蛋了,所以大买特买人寿保险,就像一个计划放火烧楼的人给楼买保险一样,坑保险公司一笔。不仅如此,它还看到,它可以通过给基因检测结果令人放心的那些人提供折扣价来吸引到让它赢利的生意。这被人们叫做“摘樱桃”这也正是为什么一个年轻、瘦削、非同性恋、不吸烟的人已经发现:比起那些年老、胖墩墩的同性恋吸烟者,他可以买到很便宜的人寿保险。有两份E4基因跟这样也差不多。

    在美国,健康保险公司已经对早老性痴呆症的基因检测感兴趣了,这没有什么奇怪的,早老性痴呆症可以是需要保险公司拿出高额开销的疾病(在英国,医疗保险基本上是免费的,主要的担心是人寿保险)。但是,保险公司在开始对同性恋者比对异性恋者收取更高保费以反映出同性恋得艾滋病的更大可能性时,引起了人们极大的愤怒。因为还记着这件事,所以保险公司现在是在小心翼翼地探路。如果基因检测对很多基因都成为常规的事情,那么,整个群体风险的概念,保险业的基础,就会受到影响。一旦我的命运被精确地了解,我就会得到这样一个保险费的报价:它会正好够我一生看病所用。对于那些在基因上很不幸的人来说,这样的保费也许是他们负担不起的:他们就会成为医疗保险里的下层阶级。因为对这些问题很敏感,英国的保险业联合会在1997年同意两年之内它们不得把做基因检测作为买保险的条件,而且不得(对10万英镑以下的房屋抵押)要求知道你已经做过的基因检测的结果。有些公司走得更远,声明基因检测不在它们的计划之内。但是这样的羞羞答答可能长不了。

    为什么人们对这个问题有如此强烈的感受,当它在实际中意味着很多人的保险费会降低?事实上,与生命中很多其他事情不同,基因上的好运气是在“受了眷顾”与没有“受眷顾”的人当中平均分配的——富人无法买到好基因,虽然富人原本就在保险上花更多的钱。我想,答案是在决定论的核心里。一个人在吸烟喝酒方面的决定,甚至是让他患上艾滋病的决定,在某种意义上来说是他自愿做出的。他“决定”在APOE基因上有两份E4,这却根本不是一个决定;这是大自然替他做出的决定。在APOE基因的基础上对人歧视就像是以皮肤颜色或性别为基础对人歧视。一个不吸烟的人也许可以很正当地拒绝与吸烟者被放在同一个风险级别里,拒绝给吸烟者的保险费提供“补贴”但是,如果一个E3/E3的人拒绝“补贴”E4/E4者的保险费,他却是在对一个什么错都没有只是运气不好的人表达偏执与偏见。

    对于用人单位拿基因检测来挑选可能雇用谁,这样的担心倒不多。即使有更多的检测成为可能,也没有什么东西可以引诱用人单位去使用它们。事实上,当我们对“基因决定我们对环境中的风险有多敏感”这个说法更为习惯之后,有些检测也许会对用人单位和雇员都成为好的做法。在一个要与已知的致癌物质(比如说日光)有一定接触的工作上(比如说,救生员),用人单位如果雇用有着不正常的p53基因的人,在将来也许会算是忽视自己关心员工的责任。在另一方面,用人单位也许出于更加自私的动机会要求申请工作的人去进行基因检测:以选择先天更健康或有更外向的性格的人(这些正是找工作时的面试所要达到的目的)。但是,已经有法律规定不得歧视了。

    同时,有一种危险,就是为保险而作基因测试或为选择雇员而作基因测试这样的“怪物”会把我们吓得不敢为了发展更好的医药的目的而进行基因测试。但是,有另外一个怪物让我更害怕:那就是担心政府要告诉我,我能如何使用自己的基因。我很不希望与保险公司分享我的遗传密码,我很希望我的医生能够知道并利用它,但是我坚持这应该是我自己的决定,而且我的这种坚持到了狂热的程度。我的基因组是我的财产,不是国家的。我和谁应该分享我的基因的内容是不应该由政府决定的,我是否应该作基因检测是不应该由政府决定的。这些应该由我决定。有一种很可怕的“父性”倾向,认为“我们”在这些问题上应该有一个统一的政策,认为政府应该制定规则来决定你可以看到多少你自己的遗传密码,你可以把它给什么人看。但是它是你的,不是政府的,你应该永远记住这一点。

    第二十号染色体 政治

    噢,英国的烧牛肉,古老英国的烧牛肉。 ——亨利·费尔丁《格拉博街歌剧》

    科学的燃料是无知。科学就像一个饥饿的火炉,必须要从包围着我们的无知森林中取来木柴喂给它。在这个过程中,我们称做“知识”的开阔地扩展开来,但是,它扩展得越大,它的边界就越长,越多的无知就出现在我们面前。在基因组被发现以前,我们不知道在每一个细胞的“心脏”里都有一个30亿个字母长的文件,我们对它的内容一无所知。现在,当我们读了这本书的一部分之后,我们就意识到了很多新的神秘现象。

    这一章的主题就是神秘。一个真正的科学家认为知识很沉闷;向无知——以前的发现揭示出来的新的神秘现象——开战才会让他来劲。森林比开阔地更有意思。在第20号染色体上有一个小“灌木丛”,它既迷人又恼人,比起哪个神秘现象来也不逊色。它已经造就了两个诺贝尔奖,只不过是因为发现了它的存在,但它固执地抵抗着,不肯被砍伐下来成为空地。而且,就像是要提醒我们,具有神秘性的知识有一种习惯是要改变世界,在1996年的某一天,它成为了最具煽动性的政治问题之一。它与一个名叫PRP的小小基因有关。

    故事从羊开始。在18世纪的英国,一组企业家先驱给农业带来了革命。在这些企业家中有莱切斯特郡的罗伯特·贝克维尔(Rober tBakewell)。他的发现是:通过让羊和牛有选择地与自己的后代里最出色的那些来交配的方法,可以使人们喜欢的特点以更高的频率出现,迅速改良品种。这种近亲繁殖用到了羊身上,产生了生长快、肉肥、毛长的羊。但是,它有一个没有预料到的副产品。萨佛克种的羊尤其明显地在年老之后出现了精神错乱的症状。它们挠自己、走路蹒跚、用一种奇怪的步子小跑,变得焦虑,似乎对抗群体生活。它们很快就死了。这种无法治愈的疾病叫做瘙痒症,它成了一个大问题,常常是每十只母羊里就有一只死于这个病。瘙痒症随着萨佛克种的羊,在较小程度上也随着其他品种的羊,来到了世界其他地方。它的病因仍然是个谜。它似乎不是遗传的疾病,但是它也无法被追踪到另外一个起因。在30年代,一位兽医学研究者在试验另外一种疾病的疫苗时,导致了瘙痒症在英国的一场大传播。这个疫苗的一部分来自其他羊的脑子,尽管这些脑子已经用福尔马林彻底消毒过了,它们仍然保留了部分传播感染的能力。从那时开始,兽医学家们就形成了一个“正统”的观念,且不说这个观点还是受了“蒙蔽”的:既然瘙痒症可以传播,它肯定是由什么微生物引起的。

    但是,什么微生物呢?福尔马林没有杀死它。清洁剂、煮沸和用紫外光照射也杀不死它。这个微生物能够通过连最小的病毒都能够挡住的过滤器。它在受感染的动物体内不引起任何免疫反应,有些时候,从注入致病物到发病之间有很长的延迟——但是如果把带病体直接注射入大脑,延迟就会短得多。瘙痒症筑起了一道让人摸不着头脑的无知的墙,打败了一代意志坚强的科学家。在相似症状出现在美国貂养殖场和落基山脉一些国家公园里居住的野生麋和黑尾鹿时,它的神秘性反而更深了。如果在实验室里把带病体直接注射入体内,貂对于羊的瘙痒症是有抵抗力的。到了1962年,一位科学家又回到了遗传的假说。他提出,也许瘙痒症既是遗传病又是可以传染的,这在那时还是一种没有听说过的组合。遗传病多得是,由遗传因素决定是否易受感染的传染病也很多——霍乱现在是一个经典的例子了——但是一个有传染性的“颗粒”能够通过某种方式在生殖细胞里旅行,这种说法似乎违反所有的生物学定律。这位科学家——詹姆斯·帕里(James Parry)——坚定不移。

    大约就在这个时候,一位美国科学家——比尔·哈德洛(Bill Hadlow)——在伦敦维尔康姆医学博物馆看到了被瘙痒症困扰的病羊那些受了损害的大脑的图片。他被这些图片与他以前在另外一个非常不同的地方所见的图片之间的相似而震动了。瘙痒症马上就要变得跟人类更加有关了。另外那个地方是巴布亚新几内亚,在那里有一种可怕的、让人丧失能力的大脑疾病,名字叫做酷鲁(Kuru),它在一个名叫佛尔的部落里已经打倒了大批的人,尤其是妇女。一开始,她们的腿开始晃晃悠悠,然后,她们的整个身体开始摇晃,她们说话开始吐字不清,她们突然会出人预料地大笑起来。在一年之内,因为大脑逐渐从内向外瓦解,病人也就死了。到了50年代末期,酷鲁已经是佛尔妇女死亡的主要原因了。它杀死了如此之多的妇女,使得在部落里男性和女性的比例成了三比一。儿童也得上了这种病,但是相比之下成年男性得病的很少。

    后来证明这是一个关键的线索。在1957年,两个在那个地区工作的西方医生,文森特·齐嘎斯(Vincent Zigas,生物学家)和卡尔顿·盖达塞克(Carlton Gajdusek,生物学家,1976年获诺贝尔生理学和医学奖)很快意识到了在发生什么。当有人死了的时候,尸体被部落里的妇女以固定仪式肢解,作为葬礼仪式的一部分,而且据传还会被吃掉。葬礼上的吃人习俗已经快要被政府铲除掉了,它已经有了足够的恶名,很少有人愿意公开谈论。这使得有些人怀疑它是否真的在过去发生过。佛尔人用断续、嗑巴的英语描述1960年前的葬礼是“切开、煮、吃”,但是,盖达塞克和其他人搜集了足够多的证人的叙述,使得人们不再认为这样的说法是在撒谎。一般情况下妇女和儿童吃内脏和脑子,男人吃肌肉。这立刻就为酷鲁病的发生提示了一个解释。它在妇女和儿童中最常见,它出现在死者的亲属里——但是在姻亲和血亲里都出现。在吃人的习俗被定为不合法之后,发病年龄稳定地提高了。说得具体一些,盖达塞克的学生罗伯特·克里茨曼(Robert Klitzman)查出了三群死亡者,每一群死者都在40年代和50年代参加过因酷鲁病而死的人的葬礼。例如,在1954年有一个为一位名叫尼诺的妇女举行的葬礼,参加葬礼的15名亲戚中有12名后来死于酷鲁。那三个没有死于酷鲁的人一个是在很年轻时就死于其他原因了,一个是因为她与死者嫁给了同一个男子,所以传统上禁止她参与吃尸体的行为,一个是事后声称她只吃了一只手。

    当比尔?哈德洛看到被酷鲁病折磨的人脑与被瘙痒症折磨的羊脑之间的相似性时,他立刻给在新几内亚的盖达塞克写了信。盖达塞克跟踪了这个线索。如果酷鲁病是瘙痒症的一种,那么就应该可以通过直接往脑子里注射的办法把它由人传给动物。在1962年,他的同事乔·吉布斯(Joe Gibbs)开始了一长串的实验,试图用佛尔部落死人的脑子使猩猩和猴子感染上酷鲁病(这样的实验在今天是否会被认为是符合伦理的,不在本书讨论范围之内)。头两只猩猩在接受了注射之后的两年之内得了病,死了。它们的症状很像那些酷鲁病人的症状。

    证明酷鲁病是瘙痒症在人体里的自然表现形式并没有什么帮助,因为瘙痒症研究在到底什么是病因的问题上把人搞糊涂了。自从1900年以来,一种罕见又致命的大脑疾病就一直困扰着神经学家。这种病后来被叫做克鲁茨菲尔特—雅各布病(Creutzfeldt-Jacob),或简称CJD。它的第一个病例是1900年由布列斯劳(Breslau,当时德国的一个城市,现属波兰)的汉斯·克鲁茨菲尔特(Hans Creutzfeldt)诊断出来的,病人是一个11岁的女孩,她在那之后的十年里死去了。因为CJD几乎从来不袭击特别年轻的人,而且得病之后死得也快,这个病例乍看起来几乎肯定是一个奇怪的误诊,它给我们留下的迷惑对于这个神秘的病来说是太典型了:第一个被查出的CJD病人原来没有这个病。但是在20年代,阿尔方斯·雅各布(Alfons Jakob)确实发现了一些可能是CJD的病例,于是病的名字就定下来了。

    吉布斯的猩猩和猴子很快就被证明对CJD与对酷鲁一样敏感。在1977年,事情的发展向更可怕的方向转了个弯。两个癫痫病人在同一家医院里接受了运用微电极进行的试验性脑手术之后都染上了CJD。这些电极以前在一个CJD患者身上被使用过,但是使用之后它们被用适当方式消毒过了。那致病的神秘东西不仅能够抵挡住福尔马林、清洁剂、煮沸和照射,它还能抵挡住手术器械的消毒。这些电极被空运到贝塞斯达(Bethesda)(美国国家卫生研究院所在地。——译者注),去在猩猩身上使用,它们也很快染上了CJD。这被证明是一个新的而又更加古怪的流行病:“由医生引起的”CJD。从那时到现在它杀死了近100人,都是身材矮小的人使用了从尸体的脑垂体中分离出来的人体生长激素。因为每一个病人接受的人体生长激素都来自好几千个脑垂体,提取的过程就把很少几个自然出现的CJD病给放大成了一个真正的流行病。但是,如果你谴责科学是在以福斯特式的行为与自然捣乱而引火烧身,那么你也得给它些荣誉,因为它解决了这个问题。生长激素引起的CJD规模有多大是在1984年被了解到的,但早在这之前,合成生长激素,最早的来自经过基因工程改造的细菌的产品之一,就已经在代替从尸体里提取的激素了。

    让我们来盘点一下这个奇怪的故事在1980年左右时的样子吧。羊、貂、猴子、老鼠和人都可以因为注射受了感染的脑组织而染上同一种病的不同形式。这个感染经受住了几乎所有通常的杀灭微生物的程序,而且,在最有威力的电子显微镜下它仍然是隐形的。但是在日常生活里它又不传染,似乎没有通过母亲的乳汁传染,不引起任何免疫反应,有些时候可以在休眠状态里呆上二三十年,只需要些许剂量就可以染病——虽然染病的可能性与剂量非常有关。它到底是什么呢?

    在所有这些兴奋当中几乎被忘记了的是萨佛克羊的病例,以及近亲繁殖看上去似乎加剧了瘙痒症这个线索。逐渐变得清楚的还有,在几个病人那里——尽管只占总数的不到6%——似乎有一些家族的联系,暗示着这可能是遗传病。了解瘙痒症的关键不是在病理学家所掌握的那套“武器库”里,而是在遗传学家的“武器库”里。瘙痒症存在于基因里。这个事实在以色列表现得最充分。当以色列科学家在70年代中期在自己的国家里寻找CJD病例的时候,他们注意到了一个不寻常的事情。整整14个病例,或者说,是偶然发生率的30倍,出现在从利比亚移民到以色列的那为数很少的犹太人当中。立刻,怀疑到了他们的饮食上面,而那包括了对羊脑的特别爱好。但是,这不是问题所在。真正的解释是遗传方面的:所有得病的人都属于一个分散开了的家族。现在知道,他们都带有同一个突变,这个突变在斯洛伐克、智利和德国裔美国人的几个家庭里也找到了。

    瘙痒症的世界很怪异、很异乎寻常,却也模模糊糊地有点熟悉。就在一组科学家抵挡不住诱惑要把瘙痒症总结为遗传病的同时,另外一组却在琢磨一个革命性的、事实上可以说是异端邪说的想法,在一开始它似乎是向与遗传病相反的方向走的。早在1967年,有人就提出,传播瘙痒症的东西可能既不含有DNA也不含有RNA。它也许是地球上惟一不用核酸也没有自己的基因的生命。因为弗兰西斯?克里克刚刚在那之前不久发明了被他半严肃地称为“遗传的中心教义”这个词——DNA制造RNA制造蛋白质——有一种生命没有DNA,这个主张在生物学里所受的欢迎,与路德(Luther,16世纪宗教改革家)的主张在罗马教廷所受的欢迎一般。

    1982年,一位遗传学家,斯坦利?普鲁西纳(StanleyPrusiner)提出一个方案,来解决一个没有DNA的生命与一种在人类DNA里游走的疾病之间明显的矛盾。普鲁西纳发现一团能够不被普通的蛋白酶切碎的蛋白质,它在有瘙痒症类疾病的动物体内存在,在同样一种动物健康的个体里却不存在。他比较容易地就得到了这一团蛋白质里氨基酸的序列,并推测出与其等价的DNA序列,然后他在老鼠的基因里寻找这个序列,后来在人类基因里也找了。普鲁西纳就这样发现了一个基因,名叫PRP(抵抗蛋白酶的蛋白质),并且把他的“异端邪说”钉到了科学这个教堂的大门上。他的理论在之后的几年里逐渐发展起来,是这样的:PRP是老鼠和人类体内的正常基因,它制造一个正常的蛋白质。它不是一个病毒的基因。但是,它的产品,名字叫做蛋白侵染子的,是一个有着不寻常性质的蛋白质,它可以突然改变自己的形状,变成一个又硬又黏的东西,抵御住所有想要摧毁它的企图,并结成一团,破坏细胞的结构。所有这些已经够史无前例的了,但是普鲁西纳还提出了更异乎寻常的东西——这种新型的蛋白侵染子有能力改变正常的蛋白侵染子,使其成为像自己一样的形状。它不改变蛋白质的序列——蛋白质与基因一样也是由长长的数码序列组成——但是它改变蛋白质的折叠方式。

    普鲁西纳的理论摔在了石头地上。它未能解释瘙痒症与类似疾病的一些最基本的特点,具体地说,它未能解释这个病有多种形式这样一个事实。正如普鲁西纳今天沮丧地说的:“这样的假说得不到什么热情。”我还清楚地记得,那时我在写一篇文章时询问专家对于普鲁西纳理论的意见,而那些专家谈到普鲁西纳的理论时带有一种轻蔑。但是,慢慢地,随着证据的积累,看起来他似乎是猜对了。最终变得清楚起来的是,没有蛋白侵染子基因的老鼠不会染上这一类病里的任何一种,而一剂形状不对的蛋白侵染子就够让一只老鼠得病了:这些病是由蛋白侵染子造成的,也是通过它们传播的。但是,尽管普鲁西纳的理论从那时起砍倒了一大片无知的林子——普鲁西纳也恰当地尾随着盖达塞克去斯德哥尔摩拿回了诺贝尔奖(普鲁西纳于1997年获诺贝尔生理学和医学奖。——译者注)——大片林子仍然存在。蛋白侵染子保持着深深的神秘性,最突出的一个是它们到底是为了什么而存在。PRP基因不仅在所有检查过的哺乳动物里都存在,它的序列也很少有变化,这暗示着它是在做什么很重要的工作。这个工作几乎肯定是与大脑有关,因为大脑是这个基因被激活的地方。这个工作也许需要铜,因为铜是蛋白侵染子很喜欢的东西。但是——这是它的神秘所在——一只老鼠的两份PRP基因如果在出生之前就被有意拿掉,它仍然是一只完全正常的老鼠。看起来,不管蛋白侵染子的工作是什么,老鼠可以不需要它就长大。为什么我们要有这么一个有潜在致命性的基因?我们仍然不得而知。

    同时,我们只差一两个突变就会从我们自己的瘙痒症基因那里得上这个病。在人体内,这个基因是有253个三个字母长的词。尽管最前面的22个和最后面的23个在蛋白质一制造出来的时候就被砍下去了。只在四个位置上,一个改变会引发疾病——四种不同形式的疾病。把第102个词从脯氨酸变成亮氨酸会引起戈斯特曼—斯特劳斯勒—杉克病(Gerstmann-Straussler-Scheinker),这是一种遗传病,病人可以存活很长时间。把第200个词从谷氨酰胺改成赖氨酸会引起在来自利比亚的犹太人当中典型的CJD病。把第178个词从天冬氨酸改成天冬酰胺引起典型的CJD,除非第129个词也同时被从缬氨酸改成甲硫氨酸。在这种情况下,结果是由蛋白侵染子引起的疾病里最可怕的一种。这是一种罕见的疾病,被称为致命家族失眠症,在几个月彻底的失眠之后死亡。在这个病里,丘脑(也就是大脑里的睡眠中心之一)被疾病吞噬掉了。看来,蛋白侵染子引起的不同疾病的不同症状,是不同的大脑区域被侵蚀的结果。

    在这些事实最初变得清楚之后的十年,科学在进一步探索这个基因的神秘性方面成果辉煌。从普鲁西纳和其他人的实验室里,巧妙得几乎让人发懵的实验不断涌现出来,揭示了一个不同寻常的关于决定性和专一性的故事。“坏”的疾病通过重新折叠它的中心部分(第108到第121个词)来改变自己的形状。在这个区域里的一个突变会使形状的改变更容易发生,它在一只老鼠生命的如此早期就会致死,蛋白侵染子在出生之后的几个星期之内就会发作。我们在不同种类的蛋白侵染子疾病中所看到的突变,都是“边缘”性质的,它们只稍微改变一下蛋白质形状改变的机会。这样,科学告诉了我们越来越多有关蛋白侵染子疾病的事情,但是,每一条新知识只暴露出了更深的神秘。

    这个形状的改变到底是怎么发生的?是否像普鲁西纳所设想的那样,还需要有未被发现的第二个蛋白质,被称为X蛋白质的那个?如果真是如此,为什么我们无法发现它?我们不知道。

    同样的一个基因,在大脑的所有区域都表达,它怎么可能根据自己带有什么样的突变而在不同的区域里有不同的表现呢?在山羊里,疾病的症状可以是嗜睡也可以是过度兴奋,看它们得的是两种疾病形式里的哪一种。我们不知道这是为什么。

    为什么物种之间有一道屏障,使得这些疾病在物种之间很难传递,在一个物种之内却很容易?为什么通过口腔传染不容易得病,而直接注射到脑子里却相对比较容易?我们不知道。

    为什么症状的出现由剂量大小决定?一只老鼠摄入的蛋白侵染子越多,发病就越快。一只老鼠拥有的蛋白侵染子基因份数越多,注射“无赖”蛋白质之后发病就越快。为什么?我们不知道。

    为什么杂合体要比纯合体更安全?换句话说,如果在你的一份基因上第129个词是缬氨酸,在另一份上是甲硫氨酸,你为什么就会比那些有两份缬氨酸或是两份甲硫氨酸的人对蛋白侵染子疾病有更强的抵抗力(致死家族失眠症除外)?我们不知道。

    这些疾病为什么这么挑剔?老鼠很难患上仓鼠瘙痒症,反过来也一样。但是,一只被人工加了仓鼠蛋白侵染子基因的老鼠,却在接受仓鼠脑子的注射之后能够患上仓鼠瘙痒症。一只带有两份不同的人类蛋白侵染子基因的老鼠,能够患上两种人类的疾病,一种像是致死家族失眠症,一种像是CJD。一只既有人类蛋白侵染子基因又有老鼠蛋白侵染子基因的老鼠,比起只有人类蛋白侵染子基因的老鼠,患病会更慢。这是否说明不同的蛋白侵染子相互有竞争?我们不知道。

    这个基因在穿过一个新的物种时是怎样改变它的品系的?老鼠很难患上仓鼠瘙痒症,但是一旦患上了,它们就把它越来越容易地传给其他老鼠。为什么?我们不知道。

    为什么这个疾病从接受注射的位置缓慢而逐渐地传播开去,仿佛坏的蛋白侵染子只能够改变那些就在它们旁边的好的蛋白侵染子?我们知道这个疾病要通过免疫系统里的B细胞,它们不知怎么一来就把这病传到脑子里去了。但是为什么是B细胞?是怎样传递的?我们不知道。

    这个不断扩展的对于我们的无知的了解,它真正让人迷惑的一个方面是它冲击了比弗兰西斯?克里克的那个教义还更中心的遗传学教义。它削弱了我从这本书的第一章就开始宣讲的内容之一,那就是:生物学的核心是数码式的。在这里,在蛋白侵染子基因上,我们确有像样的数码突变,用一个词代替了另一个词,但它导致的后果离开其他知识就是无法预测的。蛋白侵染子系统是个逻辑系统,不是数码系统。它的改变不是序列上的而是形状的改变,它还与剂量、位置以及是否在刮西风有关。这并不是说它没有决定作用。要说起开始发病的年龄来,CJD比起亨廷顿氏病还准确呢。过去的记录里曾有不居住在一起的兄弟姐妹在完全相同的年龄发病的。

    蛋白侵染子疾病是一种链式反应引起的,一个蛋白侵染子把它的邻居变成跟它自己一样的形状,它的邻居们再去改变其他的,就这样呈指数式地继续下去。它就像是1933年有一天列奥?希拉德(LeoSzilard)(匈牙利物理学家,核物理中链式反应的发明人。——译者注)在伦敦等着过马路的时候在他脑子里想出来的一个决定人类命运的图景:一个原子裂开放出两个中子,每个中子导致另外一个原子裂开又放出两个中子,这样继续下去——这个图景里的链式反应后来在广岛爆炸了。蛋白侵染子的链式反应当然比中子链式反应慢得多,但是它也同样有能力形成一个指数式的“爆炸”,还在普鲁西纳在80年代早期刚刚开始破解其中细节的时候,新几内亚的酷鲁流行病就是这种可能性的一个证据。但是,在离家更近的地方,一个更大的蛋白侵染子流行病已经开始了它的链式反应。这一次,牺牲品是牛。

    没有人确切地知道是在什么时候、什么地点、怎么样——又是那该死的神秘性——但是在70年代晚期或80年代早期的某个时候,英国牛肉食品的制造商开始把形状不对的蛋白侵染子加进了他们的产品。它也许是因为在牛脂降价之后工厂里的生产过程有所变化,也许是因为有更多的年老的羊找到了进入工厂的路,多谢慷慨的羊肉补贴。不管原因是什么,形状错误的蛋白侵染子进入了生产系统:它所需要的只是一只被高度感染的、被瘙痒症困扰的动物进入给牛做的牛食。老牛和羊的骨头和下水先要被煮沸消毒之后才能够被做成富含蛋白质的添加剂,给奶牛食用,但这没有用处。瘙痒症里的蛋白侵染子在煮沸之后仍然“存活”。

    把蛋白侵染子疾病传给一头牛的机会仍然非常小,但是如果有千万头牛,那就够了。一旦最初的几例“疯牛病”又重新进入食物链,被做成食物给其他的牛吃,链式反应就开始了。越来越多的蛋白侵染子进入了牛食饼,给新的小牛越来越高的剂量。较长的潜伏期意味着那些完蛋了的牛平均在5年之后才出现症状。在1986年底,当人们认识到最初的6个病例不同寻常的时候,在英国已经大约有3万头牛被感染上了,尽管此前没人知道这件事情。最终,在90年代晚期此种病几乎被全歼之前,有18万头牛死于牛海绵状脑病。

    在第一个病例被报告之后的一年之内,政府兽医那精湛的侦探工作就把受污染的饲料确认为问题根源。它是惟一符合所有细节的理论,还能解释奇怪的异常现象,比如说,在古恩希岛(Guernsey)发生的流行病比泽西岛(Jersey)早很多:这两个岛的饲料来自两个不同的供给商,一个用了很多肉和骨头,另一个用得比较少。到了1988年7月,反刍动物饲料禁令就已成了法律。很难想象专家和政府部门动作还能比这更快,除了事后诸葛亮的时候。到了1988年8月,索思伍德(Southwood)委员会的建议也被执行了,所有患有海绵状脑病的牛都被杀掉且不得再进入食物链。这时,发生了第一个大错:政府决定只给农民牛价值的50%作为补偿,这就给了农民一个动力去漠视疾病的征兆。但是,即使这个错误的后果也不像人们所想的那么严重:当补偿金额提高之后,汇报上来的病牛数字也没有大幅增加。

    特别规定的牛内脏禁令在一年之后也生效了,它禁止成年牛的脑子进入人类的食物,只在1990年才把被禁的牛脑扩展到小牛。这也许会发生得更早。但是,因为知道除非是直接往脑子里注射,其他物种很难染上羊瘙痒症,这样的措施在当时显得过于谨慎了。已经证明了通过食物是不可能让猴子染上人类蛋白侵染子疾病的,除非剂量特别大,而从牛到人的跳跃比从人到猴子的跳跃大得多。(人们的估计是,与通过食物吸收相比,向大脑里注射会把得病的危险提高1亿倍。)在那个时期,如果谁说食用牛肉不安全,那就会成为最大的不负责任。

    就科学家们所关心的来说,不同物种之间口腔传播的危险确实小得几乎不存在:如此之小,以至于在实验里如果不用几万只、几十万只动物就一个病例都得不到。但是这就是问题所在:这样的一个实验正在5000万只名字叫做英国人的“实验动物”上进行。在这样大的一个样本里,不可避免地会出现几个病例。对于政治家来说,安全是个绝对的概念,不是相对的。他们想看到的不是个别人患病,而是没有一个人患病。另外,牛海绵状脑病像它以前的所有蛋白侵染子疾病一样,被证明在让人吃惊这一点非同一般。猫因为吃了牛所吃的同样的有肉有骨头的饲料,也染上了病——从那时到现在,70只以上的家猫、三只猎豹、一只美洲豹、一只美洲斑豹,甚至一只老虎都因牛海绵状脑病死了。但是还没有出现过得了牛海绵状脑病的狗。人类会像狗那样有抵抗力还是会像猫科动物那样脆弱?

    到了1992年,牛的问题被有效地解决了,尽管流行病的高峰在那之后才出现,因为在受感染和出现症状之间有五年的潜伏期。1992年之后出生的牛很少有患牛海绵状脑病或有可能患上的。但是,人类的歇斯底里才刚刚开始。至此,政治家们所做的决定开始稳步地变得越来越愚蠢。感谢那个内脏的禁令,它使得食用牛肉比最近十年来的任何时候都更安全,但是也就是在那个时候人们开始拒食牛肉。

    在1996年3月,政府宣布,确有十个人死于蛋白侵染子疾病的一种,看起来很像是在那段危险的时期通过牛肉传染上的:它的一些症状与牛海绵状脑病相似,以前没有见过。公开的警告,加上媒体心甘情愿地煽风点火,就成了——很短暂的——极端。认为只在英国就会有几百万人死亡的狂想式预言也被大家认真对待。把牛变成了吃人兽这样的蠢事被广泛地描述成支持用有机肥料种田的证据。出现了很多阴谋理论:这个病由杀虫剂引起;科学家的嘴都被政客们封住了;真相被隐瞒了;对饲料业的管理规则被取消才是问题的原因;法国、爱尔兰、德国和其他国家也在封锁同样严重的流行病的消息。

    政府感到它必须做出反应,要出台一个更没用的禁令,不许食用两岁半以上任何年龄的牛:这个禁令更煽起了公众的警惕,摧毁了整个一个行业——把整个系统用那些命运已被注定的牛给堵死了。那一年的晚些时候,在欧洲政客们的坚持下,政府下了命令,“有选择地杀死”另外10万头牛,尽管明知这是一个会进一步疏远农民和消费者的没有意义的姿态。在马跑了之后它都不再把圈门关上了,它要在圈外面杀一只羊来做祭祀。不出所料,这个新的杀牛举动甚至没能取得让欧盟解除它禁止进口所有英国牛肉禁令效果,这个禁令其实主要是出于欧洲自身的经济利益。但是比这更糟的是接下来在1997年对带骨头的牛肉的禁止。人人皆知带骨牛肉的危险是微乎其微的——最多导致每四年有一例CJD。政府对于危险所采取的措施如此之集权化,尽管危险性比遭雷击还小,农业大臣也不准备让大家自己去做决定。事实上,可以预料到,政府对危险采取了这样一种荒谬的态度,它逼得治下的人们采取了更有危险的行动。在有些圈子里几乎出现了一种逆反心理。我就发现,在禁令即将生效的时候,我受邀请去吃红烧牛尾的次数比以前任何时候都多。

    在1996年一整年里,英国做好了迎接一场人类海绵状脑病流行的准备,但是从3月到年底只有6个人死于这种病。患病数字远远没有增加,相反似乎保持稳定甚至减少了。当我写这本书的时候,有多少人会死于新类型的CJD仍然不清楚。这个数字慢慢升到了50以上。每一个病例都是无法想象的家庭悲剧,但还算不上流行病。一开始,调查显示这个新类型CJD的受害人都是在危险的年头里特别热衷于吃肉的人,尽管受害者之一在几年以前当了素食者。但是这是一个幻象:当科学家们向那些被认为是死于CJD的病人(但是死后检查却表明他们是死于其他原因)的亲属询问死者生前的习惯时,他们发现了同样的食肉倾向:死者家属所讲述的记忆,心理上的多于实际的。

    受害者们一个共同的特点是他们几乎都属于同一种基因型——在第129个词上是双份的甲硫氨酸。也许,人数更多的杂合子与缬氨酸纯合子会被证明只不过是有更长的潜伏期:通过大脑内注射而传给猴子的牛海绵状脑病就比其他蛋白侵染子疾病有长得多的潜伏期。另一方面,因为绝大多数人类通过牛肉得到的传染都应该发生在1988年底以前,十年的时间已经是牛的平均潜伏期的两倍了,也许,物种之间的界限与在动物实验里看到的一样高,而流行病最坏的时候已经过去了。也可能新类型的CJD跟吃牛肉没有关系。很多人现在相信,有一种可能是从牛肉制品中得到的人体疫苗或其他医药制品给我们的危险更大,而这种可能性在80年代晚期被权威机构有点太过轻率地否定了。

    CJD曾经杀死过一辈子都吃素、从来没有动过手术、从来没有离开过英国、从来没有在农场或屠宰场干过活的人。蛋白侵染子最后的也是最大的一个神秘之处就是甚至在今天——当CJD的各种形式通过各种已知途径传播,包括吃人的习俗、手术、激素注射,吃牛肉也有可能——85%的CJD病例是“零星”的,意思是说,在目前它们无法用任何理由解释,只能说是偶然。这冒犯了我们的决定论,在这个理论里所有疾病都要有个病因,但是,我们并不生活在一个完全由决定论控制的世界。也许CJD就是以每100万人中有一例的概率自发地出现。

    蛋白侵染子让我们因自己的无知而感到卑微。我们没有想到存在一种不使用DNA的自我复制——根本就没有用数码信息。我们没有想象到有一种疾病有着如此深奥的秘密,从如此不可能的地方出现,被证明是如此致命。我们仍然不能完全理解一个多肽的折叠怎么就能导致这么大的混乱,或者蛋白链组成上的一个微不足道的改变怎么就能够有这么复杂的后果。正如两位蛋白侵染子专家所写:“个人的与家庭的悲剧、民族的灾难与经济的灾难,都可以追溯到一个小小的分子淘气的错误折叠。”

    第二十一号染色体 优化人种论

    (优化人种论,eugemcs,指把“有害”基因从人类基因组中淘汰掉,往往伴随着对某一部分人的歧视)

    我不知道有比人民本身更为安全的社会力量的保管处,如果我们认为他们所受的启蒙不足以使他们以健康的判断力来行使他们的控制权,补偿的办法不是把权力从他们那里拿走,而是为他们作判断提供信息。 ——托马斯•杰斐逊

    第二十一号染色体是人体里最小的染色体。因此,它应该被叫做第二十二号染色体,但是,叫了那个名字的染色体直到最近还被认为是更小的,这些名字现在已经固定了。也许因为第二十一号染色体是最小的染色体,可能有着最少的基因,它是惟——条能够在一个健康人体内有三份而不是两份的染色体。在所有其他情况下,有一整条多余的染色体会把人类基因组的平衡打乱得使身体根本无法正常发育。偶尔有儿童在出生时有一条多余的第十三号或第十八号染色体,但是他们最多活几天。出生时有一条多余的第二十一号染色体的儿童很健康、明显地很快乐,也注定能够活很多年。但是他们不能够被认为是——用那个带点轻蔑的词说——“正常”他们有唐氏综合症。他们的外表特征——矮小的身材、胖胖的身体、窄眼睛、愉快的脸-看就很明显。同样明显的是,他们头脑迟钝、性情温和、衰老得快,常常患上某种形式的早老性痴呆症,在40岁之前死去。

    唐氏综合症的婴儿通常有大龄母亲。随着母亲年龄的增加,生出一个唐氏综合症婴儿的机会迅速呈指数增长,从20岁时每2300个婴儿里有一个到40岁时每100个里就有一个。完全是出于这个原因,唐氏综合症的胚胎是基因筛选的主要受害者,或者说他们的母亲是基因筛选的主要使用者。在大多数国家里,现在为高龄母亲提供羊膜穿刺——或者是强制实行——来检查胚胎是否带有一条多余的染色体。如果是,母亲就会被建议流产,甚至被骗做了流产。给出的理由是尽管这些孩子有着愉快的举止,但大多数家长不希望成为唐氏综合症孩子的父母。如果你持有某种观点,

    你会把这看成是科学的良性用途的一个体现,它奇迹般地制止了那些身有残酷疾患之人的出生,又没有给谁带来痛苦。如果你持有另一种观点,你会把这看成是出于可疑的追求人类完美与对残疾人的不尊重、由政府公开鼓励的对神圣的人类生命进行的谋杀。你看,尽管50多年前纳粹的暴行使人们看到优化人种的做法的荒唐而对其失去了信任,但是在实际生活中它仍然在进行。

    这一章是关于遗传学历史上的阴暗面的,关于遗传学家庭里的“黑羊”——以基因纯洁性的名义而进行的谋杀、绝育和流产。

    优化人种论之父——弗兰西斯•高尔顿——在很多方面都与他的第一代表兄查尔斯•达尔文正相反。达尔文有条理、有耐心,288害羞,很传统,高尔顿却是知识的浅薄涉猎者,在性心理上一团糟,还爱炫耀。他也很聪明,在南部非洲探险过,研究过孪生子,搜集过统计学资料,幻想过乌托邦。今天,他的名声几乎与他的表兄一样大,只不过他的名声更像是臭名昭著而不是声名显赫。达尔文主义总有被变成政治信条的危险,高尔顿就这么做了。哲学家赫伯特•斯宾塞(Herbert Spencer)热情地拥抱了“适者生存”这个观念,并论述说它支持了经济学中的自由资本主义和维多利亚时代社会中的个人主义:他称之为社会达尔文主义。高尔顿的见解更缺乏诗意一些。如果像达尔文阐述的那样,物种被系统化的有选择的繁殖而改变,就像牛和信鸽那样,那么人类也可以通过这样的繁殖来改进自己。在某种意义上说,高尔顿是在求助于一个比达尔文主义要早的传统:18世纪繁殖牛的传统和比这更早的养殖各种苹果和玉米的传统。他叫嚷的是:让我们像改进了其他物种那样地改进我们自己这个物种吧。让我们只用人类最好的样本而不是最差的来传宗接代。在1885年,他发明了“优化人种”这个词来指称这样的生育方式。

    但是,“我们”是谁?在斯宾塞的个人主义世界里,它确确实实是我们每一个人:在这里,优化人种的含义是每一个人都努力挑选一个优秀的配偶——脑子好用身体健康的人。这与选择结婚对象时比较挑剔也没有什么不同一我们已经这样做了。但是,在高尔顿的世界里,“我们”有了一个更加“集体化”的含义。高尔顿的第一个也是最有影响的一个跟随者卡尔•皮尔逊(Karl Pearson,统计学家),是个激进的社会主义乌托邦派,也是一个优秀的统计学家。被德国不断发展的经济实力所吸引又对其感到畏惧,他把优化人种论变成了一种军国主义。必须优化人种的不是个体,而是国家。只有在公民中实行有选择的生育,英国才能够领先于它在欧洲大陆上的竞争对手。在谁能够生育谁不能够生育上国家必须有发言权。刚刚诞生的时候,优化人种论不是一门政治科学,它是以科学为借口的政治信条。

    到了1900年,优化人种论抓住了普通民众的想象。“优基因”这个名字突然成了时尚,平空冒出了公众对于有计划地生育的兴趣,同时,优化人种学会在英国各处都冒了出来。皮尔逊写信给高尔顿说:“如果孩子不健康,我听到大多数的中产阶级太太会说:‘噢,但是那不是一个优化人种的婚姻!波尔战争(1899到1902年英国军队与波尔人(从17世纪起居住在非洲南部并融入当地的荷兰农民的后代)在非洲南部进行的战争,英国的目的是掌握对该地区的控制。此次战争中,英国军队遇到了出乎预料的打击,这也是英国殖民思维变弱的开始)中军队征招来的战士素质非常差,以至于它在刺激了关于福利的争论的同时,也刺激了关于更好地生育的争论。

    相似的事情在德国也发生了,一种混合了弗雷德里克•尼采(Friedrich Nietzsche)的英雄哲学与恩斯特•海克尔的强调人的生物命运的学派,产生了一种激情,希望进化上的进步与经济和社会的进步同时发生。独裁哲学能如此容易地吸引人,意味着在德国,比在英国更甚,生物学与民族主义交织在一起了。但是在那时候它还仅仅是意识形态,还没有被付诸实施。

    到此,还没有什么危害。但是,重点迅速从鼓励最优秀的人以优化人种的名义生育转移到了阻止最“差”的人生育,以免把基因带坏。“最差的”很快就成了“心智虚弱”的意思,它包括了酗酒者、患有癫痫病的人、罪犯,以及智力低下者。在美国尤其如此。在1904年,高尔顿和皮尔逊的一个崇拜者查尔斯•达文波特(Charles Davenport)劝动了安德鲁•卡内基(Andrew Carnegie)(卡内基是以铁路和钢铁起家的美国实业家、慈善家,出资建立过很多研究机构),为自己建立了冷泉港实验室,专门研究优化人种论。达文波特是个顽固保守、精力无穷的人,他更关心的是怎样制止劣化人种的生育,而不是怎样鼓励优化人种的生育。他的“科学”,至少是过于简单化的。例如他曾说,既然孟德尔学说已经证明了遗传的颗粒结构,美国人的“大熔炉”思维就应该退休了;他还提出过海军的家庭可能有热爱海洋的基因。但是在政治上,达文波特既有技巧又有影响力。亨利•戈达德有一本书,是关于一个神秘的、智力有缺陷的、名字叫做卡里卡克(Kalli kak)的家庭的。在这本书里他强烈地论证了心智虚弱是有遗传的,而达文波特就从这本书里得到了帮助。达文波特和他的同盟者们逐渐说服了美国政界,让他们认为美国人的“质量”正处于极度危险之中。西奥多•罗斯福(Theodore Roosevelt,美国第26任总统,第32任总统富兰克林•罗斯福是他的本族侄子)说:“总有一天我们会意识到,正确的类型中的优秀公民最主要的责任,不能逃避的责任,这个法案是在他或她的身后给这世界留下他们的骨血。”错误类型的人就不必申请了。

    美国对于优化人种论的热情多是来自反对移民的感情。在那个时候,东欧与南欧迅速地向美国移民,很容易就会掀起疑神疑鬼的情绪,认为美国国内“更好”的盎格鲁一萨克逊人种正在被290稀释。支持优化人种的观点为那些出于传统的种族主义而希望控制移民的人提供了方便的掩饰。1924年的移民限制法案就是优化人种运动的直接结果。在以后的20年间,它把很多绝望的欧洲移民困在故国,推入了一个更加恶劣的命运,因为它拒绝给这些人提供一个在美国的新家。它在法律文书里呆了40年,没有得到修正。

    对于优化人种论的支持者们,限制移民可不是他们在法律上的惟一胜利。到了1911年,有六个州已经有了记录在案的法律,允许对心智不健康的人实行强制绝育。6年之后,又有9个州加入了他们的行列。理由是这样的:如果一个州可以处决罪犯,它当然可以剥夺人的生育权(好像头脑天真跟犯罪行为是同样的东西)。“在这些个人自由,或者是个体权利的例子中,……我们要谈的是登峰造极的愚蠢。这样的个体……没有权利生育像他们那样的人。”一个名叫W•J•罗宾逊(Robinson)的美国医生写道。

    最初,最高法院否决了很多绝育方面的法律,但是在1927年,它的立场改变了。在巴克控告贝尔(Buckvs Bell)一案中,最高法院判决,弗吉尼亚州政府可以给凯瑞·巴克(Carrie Buck)做绝育手术。巴克是一个17岁的女孩,居住在林池堡一个癫痫病人和弱智者的群落里,和她的妈妈爱玛以及女儿维维安住在一起。在进行了一次仓促草率的检查之后,只有7个月大[!]的维维安被宣布是个白痴,于是凯瑞被命令去做绝育手术。法官奥利弗•温代尔•霍姆斯(Oliver Wendell Holmes)在判决里有一句出了名的话:“三代白痴已经够了。”维维安幼年就死去了,(维维安在7岁时因病死去。她读了一年多小学,成绩中等)但是凯瑞活到了较大的年龄,是一个值得尊敬的女人,智力中等,空闲时间喜欢玩填字游戏。她的妹妹多瑞丝也被做了绝育手术,她试了很多年想要怀个孩子,最后才意识到,在没有征得她同意的情况下别人对她做了什么。直到70年代,弗吉尼亚州还在继续给那些有智力障碍的人做绝育手术。美国——个人自由的堡垒——按照1910年到1935年间通过的30多个州和联邦的法律,给十多万人做了绝育手术,理由是这些人“弱智”。

    但是,尽管美国是个先锋,其他国家却跟得很紧。瑞典给6万人做了绝育,加拿大、挪威、芬兰、爱沙尼亚和冰岛都把强制绝育放入了自己的法典,并付诸实施。最臭名昭著的是德国,先是给40万人做了绝育,后来又杀死了其中的很多人。在第二次世界大战期间的18个月内,有7万已经被做过绝育手术的德国精神病人被用毒气杀死,为的是腾出病床来给受伤的战士用。

    但是,英国从来没有通过一个优化人种的法律,在新教工业化国家里这几乎是惟一的。它从来没有通过一个法律允许政府干涉个人的生育权利。(注意此处的说法与后面的说法的区别)具体地说,英国从来没有过一个法律制止弱智人结婚,也从来没有一个英国法律允许政府以某人弱智为理由对其实行强制绝育。(这并不是要否认,医生和医院都有过连蒙带骗给病人做了绝育的行为,但是这些属于个人行为。)

    英国并没有什么特殊之处;在罗马天主教堂影响比较大的国家都没有优化人种的法律。荷兰人就避免了通过类似法律。苏联更关心迫害和杀掉聪明人而不是无趣的人,从来没有这样的法律条文。但是,英国之所以突出,是因为20世纪前40年优化人种学与优化人种的宣传很多——事实上,大部分一都来自英国。与其去问为什么那么多国家都跟从了这样残忍的行为,回过头来问一问这样一个问题会给人以启发:为什么英国抵挡住了这样做的诱惑?功劳应该给谁?

    功劳不是科学家的。科学家们在今天喜欢告诉自己,优化人种学一直是被看成伪科学并被真正的科学家所不屑的,特别是在孟德尔的主张被重新发现之后(它揭示了比明显的突变多得多的隐性突变的存在),但是,在有文字的记录里,这样的说法却没有什么证据。大多数科学家都很乐意接受在一个新的技术官僚体系中被尊为专家的奉承。他们一直在催促政府采取行动。(在德国,学术界一半以上的生物学家加入了纳粹党——比任何其他专业人员比例都高——而且没有一个人批评优化人种论。)

    一个说明问题的例子是罗纳德•费希尔爵士,又是一个现代统计学的奠基人(尽管高尔顿、皮尔逊和费希尔是伟大的统计学家,没有人就此认为统计学与遗传学一样危险)。费希尔是个真正的孟德尔主义者,不过他也是优化人种学会的副主席。他沉迷于被他自己称做是从高等阶级向穷人的“生育事件的重新分配”:穷人比富人生孩子更多这样一个事实。即使后来优化人种论的批判者,例如朱利安•赫胥黎(Julian Huxley)和J•B•S•霍尔丹,在1920年以前也是优化人种的支持者。他们抱怨的不是优化人种的原则,而是优化人种政策在美国实行过程中的粗鲁和有偏向性。

    社会主义者在制止优化人种论方面也没有功劳。尽管工党在30年代是反对优化人种的,在那之前社会主义运动总的来说给优化人种论提供了思想武器。你得使劲挖掘才能在英国有名的社会主义者中找到一个在20世纪的前30年对优化人种论表示过哪怕是相当模糊的一点反对。要在那个时候的费边社人物中找到支持优化人种的言论却超乎寻常的容易。H*G•韦尔斯(H*G.Wells)、J.M. 凯恩斯(J*M•Keynes)、乔治•伯纳德•萧(George Bernard Shaw)、海弗洛克•埃利斯(Havelock Ellis)、哈罗德•拉斯基(Harold Laski)、西德尼和贝亚翠丝•韦伯(Sidneyand Beatrice Webb )(H•G•韦尔斯是小说家,J•M•凯恩斯是经济学家,乔治•伯纳德•萧是作家萧伯纳,海弗洛克•埃利斯是性学家,哈罗德•拉斯基是政治学家,西德尼和贝亚翠丝•韦伯都是社会改革者)一都在关于迫切需要让蠢人和残疾人停止生育的方面说过很可怕的话。萧伯纳的剧本《人与超人》里的一个角色说:“作为懦弱者,我们用慈善的名义打败自然选择:作为懒汉,我们用体贴和道德的名义忽视人工选择。”

    H•G•韦尔斯的作品尤其充满了有滋有味的话:“就像人们带有的致病微生物,或者一个人在墙壁很薄的房间里发出的噪声一样,人们带到这世界上来的孩子们也不仅仅属于父母自己”,或者是:“密密麻麻的黑人、棕色人、肮脏的白人以及黄种人……都必须走开。”或者:“已经变得明显,人类群体从总体上看,要比他们所拥有的未来低劣……给他们平等就是把自己降到他们的水平,保护和珍视他们则会被他们的多产所淹没。”他又安慰人地加上一句:“所有这样的杀戮都要先施麻醉剂。”(事实不是这样。)

    社会主义者们有着对计划的信心,准备好了把国家权力置于个人之上,他们是优化人种理论的天然接受者。生育也到了国有293化的时候了。优化人种论在费边社皮尔森的朋友们中间首先扎下根来成了一种受欢迎的论调,优化人种论是他们的社会主义磨坊里的麦子。优化人种论是进步的哲学,又呼吁了国家的作用。

    很快,保守派和自由派都同样地有了激情。前总理阿瑟•鲍尔弗(Arthur Balfour)主持了1912年在伦敦召开的第一届世界优化人种大会,赞助会议的副主席们包括最高法院的大法官和温斯顿•丘吉尔(Winston Churchill)。牛津联合会(世界上最著名的辩论社,创建于1823年,活跃至今。常邀请著名人物对重要事件发表演说)在1911年以二比一的比例通过支持优化人种论的原则。像丘吉尔所说:“心智虚弱之人的成倍增加”是“对于一个种族非常危险的事情”。

    确切地说,还是有几个孤独的反对声音的。一两个知识分子保持了怀疑态度,在他们当中有希莱尔•贝洛克(ffilaire Belloc)和G•K•切斯特顿(Chesterton)(希莱尔•贝洛克:出生于法国、在英国生活的作家、政治家;G•K •切斯特顿,英国作家、诗人),他们写道:“优化人种论者发现了把硬心肠和软脑子结合起来的方法。”但是,大多数英国人是支持优化人种的法律的,这一点无可置疑。

    有两个时刻英国几乎要通过优化人种的法律了:1913年和1934年。在第一次,这样的企图被孤胆反对者逆着传统认识的潮流给挫败了。1904年,政府设立了一个“照顾与控制弱智人”的皇家委员会,由拉德纳(Radnor)伯爵指导。在1908年,当汇报工作的时候,它顽固地坚持“智力低下是遗传”的立场,这一点都不奇怪,因为委员会的很多成员都是收了钱的优化人种论者。最近格里*安德森(Gerry Anderson)在剑桥大学所作的论文里阐述,在那之后有一个时期各个游说组织开展了长期的游说,敦促政府采取行动。内政部接到了来自各郡、各市议会和各教育委员会的几百份决议,敦促通过一个法案限制“不适者”的生育。新的优化人种教育学会对总理进行了“狂轰滥炸”,并与内政大臣开会以推进自己的主张。

    在一段时间内,什么也没发生。内政大臣赫伯特•戈莱德斯通(Herbert Gladstone)不为所动。但是,当他在1910年被温斯顿•丘吉尔接替之后,优化人种论终于在内阁的会议桌上有了一个积极的代表。丘吉尔在1909年已经把阿尔弗雷德•特雷德戈尔德(Alfred Tredgold)的一个支持优化人种的演讲以内阁文件的形式散发了。在1910年12月,在内政部就职之后,丘吉尔写信给总理赫伯特•阿斯齐斯(Herbert Asquith),敦促尽快制定优化人种的法律,结束时写道:“我感到,在另一年过去之前,疯狂之流的源泉应该被切断与封住。”他希望那些精神病人的“诅咒随着他们死去”。为了防止对他的意思还有怀疑,威尔弗里德•斯克恩•布伦特(Wilfrid Scawen Blunt)(威尔弗里德•斯克恩•布伦特:19世纪末20世纪初英国作家)写道,丘吉尔那时已经在私下里宣传用X射线和手术的方法给那些精神“不合适”的人做绝育。

    1910年与1911年的宪法危机使得丘吉尔没有能够提出自己的提案,然后他就调到了海军部。但是到了1912年,立法的声浪又复活了,保守党的一名高层人物,格寿姆•斯图尔特(Gershom Stewart),在这个问题上提出了自己以个人成员身份的提案,最终强扭了政府的手。1912年,新的内政大臣里吉诺德•麦克纳(Reginold Mc Kenna)有些不情愿地提出了一个政府法律草案:精神缺陷法案。这个法案将会限制弱智者的生育,并惩罚那些与有精神残疾者结婚的人。一个公开的秘密是,一旦具备可行性,这个法案就可以被修改为允许强制绝育。

    有一个人应该特别提及,因为他发动了对这个法案的反对:一个激进的自由派议会成员,他的名字如雷贯耳——事实上这也与故事有关——乔赛亚•韦奇伍德(Josiah Wedg wood)。他是多次与达尔文家族联姻的著名的工业家族的后代。查尔斯•达尔文的外祖父、岳父以及一个姐夫(同时也是他妻子的哥哥)都叫乔赛亚•韦奇伍德。议员乔赛亚的职业是海军工程师。在1906年自由派大获全胜的时候他被选入议会,但是后来加入了工党,于1942年进入上议院。[达尔文的儿子伦纳德(Leonard),在那时是优化人种学会的主席。

    韦奇伍德非常不喜欢优化人种论。他指责优化人种学会是在试图“把劳动阶层像牛一样繁殖”,他还断言,遗传定律“太没有确定性,无法让人把信心建立在某一个特定学说上,更不要说根据它来立法了”。但是,他的主要反对意见是以个人自由为基础。他对一个给予了政府用强制手段把孩子从自己家中领走的权力的法案很反感,因为其条文规定,警察在接到公众举报某人“心智虚弱”时有责任做出反应。他的动机不是社会公正,而是个人自由:其他保守党的自由派,例如罗伯特•塞西尔(Robert Cecil))爵士,加入了他的行列。他们的共同目标是个人利益与政府的对抗。

    真正让韦奇伍德如鲠在喉的条文是,“鉴于整个社会的利益,(心智虚弱的)人被剥夺生育后代的机会是合乎意愿的”。用韦奇伍德的话来说,这是“在所有被提倡过的事情中最令人厌憎的”,而且不是“我们有权期望一个自由派政府所能做到的对于治下人民自由的关切和在个人面对政府时给予个人的保护”。

    由于韦奇伍德的攻击的效力,政府收回了这个法案,第二年又以温和得多的形式重新提出。关键的是,这一次它略去了“任何可能被诠释为优化人种论的提法”(用麦克纳的话说),那些限制生育与婚姻的得罪人的条文被去掉了。韦奇伍德仍然反对这一法案,他用了整整两个晚上,靠巧克力支撑着,把200多条补充条款放到桌面上,以继续了自己对草案的攻击。但是,当他的支持者减少到只有四个人的时候,他放弃了,草案被通过,成为了法律。(作者此处的叙述与第299页有矛盾)

    韦奇伍德也许认为自己失败了。可以强制执行的对于精神病人的关押成了英国生活的一个特征,并在实际上使他们更不容易生育后代。但是真实情况是他不仅阻止了优化人种的措施被采用,而且他还发出了警告信号给将来任何认为优化人种立法值得考虑的政府。并且,他指出了整个优化人种工程中处于中心位置的漏洞。这个漏洞不是基于错误的科学理论,也不是因为优化人种在实际中不可行,而是它归根结底是对人的压制而且很残酷,因为它要求政府的权力得到保证,凌驾于个人权利之上。

    在30年代早期,随着萧条时期失业人数的增加,优化人种论死灰复燃。在英国,人们开始荒唐地把高失业率与贫困怪罪到最初的优化人种论者预言过的种族的退化,优化人种学会的会员数达到了创纪录的水平。就是在那个时候,多数国家通过了优化人种的法律。例如,瑞典在1934年开始具体实施它那强制绝育的法律,德国亦然。

    希望英国通过绝育法律的压力已经在一些年里增加了,政府的一个被称为伍德报告的关于精神缺陷的文件帮了忙,这个文件的结论是精神疾病在增加,而原因部分是因为精神缺陷者的高生育率(提交这个报告的委员会小心地定义了三类精神缺陷:白痴、弱智和“心智虚弱”)。但是,当一个工党议员以私人名义递交给下议院的优化人种提案被拒之后,向政府施压的优化人种组织改变了策略,把它们的注意力转向社会服务部门。卫生部被说服了,聘请了一个委员会,在劳伦斯•布罗克(Lawrence Brock)爵士领导下分析为精神缺陷者绝育的提议。

    布罗克委员会虽然出自于行政系统,但从一开始就有派性。据一位现代历史学家说,它的大多数成员“一点都不愿意去不带感情地检验那些相互矛盾和下不了结论的证据”。这个委员会接受了精神缺陷来自遗传的观点,忽略了与此观点不符的证据,“跟从了”(用它自己的原话)那些支持此观点的证据。它接受了精神缺陷者生育多这样一个观点,全然不顾只凭已有证据还不足以下结论,它只是为了便于满足反对者才“拒绝”了强制绝育一它轻描淡写地放过了一个问题,即怎样从精神有缺陷的人那里得到绝育许可。在1931年出版的一本生物学普及读物里,有一句引用的话道出了游戏内幕:“可以通过贿赂或其他说服的方法使很多这样的低等人接受自愿绝育。”

    布罗克报告是彻头彻尾的宣传,粉饰得却像是一个不带个人偏见的专家评估。就像在最近被指出的,在制造一个由“专家”们一致同意并需要采取紧急措施的人工合成的危机时,它所使用的方法为20世纪后期国际上社会服务人士们在全球变暖问题(全球变暖是20世纪环保人士最关注的现象之一。但是,不少科学家、经济学家与其他专家认为全球变暖现象没有那么严重,有一些人士指责一些环保人士为了捍卫自己的主张而夸大事实,对与自己观点不符的证据视而不见)上的行为开了一个先例。

    这个报告的目的是要引出一个绝育法案,但是这样的法案却一直没有见天日。这一次,主要原因倒不是有一个像韦奇伍德那样的坚定的反对者,而是因为全社会的意见已经有所不同。很多科学家改变了自己的想法,引人注目的是J•B•S•霍尔丹。原因部分是因为通过玛格丽特•米德等人与心理学中的行为学派,用环境解释人类本性的说法开始为公众所知,影响也与日倶增。工党在那时是坚定地反对优化人种的,它把这看成是劳动者的一场阶级斗争。在一些圈子里,天主教会的反对也很有影响。

    让人吃惊的是,直到1938年,才有报告从德国渗透过来,说明强制绝育在现实里意味着什么。布罗克委员会曾经不够明智地赞赏过纳粹的绝育法律,这样的法律是在1934年一月开始实行的。在1938年事情变得清楚了,这样一个法律是无法容忍的对个人自由的侵犯,也是迫害别人的借口。在英国,良好的判断占了上风。

    这一段优化人种论的简短历史让我得到了一个不可动摇的结论。优化人种论的错误不在于它背后的科学,而在于强制的方法。优化人种与任何其他把社会利益置于个人权利之上的计划并无不同。它是人道上的罪行,不是科学上的罪行。毫无疑问,优化人种的生育方法会在人类中“成功”,就像它在狗和奶牛那里都成功了一样。通过有选择的生育是有可能来减少精神疾病的发生率、提高人类的健康的。但是,也没有什么疑问,这只能通过漫长的过程来完成,它的代价——残酷、不公正与对人的压制——无比巨大。卡尔•皮尔森有一次在回答韦奇伍德时说:“社会的就是正确的,除此之外没有其他定义。”这个骇人的说法应该成为优化人种论的墓志铭。

    是的,当我们在报纸上读到智慧基因、生殖细胞基因疗法、产前检查和筛选的时候,我们无法不从骨子里感觉到优化人种论还没有死。正如我在第六号染色体那一章里讲述的,高尔顿的信念——人的本性大多都有遗传因素一又重新成为了时尚,这一次,它有了更好的——尽管仍然无法下定论的——事实依据。在今天,基因筛选越来越使得父母能够选择他们孩子的基因了。例如,哲学家菲利普•基切尔(Philip Kitcher)(菲利普•基切尔:当代美国哲学家,研究领域主要是科学和数学哲学)就把基因筛选叫做“自由优化人种”:“每一个人都要成为他或她自己的优化人种师,利用现有的基因检测手段去做出他或她认为正确的生育方面的决定。

    用这个标准来看,优化人种每天都在全世界的医院里发生,它最最常见的受害者是那些带有一条多余的二十一号染色体的胚胎,这些胚胎原本是会出生为有唐氏综合症的婴儿。如果他们出生,在大多数情况下他们会有一个短暂却很快乐的一生——这是他们先天条件的属性。但是,对于一个依靠母体为生又没有情感的胚胎,不见得要在没有被生出来时就被杀死。现在,我们就像接到紧急通知一样飞快地进入了关于流产的争论:母亲是否有权流产掉一个孩子,或者政府是否有权制止她这样做。这是一个旧的争论了。基因的知识使她有了更多理由去做流产。在胚胎中选择一个具有某种特殊能力的而不是去掉一个缺乏能力的,也可能离我们不远了。选择男孩而把女孩流产掉,已经是羊膜穿刺的不正当使用了,这在印度次大陆上尤其猖獗。

    我们拒绝了政府的优化人种政策只是为了落入私人优化人种的陷阱吗?父母们也许会受到各种压力而接受自愿的人种优化,这些压力可能来自医生、来自医疗保险公司、来自社会文化。有很多故事讲述的是直到70年代还有妇女被他们的医生诱骗去做绝育手术,因为她们带有一个遗传病的基因。但是,如果政府要以基因筛选可能被不正当使用为理由把它禁止,它会冒增加世界上的痛苦的危险:把基因筛选列为非法与把它强制实行是同样残忍的。它是一个个人的决定,不是应该由技术官僚来决定的。基切299尔肯定是这样想的:“至于人们想要得到哪些特性、避免哪些特性,这当然是他们自己的事情。”詹姆斯•沃森也这样想:“这些事情应该放得离那些认为自己才最有见识的人远远的……我想看到把关于基因的决定放到用户手里,政府可不是用户。”

    尽管还有少数边缘上的科学家担心种族和人类遗传上的退化,大多数科学家现在都认识到了个体的幸福应该比群体的幸福更有优先权。在基因筛选与优化人种论者在他们的巅峰期想要的东西之间,有着巨大的区别,这就在于:基因筛选是要让人以个人的身份用个人的要求来做出个人的选择。优化人种论则是要把这样的决定国有化,让人民不是为了自己而是为了国家来生育。在忙着规定“我们”在基因的新世界里应该允许什么不允许什么的时候,这是一个常常被忽略了的区别。“我们”是谁?是个体,还是有着集体利益的国家和种族?

    比较一下现代仍然实行的“优化人种”的例子。在美国,就像我在第十三号染色体那一章里讲过的,犹太人遗传疾病防治委员会为学龄儿童验血,在将来,如果想结婚的双方都带有某一个特定的致病基因的一种形式,委员会就要劝阻。这是一个完全自愿的政策。尽管它被批判成是“优化人种”,但是它没有任何强制的措施。

    优化人种历史的很多现代版本都把它表达成是一个科学、尤其是遗传学、不受控制会有多么危险的例子,其实它更多地是一个政府不受控制会有多么危险的例子。

    第二十二号染色体 自由意志

    休谟之叉:我们的行为要么是事先已经被决定了的,这样我们就不必为它们负责;要么是偶然事件的结果,这样我们也不必为它们负责。——《牛津哲学词典》

    当这本书的第一稿快要完成的时候,也就是新千年到来之前的几个月,传来了一个重要的消息。在剑桥附近的桑格中心,第二十二号染色体的全部序列已被测完,这是第一条被从头读到尾的人类染色体。在人类自传的第二十二章里的所有1100万个词已经被读出来,并写成了英文:3340万个A、C、G和T。

    在靠近第二十二号染色体长臂顶端的地方,有一个大而复杂的基因,充满了重要性,它叫做HFW。它有14个外显子,合在一起拼出了一篇6000多字母长的文字。在转录之后,这篇文字被奇怪的RNA剪接过程剪辑一番,造出一个非常复杂的蛋白质,却只在大脑前额叶的一小部分区域里表达。相当过分地概括一下,这个蛋白质的功能是把自由意志赐予人类。没有HFW,我们就不会有自由意志。

    前一段是瞎编的。在第二十二条染色体上没有HFW基因,在其他染色体上也没有。在花了二十二章的篇幅没完没了地讲事实之后,我就是想要骗骗你。我在身为非小说作者而感到的压力下撑不住了,没法再抵御想编些东西出来的诱惑。

    但是,“我”是谁?是被一种傻傻的冲动战胜、决定写一段瞎编的情节的那个我吗?我是一个被我的基因组合在一起的生物体。它们事先确定了我的体型,给了我每只手上的五个手指和嘴里的32颗牙,设置了我的语言能力,规定了我的智力能力中的大约一半。当我记忆什么事情的时候,是基因在为我做这件事,把CREB系统打开,把记忆储存起来。它们给我造了一个大脑,把日常工作的职责分派给它。它们还给了我一个明显的印象,就是我能够自由地决定我想怎样行动。简单的自省告诉我,没有什么事是我“帮不了我自己”的。同样,也没有什么告诉我,我必须要做什么事不许做什么事。我能够现在就跳进我的汽车开到爱丁堡去,原因没有别的,就是我想去。我也能够编出一段小说般的文字。我是一个自由的力量,有自由的意志。

    自由意志从何而来呢?很清楚地,它不是来自我的基因,否则就不是自由意志了。根据许多人的说法,答案是它来自社会、文化和后天培养。根据这个说法,自由就等于我们的天性中没有被基因决定的那部分,是一种在我们的基因干完了它们那暴君的恶行之后才开的花。我们可以到达我们那基因决定论之上去摘取那神秘的花:自由。

    有一类科学书籍作者有着一个悠久的传统,他们说生物学的世界被分成了两派:相信基因决定论的人和相信自由的人。但是,同样是这些作者,他们否定基因决定论,只是因为他们建立了其他形式的生物决定论以代替它——父母影响决定论或社会环境决定论。很奇怪的是有这么多作者捍卫人类的尊严不受基因的统治,却似乎很高兴接受我们的环境的统治。有一次在某出版物上我受到了批评,因为它声称我说过(其实我没有说过)所有行为都是由基因决定的。这个作者进一步给了一个例子以说明行为不是由基因决定的:广为人知的一件事,是虐待儿童的人往往自己在小时候也受过虐待,这就是他们日后行为的原因。他似乎没有意识到,这个说法同样是决定论,而且对于那些已经受了很多苦头的人,这比我说过的任何话都是更缺乏同情、更带偏见的谴责。他是在主张:虐待儿童的人的孩子很可能也会变成虐待儿童的人,他们自己无法改变这一结局。他没有意识到他是在使用双重标准:在用基因解释行为时要求有严格的证明,却轻易就接受了用社会因素来解释行为的说法。

    有一种粗糙的划分法:基因是不可更改的编程员,是加尔文主义的命运前定,而环境则是自由意志的家。这是错误的。在塑造性格与能力方面最有力量的环境因素之一是子宫里的总体状况,你无法改变它。正如我在六号染色体那一章中提出的,有些智力能力方面的基因也许是欲望方面的基因,而不是能力方面的基因:它们把它们的拥有者带上一条自愿学习的路。同样的效果也可以由一个会激励人的老师达到。换句话说,天性比起后天培养更有可塑性。

    阿道斯·赫胥黎(Aldous Huxley)的《美丽的新世界》写于优化人种的热情达到顶峰的20年代,它呈现给我们的是一个恐怖的世界:整齐划一,强制的控制,没有个人的差异。每个人都温顺、自愿地接受他或她在等级制度里的位置——从?到埃普西隆(从最高到最低)——顺从地工作,并享受社会希望他或她享受的娱乐活动。“美丽的新世界”这个词现在已经有了这样的意义:集权统治与先进的科学手挽手实现的恶劣的社会。

    所以,让人吃惊的就是当你读了赫胥黎的书之后你会发现,里面几乎没有任何优化人种的东西。?和埃普西隆不是天生的,而是产生于在人工子宫里的化学调节以及其后的巴甫洛夫式的条件反射训练和洗脑,并在成人之后靠类似于鸦片的药物维持。换句话说,这个糟糕的社会与天性没有一点关系,却全部来自于后天的培养。它是一个环境的地狱,不是基因的地狱。每个人的命运都是注定的,被他们的严格受控的环境,而不是被他们的基因。这确实是生物决定论,但却不是基因决定论。赫胥黎的天才在于他认识到了一个后天培养占主导地位的世界事实上会多么可怕。确实,30年代统治了德国的极端的基因决定论者与同一时期统治了苏联的极端的环境决定论者,谁给人们带来了更大的痛苦,还很难说。我们所知道的只是,两个极端都很恐怖。

    幸运的是,我们抵抗洗脑的能力相当辉煌。不管父母和政客们怎么告诉年轻人吸烟对他们有害,他们还是要吸烟。事实上,正是因为成年人给他们宣讲吸烟的危害,才使得吸烟有这么大的吸引力。我们从遗传得到一种仇视权威的倾向,特别是在我们的青少年时期,我们用它来保护我们的本性,提防独裁者、老师、虐待人的后爹后妈以及政府的宣传攻势,

    另外,我们现在知道,几乎所有用来显示父母影响塑造我们性格的证据都有缺陷。在虐待儿童与在童年曾经受过虐待中间,确实有一定联系,但是它可以完全用遗传的性格特点来解释。虐待儿童的人,他们的孩子从遗传得到了虐待他们之人的性格特点。研究发现,在把这个因素考虑到之后,后天因素就没有什么决定作用了。例如,虐待孩子者收养的孩子不会成为虐待孩子的人。

    惊人的是,同样的现象在你听到过的几乎所有的标准的“社会的阴谋”里都是如此。罪犯生罪犯,离婚的人养出离婚的孩子,问题父母养出问题儿童,肥胖的父母养出肥胖的孩子。朱迪斯·里奇·哈里斯(Judith Rich Harris,心理学家)在她写作心理学课本的漫长的职业生涯中曾经相信了所有这些说法,但是在几年前她突然对此产生了怀疑。她的发现让她感到震惊与不解。因为几乎没有任何实验考虑了遗传的因素,在所有这些研究里没有任何因果关系的证据。对于这样的忽略甚至都没有人提一句:在这些研究里两件事情之间有联系被经常地说成是有因果关系。但是在每一个现象里,从行为遗传学研究里都得到了新的、有力的证据,反对里奇?哈里斯所称的“后天培养假说”。例如,关于孪生子离婚率的研究显示,遗传能够解释离婚率的一半区别,每一个孪生子遇到的独特的社会因素解释了另一半,而他们共同的家庭环境一点作用都没有。换句话说,如果你是成长在一个破裂的家庭,你离婚的可能性并不高于平均水平——除非你的亲生父母离了婚。在丹麦,对于被领养孩子的犯罪纪录的研究显示,他们是否犯罪与亲生父母的犯罪纪录有很大关系,与养父母则只有很小的关系——这很小的关系,在考虑了同伴效应之后也消失了,这个效应就是,这些被领养的孩子是否犯罪与他们的养父母是居住在犯罪率高的街区还是犯罪率低的街区有关。

    事实上,现在已经清楚了,孩子对于父母的非遗传影响比父母给孩子的非遗传影响还要大。正如我在X和Y染色体那一章里提出的,传统说法一般认为与孩子疏远的父亲和过分保护的母亲把孩子变成了同性恋。现在认为更可能的是反过来:觉察到儿子对于男性关心的东西不太感兴趣之后,父亲就疏远了儿子,母亲则用过分保护儿子来弥补。同样地,自闭症儿童确实通常有冷淡的母亲;但这是果而不是因:母亲长年以来努力想要与一个自闭症孩子沟通,却没有任何回报,她被搞得精疲力竭,最后终于放弃了。

    里奇?哈里斯有系统地摧毁了作为20世纪社会科学基础的教条之一:父母塑造孩子的性格与文化的假说。在西格蒙德·弗洛伊德的心理学、约翰·沃森(John Watson)的行为学派和玛格丽特?米德的人类学中,父母养育的决定作用从来没有被检验过,只是一种假设。但是来自孪生子的研究、来自移民家庭孩子以及被领养孩子的研究现在就在我们面前:人们从他们的基因和他们的同伴那里得到他们的性格,而不是从他们的父母那里。

    在70年代,E.O. 威尔逊(Wilson,生物学家)的著作《社会生物学》出版之后,出现了对于遗传影响行为说法的一个猛烈的反击,领头的是威尔逊的哈佛同事,理查德?路文廷和斯蒂芬?杰?古尔德。他们中意的口号被路文廷用做自己一本书的书名,教条得不留任何回旋余地:“不在我们的基因里!”在那个时候,“基因对行为只有很少影响或没有影响”这样的论断仍然只是一个合乎情理的假设。在25年的行为遗传学研究之后,这个观点已经不再成立了。基因确实影响行为。

    但是,即使有了这些发现,环境仍然相当重要——在所有行为中也许环境的总和都比基因重要。但是在环境的影响中只有小得惊人的一部分是父母影响的作用。这不是要否认父母有作用或者是孩子没有父母也行。事实上,就像里奇?哈里斯所说,如果这样否认就太荒谬了。父母塑造家庭环境,而一个愉快的家庭环境本身就是好事。你不需要相信快乐决定性格,也会同意拥有快乐是好事。但是儿童似乎不让家庭环境影响他们离开家之后的性格,也不让它影响自己在成年之后生活里的性格。里奇?哈里斯在观察之后做出了一个关键的结论:我们都把自己生活中的公共生活带和私人生活带分开,而且我们并不见得会把在一个带里学到的教训或表现的性格拿到另外一个带里。我们很容易地在两个带之间切换。这样,我们学到了我们同伴的语言(对于移民来说)或口音并在今后的生活中使用,而不是我们父母的。文化自动地从一个儿童的小群体传到另一个,而不是从父母传到子女——举一个例子说,这就是为什么在成年人中推动性别更加平等的运动对于儿童活动场上自愿的按性别分组没有任何影响。每个家长都知道,小孩喜欢模仿同伴而不是家长。心理学与社会学和人类学一样,曾经被那些对遗传因素有着强烈反感的人所主导;但是它再也不能继续这样无知下去了。

    我的目的并不是要重复一遍天性与后天培养的辩论,这个题目我在第六号染色体那一章里谈过了。我是想引起人们对这个事实的注意:即使后天培养的假说被证明是正确的,它也不会减少外界因素对行为的决定性。通过强调跟从于同伴对人的性格会有多么大的影响,里奇?哈里斯彻底揭示了环境决定性比遗传决定性更应该引起警觉。它就是洗脑。它远没有给自由意志留下空间,而是减少了空间。一个孩子在不顾父母和兄弟姐妹的压力而表达自己的(部分是遗传的)性格时,他至少是在遵从内在的力量,而不是其他什么人的。

    所以,靠着用社会因素来寻找同情并没有躲开决定论。事情的结果要么有原因,要么没有原因。如果我因为童年时期发生的什么事而变得胆小,这并不比一个胆小的基因具有更少的决定性。更大的错误不是把决定性与基因等同起来,而是把决定性当成是不可避免的。《不在我们的基因里》一书的三位作者,史蒂文·罗斯(Steven Rose)、利昂·卡民(Leon Kamin)和理查德?路文廷说:“对于生物决定论者来说,那古老的信条‘你无法改变人的本性’是人类状况的开始也是结束。”但是这个等式——决定论等于宿命论——是没有根据的,这是人们都理解得很清楚的,很难发现这三位批评家到底是在指控哪个假想敌。

    决定论等于宿命论之所以是没有根据的,原因如下。假设你生病了,但是你通过推理认为没有必要打电话找医生,因为你要么会痊愈,要么不会,医生是多余的。但是,这就忽略了一个可能性,那就是:你痊愈也许是因为你看了医生,不痊愈也许是因为你没有看医生。随之而来的是,决定论并不决定你可以做什么不可以做什么。决定论是向后去看你现在状况的原因,并不是向前去看它的后果。

    但是,这样的神话继续流传:遗传决定性是比环境决定性更不容易改变的命运。就像詹姆斯?沃森所说的:“我们谈论基因疗法,似乎它能够改变一个人的命运,但是你也可以用帮一个人还清债务的方法改变他的命运。”了解遗传知识的惟一目的就是为了(主要利用非遗传的方法)干涉、弥补遗传的缺陷。我已经列举了众多例子,说明基因突变的发现远远没有导致宿命论,而是导致了减轻它们影响的双倍的努力。就像我在六号染色体那一章里提出的那样,当阅读困难症终于被认做是一个真实的也许是遗传的问题之后,家长、老师和政府的反应不是宿命式的。没有人说,因为阅读困难症是遗传病,所以它是不可治愈的,从现在起被诊断为有阅读困难症的孩子都应该被允许当文盲。发生的事情与此正相反:为阅读困难症孩子发展出了有弥补措施的教育方法,效果相当令人叹服。与此类似,我在第十一号染色体那一章里说过,连心理疗法医生都发现,害羞的遗传解释能够帮助它的治疗。通过让害羞的人相信他们的害羞是内在的、“真实”的,能够帮助他们克服这个问题。

    生物决定论威胁政治自由的说法也是说不通的。正如山姆·布瑞坦(Sam Brittan,经济学家)曾经说过的:“自由的反面是强制,不是因果决定。”我们珍惜政治自由是因为它允许我们拥有个人作决定的权利,而不是反过来。尽管我们嘴上说我们热爱自由意志,当需要“赌注”的时候我们却抓住决定论想用它来救我们。1994年2月,一个美国人斯蒂芬·莫布利(Stephen Mobley)被判决谋杀了一个比萨饼店的经理约翰·科林斯(John Collins),并被判死刑。他的律师在上诉要求把死刑改判为无期徒刑时,提出遗传作为辩护。他们说,莫布利来自一个几代都出骗子和罪犯的家庭。也许他杀了科林斯是因为他的基因让他这么干的。“他”对此没有责任,他只是由遗传决定的一个自动化机器。

    莫布利愉快地放弃了他拥有自由意志的想法,他希望别人相信他没有自由意志。每个用“精神疯狂”或“应负责任应该减少”来为自己辩护的罪犯都是这样希望的。每一个因嫉妒而杀死了自己不忠的配偶的人也是这样希望的,他们为自己辩护的理由是“短暂疯狂”或“正当的愤怒”。每一个大亨在被指控造假欺骗持股者的时候也是这样希望的,他们的借口是“早老性痴呆症”。事实上,每一个孩子,当他在游戏场上说,是他的朋友让他干的,他也是这样希望的。我们中的每一个人,如果在心理医生一点隐晦的暗示下就心甘情愿同意我们现在的不快乐都应该怪我们的父母,也是这样希望的。一个把高犯罪率归罪到社区环境上的政客也是这样希望的。当一个经济学家肯定地说消费者追求的是商品功能的极值时,他也是这样希望的。当一个传记作家试图解释他书中人物的性格是怎样被具有改变人的力量的体验而塑造的时候,他也是这样希望的。每一个去算命的人都是这样希望的。在每一个例子里都有一种自愿、快乐和感激的对于决定论的拥抱。对于自由意志我们远远不是热爱,我们似乎是一个只要有可能就会跳起来把它放弃的物种。

    一个人对自己的行为负全责是一个有必要的虚构故事,没有它,法律就站立不稳,但是它照样是一个虚构故事。在某种程度上说,你的行为是出于你的性格,你是要为自己行为负责的;但是,出于性格的行为只不过是在表达那许多决定了性格的因素。大卫·休谟(David Hume,18世纪哲学家)发现自己被这个后来被称为休谟之叉(Hume’s fork)的两难问题难住了。我们的行为要么是被事先决定的,在这种情况下我们不必为它负责;要么我们的行为是随机的,在这种情况下我们也不必为它负责。在每种情况下,常识被否定了,社会秩序无法形成。

    基督教已经与这些问题纠缠了两千年,其他宗教的神学家们还要更长。上帝似乎是否认自由意志的,这几乎是定义,否则他就不是万能的了。但是,基督教尤其努力地试图保存自由意志的概念,因为没有它,就不能让人类对自己的行为负责。如果没有责任,罪恶的概念就是一个笑话,而地狱就成了来自于公正的上帝的一个该诅咒的不公正。现代基督教的共识是上帝把自由意志加诸我们,使得我们能够选择让自己的生活充满美德还是罪恶。

    几位著名的进化生物学家最近提出,宗教信仰是人类普遍拥有的本能的体现——在某种意义上说,有一组基因是关于信仰上帝或神祇的。(一位神经生物学家甚至声称他在大脑颞叶发现了一个专门的区域,在信仰宗教的人里比在其他人里体积更大更活跃;过分的宗教情结是有些种类的颞叶癫痫的一个特征。)宗教的本能也许仅仅是本能的迷信的一个副产品,这样的迷信假定所有事件,甚至是雷雨,都有一个带有某人意志的原因。这样的迷信在石器时代可以是很有用的。当一块大石头滚下坡几乎把你压扁的时候,如果你听信阴谋理论而认为这是有人把它推下来的,就比认为它只是偶然事件要更安全。我们自己的语言里布满了带有意志的词。我早些时候写道,我的基因建造了我,并把日常责任分配给了我的大脑。我的基因没有做这一类的事,这些事仅仅是发生了。

    E.O. 威尔逊在他的《综合知识》一书里甚至提出,道德是我们的本能的成体系的表达,什么是正确的确实是由什么是自然的而衍生出来的,尽管自然主义也有站不住脚的地方。这引出了一个矛盾的结论:信仰上帝或神是自然的,因此是正确的。但是威尔逊本人在成长过程中是一个虔诚的浸礼教徒,现在却是不信其有也不信其无,这样,他就反抗了一个有决定作用的本能。同样的,史蒂文?频克接受了自私基因的理论,却没有要孩子,他告诉他的自私基因“去跳河吧”。

    所以,即使是决定论者也可以躲开决定的因素。我们有了一个矛盾。除非我们的行为是随机的,否则它就是事先决定的。如果它是事先决定的,它就不是自由的。但是,我们感到——而且可以被证明——我们是自由的。查尔斯?达尔文把自由意志描述成是一个幻觉,是因为我们没有能力分析我们自己的动机。现代达尔文学派人士——例如罗伯特?特斯里弗——甚至提出,在这样的事情上我们欺骗自己也是一个进化来的对环境的适应。频克曾经把自由意志说成是“使得伦理游戏成为可能的人类的理想化”。作家丽塔?卡特(RitaCarter)说它是事先装在思维里的幻觉。哲学家托尼?英格拉姆(TonyIngram)把自由意志说成是我们假设别人拥有的东西——我们似乎有内在的倾向认为我们周围所有人和所有事物都有自由意志,从不听使唤的外板发动机到带着我们基因的不听话的孩子。

    我愿意相信,在解决这个矛盾时我们能够做得更好。还记得吗?在谈论第十号染色体的时候我描述过,组成对于压力的反应的,是对环境变化迅速做出回应的基因,而不是相反。如果基因能够影响行为,行为又能影响基因,那么就有了一个循环的因果关系。在一个循环反馈的系统里,简单的因果过程可以产生非常难以预料的结果。

    这种说法出自于混沌理论。我讨厌承认这一点,不过,是物理学家先发明的这个理论。18世纪法国的伟大数学家皮埃尔-西蒙·德·拉普拉斯(Pierre-Simonde La Place)曾经设想过,作为一个优秀的牛顿学派人士,如果他能够知道宇宙中每一个原子的位置和运动,他就能够预言未来。或者说,他猜到了自己不能预知未来,在琢磨为什么不能。时髦的说法是,答案在亚原子水平上,我们现在知道,那里的量子力学事件只是在统计的意义上是可以预测的,世界不是牛顿的桌球组成的。但是这并没有什么帮助,因为牛顿物理学其实在我们日常生活的尺度上是对事件的很精确的描述,没有人认真相信我们的自由意志依赖于海森伯(Heisenberg,量子物理学家,所提出的“不确定性原理”认为人们无法同时准确地测量一个粒子的位置与动量,对其一的测量越准确,对另一个的测量就越不准确。后来有人认为,这个原理给人的行为从本质上加上了随机性:因为我们无法在任何一个时刻测量出所有的变量,我们也无法预测人的行为)不确定性原理的那个概率框架。把原因说得直接一些:今天下午我在决定写这一段的时候,我的大脑没有掷骰子。采取随机的行动与自由地行动根本不是一回事——事实上,正相反。

    混沌理论给拉普拉斯提供了一个更好的回答。与量子物理不同,它不依赖几率。数学家所定义的混沌系统是事先决定的而不是随机的。但是这个理论说,即使你了解所有决定这个系统的因素,你可能还是无法预测这个系统的发展轨迹,这是因为不同的因素之间相互作用的结果。即使是因果关系简单的系统也可能有混沌状态的行为。它们这样是因为“自激”性,在这里,一个行动影响下一个的初始状况,所以,很小的结果会成为很大的原因。股票市场指数的走向、未来的天气和海岸线的“分形几何”,都是混沌系统:在每一种情况下,大概的轮廓和事件发展的大体方向是可以预测的,但是精确的细节却不能。我们知道冬天会比夏天冷,但是我们不知道下一个圣诞日是否会下雪。

    人类行为也具有这些特点。压力可以改变基因的表达,基因表达又可以影响对压力的反应,如此这般。因此,人类的短期行为是无法预测的,但是长期行为却大致可以。这样,在一天中的任何一个时刻我可以选择不吃饭,我有不吃饭的自由,但是几乎可以肯定,在那一天之内我是要吃饭的。我吃饭的时间可能会由很多因素决定——我的饥饿程度(部分由我的基因决定),天气(由众多的外界因素以混沌的方式决定),或者是另外某人决定问我要不要出去吃午饭(他是一个做事有因果的个体,我无法控制他)。这些基因与外界影响的相互作用使我的行为无法预测,但是它们并非没有决定我的行为。在字词的空隙里,有着自由。

    我们永远不可能逃避决定性,但是我们可以在好的决定性与坏的决定性之间做出区别——自由的和不自由的。假设我坐在加州理工学院下条信辅(Shin Shimojo)的实验室里,他此刻正用一根电极戳我的大脑里离前环沟(anteriorcingulate sulcus)很近的地方。因为对于“自愿行为”的控制就是在这个地方,也许他使我做了一个动作,在我看来具有所有的自愿行动的特征。如果问我为什么要动胳膊,我几乎肯定会很确信地回答,那是我自己的决定。下条教授要知道得更清楚(让我赶快加上一句,这是下条向我建议的一个设想的实验,不是真的)。与我的关于自由的幻觉相矛盾的,不是我的动作是被其他因素所决定这一事实,而是因为它是另外某人从外部决定的。

    哲学家A.J.艾尔(Ayer)是这样说的:
    如果我患上了强迫型精神病,以至于我会站起身来走到房间另外一头去,不管我想不想这样做,或者如果有人强迫我这样做,那么,我就不是在自由地行动。但是如果我现在这样做,我就是在自由行动,仅仅是因为上面说的两种情况不存在。从这个角度来看,我的行动仍然有一个原因这个事实是无关紧要的。

    一位研究孪生子的心理学家林登·伊弗斯(Lyndon Eaves)曾经说过类似的观点:
    自由是站起来超越环境限制的能力。这个能力是自然选择赋予我们的,因为它具有适应性……如果你要被推着走,你是宁愿被你的环境推着走,还是被你的基因推着走?环境不是你,而基因在某种意义上说就是你。

    自由在于表达决定你自己的那些因素,而不是决定别人的那些。“决定”不是区别所在,谁是决定因素的主人才是区别所在。如果自由是我们想要的,那么最好是让来自于我们内部的力量来决定我们,而不是让其他人内部的力量来决定。我们对于克隆人的厌恶有一部分是来自于这样的一个恐惧:我们的独特性要被另外一个人分享了。让基因在它们自己的体内为自己作决定,这样一个执著的信念是我们反对把自由丢给外界因素的最强堡垒。你是否已经开始看出来我为什么要半开玩笑地随便想想一个自由意志基因的想法?一个自由意志基因不是什么自相矛盾的事,因为它会把我们行为的来源放到我们身体之内,其他人拿不着。当然,自由意志不会由一个基因决定,而是由与基因相比无限宏伟、给人激励的力量决定:整个的人类本性,事先建立在我们的基因组里,具有灵活性,又是每个人所特有的。每一个人都有一个独特的与众不同的内在本性。这就是“自我”。

  • 三星堆

    三星堆遗址位于四川省广汉市三星堆镇鸭子河南岸。
    根据文物分析得出三星堆文化遗存的年代是距今3600年到距今3000年之间。
    目前发现的三星堆遗址近12平方公里,明代挖掘的运河马牧河穿过三星堆的西城墙。遗址三面环墙,北临鸭子河。沿着马牧河,依次分布有祭祀区、宫殿区、居民区、手工业作坊区。河北岸有一片台地,像一轮弯月,是三星堆遗址的核心区域,约3.6平方公里。

    1929年当地农民燕道诚家院子旁发现过一个埋葬有400余件玉石器的长方形土坑,为三星堆考古之开始。

    青关山1号大房子,。
    青关山1号建筑平面结构图:面积超过1000平方米,8个埋葬坑出土的器物与建筑中各功能区分布契合,建筑内通道两侧126个柱洞可以用于安装青铜人像和青铜面具
    八号坑神坛:方形基座上为献祭平台,共有13个青铜人像。第一组人像4人,各自面向斜外侧,跪于献祭平台四角。第二组人像4人,可见獠牙,坐在献祭平台各侧边中部的镂空小凳上。第三组人像4人,体型大于其他小人,各自跪在一个小型柱状台基上,4人共同扛起一个由铜杆构成的抬架。第四组人像1人,跪在献祭平台中心的一座山形台基上,并背负一件有盖圆罍
    金面罩铜人头像
    戴金面罩青铜人头像
    戴尖脊帽铜小立人像
    铜扭身跪坐人像
    青铜眼形器
    金面罩
    铜太阳形器
    铜鸟
    铜神树
  • 玛丽安娜·沃尔夫《普鲁斯特与乌贼》

    前言 大脑天生不会读
    第一部分 我们是如何学会阅读和思考的:阅读脑的进化
    第1章 普鲁斯特与乌贼给我们上的阅读思维课
    阅读——智力的“圣殿
    阅读的认知过程
    阅读脑的设计原则品
    人类的大脑如何学会阅读
    个体的大脑如何学会阅读
    大脑无法阅读的情况
    第2章阅读脑与思考的自然史
    人类最早的语言
    文字的第一次突破:象征符号
    文字的第二次突破:楔形文字和象形文字苏美尔人如何教儿童阅读
    从苏美尔语到阿卡德语
    象形文字的发明率
    龙骨、龟甲与绳结:其他早期的奇妙文字
    第3章 苏格拉底反对的“阅读”是否会妨害人的思考
    什么是字母文字
    字母文字是否造就了不一样的大脑
    苏格拉底的抗议
    第二部分 阅读如何改变了我们的思维:阅读脑的发展
    第4章 阅读决定孩子拥有怎样的思维与人生
    从听故事到读儿歌
    我们还可以为孩子做什么
    第5章 阅读者的五大进阶(1)
    开始阅读之旅
    萌芽级阅读者
    初级阅读者
    解码级阅读者
    第6章 阅读者的五大进阶(2)
    流畅级阅读者
    专家级阅读者
    第三部分 不会读的大脑也有高品质的思维:阅读脑的变奏
    第7章 阅读脑的补偿机制
    盲人摸象般的历史
    说读障碍的诸多面貌
    世纪之谜
    第8章 不要错失阅读以外的才能
    阅读障碍者的石脑
    每个孩子都有自己的潜能
    第四部分 让大脑有时间来思考:超越阅读脑
    第9章 网络时代的阅读与思维方式
    对阅读进化的反思
    对阅读自然史的反思
    对阅读障碍的反思:跳出定式思维
    致读者:最后的思考

    前言:大脑天生不会读

    我以研究文字为生:寻找它们隐藏在脑海深处的秘密,探究它们意义与形式的各个层面,然后把这些奥秘教授给年轻人。在本书中,我邀请读者一起思考文字阅读中最深奥的创造特质。我们正加速进入数字时代,在这样一个历史转型期,任何关于智力发展的事都值得我们仔细思量。的确如此,过去从未有哪个时代的研究者能像现在这般深谙阅读过程的繁复之美。通过科学研究,我们越来越了解阅读的益处,然而这些益处似乎又有被新型传播方式取代的危险。审视现况并反思我们需要保留哪些阅读习惯,这将是本书从始至终的讨论主题。
    很久以前,埃德蒙·休伊(Edmund Huey)爵士写过一段让人印象深刻的话,他认为真正了解阅读时大脑的运作过程,会是“心理学家最大的成就,因为这将得以描述人类心灵中诸多错综复杂的运作,解开彼此纠结的现象,揭露出整个文明在历史中最了不起的成就”。
    在当代进化史与认知神经科学等诸多学科的帮助之下,我们累积的关于“阅读脑”( the reading brain)的知识想必会令休伊震惊。我们知道每-种新型的书写系统都从人类千年的历史中发展而来,需要人类大脑的不同适应方式;我们研究阅读发展的诸多层面,从婴儿时期逐渐深入到专家级阅读;我们发现难以学会阅读的大脑,混杂着阅读障碍的挑战与其他方面的天赋,这转变了我们对阅读的理解。综合起来,这些领域的知识彰显出大脑近乎神奇的能力,它可重组自身结构来学习阅读,并且在这一过程中形成新的想法。
    在本书中,我希望引导读者重新思考长久以来被视为理所当然的事情比如儿童自然而然地学会阅读。在我们大脑学习能力的进化中,阅读的行为并不是自然发生的,而且在许多人身上,尤其是儿童,可能会产生奇迹或悲剧性的后果。
    构思这本书需要一整套系统的观点,这花了我好几年的时间来准备。我是一个儿童发展与认知神经学的教师,是一位关注语言、阅读与阅读障碍问题的研究者,也是一个热爱文字的人。我是波士顿塔夫茨大学(Tufts University)阅读与语言研究中心的主管,在那里,同事和我一起研究各年龄层的阅读者,特别是阅读障碍者。
    我们研究全世界各语系中的阅读障碍,从与英语同源的德语、西班牙语、希腊语与荷兰语等,一直到与英语关系较远的希伯来语、日语与汉语我们知道学不会阅读的儿童要付出多大的代价,不论他们的母语是哪一种,不论他们来自贫困的菲律宾社区、美国原住民保留区,还是富裕的波士顿郊区。我们投入许多精力设计新的治疗方案,并且探讨这些方案在课堂教学和个体大脑中的效果。幸亏有脑成像技术的协助,我们可以真正“看到大脑在阅读时的情况,从而比较治疗前后的差别。
    我过去累积的经验、对众多研究项目的理解以及对社会传播模式转型的认识,促使我提笔写下第一本通俗读物。有一点必须在此说明,这本书的许多部分都来自众多学者的研究,但为了顺应通俗读物的写作形式,我不再像学术文献那样–列出注释与参考文献,在这里我真诚地向这些参考文献的写作者表示感谢。
    本书首先介绍文字系统的起源与演变,接着讲述个体阅读脑发展的不同阶段,最后揭示未来我们将要面临的机遇与危险。
    奇怪的是,作者通常会在前言中将自己成书时的最终想法传达给读者。这本书也不例外。不过与其用我自己的语言,倒不如引用玛里琳·鲁宾逊(Marilynne Robinson)在将她最好的作品《基列家书》(Gilead)送给她小儿子时所说的话:“我以最深沉的希望与信念来写出我所想写的一切。我的想法游移,措词也随之变幻,尝试说出真相。而我可以坦诚地告诉你,这真的很棒。

    第一部分 我们是如何学会阅读和思考的:阅读脑的进化

    文字与音乐乃是人类进化过程的轨迹。——约翰·邓恩
    欲了解事物如何运作,最佳途径莫过于了解它的起源。——特伦斯·迪肯

    第一章 普鲁斯特与乌賊给我们上的阅读思维课

    我相信就其本质而言,阅读是一个在全然的孤独之中,仍令 人心满意足的沟通奇迹。——马塞尔,普鲁斯特
    学习本身包含了对天性的培育。——约瑟夫,勒杜

    没有人生来就会阅读,人类发明阅读这项活动也只是几千年前的事情, 这项发明使大脑精密的结构重新排列组合,思维得以延伸,进而改变整个 人类物种的智力进化过程。阅读是历史上最卓越的发明之一,其结果之一 便是让我们有了记录历史的能力。我们的祖先之所以能够发展出这项技能, 是因为人类大脑拥有在已知的结构上建立新联结的超凡能力,经验对大脑 的塑造使得这一过程成为可能。大脑机能的核心是其可塑性,我们因此才 会思考自己是谁,未来又会成为什么样的人。

    本书主要讲述大脑如何进行阅读的故事,同时揭开智力进化的奥秘。 这个故事不断地在我们眼前更迭,在我们指间流转。由于大脑会持续建立新的联结,这种联结将驱使人类的智力发展朝着崭新且多元的方向前进, 于是在接下来的几十年内,我们将见证人类沟通能力的转变。了解阅读对 大脑的要求,以及阅读怎样促进我们的思考、感觉、推理及理解他人的能力, 在今天看来尤为重要,因为我们的大脑正从“阅读脑”向“数字脑”转变。 通过理解阅读的历史演变、儿童获得阅读能力的过程,以及阅读对大脑生 物基本架构的重整方式,我们可以发现人类作为智慧物种所具有的神奇性 和复杂性。这将会明确地告诉我们,人类的智力进化接下来可能发生什么, 以及在创造未来时我们将会面对怎样的选择。

    本书包含3个部分的知识:
    @人类在早期,即从苏美尔时代到苏格拉底时代,是如何学习阅读的;
    @人类生命发展周期中日益复杂的阅读学习方式;
    @大脑学不会阅读的原因,包含科学解说及案例介绍。

    总的来看,本书积累的有关阅读的知识,既展现了人类作为能阅读和 记录的物种所取得的巨大成就,又引导我们注意哪些习惯值得保持。

    从历史和进化的视角研究阅读脑,其中的价值还不能一眼看透。但关 于怎样去教授阅读过程的本质,它提供了一个既传统又新颖的方法:研究 那些能学会阅读的人,也研究那些在阅读方面存在障碍的人。阅读障碍者 的大脑系统组织方式有所不同。理解这些通过基因指令代代相传的独特大 脑系统,将以意料之外的方式扩充我们的知识,同时也暗示我们,新的探 索才刚刚开始。

    在本书的3个部分里,都交织着另一个话题:大脑是如何学习新事物 的。除了阅读,大脑鲜有重塑自身以学会新智力功能的惊人能力。在人 类进化史中一段很长的时间里,大脑中更多的结构和神经回路原本是专 门负责视觉和口头语言等更基础的能力的,阅读使大脑在这些结构上建 立起新的联结。现在我们知道这样一个事实:每当我们学会一项新的技 能,神经元之间便会建立新的联结和通道。计算机科学家们用“开放架构”这一术语来描述该系统:功能非常丰富,可以通过重新 排列来适应变化的需求。在人类基因遗传的约束下,大脑为我们展示了一 个“开放架构”的完美例子。在此设计模式下,我们生来就有能力适应外 部世界的变化,能够超越自然。因为从一开始,我们就注定要有所突破。

    因此阅读脑是“双向互动”理论的典型。我们之所以能够学会阅读, 仰赖的全是脑部可塑性的设计。当阅读发生时,个体的大脑无论是在生理 层面还是智力层面都发生了永久性的变化。例如,在神经元水平上,一个 人学习汉语阅读时使用的特殊神经联结模式,和学习英语阅读的神经联结 模式是完全不同的。当以汉语为母语的读者首次阅读英文时,他们的大脑 会尝试使用基于汉语模式的神经通路。学习阅读汉字的行为塑造了阅读汉语的大脑。

    同样,我们如何思考以及思考什么在很大程度上是基于阅读所产生的 见解和联想。正如作家约瑟夫·爱泼斯坦所言:“每一个 文学家的传记都要详细记录他在何时阅读了什么书籍,因为在某种意义上, ‘我即我所读’。”

    阅读——智力的”圣殿

    阅读脑的两个维度——个体智力的发展和生物学上的进化,很少被结 合起来描述。然而把两者并列来看, 我们会发现很多关键和精彩的启示。 在这本书里,我将以备受世人推崇的 法国著名小说家马塞尔,普鲁斯特为 例,与相对而言无比单纯的乌贼作对 照,从两种截然不同的角度探索阅读。

    阅读脑:不是”专门负责阅读的大 脑”,大脑中并没有生来就负责阅读的区域。阅读脑指的是”阅读中的大脑”,它会在学习阅读的过程中不断发展。

    普鲁斯特将阅读看做智力的“圣殿”,在那里,人们可以接触到众多永 远不能亲临或者不能理解的“另一种现实”,这些“另一种现实”的好处是 不需要读者离开舒服的躺椅,就可以感受到每一个新体验,以及由新体验 带来的心智的提升。

    早在20世纪50年代,科学家们就开始利用中央神经轴突较长、害羞 又狡猾的乌贼,来探究神经元之间是如何激活和传递信号的,以及在某些 情况下,当神经元出错时,大脑如何进行修复和补偿。当代的认知神经科 学家则致力于另一个层面的研究,即大脑中各种各样的认知(或称心智) 过程的运作方式。在此研究范畴中,阅读极具典型性,这种文化产物需要 从大脑已存在的结构中发展出新元素。阅读时大脑如何工作,出现问题时 大脑如何聪明地调整,这些都类似于早期神经科学对乌贼的研究。

    在阅读过程的不同维度上,普鲁斯特的“阅读圣殿”与科学家的乌贼 研究恰好提供了一种互补的模式。为了更具体地介绍本书的思路,我摘抄 了普鲁斯特《论阅读》一书中一段美得令人无法呼吸的文字,请读者以最快的速度阅读:
    恐怕不会再有如童年一般充实的岁月……一本喜爱的书陪伴我们 度过许多时光。仿佛其他一切皆为了阅读而存在,因此我们将所有打扰 阅读的种种,鄙视为对此神圣享受的粗俗妨碍,其中包括:在读到最有 趣的片段时,有朋友找我们出去玩游戏、害我们不得不抬起头或更换姿 势的恼人蜜蜂及阳光、即便到了黄昏天空由蓝转暗时搁在长椅上碰都没 碰的下午茶、到了得回家吃晚餐的时间;遇到这些事时,满脑子只想着 待会儿一定要立刻继续未读完的章节。尽管以上说的例子在那时只让我 们觉得烦人,但是它们却也深深烙印在甜美的记忆之中(现在想来,其 实远较当时深爱的书籍本身更为珍贵)。而若是改天我又重新拾起那时 读过的书本浏览,唯一的原因正是对于那些已经逝去的日子,深深缅怀 所致;在书本的字里行间,多希望能够再次看见孩童时代陪伴我读书、如今却不复存在的池塘与家园。

    首先思考一下,你在阅读上述段落时想到了什么?再试着分析一下在 阅读过程中,你是如何以普鲁斯特为起点进行各式联想的,并且另外还做 了哪些事?如果你和我一样,普鲁斯特会使你想起长久以来贮藏在脑海中 的关于书的记忆:

    为躲避兄弟姐妹和朋友的打扰而藏起来读书的秘密地点;简·奥斯汀、夏洛蒂·勃朗特和马克·吐温笔下惊心动魄的时刻;害怕被父母发 现而躲在被子里看书时手电筒微弱的光线。

    这些构成了普鲁斯特的“阅读圣殿”,也构成了我们的阅读王国。在 这里,我们第一次遨游中土世界、小人国和纳尼亚王国;我们第一次感受 那些永远不会身临其境的经历:王子和乞丐、恶龙和少女、功夫武士,还 有为逃避纳粹士兵躲在阁楼里的犹太小女孩。

    传说马基雅维利在阅读某本著作之前,会打扮成作者那个年代的样子,并为自己和作者准备一张双人桌子。由此可见他对作家 的才华有多重视,也可能是他与普鲁斯特对于“阅读境界”一事,有着十 足的默契。阅读时,我们可以暂时拋下本身拥有的观感,进入另一个个体、 另一个年代或另一个文化。

    神学家约翰·邓恩用“逾越”这个说法来 概括阅读的过程。在这个过程中,阅 读使我们试着去扮演、赞同并暂时进 人另一个与我们自身截然不同的个体的感观世界。当我们体验到一个骑士 是如何思考、一个奴隶是如何感受、一个英雄是如何作为、一个恶棍是怎 样忏悔或否认罪行时,我们很难没有 任何感想。有时候我们深受鼓舞,有时候倍感悲伤,但无论如何,我们的世界的确变得更加丰富多彩。通过这 些感同身受,我们同时理解到思想的普遍性和独特性,我们是个体,但并不孤独。

    逾越:约翰·邓恩认为,所谓的“逾越”现象,乃是当代的新宗教。邓恩对这个过程的描述是,”先是过渡到另一种文化的标准,另―种生活方式,另一种宗教……接下来就是所谓1归返’的过程,带着崭新的洞见归返自己原来的文化、生活方式和宗教”。

    当这一时刻发生时,我们便不再受限于自身的思想范畴。因此无论何 时,一旦“逾越”发生,个体既有的思想界限即受到质疑或嘲弄,进而一 步步地改变。如此一来,延伸的感知会改变对自我的认知,这对孩童来说 尤其重要,因为它改变的是对未来自我的想象。

    阅读的认知过程

    让我们回到之前。当我让你把注意力从本书转到普鲁斯特所写的段落, 尽快地阅读并理解这一段落时,为了执行我的要求,你的心智认知系统从 事了一系列包含注意力、记忆力、视觉能力、听觉能力和语言能力的活动。

    很快,你大脑的专注功能和执行系统开始计划:如何快速阅读并理解 这段文字。接着,你的视觉系统加快行动,快速浏览页面,将搜索到的字 母外形、单词形式和习惯用语等文字信息传递到等候信息的语言系统。这 些系统将包含细微差别的视觉符号和文字蕴含的意义迅速联系起来。在意 识几乎无法察觉的那一刻,你高度自动化地调用英语书写体系中的字母读 音规则,而这需要动用大量的语言处理能力。(作者主要基于英语文字的角度来分析,但原理是相通的,故保留原表述。书中 多处有类似情况。)这就是所谓的“字母原则”, 它依赖于大脑的奇特能力:迅速联系和整合所见、所闻、所知。

    当你将所有这些规则运用于眼前的文字时,你就迅速激活了相关的语 言和理解过程,这一过程运行速度之快至今令研究者惊讶不已。举一个语言领域的例子,当你阅读普鲁斯特所写的这233个单词时,你的语义系统 就调出脑海中你所读到的每个单词可能的意思,找出符合上下文的含义整合到这个文本语境中。这个过程的复杂和神奇远超想象。

    许多年前,认知科学家戴维,斯威尼发现了这样一 个事实:当读到一个简单的单词,如“虫子”(Bug)的时候,大脑不仅仅 是激活了它较常见的意思〔一种爬行的六腿生物〕也激活了使用得较少的其他意思,如间谍、大众汽车和软件漏洞(英文中—词有这些延伸意思)。斯威尼发现大脑不会只为某个单词找到一种简单的意思,而是会激活关于这个单词的大量知识以及与 之联系的众多其他单词。这种阅读语义层面的丰富程度依赖于我们之前储 存的词汇量,这对儿童的成长发育意义非凡,有时甚至有毁灭性的影响。 与那些词汇量和概念比较贫乏的儿童相比,有着丰富词汇的儿童会以一种 完全不同的方式阅读文字和进行对话。

    试着思考一下斯威尼的发现对于阅读不同的文本意味着什么,从如苏 斯博士的幼儿读物《哦,你要去的地方》那样 简单的文本,到像詹姆斯·乔伊斯的《尤利西斯》那样充满语义 复杂性的文本。那些尚未走出自己狭隘成长环境框架的孩童,无论是在理 解譬喻还是文字上的表现,与其他儿童都是截然不同的。我们会将所有储 存的知识运用到所读文本之上。

    如果将这一发现运用于刚刚所读的普鲁斯特的那段文字,那就意味着, 你的执行计划系统指导了一系列活动以确保你领会所读到的内容,并检索 出和文本相联系的所有个人信息。你的语法系统需要持续工作以避免你卡 在普鲁斯特文本中那些不熟悉的句型上,比如他在谓语前用了很多长分句, 并用逗号和分号将它们连在一起。(这里针对的是那段文字的英文原文)为了不致“过目即忘”,你的语义和语 法系统需要与你的工作记忆(这种记忆就像一块“认知黑板”,能暂时存储 稍后要用的信息)紧密合作。如此一来,当我们在读普鲁斯特特殊语法结构 的文字,并将每个单字串连成语义的同时,就能顺利了解全文的整体意义。

    当你将全部的语言形式和概念信息串联起来的时候,你就在自己背景知识的基础上产生了自己的推断和假说。如果这时你还读不懂,就需要重读某些部分,并试着找出符合上下文的意义。接着,当你把所有这些视觉 的、概念的以及语义的信息和自己的背景知识、推理综合在一起后,便能体会普鲁斯特在书中所描述的境界:“神圣的”阅读乐趣,让多姿多彩的童 年岁月永恒不朽。

    许多读者在读完普鲁斯特的文字之后,可能会稍加停顿,超越文本, 进入另一个境界,任思想驰骋。然而,在解读这个比较具有哲学性的问题 之前,让我们再回到生物学层面上,看看阅读行为的表象之下隐藏着什么。所有的人类行为都建立在层层叠加的各种基本活动之上,阅读也不例外。我请牛津大学的神经学科学家兼艺术家凯瑟琳·斯图德利画了一个金字塔图来阐述当我们读到一个单词时,这些不同层级 的生物学活动是怎么协同运行的(见图1-1)

    图1-1 阅读金字塔

    在金字塔的顶端,读到单词“bear”是表面行为,其下是认知层面, 包含着那些阅读所需的专注、知觉、概念、语言能力及神经系统的作用。 这些让很多心理学家终生研究的认知过程,依赖于有形的神经结构,这些 结构由神经元联系而成,并受基因和环境之间互动关系的引导。换言之,所有的人类行为都基于各种认知过程,这些认知过程则基于特定神经结构 中快速进行的信息整合。这些神经结构依赖于数十亿的神经元和上千亿的 神经联结,神经元的活动则在很大程度上受到基因的控制。为了维持人类 各项基本功能的正常运作,神经元需要从基因那里获得指令,在神经结构 中形成有效的神经回路或通道。

    这座金字塔像一幅三维地图,帮助我们理解视觉等受基因控制的行为 是如何产生的。但是它无法解释阅读的神经回路层面,因为在底层没有特 殊的阅读基因。阅读与其组成部分(如视觉和语言)相比,没有直接的基 因编码可以遗传给下一代。因此,个体大脑在开始学习阅读时,必须经由 后天努力重新形成金字塔上面4层所需的神经回路。这使得阅读等文化行 为,不能像视觉和口语一样通过基因编码遗传给下一代。

    阅读脑的设计原则

    那么,首次阅读又是如何发生的呢?法国神经学家斯坦尼斯拉斯·戴哈尼告诉我们:首批发明书写和算术的人类可以通过“神经元再利用”实现这一过程。例如,如果在猴子面前摆放两盘香蕉一个盘子里面放2根香蕉,另外一个盘子里放4根,猴子会直接去抓香蕉多 的盘子。通过灵长类动物实验,戴哈尼发现,在猴子行动之前的瞬间,其大脑后皮质的某个区域就被激活了。人类大脑中的相应区域现在负责数学计算过程。

    以此类推,戴哈尼与其同事们认为:人类阅读时的认字能力运用到了 我们祖先古老的专门用于物体识别的神经回路。更进一步看,我们祖先迅速区别天敌和猎物的能力来源于先天特殊的视觉功能,因此我们认识字母 和单词的能力可能源自更深层次的先天能力,是“特殊化后的特殊化”。

    如果稍微扩展一下戴哈尼的观点,我们不难发现,阅读脑不仅利用了古老的视觉神经通路,同样也利用了将视觉与概念和语言功能相联系 的神经通路。例如:通过脚印的形状能迅速判断出是否有危险;将常见 的工具、捕食者或者天敌同脑海中的词汇联结起来。因此当人类需要发 展出阅读或计算之类的新能力时,大脑便会自动遵循三项巧妙的设计原则:
    @在旧的神经结构中建立新的联结;
    @形成功能高度专门化的各个区域,别信息中的不同模式;
    @学会从这些区域中自动搜集信息。

    这三条建立脑部新功能的原则,正是所有阅读进化、阅读发展与阅读 障碍的基础,尽管在不同情况下有不同的表现。

    精密的视觉系统为我们提供了最好的例子,证明了大脑是怎样再利用原有的视觉神经回路,并进一步发展出阅读能力的。视觉系统的神经元可以变得高度专门化并且能在已有结构中发展出新的神经回路。这一切使新生儿在呱呱落地时,即拥有了一双可以随时工作的眼睛,毫无疑问,眼睛也是精密设计的完美例子。

    视网膜拓扑围构建:人类出生后,视网膜上的神经元与脑部枕叶中的特定细胞群产生一一对应的关系,即视网膜所看见的每一条直线、斜线等都会激活枕叶高度专门化的区域。

    人类出生后不久,视网膜上的 神经兀就开始和脑部枕叶中的特定细胞群产生对应的关系。视觉系统的这一特性被称 为“视网膜拓扑图构建”,简单来说就是视网膜所见到的每一条直线、斜线,以及每一个圆形或弧形都会在瞬间激活枕叶高度专门化的区域(见图1-2)。

    图2-2 视觉系统

    视觉系统的这一特性并不等同于下述情况:我们的祖先克罗马侬人(Cro-Magnon)能够分辨出视野尽头的动物;现代人能够认出400米外汽车的型号;鸟类观察者能够发现燕鸥的身影,而此时其他人什么都没看见。戴哈尼认为,我们祖先大脑内部主要负责物体识别的视觉区域,通过调整内置的识别系统,来破译书面语言中最初的符号和字母。关键在于,为了达到功能调整、专门化或建立新联结等目的,大脑会整合多种遗传功能在视觉区域和负责认知、语言过程的区域之间建立起新的神经回路,这些回路是阅读文字所必需的。

    阅读拓展出的第三条原则——神经回路自动化的能力,包含着前两条原则。这使我们在快速浏览过普鲁斯特的文字后,就能马上理解其中蕴涵的意义。然而冰冻三尺,非一日之寒,大脑不可能在一夜之间就发展出自动化的能力。这种能力不存在于一个初级观鸟者的脑中,也不存在于阅读初学者的脑中。儿童要接触上百次字母与单词,而对于阅读困难的儿童来说可能需要接触上千次,才能建立起新的神经回路。

    辨识字母、字母样式与单词等神经回路得以自动化,归功于视网膜拓扑图构建、物体识别能力,以及脑组织的另一项重要能力:高度“再现”举例来说,当负责辨别字母和字母样式专门化区域中已学过的信息模式。的神经元网络群“同时激活”时,大脑会构建出信息的视觉表征,以便快速提取信息。

    不可思议的是,长期“同时激活”的神经元网络群在眼前没有同样的信息时,仍可重现视觉信息的表征。任教于哈佛大学的认知神经科学家斯蒂芬·科斯林(Stephen Kosslyn)曾经做过一项颇具启发性的实验,实验内容是:在脑部扫描仪的监控下,成年阅读者闭上双眼在脑海中想象不同的字母。

    斯蒂芬·科斯林发现,当想象大写字母时,脑部视觉皮质层视觉区域的某些部分被激活了;当想象小写字母时,被激活的则是该区域的另一些位置。仅仅是在脑海中想象不同的字母,就会激活我们视觉皮质层不同的神经元。在专家级阅读者的脑中,当信息通过视网膜进入大脑时,会有一组专门的神经元来处理字母的各种物理特征,并将这些信息自动提供给其他更深层的视觉处理区域。大脑中的视觉自动化功能是分段、分批式的这使得所有的表征以及处理功能(不只是视觉)都变得极为迅速和轻松。

    从我们第一次接触字母到成为阅读专家,这之间发生了什么,对科学家来说相当重要,因为它提供了一个观察认知过程有序发展的难得机会视觉系统的各种特征包括:旧有的受基因控制的神经结构、模式识别、针对特定表征形成的专门化的神经元工作组、建立多功能的联结回路,以及达到熟能生巧的程度等。阅读发展中需要涉及的所有其他认知、语言系统的原理都和视觉系统大同小异。在进一步详述之前,首先我想强调一点:在每个读者的内心思想与大脑中所发生的事件之间,存在着惊人(却非巧合的一致性。

    就许多方面来说,阅读不仅反映了大脑超越原有设计结构的潜能,同时也反映了读者超越文本或作者所赋予内容的潜能。当你读到普鲁斯特(作者)描述与最爱的书一起度过童年的那段文字时,大脑系统会整合所有的视觉、听觉、语义、句型等信息,而你(读者)则自动将普鲁斯特的文字与你个人的思想及生活体验联系起来。

    我当然无法揣摩出你对于普鲁斯特文本的各种联想,但是我可以描述出我的体会。可能是由于刚刚才参观了波士顿美术馆的“莫奈与印象主义”展览,我发现自己很容易将普鲁斯特描写的回忆里童年美好的一天,与莫奈如何画出自己的代表作品《日出·印象》联系。如果他们准备完成一件生活的完美复制品,他们都会运用生活中点滴的信息来综合演绎出更加生动鲜明的印象。如此,画家与小说家都成了埃米莉·狄更生(Emily Dickinson)谜一般的诗中写的:
    以迂回的方式道出全部真理。

    当埃米莉·狄更生写下这些诗句时,可能从未想过神经回路的问题但是这些句子不仅具有诗的韵味而且又恰巧符合了生理学知识。正如普鲁斯特与莫奈利用间接表达的方法,迫使观众或读者在欣赏作品的过程中投入自身经验,反而能更加直接地体会作品。阅读正是一种神经上与智能上的迂回行为,文字所提供的直接信息与读者产生的间接且不可预期的思绪,都大大地丰富了阅读活动。

    阅读活动:阅读正是一种神经上与智能上的迁回行为,文字所提供的直接信息与读者产生的间接且不可预期的思绪,都大大地丰富了阅读活动。

    当想到我的孩子已经沉浸在谷歌的世界里时,我开始为阅读的独特魅力担忧。当我们的阅读媒介变成电脑文本,瞬间就能接收到大量信息时建构阅读核心的基本元素会不会发生改变,甚至崩解?换育之,当许多数字化媒介能够快速地提供几乎全部的信息时,我们是否仍能具备充分的时间与动机,以更具有推理性、分析性或批判性的态度,来处理这些信息?

    在这种背景下,阅读活动会不会产生戏剧性的变化?虽然基本的视觉语言过程是完全一致的,但是在理解过程中需要更多的时间、检验、分析以及创造的部分,会不会受到忽视?打开超链接所得的额外知识,是否有助于儿童思维的发展?当儿童逐渐掌握执行多重任务的能力以及整合大量信息的能力时,他们是否仍能保存人类的建构式阅读习惯?对于各式各样的阅读模式,我们是否应该开始提供明确的指导方法,以确保孩子能以多元的途径处理信息?

    在这些问题中我渐渐地迷失自己,但是阅读也往往会让我们迷失。这么说完全没有贬意,只是想表现阅读的另一项衍生出来的核心特质。达尔文在150年前发现了造物的奥秘,即“无限”形式从“有限”原则演变而来:“肇始于微,进化于斯,无限形体,美好至极。”文字也是如此。无论是生物学上还是心智上,阅读都会促使我们“超越信息的束缚”,创造出无限美好的思想。人类学习、处理以及理解信息的方式正处于历史的转折点但是我们绝不能丢掉阅读的本质特征。

    诚然,阅读者与文本之间的关系,在不同文化和历史时期中也不相同。古往今来无数人读过《圣经》这样的神圣书籍,他们可能按具体的、字面的方式解读,也可能是从衍生的、说明性的角度来理解,数以万计的生命可能因此改变。马丁·路德(Martin Luther)将拉丁文版的《圣经》翻译成德文,让普通大众都可以读到,并从自己的角度来理解,这对宗教的历史产生了深远的影响。正如某些历史学家所观察的那样,随着时间的推移文本与读者之间的关系,可视为人类思想史上的一个重要索引。

    然而本书的重点还是以生物学和认知神经科学为主,而非人类的文化就此看来,阅读时生成新思想的能力与大脑神经回路的可塑性相辅相史。成,两者共同辅助我们超越文本内容的限制。由此能力生成的丰富的联想力、推理力、领悟力启发人类超越所读,形成新的思维。从这个意义上去理解,阅读不仅反映而且重演了脑部认知能力发展历程中的重大突破。

    普鲁斯特对此已经讲过很多,对于能够启发我们思维的阅读能力,他自有一番或许拐弯抹角但却独到的见解:
    我们应能由衷体会,读者的智慧始于作者写作之终了。当我们渴望作者能够给予我们答案时,他能给的却只是更多的渴望。而他只有竭尽所能发挥他的艺术,让我们的思绪陷入作品里崇高的美好,他才能在我们身上挑起这些渴望。不过……规则可能意味着我们无法由任何人那里获得真相,我们只能创造真相;这是作者智慧展现的终点,也是读者智慧展现的起点。

    普鲁斯特对于阅读衍生性的思考,其实是矛盾的:阅读的目的在于超越作者的想法,产生自主的升华的思想,最终完全脱离文本。从儿童费劲地破解第一个字母开始,阅读经验不再只限于阅读行为本身,而是成了我们转变思想的最好工具,并且,在生理和智力上都将切实“改造”我们的大脑。

    总之,阅读带来了生理和智力的改变,这仿佛是一个具有非凡意义的培养皿,让我们能检验自己的思维方式。这项检验需要多种视角——古代及现代语言学家、人类学家、历史学家、文学家、教育家、心理学家及认知神经科学家等,以不同的角度进行研究。本书主旨在于融会贯通这些学科的论点,并提出三项新的观点:
    @ 阅读脑的进化(人类的大脑如何学会阅读);
    @ 阅读脑的发展(个体的大脑如何学会阅读);
    @ 阅读脑的变奏(大脑无法阅读的情况)。

    人类的大脑如何学会阅读

    让我们从苏美尔、埃及以及克里特岛这些书面语言的神秘起源地说起。在这些起源地中,我们发现了苏美尔人的楔形文字、埃及人的象形文字以及克里特岛人的原始字母文字。我们的祖先每发明一种重大的书写系统,大脑都需要进行些许调整,这也解释了为何上述的早期文字与古希腊人发明的意义重大且近乎完美的字母文字之间,时间相差了2000年之多。

    普鲁斯特与乌贼:普鲁斯特把阅读看做个体智力的圣殿在书本面前,我们“身未动,心已远”;认知神经科学家却把阅读比做乌贼学游泳,畅快淋漓的行动之下是复杂而精密的神经活动。

    字母规则在根本上呈现出了人类祖先深邃的洞察力,口语中的每一个单词都由一些有限的独立音位组成,而这些音位又可由一组有限的独立字母来表示。随着时间的流逝,我们发现这套看似单纯的发音原则是非常具有革命性的,因为它提供了这样一种可能性:每种语言的每一个口语词都可以被转换为文字。

    阅读史上有个很少提及的故事,苏格拉底竭尽所能地发挥他传奇性的口才,来反对发展希腊字母文字及其读写能力。在今天看来,苏格拉底很有先见之明,人类从口语时代转变到文本文化后确实遗失了一些东西。柏拉图对此沉默地抗议,他以文字记录下苏格拉底的每一句话。苏格拉底的反对格外契合当今我们的环境和心理,因为我们和孩子们正在从文本文化过渡到充斥着视觉影像与数字信息的时代,正在经历着同样的反对与妥协的过程。

    个体的大脑如何学会阅读

    有几种令人深思的关系,联结了人类书写的历史和儿童阅读的发展。首先,人类经历2000年之久,才实现了认知能力的突破,学会阅读字母表而现在的儿童只需大约2000天就学会了同样的知识。其次是一个为学习阅读而不断进行“重组”的大脑,有什么进化及教育学上的意义。没有特定的基因组直接负责阅读功能,我们的大脑还需要在负责视觉和语言的原有结构间建立联结去学习阅读这项新的技能,因此每一代的每一个儿童都需要重复大量的工作。

    认知科学家史蒂芬·平克(Steven Pinker)信誓且日地表示:“儿童天生就会辨认声音,然而文字是额外的需求,他们需要努力地学习才能把它们都读懂。”为了获得这项非天赋的技能,儿童需要一个全面的阅读教育环境,这样他们大脑中负责阅读的神经回路才能得到充分开发。但是目前的教学方式与该设想背道而驰,顶多只关注阅读的一两个层面。

    要理解自婴儿时期直至青少年时期的阅读发展,必须先理解阅读脑中所有的神经回路及其发展情况。假设有两个差不多大的孩子,他们都必须掌握成千上万个词汇和概念、数以千计的听觉及视觉认知,这些都是建构阅读的基本元素。但是由于他们生长环境的差异,其中一个儿童能掌握这些基本元素,另一个却不能。孩子本身并没有错误,但每一天都有许多儿童的学习需求无法被满足。

    最开始的阅读学习发生于幼儿期,那是我们躺在父母的怀抱里听故事的时候。事实证明,5岁以下的儿童听故事的频率会影响他们将来的阅读能力。给孩子提供丰富的语言环境或文本环境的家庭,与没有或是无法提供这种环境的家庭,形成了社会的两种阶层,然而很少有人关注这种隐性的阶层差异。一项著名的研究发现,在学龄前的小朋友们中,来自语言贫乏家庭的儿童与来自语言丰富家庭的儿童相比,他们接触到的词汇量差距大约是3200万。换言之,某些环境中,5岁以下的中产阶级家庭的儿童比来自贫困家庭的儿童,平均多接触3200万的词汇。

    在人学前已经听过、用过数以千计的词语,并能在大脑中理解、分类、记忆这些词语意义的儿童,人学后一定感到游刃有余。反之,另一群没有听过父母讲故事、没有听过儿歌、没有想象过与龙搏斗或与王子结婚的孩子,人学后经常会有挫败感。

    认识阅读活动发生的前兆,可以改变这种状况。在新科技的帮助下现在我们可以直接观察儿童学习阅读的过程,从解读一个词语,如“猫”开始,到流畅轻松地理解如“麦非斯特猫一般狡猾”一般复杂的句子,这中间发生了什么事情。我们发现人在生命周期中要经历一系列可预知的阅读阶段,这些阶段显示出初级阅读者与专家级阅读者的大脑有着不同的神经回路及其他必备条件,这些条件帮助专家级阅读者畅游《白鲸记》及《战争与和平》的世界,或是理解逻辑缜密的经济学书籍。

    随着时间的推移,我们关于大脑如何学习阅读的知识逐渐积累,这有助于我们预测、改善甚至预防一些原本未必会发生的阅读障碍的情况。如今,我们在阅读方面具备了充分的知识,不仅可以诊断出绝大多数幼儿园儿童是否有阅读障碍的风险,更可以教导已经出现困难症状的幼儿学会阅读。然而,这些积累的知识同时也突显出新的问题:数字化时代对大脑提出新的不同的要求,同时我们也不希望失去阅读脑的已有成就。

    大脑无法阅读的情况

    研究阅读障碍,有助于我们从另一个角度理解阅读行为。从自然科学的角度来看,阅读障碍之于人类,有点类似于游泳障碍之于小乌贼。这类天生有游泳障碍的乌贼,不仅让我们明白了学会游泳必须具备哪些条件,也使我们了解如果没有游泳这项独特的天赋,这些乌贼如何和其他乌贼样繁衍生存。

    我与我的同事采用了从字母测验到脑成像等多种研究方法,希望理解为什么许多儿童患有阅读障碍。我的大儿子也是这样,他除了阅读障碍的症状之外,在一些简单的语言行为上也有困难,例如他无法区别单词里的音素,也无法在看到某种颜色时立刻说出其名称。现在我们可以追踪正常儿童与阅读障碍儿童在进行各种行为时的大脑活动情况,分别建立动态的脑部影像。

    这些脑部影像每天都为科学家们带来新的惊喜。随着脑成像技术的进步,对阅读障碍者大脑的研究有了新的前景,特别是在干预治疗(intervention)方面的应用。这些成果有可能帮助许多原本无法对社会做出贡献的患者。将正常儿童的发展与阅读障碍者的发展相比较,能够帮助无数阅读障碍的儿童恢复潜在的能力,重拾生活的希望。

    (脑成像技术:在计算机等现代设备的辅助下,”看见”大脑在人做出反应、进行思考或想象时的情况的技术。常见的脑成像技术有计算机断层扫描、磁共振成像、正电子成像术。)

    关于阅读障碍者的大脑可能具备哪些特殊优势的问题,目前仍处于令人兴奋的早期研究阶段。但是许多发明家、艺术家、建筑学家、电脑设计师、放射学家或金融学家在童年时期都有过阅读障碍,这是毋庸置疑的事实。发明家托马斯·爱迪生、亚历山大·贝尔,企业家查尔斯·施瓦布大卫·尼尔曼,艺术家列奥纳多·达芬奇、奥古斯特·罗丹,以及诺贝尔奖得主医学家巴茹·贝奈赛拉夫等杰出人士,在儿童时期都出现过阅读障碍或者阅读困难的症状。

    某些阅读障碍者在设计、空间技能、模式识别等领域具备无可比拟的创造力,这些创造力与他们的阅读障碍之间有何关联呢?阅读障碍者的大脑结构,在比较注重建筑和探险能力的史前时代,是否更适合生存?阅读障碍者是否更容易适应视觉与科技主导的未来世界?现今最先进的脑成像与基因研究,是否能清晰描绘出阅读障碍者大脑的特殊构造,并最终解释这些已知的缺陷,以及各种正渐渐被发现的特殊天赋?

    上述关于阅读障碍者大脑的疑问,不但有助于回顾我们进化的过程也有助于展望符号发展的未来。许多年轻人选择以需要“持续部分注意力(continuous partial attention)的网络多元化文化取代书本原有的地位,他们将会获得什么,又会失去什么?无限信息时代对于阅读脑的进化有何影响,对人类的进化又有何影响?信息爆炸对原本需要时间才能形成的全面深刻的知识而言,是不是一种威胁?

    近年来,撰写科技文章的作家爱德华·特纳(EdwardTenner),曾经质疑过谷歌这样的搜索引擎是否促进了“信息文盲”(information illiteracy的出现,这种学习方式是否会有意想不到的负面结果?他说:“若科技的光辉最终威胁到了创造它的智慧,这是多么使人羞耻的事情!”

    反思上述问题,我们会更加珍视人类通过文字发展出的各种智慧的价值。我们不愿丧失这些技能,即使它们可能被其他技能取代。本书分为三部分:两部分是科学研究,一部分是个人的观察,我尽可能以各种事实来证明,为了我们自己,也为了后代,我们迫切需要保存阅读发展的独特功能。我们已经不需要像柏拉图那样,在口语与文字两种交流方式之间左右摇摆;只是当新的维度加人智力发展的行列中时,我们必须警惕,不能失去阅读脑这项意义深远的传承。

    然而,和普鲁斯特一样,在已有知识的王国里,我只能带领读者走这么远。本书的最后一章将会超越现在我所知的信息,进入一个充满直觉与猜想的世界。在这场探索阅读脑的旅程的终点,希望每位读者都能体验并超越这个奇迹,这个每当人们阅读时都必然发生的认知奇迹。

    第2章 阅读脑与思考的自然史

    因此我雄心勒勃地从自己作为读者的个人历史开始,逐渐过 渡到阅读行为的历史,更确切地说是阅读的历史。许多事物的历 史都是由特定的社会习俗及不同的个人情况组成的,阅读史也不例外。 ——阿尔维托,曼古埃尔
    书写的发明堪称人类智力的最高成就之一。它多次独立发生 于不同地点、不同时代,甚至偶然还会发生于现在。没有书写, 今日我们所熟悉的文明,将成为难以理解的天方夜谭。 ——曾志朗、王士元

    一万多年前,书写以各种各样的形态出现在地球的各个角落:表面覆 以坚硬黏土的小小代币、印加文明中错综复杂的染色绳结(见图2-1)、龟甲表面的精致图案等。最近在南非布罗姆斯洞穴中的岩石上发现了约77 000年前留下的交叉符号,这有可能是人类从事“阅读” 的最早遗迹。

    图2-1 印加文明中的结绳文字

    无论阅读从哪里开始,在何时发生,阅读绝不是“突然发生的”。阅读 的故事伴随着人类重大的文化变革,反映了一系列认知和语言上的突破性 事件。它多姿多彩且间歇性的发展历史,揭示出大脑在进行每一次突破时 必须要做的努力。此外,这不仅仅是我们学会阅读的历史,也是大脑原有 结构以不同方式适应不同形式书写系统需要的历史,因此也是我们思维方 式改变的历史。从现代我们逐渐演变的交流方式来看,为什么每种新的书 写系统都对人类智力的发展产生特定的影响,阅读的故事为此提供了独一 无二的记录。

    纵观古今中外的书写系统,文字之成形通常有一些先兆:
    第一类是“符号表征”,其抽象程度远 远高于人类早期的绘画一令人惊讶的是,这些刻在黏土、石头或龟甲 上的简单线条,不仅能代表绵羊等大自然中的具体事物,而且能代表数 量或神谕等抽象意涵。
    第二类预兆是明白符号系统可以跨越时空,保存个体或整个文明的 思想。
    第三类预兆是发音与符号的对应关系,这个将语言抽象化的发明并非普遍存在于所有文字系统,然而此发明却使得所有单字都可以由更小的发音单位组成。同样, 每个符号也都对应着一个单字的部分发音。

    我们的祖先在书写系统上的突破性发展,为我们提供了一面特殊 的镜子,使我们更清楚地审视自己。正如神经科学家特里,迪肯所言,了解每个事件的起源能够帮助我们了解它如何运作,进而 认清我们拥有什么,又需要去保存什么。

    人类最早的语言

    历史上有不少君主曾经试图找出地球上最早的语言是什么,以下两个 故事就是其典型例子。

    古希腊作家希罗多德曾告诉我们:埃及法老普萨美 提克一世(公元前664年至公元前610年),曾下令将两 位婴儿隔离在牧羊人的小屋里,除了每天负责送食物及牛奶的牧羊人 之外,不准他们接触其他人类,也不许他们接触任何人类语言。普萨 美提克一世认为从这些婴儿口中说出的第一个字,就是人类最早的语言——一个聪明的假想,可惜是错的。终于,其中一个婴儿哭喊着说出”bekos”,在弗里吉亚语中的意思是“面包”。此故事使许 多人长久以来都坚信,在安纳托利亚西北地区使用的弗里 吉亚语是人类最早的语言,即”原始语”。
    几个世纪以后,苏格兰国王詹姆斯四世进行了类似的实验,结论不同却十分有趣:苏格兰的婴儿”说了一些希伯来文”。而在欧洲大陆,霍亨斯陶芬王朝的弗雷德里克二世以更多新生儿为样本又做了一遍同样的实验,不幸的是, 由于实验过度严苛,婴儿们还没开口就死了。

    关于哪一种语言才是最早的语言,我们可能永远无法做出权威的论断, 更不用说争议性更大的“最早的文字”。然而要回答文字的发明只有一次还 是有许多次,就容易许多。本章将通过追踪几套特定的书写系统,来探讨 在公元前8000年到公元前1000年的漫长时间内,人类如何学会从小小的代币或“龙骨”上阅读信息。在这段耐人寻味的历史背后隐藏了一个事实, 那就是大脑不断的调整与改变。每一种新文字的发明,都将使书写系统变 得更为错综精细,脑部神经回路因此重新排列组合,从而引导人类智力的 发展和思考能力的伟大突破。

    文字的第一次突破:象征符号

    仅仅是看着这些小碎片,就能够将我们的记忆延伸至太古之 初,即使思想的创造者早已终止思想,思想本身仍继续着。我们 参与了创造,并且只要刻下的图案有人看见、解释或阅读,这创 造便永远不朽。 ——阿尔维托,曼古埃尔

    在偶然发现了一些比铜板还小的黏土碎片后,现代人迈出了探索文字历史的步伐。现在这些黏土碎片被称为“代币”,其中一部分以黏土为外壳, 刻上记号来代表内容(见图2—2〉。现 在我们确认了这些碎片的使用可以追 溯到公元前8000年到公元前4000年 间,它们是古代世界里许多地方都会 使用的一种记数系统。这些代币最初 用来记录货物买卖的数量,比如买卖了几只羊、几瓶酒等。这项略带讽刺意味的事实说明,人类认知能力的增 长可能开始于黏土壳上的数字世界,随后才发展至文字世界。

    代币:代币上的象征符号是文字的前身。最初的象征符号是用来记录货物买卖数量的,人类认知能力的增长可 能开始于代币上的数字世界,逐渐发展至文字世界。

    图2-2 代币

    与此同时,数字及字母的发展也带动了古代经济与我们祖先的智力技 能的发展。有史以来第一次,人类终于可以在现场没有羊或酒的情况下, 计算货物交易。新的认知能力使得信息储存及永久记录这一文字出现的预 兆变成现实。举例来说,与近来在法国和西班牙发现的洞穴壁画一样,代 币系统反映了人类出现了新的能力一象征符号的运用,主要体现在视觉 系统能够辨认出代表具体实物的符号。

    除了认知语言系统,大脑必须建立新的联结,人类才能开始阅读符号。 于是大脑在原本已经建立的视觉、语言、概念等脑神经回路上,发展出新 的神经联结及视网膜拓扑通路,把眼睛和特殊的视觉区域联结起来,然后 指派此区域负责“阅读代币”。

    虽然我们无法对阅读代币的祖先进行脑部扫描,然而以现在对脑部功 能的了解,我们足以对他们的大脑做出精确的推测。神经科学家马库斯·莱 切尔、迈克尔·波斯纳和莱切尔在华 盛顿大学的研究团队曾经做过一系列具有开创性意义的实验:运用脑成像 技术,观察被试在看到一连串有意义或无意义的符号时,大脑是如何运作 的。试验中被试分别被安排看了无意义符号、有意义符号组成的字母、无 意义单词及有意义单词这4种不同的符号材料。

    虽然这项研究是为了其他目的而设计的,但是其结果让我们得以一窥 人类面对抽象难解的书写系统时大脑内部发生了什么。无论是数千年前,抑或是现代的大脑,其中的道理都是一样的。

    莱切尔的团队研究发现,人在看到没有意义的符号时,只有大脑后方枕 叶有限的视觉区域会被激活,此发现在某种程度上为前面提及的“视网膜拓 扑图构建”理论提供了范例。视网膜的细胞会激活枕叶区域一群特定的细胞, 这群特定的细胞与彼此独立的视觉特征,如直线和圆圈等,一一对应。

    但是如果要将这些直线和圆圈解读成有意义的符号,大脑则需要建立 新的路径。正如莱切尔的实验所显示的,出现有意义的“真词”时脑神经 的激活程度是看到无意义符号时的两到三倍。想要理解更复杂的阅读脑的 活动,应先从熟悉“代币阅读脑”的基本神经路径开始。

    我们的祖先之所以能够阅读代币,是因为他们的大脑能够将负责基础视 觉功能的区域与较为精密的视觉区以及概念处理区相连接。这些负责精密功 能的区域邻近枕叶的其他区域,以及毗邻的颞叶和顶叶区。其中颞叶区域与 听觉及语言处理活动息息相关,有助于我们理解词汇。而顶叶参与一系列与 语言相关的活动,同时也参与空间与运算功能。当代币这类视觉符号被赋予 意义时,大脑已将基础视觉区与语言及概念处理系统联系了起来,同时也联 结到了视觉、听觉的专门化区域,组成“联合区”。

    因此,即便是小小代币这样的象征符号化也开发和扩展了人类大脑最 重要的两项功能:专门化的能力,以及在联合区建立新联结的能力。人类大脑和其他灵长类动物大脑的一个最大的区别在于联合区占整个大脑区域的比重。为了能阅读符号,这些联合区不仅要承担更多的感官信息处理过 程,同时还要建立起供将来反复使用的信息的心理表征这种表征能力对于符 号的应用和我们的智力发展都非常重 要。从猛兽的脚印、代币符号这样的 视觉图像,到老虎的咆哮、单词发音 这样的听觉信息,表征能力能够帮助 我们迅速回忆并检索储存在大脑中的 各类表征。

    心理表征:信息或知识在心理活动中的表现和记载方式。心理表征是外部事物在心理活动中的内部再现,一 方面反映客观事物,另一方面又是心理活动进一步加的对象。

    此外,表征能力还为我们的进化奠定了好基础,使我们能够自动化地 辨认与我们相关的一切信息形式。这使得人类成为辨认各种感官信息的专 家,无论是长毛象的足迹还是买羊用的代币,都是小菜一碟。

    阅读符号要求我们的祖先具备更多的视觉专门化功能,而最关键的是 将视觉表征与语言、概念信息建立联系。大脑枕叶、颞叶、顶叶交界处的角回是联系不同感官信息的理想位置,杰出的行为神经学家诺曼·格施温德称其为“联合区中的联合区”。 19世纪的法国神经学家约瑟夫-朱尔斯·代热林经观察发现,一旦此区域受伤,即会造成读写能力的丧失。麻省理工学院的约翰·加布里埃利与加州大学洛杉矶分校的拉斯·波尔德拉克这两位当代的神经学家也通过脑成像的研究考现,当孩童发展阅读能力时,无论是从角回区域传出还是传导至角回的神经回 路都会被强烈地激活。

    从莱切尔、波尔德拉克及加布里埃尔的研究中,我们可以推断出人类 祖先最初“代币阅读能力”的生理构造基础,可能就是在角回与邻近一部分的视觉区之间产生的新而微弱的神经回路联结。若是戴哈尼没错的话,新的联结还涉及负责处理数字的顶叶,以及负责物体识别的颞叶及枕叶的 部分区域,也就是大脑皮层分区系统中的37区(见图2—3)。

    图2-3 第一个代表阅读脑的结构

    最初使用代币的时候,虽然脑内建立的联结只是一个基本的雏形,却 是人类在阅读方面最早的突破。通过教育下一代使用更丰富的象征符号, 我们祖先把与大脑能力相关的知识传递下去,逐渐调整、改变大脑结构, 促使它做好阅读的准备。

    文字的第二次突破:楔形文字和象形文字

    你可曾注意过Y这个字母就像一幅画?你可曾注意到它蕴 藏着许许多多含义?它可以代表树、岔路口、两条相交的河流、 驴子或公牛的脑袋、高脚玻璃杯、带柄的百合花以及高举双手的 乞丐等。对Y的观察也可扩展到所有由人类发明的字母元素。——维克多·雨果

    公元前3300年到公元前3200年间,发生了阅读史上的第二次突破: 苏美尔人的铭刻记号发展成为楔形文字,同时,埃及人使用的符号也演变 成象形文字。虽然现在仍在争论苏美尔人与埃及人是不是这两个书写系统 的发明者,但毫无疑问的是,苏美尔人创造出了一种最早的令人敬仰的文 字系统,它持续影响了整个美索不达米亚平原的阿卡德语系“楔形”—词源于拉丁文的意思是“钉子”,借以描 述苏美尔人的文字貌似钉子。苏美尔人利用芦苇尖端在柔软的黏土表面刻 下的字迹,对没有受过这种教育的人来说,看起来颇似鸟爪的痕迹(见图 2―4〉。

    这些形状奇怪的书写系统的发现年代距今不远,当时不少勇敢的语言学家都去研究文字的起源。最为当代语言学家津津乐道的是19世纪的一位 军人兼学者亨利·罗林森。罗林森曾经冒着生命危险,到现今的伊朗研究楔形文字,为了复制刻在悬崖上的最早一批苏美尔人文字,他用绳索把自己吊在离地面90米高的半空中。

    图2—4 楔形文字

    幸运的是,另外5 000多块刻有楔形文字的泥板能以比较轻松的方式 获得。在许多苏美尔文明的遗迹如宫殿、庙宇或仓库中都可以发现这些文字,它们的发明和使用主要是为了满足政治和会计方面的需求。

    古代居住在底格里斯河与幼发拉底河交汇的三角洲一带的居民,对于他们文字的起源,有着一个浪漫的传说。在一首史诗中有这样的描 述:库拉布国王派遣一位使者带着重要的信息前往远方的国 家,他担心使者到达时会因太过劳累而说不清这些重要的信息。为了保 证信息的传达,库拉布国王“拍打黏土,这些信息便一字不漏地留在泥 板上’ 文字因而诞生。然而,苏美尔人对于为何有人可以解读库拉布 国王的文字,并没有交代清楚。

    不过苏美尔人的楔形文字确实是书写系统演进过程中的一个里程碑。这是一套真正的书写系统,它暗示了书写者、阅读者以及教学者大脑中逐 渐出现的认知技巧。尽管楔形文字比代币的复杂度要高出很多,但最初的 苏美尔文字其实还只是象形的(仿照物体形状呈现的图像),只比代币多一点点抽象的成分。因此,这些象形文字很容易被视觉系统识别,需要的只是与口语中的物体名称进行匹配。

    观察世界上众多的书写系统和数字系统中所运用的符号与字母后,神 经学家戴哈尼发现,许多符号与字母的形状或特征有很高的相似度,且大 都取材自自然界或是我们世界中的各种物体形象。法国作家雨果则认为所 有的字母都源于古埃及的象形文字,而这些象形文字又是通过模拟自然界 中的河流、蛇或百合花的茎等物体形成的。文学家与科学家之间不谋而合 的推论虽然仍有争议,却也说明了为什么从一开始大脑就能学会辨认字母。 在戴哈尼的进化观点中,利用外部世界的已知形状创造出早期的象形文字 符号,其实是“再利用”了大脑内部负责物体辨识以及命名功能的神经 回路。

    但是苏美尔文字的简单形态并没有维持多久,在出现后的短时间之内,本就十分神秘的楔形文字的复杂程度又大大增加。符号快速发展,象 形的成分逐渐消减,而标记化和抽象化的成分则逐渐增加。这种意符文字可直接表达苏美尔人口语中的概念,但尚无发音单位的出现。 随着时间的流逝,苏美尔文字中的许多符号渐渐可以代表苏美尔人口语里的部分音节,这种有双重功能的文字系统,语言学家称之为“意音文字” 或“语素音节文字”。文字系统发展至此,对人类大脑功能 的需求又大幅增加。

    楔形文字:由苏美尔人创造,因其笔画形状像钉子而得名。楔形文字是人类历史 上最早出现的文字系统之影响了当时整个美索不达米亚平原的语言文化。

    事实上,为了实现文字系统的双重功能,必须在苏美尔人阅读大脑的 神经回路上建立起交叉回路。首先,视觉区及视觉联合区里必须增加更多的神经通路,以对上百个楔形文字进 行解码。在视觉区域做出这种调整, 就像在电脑中增加内存条。其次,语 素音节文字的概念处理不可避免地需 要更多认知系统的参与,因此,需要 在枕叶的视觉区、颞叶的语言区及额 叶区增加更多的神经联结。额叶区之 所以参与其中,是因为它在分析、计划、焦点注意等方面的“执行能力”,这些能力对于处理词语中的短促音节, 以及人类、植物、神殿等语义类别来说是必需的。

    对我们的祖先来说,专注于词语中的各种语音模式是一种崭新的体验, 是智慧的产物。当苏美尔人需要创造更多的词汇时,他们在文字中利用了 语言学的“假借”原理,即用一个单字(如:鸟)表示发 音,而非意义,这正是音节的发明。如此一来,“鸟”这个字即被赋予双重 任务:既可以表示语义,也可以表示发音。显然,要区别同一个字的两种 功能,需要新功能的介入,包括发音的标示,或语义的分类。反过来,要 同时记忆语音和语义,需要更多复杂精细的大脑神经回路。

    有两个方法可以帮助我们揣摩苏美尔人的大脑结构。首先,让我们 回想一下莱切尔团队的研究,他们探索的是当词汇被赋予意义时,大脑 内部如何工作。举例来说,研究团队给被试一个无意义的假词mbli也和一 个有意义的单词limb(四肢),两者的组成字母完全相同,但是其中只有 一种排列具有意义。结果显示,被试看到两个词时,大脑视觉区都会被 激活,但在进一步辨认时,假词对视觉联合区的激活程度较小;而真词 则令大脑变得非常活跃。看到真词后,大脑的处理系统开始工作:视觉 区与视觉联合区对视觉模式,或称其“表征”,产生反应,然后额叶、颞叶、顶叶将词语中最小的发音单位,即音位,转换为信息提供 给大脑,最后颞叶与顶叶的部分区域联手处理词语的意义、功能以及与其 他相关词的联想。

    因此,尽管假字与真字组成字母完全相同,但动用到的大脑皮质区相 去甚远,几乎差了半个皮质。由此可见,第一批楔形文字或象形文字的阅 读者,不论是苏美尔人还是古埃及人,毫无疑问都使用了上述大脑区域的 一部分。就像他们当时创造这两套最初的书写系统的时候,两者势必运用 了重叠的大脑区域。

    而第二个得以窥见苏美尔人阅读脑构造的方法是,由具有相似结构且 至今仍极具生命力、蓬勃发展的汉字系统着手。汉字同样是从象形文字演 变至语素音节文字的典范,同样运用了语音及语义标记来区别符号的不同功能,最重要的是它有充足的脑成像样本可供观察。语言考古学家兼汉字 专家约翰·德弗朗西斯在把汉字与楔形文字进行比较后 发现,尽管两者有些许的差别,但是也有很多类似的元素,因此把它们都归类于语素音节文字系统。

    因此中国人的阅读脑(见图2—5)为我们提供了一个现代的、比较合理的类似于古代苏美尔人的阅读脑结构的范例。广泛分布的神经回路,取 代了代币阅读脑的小范围神经联结,这种新的调整要求视觉区与视觉联合 区在大脑的左右半球覆盖更多的表面区域。不同于其他的书写系统(如字母表),苏美尔语和汉语更多地涉及右脑,众所周知,右脑能更好地提供阅读表意文字所需的空间分析能力及整体处理能力。表意符号数量繁多,对视觉要求极为严格,它们不仅需要大量的视觉区域,大脑内负责识别物体的枕叶——颞叶区(37区)也同样重要。戴哈尼推测该区域是认识文字时“神经再利用”的主要区域。

    图2-5 “语素音节文字阅读脑”的结构

    虽然所有的阅读行为都或多或少地使用额叶、颞叶区规划分析词语的 语音及语义,然而阅读语素音节文字会激活大脑额叶和颞叶一些特殊的区 域,尤其是专门负责动作记忆的区域。匹兹堡大学的认知神经科学家谭力海和查尔斯·拍费提及其研究团队提出了一个重要的 观点:这些动作记忆区域在阅读中文时比阅读其他文字时更为活跃,因为年幼的初级阅读者就是通过反复书写来学习汉字的。而这也正是苏美尔人 学习楔形文字的方法,在一个小小的泥板上,一遍又一遍地练习。接下来 要谈的历史,可证明“此言属实”。

    苏美尔人如何教儿童阅读

    苏美尔人会将单字一行行地记录在小小的泥板上,让所有的孩童读出 来。这件事在人类智力发展史上看起来似乎微不足道,实则不然。因为教 学不仅要求老师对内容本身有扎实的知识背景,同时也要对其所教内容的 学习情况进行深入分析。此外,好的教学过程能从多元的角度将复杂的课 程,如特性复杂的文字系统,更清晰地传授给学生。因此,逐步地学习如 何进行最早的文字教学,促使世界上最早的文字教育者,身兼语言学家的 角色。

    来自特拉维夫大学的亚述研究专家尤里·科恩,近来在分析古老史料后,发现苏美尔人的学生要经过漫长的时间才能学会读写,他们必须在 “泥板屋”学校花费数年才能学会读写 技能。

    亚述:古代西亚奴隶制国家。位于底格里斯河中游,属于闪米特族的亚述人在此 建立亚述尔城后逐渐形成贵族专制的奴隶制城邦。

    “泥板屋”一词,暗示了苏美尔人的基本教学方法:教师会先把一 些楔形文字符号写在泥板上,接着学生必须在另一面模仿其写法。新生 还同时学习阅读含有表意符号及语音信息的文本,有时一个字里就有这 两种信息。如果想流畅地理解这些楔形文字,年轻阅读者必须具备丰富 的背景知识、训练有素的自动化技巧以及相当高的认知灵活度,这些需要数年的练习。最近新发现的练习泥板上描绘了学生的悲惨生活。他们 和老师待在一起的每一年都十分痛苦,经常重复书写这样一句话:“他 用鞭子打了我。”

    最让人惊讶的还不是频繁的鞭刑,而是这首批阅读指导老师使用了高 度分析性的语言学规则,这些规则在任何时代都是实用的。尤里·科恩观 察发现,初级阅读者学习词汇表时已经运用了一些特殊的语言学原则。有 些词汇表是用来教导不同的语义类别的,每一类都有特殊的标记。

    后来苏美尔人把音节符号纳入书写系统中,又出现了另一类依据发音 来分类的词汇表。这意味着苏美尔人在对语音系统进行分析,这也是现代以语音为基础的阅读训练的重点。20世纪的教育者还在为阅读该从发音教 起还是从意义教起争吵不停,而很久以前的苏美尔人在教育体系中已经同 时釆用了这两种方法。

    苏美尔人教学方法的另一项重要贡献是促进了认知能力的发展。要求学生从语音、语义两个角度学习词汇,有助于他们更有效率地记忆单词, 扩充词汇量,增长概念性的知识。以现在的术语来说,即是所谓的元认知策略。也就是说,苏美尔教师已经懂得利用教学 工具,明确地把学习与记忆的方法传授给学生。

    随着时间的流逝,苏美尔人的初级阅读者学会了一些带有词法特征的词汇。词法是利用语义的最小单位,即词素来构成词语的规则。举例来说,英语中bears这个单词是由两个词素组 成的:词根bear加上s,因此bears既能代表一个复数名词(一些熊),又 可以表示动词“忍受”的第三人称现在式。如果缺少了这种意义重大的语 言组合能力,我们的词汇量及思考能力的发展将会受到严重限制,人类智 力的进化与认知能力也会受到影响,我们人类与其他灵长类动物的差异也 许就不会这么明显。

    我们的一种灵长类亲戚,尼日利亚的白鼻长尾猴,其叫声系统也显示出语言组合能力的重要性。白鼻长尾猴与黑面长尾猴都有两种叫声来警告同伴有天敌接近。猎豹靠近时发出”Pyow”声,老鹰接近时则发出一种类似干咳的声音。近来,两位苏格兰动物学家在观察后发现白鼻长尾猴会 通过组合两种叫声创造出一种新的叫声,用来警告年轻的猴子”快离开”。白鼻长尾猴的这项创新,与苏美尔文字中频繁出现的利用词素构造新词 的做法有异曲同工之妙。

    文本框: 39苏美尔人的楔形文字及教学法的重要性,不仅在于他们了解了词法原 理,而且在于他们意识到阅读教学必须从研究口语的基本特质开始。这也 正是我们实验室目前正在开发的“前沿”课程,即在阅读教学中融人语言 的所有特点。这样的教学方法是非常有道理的。试想一下,如果你是地球 上第一批具备读写能力的人之一,在没有任何先人经验能指导你的教学时, 你必须搞清楚口语的所有特点,然后才能创造出书写系统并进行教学。苏 美尔文明的第一批教师就是在这样的情境下提炼出了可长期使用的语言规 则,不但增进了教学效率,还帮助了那些有读写能力的苏美尔人发展认知 和语言技巧。因此,苏美尔人在读写教育方面的贡献拉开了阅读脑改变人 类思考方式的序幕。

    这一切改变的是人类整体而不论男女,有一个鲜为人知的故事很好地 说明了这一点。我们在苏美尔人的遗留之物中发现,当时的苏美尔人规定 皇室女子必须学习阅读。女人拥有自己的语言变体,称为“艾米索”(Emesal)又名“优雅之语”,用来区别有“高贵之语”之称的标准语“艾米格”(Emegir)。艾米索在许多文字的发音上不同于艾米格。我们可以想象 得到,当时的学生在女神所属的“优雅之语”和男性天神所属的“高贵之 语”之间转换,需要何等复杂的认知技巧。这个古文明因此留下了一些美 丽的见证,世界上最早记录下来的情歌与摇篮曲有不少是由苏美尔女性创作的:
    睡吧,睡吧!
    我的孩子!
    快快睡吧,我的宝贝!
    轻轻地合上你颤动的双眼,
    妈妈的手来安抚你闪烁的双眸,
    安慰你梦中的咿呀,
    不让呢喃赶走你的美梦。

    从苏美尔语到阿卡德语

    苏美尔人留下的另一项证据是,包括早期波斯人、赫梯人在内的至少15个民族,在苏美尔语停止使用之后,仍继续沿用 楔形文字及相关的教学方法。文化会绝迹,语言亦然,在公元前2000年, 作为口语的苏美尔语渐渐消失,学生开始学习日渐占有主要地位的阿卡德语。到了公元前1600年,苏美尔口语时代正式宣告结束。

    然而阿卡德人的书写系统及其教学方法仍保留着许多苏美尔文化的文 字符号及方法。苏美尔人的学习方法对整个美索不达米亚平原的教学历史 都有深远影响。后来还有人发现,一直到公元前700年,依旧有人分别以 泥板与纸莎草来刻写这两种文字,泥板上是古老的楔形文字,纸莎草上是 当时的新字。

    直到公元前600年,苏美尔文字才真正绝迹。但是,它的影响力却 持续下去,体现在阿卡德语的某些字符和教学方法上。此外,在公元前 3000年到公元前1000年的所有共同语中,处处可以看到苏美尔文字的影 子。阿卡德语逐渐成为当时美索不达米亚各族人民的共同语,而且历史上 许多珍贵的古文献都是用阿卡德语记录的,如《吉尔伽美什史诗》,在此节录其中一段描述人生的不朽诗行:
    我辛勤地劳作,为了谁?
    我不停地旅行,为了谁?
    我遭受的磨难,为了谁?
    为什么最后我仍一无所有?

    这首史诗是在尼尼微城亚述巴尼拔图书馆中的12块 石板上发现的,年代是公元前668年至公元前627年的亚述王朝时期, 《吉尔伽美什史诗》上刻有“Shin-eq-unninni”的名字,他是历史上最早的 知名作家之一。这首史诗的母题来源于一个古老的传说:英雄吉尔伽美什 克服了种种困难,打败了可怕的敌人,却也失去了亲爱的朋友,最终领悟 到包括他自己在内,没有人能够逃离人类永远的敌人——死亡。

    《吉尔伽美什史诗》与其后风行一时的阿卡德语,是书写历史上重要改变的典型。书写系统的完整发展以及文学类型的百花齐放,奠定了公元前 第二个千年里人类的知识基础。许多古籍的内容从其书名就可以看出,例如令人感动的人生教诲书籍《父亲对儿子的忠告》、如带有宗教意味的著作《人与神的对话》、或是充满神话色彩的故事《恩利尔与尼利尔》等。 而编集成典的冲动更为人类带来了历史上第一部百科全书,这部书有一个 谦虚的名字:《关于宇宙万物》。同样的,编纂于公元前1800年的《汉谟拉比法典》,使社会一切事物都在此规则下运行,此外还有综合了所有已知医学知识的医学大全《论医疗诊断及预防》。

    阿卡德人在认知能力、组织力、抽象应用与创造力方面的水平,已将 人类智力发展的重点从先前的“个人学习文字需要什么样的认知能力”转 变为“认知发展的方向”。

    阿卡德语的某些特征让它较容易使用音节表。阿卡德语这类古代语言, 以及日语、切罗基语等其他一些语言,都有一套简单有序的 音节结构。这类口语很容易发展出音节文字(syllabary)书写系统,以一个符号代表一个音节,而不是一个发 音。例如,美国原住民领袖塞阔亚 决定为切罗基语创造一套 书写系统,他选择了音节文字系统, 这非常适合仅有86个音节的切罗基 语。这是一套非常完美的演绎,然而, 阿卡德语的“纯音节”意味着必须舍 弃苏美尔语的语素音节文字形态以及 与其联系紧密的过去,而这对阿卡德人来说是难以接受的。

    阿卡德语:一种已灭绝的闪米特人语言,属于亚非语系闪米特语族东闪米特语支,主要由古美索不达米亚的亚述人及巴比伦人使用。该语言约于公元前1世纪灭绝。

    因此随着历史的发展,折中的方案出现了,而这办法也常常运用于其 他语言。最终阿卡德语书写系统里面保留了苏美尔语中较为普遍或重要的 词汇,如“国王”,而将其他词汇纳入音节表。如此一来,阿卡德文化的骄傲——传统苏美尔语连同其文明——得以继续存在,然而阿卡德语也因此 变得更加复杂。由此可见,在许多至今仍存在的文字里,都包含着使用者 延续珍贵文化传统的心愿。

    英语的情况也类似,它是混合了传统与实用主义的历史产物。英语 为融合希腊语、拉丁语、法语、古英语以及其他语言,必须付出颇高的代价,特别是对小学低年级的学生而言。语言学家一般将英文归为词音文字,因为在英文单词的拼写里同时包含词素与音位 (phoneme,语音的单位)。因此如果初学者不了解相关的历史背景,这一 点将会给他们造成很大困扰。

    语言学家诺姆·乔姆斯基及卡罗尔·乔姆斯基曾经以英语单词muscle(肌肉)为例,来描述词素音位文字 的规律以及英文的历史演变过程,如同阿卡德语接纳苏美尔语的一些元 素。英语单词muscle中不发音的c似乎是多余的,但事实上却与它的拉 丁文词根musculus有莫大的关系,因此有了相关单词muscular(肌肉发达的)、musculature(肌肉系统)的存在。在这两个单词中,c是发音的,体 现了字母作为音位的一面,而muscle里的c则体现了字母作为词素的一面。换而言之,英语的本质是追求体现口语发音与展现词根两者之间的平衡。

    正是因为文字进化的这种“平衡”关系,古代阿卡德语的初学者要学 会这种文字,必须面对智力及大脑结构上的挑战。因此我们不难想象,阿 卡德语和早期苏美尔语一样,至少要花上6到7年的时间才能掌握。如此 漫长的学习时间与强权的政治环境,导致阿卡德文最终变成少数上层阶级专属的书写系统,只有神殿或法庭的人能够花费宝贵的时间学习。而在历 史上,另一个强权国家——至今仍很鲜活地存在于人们心中的古埃及王国, 也创造了最早的文字之一:古埃及象形文字。某些近代学者认为,象形文 字的出现比苏美尔文字至少早100年,是真正“最早”的文字。

    象形文字的发明

    长久以来,大多数学者都认为苏美尔人发明的楔形文字是人类最早的 文字,而古埃及象形文字则是由此系统演变而来的。然而,新的语言学证 据指出,象形文字出现在公元前3100年左右,应是独立于楔形文字的系统。 通过研究埃及阿比德斯的证物,德国的考古学家甚至认为,象 形文字的发明可能比苏美尔文字还早,大约在公元前3400年就存在了。若 这项新发现属实,那么象形文字才是阅读脑进化的起点。

    因为到目前为止尚未有确切的结论,所以在本书中,我们暂且认为埃 及人是独立发明文字的,并以此角度来介绍古埃及象形文字(见图2—6)。 与鸟爪形状的楔形文字不同,早期的象形文字可归类为一种表意文字,线 条抽象而优美,大部分解读文意的人很快就倾心于其纯粹的艺术美感。楔 形文字与象形文字的相似之处,在于两者都运用了 “假借”原理来发明新词, 而且两者都被当做是神的礼物。

    图2-6 古埃及象形文字:鸟、房屋、神殿

    随着时间的推进,象形文字逐渐演变成一种复杂的文字系统,既有表 示词义的意符,也有表示辅音的特殊符号,这样的象形字类似汉字中的形声字。例如图2-6中显示的象形文字“房屋”看起来像由上 往下,即从神的角度看到的房屋形状。此符号除了可以简单地表示“房屋” 之外,还可以读做复辅音pr,或置于其他意义符号的后面,表示pr的发音, 相当于注音符号(phonetic marker),这种造字方式在苏美尔文字中也可以 见到。另外,“房屋” 一字还可以与其他语义符号组合成新字,如上图的 “神殿”,使词义的类别一目了然。

    而在认知能力的需求上,对初级阅读者来说,阅读象形文字与阅读苏 美尔文字一样,都是极大的挑战。由于多元的造字原理,初学者必须凭借 认知判断力以及灵活性,判断每个符号在不同情况下的具体用法,如此一 来便自然而然地拥有了功能活跃的大脑。例如在辨识意义符号时,需要视 觉区与概念区的神经联结;辨识辅音符号时,需要视觉、听觉、发音区共 同合作;而在识别语音标记及语义标记时,则需要额外的抽象能力与分类 能力,以及语音和语义分析能力。

    此外,早期象形文字中没有标点符号,而且书写方向时而由左至 右,时而由右至左。象形文字及一些其他的早期文字,常以“牛耕式”来书写,也就是一行从左至右写到底后,再从右写到左, 就像牛犁地一样来回往返。因此与现代人直线式的阅读方向不同,阅读此 类文字时双眼必须随着文字移动到句末,再以反方向继续阅读;另外,根 据建构结构的要求,文字刻印的方向还可以由上至下,再由下至上。可见阅读象形文字需要各式各样的技巧,其中包括高度进化的视觉记忆能力、音位听觉分析能力、空间认知的灵活性等。

    经过数个世纪的洗礼,象形文字与苏美尔文字及其他古老的字母文字-样,增添了许多新的符号和元素。不同于其他文字系统的是,经过主要负责文字抄写的专职人员的改造,象形文字发生了两次变革。第一次的字体变革提高了抄写的效率,使抄写员的工作轻松不少。然而对于这些古代的抄写员来说,第二次的变革更是振奋人心。

    简单来说,古埃及人发现了一套简单来说,古埃及人发现了一套类似音位系统的东西,这虽然不至于令所有人欢欣鼓舞,但对抄写员而言,这项创举具有重大的意义,因为他们可以更容易地记录一些新的城市名、皇室成员的名字,以及更容易地拼写外语词和外国名字。假借原理能够达成此目的。如今日文的两种书写系统也具备此项特质,一是由古汉语而来的表意系统日文汉字(kanji),另一个则是较晚创造的音节系统假名(kana)。跟古埃及文半拼音系统类似,假名用做日文汉字的补充,以便记录口语中的新词、外来词及外国名字。

    象形文字:古埃及人发明的象形文字是另一种古老的文字系统。随着象形文字的发展,古埃及人又发现了一套类似音位系统的东西,这使得他们可以方便地记录新词语和外来语。

    我们注意到这项人类语言学创举开始于古埃及象形文字,因为它吸收了一组表示口语发音的文字。如语言学家彼得·丹尼尔斯(Peter Daniels所言,书写历史中“半拼音文字”的诞生真是莫大的惊喜!这项古埃及文字中所诞生的新的文字类型,标志了人类文字第三次突破的曙光:依据文字内部的发音结构来建立书写系统。

    但是就像摩西无法在“应许之地”常住,古埃及人并没有充分开发自己发明的拼音字母前身。尽管创造出了半字母文字系统,但是由于文化政治、宗教等因素的限制,象形文字系统始终无法演变为更高效的文字,古埃及王朝中期出现了 700多个标准象形文字,在其后的1000年里,文字数量发展到几千个。其中一些文字表达了隐晦的宗教意义,书写起来层层叠叠,篇幅冗长,因此识字的人越来越少。这样的变动意味着象形文字需要更强的概念处理能力,因此对阅读者的要求反而更严格了。

    象形文字最终的没落,若单纯以人类无法负荷过重的视觉记忆来解释显然是站不住脚的。看看目前众多的汉语阅读者,就会明白为什么了。公元前 1000年,埃及文字在进人文字密码化的时代后,抄写员或许运用了人类有史以来最活跃的大脑皮质与最充分的认知资源。奇怪的是,由于象形文字的复杂性而产生的半字母文字系统,反而对早期文字历史中字母的演变贡献最大。

    龙骨、龟甲与绳结:其他早期的奇妙文字

    象形文字与苏美尔文字大相径庭的发展史,还是未能解答它们究竟是各自文化的独立产物,还是从一种语言传播至另一种语言而形成的。目前累积的考古证据显示,在公元前第四个千年的晚期,人类至少发生过三次以上的文字创造;稍后在不同的地区又至少出现过三次文字发明事件。除苏美尔文化和古埃及文化之外,由约公元前3300年的陶器刻记演变而来的印度河文明的书写系统,在公元前2500年左右成形;这种文字至今仍无人能够破解,一再使热衷的学者们无功而返。

    在希腊克里特岛(Crete)发现了公元前第二个千年出现的书写系统。可能是受古埃及文字的影响,克里特文字发展为包含象形特征的线性文字A(Linear A),而之后发展成另一种著名的文字形态线性文字 B(Linear B)。此外,还有萨波特克人(Zapotec)发明的语素音节文字,除了萨波特克人使用之外,还有玛雅(Mayan)、奥尔梅克(0lmec)等民族使用,整个中美洲几乎都可见到此文字的遗迹。

    玛雅文字及希腊的线性文字B被发现后,经过数十年的解读,依然是未知的谜团。然而斯大林时期的一位俄国学者尤里·科诺罗索夫(Yuri Knorosov)却取得了令人震惊的成就,他在几乎无法取得相关材料的环境中,成功破解了神秘的玛雅文字。而他的故事也因此巨细靡遗地记录在麦克尔·科尔(Michael Cole)所著的《破解玛雅密码》(Breaking the Maya Code)一书中,内容完全可以看成是20世纪一部引人人胜的智力推理小说。科诺罗索夫整理玛雅文字的线索后发现,玛雅人与苏美尔人或古埃及人相似,也是利用语音、语义标记造字。然而更令人感到意外的是,玛雅文字的建构原理与现今的日文更为接近,同时结合了表意符号及音节系统。

    中美洲另一个伟大神秘的发明仍然处在曙光乍现的阶段。在哈佛大学人类学系执教的加里·厄顿(Gary Urton)及杰弗里·奎尔特(Jeffrey Quilter ),针对美丽而神秘的印加结绳,提出了一个新的研究方向。印加人以染色的纤维缠绕编织成图案极为复杂的结绳(见图2-1),厄顿有别于语言学家及其他印加文明的学者,他大胆推论现存的600多个绳结其实是一种尚未破解的印加书写系统:每一个绳结的类型,每一个绳结的颜色每一种编织的方向都代表了不同的语言信息,就像犹太人晨祷披肩或女用披肩的编织一般。

    人们至今认为印加结绳的功能就像算盘;但早在16世纪,西班牙的历史学家就已经记录,印加人曾经告诉西班牙传教士,所有的印加文明都记录在结绳上了。传教士知道后,立刻将能找到的结绳全部烧毁以免印加人与旧神之间有任何联系。

    而今天,厄顿及奎尔特的研究团队正试图利用剩余的结绳破解印加文明的神秘语言。

    另一种神秘的文字存在于古代中国的书写系统之中。尽管中文书写系统的发明常常以公元前1500年至公元前1200年的商朝为起点,但是一些学者认为确切时间应该远远早于商朝。早期汉字的发现可谓考古学中意外事件的经典案例,这些文字大量出现在19世纪的中药铺里,因为当时的中国人相信“龙骨”的神奇疗效。直到某天有人发现这些古老的龟甲或兽上竟然有一系列的符号。目前已经证实了这些符号是中国人求神问卜的记录。把要询问的事情事先记录在龟甲及牛的肩骨上,而后以烧红的火钳劈裂从龟甲内部裂痕的形状来推测神的答案。

    一个完整的龙骨或龟甲会记录问题、时间、神的回答以及真实的结果。例如某个龟甲记录了距今 3000年的商朝,武丁王询问他妻子的怀孕是否为一桩“喜事”,神明的答复为,只有当他的妻子妇好在特定的日子分娩时才是喜事。结果她的分娩日与神明的预测不一致,最终一行字也记载了神明预言的准确性:“不是喜事,因为出生的是女婴。

    这些在龟甲中埋藏数千年之久的精致文字讲述了古代中国的历史。汉字与楔形文字相似,是一种素音文字,文字的结构中也蕴含着过去点点滴滴的历史。因此,初级阅读者必须经过反复的书写练习,才能发挥出超强的视觉空间记忆力。与苏美尔文字与古埃及文字的语音标记一样,许多常见汉字都包含了声符,以标记汉字的发音。这些声符可以帮助阅读者辨别文字,以弥补意符的模糊性。

    然而,相较于其他古代的书写系统,汉字仍有一些不同之处。首先它目前仍在使用。汉字可以说是古代中国留给现代人的礼物,直到现在仍是神圣的存在。著名的美籍华裔小说家任碧莲(Gish Jen)曾经旅行到中国并在中国定居多年。她注意到有一位手执长杖的老人,每天都会到公园里游玩。整个下午,他都会用长杖蘸水在干泥地上书写巨大的汉字,每一个文字的特征都能得到完美的演绎。在这些文字被风吹干之前,公园里每一个看到的人都不免称赞一番。这一番场景,告诉我们汉字不仅是沟通工具更是艺术的载体。或许对老人而言,还是一种精神上的表达。

    我在指导研究生专题讨论时,发现了汉字与其他古文字的另一个不同之处。我询问塔夫茨大学的中国学生,他们是怎样在小小年纪就学会如此之多的汉字的,他们笑着回答道:“我们有一个秘密武器,那就是拼音系统。也就是说,初级阅读者先学习拼音,掌握读和写的概念,为在五年级前能学会2000个汉字做好准备。可是,拼音的秘密究竟是什么呢?拼音其实只是一套小型的字母系统。初级阅读者通过这套小型的字母系统来增进对文字的敏锐度,了解阅读究竟是什么,为大脑准备好第一套阅读的迷你神经回路。

    这还不是汉字唯一让人惊讶的地方。作为世界上最复杂的书写系统之古代汉字最可爱的地方是,它包含了一套专由女性使用的汉字。和素音文字的特征不同,这套系统完全是基于发音的。这种特殊而又美好的传统文字被称为“女书”,即女性的文字。
    在邝丽莎(Lisa See)的小说《雪花秘扇》( Snow Flower and the Secret Fan)中,对女书有极为详细的描述。女书通常画在优雅精致的扇子上,或者绣在美丽的纺织品上。几个世纪以来,这套令人震惊的书写系统帮助少数女性忍受生活的无奈,使她们在裹小脚的文化梏中获得精神上的升华。最后一位能够读写女书的阳焕宜(Yang Huanyi),于 2004 年去世,享年 96岁。

    女书深刻地提醒了我们文字在现实生活中扮演的重要角色。女书同时也是世界上多元文字系统的典型例子,它还体现了文字从表意向表音发展的趋势。就像汉字一样,字母文字系统同样蕴藏着许多谜题疑问以及让人意想不到的惊喜。我们试着去发掘我们之中有多少人是字母文字的阅读者,也在积极寻找那些为了学习而失去的、那些一知半解却仍然难以把握的东西。苏格拉底宁可我们从未学过文字。也许正是这个原因使人类在 2500年后的今天,暂时停下来,深刻地反思自己。

    优雅之语:苏美尔皇室女子使用的一种语言,她们用这种苏美尔语变体创作了最早的情歌和摇篮曲。中国也曾有一套仅供女性使用的汉字“女书”,女子们以此巩固姐
    妹情谊。

    第三章 苏格拉底反对的“阅读”是否会妨害人的思考

    有一片土地人称克里特……四周围绕着色深如酒的海,还有滚滚白浪袭来,国土俊丽而丰饶,人口众多,惜传统如金,其中九十座比邻的城市号称彼此的语言可以融合。 ——荷马,《奥德赛》
    喜欢阅读的人,就像拥有两个人生。 ——米南德,公元前4世纪

    近代在书写史上最令人着迷的发现之一,发生在埃及的瓦迪耶尔霍尔(Wadi el-Hol)河谷,译名为带有噩兆之意的“恐怖之谷”。在这个人迹罕至、炙热难耐的高山地区,埃及考古学家约翰·达内尔(John Darnell)和德博拉·达内尔(Deborah Darnell)发掘出一段奇特的铭文,将人类发明字母文字的年代提前了数百年之久。这段铭文的特征具备一切“失落的环节”所要求的条件,将早期古埃及文字系统(Egyptian precursor system)与之后的乌加里特文字(Ugaritic)联系了起来,后者被研究者归类为字 索斯(Hyksos)王朝时代,由居住于当地的闪族(Semitic)抄写员和工人发明。这种文字充分利用了小型的古埃及辅音系统(意料之中),并结合了其后出现的乌加里特文字中的许多元素(意料之外)。

    在考察过出土于瓦迪耶尔霍尔的文字后,哈佛大学的学者弗兰克·穆尔克罗斯(Frank Moore-Cross)认为这套系统“显然是最古老的字母文字”他在其中找到了许多与较晚知道的字母相似或相同的符号,并推论出该系统“属于字母文字系统的传承和进化”。神秘的瓦迪耶尔霍尔文字非常重要,因为这涉及阅读脑的新调整,它使我们将注意力集中到两个多维度的问题上:第一,字母文字由什么组成?如何将这套文字系统与更早之前的音节文字及素音文字区分开来?而这些问题的答案又引出了第二个更大的问题:阅读字母的大脑是否需要特殊的智力资源?

    瓦迪耶尔霍尔的古老文字或许是语言学长久以来失落的环节,它连接了两种形式的文字:音节文字和字母文字。无奈可供研究的文字数量太少以致在分析上遭遇了很大的困难。稍晚出现的乌加里特文字更适合用来研究最早的字母文字,因为它既被归类为音节文字,也被归类为字母文字。

    乌加里特文字起源于富饶的乌加里特王国(今叙利亚北部海岸)。该地区贸易极为发达,海路的船只和陆路的马车熙熙攘攘,一派繁荣的景象在乌加里特地区,除自己的语言和文字之外,不同的民族至少还使用了10种语言、5种文字来进行沟通。乌加里特人遗留下的大量文献为我们提供了重要的线索,它们展现出对字母文字的关键性贡献。其中一项贡献是文字中符号数量的减少,以及由此带来的效率的增加。

    虽然阿卡德楔形文字是乌加里特文的发展基础,但阿卡德文字并不能解释乌加里特文字30个符号的书写系统,其中27个使用于宗教文献。在这套独特的类楔形文字中,独立的辅音符号与用来区别邻近元音的辅音符号结合了起来。根据语言学家威廉·丹尼尔(William Daniel)对文字的分类乌加里特文字可被看做辅音音位文字(abjad),这是一种特殊的字母文字但人们对于此种观点仍有争议。

    不论如何分类,乌加里特文字本身就是一项了不起的成就。从管理性文件到赞美诗、神话、诗篇,尤其是宗教文献,这种文字涵盖范围极为广泛。其中最引人注意的是,乌加里特文的口语和文字对希伯来文的《圣经》产生了深远的影响。包括哈佛大学圣经研究所的学者詹姆斯·库格尔在内的少数学者强调:《旧约》的故事题材、人物形象甚至经常采用抒情诗句的写法,与乌加里特文献有着诸多相似之处。

    另一项不可思议的发现是,乌加 里特人用到了今日语言学家所谓的“字 母教材”,即按照固定的顺序排列字母。语言学家还发现,乌加里特文字的字母排列顺序与原始迦南文相同,进而发 展为腓尼基文字化的辅音系统,最后演变为希腊字母文字,这 一观点已被大多数学者接受。

    乌加里特文字:乌加里特人按照固定的顺序排列字母。语言学家发现,乌加里特文字的字母排列顺序与原始迦南文相同,进而发展为腓尼基文字的辅音系统,最后演变为希腊字母文字。

    字母的排列顺序证明乌加里特文确实在早期字母文字的发展中起着过 渡作用,同时也意味着早期教育系统采用了将字母按固定顺序排列的标准 化教学模式。类似于苏美尔人的生词表教学法,这样的排列给初学者提供 了一个更容易记忆文字特征的认知技巧。但令人着迷的乌加里特文字却在公元前1200年入侵者毁灭乌加里特王国时消失了,这古老而美妙的书写系 统留下了许多未解之谜。我们不能确定它对《圣经》启示性的语言风格是 否有影响,也不知道它是不是人类第一种实用性的字母文字。

    托马斯·曼受《圣经》启发而编写的短篇故事 《摩西十诚》中,曾提及字母文字的创造。上帝要求摩西雕刻两块石碑,每块刻上5条戒律,且内容必须为众人所理解。但是摩西担心的是,他该以哪种文字写下戒律?摩西通晓古埃及文,他曾经看到来自地中海的人使用类似眼睛、盔甲、牛角与十字架的符号,也看过某些沙漠部落使用的音节文字。但这些文字都不能把上帝的10条戒律传达给每一个人。忽然间灵光一闪,摩西突然领悟到,他必须发明一种通用的文字系统, 让说不同语言的人都能阅读。因此他创造出每个发音皆有与之对应的符号的文字系统,使得不同民族的人都能以自己的语言来阅读,这就是字母文字的由来。使用这种新发明的文字,摩西在离瓦迪耶尔霍尔不远的 西奈山上刻下了上帝的旨意。

    虽然托马斯,曼既不是语言学家也不是考古学家,但是他描述出了字 母文字的革命性贡献,也指出了文字历史上第三次认知突破的精髓:文字 系统仅需要有限的符号,就能表示出一种语言中所有的发音。通过减少文 字系统符号的数量,瓦迪耶尔霍尔文字及乌加里特文字获得了认知效率的 优势,人们更加经济地使用丨己忆力,减少了读写文字的能量消耗。

    认知效率取决于大脑的第三项伟大的特征:大脑内部专门化区域的运 转速度非常高,几乎达到自动化的程度。认知自动化意味着人类智力发展 的惊人潜力。当我们能以自动化的速度识别符号时,就可以把较多的时间 分配到智力活动上,因此可以在读写的同时持续地发展智力。苏美尔人、 阿卡德人、埃及人花费数年才发展出高效的阅读脑,而认知自动化为人类 提供了更多思考的时间。

    然而,由这些早期的类字母文字系统所引发的问题也相当复杂:符号 的减少是否再造了具有独特结构的大脑皮质?阅读字母文字的大脑是否发 展出了特殊的认知能力?在初级阅读者的发展过程中,如果具备这样的潜 能,会产生什么样的影响?为了寻求解答,我们必须再次面对一个基本的 问题:什么是字母文字?

    什么是字母文字

    不同领域的学者们一直在为“真正的字母文字”所需具备的条件争 论不休。早在瓦迪耶尔霍尔文字发现之前,古典主义者埃里克·哈夫洛克就提出了字母文字的三个标准:
    @这套符号的数量是有限的〔理想数量介于20到30之间〕;
    @这套符号可表达这种语言中最小的发音单位;
    @这种语言中的每一^音位都有符号与之对应。

    因此古典主义者认为希腊字母文字之前的“类字母文字系统”皆不符 合标准。举例来说,闪族文字没有元音;希伯来文字中的元音符号也是在 千年后才出现的,因为日常生活中使用的语言,如阿拉姆语和 希腊语更强调直接描述元音。哈夫洛克等古典主义者认为,字母文字代表 了所有文字系统的最高水平。公元前750年发明出来的希腊字母才堪称第 一套符合所有标准的“真正的字母文字”。希腊文也是第一种使人类思想产生巨大飞跃的文字。

    然而,大多数语言学家及古语言学者却对此持反对意见:亚述研究专 家尤里,柯恩强调了哈夫洛克从未提及的一些论点。他认为字母文字对于 本国的居民来说,是一套能够以最少记号来明确表达口语的文字系统。在柯恩看来,字母文字能表示任何口语中能够用人耳分辨的最小发音单位即可,而不是表示较大的发音单位,如音节或是整个单词。根据这个观点, 早期的瓦迪耶尔霍尔文字及乌加里特文字都可以归为字母文字。

    至今,对于人类历史上“第一种字母文字”的讨论仍没有达成共识。 但是近年来,有关古代书写系统的新信息越来越多,或许能给21世纪的 阅读者提供一个不同的、更宏观的视野。回溯人类认知和语言能力的系统 性变化,以及早期众多不同文字系统逐步走向希腊字母文字的历史,我 们可以换一个崭新的视角:从荷马、赫西奥德以及奥德修斯的口语世界,一直到苏格拉底、柏拉图和亚里士多德的雅典 时代,字母文字不断地发展。这其中不仅仅是地点和时间的变化,人类的 记忆与大脑结构也随之变化。这就意味着,阅读脑下一个重要的调整即将 出现。

    克里特岛的神秘文字与希腊的黑暗时代

    传说在克里特岛上,每一块石头下都藏着一个神话,仅仅这件事本身 就令人着迷。这些石块是古希腊克里特文明的一 部分,有可能是画满精美壁画的宫殿所留下的遗迹,宫殿中有代表当时时 尚的空气调节系统以及早期排水系统。古希腊克里特人在4000年前便建造 了许多纪念碑,制造了许多美得不可思议的艺术品和首饰。除此之外,他 们还创造了一套文字系统,尽管现代人尽了最大的努力,但是这套系统至 今难以解读,让我们充满挫败感。

    1900年,英国考古学家亚瑟·埃文斯挖掘出古希腊克 里特文明的中心——荷马所描述的伟大城市克诺索斯。根据希 腊神话,此地为米诺斯王的皇宫,其中也居住着米诺斯王骁勇的“飞牛怪” ,以及掌控迷宫的牛头怪弥诺陶洛斯。

    在此次考古行动中,埃文斯发现了一些令人震惊的东西——7000块刻满神秘文字的黏土石碑,这些石碑成为他终生的研究对象。这些文字既不 像古埃及象形文字也不像阿卡德楔形文字,它具备了某些早期克里特文字 (线性文字A)的特征,但是看起来却和稍晚出现的希腊字母文字没有任何关系。埃文斯将其命名为线性文字B,由此开始了此后40年艰辛的破解 生涯。

    1936年,一位勤奋的学生迈克尔·文特里斯认识了埃文斯,很快地,他也痴迷于这种神秘的文字。1952年,文特里斯终于 解开了克诺索斯石碑文字(线性文字B)之谜。尽管这种文字困扰了学者们长达半世纪之久,但事实证明线性文字B—点也不神秘。简单来说,不过是那时的希腊口语未经整理的记录罢了。在受过古典主义训练的文特里斯的思想中,这样的发现过程类似于破解古代版的即时信息软件。文特里 斯从未想过要破解希腊口语,但是塔夫茨大学备受尊崇的古典主义者史蒂 夫,赫什认为,文特里斯破解线性文字B“革新了人类对早 期希腊历史的认识”。

    然而,除了知道线性文字3在公元前15世纪开始出现于克里特岛、希 腊本土与塞浦路斯等地,消失于公元前12世纪至公元前8世纪之外,我们 对这种文字仍然知之甚少。公元前12世纪至公元前8世纪被称做希腊的黑 暗时代,侵略者摧毁了许多存放典籍的希腊神殿,只有极少数的文献能被 保留下来。但是在这样的黑暗时代,口头文化却因此蓬勃发展,成就了公 元前8世纪记录这一切的荷马史诗。

    关于荷马的传说众说纷纭:有人认为他是传说中的那位盲眼的游吟诗 人(近期又出现了支持这一说法的新证据);有人称“他”其实是一群诗 人,甚至是那些仍未破解的口头文化的集体记忆。毋庸置疑的是,荷马史 诗《伊利亚特》和《奥德赛》中包含的广博知识及神话,对每一个希腊人 的成长都做出了卓越的贡献。根据希腊史学家修昔底德的描述,每位受过教育的希腊公民都必须背诵许多史诗的段落,其中包括各位希腊男神、女神、男英雄、女英雄之间令人感动的爱恨故事。

    当代此研究领域的巨匠沃尔特·翁认为,史诗具备许多 便于背诵的特点:节奏感强烈,韵律感丰富,反复性高,描绘栩栩如生; 以及《伊利亚特》和《奥德赛》中的经典主题——交织着爱、战争、美德 和人性的脆弱,这些共同构成了超越时空的传说。举例而言,学者米尔曼·帕里发现,游吟者世世代代都会记忆那些记录了大量事实

    与事件的“公式”。这些公式与希腊著名的记忆术都对 古希腊人背诵大量材料有很大的帮助。其中一项方法就是将需要背诵的内容 与容易唤醒记忆的具体空间联系起来,例如图书馆或神殿的内部构造等。

    古希腊人的记忆力有多好,当时的诗人西蒙尼德斯为我们提供了一个典型的例子:某次他和许多人一起欢庆的时候,突然 发生了地震,整座建筑瞬间崩塌,事后他能完全记得所有参加者的名字 以及他们被瓦砾掩埋的位置。

    究竟西蒙尼德斯与其他古希腊人是如何获得这样强大的记忆力的?在 最近的4万年间,人类的大脑构造变化不大,因此可推论出现代人与古希腊人的海马杏仁核、额叶及其他记忆功能区 差异无几。真正区别两者记忆能力的关键在于古希腊人对口头文化与记忆 的高度重视。正如苏格拉底一样,他在反复的对话中考核学生的理解程度。 受过教育的希腊人不断练习他们的修辞和朗诵技巧,把包含知识与力量的 精辟口才看做学习的最高目标。古希腊人的记忆力可能就是这样练成的。 这群拥有不可思议的记忆力的老祖先提醒我们现代人,记忆力并不像之前 想象的那样是一种天生的认知过程,而是深受文化的影响。

    在这样高度发达的口头文化中,古希腊字母文字一开始的发展并不顺 利。今天的某些学者认为,希腊字母文字的出现在很大程度上是因为古希 腊人需要保存荷马史诗的口头文化传统。这就意味着,字母文字只是扮演了一个口语附属品的角色。不管怎样,若是古希腊人得知2700多年后的今 天,专家学者们仍非常敬畏他们发明 字母表的成就,想必也会相当惊讶。 这份成就逐渐消磨了古希腊人引以为 傲的记忆力与口才,却创造了大脑记 忆与认知资源的新形态,直到今天仍 然对我们有很大的影响。

    希腊的黑暗时代:在这个时期,希腊的口头文学蓬勃发展,出现了《荷马史诗》这 样伟大的作品。同时,由于 希腊公民非常重视背诵经典,他们的记忆力也好得超出我们的想象。

    “借来的”希腊字母

    如果古希腊人被问到他们的字母文字从何而来,你可能会得到这样的 答案:“借来的。”古希腊人称希腊字母为“腓尼基字母”,这更加巩固了这 样一个观点:希腊字母的最直接来源是以辅音为基础的腓尼基文字。而腓 尼基文字又源自更早的迦南文字,腓尼基人甚至称他们自己为迦南人。希腊字母的alpha和beta来自于腓尼基字母的aleph和bet,这是另一个表明 希腊字母和緋尼基字母有渊源的重要证据。然而近年来,有些学者发现两者间的联系并不是那么直接。关于希腊字母文字的起源问题,在持不同观 点的学者之间已经引发了一场悄悄的战争。

    德国学者约瑟夫,特罗拍提出了第一个理论:字母文字起源的“标准理论”。该理论认为:希腊字母文字起 源于腓尼基文字,而腓尼基文字的前身则是乌加里特文字或原始迦南文字, 迦南文字又可以进一步追溯到古埃及文字的小型辅音系统。但是另一位来 自德国的专家卡尔一托马斯·佐齐希强烈主张另一 种解释:希腊字母并不是腓尼基文字的传承者,而是它的“姐妹”,这两种 书写系统共同的祖先是失传已久的闪族文字。佐齐希认为与腓尼基字母相 比,希腊字母文字的字母更接近古埃及的草体文字。从这一点出发,再加 上其他证据,他总结道:希腊字母文字并不是腓尼基文字的分支,两者地 位相同,都源自同一个更早的文字系统,佐齐希形容这一关系就像“姐妹” 一样。

    神话是另一种较为微妙的考古资料。为数不少的希腊神话皆提及,字母由底比斯的创立者卡德摩斯(Cadmus,希腊语中称为Kadmos)传入古希腊,他的名字在闪族语中的意思是“东方”。这或许暗示了一些古希腊人知道希腊字母起源于闪族文字。希腊神话中众神将 文字赐予凡人卡德摩斯,这个故事的血腥程度与格林童话有得一比。至 少其中一个版本的结局是这样的:卡德摩斯将带血的牙齿(象征字母) 撒进土壤之中,使其生长和传播。

    希腊字母的起源:目前关于希腊字母的起源问题仍无定论,有学者认为希腊人借用了腓尼基的辅音字母系统;另一些学者则认为希腊字母和腓尼基字母共同起源于更早的闪族文字。

    正如这些传说中大有深意的牙 齿,有许多关于希腊字母起源的戏剧 性传说仍未浮出水面。目前,教材的 说法比较接近“标准理论”的观点, 其内容主要是这样的:公元前800年 至公元前750年之间,古希腊人设计 出自己的字母,通过贸易往来传播至殖民地,如克里特岛、锡拉、埃尔明亚与罗得岛。为达到此目的,在字母设计过程中,古希腊人系统地分析了希腊语和腓尼 基语的每一个音位。然后,以腓尼基文字的辅音系统为基础,他们创造了 自己的元音符号。希腊人非常执著,他们使所有已知的发音与字母之间 有了完美的对应关系。在此基础之上,希腊字母成为多数印欧字母和文 字系统的祖先,其范围从伊特鲁里亚语—直延伸至土耳其语。希腊字母的发展历程给认知科学家与语言学家留下了一系列的谜团,本章的第二个大问题就是谜团之一。

    字母文字是否造就了不一样的大脑

    当许多人聚集起来时,便总会有人称自己比别人更“优等”,文字亦然。 20世纪的许多学者认为,字母文字代表了书写系统演变的巅峰,也因此得 出结论,字母文字的阅读者“想的不一样”。在人类的认知历史中,有3种 观点认为字母文字更优越,下面我们就来逐一检验:
    @在所有的文字系统中,字母文字的效率最高;
    @字母文字最能雌新思想的产生;
    @字母文字对语音的重视使阅读学习变得更简单。

    观点一:在所有的文字系统中,字母文字的效率最高

    效率是指一种书写系统能够被快速阅读、流畅理解的特性。由于字母 文字的组成比较“经济”(与九百多个楔形文字或上千个象形文字相比,大多数字母文字仅需要26个字母),因此能够达到极高的效率。符号数量的 减少使得快速识别所需要的时间和注意力也相对减少,因此只需要较少的 感官、记忆资源。
    然而,文字的历史是否最终必然走向字母文字?通过观察大脑的活动, 我们可以检验这一观点是否正确。图3-1展示了 3种不同文字的阅读脑, 我们可以看到,不同语言激活了大脑的不同区域。

    图3-1 三种阅读脑:英文、中文、日文假名

    中文阅读者一般需要记忆数千个汉字,才能迅速有效地进行阅读。在 图3—1所示现代中文阅读者的脑部影像中我们可以看到,阅读中文时,左 右脑的视觉专门区域都需要参与运作。中文阅读者能够流利地阅读,这证 明了大脑使用效率的提升并非字母文字阅读者的专利。另一个有力的证据是 在音节文字的阅读脑中也发现了类似的情形。综合起来我们可以推断,许多 文字系统引起的大脑的调整都可以提髙阅读效率。然而,这并不能说明不同 文字系统的大多数阅读者,达到流利阅读程度所耗费的努力是否一样。

    与早期素音文字的阅读者相比,字母文学阅读者的大脑中,某些区域 的激活程度要低得多。字母文字阅读者更依赖左脑后方的专门区域,这些 视觉专门区域只激活了少量的双脑区域。相反,中文阅读者(或苏美尔楔 形文字阅读者〉在阅读时,左右脑两侧许多专门化、自动化的处理区域都 会被激活,从而提高了阅读效率。

    20世纪30年代晚期,3位中国神经科学家发现了一个有趣的双语使用 者案例,再次证实了阅读不同文字时,左右脑区域活跃程度的差异:一位 原先能流利使用中英文的商人,在一次严重的后脑中风发作后失去了阅读 中文的能力,但令人惊讶的是,他仍然能够阅读英文。

    如今,这个案例早已不值得大惊小怪了,因为现在的脑成像图告诉我们, 在处理不同的书写系统时,大脑会采取不同的组织方式。日文阅读脑便 是一个相当有趣的例子,因为日文阅读者需要同时学习两种不同的文字系统:第一种是效率极高的音节(假名)系统,常用于记录外来语、城市名、 人名或新名词等;另一种是来自传统中文的表意文字——日文汉字。阅读 曰文汉字时,大脑使用的神经通路与阅读中文时相似;但是阅读假名时, 大脑则使用近于字母文字阅读脑的神经通路。

    换句话说,不仅是中文阅读脑与英文阅读脑之间有所差别,同一个大 脑在阅读不同的文字类型时,也会转换不同的神经通路。由于大脑能够神 奇地改变其神经联结模式,阅读者可以学会多种语言,且都有可能熟练掌握。此外,大脑的使用效率并非二元的非此即彼的模式。日本的研究者就发现,同样的词语由假名或者日文汉字书写,前者的阅读速度比后者快很多。因此,阅读效率应当被理解为一个连续体,而不是字母文字所特有的。

    如果我们能一直观察早期人类学习阅读时大脑神经路径的变化,将会 发现某些改变仅限于特定的语言系统,但某些区域则具有惊人的相似性。 匹兹堡大学的认知科学家以研究开创性的元分析方法进行 了 25项不同语言阅读脑的成像研究,发现了阅读各种书写系统时通过的3 个区域。

    第一个区域是枕叶-颞叶区,这一区域包括 了学者曾推测是读写功能“神经再利用”的区域,该区域使得我们无论阅 读哪种文字,都是熟练的视觉专门化专家;第二个区域是环绕布洛卡区的额叶区域,该区域使我们成为两个层面上的专家,一是识 别音位,二是了解词义;第三个区域则是颞叶上下方相连顶叶区的多功能区域。在这个区域我们处理语音及语义的各种元素, 这对于阅读字母文字或者音节文字来说格外重要。

    匹兹堡大学的认知科学家查尔斯·拍费提以及他的 同事把所有的脑成像图排列在一起,发现了一个被珀费提称为“通用阅读 系统”的区域。这一系统连接了额叶区、颞叶- 顶叶区以及枕叶区,换句话说,这些区域遍布四大脑叶。

    一瞥之下,这些脑成像图可以帮助我们得到两个关于文字进化的结 论:一、无论阅读何种文字,皆会对整个大脑的长度和宽度进行重塑;二、 不同的书写系统会以不同的形式促进大脑的使用效率,且有多种神经通路 可以帮助我们获得流畅的理解能力。许多因素都会影响一个书写系统的效 率及其激活的特殊神经通路,如文字中符号的数量、口语的发音结构、文 字的规律性、抽象程度、学习文字时的肌肉运动量等。总之,这些因素决 定了初级阅读者学习文字时的难易程度。正如阅读音节文字(假名〉效率 高于阅读表意文字(日文汉字)一样,儿童在学习希腊文或德文之类规则 性较高的字母文字时,效率也会高于学习规则性较低的字母文字,如英文。

    哲学家本杰明·沃夫及沃尔特·本杰明曾提出这样的问题:不同的语言是否会以特殊的方式影响阅读者的心智?本书中提到的关于字母文字优越性的三种观点都认为这个问题 的答案是肯定的。虽然本书因篇幅有限,关于字母文字或许阐述得不甚周 全,但简单来说,正如乔治敦大学的神经科学家吉尼维尔·伊登观察到的:不同的书写系统,在阅读脑的发展过程中,会创建不同 的脑神经网络。字母文字阅读脑并非创造了一个“更好的”大脑,只是创 造了一个与其他文字系统阅读脑“不同的”大脑,它以自己特有的方式来 影响大脑的阅读效率。

    具体来说,相较于苏美尔文字和古埃及文字的年轻阅读者,希腊文字 年轻阅读者的“不同的脑神经网络”发展得较早也更有效率。但这并不意 味着阅读脑的发展效率是字母文字的独有之物。当音节文字能够更好地表 示口语时,如日文或切诺基文,音节文字无论是在习得时间 还是在脑皮质使用上,都同样高效。不论是字母文字还是音节文字,减少 文字符号的数量,都有利于提高脑皮质的使用效率,进而促进学习效率的 提升,这成为文字历史进程上的重要转折点。脑皮质使用效率与学习效率 除了提升阅读速度之外是否还有其他意义?这就涉及字母文字优越性的第二个观点——促进新思想的产生。

    观点二:字母文字最能促进新思想的产生

    语言决定论:沃尔夫等人认为,语言决定了经验,有多少种语言就有多少种分析世 界的方法,不同的语言塑造了不同的大脑和心智。

    古典主义者埃里克,哈夫洛克 以及心理学家戴维,奥尔森提出了一个发人深省的假说, 他们认为希腊字母的效率,使思考内 容发生了无可比拟的变化。当字母文 字把人们从口述传统的禁锢中解放出来时,其效率便“促进了新思想的产生”。

    试着想象一下这种情形,生活在希腊口头文化中的受教育者,必须完全依靠个人的记忆以及元认知策略来保存集体的知识。但是使用这些令人印象深刻的策略需要付出一定的代价。有时精妙有时肤浅,这些策略依赖 于韵律、记忆、公式,并且会约束那些本可以说出的、记住的或者创造出的内容。

    希腊字母文字及其他文字系统打破了上述种种限制,拓展了许多人思 想与书写的界限。但这是字母文字特有的贡献吗?还是说所有的书写行为都能提升大多数人的思想境界?如果回顾一下比古希腊文字还要早约1000年的乌加里特文字系统,我们就会发现一个很好的例证,那就是乌加里特 的类字母文字系统一样能对文化起到很大的促进作用。如果我们仔细研究 哈夫洛克未曾研究过的更早时期的阿卡德文字,我们同样能发现,这套语素音节文字系统记载的思想同样闪烁着智慧的光芒(其中一些是基于口述传统的)。

    从宏观的角度来看文字的整体历史,人类智力的发展进步并不取决于 第一套字母文字的诞生或是某个字母表的完美迭代,而是取决于文字本身。如20世纪俄国心理学家列夫·维果茨基所言,在将能说 的口语与不能说出的思想转化为文字的过程中,不仅表达了思想,更改变 了思想。当人类学会以文字更加精确地表达思想时,抽象及创新的思维能 力也随之提升。

    实际上每个儿童在学习阅读他人思想及写下自己的思想过程中,都会 在文字与新想法之间建立起新的、之前完全没有想象过的联系。这种生成 性的联系在众多古代的早期文字中也有突出的表现,如古埃及人通过巴比 伦人的《悲观主义的对话》来指引来世,以及柏 拉图《对话录》中的深邃思想。但是在这一段文字发展史上,希腊字母文 字确实是文字和思想之间创造力的最佳例证。

    因此,从认知学的角度来看,字母文字并不是唯一对促进新思想有贡 献的书写系统,但是字母文字或音节文字这两种系统提高了阅读效率,使 新思想有可能被更多人提出,对那些处于早期发展阶段的初级阅读者而言 更是如此。由此揭开了人类智力发展史上革命性的篇章阅读能力的民主化。在此广阔的背景下,我们就不会讶异,为什么随着希腊字母的传播,历史 上会出现一个在写作、艺术、哲学、戏剧、科学等许多方面都诞生了众多深刻作品的时代。

    观点三:字母文字对语音的重视使阅读学习变得更简单

    古希腊的字母文字确实不同于先前的文字系统,因为其中融人了成熟的语言学观点。古希腊人发现,口语的语音是可以作为一个整体来分析的,而且可以系统地切分为单个的语音单位。这种理解力不是任何时代的任何 人都会有的。但希腊人是口语文化最大的支持者,由他们来发现语音的潜 在结构和组成,是再正常不过的了。
    想要理解希腊人在分析语音方面的成就有多么伟大,只需姜看一下美国国防部的一个故事。

    现代对语音知觉研究的历史开始于第二次世界大战期间,当时的信 息传播条件是非常具有挑战性的,因此人们必须全力研究语音的组成。整场战役的胜负可能就取决于一位军官是否能在炮声隆隆的战壕里听清 楚一条至关重要的消息。贝尔实验室的科学家尝试建造出一台可以分析 所谓的”语音讯号”并最终能够合成人类语音的机器,这项研究可是高 度的军事机密。这些科学家们利用“声谱仪”改装后的一种新仪器,来观察语音中许多重要组成部分的视觉化形式:某段信 号中语音频率的分布、某段信号的时间长度以及某个既定信号的声音振 幅。每种语言中每个发音的特征都是由这三个属性体现出来的。

    随着现代研究人员逐渐“看到”人类语音各方面的特征,极度错综复 杂的语音也渐渐得以视觉化。举个简单的例子,语音学家格雷丝·耶尼-科 姆昔安研究指出,我们说话的频率是每分钟说出 125至180个连续的词,而且每个词的头尾都没有听觉线索(试着想象一下,一种陌生的外国语言在你听来,只是一系列连续但无法理解的声音)。在我们使用的语言中,我们都知道如何根据字句的意义、语法角色、词法单位,以及音律、重音和语调来区别语音单位。然而,这些信息对于辨别第一个词的结束与第二个词的开始只能提供极为有限的帮助。因为音 位与音位之间相互重叠,前后影响,所有的音位都通过这种协同发音的方式粘到一起。耶尼-科姆昔安曾这样描述:对于语音知觉 研究者来说,一个极大的挑战就是确定单个语音是如何从复杂的语音信号中切分出来,并被恰当识别的。

    协同发音: 指发音时在声道中的两个 (或偶遇多个)不同的部位形成阻碍。这两个阻碍可能 同样是完全阻塞,或其中一 个阻碍程度较轻。

    希腊字母文字的发明者把这两个问题都解决了。首先,如本书中所述, 他们系统地分析了腓尼基语的每一个音位,以及这些音位与腓尼基字母之 间的对应关系。其后他们利用同样的方式分析了希腊语的语音。接着再以 腓尼基文的字母为基础,最终给希腊语中的每个音位都配上了一个希腊字 母,这样使得元音有了新的字母。举个例子,表示元音a的希腊字母alpha是由腓尼基文字中的aleph—词变化而来,该词的原义为“公牛”。

    在一次有趣的语言改革中,希腊人改变了一些符号以便匹配某些地区 方言的特征。因此在希腊的不同城市,希腊文字会出现细微差异。这种改 变文字中的字母以符合方言的做法,体现了语言的实用主义和语音方面的 精妙知识。就算是今天法兰西学院的学者也未必会有如此的胆识。只有在完全理解所有语音令人震惊的复杂程度之后,我们 才能真正体会并欣赏希腊人的成就。如果说苏美尔人是最早的语言学家, 梵语学者是最早的语法学家,那么希腊人就是最早的语音学家。

    希腊字母的发明者有意识地系统地分析语音,这项伟大的创举在今日 每个学习阅读的儿童的身上都会无意识地发生。古希腊的莘莘学子拥有一 套近乎完美的字母文字,里面包含着近乎完美的字母与音位的对应关系。这使得他们比苏美尔人、阿卡德人或古埃及人都能更快地获得流畅读写的 能力。有人甚至提出这样的问题:是不是正因为古希腊人能较早达到这样 的阅读流畅程度,其思想才得以蓬勃发展,并开创了古典希腊文化的盛世?

    这是个目前无法回答的问题,但具有讽刺意味的是,古希腊人数百年 来对于教授希腊文字都持有矛盾心态。在创造出革命性的字母文字之后不 久,古希腊国内主要的反响却是持续长达400年之久的抨击声。与古埃及 人和阿卡德人完全不同,受过教育的希腊人认为他们高度发达的口语文化 要比文字文化更优越。

    历史上的苏格拉底是口语文化最具雄辩力的捍卫者,和对文字文化最 强烈的质疑者。在理解古希腊人对字母文字发明的矛盾态度前,我们首先 必须要问:为什么世界上最杰出的思想家和新思维的提出者要反对使用字母文字?现在我们必须把焦点转向古希腊的口语文化与文字文化之间那场 没有硝烟的战争。柏拉图小心翼翼地记载下苏格拉底反对读写能力的那些 令人震惊的观点,这些论断告诉我们为什么今天的人们还应该听从古代哲 人们的建议。

    苏格拉底的抗议

    苏格拉底自己完全不动笔,若我们采信柏拉图《对话录》中所记录的原因,这是因为他相信书本会造成积极判断思考的短路, 造就出仅拥有“虚妄智慧”的学子。——玛莎·努斯鲍姆
    不消多说,是因为亚里士多德,希腊社会才从“头口传授” 转型为“习惯阅读”。——弗雷德里克,凯尼恩爵士

    他的生活和衣着都很简朴,他形容自己是“在那头尊贵而懒惰、名为 ‘希腊’的马背上尽情吸吮的虻”。有着睿智的眼神、凸出的额头与脱俗的 外表,他站在中庭,四周围绕着学生,他们激烈地讨论着抽象之美、知识 以及“审视生命”的深刻意义。他讲话时就像拥有一种神奇的力量,规劝着雅典的年轻人为追求“真理”而奉献终生。他就是我们都熟知的苏格拉 底,那个哲学家、老师,同时也是雅典市民。

    在编写早期阅读脑的历史时,我意外地发现苏格拉底在两千多年前提 出的对读写能力的质疑,说中了众多21世纪我们所关心话题的要害。我开 始理解苏格拉底为什么会担心文化传承由“口耳相传”转化为“诗书继世” 可能会造成危害,尤其是在年轻人身上,因为这正如我们担心自己的孩子 沉溺在数字化世界中一样。正如当时的古希腊人处于重要的转型期,如今 我们正处于从“文字文化”向“数字文化”和“视觉文化”转变的时代。

    我把公元前5世纪至公元前4世纪苏格拉底及柏拉图讲学的时代当做一个窗口,由此来观察与我们不同但差异不大的希腊文化如何在不确定的 情况下,从一种主要的传播方式向另一种新的方式转型。没有几位思想家 能像苏格拉底这只“牛虻”一样,帮助我们审视口语及书面语言在21世纪的地位。

    希腊三杰”对文字的态度:苏格拉底强烈反对人们未经指导就随意使用文字;柏拉图则用文字把老师的话忠实 地记录了下来;而年轻的亚 里士多德早就养成了阅读的 习惯。

    苏格拉底强烈地谴责对书面语言 不加控制的传播;而柏拉图则以正反 并立的矛盾态度,用文字记录下了这 段书写史上最重要的对话;至于年轻 的亚里士多德,则早就沉迷于“阅读 习惯”之中。这三人组成了世界上最 著名的学术王朝之一,苏格拉底是柏 拉图的导师,而柏拉图又是亚里士多 德的导师。不过大多数人不知道这一点:如果柏拉图的《对话录》对苏格拉底本人的历史记载无误,那么苏格拉底师承自狄奥提玛,她是一位来自曼尼提亚的女哲学家,向来以对话的方式教导学生。

    苏格拉底与其学生的对话因柏拉图的文字而永垂不朽,这些对话展示出了苏格拉底心中的理想,他认为所有的雅典市民都应为达成人类自我成长而努力。在这些对话中,所有的学生都意识到:只有通过斟酌过的语句及分析过的思想才能达到真正的美德,而唯有真正的美德才能塑造一个公 正的社会,才能使人民更接近他们的神。换句话说,美德,不论是个人的 还是社会的,都要基于对已有知识的彻底审视,并吸收内化其中的最高原则。

    这种高强度的学习模式迥异于大多数早期希腊的传统教学模式。在早 期的教学模式中,个体要接受集体的智慧,例如《荷马史诗》。而苏格拉底 则教导学生质疑言谈中的话语及概念,并了解其背后隐含的信念和观点。 苏格拉底要求学生质疑所有的事物,《荷马史诗》中的章节、政治议题,甚 至每一个字,直至原文的本质变得逐渐清晰。学习的一贯目标在于了解这 些文本如何反映,或为何不能反映出社会的深层价值,而对话中的问题与 答案则是教导的载体。

    苏格拉底的教学被认为是蛊惑青年,他因此受到审判。当时有500个雅典市民宣称他罪可当死,部分人则谴责他不信神。对于苏格拉底而言, 反对者的这些控诉仅仅是为了掩饰他们的政治动机,其一是惩罚他成立了 一个似乎会危害国家的友谊圈;其二是制止他质疑已被广泛接受的智慧。 苏格拉底一生致力于“以全部的智慧”审视我们的言语、行动和思想。虽 然他被毒死,但他的精神是不朽的。他的训诫没有随时间消逝,而是在我 们的耳边回响了数个世纪。以下是他接受审判时的一段著名的申辩:
    如果我告诉你们,对一个人来说,最好的事情就是每天探讨美德的 问题,每天审视自己和他人的内心;如果我说未经检视的生命是不值得 活的,你们可能更不相信我所说的。但是各位,我所说的话,确为事实,只是我很难让你们相信。

    当审视书面文字时,苏格拉底的立场颇令人意外:他深信书面文字会对社会造成严重危害。他的三个顾虑看似简单,实则不然。随着现在信息 获取方式的转变,我们的智力也在发生改变,我们有必要理解他反对的理 由,并推敲其中的本质意义。首先,苏格拉底认为口语和书面文字在个人 的智慧生活中扮演不同的角色;其次,他认为书面文字对智力的新要求较 不严谨,对于记忆以及知识的内化吸收具有毁灭性的影响;最后,苏格拉 底极力推崇口语在社会的道德和美德发展中扮演的独一无二的角色。在每 一条理由中,苏格拉底都认为口语优于书面文字,他的理由至今仍值得我们深刻关注。

    苏格拉底的反对理由之一:书写文字缺乏弹性

    文字的道理,在于通晓文字与热爱文字,这是一条通往事物 和认知本质的道路。 ——约翰·邓恩

    在电影《寒窗恋》中,哈佛法学院教授查尔斯·金斯弗尔德每天以质问的方式威吓他的年轻学生,要求他们无论说什么都要 用法律案例来证明自己的论述。在第一场教室场景里,金斯弗尔德宣布: “我们在这里采用苏格拉底的方法……回答,提问,回答。通过我提出的问 题,你将学会自我教育……有时你可能会认为你有最终的答案,但是我可以肯定那是错觉。因为在我的教室里,永远都会有另一个问题在等着你, 我们在这里做的是脑部外科手术,我提出的所有小问题都是在探索你的大脑。”

    金斯弗尔德这个虚构的形象不仅是现代苏格拉底教学法的体现,也是 一个运行良好的阅读脑的体现。现在许多教师和教授在教室里讲课时,仍然延用这样的方式,让学生在每一次讨论中分析彼此的假设和智力基础。 这场戏再现了雅典学院的提问场景。金斯弗尔德教授要求学生理解法律案例,如此才能以法律来维护社会正义。苏格拉底则希望他的学生知道字词、 事物及思想的本质,这样才能培养出美德。

    苏格拉底的教学方法以一种特别 的视角来看待语言,他认为语言是丰 富的、有生命力的,经过指导,可以 用来追求真善美。苏格拉底相信,不 同于“死气沉沉”的书面语言,口语,或者说“活的语言”代表着动态的实体,到处都充满着意义、声音、旋律、重音、语调和节奏,时刻准备着在审视和对话中被一层层揭开。相比之下,写下 的文字不会回应它的阅读者。文字的沉默破坏了苏格拉底视为教育核心的 互动式对话。

    苏格拉底教学法:“通过讨论而探索。”不给学生现成的答案,而是用反问和反驳的方法使学生在不知不觉中接受其思想。

    大概没有几位学者比列夫,维果茨基更认同苏格拉底对生动的演讲及对话的价值的重视。在维果茨基的经典著作《思维与语言》这本书里,他描述了文字与思想、老师与学生之间的启发性的关系。同苏格拉底一样,维果茨基认为在儿童发展字词与概念对应关系的 问题上,社会交往扮演着极其重要的角色。

    但是维果茨基和当代的语言学者并不认同苏格拉底关于书面文字的狭 隘观点。在维果茨基短暂的生涯中,他观察到写作可以引导每个人精炼思想,并从中发现新的思维方法。在这个意义上,写作过程的确可以在一个人的 身上再现苏格拉底同斐德罗的对话。换言之,写作之人需要 在其内心的对话中,找到更精确的文字来捕捉思想。每个试图表达出自己 思想的人都有这样的经验:在写作的过程中,慢慢地可以观察到我们思想 的改变。苏格拉底从不曾体验到文字所具有的对话能力,因为在他的年代, 写作还处于萌芽阶段。如果他能晚一个世代出生,可能会对文字宽容许多。

    数百个世代之后,我很好奇若是苏格拉底还在世,他会对21世纪人与人之间的交流方式有何反应。现在有许多不同的方式能达到他所谓的“回应”,如人们互相发短信,互发电子邮件,使用可以朗读、识别并翻译多国语言的机器。对苏格拉底和今天的我们来说,本质的问题在于:这些有 “回应”的交流方式是否能培养出真正具有批判性的思想。

    苏格拉底更关心的是书面文字会让人误以为它们就是真理。文字看似无法看透的特性掩盖了其虚幻的本质。因为它们“看起来似乎……具有智 慧”,所以它更接近事物的本质。苏格拉底担心这种假象会让人们在刚开始 了解一件事物之时,就误以为自己已经完全了解了它。这会导致骄傲自负、 一无所获。

    在这种担忧之下,现在数以千计的老师和父母,与苏格拉底和金斯弗 尔德教授具有同样的心境,他们看着年轻人每天花费很多时间在电脑前接收大量信息,却未必能理解所有信息。苏格拉底一定无法想象这种没有经 过深思熟虑的学习方式,对他而言,教育的真正目的是追寻真理、智慧和美德。

    苏格拉底反对理由之二:记忆力的毁坏

    在今天的危地马拉,玛雅人这样评价外来者的行为:他们做 笔记不是为了记住什么,而是为了可以不必记住。 ——尼古拉斯·奥斯特
    如果人们学会了写字,他们的灵魂会变得健忘。他们不再会 训练自己的记忆力,因为他们依赖文字来记住某件事,对事物的 记忆不再来自内心而是来自外在的记录。事实上,你所发现的不 是记忆的秘诀,而只是提醒的技巧。 ——斐德罗

    苏格拉底认为,文字与口语在教育、哲学、描述事实、精炼思想以及 追求美德方面的差距还不是最严重的,最严重的是,文字会损害个体的记 忆力,影响知识的内化吸收。苏格拉底清楚地知道读写能力通过降低对个人记忆的需求,将极大地提高文化的 集体记忆,但是他无法接受以降低个 体的记忆力作为代价。

    古希腊人非常崇拜记忆力:古希腊人认为记忆力是女神妮莫辛的化身。妮莫辛是所有女神中漂亮的一个,宙斯跟她待在一起的时间最长。在希腊人看来,将活力(宙斯)注入记忆(妮莫辛)就会产生创造力和智慧。现在我们用来称呼记忆法的专用术语”记忆术”,即由女神妮莫辛的名字演变而来。

    受教育的古希腊年轻公民们利用超强的记忆力,反思、检查了大量的 口传资料,不仅保存了社会现有的文 化记忆,同时也增进了个人及社会整 体的知识。苏格拉底与当年审判他的 法官是不同的,他重视整个教育系统, 而不担心“保存传统”的问题,他相 信唯有通过勤勉的记忆过程,个体的 知识才得以巩固;唯有通过与老师的 对话,个体的知识才得以进一步精炼。

    在这个语言、记忆与知识相互作用的观点下,苏格拉底认为文字非但 不是记忆的“秘诀”,反而是摧毁记忆的潜在威胁。文字在保存文化的集体 记忆上的优势是毋庸置疑的,但更为重要的是,个体记忆的保存,以及个体记忆在知识的反思与实践方面所起到的作用。

    如今大多数人把记忆力看做从幼儿园到大学整个教育过程中的必备条 件,但是与古希腊人相比,甚至和我们的祖辈相比,我们需要背诵的知识 越来越少。有一年我问我的学生们这样一个问题:有多少诗是你们可以 “铭记在心”的? 10年前的学生大约可以背诵5到10首,最近的学生只能 背诵1到3首。这个简单的调查不禁让我重新思考苏格拉底那些看起来过 时的论点。需要背诵的知识逐渐减少,诗歌,甚至是乘法口诀都不再需要 完整地记忆,这对我们的下一代意味着什么?当停电、电脑死机或火箭系 统出现故障时,我们的孩子又该怎么办?我们的孩子和古希腊的孩子在连 接语言与长期记忆的大脑神经通路方面,又会有什么区别?

    显然,我孩子的祖母,86岁高龄、犹太血统的洛蒂·诺姆肯定会令未来的孩子们感到震惊。在任何场合,她都能够给孙子们背出应景的里尔克三段诗、歌德的诗句,甚至是带点颜色的打 油诗,这给他们带来无穷的乐趣。有一次,我满怀羡慕之情地问她是如何 记忆这么多的诗篇以及笑话的。她回答得很简单:“我总是希望能拥有一些 即使进了集中营,别人也无法夺走的东西。”洛蒂的话促使我们停下来思索, 日常生活中“记忆”占有什么样的地位?随着世代更替,记忆又将蕴含什 么样的终极意义?

    关于苏格拉底对逐渐消失的个人记忆的态度,有一个生动的故事:有一次,他抓到学生斐德罗在背诵利西阿斯的演讲词时偷看小抄,这可能是人类有史以来的第一张小抄。为了帮助记忆,斐德罗把 演讲的内容记录下来,并且把小抄折叠起来放在长袍里。猜到了学生的所作所为,苏格拉底开始批评文字的本质及其在教育上造成的反面效果。

    苏格拉底将文字比喻成一幅美丽的绘画,仅仅是“逼真”而已,“如果 你问它任何问题,它依旧保持庄严的沉默。它看似充满智慧,能告诉你许 多事情,但当你因求知欲提问时,它也只能告诉你一成不变的答案,总是 如此”。

    不过,让苏格拉底生气的学生也不只是斐德罗一人而已,《普罗塔哥 拉》中记载,苏格拉底严厉抨击某些人的思维“像莎草纸般 僵硬,既不会回答问题,也不会提出问题”。

    苏格拉底反对理由之三:语言的失控

    其实,苏格拉底最深的恐惧并非阅读本身,而是知识泛滥及不求甚解 的学习态度,也就是“浅尝辄止”。不受教师指导的阅读常会于无形中导致 难以矫正的知I只失控。正如苏格拉底所言:“一旦某件事付诸文字、写成文 章,不论以何种形式传播,它不仅会流人理解的人手中,也会流入无知者 手中。文字并不会选择对象,也分不清对错。因此当它遭到误解或者滥用时,便再也无人替它阐释或辩驳了。”

    在苏格拉底随处可见的幽默与经验丰富的嘲讽之中,隐含着深深的忧 虑,那就是缺乏学校教育或社会教育的文字,将引发知识的危险性。在他 看来,阅读犹如新版的潘多拉之盒^文字一旦传播,对于什么该写、谁 来阅读以及阅读者该如何阐释文字,将会出现无人负责的情形。

    知识越多,疑问越多,这个规律贯穿着人类的历史一从“知识树上的果实”到现在的搜索引擎。苏格拉底的担忧在今天 显得更为严重,因为每个拥有电脑的人都可以随时随地以无人指导的方 式在电脑屏幕上迅速地获取各种知识。

    这个集“即时”、“虚拟现实”、“近乎无限”于一身的信息时代,是否 将给备受苏格拉底、柏拉图及亚里士多德推崇的知识与道德带来极大的威 胁?电脑屏幕上涌现的肤浅信息会淹没我们的好奇心还是引发我们对更深 刻的知识的求知欲?持续的部分注意力及多重任务的处理能力是否能引起 我们对文字、思想、现实及道德的深刻反思?文字、事物与概念的重要本 质能否通过32位操作系统来学习?被这些过于真实的影像惯坏了的孩子,仍能脚踏实地吗?当我们面对图片、电影或所谓的电视真人秀时,我们是 否更加自以为是地认为自己已经了解了真相?苏格拉底如果身处今日,在 电影上看到带有自己风格的对话场景,进入维基百科查到关于自己的条目, 他将做出何种反应?

    对于我们获取信息的方式,苏格拉底会持何种观点?这个问题每天都 困扰着我,尤其是当我看到两个儿子用网络完成功课,并告诉我他们“完 全懂了”的时候,我体会到很久以前苏格拉底对抗文字的那种无力感。我 不得不思考,目前的失控局面,正如苏格拉底在2500年前担心的那样。在 这种情况下,下一代将学到什么、如何学习、学到什么程度呢?不过这种 变化的好处也是显而易见的,柏拉图正是以文字保存了苏格拉底反对文字 的观点。

    综上所述,苏格拉底最终还是输了这场反对文字普及的战争,因为他 没有看到文字的全部能力,也因为新的沟通方式及知识形态的出现是无法逆转的。苏格拉底不能阻止阅读的普遍化,我们也不能拒绝接受日益先进 的科技。我们对知识的追求更加确定这是必要的。不过,思考苏格拉底的 反对理由和探索大脑与阅读的动态关系同样重要。其实,正如柏拉图所意 识到的,苏格拉底真正的敌人并不是文字。他所反对的是”丧失检视语言 的能力”,以及”没有使用我们所有的智慧”去使用语言。

    在这一点上,即使是在他那个时代,苏格拉底也不是孤独的。公元前 5世纪,世界另一端的印度梵文学者同样贬低文字,认为口语才是真正促 进智力与灵性成长的载体。这些学者质疑并批评任何对文字的依赖,认为 文字将破坏他们毕生的工作一对语言的分析研究。

    下一章将讨论“最年轻的人类群体”是如何发展语言及阅读能力的。 当我们帮助下一代或之后的子子孙孙学习文字与追求知识与道德时,我希 望苏格拉底的提醒犹在:别忘了检视它们对生活的真正意义。

    第二部分 阅读如何改变了我们的思维:阅读脑的发展

    在诸多人类凭借自己的精神、而非与生俱来 的天赋所创造的世界中,书本世界是最了不起的 一处。当孩子开始在他们的小黑板上涂写、识字 时,他们就此进入了一个错综复杂的人造世界,没 有人的生命长到足以完全了解、完美运用这世界运 行的法则。没有文字,没有书写,没有书本,就没 有历史,也就不可能产生人之所以为人的观念。 ——赫尔曼·黑塞

    第四章 阅读决定孩子拥有怎样的思维与人生

    当世上第一个婴孩发笑时,笑声碎裂成上千片,这就是童话 故事的开始。 ——《彼得·潘》
    在我看来,打从两岁起,每个孩子就都成了语言天才,不过 这个时期很短。到六岁时,这样的才能逐渐消退。到了八岁,完 全看不出来他们曾有过的文字创意,这是因为他们不再有这样的 需求。 ——科涅·丘可夫斯基

    我脑中常常浮现出一个画面:一个小孩坐在疼爱他的大人的腿上,全 神贯注地聆听着从大人口中流溢出的一字一句,讲述在此之前他想都不曾 想过的远方的精灵、神龙和巨人的故事。幼儿的大脑开始准备阅读的时间 比我们想象的要早很多,童年初期所接触的一切材料,每一个感知、概念 与文字几乎都会为他们所用。儿童会学习使用那些构成大脑常规阅读系统 的所有重要结构,接着将他们的所见所闻与书面语言结合起来,后者是人 类经过一次又一次的突破,在过去近两千年的历史中,才逐渐学会的。而 这一切都始于长辈温暖的臂弯和舒适的怀抱。

    数十年来的研究显示:一个儿童聆听父母或其他亲人阅读的时间长短, 与他数年后的阅读水平有很大关系。为什么?再仔细回想一下刚才所描述 的情景:一个孩子坐在妈妈的怀里,看着彩色图案,听着古老传说与新奇 故事,渐渐地认识书中构成字母的线条、构成文字的字母以及组成故事的 文字,而且故事可以一遍一遍地阅读。这种很久以前就存在的场景,蕴藏 着对儿童阅读发展至关重要的众多前提条件。

    儿童一开始究竟是如何学习阅读的?聆听充满魔法与精灵的传说?还 是错失听故事的机会?这两种情形代表着两种截然不同的童年:第一种童 年是大家所衷心期盼的,我们的每一个愿望在故事里都会成真;而第二种 情况,儿童没有听到多少传说与故事,没有学会多少语言,在还未开始阅 读之前,这些儿童就已远远地落后了。

    从听故事到读儿歌

    对婴儿的研究显示,亲人的抚摸对他们的发育起着至关重要的作用, 阅读发展的道理与此类似。只要婴儿可以坐在抚养者的腿上,就能将读书 和被宠爱的感觉联系起来。在《三个奶爸一个娃》这部搞笑而温馨的电影中,汤姆·塞莱克念赛狗的结果给婴儿听,大家都责骂他毒害孩子,但实际上他歪打正着。不论是赛狗的结果、股市行情还是陀思妥耶夫斯基,你都可以念给8个月大的婴儿听,如从此爱上文字。儿童有机会果是彩图版的效果就更好了。

    启蒙阅读:把婴儿抱在怀里给他读故事,他会把阅读过程和被爱的感觉联系起来,从此爱上文字。儿童有机会在故事里体验、揣摩各种情绪,学会理解别人,变得细腻敏感。

    试想一下,为什么许许多多的儿童夜复一夜地求着父母念玛格丽特-怀 斯.布朗的《月亮晚安》给他们听?是因为故事插画里有小夜灯、连指手套、一碗热乎乎的粥和摇椅这些属于童年世界的东西?是因为找到 每一页隐藏在不同地方的小老鼠而带来的成就感?还是因为朗读者随着一 页页的阅读而变得更加温柔的声音?这一切都为儿童长期的阅读学习过程 提供了理想的开始,因此有些研究者称此为自发的或早期的读写能力。聆 听文字与感受被爱之间的联系,为以后长远的学习历程奠定了最佳基础。 没有一个认知科学家或教育研究者可以设计出比这个更好的方案。

    重要的文字游戏

    这个过程的下一步涉及对图案的进一步理解。当儿童能够认出书本中的插图,就意味着这些书很快会被翻破。这个现象的背后暗藏着一套婴儿在6个月大就发育完备的视觉系统、一套离成熟还很遥远的注意力系统,以及每一天都在跳跃性成长的概念系统。随着时间一天天地过去,婴儿的 注意力与日俱增,对熟悉图案的理解与对新事物的好奇心也不断提升。

    儿童理解力与注意力的增长为阅读提供了最重要的前提条件——早期 的语言发展,领悟到小马、小狗这些东西都有一个名称。每个儿童的童年一 定都经历过与海伦,凯勒一样的认识水的过程,她通过触觉来感知水,第一 次明白了这种东西是有名字的,而这个名字是她通过符号语言与所有人交 流的一个标签。正如编撰《梨倶吠陀》的古代作家所认识的那 样:智者建立了命名系统,此乃语言的第一原则。

    对于成人来说,拋弃习以为常的概念,去理解“婴孩不知道这世上的 每样东西都有一个名字”,恐怕并不容易。渐渐地,儿童学会给他们世界里 最突显的部分安上标签,通常是从照顾他们的人开始。不过通常要到18个 月大时,他们才能意识到每样东西都有一个名称。虽然很少有人注意这一点,但是这可是个体生命前两年中了不起的突破之一。

    婴儿能发展出这种能力,有赖于大脑连接两个以上系统的能力,如此才得以判定新事物。婴儿顿悟的潜在基础是婴儿大脑能够联系、整合来自于视觉、认知与语言等几个系统的信息。当代儿童语言学家琼·伯科·格利森(Jean Berko Geason)强调:不论是亲人、小猫还是小象巴巴尔,婴儿每学会一个名字,大脑就会有一次重大的认知转变,开始将发展中的口语系统与逐渐成形的概念系统联系起来。

    儿童开始知道事物有名称后,书本内容的重要性便显现出来,因为这时儿童可以决定读什么。这里有一个重要的动态发展:对儿童说的话越多,他们对口语的了解也会越多;为儿童读的书越多,他们对周围语言的理解就越深,词汇量也会越大。

    童年初期这段将口语、认知与文字交织发展的时期是语言发展最为丰富的一个阶段。哈佛的认知学家苏珊·凯里(Susan Carey)研究儿童学习认字的过程,她戏称这是“快速制图”(zap mapping)。她发现大多数在2~5岁之间的儿童平均每天可以学会2~4个新字,在童年早期的这个阶段中可以学会上千个字。这正是俄国学者科涅·丘可夫斯基所谓的“语言天才”。

    语言天才来自于口语中的诸多元素,这些元素日后将融入文字的发展。随着语音能力的发展,儿童渐渐地能够听出、辨别、切分甚至操作文字中的音位,这些为他们明白文字是由声音组成的这一至关重要的事实铺平了道路。举个例子,cat一词是由三个不同的字音(/k//a//)组成的。语义的发展是指儿童词汇量的增加,这使得他们不断增进对文字意义的理解,是整个语言发展的主动力。语法的发展是指儿童理解并使用语言的语法关系,这为他们逐渐理解书本语言中复杂的句型打下基础。例如,这使得孩子懂得词语顺序会影响句子的意思:如“猫咬老鼠”和“老鼠咬猫”的意思是不同的。

    词法的发展则是理解与使用最小的意义单位(如cats中表示复数的s与walked 中表示时态的ed),这有助于理解故事与句子中不同词性与词法功能的词汇。最后是语用(pragmatics)的发展,儿童在自然的语境中认识并使用语言的社会文化“规则”,还可以帮助他们日后理解文字如何运用在书中描绘的无数种不同语境中。

    口语发展的每一个方面,对于儿童的语言发展–对词句的理解以及在口头和书面语言中遣词造句,都做出了必不可少的贡献。

    快乐、悲伤与友情

    然而,上述这些语言能力都不是凭空出现的。这一切都基于儿童大脑的发育和概念性知识的积累,其中贡献最大的是儿童的情绪以及理解他人的能力的发展。儿童成长的环境决定了这些因素不是得到培养就是受到忽视。

    举个现实中的例子:假设有个三岁半的小女孩,具备了所有应该具备的语言天赋,经常有人抱着她,读书给她听。她已经明白哪些图片是出现在哪些故事里的,也能感受到故事通过文字想要传达出的感情,有快乐有恐惧,也有悲伤。通过这些故事与书本,她开始学习一整套的情绪。对她而言,故事与书本都是体验这些情绪最安全的地方,因此对她阅读的发展有着潜在的贡献。儿童的情绪发展和阅读之间是相互促进的关系。儿童通过阅读来探索新的情绪这种体验也为接下来理解更复杂的内容做好准备。

    童年时光为人类提供了学习社交、情绪与认知技巧最重要的基础,即了解他人观点的能力。对3~5岁的儿童来说,理解他人的感觉并不是一件容易的事情。20世纪最著名的儿童心理学家让·皮亚杰(Jean Piaget)曾表示:这一时期的儿童是以自我为中心的,意思是由于这段时期智力发展的限制,他们是以自己为中心来理解整个世界的。正是他们日益增进的“理感受。

    阿诺德·洛贝尔(Arnold Lobel)的〈青蛙与蟾蜍》( Frog and Toad)童书系列中,便有一个这样的例子。在一则故事中,青蛙病得很重,蟾蜍想都不想便赶去营救他,这完全是出于同情心。蜍每天喂青蛙吃东西,照料他的起居,一直到他可以起床玩要为止。这个小故事提供给孩子们一个意义深远的范本,让他们知道了解别人的感受是什么意思,以及这如何成为互助的基础。
    在另一本以河马为主角的故事书中也传达了人类似的概念,教导孩子们何谓共情。在詹姆斯·马歇尔(James Marshall)著名的系列书籍《乔治和玛莎》( George and Martha)中,有两只可爱的河马,他们是最好的朋友。在每一个故事里,他们都教导孩子如何做一个很好的、能够理解他人的朋友。其中有这样一个故事:有一天乔治被绊倒了,摔掉了他的两颗大门牙。门牙对河马来说非常重要,在换成金牙以后,他都不敢给玛莎看,但是善解人意的玛莎对他说:“乔治你帅呆了,你的新牙齿让你看起来与众不同!”乔治立刻就高兴起来了。

    许多小朋友在听这些故事时,会体验到故事传达的想法与感受,这些故事起了很好的示范作用。也许我们永远都不会坐在热气球中飞翔,不会在赛跑中跑赢兔子,或是和王子跳舞直到午夜钟响,但在故事书里,我们可以体验到那样的感受。在这个过程中,我们不断走出自我,开始理解“他而这正是普鲁斯特所谓的沟通的中心在于文字。

    书本语言教会了我们什么?

    我们开始意识到我们和他人的感受之间是有联结的,同时也能区分这当中的界线。大约就是在这个时候,我们更强烈地意识到了另一件事:书本上充满了长短不一的文字,每次念到时声音都相同,就跟图片一样。这种智能上的发展只是整个大发现的一部分,我们渐渐认识到,书本拥有一套自己的语言。

    “书本语言”这一概念很少在儿童的脑海里出现,我们自己也很少会考虑到。事实上,这套语言具备一些独特且重要的概念特征和语言特征,它对认知的发展可谓贡献良多。首先,最明显的是,一些书中特有的词汇不会出现在口语中。回想一下那些你喜欢的传说故事,开头通常是这样的:
    很久很久以前,在一个黑黑的、孤独的、永远看不到阳光的地方,住着一个小精灵,由于皮肤从来没有受到阳光的洗礼,所以脸颊消瘦面色苍白。在山谷的另一边,阳光在每一朵鲜花上舞蹈,那里住着一位少女,有着玫瑰花瓣一样的脸颊,金色丝绸般的头发在阳光下闪闪发光。

    没有人会这样讲话,至少我从来没有遇到过这样的人。“很久很久以前这样的语句,或是“小精灵”这种字眼,也不会出现在一般对话中。这些都是书本语言,给孩子们提供线索,帮助他们猜测这是哪种类型的故事以及可能发生的事情。实际上,到了幼儿园阶段,多数5岁左右的儿童的主要词汇来源是书中的文字,他们那时储备了10000左右的词汇量。

    在这成千上万的单词当中,有相当大比例的词形是由已知的词根变化而来的。举个例子,认识sail这个词根的孩子,很快就能了解并学会这个词的各种相关形式:sails,sailed,sailing,sailboat等。

    不过词汇的增长并不是故事与书本语言唯一的贡献。同样重要的还有日常对话中并不经常出现的语法结构。“永远看不到阳光”和“由于(for皮肤从来没有受到阳光的洗礼”这样的句子结构一般仅见于书本中,理解这些需要更多的认知灵活度与猜测能力。5岁以下的孩子很少听到for出现在这样的句子里,for在这句话里是连接词,意思是“由于”,和then、because 这类表现因果关系的词一样。孩子可以从故事的前后文中学到for这样的用法。当孩子学会类似的词汇用法以后,他们的语法、语义、词法与语用各层面的能力都会得到全面的发展。

    阅读研究者维多利亚·珀赛尔-盖茨(Victoria Purcell-Gates)的研究更加凸显出给孩子讲故事的深刻意义。珀赛尔-盖茨比较了两组还不会阅读的5岁儿童,他们的家庭经济背景、父母教育程度都相似,只是一组在过去两年内经常有故事可以听(每周至少5次),我们暂且称之为“听故事组”;另一组则是没有故事听的对照组。珀赛尔-盖茨只要求这两组儿童做两件事情:首先讲一个关于自己的故事,比如过生日的情况,然后假装给洋娃娃念故事。
    结果两组的差异很明显:与对照组儿童相比,“听故事组”的儿童在讲自己的故事时,不仅会讲出许多书本上特有的文学语言,还会使用更为复杂的句型、更长的语段和从句。

    这样的差异之所以重要是因为:当儿童能使用自己的语言中一系列语义与语法后,理解他人的口语和文字的能力也会更强。这种语言和认知能力为孩子几年后的发展打下了独特的基础,当他们开始独立进行阅读时会掌握更多的理解技巧。
    最近,社会语言学家安妮·夏丽蒂(Anne Charity)与其同事霍丽斯·斯卡伯勒(Hollis Scarborough)的一项研究显示:语法知识对于母语是其他方言或外语的孩子来说更为重要。他们发现在说着一口非式美语(African-American English)而不是标准美语的儿童身上,儿童的语法知识和他们将来学习阅读的好坏关系密切。
    书本语言还可以帮助儿童理解什么是“修辞手法”,例如隐喻与明喻想想刚刚那个故事里的几个明喻:玫瑰花瓣一样的脸颊,金色丝绸般的头发。这样的段落是美好的,但是需要很高的认知能力才能理解。儿童必须将“脸颊”和“玫瑰色花瓣”进行比较,将“头发”和“金色丝绸”进行比较。在这一过程中,他们获得的不只是词汇技巧,还有类比这一复杂的认知技巧。类比的技能无比重要,足以作为每个年龄层主要智能发展的代表。
    在《好奇猴乔治》(Curious George)中可以找到一个关于早期类比技巧的有趣例子。《好奇猴乔治》讲述了一只猴子对气球有着无止境的好奇心,最终使他飞向天空,在那里“房子看起来都像是玩具屋,人就和洋娃娃一样”。这些简单的明喻实际上在帮助孩子进行复杂的认知练习,如比较大小、远近。20世纪40年代,作者汉斯·雷伊(HansRey)和妻子玛格丽特开始撰写这本书,他们那时可能不知道这本书对儿童的认知与语言发展有多大贡献。从他们写完的那天起,这本书已经持续影响了数百万学龄前儿童的发展。
    书本语言对提高儿童的理解力也有贡献。想想“很久很久以前”这句话,霎时它就能带你脱离现实,激起你对另一个世界的期待。“很久很久以前”是一个暗号,每个具有理解力的学龄前儿童都知道这意味着他们即将进入一个童话世界。这些故事在不同文化与不同时代中,仅有几百种不同类型,而且彼此出入不大。儿童最终将发展出理解许多不同类型的故事的能力,每一种都有其典型的情节、背景、年代与角色。这些认知信息日后会转变为“认知图式”(schemata)的一部分,认知图示是一种惯例化的思考方式,可以帮助我们更好地理解事件与加强记忆。这种规则以一种自我强化的螺旋方式来运行:故事越有条理,孩子就越容易记住,对孩子正在形成的认知图式贡献也越大;而孩子发展出的认知图式越多,也就越能读出其他故事的条理,儿童积累的知识越多,越有助于未来的阅读。

    认知图式:一种惯例化的思考方式,可以帮助我们更好地理解事件与加强记忆。

    能够预测即将发生的情节,对于儿童推理能力的发展(从旧有的信息演译或推测)有很大的帮助。拥有与巨人战斗、拯救美丽少女与破解巫婆咒语等经验的5岁儿童,能更容易地认出书中的生词(如“巨人”)。更重要的是,他们日后便能理解整段话的意思。
    明白了增加儿童与书本接触的机会,将有助于他们日后阅读能力的发展,我们可能会认为只要多读点故事给孩子听就算做足了学龄前的阅读准备,实则不然。根据一些研究者的研究,讲故事给儿童听只是帮助他们准备开始阅读的一部分,另一个有效的方法是教孩子辨认字母。

    字母的名称中蕴藏了什么 ?

    当儿童熟悉书本语言后,他们开始留意更多书本的细节。许多文化中的许多儿童都会通过在书本上移动手指来“阅读”,即便他指的地方一行字都没有。文字意识的一个方面开始于发现书本上的文字有一定的方向:比如英语和欧洲语言都是由左至右,希伯来语和阿拉伯语则是由右至左,还有一些亚洲的文字是由上而下。
    接下来是一系列更为复杂的技能。随着对某几行字的形状越来越熟悉有些儿童能够认出冰箱门上、浴缸上或是图画纸上的几个彩色字母。大脑能够识别出一个字母的视觉形状不是必然的成就,每个古代祖先阅读代币的大脑都是最好的证明。正如前几章提到的,这种能力来自于极为精密的视觉认知系统,还需要与相同的模式和特征有大量的视觉接触,这样才能让我们识别出猫头鹰、蜘蛛、箭头和蜡笔。
    在儿童能够自动辨认出字母之前,必须使用视觉皮质层专门化区域的些神经元来发现每个字母细微而独有的特征,就跟古代的代币阅读者一样。要想从视觉分析层面上理解儿童是如何学习阅读的,可以参考图4-1中的两个汉字。

    图4-1 两个汉字

    这两个汉字有许多和字母文字一样的视觉特征,如曲线、弧线和斜线等。注视这两个字几秒钟,然后立刻翻到本章的最后一页,看看那两个字是与这两个字一模一样,还是有些许不同?大多数成人觉得这个测试很简单,但对幼童的视觉系统来说,这需要复杂的知觉功能,儿童必须先知道西方字母系统中每个细微但明显的特征都能传达信息,还要明白字母是由这些特征组成的固定模式,而这些特征是不会改变的或至少改变不大。

    一个重要的早期概念技能——模式不变性(pattern invariance)有助于字母的学习。早在婴儿时期,儿童就知道他们看到的某些特征(如父母的脸)是不会改变的。这些都是不变的模式。本书第一章就曾讨论过,天赋的本能让我们能够在记忆中存储知觉模式式的表征,然后应用于新的学习情境。因此,当儿童尝试学习新事物时,从一开始就会寻找不变的模式,这有助于他们建立视觉表征和规则,最后他们可以认出冰箱上的任何字母,不论大小、颜色或字体如何。
    从认知发展的角度来看,儿童第一次努力给字母命名,不过就是“配对”学习而已。这就像训练鸽子,鸽子为了得到食物,必须学习将物体与标志进行配对。然而,不久后会出现更精细的字母认知学习,正如苏珊·凯里(Susan Carey)提出的那样:在儿童学习数字时,会出现“自展”(bootstrapping)的情形。举例来说,对许多儿童来说,数数到10与字母歌都提供了概念上的“占位符”(placeholder)表。渐渐地,列表上的每个数字与字母的名称都会与其书写体相对应,最后通过慢慢了解这些字母与数字的作用而完成整个命名过程。
    已故的神经心理学家哈罗德·古德格拉斯(Harold Goodglass )曾对我说他小时候一直以为背字母表中的L、M、N、0时发出的类似elemeno 的声音仅是一个很长的字母。这说明了儿童对字母的概念会随着他们语言和概念系统的发展,以及大脑中识别字母的视觉专门化区域的使用而发生改变。比较幼儿对事物与字母的命名可以发现,在拥有字母识别能力之前与之后,大脑中出现了令人意想不到的变化。简单来说,在识别、命名物体的过程中,儿童的大脑第一次将基础视觉区与语言处理区连接起来。之后在一个“神经再利用”的过程中,这些神经回路又被用到识别与命名字母的过程中,因此书写符号最终可以被快速地阅读。

    目前没有幼儿首次学习字母名称的脑成像研究,但是我们有成人给物体与字母命名时的脑成像图。在最初的几毫秒里,两个过程共同使用37区梭状回(fusiform gyrus)的大部分区域。针对此种现象,有种假设认为儿童早期字母命名的过程和识字前儿童的物体命名过程差不多。当儿童为每一个字母建立起独立的表征后,神经元工作组会逐渐专门化,所需要的区域也越来越小。从这个意义上来说,命名物体和稍后的命名字母代表着现代阅读脑的前两个阶段。
    德国哲学家沃尔特·本杰明(Walter Benjamin)认为命名是人类心智活动的精髓。虽然他从未看过任何一张脑部断层扫描影像,但就命名与阅读的早期发展来讲,他的看法再正确不过。学习在脑海中提取一个抽象的视觉字母符号,是一切阅读过程的基本前提,也是判断儿童能否开始阅读极为重要的指标。儿童在很小的时候具有了命名物体的能力,然后随着日益成长,掌握了命名字母的能力,我的团队经过多年的研究发现,这两种能力决定了孩子未来整个阅读脑神经回路的发展效率。

    不同文化中的儿童开始认识字母的年龄有很大差异。在某些文化或者国家中,比如奥地利,儿童要到一年级才开始学习字母。此外,同一种文化中的儿童也有个体差异。在美国,有些2岁大的孩子就认得出所有的字母,但有些到了5岁(尤其是男孩)还是很吃力。我曾听说有几个5到7岁的男孩,必须要轻声唱完整首字母歌,才能找到所要找的字母,确定其名称。

    应该鼓励父母在儿童看起来已经准备好时,帮助他们学习命名字母,同样的原则也适用于“阅读”环境文字(environmental print),即儿童周围环境中常见的文字与符号,如停止标志、一盒麦片以及兄弟姐妹和朋友的名字。许多还没有上幼儿园的孩子和大多数幼儿园的孩子都可以认出熟悉文字的形状,像是“出口”(Exit)与“牛奶”(milk),通常还有他们名字的前几个字母。有些孩子坚持“象牙色”(Ivory)这个词应该读做“肥皂”这并没有什么关系。

    环境文字:即儿童周围环境中常见的文字与符号,如停止标志、一盒麦片,以及兄弟姐妹和朋友的名字。

    在大多数文化中,每个儿童都先学会识别常见字母和文字,然后开始学习书写这些内容。这一阶段的阅读就像是儿童发展过程中的“表意文字阶段。儿童所理解的正是概念与书写符号之间的关系,这和我们阅读代币的老祖宗没什么两样。

    儿童应何时开始阅读

    一旦儿童开始学习认识字母,家长马上就想到是不是该早点让孩子学习阅读。父母认为早点让孩子读书,将来在学校就能多点优势。许多商家抓住家长的这点心理,为了招揽生意,打出了许多学前阅读系列产品的广告26年前,我在塔夫茨的同事儿童心理学家戴维·埃尔金德(David Elkind)针对这种社会风气写了一本发人深省的书——《揠苗助长的危机》(The Hurried Child)。在书中他提到父母要求孩子阅读的年龄越来越早。最近戴维决定推出这本书的新版,因为他认为这一情况比 20年前更为严重。
    在谈论这个问题时,必须要考虑一下我们的发育时间表。阅读依赖于大脑联结与整合各种信息来源的能力。具体来说,就是视觉、听觉、语言与概念区。整合能力则取决于每一个区域的成熟程度、区域间联合区的成熟程度,以及这些区域联结和整合的速度。而速度则仰赖于神经轴突的“髓鞘化”(myelination)程度。髓鞘是自然界最好的传导材料,由包裹在神经轴突四周的脂蛋白构成(见图4-2)。轴突上覆盖的鞘越多,神经传导的速度越快。大脑各个区域的髓鞘的发展程度是不同的,比如听觉神经在怀孕第6个月时就形成髓鞘,而视觉神经要到出生后6个月才有髓鞘形成。

    图4-2 神经元和髓鞘

    在5岁前,大脑各区的感觉与运动神经区域都有髓鞘形成,并且各自独立运作,但是大脑中快速整合视觉、语言与听觉信息的区域,如角回其髓鞘化过程要到5岁之后才陆续完成。行为神经学家诺曼·格施温德认为多数儿童角回区域的髓鞘一直要到学龄期才发育完成,大约是在5到7岁之间。格施温德还提出过一个假说:某些男孩大脑的重要皮质区的髓鞘形成更慢,这可能解释了为什么多数男孩的阅读能力发展比女孩要慢一些。我们的语言研究也支持这种说法,8岁以下的女孩在许多计时的识字测验中都比同龄男孩要快一些。

    格施温德对于儿童大脑发育到何时才该学习阅读的结论,得到了许多跨语言研究的大力支持。英国阅读研究者乌莎·戈斯瓦米(Usha Goswami)的研究团队进行的跨语言研究引起了我的注意。他们的研究涉及3种不同的欧洲语言,结论是欧洲5岁开始学习阅读的儿童,并不比7岁开始学习阅读的儿童优秀多少。从这项研究中我们可以知道,花许多功夫教导4至5岁的儿童读书识字,从生物学角度来看,其实是揠苗助长,在许多儿童身上可能会收到相反的效果。
    到底何时才准备好阅读,就跟人生一样,总是充满意外。在哈珀·李(Haper Lee)的《杀死一只知更鸟》( To Kill a Mocking bird)里,有个5岁之前就学习阅读的小女孩。故事中的斯考特(Scout),能读出所有视线中的东西,这种超常能力吓坏了她的新老师:
    我读字母表时,她的眉头皱了起来。在叫我大声读出《我的初级读本》( My First Reader)与《莫比尔注册报》( Mobile Register)上的股市摘要后,她发现我识字,反而以更厌恶的眼神看我。卡罗琳小姐让我和爸爸说不要教我了,这样会干扰我的阅读。我从来没有想要学阅读……阅读是突然降临到我身上的……我不记得是何时,在阿提克斯移动的手指上方的那些线条变成一个个文字,在我的记忆里,每个夜晚,我都坐在阿提克斯的腿上,注视着这些文字,听他念每一个字。我从不喜欢阅读,直到我开始害怕会错过他念的东西。就像没有人喜欢呼吸一样。

    作家佩内洛普·菲茨杰拉德(Penelope Fitzgerald)也有相同的经历。她回忆道:“我4岁就开始阅读:好像突然间就看懂了书本上的字母:也了解它们的意义。瞬间,我对它们充满了感激。”像斯考特和菲茨杰拉德这类孩子,当然应该立刻就让他们阅读。至于其他的孩子,有充分的生物学理由让我们相信阅读应该开始于对他们来说最合适的时候。

    教导儿童阅读的时间:一般来说,5 岁之后儿童的大脑才做好学习阅读的准备,男孩可能要晚一些。花工夫教导5岁以下的儿童读书识字,从生物学角度来看是揠苗助长,甚至会适得其反。

    髓鞘形成前期的注意事项

    即便不接受正式的阅读训练,儿童在5岁前还是会发生许多美好的事情,他们各方面都已经发展得很好,可以为未来的阅读做准备,并享受学前生活的乐趣。例如,聆听诗歌朗诵可以强化儿童的听力,最终便能切分语言中最小的发音单位音位。尝试写字反映了儿童对口语与文字之间的联系日益增长的了解。首先,模仿着写出或是画出字母,这时候的确比较接近“草体艺术”而不是概念。接着,这些字母开始反映出儿童逐渐演变的书写概念,尤其是他们名字中的字母。渐渐地,孩子们注意到其他字母开始想到单词是由字母组成的,正如他们的名字一样,这真是一种天才的行为。
    读写研究专家格伦达·毕赛克斯(Glenda Bissex)在她的《孩童读写学习》( Gnys at Work: A Child Learns to write and Read)一书中给出了一个儿童以字母名称来拼写单词的生动例子。当毕赛克斯正专心写作时,她5岁大的儿子给了她一张纸条,上面写着RUDF。意思就是“你了吗?”(Areyou deaf?
    毕赛克斯的儿子就跟许多同龄的孩子一样开始明白两件事情:首先写字可以让大人偶尔转移注意力;其次,字母可以对应到文字的发音。他还不明白的是,字母所代表的发音和字母本身的读法并不相同。R这个字母并不代表 are,而是表示英语音位 //。字母与发音之间的对应是一个微妙而困难的概念,通常连父母,或是一些未受过阅读基础训练的教师,都会忽略其中的复杂性。在绝大多数用来教导儿童阅读的初级教材中,这样的概念几乎不存在。
    四五岁的学龄前儿童可能分不清这其中微妙的差异,不过他们的确开始进入到学习符号表征的新阶段。他们知道文字代表着口语,口语中的词是由语音组成的,最重要的是字母能够传达出这些发音。对多数儿童来说这一认识会引导他们写出一大堆不符合英文拼写规则的东西,但实际上却极具规则性。
    卡罗尔·乔姆斯基和查尔斯·里德(CharlesRead)称这种写作方式为“拼写法创造”,想想刚才提到的毕赛克斯的儿子就可以明白。但是这其中的原则比表面上看起来的要复杂得多。举个例子,试着破译一下“YN’的意思。这样的拼法在儿童的书写中至少代表两个词,分别是wine(酒)与win(赢)。在这两个词中,儿童都以Y来表达/w/的发音。在写wine这个词时,字母Y代表其完整的发音,但在win中则以完整的N的发音来表达 /in/,这两个可能的拼音规则都很合理。
    以“拼写法创造”进行的早期书写,还有一项不寻常的特征,那就是发音并不符合一般所接受的拼音方式。因为英语发音本身变异性很高,再加上其他诸多因素的影响,如地方方言。以我居住的波士顿为例,许多单词中的t,比如 1ittle,小朋友都会写成d(LDL);波士顿南区那些精英人七家庭的儿童要比全国各地的其他儿童多用一年的时间才能学会在cart(车子)里面写上r。大多数波士顿地区的儿童则和已故的肯尼迪总统一样,在AMREKR的后面大方地加上一个r的音。
    关于儿童最初的书写,一个最让人感兴趣的问题是:他们自己是不是能读懂自己写下的文字。实际上,多数的儿童都很难读出他们自己写的东西,不过他们也不见得想要这么做。这样的书写动机以及利用“拼写法创造组成文字的个别字音,都表明了儿童早期书写对阅读的学习有着极大的帮助,对阅读过程有极佳的辅助作用。

    音位意识与聪明的鹅妈妈

    幼儿所感知的发音单位与我们是不同的,正如之前提到的古德格拉斯“elemeno”的例子,以及儿童书写的不符合拼音规则的文字。不过,儿童会渐渐地从意识到是什么组成了单词,进展到了解一个单词内的音节(如sun-ny),最终会明白单词还可以划分为单个独立的音位(如s,u,n)。
    在孩子学习写字与阅读的过程中,对一个单词的发音组成及音位的认识,是极为关键的一步,也是学习过程的必然结果。正如我们所了解的希腊人的光辉成就,他们对口语中的每个发音的元意识不会凭空出现在文字的历史中,也不会凭空出现在每个孩子身上。当阅读专家玛丽莲·亚当斯(Marilyn Adams)问孩子们 cat 这个词的第一个音是什么时,有个孩子马上回答“喵”。
    希腊字母发明者的一个创举是意识到了口语的各个语音。这是字母表最有力的贡献,也是用来衡量儿童未来阅读成就的最佳指标之一;另一个指标则是快速命名的能力。从RUDF这类创造性的拼法中,我们可以看出这类语言意识发展的一些线索,而这些活动也促进了语言能力的发展。

    除写字之外,还有其他同样具有娱乐性的方式也能帮助儿童音位意识的发展。鹅妈妈童谣便是一个极好的例子。“钟声滴响,老鼠爬上钟’(Hickory, dickory dock, a mouse ran up the clock!)这一句中的韵律,以及其他的韵律形式,如头韵、类韵、尾韵与重复等,都有助于语音意识的发展。头韵与韵律告诉儿童,单词会因头尾字母相同而有类似的发音。当你第一次听孩子们讲笑话时,马上会被他们古怪的韵律吓到。像小熊维尼,孩子们喜欢一遍遍地重复“配对”的声音(例如:Funny bunny, you’re funny bunny honey!),仅仅是因为他们喜欢这样的韵律。
    同样重要的是,开始区分成对语音的儿童也开始将文字划分成几个部分。四五岁的儿童正在学习辨别单词的首音(如Sam的S)与韵脚(如Sam的am ),识别单词内的每个音位有助于阅读的学习,但这个漫长而重要的过程才刚开始。

    英国几位研究者进行了一个著名且极有创造力的实验,凸显出上述原则的重要性。琳恩·布拉德利(Lynne Bradley)与彼得·布赖恩特(Peter Bryant)以4组学龄前儿童为研究对象,他们在各方面的条件都很类似,唯一不同的是有两组儿童在4岁时受过头韵和押韵的训练。在训练中,研究者要求这些儿童听一组要么词首相同(押头韵)要么词尾音节具有相同元音(押韵)的单词。然后教他们将有相同发音的词归为一组。此外,上述两组受训儿童中的一组还会在根据声音分类时看到相应的字母。几年后,布拉德利与布赖恩特为所有的儿童进行测试,结果令人惊讶:接受过简单韵律训练的儿童,其音位意识的发展更为完备在学习阅读时更容易。而其中表现得最好的是接受韵律训练并且看见相应字母的那组儿童。巩固丘可夫斯基所说的幼儿时期的“语言天赋”有许多方法,其中一项便是托儿所中的押韵儿歌。

    那么这时期的儿童究竟发生了什么事,才会产生这样不可思议的能力呢?在最基本的层面,儿童首先学会用最不费力的方式去观察分析单词。例如通过对头韵与韵脚的认识,学习给单词分类。接着,他们将这些发音与字母或者视觉图像联系起来。把这些技能结合起来,聆听鹅妈妈童谣中的旋律、节奏与韵律,有助于提升儿童的音位意识。语音发展方面的大量研究显示,着重于韵律、词首、词尾发音的系统性文字游戏、笑话与歌曲,对儿童准备学习阅读有明显的好处。教导儿童欣赏诗歌与音乐是一项重要的儿童游戏。

    有助于阅读学习的游戏活动:我们小时候都会念一些内容上毫无逻辑、发音却朗朗上口的儿歌。这些游戏活动可以使儿童逐渐感觉到音节的内部构造,对准备学习阅读的儿童有很大好处。

    苏格兰语言研究专家凯蒂·奥弗里(Katie Overy)以及我们实验室的凯瑟琳·莫里茨(Catherine Moritz)和萨沙·杨波斯基(Sasha Yampolsky),目前正在研究音乐训练的某些重点,例如韵律模式的生成,观察其是否有助于培养音位意识与其他阅读发展的必要条件。如这项研究假设被证实,他们希望根据节奏、旋律与韵律来编写-份早期的教学方案。

    幼儿园:各种必要条件的聚集之处

    当儿童五六岁的时候,所有学习阅读的必要条件都会集合出现在幼儿园中。优秀的老师不会白白浪费儿童先前学习到的任何概念、字母或文字,早期的学习成为儿童正式进人文字世界的引路灯。虽然多年来教师都在培育这些必要条件,但直到近几年,促进音位意识发展的系统性工具才得以推广。这些看似简单的方法可以帮助儿童学习各种困难的语言概念:
    @ 发音与符号之间存在着一一对应的关系;
    @ 每个字母都有自己的名称,此外还可以代表一个或一组语音;反过来每个语音可由一个或多个字母代表;
    @ 每个词语都可分解为音节与音位。

    阅读研究专家路易莎·库克·莫茨(Louisa Cook Moats)清楚地解释了将这些基本语言规则融合到阅读教学和早期阅读技巧发展中的重要性。儿童通常会经历一段痛苦的时间,才能搞清楚如何把发音组合成像cat或sat这样的单词。如果能明白s这个音可以一直持续,然后在后面加上韵(如at),对于教师和儿童来说,指导发音的合成就会容易很多。因此,若是要教导发音的合成,从 sat与rat开始会比从 cat开始容易很多。

    我们还可以为孩子做什么

    迄今为止,阅读的不断发展发生在一个特别的世界里,那里有兔妈妈和可爱的河马解释文字与书中的喜怒哀乐,有巨龙传达概念与句型,而托儿所里潦草书写的儿歌与字母教导语音与文字的意识,以及这两者之间的关联。在这样的世界里,儿童用5年时间来发展高度复杂的认知、语言知觉、社交与情感能力。这一切在丰富的互动环境中,会得到很好的发展。
    而那些不曾在家里听过鹅妈妈童谣,不曾被鼓励去读符号、去乱写乱画或没有玩过任何书本游戏的孩子又会怎样呢?在美国,从小听西班牙俄罗斯或越南版本故事的小孩又会怎样呢?那些不会像其他孩子一样学习或是对语言刺激毫无反应的孩子呢?越来越多有着不同情况的孩子出现在教室里,每个人都有不同的需求。他们在幼儿园里的境遇将会严重影响他们的一生。

    向“词汇贫乏”宣战

    家长们可能不知道,在没有读写经验的家庭里成长的孩子,在进入幼儿园与小学时,就要开始拼命追赶他们的同学的学习进度。这可不只是生词词汇量的问题。某单词连听都没有听过,对其概念当然一无所知。从来没见过某种句型,当然就不容易理解故事的情节。连同类的故事都没听过自然就难以进行推理或预测。从来没有体验过他人的感觉与文化传统,当然就不容易理解他们的感受。

    之前曾提到托德·里斯利(Todd Risley)与贝蒂·哈特(Betty Hart)在加利福尼亚一个社区的研究,显示出让人不寒而栗的结果。冷酷的现实揭露出几个严重的问题:有些出生在语言环境贫乏的环境中的儿童,到5岁时,和中产阶级的儿童相比,少听过的词约有3200万个。路易莎·库克·莫茨所谓的“词汇贫乏”,不仅是指儿童所听到的词汇。另一项针对 3岁儿童口语词汇量的研究发现,语言贫乏环境中的儿童所用的词语数量,与其他儿童相比,整整少了一半。
    还有一项针对家中的书籍(任何种类)数量的研究。对洛杉矶三个社区的调查结果发现,不同家庭的孩子能读到的书籍量有着惊人的差异。在大部分贫穷的社区里,家里完全没有书供孩子阅读;在中低收入的社区里每家平均有3本;而在富裕社区则有 200本左右。这样的统计数字,让我们悉心策划的有关蟾蜍、文字与句型的故事显得没有一点价值。书籍的严重匮乏将损害儿童在童年早期应该学习到的文字知识和对世界的认识。

    加拿大心理学家安德鲁·比米勒(Andrew Biemiller)研究了儿童词汇量水平过低的后果。他发现在幼儿园里,词汇量居班级人数后25%的儿童在词汇与阅读理解这两个方面都一直落后。等这些孩子到了六年级,他们在词汇和阅读理解这两个方面至少比同年级的孩子落后三个年级,而比起当年幼儿园前75%的儿童他们差得就更多了。换句话说,词汇发展与日后的阅读理解能力相互关联,幼儿园里发生的一切不只是不幸的社会现象更是他们后期词汇增长缓慢的恶兆。在语言发展中,没有哪项因素对儿童的影响是单一的。
    在幼儿园中,儿童已明显表现出来的许多因素是不能更改的,但语言发展并不在其中。一般的家居生活为孩子语言正常发展提供了充足的机会。在一项读写技巧早期发展的大型研究中,哈佛的教育家凯瑟琳·斯诺(Catherine Snow)与其同事发现:除了文字材料之外,对以后的阅读能力最主要的一项贡献因素其实只是“晚餐闲聊”时间的长短。简简单单的讲话、朗读与聆听就是早期语言发展的重点,但事实上,在许多家庭中(有些是经济状况不好,有些不是),家长在儿童5岁前做这三项基本工作的时间少之又少。

    “晚餐闲聊”时间:“晚餐闲聊”时间的长短是影响儿童以后的阅读能力的一项重要因素。简单的讲话、朗读与聆听是早期语言发展的重点。

    如同政策专家佩姬·麦卡德尔(Peggy McCardle)一再强调的那样,只需要一些很小的共同努力,儿童学龄前的日子就可以变得丰富多彩,充满语言发展的各种可能性。所有的儿童专家都可以帮助父母确定他们对于孩子潜能的贡献,帮助每个孩子拥有良好的学龄前生活。举例来说,他们为每个前龄前的孩子接种疫苗、在家访时和初为父母者谈一下“晚餐闲聊’时间的作用,以及向他们提供一系列有助于儿童发展的书籍。家庭访问机构如“健康人生”(Healthy Start)中的社会工作者与社会服务人员,可以提供此类宣传品和有关方面的训练。要做到在所有孩子进入幼儿园之前让他们都公平地享有这样的待遇,这并不是很难的事情。

    耳部感染对早期语言发展的影响

    让所有儿童得到公平待遇的最大阻碍来自幼儿的中耳炎,这是全美儿科诊所最常出现的病例。试想,对一个每天要学2到4个新词的幼儿来说没有诊断或是没有治疗他们的中耳炎,会有怎样的影响。孩子第一天听到的可能是 pur(咕噜声 ),第二天听到的可能是 pill(药丸 ),之后还会听到purple(紫色)。由于中耳炎的缘故,孩子接收到的听觉信息不一致,因此会认为 purple 这个词有三种不同的发音
    除了认知混淆以外,儿童学习新词的时间也会拉长。感染发生在何时发生过多少次,这些因素最终可能导致他们无法完整且良好地发展出一种语言系统中全部的语音表征。未经治疗的感染会影响到对阅读来说极为重要的两项必要条件,分别是词汇发展与音位意识。
    但是问题还不仅仅是这样,若是词汇发展与音位意识这两项对阅读至关重要的必要条件受到影响,后果也会波及阅读本身。在我指导的一项大型研究计划中,研究者要求父母在问卷中勾选儿童是否在学龄前得过中耳炎,并且尽可能地追踪有儿科病史的儿童。结果显示,经常患中耳炎的儿童日后遭遇阅读问题的可能性更大。
    这项研究最让人惊讶的地方不在于这个可预期的结果,而是有相当多的家长都会有“但是我每个孩子有大半的时间耳朵都在发炎”这样的解释换而言之,许多善意的家长从来都不明白中耳炎比起许多短暂的不适,会产生更严重的后果。未经治疗的中耳炎是一项对口语与文字发展的无形障碍,每个儿童工作者都必须了解这一点。就跟贫乏的语言环境一样,只要付出一致的努力,不需要花费很多工夫,中耳炎对于儿童来说就不会是个障碍。

    双语环境对阅读学习的可能影响

    在踏入学校的同时开始学习英语,这产生的影响是一项更为复杂的论题。学习两种或两种以上的语言,对儿童来说是非常吃力且复杂的认知投资目前这样的学龄儿童数量正在不断增加。一开始会有些损失,如语言之间转换的错误,但是如果(请注意,“如果”在这里很重要)孩子把每种语言都学好,那么肯定是利大于弊的。儿童大脑的可塑性比人生的其他阶段更强这使他们只需要少许的额外努力就能够精通两种以上的语言。青春期过后学生具备了许多学习语言的优势,但是对于学习说没有口音的语言,儿童的大脑在某些重要的方面显然更具优势。
    审视众多双语学习的相关议题,常常让人眼花缭乱,但是这其中有3项主要的原则。

    首先,以英语为第二语言的学习者,他们在母语中已经学过的词语与概念,比较容易在英语中使用。也就是说,家庭中丰富的语言环境,为所有的学习奠定了基本的认知与语言学基础,并不需要特别在学校的语言教学中给儿童提供这样的协助。儿童若是生活在语言较为贫乏的家庭环境中毫无疑问会缺少学习母语或第二语言的认知与语言学基础。
    第二项原则和第一项类似。在学习阅读英文时,语言发展的质量比学习阅读英语更为重要。上千名学龄儿童在进入学校时英语能力各有差异,在每个教室,针对每个学龄儿童,都必须系统性地教授英语“新的”音位和学校、书本中的新词汇。康妮·朱尔(Connie Juel)指出我们的教师常常会轻易忽略掉一个基本的语育问题:进入学校的儿童,英语对他们来说是新的,或者说他们没听过学校的标准美式英语。他们并不知道在阅读时正确的音位是什么样的。在过去的5年里,他们“学会忽略这些,只听他们自己的语言”。
    第三项原则与儿童何时开始讲双语有关,无论是口语还是书面语言的发展,接触双语环境都是越早越好。达特茅斯(Dartmouth)的神经科学家劳拉-安·贝蒂托(Laura-Ann Petitto)和他的同事发现,早期的双语环境(3岁之前)相比于单语环境,对于语言与阅读来说,具有更加积极的影响。他们进一步针对幼时接触双语环境的成人进行脑成像研究,结果也发现这些双语处理两种语言的大脑区域大幅重叠,就跟单语者所用的区域一样,对比之下,长大后才接触第二语言而成为双语者的成人大脑,则展现出两种不同的脑部运作模式,比较接近左右脑分别运作的模式。

    双语或多语学习:学习两种或两种以上的语言,对儿童来说非常吃力,但如果孩子能把每种语言都学好,肯定利大于弊。儿童大脑的可塑性非常强,他们只需要少许的努力就能够精通两种以上的语言。

    作为一个认知神经学家,我认为拥有一颗双语大脑是非常好的事。贝蒂托的研究还发现,早期接触双语环境的大脑,在语言灵活性与处理多重任务上,比单语大脑更具优势。我在许多社区进行教育工作,多半的家庭都不说英语,但是,我始终被学习两种语言所涉及的复杂且有争议的问题所困扰,这包括儿童的自尊、在某一社区文化中的归属关系、对自我能力的感知,以及这一切累积起来对阅读的影响。我知道我们必须帮助所有的儿童学习学校用语,这样他们才能在这个英语文化中发展自己的潜能,而这一切都要从成为一个阅读者开始
    对一些听西班牙语、日语或者俄语故事长大的儿童来说,学习阅读英语是一项尚可应对的挑战,并且听英语故事对他们将母语中熟悉的词语与概念对应到第二语言有极大的帮助。对那些小时候没有这样坐在大腿上听故事的小孩来说,上学还要同时学习第二语言,这一过程会对他们的认知、社交与文化产生重大的影响。他们都是这个国家的孩子,我们必须准备好照顾他们每一个人,从怀有一份教导每个儿童的热忱开始,随时增加自己关于各种语言阅读发展的知识。
    阅读不是自然而然就会发生的。在孩子出生后的2000个日子里,没有一个词语、概念或是社交习惯被浪费,这一切都在为这颗年轻的大脑做着准备工作,使大脑运用所有发展着的部分更好地进行阅读。儿童阅读的发展,以及他们的人生都是从这里开始的。

    第五章 阅读者的五大进阶(1)

    从未有人告诉我们,我们必须研究自己的生命
    研究生命,犹如学习自然史或音乐
    一切都应从最简单的练习开始
    慢慢地,由易到难
    不断练习
    直到拥有力度和准确度
    成为一个勇敢的人,
    才能跳跃到超越技巧的
    表现情感与意境的练习曲……

    ——阿德里安娜·里奇,《超然的练习曲》
    就某方面来说,整部人类书写的历史仿佛会在孩童身上重演一次。从早期摸索出字母文字的书写方式,一直到发现口语是由一定数量的字音所构成的事实,这两样智能上的壮举可说是不相上下。 ——珍妮·查尔

    普鲁斯特的名著《追忆似水年华》的灵感是由玛德琳蛋糕这种贝壳状的重油糕点的美味唤起的,这是20世纪文学史上一项近乎神话的典故。不管小说中叙事者的感觉记忆是否仅仅只是普鲁斯特自己幻想的再造,在现实生活中这样的事情真的会发生。人类大脑会以各种方式来存储和提取记忆,其中也有各种感官的作用。
    原本我想以寻找自己的“玛德琳蛋糕”来作为本章探讨学习阅读的开端,那会同样释放出我第一次真正在阅读的记忆。但是我办不到。我记不起第一次知道自己能阅读时的情形,不过我其他记忆中的一部分——一所只有两间教室的小学校,一共只有8个年级、两个老师,倒是唤起我许多过去的回忆片段,就像语言学家安东尼·巴希尔(Anthony Bashir)提出的阅读生命的“自然史”一样。阅读的自然史始于简单的运用、练习与正确性最后,如果幸运的话,在工具的帮助下,就能拥有“跳跃到超越技巧的表现情感与意境的练习曲”的能力。在我身上,这一切都发生在一个名叫埃尔多拉多(Eldorado)的小镇。

    开始阅读之旅

    学会阅读时,你将重生……从此以后再也不会感到这么寂寞。 ——鲁默·高登
    我在书中旅游,不只探索其他世界,也进入我自己的世界。我明白我是谁,我想要成为谁,我的想望以及我胆敢对我的世界与自己所怀抱的梦想。但也有很多时间我觉得自己身处在另一个不为人知的空间,时而清醒,时而沉睡。然后有书,一个与此乎行的宇宙,在那里什么都有可能发生,通常也是如此。在那个宇宙中,我也许是新人,但绝对不是个陌生人。对我而言,那是实实在在的世界,我完美的岛屿。——安娜·昆德伦
    是因为父亲的希望,我才能上学的。这可非比寻常,因为女孩通常不会去上学的……教育对像我这样的人来说能有什么作用?我只能说出我不曾拥有的,只能以我所有的来思量,然后在这些差异中明白自己的不幸。但是啊但是!正是因为这样,我才第一次见到,在往返家园的道路后面,还有另一个世界。——牙买加·金凯德

    意大利瓦尔道尔契亚(Val D’Orcia)的侯爵夫人艾丽斯·奥里戈(Iris Origo)是位历史学家,常常引用鲁默·高登(Rumer Godden)的话来描述她20世纪初在意大利佛罗伦萨学习阅读的经历。安娜·昆德伦(Anna Quindlen)则生动地描述了20世纪中期在费城学习阅读的场景。牙买加·金凯德(Jamaica Kincaid)在她那本《我母亲的自传》( The Autobiograph of My Mother)中捕捉到在加勒比海的安提瓜岛(Antigua)那里,童年的阅读对女孩子意味着什么。确实,金凯德小时候表现出来的阅读天分让老师相信她是个天才。
    在这些女作家之间虽然有着时空和文化的差异,但有一个共同点将她们和每一个爱书的人联系起来。这个共同点也发生在我的经历中,当我在伊利诺伊州的埃尔多拉多学习阅读的时候,我在书中发现了另一个平行于这个世界的宇宙,就是奥里戈所谓的“再也不会感到这么寂寞”的世界昆德伦的“完美的岛屿”,并且认识到金凯德“往返家园的道路后面,还有另一个世界”。
    用“拼写闹刷”(orthographic irony)来形容我家乡小镇名称的由来再恰当不过。在19世纪中期,埃尔德(Elder)和里德(Reeder)两人从城市里请来一位画家,想要为他们在的伊利诺伊州南方共同创立的这个小镇“艾尔德里德”( Elderreeder)画一个标志,用来欢迎每一个路过的人。自以为受过良好教育的画家自作聪明地更正了镇名,他认为这是政府人员的拼写错误。最后他将欢迎标志改成了“埃尔多拉多”(Eldorado)。也许是因为这个标志做得很好看,也许是因为没有钱再买一个,又或许是因为这个名称对小镇的人们来说,唤起了一些先前不可言表的梦想;不管怎样,这个名字就这样定了下来。一个世纪之后,我就在这个小镇长大。

    埃尔多拉多有两间学校供儿童念书。我就读的是一个很小的叫做圣玛丽的学校,教室看起来像是19世纪木板画上的建筑:深红色砖块搭建的两间大房子,每间有四排桌椅容纳4个年级的学生。一年级的学生坐在最左边靠窗的那排,每升一年级,就往门口移动一排。
    在靠窗坐的一年级的日子里,我开始大量地阅读,读得多说得少,这真的是很好的习惯。一开始我学习第二排的孩子们的功课,然后是第三排的。我不记得自己是什么时候把四年级的功课也读完了,应该是我坐在第二排的那段时间。在这样的环境中,教室里满满地挤着40个孩子,还有我这样的学生,除了圣人之外,每个人的耐心都会被消耗殆尽。但不论从哪个角度看,在那间小学校的每个老师,从罗丝·玛格丽特(Rose Margaret)修女、撒莱西亚(Salesia)修女到后来的伊格内修斯(Ignatius)修女,她们每个人都是圣人。
    在我坐第二排的时候,发生了一件重要的事情。我的老师对我父母说了些什么,突然之间房间后面出现了许多书,原本半空的书架神奇般地出现了许多书:童话故事、科学知识、英雄传奇,当然还有圣徒的传记当我上完四年级时,我弟弟乔伊坐在第三排,妹妹凯伦坐在第一排,另一个弟弟格雷格则在走廊上等着,我已经读完了每一本书,甚至还想要读更多。
    在这个过程中,我改变了。不管在这个世界里我看起来有多渺小,我每天都有文字与图画中的巨人陪伴,伐木巨人保罗·班扬(Paul Bunyan)顽童汤姆·索耶(Tom Sawyer)、精灵小矮人(Rumpelstiltskin)与阿维拉的圣女特蕾莎(Teresa of Avila),这些人物对我来说就跟华纳街上的隔壁邻居一样真实。我开始沉溺于这两个平行的世界中,身处其中的任何一个我都不觉得奇怪或者孤单。这样的经验让我受益匪浅,尤其是对我以后的人生而言。在那段日子里,我出奇安静地坐在那间小教室里,每一天我都经历着加冕、结婚、成为圣徒的生活。
    关于这段日子的其他鲜明记忆,大都围绕着撒莱西亚修女,她努力教导那些似乎学不会阅读的儿童。我看着她耐心地倾听这些儿童在上课时痛苦地尝试,然后放学后把他们留下来,一个个辅导。我最要好的朋友吉姆也是被留校辅导的一个。当撒莱西亚修女尽力教导他的时候,突然之间他不再是我所认识的那个男孩子了,那个大家的领头者,那个无所不知的男孩,就像是马克·吐温笔下汤姆·索亚与哈克贝利·费恩混合版的男孩子竟然不见了。这个版本的吉姆看起来很柔弱,结结巴巴地发出撒莱西亚修女要他念出的字母的读音。看着这个从不退缩的男孩子变得对自己这么没有信心,我的整个世界都颠倒了。至少有一年的时间他们在放学后静静地坚持练习。撒莱西亚修女告诉吉姆的家人,有些聪明的孩子,像吉姆这样的在阅读学习上会需要特别的帮助。
    撒莱西亚修女那时只说了这些,但是我明白了两件事情。首先,我看到撒莱西亚修女与吉姆妈妈的决心和毅力,他们相信吉姆的潜力,甚至是在他自己都想放弃的时候。我心想他们是在进行一件非常特别的事情。其次,当吉姆升到第三排的时候,我留意到我的老朋友又回来了,就跟从前一样,狂妄、大胆、难以管教。那个时候,我觉得撒莱西亚修女与吉姆母亲正做着奇迹一般的事情。

    阅读阶段:学习阅读有许多发展阶段,这些阶段聚集起来,使儿童能够运用文字进入复杂的世界。

    学习阅读就像是一个神奇的故事充满了许多发展阶段,这些阶段聚集起来,使儿童能够运用文字进人复杂的世界。苏格拉底与古印度学者都担心,阅读文字与倾听和口头叙说相比,阻碍了我们了解文字的意义、字音、功能与可能性等许多层面。事实上,在早期阅读的探索阶段,当这些层面聚集起来,共同形成脑部新的阅读神经回路之时,古老的未专门化的结构对每一个层面都有所贡献。因此,研究早期阅读的发展,使得我们能够了解人类取得这项成就的基础。这一切开始于给5岁儿童做的各项相关准备,一直延伸到不同的但是可以预测的阅读发展模式(见表 5-1)。

    总之,以上所述的所有发展会加速儿童早期认识词语组成的能力,强化理解与拼写的熟练程度,促进儿童对已知与未知文字的理解力。儿童所接触到的文字越多,对语言的理解,无论是字面的还是隐喻的,就越好。就此看来,与苏格拉底所担心的相反,儿童更像是苏美尔人。
    哈佛的阅读研究学者珍妮·查尔(Jeanne Chall)表示,学习阅读是一个循序渐进的过程,从初级阅读者一路发展到专家级阅读者,我们可以采取“研究自然史或是音乐的方式”来研究。我个人真的很喜欢将阅读各元素之间互相交织的关系想象成音乐:我们最终所听到的是许多演奏家的整体表现,在当中很难区别出个人的演奏,他们早已融为一体。早期的阅读阶段,是我们一生之中唯一可以觉察出各元素的时候,让我们这些早已忘记往事的人,试着回想一下当初是如何读出每一个字的。

    阅读的发展

    我坐在婴儿床上,假装自己在读书。我的眼睛跟随着每一个黑色的符号,一个都没有跳过,大声地念每一个故事给自己听小心翼翼地发出所有的音节。家人非常惊讶地看着这样的我,总之是非常激动,他们决定是时候教我认识字母表了。我就像初学者那样兴奋,自己偷偷地学习。我带着早已烂熟于心的埃克多·马洛(Hector Malot)的《苦儿流浪记》(No Family)爬上婴儿床,半是预习,半是破解其中文字的意思。我一页一页地读着,翻到最后一页时,我知道怎么读书了。整个人欣喜若狂。 ——萨特

    在回忆录《文字生涯》( The Words)中,萨特详细叙述了第一次阅读的情景,以及伴随这段经历的狂喜。虽然层层的记忆会有疏漏,但是萨特的描述与无数个儿童的经验相似,一半靠记忆,一半靠解读地看一本自己喜爱的书,然后突然之间(或者在他们看来如此)就学会阅读了。事实上萨特不断地积累各种知识来源,全面的,片面的,直到“突然之间”跨过了阅读的门槛,他破解了文字的秘密语言。接下来本章将叙述我们成为阅读者这一渐进、动态的变化过程,从像萨特一样兴奋地破解密码,一直到不知不觉地转变成一个完全自动阅读的专家级阅读者。为了组织好这一过程,在本章与第6章我准备将阅读者分成5种类型:
    @ 萌芽级阅读者
    @ 初级阅读者
    @ 解码级阅读者
    @ 流畅级阅读者
    @ 专家级阅读者

    每一种类型代表了阅读发展中,我们穿越未知的动态变化。然而,并不是所有的儿童都经历了同样的过程。著名儿科医生梅尔·莱文(Mel Levine)曾提及“不同类型的心灵”涉及不同儿童学习的不同方式,类似地也有“不同类型的阅读者”,一些人遵循着不同的顺序,在阅读发展过程中开始和停止阅读都和我在此描述的不同。稍后我们将解释这一原因。

    萌芽级阅读者

    在人的一生中,会有两次知道自己受到每个人认可的时刻第一次是学会走路时,另一次是学会识字时。 ——佩内洛普·菲茨杰拉德

    正如第4章所描述的,萌芽级阅读者坐在“宠爱者的大腿上”,在生命最初的5年里,全面地尝试学习各种语音、词语、概念、图像、故事,接触文字、书面材料或是一般对话。这个阶段最重要的一点是,阅读不会平白无故地出现在一个人身上。萌芽期阅读来自于长年的感知、不断增加的概念与社交发展,并且持续地接触到口语与书面语言。

    初级阅读者

    我可以看见他们彬彬有礼地站在宽宽的书页上这书页,我还在学习如何翻动它穿着蓝色工作服的珍与棕褐色头发的迪克正在玩球,或是探索整个后院的世界,完全没察觉到他们自己就是开始幻想的儿童的第一对主角。 ——比利·柯林斯,《第一位读者》

    很少有比看着儿童学会识字,阅读书本上的文字并且理解一个故事更窝心、更愉快的时刻。不久前,我和一位名叫阿梅莉亚(Amelia)的小女孩一起坐在地板上,她十分害羞,就像森林里的小动物一样。她还不会读书也很少说话,更不可能在我这样的访客面前大声念出任何句子。
    但是那天注定有事情发生。阿梅莉亚跟往常一样,盯着“猫猫坐在毛毯上”( The cat sat on the mat.)这个短短的句子很长一段时间。她看起来像是一头吓坏了的小鹿。然后,缓慢但很完美地,她口齿清晰地念出了这些字她抬头望望我的眼睛,眉毛开始上扬。然后她开始念出下一个短句,接着再一句,每念完一句都会看看我,寻求确认。念完整个故事,她笑得合不拢嘴,也不再看我以寻求支持。她可以阅读了,她自己明白了这一点。阿梅莉亚的家里没什么书让她阅读,这往后的路恐怕很漫长,但是至少她开始阅读了。
    不论阅读的必要条件准备得如何,成长的文字环境如何,老师的教学方法是什么,对阿梅莉亚以及所有的初级阅读者来说,这时候的任务就是破解文字,并且了解其含义。要做到这一点,每个孩子都必须弄清楚几千年来我们的祖先所发现的拼音规则,以及这一路上林林总总的其他发现。

    类似地,学习每一件事情——从骑自行车,到理解死亡这样的概念儿童会不断地积累知识,从只有片面的概念,到建立起完整的概念。在初期的努力中,初级阅读者仅能理解部分字母原则。我最喜欢引用马萨诸塞州剑桥的阅读专家梅丽尔·皮查(Meryl Pischa)的一句话,每年她都会问那些莘莘学子同样的问题:为何万事开头难?
    总的来说,不论是在幼儿园,还是读一年级,大多数儿童开始阅读时脑中已有一些基本概念,即书本上的文字是带有某种意义的。他们中的绝大多数都见过父母、保姆以及老师读书。然而多数人都还没有一个完整的概念,不懂书中的文字是由我们语言中的发音所构成的,而发音是以字母来表示的,每个字母代表一个或两个特定的发音。
    初级阅读者的一大发现和阿梅莉亚逐渐成形的概念一样,即字母和语言中的发音互相联系。这是拼写原则的要义,也是阿梅莉亚往后阅读发展的基础。她的下一步将是学习解读文字中所有的字母音位对应原则,这有一小部分是她自己的发现,但是绝大多数来自于努力。这两项都仰赖3种解码能力:语言学习的语音、拼写与语义。

    初级阅读者语音的发展

    日常的牙牙学语,尝试破解文字中的字母时发生的逐日的、缓慢的改变,有助于培养儿童的音位意识,这是语音发展中一个相当重要的方面。渐渐地,儿童开始从言谈中听出或长或短的声音单位,像是短语中的几个词(kitty+cat),一个词中的几个音节(kittty),词语与音节中的音位(/k/+/a/+/t/)。这一切反过来将进一步促进阅读的发展。

    早期音位意识的重要性:在早期学习阶段中,儿童的音位意识是将来在一二年级学习理解文字的关键。在一年级无法顺利解码的儿童,大多到四年级时阅读水平依然
    较低。

    初级阅读者可以听出并切分大型语音单位。渐渐地,他们能听出并操作音节与文字中更小的音位,这项能力是预测儿童阅读学习成功与否的重要指标。斯坦福的研究员康妮·朱尔发现,在早期学习阶段中,儿童的音位意识是将来在一、二年级学习理解文字的关键。在一年级无法顺利解码的儿童,有88%到四年级时还是阅读水平较低。教师要把握各种机会来帮助儿童察觉文字中的音位,例如押韵的儿歌可以提高儿童的听觉与区分文字韵脚韵首的能力。一些随着词语发音拍拍手、书写或是舞动的简单的“即兴游戏”也很有帮助。
    语音的合成需要儿童更强的整合能力。语音的合成指的是混合各个单独的发音,形成更大的发音单位,如音节或单词(如s+a+t=sat)。跟音位意识一样,随着不断练习与越来越多的阅读,这种能力也随之发展。

    语音合成的教学方法越来越多。哈莱姆(Harlem)的教育学家乔治·丘尔顿(George 0. Cureton)采用的技巧就非常有趣。他给每个儿童指定一个字母的发音,然后将儿童排成一排,让他们“演出”字音合成文字的情况。想象一下这种情景,第一个儿童发出简单的嘶嘶声/sss/,然后轻推下一个孩子,第二个人要敞开喉咙尽量延长 /a/的字音,再传给下一个孩子,让他发出较不简单的结束音 //。第一轮可能有点混乱,但是在老师的指挥下孩子们的行动变得更快更协调,s-a-t最后就变成 sat(坐下)。

    要是文字中只有两个重音,儿童会学得更容易:一个音节的第一个音称为起音;一个音节最后的元音加上辅音,称为韵音(如cat中的at)。按照指示,儿童学习起音(c)再学习韵音(at),最后将两者合成为一个词。之后,开始学难度较高的起音,然后加上韵音,如:ch+at=chat,fl+at-flat。这样的做法可能比丘尔顿的教学法文明些,不过两者的目标都是一样的:为了让儿童顺利地将发音单位整合起来。语音合成看似简单,但是这妨碍到许多儿童的阅读学习,特别是那些有阅读障碍的孩子。

    大声朗读的作用:可以让初级阅读者注意到口语与文字之间的关系,他们可以用这种方式来自学。此外,大声朗读还可以让老师与家长及时发现儿童学习阅读时出现的错误和问题。

    “语音再编码”的方法可以帮助初级阅读者提升音位意识能力与语音合成能力。乍看之下这不过就是大声朗读的冠冕堂皇的说法,不过若以“大声朗读”来表示,则其中涉及的两种动态过程又显得过于简单。大声朗读让儿童注意到口语与文字之间的关系。它还是初级阅读者的自我教学方式是“获得阅读能力的必要条件”。
    两位波士顿的阅读专家艾琳·方塔斯(Irene Fountas)与盖伊·苏·平内尔(Gay Su Pinnell)延伸了新西兰知名教育专家玛丽·克莱(Marie Clay)的教学方法,很早就指出大声阅读可以将某个孩子常犯的错误暴露给老师与其他听众。大声阅读有助于发现儿童对文字已知什么、还不知道什么,
    我永远不会忘记我们是如何发现蒂米(Timmy),这位典型的一年级初级阅读者,一直念错词语中字母的情况。蒂米把house(家)念成horse(马),然后继续“读完”他自己编的一个关于马的故事。蒂米自创的有趣故事,跟原本那篇乏味的关于家的文章毫无关联,但是却帮助我们了解了许多造成他错误的原因。
    比米勒研究了蒂米这个年纪的儿童所犯的典型错误。他发现年幼的初级阅读者在犯错时,一般会出现三个短暂但相当容易预料到的步骤。首先出现的错误是在语义与语法上正确,但是和真正的词之间没有发音或词形上的相似性(把father念成 daddy)。一旦他们学到部分字母与音位之间对应关系的规则以后,他们念错的词多半都是词形相似,但语义上没有什么关系的(如把house读成horse)。到了初级阅读者的最后一个阶段,儿童犯的错误在拼写与语义上都有一定的恰当性(如把ball 念成bat)。这些儿童很快就会进入顺利解码的阶段,开始整合他们所拥有的从各方吸取的文字知识。非常重要的是,比米勒发现能顺利学会阅读的儿童,从来不会停留在这些早期错误上,而是很快就能摆脱它们。

    初级阅读者拼写的发展

    英文具备让人愉悦的清教徒式的写作传统,比如以“sh_t”来表示众所周知的骂人字眼。每个人都知道空格处代表的字母是“i”,这种“字母代表”的办法兼顾了品位与拼写正确。这一条横线也彰显出所有视觉符号的任意性,以及一套被广泛接受的语言系统对猜测出当中的每个发音有多么必要。拼写的发展包含学习这一整套约定俗成的视觉符号、常用的字母组合以及看似没有规律的用法。最重要的是,这牵涉到将字母视觉形式和常用字母组合转化成能够自动产生的表征。
    儿童一步步地学习这些拼写习惯,从他们坐在年长读者的大腿上或是身边的经验中,萌芽级阅读者学习到英文中的每一行文字都是由左至右而读的,文字中的字母也是如此。接下来的认识则涉及认知而非空间的发现:例如,字母模式的不变性。孩子必须知道,无论何种字体,A永远都是A。类似地,还有些儿童必须学习上标与下标都代表同一个字母
    但真正的任务,是要学习英文以多种但特有的字母组合来表现其读音的独特方式。看看两种语言中源自同一个词根的单词:英语中的shout与德语中的 schreien。虽然英语中的sh与德语中的schr有很多相似之处,但在各自的语言中,这些字母却有不同的拼写表征,就像法语中的ois与西班牙语中的lla与n~a。
    初级阅读者在他们自己的母语中吸收全部的常见字母组合,以及许多常用但不遵循语音规则的单词,如have、who,以及在who said yachts are tough?一句中的所有单词。虽然儿童可以依赖他们具备的语音知识来破解绝大多数的常用单词,但还不足以应对少数重要的常用词。这些不规则拼写的单词,通常称为“英语常用词”,它们的发音必须以其自身为一个独立的表征。幸运的是,拼写不规则的单词比通常想象的要少得多,如果你注意到英语规则,大多数拼写不规则的单词,如yacht,也不是完全不规则的。初级阅读者的拼写发展需要多方面地接触文字——多练习。华盛顿大学的神经科学家兼教育学家弗吉尼娅·伯宁格(Virginia Berninger)和她的研究团队记录了年轻的大脑如何通过这些接触形成大多数常用视觉组块的拼写表征,如此一来,像ant这样简单的字母组合,可以眨眼间转变成chant 与jenchantment。
    无可否认,这其中需要的不仅仅是眼睛,而是视觉系统拆解辅音群的能力,像chant中的ch,以及拆解词素单位的能力,如enchantment中的en和ment,这将大幅度提高阅读速度。掌握常规元音模式、词素单位与英文中各种拼写模式(例如各种辅音群),将有助于视觉系统的运作。
    据说英语的元音字母是全球语言中使用频率最高的符号。怎么会有人发明出一套书写系统,规定5个元音字母(偶尔加上y)来承担双重或三重任务,构成至少12种元音呢?马克·吐温对英文字母模式的愤怒,每天都会在每间英语教室里出现。下面这首无名氏的诗,正好表现了马克·吐温的愤怒,以及成千上万英语初学者的感受。学习所有的元音对与“元音+r”和“元音 +w”的组合可以解决部分难题;学会各种语义与词语中的常用词素也会加快初级阅读者阅读大量多音节词的速度。

    我想你已经明白,
    touch,bough,cough 和 dough ?
    其他人或许会出错,但是你不会弄不清,
    hiccough,thorough,slough 和through ?
    做得不错!现在你可能希望
    学些其他的把戏?
    当心 heard 这个可怕的词
    看起来像是 beard,读起来却像是 bird:
    还有 dead,说起来像是 bed 而不是 bead,
    看在上帝的份上,不要读成 deed!
    还要留意 meat,great 与 threat,
    它们的韵律类似 suite,straight 与 debt;
    moth 的发音和 mother 中的 moth 不一样,
    bother和 both,brother和 broth 的关系也是这样。
    而在 there 中的 here 也和单独的 here 读音不一样,
    以及 dear, fear, bear 和 pear,
    接下来还有 dose,rose 和lose,
    还有 goose和 choose,
    以及cork与 work, card 与ward,
    font 与front, word 与sword,
    do 与 go, 以及 thwart 与 cart.
    来吧!来吧!我真的千头万绪不知从何开始。
    一种可怕的语言?为什么人活着这么辛苦,
    我从5岁开始学说话:
    还要读它,努力又努力,
    到了 55 岁还没有学成。

    初级阅读者语义的发展

    早些时候,我引用了认知科学家斯威尼的有趣研究,大脑每读到一个字就会激活许多可能的意义,即便我们完全没有觉察到这个事实。童年时光最美好的一段便是玩要于各种各样的意义中,若没有经历过这些,真是非常可惜。对某些儿童来说,词义的知识会提升他们理解文字的能力,正如我们在阿梅莉亚的例子中所见到的那样,在开始学习解码的早期阶段每个词都是很大的挑战。对阿梅莉亚与其他上千名破解文字密码的初学者来说,语义的发展扮演的角色与许多人想象的都不一样。在语义的发展中有三项相互关联的原则,超越了所有的教学法的差异,
    第一,了解意义能促进阅读。如果儿童能立即知道他辛苦破解出来的那个字的意义,他可能会明白自己所发出的声音即是一个字,也比较容易记住它并且储存在记忆中。正如康妮·朱尔所强调的,在教导阅读时犯下的最大错误之一是,以阿梅莉亚为例,当她终于破解出一个词时,教师或家长以为她知道自己在读什么。大的词汇量使解码文字更容易,速度也更快。
    下面这个实验可以证明成人也遵循着同样的规则。请试着大声读出下面的单词:periventricular nodular heterotopia、pedagogy、fiduciary、micronspectroscopy。读这些单词的速度取决于你的解码能力,但同样需要你的背景知识。如果这些单词不在你的词汇库中,你很有可能是用当中的词素(如peri+ventricletar)来猜测这些词义,也以此来改进自己的发音。成人在读到自己理解的单词时,会更容易、更有效率。
    第二,阅读促进词汇知识。对大多数儿童来说,词汇量可以给他们提供特殊的“帮助”。就像临床语言学家丽贝卡·肯尼迪(Rebecca Kennedy)主张的那样,词汇是学习阅读时免费获得的礼物。有时候我会要求我的学生解释一个表示特定症候群的术语,比如agoraphobia(广场恐惧症)这个单词。如果他们有所迟疑,我就会给他们含有这个单词且前后有所关联的一句话:“斯巴克医生那位患有agoraphobia的病人拒绝参加在开放的演讲厅里举行的团体聚会。”这句话每次都能给他们提供足够的信息,让他们对这个单词有进一步的认识。
    我们利用语境的能力是通过阅读潜移默化得到的。随着文本难度的提高,初级阅读者们运用他们部分的概念以及“推导”和“语境化”能力将许多词语归类到已建立的类别中,从而增加他们的词汇量。当一个人了解到儿童在学校期间必须学会大约88700个单词,而且其中至少有9000个单词需要在三年级以前学完,就完全能明白儿童词汇的发展有多么重要,第三,多重意义强化理解力。回过头来看看早期阅读发展的两个故事我们就会发现同样的结论。路易莎·库克·莫茨计算出进入一年级的儿童在具有语言优势的和处于语言劣势的孩子之间差了约15000个单词。这些处于劣势的孩子怎么可能赶得上呢?在课堂上清楚地教授词汇可以解决部分问题,但即使是在简单的故事里,初级阅读者除了要懂得字面上的意义外,还需要学习更多。他们也需要对一个单词在不同语境中的多种用法与功能,有更多明确的认识与弹性变通能力。他们需要知道虫子会在人的身上蠕动、纠缠、爬动、侦查,还要对此感到很自然。

    阅读可促进词汇知识的发展:回想小时候的语文课老师很少直接解释生词的意思和用法,母语中大部分的词汇知识都是我们阅读时在语境中学到的。

    我的合作研究员斯蒂芬妮·戈特瓦尔德(Stephanie Gottwald)详细描述了我们研究工作中接触到的许多问题阅读者,他们对一个英语单词竟然可以有许多意思的想法感到非常恐惧,当教导bug、jam、ram与bat等单词时,他们的第一反应是:“你一定是在开玩笑吧!”当年轻的新手解码级阅读者知道词语和随口的玩笑或双关语中的话语一样会有多重意义时,理解力会提升许多。文字有多重用途的概念使初级阅读者想要从所读的内容中推敲与得到更多的意义,这正是下一阅读阶段的重心。但是在此之前,先让我们看看在阅读 bat、rat 或 bug 这些简单的单词时,大脑是如何开始破解文字的。

    初级阅读者的大脑

    姑且不论初级阅读者破解或理解的能力如何,卡特·斯图德利(Cat Stoodley)描绘了他们的大脑在读一个单词时的状况(见图5-1)。跟成人的通用阅读系统一样,幼儿阅读时也会动用三大区域。幼儿阅读脑的主要工作是连接这些区域。和成人不同的是,幼儿的大脑激活的第一个大片区域在枕叶(即视觉与视觉联合区),以及枕叶深处一块与题叶相关联的在进化上相当重要的区域:梭状回。重要的是,这个时候两个半脑都出现高度激活的情形。
    乍看之下并不合理,但请想想学习任何技能之前的情况。一开始学习任何技能都需要动用大量的认知与运动过程,涉及许多神经区域。逐渐地熟能生巧后,就不需要下这么多认知工夫,神经通路也变得更直接和有效。这是脑部朝专门化与自动化的方向缓慢地发展。

    图5-1 早期阅读脑

    第二个大片区域也是横跨两个半脑,但在左半脑较为活跃,涵盖颞叶与顶叶的诸多区域。近来,华盛顿大学的神经科学家发现,儿童使用几个专门化区域的情形比成人更多,尤其是角回与缘上回,这两处是将语音过程与视觉、拼写及语义过程相整合的重要结构。儿童大脑题叶中韦尼克区(Wermicke’s area)也被高度激活,这是一个负责语言理解的基本区域,最有趣的是,这两个在通用阅读系统中使用的区域,除了在特定情况下之外,以儿童使用较多。当成人在遇到困难的单词时,动用这些区域的程度会多于儿童,这时我们便后退到孩提时代的策略,就好像许多人刚刚试着去读 periventricular nodular heterotopia 时经历的那样。
    额叶的许多部位,特别是位于左半脑的语言区,即布洛卡区,是儿童动用的第三大区域。这很合理,因为额叶本来就在各种执行过程中扮演着重要的角色,比如记忆过程以及各种语言的处理过程,如语音、语义等诚然,成人阅读者激活的额叶区域更多,这些区域与更为复杂的理解与执行过程有关。大脑下层的其他区域在儿童与成人身上都扮演着活跃的角色。举例来说,小脑(cerebellum)与多功能的丘脑(thalamus)–大脑的交汇区,连接着五大分层。小脑的意思是“小型的脑”,人们阅读时许多运动技巧、语言技巧的使用时机和准确度都与小脑有关。

    布洛卡区:位于左半脑的语言区。布洛卡区为语言的运动中枢,主要功能是编制发音程序。

    总之,任何一个看到年幼初级阅读者大脑的第一张图像的人都应该感到震惊。打从一开始,大脑便展现出产生新联结的能力,那些原本设计成负责其他功能——特别是视觉、运动与许多语言层面的区域正在加速相互之间的交流。等到孩子七八岁时,年轻的大脑开始解码,同时展示出它所能达到的成就,以及我们离最初代币阅读者的进化距离有多远。这三大分布区域将会成为基本解码,甚至提高流畅度(这是下一阶段阅读者的特征等所有阅读发展阶段的基础,这是阅读进一步发展的标志,为阅读脑尚未展开的图景增加一点趣味性的说明。

    解码级阅读者

    如果你去听解码阶段儿童的话语,你会听出一些不同之处。阿梅莉亚阅读时痛苦(可能会伴随些许兴奋)的过程已经消失了。解码阶段的阅读者声音较为平稳而有自信,他们即将成为流畅的阅读者。
    我最喜欢的解码级阅读者是一位叫范(Van)的越南男孩。第一次遇到他是在莫尔登(Malden)暑期学校,我们研究中心的人员在那里教导需要加强语言技能的儿童。4周的时间内,在独具慧眼的老师菲莉丝·希夫勒(Phyllis Schifer)的指导下,范从一个原本要被老师留级的二年级初级阅读者,转变成同等于甚至超越他这个年级阅读测试水平的能手。范在暑期学校开始时费劲阅读的情况完全消失,如今他不仅能够注意到文字的韵律成分,也会花更多时间来理解所读的内容。范的朗读极富表现力,他也几乎完全理解自己所读的内容。范从刚学会解码时犹犹豫豫的孩子,转变成几乎具有三年级学生水平的、完美的半流畅型解码级阅读者。有了优异的阅读测试成绩,我们只花了一点工夫就说服了范所在学校的校长和老师他们立即同意让他继续三年级的学习。我们和他的家人都非常高兴。

    但后来范的故事出现了奇怪的转折。接下来的一个暑假,范又回到我们的暑期学校。主持暑期学校计划的两位优秀教师凯瑟琳·唐纳利·亚当斯(Katharine Donnelly Adams)与特里·约菲·贝纳耶(Terry Joffe Benaryeh)被告知范有退步的危险。这次他们依旧安排希夫勒老师来指导他,奇怪的是范读给她听的时候十分流畅。学校主任和我对此非常不解。最后希夫勒老师将他拉到一旁,问他为什么明明朗读得很好,学校里的三年级老师却认为他的表现差。他害羞地回答道:“不然我怎么回到暑期学校?”我们当中还没有谁遇到过假装的阅读障碍者:范是第一个。

    解码级阅读者的语音与拼写发展

    在阅读半流畅的时期,阅读者的词汇量至少要增加3000个,之前学的 37个常用字母组合已不够用了。要做到这一点,除了要接触下一阶段的常用字母组合,还要学习麻烦的元音韵脚变化与元音字母组合。读一读下面这段文字,想想看这些相当常见的单词中元音字母ea的变化,以及各种可能的发音:

    There once was a beautiful bear who sat on a seat near to breaking and read by the hearth about how the earth was created. She smiled beatifically, full of ideas for the realm of her winter dreams.

    这一堆 ea 双元音的各种发音解释了有些教育者在教英语拼写时的无奈心理,让儿童自己在文章中学习一切,尽管这样做没什么效果。但是如果你仔细考虑一下整个单词中的字母组合,你就会发现一些常见的规律。举例来说,当ea后面接r时,通常只有两种可能(如bear与dear),但是后面接m、n、p或t时,通常仅有一种可能。对半流畅型的解码级阅读者来说,这一阶段最主要的任务是学完组合后的字母模式,从入门程度进展到认识组成单词的元音字母的“视觉组块”。此外,他们得学会自动目测出这些区别。
    “视觉单词”为初级阅读者的成就添加了重要元素,而视觉组块则会促进处于半流畅阶段的解码级阅读者的发展。儿童看出beheaded是be+head+ed 组合的速度越快,辨别文字的能力也越强,越能将这些词语整合起来。顺便说一下,在进行下一阶段阅读时,这一现象比你想象的还要多很多。

    解码级阅读者的语法、语义及词法发展

    儿童对“文字组成”的认识非常重要,这将让他们从基本的解码发展到流畅的阅读。“两种童年的传说”可能在此重新改写,也可能就此保持一生。阅读研究者基思·斯坦诺维奇(Keith Stanovich)以《圣经》中的马太效应(matthew effect)来描述阅读发展与词汇之间建设性或者破坏性的关系,在文字世界里也是富者越富,穷者越穷。词汇量丰富的儿童,能自动认出旧词,同时飞快地累积新词,一方面来自于纯粹的基础,另一方面则是从新的语境中推敲出新词的含义与功能。这些阅读者准备好进入流畅阅读的阶段了。
    但在词汇贫乏的孩子身上,他们“发育不良”的语义与语法对其口语与书面语言都有影响,如词汇没有发展,那些一知半解的单词就永远不能被熟悉,他们也学不会新的语法结构。流利的单词识别能显著地推动词汇和语法知识的发展。若儿童很少或者从未接触与使用这些词语,面对即将变得日益复杂的材料,解码级阅读者掌握起来就很困难.
    对词汇贫乏的孩子来说,现实更加严峻,因为一般很少有人去讨论伊莎贝尔·贝克(Isabelle Beck)和其同事们最近描述的现象:在大多数课堂上,老师很少会清晰地教授词汇。了解“文字组成”的儿童,阅读水平要领先其他塱证儿童很多年。
    随着阅读与拼写渐渐地发展,儿童不知不觉地学会许多单词的内部组成,了解词干、词根、前缀、后缀等构成我们语言的语素。儿童已经认识了常用的“附着词素”,如s(表复数)、ed(表过去式 ),这些词素经常会附在另一个词后头(moons是由moon与s这个附着词素构成的)。解码级阅读者会接触到许多类型的词素,如前缀(un、pre)与后级(er、ing);而当他们学习这些“视觉组块”时,阅读力与理解力都会加速成长。
    例如,孩子在潜移默化中学到一些有可能改变一个词语法功能的语素:比方说在动词 sing(唱歌)后面加上er就会变成名词 singer(歌手)。他们也开始理解许多词虽然发音不同,但当中所含有的相同词根还是会传达出相关的意思,如sign(签名)、signer(签名者)、signed(签名的过去式)、signing(签名的现在式)、signature(签名的名词)。
    但是,儿童几乎不曾接受过英语这套“词素音位”书写系统后半部分内容的明确指导。正如词法专家马西娅·亨利(Marcia Henry)所提出的诸如sign与signature这些词,正是对儿童说明英文书写系统中词素音位特性的最佳范例,也正好可以说明那些看似不和谐的无声字母,如sign中的g与muscle 中的c。词法知识是儿童发现“文字组成”的一个美好面向,也是各种辅助流畅理解文字的方法中最少被探索的。

    “危险时刻”:迈向流畅理解

    也许只有在童年时,书才对我们的生活有很深的影响……我记得很清楚,突然之间就像钥匙打开了锁,我发现我会读书了不是那种阅读课本上的像火车车厢般一组组的音节组成的句子而是一本真正的书。那是一本平装书,封面上有个男孩,被绳索绑着,嘴巴被堵住,吊在井里面,水已经淹到他的脚踝–这是侦探狄克逊·布雷特(Dixon Brett)的探险故事。整个暑假我都守着这个秘密,不想让任何人知道我会读书了,我想即便是在那个时候我也有点意识到,这是个危险时刻。 ——格雷厄姆·格林

    过去我写了许多与流畅度有关的文章。我和来自海法(Haifa)大学的同事塔米·卡茨尔(TamiKatzir)一起,写出了对流畅度发展性的新定义,在这里我想讲的其实很简单。流畅度与速度无关,而是儿童能够动用他们对一个词的全部知识,包含字母、字母组合、意义、语法功能、词根与词尾等,要快到让他们有足够的时间思考与理解。跟一个词有关的一切都有助于阅读它的速度。
    因此,要变得流畅的关键在于阅读–真正的阅读,与理解。解码阶段的末尾会直接进入格林(Greene)所谓的“危险时刻”,以及金凯德和昆德伦所描述的“平行的世界”。这时候,儿童能非常快速地解码格林所谓的“火车车厢般一组组的音节”,足以推测当中英雄的处境、预测坏人的下一步行动、对女主人公的痛苦感同身受,并且深思他们正在阅读的内容。当然,解码级阅读者还很稚嫩,才刚开始学习如何运用他们不断增长的语言知识与厘清文本的推理能力。约翰·霍普金斯大学的神经科学家劳丽·卡廷(Laurie Cutting)表示,在这些孩子身上,有些非语言的技能有助于阅读理解:例如,通过工作记忆等获得主要执行功能;通过推理和类比等获得理解技能。工作记忆为孩子提供一种临时性的空间来存放字母与文字的信息,刚好让大脑有足够的时间使之与孩子日益增进的概念信息相结合。

    非语言技能:有些非语言技能有助于阅读理解。如通过工作记忆等获得主要执行功能,通过推理和类比等获得理解技能。

    随着解码级阅读者的成长,他们的理解力已经和这些执行过程、字词的认识以及流畅度密不可分,彼此相关。流畅度的逐渐提升让孩子能够进行推理,因为这延长了他们进行推理与思考的时间。流畅度并不确保有更好的理解力,但是会提供整个执行系统额外的时间,好将注意力直接放在最需要的地方,诸如推测、理解、预测或者回过头修正前后不一致的理解或是重新赋子一种意思。
    举个例子,在《夏洛的网》(Charlotte’s web)一书中,解码级阅读者必须明白要是没有夏洛帮忙,小猪韦伯将会有什么样的命运。但是怎样让儿童准备好去理解这个帮助背后错综复杂的关系呢?在这个阶段的阅读中儿童开始学习如何在故事中的明喻与暗喻之间进行推理。这是儿童第一次学习“超越已知信息”。这只是一个开端,最后将对阅读脑做出重大的贡献–思考阶段。
    但是有时候,这个发展阶段的儿童也需要知道,要想正确地理解,必须回头再次读一个单词、句子或是段落。知道何时重读(比方说修正之前错误的解释,或获得更多的信息)以改善理解,我的加拿大同事莫琳·洛维特( Maureen Lovett)称此为“理解力监测”。她对儿童元认知能力的研究特别是对他们思考自己理解文本能力的研究,强调了这个发展阶段的两个方面,一是儿童能够在无法理解某个事物时改变策略,二是在促进这类改变时,教师扮演着重要的角色。在这个阶段的最后,解码级阅读者能够在阅读时以新的方式思考。

    最大程度地投入

    任何年纪的阅读者,尤其是儿童,必定会遇到这样一种情况:阅读时不仅会参与整个故事,还会身陷其中,最为强烈的是感官经验被限制在故事里。——伊丽莎白·鲍恩

    正如每位老师都知道的那样,情绪上的投入通常是能否进入阅读生涯的关键,有些儿童可能就此打住,停留在童年的阅读水平,阅读仅仅是一种看懂事情的方法。在我们能够记忆、预测与推理之后,我们的感觉与认同会强烈影响到童年时理解力的发展;在这个过程中,我们能够更完整地理解,迫不及待地翻到下一页。从解读良好进展到解读流畅的儿童,通常需要来自学校老师、家庭教师与父母的真心实意的鼓励,才能努力面对日益困难的阅读材料。这就像阿梅莉亚需要我来肯定她的努力,范需要希夫勒老师的支持那样。
    不过,感觉还有另一个维度:儿童让自己完全进入《夏洛的网》的能力,或者投入任何故事、任何书籍的能力,“最大程度地投入”。在学会使用所有的字母与解码规则后,在掌握了文字隐藏的生活之后,在各种各样的理解过程展开之后,这种投人的感觉能使儿童终生热爱阅读,培养他们成为理解型阅读者。
    这种永久保持新鲜感的能力形成了阿德里安娜·里奇(Adrienne Rich)“跳跃到超级技巧练习曲”的基础,也形成了阅读发展的最后几个阶段的基础,这几个阶段使我们变成了今日的我们。没有经历过这种跳跃的儿童永远不会知道在伊利诺伊州埃尔多拉多小镇上,坐在教室第三排的那个小女孩,第一次被加冕、第一次结婚,以及第一次被王子亲吻的感觉。

    第6章 阅读者的五大进阶(2)

    我心里明白要是我能一路读回去,巨细靡遗地分析童年时阅读的所有书籍,便可以找到一切的线索。孩童就好像是住在书里一样,而其涉入的程度就是书在孩子生活中的分量。 ——伊丽莎白·鲍恩
    我想要享受自己独处的甜美时光。 ——卢克,9岁

    在我们实验研究的参与者中,我最喜欢的是一位叫做卢克(Luke)的小男孩。参与者们因为各种理由加入我们的治疗计划,而他是以最不寻常的方式参加的。一般来说,适合参与我们研究的阅读困难儿童都由他们的老师推荐,并经过诸多复杂的测试,但卢克不是。他是自荐来参加我们的治疗计划的。当我们问他原因的时候,他很少回答,只是说:“我必须读完咏叹调,但我就是记不住它们!”原来卢克是波士顿儿童歌剧团的团员他是一个有天赋的歌手,但却跟不上其他孩子阅读歌词的进度。

    学校的老师认为卢克的阅读能力很好,只是有点慢而已,因此没有推荐他参与我们的治疗研究。他们并没有注意到,尽管卢克可以正确地阅读但是他的表现和努力之间存在着很大的差异。在经过一系列的测试后,临床经验丰富的研究助理凯瑟琳·比德尔(Kathleen Biddle)冷静地说道,她从未测试过这样的儿童,在认识字母和阅读单词上需要花如此长的时间卢克在这方面的问题非常严重。接着她还说,卢克的智力和他的阅读测试成绩之间的落差相当惊人。
    在治疗计划中,经过我们的努力,卢克终于学会流畅地阅读,能读完他的咏叹调歌词,并从解码阅读转变到流畅阅读。但在这个过程中,他告诉我们,在阅读的高级阶段,要从正确地阅读迈向流畅地阅读有多么困难。
    许多儿童从未完成这样的转变,原因各异,但都不同于卢克的阅读障碍。最近美国国家阅读委员会(National Reading Panel)的一份报告提到:美国国家报告卡显示,有30%~40%的四年级儿童无法完全流畅地阅读无法恰当地理解所读的内容。这是一个恐怖的数字,再加上教师、教科书作者甚至整个学校系统对四年级学生的期望各不相同,情况变得更加糟糕。
    基于某种认识,一套教学方案中整合了这种方式:一到三年级的儿童是“学习阅读”(learn to read),四至六年级则是“通过阅读来学习”(read to learn)。在儿童三年级结束之后,教师会期待他们有足够的自动阅读技能,能够在日益困难的文本材料中,“靠自己”来学习越来越多的知识。当我教导学生的时候,我也持有这种期待。虽然这不是四年级教师本身的错,但他们大多数从来没有学过如何去教导那些无法流畅阅读的儿童。
    在美国的教育中存在着一项近乎隐形的议题:能够正确阅读却无法流畅阅读的三四年级小学生的命运。除非及时处理这些问题,否则这些儿童的未来注定蒙上尘埃。目前对发展性的阅读障碍及其治疗有相当多的认识但对于那些无法流畅阅读的儿童,这类一般性的问题我们知之甚少。有许多原因会造成这样的结果,例如环境不好、词汇量缺乏,或是教学方法不符合他们的需求。
    这些儿童有些可以成为解码级阅读者,但是阅读的速度还是不快,且无法理解他们阅读的内容。他们当中有些与卢克相似的儿童,有着未被诊断出的“处理速率”型的阅读障碍,稍后我们会详加讨论。不论何种原因,我们的儿童中有近40% “未能发挥学习潜能”,这是对人类潜能的一大浪费,也 是美国教育的一个黑洞,有越来越多的孩子掉进这个半文盲的地狱深渊。

    流畅级阅读者

    孩提时代多半的时光是为他人而活的……当我是个孩子的时 候,每当黑暗降临,我就会关紧门,坐在床上读书,这是一种反抗的举动,是完全为我自己所做的事,也是唯一的一件。那是我 做回自己的方式。 ——琳恩·莎伦·施瓦茨

    在中学学校的书架上,很少有比《吉尼斯世界纪录》所更受欢迎的书。这本书将众多匪夷所思或惊险刺激的事迹分门别类,使其便于查询,正好可以用来比拟新的流畅型阅读脑。处于流畅理 解阅读阶段的阅读者,正在通过各种渠道来学习建立他们个人的知识库。

    阅读《吉尼斯世界纪录》这类书籍的儿童,通常解读很顺利,而且毫 不费力,要是没有脑成像技术,我们根本无法知道他们的大脑是如何运作 的。这时候的老师与父母会因为儿童流利的读书声而相信他们了解所读的 每一个字。

    苏格拉底所抨击的正是书面文字无法“作出回应”这种沉默的情况。因为解码并不意味着理解。即便一名阅读者理解内容里的许多事实,但是 这一阶段的目标更为深远:增进理解字词各类用法的应用能力,如反讽、语态、隐喻与观点表达,这些都已经超越了对字面意思的理解。随着阅读 的需求不断增加,好的阅读者发展出的比喻与反讽等语言知识,会帮助他 们在文本中发现新的意义,促进他们超越文字本身来理解。

    正如心理学家埃伦·温纳在《单词的意义》中所描述的,隐喻是“了解儿童分类技能的一扇窗户”,而反讽 则描绘出作者独特的世界观。举例来说,看看马克·吐温《哈克贝利·费恩历险记》中的一段文字。马克·吐温独特的反讽幽默与 隐喻让许多年轻阅读者理解起来比较困难,甚至有时候不能理解。在下面 这段文字中,哈克和他的朋友吉姆乘着木筏一同在密西西比河旅行,吉姆是一个逃走的奴隶,可能随时被抓捕。在一群人盘查吉姆的身份时,为了 使吉姆逃脱,哈克灵机一动,让吉姆假装得了天花,当别人急忙躲避时, 哈克又被焦虑困扰着:
    他们都走了,我也上了竹筏,但是感觉很糟,情绪低沉,因为我很 清楚地知道自己做错了,我明白试着做些对的事情也于事无补;人在小 时候刚幵始时没有做对,紧急关头来临时,不会有什么可以支持他,让 他信守承诺,所以会挨揍。我又想了一分钟,然后对自己说,等等,假 设你选择对的路走,放弃吉姆,你的感觉会比现在好吗?不会,我说,我会觉得很糟糕,就像现在一样。既然如此,我想,那你干嘛要在做对 的事情会导致麻烦,而做错的事情却不会造成任何麻烦,但付出的代价 一样的时候,学习做对的事情呢?我真不知该如何是好。

    哈克混乱的逻辑与自我谴责正是马克·吐温的高明之处。刚刚成为流 畅级阅读者的儿童会从马克,吐温的反讽与他富有表现力的画面和隐喻中 读出言外之意,欣赏作者试图传达的弦外之音。对于刚从简单的掌握内容 到发现言外之意的年轻读者来说,奇幻和魔法故事是再理想不过的读物了。
    想象托尔金在《魔戒》中描绘善恶的 诸多画面。中土、纳尼亚与霍格沃兹的世界正是培育隐喻、推理、类比等 技巧的温床。因为正像你在这些地方看到的那样,没有什么是永恒的。要 如何逃避戒灵与巨龙,如何做出正确的行动,都取决于一个人的智慧。在 哈克和佛罗多一连串艰辛的旅程中,无论他们的挑战多么困难,他们都学习采取各式各样的作为来应付,而一路相随的年轻阅读者们也是 如此。

    奇幻世界对刚刚从较为具体的认知处理阶段走出来、准备建构概念性 认知的儿童来说是最完美的环境。阅读生命中影响最为深远的时刻,有着 “苏格拉底式对话”的转化性效果。这发生在流畅级阅读者学习进人故事中 的男女主角生活的时刻,可能是沿着密西西比河,或是穿过衣橱。

    在这样的地方,儿童理解力的成长十分惊人,他们在其中学习联结先 前的知识、预测结果的好坏,在每一个充满危险的角落进行推理,修正他 们理解的漏洞,并且解释每一个新的线索与启示,或者以新增的知识来改 变旧有的认知。为了练习这些技能,他们学习在一个单词、一个片段或是 一个想法中层层分析,挖掘深层的意义。在这个漫长的阅读发展阶段中, 他们从了解文本字面的意义,进展到探索文字背后令人惊奇的领域。

    阅读专家理查德·瓦卡曾描述过从“流畅的解码级阅 读者”转变到“策略性阅读者”的这段转变:“阅读者知道要如何在阅读前、 阅读时及阅读后激活先前的知识,决定文章的重点,整合信息,从中推论,提出问题,自我检测并且修正错误的理解。”

    这段旅程通常会一直持续到青少年时期,一路上会遭遇许多障碍,就 像佛罗多、哈利,波特、吉姆与哈克所遭遇的那样。初中的年轻阅读者从 一开始就必须学会以新的方式进行思考,虽然有许多儿童都准备好了,但是也有许多儿童还没有。

    这个步骤是如何发生的?著名教育心理学家迈克尔·普雷斯利提出了一个论点,他认为有两项因素对流畅的理解最有帮助,一 是学习主要内容部分时老师对儿童的明确指导,二是儿童自身对阅读的渴望。学生和教师进行对话有助于他们 询问自己关键性的问题,从而获得他 们所读书本的本质。以安妮玛丽·佩林克萨与安妮·布朗的“相互教学法”为例,老师要尽力协助学生学 会询问自己不理解的部分,总结整篇文章,找出主题,归类并且推测接下来将要发生什么。要是成功的话,这 种“苏格拉底式对话”的变体会让学生终生受用,帮助他们从日益复杂的 文章中提取出意义来。

    流畅级阅读者:他们目标是学会理解反讽、隐喻,超越文字表面。对他们来说,奇幻文学是理想的书籍。在霍格沃兹和纳尼亚的世界里,儿童的理解力会有惊人的提升。

    儿童对阅读的渴望反映出他们沉浸在“阅读生活”中的程度。在儿童 先前的发展中,只有当认知、语言、情绪、社交与指导因素等一切都具备时,才能够理解文本。而普鲁斯特所描写的沉浸在阅读中的“神圣的愉悦”会将 儿童再往前推一步。在卡洛斯·鲁伊斯·萨丰的《风之影》中,描写了令人印象深刻的一幕,把这种观念带 入了生活。书中年幼的男主角丹尼尔正被他父亲带往一个神秘的图书馆, 这是他第一次对书本有更深的体会,他父亲要求他找出他“自己的书”:
    欢迎光临遗忘之书墓园,丹尼尔!每本书都有自己的灵魂,作者的灵魂以及和它一同生活、一起做梦的读者的灵魂。每一次被借阅,每一次某个人的眼睛注视着它的书页,书的灵魂就会再一次成长,再一次增强。

    丹尼尔的父亲清楚地表达了我们沉浸在书本中的那份神奇特质,告诉 我们书本拥有自己的生命,而阅读者只是稍作停留的受邀客人,而不是相反。 丹尼尔对他那本“遗忘之书”的着迷,带出整本书其余的情节,给我们展 现了阅读者如何彻底地进入“书的生命”,其整个人生也因此改变。

    知道青春、敏感与害怕是何种感觉的阅读者比较容易理解丹尼尔的生 活,了解丹尼尔的反应则增加了阅读者的阅历。通过角色认同,年轻阅读者 拓宽了他们生活的边界。在每一次深层的悸动中,他们都会学到一些新的并 且终生难忘的东西。如果被放逐到无人岛,我们当中的哪一个人不会想到鲁 滨逊的故事?在遇到一个骄傲自大的男子时,谁不会联想到简,奥斯汀笔下 的达西甚至暗自希望能发掘出他内心潜藏的善良?此外还有许许多多熟悉的 角色,我们认同这些角色的能力有助于我们自身的建构。

    让我们和书本共舞,在阅读生涯的每个时期,都潜在地改变我们自己。 但是在自主性与流畅理解力成长的时期,我们的可塑性最强。在阅读的第四个发展阶段,年轻人的任务是学习为自己的生命而阅读。随着内容领域的数量与日俱增,无论是在教室里,还是在学校之外,阅读生活都成了一 个安全之所,供年轻人探索千奇百怪的想法与感受。

    流畅而敏感的大脑

    流畅的阅读脑必须独自完成一段大脑皮层的旅程。不仅要扩充解码与 理解的能力,还要产生前所未有的细腻感受。正如将理论神经科学转化为 实用教育方法的杰出翻译家戴维·罗斯狀所言,阅读脑的三项 主要任务是模式识别、规划策略以及感受情绪。流畅级阅读者的脑成像图 清楚地显示出主管我们情绪的边缘系统和认知区联结部分 逐渐被激活。这套系统位于大脑皮层的下方(见图6-1),掌管我们在阅读时感受愉悦、恶心、恐惧与兴奋的能力,进而能够理解佛罗多、哈克与安娜·卡列尼娜的经历。正因为有这样的情感上的影响,我们的注意力与理 解力过程才能被激发或是被麻痹。戴维·罗斯提醒我们,边缘系统这个区 域在帮助我们决定阅读的优先顺序,评价所阅读的内容。

    图6-1 边缘系统

    正如我们在较为年幼的儿童身上所看到的,越是费力阅读,大脑激活得就越多,而且通常激活的区域也更大。记得之前提到,大脑两半球视觉区动用的大量皮质层,以及从视觉区到上颞叶、下顶叶最后到额叶这一 条较为缓慢、效率偏低的路径,反映出年幼的大脑在辨认字母与单词方面的努力程度。图6-2描绘出这条传导缓慢的路径—— 背侧路径,允许儿童有时间认识一个单词中的音位,也允许其有较多时间来察 看与单词有关的各种表征。因此,年轻的大脑会在解码上花费更多的时间。

    图6-2 流畅理解中的大脑(背侧与腹侧路径)

    流畅理解型的大脑则不需要花这么多时间,因为大脑中专门化的区域早已学会表征重要的视觉、语音与 语法信息,并以极快的速度提取这些 信息。根据耶鲁大学、哈斯金斯实验室以及乔治城 大学的肯·皮尤、丽贝卡·山达克等神经科学家的观点,儿童阅读得越流 畅,他们的大脑越倾向于用左半脑中效率较高的系统——腹侧途径,来取代两侧半脑的共同激活。

    流畅理解型大脑:大脑中专门化的区域已经学会表征重要的视觉、语音与语法信 息,并以极快的速度提取这 些信息。

    这套流畅的阅读路径一开始会比幼儿所用的视觉区与枕叶-颞叶区更 为集中与直接,接下来会用到颞叶中区与下区以及额叶部分。随着我们对 每一个单词日渐熟悉,就不再需要费力来分析它了。我们所存储的字母模 式与字词表征,在大脑尤其是左半脑中,会激活一个速度更快的系统。

    看似矛盾的是,这种基本解码过程在左脑专门化发展,反而激活了更 多两侧半脑来处理意义与理解过程。这样的转变反映着阅读与人类发展的 改变。我们不只是信息的解码级阅读者。

    这时候流畅理解型的大脑即将获得阅读脑进化中最得天独厚的一份礼 物一时间。当解码几乎自动化,年轻的流畅型阅读脑,每一毫秒都在学 习整合更多隐喻、推理、类比、情绪背景和经验知识。在阅读发展中,大脑阅读的速度第一次可以快到足够进行思考和体验情绪。这份时间的礼物, 是我们得以思考“世间万物,美好至极”的生理基础。在阅渎的行为中, 没有什么比这更重要的了。

    专家级阅读者

    要彻底分析阅读时我们究竟在做些什么,恐怕只有心理学家 可以完成。毕竟这需要描述许多人类大脑运作中最错综复杂的层 面,并弄清一个个复杂的故事。这些故事揭示出文明在自身历史 中学到的、意义最为重大的表现。 ——埃德蒙·休伊爵士

    在前言中我曾提到,埃德蒙,休伊爵士在上面这段文字中捕捉到了完 全流畅的专家级阅读者,如何在阅读的进化中体现出所有文化、生物与智 能的转变,以及在阅读者本身的“自然史”中所有认知、语言与情感转变。 休伊爵士1908年的这段话可能是有史以来对阅读最为清晰的描述。现代的 认知神经科学则强化了休伊的猜想——在仅仅半秒钟的阅读中,就动用了 大量复杂而广泛的大脑网络。

    半秒钟几乎就是专家级阅读者花在辨认出任何单词上的时间。在迈克尔·波斯纳与其他许多认知神经学家的研究基础上,我现在画出完全进入专家级层次的阅读脑运作过程的时间轴(见图6-3)。因 为阅读中的各种过程都是相互作用的,任何一种将阅读线性化的概念(如时 间线)都必须经过质化。有些是平行发生的,有些是先激活,然后在需要将 增加的概念信息进行整合的时候再次激活。举个例子,观察你在阅读下面这 句话时发生了什么,“船头被一个巨大的红色弓形物体所覆盖”(The bow on the boat was covered by a huge red bow.),大多数人在boat获得额外的概念性信息后,不得不回头第二次读再次激活这个单词,以判定词义。

    图6-3 阅读时间轴

    这条时间轴呈现出的那个时刻正是我所期待的:认知、语言与感受历 程,以及多处脑部区域与用于阅读的数亿神经元几乎瞬间融合到一起。接 下来,这些描述较为专业,也许并不适合每一个人。如果读者想跳过这个 部分,可以翻到“语言、语法与词法进程”部分,直接了解为何这一切 会在你和每一个专家级阅读者身上产生如此非凡的影响。

    认知——每个单词都有500毫秒的辉煌时刻

    (1) 0~100毫秒:将专家级阅读者的注意力转移到字母上

    一切阅读都始于注意力——实际上,是好几种注意力。当专家级阅读 者注视一个单词时(如bear),会首先进行3项认知操作:
    @从我们正在做的事情中抽离出来;
    @把我们的注意力转移到新的焦点上(将我们带入文本〕;
    @专注于的字母与单词。

    这三个步骤是再次定位注意力的网络,脑成像研究显示这三项操作分别动用到脑部的不同区域(见图6-4)。注意力的脱离要动用顶叶后侧的区域;注意力的转移涉及中脑中负责眼动的区域上丘; 而专注于某个东西则要动用我们的丘脑,它相当于大脑的内部交换机,负 责协调大脑中五大区域传出的所有信息。

    图6-4 注意力网络

    还有另一套注意力网络对阅读的每个阶段都极其重要,一般被称为执行注意力网络。执行系统位于额叶深处,占了相当大的一块被称为扣带回的区域,这个区域的前侧与许多阅读专门化功能密切 相关:指导视觉系统聚焦在给定字母或单词的独特视觉特征上(比如初级阅读者必须注意到bear中b的方位);协调其他额叶区域传来的信息,尤 其是有关字词意义的语义过程的部分(比如说考虑你是否想要一个bear hug);以及控制工作记忆这类特殊记忆的使用。

    认知科学家并没有将记忆看做单 一种类。大多数人所认为的记忆,即 我们回想个人信息与发生在我们身上 各种事件的能力,心理学家称之为情 景记忆,以和代表我们脑中存储的字词与事实的语义记忆区分。他们还区分出陈述性记忆与程序性记忆。陈述 性记忆是从我们知识库中提取知识内容(what)的系统,比如独立宣言是 于何时签署的;程序性记忆是我们知识中的动作技能(how),比如说怎样使用录影机,怎样骑自行车,或怎样钉钉子。

    语义记忆:人脑中存储的字词与事实。包括陈述性记忆 与程序性记忆。陈述性记忆 是从我们的知识库中提取知识内容的系统,程序性记忆是我们知识中的动作技能。

    下一种记忆类型对识字最有帮助——工作记忆。工作记忆是当我们必 须暂时掌握信息时所使用的,如此才能用以来执行一项任务。这是我们的“认知黑板”或是“便笺本”。工作记忆是专家级阅读者的关键,确保我们可以 在大脑中暂时记住一个词初始时的视觉形式,让我们有足够的时间加入与 这个词有关的其他信息(如字义或语法运用)。

    流畅级阅读者在辨认一串字符时,尤其是含有重要的语义与语法信息 的字符,他们会同时使用工作记忆与联想记忆。联想记忆会帮助我们回想 起长久以来存储的信息,比如我们的第一辆自行车、我们的初吻与其他值得记忆的时刻。

    (2)50~150毫秒:辨认字母与大脑的变化

    阅读学习的一个关键步骤牵涉到掌控文字具有的感知特质,如 此视觉系统才能有效地和语言系统对话。这样的学习成果会在前视 觉皮质区中形成一套新的运算结构,在阅读之前这是不存在的。 ——托马斯·卡尔

    学习阅读会改变大脑的视觉皮质区。因为视觉系统具有辨识物体和专 门化的能力,专家级阅读者的视觉区域会开始加入负责辨识字母、字母模式与单词的视觉图像的细胞网路。这些区域在专家级阅读者大脑中的运作速度极快,这要归功于几项非常重要的“处理原则”,其中有些已经被 20世纪的心理学家唐纳德·赫布(Donald Hebb)描述过。
    赫布提出“细胞生产线”的概念,各群细胞会聚集,以工作单位的形式来运作,以形成表征。如果专家级阅读者看到一个常见的字母模式或是bear 这样的单词,会激活一套专属的网络细胞,而不是激活大量互不相干的个别细胞去负责辨识字母中的直线、斜线与圆圈。这个操作性原则生动地体现了生物学准则“同步激活的神经细胞总是集合在一起”,它也是大脑创造大型神经回路、联结各细胞集合的基本工具,从而将整个大脑的网络联结成一个系统。专家级阅读脑是名副其实的网络拼贴画,大脑中每一种心理表征,从视觉与拼写表征到语音表征,无所不有。正如之前在斯蒂芬·科斯林的想象字母研究中所见,我们可以在瞬间提取这些表征,哪怕刚开始的刺激不是真的出现在眼前,而仅仅是在我们大脑的眼睛中。
    另一项对阅读自动化的贡献,来自看似简单的眼睛扫视文本的动作。这看起来顺利且毫不费力,但正如眼动专家基思·雷纳(Keith Rayner)所指出的那样,这只是假象而已。研究揭示出当我们从视觉区的中央(视网膜的中央凹)收集信息时,眼睛会短暂地停止跳动,出现注视点(fixation)随后则会持续进行微弱的运动,称为眼跳(saccade)。在这期间至少有10%的时间,我们的眼睛会稍微往回看去,拣选之前的信息。成人阅读时,一般的眼跳范围约是8个字母,儿童更少。人类眼睛一项卓越的设计是让我们能够在用中央凹的外围区域继续阅读每行文字的同时,以副中央凹区“向前看”。现在我们知道在读英文时,实际上看的是注视点右边14至15个字母,若读的是希伯来文,看的则是左边同样数量的字母。

    因为使用中央凹与副中央凹区的信息,我们总是可以预览将来要读到的一部分内容。稍后——约莫几毫秒的时间,预览的部分变得较易辨认,这对我们阅读过程的自动化有进一步的贡献。如雷纳所言,眼球运动与其规则中最令人惊叹的是眼睛和大脑之间的密切联系。

    这样的联结显而易见。看看刚刚那条时间线,在第50至150毫秒之间,发生了许多视觉与拼写表征过程;接下来,在150至200毫秒之间,额叶的执行系统与注意系统被激活。这是我们的执行系统影响下一步眼球运动的时刻。执行系统会决定此时收集到的字母与词语的相关信息是否已经足够,若是足够的话,则会在第250毫秒时进入下一回合的跳视,不然必须回去收集更多的信息。
    另一项对自动化有所贡献的是眼球运动的顺序,这关系到判断一组字母是否形成我们语言系统中可接受的一个模式(如bear相对于rbea),以及一个像词的字母串是否真的是一个词(如bear相对于reab)。大约在时间线上的第150毫秒时,一些枕叶-颞叶的相关区域(37区)变得重要起来。
    之前曾讨论过,斯坦尼斯拉斯·戴哈尼(Stanislas Dehaene)与布鲁斯·麦坎德利斯(Bruce McCandliss)这两位研究人员认为儿童学会阅读后,这区域的一些神经元会因为某个书写系统的拼写模式而产生专门化。他们假设这项能力由物体识别的神经回路进化而来。若真是这样,维克多·雨果对字母及其特征源自于自然形象的观察——Y与河、S与蛇以及C与新月不仅耐人寻味,也相当有先见之明。戴哈尼的团队认为原来识别蛇、型与月亮的区域被用来识别字母。视觉专门化的这个改变在专家级阅读者身上达到顶峰,在学会阅读之前,他们的视觉皮质区不存在这样的神经回路。这样的变化凸显出文字对人类大脑改变的主要方式。到目前为止,一切都发展良好。
    然而,戴哈尼的团队继续提出一个争议性更大的假设,他们推测37区这群专门化的神经元,变成了“视觉单词形成区域”,使阅读者能够在150毫秒左右,就判断出一组字母串是不是一个真正的词。另一个英国的认知神经团队不同意这个假设,并提出一个更为复杂的版本。借助一种对时间非常敏感的脑成像技术,他们描绘出在前几毫秒大脑中各类受到激活的结构,发现早在37区将一个词形信息带到意识区之前,额叶可能已经将字母的信息对应到了音位。但是目前还不确定这些激活的额叶区域是否真的参与语音对应或规划的工作,因为它们也有可能与执行功能有关。但是这些脑成像图显示出,专家级阅读一开始几个过程几乎是同步发生的,令人感觉不可思议。
    不论哪一个团队的假设是对的,他们的研究都凸显出大脑在接下来的100至200毫秒之间,每次重新启动字母文字原则时的快速反馈与前馈机制。

    (3)100~200毫秒:拼写与语音的结合

    字母原则的本质是某种语言中字母-发音的对应规则,对这些规则的熟练掌握会改变大脑的运作方式。没有学会这些规则的人,成年后其大脑会和熟悉这些规则的人不一样,而且他们对本身语言的发音掌握较不准确。葡萄牙的研究人员设计了一系列有意思的研究,凸显出读写能力对大脑产生的极大影响。他们研究了葡萄牙的偏远乡镇,那里的人因为社会或政治原因而没有机会上学。他们将这群人与同样是在乡村、但是之后会想办法学会识字的类似群体作比较,结果发现在行为、认识语言与神经上,这两群人都表现出差异。语言任务的目的在于显示出我们是如何感知与理解我们语言中的音位的(例如试着念出birth,但是不要发出b音),结果发现只有识字的人才能发掘到谈话中的音位。识字有助于他们理解单词由音节组成,可以拆分与重组。在要求重复无意义的词时(如benth),文盲受试者无法马上做到,而且会试着将无意义的词转变成一个类似的真词(如 birth)。

    学习字母原则对大脑的影响:学习字母原则,不仅会改变大脑视觉皮质区的运作,也会改变听觉与语音的运作,如知觉、辨别、分析、语音的表征与操作等。

    后来,在这两群人六十几岁的时候,又进行了一次脑部扫描,结果发现他们之间的差异变得更大。文盲组的大脑以额叶来处理语言工作(就好像这些是需要记忆或解答的问题),而识字组则是使用颞叶中的语言区。也就是说,成长背景相似的乡村居民:他们的大脑会根据识字与否,采取完全不同的方式来进行语言处理。学习字母原则,不仅会改变大脑视觉皮质区的运作,也会改变听觉与语音的运作如知觉、辨别、分析、语音的表征与操作等。目前的语音研究显示出在第150至 200毫秒之间,这些过程在皮质区的多处地方有大量的结构性活动包括额叶、颞叶与部分顶叶区(见图 6-5 ),以及右侧小脑。

    图6-5 语音处理区

    阅读时使用的具体语音技巧取决于阅读者的水平、要读的文字以及所使用的书写系统。高度规则化、高频率出现的单词,如“地毯”(carpet),比“语音”(phonological)这样艰深的单词所需的语音处理过程要少得多。正如我们之前在阅读早期阶段所看到的,初级英文阅读者痛苦地组装字母的音位表征,学习语音合成,使之组成一个词。这个过程有时会花上好几年时间。相反语法较为规则的语言,如德语或意大利语,阅读者只需花一年时间去努力解码,就可以很快学会这些比较固定的字母-发音对应规则。
    不同的字母书写系统影响到时间线上的皮质层部署它的语言区域。学习较为规则的芬兰语、德语与意大利语字母文字的人,会比英语和法语的阅读者更早使用颞叶区,并且使用的区域更为广泛。英语和法语的阅读者也使用到颞叶区,但是他们多半将这一区域用来确认文字,使用的是戴哈尼的团队所假设的那个“视觉单词形成区域”。英语和法语较为强调词素与不规则词语(如yacht),因此在第100至200毫秒这段时间,可能需要更多的视觉与拼写表征知识。同样的原则也适用于中文与日文的汉字阅读者,比起其他语言的成人阅读者,他们会动用更多左脑枕叶-颞叶区后侧围绕 37 区的区域,以及右脑的枕叶区。汉字阅读者的语音区域在这期间(第100 至 200毫秒)并不特别活跃。

    (4)200~500 毫秒:知道一个字的一切

    人对一个字的认识总是不断地演进着,对阅读者来说如此,对研究它的科学家来说也是如此。一些认知神经科学家在语义处理的阶段追踪了字词的各种意义与关联被激活时,大脑电流活动的情况。举例来说,我在塔夫茨的同事菲尔·霍尔库姆(Phil Holcomb)研究我们如何处理前后文意不协调的句子(如“龙虾吞下了一条美人鱼”)。他运用一种称为“诱发反应电位”的技术,结果发现在我们读到前后不协调的字眼(如“美人鱼”)后的 200~600 毫秒之间,大脑爆发了大量电流活动,在400毫秒时达到顶点。这类研究为我们提供了两点关于时间轴的信息:首先,这表示对一般阅读者来说,第一次提取语义信息的时间为200毫秒左右;其次,这显示出若是文字和我们预期的语义不一致,我们会一直增加信息,特别是在400 毫秒左右时。
    不论是在童年,还是专家级的阅读时期,我们对一个词所确立的知识越多,阅读的正确性就越高,速度也越快。想想在前几章中读到的这个吓人的单词——“语素音位”(morphophonemic)。在你阅读本书之前,这个单词可能会降低你的阅读速度。但是现在,它所引发的知识会加速你的识别与理解。我们阅读一个词的速度可以有多快,很大程度上是由伴随着这个词被激活的、我们所拥有的语义知识的数量和质量来决定的。就跟童年的早期阶段一样,成人的词汇知识也是一个连续统一体,从未知到认识再到熟练。
    至于一个词到底位于统一体上的哪个位置,则取决于它的频率(在文本中出现的次数)个人的熟悉程度与接触时间的早晚。想想“冗长的单字”(sesquipedalian)这个词,正如散文家安妮·法迪曼(Anne Fadiman)所说:这个词看起来就像是一个“长的单词”,的确是这样。在她的《一个普通读者的自白》( Confessions of Common Reader)中,法迪曼列举出了-串可以测试任何专家级阅读者勇气的稀有单词:基督一性论者monophysite)、有毒的(mephitic)、全协和音(diapason)、容易打开的(adapertile)与巫技(goetic)是少数几个打败我的单词。法迪曼的单词便是在文字熟悉度的连续统一体的最底端,削低我们的效率,即便这个词当中有我们极其熟悉的词素,也只是在用一线希望折磨我们。
    芬兰的研究人员发现处理语音与语义时都会用到上颞叶区域,若是遇到连续统一体中“已构建好”的那端的单词,激活的速度就会更快。而且如前所述,一个字的语义“邻居”(相关的单词和意义)对我们单词知识的贡献越丰富,辨认一个词的速度也越快。此原则适用于各年龄层的人:你对一个词的认识越好,你知道得越多,那么你读得越快。此外,拥有一个联系丰富的、已经构建好的词汇和语义网络也会直接反应在大脑结构上:在 200~500毫秒之间,这片广泛分布的网络反映出将要负责处理听觉的各种语音过程和精密的语义网络。激活的网络越多,大脑阅读这个单词的整体效率也越高。

    语言——语法与词法进程

    与语义过程一样,语法信息在200毫秒后的某个时间点,似乎会自动地使用额叶的区域,如布洛卡区、左半脑的颞叶区以及右侧小脑。语法过程几乎都是与相联系的文本(如句子或是段落)一同使用,通常需要一些前后回馈的操作(好像在读 the bow on the boat这个短语时所用到的),以及一定程度的工作记忆的运用。bear与bow这类单词在语法上具有模棱两可的信息,需要段落或句子的上下文来传达更多的信息。

    语法过程:语法过程几乎都是与相联系的文本一同使用,通常需要一些瞻前顾后的操作,以及一定程度的工作记忆的运用。

    语法信息在本质上和语义知识、词法信息都是相连的,而这些集合系统一起工作的能力会促进在 200~500毫秒期间的效率。例如,你要是知道ed 这个词素是表示过去时态的语法标志,就会很快地认出与理解bowed 这类单词。如图6-6所示,我们对一个单词认识得越多,脑部不同区域的累积性与整合度也就越高,阅读这个单词时理解得就越好,速度也越快。

    图6-6 大脑如何大声的读出一个单词

    一旦开始了解大脑阅读一个单词所需的条件,我们就不禁要问,我们究竟是怎样阅读整句话、整个段落的,更不用说整本书了。要了解这些我们需要从词语的时间轴上移开,考虑一下阅读以及理解《白鲸记》、物理学家史蒂芬·霍金的《时间简史》以及进化生物学家肖恩·卡罗尔(Sean Carroll)的《蝴蝶、胚胎与斑马:探索演化发生学之美》(Endless Forms Most Beautiful)时激动人心的成就感。

    感受——时光飞逝,阅读如何改变我们

    阅读是一种经验。任何一个文人的传记,都必须有相当的篇幅来描述他们的读物及其阅读年代,因为就某种层面来说,我们所阅读的成就了我们自身。 ——约瑟夫·爱泼斯坦
    对每一位思考者来说,每句诗每过几年都将以崭新的面貌显现,在他身上唤起不同的共鸣……这种阅读经验最棒、最神奇之处在于: 学习阅读时越能明辨、感悟与联想,我们在读每个思绪、每首诗时,越是能读出其独特之处及与众不同的地方,还有其确切的限制。 ——赫尔曼·黑塞

    专家级阅读改变成人生活的程度,主要取决于我们所读的书籍,以及我们阅读的方法。也许最能形容这类改变的,不是认知研究或脑成像图而是诗人。威廉·斯塔福德(William Staford)在文章中曾提到“你早已被赋予了注意力的品质”,这句话清楚地表现出这些改变的第一要素。他也许没有想过讨论注意力网络或专家级阅读者,不过这项几乎得来毫不费工夫的阅读专注力特质会随着我们学习阅读的过程而改变,正如德国小说家赫尔曼·黑塞(Hermann Hesse)所言:“越是明辨,越是感性,越是具有联想力。”
    随着我们逐渐成熟,面对文字时,我们不仅会动用词语时间轴上所列的一切认知才能,也会联系到我们的生活经验,我们的喜爱、遗憾、高兴痛苦、成功与失败都会左右我们的阅读生涯。我们对阅读的诠释通常会引导我们超越作者的思想,向新的方向思考。这点可以解释为什么我们在17岁、37岁、57岁或77岁时都会阅读《圣经》《米德尔马契》(Middlemarch)或是《卡拉马佐夫兄弟》(The Brothers Karamazov)等书而且每次都有全新的感受。我想用后面这两本书中的几个例子来说明,当我们每次将注意力的特质和生活经验带人阅读的过程中时,会造成多么不同的结果,我们可能错失了什么,或是获得了不同的见解。
    首先,介绍下面这个段落的背景:在19世纪乔治·艾略特的小说《米德尔马契》里,美丽而又满怀理想的年轻女主角多罗西娅·布鲁克(Dorothea Brooke)不顾多方的劝阻,执意要嫁给老迈的学者卡索邦(Casaubon)。她之所以这样做,主要是想帮助他完成其充满雄心壮志的文学巨作。在罗马的蜜月生活中,卡索邦去了很多图书馆,多罗西则只能沉浸在她自己的想法里。

    打从结婚以来,多罗西娅还不完全明白,却已感受到一份令人窒息的沮丧,原本梦想要在她丈夫脑海中寻找的远大前景和大片新鲜空气,如今却为厅堂与那些看似哪里也到不了的蜿蜒廊道所取代。

    艾略特在这段描述中使用了一系列的比喻,帮助我们揣测多罗西娅的心情,在看完卡索邦的笔记之后,多罗西娅明白他其实没有什么伟大的巨作更写不出什么书来,记录在卡索邦那些小白卡片上的,除了毫无关联的漫天思绪,什么都没有。
    这段节选自《米德尔马契》的片段,说明了专家级阅读的几个方面,首先,如阅读者没有读出隐含的意义,那么之后再读到后面五十几页中的精微玄妙之处,可能还是读不出什么。这些比喻向我们展示了“注意力在了解文章各层次的隐藏意义时的关键作用。少了这个方面,我们可能就读不出多罗西娅的困境。
    其次,这种标准的19世纪的句子彰显出熟悉语法结构对理解语义的重要性,以及语法形式如何强化作者试图表达的意思。在这段话的原文中艾略特连用了4个从句与6个短句,才最终表达了女主角“哪里也去不了的困境。这就好像她发挥了语法迂回的潜能,重新创造了代表卡索邦贫乏思想的无尽的厅堂。在句子的结尾,句型结构加上比喻修辞的组合,将我们的注意力更深一层地引导至对多罗西娅现实处境的揣测,对她产生更深一层的认同。
    第二个段落出现在前一段文字之后,这次是站在卡索邦先生的角度来进行叙述,一般阅读者可能记忆不深刻,这也不是没有道理的:

    他之前对她崇拜正确事物的能力表示赞赏:现在他突然感到一阵忍惧,因为他想着这样的能力可能会被另一种假设取代——只看到许多美好的结果,对研究它们需要付出的代价却没有任何概念。

    我已经看过好几遍《米德尔马契》。但直到去年读到这段关于卡索邦的片段时,才有了另一种想法。30年来,我完全站在多罗西一边,同情她理想的幻灭。直到现在我才开始理解卡索邦的恐惧、他的无法完成的希望以及不为年轻的多罗西娅所理解的另一种形式的幻灭。我从来没有想过自己有一天会同情起卡索邦来,但是现在,我大方地承认我确实同情他。我想艾略特也是如此,或许理由和我类似。在阅读改变我们生活的时候,我们的生活也改变了我们的阅读。
    为了描述最高层次的专家级阅读所动用的一切智能过程,现在我要以世界上最美好的一本书——陀思妥耶夫斯基的《卡拉马佐夫兄弟》中一个相当艰深难懂的段落为例。在这本深刻的俄罗斯小说里,愤世俗的哥哥伊凡对他性格温和、社会经验很少的弟弟阿辽沙说了一个关于善恶的故事——“大审判官”。这个故事里的一个情节描述了一段紧张的对话,作者把它设定在令人畏惧的大审判中。在这段对话中,90岁的老僧侣以你(you)、他(he,him)来讽刺神性。来看看你是否能达到陀思妥耶夫斯基对读者的要求,观察你自己要了解这段对话所需执行的任务,这段对话是僧侣在谴责沉默的“他”并讲述为何“他”必死。

    正是这种一致崇拜的需要,给每一个人以至从开天辟地以来的整个人类带来了最大的痛苦。为了达到普遍一致的崇拜,他们用刀剑互相残杀。他们创造上帝,互相挑战:“丢掉你们的上帝,过来崇拜我们的上帝,不然就立刻要你们和你们的上帝的命!”……你已知道,你不能不知道人类天性的这个根本的秘密,但是你却拒绝了对你提出的那面可以使一切人无可争辩地对你崇拜的唯一的、绝对的旗帜,——那一面地上的面包的旗帜,而且是以为了自由和天上的面包的名义而加以拒绝的。你瞧,你以后又做了什么。而且又是以自由的名义!………你不接过人们的自由,却反而给他们增加些自由,使人们的精神世界永远承受着自由的折磨。你希望人们能自由地爱,使他们受你的诱惑和俘虏而自由地追随着你。取代严峻的古代法律,改为从此由人根据自由的意志来自行决定什么是善,什么是恶…………更给他们留下许多烦恼事和无法解决的难题……

    经验对阅读的影响:阅读塑造我们的经验,经验也会改变我们对文字的理解。青少年时期读过的经典文学作品,现在再读一遍,我们必定会有不同的感受,而且现在的感受会比当时更深刻、更丰富。

    思考一下你刚读的这一大段想要读懂的话。首先,要知道僧侣到底说了什么;其次,要明白为何伊凡要把这个故事讲给阿辽沙听;最后,要知道天真的阿辽沙对于个人善恶观的偏见有何反应。
    在你开始阅读之前,我所提供的背景资料已经在你的脑中激发出一套预测、期望与计划的执行过程。这些过程为你准备好了一个特定的文学风格(俄国小说)与历史背景(在审判时僧侣与神的对话)。接下来,当你解读文字时,你将词语的表征临时储存(工作记忆),来“维持”高度复杂的知识,不只是单个单词和短句(共同崇拜)的意义与语法的运用,还有文中许多艰深甚至不合常理的假设(崇拜的痛苦、自由的折、自由选择的诱惑)。与此同时,这些概念的意义激活了关于一般背景知识的长期记忆——19世纪的俄罗斯、大审判、善恶的哲学思考与陀思妥耶夫斯基小说的警世目的。
    接下来,在所有的可能性中,你开始揣摩可能的意思,并产生一系列关于伊凡和阿辽沙、审判官和“他”、陀思妥耶夫斯基和读者之间关系的假设例如你可能对僧侣真正所说的内容以及为何而说构建了新的想法。在读这些段落时,你检查自己的理解力,确保你的推论符合你所存储的背景知识。若在所读和推论之间出现偏差,你会再读一次,修正你对反常之处或者全文的理解。

    智能进化永不止步

    从字词的意义与语法需求到记忆中要维持的诸多概念性假设,每一个文本的整体复杂度都会影响到专家级阅读者的理解力(见图6-7)。正如上面摘录的文字所描述的,智力的变通性会先设法让与传统假设相抵触的概念具备意义(如自由的负面价值、谴责与迫害神性的僧侣)。如同我们在《米德尔马契》的那段中所看到的那样,理解力会受到阅读者对文本的所有认知的影响。伊凡与卡索邦先生也许不会随着年龄的增长而有所改变,但我们对他们的了解却与日俱增,在37岁、57岁与77岁时读到的,一定要比在17岁时多。

    图6-7专家级阅读者的理解力

    文本与生活经验之间是双向的动态关系:我们将自己的生活经验带人文本,而文本也会改变我们的生活经验。在捕捉这种互动关系方面,没有人能比得上阿尔维托·曼古埃尔(Alberto Manguel),他在《阅读史》(4History afReading)中,将这种关系描述得淋漓尽致:整本书就是他与文本如何相互改变的历史。有时,我们沉浸到另一个思维世界之后,就会像曼古埃尔那样,自我浮现出来,以崭新的、充满勇气的方式来扩展思考、感受与行动的能力,不论这将我们带向何方,我们和昔日的自己都不同了。

    这样的经验和生理方面也有关系,这意味着当阅读达到专家级的层次之后,会有神经层面的改变。认知神经学家马塞尔·贾斯特(Marcel Just)与他在卡耐基梅隆大学的研究团队对此提出了一个假设,他们认为专家级阅读者在阅读中做出推论时,大脑中至少有两个阶段的过程,一是产生假设,二是将假设整合到他们对文本的固有知识中。

    专家级阅读者所用的这些技能,类似于《魔戒》的主角弗罗多在他最后一段旅程中,对佯装他向导的咕噜姆的理解。弗罗多看出来咕姆对魔戒反常的痴迷,在这种情况下,他首先强迫自己分析重构咕姆每个举动的真正意涵,然后将这些想法与他的行动相结合,最后预测出咕姆下一步企图做什么。
    跟弗罗多一样,专家级阅读者动用不同的理解过程、语义过程与语法过程,以及大脑皮质层中与此相关的区域,来理解文本。举例来说,研究人员发现当阅读者推测一段文字可能的含义时,在布洛卡区周围两个半脑的额叶系统都被激活了。此外,每当处理的文字在语义与语法上较为复杂时,额叶区就会与颞叶的韦尼克区、部分顶叶区以及右小脑相互作用。其次同样重要的发现是,当专家级阅读者将产生的推论与原本的背景知识进行整合时,似乎会动用整个右半脑与语言相关的系统。这项推理过程的第个步骤对右半脑系统运作的需求远远超过初级阅读者早期单纯的解码任务。
    在阅读发展过程中,右半脑的语言系统具有明显的改变,变得更为泛,就像左半脑的语言系统一样。最终,在专家级阅读者的脑部,更多地涉及了左右半脑的布洛卡区,以及包含右角回与右小脑的多处颞叶与顶叶区域。根据贾斯特的研究,图6-7向我们展示了专家级阅读者的理解型大脑,与初级阅读者相比,呈现出更美好的变化:专家级阅读者通过使用大脑的许多部位,鲜明地向我们证明了智能进化正在持续扩张的事实。
    如果我能用海明威毕生寻求的“真实的句子”来总结阅读发展的自然史那么肯定就是下面这句:阅读的发展永不结束,阅读这个永无止境的故事将永远继续下去,将眼睛、舌头、文字和作者带往一个新的世界,在那里鲜活的真相无时无刻不在改变大脑与读者。

    下一章,我们将进人另一个截然不同的阅读“自然史”,那就是阅读障碍者的故事,还有那些最终可能带来希望的遗传学研究。我们将探讨无法识字的阅读脑的过去与未来。因此,我们将探索未知的领域,在更为广阔的背景下探索文字的成就。在这个世界里,文字与图像等各种语言难以表达的形式相遇。

    第三部分 不会读的大脑也有高品质的思维:阅读脑的变奏

    对男孩子来说,从10岁起开始阅读与书写持续3年左右,是一段相当合理的时间。男孩与父母都不能因为个人好恶而延长或缩短这段时间。当然他们必须研读字母,达到能读能写的程度,但不应要求迅速地达到完美的境界,因为这段时间背后的自然过程要缓慢得多。 ——柏拉图

    第七章 阅读脑的补偿机制

    孩子最大的恐惧就是没人爱,而被拒绝则是他们最害怕的地狱。我想世上每个人或多或少都有过被拒绝的感受,再加上犯罪和罪恶感,这就成为一部人类的故事。得不到渴求的爱,有的孩子会踢猫一脚,然后怀着罪恶感瞒住这个秘密;有的会偷窃,用钱使自己感觉到被爱;另一种则是征服世界——总之就是罪恶感与报复,然后是更深的罪恶感。 ——约翰·斯坦贝克
    我宁愿清洗浴缸周围的霉菌,也不想读书。 ——一个阅读障碍儿童

    苏格兰赛车手杰基·斯图尔特(Jackie Stewant)在退休之前曾赢过27次大奖赛冠军,还被查尔斯王子封为爵士,可以说是全世界最成功的赛车手之一。他同样是个阅读障碍者。最近,在一个国际科学研讨会中,他以下面这段话结束了他的演讲:“你永远不知道阅读障碍者的感受,不论你在这个领域工作了多久,就算你自己的孩子是阅读障碍者,你还是不会理解整个童年都被人羞辱的感觉,每天都有人教育你,使你相信你永远做不成任何事情。

    身为一个阅读障碍者的母亲,我知道斯图尔特是对的。全世界阅读障碍者的故事都是一样的。一个聪明的孩子,假设是个男孩子,进入学校时满怀生命力与热情,和其他孩子一样努力学习阅读,但和其他人不同的是,他似乎学不会阅读。父母告诉他试着再努力一些,老师说他“没有发挥潜力”,其他孩子则说他是“智障”或“笨蛋”。他接收到的那些强烈信息都在说他做不成什么大事,离开学校时他与刚进人学校时那个性格热情的孩子大不相同。只因为无法学会阅读,这样的悲剧不断重复上演着,次数多到让我们只能叹息。
    幸运的话,实际上,要非常幸运,挣扎中的年轻阅读者会遇到贵人相助,帮他发现自己“意想不到的天赋”。斯图尔特说要是他没有发现自己可以赛车的话,一定会“进监狱,甚至更糟糕”,因为他曾学过如何用枪。一直到很久以后,他的两个儿子被诊断出阅读障碍,他才了解到自己小时候的生活到底是怎么一回事。他发誓绝不会让孩子们再经历这一切。
    晚期诊断是阅读障碍故事中常见的情况。金融家查尔斯·施瓦布Charles Schwab)、作家约翰·欧文(John Irving)与辩护律师戴维·博伊斯(David Boies)等人,一直到他们的孩子被诊断出阅读障碍时,才惊觉自己也有同样的问题。拉塞尔·科斯比(RussellCosby)也是直到他的侄子恩尼斯(Ennis)在大学里被教育与阅读障碍研究专家卡罗琳·奥利弗(Carolyn Oliver)诊断出阅读障碍时,才发现自己也有阅读障碍。
    有时这些故事是幸福的结局。在被好几所高中拒收后,保罗·奥法里(Paul Orfalea)最后成了图文快印行业巨头金考的创始人,大卫·尼尔曼成为美国捷蓝航空公司的总裁,约翰·钱伯斯成为思科的首席执行官。

    童年经历的影响:儿童如果有不断失败的经验,就可能对生活感到恐惧,童年的梦魇可能影响其一生。我们现在已经知道如何判断儿童是否会有阅读障碍,应当在他们经历失败之前进行诊断。

    当然这样的圆满结局并不常见。在对阅读障碍者的研究中,让我和我的许多同事最为沮丧的是,阅读障碍者人生失败的轮回在很大程度上是可以避免的。我们现在已经知道如何判断出许多可能会有阅读障碍的儿童,我们可以在他们开始经历种种挫败之前就诊断出来,否则这些经历会对儿童造成很大的伤害。儿童如果有好几年不断失败的经验,常常会对生活感到恐惧。斯图尔特曾透露,成年后无论他赢得多少奖项,或拥有多少车子与飞机,他也无法真正地认同自己。他童年的梦太长,即便后来跳出了阅读障碍者的轮回,早期学习时遭遇挫折的恐惧仍对他有持续的影响。
    研究有些大脑为何无法学会书写语言,让我们对大脑的运作有了新的认识,就像研究无法学会游得快些的乌贼的中央神经系统,立刻我们就知道游泳所需的必要条件。反过来也一样,了解阅读脑的发展给了解阅读障碍提供了新的希望。在检验这两者的过程中,我们以智力进化的宽广视野来进行探讨,把阅读这种文化产物只看成是大脑无尽潜力的一种表现。
    当我们着手阅读障碍的研究时,很快就发现这本身是一个棘手的浩大工程。之所以这样说,至少有3个原因:1.阅读脑的需求复杂;2.这项研究牵涉到许多门学科:3.阅读障碍者身上兼备强悍与极度软弱的特质。阅读障碍者的研究史正好反映出这一切的复杂度,它同时也反映了过去100年来我们的智力历史和社会的许多变化,例如诺姆·乔姆斯基的语言革命以及社会等级制度对阅读障碍诊断的影响。
    奇怪的是,一直以来关于阅读障碍都没有一个广为世人所接受的定义有些研究人员不用阅读障碍(dyslexia)这个词,而改为较一般性的描述,如无法阅读或无法学习。尽管柏拉图与古希腊人都注意到这个现象,还是有些人认为阅读障碍并不存在。由于历史原因,我个人倾向于使用“阅读障碍这个词,但不论我们称大脑无法学会阅读与拼写的状况是什么,最终并不会造成任何差异。只要我们了解这个概念中具有吸引力的观点,以及不重视这个问题所造成的悲剧就够了。

    盲人摸象般的历史

    这段复杂的故事应该从我们的进化史开始。英国神经心理学家安德鲁·埃利斯(Andrew Ellis)清楚地认识到这一问题的背景,他宣称无论阅读障碍最终被证明出是什么,“它绝不是一项阅读疾病”。埃利斯其实是要强调一个事实,大脑在人类进化的过程中从来就不是用于阅读的;正如我们所知,没有一个基因或生物构造是专门为阅读而设计的。相反,为了读,每个大脑必须学习在原本担负着物体识别等其他功能的旧的区域上建立起新的神经回路。

    阅读障碍:不是大脑的“阅读中心”出了差错,因为根本就没有这种结构。为了阅读,大脑必须学习在担负着其他功能的旧区域上,建立起新的神经回路。

    阅读障碍绝不是大脑的“阅读中心”出了差错这么简单,因为根本就没有这种结构。要找出阅读障碍的成因,务必要检视大脑旧有的结构,以及它们在处理过程、结构、神经元与基因的多个层面,每个层面的所有环节都必须在同一时间内迅速运作,才能形成阅读的神经回路。
    换句话说,我们必须再一次回顾之前提过的5层的阅读金字塔,这次需要更多的注意力。图7-1再次显示出这个金字塔,该金字塔显示出所有的活动都是为了支持顶层的基本行为,如阅读一个单词或一句话。我再次使用这个图,有新的用意:协助说明阅读神经回路发展时可能出错的各个部位与各个路径。

    图 7-1 阅读行为的金字塔

    金字塔的第二层是认知层,由基本的认知、概念、语言、注意力与运动等过程组成,是多数心理学家的主要研究范畴。20世纪的许多理论家相信阅读障碍的主要原因是这一层有了问题。因为这一层的许多过程建立在神经结构之上,这些神经结构联结起来,使我们能够学习阅读。近来许多的脑成像研究试着探索这些结构之间与其内部的联结,试图去了解阅读障碍。这一结构层的下一层是由许多神经元工作组所组成的。这些神经元工作组能够产生和提取如字母和音位等各种形式的信息的持久表征,并且自动化整个过程,使人类成为视觉与听觉的专家。
    金字塔最下层代表着控制这些神经元形成工作组和结构,最终控制视觉与语言等原有过程的神经回路的基因。近来有许多的阅读障碍研究着重于这个层面。事实上,这类研究工作非常复杂,因为阅读神经回路并没有代代相传的独特基因。每个大脑内的阅读金字塔的上面4层,必须在每次阅读时重新学会如何形成所需要的途径。因此,阅读与其他文化产物、其他过程大不相同,它们不像语言或视觉,不是“自然地”出现在儿童身上并且在年幼的初级阅读者身上尤为脆弱。
    本书所呈现的阅读脑进化的观点,将从3个让大脑能够读出第一个代币的组织规则开始。在所有的文字系统中,阅读的发展涉及以下几个原则:重新组合旧的结构,并以此创造新的学习神经回路;神经元工作组在这些构造内重现信息的专门化能力;这些神经元工作组与学习神经回路以几乎自动化的速度来提取与连接信息。如用这些设计规则来审视阅读障碍,许多可能的成因就会一一浮现:
    @ 语言或视觉结构的发展过程出现了问题,有可能是遗传的(比如这些结构中学习专门化的工作组出了差错);
    @ 自动化过程出现问题,可能是在专门化工作组中提取表征的地方出错了,或者神经回路结构间的联结有误,或者两者兼有;
    @ 这些结构之间的神经回路联结有障碍;
    @从原本特定的文字系统的固有结构中重新组合出一个全然术同的神经回路。有些阅读问题的原因在所有的文字系统中都有发现,而有些则专属于某个特定的文字系统。

    在过去120年来混乱的阅读障碍研究史上,这4种问题都曾出现在一种或者几种假设中。事实上,根据这些问题将阅读障碍的各种假设组织起来将会对理清这段历史极有帮助。更重要的是,以大脑设计为主轴来整理各种阅读障碍的理论,会让我们更清楚地明白阅读障碍研究如何增进我们对阅读脑的了解。

    假设1:固有结构的缺陷

    20世纪的阅读障碍理论主要是以神经回路中固有的结构来解释,并且从视觉系统开始探讨。现在我们所说的阅读障碍的第一个用语是“词盲”这个用语可回溯到19世纪70年代德国研究者阿道夫·库斯莫尔(Adolph Kussmaul)的研究。根据他的研究与X先生的奇怪病例,童年时期的阅读障碍被称为“先天性词盲”。

    X先生是一个法国商人,同时也是业余音乐家,有一天他起床后突然发现自己几乎一个字都读不出来。法国神经学家约瑟夫-朱尔斯·代热林(Joseph-Jules Dejerine)发现尽管视觉完好无缺,X先生却无法再读出文字、说出颜色,或者阅读音符。几年后,X先生中风,完全丧失了读写能力,最后因此而过世。

    解剖X先生的遗体后,发现他遭受到两次中风,分别损害脑部不同的区域。代热林以此作为他关于大脑和阅读的新理论的基础。第一次的中风损害了左侧视觉区与连接两侧半脑的胼胝体(corpus callosum)的后部(见图 7-2)。在第一次中风时,X先生的两个半脑的视觉区“失去了联结”虽然他可以用右半脑处理看见的事物,却无法和左半脑的语言区或是左侧受损的视觉区相联结。这是起初造成他无法阅读的原因。第二次中风时他完全丧失读写能力,这次受损的是角回区域。代热林所报告的这个经典失读症病例,成了阅读障碍研究真正开始的标志,也是关于视觉角色与联结重要性的第一个假设的基础。

    图 7-2 失读症的大脑

    20 世纪的神经科学家格施温德将代热林的案例转译成“联结阻断综合征”的一个个案,具体是指:脑部负责文字这类特定功能的部位与其他部位之间失去联结,便会导致该功能丧失。因此X先生的病例实际上反映出两个不同的假设:第一个假设,固有的视觉系统结构受损导致失读;第二个假设,阅读神经回路的联结出现障碍导致失读。

    联结阻断综合征:脑部许多部分共同负责一个给定的功能,若负责这类特定功能的部位与其他部位之间失去联结,便会导致该功能丧失。

    另一项关于阅读障碍的早期的、符合逻辑的解释是听觉系统出了问题(见图7-3)。1921年,阅读研究人员露西·法尔兹(Lucy Fildes)表示有阅读问题的儿童无法形成字母所代表字音的听觉图像,这个概念类似于我们今天所说的音位表征。1944年,神经学家兼心理学家保罗·席尔德(Paul Schilder)清楚地描述出阅读障碍者无法联系字母与其字音,也不能根据发音来区分口语单词。席尔德的观点与法尔兹早期听觉图像的研究,是现代阅读障碍最重要的一个方向的先驱:儿童无法处理单词内部的音位。

    图 7-3 视觉过程与听觉过程

    20世纪70年代初期,在语言学家乔姆斯基的影响下,心理语言学即研究语言的心理学,开始兴起,为阅读的研究另辟蹊径。早期心理语言学家的目标主要是系统地了解言语、语言、阅读发展与阅读障碍之间的关系。他们将阅读障碍视为语言疾病的观点,颠覆了之前以知觉与视觉为基础的理论。
    这种观点中最让人深思的研究之一是心理学家伊莎贝尔·利伯曼(Isabelle Liberman)与唐·尚克韦勒(Don Shankweiler)对一群患有严重耳聋的儿童的研究,当然这些儿童无法听见任何话语。他们发现其中只有少数人可以阅读得很好,而且他们和其他有音位表征的儿童有所区别。利伯曼与尚克韦勒解释道:这项研究结果加上其他的相关研究,意味着阅读更取决于语音分析语音意识等语言技能(见图7-4),而不是以感官为基础的语音的听觉感知力。

    图7-4 语言假设与语音分析

    实验心理学家弗兰克·维卢蒂诺(Frank Vellutino)彻底将阅读障碍领域从以知觉结构为主的解释中脱离出来。维卢蒂诺与其同事证实阅读障碍中最常见的知觉问题,就是众所周知的“视觉”颠倒(如将b误读成d或将p看成q),这并不是肇因于知觉缺陷,而是儿童无法正确提取这些语音的语音标志。在一个精心设计的研究中,维卢蒂诺首先给有阅读问题的儿童几组典型的颠倒配对(如b和d),然后让他们画出(视觉过程的非语言任务)或是说出(语言任务)字母。儿童可以非常正确地画出字母,但老是读错,这表明问题存在于他们的语言过程中。
    目前有上百个语音研究显示出许多阅读障碍儿童无法像一般儿童一样感知、切分或操作个别音节与音位。这项发现具有深远的意义。无法意识到bat有3个独立音位的儿童,将来如果遇到老师开始一节这样的课程:“分解这个词的读音:/b/-/a/-t/”,会面对极大的困难。这些儿童无法及时删除一个单词的词首或词尾的音位,更不用说单词中间的部分,并且无法读出这些音位;他们的声韵模式意识(如判断fat和rat是否押韵)发展得极其缓慢。更重要的是,我们现在知道在学习阅读时,这些儿童所遭遇的最大困难,是要求他们自己把字母和发音之间的对应规则纳入自己的语言体系。
    实际上,以语音来解释阅读障碍的最大贡献在于它对早期阅读指导与补救的影响。研究人员约瑟夫·托格森(Joseph Torgesen)与理查德·瓦格纳(Richard Wagner)与其佛罗里达州立大学的同事的研究证明,系统、明确地教导年幼阅读者音位意识与字母-音位的对应规则,在处理读障碍问题时远比其他方式有效。在早期阅读技能的解码过程中,为了证明音位意识与明确指导的功效而积累的证据,多到足以填满图书馆的一面墙壁。语音研究代表了阅读障碍中研究最多的结构性假设。
    其他较少为人研究但依旧很重要的结构性假设有很多:从额叶的执行过程,包括注意力的组织、记忆力与理解力的监测,到小脑后侧这些与计时、语言过程以及运动协调和概念构成之间的联系等诸多层面相关的区域每个结构性假设的重要性都有两层意义。如华盛顿大学的弗吉尼娅·伯宁格(Virginia Berninger)所证明的那样,有些儿童的阅读问题源自较为基本的问题,如执行过程中的注意力与记忆力;有些儿童则是阅读与注意力的综合征。还有下面将介绍的,有些儿童的问题与时间相关。几位英国研究者则假设这可能与部分儿童的小脑功能不全有关。
    不过该部分的整体重点还是检验所有结构性假设的类型后得到的全体图像。从20 世纪初期至中期,善意的研究人员倾向以一个丧失功能的区域来作为大多数阅读障碍的主要解释。盲人摸象的故事在阅读障碍的研究领域或许已经成了一个滥用的比喻,但却是这项研究的最佳写照。

    阅读障碍研究:许多专家认为阅读障碍是由固有结构的缺陷造成的。把各种假设涉及的脑区在同一张图上标出来,就得到了阅读脑的主要结构图,阅读障碍研究反过来增进了我们对阅读脑的了解。

    许多理论家将自己对阅读障碍的独到见解冠以新的名称,这早已是司空见惯的事情。试想如果将所有过去针对“过程-结构”层面提出的各种假设列出,就像人类大脑地图上的拼图一样(见图7-5),我们会得到什么?那就是:这些假设合起来就像“通用阅读系统”主要部位的最佳示意图。这以另一种方式来说明,将众多阅读障碍成因的假设合起来刚好映射出阅读脑的主要组成结构。

    图7-5 各种阅读障碍假设的集合

    假设2:无法进行自动化

    第二类假设重点强调了自动化失败的问题,或者说这些结构内部或彼此之间的处理速度不够快。其背后的假设是,这项障碍会造成阅读神经回路的各个部分,无论是在神经层面还是结构处理层面上,都无法流畅地运作导致用于理解的时间不够。
    和第一类假设一样,研究者会用许多与阅读流畅度有关的解释来说明金字塔的不同层次与结构。毫无疑问,其中一些和以前一样,开始于视觉。举例而言,布鲁诺·布赖特迈耶(Bruno Breitmmeyer)和威廉·洛夫格罗夫William Lovegrove)发现阅读障碍者在处理视觉信息的速度上有显著差异试想一颗星星的图像紧接在另一颗星星的图像后出现,在许多阅读障碍者的大脑中,两个快速出现的“闪光”会汇合成一个,因为他们处理视觉信息的速度不够快。
    类似的研究是针对阅读障碍者听觉信息的处理,同样也显示出他们和·般阅读者的差异。在这两种过程中,阅读障碍者和同龄的儿童在最基础的感觉层次上一样,如有视觉刺激或听觉信号发生时,会立刻有所感知。但是当复杂度增加时,就会出现落差。有些阅读障碍儿童和大多数语言缺失的儿童都比一般孩子需要更多的时间来处理两个简短的分开的音调,处理视觉图像也是这样。
    日益精密的研究显示出,处理语音的困难因为需要区分文字内细微的音位与音节等因素而加重。如剑桥大学的戈斯瓦米在英国、法国与芬兰进行的研究发现,阅读障碍儿童对自然语音中的韵律较不敏感,常规的韵律形成部分取决于字音中的重音与节奏模式的变化。这–切会导致形成不良的音位表征及以后的阅读障碍。
    有关阅读障碍脑部运动过程中速度差异的证据依旧是充满吸引力的话题之一,最后可能还是要回到戈斯瓦米关于言语的研究上。波士顿著名的心理学家彼特·沃尔夫(Peter Wolf)观察到儿童尝试按照节拍器来数出节奏,因此他总结道:当阅读障碍者必须将一个行为的各个部分组合成“临时而有序的一个整体”时,其运动区的自动化便会出现问题。换句话说,无论是眼睛还是耳朵的运动功能,有为数不少的阅读障碍儿童在需要正确有序快速地联结一项任务的各个部分时,就会出现问题,而不是在最基本的感觉处理方面。以色列心理学家扎维亚·布雷兹尼茨(Zvia Breznitz)为阅读障碍故事增加了另一个不寻常的情节。布雷兹尼茨研究阅读障碍儿童超过20年,她以一系列各种各样的测验来进行研究,结果发现有相当广泛的问题都与处理速度有关。顺着这个思路,她有了不寻常的发现。和其他人一样,她也发现阅读表现差的阅读者,在每种类型的任务中都有处理缓慢的情况,而阅读能力受损的阅读者似乎在视觉与听觉过程间有一个“时间差”,布雷兹尼茨称之为“非同步性”。似乎阅读最需要用来建立字母一发音对应关系的两个脑部区域之间处理各自信息时不能同步,无法把独立的信息整合起来进而影响到整个阅读过程。几年前珀费提也观察到布雷兹尼茨所说的时间“非同步性”现象。时至今日,这仍是阅读障碍之谜中最奇妙的一部分。
    在每种语言中最佳的阅读障碍预测指标,是一项和时间有关的称为“命名速度”的测试,这项任务几乎涵盖了金字塔第二层所有的认知过程。命名速度的故事要回到X先生的案例上,他脑部罕见的损害使他无法阅读也无法说出色彩的名称。从这点看来,格施温德推论“给色彩命名”与阅读系统一定使用了一些相同的神经结构,并且共用许多认知、语言与知觉过程。而且他还进一步推论,一般在进幼儿园之前就已经发展好的“给色彩命名”的能力,会是儿童日后学会或学不会阅读的一项良好预测指标。
    约翰霍普金斯大学的儿科神经学家玛莎·布里奇·登克拉(Martha Bridge Denckla)对这一推论做了测试,结果发现阅读障碍儿童可以正确无误地念出色彩名称,但是无法快速地念出。念色彩(或字母、数字)名称时,大脑用来联结视觉与语言过程所用的时间才是无法学习阅读者的预测指标。登克拉的发现以及她和麻省理工的神经心理学家丽塔·鲁德尔(Rita Rudel)的合作研究成果成为“快速自动命名”测试的基础,在这项测试中儿童必须尽可能快地念出成排重复的字母、数字、颜色或物体。我们实验室与世界上其他实验室的大量研究都显示出,在任何语系中,“快速自动命名”的结果都是“阅读表现的最佳指标之一”。
    后来我以此为基础发展出一个新的命名速度测试,称为“快速交替刺激”,这种测试的设计是为了在快速自动命名的需求中,增加更多的注意力与语义过程。你试想一下整个阅读发展由快速的解码能力来指导,以便让大脑有时间来思考输入的信息,就会明白这些命名速度研究的深层意义。在许多阅读障碍的案例中,大脑的阅读发展从未达到最高层次,这是因为花费在联结该过程的最早部分之上的时间过长。许多阅读障碍儿童在面对大量文字时,根本就没有时间思考。

    “快速自动命名”测试:在这项测试中,儿童必须尽可能快地念出成排重复的字母、数字、颜色或物体。大量研究显示,在任何语系中,”快速自动命名”的结果都是“阅读表现的最佳指标之一”。

    不过,研究人员从来就不打算以命名速度的缺陷来解释阅读障碍,而是将其作为阻碍阅读过程速度的某些潜在问题的指标。正如格施温德所说命名的过程与结构是阅读的主要过程与结构的子系统。命名速度涉及的过程与结构的缺陷,包括它们之间的联结、自动化或不同神经回路的使用都有可能导致命名或阅读上的缺陷。
    在命名速度的背后隐藏着一个进化的故事,并且不断丰富着第一个阅读脑进化的故事。图7-6是加州大学洛杉矶分校神经科学家拉斯·波尔德拉克(Russ Poldracle)与我们的研究团队绘制出的与命名速度有关的大脑图像,该图像完美呈现出这其中的关系。

    图 7-6 执行快速自动命名时的大脑功能核磁共振成像

    正如过去的研究者所假设的那样,在这些图像中,大脑使用枕叶-颞叶区(37区)的固有物体识别路径来命名字母与物体。功能性核磁共振成像(fiunctional magnetic resonance imaging,fMRI)支持这些研究人员的假设:人类的确是“神经元再利用”者。不过这些图像告诉了我们一个更为重要的故事反映出字母与物体之间的3个差异。

    首先,在命名物体时,左侧枕叶-颞叶区的激活程度远大于命名字母 时。物体通常不需要我们超级专门化的能力(除非是特别有趣的物体,如爱鸟者眼中的鸟),因为可能的物体实在太多了。因此,物体的识别过程并 没有完全自动化,需要更多的大脑皮质层面积。物体命名神经回路是我们 完全学会识字前的写照。

    其次,命名字母时更直接地使用枕叶-颞叶区,显示出识字的大脑视 觉专门化与特定信息自动化的能力。这正是为什么阅读者“快速自动命名” 字母永远比“快速自动命名”物体快。

    再次,也是非常重要的一点,在常规阅读脑中,相较于物体,字母这 种文化产物在每一个其他“固有构造”〔尤其是在颞叶-顶叶的语言区〕中 激活的程度明显偏高。这也是为什么“快速自动命名”与“快速交替刺激” 这类方法,可以预测所有语言的阅读表现。同样地,这也解释了为什么命 名物体与字母测试中的大脑图像,看起来像是大脑学习阅读前后的进化图 片的比较。

    最后,在为早期诊断出阅读前儿童的阅读障碍而进行的命名速度研究 当中,可能含有一些儿童发展的重要启示。我们知道绝大多数的阅读障碍 儿童在幼儿园早期,念出字母或物体的速度就明显地缓慢很多,而且那时 字母测试比物体测试更具有预测性。若以命名物体与字母的脑成像图来分 别代表阅读前与阅读后的大脑,我们可以检查小至3岁的儿童发展中的大 脑,来判断他们提取物体名称的能力是否较为薄弱。若是能及早发现任何 一个大脑的发育速度和他人不同,或者采用另一套神经回路来处理物体与 颜色,例如用右半脑回路,脑成像研究会显示出明显差异,我们便能及早 预测未来阅读失败的情况,也就有机会更早地进行治疗。

    我希望未来的研究者能在儿童开始学习阅读之前,就拥有他们进行物 体命名时的大脑图像,如此我们就能研究神经回路中一套特定的结构的使 用,究竟是无法学会字的原因还是结果。

    这样复杂的想法让我们从速度与自动化的问题,转移到这些与时间相 关的缺陷成因。原因之一可能与神经回路的联结有关。

    假设3 :结构间神经回路的联结障碍

    有一类假设强调了解结构间联结的重要性,而不是确定结构内部出问 题的位置。格施温德在翻译代热林第一个经典失读症的案例时,再次提到 19世纪神经科学家卡尔·韦尼克的“联结阻断综合征” 的概念,以此强调所有组成系统一起工作以完成每项认知功能的重要性。 因此,在X先生功能失常的案例中,右半脑的视觉信息无法经过胼胝体进 入左半脑的视觉-言语历程,而左半脑的结构性损害也一样重要。阅读神 经回路内部的联结和结构本身一样重要。

    20世纪中叶许多理论家提出的假说,都强调阅读神经回路的结构与过 程之间的联结。最普遍的两种想法都着眼于联结中断的问题来源,一是视觉-言语过程出了问题,再一个就是视觉-听觉系统有问题。现代神经科 学已经超越这些表面的解释,可以深入检查对阅读来说很重要的各种结构 间的功能性联结,或是交互作用的强度。对功能性联结感兴趣的神经科学 家倾向于研究阅读神经回路的主要组成结构的效率,以及这些结构间交互 作用的强度。

    在此种类型的研究中,至少有3种形式的联结障碍持续地受到关注。 这些积累起来的信息再次揭露出一个重大的事实。第一类型的神经回路运 作失常是由意大利神经科学家发现的:他们观察到意大利的阅读障碍者可扩大联结的脑部区域脑岛(insula)的活跃程度偏低,似乎暗示着他们额叶 与语言区后侧失去了联系。这个区域相当重要,是大脑内部距离相对较远 的各区域的中心,对自动化过程至关重要。

    耶鲁大学与哈斯金斯实验室的研究人员则发现了另一种不同却有潜在关联的联结障碍形式。他们在研究非常重要的枕叶-颞叶区时发现,无论 何种语言,该区域似乎都会在阅读初期被激活,但是阅读障碍者在该区域 37区的联结方式和其他人不同。在未受损阅读者的大脑中,最有力、最自动化的联结发生在左半脑的后侧与额叶区域之间。但是,在阅读障碍者的大脑中,最有力的联结却出现在左半脑枕叶-颞叶区和右半脑额叶区之间。 此外,一些神经科学家还发现,一般初级阅读者在阅读与处理语音信息时 所动用的左半脑角回,在阅读者障碍者大脑中运作时似乎和其他左半脑的 语言区失去联结。

    最后一种类型的联结障碍是在脑成像研究中发现的,这对整合上述所 有的发现颇有助益。休斯敦的一个研究团队采用脑磁图技术,提供了阅读 时大脑各区域中激活区域的大概图像与时间。他们发现阅读障碍儿童是从 左右半脑枕叶的视觉区开始,移动到右角回,再到额叶区。换而言之,阅 读障碍儿童使用的阅读神经回路和一般人全然不同。

    阅读障碍者的脑部活动:阅读障碍者的左脑角回区的激活程度较低,左脑枕叶-颞叶区激活程度大幅降低。这项意想不到的发现有助于解释许多谜团,包括我在麻省理工的一些 同事的发现:阅读者障碍者的左脑角 回区的激活程度较低,左脑枕叶-颞 叶区激活程度大幅降低。这些发现使 我们从神经回路内部明显联结障碍的 讨论,转向最让人兴奋的第4种假设:一颗以不同方式重塑的大脑。

    假设4 :阅读的不同神经回路

    在阅读障碍的研究史上,最不寻常也最容易理解的一项研究,来自于 杰出的神经学家塞缪尔·奥顿与他的同事安娜·吉林厄姆。根据他在20世纪二三十年代的临床研究,奥顿重 新命名阅读障碍为“视像颠倒症”,或称“扭曲的符号” (见图7-7)。

    图7-7 奥顿的“视像颠倒症”设想

    奥顿认为在大脑工作的常态分布中,通常处于主导的左半脑会选择字 母的正确方位(如b或d),或是字母的排列顺序(如是not而非ton)。但是在阅读障碍者脑中,由一侧半脑主导的模式要么不会出现,要么严重 地推迟。结果造成左右半脑之间的沟通失败,奥顿写道:有些儿童无法选 择正确的字母方向。这造成视觉空间的混淆、字母的扭转,阅读、拼字与 写字的困难,这也就是我们所说的阅读障碍。

    20世纪六七十年代的研究人员对这个想法非常着迷,他们急于发现阅 读障碍者左半脑在处理诸多与阅读相关的工作时,看似比右半脑弱势的现 象。例如,在让儿童分别以两只耳朵聆听以各种方式呈现的声音信号的任 务中(现在称为“双耳相异信息任务”),测验的普遍结果都是阅读障碍者 在使用左半脑执行听觉过程时,和正常的阅读者不一样。1970年,波士顿 退伍军人医院的神经心理学家以一系列的视觉、听觉与运动任务来测试一 般阅读者和阅读障碍者,结果不仅发现阅读障碍者在每项测验中成绩都明 显较差,还发现他们在双耳相异信息任务中具有右脑优势。
    同样地,也是20世纪70年代,研究人员在对阅读障碍者进行文字识 别测验时,在他们的脑部视觉区发现意想不到的对称性,同时发现左脑在 处理语言信息时弱化得令人吃惊。在这期间,“单侧化”研究一个接一个地 进行,显示出阅读障碍者的大脑在执行一系列工作时,都特别地倚重于右 半脑。多年来,这些发现一直被视为对右半脑与左半脑过程的认识太过简化,但是,稍后我们将看到脑成像研究者正开始重新思考奥顿的想法,以 及这些关于半脑过程的旧理论。

    在目前典型的阅读神经发展研究中,乔治城大学的研究组发现,随着时 间的流逝,右半脑中用于阅读文字的大型视觉识别系统会“逐步撤离”,而 左半脑的额叶、颞叶与枕叶-颞叶区的参与程度则持续增加。这进一步证明 了奥顿的观点:在发育时,正常阅读者的左半脑逐步承担着文字的处理工作。

    然而,我们再一次在阅读障碍者的脑中发现,阅读神经回路的这种持 续发展与正常阅读者也不一样。耶鲁大学的萨莉·谢维兹与贝内特·谢维兹夫妇领导的研究组率先观察到这一点, 他们让阅读障碍儿童进行持续性的阅读测试,从简单的视觉测试到复杂的押韵测试等,结果发现阅读障碍儿童较多使用额叶区,但却很少用到左脑 后侧区域,尤其是在发育上极为重要的左脑角回。更重要的是,这个研究 团队还在右半脑发现了潜在的“辅助”区域,补偿原本效能较高的左半脑 所执行的功能。

    近来耶鲁团队更进一步地研究了阅读正常的成人,以及另外两组有阅 读障碍但成因不同的成人,其中一组经过辅助可以正确地阅读,但是并不 流畅;另一组则是大脑没有发挥补偿作用的永久性阅读障碍,可能是受环 境影响而导致的这项缺陷。结果震惊了所有的人:无阅读障碍和因环境影 响导致的、无法辅助的阅读者所使用的神经回路相似。而较为接近典型阅 读障碍者的辅助组阅读者,使用了较多的右半脑区域,包括枕叶-颞叶区, 而其他两组使用的左半脑后侧区域在他们脑中的激活程度明显偏低。此外, 他们还发现环境影响型的永久性阅读缺陷者,使用枕叶-颞叶区的程度甚 至高于正常阅读者,这意味着这组人阅读时花费在记忆策略上的工夫远远 多于用在分析上的工夫。

    为了让读者对稍后即将介绍的最新研究有所兴趣,艺术家斯图德利绘制 了一套脑成像的素描,显示出阅读障碍者如何处理视觉、拼写规则、语音与 语义信息。图7—8显示出目前在阅读障碍自动化与流畅度的研究中,完全 可以预测的情况:从视觉-拼字规则的辨认,到语义处理过程中每一步的推 延。从150毫秒起,阅读障碍者没有一个步骤是在应有的时间点上。此外,不久前才提到的那项惊人发现也显示在这些图当中。阅读障碍者使用大脑回 路的情况似乎异于常人,他们的比较偏爱使用右半脑的结构,从视觉联合区 和枕叶-颞叶区开始,延伸到右脑角回、缘上回与颞叶区。对阅读很重要的 额叶区,使用程度是左右对称的,但在激活时有所延迟。

    图7-8 阅读障碍时间轴

    这条时间轴是世界各地诸多实验室积累的研究成果,包括美国、以色列 与芬兰等地。它很难完成。该时间轴的好处是具有启示性;缺点是很容易产 生误导。在脑成像与教育研究中,苏格拉底关于文本的警语同样适用于脑部 成像,关于这一点请阅读者牢记“他们看似真实的特性带来真理的幻觉”。

    事实上,它们只不过是我们就目前所有参与者的统计平均值所能做的 最佳诠释。只有时间与更多的证据可以揭露真相,告诉我们一个不同的半 脑所具备的能力。不过要是能在某些阅读障碍者身上证实阅读神经回路的 右脑优势这一新兴的概念是正确的,那就表示这些阅读障碍儿童的大脑不 仅在视觉、听觉、提取和整合拼写规则、语音、语义、语法与推理过程上 更为缓慢;而且还要在一个原本不是设计成处理时间准确度的半脑上,使 用一套完全不同的神经回路结构。

    几年前,曾志朗与王士元这两位杰出的研究者观察到,左半脑进化出 处理人类语言与文字所需要的精密准确度与掌握节奏的能力;与此相反, 右半脑适合从事大规模的活动,例如创造力、模式演绎和与上下文相关的 技能等。右脑优势的神经回路这项令人深思的发现有助于解释这一个世纪 以来种种关于阅读障碍的假设,这其中的每一个假设都正确地描述了这种 综合征的症状。就本书提出的“阅读金字塔”与组织这一金字塔的大脑设 计的基本原则来看,这些历史上的假设没有一项可以解释全部类型的阅读 障碍,尤其是在进行跨语言研究之后。

    左右半脑所具备的能力:左半脑进化出人类处理语言文字所需的准确度与节奏感;而右半脑擅长创造、模式演 绎和与上下文相关的技能。 有阅读障碍的大脑更依赖右半脑的神经回路。

    这让我们回到现在最迫切的问题,阅读障碍者之间的差异性,不仅存 在于不同的语言之间,而且在同样的 文字系统中也存在。了解大脑在阅读 方面的设计原则之后,我们对阅读障 碍的看法从单一的维度转移到更加有 价值的多重维度。阅读障碍的可能成 因很多,因此治疗也变得很困难。这 让研究的重点从寻找阅读障碍的基本 成因,转移到阅读障碍者中最普遍的亚型阅读者上。

    多余的假设:多重结构、多重缺陷与多种亚型

    阅读障碍者在发育过程中表现出来的阅读障碍类型会随着成长而改变, 因此接受亚型这个概念,比以经验为根据来分类要容易很多。为了考量多重缺陷的问题,我和我的加拿大籍同事帕特·鲍尔斯一起做 了一个简单的研究。我们根据两种最好的判断阅读障碍的指标区分出亚型 的种类:
    @亚型一,语音意识的问题〈一种结构性假设〉;
    @亚型二,命名速度缓慢(以替代方式处理速度与流畅度);
    @亚型三,两种缺陷兼有。

    约有25%的英语阅读障碍者仅有语音缺陷问题。更重要的是,不到 20%的阅读障碍者仅出现流畅度缺陷,这种“不够流畅”的阅读障碍亚型, 虽然在英语中相对较少,但在其他语法较规则的语言,如德语和西班牙语中, 却占有很大的比例。在英语中,第6章提到的卢克就是不流畅亚型的例子, 他不能够快速地阅读并唱出他的咏叹调,但他的老师却不认为他有阅读问 题。这类儿童在大多数的学校常常被忽视,因为他们一开始并没有出现真 正的解码问题,只有到后来才出现流畅度与理解力的缺陷。

    在英语中,最常见也是最难以处理的是亚型三:这些儿童不仅命名速 度与语音出问题,同时也伴随着每个阅读层面的严重障碍。因为同时具备 结构性与处理速度的缺陷,历史上这类儿童都被当做典型的阅读障碍者。

    有趣的是,约有10%的阅读障碍儿童无法依照上述方式进行分类。正 如心理学家布鲁斯·彭宁顿所描述的那样,这意味着 要有更为详细的多种亚型分类系统,以便将结构性数据与遗传性数据联系起来。在这类复杂的分析中,佐治亚州立大学的罗宾‘莫里斯研究团队证明阅读障碍最为严重的儿童不仅出现复合式的缺陷,而且在短期记忆方面也有问题。

    在未能全面地了解所有的亚型系统之前,从国际上几种方言与语言系统 的暂时性双重缺陷的架构中,我们获得了一些有用的信息。比如,在英语地 区的研究中,儿童在每种亚型上的比例都相当接近,但在标准美语之外的方 言中,阅读障碍儿童亚型的比例则不一样。我们的研究团队发现在非裔和欧裔的美国阅读障碍儿童之间有不一般的差异,尽管他们的智力、受教育程度 与社会经济地位都极为相似。在非裔美籍阅读障碍儿童中,有很大的比例是 双重缺陷亚型及语音亚型,在整个阅读障碍人群中的人数极不均衡。

    对此,有一个很可能的假设,非裔美籍儿童使用的主要是“非式美语”, 这是英语中的一种方言。塔夫茨大学的社会语言学家奇普·吉德尼和我们的研究组正设法找出标准美语和非式美语间的细微差异。 我们想弄清楚,这些差异是不是长久习惯说母语的儿童学习第二语言的字 母和音位对应关系规则的阻碍。我们希望了解方言之间的细微差异,是否 会对说其他完全不同的语言,如西班牙语或法语的儿童造成更大的语音识 别问题。

    现在我们比较确定的是,说非式美语的儿童有比较多的语音问题,在 这一点上,他们和说不同语言的儿童,比如西班牙语或汉语儿童,有很大 的差别。这带领我们回到阅读脑的设计这个更普遍的话题上,我们将探索 阅读障碍在不同语言中是如何表现的。

    阅读障碍的诸多面貌

    奥地利心理学家海因茨·威默操着他带有德国腔的 标准英语,听起来很像是亨利·基辛格,他描述了阅读障碍在德语、荷兰语及其他字母文字中的情况。根据已知语言的需求(德语是流畅度;汉语是视觉空间记忆;英语是语音技巧),阅读障碍会有不同的面貌,因此阅读障碍的预测指标也随之而异。如我们在阅读脑的进化中所见到的,不同的书写系统在使用阅 读神经回路的主要结构时,会有些许 差异。因此,在中国出现的阅读障碍 在本质上有细微差异绝非偶然。比如 在香港地区,研究人员在汉语的阅读 障碍儿童中发现了几种亚型,类似于 英语的双重缺陷,但是还多了一种有 趣的亚型,毫无悬念,其主要的缺陷出现在拼写规则过程上。

    阅读陣碍因语言差异而不同:因不同的语言有不同的需求,如德语要求流畅度, 汉语要求视觉空间记忆,阅 读障碍呈现出不同的面貌, 因此其预测指标也随之而异。

    在汉语读者中会发现以组字规则与视觉记忆障碍为主的亚型,这个还 比较容易理解。汉字的视觉与空间特性较为复杂,而且许多字的组字规则 都很类似。刘文理的研究团队也发现一个类似的规模较小的亚型组,包括 以下几种:语音缺陷、快速命名或流畅度缺陷、双重或结合语音快速命名 缺陷、组字规则缺陷,或是综合轻度语音、命名与词法缺陷。

    研究不同的拼音系统后,自然浮现出一项议题:阅读障碍是否会因特 定书写系统的需求而出现不同的形态。在汉语系统中,阅读障碍的研究日 益增加,显示出这项原则的诸多表现。正如之前几章所提到的,汉语代表 的是一种语素音节文字,以复杂的视觉特征来表示词素(或意义单位〉,再 以部首等更小的记号来标记语音和语义类型的辨析信息。

    英文字母代表音位的各个层次,但汉语不一样,汉语的词素可能是一 个音节,且还有不同的音调来区分。因此汉语对年幼读者来说是一系列的 挑战,从认识词素、辨别部首、区分声调到将这些信息联结到文本中正确 的异义同音字,在部分读者身上,每一个步骤都是潜在的阻碍。比如,过 去在台湾有一项研究便主要依据儿童混淆部首、同音字、笔顺与笔画的错 误来分类。

    北京的吴思娜团队也进行过一项研究,强调汉语的阅读学习中声韵意识扮演着关键性的角色。吴思娜的研究团队以儿童的认知与语言特征,以及汉语写作的特别需求为依据,发现有5种阅读障碍亚型。不论是哪一种亚型,她发现大多数阅读障碍儿童最大的困难都出现在词素层次。
    在中文的阅读障碍中,词素扮演最关键的角色。这结果和英文世界对阅读障碍的想法大相径庭,在英语中阅读障碍主要来自音素层面的问题。事实上,在汉语语系中发现某些阅读障碍儿童无法阅读的原因,和音位意识或是音位分析的关系较不如字母文字密切,这对探求一个阅读障碍更为普遍的成因极其重要。
    第一点,这彰显出阅读障碍会因应特定书写系统的需求而展现出不同的形态。第二点,在不同语系中阅读障碍展现出来的差异性又可以显示出同一个文字系统中原则上可能存在不同类型(或称亚型)的阅读障碍。第三点,在有特定要求的特定语系中,某些亚型会特别明显或是更隐晦不明比如音位单位可能是英语中主要的困难点,但在汉语中也会出现。词素单位也是同样的状况,在汉语中较为明显,但在英语世界中则没有那么明显。
    由谭力海、萧慧婷与其同事进行的几项研究显示出了这些原则的部分现象。几年前谭力海的团队研究显示出汉语阅读障碍者,其左侧额叶中回的激活区域与常人不同,但英语阅读障碍者则是在较为偏后的地方出现不同程度的激活。谭力海的团队认为语系间的阅读障碍存在差异。在他们一个较新的研究中,他们检查了汉语使用者大脑灰质的体积,包括阅读障碍者和正常人的。
    结果非常有趣,他们发现中文阅读障碍儿童与正常儿童相比,左侧额叶中回的灰质区较少。这些区域对工作记忆极为重要,是阅读汉字的关键要素之一。有趣的是,这些阅读障碍儿童的大脑后侧区域(左颞叶-顶叶区)与正常儿童并无差异。听闻这样的结果,我在麻省理工的同事约翰·加布里埃利认为,这表示:很有可能,你在一个语系中的阅读毫无问题,但在另一个语系中会很辛苦!
    这也显示出我们低估了阅读障碍所具有的复杂性。若是在各种语系间会出现不同类型的阅读障碍,就有很大的可能在同一语系中出现不同的类型,而每个语系可能出现特有的几个类型。这在英文、中文及其他几个语系中都有发现。
    在西班牙语中,马德里的研究人员发现的亚型也类似于双重缺陷分类系统,但是有一个惊人的差异:在西班牙语中,影响最大的亚型阅读障碍者的理解力受损的程度要比英国的阅读障碍者轻微许多。类似的结果也出现在希伯来语中。在一项希伯来语与英语的研究中,以色列海法的研究人员比较了各方面条件都相当的研究对象,结果发现希伯来文阅读障碍者理解力受损的情况较轻微。似乎是因为这些语言和英语相比,所需的解码时间较短,因此有较多的时间留给理解过程。
    跨语言研究的好处是可以看出一个文字系统的特点会影响到它“瘫痪的原因。当语音技巧在阅读学习中占有相当重要的地位时,比方说在语法较为不规则的英语与法语中,通常会有的缺陷是音位意识与解码的正确性–这正是阅读障碍的良好指标。
    当阅读中这些技巧没那么重要时,比方说拼写规则透明度高的德语以及其他的表意文字,处理速度就成为阅读表现的最佳诊断指标,而阅读流畅度与理解力依旧是研究阅读障碍的重点。在透明度较高的语言中,如西班牙语、德语、芬兰语、荷兰语、希腊语及意大利语,阅读障碍儿童较少出现解码问题,反而是流畅度与理解力的问题较为严重。
    根据阅读发展中大脑的设计原则以及跨语言、跨方言的比较所累积的一个世纪的研究,为我们开启了一扇认识阅读脑的重要窗口。这让我们得以超越在文字系统的演变和儿童阅读发展中所学习到的知识。这也为我们展示了阅读所需的每项要点:视觉与听觉过程中最细微的侦测指标;在不同文字系统中,联系各过程所需的时间的差别;两个半脑各负责什么工作的问题。
    有了这一切作为基础,21世纪的研究人员开始探寻,在这段盲人摸象般的阅读障碍研究史中所发现的一切,最终是否基于一套有限的、掌管旧有结构发展的基因,以及它们通力合作的能力。这些假设我们将在第8章仔细推敲,最终可能产生一个综合这4类假设的总论,在当中有少数几个特别的基因造成了阅读所需结构的神经的异常发展,从而产生了一个效率偏低的全新神经回路,因为这套神经回路本来就不是用来阅读的。

    世纪之谜

    100年前,几乎没有人知道阅读障碍的存在。大约就在那时,我的曾曾祖父推着手推车在印第安纳州建立起一个小小的经济帝国。根据19世纪南印第安纳州地方史料的记载,尽管有着这样一个有趣的性格——“据说贝克曼(Beckmann)先生既不识字也不会写字,他采用笔画来表示所有的单位数量,以便用来记账,而不用数字;有时他也用数字,但是会混淆把10写成01”,但是他每年运送几百万磅的烟草到英国。
    我不会知道我的祖先对于自己无法阅读及颠倒数字的感受如何,但是我敢打赌他一定有像赛车手杰基·斯图尔特那样感到挫败的时刻,甚至是自卑,尽管他的事业有所成功。
    幸运的是,今天每位有阅读教学经验的教师都熟悉什么是严重的阅读障碍。预测阅读失败的知识开始运用到教学实践中。斯图尔特、奥法里、科斯比和其他许多人都表示知识和应用之间的差异深深地影响了他们的生活。目前,只有少数教师熟悉阅读障碍的历史,而仍然关心其研究趋势的人就更少了。如果我有5分钟时间跟全世界的父母与教师来谈论此事,我会用以下各点来总结20世纪阅读障碍研究历史的启示:
    学习阅读,就像红袜队的棒球比赛一样,是一件可以因为任何原因而失败的美好事情。如果孩子无缘无故地学不会阅读(既没有视觉异常也不缺乏适当的阅读指导),让他们接受阅读专家与医生的评估是至关重要的。
    阅读障碍并没有固定的形式;相反,它是一个持续的发育障碍,反映出阅读以及特定语言中特定文字系统过程的众多组成问题。因此,阅读能力受损的儿童可能会表现出一系列的缺陷。这其中有些很细微,而且日后在学校中只会影响到流畅度与理解力,但多数儿童一开始还是以解码问题与无法学习字母-音位的对应关系规则为主,至少在英语中是如此。这样的缺陷也会出现在拼写能力上。
    众所周知的两项缺陷出现在语音与阅读流畅度的过程当中。因此,在大多数语言中,音位识别与命名速度这两项测试,再加上词汇量,都是读障碍的最佳预测指标。有音位缺陷的儿童一般都学不好字母-发音的对应规则以及解码。音位识别测试可以在幼儿园或一年级时就找出这些有问题的儿童。与之相反,仅有流畅度问题的儿童通常会在早期就表现出命名速度的问题。这类儿童的问题经常会被忽视,因为他们的解码是正确的尽管速度较慢。等成为高年级学生或是成年后,当阅读量增大时,他们缓慢的阅读速度跟不上时,就会产生阅读困难。他们比较像是使用德语和西班牙语这类规则语言的阅读障碍儿童,通常仅有流畅度与理解问题。快速命名测试和快速交替测试都可在幼儿园或一年级时就鉴别出有这些问题的儿童。同时有音位识别和命名速度这两项缺陷的儿童必须马上开始接受强化治疗。有少部分的儿童并没有出现音位识别与命名速度问题,但依旧有阅读缺陷,我们还需要进一步了解。
    一些阅读障碍严重的儿童,出生于语言贫乏的环境,因此词汇量成为关键因素。对有些儿童来说,英语是第二外语或方言(如非式美语或夏威夷英语 ),他们所展现出来的阅读障碍也会和一般以英语为第二语言的儿童不一样,因为他们处理英语音位的方式不同。因此有必要判断他们除了学习标准美式英语之外,在其他语言学习中是否也有阅读障碍,还是这纯粹只是因为学习第二外语或是方言的困难度而导致的问题。
    阅读障碍儿童的治疗应该处理到每一项影响阅读发展的因素,从拼写规则、语音到词汇与词法规则,以及当中的联结、流畅度和理解力的整合。任何一种阅读障碍儿童都不是“傻瓜”或“不听话”;也不是“不够用功,没有发挥潜力”,这三句话是他们最常听到而且长久忍受的。然而这些话通过许多人许多次的强调,经常会弄假成真,甚至连他们自己也误以为此。家长与老师必须确保所有的阅读障碍儿童,不论是何种形式的阅读问题,都立即受到强化治疗,而且没有一个孩子或成人因为阅读问题而被视为弱智。一旦发现儿童有阅读障碍,应立刻提供一个理解支持的方案直到儿童成为一个独立的流畅级阅读者,不然阅读障碍的挫败会引发另一个学习障碍、退学、行为不良的循环。更重要的是,社会与这些儿童都将失去他们尚未发挥的潜能。
    我的长子本就是这样一个例子。继一个世纪前他母系的曾曾曾祖父的阅读障碍后,本也出现了阅读的困难。尽管他跟许多其他阅读障碍儿童-样有相当的智力与天赋,还有积极协助的父母,他仍然在挣扎着。这本书最苦恼的时刻是在我介绍奥顿单侧化假说的时候,本就像他高中时一样,和我一同坐在餐桌旁,他在画画,那时我正写到为何奥顿的假设可能出错了。我看到了本的画,他正在仔细地画出整个倾斜的比萨斜塔,但却是上下颠倒的(见图7-9)!我问他为什么要这么画,他回答说这样画对他来说比较容易。

    阅读障碍研究的缺陷:在阅读障碍的历史与谜团中,我们已经知道了很多,但还有很多悬而未决的问题。其中一项便是右脑优势的阅读神经回路存在的可能性。

    我们这些研究人员没有一个可以用现阶段的知识来恰当地解释这个现象,在阅读障碍的历史与谜团中,我们已经知道了很多,但还有很多悬而未决的问题。其中一项便是右脑优势的阅读神经回路存在的可能性,这项极具争议的发现或许可以解释本异于常人的空间能力。
    2006年,本年满18岁,准备去读罗德岛设计学院,我决定和他讨论所有这些关于他的推测。我们画了一系列的图,从一般阅读者大脑使用两个半脑开始,然后是各种神经路径如何随着时间的变化而强化与自动化,最后探讨为什么阅读障碍者的神经回路路径可能异于常人。我丈夫吉尔和我早已习惯经常语出惊人的本;不过,这次他的第一个问题就让我不知所措。

    图 7-9 本17岁时画的比萨斜塔

    “那么,这是否意味着我比较有创造力是因为我比一般人更常使用右脑,增强了右脑的神经路径?还是说阅读障碍儿童天生就是有创造力的?我不知道要怎样回答本的问题,但我的确知道这个问题和近来右脑优势的阅读神经回路的新研究密切相关,这些问题反复出现在研究中:右脑优势的阅读神经回路,究竟是无法轻易命名字母与阅读文字的成因,还是结果。
    处于21世纪的我们正逐步揭开这个谜团,因为我们正在将过去的阅读障碍研究史中众所周知的与忽略的种种信息连接起来。再加上近来脑部成像研究所得到的新信息,对无法学习阅读的大脑到底发生了什么,我们眼前将会浮现出一个更为透彻的图像。我还不知道这项阅读障碍的新研究最后会有什么结局,身为一个研究者,我不愿多谈自己的直觉。但是如果我是正确的,我们将会发现阅读障碍是大脑补偿策略的一个惊人例子:当大脑无法正常运作一项功能时,它会重塑自身另辟蹊径。为什么会这样呢?这个问题将带领我们进入这座金字塔的最后两层,开始我们基因组成的有趣议题。

    第八章 不要错失阅读以外的才能

    “你读书的时候字母会在书页上漂浮,对吗?这是因为你的心智是由古希腊人打造的,”一起露营的、有着灰色眼睛的安娜贝什解释道,“还有注意力缺陷多动障碍–你太冲动,在教室里坐不住。那是你战斗力的条件反射。在真正的战斗中,这会保住你的性命。至于注意力问题,其实是因为你看到太多,而不是太少了!珀西,你的感觉超乎常人……面对它吧!你是一个混血儿。” ——里克·赖尔登
    倘若我们知道
    一如雕刻家所知
    木材中的缺陷
    如何引导他的刻刀
    找到最核心的地方
    ——戴维·怀特

    爱迪生、达·芬奇和爱因斯坦这三位举世闻名的伟人,据说都有阅读障碍。爱迪生小时候因为阅读障碍和健康状况不佳,不能进入正式学校学习,但他却是美国取得最多专利权的人,他创造出了无数惊人的发明,其中一项照亮了整个世界。

    达·芬奇是历史上最具创造力的人之一,他身兼发明家、画家、雕刻家、音乐家、工程师和科学家等诸多身份。虽然在各方面都很突出,他却经常被怀疑有阅读障碍。这样的猜测主要来自他留下的大量稀奇古怪的笔记。这些笔记都是从右至左的“镜像字体”,当中充满错别字、错误的语法和奇怪的语言错误。好多位为他写传记的作家都提到他不喜欢语言,而且经常提到自己缺少阅读能力。在描写理想的画家生活时,达·芬奇曾说过,最好身边总是有人为他朗读。神经心理学家阿伦(PG.Aaron)在分析达·芬奇的读写问题后,认为这正是“右半脑补偿机制”最有力的证据。
    爱因斯坦3岁以前都不大说话,他在任何需要动用文字的科目上,如外语,都表现平平。他曾说过:“我最大的缺点就是记忆力差,特别是记忆文字和内容。”他甚至还说文字在他的理论思考中,“似乎没有扮演任何角色”他“多半都是由清楚的图像来思考的”。
    爱因斯坦的状态是否如他自己和格施温德所认为的一样,是一种阅读障碍,目前仍然不得而知。不过,如果真的发现颠覆我们时间和空间认识的理论家,其脑部竟然有和时间相关的缺陷,该是怎样曲折的一段故事!要解开这个谜团,其中一个线索在他的大脑里。加拿大的神经科学家进行了一个有趣但备受争议的实验,他们解剖了爱因斯坦的大脑,发现在他扩大的顶叶中,两半脑异常地对称,不同于一般典型的左右不对称模式。
    多数的阅读障碍者并没有爱迪生或达·芬奇那样惊人的天赋,但似乎有不少的阅读障碍者具备不寻常的才能。我曾记录了一份在各领域颇有声誉的阅读障碍者名单,随着名单的不誉的阅读障碍者名单,随着名单的不断增长,我改成了只记录这些领域。

    患有阅读障碍的名人们:爱迪生、达·芬奇、爱因斯坦、冠军车手斯图尔特、建筑大师安东尼奥·高迪、思科CEO 约翰·钱伯斯、演员约翰尼·德普、凯拉·奈特利……

    在医学界,阅读障碍者可能出现在放射部门,在这里模式识别是工作的重心。在工程和计算机技术领域,他们大量集中在设计与模式识别部门。在商业界,奥法里和施瓦布这些阅读障碍者倾向于从事高级财务或资金管理,这类工作需要从大量的资料中预测趋势和进行推理。我小叔子是一位建筑师,他告诉我在他之前的事务所,建筑师的文章如果没有经过两次的拼写检查,绝对不会拿出去。有阅读障碍的演员包括丹尼·格洛弗(Danny Glover)、凯拉·奈特利(Keira Knightley)、乌比·戈德堡(Whoopi Goldberg)、帕特里克·登普西(Patrick Dempsey)以及约翰尼·德普( Johnny Depp )。

    另外两个例子则来自我的亲身经历。当我怀孕的时候,我被介绍去一名波士顿最有名的放射科医师那里做 B超。在我躺在那里等待时,听到旁边的技术员聊天,他们说全世界的患者都想到这个放射科医师的诊所来,因为这位医师是该领域最权威的人士。我的耳朵马上竖了起来,尽可能客气地问他们,为什么她是最好的,他们立刻回答我,因为她可以在几秒钟内找到一般人找不到的模式。后来,我才得知她和她的父亲都有阅读障碍。
    最近一趟巴塞罗那的旅行也有类似的经历。有5天时间,我都漫步于西班牙伟大的建筑师安东尼奥·高迪(Antonio Gaudi)的作品所在的街道上,那里的教堂和建筑充满着才华横溢的设计、异想天开的创造力和肆无忌惮的颜色运用。我猜想高迪应该也有阅读障碍。瞧,我是对的!每本高迪的传记都记录了他儿时学习与阅读时的悲惨经历。他差点儿被赶出学校,但在毕业之后,他却成为西班牙有史以来最杰出的艺术家,成为巴塞罗那建筑的守护神。

    阅读障碍者的右脑

    我们如何才能解释这么多阅读障碍者在创造力方面及其“跳出思维框架”的优势?正如我儿子本所问的,到底是因为阅读障碍者的左脑出现了问题,迫使他们使用右脑,进而增强了所有的右半脑的联结,因此发展出独特的策略来应对所有的事情,还是一开始他们的右脑联结就更有掌控性和创造力,因此接管了阅读这类活动?神经科学家阿尔·加拉布尔达(Al Galaburda)认为这两个推论可能都对了一半:“一开始没有形成左半脑的神经回路,使右半脑的神经回路能够动用许多空闲出来的神经突触。稍后,既然不能进行阅读,它们就往其他方面发展,尤其是那些擅长的方面。这些初步的证据所引发的问题并没有确切的答案,不过通过整合行为认知、神经结构与遗传学等多个层面来探讨阅读障碍问题却是一个很好的开始。基因基础是关键。尽管没有专门的阅读基因,但是这并不意味着没有与某些形成阅读脑固有缺陷有关的基因,这些基因也可能潜在地与其他强项有关。未来阅读障碍的研究方向将把我们关于行为强度和结构缺陷的知识与遗传信息结合起来,以探索是否某些阅读障碍儿童的右脑从一开始就具有建造大教堂的天赋。
    八十多年前,奥顿第一次提出大脑的两个半球无法整合各自存储的图像这一极具争议的假设。五十多年之后,格施温德写了一篇论文,标题很简单–“为什么奥顿是对的”。格施温德列出13个他和奥顿对于阅读障碍相同的见解,并认为这些见解应当纳人所有有关阅读障碍的探讨之中。
    这份清单以阅读障碍的遗传基础与大脑组织可能出现的结构差异开始,列出了在阅读障碍者受到影响的家族成员和未受到影响的亲戚中发现的优秀的空间天赋:意想不到的阅读能力,如阅读上下或镜像颠倒的文字如我的儿子和达·芬奇所做的那样);书写困难等其他不寻常的特征;并不是每个个案都会表现出说话、知觉与运动异常,这些问题需要更多深入的探索(如口吃、两手同样灵活、笨拙与情绪化等问题);以及口语与语言系统的发展缓慢。

    格施温德讨论“为什么奥顿是对的”的论文,给21世纪的研究人员留下了一份检查清单,要想解开阅读障碍之谜,获得一个满意的解释,就要先回答这些问题。以镰状细胞性贫血(这些患者的基因可以抵抗疟疾)为例,格施温德继续深入地观察,获得了这些现在看来依旧相当敏锐的发现:

    阅读障碍者经常在许多领域具有极高的天赋……我建议你别把这当做巧合。如果大脑左侧的某些改变造成其他区域尤其是大脑右侧的优越性,那表示在一个到处都是文盲的社会里,有着这样的改变的人反而具有优势,他们的天赋会让他们成为高度成功的公民……因此,我们陷入了-个矛盾的概念:大脑左侧的异常问题,在某些普遍识字的社会里是阅读障碍,同时也在同一颗大脑中决定了其优越性。

    这些观察和他大多数神奇的想法一样,是阅读障碍实证研究的先驱我们现在才跟上他的脚步。早逝的格施温德没能见到他的许多真知灼见对这个领域的持续影响,这些影响有的来自于他的直接贡献,有的来自于他的学生的研究,还有的来自于由他开始的阅读障碍研究计划,这些计划一直持续至今,将行为联系到结构、神经元乃至基因层面。
    格施温德所设想的研究计划早在二十多年前就在波士顿市立医院开始了:对于一颗保存完好的阅读障碍者大脑,没有人知道该如何处理。因此这颗大脑就交给了格施温德,他知道该怎么处理。他立刻将其交给他的两个年轻的神经科学学生加拉布尔达和托马斯·肯珀(Thomas Kemper),他们立刻对此进行了仔细的研究,首先解剖几个宏观结构,其次是阅读必须用到的微观区域。
    此后没多久,就发生了另一个重大事件。格施温德和加拉布尔达与“奥顿阅读障碍学会”成立了“脑库”,在贝斯以色列医院保存了少数几颗阅读障碍者的大脑。这个机构的影响深远,目前右脑成像研究的发现就来自这个脑库。多数人的颞平面和语言有关。颞平面是颞叶上的一块三角形区域,包括一部分的韦尼克区,在左半脑的区域会比右半脑的大。加拉布尔达与肯珀发现成人阅读障碍者的脑部并没有呈现出不对称;相反,他们的两个半脑是对称的,因为他们右半脑的颞平面比一般人的稍大一些。

    颞平面:多数人的颞平面和语言有关。颞平面是颞叶上的一块三角形区域,包括一部分的韦尼克区,在左半脑的区域会比右半脑的大。

    加拉布尔达的研究团队从这些发现中推测,阅读障碍者脑部的单侧化不完全,或是和一般人不同–这一观点对许多语言过程的发展有很大的影响。他们推测右脑颞平面异常的大,可能源自于胎儿期间细胞的自然减少这可能导致颞平面神经元的数量增加,接下来,阅读障碍者在右半脑形成新的联结以及整套新的皮质结构。当他们尝试在活着的阅读障碍者的脑部寻找类似的对称性时,功能性核磁共振成像的结果比较复杂,因此他们的假设失去了基础。
    在结构层面得不到一致的结论,促使研究往细胞层面推进。加拉布尔达与其同事们采用“细胞建构学”方法,来研究可能与阅读障碍有关的一些区域的细胞微观结构、数量和神经元迁移模式。他们发现在胎儿期初期的发展中,有几处和语言与阅读相关区域的外胚层细胞会进行迁移:左侧颞平面、丘脑的几处区域以及视觉皮质区域。这些区域组成了阅读神经回路部分,它们发生的任何神经元迁移都可能影响到这些回路之间神经交流的准确度与效率。
    举例而言,加拉布尔达的研究团队发现,负责快速或瞬间处理过程的“巨细胞系统”,在丘脑内部与阅读相关的两个重要中心里,至少有两处表现出持续的异常现象:一处是脑内的外侧膝状体,负责协调视觉过程;另一处是内侧膝状体,负责协调听觉过程。我们再次发现了两个半脑之间的区别,右半脑的大型神经元要比左半脑多一些。加拉布尔达认为这些细胞的差异会影响到处理文字信息所需要的时间,而且可能意味着阅读障碍者使用了一个不同于常人的阅读神经回路。
    加拉布尔达慎重地指出,我们还不知道这些差异到底是阅读障碍的成因还是结果。这里浮现出来的问题是,各类神经元的改变如果发生在重要的部位(如阅读所需的固有结构),就可能破坏阅读所需的神经效率,因而会促使大脑形成一个不同的阅读神经回路。该观点整合了过去许多基于结构、处理速度与神经回路改变等缺陷的有关阅读障碍的假设。

    有两项特别的研究阐明了这个结论。其中一项是在转基因老鼠身上测试神经元层面缺陷的影响,有时候,这种老鼠被夸张地称为“超级鼠”。贝斯以色列医院的神经科学家格伦·罗森(Glenn Rosen)在这些老鼠的听觉皮质区造成一处小小的损伤,类似于早期在阅读障碍者丘脑中发现的神经异常。实验发现,损伤导致了老鼠无法再快速处理呈现的听觉信息。此外,格伦的动物模型显示出重要区域的细胞可能导致处理信息的效率出问题。
    另一项由波士顿神经科学家主持的研究显示,患有罕见遗传性癫痫“脑室旁结状灰质异位症”的病人也有相似的情况。这种病人在出生前脑室旁会有“流氓细胞”形成的神经瘤。这些神经瘤类似于在超级老脑中诱发的损伤:它们出现在不该出现的地方,因此在某些情况下具有破坏性。在这个研究案例中,这些神经瘤造成以后生活中的癫痫发作-但也有可能是其他原因。

    这项研究的参与者之一张博士找到了我和我的同事塔米·卡兹尔(Tami Katzir),因为他们在所有的患者身上都发现了一个同样的行为特征:阅读流畅度极差,他对此感到疑或不解。有些患者小时候就被诊断出阅读障碍有些则没有。有些出现语音缺陷,有些没有。但所有患者出乎意料地都是迟缓型阅读者。我们立刻意识到,不论是成人阅读障碍者,还是儿童阅读障碍者,关于他们阅读流畅度的问题,这些患者可以提供无法预测到的证据。
    将这些研究集合起来,我们得出了几项重要的启示:造成阅读流畅度受损或是迟缓的途径可能很广泛,阅读障碍的成因是多么各种各样。癫痫患者的例子暗示着阅读障碍可能是由脑部许多区域的缺陷导致的。例如在可能影响到视觉工作效率的地方或是在可能减弱语音过程的区域长出脑瘤,这两种情况都会造成阅读迟缓。但这些案例不能解释为什么在某些读障碍者身上会出现过多依赖右半脑的情况,但是它们确实显示出因为左脑的种种缺陷,大脑被迫使用相应的右半脑区域。
    在格施温德的逻辑之上发展出了一个新的假设。在没有文字的社会里,右半脑强化基因可能会高度发达,但在有文字的社会中,同样的基因却在右半脑中建立了基于时间功能的、负责精确度的阅读结构。而这些功能最终会用右脑的独特方式来执行,它们没有左半脑的准确度高,效率也不尽如人意。所以在阅读中不可避免地会遇到困难。一位杰出的遗传学家观察到,阅读受到许多基因的影响,这些基因的出现会增加阅读问题的风险,但是和由一个基因造成一种特定的遗传性疾病的情况不一样。举个例子,囊肿性纤维化症的一个基因就决定了其显型结果,或称为遗传结果。相反,阅读基于许多固有的过程,因此复杂度高不是一个基因就可以完全决定所有的阅读障碍类型。换句话说,阅读障碍不会只有一种显型。
    耶鲁大学的遗传学家埃琳娜·格里戈林克(Elena Grigorenko)的研究强化了这个观点。在对与阅读障碍相关的遗传区域进行地毯式分析之后她认为这个问题是多基因而非单基因遗传。这项结论解释了为什么有多种阅读障碍亚型的存在。彭宁顿和科罗拉多的研究团队也观察到,亚型如有语音缺陷、流畅度缺陷、双重缺陷与拼写规则缺陷等表现的阅读者是几种显型在行为层面的表现。而且,由于不同的文字系统所需的条件不同,有些表现型可能在拼写规则的语言中较为普遍,如德语,有些会在不规则的英语中居多,而在全然不同的文字系统如中文、日文这类语素音节文字中,又是另一种表现。

    阅读障碍是多基因的遗传现象:阅读障碍不是一种由一个基因造成的疾病。阅读涉及许多复杂的认知过程,没有哪个基因可以完全决定所有的阅读障碍类型,阅读障碍是一种多基因的遗传现象。

    目前一些跨国研究初步支持了这样的观点:在其他语言的阅读障碍者身上会发现遗传的差异。芬兰与瑞典的研究人员发表了一份资料,他们发现在第6条染色体上称为DCDC2的遗传位置可以用来辨别多数的德语读障碍者,他们主要都有流畅度缺陷的问题。耶鲁与科罗拉多的研究团队针对英语语系的阅读障碍者进行研究,结果也支持这个基因位置,但在他们的实验对象里仅有17%的人是阅读障碍者。有趣的是,我们发现在我们的亚型研究中,阅读障碍者中约有17%的人也只有流畅度缺陷的问题。

    DCDC2的故事里有一个有趣的转折,这与之前提到的阅读障碍使用不同的阅读神经回路有关。通过动物模型,耶鲁的研究人员研究发现压制这个遗传位置的表现时,新生的神经元不会迁移到右半脑皮质区。耶鲁的研究人员据此提出一个假设:有类似的遗传变异的阅读障碍儿童,他们的脑部可能会形成并使用一个“效率较低的阅读神经回路”。
    在另一个不同类型的研究中,研究者关注了一个具有悠久阅读障碍遗传史的芬兰大家族,发现他们一个称为ROBO1的区域表现出遗传变异有趣的是,如果按照奥顿早年提出的假设来看,ROBO1协助“发育期间塑造大脑两侧的神经联结,并且阅读障碍者的ROBO1可能受损”。另外,这些研究也在两种规则语言中发现了两个不同的区域–这正好反映出阅读障碍的多种解释以及为何在单一语言中发现诸多亚型的事实。
    其他支持来自美国一项大型且相当完善的遗传研究项目“科罗拉多双胞胎研究”。在这个项目中,心理学家迪克·奥尔森(Dick Olson)和其他研究者从幼儿园开始追踪了300对同卵与异卵的双胞胎。这个团队发现儿童在阅读能力、语音意识和快速命名的能力方面,表现出很大的遗传效应和一些环境效应。对理解阅读障碍中可能的亚型极为重要的是,语音技能与快速命名都显示出独立的、意义重大的遗传性。
    如果这些结果可以重复验证,那就表示有单独的基因来负责目前已有文献记载的英语阅读障碍亚型的两种过程,并且在许多语言中可以以此预测阅读障碍。倘若未来的研究可以准确地找到不同的显型,以及它们的结构和行为特征、缺陷和强度之间的关系,我们就有办法解开阅读障碍史中的许多谜团。

    每个孩子都有自己的潜能

    如果有好几种显型,有些儿童的阅读障碍可能同时遗传自父系与母系。我在思考儿子本的阅读障碍家族遗传史时,考虑到各种细微和明显的个案发现他和弟弟戴维的情况,就和奥顿与格施温德观察到的一样。虽然戴维具有写作天赋,还热爱足球,看起来似乎没有受到任何影响,但他提取文字的问题以及书写困难,无论如何补救都没有用。
    戴维的情况和本的双重缺陷可能来自两个家族基因综合的结果。我的公公厄恩斯特·诺姆(Ernst Noam)是一个欧洲知识分子,学的是德国法律,但在希特勒时代始终无法执业。我丈夫的姐姐从她父亲那不同寻常的求学史中,发现他有某种类型的阅读障碍,虽然他可以读4种语言。我自己的母系中,曾曾祖父颠倒数字与字母的事迹人人皆知,连印第安纳州的历史中都记载了这个事实。吉尔和我的兄弟姐妹、堂兄表妹、外甥和侄女中分别有人从事艺术家、工程师、律师、商人、外科医生的职业,都取得了成功,其中有些人曾有过轻微或不甚轻微的学习问题。
    格施温德花了不少篇幅来讨论,我们有必要了解“未受影响”的家族成员的基因情况。例如他注意到奥顿本身的“了不起的空间才能”。戴维的书写困难与文字提取问题,并不需要我特别花精力去研究,一直到我坐下来动笔写这一章时,我才开始审视自己的学习经历。我自己的阅读过程看似没什么特别之处,我的文字提取过程也毫不费力–这完全是因为我对文字的热爱无形中给我提供了已经准备好的替代方式。
    还有一件与此有关的事情,我也是现在才想通。多年前,我有个不为人知的梦想,希望能成为一个钢琴家。当我温柔的钢琴老师告诉我,她很喜欢听我弹莫扎特、肖邦或贝多芬,但我弹的并不是这些作曲家原本想要表达的,我的梦想就此破灭了。她说我有自己的时间感,总是跟作曲家不一样,而且她认为这个问题改正不了。刹那间我明白为什么我每次陪那些可怜的孩子弹钢琴时,总觉得他们的节奏不对。原来是我自己的时间感有问题,而不是他们错了!一直到现在我才想到我读乐谱的怪异方式可能是一种遗传的表现,来自我自身处理速度差异的遗传。

    在阅读障碍者的家庭里,其实没有“未受影响”的家庭成员。我们每-天都受到或多或少的影响,任何一个有孩子、孙子或兄弟姐妹是阅读障碍者的家庭,都明白这一点。不过我们受到影响的方式可能超乎我们的理解–这些方式打开了一扇门,让我们理解为什么在具有阅读障碍遗传史的家族中,会出现如此多的各式各样的家族成员。

    我对爱因斯坦大脑的重量和脑回没有太大的兴趣,我好奇的为什么拥有相同才能的人,却在棉花田或是毛衣店里耗尽了一生。 ——史蒂芬·杰伊·古尔德

    最后,阅读障碍研究最重要的启示,并不是要确保我们不妨碍未来达·芬奇或爱迪生的发展;而是要确保我们没有错过任何一个儿童的潜能并不是所有的阅读障碍儿童都天赋异禀,但他们每一位都具有独特的潜能然而大多无人知晓,因为我们不知道如何开发这些潜能。
    我们这些研究阅读障碍的人正尝试寻找能够实现他们潜能的方法。在所有该说的都说了、该做的都做了之后,最终需要将从行为开始一直到基因层面的阅读障碍研究与我们的教学方法和内容结合起来,看看是否适用于特殊的儿童。就我们所探索过的众多原因来看,目前大多数学校采取的是统一的教学模式,无法帮助阅读方面有困难的儿童。因此,有必要让教师们接受培训,使用一套可以用来辅导不同类型的儿童的教育规则。正如政策制定者里德·莱昂(Reid Lyon)一再强调的那样,我们还需要调查与了解不同条件的儿童所需要的最好照顾是什么。世界上并没有一个普遍有效的治疗计划,不过倒是有必须纳入所有语文教学计划的原则。
    在这些重要的原则中,有几项和文字本身一样古老。多年来,我和同事在阅读语言研究中心,以我们对阅读脑的了解,设计并且评估了一个治疗计划(RAVE-O),可以帮助许多正在挣扎的阅读者克服诸多语言缺陷我们从来就没有意识到我们其实是在重复发明苏美尔人的那套教学规则这是目前人类史上所知的最早的阅读教学法。

    我们可以用全然不同的方式来组装教学法,但跟苏美尔人一样,强调每天大脑阅读所用的主要语言与认知过程:以词语的语义家族来指导语义的深层知识以便提取词语;强调语音意识及其与字母表征的关系;强调拼写规则的自动化学习:强调语法知识与词法知识。但跟苏美尔人不同的是我们采用多种策略来处理流畅度与理解力的问题。我们和苏美尔人一样想要每个有困难的阅读者尽可能多地认识字;但我们希望每个儿童都能快乐地学习。
    和儿童一起工作的我们,希望他们能了解,尽管学习方式不同,但他们每一位都可以学会阅读。寻找最好的方式来指导阅读障碍儿童是我们的工作,而不是儿童自己的责任。我和我们的同事莫里斯和莫琳·洛维特(Maureen Lovett)10年来开展了针对各种治疗计划的研究,我们都努力做着这样的工作。

    每个孩子都有自己的潜能:我们不能错过任何一个发展儿童潜能的机会。并不是所有的阅读障碍儿童都天赋异禀,但他们每一位都有独特的潜能,这些神奇的能力往往被埋没了,因为我们不知道应该如何开发。

    我们实验室与全国各地的研究中心未来的努力将放在治疗计划造成的改变上,不仅是行为的变化,也包括神经层次的变化。比如,现在我们正和麻省理工的加布里埃利的研究团队合作,研究和判断在我们的治疗计划前后,阅读障碍者的脑部重要区域是否发生了变化。好的老师不需要学习神经学也会知道口语和文字的许多层面是非常重要的,不过纳入神经科学的教育研究可以判定哪些方式对儿童最有效。只要我们能观察儿童在从事特定的测验时所动用的结构区域,以及在经过一套强化疗程后,他们改变的经过和情况,便可以知道这一切。
    这些新方向正改变着我对阅读障碍的看法,不论是身为一名研究人员还是一个母亲。如果阅读障碍依赖右脑的理论,在某些甚至大多数的儿童身上被证明是正确的,这相当于开辟了一条前所未有的道路——教育大脑组织架构不同于常人的阅读障碍者,这其中也混合着独一无二的优势和挑战。最后,所有关于以不同方式来学习阅读的儿童的研究,都将成为研究我们如何学习阅读的巨大知识体系的一部分。随着时间的演变,不论最终的解释是什么,这个领域的研究驱使着我们超越过去二十多年的所学,进入一个几乎尚未探索过的新领域。事实上,超越我们的所知,正是本书的最后一个目的。

    第四部分让大脑有时间来思考:超越阅读脑

    在传统书籍与电脑屏幕的冲突中,屏幕终将取得压倒性的胜利。地球上已有10亿人在看这样的屏幕,搜索技术会把零散的书籍转化为全人类知识的环球图书馆。 ——
    凯文·凯利

    第九章 网络时代的阅读与思维方式

    世界每一次沉闷的转折都有这样一些人被剥夺继承权,他们既不占有过去,也不占有未来。因为未来即使近在咫尺,对于人类也很遥远。 ——雷纳·玛丽·里尔克
    阅读是一种内在的纯净而简单的行为。其目的并不仅仅是吸收信息而已……相反,阅读是拷问自身……书,是人类创造出来的最美好的东西。 ——詹姆斯·卡罗尔

    每个社会都在担忧他们的年轻人以及他们未来将要面临的挑战。在人类进化的过程中,此刻所面临的这些挑战正步伐加速,对此没有人能比未来主义者兼发明家雷·克兹维尔(Ray Kurzweil)描述得更令人信服。他在充满远见的著作中说,通过人类发明的科技和人工智能,我们大脑内上千亿的神经联结将成倍地扩张:

    我们有信心在 21 世纪 20 年代看到供我们模拟整大脑的数据收集与运算工具,使人类智能的运作原则与智慧型信息处理的形式有可能结合起来。机器拥有储存、提取与快速分享大量信息的强大功能,人类也将因此受惠。然后,我们便能在电脑运算平台上应用这些强大的混合系统,这将远远超过构造上较为稳定的人类大脑的能力。
    受限于我们大脑目前每秒 1016~1019次的运算能力,我们甚至难以想象,2099 年我们的未来文明——届时大脑能以每秒 1060次的速度来运算,那么我们思考与行动的能力又将如何呢?

    有件事情倒是可以预见的,那就是人类行善与破坏的能力也将成倍地增强。如果要为这样一个未来做准备,那么我们做出重大抉择的能力势必来自于过去世代的学习者鲜少使用的严格标准。若是物种想取得完全意义上的进步,这样的准备工作,需要将大脑的注意力与抉择力为全人类的幸福服务。换而言之,要准备好迎接这样的未来,必须将我们目前的阅读脑调整到最好的状态,因为它已经开始经历下一代的改变了。
    克兹维尔暗示思想过程成倍地加速发展完全是件好事,我并不同意这种观点。在音乐、诗歌乃至生活中,休息、停顿、缓慢的变化是了解整体的必需要素。事实上我们的大脑中有一种“延迟神经元”,其主要的功能就是延缓其他神经元之间的神经传导,不过仅仅几毫秒而已。正是这些难以估计的几毫秒为我们对现实的领悟带来秩序,协调我们踢足球和演奏交响乐时的动作。

    “更多与更快必然就是更好”的假设也应当受到质疑,尤其是在从如何饮食到如何学习这样的想法都在不断影响美国社会的时候,很难说这是否真的会带来好处。
    举例来说,我们的孩子目前所经历的这些充满加速度的变化,是否将严重影响他们的注意力,是否会影响他们把一个词转化成一个想法、把个想法转化成一个超越想象的、充满任何可能性的世界的能力?我们的下一代在言语文字中发现见解、欢乐、痛苦与智慧的能力是否也将发生戏剧性的改变?他们和语言的关系是否也将产生本质上的变化?他们是否会因为习惯接收即时的电脑屏幕信息,而使得目前阅读脑的注意力、推理能力与反省能力发育不完全?未来一代又一代的孩子又会如何?苏格拉底对没有指导而随意接触信息的顾虑,在现今的世界中是否比古希腊时代更让人忐忑不安?
    或者我们的新信息科技所产生的需求,如多重任务以及整合与权衡大量的信息,也许有助于发展更有价值的新技能?那么人类的智力、生活品质以及作为一个种族的集体智慧是否会因此而增长?智力的加速提升,会给予人们更多的时间来反思与追求人性的美好吗?倘若真是如此,下一代人所具备的那套智力技能,是否将会导致产生一群新的、权利被剥夺的儿童就跟目前的阅读障碍者一样,被置于一般人之外?又或者是在对待儿童的学习差异时,我们会因为认识到大脑组织形式的差异性以及这些遗传变异所带来的优势与缺点,而对此准备得更充分一些?
    大脑的结构并不是天生设计用来阅读的,阅读障碍就是目前最好也是最鲜明的证据。阅读障碍在我看来是日常生活中一个关于进化的提醒,提醒自己世界上存在着组织极为不同的大脑。有些组织方式可能不适合用来阅读,但对于建筑物与艺术的创造,以及模式识别–不论是在古战场还是活体组织切片中,都至关重要。大脑组织的某些变异可能会为即将占主导的沟通模式带来一些新的装备。

    延迟神经元:“更多”、“更快”未必就是更好。我们的大脑中有一种“延迟神经元”,其主要功能就是延缓神经元之间的神经传导,正是这延缓的短短几毫秒为我们对现实的领悟带来了秩序与和谐。

    21世纪,人类身处重大而急速的转变之中,我们中的大多数几乎都不能预料到或者完全了解这些转变。正是因为意识到这种转变的意义,我将本书的主旨放在进化、发展以及阅读脑的不同组织方式上。文字的演变和阅读脑的发展提供了一面具有重要意义的镜子,让作为一个种族的我们看清自己。人类是众多口语与文字文化的创造者,其中许多学习者个体的智能形式都是不同的,而且正在不断地延伸发展。
    在本书的最后一章,我将以阅读为镜子,回过头来检视之前提出的几个重大观点,然后踏上“超越文本”的探险之旅。在那个未知的领域里我想讨论这些信息对这一代以及下一代的儿童有何影响。最后,阅读脑中的哪些部分是我们在进入下一次大脑重整前,应该倾尽全力保存的?我想就这个问题提出一些反思。

    对阅读进化的反思

    我对阅读脑进化的总体反应就是惊讶。为什么一小套代币符号在相对较短的时间里竟然茁壮成长,演变出一套完全成熟的书写系统来?为什么单单一个文化性的发明在不到6000年的时间里,就改变了大脑内部的联结方式,以及我们这个物种智力的可能性?然而更让人惊讶的是:大脑竟然神奇到能超越本身,在这过程中同时增强其功能与我们的智力能力。
    阅读说明了大脑如何学习新技能并且增加自己的智能:在旧有结构之间重塑神经回路与联结;充分利用自己的能力促使区域专门化,尤其是在模式识别方面;而且阅读也解释了新的神经回路如何转为自动化,如何释放出更多皮质运作的时间与空间,供其他更为复杂的思考过程使用。也就是说,阅读展现出大脑组织中最基本的设计原则,是如何塑造我们持续进化的认知发展的。
    大脑的设计让阅读成为可能,而阅读的设计则以多层次的、关键的、持续演变的方式来影响并改变大脑。这样相互的动态关系在我们这个物种的文字系统中诞生,并且在儿童学习阅读的过程中大放异彩。学习阅读将我们这个物种从许多先前人类记忆的限制中释放出来。突然间我们的祖先可以接触到不需要一遍遍地反复传诵的知识,还可以大幅扩展这些知识。有了文字就不需要重复发明轮子,也就有可能发明更为复杂的东西,就像雷·克兹维尔为阅读障碍者发明的阅读机器。
    与此同时,瞬间可成的识字能力让个体阅读者不仅从记忆的限制中释放出来,也从时间中释放出来。通过逐渐自动化,识字能让个体阅读者减少一开始花在解码过程中的时间,将更多的认知时间和皮质空间用于已记录思想的深层分析。在两个半脑的长度和宽度之间,随处可见初级解码时期与完全自动化的理解型大脑之间的神经回路系统的发展差异。通过专门化与自动化,系统可以变得更为流畅,也就有更多的时间思考。这是阅读脑赐予我们的神奇礼物。
    没有什么发明可以让大脑准备得如此充分,让物种如此的先进。随着社会文化中读写能力的广泛普及,阅读的行为默默地邀请每位阅读者超越文本本身;如此一来,更进一步地推动个体阅读者与文化的智能发展。阅读的“传承性”来自于生物性,是靠智力获得的,这是时间赐予大脑的一份礼物,贵重程度难以衡量。
    这项观点的生物证据要从我们意识到今日的大脑结构和4万年前不识字的原始人之间几乎没有什么差异谈起。我们和苏美尔人、埃及人的大脑结构并没有什么不同,但是我们使用与连接这些结构的方式却创造出极大的区别,就像在象形文字与字母文字等不同文字系统的阅读比较中所见的。
    珀费提、谭力海与他们的研究团队进行了一项先驱性的研究,证明了每种文字系统,不论是古代的还是现代的,都使用许多类似的以及一些独特的结构性联结。在用来阅读埃及象形文字或汉字的大脑中的某些激活的区域,在阅读希腊文或英文这类字母文字的大脑中绝对不会被激活,反之亦然。这些逐渐适应的变异,正是大脑重塑自身以执行新功能的内在潜能的鲜明佐证。
    在文字系统诞生之初,发生改变的不仅只有大脑神经回路而已。正如古典主义者埃里克·哈夫洛克所主张的,希腊字母文字代表的是人类历史上一场心理与教学法的革命:写作过程释放出前所未有的能力,使大脑产生新思维。一些顶尖的认知神经科学家研究了各种文字系统中这种能力的神经基础,不只是字母文字,还包括所有综合性的书写系统。他们描述了学习阅读时,大脑基本运算的重塑如何成为新思维的神经基础。换而言之,大脑为了阅读而规划的新的神经回路,成了能够以不同的崭新的方式来思考的基础。

    阅读革命:阅读革命是同时基于神经元与文化的,始于第一个综合性文字系统的出现。它所增进的书写效率与释放出的记忆,有助于新思维的形成。

    因此,阅读革命是同时基于神经元与文化的,而且始于第一个综合性文字系统的出现,而不是第一套字母文字。它所增进的书写效率与释放出的记忆,有助于新思维的形成,神经系统也是如此建立阅读系统的。学会重塑自身结构来阅读的大脑,更容易产生新的想法;阅读与书写促进智力技能日益复杂化,这又增加了我们的智能储备库,而且会持续增加。关于上述讨论,我们必须反思这样一个问题:哪些技能是不会出现在口语文化中,而必须靠文字来提升的?在创造出最早的代币符号后,紧接着是第一套会计系统,伴随而来的是要获取更多更好的信息而提升的决策力。因此,很明显第一套已知的符号(除了洞穴里的壁画)是服务于经济的。
    最初的综合性文字系统,即苏美尔人的楔形文字与埃及人的象形文字将简单的会计转变成系统性的文献记载,引发出具有组织性的系统与编码从而加速了智能的重大提升。到了公元前2000年,阿卡德语的文献就开始对整个已知的世界进行分类,例如百科全书式的《关于宇宙万物》(AIThings Known in the Universe )、法律经典著作《汉谟拉比法典》,以及其他各种著名的医药文献。就连科学方法本身,都是源自于我们祖先日益成长的记载、编撰与分类的能力。
    在许多地方都可以找到语言意识增进的证据,开始于苏美尔人教导阅读的方式。他们在“泥板屋”所用的方法对于词汇不同特性的高度认知有一定的贡献:例如,词语间多重语义或意义间的关系;不同的语法功能;词语内部组成的结合性,可以用已有的词根与词素组成新的词语;以及方言间、语言间不同的发音。
    苏美尔的年轻人痛苦地将老师刻在泥板上的一列列文字复制到另一面。这一过程不仅对语言意识的渐进发展极有帮助,也对思考本身贡献良多。几个世纪以后,我们从阿卡德人的文献,如《吉尔伽美什史诗》《悲观主义的对话》,与其他许多保存下来的乌加里特文献中了解了这些成长中的小学生的感受、想法、尝试与喜悦,走入了他们的内心世界。这些古老著作正是超越时间的见证,见证着现在我们经常思考到的现代意识的出现。
    很少有学者比耶稣会文化史学家沃尔特·翁更鲜活地表现出读写能力对于古代世界的意识出现有何贡献。在他毕生对口语和读写能力关系的研究中,沃尔特·翁重新构建了阅读对人类独特贡献的问题,这可能有助于我们思考目前正转移到数字化交流模式的问题。20年前,沃尔特·翁就主张人类智能进化的真正争议点不在于一种文化模式所推动的交流技巧比另一种先进,而是人类在两者间转换的能力。沃尔特·翁曾写过一段很有先见之明的文字:

    人类生来就会的口语,和后天学会的书写技术间的相互作用触及心灵的深处。正是口头的文字以清晰的语言来阐明意识,首先区分出主语与谓语,然后探究其中的相关性,并且使社会中的每个人互相联系。书写引入了区分与异化,但是也带来更高度的统一。它加强自我意识并且巩固人与人之间越来越多的意识交流。书写是一种意识的提升。

    对沃尔特·翁来说,对人类意识的全新理解是口语和文字交会时真正的改变:阅读改变人类关于思维的思考。从《安娜·卡列尼娜》中列文的揭露,到《夏洛的网》中蜘蛛的预言,洞察他人想法的能力让我们加倍意识到他人的意识,以及我们自身的意识。我们研究他人想法过程的能力贯穿了三千多年,使我们得以内化我们从未设想过的整体人类意识,包括苏格拉底最伟大的口语传统。正是因为我们可以阅读柏拉图充满矛盾思想的作品,才得以了解苏格拉底的想法与他所关心的普遍本质。
    显然,在该说的都说了、能做的都做了之后,苏格拉底忧虑的其实并不是读写能力,而主要是知识本身。他真正担心的是年轻人未经指导,尚未有批判力,就能任意接触到信息,这恐怕会影响到知识本身。对苏格拉底而言,寻找真正的知识并不需要在信息上来回思考,而是要去寻找生命的本质与目的。这样的搜索需要投入一生,发展出高度的批判与分析技巧并且通过大量记忆的运用与长期的努力来内化个人知识。
    只有在这些条件都具备的情况下,苏格拉底才认为学生能够从和老师对话以探求知识的阶段,转到一条原则性道路上,指引着他的行动、美德最终到达“和他自己的神友爱相处”的阶段。苏格拉底认为知识是达到至高境界的力量;任何可能有危害性的东西——比方说读写能力,都应该被禁止。
    苏格拉底的顾虑,有部分可以通过仔细理解知识与读写能力之间密不可分的关系,以及它们对年轻人的发展的重要性来解决。有讽刺意味的是,今日的超文本与在线文本,在电脑环境的阅读中,提供了一种真正对话的维度当代学者约翰·麦克尼尼(John McEneaney)表示:“线上读写能力的动态作用,改变了读者与作者的传统角色,以及文本的权威性。”这样的阅读需要新的认知技巧,不论是苏格拉底还是现代的教育学者都没有完全了解。
    我们才处于分析电脑的使用对认知影响的初级阶段,比如使用浏览器的“后退”键、URL语法、“cookies”与“教学性标签”方式,是否能提升理解力与记忆力。这些工具对于使用者的智力发展绝对有影响,尤其是对不同区域有缺陷的使用者来说,应用学习科技可以直接有效地处理他们的问题。应用科技专家戴维·罗斯(David Ross)与他的团队强有力地证明了数字化文本可以给教师与学习者提供更多的选择:“外观、支持度、支持类型、回应方法、内容……所有与参与度有关的重点。”而我们学习者的参与程度和古代雅典学院的学习者一样重要。
    其实苏格拉底的这些顾虑还有更深层的意义。从伊甸园到全球互联网谁应该知道什么、何时知道,以及怎样知道,一直是个贯穿于整个人类历史的悬而未决的问题。在一个超过 10亿人可以上网,接触到自古以来最海量信息的时代,有必要将我们的分析能力利用在知识传输的社会责任上。苏格拉底针对雅典青年提出的学习问题,最终还是会用到我们身上。这些未经指导的信息是否会造成知识的幻觉,因此阻碍了我们通往知识的那条更艰深更耗时更关键的思考之路?搜索引擎上分秒可得的大量信息,是否会将我们从那些较为缓慢、需要深思熟虑的过程中完全地剥离出来,而无法深度理解复杂的观念、他人的内在思想过程,以及我们自己的意识?在本书的开头,我引用了科技专家爱德华·特纳提出的问题,他质疑新的信息科技会“威胁到创造它的智慧”。本书提出的种种问题并没有不切实际地企图阻止科技的传播,毋庸置疑的是,这改变了我们全体的生活,特纳在科技层面上的顾虑与苏格拉底十分类似,也与接下来针对阅读脑对物种与儿童智能的贡献的讨论雷同。因此,由此所衍生出来的问题是:若真以坐在电脑屏幕前紧盯不放的“数字原生代”正逐渐成形的技能,来取代阅读脑千百年来进化而来的技能,我们将会失去什么?
    文字的演变提供了一个认知的平台,让人类智能历史的前几章中最重要的技能得以浮出水面:文献记载、编撰、分类、组织、语言内化、对自我与他人的意识、对意识本身的意识。阅读本身并不是直接造成这所有技巧逐渐成熟的主因,而是来自阅读大脑设计核心的神秘礼物:思考的时间,这对所有技能的成长产生了前所未有的推动力。纵观整个“阅读的自然史”审视这些技能的发展,等于是以慢动作展示出自从6000年前读写能力出现后,我们这个物种走了多远,又将失去什么。

    对阅读自然史的反思

    过去每一位祖先的阅读脑都必须学会联结许多区域来阅读象征符号。现在每个儿童也必须做同样的事情。全球的年轻初级阅读者都必须学习如何将阅读所需的一切知觉、认知、语言与运动系统联结起来。反过来,这些系统又要利用大脑旧有的结构,适应专门化区域,强迫其开始服务,不断地练习,直到整个过程自动化为止。
    因为这一切都是在没有任何专门用于阅读的遗传基础上变化发生的因此在相对较短的时间内,需要明确的学习与教导。尽管我们的祖先花了将近2000年的时间才发展出一套字母符号,一般来说我们期待儿童花费2000天的时间(大约在他们六七岁时)就能破解这套密码,不然他们会与整套教育体制——老师、校长、家长与同学,发生冲突。如果没有按照社会约定的时刻表学会阅读,这些突然被剥夺权利的儿童将感觉自己和以前再也不一样了。他们会意识到自己是异类,而且没有人曾告诉他们,在进化上,这有可能是件好事。
    当明白年轻的脑袋学习阅读所需完成的神经层面上的高难度任务之后作为社会的一分子,我们可以从教导个别儿童开始。有些儿童在阅读的某些环节会比其他儿童需要更多的帮助。我们对这些越加了解,教育所有儿童的能力就越好。在这种观点下,放之四海而皆准的教学方法将不复存在我们对于阅读发展日益扩展的知识,可能有助于达成两项非常重要的目标了解阅读脑的广泛成就;改善下一代每个儿童学习阅读的条件。
    阅读臻至成熟的发育转变始于婴儿期,而不是学校。儿童听父母以及其他关爱者阅读的时间长短,一直是日后阅读表现的最佳指标之一。他们每天晚上听小象巴巴尔、蟾蜍与好奇猴乔治的故事,睡觉时对着天空说“月亮晚安”,儿童渐渐地会明白这些书本上的神秘符号会构成文字,文字会形成故事,故事会告诉我们宇宙的所有事情。
    他们的世界充满故事、文字与神奇的字母,是一个充满上千个词语概念与知觉的小宇宙,让年幼的大脑发展自己以准备开始阅读。幼儿参与对话的程度越深,他们学到的词语与概念也就越多。读给儿童的东西越多他们对书本语言的理解也就越多,而且这还会提升他们的词汇量,增加他们的语法知识,并且他们会留意到文字内很小但是很重要的字音单位。这些内隐知识,例如 hickory、dickory、dock中相似的语音,bear 的各种意义小猪韦伯的骇人想法,都会让年轻的大脑准备好,将视觉符号与它储存的所有知识联系起来。
    因此,阅读的发展其实有两部分。首先,理想的阅读获得方式基于语音、语义、语法、词法、语用、概念、社交、情感、发音与运动等系统基于这些令人惊讶的配套设施的发展,以及将这些系统整合、同步化以达到流畅理解的能力。其次,随着阅读的发展,其中的每项能力都会日益增强。知道“词语的组成”会让你阅读得更好;在阅读中学习一个词则让你更深入地了解它在知识连续统一体中的位置。
    大脑对阅读的贡献与阅读对大脑认知能力的贡献之间是一个动态的关系。儿童的语音系统会帮助他们发展单词内部的音位意识,这份意识又会帮助他们学习字母-发音的对应规则而这些规则会帮助他们更容易地学会阅读。然后,随着儿童阅读得越来越多,越能灵敏地调和文字内的语音方面,让阅读变得更加容易。

    大脑与阅读:阅读与大脑认知能力之间的相互作用是一个动态的关系。儿童的语音系统会帮助他们发展单词内部的音位意识,这份意识又会帮助他们学习字母-发音的对应规则,而这些规则会帮助他们更容易地学会阅读。

    同样的道理也适用于语义系统语义系统发展良好的儿童,会知道较多的字词意义,所以能够更为快速地解码已知的字词。这有助于他们词汇量的增加,更能巩固他们的口语词汇而这又让他们准备好阅读更为复杂的故事–这一切都会增加他们语法词法、与字词关系的知识。“富者越富,穷者越穷”的道理在这里也适用。这种发展与环境之间的动态关系形成了由“学习阅读”跳跃到真正阅读的基础,或者令孩子什么都学不会。
    阅读发展后期的流畅理解都是默默进行的,可以说是苏格拉底所担心的读写能力危害最大的时期,因为这会赋予阅读者自主权。这一阶段每个新阅读者都有时间预测、形成新的想法,超越文本,成为一个独立的学习者。脑成像研究确认了这一点,流畅的阅读脑会在推理、分析与批判性评价等理解过程中,激活两个半脑的额叶、顶叶与颞叶等新扩展出的皮质层。苏格拉底曾担心若是识字普及后,这样的智能技巧可能会丢失一部分。
    苏格拉底其他的顾虑在转变为“专家级阅读”的发展期间,似乎不是那么容易解决。首先,大多数的年轻阅读者真的完全学会使用他们的想象力了吗?真能独立思考、明辨是非吗?还是这些比较耗时的技能,逐渐地因为儿童现在能从电脑屏幕上接收看似无限的信息而衰退?年轻阅读者阅读电脑屏幕的时间与阅读书本的时间相比,高得不成比例,他们会发展出不一样的能力来认同《简·爱》和《杀死一只知更鸟》中的世界吗?
    数字化世界以非比寻常的方式将种种现实、他人的想法与其他文化的观点带给我们,我并不质疑这一事实。这些典型的年轻阅读者认为文本分析与寻找深层意义越来越落伍,因为他们过于习惯电脑屏幕信息的即时性与似乎概括一切的性质–一切都唾手可得,毫不费力,也无须再超越眼前所提供的信息。因此,我真的怀疑我们的孩子是否能在其中学到阅读过程的核心:超越文本。

    最近我读到《华尔街日报》上的一篇文章,标题是:“到底能低到什么程度?”主要是在探讨近年来 SAT成绩日益下滑的趋势。作者述最近 SAT测验中的变动,着重在阅读技巧而忽视词汇,这大大有利于分析技能高的学生,而不利于那些在辨析和估测文本潜在含义方面准备较差的学生。他观察到 40 年前的学生在这样的测验形式中,成绩可能比今日的学生要好,因为现今学生阅读的批判力似乎变弱了。这一点他怪到学校头上,而不是测验本身。

    忠言逆耳,因此很难传开。这篇论文的作者也许是对的。但是这样的衰退其实有很多原因:有些是社会的,有些是政治的,还有些是认知的。许多学生从小就接触这些比较不费力的互联网,可能还不懂得如何自己思考。他们的视野狭窄,仅仅局限在可以迅速容易地见到和听到的事物上,他们也没有什么动力去思考我们这个最新最复杂的“盒子”之外的事物。这些学生并不是文盲,但是他们可能永远无法成为真正的专家级阅读者。在他们阅读发展的这个阶段,当阅读的关键技能被引导、塑造、练习与磨炼时,他们可能从来就不需要挑战阅读脑完全发展的顶端:自己思考的时刻。
    每个和儿童教育有关的人——父母、老师、学者、政策决定者,都需要确保从出生到成年的阅读过程或者教学过程的每个环节,都已经理智慎重、明确地准备好了。从入学前词语组成里最小的语音到诠释艾略特在《小吉丁》( Little Gidding)中微妙的推论,这当中没有一种知识是理所当然就有。

    超越文本:沉浸在数字化资源中的我们不应丧失评估、分析、权衡轻重与挖掘信息背后意义的能力。我们不能放弃挑战阅读脑完全发展的顶端: 超越文本、用心思考。

    在儿童发展为流畅级阅读者之前他们处于格外脆弱的转型期,我们必须竭尽所能地确保沉浸在数字化资源中的他们不会丧失评估、分析、权衡轻重与明辨任何形式的信息背后所隐藏的意义的能力。我们必须在每个发展阶段,针对任何文本的需求,给予更明确仔细的指导,教导孩子成为“双文本”或“多文本”阅读者,使他们能够灵活地以不同的方法进行阅读与分析。如果想在我们的公民社会中推动阅读过程,使其完全成熟并达到专家级的阶段,应教导儿童挖掘出隐匿在文字中的无形世界,因此需要明确的指导,以及教师与学生之间的对话。
    在审视阅读者的发展过程中,我得到的主要结论充满警告。我担心大多数的儿童正处于苏格拉底警告我们要提防的危险之中——一个信息解码者的社会,他们自认为知道一切的错觉,阻碍了他们智力潜能的深层发展如果我们好好教导他们,结果可能就不会这样,这一点同样适用于我们的阅读障碍儿童。

    对阅读障碍的反思:跳出定式思维

    在一本致力于介绍阅读脑的书中,我原本可以轻松地跳过造成不适合阅读的大脑的原因。但是,游不快的乌贼身上有许多地方教会了我们怎样去弥补这个缺陷。确实,这并不是一个很好的类比,因为乌贼的游泳能力是遗传的,游不快的乌贼通常都死得很快。但是,如果游不快的乌贼不仅没有死,还占了整个乌贼数量的5%~10%,那就值得我们问一下:它们究竟做了什么,为什么能在失去游泳能力的情况下,取得这样的成功。阅读不是遗传而来,学不会阅读的儿童也不会死。更重要的是,和阅读障碍有关的基因非常坚强地保留了下来。
    阅读障碍者中的天才人物名单–如罗丹和施瓦布,或许可以解释部分原因。另一个原因则与人类的多样性有关。正如格施温德经常强调的那样,人类的遗传多样性所带来的优势与缺陷使得我们形成了一个能满足各种需求的社会。阅读障碍,看似没有规律的遗传问题和文化弱势,显示了人类的多样性,而这种多样性给人类文化带来了众多贡献。毕加索的《格尔尼卡》、罗丹的《沉思者》、高迪的《米拉公寓》(La Pedrera)和达·芬奇的《最后的晚餐》,就像其他书写文本一样,都是我们智力进化的真实而具体的代表作。它们的创造者极有可能是阅读障碍者,而这并不是巧合。
    阅读障碍的真正悲剧是没有人告诉孩子这一切,他们多年来因为学不会阅读而遭受公开羞辱,尽管他们具有一切的智力,尽管他们这种类型的智力对整个物种都有关键的重要性。而且,也没有人告诉他们的同伴这件事情。认识到这点并不能减少每个阅读障碍儿童学习中所面对的困难。不过这使我们的这些儿童知道,他们对我们有多么重要,这也是为什么我们要找到更好的方法来教导这些组织结构不同的大脑学会阅读的原因。

    神经科学最有前景的一个应用与此有关。我们对阅读脑和阅读障碍大脑的发展认识得越多,就越能在治疗计划中锁定目标,更好地专注于一些儿童脑部不再发展的特殊部位或联结。阅读障碍的治疗和典型的阅读发展一样,需要明确处理阅读的每个组成系统,直到建立起一定水平的自动化和理解能力。对于天生处理文字过程效率低下的大脑来说,这是一些极为艰难和费力的任务,但这正说明了大脑在阅读上的不同适应性。
    为了社会的最高利益,有必要保护阅读障碍儿童潜在的贡献。正如哈佛学者基尔·诺姆(Gil Noam)在他的研究中所描述的那样,必须帮助他们渡过难关,强化他们的抗压能力,好让他们在准备好的时候发明出人类的下一个电灯泡。我不想过多强调忽视阅读障碍而造成的浪费和许多其他的学习困难。在这个有些人学会了阅读、有些人持续创造神奇的事物、有些人以异于常人的方式来思考的大型故事里,那是一个令人悲伤的章节。幸运的是,阅读脑和阅读障碍脑的故事,是一则孪生的传说,浮现在人类大家庭的宏大传说中。
    理解遗传多样性如何驱使我们的智力和技能产生差异,在转型到不久的将来的这段时间里显得格外重要。本书跟柏拉图的矛盾心态几乎类似同样也是从正反对立的两个观点来切入:一方面扮演着称赞阅读脑对我们智力库有贡献的辩护人角色;另一方面以一个警惕的观察者观看科技的变化将如何帮助重塑下一代的大脑。今天的人类不需要当二进制的思考者未来的世代子孙当然也不需要。正如一句流传在维也纳的名言所说:“如果你面前出现了两个选择,通常还会有第三个。”

    未来师生之间的知识传递不应是在书本与屏幕、报纸与网络新闻,或是印刷品和其他媒体之间进行选择。转型期的我们遇上一个很好的机会如果我们抓住了这个机会,暂停一下,运用我们最可贵的反思能力,使用我们能支配的所有东西,便能准备好迎接下一个即将成形的事物。分析推理、拓展视野,阅读脑具备一切打造人类意识的能力,和敏捷、多功能多模块、整合信息的数字化思维也并非相互排斥。现在有许多儿童学习两种或两种以上的口语,我们也可以教导他们,在不同的文字表现形式与分析模式间进行转换。也许,就像那个值得铭记的画面——公元前600年的苏美尔人,耐心地在阿卡德铭文旁雕刻上转译出来的楔形文字,我们也有能力保存两个系统,同时明白为何这两者都非常珍贵。
    总之,阅读发展的自然史呈现出达到阅读最高深层次的故事,表达出极大的希望,又充满着警示。它是一个宏大的、有时激烈但多半谦卑的故事。它开始于数千年前,那时某些具有胆识与神经适应性的祖先将他们的债务与经营情况记录在泥板与纸草卷上,因此我们才得知有这些文化的存在。
    同样有勇气的苏格拉底提出一个观点,他担心文字只是披着“真理的外衣”,它们看似永久的特质,会导致人们因此停止寻找真正的知识,而我们都明白丧失这一点意味着人类美德的死亡。苏格拉底从未明白阅读的核心机密:它所释放给大脑的时间,让大脑的思考一次比一次深入。普鲁斯特知道这个秘密,我们也知道。阅读脑最伟大的成就是这份神奇的、看不见的礼物:超越时间去思考。这些在脑内几毫秒建成的结构,形成了我们能力的基础,让我们得以增进知识,思考美德,清晰地表达过去无法表达出的——当这些思想被表达后,又建立了下一个供我们向下深入探索或向上翱翔攀升的平台。

    致读者:最后的思考

    一本关于人类这一物种如何跳出并超越文本的书,不应该有最后的结局。亲爱的读者们,这结局完全取决于你们……

  • 李安山:人类起源的非洲考古:发现、积累与辩论

    人类对自身的起源一直很感兴趣,努力加深有关自身初史(或史前史)的探索和研究。“史前史”(prehistory)指人类产生并在劳动中逐渐进化成现代人的时代。喀麦隆籍人类学家高畅(Augustin Holl)教授认为,采用“史前史”一词来描述人类历史没有意义。所谓的“历史”是从遥远的人类起源直到现在,它是一个连续体,“史前史”一词容易被人误读,因此他建议用“初史”(Initial history)取代。历史的分期是必要的,但它不需要建立在一个“之前”即史前史和一个被视为文明的门槛之后的历史。有鉴于此,他提出用“初史”来取代“史前史”的概念。这一意见被联合国教科文组织《非洲通史》(9~11卷)国际科学委员会采纳,其观点在新编《非洲通史》(9~11卷)中亦有所表述。

    达尔文曾认为非洲是人类的发源地。他指出:“在世界上的每一个大区域里,现今存在的各种哺乳动物和同区域之内已经灭绝了的一些物种有着密切的渊源关系。因此,有可能的是,在非洲从前还存在过几种和今天的大猩猩与黑猩猩有着近密关系而早就灭绝了的类人猿;而这两种猩猩现在既然是人的最近密的亲族,则比起别的大洲来,非洲似乎更有可能是我们早期祖先的原居地。”他同时提出人类的两个重要特征:两足行走和扩大的脑容量。两足行走的重大意义在于它是一种极重要的适应,也包含着巨大潜能:将上肢解放出来以致有一天能用来操纵工具。可以说,所有两足行走的猿都是处于某种进化过程中的“人”。达尔文在1871年作出的这一预测激发了人们的想象,也一直成为古人类学家和考古学家力图探讨的课题。他同时还指出了人类进化中双足直立对解放手的作用。这种将非洲确定为人类发源地的观点在当时颇不受欢迎:一是因为种族歧视使人们难以赞同人类起源于非洲;二是当时在欧洲和亚洲均发现了人类早期化石,而非洲尚无任何发现。值得注意的是,1924年,澳大利亚体质人类学家和古生物学家雷蒙德·达特(Raymond Arthur Dart,1893—1988)在南非汤恩(Taung)采石场发现一个小孩的不完整头骨。这个被命名为“南方古猿非洲种”(Australopithecus africanus)的“汤恩小孩”(“Taungs child”或“Taung child”)生活在约200万年前,它是一个两足行走的猿。达特的这一发现揭开了人类起源及演变的历史画卷,为后来在非洲及其他地区的考古发掘提供了引导和借鉴,也为学术界有关人类起源的争论提供了中心议题。由此,2024年在“南方古猿非洲种”发现100周年以及“图尔卡纳男孩”化石发现60周年之际,本文拟在梳理非洲人类考古重要发现的基础上,探讨非洲在人类起源问题上的独特贡献。

    南非古猿非洲种:命名与反对

    “人类化石记录的知识在非洲缓慢地发展,这一发展开始于1924年,当时雷蒙德·达特宣布发现了著名的汤恩小孩。”出生于澳大利亚布里斯班的雷蒙德·达特,在昆士兰大学和悉尼的医学院完成学业后,一战后曾在英国与著名解剖学家和人类学家格拉夫顿·艾略特·史密斯爵士(Sir Grafton Elliot Smith)共事并受其培养训练。1922年,他成为南非约翰内斯堡威特沃特斯兰德大学医学院解剖学教授。1924年夏,达特教授发动学生到野外收集动物化石,名为约瑟芬·萨蒙斯(Josephine Salmons)的学生提供了关于在位于贝专纳兰保护地的汤恩矿区有不少动物化石这一极有价值的信息,达特立刻从各方面打听消息并收集化石。而后,他在矿山经理斯皮尔斯(A.E.Spiers)向其展示的所收集的动物化石中发现了一块不完整头骨。作为解剖学家,他发现这个显然是灵长类动物的头骨。这块化石非常奇特,“它对原始人(primitive man)来说不够大,但对类人猿(ape)来说,有一个巨大的凸起的脑,最重要的是,前脑太大了,向后延伸太远,完全覆盖了后脑。”这块化石外表层后面具有清晰无误的犁沟之间的明显距离,这种被称为“月沟”或“平行沟”的犁沟往往出现在类人猿或原始人的脑上。达特的导师格拉夫顿·艾略特·史密斯爵士就是因为发现“人脑月沟”而享有盛名。这块不完整头骨包括部分颅骨、面骨、下颌骨和脑模。头骨有许多似猿的性状,但也有很多人类的性状:上、下颌骨不如猿向前突出,颊齿咬合面平,犬齿小。特别重要的是,枕骨大孔位于中央。这些特征表明这是一个两足行走的猿的头盖骨。当达特发现这些将要改变人类认识自己演变过程的重要物证时,他立刻联想起达尔文有关非洲是人类发源地的预测,其激动心情溢于言表:“我会成为找到他‘缺失环节’(missing link)的工具吗?”他在兴奋之余,经过17天对化石的勘察、分析、比较和综合,于1925年1月6日将稿件寄出,1925年2月7日在《自然》杂志上发表。雷蒙德·达特宣布自己发现了一块独特的头骨化石,认为这是介乎“活着的类人猿和人类”之间的猿人化石,认为这只非洲猿代表了类人猿和人类之间缺失环节,因为它结合了类人的牙齿、直立的姿势以及较小的颅骨容量。这个被命名为“南方古猿非洲种”的“汤恩小孩”生活在约200万年前,是一只两足行走的猿。这证明了查尔斯·达尔文1871年的观点“非洲将被证明是人类的摇篮”。

    以亚瑟·基思爵士(Sir Arthur Keith)为首,包括艾略特·史密斯爵士、史密斯·伍德沃德(Smith Woodward)和达克沃斯(W.H.L.Duckworth)等4位英国学术权威在同一期《自然》杂志上表示了自己的态度,其谨慎观点似乎在等待雷蒙德·达特发表其相关研究的详细报告。体质人类学家的权威亚瑟·基思将其归类为黑猩猩和大猩猩的亚种;雷蒙德·达特的导师、神经解剖学家史密斯确认这块化石很重要,但不宜过高地宣扬其与人类的亲密关系;伍德沃德认为所提供的证据不足并否认头骨与人类祖先有任何联系;达克沃斯以不偏不倚的严肃态度接受达特的说法,并对这位年轻解剖学家的能力表示充分信心。与此同时,雷蒙德·达特发现“汤恩小孩”的消息在世界学术界引起了轰动。1925年,在伦敦温布利(Wembley)举行的大英帝国展览上,一块化石的复制品被展示在“非洲:人类的摇篮”的标识下。雷蒙德·达特之所以将这一化石放在温布利展出,当然是希望它得到大众的认可。然而,效果似乎适得其反。一种像猿的生物是人类祖先?这一看法很难被大多数欧洲人类学家接受,一是因为绝大多数人相信人类是上帝创造;二是这种猿出现在非洲简直不可想象。一位法国人直言:达特将会“在地狱里无法熄灭的火焰中烧烤”,因为他声称汤恩的头骨代表了人类的祖先;一位英国人写道:“我希望你能被安置在一个为弱智者服务的机构里”;一位丹麦人警告说,达特签署了他的“引渡令”,因为他不礼貌地解释了人类的起源;伦敦的《星期日泰晤士报》上一封信署名为“一个平凡但理智的女人”声称:达特是造物主的叛徒,并使自己成为“撒旦的积极代理人和现成的工具”。

    基思爵士通过致编辑信件的方式在随后的一期《自然》杂志上直接提出反对意见。虽然他的语言比较委婉,但其对立的观点十分明确。首先,基思公开表示达特对这块化石的解释“让我们许多人感到怀疑”,以确立自己代表的是大部分学者的观点。其次,他试图用其他学科的看法来说明达特观点的错误,“动物学家对温布利展出的模型进行检查后会相信这种说法是荒谬的。”他对达特的最后评价是:“他的发现揭示了类人猿的历史,但没有揭示人类的历史。爪哇人(Pithecartopus)仍然是人类和类人猿之间唯一已知的联系,而这种已经灭绝的类型位于人类一侧。”反对者普遍认为这个标本是一只未成熟的猿的头骨。达特于1930年前往英国为自己的观点争取支持,而中国科学家裴文中(1904—1982)在周口店发现的一个基本完整的直立人(Homo erectus)头骨的消息正在欧洲广为传播。这一消息不仅大大降低了达特英国之行的重要性,他自己也颇为沮丧。英国之行在达特的事业上留下了抹不掉的阴影,这一点他在自己的传记著作中坦然承认。此行既未达到宣传自己观点的目的,又没能说服伦敦的专业权威发表他的论文,加之裴文中的发现将人们的注意力集中到人类起源的东方说。最有意思的是,基思爵士告知达特自己正在出版一部有关最新考古发现的著作,其中详细阐述了不同于达特有关“南方古猿非洲种”的看法的观点,而以他为代表的这个领域的英国学术权威们却将达特的论文束之高阁,不予发表。

    不容否认,有关“南方古猿非洲种”这一具有历史意义的考古发现的重要价值被长期埋没。在随后的20余年里,达特的观点在以英国为首的国际学术界一直被忽略。与此截然相反的是,达特在南非的地位瞬间上升,成为一位英雄。“在南非,达特因为发现了一个关键的‘缺失环节’并将这个国家放在了进化地图上而立刻被视为英雄。当地媒体对这一新发现进行了重要报道,这是从偏远的北开普省汤恩的一个采石场爆破的石灰岩中发现的。”官方的大力支持加上媒体的炒作,使达特声名鹊起。其中一个重要原因是,这一发现刺激了南非白人的民族主义,对英布战争后英国人与阿非利卡人之间的裂痕产生了重要的修补作用。刚离开政坛的前总理史末资从南非的科学进步潜力和在国际社会中发挥重要作用的角度来描述达特的发现。一些对达特观点持有不同意见的学者甚至难以在公开场合表达自己的看法。达特享受着极高的学术声誉,特别是在他的观点于20世纪50年代得到认可之后。在20世纪60年代,学界在达特75岁生日时专门发文祝贺他取得的学术成就,有关达特发表成果的统计结果(1920~1967年)已经出现,威特沃特斯兰德大学于1969年专门出版了有关他发表成果的参考文献著作。20世纪80年代先后出版了两部有关达特与他发现“缺失环节”的学术成就的书籍由于达特在人类起源考古研究上作出的重要贡献,威特沃特斯兰德大学建立了非洲人类研究所(Institute of the Study of Man in Africa)以纪念他取得的成就。

    南方古猿非洲种:否定的原因

    20世纪上半叶是一个非常特殊的时代。欧洲殖民统治在非洲的建立、巩固和动摇使种族主义思潮甚嚣尘上,欧美各国以及殖民地的民族主义因两次世界大战而颇为盛行。在这种特殊的氛围下,达特的观点不易被学术界接受。究其原因,除了已有的发现和流行的观点,如其导师史密斯认为脑容量大是人类进化的关键等之外,主要有四方面的原因。

    第一,“如此像猿的一种生物可能是人类祖先”的观点在一个信仰基督教并相信“上帝创造人”的环境中确实很让人难以接受,因此人们对他的发现普遍反感。

    第二,当时人类起源的东方说在学界比较流行。人们普遍认为人类最初是在亚洲进化而来,这主要是因为荷兰解剖学家尤金·杜波伊斯(Eugene Dubois,1858—1940)等人自1890年起先后在印度尼西亚发现一批人类化石。中国的考古发掘则为东方起源说强化了论据。自1918年以后特别是在20世纪20年代,中国发现不少哺乳动物化石,这些化石中有两颗人的牙齿,这是有关北京猿人的最早发现。1929年,中国考古学家斐文中的发现震惊了考古学界,给达特的发现及其观点的重要性打上了一个极大的问号。这一点在达特的传记中有所描述。达特从英国回到南非以后,曾一度陷入苦恼之中,中国猿人的发现的确对他的冲击太大。他全身心地投入到威特沃特斯兰德大学解剖学系主任的工作中,此后多年未进行有关人类起源问题的探讨。然而,他对自己的观点深信不疑。

    第三,英国当时盛行的民族主义情绪使“皮尔当骗局”(Piltdown Hoax)长期占领着主流话语。此前,1856年,在德国杜塞尔多夫(Dusseldorf)附近发现了尼安德特人化石(Homo neanderthalensis,Neanderthaloid);1868年,在法国的克鲁马努地区发现了克罗马农人化石(Cro-Magnon)。这些发现在欧洲学术界影响极大。既然人类起源地可能在欧洲,英国似乎迫切需要发现自己的古人类化石。古人类学家托拜厄斯(P.V.Tobias)颇为幽默地指出,“法国和英国在非洲领土上的经典竞争可以追溯到19世纪争夺非洲之前的几百万年。”1912年,在英国东萨塞克斯郡尤克菲城(Uckfield)附近的村庄皮尔当“发现的”早期人类化石,给热衷于研究人类起源的欧洲地质学和考古学界特别是英国人类学家带来了惊喜。这些化石在约40年里一直被欧洲考古学界认为是更新世时期的化石。基思爵士是“皮尔当人”作用的主要支持者。达特的导师格拉夫顿·艾略特·史密斯爵士也是“皮尔当骗局”的受害者。这一骗局持续40余年,直到1954年被揭穿。

    第四,最重要的因素是欧洲盛行的种族歧视。“政治和种族理论似乎是天生的盟友。”种族主义在19世纪盛行。德国哲学家黑格尔(1770—1831)在《历史哲学》中一方面承认自己对非洲“几乎毫无所知”,另一方面却随意贬低非洲文化。法国文学家雨果(1802—1885)在1879年宣称非洲没有历史。这些文人的见解与其说是对非洲历史的无知,不如说是欧洲人对持续近400年的奴隶贸易的自我宽慰——非洲黑人低人一等的观点使得欧洲白人将他们作为廉价劳动力贩卖为奴的做法显得顺理成章。早期抵达非洲的欧洲探险家们用欧洲白人的视角来观察非洲,通过各种所谓具有亲身经历的日志,传达了两个信息:非洲人是低等种族,非洲需要欧洲人来传播文明。这些观点不仅为逐渐成熟的种族主义理论提供了论据,也为瓜分非洲提供了“合法”的理由。殖民统治建立后,种族歧视观点更为直白。英国历史学家牛顿在1923年认为,“非洲在欧洲人进入之前没有历史”。英帝国时期著名学者伯厄姆在1951年提出,“非洲没有书面语言,因而也不存在历史。”另一位史学家特雷沃尔-罗珀在1963年表示:“可能在将来会有非洲历史可以讲授,但目前还没有,只有在非洲的欧洲人的历史。其余是一团漆黑……而黑暗不是历史的题材。”历史学家汤因比在1966年仍将“西方人”进入非洲作为文明的标志,认为非洲是文明渗透最晚的一个大陆。直到1972年他才在新版《历史研究》中承认,热带非洲在农业和冶金方面有着可与西欧比肩的历史。

    “含米特人”(the Hamites)一词来自《圣经》中挪亚的儿子含(Ham),后来被利用作为廉价劳动力的代名词。阿拉伯人旅行家利奥·阿非利肯纳斯(Leo Africanus,1492—1550)在其著述中,认为非洲人是含的后代。作为一个内涵模糊的概念,“含米特人”在欧洲学界的长期操弄下逐渐演化成高加索人种的分支,与欧洲人或白人同属一个伟大的人类分支。塞利格曼在《非洲的种族》一书中对“含米特人”概念的理论化使它的涵义固定下来。此书从1930年出版到1966年一直被作为经典著作。塞利格曼的论点很明确:非洲大陆在伊斯兰社会之前的文化发展归功于可能来自东北非的含米特移民,他们将黑人引入社会变革和技术创新。“非洲的文明就是含米特人的文明。”“除了相对较晚的闪米特族的影响之外……非洲的文明是含米特人的文明,其历史是这些人以及与另外两个非洲种群即黑人(the Negro)和布须曼人(the Bushman)互动的记录,无论这种影响是由高度文明的埃及人施加的,还是由今天以贝贾人和索马里人为代表的更广泛的牧民施加的……新来的含米特人是游牧的“欧洲人”(pastoral “Europeans”)——一波接一波地到来,他们比黑肤色的从事农业的黑人武装得更好,反应也更快。我们今天知道,“含米特主义这一概念的作用是将黑人描绘成一个天生自卑的人,并使得对他的剥削合理化。”在这种歧视非洲的种族主义理论占上风的欧洲语境中,人类起源于非洲这一结论很难被人接受。

    南方古猿非洲种:证实的过程

    南非德兰士瓦博物馆的古生物学家罗伯特·布鲁姆(Robert Broom,1866—1951)对证明人类起源于非洲的观点起到了重要作用。理查德·利基这样评价他:“英格兰的古生物学家罗伯特·布鲁姆,20世纪30年代和40年代在南非开创性的工作,有助于非洲是人类摇篮观点的确立。”达特的论文发表后,他非常兴奋,专程上门拜访达特。达特后来回忆起布鲁姆突然闯入他的实验室:“他无视我和我的工作人员,大步走到头骨所在的长椅上,跪下‘崇拜我们的祖先’。”作为达特观点的坚定支持者,布鲁姆到处传播这一发现的重要性。牛津大学的地质学家和人类学家索拉斯(W.H.Sollas)原来与其他英国学者的看法一致,认为“汤恩小孩”更接近于大猩猩和黑猩猩。当他看过布鲁姆转来的有关信息后,在1925年6月13日的《自然》以及1926年的《地质学会季刊》杂志先后发文,认为“南方古猿非洲种”头盖骨与类人猿存在诸多明显的差别。索拉斯教授在致布鲁姆的一封信中还表示:艾略特·史密斯也与他持相同观点,认为这块化石是一个高级类人猿的头盖骨,可能接近人类祖先。达特更没想到,1925年6月访问南非的威尔士王子表示希望“看看达特教授的孩子”。他十分兴奋地将这个标本带到威尔士王子下榻的约翰内斯堡卡尔顿酒店,向王子介绍了这个重要发现。

    作为南非早期人类化石探索的先驱者之一,布鲁姆是英格兰人,他早在1918年就发表过有关早期考古报告,后来也投身于早期人类化石的考古工作。布鲁姆于1934年开始在德兰斯瓦博物馆就职,1936年开始从事有关人类起源的早期化石的考古搜寻工作。从那时起到1960年,几乎所有关于南方古猿(Australopithecines)的化石都来自南非的石灰岩洞穴。最丰富的来源是4个山洞遗址:德兰斯瓦的斯特克方丹(Sterkfontein)、克罗姆德莱(Kromdraai)、斯瓦特克朗(Swartkrans)和马卡潘斯盖特(Makapansgat)。布鲁姆的团队从1936年开始收集了数百个标本,并于1938年将发现的南方古猿部分头颅骨及颌骨化石命名为“傍人”(Paranthropus)。斯特克方丹是大约300万~250万年期间人类进化的最丰富的信息来源之一。这些发现为证实南方古猿非洲种提供了更多证据。另一位人类起源研究的先驱托拜厄斯的考古报告,特别是马卡潘斯盖特的成果使达特激动不已,他开始考虑重新回到自己一直关切的有关“南方古猿非洲种”的持续研究之中。

    1932年底,比勒陀利亚的几名学生在马蓬古布韦(Mapungubwe)发现了早期墓室里的头骨,以及与早期人类生活相关的各种遗物,包括金子。发掘者几乎被葬品惊呆:不少于70盎司的黄金、130个金手镯与大量珠子和镀金作品,头骨下面的镀金碎片明显是为了装饰头枕,还有金圆环和金鞘等大量金制饰品。比勒陀利亚的利奥·福切(Leo Fouché)教授在获知这个“奢华葬礼”消息后,参与了对文物的考察,并对金子的纯度进行检测,结果证明金子纯度非常高。他将马卡潘斯盖特的发现报告给政府。在政府的干预下,这个地区在随后两年里又发现了24个墓葬,其中的遗骸引起了学界的重视。南非方面请基思爵士对这些遗骸进行鉴定,但基思以南非自己有足够的学者可进行测定为由拒绝。当福切教授联络达特参与鉴定时,他也婉言谢绝以避嫌。这些遗址在1905年曾被兰德尔·麦克伊维尔测定为班图人的,但达特通过对各种器物的比较,认为有外来因素的影响。

    在布鲁姆的鼓励下,达特后来决定重返人类早期化石的搜寻和论证,并取得了不菲的成果。南方古猿非洲种相关化石的另一个重要来源地是南非的马卡潘斯盖特。达特早期就注意到位于马卡潘斯盖特的一些早期人类居住地的特征,1948年7月,他的助理在马卡潘斯盖特发现了一只成年男猿的下腭,随后又发现了一个成年女性的左脸和4块其他类型的早期化石碎片,包括下腭、髋骨和头骨等,在马卡潘斯卡的一个洞穴中则发现了更多的类似遗骸。这些化石后来被命名为“普罗米修斯南方古猿”(Australopithecus prometheus)。达特及团队也在斯特克方丹、斯瓦特克朗、克罗姆特莱和马卡潘斯盖特等山洞遗址里发现了大量早期人类化石,并为每一个化石取了新的种名。1947~1962年间,他们在那里收集了约40个标本。布鲁姆的主要贡献在于他与谢泼斯关于南方古猿非洲种的专著从理论和实证上阐述了达特的观点,使许多古人类学家相信了南方古猿非洲种是现代人类的祖先。基思爵士最终不得不承认达特的结论是正确的,他自己的判断是错误的。后来的研究甚至涉及“汤恩小孩”死亡的原因,多学科的研究推测这名儿童是被一只大型猛禽杀死并吃掉的,很像现存的非洲冠鹰。这样,在南非,我们有了一个生活在300万年与100万年之间的包括早期人类的系列考古发现。

    除了南部非洲之外,在东部非洲和中部非洲也有其他类型的早期人类化石的发现。1960年,乔纳森·利基(Jonathan Leakey)在东非奥杜韦峡谷发现了另一种类型的人类头骨片。这个化石与南方古猿的最大不同之处在于,其头脑几乎大出50%。路易斯·利基(Louis S.Leakey)认为,这一化石代表了最终产生现代人的那一支。鉴于该化石说明此人已能制作石器,达特建议将这一标本命名为“能人”(Homo habilis),即“手巧的人”。利基与托拜厄斯和内皮尔3人根据7个化石个体确定了“能人”这一学名。利基认为,能人是人类最早类型,是智人的祖先,但既不属于南方古猿类,也不同于直立人。路易斯·利基在1961年的“赫伯特·斯宾塞讲座”中明确指出:非洲对人类进步的第一个贡献是“人类自身的进化”。中国人类学家吴汝康指出:“直到50年代末,在东非发现了大量的早期人类化石,人类学界的多数才开始转而认为人类起源的地点是非洲。”南方古猿非洲种在人类起源发展史上的重大意义之所以被重新认定,主要是在同一地区以及东非地区发现了大量的早期人类化石,从而加强并最终证实了达尔文的观点。托拜厄斯曾经就南方古猿非洲种的含义提供了一种令种族歧视者汗颜的解释:“可能需要提醒那些贬低非洲及其成就的人,非洲的最大恩惠是它给了世界第一个原始人和第一种人类文化。”他的评价是对的。

    人类在非洲起源的线索:化石搜寻的历史

    从20世纪初到90年代,在非洲的有关人类起源的发掘与研究一直在推进。1913年,在南非德兰士瓦的博斯科普发现了一块头骨化石。罗伯特·布鲁姆于1918年将其称为“博斯科普人”(Boskop man,Homo capensis)。1921年,在赞比亚的断山(Broken Hill)发现了一个头骨和一些体骨,其年代被推测为35万年以前。这些人类化石与尼安德特人近似,很有可能是带有相同人种特点的非洲标本。自发现南方古猿非洲种以后,其他地区也先后发现了多个时期的人类早期化石。1931年,路易斯·利基在东非奥杜韦峡谷发现了动物化石和粗石器后,认为人类进化的中心在非洲而不是亚洲。1932年,他在肯尼亚西部坎杰拉发现两块残破的头骨,可能属于智人种。1939年科尔·拉尔森(L.Kohl Larsen)在坦桑尼亚的埃亚西湖东北部发现了下颌骨,由此将南方古猿的分布扩展到东非。1959年,玛丽·利基(Mary Leakey)在奥杜韦峡谷发现了与南方古猿粗壮种相像却更粗壮的175万年历史的磨石齿,命名为“东非人鲍氏种”(Zinjanthropus boisei,简称“Zinj”),后改为“南非古猿鲍氏种”(Australopithecus boisei)。这一发现具有非常重要的意义。首先,它激发了人类古生物学界的热情和引发了有关人类起源的科学辩论,且抓住了公众的想象力。其次,这一发现使得美国国家自然地理学会认识到奥杜韦对早期人类化石发掘的重要性,并愿意提供研究经费。再次,这对达特的早期发现也具有重要意义。路易斯·利基专门邀请达特、德斯蒙德·克拉克(Desmond Clark)等古人类学家和考古学家来考察这一发现的遗址。玛丽·利基在传记中表明:“达特对我们的发现感到特别高兴。”达特自己也表示这一发现印证了南非的早期发现。

    继1960年乔纳森·利基在奥杜韦峡谷发现“能人”头骨之后,理查德·利基(Richard Leakey,1944—2022)于1963年在坦桑尼亚纳特龙湖地区发现了南方古猿颌骨,同年在奥杜韦峡谷第二层发现能人化石。1967年,美国、法国和肯尼亚的国际考古队在埃塞俄比亚奥莫河谷下游发现约400块人科化石,被称为“奥莫人”(Omo man)。该地区还发现过较早时期的化石和早期陶器。1969年,理查德·利基团队在肯尼亚发现距今175万年的南方古猿鲍氏种(Australopithecus boisei)头骨,收集了100多件化石碎片。1972年,在肯尼亚库彼福勒发现被归属于能人的编号为“KNN-ER1470”的颅骨化石。1974年,由莫里斯·泰伊白(Maurice Taieb)、伊夫·科彭斯(Yves Coppens)和唐纳德·约翰森(Donald Johanson)领导的法、美联合考察团在埃塞俄比亚的哈达尔发现了许多化石骨骼,包括一个身高0.92米的女人,被称为“露西”(Lucy),露西及其伙伴在约200万年前已能两足行走。

    1975年到20世纪80年代初,玛丽·利基团队在莱托利找到多种人类化石,被命名为“南方古猿阿法尔种”(Australopithecus afarensis)。1976年,她在奥杜韦峡谷的莱托利火山灰沉积上发现了距今360万年前留下的一组27米长的足迹,这是她最重要的考古成就之一。玛丽·利基认为“莱托利足迹”(Laetoli footprints)是人族留下的。莱托利脚印的发现是我们理解人类行为和两足动物进化的最重要进展之一。除了证实370万年前人类祖先已能够完全用两足行走外,其步态模式和踏板形态可能也发生了巨大变化。莱托利的那些保留下来的足迹痕迹提供了早期人类活动及其古生态环境的实证。玛丽·利基的观点曾一度被否定,或认为这些脚印是一只幼熊后腿行走留下的,或认为340万年前的足迹与现代人足迹如此相似不可想象,或认为生活在300多万年前的生物会存在如此清晰的人类足部特征不可理解。然而,埃利森·麦克纳特的近期研究表明,用熊来解释这些足迹站不住脚,“莱托利足迹”属于交叉双腿的类人猿。只有人类才有合适的解剖学特征来保持紧凑的步态,或以两脚交叉而不至跌倒。“莱托利足迹”说明,两足直立行走是比脑量增加和牙齿结构进步更为古老的人类特征。1978年,在奥杜韦同一地层发现了能人化石、奥杜韦文化遗存和动物遗骸,由此证明能人使用工具来捕捉动物维生。考古学者在肯尼亚的库彼福勒、南非的斯特克方丹和斯瓦特克朗与埃塞俄比亚的奥莫地区均发现了能人化石。1984年,理查德·利基团队的卡莫亚·基穆(Kamoya Kimeu)在肯尼亚图尔卡纳湖岸发现的“图尔卡纳男孩”(Turkana Boy)是直立人的成员之一,是在人类进化表上比以前的任何类型更进步的类型。考古人员在南非的斯瓦特克朗(250万年前)、坦桑尼亚的奥杜韦峡谷(150万年前)、肯尼亚的图尔卡纳湖边(150万年前)和埃塞俄比亚的默勒卡孔图雷、博德和奥莫等地(50万~150万年前)均发现了直立人标本。直立人已具备某种使用语言的能力,同时是最早使用火、最早以狩猎作为生活的重要活动、最早能按某种方式制造工具的人。更重要的是,直立人是最早分布到非洲以外地区的人。

    1987年由阿伦·威尔逊(A.C.Wilson)等人提出“线粒体夏娃假说”:智人之古老类型向现代类型的转变大约在10万~14万年前发生在非洲,今天人类均为该群体的后代,后来的研究使年代稍向前移。研究小组通过检查细胞内称为线粒体的细小器官中的遗传物质去氧核糖核酸(DNA)的原型,确定现代人类线粒体DNA均来自非洲的一位女性,她是人类各种族的共同祖先。研究团队认为可以将这位幸运的女性称为“夏娃”,她的世系一直延续。这一观点因此也被称为“夏娃假说”或“夏娃理论”。这一假说得到道格拉斯·华莱士(Douglas Wallace)实验室研究成果的支持。1987年卡恩等人通过对线粒体DNA变异的研究提出“出自非洲假说”。“夏娃假说”支持人类起源的“走出非洲说”,但否认杂交的可能。这种假说遭到质疑。以沃尔波夫(M.H.Wolpoff)为首的古人类学家指出,化石材料表明世界各地的现代人类是从当地的古人类发展而来的,并不存在“完全取代”。坦普列顿(A.R.Templeton)对最初线粒体“DNA”比对研究的科学性提出质疑,认为这种检验方法容易出错,不足以证明人类祖先是同一女性。

    20世纪90年代,考古人员在非洲继续发现了一些新的人类化石,如蒂姆·怀特(T.White)等学者于1994年在埃塞俄比亚阿法地区发现距今440万年的早期人科化石,定名为南方古猿始祖种(Australopithecus ramidus),1995年改名地猿始祖种(Ardipithecus ramidus);1995年玛丽·利基在图尔卡纳湖西南发现的420万~390万年前的新化石,定名为南方古猿湖泊种(Australopithec usanamensis);1995年,法国古人类学家布吕内(M.Brunet)考古队报道于1993年在乍得的科罗·托罗(Koro Toro)附近羚羊河地区发现的下颌骨,定名为南方古猿铃羊河种(Australopithecus bahrelghazali);1996年,埃塞俄比亚古人类学家阿斯发(B.Asfaw)等人在埃塞俄比亚中阿瓦什地区布瑞半岛发现了距今250万年前的头骨和颌骨,1999年定名为南方古猿惊奇种(Australopithecus garhi);1999年,史蒂夫·沃德(Steve Ward)研究小组在肯尼亚的图根山区发现一具完整且包含牙齿和头骨碎片的骨骼。这具骨骼表明原始类人猿在约2200万年以前出现在东非,显示出早期类人猿与现代类人猿及人类之间的联系。

    21世纪非洲人类化石的新发现

    21世纪,非洲考古又有重要的新发现。2000年,法国古生物学家皮克福德(M.Pickford)等人在肯尼亚的图根山(Tugen Hills)发现了600万~570万年前的两件下颌骨、3根大腿骨和其他骨骼化石。研究表明这种生物已经习惯用两腿走路,可归属于人类,被定名为“原初人图根种”(Orrorin tugenensis),也被戏称为“千禧年祖先”(millennium ancestor)或“千禧猿”。这一发现之所以重要,是因为它表明人类早在距今600万年前已用两腿行走。此外,还有1998年和1999年发现并于2001年定名的“扁脸肯尼亚人”(Kbnyanthropus platyops)和2001在埃塞俄比亚发现的520万~580万年前的地猿始祖种的家祖亚种(Ardipithecus ramidus kadabba)。最重要的成果是乍得早期人类头盖骨的发现,它将人类起源追溯至700万年前。2002年,布吕内等学者在乍得萨赫勒地区发现一块头盖骨,牙齿和下颚距今700万年,它被定名为“萨赫勒人乍得种”(Sahelanthropus tchadensis),并取名“图迈”(Tumai)。持不同意见者认为,“图迈”化石更像猿,而非人。2003年《自然》杂志报道了在埃塞俄比亚阿法盆地的赫托(Herto)发现15万~16万年前多件智人头骨化石这一重大事件。研究者认为这批化石在形态上与现代智人不属于同一亚种,与现代非洲人差异较大,而与澳洲土著人较相似,其形态体现为古老特征与现代特征的结合,故定名为智人长者亚种(Homo sapiens idaltu)。2005年,《自然》杂志报道对奥莫人类头骨化石年代的新研究将其推前至19.6万年前,后来的研究将时间确定为23万年前。这批化石比“夏娃”年代更早,因为其形态结合了古老特征和现代特征,年代远早于15万年前。这些考古发现及研究表明,人类发展过程在形态上逐渐过渡。2005年的一个重要成果是布吕内等人在发现“图迈”的地方找到一些牙齿和颚骨碎片。从牙齿判断,“图迈”的犬齿较小,有臼齿和前臼齿,牙齿的釉质较厚,这些特征与人类相似。“图迈”的头骨是平衡在脊柱上的,证明他能像人一样直立行走。化石证据和计算机成像都表明,早期在乍得挖掘到的这具化石属于迄今为止发现的最早人种化石,对人类起源和进化研究具有重要价值。

    “伊莱雷特足迹”(Ileret footprints)是马修·贝内特(Matthew R.Bennett)的团队于2009年在肯尼亚北部伊莱雷特村距今151万年至153万年前的两个沉积层发现的古代人类脚印。通过这些脚印的形状、体积和深度可以判断这些生物的重量和体态,很可能是类似现代人类的东非直立猿人的足迹。这些脚印提供了在骨骼化石中所缺乏的有关足部软组织形态和结构方面的信息,是证明人类祖先像现代人类一样行走的最古老的证据。这些脚印与现代人脚印相差无几,步幅也几乎一样。足迹显示出现代人的脚部特征,如脚跟为圆形、大脚趾与其他脚趾平行,而不像类人猿的大脚趾那样单独分开。脚印还显示出明显的足弓以及短趾,这与人类相似并且通常与双足行走的能力有关。研究人员还估算出足印“主人”的体重与现代人相当,从步幅可估算出其中有的身高约1.75米,但尚未发现他们的足部残骸。直立人身材比例接近现代人,腿长、胳膊短。古人类的足迹提供了关于步态和足部形状的证据,但它们的稀缺性加上古人类化石记录的不足,阻碍了研究者对人类步态进化的研究。根据脚印的大小和深度,研究人员认为那时的人类祖先已具备现代人基本的足部功能和直立运动特征。

    2010年,美国俄亥俄州克利夫兰自然历史博物馆的古人类学家约翰尼斯·海尔-塞拉西(Yohannes Haile-Selassie)领导的团队在《美国国家科学院院报》(Proceedings of the National Academy of Sciences of the United States of America,PNAS)发表研究成果,报告团队于2005年在埃塞俄比亚中部的阿尔法地区发现了与露西同类的早期人类新化石,但年代更早,距今有360万年的历史。科学家们将新的南方古猿阿法尔种化石戏称为“大个子”或“大人物”(Kadanumuu,埃塞俄比亚阿法尔语语义),因为新化石的高度在5~5.5英尺(约合1.5~1.8米)之间。除了体型比露西大得多之外,新化石还包含一个更完整的肩胛骨、胸腔的主要部分和骨盆碎片,这些碎片为南方古猿阿法尔种的运动提供了新的线索。海尔-塞拉西表示,“‘大个子’的骨骼特征与现代人类惊人地相似”。这项研究表明,“露西”和她可能的祖先“大人物”几乎与现代人一样善于直立行走,人类进化过程中开始直立行走的时间可能比此前研究者认为的更早,甚至可以单腿站立并保持平衡,“这是黑猩猩无法做到的。”“由于这一发现,我们现在可以自信地说,‘露西’和她的亲戚几乎和我们一样熟练地用两条腿走路,而且我们的腿在进化过程中比以前想象的要早。”2016年9月,由哈佛医学院遗传学家领衔的国际团队对全世界270个地点的个体样本,进行了全新的、高质量的全基因组测序。研究证实了当今所有非洲之外人类的祖先都源自10万年前同一走出非洲的种群。

    从上述发现可以看出,研究人类起源的学者探索这一问题的证据来自三方面:一是早期进化各阶段的人类化石;二是通过有形的产物、工具和艺术品体现的人类行为;三是20世纪80年代开始的分子遗传学的解释。目前,学界对人类起源提出3种假说。“多地区起源说”(Multiregional Evolution theory)认为,现代人起源是包括整个旧大陆的事件;现代人出现于任何有直立人群体的地方;智人在各大洲逐渐进化成现代人,并伴有基因交流。“走出非洲说”(Out of Africa theory)认为,现代智人在近期产生于非洲,后扩展到旧大陆的其余部分;虽然可能在某种程度上与当地已有智人前的人群杂交,但非洲现代智人取代了已存在于世界其他地区的直立人和远古智人;这些人群的遗传根源浅,均来自晚近才在非洲进化出来的单一人群。这种假说目前基本上已被否定。“线粒体夏娃学说”或“线粒体夏娃假说”(“mt-Eve”或“mt-MRCA”)是20世纪80年代出现的现代人起源假说,它基本上支持“走出非洲说”,但否认杂交的可能;当现代人群走出非洲并在数量上不断增加时,他们完全取代了当地已有的现代人以前的群体;移民与当地人群之间的杂交可能性极小。

    初史时代存在4个关键性阶段。第一阶段是人科本身的起源,即类似猿的动物转变为两足直立行走的物种,时间约为700万年前。第二阶段是古生物学家称为适应辐射的阶段,即两足行走的物种繁衍的阶段。第三阶段是人属(Homo)的出现,其标志是脑子的扩大。人属是从诸多物种中发展起来的,距今300万~200万年之间。从猿到人有一个过渡阶段。人属的第一个种是能人,在坦桑尼亚、肯尼亚、南非和埃塞俄比亚发现了能人及其亲近种的化石。人类的这一支以后发展成直立人,并最终发展到智人(Homo sapiens)。第四阶段是现代人的起源,他们具有语言、意识、艺术想象力和技术革新等多种复杂的能力。

    余  论

    本文聚集于对人类起源问题的研究和达特在这方面的贡献。然而,学界对达特的历史作用的看法不一,有的学者认为达特对南非“科学种族主义”的发展做出了贡献,他的思想强化了白人种族优越性的假设。随着关于现代人起源的遗传学研究不断深入,不少遗传学家的研究提供了不同的观点,一些新的考古发现也在得出新的结果。1992年,中国与美国人类学家在湖北郧县发现了两块古人类头骨化石,研究后确定现代中国黄种人的祖先不是由非洲迁移而来,而是由当地猿人演化而成。1995年,英国剑桥大学和美国的亚利桑那大学的两个科研小组利用基因技术各自独立地得出结论:世界各地的男性基因源于同一基因。美国学者利用计算机分析了8位非洲男性、2位澳大利亚男性、3位日本男性和2位欧洲男性以及4只大猩猩的基因。他们通过将人类基因与人类近亲大猩猩祖先的基因比较后得出结论:18.8万年前非洲某部落的“Y”染色体是现代男性“Y”染色体的共同祖先。1998年,吴新智(1928—2021)根据中国出土的化石提出“连续进化附带杂交”的观点。早在20世纪80年代,吴新智与美国密歇根大学教授W.F.沃尔泼夫和澳大利亚国立大学教授A.G.索恩依据当时掌握的化石证据,对东亚和东南亚—太平洋地区古人类演化模式进行了分析论证。他们列举了支持这一区域古人类连续进化的化石形态证据,由此创立了现代人起源的“多地区进化说”。这一研究仍在继续。

    以吴新智为代表的一批中国考古学家支持“多地区进化说”,认为包括中国人在内的东亚人是独立进化而来。1998年,由中国16个科研单位联合开展的中华民族基因组若干位点基因结构的研究表明:当今亚洲基因库主要源于非洲起源的现代人,从而对东亚地区存在着从直立人到现代人的连续进化过程的说法提出挑战,得出关于“亚洲基因库主要源于非洲起源的现代人”的结论。2001年5月,中国、美国、英国、印度尼西亚等国的研究机构合作进行的一项针对163个东亚人群的1.2万名男性进行的性染色体的基因研究表明,东亚人可能源自走出非洲的现代人而非非洲现代人与当地直立人的混合后代,但不完全排除中国人起源于本土直立人的可能性。2007年,中国科学院古脊椎动物与古人类研究所尚虹、同号文等与美国圣路易斯华盛顿大学的特林考斯教授,对田园洞人类化石研究后得出以下结论:田园洞人的化石指示其存在来自尼安德特人、近东现代型人类和南方现代型人类的基因流;中国人的祖先未必完全来自非洲。概而言之,我们的祖先从非洲来到东亚可能存在两条路线,即“南线”假说和“北线”假说。

    目前虽尚无肯定的结论,但学界基本认可非洲作为人类主要诞生地之一或诞生地,非洲是能够按连续年代顺序来证明人类起源发展各个阶段的大陆。非洲发现的人类早期演变的头盖骨化石系列最为齐全;考古发掘表明从2200万年前的类人猿到200万年前的人类物种均已在非洲发现;学者进行的多年的分子遗传基因研究为人类起源于非洲提供了新证据,即生活在地球上的现代人类均是约5万~10万年前走出非洲的史前人类的后裔;语言学研究则推论世界语言源于非洲。非洲是人类发源地,人类从这里走向世界。目前,中国许昌有关人类起源的考古发现为新的观点提供了证据。然而,这两个化石“本身没有涉及非洲起源说、多地区说或者折中说”。概言之,学术界对于人类的祖先约500万~700万年前起源于非洲大陆并无太大异议。然而,对人类进化的最后一个阶段——智人的起源,学界存在两种假说,即“非洲起源说”和“多地区进化说”。

    本文转自《西亚非洲》2024年第4期

  • 布莱恩·费根,纳迪亚·杜拉尼《气候变迁与文明兴衰——人类三万年的生存经验》

    前言
    长达3万年的故事
    来自过去的礼物
    作者说明
    15,000年前至今的重大气候与历史事件年代表
    绪论:开始之前
    冰与火的时代,以及更多 多种层次的替代指标 墨西哥湾暖流 北大西洋涛动 季风 “恩索” 最后是特大干旱
    第一章 冰封的世界
    不一样的世界 裹住全身 先进的技术 鲜明的打扮 寒冷中的舒适
    第二章 冰雪之后
    理解古代的气候  不断变化的地形地貌(自16,000年前起)  完美风暴  第一批农民(约11,000年前)  第一批城镇:药物、干旱与疾病(约公元前7500年)  生存朝不保夕
    第三章 特大干旱
    苏美尔人与阿卡德人(约公元前3000年至约公元前2200年)  可怕的干旱(约公元前2200年至公元前1900年) 新亚述人(公元前883年至公元前610年) 景观变迁 宏大工程的瓦解(公元224年至651年)
    第四章 尼罗河与印度河
    开端(约公元前6000年至公元前3100年) 无所不能的法老(公元前3100年至公元前2180年) 大旱来袭(约公元前2200年至公元前2184年) 印度河:城市与乡村(约公元前2600年至公元前1700年) 熬过大旱 各有所好
    第五章 罗马的衰亡
    暖和的开始(约公元前200年至公元150年) 韧性与瘟疫(公元1世纪以后) 后勤与脆弱性(公元4世纪) 马匹、匈人与恐怖场面(约公元370年至约公元450年) 酷寒时代(公元450年至约公元700年)
    第六章 玛雅文明之变
    低地与君主(约公元前1000年至约公元900年) 玛雅农民之古今 转折点之后(公元8世纪至10世纪) 科潘解体(公元435年至1150年) 崩溃(公元8世纪以后) 北部的气候事件(公元8世纪以后)
    第七章 众神与厄尔尼诺
    沿海:卡拉尔、莫切、瓦里与西坎(公元前3000年至公元1375年) 奇穆:多种水源管理(公元850年至约1470年) 农耕环境与十二河谷 令人震惊的高原:蒂亚瓦纳科(公元7世纪至12世纪) 忽冷忽热
    第八章 查科与卡霍基亚
    干旱与渔民(公元前1050年至公元13世纪) 查科峡谷:一场气候踢踏舞(约公元800年至1130年) 因灾迁徙(公元1130年至1180年) 密西西比人(公元1050年至1350年)
    第九章 消失的大城市
    无边的辉煌 无常的季风(公元1347年至2013年) 解体(公元13世纪以后) 进入斯里兰卡(公元前377年至公元1170年及以后) 进入多灾多难的19世纪:中国与印度的大饥荒(公元1876年至1879年)
     第十章 非洲的影响力
    掌控“巴萨德拉”(公元前118年以前至现代) 探索内陆(公元1世纪至约1250年) 自给农业的现实 马蓬古布韦与大津巴布韦(公元1220年至约1450年)
    第十一章 短暂的暖期
    火山作乱(公元750年至950年) “中世纪气候异常期”(约公元950年至1200年) 生存与苦役(公元1000年) 逐渐变暖(公元800年至公元1300年)黑暗时代和大饥荒(公元1309年至1321年)
    第十二章 “新安达卢西亚”与更远之地
    神秘的“新安达卢西亚”(公元1513年至1606年) 詹姆斯敦的麻烦(公元1606年至1610年) 努纳勒克知道如何做(公元17世纪以后) 干旱演变成特大干旱(公元16世纪末至1600年) 展望未来
    第十三章 冰期重来
    黑死病(公元1346年至1353年) “小冰期”(约公元1321年至19世纪晚期) 波罗的海地区的粮食与荷兰的基础设施(公元16世纪及以后) 太阳黑子、火山与罪孽(公元1450年及以后) 大洋彼岸(公元17世纪以后)
    第十四章 可怕的火山喷发
    失控的火山爆发(公元1815年)[4] 乱局(公元1815年至1832年) 美洲的退化?(公元1816年至1820年) 以煤驱寒(公元1850年及以后) 燃烧的问题(公元19世纪晚期) 人为变暖(公元1900年至1988年)
    第十五章 回到未来
    生而为人 知识传承 亲族关系 迁徙时代 领导力 组织资源 转折点 前车之鉴

    前言

    上埃及的尼肯(Nekhen),公元前2180年前后。在饱受异见和饥荒困扰的埃及,安赫提菲(Ankhtifi)是一个权势熏天的角色。他身为州长,属于地方行政长官,至少在理论上算是法老的臣属;可实际上呢,他却是全国最有影响力的人物之一。此人在庄重严肃的队伍中,由全副武装的守卫簇拥着,走向太阳神阿蒙(Amun)的神庙。他身穿一袭白袍,头上的假发整整齐齐,脖子上挂着几串由次等宝石串成的项链。这位贵族大人沐浴着明亮的阳光,毫不左顾右盼,似乎对聚集于路边的一群群沉默而饥饿的民众视而不见。他手持自己那根长长的官杖和一根仪式用的权杖,腰间则系着一条装饰华丽且打着结的腰带。士兵们的目光来回扫视,提防着矛和刀。百姓们全都饥肠辘辘;他们所得的口粮少得可怜,偷盗与轻微暴力的现象正在日益增加。号角响起,这位大人物走进了神庙,太阳神就在那座阴暗的神殿里等着他。州长向太阳神阿蒙献祭,祈祷来一场充沛的洪水以缓解近年的灾情时,全场一片寂静。

    这种情况已经持续了数代之久,连许多的当地农民也记不清了。在尼罗河的下游,祭司们多日来都在观察洪水的情况,在河岸边的台阶上标出洪水的上涨位置。其中有些祭司摇了摇头,因为他们感觉到,洪水的流速正在变缓。不过,大家还是满怀希望,因为他们相信,众神掌管着这条河流,掌管着来自遥远上游且滋养了这里的洪水。安赫提菲是一位强悍直率的领导人,用铁腕手段统治着子民。他定量配给食物,控制人们的流动,封锁了治下之州的边界;只不过,这个能干而又魄力非凡的人心中也深知,他和子民都任凭众神摆布。向来如此。

    安赫提菲及其同时代人所处的埃及世界,位于尼罗河流域。他生活在一个动荡不安的时代,当时的埃及深受河水泛滥与饥饿的困扰,这两个方面都威胁到了国家的生存;这一点,与我们如今这个世界并无太大的不同。只不过,我们这个时代的气候风险是全球性的,其严重性也史无前例。从政治家和宗教领袖到基层活动家和科学家,有无数人士都已强调,人类的未来岌岌可危。许多专家则提醒说,我们还有机会来纠正人类的前进路线,避免可能出现灭绝的命运。的确如此,只是我们在很大程度上已经忘记,我们其实继承了人类与气候变化方面的巨大遗产。

    人们普遍认为,古代人类应对气候变化的经验,与当今这个工业化的世界无关。完全不是这样的。我们不一定要直接学习过去的做法。但是,通过多年的考古研究,我们已经更深入地了解了自身;无论是作为个体还是作为一个社会,都是如此。而且,我们也开始更加理解长期适应气候变化带来的种种挑战。

    遗憾的是,如今我们对碳形成的化石燃料的依赖程度几乎没有降低。2020年肆虐美国西部的灾难性森林火灾提供了有力的证据,说明了人类导致的气候变化所带来的威胁。持续变暖,飓风与其他一些极端天气事件更加频发,海平面上升,史无前例的干旱,屡创纪录的气温……种种威胁,似乎不胜枚举。基础性科学研究的浪潮已经确凿无疑地证明,我们人类就是造成大气中碳含量升高和全球变暖的罪魁祸首。 尽管有了这种研究,但许多否认气候变化的人(通常会获得他们捍卫的产业提供的资助)却声称,如今的全球变暖、海平面上升以及极端气候事件的日益频发,都属于事物的自然循环中的一部分。这些“怀疑论者”花费大笔的资金,精心策划一些具有误导性的运动,甚至是炮制出一些阴谋论来诋毁科学。他们言之凿凿,以至于很大一部分美国公民认为他们说的是真话。不过,他们又是根据什么来得出这种结论的呢?在这里我们最关注的是,对于人类在过去的3万年里应对气候变化的情况,我们的认识取得了巨大的进步。以前的人们,是如何应对天气与气候中的这些不确定因素的呢?他们采取的措施,哪些有效,哪些又无效呢?我们能从他们的生活中吸取什么样的教训,来指导我们自己和未来的决策呢?否认气候变化者的主张,在这些讨论中都没有立足之地。

    哪怕是在25年之前,我们也还不可能讲清这些问题。在所有的历史学中,考古学的独特之处就在于,它能够研究人类社会在极其漫长的时期里发展和演变的情况。考古学家的历史视角可以回溯的时期,要比美国《独立宣言》发表的时候和古罗马帝国时代久远得多。与人类600万年的历史相比,约5 100年有文字记载的历史不过是一眨眼儿的工夫。在本书中,我们会把透视历史的“望远镜”的焦点集中于这段漫长历史中的一个部分,即从最近一次“大冰期”[1] 处于巅峰状态时的顶点到现代这3万年间的人类和气候变化上;这一时期,也是人类社会一个显著的变革期。古气候学领域里的一场重大革命,最终改变了我们对古代气候的认知。其中的大部分研究都具有高度的专业性和技术性,并且发展迅猛,每周都有重要的论文问世。掌握这门知识是一项艰巨的任务,几乎引不起外行的兴趣。但是,我们并没有一头扎进大量的科学细节中去,而是先撰写了一篇关于气候学的“绪论”,作为本书的开篇。这样做,是想概述一些重大的气候现象(比如厄尔尼诺现象和北大西洋涛动),以及人们在研究古代气候时运用得最广泛的方法,它们既可以是直接的,也可以是利用所谓的“替代指标”(proxy)、较为间接的方法。由于本书内容是以考古与历史为主,故我们认为最好是对这些主题分别进行讨论,以免偏离叙述的主要方向。

    有史以来头一次,我们这些考古学家与历史学家能够真正开始讲述古代气候变化的情况了。我们认为,过去的人类如何适应长期性与短期性气候变化所带来的影响,与如今人类导致的(即人为的)全球变暖问题之间,具有直接的相关性。为什么呢?因为我们可以吸取过去的经验教训,即我们的祖先是如何应对或者没有应对好气候变化带来的种种困难的。诚如天体物理学家卡尔·萨根在1980年所言:“唯有了解过去,方能理解未来。”

    《气候变迁与文明兴衰》一书不但吸收了最新的古气候学研究成果,而且借鉴了一些新的、经常具有高度创新性的研究成果,它们涵盖了人文学科与人类科学,范围广泛,其中包括人类学、考古学、生态学与环境史学。我们还会为您提供那些在过去 20 年里对人类行为与古气候之间的关系进行了深入研究的人所做的贡献;他们的研究成果,常常都深藏于专业期刊与大学图书馆里。我们搜集了这些资料,以便生动地将过去人类对气候事件所做的反应再现出来。

    长达3万年的故事

    本书并非一部论述古代气候变化的科学教科书,而是一个关于我们的祖先如何适应各种大小变化的故事。气候变化这门科学,则只是我们在本书中讲述的人类故事逐渐展开时的背景;它们讲述的是过去的人,即构成了各种不同社会的个人——无论他们身为猎人和觅食者、农民和牧民,还是生活在工业化之前各个文明中的人。这些故事,跨越了万千年历史,发生于政府机构、天气预报、全球模型、卫星,以及我们如今认为理所当然的任何一项技术出现之前(参见下文中的“15,000年前至今的重大气候与历史事件年代表”)。

    我们的故事始于“大冰期”末期,距今大约3万年。我们理当如此,因为此后的数千年里,人类一直采用服装、技术和各种风险管理策略去适应极端的寒冷。“大冰期”的艺术,尤其是洞穴壁画有力地证明了历史上人类与自然界之间的复杂关系;这种关系尽管有着不同的形式,却一直延续到了现代世界。“末次盛冰期”(last glacial maximum)在大约 18,000 年前达到了巅峰,接着出现了一段漫长而没有规律的全球自然变暖期。“大冰期”晚期人类的适应技能,就成了 15,000 年前之后那些后来者面对快速变化和不断变暖的世界时一种充满活力的遗产。我们很快就会发现气候变化的一种现实,那就是气候变化反复无常。它环绕着人类的方方面面,在寒冷与温暖的循环、降雨与洪水的循环、长期与短期的严酷干旱的循环,以及偶尔由大型火山喷发引起的气候变化中消长交替。

    本书前三章讲述的是大约 15,000 年前“大冰期”结束到公元1千纪之间的情况。这是一个非常重要的时期,其间出现了从狩猎与采集到农业与畜牧业的转变,随后不久又兴起了工业化之前的第一批城市文明。直觉与社会记忆,对自给农业的成功发挥了至关重要的作用;在这种农业中,经验与对本地环境的深入了解始终都是风险管理和适应能力当中一个利害攸关的组成部分。然而,日益复杂和产生了等级分层的社会不但很快出现了严重的社会不平等现象,而且越来越容易受到气候快速变化的影响。通过将大量人口迁入城市,并且让城市人口依赖于国家配给的口粮,统治者又反过来开始严重依赖于城市腹地的粮食盈余,以及由政治精英阶层掌控的集约化农业。随着罗马与君士坦丁堡这些城市的发展,它们开始严重依赖于从埃及和北非其他地区等遥远之地进口的粮食,风险也日益增加了。这些城市还越来越容易暴发流行性的瘟疫,比如公元541年那场灾难性的“查士丁尼瘟疫”[2] 。

    第四章至第十章讲述的,则是公元1千纪,直到罗马帝国终结、伊斯兰教在中东地区崛起,以及中美洲的玛雅文明达到鼎盛时期的情况。在此期间,人们对气候的记录变得精细多了。我们会再次看到,工业化之前那些复杂的中央集权国家变得日益脆弱,有时这会导致灾难性的后果。在柬埔寨的吴哥窟复杂的供水系统受到压力之后,这座伟大的城市便土崩瓦解了。从安第斯山脉南部的冰盖与湖泊中开采出来的岩芯,记录了1,000多年前玻利维亚和秘鲁高原上的蒂亚瓦纳科与瓦里这两个国家的崛起与崩溃(这个词,用在此处恰如其分)。强季风和弱季风,则要么是对东南亚与南亚诸文明发挥着支撑作用,要么是危及了这些文明,并且对非洲南部那些变化无常的王国产生了影响。

    这七章里,描述了工业化之前各种不同文明的情况,对古代的气候变化进行了重要的概述。长期或短期的气候变化,从来就不曾“导致”一种古代文明崩溃。更准确地说,在那些专制的领导阶层为僵化的意识形态所束缚的社会里,它们是在生态、经济、政治和社会脆弱性方面助长危险程度的一个主要因素。您不妨想一想,把一颗鹅卵石扔进一口平静的池塘里,涟漪从撞击点向外一圈圈地辐射开去的情形。气候变化所激起的“涟漪”,就是一些经济因素与其他因素;它们会结合起来,撕裂繁荣发展的国家看似平静的表面。

    接下来,我们将进入大家更加熟悉的、过去1 300年间的气候学和历史领域,其中就包括了“中世纪气候异常期”(Medieval Climate Anomaly)与“小冰期”这种气候变化无常的情况;在第十一章至第十四章里,我们将加以论述。

    同样,我们的论述视角是全球性的,关注的是气候变化对一些重大事件的影响,比如欧洲1315年至1321年的“大饥荒”和1346年的黑死病,以及太阳黑子活动减少的影响,其中包括了 1645 年至 1715 年间那段著名的“蒙德极小期”(Maunder Minimum)。我们将描述寒冷对北美詹姆斯敦殖民者的影响,美国西南部的古普韦布洛印第安人如何适应漫长的特大干旱期,以及气候如何促进了尼德兰地区所谓的“黄金时代”,那里的精明商人和水手曾经利用寒冷天气造成的盛行东风远洋航行。第十四章里还会描述 1816 年那个有名的“无夏之年”;它是前一年的坦博拉火山爆发造成的,而那次火山爆发还带来了全球性的影响,导致了严重的饥荒。最后,我们还谈到了始于19世纪晚期、由日益严重的工业污染导致的全球变暖问题。

    这是一场很有意思的历史之旅,但这一切对我们来说又意味着什么呢?第十五章里会强调指出,人类过去应对长期性和短期性气候变化所积累下来的经验,对于我们如今应对史无前例的人为变暖至关重要。在这一章里,我们会仔细列举出今昔之间的差异,尤其是今昔气候问题的规模差异。各种各样的书籍中,对气候“末日”(Armageddon)的预言比比皆是,以至于它们听上去常常像是现代版的《圣经·启示录》,带有“末日四骑士”。相比而言,我们认为,无论是古时的传统社会,还是如今仍在兴旺发展的传统社会,都有许多重要的教训可供我们去吸取。例如,我们应对气候变化的方法中,必须包括长期规划和财政管理两个方面,可古人却不知道这一点,只有安第斯地区的社会除外,因为他们了解长期干旱的种种现实。我们已经知道,就算是到了今天,许多方面也是既取决于我们对具有威胁性的气候变化做出地方性反应,也取决于以过去不可想象的规模进行国际合作。

    来自过去的礼物

    在适应气候变化方面,古人给我们留下了许多宝贵的教训。但首先来看,最基本的一点就在于:与祖先一样,我们属于人类;我们继承了与前人相同的前瞻性思维、规划、创新以及合作等优秀品质。我们是智人,而这些品质也始终帮助我们适应着气候变化。它们都是宝贵的经验遗产。

    来自过去的第二件礼物,是一种持久不衰的提醒:亲族纽带与人类天生的合作能力是两种宝贵的资本,即便在人口稠密的大都市里也是如此。我们只需看一看美国西南部古时或者现代的普韦布洛社会就能认识到:亲情、彼此之间的义务以及一些打破孤立的机制,仍然是人类社会面临压力之时一种必不可少的黏合剂。如今,在各种各样的社会群体(无论是教会,还是俱乐部)中,我们仍能看到那些相同的关系。亲族关系是一种应对机制。分散和人口流动两种策略也是如此;数千年的时间里,它们都是人类应对干旱或者突如其来的洪水所造成的破坏时极具适应性的方法。非自愿移民这种形式的人口流动,如今仍然是人类面对气候变化时的一种重要反应;看一看成千上万从非洲东北部的干旱中逃离的人,或者试图向北迁移到美国去的人,您就会明白这一点。如今,我们经常会说到生态难民。但我们见证的,实际上就是古时人口流动的生存策略,只不过其规模真正庞大而已。

    教训还不止于此。过去的社会与其生活环境联系得很紧密。他们从来没有得益于科学的天气预报,更不用说得益于电脑模型,甚至是得益于如今可供我们利用的众多替代指标中的某一种了。古巴比伦人与包括中世纪的天文学家在内的其他一些人,都曾探究过天体的奥秘,却无一成功。直到19世纪,连最专业的天气预报也只涉及一些局部的天气现象,比如云的形成或者气温的突然变化。农民与城市居民一样,靠的都是历经一代又一代习得的一些细微的环境提示,比如浓云密布预示着飓风即将到来。同样,渔民和水手也能看出强风暴到来之前海洋涌浪方面的细微变化。过去的经验提醒我们,适应气候变化的措施往往是人们根据地方性的经验与理解而采取的地方性举措。这种适应措施,无论是修建防海堤、将房屋搬到高处还是共同应对灾难性的洪水,靠的都是地方性的经验与环境知识。小村庄也好,大城市也罢,古时的大多数社会都很清楚,他们受到气候力量的制约,而非掌控着气候力量。

    回顾过去数千年间的情况,我们就可以看出祖先们面临的气候变化挑战的一般类别。像秘鲁沿海异常强大的厄尔尼诺现象,以及大规模火山喷发带来的破坏性火山灰云毁掉庄稼之类的灾难性事件,虽说持续时间很短,却会让人们苦不堪言,有时还会造成重大损失和伤亡。但是,一旦这种事件结束,气候条件就会恢复正常,受害者也会康复。它们的影响一般是短期性的,且会很快结束,常常不会超过一个人的一生之久。从此类气候打击中恢复过来,需要合作、紧密联系和强有力的领导:这一点,就是过去留给我们的一种永久性遗产。

    在规模很小的社会中,领导责任落在部族首领和长者的身上,落在经验丰富、个人魅力能够让别人产生忠诚感的人身上。这一点,在很大程度上依赖于亲族同胞之间的相互义务,同时也有赖于领导人掌控和统筹粮食盈余的能力。

    气候事件与短期的气候变化并不是一回事:一场漫长且周而复始的干旱,长达10年的多雨,或者持久不退、毁掉作物的洪水,都属于气候事件。过去许多自给自足的农业社会,比如秘鲁沿海的莫切人和奇穆人,就非常清楚长期干旱带来的危害。他们依靠安第斯地区的山间径流,来滋养沙漠河谷中精心设计出来、朝太平洋而去的灌溉设施。莫切人与奇穆人的饮食,在很大程度上也依赖沿海地区丰富的鳀鱼渔场;他们靠着精心维护的灌溉沟渠,在一个滴水如油的环境里对水源供应进行分配。他们的韧性,取决于在有权有势的酋长监督下以社区为基础的供水系统管理。

    过去5,000年中,工业化之前的诸文明都是在社会不平等的基础上发展起来的,这一点并非巧合,因为社会维护的就是少数人的利益。一切都有赖于精心获取并加以维持的粮食盈余,因为像古埃及与东南亚的高棉文明这样的社会,都是用分配的口粮来供养贵族和平民的。在土地上生活和劳作的乡村农民,可以靠一些不那么受人欢迎的作物,或许还有野生的植物性食物,熬过短期性的干旱。他们有可能挨饿,但生活还是会继续下去。不过,旷日持久的干旱循环,比如公元前2200年到公元前1900年那场著名的特大干旱,就是另一回事了;这场大旱,通常被称为“4.2 ka事件”,曾经蔓延到了地中海东部和南亚地区。面对这种干旱,法老们根本无法再养活手下的子民。于是,古埃及就此分裂,诸州之间开始你争我夺。干得最成功的州长们比较熟悉如何解决地方性问题,故能设法养活百姓,限制人口流动。人们不再说什么神圣的法老控制着尼罗河泛滥这样的话了。后来的诸王则在灌溉方面实行了大力投入,而古埃及也一直存续到了古罗马时期。

    工业化之前的文明在很大程度上属于变化无常的实体,其兴衰速度之快令人目眩,这一点也并非巧合。它们的兴衰,很大程度上取决于统治者远距离运输粮食与基本商品的能力。尼罗河近在历代法老的眼前,而玛雅文明以及华夏文明、美索不达米亚地区的许多国家,却只能依赖人力与驮畜进行运输。从政治角度来看,这就再次说明适应气候变化是一种地方性事务,因为当时的基础设施具有严重的局限性,以至于绝大多数统治者只能牢牢掌控方圆约100千米的领土。解决的办法,就是进行散货水运。虽然古罗马诸皇曾用埃及和北非其他地区出产的粮食养活了成千上万的臣民,但这些偏远地区的作物歉收给古罗马带来气候危机的可能性,也增加了上百倍。

    随着工业化的进步、蒸汽动力的发展以及19世纪到21世纪全球化进程的加速,较大规模社会的种种复杂性,已经让适应气候变化成为一项更具挑战性的任务。不过,未来还是有希望的;这种乐观态度,在一定程度上源自我们人类拥有抓住机遇和大规模适应气候变化的出色本领。过去的教训,也为我们提供了鼓舞人心的未来前景。

    果断的领导与人类最核心的素质,即我们彼此合作的能力,就是过去在应对气候问题时的两种历史悠久的根本性策略。人性以及我们对变化与突发事件的反应,有时是完全可以预测出来的。掩埋了庞贝古城的那次火山爆发与其他灾难中,都记录了人类面对灾难性事件时的相关行为。我们属于同一个物种,有很多东西可以相互学习,可以从我们共同的过去中吸取经验教训。假如不从现在开始,那么过不了多久,人类就将不得不转而采取艰难的办法,因为最终的现实是:有朝一日,或许就在明天,或许是几个世纪之后,人类就将面对一场超越了狭隘的民族主义,同时影响到所有的人并且像瘟疫一样严重的气候灾难。我们撰写本书旨在分析过去,帮助读者把握当下,并且借鉴古人的远见卓识,迈向未来。

    [1] 大冰期(Ice Age)指地质史上气候寒冷、冰川广布的时期,大冰期中又可分为相对寒冷的冰期(glacial period)与相对温暖的间冰期(interglacial period)。小冰期(Little Ice Age)则一般特指距今最近的一次寒冷时期,始于约1250年,终于约1850年。——编者注

    [2] 查士丁尼瘟疫(Justinian Plague),公元541年到542年间拜占庭帝国皇帝查士丁尼在位时暴发的一场流行性鼠疫。它不但是地中海地区暴发的首场大规模鼠疫,肆虐了近半个世纪,还对拜占庭帝国造成了致命打击,最终导致东罗马帝国走向崩溃。据估计,这场瘟疫总共导致近1亿人丧命,与“雅典鼠疫”、中世纪的“黑死病”等并称人类历史上八大最严重的瘟疫。——译者注

    作者说明

    年代 所有利用“放射性碳定年法”测定的年代,都对照日历年进行了校准。本书通篇使用的,是公元前(BCE)/公元(CE)这种惯例。早于公元前10000年的年代,则以“若干年前”表示。
    地名 现代的地名,采用的是当前最常用的拼写方式。在合适的地方,我们也使用了普遍公认的古代拼法。
    度量衡 本书中所有的度量衡都采用公制,因为公制如今已是一种通用的科学惯例。
    地图 在有些例子当中,地图上略掉了一些并不知名或者并不重要的地点,以及位于现代城市之内或者紧挨着现代城市的地点。
    年代表 下文列有一份概括性的年代表。考虑到本书所述内容的时间跨度很大,有时不免会在世纪与千纪之间突然切换,故每一章的标题和章节中的许多小标题里也给出了年代信息。

    15,000 年前至今的重大气候与历史

    事件年代表

    本表列出了“大冰期”以来的一些重大气候事件与文化发展。我们并未试图做到面面俱到。其中的重大气候事件用黑体标注。公元前10000年以前的年代,则列为“若干年前”。

    公元

    公元前

    *多格兰(Doggerland),如今欧洲北海中的一块“失落之地”,位于英格兰、荷兰和丹麦之间,亦译“道格兰”。——译者注

    绪论:开始之前

    冰与火的时代,以及更多

    就在我们撰写本书之时,快速蔓延的森林大火已经席卷了美国加州的大部分地区。迄今为止,过火土地的面积已超过160万公顷,有大大小小几十处火场失去了控制,有时还会连成一片,形成规模更大的火灾。浓密的灰云飘散到了遥远之地,造成了严重的空气污染,威胁着人们的健康。由于温度较高,故火势不可能再在一夜之间得到控制。北加州的“北方综合大火”(North Complex Fire),过火面积在一夜之间 扩大了40,468 公顷。自 1972 年以来,加州每年被火灾焚毁的土地面积已经增加了4倍。来自美国和世界各地的14,000 多名消防员,一直都在奋力灭火。成千上万的民众被疏散,数百座房屋在大火中付之一炬。气温已经上升;降雨已经减少,并且变得难以预测;在人们常常难以到达的地方,植被变得更加干燥;山区的积雪,正在消失。该州有不少于30%的人口生活在可能发生森林火灾的地区;至于原因,部分在于一些不恰当的土地利用政策助长了城市的扩张。越来越多的人,正在火灾风险很高的地区建造或者重建房屋。由于人们重新栽种的植被品种很单一,故森林管理的力度也在减弱。当局几乎也没有采取什么措施,去鼓励民众远离危险。加州人与俄勒冈人面临的,似乎正是日益变化无常、具有毁灭性且由人为导致的气候变化的后果,即看上去无法控制的火灾。

    这可并非人类在历史上第一次面临环境灾难,无论是洪水、干旱还是肆虐的火灾。只不过,这一次却有所不同。这一次,气候导致的灾难是近期我们自身一些活动带来的直接后果。有些人在问,我们究竟能不能适应气温极端和毁灭性火灾频发的新现实。那些人口密集的地区,极其容易为肆虐的火灾所害;这种火灾由雷击引发,猛烈的下坡风则会将火星吹到数千米之外,在短短的几分钟里就会让整个社区陷入火海。我们是否注定要灭绝,或者被迫疏散到更安全的环境里去呢?还是说,我们终将适应很大程度上是由我们自身造成的、种种更加危险的新状况?直到如今,我们才开始严肃地面对这些问题。

    本书论述的,就是人类适应各种气候变化的举措。古代社会曾经成功地适应了一些突如其来、时间短暂的事件,比如遥远的火山喷发带来的火山灰云,或者持续数年的干旱。我们的祖先还适应了较为长期的气候波动,比如海平面上升、数个世纪之久的干旱周期,以及间隔性的多年低温。总的来说,我们拥有的合作、互助以及有效管理风险的能力,都发挥了有益的作用。尽管付出的代价常常很大,但历史记录有力地表明,我们终究会挺过这场最新的环境灾难。我们终将通过短期适应和一些长期性的措施,经过艰苦的辩论,对整个社会和我们的生活方式做出永久性的改变,有时还会付出高昂的代价才能实现这一目标。

    幸好,过去的半个世纪,已经见证了研究古代气候的古气候学领域里发生了一场革命。19世纪末和20世纪初,少数天才科学家做出的大胆而具有开拓性的努力,如今已变成科学领域里的重大任务。近年来,论述古代气候的专业文献,有如雨后春笋一般纷纷涌现出来。差不多每周都有重要的论文发表,连气候学家们自己也几乎跟不上文献资料问世的步伐了。像我们这些不是气候学家的人(我们是考古学家),有时更是会对与时俱进失去信心。就算只是适度涉猎一下学术资料,有时甚至只是浏览一下更普通的文献,也会让人对一系列的术语和首字母缩写感到眼花缭乱;其中,“恩索”(厄尔尼诺现象和南方涛动的合称,略作ENSO)也许就是最常见的一个。

    我们撰写本书的目的,并不是 要深入探究全球气候学或者古气候学当中种种令人望而生畏的复杂之处;这两个领域,本身都是自成一体的编年史。相反,我们是利用最新的信息,讲述过去之人及其与不断变化的气候之间的关系,从古代一直讲到最近;要知道,研究漫长的年代学,正是考古学家之所长。在探究古代的气候变化情况时,我们发现,本书各章中所述的种种气候变化背后,隐藏着许多重要的力量。其中包括人们熟悉的一些现象,比如厄尔尼诺现象与拉尼娜现象、“大冰期”、特大干旱,以及季风。我们在本绪论中,将对气候变化中的这些重要因素和其他一些方面加以说明。我们还会说明一些“替代指标”,即可以揭示古代气候变化情况的间接方法。至于本绪论中余下的内容,假如您愿意的话,不妨像伟大的幽默作家P.G. 沃德豪斯那个令人难忘的说法一样,把它们想象成“真正开怀畅饮之前的小酌”。如果您并不熟悉其中的一些气候因素,那就随着我们,先来简单地了解一下全球的气候吧。

    乔治·菲兰德是一位地球科学家兼研究厄尔尼诺现象的专家,他在《气温正在上升吗?》这部论述全球变暖的经典作品中,为我们的研究奠定了基础。[1] 他论述了大气与海洋之间的不对称耦合关系,称二者并非理想的一对:“大气迅速而敏捷,能对来自海洋的暗示做出灵活机敏的响应,可海洋却呆板而笨拙。”这一句话,就概括出了古气候学最根本的挑战之一,即弄清楚一对并不相配的气候“巨人”是如何做到成功共舞的。这对“舞伴”当中,是谁处于主导地位?由谁来改变节奏,或者放慢节奏到几乎停顿下来的程度?这种复杂而不断变化的伙伴关系中,有诸多的细节我们还没有搞清楚。所以,在此我们只能探究一下其中的主要因素。

    多种层次的替代指标

    全球性的气候变化多数都具有规模宏大的特点。就在一个多世纪之前,奥地利的两位地质学家阿尔布雷希特·彭克(Albrecht Penck)和爱德华·勃吕克纳(Eduard Brückner)发现,阿尔卑斯地区至少经历了四个重大的冰期,而两个冰期之间则隔着气候温暖的间冰期。这两位地质学家研究的,是高山河谷中的冰川沉积物;只不过,如今他们的研究早已落伍了。用这四个冰期来描述“大冰期”,未免太过简单,因为“大冰期”构成了人类进化与现代人类出现在世界舞台之上的背景。如今我们知道,“大冰期”(即“更新世”)是在大约15,000 年前的“武木冰期”(Würm glaciation)结束的。随着“大冰期”的结束,“全新世”(词源中的希腊语holos意为“新的”)带来了气候的自然变暖,并且朝着气候学上的现代世界稳步前进了。

    我们对“大冰期”气候的认识,建立在气候变冷与变暖这种笼统的基础之上。在这个方面,我们所用的时间尺度须以千年计、以万年计。例如,我们知道上一个冰期里气候最寒冷的数千年,是在21,000年之前左右。但是,后来的记录极其清楚地表明,气候一直都在变化;因此,对于30,000年前至 15,000 年前“大冰期”中的气候,我们最终就不会根据冰川沉积物,而是根据气候替代指标来进行更加细致的描述。

    所谓的替代指标,是指源于大自然的气候信息资料,比如冰川钻芯和树木年轮,它们可用于判断 19 世纪中叶首次利用仪器做出准确记录之前的变化气候条件。在西南太平洋钻取的深海岩芯,可以追溯至 78 万年之前的情况,涵盖了“大冰期”的大部分年代;它们表明,在这几千年间,至少出现了多个完整循环的冰期与间冰期。显然,“大冰期”的气候变化要比人们一度推断的剧烈得多。然后我们有了冰芯,取自格陵兰冰盖与南极冰层的深处;现在,这种冰芯为我们提供了准确得多的气候记录,其年代至少可以追溯至 80 万年之前的更新世。例如,我们如今得知,过去的77万年里有一个时长达 10 万年的周期,支配着全球从寒冷的冰期转换到气温较高的间冰期。气候变冷是一个渐进过程,而变暖的速度却要快得多。

    当然,在利用如今几乎从每一个海洋中都能钻得的深海岩芯,以及从许多地方(其中包括了安第斯山脉秘鲁段的热带冰川)钻取的冰芯时,还存在许多的复杂因素。源自冰芯和海洋岩芯的替代指标正在变得越来越精确,但从考古学的角度来看,它们通常为我们提供的是“大冰期”中广泛的气候背景。大量的黄土沉积物也是如此,这些风积尘土源自“大冰期”里的冰川,常常在乌克兰和其他地区的河谷中把“大冰期”晚期的定居点掩埋起来。虽说这是一种很不错的总体视角,但在考虑人类适应气候变化的措施时,我们必须依赖一些更加精细的替代指标才行。

    “洞穴沉积物”(speleothem)一词有点儿拗口,这种替代指标在气候舞台上虽然算是相对新鲜的事物,却具有极其重要的作用。钟乳石(聚积于洞穴顶上)和石笋(长在洞穴地面上)是由富含矿物质的水透过地面,滴入洞穴之后形成的。随着富含矿物质的水不停地流动,洞穴沉积物中就会形成许多有光泽的薄层。滴入洞穴的地下水越多,洞穴沉积物里形成的层次就会越厚,而滴入洞穴的地下水越少,分层也就越薄。岩溶洞穴沉积物中的层次,可以通过测量从其周围基岩溶入水中的铀含量来确定年代。这一过程中会形成一种碳酸盐,这种碳酸盐则会变成不断生长的洞穴沉积物里每一层的组成部分。铀会以世人已知的速度衰变为钍,因此我们可以确定各层的年代。这就形成了地下水位随着时间变化的一种大致记录。各种各样的因素,比如当地地下水的化学成分,都会对洞穴沉积物的生长产生影响。这就意味着,我们必须把源自一个洞穴的气候记录,与源自一个广阔地域里其他洞穴中的沉积物所记录的气候信息进行对比才行。

    考虑到水中既存在重氧也存在轻氧,因此氧同位素比率就为我们提供了一种方法,可以了解降水随着时间推移而变化的情况。大雨会带来较多的轻氧,重氧则是雨水较少的标志;不同来源的水中,二者的比率也不同。对洞穴沉积物的研究,如今还处于发展阶段,但这种研究有着巨大的潜力,能为我们提供历史上的精确降雨数据;它们可能与过去的事件直接相关,比如公元10世纪玛雅低地文明的没落。在全球许多地区,重要的洞穴沉积物记录都在迅速积累起来。它们有可能成为所有气候替代指标中最有用的一种。

    在“大冰期”末期的数千年里,随着海平面上升了90米左右,达到了现代海平面的高度,全球的地形地貌也发生了巨大的变化。本书第二章中描述了两个经典的例子,即曾经将西伯利亚东北部与阿拉斯加连接起来的那条沉没的大陆桥,以及多格兰直到公元前 5500 年左右曾将英格兰与欧洲大陆连在一起的众多沼地河流平原。在公元前 4000 年左右之前,撒哈拉沙漠曾是牧民的家园,而从钻取的岩芯与孢粉分析中我们得知,这一时期的数千年里,撒哈拉地区到处都是浅湖和半干旱草原。

    我们研究过去 15,000 年间的气候变化时,开始使用更加完整的替代指标资料,比如来自北美洲和欧洲北部的孢粉记录,它们记录了全球气候变暖以来复杂的植被变化情况。第一批较精确的气候替代指标,就是来自欧洲北部沼泽与湿地的微小颗粒状孢粉化石;它们表明,“大冰期”之后那里的植被出现了巨大变化,从开阔的草原变成了桦树林,最终又变成了桦、栎混交林。此时的孢粉序列,加上木炭之类的其他源头,非但记录了欧洲西部早期农耕村庄周围不断变化的植被情况,而且记录了空地上蓬勃生长的栽培性杂草的情况。例如,人们从英格兰东北部的一个湖畔定居地获得了桦树孢粉和芦苇燃烧后形成的木炭,那里自公元前 9000 年至公元前 8500 年间就开始有人居住了;当时的人曾在春秋两季,趁着芦苇很干燥和新苗开始生长的时候反复焚烧芦苇。这种受控焚烧不但有助于植物的生长,而且可以引来觅食的动物。

    人们利用树木年代学(即用古树的年轮来测定年代)的历史,差不多有一个世纪之久了。这种方法,是由对太阳黑子颇感兴趣的美国西南部的天文学家安德鲁·道格拉斯(Andrew Douglass)率先提出来的,后来,它很快演变为一种精确的测定方法,用来判断古普韦布洛遗址发掘出的横梁的年代,比如新墨西哥州查科峡谷中的“普韦布洛波尼托”(Pueblo Bonito)遗址。树木年轮是由木质与树皮之间的形成层或者生长层构成的,其中记录了特定品种的树木每年的生长情况,比如美国西南部的道格拉斯冷杉。与现存活树中的年轮序列结合起来之后,古时的树木年轮就能让我们得知一些建筑物的建造年代,比如欧洲的大教堂、美国西南部的普韦布洛村落、沉船,以及其他各种各样的建筑。它们还能为世人提供宝贵的气候信息,这种信息是通过记录夏季降雨产生的氧同位素信号提供的。现在,树木年代学可以达到惊人的精确程度了。利用来自欧洲中部的7,000个树木年轮序列,人们已经估算出了公元前398年至公元2000 年间,每年4月至6月间这个重要的种植季与生长季的降雨量。树木年轮如今已是气候学研究的重要对象,世界许多地区都有大量年轮序列业已测定了年代。它们不但可以用于测定考古遗址的年代,还能提供非常精确的干湿降雨周期图。如今的树木年轮序列极其丰富,我们据此可以了解到严重干旱在美国西南部蔓延的情况。其中的多场干旱和其他一些气候变化,都是强大的全球性气候力量造成的。

    墨西哥湾暖流

    大西洋上的墨西哥湾暖流(简称湾流),是一个巨大的全球流动水体传输带中的组成部分,能够改变气候,影响人类的生活。高纬度的冷却作用与低纬度的加热作用——我们可以称之为“热力强迫”(thermal forcing)——会推动海水流向北方。大量的热量随着海水向北流动,然后升腾到北大西洋上空的极地气团中。北部的海水下沉,便形成了这条巨大的海洋传送带,将较高的气温带到了欧洲。这种加热作用,正是欧洲具有相对温暖的海洋性气候,并且盛行湿润的西风的原因。尽管其间也有所变化,但自“大冰期”以来,欧洲一直盛行这种西风。

    但情况并不是始终如此。“大冰期”结束后,随着北方的广袤冰盖开始消退,一个叫作“阿加西湖”的巨大淡水湖探入了北美洲正在消退的劳伦太德冰原(Laurentide),长达11,000 千米。这个淡水湖是以19世纪著名的地质学家路易斯·阿加西(Louis Agassiz)的名字命名的。一片广袤的冰原向南隆起,阻止了湖水东流,使之无法经由如今的圣劳伦斯河谷注入北大西洋。势不可当的全球变暖与日益稀少的积雪,导致这处冰原开始消退。接下来,在公元前11500年左右,这道屏障终于倒塌了。大量积聚起来的冰川融水向东奔流,涌入了大西洋。更暖的海水仿佛在向北、向东而去的湾流那温暖的水体之上形成了一个盖子,让欧洲的气候变得更加暖和。在随后长达1,000年的时间里,湾流与大西洋的水体曾经停止了循环。欧洲的气温迅速下降,斯堪的纳维亚半岛上的冰原则开始步步进逼。欧洲与中东地区变得更加干旱了。气候学家以北极苔原上的一种野花“仙女木”(Dryas octopetala )为名,将这桩长达 1,000 年的气候事件称为“新仙女木”事件(Younger Dryas),并且利用大量的放射性碳样本,测定其年代处在公元前11,500年至公元前10,600年之间。然后,湾流蓦然恢复了循环,全球开始逐渐变暖,并且一直持续至今。

    “新仙女木”事件见证了人类社会发生的巨变,其中就包括中东地区开始出现农业和畜牧业(参见第二章)。接下来,基本上就是现代的气候条件开始发挥作用了。它们当中包括了没有规律却不那么旷日持久的气候变化,其持续时间要短得多。这些变化造成了不可预测的降雨和干旱,给人类社会带来了新的挑战。气候波动出现的时间,正值人口密度不断上升、定居农业变成常态的数千年。早在人为造成的全球气候变暖出现之前,人类就必须适应这些波动了。

    降雨和干旱对局部地区有影响,但造成这些影响的气候因素往往源自数千千米以外的地方。大西洋上的湾流会把温暖的海水从亚热带地区输送至北极。它的作用就像是欧洲的一台空调,会让气温的波峰与波谷之间的落差趋于平缓。从长期来看,气候模型表明,湾流到21世纪末很可能会有所减弱,但这一点,在很大程度上取决于人类排放的温室气体量。最糟糕的情况是环流量减少 30%,只不过,这主要取决于格陵兰岛上的融冰对环流的影响程度。对此,我们迄今还没有做出什么准确的预测。

    北大西洋涛动

    对于欧洲地区和地中海的大部分地区而言,影响气候的主要因素就是北大西洋涛动(NAO)。它有如一座巨型的大气“跷跷板”,位于亚速尔群岛上空的永久性副热带高压和北方持久存在的副极地低压之间的海平面上;整个欧洲和地中海地区从12 月份至次年3月间的气温与降水变化中,有高达 60%的变化都是由北大西洋涛动造成的。它是北大西洋上冬季气候变化的主要因素,对从北美洲中部到欧洲,再到亚洲北部的广大地区都有影响。与厄尔尼诺现象不同(参见下文),北大西洋涛动主要是一种大气现象。

    北大西洋涛动会在一种正、负指数之间波动。正指数会造成一个更强大的副热带高压中心和一个低于往常水平、以冰岛附近为中心的副极地低压。这就意味着,更强大和更频繁的冬季风暴会沿着一条较为靠北的路径越过大西洋。于是,欧洲的冬季会变得暖和、湿润,但加拿大北部与格陵兰岛在相同的月份里却气候干燥。美国东海岸的冬季,气候也会温和而湿润。北大西洋涛动若为正指数,会让地中海大部分地区和中东大部分地区的冬季变得更凉爽和干燥。由于北大西洋涛动会调节从大西洋进入地中海的热量与水分,故大西洋和地中海的表面气温曾经影响并且如今仍在影响着中东地区的气候。通常来说,北大西洋涛动对北美洲的影响要小得多。

    北大西洋涛动处于负指数时的情况,则正好相反,即会形成一个弱副热带高压和一个弱副极地低压。二者之间的压力梯度会减小。冬季风暴会减少和变弱,并且沿着一条更偏东西走向的路线越过大西洋。它们会把湿润的大气带到地中海,把冷空气送到欧洲北部。美国东海岸的冬季则会较为寒冷,降雪也较多。由于北大西洋涛动会调节从大西洋进入地中海的热量与水分,故大西洋和地中海的表面温度会对中东地区的气候产生影响。公元3世纪末至4世纪,在罗马帝国历史上的一个重要时期,处于正指数的北大西洋涛动曾经发挥过重要的作用,为欧洲中部和北部带来了充沛的降水(参见第五章)。

    太阳辐照度与火山作用周期上的变化,是过去1,000年间气温变化的主要原因。尽管更早的情况可能也是如此,但北大西洋涛动如今已是全球广大地区一种主要的气候驱动因素。其影响范围东至地中海东部;我们可以把那里称为一个“气候十字路口”,因为亚洲的季风系统与远处西南太平洋上的厄尔尼诺现象都会对那里产生影响。这种情况,就导致整个中东地区在干旱与降雨两个方面都存在巨大的地区性差异。

    季风

    我们最难忘的经历之一,就是乘坐印度洋上的一艘单桅帆船,在也门最南端的亚丁以东和红海的入口,迎着冬季的东北季风航行。那艘装有大三角帆的货船驶近海岸,每每在眼看就要靠岸时转向一条离岸航线,就这样航行了一个又一个小时。海面平滑如镜,柔和的热带风接连刮了好几天;度过了一天难忘的航程之后,我们得知的情况大致如此。除了离岸的信风航道,借助印度洋上的季风差不多就是最佳的航海选择了。

    季风区的范围十分广袤,从东南亚和中国一直延伸到整个印度洋,而在季节性降雨的一般时间方面,则存在几种重要的变化。从根本上说,季风属于大规模的海洋风,当陆地上的气温高于或者低于海洋上的气温时,季风强度就会增大。

    陆上气温的变化速度比海上更快,海上往往会保持更加稳定的气温。在较为炎热的夏季,陆地与海洋的温度都会上升,只是陆地气温上升得更快。陆地上方的空气会膨胀扩散,从而形成一个低压区。与此同时,海洋上的气温始终会低于陆地,故其上空的气压较高。二者之间的气压差,就会导致季风从海洋吹往内陆,为陆地带去较为湿润的空气。随着湿润的空气上升,风又会往回飘向海洋,但在此期间空气会冷却下来,从而降低了空气当中保持水分的能力,故经常导致暴雨。在天气较为寒冷的月份,情况则正好相反:陆地上的气温下降得比海上快,故岸上的气压较高。陆地上方的空气飘向海洋,雨水则落在近海上。接下来,冷空气往回飘向陆地,大气循环就完成了。

    几千年以来,印度洋上的季风都是驱动帆船航行的动力。季风贸易利润可观,让商船可以在 12 个月内从印度西海岸前往红海或者非洲东部,然后再返回来。商船也可以沿着波斯湾地区和印度西北部之间那片荒无人烟的海岸航行。在数个世纪的时间里,丝绸与其他的纺织品再加上亚洲的舶来品,曾经源源不断地运往西方,而黄金和非洲的象牙则流往了东方。在印度洋上,夏季的西南季风会从7月份一直刮到9月份,而这几个月里,富含水汽的空气则会涌到整个印度次大陆那片炎热干旱的土地上。印度的降水当中,差不多有 80%来自夏季风;有70%的印度人口靠农耕过活,他们种植棉花、水稻和粗粮。印度西部的农民严重依赖季风带来的降雨,故极易受到季风雨延迟到来的影响;就算只是延迟几天或几个星期,影响也不容小觑。季风未能如期而至,曾经导致了无数次饥荒,让成千上万人丧了命;比如根本就没有季风雨的1877 年,情况就是如此。一些更为局部性的印度季风,则会对阿拉伯海和孟加拉湾产生影响。西南季风十分强大,连中国西北的新疆这样遥远的北方地区也能感受到它的威力。

    东亚季风则属于一种温暖多雨的气候现象,使得这里的夏季风通常很湿润,而冬季风则寒冷干燥。季风性降雨集中在一个地带,5 月初由华南地区开始,一路向北,然后来到长江流域,最后在7月份到达中国北部与朝鲜半岛。到了8月份,降雨带又会南移,退回到中国南部。在过去,季风性降雨曾经至关重要。柬埔寨吴哥地区的高棉农民向来都依赖于亚洲季风;目前认为亚洲季风最初形成于1,000万年左右之前,远早于地球上出现人类的时间。季风的强度各时不同,尤其在“大冰期”结束之后不久;但在全球气候中,亚洲季风始终发挥着一种主导作用。它给全世界 60%以上的人口带来了相当可靠的季节性降水和干燥的气候条件,如若不然,就是带来干旱。夏、冬两季里,欧亚大陆及其毗连的海洋在升温方面具有差异,导致风向会在半球范围内每年都出现一次逆转。还有一个因素,那就是热带辐合带(Intertropical Convergence Zone,略作 ITCZ),也就是信风带相交的地方。还有三个区域性季风系统,也是影响东南亚地区的那种复杂气候动力中的组成部分。此外,厄尔尼诺现象与“太平洋年代际振荡”(Interdecadal Pacific Oscillation)会造成短期或者较长期的扰动,从而有可能给包括吴哥在内的亚洲大部分地区带来严重的干旱。

    热带辐合带环绕着地球,位于赤道上或者赤道附近,也就是南、北半球信风的交汇地带。那里有强烈的阳光与温暖的海水,会让热带辐合带的空气受热,并且增加空气的湿度,使之变得轻盈起来。随着南北信风交汇,这种轻盈的空气便会上升;而上升、膨胀然后冷却的空气,则会在频繁但毫无规律的雷暴中释放出水分。海面附近的风力通常较弱,这就是水手们把热带辐合带称为“赤道无风带”(Doldrums)的原因。热带辐合带的季节性移动,会对许多热带国家的降水产生影响,并且导致热带地区有雨、旱两季之分。在北半球的夏季,热带辐合带会在北纬10°到15°之间移动。这种季节性的移动,曾对中美洲玛雅低地的降水产生过强大的影响(参见第六章)。随着亚洲大陆的升温幅度超过海洋的升温幅度,热带辐合带就会在太平洋上向北移动。大陆上的暖空气上升,空气从海上流往陆地,由此形成的南风就会带来季风雨。接着,到了南半球的夏季,热带辐合带就会南移了。

    “恩索”

    可以说,“恩索”是全球气候中最强大的一个因素。起初,人们以为厄尔尼诺是一种局部现象,会定期影响秘鲁沿海的鳀鱼渔场,通常出现在圣诞节前后。气象学上的一项伟大成就诞生在印度,由英属印度时期的气象学家吉尔伯特·沃克(Gilbert Walker)贡献;此人原本是一位训练有素的统计学家,后来却孜孜不倦地寻找季风形成的原因,变成了一位研究厄尔尼诺现象的专家。沃克是最早认识到“恩索”是一种全球性现象的观察人士之一。他总结称,当太平洋地区气压很高时,印度洋上从非洲直到澳大利亚的气压往往就会很低。他称这种现象为“南方涛动”,其回旋起伏改变了热带太平洋和印度洋的降雨模式与风向。可惜的是,当时的沃克没有海洋表面与次表层的温度数据,无法证实南方涛动的作用机制,因为20世纪20年代还没有这种数据资料。

    曾经任教于加州大学洛杉矶分校的挪威气象学家雅各布·皮叶克尼斯(Jacob Bjerknes)也用一种全球性的视角对大气循环进行了研究。1957年至1958年间一次强大的厄尔尼诺现象,使其将注意力转向了西方。他受此影响发现,赤道东太平洋的海水温度相对较低,而西至印度尼西亚之远的西太平洋广袤海域则水温较高,二者正常的海面气温梯度之间具有密切的关联。他认为,赤道平面附近存在一个巨大的东西向环流圈(circulation cell)。干燥的空气会在相对较冷的东太平洋上缓慢下沉。然后,它会成为东南信风系统的一部分,随之沿赤道往西飘去。东边的气压较高,西边的气压较低,就导致了大气运动。然后,空气会在上层大气中往东回流,完成整个环流模式。皮叶克尼斯把这种环流命名为“沃克环流”(Walker Circulation)。他认识到,东太平洋地区升温时,东、西太平洋之间的海面气温梯度就会减小。这种情况,会导致驱动沃克环流下半圈的信风强度减弱。东太平洋与赤道太平洋之间的气压变化,其作用就像是一座“跷跷板”,由此便形成了沃克环流。

    “恩索”的这种关联性,是由许多要素共同构成的,其中包括涛动的“跷跷板”式运动,导致太平洋升温的大气与海洋之间大规模的相互作用,以及它们与北美洲和大西洋地区的气候变化之间种种更广泛的全球性联系。皮叶克尼斯指出,大洋环流好比是驱动一台巨型气候“引擎”的“飞轮”。

    每一次“恩索”,都有不同的特点。有些涛动极其强大,还有一些则软弱无力、持续时间短暂,在东太平洋与西南太平洋之间一个广袤而自我延续的循环中,为大洋环流所驱动。沿着赤道,还有一个正常的南北环流,叫作“哈得来环流”(Hadley Circulation),将热带地区与北纬地区的大气连接起来。它会将冬季风暴往北带到阿拉斯加,除非厄尔尼诺现象扰乱了这一模式。风暴轨迹会慢慢东移,袭击美国加州的沿海地区。

    1972 年至 1973 年间一次大规模的“恩索”,引发了科学界人士的广泛关注;这在今天被视为一种全球性的现象,在几乎没有预警的情况下颠覆了干旱与降雨模式——这与秘鲁的鳀鱼渔业因过度捕捞而崩溃基本没有关系。如今,我们对“恩索”有了更多的了解,明白它像一个混乱无序、情绪会突然变化的“钟摆”,一旦摆动起来,就有可能持续数月,甚至是数十年之久。这个“钟摆”永远都不会沿着同一条轨迹摆动;就算摆动中有一种潜在的节奏,也是如此。从爪哇的柚木、墨西哥的冷杉、美国西南部的刺果松以及其他一些树木的年轮序列中可以看出,在1880年以前,差不多每7.5 年就会出现一个降雨量较高的年份。现在,似乎是每4.9年就会出现一次,而拉尼娜现象则是每4.2年就会出现一次。海洋中的珊瑚与取自高山冰川的冰芯则表明,“恩索”作为全球气候中的一个因素,其历史至少已达5,000年,很可能还要久得多。“恩索”的循环成了一台驱动全球气候变化的强大“引擎”,故许多专家都认为,它是气候变化方面仅次于季节的第二大原因。

    “恩索”是一种热带气候现象,非但对热带地区的千百万觅食者和自给农民的生活产生了强大的影响,而且对位于河谷、雨林以及安第斯高原的那些工业化之前的文明造成了巨大的影响。全球有 75%以上的人口都生活在热带地区,其中三分之二的人口都靠农耕为生,因此这些社会始终都很容易受到旱涝灾害的威胁。随着人口不断增长,热带环境的承载能力承受的压力日多,这些社会的脆弱性也在与日俱增。直到近来,人类才获得了预测“恩索”或者其他重大气候事件的能力。如今,我们的计算机与模型完全能够预测出这些气候事件了。在我们适应全球变暖的过程中,这种知识具有极其宝贵的经济、政治和社会价值。本书所描述的古代社会,全都没有这种难得的技术,故适应“恩索”成了古人面临的一项巨大挑战,有时还是一种致命的挑战。

    最后是特大干旱

    数个世纪的树木年轮研究已经为我们提供了丰富的记录,表明了“中世纪气候异常期”(约950 年至约1250 年)与“小冰期”(约1250年至约1850年)里出现的长期性特大干旱(这个术语用于气候学文献中)的情况;在第十一章至第十四章里,我们将对这两个时期加以探究。

    根据树木年轮所得的气候序列,具有极其精准、可以精确到某一年份的优势。幸好,如今美国的广大地区都获得了丰富的树木年轮序列,故一个令人瞩目的气候学家团队还编纂了一部《北美干旱地图集》(North American Drought Atlas ),以世人所称的“帕尔默干旱强度指数”(Palmer Drought Severity Index)为标准,重建了2,000年里的夏季湿度。最新版的《北美干旱地图集》中,还强调了两场对美国原住民社会产生过重大影响的特大干旱。其中一次发生在 13 世纪末的美国西南部,导致了弗德台地与福科纳斯两个地区的古普韦布洛族群人口锐减(参见第八章)。第二次则发生在14世纪的中部平原地区。这场特大干旱,是在伟大的宗教中心卡霍基亚被人们废弃之前不久出现的,并且此后一直持续;卡霍基亚位于密西西比河上的“美国之底”(American Bottom,亦请参见第八章)。但是,树木年轮序列的分布并不均匀,中部平原之类的地区尤其如此,因此会阻碍人们去了解这两次干旱和其他干旱的影响。

    美国西部近期出现的特大干旱都非常严重,但在过去的2,000 年里,特大干旱却要持久得多。它们的持续时间,无疑要比1932年至1939年间那场著名的“尘暴”干旱久得多。一系列有影响力的研究已经表明,特大干旱几乎影响过美国西部的每一个地区,但在“公历纪元”后的早期至中期,墨西哥、五大湖区和太平洋西北部等地也发生过特大干旱。

    直到19世纪中叶至19世纪晚期,古代社会都不得不去适应自然出现的气候变化,而其中的大部分变化,又是由过去主导着全球气候变化的一些强大力量导致的。随着化石燃料大行其道和工业活动日益加剧,“人为强迫”(即人类经济活动导致地球的能量平衡出现变化)开始发挥作用,而我们当前的气候危机也就开始了。不过,要想与其可能导致的破坏做斗争,最重要的一点就在于:我们必须了解数个世纪和数千年以来自然性气候变化背后的各种力量。

    [1] S. George Philander, Is the Temperature Rising? The Uncertain Science of Global Warming (Princeton, NJ: Princeton University Press, 1998).

    第一章 冰封的世界(约3万年前至约15,000年前)

    24,000 年前,欧洲中部,时值深秋。两名饱经风霜的猎人坐在溪边一块巨石之上,背对着风,转头朝天际望去。小溪对岸,有头驯鹿在秋天的枯叶间觅食,他们没有理会。彤云飞卷,几近贴地,向北方聚集。天色越来越暗,两人看着眼前那幅寒冷干燥的光景,什么也没说。接着,他们对视了一眼,点了点头,把兽皮制成的外套紧紧地裹在肩膀上。

    他们的夏季居所紧挨地面,是一种用草皮和兽皮盖成的穹顶建筑。猎人们俯身走进烟雾缭绕的室内,大家围坐在一座熊熊燃烧的火炉旁边,用动物油脂制成的灯火在昏暗中闪烁摇曳。随着夜幕降临,屋外风雨大作,人们都蜷缩到了兽皮之下。其中一位猎人据说拥有超自然的力量,他讲述了一个众人耳熟能详的故事,是关于很久以前第一批人类当中的一个神话人物的。大家已经听过这个故事很多次,内容就是人们曾经在春、秋两季跟着驯鹿与野马不停地迁徙。就在讲故事的过程中,长者会听取每个人的意见,不分男女老少。到了他们该搬往冬季营地的时间了。

    我们都是智人,也就是自封的“智者”。我们这个物种,出现于至少30万年之前的气候温暖的非洲;不过,世人对这个时间还存有争议。我们是一种灵活、聪明的动物,越过了一片片广袤的狩猎区域,通过在可靠的水源附近生活,适应了像漫长的干旱周期之类的气候变化。我们曾是彻头彻尾的机会主义者,靠着仔细观察、深入了解周围的地形地貌,以及合作——在家庭、部落的狭窄范围内进行合作,同时也与其他亲族进行合作——来生存。我们使用简单、轻便的工具与武器,随着当地的气候变迁生活。几乎在人类生存的所有时间里,我们都过着这样的游牧生活,即随着动物的迁徙与季节的更替,不断地迁徙。在文字出现之前,我们都是通过口耳相传的方法,将所有真实的或者想象的知识传授给下一代,有时也会通过艺术来传授;文字发端于亚洲西部,距今不过5,000年之久。

    在古代,我们的生存依赖于对现实世界的深入了解与尊重;人类身处其中,是这个现实世界的一部分。尽管当今没有哪一个群体能让我们直接回到遥远的过去,但思考一下目前仅存的寥寥几个从事狩猎与采集的游猎社会的生活情况,是大有益处的。在北极地区的因纽特人或者非洲南部的桑人当中,我们发现了一种对猎物的强烈尊重和一种对生存环境的深刻理解,即对季节、植物性食物以及野生动物之迁徙的深刻认识。这种知识意味着生死之别,并且一向如此。

    回想远古时代人类的非洲家园,猛烈的风暴、密集的干旱期以及大规模火山爆发之后余下的遍地灰烬,始终都是那里的气候现实。但是,一些智人在大约45,000年前迁徙到气候寒冷得多、人烟稀少的欧洲与亚洲之后,我们生存上面临的挑战急剧增加了。我们发现,自己正在与我们这个物种经历过的一些最恶劣的气候环境做斗争。但还不止于此:我们并不是唯一的人类物种。在人类 600 多万年的进化过程中,不管什么时候,始终都有几个不同的古人类物种与我们同生共存着。

    例如,在欧亚大陆上,大约40万年前到3万年前存在着尼安德特人,尽管世人对这个时间范围还存有争议。从进化的角度来看,这些古人类与我们之间具有密切的联系。至少在70万年之前,我们在非洲都有一个共同的祖先。直到大约5万年之前,东南亚的一座岛屿上还生存着另一群与世隔绝的矮人,即“弗洛里斯人”(Homo floresiensis ),也就是所谓的“霍比特人”,以个子矮小而闻名。如今在很大程度上仍然不为人知的第三种人类,是“丹尼索瓦人”(Denisovans),他们曾经生活在西伯利亚,以及更远的东部与南部。还有其他一些古人类物种,我们对他们的情况几乎一无所知。而且,尽管一些不同的人类物种(尤其是智人、尼安德特人和丹尼索瓦人)之间出现过程度最低的杂交,但除了我们之外,其他的所有物种都注定要灭绝。到了3万年之前,我们智人就成了唯一存世的古人类物种了。

    其他的古人类物种究竟为什么会全都灭绝,一直都是人们围绕着史前时代进行持久争论的问题之一。这些古人类物种的消失,往往与智人来到每个地区的时间大体一致。这就导致许多人如今都赞同一种“他们对决我们”的情况,也就是我们将他们全都杀光了、战胜了他们,或者二者兼而有之。然而,认为不同的古人类物种之间相对没有什么联系,只有偶尔的、有时还属于性吸引的相遇,这种说法同样有道理。或许,当时还发生了其他更严重的情况。像大卫·赖希(David Reich)这样的进化遗传学家认为,从大约 10 万年前开始,尼安德特人的数量就一直在减少,很可能是气候急剧变化导致的结果,故待到智人抵达尼安德特人的家园时,尼安德特人就只剩几千人了。类似的环境历史,可能也有助于解释如今业已灭绝的其他一些古人类物种的消亡原因。唯一可以肯定的就是,智人最终在世界各地定居下来,适应了种种新的、有时还极具挑战性的环境。

    不一样的世界

    这个以前的世界,又是个什么样子呢?45,000年前的世界,与如今这个供养着75亿多人、正在日益变暖的世界可大不一样。[1] 当时,广袤的冰盖笼罩着北欧大地,并从阿尔卑斯山脉向外涌出。有两个大冰原,一直延伸到北美洲的腹地,向南远至如今的西雅图与五大湖区。除了南极洲那片深度封冻的大冰盖,非洲的乞力马扎罗山与鲁文佐里山,南美洲的安第斯山脉,以及新西兰的南阿尔卑斯山上,也全都为冰雪所封冻。由于冰原中吸纳了大量的水,故当时全球的海平面比如今低了90米左右,或者更低。一个人可以步行穿过一条极其寒冷而多风的大陆桥,从西伯利亚走到阿拉斯加,连鞋子都不会打湿。北海与波罗的海当时还是干燥的陆地,不列颠则与欧洲大陆连在一起。一些巨大的沿海平原,从东南亚大陆向外延伸,直达新几内亚与澳大利亚。大片大片生长着低矮灌木的北极苔原,从大西洋沿岸一直延伸到了欧洲和西伯利亚的腹地。接连几个月里,猛烈的北风裹挟着来自北方冰原的细小冰尘,在无边无际的干旱草原上肆虐。在欧洲和欧亚大陆的大部分地区,动物与人类每年都要熬过长达9个月的冬季,以及持续低于零度的气温。当时到底有多冷呢?气候学家杰茜卡·蒂尔尼及其同事开发出了一些模型,可以利用源自海洋浮游生物化石的数据,结合模拟“末次盛冰期”的气候,重现海洋表面的温度。他们的研究证实,当时的全球平均气温要比如今低 6℃,而您也可以料到,高纬度地区的温度降幅最大。[2]

    源自格陵兰岛冰芯中的数据已经表明,在一个气候不断变化、有时变化还很迅速的时期,那些生活在北方的人适应了那个极度寒冷、气候变幻莫测的世界。从全球范围来看,北半球的气温下降幅度大得多。这种情况,主要是海洋的调节作用导致的。北半球有 60%的地表为水所覆盖,而赤道以南却有将近 80%的地表为水。这就意味着,南半球的陆上气温常常会较高;当然,南极洲附近地区除外。北半球的冬季气温较低,季节性差异更大,而离赤道较远的地方,降温也更加剧烈。大约24,000年之前,纽约附近的气温降幅为10℃,芝加哥地区的气温降幅更是高达20℃。相比而言,加勒比地区的气温下降幅度只有 2℃左右。北极与赤道之间的温差梯度较大,使得北半球的风速显著更高,从而导致风寒因素上升到了对动物与人类都很危险的程度。

    不过,当时并未出现永久性的深度封冻。格陵兰岛上的冰芯表明,在6万年前到3万年前这段时间里,曾经出现了多于12个短暂的较暖时期,称为“D-O事件”(Dansgaard Oeschger events)。 38,000 年前,格陵兰岛上突然出现了一个升温期,导致那里的平均气温在极短的时间里(也许只有一个世纪)跃升了12℃。但是,当地的年均气温很可能仍比如今低了 5℃至 6℃。同样短暂而寒冷的间隔期则导致了气温骤降,比那些较为温暖的振荡期低了5℃至8℃。

    在大约 35,000 年前的智人当中,北方的人口增长速度似乎有所放缓;这种情况,也许是冰原不断扩大导致的。[3]随着规模很小的家族部落慢慢退避到那些较少受到风雨侵袭的地方,比如靠近地中海的一些深邃河谷与山谷当中,人口数量可能事实上已经有所减少。当时,只有几百个狩猎部落生活在欧洲。一个人在大约20年至30年的寿命当中,碰到的人很可能不超过几十个,而且其中许多人都生活在其他的群落里。假如没有这种接触,就没有人能够生存下去,因为无论怎样专业,都没有哪个狩猎部落可以做到彻底的自给自足,尤其是在“大冰期”那种令人生畏的环境中。从一开始,我们的祖先就严重依赖于亲族关系,来获得信息、专业知识和配偶。人员流动和接触他人,令技术上的创新在极短的时间内传播到极远的地方。幸运的是,在气候最寒冷的数千年里,人口数量从未下降到极其严重的程度,既未让人们丧失适应“大冰期”的严寒时所用的重要技术手段,也没有让他们丧失有助于维持其生存的、与超自然世界之间种种错综复杂的象征性关系。

    3 万年前之后,充分的冰川条件卷土重来,导致24,000年前至 21,000 年前的气温达到了极端寒冷的程度。它们是“大冰期”末期最寒冷的几千年,通常称为“末次盛冰期”。由于大量的水被冻入了冰层中,故当时全球的海平面比如今低了差不多91米。

    裹住全身

    “大冰期”末期的人,是如何适应如此极端的寒冷的呢?我们智人,(本质上)全都起源于非洲的无毛猿类。倘若不穿衣物,那么,气温降到低于27℃时,我们的身体就会对寒冷做出反应。气温降到13℃时,我们就会开始发抖。不过,这些都只是实验室数据,是人们站在静止的空气中时得出的。刮风之时,裸体的热量会流失得更快。即便是稍低于零度的气温,对未穿衣物的人来说可能也很危险。倘若气温到了20℃,风速为30千米每小时,那么不到15分钟,人体就会冻伤。[4]

    倘若在寒冷当中再加上潮湿,那么,由于我们体表的水分在温度降低时会凝结起来,出汗就成了一个严重的问题。汗水会浸透衣物,从而让衣物丧失其保暖与隔冷的功能。假如感到太冷,我们的核心体温就会下降到低于37℃这一临界水平。倘若这种核心温度因为体温调节失败而下降,我们的身体就会出现体温过低的状态。体温降到33℃,我们就会陷入昏迷。若是体温低于30℃,我们的心跳就会放缓,血压则会下降,而心脏停搏几乎就是不可避免的事情了。

    那么,我们的祖先究竟是如何适应“大冰期”晚期的极端寒冷与气温突变的呢?如今,我们绝大多数人都会把汽车里的空调设置在21℃左右,因为这是我们穿着衣物时觉得舒适的温度。但我们知道,那些打一出生起就不穿衣服的人,都具有较强的挨冻能力。1829年,英国皇家海军“小猎犬号”的船长罗伯特·菲茨罗伊(Robert FitzRoy)在考察麦哲伦海峡时,遇到了雅甘人。他前往那里的时候,雅甘族可能有8,000 人,全都矮矮胖胖,平均身高约为1.5米。尽管那里气温很低,经常有雨雪,可他们一般都是赤身裸体,而在天气寒冷的时候,也只是披一件用水獭皮或者海豹皮制成、长度只到腰间的斗篷。年轻的查尔斯·达尔文曾在1833年随着“小猎犬号”前往,他对此大感震惊。“四五人兀然现身崖上,皆赤身露体,长发飘逸。”[5] 他们的耐寒能力之强,着实令人瞩目。

    除了通过人口流动和皮肤表层的基因改变这种普遍的方式来适应低温之外,人类抵御寒冷的仅有武器,就只有火、衣物和高效的石器了。没人确切地知道,我们第一次驯服火是在什么时候,但根据最近从南非的旺德韦克山洞里发掘的证据来看,我们的古人类祖先似乎在大约100万年之前,就已围坐在(有意识地加以控制的)火边了。无疑,火具有难以想象的重要性。火为人类带来了众多的益处,从保护我们免遭野生动物袭击,到提高我们摄取煮熟的食物时的热量,不一而足。(从食物中摄取更多的能量,供我们需要消耗巨大热量的大脑所用,可能一直都是推动人类进化的一个关键因素。)但可以说,最最重要的还在于火可以帮助我们保暖。火既让人们走出非洲之后能够在较寒冷的环境中生存,也为那些留在故土的人缓解了夜间气温的寒冷。人们甚至用火来清理洞穴,然后才住进去。我们还应当记住,穴居本身就是一种进步,不仅可以保护人类免遭掠食动物袭扰,也可以保护人类免受天气之害。

    至于衣物,则是另一种了不起的防寒之物;其基本原理也很简单,那就是遮住自身。与其他众多的创新之举一样,将兽皮和别的遮盖物披在自己身上的理念,在很多场合和不同时期都曾为人们所采用,只是我们不知道衣物的确切发明时间罢了。最简单的形式是,人们只用兽皮遮住上半身,火地岛人、非洲南部卡拉哈里沙漠中的桑族猎人以及澳大利亚原住民都是如此。这种兽皮并非仅仅用作衣物,它们还有多种用途:可以包住年幼的孩子,然后挂在肩上;可以将坚果或者其他的植物性食物运送回营地;可以在打制石器时保护双手,或者用于携带从刚刚宰杀的动物身上切下的肉。人们穿着兽皮制成的斗篷入睡,也用这种斗篷裹埋死者。

    驯鹿皮足以让人们应对较为寒冷的气候,而热带地区的桑人身上披的则是羚羊皮。夏威夷人与新西兰的毛利人还发明了羽毛斗篷,那可是威名赫赫者所穿的衣物。脱下或者穿上这种斗篷,都只需几秒钟,并且披在身上时,它们从来都不会让人觉得很紧。这是一种极具实用性的多功能衣物,在气温较低的情况下紧裹身体时,其保暖效果会大大增强。

    假如没有厚厚的衣物,“大冰期”中就没人能够在北方的寒冬里幸存下来。从生活在5万年至6万年前最后一次冰期那数千年酷寒当中的尼安德特人的遗址中,人们发掘出了大量边缘细长、形状经过小心打磨的石制刮器,用于将兽皮加工成床上用品、斗篷与其他物品。不过,我们的“近亲”尼安德特人所用的技术还不具备强大的适应性,只能加工出披在身上的兽皮;尽管他们可能也曾用锋利的石头或者荆棘作为针来缝制衣物,但就算如此,这种东西也早已湮灭在时间的无情流逝之中了。平心而论,在考古记录中找到针,要比大海捞针更难。然而,在南非斯布都(Sibudu)的智人洞穴遗址进行发掘的一个研究小组,却真的做到了这一点:他们发现了 61,000 年前的一个尖头,有可能是一种特制骨针的针尖。

    无疑,在最后一个“大冰期”中的某个时候,生活在欧亚大陆上的人就已认识到,多穿几层更加贴身的衣物会提高个人的防寒效果,并且就算是在极其寒冷的环境下,也有保暖作用。不过,要想真正有效,他们就必须使用由动物肌腱或者植物纤维制成的线,让衣物的内层贴合个人的四肢、臀部和肩膀等部位。有眼骨针和精心制作的尖锥,使他们得以用兽皮缝制衣物。一如以往,需求乃发明之母,这样的例子在欧洲和西伯利亚地区就有。然而,我们所知的最古老例子,还是大约5万年之前的一根鸟骨针,是在西伯利亚的“丹尼索瓦洞穴”发掘出来的;人们认为,这根鸟骨针并非智人所制,而是丹尼索瓦人所制——他们是一个在我们智人到来之前,就已在欧洲生活了数千年之久的人类物种。这些工具,既说明了人类的独创性,也推动了人类为应对变幻莫测的气候而采取技术适应措施,那就是制作能够适应不同气温的多用途衣物。不过,这些其他的古人类物种全都灭绝了,并且原因不明,尽管气候变化可能也在其中发挥了作用。3 万年前之后,地球上只剩下一个人类物种,那就是我们智人了。

    先进的技术

    虽然经常出现持久不断的严寒,智人还是在欧洲这个新的家园里蓬勃发展起来了。他们可能是在一个较为温暖的间冰期里从非洲迁徙到欧洲的,结果使得人口密度缓慢增长,而狩猎武器也出现了重大变化。诚如南非考古学家林恩·瓦德利(Lyn Wadley)所言,这些创新不一定是有意迁徙的结果,而是在不同部落之间的人定期接触、交流想法的过程中出现的。我们知道,至少在7万年以前,非洲南部就发生了技术上的变革;当时,锋利致命的小型石制矛尖已经开始在大范围里得到广泛应用了。我们可以肯定的是,在地中海以北的陌生环境里,人们以相同的进程产生了其他的想法,发明了其他的技术。

    我们并不知道人类究竟是在什么时候向北迁徙到欧亚大陆的,但极有可能,他们是在大约45,000年前,首先迁徙到了如今黑海以北的东欧平原上;当时的黑海,还是一个巨大的冰川湖。[6] 在遥远的西方,古人类物种之间可能出现过竞争。在我们到来之前,尼安德特诸部落早已成功地适应了那里相对寒冷的气候条件。这一点,可能就是智人先在气候较为寒冷、环境也不那么吸引人的东部定居下来,并且在北纬66°以北的北极圈里建起季节性营地的原因。不过,到了35,000 年前,一些智人就已在西部尼安德特人领地的中心地带站稳了脚跟,尽管有些现代智人群落肯定早在此时的1万年之前就已到达那里。

    智人在很短的时间里就极其迅速地适应了如此广泛多样的环境,这一点是非比寻常的。随着他们逐渐散布到欧亚大陆上的广大地区,智人也带来了一些复杂的符号、信仰和时空概念,形成了独特的世界观与行为方式。其中一个至关重要的因素,就是流利的口语和语言;尽管语言很可能并非我们这个物种所独有,但它无疑让我们的祖先拥有了通过词句和艺术来构建其世界的能力。他们用吟唱、舞蹈、音乐和歌曲来诠释周围的环境,诠释动物、云彩、冷热、白雪、雨水和干旱。然而,考古遗址中却很少保存下来能够发出声音的鼓与其他乐器,比如长笛。这些东西,就是人们以实际的和象征性的方式构建他们的宇宙及其周围世界时所用的工具。这就反映出,智人的定居地与如今业已灭绝的其他人类物种相比,组织上更加严密。树叶颜色的变化、四季的更替、天体的运行周期,再加上其他一些象征形式,比如时卷时舒的云层,衡量出了时间的流逝与各种空间现实。

    与当今北极地区的民族及各地的狩猎与采集民族一样,新到北方大地上的这些居民也积累了关于其周围环境的大量知识。单是他们掌握的植物用途知识就是一部百科全书,有各种各样的术语来描述植物的独特特征;而他们对冰雪的了解,可能也是如此。这种知识代代相传,从制作捕捉松鸡的陷阱所用的最佳材料,到连帽兽皮大衣的正确加工方法,不一而足。

    这些方面,几乎全都属于无形的、不成文的和短暂的知识。身为考古学家,我们只能凭头脑去推断,北方智人所用的那些非同寻常和日益复杂的技术究竟是如何产生的。技术最先出现在热带非洲,那里的石匠发明了制作锋利的小型工具的方法。反过来,这又导致他们发明了用不同原材料(包括鹿角、骨头、贝壳和木材)制造工具且更加复杂的方法。

    一个正在迁徙的家族,能够在数秒钟之内就从一块燧石上劈下几片窄窄的刃片,然后将它们变成相对具有专门用途的不同工具。他们制造过各种各样的工具,从锋利的矛尖和刮刀,到在皮革或者木头上打孔的锥子,以及考古学家称之为“錾刀”(burin)的模样像凿子的工具,什么都有。这些便于携带的工具很锋利,能够把鹿角切成长条,然后制成鱼叉叉尖和其他的武器。这些手艺不凡的工具制作者还会把一块经过精心打磨、纹理细密的石头当作模板,来制造专用工具。北方智人掌握的技术,与当今的“莱瑟曼”牌多用工具或者“瑞士军刀”的制作技术之间有着惊人的异曲同工之妙。而在一系列令人眼花缭乱的工具当中,还有一种堪称人类到此时为止所发明的最有用、最经久不衰的工具之一——有眼针。

    针、用于刺破兽皮的尖头石锥、锋利的刀刃,以及由割下的动物肌腱或者植物纤维制成的细线:这些毫不起眼的工具,彻底改变了人类在酷寒地区的生活。

    鲜明的打扮

    衣物容易腐烂,故很少在考古遗址中保存下来。就像研究气候变化时一样,我们必须依靠替代指标;如此一来,石刀和刮器这些最普通的工具的磨损程度,就能说明问题了。

    例如,从捷克共和国境内的帕夫洛夫定居地(Pavlov settlement)遗址发掘出来的刀片与刮器,其边缘的磨损状况就说明了石刃的用途——似乎是用于日常切割;在22,000年到 23,000 年前,帕夫洛夫定居地就有人居住了。这些工具,能够让人们制作出合身的复杂衣物,以遮挡脆弱的躯干,裹住圆柱形的四肢。当时的裁缝,不但能够制作复杂的衣物,还能用精心挑选的材料,选取像驯鹿和北极狐等动物身上的独特皮毛,制作衣物的不同部位,比如皮外套及其兜帽,或者制作鞋子。穿上从内衣到防水防风的厚风衣与裤子这样的三四层衣物之后,人们就能在低于零度的气温中高效地工作与生活了。这些衣物全都是精心制作的,非常合身。人们可以用锋利的锥子钻孔,制作出相当合身的衣物;这种锥子,很可能就是现代人最初在气候较为寒冷的北纬地区定居下来时,精心选择的一种工具。但是,有眼针让人们能够制作出复杂得多的衣物,比如内衣。衣物分层的好处就在于,假如气温迅速变化,一个人就可以轻松地穿上或者脱下多余的衣服。

    穿合身的衣物,意味着人们开始习惯于穿着衣服,从而导致他们不穿衣物就更难应对寒冷的气候了。较复杂的多层衣物,则可以缓解人们从暖和的洞穴居所走到严寒的户外时感受到的寒意。任何一个跑步者或骑自行车的人都可以证明:迅速加上一层衣物,就可以保护自身免遭气温骤降、雨雪或者冷风所害。所有具有保护性的现代衣物,都是按照分层的原理制成的。

    随着气候变得更加寒冷和更具挑战性,简单的衣物也发展成了更加复杂、更加贴身的服装。在中国西北地区的水洞沟[7],随着北纬36°到40°之间的气候变得越来越寒冷,这里的人大约 3 万年前就开始使用有眼针。[8] 而在遥远的西方,有眼针则是在大约35,000年前地处北纬51°的乌克兰出现的。西欧温度稍高一些,到了大约3万年前开始使用有眼针。在大约 21,000 年前“末次盛冰期”气候最寒冷的那个时期,有眼针就变得更加常见了。

    合身的衣物与服装制作技术,再加上对环境的深入了解与不停迁徙,就是人类适应“大冰期”晚期持续不断、有时还很迅速的气候变化时采用的主要手段,寒冷时尤其如此。

    寒冷中的舒适

    尽管古人在鹿角、骨头和洞壁上创作过很多出色的艺术作品,但在早至35,000年前(同样,这一时间也存有争议)猎人们精彩地描绘出的那些动物当中,我们却并未看到他们的自画像。事实上,我们只是在一些极其罕见的情况下一睹了古人的身影,比如从法国西南部发掘出的一尊大约有25,000 年历史、用象牙雕制的头像,人称“布拉桑普伊的妇人”(Lady of Brassempouy)。这个妇人头像(尽管它的模样更像是一个小姑娘,甚至像是一个男孩),是欧洲已知最古老的、对人脸进行真实再现的艺术作品。至于头像有什么意义,人们一直争论不休;头像上还覆盖着一种角度倾斜、垂在肩膀上的图案,人们对此的解释也各不相同,有人说是假发,有人说是头巾。其实更有可能的情况是,这一图案不过是此人紧紧编成了辫子的头发而已。这种发型并不令人觉得惊讶,因为目前的遗传证据表明,当时欧洲的智人有着卷发和黑色/深色的皮肤;这就明明白白地提醒世人,我们拥有非洲血统。

    这些早期的狩猎部落有许多都居住在岩石洞穴里,洞穴则位于深邃的河谷两岸大小不一、天然形成的悬垂峭岩之下。像法国西南部莱塞济(Les Eyzies)村附近的费拉西(La Ferrassie)和阿布里帕托(Abri Pataud)这些大型的栖身之处长期有人居住,至少也是季节性地有人居住。有迹象表明,住在上述两地和其他一些居所的古人,曾经在峭岩的突出部位悬挂大块大块的兽皮,目的就是形成一个个较为暖和的居所,抵御刺骨的寒风;兽皮之后,则是一座座大火塘和人们睡觉的地方。

    当时,人们一年中最忙碌的时节必定是春秋两季;各个部落会聚到一起,捕猎正在迁徙的驯鹿群。秋季迁徙很重要,因为度过了较为暖和的数月之后,野兽都变得膘肥体壮了。此时,就是人们将兽皮、油脂和干肉储存起来供冬天所需的时候。通过对古代和现代的驯鹿牙齿进行研究,我们得知,当时有8个方圆200千米至400千米的驯鹿活动区,其中的3 个就位于法国西南部,而智人也生活在那里。

    韦泽尔河上阿布里帕托岩穴中密集的居住遗迹层表明,在28,000 年前至20,500年前这个气候严寒的时期里,智人的生活几乎没有发生什么变化。[9] 大约24,000年前,人们曾在悬崖与洞穴前面的几块大石之间建起一个结实的帐篷状结构,并且以之为中心生活着。后墙与地面之间立有用缝制的兽皮遮住的柱子,从而形成了一个牢固的居所。我们可以想见,在无风的日子里,炉塘中升起的炊烟会在突出的崖壁之下缭绕。当时的居民捕猎野马、驯鹿和凶猛的欧洲野牛(一种体型庞大的野牛,在欧洲生存了数千年之久,直到1627 年才灭绝)。无论以何种标准来衡量,这些早期的人都属于高效而机灵的猎手,对于当时的严苛环境和如今不可想象的种种气候变迁方式都了如指掌。您只要看一看他们对于野牛与其他动物形象的出色描绘就能认识到,他们花了大量的时间去观察猎物的独特习性。他们绘制的驯鹿交配、野马的夏季与冬季皮毛、正在梳理身侧皮毛的野牛、动物处于警觉状态或者摆出威胁姿势的图画,表明他们已经深刻地理解了自己的生活环境。

    最重要的是,“大冰期”晚期人类创作的艺术作品,还揭示了他们与自然界以及周围宇宙中种种超自然力量之间的复杂关系。如今许多遗址仍然留有手印,仿佛是访客们通过接触深处地表下方的彩绘岩面,就获得了某种力量似的。法国的派许摩尔(Pech Merle)洞穴中有两匹绘制于大约24,600 年前的黑马,它们面对着面,四周则是一些巨大的黑点和彩色手印。在比利牛斯山山麓的加尔加斯(Gargas)洞穴里,世世代代的人,不论男女老少,甚至是婴儿,都在洞穴下层的岩壁上留下了手印。至于手印的意思,我们就只能去想象了。这些手印,是否有可能属于保护性的标志(触摸石头以求好运,是许多人类种族的共同理念),提供了他们接触超自然世界的不可磨灭的证据呢?它们也可能具有其他的作用,比如可能是标示人际关系的一种方式,或是表明一个人隶属于整个群体的手段,等等。[10]

    尽管早期的人类了解环境与食物来源,可气候变化却从不由他们所掌控。多年的漫长寒冷与食物匮乏之后,就是一段气候较为温暖、猎物充足的时期。像所有的猎人与觅食者一样,“大冰期”晚期的人也会利用每一次机会,在具有战略优势的地方捕杀猎物。大约32,000年前,在如今法国中部马孔市附近的梭鲁特,“大冰期”晚期的狩猎部落曾经在一个天然的围场里,年复一年、长久不变地屠戮猎物。[11] 在“末次盛冰期”气候寒冷的岁月里,周围的开阔草原上有大量的野马和驯鹿。每年的5月至11月,猎人们就会将年轻的公马诱入这个围场,然后大肆杀戮和屠宰。几千年里,至少有3 万匹野马在梭鲁特的围猎中被人们捕杀;这个山谷中,到处都是腐烂的马匹尸体与骨架。这种狩猎一直持续到了大约21 500 年前,直到严寒促使猎人们南下,迁徙到了气候较为温暖的环境里才作罢。

    而在遥远的东部,在那些开阔的平原、隐蔽的河谷和山麓地区,拥有不同传统的狩猎部落则在相遇、融合与保持着联系。他们能够与相距遥远、生活在东方广袤草原的边缘和延伸到了乌拉尔山脉的一些浅河河谷里的民族相互往来。东部诸地是一个残酷而寒冷的世界,到处是灰褐色的尘土,风沙肆虐,还有无情的干旱。尽管环境可能极其艰苦,但东部平原上却养活了数量惊人的野兽,以及众多以捕猎野兽为生、坚韧剽悍的狩猎部落。

    如今保存得最完好的一些营地遗址,位于顿河沿岸;大约25,000 年以前,这里的人主要猎杀马匹和毛皮类动物。夏季里,他们会在露天营地里短暂地住上一阵子;此时,遍布各地的部落会聚在一起进行贸易、通婚、解决争端和举行宗教仪式。到了漫长的冬季,人们就会弃这种露天营地而去,分散成规模较小的部落,住进他们在冻土上挖出的半地下的居所里。

    位于乌克兰第聂伯河流域的梅日里奇(Mezhirich)遗址,可以追溯到大约 15,200 年前,已是“末次盛冰期”结束之后很久了。当时的气温可能有所回升,但冬季依然极其寒冷。[12]人们通过部分迁入地下,住进直径约为5米的穹顶状居所,极好地适应了这种气候。他们利用猛犸的头骨和骨头,经过精心设计,搭建成外面那道穹顶形的护墙,然后用兽皮与草皮盖成屋顶。据美国考古学家奥尔加·索弗(Olga Sofer)估计,要想建造出4座梅日里奇遗址那种聚集在一起的房屋,只需14位或15位工人花费10天左右的时间。

    梅日里奇这样的地方属于大本营,人们每年在此居住的时间长达6个月;它们修建在很浅的河谷中,能够在一定程度上抵御无情的北风。夏季到来之后,部落就会迁徙到较为开阔的乡间,住在临时营地里。每个冬季营地可能会住五六十人,每处居所里住一两个家庭。在冬季的几个月里,他们会以夏季狩猎所得然后放在永久冻土层的坑洞里加以精心储存的肉类为食。这里和其他地方一样,捕猎迁徙的驯鹿是人们在春、秋两季里的主要活动;此外,他们也会用陷阱捕捉一些较小的动物和禽类,甚至会捕鱼。但他们最重要的狩猎活动还是捕杀身上带有皮毛的猎物,因为在如此严酷的环境下生存,靠的就是合身的衣物与动物皮毛。在气温低于零摄氏度的环境中,设陷阱诱捕,也就是在野兔与狐狸惯常所走的小径沿途设下简单而高效的陷阱,是一项重要的技能。这不仅为人们提供了在寒冷中生存所需的食物,也提供了熬过漫漫寒冬所需的衣物。

    在“末次盛冰期”里,欧洲有人类群体居住的地区从未出现过常年的深度冰冻。随着气温升高,各个部落会在时间较长的夏季里离开有所遮蔽的河谷;但是,对于困在河谷之外的极寒天气中面临的种种危险,他们一定没有过任何幻想。如今,若是气温远低于零度,连北方那些土生土长的猎人也不愿长途跋涉去打猎了。当时的人肯定都很清楚,在这种气候条件下,徒步狩猎会非常危险。一些人出去狩猎,其他人则是留在营地里,花大量的时间制作衣物、制备兽皮和毛皮,即用刮刀除去兽皮上的脂肪,让它们变得柔软起来。“大冰期”末期的人曾经鞣制过各种各样的兽皮,甚至是禽类的皮毛,将其细细刮擦,并用油脂加以处理。“大冰期”末期人们无休无止地用石器刮擦兽皮的做法,就像如今城市里的车水马龙之声一样,属于一种恒久的需要。

    深入了解不断变化的环境,小心谨慎地定时迁徙,并且对自然世界深怀尊重之情,就是人类适应这个原始的“大冰期”世界时必不可少的几项技能;随着一年又一年、一个世纪又一个世纪、一个千年又一个千年过去,这些技能也被代代相传。最重要的是,作为群居动物,我们的早期祖先依赖的是他们精心编织出来的群体纽带、不断从他人那里获取的智慧以及合作——合作正是人类在适应气候变化时最历久弥坚的品质之一。合作曾是维系人类生存的黏合剂。由于人口数量很少,又生活在条件艰苦、掠食性动物众多的环境中,故几乎每一项活动,甚至是制备兽皮或者分配狩猎所得的肉类,参与的都并非只是个人,而是家庭和整个群体。人们很少单独出去打猎,因为警觉的猎人两两结伴去打猎的成功率更高,也更安全。妇女们经常结成紧密的团体,去寻找可食用的植物和坚果,有时离家的距离需步行几个小时。这种合作,得益于她们对坚果林和其他食物所掌握的知识;无论老少,每个人在一生中都会获得这种知识。防止食物短缺,积聚即食的食物,以及在坑、洞穴和岩石居所里储存供冬季里吃的食物,属于人们不言而喻的日常任务。此外,还有其他一些现实情况。以狩猎与采集为生且规模很小的部落,都住在临时性的营地里或者寒冷天气更持久的地方,但由于人数太少,故一场事故就有可能在瞬间让两名技艺高超的猎人丧命,并且毁掉一个部落。一场突如其来的霜冻,有可能在一夜之间毁掉尚未采摘的坚果的收成,并且威胁到冬季的食物供应。分娩则有可能让一名母亲丧生,然后留下一个无助的孤儿。在这些情况下,人们只有相互依靠才能生存下去;无论是依赖住得很近的其他部落成员,还是依靠住得较远的其他人,都是如此。[13] 坦率地说,倘若没有其他人,没有将家庭、亲族和部落团结起来的各种紧密的习俗纽带,一个人就不可能生存下去。

    在过去,群体和亲族会以紧密合作为纽带,将小型的狩猎部落团结在一起。正是因为有其他人,既有身边的人也有远方的人,人类才得以生存。合作意味着他们在狩猎和采集时能够获得成功;部落集体掌握的专业知识则确保了生存,降低了风险,并且通过夏天傍晚和漫漫冬夜里的吟诵、歌唱和讲故事而得到了强化;这些方面,既是生存的基本特点,也界定了那些以合作为基础、确保人类不论年景好坏都能生存下去的基本行为。猎人的世界充满了生机与活力。人类曾经对猎物与不断变化的环境心怀敬意,从现在与以前来看,这都并非巧合。这些古老的合作品质,加上一种精心培养出来的环境知识,在人类社会中存续了数千年之久,而如今在少数社会中也依然存在。遗憾的是,在我们这个拥挤不堪的工业世界里,其中的许多品质和知识已经彻底消失,或者被人们低估了。

    不过,正如近年来经历的极端气候事件,如“卡特里娜”飓风所教导我们的那样,我们比以往任何时候都更需要这些古老品质中的许多品质。飓风带来的后遗症,以及由极端高温、雷击和下坡风导致的大规模森林火灾所带来的后果,摧毁了美国加州小型乡村社区,已经让一些看似无名的社区团结起来,携手救援与重建。这种时候,人们会依赖亲族关系以及教会会众或者俱乐部之类组织严密的机构,来提供住所、食物和帮助。在这种时候,共同利益会变得比个人目标更加重要。此时,合作似乎成了我们与生俱来的本领。不过,由于如今我们大多数人的生活环境与2万年前的冰封世界截然不同,故我们并没有回顾过去和从中吸取教训。实际上,就连我们的祖先当时也处在剧变的风口浪尖上,因为“大冰期”即将结束,一场毫无规律、后来又变得很剧烈的全球变暖即将开始;而且不久之后,大多数人的生活方式将发生改变。

    [1] John F. Hoffecker, A Prehistory of the North (New Brunswick, NJ: Rutgers University Press, 2005).

    [2] Brian Fagan, ed., The Complete Ice Age (London and New York: Thames & Hudson, 2009),这本文集收录了专业人士撰写的通俗文章。至于大冰期的气温,参见Jessica Tierney et al., “Glacial Cooling and Climate Sensitivity Revisited,” Nature 584 (2020): 569–573. doi: 10.1038/s41586-020-2617-x。

    [3] Brian Fagan, Cro-Magnon: How the Ice Age Gave Birth to the First Modern Humans (New York: Bloomsbury Press, 2010).

    [4] Ian Gilligan, Climate, Clothing, and Agriculture in Prehistory: Linking Evidence, Causes, and Effects (Cambridge: Cambridge

    University Press, 2018),对这一主题进行了明确而缜密的分析。

    [5] Charles Darwin, Charles Darwin’s“Beagle” Diary, ed. Richard Darwin Keynes (Cambridge: Cambridge University Press, 1988), 134.

    [6] Paul H. Barrett and R. B. Freeman, Journal of Researches: The Works of Charles Darwin (New York: New York University Press, 1987), pt. 3, 2:120.

    [7] 水洞沟,中国一处旧石器时代的文化遗址,位于宁夏灵武市临河镇,1923年由两名法国古生物学家率先发掘。——译者注

    [8] John F. Hoffecker, Desolate Landscapes: Ice-Age Settlement in Eastern Europe (New Brunswick, NJ: Rutgers University Press, 2002), chap. 5.

    [9] Fagan, Cro-Magnon, 159–163.

    [10] Hoffecker, Prehistory of the North, chaps. 5 and 6.

    [11] Hoffecker, Prehistory of the North, chaps. 5 and 6.

    [12] Jean Combier and Anta Montet-White, eds., Solutré 1968–1998. Memoir XXX (Paris: Société Préhistorique Fran.aise, 2002).

    [13] Olga Soffer, The Upper Palaeolithic of the Eastern European Plain (New York: Academic Press, 1985).

    第二章 冰雪之后(15,000 年前至约公元前6000年)

    大约12,000年前,中东地区北部,当今的黎巴嫩。夏日并不像夏日,出奇地寒冷,天空中乌云密布。部落里的人都躲在橡树林中的营地里,冻得瑟瑟发抖。他们前不久才在那里安顿下来,是被附近一条湍急的溪流吸引过来的。日子一天天过去,小溪逐渐干涸,涓涓细流最终在日益变小的水塘里变成了一潭死水。据长老们的记忆来看,此时的雨水量只有过去年岁的一小部分了。每个人都饥肠辘辘,靠着用陷阱捕捉的禽鸟、啮齿类动物以及在林间顽强生存着的野草勉强维生。围坐在篝火边,部落长老们讨论了附近一个山谷中有积水、食物较丰富的消息。他们听取了男女老少的意见,然后决定迁徙。第二天,整个部落便背起行囊,开始了一场他们自己并不知道将持续数代人之久的搜寻之旅。

    狩猎与采集民族在地中海沿岸与叙利亚-阿拉伯沙漠之间水源相对充足的土地上,已经繁衍生息了数千年之久。自2 万年前以来,先前“大冰期”末期的严寒气候已经慢慢变暖了。到了14,500年前至12,700年前,当地人就像是生活在一个“伊甸园”里:那里温暖湿润,雨水日益增多,食物供应情况也较易预测了。可到了如今,也就是7个世纪之后,噩运却即将来临。气温正在迅速下降。部落的未来变得很不明朗。我们是怎样得知这一切的呢?这个问题的答案,就在非洲鲁文佐里山深处的冰川沉积物与湖芯当中;鲁文佐里山位于如今的乌干达与刚果民主共和国两国的边境上。从地质学的角度来看,这些巨大的山峰能为我们揭示古代气候变化的情况;关键的一点是,其中包括了“大冰期”末期气候开始变暖的时间。

    理解古代的气候

    鲁文佐里山(当地人称之为“鲁文朱拉山脉”)的顶峰高达5,100米,上面有5个植被带,从热带雨林到高山草甸和积雪地带,依次分布。[1] 在24,000年前的“末次盛冰期”里,鲁文佐里山中部诸峰上的冰川,开始顺着穿过整座山脉的山谷往下流去。冰川汇合之后,在海拔约2,300米的地方形成了一条超级冰川。现在早已消失的那片冰盖融化之后留下的冰川碎石,在海拔3,000米的地方围出了一个完整的潟湖,即马霍马湖(Lake Mahoma)。如今,那些山谷中都长满了郁郁葱葱的热带植物。险峻的山坡高高耸立,白雪皑皑的顶峰常常笼罩在云雾之中。尽管如此,情况仍然令人担忧。1906 年,鲁文佐里山中有43条业已命名的冰川,它们分布在6座山上,面积为7.5平方千米。但在如今全球变暖的形势下,只有3座山上还有冰川,面积也只有1.5平方千米了。冰川的长期融化,给鲁文佐里山的植被与生物多样性带来了巨大的影响。

    这些山顶积雪的山峰,本是显示现代气候变化的晴雨表,可上面的冰雪却正在以惊人的速度融化。然而,它们也提供了关于远古时期的一些关键信息。冰川前进时,会裹挟着一堆堆的岩石与泥土;而冰川消退时,宇宙射线就会不断地照在这些刚刚裸露出来的一道道岩石与泥土之上(即冰川碎石堆积物,称为“冰碛”)。将这些冰碛碾碎,然后测量其中的宇生同位素铍-10(或者写作 10Be)的累积量,科学家就能确定冰川消退的时间,了解冰川随着时光流逝而向山上消退的情况,然后间接计算出气候变暖的程度。结果我们得知,鲁文佐里山上的冰川面积在大约21 500年前到18,000年前之间达到了最大,然后由于全球气温上升,它们在大约2万年前至19,000年前的某个时候,开始无可阻挡地消退。[2] 这个地质时刻,标志着地球当前的自然变暖的开始,从而预示着最后一个“大冰期”结束了。

    人们在东非的湖泊中钻取的岩芯,也表明了类似的情况。到19,000 年前,热带地区的海洋便开始升温了。此时,也正是覆盖着北美洲北纬地区那片广袤的劳伦太德冰原开始消退的时候,而南半球的冰原也是如此。“大冰期”末期的世界,发生了划时代的改变,而北纬各地区尤其如此。差不多19,000年前至16,000年前,海洋与陆地的温度都仍然较低。此后,气候变暖就开始加速了。但在15,000年前到13,000年前那段时间里,气温迅速上升,可能每个世纪的升温都高达7℃。到了大约13,000年前至11 600年前,气候这座“跷跷板”出人意料地再次跳水,气温下降到了寒冷得多的程度。这段寒冷的“瞬间”就是所谓的“新仙女木”时期(参见绪论),持续了约1,000年。气温骤降后,欧洲重新出现了北极地区的植被,冰原也再次开始前进。欧洲与亚洲西南部变得更加干燥。一场严重的干旱袭击了中东的许多地区,迫使众多部落开始迁徙,以寻觅食物。如今人们对造成干旱的原因争议颇多,从一系列火山活动到可能是陨石撞击,不一而足。

    “新仙女木”事件的影响是区域性的,并且在一定程度上与中东地区首次出现农业的时间相一致。这个时期以地球再次开始逐渐变暖而告结束,而这种变暖一直持续至今。

    不断变化的地形地貌(自16,000年前起)

    但是,这种情况对我们的祖先又意味着什么呢?在欧亚大陆北部,大约 16,000 年前之后,狩猎部落进一步向北迁徙,进入了冰川刚刚消融、变成了开阔草原的一些地区。随着“新仙女木”事件之后气温升高,森林逐渐取代了这些草原,先是桦树林,最终则成了橡树林。[3] 欧洲的狩猎部落,也从捕杀驯鹿和喜欢寒冷气候的猎物转向了捕猎马鹿、野猪和其他的森林动物。当时的猎人仍然使用长矛和投矛器,后者是一根带钩的棍子,能够准确无误地将长矛投掷出去。简单的弓箭此前早已为人们所使用,可能是5万多年前在非洲率先开始使用的;不过,在新的石器技术让人们能够制作出小而锋利的箭头之后,弓箭才开始盛行。这些轻型武器的射程更远,故拥有一种巨大的优势,能够猎杀飞行中的禽类。

    人类有了弓箭之后,野兔、啮齿类动物以及迁徙的水禽就变成了颇受重视的食物;人们不仅用网子和陷阱捕捉,而且可以用这种轻便的新型武器捕猎它们了。木箭的顶端带有小而致命的锋利倒钩,以及重量几乎可以忽略不计的致命箭头。考古学家把这种箭头称为“细石器”(microlith),即细小的石头。在猎物种类增加的同时,人们也扩大了对各种植物性食物的利用。此时,禾谷植物、水果和坚果绝对不只是补充性食物,而是“后大冰期”时代人类饮食中的核心组成部分。许多部落定居在湖畔、河滨和避风挡雨的海湾边,而在这些地方,捕鱼与寻觅软体动物也变得日益重要起来。在很多地方,大大小小的部落群体曾经可能年复一年甚至是永久地利用相同的营地;这一点,取决于各季食物的丰富程度。

    随着冰川融化、全球海平面上升,数千年的气候变暖也导致海岸线与河流发生了巨变。大陆架消失了,比如东南亚的近海大陆架就是如此。位于西伯利亚与阿拉斯加之间的“白令陆桥”,变成了一个风暴肆虐、波涛汹涌的海洋。直到大约8,500年前,不列颠群岛与欧洲大陆之间的北海还是一处由低洼的湿地与湖泊组成的陆桥。地质学家根据地名“多格浅滩”(Dogger Bank),将这个沉没的古代世界称为“多格兰”;如今,多格浅滩成了一处富饶的渔场。[4] 曾经有好几千人在那里繁衍生息。许多部落必定是划着独木舟,撒渔网、布渔栅、猎野禽,捕杀鹿和其他小型猎物,几乎终生如此。像“大冰期”里的所有人一样,他们也在不停地奔波,只不过,他们流动的必要性不仅是由动物的迁徙或植物性食物的时令所决定的,还取决于水位的变化情况。在这种近乎一马平川的环境中,海平面若是上升,甚至像某一次那样,爆发一场海啸,那就意味着到处都会洪水滔天。一个有所遮蔽的独木舟码头,可能会在一个人不到一辈子的时间内就没入水下。

    由此导致的影响,是很深远的。动物们都选择了新的迁徙路线,而当栖息地变成泽国之后,它们又会继续迁徙。突如其来的洪水,带来了疾病与新的寄生生物。最重要的是,在一个人口密度不断上升的时代,失去狩猎场地和明确划界的部落领地,会导致严重的社会动荡,会让人们为了获得开始稀缺的食物而展开争夺,从而不可避免地出现暴力现象和战争。持续不断且似乎势不可当的变化与环境威胁,引发了一种持久的不安全感,甚至是恐惧感,就像当今这个世界里,海平面上升带来的威胁让太平洋诸岛和其他低洼地区的人都心感忧惧一样。多格兰地区内发生的每一场大洪水,都意味着人们失去了一片曾经饱含意义与情感记忆、浸润着家族历史与亲族纽带的土地。它也意味着人们丧失了许多实用性的知识,比如在哪里可以找到最优质的鱼类,或者优质的燧石。尽管一些分析人士可能会不以为意地指出,人口流动是一条适应气候变化的可行之道,但在有些时期,生态环境变化必定曾带来创伤,甚至是危机。大约在公元前6500年到公元前6200年间,大西洋海平面上升,形成了北海,淹没了以前的多格兰陆桥,使之变成了如今的汪洋大海,将不列颠与欧洲大陆分隔了开来。

    不过,随着全球变暖,机会主义开始发挥作用了;其实,人类一贯如此。早期的人类既没有被永久性的住宅所束缚,也没有在庄稼种植方面进行投入,故他们会发现,不断迁徙相对容易,至少比后来定居的一代又一代人更加容易。同时,人们对环境了如指掌,这就意味着他们可以用灵活而具有创造性的方式去应对不断变化的气候。当然,我们在古人的技术创新中也会看出这个方面的蛛丝马迹,比如新型的渔具;1931 年人们在多格浅滩附近发掘出的一把经过精雕细刻的多齿骨制鱼叉叉尖,就是一个例子。

    大约 15,000 年前的某个时候,第一批人类横跨白令陆桥,从西伯利亚来到了阿拉斯加;他们极为了不起地适应了新环境中的生活。[5] 率先迁来的,是北极地区的狩猎民族;他们很可能是沿着太平洋海岸往南,无比迅速地扩散到了北美洲及其以南的地区。在几千年的时间里,尽管人口仍然稀少,但人类已经适应了各种各样的环境:从北极苔原到广袤开阔的平原,再到沙漠和热带雨林,范围惊人。

    起初,美洲的人口数量极少,分布广泛,并且分成了一个个的小部落。第一批美洲人属于来去匆匆的民族,他们不停地迁徙,只是偶尔与其他民族接触一下。他们的工具都很轻便,易于携带;至于狩猎武器和其他设备,许多都是到需要的时候才制作出来,然后很快就丢掉了。他们留下的东西,如今我们几乎都无从看到,通常只有散落的石器和石片,偶尔也有动物的骨头。据我们所知,当时人类用的是锋利的石刀和石尖长矛,它们与西伯利亚出土的工具几乎没有什么相似之处;这就表明,新的环境导致人类采取了新的适应手段。一些零散的石器和经放射性碳测定的工具,其年代可以追溯到14,000 年前,甚至更早。

    大约 13,000 年前,北美洲出现了分布广泛的克洛维斯人,他们以制作出了独具特色、带有薄底座的石制枪头而闻名。克洛维斯人全都是技术高超的猎手,能捕杀各种大小的猎物,但他们也曾广泛采集各种植物性食物。与先辈们一样,他们的流动性极强,能够长途追踪野牛和体形较小的猎物。克洛维斯人还曾从遥远的地方获得纹理细密、用于制造工具的石头。例如,在相距1,770千米之远的密苏里州圣路易斯附近,人们竟然发现了用来自北达科他州一些采石场的“刀河燧石”(Knife River Flint)制作而成的克洛维斯燧石矛尖。这些流动性强、多才多艺的克洛维斯部落适应了各种具有挑战性的环境,从“大平原”上的草地直到西部的沙漠之地,以及从寒冷的北方到炎热的沙漠这样的极端气温。

    克洛维斯人的文化传统,繁荣发展了大约500年。接下来,克洛维斯文化就被另一种从事狩猎与采集、称为“福尔索姆”(Folsom)的传统文化取代了;后者是一个文化标签,代表了从阿拉斯加的边境到墨西哥湾这个广袤地区里繁衍生息的数百个小型的狩猎部落。许多部落都曾逐猎北美野牛,可福尔索姆诸部落却适应了从落基山脉到“大平原”东部的草原林地等广泛多样的环境。数个世纪过去之后,他们的后继者也适应了各种各样的自然环境,包括西部的沙漠、东部的林地,以及异常富饶的河口与湖滨之地;在这些地区,日益复杂的狩猎采集文化曾于同一个地方繁衍生息数代之久,主要依靠鱼类、植物性食物和猎物为生。在这里,亲族纽带加上食物与其他商品的互惠交换既增加了人们的居住稳定性,也让他们与古老的土地之间形成了紧密的联系。其中有些社会,还成了后来一些更加复杂的狩猎与农耕社会的前身。

    所有这些社会都一如既往,将文化价值观、本能以及像拓展食物来源与流动性等经过了深思熟虑的策略结合起来,成功地应对了严重的气候变化,尤其是日益加剧的干旱与气温上升这两个方面。人口密度不断增长与定期接触其他部落,使得人们更加容易分享食物、进行合作,尤其是更易提供有关复杂环境的知识;当时的人类社会,普遍对环境心存敬意。

    完美风暴

    随着先前数千年里“大冰期”气温的升高,亚洲西南部的森林面积也迅速扩张了;只不过,当时的气温仍然比如今低,而降雨则相对充沛一些。植被变得更加丰富多样,其中还出现了野生谷物,为人类提供了大量可食用的谷物种子。猎物很丰富,而谷类植物和可食用的坚果(比如开心果与橡子)也是如此。底格里斯河与幼发拉底河的下游地区尤其如此,一代又一代的狩猎与采集民族都生活得极其富足,以至于他们开始在那里定居下来。他们兴建了一些规模越来越大的定居点,并且把死者安葬在墓地里,其中许多死者还有奢华的装饰品陪葬。有迹象表明,当时出现了较为复杂的社会组织,尤其是有迹象显示,他们对祖先,即以往数代居住在同一片土地上的人怀有一种更加深刻的敬畏之情。这一点并不令人觉得奇怪,因为将人们的土地所有权合法化的一个好办法,就是强调他们跟曾经拥有这片土地的祖先之间有着密切的联系。

    不过,刚开始时他们为什么要定居下来呢?要知道,在600 多万年的漫长岁月里,古人类一直都在迁徙,而智人也迁徙了30万年之久呢。一种说法认为,是冰川融化之后,大约14,500 年前至12,900年前,那种食物丰富、气候也较温和的环境条件,促使觅食民族开始在距肥沃土地不远的村庄里永久定居下来的。还有一种观点则认为,是降雨量增加和食物供应状况改善导致了人口增长,这就意味着人们会积极主动地想要获得“部落领地”的所有权。至于实际情况,很可能是二者兼有。

    然而,食物充裕的温暖期过后,就迎来了气候寒冷的“新仙女木”事件;它不但导致了黎巴嫩北部等地的气候条件变得更加干燥、气温有所下降,而且给那些地方带来了大范围的干旱。我们早已得知,“新仙女木”事件对亚洲西南部以采集觅食为生的社会造成了影响,但如今我们还对这种影响的细节有了十分详尽的认识;这一点,要归功于人们对以色列的索瑞克石窟(Soreq Cave)中的洞穴沉积物所进行的研究,以及用其他气候替代指标(包括花粉和同位素记录)进行的研究。

    对人类而言,气候条件变得较为干燥之后,他们就更加重视收获野生谷物和建造野生谷物的储存设施了。与此同时,植物栽培实验也进展得很顺利;早在23,000年前,在以色列加利利海(太巴列湖)岸边的“奥哈罗二号”(Ohalo Ⅱ)营地,人们就开始率先种植大麦与小麦,至少也是暂时开始种植了。当时的实验似乎为时不久,降雨量增加之后就没有再进行下去。在干旱环境里,动植物都属于无法预测的资源,栽培野生禾草显然已成为一种公认的策略。无疑,其他群体在“大冰期”末期也栽培过谷物;但此时人类栽培的谷类植物出现了基因改变,既导致了全职农业的产生,也导致了人口的显著增长,故人们开始广泛地转向了有意的作物栽培。

    不过,转向粮食生产属于一个适应过程,情况比乍看之下要复杂得多。既不是哪一个人“发明”了农业,也不是哪一个人在某天决定要去驯养有用的动物。相反,它是在多达14 个地方(很可能更多)逐渐展开、独立进行的一个转变过程,通常是为了应对气候变化。[6]

    第一批农民(约11,000年前)

    尽管人类进行过各种各样的早期实验,但正经的粮食生产,始于约11,000年前的亚洲西南部、东亚和南美地区。大约3,000年至4,000年后,中国的长江与黄河沿岸都出现了农民。5,000 年前,南亚与东南亚、非洲大草原的部分地区以及北美洲都兴起了农业和畜牧业。这些新兴经济以不可阻挡之势扩张开去,但取决于当地的环境而速度不一。有了较为可靠的粮食来源之后,人口数量与密度都出现了持续的增长。人类刚开始进行粮食生产时,全球只有500万左右的人口,但到了基督时代,这一数字急剧增长到了2亿到3亿之间。现在,自给农业与工业化农业养活着全世界75亿人口,而这个数字还在不断增长。但是,如今仍有不到100万的人口,在以古老的狩猎和采集方式生活着。

    半个多世纪以前,考古学家维尔·戈登·柴尔德曾经撰文论述人类历史上出现过的两大革命,即农业革命与城市革命。[7] 柴尔德笔下的这两大革命,掩盖了粮食生产能力曾经导致人类社会出现的一些复杂得多的变化。其中,不仅有人类在农作物与动物方面的专业知识的发展,还有规模更大、人口也要密集得多的永久性定居地的建立。

    柴尔德是一位马克思主义者,故尤其关注一些与定居生活相关的社会和经济问题,比如财产的积累、对有限土地的投资,以及后来少数人对多数人的统治。人类过上定居生活之后,的确出现了一种朝着竞争、社会不平等以及社会等级日益森严等方面发展的强大趋势。但另一方面,新兴经济也意味着此时一些人摆脱了筹集食物的日常任务,可以专攻其他的事情,比如制陶或冶金,或者只是花时间去思考和关注生活中的其他方面。这正是定居社会促使冶金、写作、艺术与科学领域里出现了大量创新的原因。此外,随着人口倍增,人们的想法也是如此,尤其是在他们会聚于城镇,能够分享知识与思想的时候。人口增长并非只因为食物供应很充足这一个方面(这种充足,从来都没有什么保障),还因为多生几个孩子(作为未来的劳动力)在农耕社会里往往是一种优势。这一点,与从事狩猎和采集的社会形成了鲜明的对比,因为子女太多会给后一种群体的食物供应带来负担。随着人口增长,村落变成了集镇,集镇变成了城市,而城市则变成了王国,然后有了实力强大的帝国。

    这种情况,还导致了一些意想不到的后果,即出现了由家畜或者昆虫滋生引发的新传染病,并且给环境带来了种种压力。这些“文明的变革”,对全球气候产生了重大影响。回顾过去的75万年,其间至少交替出现了8个气候温暖的“间冰期”,以及它们之间气候寒冷的冰期;其中的每一个冰期开始的时候,大气中的温室气体含量都很高,然后,随着气温下降,温室气体的含量也会缓慢下降。接着迎来了当今这个时代,地质学家称之为“全新世”;当然,这是一个农耕时代。气候学家威廉·拉迪曼已经指出了大气中的二氧化碳含量起初逐渐下降,但在大约7,000年前又开始上升的过程。[8] 大气中的甲烷含量,则在差不多2,000年之后开始上升。他认为,二氧化碳含量增加是人们砍伐森林以进行农耕导致的,而甲烷含量上升则是人类种植水稻的结果。拉迪曼的理论虽然备受争议,如今却已日益被人们广泛接受。可以说,从狩猎与觅食到农耕这个古老的转变过程,缓慢却势不可当,并且确实在无意当中助长了全球变暖,大大增加了我们在面对短期与长期性气候变化时的脆弱性。

    当然,人类一向都很脆弱。像灾难性干旱之类的短期事件,有可能在气候并未变暖的情况下突然降临。以前的社会为何能够适应突如其来的气候变化,并且幸存下来呢?很显然,寻找食物是推动当时社会发展的压倒性因素。当环境有利,猎物和植物性食物都很丰富时,人类的生存决策相对简单,其依据的是哪些食物最容易获得,并且会受到他们与邻近部落之间竞争的影响。环境条件恶化之后,就出现了新的问题;其中之一,就在于最大限度地降低风险。人类的直觉发挥了重要的作用,而一些传统的生存策略也不例外。有些人可能在不发生冲突的情况下,迁徙到新的地方;其他一些人则有可能争夺资源,诉诸暴力,可结果却毫无保障。

    当时,人们在很多方面必定都是依赖长期的社会记忆,依赖于人类代代相传的关于环境与食物资源方面的知识。不同于狩猎与采集民族,一旦与土地紧密联系起来,农民就会规避风险;他们非常清楚,反复出现的作物歉收与禽畜疾病有可能让他们无法适应天灾,比如一场旷日持久的干旱。结果,必定有很多人丧命,也必定有一些群体走向了灭绝。在这个方面,不断迁徙的觅食民族与世世代代留在一个地方尝试耕作的农民之间,就出现了一种重大区别。连最早的农民,也对他们的土地、房屋、储藏设施和仪式中心进行了大力投入。在对环境的这种精神依附的作用下,他们往往会对环境变化做出积极的反应,比如养羊而不养牛。抛弃一个定居地和整个部落所珍视的土地,是一种迫不得已的策略。

    在气候快速变冷的“新仙女木”事件中,黎凡特[9] 北部地区才真正开始了农业;假如仔细思考一下这个事实,我们就能看出环境在人类生活当中所扮演的角色。[10] 这种气候变化,可能导致人们开始进行粮食生产,因为冬季的霜冻杀死了种子,并且推迟了谷类作物的发芽与成熟时间。各个群落都不得不改变他们的食物来源。这是一个个季节性气候条件不断变化和很不稳定的时期。在只能养活少量人口的地区,存在严重的人口压力。结果,就出现了剧烈的社会动荡、争夺食物和无数次小规模的迁徙。觅食民族做出的反应,是从内盖夫沙漠(Negev Desert)和叙利亚-阿拉伯沙漠边缘这种较为干旱的地区,迁徙到了有可耕土地的地方。但短期内,觅食民族只能在靠近沙漠、不可耕作的边缘地区勉强生存。

    巨大的转变,出现在有地中海植被的地区,或者说靠近“肥沃新月”中那个大草原的地区。[11] 在其他一些森林较多的地区,觅食民族则继续与农民一起繁衍生息。在11,700年前到 11,200 年前的这段时间里,农民不但开发出了新型的斧、锛,而且开始使用效率更高的磨石、石镰,以及效果更好的新式箭头。他们的定居地变得更加恒久,还有足以傲人的土墙房屋或者砖墙房屋,这种平顶建筑常常建在石头地基上。宗教建筑的最早证据,比如土耳其东南部哥贝克力山丘(Göbekli Tepe)上的神殿,就可以追溯到这个时期。据我们所知,那处遗址的居民曾经把整座山顶变成一个祭祀中心,但他们仍然属于狩猎采集者,而不是农民。不过,他们建造了一座复杂的、带有石雕立柱的圆形建筑,立柱上雕着动物图案,表明那里曾是一个重要的圣地。

    与这种神殿有关的画作、雕像和石膏人类头骨,既反映出当时的人心怀一种强烈的执念,认为祖先是土地的守护者,也反映出他们极度迷信创造环境、力量强大的神秘生物和滋养环境的各种气候力量。这些执念,又反映出他们更加关注领地的控制权。与此同时,神殿内精心设计的动物雕像、人类雕像或者墙壁装饰则证明,他们与不论远近的相邻部落都经常交流。随着这些交流而来的,就是共享耕作与放牧的知识,从而让其他人也能采用新的生存方式与可持续发展方式。

    第一批城镇:药物、干旱与疾病(约公元前7500年)

    面临干旱时,随着森林范围逐渐缩小,野生禾草的收成也开始大幅下降。一些饥肠辘辘的部落依靠猎杀小羚羊与对谷物和豆类进行精耕细作而幸存了下来。在土耳其东南部和叙利亚北部这样的地区,一些群落开始种植野生禾草,想要扩大它们的种植范围;这种做法是人们熟悉的一种实验策略。

    在叙利亚北部靠近幼发拉底河一个叫作阿布胡赖拉的村庄土丘上,大约13,000年前的原始居民都住在简单的“窖屋”里;那里的环境可谓林木繁茂,动物与野生谷物都很丰富。[12] 他们还会捕猎成百上千头波斯瞪羚;每年春季,波斯瞪羚都会从南方迁徙而来。考古发掘者安德鲁·穆尔(Andrew Moore)用细筛对覆盖着灰烬的居住层进行筛选,从中获得了大量的植物性食物样本。他的同事戈登·希尔曼(Gordon Hillman)则发现,这些样本来自6种主要的野生植物。不过,当时还有数百种其他的野生植物,被人们用于各种各样的目的,其中还包括迷幻剂和染料。随着旱情加剧,这个小小的村落被人们遗弃了;或许,木柴短缺也是这里被遗弃的原因之一。

    公元前 9000 年前后,一个新的村落在这座低矮的土丘上兴起,然后逐渐发展到了占地近12公顷的规模。在一代人左右的时间里,人们不再捕猎瞪羚,而是开始牧养绵羊与山羊。希尔曼发现,人们起初是在附近的森林里采集水果与禾草。随着干旱加剧,一度生长在房屋附近的野生禾草变得日益稀少起来。400 年过后,旱情更加严重了。起初,人们通过转向采集种子很小的禾草与其他的应急性食物,来适应这个始终都属于半干旱气候的地区。从他们留下的骸骨来看,与前人相比,第一批农民的生活过得尤其艰难。一些年轻人的颈部和脊椎都有问题,因为他们经常背负太重的东西,比如一捆捆谷物或者建筑材料。女性身上通常有趾骨磨损的迹象;这种症状,与脚趾总是处于蜷曲/弯折姿势导致的症状相吻合——这种姿势,也就是她们在房中地上固定的磨石上无休无止地加工谷物时所需的姿势。尽管有这些问题,这里的人口还是迅速增长,以至于居民多达400人了。生活在如今业已荒芜的干旱草原环境中,他们便采用了人类从事农耕之前一种源远流长的策略:他们最终弃这座村落而去,迁往水源较丰富的地方了。

    公元前7700年过后,随着环境再次变得较为有利,这座土丘上又兴起了一个更大的村落;村中都是土砖平房,由狭窄的巷子隔开。阿布胡赖拉的情况,并非特例。随着更湿润的气候条件卷土重来,人们便忘掉了气候较干燥的那几个世纪,农业与畜牧业也从沿海地区扩散到了内陆,从低地传播到了高原,经由美索不达米亚传到了土耳其与尼罗河流域。然而,人们变成农民并不只是由于气候的变化。这个转变过程要复杂得多。

    在土耳其中部的加泰土丘,人们进行了另一项长期的考古发掘工作;这是一个大型的村落,或者说一个房屋密集的小型城镇,在大约公元前7400年至公元前5700年间的1,700多年里,重建了起码18次。[13] 此地之人的日常生活,以一群群密集的住宅为中心;在这些住宅里,同一家族已经居住了数代之久。许多房屋都带有装饰,所用的艺术风格非常奢华,呈现出复杂的象征意义。墙上绘有人类与猛兽的壁画,还能发现人类与公牛的石膏头骨。在有人居住的房屋里,居住者会与过去进行密切的互动。其他一些房子里则存放着人类的骸骨,数量比曾经居住在那里的活人要多得多。它们似乎就是考古发掘者所称的“祖宅”,是人们举行祭祀仪式、在世者得以接触备受敬重的祖先之地。

    当时的加泰土丘人的生活,并不一定令人觉得舒适。在加泰土丘最繁盛的时期里,有3,000人至8,000人住在村中或者附近;当时的降水相对充沛,贸易也在蓬勃发展。加泰土丘人面对过人口过密、传染病频发、暴力肆虐等问题,还遇到过严重的环境问题。公元前 7400 年前后始建的这个小村落,迅速发展成了一座人口稠密、规模大得多的村庄,甚至成了一座城镇,因黑曜岩(即用于制造工具因而备受重视的火山玻璃)生意红火而繁荣起来。如今,生物考古学家能够对当时居民骨骼中的化学成分进行研究。骨骼中稳定的碳同位素表明,当时的人主要以谷类为食,比如大麦、黑麦和小麦。他们一开始养的是羊,后来则是养牛。他们以谷类为主的饮食,导致了许多蛀牙病例。人们腿骨的横截面表明,后来住在这里的人比起初的居民走路更多。研究人员认为,这是因为后来的居民不得不到远离社区的地方去耕作与放牧。领导这项研究的克拉克·斯宾塞·拉森(Clark Spencer Larsen)认为,当时的环境恶化与气候变化,曾经迫使社区成员到离住处很远的地方去种植庄稼和充分收集一种至关重要的物品:木柴。

    在整个中东地区的气候变得日益干旱的那个时期里,加泰土丘在蓬勃发展。不过,长期的人口过密与恶劣的卫生条件必然会导致传染病;这一点在死者的骸骨中会显现出来。当时的住宅,就像是一栋栋拥挤不堪的廉价公寓,以至于研究人员对墙壁与地板进行分析时,竟然发现了人畜粪便的痕迹。垃圾坑和畜栏,都紧挨着一些房屋。这里的卫生条件,必定恶化得非常迅速。人口过密,也导致了暴力现象。在一份由 25 人构成的样本中,竟然有超过四分之一的人身上都存在愈合了的骨折痕迹。他们中的一些人还曾反复受伤,其中许多处伤都是他们背对袭击者时,被硬邦邦的黏土团击中头部造成的。受害者中,超过半数都是女性。大多数袭击,都发生在居住环境最拥挤的那几代里;或许,那几代就是这个社区内部紧张和冲突的时期。但最引人注意的一点在于,加泰土丘农民所面临的种种问题,几乎与如今城市在更大规模上普遍存在的问题毫无二致。

    在人们与土地的关系变得越来越紧密的一个时代,更频繁与更广泛的相互交往把远近各地的社群联系起来。在当时这个日常活动比以往任何时候都更加紧密地围绕着四季的无尽更替来进行的社会里,一种不可抗拒的延续性理念变成了生活中一个核心的组成部分。在这种背景下,几乎所有地区的农村社会都必须应对气候变化带来的种种挑战。

    在公元前6200年至公元前5800年间,一场场灾难性的干旱对位于尤克辛湖(Euxine Lake,即如今的黑海)与幼发拉底河之间的农耕社区都产生了影响。干旱旷日持久,湖泊与河流纷纷干涸,死海水位也降到了历史最低。在冷酷无情的干旱面前,大大小小的农耕社区都开始缩小规模和逐渐衰落下去。许多人消失不见,无数人死于饥饿和饥荒导致的疾病。还有一些人,例如一度繁荣兴旺的加泰土丘居民,则因为满足不了体形较大的畜群的饮水需求,从养牛转向了牧羊。

    生存朝不保夕

    “大冰期”结束后,人类不得不去适应剧烈的气候变化。随着冰原消退,海平面上升,就连地形地貌也发生了令人难以想象的变化,然而人类(此时仍然属于以狩猎和采集为生的游牧部落)利用了自己最熟悉的知识:他们采用了传统的方式,依靠经验、亲属关系、合作以及技术创新来降低风险和保持韧性,从而成功地适应了深刻的文化变革和环境变化。

    最大的一些变化,是在大约11,000年前之后,随着世界各地都转向了农业与畜牧业而出现的。自给农业与畜牧业将人们束缚在土地上,故他们开始“进口”当地没有的商品。此时,买卖“异域商品”的长途贸易就真正开始飞速发展起来。黑曜岩这种纹理细密的火山玻璃,变成了制造工具和装饰品的一种紧俏商品。英国考古学家科林·伦弗鲁(Colin Renfrew)曾经利用岩石中独特的微量元素,勾画出了地中海东部广大地区的黑曜岩贸易路线。

    然而,大多数靠农耕为生的人却过得非常艰辛,生活也朝不保夕。人类第一次开始面对自给农业的严酷现实,他们无法像过去那样靠迁徙来适应,只得忍受短期与长期的干旱。与耕种土地、经营农场相比,直接外出寻觅食物或者捕猎野兽时,需要付出的时间与精力要少得多。人类学家已经在他们与一些以狩猎和采集为生的群落合作研究的过程中一再证明了这一点;比如,研究坦桑尼亚的哈察人(Hadza)觅食部落时,他们曾经仔细记录了该部落生活方式中的热量消耗与恢复情况。此外,人类学家对非洲卡拉哈里沙漠的桑人进行的研究也已证明,耕作所需的热量与时间,要远多于以狩猎与觅食为生的部落采集等量食物所需的热量与时间;更何况,狩猎与觅食部落的人口数量事实上一直都在减少,因此整个部落无须再付出那么大的努力。

    但是,那些最终幸存下来的农耕部落之所以能够维持下来,在很大程度上要归功于前人遗留下来并代代相传的风险管理措施。适应气候变化是一个局部性的问题,取决于人们掌握的环境知识和继承的经验。如今我们仍然属于定居民族,却经常忘记局部适应的重要性。应对气候变化的措施,往往是从局部层面开始的,并且适合当地周围的局部环境。无论我们是住在乡村,还是住在一个有数百万人口的城市里,这一点到今天都仍然适用。

    而且,随着农业经济的扩张,人口密度也将开始上升。假如说“成功”要根据人口密度的上升来衡量,那么,农业就发展得非常成功。在数个世纪的时间里,美索不达米亚这个“河间之地”的南北各地,就都散布着从事农业的社群了。不久之后,先是城镇,然后是拥有文字、纪念性建筑物、黄金、珠宝、富有魅力的国王和进行全面战争的复杂城市,就会涌现出来。接下来的两章,我们将探讨美索不达米亚及其同时代的埃及文明与印度河流域文明,看一看它们在与日晒雨淋做斗争的过程中成功和最终失败的情况。

    [1] 据说,古希腊哲学家西诺帕的第欧根尼(前386—前354)曾经从今坦桑尼亚的拉普塔镇往内陆而去,游历了25天。他将鲁文佐里山命名为“月亮山”,并且认为那里就是尼罗河的源头。地理学家提尔的马利纳斯(Marinus of Tyre,约 70—130)记录了第欧根尼的历次旅行,为托勒密的《地理学指南》一书奠定了基础。遗憾的是,马利纳斯的地理专著已经佚失。后来的阿拉伯旅行者,则恰如其分地把这些传说中的山峰称为“吉贝尔厄尔库姆里”(Jibbel el Kumri,即阿拉伯语中的“月亮山”)。 1889年,以“我想您就是利文斯通博士?”这句话而出名的探险家亨利·莫顿·斯坦利最终在地图上确定了这条山脉的位置。此前的欧洲旅行者从未见过这条山脉,因为它们通常都笼罩在云层之下。

    [2] Margaret S. Jackson et al., “High-Latitude Warming

    Initiated the Onset of the Fast Deglaciation in the Tropics,”

    Science Advances 5 (12) (2019). doi: 10.1126/sciadv.aaw2610.

    [3] Steven Mithen, After the Ice: A Global Human History,

    20,000–5000 BC (Cambridge, MA: Harvard University Press,

    2006),这是一部权威而具有启发意义的总结性著作。

    [4] Vincent Gaffney et al., Europe’ s Lost World: The Rediscovery of Doggerland (York: Council for British Archaeology, 2009).

    [5] 论述美洲最初定居点的文献资料多如牛毛,并且充满了争议。See

    David Meltzer, First Peoples in a New World: Colonizing Ice

    Age America (Berkeley: University of California Press, 2008).

    See also David Meltzer, The Great Paleolithic War: How

    Science Forged an Understanding of America’ s Ice Age Past

    (Chicago: University of Chicago Press, 2015).

    [6] 同样,这方面的文献资料浩如烟海且相互矛盾。一部非常有用的总结之作:Graeme Barker, The Agricultural Revolution in Prehistory (New York: Oxford University Press, 2006)。

    [7] Bruce G. Trigger, Gordon Childe: Revolutions in Archaeology (New York: Columbia University Press, 1980),这是了解柴尔德的观点和著作的最佳资料。

    [8] William Ruddiman, Plows, Plagues, and Petroleum: How

    Humans Took Control of Climate (Princeton, NJ: Princeton

    University Press, 2016).

    [9] 黎凡特(Levant),一个并不精确的历史地名,大致相当于现代的东地中海地区,包括中东的托罗斯山脉以南、地中海东岸、阿拉伯沙漠以北和上美索不达米亚以西的一大片地区。——译者注

    [10] 埃及古物学家詹姆士·亨利·布雷斯特德(James Henry Breasted)在一个世纪前的通俗读物中创造了“肥沃新月”一词。它所指的范围呈一个巨大的半圆形,朝南敞开,从地中海的东南角向北隆起,穿过叙利亚、土耳其部分地区以及伊朗高地,然后往南至波斯湾。布雷斯特德把这里比作一个“沙漠海湾”。“肥沃新月”纯属一个便于使用的标签,并无严格的定义,却经受住了时间的检验。

    [11] Klaus Schmidt, G.bekli Tepe: A Stone Age Sanctuary in South-eastern Turkey (London: ArchaeNova, 2012).

    [12] Andrew T. Moore et al., Village on the Euphrates (New York: Oxford University Press, 2000).

    [13] 以任何标准来看,加泰土丘都是一个由国际发掘工作者和研究人员组成的团队实施的真正非凡的长期性考古项目。这方面的文献资料,正在迅速增加。对于一般读者来说,最好从下述文献资料开始:Ian Hodder, The Leopard’ s Tale (London and New York: Thames & Hudson, 2011)。从更专业的层面来看,同一作者编著的Religion in the Emergence of Civilization: .atalh.yük as a Case Study (Cambridge: Cambridge University Press, 2010)一书引人入胜,可以让您对非物质考古一探究竟。

    第三章 特大干旱(约公元前5500年至公元651年)

    马尔杜克既是众神之王与人类之王,也是正义、健康、农耕和雷雨之主,掌管着美索不达米亚的底格里斯河与幼发拉底河两条大河之间的那个原始宇宙。至少,古老的传说中就是这样说的。他跨上自己的风暴战车,用洪水、闪电与狂风暴雨,在混沌当中确立了秩序。这位魅力非凡的神祇战胜了混沌之龙,改变了属于世界上第一批城市居民的苏美尔人那纷乱不安的精神世界与人性世界。马尔杜克掌管的这片土地,气候十分极端,夏季灼热异常,气温高达49℃,冬季则暴雨肆虐,气温寒冷刺骨。他统治的这个世界,喧嚣动荡、反复无常且总是变幻莫测。

    他手下的诸神,在这片肥沃与暴力之地上建立了一座座相互争权夺利的城市。美索不达米亚地区的一个创世传说中曾称:“率土皆海,继而埃利都生焉。”数百年后,这个传说被人们刻到了一块泥板上。埃利都城位于幼发拉底河以西,在今天的伊拉克境内,是所有城镇中最古老的一座,属于“地狱之王”兼“智慧之神”恩奇(Enki)的居所。埃利都最早的神庙,建造时间可以追溯到公元前5500年左右;5个世纪之后,人们在一座宏伟的阶梯式金字形神塔(庙丘)下面发现了它,里面装饰着色彩鲜艳的砖块。另一座城市乌鲁克同样位于如今的伊拉克境内,也靠近幼发拉底河;公元前5000年之后,两个大型的农耕村落合并成一个定居地,原本发展迅速的这座城市就发展得更快了。[1] 乌鲁克是神话故事中的英雄吉尔伽美什的故乡。近2,000年之后,即到了公元前3500年,这里完全不只是一座大型的城镇了。其周围的卫星村庄,向四面八方延伸近 10 千米之远,每个村庄都有自己的灌溉系统。4个世纪之后,乌鲁克的面积达到了近200公顷,成了一座拥有5万至8万人口的城市。乌鲁克变成了一个重要的宗教与贸易中心,与一个更广阔的世界相连,其两侧就是幼发拉底河与底格里斯河这两大贸易线路。那里有一座雄伟的神庙,据说是吉尔伽美什本人供奉给爱神伊南娜(Inanna)的;而在神庙的所在之地,据说爱神伊南娜曾亲手种下了一棵采自幼发拉底河畔的柳树。按照《吉尔伽美什史诗》中的记载,乌鲁克有四个区域:城市本身、花园、砖坑,以及最大的神庙区。

    女神伊什塔尔[2] 的金字形神塔与神庙区,位于一座拥挤不堪的大都市,市里街区密布,到处都是土砖建成的房屋。其中的大多数都属于关系紧密的同族社区,与城市腹地的村落或者专业工匠生活、工作的地区之间有着长久的联系。狭窄的街道将住宅分隔开来,但街道的宽度足以让驮畜通过。在风平浪静而寒冷的日子里,整座城市和繁忙的市场都笼罩在各家各户的火塘与作坊中冒出的一层烟雾当中。乌鲁克到处都是动物的叫声与人声:狗在吠,小贩在摊位上兜售商品,男人在吵吵闹闹,女人们走到一起购买粮食,远处的神庙围墙后则传来了吟唱圣歌的声音。各种气味混杂在一起,食物、牛粪、腐烂的垃圾与尿液的味道交织;但与美索不达米亚地区的其他所有城市一样,这里虽说位于一个有可能出现危险自然事件的环境里,却是一个生机勃勃的地方。

    城市很快就变成了一种常态。[3] 到了公元前4千纪末,美索不达米亚南部有超过 80%的人口都生活在占地面积超过10 公顷的定居点里;那是一片动荡不安的土地,由竞争激烈的城邦统治着。它们构成了我们如今所称的苏美尔文明,以幼发拉底河与底格里斯河之间、如今的伊拉克南部为中心。苏美尔很难称得上是一个统一的国家,实际上不过是由城市与城邦拼凑而成的,而这些城市和城邦都依赖于印度洋夏季风带来的降雨,以及春季与夏初的河水泛滥。

    随着城市发展起来,农业生产也急剧增长,足以养活成千上万的非农人口。这种农业生产,靠的是春夏两季沿着那两条大河顺流而下的洪水。大约公元前3000年之后,带来夏季降雨的印度洋季风强度开始有所减弱。雨水减少,并且来得较晚,去得却较早。土耳其的降雨量也下降了,而那里正是幼发拉底河与底格里斯河洪水的发源地。美索不达米亚的气候变得不那么稳定,还有造成严重破坏的漫长干旱周期,而对靠着经常突然改道的河流生存的小规模群落来说,影响尤其严重。

    就算是有充沛的降水,这种情况对灌溉农业来说也是一大挑战。[4] 随着城市的发展,人们对谷物和其他主食的需求也大大增加了。数个世纪以来,农民都是沿着天然堤坝的后坡、沿着被洪水淹没的洼地边缘,耕作一片片狭窄的田地。他们还利用天然堤坝上的缺口以及由此冲积而成、排水状况较好的淤积土层,因为它们可以进行小规模的灌溉。不过,这种田地只能养活相对较小的定居地,其中大多是一些主要水道兼商路沿线的村庄。这就是在地方层级管理农业极其有效的原因。

    城市里居住的人口很快达到了5,000人至5万人,在面对较为干旱的天气条件时,这里就不可避免地出现了精耕细作与人造的灌溉设施。那些将村落与村落、村落与城市连接起来且本已紧密的相互依存网络,则具有了更加重要的意义。气候变化与非农人口的日益增加,意味着以方方正正的平坦地块为基础的农耕方式,会被耕作成一块块更加标准化的长形地块的方式取代;虽说长形地块需要人们仔细照管,但农民会用牛拉犁耕地。公元前3千纪一位农民的年历上,给出了明确的灌溉指南:“唯麰满犁沟之窄底,当予顶部之种子以水。”[5] 当时并没有什么重要权威,不像后来19世纪西方国家的产业化农业发展起来的时候那样。相反,农学家都来自一些小部落,其中每个部落都有规模不同的灌溉设施,并且那些设施会在他们适应快速变动的环境过程中不断变化。要想在地方控制之下管理好这种经济而具多重意义的农业,人们必须对村落政治与竞争具有深入的了解才行;对于任何一个中央集权机构而言,这都是一项重大的挑战。

    起初,这里并没有专制的国王和强有力的统治者来制定政策、分配水源或者修复沟渠。权力掌握在部落首领的手中,他们的权威依赖的是村民的忠诚、亲族关系,以及将农村社会、常常还有城市社会中每一个成员联系起来的各种互惠关系。这些社会现实和政治现实,导致城市与其外围社区之间出现了长期的紧张局势,导致了地方性的动荡和骚乱,并且在苏美尔文明终结之后依然持久存在。

    随着城市人口急剧增长,需要更多粮食盈余带来的压力也越来越大。长条状田地以及它们之间密集的犁沟,需要一种超越家庭和亲族群体的组织水平。一种新的要素,即一种社会权威开始发挥作用了;这种社会权威也许是在神庙的基础之上形成的,负责监管着更大范围里的灌溉与农耕。我们很容易认为税收会随之出现,但实际发展起来的是一种徭役代税制,非但为灌溉设施提供了劳动力,而且为各种公共工程提供了劳动力。劳力获得的报酬,都是仔细配给的口粮,而这反过来又迫使农民去满足徭役的要求。从美索不达米亚北部到伊朗腹地,都出现过为劳工准备的、带有斜边的标准化口粮碗,就是这种劳役的证明。尽管像乌鲁克的伊什塔尔神庙这样的宗教场所变成了强大的经济、政治与社会力量,

    但苏美尔人却生活在一个由城市与村落组成的二元世界里。村落生产粮食,城市则是制造中心、贸易中心和宗教活动中心。公元前3千纪里有一则谚语,说得恰到好处:“外围村落,乃中心城市之衣食父母。”还有一块泥板上则称:“民之惧者,实乃税吏。”

    意大利学者马里奥·利韦拉尼曾经论述过改变了美索不达米亚诸农耕社区的重要一步。[6] 数个世纪以来,这些农耕社区一直生活在自给自足、维持温饱的水平上。不久之后,它们变成了马里奥所称的、刚刚形成的城市社会的“外圈”。农耕社区为粮食生产和城市开发项目提供劳动力,至于回报,就算有的话,除了服务于掌管附近那座城市的守护神所带来的满足感之外,也是寥寥无几。“外圈”生产的粮食和提供的劳力,养活了城内获得口粮的工匠、官吏和祭司。这种不平等的粮食生产和再分配方式,不可避免地造就了一座座以社会不平等与特权为基础的城市。内外之别很快导致了精英阶层与平民百姓之间的分裂,导致了一种被礼制和强调通过等级体系进行合作的“智慧文学”[7] 加以巩固的制度。有则谚语曾经鼓吹:“勿逐权贵,勿毁城墙。”[8]

    苏美尔人与阿卡德人(约公元前3000年至约公元前2200年)

    苏美尔人的意识形态作品当中提到了两条伟大的灌渠,即幼发拉底河与底格里斯河;它们都发源于美索不达米亚北部的山区,流向南部的城市。这些作品中,还描述过提着篮子、手持锄头的神灵与统治者,仿佛他们曾经躬耕过垄亩似的,从而为粮食供应与农业生产赋予了宗教意义。南部的一切都有赖于灌溉,这就意味着每个农民都清楚那片泛滥平原的细微特点,比如最肥沃的土地在哪里,洪水会经常冲垮哪些地方的天然堤坝。根据后来的铭文资料来推断,对于可能出现灾难性洪水和低水位年景即将到来的种种征兆,当时最出色的农民都已熟知。

    美索不达米亚地区的农业耕作从来就不是一件容易的事情,即便是在降水较为丰沛的那几个世纪里,也是如此。至少在最初的时候,那里不可能有永久性的灌渠,因为河流经常在毫无征兆的情况下改道。河流改道是一种始终存在的风险,但天然堤坝的意外决口也带来了机会,让人们可以把河水引到有可能肥沃的土地上去。

    随着公元前 3000 年之后气候变得更加干旱,城市人口不断增加,农业耕作也变得更加艰难了。过去那些不规范和不稳定的村落灌溉系统,被较为规范的灌溉方法所取代;然而,后者仍然是以社区为基础。考虑到城市依赖于村庄的粮食盈余,所以人们也别无他法。苏美尔社会由世俗君主所统治,他们被称为“恩西”(ensi)或者“卢伽尔”(lugal),掌管着农业、战争、贸易和外交。[9] 此时,随着政治权力逐渐落入少数人的手中,由政治联盟和数个世纪中将各个社群联系起来的个人或亲族义务所组成的那个不断变化、错综复杂的网络,就开始在更大范围内发挥作用。由于河流系统不断变化,而且定居地集中于主要灌溉区,外交与政治问题的重要性便凸显出来。在这里,一个据有战略位置的统治者可能切断邻邦的水源,并将邻国之人饿死。像拉格什、乌玛、乌尔和乌鲁克这样的城市之间,都曾为了水源与农田而爆发过激烈的争斗。公元前2500年的人所说的话,听起来与如今一样刺耳:“汝等当悉知,汝城将尽毁!速降!”[10] 一些零碎的史料记载了当时因水源与农田控制权而产生的纷争,其中经常提到“高举恩利勒[11]之战网”,因为当时的战争一向是以众神的名义发动的。两条大河形成宽广的环状,在大地上蜿蜒逶迤,而溃堤之后偶尔还会改道,故是导致城市之间爆发冲突与战争的一种严峻考验。到了公元前2700年,许多城市都建起了城墙,比如拉格什与乌尔,后者就是《圣经》当中提到的迦勒底的吾珥。经济繁荣与萧条、人口增长与减少周而复始,再加上土壤中的盐度上升(这在一定程度上是因为休耕期较短),这些方面都导致了作物减产;比如在乌尔,作物产量就比早期减少了一半。

    日益加剧的干旱与获得更多粮食盈余的需求,使得全年耕种成了一种必不可少的惯例。像乌尔与乌鲁克之类的城市都形成了有组织的贸易联系网络,沿着两条大河延伸到了遥远的土耳其,并且产生了重大的政治与文化影响,从而形成了研究美索不达米亚的专家吉列尔莫·阿尔加兹(Guillermo Algaze)所称的“乌鲁克世界体系”(Uruk World System)。苏美尔的领主们曾与诸多城市展开过竞争,远至西北部的叙利亚。他们曾袭击贸易线路,吞并邻邦,但这些征伐行动都为时不久,因为内讧与国内的小对手会乘虚而入。有些统治者,必然会萌生获取更多领土的野心。公元前2334年,巴比伦南部的阿卡德国王萨尔贡打败了由乌尔的卢伽尔扎吉西国王(King Lugalzagesi)领导的苏美尔城邦联盟。[12] 萨尔贡由此建立了这里第一个为世人所知的帝国,疆域覆盖了美索不达米亚全境及其以西、以东、以南的遥远土地。不过,他这个疆域远拓、控制松散的帝国与以前那些面积较小且变化无常的国家相比,在严重干旱面前要脆弱得多。最后,帝国的农业生产几乎全都靠地方官吏和社群领导人去管理了。

    萨尔贡及其后继者建立的帝国,依赖于忠诚的官吏、慷慨赏赐,以及成千上万平民百姓与战俘的苦工;因为与工业化之前的所有文明一样,阿卡德人依靠的也是原始的人类劳动。日益复杂的上层建筑,要求帝国精心分配口粮,因为帝国不但要供养没有技术的劳力,而且要供养高级官吏、在城市和宫殿里工作的熟练工匠,以及用于征伐的所有军队。阿卡德人几乎所有的军事行动,以及随后对新获领土的开发,全都依赖于南北各地业已臣服的城市与村落,由它们提供大量的粮食盈余。阿卡德统治者的权力也依赖于这个网络,同时生态系统中有两个要素也尤为重要,即北部的充沛降水与滋养着南部一片片沃土的河水泛滥。

    从仅存的楔形文字史料中我们得知,阿卡德的官吏曾经仔细监测过洪水的水位,因为他们极其关注作物的产量与配给。然而没有迹象表明,他们对容易为旷日持久的干旱所影响这一点怀有过什么长久的担忧之情。阿卡德帝国的活动在公元前 2230 年左右达到了巅峰,但持续的时间却不到 100年,因为当时的雨水毫无预兆地开始不足了。雨水减少到了正常情况下的30%至50%。一场特大干旱,接踵而至。这场干旱,持续了300年之久。[13]

    可怕的干旱(约公元前2200年至公元前1900 年)

    公元前2200年前后到公元前1900年的那场大旱,通常被称为“4.2 ka事件”,属于一桩全球性的气候事件。这种史无前例的干旱循环影响了从美洲到亚洲、从中东地区到热带非洲和欧洲的人类社会。[14]

    为什么会出现这场特大干旱呢?[15] 我们不能确定。太阳辐照度的变化与周期性的火山作用,是过去1,000年间气温变化的主要原因。尽管更早时期的情况可能也是这样,但北大西洋涛动此时已是一种主要的气候驱动因素(如今依然如此)。在整个欧洲和地中海地区,每年12月到次年3月间的气温与降水变化中,高达 60%的变化都是由这座位于亚速尔群岛上空的副热带高压和副极地低压之间的巨型气候“跷跷板”造成的。由于北大西洋涛动调节着从大西洋进入地中海的热量与水分,故大西洋与地中海的海面温度曾对中东地区的气候产生过影响,如今也仍是如此。所以,说北大西洋涛动这座“跷跷板”推动了那场大旱的发生,似乎是没有问题的。

    那场特大干旱的情况,从冰岛和格陵兰岛的湖泊沉积物以及欧洲的树木年轮中,就可以看到。源自土耳其与伊朗等遥远之地一些洞穴的高分辨率洞穴沉积物序列,也记录了这桩气候事件。同样,印度季风强度减弱之后那300年的情况,在东非与印度河流域的古气候序列中也有所体现。当时,尼罗河的洪水与印度河沿岸的降水情况突然出现了变化,而撒哈拉与西非地区也是如此。变化无常的东亚季风,也对中国东部一些历史悠久的农耕社群造成了压力。

    这场特大干旱的影响,逐渐波及了各个王国、蓬勃发展的文明和乡村地区。我们在第四章中将看到,这场特大干旱发生的时间,与埃及古王国的终结和法老们的领地暂时的分裂相吻合。干旱的影响一路延伸,远至中国西藏,并且进入了美洲;在美洲,旱情与其西南部和中美洲的尤卡坦半岛引入玉米种植的时间相一致。这场干旱,也成了南美洲安第斯地区一些重要群落兴衰过程中的一个因素。

    至于中东地区,人们认为当时死海的水面下降了 45 米左右。从采自阿曼湾的一段海洋岩芯中,我们也可以看到这场大旱的迹象,而从印度东北部的莫姆鲁洞穴(Mawmluh Cave)获得的洞穴沉积物序列,则将尼罗河水量的减少与东非地区的湖泊水位下降、印度季风的转向关联了起来。可以想见,这场干旱对不同地区的影响有着巨大的差异。在亚洲西部和美索不达米亚北部,重要的旱作农业区面积突然减少了 30%至 50%。地中海东部、伊拉克北部和叙利亚东北部的哈布尔平原的大部分地区,都遭遇了灾难性的旱情。

    运气不佳的美索不达米亚人应对干旱的方式,也大不相同。在北部哈布尔平原之类的旱作区,一些重要的中心被人们彻底遗弃,比如布拉克土丘(Tell Brak)与雷兰土丘(Tell Leilan)。 [16] 这种疏散,在两座城市里都对2万人产生了影响;随后,一些重大建筑项目也停工了。耶鲁大学的考古学家哈维·韦斯曾在雷兰土丘发掘出了一座大型的粮食储存与分配中心;公元前2230年左右,那里突然就被废弃了。中心外面用石头铺就的街道对面,矗立着一些已经部分建成了的房屋,说明人们当时放弃了城市建设。这里和其他地方,都曾明确做出废弃一些重要建筑物的行政决定。公元前2200年过后,哈布尔平原上已无人生活,直到250年后降水情况好转才有所改变。从土耳其境内的幼发拉底河上游流域到黎凡特南部,从事旱作的农民都弃主要城市和其他社区而去。

    许多从事旱作的农民适应干旱的办法,就是一路沿着(通常称为“追踪”)水源较为充足的栖息地南下,前往一些有泉水滋养农田的地方。不过,地中海地区一些重要的沿海城市,例如比布鲁斯和乌加里特,没有这样的水源供应,故人口曾大幅减少。与此同时,南方的耶利哥却受惠于一口天然泉眼,大批羊群都有水可饮。幼发拉底河的水量虽然大减,但仍让美索不达米亚中部与南部地区能够进行某种程度的灌溉。然而,日益干旱却令畜牧业繁荣发展起来了。游牧业变得广受欢迎,成了古时人们在哈布尔平原与幼发拉底河之间进行的季节性放牧迁徙中断所引发的一种生存机制。哈布尔平原上的旱情,迫使统称为亚摩利人的游牧民族迁往附近的大草原和幼发拉底河沿岸,并且南下进入了有人定居的地区。由于他们的畜群侵占了定居者的农田,所以那里爆发了持续的动荡。由此带来的威胁极其严重,故公元前2200年左右,乌尔的统治者还修建了一道长达180千米的城墙,称之为“亚摩利亚人的驱逐者”,以遏阻这些不速之客。不过,此人的努力却是徒劳无功。[17] 在城中的官吏一直拼命地率人清理灌渠、发放少得可怜的口粮那个时期,乌尔腹地的人口却增长了两倍。刻有楔形文字的泥板告诉我们,乌尔的农业经济最终瘫痪了。

    但在南方,人们却把气候变化的责任归咎于神灵,并且用诗歌或者“城市挽歌”表达了出来。《苏美尔与乌里姆之挽歌》(“The Lament for Sumer and Urim”),就是最早用神灵的行为来解释气候变化的书面史料之一。从中我们得知,恩利勒、恩奇和其他神灵曾经决定毁掉一座城市。“风雨集焉,若洪水之袭……竟至栏中之牛不得站立,圈中之羊不得繁衍;河中之水皆咸。”[18] 他们还曾下令让底格里斯河与幼发拉底河沿岸长满“邪恶之杂草”,并将城市变成“废墟”。庄稼无法种植,乡村将会干涸;“底格里斯河与幼发拉底河之水,恩利勒壅塞之”。

    新亚述人(公元前883年至公元前610年)

    随着庄稼死于“茎上”,尸骸浮于幼发拉底河中,整个美索不达米亚地区的城市尽数被毁。食物匮乏,河渠淤塞。随之而来的,就是长达数个世纪的动荡不安,政治争斗与相互对抗此起彼伏,直到公元前9世纪;其时,在美索不达米亚地区占统治地位的亚述帝国的统治者亚述纳西拔二世(前883—前859年在位),在一个比较富足的时代开始了无情的扩张征伐。在一个完全凭借武力建立起来的帝国里,任何一丝反抗的迹象都会招来严厉的惩罚。他任命忠心耿耿的总督控制被征服的领土,严令被征服领地进贡贵金属、原材料与粮食之类的商品。向西征伐到远至地中海边之后,他在降水增加的一个时期(这一点,我们是通过伊朗北部的一段洞穴沉积物得知的)班师回朝,然后利用战俘,在幼发拉底河上的卡尔胡(即尼姆鲁德)建造了一座宏伟华丽的宫殿。接着,在大约公元前879年,他还举办了一场为期十天的盛宴,庆祝宫殿完工。

    那确实是一件盛事。[19] 亚述纳西拔二世曾吹嘘说,有69,574 位宾客参加了那场宴会,其中卡尔胡本地就有16,000人。他们享用了成千上万头羊、牛,还有鹿、禽、鱼、各种各样的谷物,喝了1万罐啤酒和满满1万囊葡萄酒。国王打发他们回家时,这些人个个都酒足饭饱,在一派“和平喜乐”的气氛中沐浴更衣、涂抹油脂。亚述纳西拔二世的宾朋享用盛宴之时,还欣赏了墙壁上装饰着色彩鲜艳的楔形文字的浅浮雕。其中,有22行楔形文字列举了这位国王的资历,还有9 行则铭记了他取得的胜利。他是恩利勒与尼努尔塔[20] 两位神灵的“天选之子”,是“伟大之王、强大之王、宇宙之王……战无所惧……一切敌人,皆踏于脚下”。无休无止的宣传,大肆宣扬了这位国王对通过残暴征服建立起来的亚述帝国的统治权;有无数的男女老少,都曾丧命于他的手中。然而,仅仅270年之后,嗜酒如命、喜欢割耳的亚述纳西拔二世曾经统治的那个帝国,就轰然崩溃了。

    考古学家所称的新亚述帝国,是当时疆域最广、势力最强的帝国,公元前912年前后正全速发展着,后来亚述纳西拔二世还举办了那场盛大的庆祝活动。不过,帝国在公元前8 世纪中期变得更加强大了;当时,帝国由令人畏惧的提格拉·帕拉萨三世(Tiglath Pileser Ⅲ)统治着,他曾进行了美索不达米亚地区最大的一次扩张。他的名字无处不在,从古代也门人的铭文到《旧约》中那些充满敌意的往事——尤其是对他入侵以色列、攻取加利利和不公平的苛捐杂税的记述中,到处都能看到。既然有这样一些无所不能的国王,那么,公元前610年新亚述王国为什么突然就土崩瓦解了呢?

    是不是一系列血腥的内战与叛乱,动摇了统治者的权威?还是说,残酷的战争与军事失利,削弱了一个过度扩张的帝国的基础?无疑,这两个方面都在其中扮演了重要的角色。亚述的统治与早期那些君主制国家的统治一样,向来都很脆弱,永远都变化无常,完全不像埃及历代法老那样,有精心形成的先例可循。然而,我们如今已经明白,还有一个大家都很熟悉的因素,也参与了帝国的崩溃过程,那就是气候变化。来自伊朗北部的库纳巴洞穴(Kuna Ba Cave)里一份分辨率高、断代精确的气候变化洞穴沉积物记录,就说明了问题。[21] 这些洞穴沉积物表明,新亚述帝国是在气候异常湿润的两个世纪里崛起的。对于成千上万的农民来说,充沛的降水就是上天的恩赐;他们不但要为城市提供粮食,也要为四处征伐、靠国家精心分配的口粮维持生计的军队提供粮食。此后,公元前7世纪早期到中期出现了一系列特大干旱,且每次干旱都持续了数十年之久;这种情况,似乎导致亚述帝国的农业生产力开始下滑,继而又导致了帝国在政治和经济上的最终崩溃。最后,整个新亚述帝国终于在艰苦的征战中土崩瓦解,只留下了一个早已为干旱所削弱的民族。

    景观变迁

    随着城市与长途贸易网络的发展,人们对各种原材料,尤其是木材与金属矿石的需求也日益增加了。除了用于各种建筑的木梁与其他木材,人们对陶土器皿以及金属工具和装饰品永无餍足的需求,也导致了社会对烧窑所用的薪炭存在持久的需求。木柴也始终供不应求,需要用驮畜运送,大捆大捆地输入。在家庭中和生产时都毫无节制地使用木柴,势必产生过浓密的烟雾,在风平浪静的日子里笼罩于不断发展的城市上空。严重的空气污染,必定困扰过那些人口稠密的城市,但砍伐森林造成的破坏,更是带来了严重和长期的后果。

    虽然中东地区的植被历史如今仍然鲜为人知,但以近乎工业化的规模消费木材带来的影响,让大部分地区变了模样。例如,花粉图谱表明,安纳托利亚的中部曾经是开阔的橡树林地,但到了公元前5000年左右至公元前3000年,那里的林木覆盖率却迅速下降,情况就像现代的伊朗与叙利亚一样。卡曼-卡莱土丘(Kaman-Kalehöyük)位于安卡拉东南100千米处,在公元前2千纪和公元前1千纪是一个重要的定居地,直到公元前300年左右;那里也是一个重要的农业中心,还有一定规模的纺织业和陶器制造业。人类在此居住的时间,与公元前1250年前后至公元前1050年间一场严重的旱灾相吻合;而当时实力强大的赫梯帝国,就是在这一时期四分五裂的。对木炭进行的一项研究表明,生活在这里的赫梯帝国居民曾经大肆集中采伐周围的林地,以至于伐木工不再像过去那样采伐成熟的橡树林,而是采伐其他物种较少的森林。[22]

    宏大工程的瓦解(公元224年至651年)

    特大干旱过后,原先的那种季节性降水恢复了,故美索不达米亚文明再次蓬勃地发展起来了。人们重新开始在哈布尔平原和亚述繁衍生息。雷兰土丘又一次繁荣起来。早期被削弱的意识形态与制度存续下来,成了那些在早期城邦的基础上崛起的伟大王国的发展蓝图。新兴的帝国,都把灌溉农业变成了一桩国家大事。不过,农业之本仍然掌握在地方酋长和乡村农民的手中;他们管理着水源与庄稼,就像数个世纪以来一样,只是其间的各种动荡与长期争斗,已经削弱了苏美尔、阿卡德与亚述的统治。那些在美索不达米亚地区耕作的人极具自力更生的精神,对此时已经被人类活动彻底改变的自然环境不抱任何幻想。他们完全清楚,除了干旱,当地还面临着许多困难,比如灌渠长期淤塞和土壤中的盐碱度在不断增加。不过,此时的农业生产仍然很稳定,足以养活古代世界中最大的帝国,即阿契美尼德王朝的波斯帝国(前550—前330);阿契美尼德波斯人生活在相对和平的环境下,并以建筑杰作而闻名,比如波斯波利斯城。

    时光荏苒,很快就到了公元224年;此时,萨珊人建立了波斯信奉伊斯兰教之前的最后一个帝国,然后繁荣发展了4 个世纪之久。[23] 他们控制了高加索山脉南部与阿拉伯半岛部分地区之间的广袤土地。帝国中央政府采取的是以前亚述人运用时发挥过有利作用的严苛政策,但实施的范围要广得多。当局对灌溉系统进行了大力投入;与之相比,早期人们在水源管理方面的努力可谓小巫见大巫了。[24] 就像亚述人一样,萨珊人也把被他们驱逐的人口重新安置在一些似乎有发展潜力的地区。他们兴建新的城镇,开始大规模地人工开掘灌溉设施来养活这些人。其中有一项灌溉工程建成于6世纪,它利用了两条河流,将230多千米以外的水引入了底格里斯河。这一工程灌溉了巴格达东北部约8,000平方千米的农田,但同时也将水源引到了排水不畅的土地上。萨珊帝国没落很久之后,密集的土地利用导致这里出现了严重的盐碱化,大面积的土地都无法再进行耕作。到了公元1500年,这项灌溉工程就被人们废弃了。

    在整个6世纪,萨珊人于底格里斯河与幼发拉底河之间开拓了面积约 12,000 平方千米且至少进行过零星灌溉的土地。这就说明,他们的耕作面积起码达到了早期的两倍。考虑到底格里斯河的水流湍急多变,故利用此河进行灌溉,是一种风险极大的勇敢之举。灌渠与农田纵横交织,遍布广大地区,远远超过了乡农或者小小城邦所能掌控的程度。但新建灌溉设施的巨大规模也意味着,一旦上游发生决堤,生活地点离水源有一定距离的农民就会陷入极大的麻烦之中。这是一种由中央政府进行规划、规模史无前例的标准化灌溉,其动力是潜在的税收而非收成,目的则是为中央政府在粮食与土地税两个方面带来最大的财政收入,而不是满足地方的需求。大多数灌渠都是成千上万的战俘修建起来的,这种修建工程也带有将被征服的百姓重新安置的目的。萨珊人抛弃了那些需要考虑当地条件、规模也较小的灌溉设施。他们创造了种种以人工为主的灌溉制度,起初也让各地生产出了充足的粮食。但是,随着设计不佳的灌渠逐渐淤塞,他们就陷入麻烦了。每一项复杂的灌溉方案、每一种来自外部的新需求,都降低了乡村百姓——那些在地里劳作的人——的自给能力。萨珊王朝那些干劲十足的工程人员都只盯着短期利益,却忽视了早期农民极其关注的、最重要的排水不畅问题。起初,丰厚的回报确实带来了繁荣与更多的财政收入。但是,日益增加的维护成本很快就让这些工程人员不堪重负起来。他们新建的堤坝破坏了原有的排水模式,抬高了地下水位,造成了农业用地的慢性盐碱化。不久之后,他们就必须以生态环境日益脆弱为代价,才能让粮食在短期内增产了。生产力急剧下降,一些边缘地区尤其如此。面对干旱、大洪水和其他一些气候变化,种种灌溉方案都丧失了灵活性。随着经济和政治衰弱导致农业人口日益贫困和集中管理的灌溉系统土崩瓦解,以农业与水源管理为中心的官僚制度也逐渐式微。公元632年至651年间,面对不断扩张的伊斯兰教,萨珊帝国解体了。到11世纪时,两河之间的土地已是一片废弃的、到处都是盐碱地的荒野了。

    亚述人、阿卡德人和苏美尔人经历了一个时代的开端;当时,农村人口和城市人口都开始更易受到突如其来、常为短期性的气候变化的影响。像萨珊帝国那样的中央集权制政府与专制统治,并没有解决人口密度不断增长和水源供应(无论是洪水还是降雨)不稳定的问题。早在苏美尔时代,人们就很清楚:最好的解决办法是在地方层面,因为地方的社群领导人可以单独采取规模较小的措施来战胜饥荒。他们熟悉这片土地,熟悉变幻莫测的洪水,也熟悉手下百姓的性情与专长。等到城市与乡村之间的复杂关系从相互依存演变成了城市占据统治地位,数个世纪的动荡经历再加上农民的自力更生精神,就使得任何一种应对严重干旱或者其他气候变化的长期性措施几乎都不可能实施了。无疑,有些早已被人们遗忘的美索不达米亚领导人,曾在他们辖地(无论是城市还是省份)的狭窄范围内成功应对过严重干旱带来的挑战,只是如今并无记载他们那些举措的史料留存下来。

    美索不达米亚位于两条大河之间,但一马平川的地形地貌则意味着,这里的边境地区容易被渗透,而人们在土地上建造的基础设施常常也很不牢靠。人口的持续流动、松散的控制、朝秦暮楚式的效忠,再加上官吏任免与皇室野心的不断变化,都与尼罗河沿岸历代法老治下的情况形成了鲜明的对比。所以,适应气候变化方面一个历久弥坚的教训就是:征服与开发并非解决之道;就算亚述纳西拔国王与提格拉·帕拉萨三世曾经以为它们可以解决气候变化的问题,也是如此。美索不达米亚地区的这一历史经验,在当今世界产生了强烈的共鸣。在解决办法属于地方性的,而非由遥远的官僚机构或大型的工业企业所强加时,适应不断变化的环境(其中也包括气候变化)的措施往往最为有效。

    [1] Nicola Crusemann et al., eds., Uruk: First City of the Ancient World (Los Angeles: J. Paul Getty Museum, 2019).

    [2] 伊什塔尔(Ishtar),前文中爱神伊南娜在古巴比伦神话中的名称。——译者注

    [3] Monica Smith, Cities: The First 6,000 Years (New York, Penguin, 2019).

    [4] T. J. Wilkinson, Archaeological Landscapes of the Near East (Tucson: University of Arizona Press, 2003).

    [5] Samuel Kramer, The Sumerians (Chicago: University of Chicago Press, 1963), 240.

    [6] Mario Liverani, The Ancient Near East: History, Society and Economy (Abingdon, UK: Routledge, 2014).

    [7] 智慧文学(wisdom literature),指公元前6世纪以色列人被掳流亡以后到公元纪元(即基督纪元)前后希伯来文学中出现的一种独特文体,主要以自下而上地探讨人生与伦理为主题,是《圣经》中的重要组成部分,亦称“智慧书”。——译者注

    [8] Kramer, The Sumerians, 190.

    [9] William H. Stiebing and Susan L. Helft, Ancient Near

    Eastern History and Culture, 3rd ed. (Abingdon, UK: Routledge,

    2017). See also Benjamin Foster, The Age of Agade: Inventing

    Empire in Ancient Mesopotamia (Abingdon, UK: Routledge, 2016).

    [10] J. S. Cooper, “Reconstructing History from Ancient

    Inscriptions: The Lagash-Umma Border Conflict,” Sources and

    Monographs on the Ancient Near East 2, no. 1 (1983): 47–54.

    [11] 恩利勒(Enlil),苏美尔神话中的大地和空气之神,尼普尔城邦的保护神,还可能拥有战神和风神的神格。——译者注

    [12] Marc Van De Mieroop, A History of the Ancient Near East ca. 3000–323 BC, 2nd ed. (New York: Blackwell, 2006). See also Foster, The Age of Agade.

    [13] 这一段在很大程度上参考了哈维·韦斯对气候变化与阿卡德王国崩溃进行的出色论述,事实上整章都是如此。参见Harvey Weiss,“4.2 ka BP Megadrought and the Akkadian Collapse,” in Megadrought and Collapse: From Early Agriculture to Angkor, ed. Harvey Weiss (New York: Oxford University Press, 2017),93–159。关于干旱及其成因的文献资料也越来越多。参见Heidi M. Cullen et al., “Impact of the North Atlantic Oscillation on Middle Eastern Climate and Streamflow,” Climatic Change 55(2002): 315–338。亦请参见Martin H. Visbeck et al., “The North Atlantic Oscillation: Past, Present, and Future,”Proceedings of the National Academy of Sciences 98, no. 23(2001): 12876–12877。

    [14] Weiss, “4.2 ka BP Megadrought and the Akkadian Collapse,” 135–159,这篇文章列举了古气候学替代指标的遗址并附上了参考资料,因而价值非凡。

    [15] M. Charles, H. Pessin, and M. M. Hald, “Tolerating Change at Late Chalcolithic Tell Brak: Responses of an Early Urban Society to an Uncertain Climate,” Environmental

    Archaeology 15, no. 2 (2010): 183–198.

    [16] Charles, Pessin, and Hald, “Tolerating Change at Late Chalcolithic Tell Brak,” 183–198.

    [17] W. Sallaberger, “Die Amurriter-Mauer in Mesopotamien: der .lteste historische Grenzwall gegen Nomaden vor 4000 Jahren,” in Mauern als Grenzen, ed. A. Nunn (Mainz: Phillipp von Zabern, 2009), 27–38.

    [18] J. A. Black et al., The Literature of Ancient Sumer (New York: Oxford University Press, 2004), 128–131.

    [19] 卡尔胡的一处王室碑文上描绘了这场盛宴的情形。Van De Mieroop, A History of the Ancient Near East, 234.

    [20] 尼努尔塔(Ninurta),美索不达米亚神话中的战争与农业灌溉之神。——译者注

    [21] Kuna Ba: Ashish Sinha et al., “Role of Climate in the Rise and Fall of the Neo-Assyrian Empire,” Science Advances 5, no. 11 (2019). doi: 10.1126/sciadv.aax6656.

    [22] Nathan J. Wright et al., “Woodland Modification in Bronze and Iron Age Central Anatolia: An Anthracological Signature for the Hittite State?” Journal of Archaeological Science 55 (2015): 219–230.

    [23] Touraj Daryaee, Sasanian Persia: The Rise and Fall of an Empire. Rpt. ed. (New York: I. B. Tauris, 2013). See also Eberhard Sauer, ed., Sasanian Persia: Between Rome and the Steppes of Eurasia (Edinburgh: Edinburgh University Press, 2019).

    [24] Fagan, Cro-Magnon, 146–152.

    第四章 尼罗河与印度河(公元前3100年至约公元前1700年)

    希腊历史学家希罗多德曾经在公元前5世纪撰文,描述了古埃及的农民:“彼等集稼穑,易于世间之他族……大河汤汤,自涨而灌溉其田,俟水再退,彼等则播于其地,遣豕踏之,令种入壤。”[1] 每年夏季,埃塞俄比亚高原上的季风暴雨都会让远在上游的青尼罗河与阿特巴拉河水位大涨。泥沙俱下的洪水向北奔腾,并在7月至9月的大约6个星期里达到最大。每一年里,“阿赫特”(即洪水)都会漫过那个沿着斜坡逐渐远离主河道的泛滥平原。一到此时,人们都会满怀期待。一段金字塔铭文中称:“既睹尼罗河之泛滥,彼等皆喜之而栗。田地开颜,河岸溢水。神赐既降,民色尽欢,神心亦悦。”[2]

    尽管希罗多德与古埃及的书吏确实描绘了一幅田园牧歌般的图景,可这却是一幅具有误导作用、实际上只有神话中才存在的景象。真实情况是,古埃及的村民曾无休无止地劳作,利用堤坝与沟渠将洪水引到他们耕作的田地里去;而这些堤坝与沟渠,在凶猛的洪水面前还有可能瞬间化为乌有。古埃及农民,都是在尼罗河的摆布之下生活,并且受制于遥远的海洋与大气之间驱动着印度洋季风的相互作用。

    尽管如此,他们却好像生活在一个永恒的世界中;那里的太阳,日复一日地划过万里无云的苍穹。水、大地与太阳,就是古埃及文明中亘古不变的三大真理。[3] 阿图姆神(Atum)号称“完整者”,是这里的造物主。他诞生于努恩神(Nun)即原始水与混沌之神,然后将一处土丘抬升到了水面之上。不过,太阳神拉(Ra)才是力量的最高体现;他在日出时必定现身,然后穿越诸天,有如生命不息,滚滚向前。古埃及人的信仰与思想意识,都依赖于虔诚并统治着一个和谐国度的法老们稳定而贤明地施政。埃及诸王都以荷鲁斯(Horus)的名义实行统治,荷鲁斯象征着神圣的力量与天空,象征着良好的秩序。他们的敌人,就是塞特神(Seth)这个长鼻子怪物,是混乱与无序之本。他给和谐的尼罗河世界带来了暴风雨、干旱和心怀敌意的异乡人。荷鲁斯与塞特之间的冲突,象征着秩序与和谐、无序与混乱这两组相对的力量。果断、有力而带有个人魅力的统治者,则象征着上埃及与下埃及“两界”的统一。古埃及历经数个世纪,才实现国家统一;只不过,人们总是(错误地)将这种统一描述成一种和谐之举,描述成秩序对混乱的一种胜利。

    古埃及是一个连贯的文明社会,紧靠着土地肥沃的洪泛平原,与此地之人一直认为动荡不安的外部世界不相往来。历代法老都是按照惯例实施统治,被人们当成“玛特”(ma’at)的化身;“玛特”的意思近似于现代的“秩序”或者“公正”,一位兼具智慧与和谐、掌管着四季与律法的同名女神便体现了这两种品质。“玛特”的意思,与代表无序力量的“伊斯菲特”(isfet)正好相对。古埃及的半神统治者都是用自己的旨令进行统治,并未遵循什么成文律法或者圣典。一个庞大的世袭官僚机构为他们有效地统治着整个国家,而这种官僚机构通常由大小官吏组成,属于一个个名副其实的王朝。大多数时候,这个国家都算得上国泰民安。这是一种非凡的文明,在“玛特”及其独特的尼罗河环境的支撑下,以各种形式存续了3,000多年。

    开端(约公元前6000年至公元前3100年)

    公元前 6000 年前后,美索不达米亚南部地区开始了农业耕作,而“多格兰”也沉入了北海水下,此时尼罗河流经的,是一个植被苍翠繁茂、被沙漠包围着的河谷。尼罗河以西的降水很没有规律,却还是足以维持撒哈拉地区一个个绵延起伏、由干旱草地组成的平原。当时,只有数千人生活在这个河谷里,有猎人、觅食者和渔民,他们可能还种植过一些谷类作物。他们偶尔与来自沙漠之上的游牧民进行交易,而后者之所以前来,就是为了交易物品,或者让他们放牧的畜群吃草和喝水。牧民的头领属于一些经验丰富、祭祀本领超群的人,他们显然都是专业的祈雨祭师。很有可能,就是这种本领让他们在干旱地区获得了异乎寻常的威望。

    公元前5000年之后,由于雨水变得更加没有规律,那些游牧民族便逐渐东迁,来到了尼罗河流域的洪泛平原上。随着撒哈拉地区变得越来越干旱,他们便在尼罗河畔永久定居下来,同时带来了“头领都是强壮的男性与牧人”这样的新观念,或许还带来了一些祭祀仪式,导致后来人们开始崇拜生育女神哈托尔(Hathor)。古埃及文明深深植根于早期的村落文化,后者则依赖于谨慎细致的水源管理与繁重的灌溉农业劳作。在一个几乎不存在降雨的世界里,可能是从村落头领那里继承下来的一种权威式领导传统,已经深深地扎根于古埃及人的心灵之中。这里的一切,全都依赖于赋予生命的洪水和一位牧人坚定自信的领导。

    尼罗河还流经了一些环境严酷的沙漠。从空中鸟瞰,此河就像一根绿色的斜线,宛如箭矢一般,直指北方的地中海。古埃及人把这里的洪泛平原称为“库姆特”(kmt),意思就是“黑土地”,因其肥沃的黑土与沙漠上的“红土地”形成了鲜明的对比。每一年里,假如众神庇佑,尼罗河就会裹挟着淤泥,从两条支流即白尼罗河与青尼罗河奔腾而去,直到遥远的下游;这两条支流源自东部非洲和埃塞俄比亚高原,然后在如今苏丹境内的喀土穆汇合,从而形成了尼罗河。在春、夏两季,待尼罗河的洪水漫上泛滥平原之时,“阿赫特”即洪水季就开始了。退去的洪水为农民滋养了肥沃的土地,他们精心开掘灌渠并进行维护,在洪泛平原上种植庄稼。这里的情况与美索不达米亚不同,“阿赫特”既给整个洪泛平原的土地带来了肥力,也没有导致土地盐碱化之虞。虽说农业耕作是一项极其艰苦的事情,但以美索不达米亚地区的标准来看,这里的农耕却相对容易,并不需要休耕或者给田地施肥。这里的农民,只需通过他们为阻挡洪水而修建的沟渠与水库,对上涨的河水加以导引就行了。

    尼罗河流域可能既是进行村落农耕的理想之地,也是一个生产大量粮食盈余且具有预见性的完美环境。希腊历史学家希罗多德曾将“阿赫特”描绘成一种一年一度、似乎很有规律的事件。这种关于洪水很可靠的神话,曾经广为流传,直至今天;可实际上呢,尼罗河却是一条反复无常的河流。雨水若是异常丰沛,就意味着这里有可能出现灾难性的洪水,将人们眼前的一切全都淹没,将庄稼与整座整座村庄冲走。“阿赫特”的强度若是很弱,就只能灌溉冲积平原上的小部分地区。有的时候,洪水几乎是立即退去,导致庄稼歉收,饥荒也就随之而来。在大多数年份,这里的水源都很充足,可以种植充足的庄稼,而农民也可以毫无困难地度过短期的干旱。不过,假如出现持续几年、几十年甚至是几个世纪的干旱周期,就是另一回事了。

    无所不能的法老(公元前3100年至公元前2180年)

    生活无常,变幻莫测,故秩序与团结就极为必要。数百年来,古埃及境内各诸侯王国都争来斗去;(可能)直到公元前3100年,一位名叫荷尔-阿哈(Hor-Aha)的统治者将上埃及与下埃及“两界”统一起来,埃及才变成一个国家。荷尔-阿哈及其继任者对埃及的统治持续到了公元前2118年;当时,平民百姓的福祉都系于他们的最高统治者即一个世俗君主的身上,而世俗君主的统治则代表着秩序战胜了混乱。在将近 8 个世纪的时间里,这个世俗国家都发展得相当平稳。

    古埃及这个文明社会的基础,并不是稠密的城市人口,而是通过水上交通相连的城镇与村落。此种基础结构,将这个狭长的国家联系起来,而不存在牲畜驮运谷物时只能走50千米的运输限制。但法老们很幸运,因为不断逼近尼罗河流域的沙漠是天然的防御工事;这些沙漠和浅滩密布的三角洲,让外敌几乎不可能入侵。这一点,与美索不达米亚与两河流域的边境可以渗透且不断变化的情况形成了鲜明的对比;后者的历史,就是不同国王及其文化群落在争斗中此兴彼衰、有时还会再次崛起的过程。与此同时,埃及的天然孤立状态,让法老们能够紧紧掌控手下的臣民。这里的人口虽有组织,却分散各地;人口普查以及对粮食、牲畜和其他商品所征的赋税,确保了这里拥有充足的粮食盈余;此外,国家还紧紧把持着优质的农业用地。

    只要该国臣民认为政府对他们有益且实力强大,法老就可以轻而易举地对其有限的疆土实施统治。王权既是永恒的,也是个人的,其象征就是统治者有形的神威。埃及的王权属于一种制度,以法老的成败为标志。不过,尽管人们认为法老神圣,王室权威最终依赖的却是充足的粮食盈余,而后者反过来又要靠百姓的辛勤劳作才能获得。虽然形势复杂,政治挑战日复一日,各州州长偶尔也有犯上作乱之举,但最重要的一点还在于,这个国家很容易为气候变化所危及——印度洋上的季风强度减弱,会导致严重的干旱。

    在公元前2575年到公元前2180年前后的古王国时期统治着埃及的那些法老,都是实力强大、自信十足的君主;他们执掌政权的4个世纪里,尼罗河洪水丰沛,作物收成充裕。他们可以轻而易举地凭借自己的神圣地位,声称他们是用全部神威掌控着洪水泛滥。法老都在孟斐斯的朝廷实施统治,那里位于下埃及,在“吉萨金字塔群”以南20千米。法老掌管着由上、下埃及“统一”而成的国家,全国分成9个“诺姆”(州),各州则由实力强大而又桀骜不驯的州长统治着。只要泛滥季带来了充足的洪水,国王的权力就是相对稳固的。这些领导人扩充了灌溉设施和沟渠,加强了下埃及地区那个肥沃三角洲上的农业生产。不过,一次强度不足的泛滥和作物歉收,会削弱国家权力中最关键的一个因素,即充足的粮食盈余。当然,其间偶尔也出现过洪水不足的年份,但过后总是再次出现了水量充沛的泛滥。这个国家不仅实力强大,治理得也很成功,因此到了公元前2250年,埃及的人口已经增长到了100多万,且其中很多人都在一定程度上靠国家提供的粮食维生。

    公元前 2650 年之后,实力日增的祭司阶层开始把太阳崇拜与对法老的崇拜联系起来。统治者死后,将在星辰之中占据一席之地,被人们当成神灵加以崇拜。刻在一座金字塔墓室中的铭文曾称:“王之其灵……有梯置焉,王可登之。”[4] 古王国时期那些法老修建的金字塔,都是象征阳光穿透云层的石制建筑。这些气势雄伟的石梯东侧,就是正对着日出方向的国王陵寝。建造这些陵寝,是官僚组织取得的巨大成功:他们要安排口粮和原材料的运输,要召集有技术的工匠,并且在农耕生产停止、可以找到较多劳动力的每个洪水季里召集成千上万的农村劳力。如今世人都很清楚,开罗以西那个庞大的“吉萨金字塔群”修建于公元前2500年前后,但法老们究竟为何要修建如此复杂、如此耗费劳力的陵墓,却仍然是一个谜。[5] 或许,他们的目的在于通过劳动力将百姓与他们的守护者联系起来。这也有可能是一种行政手段,是根据劳动重新分配粮食,来组织百姓及其守护者之间的关系并将其制度化;这种手段,有可能用于粮食匮乏的时期。或许,他们之所以建造金字塔,主要是为了强调法老与众神之间那种非同寻常的联系,是一种把国王与太阳神联系起来的方法;至于太阳神,正是人类生存与作物丰收的终极源泉。究竟为何,我们永远都不得而知了。过了一段时间,金字塔便实现了建造它们的目的。国家掌控的劳动力,便转向了其他一些不那么显眼的项目。

    埃及的精英阶层(其中也包括识字的书吏)与辛勤劳作的平民阶层之间,隔着一条巨大的鸿沟;当时,平民阶层必须提供劳动力,去清理灌渠、搬运石头和种植庄稼。这是一个领导有方的专制时代,依赖的是法老、法老手下的州长与高级官吏之间种种密切合作的关系。他们凭借集体才智与军事力量,创造出了一种独特的文明;这种文明在水源充足的几百年里运作良好,可在“阿赫特”水量不那么丰沛的时候却极易受到影响,事实上还非常脆弱。

    大旱来袭(约公元前2200年至公元前2184 年)

    古王国时期最后一位伟大的法老佩皮二世(前2278—前2184 年在位)统治埃及之后,这种脆弱性带来的恶果马上就显现出来了;据说此人曾统治埃及长达94年之久,是埃及历史上在位时间最长的法老。[6] 随着他年龄渐长、效率日降,这位法老手下的州长们便开始蠢蠢欲动。佩皮二世的应对之法,就是把大量财富赏赐给各个州长,从而极大地削弱了他的中央集权。公元前2184年佩皮二世归天之后,随着高级官吏们开始争权夺利,埃及便陷入了混乱之中。此时,彻底摧毁了美索不达米亚的“4.2ka 事件”也正好降临到了尼罗河流域。[7]

    有无数证据说明了此时干旱正在日益加剧的情况。从青

    尼罗河的源头即埃塞俄比亚的塔纳湖里钻取的淡水岩芯,记录了公元前 2200 年的一场干旱。红海中的咸水沉积物也表明,同期出现过一场严重的干旱。从下埃及地区萨卡拉钻取的一段岩芯表明,此地原来的耕地之上覆盖着深达1米的丘沙。水位很低的洪水,加上偶尔出现的强烈暴雨,将法尤姆洼地上的加龙湖(Lake Qarun)与尼罗河阻隔开来了。甚至从一具雪松棺材和一艘陪葬小船上取下的木头,其年轮也显示出了公元前2200 年到公元前 1900 年间一场干旱的迹象。

    洪水水量突然灾难性地长期减少,这几乎马上导致了饥荒,并让一些本已完善的政治制度失去了作用。在长达 300年的时间里,饥荒不断,因为此时需要养活的人口,比早期多得多了。绝望的农民开始在河中的沙洲上种植作物,结果却无济于事。一位名叫伊普味的智者,有可能目睹过那场旱灾。据此人描述,上埃及成了一片“荒芜之地”。“呜呼,众人皆云:‘吾愿既死。’”在一段放在今天也很适用的评论中,他曾谴责当时的法老:“权、智、真集于汝身,然汝之所为,实乃陷国于骚乱喧嚣之中。”[8]

    人们自然而然地向孟斐斯的法老求助,因为法老长久以来都宣称,他掌控着这条反复无常的河流。佩皮二世的继任者们既无能,也无权。储存的粮食很快就吃完了。于是,孟斐斯的统治者开始风水轮流转、你方唱罢我登场,而政治与经济权力则转移到了各州;此时的各州已经成了一个个小王国,由野心勃勃的州长掌管,其中有些州长的统治无异于国王。一些有能力的州长采取了严厉的措施,来眷顾手下的子民。通过实践,他们很快就掌握了应对突发性气候变化的一条基本原则,那就是在地方层面上解决这个问题。

    有些州长喜欢在其陵墓墙壁上吹嘘他们取得的丰功伟绩。他们的吹嘘究竟在多大程度上反映的是机会主义而非实际行动,是一个仍有争议的问题。尼肯与伊德富的安赫提菲曾在公元前2180年左右统治着埃及最南边的两个州;当时,尼罗河的洪水水位低得异常。此人的陵墓铭文中,就说到了他采取的果断行动:“凡上埃及诸地,无不饿殍遍野,至人人皆食其子。然吾尽力,致本州无一人饿毙。”[9] 安赫提菲还把宝贵的粮食出借给其他州。这些自吹自擂的陵墓铭文中,还描绘了人们漫无目的地寻觅食物的情形。

    此种行为,与 1877 年维多利亚时代那场可怕的大饥荒期间印度民众的做法惊人地相似(参见第九章)。随着周围沙漠上的丘沙被风刮到洪泛平原之上,那些一度繁荣兴旺的州都成了干旱的荒地。仓廪之中,空空如也;盗墓贼则把死者身上的东西尽数掳掠。

    与安赫提菲一样,艾斯尤特的州长罕提(Khety)也采取了极端的措施,来与饥荒做斗争。他命人修建了蓄水坝,排干了沼泽,开掘了一条宽达10米的沟渠,将灌溉用水引到干旱的农田里。凡是有能力的官吏都很清楚,只有采取极端的措施,才能养活每一个人。他们关闭了所辖州的边界,以防饥民不受控制地逃难。他们定量配给粮食,并且小心谨慎地进行分配。实力强大的州长才是埃及真正的统治者,因为只有他们,才能采取短期或者较长期的措施来养活饥民,刺激当地的农业生产。埃及整个国家那种脆弱的统一性,就此土崩瓦解。

    在3个世纪的时间里,埃及都是一个四分五裂的文明社会。历代法老已经促生出了一种信念,让民众以为他们掌控着从遥远上游而来的神秘泛滥。实际上,埃及这个国家所有不可一世的显赫辉煌,全都依赖于变幻莫测的印度洋季风,以及遥远的西南太平洋上的大气变化。这场危机,最终以尼罗河泛滥水位提高与法老门图霍特普(Mentuhotep)发动艰苦卓绝的军事征伐而宣告结束;公元前2060年,这位法老在上埃及登上王位,然后重新统一了全国,并且在位达半个世纪。

    门图霍特普及其继任者在位期间,重建了农业经济;当时,人们已经不再认为法老绝对正确了。他们变成了“百姓的牧人”,对古埃及人生活的方方面面强制实行一种严厉的官僚制度。他们得天独厚,在位期间洪水充沛,只有公元前8 世纪和公元前7世纪例外,其间的低水位泛滥再次导致了政治动荡。但到了此时,为了经济生存,各州州长开始前所未有地相互依赖起来。后来,埃及那些最成功的法老之所以能够实现治下的兴旺昌盛,是因为他们派人把尼罗河流域变成了一片组织有序的绿洲。拉美西斯二世(前1304—前1237年在位)兴建王都拉美西斯城时,他建造的沟渠被称为是全埃及最厉害的:高效、宏伟,精心装饰的设施灌溉着整个地区。

    在一个中央集权的农业国家里,法老简直就是神灵一般的管理者;国家在扩大灌溉计划、技术进步以及大规模粮食存储等方面进行了大力投入,确保了民众能够在多年的饥荒与危机中生存下去。宗教则是这种制度具有掌控力的最终源头。每个为自家田地和庄稼挖修沟渠的农民都很留意,他们必须公平修建,不然就会受到惩罚、坠入地狱。古埃及有所谓的“反面忏悔”,也就是人死之后灵魂接受审判时所做的告白;其中的第33条和第34条,要求灵魂申明自己从未阻断过水源,也从未非法接引过别人沟渠中的水。最终,这个国度就做好了应对危机的准备。埃及有备无患的情况,甚至在《圣经》中关于约瑟与家人为逃离迦南的饥荒而前往埃及的故事里都有所记载,因为约瑟等人知道,埃及会有充足的粮食盈余。

    众神尽管拥有无所不知的力量,却无法为人们做出长期性的季风预报。在数个世纪的时间里,祭司们确实开发出了简单的“尼罗尺”水位计——一种巧妙的科学工具,能够在河水上涨时测出洪水的水位。如今,除了一些可以追溯到公元7世纪穆斯林征服埃及之后出现的水位计,这种工具已经罕有存世了。由法老所制的大多数水位计,都由神庙控制着。上埃及地区的阿斯旺是该国最南端的城市,而其对面的象岛上,就留存着一种重要的水位计样本。人们在这里可以测量当季最早的洪水水位。那座水位计建于古罗马时代之前,后被古罗马人所修复,大致就是河岸之上的一口井,用严丝合缝的石块建成,石块上面标着以前记录的、不同的洪水水位。一代代人长期观察积累和传授下来的经验,让祭司们能够以惊人的准确程度对洪水的水位做出预测。这是一种极其宝贵的信息;不但为与灌溉工程打交道的农民所需要,也为孜孜不倦地监督庄稼收成的税吏所需要。正如古希腊地理学家斯特拉波曾嘲讽的:洪水越厉害,财政收入就越多。

    古埃及文明又繁荣发展了2,000年,最终变成了罗马的粮仓,这一点并非巧合;在下一章里,我们将对此进行探讨。不过,即便是在那时,突如其来的气候变化也曾造成旷日持久的干旱和旱情导致的饥荒,不但让成千上万人丧生,而且影响到了罗马与君士坦丁堡两地的粮食供应。

    印度河:城市与乡村(约公元前2600年至公元前1700年)

    印度洋季风的波动,对数百万人的生活产生了影响——不但影响到了尼罗河流域与美索不达米亚,也影响到了热带非洲,或许还影响到了南亚和东南亚;其中,就包括印度河流域及其周边地区的居民。

    南亚地区的东部为热带雨林,北部为山脉,且为阿拉伯海、印度洋和孟加拉湾所环绕。这个次大陆上,形成了自身的文化特色和极具多样性的独特文明。其中最早的,就是印

    度河文明,它属于早期与美索不达米亚文明、埃及文明同时繁荣发展起来的伟大文明之一。[10] 20世纪20年代,英国和印度的考古学家几乎纯属偶然地在旁遮普邦发现了这个文明;当时,更广阔的外界仍然对其所知不多。如今我们知道,这种文明曾经在至少达 80 万平方千米的广袤区域里(大致相当于西欧面积的四分之一)繁荣兴盛,不但覆盖了今天的巴基斯坦,还从如今的阿富汗一直延伸到了印度。印度河流域与现在已经干涸的沙罗室伐底河流域,是这个文明的文化中心,但它们仅仅是一个范围更大、具有多样性的散居社会中的一部分而已;那个社会绵亘多种多样的环境,从俾路支斯坦的高原和喜马拉雅山麓,纵贯旁遮普和信德的低地,直至如今的孟买。

    考古学家已经在印度河流域的多个生态区里确定了1,000 多个定居地,从植被葱茏、绿色遍野的乡间田园,到气候炎热、不宜居住的半沙漠地区,到处都有。尽管大多数遗址都是村落,但其中至少有5处为主要城市。需要明确的是,这里属于当时世界上最大的城市文化群落,规模大约达到了美索不达米亚或者埃及同时代城市文化群落的两倍。这里的城市,在公元前2600年左右到公元前1900年间,曾经令人钦佩地繁荣了六七个世纪之久。这里的人口可能达到了100 万,与古罗马鼎盛时期的人口相当。只不过,这个庞大的文明很快就从历史上消失了。无论是公元前4世纪入侵此地的亚历山大,还是公元前3世纪南亚次大陆上一心向佛的统治者阿育王,对这个文明都一无所知。因此,考古学家不禁要问:气候变化在印度河文明的消亡中,扮演了什么样的角色呢?

    如今,当地的气候有利于农业,因为那里有两种不同的天气系统占据主导地位,有时二者还会叠加。[11] 在西部高原地区发挥作用的,是多雨的冬季气旋系统,而夏季季风系统,则会为印度半岛各地带来降水。假如其中一个系统未能带来降雨,那么另一个系统往往能够加以补足,从而意味着如今的印度河流域不会出现饥荒。每年的7月至9月间,印度河本身也会泛滥。农民会待洪水退却之后,以洪水带来的淤泥为肥料种植庄稼,到来年春季再进行收割。有意思的是,我们没有证据表明印度河流域的农民进行过大规模的灌溉;这一点不同于埃及,因为埃及人必须修建灌渠来扩大洪水所及的范围和蓄水。很有可能,假如印度河流域某个地区的收成不佳,那么获得了丰收的另一个地区便会通过当时业已完备的贸易网络,送来粮食进行救济。

    印度北部新德里以北约200千米的萨希亚洞穴(Sahiya Cave)中的石笋表明,印度河文明形成的那几个世纪,正是强季风导致气温升高、降雨也显著增加的一个时期。[12] 结果,作物收成变得更可预测,粮食盈余变得更加可靠,印度河文明赖以生存的经济上层建筑就此形成。也正是此时,不断发展的村落与较大的农业群落逐渐演变成了一种复杂的前工业化文明。

    尽管有过多种形式,但城市已经成为古代文明的一个标志。它们完全不是人们在中东大部分地区发现的那种紧凑、拥挤而有围墙的定居地。印度河流域的城市,很难与乌鲁克、乌尔、拉美西斯诸城比较,事实上也很难与其他地方的任何一座城市比较。忘掉亚述和苏美尔君主们浮夸的豪言壮语,忘掉古埃及法老们自吹自擂的意识形态宣言吧。曾经掌管着哈拉帕、摩亨佐达罗以及印度河流域其他城市的统治者,至今仍默默无闻。他们与古埃及人或美索不达米亚人不同,不喜欢在寺庙墙壁上大肆宣扬自己的丰功伟绩。再则,这种文明中似乎没有什么寺庙;实际上,根本没有任何宗教建筑的明显迹象。此外,那里只有一些模糊的宗教暗示,比如一尊“祭司王”的小型半身像;不过,此人有可能既非国王也非祭司,而只是某个沉浸在极乐的瑜伽式冥想中的人。大量装饰性的印章上,也带有各种各样的形象,其中包括以明显的瑜伽姿势打坐的人。这是宗教信仰吗?也许吧。遗憾的是,他们的文字系统仍然没有为世人所破解。假如得到了破解,那么印度河文明的密码可能会讲述一个截然不同的故事;但在此以前,考古学还是会指出,当时此地城市中居住的,都是一些谦逊与崇尚平等的人。

    20世纪40年代末,劲头十足的英国考古学家莫蒂默·惠勒(Mortimer Wheeler)曾在哈拉帕与摩亨佐达罗两地进行过发掘,却并未找到装饰华丽的建筑、宏伟壮观的寺庙、镀金的神殿或者宫殿。相反,他发现了两座城堡,里面建有相当实用的公共建筑,包括一座粮仓和一座用砖块建造、有支柱的大型厅堂;砖块能够保护大厅不被洪水冲垮。人们都住在精心建造的房屋里(同样是用砖块建成),并未显露出城市里常有的阶级差别的任何迹象。然而,尽管两座城市明显崇尚平等主义,在公元前2550年左右到公元前1850年间有人居住的那个时期,两城都属于世界上最复杂的城市。城中建有气势恢宏的防洪工程、水井,以及可与现代相媲美的卫生设施,其中还包括世界上最早的洗澡间和带有下水道的厕所。在两座城市里,建造者都遵循一种不规则的网状建设规划;这种规划历经多个世代的发展演变,其中包括呈网格状的街道与房屋。惠勒曾经令人难忘地描绘他的印象:“中产阶层繁荣富裕,热衷于市政监管。”[13]

    惠勒喜欢进行生动形象的描述,并且用其西方视角来加以渲染。不过,他对中产阶层繁荣富足的描述,却是错误的。最新观点认为,两城都属于多中心社会,有墙壁与平台将城内划分成了不同的区域;城外的定居地较少,是从事经济活动和工匠们劳作的地方。印度河文明可能是一个无等级社会,公共活动曾是平常之事。然而,这种文明中的城市居民可能也逞强好斗,因为定居下来的人类经常如此;比方说,有迹象表明,哈拉帕曾经出现过相互对抗的地方社群。[14] 然而,考虑到印度河文明是世界上唯一一个没有证据表明发生过任何有组织战争的已知文明,那么,我们把读者的注意力引向可能存在的地方性争端,就会是一种相当不公平的做法。尽管我们也曾努力寻找相反的情况,但所有证据还是表明,至少在城市层面上来看,这是一个和平、繁荣与崇尚平等的社会。这个社会,也与外界有着密切的联系:这里的民众,曾与波斯湾和美索不达米亚地区进行过数个世纪的贸易。

    无论哪种社会曾在印度河沿岸以及更远的地方繁荣发展,无疑都不属于一个金字塔式的社会。我们很难找到另一个社会,能与华而不实的埃及和美索不达米亚诸邦形成更加鲜明的对比;而从应对气候变化方面来看,印度河文明的韧性也要强得多;尽管从其幕后始终存在地方领导人与城市之间的竞争这种意义上来说,印度河文明也很脆弱。

    随着城市的发展,城市周围的乡村定居地也发展起来了。实际上,我们或许应当把这些城市称为“城邦”,才能反映出它们在当地环境中的重要性。至于城市周边的定居地,其中很多都以农业耕作为主,还有一些则属于手工艺中心。许多定居地只是短时间里有人居住,或者断断续续地有人居住。

    当时居无定所的情况很常见,河流密布、季风性洪水频发的地区尤其如此。这样的环境要求定居人口具有流动性,以便适应变化迅速的水文条件。这种适应手段中的一部分,就是让家庭成员和亲属分散到几个定居地生活,以便稳定地获得水源供应。对于在局部需要面对极具挑战性的自然条件的人们来说,这样的局面有可能提供了更大的适应性与生存能力。在这种情况下,减少风险就成了生存的核心;人们所用的策略,很可能包括多茬复种(即每年种植两三种作物)、栽种抗旱作物以及在同一块地里同时种植不同的谷物等等。[15]

    随着人们越来越多地种植大麦、小麦之类的冬季作物与小米、抗旱谷物等夏季作物,农业多样性也随时间的推移而得到增强。不同地区的农耕方式之间差异巨大,使得这里很难对粮食生产实施任何一种形式的集中存储和控制措施。哈拉帕遗址的一个大型粮仓表明,养活大量不从事农耕的城市人口,无疑是当时的人十分关注的问题。极有可能的是,像哈拉帕这样的城市所依赖的,都是城市腹地提供的粮食盈余以及完善的基本商品贸易网络,而农村地区基本上都是自给自足。

    印度河文明与古埃及文明形成了鲜明的对比。印度河文明并非一个统一的国家,而是一个丰富多样、权力分散的社会;这一点,就使得可持续生存的问题远比独裁君主统治大片领土时更受地方关注。虽然不同地区的风险管理差异巨大,但它们却在朝着共同的方向发展:印度河流域的所有城市,在公元前2000年到公元前1900年左右全都消失,而整个文化综合体也随之消亡了。为什么呢?

    熬过大旱

    “4.2 ka事件”是一个极度干旱的时期,给整个亚洲与印度洋地区那些简单的和较复杂的社会都带来了长期的困扰。印度洋夏季风和冬季风强度减弱的时间,与哈拉帕、摩亨佐达罗以及印度河流域其他城市消失的时间大致吻合;不过,大旱似乎不太可能是触发城市解体的唯一因素。在这里,我们是有意使用“解体”(dissolve)一词,因为说“崩溃”的话,会让人产生误解。农村群落中,有一种由来已久的散居传统。近期对哈拉帕一座墓地中的骸骨进行的同位素研究表明,很多死者都是从别处而来的移民。人们源源不断地进出这些城市,也会频繁进出一些较小的群落。考虑到村落与较大社群之间联系紧密,这一点就不足为奇了,因为较大社群中必定有他们的其他亲属,起码也有贸易伙伴。

    印度河流域城市的解体,可能只是对食物短缺做出的一种防御性反应,因为迁往水源供应较充足、可以找到食物的社区,就能解决食物短缺的问题。这是一个去中心化的文明,故人口流动就是适应措施。毕竟,假如照管好自己所在的社区就能衣食无忧,为何还要去为城市提供粮食呢?村落中为了适应长期干旱而将作物多样化,更多种植夏季作物与抗旱谷物,比如小米与水稻,也就成了一种常规。作物收成可能一直处于较低水平,故难以维持大型城市所需。整个印度河流域各地显然存在差异,不过,我们同样应当将短期干旱与长期性的干旱周期区分开来;在长期性的干旱周期中,短途甚至是中等距离的供应网络也无法为城市生产出充足的粮食盈余。在高度重视亲属关系与义务的非等级制社会里,一种古老的适应策略开始发挥决定性的作用。据一些针对定居地进行的研究来看,许多人在公元前 1800 年左右离开了印度河流域,往北迁徙到了拉贾斯坦与哈里亚纳,故随着哈拉帕的没落,上述两地的人口也出现了大幅增长。

    除了韧性,一些根本问题如今依然没有答案。看似稳固的印度河流域诸城在面对漫长的干旱时,出现了什么情况?此时的气候,是否太过干旱?农民的适应之举,是否变得太过多样化了?是不是气候变化导致印度河流域的城市人口根本不可能适应?我们知道,虽说印度河当时仍然水流湍急,但该地区的第二条大河沙罗室伐底河却已干涸;或许是因为一场地震破坏了该河的上游,导致河水改向,注入了恒河。随着沙罗室伐底河逐渐干涸,依靠此河生存的定居地也消失了。这种情况,最终导致了整个社会的倾覆。

    尽管印度河文明已经消失,但从全局来看,它却是一种长久存在的文明。无疑,以工业化之前的早期标准来衡量,印度河流域诸城都曾异常稳固与持久存在。它们之所以具有长久的韧性,可能是因为当时的人都依赖一些可持续的农村生活方式;可事实证明,当作物收成减少导致粮食盈余大幅下降时,仅仅依靠这些生活方式是不够的。相比而言,乡村农民反而通过种植一系列适应了当地环境与水源供应的作物,实现了长期的可持续生存。人数较少的群落,可能拥有他们熟悉的、长期采用的社会机制,故人们对作物与耕作方式的选择以及他们的文化行为都较为灵活。在这种情况下,人口迁移可能就成了许多地方的必要之举,这也解释了人们不断弃定居地而去的原因。当然,我们没有证据表明这种文明是以痛苦的方式终结的,因为我们并未看到这里爆发过大战(甚至是小规模战争)的迹象,也没有证据表明定居地出现过暴力或者遭到过破坏。

    印度河文明之所以强大稳固,是因为它建立在一种农村的社会与经济基础之上。就其本质而言,这种社会和经济基础是有韧性和可持续的;原因部分在于,那里的环境极具挑战性与多样性,或许还在于,那里有一种似乎平和安宁、没有社会等级以及约束性的宗教教条的意识形态。在一个去中心化、大部分社会权力留在地方的社会中,这种意识形态发挥了良好的作用。城市是一种临时的适应之举。农村社区可以熬过长期的干旱;尽管邻近社群的帮助有可能减轻了干旱带来的影响,但农村无疑不会出现饥肠辘辘而密集拥挤的城市人口所经历的痛苦。同样,最成功地适应气候变化的措施,最终都属于地方性的举措。

    各有所好

    逞强好斗、极其脆弱且易被摧毁:美索不达米亚与古埃及这两大最早的文明,其一连串统治者都试图将自己的意志和独特的治理模式,强加于亘古以来的村落社会之上。由他们的宗教、他们的众神加以合法化之后,这些统治者的故事就成了一段权力与荣耀的佳话。可在印度河流域,人们却似乎尝试过某种别的做法,即合作与社会平等(起码在城市居民当中是如此),并且明显弱化了等级制度、君主制度和宗教信仰。为了适应气候变化而采取的这些策略,每一种都在一段时间里获得了成功,直到新的政治组织体系兴起并改变了社会。不过,说到应对干旱与重大气候事件,最有效的对策却既非来自为了资源而征服邻邦的中央集权制帝国,也非来自那些实力强大、掌管着集中化粮仓的总督,而是来自地方主动根据自身群落所熟悉的现实情况及其周围环境,量身定做出的适应性举措。无疑,今天的情况也是如此。

    这些早期文明在气候变化面前,没有哪一个曾经全然无力应对。但在面对一些重大情况,比如“4.2 ka事件”时,它们也不像偶尔有过的情形那样具有无限的适应力。它们所应对的《圣经》当中所述的一场场漫长干旱的经历,现代的工业文明社会从来不必面对。假如将4,200年前的干旱事件放到当代背景之下来看,那么,1998年至2012年间黎凡特地区长达15 年的干旱,其旱情据说就要比过去900年间任何一个可比时期都厉害。这场干旱,比近几百年里自然变化造成的其他干旱都要严重得多。造成这种现象的罪魁祸首,就是势不可当的人为气候变化。考虑到人们对未来全球气候的预测,我们需要在国际范围内采取更大的适应措施,规模将远超过去。从公元前 2200 年那场特大干旱事件中吸取的教训,或许有助于我们去面对未来即将出现的大量气候挑战。

    这些社会留下来的遗产,对如今具有相当重要的意义。法老们统治着一个面积广袤的河谷,那里降雨稀少,但每年都有一场变化莫测的河流泛滥。“4.2 ka事件”让他们明白,在一个农业权威最终以村落为本的社会里,无论是独裁权力还是众神,都无法解决作物歉收与饥荒的问题。后来的统治者则鼓吹新的教义,将法老说成是引路的牧人。这些领导者在粮食储存与地方性灌溉方案上进行过大量投入。他们的文明,延续了 2,000 多年。与此同时,在美索不达米亚地区,百姓却生活在一种撕裂了的政治局面中,很大程度上由显著的极端气候与往往猛烈的洪水所决定。这种局面,远比古埃及的环境易变,而反复无常的环境变化还有可能导致河流改道,甚至是干涸。从长远来看,生存以及适应干旱周期与其他气候变化既需要深入的环境知识,也需要深厚的农业知识。在这个方面,真正的权力最终并非掌握在实力强大、大肆征伐的国王手中,而在于城市与农耕社群适应当地环境的能力。正如萨珊人付出了巨大代价,在亚述人消亡数个世纪之后才发现的那样,大规模的灌溉农业会带来全面的环境改变,故在有些方面很脆弱(尤其是易受盐碱化的影响);而这一点,在早期进行较小规模耕作的农民中已是众所周知。所以,萨珊人的农业没有获得成功。

    尼罗河沿岸和美索不达米亚地区,是少数精英实行统治。他们过着锦衣玉食的奢华生活,农民却要辛勤劳作,有时还处于长期贫困之中。对于掌控多数民众的少数人而言,实行中央集权式的政治与经济控制最为理想,即便这种控制意味着他们必须遏制地方的知识,禁止传统的解决办法,以及消磨百姓在面对不断增长的实物税需求时的韧性。印度河文明似乎正好与之相反,是一个去中央集权化和极具多样性的社会,倡导社会平等(至少在城市中如此),权力则掌握在那些靠着土地为生的小社群手中。在这里,迁徙就是人们为适应洪水不足与干旱而经常采取的对策。即便到了沙罗室伐底河干涸、印度河流域诸城解体之后,这种独特的印度河文化及其制度,也依然存续了一段时间。如果说过去有什么例子,说明了传统知识与地方性办法对解决气候变化问题的重要价值,那就非印度河文明莫属了。

    与此同时,我们现代的工业化世界实行的却是一种经济极端不平等的制度,它建立在一种崇尚积聚、增长和剥削的意识形态之上,让少数精英靠别人的劳动变得富裕起来。然而,许多资本家都会忘记——或者更喜欢无视——还有无数人生活在农村,并且按较为传统的方式生活。尽管生活艰难,但这些人还是生存下来了,原因就在于他们依赖的是古老而传统的农耕和放牧策略;这些策略对所有人的未来都至关重要,在现代世界中也仍然具有可持续性。

    虽然考古学家已经让我们了解到大量有关远古时代气候变化与适应情况的知识,但我们也有许多的历史记录与科学资料,涵盖了过去的2,000年。我们将会看到,就算是几十年的短期干旱或者短暂的寒潮,也曾导致死亡与苦难,并且最终导致一些实力最为强大的帝国灭亡。在接下来的各章中,我们将从意大利开始,然后一路横跨整个世界,去探究其他几个在气候变化面前崩溃的帝国。偶尔,我们也会看到人们成功应对气候挑战的情况,并且学习他们的经验。但我们首先要探究的,就是罗马帝国的遭遇。

    [1] Herodotus, The Histories, trans. Robin Waterfield (Oxford: Oxford University Press, 1998), bk. 2, line 111, 136.
    [2] J. Donald Hughes, “Sustainable Agriculture in Ancient Egypt,” Agricultural History 66, no. 2 (1992): 13.
    [3] Barry Kemp, Ancient Egypt: The Anatomy of a Civilization, 3rd ed. (Abingdon, UK: Routledge, 2018),这是一部了解古埃及文明的出色指南。
    [4] I. E. S. Edwards, The Pyramids of Egypt (Baltimore: Pelican, 1985), 12.
    [5] Mark Lehner, The Complete Pyramids (London: Thames & Hudson, 1997). See also Miroslav Verner, The Pyramids. Rev. ed. (Cairo: American University in Cairo Press, 2021).
    [6] 佩皮二世的在位时间存有争议,有可能短至64年;但按照法老的标准来看,这仍然是一段令人印象深刻的漫长统治时期。
    [7] 在埃及学当中,气候变化在古王国的没落过程中所起的作用仍是一个具有争议的问题。有一篇论文对各种观点进行了有益的总结:Ellen Morris, “Ancient Egyptian Exceptionalism: Fragility,Flexibility and the Art of Not Collapsing,” in The Evolutionof Fragility: Setting the Terms, ed. Norman Yoffee (Cambridge,UK: McDonald Institute for Archaeological Research, 2019), 61–88。
    [8] 人们认为《伊普味陈辞》(The Admonitions of Ipuwer)的创作时间可以追溯至中王国时期,这是一部不完整的文学作品,保存在大约公元前1250 年的一份纸莎草纸上,但其正文源自更早的时代。这是世人已知最早的一部政治伦理学专著。伊普味认为,贤明的法老应当约束其手下官吏,并且执行众神的意志。引自 Barbara Bell,“Climate and the History of Egypt: The Middle Kingdom,”American Journal of Archaeology 79 (1975): 261。
    [9] Barbara Bell, “The Dark Ages in Ancient History, I: The

    First Dark Age in Egypt,” American Journal of Archaeology

    75 (1971): 9.

    [10] 对印度河文明的概述之作:Andrew Robinson, The Indus: Lost

    Civilizations (London: Reaktion, 2021)。亦请参见 Robin

    Coningham and Ruth Young, From the Indus to Ashoka:

    Archaeologies of South Asia (Cambridge: Cambridge University

    Press, 2015)。

    [11] Ashish Sinha et al, “Trends and Oscillations in the

    Indian Summer Monsoon Rainfall over the Past Two Millennia,”

    Nature Communications 6, no. 6309 (2015); Peter B. deMenocal,

    “Cultural Responses to Climate Change During the Late

    Holocene,” Science 292, no. 5517 (1976): 667–673. See also

    Alena Giesche et al., “Indian Winter and Summer Monsoon

    Strength over the 4.2 ka BP Event in Foraminifer Isotope

    Records from the Indus River Delta in the Arabian Sea,”

    Climate of the Past 15, no. 1 (2019): 73. doi: 10.5194/cp

    15-73-2019.

    [12] Gayatri Kathayat et al., “The Indian Monsoon

    Variability and Civilization Changes in the Indian

    Subcontinent,” Science Advances 3 (2017): e1701296.

    [13] Mortimer Wheeler, The Indus Civilization, 3rd ed.

    (Cambridge: Cambridge University Press, 1968), 44.

    [14] 基本资料:Cameron A. Petrie, “Diversity, Variability,

    Adaptation, and ‘Fragility’ in the Indus Civilization,”

    in Yoffee, Evolution of Fragility, 109–134。

    [15] C. A. Petrie and J. Bates, “ ‘Multi-cropping’, Intercropping and Adaptation to Variable Environments in Indus South Asia,” Journal of World Prehistory 30 (2017): 81–130,这是一篇全面论述印度河农业的论文。

    第五章 罗马的衰亡(约公元前200年至公元8世纪)

    公元 350 年,罗马帝国正处于鼎盛时期;其规模之大,令人难以置信。罗马帝国的公民,从欧洲西端的西班牙到远至东方的尼罗河流域,在各地繁衍生息着。罗马帝国的军团驻守在气候寒冷的不列颠北部的哈德良长城上,控制着莱茵河与多瑙河沿岸的防御工事,在撒哈拉沙漠北部边缘与亚洲西部也保持着强大的军事实力。罗马这座“永恒之城”最初只是一个小小的镇子;根据传说,此城是公元前753年由罗慕路斯与雷慕斯这对双胞胎兄弟所建,据说他们是由一头母狼养大的。罗马先是变成了一个君主国,然后是共和国,最终又成了一个庞大帝国的中枢。然而,公元476年最后一任皇帝退位之后,这个帝国便土崩瓦解了。

    罗马帝国为什么会分崩离析,是历史上一个存有重大争议的问题。[1] 1984年,德国古典学者亚历山大·德曼特曾经列举了自古典时代晚期以来,人们针对罗马帝国衰亡提出的不下210个原因。如今世间无疑提出了更多的原因,但也有了一种重大的区别,那就是:对于古罗马时期的气候变化,以及气候变化对人们生活的影响,我们有了更加深入的了解。

    暖和的开始(约公元前200年至公元150年)

    罗马帝国诞生于一个气候温暖、普遍湿润且持久稳定的时期;传统上,人们将这一时期称为“罗马气候最宜期”(Roman Climatic Optimum,略作 RCO),它从公元前200年左右一直持续到了公元150年。[2] 种种宜人的气候条件,与公元前 43 年阿拉斯加地区的“奥克莫克二号”火山大规模喷发之后火山活动大幅减少的时间相吻合。从公元前 44 年尤利乌斯·恺撒遇刺到公元169年之间,并没有出现什么重大的火山喷发;就算公元79年著名的维苏威火山喷发,规模也相对较小。在西方,北大西洋涛动与大西洋西风带是两大主导因素。东方则有一系列的气候因素参与,其中包括印度洋季风、厄尔尼诺现象,以及北纬30°的持久性副热带高压,它们单调而有规律地遏制着降水。这是一个温暖和气候稳定的时期;对任何智人而言,条件都很完美。45座高山冰川开始消退,直到公元3世纪。高海拔地区的树木年轮表明,最高气温出现在公元1世纪中叶。正是当时罗马的博物学家老普林尼[3],指出了山毛榉不只能在海拔较低之处茁壮成长,也喜欢生长在高山上。当时的整个地中海地区一直气候湿润,降水丰沛。

    “罗马气候最宜期”凭借较高的气温和通常很充沛的雨水,为地中海地区的农业创造了奇迹,尤其是小麦,这种作物对降雨和气温变化极其敏感。多年的较高气温与充沛的降水扩大了耕作的范围,提高了土地的生产力,所以古罗马时期种植的谷物要比数百年之后中世纪农民种植的谷物产量更高。据一项保守的估计数据,气温每上升 1℃,就会增加100万公顷适宜耕作的土地,足以多养活300万至400万人。不仅小麦的种植面积扩大了,像橄榄和葡萄等主要作物也是如此。

    有三大因素共同作用,促进了罗马疆域的扩张,即贸易、技术与气候。降雨增加,让北非地区变成了罗马的一座粮仓。如今,北非国家却须进口粮食了。不断上升的人口密度,将农民推向了更加边缘的地区。随着帝国不断发展和稳固下来,各地交通水平与长途贸易水平都大幅提高,使得原本具有风险的农耕变成了一种更加现实和风险较低的活动。属于半干旱气候的北非地区见证了灌溉农业的爆炸式增长,那里兴建了水渠、堤坝、蓄水池,以及简单却很巧妙的暗渠——这种设施能够利用重力,将地下水从海拔较高的地方输送到可耕作的低地上。[4] 在“罗马气候最宜期”达到顶峰的时候,作物种植拓展到了如今的撒哈拉沙漠北部。在公元2世纪干旱卷土重来期间,沙漠便再次开始扩大。在东方,来自死海地区索瑞克石窟中的洞穴沉积物则说明,公元100年之后那里的降雨量曾急剧下降。

    “罗马气候最宜期”快要结束的时候,夏季气候开始势不可当地加速转变成更严重的干旱。有一种观点认为,这种情况,是由于古罗马的农民为了建筑、生火和燃料所需的木材而对地中海地区的森林乱砍滥伐。上述活动,都会导致地面向大气中反射更多的热量。如此一来,土壤中通过蒸发进入低层大气中的水分减少,使得夏季的降水也减少了。假如这种观点是正确的——争论还在继续——那么,随着“罗马气候最宜期”结束,人为因素与自然因素就开始一起发挥作用,而罗马帝国在随后的数个世纪里,也一直面临着由此带来的压力。

    古典学者凯尔·哈珀指出:“气候就是古罗马人能够创造奇迹的有利背景。”[5] 他认为,罗马帝国统治的土地曾是“一座巨大的温室”。“罗马气候最宜期”导致的发展,在其规模与抱负方面都是史无前例的。不过——这个“不过”很严重——此种扩张看似神奇,其稳定性却直接取决于人类无法掌控的一些强大因素。

    公元150年之后的3个世纪里,罗马帝国的气候变得日益变幻莫测和不稳定起来,非但让农业和统治方式的调整变得反复无常,而且让帝国的人口也变得反复无常起来。各种不受掌控的气候变化力量开始产生微妙的作用,有时还会带来巨大的影响。

    正如哈珀进一步指出的那样,地中海向来都是一个气候变化剧烈的地区,而“罗马气候最宜期”气温较高、降雨丰沛,有可能缓解了每年气候莫测的程度;对当时的农民而言,气候过度不可预测是一种重要的现实情况。公元128年,经常出巡的哈德良皇帝巡察了非洲诸省。在巡察期间,那里下了5年以来的第一场雨;当年的小麦价格,要比过去气候较为湿润的数十年里高出了 25%。“御驾一到,天降甘霖”这样的奇迹固然很好,但还需要采取切实措施才行。于是,哈德良皇帝冒冒失失地下令,建造一条长达120千米的引水渠来为迦太基供水;这也是古罗马人建造的最长水渠之一。[6]皇帝的顺应之举虽然令人钦佩,但实际上,它不过是对数个世纪以来肆虐罗马帝国心脏地带的一场旷日持久的干旱危机所做的一种反应罢了。

    韧性与瘟疫(公元1世纪以后)

    罗马帝国是一个由农业、人口、财政、军事与政治制度错综交织而成的庞大帝国。各种各样的风险,都曾危及整个国家。诚如马可·奥勒留皇帝所言,整个帝国就像一座风雨飘摇的岛屿,被敌人的舰队、海盗与暴风雨所围困。每位皇帝都不得不在一个持久动荡的世界里直面诸多困难,其中就包括了气候变化。风险管理靠的是人,须利用各种来之不易的策略,去应对意外的洪水、漫长的干旱,以及由此导致的让粮食供应不堪重负的饥荒等事件。压力就是罗马帝国晚期一种始终存在的现实,而其中的大部分压力,又日益来自气候变化。

    最有效的应对武器在农村,在业已获得了代代相传的经验与专业知识的农耕群落里:作物多样化和稳健的粮食储存策略,以及一些奇异的当地作物,它们能够在干旱年份里茁壮成长,故是一种重要的保险措施。自给自足、在饥馑时期帮助困难亲属与邻居的互惠之举,以及精心安排的资助,都属于农民手中的“武器”。罗马帝国的农村社会背后,蕴藏着一种深厚的自力更生精神。比如说在不列颠,罗马时期的农耕定居地似乎已经实行了一定程度的自治。尽管这种遗址如今为世人所知的不多,但英格兰南部的萨默塞特郡却发掘了两处。第一处是西格韦尔斯,它由一些互不相连、修有石墙的长方形建筑组成,而附近的卡茨戈尔遗址则以一种呈直线形的“街道”布局为标志。[7] 这两个罗马-不列颠定居地属于同一时代,但看上去却截然不同。它们显然不是按照帝国那种自上而下的规则千篇一律地组织起来的,而是根据当地居住者的需求独立发展出来的,有时还是在罗马时代以前就发展了漫长的时间,比如西格韦尔斯就是这样。

    有些顺应策略,也拓展到了城市与市镇。城市里的粮食储存,在帝国各地都占有极其重要的地位。许多城市都是沿着主要河流与水道发展起来的,这一点并非巧合,因为河流与水道降低了它们对各自腹地的依赖程度。众所周知,内陆城市很容易受到短期干旱的影响,因为这些城市输入与输出粮食都要困难得多。

    出现粮食危机时,罗马帝国政府早已做好了准备,要么是提供粮食,要么就是遏制任何一种企图剥削他人的做法。这就是农村中普遍存在的互惠与资助原则的一种真正延伸。帝国实行的应对策略,往往规模宏大。公元117年至138年在位期间,哈德良皇帝巡视了许多城市,并且“悉加眷顾”。[8] 他修造水渠供水,兴建港口,进口粮食,甚至为公共建设提供资金。那些为罗马供应粮食的市政粮仓,规模都很巨大。塞普蒂米乌斯·塞维鲁皇帝(193—211年在位)极其关注罗马的粮食供应问题,以至于去世后他还留下了可供罗马吃上7 年的粮食。粮食救济变成了帝国慷慨大度的一种公认象征。公元2世纪时,古城以弗所发出的一封公函中曾经承诺,只要作物收成足供罗马所需,埃及就会将粮食运往此城。“若如吾等所祷,尼罗河之泛滥一如往昔,埃及人之小麦亦获丰收,则汝等当为母国之后率先获得粮食者。”[9] 在很多方面,古罗马人面临的全球粮食供应挑战都与我们如今一样,因为当时的人正越来越容易遭受饥荒的威胁。我们不妨想一想现代美国或者欧洲各国超市的情况。您可以买到产自世界6个大洲的食品。与古罗马人一样,我们的食品供应也严重依赖单一栽培,依赖玉米、小麦和其他谷物的大规模生产,也依赖于工业化的畜牧业。假如人类食物链中的部分链条因为全球变暖而断裂,又会出现什么结果呢?或者,面对新型冠状病毒之类的人类流行病,还有像“疯牛病”等有可能在短期内大幅减少牛肉供应量的动物瘟疫时,它们对食品供应的影响情况又会如何呢?

    古罗马人的食物链,达到了极其复杂的程度。在公元 2世纪,大约有20万罗马公民每月都能领到5斗小麦;光是用于救济的小麦,发放量就达到了8万吨。[10] 每年都有一支大型的运粮舰队,从亚历山大港驶往罗马,且舰队一向都会受到兴高采烈的罗马人夹道相迎。值得注意的是,向罗马城运送粮食的任务由私人负责,官方并未参与;这一点,应归功于当时粮食市场的雄厚实力。不过,罗马的谷物供应主要依赖于两大粮仓,即埃及各州与北非其他地区。

    纵观帝国的历史,罗马帝国堪称一家庞大的企业,以不断发展的城市与远远超出了帝国疆域的贸易网络为基础。古罗马人很清楚中国人的存在。罗马帝国是一个宏伟显赫而令人敬畏的文明社会,促进了人类的远距离流动与联系。但帝国也变成了流行性疾病的温床;这一点,很大程度上是由城市里的卫生问题导致的。帝国境内的主要城市人口都很稠密,居民住得很近,还挤满了来自遥远国度的移民与奴隶。古罗马的市政工程师将水源引入各座城市的中心,供人们饮用、沐浴和冲洗下水道。他们修建了一些较大的公共厕所,一次能供50 至100 人使用。但这些城市里的垃圾处理和卫生设施充其量只能算是很简陋的。据说,光是罗马城,一天就能产生45 300公斤的人类粪便。蛔虫、绦虫以及其他寄生虫十分常见,而大量的细菌则让城市变成了一个个致命的、传染病频发的杂乱之地,夏末和秋季这段死亡高峰期尤其如此,因为夏季的炎热很致命。不论是富人还是贫民,都会感染疟疾、伤寒、慢性沙门菌和腹泻等。就连皇帝本人,也未能幸免:公元81年,皇帝提图斯很可能就是死于疟疾。“罗马气候最宜期”当中气温较高、雨量增加的那几个世纪,似乎助长了疟疾的流行。罗马与其他的主要城市,都成了传染病的“培养皿”。

    当时的瘟疫,通常源自内部而非外部输入,这种情况直到公元2世纪马可·奥勒留统治时期才有所改变;当时,由于罗马开辟了季风航线,故帝国与印度洋、孟加拉湾沿岸地区的贸易联系大幅增加了。[11] 到了此时,每年都有差不多120 艘来自印度的商船抵达红海诸港。商船带来了黄金、象牙、胡椒和其他香料,还有中国的丝绸。胡椒变成了人们常用的一种香料,连遥遥驻守不列颠北部哈德良长城的士兵也不例外。亚历山大港扼守在地中海与印度洋世界之间的十字路口,成了东方奢侈品的最大市场。大部分贸易起源于盛产象牙与黄金的东非沿海,而那里正是一个拥有丰富的微生物多样性,以及有可能致命的病原体的地区。

    横跨欧亚大陆的“丝绸之路”,也是一条历史悠久、传播人体携带的病原体的路线。2016年,研究人员在中国西北地区一个大型的“丝绸之路驿站”发现了旅行者远距离传播传染病的最古老证据。他们的研究,集中在公元前111年前后挖成,直到公元109年仍在使用的一座汉代茅厕上。在一把把“个人卫生棒”(即用织物包裹着的擦粪棒)上,研究小组发现了4种不同的寄生虫虫卵,其中包括了中国的肝吸虫虫卵,它是一种能够引发腹痛、腹泻、黄疸和肝癌的寄生性扁虫。[12] 这种寄生虫只能在雨水充足、气候潮湿的地区才能完成其生命循环;然而,悬泉置驿站却位于气候干旱的塔里木盆地东端。这就说明,肝吸虫不可能曾在这个干旱地区普遍存在,而如今距这里最近、流行地方性肝吸虫病的地区,也在大约1,500千米以外。因此,研究人员的结论就是:一个本已感染了传染性肝吸虫病的旅行者,必定曾强忍腹痛,长途跋涉到了此地。不过,与很快就会让整个世界陷入困境的瘟疫相比,寄生虫及其虫卵就算不上什么了。

    公元2世纪中叶,一种似乎起源于热带非洲且传播迅猛的瘟疫,在安东尼·庇护在位期间(大概是在公元 156 年)传播到了阿拉伯半岛。公元166年年底,如今所称的“安东尼瘟疫”传播到了罗马,然后从一个人口聚集地传到另一个人口聚集地,迅速传遍了整个西地中海地区。[13] 整个罗马军团被瘟疫消灭,招募到的人员数量也大幅减少了。这场大流行是历史上首次有记载的瘟疫,从东南向西北蔓延,而其传播之势也完全不可预测。我们无法估算出究竟有多少人因此丧生,但死亡人数有可能多达罗马帝国总人口的三分之一。罗马著名的内科医生盖伦所描述的症状与天花最为接近,这是一种通过人与人之间的接触传播的疾病。在亚历山大港之类的大城市里,这种疾病先是潜伏起来,然后突然暴发。公元191 年罗马的一次大暴发中,每天都有2,000 多人丧生。“安东尼瘟疫”席卷了整个帝国;此时正值一个关键时刻,国际贸易联系发展到了一个新的成熟阶段。

    尽管遭受了巨大的经济破坏与人口损失,但罗马帝国并没有崩溃,因为下一场大瘟疫要到公元249年才会再次暴发。人口数量很快恢复过来,因此“安东尼瘟疫”并未在人口方面留下长久的影响。这场瘟疫主要的短期后果,就是中断了基本的粮食生产与农业,饥荒则蔓延到了帝国的边远地区。在有些地方,城市居民还曾袭扰农村地区,夺走农村社区的粮食,因为城市居民觉得那些粮食本来就是他们的。帝国采取的一些重大政治调整措施,我们在此无须去关注,但变幻莫测的气候变化与不久之后就将露头的新病菌,暴露出了帝国的脆弱性。

    天花的暴发与持续的干旱引起了普遍的悲观情绪。到了公元3世纪40年代末,迦太基主教西普里安身处日益干旱的北非地区,在作品中如此抱怨道:“世界日渐老耄,殊无往昔之生机……冬日既至,无充沛之甘霖,至种不润;夏之赤日,于麦田之上亦无往昔之焱焱。”[14] 他认为,当时的世界有如一个面色苍白、行将就木的老人,可他错了。

    后勤与脆弱性(公元4世纪)

    尽管西普里安主教如此悲观,但在公元4世纪的大部分时间里,罗马帝国却是一派欣欣向荣的气象。罗马仍然笼罩在一种特殊的光环之下。城中居住着大约70万人,每日配给的口粮是烤面包(而非谷物)、橄榄油以及葡萄酒,价格只有市场售价的零头;[15] 还有12万人获得猪肉救济。由于这些配给物资全都是免费的,故首都的人口急剧增长了。这一切的中心,是一个由国家掌管的庞大军事综合体。有50万人在战场上服役。一个复杂的后勤系统,为军队提供所有的装备、骑兵所用的坐骑和驮畜,还有军粮。仅仅军粮需求一项,就是帝国的一大负担,使之容易受到干旱以及其他一些比帝国当局意识到的更为严重的气候变化所影响。与此同时,公元330 年建成的君士坦丁堡(即如今的伊斯坦布尔)则成了正在崛起的东罗马帝国的中心。在公元4世纪,君士坦丁堡的人口增长到了原来的10倍,从3万人左右增长到了30万。

    原本应当运往罗马的粮食,如今开始往东而去。诚如凯尔·哈珀恰如其分地指出的那样:“亚历山大港与君士坦丁堡之间的海上,往来的船只极多,以至于就像一条狭长的人造‘陆地’。”[16] 这座建于 4 世纪的城市,既是当时国际贸易的十字路口,也是一个重要的希腊文化中心。

    幸运的是,此时的气候仍然相对宜人,气温较高,从而促进了经济增长;只不过,“罗马气候最宜期”那段天下太平的日子,却一去不复返了。尽管繁荣昌盛,但帝国依赖于集约化的单一栽培,尤其依赖于从北非进口的粮食。即便是在干旱年份,最可靠的粮食来源仍然是尼罗河流域,那里由季风雨导致的洪水似乎总是充沛得很。土地肥沃的泛滥平原与丰沛的洪水结合起来,就形成了一个天然的灌溉系统,而且早在法老们采取行动之前,人们就对那个系统进行了改造与利用。后来,罗马和帝国的大部分地区便靠埃及来养活了。

    然而,就算是埃及巧妙的“尼罗尺”水位计,也无法预测出种种影响尼罗河泛滥的不可阻挡的长期气候变化。最重要的罪魁祸首,就是遥远的南方与东方的热带辐合带和印度洋季风,它们一直都在非常缓慢地逐渐南移。尼罗河的泛滥是否稳定,对此河沿岸的人类社会与文明有着极大的影响。

    人们对纸莎草纸进行的细致研究表明,公元前 30 年屋大维(即后来的奥古斯都皇帝)吞并埃及之时,正值尼罗河泛滥稳定可靠,还出现过多场优质洪水的时期;这种情况,一直持续到了公元155年。从公元156年开始,泛滥就不再那么可靠,而一度富饶的埃及,粮食出口形势也受到了影响,并且常常是极其严重的影响。

    除了季风变化,处于正指数的北大西洋涛动也导致了一些无法预测的情况。[17] 公元 3 世纪末,一段漫长的正指数北大西洋涛动期开始了,且在整个4世纪一直持续;其涛动水平之高,我们只在后来的“中世纪气候异常期”里才再次见到(参见第十一章)。高山冰川纷纷消退。不列颠的树木年轮记录表明,当时北欧与中欧地区的降雨量曾居高不下。法国和德国的橡树年轮,则记录了降雨量直到公元5世纪初都在不断增加的情况。但是,这个降雨充沛的时期并不长久。随后的3个世纪里,气候条件就没那么稳定了。铍同位素记录表明,当时的太阳辐射量(即到达地球的阳光量)出现了大幅下降。气候随之开始变冷,高山冰川也再次开始向前推进。地中海的南部边缘遭遇了严重干旱,让北非地区遭到了重创。城市里的粮食开始短缺,而富人们却试图从上涨的粮价中牟取暴利。黎凡特的沿海地区降雨稀少,长期以来都以降水无常而闻名。尽管后来及时出现了较为丰沛的大雨,但关于这场大旱的故事,却在犹太人的希伯来语作品中长久留传了下来。

    冬季风暴的轨迹边缘,只在地中海上空一闪而过;热带季风与遥远的厄尔尼诺现象,导致帝国东部的降雨量不断地波动。干旱与饥荒,出现得更加频繁。公元383年,由于尼罗河的泛滥水位极低,故许多州的粮食都严重歉收。粮食开始普遍稀缺,情况极其严重,连相邻州也无法像过去一样运送粮食、相互帮助了。几个世纪以来,古罗马的哲人与诗人笔下描绘的,始终都是一个太平、仁义的世界。可如今呢,种种邪恶力量却降临到了人类头上。可想而知,当时的人们都以为,要么是公元4世纪刚刚皈依基督教的罗马帝国内的那个基督教上帝发怒而阻止了降雨,要么就是各州中那些尚未皈依者所信奉的异教神灵发怒而阻止了降雨。流行性疾病之所以不可避免地随着饥荒而暴发,部分原因就在于人们吃了实际上不能食用的东西或者有毒的食物,从而降低了他们对各种传染病的抵抗力。

    马匹、匈人与恐怖场面(约公元370年至约公元450年)

    西罗马帝国的东边,坐落着广袤的欧亚大草原,上面没有树木,只有一望无际的草地与灌木丛。那里的降雨毫无规律且变幻莫测,全然取决于来自西部的暴风雨的移动路径。古罗马人很瞧不起那些在无法耕作的大草原上到处流浪的游牧民族。古罗马人与中国的汉族都属于定居的农耕民族,可游牧民族却在不停地迁徙;他们骑马放牧,同时挤占定居民族的土地,先是袭扰中国中原王朝,后来又向西进犯。公元 4 世纪,一群群游牧的匈人出现在罗马帝国东部的边境。青藏高原的一系列桧树年轮表明,那里属于一种大陆性气候模式与季风气候相结合的环境。从公元350年前后至公元370年间,这个地区遭遇了 2,000 年来最严重的一个大旱时期。这一点,可能就是游牧部落开始向西迁徙的原因。[18]

    气候导致人们进出干旱环境——人们在降水较充沛的时期进入这些地区,而在气候干旱时则离开——这种效果开始发挥作用。匈人应对干旱的办法,就是跳上马背、四下散开,为他们的牧群寻找水源较为充沛的牧场。大草原上的政治权力中心,也从西伯利亚的阿尔泰地区向西转移。这次突然迁徙的时间,与游牧民族形成的不同联盟之间展开激烈竞争的一个时期相一致。古罗马军人兼历史学家阿米亚努斯·马凯林努斯,曾经生动直观地描绘了匈人的情况:“虽具人形,然皆丑陋,生活坚忍,乃至无须用火,无须美食……几至臀不离鞍。”[19] 他们那种威力强大的反曲弓,据说射程达到了150米。他们所用的战术极其凶狠,令人生畏。

    随着游牧民族不断从多瑙河中游地区向西迁徙,匈人的处境也到了紧要关头。公元378年,瓦林斯皇帝在哈德良堡附近的一场血战中被打败。有多达2万名罗马士兵在这场屠戮中丧生。公元405年至410年间,面对哥特人和后来其他民族的不断入侵,西罗马帝国逐渐衰亡了;入侵民族越过莱茵河,洗劫了高卢,并且向西征伐,远至西班牙。公元 395年狄奥多西一世皇帝死后,罗马帝国的东、西两半就再也没有统一到一个君主治下。公元410年,哥特人的统治者阿拉里克进入罗马。西罗马帝国的军事力量已经荡然无存,而罗马的实力也随之瓦解。阿提拉是所有匈人头领中最臭名昭著的一位,曾大肆劫掠了巴尔干地区。直到遭遇一场瘟疫,此人才在君士坦丁堡的城门前止了步;当时的君士坦丁堡,已因公元447年的一次大地震而遭到了重创。随后,阿提拉进军高卢和意大利,但因出现饥荒和军中流行在潮湿低地感染的疟疾而撤退,回到了大草原上。到6世纪时,由于始终须靠其他地方生产的粮食才能维生,故罗马的人口也急剧减少了。

    公元4世纪之初,戴克里先与君士坦丁两位皇帝已经加强了对帝国行政的控制。他们宣称自己是神圣的君主,崛起于东部诸省的繁荣兴旺之中。戴克里先让皇帝变成了一位高高在上的国君,极其倚重礼仪上的治国方略来扩大自己的权力,与早期那些从一座城池迁往另一座城池的皇帝形成了鲜明的对比。君士坦丁大帝则把自己的都城建在海上,建在连接东方与西方的贸易线路上。他的统治,是罗马帝国晚期的根基。君士坦丁堡取代罗马,成了国际贸易的十字路口和一个重要的希腊文化中心。原本运往罗马的粮食,如今则转道往东而去。

    没有什么比每年对帝国粮库进行审计更能突出皇权之显赫。归根结底,皇帝最基本的义务,就是养活手下的臣民。都城有50万居民,皇帝做任何事情都不能靠运气。一个庞大的官僚机构,控制着税收与粮食供应。都城的安全至关重要,而这种安全是靠提供粮食来保证的。饥荒的威胁曾经在罗马引发内乱,故首都有了大量的粮食储备,足以养活50万人;其中光是获得免费面包口粮的人,就达8万之多。与数个世纪以来的情况一样,君士坦丁堡的粮食供应也来自埃及。在查士丁尼统治时期(527—565),每年都从亚历山大港运来31万升小麦。[20]

    每一年,皇帝都会登上自己的战车。整个帝国中权力为一人之下、万人之上的禁卫军首领,会亲吻皇帝的双脚。皇家的游行队伍开进城中繁忙的市场区,然后朝着金角湾那些巨大的公共仓库进发;一艘艘装载着货物的船只,就停泊在金角湾里。到了这儿,掌管粮仓的庾吏就会呈上他的账簿。如果一切都没问题,庾吏及其会计就会获得 10 磅黄金和丝绸长袍,以资奖励。这场煞费苦心、精心上演的公开盛事向所有人表明,帝国的粮食供应很安全。

    查士丁尼大帝统治着一个真正全球性的和很不稳定的城市,其中到处都是来自已知世界各个角落的人与货物。当时的君士坦丁堡是一个国际化的大都市,位于众多较小城市组成的广袤网络的中心。不过,就在皇帝率领群臣巡察粮仓时,生态系统中的另一个成员却在暗中冷眼旁观着:那就是学名为Rattus rattus 的黑鼠。这种无处不在的啮齿类动物身上携带着鼠疫杆菌,也就是导致腺鼠疫的那种微生物。

    瘟疫于541年传播到埃及,并在接下来的两个世纪里蔓延到了罗马帝国全境。史称“查士丁尼瘟疫”的这场疫病,起源于中国西部的高原地区。[21] 到了 6 世纪,无论是经由陆路还是横跨印度洋的那些古老的贸易线路,罗马帝国与亚洲之间的贸易都已是一桩大生意,尤其是胡椒与其他香料贸易。丝绸也是一种珍贵的商品,但其生产大多集中在红海地区。红海以西,是埃塞俄比亚地区信奉基督教的阿克苏姆王国,以东则是阿拉伯半岛南部的希木叶尔王国,该国当时信奉犹太教,并且脚踩两只船,与罗马和波斯都结了盟。这个地区极具战略意义。因此,公元571年伊斯兰教的先知穆罕默德选定在红海沿岸阿拉伯半岛一侧的麦加降生,也就不足为怪了。

    病菌随着商人而来,而藏在船只运载的货物当中、已经感染了瘟疫的黑鼠也是如此。瘟疫首先出现于培琉喜阿姆,那里靠近红海北部的克莱斯马港(Clysma),从印度而来的船只经常在此停靠。从那里开始,瘟疫轻而易举地传到了尼罗河流域,然后进入了罗马帝国。登陆之后,瘟疫便朝着两个方向传播:一是往西传至亚历山大港,然后沿着尼罗河流域而上;二是往东,不但蔓延到了地中海沿岸,还传播到了整个叙利亚与美索不达米亚。罗马帝国那个高效的网络将瘟疫带到了内陆地区,但瘟疫经由海路传播得尤其迅速。1542年3 月,疫情扩散到了君士坦丁堡,并在城中持续了2个月之久。在疫情高峰期间,据说每天都有16,000人丧生。城中的50 万居民当中,死了25万至30万人。当地社会崩溃,市场关门,结果出现了饥荒。就连各级官吏,也十去其一。尽管人们将死者集中安葬在一座座大坑中,可尸体还是到处堆放着。许多死者层层叠叠,陷进“下方尸体渗出的浓液中”。以弗所的教士约翰曾目睹了当时的恐怖场景,并且撰文声称他看到的是“神烈怒的酒醡”[22] 。[23] 整个国家在这场灾难中摇摇欲坠。小麦价格暴跌,因为要供养的人口大幅减少了。一场严重的财政危机削弱了国家的力量,帝国几乎无力调动一支军队,更别提支付军饷了。东罗马帝国的人口,行将骤减。从542 年至619年,君士坦丁堡平均每15.4年就会遭到一场瘟疫重创。公元747年,由于有太多的人死于新的瘟疫,皇帝只得通过强制移民的方式往这座几乎荒无人烟的城市重置居民。

    酷寒时代(公元450年至约公元700年)

    在罗马历史上的这个关键时刻,从公元450年至公元700年前后这3个世纪不稳定的气候变化,逐渐演变成了较为显著的降温,从而有点儿像是到了“大冰期”。公元450年之前,北大西洋涛动处于正指数模式;可到了公元5世纪晚期,北大西洋涛动指数却突然转正为负,导致了长久稳定的暴风雨轨迹南移。地中海大部分地区的降水量都有所增加。与此同时,之前几百年里火山毫无动静的局面被打破,出现了猛烈的火山爆发。公元536年是一个“无夏之年”,阳光几乎没有带来多少温暖;大气中的火山灰还遮云蔽日,让太阳也变得暗淡无光。在帝国的东部地区,这个寒冷而不见阳光的年份则导致了葡萄酒产量大减。[24]

    意大利政治家卡西奥多鲁斯曾经看到过一个蓝色的太阳。[25] 意大利当年的作物虽然歉收,但前一年的丰收弥补了粮食分配上的欠缺。公元536年这一年,不但给极北方的爱尔兰带来了饥荒,也让遥远的中国异乎寻常地感受到了夏季的寒冷。通过将冰芯、树木年轮以及全球火山爆发的实物证据结合起来,我们如今就能确定,公元6世纪三四十年代是火山活动最异常与最严重的20年。公元536年北半球的大规模火山爆发,曾经让3月的君士坦丁堡上空为火山灰所笼罩;这一年,正是2,000年来最寒冷的一年。欧洲夏季的平均气温,下降幅度高达2.5℃。公元539年至540年间热带地区一次更加猛烈的火山爆发,则让欧洲的气温再次下降了大约2.7℃。当时的寒冷程度,比17世纪处于巅峰状态时的“小冰期”更加严重。

    幸好,公元535年的丰收在一定程度上暂时缓解了饥荒,而地中海地区那些农耕社会对作物歉收具有传统的韧性,这一点也发挥了作用。因此,这次饥荒的直接影响要比纯粹蔓延的饥荒更不易让人察觉。人们通常所谓的“古小冰期晚期”,充其量只能算是一个不恰当的标签;这个时期的降温,让帝国当局感受到了更大的压力,此前瘟疫的困扰与大草原上游牧部落在欧洲发动的密集袭击,早已让帝国当局不堪重负。公元500年前后,太阳活动已经开始大幅减少,导致太阳给地球带来的热量也少了。从公元6世纪30年代中期至公元7世纪80年代,太阳辐射量下降的同时,火山爆发也对全球的气温产生了影响。太阳辐射能锐减的幅度,甚至比17 世纪臭名昭著、气候酷寒的“蒙德极小期”里太阳辐射能的减幅还要大;至于详情,请参见第十三章。

    气候变化的影响,与气候变化本身一样,向来都因地而异。北大西洋涛动的突然变化,已经让暴风雨的轨迹南移,给意大利本土和西西里带来了丰沛的降雨和洪水。强降雪、低气温与更多的雨水,对土耳其(安纳托利亚)以及更往东的广袤地区也产生了影响。更为频繁的霜冻,导致许多传统种植区的橄榄树都被冻死了。北非地区则经历了灾难性的干旱化,导致大莱普提斯(Lepcis Magna)这座伟大的城市被人们所遗弃,其中的房屋则埋入了黄沙之下。北非地区不再是一座粮仓了。

    查士丁尼是一位积极主动的皇帝,他付出了巨大的心血,与气候变化导致的干旱做斗争,比如抗击持久的干旱。他下令修建了许多引水渠和大大小小的蓄水池,以及一座座战略性地分布于各地的粮仓。这位皇帝改善了粮食运输,命人开垦洪泛平原,并且让一些河流改了道。诚如一位作家所言,皇帝做到了“将林谷相连”和“让山海相接”。查士丁尼似乎认为,他可以像征服手下的臣民一样征服环境。但在他那个时代,各种大规模气候变化的力量都太过强大;一介凡夫,又怎能将其征服?

    查士丁尼奋力熬过了环境变化与瘟疫造成的双重灾难,但“古小冰期晚期”的极端气候却逐渐将帝国推向了一个关键的转折点。帝国相互联结的各个地区,则以不同的方式来到了这个关键时刻。归根结底,罗马帝国是在各种环境原因的触发下,从内部缓慢衰亡的。

    在地中海的东部,尼罗河流域已经变成一个经过精心改造和尽力组织的绿洲,因为罗马统治者的主要目的,就是让这里成为罗马的粮仓。粮食产自一个由沟渠、堤坝、抽水设施与车马组成的复杂系统,其中的各个方面都依赖大量劳力和异常艰辛的劳作。埃及人主要进行单一栽培,种植罗马与君士坦丁堡所需的小麦,除此之外几乎不种别的作物。在瘟疫导致罗马帝国诸城要供养的人口减少,使得小麦市场跌至谷底后,新收获的粮食供过于求,就给他们造成了巨大的经济损失。

    一种末日将至的感觉,在整个罗马帝国蔓延。一桩桩灾难性事件的沉重打击,似乎历数了上帝的愤怒与审判,因为上帝惩罚的都是虔诚的信徒。从6世纪起,我们就有了基督徒进行忏悔游行、旨在为不同社群赎罪的最早史料。教皇大格列高利曾经组织一场声势浩大的祈祷活动,进行了长达 3天的祷告与诵经。唱诗班齐声诵唱赞美诗,祈祷队伍则穿过了整座城市。据说,在连续不断的祷告中,曾有80人支撑不住而死去。这样的仪式,就是在呼吁人们进行忏悔。但到了最后,随着伊斯兰大军将东部领地从罗马帝国分离出去,一种新的、来自阿拉伯半岛的易卜拉欣一神论思想开始盛行起来。君士坦丁堡获取埃及粮食的那条生命线,停止了运作。数个世纪以来,罗马帝国一直如走钢丝,在脆弱与韧性的夹缝中艰难存续着。但到了最后,自然界种种不可避免的力量还是削弱了帝国百姓的意志,使得他们再也无法承受更多的苦难了。

    以任何标准来衡量,罗马帝国都像是一个庞大而复杂的企业,掌控着巨大的财富。帝国的历任皇帝,都面临着他们那些极其传统、协调良好的领地遭遇的诸多挑战。罗马帝国的衰落,是一个缓慢渐进的过程,从公元2世纪开始,一直持续到了8世纪。就像18世纪伟大的历史学家爱德华·吉本指出的那样,罗马帝国衰落的时间,比许多国家的整个兴亡过程更加漫长。[26] 这个内爆过程,并不是突然崩溃,而是一种缓慢的转变,是从一个严密控制和相对集权的帝国,变成了一个由不同社会和政治实体构成的组合体;其中的社会或者实体要么遭受了深重的苦难,甚至不复存在,要么就是兴旺发展起来了。罗马的繁荣发展,建立在奴役平民百姓尤其是奴隶的基础之上;帝国势力之所以曾经睥睨天下,是因为帝国具有优秀的军事组织能力,拥有高效地远距离运输粮食与其他商品的基础设施。帝国就是一种催化剂,使之容易受到短期与长期气候变化的影响。由于在运输和集中储存粮食方面付出了巨大的努力,因此出现相对短暂、只持续几年或者一二十年的气候事件时,帝国尚能应付。不过,随着干旱周期(尤其是特大干旱)变得更加旷日持久,对当地粮源与进口粮食的供应都造成了严重破坏,帝国的脆弱性就大大加剧了。加之罗马诸城不论大小,全都拥挤不堪,卫生条件恶劣,故像“安东尼瘟疫”与“查士丁尼瘟疫”这样的流行病既无可避免,也起到了决定性的作用。但是,尽管气候事件与瘟疫都属于转折点,我们也绝对不应忘记,经济与社会动荡,连同军事活动,常常是意外气候事件带来的冲击逐渐导致的。

    工业化之前的所有文明,都依赖于人类的劳动与自给农业。为了满足日益增长的城镇市场和供养常备军队而进行的农业集约化,以及为了养活劳工、军队和各级官吏而广泛运用的食物配给等发展手段,都加剧了日益复杂的社会在面对气候变化时的脆弱性。对于不愿冒险的自给农民而言,粮食盈余向来都很重要,因为他们耕种土地的时候,始终都对饥荒与营养不良心存担忧。相比之下,不断发展的城市和帝国则日益依赖于小麦之类的高效单一作物,可这种作物对干旱、寒冷以及降水过多都很敏感。罗马和君士坦丁堡开始严重依赖于进口遥远地区种植的粮食,而在那些地区,基本粮食作物的单一栽培差不多变成了一种产业活动。这两座城市和其他主要人口中心的居民,再加上军队和官僚阶层,全都依靠政府分配的口粮;这种配给制度,确保了政治与社会的稳定。尼罗河流域、欧洲的部分地区和北非其他地区都变成了罗马帝国的粮仓。在灌溉用水充足的几十年里,这种情况没什么问题;不过,等到埃及的洪水泛滥不足、干旱在北非各地的农田肆虐后,一切便都土崩瓦解。粮仓里空空如也,饥荒随之而来,结果就出现了粮食骚乱。面对气候变化与瘟疫,富裕的精英阶层与经常饥肠辘辘的平民之间那道日益加深的鸿沟,不可阻挡地扩大了。从罗马帝国的残垣断壁中,兴起了一个不同的、更加支离破碎的世界。国家被一些更有意义的地方性文化结构所取代,它们以新的方式塑造了世界。

    罗马帝国经历了一次又一次扩张,直到疆域从不列颠北部延伸到了美索不达米亚,并与更加遥远的地方有着贸易往来。这种扩张主要发生在气候条件相对有利的几个世纪里,将多种文化与经济纳入了一个单一而庞大的系统。其间,有许多政治人物都家喻户晓,比如尤利乌斯·恺撒、克娄巴特拉,以及许多各有优缺点的皇帝,比如奥古斯都、克劳狄乌斯、尼禄与哈德良等等。帝国是在制定了一系列经济、军事与政治战略的背景之下繁荣发展起来的,这一点值得注意,因为提出这些战略的人几乎没怎么花时间去思考长远的问题。无疑,他们也很少考虑那些会在他们有生之年过后出现的长期环境变化。尽管能够看出即将发生的种种灾难性气候变化,可我们如今的做法常常与他们没有什么两样。

    帝国后期只能采取被动的对策,因为不同于如今的我们,罗马当时并没有重大气候变化(其中也包括了重大干旱)的预警机制。

    回顾罗马帝国的解体与转型,我们很容易看出,其中有些方面与如今人们普遍关注的这个世界惊人地相似,只是我们面临的问题要重大得多罢了。易受气候变化的影响会带来种种危险,在这个方面,我们还有很多东西要向差不多2,000年前的帝王们学习。我们只要看一看如今食物链的全球化,就能明白这一点。相比于古罗马人来说,在面对重大的气候变化时,我们拥有调整自身食物链的潜在能力。不过,有一种可能性却始终存在:未来全球变暖的速度将有可能太快,规模有可能太大,以至于我们当中会有数万人甚至是数百万人挨饿。而且,如今几乎还没人从政治的角度来考虑这个问题。

    [1] 由于我们两位作者都不是研究古罗马的专业人士,故本章在很大程度上参考了凯尔·哈珀(Kyle Harper)一部经过了严密论证的综合性著作:《罗马的命运:气候、疾病和帝国的终结》(The Fate of Rome: Climate, Disease, and the End of an Empire, Princeton, NJ: Princeton University Press, 2017)。哈珀汇集了广博的资料,讨论了气候变化与流行病在帝国漫长的崩溃过程中的核心作用。这是一部非凡的作品,有时会引发争论,有时又引人深思,可以引领读者巧妙掌握这一主题的纷繁难懂之处。当然,在这里进行简要总结的时候,我们忽略了其中的许多争议与意见不一的地方。哈珀的作品当中,还含有一份全面的参考书目。亦请参见Rebecca Storey and Glenn R. Storey, Rome and the Classic Maya (Abingdon, UK: Routledge, 2017)。

    [2] 对于古罗马气候的概述,请参见Kyle Harper and M. McCormick, “Reconstructing the Roman Climate,” in The Science of Roman History, ed. W. Scheidel (Princeton, NJ: Princeton University Press, in preparation)。还有一份重要的综合性资料:Michael McCormick et al., “Climate Change During and After the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence,” Journal of Interdisciplinary History 43, no. 2 (2012): 169–220。关于“奥克莫克二号”火山喷发的资料:Joseph R. McConnell et al., “Extreme Climate After Massive Eruption of Alaska’ s Okmok Volcano in 43 BCE and Effects on the Late Roman Republic and Ptolomaic Kingdom,”Proceedings of the National Academy of Sciences 117, no. 27(July 7, 2020): 15443–15449. doi: 10.1073/pnas.2002722117。
    [3] 老普林尼(Pliny the Elder,23—79),古罗马时期一位百科全书式的作家兼博物学家,代表作是《自然史》(Natural History )。其拉丁语全名为盖乌斯·普林尼·塞孔都斯(Gaius Plinius Secundus),因其养子也叫普林尼,故冠以“老”“小”来加以区别。——译者注

    [4] 暗渠是指坡度平缓的地下渠道或者隧道,利用含水层或者深井来灌溉农田。它们在伊朗被称为“坎儿井”,在中东和北非地区广泛应用了数个世纪。它们基本上属于地下引水渠。

    [5] 该段的引文与来源:Harper, Fate of Rome, 53–54。

    [6] Harper, Fate of Rome, 54.

    [7] 关于西格韦尔斯(Sigwells):Richard Tabor, Cadbury Castle: The Hillfort and Landscapes (Stroud, UK: History Press, 2008), 130–142。关于卡茨戈尔(Catsgore): R. Leech, Excavations at Catsgore, 1970–1973 (Bristol, UK: Western Archaeological Trust, 1982)。

    [8] Harper, Fate of Rome, 57.

    [9] Harper, Fate of Rome, 57–58.

    [10] 1 斗相当于1配克(peck),或者约合9升的干量货物。

    [11] 这几段以哈珀的《罗马的命运》第92页至98页论述为基础。对于印度洋上的海运与贸易进行的总结,参见Brian Fagan, Beyond the Blue Horizon: How the Earliest Mariners Unlocked the Secrets of the Oceans (New York: Bloomsbury Press, 2012), chaps. 7 to 9。

    [12] Hui-Yuan Yeh et al., “Early Evidence for Travel with

    Infectious Diseases Along the Silk Road: Intestinal Parasites

    from 2000-Year-Old Personal Hygiene Sticks in a Latrine at

    Xuanquanzhi Relay Station in China,” Journal of

    Archaeological Science: Reports 9 (2016): 758–764.

    [13] William H. McNeill, Plagues and Peoples (New York: Doubleday, 1976), and Harper, Fate of Rome, chap. 3,都论及了“安东尼瘟疫”。

    [14] 西普里安(约200—258)虽有柏柏尔人的血统,但后来成了迦太基主教,他同时也是一位著名的早期基督教作家。他描述的那场瘟疫,后来就以他的名字命名。引自Harper, Fate of Rome, 130。

    [15] 整体概述请参见 Lucy Grig and Gavin Kelly, eds., Two Romes: Rome and Con-stantinople in Late Antiquity (Oxford: Oxford University Press, 2012)。

    [16] Harper, Fate of Rome, 185.
    [17] M. Finné et al., “Climate in the Eastern Mediterranean, and Adjacent Regions During the Past 6000 Years — a Review,”Journal of Archaeological Science 38 (2011): 3153–3173.

    [18] E. Cook, “Megadroughts, ENSO, and the Invasion of Late Roman Europe by the Huns and Avars,” in The Ancient Mediterranean Environment Between Science and History, ed. William Harris (Leiden: Brill, 2013), 89–102. See also Q Bin Zhang et al., “A 2,326-Year Tree-ring Record of Climate Variability on the Northeastern Qinghai-Tibetan Plateau,”Geophysical Research Letters 30, no. 14 (2003). doi: 10.1029/2003GL017425.

    [19] 引自Harper, Fate of Rome, 192。阿米亚努斯·马凯林努斯(Ammianus Marcellinus,约 330—约395)既是一名战士,也是古罗马最后一位了不起的历史学家。他的主要作品是《大事编年史》(Res gestae),这是一部从塔西佗结束之处写起的31卷本历史巨著,前13卷现已佚失。

    [20] Described by Harper, Fate of Rome, 199–200.

    [21] 在概述“查士丁尼瘟疫”时,我们主要参考了哈珀的《罗马的命运》第6章。然而,关于这场瘟疫的地方性影响和随之而来的死亡率,以及鼠疫杆菌的历史,我们还需要了解更多的信息。亦请参见William Rosen, Justinian’ s Flea (New York: Penguin Books, 2008)。

    [22] 神烈怒的酒醡,语出《圣经·启示录》中的19:15。原文为“他必用铁杖辖管他们,并要踹全能神烈怒的酒醡”。“酒醡”是古时榨酒的器具。——译者注

    [23] 以弗所的约翰(约507—588)曾是叙利亚正教会的领袖兼历史学家。他的《教会史》(Ecclesiastical History)中的第三部分论及了“查士丁尼瘟疫”,其中的内容都是他目睹的第一手资料。他认为那是神之震怒的征兆。引自Harper, Fate of Rome, 227。

    [24] Stuart J. Borsch, “Environment and Population: The Collapse of Large Irrigation Systems Reconsidered,” Comparative Studies in Society and History 46, no. 3 (2004):451–468,以及该作者的其他论文。

    [25] 古罗马政治家卡西奥多鲁斯(约485—585)也是一位可敬的学者与作家。此人在爱奥尼亚海边的庄园里修建了维瓦留姆修道院,专门用于阅读和抄录手稿。

    [26] 爱德华·吉本(1737—1794)是一位历史学家兼下院议员,著有不朽之作《罗马帝国衰亡史》。此书出版于1776年至1788年间,总计6卷。Edward Gibbon and David P. Womersley, History of the Decline and Fall of the Roman Empire, 3 vols. (London: Penguin Press, 1994).

    第六章 玛雅文明之变(约公元前1000年至公元15世纪)

    古罗马人曾经运气很好。公元前200年以后,在时间长达4个世纪和横跨地中海世界大部分地区的那种气候相对稳定、温暖与湿润的环境下,罗马帝国曾经繁荣发展和不断扩张,达到了鼎盛时期。他们建立了一个以集约化农业为基础的辽阔王国,但在很大程度上并未意识到,支撑他们那座看似不可战胜的大厦的环境基础已经岌岌可危。当时的帝国似乎注定会永垂不朽,注定是一个将永远存续下去的统治实体。许多人都以为,假如帝国真的衰亡,那就意味着世界末日到了。

    虔诚的古罗马人都认为,人类的未来掌控在神灵的手中,无论有众多神灵还是只有一个神灵,都是如此。罗马帝国的历任皇帝之所以像古时的许多统治者一样,强调他们与神灵之间具有密切的联系,原因就在于此。然而,我们在前一章中已经看到,众神未能对公元3世纪以后气候不稳定的严酷现实进行干预;这些现实,最终削弱了一个深受复杂的气候、政治和社会压力所困,还暴发了灾难性瘟疫的帝国。罗马与君士坦丁堡这两座大城市,在一个被不断扩张的伊斯兰教所包围、发生了变革的中世纪世界中幸存了下来,只是实力大大下降了。地球围绕太阳公转时地轴倾角的细微变化与强大的火山活动,助长了欧洲与地中海地区的动荡不安和危险局势,从而导致了所谓的“黑暗时代”。不过,在深入探讨这种交织着气候变化、政治与战争的混乱局面之前,我们必须走得更远一点,因为公元1千纪早期较为暖和与稳定的环境条件,还在美洲促生出了一些令人惊叹的文明。

    无论是墨西哥中部高原上靠近墨西哥城实力强大的城邦特奥蒂瓦坎,还是尤卡坦低地上具有多样性的玛雅文明,都在公元1千纪的中美洲取得了伟大的成就。[1] 玛雅统治者声称自己拥有神圣的血统,并且利用精明的商业头脑,涉及政治结盟与联姻的专业外交手段,结合精英武士阶层中偶尔爆发的战争,统治着那里。他们掌管着一个个动荡不安、以令人眼花缭乱的速度兴亡更替的王国。在其鼎盛时期,从公元250年左右一直持续到了公元900年前后的古典玛雅文明,包括大约40个城市与王国。[2] 但在公元10世纪,南方低地上的古典玛雅文明却解体了;那里如今属于危地马拉的佩滕。王朝接连瓦解,城市纷纷崩溃,城中居民则散布到了乡间的村落里。大量人口南迁到了如今的洪都拉斯,就像印度河流域诸民族在其文明解体之后迁徙到了拉贾斯坦一样。一度人口稠密、有人耕作的农田都变成了森林,后来一直都没有复原。

    古典玛雅文明的剧变,吸引了一代又一代学者进行研究;不过,只是在过去的大约20年里,气候变化以及由此带来的干旱与洪水才变成了这种学术性讨论中的一个主要方面。新的一代代更准确的气候资料,将揭示一段错综复杂的历史,而其中涉及的,也远不止干旱与飓风。

    低地与君主(约公元前1000年至约公元900 年)

    尤卡坦半岛上的玛雅中央低地的环境,对于以分散的社区中众多分散的农庄为生存之根本的自给农民而言,极具挑战性,而对那些由野心勃勃的君主所统治的、复杂而又竞争激烈的城邦而言,就更是如此了。[3] 然而,玛雅人却在这个一度森林密布的高原上耕作和生存了2,000多年;高原由松质岩石构成,耸立于半岛之上。那里的现实情况,实在令人生畏。季节性的降雨极其变幻莫测,只是在炎热的夏季里出现通常短暂的暴风雨时,才会降雨。冬季则气候干燥。雨水会迅速渗过基岩。差不多所有的低地上,都没有任何形式的永久性水源供应,只是散布着一些相距遥远的泉眼。这种含水层,位于地表以下100米或更深处,故人们很难获取。再加上偶尔会有长达10年或者100 年的干旱,水源就成了人们在这里生存下去的最关键因素。在这种时期,蒸散——来自海洋、湖泊、植物冠层和其他源头并且超过了降雨量的水运动——就至关重要了。

    茂密的季节性雨林,覆盖着这片土地;当时,此地还没有被人们开垦出来进行耕作。深度各异的肥沃土壤上,植物生长得茂盛茁壮。低洼地带全是深达1米的黏土,雨季降水形成的径流都汇入其中,形成了一个个弥足珍贵的季节性湿地。磷是植物的一种有限养分,主要由森林的冠层获取,然后会被雨水冲刷到土壤里。为了生产出越来越多的粮食盈余,满足数量日增的城邦所需、满足贪得无厌的城邦头领的要求,人们必须进行多样化和高效的农业耕作,并且深入了解复杂的低地环境。

    第六章里提及的考古遗址

    公元前1000 年至公元前 400 年间,有大批玛雅农民迁徙到了尤卡坦低地上;其中许多农民都来自墨西哥湾沿海,那里曾经出现过一个个繁荣兴旺的奥尔梅克社会。尤卡坦半岛上的本地农业繁荣已久,人们在这里栽培作物,并且在数个世纪的时间中对这里的森林环境有了深入的了解。[4] 到公元前600年时,他们正在兴建一座座巨大的金字塔,将祖先安葬于其中的平台或者其他结构里。这些金字塔成了他们礼敬祖先的圣地,家谱则成了他们申明自己对某些地方拥有所有权的重要方式。在几个世纪的时间里,他们的后人建造了一些庞大的建筑群,一座座精美的建筑物上都装饰着神灵与祖先的灰泥面具。由此诞生了“查尔阿霍”(ch’ul ahau)这种神圣王权制度,“查尔阿霍”也就是“圣主”的意思。伟大的埃尔米拉多城就说明了这一点。数个世代以来,当地农民都是靠耕作公元前150 年至公元50年间开垦的湿地为生。

    这几个世纪,正是玛雅人开始大规模地改造当地环境的时候。此时,他们不但需要养活越来越多的农民,还需要养活越来越多不从事粮食生产的人。他们曾移走数百万立方米的泥土,修建了水库、沟渠和池塘,为旱季蓄水。埃尔米拉多城在其鼎盛时期,曾占地16平方千米;它位于一个洼地之中,是靠洼地里的水源供应发展起来的。随着人口增加,为养活民众而进行的环境改造和兴建公共建筑对公共劳动力的需求也增加了。在数代人的时间里,社会不平等变成了一种常态;常常与执政的君主关系密切的特权精英阶层,也日益疏离了平民百姓。

    埃尔米拉多城在突然之间就崩溃了;至于原因,部分在于过度砍伐森林,部分在于地表径流和侵蚀破坏了周围的湿地,使之成了降水丰沛的牺牲品。数个世纪以来,当地农民都是靠湿地来种植大量的粮食作物,提供此城所需的粮食盈余。但是,由于这个城邦有大量的非农业人口,所以等到平民百姓无法养活精英阶层的时候,其政治与社会基础就受到了威胁。对所有人而言,唯一的对策就成了迁徙,即随着城市中心日渐没落,迁徙到农村地区一些规模较小的定居地去。到了公元250年,玛雅人的政治重心已经转移到了中央低地;那里的一些新兴中心,比如卡拉克穆尔和蒂卡尔,已经在降水较为丰沛的一个时期里发展成了实力强大的城邦。从破译的象形文字中,我们得知了一些城邦君主的情况;这些象形文字,向我们揭示了一幅外交、贸易与战争交织且不断变化的图景。城邦的一切,都以王权制度为中心;这种王权按照可以追溯至一位开国祖先的朝代更替顺序,由父传子或者由兄传弟。玛雅文明不同于古埃及或者罗马帝国,从来就没有形成一个高度集权的国家,而是由大小不一的政治单元所组成;那些政治单元,最终演变成了四大城邦和无数个较小的王国。这是一个竞争极其激烈的社会,由一些实力强大的王朝统治着;它们的大本营,就是蒂卡尔、卡拉克穆尔、帕伦克和科潘之类的重要中心。

    埃尔米拉多城衰落之后,蒂卡尔与附近的瓦哈克通便乘虚而入,填补了由此留下的政治真空。公元1世纪,一个精英阶层开始在蒂卡尔掌权;那里的象形文字资料表明,从公元292 年至869 年间,蒂卡尔历经31位统治者,实行了大约577年的王朝统治。这个实力强大的新兴城邦,逐渐变成了一个多中心的王国,然后在公元557年被一个崛起中的国家的君主征服了;那个国家就是卡拉科尔,位于如今的伯利兹境内。

    到了公元650年,主要的贵族王朝都曾主持过一些繁复的公开仪式,以确认他们的精神血统与政治权力。他们把自己的行为与神灵、祖先的行为联系起来,有时还会通过声称他们的血统重现了神话事件来将其合法化。他们把他们的历史与当下以及超自然的来世联系起来,并将社会嵌入一个由神圣的地点与时间所组成的环境里。一位玛雅君主会煞费苦心地宣称,他是在世者、祖先和超自然世界之间的媒介。这一点,就是统治者与被统治者之间一种不成文社会契约的基础;这里的被统治者就是千千万万玛雅人,他们付出了巨大的环境代价,支撑着小小的一撮精英。玛雅低地上的人口,出现了急剧增长。肥沃程度一般的雨林土壤上,作物收成却越来越少。就算是短暂的干旱周期,也会危及宝贵的水源供应,尽管有作物多样化这样历史悠久的惯例,也是如此。这片土地迟早无法再养活大量的非农业人口。

    并不是说贵族们没有意识到气候变化带来的危险。实际情况恰恰相反,因为在他们统治的数个世纪中,气候正在逐渐变得干旱起来。他们生活中的大部分仪式,都是以水源与降雨为中心。蒂卡尔的统治者还匠心独运,建造了一些神庙金字塔,对全年的富余雨水加以控制,因为这些金字塔的四面能将雨水导入蓄水池,用于灌溉附近的田地。玛雅统治者应对人口增长的措施,就是修建蓄水池和范围往往相当广泛的水源控制系统来蓄水,以应对干旱年份。

    玛雅农民之古今

    公元3世纪至10世纪间,整个玛雅低地上猛增了数百个大小不一的定居地,靠形式异常多样的农业耕作为生。其中,既有在森林空地上进行的刀耕火种式农业(称为火耕农业),在坡地上进行的梯田栽培,也有利用沼泽和湿地中的台田进行的耕作,这种台田农业的不同凡响之处在于积极地利用环境和稀缺的水源。许多农民还有各种各样的农户庭园,栽种着大量的植物与树木。在地方层面上,玛雅农民管理着森林、蓄水,并且充分利用了整个低地上的不同土地与食物资源。他们干得非常成功,故在长达4,000年的时间里应对好了艰苦环境带来的种种风险。他们之所以做到这一点,是因为他们最深入地了解了自身所处环境的具体情况,并且建立和维持着各种集约化的粮食生产体系;在公元9世纪玛雅文明遇到严重问题之前,他们至少经受了两次漫长干旱的考验。

    幸运的是,中美洲低地的玛雅农民后裔,如今仍然在那种严苛的低地环境里繁衍生息。现代村民采用的许多惯常做法,很早以前就一直存在;这就说明,它们可以让我们深入了解到,以前的人是如何应对干旱、作物歉收以及其他一些意外的气候灾难的。现代玛雅农业的多样性可谓惊人,这是他们针对从人口密度不断上升到当地土壤质量以及降雨模式变化等一切因素所做的反应。即便是作物混种,也会根据环境条件而逐年、逐季变化。比方说,伯利兹的凯克奇玛雅人如今仍然以传统农业为生。他们在排水不良的地区耕作台田、山坡梯田,雨季则会利用“火耕农业”这种刀耕火种式耕作系统。[5] 凯克奇人的旱季河岸农业,就是那种需要长期经验的机会主义创新能力的一个例子。每个农民都须平衡好气候条件、植被再生与其他的任务之间的关系。玉米越早播种下地越好,因为这种作物须趁着土壤仍然湿润的时候播种,才会有一个良好的开端。每年旱季开始的时间差别很大,会让问题变得很复杂,而收获火耕农业作物这一关键任务也是如此。假如火耕农业的收成不错,那么旱季耕作就不要那么多时间了。收成不好,则意味着他们要花更多的时间进行清理和耕种。

    这样的河岸农业,是在一种规模更大的自给周期之内进行的。其中的关键词是“周期”,因为这有助于我们揭开玛雅人年复一年地应对毫无规律可言的气候变化时所用的策略;实际上,其他许多自给农民也是如此。这样一种周期性的生存,意味着靠土地为生的人会把时间看成一个无穷无尽的循环。他们的祖先经历了同样的周期:播种、作物生长、收获,然后是一个宁静的季节。这样的生活,具有一种始终不变、取决于作物与降雨的恒久性。

    这种有力的设想,赋予了受人尊敬的祖先一种核心作用。玛雅的王公贵族之所以强调他们与神圣祖先之间的亲密关系,埃及的法老们之所以举行繁复的公开仪式来证明他们作为神圣统治者的合法角色,都有着迫不得已的理由。王公贵族与祖先之间的各种关系往往具有权威性,并且执着于精神上的合法性。祖先与在世者之间的联系,深入渗透到了乡村生活当中,而在乡村环境下,人类的生存曾经依赖于他们与环境、降雨、植被以及土壤肥力之间的密切关系,至今依然如此。当今凯克奇人依赖常识、详尽的环境知识加上一种根深蒂固的信念,即认为祖先积累的经验对于生存来说是一项宝贵的遗产。

    在这个地区,祖先的经验无疑是一项宝贵的遗产。以前,这个地区一度人口稠密,高度依赖于农民的耕作技术,还有降雨。[6] 这里的人口,在公元 700 年至 800 年间达到了峰值。当时,人口密度达每平方千米600人至1 200人的情况并不少见。据估计,生活在这些低地上的人口曾经达到了惊人的1,100万。其中大多数人都没有住在那些大城市里,而是以单个家庭的形式广泛分布于当地环境中,生活在所有的非城市地区。这种模式,与柬埔寨吴哥城周围的情况并无不同;在第九章里,我们将介绍后者的情况。可叹的是,无论是在柬埔寨还是在这里,城市腹地的任何一种环境压力,都增加了当地出现重大的社会动荡与政治动荡的概率。到了公元8世纪,南部低地的古玛雅文明就行将没落下去了。

    假如生活在公元8世纪末的玛雅低地,那么,您会居住在一个经过了人为改造、气候正在逐渐变得干旱起来,与数个世纪之前截然不同的环境中。随着人口增长和作物产量下降,环境改造形成的累积效应加速了。清除了植被的地区与有所管理的森林、田地、城市结合起来,将大部分低地变成了一个人工改造的环境。当然,密集的人口几乎向来都会导致乱砍滥伐,而树木减少则导致了气温上升和降水减少。此外,焚烧木柴与庄稼还会导致大气中的灰尘与污染物含量增加。

    随着低地上的定居地增加,不透水地表的面积也急剧扩大了。建筑活动的增加与耕地面积的扩张,进一步减少了磷的捕获量,增加了磷的沉积量。在以前的数个世纪里,高地上的沉积物会被冲刷到下方湿地农业多产高效的洪泛平原上,但农民们通过广泛采用坡地梯田进行耕作而减少了沉积磷的流失。仅仅是维护农田系统,以及不断增加的沟渠、池塘和水库,就需要成千上万的平民百姓和整个整个村庄的劳动力。施肥、培土与除草等日常工作,也是如此。

    光是滥伐森林造成的长期影响,就具有毁灭性。到了公元前600年,危地马拉北部佩滕的大部分森林已经被砍伐殆尽。砍伐森林的做法持续到了公元9世纪,直至人类改造过的土地上大部分林木植被全都消失。持续不断地滥伐森林、改变土地用途以及玛雅农业造成的环境恶化等方面结合起来,形成的长期效应就导致了降雨减少、气温升高和水资源日益短缺等后果。[7] 这些方面,全都截然不同于自然出现的干旱周期。但在一个严重干旱的时期,一旦森林差不多被砍伐殆尽,农民采用的种种持续性适应对策就不会成功。政治不稳定与社会动荡随之而来,玛雅文明也就此分崩离析了。人类和环境系统到达了一个转折点,从而导致了文化衰落和最终的人口减少。

    转折点之后(公元8世纪至10世纪)

    古典玛雅文明在这些低地的衰落,是人类与环境之间不断变化的关系带来了各种压力,再加上干旱周期激增导致的。但与此相关的,却远非食物供应与水源之类的基本要素。维持玛雅文明持续发展的决定性因素变得太过复杂和难以承受的时刻,已经到来——至少对统治者与精英阶层来说,就是如此。由于精英阶层根植于玛雅社会种种复杂的社会经济、意识形态和政治层面之中,所以维持或者发展这个系统的障碍极其巨大——或许巨大到了什么都不做让他们觉得更加容易的程度。公元9世纪中央低地的玛雅文明发生巨变,原因并不是单一的;只不过,世人如今对这种判断仍然存有重大争议。[8]

    研究人员曾经在北部低地的奇恰卡纳布湖(Lake Chichan canab)中钻取岩芯,表明那里在公元800年至1000年间出现过严重的干旱;此后人们就一直认为,气候变化是玛雅文明没落的一个主要诱因;更具体地说,干旱就是罪魁祸首。[9] 湖芯表明,公元750年至1100年间,这里的气候普遍较为干旱;从加勒比海的卡里亚科海盆中钻取的一段深海岩芯,也表明这里有过多年的干旱,比如公元760年、810年、860 年和910 年。然而,湖泊与海洋岩芯显示的信息,并没有达到必要的精确性。因此,许多专家往往低估了气候在古典玛雅文明衰落中的作用。

    新一代的研究,则得出了更加精确的干旱与降水信息。玛雅低地南部约克巴鲁姆洞穴(Yok Balum Cave)中一根56厘米长的石笋,为我们提供了一种精确的、时间长达 2,000年的气候序列。[10] 约克巴鲁姆洞穴中的这根霰石(一种碳酸钙矿物质)石笋之所以尤为重要,是因为它不但生长得相当迅速,而且持续生长了2,000年之久。研究人员利用铀系断代法,从中获得了不少于40个降雨年代的数据;它们精确到了5年至10年之内,并且与其他来源的气候数据非常吻合。公元440年至660年间,这个地区的降水异常丰沛,而在随后的三个半世纪里,气候则逐渐变得干旱起来。这种变化,最终以公元1000年至1100年间一场旷日持久、极其严重的大旱而告结束;那场大旱,也是2,000年里旱情最严峻的一次。情况还不止如此。公元820年至870 年间的一场大旱,持续了半个世纪之久,而公元930年左右,又发生过一场程度较轻的旱灾。从约克巴鲁姆洞穴石笋中获取的气候信息,与低地其他地方对公元820年至900年的一场严重干旱的记载,以及对公元1000年至1100年间另一场旱灾的历史记载完全吻合。

    以任何标准来看,我们从一系列证据中了解到的这些干旱,都是旷日持久的干旱时期;它们必定给一个降水变幻莫测的地区的农耕社会带来了严重的影响。干旱年份对作物收成与农业生产力具有显而易见的影响。假如雨季姗姗来迟或者作物绝收,这些影响便尤其严重。公元1千纪末期出现的干旱,却要另当别论。它们都持续了几十年,甚至是几个世纪之久。

    诚如考古学家道格·肯尼特(Doug Kennett)与气候学家大卫·霍德尔(David Hodell)指出的那样,农业干旱与水文干旱之间有一种重大的区别。前者是由雨水不足、蒸发增加使得土壤变干燥造成的,最终会导致作物歉收。在此期间,湖泊水位、河流流量和地下水供应却有可能在数年之内都不受影响。玛雅人很清楚,他们必须节约用水。这样的策略,虽然在短期和稍长时期内都有效,但在很大程度上取决于消耗水资源的人口密度。假如干旱周期旷日持久,或者异常严重,那么,随着水源枯竭或供应稀缺,就会出现水文干旱。如此一来,就有可能造成严重的社会经济后果,而当人口密度不断上升、水和环境中的其他资源供不应求时,影响则尤为严重。

    导致玛雅文明没落的,远非干旱一个方面。玛雅社会属于一个金字塔式的社会,由一小部分精英统治着;他们把武力和精心打造的意识形态结合起来,享有无上的权力。他们的生活水平比工匠与平民百姓高得多,几乎所有的财富都集中在贵族手中。同时,他们还控制着像黑曜岩与盐之类的重要资源,以及像天文学、数学与历法这样的复杂知识。与民众之间的这种不成文社会契约,就是精英阶层在意识形态、物质和精神上具有权威的保证。但是,随着他们煞费苦心地制定的种种统治机制变得比以往更加复杂、更加保守,问题的解决也变得日益棘手起来。

    维护精英阶层的权威、政治权力和财富并将其合法化,成了一项越来越复杂的任务,涵盖了从维护基础设施到开垦湿地、掌管军队进行防御以及袭扰邻邦等各个方面。当时的城邦都是君主制国家,由思想僵化但实力强大的君主统治着;百姓都认为,这些君主拥有半神的种种力量。除了他们自己那一幢幢奢侈华丽的宫殿豪宅,他们还强征大量的粮食盈余,用业已习惯的做派供养着宫廷、各级官吏,以及一个树大根深的精英阶层。他们实施的军事征伐,需要获得百姓的支持。无数技术熟练的建筑师、工匠、书吏以及非农人口也是如此,他们需要口粮和其他商品才能工作。当时的主要粮食作物,就是玉米;这种粮食极其重要,在公共仪式、私人仪式和艺术当中都扮演着重要的角色。不过,玉米属于热带作物,几乎不可能在玛雅低地这种潮湿的环境中长久储存。其他作物包括豆类、南瓜和辣椒,但无论以哪种作物为食,每个玛雅农民都必须养活自己的家人,同时为下个季节留出充足的种子。此外,每个农户还要向统治者和精英阶层上缴粮食、提供劳役,以维持众多相互争斗的王国中日益苛刻和错综复杂的上层建筑。再加上作物和土壤生产力不同,还有地形以及最重要的水源供应等因素,就使得哪怕是对短期的气候变化迅速做出反应,也成了一项他们难以应对的任务。

    到了8世纪末,统治者已经无力兑现他们对社会所做的承诺,尤其是无力在干旱持续时通过大量水库提供清洁水源了。此时,已有数百年历史的经济与政治结构,连同其中半神一般的君主,都陷入了严重的没落之境。在一个被激烈的竞争与林立的派系所撕裂的社会中,统治者对被统治者的严苛要求在贫富之间造成了一种直接而持久的紧张关系。一切所依赖的,乃是一个最终有可能难以为继的自给农业社会;可这个社会,却生活在一个深受降水不足、干旱无法预测且旷日持久两个方面困扰的地区。

    权威无能造成的不利政治影响是极其巨大的。尽管古代玛雅社会具有多样性,但也具有许多共同的文化传统,其中就包括了至关重要的神圣王权制度。这里的国王或者女王,就是较大的王国与无数等级不一、面积较小、效忠情况也不断变化的领地之间种种不稳定关系中的主角。每一位玛雅统治者,都生活在一种充满政治色彩的环境下,其中既有短暂的结盟与贸易网络,也有和祖先之间的亲缘关系。但归根结底,效忠与文化联系都具有地方性;这一点,也使得他们几乎不可能采取全面的措施来应对气候变化。

    科潘解体(公元435年至1150年)

    随着一度强大的城邦纷纷解体,工匠和平民都分散到了城市腹地,或者迁往其他地方以寻找机会。例如,洪都拉斯境内的科潘是一个宏伟壮观的玛雅文明中心,那里点缀着许多金字塔和广场,占地面积达12公顷。[11] 公元435年12月11 日之后的4个世纪里,有一个实力强大的王朝统治着科潘王国;这个王朝的开创者,是雅克·库克·莫[K’inich Yak Ku’k Mo’,或称“伟大的太阳神绿咬鹃金刚鹦鹉”(Great Sun Quetzal Macaw)——金刚鹦鹉与绿咬鹃是两种羽毛鲜艳的鸟类]。

    人们在科潘周围长期进行的实地考察,记录了这个“太阳鸟”王朝治下的400年间人口方面的巨大变化。公元550年至公元700年间,王国的人口曾经急剧增长。人们都住在中心区及其周边地区附近,只有少量的农村人口。人口和社会结构的复杂程度都增加了,一直发展到有18,000人至2万人生活在科潘河谷里;至于其核心区域,每平方千米则有大约500 人。似乎每隔80年到100年,这里的人口就会翻一番。农村人口仍然非常分散,但农民此时开始耕种不太理想的山麓之地,以增加作物的收成。

    不过,变化即将出现。公元749年,一位名号叫“烟壳”(Smoke Shell)的君主登上王位,统治了这个一度伟大的城邦。在一个派系斗争激烈、内部局势紧张的时代,此人开始疯狂地大兴土木;其中,有些工程就是降雨减少的现实情况引发的。当时的政治秩序似乎已经改变,因为一些小贵族纷纷请人给自家的房子刻下铭文,仿佛他们是在一个政治权威日渐衰落的时代,以此来维护自身的权利。意义深远的人口变化与政治变革,也随之而来。“烟壳”王朝的统治在公元810 年终结,城市人口也正是从此时开始减少。40年的时间里,住在城市中心及其边缘的人口中,差不多一半都迁走了,可农村人口却增长了 20%。随着连贫瘠耕地也被过度开发和土壤不受控制地遭到侵蚀,由此形成的累积效应开始带来恶果,而一些小型的地区性定居地便取代了大型的城市中心。1150 年,生活在科潘河谷中的人口已不过5,000至8,000人了。

    科潘的人口外迁,既是人们对作物产量下降和城市生活快速发展所做的一种合理反应,也是他们对严重干旱的一种传统反应,与许多古代社会无异。这种外迁,并非只有这里出现过。在蒂卡尔和卡拉克穆尔等中心城市的腹地进行的长期研究已经提供了充足的证据,表明当时密集的城市人口正在减少。公元8世纪以后,南部低地上的广大地区都已为人们所遗弃,后来再也没有人口聚居;就连西班牙殖民者对美洲进行了“武装远征”之后,也依然如此。玛雅人口的增长,依赖于一种不考虑漫长干旱等长期问题的农业系统。在这种文明的鼎盛期,居住在这些低地上的玛雅人或许多达1 100万,比如今生活在那里的人口还要多。到了此时,这个农业系统再也无法扩大,再也无法生产出贪得无厌的精英阶层所需的种种财富。就像科潘和蒂卡尔一样,那些一度很有影响力的城邦,就只有没落和人口外迁的路可走了。

    许多记载玛雅人口疏散的文献都会给人一种印象,似乎玛雅诸社会当时通通解了体。实际情况显然并非如此。有些城邦缩小了规模,幸存了下来。还有一些城邦则继续繁荣发展着,特别是那些紧邻重要河流和位于主要贸易线路两侧的城邦。沿海地区的许多中心也存续了下来,尤卡坦半岛的北部沿海尤甚。一些强大的经济与社会因素发挥了作用,其中包括:有通往沿海与河流贸易线路的通道;战争不断;或许还有一个最重要的因素,那就是贸易活动发生了巨变,从内陆贸易转向了海上贸易。

    干旱与作物歉收,加剧了城邦之间争夺粮食供应与争相控制贸易线路的局面。在公元7世纪和8世纪,许多地方都爆发过残酷的战争,但它们不一定都是干旱导致的。玛雅的君主,当时都是依靠玉米收成来维护他们的实力。直到气温在周而复始的干旱期间达到了30℃左右,作物产量才不再增加。此后,作物收成便迅速减少,而水库的水位也大幅下降了。由于气温超过30℃的天数越来越多,粮食供应骤减,从而威胁到了王权。为此,那些野心勃勃的统治者便开始进攻其他王国,以为只要征伐成功,就可以重新巩固他们当时似乎正在不断衰落的合法地位。干旱周期可能也减少了暴力冲突,因为食物与水源供应不足,让各个王国在备战时都要困难得多了。但是,不管气温条件如何,暴力冲突在玛雅历史上都时有发生,以至于有些贵族为了躲避暴力,还在大片大片的农田周围修建了防御性的城墙,保护正在生长的庄稼,却没有去加固神庙和以前修建的其他一些宏伟建筑。

    崩溃(公元8世纪以后)

    虽然在南部低地玛雅社会的崩溃过程中,战争可能确实起到了作用,但干旱在摧毁玛雅社会的过程中扮演了一个重要角色也是无可置疑的。约克巴鲁姆洞穴石笋中记录下来的历史干旱周期,与那里出现作物歉收、饥荒,以及暴发与饥荒有关的疾病的时间相吻合。还有证据表明,当时不但人口数量减少,而且人们纷纷迁往了规模较小的定居地。这是一种经典的迁徙对策;在一个干旱变得比以前更加旷日持久、旱情也更加严重的时代,人们再次显著地应用了这种策略。

    实际情况究竟如何呢?古典玛雅王权的逐渐瓦解并非一种剧变。更准确地说,早在公元780年至公元800年间,南部低地上那些历史悠久的政治与社会网络便已开始瓦解,同时战争也开始愈演愈烈。[12] 由此导致的结果,就是道格·肯尼特和其同事们所称的“割据”,因为政治网络权力变得分散起来,人口则开始外迁散居。与其说这是一种崩溃,不如说是社会的一种重新组织;公元900年之后,西班牙殖民者“武装远征”之前,留存于世的文字、历法以及其他珍贵的文化传统都体现了这一点。

    最急剧的变化发生在那些以危地马拉北部、伯利兹西部、尤卡坦半岛南部以及洪都拉斯的科潘地区为中心的玛雅王国里。它们留下了一片开垦过的土地,可如今那里仍是几乎无人居住的森林。中央低地上的森林虽然恢复了,可人们再也没有回去,以至于那里的雨林后来成了一个避难所,让玛雅难民得以躲避西班牙人的统治。就算到了今天,那里的人口密度也较古典玛雅时期减少了一半乃至三分之二。究竟为什么会这样,如今依然是一个谜。人们不再大范围毁林开荒了;一直要到现代,人们才再次开始砍伐硬木。一小部分人有可能曾经冒险进入过那片植被茂密的土地,采伐一些具有经济价值的树木,比如拉蒙树;这些树木的果实与坚果营养丰富,是容易发生旱灾的雨林环境下的一种珍贵的食物来源。或许,原因在于开垦森林、恢复集约化农业的基础设施需要付出的人力成本太高了。

    北部的气候事件(公元8世纪以后)

    玛雅文明继续在尤卡坦半岛北部蓬勃地发展着。[13] 一个以奇琴伊察为大本营且实力强大的王国,曾经从公元8世纪繁盛到了公元11世纪;至于原因,部分就在于许多百姓逃离了日益干旱的南部内陆地区,成了这个王国的新臣民。假如我们明白北方的地表水源供应其实要比南方稀少得多,那么,这个王国的崛起过程就会令人觉得难以置信了。奇琴伊察的实力,既源自积极扩张与建立同盟,也源自它控制了海上贸易和玛雅世界广大地区之间的联系。在这种情况下,人们应对干旱时采取的措施主要是经济和政治方面的,它们极其有效,以至于玛雅文明出现了复兴;只不过,这是以一种不同的方式实现的,注重共享统治。

    公元 11 世纪,这个地区发生了一场最漫长和最严重的旱灾,破坏了长久确立的现状,动摇了奇琴伊察的统治地位。但公元1220年前后,这里又崛起了一个新的国家,它以位于北方内陆的玛雅潘为大本营。[14] 当时的玛雅潘大约有15,000 位居民,隶属于一个实力强大的区域联盟,是其重要的政治首都。这是玛雅文明的一种国际性复兴,其特点是兴建了许多宏伟壮观的建筑,展开了广泛的对外交往,而传统的宗教信仰也得到了重振,有许多华美的抄本来加以纪念。由于所处的位置靠近一系列呈环状分布的天坑(即自然形成的深坑),地下水源丰富,故玛雅潘繁盛发展到了公元 1448年左右,后来又与严重的干旱抗争了一个半世纪之久。其间的一次次干旱对粮食供应造成了严重的破坏,扰乱了市场网络,并且导致了政治动荡和随之而来的战争。

    玛雅潘遗址(尤卡坦半岛,墨西哥)

    不过,玛雅文明还是存续了下来;原因部分就在于那些重要中心之间的联系并不紧密,因此它们不那么容易受到曾经颠覆了南方各个王国的种种政治动荡的影响。直到西班牙人开始“武装远征”,许多沿海城镇都令人瞩目、一片繁荣,广大地区也运作着各种复杂的市场体系。这一切,都是人们成功地适应了当地的环境挑战、地区性干旱和粮食短缺的结果。在一个拥有数百年文化传统的“文化玛雅”世界里,整个社会始终都在发生变革。16 世纪初西班牙征服者的到来,改变了玛雅文明的历史轨迹,因为人们适应了新的经济、政治与精神环境。

    所谓的“古典玛雅崩溃”一说,其实属于用词不当,听起来古典玛雅文明像是一夜之间急剧崩溃的。相反,文明的衰落是一个复杂的过程;在此过程中,人们会步履艰难地应对漫长的干旱周期,历经数代之久。尽管如此,古典玛雅的政治体系确实崩溃了,农民则继续生存着。最终,在公元800年左右,到了一个看似生死攸关的社会、政治与生态转折点之后,古老的玛雅文明经历了一场变革。玛雅人与其所处环

    境之间的相互作用,导致了不同程度的环境压力;更何况,这些压力还是与严重的干旱同时出现的。尽管玛雅统治者拥有精心设计的意识形态,并且牢牢控制着整个社会,但到了此时,他们已经无力组织民众采取措施去适应那些干旱得多的低地环境了。在一些被派系斗争和战争所撕裂的城邦里,组织并采取大胆的措施来适应生存危机就成了一项艰巨的任务,彻底压垮了那些傲慢自大、显赫一时的君主。对于他们的权威,对于统治者与被统治者之间早已土崩瓦解的社会契约,民众也失去了信心。于是,百姓便四散而去。

    从全球范围内来看,我们生活在一个被狭隘的民族主义所撕裂的世界里,千百万人被牵涉其中,故人为性全球变暖和可能具有灾难性的气候变化让我们面临的威胁,要比玛雅的君主们当时面临的威胁大得多,令人难以想象。由于危机带来的影响因地而异,故他们的臣民不是迁往农村,就是到其他地方寻找机会去了。不过,玛雅人的经验教训却显而易见,那就是:强有力和果断的领导十分重要。如今许多人正在努力解决未来气候变化的问题,但我们缺乏那种能够超越一代又一代、强大有力和具有远见卓识的领导能力。我们正面临着真正的危险,有可能遭遇像蒂卡尔和玛雅其他一些伟大城邦的执政者那样的命运,原因不仅是我们当中有许多人否认即将到来的气候危机,还有随着我们逐渐接近一种与之类似但规模要大得多的环境转折点,大多数人都会在挑战面前不知所措。玛雅人的经验提醒我们,大部分气候适应措施都是地方性的,而面对气候变化时无所作为,也不是一种可行的对策。

    相比于那些只关心作物收成的无名官吏制定的宏伟施政方案,应对气候变化的地方性 措施之所以有效得多,原因就在于此。还有更加重要的一个方面,那就是风险管理,尤其是在地方层面上的风险管理;只不过,我们如今经常会忽视这一点。

    [1] 在学术界,“Mesoamerica”(中美洲)一词被用来指前工业文明得到发展的中美洲地区,包括如今的墨西哥中部、伯利兹、危地马拉、萨尔瓦多、洪都拉斯、尼加拉瓜和哥斯达黎加北部。

    [2] 玛雅文明这一术语的内核,就是从公元250年前后一直持续到公元900年左右的古典玛雅文明。我们在此使用这一术语,只是为了方便起见;不过,它无疑在很大程度上掩盖了文化的多样性。

    [3] 要想详细了解我们在此所述的低地情况,请参见B. J. Turner

    II and Jeremy A. Sabloff, “Classic Period Collapse of the

    Central Maya Lowlands: Insights About Human-Environment

    Relationships for Sustainability,” Proceedings of the

    National Academy of Sciences 109, no. 35 (2012): 13908-13914。

    [4] 对古典玛雅文明进行通俗论述的经典作品:Michael Coe and

    Stephen Houston, The Maya, 9th ed. (London and New York:

    Thames & Hudson, 2015)。Linda Schele and David Freidel’ s A

    Forest of Kings (New York, William Morrow, 1990),生动而通俗地描绘了玛雅的王权情况,只是如今有点过时了。

    [5] Richard R. Wilk, “Dry-Season Agriculture Among the Kekchi Maya and Its Implications for Prehistory,” in Prehistoric Lowland Maya Environment and Subsistence Economy, ed. Mary Pohl (Cambridge, MA: Peabody Museum of Archaeology and Ethnology, Harvard University, 1985), 47–57. See also Richard R. Wilk, Household Ecology: Economic Change and Domestic Life Among the Kekchi Maya of Belize. Arizona Studies in Human Ecology (Tucson: University of Arizona Press, 1991).

    [6] B. L. Turner II, “The Rise and Fall of Maya Population and Agriculture: The Malthusian Perspective Reconsidered,” in Hunger and History: Food Shortages, Poverty, and Deprivation, ed. L. Newman (Cambridge: Cambridge University Press, 1990), 178–211.

    [7] Robert J. Oglesby et al., “Collapse of the Maya: Could Deforestation Have Contributed?” Papers in the Earth and Atmospheric Sciences 469 http://digitalcommons.unl.edu/geosciencefacpub/469. (2010).

    [8] 论述古典玛雅文明崩溃的文献非常多。一般性的概述之作,请参见 T. Patrick Culbert, ed., The Classic Maya Collapse (Albuquerque: University of New Mexico Press, 1973),但如今此作有点过时了;另外可见D. Webster, The Fall of the Ancient Maya (London and New York: Thames & Hudson, 2002)。在此,我们很大程度上参考了一部有用的分析之作:Turner and Sabloff,“Classic Period Collapse of the Central Maya Lowlands”。

    [9] David Hodell, M. Brenner, and J. H. Curtis, “Terminal Classic Drought in the Northern Maya Lowlands Inferred from Multiple Sediment Cores in Lake Chichancanab (Mexico),”Quaternary Science Reviews 24 (2005): 1413–1427.

    [10] Douglas Kennett and David A. Hodell, “AD 750–100

    Climate Change and Critical Transitions in Classic Maya

    Sociopolitical Networks,” in Megadrought and Collapse: From

    Early Agriculture to Angkor, ed. Harvey Weiss (New York:

    Oxford University Press, 2017), 204–230. See also Douglas

    Kennett et al., “Development and Disintegration of Maya

    Political Systems in Response to Climate Change,” Science

    338 (2012): 788–791.

    [11] Copán: William L. Fash and Ricardo Agurcia Fasquelle,

    “Contributions and Controversies in the Archaeology and

    History of Copán,” in Copán: The History of an Ancient

    Maya Kingdom, ed. E. Wyllys Andrews and William L. Fash

    (Santa Fe, NM: School of American Research Press, 2005), 3

    32. See also William L. Fash, E. Wyllys Andrews, and T. Kam

    Manahan, “Political Decentralization, Dynastic Collapse,

    and the Early Postclassic in the Urban Center of Copán,

    Honduras,” in The Terminal Classic in the Maya Lowlands:

    Collapse, Transition, and Transformation, ed. Arthur A.

    Demarest, Prudence M. Rice, and Don S. Rice (Boulder:

    University Press of Colorado, 2005), 260–287.

    [12] Arthur Demarest, Ancient Maya: Rise and Fall of a Rainforest Civilization (Cambridge: Cambridge University Press, 2004).

    [13] Jeremy A. Sabloff, “It Depends on How You Look at Things: New Perspectives on the Postclassic Period in the Northern Maya Lowlands,” Proceedings of the American Philosophical Society 109 (2007): 11–25. See also Marilyn A. Masson, “Maya Collapse Cycles,” Proceedings of the National Academy of Sciences 109, no. 45 (2012): 18237-18238.

    [14] Marilyn A. Masson and Carlos Peraza Lope, Kukulkan’ s Realm: Urban Life at Mayapan (Boulder: University of Colorado Press, 2014), 5.

    第七章 众神与厄尔尼诺(约公元前3000年至公元15世纪)

    蓝天之下,皑皑白雪一望无际。此时,我们来到了偏僻的奎尔卡亚(Quelccaya)冰盖上,这里位于秘鲁北部的安第斯山脉高处,是世界上面积最大的热带冰原之一。如今,这座冰盖的面积约为43平方千米,最高点的海拔为5,680米。

    然而,在18,000年前的最后一个“大冰期”结束时,这座冰盖却要广袤得多:人为造成的全球变暖正以不可阻挡之势,让这座冰盖的面积缩小,以至于到2050年时,冰盖有可能彻底消失。在冰盖的东部,群山向下延伸到了亚马孙河流域,距那里的热带雨林仅有 40 千米之遥。这座冰盖虽然属于高山冰川,却异乎寻常地位于地表平坦之处,有的地方冰层竟然厚达200米。这种情况,使得奎尔卡亚成了人们钻取冰芯的理想之地;冰芯中呈现出了分界清晰的层次,每一层都代表了一年,各层之间有旱季尘埃层隔开,足以重现奎尔卡亚约1 800年的气候历史。

    1983 年,美国俄亥俄州立大学的古气候学家朗尼·汤普森(Lonnie Thompson)曾用一台太阳能冰钻,在这片冰原的中心地带钻取了两段长长的冰芯;那里除了太阳能,没有其他能源可以利用。[1] 由于没有办法带走冰芯,他便把冰芯切割成样本,当场融化并装入瓶中,从而重新获得了有 1,500年历史的部分冰芯。2003年,由于物流条件已经有了充分的改善,汤普森又把两段一直钻到了基岩之上且仍然封冻的冰芯运回了俄亥俄州的实验室。如今,汤普森得以研究奎尔卡亚过去1,800年以来的气候历史,并且揭示了“恩索”与热带辐合带的位置曾经如何对这处冰盖的气候产生影响。

    厄尔尼诺现象会带来西风,从而减少到达冰盖中的水分,并给西海岸的沿海沙漠带来暴雨。随着时间推移,导致气温上升的厄尔尼诺现象与对应的、导致气温下降的拉尼娜现象会毫无规律地交替出现。前者会导致秘鲁南部与玻利维亚的高海拔草原(或称 altiplano,在西班牙语中就是“高原”的意思)出现干旱。与之相反的是,拉尼娜现象则会给高原地区带来降雨。它们结合起来,就成了安第斯山脉与南美洲西海岸,尤其是秘鲁的沿海干旱平原上的两大气候驱动因素。

    来自附近安第斯山脉上的径流,曾经让秘鲁境内工业化之前那一个个蕴藏着丰富黄金的国家(比如莫切国)变得极其富裕。“恩索”属于复杂的气候事件,在安第斯地区的古代历史上发挥过重要的作用。

    沿海:卡拉尔、莫切、瓦里与西坎(公元前3000年至公元1375年)

    安第斯文明的两大支柱,发展了数个世纪之久。古安第斯文明的一大支柱位于高原地区,以的的喀喀湖为中心。另一个支柱则在遥远的西北部,即秘鲁北部的低地沿海平原上繁衍生息着,那里也是全球气候最干旱的地方之一。从整体来看,这个广袤的地区由一系列东西走向的环境带组成,由西向东依次为沿海沙漠与河谷、山脉、高原、平原和热带雨林等等。每个环境带都有种植在不同条件之下的作物,说明自给自足与远距离贸易是这里两大持久存在的现实状况。[2]当时,沿海地区的百姓严重依赖于近海的鳀鱼渔业;这种渔业为他们提供了食物和鱼粉,其中的大部分都销往了高原地区。捕鱼是低地文明一项生死攸关的任务。河谷地区的灌溉农业,也是如此。秘鲁北部沿海的灌溉用水,几乎全都来自山间的径流;它们沿着河流而下,将一个个沿海平原分隔开来。沿海地区的环境非常脆弱,经常发生灾难性的地震,更不用说有常常旷日持久的严重干旱、沙漠化与沙丘构造,以及强大的厄尔尼诺现象导致的大洪水了。在这种艰难的环境条件下生活,对沿海社会造成了极大的制约;只有像逐渐沙漠化之类的变化,才允许他们在漫长的时间里慢慢地去适应。

    到了公元前3000年,有1,000 至3,000 位农民与渔民生活在一些离太平洋不远且早已有人居住的定居地。他们是一些联系紧密的社群,拥有种种牢固的亲族纽带和对祖先的深厚敬意。这一点,在一些华丽气派、精心装饰的织物中体现了出来;织物上,描绘着许多拟人化的图像、螃蟹、蛇和其他生物。这里也有城市,其中以秘鲁中北部沿海地区苏佩河谷中的卡拉尔古城遗址(约前3000—前1800)尤为著名。[3] 卡拉尔古城中,建有一座座巨大的泥土金字塔、广场、住宅和神庙建筑群。这是一个强大的文明社会,与“旧大陆”上的印度河流域、埃及与美索不达米亚等文明属于同一时代。

    卡拉尔古城遗址

    这里的人与古埃及人一样热爱金字塔;只不过,考古学家在卡拉尔并未发现爆发过战争的痕迹:没有残缺不全的骸骨,没有城垛,也没有武器,与印度河流域的情况一样。相反,卡拉尔似乎是一座和平安宁的城市、一个繁盛兴旺的大都市,占地面积超过了150公顷,并且至少催生了同一时期的19个卫星城镇。至于人口众多、交通发达的卡拉尔究竟为什么会逐渐衰落下去,如今我们仍不清楚;但这个地区的整体情况与世间的所有地区一样:随着人们艰难地应对社会变迁、政治变革与气候变化,各种文化此兴彼衰,一些特点保留了下来,还有一些要素则不复存在了。当我们沿着时间的长河继续前行,把注意力集中到公元1千纪前后的一些事件时,这种相互作用就会得到充分的体现。

    第七章中提到的考古遗址

    差不多就在提比略皇帝将敌人扔进台伯河里和维苏威火山喷发的时候,秘鲁北部沿海崛起了一个富裕的新文明社会,即莫切城邦(约 100—800);这个城邦由一个富裕的精英阶层统治着,他们把死者安葬在用土砖修建的金字塔里,留下了大量的黄金珠宝和丰富的艺术作品等遗产。他们掌管着一条狭长的海岸线,长约400千米,宽度却顶多只有50千米,从北部的兰巴耶克河谷一直延伸到了南部的内佩尼亚河谷。[4] 当然,秘鲁既然拥有伟大的文化遗产,那么莫切文化就不是凭空出现的。相反,他们是以当地各种错综复杂、历史悠久的河谷灌溉系统为基础,建立了自己的国家。他们留下的遗址周围虽说布满了沟渠与灌溉系统,但一切全都依赖于以单个村庄为基础的灵活耕作方法。莫切人的农业之本,需要小规模的劳动力和简单的灌溉设施,尤其是这些设施还须容易维修才行。与“旧大陆”上的情况一样,散居的本地社群也依赖于泉水和偶尔降下的暴雨所形成的地表径流。

    广泛分布的灌溉系统为莫切城邦提供了一种防御手段,以免为漫长的干旱和厄尔尼诺现象导致的暴雨所害;这种暴雨,有可能在几个小时内淹没和彻底摧毁所有的灌溉系统。从安第斯山脉流淌而下的山泉径流,宛如超自然世界一年一度馈赠给他们的礼物。从莫切人留下的艺术作品与墓葬来看(他们没有留下书面文字),当时是一些实力强大、叱咤风云的君主在统治着这个国家。[5] 他们声称自己拥有种种超自然力量,充当的是凡人与众神之间的中间人,而沿海渔场与珍贵作物正是由众神滋养的。莫切的统治者披金戴银,服饰华丽,出现在精心设计的公开仪式上,以强化人们的一种信念,即每位头领都对生命的延续不可或缺。若是没有头领,太阳有可能不会东升,鱼类也有可能死去。与(时代稍晚的)蒂亚瓦纳科高原上的人(参见后文)一样,莫切王国的臣民也是通过他们生产出来的商品与粮食向这些“赐予生命”的头领纳税;还有强制劳动,因为当时有大量平民被派去建造一座座宏伟的高台与神庙。

    对我们而言,这种制度可能看上去是一种杜撰,目的是让百姓为精英阶层服务,像是一个童话故事和一种欺骗,可莫切人看待这些观念时却很严肃,认为它们攸关生死。在一个充满不确定性的世界里,在现代科学崛起之前,头领和他们的众神乘虚而入。奎尔卡亚冰芯为我们提供了沿海地区生活严酷的证据,其中就包括接连不断的大旱,导致降雨量较平均水平减少了30%。[6]

    最严重的一场大旱发生在公元563年至594年之间;当时,莫切的统治者(或者君主、武士祭司,考古学家对他们的称呼五花八门)都生活在靠近太平洋的河流下游。这种战略位置,使得他们控制了水源与近海富饶的鳀鱼渔场;那些渔场是美洲驼商队销往高原地区的富氮鱼粉的主要来源,利润丰厚。干旱将各种灌溉系统都变成了贫瘠的尘暴区。君主们利用城邦谨慎节约和储存下来的粮食应对干旱年份,但当时肯定普遍存在营养不良的问题。幸好,他们还可以依赖渔场,直到强大的厄尔尼诺现象在干旱周期的高峰期来袭。暴雨导致沙漠中的河流变成一道道汹涌的洪流,将他们面前的一切席卷而去,来自北方的较暖海水则让鳀鱼的种群数量锐减。“恩索”摧毁了莫切人的生活之地,数十座村落消失在泥浆之下,土房纷纷倒塌,其中的居民则纷纷溺水而亡。

    那些武士祭司都很清楚,强大的厄尔尼诺现象会带来什么样的影响。他们的应对之法,就是派百姓重修灌溉系统,并且以人献祭。在考察研究莫切河谷中“月亮金字塔”(Huaca de la Luna)旁边一座隐蔽的广场时,考古学家史蒂夫·博格特(Steve Bourget)发现了一些描绘着海鸟与海洋生物、令人眼花缭乱的壁画,它们都与近海温暖的“恩索”洋流有关;可在这次轰动一时的艺术发掘当中,他还找到了大约70位被杀害武士的遗骸。他认为,在面对灾难时,莫切统治者曾经用活人献祭和复杂的仪式,来巩固他们的权威。接着,又一次强大的厄尔尼诺现象袭击了这个河谷。由河流冲积物形成的巨大沙丘被冲上海滩,掩埋了数百公顷的农田,淹没了莫切王国的都城。于是,莫切河谷里的君主和同一时期生活在兰巴耶克河谷中的人,都迁往了上游地区。

    尽管出现了这些不利的气候事件,但莫切人仍然维持着在投资尽可能少的情况下修建起来的面积广阔的农田系统。人口流动性变得更强,人们在不同的环境条件下兴建了许多较小的定居地,而不再兴建以前那种大型的城市中心。由于争夺肥沃土地与水源的冲突日益加剧,故农民们会迅速修好受损的地方。

    公元500年至600年间,莫切人巩固了他们那些规模越来越小、越来越分散的定居地;它们都位于安第斯山麓,分布在沿海河流的颈部,也就是河流进入沙漠的地方。[7] 到了此时,莫切人的领地日益变得四分五裂,故对粮食生产进行任何形式的地区性控制都难以实现。随着另一次严重的厄尔尼诺现象将关键的农田系统彻底摧毁,一个实力本已遭到削弱的领导阶层既要与突如其来的气候变化做斗争,还要全力对付高原部落的袭击。君主们丧失了神圣的信誉,莫切王国便开始分裂。与古埃及的法老一样,他们起码也设法熬过了一场曾经威胁到王国的灾难性气候事件。但与古埃及的法老不同的是,环境让他们几乎没有什么灵活变通的余地。他们在各个河谷中创造的人工环境需要长期规划和技术创新,以及摒弃一种僵化的意识形态,这种意识形态无法再支撑起一个严格控制的社会。他们显然与被统治的村落里的生活脱了节,已经别无选择,故到了公元650年之后,他们那个富有的遍地黄金的社会便逐渐分裂成了无数个较小的王国。

    在这些分散的王国当中,有一个是瓦里王国。瓦里人的领地,在公元500 年前后至公元1000 年间,从安第斯高原往下,一直延伸到了秘鲁北部(可能还有中部)的沿海地区。这是一种复杂的文明。瓦里人会用精美的珠宝加上精美的织物与陶器,给他们的精英阶层陪葬。他们巧妙地耕种土地,在山坡上开发出了一种壮观的梯田农耕系统。不过,由于实力受到了干旱的削弱,他们最终也衰落下去了。人们之间的暴力,或许还加速了他们的终结:在瓦里古城发掘出的一些政府建筑中,门都被堵上了,这暗示当时的人逃离了这里。考古学家提出,也许城中市民本想在再度下雨或者重归和平之后返回故里,但最终也没能回去。

    接下来,沿海地区就出现了西坎文化。西坎的头领,是在公元800年左右莫切社会开始分裂时上台掌权的。他们很可能就是莫切精英阶层的后裔;他们投入巨资,兴建了许多装饰华丽的仪式中心,其中主要是用土砖建造的假山。一座高达 27 米的金字塔,俯瞰着一个大广场和位于兰巴耶克河谷中的巴坦格兰德的西坎中心;如今,那座金字塔被称为“胡亚卡洛罗”(Huaca Loro)。葬在墓穴里的精英们个个装扮华丽,戴着特别的金面具和饰品。平民百姓却是葬在很浅的墓穴里,身上少有甚至没有饰物。他们与之前的莫切人一样,在“恩索”的破坏面前也很脆弱。在1375年另一个王国即奇穆王国行将征服西坎之前,面对一次大规模的厄尔尼诺现象,巴坦格兰德也衰亡了。

    奇穆:多种水源管理(公元850年至约1470 年)公元850年前后,奇穆王国崛起于莫切河谷之中。与西坎王国的情况一样,奇穆王国的第一批统治者有可能是莫切贵族的后裔;他们还深受同时代其他民族的影响,尤其是受到了瓦里人的影响。在接下来的4个世纪里,奇穆人将他们的经济与政治权威扩张到了秘鲁北部与中北部沿海的广大地区。他们虽然继承了前人的很多东西,但有一种重大的区别。从一开始,奇穆王国的君主就采取了一种不同的方法,来兴建他们的都城昌昌。[8]

    昌昌城位于莫切河谷的入口附近,后来逐渐发展成了一座庞大的城市,与数个世纪之前墨西哥高原上的特奥蒂瓦坎不相上下。一开始的时候,昌昌城是一座没有阶层之分的大都市,统治者专注于提供充足的粮食供应。没人确切知道,这座城市的人口数量后来有多庞大。到公元1200年时,此城的面积已经扩大到了20多平方千米。有大约26,000名工匠住在中心城区南部与西部边缘一带的土屋和藤屋里,其中还有五金匠与纺织工。还有3,000人紧挨着王室宫廷居住,而附近一座座独立的土砖大院里,住着大约6,000名贵族与官吏。对于这些统治者本身,如今我们仍然不知其名,因为他们没有留下任何文字记载;不过,当时他们住在城市中心 9座高墙环绕的僻静大院里。每座大院都有自己的供水系统、装饰华丽的住宅区和一个墓葬平台;统治者死后,这里便做坟墓之用。

    口头传说与17世纪西班牙人的编年史表明,在公元1462年至 1470 年的印加征服期间,统治着奇穆王国的是一位名叫米昌卡曼(Michancamán)的君主。显然,此人手下的朝臣都有明确的等级,其中还有“开路官”,是一名专司在君主要走的路上撒下贝壳粉末的官吏。每位领袖都会把自己的宅邸建在其他统治者的宫廷附近,但不会继承后者的任何财产。这种制度,通常被称为“分离式继承”,让奇穆王国的领袖们不得不通过征服来获得额外的领土、财富和纳税的臣民。他们还采取了强行将被征服民族迁离故土的措施,与印加人的做法一样。[9]

    秘鲁奇穆王国昌昌城古城遗址

    奇穆王国逐渐变成了一个等级森严、组织严密的社会,既有精心划分的贵族与平民两个阶层,也有严格的法律体系来执行社会等级制度。奇穆王国境内的不同地区,都由受到统治者信任的官吏管治着。从政治角度来看,这个国家堪称治理有方。在其鼎盛时期,奇穆人统治着一个广袤的王国,其疆域扩张到了古莫切王国的北部沿海地区以外,并且一直向南,沿着差不多长达1,000千米的海岸线延伸。

    历任君主都把武力与朝贡结合起来,维护着他们这个不断发展的国家。他们很快就认识到,以连接每座河谷的道路系统为基础的高效交通十分重要。其中的许多道路不过是羊肠小道而已,可它们却将奇穆王国的每个地区都连接起来了。这一点至关重要,因为该国的贡品与物质财富,都经由这些道路流向中央。与其他的古代文明一样,奇穆君主曾精心利用徽章和贵重礼物,奖励手下臣民的忠诚和在战斗中的勇猛之举。他们也很清楚,整个国家依赖的是无法仅凭武力或者朝贡就获得的粮食供应。

    数个世纪以来,沿海地区的农民像莫切人那样,一直利用沿海山坡上各种高度灵活的农业系统进行耕作;在沿海山坡上,他们可以最大限度地利用泉水和暴雨形成的地表径流。人口密度相对较低的时候,这种农耕策略效果很好。与莫切人形成了鲜明对比的是,面对快速发展的城市建筑群与迅速增长的人口,奇穆人在极其多样化、组织严密的水源管理与农业方面进行了大力投入。

    昌昌城本身严重依赖于阶梯井,其中的许多水井都利用了靠近太平洋的高地下水位。此城东部地势低洼,从而为一种复杂的下沉式庭园系统提供了条件,使得高地下水位从太平洋沿岸朝上游方向,延伸达5千米之远。到了公元1100年,徭役劳动力已经开掘了一个巨大的沟渠网络,为昌昌城北面和西面的平原地区提供灌溉用水了。灌溉用水也对城市的地下含水层进行了回补。同年一次强大的厄尔尼诺现象导致莫切河改了道,并且严重破坏了这座都城上游的灌溉系统,之后统治者们便冒冒失失地下令开始建造一条长达 70 千米的沟渠,要从附近的奇卡马河谷中将水源引到被毁的农田里。[10]

    这项雄心勃勃的工程一直没有完成,部分原因在于该城已经扩张到了上游地区,那里的地下水位要深得多。最终,此城就只能往太平洋和地下水位较浅的沿海地区收缩了。

    这还只是奇穆人与干旱及“恩索”进行的非凡抗争的一部分。君主们的计划原本更具雄心,耗资更加巨大。[11] 他们在整个王国境内兴修了许多精心设计的沟渠,把水源引到土地有可能肥沃的各座河谷中的不同地方。有些沟渠长达40千米。对于奇卡马北部的赫克特佩克河谷来说,不但其泛滥平原和与之毗邻的可灌溉沙漠平原上有肥沃的农田,沿海地区也有丰富的海洋资源。如今,河谷的北侧依然留存着奇穆人在数百年里开掘的至少长400千米的沟渠遗迹。这个广袤的沟渠系统从来没有同时使用过,因为那里没有充足的水源来灌满所有的沟渠。凡是依赖于这些沟渠的社群,必定精心制定过灌溉时间表,以便公平地为所有群落供水。若是明白如今当地的农民每隔 10 天左右就要给庄稼浇一次水,我们就会对这个沟渠系统的运筹复杂性有所了解。尽管极其复杂,但奇穆人的沟渠设施既提供了一种切实可行的方法,可以缓解极端气候事件带来的影响,比如“恩索”导致的暴雨,同时也提供了应对缺水导致的政治动荡的某种手段。

    农耕环境与十二河谷

    赫克特佩克河谷的南侧是一幅完全不同的景象,那里有大量的沿海沙丘,向内陆延伸达25千米之远。公元1245年至1310年间的一场大旱,导致这里形成了大片沙丘,以至于人们在14世纪末还遗弃了位于卡农西略(Cañoncillo)的一个大型定居地;当时,不断推进的沙丘覆盖了农田,堵塞了灌渠,掩埋了房屋。这种较为长期的沙漠化,规模远大于干旱和暴雨造成的破坏。干旱与暴雨导致的破坏,人们尚可修复,但日益侵袭的沙丘,却非人类所能阻遏的。人们只能迁往别的地方。

    干旱是一回事,厄尔尼诺现象导致的降水过多则是另一回事。在法凡苏尔(Farfán Sur)、卡农西略以及奇穆王国其他一些较大的城市中心,当地的头领与水利专家兴建了许多复杂的溢流堰,将其作为灌溉沟渠中的组成部分,尤其是为连接一些深谷的引水渠修建了溢流堰。这种溢流堰能够降低水流速度,防止水土流失。他们修建的引水渠里还衬有用石头砌就的导水沟,让水流不致破坏整个结构的底部。这些策略起到了一定的作用,但有迹象表明,其中许多引水渠都是在垮塌之后重新修建起来的。另一种策略,就是在沿海附近的地区用石头修建一些呈新月形的石制挡沙墙。这种挡沙墙减缓了丘沙侵入灌溉沟渠和农田的速度,只不过其中的许多并没有起什么效果。

    莫切人依赖的都是单个社群,他们很少尝试对农业进行集中管理。村落被毁之后,人们只是迁往别处,然后修建一个新的沟渠系统罢了。人口密度很低的时候,尽管各个社群对最肥沃之地的争夺很激烈,这样做也完全没有问题。可奇穆人生活在一个人口要密集得多的农耕环境里。他们逐渐形成了许多大型的城镇与城市,在地区范围内从事着农业生产。他们利用大量的徭役劳动力,对他们创造的整个农耕环境进行了大力投入。这些有组织的农耕环境包括大型的蓄水池与陡坡之上的梯田,后者可以控制倾泻的下坡水。他们最大的投入,就是开掘了一些长长的沟渠,将水源从深深下切的河床引到遥远的梯田与灌溉用地里;即便是大旱期间,那些沟渠也能引水。这是一种长远投入,让奇穆王国能够开辟数千公顷的新地;奇穆人耕作着这些土地,每年都能种、收两三次。在此以前,他们每年只能收获一次,且时间上与一年一度的山间洪水一致。

    最后,就算有大量的劳动力,土地开垦也变得不划算起来了。奇穆王国的君主们转而开始了征伐;“分离式继承”制度为这种征伐提供了理由,因为在此制度下,每位统治者都必须通过自己的努力才能获得农田。最终,他们掌控了12个以上的河谷,其中至少有50,500公顷的耕田,全靠当时的农民用简易的锄头或挖掘棒进行耕作。这种规模的农业,需要进行高效而坚决的监管。考虑到建设与管理方面所需的巨大投入,他们也不可能采取别的做法。统治者严格限制个人流动,强迫许多臣民住进城市,还对粮食供应与人口实施高度集权化的控制。这种集权管理具有战略上的优势,因为奇穆王国可以在地区范围内而非局部范围内去应对漫长的干旱和重大的“恩索”事件。他们可以把一个地区的庄稼转到另一个地区去播种,可以启用未受损坏的灌渠,并且派出大量劳力去修复洪水造成的损毁。

    奇穆王国依靠长远规划,在一个只有 10%可耕土地的环境中创造了众多的农业奇迹。幸运的是,这个王国还可以仰仗鳀鱼渔业。据史料记载,当时的渔民与众不同,会跟农民交换粮食。沿海居民几乎不会遭到干旱影响,却会为厄尔尼诺现象所害,因为近海的上升流速度放缓,鳀鱼捕获量就会锐减。

    玛雅的君主率领着臣民进入一种环境乱局之时,奇穆王国的精英阶层则在“中世纪气候异常期”熬过了一场场漫长的干旱和一次次异常强大的“恩索”事件。奇穆人的领袖掌管的是一个精心组织的绿洲,以大量人力劳动与严酷的集中控制为基础。他们还依赖于一种僵化的社会秩序,以及沟通自然世界与超自然世界的种种宗教仪式。他们所处的环境,让领袖与农民都预先适应了干旱程度在世界上数一数二的环境中的严酷现实;这里雨水稀少,水源则来自遥远的地方。每个人的一生中,都经历过干旱;国家则通过让粮食供应变得多样化、节约每一滴水以及捕鱼来扩大食物基础,从而适应了这一切。祖先们来之不易的经验、老练的机会主义和长期规划,都带来了很好的回报。

    奇穆王国掌控着自身的生存,但君主们却无法主宰那些用山间径流滋养着王国的分水岭。此时,王国的农业耕作已经极具规模且复杂,以至于他们开始难以管理水源供应,尤其是难以对上游水源进行管理了。公元1470年前后,来自高原地区的印加征服者获得了诸分水岭的战略性控制权,并且打垮了这个国家。奇穆王国变成了塔万廷苏尤的一部分,“塔万廷苏尤”在印加语里就是“四方之国”的意思。农耕与灌溉继续进行,而沿海河谷中那些新的王公贵族,则把奇穆王国中的专业工匠迁往了高原地区的库斯科。

    沿海诸国之所以在不同规模上繁荣发展起来,是因为人们深入了解了自己所处的环境和滋养土地的水源。各国领袖与农民生活的河谷里经常出现严重的干旱,而一次次厄尔尼诺还毁掉了他们的农田。他们十分熟悉“恩索”即将到来的种种迹象,比如鳀鱼渔获减少、近海洋流南下、出现不熟悉的热带鱼类,以及近海水温上升。无论是莫切人、西坎人还是奇穆人,人人都能预测出可能发生的灾难,以及高原地区由“恩索”导致的干旱,这种气候现象会让播种时节的地表径流减少。安第斯地区诸国对气候与环境变化做出过各种不同的社会反应,但其中只有奇穆王国认识到了长远规划有助于维持王国的持续发展;而且,这种认识一直延续到了印加时代及其以后。

    在秘鲁沿海和安第斯山区,保持可持续性始终都是一种挑战。一些小社群在适应当地条件与变幻莫测的干旱时所用的各种方法,会让我们立刻大吃一惊;这里的干旱,有时会持续一代人的时间,甚至更久。莫切人与奇穆人在沿海地区从事的河谷农业,若是没有小社群里耕作者精心做出的长远规划,是绝对不可能蓬勃发展起来的。强调“防患于未然”,为大旱时期制定应对措施,在奇穆王国表现得尤为突出;这个王国曾大力投资兴建水利工程,比如将各个河谷连通起来的沟渠。

    莫切人与奇穆人都属于等级社会,使得他们的领袖能够强迫臣民用劳役的形式纳贡。很显然,这一点建立在领袖与平民之间具有一种社会契约的基础之上,且每个人都据此认识到了谨慎管理水源和预见潜在风险所带来的益处。回顾起来,这个方面在奇穆社会里似乎组织得更加严密;只不过,无论领导层多么高效,专业的农耕知识(即当地的环境知识)和以社群为基础的劳动力显然都极其重要。在靠近灌溉工程的农耕村落之间起着黏合作用的亲族关系,也是如此。社群的合作劳动无比重要。中央集权的专制统治负责调配劳动力,但对本地的了解和亲族纽带,却将各个方面团结了起来。此外,还有近海的鳀鱼渔场;故在干旱年份,这里也有多样化的粮食供应,足以养活百姓。

    我们可以将这种情况与高地上的蒂亚瓦纳科比较一下;那里的粮食盈余既取决于降雨,也取决于最终以社群为基础的灌溉规划。长期性的干旱降临之后,蒂亚瓦纳科统治者们的中央集权势不可当地解了体,而整个国家也分崩离析了。可在农村地区,当地社群由于拥有种种紧密的亲族联系,所以存续了下来。

    令人震惊的高原:蒂亚瓦纳科(公元7世纪至12世纪)

    阿尔蒂普拉诺(altiplano,即西班牙语里的“高原”一词)紧挨着奎尔卡亚冰盖南部边缘;这就意味着,此地钻取的冰芯会敏锐地反映出气候变化的情况。的的喀喀湖位于奎尔卡亚以南,相距仅有120千米;从此湖中钻取的沉积物岩芯,则提供了第二种关于降水的准确来源。所以,问题就在于:过去的人是如何对冰芯中所记录的气候变化做出反应的呢?对考古学家而言,幸运的是,蒂亚瓦纳科属于南美洲已知的、哥伦布到来之前(pre Colombian)的最大遗址之一,它就位于离的的喀喀湖畔不远的地方。

    公元7世纪至12世纪初,蒂亚瓦纳科逐渐发展成了一个主要的城邦。[12] 据钻取的冰芯所示,在这差不多5个世纪的时间里,气候普遍温暖且相对湿润。虽然其间也有比较干旱的时期,但气候相对稳定。冰芯当中含有一层层的风积物;这些风积物,来自城市周围面积广袤和阡陌纵横的台田系统。据我们所知,光是蒂亚瓦纳科的腹地,就有大约19,000公顷这种农田。在城邦的全盛期里,全国的农业全都依赖由村落社群兴建和维持的这些农田系统。产量最高的田地都位于高原上的战略要地,就是那些被灌渠环绕的地块。连四周那些灌渠中的淤泥,也为台田原本肥沃的土壤提供了丰富的养分,而当地的主要家畜美洲驼的粪便也是如此。降水丰沛的时候,高位地下水和灌渠会浸润田地,不但可以提供充足的水分,还可以极好地保护生长中的作物免受霜冻之害。这种浸润,与最负盛名的作物即玉米的成功极为相关。

    蒂亚瓦纳科的农民也种植土豆——这是当时平民百姓的主食,但同样容易被高地上的霜冻所毁;他们还成片成片地种植块根落葵,这种植物的根块颜色鲜艳,样子跟土豆一样,叶子则可食用,像是菠菜。台田农业如此多产,以至于从公元7世纪至12世纪初期,村民们开发出了大片这种阡陌交错的田园。局部的农田系统最终变成了精心整合的地区性系统,提供的粮食盈余既养活了一个政治精英阶层,支撑起一种复杂的意识形态和各种宗教信仰,还广泛销往了各大低地和沙漠地区。

    蒂亚瓦纳科遗址,玻利维亚

    当时,在蒂亚瓦纳科这个政治与宗教中心周围从事农耕生产的“城郊”地区,可能生活着2万人。蒂亚瓦纳科城宏伟壮观,城里不乏巍峨雄壮的建筑。其中有一个巨大的下沉式场院,名叫“卡拉萨萨亚”,坐落于一个铺着石头的土台之上。不远处,一排笔直的石头围成了一道呈长方形的围墙,附近一扇大门上则刻有一个拟人化的神像,人们有时称之为“维拉科查”[13] 。宗教建筑群的附近坐落着一些较小的建筑、场院和巨大的雕像;它们都是一种强大图腾的组成部分,这种图腾以秃鹰和美洲狮为特点,外加一些拟人化的神灵,且神灵身边还跟着一些地位较低的神祇或者信使。蒂亚瓦纳科的中心是一个极其神圣的地方,由一些姓名不详的半神贵族掌管着。这个精英阶层站在一个精心组织的王国的顶端实施统治,王国依靠畜牧业和自给农业支撑着;其规模之大,以至于考古学家如今仍然能够在城市四周废弃已久的台田里看到犁沟的遗迹。

    在这个高原国家的表象之下,隐藏着一些强大的经济与政治力量;该国的繁荣,很大程度上依靠当地的冶铜业,再加上的的喀喀湖南岸及其与遥远的沿海地区之间进行的其他贸易。利用美洲驼形成的非正式贸易网络,将这个高原城邦与大约325千米以外一个距离太平洋不远的殖民地莫克瓜联系起来了。这种殖民开拓活动并非偶然,因为两个中心都地处一个肥沃的玉米种植环境的心脏地带。查尔斯·斯坦尼什(Charles Stanish)和其他人曾在的的喀喀湖盆地西南部进行实地考察,他们既发现了这座城市,还在同一个南方河谷中找到了其他两座与蒂亚瓦纳科具有密切文化联系的大型城镇。[14] 在数个世纪的时间里,有无数人曾经生活在那儿。其中有些人还曾到处游历。在当时距海岸不远的昌昌城中的一座大型公墓里,长眠着 10,000 多个与地处高原的蒂亚瓦纳科有密切联系的人。

    蒂亚瓦纳科中部与其周边遗址之间的贸易,似乎相对不那么正式,但涉及了来自周边地区的、该国心脏地带无法获得的商品与货物的流动。不同于后来的印加人,蒂亚瓦纳科人并未付出什么努力,去维持一种正式的道路系统。不过,他们确实在低海拔地区保持着一些殖民地,其中的居民与高原上的创始社群之间保持着密切而长久的联系。当时的大部分贸易,都掌控在历史悠久的贸易路线沿途那些具有牢固人际关系的亲族群体与商人手中。当时的驼队数量,有可能达到了数百支(如今数量少得多了);而从现代的观察结果来看,这种驼队每天能够走上15千米至20千米。这种贸易,将该国的意识形态传播了出去,以黏土器皿与艺术的形式加以表达,从而强化了蒂亚瓦纳科在面积广袤的高原与低地上的经济与政治权威。即便是蒂亚瓦纳科城邦土崩瓦解之后,这种贸易也仍然进行了下去。

    忽冷忽热

    我们在前文中已经提到蒂亚瓦纳科在气候相对温暖和稳定、降雨也较以前更多的那几个世纪中崛起的过程。与玛雅人的情况一样,当时蒂亚瓦纳科的农业不断扩张,台田面积大增,人口密度也上升了。那几个世纪可谓黄金时代,蒂亚瓦纳科经历了一场大规模的建设与扩张,而其统治者的威望与宗教势力则主宰着辽阔的高原,以及遥远而气候干旱的沿海地区。不过,这种状况并没有持续多久。

    奎尔卡亚冰盖上的冰芯与的的喀喀湖中的钻孔取样表明,公元1000年前后蒂亚瓦纳科及其领地遭遇过一场大旱。[15] 降雨量急剧减少,的的喀喀湖的水位也在公元1100年以后下降了12米多。湖岸明显退却了数千米之远,导致大量的台田陷入了无水可灌的境地。与此同时,当地的地下水位下降,远低于之前数个世纪的正常水平了。许多水力循环系统曾经极其巧妙地维持着附近的沟渠,此时却变得毫无用处;由湖边往内陆而去的引水系统尤其如此。

    剧烈的环境变化,出现在人口数量不断增加、人口密度也日益上升的一个时期。以前的沼泽地带是进行精耕细作的理想之地,如今则变成了比较干旱的环境。尽管人们随即大幅降低了农耕生产的集约化程度,还种植了种类更多的作物,可他们已经无力创造出以前那样富足的粮食盈余了。寥寥几代人过去之后,由城邦统治者兴建和管控的那种精心组织的大规模农耕体系,就再也行不通了。曾经支撑着蒂亚瓦纳科根基的那种农耕体制崩溃了。严重的干旱,导致蒂亚瓦纳科这个城邦在经历了数代人的经济、政治与社会动荡之后,就此土崩瓦解。日益分化、竞争激烈的农业与畜牧业经济发展起来,不可避免地带来了严重的政治与经济影响。[16] 在一些灌溉条件较好的地区,成就斐然的地方领袖纷纷获得独立,摆脱了这个统治者长久以来都依靠其强大的神圣血统及其与神的联系来实施统治的国家。这些变化,出现在公元1000年至1150年之间。

    与玛雅人的情况一样,蒂亚瓦纳科城邦的解体也是一个复杂而不规则的过程。人们继续居住在蒂亚瓦纳科的部分地区,以及附近卡塔里河谷中的一个重要农耕区,直到 12 世纪。宗教仪式继续举行,并未中断。传统的生活方式,也在一个看似漫长而混乱的解体过程中留存了下来。

    奎尔卡亚冰盖上的冰芯表明,干旱继续在这一地区肆虐;13 世纪和14世纪出现过一场尤其漫长的旱灾,而公元1150年左右那段不规律的变暖期里也出现过一次(此时正值“中世纪气候异常期”,即欧洲变暖的那个时期,我们将在第十一章里看到)。在这种反常的炎热气候中,蒂亚瓦纳科与北方安第斯高原上另一个伟大的城邦瓦里在经济和政治上最终都崩溃了。到了此时,各个社群都已从河谷谷底与位置较低的河谷山坡迁往海拔较高的地区;人们认为,海拔较高的地区较易获得水源。

    由于台田无法再耕作下去,其中的许多社群便将蒂亚瓦纳科人曾经忽视、以前未被开发和无人居住的地方性环境利用了起来。这种做法,对高原社会产生了巨大的影响。在一度繁荣兴旺的卡塔里河谷,农民都迁移到了无数座较小的村落里;它们的规模,只有蒂亚瓦纳科全盛时期的四分之一。以前数个世纪里精心形成的社会等级制度,以及曾经将人们与此时业已遗弃的城市维系在一起、有时必定需要人们像奴

    隶一样奉献的政治与宗教活动(其中还包括节庆宴飨),全都一去不复返了。要想生存,就意味着他们必须离开蒂亚瓦纳科附近那些一度富足的农耕环境,迁往海拔更高、更靠近冰川水源且容易防御的地方。到了公元1300年,修建在山巅的城寨要塞已经随处可见;考古学家发掘出的遗骸表明这里出现过暴力,或许还发生过地方性战争。[17] 经过了长达5个世纪不间断的台田农耕,出现了一座座拥挤的城市中心之后,肆虐的干旱导致的的喀喀湖周围的农业耕作在随后的数个世纪里都难以为继了。在 15 世纪中叶印加帝国掌控这一地区之前,阿尔蒂普拉诺高原及其毗邻的高地上几百年间都没有出现过人口稠密、繁荣发展的城镇。

    实际上,人们直到现代才停止台田耕作。这种耕作方式,是美国的艾伦·科拉塔(Alan Kolata)和玻利维亚的奥斯瓦尔多·里维拉(Oswaldo Rivera)这两位考古学家“重新发现”的,他们曾研究蒂亚瓦纳科以北约 10 千米一些废弃的台田。[18] 他们的发掘,穿过了一些台田与附近的沟渠,还穿过了一些曾经有人居住的土丘,目的是揭示人们为改善排水状况和把沟渠中的淤泥铺到田地里而采取的措施。在考古学家克拉克·埃里克森(Clark Erickson)、当地农民、一群农学家和其他人的参与下,他们启动了一个旨在恢复传统耕作方式的项目。他们一起精确地复制出了一块台田,并且只使用传统的工具,比如脚踏犁。结果表明,这块新辟之地不但大获成功,还证明了小家庭与亲族群体可以轻而易举地建造、耕作和维护这种田地。随后进行的对照实验项目,已经让高原上的许多农民开始采用这种失传已久、曾经支撑过一个完整的文明社会的台田耕作方法。

    由此我们再次得知,传统的农耕知识在当今世界上仍然具有重大的意义。可惜的是,在我们能够将其应用到正在变暖的世界中去之前,这种知识中的大部分正在消失。如果不吸取过去的教训,我们就将面临危险。

    [1] L. G. Thompson et al., “A 1500-Year Record of Climate Variability Recorded in Ice Cores from the Tropical Quelccaya Ice Cap,” Science 229 (1985): 971–973.

    [2] Michael Moseley, The Inca and Their Ancestors, 2nd ed.(London and New York: Thames & Hudson, 2001),这是一部旁征博引的综合性作品。

    [3] Ruth Shady and Christopher Kleihege, Caral: First Civilization in the Americas. Bilingual ed. (Chicago: CK Photo, 2010).

    [4] 关于莫切人:除了Moseley, The Inca and Their Ancestors,

    请参见Jeffrey Quilter, The Ancient Central Andes (Abingdon,

    UK: Routledge, 2013)。

    [5] Walter Alva and Christopher Donnan, Royal Tombs of Sipán

    (Los Angeles: Fowler Museum of Cultural History, 1989). 更

    新之作:Nadia Durrani, “Gold Fever: The Tombs of the Lords

    of Sipan,” Current World Archaeology 35 (2009): 18–30。

    [6] L. G. Thompson et al., “Annually Resolved Ice Core

    Records of Tropical Climate Variability over the Past 1800

    Years,” Science 229 (2013): 945–950.

    [7] Brian Fagan, Floods, Famines, and Emperors: El Ni.o and

    the Fate of Civilizations. Rev. ed. (New York: Basic Books,

    2009), chap. 7,其中为普通读者进行了描述。

    [8] Michael Moseley and Kent C. Day, eds., Chan Chan: Andean Desert City (Albuquerque: University of New Mexico Press, 1982).

    [9] Brian Fagan, The Great Warming (New York: BloomsburyPress, 2008), chap. 9,其中进行了大致的描述。
    [10] Charles R. Ortloff, “Canal Builders of Pre-Inca Peru,” Scientific American 359, no. 6 (1988): 100–107.

    [11] Tom D. Dillehay and Alan L. Kolata, “Long-Term Human Response to Uncertain Environmental Conditions in the Andes,” Proceedings of the National Academy of Sciences 101, no. 2:4325–4330.

    [12] Alan L. Kolata, The Tiwanaku: Portrait of an Andean

    Civilization (Cambridge, MA: Blackwell, 1993). 还有两卷编著

    作品,它们属于详尽的专著:Alan L. Kolata, ed., Tiwanaku and

    Its Hinterland: Archaeology and Paleoecology of an Andean

    Civilization, vol. 1: Agroecology and vol. 2: Urban and Rural

    Archaeology (Washington, DC: Smithsonian Institution, 1996

    and 2003)。

    [13] 维拉科查(Viracocha),印加神话中的创世神,被奉为众神之王。——译者注

    [14] Charles Stanish et al., “Tiwanaku Trade Patterns in Southern Peru,” Journal of Anthropological Archaeology 29(2010): 524–532.

    [15] 这一节在很大程度上参考了Lonnie G. Thompson and Alan L. Kolata, “Twelfth Century A.D.: Climate, Environment, and the Tiwanaku State,” in Megadrought and Collapse: From Early Agriculture to Angkor, ed. Harvey Weiss (New York: Oxford University Press, 2017), 231–246。

    [16] R. A. Covey, “Multiregional Perspectives on the Archaeology of the Andes During the Late Intermediate Period (c. A.D. 1000–1400),” Journal of Archaeological Research 16 (2008): 287–338.

    [17] E. Arkush, Hillforts of the Ancient Andes: Colla Warfare,

    Society, and Landscape (Gainesville: University Press of

    Florida, 2011). See also E. Arkush and T. Tung, “Patterns

    of War in the Andes from the Archaic to the Late Horizon:

    Insights from Settlement Patterns and Cranial Trauma,”

    Journal of Archaeological Research 219, no. 4 (2013): 307-369; Alan L. Kolata, C. Stanish, and O. Rivera, eds., The Technology and Organization of Agricultural Production in the Tiwanaku State (Pittsburgh, PA: Pittsburgh Foundation, 1987).

    [18] Clark L. Erickson, “Applications of Prehistoric Andean Technology: Experiments in Raised Field Agriculture, Huatta, Lake Titicaca, 1981–2,” in Prehistoric Intensive Agriculture in the Tropics, ed. I. S. Farrington. International Series 232 (Oxford: British Archaeological Reports, 1985), 209–232. 还有一篇论述这个地区传统农业的宝贵论文:Clark Erickson, “Neo-environmental Determinism and Agrarian ‘Collapse’ in Andean Prehistory,” Antiquity 73(1999): 634–642。

    第八章 查科与卡霍基亚(约公元800年至1350年)

    公元1100年前后,美国佛罗里达州派恩岛海峡。独木舟静静地穿过红树林沼泽中一条狭窄的水道,驶入了开阔水域。一段长长的麻绳和一根插到水底的杆子,让小船停到了合适的位置。船上的夫妻二人撒下一张细细的渔网,任由网子下沉,然后耐心地等待着。他们拽了拽,觉得渔网很沉,稍微动了动。他们收了网,把不断挣扎的钉头鱼拉到船上,然后继续前进。但是,船桨触到了水底。划桨者在心中暗暗记住了这个地方,然后把船划入了较深的水域。近来天气较为寒冷,这里的水深在不断变化,所以大家都开始日益主要靠海螺和其他可食用的软体动物为生了。

    如今佛罗里达州东南部的美洲原住民卡卢萨族曾经在一种地势低洼的沿海环境中繁衍生息,以种类繁多的鱼类和软体动物为食。人人都靠船只谋生,住在紧凑的永久性定居地,因为这里高地很罕见,人口流动起来也很困难。食物供应虽说充足可靠,但海平面从来都不是永久不变的。海平面上升或者下降几厘米,就有可能毁掉一个海草渔场,或者毁掉盛产牡蛎或海螺的地方。他们几乎不可能将食物储存起来,故每座孤立的村落都靠着独木舟,在一个贸易和互惠互利对所有人都有益的社会里与其他村落保持联系。从根本来看,将所有人团结起来的那种黏合剂是无形的,那就是他们的经验性知识,以及他们在一种复杂的仪式生活中体现出来的超自然信仰。

    无形领域在古代北美洲人的生活中居于核心位置。智人从 15,000 多年的漫长岁月的一开始便成功地适应了北美洲的各种迥异的环境:从严酷的北极苔原,到温带森林,再到占据了西部大部分的荒芜、干旱地区。美洲原住民通过数百代人的口耳相传,将这些适应措施的奥秘,以及与之相关的大量知识传了下来。其中很多知识曾帮助人们应对过各种各样的气候变化,直到19世纪仍然保存得很完整。许多知识如今依然留存于世,既铭刻在赞美诗与歌曲里,也铭刻在人们谨慎珍藏、很少与他人分享的不成文知识当中。全球气候变化中的重大变化,比如大气与海洋之间持续不断的相互作用、厄尔尼诺现象、严重的干旱周期以及导致海平面大幅上升的气候变暖等等,就是无数成功与不成功、牢牢立足于传统经验与知识的地方性 适应措施的背景。直到如今我们才开始认识到:可持续性与面对这些变化时的韧性,是当代加拿大与美国的美洲原住民历史中的两个主要因素。

    在本书中,我们只能描述几个例子,但它们代表着我们的知识具有巨大的进步潜力,对我们如今关于未来气候变化的论争具有重要的意义。

    干旱与渔民(公元前1050年至公元13世纪)

    赤道太平洋表面海水温度的不断变化,给美国加州既带来了干旱,也带来了降雨,并且次数极多,变幻莫测。数千年来,生活在沿海与内陆地区的狩猎与采集民族,都曾以我们熟悉的对策适应干旱或者洪水。[1] 他们顺应各种气候力量,在干旱年份里依靠永久性的或者可靠的水源供应,必要的时候还会吃一些不那么理想的食物。许多群落都倚重各种各样的橡树,摘取易于储存、营养也很丰富的橡子为食。加州南部沿海从事渔业的社群,则是利用圣巴巴拉海峡的自然上升流,以鳀鱼为主食,辅之以橡子。[2] 与其他从事狩猎和采集的社会一样,这里的人们也是通过焚烧干草的手段来促进新植物生长或者吸引猎物,从而对所处的环境进行“管理”。干旱降临之后,许多群落都会退回到沼泽或者湿地环境中去。和往常一样,将风险降至最小的传统对策与灵活性、机会主义结合起来,就确保人们能够在各种干旱与半干旱地区生存下来。

    像圣巴巴拉沿海地区的丘马什族这样的渔民,能够毫不费力地应对厄尔尼诺之类的短期气候变化。较长期的气候变化就是另一回事了;如今,我们可以从深海岩芯、湖泊岩芯与树木年轮中看出来。幸运的是,人们从圣巴巴拉海峡中钻取了一根长达198 米的深海岩芯,其中的17米岩芯中记录了自“大冰期”以来此地的气候变化情况。[3] 有孔虫(浮游生物以及其他类似的简单生物)沉积物的聚积速度很快,故非常适合用于研究高度敏感的环境情况。由道格拉斯·肯尼特与詹姆斯·肯尼特这对父子组成的一个研究团队利用有孔虫与放射性碳定年法,获得了一幅显示过去3,000年间每隔25年海洋气候变化情况的高分辨率图像。

    第八章与第十三章中提到的北美洲遗址

    肯尼特父子发现,海洋表面平均温度的变化幅度高达3℃。可公元前2000年之后,气候就变得更不稳定了。从人类的角度来看,生活变得更加复杂,因为沿海渔场的产量每一年都有可能出现巨大变化。海岸上升流的强度是一个关键指征,标志着富含养分的低温海水上升到海面的时期。这种上升流,极大地提高了当地渔场的产量。通过研究岩芯中的深海有孔虫和浅海有孔虫,肯尼特父子还发现,从公元前1050 年至公元450年,海水温度相对较高、较平稳。海面水温较高导致自然上升流减少,故渔场产量也较低。从公元450年至1300年,海水温度大幅下降,比“大冰期”以来的水温中值低了大约1.5℃。在公元950年至1300年这三个半世纪的时间里,海洋上升流特别强劲,导致各个渔场的产量都大增。公元 1300 年之后,海水温度又平稳下来,开始逐渐上升。到了公元 1550 年,上升流的强度已经减弱。有意思的是,在公元500 年至1250 年间,海洋表面温度下降与海洋上升流增加的时间,与出现地区性干旱的时间相吻合。(公元800 年至 1250 年这段干旱周期,大体与“中世纪气候异常期”相一致。)在美国西部的许多地方,内华达山脉的树木年轮序列中也记录了类似的干旱周期;其中一个序列中记录了两场旷日持久的干旱,分别持续了200多年和140多年。不管以什么标准来衡量,它们都属于特大干旱。

    长久以来,圣巴巴拉海峡地区的丘马什民族及其祖先都在一个被世人误称为“伊甸园”的地方繁衍生息,并且以此闻名;那里有资源丰富的近海渔场,陆地上的橡实收成也很充足。不过,就算是在一个个降雨充沛、渔获丰收的好年景里,许多群落也是过一年算一年。虽说公元450年之后海水温度的下降改善了渔业状况,但要养活的人口也更多了。接下来的八个半世纪里干旱周期频繁,虽然有可能没给沿海地区带来太大的问题,却给内陆地区造成了重创。随着人口增加,部族领地的边界划分也变得极其清晰了。部族首领之间不断争夺领地和橡树林的控制权,并且为了永久性水源而争战。从一些墓葬的遗骸中我们得知,当时偶尔有营养不良的现象,还有受过外伤的人;这些遗骸可以追溯到公元1300年和1350年前后,当时弓箭开始出现。在降水变幻莫测、粮食供应高度本地化、政治竞争与社会竞争都很激烈的地区,深受气候压力之苦的群体之间爆发一场场短暂而激烈的局部冲突,是在所难免的事情。

    公元 1100 年以后,丘马什社会发生了深刻的变化;当时,暴力与持久的饥荒(或许甚至还有当地的族群消亡)成了普遍存在的现象。定居地的规模变得越来越大,人们住得更近、更集中了。随着首领家族领导的世袭精英阶层制定了各种有力的机制来控制贸易、解决争端和分配食物,许多大型定居地和较小的定居地都形成了等级制度;有些地方仅仅相距数千米,食物资源方面却差异巨大。人们用舞蹈和其他的宗教仪式,通过一种被称为“安塔普”(antap)的联盟,确认了这种新的社会秩序;“安塔普”发挥了一种社会机制的作用,可以把相距甚远、有权有势的个人联合起来。因此,丘马什族一直存续到了 16 世纪西班牙殖民者来到美洲的时候;在一种动荡不安的政治环境下,合作确保他们能够在充满挑战的自然环境中生存下来。[4] 丘马什族的这个例子表明,在食物供应不一定充足的社会中,精心控制的传统仪式可以提升整个社会的可持续性与韧性。

    在公元10 世纪至13 世纪的“中世纪气候异常期”里,丘马什族的渔场曾因得益于海洋中的自然上升流而产量大增。还有两个重要的社群也是如此:美国西南部的查科峡谷,以及位于密西西比河的“美国之底”、靠近如今圣路易斯的卡霍基亚。尽管两地相距约有1,500千米(对于他们是否知道彼此存在的问题,世人尚存分歧),但这两个社群都是一度崛起,然后在12世纪至13世纪解体的。它们存续的时间跨度,与“中世纪气候异常期”相一致;当时的人寿命短暂,而在不到15代人的这段时间里,气候条件较为温暖、湿润。

    查科峡谷:一场气候踢踏舞(约公元800年至1130年)

    圣胡安盆地的范围,包括了美国新墨西哥州西北的大部分地区,以及与该州毗邻的科罗拉多州、犹他州和亚利桑那州的部分地区。[5] 这里有辽阔的平原和众多的山谷。盆地的四周,是一些小型的台地、孤峰与低矮的峡谷。查科峡谷是一个壮观的宗教仪式中心和土木建筑群,以其中的9处多层式“大房子”或者说大型的普韦布洛(即印第安村落)而闻名。它们的内部和四周还有2,400多处大小不一的考古遗址。在公元800 年至1130 年间的300多年里,这个地区曾经生活着密度惊人的农耕人口,人们住得很近,而从一座座露台与一个个广场上不断传来的嗡嗡低语和一阵阵袭来的气味——包括北美蒿属植物、人们身上的汗液以及食物腐坏等各种气味——就是他们日常生活的写照。他们生活在一个贫瘠的农耕地区,却维持着一种可持续的农耕系统;那里的降水量变幻莫测,每年只有200毫米左右,并且变化很大。归根结底,一切都依赖于谨慎细致的水源管理。[6]

    查科文化的核心区域坐落在查科峡谷的中间地带,如今称为“查科峡谷国家纪念公园”。这里最负盛名的普韦布洛沿着一侧的查科河绵延达 17 千米,此河会不定期地从峡谷当中穿过。在所有的“大房子”里,“普韦布洛波尼托”最为有名;这是靠近一座中央广场的一群呈半圆形排列的房间,其中还有曾经位于地下的圆形礼堂,或称“基瓦”(kiva)。[7] 每处“大房子”都曾经是一个生机勃勃的地方,经常出现派系斗争与社会关系紧张等现象。这处遗址本身,有可能是作为一个圣地建成的,其标志就是附近的峡谷崖壁上有引人注目的岩层。普韦布洛波尼托也坐落在显眼的“南隘”对面;这个隘口,会把夏季的暴风雨导入查科峡谷的心脏地带。

    起初,在公元860年至935年间,普韦布洛波尼托还属于一个砖石建筑的小型定居地,是一个普普通通的弧形之地,但也是一个十分具有灵性的地方。其中的居民,都生活在一个包括了天空、大地与地狱的分层世界里。他们的村落叫作“西帕普”(sipapu),也就是从地下世界出来的地方。他们举行的复杂仪式,都是围绕着夏至、冬至以及日月的运行更替进行的。普韦布洛人的世界向来都和谐、有序,他们的基本价值观则在戏剧表演中得到了再现。群体比个人重要;人们专注于维持的那种人生,过去一直如此,将来也仍然不会改变。查科峡谷的生活,以玉米耕种和宗教信仰为中心;这里气候干旱,种种严酷的现实决定了人类的生存。

    不过,在一个日益复杂与更加政治化的时代,由于越来越多的新兴领袖渴望获得更大的权力与宗教权威,其他一些因素也开始发挥作用了。到了公元1020年,普韦布洛波尼托已经与宗教有了很深的联系。公元1040年之后,这里再次开始大兴土木。在不到30年的时间里,普韦布洛波尼托便变成了一个有如迷宫一般、着实引人入胜的复杂建筑群。它起初属于一个住宅区,但接下来变成了“大房子”,一座与宗教及政治密切相关的仪式性建筑,其中储存空间巨大,却没有几个永久性的居民,只是到了夏至、冬至和举行其他重大活动时,才会有人把那里挤得满满当当的。

    查科峡谷里的农民,依靠各种各样的水源管理制度来灌溉庄稼。他们开垦了查科河两岸的冲积平原和悬崖之上的斜坡,并且在雨水充沛的年份靠洪水进行耕作。人们运用一系列科学方法[其中包括机载激光雷达(LiDAR)勘测],对久已淤塞的沟渠进行考古发掘,钻取沉积岩芯,并且利用锶同位素研究水源之后,我们得知,查科的农民曾经通过引导径的方法,利用过各种各样的水源。[8] 一个个由人工灌渠与土沟构成的复杂系统,成了适合当地条件的一种多层面灌溉系统中的组成部分。变化迅速的降雨模式和变幻莫测的环境,要求整个社会随机应变,通过部署大房子与小定居地的劳力,对突如其来的雨水丰沛和水源稀缺做出反应。与居住在大房子里的精英阶层息息相关的种种强大有力的宗教关联,既强调了农耕,也强调了水源管理。对普韦布洛波尼托墓葬进行的 DNA(脱氧核糖核酸)研究证实,母系血统是查科农业获得成功的一个关键因素,因为他们的宗教活动与生育、水两个方面都息息相关,故女性在水源管理方面有很大的发言权。[9]

    在女性属于社会的重要成员且常常担任宗教仪式头领的一种文化中,亲族关系、遗传与保护珍贵的水源供应几个方面都极其重要。普韦布洛波尼托的领导权属于世袭制,带有宗教性且强大有力。文化秩序则以种种无常的现实为中心,比如无法预测的水源供应、天空,以及在周围地形衬托之下显得或明或暗的天体。

    查科领导权的这种集中化,有可能维持过一种社会制度,它曾经不断面临变幻莫测的环境条件与气候变化。不过,这种集权也对整个地区产生了轻微的影响。确保领导层能够对土地与不断变化的水源供应加以监测的各种社会控制手段,连同在短时间里调配劳力,就是长期生存背后那种风险管理中的基本要素。

    归根结底,查科社会之所以成功生存,与其说是因为这里有强大的领袖,倒不如说是因为这里的家庭具有灵活的自主性;这种自主性,受到了一种信念的引领,这种信念认为大部分劳动最终都是为了整个社会的共同利益。在圣胡安盆地那样的干旱环境里,没人能够做到自给自足;这一点,就是一些精心设计的宗教仪式曾经将整个社会团结起来的重要原因之一。至日仪式以及纪念每年农事中一些重要时刻的仪式活动,将人们团结起来,使之能够在亲族关系与义务远远超出了峡谷范围的一种环境中生存下去。在一个具有各种互惠关系,从而将住在数千米以外的亲族群体联系起来的社会中,不可能再有其他任何一种团结方式;这些互惠关系,有时反映在陶器的风格上。等到一个地方食物充足,而另一个地方食物有限的时候,这些关系就会发挥作用。在物资匮乏的时期,人们会搬到水源供应较充足的地方与亲族一起生活,对方也可以指望自己有难时同样能够投奔亲族。在一个受到年年改变节奏的气候变化所影响的社会里,合作、人口流动与韧性之间息息相关。查科人与气候之间的关系,有如一种复杂的舞蹈,有如农民与不停循环变动的降雨、气温、生长季节之间的小步舞。气候设定了一种快速而灵活的步速。它的人类“舞伴”,必须灵活、敏捷地对来自大地与天空的暗示做出反应,否则的话,这种“舞蹈”就会以灾难而告终。对此,查科人都老练地做出了反应。

    有4种主要的天气模式会对圣胡安盆地与科罗拉多高原产生影响。湿润的极地太平洋气团从西北而来,是由往南与东南方向移动的气旋性风暴带来的。到了夏季,这种情况就会反过来;此时,源自墨西哥湾那种温暖湿润的热带气流会带来降雨,偶尔还会有太平洋上的温暖气流入侵,导致雨水更多。山脉的抬升作用,有时也会带来大量的局部性夏季雷雨,主要出现在7月份到9月初之间。不过,这里每年都只有少量降雨,并且每年都有相当大的变化。一切都取决于数千千米以外的气团运动和当地的地形地势。在相距仅有数千米之远的地方之间,雨量有可能差异巨大。

    整个盆地夏季炎热,冬季寒冷,生长季约为150天,但在查科峡谷等地势较低的地方,生长季则会短上1个月之久。居住在峡谷里的人,都是任凭变幻莫测、常常还出人意料的气候变化所摆布。像厄尔尼诺之类的短期性全球气候事件,也对每年的农业耕作产生了深远的影响。

    当时的查科人,很可能没有意识到长期气候变化的影响,因为活着的一代人与历代祖先具有相同的基本适应力,我们可以称之为一种“稳定性”。不过,每个查科农民都非常清楚那些为期较短、出现频率较高的变化,比如年复一年的雨量变化、长达10年的干旱周期、季节性变化等等。干旱、厄尔尼诺现象带来的降雨以及其他类似的气候波动,需要他们采取临时性的和高度灵活的调整措施,比如耕作更多的土地、维持两三年的粮食储备、更多地依赖野生的植物性食物,还有在整个地区进行迁徙。

    这些对策,在数个世纪里都很有效;只要查科人的生活方式具有可持续性,耕作的土地上要供养的人口远低于每平方千米能够养活的人口数量,这些对策就很有效。然而,当人口增长到接近土地的承载能力上限时,人们就会日益容易受到厄尔尼诺现象的影响,尤其是容易为短期或者较长期的干旱所害。就算是一年降雨不足、作物歉收或者出现暴雨,也有可能导致一户人家数周或数月之内无以为生。时间更久的干旱周期,则有可能带来灾难性的后果。

    树木年轮定年法是西南地区一种基本的气候替代指标。如今,我们已经有了查科峡谷自公元661年至1990 年间的逐年树木年轮记录,以及来自其他替代指标的数据资料;它们表明,此地大兴土木、建造“大房子”的时间与降雨较为充沛的时期相吻合,从而进一步说明,稳定的气候可能导致人口增长。普韦布洛波尼托和其他地方的建造活动,在1025年至1050 年间曾经大增;其间有 3 个时期的降雨量高于平均水平,它们之间隔着短暂的干旱期。即便是在情况最好的年份,圣胡安盆地的农耕环境也很不稳定;只不过,高于往常的地下水位以及较多的降雨,让这个峡谷成了比较安全的地方之一。在1080年到1100年之间,长达20年的干旱给农民带来了很大的麻烦,幸好有高地下水位加以缓解。接下来,这里再次出现了充沛的降雨,而人们也再次加速大兴土木;查科地区如此,而圣胡安盆地北部的阿兹特克与萨尔蒙普韦布洛等地也是如此。

    到了1130年,查科居民已经极其依赖于栽培植物,故对同年开始的那场长达50年、其间只短暂中断过一次的干旱,他们根本就没有做好准备。玉米产量大幅下降,野生植物的生长严重受阻。兔子或其他野生动物,也不容易猎取了。公元 1100 年之后,人们曾从圣胡安盆地北部引入火鸡作为替代品,但这种做法并未满足人们对更多食物供应的需求。假如这场干旱只持续了数年,那么“大房子”与一些较小的社群都会幸存下来。可公元1130年之后,那场大旱似乎并未缓解,所以人们开始挨饿。于是,查科人只得求助于一种古老的对策,那就是迁往别的地方。

    在查科峡谷,人口流动向来都是一种常见的现象。很久以前,家家户户就已经不断进出这个峡谷了。他们来来去去的原因,可能是某个季节,决定与远在高地上的亲族住到一起,或者通过迁往别处来解决一种长久的纠纷。他们所属的那些历史悠久的社区继续繁荣发展着,每个社区都有各自的庭园与水源供应,拥有获得其他食物与资源的权利。待那场长达 50 年的干旱降临时,这里既没有出现人们大规模迁离的情景,也没有出现成百上千查科人死于严重饥荒的现象。相反,人们是一个家庭一个家庭地离去,有时则是大家族一起迁走。他们前往降雨较为充沛的地区,前往数个世纪以来他们一直维系着亲族关系和贸易联系的群落。

    12 世纪查科峡谷的人口外迁,刚开始时跟往常一样,是一个个家庭毫无规律地进出这个峡谷。不过,随着情况恶化,人们种植更多作物的努力并未奏效。地下水位下降了。最终,原本小规模的人口流动就变成了源源不断的迁徙,家家户户都开始迁往其他地方那些正在发展的群落。查科峡谷里的人口日益减少,并且达到了一个临界点,使得那些历史悠久的群落全都突然迁走了。只有少数顽强不屈的村落仍在坚持着,直到他们无法再生存下去。至于留下者的遭遇,我们只能搜集到少量的蛛丝马迹。例如,考古学家南希·阿金斯(Nancy Akins)的骨骼研究显示,到了11世纪,查科峡谷中有83%的儿童都患有严重的缺铁性贫血;这一点,又增加了他们患上痢疾和呼吸系统疾病的风险。

    只要仍有降雨,人们就可以耕种新的庭园,庭园主人也可以兴建新的定居之地。公元1080年之后,虽说雨水减少,但大兴土木的热潮并未消退。不过,在某个时间点上,“大房子”里的首领们丧失了他们对复杂宗教仪式的控制权;这样的宗教仪式,曾经为普韦布洛波尼托这类地方带来许多宝贵的奇珍异物,以及像木梁之类的商品。他们再也无力组织精心表演的种种仪式了;数个世代以来,这些仪式都是农耕年份里农事节奏的标志。查科不再是这个世界的精神生活中心。人们逐渐散居到了其他地方。古普韦布洛人跳动的心脏北移到了圣胡安河、科罗拉多州西南部和弗德台地。查科峡谷全然成了一种记忆;但它是一种强大的记忆,深深地镌刻在北方几十个普韦布洛群落的口述传统当中。

    查科的历史,始终都以他们与别人、与别的民族、与亲族以及范围狭窄的峡谷之外各个群落之间的关系为中心。我们可以将那里称为查科世界,它以“大房子”为基础,然后变成了一个日益重要的宗教中心。查科的首领们从来没有掌控过偏远地区的群落,但这个世界的不同地区都以不同的方式将自己与这座峡谷联系在一起,他们的目标也各不相同(既是为了他们自己,也是为了查科的首领们)。

    如果说查科的瓦解完全是由干旱造成的,那就是无稽之谈,就像用同样的说法解释玛雅文明崩溃的原因是误人子弟一样。查科人始终生活在一个贫瘠的农耕环境里,可持续性方面存在由此带来的种种脆弱性。查科的首领们世世代代都得益于一个降雨量高于平均水平、农耕生产极其成功的时期。这一点,就要求其他社群将上述首领的身份合法化。待到查科没落下去,一系列复杂的事件导致人们遗弃了此地,这个峡谷世界的中心便北移了。就算有东西留存下来,那也是因为人们对祖先的记忆十分有力,相信众神不但掌控着宇宙,还掌控着人类。只是与凡人一样,神祇也有义务将他们的恩赐分享给他人,因为这是一种古老的互惠观念。查科的根基,是三种不言而喻的价值观,即和谐、灵活性与迁徙。同样的原则,在许多古代社会中都居于核心位置,因为后者也敏锐地认识到了韧性、可持续性与风险管理的重要性。如今,对于这些合理的日常生存方法,我们还有许多要学习之处。

    因灾迁徙(公元1130年至1180年)

    公元1130年至1180年的那场大旱,让查科的“大房子”遭受了重创。随着查科衰落下去,政治势力便向北转移,落到了阿兹特克和萨尔蒙普韦布洛的头领手中。[10] 此时,有两个从事农耕生产的群落获得了一定的突出地位,其中一个以阿兹特克北部的托塔(Totah)为中心,另一个则以福科纳斯地区的弗德台地为中心。随后,那里出现了一轮兴建“大房子”的热潮,并且持续了60年左右。但到了1160 年前后,各种大规模的建造活动都停了下来;从弗德台地中心区域发掘出的木梁表明,在接下来的一场大旱期间,人们砍伐树木的速度有所放缓了。

    圣胡安北部的社群不同于查科的农民,他们完全依靠旱地玉米种植为生,并且主要在海拔1 829米以上的地区栽培庄稼。在干旱年岁里,质地疏松的土壤可以养活的人口要比实际生活在这一地区的人口多得多,连严重干旱期间也是如此。在公元10世纪,当地人都住在小而分散的群落里;这种群落,一般由5至10个带有一间“基瓦”与若干间储存室的住宅单元组成。但从12世纪末到13世纪,定居地的规模变得越来越大,农业人口则变得没有那么分散了。许多以前的小村落,都变成了带有多个住宅区的村庄,只不过,它们并未达到查科“大房子”那样的规模。

    这里的人口增长一直持续到了 13 世纪中叶,其间无数个各自为政的群落相互争夺农田,争夺贸易路线的控制权和政治权力。随着众多群落纷纷迁到各个峡谷当中能够采取防御措施的地方,袭击与战争也变得普遍起来。这就是“绝壁宫殿”与其他著名的弗德台地普韦布洛的时代,它们出现在峡谷深处,而附近的曼科斯与蒙特苏马两处河谷的普韦布洛则靠着大量的排水系统而繁荣发展起来。这里的人,往往聚居在最多产的土地附近;假如迁徙方面没有限制,或者可以耕作最优质的土地,他们便能在此熬过极端严重的干旱时期。3 个世纪之后,人口密度就从每平方千米13至30人上升到了每平方千米多达 133 人。村落的规模也翻了一番。但是,一旦人口密度接近土地的承载能力上限,而所有最多产的土地也已被开垦,人们适应长久的干旱周期就要困难得多了。

    离如今科罗拉多州南部科特斯不远的尘沙峡谷(Sand Canyon)普韦布洛,此时变成了圣胡安北部最大的修有防御工事的社群之一,距一个水源充足的峡谷前部很近。在公元1240 年至 1280 年间,这里有多达700人生活在一堵巨大的围墙之后。有80至90 户人家居住在尘沙峡谷的住宅群里,生活在他们于短短的 40 年间建造、居住然后又将其遗弃的一个普韦布洛村落里。与普韦布洛波尼托不同,这里更像是居住地而非仪式中心;只不过,宗教节庆与至日仪式也是这里一年一度的活动中的一部分。

    1280 年,历经了40 年的繁荣之后,尘沙峡谷的居民遭受了一场大旱,其严重程度甚于他们集体经历过的任何一场干旱。此时,气候露出了它的真正面目。精确的树木年代学加上以“帕尔默干旱强度指数”为基础的气候重建,为我们提供了详尽的环境信息。气象学家韦恩·帕尔默(Wayne Palmer)开发出了一种算法,可以利用降雨和气温方面的数据来衡量干旱的严重程度。他开发的指数,已被广泛应用于衡量如今与过去的长期性干旱。一系列重建出来的气候变化、土壤信息、可能的作物生产数据和可以获得的野生食物表明,13 世纪的那场干旱并未彻底破坏尘沙峡谷环境的承载能力。因此,可能有一个人口数量业已减少的群落一直留在该地区,熬过了最严重的干旱期。

    由此所需的树木年轮研究既复杂,要求也很高。例如,目前大多数序列使用的都是冷季的湿度条件,它们将被以春夏两季降水研究为基础的曲线所替代。弗德台地的冷杉树提供了一些最强烈的气候信号,因为它们的年轮中记录了前一年秋季、冬季与春季的气候信息。研究人员利用复杂的相关分析法,重现了过去1 529年间每个10年里9月到次年6月的降雨量。如今我们得知,在12世纪与13世纪,弗德台地曾经出现过数场旷日持久的冷季干旱。公元1130年至1180年间的干旱周期,曾经导致冬季与较暖和的月份都出现了严重的旱情。让气候条件变得雪上加霜的是,在整整一百年里,这里的大片地区普遍遭遇过初夏干旱。13世纪初期与末期的旱情最为严重。正如一个世纪之前查科峡谷的情况那样,人们开始迁出这一地区。外迁缓慢地进行着,持续了数十年之久,直到13世纪末整个地区变得空无一人。

    最终,圣胡安北部人口分散的过程开始逐渐展开,就像以前查科峡谷的情况一样。在这两个地方,古普韦布洛人都遵循了数个世纪以来的传统,离开了深受干旱困扰的土地;这一过程则见证了战争、苦难,以及农民逐渐往东南而去的迁徙过程,他们来到了雨量变化不大的小科罗拉多河流域、莫戈永高地,以及格兰德河河谷。我们如今所知的美洲原住民部落,比如霍皮族与祖尼族,就是迁往这一地区的古普韦布洛人的后裔。

    迁徙曾是解决贫瘠农耕地区人口过多的一个办法。不过,如今的美国西南部也见证了人口急剧增长和主要城市迅速发展的历史,比如凤凰城、图森、拉斯维加斯和阿尔伯克基。随着全球变暖加剧、长期干旱变得更加常见,而将人们迁往水源供应更加可靠的地区也不再可行,这些大城市和大规模农耕生产就给地下水以及其他稀缺水源带来了巨大的压力。同样,对于气候更加干旱、人口更加稠密的未来而言,做出长远规划与思考供水问题都具有至关重要的意义。迁徙这种经典的对策虽说有可能在早期的文明社会中发挥过很好的作用,但它在我们这个时代已经不再是一种可行的选择。

    密西西比人(公元1050年至1350年)

    密西西比河流域的环境条件,与美国西南地区大不一样。以任何标准来衡量,密西西比河都算得上一条大河,其广袤而呈三角形的流域面积覆盖了美国 40%左右的国土,仅次于亚马孙河与刚果河。密西西比河也是一条反复无常的河流,既有可能带来灾难性的洪水,也有可能带来旷日持久的低水位期,进而导致干旱。人们把圣路易斯附近的那个冲积平原称为“美国之底”,此地土地肥沃、气候湿润,在欧洲人到来之前就早已是人类一个重要的定居中心了。

    自公元 1050 年左右开始,卡霍基亚在“美国之底”占据了统治地位;它是当地一个宏伟的仪式中心,也是考古学家口中一个实力强大的“密西西比王国”的政治和宗教中心。[11] 这个伟大的中心,既是一个举行宗教典礼的地方,也是一座繁荣的城市与仪式综合体,横跨密西西比河的两岸。卡霍基亚的中心区域居民稠密并且筑有防御工事,还有一座座壮观巍峨的土丘;在公元1050年到1100年这半个世纪的时间里,这里的人口从大约2,000人迅速增长到了10,000至15 300 位居民。其中的许多人,都是在“中世纪气候异常期”从美国中部的其他地方迁徙而来的移民;这段异常期,就是公元950 年前后至 1250 年前后世界上广大地区的气候都较为暖和的一个时期。

    美洲原住民的首领凭借亲族关系、巧妙的政治手腕、长途贸易垄断以及种种据说与精神世界具有密切联系的个人超自然力量,领导着这个宏伟的中心。一些并不可靠的联盟,将卡霍基亚那些组织松散的地区团结到了一起,而后者又是靠效忠、个人与亲族关系等短暂的纽带和一种古老的宇宙观联系起来的;这种宇宙观认为,宇宙中有三个层次,最上层和最下层里都居住着力量强大的超自然生物。其中之一,就是神话中的“鸟人”,它是战士的化身。“巨蟒”则是地狱里一种了不起的生物,它一直都在跟“鸟人”作对。这种宇宙观的政治影响力与精神触角,从墨西哥湾沿岸一直延伸到五大湖区,并且深入了密西西比河的无数支流地区。

    卡霍基亚遗址

    卡霍基亚是一个独特之地,是当地的美洲原住民适应有利的环境条件、不断增长和越来越多样化的人口,以及需要更多粮食盈余来维持一个日益复杂的酋邦等方面的结果。“美国之底”有适合种植玉米的肥沃土地,有丰富的鱼类和水禽;但由于这里的人口极其稠密,故风险也很大,年景接连不好的时候尤其如此。农业耕作由精英阶层牢牢掌控着,并且随着许多农民迁往地势较高之处,以躲避日益上涨的地下水位和周期性的河流泛滥,农业也扩张到了附近的高地之上。如果没有高地上的农民,那么,生活在中心区域的10,000多人就会面临更大的粮食短缺风险。这里的人也不具有灵活性,无法适应更加恶劣的气候状况。

    源自一个覆盖了整个北美洲的干旱测量网络且经过了校准的树木年轮数据,就说明了气候变化的部分情况。与美国西南地区一样,在公元1050年至1100年半个世纪的时间里,这里的气候相对湿润。在这些年里,高地上的人口迅速增长了。接下来,干旱降临,一开始就是1150年之后一个长达15 年的干旱周期。大多数年份里都是旱灾频发,而1150年开始的那个干旱周期,则与我们在前文中业已论述过的西南大旱在时间上相吻合。

    获取古代的人口数据通常都是一个问题,因为遗址的数量有可能产生误导作用。然而,卡霍基亚北部密西西比河上一个呈牛轭状的湖泊“马蹄湖”,却证实了此地人口的上述变化。[12] 人们从湖中钻取的两份重要岩芯,提供了1 200年间的粪固醇记录;粪固醇是源自人类肠道中的有机分子,而令我们感到惊讶的是,这种分子竟然在沉积物中存留了成百上千年之久。它们是一种衡量人口数量随着时间推移而变化的替代指标。粪固醇(即人类粪便中产生的固醇)与土壤中产生的 5a-粪固醇微生物之间的高比率表明,这一地区曾经有过大量的人口。低比率则会反映出,该地区以前的人口要少得多。两段湖泊岩芯中不断变化的固醇比率表明,这里的人口在公元10世纪曾快速增长,并在11世纪达到了最大值。到12世纪时,卡霍基亚流域的人口开始减少,并在公元1400年左右达到了最低值。

    春季与夏初生长的玉米,是卡霍基亚鼎盛时期一种决定性的主要作物。公元1150年左右人口数量开始下降时,气温与粪固醇的比率也一齐开始下降,直到 13 世纪才停止。但1200 年的一场大洪水也淹没了耕地、粮仓,以及洪泛平原上的无数定居地,它是5个世纪以来的头一场大洪水。[13] 这种大洪水通常出现在春季与夏初,也就是非常关键的玉米生长季里。随之而来的,必定就是严重的作物歉收与粮食短缺。那场大洪水定然重塑了卡霍基亚的模样,因为头领们既无法调派大量人手去清理耕地上的杂物和干燥的冲积物,也无力派人去重建神殿与房屋。尽管许多卡霍基亚人可能已经迁往地势较高的地方,与亲属一起生活,但破坏已经造成。由此我们得知,这个时期人口数量已经开始缓慢减少,人们正在建造防御所用的栅栏,而复杂公共建筑的修建速度也已放缓。

    卡霍基亚的领导阶层可能是由几个精英家族组成,而随着“美国之底”人口外迁,这个领导阶层也崩溃了。到1350年时,除了寥寥几个小村落,卡霍基亚已成废弃之地。其中的居民,都散居到了各地;整个周边地区,全都化成了尘土;一座座土木建筑和土丘,则消失在森林之下。

    有许多因素构成了以卡霍基亚为中心的各种宗教信仰中的一部分。其中包括生与死两大现实、像水这样普遍存在的物质,以及像变化的月光与黑暗之类的现象,还有他们自己制定的、时长为18.6年的月亮周期。这一点,在他们的一座座雄伟壮观的纪念碑、土丘、灵堂和一些复杂的公共殡葬仪式中体现了出来;除了其他方面,这种殡葬仪式中还有一条通往逝者、穿过积水的土路。以神殿为中心的汗屋[14] ,也在卡霍基亚的宗教生活中扮演了一个角色。这些方面都让人觉得强大有力,只不过,它们取决于人们认为卡霍基亚是世界的中心这种信念,也取决于他们的忠诚。

    但是,像查科一样,这个王国及其基础设施在当地留下的痕迹相对轻微。也许是因为持有一种盲目的、狭隘的视角,过度专注于精神领域,所以这个领导地位衰落之后,秩序被打乱了,直到当地一些规模小得多的新中心纷纷崛起方有所好转。具有争议的继承权、一位缺乏魅力的首领、一场成功的反叛,都有可能推翻卡霍基亚的统治者,而历史上也很可能出现过这类事件。团结民众与精英阶层的社会纽带断裂了。形形色色的移民与当地人的幻想都已破灭,他们便纷纷弃“美国之底”而去。根据他们明显没有关于卡霍基亚的口述传统这一点来判断,那些离开此地的人必定曾经心怀一种深刻的疏离感。卡霍基亚从历史中消失了近7个世纪,直到19世纪初才被考古学家发现。然而,“美国之底”并不是全然没有人生活了;那里还有一些耕种玉米的半定居农民和捕猎野牛的狩猎民族,他们比前人更具流动性。[15]

    密西西比河流域里像卡霍基亚这样的酋邦都依赖于玉米耕种,以及政治领导与社会领导,这种领导靠向有权势的酋长进献财物来维持。这些首领通过重新分配贡物和共同遵奉的宗教信仰与复杂的仪式(比如汗屋仪式),来维持追随者和一些较小中心的忠诚。这是组织管理等级社会时的一种经典方式,但它也具有一些致命的弱点。一切都依赖于亲属关系与忠诚,可后者在派系斗争盛行的社会中,往往是一种靠不住的品质,比如美国西南地区的普韦布洛人就是如此。查科峡谷与普韦布洛波尼托的历史就是一个典型的例子,说明在一个亲族义务远远延伸到了峡谷狭窄范围之外的社会里,根本力量还在于亲族与社群。在这里,宗教义务是围绕着农事与季节更替,在水源与干旱之间履行的。人们几乎彻底遗弃查科峡谷很久之后,在面对气候变化时,就算是大型的印第安村落中居于领导地位的女性与家族那种相对专制的角色,最终依赖的也是种种古老的亲族关系和迁徙的信条。普韦布洛村庄植根于所在的环境与种种社会关系之中;这些关系盘根错节,让它们存续了一代又一代,直至现代。

    中央集权依赖于长期的稳定与可靠的粮食盈余。在许多以亲族关系为基础的社会中,严格的管控(甚至是通过武力进行控制的做法)只能延伸到相对有限的领土之上,或许还会小至方圆50千米的范围。卡霍基亚的情况无疑就是如此,因其影响力与实力的根基就是贸易与复杂的宗教信仰。待重大的旱涝灾害影响到“美国之底”之后,随着气温下降带来重创,卡霍基亚这个酋邦便土崩瓦解了。经济与政治剧变的影响有如涟漪一般,波及整个密西西比河流域。争端加剧,演变成了战争;与其他定居地一样,这个大型中心也修建了栅栏,围起来以防动乱。为了应对内战和邻邦之间为争夺权力而爆发的战争,居民纷纷迁走,故那些重要的人口中心也崩溃了。在密西西比河流域,对玉米盈余和更多外来商品的控制则巩固了政治权力。西班牙征服者经由美国东南部而来的时候,碰到的并不是一个统一的和强大的酋邦,而是数十个筑有防御工事的村落与城镇,它们之间常常还有荒芜之地隔开。当地有些村落的人口达到了数千之多,从而表明那里拥有可以证明西班牙人贪婪之心的巨大财富。不过,他们发现自己陷入了仇恨与对抗的泥淖之中。这些美洲原住民社会的生存与可持续性,取决于种种复杂的政治现实和社会现实;这种情况,完全不同于一些高度集权的国家,比如我们在下一章即将论述的吴哥。

    [1] Brian Fagan, Before California: An Archaeologist Looks

    at Our Earliest Inhabitants (Lanham, MD: Rowman & Littlefield,

    2003); Jeanne Arnold and Michael Walsh, California’ s

    Ancient Past: From the Pacific to the Range of Light

    (Washington, DC: Society for American Archaeology, 2011).

    [2] Lynn H. Gamble, First Coastal Californians (Santa Fe, NM:

    School for Advanced Research, 2015),这是一部供普通读者阅读

    的佳作。

    [3] Douglas J. Kennett and James P. Kennett, “Competitive and Cooperative Responses to Climatic Instability in Coastal Southern California,” American Antiquity 65 (2000): 379 395. See also Douglas J. Kennett, The Island Chumash: Behavioral Ecology of a Maritime Society (Berkeley: University of California Press, 2005).

    [4] Lynn H. Gamble, The Chumash World at European Contact(Berkeley: University of California Press, 2011).

    [5] Frances Joan Mathien, Culture and Ecology of Chaco Canyon and the San Juan Basin (Santa Fe, NM: National Park Service, 2005). See also Gwinn Vivian, Chacoan Prehistory of the San Juan Basin (New York: Academic Press, 1990).

    [6] 描述查科供普通读者阅读的作品:Brian Fagan, Chaco Canyon: Archaeologists Explore the Lives of an Ancient Society (New York: Oxford University Press, 2005)。关于该峡谷的近期研究成果的论文:Jeffrey J. Clark and Barbara J. Mills, eds., “Chacoan Archaeology at the 21st Century,” Archaeology Southwest 32, nos. 2–3 (2018)。

    [7] Jill E. Neitzel, Pueblo Bonito: Center of the Chacoan World (Washington, DC: Smithsonian Books, 2003). See also Timothy R. Pauketat, “Fragile Cahokian and Chacoan Orders and Infrastructures,” in The Evolution of Fragility: Setting the Terms, ed. Norman Yoffee (Cambridge, UK: McDonald Institute for Archaeological Research, 2019), 89–108.
    [8] Vernon Scarborough et al., “Water Uncertainty, Ritual Predictability and Agricultural Canals at Chaco Canyon, New Mexico,” Antiquity 92, no. 364 (August 2018): 870–889.

    [9] Douglas L. Kennett et al., “Archaeogenomic Evidence Reveals Prehistoric Patrilineal Dynasty,” Nature Communications 8, no. 14115 (2017). doi: 10.1038/ncomms14115.

    [10] 这一节参考的文献:David W. Stahle et al., “Thirteenth Century A.D.: Implications of Seasonal and Annual Moisture Reconstructions for Mesa Verde, Colorado,” in Weiss, Megadrought and Collapse, 246–274。亦请参见Mark Varien et al., “Historical Ecology in the Mesa Verde Region: Results from the Village Ecodynamics Project,” American Antiquity 72 (2007): 273–299。

    [11] 关于卡霍基亚的文献资料极多。参见 Timothy R. Pauketat,

    Cahokia: Ancient America’s Great City on the Mississippi

    (New York: Viking Penguin, 2009),以及同一作者的 Ancient

    Cahokia and the Mississippians (Cambridge: Cambridge

    University Press, 2004)。亦请参见 Timothy R. Pauketat and Susan Alt, eds., Medieval Mississippians: The Cahokian World (Santa Fe, NM: School of Advanced Research, 2015);Pauketat, “Fragile Cahokian and Chacoan Orders and Infrastructures,”89–108。

    [12] A. J. White et al., “Fecal Stanols Show Simultaneous

    Flooding and Seasonal Precipitation Change Correlate with

    Cahokia’s Population Decline,” Proceedings of the National

    Academy of Sciences 116, no. 12 (2019): 5461–5466.

    [13] Samuel E. Munoz et al., “Cahokia’s Emergence and

    Decline Coincided with Shifts of Flood Frequency on the

    Mississippi River,” Proceedings of the National Academy of

    Sciences 112, no. 20 (2015): 6319–6327. See also Timothy R.

    Pauketat, “When the Rains Stopped: Evapotranspiration and

    Ontology at Ancient Cahokia,” Journal of Anthropological

    Research 76, no. 4 (2020): 410–438.

    [14] 汗屋(sweat house),美洲印第安人用于与祖先进行精神沟通、

    净化身心和洗涤灵魂的地方,其大小不等,多用柳条编制,呈圆形或

    者椭圆形,上面用水牛皮或者其他兽皮覆盖,从而围成一个黑暗、密

    封的屋子。举行汗屋仪式时,人们会在屋里击鼓、唱歌、祈祷,并按

    顺时针方向轮流为自己和家人祈福。——译者注

    [15] A. J. White et al., “After Cahokia: Indigenous Repopulation and Depopulation of the Horseshoe Lake Watershed AD 1400–1900,” American Antiquity 85, no. 2 (April 2020): 263–278.

    第九章 消失的大城市(公元802年至1430年)

    富有、美丽而壮观:柬埔寨境内的吴哥窟,是惊人的建筑杰作,据说也是20世纪以前世界上最大的宗教建筑。公元1113 年至 1150 年在位期间,痴迷于权力的统治者苏利耶跋摩二世在高棉帝国的鼎盛时期修建了他的这座皇宫兼庙宇。其规模之大,令人叹为观止。光是主寺加上寺中的莲花塔,就占有215米×186米的面积,并且高出了周围的地面60多米。护城河边的宫墙,长1,500米,宽1,200米。与吴哥窟相比,埃及人祭祀太阳神阿蒙的卡纳克神庙或者巴黎圣母院简直就像是村中的小神殿了。[1]

    吴哥窟紧挨着湄公河,此河会在每年的8月至10月间泛滥。泛滥的河水会注满附近的一个湖泊,即洞里萨湖,使之变得浩浩汤汤,长达160 千米,水深16米。待到洪水退去,成千上万尾鲇鱼和其他鱼类会在浅滩出没,使得这里成了地球上最富饶的渔场之一。著名的“大吴哥”,就位于洞里萨湖与水源丰沛的荔枝山之间。吴哥窟周围皆为平原,使之可向四面八方扩张,故有充足的土地来种植水稻。一座座水库和一条条沟渠,将水源输送到数千公顷的农田里,支撑着公元802年至1430年间繁盛兴旺、极其富裕的高棉文明。然而,这里也有一个棘手的问题:在一个若不谨慎实施水源管理就从来没有充沛水源的地区,人们几乎不可能维持作物的产量。即便作物收成充足,不断增长的人口也加大了粮食短缺的风险。吴哥的领导人只有一个选择,那就是砍伐更多的森林、耕种更多的土地,才能养活以不可阻挡之势日益增长的人口。

    东南亚地区尤其是湄公河三角洲上的小型城市中心,已经有6个多世纪的漫长发展历史。在公元8世纪和9世纪,这些小型中心为更加分散的城市所取代,后者在 13 世纪发展到了巅峰。一连串雄心勃勃的高棉国王,建立了一个实力强大而更加稳定的帝国。统治者们开创了一种对神圣王权的崇拜,兴建了许多精心设计的复杂中心,其中主要是精美奢华的神庙,比如吴哥窟和附近的吴哥城就是如此。成千上万的平民百姓,曾为一个所有东西完全流向了中央的国家辛勤劳作。公元1113年,国王苏利耶跋摩二世开始利用整个王国内精心组织起来的劳动力兴建吴哥窟,并用洞里萨湖的鱼儿和海量的稻米收成供养那些劳力。[2]

    吴哥窟的每一处细节,都体现出了高棉神话的某种元素。高棉人的宇宙观里,包括一个大陆南赡部洲[3] ,以及耸立于南赡部洲以北的世界中心的须弥山。吴哥窟的中央有一座60米的高塔,它效仿的就是须弥山;还有4座塔,代表着4座较低的山峰。这里的围墙,再现了传说中环绕着南赡部洲的那些山脉,而其四周的护城河则代表了乳海,据说神、魔双方曾经在那里搅起过“不死甘露”。

    吴哥窟与吴哥城里,到处都是象征着宇宙与宗教的建筑;其中,包括了星象台、王陵与寺庙。一代代研究人员对两地的艺术与建筑都进行过研究,但笼罩在这两座遗址和整个地区之上的茂密植被,却让他们无法进行任何系统性的实地考察。2007年,一个国际研究小组联手启动了一个最先进的项目,旨在利用一系列前沿技术来了解吴哥窟的真实情况及其更广泛的地形环境。这项具有突破性的研究表明,吴哥窟的寺庙建筑群要比人们以前所想的庞大得多、复杂得多。不过,可能更加令人激动的是,研究小组还运用了机载激光雷达技术;这是一种遥感方法,就是利用脉冲激光测量出无人机(或者其他机载设备)到地球之间的可变距离。在吴哥窟这个研究项目中,所捕获的图像让研究小组能够“看透”吴哥窟主庙群周围的茂密丛林,发现一些意想不到的东西。该项目发表了一篇在学术界引起轰动的论文,表明那里存在一个失落的“特大城市”:有一个庞大的道路网络,有池塘、沟渠、狭窄堤岸环绕着的成千上万片稻田、房屋土堆,还有1,000多座小型神庙。[4]

    东南亚地区的高棉文明遗址

    无边的辉煌

    大吴哥地区的城乡面积加起来至少达 1,000 平方千米,并且这个广袤区域里可能有75万至100万人口(这一数据还有待商榷)。与此同时,居住在吴哥窟寺庙群围墙之内的,却只有相对较少的人口(大约为25,000人)。范围更广的定居地与这个宗教—政治—经济精英中心之间的关系,有点类似纽约城与圣帕特里克大教堂所在的曼哈顿中心城区之间的关系,或者大伦敦地区与其中心即圣保罗大教堂俯瞰着的伦敦城之间的关系。这是一片组织得井然有序的绿洲,整个大吴哥地区则在辽阔而有组织的稻田之上延伸。从考古学的角度来看,它会让人想起一度环绕着玛雅那些宗教中心的人口稠密的地区,比如人们最近也用激光雷达技术考察研究过的蒂卡尔与卡拉科尔,只是大吴哥的规模比它们大得多而已。

    吴哥窟这个伟大而生生不息的心脏之地,并不是独一无二的。尽管吴哥窟是苏利耶跋摩二世(1113—1150 年在位)所建,但它实际上完工于国王阇耶跋摩七世(1181—约1218年在位)的统治时期。而且,这位面带温柔微笑的国王阇耶跋摩七世(其雕像上的模样就是如此)还兴建了另一座寺庙群,即吴哥城;它名副其实,意思就是“大城”。这将是高棉帝国最后一座都城,也是存续时间最久的一座都城。阇耶跋摩七世兴建的这座新城,坐落在吴哥窟以北约1.7千米处,占地9平方千米,其中心区域有3万至6万居民。还有大约50 万人生活在从市中心向外延伸达15千米的郊区。兴建此城,并不是什么心血来潮的项目。相反,用激光雷达进行的勘测表明,高棉人必定是早就有了兴建吴哥城的想法,因为他们在修建这处寺庙群的半个世纪之前,就已建好了一个路网。四通八达的道路,将寺庙群的整个腹地接入了一个沟渠与道路交织的网络中,后者则延伸到了当时大部分人生活的广阔邻近地区。

    这里的一切,都依赖于娴熟的水源管理。早在兴建吴哥窟和吴哥城的很久之前,高棉人就开始修建“巴莱”(baray)了。“巴莱”就是一座座巨大的长方形水库,既可用于储水,也可将多余的水排进烟波浩渺的洞里萨湖;此湖通往洞里萨河,然后注入湄公河。到了公元9世纪,兴建“巴莱”的工作进行得如火如荼,成了一个不变的水源管理系统的基础,并且由此形成了一个规模庞大的人造三角洲。三角洲的北端有输入水道,南部则是一些呈扇形分布的水道,它们位于紧邻吴哥窟的东巴莱湖与西巴莱湖[5] 两侧。[6]

    这个巧妙而灵活的水源管理系统使得官吏们几乎可以将水源输往整个平原上的任何方向,然后储存起来或者排入辽阔的洞里萨湖中。可不要把这个系统与埃及或者美索不达米亚地区形成的集中灌溉系统混为一谈。上述各地的基本灌溉技术都很简单,并且都依赖于充足的人力,只有吴哥这个国家能够召集规模充足的劳力,去兴建那些曾经属于吴哥文明之命脉的重要沟渠或水库。澳大利亚考古学家罗兰·弗莱彻曾经恰如其分地把这个系统称为“一种风险管理系统,旨在缓解一个以雨水灌溉为主且稻田有田埂环绕的地区里季风变化带来的种种不确定性”。[7] 从根本上看,他无疑是对的,而他也恰当地称之为一种悖论。

    高棉人创造了一个多功能系统,可以应对变幻莫测的季风波动。不过,他们面临着一个严重的长期问题。规模庞大的灌溉设施和他们的管理方式,使得他们在面临重大的气候变化并需要迅速做出改变的时候,很难(且几乎不可能)去改造甚至是维护这些灌溉设施。

    吴哥地区的沟渠与堤坝网络既灌溉了北部的田地,也提供了充足的水源供应,确保了吴哥地区南部那些有埂农田里种植的水稻获得高产。靠近吴哥中部的西巴莱湖,其灌溉面积在整个平原上相对较小。此湖曾为大约 20 万人口提供水源,其供应量足以让人应对季风不力所导致的干旱年份。这个系统一直运行到了 12 世纪晚期且效果良好。当时水利工程的重点,更多地放在那座中心城市之上。新筑的沟渠——至少在一定程度上是为了给管理和维护主要寺庙所需且日益增多的人口提供水源而修建的——都确保水源会流经吴哥这个中心。光是阇耶跋摩七世国王,就在12世纪末至13世纪初让吴哥中部地区的寺庙数量翻了一番。

    由此所需的资源之多,是令人不可想象的。仅是一位寺庙工作人员,就需要大约5个农民劳作,才能生产出此人所吃的稻米。光是阇耶跋摩七世建造的塔普隆寺(1186年完工)与圣剑寺(1191年完工),就用了不下15万名辅助人员,他们都必须住在寺庙的附近。建造这两座中等规模的寺庙,消耗了大吴哥地区人口中五分之一的劳动力。然而,他们似乎成功地解决了这个问题。当地的水牛随处可见,鱼类极其普遍,菜蔬也很丰富。该国维持着一副光鲜亮丽的外表,实际上却是用苛政和宗教狂热维持着秩序。事实上,倘若不进行大规模的武力展示,国王就不会公开露面。当时,这种无边的辉煌似乎永远不会终结,直到这里开始遭遇季风不力的问题。

    无常的季风(公元1347年至2013年)

    吴哥地区的庄稼收成,向来都依赖于亚洲季风。[8] 季风导致的西风,会随着它们北移进入东南亚地区和南海而逐渐加强。季风雨会在每年的8月和9月达到顶峰,给孟加拉湾带来强大的热带气旋。吴哥地区的夏季降水,都源自稳定的季风雨,以及强烈的热带扰动(尤其是热带气旋)给陆地带来的暴雨。等热带扰动到达东南亚之后,它们导致的强风虽然会逐渐减弱,但会随着缓慢移动、长达4天的风暴系统带来大量的降雨。这些扰动与一次次强度较弱的赤道东风带来的降雨,占到了整个东南亚地区夏季降水的一半左右。

    虽然 12 世纪在吴哥地区建立帝国的统治者们可能并不知道这一点,但他们治下的王国其实比哪怕一个世纪之前都要脆弱得多。[9] 该国通过一种简单的权宜之计,即靠大规模砍伐森林来增加农业用地的数量,保持着高水平的水稻生产。此时,吴哥的大部分地区都成了有埂稻田,却只有零星的树木了。当季风性暴雨来临,强劲的地表径流以及由此导致和无法遏制的侵蚀作用,就会让土壤裸露出来。再加上高地的森林被砍伐一光,所以严重的生态后果随之而来。航拍照片表明,在一片耕作强度远高于如今的土地上,遍布着成千上万处废弃的古老稻田。

    此外,吴哥的基础设施原本是作为一种风险管理措施而兴建的,当气候开始变得不稳定时,已经有500多年的历史了。这里的最后一座“巴莱”,还是此时的一个世纪之前建成的。吴哥那种庞大的基础正在老化,不但越来越难以有效地管理,而且变得越来越盘根错节了。弗莱彻的考古团队发掘出了一座垮塌了的水坝,它曾在10世纪或者11世纪得到重建。在城市人口少得多和这个系统刚刚形成的时候,一切都没有问题。这个系统受损后,人们就会迅速将其修复,但也仅此而已。

    究竟发生了什么?多亏了在越南发现的一种热带柏树“福建柏”(Fokienia hodginsii),我们才能找出这个问题的答案。这种柏树的年轮记录了从公元1347年至2013年间出现的“恩索”事件与季风情况。年轮的厚薄,与寒冷的拉尼娜现象与炎热的厄尔尼诺现象相互交替的时间相吻合。[10] 在14世纪,二者之间出现了剧烈的波动,以大规模的季风与严重的干旱为代表。除此之外,从印度季风区的丹达克洞穴与中国西北地区的万象洞获得的优质洞穴石笋记录,与越南南方的树木年轮记录非常吻合,尤其是与13世纪和14世纪时形成的树木年轮记录非常吻合。[11] 总之,这些证据表明,13世纪和14世纪是东南亚地区一个重要的气候不稳定时期,这对元朝来说也是如此;当时的气候,在异常强大的季风与严重干旱之间波动,变幻莫测。

    起初,高棉人的系统能够应对周期性的干旱,就像数个世纪以来的情况一样,只是这个系统很脆弱。这里的水坝,显然无法应对严重的泛滥。人们对这里两座主要的水库即东巴莱湖与西巴莱湖进行发掘后发现,它们的出水口都被堵死了,其中有些早在12世纪就已淤塞。东巴莱湖还曾多次储水不足,导致 13 世纪初气候较为干旱的时期出现了严重缺水的情况。接着,季风带来的大雨倾盆而下;直到16世纪,这种波动才稳定下来。到了此时,劳动力却出现了短缺,没有充足的人手去分流调水了。

    我们不妨想象一下当时的情景:一场长达150年的大旱过后,极端强大的季风突然袭来,冲击着规模庞大却有数百年历史的基础设施。洪水汹涌,导致那个衰朽的网络上出现了裂口;这必定对精心设计的各级沟渠造成了灾难性的损毁,可精英阶层既无能力也无意愿进行修复。由此带来的后果是致命的。受损的田地再也无法养活吴哥稠密的城市人口。可持续性遭到了破坏。世世代代供养着寺庙及其工作人员的农民,也无法继续供养他们。精英阶层过着奢华的生活,拥有庞大而关系复杂的家庭,如今却难以为生了。该国的统治者和高级官吏再也没有能力或者权力来为重大的工程招募劳力,以修复这个系统。他们可以支配的粮食盈余也不足了。

    数个世纪以来,复杂而极其稳固的供水系统还支撑着其他一些方面,比如道路,比如与稻田相连的鱼塘。因此,蛋白质供应与水稻这种主要作物的收成都开始面临压力。上游的供水系统失去作用之后,损害就会迅速波及下游;除了其他方面,整个道路网络也会瓦解。水运与陆运不但曾将粮食运往吴哥各地的集市,还将其他各种各样的商品和奢侈品汇集到了这些市场上。比如,大吴哥地区的家用商品中,有不少于6%产自中国。谣言、恐慌与社群之间的竞争,导致了与环境混乱相一致的社会动荡。

    解体(公元13世纪以后)

    14 世纪60 年代的那场大旱,必定对粮食供应造成了严重的破坏。到了14世纪末,吴哥的部分地区已经变得不可再用,寺庙经济也处于崩溃状态。除了洪水造成的破坏,肆虐的大水还会将各种垃圾冲到整个地区,堵塞重要的沟渠,甚至更加严重地损毁精心组织起来的整个局面。

    当然,并不是一切都被洪水冲毁得不留痕迹了。被冲毁的道路与堤坝当中,有一片呈方形的纵横交错的堤坝与农田完好无损地留存了下来。当时,精英阶层有好几种选择:要么迁往别的地方,跟富有的亲戚一起生活,要么随着他们的君主迁往其他中心,或者搬到他们在内地的庄园生活。不过,依赖他们谋生的工匠和为精英阶层提供粮食的农民,却被留在疮痍满目的穷乡僻壤,自生自灭了。沟渠与堤坝崩溃之后,洪水溢出人造的水道,漫到了整个地区;被遗弃于此的普通百姓,饱受饥饿与营养不良之苦。无疑,农民与其他人也曾努力修复吴哥城的供水系统,可在 16 世纪中叶之前的差不多200年时间里,吴哥地区都没有王室存在。

    表面上,吴哥的崩溃是超强季风和极端干旱降临到高棉人身上并给他们造成了重创的直接结果。尽管这看似是一种直接的因果关系,可历史真相却要更加复杂。

    一如既往地,宗教扮演了一个主要的角色(就吴哥而言,宗教还是一个致命的角色)。佛教中的大乘佛教一派,在吴哥城的缔造者阇耶跋摩七世治下(1181—约1218)被定为了国教。也正是在这段时间里,季风强度日益减弱,而粮食短缺的现象也出现了。精英阶层与农民不但都要应对这种危机,而且要为发生的事情找到一种解释。于是,他们转向了宗教。在12世纪末至13世纪初,这里爆发了一场反对王室支持大乘佛教的运动,导致一些重要寺庙墙壁上所绘的佛像遭到了破坏。几乎可以肯定地说,这种破坏佛像的行为就是民众对干旱做出的有力反应,表明他们认为其他信仰可能会提供应对持久干旱的更好方法。

    多年以来,学者们都认为,吴哥是1431年被其竞争对手即暹罗的大城王朝攻陷并洗劫一空的;大城(音译“阿瑜陀耶”)如今位于泰国境内,曾经是一个重要的国际贸易中心,并在 16 世纪变成了东方最大和最富裕的城市之一。但我们如今明白,事实并非如此:因为到了那时,吴哥地区早已不适宜人类居住。精英阶层可能早已带着他们的财产离去了。也就是在这个时期,高棉帝国发生了深刻的政治、经济和社会变革。国家不得不面对暹罗人与越南人成群结队的南迁,这一迁徙活动切断了高棉人那些历史悠久的陆上贸易线路和沿海通道。在15世纪和16世纪,贸易变得更加全球化了。沿海城市的地位日益重要起来,而高棉内地那种古老且极其稳定的水稻生产则逐渐衰落下去。高棉帝国与阿拉伯、印度、中国以及其他航海国家和地区之间的海上贸易,也变得越来越重要。由于深受气候难题所困扰,故这个帝国随着人口减少的加速便慢慢没落下去,变得默默无闻了。

    此外,新的宗教信仰也对种种旧的生活方式构成了制约。吴哥地区与印度之间有着长久而密切的贸易联系。这些历史悠久的贸易线路带来的不仅有商品,还有思想和信仰,其中包括南传佛教。13 世纪过后,南传佛教就成了高棉的国教。

    新的教义淡化了长期以来供养大型庙宇和庙宇中众多看管人的惯例。随着大寺庙的势力自13世纪起日渐减弱,其经济后果也对吴哥的人口产生了影响。3 个世纪之后,尽管人们还没有废弃吴哥城,吴哥窟也只是一个朝圣中心了。随着国家的权力中心南移到了当今金边附近的四臂湾地区,吴哥地区只有少量人口留存了。

    吴哥的衰亡,涉及的远不只是气候带来的冲击。内部瓦解与征服无关;相反,这是一种变革。高棉帝国的领导阶层和权力中心,从那个面积广袤、组织有序且种植水稻的绿洲向东南方向迁移,进入了一个每年都受自然泛滥所滋养的地区。这里的农民不会那么容易受到干旱的影响。一到汛期,湄公河就会水量大增,溢出河岸。当湄公河在季风雨过后漫到洞里萨河时,洪水就会把周围之地淹没。洪水会注满面积约1万平方千米的洞里萨湖这个淡水湖,有时甚至还会将整个湖泊淹没。[12]

    高棉地区的遭遇,与玛雅人的情况完全一样;我们将看到,斯里兰卡的情况也是如此。公元9世纪到16世纪之间,从中美洲一直到东南亚的热带地区中散布着的城市文明纷纷解体,它们的根基都因粮食供应的不确定性和传统的政治权力受到削弱而遭到了动摇。一个个实力强大的王朝兴起又衰落,战争变得司空见惯,一些精英阶层则迁往了新的中心。这些文明之所以崩溃,很大程度上是因为维持文明的可持续发展超出了那些中央集权制国家的能力,这些国家由神圣的国王所统治,而国王们致力于奉行不变的宗教思想,行政管理僵化。随之而来的,必然是一个转型期。农民们曾经供养距他们很遥远的君主治下的一个个王朝,他们保持着可持续的传统农耕方式,并且对其进行了改造,使之反映了新的环境现实。城市中心变得格局更加紧凑,通常位于如今业已消失的国家的外围。此前的大城市,比如蒂卡尔、蒂亚瓦纳科和吴哥窟,都屈服于种种新的经济现实和政治联盟,且其中许多都建立在国际贸易的基础之上。取而代之的则是在广袤的腹地外围繁荣发展起来的小型定居地。

    在亚热带和热带地区,水源管理曾是各地可持续性当中一个至关重要的组成部分。这些社会面临着无数挑战:泾渭分明的干、湿两季,有可能带来暴雨的季风,“恩索”事件,飓风或者台风,以及短期和长期的干旱周期。尤其重要的一点在于,变幻莫测的降水是一种永远存在的挑战,降雨量年年都有可能大不相同。有了一代代新的气候替代指标之后,我们如今就可以明确,在亚洲季风区的大部分地区,气候变化曾经发挥过作用,动摇了中世纪的社会体系和政治体系。南亚、东南亚以及中国北方和南方的农民,曾经都任由距其家乡很遥远的各种气候力量所摆布,现在也依然如此。早先那种原生态的辉煌,实际上就是一个神话。

    进入斯里兰卡(公元前377年至公元1170 年及以后)

    我们在第五章里已经看到,古罗马人与印度洋各地以及远至孟加拉湾沿岸之间的贸易,甚至把中国的丝绸带到了地中海地区,其作用就像横跨欧亚大陆的“丝绸之路”一样。其中的一大驱动因素就是季风,它在公元2世纪发挥了重要的作用。罗马与君士坦丁堡两地,在公元4世纪都极其繁荣。后者还变成了日益发展壮大的东罗马帝国的中枢。稳定可靠的季风会季节性地转变风向,将亚历山大港、红海地区与印度西海岸及斯里兰卡连接起来。人们对象牙、香料与织物都有一种永不餍足的需求;这种需求不但促进了贸易,也为斯里兰卡那些日益复杂的社会带来了财富。

    当时,槃陀迦阿巴耶(Pandukabhaya)国王于公元前377年建立的阿努拉德普勒王国统治着斯里兰卡。王国的都城,坐落于斯里兰卡岛上那个所谓的干燥地带,就在如今的阿努拉德普勒遗址上;阿努拉德普勒既是当时一个重要的政治中心,也是后来在高棉占统治地位的那个佛教分支即南传佛教的一个主要的知识中心和朝圣中心。[13]

    这里的百姓必须想出办法,好在每年的12月至次年2月之间利用季节性的降雨来灌溉田地。为了节约水源供旱季所用,他们修建了许多大型的水库与水坝,故需要大量的劳力。农民也兴建了一些灌溉工程,依靠的是重力,以及阿努拉德普勒腹地倾泻而下的水流。[14] 随着当地寺庙与朝圣者的数量都不断增加,中心区域也在扩大。他们的水库越修越大,到了公元1世纪,努瓦拉维瓦湖(Nuwarawewa Lake)的面积达到了 9 平方千米。然而,人们的用水需求也进一步猛增,故精英阶层修建了更多的巨型水坝和重要的引水渠。长达87千米的尤达埃拉[Yoda Ela,或称“贾亚甘加”(Jaya Ganga)]运河,将更可靠的水源引到了地势较高的重要水库里。无论以什么标准来看,这条水渠都称得上一项工程杰作:水渠每千米的坡度,竟然只有10至20厘米。

    阿努拉德普勒的用水供应,依赖于精英阶层派人兴建的大型水利项目,而当地社区与寺庙也兴建和管理着各自的小型阶梯式灌渠。在季风状态相对稳定、降水充沛的几个世纪里,一切都运行得很顺利。寺庙对受到灌溉的腹地施加意识形态上的控制,从而开创了一种神权政治的局面,使得僧侣既是宗教管理者,又是世俗统治者。

    接下来,气候在9世纪至11世纪变得极其不稳定,导致了气温上升和持久的干旱。变幻莫测的降雨造成了严重的后果,就像吴哥的情况一样。相比而言,14世纪至16世纪则气温较低,暴雨和干旱的发生频率也越来越高。考古学家指出,在11世纪,阿努拉德普勒方圆15千米之内的遗址数量减少到仅剩11个定居地了。[15] 没有人仍然生活在城市的核心区域里。中心区域和外围的绝大多数寺庙,都已门庭冷落。没人再对水库与沟渠进行日常维护,所以许多都淤塞了。在 19 世纪人们重新开垦那片干燥地带之前,只有少数几个进行刀耕火种式农耕的小社群在这里幸存了下来。

    随着气温在11世纪和12世纪不断上升和阿努拉德普勒日渐没落,波隆纳鲁瓦-斯里兰卡第二古老的王国——开始崛起。这个王国由僧伽罗王族维阇耶巴忽一世于公元1170年建立,位于更远的内陆和气温没那么极端、地势较高的地区。维阇耶巴忽的外孙波罗迦罗摩巴忽一世(约 1153—1186 年在位)派人修建的沟渠与水库,甚至比阿努拉德普勒的沟渠和水库更大。此人兴建的“波罗迦罗摩萨姆德拉雅”(意即“波罗迦罗摩海”)环绕着他的城池,既是水库,也是防御攻击的护城河。国王修建的这个湖泊面积达87平方千米,实际上由3个水库组成,它们的浅水区有狭窄的水道相连。成千上万名劳力完全是用双手为国王修建了这座湖泊,可获得的回报却是精神上的。这个人工修建的“海”与真正的大海相比毫不逊色,它支撑着一个复杂的稻田灌溉系统,后者覆盖了7 300公顷的土地,养活了稠密的城市人口。

    阿努拉德普勒和波隆纳鲁瓦两个王国的寺庙,在农耕生产与水源管理方面都发挥了核心作用。两国的寺庙,都是举行一年一度的重大宗教节庆活动的中心;每到那个时候,都有来自城市及其腹地的成千上万人参加。在吴哥和斯里兰卡,重大的公共庆祝活动确定了四季。与玛雅君主举行的公共仪式一样,这种庆祝活动可以提醒每个人记住那些复杂的和不成文的社会契约,它们将所有的人联系在一起,无论是祭司、统治者还是平民百姓,全都如此。环绕着一座座大佛塔的水库,形成了一个个组织有序的绿洲,增强了寺庙所代表的那种宗教权威。这种宁静的景色,给人以恒久和稳定的印象。不过,与吴哥的情况一样,这里的气温在13世纪和14世纪日益上升,季风降雨周期也大幅减少,对水库造成了严重的破坏;而在当时,人口密度正在增加,由此导致农业生产日益密集,以满足不断增长的粮食盈余需求。为了应对这种情况,统治者便迁往了距数量大减的水库更近的地方,有时还皈依了新的宗教信仰。这种社会转型具有深远的意义,因为人们在面对旷日持久的干旱时,采取了常见的分散策略。人口的锐减使得大城市成了纯粹的朝圣之地。

    进入多灾多难的19世纪:中国与印度的大饥荒(公元1876年至1879年)

    自公元前206年至公元220年(与古罗马人统治欧洲同期)统治中国的汉朝诸帝,确立了皇室负责灌溉与掌控水利的模式;虽说此后经历了很大的改良,不过这些模式一直持续到了20世纪。他们面临着许多重大的挑战,其中既有北方的黄河造成的,也有南方的长江导致的。汉朝及之后的朝代,都是依靠成千上万的劳力去修建堤坝、治理洪水的。中央政府与地方利益集团之间的关系一直都很紧张,在兴建重大水利设施的问题上尤其如此。到了19世纪,在厄尔尼诺现象异常活跃的一段时期,中国没能将其可持续性维持下去。[16] 数千年来偶尔灵感勃发的灌溉工作、常常僵化的官僚机构和受到严格管制的劳作,都无法遏制自然界突如其来且经常很剧烈的各种循环。

    长期以来,当洪水与干旱周期影响的充其量只是微小的可持续性时,断断续续且偶尔有效的饥荒救济制度曾解决过粮食短缺的问题。但在1875年至1877年间季风雨连续两年不力之后,中国北方遭遇了巨大的厄运。随之而来的干旱与饥荒,要比印度同一时期的干旱与作物歉收严重得多。1876年,远至南方的上海这座城市的街头也出现了数以万计的难民;但在此之前,一个效率低下的政府在遥远的北京却几乎无动于衷。饥肠辘辘的农民只能吃谷壳、草籽,以及他们能够找到的任何东西。美国传教士卫三畏曾经看到,“民如幽魂,逡巡于已为灰烬之宅,觅薪于寺庙之废墟”。[17] 大多数地区的官吏面对这场灾难的规模时都不知所措,什么措施也没有采取;或者,他们干脆将成千上万名因饥成匪的百姓关在笼子里活活饿死。

    最终,在一个面积比法国还大的地区里,有9,000多万人陷入了饥荒。传教士与外国公使成了向外界传递消息的唯一源头。他们报告说,一座座大坑里躺满了死去的人。最后,一些从鸦片贸易中赚取了巨额利润的公司成立了一个“中国赈灾基金委员会”。中国教区里那些虔诚的基督教信众都把饥荒赈济视为“一个美妙的开端”,可在 1878 年季风再度回归之后,信众中却没有多少人继续保持他们的信仰。据传教士们估计,当时只有20%至40%的饥民得到了救济。到那场饥荒结束之时,许多村落里剩下的人口都不到饥荒之前的四分之一了。

    19 世纪的严重气候变化也对印度产生了极大的影响。从维多利亚女王治下初期直到19世纪60年代,季风区的气候相对平静,降雨一直都很丰沛。就像数个世纪之前吴哥的情况一样,充沛的雨水使得作物丰收和人口增长。耕地不足的印度农民,开始去耕作一些不那么肥沃的地带;虽然这些地带在气候湿润的年份可以种植适量的作物,但大多数时候,它们对农业而言是微不足道的。在英属印度开始输出粮食的那个时候,一切似乎都没有问题。接下来,1877年至1878年发生了一次大规模的厄尔尼诺现象,随后与之类似的异常气候事件又一批接一批,持续了30多年,尤以1898年和1917年为甚。1877 年的厄尔尼诺现象最为严重,它始于1876年的一场大旱,然后持续了3年之久。印度尼西亚上空形成了一个强大的高气压系统,阻延了季风。干旱随之而来,并且导致了大范围的丛林火灾。1877年,西南太平洋广袤的温暖水体东移,催生出了严重程度在历史上屈指可数的一次厄尔尼诺现象。大部分热带地区遭到了重创,人口大量死亡,尤其是只依靠雨水而不靠灌溉进行耕作的农业人口。

    印度在遭受了 1792 年以来最严重的干旱之后,又迎来了饥荒。雨水未至,作物枯萎。英国当局拒绝实施物价管控措施,从而引发了疯狂的投机大潮。随着粮食骚乱爆发和许多劳力饿死,即便是灌溉情况良好的地区也有数百万人受灾和丧生;可是,英国人却继续在全球市场上出售印度所产的大米与小麦。

    这场严重的饥荒,实际上是一场人为造成的灾难。难民纷纷涌向城市,城市里的警察却将他们拒之门外;光是马德拉斯一地,被拒的难民就达25,000人。许多难民死去,其他难民则是漫无目的地四下流浪,寻觅食物。与此同时,英属印度当局却认为,赈济饥民虽然有可能挽救生命,却只会导致更多的人生而贫困;因此,当局并未积极尝试为饥饿的百姓提供粮食。官方的政策就是自由放任,结果是仅在马德拉斯地区,至少就有 150 万人饿死。等到雨水再度降临之后,成千上万的百姓却虚弱得无法耕种了。在获得补贴的工作场所里,工人们的口粮根本不够,已死和垂死之人到处都是,而“霍乱患者皆辗转于未病者之中”。新闻界与政府中少数义愤填膺之士提出了强烈抗议,却无济于事。作家迈克·戴维斯(Mike Davis)已经令人信服地指出,这场灾难为印度的民族主义奠定了基础。

    1877 年的灾难,让许多殖民政府第一次不得不真正去面对气候变化方面一个普遍但经常为人们所忽视的问题:在他们正剥削的国度里,几乎普遍存在饥荒和饥饿的现象,可当时当地人唯一明确的解决办法就是外迁。没有人对由此导致的大规模人口分流做好准备,而这种分流,也预示了20世纪末和如今的大规模移民。自给自足的农民对祖辈留下的土地怀有深深的眷恋之情,他们用尽了熟知的办法,只能采取唯一可行的生存之道:分散开来,迁往他处,去寻觅食物和可以种植庄稼的地方。

    19 世纪发生在中国和印度的严重饥荒,让基本上无视这个问题的两国中央政府几乎无力回天了。以印度为例,当时英属印度当局更关心的是从全球粮食价格中牟取暴利,而不是帮助当地农民摆脱困境。他们的干预导致了规模惊人的骚乱。有数以百万计的百姓,在现代的国际救济组织出现之前的时代里死亡。自私自利却具有凝聚力的高棉帝国曾经迅速扩张,但最终被维护水利工程的需求所压垮,因为那些水利项目需要大量的人力、谨慎细致的组织,以及高效而去中心化的行政管理。与玛雅人和蒂亚瓦纳科的农民一样,最有效的解决之道在于社会转型;转型之后的社会,不能以兴建气势恢宏的城市与寺庙为基础,而应以自给自足的农村社区为根基。

    这一点,与我们的世界息息相关。如今,有数以百万计的自给农民和贫困人口都深受粮食不安全之苦。干旱与饥荒,如今在刚果民主共和国、南苏丹、津巴布韦和萨赫勒地区几乎普遍存在,而阿富汗也有三分之一的人口(约为1 100万人)为粮食不安全所困。形势既微妙又复杂,但就像殖民时代西方国家瓜分世界、争夺土地和资源并让民众丧失人性一样,战争、对人民和资源的剥削往往还会继续下去。此外,我们还要面对常常很腐败和冷漠的无能地方官僚机构,因此人们唯一的生存之道就变成了外迁,与过去没什么两样。

    19 世纪末,中国和印度曾经有成千上万忍饥挨饿的村民孤注一掷地迁徙,以寻觅食物和可靠的水源。如今,在全球变暖、干旱迅速蔓延的情况下,生态移民的人数已数以万计甚至更多。然而,我们西方人却向我们剥削的民族筑起了一道道壁垒(不管是隐喻还是非隐喻的壁垒)。究竟是什么给了我们这样做的权利呢?是西方的经济制度让我们不得不这样,因为资本主义内含强大的企业利润观念与剥削观念。因此,各国政府不得不保护本国的土地与资源,并且打压其他国家。这样做,究竟是不是我们这个物种应对全球变暖诸问题的最佳之道呢?

    无疑,在我们生活的这个时代,城市人口动辄就有数百万之多。不过,这种情况导致我们忘记了过去的教训:我们忘记了许多农村社群在自我维持与合作方面所做的大规模投入,忘记了他们长期积累下来的风险管理经验。假如我们与这样的社群合作,向其学习,并且通过投资他们的生活方式和处理问题的方式,与之共享资本,那么,与始终庞大的军费支出等方面相比,这种投资对人类的未来将有用得多。

    [1] 要想了解高棉文明的概况,请参见 Charles Higham, TheCivilization of Angkor (London: Cassel, 2002),或者 Michael D. Coe, Angkor and the Khmer Civilization (London and New York: Thames & Hudson, 2005)。亦请参见Roland Fletcher et al., “Angkor Wat: An Introduction,” Antiquity 89, no. 348 (2015):1388–1401。
    [2] 对最新研究的通俗论述,请参见Brian Fagan and Nadia Durrani, “The Secrets of Angkor Wat,” Current World Archaeology 7, no. 5 (2016):14–21。

    [3] 南赡部洲(Jambudvipa),佛教传说中的“四大部洲”之一,由“四大天王”中的“增长天王”负责守卫,泛指人类生存的这个世界,亦译“琰浮洲”“南阎浮提”“南阎浮洲”“阎浮提鞞波”等。——译者注

    [4] 关于在吴哥进行的激光雷达勘测:Damian Evans et al.,

    “Uncovering Archaeological Landscapes at Angkor Using

    Lidar,” Proceedings of the National Academy of Sciences 110

    (2013): 12595–12600。

    [5] 东巴莱湖与西巴莱湖(East and West Barays),亦译“东大人工湖”与“西大人工湖”,或者“东池”与“西池”。——译者注

    [6] Roland Fletcher et al., “The Water Management Network of Angkor, Cambodia,” Antiquity 82 (2008): 658–670.

    [7] 本章的其余部分主要参考的文献是:Roland Fletcher et al., “Fourteenth to Sixteenth Centuries AD: The Case of Angkor and Monsoon Extremes in Mainland Southeast Asia,” in Megadrought and Collapse: From Early Agriculture to Angkor, ed. Harvey Weiss (New York: Oxford University Press, 2017), 275–313;此处引自其中的第279页。

    [8] P. D. Clift and R. A. Plumb, The Asian Monsoon: Causes,

    History, and Effects (Cambridge: Cambridge University Press,

    2008).

    [9] 对这种复杂的恶化过程的概述,见于Fletcher, “Fourteenth

    to Sixteenth Centuries AD,” 292–304。

    [10] B. M. Buckley et al., “Climate as a Contributing Factor

    in the Demise of Angkor, Cambodia,” Proceedings of the

    National Academy of Sciences 107 (2010): 6748–6752. See also

    B. M. Buckley et al., “Central Vietnam Climate over the Past

    Five Centuries from Cypress Tree Rings,” Climate Dynamics

    Heidelberg 48, nos. 11–12 (2017): 3707–3708.

    [11] 关于丹达克洞穴(Dandak Cave):A. Sinha et al., “A Global

    Context for Mega-droughts in Monsoon Asia During the Past

    Millennium,” Quaternary Science Reviews 30 (2010): 47–62。

    关于万象洞的洞穴堆积物:R.-H Zhang et al., “A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record,” Science 322 (2008): 940–942。

    [12] R. A. E. Coningham and M. J. Manson, “The Early Empires

    of South Asia,” in Great Empires of the Ancient World, ed.

    T. Harrison (London and New York: Thames & Hudson, 2009),

    226–249.

    [13] De Silva, K. M., A History of Sri Lanka (New Delhi:

    Penguin Books, 2005).

    [14] R. A. E. Coningham, Anuradhapura: The British-Sri Lankan

    Excavations at Anuradhapura Salgaha Watta. 3 vols. (Oxford,

    UK: Archaeopress for the Society for South Asian Studies,

    1999, 2006, 2013).

    [15] Lisa J. Lucero, Roland Fletcher, and Robin Coningham,

    “From ‘Collapse’ to Urban Diaspora: The Transformation of

    Low-Density, Dispersed Agrarian Urbanism,” Antiquity 89, no.

    337 (2015): 1139–1154.

    [16] Mike Davis, Late Victorian Holocausts: El Ni.o Famines

    and the Making of the Third World (Brooklyn, NY: Verso Books,

    2001).

    [17] Frederick Williams, The Life and Letters of Samuel Wells

    Williams, MD: Missionary, Diplomatist, Sinologue (New York:

    G. P. Putnam’s Sons, Knickerbocker Press, 1889), 432.

    第十章 非洲的影响力(公元前1世纪至公元1450年)

    “这条铁路,是尸骨堆成的。”那些受害者的后代,如今仍然称之为“尤阿亚恩戈曼尼兹”(Yua ya Ngomanisye),也就是“到处蔓延的饥荒”。[1] 肯尼亚中部的那场干旱,从1897 年持续到了1899 年,严重削弱了东非大裂谷东侧的坎巴和基库尤两个小型的自治社会。有些地方的庄稼接连3年歉收。在更早的时代,农民可能还有充足的余粮维生,可此时却到了殖民时代。当时,这里正在修建乌干达铁路。从附近群落征收来的宝贵粮食,都被分配给了修建铁路的劳工。腺鼠疫很可能就是由移民劳工从印度传播到这个地区的,造成了数千人死亡。饥饿的当地人开始抢劫。铁路警察则以牙还牙,焚毁了当地人的村落,从而毁掉了更多的粮食。狮子和其他食肉动物在光天化日之下跟踪和猎杀人类,鬣狗则啃食着倒在路边的饿殍。虽然英国当局粗略尝试过为幸存者提供粮食,但损失已经极其巨大。在乌干达西部,饥荒导致的死亡人数超过了14万。

    多年的大丰收和充沛的降雨导致人口增长集中发生于拥挤不堪的定居地之后,饥荒降临了。就像中世纪欧洲的情况一样,农民开始耕作那些贫瘠的土地,以便种出更多的粮食。雨水持续丰沛,使得本地和长途贸易也繁荣发展起来。

    接着,1896年出现了一场大旱,是由一次大规模的厄尔尼诺现象导致的,其严重程度超乎想象;随后,1898年又出现了一场由拉尼娜现象导致的干旱,而 1899 年再次爆发了一次由厄尔尼诺现象导致的干旱。埃塞俄比亚高原曾经是一个富饶之地,孕育过阿克苏姆文明,此时却旱情肆虐,以至于尼罗河的洪水降到了自1877年至1878年以来的最低水位。严重的旱情,笼罩着非洲东部、南部以及萨赫勒地区。从肯尼亚山往南,直到遥远的斯威士兰,有数以百万计的农民都遭遇了严重的作物歉收。而且祸不单行,不断暴发的牛瘟让牛群遭到重创,天花在许多社群中肆虐,无数群蝗虫遮天蔽日,其他灾祸在面对重大气候变化时也持久不去。与此同时,欧洲的帝国主义者也在步步进逼。英国人趁火打劫,将他们以内罗毕为大本营的新保护国向外扩张,吞并了坎巴和基库尤的大部分领地。在南方,塞西尔·约翰·罗得斯则占领了后来的罗得西亚。大津巴布韦一些供奉绍纳人的神灵姆瓦里的著名灵媒就曾宣称:“白人乃汝等之敌……雨云将不至矣。” [2]

    气候变化与其他灾难,彻底改变了非洲社会。随着各种贸易土崩瓦解,作物种类开始减少,而作物产量也大幅下降,曾经充满活力的乡村经济崩溃了。权力从传统的部落酋长转移到了殖民地政府任命的傀儡首领身上。此时非洲的各个社群,全都处于权力等级的最下层;这种权力等级,与西方国家控制下的全球粮食与原材料市场紧密相关。随着欧洲人开始“争夺非洲”,科学上极其荒谬的种族主义意识形态所支持的社会不平等与不发达,也变成了一种常态。

    掌控“巴萨德拉”(公元前118年以前至现代)

    公元916年,阿拉伯地理学家阿布·扎伊德·艾尔赛拉菲曾经写道:“‘巴萨德拉’[即夏季风]赐生于率土之民,因雨令地沃,如若无雨,民皆饥亡焉。”[3] 数个世纪之后的1854 年,美国气象学家马修·方丹·莫里发表了他的《风向与洋流图之说明及航向》一书。[4] 他利用数百艘船只的观测结果,揭示了印度季风的环流情况。1875年,印度气象局建立,试图利用全印度的观测网络,对带来降水的西南季风做出预报。1903年,吉尔伯特·沃克登场了;此人是英国的一位统计学家,他利用世界各地获得的成千上万份观测数据,确定了复杂的大气与其他有可能影响到季风降雨的气候条件之间的关系。也正是沃克,发现了南方涛动及其与季风雨之间的关系——这种关系,属于印度洋气候中的一个基本要素(参见绪论)。

    商船水手们在印度洋水域航行,从阿拉伯半岛和美索不达米亚地区一路来到印度,至少已有5,000年的历史了。他们习得了在季风中航行的本领,因而能够掌控海上的贸易路线。几个世纪以来,他们都严守着关于印度洋季风的知识,只是父子相传。到了公元前118年至前116年左右,一名遭遇海难的水手从红海抵达了亚历山大港,在协助一位名叫“库齐库斯的欧多克索斯”(Eudoxus of Cyzicus)的希腊人两度前往印度之后,这些知识才传到了更广阔的外界。不久之后,另一位希腊兼亚历山大港的船长希帕卢斯(Hippalus)想出了一个比沿着海岸航行要快得多的办法,那就是利用8月份猛烈的西南季风,开辟一条能在12个月内返回的从红海近海的索科特拉岛直达印度的海上航线。远洋航行中的这一重大突破,将使人们接触到非洲几十个地处内陆且远离印度洋的社会。如此一来,全球天气模式就对数以百万计的非洲自给农民以及努力统治着他们的部落酋长产生了影响。

    长久以来,非洲的红海沿岸一直吸引着商贾们前往。从公元前2500 年前后到公元前1170年间的12份古埃及文献资料中,都提到了“蓬特”或者“神之国度”这个神秘之地,并且盛赞那里有着种种珍贵的资源,其中包括黄金和沉香。一代代考古学家都在试图找出蓬特的具体位置,很有可能,它是在沿着“非洲之角”的红海往北,一直延伸到如今埃塞俄比亚和厄立特里亚所在的高原那一带。事实上,公元前600年的一篇古埃及铭文中提到了雨水落在蓬特山上,以及雨水随后如何流入尼罗河的情况;极有可能,流入的就是我们在第四章中曾提到过的青尼罗河。所有的古埃及文献还进一步表明,从陆路和海路都可以抵达蓬特;这就说明,至少自公元前 3 千纪起,人们就懂得如何利用季风沿着红海航行了。

    尽管如此,人们显然并未大量利用这条航路。蓬特及其位置始终披着一层神秘的面纱,人们曾认为那里异常重要,以至于(在公元前1472年至前1471年前后)令人敬畏的哈特谢普苏特女王还用来自蓬特的无数商品的形象,包括搬运沉香树的奴隶、狒狒、长颈鹿、牛、狗、驴、埃及姜果棕的形象,以及一些丰乳肥臀的贵妇的形象,装饰过她位于上埃及的达尔巴赫里陵庙的墙壁。陵墓墙壁上还绘有蓬特的许多珍贵资源,比如没药、乌木、象牙和黄金。考虑到哈特谢普苏特女王对蓬特的关注,我们可以推测,这里或许是女王希望作为遗产而留下的一项开创性的国家使命。

    到了公元前1千纪末期,形势出现了一些变化。商人们开始更加频繁地出入红海,尽管我们从斯特拉波和阿伽撒尔基德斯(Agartharchides)这些古典作家那里了解到,这仍然是一段艰难的航程,因为一路上既有遍布暗礁的水域,还有汹涌的巨浪,且没有锚泊之地。阿伽撒尔基德斯在公元前2 世纪记述这些情况时,偶尔会发挥一点儿想象力,称有条河流流经那片土地,带来了大量的金沙,而继续往南的一座座金矿,则出产天然金块。我们认为,当时这条航线仍是一个秘密。一个世纪过后,知道这条航线的人就多得多了,连那些原本可以依靠广泛采用的航向去航行的外来者也知道了。公元1世纪的《红海环航》(Periplus of the Erythraean Sea )一书最为著名。此书的佚名作者可能是一位熟悉这个地区的航海者,用朴实无华的希腊文描述了进一步往南的非洲沿海的情况;当时,那里称为阿扎尼亚,一直延伸到了遥远的南方。[5]

    《红海环航》一书中提到,遥远的南方有许多避风锚地和像拉普塔(Rhapta,具体位置至今不明)这样的地方,那里到处都是象牙与玳瑁。由于季风很有规律,故帆船可以穿越红海往返,或者从东非地区前往印度西海岸,并在12个月之内返回。在像肯尼亚北部的拉穆这样的避风锚地,信风商船的进出是一年当中的头等大事。在这里,人们将大船的货物卸到小船上,由后者去跟历史上默默无闻的偏远沿海群落进行贸易。在这些沿海群落里,人们可以购得许多贵重商品,比如质地柔软、易于雕刻的非洲象牙,用于制作装饰品的金、铜,以及易冶炼的铁矿石,然后销往阿拉伯半岛和印度。也有一些较为普通的商品,其中包括产自非洲红树沼泽的木屋梁柱;在没有树木的阿拉伯半岛上,这种梁柱对住宅建造很是重要。

    数个世纪以来,阿扎尼亚都是一个由小村落组成的冷清之地,只有来自红海的商贾偶尔前来。可这一切,在10世纪出现了变化,因为地中海地区对黄金、象牙以及透明石英的需求急剧增加了。此时,随着一些商贾社群在避风港附近的发展,伊斯兰教也站稳了脚跟。有些沿海飞地有数以千计的聚居人口,他们都住在一座座“石头城”里面;一些实力强大的商贾家族,在遥远的南方也兴旺发达得很,比如当今坦桑尼亚的基卢瓦。

    如今,这里被称为“斯瓦希里走廊”(Swahili Corridor),在这片狭窄的沿海地带,许多本地的商业城镇都是在安全的锚地附近发展起来的。[6] 在公元1千纪晚期,伊斯兰教开始与范围更加广泛的世界产生政治联系和经济联系,并且与那些更遥远之地的意识形态形成了联系。然而,生活在非洲这一地区的石头城中的群体与实力强大的商贾家族也注重更多的地方关系。他们与一个个贸易线路网之间发展起政治联系与社会联系,并且小心翼翼地加以维护;那些贸易线路延伸到了数百千米以外的内陆。一小批一小批的商贾带着粮食、兽皮、贝壳和农民十分重视的食盐,深入了遥远的内陆地区。他们还带来了其他的奇珍异宝,比如中国的瓷器、印度的纺织品和玻璃珠子。贝壳和小饰品基本上都是廉价的小玩意儿,只相当于他们运往沿海地区的黄金和象牙价值的一小部分。在遥远的非洲内陆,海贝却是声名赫赫之物;当然,它们并不是用作发饰的普通子安贝,而是一些更稀罕的贝类。印度洋中的芋螺贝成了部落酋长威望的重要象征。近至1856年,5 个芋螺贝仍可以在非洲中部买到一根象牙。黄金最难获得,因为黄金产地在遥远的南方,即津巴布韦高原上。然而,据估计,在长达8个世纪的时间里,至少有567吨黄金被运往了沿海,因为非洲的黄金是当时全球经济中的一个要素。[7]

    这种非正式的贸易已经持续了数世纪之久。在许多考古遗址中,人们都发掘出了像中国的陶瓷器皿、精细和较粗糙的棉织品以及成千上万颗玻璃珠子之类的外来商品;而那些考古遗址,距这些商品首次抵达非洲时落脚的港口都有数百千米之遥。令考古学家们觉得幸运的是,根据样式就可以确定其中许多东西所属的年代,而光谱微量元素常常可以揭示出它们的原产地。

    季风将东非地区的石头城与遥远的地方联系了起来,并将它们纳入了全球长途贸易领域当中。尽管风力可能年年不同,降雨量也有可能逐年增加或者减少,但印度洋上的商业贸易却持续了数个世纪,甚至持续到了欧洲人开始殖民之后。可以说,全球气候在过去的2,000多年里,在非洲东部和南部的历史中扮演了一个重要的角色。不过,变幻莫测的季风对那些生活在遥远内陆的人,又产生了什么样的影响呢?这个问题的答案,就存在于赞比西河与林波波河之间的津巴布韦高原上,存在于那些从事畜牧业的王国与农耕村落的复杂历史之中。

    探索内陆(公元1世纪至约1250年)

    前往非洲内陆,我们就会进入这样的一个世界:在19世纪中叶传教士兼探险家大卫·利文斯通(David Livingstone)穿过非洲中部大部分地区之前,欧洲人对这个世界几乎一无所知。一些零碎的文献,如葡萄牙人所著的编年史和维多利亚时期一些探险家的著作,描绘了从16世纪到19世纪这里的情况。不过,除了“大津巴布韦是腓尼基人的一座宫殿”这种不正确的说法之外,我们对非洲早期的历史几乎是一无所知,直到20世纪60年代人们开始认真研究。我们正在进入的,是一个与世界上许多其他地区相比,很少被探索且具有复杂气候动态的历史领域。

    我们的“老朋友”热带辐合带,在印度洋上的南、北半球之间来回移动。尽管它始终停留在赤道附近,但其北移的极限却是北纬15°上下。每年的1月份,它会南移至南纬5°左右。热带辐合带是一个雨云密布的地带。在冬季里,即从11 月份至次年2月,这种移动会给非洲南部带来降雨。但热带辐合带位置的长期变化,却有可能导致旷日持久的干旱。这一点,还只是一种复杂的气象状况中的一部分,因为厄尔尼诺现象与拉尼娜现象在干旱与洪涝灾害中都扮演着重要的角色。我们探究气候变化在非洲东部与南部的作用时,就像是在玩一个难以掌握、变化莫测的溜溜球。

    大约2,000年前,一小群一小群的农民与牧民相继迁徙到了赞比西河流域,并从那里进入了非洲南部。他们在辽阔的热带稀树草原上的广大地区定居下来,形成一个个小村落,并且喜欢选择没有采采蝇的地方,因为采采蝇对牛群具有致命性;这些地方的土壤也相对较松,用简单的铁片锄头就可以轻松耕作。[8]

    这些新来者迁入的地区里,已有少量的桑族猎人与采集民族生活了数千年之久。几个世纪之后,农耕人口增加了,而桑人要么是采用了新的经济模式,要么就是迁往了边缘地带。桑人的祖先人口不多,并且流动性极强,可农民却被束缚于土地之上,种植高粱和两种谷子,早在玉米从美洲传入之前就已如此了。

    一道崎岖的悬崖,将非洲南部赞比西河与林波波河之间的内陆地区与东边紧邻印度洋的平原分隔开了。一个个炎热而低洼的河谷,切入了地势较高、平均海拔超过1,000米的津巴布韦高原。绵延起伏的平原上,是一望无际的热带稀树林地,其间夹杂着一片片适合种植高粱与谷子的沃土,是一个气候相对凉爽、灌溉条件相对较好的环境。[9] 这两种作物都是在南方的夏季生长,但它们需要 350 毫米左右的降水,且每天起码还需要3毫米的灌溉用水。这些现实情况,意味着此地的农田须有500毫米左右的最低年降水量,同时气温不能低于15℃。虽然不同地区的要求也有所不同,但在一种旱季漫长和降水量变化无常的环境下,它们算是两种要求颇高的作物了。一片片辽阔的草地,为牛、绵羊和山羊提供了优质的牧草;只不过,其背后始终都存在干旱与降水无常的风险。这里并不是一个条件优越的农耕地区,因为这里不但存在干旱、缺水和旱季漫长等问题,偶尔还会出现降雨过多的情况和洪涝灾害,并且年年不同,变化巨大。

    非洲南部的降雨,自东向西呈显著递减的趋势;同时,非洲南部的东南部在南半球冬季的降雨量,占到了其年降雨量的 66%左右。热带辐合带在印度洋上南移,一股来自印度洋的偏东气流,给广大地区带来常常难以预测的降雨。这些相对湿润的气候条件,对过去1,000年间农业与牧业的规模产生了关键的作用。此地的农牧业,大多局限于草原林地和开阔的热带稀树草原上,以及位于北方的赞比西河与南方的大凯河之间的草原地区。

    大量的湖泊岩芯、洞穴石笋以及树木年轮表明,在过去的1,000年间,这里的降水与气温都出现过显著的变化。[10]总的来说,从公元1000年以前到公元1300年后不久的这一时期,非洲南部的广大地区都出现了变化极大的中世纪变暖现象。气温在公元1250年前后达到了一个显著的峰值,故那一年是过去6,000年间最炎热的年份之一;当年的气温,要比1961 年至 1990 年间的年最高气温还高了3℃到4℃。接着,气温开始下降;从海洋中钻取的岩芯与内陆地区的马拉维湖的水位变化,就说明了这一点。气温最低的时候,是1650年前后到1850年之间。其间的最低气温,出现在1700年前后,但差不多一个世纪之前,还出现过一个较为寒冷的短暂时期。有意思的是,从南非西开普省和其他沿海地区的考古遗址中发掘出的软体动物身上的同位素记录了当时海面气温下降的情况。南非北部马卡潘斯盖地区一些洞穴中最低温度与氧同位素记录的时间,则与1645年前后至1715年间让欧洲变得极其寒冷的“蒙德极小期”相吻合,而且记录中也有气候寒冷的“斯波勒极小期”(1450—1530)的迹象。当然,这些都属于大致情况,因为洞穴石笋中还记录了无数种地区性的差异。1760 年之后,气候又慢慢地回暖了。不过,无论具体情况如何,对于村落中的农民和在“小冰期”中崛起然后又逐渐衰亡的国家而言,降雨和气温变化都是一种始终存在的重大挑战。

    自给农业的现实

    在粗略地探究了范围更广的气候时间框架之后,我们现在将关注焦点缩小到过去的2,000年间,即自给农民首次在非洲中南部定居以来的那些世纪。当时,几乎所有的农耕生产都是围绕着村庄进行的,并且依靠刀耕火种式的农业,即烧垦农业。每年9月份旱季结束时,村民都会清理掉此前无人清理过的林地,然后在各自的地块上点火焚烧。接下来,他们会把灰烬散播开去,用锄头将灰烬翻进土里,做好一切准备。然后,随着气温每天稳步上升,他们就开始等待天降甘霖。有时,几场阵雨会落到这个地区的不同地方,出现一个村庄下雨而邻村却艳阳高照的情况。这种时候,该不该播种呢?假如播下了种子,那人们就会盯着天空,盼着雨云出现了。有时,充沛的雨水随之而来,庄稼也长势良好。但更常见的情况是,庄稼会在田地里枯萎。几周之后,饥荒就会降临,而到了春天,就会有人饿死了。大多数农耕村落虽然可以凭借存粮熬过一年的干旱,却没法在多个干旱年份中幸存下来。人们会以野生植物、猎物维生,假如养有家畜的话,他们也会宰杀牛羊为食。

    世世代代的人来之不易的经验教训,就是农业获得成功的基础。[11]

    风险管理需要人们运用熟悉的对策,但就像农业具有多样性一样,这些对策也因村而异。人们曾在家庭和村庄两个层面,建立了一些完善的应对机制。其中包括谨慎地长期储存粮食,同族之间分享粮食,以及古老的互惠互助观念;这种互助观念,可以确保挨饿的人尽可能地少。清理田地和执行其他重要任务时的合作劳动,已经成了惯例。

    这些社群,在很大程度上依赖于亲族和与祖先之间强大的仪式联系;因为自古以来,祖先就是这片土地的守护者。在部落社会里,求雨和祈雨仪式是两种强大的催化剂,而人们与居住在附近或者更远社区的亲族之间种种强大的纽带,也是如此。源远流长的互济关系以及相互提供帮助、食物甚至是播种用的谷物之类的共同义务,在气候突然变化和出现长久干旱的时候,为人们提供了强大的适应武器。

    那些散布各地且养有少量畜群的农耕村落,在这几个世纪中挺了过来,当村民们可以靠不定时的长途象牙贸易和其他商品交换粮食时,尤其如此。但其中最重要的,还是宗教仪式与血缘关系,它们就是最初将远近村落维系起来的纽带。经过多个世代之后,这些血缘关系和受人重视的能够与祖先交流的超自然力量,将曾经规模很小的村落社会变成了一种由小型的酋邦构成且不断变化的政治格局。社会地位上的差异,取决于人们所谓的超自然天赋、是否属于主要宗族的成员以及个人魅力,因为这里与古代世界的其他地方一样,权力常常取决于一个人的统领能力和让追随者(通常都是亲族)保持忠诚的能力。仪式性的帮助、适时的礼物与互惠姿态,就是换取忠诚的通用方法,而赠予财富也是一个办法。这种财富以活的牲畜为主,尤其是牛。

    人们养牛,远非只是用于产肉与产奶。这种享有盛誉的牲畜,当时也是财富、社会地位和丰厚聘礼的有力指标。多余的公牛是十分宝贵的通用财富,而数量庞大的畜群则是政治权力的无声象征。只不过,大大小小的畜群都很容易受到变幻莫测的降雨和干旱影响,因为每头牛起码每隔 24 小时就须喝一次水,并且还需要优质的牧草。高原与河谷地区的酋长都不遗余力地获取粮食与牛群,来巩固他们的政治权力。到了10世纪,高原社会开始出现变化,但终究还是依赖于一种行之有效的对策,去适应一种以分散的村落社会为根基的变化无常的环境。从根本来看,人们在高原环境中的成功生存和发展,一如既往地取决于畜牧业和自给农业。不过,高原地区远非只有肥沃的土地与牧草。从冲积矿床中开采的黄金,石英矿脉,以及铜、铁和锡,很快就成了长途贸易的主要商品。在高原上繁衍生息的不只是牛,还有长着象牙的大象。控制着高原地区的绍纳人酋长们,开始接触从遥远的印度洋沿岸来寻找黄金和象牙的游客。起初,沿海贸易断断续续地进行,但10世纪过后,在气候条件较为炎热且湿润的一个时期,这种贸易急剧扩大了。随着高地上的一些酋长成功地掌控了贸易路线,并且从实力较弱的部落首领那里榨取贡赋,他们自然地在经济和政治上获得了统治地位。这给他们带来了不稳定的政治权力与经济权力,因为在面临长期干旱或者印度洋贸易出现变故时,这种权力有可能迅速化为乌有。

    马蓬古布韦与大津巴布韦(公元1220年至约1450年)

    在气候炎热、地势低洼的林波波河河谷中,崛起了一个实力强大的王国。[12] 公元10世纪到公元13世纪,也就是在“中世纪气候异常期”的那几个世纪里,较多的降雨导致河流经常泛滥,并将原本干旱的河谷变成了一个农耕生产欣欣向荣、牛群茁壮成长的地区。林波波河流域的优质牧草还引来了大批象群。一个统领河谷的王国崛起所需的一切要素均已具备,尤其是在环境对一个以牛为财富与社会地位象征的社会有利时。起初,实力强大的新兴部落首领们都住在河谷中较大的村落里。到了公元1220年,一小群精神力量强大的人迁到了一座显眼的小山之巅;此山名叫“马蓬古布韦”,俯瞰着整个河谷。长久以来,这座独特的小山一直是部落举行求雨仪式的中心,而求雨仪式又是当地绍纳人社会的一个重要组成部分。当时的降雨较为丰沛,似乎就证明了马蓬古布韦的首领们具有强大的精神力量。

    当时,因有牲畜、黄金和象牙而富甲一方的马蓬古布韦并非一枝独秀。还有一些中心也纷纷崛起,其中许多都坐落在平坦的山巅,有石墙环绕,还有安全无虞的牛栏;并且,每个中心的位置都经过精挑细选,都位于主要的河流流域,确保有可靠的水源供应。酋长和村民都采取了深思熟虑的对策,来适应季节的更替与气候变化。他们精心挑选耕地,种植高粱之类的抗旱作物,并且极其注意储存粮食,以备干旱年份之需。他们的农耕策略在广大地区蓬勃发展,包括尝试通过点火生烟来减少采采蝇造成的牲畜死亡。

    随着 13 世纪降雨量减少,马蓬古布韦的部落酋长们借助那些控制着降雨的超自然力量来求雨的能力,也变得越来越重要了。求雨仪式变得更加集中,从而强化了酋长的合法性,增加了酋长的权力。不过,由于一个个旱季接连而至,酋长的求雨能力似乎显著下降,故他们的地位与权力就变得岌岌可危了。公元1290年前后至1310年间,气温下降和干旱加剧,再加上降雨极其多变,就慢慢地动摇了部落酋长们的威信,削弱了他们确保林波波河洪泛平原土壤肥沃的能力。马蓬古布韦的影响力,也在 13 世纪那一场场越发漫长的干旱中大大下降了。

    马蓬古布韦并不是独一无二的。整个地区的生物丰富多样,养活了无数的群落;这些群落从事着本地贸易与长途贸易,贸易物包括基本商品、金属以及像印度洋地区的珠子、海贝和纺织品之类的进口商品。他们应对气候变化的长期性保障措施,很大程度上源自与远亲近邻之间的合作。许多措施也要依靠别人的技能。其中包括铜铁加工、矿石开采,甚至是制作捕猎大象的铁矛。其中一些社群的社会变得相当复杂,但最重要的是,他们擅于通过农业知识、手工艺生产,以及在不同社群和亲族群体中共享知识和经验来进行风险管理。遗憾的是,对于马蓬古布韦地区这些为数众多的社群及其弱点,我们仍然几乎一无所知。

    随着马蓬古布韦适应较干旱气候条件的能力受到削弱,干旱更加普遍的现象与酋长们影响力的下降之间,无疑是存在关联的。14世纪初,政治权力从林波波河流域往北转移到了津巴布韦高原上。大津巴布韦地区举世闻名,那里有其标志性的石制建筑和一座居高临下的山丘。[13] 但不那么为人所知的是,这个遗址起初是很有影响的求雨仪式的主要中心,事实上后来也一直如此。津巴布韦位于一个黄金矿区的边缘,但更重要的是,这个地区一年四季都绿意盎然,因为从印度洋直接袭来的雾气和雨水会频繁地从附近的穆蒂里奎河流域向北推进。这个偏远之地,似乎是津巴布韦高原上一个相对干燥的地区里的一片绿洲,曾经被人们奉为求雨中心。那座气势雄伟的山丘上,有许多巨石和洞穴,成了一个与姆瓦里崇拜有关的求雨和祭祖的仪式中心;在绍纳人社会中,姆瓦里崇拜扮演着一个重要的角色。姆瓦里这种一神论信仰中身兼祭司的酋长,对津巴布韦社会产生了重大的影响。

    当时,人们上山肯定受到了限制,但津巴布韦的部落酋长们统治着一个由自给农业和养牛业支撑着的辽阔王国;就像马蓬古布韦一样,在大大小小的社群里,牛既是一种财富之源,也是区分社会等级的基础。只不过,牛属于一种要求颇高的财富来源,原因不但在于牛容易患上疾病,而且在于它们需要广阔的牧场,尤其是需要充沛的水源。不断增长的人口密度,为获取柴火和出于其他目的而对林地进行的过度开发,以及更加寒冷和干燥的气候条件(这一点是最重要的),逐渐削弱了王国的适应能力。这个王国位于降雨无常的地区,当地土壤往往也只有中等肥力。尽管大津巴布韦的酋长们曾经努力储存粮食,可能还集中管控过粮食供应,但他们在应对气候压力方面几乎没有什么长期的保护措施,唯一能对他们起到保护作用的是印度洋贸易给他们带来的威望、财富和权力。

    津巴布韦王国及其后继者所处的政治环境十分复杂。王室牛群规模太过庞大,以至于无法饲养在都城里;在这样一个王国中,王位继承是个很复杂的问题。这就意味着,王国周围的众多其他政治实体(其中许多有自己的祭司),提供了一些可以取而代之的权力中心。酋长们的都城频繁地搬迁,如今,其中许多都城都以规模较小的石制建筑为标志。战争显然非常普遍;不过,鉴于人们需要在地里耕作和收割,当时的战争规模还是有限的。

    像大津巴布韦这样的牧牛王国,可能都由一些权势显赫的酋长统治着,他们曾受益于黄金和象牙贸易,但他们的统治地位不但依赖于印度洋贸易带来的威望,还依赖于他们拥有的需要广阔牧场的畜群。一些主要中心可能掌控着长途贸易,但它们与散布在其大部分领地的村落相比,更容易受到气候变化的影响。较大的中心周围的人口也较为稠密,故需要可靠的粮食供应,而小村落则可以靠狩猎与觅食为生,并且更容易转向种植较为耐旱的替代性作物。它们的主要压力并不来自频繁出现干旱年景,而是来自较为长期的干旱,因为长期干旱既有可能毁掉牧草,也有可能毁掉固定的水源。像牛瘟之类的牲畜疾病、蝗灾,甚至是偶尔出现的洪涝灾害,则带来更多的危险。在这种情况下,数量庞大而分散在各处的畜群就提供了一定的保护,让人们可以应对饥荒,野生植物和精心组织的狩猎也是如此。

    至于津巴布韦王国瓦解的确切原因,至今依然是一个谜;但极有可能的情况是,一连串事件的发生,导致了该王国的解体。其中之一,可能就是大津巴布韦附近的金矿枯竭,导致商人们都到其他地方寻找黄金了。15世纪初,气候条件再次变得较为寒冷和干燥,这一点有可能破坏了农耕生产,从而养活不了日益增长的人口。来自邻近王国的竞争日益加剧,可能也有影响。到了16世纪60年代,与那些较为分散的部落群体相比,像津巴布韦这样的较大王国其实更加脆弱了。当时,政治重心已经北移到了赞比西河地区,葡萄牙商人与殖民者为了搜寻黄金,也已深入了高原腹地。在 1625 年至1684 年间,葡萄牙人从当地酋长的手中夺取了矿区开采的控制权,削弱了那些实力一度强大的王国经济繁荣的基础。尽管如此,在政局动荡的情况下,传统的食物体系和求雨仪式仍旧延续了下来,许多较大的群落也依然顽强地生存着。[14]

    非洲南部的王国中,没有哪一个曾经长久存在或者达到了幅员辽阔的规模,连津巴布韦也不例外。这里没有任何将中央集权的高棉帝国团结起来的那种大规模的基础设施。这是一个由分散的村落与反复无常的王国组成的世界:村落的韧性,靠的是谨慎的风险管理;王国则由酋长们统治着,存续时间很少超过200年,而酋长们得到的忠诚度又取决于其是否慷慨,允许一夫多妻则会显得更加大度。凡是在津巴布韦高原上统治一个王国的人,都必须既是企业家又是政治家。酋长们的地位安全与否,在很大程度上取决于他们与人打交道的技巧和获得牲畜的本领。在这个方面,我们所知的情况仍然很不可靠,而唯一能够肯定的是,内陆地区的所有王国都很脆弱。最终幸存下来的是分散的村落,它们积累的知识可以告诉人们如何在一个极具挑战性的环境中进行风险管理。现代非洲的情况仍是如此;尽管城市化的速度很快,但数以百万计的人口仍然依靠自给农业与村落生活。无论是过去还是现在,在地方层面上应对气候变化都最为有效,因为当地的人们对环境与地形地貌都了然于胸。

    本章将长途的全球性贸易与村落里的农民所在的世界联系了起来,但非洲农民的思维方式,与种植水稻的高棉农民或者封建制度下的欧洲农民截然不同。与“中世纪气候异常期”有关的气候温暖的那几个世纪,对热带非洲的大部分地区产生了重要的影响。在接下来的章节里,我们将对“中世纪气候异常期”和欧洲、北美洲的“小冰期”加以探究。

    [1] Mike Davis, Late Victorian Holocausts: El Ni.o Famines and the Making of the Third World (Brooklyn, NY: Verso Books, 2001), 201.

    [2] Davis, Late Victorian Holocausts, 201.

    [3] Brian Fagan, Floods, Famines, and Emperors: El Ni.o and the Fate of Civilizations. Rev. ed. (New York: Basic Books, 2009), 16. 阿布·扎伊德·艾尔赛拉菲(Abu Zayd al-Sirafi)是一名航海者。公元916年前后,他撰写了Accounts of China and India, trans. Tim Macintosh-Smith (New York: New York University Press, 2017)。

    [4] Matthew Fontaine Maury, Explanations and Sailing

    Directions to Accompany the Wind and Current Charts (New York:

    Andesite Press, 2015),初版于1854年。

    [5] Lionel Casson, The Periplus Maris Erythraei: Text with

    Introduction, Translation, and Commentary (Princeton, NJ:

    Princeton University Press, 1989). 关于古代红海航线的更多内

    容,请参见Nadia Durrani, The Tihamah Coastal Plain of South

    West Arabia in Its Regional Context c.6000 BC–AD 600. BAR

    International Series (Oxford: Archaeopress, 2005)。

    [6] 文献资料浩如烟海,并且在迅速增加。优秀的概述,请参见

    Timothy Insoll, The Archaeology of Islam in Sub-Saharan

    Africa (Cambridge: Cambridge University Press, 2003), 172

    177。

    [7] Roger Summers, Ancient Mining in Rhodesia and Adjacent

    Areas (Salisbury: National Museums of Rhodesia, 1969), 218.

    [8] David W. Phillipson, African Archaeology, 3rd ed.

    (Cambridge: Cambridge University Press, 2010).

    [9] T. N. Huffman, “Archaeological Evidence for Climatic Change During the Last 2000 Years in Southern Africa,” Quaternary International 33 (1996): 55–60.

    [10] 后续各段主要参考的是P. D. Tyson et al., “The Little

    Ice Age and Medieval Warming in South Africa,” South African

    Journal of Science 96, no. 3 (2000): 121–125。

    [11] Peter Robertshaw, “Fragile States in Sub-Saharan

    Africa,” in The Evolution of Fragility: Setting the Terms,

    ed. Norman Yoffee (Cambridge, UK: McDonald Institute for

    Archaeological Research, 2019), 135–160,对本节涉及的问题进

    行了讨论。亦请参见 Matthew Hannaford and David J. Nash,

    “Climate, History, Society over the Last Millennium in

    Southeast Africa,” WIREs Climate Change 7, no. 3 (2016):

    370–392。

    [12] Graham Connah, African Civilizations, 3rd ed. (Cambridge: Cambridge University Press, 2015),这是一部权威的概述之作。T. N. Huffman, “Mapungubwe and the Origins of the Zimbabwe Culture,” South African Archaeological Society Goodwin Series 8 (2000): 14–29,从这篇文章开始了解相关问题会很有帮助;Robertshaw, “Fragile States in Sub-Saharan Africa”和Tyson et al., “The Little Ice Age and Medieval Warming in South Africa”两篇论文则提供了最新的信息。

    [13] Peter S. Garlake, Great Zimbabwe (London: Thames & Hudson, 1973),此书尽管有点过时,但仍属基础文献。Robertshaw, “Fragile States in Sub-Saharan Africa”一文参考了许多最近的研究。

    [14] 相关讨论见 Tyson et al., “The Little Ice Age and Medieval Warming in South Africa”。

    第十一章 短暂的暖期(公元536年至1216年)

    以任何标准来衡量,公元536年都是东地中海地区一个极其可怕的年份(亦请参见第五章)。拜占庭的历史学家普罗科匹厄斯曾写道:“日如淡月,无熠无光,全年皆然。”[1]欧洲、中东和亚洲的部分地区都有如浓雾笼罩,天昏地暗,长达18个月之久。造成这种状况的罪魁祸首,是冰岛发生的一次大规模的火山爆发,这一次爆发将大量的火山灰抛到了整个北半球。接着,公元540年和547年又出现了两次规模巨大的火山喷发。这几次火山事件,再加上“查士丁尼瘟疫”,让欧洲的经济陷入了100多年的停滞不前,直到公元640 年才有所好转。

    火山作乱(公元750年至950年)

    火山喷发的时候,会将硫、铋和其他物质抛至高空的大气中。这些物质会形成一层气溶胶,将阳光反射回太空,从而让地球上的气温下降。研究人员首先确定了公元536年的火山爆发,因为采自格陵兰岛和南极洲的冰芯都表明当年喷发物处于峰值。随后,2013年研究人员又在瑞士阿尔卑斯山上的科尔格尼菲蒂(Colle Gnifetti)冰川中钻取了一段长达 72 米的冰芯,并从体现了数天或者数周降雪情况的激光切割冰条中,获得了有关火山爆发、撒哈拉沙尘暴和人类活动的记录。[2] 每米冰芯中大约有5万个样本,使得冰川学家保罗·马耶夫斯基(Paul Mayewski)和其同事们能够精准地确定像火山爆发之类的气候事件,甚至是铅污染的情况,并且时间可以精确到2,000年前的月份。在探究公元536年的火山爆发时,他们就是根据冰芯粒子确定其源头在冰岛的。

    从全球范围来看,火山活动从来没有出现过连续不断的情况。尽管公元536年出现了火山爆发,但在公元1千纪的前500年里,几乎找不到其他的火山活动迹象。不过,从公元750 年至 950 年的两个世纪,就是另一番光景了。其间,全球至少发生了8次大规模的火山爆发。我们能够知道这一切,应归功于研究人员从“格陵兰冰盖项目2”(Greenland Ice Sheet Project 2,略作GISP 2)中获取的数据。“格陵兰冰盖项目 2”为我们提供了一份重要的大气化学成分记录,揭示了西伯利亚的天气事件、中亚地区的暴风雨以及海洋风暴等方面的情况。格陵兰岛冰芯中出现的火山爆发证据,就是硫酸盐颗粒的背景值突然大幅增加了。其中大部分硫酸盐颗粒的来源仍不为人知。值得注意的是,研究人员从“格陵兰冰盖项目2”的冰芯中获得了公元750年至950年间的气候事件记录,它们的时间都精确到了2.5年之内,其间8次主要火山喷发的记录还更加准确。

    不过,将科学研究与同一时期的书面史料进行对照,结果又会如何呢?迈克尔·麦考密克和保罗·达顿(Paul Dutton)这两位历史学家与冰川学家保罗·马耶夫斯基合作,将公元750 年至 950 年之间最重大的火山喷发事件与现存的历史资料进行了对照。只有史料中记载的几个地区同时异常寒冷(而非只有局部观察到这种反常现象)的冬季,他们才会纳入研究范围。冰川钻芯与当时在世者撰述的第一手资料结合起来,揭开了一段令人目眩的历史;其间既有严寒的冬季和气候偶尔湿润的夏季,也出现过作物歉收和饥荒。公元 750年至950年间,欧洲西部出现过9次严冬;其中有8次表明,“格陵兰冰盖项目 2”冰芯中的硫酸盐沉积水平峰值,与那些抱怨说天气异常寒冷的史料之间有所关联。公元763年至764 年的冬天给爱尔兰到黑海的广大地区带来了巨大的灾难。爱尔兰的历史文献中曾经提到,那里的降雪持续了差不多 3个月之久。严寒席卷了欧洲中部,而君士坦丁堡也遭遇了酷寒,以至于冰雪从黑海北部海岸开始,一路延伸了157千米。待到2月份冰雪融化之后,浮冰竟然阻塞了博斯普鲁斯海峡。

    极其严酷的寒冬,又在公元821年至822年和公元823年至824年卷土重来,而此前的两个夏季气候湿润,故查理帝国的葡萄酒收成不佳;当时,查理帝国统治着西欧的大部分地区。莱茵河、多瑙河、易北河与塞纳河全都冻结了,马车可以在这些大河之上行驶,时间达 30 天或者更久。公元855 年至856年和859年至860年,寒冬再度来袭。公元859年至860年的那个冬天异常漫长和寒冷,整个欧洲西部都是如此。在鲁昂,严寒从头年11月30日开始,一直持续到了次年的4月5日。公元873年夏末,今天的德国、法国和西班牙所在地区先是爆发了一场蝗灾,接着又经历了一个严冬。饥荒加上相关的疾病,夺走了西法兰克王国和东法兰克王国三分之一左右的人口。从公元913年到939年或940年那段时间也极其寒冷,后者是由冰岛的埃尔加火山爆发导致的。

    火山爆发能够对气候产生重大影响。大规模的爆发,有可能令大量的火山气体、火山灰和其他物质喷射到大气的平流层中。像二氧化硫之类的火山气体,可以导致全球气温下降。二氧化硫变成硫酸之后,硫酸会在平流层里迅速凝集,形成硫酸盐气溶胶。这些东西会提高大气对太阳辐射的反射量,将阳光反射回太空,从而导致地球的低层大气降温。1991年6月菲律宾的皮纳图博火山大爆发,曾令大约2,000万吨二氧化硫喷向高度达32千米的大气中。这一事件,使得地表温度的最大下降幅度超过了 1℃。过去一些规模更大的火山爆发,比如 19 世纪时的坦博拉火山爆发和喀拉喀托火山爆发[3] ,曾经让气温的下降持续数年之久。虽然没人会说公元1 千纪末期似乎频繁出现的火山爆发事件摧毁了一个又一个王国,但它们对这两个世纪的气候造成了强大的冲击,既影响了作物收成,也对动物和人类产生了影响。在那段艰难岁月里,人口下降现象严重,粮食供应方面也出现了经济倒退。从更广阔的历史范围来看,经历了快速气候变化的法兰克国王查理曼(742—814)相对来说还算幸运,因为他的臣民挺过了公元763年至764年那个可怕的冬季,以及公元792年至793年间的饥荒。然而,他的儿子“虔诚者”路易(Louis the Pious,778—840)却忧心忡忡,固执地相信公元821年至822年间那个同样可怕的冬天与上帝的震怒之间存在一种似是而非的联系,故他还在公元822年8月,为自己和父亲的罪孽进行了公开忏悔。可就算是忏悔,也无济于事,因为一年之后又是一个严冬,他的帝国陷入了酷寒之中。

    “中世纪气候异常期”(约公元950年至1200 年)

    就在4个多世纪之后的公元1244年,方济各会修士“英国人”巴塞洛缪(Bartholomew the Englishman)宣称,欧洲占据了已知世界的三分之一,从“北大洋”一直延伸到了西班牙南部。[4] 当时的学者,都在凝望着一片广袤的陆地。东边的尽头,是似乎无边无际的欧洲平原,并在遥远的天际融入了亚洲大草原。那里人口稀少,主要是经常四处奔波的游牧民族,他们受到没有规律的干旱周期与更加充沛的降雨所驱使,不断地迁徙。那里的半干旱草原宛如一个个吞吐呼吸着的巨肺,雨水降临时引来动物与人类,而到了干旱时节,又将其赶往周边水源条件较好的地方。所以,中世纪的欧洲人以为他们被一个危险的人类—自然世界包围着,并不让人感到奇怪。东面有伊斯兰教步步进逼,西面的大西洋则形成了一道屏障。来自东方平原上的游牧部落,则在欧亚大陆的边缘徘徊。

    东方的大草原,是成吉思汗的天下。由此带来的威胁,是切实存在的。公元1227年,成吉思汗驾崩;14年之后,在如今波兰境内的莱格尼察,一支蒙古军队打败了欧洲诸侯。装有被杀的波兰人右耳的 9 个袋子,被送到了蒙古的王庭。可在1242年,这些入侵者却突然向东撤退了;至于原因,至今仍然是一个谜团。他们的撤退可能并非巧合,因为大雨和较低的气温束缚了蒙古骑兵的行动,并且导致战马所需的饲料不足。[5]

    我们并不能责怪蒙古人曾经把贪婪的目光投向西方水源较充足的肥沃之地。欧洲人生活在一个半岛上,四周都是较为干旱的环境。在大约10世纪至13世纪,这里的气候条件比较暖和,气温略高于之前的年份。这3个世纪,基本就是人们通常所称的“中世纪气候异常期”,它短暂地让欧洲变成了一个繁荣兴旺的粮仓。

    提出中世纪是一个异常温暖的时期这一观点的,是目光敏锐的英国气候学家休伯特·兰姆(Hubert Lamb);此人在1965 年率先创造了“中世纪暖世”(Medieval Warm Epoch)的说法,只不过后来改成了“中世纪暖期”(Medieval Warm Period),如今则称为“中世纪气候异常期”。[6] 不同于现代的气候学家,兰姆当时几乎没有什么气候替代指标可用,主要依靠七拼八凑的历史资料。他是最早提出气候有可能在数代人的时间里发生变化的科学家之一;这种观点,与当时认为气候长期不变的正统观点针锋相对。兰姆指出,北大西洋与欧洲上空的冬季环流在中世纪存在适度却持续的变化。他还说过:“尤其是在英格兰,在公元1100年至1300年间,每年5月份出现霜冻的可能性一定小一些。”这一点,可是丰收的好兆头。

    气候上的转折点,出现在“中世纪盛期”(公元1000年至 1299 年)。兰姆将它与艺术史学家肯尼斯·克拉克(Kenneth Clark)提出的“欧洲文明的第一次伟大觉醒”观点联系了起来;那种观点,因1969年克拉克在英国广播公司播出的电视系列片《文明》(Civilization )而给世人留下了难以磨灭的印象。尽管世人(尤其是欧洲与北美洲以外的人)如今仍对“中世纪气候异常期”知之甚少,但这个时期已经成为许多国家气候学界公认的气候标准。不过,作为一个定义明确的实体,这个时期真的存在吗?

    如今细致入微的考古学表明,许多对古代人类社会进行的刻板分类,其实与过去的文化现实几乎没有什么相吻合之处。过去是动态的、不断变化的,很少有清晰明确的分界线。同样,考古学家仅仅把我们对人类历史进行的人为细分看作各种便利的参考术语和有用的工具。可以说,“中世纪气候异常期”也是如此。虽说大多数气候学家一致认为,这个异常时期从公元 950 年至 1000 年左右持续到了公元 1250 年至1300 年前后,但其时间范围存在无数变化,并且其中许多都因地而异。[7]

    我们已经描述了一系列范围广泛的古代社会,它们都在“中世纪气候异常期”的数个世纪中,崛起和瓦解于欧洲以外的地区,但我们至今仍然没有发现其他地区明确出现过欧洲的气候模式。20世纪70年代,气候学家V.C. 拉马什(V. C. LaMarche)在研究了源自美国加州怀特山脉的树木年轮和其他资料之后表明,在公元1000年至1300年间,那个地区的气候条件大多较为温暖和干旱,而到了公元 1400 年至1800 年间,气候则变得较为寒冷和湿润了。这些变化,是由该地区上空的暴风雨路径自北向南移动造成的。这一发现说明,当时的全球环流模式可能发生了变化,且其影响范围远远超出了欧洲。

    但情况还不止于此:人们对太阳黑子活动强度进行的研究表明,在过去的1,200年里,太阳黑子活动强度出现过5个低谷期。这些低谷期,通常与气温下降的时期相一致。最早的一个低谷期从公元1040年持续到了1080年,与“中世纪气候异常期”中气温相对较低的时段相吻合。接着,公元1280 年之后,又接连出现了4个太阳黑子活动低谷期(我们将在第十二章加以论述),与16世纪末至17世纪初的“小冰期”相吻合。

    这几个世纪里发生的各种气候变化,主要都是局部变化;就算它们起源于大气与海洋之间较大规模的相互作用,也是如此。欧洲经历了一个个漫长的暖期,只是当时的气温略低于如今。东太平洋地区由于有拉尼娜现象而气候凉爽、干燥,导致了北美洲西南部出现了特大干旱(参见第八章)。西太平洋和印度洋地区较为炎热;北大西洋涛动朝着正指数阶段发展,导致了气温升高和更严重的暴风雨;北极地区夏季的冰雪范围则缩小了。有粗略的证据表明,从中国西藏到安第斯山脉的广大地区以及热带非洲的气温当时都有所升高。简而言之,在公元1000年到1349年间,全球6个大洲的气温都要高于1350 年前后至1899 年间的气温。然而,从1900年到现在,世界各地的气温始终都在上升,只有南极洲除外,因为南极洲四周的海洋有可能导致气候惯性。至于是不是这样,迄今还无人知晓。

    丰富的气候替代指标资料,说明了中世纪晚期欧洲的气候情况。它们表明,当时出现了一个气候变化频发且有时还相当剧烈的时期。例如,气候学家乌尔夫·宾特根(Ulf Büntgen)与莉娜·赫尔曼(Lena Hellman)对源自欧洲阿尔卑斯山脉的冰川冰芯和树木年轮中的气候数据进行了比较。[8] 数据表明,中世纪和近代的气温都相对较高,其间则是一段较为寒冷的时期。瑞士阿尔卑斯山脉西部高海拔落叶松的横截面,曾经被用于进行年轮定代,其中有的来自树木本身,还有的则来自那个时代的历史建筑。它们表明,10世纪至13世纪的高温与现代相似。然而,过去1,000年里还出现过相当大的自然变化,大约公元1250年之前和大约1850年之后的气温相对较高。公元755年至2004年间气温最高的10年中,有6个出现在20世纪。其间,最冷的年份是1816年,最热的是2003年,而最热的20世纪40年代与最冷的19世纪第二个10年之间,气温的变化幅度达到了3.1℃。气候情况方面的线索,有时会源自我们意想不到的地方。连从瑞士阿尔卑斯山一个冰川湖中发掘出来的细小蠓虫,也可以用作气候替代指标,能够为我们提供早至1032 年7月的大致气温。这些蠓虫表明,中世纪的气温比1961年至1990年间的气温高了1℃左右。

    还有一项令人瞩目的研究,则是利用欧洲中部的橡树年轮,集中研究了每年4月至6月间的降水变化情况;研究人员使用了数千份具有降水敏感性的树木年轮序列,它们来自一个面积广袤的地区,时间涵盖了过去的2,500年。[9] 这项研究牵涉的远不只是树木年轮,还包括了当时的仪器记录与历史记录之间的对照研究。至少有 88 位亲历者对降雨情况的描述,与树木年轮记录里总计32次极端降雨中的30次相吻合——这可是一种令人印象深刻的相关性。通过将橡树年轮记录与其他树木(比如奥地利阿尔卑斯山上的高海拔落叶松)年轮中的记录结合起来,研究人员得到了一种复合记录,这与现代气象学家在1864年至2003年间对每年6月至8月的气温变化情况进行的记录相当一致。

    到了9世纪初,由一连串火山活动引发的极端气候开始平静下来,与古罗马时代的气候条件更加相似了;只不过,当时仍有大量的火山活动,冬季也仍然极其寒冷。此时,正值欧洲一些新的王国在“中世纪盛期”开始崛起。在大约公元800 年至 1000 年间,各个王国都开始取得骄人的文化成就与政治成就。

    生存与苦役(公元1000年)

    公元1000年时,欧洲人几乎完全依赖于自给农业。在这一点上,他们与吴哥人、玛雅人或者古普韦布洛人并无不同。当时的农耕方式仍然极其简单,特别容易被突如其来的气候变化所影响,或者被火山活动对环境造成的往往很严重的影响所波及。

    欧洲的乡村由森林与林地、河谷与湿地等地形地貌交织而成,而在历经了数千年的农业与畜牧业生产之后,它们都出现了沧桑巨变。[10] 到了公元1000年,大多数农村人口都生活在分散的小村落里;但更常见的情况是,他们都生活在较大的村庄里,四周是开阔的田野,且田地被分割成了每块面积约为0.2公顷的狭长地块。虽说在欧洲靠耕作土地谋生从来都不容易,但人们还是做得到这一点,尤其是在天气炎热和相对干燥的夏季里,到了5月份,气温便高到足以让人们耕种了。

    英法两国的自给农民,当时主要种植小麦、大麦和燕麦。约有三分之一的耕地种植的是小麦,可能有一半土地种植大麦,余下的耕地种植的就是各种各样的作物了,包括豌豆。用现代的标准来衡量,当时的收成少得可怜,只有如今的四分之一左右。每0.4公顷土地所获的4公石[11] 收成中,20%会留作下一季的种子,重新播到地里去。加上教会征收的什一税,以及就算是歉收年份也须向地主缴纳的粮食税,余下来养活一家人的收成就少到弥足珍贵了。一个有妻子和两个孩子的农民,靠2公顷土地的收成只能勉强维生,几乎无力去应对意外出现的霜冻、干旱或者暴风雨。所有人都须劳作,去种植蔬菜,采集蘑菇、坚果以及其他野生的植物性食物,连孩童也不例外。

    大多数家庭都养有一些牲畜,也许是两头奶牛、猪、绵羊或者山羊,还有鸡。要是运气好的话,他们会有一匹马,或者起码也能找到一匹马来耕地。牲畜既可以为人们提供肉和奶,还可以提供皮革和羊毛。牲畜身上的每一个部位,都会做到物尽其用。一年当中的大部分时间里,牲畜都是自由放养;但一到冬天,要让牲畜活下来并且得到妥善喂养,却成了一场持久战。每年秋天,村民都会屠宰多余的公畜和老牛,好让他们珍贵的草料能够储存得更久一点儿。每年的 6月和7月,人们都会割取草料,同时祈盼天气晴好,以便将庄稼晒干储存起来,而不致让庄稼腐坏或者自燃起火(如果农民们很快地把大量潮湿的粮食储存起来,那么他们依然会碰到这个问题)。多雨年份会带来严重的后果,有可能导致存粮遭受灾难性的损失。

    春、夏、秋、冬四季的无尽循环,既决定了自给农民的生活,也反映出了人类的生存真谛。播种、生长和收获,然后是宁静的几个月;这种循环宛如人类的生存,是一个从出生、生活到死去的过程。生存曾经非常残酷。忍饥挨饿,是免不了的事情。中世纪从事农耕的村落里,每个人都经历过营养不良,有时是饥荒和挨饿,以及随之而来的与饥荒相关的疾病。当时婴儿的死亡率极高,大多数农民的平均寿命只有二十几岁。

    与此前各个古代文明中的民族一样,中世纪的农民也对周围的环境了如指掌。他们熟悉不同禾草的性质;他们懂得肥力枯竭的土地可以再次耕作,明白必须将牲畜赶到耕地上去放牧、施肥,然后休耕,使土壤恢复肥力,并将植物病害降至最低程度。人人都知道各种可以食用或者药用的水果与植物在什么时候应季。当时的小麦种植效率很低,因为人们使用的是极其简单的工具,靠的是极其艰苦的劳作。生存取决于人们在田间地头获得并且代代相传的知识。例如,播撒的种子若是太少,就会给杂草留下生长的空间;可种子若是播得太多,就会扼杀幼苗。他们没有什么精心制定的标准公式,只有民间习俗与实践经验。与世界各地的自给农民一样,中世纪的耕作者也擅长风险管理,他们会尽可能地种植多种多样的作物。这里的降水常常比热带地区更加充沛,但要从土地中收获庄稼,就算不是更难,至少也与玛雅低地或者吴哥窟一样艰难,更别提粮食富余了。

    了解历史但对气候变化持怀疑态度的人,把“中世纪气候异常期”视为一个持久且宜人的夏季,认为它是有益的,还是自然变暖的象征,并且声称当时的情况与如今没什么两样。他们的论调,建立在下述观点之上:我们正在经历的这种变暖,过去已经出现过,所以不是气候不稳定或者危机即将到来的征兆。当然,这纯属无稽之谈。非但是我们人类导致了目前的气候变暖,而且我们越来越多的证据也不支持他们的幻象(即认为往昔的夏日美好漫长、无休无止)。

    逐渐变暖(公元800年至公元1300年)

    确实有那么几年,中世纪的农民们曾在夏天沐浴着太阳,而庄稼则在明媚的阳光之下茁壮成长。可气候从来都不是一成不变的,而是常常以不显眼的方式反复变化着。虽然欧洲的农民们享受过比较温暖和干燥的气候,但树木年轮中却记录了持续而细微的气候变化;它们都是由如今仍然鲜为人知的一些变化导致的,比如地球倾角的变化、太阳黑子活动周期的变化以及火山喷发等。公元800年左右至公元1300 年间是欧洲发生深刻变化的一个时期,当时大气与海洋之间无休无止的“共舞”速度稍有放缓,变成了一种较有规律的常见现象。不过,大家仍然是一个季节又一个季节地生活着;夏季白天漫长,天气炎热,冬季则号称“黑暗季节”,人们都挤在一起取暖,充其量靠摇曳的烛光和烟雾缭绕的火堆来照明。一件厚长袍或者一张舒适的床,就是极佳的奢侈品了。

    尽管如此,这个暖期顶多不过像怀疑气候变化的人所称的那样,是一个人们快乐生活的时期,而欧洲在“中世纪盛期”(大约自公元1000年至1250年)确实也很繁荣。马姆斯伯里的威廉是一位修士兼历史学家,他曾在公元 1120 年前后游历了英格兰的格洛斯特谷,欣赏了那里的夏日景象。他如此写道:“此地所见,通衢大道果树满目,且非人力所植,乃自然天成。”[12] 他对英国的葡萄酒也赞不绝口,称“味之甘美,不逊法国红酒”。令法国当地的酒商大感惊慌的是,产自英吉利海峡对面的葡萄酒大量涌入了法国市场。这种情况其实不足为怪。当时的葡萄园可谓遍地开花,最北可达挪威南部。

    最重要的一点是,在气温较高的年份,谷物的生长季延长了3周之久。在公元1100年至公元1300年间,祸害过早先农民的5月霜冻几乎没有再出现过;这是一种可喜的征兆,说明作物的生长季和收获季通常都是漫长而稳定的夏日天气。随着谷物种植的范围急剧扩大,常常还延伸到了以前人们认为贫瘠的土地上,农村人口也稳步增长了。地处苏格兰南部的凯尔索修道院,曾经在海拔300米的地方种植了100多公顷的谷物,那里远远超出了如今的谷物耕种范围。修士们还拥有1,400 只绵羊,并且在他们的土地上养活了 16 个牧羊人家庭。挪威的农民,曾经在北至特隆赫姆的地方种植小麦。在南方海拔较低的地区,由于生长期较长,所以谷物的产量也大幅增加了。由此带来的粮食盈余,为不断发展的市镇和城市提供了粮食。与此同时,随着原始橡树林被砍伐一空,人们对耕地的需求也急剧上升了。对大多数人而言,生活并不容易。一个中等收入的城市家庭,每年要购买 5.5吨食物,其中大部分粮食都被制成了面包。大多数生活在贫困线以上的家庭,每天会消耗1.8公斤的面包。穷苦人家经常喝奶麦粥,那是一种用碎小麦或其他碎谷物加上牛奶或者清汤熬成的粥。不过,面包与啤酒是当时的主食,每天可以为每人提供大约1,500至2,000卡路里的热量。[13]

    然而,当时仍出现过一些极其寒冷的冬季,比如公元1010 年至 1011 年间的那个冬天,甚至让东地中海地区也陷入了严寒。尽管气温偶尔有起落,但持续较暖的气候条件还是融化了冰盖,提高了山间的林木线,并且导致北海的海面上升了80厘米。到了公元1100年,一条潮汐汊道竟然深入英国内陆,到达了诺福克郡的贝克尔斯镇,将那里变成了一个繁荣兴旺的鲱鱼港口。海平面上升还导致猛烈的西风带来了强劲的风暴潮,淹没了地势低洼的沿海地区,尤其是尼德兰地区。公元1251年和1287年的两场大风暴还导致海水涌到岸上,形成了一条巨大的内陆水道,即须德海。此外,虽然“中世纪气候异常期”里阳光明媚,可欧洲却并不平静,暴力随处可见。精英阶层与特权阶层醉心于结成昙花一现的联盟,进行残酷的军事征战。按骑士标准表现出来的勇敢与力量,是人们评估政治权威的范围、确定效忠对象的依据。战争时起时消,但正是因为有了粮食盈余,加上野心勃勃的领主们能够修建要塞与城堡来保护日益增长的人口,这里才有可能爆发战争。

    最终,随着一些存续时间更久远的王国崛起,迅速增长的人口与日益扩大的长途贸易量就改变了欧洲的政治格局。现代欧洲的遥远发端首次出现了。在阿尔卑斯山北部,靠土地为生的人越来越多,导致森林和沼泽遭到了大规模的砍伐和清理,其中还包括古罗马时代耕作过,但后来荒芜了的地区。人们开始迁往土壤贫瘠的边缘地区。成千上万农民往东迁徙,越过了易北河。在这几个世纪里,天主教会的政治权力达到了巅峰,而其标志就是“十字军”进攻塞尔柱突厥人和法蒂玛王朝治下的埃及,在黎凡特地区建立“十字军国家”,以及推翻西班牙的信奉伊斯兰教的安达卢西亚。

    “中世纪盛期”的欧洲,经历了一场艺术与知识话语的新爆发;这场爆发,将亚里士多德和托马斯·阿奎那等思想家的思想,与一些源自伊斯兰教和犹太哲学的观念结合了起来。这是一个各国君主都鼓励兴建哥特式大教堂的时代,也是一个彩绘手稿和上等木制品盛行的时代,成就不胜枚举。所有这些创新之举,无论是知识上的、物质上的、精神上的还是社会政治上的,全都依赖于丰富的粮食盈余,才能创造出财富与金钱,去支付工匠和不断增长的非农人口的工资,以及去礼敬上帝。作物丰收、粮食充足的时候,每一个人,无论是君主、贵族还是平民百姓,都会感谢上帝,并向上帝敬奉奢侈的供品。大家都害怕神之震怒,因为神灵一怒,就会出现饥荒、瘟疫和战争。若是收成不佳,供品就会缩水,大教堂的修建速度也会放缓。不管有没有供品,中世纪欧洲那副华美壮丽的外表,最终都靠农村那些自给农民默默无闻的辛勤劳作来维持;此时,乡村已经包围了正在发展中的城镇。

    君主、贵族、宗教人士以及城镇居民,都是靠着几乎全部由当地农民供应的谷物为生。那时,大多数人的饮食都很简单——面包、饼干、粥和汤。他们在单调的饮食中添加新鲜或腌制的水果或蔬菜,偶尔也会有肉。肉类太贵,大多数人并不常吃;鱼则是沿海、湖滨或者河滨地区的主食,只有腌制过的鳕鱼或者鲱鱼除外。就算是轻微的作物歉收,也会导致粮食价格上涨,农村地区出现饥荒,农村居民因此更易生病。在不断发展的城市里,社会动荡和饥荒则会结合起来,以“面包暴动”的形式爆发。

    在差不多1,000年的时间里,欧洲的自给农业一步步地发展起来。欧洲的经济和社会体系,依赖于掌控在地方贵族和教会手中的封建土地所有权。耕作土地的农民一个季节又一个季节地勉强维生,使用的是数个世纪以来几乎没有改变过的工具。由于金属农具供应不足,故许多农民严重依赖于木制工具,它们只能勉强翻开土壤的表层。很少有人买得起牛马来拉犁,只能靠家人拉犁耕地。实际上,他们从事的是一种简单的单一栽培,会耗尽土壤中的重要养分,降低作物的产量,连休耕之后也是如此。考虑到教会和贵族都很贪婪,即便是在丰收年份也会增加实物税,而农民留下的份额则保持不变,故农民也没有提高粮食生产的动机。偶尔出现的粮食短缺,确实是一个问题,但整个系统还是能够存续下去。不过,当降雨和气温都出现重大变化时,日常生活与农业的根基就会分崩离析;1314年初的情况就是如此。

    黑暗时代和大饥荒(公元1309年至1321年)

    公元1309年至1312年间,欧洲的冬天都极其寒冷。浮冰从格陵兰岛延伸到了冰岛,厚度足以让北极熊从一地走到另一地。北大西洋涛动一直处于高指数模式,低气压则以冰岛上空为中心;这种情况,就是气候寒冷的原因。接着,突然间,北大西洋涛动变成了低指数模式,气候条件开始变得不稳定,整个欧洲都受到了影响。无人知道为什么会这样,但某种突发性的大气作用导致了一个巨大的气团在欧洲北部上升,冷凝成水,然后在大片地区降下了暴雨。[14]

    要知道,这些大规模的降雨,始于1314 年4月中旬或者5月,即五旬节前后。法国北部拉昂附近圣文森特修道院的院长曾写道:“大雨如注,历时甚久。”[15] 另一份文献则称,从比利牛斯山脉一直到东方的乌拉尔山脉和北方的波罗的海的广大地区,曾经连续不断地下了155天的雨。萨尔茨堡的一位编年史家曾称:“彼时泽国汪洋,宛如末世之洪水。”仅在萨克森一地,洪灾就将450多座村庄夷为了平地。桥梁纷纷倒塌,堤坝纷纷溃垮。就连地基牢固的房屋,也轰然垮塌。

    这种情况,对田地的破坏最严重。一代代的人口增长和乱砍滥伐,已经让密实的薄土裸露出来,尤其是山坡与地势较高处那些产量不高的贫瘠土地。暴雨的冲刷,让田地变得泥泞不堪,冲走了此时已经裸露出来的紧实土壤,形成一道道很深的侵蚀沟壑,将农田变成了大坑。在14世纪,人们耕作最优质的表层土壤时,犁铧已能掘出深深的犁沟了。在正常情况下,这种犁耕田地可以毫无困难地吸收掉760毫米的年均降雨量。可1314 年的暴雨却降下了5倍的雨水,至少达到了2 540毫米。所以,有着很长犁沟的表层土壤被冲走,露出来的就只有坚硬的黏土底土了。那些较松和较贫瘠的土壤,几天就被冲刷得一干二净。从苏格兰和英格兰直到法国北部,再往东到波兰,差不多有一半的可用耕地不复存在,只剩下了岩石。

    饥荒和一个极其寒冷的冬季接踵而至。1315 年的春季,出现了更多无情的降雨。按照惯例,大家都播下了种子;可经过4个月持续的倾盆大雨,英格兰与法国北部都颗粒无收。许多欧洲家庭便采取了那种跨越时间与文明的经典对策,抛弃了他们的土地,开始漫无目的地流浪,或者向亲戚寻求救济。到了1316年底,成千上万的劳力和农民都变得穷困潦倒了。社群要么解体要么规模缩小,尤其是那些靠贫瘠耕地维生的群落;由于没有谷种和耕牛,他们只得舍弃自己的村庄与田地。所以,经常没有充足的人手去耕种或者犁地。

    当时,经营水力磨坊是一桩有利可图的生意;水力磨坊由磨坊所有者严格掌控着,他们会向使用者征收实物税。1315 年和 1316 年的洪水,冲毁了数百座水力磨坊;其余磨坊也被洪水淹没,无法再用了。这些磨坊,正是人们将小麦这种主食磨碎成粉的地方;不过,当时的粮食供应反正也紧缺。暴雨大幅降低了土地的生产力;这不但是因为下雨让收割和播种都变得很困难,常常会把粮食冲走,而且是因为洪水会带走土壤中的硝酸盐。潮湿的天气还给贫瘠的土地带来了植物病害,尤其是霉菌和霉病。到1316年时,英格兰南部温切斯特周边地区的小麦与大麦收成,都只有平均水平的60%,成了公元 1217 年至 1410 年之间的最低水平。这两种作物的收成,至少在接下来的5年里都比平均水平低25%。[16]

    为了增加粮食供应,英国王室还给予过西班牙的粮食商人安全通行权。但是,1316 年再度出现了同样的天气模式。到了此时,数年来降雨过度和洪水接连不断所形成的累积效应,带来了毁灭性的后果。我们之前已经看到,热带地区的干旱有可能让正在生长的作物枯萎,并将农田变成干旱的荒芜之地。然而,当雨水再度来临,庄稼可以再度迅速生长之后,人们就会忘掉干旱。不过,1315年至1317年间的这种极端降雨和由此引发的洪灾,却导致了持久的破坏,需要多年才能缓解。德国的编年史家曾经记载过许多一度肥沃的农田如今变得贫瘠的现象。在人们对这一切还记忆犹新的1326年,英王爱德华二世的佚名传记作者曾称:“豪雨泛滥,种子皆腐,若以赛亚之预言,此时似将实现……诸地之草料,久淹于水下,至刈拔皆为不能。”[17] 接着,就是1317年至1318 年间的那个冬季;由于北大西洋暖流与北冰洋之间的水温梯度增加了,所以那个冬天异常寒冷。

    降雨对中世纪饮食的方方面面都产生了影响。在那个时代,没有人把葡萄酒储存起来制作年份酒。他们都是在几个月内就把葡萄酒喝光了。1316年,由于葡萄歉收,法国实际上没有生产出什么葡萄酒。食盐主要是通过阳光晒制和在沿海盐田中点火焚烧制成的,当时由于木柴太过潮湿、无法点燃,故食盐变得稀少和昂贵。腌鳕鱼与腌鲱鱼的价格,很快就上涨到了一个世纪以来的最高水平。

    营养不良是粮食短缺带来的一种明显后果。战争持久不断,四处游荡的军队大肆掠夺庄稼和其他粮食,导致营养不良的程度不断加剧,从而变成了饥荒。由此造成的影响,从各个方面都看得出来;当时,欧洲各地饿死的人达数百万人之多。1319年,英格兰前都城温切斯特的大街小巷里,饿殍遍地,还散发着恶臭。在绝望之下,有些人开始吃人,还有一些人则开始杀死婴儿。照例,穷人和乡间农民遭受的苦难最为严重。富人与宗教群体中的人,通常都有多种多样的充足食物。当然,情况也并非始终如此。比如同一年里,在北海对岸原本富裕的佛兰德斯,30 个星期之内就死了将近3,000 人,可那里的居民总共仅有25,000人。

    糟糕的情况还在后头。1319 年,欧洲暴发了一场牛瘟。[18] 牛瘟病毒对人们无害,对牲畜却是致命的,杀死了英格兰65%的牛、绵羊和山羊。人们转而开始饲养繁殖速度很快的猪,但日益增长的需求很快就导致这种牲畜也短缺起来。牛羊畜群都极度营养不良,以至于存栏量直到1327年才恢复过来。牛奶产量骤降至每头奶牛仅有170升。牛奶的匮乏,更是让营养不良的局面变得雪上加霜。这种情况原本已经够糟糕的了,可牛瘟还导致用于拉犁耕地的公牛大量死亡。有些人养了马匹,但喂养马匹的成本更高。农耕生产的成功依赖于耕作更多的土地,故由此带来的后果极其严重。

    这场“大饥荒”,让欧洲的农民遭受了重创。尽管粮食短缺的情况很严重,但农民社会足够顽强,仍然能够存续下来。凭借传统的知识,他们能够熬过数场庄稼歉收。1314 年至1321 年间多年的降雨和饥荒,导致了政治和社会动荡、叛乱,以及近乎持续不断的暴力与战争。气候温暖的数个世纪结束之后,这些天灾人祸结合起来,导致“中世纪盛期”出现了一场不可思议的粮食危机。这场灾难,将对教会、国家以及整个欧洲社会的未来产生影响;与之前的数个世纪比起来,欧洲社会的未来将呈现出更加动荡和更加暴力的特点,其中就包括了“百年战争”(1337—1453)期间的种种恐怖情景。

    欧洲中世纪的作物产量一向很低,就算在人们可以称之为正常天气的情况下也是如此,因为其间有可能存在反常的霜冻和秋季冰雹。其中还不包括禽鸟和啮齿类动物造成的破坏;事实上,还有养活(以前)剧增的中世纪人口所带来的各种压力。其实,人口数据就说明了一切。1066年,“征服者”威廉入侵时,英格兰有260万至340万公顷的土地种植着谷物。这些土地,轻而易举地养活了 150 万左右的人口。到了13 世纪最后的几十年,英格兰的人口达到了500万,却只能靠460万公顷的土地维持生计了;而且,其中很多还是贫瘠的土地。

    “中世纪气候异常期”并不像许多人认为的那样,经历了几个世纪温暖而稳定的气候。其间确实出现过几十年的好天气,有一周又一周的明媚阳光,充沛的雨水则带来了丰收,而冬季气候也比以往更加温和。但这几个世纪属于异常现象,其显著之处并不在于气温较高,而在于气候多变,常常在极端的寒冷和炎热之间来回变换。无疑,我们并不能像那些否认气候变化的人一样,声称“中世纪气候异常期”比如今还要温暖。当时的大多数时候,平均气温似乎都跟21世纪的常态差不多,偶尔有些年份,甚至是几十年,气温还要比如今稍高一点儿。只不过,这些影响很微妙,而“中世纪气候异常期”那几个世纪也属于气候持续多变的时代,就像此前和此后的多个世纪一样。

    起初,人们认为“中世纪气候异常期”是欧洲特有的一种现象。如今我们得知,它的影响虽然很微妙,却具有全球性,有时还是灾难性的,尤其是像美国西南部和东南亚这样的半干旱地区遭遇持久干旱的时候。在欧洲,这种异常气候加上经常的作物丰收,催生出了人们通常所称的“中世纪盛期”,催生出了那里众多宏伟壮观的大教堂,以及随着人们争夺资源控制权而爆发的地方性战争。特别是,正如我们在后续各章中即将看到的那样,在接下来的数个世纪里,随着人口增加,随着越来越多的农民为了可持续农业而被迫去开垦那些称为贫瘠土地都很勉强的地块,人们易受气候变化影响的脆弱性也急剧增加了。“中世纪暖期”再次提醒我们,可持续性与韧性取决于前瞻性思维、细致的环境知识,以及对短期和长期的气候变化做出的长期规划。

    1316 年春季,数代以来不断增加的脆弱性,终于结出了恶果。春雨不停地下,冲走了地里的种子,侵蚀了脆弱的山坡。与营养不良和饥荒相关的疾病在欧洲的广大地区肆虐了5 年。饥荒就像是《圣经》中的“天启第三骑士”一般降临,后者骑着黑马,带着象征着食物的价格与丰裕程度的决定命运的天平。在这位神话中的“骑士”的脚步声中,瘟疫和几个世纪的降温随着“小冰期”的到来不断出现,经常是极度寒冷的气候波动,对生活在欧洲和美洲的人都产生了影响。

    [1] 凯撒里亚的普罗科匹厄斯(Procopius of Caesarea,约500—

    约570)是拜占庭的一位希腊学者兼律师,曾大力批评过查士丁尼一

    世皇帝。此人的《查士丁尼战争史》(History of the Wars)是记载

    6 世纪早期诸事件和“查士丁尼瘟疫”的宝贵资料。Procopius,

    History of the Wars (Cambridge, MA: Loeb Classical Library,

    1914), IV, xiv, 329.

    [2] Michael McCormick, Paul Edward Dutton, and Paul A.

    Mayewski, “Volcanoes and the Climate Forcing of Carolingian

    Europe, A.D. 750–950,” Speculum 82 (2007): 865–895,此文

    是论述这一时期的气候以及火山喷发与气候之间关系的基本资料,我

    们在很大程度上参考了这篇论文。

    [3] 这两座火山都位于印度尼西亚。——译者注

    [4] 巴塞洛缪·安格利库斯(Bartholomeus Anglicus,约 1203—1272)

    通常被称为“英国人”巴塞洛缪,是一位方济各会学者兼教会官员。

    他的19卷本《万物本性》(De proprietatibus rerum)一书是现代百科全书的前身,曾经广为传阅。此书论述的主题范围广泛,包括上帝和动物。

    [5] Ulf Büntgen and Nicola Di Cosmo, “Climatic and

    Environmental Aspects of the Mongolian Withdrawal from

    Hungary in 1242 CE,” Nature Scientific Reports 6 (2016):

    25606.

    [6] Hubert Lamb, Climate, History and the Modern World, 2nd

    ed. (Abingdon, UK: Routledge, 1995),它是了解兰姆作品的优秀

    指南。至于“中世纪气候异常期”,请参见他的“The Early

    Medieval Warm Epoch and Its Sequel,” Palaeogeography,

    Palaeoclimatology, Paleoecology 1 (1965): 13–37。

    [7] Michael Mann et al., “Global Signatures and Dynamical

    Origins of the Little Ice Age and the Medieval Climate

    Anomaly,” Science 326 (2009): 1256–1260.

    [8] Ulf Büntgen and Lena Hellman, “The Little Ice Age in

    Scientific Perspective: Cold Spells and Caveats,” Journal

    of Interdisciplinary History 44 (2013): 353–368. Sam White,

    “The Real Little Ice Age,” Journal of Interdisciplinary

    History 44, no. 3 (winter 2014): 327–352,其中也提供了一些重要的见解。宾特根与赫尔曼强调说,这一切煞费苦心的研究都只是暂时的,因为许多高度技术性的问题还有待解决。其中的核心问题,就在于需要有可靠的仪器测量网络,来校准精心搜集与精确断代的替代指标资料。然而大致来看,现有的研究至少提供了气候变化的总体印象,比早期的研究要精确多了。未来的气候变化情况将变得更加精确,因为其中很大一部分将来自极其复杂、有时甚至非常深奥且掌握在专家手中的统计计算。不过,对于中世纪的气候及其变迁,我们了解的情况已经比短短几年之前都要丰富得多了。

    [9] Ulf Büntgen et al. “Tree-ring Indicators of German

    Summer Drought over the Last Millennium,” Quaternary Science

    Reviews 29 (2010): 1005–1016.

    [10] 论述中世纪农业的文献资料有很多。Grenville Astill and

    John Langdon, eds., Medieval Farming and Technology: The

    Impact of Agricultural Change in Northwest Europe (Leiden:

    Brill, 1997),是一部重要的概述之作。

    [11] 公石(hectoliter),英制容量单位,1 公石合 100 升(略作“石”);作重量单位时,1公石合100公斤(也作“公担”)。缩写为hl.。——译者注

    [12] 马姆斯伯里的威廉(William of Malmesbury,约 1096—1143)

    是英格兰西南部的一位修士,也是一位备受推崇的历史学家,地位仅

    次于“尊者比德”(Venerable Bede)。他的《历史小说》(Historia Novella)第5 卷(Book V)描述了当时的葡萄园。

    [13] 参考的是Hubert Lamb, Climate, History and the Modern

    World (London: Methuen, 1982), 169–170。

    [14] William Chester Jordan, The Great Famine (Princeton, NJ:

    Princeton University Press, 1996),对那场饥荒进行了最权威的

    描述,我们在这里也主要参考了这部作品。亦请参见William Rosen,

    The Third Horseman: Climate Change and the Great Famine of

    the 14th Century (New York: Viking, 2014)。

    [15] 本段引文来源:Abbott of St. Vincent: Martin Bouquet et al., eds., Recueil des historiens des Gaules et de la France, 21:197。From Jordan, The Great Famine, 18.

    [16] 本段参考了Rosen, The Third Horseman, 149–151。

    [17] Wendy R. Childs, ed. and trans., Vita Edwardi Secundi:

    The Life of Edward II (New York: Oxford University Press,

    2005), 111.

    [18] C. A. Spinage, Cattle Plague: A History (New York: Springer, 2003).

    第十二章 “新安达卢西亚”与更远之地(公元1513年至今)

    一切都始于诺曼人,且远早于克里斯托弗·哥伦布登陆巴哈马群岛的时候。欧洲人与美洲原住民之间的第一次接触,是在“中世纪气候异常期”;当时,冰岛与加拿大拉布拉多之间的北方海域上,浮冰已经消退。到公元874年时,北欧殖民者已经开始利用北方海域的有利冰雪条件了。他们在北极边缘的冰岛上永久定居下来。他们的航海鼎盛期持续了差不多3个世纪,当时北大西洋东部的气温较高,气候条件也较稳定(参见第八章中的地图)。

    公元986年,因为“杀了一些人”而被逐出冰岛的“红发”埃里克[1] 在格陵兰岛建立了殖民地。不久之后,这些殖民者就跨海而过,来到了如今属于加拿大北部的巴芬兰。埃里克的儿子莱夫·埃里克森(Leif Eirikson)又驾船往南航行,远至圣劳伦斯河河口,并且在纽芬兰的北部过了冬。此人的过冬之地,可能就是该岛最北端的兰塞奥兹牧草地遗址;在这处遗址上,考古学家发现了北美洲唯一一个为世人所知的维京人殖民地。[2] 后来,他们又多次航行到了拉布拉多,与因纽特部落进行了不定期的接触,还前去采伐格陵兰岛上供不应求的木材。世世代代,格陵兰人都是用他们在这些航海活动中获得的海象象牙,向祖国的教会缴纳部分什一税。1075 年,一位名叫奥顿(Audun)的商人甚至从格陵兰岛运来了一只活的北极熊,并把它当作礼物送给了乌尔夫松国王;这种事情,在公元 1200 年以后气候较为寒冷的数个世纪里根本就做不到。

    诺曼人从未在北美洲定居下来;至于原因,部分在于他们与美洲原住民之间的激烈交锋阻碍了殖民。但在北大西洋西部气温较低、气候寒冷的数个世代里,他们却一直留在格陵兰岛上,生活了3个世纪。在格陵兰岛对面的巴芬兰,高山冰川的面积在公元1000 年前后到1250 年间达到了最大。此外,从“格陵兰冰盖项目 2”的冰芯中获得的气温数据表明,从公元1000年左右到1075年以及从公元1140年至1220年这两个时期,都出现过气温下降的现象。[3] 诺曼殖民者的人口逐渐减少,直到1450年他们彻底弃定居点而去。至于诺曼人离开格陵兰岛的确切原因,如今仍然是一个存有争议的问题。日益孤立的环境、海象象牙贸易的衰落,或许还有因纽特人的敌意,可能都是他们遗弃定居地的原因。只有诺曼人的史诗中,还保存着人们对美洲原住民与欧洲人首次相遇时的记忆。

    神秘的“新安达卢西亚”(公元1513年至1606 年)

    15 世纪末至16世纪初,欧洲已知世界的边界显著扩张了。克里斯托弗·哥伦布及其后继者,在属于热带气候的加勒比地区建立了殖民地。阿兹特克的印第安人曾在西班牙的宫廷之前接受检阅。西班牙征服者对佛罗里达和新墨西哥进行勘察,结果却酿成了一场灾难,遭遇了严寒。在深受干旱与低温所困的弗吉尼亚,英国殖民者建立了詹姆斯敦。1497年约翰·卡伯特到纽芬兰的航行以及后来的探险活动则清晰地表明,任何一条前往亚洲的“西北通道”,都要经过冰天雪地、极其寒冷的地带。

    1605 年至 1607 年间,丹麦国王克里斯蒂安四世曾经派遣3支远征队,前去寻找业已消失的诺曼人殖民地。这几次远征,都以失败而告终。远征队遭遇了严寒,连夏季也是如此;夏季冰层从格陵兰岛沿海往外,一直延伸到了很远的地方。此后,捕鲸就成了荷兰人在北极水域的主要活动。北方的真正“黄金”藏在纽芬兰的鳕鱼渔场里,可汉弗莱·吉尔伯特(Humphrey Gilbert)在这座岛屿上进行殖民的努力,在1583年以灾难而告终。[4] “小冰期”里最寒冷的一些天气,不利于人们在纽芬兰进行永久性的殖民活动。人们的关注焦点,便转向了科德角的南部。

    与欧洲的情况一样,“小冰期”从来都不是一个持久存在的深度冰冻期,也不只是数个世纪的寒冷天气。这几个世纪不断变化的气候,同样对美洲的殖民历史产生了极大的影响。[5] 寒冷刺骨的冬天、旷日持久的干旱、飓风以及猛烈的暴风雨,都曾导致船只偏离航线和失事。北美洲的情况,尤其让当时的人感到困惑。来到陌生环境里的欧洲农民,都期待着这里有他们熟悉的、界限明确的季节,而不是像夏季炎热潮湿、冬季气温低于零度之类的极端气候。此外,他们在狩猎与捕鱼时碰到的也是不同的物种。

    当时欧洲人对北美洲天气的态度很僵化,以为世界上任何一个纬度地区的气候都是恒定不变的。[6] 古典作家把已知世界划分成了一些所谓的“克利玛塔”(climata)带,故才有了如今的“气候”(climate)一词。[7] “克利玛塔”往往是指气温,它会随着纬度的变化而以一种相对可预测的方式变化。欧洲属于湿润的海洋性气候,一年到头降雨充沛,气温日较差与季节性温差相对较小,而且一般来说,每个季节的起始时间变化不大。这就意味着,那些鼓吹殖民的人以为,生活在北美洲的人也会享受与欧洲西部相似的温和气候。这种看似常识的设想,其实是完全错误的。

    北美洲的东部,夏季极其炎热,冬季极其寒冷;那里属于大陆性气候,为来自陆地而非来自大西洋的气团所控制,后者对欧洲的气候具有强大的影响。不但如此,两地气温所属的纬度区间也不同,欧洲为北纬40°到60°之间,而北美洲则为北纬35°到50°之间。伦敦位于北纬51°,与纽芬兰北部的纬度相同。美国弗吉尼亚州的切萨皮克湾位于北纬37°,则与西班牙塞维利亚的纬度相同。弗吉尼亚的降雨主要出现在夏季,并且不那么可靠,还会出现毫无规律的干旱周期。对于欧洲殖民者而言,这种气候现实很严酷,他们原本指望这里是一个气候温和、气温较高且如地中海地区一般的“天堂”。一些劝人去殖民的作家,把这里称为“新安达卢西亚”。[8]

    最早记载从北部诸地前往波多黎各的西班牙殖民地的情况的资料中,提到过一个叫作“比米尼”(Bimini)的岛屿。1513 年,西班牙探险家胡安·庞塞·德莱昂(Juan Ponce de León)沿着比米尼岛海岸航行,将这个神秘之地改名为“佛罗里达”。两度探险失败后,此人便放弃了野心勃勃的殖民计划,抱怨那里的气候不好,那里的人则“十分野蛮和好战”。在接下来的50年里,还有人往返于此地,全都大失所望。“佛罗里达”不是什么“新安达卢西亚”,不会给他们的祖国提供地中海各地可以找到的橄榄油和其他商品。大部分雨水都是在夏季的那几个月里降下,使得冬季作物很少,甚至根本就没有发芽所需的水分。那里也没有旱季来让作物成熟。年复一年,西班牙殖民者种植的庄稼全都烂在了地里。佛罗里达还深受猛烈的飓风和冬季极其寒冷的北风所害。大大小小的探险队曾经向西远行,到达了密西西比河与如今的得克萨斯州;其中的一次远征,是1538年至1543年间埃尔南多·德索托(Hernando de Soto)发动的损失惨重的入侵,这次远征因他们的苦难经历和暴行而令人瞩目。西班牙之所以殖民失败,部分原因就在于远征者无能且领导无方,同时也在于殖民者怀有不切实际的野心。这些远征,并不是王室经过了精心计划且持续提供资金支持的行动。一切都依赖于个人的开拓精神,可这又要靠西班牙贵族的财富来支持。王室国库负担不起实施这种计划所需的费用。

    西班牙的殖民活动,也是因为严酷的气候变化才会土崩瓦解。今天的美国东南部在“小冰期”里曾经显著降温,气温降幅视地点而异,高达1℃至4℃不等。这种降温,在一定程度上是由西北部寒冷干燥的空气和冬季降雪导致的,16世纪和17世纪尤其如此。西班牙人的记述中,就反映出了当时大气环流的变化和寒风肆虐的情况,以及殖民者遭遇的严重干旱。[9] 异乎寻常的寒冷、大雨和大雪,使得他们不论身处哪里都有挨饿和生病的危险,同时还会遭到心怀敌意的印第安人的袭击。1528年,得克萨斯沿海地区极其寒冷,以至于海中的鱼都冻僵了,还有过同一天既下雪又下冰雹的情况。

    十几年之后的 1541 年,埃尔南多·德索托率领的那支远征队在如今密西西比州境内距奇卡索人(Chickasaw)不远的地方扎下了营寨。当时,天气极度寒冷,故他们“整夜无眠,辗转反侧;半身若暖,半身受冻”。[10] 经历了“小冰期”的气候严寒(如今几乎不为人所知)后,人们的“新安达卢西亚”之梦就破灭了。至于其间的一场场干旱,下文所述的树木年轮序列表明,当时的旱情是数个世纪以来最严重的。

    但人们还是继续努力,想要在这里永久定居下来。1565年9月,西班牙海军将领佩德罗·梅内德斯·德·阿维莱斯(Pedro Menédez de Avilés)率军来到了佛罗里达。此人将法国殖民者从圣约翰斯河畔的卡洛琳堡(Fort Caroline)赶走,然后在圣埃伦娜和圣奥古斯丁两地建立了殖民地;当时,恰好碰上16世纪60年代一次严重的干旱和一场大飓风袭击了各个殖民地。在6年的时间里,阿维莱斯手下有一半的士兵都饿死和病死了。当地的印第安人便把西班牙人赶出了圣埃伦娜。16世纪80年代初,又出现了一场大旱;当时,西班牙殖民者正在与当地的瓜勒(Guale)印第安人进行一场残酷的战争。最终,印第安人缴械投降,圣埃伦娜则进行了重建。佛罗里达一度短暂地恢复了元气,直到 1586 年弗朗西斯·德雷克(Francis Drake)袭击了圣奥古斯丁,放火将那里的250幢房屋夷为平地,并且掳走了一切。但在“新西班牙”[11] 当局的大力资助下,这座城市最终幸免于难,成了西属佛罗里达的首府,时间超过了200年。

    此时的西属美洲已经因为从墨西哥与秘鲁攫取了大量黄金和白银,积聚了巨大的财富而享有了传奇般的声誉,所以引来了大量的海盗与私掠船。一双双贪婪的眼睛,全都盯着西班牙的领地,以及此时几乎还无人了解的佛罗里达北部沿海。1584 年 5 月,英国伊丽莎白一世时期的冒险家沃尔特·雷利(Walter Raleigh)派遣两艘船只,对那里实施过一次侦察。他们在哈特勒斯湾登岸,然后又向北航行到了罗阿诺克岛,那里的塞科坦(Secotan)印第安人热情地欢迎了他们。这些来客带着极尽赞誉之语的报告而返,称那里有肥沃的土地、丰富的木材,甚至还有野生葡萄。至于当地的印第安人,则一个个都态度温和,当然也没有敌意。据说,他们都是“按照着黄金时代的方式”生活着。

    另一支前往罗阿诺克岛的探险队,由理查德·格伦维尔(Richard Grenville,或者拼作Richard Greenville)与拉尔夫·莱恩(Ralph Lane)两人率领,于1585年起航。[12]由于遭遇了暴风雨、船只失事和偶尔的私掠船骚扰,再加上旗舰在“外滩群岛”搁了浅,失去了全部的辎重,所以这些殖民者狼狈不堪地到达了罗阿诺克。格伦维尔返回英国寻找新的给养,莱恩则与大约100位殖民者留了下来。这个殖民地,很快就变得岌岌可危了。完全不同于之前的报告,这里的土层很薄,一点儿也不肥沃。种在地里的庄稼全都死了。此地的池柏年轮表明,在1587年至1589年的殖民期间,800年来最严重的一场干旱仍在这里肆虐。[13] 殖民者还遭遇了食物短缺,因为印第安人不愿把玉米卖给他们。英国也没有派来救援船只。尽管害怕遭到印第安人的伏击,这些绝望的殖民者还是不得不去寻找给养。接下来,莱恩与当地酋长的对手结盟,杀掉了那位酋长。不到一个星期之后,弗朗西斯·德雷克爵士就率领一支满载劫掠品的船队抵达了;只不过,他手下的船员因为患病而数量大减。他提出帮助莱恩另觅一个殖民地,可一场大风却刮了4天,可能会让德雷克的舰队陷入搁浅的危险。于是,殖民者迅速遗弃了这个前哨,坐船返回了英国,只在罗阿诺克留下了15个人,这些人后来消失得无影无踪。关于这些消失的殖民者,有一个传说流传了下来,可他们的遭遇,至今依然不为人知。极有可能,他们要么是加入了当地的一个印第安群落,要么就是为印第安人所杀。对此,我们多半永远都无从知晓了。

    尽管有罗阿诺克岛之祸,可北美洲以及那里的原住民,还是深深地吸引着英国国内的民众。激情洋溢的支持者计划开拓新的殖民地,其中就有持乐观态度的理查德·哈克卢特(Richard Hakluyt);此人是一位大臣兼业余地理学家,他确信英国拥有巨大的潜力,能够掌控海外勘探和贸易。[14] 他曾经热情地吹嘘说,北美洲拥有丰富的黄金、白银、珍珠和充足的热带食物,其实这种说法并不正确。西班牙帝国在美洲进行扩张的流言,时断时续地传到了欧洲,因为西班牙人认为他们的发现属于国家机密,只有少数精英人士才能知晓。英国没人看过16世纪70年代至80年代编纂而成的《印第亚斯之地理关系》(Relaciones geográficas de Indias )一作,而此作也从未得到过广泛传播。这份具有里程碑意义的报告详细描述了当地的天气状况。对于任何一个打算到加勒比地区、佛罗里达以北和更往北的海岸进行航海探险的人而言,这种信息都属于无价之宝。除了地理方面的错误,哈克卢特还重申了一种错误的观点,即从卡罗来纳到缅因地区的整个东海岸都是地中海气候。他在作品中称,那里气候温和、土地肥沃、气温较高,是一个农民可以种植橄榄、葡萄、柑橘和其他各种作物的地方;这些作物,原本都是英国耗费巨资从地中海地区进口的。这片土地上,“气候、土壤皆似意大利、西班牙,以及吾等获取葡萄酒与油料之群岛”。[15]

    这种前景确实诱人,也构成了弗吉尼亚公司在 1606 年派遣 3 艘船只前往美国东海岸时制定的《建议性指示》(Instructions by Way of Advice)的核心内容。当时的组织者,几乎没有从过去其他地方的错误中吸取经验教训。他们想当然地以为,尽管16世纪末的气候日益寒冷,但他们的目的地的气候会跟祖国的气候差不多。

    詹姆斯敦的麻烦(公元1606年至1610年)

    1606 年 12 月,从伦敦起航的3艘船只和大约144位殖民者在美国东海岸登陆了。1607年5月6日,他们在如今的弗吉尼亚驶入了詹姆斯河河口;虽说当地的“印度人”[16]袭击了他们,可他们还是继续进行了勘探。最终,他们在这条河上游方向大约 80 千米处一个沼泽密布的半岛上,修建了一座呈三角形的要塞。从战略上来看,这个低洼之地的选址是很合理的,而且那里的土壤“肥沃之至,非言表所及”。不过,要塞紧挨着水边,除了河水就没有淡水供应。森林则不断地向这个定居地逼近,故他们有遭到伏击的危险。对于即将到来的可怕遭遇,这些殖民者毫无准备。[17]

    哈克卢特的计划以当时人们能够接触到的最佳信息为基础,同时也着眼于长远。他将目光投向了殖民活动的遥远未来。然而,殖民者首先就碰到了一个更加紧迫的问题,那就是他们必须在詹姆斯敦挺过最初的几个冬天,只能靠自给农业维生。从一开始,这里的粮食供应就很稀缺,因为印第安人并没有像大家以为的那样慷慨地给他们提供粮食。很快,疾病与死亡接踵而至,到8月份就死了50个人。没人知道究竟是哪些原因导致了他们死亡,但毫无疑问的是,与饥荒有关的疾病位列其中。更加糟糕的情况还在后头,因为气候也对殖民者造成了压力。此地的树木年轮中,就客观地记录了气温变化的情况。不巧的是,殖民者抵达詹姆斯敦的时候,正值一场从1606年持续到1612年的漫长干旱刚刚开始。气候学家还研究了取自切萨皮克湾中的沉积岩芯,发现这段时间也是整个千年里最寒冷的几年,气温比20世纪低了2℃。[18]

    美国西弗吉尼亚州的树木年轮与洞穴沉积物都表明,17世纪初这里的季节性气候条件出现了重大变化,从而证实了殖民者自己记载的情况:冬季更加寒冷,夏季则更加干旱。

    在詹姆斯敦这个殖民地最初和最脆弱的几年里,极端的气候变化造成了严重的破坏。炎热干燥的夏季,毁掉了正在生长的庄稼。詹姆斯河的水位急剧下降,使得河水中的盐分增加,变得极不利于健康了。当时也没人想过要挖一口井来获取淡水。冬季那种不常见的寒冷所导致的作物歉收,既加剧了粮食短缺的程度,也让殖民者之间的人际关系变得恶化。人们每天聊以为生的,只有1品脱甚至更少[19] 的小麦与大麦,再加上他们能够找到的其他食物。他们虽说既有武器,也有渔具,但显然很少加以利用。他们的生活条件充其量只能说是非常简朴,许多人都睡在冰冷的地上。正如历史学家凯伦·库珀曼所言,那些殖民者极有可能始终处在饥饿与震惊的状态之中;她还认为,这种状况堪比受到了虐待的战俘。[20]

    除了不得不将就着饮用盐分很高的肮脏河水,殖民者可能还把伤寒从卫生条件很差的船上带了过来;他们花了2年的时间,才掘出一口井来获取“甜水”。鉴于印第安人的袭击始终都是一种威胁,故他们取水的地方可能距他们处理垃圾的地方很近,这也很危险。可以说,许多殖民者可能都是死于饮用了不干净的水,而非死于饮用啤酒。英国当时的大麦收成,绝大部分用于酿制啤酒了;许多人每天要饮用6品脱左右,故啤酒在他们每天所获的热量中占有重要的比例。酿制啤酒时的麦芽,也是他们日常饮食的一部分。由于对艰苦的生活条件和食物匮乏的情况毫无准备,所以殖民者还遭到了毁灭性的心理打击。

    当地的美洲原住民村庄,都被波瓦坦部落联盟统治着;那是一个实力强大的酋邦,控制着无数座村落,总计有约15,000 人生活在詹姆斯敦的上游地区。不同于新来的殖民者,他们在当地的气候下生活了数百年,故经验丰富。与当时弗吉尼亚的所有印第安人一样,波瓦坦部落把农耕生产与狩猎、捕鱼以及采集植物性食物结合起来维生。[21] 他们追求食物的多样化。在春季里,他们会用鱼梁捕鱼,并且用陷阱捕猎松鼠之类的小型动物。5月和6月是播种季节,他们主要以橡子、核桃和鱼为食。还有一些人则散布在各个小营地里,靠各种各样的食物维生,其中既有鱼类、螃蟹和一些猎物,也有多种多样的植物性食物。6月、7月和8月是食物相对充沛的几个月,他们会以箭叶芋(tocknough)的根茎、浆果(疆南星属植物)、鱼和青玉米为食。夏末秋初是收获和富足的季节;接下来,他们整个冬天就会捕猎鹿和其他猎物。有些酋长和位高权重的个人还会设法储存玉米供全年所食,但大多数波瓦坦人种植的粮食都只足以吃上几个月,然后他们就靠吃野生食物来熬过一年中余下的时间。

    从当时一些美洲原住民遗骸中重要的碳、氮同位素来看,17 世纪的大多数印第安人主要是以玉米为食。[22] 而且,尽管他们对环境中的各种资源了如指掌,可这些人的骨骼也证明,他们经历过严重的营养不良时期。生存从来就不是一件容易的事情,哪怕他们比欧洲移民有更多的选择,也是如此;至于他们具有更多选择的原因,部分在于他们对自己所处的环境与气候有着深入的了解。他们可以把园圃迁到气温较高和朝南的向阳坡上,可以种植一些比玉米更加耐寒的作物。在极端情况下,当地人要么是迁往别处,要么就是彻底回归狩猎与采集的生活方式。正如人类学家海伦·朗特里指出的那样,部落里的女性可能不愿储存较多的玉米,因为她们担心酋长和精英阶层会把余粮当成贡品夺走。[23] 当时,随着一些实力强大的酋长相互争夺权力和威望,波瓦坦人生活的村落越来越大、越来越集中,并且筑有防御工事。从印第安人的角度来看,如何应对新来的殖民者,其实是一个非常简单的问题,那就是:他们怎样才能在不冒不必要的风险的情况下,最大限度地利用欧洲人的存在呢?

    波瓦坦印第安人都盼着把玉米和其他食物卖给欧洲人,以此来获得欧洲人那些奇异的金属工具。由于地位和外交等问题都很棘手,并且有时还很微妙,所以二者之间的交易时起时落。到1607年秋季,殖民者几乎没有开垦任何土地。这些新来者都住在简陋不堪的洞穴居所里,其中许多人还意志消沉,坐在那里无所事事。1608年1月两艘补给船抵达之后,一场火灾又迅速把船上带来的一切连同要塞烧了个精光。那个冬天异常寒冷,冰冻的詹姆斯河几乎把两岸连起来了。1608 年,一支损失惨重的救援远征队带来了更多的殖民者,可他们的粮食供应却降到了最低限度。

    面对敌意越来越强烈的当地人,大约400位殖民者都挤进了那座重建的要塞,几乎没人去耕种作物了。饥荒自然随之而来。1609年末,还有大约240人住在詹姆斯敦。到了第二年夏天,就只剩60人还活着了,死者则被安葬在附近的一处墓地里;他们的遗骸清晰地表明,这些人都是饿死的。到了这一年的隆冬,天气太过寒冷,以至于人们都没法涉水到浅滩上去寻找牡蛎了。一些绝望的欧洲殖民者竟然掘出死尸,以之为食。人们曾在这座要塞的一个地窖发现过一具少女的遗骸,上面带有明显的杀戮痕迹;有人甚至切开了少女的头骨,将她的大脑拿走了。[24] 1610年,切萨皮克湾周边的河流里,连鲟鱼这种重要的食物也不见踪影;至于原因,可能就是持续的干旱使得河水盐度太大,导致鲟鱼未至。殖民者只得把东西都装上船,离开了这里,结果却在詹姆斯河河口碰上了从英国而来的一支给养充足的新船队;若是没有这支船队,詹姆斯敦殖民地就不可能在“小冰期”中幸存下来。

    努纳勒克知道如何做(公元17世纪以后)

    在“小冰期”天气最寒冷的那些年里,詹姆斯敦爆发了一场粮食危机。即便是在较为暖和的年份,这个定居地也很容易受到作物歉收的影响,而波瓦坦印第安人不稳定的粮食供应,也让这里深受困扰。当地的美洲原住民,已经适应了数个世纪里迅速变化的气候;出现极端气候的时候,他们通过在一个有鱼、野生植物性食物和小型猎物的环境中追求食物的多样化而幸存了下来。尽管当地人的文化当中含有某种礼尚往来的精神,但与殖民者相比,他们获取食物的方式还是要灵活得多。而且,波瓦坦印第安人只是众多美洲原住民部落里的一个;这些部落都曾利用食物多样化的对策,在“小冰期”的气候波动中幸存了下来。

    努纳勒克是一个图勒族村落,位于白令海靠阿拉斯加沿海地区卡斯科奎姆湾畔的昆哈加克村附近。[25] 从14世纪至19 世纪,那里的气候明显更为寒冷,降雪量更大,夏季气温比如今低了 1.3℃,而海冰的面积也更广阔。原住民在努纳勒克生活了差不多300年之久。此地居民最密集的时期,是17 世纪早期与中叶,与詹姆斯敦人口最密集的时间相同;当时正值“蒙德极小期”的最盛期,也就是“小冰期”里气候最寒冷的数年。这个定居地紧挨着河流,河中既有丰富的季节性洄游鱼类,也有世界上迁徙性水禽的一些最大集中地。这里到处都是小型的哺乳动物;鲸鱼在近海觅食,而海洋中的哺乳动物很丰富。人们所吃的肉类来自北美驯鹿,它们冬季会在海岸附近觅食。如今,这里却变成了多雪的北极气候,夏季凉爽而湿润。努纳勒克丰富的食物资源层级,也为人们提供了从衣物到狩猎武器的各种原材料。最重要的一点是,该村村民的食物都可以在距离相对很近的地方得到。利用天然冻土层的制冷作用,食物储存不成问题。人们几乎也不存在饮食方面的压力。正因为如此,人们才在这个地方居住了一代又一代。

    这个村落的地理位置很优越,使得人们可以极其灵活地获取多种多样的食物。他们的家门口就有各种食材,而且有高效地储存食物的潜力,这意味着气候发生变化的时候,人们完全可以改变狩猎目标,只需重点捕杀其他的猎物就行了,因为气候变化不太可能对一个地区的所有动物产生同样的影响。就算是气候迅速波动,可能也不成问题,这主要是因为像鲑鱼这类食物的有无可以相对容易地预测出来。风险管理始终是人们在寻觅食物时的背景,但与季节更替、干旱和极端低温对食物供应有直接影响的许多环境相比,这里的人进行风险管理却要容易得多。目前,冰雪消融、海平面上升以及较高气温对当地永久冻土层的融化作用,正在侵蚀着这座遗址。

    努纳勒克繁荣发展起来的环境,我们可以称之为一个“资源热点”。在这里,得益于对当地环境的深入了解,当地人形成了一种灵活多变的生存策略。他们的技术非常先进,完全适合在零度以下的气温中寻觅食物与生活,从而让村中的居民能够在条件艰苦的几十年里生活在一个地方;当时的天气条件会在毫无征兆的情况下突然改变,而食物来源也年年不同。与波瓦坦印第安人一样,高效灵活的缓冲机制与应对机制,让这个群落在“小冰期”的极端气候最恶劣,同时也是各个群落争夺食物资源的一个时期里幸存了下来。他们的位置得天独厚,这或许也是这里最终受到了袭击,接着又在17世纪末被人们遗弃的原因。

    干旱演变成特大干旱(公元16世纪末至1600 年)

    最后,我们再来看一看美国西南地区的情况。在前文中,我们已经描述过这里的美洲原住民社会利用迁徙并通过与不论远近的相邻群落维持亲族纽带的对策,适应了一次次漫长干旱的过程。这些干旱,都是由自然的气候变化造成的。“新西班牙”诸殖民者遭遇的干旱,也是如此;他们往北步步推进,深入了有着种种极端气候的新墨西哥州的沙漠地带。他们在 16 世纪晚期到达了这里,当时正值“小冰期”里西部地区气候最干旱和最寒冷的一个时期。数个世纪以来,古普韦布洛诸社会已经出色地适应了这里的环境:作物歉收是常有的事情,生存则取决于谨慎细致地利用泉水和降雨。普韦布洛人的骸骨表明,在那些经常发生暴力事件的社会中,曾经频繁地出现过营养不良、慢性贫血与寿命短暂的时期。[26]最早到达新墨西哥地区的欧洲人的经历,几乎与殖民者在北美洲东部的遭遇完全一样。错误的希望、不准确的预测和不熟悉的气候全都产生了影响,纯粹因厄运而遭遇的严重干旱与其他气候异常则令其雪上加霜;这些干旱与气候异常,在一定程度上是由1600年的于埃纳普蒂纳火山爆发导致的。

    这里与其他地方一样,极度的不信任、缺乏了解与相互冲突,都曾让美洲原住民与新来者之间的关系备受困扰。从与之为邻的美洲原住民那里,欧洲殖民者没有了解到多少关于当地环境和食物的知识,也没有学习其狩猎、打鱼的策略,这一点实在令人感到惊讶。他们都是从自身的艰苦经历中吸取教训,利用来自祖国的技术来生产和生活。在应对这片土地和气候的数千年里,当地居民已经开发出了一些技术,可以制作充足的防寒装备、防水捕鱼服和防冻鞋具;假如欧洲殖民者能够看到并且借鉴这些技术,他们经历的苦难可能就要少得多了。

    展望未来

    与北美洲其他大多数地方相比,美国西南地区给我们带来了更多的启示,让我们看到人类活动导致的全球变暖正在改变我们的未来。尽管处于低活跃水平的厄尔尼诺现象可能是造成美洲遭遇特大干旱的一个主要因素,但一项新的研究将树木年轮中记录的1 200年之久的夏季土壤湿度重建与水文建模、统计评估结合起来,表明从2000年至2018年的这19 年才是公元800年以来第二个最干旱的时期。此外,目前这场特大干旱造成的严重后果当中,有不少于 47%是人为气候变暖导致的。人类活动抬升了气温,降低了相对湿度,杀死了西部数以百万计的树木。因此,一个原本属于常规性的干旱周期,就演变成了一场特大干旱,并且严重程度和持续时间在1 200年来均位居第二。严重干旱的表征,体现在各个方面,比如积雪大幅减少、河流流量下降、地下水减少、森林火灾增多等等。[27] 气候学家把干旱的原因归咎于太平洋东部海面气温的下降,其气候条件与厄尔尼诺现象处于低活跃度时的拉尼娜现象相似。这些气候条件,在北太平洋西部催生出了一个大气波列,从而挡住了暴风雨,使之无法到达美国西南部。过去1,000年中严重程度位居第二的这场特大干旱始于公元2000年,并且仍在继续发展着。如今,它已经让20 世纪30 年代的“尘暴”大干旱和20世纪50年代“大平原”南部的严重干旱相形见绌了。当然,我们还没法预测出这场干旱会不会因为不久之后一种降水较为充沛的新循环而结束,但更严重的人为变暖带来的威胁令人不安,因为它表明了我们现在对全球气候的影响究竟有多么强大。

    未来究竟会怎样呢?在撰写本书之时(即2020年),我们还没有看到气温下降或者降雨更加充沛的迹象。气候建模的预测表明,到21世纪中叶时,干旱情况可能会更加严重。现有的气候变化数据,更加全面地描绘出了过去由大气与海洋异常导致的干旱的情况,而大气与海洋的异常,又是由自然的气候变化造成的。那些声称气候变化总会发生的人一直都在强调21世纪的变暖属于自然现象。但是,根据人们过去在美国西南部进行的学术研究来看,2000年至2018年间的土壤变干、蒸发增强和早期积雪的消失,全都因人类做出的决策与活动而增强了,因干旱叠加于气候压力之上而受到影响的地区也扩大了,故它们已经将原本属于常规性的一个干旱期变成了一场特大干旱。而且,真正的干旱可能还未开始。就算是自然力量终结了当前的干旱,全球人类排放的温室气体也会对将来干旱期的规模产生极大的影响。我们又一次收到了有力的提醒,必须牢记可持续发展的重要性。虽说记忆短暂,但我们已经看到,过去的地下水源是如何在短时间里灾难性地枯竭的。这种情况,已经在一些国家里出现,比如印度。可不可以兴建更多的水库,来储存更多的水呢?虽然在某些情况下,我们把这种做法视作一种短期的解决办法,但若认为这样做可以解决我们预测的未来降水会越来越少的长期问题,尤其是在我们的行为还会加速这一趋势的时候,就纯属痴心妄想了。

    [1] “红发”埃里克(Eirik the Red,950—1003),挪威维京时期的探险家兼海盗埃里克·瑟瓦尔德森(Erik Thorvaldsson), “红发”是其外号。——译者注

    [2] 对于古代北欧人在格陵兰岛定居以及随后越过大洋前往北美洲

    的航海活动,人们已经进行了深入的研究,其中包括丹麦考古学家在

    格陵兰岛进行的出色发掘工作。参见Kristen A. Seaver, The Frozen

    Echo: Greenland and the Exploration of North America, ca.

    A.D. 1000–1500 (Stanford, CA: Stanford University Press,

    1996)。至于兰塞奥兹牧草地,参见Helga Ingstad, ed., The Norse

    Discovery of America (Oslo: Norwegian University Press, 1985)。

    人们一直在质疑,兰塞奥兹牧草地究竟是不是埃里克过冬的地方。这

    一争议尚未解决。

    [3] Nicolás Young et al., “Glacier Maxima in Baffin Bay During the Medieval Warm Period Coeval with Norse Settlement,” Science Advances 10.1126/sciadv.1500806. 1, no. 11 (2015). doi:

    [4] Brian Fagan, Fish on Fridays: Feasting, Fasting, and the

    Discovery of the New World (New York: Basic Books, 2006),其中进行了综合论述。

    [5] Sam W. White, A Cold Welcome: The Little Ice Age and Europe’s Encounter with North America (Cambridge, MA: Harvard University Press, 2017),此书是关于这一主题的权威资

    料。在撰写本章余下的内容时,我们在很大程度上也参考了此书。

    [6] White, A Cold Welcome, 9–19,怀特在书中此部分论述了气

    候。亦请参见Karen Kupperman, “The Puzzle of the American

    Climate in the Early Colonial Period,” American Historical

    Review 87 (1982): 1262–1289。

    [7] Anne Lawrence-Mathers, Medieval Meteorology: Forecasting

    the Weather from Aristotle to the Almanac (Cambridge:

    Cambridge University Press, 2019).

    [8] White, A Cold Welcome, 28–47,怀特在书中此部分有全面的论述。

    [9] White, A Cold Welcome, 31–32.

    [10] 本段中的引文源自White, A Cold Welcome, 38, 41。

    [11] 新西班牙(New Spain), 1535年至1821年间西班牙在其殖民

    地设置的一个总督辖区,范围包括如今的美国西南部、墨西哥、巴拿

    马北部的中美洲及西印度群岛的大部分,首府设在墨西哥城。——译者注

    [12] 关于罗阿诺克:Karen Kupperman, Roanoke: The Abandoned Colony (Lanham, MD: Rowman & Littlefield, 2007)。

    [13] David W. Stahle et al., “The Lost Colony and Jamestown

    Droughts,” Science 280, no. 5363 (1998): 564–567.

    [14] Richard Halkuyt, Voyages and Discoveries: The Principal

    Navigations, Voyages, Traffiques and Discoveries of the

    English Nation, ed. Jack Beeching. Reissue ed. (New York:

    Penguin, 2006). . See also White, A Cold Welcome, 103–108.

    [15] 转引自White, A Cold Welcome, 105。

    [16] 英文中的“印度人”与“印第安人”为同一个单词。这是因为

    欧洲殖民者初抵美洲时,以为他们到达的是印度。为了将其区分开来,

    我们才将两地的人分译为“印度人”和“印第安人”。此处的“印度

    人”加了引号,无疑是指印第安人。——译者注

    [17] 关于詹姆斯敦的这一节,参考了White, A Cold Welcome, chap.

    6。亦请参见Karen Kupperman, The Jamestown Project (Cambridge,

    MA: Harvard University Press, 2007),以及James Horn, A Land

    as God Made It: Jamestown and the Birth of America (New York:

    Basic Books, 2005)。

    [18] Stahle et al., “The Lost Colony and Jamestown

    Droughts”,说明了树木年轮方面的研究情况。亦请参见 T. M.

    Cronin et al., “The Medieval Climate Anomaly and Little Ice

    Age in Chesapeake Bay and the North Atlantic Ocean,”

    Palaeogeography, Palaeoclimatology, Paleoecology 297 (2010):

    299–310。

    [19] 品脱(pint),英美等国的容积单位。在英制单位中,1品脱约

    合0.568 3升,美制单位中则有干、湿之分,1干量品脱约合0.550

    6 升,1湿量品脱约合0.473 2升。1品脱小麦换算成重量之后,无

    论干湿,都不到0.5公斤。——译者注

    [20] Karen Kupperman, “Apathy and Death in Early Jamestown,”

    Journal of American History 66 (1979): 24–40.

    [21] Helen C. Rountree, The Powhatan Indians of Virginia:

    Their Traditional Culture (Norman: University of Oklahoma

    Press, 1989),这本书是一份重要的参考资料。

    [22] 这个方面的文献资料正在快速增加。其中的概述之作,请参见

    Martin Gallivan, “The Archaeology of Native Societies in

    the Chesapeake: New Investigations and Interpretations,”

    Journal of Archaeological Research 19 (2011): 281–325。

    [23] Helen C. Rountree, Pocahontas, Powhatan, Opechancanough: Three Indian Lives Changed by Jamestown (Charlottesville: University of Virginia Press, 2005), 64.

    [24] William M. Kelso, Jamestown: The Truth Revealed

    (Charlottesville: University of Virginia Press, 2018).

    [25] 努纳勒克因近期的考古发掘才为世人所知:Paul M. Ledger et

    al., “Dating and Digging Stratified Archaeology in

    Circumpolar North America: A View from Nunalleq, Southwestern

    Alaska,” Arctic 69, no. 4 (2019): 278–390。亦请参见

    Charlotta Hillerdal, Rick Knecht, and Warren Jones,

    “Nunalleq: Archaeology, Climate Change, and Community

    Engagement in a Yup’ik Village,” Arctic Anthropology 56

    (2019): 18–38。

    [26] Gideon Mailer and Nicola Hale, Decolonizing the Diet:

    Nutrition, Immunity, and the Warning from Early America (New

    York: Anthem Press, 2018),它是对这一新兴研究领域进行概述的

    一部有益之作。

    [27] A. Park Williams et al., “Large Contribution from

    Anthropogenic Warming to an Emerging North American

    Megadrought,” Science 368, no. 6488 (2020): 314–318。供一般读者阅读的概述之作,请参见David W. Stahle, “Anthropogenic Megadrought,” Science 368, no. 6488 (2020): 238–239。

    第十三章 冰期重来(约公元1321年至1800年)

    对于接下来要描述的现象,人们曾称之为“大曼德雷克”(the Grote Mandreke),或者“人类大溺水”。13世纪末和 14 世纪的大部分时间里,欧洲北部都是世界上一个暴风雨肆虐的地区。至少有12场大风暴曾在“低地国家”[1] 的沿海肆虐,将面前的一切全都席卷而去。接着,1362年1月16 日,“大曼德雷克”出现了;它在北大西洋形成了一股强劲的西南大风,然后横扫爱尔兰和英格兰,导致诺威奇大教堂的木制尖顶轰然倒塌,坠到了下方的中殿[2] 里。这还仅仅是个开始。狂风巨浪在北海上呼啸而过,然后冲到了德国北部和尼德兰地区,将那里的一切也都席卷而去了。这场特大风暴,摧毁了丹麦的60多个教区,像玩“九柱戏”[3] 一样把牛群击倒。当时的一位目击者写道:“狂风令锚楫折断,港内舰船尽毁,溺亡者众,牛羊皆不能免……亡者不可胜数。”[4] 由于当时几乎不存在什么海防设施,也没有什么预警机制,故成千上万生活在海边的百姓在面对这种似乎是为了惩罚罪人而释放的神灵的震怒时,全都束手无策。

    差不多就在1315年至1321年的“大饥荒”期间,随着暴雨和持续不断的气候波动,“中世纪气候异常期”迅速结束了。随后的数个寒冬导致大河封冻,并且阻塞了波罗的海上的航运。其间,既不是没有出现过气候十分炎热的夏季,也不是没有出现过持续近 10 年或者仅仅一两个季节的严重的干旱周期。毫无征兆地刮起的狂风,是数十年间快速气候变化中的一部分,而且常常伴随着极端的寒冷和炎热,从而开启了“小冰期”。

    从气候的角度来说,一位旅行者在“小冰期”里穿越欧洲时,除了偶尔会碰上极其严酷的寒冬和一个个酷暑之外,其经历与现在几乎不会有什么不同。如今,我们许多人都经历过高速公路结冰、雪连下几周或者夏季气温高于20℃之类的情况。14世纪的欧洲农民,有可能种植多种多样的作物来降低霜冻或干旱天气的影响,但在面对反复无常的气候波动时,他们基本上无能为力。由于敏锐地认识到了这种脆弱性,所以他们都生活在忧虑之中,担心作物歉收和饥荒,害怕营养不良导致的疾病。神灵的报复与“末日审判”带来的威胁,无形地笼罩在城镇与乡村之上。接下来,腺鼠疫暴发了。

    黑死病(公元1346年至1353年)

    1346年至1353年间,臭名昭著的黑死病降临到了欧洲。[5] 欧洲西部大约有2 500万人染病死亡,只是确切的死亡人数我们无法确知。这场可怕的瘟疫,实际上是腺鼠疫第二次侵袭欧洲了;至于第一次,就是公元541年至542年间的“查士丁尼瘟疫”(参见第五章)。引发此疫的罪魁祸首是一种细菌,即鼠疫杆菌,它会感染寄居于地面上的啮齿类动物身上的跳蚤;这些啮齿类动物中,包括了中亚旱獭和各种鼠类。人们并不清楚鼠疫杆菌首次到达欧洲的确切时间,但这种细菌最晚也是在公元前3000年就在欧洲出现了;只不过,鼠疫杆菌第一次暴发时,并未导致真正的瘟疫大流行。[6]

    中世纪的黑死病起源于亚洲中部,有可能源自吉尔吉斯斯坦;那是“丝绸之路”上的一个内陆国家,与哈萨克斯坦、中国、塔吉克斯坦以及乌兹别克斯坦等国接壤。鼠疫从那里开始,传播到了中国和印度。这种疾病,有可能是沿着连接国际大都市的“丝绸之路”,或者经由船只一路来到黑海地区的。到1346年底,欧洲各个港口接到了报告,称印度人口正在减少,而美索不达米亚、叙利亚、亚美尼亚和蒙古人统治的地区已尸横遍野。据说,是1347年乘坐帆船从克里米亚半岛东部的卡法(Kafa)回来的30名热那亚商人,将鼠疫传到了西西里岛上。于是,瘟疫从意大利开始,沿西北方向蔓延到了整个欧洲。染病者身上出现的显著症状,有淋巴结炎(即腋窝下或腹股沟出现疖子)、发烧和吐血。最近人们对伦敦和欧洲大陆因患黑死病而身亡的人进行了DNA分析,结果表明,鼠疫杆菌就是造成这场瘟疫的罪魁祸首。

    为什么黑死病会在中亚地区盛行呢?气候变化在其传播过程中,有没有发挥作用?验证这个问题的一个方法,就是研究沙鼠而非老鼠。在吉尔吉斯斯坦,沙鼠的种群密度会随着占主导地位的气候条件而变化。温暖湿润的环境,会提高这些大沙鼠及其身上的跳蚤原本就在增加的种群密度。假如同样的天气在一个面积广大的地区里发展,那么瘟疫就会迅速蔓延开去。每只沙鼠身上的跳蚤密度都会增加,鼠疫则会变得更加盛行;而更重要的是,跳蚤会寻找其他的宿主,包括人类及其饲养的牲畜。假如气温下降,环境变得较为干燥,那么沙鼠的数量就会大幅下降,而跳蚤的数量也会减少。

    为了验证这种观点,一组研究人员曾将源自喀喇昆仑山脉上的刺柏年轮序列以及其中记录的降水和气温情况与鼠疫暴发的历史记载进行了比较。[7] 他们发现,亚洲暴发的一场鼠疫过了15年左右之后,才传播到了欧洲的港口。但在人口较为稠密的欧洲,瘟疫的传播速度却比中亚地区快得多,每年能够传播1,300千米左右。长久以来,流行病学家和历史学家都以为,黑死病是一桩单一的意外事件。新的气候学证据却表明,由于沙鼠的种群数量以及它们身上的跳蚤种群数量都随着气候而波动,故源自亚洲大量野生啮齿类储存宿主身上的鼠疫出现了由气候驱动的、间歇性暴发的新菌株。欧洲本地却没有这些储存宿主。

    由此导致的后果,是毁灭性的。在苏格兰,染病者“残喘于世,仅有二日”。与此同时,巴黎及其周边地区的人口锐减了三分之二。据估计,当时法国的人口数量降幅惊人,达到了 42%。许多死者原本就异常容易受到感染,因为他们在“大饥荒”期间已经营养不良了。到了15世纪初,法国大约有3,000座村庄都被人们所遗弃。由英法“百年战争”引发的连年战乱,本已让粮食短缺的情况变得很严重,而作物歉收与潮湿的天气更是加剧了这个问题。人们的绝望情绪,在1420 年至 1439 年间集体陷入了低谷,当时北大西洋涛动处于高指数模式,带来了非比寻常的大暴雨。虽说要养活的人口少了许多,但粮食短缺与饥荒仍然存在,其中许多都是由连年的战争导致的。

    反复暴发的瘟疫和时不时出现的饥荒,在数十年里一直对欧洲人口的增长产生遏制作用。多场粮食危机爆发的时间,都与斯堪的纳维亚半岛上空高气压导致的异常寒冷的冬天相吻合,特别是在15世纪30年代;当时出现了长达7年的漫长霜冻和猛烈的暴风雨,比斯开湾与北海海域尤其如此。1451 年黑死病结束之后,随着农民回到疫情期间废弃的土地上,粮食生产开始飙升。1453 年“百年战争”结束后,欧洲迎来了真正的复苏。气温逐渐升高,降雨日见充沛。70年之后,16世纪20年代的英国出现了5次异乎寻常的大丰收,这一局面直到 1527 年一场寒潮导致圣诞节期间小麦供应不足,并且有可能爆发针对富人的粮食骚乱才结束。尽管如此,以自给自足和作物多样化两种观念为基础的历史悠久的自给农业传统仍在继续。不过,这种暂时的缓解并没有持续多久。气候造成的凛冽之风,正在天边聚集。

    “小冰期”(约公元1321年至19世纪晚期)

    所谓的“小冰期”,是指“中世纪气候异常期”之后出现的一个“短暂”的显著降温期,但并不属于一段真正持久的冰期。弗朗索瓦·马泰是一位受人敬重的冰川学家,曾任职于美国地球物理学会冰川委员会;他在 1939 年首次使用了这个术语,如此写道:“我们正生活在一个重新开始但规模中等的冰川时期——一个‘小冰期’里。”[8] 马泰当时是用一种非正式的方式使用这个说法的,他甚至没有用大写字母进行突出显示,但这一术语如今已经成为一种公认的气候学标签了。

    1939 年,“小冰期”还仅仅是一种观点。如今,研究人员却已积累了来自世界各地“小冰期”里的气候替代指标与历史记录,其中不但有欧洲和北美地区的,也有包括澳大利亚的大洋洲和日本等遥远之地的。比如说,日本对樱花盛开期的详尽记录可以追溯到600年之前,并且提供了充足的降温记录。最近进行的一次全球气温重建,利用了不少于73种不同的全球性气候替代指标,它们证明确实存在降温现象,尤其是公元1500年至1800年间。目前,“小冰期”十分突出,成了自公元前6000年以来最显著的一个气候异常期;当然,这并不包括当今人为造成的全球变暖。[9]

    究竟是怎么回事呢?在公元 1250—1300 年到公元1850—1900 年的这段时间里,全世界的气温稍有下降;至于原因,我们却还不清楚。采自格陵兰岛、冰岛和拉布拉多周边的深海岩芯提供了确凿的证据,证明了北极海冰有随着气温突然下降而向南移动的趋势。例如,采自“东冰岛大陆架”且断代准确的高分辨率洋底岩芯中,记录了公元 1300 年之后一次持续了60年至80年左右的气温陡降,这就是北极冰层南移的结果。14世纪中叶有过一次短暂的升温期,14世纪末期再度出现了一次突如其来的降温。在另一个冰层较少南移的时期之后,从公元1500年至20世纪初,南移的冰层面积就普遍增加了。冰层的这些变化究竟是由火山喷发事件或者太阳变化造成的,还是由其他因素导致的,目前我们还不得而知。

    “气温稍降”在很大程度上算是一种一般性的说法,因为降温趋势会随着时间和空间而变化。真正意义上的全球变冷始于公元1400 年前后,直到 1850 年左右才结束;当时,工业污染导致的温室气体抵消了长期的“轨道强迫”效应(也称“轨道驱动”,即地轴倾角以及它围绕太阳公转时轨道形状的缓慢变化带来的影响,其中可能涉及太阳能在纬度和季节方面的再分布)。

    “小冰期”里的气候,并不是一成不变的。较短的强迫期(比如火山爆发或者太阳活动的变化)虽然只有暂时的影响,但确实也曾导致气候记录中出现突然而短暂的波动。其他的极端事件包括“大饥荒”这场灾难,以及特大干旱、异常寒冷的冬季和周期性的大风,还有一些对人类社会产生了深远影响的事件,其中包括瘟疫流行、作物歉收和禽畜周期性地大批死亡。这样的事件,既加剧了我们的短期脆弱性,也减缓了人类的顺应速度。

    亲历者描述早期全球降温情况的史料非常罕见。1572年,荷兰豪达一座天主教修道院的院长沃特·雅各布森(Wouter Jacobszoon)迁居到了阿姆斯特丹。此人写有一部日记,记录了当时普遍存在的暴力现象与天主教徒受到迫害的情况,其中也有对寒冷天气的牢骚之语。当时,阿姆斯特丹的人连谷物与鲱鱼之类的主食也买不起。降雪一直持续到了来年的4 月份。可天气如冬季一般,依然寒冷。1574年11月,一场暴风引发了洪水,冲垮了堤坝,将淹没的田野变成了冰雪覆盖的荒漠。在普鲁士,新教牧师丹尼尔·沙勒(Daniel Schaller)竟然怀疑世界末日已经来临。“非但面包奇匮,吾等珍爱之玉米及谷物,价格亦昂贵至极……林中之木,长势不如既往……是故ruina mundi[世界之毁灭]将至。”[10]

    雅各布森及其同侪曾一再祈求上帝施以援手,却无济于事。那些年间的树木年轮记录的确表明,树木的生长速度放缓了。自公元1510年以来,普鲁士发生了10次地震。虔诚的沙勒认为,地震预示着即将到来的“末日审判与末世之震,凡亡者皆醒,出其墓穴,领受基督之审判”。

    不过,“末日审判”始终都没有降临。相反,气候变化仍在继续,而随着海洋温度下降,北海海域很快出现了大量的鲱鱼,让渔民颇感欣慰。但是,寒冷仍然持续不去。泰晤士河的伦敦段在公元1408年至1437年间出现过5次封冻,而在1565年至1695年间则封冻了12次。(泰晤士河上一次封冻是在1963 年,那是1814 年以来最寒冷的1月份。)这段时间,也就是泰晤士河上的“冰冻集市”蓬勃发展起来的时候。一些具有生意头脑的小商小贩甚至会在冰上烤全牛。冬季的气温不但下降了,而且变得非常极端,完全无法预测。根据气候替代指标重建出来的气温证明,在14世纪和从16世纪末到 19 世纪之间,罗讷河上的封冻期要比之前的各个时期多得多。

    欧洲 16 世纪末的“小冰期”并不是一个令人觉得愉快的时期,因为当时社会普遍动荡不安,而社会动荡常常是由粮食价格上涨引发的。光是在英国,自威廉·莎士比亚出生的1564 年至 1660 年间,就爆发了70多起粮食骚乱。在之前的数个世纪里,英国的酒商一直都向法国出口葡萄酒,可他们的收成在寒冷面前却化为乌有。战争、时有发生的饥荒和严寒,影响了数百万欧洲人的生活。法国的损失尤其严重,这既是连年战乱所致,也有寒冷造成作物歉收的影响。在16世纪晚期,至少有400万人死于军事暴力、饥荒和流行性疾病。1590年,信奉新教的国王亨利四世率军围困了信奉天主教的巴黎。由于无法获得充足的大炮,故他决定用断粮的方式,迫使这座城市投降。寒冬对城中的粮食供应造成了严重的破坏;愤怒的暴民要求获得食物,但守军还是继续坚持着。街道两旁,全都是死去的人和极度饥饿、虚弱得无法动弹的民众。到1590 年 8 月信奉天主教的守军突围之时,已经有45,000 人饿死或者病死,这一数目占城中人口的五分之一。[11] 在此期间,英国与整个欧洲人口外迁的速度加快了,这可不是巧合。

    波罗的海地区的粮食与荷兰的基础设施(公元16世纪及以后)变革即将发生。早在14、15世纪,佛兰德斯与尼德兰就率先出现了应对气候变化的创新之举。[12] 长期以来,波罗的海诸国与乌克兰都是欧洲大部分地区的粮仓,这里种植的粮食经由阿姆斯特丹外销,远至南方的意大利。17世纪初,从波罗的海诸国进口而来的粮食当中,75%的粮食都会抵达阿姆斯特丹,储存于一座座巨大的仓库中。在国内进行粮食生产,已经变得很不划算了。

    为了应对这种情况,荷兰与佛兰德斯的农民都开始尝试种植牲畜饲料,并且种植牧草供牛吃。他们在以前闲置休耕的土地上种植豌豆、蚕豆和富氮的苜蓿。随着越来越多的闲置土地被开垦出来进行耕作,畜牧业也变得越来越重要。由于新的农业生产打破了人们对谷物的一味依赖,并且促生了一种新的国内贸易,因此粪肥、肉类、羊毛和皮革纷纷进入了市场。农民在以前种植谷物的地里种植苜蓿,而他们饲养的牛群则在主人重新种植谷物之前,在草地上吃草。这种自我延续的农业循环,大幅提高了土地的生产力,尤其是在作物中包括了芜菁或者用于酿造啤酒的啤酒花,还有像亚麻和芥菜之类的纯粹经济作物的时候。

    波罗的海地区进行的贸易也不容易。冰雪是一个始终存在的难题,严冬之际尤其如此。1586年2月12日,正值天气严寒的隆冬时节,大风和滴水成冰的气温把 18 艘船困在了霍伦港外迅速扩张的冰层之中。城中居民用斧子破开冰层,费了九牛二虎之力,才把那些船只拖进港口。冬季的暴风雪甚至更加危险。1695年9月9日,接二连三的狂风吹沉了北海上的几十艘船只。大约有1,000名水手因此而丧生。到了夏季,荷兰的沿海地区则完全暴露在盛行的西风之下。在大风中,许多商船都在这个危险的下风岸搁了浅。

    阿姆斯特丹的商贾在舒适的住所和仓库里,相当有效地解决了“小冰期”的冬季带来的各种挑战。不过,运送货物的水手却要历经各种艰难险阻,常常还会丢掉性命。诚如历史学家达戈马·德格罗所言:“许多荷兰人都适应并利用了不断变化的环境。他们也许并未意识到气候正在改变,但不管是有意还是无意,他们的应对方式都于他们的利益有所裨补,并且反过来造福于他们社会的利益。”[13] 尽管云谲波诡的战争和日益复杂的外交手段导致波罗的海诸国间的贸易关系变得更加棘手,这一切还是发生了。例如,在小麦供不应求的时候,人们开始广泛使用价格较为便宜的黑麦,尽管后者制作出来的面包不太受欢迎。结果,小麦和黑麦的价格都出现了波动。在粮食匮乏时,荷兰商贾非但根本没有被这些挑战吓倒,反而动用了阿姆斯特丹的大量存粮,高价出售谷物(尤其是黑麦),将粮食销往那些深陷作物歉收之困境、有可能爆发饥荒的南方地区。

    荷兰人在生意上的适应能力,还不止于此。荷兰是一个由大大小小的水道、沟渠、河流、湖泊及近海航路构成的网络,此外还有陆路。荷兰多种多样和紧密相连的交通网络,使得这里比欧洲其他地方都更容易出行,只有在“格林德沃波动期”(1560—1620)出现最严重的暴风雪(气温更低)的时候与“蒙德极小期”除外。[14] 阿姆斯特丹和霍伦港还开发出了小型帆船的摆渡服务;它们都定时出发,前往不同的地方,无论空载还是满载,都是如此。这个“船渡”系统经营得红红火火,故16世纪时开始在沿海诸省得到广泛应用。两个世纪之后,阿姆斯特丹每周已有不少于800艘渡船出发驶往荷兰共和国境内的121个目的地了。虽然逆风和狂风有可能导致混乱,可这个系统运作得相当好。1595年,英国富翁法因斯·莫里森(Fynes Moryson)开始了前往耶路撒冷漫长旅程中的第一站:在“喧嚣狂暴”的大风中,从吕伐登前往格罗宁根。他们一行人乘坐的是一条私家渡船。受一股可怕却又有利的西风的推动,乘客们在“狂风大作”时失去了船舵,当时差点儿就沉了船。

    各座城市的政府和商贾新建了一些带有纤道的运河,供马匹拉拽的驳船所用。当时逆风航行根本不成问题,人们可以用一种很悠闲的速度,每小时航行7千米,差不多2个小时之内就能从阿姆斯特丹坐船到达霍伦港,反之亦然。到17世纪中叶时,已有30多万名乘客乘坐过这种“拉拽渡船”,并且有头等舱与二等舱之分。儿童乘坐时,只需要半价。

    当时包括奴隶在内的人,再加上基本的商品,甚至是干草、鱼和信件,都是通过农民和企业主的小型船只运送的。这种小船叫作schuiten,有些挂着船帆,最长可达10米;它们不仅在主要水道上来去,还在通往所有小社区的各种小运河与渠道中穿梭。天气较为暖和之时,这些渡船通常都能顺利航行。可到了寒冬腊月,冰雪与持续封冻则有可能阻断船渡交通达3个月之久,从而危及乳制品如牛奶的运输,这种商品主要就是用渡船进行运输的。就算是在那种时候,当地人也发挥出了聪明才智,让货物与人口继续流动,从而赋予荷兰共和国一种超过英、法等国的巨大优势;在英、法两国,兴建远离内河与海洋的基础设施是一种更大的挑战。

    荷兰的国内交通网络为旅行者提供了一种灵活性与韧性,使得人们能够在“小冰期”气候迅速变化的情况下出行。狂风与冰雪,曾是人们在波罗的海与北海地区进行贸易的两大威胁。幸运的是,尽管粮食价格不断变化,荷兰人在饮食方面却具有多样性,故几乎没有出现过食物匮乏的情况。

    多样化的农业经济,使得人们更加容易适应突如其来的短期气候变化;特别是,这里很容易获得波罗的海地区的粮食,而内陆水道则让粮食运输变得更加便捷,几乎可以运往任何一个地方。在人们大规模地开垦土地的同时,这些基础设施也得到了改善,故从16世纪至19世纪初,荷兰的农田面积扩大了差不多10万公顷,而其中大部分又是在1600年至1650年间开垦出来的。幸运的是,荷兰人拥有一种灵活的社会组织制度,在农民收入不断增加的过程中促进了小型农场的发展。与此同时,较年轻的家庭开始追求基本生活用品以外的东西。随着砖木结构的普及和像衣物、家具之类的消费品更易买到,人们的居住条件也大幅改善了。

    由于能干和极具竞争精神,故在当时仍然以自给农业为主,且农耕方式数个世纪以来几乎没有什么变化的欧洲,荷兰与佛兰德斯的农民显得独一无二。他们的种种创新之举,逐渐普及开来。到了公元1600年,英国伦敦附近开始出现商品菜园,为城中的市场种植蔬菜。60年之后,荷兰移民又将抗寒的芜菁引入了土质较松的英格兰东部。绿色的芜菁嫩叶可以很好地替代干草。英国东部地势低洼的沼泽地带,长久以来都是牧民、渔民和捕鸟者的庇护所。荷兰出生的工程师兼海防专家科尼利厄斯·费尔默伊登则在 17 世纪开垦了那里的 15.5 万多公顷沼泽地,使之一跃进入英国产量最高的耕地之列。[15]

    尝试种植新的作物,开始变成多样化生存的另一种策略。从美洲引入的玉米和土豆,成了两种常见的作物。土豆是在1570 年前后,由一个从南美洲回国的西班牙人引入欧洲的。起初,人们只是把土豆当成一种奇异的植物,甚至认为它是一种具有催情作用的药物;当时一位姓名不详的权威人士曾称,食用土豆会“激起爱欲”[16] 。这种外来的块茎类植物,非但产量比燕麦和其他作物高得多,而且还富含矿物质。它们先是被用作牲畜的饲料,在18、19世纪才变成了爱尔兰和欧洲各地的一种主食。新作物、具有创新性的农耕方法(包括广泛施肥)和改善排水,再加上圈地政策,让英国慢慢地摆脱了谷物种植的束缚。法国却要再过两个世纪的时间,才会摆脱那种束缚。与此同时,像烟草与巧克力之类的成瘾性产品,则变成了社会等级制度中的一部分。

    肉类消费也急剧增长了。到18世纪时,英国人已经养成了大量食用牛肉、羊肉和猪肉并且乐此不疲的习惯。仅在1750 年一年,伦敦的屠夫就宰杀了至少 7.4 万头肥牛和 57万只绵羊。随着农作物产量的提高和饲料的丰富,畜群规模变得越来越大,牲畜因它们的肉、皮和副产品而受到了重视。畜牧业在 18 世纪变成了一门艺术,尤其是在罗伯特·贝克维尔的手中;此人是英格兰中部的一位农民,他饲养了许多拉车运货的马匹和肉质上好的牛群。此人最大的成功还在于养羊,特别是“新莱斯特羊”;这是一个成熟速度很快的品种,饲养两年就可以上市出售。[17]

    太阳黑子、火山与罪孽(公元1450年及以后)

    尽管农民和牧师们仍会想起一些将气候灾难与神之震怒联系起来的古老噩梦般的可怕场景,但17世纪至18世纪初也见证了一些重大的科学进步,并且其中很多都出现在天文学领域里。天文学家记录了金星和水星的凌日现象,还通过观察木星诸卫星的轨道,确定了光的速度。他们的一些研究,有助于我们理解宇宙对地球气候的影响方式。除了对太阳黑子进行探究,他们还研究了日食,发表了第一批详尽论述太阳本身的研究结果。

    1711 年,针对1660年至1684年间太阳黑子活动处于低水平的现象,英国自然科学家威廉·德勒姆发表了评论。他声称:“彼时观日者咸以远镜窥之,并无休止,故黑子当无所遁形。”[18] 在1774年之前,人人都以为黑子是遮挡了太阳的云朵,所以直到19世纪,几乎都没有什么新的观测结果问世。如今我们知道,黑子其实是太阳磁场从其表面突起的地方。黑子活动差不多每隔11年就会出现一次盛衰,但不会直接对我们产生影响。有时,可能几天甚至是数周之内完全不出现太阳黑子活动。但在过去的两个世纪里,只有1810年全年都没有出现过黑子活动。以任何标准来衡量,“小冰期”内太阳黑子活动处于低水平的现象都是不同寻常的。这些黑子活动平静期是否导致了该时期的较低气温,我们仍不得而知;但是,它们在很大程度上与气候最寒冷的年份相一致。“小冰期”内有过3个极小期。第一个时间较长的寒冷阶段,出现在1450年至1530年间。这个阶段,与一个被称为“斯波勒极小期”(以一位德国天文学家的名字命名)的太阳黑子活动水平很低的时期相吻合。[19] “斯波勒极小期”各个年份都气候寒冷,但从16世纪60年代初持续到了1620年的第二个极小期,却要显著寒冷得多;这个时期以阿尔卑斯山上的一座小镇为名,被称为“格林德沃波动期”。在“格林德沃波动期”最寒冷的年份里,欧洲北部的作物生长季竟然短了多达6周。许多农民都不再种植小麦,转而开始种植更加耐寒的大麦、燕麦和黑麦。尽管如此,当时仍然出现了作物歉收,而那些贫瘠土地上的歉收现象尤其严重。“蒙德极小期”(1645—1715)是太阳黑子活动水平极低的一个时期,与欧洲和北美洲气温低于平均水平的那个时期相吻合。当时,泰晤士河的伦敦段与荷兰的运河全都封冻起来了。在“蒙德极小期”里,太阳辐射出来的紫外线较弱,使得平流层里的臭氧含量下降了。这种下降导致了“行星波”,从而让北大西洋涛动转向了负指数模式。在这种情况下,冬季的暴风雪往往更加寒冷,气温也更低,有限的历史资料已经证实了这一点。

    太阳黑子活动并不是出现“小冰期”的原因。极有可能,火山活动是一个主要因素,因为寒冷会随着火山活动的增加而加剧。1600年2月19日,秘鲁南部的于埃纳普蒂纳火山爆发了;这是此前2 500年里规模最大的一次火山爆发,使得掩埋了庞贝古城的维苏威火山爆发,以及 19 世纪的坦博拉火山和喀拉喀托火山爆发都相形见绌(参见第十四章)。[20] 于埃纳普蒂纳火山爆发时,将 30 立方千米的火山灰与岩石喷射到了35千米高的大气当中。火山灰有如大雨一般,落到了面积达数百平方千米的地方。火山灰还覆盖了被火山包围的阿雷基帕。当地的学者费利佩·华曼·波马·德阿亚拉(Felipe Guáman Poma de Ayala)曾称,足足有一个月的时间,人们既看不到太阳和月亮,也看不到星星。1601年的夏季,成了整个北半球自公元 1400 年以来气温最低的一个夏季。冰岛当年夏天的阳光无比暗淡,地上连影子都照不出来。

    太阳和月亮不过是两个“朦胧而微红”的幻影罢了。虽然17世纪至少还有 4 次火山爆发导致气温显著达到了寒冷峰值,但没有哪一次的后果像于埃纳普蒂纳火山爆发那么严重。

    沙莫尼如今已是一个时尚的滑雪胜地,但在当时还是一个贫困的村庄,冰雪始终都在威胁着生长中的作物。从1628年至1630年,面对雪崩、洪水和不断推进的冰川,这个村庄失去了三分之一的土地。由于田地一年当中的大部分时间都被积雪覆盖,故三季收成当中只有一季达到了成熟。村民都深感绝望,便说服社区的头领们,向日内瓦主教汇报了他们的困境。他们将冰雪带来的种种威胁,以及他们认为自己正在因为罪孽而遭到惩罚的恐惧之情通通告知了主教。主教便率领一支由300人组成的队伍,来到了4个被冰川围困的村庄里。他一遍又一遍地祷告,并且为冰原祈福。幸运的是,他的祈福似乎起到了作用,冰雪慢慢地消退了。可不幸的是,刚刚从冰川之下现出身来的土地却太过贫瘠,不适合耕作。而且,冰川的消退也不是永久性的活动。每当冰川再次进逼,沙莫尼和其他地方重新开始的虔诚祈祷,就会上达天听。在1850 年左右冰川开始消退之前,高山冰川的规模比如今要大得多。

    与此同时,由于作物持续歉收,葡萄酒的价格不断上涨,粮食价格也上涨了。作物歉收、饥荒以及由此导致的疾病,便引发了面包骚乱和社会动荡。一如数个世纪以来的历史,教士们纷纷宣称,持久的恶劣天气是上帝对罪孽深重的人类感到震怒的结果。在1587年和1588年的寒冷岁月里,一场歇斯底里的指控狂潮爆发了。邻居们之间相互指控对方使用巫术。1563 年,德国维森施泰格市政当局就将不少于63名被人指控使用巫术的女性判处了火刑。[21] 直到科学家开始对气候事件做出自然的解释,巫术才逐渐淡出了人们的视野。在此之前,上帝和种种超自然力量都很容易被人们当成这一切的始作俑者。

    大洋彼岸(公元17世纪以后)

    尽管为了应对气候条件的挑战,农场与住宅都发生了革命性的变化,但其中有些最彻底的变革,却发生在远距离的海上贸易领域。虽然葡萄牙人与西班牙人在历史上处于领先地位,可令人惊讶的是,此时的荷兰人在一个暴风雨强度日益增加的时期顶替了他们。[22] 在“格林德沃波动期”里,佛兰德斯地区出现猛烈暴风雨的次数达到了以前的4倍。最显著的是,风向与风速都出现了重大的变化,导致了一些很有意思的结果。

    “格林德沃波动期”内寒冷天气的日益加剧,对荷兰水手以及商贾雄心勃勃地要开辟一条穿越欧洲北部的北极航线的尝试构成了障碍。当时的冰天雪地令人望而生畏,走这条航线的成本也过于高昂,对长途贸易来说并不划算。于是,他们便把注意力转向了一些小型的公司,这些公司曾经对一条经由好望角前往亚洲的南部航线进行过投资。对于这些小企业而言,前往东南亚的航程既危险又漫长,其中的风险也是难以接受的。因此,1602年,荷兰国会便将这些公司联合起来,组建了荷兰东印度公司(荷兰语为 Vereenogde Oostindische Comagnie,因此略作VOC)。这家公司实际上是一个企业集团,通过用印度和东南亚出产的香料与纺织品交易贵金属而迅速蓬勃发展起来。荷兰东印度公司由“17人董事会”(Heren XVII,意即“17贵族”)掌管着,而公司的最终目标为削弱其竞争对手西班牙的商业实力。1619 年,荷兰东印度公司驻亚洲总督扬·彼得松·科恩(Jan Pieterszoon Coen)占领了东南亚的巴达维亚(即如今的雅加达);后来,这里变成了荷兰企业在该地区的中心。荷兰东印度公司变成了一个庞大的企业,有3万多名员工,此外还有来自非洲的大量劳工,像奴隶一样遭到公司剥削。荷兰人很快就掌控了欧、亚两洲和亚洲诸港之间的贸易,时间长达数代之久。

    荷兰东印度公司凭借东印度商船组成的船队,以将风险降至最低程度的规模进行远洋航行。这在很大程度上依赖于公司在海况方面积累起来的经验,尤其是对盛行的洋流与信风的了解。通常来说,这些洋流与信风在北半球是来自东北方向,在南半球则是来自东南方向。起初,公司的船长们尝试了不同的航线,但“17人董事会”制定了标准化的航程安排:穿过英吉利海峡,然后往南到达好望角,再从那里往东到达澳大利亚沿海,最终向北前往东南亚。每年都有两支船队起航:一支是冬季的“圣诞船队”,另一支则是春季的“复活节船队”。从巴达维亚返回的航程,则是11月至次年1 月间起航,并于次年的11月抵达荷兰共和国。

    以任何标准来衡量,荷兰东印度公司的航海活动都是很危险的,尤其是在“小冰期”气候最寒冷、时常狂风大作的那几十年里。任何一条船失事都是一场灾难,因为每艘船上都满满当当,全是人员和贵重的货物。在极其寒冷的数十年里,由天气原因导致的沉船事故当中,有一半以上都发生在北海海域。

    荷兰东印度公司船只的航海日志是一个宝库,让我们对年复一年的气候变化影响航海的情况有了新的认识。在“蒙德极小期”里,低指数模式的北大西洋涛动和西伯利亚高压(东方一种持久存在的高压)加剧了大西洋东北部盛行的东风,而那里通常是整个航程中速度最慢的地方。热带辐合带也已南移,使得船队在途中的港口停靠变得很不划算。与此同时,1640年后在加勒比海南部涌流的驱动下,信风强度不断提升,加快了荷兰东印度公司的船只横跨大西洋的速度。“小冰期”缩短了前往东南亚的航程,提高了利润;夏季风的强度虽然较弱,但船只若是及时抵达,它们就能够在整个东南亚地区进行贸易。

    荷兰商人及其手下的海员可能较为有效地应对了“小冰期”里天气寒冷的数十年,因为该国沿海各地都从全球远洋贸易中获取了巨大的利益。到了17世纪晚期,由于斯堪的纳维亚人、法国人和英国人的小型船舶速度变得更快,运载的也是其他一些利润更高、供精英阶层所用的商品,比如咖啡与茶叶,所以荷兰东印度公司的影响就逐渐衰落下去了。从气候方面来看,“蒙德极小期”的衰退增强了大西洋东北部的西风,从而减缓了出港船舶的速度。

    荷兰共和国拥有一种独特的政治结构形式,主要由城市商人委员会实施管理。这些人当中,有野心勃勃的企业家和创新者,也有对非洲原住民进行残酷剥削的人;如今,不但荷兰人承认了这些剥削者的存在,事实上西方的其他大多数殖民国家也承认了这一点。他们利用由此攫取的财富,改进了土地开垦和造船技术,甚至是消防方面的技术。快速发展起来的阿姆斯特丹,变成了欧洲的商业和金融中心,以及一个以商业效率而著称的国际性的进出口中心。最重要的是,荷兰人还成功地适应了气候异常寒冷所带来的种种挑战,并且充分利用了各种独特的机会。

    最终,不管是身为工程师、农民、水手,还是农场里的劳力,荷兰人都非但逐渐习惯了持续不断的气候变迁,还设计出了许多巧妙的方法来规划航线,克服了数十年常见的酷寒和各种变幻莫测的自然挑战;这一切,都是人类的奴隶付出了无数努力,辛勤劳作才促成的。我们可以称这种资本主义为有助于解决环境挑战的企业资本主义。但到了最后,正如我们将在第十四章中看到的那样,1815年一场巨大的火山喷发让每个人所处的局面都彻底发生了逆转。

    这些事件,都是在基督教教义对人们思考自然、环境以及人类起源等方面维持着一种宗教束缚的数个世纪里发生的。亚伯拉罕宗教的教义宣称,《创世记》中上帝创造世界与人类的故事属于历史事实。身为阿马大主教的厄谢尔,曾经利用《圣经》中的谱系计算出,上帝是在公元前4004年10月 22 日创造出地球和人类的。厄谢尔是一位令人敬畏的学者,他发表这一研究结果的时候,正值各个领域里都出现了重大科学进步的几十年,从天文学、生物学、数学、医学到植物分类,不一而足。科学在田野上、实验室里和书房中蓬勃发展起来了。农业多样化和动物选育开始盛行起来;理性的论争与对话,则与宗教意识形态展开了竞争。

    在“小冰期”里,认为气候变化是上帝对人类罪孽感到震怒导致的结果这种长久存在的、想当然的观点,在一个理性对话与仔细观察促进了各种科学探究的时代中逐渐消失了。这是古代与当代气候研究中的一个重大转折点;此后,科学便逐渐登上了气候条件预测研究的中心舞台。除了少数阴谋论者和宗教信徒,将科学与其他解释对立起来的论争早已结束。古气候学在很大程度上属于20世纪和21世纪的一门科学,它彻底改变了我们对全球气候的认知。不过,与世俗和宗教推测相对立的科学,其主导地位却是在“小冰期”气候最寒冷的那个时期开始形成的,对当今和未来的世界都具有根本性意义。

    [1] 低地国家(Low Countries),对欧洲西北沿海地区的称呼,广义上包括荷兰、比利时、卢森堡以及法国北部与德国西部,狭义上则仅指荷兰、比利时、卢森堡,因地势和平均海拔较低而得此名。——译者注

    [2] 中殿(nave),欧洲基督教传统教堂的一个重要组成部分,是举行礼拜活动时容纳信徒的场所,亦译“中厅”。——译者注

    [3] 九柱戏(ninepins),现代保龄球运动的前身,发源于德国,起初是教会的一种宗教仪式(人们在教堂的走廊里放置9根象征着叛教者与邪恶的柱子,然后用一个球滚地击打它们,叫作打击“魔鬼”),后来逐渐发展成了贵族之间盛行的一种高雅游戏。——译者注

    [4] Hubert Lamb and Knud Frydendahl, Historic Storms of the

    North Sea, British Isles, and Northwestern Europe (Cambridge:

    Cambridge University Press, 1991),这是一项出色的研究,说明了“大曼德雷克”和其他风暴背后的气象状态。引自第93页。

    [5] Ole J. Benedictow, The Black Death, 1346–1353: The Complete History (Woodbridge, UK: Boydell & Brewer, 2006).

    [6] M. Harbeck et al., “Distinct Clones of Yersinia pestis

    Caused the Black Death,” PLOS Pathology 9, no. 5 (2013):

    c1003349.

    [7] Boris V. Schmid et al., “Climate-Driven Introduction of

    the Black Death and Successive Plague Reintroductions into

    Europe,” Proceedings of the National Academy of Sciences

    112, no. 10 (2015): 3020–3025.

    [8] Fran.ois Matthes, “Report of Committee on Glaciers,” Transactions of the American Geophysical Union 20 (1939): 518–523.

    [9] 近年来,环境史学家对“小冰期”极其关注,故如今有丰富的历

    史资料,其中大部分都集中于16世纪与17世纪。我们尤其推荐这两

    部著作:Philipp Blom, Nature’s Mutiny: How the Little Ice

    Age of the Long Seventeenth Century Transformed the West and

    Shaped the Present (New York: W. W. Norton, 2020),以及 Dagmar

    Degroot, The Frigid Golden Age: Climate Change, the Little

    Ice Age, and the Dutch Republic, 1560–1720 (Cambridge: Cambridge University Press, 2018)。亦请参见Geoffrey Parker, Global Crisis: War, Climate Change and Catastrophe in the Seventeenth Century (New Haven, CT: Yale University Press, 2013)。至于冰雪频现和“小冰期”的开始,请参见Martin M. Miles et al., “Evidence for Extreme Export of Arctic Sea Ice

    Leading the Abrupt Onset of the Little Ice Age,” Science

    Advances 6, no. 38 (2020). doi.10.1126/sciadv.aba4320。

    [10] 沙勒的话转引自Blom, Nature’s Mutiny, 30–31。

    [11] 描述来自Blom, Nature’s Mutiny, 39–40。

    [12] Dagmar Degroot, The Frigid Golden Age,是这一节参考的权

    威资料。

    [13] Dagmar Degroot, The Frigid Golden Age, 130.

    [14] 相关论述见Dagmar Degroot, The Frigid Golden Age, 130

    149。

    [15] 荷兰工程师科尼利厄斯·费尔默伊登(Cornelius Vermuyden,

    1595—1677)曾在英格兰的数个地区兴建排水工程,其中还包括英格

    兰东部的沼泽。在人们开始使用蒸汽泵之前,他的努力只取得了一定

    程度的成功。

    [16] 原文为“incites to Venus”。维纳斯(Venus)为古罗马神话中十二主神之一,是爱与美的女神。——译者注

    [17] 罗伯特·贝克维尔(Robert Bakewell,1725—1795)是一位农

    学家,长于畜牧,尤其是绵羊的畜牧。他曾给牧场施肥,以改良牧草。

    他饲养的绵羊盛产羊毛,被出口到远至澳大利亚和新西兰这样的地方,

    同时他也是第一个饲养牛来获得牛肉的人,这种牛的体重在18世纪

    翻了一倍多。

    [18] 威廉·德勒姆(William Derham,1657—1735)曾是距伦敦不

    远的阿普敏斯特的教区牧师。此人酷爱数学、哲学和科学,发明了最

    早的以合理方式精准测量声速的办法。引自“Observations upon

    the Spots That Have Been upon the Sun, from the Year 1703 to

    1711. with a Letter of Mr. Crabtrie, in the Year 1640. upon

    the Same Subject. by the Reverend Mr William Derham, F. R.

    S,” Philosophical Transactions of the Royal Society 27

    (1711): 270。

    [19] 供普通读者阅读的关于太阳活动极小期的概述,请参见Dagmar

    Degroot, The Frigid Golden Age, 30–49。

    [20] J.-C. Thouret et al., “Reconstruction of the AD 1600

    Huaynaputina Eruption Based on the Correlation of Geological

    Evidence with Early Spanish Chronicles,” Journal of

    Vulcanology and Geothermal Research 115, nos. 3–4 (2002): 529–570.

    [21] Gary K. Waite, Eradicating the Devil’s Minions: Anabaptists and Witches in Reformation Europe, 1525–1600 (Toronto: University of Toronto Press, 2007).

    [22] 本节主要参考了Degroot, The Frigid Golden Age, chaps. 2 and 3。关于荷兰东印度公司的部分见该书第81页至第108页。

    第十四章 可怕的火山喷发(公元1808年至1988年)

    哥伦比亚天文学家弗朗西斯科·何塞·德卡尔达斯感到十分困惑。他从1808年12月11日就开始观察到,平流层里有一层持久存在的“透明之云,翳金乌之辉”。他的观察结果进一步指出:“[日之]自然赤色已转银白,至众人皆误以为月。”[1] 秘鲁利马的一位外科医生也注意到,日落时分的晚霞异于寻常。这两位目击者的描述,是唯一记录了一场大规模火山喷发的第一手资料;那场火山爆发很可能发生在东南亚,对全球广大地区的气温都产生了影响。唯一的另一项记录,则是坦博拉火山大爆发5年之前,南极冰芯中的硫酸盐含量达到了一个峰值;坦博拉火山也位于东南亚,于1815 年喷发。

    神秘莫测的火山喷发,并不是只有一次。从 1808 年至1835 年间,全球至少出现过5场重大的热带火山喷发;在那几十年里,4月至9月间的气温与随后气温较高的30年相比低了0.65℃左右。[2] 这种显著的降温,很可能与猛烈的火山活动有关。高山冰川的面积不断扩大。这些火山活动导致的气温变化,减少了印度、澳大利亚和非洲的季风活动,带来了干旱,并在尼罗河的低泛滥水位和东非地区的低湖泊水位中体现出来。火山爆发之后,大西洋—欧洲气旋的路径便南移了,而这种南移,与非洲季风活动的强度降低之间具有关联性。

    火山活动就是“小冰期”的最后阶段以广泛的气候波动而引人关注的一个原因;这些气候波动,持续了十年或者数十年之久。火山活动消停之后气温又快速上升,反映出全球气候系统在经历了一系列罕见的火山爆发,或许还有与“工业革命”初期有关的某种有限的人为变暖之后的恢复情况。但从18世纪末和19世纪初以来,随着“小冰期”为长期的变暖所取代,人类导致的温室气体增加就在长期性的气候趋势中占据了首要地位。

    火山爆发频繁的那些年,也是社会和政治动荡不安的时期。火山及其原生熔岩流与灾难性的爆炸,成了时髦的奇观。意大利维苏威火山喷发后形成的火山口不但成了一处旅游胜地,还是当时“壮游”[3] 中的一个亮点。一些不那么富有的寻欢作乐者,则可以在伦敦的休闲公园与剧院里一睹壮观的火山爆发场景。“维苏威火山大爆发,喷出滚滚烈焰”(The Eruption of Vesuvius Vomiting Forth Torrents of Fire)这样的标题,就有可能让一家报纸在竞争激烈的广告行业中大获成功。

    失控的火山爆发(公元1815年)[4]

    与东南亚太平洋“火山圈”发生的大规模火山爆发相比,维苏威火山喷发只能算是小打小闹,且过去与现在都是如此。取自北极与南极地区的冰芯表明,1808年西南太平洋地区曾经出现过一场大规模的火山喷发(至于具体日期,仍然有待确定),是15世纪初以来规模位列第三的一次大喷发,其规模仅次于坦博拉火山爆发(参见下文所述)和1458年西南太平洋地区瓦努阿图岛上的库维火山喷发。1808年的火山爆发导致遥远的英国都降了温;那一年的整个春季,苏格兰低地山丘上的积雪都久久未化。在英国南部的曼彻斯特,5 月清晨的气温竟然到了冰点以下。1810年的夏季,接连数周之内的天气都是阴云密布。

    一次大规模的火山爆发,对全球气温的影响会持续一两年的时间;这一点,与一系列火山爆发(其中也包括1808年的那一次)造成的影响大不相同。1815年东南亚松巴哇岛上的坦博拉火山爆发之前,全球气温已经因为 1808 年那场火山喷发而下降了;坦博拉火山爆发,是现代最猛烈的一桩火山事件。坦博拉火山长期处于休眠状态,但如今我们得知,它在 77,000 年以前曾经喷发过,对亚洲以外的遥远地区也产生了影响。1815年那场灾难与之前相隔久远的历次喷发一样,是一桩真正的全球性事件。

    隆隆作响了数个星期之后,1815年4月5日晚,坦博拉火山开始喷发了。在3个小时的时间里,山上不断喷出巨大的火苗和一团团火山灰云。5 天之后,火山爆发,炽热的熔岩从山坡上倾泻而下,发出耀眼的光芒。有多达1万人因困于火焰、火山灰和熔岩中而死去。两三天之后,坦博拉火山坍塌下去,形成了一个宽达6千米的火山口,原来的顶峰则不见了踪影。此山的高度在爆发中减少了1 500米,而其爆炸之声,数百千米以外亦可听到。船舶上积满了厚度1米多的火山灰。云层之中尽是灰烬,遮天蔽日,将白昼变成了黑夜。火山爆发引起的海啸对沿海地区造成了严重的破坏,导致了大量的人员伤亡。喷发造成的一座座浮石岛屿向西最远漂到了印度洋中部。在方圆600千米的范围内,整整两天都是天色昏暗,有如黑夜。整个地区都变得难以辨认,田地尽毁。随着这场灾难的影响不断加剧,有数以千计的人都死于饥饿。松巴哇岛上的森林尽数被毁,此后也一直没有完全恢复原貌。如今,人们对那场火山爆发的情景仍然记忆犹新。

    当地人还把 1815 年 4 月坦博拉火山爆发的那段时间称为“灰雨时期”,这是有充分理由的。[5] 从全球范围来看,坦博拉火山爆发造成的环境影响与社会影响,一直持续到了遥远的将来。此山喷出的火山灰量,达到了1980年美国华盛顿州圣海伦斯火山喷发的100倍。1883年的喀拉喀托火山爆发同样位于东南亚,它是人们系统地加以研究的第一场大规模爆发,使得直射到地球上的阳光量减少了15%至20%。

    这场火山喷发之后不久,火山灰便开始在平流层里肆意飘散起来。巨大的火山灰云加上其中的硫酸盐气体,形成了气溶胶;由于气溶胶的密度变得很大,足以将太阳能反射回太空,故平流层的温度升高,地表温度却下降了。陆地、海洋与天空之间的热同步遭到了破坏,季风以及原本长达3个月的季风降雨也遭到了削弱。1816年,南亚的广大地区并没有出现倾盆而下的季风雨,反而遭遇了干旱。气温的波动非常剧烈,储水罐里的饮用水见了底,庄稼也无法再播种,免得播下去之后枯死。降水不足严重地抑制了树木的生长。1816 年9月大气状况恢复过来之后,季风却一反常态地猛烈袭来,造成了大范围的洪涝灾害。

    在地球的另一端,坦博拉火山爆发则导致了欧洲1816年的阴冷天气。那一年的冬天十分寒冷,暴风雪无比猛烈;随着那一年过去,形势也没有出现任何好转。事实上,1816年还被人们称为“无夏之年”;这种叫法虽然恰如其分,但它掩盖了此次事件的规模:这是一次全球性气候异常现象,而不是一桩孤立的气候事件。

    那个不同寻常的夏季里,英国诗人珀西·比希·雪莱曾经携其第二任妻子玛丽,在诗人拜伦勋爵的陪同下去瑞士度假,并且在“猛烈至极的狂风暴雨”中攀登过阿尔卑斯山。当时,这对夫妇和当地人都抱怨天气寒冷,降雨几乎连绵不断,狂风与雷暴把他们困在屋子里。那是自1753年有记载以来,日内瓦最寒冷的一个冬天,4月至9月间下了130天的雨,7 月甚至下过雪。为天气所困的玛丽,写下了她那篇标志性的恐怖小说,讲述了一位名叫“弗兰肯斯坦”的年轻科学家的故事;如今,弗兰肯斯坦已经成了文学作品当中一个不朽的角色。[6] 拜伦则创作了一首题为《黑暗》(“Darkness”)的诗歌,描述了极其寒冷的一天,那天寒冷到小鸟在中午就回巢栖息。在那可怕的一年里,人们连牲畜的草料也买不起,所以马匹要么死去,要么被宰杀吃掉。在边境另一侧的巴登,这种情况还激发了德国发明家卡尔·弗赖尔·冯·德莱斯的灵感,使之发明了“跑步机”,后来则称为“脚踏车”,用以取代马匹。不过,他的这种脚踏机器(即自行车的前身)因危及行人的安全,故被当局禁止使用,连印度车水马龙的加尔各答也是如此。[7]

    整个生长季里的异常低温不但毁掉了牲畜的草料,而且毁掉了所有的庄稼收成。英国的小麦达到了1816年至1857年间的最低产量,当时食物支出占到了一个家庭预算的三分之二。[8] 法国的作物收成只有正常情况下的一半,部分原因就在于大范围的洪水泛滥和雷暴、冰雹。当年的葡萄收获始于10 月19 日,是多年以来最晚的一次。粮食价格上涨了,但幸运的是,以前收成中余下了大量储备,让粮食暂时保持着合理的低价。由于交通运输条件有了一定程度的改善,加上粮食进口,故当时出现的仅仅是粮食短缺,而不是一场普遍的饥荒。尽管如此,德国还是陷入了一场全面的粮食危机,而苏黎世的大街小巷里也挤满了乞丐。社会动荡、粮食骚乱和暴力事件在欧洲各地频频爆发,而当时的欧洲仍未从拿破仑战争的浩劫当中恢复过来。

    制造业与贸易停滞、普遍失业和英国经济快速工业化所带来的压力造成了大范围的骚乱,但它们都被国民卫队镇压下去了。爱尔兰刚刚开始依赖从南美洲引入的那种不耐霜冻和潮湿的主要作物,即土豆,由于救济工作做得不足而陷入了大范围的饥荒之中。[9] 这场生存危机导致欧洲各地出现了大规模的移民现象,成千上万饥肠辘辘的穷苦百姓沿着莱茵河而下,前往荷兰,寻找去往美洲的途径。有2万多名穷困潦倒的莱茵兰人[10] 移民到了北美洲,以逃避在高度分散和作物歉收风险越来越高的土地上从事自给农业的悲惨命运;至于迁往美洲的英国人和爱尔兰人之多,就更不用说了。

    乱局(公元1815年至1832年)

    暴风雨天气一直持续到了第二年。到了1817年,孟加拉湾的水环境产生了刺激作用,导致潜伏在干旱地区水域中的霍乱细菌出现了基因突变。坦博拉火山爆发导致的异常旱涝灾害,诱发了一场全球性的霍乱疫情,令印度人和欧洲人都大量死亡。(据估计,光是爪哇岛一地就死了12.5万人,比死于火山喷发中的人还要多。)国界在霍乱面前形同虚设,疫情势不可当地蔓延着。霍乱在1822年传到了波斯,1829年传到了莫斯科,1830年传到了巴黎,1年之后又传到了伦敦,并在 1832 年蔓延到了北美洲。疫情对历史的长期影响是巨大的。霍乱让这个刚刚连通起来的世界面临着瘟疫带来的种种危险,并且让拥挤不堪、穷困潦倒的贫民窟里疾病肆虐,导致了种种社会不平等现象。[11] 坦博拉火山爆发造成的气候影响,为一场破坏力堪比黑死病的瘟疫奠定了基础。

    坦博拉火山爆发之后的 1816 年夏季,中国上空曾经呈现出瑰丽的色彩。目击者阿裨尔(Clarke Abel)如此描述:“粉色斑斓,层层叠叠……骤升于天际。”诚如环境专家吉伦·达西·伍德恰如其分地指出的那样:“我们完全可以这样来形容坦博拉的火山灰尘:它是一种迷人的致命之物,对各国而言是伪装成壮观日落的悲剧。”[12] 由此带来的影响可谓立竿见影:华东地区的气温达到了历史最低,作物则基本歉收。在中国西北地区的陕西省,作物严重歉收令成千上万的民众到其他省份逃荒;他们的反应,与欧洲人无异。但受灾最严重的地方还是西南部的云南省,这是一个山区省份,与东南亚的贸易网络之间联系紧密。云南的群山之间,坐落着一处处土地肥沃的河谷,故长期以来都是一个种植水稻和小麦的粮仓。该省的气候温和、宜人,猛烈的印度季风和东亚季风都无法为害。18世纪末和19世纪初云南的农业集约化使得当地人口猛涨数倍,从1750年的300万增加到了1820年的2,000万。

    1815 年的云南既无春季,也无夏季,因为坦博拉火山爆发之后刚过了一个月,那里的天气就开始寒冷起来。多云多雨的天气毁掉了冬季作物;8 月份的霜冻则冻坏了稻田,让水稻也颗粒无收。由于寒冷的北风导致作物收成减少了三分之二,甚至可能更多,所以从1815年至1818年,这里就陷入了一场可怕的饥荒之中。气温比平均水平低了 3℃左右。这种温差看似很小,但别忘了:气温每下降 1℃,作物的生长季就会缩短3个星期。不幸的是,1814年的一场旱灾已经让云南的粮食储备消耗一空,因此这里出现了大范围的饥荒。1816 年,这里不但下了雪,还再次出现了一场由寒冷气温和史无前例的冰雾导致的水稻歉收。这场饥荒,直到1818年大气条件恢复正常之后才得以缓解。

    到了 1817 年初,清朝中央政府对这种紧急情况充分警觉起来,于是各级官吏开始从官方粮仓中拨出免费粮食来赈灾。这种做法并不新鲜,因为中国的官吏一直都仔细地监测着粮食的价格与分配情况,已有数个世纪之久。他们在收获季节征收粮食,然后到了冬季和春季,随着当地粮食供应减少和价格上涨,他们又会分发粮食。据本地官吏称,当时云南储存的粮食足够该省的每个成年男子吃上一个月之久。不过,由于政府多年来对粮仓疏于管理,故这个系统很快就分崩离析,而民众也陷入了饥荒之中。于是,他们转而开始种植经济作物。云南的罂粟种植面积激增,从而催生出了利润丰厚的鸦片贸易。一个世纪之后,云南的粮食几乎就全靠从东南亚进口了。鸦片贸易在18世纪和19世纪发展起来,以英国为主的西方国家纷纷把印度种植的鸦片出口和销售给中国;中国国内也种有鸦片。然后,英国人再用鸦片销售的利润购买中国的奢侈商品,比如瓷器、丝绸和茶叶,因为西方国家对这些商品的需求量都很大。

    美洲的退化?(公元1816年至1820年)

    在西半球,“无夏之年”不但已经变成了一个历史传说,也是数个世代以来北美洲历史上被人们撰文论述得最多的一桩气候事件。当时许多人都称之为“19世纪的冻死之年”(Eighteenth Hundred-and-Froze-to Death)。 1816 年 5 月初,美国华盛顿特区的上空中出现了尘埃云。同样是在5月初,格陵兰岛东部上空形成了一个强大的高压系统,引导着北极地区的大气南移,且那一年的隆冬时节也是如此。由于有一个巨大的低压槽驻留在北美洲的五大湖区上空,故冷空气涌入了新英格兰地区之后,那里的气温就大幅下降了。5月中旬的一场黑霜,毁掉了刚刚种植的作物;当时还出现了一股寒潮,给整个美国东北部带来了厚达三分之一米的降雪。寒冷刺骨的气温笼罩着整个东部地区,向南远至弗吉尼亚的里士满,西至俄亥俄州的辛辛那提。6月、7月下旬和8月接着出现了霜冻;历史记载中,只有这一年出现过此种情况。在康涅狄格州的纽黑文,作物的生长季缩短到了只有70天;干草十分紧缺,牛群则变得饥肠辘辘。[13]

    干旱天气加上异常寒冷,一直持续到了1817年;当时,业已退休的美国总统托马斯·杰斐逊曾称,他家的大部分庄稼都出现了歉收。3 年之后,他就面临破产了,因为作物歉收让他进一步陷入了债台高筑的困境。杰斐逊向来希望美国成为一个农业大国,可此时他的这个梦想似乎受到了威胁。法国著名的科学家布丰伯爵曾因很少提及上帝在气候与自然中的作用而遭到过神职人员的批评,可正是此人声称,北美洲的持久寒冷不可能让作物和小型物种以外的任何动物存活。这是一种古老的观点,认为纬度决定了气候,以至于当时还有人说,欧洲殖民者在这片被布丰伯爵称为“十足沙漠”的土地上“退化”了。

    布丰伯爵的理论当然属于无稽之谈,只不过在广大听众当中一直都很受欢迎。就连玛丽·雪莱也曾提到,弗兰肯斯坦的怪物就是在“退化”的美洲想要逃离文明的。对于造访欧洲的美国人来说,天气变成了一个敏感的话题。18世纪80年代初担任美国驻巴黎大使期间,杰斐逊曾是祖国的积极辩护者。他那部具有里程碑意义的作品《弗吉尼亚纪事》(Notes on the State of Virginia )对布丰伯爵的种种假说发起了一次正面进攻。他以业已灭绝的猛犸的硕大体形和“精神之充沛及活力与吾等无二”的美洲原住民为例,既为祖国的民众辩护,也为祖国的动物辩护。至于美国的西部,则是一幅健康与幸福的景象。[14] 对于美国,杰斐逊心怀一种充满激情的帝国愿景。他曾与布丰伯爵共进晚餐。两人用一种极其文明的方式,一致同意求同存异。

    与17 世纪一样,19世纪早期许多论述美国的作品中充斥着的气候乐观主义,在创纪录的寒冷面前并未保持下去;那种寒冷首先是由 1808 年的火山喷发引起的,这次喷发导致纽黑文的气温远远降到了平均水平以下。接下来是坦博拉火山的爆发,它主要影响的是美国的东部沿海地区,而在像俄亥俄州这样位于其西部的地区,当年的庄稼还获得了丰收。不过,坦博拉火山事件带来的严寒,让美国的经济陷入了一场从1819年持续到1822年的萧条之中。许多人为了逃离经济萧条而迁往西部,从而形成了美洲历史上第一次为气候所驱动的大规模移民,可他们最终却沦为了土地投机商的牺牲品,只能任其摆布。除了这些移民,还有成千上万为逃离欧洲的恶劣条件而来的移民,所以这里不可避免地出现了地产泡沫和信贷危机。随着欧洲的农作物产量在 1820 年之后大幅增加,美国棉花与小麦的价格也急剧下跌了。到了此时,金融恐慌已经导致300多家银行在一夜之间倒闭。总而言之,坦博拉火山爆发不仅导致美国商品的欧洲市场崩了盘,而且削弱了金融系统和美国经济的方方面面,在美国人口还只有区区1,000 万的一个时期,导致了可能在 19 世纪最具破坏性的一场经济危机。

    以煤驱寒(公元1850年及以后)

    “小冰期”是什么时候结束的呢?长期以来,传统观点一直认为是在 1850 年左右,认为其结束与工业活动日益加剧导致的持续变暖有关。然而,据取自瑞士阿尔卑斯山上的冰芯来看,情况却并没有这么简单。

    在19 世纪中叶的冰川最盛期,全球大约有4,000 座大小不一的高山冰川,它们延伸的距离差不多是如今的 2 倍。接下来,它们在1865年前后开始消退。科学家长久以来都认为,是气温上升和降雨减少导致了冰川的快速消退,从而标志着“小冰期”的结束。但最终证明,这种假设是错误的,因为冰川消退的时候,当地的气温比18世纪末期和19世纪初期更低。降雨量显然也没有发生变化。所以,还有某种强迫机制在发挥作用,导致了冰川的神秘消退。

    人们在海拔大约4,000米的地方钻取的高海拔冰芯表明,当时的炭黑排放量及含碳气溶胶都急剧增加了;这种情况,在一定程度上是由化石燃料的不完全燃烧和其他的人类活动导致的。[15] 这两种物质,随着工业革命的发展而进入了大气当中;工业革命 18 世纪中叶始于英国,然后在接下来的100 年里蔓延到了法国、德国和西欧的大多数国家。1850年以后,炭黑的排放量急剧上升。冰川研究人员将当时冰川上的炭黑能量效应进行转换之后发现,炭黑的融化效应导致了冰川消退,而没有导致气温出现剧烈的变化。由于阿尔卑斯山脉周边地区都在大力进行工业化,故此地冰川中的炭黑含量在1850年至1870年间迅速攀升,此后则稳步增长,一直持续到进入20世纪后的很长一段时间。

    为了取暖和工业用途而进行的煤炭燃烧,是造成污染的一个重要原因;同时,阿尔卑斯地区旅游交通的增长,也是如此。阿尔卑斯诸谷中的空气中弥漫着乌黑的烟尘,所以19世纪那里的家庭主妇从来就没有在户外晾晒过衣物。

    对于阿尔卑斯山脉上的冰川,人们的了解超过对世界上其他任何地方的冰川;因此,若是想当然地认为阿尔卑斯山地区“小冰期”的结束与其他地方的冰川消退时间相一致,那就错了。并不是所有的冰川都在19世纪60年代同时开始消退。早在1740年,玻利维亚安第斯山脉上就出现了冰川消退的现象;喜马拉雅冰川在19世纪中叶开始消退,而阿根廷与挪威等地的冰川则到 20 世纪初才开始消退。跟其他许多与气候有关的现象一样,气温变化与其他变化既是地方性的,也是全球性的。

    而且,欧洲也不是明确地在1850年之后变暖了。19世纪70年代各个年份都比较暖和,只是1875年之后偶尔出现过2月份极其寒冷和夏季湿润的情况。1878年至1879年间出现过一次短暂的寒潮,其间的气候条件堪比17世纪90年代。英格兰东部的农民过了圣诞节之后仍在收割庄稼;当时,产自美国大草原地区的廉价小麦正在铺天盖地地涌入英国的粮食市场。随后,就出现了农业萧条。此时也正是印度和中国持续出现季风不力的一个时期,有1,400万至1,800万人死于寒冷、干旱与季风不力导致的饥荒。晚至19世纪80年代,仍有数百名伦敦穷人在持久的寒潮中死于意外高热。1894 年至 1895 年间的隆冬时节,泰晤士河上出现了大块大块的浮冰。接下来,漫长的气候变暖开始了。从 1895 年至1940 年这差不多半个世纪的时间里,欧洲的冬季气候都相对温和。其间只有1916年至1917年间和1928年至1929年间的两个冬天异常寒冷,但完全没有出现“小冰期”里那种持久不断的刺骨之冷。

    19 世纪80 年代经济萧条的局面,导致移民如潮水一般迁往了各个新的国度。成千上万失业的农场劳力从乡村迁入了城市,或者搬到了澳大利亚、新西兰,以及他们觉得有生存机会的其他地方。19世纪的移民大潮,让渴望获得土地的欧洲农民纷纷迁移到了澳大利亚、北美洲、新西兰、南非以及其他地方,寻找未开垦的肥沃之地。他们像蝗虫一般蜂拥而至,砍伐了数以百万计的树木,以供耕种、取薪,并且为发展中的市镇和城市提供建筑所用的木料。[16] 大规模的森林砍伐让大气中的二氧化碳含量增加,从而助长了气候变暖。一座原始森林中,每平方千米的林木可以吸纳多达3万吨的碳;再加上其中的林下植物,它们吸纳的碳还会更多。树木被伐之后,它们不再吸收碳,故大部分碳就会进入大气当中。据一项估算,1850年至1870年这20年间全球农业生产和土地改造的剧增,导致大气中的二氧化碳含量增加了10%左右;即便是把海洋中吸收的碳算进去之后,也是如此。虽然在那些年里,古老的加州狐尾松中的同位素水平上升了,但其时燃烧化石燃料在整个环境中还是一个无关紧要的因素。我们可以把这种情况与 2020 年巴西亚马孙雨林中由农民与伐木工引发的 76,000 次林火造成的灾难性影响进行对比。光是2020 年 7 月,亚马孙雨林的面积就减小了1,345平方千米。

    燃煤是炭黑聚积的主要原因。早在1912年8月14日,新西兰北岛的一份报纸《罗德尼与奥塔马泰亚时报、韦特马塔与凯帕拉公报》上就曾指出:“如今,全世界的火炉每年都要烧掉大约20亿吨煤炭。煤炭与氧气结合进行燃烧后,每年会让大气中增加大约700万吨二氧化碳……几个世纪之后,由此产生的影响将会相当之大。”[17] 这篇默默无闻的文章,并不是人们头一次论述气候变暖的危害。早在一个月之前,即 1912 年 7 月 17 日,澳大利亚的《布雷德伍德快报》(Braidwood Dispatch )上就刊登过同样的报道,而那篇报道又是从同年 3 月发表过一篇类似报道的英国《大众机械》(Popular Mechanics )杂志上复制过来的。这种可怕的警告,并不是什么新鲜事。它们早已以某种形式,存在很长一段时间了。

    燃烧的问题(公元19世纪晚期)

    早在17世纪,伦敦人就对烧海煤(即在海平面或海平面以下的地方发现的烟煤)时会产生具有污染性的烟雾问题发过牢骚。感觉敏锐的约翰·伊夫林(John Evelyn)曾经抱怨过煤炭燃烧时产生的“烟汽”。英王查理二世想过一些办法来减少日益严重的雾霾问题,却无济于事。1843年,曼彻斯特至少有500座工业烟囱,使得整座城市都笼罩在一层“浓云”之下,而透过云层看去,太阳“宛如无光之盘”。[18] 到了19世纪50年代,伦敦已经成了全球最富裕、实力最强大的城市,随后又成了全球最拥挤和污染最严重的城市。到1900 年时,伦敦这座靠燃煤取暖的城市里已有650万人生活着。与此同时,该市的卫生问题却令人瞠目,让泰晤士河变成了一条可怕的下水道。该市有如“豌豆汤”一般的浓雾,阿瑟·柯南道尔爵士曾在其“夏洛克·福尔摩斯”系列小说中描写过;这种浓雾,不但在整个欧洲赫赫有名,而且一直持续到了20世纪中叶。工业活动与自然条件结合起来,便产生了一种有毒的大气。

    一个深奥的研究领域,也让人们产生了空气污染日益严重的印象,那就是19世纪绘画作品中的风景画。[19] J.M.W. 透纳(1775—1851)是一位风景画家,他在光线和气氛方面的表现主义研究生动而出众。在坦博拉火山喷发之后的3年里,他和一些画家一样,绘制过一些令人震惊的日落之景。

    透纳说过,他绘制风景画的目的,是展示场景的本来面貌。颜色较红的日落之景,可能就反映出了火山喷发的影响。20世纪70年代,气象学家汉斯·纽伯格(Hans Neuberger)曾经对欧洲与美国的美术馆里收藏的、绘制于1400年至1967年间的画作进行了分析。他的统计分析表明,几个世纪以来,画作中的云量都在缓慢增加,但1850年之后,画作中的天空就不再那么蔚蓝,空气也更加朦胧了;至于原因,除了艺术惯例,纽伯格还认为那是由于空气污染加剧,欧洲的蓝天逐渐消失了。如今,雅典国家天文台的一个小组正在对旧时无数大师绘制的日落作品进行研究。然而,诚如环境史学家业已指出的那样,我们必须将众多因素考虑进去,才能将这些作品视作当时气候状况的可靠指标来使用;这些因素中,也包括了艺术市场的种种时尚。尽管如此,许多知名度不那么高、描绘了19世纪末泰晤士河上航运情况的日常画作,却都以伦敦受到污染的天空中飘浮着一层薄雾为特点。

    虽说燃煤和工业污染是气候持续变暖的原因,可我们很难确定,人类活动究竟是从何时开始导致如今这种长期变暖局面的。在某种程度上,这是一个定义的问题。例如,成立于 1988 年的联合国政府间气候变化专门委员会就武断地将公元 1750 年定为起始点,认为工业活动从此开始更加广泛地扩散,从而导致化石燃料的使用与温室气体排放量增加。不过,人们将海洋的古气候数据综合起来之后,却得出了一种更加微妙的判断:海洋古气候数据表明,过去2,000年里海洋表面温度最低的时期出现在1400年至1800年间;这种情况,很大程度上是过去 1,000 年间火山活动加剧导致的。在许多地区,海面温度长期下降的趋势到了工业时代发生了逆转,与陆地上的相同温度趋势相吻合。海陆两种趋势都表明,全球变暖是在1800年之后开始的。

    这些关于平均气温的资料,都掩盖了显著的地区性气温差异。19 世纪30年代,热带海域开始持续变暖,北半球的陆地变暖也反映出了这一点。大约50年之后,南半球(尤其是大洋洲和南美洲)才开始变暖。这里具有争议的问题,就是气候变化带来的影响究竟在何时超出了各种自然体系能够适应的气候变化范围。最新评估表明,属于20世纪的标志性特征并且持续至今的大范围气候变暖源自一种持续的趋势;这种趋势,早在19世纪30年代就在热带海洋和北半球的部分地区开始了。火山活动有没有在其中发挥作用呢?坦博拉火山爆发导致的降温并没有持续下去,反而是随着气候的恢复,进入了一个全球加速变暖的间隔期。情况极有可能是,到了 19 世纪中叶,工业时代气候变暖的“温室强迫效应”就已开始,并且持续至今。

    人为变暖(公元1900年至1988年)

    1900 年至 1939 年间是一个西风频现、冬季气候温和的时期;这两个方面,正是北大西洋涛动处于高指数阶段的典型特征。亚速尔群岛与冰岛低压之间的气压梯度十分陡峭,足以维持盛行风。世界各地的气温都在20世纪40年代初达到了峰值,而像冰岛和斯匹次卑尔根岛这些靠近北极的地区,气温也明显上升了。北方的浮冰面积减少了 10%左右;高山上的雪线上移;船只每年可以抵达斯匹次卑尔根岛的时间达到了5个月,而在20世纪20年代却只有3个月。欧洲北部和西部降雨增多,使得“一战”中的西线战场变成了一片泥泞的荒野。随着气候持续变暖,充沛的降雨也持续到了20世纪20年代和30年代。1925年以后,高山冰川退入了山间,从一座座谷底消失了。更强劲的太平洋西风带不但导致了20世纪 30 年代美国俄克拉何马州的“尘暴”,而且增加了落基山脉频频出现干燥之风的可能性。大气环流的变化,使得印度季风更加稳定可靠,在1925年至1960年间只出现过两次强度稍有不足的情况。

    20世纪40年代,科学家开始讨论气候持续变暖的问题,因为这种变暖已经超过了以前各个时代正常的气候波动范围。据他们推测,长此以往,北极冰川将会消退,北方的浮冰也会消失。不过,他们并没有把人类的行为考虑进去,比如砍伐森林或者使用化石燃料,因而将大多数人为造成的变化排除在外,免除了人类的责任。当时,气候研究还处于起步阶段,没有计算机模型、卫星以及全球天气跟踪技术。除了无工具可用,降雨和气温的持续变化往往还掩盖了一些至关重要的长期性趋势。人们也缺乏时间跨度以千年和世纪计,并且经过了精心组织的气象资料。

    随着西风带的强度减弱和欧洲西部气候变得更加寒冷、冬季通常也变得更加干燥,北大西洋涛动在20世纪60年代转入了一个低指数阶段。1965年至1966年间,波罗的海完全为冰层所覆盖。1968年的冬季异常寒冷,冰岛自1888年以来第一次被北极海冰所环绕。那一年,欧洲东部和土耳其也经历了两个世纪以来最寒冷的一个冬天。美国中西部和东部地区出现了创历史纪录的低温,使得许多人都认为,另一个“大冰期”即将来临。

    1971 年至 1972 年间,北大西洋涛动突然发生了变化。气候变暖重新开始,速度似乎还加快了。波罗的海上,1973年至1974年间全然无冰。英国度过了自1834年以来气温最高的一个夏季。1975 年至1976 年间,创纪录的热浪席卷了西欧的大部分地区。越来越多的极端天气和日益增加的飓风活动,再加上无数场干旱,描绘出了一幅与20世纪初截然不同的全球气候图景。1988年出现了一个暴露政治真相的时刻,一场2个月的热浪在美国中西部和东部地区肆虐。密西西比河上,一长段一长段的河道几近干涸。驳船搁浅了数个星期之久。“大平原”上约有一半的庄稼歉收,而美国西部为干旱所困的乡村地区则有 1,000 多万公顷的土地发生了火灾。1988 年 6 月23日,美国参议院在华盛顿特区举行的一场听证会将气候变化与全球变暖从一个鲜为人知的科学问题变成了一个公共政策的问题。气候学家詹姆斯·汉森在美国参议院的能源和自然资源委员会做证的那一天,气温高达38℃。[20] 汉森利用世界各地2,000座气象站的数据证明,不但全球气温在过去一个世纪里变暖了,而且20世纪70年代初期以后,全球气温再度急剧上升。他直言道,由于人类胡乱使用化石燃料,地球正在永久性地变暖。我们未来的气候当中,将出现更加频繁的热浪、干旱和其他极端气候事件。

    他的证词,在一夜之间就将人为造成的全球变暖问题推到了公众的视野当中。从那以后,还没有哪一桩气候事件证明汉森的观点是错误的。

    但是,气候变化意识慢慢地进入了公众觉悟的背景当中。工业发展不但改变了美国的经济,还导致美国形成了一种复杂的金融制度;这种制度发挥了巨大的作用,让绝大多数美国人都不会受到作物歉收与气候突变等严酷现实的影响。不过,自20世纪90年代以来,气候变化已经变成了公众关注的焦点;之所以如此,在很大程度上是因为大规模的厄尔尼诺现象、持续的升温和漫长的干旱周期造成了巨大的破坏。人类活动正在导致全球势不可当地变暖,这一点如今已为科学所证实。正是如今,在一个人为导致气候不断变暖的世界上,气候变化才迅速变成全球政治中的一个重大问题;尽管仍有一些落伍的理论家在喋喋不休,也是如此。

    [1] 弗朗西斯科·何塞·德卡尔达斯(Francisco José de Caldas)

    在1805年至1810年曾任哥伦比亚波哥大天文台的台长一职。引自A.

    Guevara-Murua et al., “Observations of a Stratospheric

    Aerosol Veil from a Tropical Volcanic Eruption in December

    1808: Is This the ‘Unknown’ ~1809 Eruption?” Climate of

    the Past Discussions 10, no. 2 (2014): 1901。这桩神秘的火山

    喷发事件究竟发生在1808年末还是1809年,如今仍然存有争议。

    [2] Stefan Br.nnimann et al., “Last Phase of the Little Ice Age Forced by Volcanic Eruptions,” Nature Geoscience 12 (2019): 650–656.

    [3] 壮游(grand tour),旧时英国富家子弟游历欧洲各主要城市的一种教育旅行。——译者注

    [4] 原文为FRANKENSTEIN’S ERUPTION。其中的FRANKENSTEIN(弗兰肯斯坦)是英国女作家玛丽·雪莱1818年发表的长篇小说《弗兰肯斯坦——现代普罗米修斯的故事》(或译《科学怪人》)中的主人公,是个热衷于研究生命起源的生物科学家。此人尝试用不同尸体的各个部位拼凑出一个巨大的人体,并且最终创造出了一个怪物。后来,“弗兰肯斯坦”一词就变成了“作法自毙者”或“失控的创造物”等的代名词。——译者注

    [5] 此处我们参考了Gillen D’Arcy Wood, Tambora: The Eruption That Changed the World (Princeton, NJ: Princeton University Press, 2014),这是描述那次火山喷发的一部优秀的通俗作品;还有William Klingaman and Nicholas P. Klingaman, The Year Without Summer: 1816 and the Volcano That Darkened the World and Changed History (New York: St. Martin’s Press, 2013)。

    [6] Miranda Shelley, Mary Shelley (London: Simon & Schuster, 2018).

    [7] 卡尔·弗赖尔·冯·德莱斯(Karl Freiherr von Drais,1785— 1851)是一位多产的发明家,他不但发明了脚踏车,还在1821年发明了最早的带有键盘的打字机,甚至发明了用脚来蹬踩的人力轨道车,即如今轨道手摇车的前身。1848年,作为对法国大革命一种迟到的致敬,他放弃了自己的贵族头衔,去世时身无分文。

    [8] John D. Post, The Last Great Subsistence Crisis in the Western World (Baltimore: John Hopkins University Press, 1977),是一份权威的参考资料。

    [9] 关于爱尔兰的饥荒,见Wood, Tambora, chap. 8。

    [10] 莱茵兰(Rhineland),旧地区名,也称“莱茵河左岸地带”,位于如今德国的莱茵河中游,包括今北莱茵—威斯特法伦州、莱茵兰—普法尔茨州。——译者注

    [11] Christopher Hamlin, Cholera: The Biography (New York: Oxford University Press, 2008),是一部标准的作品。

    [12] 引自Wood, Tambora, 97。此书第5章中描述了云南发生的一些事件,我们的论述便是以此为基础的。

    [13] 本段参考了Wood, Tambora, chap. 9。

    [14] Thomas Jefferson, Notes on the State of Virginia (Chapel Hill: University of North Carolina Press, 2006). 1784 年初版于巴黎。

    [15] Thomas H. Painter et al., “End of the Little Ice Age in the Alps Forced by Industrial Black Carbon,” Proceedings of the National Academy of Sciences 110, no. 38 (2013):15216–15221.

    [16] Richard H. Grove, Ecology, Climate, and Empire: Colonialism and Global Environmental History, 1400–1940(Cambridge, UK: White House Press, 1997).

    [17] Rodney and Otamatea Times, Waitemata and Kaipara Gazette, August 14, 1912.

    [18] Peter Brimblecombe, The Big Smoke: A History of Air Pollution in London Since Medieval Times (Abingdon, UK: Routledge, 1987). See also Stephen Halliday, The Great Stink of London: Sir Joseph Bazalgette and the Cleansing of the Victorian Metropolis (Stroud, UK: Sutton, 2001).

    [19] C. S. Zerefos et al., “Atmospheric Effects of Volcanic Eruptions as Seen by Famous Artists and Depicted in Their Paintings,” Atmospheric Chemistry and Physics 7, no. 15(2007): 4027–4042; Hans Neuberger, “Climate in Art,”Weather 25, no. 2 (1970): 46–56.

    [20] James Hanson, congressional testimony, June 23, 1988.

    第十五章 回到未来(今天与明天)

    美洲、罗马、中国、印度;洪水、火山、干旱、温和年份;饥荒、战争、剥削、适应,以及合作。在本书中,我们已经讲述了许多关于人类祖先成功和不成功地应对气候变化的故事。但在当前这种气候变化的背景之下,过去还重要吗?毕竟,除了少数否认气候变化的人,大多数人都一致认为,如今气候变化的原因就是我们自己在工业时代的行为;可在19世纪以前,这样的变化是自然促成的。正如一群气候学家最近强调的那样,古时的气候变化大部分都发生在局部和地区的层次上,而如今人为导致的变暖与气候变化却是持续不断和全球性的;现在,我们可以在全球范围内几乎同时共享气候变化的信息了。[1] 这些即时性的联系,赋予每个人以新的力量。无论是谁,都可以对未来的气候变化施加影响;这种情况,有时被称为“格蕾塔·通贝里效应”。那么,为什么有人要去关注工业化之前众多常常互不联系的社会适应气候变化的方式呢?我们那些业已作古的祖先的经验,对于我们今天正在面对、未来甚至要更加直接地面对的气候变化,又可能具有哪些意义呢?正如小说家 L.P. 哈特利在1954 年所写的那样:“过去有如他乡,人们行事方式相异。”[2]

    尽管在本书论及的3万年间,整个世界已经发生了沧桑巨变,一如我们的经济发展,但我们以及生活在这万千年里的人们,无论肤色还是国籍,都具有很浅的进化根基。我们智人在本质上都很相似,全都拥有相同的激素、躯体、血液和大脑潜能。而且,由于我们属于同一物种,故我们对意外事件所做的反应常常具有惊人的相似性,跨越了时间与空间。我们之所以明白这一点,是因为亲历者对古罗马人在维苏威火山爆发那场灾难发生后所做反应的描述,听起来与人们对1815 年坦博拉火山爆发或者对1980年美国西北部太平洋沿岸圣海伦斯火山爆发的反应出奇地相似。2005年8月“卡特里娜”飓风将美国新奥尔良变成一片汪洋和 2012 年超级风暴“桑迪”袭击古巴和美国东部地区的时候,人们也出现了同样的行为。

    从这些自然灾难当中,我们已经得知,最强大的顺应与生存武器,就是人类身上一些可以追溯至遥远过去的品质:在适应和恢复过程中进行地方性合作十分重要;不论是社群之间、亲族群体之间进行合作,还是常常有可能在政治、宗教或者文化上处于对立状态的范围更广的群体之间进行合作,都是如此。回顾过往,我们还能看出人类这个物种所有的潜在行为;虽然其中一些行为令人毛骨悚然和具有剥削性,但我们也可以从中吸取教训。

    新的科学研究也正在彻底改变我们对过去那些全球性的和地方性的气候变化的看法。半个世纪以前,我们对过去2,000 年间欧洲和美洲的气候情况还知之甚少。如今,我们却可以破译 2,000 年甚至是更久的季节性气候变化密码了。在中国和印度、澳大利亚和新西兰以及太平洋诸岛上进行的研究表明,气候变化在人类历史上始终都是一种强大的驱动因素,只是常常并不引人注目罢了。我们也得知了当前的许多情况,明白了我们人类对全球生态系统已经造成并将继续造成的生态危害。许多研究气候变化的人士都预测说未来很危险,因为未来世界在很大程度上将受到日益激增、居住之地也越来越近的人口影响,以及受几乎全部由人类活动导致的气候变化所影响。他们恰如其分地呼吁人们寻找解决方案,减少人为导致的变暖。这依然是一个全球性的问题,而不能成为一个被狭隘的民族主义和党派政治所模糊的问题。[3]

    我们要重申这一呼吁。人人都须牢记,我们是同一个物种,只有很浅的进化根基,代表了全球之间的紧密联系;而且,我们都是过去和未来的参与者。

    生而为人

    之所以说我们的根基很浅,是因为我们所处的现代工业世界建立在不久之前的奴隶制度与殖民主义的基础上。为了证明利用奴隶和剥削其他国度具有正当性,西方殖民主义者曾经强调,世界不同地区的人(或者“种族”,这是一个难以明确分类的术语,很大程度上是以肤浅而容易改变的外貌为基础)之间存在一条鸿沟。这种洗脑之举,根深蒂固。直到20 世纪90 年代,许多人类进化论者还认为,不同大陆上的现代智人之间的进化关联都极其久远(差不多有200万年),而且不同“种族”是在不同的地区同时进化出来的,比如在中国、欧洲、非洲等等。可如今我们得知,我们这个物种是在大约30万年前于非洲登上历史舞台的,身体结构(即生理上,可能心理上也是如此)则在15万年前以后变得和现代人完全一样了;所有生活在非洲以外的人,都是在大约5万年前离开那个大陆的。

    的确,其中有些人后来跟尼安德特人和其他物种繁育过后代,但由此遗传下来的 DNA,却并未局限于单一的肤色、头发类型或者头部形状,而且绝对不会造成种族主义者所鼓吹的种种巨大差异。作为一个物种,我们在生物学上很相似。我们的外貌属于表面现象,且容貌也很容易在一代人的时间里就发生改变。而具有普遍性和让我们成为“生理结构上的现代人类”的,是我们的内在布局:我们都有一个很大的脑袋,具有说话、提前规划和创造性思维的能力。这些能力,有助于定义我们作为智人的独特身份。把现代人类与世间其他动物区分开来的关键行为特征,就是文化。文化既是人类的一种独特属性,也是我们适应不断变化的环境的主要手段。

    不过,文化具有悠久的历史,比我们人类这个物种的历史还要悠久。

    让维多利亚时代那些顽固不化的人大感恐惧的是,我们竟然属于裸猿。我们的整个进化起源,可以追溯到600万年前甚至更久以前,追溯到早期人类与现代黑猩猩的祖先分道扬镳的时候。我们只发现了在那数百万年之后人类文化的证据:在肯尼亚境内发掘出的具有330万年历史的“洛迈奎3号”(Lomekwi 3)遗址中,出现了粗糙的残破石器这种考古记录。

    洛迈奎3号出土的石器

    这些工具表明,一个古老的人类物种已经开始巧妙地利用天然石块为自己服务了。诚然,还有一些聪明的动物也会使用工具——我们会想到章鱼和黑猩猩——但它们不可能达到我们如今和过去已经达到的那种程度。

    只有人类依赖于各种各样的“物质文化”(即我们制造出来的东西),并将其当成自身与环境之间的缓冲之物,而不是只依靠我们的身体。这一点独一无二,与依赖皮毛、獠牙、网子、毒液、兽角等的其他动物截然不同。文化具有令人着迷的多样性:如今极北之地的因纽特人会缝制厚厚的多层衣物,建造圆顶冰屋,并且用石头、鹿角和兽角制成的器具捕杀猎物为食,而大多数伦敦人却住在砖木房屋里,穿着工厂里生产出来的布料衣物,从超市里购买食品,并且使用计算机。但是,我们可不能为这种多样性所蒙蔽,以至于看不到我们固有的相似之处。

    尽管种类繁多,但所有的人类文化都有一个共同的特点,那就是它们会持续不断地适应各种各样的变化。在狩猎社会中,一群驯鹿有可能在毫无征兆的情况下改变它们的春季迁徙路线;邻近群落(或者街道)的亲族可能发生争执;从其他女性那里搜集到的消息,有可能导致一个群体迁徙到20千米以外的地方去采摘成熟的果子。自给农民有可能因土地继承的问题而发生纠纷,在饥馑岁月里有可能靠住在一定距离之外的亲族提供食物。城市领导人有可能争夺贸易线路,甚至发动战争来控制像铁矿、大米或石油之类的资源。所有社会,在做出决策或者讨论决策时都会出现动荡。

    令人瞩目的是,人类常常以同样的通用方法来适应。这就是为什么迁徙是适应策略中的一种强大催化剂。数千年以来,迁徙始终都是一种合乎逻辑的适应策略。不过,当我们回顾更加久远的过去时,由于没有文献记载,故我们有可能很难理解以前经济、环境、政治与社会方面的变化。适应过程很复杂。考古学家如今已经变得相当擅长发现重大经济变化和技术变化的痕迹,比如从狩猎与采集变成农业与畜牧业。虽然人类的许多行为都存在于无形的领域——比如,我们虽然无法发掘出一种业已消失的语言,或者一种早已失传的口头传统——但我们可以看到帮助我们适应了重大气候变化的种种技术创新。

    在“大冰期”末期的严寒气候中,生活在欧亚大草原上的人们曾穿着用有孔针缝制的分层服装御寒,但这并不意味着,这些生活在“大冰期”里的人是最早使用针这种工具的人;他们并不是率先使用针的人,因为南非斯布都洞穴的古人早在61,000 年前就使用这种工具了。大约 15,000 年前,陶罐开始被用于烹煮和储存食物。但同样,人们甚至在更早的时代就已经使用陶土了,它们以装饰性的小雕像形式留存于世。人类能够创新,但聪明的人还会从过去和别人那里吸取教训。用于制造斧头和刀剑的青铜,彻底改变了农业与战争;随后又出现了硬度更大的铁,以及被各地群落迅速采用的冶炼方法。灌溉技术与城市卫生设施,以及战车与有舷外支架的独木舟,都是我们这个“聪明的”物种的非凡发明。有的时候,这些发明是在相距遥远的地区独立出现的(比如说,美洲和近东地区的作物驯化就是如此);有的时候,一些非凡的发明却会逐渐变得默默无闻,并且最终消失(比如说,随着印度河文明终结,又过了2,000年,才出现可以与之比肩的卫生技术)。不过,有时聪明的点子会在广大地区之间共享,从一个社群传到另一个社群;假如愿意的话,您可以喻之为一种有益的“传染病”。我们这些身处 21 世纪工业时代的人类,并不是带着超级计算机和原子能突然之间就敏捷地跳上了历史舞台的。我们的背后,至少有300万年的技术实验和创新,以及人类适应气候变化的数百万年历史。

    为什么这些遗产会持久存续呢?因为我们总是把自己掌握的知识和经验传授给年轻人。在后“大冰期”时代气候开始变暖以前,几乎所有社会都以小型狩猎与采集群落的形式繁衍生息着;对这些群落而言,经验具有至关重要的意义。老一辈人积累起来的经验,会以口头形式代代相传,而工业化之前的所有农业和畜牧业群落也是如此;他们有时是通过口口相传,或者以歌唱、吟诵和讲故事的方式(当然还有举例)将经验传递下去。这些经验,大部分都属于有关当地环境和环境中各种动植物的深入知识;动植物不但为人们提供了食物,还提供了药物、衣物,以及用于制造狩猎武器、挖土棍棒和其他工具的原材料。这种环境知识,源自人们世世代代的仔细观察,观察的对象既有随季节更替而变化的自然现象,也有猎物和即将出现的天气情况,不论那是一场暴风雪、一场飓风,还是表明一股干燥的离岸风将毁掉正在生长的作物的种种征兆。这种知识异常全面,通过人类遗留下来的东西向我们表明了当时的情况,比如“大冰期”洞穴壁画中的驯鹿皮毛细节、为夏威夷的酋长制作斗篷所用的羽毛,或者牛群在不同季节里所吃的野草。因纽特人以前和现在都有许多的词语来描述不同的冰雪环境。阿留申群岛上曾经划着独木舟在白令海峡上乘风破浪的印第安人,也是如此。他们曾经用各种各样的词汇,描述过海峡上汹涌的波涛。这些全都属于传承性的知识,父传子、母传女,代代相传,从祖先一路传授给了后代。

    知识传承

    大量的环境知识,已经通过一代又一代人传承到了我们的手中;其中,记载于纸张或者羊皮纸上的知识很少,大部分都属于口述传统,且如今越来越多的口述传统正在逐年消失。历经数千年才习得的这些自然环境知识,当是我们从过去传承而来的最不朽之遗产。只可惜,随着18、19世纪开始的工业化,这个庞大而至关重要的专业知识宝库正在迅速枯竭,被工业化的粮食生产及其生产过程中所用的肥料边缘化,被人们对森林的乱砍滥伐扫到了一边;这些做法的特点,就是几乎完全无视原住民族和我们这个世界的未来。

    尽管如此,世间仍然留存着一个传统的气候与环境知识宝库;它既留存于自给农民的记忆当中,也留存在世人遗忘已久的人类学档案与历史档案之中。19世纪和20世纪的西方人类学家搜集了这种知识当中的一大部分;之所以如此,是因为他们对日常生活的细节怀有持久的兴趣(常常是服务于殖民主义),而日常生活就包括了自给农业和常规的传统做法。这种传统知识当中,大部分都以我们如今所称的“风险管理”为中心。与一位靠一季又一季作物收成为生、在土地上辛勤劳作的农民谈一谈,或者读一读维多利亚时期的渔民驾驶帆船在北大西洋冒险出航的故事,您就会发现,自己看到的都是一些谨慎之人。无论现在还是过去,他们所关心的,都是如何在饥荒与营养不良始终像幽灵一般徘徊于地平线上的世界里长期生存下去。

    这些人都生活在农村社区,而不是大城市;如今,全世界仍有数以百万计这样的人。巨大的认知鸿沟,再加上一种紧迫感和采取行动的需要,将我们这些城里人与那些传统上与环境联系紧密的人分隔开来了。二者的生活,是脱了节的。那些生活与环境密切相关的人,对他们的农田都投入了深厚的情感——为兴建重大水电项目而安置被迫搬迁的民众时会困难重重,就是明证。自给农民对他们的土地和所处的环境了如指掌,而对生活在拥挤的都市环境里的大多数人而言,这一点是难以想象的。他们对本地 的生态、对干旱周期之类的局部 气候变化以及它们在环境中的征兆等方面的认识,原本是揭示小型社群如何在气候变化中生存下去的宝贵资料;可这种正在快速消失的知识,却被人们遗忘或者忽视了。亚马孙人、安第斯地区的农民、美国西南部的普韦布洛印第安人,以及非洲中部的农村社群里的人们,如今仍然严格保守着这些知识的秘密。考虑到最近几个世纪的掠夺性殖民活动,我们并不能去责怪他们。环境智慧是一种令人叹服却经常被人们忘记的历史遗产,其中的大部分知识与如今生态学家费尽辛苦得来的知识相比,要细致得多。随着气候危机不断加剧,我们是否可以认为这条鸿沟终将弥合呢?当今世界的气候瞬息万变,我们这些目前与环境脱了节的城市居民,是否会有朝一日开始更加直接地面对环境呢?倘若如此,我们将受益无穷。

    亲族关系

    过去的另一种宝贵遗产,就是亲族关系(指社群内部和社群之间实际存在或者想象出来的种种亲族联系)。没有哪一个人类社会做到过彻底的自给自足,连“大冰期”里的许多狩猎群落也是如此——他们在短暂的一生中,可能只会遇到群落以外的大约30个人。即便是规模最小的群落,也与远近不一的相邻群落保持着至少不定时的联系。有的时候,他们会聚到一起娶妻嫁夫,解决纠纷,或者交换兽皮、外来装饰品,以及像制造工具的石头之类的其他重要物品。这种接触,全然依靠亲族关系。亲属关系是一代又一代人类学家的关注焦点,而他们这样做也有充分的理由,因为家庭、大家族以及与生活在遥远之地的亲族群体保持联系,始终都是让大大小小的人类社会团结起来的必要纽带。

    成为亲族群体中的成员,需要承担若干义务,比如履行婚约、相互支持,尤其是互惠互助(即在必要的时候,亲族应当彼此支持,提供食物和其他必需品)。这样的合作与互助关系,就是人们应对作物歉收和漫长干旱等风险时所采取的措施当中一个至关重要的组成部分。亲族关系曾在古普韦布洛社会中发挥过核心作用;比如,查科峡谷里的人曾经与遥远社群中的亲族保持着牢固的互助关系。假如峡谷里的生存条件变得难以为继,这种关系甚至可以让他们迁徙到亲族所在的村落里去;而他们的确就是这样做的。

    强大的亲族纽带,也是工业化之前那些复杂得多的文明当中的一大组成要素。从根本来看,美索不达米亚最早的城邦都由村落凝聚而成,并且根据亲族成员的身份与职业分成了众多的社区。大多数古埃及人,都与具有数代历史的乡间村落保持着紧密的联系。南亚印度河流域的城市居民和东南亚地区的高棉村民,也是如此。古代玛雅人与安第斯地区的印加人由于生活在山间径流与降水都变幻莫测的环境里,故也严重依赖于亲族关系。

    在如今规模庞大的城市社会中,隐姓埋名和独居避世的现象都极其普遍,故亲族关系这种传承受到了极度削弱。无疑,其中也有许多例外情况;但我们完全可以说,亲属关系最牢固的根基就存在于那些至今仍与土地维持着密切联系的社群中。幸好,如今一些联系最紧密的城市社群,包括具有强烈文化认同感的城市社区,以及像兄弟会和教会之类的组织,都与各自的本地成员之间保持着牢固的联系。令人瞩目的是,与“卡特里娜”飓风这样的灾难性气候事件和其他灾难做斗争时最有力的一些武器,就是亲族纽带与社群关系,以及种种具有悠久传统、可以追溯至遥远过去的制度。在面对未来将有更多极端天气事件的现实时,这样的应对机制必将变得更加重要。

    迁徙时代

    散居与迁徙,也是早期人类两种强大有力的传家宝。近几十年来,我们开始面对这样一种现实:在一个人口密度高得多、城市居民动辄数以百万计的世界上,人类的流动性降低了。比方说,人们怎样才能在很短的时间里大规模地离开像休斯敦、迈阿密之类的城市,或者离开上海的中心城区呢?这几乎是一项不可能完成的任务。事实上,现代民族国家还禁止人们在没有规范证件的情况下流动。

    然而,自由来去的本领既是我们的天性,也是数百万年以来人类的生存常态。毕竟,狩猎与觅食靠的就是不断移动——追逐猎物、寻找可食用的植物性食物以及追踪从遥远之地所获的重要知识。在人口很少、群落只由几个家庭组成的时候,人们的迁徙毫不费力;这是一种具有高度适应性的方式,可以让人们免受异常严重的洪水和短期性或长期性干旱周期造成的破坏。多格兰(即如今的北海)心脏地带从事打鱼和觅食的狩猎部落曾经在一个地势低洼的环境中不断地迁徙,因为此种环境在一个人短暂的一生中,就能迅速改变景观。当时参与迁徙的部落人口都很少,迁徙是他们日常生活中根深蒂固的一部分。

    待到农民在永久性的村落里定居下来,再也离不开他们的土地之后,这种局面就彻底改变了;由于继承规则已经牢牢扎根于亲族群体与血统当中,所以他们的土地会代代相传。很多情况下,当附近的土地已经枯竭,从事刀耕火种的农民就会将整个村落搬离。或许每一代都会发生一次迁徙,而定居地的迁徙路线经常大致呈椭圆形,故他们最终又会回到多年以前遗弃的那些地方。大多数群落的规模都很小,因此迁徙起来相对容易,这不过是一个共同做出决策和听取大家意见的问题罢了。在此种情况下,面对漫长干旱或者像灾难性暴风雨之类的其他因素时,他们往往就会选择散居到其他地方去。

    迁徙是一种重要的顺应策略,而在像印度河文明这样的前工业化社会中尤其如此,因为当时的城市与农村社群保持着强大的联系。食物或水源不足,就会促使人们迁徙到乡村去寻找这些资源;而他们利用的,常常就是以种种源远流长的互助义务为基础的亲族关系。如今的大规模移民,甚至让19 世纪时人们为应对强厄尔尼诺现象、常常迫于贫困和长期干旱而进行的移民也相形见绌。应对这种经常属于非自愿性的人口流动而采取的措施,往往会引发复杂的社会问题。不过,为摆脱气候变化而采取的散居与迁徙两种策略既具有悠久的历史,也是人类面对压力时两种近乎本能的行为。强制迁徙的现象虽然比较罕见,但也的确出现过;此处只举两个例子,即古亚述人和印加人,他们都曾将被征服民族重新安置于常常很偏远的新领地上。在当今这个世界上,人口迁徙不再是一种有益本领,而是一种负累之举了;所以,制定全球性的政策来应对生态难民,就成了一个紧迫的问题。

    领导力

    从早期社会中传承下来的人类行为遗产,在公元前3100年以后世界各地发展起来的前工业化文明中曾经显得更为重要。正是在这个时期,领导力在许多人类社会中都发挥了核心作用;它对人们克服气候变化的方式既产生过积极影响,也产生过消极影响。

    领导力首先在于经验和获得的智慧,且这两种品质都与受人敬重的长者、巫医以及灵媒有关;古人认为,巫医、灵媒是人类与超自然世界之间的强大中介。祖先则对人类的生存发挥着必不可少的作用;他们一旦去世,就会成为决定人类能否延续下去的种种超自然力量之中的一部分。在与祖先耕作过的土地之间具有密切联系的农耕社会里,这种作用还变得日益强大起来。为了将所有权合法化和主张土地所有权,人们会把祖先搬出来(如今所有的民族国家也仍在如此做)。随着人类社会变得越来越复杂,亲族关系和祖先变成了领导力的两大支柱。随着第一批前工业化文明崛起,人们对气候变化做出的文化反应与社会反应呈现出了许多更加复杂的新特点。在村落变成城镇与城市的过程中,宗族和其他亲族群体中开始形成等级制度,有些人则获得了公认的宗教权威与政治权威。长久以来,部落首领都是通过个人魅力以及巧妙地利用赏赐、任命位高权重的官职等方式来培养忠诚的追随者,从而获得并保持他们的势力。但这样的忠诚转瞬即逝,并不牢靠,因为它在很大程度上取决于馈赠与互惠,即恩宠与赏赐,无论是赏赐食物还是提供政治支持,甚至是军事援助;首领赐予这些东西的目的,都是指望获得手下效忠这种形式的回报。首领必须让追随者感到满意,否则的话,后者就会弃之而去,转而追随另一位首领。

    世袭制的领导权带来了社会不平等和贫富差距。大多数前工业化文明,都属于社会不平等的集权制金字塔社会,由实力强大的个人以及他们那些位于或接近塔尖、拥有特权的亲族统治着。这些人之下,就是各级官吏和神职人员,他们对成千上万的平民百姓实施监管,并向百姓征取赋税;平民的无尽劳作则积聚起粮食盈余,支撑着整个王国。为少数人的利益服务的古代社会全都依赖于大量的粮食盈余、强大有力的政治意识形态和宗教意识形态,以及坚决果断的领导,来生存下去。它们全都很容易受到当地和全球性气候变化的影响,只是程度各异而已。在很多方面,它们与当今的许多社会并无太大的不同,因为当今社会的贫富之间也存在巨大的社会鸿沟。

    在几乎每一个古代社会里,自给农民都是勉强维生,因为食不果腹是一种始终存在的现实,而谨慎的风险管理则是一种不言而喻的现实。但是,当一个拥有特权的精英阶层依赖可靠的粮食盈余以及从农民那里攫取的口粮来生存时,又会出现什么情况呢?面对变幻莫测的气候事件,比如北美洲和北海上刮向沿海地区的飓风与狂风,让秘鲁诸河谷中灌溉设施毁于一旦的百年不遇之大雨,尤其是干旱的时候,脆弱性这个幽灵就会暴露出其更加丑陋的面目来。毫无疑问,长久干旱曾经是所有前工业化文明面临的最大威胁。我们已经将干旱区分成了有可能持续1年至3年的短期性干旱,以及有可能持续一个世纪或者更久,且要严重得多的水文干旱周期。乡村里的农民对短暂的干旱都习以为常,或许还习惯了一两个荒年;在荒年里,人们会去种植一些不那么受欢迎的作物,或者去采集野生的植物性食物,但常常会无功而返。他们也许遭遇过饥荒,甚至有人饿死,但生活仍在继续。对于早期文明而言,这种短暂的干旱周期并不是毁灭性的打击,尤其是在统治者已经采取了措施储存下供荒年所用的粮食的时候。

    水文干旱周期,或者我们如今所称的特大干旱,却是另一回事了。“4.2 ka事件”,即公元前2200年至公元前1900年间的那场特大干旱,其影响波及地中海东部和南亚地区。公元前2118年,季风强度减弱,尼罗河泛滥严重,埃及整个国家也四分五裂,各州之间你争我夺。粮食盈余化为乌有,人们对法老的权威也信心尽失。数代人之后,国家才在崇尚武力的统治者手下重新统一起来。人们不再说神圣的统治者能够控制尼罗河泛滥之类的话了。此时,法老们开始宣称自己是“百姓的牧人”,并且对灌溉项目和国有粮食储备进行了大力投入。于是,古埃及一直存续到了罗马时代。

    组织资源

    古埃及很幸运,因为其领土与肥沃之地都位于安全可靠的疆域之内,使得他国几乎不可能进行武装入侵。该国变得更具韧性,并且长期自给自足;尽管当时法老的朝廷之内派系斗争之风盛行,也是如此。在人们寿命很短、医学还处于起步阶段的一个时代,由于竞争对手在暗中争夺权力,故王位继承的问题普遍存在。持续不断的阴谋诡计与各种并不牢靠的联盟,是每一个前工业化文明社会的组成部分;其中大多数文明的兴衰速度之快,令人眼花缭乱。其中的原因,是很容易看出来的。我们仅举几例。比如说,美索不达米亚地区的几乎每一个城邦、玛雅的几乎每一个王国以及中国早期的几乎每一个诸侯国里,都存在基础设施的问题。古埃及的法老们可以通过水路,极其高效地调遣军队和运送各种各样的商品。在沙漠里,他们先是依赖驴子,后来又靠骆驼进行运输;只不过,当时喂养驮畜的粮草问题限制了商队运送的货物量。

    陆上国家曾经面临着一种严酷的现实,且这种现实一直延续到了近代。统治者与商贾只能利用人力背驮肩扛,或者用驴子、骆驼等驮畜来运送货物。像木材或一袋袋谷物之类的重物,可以经由河流、湖泊甚至是近海进行运输。但从基础设施的角度来看,陆上往来的各种商品都只能运输大约50千米远,然后就得让驮畜休息,或者更换驮畜。这种现实,也有力地制约了朝廷能够严加掌控的领土面积——有可能少于方圆100千米。出了这个范围,朝廷的掌控就多属于名义上的掌控,并且严重依赖于贵族与各省官吏的忠诚了。

    适应突如其来的气候变化,尤其是适应水文干旱和季风强度减弱时采取的措施,其有效程度取决于坚决果断的领导与亲族关系。强有力的领导能够让下属保持忠诚,能够组织兴建基础设施(偏远地区尤其如此),这些措施可以利用充足的粮食盈余,帮助百姓度过粮食短缺的时期。在作物歉收、百姓挨饿的时候,这些措施都至关重要。曾经把生活在摩亨佐达罗、蒂卡尔或者乌尔等城市里的人与城市腹地的社群联系起来的种种亲族关系,也是如此。这种联系就像一份保单,因为遭遇干旱的时候,互助义务可以让挨饿的民众安静平稳地散居到更理想的地区与环境中去;比如底格里斯河泛滥不力,或者数月降雨毁掉了中世纪欧洲的庄稼之时,就是如此。一种古老的生存策略,可以带来莫大的好处。

    包括罗马帝国在内的前工业化文明社会,全都严重依赖于人力、驮畜,以及帝国广大地区的种植业,而其栽培的其实是单一作物。在后来的几个世纪里,帝国极大地依赖从埃及和北非地区进口的粮食,由横跨地中海往来的大型运粮船只负责运送。在以桨和帆为动力的货船以及驮畜从偏远的农田运送粮食时,为帝国供应大部分粮食的基础设施曾经做到了尽可能地高效。帝国的海上运输,在很大程度上依赖于奴隶。最后,削弱帝国经济的并不是基础设施,而是弱季风,因为弱季风大幅减少了尼罗河的洪水量,导致撒哈拉沙漠的范围北移了。跟同一时期以及此前的其他国家一样,面对那些影响到了全球广大地区且其中许多都发生在帝国疆域以外的重大气候变化时,罗马帝国也束手无策。

    工业化之前的中央集权国家,都特别容易受到特大干旱与其他气候变化的影响。像一系列弱季风或者突如其来的气候变化导致洪水冲毁了灌溉所用的沟渠,随后又是干旱(吴哥的情况就曾如此)之类的情况,都超出了统治者的能力范围;国家无论实力多么强大,都无法存续下去。这些国家有可能是从内部崩溃的,但转型的社会却从它们残余的部分中崛起;转型的社会也许更加分散,也许与新的长途贸易路线相连,但始终缺乏工业规模的基础设施来应对日益增加的脆弱性与风险。

    多个世纪以来,前工业文明的兴衰往往伴随着常见的经济与政治动荡。它们都很容易受到气候变化的影响,几乎无一例外。假如成功适应了气候变化,那就是它们在地方层面采取了适应措施,因为有能力的地方管理者可以集中食物供应、封锁各省边界,或者派遣工人去修建灌溉沟渠。大言不惭的古埃及州长安赫提菲,曾在其陵墓的墙壁上吹嘘过他在公元前 2180 年成功战胜了干旱的丰功伟绩。就算是有所夸张,我们也必须承认,此人清晰地认识到了成功适应的一大秘诀:地方性 措施的效果,往往比那些让许多人仍然陷于危险当中的宏伟计划大得多。追随安赫提菲的后人,则不断地创造和开发出解决问题的新方法。最终,这就导致了工业化,以及随之而来的更多技术。

    现代技术赋予了我们一种胜过前工业化时期那些祖辈的巨大优势。我们的技术能力如此之强,以至于我们能够登陆和探索月球、研究太平洋深处的海沟,以及涉足人工智能领域了。我们甚至到了这样的地步:许多人都天真地以为,技术可以解决气候变化的问题。确实,技术将有所帮助,古罗马的修路者和快速帆船的船长就曾受益于此;不过,我们由此付出的环境代价已经极其巨大,将来也仍会如此。找到应对未来气候挑战的方法,确实需要我们在技术解决方案上进行大力投入;但是,这种解决方案必须做到碳中和,且能够自我维持下去。这种投入将是长期的,既需要巨额资金,也需要改造社会,改变我们的自我管理和行事方式的政治意愿。控制全球气候变化的技术创新,很可能正在向我们走来,但实现这些创新的使命,却是未来数代人的巨大责任。与过去一样,创新会带来义务;只不过,如今这种情况达到了工业化之前的世界无法想象的规模而已。

    转折点

    有史以来第一次,适应气候变化既成了一个全球性问题,也成了一个地方性问题。此时,也正是历史遗产走上前台之时。过去其实一直与我们同在,既鼓励着我们,提醒我们注意无处不在的危险,也为我们提供了应对未来危机重重的气候之先例。古人的真知灼见,从来没有像今天这样重要过。有史以来第一次,人类正在造成巨大的气候变化,扰乱全球气候的自然循环。大气中的二氧化碳含量日益增加,全球持续加速升温,海平面上升定将淹没地处海边或者海拔接近海平面的繁荣发展着的众多城市,再加上人类长期的乱砍滥伐,导致在这个拥有 76 亿多人的世界上,到处都是破坏生态的现象。数以亿计的人,都生活在极端天气事件以及一些大江大河(比如尼罗河与密西西比河)出现剧变的威胁之下;这些剧变,都是人为造成的气候变化导致的。我们会陷入一连串潜在的气候灾难和生态灾难的重围,其中的大部分灾难也是人类活动的直接后果。这种情况,与安第斯人、印度河文明、中世纪的欧洲农民以及印度莫卧儿王朝面临的各种气候适应性变化都大不一样。如今,我们正处在一个必须面对史无前例和极其凶险的全球性气候变化的时刻。

    一些气候学家、生态学家、备受世人敬重的科学家,以及一些政府机构和国际组织,已经一再提醒我们注意未来的这种危机。不过,像古罗马皇帝尼禄一样,就在整个世界都有可能燃烧起来且不可逆地变暖的时候,我们却仍在歌舞升平、虚度光阴。世间如今几乎全然缺乏全球性的 领导力;这种领导力并非仅仅展望未来的几年或者几十年,而是放眼未来的一代代人,制定出全球性的战略,为我们的子孙后代创造出一个安全的世界。这是一种真正的全球性挑战,在人类历史上独一无二,的确将让我们和我们的后代付出极其高昂的代价。人类的未来岌岌可危,这种说法并不夸张。

    采取一致行动的时机即将到来。说得委婉一点,无视过去数十万年来人类适应气候变化的经验教训,是一种目光极其短浅的做法。

    前车之鉴

    那么,在适应气候变化方面,我们又从过去获得了一些什么样的经验教训呢?其实都是些非常简单的道理。

    第一,我们是人类,具有与每一代智人相同的行为特点,即前瞻性思维、长于规划与合作、能进行智力推理与创新等卓越的品质。在规划适应未来气候变化的措施之时,我们必须最大限度地发挥这些历久弥坚的品质;这些品质,会支撑我们为将来制订出具有决定性的适应规划。

    第二,我们在预测气候变化方面已经逐渐获得了一种非凡的、如今仍在迅速改善的专业知识。本书中所描述的古代社会,从来就没有得益于科学的天气预报、卫星观测、全面的气候替代指标以及计算机建模等技术;这些进步,已经彻底改变了我们对全球气候以及对大气与海洋之间无休无止、变幻莫测的相互作用的了解。古巴比伦人和其他民族曾经把观察天体当成预测天气的一种方法,却没有成功;欧洲中世纪的天文学家也是如此。气象学家休伯特·兰姆曾称,19世纪末期之前的天气预报都属于“教堂尖塔式的气象学”,也就是从高处对云层和其他天气征候进行的观察。

    完全科学的气象学,是20世纪和21世纪的产物。不过,如今仍然有许多至关重要的传统气候知识不显山不露水地留存了下来。古埃及的祭司们利用“尼罗尺”来测量和预测每年的泛滥水位。早期的欧洲水手,都看得出大风将起的迹象;加勒比海上的岛民与玛雅的占星家,有时能够发现飓风即将到来;太平洋上的航海者曾经利用波利尼西亚的盛行信风会转向 180°的特点,在厄尔尼诺现象期间向东航行。如今仍然挨着土地或者海洋生活的人们都拥有非凡的预测性知识,可我们常常忽视了这些知识。考虑到气候变化大多会造成的地方性影响,我们的做法是错误的。这种口耳相传的传统知识大多依然存在,因此需要我们在为时已晚之前加以搜集和整理。

    第三,在一心关注全球性气候变化的同时,我们还忘记了一点:大量适应气候变化的措施,其实都是一个地方性 领导力与行动的问题;无论是建造防波堤,还是把住宅迁往地势更高的地方,都不例外。如前文所述,我们不断看到气候变化带来的地方性影响,而各地成功适应气候变化的例子,也比比皆是。其中一个值得注意的例子,就是英格兰东南部的梅德梅里(Medmerry);此地过去经常被淹的沿海地带曾经屈服于海洋的威力,如今则变成了一个自然保护区。不管代价如何巨大,地方性的适应措施都至关重要;就算它们是全球性气候变化的结果,也是如此。

    第四,我们是一种社会性动物,这就意味着,在一个有着令人不快的气候危机的世界上,家庭与范围更广泛的亲族之间的纽带,以及社群与成员之间联系紧密的非营利性组织之间的关系,是一种非凡的生存机制,并且具有极其重要的作用。从一开始,这些关系就是人类历史中的组成部分。它们是人类最强大的一种适应武器,只是我们一直忽视了它们的巨大潜力。此外,作为一个定居世界里的社会性动物,我们往往会利用彼此、利用环境;为了显示我们的地位高人一等也好,实际上仅仅为了在资源有限、有时还很成问题的地方确保自己的生存也罢,我们都会这样干。在我们看来,许多战争可能都与资源冲突相关,而不管战争双方声称的意识形态或者宗教借口是什么。

    第五,我们生活在一个工业化的世界,拥有非凡的基础设施,它们在未来具有巨大的潜力。但我们常常忘记,无数人仍在靠着一季一季的收成为生,他们的水源供应往往变化无常,极易受到饥荒与干旱的影响。在极度干旱与饥荒时期放赈救灾的做法虽说可敬,却不是一剂长效的灵丹妙药。人们极少关注传统农业的运作方式以及传统农业中固有的、对当地环境的深入了解,这一点曾令我们深感震惊。美国西南部的普韦布洛农民、伯利兹的凯克奇玛雅人以及玻利维亚高原上的台田农民都是典型的例子,说明我们应当向这些在无人关注的情况下成功践行了多个世纪的传统农业学习。口耳相传的农业知识是过去留下来的一份强大遗产,如今却面临着消失的危险。

    第六,工业化之前的文明社会在面对气候危机时,都出现过显著的动荡。一次又一次,连一些强大有力的领袖在情况紧急时也曾犹豫不决,特别是在干旱与其他气候变化否定了他们身上种种公认的超自然力量的时候。那些幸存下来的人,不管是采取了行动还是深思熟虑地适应了业已改变的环境,都是坚决果断的领导人,都能够未雨绸缪并采取大胆的行动。秘鲁沿海的奇穆人当中,就曾有一些姓名不详的目光长远的头领。中国的历代皇帝当中,偶尔也出现过高瞻远瞩的帝王;只不过,他们的努力往往遭到了思想僵化的官僚阻挠。过去的经验提醒我们,长久成功地战胜气候变化的终极助力因素将是有魅力的威权式领导力;这种领导力能够超越国家利益,从真正的全球性视角来与气候变化做斗争。

    我们的起点,必须基于我们是一个由智人组成的全球性共同体这个现实,因为我们的未来依赖于那种不痴迷于选举周期和其他类似琐事的领导力。过去提醒我们,有史以来第一次,人类正面临着一种真正的、在过去300万年里从未碰到过的全球性挑战。原因就在于,是我们导致了这种挑战,而其影响将波及太多的人。本书希望通过考古学家与历史学家提供的证据,揭示过去气候变化的真相和人们生活的真实面貌。

    人类会不会存续下去呢?假如历史记载具有指导意义的话,那么我们应该会存续下去。只不过,我们需要去适应,或许还是不得不去适应。我们将面临无数挑战,并且几乎可以肯定,其中会有暴力与大量的伤亡。过去提醒我们:人类既灵巧又具有创造力,能够经受比古时更加严峻的考验。回首历史的时候,由于我们如今能够用前人做梦也想不到的方式来进行回顾,所以我们就能看出过去哪些方面有效,哪些方面无效。不过,或许最重要的是,作为一个物种,我们显然需要团结与合作。人类将存续下去,而其中的一个原因就在于,我们已经理解了人类与世界上不断变化的气候之间的复杂关系。过去并非他乡,而是我们所有人的一部分,掌握着开启未来的钥匙。

    [1] Raphael Meukom et al., “No Evidence for Globally Coherent Warm and Cold Periods over the Preindustrial Common Era,” Nature 571 (2019): 550–554.
    [2] “过去有如他乡”(“The past is a foreign country”): L. P. Hartley, The Go Between (New York: New York Review Book Classics, 2011)。David Lowenthal, The Past Is a Foreign Country, 2nd ed. (Cambridge: Cambridge University Press, 2015),是最近对这个主题进行讨论的一部作品。
    [3] 要想了解全球变暖的方方面面与潜在的解决之道,最有效的办法就是参见Paul Hawken, ed., Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming (New York: Penguin Books, 2017)。这部非凡之作中的论文,提供了一些观点与可能的解决办法;它们虽说有时极其简单,但总是具有前瞻性。

  • Venki Ramakrishnan《Why We Die: The New Science of Aging and the Quest for Immortality》

    Table of Contents
    Introduction
    1. The Immortal Gene and the Disposable Body
    2. Live Fast and Die Young
    3. Destroying the Master Controller
    4. The Problem with Ends
    5. Resetting the Biological Clock
    6. Recycling the Garbage
    7. Less Is More
    8. Lessons from a Lowly Worm
    9. The Stowaway Within Us
    10. Aches, Pains, and Vampire Blood
    11. Crackpots or Prophets?
    12. Should We Live Forever?
    Acknowledgements
    Notes
    Index

    Introduction

    Almost exactly one hundred years ago, an expedition led by the Englishman Howard Carter unearthed some long-buried steps in the Valley of Kings in Egypt. The steps led to a doorway with royal seals, signifying that it was the tomb of a pharaoh. The seals were intact, meaning that nobody had entered for more than three thousand years. Even Carter, a seasoned Egyptologist, was awestruck by what they found inside: the mummified young pharaoh Tutankhamun, with his magnificent gold funerary mask, kept company in the tomb for millennia by a wealth of ornate and beautiful artifacts. The tombs had been secured shut so that mere mortals could not enter—the Egyptians had gone to enormous efforts to create objects never intended to be seen by other people.

    The splendor of the tomb was part of an elaborate ritual aimed at transcending death. Guarding the entrance to a room of treasures was a gold and black statue of Anubis, the jackal-headed god of the underworld, whose role is described in The Egyptian Book of the Dead. A scroll of the book was often placed in the pharaoh’s sarcophagus. We may be tempted to think of it as a religious work, but it was more akin to a travel guide, containing instructions for navigating the treacherous underworld passage to reach a blissful afterlife. In one of the final tests, Anubis weighs the heart of the deceased against a feather. If the heart is found to be heavier, it is impure, and the person is condemned to a horrible fate. But if the examinee is pure, he would enter a beautiful land filled with eating, drinking, sex, and all the other pleasures of life.

    The Egyptians were hardly alone in their beliefs of transcending death with an eternal afterlife. Although other human cultures may not have constructed such elaborate monuments as the Egyptians did for their royalty, all of them had beliefs and rituals around death.

    It is fascinating to consider how we humans first became aware of our mortality. That we are aware of death at all is something of an accident, requiring the evolution of a brain that is capable of self-awareness. Very likely it needed the development of a certain level of cognition and the ability to generalize as well as the development of language to pass on that idea. Lower life forms and even complex ones such as plants, don’t perceive death. It simply happens. Animals and other sentient beings may instinctively fear danger and death. They recognize when one of their own has died, and some are even known to mourn them. But there is no evidence that animals are aware of their own mortality. I do not mean being killed by an act of violence, an accident, or a preventable illness. Instead, I mean the inevitability of death.

    At some point, we humans realized that life is like an eternal feast that we join when we are born. While we are enjoying this banquet, we notice others arriving and departing. Eventually it is our turn to leave, even though the party is still in full swing. And we dread going out alone into the cold night. The knowledge of death is so terrifying that we live most of our lives in denial of it. And when someone dies, we struggle to acknowledge that straightforwardly, and instead use euphemisms such as “passed away” or “departed,” which suggest that death is not final but merely a transition to something else.

    To help humans cope with their knowledge of mortality, all cultures have evolved a combination of beliefs and strategies that refuse to acknowledge the finality of death. Philosopher Stephen Cave argues that the quest for immortality has driven human civilization for centuries. He classifies our coping strategies into four plans. The first, or Plan A, is simply to try to live forever or as long as possible. If that fails, then Plan B is to be reborn physically after you die. In Plan C, even if our body decays and cannot be resurrected, our essence continues as an immortal soul. And finally, Plan D means living on through our legacy, whether that consists of works and monuments or biological offspring.

    All of humanity has always incorporated Plan A into their lives, but cultures differ in the extent to which they fall back on the other plans. In India, where I grew up, Hindus and Buddhists gladly embrace Plan C, and the idea that each person has an immortal soul that lives on after death by being reincarnated in a new body, even in a completely different species. The Abrahamic religions, Judaism, Christianity, and Islam, subscribe to both Plans B and C. They believe in an immortal soul but also in the idea that we will rise bodily from the dead and be judged at some point in the future. Perhaps this is why traditionally these religions insisted on burial of the intact body and forbade cremation.

    Some cultures, such as the ancient Egyptians, hedged their bets by incorporating all four plans into their belief systems. In grandiose tombs, they mummified the corpses of their pharaohs so that they might rise up bodily in the afterlife. But they also believed in a soul, called Ba, that represents the essence of the person and survives death. The first emperor of a unified China, Qin Shi Huang, took a similarly multipronged approach to immortality. Having escaped many attacks on his life, conquered warring states, and consolidated his power, he turned his attention to seeking the elixir of life. He sent emissaries to pursue even the faintest rumors of its existence. Facing certain execution for their failure to find it, many quite sensibly absconded and were never heard from again. In an extreme combination of Plans B and D, Qin also ordered the construction of a city-sized mausoleum for himself in Xian, employing 700,000 men in the process. The tomb contained an army of 7,000 terra-cotta warriors and horses—all meant to guard the deceased emperor until he could be reborn. Qin died at the age of forty-nine in 210 BCE. Ironically, it may have been toxic potions taken to prolong his life that ultimately cut it short.

    Our ways of coping with death began to change with the arrival of the Enlightenment and modern science in the eighteenth century. The growth of rationality and skepticism means that although many of us still hang on to some forms of Plans B and C, deep down we have become less sure they are real alternatives. Our focus has shifted toward finding ways to stay alive and preserving our legacy after we die.

    It is a curious facet of human psychology that even if we accept that we ourselves will be gone, we feel a strong need to be remembered. Today, instead of constructing tombs and monuments, the very rich engage in philanthropy, endowing buildings and foundations that will long outlast them. Throughout the ages, writers, artists, musicians, and scientists have sought immortality through their works. Ultimately, however, living on through our legacy is not an entirely satisfying prospect.

    If you are neither a powerful monarch or billionaire, nor an Einstein, do not despair. The other way to leave a legacy and be remembered is accessible to nearly all living things, which is to live on through our offspring. The desire to procreate so that some part of us will live on is one of the strongest biological instincts to have evolved, and is so central to life that we will have much more to say about it later. But even though we love our children and grandchildren and want them to live on long after we are gone, we know that they are separate beings with their own consciousness. They are not us.

    Nevertheless, most of us do not live in constant existential angst about our mortality. Rather, our brains appear to have evolved a protection mechanism by thinking of death as something that happens to other people, not ourselves. A separation of the dying reinforces the delusion. Unlike the past, when we were confronted by people dying all around us, today people often die in care homes and hospitals, isolated from the rest of the population. As a result, most of us, especially young people, go about our daily lives acting as though we are immortal. We work hard, engage in hobbies, strive after long-term goals—all useful distractions from potential worry about dying. However, no matter what tactics we employ, we cannot fully escape awareness of our mortality.

    And that brings us back to Plan A. The one strategy that all sentient beings have had in common for millions of years is simply to try to stay alive for as long as possible. From a very young age, we instinctively avoid accidents, predators, enemies, and disease. Over millennia, that universal desire led us to protect ourselves from attacks by forming communities and fortifications and developing weapons and maintaining armies; but it also led to the search for potions and cures and eventually to the development of modern medicine and surgery.

    For centuries, our life expectancy hardly changed. But over the last 150 years, we have doubled it, primarily because we better understood the causes of disease and its spread, and improved public health. This progress allowed us to make enormous strides in extending our average life span, largely as a result of reducing infant mortality. But extending maximum life span—the longest we can expect to live even in the best of circumstances—is a much tougher problem. Is our life span fixed, or could we slow down or even abolish aging as we learn more about our own biology?

    Today the revolution in biology that began with the discovery of genes more than a hundred years ago has led us to a crossroads. For the first time, recent research on the fundamental causes of aging is raising the prospect not merely of improving our health in old age but also of extending human life span.

    Demographics is driving a huge effort to identify the causes of aging and to find ways to ameliorate its effects. Much of the world is faced with a growing elderly population, and keeping them healthy for as long as possible has become an urgent social imperative. The result is that after a long period in which it was a scientific backwater, aging research—or gerontology—has taken off.

    In the last ten years alone, more than 300,000 scientific articles on aging have been published. More than 700 start-up companies have invested a combined many tens of billions of dollars to tackle aging—and this is not counting large, established pharmaceutical companies that have programs of their own.

    This enormous effort raises a number of questions. Could we eventually cheat disease and death and live for a very long time, possibly many times our current life span? Certainly some scientists make that claim. And California billionaires, who love their lifestyles and don’t want the party to end, are only too willing to fund them.

    The immortality merchants of today—the researchers who propose trying to extend life indefinitely and the billionaires who fund them—are really a modern take on the prophets of old, promising a long life largely free of the fear of encroaching old age and death. Who would have this life? The tiny fraction of the population who could afford it? What would be the ethics of treating or modifying humans to achieve this? And if it becomes widely available, what sort of society would we have? Would we be sleepwalking into a future without considering the potential social, economic, and political consequences of humans living well beyond our current life spans? Given recent advances and the enormous amount of money pouring into aging research, we must ask where this research is leading us, as well as what it suggests about the limits of human beings.

    The coronavirus pandemic that hit the world in late 2019 is a stark reminder that nature does not care about our plans. Life on Earth is governed by evolution, and we are yet again reminded that viruses have been here long before humans, are highly adaptable, and will be here long after we are gone. Is it arrogant to think that we can cheat death using science and technology? If it is, what should our goals be instead?

    I have spent most of my long career studying the problem of how proteins are made in the cells that make up our body. The problem is so central that it impinges on virtually every aspect of biology, and over the last few decades, we have discovered that much of aging has to do with how our body regulates the production and destruction of proteins. But when I started my career, I had no idea that anything I did would be connected with the problem of why we age and die.

    Although fascinated by the explosion in aging research that has led to some very real breakthroughs in our understanding, I have also watched with growing alarm the enormous amount of hype associated with it, which has led to widespread marketing of dubious remedies that have a highly tenuous connection with the actual science. Yet they continue to flourish because they capitalize on our very natural fear of growing old and disabled and eventually dying.

    That natural fear is also the reason that growing old and facing death is the subject of innumerable books. They fall into a few categories. There are books that provide practical advice on how to age healthily; some are sensible, while others border on snake oil. Others are about how to face our mortality and accept our end gracefully. These serve both a philosophical and moral purpose. Then there are books that delve into the biology of aging. These too fall into a couple of categories. They are written either by journalists or by scientists who have considerable personal stake in the form of their own start-up anti-aging companies. This book is not any of these.

    Considering how rapidly the field is advancing, the enormous amount of both public and private money invested in it, and the resulting hype, I thought it was an appropriate moment for someone like me, who works in molecular biology but has no real skin in the game, to take a hard, objective look at our current understanding of aging and death. Because I know many of the leading figures in this area personally, I have been able to have many frank conversations to gain an honest and deeper understanding of how they see aging research in its many aspects. I have deliberately refrained from talking to those scientists who have made their positions clear in their own books, especially when they are also tied closely to commercial ventures on aging, but I have discussed their highly publicized views.

    Given the pace of discovery, any book that focuses just on the most recent aging research would be out of date even before it was published. Moreover, the most recent discoveries in any area of science often do not hold up to scrutiny and have to be revised or discarded. Accordingly, I have tried to concentrate on some of the essential principles behind the most promising approaches to understanding and tackling aging. These principles should not only stand the test of time, but also help readers realize how we got to our present state of knowledge. I also give a historical background to some of the basic research that led to our current understanding. It is both fascinating and important to realize how much of what we know began with scientists studying some completely different fundamental problem in biology.

    I said I have no skin in the game, but, of course, all of us do. We are all concerned about how we will face the end of life—less so when we are young and feel immortal, but more so at my age of seventy-one, when I find that I can do only with difficulty, or not at all, things I could do easily even just ten or twenty years ago. It sometimes feels that life is like being constrained to a smaller and smaller portion of a house, as doors to rooms that we would like to explore slowly close shut as we age. It is natural to ask what the prospects are that science can pry those doors open again.

    Because aging is connected intimately with so many biological processes, this book is also something of a romp through a lot of modern molecular biology. It will take us on a journey through the major advances that have led to our current understanding of why we age and die. Along the way, we will explore the program of life governed by our genes, and how it is disrupted as we age. We will look at the consequences of that disruption for our cells and tissues and ultimately ourselves as individual beings. We will examine the fascinating question of why even though all living creatures are subject to the same laws of biology, some species live so much longer than even closely related ones, and what this might mean for us humans. We will take a dispassionate look at the most recent efforts being made to extend life span and whether they live up to their hype. I will also challenge some fashionable ideas, such as whether we do our best work in old age. I hope to probe, as well, the crucial ethical question that runs beneath anti-aging research: Even if we can, should we?

    The first step in our journey is to think about what exactly death is, the many ways it can manifest itself, and explore the fundamental question of why we die.

      1. The Immortal Gene and the Disposable Body

        Whenever I walk along the streets of London, I never cease to be amazed by a city where millions of people can work, travel, and socialize so seamlessly. A complex infrastructure, and hundreds of thousands of people, all work in concert to make it possible: the London Underground and buses to move us around the city; the post office and courier services to deliver the mail and goods; the supermarkets that supply us with food; the power companies that generate and distribute electricity; and the sanitation services that keep the city clean and remove the enormous quantities of waste we produce. As we go about our business, it is easy to take for granted this incredible feat of coordination that we call a civilized society.

        The cell, our most basic form of life, has a similarly complex choreography. As the cell forms, it builds elaborate structures like the parts of a city. Thousands of synchronized processes are required to keep it functioning. It brings in nutrients and exports waste. Transporter molecules carry cargo from where they are made to distant parts of the cell where they are needed. Just as cities cannot exist in isolation but must exchange goods, services, and people with surrounding areas, the cells of a tissue need to communicate and cooperate with neighboring cells. Unlike cities, whose growth is not always constrained, the cell needs to know when to grow and divide but also when to stop doing so.

        The complex organization of a cell has similarities to a city. Only some of the major components are shown, and for clarity, they are not drawn to scale.

        Throughout history, cities were imagined by their inhabitants to be permanent. We don’t go about our lives thinking that the city we live in will one day cease to exist. Yet cities and entire societies, empires, and civilizations grow and die just as cells do. When we talk about death, we aren’t usually thinking about these other kinds of death; we mean as it occurs to each one of us as individuals. But it turns out to be tricky even to define an individual, let alone what we mean by its birth or death.

        At the moment of our death, what exactly is it that dies? At this point, most of the cells in our body are still alive. We can donate entire organs, and they work just fine in someone else if transplanted quickly enough. The trillions of bacteria, which outnumber the human cells in our body, continue to thrive. Sometimes the reverse is also true: suppose we were to lose a limb in an accident. The limb would certainly die, but we don’t think of ourselves as dying as a result.

        What we really mean when we say we die is that we stop functioning as a coherent whole. The collection of cells that forms our tissues and organs all communicate with one another to make us the sentient individuals we are. When they no longer work together as a unit, we die.

        Death, in the inevitable sense we are considering in this book, is the result of aging. The simplest way to think of aging is that it is the accumulation of chemical damage to our molecules and cells over time. This damage diminishes our physical and mental capacity until we are unable to function coherently as an individual being—and then we die. I am reminded of the quote from Hemingway’s The Sun Also Rises, in which a character is asked how he went bankrupt, and he replies, “Two ways. Gradually, then suddenly.” Gradually, the slow decline of aging; suddenly, death. The process of aging can be thought of as starting gradually with small defects in the complex system that is our body; these lead to medium-sized ones that manifest as the morbidities of old age, leading eventually to the system-wide failure that is death.

        Even then, it is hard to define exactly when this happens. Death used to mean when someone’s heart stopped beating, but today cardiac arrest can often be reversed by CPR. The loss of brain function is now taken as a more direct sign of death, but there are hints that even that can sometimes be reversed. Differences in the precise legal definition of death can have very real consequences. Harvesting organs for donation from two persons in two different US states could be perfectly legal in one and murder in the other, even if they were both considered dead using identical criteria. A girl who was declared brain dead in Oakland, California, was considered alive by the standards of New Jersey, where her family lived. Her family petitioned and eventually had her body transported with its life support equipment to New Jersey, where she died a few years later.

        If the precise moment of our death is ill-defined, so too is the moment of our birth. We exist before we emerge from the womb and take our first breath. Many religions consider conception to be the beginning of life, but conception too is a fuzzy term. Rather, there is a window of time after a sperm has made contact with the surface of an egg during which a series of events has to take place before the genetic program of the fertilized egg is set into motion. After that, there is a multiday window during which the fertilized egg undergoes a few divisions, and the embryo—now called a blastocyst—has to implant itself in the lining of the womb. Still later, the beginning of a heart develops, and only long after that, with the development of a nervous system and its brain, can the growing fetus sense pain.

        The question of when life begins is as much a social and cultural question as it is a scientific one, as can be seen by the continuing debate over abortion. Even in many countries where abortion is legal, including the United States and the United Kingdom, it is a crime to grow embryos for research beyond fourteen days, which corresponds roughly to the time when a groove called the primitive streak appears in the embryo and defines the left and right halves. After this stage, the embryo can no longer split and develop into identical twins. Although we think of birth and death as instantaneous events—in one instant we come into existence and in another we cease to exist—the boundaries of life are blurry. The same is true of larger organizational units. It is hard to pinpoint the exact time when a city came into existence or when it crumbled.

        Death can occur at every scale, from molecules to nations, but there are common features of the growth, aging, and demise of these very different entities. In every case, there is a critical moment when the component parts no longer allow the organic whole to function. Molecules in our cells work in a coordinated way to allow the cell to function, but they themselves can suffer chemical damage and eventually break down. If the molecules are involved in vital processes, their cells will themselves begin to age and die. Moving up the scale hierarchy, the trillions of cells in a human being carry out their specialized duties and communicate with one another to allow an individual to function. Cells in our body die all the time, with no adverse effects. In fact, during the growth of an embryo, many cells are programmed to die at precise points of development—a phenomenon called apoptosis. But when enough essential cells die, whether in the heart or the brain or some equally critical organ, then the individual can no longer function and dies.

        We human beings are not so different from our cells. We carry out roles in groups: companies, cities, societies. The departure of one employee will not normally affect the functioning of a large company, and even less that of a city or a country, just as the death of a single tree says nothing at all about the viability of a forest. But if key employees, such as the entire senior management, were to leave suddenly, the health and future of the company would be in doubt.

        It is also interesting to see that longevity increases with the size of the entity. Most of the cells in our body have died and been replaced many times before we ourselves die, while companies tend to have much shorter life spans than the cities in which they operate. The principle of safety in numbers has driven the evolution of both life and societies. Life probably began with self-replicating molecules, which then organized in closed compartments that we know as cells. Some of those cells then banded together to form individual animals. Then animals themselves organized into herds—or, in our case, communities, cities, and nations. Each level of organization brought greater safety and a more interdependent world. Today hardly any of us could survive on our own.

        STILL, WHEN WE THINK OF DEATH, we are generally thinking about our own: the end of our conscious existence as an individual. There is a stark paradox about that kind of death: although individuals die, life itself continues. I don’t mean just in the sense that our family, community, and society will all go on without us. Rather, it is remarkable that every creature alive today is a direct descendant of an ancestral cell that existed billions of years ago. So, although changing and evolving with time, some essence in all of us has lived continuously for a few billion years. That will continue to be true for every living thing for as long as life survives on Earth, unless we one day create an entirely artificial form of life.

        If there is a direct line of succession from us to our ancient ancestors, then there must be something about each of us that doesn’t die. That something is information on how to create another cell or an entirely new organism, even after the original carrier of that information has died—just as the ideas and information here can persist in some form long after the physical copy of this book has deteriorated.

        The information to continue life resides, of course, in our genes. Each gene is a section of our DNA, and is stored in the form of chromosomes in the nucleus, the specialized compartment that encapsulates genetic material in our cells. Most of our cells contain the same entire set of genes, known collectively as our genome. Every time our cells divide, they pass on the entire genome to each of the daughter cells. The vast majority of these cells are simply part of our body and will die with it. But some of our cells will outlive our body by developing into our children—the new individuals that make up the next generation. So what is special about these cells that allows them to live on?

        The answer to this settled a raging controversy, one that came long before our knowledge of genes, let alone DNA. When people first began to accept that species could evolve, two opposing views emerged. The first, advanced by the Frenchman Jean-Baptiste Lamarck in the early nineteenth century, held that acquired characteristics could be inherited. For example, if a giraffe were to keep stretching its neck to reach higher branches for leaves to eat, its offspring would inherit the resulting longer neck. The second theory was natural selection, proposed by a pair of British biologists, Charles Darwin and Alfred Wallace. In this view, giraffes were variable, some with longer necks and others with shorter. Those with longer necks were more likely to find nourishment and thus be able to survive and have offspring. Progressively, with each generation, variants with longer and longer necks would be selected.

        A relative outsider working in what was then the Malay Archipelago, thirty-five-year-old Alfred Wallace wrote to Darwin in 1858 expressing his ideas, not realizing that the older man had himself come to the same conclusion many years earlier. Because these ideas were so revolutionary, and had social and religious implications, Darwin had not yet summoned the courage to publish them, but the communication from Wallace spurred him into action. Darwin was at the heart of the British scientific establishment, and had he been less scrupulous, he could have simply ignored Wallace’s letter and hurriedly published his book. Nobody would have ever known Wallace’s name. Instead, Darwin arranged for himself and Wallace to make a joint presentation at the Linnean Society of London on July 1, 1858. The response to the lecture itself was relatively muted and had little immediate impact. In what was one of the worst pronouncements in the history of science, the society’s president said in his annual address, “The year has not, indeed, been marked by any of those striking discoveries which at once revolutionize, so to speak, the department of science on which they bear.” However, the lecture paved the way for the publication of Darwin’s book On the Origin of Species the following year, which changed our understanding of biology forever.

        In 1892, thirty-three years after Darwin’s monumental tract was published, the German biologist August Weismann posited a neat rebuttal of Lamarck’s ideas. Although humans have known for a very long time that sex and procreation were connected, it is only in the last 300 years that we discovered that the key event is the fusion of a sperm with an egg to start the process. The fertilization of an egg by a sperm results in the seemingly miraculous creation of an entirely new individual. The individual consists of trillions of cells that carry out nearly all of the functions of the body and die with it. They are known collectively as somatic cells, from soma, the Latin and Greek word for “body.” The sperm and the egg, on the other hand, are germ-line cells. They reside in our gonads, which are testes in males and ovaries in females. And they are the sole transmitters of heritable information: our genes. Weismann proposed that germ-line cells can create the somatic cells of the next generation, but the reverse can never happen. This separation between the two kinds of cells is called the Weismann barrier. So if a giraffe stretches its neck, it might affect various somatic cells that make up its neck muscles and skin, but these cells would be incapable of passing on any changes to its offspring. The germ-line cells, protected in the gonads, would be impervious to the activities of the giraffe and any characteristics its neck acquired.

        The germ-line cells that propagate our genes are immortal in the sense that a tiny fraction of them are used to create the next generation of both somatic and germ-line cells by sexual reproduction, which effectively resets the aging clock. In each generation, our bodies, or our soma, are simply vessels to facilitate the propagation of our genes, and they become dispensable once they have fulfilled their purpose. The death of an animal or a human is really the death of the vessel.

        WHY DOES DEATH EVEN EXIST? Why don’t we simply live forever?

        The twentieth-century Russian geneticist Theodosius Dobzhansky once wrote, “Nothing in biology makes sense except in the light of evolution.” In biology, the ultimate answer to a question about why something occurs is because it evolved that way. When I first began to consider the question of why we die, I thought naively that perhaps death was nature’s way of allowing a new generation to flourish and reproduce without having older ones hanging around to compete with it for resources, thus better ensuring the survival of the genes. Moreover, each member of a new generation would have a different combination of genes than its parents, and the constant reshuffling of life’s deck of cards would help facilitate survival of the species as a whole.

        This idea has existed at least since the Roman poet Lucretius, who lived in the first century BCE. It is appealing—but it’s also wrong. The problem is that any genes that benefit the group at the expense of the individual cannot be stably maintained in the population because of the problem of cheaters. In evolution, a “cheater” is any mutation that benefits the individual at the expense of the group. For example, let us suppose there are genes that promote aging to ensure that people die off in a timely way to benefit the group. If an individual had a mutation that inactivated those genes and lived longer, that person would have more opportunity to have offspring, even though it did not benefit the group. In the end, the mutation would win out.

        Unlike humans, many insects and most grain crops reproduce only once. Species such as the soil worm Caenorhabditis elegans, as well as salmon, produce lots of offspring in one big bang and die in the process, often recycling their own bodies as a form of suicide. This kind of reproductive behavior makes sense for worms, which usually live as inbred clones and are therefore genetically identical to their offspring. On the other hand, the reproductive behavior of salmon is a result of their life cycle: they have to swim thousands of miles in the ocean before returning to spawn. With little chance of surviving such a journey twice, they are better served by putting everything they can into breeding just once, using up their entire energy and even dying in the process, to produce enough offspring and maximize the chance that those offspring survive. For species that can reproduce multiple times, like humans, flies, or mice, it would not make genetic sense to die in the act of producing offspring to which they are only 50 percent related. In general, natural selection rarely acts for the good of species or even groups. Rather, nature selects for what evolutionary biologists call fitness, or the ability of individuals to propagate their genes.

        If the goal is to ensure that our genes are passed on, why has evolution not prevented aging in the first place? Surely the longer humans survive, the more chance we have of producing offspring. The short answer is that through most of our history as a species, our lives were short. We were generally killed by an accident, disease, predator, or a fellow human before our thirtieth birthday. So there was no reason for evolution to have selected us for longevity. But now that we have made the world safer and healthier for us, why don’t we just keep living on?

        The solution to this puzzle began in the 1930s with two members of the British scientific elite, J. B. S. Haldane and Ronald Fisher. Haldane was a polymath who worked on everything from the mechanisms of enzymes to the origin of life. He was a socialist who late in life became disillusioned with Britain and emigrated to India, where he died. Fisher’s fundamental contributions to statistics have propelled our understanding of evolution and also form the basis of randomized clinical trials that are used to test the efficacy of new drugs or medical procedures and have saved millions of lives. More than fifty years after his death in 1962, he became controversial for his views on eugenics and race. A stained glass window that portrayed one of Fisher’s key ideas for the design of experiments was recently removed by Gonville and Caius College in Cambridge, where he was once a fellow, and its final disposition is still uncertain.

        Around the same time, Fisher and Haldane independently came up with a revolutionary idea. A mutation that is harmful early in life, each realized, would be strongly selected against because those who carry it would not reproduce. However, the same could not be said for a gene that is deleterious to us only later in life, because by the time it causes harm, we will already have passed it on. For most of our history as a species, we would not have even noticed its harmful consequences, because long before these effects would be felt, we would have died. It is only relatively recently that we have become aware of the consequences of any mutations that are detrimental late in life. Huntington’s disease, for example, primarily affects people over thirty, by which time, historically, most of them would have already reproduced and died.

        Fisher’s and Haldane’s ideas explain why certain deleterious genes persist in the human population, but their relevance to aging was not immediately obvious. That understanding came when British biologist Peter Medawar, another brilliant and colorful figure, turned his attention to the problem. Medawar, born in Brazil, was most famous for his ideas of how the immune system rejects organ transplants and acquires tolerance. Unlike many scientists who focus narrowly on one area, Medawar, like Haldane, had widespread interests, and wrote books that were famous for their erudition and elegant writing. Many scientists of my generation grew up reading his Advice to a Young Scientist (1981), which I found pompous, arrogant, thoughtful, engaging, and witty all at once.

        Medawar proposed what has become known as the mutation accumulation theory of aging. Even if a person harbored multiple genetic mutations that didn’t noticeably impair health early on, in combination they brought about chronic problems later in life, resulting in aging.

        Going one step further, the biologist George Williams suggested that aging occurs because nature selects for genetic variants, even if they are deleterious later in life, because they are beneficial at an earlier stage. This theory is called antagonistic pleiotropy. Pleiotropy is simply a fancy term for a situation in which a gene can exert multiple effects. So antagonistic pleiotropy means that the same gene could have opposite effects; with genes involved in aging, the effects could occur at different times, such as being helpful early in life and problematic later. For example, genes that help us grow early in life increase the risk of age-related diseases such as cancer and dementia when we are old.

        Similarly, the disposable soma hypothesis posits that an organism with limited resources must apportion them between investing in early growth and reproduction and prolonging life by continuously repairing wear and tear in the cell. According to biologist Thomas Kirkwood, who first proposed this theory in the 1970s, the aging of an organism is an evolutionary trade-off between longevity and increased chances of passing on its genes through reproductive success.

        Is there any evidence for these various ideas about aging? Scientists have experimented on fruit flies and worms, two favorite organisms because they are easy to grow in the laboratory and have short generation times. Exactly as these theories would predict, mutations that increase life span reduce fecundity (the rate at which an organism produces offspring). Similarly, reducing the caloric intake of the daily food given to these organisms also increases life span and reduces fecundity.

        Apart from the ethics of experimenting on humans, the two to three decades between generations is too long for a typical academic career, let alone the handful of years a graduate student or research fellow might stick around. But an unusual analysis of British aristocrats over the past 1,200 years shows that among women who survived beyond sixty (to weed out factors such as disease, accidents, and dying in childbirth), those with fewer children lived the longest. The authors argue that in humans too, there is an inverse relationship between fecundity and longevity, although, of course, as any harried parent knows, there could have been many other reasons why having fewer children extends life expectancy.

        THE INCREASE IN OUR LIFE span over the last century brings us to another curious feature of aging that is almost unique to humans: menopause. With the exception of a few other species, including killer whales, most female animals can reproduce almost to the end of their lives, whereas women suddenly lose the ability in midlife. The abruptness of this change in women, as opposed to the more gradual decline in male fertility, is also strange.

        You might think that if evolution selects for our ability to pass on our genes, it should want us to reproduce for as much of our lives as possible. So why do women stop reproducing relatively early in life?

        This may be asking the wrong question. Our closest relatives, such as the great apes, all stop having babies about the same age that we do: the late thirties. The difference is that they generally die soon afterward. And for most of human history, most women too died soon after menopause, if not earlier. Perhaps the real question is not why menopause occurs so early in life but why women live so long afterward.

        People cannot be sure they have reproduced in the sense of passing on their genes until their youngest child has become self-sufficient, and humans have a particularly long childhood during which they are dependent on their parents. Menopause may have arisen to protect women from the increased risk of childbirth in later age, keeping them alive longer to take care of the children they had already. This might also explain why men—who don’t suffer such an increased risk—can be reproductive until much later in life. So perhaps menopause developed as an adaptation to maximize the chances of a woman’s children growing up—and thus propagating her genes. This is the so-called good mother hypothesis. Indeed, the few species where females live well beyond their reproductive years are ones whose offspring require extended maternal care. However, even in these species, there is a gradual loss of fertility rather than the abrupt change brought on by menopause. For example, although the fertility of elephants declines with age, they, unlike humans, can continue to have offspring until very late in life. Similarly, while living beyond childbearing age has also been observed in chimpanzees, menopause actually occurs near the end of their life span.

        The grandmother hypothesis for the origin of menopause takes the idea one generation further. Proposed by the anthropologist Kristen Hawkes, it argues that living longer makes sense if a woman helps in the care of her grandchildren, thus improving their survival and ability to reproduce. But others contend that it is rarely better for a woman to give up the chance to pass on half her genes through continuing to have her own children for the sake of improving the survival of grandchildren, who only carry a quarter of her genes.

        Another idea, based on studying killer whales, one of the few species that, like humans, has true menopause and lives in groups, is that menopause is a way to avoid intergenerational conflict. In some species that breed in groups, reproduction is suppressed in younger females, who act as helpers to older, reproducing females. But in humans, there is little overlap: women stop breeding when the next generation starts to breed. Women would have no interest in helping their mother-in-law have more children, since they would not have any genes in common. But a woman who helps her daughter-in-law reproduce will help to bequeath a quarter of her genes to her grandchildren. So her best strategy may be to stop breeding and help her daughter-in-law breed instead.

        It could also simply be that the number of eggs in a female evolved to match its average life span in the wild. Steven Austad, now at the University of Alabama in Birmingham, points out that menopause may not be adaptive at all in the sense of favoring mothering or grandmothering. It was only about forty thousand years ago that we became much longer lived than Neanderthals and chimpanzees. So perhaps there has just not been enough time for the aging of human ovaries to adapt to that increased life span. In the absence of hard experiments, scientists, especially evolutionary biologists, love to argue.

        THESE THEORIES OF WHY WE age depend on the idea of a disposable body being able to pass on its genes before it ages and dies. In doing so, the aging clock is somehow reset with each generation. Such theories should apply only to organisms where there is a clear distinction between parents and offspring. Certainly that distinction is true for all sexual reproduction. Sex evolved because it is an efficient mechanism to produce genetic variation in the offspring by generating different combinations of genes from each parent, allowing organisms to adapt to changing environments. In some sense, you could say that death is the price we pay for sex! While this may be a catchy statement, not all animals with a distinction between germ line and soma reproduce sexually. Moreover, scientists have found that even single-celled organisms such as yeast and bacteria age and die, as long as there is a clear distinction between mother and daughter cells.

        The laws of evolution apply to all species, and all life forms are made up of the same substances. Biologists from Darwin onward have never ceased to be amazed that evolution, which is simply selecting for fitness—or the efficiency with which each species can pass on its genes—has given rise to the amazing variety of life forms on Earth. That variety includes a huge range of life spans, from those best measured in hours to those that may stretch more than a century. For human beings seeking to understand the potential limits of our own longevity, some surprising lessons can be learned from species across the animal kingdom.

        2. Live Fast and Die Young

        In springtime, my wife and I will often take a walk in Hardwick Wood near Cambridge to see the riot of bluebells that cover the forest ground. Once, we were walking along a path when we came upon a stone monument commemorating Oliver John Hardiment, a young man who died in 2006 at the age of twenty-five. Below his name was a quotation from the Indian writer Rabindranath Tagore: “The butterfly counts not months but moments and has time enough.”

        The life of a butterfly can be as short as a week, and most live less than a month. As I considered the fleetingly short life of a typical butterfly, I was reminded of the contrast with something else that had fascinated me. I have often visited the American Museum of Natural History in New York, where there is an enormous section of the trunk of a giant sequoia tree. The tree was more than 1,300 years old when it was cut down in 1891. Some yew trees in Britain are estimated to be over 3,000 years old.

        Of course, trees are fundamentally different from us because of their ability to regenerate. In the Cambridge University Botanic Garden there is an apple tree that was grown from a cutting from the tree under which a young Isaac Newton sat a few hundred years ago about a hundred miles north at Woolsthorpe Manor, the Newton family home. In fact, there are several “Newton” trees, all started as cuttings from the one with the famous apple that fell to the ground, allegedly inspiring Newton to formulate the theory of gravity. The question of whether these trees should be dated back to the root system of the original is interesting, but it is different from looking at the life span of animals.

        Even in the animal kingdom, there are some species that possess tree-like properties. If you cut off one of a starfish’s arms, it can grow right back. A small aquatic animal called a hydra is even more impressive: it doesn’t seem to age at all and is able to regenerate tissue continuously. Still, it is a complex procedure. One study showed that a large number of genes are involved just for regenerating its head. All this for an organism that is barely half an inch in length.

        If the hydra is remarkable, it is related to another sea dweller that can age backward—at least metaphorically. That species is Turritopsis dohrnii, also known as the immortal jellyfish. This jellyfish, when faced with injury or stress, will metamorphose into an earlier stage of development and live its life all over again. It is almost as if an injured butterfly could transform itself back into a caterpillar and start over.

        Since hydra and the immortal jellyfish don’t exhibit obvious signs of aging, they are often called biologically immortal. This doesn’t mean they don’t die—they can and do die for all sorts of reasons. They still fear predators and must themselves obtain enough food to survive. Nor does it even mean that they cannot die of biological causes. But, unlike most every animal, their likelihood of dying does not increase with age.

        Species such as hydra and the immortal jellyfish excite gerontologists because they may provide clues about how to defeat the aging process. But to me, their property of being able to regenerate entire body parts, or even a whole organism, makes them more similar to trees than to us. Although we may learn some fascinating things about their lack of apparent aging, it is not at all clear how relevant those findings will be to human aging. Sometimes biology is universal, especially if it relates to fundamental mechanisms. But in other cases, even discoveries in rats or mice, which are mammals and biologically much closer to us, are difficult to translate into humans. It may be a very long time before any findings gleaned from hydra or jellyfish are useful to us.

        PERHAPS WE NEED TO LOOK at species that are more closely related to us—say, mammals, or at least vertebrates. Although this class of animals doesn’t span the enormous range of longevity from insects to trees, they still vary considerably. Some small fish live for just a few months, while a bowhead whale is known to have lived for more than 200 years, and a Greenland shark is thought to have lived almost 400 years.

        What causes this large variation even among a particular group of animals such as mammals? Can we detect a pattern among these species just from some overall characteristics? Scientists have long looked for such relationships. Physicists, especially, love to look for general rules to make sense of disparate observations. Geoffrey West at the Santa Fe Institute is one such physicist who now works on complex systems, including aging. West takes a broad view, analyzing how cities and companies, as well as organisms, grow, age, and die. Along the way, he explores how some properties of animals scale across a wide range of sizes and longevities.

        If you look at mammals, the larger the animal, generally speaking, the longer its life span. This makes evolutionary sense. A small animal is more vulnerable to predators, and there would be no point in having a long life span if it is going to be eaten long before it dies of old age. But the more fundamental reason for the relationship between size and life span is that size is related to metabolic rate, which is roughly the rate at which an animal burns fuel in the form of food to provide the energy it needs to function. Small mammals have more surface area for their size and so lose heat more easily. To compensate, they need to generate more heat, which means maintaining a higher metabolic rate and eating more for their weight. This means that the total number of calories burned per hour by an animal increases less slowly than the mass of the animal. An animal that is ten times as large burns only four to five times as many calories per hour. So for their weight, smaller animals burn more calories than larger animals. The relationship between how fast an animal burns calories and its mass is named Kleiber’s law after Max Kleiber, who showed in the 1930s that an animal’s metabolic rate scales to the ¾th power of its mass. The exact power is a matter of dispute and some show that for mammals, a ⅔rd power fits the data better.

        Since heart rate also scales with metabolic rate, over a very wide range of sizes—from hamsters to whales—mammals typically have roughly the same number of heartbeats over their lifetime: about 1.5 billion. Humans currently have almost twice that, but, then, our life expectancy has doubled over the last hundred years. It is almost as if mammals were designed to last a certain number of heartbeats, much like a typical car can be driven about 150,000 miles. West points out that 1.5 billion is also roughly the number of total revolutions a car engine makes over its expected lifetime and asks, perhaps tongue in cheek, whether this is just a coincidence or whether it tells us something about the common mechanisms of aging!

        These relationships suggest that there will be natural limits on life span because size and metabolic rate can vary only so much. For example, an animal cannot evolve to become arbitrarily large without collapsing under its own weight. Such an animal would also have great difficulty supplying its cells with the necessary oxygen. A metabolism must be fast enough for an animal to move and find food—and there are biological limits on how fast a metabolism is actually achievable if you are small. But within the allowable range, these rules hold remarkably well. Geoffrey West declares that just knowing the size of a mammal, he could use scaling laws to estimate almost everything about it: from its food consumption, to its heart rate, to its life span.

        This is quite remarkable, and although it deals with averages, it sounds almost like a hard-and-fast rule that limits life span. But what of human beings’ marked increase in longevity over the past century? As West observes, this is a question of what one means by life span: we have almost doubled life expectancy in the last hundred years, but we have done nothing at all to increase the maximum human life span, which remains about 120 years. He argues that, according to the evidence, aging and mortality result from the wear and tear of being alive. Inexorable forces of entropy—a measure of disorder—that push in the direction of disorder and disintegration press against that dream of immortality. Unlike cars, which consist of mechanical components that we can swap out for new ones as they wear out, we cannot simply replace ourselves with new parts and keep going indefinitely.

        WHILE THIS RULE-OF-THUMB CONNECTION AMONG size, metabolism, and life span is fascinating, biologists tend to be more interested in the exceptions. They love to study species that beat the system, in the hopes that they can tell us something about the underlying mechanisms of aging. One big question is whether there is a theoretical maximum life span or not. We have seen species such as hydra and jellyfish that seem not to age and can, in fact, continuously replace their worn-out parts. While biologists are well aware of the second law of thermodynamics—which states that in any natural process the amount of disorder or entropy increases with time—most would disagree that the law applies in some blanket form to aging and death, because living systems are not closed as the law requires but need a constant input of energy to exist. In fact, with a sufficient expenditure of energy, you can indeed reverse entropy when it comes to regularly cleaning your attic or hard drive; it is just that most of us don’t feel it is worth it.

        As a result, biologists do not think that aging is inevitable. Rather, all evolution cares about is fitness: the ability to pass on our genes most efficiently. But living a long life is worth it only if you are not going to be eaten or die of disease or an accident long before you die of old age. Hence birds, which can escape predators by flying away, generally live longer than earthbound animals of about the same size. For those lucky animals that don’t have as much to fear from predators, living a longer life gives them more time to find a mate and reproduce. Slowing down their metabolism, so that they need not procure large amounts of food every day, may then simply be a way of surviving better into old age. In each case, the life span simply reflects how evolution has optimized the fitness of each species.

        Steven Austad is a leader in aging research who studies exotic species with widely varying life spans. For a scientist, he has a highly unusual background: he majored in English literature at the University of California, Los Angeles, hoping to write the Great American Novel. Given that we’ve never heard of it, Austad jokes, one can see how that worked out. After graduation, while not writing his novel, he drove a taxi and worked as a newspaper reporter before spending several years taming lions, tigers, and other wild animals for the movie industry. This sparked an interest in science, and Austad went back to school to study animal behavior. From there, he became interested in the question of why animals age at different rates.

        In 1991 Austad and his graduate student Kathleen Fischer examined the longevity of several hundred species. They discovered that, even among mammals, the relationship between body size and longevity disappears below a threshold of about one kilogram of body mass. Possessing a biologist’s instinct for the particular, the two of them then asked which species deviated most from this scaling law, coining what they called the longevity quotient. The LQ is the ratio of the average life span of the species to what it would be if it followed the scaling laws. This allowed them to focus on those species that deviate by either living much longer or much less than would be expected for their size.

        The life span of animals generally increases with size. Estimates for the maximum life span of mammals are shown along with a line showing the general trend. In addition, points for the Major Mitchell’s cockatoo, Galapagos tortoise, and Greenland shark are shown. Data are taken from the AnAge database (https://genomics.senescence.info/species/index.html).

        It turns out that humans already do rather well: we have an LQ of about 5, meaning that we live 5 times as long as would be expected. Nineteen mammalian species outperform us: eighteen species of bat and the naked mole rat. Over the years, Austad has studied these outlier species, and he describes them in colorful prose as befits his background in English literature. He poses this provocative question: Why do aging researchers study mice and rats, both of which have LQs of just 0.7, when they could be looking at these more exceptional species instead? There are many reasons why animals are chosen as model organisms, including ease of breeding and maintenance, and the ability to study their genetics. We have acquired tremendous knowledge of their biology over decades. Since the underlying mechanisms of aging are likely to be universal even if their rates are not, and studying short-lived animals could actually be an advantage by speeding up experiments, I am not sure that many in the gerontology community will rush to follow Austad’s advice. But I hope enough of them do, so that we learn how these unusually long-lived outliers have evolved such different rates of aging.

        Among the species Austad describes are giant tortoises, such as the Galápagos tortoise, which holds the record for life span of a terrestrial vertebrate animal and can amble along for two centuries. There might well be a Galápagos tortoise still alive that was spotted by Darwin during his five-year voyage aboard the Royal Navy ship HMS Beagle from 1831 to 1836. Also, for much of their long life, they are remarkably free of diseases such as cancer. Determining the LQ of these tortoises is tricky, though. For one, their exact age is hard to determine, since their history is usually poorly documented and the subject of much exaggeration. Even thornier is the question of what a tortoise truly weighs. Much of their body mass consists of their protective shell, which is more like our hair and nails than highly active tissue, so drawing comparisons with other animals can be misleading.

        These giant tortoises may not be alone in their longevity. Two studies that evaluated survival data from various turtles and other reptiles and amphibians found negligible senescence in a number of turtles and other species. The biologist’s term negligible senescence, which means little or no increase in mortality, has been interpreted popularly to mean “eternal life,” but this is a bit of a misnomer. Actually, it means that mortality, or the likelihood of dying, does not increase with age.

        The relationship between mortality and age was worked out in 1825 by Benjamin Gompertz, a self-educated British mathematician. Gompertz worked for an insurance company, and so was naturally interested in the question of when a person seeking to purchase coverage might die. By digging through death records, he discovered that starting in our late twenties, the risk of dying increases at an exponential rate year after year. It doubles roughly every seven years. At age 25, our probability of dying in the next year is only about 0.1 percent. This rises to 1 percent at age 60, 6 percent at age eighty, and 16 percent at age 100. By the time a person reaches 108 years old, there is only about a 50 percent chance of making it another year.

        Negligible senescence, when the probability of dying is constant rather than exponentially increasing with age, violates Gompertz’s law. But even if there is negligible or even negative senescence, you still face a probability of dying every year from age-related diseases, quite apart from dying of infections or accidents. Aging involves more than increasing mortality with age. It also depends on maintaining the physiology of the animal. The long-lived tortoises show unmistakable signs of aging. Like elderly humans, their eyesight and heart gradually fail. Some of them develop cataracts. Some become feeble to the point where they need to be fed by hand. So these animals do age, just slowly.

        Moreover, biological time for tortoises is very different: they live life in the slow lane. They are not warm-blooded creatures like us mammals. They move slowly and reproduce slowly, often taking several decades to reach puberty in the wild. Their hearts beat only once every ten seconds, and they breathe slowly. Despite their long chronological lives, they fit the metabolic rate theory of longevity.

        Other long-lived species are aquatic, such as the Beluga sturgeon and the aforementioned Greenland shark. Like the tortoise, they too aren’t in any hurry. Greenland sharks swim more slowly than a normal eighty-year-old human walks, and they seem to be scavengers, rather than catching prey. Perhaps more extraordinary than the Greenland shark is the bowhead whale. This baleen whale lives in freezing Arctic waters, but because it is a warm-blooded mammal, its internal body temperature is only a few degrees lower than that of most other mammals. Moreover, it eats about three times more than was previously suspected, implying a metabolic rate three times higher than was thought. How such an animal can survive for about 250 years is still a mystery.

        The Greenland shark and the bowhead whale are large aquatic vertebrates, but there are much smaller terrestrial outliers too. One particularly interesting example is Major Mitchell’s cockatoo, a striking white bird with a pink face and a vibrant bright red and yellow crest that resembles a radiating sun. This cockatoo has been known to live to eighty-three years in a zoo. This would not be exceptional for a human, but the bird is far smaller. So this is definitely not a species that fits the general relationship among size, metabolic rate, and life span.

        Remember how the relationship between mass and longevity for mammals disappeared below one kilogram? That’s largely due to bats. Bats do not live as long as Major Mitchell’s cockatoo, but they generally outlive nonflying mammals of the same size, which is exactly what evolutionary theories would predict, since their ability to fly allows them to evade predators. In keeping with this, bats that roost in caves, and are thus further protected from predators, live almost five years longer than those that don’t. The champion is Brandt’s bat, a small, brown animal that fits comfortably in the palm of your hand. A male of the species was recaptured in the wild forty-one years after it was originally banded. Austad estimates that its LQ of about 10 is the highest known for any mammal and about twice that of humans.

        Another reason bats are thought to live longer is that they slow down their metabolism during their long periods of hibernation. On average, bats that hibernate live six years longer than those that don’t. But even bats that don’t hibernate live exceptionally long for their size, so clearly metabolic rate is not the only reason for their longevity. Rather, they may have special mechanisms that protect them from aging.

        One curious feature is that the longest-lived Brandt’s bats on record are males. This is certainly different from humans. Austad speculates that this could be because female bats are less agile in flight and more susceptible to predators when they are pregnant, because they carry more than a quarter of their own body weight. They also face much greater energy demands in feeding their young.

        Finally, no discussion of long-lived animals would be complete without mentioning the remarkably ugly, nearly hairless rodent that has become something of a darling of the aging research community: the naked mole rat. Despite the name, it is neither a mole nor a rat but a species of rodent that is indigenous to equatorial East Africa. It is about the same size as a mouse, but whereas a mouse lives roughly two years, a naked mole rat can live for more than thirty. This gives it an LQ of 6.7—not as high as Brandt’s bat, but a record for a terrestrial nonflying mammal. How do they do it?

        Rochelle Buffenstein, currently at the University of Illinois in Chicago, has done more than perhaps anyone else to understand the biology of aging in the naked mole rat. As a result of work by her and many others, we know that naked mole rats are one of a small number of mammals that are referred to as eusocial: they live in underground colonies with a queen, and, in that sense, are reminiscent of ants. As one might expect, they have a very low metabolism and are tolerant of oxygen levels so low that they would kill mice—and us. In the wild, naked mole rat queens live much longer than workers: about seventeen years compared with two to three years. But in the lab, where worker naked mole rats live a comfortable, well-fed life with good health care and no predators, the difference is not so stark.

        Not surprisingly, naked mole rats are extremely resistant to cancer, regardless of age—again, in marked contrast to mice. Even more strikingly, when Buffenstein and her colleagues tried to induce cancer in naked mole rat skin cells using techniques that worked reliably for other species, they could not do it. According to their 2010 study, instead of proliferating like cancerous cells, the naked mole rat cells entered a terminal state and were cleared away, suggesting that they respond to cancer-causing genes very differently.

        One of the biggest headlines about naked mole rats was generated by the observation that they seem to violate Gompertz’s law: their risk of dying seems not to increase with age. As a result of these findings, no animal has been hyped as much as the naked mole rat, with both the popular press and news articles in scientific journals touting each discovery as a major breakthrough in the quest to defeat aging. This was too much for some scientists, who pointed out that naked mole rats do age, just more slowly than might be expected for their size. As we saw with long-lived tortoises, they show many signs of aging, including lighter, thinner, and less elastic skin resembling parchment, as well as muscle loss and cataracts. They are not like hydra and the immortal jellyfish, which can regenerate themselves with ease. Still, as exceptionally long-lived mammals, they could provide important clues into our own aging processes.

        IT IS TIME TO LEAVE these unusually long-lived species and focus on the one that interests us most: ourselves. Most crucially: How long can human beings live? And is this limit fixed, or can it be changed?

        For most of human history, life expectancy was just over thirty. But today, in developed countries, we can look forward to living into our mid-eighties. Even in poorer countries, a person born today can expect to live longer than the grandparents of people in the richest countries. The science writer Steven Johnson makes the point that this is like each of us acquiring an entire additional life.

        When we say life expectancy, we mean life expectancy at birth, or the average number of years a newborn would live if current mortality rates remained unchanged. This value, as you can imagine, is greatly affected by infant mortality rates. Even in the nineteenth century, when life expectancy was forty years, a person who reached adulthood had a good chance of living to be sixty or more. Most of the increase in life expectancy has come about because of improvements in public health rather than groundbreaking advances in medicine. Johnson observes that the three biggest contributors have been modern sanitation and vaccines, which both prevented the spread of infection, and artificial fertilizers. Other significant innovations were antibiotics, blood transfusions (crucial for accidents and surgery), and sterilization of water and food by chlorination and pasteurization.

        The inclusion of fertilizers may surprise you, but prior to the ready availability of food—which has brought about its own problems of obesity, diabetes, and cardiovascular diseases—humans were constantly struggling to get enough to eat. Chemical fertilizers include nitrogen-containing compounds and have increased crop yields several-fold. The ability to chemically capture nitrogen from the air, a discovery for which Fritz Haber received the Nobel Prize in 1918, made it much easier to synthesize fertilizers and helped to double the world’s population. Interestingly, almost half of the nitrogen atoms in our bodies went through a Haber-Bosch high-pressure steam chamber that converted atmospheric nitrogen to ammonia for use in fertilizers, which then ended up in the food we ate and became incorporated into ourselves.

        Haber himself was a tragic figure. A German Jew, he was intensely loyal to Germany during World War I, and his method for fixing nitrogen into ammonia enabled the country to prolong the war by producing its own explosives. Prior to that, its military had been importing nitrates from Chile, which became impossible due to the Allied Powers’ wartime blockade. He also initiated the use of chemical warfare against the Allies, who denounced him as a war criminal. At the same time, his Jewishness trumped his loyalty to Germany. Soon after the Nazis assumed power, he had to flee Germany in 1933 although he was a world-famous scientist and director of a prestigious institute in Berlin. After a brief sojourn in England, he set out for Rehovot in what is now Israel, but died mid-journey of heart failure in a hotel in Basel, Switzerland.

        Back to life expectancy: preventing infectious disease dramatically reduced infant mortality, which is now as low as 1 percent in advanced countries and about 3–4 percent worldwide. But there has been progress across the rest of the aging curve as well. Public health measures for safety, regulations against smoking, and better treatments for life-threatening illnesses such as cardiovascular disease and cancer have all added up to a slow but steady increase in life expectancy beyond sixty years of age. Does this mean that our life expectancy might go on increasing indefinitely?

        Ever since humans became aware of their mortality, we have wondered whether our life span has a fixed limit. Scientists aren’t sure.

        Jay Olshansky of the University of Illinois at Chicago says yes. He examined how much we would gain by eliminating various common causes of death such as cancer, heart disease, and other diseases. Based on statistical calculations, he argued that for life expectancy to increase dramatically, we would need to reduce mortality rates from all causes by 55 percent and even more at older ages. He and his colleagues contended that average life expectancy would likely not exceed eighty-five and that it would not exceed a hundred until everyone alive today had died. Even curing all forms of cancer would add only four to five years on average.

        In the other corner was the late James Vaupel, who maintained that life span is elastic. If evolutionary theories were strictly correct, then our maximum life span should be adapted for life in the wild and thus not much more than about thirty to forty years. But, as you know, life expectancy has more than doubled. Moreover, in certain species, such as some tortoises, reptiles, and fish, mortality actually falls and then levels off, presumably because as these creatures grow larger, they can better resist starvation, predators, and disease; senescence is not inevitable.

        The disagreements between the two boiled into a sort of scientific blood feud, with Vaupel refusing to attend any meetings where Olshansky was present, and attacking his findings as a “pernicious belief sustained by ex-cathedra pronouncements.” Olshansky, for his part, feels that demographers relying purely on statistics fail to consider biology. In agreement with this, an analysis of the lives of primates implies that there are biological constraints on how much the rate of human aging can be slowed.

        Of course, life expectancy at birth is not the same as the maximum possible life span, and it is that maximum that tends to interest us more than averages. We want to know how long it is theoretically possible for humans to live. Most cultures have writings about prophets and sages who allegedly lived for hundreds of years. In Western culture, the name Methuselah has become synonymous with longevity, after the biblical prophet who is said to have lived 800 years. In somewhat more recent times, the Englishman Tom Parr, who died in 1635, was said to have lived for 152 years, but this has been thoroughly debunked. Unlike most people, for whom childhood memories are the strongest, “Old Tom” could remember nothing of his youth.

        The oldest person for whom we have reliable records is Jeanne Calment, who died at the age of 122 in 1997. She lived in Arles, the town in southern France where van Gogh resided near the end of his life. She actually met the troubled artist in her teens, describing him as “very ugly, ungracious, impolite, and sick.” Apparently Calment had a sharp wit. As she grew older and older, journalists began to gather around her on each birthday. When one of them took leave by telling her, “Until next year, perhaps,” she retorted, “I don’t see why not! You don’t look so bad to me.”

        Calment was in very good health for nearly her entire life, riding a bicycle until she was a hundred. It is hard to know what contributed to her longevity, beyond genetics. She smoked for all but the last five years of her life. While this is not an example we should follow, many of us might be tempted to emulate her habit of eating more than two pounds of chocolate every week. While Calment’s robust physical condition even late in life was extraordinary, it did not mean that she did not age; for instance, she was blind and deaf for many of her final years.

        Calment is the record holder, but one has to remember that she was born almost 150 years ago, in 1875. It is almost a miracle that she survived for so long in the age before antibiotics and other advances in modern medicine. Given the even greater progress made since then, might we expect today’s humans to live much longer?

        A few years ago, Jan Vijg and his colleagues at the Albert Einstein College of Medicine in the Bronx published a study that analyzed demographic data from several countries to look at shifts in the population of each age group. As life expectancy improves, the fastest growing segment of the population is usually the oldest, since many more people reach the threshold for that group. For example, in France in the 1920s, 85-year-old women were the fastest growing group. By the 1990s, the fastest growing group were 102-year-olds. You might expect that with time, this would shift to even older ages. But the study showed that improvements in survival decline after age 100, and the age of the oldest person has not increased since the 1990s. Vijg predicted that the natural limit of our life span is about 115 years; there will be occasional outliers such as Jeanne Calment, but he calculates that the probability of anyone exceeding 125 in any given year is less than 1 in 10,000.

        This conclusion was contradicted a couple of years later by a study examining records of men and women in Italy who had reached the age of 105 between 2009 and 2015. It concluded that mortality rates plateaued after the age of 105, in an apparent violation of Gompertz’s law. The researchers went on to say that a limit to longevity, “if any, has not been reached.” This paper in turn was criticized by one of the authors of the earlier study, who felt that it was rather far-fetched that after increasing exponentially for most of one’s life, the chance of dying should plateau in extreme old age. Others pointed out that most of the cohort did, in fact, follow Gompertz’s law, so the plateau came from less than 5 percent of the mortality data. Moreover, they argued that even if mortality did plateau after age 105, the likelihood of anyone surviving much beyond Calment’s 122 years was remote, in the absence of major biomedical advances. It is a question of statistics. At today’s rates, the odds of surviving each year after 105 is only about 50 percent; to beat Jeanne Calment’s 122 would be like tossing a coin seventeen times and having it come up heads every time. Those odds are about 1 in 130,000.

        Recent data support the views of Vijg, Olshansky, and other proponents of a limit to maximum life span. After climbing steadily for the last 150 years, the annual increase in life expectancy slowed down globally around 2011 to a fraction of what it had been in previous decades, and plateaued from 2015 to 2019 before falling precipitously as a result of the Covid-19 pandemic. The pandemic, like the influenza epidemic that gripped the world in 1918–19, killing an estimated 50 million people, was an exceptional situation. But we weren’t making progress even in the handful of years before the pandemic. Why not is unclear. It could be due to the rising epidemic of obesity and associated scourges such as type 2 diabetes and cardiovascular disease. As people live longer, Alzheimer’s and other neurodegenerative diseases are responsible for an increasing share of deaths, and there is currently little treatment for them.

        In any case, although the number of people who live to be 100 keeps increasing, nobody has beaten Calment’s record of 122 in the twenty-five years since she died. The next oldest person, a Japanese woman named Kane Tanaka, died in 2022 at the age of 119. As I write this, the oldest living person is Maria Branyas Morera of Spain, who is 116 years old. What is striking is that these extremely long-lived people are all women. Now that death rates due to childbirth have been reduced dramatically, life expectancy for women is greater than that of men in nearly every country.

        Even if nobody beats Calment’s record soon, there remains great interest in why some humans live exceptionally long. Thomas Perls, who heads the New England Centenarian Study, has been studying centenarians for several decades. As a practicing physician who specializes in geriatrics, he confronts the realities of aging in his patients every day. He investigates the health history, personal habits, and lifestyles of centenarians, along with what is known about their family histories and genetics. In one large study, Perls concluded that centenarians fell into three classes. About 38 percent were what he called Survivors, who had been diagnosed with at least one age-associated disease before the age of eighty; another 43 percent were Delayers, who developed such a disease after the age of eighty; and the last group consisted of Escapers, the 19 percent who reached their hundredth birthday without being diagnosed with any of the ten most common age-associated diseases. In fact, about half of centenarians celebrated turning one hundred without heart disease, stroke, or non–skin cancer, which is extraordinary.

        Perls says that centenarians generally maintain their independence up through their early to mid-nineties. For those who live beyond 105, that independence can be observed at least through age 100. So it appears that centenarians survive for so long by staying healthy longer than most people, rather than going through a prolonged period of living with diseases of old age. Perls also told me that he has seen an increase in the number of people aged 100 to 103, a likely reflection of improvements in medicine and lifestyle over the last few decades, but, beyond that, he is not seeing an increase—perhaps because genetics play such an influential role in survival to those extreme ages. He agrees with Olshansky that currently there is a natural limit on our life span.

        Perls and other researchers are now sequencing the genomes of centenarians, and he plans to also study the modifications in DNA that accumulate with age. These studies could reveal the underlying biology of extreme longevity in ways that could be very useful to the rest of us. In the meantime, based on what he has learned so far, Perls has developed a website, livingto100.com, which asks visitors questions about themselves, and spits out an estimated life span, along with suggestions for how to improve it. A few findings may surprise you: it recommends tea over coffee, reducing our intake of iron (often found in multivitamins), and flossing regularly. But many of the suggestions are what one might expect: eating moderately and healthily and avoiding fast food, processed meat, and excessive carbohydrate consumption, as well as exercising and maintaining a healthy weight, getting adequate sleep, reducing stress, staying mentally active, and having an optimistic outlook. It helps not to have diabetes, and having a close family member who lived to be over ninety is a big plus. Since my father, at ninety-seven, still does his own laundry, grocery shopping, and cooking—making complicated Indian recipes and his own ice cream from scratch—I may have lucked out.

        The debate about whether there is a limit to human longevity led to a famous bet. At a 2001 meeting, a reporter asked Steven Austad when we would see the first 150-year-old human. None of the other scientists wanted to go out on a limb, but Austad blurted out, “I think that person is already alive.” When he read about this, Olshansky, who remains skeptical of exceptional longevity, called up Austad and challenged him to a friendly bet. You might think that this was a safe bet since they would both be dead before it could be decided, but they’d already thought of that. The two men agreed to put $150 each into a fund for 150 years, which, Austad notes, had a nice symmetry to it. A back-of-the-envelope calculation by Olshansky suggested that in 150 years, $150 could turn into about $500 million to be won by either them or one their descendants. A dozen years later, nobody had yet approached the age of Jeanne Calment, but both of them still felt confident, so they doubled the bet, with each putting another $150 into the pot, raising the potential stake to a cool $1 billion 150 years from now—although it is not clear what $1 billion would actually buy at that point.

        Why did Austad make this bet? It is not as if he believes that just because we are getting better at treating diseases of old age such as cancer, stroke, and dementia, people will live thirty years more than Calment. In fact, on that point, he and Olshansky agree. Rather, Austad believes that research on aging will result in game-changing medical breakthroughs. The scientists disagree mainly on how rapidly these innovations will occur.

        We have now explored how evolutionary theories help us understand why death occurs at all, and how the optimization of fitness by evolution has resulted in a huge range of life spans in different species. We have also explored whether there are biological limits to our own life span. But none of this tells us how aging occurs and how it leads to death.

        The quest to defeat aging and death is centuries old, but findings from modern biology over the last half century have led to an explosion of knowledge about exactly what goes on in our bodies as we age. As we noted before, aging is simply an accumulation of damage to our molecules, cells, and tissues due to a variety of causes that bring about increasing debilitation and eventually death. An aging body changes in so many ways that it is hard to glean which factors cause aging and which are simply its consequences. But scientists have homed in on a small number of hallmarks of aging. According to them, such a hallmark should have three characteristics: first, it should be present in an aging body. Second, an increased presence of the hallmark should accelerate aging. Third, reducing or eliminating the hallmark should slow aging.

        These hallmarks exist at every level of complexity, from molecules, to cells, to tissues, to the interconnected system we call our body. No hallmark exists in isolation; they all influence one another. Thus aging doesn’t have one or even a few independent causes. It is a highly intricate and interconnected process.

        It is easiest to make sense of it all if we start at the most basic level of complexity: with the molecule that could be thought of as the ultimate command and control center of the cell.

        3. Destroying the Master Controller

        The ancient site of Hampi in South India offers a stark contrast to the thriving metropolis of London. The grand city that existed for more than a thousand years and at its peak in the early sixteenth century was second in wealth only to Beijing is now a collection of well-preserved granite ruins about fifteen miles from the nearest railway station. The once-bustling marketplaces and intricately carved temples and palaces are now only alive with camera-toting tourists. It was once the London of its time: the seat of an empire and a flourishing center of trade and culture. When I travel to London, I simply cannot imagine the city ever not existing, and the inhabitants of Hampi probably thought the same. This failure of imagination extends to us as individuals too. Even if we know we are going to age and die, in our daily lives, unless we are terminally ill, we carry on as if we are immortal.

        How could a thriving, vibrant city like Hampi have disintegrated and no longer exist? Throughout history, one of the fastest ways for a society to crumble was the breakdown of law and order resulting from a government’s loss of control due to civil unrest or a war. And just as with society, loss of control and regulation in biology leads to decay and death, not only of the cell but of the entire organism.

        Unlike a functioning society run by a government, there is no central authority in the cell that supervises its thousands of components as they go about their business. So is there even a counterpart in the cell of a command and control center? Perhaps the closest thing is our genes, which reside in our DNA. The nature of genetic information in our DNA and the ways it becomes corrupted over time are essential for understanding aging and death.

        We didn’t even know about genes as an entity until the late nineteenth century. Most of us think of genes as traits that we inherit from our parents and pass on to our children. We may think of good genes, reflected in positive traits, or bad ones, characterized by disease or defects. But genes are better described as units of information. They contain information not only on how to reproduce an organism and pass on its traits, but also on how to build an entire organism from a single cell and keep it functioning.

        Among the most important information that genes contain is how to make proteins. We normally think of proteins as essential components of our diet, and we know they are used to build muscle. In fact, our body contains thousands of proteins. Not only do they give the body form and strength, but they also carry out most of the chemical reactions that are essential for life. They regulate the flow of molecules in and out of cells. They allow our cells (and us) to communicate with one another. They are the reason we can sense light, smell, touch, and heat. Our nervous system depends on proteins to transmit nerve signals and even to store memory. The antibodies we use to fight infections are proteins. Proteins also enable the cell to manufacture all the other molecules it needs, including fat and carbohydrates, vitamins, and hormones, and—to complete the circle—even our genes. Proteins are everywhere. And every one of these proteins is made by following instructions in a gene.

        Exactly how genetic information is stored and used remained a huge mystery until relatively recently. Even in the 1940s, scientists still didn’t understand the molecular nature of genes. Today we know that our genes reside in DNA, a long molecule that consists of two strands wrapped around each other in a double helix. Each strand of DNA has a backbone made up of alternating groups of phosphate and a sugar called deoxyribose. If that were all DNA was, it would just be like any other repeating polymer such as polyethylene or other plastics, and incapable of carrying information. But DNA is able to encode instructions because each sugar in its backbone is attached to one of four types of chemical groups called bases. These bases are adenine (A), guanine (G), thymine (T), and cytosine (C). This phosphate-sugar-base unit is the building block of DNA, known as a nucleotide.

        You can think of each building block as a letter, and a DNA chain as a very long sentence written using this four-letter alphabet. Just as a particular sequence of letters can form a sentence that conveys meaning and information, suddenly you could imagine how DNA could too, but it was still not at all clear how. This changed dramatically in 1953 when the three-dimensional structure of DNA was deduced by James Watson and Francis Crick. Normally, the structure of a molecule only hints at how it might work, but DNA was different. Its structure immediately shed light on how the sequence of bases could transmit information, transformed our understanding of genetics, and ushered in the current revolution in molecular biology. Without it, we would have had no hope of understanding the workings of life or unlocking the secrets of why we age.

        Genetic information stored in our chromosomes in the form of DNA is copied (transcribed) into mRNA in the nucleus. The mRNA then moves to the cytoplasm, where ribosomes read it to make proteins.

        In DNA, two strands running in opposite directions are wrapped around each other in a double helix. A base from one strand chemically bonds, or pairs, with the base directly across from it in a very specific way: an A pairs only with a T or vice-versa, and a C with a G. Hence the magic of DNA: if you know the sequence of bases in one of the two strands, you can determine the sequence of the other. This also means that if you separate the two strands, each of them has the information to make the other, enabling you to create two identical copies of the molecule from an original. Suddenly an age-old problem was solved: How could you get two daughter cells, each of them possessing exactly the same genetic information as the single parent cell? Genetics had become chemistry: we could understand at the molecular level how genetic information could be duplicated and passed on to a new generation.

        Still, there remained the second question of how genetic information in DNA actually codes for proteins. It turns out that the section of DNA that codes for a gene is copied into an intermediate molecule called ribonucleic acid. RNA is similar to DNA but with some important differences. Unlike DNA, it has only one strand, and instead of deoxyribose, it has a sugar called ribose. In RNA, the thymine (T) base is replaced by uracil (U), which is slightly different chemically but pairs with A just as T does.

        Think of DNA as the collection of all our genes, much as the British Library or the US Library of Congress are collections of all the books published in their respective countries. Those libraries are not likely to let you take a valuable eighteenth-century book home to read at your leisure. But they can often provide a copy of it to take home. Similarly, RNA is a working copy of the gene that can be used by the cell.

        Not every piece of DNA that is copied to RNA codes for a protein. Some RNAs are part of the machinery that is used to make proteins. Others can even control whether certain genes are turned on or off. But when an RNA is made from a gene that codes for a protein, it is called messenger RNA, or mRNA, because it carries the genetic message for how to make that protein. We’ve heard a lot about mRNA recently in connection with vaccines for Covid-19. These vaccines are made from mRNA molecules that contain instructions on how to make the spike proteins that are on the surface of the virus that causes Covid-19. When those mRNA molecules are injected into us, our cells read the instructions in it and produce the corresponding spike proteins, which in turn trains our immune system to be ready to fight the real Covid-19 virus.

        How instructions in mRNA are read to make proteins was a hard puzzle that took over a decade to crack. The problem scientists faced was that proteins too are long chains, but of completely different types of building blocks called amino acids. Unlike DNA and RNA, which have four types of bases, there are at least twenty different types of amino acids. If proteins were like sentences written in a twenty-letter alphabet, how could they translate those sentences from the four-letter language of genes? The way nature has solved this problem is that groups of three bases (or letters) in mRNA are read as a code word, or codon, each of which specifies an amino acid. The whole process takes place on the ribosome, a giant, ancient molecular machine that consists of almost half a million atoms.

        I have spent much of my life trying to understand how the ribosome carries out the complicated process of reading mRNA to synthesize a protein. What seems miraculous is that as the newly made protein chain emerges from the ribosome, the sequence of its amino acids contains within itself the information needed for the protein chain to fold up into a particular shape so that it can carry out its function. It is akin to writing different sentences on strips of paper and, depending on what I had written, each strip would magically fold itself into its unique shape. This ability of a protein chain to fold itself up is why the one-dimensional information contained in our genes allows us to build the complex three-dimensional structures that make up a cell—and, eventually, us.

        The gene doesn’t just contain information on how to make a protein. The part that specifies that is called the coding sequence, but flanking it are regions (non-coding sequences) that signal when to make the protein, when to stop, and even whether to make it quickly or slowly, for a brief while or for a long time. These signals are turned on or off either by chemicals in the environment or by other genes. Genes, in other words, don’t act alone; they form a giant network with lots of other genes, as well as the broader environment. This is why some proteins are made by all our cells, but others only by specific cells, such as skin cells or neurons. And why some proteins are made only at certain stages in our development from a single cell to a complete human being. The precise orchestration of this network of thousands of genes is what makes life possible.

        You could think of the process of life as an enormous program that somehow activates itself using the blueprint provided by DNA. The word blueprint is a convenient metaphor, but we should not take it too literally, because a blueprint implies a rigid manufacturing process that produces a strictly defined product. Unquestionably, DNA is the central hub for regulating the overall program of the cell. But I think of the cell as more like a democracy than a dictatorship. Just as an ideal government is not autocratic but responsive to the needs of its people over time, DNA does not dictate the entire process. Rather, conditions in the cell and its environment decide which parts of the DNA are used, as well as how often and when.

        UNDERSTANDING THE MOLECULAR BASIS OF genetics has transformed modern biology, but what does it have to do with aging? If the genes in our DNA specify the program of the cell, why doesn’t the program just keep running forever? The problem is that the DNA itself changes and deteriorates with time.

        Of course, genes and mutations were studied long before we knew about DNA. Prior to DNA, the only way to determine whether an organism had a genetic mutation was when it resulted in a change in an observable trait. Today we know that mutations are simply changes in the bases of DNA. Changing bases in DNA is the equivalent of changing letters in a sentence. Sumtymes we can still dicifer the same meening, but other times, just a single change can be confusing or even have the opposite meaning—for example, if we change the word hire to fire.

        Now that we can sequence DNA—or determine the precise order of bases in any piece of DNA—we can see that mutations happen all the time. Many of them have no observable effect. This is because even with the change to the DNA, the altered gene functions just as well; or the organism has redundant genes, so that if one is defective, the others can compensate for it. Other mutations can be harmful to varying degrees because they result in proteins that are defective; or proteins that are produced in the wrong amounts or at the wrong time.

        Sometimes, mutations can actually be beneficial. For instance, if the mutation occurs in a germ-line cell, it might very occasionally give offspring an advantage that facilitates their survival. A species that is uniformly the same could be wiped out by some pestilence, like trees susceptible to Dutch elm disease, or by sudden changes in the climate or geography. Mutations can give rise to genetic variability in a population and make it more resilient by increasing the likelihood that some strains might survive better than others as conditions change. Without mutations, there would be no evolution; we would never have emerged from primitive molecules. The cell, then, must strike a balance, tolerating enough mutations in the germ line to allow variability and evolution, but not allowing so many mutations in our somatic cells that the complex process of life begins to break down.

        A societal breakdown of law and order can bring about chaos, mass starvation—even the annihilation of entire cities and civilizations. The worst criminal elements often take advantage during turbulent times, usurping power and making life miserable for everyone else. Similarly, loss of control in biology can lead to deterioration and death as well as to many diseases. One of the worst examples of cells misbehaving is cancer, in which aberrant cells are no longer inhibited by neighboring cells but instead multiply unchecked and take over entire tissues and organs, interfering with their functioning. In that sense, cancer and aging are intimately related: they both arise from a biological loss of control, and their ultimate source is often mutations in our genes, owing to changes in our DNA.

        LONG BEFORE WE KNEW OF DNA, there were hints that environmental agents could cause what we now know to be genetic mutations. As early as the eighteenth century, the English surgeon Percival Pott discovered that the country’s chimney sweeps, many of them children, had abnormally high rates of cancer of the scrotum. He attributed this to their excessive, prolonged exposure to the soot and tar from burned coal. In 1915, Yamagiwa Katsusaburo, a professor of pathology at the Tokyo Imperial University, demonstrated that applying coal tar to the ears of rabbits caused skin cancer. These products of coal would later be identified as cancer-causing agents, or carcinogens, but when Pott made his observations, nobody had any idea what cancer was, and even when Katsusaburo reported his results, the link between cancer and genetic mutations was still decades away.

        The first direct evidence linking an environmental agent to mutations was discovered by a scientist with a remarkably peripatetic life. Hermann Muller was a third-generation American who grew up in New York City and entered Columbia College (now Columbia University) at the precocious age of sixteen, graduating in 1910. He stayed on at Columbia for his PhD, working with the famous geneticist Thomas Morgan, who had used fruit flies to show that genes resided in the chromosomes in our cells.

        Later, Muller moved to the University of Texas, where, in a key experiment in 1926, he subjected fruit flies to increasing doses of X-rays. As he ratcheted up the dose, the number of lethal mutations rose dramatically. Even a modest application of X-rays produced 35,000 times as many mutations than would have occurred spontaneously. Muller’s work advanced genetics tremendously by making it much easier to produce mutations, and also raised awareness of the danger of X-rays and other radiation. At the time, people used X-rays rather cavalierly—it was common for shoe sellers to X-ray the feet of their customers in the shoes they were considering.

        Like many geneticists in the early twentieth century, Muller was a proponent of eugenics for much of his life and thought of it as a way for improving the human species. Oddly for a eugenicist, he was also quite left wing, a result of his disillusionment with capitalism in the wake of the Great Depression. He recruited lab members from the Soviet Union and as a faculty advisor, helped edit and distribute a leftist student newspaper called The Spark, which spurred the FBI to investigate him.

        Partly as a result, in 1932 Muller left the United States for Berlin. Discouraged by the rise of Hitlerism, he left the following year for the Soviet Union, believing that the environment there would be more conducive to his left-wing views. He spent a year in Leningrad before moving to Moscow for a few years. He had not, however, reckoned with the rise of Trofim Lysenko, the Soviet biologist and charlatan who had ingratiated himself to Stalin. Lysenko viewed genetics as inconsistent with socialism, and instead espoused a number of crazy ideas in agriculture, while ruthlessly wielding his power to suppress or destroy any biologist who dared question him. In doing so, he contributed to famines that killed millions of people and set back Soviet biology by decades. Muller and other geneticists did what they could to counteract Lysenko, but eventually Muller incurred Stalin’s wrath for his views on both genetics and eugenics and had to flee.

        Not yet ready to return to the United States, where the FBI was still investigating him, Muller ended up at the Institute for Animal Genetics at the University of Edinburgh in 1937. There he helped catalyze another important discovery. He joined a lively group of scientists, many of them refugees from totalitarian regimes, under the direction of pioneering medical geneticist Francis Crew.

        One of Crew’s key collaborators, Charlotte Auerbach, had been born to an academic Jewish family in Krefeld, Germany. Auerbach, known as Lotte, was an independent thinker who did not take well to being told what to do. While studying for her PhD in Berlin, her professor refused her request to change her project, so she simply quit and became a high school teacher. She found teaching and keeping order in class exhausting, perhaps not helped by the increasing antisemitism of the time. In what turned out to be a blessing in disguise, she was summarily dismissed in 1933 at the age of thirty-four because she was Jewish. On her mother’s advice, she left Germany, and, with the help of friends of the family, was able to finish her PhD at the Institute for Animal Genetics, where she worked with Crew. In 1939 she became a British citizen; later that year, her mother showed up in Edinburgh without any money or baggage, having made it out of Germany just two weeks before World War II broke out.

        Crew’s initial attempt to bring Auerbach and Muller together was not a success. He introduced her to Muller and simply told him, “This is Lotte, and she is going to do cytology for you.” But Auerbach had no interest in spending her time peering through a microscope to characterize Muller’s cells, and, independent minded as always, she refused. She told Muller that she was really interested in how genes enabled development. To his credit, Muller told her that he wouldn’t dream of having someone work with him on a project that didn’t interest her. However, he persuaded Auerbach that if she wanted to pursue her interest in understanding the role of genes in development, she needed to produce mutations in them and see their effects.

        Around this time, a colleague of hers, Alfred J. Clark, had noticed that soldiers exposed to mustard gas in World War I exhibited lesions and ulcers that resembled the effects of exposure to X-rays. Auerbach, along with Clark and their colleagues, exposed fruit flies to mustard gas, checking for mutations using the methods Muller had pioneered. It says something about their dedication that their experiments were carried out on the roof of the Pharmacology Department in cold, wet, blustery Edinburgh. The experimental conditions would never pass a workplace health and safety inspection today: the fruit flies were exposed to the gas in vials and afterward were removed by hand, causing serious burns to the workers. In any case, the results were unambiguous. Exposure to mustard gas had resulted in ten times as many lethal genetic mutations. Chemicals, like radiation, could also cause mutations.

        MULLER AND AUERBACH’S WORK SHOWED how our genetic blueprint could be damaged by environmental agents such as radiation or chemicals. At the time, we didn’t even know that DNA was the genetic material, let alone how the information it carried could be corrupted. But once Watson and Crick revealed its double-helical nature, the question naturally became how exactly did these agents cause changes in our DNA that resulted in mutations?

        Studying the biological effects of radiation had been something of a stepchild of the life sciences before World War II. But once the world saw the horrible effects of radiation wrought by the two atomic bombs dropped on Japan in August 1945, the US government became very interested in this once sleepy field. After the war, many of the sites that had been used for the Manhattan Project to develop nuclear weapons were converted to radiation biology research centers. One of these was Tennessee’s Oak Ridge National Laboratory, which had originally been the site for producing large amounts of the uranium isotope used in the first atomic bomb, detonated over the city of Hiroshima. Remote from the large academic centers of the United States in the Northeast and the West Coast, Oak Ridge was nestled between the spectacular wilderness of the Cumberland and Smoky Mountains. These attractions, and the generous funding provided by the government, allowed Alexander Hollaender, a leading radiation biologist of his time, to recruit many excellent scientists to Oak Ridge, including Dick and Jane Setlow.

        Dick and Jane Setlow met as undergraduates at Swarthmore College in the 1940s and married soon afterward. When Hollaender approached them around 1960, Dick was on the biophysics faculty at Yale University. It was one of the oldest biophysics programs in the country, but Hollaender lured away Dick with a shrewd move: he offered Jane, who had a temporary appointment working for someone else, a full position too. In those days, even women who had earned graduate degrees rarely had the opportunity to work as equals and ended up assisting some male scientist, frequently their husband. Hollaender’s gambit worked. Both Dick and Jane became leaders in the field, sometimes working together but just as often separately. They also raised a family of four children and hiked and hunted for fossils in the mountains around Oak Ridge before moving to another national lab in Brookhaven on Long Island about fifteen years later.

        Brookhaven National Laboratory was where I first met them, in 1982. Dick was the chair of the department that hired me. It might have helped that I was desperately trying to leave Oak Ridge after only fifteen months there because the resources I had been promised never materialized. Dick, having made the same move himself, was sympathetic. At the time, I was thirty-one years old, and although they were only around sixty then, I regarded them as ancient fossils, like the ones they collected. Like some of the more mainstream molecular biologists, I severely underestimated the importance of their work, and I regret that I didn’t talk to them about their discoveries when I had the chance. It’s a reminder to me of how insular most scientists are, with little appreciation of what goes on outside their narrow specialties.

        Even before X-rays were discovered, we knew about other forms of radiation. As early as 1877, the British scientists Arthur Downes and Thomas Blunt discovered that sunlight could kill bacteria. In the early twentieth century, Frederick Gates showed that it was the shorter wavelengths in sunlight—ultraviolet, or UV, radiation—that had the killing effect. Soon after Muller demonstrated that X-rays could cause genetic mutations, scientists started studying UV radiation too; after all, it was easier to produce and safer to handle. They found that for a given dose, UV light produced even more mutations. At Oak Ridge, Dick and Jane began by trying to understand exactly how UV caused mutations in DNA. One finding that intrigued them was that UV light links up two adjacent thymines (the T bases) on DNA. Virtually any sequence of DNA will occasionally have two thymines next to each other, and somehow UV was linking them together so that the two bases were no longer separate but acted as a single unit consisting of two building blocks—known as a thymine dimer, or sometimes as a thymidine dimer, if scientists want to refer to the larger unit that includes the sugar to which the thymine is attached. Was this how UV inactivated DNA and killed bacteria?

        Dick and Jane experimented with inserting foreign DNA into a bacterium. This enabled them to introduce a gene that gave the bacterium new abilities, such as growing in the absence of a nutrient it would need otherwise or becoming resistant to an antibiotic. However, when they tried this using DNA containing thymine dimers, it was as if the DNA had become inactivated. Dick went on to show that thymine dimers prevent the DNA from being copied, so new DNA could not be made.

        The next step was even more remarkable. Dick and his colleagues found that shortly after exposure to UV radiation, the thymine dimers disappeared from the DNA altogether. The dimers, including the sugar and phosphate to which the bases were attached, were cut out of the DNA, with the missing section filled in using the other strand as a guide, just as when DNA is copied. Discoveries in science are not made in a vacuum. The state of knowledge reaches a stage where the next advances are possible, so new breakthroughs are often made simultaneously. The same year, 1964, that Setlow reported his discovery, two other groups, led by Paul Howard-Flanders and Philip Hanawalt, respectively, made similar findings. The reports all confirmed that the cell clearly had some mechanism to not only recognize the thymine dimers but also to repair them, by a process called excision repair.

        Excision repair was also found in a different context. Even in the 1940s, scientists realized that they could reverse the effects of UV light on bacteria by exposing them to visible light. The arrested bacteria would start growing again. Extracts from bacteria that had been exposed to visible light could repair damaged DNA. How it worked was something of a mystery until Aziz Sancar, a Turkish doctor turned scientist, got involved in the work and identified its mechanism, which also involved repairing thymine dimers using a different enzyme. Oddly, Hemophilus influenzae, the organism in which Dick Setlow had identified the same kind of repair, lacks this mechanism (as do we humans)—otherwise he might never have made his discovery. Just the fact that nature had evolved two completely different mechanisms to remove thymidine dimers tells us about the importance of repairing them.

        These experiments established firmly that the cell could repair damaged DNA. But we’re rarely exposed to high doses of X-rays. Our clothes and the melanin pigment in our skin protect us from a lot of UV exposure. Also, we know enough to stay away from mustard gas, coal tar, and other nasty chemicals, which human beings never encountered in the wild in prehistoric times. Yet these mechanisms to repair damaged DNA evolved billions of years ago and are part of every life form.

        It turns out that our DNA is constantly being assaulted, even in the normal course of living, without exposure to nasty chemicals or radiation. The person who did more than anyone to make us appreciate this was the Swedish scientist Tomas Lindahl. As a postdoctoral fellow at Princeton University, he was working on a relatively small RNA molecule. To his frustration, he found that it kept breaking down.

        As we’ve discussed, RNA molecules use the sugar ribose rather than the deoxyribose found in DNA. Ribose differs from deoxyribose by just one additional oxygen atom. That extra atom makes RNA much more unstable, but also gives it the ability to form complex three-dimensional structures that can carry out chemical reactions. Because of these properties, scientists believe that life originally emerged in a primordial world in which RNA carried out chemical reactions as well as stored genetic information. As life evolved to become more complex, using an unstable molecule to store an increasingly large genome was not viable, and so the more stable DNA was used to store genetic information.

        Lindahl knew that DNA was more stable than RNA, but he wanted to know how much more. It had to be stable enough to pass on information to the next generation without too much change. Or over the billions of cell divisions that occur by the time a single cell develops into a mature organism. That is a very long time.

        Lindahl studied DNA in a variety of conditions and found that over time some of its bases changed. The most common change was that the base cytosine (C) was transformed into a different base called uracil (U), which is normally found in RNA, where it stands in for thymine (T). The problem is that, like T, U pairs with an A, while C pairs with a G. This transformation was like changing a letter in the DNA sentence. Having many of these changes throughout the genome would corrupt the encoded instructions to the point where they would become nonsensical.

        Lindahl showed that the change from a C to a U can be caused simply by exposure to water, a ubiquitous occurrence for all living molecules in a cell. In one day, water could cause about ten thousand changes to the DNA in each of our cells. Lindahl estimated later that, taking into account all forms of spontaneous damage to DNA, about a hundred thousand changes are inflicted on the DNA in each of our cells every single day. It was hard to imagine how life could survive when the set of instructions that enabled it was being corrupted so rapidly. Clearly, there had to be a mechanism to correct these errors too. Over the next few decades, Lindahl and other scientists worked out how this change is repaired.

        A much more drastic form of DNA damage occurs when both strands break, leaving two pieces that have to be rejoined. Sometimes there are even multiple breaks on different chromosomes. This can result in a complete mess, where half of one chromosome is joined to the other half of a completely different one, or where a broken-off piece has been reinserted backward. Again, if we think of DNA as a text consisting of sentences, changes to individual bases are like typos: although they will occasionally garble the meaning, often you can still make sense of them. But if you repair a double-strand break incorrectly, it is like cutting sentences or whole paragraphs from a long text and pasting them back in some random order. Occasionally, it might still sort of make sense, but other times it will be complete gibberish. So it is imperative for the cell to join broken ends of DNA as soon as it recognizes them, preferably before multiple breaks occur. Special proteins recognize the broken ends and join them together to make an intact DNA molecule. This process does take into account the DNA sequence at the ends, so if there is more than one break in the cell at any given time, there is always a chance that it will join the wrong ends. When our genome is scrambled in this way, it can lead to different kinds of problems. One is a loss of function, where the cell cannot do its job efficiently or perhaps not at all. In other cases, it can corrupt or lose the signals that control genes. As a result, the cell starts growing unchecked, leading to cancer.

        Humans are what we call diploid, possessing two copies of each chromosome. The more common and accurate way that the body repairs double-stranded breaks is to use the undamaged DNA in the other chromosome as a guide. Even in organisms such as bacteria, a second copy is often present when cells are dividing and the DNA is being duplicated. Either way, the repair machinery lines up the broken ends against the matching sequence on the other (intact) copy of the DNA to form a complicated structure in which all four strands are intertwined. This is more accurate than simply grabbing random ends and joining them because it checks whether they are the right ends to be joined. By doing so, it restores the integrity of the genome and fills in any gaps that arise if the broken ends have been frayed.

        Apart from chemical damage, mutations have another way of creeping into our genome. Each time a cell divides, the entire genome has to be duplicated, which is like copying a text three billion letters long. No process in biology is ever completely accurate. Just as with writing or typing, the faster you try to copy something, the more prone you are to making mistakes. The polymerase enzymes that replicate DNA are incredibly accurate; what’s more, they can proofread their work, so to speak, correcting mistakes as they go. Nevertheless, they still make an error once every million or so letters. In a genome with a few billion letters, that means several thousand mistakes occur each time the cell divides. The cell can’t take forever to divide, and in life there is always a compromise between speed and accuracy. Not surprisingly, the cell has evolved sophisticated machinery to correct these errors.

        Relying on some very clever experiments, Paul Modrich figured out how enzymes in a bacterium recognize the mismatch, cut out a section of the new strand containing the mistake, and fill in the section so that the mistake is corrected. That mechanism is now well established in bacteria, but scientists are still debating exactly how these kinds of errors are corrected in higher organisms like humans.

        It took a long time for the scientific community to realize the importance of DNA damage and repair. Muller received the Nobel Prize in 1946, a full twenty years after his discovery that X-rays cause mutations. But by the time the 2015 Nobel Prize in Chemistry went to Lindahl, Sancar, and Modrich, the field of DNA repair had long ceased to be a scientific backwater. Now it is widely recognized as crucial for life as well as for understanding the basis of both cancer and aging. As in most scientific areas, hundreds of scientists working in different labs throughout the world had contributed to these discoveries, but the Nobel Prize can be shared by only three people at most, so the committee has the unenviable job of choosing the three most important to honor, not always without controversy. The prize also cannot be given posthumously, and, sadly, Dick Setlow had died a few months before it was announced, at the age of ninety-four.

        Over the years, scientists have isolated many different repair enzymes. Many of them are essentially the same in all life forms from bacteria to humans. DNA repair is so essential to life that it originated billions of years ago, before bacteria and higher organisms diverged. Maintaining the stability of the genome and its instructions is critical for the cell and demands constant surveillance and repair. You can think of these repair enzymes as the sentinels of our genome.

        Because DNA damage occurs all the time, any defect in the repair machinery itself is particularly disastrous because it means that the damage would accumulate rapidly. Not surprisingly, many mutations in the repair machinery have been linked to cancers: for example, mutations in the BRCA1 gene predispose women primarily to cancers of the breast and ovary. Defects in the repair machinery also cause aging, but because we are also more likely to develop cancer as we age, it is hard to separate out the two effects. Perhaps more than any single person, the Dutch scientist Jan Hoeijmakers has worked extensively to explore how DNA repair defects can age a person prematurely. One condition he has focused on is Cockayne syndrome, which manifests symptoms associated with aging, such as neurodegeneration, atherosclerosis, and osteoporosis. In females, defects in how the cell responds to DNA damage can affect the age at which menopause begins. Generally, the more effectively our bodies can repair our DNA, the more we can resist aging.

        WHEN A CELL SENSES SIGNIFICANT DNA damage, it triggers what is called the DNA damage response. This is not all good news: the damage response often has greater consequences for aging than the damage itself. Sometimes the cell will go into senescence, a state in which it is unable to divide further, and in extreme cases, the cell is triggered to commit suicide. It is odd to think that life would have evolved a mechanism to kill its own cells, but one individual cell among an organism’s billions is ultimately dispensable. If, however, that cell were allowed to become cancerous as a result of DNA damage, it could multiply and eventually kill the entire organism. Both cell death and senescent cells are important factors in aging, especially the latter, and we will have a lot more to say about them in later chapters. Suffice it to say here that the DNA damage response evolved to balance the risk between cancer and aging. It is one more mechanism that evolved to benefit us early in life, even if it costs us later, after we’ve already passed on our genes.

        At the heart of the damage response is a protein called p53, the product of the TP53 tumor suppressor gene. This protein is so essential that it is often called the Guardian of the Genome. Almost 50 percent of all cancers have a mutation in p53; in some forms of cancer, the rate is as high as 70 percent. Normally, p53 is bound to a partner protein and is inactive. It is also turned over rapidly in the cell, so it is made and then degraded all the time. When DNA damage is sensed, p53 is activated and starts to accumulate. It is also freed from its partner protein, springs into action, and turns on the expression of many genes; in this context, expression means the production of the functional protein from the information coded by the genes. Some of them are genes for DNA repair proteins. Others stop the cell from dividing to give DNA repair genes a chance to do their job. When the damage is too extensive, p53 can turn on genes that induce cell death.

        P53 may also hold the key to Peto’s paradox, an oddity observed in the 1970s by the British epidemiologist Richard Peto. Large animals such as elephants or whales can have a hundred times as many cells as we do. Even accounting for their slower metabolism, this means there is a much greater chance that one of their cells will mutate to become cancerous. Yet these large mammals are remarkably resistant to cancer and live almost as long or even longer than us. Humans inherit one copy of the gene for p53 from each of our parents, but it turns out that elephants have twenty copies. Therefore their cells are exquisitely sensitive to DNA damage and commit suicide when it is detected. Scientists are always worried about proving cause, so they wanted to find out what would happen if you increased the level of repair genes in other organisms. Curiously, in studies involving fruit flies, they found that repair gene overexpression did indeed increase longevity—but only if the genes were turned on throughout the fly’s entire life. If the repair genes weren’t activated until adulthood, there was no increase in life span.

        Some of the long-lived species we encountered in chapter 2, such as certain whales and giant tortoises, also have unusual variations in the numbers and types of tumor suppressor genes. Perhaps without this, they would have died of cancer at much younger ages. In general, there seems to be a powerful correlation between strong DNA repair genes and longevity. Humans and naked mole rats, which can live up to 120 and 30 years, respectively, have a higher expression of DNA repair genes and their pathways than do mice, which live only up to 3 or 4 years. It remains to be seen whether exceptionally long-lived people have unusually efficient DNA repair mechanisms.

        Paradoxically, many new cancer therapies work by inhibiting DNA repair. This is because cancer cells have defects in some of their repair machinery, so inhibiting other routes of repair closes off their options. Unable to repair their own DNA, the cancer cells die off. However, this is a short-term solution to combating aggressive cancers; normally, blocking DNA repair over an extended period could actually increase a person’s risk of both cancer and aging. Attempting to use our knowledge of DNA damage and repair to tackle aging is not straightforward because of the tricky interplay between aging and cancer.

        Even if it is difficult to use DNA repair to directly improve longevity, our knowledge of it underpins our understanding of virtually every process of aging. Genes ultimately control the entire process of life: when and how much of each protein we make; whether our cells continue to live or suddenly stop dividing; how well our cells sense nutrients in their surroundings and respond to them; and how different molecules and cells communicate with one another. Genes control our immune system, which must maintain the delicate balance of reacting to invading pathogens without inducing chronic inflammation.

        Direct damage to our DNA, and the cell’s seemingly paradoxical response to it, is only one of the ways our genetic program can be changed as to cause aging. For our DNA has two peculiarities. The first is that its end segments are special and protected, and the consequences of disrupting them are serious. The second is that the way our genome is used does not depend exclusively on the sequence of bases in the DNA itself. Our DNA exists as a tight complex with ancient proteins called histones, and both the DNA and its partner proteins can be altered by our environment to affect the way our genes are used. Our genome, it turns out, is not written in stone but can be modified on the fly.

        4. The Problem with Ends

        Over a century ago, a scientist in a New York laboratory peered at the cells he had cultivated in flasks and wondered whether he might have uncovered the secret of immortality.

        Alexis Carrel was a French surgeon who by then was already famous for having pioneered techniques to reconnect blood vessels that had been severed in an accident or an act of violence such as a stabbing. His method for joining blood vessels end to end with tiny, almost invisible sutures transformed many kinds of surgery, and is the basis of organ transplants even today. In 1904 Carrel left France for Montreal and then Chicago. Two years later, he moved to New York City to become one of the earliest investigators at the newly created Rockefeller Institute for Medical Research (now Rockefeller University). The institute offered an unparalleled environment for an ambitious scientist, including superb laboratories and sizable endowments. And the thirty-three-year-old Carrel certainly had ambitions.

        As a surgeon, Carrel dreamed of keeping tissues alive outside the human body. In the lab, we can grow cultures of bacteria or yeast indefinitely. Although individual bacteria or yeast can age and die, the culture continues to grow and is, in a sense, immortal. But that was not clear for cells and tissues from higher life forms such as us. At Rockefeller, Carrel began a long series of experiments to see whether a culture of cells from a tissue could be kept alive indefinitely. By placing the cells from the heart of a chicken embryo in a special flask, and steadily supplying them with nutrients, Carrel seemed to have made a breakthrough. The culture could be maintained for years. These cells, he claimed, were immortal.

        The discovery was reported with great fanfare. If cells from a tissue could be made immortal, journalists reasoned, then so could entire tissues and eventually us. An editorial in the July 1921 issue of Scientific American gushed, “Perhaps the day is not far away when most of us may reasonably anticipate a hundred years of life. And if a hundred, why not a thousand?”

        But Carrel was wrong.

        Initially, his work went unchallenged because of his stature, and, over the years, the immortality of cultured cells became dogma. That is, until three decades later, when a young scientist at the Wistar Institute in Philadelphia, Leonard Hayflick, wanted to see if cells would change when exposed to extracts from cancer cells. He decided to use Carrel’s method to grow human embryonic cells in culture. To his disappointment, he found he could not grow these cells indefinitely. Initially, Hayflick, a recent PhD in medical microbiology and chemistry, thought he must have made a mistake. Perhaps he hadn’t correctly prepared the nutrient broth or was washing his glassware improperly. But over the next three years, he carefully ruled out any technical problems and concluded that the prevailing theory was simply incorrect: normal human cells would not replicate indefinitely in culture. They were not immortal.

        Instead, Hayflick found that his cells would divide a finite number of times and then stop. In an ingenious experiment, he and his colleague Paul Moorhead took male cells that had already divided many times and mixed them with female cells that had divided only a few times. When they soon reached their limit, the male cells stopped dividing, while the female ones continued to grow to the point that they came to dominate the culture. Somehow the old cells remembered they were old, even when surrounded by young cells. They were not rejuvenated by the presence of the young cells, nor did they stop dividing because of some contaminating chemicals or viruses in the environment. Hayflick and Moorhead coined the term senescence to describe this state, in which the cells were arrested and could no longer divide further.

        Another junior scientist might have been nervous about challenging such established ideas, but not the confident Hayflick. He and Moorhead wrote up their results in a meticulously detailed thirty-seven-page paper and submitted it to the same journal in which Carrel had published his original findings. Because it went counter to the prevailing dogma, and perhaps because the editor was a colleague of Carrel’s and more inclined to trust him than some young unknown scientist, the paper was rejected but eventually published in Experimental Cell Research in 1961. It has since become a classic in the field. The number of times a particular kind of cell can divide is now called the Hayflick limit.

        How did Carrel get it so wrong? One possibility, suggested by Hayflick himself, is that the French scientist may have inadvertently introduced fresh cells into the culture each time he replenished the nutrient broth in which they were growing. Some have even suggested that fresh cells may have been incorporated deliberately, although this would be a case of either egregious misconduct or sabotage.

        My sneaking suspicion is that by the time Carrel worked on these cells, fame and power had gone to his head, and he had become arrogant and less self-critical about his research. This attitude manifested itself in other ways. In 1935 he published a book titled Man, the Unknown, which recommended sterilizing the unfit and gas chambers for criminals and the insane, and commented about the superiority of Nordic people over southern Europeans. In the preface to the book’s 1936 German edition, he praised the Nazi government of Adolf Hitler for its new eugenics program. Given Carrel’s stature, it is quite possible that the Nazis used his remarks as one justification for their activities. His plaque in Rockefeller University was recently corrected to reflect his views.

        Titia de Lange, a renowned biologist currently at the very same Rockefeller University, suggested a more straightforward explanation for Carrel’s results: the laboratory next door to Carrel’s was working with malignant tumors in domestic chickens, and these cancerous chicken cells might have contaminated Carrel’s cultures growing nearby. Cancer cells are the exception to the Hayflick limit: they don’t stop dividing after a certain number of divisions, and this uncontrolled growth is why cancer wreaks such havoc on the body.

        Why don’t cancer cells stop growing unlike the normal ones studied by Hayflick? And how can a cell keep count of the number of times it has divided and know when to stop?

        When a cell divides, each of the DNA molecules in our chromosomes has to be copied. Unlike bacteria, whose genome consists of a circular piece of DNA, the DNA in each of our forty-six chromosomes is linear. Like an arrow, each strand of the double-helical DNA molecule has a direction, and the two strands of the DNA molecule run in opposite directions. The complex machinery that copies each DNA molecule uses each strand as a guide to make the opposite or complementary strand, but it can do so only in one direction. In the early 1970s James Watson of DNA fame and a Russian molecular biologist named Alexey Olovnikov both noticed at about the same time that the way the cell’s machinery copies DNA would create a problem at the very ends of the molecule.

        One day, Olovnikov was obsessing over this idea while standing on the platform of a train station in Moscow. He imagined the train in front of him as the DNA polymerase enzyme that copies DNA, and the railway tracks as the DNA to be copied. He realized that the train would be able to copy the rail track ahead of it, but not the part that lay immediately under it. And because the train could go in only one direction, even if it started at the very end of the track, there would always be a section underneath the train that could not be copied. This failure to copy the very end of a DNA strand meant that each newly made strand would be just a little shorter than the original. With each cell division, the chromosomes would progressively shorten, until eventually they lost essential genes and could no longer divide, thereby reaching their Hayflick limit. The end replication problem, as this is known, could explain at least in principle why cells stopped dividing, although the real answer, as we will see, is more complex.

        A SEPARATE MYSTERY REMAINED UNANSWERED. Why didn’t the cell see the ends of chromosomes as breaks in the DNA and try to join them together? Why didn’t it induce some sort of DNA damage response?

        In the 1930s and 1940s, around the time that Hermann Muller was investigating how X-rays might damage chromosomes, a young scientist named Barbara McClintock was looking at the genetics of maize. At some point, she discovered the phenomenon of “jumping genes”: where genes hop from their position on DNA to a completely different position on the chromosome or even to a completely different chromosome.

        Even in the 1930s, both Muller and McClintock, working independently, noticed that there was something special about the ends of chromosomes. Unlike broken chromosome ends, which would often be joined up, the ends of intact chromosomes seemed to stay separate. Muller named the natural ends of chromosomes telomeres. He and McClintock both suggested that they had some special property that prevented them from being mistaken for breaks in the DNA and being joined with each other. This allowed chromosomes to be maintained stably as individual entities in cells instead of being combined randomly. But what made telomeres so special?

        Elizabeth Blackburn grew up along with her seven siblings and a large menagerie of pets in the small town of Launceston on the north coast of Tasmania, Australia. She became interested in science and majored in biochemistry at the University of Melbourne, where she had the good fortune to meet Fred Sanger, the famous biochemist who was visiting from England. Encouraged by this encounter, and at a time when there were few women in molecular biology, Blackburn went on to do her doctoral work in Sanger’s laboratory in Cambridge. Her timing couldn’t have been better, for Sanger had just figured out how to sequence DNA. And there was a second fortuitous event in her life: in Cambridge, she met her future husband, American John Sedat, who soon accepted a position at Yale University. As a result, she decided to join Joseph Gall’s lab at Yale for her postdoctoral research.

        Gall, a well-established cell biologist, was interested in chromosome structure, and Blackburn knew how to sequence DNA from her work with Sanger. They applied their combined expertise to identify the sequence of DNA specifically at the telomeres of chromosomes. Humans had a mere ninety-two telomeres in each cell; two for each of the forty-six chromosomes. This, they realized, was not enough material. Cleverly, they chose a single-celled organism called Tetrahymena, which in one phase of its life cycle has up to ten thousand small chromosomes. They found that the sequence of DNA at the telomeres of chromosomes was different not only from anything in the rest of the chromosomes but also from anything they’d ever seen before. TTGGGG (or the complementary CCCCAA on the other strand) was repeated anywhere from twenty to seventy times.

        Shortly after Blackburn had characterized these repeats, she encountered Jack Szostak, who was working at Harvard Medical School and was trying to insert artificial chromosomes into yeast. The idea was to introduce new genes into yeast through these artificial chromosomes, which would be replicated along with the yeast’s own chromosomes. For some reason, however, they were unstable. The yeast cells were seeing the ends of these artificial DNA molecules as breaks due to damage and setting off a response. Szostak and Blackburn collaborated to see what would happen if they tacked on the telomere sequence of the Tetrahymena chromosomes to the ends of Szostak’s artificial chromosomes. It worked like a charm: the modified artificial chromosomes were now stable in yeast. Szostak went on to characterize the telomeric DNA from yeast itself. It turned out to have a similar repeat to Tetrahymena. Instead of TTGGGG, the repeat was a combination of TG, TGG, or TGGG. From later work, we know now that in humans and other mammals, the repeat is TTAGGG.

        Somehow these short telomere sequences told the cell that they were special and should not be treated as ends of broken DNA. Amazingly, although Tetrahymena and yeast are separated by more than a billion years of evolution, the slightly different repeat sequence from Tetrahymena still works in yeast. This suggests a universal mechanism that protects the telomeres of chromosomes and depends on these repeated sequences.

        You could think of these repeated sequences as extra, dispensable material tagged on to the ends of chromosomes. Each time the chromosome replicated, it would lose some repeats, but it wouldn’t matter until you eventually lost them all and started losing important genes near the ends of chromosomes. It could explain why cells divided only a certain number of times before they reached the Hayflick limit and stopped.

        Even though this explained some things in principle, it still left several basic questions unanswered. What added these telomeric sequences? And why can some cells divide many more times than the Hayflick limit, such as cancer cells or our own germ-line cells?

        The first big advance toward answering these questions came when Blackburn, who was now running her own lab at the University of California, San Francisco, was joined by a graduate student, Carol Greider. The two of them discovered an enzyme that adds the telomeric repeat sequences to the ends of chromosomes. They named it telomerase.

        Cells from most tissues make very little or no telomerase, but cancer cells and some special cells such as germ-line cells do. Without telomerase, our telomeres get shorter and shorter with age until the cell is triggered into senescence and stops dividing. By contrast, cells with telomerase can simply rebuild their telomeres after each division and thus divide indefinitely. Even introducing telomerase into normal cells can extend their life spans.

        As is often the case in biology, it is not quite this simple. Cells lose much more DNA during each division than Watson and Olovnikov would have predicted. Moreover, they stop dividing even before all of the telomeric region is lost. And finally, even if telomeres have a special sequence, it still wasn’t clear why the cell didn’t see them as breaks in the DNA and turn on its DNA damage response.

        It turns out that the telomeric ends have a special structure in which one DNA strand extends beyond the other. This longer strand loops back and forms a special structure with the help of special proteins collectively called shelterin, because they shelter and protect the ends of the DNA. This crucial structure is why the cell doesn’t recognize the ends of chromosomes as double-strand breaks. A loss or deficiency in shelterin can be lethal, and even moderately defective shelterin can lead to chromosome abnormalities and premature aging, even when the telomeres are of normal length.

        When enough of the telomere DNA is lost, these special structures cannot form. The cell then sees the unprotected ends of the DNA as breaks and sets off the damage response, instructing other cells to either commit suicide or go into senescence. We still don’t know how or why some cells, like the ones Leonard Hayflick studied, go into senescence while others self-destruct. Perhaps cells that are especially important for maintaining or regenerating tissues—such as stem cells—preferentially commit suicide to avoid passing on damaged DNA to their offspring.

        This is all very well for understanding cells in culture, but does this have anything to do with why we age? Or our life spans? And why is telomerase switched off in most of our cells? If we switched it on again, would we simply stop aging?

        People with defective telomerase, or who have less than the normal amount of it, prematurely develop a number of diseases associated with old age. Likewise, a stressful life can often make us appear to age faster. We look haggard, and even our hair can turn prematurely gray or white. Stress can also bring on many of the diseases we associate with old age. Stress has multiple effects on our physiology, and exactly how it affects the aging process is complex. But one of the things it does is to accelerate telomere shortening. When we are stressed, our body produces much more cortisol—referred to as the stress hormone—which reduces telomerase activity.

        You might expect that species with longer telomeres would live longer, but mice, which typically live only about two years in the lab and much less in the wild, have much longer telomeres than we do. So it may be that the shortening of their telomeres occurs more rapidly. Nevertheless, if you reactivate telomerase in mice that are deficient in the enzyme, you can reverse the tissue degeneration that occurs with aging. According to a number of studies, mice engineered to have even longer telomeres showed fewer symptoms of aging and lived longer. Presumably, starting off with much longer telomeres compensated for their more rapid shortening in mice.

        Based on studies like these, many biotech companies are introducing the gene for telomerase into cells or using drugs to activate the telomerase gene that already exists. Some of them are working on how to turn on the enzyme transiently, to avoid the potential problem of triggering cancer by having telomerase switched on permanently. Initially, many of these experiments are focusing on specific diseases where aberrant telomere shortening is thought to be the cause. But the efficacy and long-term consequences of these strategies remain unknown.

        When telomerase was discovered, it stirred a lot of excitement in cancer research. Since cancer cells had activated telomerase, scientists thought of it as an anti-cancer target—if you could inhibit it or turn it off, you might kill cancer cells. On the other hand, turning it off could potentially accelerate the shortening of telomeres, which could not only lead to premature aging or other diseases, but by disrupting our telomeres, lead to chromosome rearrangements, which, ironically, could itself cause cancer. There seems to be a delicate balance between telomere loss and aging on the one hand and increased risk of cancer on the other, and it may be that our normal process of switching off telomerase in most of our cells is actually a mechanism to suppress cancer early in life. This balancing act is also apparent from a study showing that people with short telomeres are prone to degenerative diseases, including organ failure, fibrosis, and other symptoms of aging. On the other hand, those with long telomeres face increased risks of melanoma, leukemia, and other cancers. This suggests that we have some way to go before tinkering with telomerase can be a viable strategy for either cancer or aging.

        In the last two chapters, we’ve talked about how genes contain the program to control the complex process of life. In chapter 5, we will see how even allowing for changes from damage to DNA or to our telomeres, the script of life written in our DNA is not fixed. It is modified and adapted on the fly, depending on its history and environment. The ability to annotate the script, much like a conductor would a score or a film director would a screenplay, is the basis of some of the most fundamental processes of life, including how an entire animal develops from a single cell. When the annotation goes awry, that too is a fundamental cause of disease and aging.

        5. Resetting the Biological Clock

        On June 26, 2000, President Bill Clinton and British prime minister Tony Blair, each flanked by some of the world’s most distinguished scientists, linked up via satellite to make a carefully choreographed announcement of “another great Anglo-American partnership.” The occasion was the publication of the draft sequence of the entire human genome: the precise order of bases in nearly all of our DNA.

        Excitement over this milestone was unanimous across the belief spectrum. Clinton said, “Today we are learning the language in which God created life,” while Richard Dawkins, the evolutionary biologist and passionate atheist, said, “Along with Bach’s music, Shakespeare’s sonnets, and the Apollo space program, the Human Genome Project is one of those achievements of the human spirit that makes me proud to be human.”

        Other scientists and the popular press gushed with similarly hyperbolic statements. The identification of every human gene would make possible new treatments against diseases and usher in a new era of truly personalized medicine. If we sequenced the genes of individuals, some suggested, we would be able to understand their fate in detail: their strengths and weaknesses, aptitudes and talents, susceptibility to disease, how quickly they would age, and how long they would survive.

        The announcement ceremony was the culmination of a long and difficult path. For many years, an international consortium of scientists, mostly in the United States and the United Kingdom, and funded by government sources or biomedical charities such as the Wellcome Trust, had made slow but steady progress, releasing bits of sequence as they went along. They were called the public consortium because they received substantial public funding and had pledged to make their data available to all.

        Then, in the early 1990s, J. Craig Venter, who had made his name by producing the first complete sequence of a bacterium, Haemophilus influenzae, entered the fray. Venter was something of a maverick in the field. He played the part of the American entrepreneur and capitalist, sailing around the world in his yacht, often flying by private jet. On one of the few occasions I saw him, he jetted into a meeting at the Cold Spring Harbor Laboratory to celebrate the 150th anniversary of Darwin’s On the Origin of Species, gave his talk, and left immediately because he clearly must have had more important things to do—unlike me, who stayed for the rest of the weeklong conference. Venter had already caused a huge fracas in the science community when he worked at the U.S. National Institutes of Health (NIH)—the large government biomedical research laboratories in Bethesda, Maryland—by attempting to patent pieces of human DNA sequences to allow their commercial exploitation for treatment and diagnosis. The decision by NIH to green-light this led James Watson to resign as the first director of the agency’s National Center for Human Genome Research. Although the NIH had filed the patents in his name, Venter said later that he was always against them.

        Venter felt that the public consortium was too slow and that the method he had used for sequencing the million bases of a bacterium could be scaled up to sequence the roughly 3 billion bases in the human genome at much lower cost. So he started a private company, Celera, to do just that. Of course, Venter wasn’t above using the large portions of the human genome that had already been sequenced by the public consortium before he entered the race. Many in the human genome community were outraged by Venter’s audacity and were determined to ensure that the human genome, and, indeed, all other natural genomes, were not patented for the benefit of a private company but freely available to humanity.

        One detractor was John Sulston, one of the leaders of the public consortium. Sulston presented a marked contrast to Venter. Despite his considerable fame and influence, the British scientist continued to dress in the sandals and other shabby attire reminiscent of a 1960s hippie. He lived in the same modest house and commuted to his lab on his ancient bicycle. A particularly passionate advocate of the genome being free for use by all, Sulston was sharply critical of Venter’s motives and contributions. In the run-up to the completion of the draft sequence, relations between members of the public consortium and Venter became so acrimonious that President Clinton had to intervene personally to get them to politely share the stage at the announcement.

        Despite all the hoopla, the draft sequence that Clinton and Blair announced was just the beginning. Large sections of the genome were still missing, especially regions consisting of repeating letters and thus difficult to sequence, and scientists had to figure out how some stretches of DNA actually fit together. The sequence was declared finished three years later, although, in reality, even today a few gaps remain, including on the Y chromosome, the male sex chromosome. (Women have two X chromosomes; men, one X and one Y.)

        The human genome sequence is often called “the book of life,” but this is somewhat misleading. In reality, even a perfectly complete sequence would be more like one long unpunctuated stream of text than a book. It would have no markings to denote individual chapters, paragraphs, or even sentences, nor cross-references to provide context. It would certainly be nothing at all like a well-edited encyclopedia in which you could look up your favorite gene and learn all about it and its relationship to everything else. And frankly, a lot of it was indecipherable. Only about 2 percent of our DNA actually codes for the proteins that carry out much of life’s functions. The rest consists of what biologists once dismissed as “junk DNA”; they now increasingly think it is important, but don’t fully understand how or why.

        Initially, scientists didn’t even know where a lot of the protein-coding genes were, because the signals that indicate where a gene starts and ends on the DNA are not always obvious. They are made even harder to discern by the presence of what are called pseudogenes: regions that once might have coded for proteins but are no longer expressed or functional. Many pseudogenes originated from viruses that inserted their own genes into our DNA. Finally, even knowing the sequence of a gene does not automatically reveal its function. Nevertheless, sequencing the genome was an immensely useful start. It allowed us to ask questions and conduct experiments that would have been unthinkable before. It was a watershed in biology.

        You might also think that the book of life would be able to tell us accurately how each of our individual stories develops and ultimately ends. After all, DNA is the carrier of all genetic information, the master controller that oversees biological processes. Shouldn’t knowing its entire sequence enable us to predict how an organism or cell will develop? Certainly mutations in individual genes have been associated with many diseases; examples include cystic fibrosis, breast cancer, Tay-Sachs disease, and sickle-cell anemia. But on the whole, biology is just not that deterministic.

        Identical twins belie the view of DNA as destiny. They share the same genes and are often strikingly similar even when separated at birth. That’s not surprising. What is surprising is that identical twins raised in the same environment can sometimes be very different, even when it comes to conditions with a strong genetic basis, such as schizophrenia.

        Every one of us is a living testament to the fact that DNA by itself does not determine fate. All of our cells are descended from a single cell, the fertilized egg, and as that cell divides, it produces new cells, each one containing the same genes. Yet these genes give rise to a multitude of different cells. A skin cell is very different from a neuron, or a muscle cell, or a white blood cell. As we know, different genes are turned on and off in response to changes in the environment. It makes sense, then, that as different cells find themselves in slightly different circumstances, they change which genes they express and go down different paths to form the various tissues in the body. Importantly, you cannot reverse this process—even if you try to culture these different cells in exactly the same medium, they maintain their identity, as though the cells still remember which tissue they came from.

        This suggests that some more permanent change has occurred in the genetic program of the cells as a result of their environment. The study of this change is known as epigenetics, from the Greek prefix epi-, for “above,” to imply there was a second layer of control on top of our genes. The term was coined by the British polymath and professor of animal genetics Conrad Waddington in 1942. Waddington described the process in terms of a landscape. The original fertilized egg, he said, was like a ball on top of a mountain. Its progeny rolled down different paths into the various ravines and valleys at the foot of the mountain, each valley representing a different type of cell. Once there, it would be impossible to roll back up to the top or to roll up the ridge and down into a neighboring valley. In other words, once a cell had settled down into its final type, it couldn’t change into a different type; a skin cell could not become a lymphocyte, a type of white blood cell. Nor could a skin cell reverse its fate and become a fertilized egg to give rise to an entirely new body.

        Initially, Waddington was vilified by many as a Lamarckian, or someone who, like the evolutionary biologist Lamarck, believed that acquired characteristics could be inherited, an idea discredited by Darwin and Wallace’s theory of evolution by natural selection. Waddington’s theory seemed to imply that our environment affected our genes in some irreversible way. Even for those who accepted his ideas, they raised questions. At what point did the cell have its genome so altered that it could no longer direct the development of an entire organism? And how far down Waddington’s mountain could a ball roll and still somehow go back to the top?

        During Waddington’s time, we did not even know that DNA was the genetic material, let alone its structure or how it stored genetic information. But it was known already that the fertilized egg, or zygote, was a very special cell: it had the right genetic material, and its cytoplasm, the internal material of the cell, seemed to have everything needed for kick-starting the process of developing into a new organism. The fertilized egg is said to be totipotent, meaning that it can develop into all the cell types needed to make a new animal, including its body and placenta. After a few divisions, the embryo reaches a stage called the blastocyst, which has a couple of hundred cells surrounding a fluid-filled cavity. The outer cells go on to form the placental sac, while the inner cells develop into everything else that forms the new animal. Those inner cells that develop into every cell in the body are called pluripotent.

        Waddington’s metaphorical mountain shows the development of special cell types from a pluripotent stem cell.
        Development of a blastocyst from the fertilization of an egg.

        Was the special property of the fertilized egg a result of its genome or its environment? If the latter, could you take a nucleus containing the genes from a highly specialized cell, put it into an egg that had its own nucleus removed, and make it totipotent so that it developed into a normal animal? This was precisely the question that Robert Briggs and Thomas King at the Institute for Cancer Research and Lankenau Hospital Research Institute in Philadelphia sought to answer. In 1952 they tried this with the northern leopard frog (Rana pipiens), as frog eggs are large and transparent, and thus easy to manipulate under a microscope. Briggs and King found that if they took nuclei from cells in the blastocyst stage of the embryo and introduced them into enucleated eggs, the eggs could develop normally into tadpoles. But if they took nuclei from cells at a later stage of development, the egg would develop partly and then stop and die. By a relatively early stage of development, then, an embryo’s cells are already committed to their program. They are too far down Waddington’s metaphorical hill and can’t go all the way back to the top.

        At this time, scientists simply did not know whether specialized cells had lost parts of their genome that were essential for growing an entire animal from scratch, or whether there was something else about them that prevented their development beyond a certain stage. Then along came a young scientist who would carry out one of the most famous experiments in modern biology.

        WHEN I FIRST MET JOHN GURDON, I was immediately struck by his shock of golden hair that gave him a leonine appearance. By then, he was a world-renowned scientist in his seventies who worked in the institute named after him in central Cambridge, England, about three miles from my lab. Despite his stature in the world of science, he was unassuming and courteous to everyone, from a beginning graduate student to his senior colleagues. Long after many scientists would have retired, Gurdon remained passionate about science and carried out his own experiments. But his career had a rocky start.

        Gurdon hailed from an aristocratic family whose Norman ancestor came with William the Conqueror in the 1066 invasion of England. Like many boys from privileged families, he went to Eton, the prestigious boarding school, at the age of thirteen. His time there did not begin well, for his biology teacher wrote a damning report at the end of his first science course. With the random capitalization that was already a couple of centuries out of date except in certain quarters of the British establishment, it said, “I believe he has ideas about becoming a Scientist; on his present showing, this is quite ridiculous, if he can’t learn simple Biological facts he would have no chance of doing the work of a Specialist, and it would be sheer waste of time, both on his part, and those who have to teach him.” Gurdon was not allowed to take any more science courses. He studied languages instead.

        Nevertheless, Gurdon had a strong interest in biology and nature from childhood and was not so easily dissuaded. Fortunately for science, his parents were supportive and able to help him. Although they had already forked out several years’ worth of expensive tuition fees to Eton, they paid for him to study biology with a private tutor for an additional year after he had graduated. In an unusual arrangement, he was then admitted to the University of Oxford on the condition that he first pass exams in basic physics, chemistry, and biology in a preliminary year. Gurdon survived the ordeal, began his undergraduate studies in zoology, and went on to begin research for a PhD with Michael Fischberg, who was also at Oxford. This was just four years after Briggs and King’s experiment with frogs.

        Fischberg suggested that Gurdon try to repeat their experiment but using a different kind of amphibian: the African clawed frog (Xenopus laevis). Referred to originally as a toad, it was first brought to the attention of biologists by Lancelot Hogben, a peripatetic British scientist who moved from England to Canada and then, in 1927, became a professor at the University of Cape Town in South Africa. While there, Hogben began studying the frog because of its chameleonlike properties. The clawed frog became a favorite model organism in embryology; not only were its eggs large like those of the frogs that Briggs and King had studied, but also it had a short life cycle and could be triggered by external hormones to lay eggs any time of the year.

        After overcoming some technical difficulties, Gurdon finally pulled off an experiment using Xenopus laevis that would revolutionize the world of biology. He was able to take the nucleus from one of the cells lining the intestine of a tadpole and insert it into an egg whose own nucleus had been inactivated by subjecting it to a large dose of UV radiation. The resulting egg developed into a complete tadpole, suggesting that the intestinal cell nucleus had all of the information needed for development that an egg nucleus had. To rule out the possibility that the egg’s own nucleus had not been completely inactivated, Gurdon was careful to use two distinguishable strains of Xenopus for the cell that donated the nucleus and the egg that received it. There was no doubt that the donor nucleus had given rise to the tadpole. In fact, since the genes of the new tadpole were identical to those of the donor that contributed the nucleus, it was a clone of the parent. This was the first time that someone had taken the nucleus from the cell of a fully developed animal to clone an entirely new animal.

        Gurdon’s work had a tremendous impact almost immediately. He had demonstrated that the nucleus of a somatic cell of a fully developed animal was capable of directing the development of an entirely new animal—which would be a clone of the animal that donated the nucleus. It meant that a somatic cell could be made to go backward in development; in fact, all the way back to the top of Waddington’s mountain. It could reverse the aging clock and start all over again to grow into a new animal. It also meant that cells that had developed into specialized tissues such as intestines retained all their genes. They were specialized not because they had preferentially lost genes but because they had somehow modified which genes would be turned on or off in each case.

        Eventually other researchers reproduced Gurdon’s experiments with different species, but the procedure was not performed on mammals until 1996. Scientists at the Roslin Institute, outside Edinburgh, cloned a sheep named Dolly from a cell taken from the mammary gland of an adult animal. The news generated huge headlines around the world. There was widespread discussion of the ethics of cloning, with concerns ranging from animal welfare to a brave new world in which rich people who wanted to live on would clone themselves or a loved one they had lost. (Apparently the absurdity inherent in this was also lost.) Today cloning has been successful in a wide range of animals, although for obvious ethical reasons, it is internationally forbidden to attempt it in humans.

        In spite of all the excitement, Gurdon’s early experiments were quite inefficient: only a small fraction of the nuclear transplantations actually worked. Others failed right away or developed into defective embryos that stopped growing and died. And in the sixty years since Gurdon’s original experiments and the more than twenty-five years since Dolly, scientists have toiled painstakingly to improve the efficiency of cloning; nevertheless, it remains an inefficient technique. Nature’s way of creating offspring works far better.

        ONE OF THE BIG PROBLEMS with being human as opposed to, say, a starfish, is that we cannot generally regenerate our tissues. We cannot grow a new arm if one gets cut off. Soon after the first nuclear transplantation experiments, scientists began wondering whether the following might be the solution: Could you make these early embryonic cells grow on command into any type of tissue you wanted, such as heart muscle, neurons, or pancreatic cells? If that ever became a practical option, it would have enormous potential for medicine. Moreover, the deterioration of our tissues is one of the major problems we face as we age, and you could think of regenerating and rejuvenating them.

        We might not be able to regrow a limb, but we already have the ability to regenerate certain kinds of tissue. Every time you cut or scrape yourself, your body creates new skin. Donate blood, and your body simply makes more. How does the body do this? While many of our cells are what we call terminally differentiated—they have reached a final state and will simply carry out their assigned tasks until they die—other, highly specialized cells are responsible for producing new cells to regenerate aging tissues. We call them stem cells.

        Stem cells can be at many stages themselves. Many of them are already quite a way down Waddington’s mountain, capable of developing into only a few different cell types. For example, hematopoietic stem cells in our bone marrow can generate all the major cells in our blood, including red blood cells and the cells of our immune system. But they can’t become liver cells or heart muscle cells. However, the inner cells of the early embryo are pluripotent stem cells that can develop into every cell type in the body.

        Scientists have been able to take these embryonic stem cells, or ES cells, maintain them in culture, and then alter conditions to nudge them into developing into one tissue type or another. Being able to grow ES cells in culture solved the problem of having to extract them from fresh embryos each time and fueled an explosive growth in stem cell research. However, the ultimate source of ES cells was still embryos, which would often be obtained from aborted fetuses, raising ethical questions and regulatory scrutiny. For some time, federal grants in the US could not be used to pay for research involving human ES cells, and labs had to clearly separate areas that were federally funded from those that were not.

        It seemed almost miraculous that you could take any adult cell and coax it into developing into any tissue you wanted, let alone into an entirely new animal. What is it about stem cells, especially pluripotent stem cells, that makes them different from most cells in our body?

        Molecular biologists had begun to identify transcription factors: proteins that regulate gene expression—that is, turning genes on or off, and by how much. The name comes from their control over whether a particular gene on DNA is “transcribed” into mRNA, which is then read to make the appropriate protein. Stem cells contained a large number of active transcription factors, some of which were needed to keep them growing in the laboratory. It was hypothesized that perhaps a newly fertilized egg possessed similar transcription factors that allowed it to develop into a new animal. Some of these same factors were also active in cancer cells, which can proliferate indefinitely.

        Such was the state of affairs in the late 1990s, when a Japanese scientist, Shinya Yamanaka, turned his attention to the matter. Yamanaka was born in 1962, the same year as John Gurdon’s successful cloning of a frog. He began his career as a surgeon, influenced partly by his father, an engineer who ran a small factory in the city of Higashi-Osaka. Yamanaka’s enthusiasm for surgery soon waned, however: not only did he begin to lose confidence in his skills but also he came to see surgery as limited in terms of being able to treat many patients with intractable conditions such as rheumatoid arthritis and spinal cord injuries. Instead, Yamanaka thought, he ought to spend his life working as a basic scientist to find ways to cure them. He earned a PhD in Osaka and went on to postdoctoral research at the Gladstone Institute of Cardiovascular Diseases in San Francisco.

        By the time Yamanaka returned to Japan to establish his own lab in the late 1990s, scientists knew that ES cells expressed quite a few transcription factors. If you turned on some or all of these factors in a normal cell, would you be able to trick it into behaving like a stem cell? Yamanaka and his student Kazutoshi Takahashi hoped so. They identified twenty-four factors that might be responsible for the pluripotent property of ES cells, and systematically introduced them into fibroblast cells found in skin and connective tissue—the same cells that Hayflick had attempted to culture. By experimenting with transcription factors in various combinations, they found that just four were enough to convert an adult fibroblast cell into a pluripotent cell.

        As a result of Yamanaka’s work, we no longer need to harvest cells from embryos to generate pluripotent cells; we can make them from other adult cells. The pluripotent cells made using Yamanaka factors are called induced pluripotent cells or iPS cells. The increased ease of generating iPS cells has led to an even greater explosion in the field of stem cells. Scientists are constantly improving both the efficiency and safety of the process, as well as becoming increasingly sophisticated in determining the paths that the stem cells can take.

        REMARKABLE AS THESE ADVANCES ARE, they don’t tell us exactly what is happening to our genome that makes cells behave so differently even though they all have the same DNA. Why do different cells have such different genetic programs? And why do cells remain true to type, so that one cell type doesn’t suddenly change into a different one? Even stem cells that are responsible for generating blood cells don’t start producing neurons or skin cells.

        Each cell carries genes that are always expressed because every cell needs them. They’re referred to as housekeeping genes. But for other genes, which ones are turned on and which are kept switched off depends very much on what that particular cell needs. How does the cell control this process? You just read about transcription factors, proteins that control which genes are actively expressed or repressed. One of the first and simplest examples of such a factor was discovered in exploring how the bacterium E. coli digests the simple sugar lactose. Ordinarily, E. coli doesn’t encounter lactose, so it does not constantly make the enzymes necessary to digest it. Instead, it operates on an as-needed basis: when the bacterium senses lactose, it turns on the genes tasked with turning out the appropriate enzymes. As soon as there is no more lactose around, it shuts down those genes. It is a simple and elegant way to switch genes on or off in response to a change in the environment. A good deal of gene regulation works exactly like that, by controlling transcription in response to a stimulus. It is seldom as simple as the lactose case, and usually involves a complicated network where genes that are activated in turn activate or switch off other genes, which affect even more genes.

        With E. coli, you can reverse the response to lactose simply by removing lactose from the culture. But if you took a skin cell and put it into, say, a liver, it wouldn’t suddenly start behaving like a liver cell. The transcription factors of a skin cell and a liver cell are different; in addition, the cell has a way of ensuring that some changes in the genetic program persist for a long time, which involves rewiring the code on DNA itself.

        So far, we have thought of DNA as a simple four-letter script containing all the information to make the proteins that carry out various essential functions. But even before the structure of DNA was known, scientists understood that a small fraction of its four bases, A, T, C, and G (or U, the equivalent of T in RNA), had extra chemical groups attached to the base. In the early days, nobody knew what these modifications were for.

        Today we know that many of them act as extra tags that serve as signals for whether a gene should be kept switched on or off over the longer term. The most common of these is the addition of methyl (-CH3) group to cytosine, the C base in DNA. When Cs at the right place are methylated in this way, the genes just ahead of them are kept switched off.

        As cells develop, they will methylate their DNA in the region of genes they want to shut down, and leave unmethylated those regions that contain genes they need to actively use. So cells that differentiate into skin cells will have a different methylation pattern from, say, neurons.

        You might expect that when cells divide and their DNA copied, the patterns of methylation would be lost because you’re making the new DNA with fresh building blocks, but the cell has an ingenious way of restoring the methylation pattern of the parent cell. What this means is that the exact pattern of methylation can be passed on to the daughter cell when a cell divides, so genes that are shut off in a particular cell lineage remain shut off. The flip side of this also occurs: there are demethylases that remove methyl groups, which then allow those genes to be turned back on. Apart from using transcription factors, modifying the DNA itself in this way offers a completely additional level of control over which genes are turned on and off. It is also a method of ensuring that these changes can be passed on to the next generation of cells. These modifications of DNA alter the way our genes are used. They are called epigenetic marks or changes because they are the molecular explanation for the phenomenon of epigenetics that Conrad Waddington had first described.

        These epigenetic marks not only persist and even increase as we age—they can even be passed across generations. Toward the end of World War II, between September 1944 and May 1945, the Netherlands suffered from a devastating famine that would claim the lives of more than 20,000 people. A later study showed that despite the relatively brief duration of the famine, the children of women who were pregnant during the mass starvation suffered adverse physical and mental health consequences throughout their lives. They experienced higher rates of obesity, diabetes, and schizophrenia, and had a higher mortality than children who were not in utero during the famine. The effects were even different depending on whether the famine occurred in the early or late stages of pregnancy. Comparing the DNA of subjects who had experienced starvation in utero with those of their older and younger siblings was revealing: the famine had imposed on the fetus a methylation pattern that had consequences over the course of its life and accelerated both aging-related diseases and mortality. It is a striking example of how an external stress can cause epigenetic changes to DNA that last a lifetime.

        IF THAT ISN’T COMPLICATED ENOUGH for you, just wait: DNA isn’t present in cells as a naked molecule. Rather, it is heavily coated with proteins called histones, and this mixture of proteins and DNA is called chromatin. These histones help us understand how all of our DNA can fit into a cell’s tiny nucleus. If you could stretch out the DNA in a cell, it would measure approximately two meters (six and a half feet). The nucleus, in contrast, is only microns in diameter—or about a million times smaller. Histones are positively charged and neutralize the negative charges on the phosphate groups of the DNA. By doing so, they allow DNA to condense into a highly compacted form.

        The first level of DNA compaction is the nucleosome, in which DNA is wound around a ball-like core consisting of eight histone proteins. The nucleosomes further organize themselves into filaments that are then woven back and forth until it all fits comfortably in the nucleus. When cells divide, the duplicated chromosomes have to move into each daughter cell, and just as you would cram the belongings from your entire household into a truck before you move, chromosomes are most compact just before cell division. That is when they have the familiar X shape that we see in most popular images of chromosomes. But for most of the life of the cell, chromatin is much more extended.

        The problem with compacting chromatin is that the cell needs to be able to access information on the DNA when needed. It’s like owning a large collection of books but not having sufficient space in your home to have all of them within easy reach. You might box most of them and store them in the attic but keep the books you’re currently reading or planning to read soon easily accessible on a bookshelf or piled on your nightstand. The cell too has to make sure that appropriate regions of chromatin are accessible, even if it wants to shut down much of it. It does so by tagging histones by adding certain chemical groups to them. Just as with methyl groups on DNA, there are enzymes that add these histone tags and others that take them off. Tags on histones can act as a signal for the cell to recruit other proteins to that region and either inactivate chromatin or open it up, so they too act as epigenetic marks. With histones, one common tag is called an acetyl group, and the enzymes that add them to histones are called histone acetylases.

        In general, DNA methylation and histone acetylation exert opposite effects. DNA methylation usually silences the gene that follows the methylated region, while histone acetylation signals that the gene is to be actively transcribed. Both can be reversed by the action of demethylases or deacetylases.

        What both modifications do is to overlay on top of the DNA sequence itself a second and longer-lasting way of modifying the program of a particular cell. They allow cells to maintain a stable identity as neurons, skin cells, or heart muscle cells. As a cell develops from the fertilized egg, different epigenetic marks must be laid down as it develops into different cell types.

        WE ALL KNOW THAT PEOPLE age at different rates. Some people look old at fifty, while others are remarkably youthful into their eighties. Some of this comes down to genetics, but aging can also be accelerated by stress and hardship. From the moment we are conceived, our cells don’t just acquire mutations in the DNA affecting the underlying code itself. They also acquire epigenetic marks. As we saw with the Dutch famine survivors, some of those marks are the result of environmental stress.

        Steve Horvath, while working at the University of California, Los Angeles, was not interested in epigenetics, believing it to be too messy, indirect, and unlikely to show much useful connection to aging. But one day, a colleague was collecting saliva from identical twins who differed in sexual orientation, and he wanted Horvath to help him see if there were any epigenetic differences between them. Horvath is a twin; his brother is gay, while he is heterosexual. In the spirit of scientific inquiry, they contributed some of their own spit to the study. When they looked at the methylation of cytosines, they found absolutely no relationship between the pattern and sexual orientation.

        But Horvath now had a lot of data from twins of various ages. He decided to mine it further to see what else he could learn. He discovered a very strong correlation between the DNA methylation pattern and age. He then looked at cells in other tissues and correlated the methylation pattern with actual markers of aging—for example, the sort of things your doctor would analyze from your blood, such as liver and kidney function. He was able to identify 513 sites of methylation that could predict not only mortality but also cancers, health span, and the risk of developing Alzheimer’s disease.

        These patterns help scientists approach a fundamental problem. People age biologically at different rates, so how do you measure aging? Methylation patterns are like a biological clock; in fact, they are more accurate than chronological age alone at predicting age-related diseases and mortality. Many other research groups developed their own methylation clocks with slightly different markers, all correlating well with biological age. Still, as Horvath and his colleagues themselves point out, these clocks are useful for research but are not yet a substitute for tests that measure loss of physiological function or provide early diagnosis of diseases.

        We don’t think of young children as aging; in fact, throughout much of childhood and adolescence, they become stronger and their odds of dying decline. But it turns out that while the methylation patterns reverse very early in the embryo, suggesting a resetting of the clock or a rejuvenation, from that point on, methylation follows an inexorable pattern. So we age from even before we are born! Similarly, the long-lived naked mole rat is thought not to age because its risk of dying doesn’t increase with time. In fact, its methylation pattern shows that it does age, just more slowly than other rodents.

        For an extreme example of the effect of epigenetics on longevity, look no further than a beehive. Bees, like ants, have a queen that can live many times longer than other bees that share exactly the same genes: queen honeybees live two to three years, while worker bees die after only about six weeks. This is partly because once the queen is selected, she is treated very differently. She is kept deep in the hive, pampered and protected against predators, whereas worker bees and ants must go out and risk their lives foraging for food. She is fed an exclusive diet of royal jelly, which has a different composition and a much higher nutritional value than the ordinary nectar and honey that worker bees live on. But the impact of these factors goes deeper. Something about her diet and stress-free environment results in her having different epigenetic marks from worker bees, and she ages at a far slower pace.

        The question of why epigenetic marks should cause aging is complicated. The patterns are associated with an increase in inflammatory pathways and a decrease in pathways for making RNA and proteins as well as DNA repair, so it is easy to see how they might result in aging.

        The epigenetic changes also seem to occur on a timetable. This doesn’t mean that aging itself is programmed. It could simply be that the epigenetic changes take place when they are needed at some stage, but they are not switched off when their work is done because evolution doesn’t care what happens to you after you have passed on your genes. By shutting down many genes in a stable way, epigenetics may also prevent cells from becoming cancerous early in life. Like telomere loss, and the response to DNA damage, this may be yet another example of the trade-off between preventing cancer and preventing aging.

        It is also possible that many epigenetic changes are not programmed but caused by random changes in the environment. Remember the case of identical twins? Those epigenetic changes in their DNA diverge right from birth, so while they still have largely the same DNA sequence, they acquire very different epigenetic marks.

        CAN THE AGING CLOCK EVER run backward? Yes, and it has happened to every single one of us: at conception, when the aging clock is reset to zero. When a forty-year-old woman gives birth, that newborn is not twenty years older than a baby born to a twenty-year-old woman. Even though the germ-line cells are older in the forty-year-old woman, both children start at the same age. The aging that takes place in the parents is reset in the child.

        We have evolved at least three ways to reset the aging clock. The first is that germ-line cells have superior DNA repair and accumulate fewer mutations than somatic cells do.

        Second: the egg and the sperm each undergo a rigorous selection process prior to fertilization. A woman produces all the eggs she will ever have while she is still a fetus. These number perhaps a few million to start with but are down to about a million by the time she is born. By puberty, this number drops to about a quarter million, and by the time a woman is thirty, only about 25,000 eggs remain. However, a mere 500 of those eggs get used up by ovulation during the menstrual cycle over a woman’s lifetime. With sperm, this ratio is even more dramatic: males produce millions of sperm cells from puberty on. So there is a huge surplus of both eggs and sperm. Why? Prior to ovulation—that monthly event in which the ovary releases one mature egg, or ovum, into the fallopian tube for the purpose of potentially being fertilized—the eggs in the ovary are somehow inspected and destroyed if damage is detected. Only those that pass the test make it to ovulation. As damage is likely to increase with age, this might explain why the egg count drops precipitously and the chance of becoming pregnant decreases. Perhaps the monitoring process also becomes less effective, since genetic defects in the baby also increase with the age of the mother.

        Similarly, sperm cells may undergo selection as well, and a sperm must swim and outcompete all the millions of others to be the first one to fertilize the egg. Even after fertilization, many embryos are rejected early in development if they are sensed as being defective. And even within an embryo that is developing normally overall, there is competition to eliminate abnormal cells. The process isn’t perfect, but nature has done its best to ensure that our offspring are free of our own cellular damage and aging.

        The third method for resetting the aging clock is to actually reprogram the genome. Immediately after impregnation, the fertilized ovum, or zygote, temporarily bears two nuclei (pronuclei): one from the mother and the other contributed by the father. The enzymes and chemicals in the zygote proceed to erase nearly all the epigenetic marks in the DNA of both pronuclei, and then add new ones to start the fertilized egg on the path to making a baby. Notice that I said “nearly all.” An egg with both pronuclei coming from just a male or female parent alone would not develop normally. This is because the pronuclei donated by the mother and father have a different but complementary pattern of epigenetic marks, also called imprinting, which together provide the proper program for development.

        Considering all the intricacies of normal development we just described, it is amazing that cloning frogs or Dolly the sheep ever worked at all. For one thing, the genome of cloned animals came from adult somatic cells, with an entire lifetime of accumulated damage. Animals conceived normally, on the other hand, start off from much more protected germ-line cells and go through a rigorous selection process both before and after fertilization. In addition, changing the program of a somatic cell is very different from an egg’s normal task. Given these difficulties, how could these cloned animals possibly be normal? Would they not show signs of premature aging or other abnormalities compared with naturally conceived animals? In truth, it didn’t work so well. Most of the transplants never made it to fully formed animals. Still some, like Dolly, did.

        And the truth is, Dolly was quite a sick sheep. She had abnormally short telomeres and, at the age of one, was judged as older than her chronological age by several criteria. Sheep normally live ten to twelve years, but at six, poor Dolly developed tumors in her lungs and had to be put down. It turns out, however, that Dolly was not the only sheep cloned. There were also the lesser-known Daisy, Diana, Debbie, and Denise, who, surprisingly, all lived healthy lives with a normal life span. This suggests that, at least in principle, it may be possible to reverse the effects of aging and reset the clock even if you start from an adult somatic cell, just by reprogramming the cell. Erasing the epigenetic marks and initiating a new program of gene expression can enable a newly cloned animal to begin from scratch.

        Cloning, though, is not the main aim of reprogramming cells, even for farm animals or crops. The real payoff would be in using stem cells for regenerative medicine: repairing or replacing tissue that has died or sustained damage. If we can overcome the technical problems, the possibilities are enormous and wide-ranging. Perhaps we could introduce new pancreatic cells that produce insulin in patients with diabetes, replace damaged heart muscles after a heart attack, or even regrow neurons in people who have suffered a stroke or a neurodegenerative disease like Alzheimer’s. The potential for such breakthroughs is why billions of dollars are being invested in stem cell research today.

        Even though they’re not going all the way back to zero and creating a new cloned animal, these stem cells are effectively trying to reverse the aging clock by regenerating or even replacing individual parts of an animal that have aged. Both embryonic stem cells and induced pluripotent stem cells (iPS cells) are capable of differentiating into numerous cell types, but the two are not exactly the same. ES cells are natural early embryonic stem cells that scientists have figured out how to keep cultured and then program to follow different paths to make different tissues, whereas iPS cells are reprogrammed not by the action of factors in the egg but by using the four Yamanaka factors in a somatic cell. This means their behavior is not exactly the same. Still, because of the convenience of generating iPS cells (without the added burden of having to contend with the legal and ethical issues surrounding ES cells), many scientists are working hard to improve Yamanaka’s original method for reprogramming cells.

        We will soon see how scientists are trying to reverse aging using this approach. There is also much interest in reprogramming the cell by using specific compounds that inhibit DNA methylation or histone deacetylases. This route to rejuvenating tissues, and even the whole animal, is a major focus of current research. As with telomerase, it may well be the case that our epigenetics have evolved to strike a fine balance between reducing the risk of cancer early in life and accelerating aging. Thus, any approaches to slow down aging or attempt to reverse it by rejuvenation may have to contend with how to do it safely. Indeed, many tissues that have been generated using the four Yamanaka factors have been associated with an unusually high proportion of tumors.

        In the last three chapters, we have seen how the genetic program that controls life can be disrupted by damage to our genome, accumulated with age. We have seen how the program itself is modified on the fly to suit the organism’s needs at any given stage. The product of the program is the ensemble of proteins in our cells. These proteins carry out a huge number of complex and interconnected tasks and are like players in a large symphony orchestra.

        Now we will see what happens when that orchestra becomes discordant and breaks down.

        6. Recycling the Garbage

        These days, whenever I forget an appointment or misplace my gloves, umbrella, or hat, I panic for a moment. I have just turned seventy as I write this, and these occurrences immediately strike me as signs of an inevitable and worsening decline. I cheer up when I remember that in my early twenties, I once invited a friend to dinner, forgot about it, and wasn’t even home when he called; or that a couple of years later, I was so preoccupied with finishing my work that I forgot to attend my own going-away party that a neighbor was going to throw for me. And that I’ve been notorious for losing things all my life.

        Still, there is a good reason for my foreboding. We all face the prospect of suffering from neurodegenerative diseases that cause us not just to forget but also to completely lose our sense of who we are.

        Today more than 50 million people suffer from dementia, and as the proportion of older people in the population is increasing in almost every country in the world, that number is expected to grow to 78 million by 2030 and 139 million by 2050. In England and Wales, it recently overtook heart disease as the leading cause of death, partly because treatment of heart disease has vastly improved, while there is still no effective treatment for dementia. In the United States, it still lags behind the more established killers such as heart disease, cancer, and accidents, but its proportion is gradually rising. It is estimated that about one-third of people born in 2015 will go on to suffer from some form of dementia.

        Over half of those with dementia have Alzheimer’s disease, named after the German psychiatrist Alois Alzheimer, who, around 1900, characterized the onset of the then-unnamed disease. His patients, he wrote, would oscillate from periods of calm and lucidity to being unable to identify common objects, feeling increasingly disoriented, forgetful, agitated, and even unhinged. That is just the beginning. As the disease progresses, many Alzheimer’s sufferers are unable to recognize their family and friends. They can no longer carry out basic activities such as speaking, eating, and drinking. They become increasingly terrified at their loss of control, their loss of self-identity, and their increasing inability to make sense of the world around them. Their loved ones may have it even worse, though, having to watch this person—a spouse, a grandparent, a cherished friend—gradually vanish.

        In the century-plus since Dr. Alzheimer’s description, we have made tremendous progress in understanding the biology behind Alzheimer’s disease. The same is true of other neurodegenerative maladies, such as Parkinson’s and Pick’s diseases. They all have two things in common: the likelihood of the disease increases as we grow older; and they are caused by a malfunction of our own proteins.

        Proteins, as we have seen, are long chains of amino acids that miraculously fold up as they are made. Well, not miraculously. The reason that they fold up is that some amino acids, like oils, are hydrophobic, meaning that they do not like to be exposed to water. Hydrophilic amino acids, on the other hand, are happy to interact with water molecules. As a protein chain emerges, it folds into its characteristic shape by tucking away most of the hydrophobic amino acids on the inside of the protein and exposing the hydrophilic ones on the outside where they are in contact with the surrounding water. Most protein chains have a particular shape or fold that is stable and functional. Sometimes a protein chain folds up along with others to form a complex of several chains. But the principle is the same. In an amazing display of coordination, each of our cells makes not one but thousands of proteins in the amounts it needs and at the time it needs them, and they all must work together as a well-orchestrated ensemble. But the process can, of course, go wrong.

        Think of the many ways a household item can become useless. Even a brand-new product can be poorly made and arrive saddled with manufacturing defects. You could damage it accidentally while using it. Or it could slowly wear out or rust and become dangerous to use or stop working entirely. Then there are products, once essential, that we no longer need. Perhaps our children have grown up, and we no longer require baby bottles or cribs. Or technology has changed, and we have no use for a cassette recorder or a film camera. Or our possessions simply go out of style, and we no longer want them. Food has an even shorter shelf life. In our daily lives, we deal with all this as a matter of course. We throw out leftover food that has perished, mend or throw out old clothes, and fix or get rid of broken gadgets. If we didn’t do that, our homes would quickly fill up with junk and become unlivable.

        It is the same with cells and their proteins. Proteins can have manufacturing defects too. The protein chain may be made incorrectly or be incomplete. It might not have folded into its appropriate shape. During its lifetime, it could lose its shape by unfolding or be damaged by chemicals or other agents. Just as we may need items only during a particular phase in our lives, many proteins are needed only briefly at a particular stage during a cell’s development or in response to some environmental stimulus. And just as we dispose of or recycle products that are faulty or have simply worn out or been damaged, the cell has evolved ways to detect and then destroy proteins that are defective to begin with or when they become aberrant later. It also has ways of getting rid of perfectly normal proteins that it no longer needs. In all these cases, the cell breaks down defective proteins into their amino acid building blocks, which it can then use to make new proteins or to produce energy.

        However, there are crucial differences between the proteins in a cell and a home full of household items. Manufacturers don’t usually much care what happens to their products after they are sold (except during the warranty period, of course). Moreover, the manufacturer of your washing machine does not have to make it compatible with other appliances and therefore isn’t concerned about which brand of refrigerator or microwave oven you own, or whether you own one at all. Cells, on the other hand, both manufacture proteins and use them, and have to ensure that the many thousands of proteins all work together without problems.

        As we age, the quality control and recycling machinery of the cell deteriorates, leading not only to neurodegenerative but also many other diseases of old age, including inflammation, osteoarthritis, and cancer. Accordingly, the cell has come up with multiple ways of ensuring the quality and integrity of its collection of proteins.

        Proteins can be defective in many ways. The birth of a protein chain takes place on the ribosome, the large molecular machine that I have studied for the last forty-five years. As the ribosome chugs along, it reads the genetic instructions on mRNA to stitch together amino acids in a precise order to make a protein chain. The process has evolved to a high level of perfection over billions of years, but it still occasionally gives rise to defective products. Sometimes the mRNA contains mistakes; sometimes the ribosome misreads it. In these cases, the newly made protein has the wrong sequence of amino acids, so it malfunctions—a bit like a brand-new gadget with a manufacturing defect. These days, many of my colleagues and I are trying to understand how the cell recognizes these mistakes and homes in on them for removal.

        Even if the new protein chain has the correct sequence of amino acids, as it emerges from a tunnel in the ribosome, it still faces the challenge of folding into its proper shape. Although the protein chain contains within it all the information needed to form that shape, the process doesn’t usually work spontaneously. With larger proteins, it is difficult to keep the hydrophobic sections from different parts of the chain apart so that they do not stick to one another (or even worse, to other chains that are being made at the same time) while the protein is folding. There are many ways that the folding process can go awry, so cells ranging from bacteria to humans have evolved special proteins whose purpose is to assist other proteins to fold correctly. Ron Laskey, one of my fellow scientists in Cambridge, humorously named these proteins chaperones. (Among other things, Laskey is a folk singer who has written and recorded witty songs about life as a scientist. One of his songs is about how, as a young man, he was part of a double bill with Paul Simon in a small venue in England when neither of them was well known—and realized immediately that he had better stick to science.) Like Victorian chaperones during courtship, these proteins prevent improper interactions between different parts of the chain or between chains. Even so, proteins occasionally misfold.

        Even after a protein has already folded into the right shape, you can make it unfold. The proteins in a chicken egg are all folded correctly to carry out their collective function of helping a fertilized egg grow into a chick. But if you take that egg and boil it, its proteins unfold. Similarly, if you add lemon juice to milk and stir, the acid unravels the proteins in the milk. In either case, when the protein chains unfold, the water-avoiding hydrophobic amino acids that were on the inside now become exposed to the surrounding liquid. This makes the proteins stick to one another and become tangled, and the egg or milk turns into a gelatinous solid.

        Even without being boiled or treated with acidic lemon juice, proteins are not rocklike, static entities. The atoms in a protein jiggle around all the time, and the proteins themselves breathe and oscillate around their average shapes. Over time, they can unfold, either spontaneously or in response to environmental stress. Often the proteins will then fold back into their original shapes, but sometimes they will clump together instead. As we age, more clumps means more proteins that have lost their function. Even more seriously, the protein aggregates themselves can lead to diseases such as dementia.

        We can thus have proteins that are incorrectly made to begin with, or proteins that misfold later. But that’s not all. Many proteins have extra sugar molecules added to specific points on their surface after they are made. This process, called glycosylation, is essential for their work. But as we age, sugar molecules are added randomly to proteins, a process called glycation, to distinguish it from the normal and orderly process of glycosylation. Glycation causes a number of common health problems. For instance, eye diseases such as cataracts and macular degeneration result from proteins in the lens or retina of our eye being modified by sugar molecules, which changes their properties and prevents them from functioning normally. These proteins too need to be recognized and destroyed before they become a problem.

        The first line of defense are the chaperones, which refold misshapen proteins into their correct shapes. But if unfolded proteins accumulate, more drastic action becomes necessary. Cells have an elaborate sensor to detect the buildup of unfolded proteins. The unfolded protein response, as this is known, is multipronged: First, more chaperones are synthesized to aid in folding these aberrant proteins. Second, they are tagged and targeted for destruction. Since there is clearly a problem with proteins folding properly, the cell also slows down protein production or shuts it down entirely. In extreme cases, where these measures are inadequate, the unfolded protein response can simply direct the cell to commit suicide.

        How can a cell destroy proteins that it senses as defective or unwanted? When it senses that something is wrong, it tags the protein with a molecule called ubiquitin, which is itself a small protein. Ubiquitin was discovered in the mid-1970s and got its name from the fact that it was ubiquitous—scientists found it in almost every tissue they examined. It seemed to have something to do with regulating proteins in the cell, but exactly how wasn’t clear.

        Eventually researchers discovered a huge molecular machine called the proteasome, which acts as a giant garbage disposal. When a ubiquitin-tagged protein is fed into the proteasome, it gets chopped up into pieces that can be recycled. Of course, you can imagine that such a powerful degrading machine could be quite dangerous if it were free to act on proteins at will. So the entire process is highly regulated. It is used not just for defective proteins but also for perfectly functional proteins that are no longer required.

        Any defect in the proteasome or the ubiquitin tagging system means that unwanted proteins hang around the cell and cause problems. Proteasome activity declines with age, and we have reason to believe it is a cause of aging. Deliberately introducing defects in the proteasome or the ubiquitin tagging machinery can be lethal, and even minor defects can lead to diseases associated with old age, such as Alzheimer’s and Parkinson’s.

        The ubiquitin-proteasome system is beautifully tuned to get rid of unwanted or aberrant proteins. It works by chewing away the strand of a single protein at any given time. Like the garbage disposal in your kitchen sink, it can handle only one scrap at a time. But what if a cell wanted to get rid of a lot of very large junk, much as we would want to get rid of a used sofa, old furniture, or appliances? Not to worry. Nature has this covered with an apparatus that, oddly enough, was discovered decades before the proteasome.

        Scientists have long known that cells from higher organisms have a nucleus that contains our chromosomes, but as they studied the cell in greater detail with ever more powerful microscopes, they discovered that they have many other specialized structures called organelles. How these structures worked together to facilitate cell function remained a mystery. One of those structures turned out to be hugely important for recycling the cell’s garbage.

        In 1955, Christian de Duve, who split his time between Rockefeller University in New York and the Catholic University of Leuven in Belgium, discovered an organelle called the lysosome. He and his Leuven colleagues found they were full of digestive enzymes that would break down any of the major constituents of living matter. Initially the lysosome was considered rather boring—about as exciting as a landfill site in a city. But things became more interesting when scientists showed that lysosomes often contained remnants of other parts of the cell. All kinds of unwanted structures were taken to lysosomes for disposal. De Duve coined the term autophagy, from the Greek for “self-eating,” because the cell was digesting away parts of itself. But how did the cell’s garbage make its way to the lysosomes?

        In the cell, membranous structures called autophagosomes form and grow in size, gradually engulfing everything the cell targets for disposal. Think of autophagosomes as large garbage trucks. The garbage they collect can be anything from protein aggregates all the way to large organelles. An autophagosome eventually merges with a lysosome to deliver its contents to be digested and recycled. If the proteasome is akin to the garbage disposal in your kitchen sink, the lysosome is the huge garbage recycling center in your city.

        While this process goes on perpetually, it is highly regulated. If you stress or starve the cell, autophagy goes up. It makes sense to break down proteins and other structures and recycle their components to survive a difficult time.

        However, this still doesn’t tell us how the cell decides when and what to deliver to lysosomes. Science would have to wait almost fifty years to make headway on this problem. In the late 1980s and early 1990s, Yoshinori Ohsumi, a young assistant professor at Tokyo University, hatched a clever idea.

        Biology often advances by studying simple organisms that are easy to grow and mutate, and the discoveries made there can then easily be generalized to more complex ones such as humans. Ohsumi turned to that favorite of molecular biologists, baker’s yeast, in which the equivalent of the lysosome is called a vacuole. By isolating strains in which the vacuole had accumulated cellular debris, he was able to find a dozen genes that were essential for activating autophagy.

        As a result of these breakthroughs, we know now that autophagy happens continuously as part of the general maintenance of the cell. Its rate can go up or down, depending on the cell’s needs. It can also be triggered when the cell needs to get rid of invading viruses or bacteria. This kind of autophagy requires special adaptor proteins that recognize these foreign objects and bring them to the autophagosome, which then delivers them to lysosomes to be destroyed. Autophagy is the only process by which the cell can destroy such enormous structures.

        You might think that the only function of autophagy is to deal with problems, but it is also essential for a single fertilized egg’s development into an adult animal. Imagine that you have a perfectly serviceable house, but you want to remodel it. Maybe you’ve had a new addition to your family, or you suddenly need more space so that you can work from home during a pandemic. Or you simply want a larger kitchen. When you remodel a structure, you have to break down parts of it before you can start building. You may have to take down walls, plumbing, and counters, or get rid of furniture that won’t fit in the new space. Our cells go through this same process as they develop from that original fertilized egg into specialized cells such as neurons and muscles, which have very different internal organization and structures. Autophagy makes it happen.

        In short, autophagy is used both to ensure cells develop normally and to jettison defective proteins or aging structures, as well as to destroy bacteria and viruses. It has so many essential functions that when it fails even partially, we develop serious problems, from cancer to neurodegenerative diseases.

        So far, we have talked about how cells deal with proteins and larger structures that are defective or they don’t need anymore. If there are just too many defective proteins piling up, it becomes hard for the recycling machinery to keep up. In that case, it would make sense to quickly shut down the synthesis of new proteins, a bit like turning off the main water supply when you have a flood in the bathroom. Also, it makes no sense for cells to produce new proteins and grow when they face starvation or stress.

        One way the cell does this is to stop ribosomes from starting the process of reading mRNA to make proteins. It is a way of slowing down the production of new proteins while it handles crises, which is a bit like seeing a traffic jam on a freeway and preventing cars from entering the on-ramp and making the problem worse. While this process shuts down the production of most proteins, it also turns on the production of proteins that help the cell survive the stress and alleviate it. In the traffic jam analogy, this would be like sending a signal that stops new cars from entering the freeway and at the same time bringing in tow trucks to clear the accident that caused the jam.

        This process of shutting down the synthesis of most proteins while allowing a few useful proteins to be made can be triggered by starvation, a viral infection, or too many unfolded proteins. Since it is a unified response to many kinds of stress, it is called the integrated stress response, or ISR.

        You would think that these problems with protein quality and quantity would worsen with aging, making a strong ISR useful. That is exactly what some groups have found. If you delete the genes that turned on ISR in mice, the rodents were more prone to various pathologies caused by abnormal protein production. When mice suffering from a pathology due to unfolded proteins were treated with a compound that allowed ISR to persist, it alleviated their symptoms, whereas, conversely, suppressing ISR made them worse and hastened their demise. Compounds such as guanabenz or its derivative Sephin1 that strengthen the integrated stress responses prevent diseases caused by poor quality control of protein production. They also extend life span, although in at least one case, there was disagreement about how these compounds acted, and whether they even affected ISR directly.

        If all this makes a strong case for restoring or strengthening ISR as we age, some research groups have found the exact opposite. According to their studies, deleting the genes that turn on ISR alleviated some of the symptoms of Alzheimer’s disease in mice, including memory deficits. A molecule that shut down ISR enhances cognitive memory and reverses cognitive defects following traumatic injury to the brain. Even more surprisingly, the effects were seen even when the experimental drug being tested, an integrated stress response inhibitor—ISRIB, for short—was administered a month after the trauma.

        Why would turning off a universal control mechanism be beneficial? Nahum Sonenberg, an expert on translation at McGill University in Montreal and a coauthor of the ISRIB study, believes there are pathological conditions in which the ISR itself is chronic and out of control. It may be suppressing protein synthesis when it shouldn’t or to a much greater degree than it should. It’s like driving a car in which the brake is activated all the time instead of only in response to a signal to slow down or an accident ahead. Instead of being a lifesaver, it becomes a nuisance. Even as we age, we still need to make new proteins. For example, forming new memories requires synthesizing new proteins that strengthen connections between brain cells. But when ISR is itself out of control, we are unable to make proteins in the amounts we need. In cases such as this, turning off ISR may be beneficial.

        ISRIB has been touted in the press as a “miracle molecule” that could boost fading memory and treat brain injuries. The San Francisco company Calico Life Sciences, owned by Alphabet, the parent company of Google, started conducting clinical trials on ISRIB-like compounds that inactivated ISR. Peter Walter, one of the discoverers of the unfolded protein response and of ISRIB, recently gave up a prestigious professorship at the University of California, San Francisco, to join Altos Labs, a private company that operates research institutes to tackle aging, with campuses in California and Cambridge, England.

        How this will play out is unclear. It is well to remember that ISR is a universal control mechanism precisely to deal with situations that are problematic for the cell, such as an accumulation of unfolded proteins, amino acid starvation, and viral infections. As we discussed above, initially, scientists found that prolonging ISR was beneficial for certain pathologies. So there may be situations when it would be helpful to enhance ISR and others in which it would be better to inhibit it. Figuring out exactly how much ISR is optimal at any given stage is unlikely to be straightforward, and we may have some way to go before it can be used with any confidence as a long-term treatment for combating diseases of aging.

        We have covered a lot of ground in this chapter, but a common thread runs throughout. For cells to be able to function, their thousands of proteins have to work together. They must be produced at just the right time and in the right amount, and they must be the correct shapes. It is not unlike all the instruments in a symphony orchestra that all have to play their parts together. As with some modern orchestras, there is no conductor. And if parts of the orchestra don’t perform properly, the whole thing falls apart.

        Everything we have discussed so far is about the different ways that cells sense when things are not right and what they do to correct that. This is an amazingly complicated web of interactions, which is itself controlled by yet more proteins. If the control proteins themselves become defective, the problems are amplified. That is just what happens as we age.

        WE BEGAN THIS CHAPTER WITH the terrible scourge of Alzheimer’s disease. The disease, which is increasingly a dread of old age, turns out to be related to a curious group of diseases whose cause was uncovered in a most unexpected way. The key person to unravel its mystery was Carleton Gajdusek, a scientist with the unique and unfortunate distinction of being both a Nobel Prize winner and a convicted child molester.

        After earning his medical degree from Harvard, Gajdusek was serving a fellowship in Boston when he was drafted into the army. He ended up in the Korean War, where he showed that a fever that was killing American soldiers was spread by migrating birds. On the strength of this, he was offered a job with the US government’s Center for Disease Control, but chose instead to work with the famous immunologist MacFarlane Burnet in Melbourne, Australia. Burnet sent him to Port Moresby, New Guinea, to set up part of a multinational study on child development, behavior, and disease. It could not have been easy carrying out fieldwork in such a remote area, far away from any modern research laboratory, but Gajdusek was an unusual character. Burnet once described him as someone who “had an intelligence quotient up in the 180s and the emotional immaturity of a 15-year-old,” adding candidly that his protégé was completely self-centered, thick-skinned, and inconsiderate. At the same time, said Burnet, the young man from the United States would not let the threat of danger, physical hardship—or other people’s feelings—interfere in the least with what he wanted to do.

        While in Port Moresby, Gajdusek heard about a mysterious illness called kuru and set out for the Eastern Highlands Province, about 200 miles away, where the disease was prevalent among the native Fore tribe. Patients with the disease showed no symptoms of fever or inflammation but died of a progressive brain disease that caused tremors and highly abnormal behavior such as uncontrolled fits of laughter. Two anthropologists, Shirley Lindenbaum and Robert Glasse, observed that women and children, but not adult men, ate the entire bodies of deceased family members, even the bones. This was a recent practice among the Fore, and by collecting detailed evidence of cannibal feasts which could be matched with the subsequent appearance of the disease in participants, they concluded that this practice of cannibalism may have had something to do with transmission of the disease. Gajdusek and a colleague named Vincent Zigas had observed that one of the practices of the tribe was to cook and eat the brains of deceased family members following funerals. So Gajdusek suspected that something in the diseased brain was transmitting the disease to the people who ate it. Following up on this hunch, he was able to show that you could transmit kuru to chimpanzees by injecting their brains with extracts from the brains of diseased patients.

        The autopsied brains of the Fore tribe, when examined under a microscope, were full of holes, like a sponge. Kuru is one of many brain diseases with this pattern, called spongiform encephalopathies, including a variant form of Creutzfeldt-Jakob disease. (Variant refers to the transmissible rather than inherited form of a disease.) About 10 percent of all cases are inherited, and just as he had done for kuru, Gajdusek was able to show that brain extracts from infected patients could transmit the disease to chimpanzees. The idea that a disease could be inherited in some instances but also transmitted like an infection in other cases was unprecedented. Gajdusek was awarded a Nobel Prize in 1976.

        Unfortunately, the end of Gajdusek’s career was not so glorious. Over the course of many years, he brought back more than fifty children to the United States from New Guinea and Micronesia, and acted as their guardian. In the 1990s, in response to a tip-off from a member of his lab, the FBI began to investigate the scientist. The bureau persuaded one of the boys to tape a phone conversation in which Gajdusek admitted that he and the boy had sexual contact. In a plea bargain that would be unthinkable today, he served a year in jail in 1997 and then left the United States as soon as he was released to spend the rest of his life in Europe. During his self-imposed exile, he stayed active scientifically and was affiliated with several universities. He showed no remorse for his behavior, dismissing his treatment as American prudishness. Many of the boys continued to have contact with him, some adopting his name and even naming their own children after him. In 2008 he died in a hotel room in Tromso, Norway, where he was a frequent visitor to the university there.

        Gajdusek’s concept of transmissibility had a huge impact on our thinking about this class of diseases. Mad cow disease (bovine spongiform encephalopathy) afflicted cows in Britain, notably in the 1980s, as a result of cows being fed the remnants of infected animals. Around this time, more than a hundred people died of Creutzfeldt-Jakob disease. Scientists began to suspect that this was because they had eaten meat from diseased cows. The connection with eating infected beef was then not universally accepted, and John Gummer, a UK government minister, famously encouraged his four-year-old daughter, Cordelia, to eat a hamburger on television, declaring British beef to be completely safe. (The girl did not get sick.) Nevertheless, many countries prudently banned the importation of British beef and lifted it only after several million cows had been slaughtered and farming practices had been changed.

        Although the transmissibility of these diseases was established, it was not clear exactly how they spread. Ever since the nineteenth and early twentieth centuries, it has become a firm dogma that every infectious disease is transmitted by living organisms that can multiply in the host, whether they are parasites or microbial organisms such as bacteria, fungi, or viruses. In the early 1980s Stanley Prusiner, an American neurologist at the University of California, San Francisco, began trying to isolate the infectious agent for scrapie, a spongiform encephalopathy of sheep and goats. The brain extracts that transmit scrapie remained infectious even after they were sterilized using standard methods such as heat, so the prevailing view was that the infectious agent was a virus that was resistant to inactivation and had a long incubation time. When Prusiner gradually isolated the infectious agent, it turned out to be a protein—a notion that was greeted with a chorus of skepticism. After all, unlike bacteria or viruses, proteins could not multiply, so how could they possibly cause an infection that spread from one animal to another?

        Over the next several years, Prusiner identified the protein and showed that although it was a normal component of brains, its shape in a scrapie-infected brain was abnormal. Prusiner called the protein a prion and proposed there were two forms: a normal version and a scrapie version. Like an evil character who corrupts all the good people around him, this aberrant, misfolded, scrapie version of the protein acts as a mold, or template, and induces each normal prion protein it encounters to switch to the misfolded version. The result is that the misfolded form spreads like an infection throughout the cell and across cells throughout the tissue, bringing about disease.

        At first glance, the only commonality between diseases such as kuru or scrapie and Alzheimer’s is that they are lethal brain diseases, but as we shall see, the similarity runs deeper. Dr. Alois Alzheimer himself autopsied the brains of deceased patients and discovered deposits of plaques outside cells as well as tangles of fibrils inside some nerve cells. It wasn’t initially clear whether the formation of these deposits was a cause of the disease or a symptom.

        In 1984, scientists identified that the major component of the plaques was a protein called amyloid-beta, which itself is produced by trimming a much larger amyloid precursor protein, or APP. Alzheimer’s is normally a disease of old age and not necessarily inherited, but some patients with inherited forms develop the disease earlier in life. They turn out to have mutations in the APP gene. Scientists have also identified the enzymes that trim the APP to the mature amyloid-beta and, in a nod to their involvement in causing senility, called them presenilins. Mutations in these proteins also led to familial Alzheimer’s disease. The case that the disease was caused by accumulating either too much or incorrectly processed amyloid-beta protein seemed overwhelming. Much of the research community then focused on the details of what caused the plaques to develop and how they could be prevented.

        However, in science, things are often never quite so straightforward. For one thing, the plaques typically develop outside nerve cells, so why are they killing them? Another curious feature is that other tissues—for example, blood vessels—also contain amyloid-beta deposits, but it is the diseased brain that kills people. A feature of the disease that was ignored earlier on is that inside some neurons of patients, there are filaments made of a different protein called tau. Perhaps these tau filaments were the cause of the disease?

        Although scientists were skeptical at first, evidence incriminating tau also began to mount when three groups found independently that patients with an inherited form of dementia related to Parkinson’s disease had mutations in the tau gene. Also, it was not hard to imagine how tau could cause disease. The tau filaments could block the narrow axons and dendrites that connect neurons, and, not surprisingly, it is these connections that are the first to go, causing cognitive impairment.

        Recently, scientists have found that the filaments characteristic of diseased brains are not just random clumps of unfolded proteins. Rather, the aberrant molecules come together to form filaments that are distinct for each type of dementia. Studies show consistently that the tangles we see in diseased brains actually have very well-defined structures, each of which is a hallmark of a particular disease. This is something we did not know even a few years ago.

        Therefore, as things stand, we have very compelling evidence that amyloid-beta, tau, and other filaments are implicated in disease. One problem is that nobody really understands what these proteins are doing normally. We do know that if you delete the genes for them in mice, the animals exhibit some abnormalities, but they don’t develop plaques or Alzheimer’s disease. This means that the reason amyloid-beta or tau causes disease is not because it has ceased to function normally. Rather, it is because the unfolded forms can give rise to filaments that spread throughout the brain.

        Alzheimer’s and prion diseases are both caused by aberrant forms of proteins that come together to form tangles or plaques. In prion diseases, the prion form assumes a different shape from the normal form, and spreads because it switches the normal version into the prion form when it comes into contact with it. There is a growing feeling that exactly the same thing happens in Alzheimer’s and other neurodegenerative diseases: an abnormal, unfolded form can seed the formation of filaments, which then spread throughout the brain. Injecting brain extracts from Alzheimer’s disease patients into mice stimulates the premature formation of plaques or tangles. But, unlike prion diseases such as kuru and bovine spongiform encephalopathy, nobody has demonstrated that Alzheimer’s, Parkinson’s, or similar diseases are actually infectious. That could be because we don’t eat the brains of patients with dementia or inject extracts of their diseased brains into our own.

        What causes Alzheimer’s disease is a burning question because that holds the key to preventing it. The answer depends on how you define cause. The immediate cause may well be the formation of tau or amyloid-beta filaments in the brain. However, an earlier and root cause is the cell’s inability to manage the excess of unfolded proteins that aggregate to form these filaments in the first place. This in turn is caused by damage to our control systems: the quality control and recycling machinery of the cell that we discussed earlier in the chapter. And that damage to our control systems is a result of aging.

        So you could say it all boils down to our living long enough for the damage to occur. It is particularly ironic that one of the consequences of our increased life expectancy over the last century is the greater likelihood of spending our final years with the terrible effects of diseases such as Alzheimer’s.

        Can anything be done about it? The difficult truth is that there are still no effective treatments for these dementias, despite several decades of work. Just as cancer is so hard to treat because it is our own cells that have gone out of control, Alzheimer’s is caused by our own proteins misbehaving. And just as with cancer, there may be both genetic factors and chemicals or infectious agents that accelerate the process. This creates a fundamental difficulty for treatments. Very recently, therapies based on antibodies that bind to the amyloid-beta protein were shown to halt cognitive decline by about 25 percent after eighteen months. They were most effective at slowing the progression of the disease if treated early, and in patients that had only a modest level of tau aggregates. They carried a serious risk of side effects, including seizures and bleeding in the brain. However, they did demonstrate that targeting beta-amyloid showed some clinical effect, and against the bleak backdrop of having next to nothing to offer Alzheimer’s patients, even an expensive and complicated treatment with a relatively modest gain was heralded as a huge breakthrough.

        All the recent breakthroughs in our understanding the basis of the disease offer some hope, however. Now that we know that the filaments are not random but consist of very specific contacts to form their structure, perhaps drugs can be developed to prevent their formation. Others are attempting to inhibit the production of the protein itself. And scientists are busy at work on the ultimate causes as well, including how to modify aging cells so they can handle aberrant proteins as effectively as younger cells do. We also need to identify suitable biomarkers that are an early warning of incipient disease. As we learn much more about the underlying biology involved, we can be hopeful that we will find more ways to prevent the disease in the first place, and diagnose it early and treat it when it occurs.

        7. Less Is More

        The India in which I grew up is a land of many religions, and there never seemed to be a time when one or another group wasn’t fasting. Hindus fasted before certain religious occasions—or if they were strict, every week. Muslims fasted from dawn to dusk for the entire month of Ramadan, not drinking a drop of water even when the holiday fell amid the long, hot summer days of the subcontinent. Christians fasted during Lent. And fasting was not only a religious imperative. Nearly all cultures considered fasting, and moderation in general, a key to a long and healthy life, and gluttony to be a vice.

        For much of our existence as a species, we were hunter-gatherers, feasting occasionally between prolonged periods of involuntary fasting. Perhaps our metabolism evolved to adapt to that lifestyle. It is different today, especially in the rich countries of the West. Like millions of others, I gained an inordinate amount of weight during the early days of the Covid-19 pandemic, when most people were stuck at home, and food was only as far away as the refrigerator. Indeed, today we face a widespread epidemic of obesity, which is linked not only to cardiovascular disease and type 2 diabetes but also to certain cancers and even Alzheimer’s disease. It is also a major risk factor in infections: Covid-19 patients who were obese were far more likely to die from the virus. Clearly it has far-reaching consequences, both for ill health in old age and our likelihood of dying from those disorders.

        The reasons for the rise in obesity in recent times are complex. One popular theory is that throughout most of our history, food was scarce and sporadic, and those who had “thrifty genes” that could store fat more efficiently could better survive times of scarcity. Now, in a time of plenty, those very genes efficiently keep storing away all the excess fat we eat and cause obesity. This idea was so prevalent that it became a truism, but it is now being questioned. Even today, less than half the population in the United States is obese. John Speakman, who has studied the relationship between energy intake and weight in organisms, has argued convincingly that it is simply that the population had a lot of genetic variability in how efficiently they could store fat, a variability he calls “drifty genes.” When food was generally scarce, even those individuals who might be prone to becoming obese rarely were. But now, an abundance of calorie-rich food has driven a rise in obesity, especially in the portion of people who have inherited genes that in previous eras would not have caused any harm. Also, historically there was no reason for us to have evolved to be abstemious.

        Regardless of the reasons for the rise in obesity, nobody doubts that moderation and maintaining a healthy weight are recipes for good health. Clearly, overeating is bad for your health, but is the converse also true? Would stringently restricting our diet to less than what we eat normally actually make us live much longer? The first studies to test this, carried out in 1917, were not taken seriously, perhaps because for most of our existence as a species, being undernourished was a much greater threat to life than overeating. Nevertheless, the idea persisted, and later studies showed that rats fed a calorie-restricted diet lived longer and were healthier than those allowed to eat without limit.

        During caloric restriction, or CR, an animal is fed 30–50 percent fewer calories than it would consume if it ate as much as it liked (ad libitum), while making sure that it consumes enough essential nutrients to not become malnourished. In rodents and other species, animals on CR lived 20–50 percent longer, as judged by both average life span and maximum life span. Moreover, they appeared to have delayed the onset of several diseases of aging, including diabetes, cardiovascular disease, cognitive decline, and cancer.

        Mice are small, however, with short life spans. What about animals more similar to us? In 2009 a long-term study from the University of Wisconsin found that rhesus monkeys lived longer and were healthier and more youthful when subjected to caloric restriction. But this was contradicted only a few years later by a twenty-five-year study at the National Institute on Aging (NIA). The Wisconsin diet was richer and had a higher sugar content, so perhaps eating a healthy diet rather than fewer calories might have made the difference. The NIA control animals were not allowed to eat ad libitum but were fed an apportioned amount to prevent obesity. More than 40 percent of the Wisconsin control group developed diabetes, while only 12.5 percent of the NIA control group did. In tandem, the studies suggest that for animals already on a healthy diet and not overweight, further caloric restriction has little additional effect on longevity. Interestingly, all the animals in both groups, even the CR animals, weighed more than animals found in the wild, suggesting that even the restricted diet provided more food than they would eat naturally.

        Experimenting with monkeys is hard enough. They can live between twenty-five and forty years, and the studies from NIH and Wisconsin have gone on for over two decades and already cost millions of dollars. Conducting similar studies with humans—who live more than twice as long and whose dietary intake is much harder to track—seems out of the question. Any evidence for the effect of CR on human longevity is purely anecdotal at this point, but that hasn’t stopped individuals from experimenting on themselves and even writing books to tout their lifestyles.

        There have also been persistent claims that fasting is beneficial for health beyond simply reducing the overall intake of food. There is 5:2 fasting, whose adherents eat as little as 500–600 calories per day twice a week but eat normally on the other five. Another method advocates eating all your food in a window of a few hours each day. Recently, scientists examined the effects not just of CR and intermittent fasting in mice but also of aligning feeding times to their daily biological rhythms. They concluded that matching feeding times to our biological circadian rhythm greatly improved the benefit of intermittent fasting. This might seem like the home run the field wanted, but, as the accompanying commentary points out, much of the additional benefit may have nothing to do with the time of feeding as such. Rather, if you allowed mice to eat only during the day—when they would normally be asleep—they were faced with the unenviable choice between starving and not sleeping. The test animals chose to disrupt their sleep. Even if you distributed the restricted diet throughout the twenty-four-hour period, the mice would not get enough to eat when they were awake and would choose to disrupt their sleep to get the rest.

        I know what a wreck I am when I am sleep deprived. As I get older, my problems with jet lag are getting worse, and I am barely able to function right after I show up on some other continent. So I am always struck by how sleep, which is so intimately related to our health, is ignored by scientists in other fields. We think of sleep as something that is connected with our brains and especially our eyes and vision. But as Matthew Walker explains so well in his book Why We Sleep, you don’t need a brain or even a nervous system to sleep. In fact, sleep is ancient and highly conserved across the entire kingdom of life. Even single-celled life forms follow a daily rhythm that is related to sleep. Considering that sleep can be perilous—animals are vulnerable to attack when they are asleep—it must have huge biological benefits for it to persist through evolution. The consequences of sleep on our health are profound and widespread. In particular, sleep deprivation increases the risk of many diseases of aging, including cardiovascular disease, obesity, cancer, and Alzheimer’s disease. According to a recent study, one of the ways that a lack of sleep accelerates aging and death is by altering repair mechanisms that prevent the buildup of damage to our cells.

        But going back to the study matching feeding times with when mice are awake, although it did not explicitly monitor the sleep patterns of the mice, the researchers suggest that as long as you don’t deliberately disrupt sleep, CR has a significant positive effect on both health and longevity. Over the decades, study after study have confirmed the benefits of CR over an ad libitum diet in multiple species.

        If all this seems too good to be true, it might be. In one study, the effects of CR varied greatly depending on the strain and sex of the mice; in fact, in a majority of the test animals, CR actually reduced life span. Indeed, one of the pioneers of the aging research field, Leonard Hayflick, expressed skepticism that dietary restriction had any effect on aging. He felt that animals on an ad libitum diet were overfed, and unhealthy as a result, and caloric restriction simply brought their diets closer to conditions in the wild. Moreover, when scientists look outside typical lab conditions to animals in the wild, the link between eating less and living longer becomes much more tenuous.

        Nevertheless, in multiple laboratory studies, at least compared to an ad libitum diet, CR appears to be beneficial not only in rats and mice but also in diverse organisms ranging from worms, to flies, to even the humble unicellular yeast. Most scientists working on aging agree that dietary restriction can extend both healthy life and overall life span in mice and also leads to reductions in cancer, diabetes, and overall mortality in humans. On a more granular level, limiting protein intake or even just reducing consumption of specific amino acids such as methionine and tryptophan (both of which are essential in our diets because our bodies don’t produce them) can confer at least some of the advantages of overall dietary restriction.

        It might seem counterintuitive that eating the bare minimum to avoid malnutrition would be good for you. In fact, the results of CR may be yet another example of the evolutionary theories of aging. Consuming lots of calories allows us to grow fast and reproduce more at a younger age, but it comes at the cost of accelerated disease and death later on.

        So why aren’t we all on CR diets? For the same reason that rich countries face an epidemic of obesity: we now live in a time of plentiful food, and we have not evolved to be abstemious. Moreover, caloric restriction is not without its drawbacks. It can slow down wound healing, make you more prone to infection, and cause you to lose muscle mass, all serious problems in old age. Among its other reported downsides are a feeling of being cold due to reduced body temperature, and a loss of libido. And, of course, a side effect that to most readers will seem blindingly obvious: people on calorically restricted diets feel perpetually hungry. In fact, animals on CR diets all revert to eating as much as possible when permitted.

        The anti-aging industry would love to produce a pill that can mimic the effects of CR without our having to forego the ice cream and blueberry pie. For that to happen, we need to understand exactly what caloric restriction does to our metabolism. It’s a story full of unusual twists and turns and the discovery of some completely new processes in our cells.

        IN 1964 A GROUP OF Canadian scientists set out on a voyage to Easter Island, a remote spot in the South Pacific that is about 1,500 miles away from its nearest inhabited neighbor. Their goal was to study the common diseases of the island’s Indigenous people, who had little contact with the outside world. In particular, they wanted to know why the islanders did not develop tetanus, even though they walked around barefoot. The researchers collected sixty-seven soil samples from different parts of the island. Only one of them had any tetanus spores, which are typically more common in cultivated soil that has less diversity of microbes than virgin soil does. Nothing further might have come out of this expedition had not one of the scientists given the soil samples to the Montreal lab of Ayerst Laboratories, a pharmaceutical manufacturer. The company was looking for medicinal compounds produced by bacteria. By then, it was well known that soil bacteria, notably the genus Streptomyces, produced all kinds of interesting chemicals, including many of the most useful antibiotics today. Part of the reason they produce them is thought to be biological warfare among soil microbes, where some species make compounds that are toxic to others.

        To identify anything useful from an unknown bacterium in a soil sample, you first have to isolate it and coax it to grow in the lab. Then you need to analyze the hundreds or thousands of compounds that it makes and screen them for useful properties. Through this painstaking venture, the Ayerst scientists found that one of the vials contained a bacterium, Streptomyces hygroscopicus, that made a compound that could inhibit the growth of fungi. Because fungi are more similar to us than bacteria are, it is hard to find compounds that will treat fungal infections without also harming our own cells. So it seemed worthwhile to follow up on their initial observation. It took Ayerst two years to isolate the active compound, which the company named rapamycin after Rapa Nui, the Indigenous name for Easter Island.

        The scientists soon discovered that rapamycin had another, potentially much more useful property. It was a potent immunosuppressant and stopped cells from multiplying. Suren Sehgal, a scientist at Ayerst, sent off some of the compound to the US National Cancer Institute. Researchers there found the drug to be effective against solid tumors, which are ordinarily difficult to treat. Despite these promising early results, work on rapamycin ground to a halt when Ayerst closed its Montreal lab and relocated the staff to a new research facility in Princeton, New Jersey, in 1982.

        Sehgal, however, was convinced that rapamycin was going to be useful. Just before moving to the States, he grew a large batch of Streptomyces hygroscopicus and packed it into vials. At home, he stored them in his freezer next to a carton of ice cream, with a label cautioning, “Don’t Eat!” The vials remained there for years. In 1987 Ayerst merged with Wyeth Laboratories, and Sehgal persuaded his new boss there to pursue rapamycin. He was given the go-ahead to look at its immunosuppressive properties, which could be useful to prevent transplant rejection. Eventually rapamycin was approved as an immunosuppressant for transplant rejection, but nobody had any real idea of how it worked. How could it inhibit the growth of fungi, prevent cells from multiplying, and be an immunosuppressant, all at once?

        Here our story shifts to Basel, Switzerland, where two Americans and an Indian chanced upon an unexpected breakthrough. One of the Americans, Michael Hall, had an unusually international childhood: he was born in Puerto Rico to a father who worked for a multinational company and a mother who had a degree in Spanish. They both liked Latin American culture and decided to make their home in South America, where Hall grew up, first in Peru and then in Venezuela. When he was thirteen, his parents decided he needed a rigorous American education; Hall was suddenly ejected from his carefree life wearing T-shirts, shorts, and sandals in warm and sunny Venezuela, and dropped into a boarding school in the freezing winters of Massachusetts. From there he attended the University of North Carolina, intending to major in art but eventually settling on zoology, with the intention of going to medical school. An undergraduate research project whetted his appetite for science, and Hall went on to earn a PhD from Harvard and then put in time pursuing postdoctoral research at the University of California, San Francisco. In between, he spent almost a year at the famous Pasteur Institute in Paris, where he met Sabine, the Frenchwoman who would become his wife. Thus, unlike many American scientists who see leaving the United States as equivalent to falling off the map, Hall cast a broad net in the job search that followed his postdoc. He had not originally thought of moving to Switzerland, but when he interviewed for a starting faculty job at the Biozentrum at the University of Basel, he fell in love with the institute and the city.

        Shortly after he started his lab in Basel, Hall was joined by another young American, Joe Heitman, who was in an MD-PhD program that combined medical studies at Cornell Medical School with research at Rockefeller University. After his PhD research, rather than go back immediately and finish his medical degree, Heitman decided to do some postdoctoral research, partly because his wife would be starting her own postdoctoral work in Lausanne, Switzerland. Looking for suitable labs in the vicinity, he identified Hall as someone he wanted to work with. His initial project there turned out to be frustrating, however, and Heitman briefly considered going back to medical school, when he read a scientific paper describing mutants of a mold, Neurospora, that were resistant to the immunosuppressive drug cyclosporine. He approached Hall with the idea of studying immunosuppressants using yeast.

        By sheer chance, Heitman could not have found a more receptive mentor. It turned out that cyclosporine was a blockbuster drug for Sandoz, the pharmaceutical company located right in Basel, and Hall had already begun working with a scientist there who was interested in how it and other immunosuppressants worked. That scientist, Rao Movva, who grew up in a small village in India, had already enjoyed quite a bit of success in using yeast to understand the mechanism of cyclosporine, and he was keen to study rapamycin, which was still being developed for use in patients.

        To most in the field, this must have seemed a crazy idea. What could yeast—a unicellular organism that doesn’t have an immune system—teach them about immunosuppressive drugs and human beings? But Hall points out that these compounds were produced as part of biological warfare among soil microbes, so, really, yeast was their natural target; it is administering them to humans that is actually unnatural. As soon as Heitman had expressed interest in the problem, Hall put him in touch with Movva. This was a huge advantage, because at a large pharmaceutical company such as Sandoz, Movva had the resources to produce enough rapamycin. One day he came into Hall’s lab with a small vial and told Heitman, “Okay, this is the world’s supply of rapamycin. Think very carefully about the next experiments you’re going to do. Don’t blow it, because this is all we have.”

        The gamble paid off. The trio looked for mutant strains of yeast that would grow even in the presence of rapamycin, and their experiments revealed that many of the mutations occurred on two closely related new genes that coded for some of the largest proteins in yeast. Names of genes and proteins from yeast typically consist of a three-letter acronym that makes little sense to those outside a particular field. In this case, from a long list of possibilities, they chose TOR1 and TOR2, to denote “target of rapamycin.” The names held additional appeal for Heitman because he lived near one of the picturesque medieval gates of Basel, and the German word for gate is Tor.

        This was a big breakthrough. Rapamycin’s immunosuppressive activity was thought to derive from its ability to inhibit cell growth. The compound also arrests yeast growth, however, so identifying its protein targets would enable scientists to understand exactly how. The mutants identified two genes, but without cloning and sequencing them, nothing was known about the proteins they coded for, let alone what they did.

        At this point, the problem almost fizzled out in Hall’s lab. Heitman stayed as long as he could, but he had to return to New York to finish his medical studies. At the time, although it was acknowledged that rapamycin was a potentially important immunosuppressive drug, nobody had any idea of how important their discovery would turn out to be. Meanwhile, Heitman’s mutants were sitting in the lab freezer until a new student was frustrated when her original project was not working. She, along with another student and others in the lab, used the mutants to clone and sequence the TOR1 and TOR2 genes. In those days, sequencing had to be done manually. What’s more, this was no trivial project, because they were both among the largest genes in yeast, and were similar but not identical. One of them was lethal when deleted, proving that it was essential in order for yeast to survive, while the other was not.

        Understanding the mechanism of an immunosuppressive drug that was also a potential anticancer drug was of great medical importance, so while Hall and his colleagues carried on their work, they were participants in an intense race to discover the target of rapamycin. Three groups in the United States directly purified the protein target of rapamycin in mammals. It turned out to be the mammalian counterpart of the genes that Hall and his colleagues had identified. Now, scientists can be fiercely competitive and don’t like to come in second place. It’s a bit like leading the second expedition to climb Mount Everest or being the second pair of astronauts to walk on the moon—you just don’t get the same level of recognition. In the case of the two genes, prickly egos and difficulty accepting one’s also-ran status led to a profusion of names in the field, sowing confusion.

        The US research groups realized that they had discovered the mammalian version of essentially the same protein that Hall and his colleagues had identified already. Nevertheless, some of them gave it entirely different names. Eventually they all agreed to christen it mTOR, with the m denoting “mammalian,” to distinguish their findings from the yeast TOR. When the same protein was identified in a variety of organisms, including flies, fish, and worms, things began to get a little silly, with scientists studying zebrafish calling their version zTOR or DrTOR (the scientific name for zebrafish is Danio rerio). Eventually everyone settled on mTOR for all species—except, paradoxically, the original yeast!—with the m now standing for mechanistic, which makes no sense at all, since it implies that there is also some other target of rapamycin that is nonmechanistic (whatever that means). Why they didn’t simply revert to the original TOR remains a mystery to me. For consistency, and in deference to the original discoverers, I will refer to the molecule as TOR, but if you read elsewhere about TOR with a small letter before it, it is basically referring to the same protein.

        From the start, it was known that rapamycin would prevent cultures of cells from growing, but it wasn’t clear how. Did it limit the number of cells or the average size of each cell? At first, Hall thought that rapamycin would simply stop cells from dividing, but after pushback from a famous expert in that field, he realized that TOR actually controlled cell growth by activating the synthesis of proteins in the cell when nutrients are available. Among other things, Hall and his colleagues showed that in the presence of rapamycin, or mutants of TOR, cells would appear starved and stop growing even when plenty of nutrients were available.

        Biologists have known for a very long time that the size and shape of cells is highly controlled. Cell size varies not only in different species but also in different tissues and organs. For example, an egg cell is about thirty times the diameter of the head of a sperm cell, and neurons can have protrusions, the nerve axons, as long as three feet. How cell size and shape are controlled is still a very active area of research. But the general belief was that cells would simply keep growing and dividing as long as you provided them nutrients—unless, that is, they received specific signals to stop growing. Hall’s experiments turned this dogma around. Cell growth, they suggested, was not passive; rather, TOR had to actively stimulate it, by sensing when nutrients were present.

        It is a bit like the difference between an old steam locomotive and a gasoline-powered car. Once a locomotive gets going, as long as it has plenty of burning coal in the furnace and water in the boiler, it will keep rumbling down the track unless you take action to stop it. But a car, even with a full tank of gas, requires a foot on the accelerator in order for the vehicle to remain in motion; you have to actively do something to use the fuel. TOR is the driver that presses on the gas pedal to ensure that available nutrients are used to drive cell growth.

        Hall’s conclusions represented a paradigm shift in our understanding of how cells grow and ran counter to decades of understanding. His paper was rejected seven times before it found a home in the journal Molecular Biology of the Cell in 1996. Around the same time, Hall also collaborated with Nahum Sonenberg, the same scientist we encountered in chapter 6 for his studies on the integrated stress response, and who is best known for his work on how ribosomes initiate; in other words, how they find the beginning of the coding sequence on mRNA and start reading it to make proteins. They found that without TOR actively making it possible, cells could not begin the process of translating mRNA to produce proteins, and would stop growing.

        The initial discoveries by Hall and the other groups opened up the floodgates. Since then, TOR has become one of the most studied molecules in biology with about 7,500 research articles in 2021 alone. There is no question that finding out how rapamycin was immunosuppressive was important. But not even the brilliant scientists first working on it could have imagined that they would later uncover one of the oldest and most important metabolic hubs of the cell. In metabolism, proteins seldom act in isolation; they influence the actions of other proteins. If you think of such proteins as nodes that connect to one another—picture an airline map of its routes—TOR would be a major hub like London, Chicago, or Singapore, making direct connections to a large number of cities all over the world.

        How could one protein have such widespread effects on the cell, and how exactly was it linked to caloric restriction? Ever since Michael Hall and his colleagues sequenced the two TOR genes, we have known that TOR is a member of a family of proteins called kinases. These enzymes often act as switches by adding phosphate groups to other proteins, which then act as tags or flags to turn them on or off. (The act of adding phosphate groups is called phosphorylation, and the proteins with the added phosphates are described as phosphorylated.) Sometimes kinases activate other kinases, which in turn activate other enzymes. You can think of kinases as part of a huge relay system, where many different proteins in a large network are turned on or off in response to some cue in the environment or the state of the cell. A map of all the proteins involved in activating or being activated by TOR is enormously complicated. So it is not surprising that by responding to many different environmental cues and then switching on or off many different targets, TOR has such widespread effects within the cell. Some of these environmental cues are not sensed directly by TOR but by other proteins, which in turn activate TOR.

        TOR is not a protein chain that functions all by itself. It is part of two larger complexes called TORC1 and TORC2. Much more is known about TORC1, which is activated by proteins that sense the level of nutrients such as individual amino acids and hormones, including those that stimulate growth, known as growth factors. It is also affected by energy levels in the cell. If conditions are right, TORC1 promotes the synthesis not only of proteins but also nucleotides, which are the building blocks of DNA and RNA, and also lipids, which make up the membranes of all cells and organelles.

        An important function of TOR is that when nutrients are available and the cell is not stressed, it inhibits autophagy, which, as you learned in chapter 6, is the process by which damaged or unneeded components of the cell are taken to the lysosome to be destroyed and recycled. This makes sense because these are exactly the conditions in which you want to stimulate cell growth and proliferation, not the opposite.

        We can now see how TOR is connected to caloric restriction. Under CR, there are fewer nutrients around, and TOR, recognizing that, can switch off protein synthesis and other growth pathways, and also green-light autophagy. We have already seen how important both controlling protein synthesis and clearing defective proteins and other structures through autophagy are to keep the cell working optimally, and to aging in general.

        But what if we didn’t need caloric restriction to reap its benefits—if we could inhibit a normal TOR and mimic its effects, with no change to the human diet? TOR was discovered precisely because it was the target of rapamycin. Might rapamycin be the long-sought pill that could imitate CR without our having to cut down on how much we eat?

        It turns out that both a defective TOR and inhibiting TOR with rapamycin can enhance health as well as longevity in a range of organisms, from the simple yeast, to flies, to worms, and to mice. Strikingly, even short courses of rapamycin, or initiating treatment relatively late in the life of mice (equivalent to age sixty in men and women), conferred significant improvements in both health and life span. Rapamycin also delayed the onset of Huntington’s disease in a specially engineered strain of mice, presumably because it increased autophagy and prevented the accumulation of misfolded proteins. This shows that rapamycin not only improves longevity, but may also keep the mice healthier. In fact, the two may be closely related—perhaps the mice in these experiments live longer precisely because they are protected against various disorders of aging.

        Though rapamycin is an immunosuppressive drug, it also, counterintuitively, improves some aspects of our immune response. There are two important components of our immune system: one is B cells, a type of white blood cell that churns out antibodies for identifying and then binding to the surfaces of bacteria, viruses, and other foreign invaders, or antigens, so that other foot soldiers in the body’s self-defense corps can race to the crime scene and finish off the culprit. The other is T cells, another type of white blood cell: helper T cells stimulate B cells to manufacture antibodies, while killer T cells, as their name implies, recognize and destroy cells that have been infected by a pathogen. While rapamycin inhibits those parts of the immune system responsible for rejecting grafts of tissue from a donor (such as kidney, bone marrow, or liver transplantation) and triggering inflammation in general, it actually increases the functional quality of certain helper T cells, thus potentially improving a person’s response to vaccines. Another study, from 2009, showed that administering rapamycin in mice rejuvenates aging hematopoietic stem cells, the precursors of the cells of the immune system, and boosts the body’s response to the influenza vaccination.

        These results generated a great deal of excitement about rapamycin in the anti-aging community, but before we charge ahead with an immunosuppressive drug as a long-term panacea against aging, a note of caution is warranted. As one might expect, numerous studies have warned that long-term rapamycin use increases the risk of infection, such as with cancer patients. In fact, in that seemingly encouraging 2009 mouse study, treatment with rapamycin had to be paused for two weeks prior to administering the vaccine, the authors acknowledged, to “avoid the possible suppression of the immune response by rapamycin.” It makes one wonder whether the results would have been as promising without the pause to clear away the rapamycin.

        Moreover, it is possible that some of the effects of rapamycin and TOR inhibitors are due to a general reduction of inflammation. Yet other research contends that optimal health calls for a fine balance between excessive inflammation and heightened susceptibility to infection. In a recent study, scientists show that TOR inhibitors dramatically increase the susceptibility of zebrafish to pathogenic mycobacteria closely related to the bacteria that cause TB in humans, and point out that this “warrants caution in their use as anti-aging or immune boosting therapies in the many areas of the world with a high burden of TB.”

        Still, rapamycin’s draw as a potential wonder drug endures. In some quarters, the excitement has overtaken the data: one prominent aging researcher told me that he knew several scientists who were quietly self-medicating with rapamycin. I asked Michael Hall what he thought about using an immunosuppressive drug to combat aging, and he replied, “I suppose the rapamycin advocates are following Paracelsus’s adage that the poison is in the dose.” He was alluding to the Renaissance Era Swiss physician who defended his use of substances that he believed were medicinal even though they were toxic at higher doses. In fact, most drugs, even relatively safe ones such as aspirin, can be toxic if the dose is high enough. It may well be that low or intermittent doses of rapamycin or other TOR inhibitors can confer most of their benefits without serious risks. But we need long-term studies on their safety and efficacy before they can be used to target aging in humans.

        A problem with laboratory animals, including mice, is that they are kept in a highly protected and relatively sterile environment that does not mimic real-life conditions. To address this, Matt Kaeberlein at the University of Washington in Seattle is leading a nationwide US consortium to study the health and longevity of domestic dogs. Canines not only vary greatly in size but also live in environments as diverse as their owners’, so this is a way to conduct controlled studies in a natural setting outside of a laboratory environment. The consortium will analyze various aspects of dogs’ metabolism, including their microbiome and the differences between how large dogs age compared to small dogs. It will also carry out a randomized study on the effect of rapamycin in large middle-aged dogs. Experiments like these will go a long way to establishing whether rapamycin will turn out to be useful for general health in old age.

        It is curious that using rapamycin to shut down a major pathway in the cell could actually be beneficial. As is often the case, the answer to this paradox lies in the evolutionary theories of aging discussed earlier. In a 2009 paper published in the journal Aging, Michael Hall, of the University of Basel, and the Russian-born evolutionary biologist Mikhail Blagosklonny suggest an explanation: TOR promotes cell growth, which is essential in early life. Later, however, it is unable to switch itself off even when the growth it drives becomes excessive, leading to cell deterioration and the onset of age-related diseases. They go on to suggest that while these pathways that cause aging cannot be completely switched off by a mutation (because that would be harmful or even lethal early in life), perhaps they can be inhibited by drugs such as rapamycin years later, when an uninhibited TOR becomes a problem after individuals have reached middle age.

        This chapter began with how the age-old idea of fasting as a beneficial practice gained credence with scientific studies on caloric restriction. However, the journey to discover a potential drug that could replicate the advantages of restricting calories without requiring unwavering self-control is nothing short of extraordinary. It began with a completely open-ended fishing expedition by Canadian scientists to find something interesting in the soil of the remote island of Rapa Nui. Just one of many soil samples they collected had a bacterium that produced a promising compound, and that nearly died in a scientist’s freezer as he moved from one country to another. The baton was taken up years later by two Americans and an Indian working in Switzerland. None of the scientists involved had any idea that they would be revealing one of the cell’s most important pathways with connections to both cancer and aging. This is often how science works: people follow their curiosity, and one thing leads to another. It is a story of persistence, insight, brilliance, and vision, but also chance encounters and sheer luck. If this strange journey ends up unlocking a key to protecting us from the relentless onslaught of old age, it would indeed be a scientific miracle.

        8. Lessons from a Lowly Worm

        We all know families of long-lived individuals. But exactly how much do genes influence longevity? A study of 2,700 Danish twins suggested that the heritability of human longevity—a quantitative measure of how much differences in genes account for differences in their ages at death—was only about 25 percent. Further, these genetic factors were thought to be due to the sum of small effects from a large number of genes, and therefore difficult to pinpoint on the level of an individual gene. By the time that the Danish study was carried out in 1996, a lowly worm was already helping to overturn that idea.

        That lowly worm was the soil nematode Caenorhabditis elegans, introduced into modern biology by Sydney Brenner, a giant of the field known for his caustic wit. Born and initially educated in South Africa, he spent much of his productive life in Cambridge, England, before he established labs all over the world from California to Singapore, leading some of us to remark that the sun never set on the Brenner Empire. He first became famous for having discovered mRNA. More generally, he worked closely with Francis Crick on the nature of the genetic code and how it was read to make proteins. Once he and Crick decided that they’d solved that fundamental problem, Brenner turned his attention to investigating how a complex animal develops from a single cell, and how the brain and its nervous system work.

        Brenner identified C. elegans as an ideal organism to study because it could be grown easily, had a relatively short generation time, and was transparent, so you could see the cells that made up the worm. He trained a number of scientists at the MRC Laboratory of Molecular Biology in Cambridge and spawned an entire worldwide community of researchers studying C. elegans for everything from development to behavior. Among his colleagues was biologist John Sulston, whom you met in chapter 5. One of Sulston’s more remarkable projects was to painstakingly trace the lineage of each of the roughly 900 cells in the mature worm all the way from the single original cell, which led to an unexpected discovery: certain cells are programmed to die at precise stages of development. Scientists went on to identify the genes that sent these cells to commit suicide at just the right time in order for the organism to develop.

        For an animal with only 900 cells, these worms are incredibly complex. They have some of the same organs as larger animals but in simpler form: a mouth, an intestine, muscles, and a brain and nervous system. They don’t have a circulatory or respiratory system. Though tiny—only about a millimeter long—nematodes can easily be seen wriggling around under a microscope. Being hermaphrodites, they produce both sperm and egg, but C. elegans can also reproduce asexually under some conditions. They are normally social, but scientists have found mutations that make them antisocial. Worms feed on bacteria, and just like bacteria, they are cultivated in petri dishes in the lab. They can be frozen away indefinitely in small vials in liquid nitrogen and simply thawed and revived when needed.

        Worms typically live for a couple of weeks. However, when faced with starvation, they can go into a dormant state called dauer (related to the German word for endurance), in which they can survive for up to two months before reemerging when nutrients are plentiful again. Relative to humans’ life span, this would be the equivalent of 300 years. Somehow these worms have managed to suspend the normal process of aging. There is a caveat, though: only juvenile worms can enter the dauer state. Once animals go through puberty and become adults, they no longer have this option.

        David Hirsh became interested in C. elegans while he was a research fellow under Brenner in Cambridge, then continued working with the worms upon joining the faculty at the University of Colorado. There he took on a postdoc named Michael Klass, who wanted to focus on aging. This was at a time when aging was simply thought to be a normal and inevitable process of wear and tear, and mainstream biologists viewed aging research with some disdain. However, things were beginning to change, partly because the US government was concerned about an aging population. As Hirsh recalled, the National Institutes of Health had just established the National Institute on Aging, and at least some of his and Klass’s motivation for working in the area was that they knew they stood a good chance of receiving federal funding.

        Hirsh and Klass first showed that, by many criteria, worms age little if at all in the dauer state. Next, Klass wanted to see if he could isolate mutants of worms that would live longer but not necessarily go into dormancy. This would help him identify genes that affected life span. To rapidly produce mutants that he could screen for longevity, he treated the nematodes with mutagenic chemicals. He ended up with thousands of plates of worms, which he continued studying after starting his own lab in Texas. In 1983 Klass published a paper about a few long-lived mutant nematodes, but eventually he shut down his lab and joined Abbott Laboratories near Chicago. Before doing so, however, he sent a frozen batch of his mutant worms to a former colleague from Colorado, Tom Johnson, who by then was at the University of California, Irvine.

        By inbreeding some of the mutant worms, Johnson found that their mean life span varied from ten to thirty-one days, from which he deduced that, at least in worms, life span involved a substantial genetic component. It still wasn’t clear how many genes affected life span, but in 1988 Johnson, working with an enthusiastic undergraduate student named David Friedman, came to a striking conclusion that ran completely counter to the conventional wisdom that many genes, each making small contributions, influenced longevity. Instead, it turned out that a mutation in a single gene, which the two called age-1, conferred a longer life span. Johnson went on to show that worms with the age-1 mutation had lower mortality at all ages, while their maximum life span was more than double that of normal worms. Maximum life span, defined as the life span of the top 10 percent of the population, is considered a better measure of aging effects because mean life span can be affected by all sorts of other factors that don’t necessarily have to do with aging, such as environmental hazards and resistance to diseases.

        At the time, Tom Johnson was not a famous scientist, and his premise that a single gene could affect aging to such a degree defied the consensus view. Thus it took almost two years for his paper to be published. Even after it finally appeared in the prestigious journal Science in 1990, Johnson’s work was viewed with some skepticism by the scientific community.

        But then, a few years later, came a second mutant worm. This effort was led by Cynthia Kenyon, already a rising star in the C. elegans field. Kenyon had a golden career: PhD from MIT; postdoctoral work with Sydney Brenner at the MRC Laboratory of Molecular Biology in Cambridge, where the first studies on the genetics of the worm were being carried out; faculty member at the University of California, San Francisco, another world-renowned center for molecular biology and medicine. Kenyon had established herself as a leader in the worm’s pattern development, which is the process by which it lays down its body plan as it grows. She was interested in aging research, but since it was still an unfashionable discipline, she found it difficult to enlist students to work on the problem. After hearing Tom Johnson speak about his work on age-1 at a meeting in Lake Arrowhead just outside Los Angeles, though, she felt inspired to work on the problem of aging and began her own screening for new mutants.

        Like Hirsh, Klass, and Johnson, Kenyon focused on dauer formation. In the previous decade, scientists had identified many genes that affected dauer formation, usually prefixed by the letters daf. Scientists traditionally italicize the names of genes; when not italicized, the letters refer to the proteins that the genes encode. Under normal conditions, these mutations would predispose worms to enter the dauer state. But Kenyon had a hunch that some of these genes would affect longevity even outside the dauer state. She employed a trick in which she used mutant worms that were temperature sensitive: they would not enter the dormant state at a lower temperature (68°F, or 20°C). They were allowed to develop at this lower temperature until they were no longer juveniles and dauer formation was no longer an option. At that point, they were shifted to a higher temperature of 77°F (25°C) and allowed to mature into adulthood so that their life span could be measured.

        From these studies, Kenyon and her colleagues identified a mutation in a gene, daf-2, that lived twice as long as the average worm. In marked contrast to the skepticism Johnson faced, Kenyon had no trouble publishing her work: her 1993 paper in Nature was received with great fanfare. Apart from her stellar academic pedigree and scientific abilities, Kenyon was also lucid and charismatic, so she was extolled by the media. In an unfortunate omission, neither Kenyon’s paper nor the accompanying commentary mentioned Johnson’s earlier work on age-1, and much of the reporting of Kenyon’s work gave the impression that it was the first time that a mutation that extends longevity had been discovered.

        At this point, nobody had any real idea of what the genes identified by Johnson and Kenyon actually did. Enter Gary Ruvkun. Today Ruvkun is most famous for discovering how small RNA molecules called microRNAs regulate gene expression, but he has led a varied and colorful life, both personally and scientifically. When I met him about ten years ago at a meeting in Crete, he became increasingly gregarious after a few drinks; at one point, he donned a bandanna and pretended to smoke a cigarette while pouring himself some strong Greek liquor, which, with his luxuriant but well-tended mustache, made him look like a sailor on shore leave in a Greek taverna. All the while, he incongruously continued to hold forth on RNA biology. In the mid-1990s he too was using the worm and had been studying dauer mutants, including daf-2, for reasons unconnected with aging. Apparently he did not hold the field in high regard, because he recollected that when Kenyon’s report came out, “I thought, ‘Oh, gosh, now I’m in aging research.’ Your IQ halves every year you’re in it.”

        The big breakthrough came when Ruvkun isolated and sequenced the daf-2 gene. It coded for a receptor that sticks out of the cell’s surface and responds to a molecule very similar to insulin: IGF-1 (insulin-like growth factor). Both insulin and IGF-1 are hormones that bind to their receptors in the cell. Both receptors are also kinases that activate downstream molecules, which in turn affect metabolic pathways that play a role in longevity. These hormones or their counterparts exist in nearly all organisms, so they must have originated very early in the evolution of life. That these ancient hormones control aging was a stunning finding.

        These discoveries led to a general understanding of how this pathway would work. IGF-1 binds to the daf-2 receptor, which is a kinase, and activates it. This sets off a cascade of events in which one kinase acts upon another until a protein called daf-16 is phosphorylated. It’s basically the domino effect. The last domino in the chain, daf-16, is a transcription factor, so its role is to turn on genes. When it is phosphorylated, it cannot be transported to the nucleus, where the genes reside on the chromosomes, so it cannot act on its target genes. But if we disrupt the pathway—for example, by mutations in any of the proteins in this cascade—daf-16 can move into the nucleus and turn on a large number of genes that help the worm survive in the dauer state during stress or starvation, thus extending its life span. As it turns out, the age-1 gene originally identified by Tom Johnson is somewhere in the middle of the cascade that starts with daf-2 and ends in daf-16.

        Daf-16 turns on genes that are involved in coping with stress triggered by starvation or increased temperature, as well as genes that code for the chaperones that help proteins fold or rescue unfolded or misfolded proteins before they become a problem for the cell. Kenyon wrote in a 2010 review that these genes “constitute a treasure trove of discovery for the future.” The pathway explained a puzzling paradox. Aging or longevity was thought to be the effect of a large number of genes, each of which would have a small effect. How could a mutation in a single gene, such as age-1 or daf-2, effectively double the life span of the worm? Clearly the reason was that they were part of a cascade that ended up activating daf-16, which then turned on multiple genes that collectively exerted a cumulative effect on life span.

        The idea that a growth hormone pathway might be involved in longevity also explains a curious fact. Larger species generally live longer than smaller ones because they have slower metabolisms and can also escape predation. But within species, smaller breeds generally live longer than larger ones. For example, small dogs can live twice as long as large dogs. This may have to do partly with how much growth hormone they make.

        Remember that queen ants live many times longer than worker ants. Among the many reasons for this is that queens produce a protein that binds insulin-like molecules and shuts down the IGF-like pathways in ants.

        But what of quality of life? Are these long-lived worms sickly and barely surviving? In a word, no. The nematodes don’t just live longer, they look and act like much younger worms. We all know that one of the horrors of aging is the onset of Alzheimer’s disease. Researchers can generate a model for Alzheimer’s disease by making a genetic strain of worms that manufactures amyloid-beta protein in their muscle cells, paralyzing them. However, if the experiment is repeated—but this time using a strain of long-lived worms with mutations in the IGF-1 pathway—paralysis is reduced or delayed. Thus, the same mutations that extend life may also protect you from Alzheimer’s and other age-related diseases that are caused by proteins misfolding and forming tangles. In fact, these mutations may prolong life precisely because they protect against some of the scourges of old age.

        It is all very well to make worms live longer and healthier, but what about other species? Evidence elsewhere in the animal kingdom suggests similarly a strong relationship between the IGF-1 pathway and life span. Deleting the gene that codes for a protein called CHICO, which activates the IGF-1 pathway in flies, made them live 40–50 percent longer. They were significantly smaller but seemed healthy otherwise. The IGF-1 receptor is essential, but mice, like humans, have two copies of it (from their maternal and paternal chromosomes), and knocking out one of them made the mice live longer without any noticeable ill effects.

        Scientists, of course, are not doing all this work to help mice. We want to know what happens in humans, but you can’t just mutagenize people. There are people who naturally have mutations in the insulin receptor. Some of them suffer from a disease called leprechaunism, which stunts growth, and seldom reach adulthood. An analysis of subjects with the disease showed that the same mutations in daf-2 would affect dauer formation in the worm, yet the consequences were rather different. Still, there are hints that this pathway plays a role in human longevity. Mutations known to impair IGF-1 function are overrepresented in a study of Ashkenazi Jewish centenarians, and variants in the insulin receptor gene are linked to longevity in a Japanese group. Variants in proteins identified as part of the IGF-1 cascade have also been associated with longevity. It may be tempting to see the IGF-1 and insulin pathway as a straightforward route to tackling aging. But just the complexity of the pathway and the range of effects it produces tells us it is a finely tuned system, and tinkering with it while avoiding unforeseen ill effects could be difficult.

        When food intake is restricted, the levels of both IGF-1 and insulin decline. If the IGF-1 pathway is inhibited already, you might not expect caloric restriction to have much additional effect. Exactly as you might predict, caloric restriction did not further increase the life span of daf-2 mutant worms; moreover, its full effect depended on daf-16. But this too is puzzling, because the other, completely different TOR pathway is also affected by caloric restriction. So even if the IGF-1 pathway was disrupted, shouldn’t caloric restriction have had at least some effect through the TOR pathway? It turns out that these two pathways are not completely independent. They are two large hubs in a large network, but there is lots of cross talk between them. In other words, proteins that are activated as part of one pathway will activate ones in the other pathway, so they are interconnected. In particular, TOR is activated by elements of the IGF-1 pathway as well as by nutrient sensing.

        While the two pathways are highly coordinated, they are not the whole story behind caloric restriction. Two scientists found a mutant that causes partial starvation of the worm by disrupting its feeding organ, the equivalent of the throat. The mutant, eat-1, lengthens life span by up to 50 percent and does not require the activity of daf-16. Also, double mutants of daf-2 and eat-1 live even longer than the daf-2 mutants alone. This means that caloric restriction affects other pathways besides TOR and IGF-1.

        Mutations that affect longevity dramatically might seem to suggest that aging is under the control of a genetic program. This idea might seem to contradict evolutionary theories of aging, but, in fact, it doesn’t. When worms were subjected to alternative cycles of food and scarcity, it turned out that the long-lived mutant worms simply could not compete reproductively with shorter-lived, wild-type worms. These pathways allow organisms to have more offspring at the cost of shortening life later on, exactly as one might predict from the antagonistic pleiotropy or disposable soma theories of the evolution of aging.

        We have seen what rapamycin can do, but is there a drug that acts elsewhere, such as on the IGF-1 pathway? There is a great deal of interest in metformin, a diabetes treatment. Diabetes, of course, is related to deficient insulin secretion or regulation rather than to IGF-1, although the two molecules are closely related. To understand the difference between these two hormones, I took a short walk from my own lab to the nearby Wellcome-MRC Institute of Metabolic Science on the Addenbrooke’s Biomedical Campus in Cambridge, England, to meet Steve O’Rahilly, one of the world’s experts on insulin metabolism and its consequences for diabetes and obesity.

        Despite his many distinctions and his job as the director of a major institute, Steve lacks even a hint of self-importance. He is a jolly man who in his talks often jokes that his physique makes him particularly qualified to study obesity and its causes; while far from obese, he certainly looks well fed. But underneath the jovial demeanor, he is a sharp and critical scientist who has advanced a messy field by imbuing it with intellectual rigor. Among his many contributions is demonstrating the importance of appetite genes in obesity. Here too Steve has a highly personal interest: he told me that appetite can be such a strong urge that when he is hungry, he can hardly concentrate on anything besides food.

        Steve pointed out that while insulin and IGF-1 are similar in structure and have similar effects when they act on the cell, they have some major differences. Insulin has to act very quickly and in just the right amounts. Getting insulin regulation wrong can be lethal. The brain needs glucose for fuel, so hypoglycemia, a drop in blood sugar caused by too much insulin in the circulation, is very dangerous even if it only lasts a few minutes.

        Insulin receptors are particularly abundant in liver, muscle, and fat cells. In the fasting state, insulin levels are relatively low, and the liver produces the glucose needed constantly by the brain from stored carbohydrates and other sources. But even that low level of insulin is needed to prevent the liver from making too much glucose or ketone bodies (a product of metabolizing fat). After a meal, the level of insulin surges by between ten- and fifty-fold, promoting the uptake of glucose into muscle cells, the synthesis of lipids (fat) in the liver, and the storage of lipid in fat cells.

        Newly secreted insulin does not last long in the bloodstream, with a half-life of only about four minutes. If insulin is like a speedboat racing to its destination, IGF-1 is more like an oil tanker. Its effect lasts much longer, and, in the circulation, it is often bound to other proteins and not active. It needs to be released from them to act, and exactly how this happens is not clear, but that too may be under hormonal control. Also, unlike insulin receptors, IGF-1 receptors are distributed much more broadly throughout all the cells in the body, and there are more of them during development, when the organism has to grow.

        IGF-1 is produced in response to the secretion of growth hormone, but its action controls the amount of growth hormone in a complicated feedback loop. When IGF-1 levels are low or IGF-1 is defective, the body responds by producing more growth hormone. The problem is that growth hormone has other effects apart from stimulating the production of IGF-1. Most notably, it releases fat from fat cells. Not storing away fat in these cells is the cause of much human pathology, such as clogged arteries, or messing up the metabolism in our liver and muscle. So it is not surprising that mutations in the receptor for insulin or IGF-1 can cause diabetes. On the other hand, with caloric restriction, you are consuming the bare minimum of calories. So you actually have less spare fat because you are burning it off to provide energy. This means that caloric restriction does not have the same consequences as simply reducing the level of IGF-1, where excess fat is released to cause damage. Because of this fundamental difference, drugs that try to mimic caloric restriction by acting on the IGF-1 pathway could be particularly challenging to develop. It is hard to cheat our bodies’ finely tuned system.

        That is what explains the current interest in metformin. The drug is already used by millions of people with diabetes all over the world, so it has gone through various clinical trials for safety. Its use, in fact, dates all the way back to medieval Europe, where extracts of the plant Galega officinalis, commonly known as French lilac or goat’s rue, were used to relieve the symptoms of diabetes. One of the products of the extract, galegine, could lower blood glucose but was too toxic. Eventually a derivative, metformin, was synthesized and tested and is now the first-line treatment for type 2 diabetes, which is more common later in life and is caused not by a lack of insulin but because the insulin doesn’t bind well to its receptor.

        How metformin works as a treatment for type 2 diabetes is not entirely clear. Traditionally, most charts of metformin interactions resemble an incredibly complicated wiring diagram. Because of recent advances in our ability to visualize biological molecules, we can now see exactly how metformin binds and inhibits its target protein. This target protein is a crucial component in the process of respiration, in which oxygen is used to burn glucose to produce energy in our cells. Disrupting our ability to utilize glucose in turn affects our energy metabolism and acts on components of the IGF pathway, including an enzyme that regulates glucose uptake. Although some studies have claimed that metformin reduces glucose production in the liver, others show that it actually increases it in healthy people and those with mild diabetes. According to another study, the drug alters our gut microbiome in a way that is at least partly responsible for its effects. Steve O’Rahilly’s work demonstrates that metformin also works by elevating the levels of a hormone that suppresses appetite.

        It may seem odd that a drug whose mode of action is so complex and poorly understood should be so widely prescribed for people with diabetes, but this is often the case in medicine. For almost a hundred years, we had no idea how aspirin worked, yet people consumed billions of tablets for their aches and pains. Still, given the uncertainties, it is rather surprising that metformin has now become interesting as a potential drug to combat aging. This is partly because of a couple of early studies. In the first, from the National Institute on Aging, long-term treatment with metformin in mice improved both their health and life span. A second study, in humans, showed that diabetics on metformin lived longer not only than diabetics on other drugs but also longer than nondiabetics—a significant finding, since diabetes itself is a risk factor for aging and death.

        Such promising outcomes certainly raised optimism about using metformin to prolong healthy life even in people without diabetes, but subsequent studies have questioned these results. One, from 2016, concluded that metformin was merely better than other diabetes drugs, so that diabetics on metformin had about the same survival rate as the general population. More than metformin, it was the family of cholesterol-lowering medications known as statins that dramatically reduced mortality, especially in patients with a history of cardiovascular disease. Metformin did extend the life of worms if treatment was initiated at a young age, but it was highly toxic and actually shortened life span when treatment commenced at an older age. Curiously, some of the toxicity was alleviated by giving the worms rapamycin at the same time. Metformin also undermined the health benefits of exercise, which itself is well established as one of the best remedies against diseases of aging. And one study claimed that diabetics on metformin exhibited an increased risk of dementia, including Alzheimer’s disease.

        Given these uncertainties, Nir Barzilai, a gerontologist at Einstein College of Medicine in New York, is the principal investigator for a large clinical trial of about three thousand volunteers between the ages of sixty-five and seventy-nine called Targeting Aging with Metformin (TAME). The study’s goal is to see if metformin delays the onset of age-related chronic diseases such as heart disease, cancer, and dementia, as well as monitor for adverse side effects.

        To date, however, despite considerable effort, the evidence for metformin concerning longevity is not at all clear. Its effect isn’t nearly as strong or as well established as that of rapamycin, which inhibits the TOR pathway. One reason for the interest in metformin is that its long-term safety has been established in diabetics. Those with diabetes will be perfectly happy to take metformin, as their risk of poor health and eventually dying of complications of diabetes is much higher without treatment. But given the potential drawbacks noted here, it is quite a different matter to recommend its long-term use in healthy adults just yet.

        WE HAVE COME A LONG way from the age-old idea that exerting self-control over one’s diet is good for you and that gluttony comes at a steep price to our health. First there was the scientific evidence that caloric restriction could prolong healthy life compared to an ad libitum diet. Then in the last few decades, two previously unknown pathways, the TOR and the IGF-1, were shown to be major processes in the cell that responded to caloric restriction. This in turn has opened up the possibility of extending healthy living and even life span by tinkering with these pathways. The world of medical science has compiled a tremendous amount of research regarding the effects of rapamycin, metformin, and related compounds on aging and life span; rapamycin and its chemical analogs are among the more promising avenues for tackling aging. Still, bear in mind that inhibiting these pathways individually is not the same as caloric restriction, and a lot more work needs to be done to establish both the efficacy and safety of these approaches.

        Several things strike me about the discovery of TOR and the IGF-1 pathways. First, the mere existence of these pathways came as a complete surprise. Second, at least in the case of TOR, scientists were not even looking originally for a connection with caloric restriction, let alone aging. By sheer chance, they uncovered major processes in the cell that have ramifications not only for aging but also for many diseases. Third, they involved organisms that might not seem obvious for studying aging, such as yeast and worms. Finally, the discovery that a single gene could impact life span so dramatically was quite unexpected.

        Before we leave the complicated maze of caloric restriction and its pathways, let us visit a third strand that, like the story of TOR, begins with baker’s yeast. Unlike the discoverers of TOR, who were not even investigating anything pertaining to the aging process, this story is about scientists who deliberately used yeast to discover genes related to aging. A yeast cell divides by budding off smaller daughter cells. The mother cell acquires scars on its surface with each budding and can only undergo a finite number of divisions. This inability to divide further is called replicative aging. Still, you might not think that studying this rather specialized property of a single-celled organism such as yeast would have any relevance at all for a phenomenon as complex as human aging. That was exactly the skepticism that Leonard Guarente encountered from his colleagues at MIT when he said he was planning to tackle aging using yeast.

        Like many molecular biologists, Guarente had relied on yeast to study how genes are turned on and off by controlling the transcription of DNA into mRNA. By 1991, three years after Johnson’s report on the long-lived age-1 mutant in worms, Guarente was a tenured faculty member at MIT. He was already established and professionally secure, so when two of his students, Brian Kennedy and Nicanor Austriaco, told him they wanted to work on aging, Guarente agreed to embark on what for him was an entirely new area, dramatically altering the trajectory of his career.

        Initially, Guarente and his students identified a trio of genes belonging to a family called SIR genes, for silent information regulator. The SIR family in turn controls genes that define the mating type or “sex” of yeast. (Yeast mating is complicated, and they can switch their “sex” from one type to another.) Eventually Guarente’s team showed that just one of these genes, Sir2, had the biggest effect on yeast life span. Increasing the amount of Sir2 in cells extended life span, while mutating it reduced life span. The effect was not as large as the factor of 2 seen for the age-1 or daf-2 mutants in worms. But they had clearly identified a gene in yeast that controlled how many times a mother cell could divide before it was exhausted. Even more promising, Sir2 was a highly conserved gene: it had counterparts in other species, including flies, worms, and humans. They soon found, with mounting excitement, that increasing the amount of Sir2 in flies and worms also extended their lives.

        But how did it work? Recall that our genome can be recoded using epigenetic marks—chemical tags—on either the DNA itself or on the histone proteins tightly associated with it. In general, adding acetyl groups to histones activates those regions of chromatin, whereas removing acetyl groups silences them. Sir2 turns out to be a deacetylase, which you might recall are enzymes that remove acetyl groups from proteins such as histones, and there is evidence that this activity silences genes near the boundary of telomeres and affects life span. Sir2 also requires a molecule called nicotinamide adenine dinucleotide (NAD), which is required for metabolizing energy in the cell. This was a hint that when there is starvation, there is not enough free NAD to activate Sir2. Suddenly you could make a plausible link between Sir2 and caloric restriction, which had long been implicated in aging in many organisms, including yeast. Sure enough, in both flies and yeast, mutation of Sir2 eliminated the benefits of caloric restriction in prolonging life, and, in worms, the effect of Sir2 required the presence of daf-16, the same transcription factor that had already been identified as the target of the IGF-1 pathway in worms. Suddenly things appeared to come together: a mutant affecting life span in yeast was associated with a pathway affecting aging in worms that in turn was connected with caloric restriction.

        Finding mutants that increased longevity in both worms and yeast prompted Guarente and Kenyon to publish a highly enthusiastic article in the journal Nature extolling the prospects of curing the aging problem. “When single genes are changed,” they wrote, “animals that should be old stay young. In humans, these mutants would be analogous to a ninety-year-old who looks and feels forty-five. On this basis, we begin to think of ageing as a disease that can be cured, or at least postponed.” They went on to found a company in Cambridge, Massachusetts, with the equally optimistic name Elixir Pharmaceuticals.

        Not long after Guarente had made his initial breakthrough, he gave a talk in Sydney, Australia. In the audience sat David Sinclair, a brash young graduate student working on his PhD at the University of New South Wales. Sinclair was clearly both impressed and excited by Guarente’s results because he persuaded the latter to take him on as a postdoctoral fellow at MIT. Following his fellowship, Sinclair started his own lab at Harvard Medical School, across the river in Boston, and continued to work on Sir2 and aging, in effect becoming a competitor of his former mentor. Next, Sinclair started his own company, bearing the more descriptive and modest name of Sirtris Pharmaceuticals.

        By then, researchers were keen to see if the counterpart of Sir2 in humans and other mammals would have similarly beneficial effects on life span and health. In mammals, there are seven members of this family, numbered SIRT1 through SIRT7. These proteins, like the equivalents of Sir2 in other organisms, were collectively called sirtuins. (Proteins that activate other proteins are often given names ending in in; sirtuins is simply a play on “Sir2-ins.” SIRT1 seemed the most similar to Sir2, so it drew the bulk of early attention. The goal was to find a pill—or magic elixir—that would activate sirtuins in some beneficial way.

        Here the story takes a rather strange, and rather French, turn. It has long been speculated that the French have a relatively low prevalence of heart disease despite their rich diet because they also drink copious quantities of red wine. Sinclair, collaborating with a biotech company in Boston, identified resveratrol as one of the compounds that stimulated SIRT1. Oenophiles around the world rejoiced, for resveratrol was a compound present in red wine. Finally, here was scientific evidence for the benefits of a French lifestyle. Their enthusiasm was apparently not tempered by the realization that it would take about a thousand bottles of wine to produce the amount of resveratrol used as a dose in those studies.

        Sinclair’s team and a competing group appeared to clinch the issue when they administered resveratrol to mice fed a diet high in sugar and fat. Although the mice remained overweight, and their maximum life span was unaffected, they were protected against the diseases of overeating: more of them survived to old age, and their organs were not diseased like those in typically obese mice.

        This seemed exactly the Get Out of Kale Free card people were waiting for: permission to overindulge on an unhealthy diet without any ill effects. Never shy when it came to self-promotion, Sinclair was all over the news again when the pharmaceutical giant GlaxoSmithKline bought Sirtris for an astonishing $720 million in 2008. He had hit both the scientific and commercial jackpots—or so it seemed. But even at the time, there was considerable skepticism in the industry about the purchase.

        There has been significant pushback against the claims made by sirtuin advocates, some of it coming, oddly enough, from two of Sinclair’s former colleagues in the Guarente lab: Brian Kennedy and Matt Kaeberlein. Among other things, their work showed that contrary to earlier findings, caloric restriction results in an even greater life span extension in yeast cells lacking Sir2, suggesting that the two were not likely to be linked. Rather, Sir2 may have been acting in other ways by modifying the program of gene expression by deacetylating histones on DNA. The two went on to reveal that the activity of resveratrol on SIRT1 was due to the presence of a fluorescent molecule that was used to detect the activation. Without this additional molecule, no increase in activity was observed, so it was not even clear whether resveratrol had any effect on SIRT1. Not only that, but they did not find any effect of resveratrol on Sir2 activity in yeast, including life span. Pharmaceutical companies do not usually spend time proving one another wrong, but in an unusual step, scientists at Pfizer published a report stating that several of the other compounds identified by Sirtris did not directly activate SIRT1 either.

        With any machinery, it is much easier to do something that will stop it from working than to improve its performance. It is the same with drug development; many drugs work by inhibiting an enzyme, and manufacturing a new drug that makes an enzyme more effective is always a challenge and relatively rare. So Glaxo’s very expensive purchase of Sirtris raised eyebrows in the industry. Eventually it gave up on the lead compounds it had acquired from Sirtris and shut down the division. Five years after the sale, an article in Forbes magazine concluded that the best way to experience the benefits of red wine was to drink it in moderation.

        Of course, following the dictum of the German theoretical physicist Max Planck that scientists rarely change their minds in light of contradictory evidence, Sinclair and others stuck to their guns. They countered the new findings by reporting that resveratrol worked alongside other helper compounds in the cell that had properties similar to the fluorescent molecules they had used to monitor Sir2 activity in the test tube. This led to another commentary, this time in the journal Science, titled, “Red Wine, Toast of the Town (Again).”

        However, this optimistic assessment must be weighed against a systematic 2013 study by the National Institute on Aging that evaluated several compounds proposed to increase healthy life or overall life span, including resveratrol. None of them had any significant effect on the longevity of mice. Among the others were curcumin, which is present in the herb turmeric, and green tea extract—not that these findings seem to have put many health food stores out of business.

        Beyond resveratrol, skeptics began to question the very premise of the sirtuin idea. Sir2 extends replicative life span, but losing the ability to keep reproducing is only one kind of aging in yeast. There is also chronological life span, which measures how long yeast can survive in a semi-dormant state—for example, when it has run out of nutrients. Sir2 activation actually reduces chronological life span in yeast. We humans—with the exception, perhaps, of a few very rich old men—are not mainly concerned with our ability to reproduce in old age, but with increasing life span and improving health.

        Later studies also contradicted some of the early studies about the effect of Sir2 on life span. If you ascribe an effect to a mutation, you need to take care that in creating the mutant strain, you have not changed any of the thousands of other genes in the organism. Scientists clarified that overproduction of Sir2 in worms and flies had no effect on the life span of either worms or flies as long as they did not change anything else about the genetic makeup of their organisms. This considerably deflated enthusiasm for sirtuins as a potential boon to extending life, as illustrated by journal articles titled “Midlife Crisis for Sirtuins” and “Ageing: Longevity Hits a Roadblock.” Feeling embattled, Leonard Guarente repeated the experiment in worms by overproducing Sir2 without changing the genetic background, and had to revise his previous estimate of an up to 50 percent increase in life span down to about 15 percent.

        The sirtuin with the most dramatic effect may actually turn out to be SIRT6; mice deficient in SIRT6 develop severe abnormalities within two to three weeks and die in about four weeks. The protein is also a histone deacetylase that may affect how genes are expressed in telomeric chromatin, and some studies suggest that it increases life span in mice, with one study theorizing it does so because it stimulates DNA repair.

        It is telling that two of the pioneers of sirtuins in Guarente’s own lab, Kennedy and Kaeberlein, both well-established, respected researchers in their own right, have now entirely moved away from sirtuins to focus on other aspects of aging research such as the TOR pathway and how rapamycin affects it. Sirtuins, through their action on histones, may be involved in patterns of gene expression and genome stability, and are important for human physiology in ways that still need to be understood. But enthusiasm for their use in aging has declined except among the faithful. Many in the gerontology community are highly dubious that they have any direct connection with caloric restriction or extension of life span.

        There is one related molecule that has retained considerable prominence regardless of the fate of sirtuins: NAD. Nicotinamide adenine dinucleotide plays many essential roles in the cell, including for sirtuin function. It is made by the body using nicotinic acid (niacin) or nicotinamide, both slightly different forms of vitamin B3, although it can also be made by our cells from the amino acid tryptophan or by salvaging some recycled molecules.

        In the cell, NAD cycles between an oxidized and reduced form to help our cells burn glucose to convert it into other forms of energy. This process, called respiration, is absolutely essential for our ability to use glucose as a fuel; however, it does not use up NAD rapidly, since it simply cycles back and forth between its two forms. But NAD performs other essential functions, such as repairing DNA and altering gene expression through sirtuins, and these functions deplete it. Thus, as we grow older, our levels of NAD decline. The brain is one of the body’s biggest consumers of glucose as a source of energy, and you can imagine how a decline in NAD levels might harm brain function. It can also cause a host of other problems, from increased inflammation to neurodegeneration. If that seems a lot for a single molecule, it simply says something about how central NAD is to our metabolism.

        Our cells can’t take up NAD directly from our diet. But we can utilize molecules that are direct precursors of NAD, of which two popular ones are called NR (nicotinamide riboside) and NMN (nicotine mononucleotide). Search for them on the internet, and you will find countless websites arguing that one or the other is better as an anti-aging supplement depending on which one they are selling. According to one study, increasing NAD levels by providing NR or NMN to mice slowed their loss of stem cells and protected them from muscle degeneration and other symptoms of decline; in another report, higher NAD levels led to an increase in life span. However, since NAD is so central to the chemistry of life, it may have benefits that have nothing to do with an increase in life span. Indeed, Charles Brenner, a longtime expert on NAD metabolism, says, “I expressly tell people NR is not a life extension drug and that the case for its use has nothing to do with sirtuins and everything to do with acute or chronic losses of redox [reduction/oxidation reactions involved in respiration] and repair functions in the conditions that attack the NAD system. The NR trial I am most interested in is promoting healing from scratches and burns.” The results of taking either NR or NMN in humans are not yet definitive, and so far there have been no long-term studies in humans on their benefits or side effects. However, this has not stopped them from being heavily marketed as anti-aging nutraceuticals, or dietary supplements with real or alleged physiological benefits that don’t require approval from agencies like the FDA. Global sales of NMN register about $280 million annually and are forecast to reach almost $1 billion by 2028.

        We have seen how our cells orchestrate a finely tuned protein production program—and how this program starts to wobble as we age. A simple corrective—restricting our calories and eating well—can do much to slow this deterioration through complex interconnected pathways. Much excitement in aging research is about the prospect of producing drugs that inhibit these pathways and produce the benefits of caloric restriction.

        The cell, though, is not merely a bag of proteins. It contains large structures and entire organelles that must work together in harmony. When and why those relationships break down is a topic at the forefront of aging research. And it all comes back, strangely enough, to an ancient parasite. We normally think of parasites as harmful, but this one was a mixed blessing. On the one hand, it enabled us to evolve from small unicellular organisms into the complex creatures we are today. On the other hand, it is also a major reason why we age.

        9. The Stowaway Within Us

        A couple of times a year, I visit my ten-year-old grandson in New York and experience something that must be familiar to all grandparents. Although I am physically fit for my age, I am exhausted after spending a day with him. How does he have such boundless energy that just watching him makes me tired? One reason I lack his energy also explains why we both exist as complex creatures, and it dates back to an event that occurred about 2 billion years ago.

        The earliest life forms were single-celled creatures swimming around in a primordial soup. How did they become us? Each cell in our body is much larger and more complex than a typical bacterium, so even how just one of these complex cells evolved was a mystery. In the early 1900s a Russian botanist named Konstantin Mereschkowski proposed that one cell swallowed up another simpler, smaller cell. On its own, this was not remarkable; normally, either the smaller cell was killed and digested, or the cell doing the swallowing bit off more than it could chew and perished from the indigestion. But in one such case, Mereschkowski proposed, the swallower and swallowed both survived—and have continued to coexist and replicate ever since.

        The theory hung around for decades but really gained credence in the 1960s when a biologist named Lynn Margulis began working on the idea. Margulis was an iconoclast. She was married to the astronomer Carl Sagan before marrying Thomas Margulis, a chemist, whom she also soon divorced, and is quoted as saying, “I quit my job as a wife twice. It’s not humanly possible to be a good wife, a good mother, and a first-class scientist. No one can do it—something has to go.” One of her more controversial theories is the Gaia hypothesis she proposed with scientist James Lovelock, which states that the entire biosphere—the Earth, its atmosphere, geology, and all the life forms that inhabit it—is a self-regulating, living organism. She also had more extreme, and troubling, views. Margulis wrote an essay suggesting that the 9/11 attacks on the World Trade Center were part of a conspiracy orchestrated by the US government, and questioned whether the human immunodeficiency virus (HIV) was really the cause of acquired immunodeficiency syndrome, or AIDS. Her view of herself as a maverick may have attracted her to conspiracy theories, but this attitude also allowed her to make a major contribution to our understanding of life.

        Margulis believed that symbiosis was widespread and that eukaryotes—more complex cells that have a nucleus—evolved as a result of symbiotic relationships among bacteria. At the time, the dogma was that simpler bacteria evolved slowly into more complex forms of cells. You could think of Margulis’s idea as an extension of the one Mereschkowski had proposed almost six decades earlier, but it was still sufficiently controversial that her work was rejected by fifteen academic journals before being published in 1967 by the Journal of Theoretical Biology (under the byline Lynn Sagan). Margulis proposed that the descendants of the bacteria that were swallowed up now exist as organelles in the larger cell. In animal cells, we know these as mitochondria. In addition to mitochondria, plants have another bacterial descendant inside them: chloroplasts, which turn sunlight into sugar through photosynthesis. Neither we nor plants can exist without these stowaways inside us.

        Today scientists believe that the key event that led to the formation of eukaryotes occurred about 2 billion years ago, when a single-cell organism called an archaeon swallowed a smaller bacterium. Against the odds, the bacterium survived, and eventually entered into a symbiotic relationship with its archaeon host. In the intervening 2 billion years, the bacterium evolved into mitochondria. In the 170 years since mitochondria were first discovered, scientists have learned that they are highly specialized centers of energy production in the cell. It is that ability to generate energy that allowed our primitive ancestor to evolve into today’s huge and complex variety of cells and spurred the growth of complex life forms. But we also know that energy is conserved and cannot be created out of nothing. So what does it mean to say that mitochondria generate energy?

        Contrast today’s world with a primitive, preindustrial one. In a primitive world, there were many different sources of energy. You could use the energy of the sun to warm things; you could burn wood and other fuel to generate heat; you could use the flow of a river or the power of wind to turn a mill wheel; or use wind to sail across oceans. However, these different sources of energy are not interconvertible, and they can be used only in very limited ways. You could not, for example, use wind to cook your food.

        Now think of today’s world: virtually every source of energy, from solar and wind, to fossil fuels and nuclear fission, can be converted to electricity. Electricity in turn can be used for almost everything. It provides heat and light, moves us around in cars and trains, entertains us through our television sets and other gadgets, and enables instant communication around the world. Electricity has become the universal currency of energy, in much the same way that monetary currency replaced barter trade hundreds of years ago.

        That is exactly what mitochondria do in a cell. They take less versatile forms of energy—for example, the carbohydrates that we consume—and convert them into the universal energy currency of the cell, which is the molecule adenosine triphosphate, or ATP. We have come across ATP before: it is one of the building blocks of RNA and consists of the adenine base attached to a ribose sugar and a string of three phosphates. The bonds between the phosphate groups are what chemists call high-energy bonds. It takes energy to form them, and that energy is released when they are broken. When the cell needs energy for any particular process in the cell, it can break the bond between the second and third phosphate groups and use the energy released as a result. ATP is like a tiny, highly mobile molecular battery.

        When we digest food, especially carbohydrates, we are effectively burning the sugar that we obtain by breaking down carbohydrates. In fact, chemically it is the same as if we actually burned sugar in a flame, except that our cells do it in a very controlled way. In both cases, the result is the same: sugar combines with oxygen and releases carbon dioxide and water, and releases energy in the process. That is exactly what we do when we breathe in and out. The energy released during respiration is used by mitochondria to make ATP.

        This process is chemically similar to the way we produce electricity using hydroelectric power. Unlike our own cells, which have a single membrane enveloping them, mitochondria, like their bacterial ancestors, have two membranes: each one a thin double layer of fatty molecules called lipids, which separate aqueous compartments from one another. Inside the inner membrane is a large complex of protein molecules that uses the energy of respiration to move hydrogen ions (H+), or protons, across the inner membrane, creating a proton gradient, where one side of the membrane has a higher concentration of protons than the other. And just as water flows downhill, the protons want to go down the concentration gradient. But because the membrane is not generally permeable to protons, they can do so only by traveling through a specialized molecule that acts like a molecular turbine. In the same way that water is made to go down a hydroelectric dam through large pipes to turn turbines that generate electricity, protons go through that special molecule, ATP synthase, which, as a result, actually turns like a turbine, and makes a molecule of ATP by adding on the third phosphate to adenosine diphosphate, or ADP, which has just two phosphates.

        Production of energy in our mitochondria.

        Just as monetary currency increased trade and prosperity dramatically, enabling complex societies to evolve, and just as the energy currency of electricity allowed societies to become incredibly complex technologically, the efficient production of ATP allowed cells to become ever more complex and specialized. ATP is a small molecule and makes its way, as needed, all over the cell. It provides the energy for everything from making the components of the cell, to moving around parts of the cell, to enabling cells themselves to move. Our muscles use ATP to generate the power to contract. In our brain, ATP maintains the voltage across membranes in our neurons while they transmit electrical signals and fire impulses. The human body has to generate roughly its own weight in ATP every day, and the brain alone uses about a fifth of that. Just thinking uses hundreds of calories a day. And mitochondria provide nearly all of that ATP.

        The stowaways within us, which may well have begun their lives as parasites, have made themselves indispensable by producing the ATP we need to survive. Mitochondria differ from their bacterial ancestors in other ways too. For one thing, they’ve shed most of their genes, so the mitochondrial genome is now tiny, typically coding for only a dozen protein genes. More than 99 percent of the mitochondria’s components are made by translating genes that now reside on the chromosomes in our nucleus. These proteins are made in the cytoplasm of our cells and then imported across one or both membranes of the mitochondria using a complicated machinery. How and why mitochondria managed to move most of their genes to their host’s genome, or why they retained any genome at all, is not well understood. This small mitochondrial genome is the source of many problems, though, because mutations in the mitochondrial DNA can give rise to diseases, including diabetes, and heart and liver failure, as well as conditions such as deafness.

        We inherit our mitochondria exclusively from our mothers because the sperm contributes none of its mitochondria to the fertilized egg. As a result, diseases due to defects in the mitochondrial genome are inherited entirely from the mother. A few years ago, the United Kingdom made it legal for parents to produce a “three-parent” baby. The nucleus from the egg of a potential mother with defective mitochondria is introduced into the egg of a healthy woman donor that has had its own nucleus removed. This egg is then fertilized with the father’s sperm and placed in the womb of the potential mother. The child will carry mostly the genes of its father and mother, but all of his or her mitochondria, with their tiny genome, will come from the egg donor.

        Cells can contain between tens to thousands of mitochondria. These mitochondria don’t lead entirely separate lives as they might if they were bacteria in a culture. Rather, they are constantly fusing and splitting. Mitochondria may be fusing to intermix their contents, partly as a way to compensate for partially damaged components in each of them. They also split in different ways. When cells divide, mitochondria will also split, often down the middle. But sometimes they will also split off parts that are defective so that they can be sent off to be degraded and recycled using processes such as autophagy, which we discussed in chapter 6.

        Mitochondria don’t just fuse with one another; they also interact with a cell’s other organelles in interesting ways. It turns out that lipids—the fatty molecules that make up our membranes—are highly specialized, so different organelles and cell types have different compositions of lipids. Mitochondria often exchange components with other organelles so that they can help one another make the specialized lipids they need. Excessive contacts between these organelles and mitochondria can be just as harmful as having too little.

        Finally, they do many other things besides making ATP. For example, they are also the place where the final stages of sugar burning occurs. They are the sites of burning our stored fat, which is especially important when our carbohydrate intake is insufficient, such as when we are starving or dieting. The energy from burning fat is also used to make ATP. Beyond energy production, mitochondria are now part of a complicated signaling network with the rest of the cell. They tell the cell when energy levels are low or high, so that it can adapt accordingly by turning on or off appropriate genes and pathways.

        Thus, mitochondria are no longer just energy factories but have become a central hub of the cell’s metabolism, which is a far cry from the bacterial stowaway in our cells that they once were. We now coexist in a complex relationship with them. As we age, our mitochondria still work, but they have accumulated defects. Not only do they produce energy less efficiently, but they have become creakier and less effective at their myriad other tasks. Perhaps no other structure in the cell is so intimately connected to the energy of youth and the decline of the old. Aging mitochondria even acquire a different shape as they degrade, transitioning from elongated ovals to spherical blobs. You can see why my grandson, with his young, healthy mitochondria, might feel so much more energetic—and generally healthier—than I do.

        IF MITOCHONDRIA ARE UNABLE TO function at some minimum level, we die. Remember, in most countries, death is defined by when our brain stops functioning. If we are unable to provide oxygen and sugar to our brain—which could be for a variety of reasons, such as a heart attack—the mitochondria in our brain tissue can no longer produce enough ATP for neurons to function, leading to brain death. A sudden loss of oxygen from a heart attack is a drastic occurrence, but even over the normal course of life, mitochondria gradually decline until they no longer function at the required level.

        What brings mitochondria to this point? Mitochondria age for all the same reasons the rest of the cell does, but they have their own particular burden as well. In 1954, Denham Harman proposed something called the free-radical theory of aging. His idea was that chemically reactive species of molecules, some of them called free radicals, are produced normally as a byproduct of metabolism, and cause damage to the cell over time, accelerating aging. Harman’s idea would seem to help explain the benefits of caloric restriction. If you eat less, you burn fewer calories every day, and you don’t produce as many damaging chemical byproducts. Harman’s theory also explained why animals with high metabolic rates tend to live shorter lives than those with slower metabolism.

        Free radicals can be produced throughout the cell, but they and other reactive species are produced in abundance in mitochondria. A primary function of mitochondria is burning sugar by oxidizing it. The oxygen we breathe consists of two oxygen atoms bound tightly together to form the O2 molecule. In mitochondria, this oxygen is reduced ultimately to two water molecules, each of which is H2O. If the reduction of oxygen is not complete, the partially reduced molecules are highly reactive intermediates called reactive oxygen species, or ROS. These highly reactive forms of oxygen can damage other components of the cell, including proteins and DNA. Anyone who has ever had an old car knows what reactive oxygen can do to the chassis; in that case, the reaction is speeded up when there is common salt around, which is why cars in climates where roads are salted in the winter tend to corrode more quickly. So you can think of damage to mitochondria from oxidation as a case of our cells rusting from within.

        Normally mitochondria have enzymes to scavenge away these reactive species before they cause harm, but the process is not perfect. A fraction of reactive molecules escape. Over time, they damage the molecules around them, including the proteins that make our cells work. The general breakdown in the function of the cell leads to aging. Apart from causing immediate damage, these reactive species can also affect future generations of mitochondria by damaging our mitochondrial DNA. That DNA codes for parts of the essential machinery for oxidizing sugar and generating ATP, and if it acquires too many mutations, the machinery produced will be defective. This in turn makes the reduction of oxygen less efficient, resulting in even more reactive species, kicking off a vicious cycle. The reactive species can also diffuse to other parts of the cell and generally cause havoc. Slowly with age, mitochondria will perform less and less effectively.

        Harman’s mitochondrial free-radical theory didn’t gain much traction at first, but a number of observations supported it. For one thing, the production of these reactive species increases with age; by contrast, the activity of the scavenging enzymes that remove them decreases with age, compounding the harm. But it wasn’t clear whether these changes were simply a result of aging or whether they themselves were further driving the aging process. Strains of mice that made more of an enzyme that scavenged hydrogen peroxide lived about five months longer than average, which is quite an increase in longevity for a mouse. As recently as 2022, scientists in Germany showed that a parasite increases the longevity of its ant hosts severalfold by secreting a cocktail that includes two antioxidant proteins as well as other compounds. You may remember that germ-line cells such as oocytes boast superior DNA repair. One way they may minimize damage is by suppressing one of the enzymes that generates reactive oxygen species.

        As the free-radical theory gained credibility, antioxidants took center stage. These compounds, which combat reactive oxygen species, were touted as a panacea for everything from cancer to aging. Sales of antioxidants such as vitamin E, beta-carotene, and vitamin C soared. Cosmetic companies included vitamin E, retinoic acid, and other antioxidants in their lotions and creams to keep skin youthful. People were exhorted to eat foods rich in antioxidants, such as broccoli and kale.

        Alas, although there were isolated reports of benefits from antioxidants, an analysis of sixty-eight randomized clinical trials of antioxidant supplements, encompassing a total of 230,000 participants, suggested that not only did they not reduce mortality, but some of them—beta-carotene, vitamin A, vitamin E—actually increased it. This by itself doesn’t mean that the free-radical theory has no merit. But it does mean that you cannot just pop antioxidant supplement pills and expect to get much protection against free-radical damage. Still, don’t give up on the kale just yet; eating fresh fruits and vegetables is beneficial for all sorts of other reasons.

        There are many potential reasons why the results from antioxidant dietary supplements have been disappointing. They may be metabolized in a way that doesn’t maintain a lasting effect, or they may not properly mimic the natural process by which enzymes scavenge free radicals and reactive oxygen species. But over the last ten to fifteen years, some in the field have come to doubt that oxidative damage from reactive oxygen species and free radicals are a major cause of aging at all. Studies with other animals, including worms and flies, showed no clear correlation between the level of scavenging enzymes and life span. In fact, contrary to the report on mice I just mentioned above, studies in species as varied as yeast, worms, and mice reveal that increased levels of scavenging enzymes or other defenses don’t extend life span. On the contrary, in one study, mutant worms with higher levels of free radicals lived about a third longer. Giving them a herbicide that stimulates a surge of free-radical activity prolonged their lives even more, while reducing the level of free radicals by giving the worms antioxidant supplements reduced their lives. The naked mole rat lives many times longer than other animals of the same size, yet it has higher levels of reactive oxygen species.

        What could possibly be going on? This may be an example of something called hormesis, in which exposure to low levels of a toxin is actually beneficial, whereas those same toxins are harmful at higher levels. Or, as the German philosopher Nietzsche said, that which does not kill us makes us stronger. Free radicals and reactive oxygen species send signals to stimulate the production of detoxification enzymes and repair proteins, which actually have a protective effect. Moreover, these reactive oxygen species have widespread roles as signaling molecules that convey the state of mitochondria to other parts of the cell.

        So if free radicals and reactive oxygen species are by themselves not the major problem, what else about mitochondria might make them factors in aging? We know that mitochondrial DNA mutations increase with age, and accumulation of these mutations is correlated with disease. But does it cause aging? One way to settle this was to genetically engineer strains of mice in which the DNA polymerase enzyme that replicates mitochondrial DNA was made more error prone; consequently, mutations would accumulate at a much faster rate. These mutator mice were apparently normal at birth, but they soon showed many of the symptoms of premature aging, including gray hair, hearing loss, and heart disease. At the age of about sixty weeks, most of them were dead, while normal mice were still alive. This is strong evidence that damage to our mitochondrial DNA is an important factor in aging. Tellingly, these mutator mice did not have a higher level of reactive oxygen species, so it was not as if increased mutations led to defective enzymes, which then worsened the problem by accumulating reactive oxygen species. The ultimate reason these mutator mice age rapidly is still not settled. There are reports of a complicated interplay between errors in mitochondrial DNA and the stability of the bulk of the genome in the cell’s nucleus, which can cause all of the more general problems associated with DNA damage.

        There is no question that damage to mitochondria is bad for the cell and accelerates aging, but it is remarkably difficult to tease out the precise sources of damage. Each human cell can house tens to thousands of mitochondria, each with its own genome. So if some of them acquire serious errors in their DNA, there will still be lots of healthy mitochondria to keep the cell working. But at some point, a threshold is reached where there are simply too many defective mitochondria in the cell, which cause so many problems that they overwhelm the good mitochondria. There are also situations where some of these defective mitochondria can multiply more quickly because they don’t actually do much of the work that healthy mitochondria do. In these cases, clones of these defective mitochondria can dominate, leading to serious problems for the cell.

        Mitochondria are not just energy factories but also are intimately involved in the cell’s metabolism. So as they acquire defects with age, they contribute to the decline of the cells they inhabit and speed up aging. The effect is most pronounced when they contribute to the decline of stem cells, because those cells play such important and diverse roles: when they become dysfunctional, they not only fail to regenerate tissue but also cause cellular senescence and chronic inflammation, all of which are hallmarks of aging.

        One characteristic of aging is a chronic low level of inflammation, cleverly dubbed “inflammaging.” Inflammaging owes its existence in part to our mitochondria’s ancient bacterial origins. Older, defective mitochondria are more prone to rupture and can leak their DNA and other molecules into the cytoplasm of the cell. The cell mistakes these as coming from bacterial invaders, triggering inflammation. Our neurons, which are either very long lived or do not regenerate at all, are particularly prone to aging mitochondria. It may be one reason that our cognitive abilities decline. Neurons with aging mitochondria are also less able to use the recycling pathways to clear away defective proteins and organelles, all of which expend energy. As a result, we become more prone to dementia with age.

        For all these reasons, maintaining healthy mitochondria is a key to good health. How the cell does this is closely related to some of the pathways involved in caloric restriction that we have come across already. It also uses autophagy to get rid of entire mitochondria that it deems defective, or even just defective parts of mitochondria that are broken off. This process, called mitophagy, targets the mitochondria for destruction and recycling. Some proteins can sense when things are going wrong and coat the surface of defective mitochondria with markers that signal the autophagy apparatus to target them for destruction. The same caloric restriction that increases levels of autophagy by the TOR pathway also increases levels of mitophagy.

        If a cell disposes of defective mitochondria, it must replace them with new mitochondria; here too, caloric restriction plays a role. The inhibition of TOR by caloric restriction, or the drug rapamycin, shuts down the synthesis of many proteins but turns on the synthesis of other proteins involved in turning out mitochondria. In studies, the increased mitochondrial activity from this process was tied directly to longer life spans in fruit flies.

        Besides TOR, other signals also stimulate production of new mitochondria. Sometimes, though, this effort is futile: if the cell senses a problem with mitochondrial function, it may simply end up making more defective mitochondria.

        WHILE SCIENTISTS AND THE PHARMACEUTICAL industry strive to produce a pill that will combat mitochondrial dysfunction, there is a simple way to stimulate the production of new mitochondria, and it doesn’t have to cost a penny: exercise. Physical activity turns on some of the same pathways that stimulate mitochondrial production in tissues ranging from our muscles to our brain. Exercise too is an example of hormesis. Too much exercise can be harmful, and even moderate exercise can temporarily increase blood pressure, oxidative stress, and inflammation, all of which are potentially problematic. Yet as long as the amount of exercise is not so excessive as to injure us, which depends on our health and many individual factors, it is highly beneficial. One way it spurs mitochondrial function is by generating the reactive oxygen species produced by incomplete oxidation when we breathe, which, as discussed earlier in this chapter, can be beneficial in the right amounts. Of course, exercise does far more than that and benefits us in many ways: reducing stress, maintaining muscle and bone mass, countering diabetes and obesity, improving sleep, and strengthening immunity. Add to this list the healthful effects of fresh mitochondria.

        Eventually, despite the cell’s best efforts to both recycle defective mitochondria and manufacture new ones, our mitochondria inexorably age, and in turn accelerate other aspects of our overall aging. If accumulated mutations in mitochondrial DNA are a factor in their aging, why does a baby—or my grandson—have healthy mitochondria? The same question we asked for us as individuals could be asked here too. Why is the clock reset at each generation? Recall that the resetting of the aging clock has a few reasons. The first is that germ-line cells that form the next generation have better DNA repair and age more slowly. The second is that the epigenetic marks on DNA get reset with each new generation when germ-line cells are formed. Unlike our nuclear DNA, mitochondrial DNA doesn’t have the same sophisticated epigenetic mechanisms, but it is better repaired in germ-line cells. Moreover, there is a strong selection against mutations in mitochondrial DNA, so defective oocytes are not used for fertilization. There is also a strong selection against defective sperm and even defective early embryos, so any participants with deficient mitochondria should be weeded out. Nevertheless, selection is not perfect: at least some of the loss of fertility with age is due to aging mitochondria.

        By now, it should be clear that all the causes of aging described so far are highly interconnected. We started off with perhaps the most fundamental molecule of all: our DNA, which contains the information necessary to make the thousands of proteins in a cell at just the right time and in the right amounts. That information needs to be protected against damage. Those thousands of proteins must work in harmony to ensure the functioning of a healthy cell, and the cell has many mechanisms to deal with problems as they arise. Beyond proteins, entire organelles such as mitochondria need to work in a symbiotic relationship with the rest of the cell. These mitochondria may have started off as an engulfed bacterium inside a larger ancestral cell, but today they have become a central hub in our metabolism. Any defects they acquire with age set off a whole sequence of events that themselves accelerate aging. All of these affect the aging of individual cells.

        If individual cells in our body were to age or die, we would hardly notice it—after all, we have trillions of cells. But except in primitive life forms, cells don’t exist in isolation. In our bodies, they have to communicate with one another, and work together as part of our tissues and organs. It is when a sufficient number of cells accumulate defects with age that the symptoms of aging manifest themselves: arthritis, fatigue, susceptibility to infection, decreased cognition, and more generally, bodies that simply do not work as well as they did in our youth. It is time to look at how the aging of individual cells leads to some of the morbidities of old age.

        10. Aches, Pains, and Vampire Blood

        The coast-to-coast walk is one of the great long-distance treks in England. Starting in St. Bees Head on the west coast, it cuts through the most picturesque parts of the country before ending at Robin Hood’s Bay on the east coast, near Whitby, Dracula’s port of entry to England in the Bram Stoker novel. The entire walk runs about 200 miles. I figured when I finished it, I could get an “I Did the Coast-to-Coast Walk” T-shirt and disingenuously wear it in the States to impress people.

        My opportunity came in the summer of 2013, when a group of friends and I set off. Everything was fine for the first week, but then my knee started to become more and more inflamed until I had to abandon the walk with only a few days to go. On my return, a surgeon looked at it and discovered a torn and inflamed meniscus, the result of moderate osteoarthritis. As soon as I had the knee repaired, my right shoulder started to ache—osteoarthritis striking again. I receive little sympathy from my similarly aged friends: aches and pains in our joints are simply part of life as we get older.

        Joint pain is a symptom of just one kind of inflammation, and its causes are often physical, such as the wear and tear on the bones in the joint, which then pinch and inflame the soft tissue in it. But as we age, there is a much more pervasive yet less obvious inflammation that affects our health as well as our response to disease.

        One cause of inflammation comes from cells that reach a senescent state because they have aged or become damaged. We’ve seen that when a cell senses DNA damage, it can do one of three things. If the damage is mild, it can turn on repair mechanisms. If the damage is more extensive, it can trigger signals that kill the cell; or it can send the cell into a senescent state, in which it is no longer able to divide. We saw an example of the latter when we discussed how cells stop dividing when the telomeres at the ends of their chromosomes shorten beyond a certain point. Whether a cell is killed off or whether it enters senescence, the purpose is the same: to prevent cells with a damaged genome from reproducing. Such cells run the risk of being cancerous; indeed, the entire response to DNA damage can be thought of as a mechanism to prevent cancer. As we saw earlier, nearly half of cancers have mutations in a single protein, p53, that plays a key role in the DNA damage response. These tumor suppressor genes can induce premature senescence to prevent cancer.

        Just as evolutionary theories would predict, processes that prevent us from developing cancer early in life can become a problem later on. Our tissues, for instance, would stop functioning if their cells kept getting killed off without being replaced. And even though they are alive and present, senescent cells also lead to problems. The transition from a normal cell to a senescent cell is not clearly understood. It occurs because of extensive changes to the genetic program of the cell triggered by the DNA damage response. In their altered state, senescent cells no longer contribute to the normal functioning of the tissues they serve. If they are no longer functioning as they should, you might well wonder why cells go into senescence at all instead of simply being destroyed, and why they persist.

        In fact, senescent cells often don’t just sit there quietly doing nothing. They secrete molecules such as cytokines that cause inflammation and disrupt the surrounding tissue. This is by design. Senescent cells are often produced in response to injury or other damage, and the same secretions that set off inflammation also promote wound healing and tissue regeneration, while at the same time signaling the immune system to clear them from the tissue. But our immune system ages along with the rest of us, and its ability to clear senescent cells declines. As damage to our DNA accumulates and our telomeres shorten, we produce senescent cells in places where they don’t serve any purpose and at a faster rate than our immune system can handle, leading to chronic, widespread inflammation.

        In all of the causes of aging we have discussed so far, the processes are so complex and interconnected that it is always a problem to separate cause and effect. Here too, there is the nagging question of whether an increase in senescent cells and accompanying inflammation is just a consequence of aging or whether it accelerates aging further. This question was tackled in a key study led by Jan van Deursen, who was then at the Mayo Clinic in Minnesota. He and his team used a biomarker that identified senescent cells and devised a clever method to eliminate cells with that marker. Using mice that age prematurely—called progeroid mice—they showed that removing senescent cells delayed age-related pathologies in adipose (fatty) tissue, skeletal muscle, and the eye. Even late in life, removing senescent cells delayed the progression of disorders that had already been established. The study concluded by saying that removal of senescent cells could prevent or delay aging disorders and extend healthy life. A few years later, the same team demonstrated that mice whose senescent cells were killed off were healthier in many ways than those in whom these cells were allowed to build up. Their kidneys functioned better, their hearts were more resilient to stress, they were more active, and they fended off cancers for longer. They also lived about 20–30 percent longer.

        According to a follow-up study, transplanting even small numbers of senescent cells into young mice was sufficient to cause persistent physical dysfunction, and even spread senescence throughout the tissues. With older mice, introducing even fewer senescent cells had the same effect. When researchers used an oral cocktail that selectively killed senescent cells, it alleviated the symptoms of both the young and old mice and reduced their mortality significantly.

        These studies have led to an explosion of experiments examining senescent cells as they relate to aging. The selective targeting of these cells for destruction, called senolytics, is growing rapidly in popularity, both in academic research and industry. But destroying problematic cells like these is only one side of the coin. Most of our tissues are constantly regenerated, and if cells are destroyed either naturally or deliberately, they need to be replaced.

        An old saw holds that the human body replaces itself every seven years; in other words, after seven years, you’re an entirely new collection of cells. But this isn’t strictly true. Our tissues don’t all regenerate at the same rate. Some, such as blood and skin cells, are regenerated rapidly. Cuts, bruises, and minor burns will heal over quickly with new skin, and if you donate blood, your body replenishes it in just a few weeks. Other organs are renewed more slowly; for example, most of the cells in your liver are replaced within three years. Heart tissue is replaced even more slowly, with only 40 percent of its muscle cells replaced in a lifetime, which is why the damage caused by a heart attack is often permanent. And it was thought that the neurons in our brain are never renewed—that we are born with every neuron we will ever have. Recently, however, scientists have shown that some brain cells are renewed, albeit very slowly, at a rate of about 1.75 percent annually. Still, most of our neurons were present at birth, and the inability to replenish them is why diseases that destroy them—either suddenly in a stroke or more gradually as in Alzheimer’s—are so horrific.

        The majority of our cells, however, are replaced with some regularity, and the key actors responsible for regenerating tissue are those stem cells we discussed earlier. Remember that the ultimate stem cells are the pluripotent stem cells in the early embryo that can give rise to any tissue type in the body as they differentiate. But other stem cells are halfway down the path to development of the complete organism and can regenerate only specific tissues. As Leonard Hayflick discovered in the 1950s, the cells in most tissues can undergo only a certain number of divisions, but stem cells, because they are required for regenerating tissues, are not subject to this limit.

        Stem cells that maintain and regenerate tissue must strike a delicate balance. They cannot all differentiate into the mature cells of the tissues, or there would be no stem cells left to carry on this task. And the stem cells that remain behind have to keep dividing into more stem cells to replenish the ones that have differentiated into specific tissue cells. As we age, our stem cells begin to lose this balance between producing more of themselves and regenerating tissue.

        Stem cells do not divide and proliferate indiscriminately; rather, they are activated by specific signals that they receive when the body senses a need for tissue regeneration. These signals and their ability to activate stem cells decline with age, for the many reasons we have discussed before, including damage to our genome, and epigenetic marks that our DNA acquires with age. This is one reason our muscles, skin, and other tissues degenerate with age.

        Apart from not being activated, stem cells themselves eventually suffer from DNA damage and telomere loss, and accumulate metabolic defects. Eventually they trigger a response such as the DNA damage response, which can lead to either cell death or senescence. With stem cells, death is more likely, partly because a stem cell that has damaged DNA might be too much of a cancer risk to keep around. The result is a gradual depletion of stem cells throughout the body, diminishing the ability to regenerate tissue. When our bones, muscles, and skin cannot regenerate, we become increasingly frail. A particularly significant decline is the population of hematopoietic stem cells, which give rise to all our blood cells, including the cells of our immune system. This leads to immune system decline or even immune dysfunction—something called immunosenescence, which is associated with an increase in disorders such as inflammation, anemia, and various cancers, as well as in increased susceptibility to infections.

        Apart from a gradual loss in the number of stem cells, there is a problem with the remaining stem cells. During much of our life, we have a healthy diversity of cells that have acquired different mutations, making us a mosaic of genomes. As we age, our stem cells acquire mutations, some of which cause them to proliferate more rapidly. These rapidly multiplying stem cells are not necessarily the best for regenerating tissues, but because they have a growth advantage, they outcompete their counterparts. Consequently, old age leaves us with stem cells that have all descended from just a few clones. Not only are they less effective, but—of greater concern—the clonal mutants themselves can become sources of cancer.

        If the number of stem cells declines with age, and those that remain are descendants of a few clones, some of which may be problematic, can we somehow reverse this process? In chapter 5 on epigenetics, I explained about how turning on just a few genes that code for the so-called Yamanaka factors can reprogram cells so that they can return to being pluripotent stem cells—and thus can again give rise to any tissue in the body. Might scientists learn to regenerate stem cells in the body and reverse some of the effects of aging?

        When cells are reprogrammed fully with Yamanaka factors to form induced pluripotent stem cells (iPS cells) and used to grow new tissues, they often produce tumors such as teratomas, which can be benign or malignant. One reason for this is that the Yamanaka factors are not precisely reversing the normal process of development. The truth is, we don’t fully understand what they do or how, but the resulting induced pluripotent stem cells are not exactly the same as our own embryonic stem cells, which develop into our body—after all, teratomas are quite rare in normal development. Given the potential risks associated with the use of Yamanaka factors, one idea is to expose cells to them only transiently, so that they would not go all the way back to being pluripotent stem cells again, but just part of the way back developmentally so they would be transformed into the specialized stem cells for whichever tissue they came from. Even this transient and partial reversal could help rejuvenate tissue.

        Many scientists had been working on this in cells in culture, but it wasn’t clear what turning on these factors even transiently in an entire animal would do. A group led by Juan Carlos Izpisua Belmonte at the Salk Institute in La Jolla, California, did exactly this by turning on the Yamanaka factors in entire mice for a short burst. After six weeks, the mice appeared younger, with better skin and muscle tone. They had straighter spines, improved cardiovascular health, healed more quickly when injured, and lived 30 percent longer. These studies involved a special strain of progeroid mice that aged prematurely. Recently, though, both Belmonte’s own group as well as groups led by Manuel Serrano and Wolf Reik, both in Cambridge, England, found that doing the same thing in naturally aged mice—as well as in human cells—induced similar effects. Not only did the animals (or cells) seem younger based on various criteria, but the epigenetic marks on their DNA, and the various markers in their blood and cells, were all characteristic of a more youthful state.

        David Sinclair, who had spent much of his earlier career working on sirtuins, has also begun using the Yamanaka factors to reprogram cells. A newborn mouse can regenerate the optic nerve that transmits signals from the eye to the brain, but this ability disappears as the mouse develops. Sinclair and his colleagues crushed the optic nerves of adult mice, and then introduced three of the four Yamanaka factors. They omitted the fourth, c-Myc, because it is known to have cancer-causing properties. The factors prevented the injured cells from dying and prompted some of them to grow new nerve cells reaching out to the brain. In the same study, they introduced the three factors into middle-aged mice and found that their vision was as good as younger ones. Their DNA methylation epigenetic marks resembled those of younger animals. In another experiment, the team deliberately introduced breaks in the DNA of mice, which accelerated aging by inducing the DNA repair response. One of the effects was that the pattern of epigenetic marks in the genome were characteristic of an aged animal. All of these effects could be reversed by introducing the same three Yamanaka factors.

        Stem cells have been the basis of a very large biotech industry for a long time because of the promise of regenerating new cells and tissues. But it was still quite astonishing that introducing Yamanaka factors into an entire animal, where they could affect virtually every tissue, could apparently reverse aging without any obvious ill effects, at least in the short term. For example, even though two of the three Yamanaka factors used in Sinclair’s experiments are also linked to cancer, his mice were tumor free for nearly a year and a half after treatment. These studies generated huge excitement in the aging community because, unlike other approaches, which can slow down the inexorable progress of aging, these studies actually promise to reverse aging by restoring cells and tissues to an earlier state. Not surprisingly, Belmonte, Serrano, and Reik, all leading researchers originally in academic labs, were snapped up by Altos Labs, the private company set up to tackle aging, which had also snapped up Peter Walter, whom we encountered in chapter 6. We will have more to say about these anti-aging enterprises later.

        BEFORE WE LEAVE THIS CHAPTER, let us turn to blood. Most of us don’t think of blood as an organ in the same way that we consider the liver, kidney, heart, and brain. But perhaps we should. For in many ways, blood circulation is one of the most important systems in the body. It supplies essential nutrients, including oxygen and glucose, to the other organs, as well as disposes of their waste products. It enables our response to hormones, promotes healing by forming structures at the site of injuries, and fights off infections with the immune cells that circulate in our bloodstream. If we have old, defective blood—clonal or not—that is a problem.

        The idea of living forever by drinking young blood has been around for a long time. I remember being terrified when I saw my first Dracula movie at the age of ten. But Transylvanian myths and Gothic novels aside, is it possible to replace old blood with young?

        Parabiosis attempts to do just that, by surgically connecting the circulatory systems of two animals. Some of the earliest experiments date back to the nineteenth-century French biologist Paul Bert, who was interested in tissue transplantation rather than aging. He not only connected two rats but, amazingly, is reported to have attached a rat to a cat and successfully maintained this state for several months.

        Sharing blood between two different animals, let alone different species, could obviously be problematic not only because of the possibility that one or both animals’ immune systems will reject the transfused blood due to incompatibility (this is why blood donors have to be matched to recipients with compatible blood groups), but also psychological issues. Indeed, Clive McCay of Cornell University in Ithaca, New York, is quoted as saying, “If two rats are not adjusted to each other, one will chew the head of the other until it is destroyed.” Nowadays the animals are inbred and matched genetically to avoid biochemical incompatibilities. Then they are socialized with each other for several weeks before attachment.

        Early experiments on parabiosis probed questions such as the role that blood plays in metabolic disorders, including obesity. There were, however, some scientists, like McCay, who were looking at the effects on aging as early as the 1950s. His group found that when aged rats were joined to young ones for about a year, their bones became more similar in weight and density to those of their young partners. Other studies showed that the older partners in old-young pairings lived four to five months longer than normal, which for a two-year life span is a significant extension of life. But for some reason, these studies died out in the 1970s.

        The field was resuscitated in the early 2000s when Irina and Michael Conboy, a husband-and-wife team in Thomas Rando’s lab at California’s Stanford University, again began pairing old and young mice. Within five weeks, the young blood restored muscle and liver cells in the older subjects. Their wounds healed more easily. The fresh blood even made their fur shinier. By the same criteria, the younger partner in each of the pairs tended to fare worse than usual; it, of course, was receiving older blood in the exchange.

        Rando and his colleagues had left out of their 2013 published paper that they had also seen enhanced growth of the older mice’s brain cells. We know that neurons, for the most part, do not regenerate. But these early results motivated one of Rando’s Stanford colleagues, the neurobiologist Tony Wyss-Coray, to investigate the effects of parabiosis on the brain. He showed that old blood could impair memory in young animals, while, conversely, young blood could improve the memories of older animals. There was a threefold increase in the number of new neurons in the older mice. By contrast, the younger mice that received old blood from their conjoined partners generated far fewer nerve cells than young mice allowed to roam free did.

        Against the centuries-old backdrop of the vampire myth, these reports captured people’s imaginations. Rando and Wyss-Coray were deluged with phone calls from reporters and from the general public—some of them dubious, not to mention scary. There were reports of rich old men—and, yes, it usually seems to be men—procuring a ready supply of young blood to prolong their lives.

        The scientists involved were more circumspect. In a 2013 journal article, the Conboys and Rando pointed out that even in highly inbred strains of mice and rats, the risk of parabiotic disease was as high as 20–30 percent. Moreover, it was not obvious whether all of the positive effects of parabiosis could be attributed to the blood; the older animal would have also benefited from the better-functioning organs of the younger partner, such as its liver and kidneys. To test this, the Conboys conducted a study in which they exchanged blood between two animals that were not joined. They found that the adverse effects of old blood were more pronounced than the beneficial effects of young blood.

        Such cautionary views did not stop lots of companies from trying to capitalize on the hype, rushing ahead before any careful human trials were completed. One company, Ambrosia, offered blood plasma from donors aged sixteen to twenty-five for $8,000 a liter. Alarmed, the US Food and Drug Administration (FDA) issued a warning that these treatments were unproven and should not be assumed to be safe, and strongly discouraged consumers from pursuing this therapy outside of clinical trials with appropriate regulatory oversight. In response, Ambrosia stopped offering the treatment, but only briefly: the people involved soon began marketing it again under the aegis of a new but short-lived business named Ivy Plasma—before returning to its original name. Ambrosia’s CEO, Jesse Karmazin, said, “Our patients really want the treatment. The treatment is available now. Trials are very expensive, and they take a really long time.” Most serious scientists, including those who pioneered the discoveries, believe it is premature and potentially dangerous to offer these kinds of treatments to humans without proper clinical trials.

        Beyond all the hype, Thomas Rando’s initial findings set off an extensive search for specific protein factors in blood that could be related to aging. In theory, you could have factors in young blood that stimulate growth and improve function; by the same token, old blood might contain factors that made things worse. Wyss-Coray and his colleagues showed that it was both. As they described in a 2017 article in the journal Nature, proteins from umbilical cord plasma revitalized the function of the hippocampus—a part of the brain crucial for the formation of both episodic and spatial memory. As for old blood, they zeroed in on a protein that impaired hippocampus activity; blocking it relieved some of the adverse effects.

        Of course, in the parabiosis experiments, young blood improved many organs, not just the brain. Amy Wagers of Harvard University, who was a member of Rando’s original team at Stanford, screened the hundreds of protein factors in blood to pinpoint the ones more prevalent in old or young blood. A factor called GDF11 was abundant in young mice but not in old, and it could rejuvenate heart tissue. But it didn’t just act on heart tissue. She and her colleagues showed that the factor reversed age-related deterioration of muscle tissue by reviving stem cells in old muscles and making them stronger. In a second study with her Harvard colleague Lee Rubin, they showed that it spurred the growth of blood vessels and olfactory neurons in the brain.

        Stem cells can decline in number and lose function with age, and clearly some of the factors in blood work by reactivating them. But what about the old blood making the young mice worse off? A recent study by the Conboys and Judith Campisi, another leading aging researcher, showed that treating young mice with old blood quickly increased the number of senescent cells in their circulation. This means that senescence is not just a response to stress and damage from the environment, nor is it something that simply happens over time. It can also be induced rapidly. Clearing those senescent cells reversed some of the harmful effects of old blood on multiple tissues.

        Blood need not even be from young animals to confer benefits. We saw in chapter 8 that exercise has a real benefit on many aspects of our metabolism, including insulin sensitivity and mitochondrial biology. It turns out that blood from adult mice that had been subjected to an exercise program can improve cognitive function and regeneration of neuronal tissue. Rando and Wyss-Coray showed that exercised blood can also rejuvenate muscle stem cells. Using a new way of measuring effect based on which mRNAs are made in different tissues, they showed that young blood and exercised blood act in different ways. Parabiosis from young animals reduced the activity of genes that caused inflammation, whereas exercise increased the activity of genes that decline with age. Although they both stimulated growth of brain tissue, each stimulated different types of cells.

        Identifying aging factors in blood and understanding how they work is now a major area of research. Scientists hope that one day it might be possible to administer a cocktail of a few factors with real anti-aging effects. This hope is spurring not only basic research but also has resulted in the creation of many biotech companies, including ones founded by some of the pioneers in the field.

        While science is advancing to find out precisely which combination of blood factors is most beneficial, some billionaires are unwilling to wait. They continue to be drawn to the Dracula-like allure of young blood. For instance, Bryan Johnson, the middle-aged tech mogul behind the company Braintree Payment Solutions, spends $2 million a year on his anti-aging regimen, which includes two dozen supplements, a strict vegan diet, and, as befits a techie, lots of data, including more than 33,000 images of his bowels. He went to Resurgence Wellness, a Texas outfit that describes itself as a comprehensive health and wellness clinic–slash-spa. There he was transfused with blood from his seventeen-year-old son, Talmage, and in turn donated his own blood to his father in a series of multigenerational blood exchanges that lent new meaning to “all in the family.” Johnson stopped the transfusions from his son after seeing no benefits himself, but still felt that “young plasma exchange may be beneficial for biologically older populations or certain conditions.”

        IN THIS AND EARLIER CHAPTERS, we have covered the broad landscape of aging at various levels, from our genes, to the proteins they encode, and how they affect cells and their ability to function as part of an entire animal. These levels are all interconnected, so the state of our proteins and our cells influences how and which genes are expressed, which in turn affects them. By their very nature, the causes of aging encompass virtually all of biology, and as new areas of research emerge, we find new and sometimes surprising connections with aging. So why we age and die is an ongoing story, and this book has focused on processes of the greatest interest or promise.

        The quest to defeat aging and death is centuries old, but it is only in the last half century that we have accumulated a detailed biological understanding of the processes that lead to them. That knowledge has brought about an explosion of efforts by both academic institutions and for-profit companies to combat aging. Now we come to these efforts, ranging from sound mainstream science to the wildest crackpot ideas.

        11. Crackpots or Prophets?

        Last Christmas, when my son’s family was visiting from America, there was a special exhibition at the British Museum about the Rosetta Stone and how it led to the decipherment of Egyptian hieroglyphics. So we trudged off to London, and since it was a cold and wet day during the Christmas break, we found to our dismay that the museum was packed. After we battled the crowds milling about the exhibition, we were naturally curious to see the rest of the Egyptian artifacts in the museum, including its unparalleled collection of mummies. We went over to the long hall with cases enclosing one mummy after another. It was both thrilling and sobering. Thrilling that these mummies had been preserved for a few thousand years and were right there for us to see. Sobering that each of them represented a person who had been alive.

        Their corpses, now in varied states of preservation, lay underneath the wrappings and caskets. It was a stark reminder yet again of the extent to which people will go to deny death. After all, Egyptians mummified their pharaohs so that they could arise corporeally at some point in the future for their journey in the afterworld. Surely now, a few millennia after the pharaohs and with more than a century of modern biology behind us, we would not do anything even remotely so superstitious. But in fact, there is a modern equivalent.

        Biologists have long wanted to be able to freeze specimens so that they can store and use them later. This is not so straightforward because all living things are composed mostly of water. When this water freezes into ice and expands, it has the nasty habit of bursting open cells and tissues. This is partly why if you freeze fresh strawberries and thaw them, you wind up with goopy, unappetizing mush.

        An entire field of biology, cryopreservation, studies how to freeze samples so that they are still viable when thawed later. It has developed useful techniques, such as how to store stem cells and other important samples in liquid nitrogen. It has figured out how to safely freeze semen from sperm donors and human embryos for in vitro fertilization treatment down the road. Animal embryos are routinely frozen to preserve specific strains, and biologists’ favorite worms can be frozen as larvae and revived. For many types of cells and tissues, cryopreservation works. It is often done by using additives such as glycerol, which allow cooling to very low temperatures without letting the water turn into ice—effectively like adding an antifreeze to the sample. In this case, the water forms a glass-like state rather than ice, and the process should be called vitrification rather than freezing (the word vitreous derives from the Latin root for glass), but even scientists casually refer to it as freezing and the specimens as frozen.

        Enter cryonics, in which entire people are frozen immediately after death with the idea of defrosting them later when a cure for whatever ailed them has been found. The idea has been around a long time, but it gained traction through the work of Robert Ettinger, a college physics and math teacher from Michigan who also wrote science fiction. Ettinger had a vision of future scientists reviving these frozen bodies and not only curing whatever had ailed them but also making them young again. In 1976 he founded the Cryonics Institute near Detroit and persuaded more than a hundred people to pay $28,000 each to have their bodies preserved in liquid nitrogen in large containers. One of the first people to be frozen was his own mother, Rhea, who died in 1977. His two wives are also stored there—it is not clear exactly how happy they were to be stored next to each other or their mother-in-law for years or decades to come. Continuing this tradition of family closeness, when Ettinger died in 2011 at age ninety-two, he joined them.

        Today there are several such cryonics facilities. Another popular one, Alcor Life Extension Foundation, headquartered in Scottsdale, Arizona, charges about $200,000 for whole-body storage. How do these facilities work? Essentially, as soon as a person dies, the blood is drained and replaced with an antifreeze, and the body is then stored in liquid nitrogen. Theoretically, indefinitely.

        Then there are the transhumanists who want to transcend our bodies entirely. But they don’t want humanity as we know it to end before we have figured out a way to preserve our minds and consciousnesses indefinitely in some other form. In their view, intelligence and reason may be unique to human beings in the universe (or at least they see no evidence for extraterrestrial intelligence). To them, it is of cosmic importance to preserve our consciousnesses and minds and spread them throughout the universe. After all, what is the point of the universe if there is no intelligence to appreciate it?

        These transhumanists are content to have only their brains frozen. This takes up less space and costs less. Moreover, it could be faster to infuse the magic antifreeze directly into the brain after death, increasing the odds of successful preservation. The brain is the seat of memories, consciousness, and reasoning, and that is their sole concern. At some point in the future, when the technology is ripe, the information in the brain will simply be downloaded to a computer or some similar entity. That entity will possess the person’s consciousness and memories and will resume “life.” It won’t be limited by human concerns such as the needs for food, water, oxygen, and a narrow range of temperature. We will have transcended our bodies, with the possibility of traveling anywhere in the universe. Not surprisingly, transhumanists are generally ardent about space travel, viewing it as our only chance to escape destruction on Earth. One such proponent is Elon Musk, said to be the wealthiest person in the world, depending on the year, who is well known for his desire to “die on Mars, just not on impact.” Presumably one of his first goals upon reaching the red planet will be to construct a cryonics facility.

        The bad news is that there is not a shred of credible evidence that human cryogenics will ever work. The potential problems are myriad. By the time a technician can infuse the body, minutes or even hours may have elapsed since the moment of death—even if the “client” moved right next to a facility in preparation. During that time, each cell in the deceased person’s body is undergoing dramatic biochemical changes due to the lack of oxygen and nutrients, so that the state of a cryogenically frozen body is not the state of a live human being.

        No matter, say cryo advocates: we simply must preserve the physical structure of the brain. As long as it is preserved enough that we can see the connections between all the billions of brain cells, we will be able to reconstruct the person’s entire brain. Mapping all the neurons in a brain is an emerging science called connectomics. Although it has made tremendous advances, researchers are still ironing out the kinks on flies and other tiny organisms. And we don’t yet have the know-how to properly maintain a corpse brain while we wait for connectomics to catch up. Only recently, after many years, has it been possible to preserve a mouse brain, and that requires infusing it with the embalming fluid while the mouse’s heart is still beating—a process that kills the mouse. Not one of these cryonics companies has produced any evidence that its procedures preserve the human brain in a way that would allow future scientists to obtain a complete map of its neuronal connections.

        Even if we could develop such a map, it would not be nearly enough to simulate a brain. The idea of each neuron as a mere transistor in a computer circuit is hopelessly naive. Much of this book has emphasized the complexity of cells. Each cell in the brain has a constantly changing program being executed inside it, one that involves thousands of genes and proteins, and its relationship with other cells is ever shifting. Mapping the connections in the brain would be a major step forward in our understanding, but even that would be a static snapshot. It would not allow us to reconstruct the actual state of the frozen brain, let alone predict how it would “think” from that point on. It would be like trying to deduce the entire state of a country and its people, and predict its future development, from a detailed road map.

        I spoke to Albert Cardona, a colleague of mine at the MRC Laboratory of Molecular Biology who is a leading expert on the connectomics of the fly brain. Albert stresses that, in addition to the practical difficulties, the brain’s architecture and its very nature are shaped by its relationship to the rest of the body. Our brain evolved along with the rest of our body, and is constantly receiving and acting upon sensory inputs from the body. It is also not stable: new connections are added every day and pruned at night when we sleep. There are both daily and seasonal rhythms involving growth and death of neurons and this constant remodeling of the brain is poorly understood.

        Moreover, a brain without a body would be a very different thing altogether. The brain is not driven solely by electrical impulses that travel through connections between neurons. It also responds to chemicals both within the brain and emanating from the rest of the body. Its motivation is driven very much by hormones, which originate in the organs, and includes basic needs such as hunger but also intrinsic desires. The pleasures our brains derive are mostly of the flesh. A good meal. Climbing a mountain. Exercise. Sex. Moreover, if we wait until we age and die, we would be pickling an old, decrepit brain, not the finely tuned machine of a twenty-five-year-old. What would be the point of preserving that brain?

        Transhumanists argue that these problems can be solved with knowledge that mankind will acquire in the future. But they are basing their beliefs on the assumption that the brain is purely a computer, just different and more complex than our silicon-based machines. Of course, the brain is a computational organ, but the biological state of its neurons are as important as the connections between them in order to reconstruct its state at any given time. In any case, there is no evidence that freezing either the body or the brain and restoring it to a living state is remotely close to viable. Even if I were one of the customers who was sold on cryonics, I would worry about the longevity of these facilities, and even the societies and countries in which they exist. America, after all, is only about 250 years old.

        Despite this, many people have bought into the idea of cryonics. In the United Kingdom, a fourteen-year-old girl who was dying of cancer wanted to have her body cryogenically frozen. She needed the consent of both parents, but they were separated, and her father, who himself suffered from cancer, and was not part of her life, was opposed. She took the matter to court, and the judge ruled that she was entitled to have her wishes followed—but they should be made public only after her death. This elicited an outcry from prominent UK scientists, who called for restrictions on the marketing of cryonics to vulnerable people.

        In almost a mirror image of this case, the renowned baseball player Ted Williams wanted to be cremated. Upon his death in 2002 at the age of eighty-three, two of his three children insisted on having his remains frozen, igniting a bitter family feud. In the end, a compromise was reached: only the great athlete’s head would be put on ice, so to speak.

        According to press reports, well-known people who intend to be cryopreserved include entrepreneur Peter Thiel, one of the cofounders of PayPal; computer scientist Ray Kurzweil, best known for his prediction that in 2045 we will reach the singularity where machines will become more intelligent than all humans combined; philosopher Nick Bostrom, who is concerned that such machine superintelligence could spell an existential catastrophe for humans; and computer scientist turned gerontologist Aubrey de Grey. More about him in a moment.

        Because the brain decays rapidly following death, many cryonics facilities recommend that their clients move somewhere nearby when it’s known that the end is nigh. However, this may not be good enough. Remember that the only way cryopreservation has been shown to merely preserve connections in a mouse brain was by infusing embalming chemicals into its blood while it was still alive, in a procedure that kills the animal. In 2018, a San Francisco company called Nectome was reported to have plans to do exactly that to human beings: infusing a mixture of embalming chemicals into the carotid arteries in the neck—killing the customer immediately in the process. This would be carried out under general anesthesia, although what the embalming would do to the state of the brain was not clear. The company’s cofounder claimed that this assisted suicide will be completely legal under California’s End of Life Option Act. One might think that the prospect of certain euthanasia coupled with an uncertain outcome would be a tough sell, but the same article claimed that twenty-five people had already signed on as customers, and one of them was reported to be thirty-eight-year-old Sam Altman, cofounder of OpenAI, the artificial intelligence research lab that launched ChatGPT, who believes that minds will be digitized in his lifetime and that his own brain will one day be uploaded to the cloud. In response, Robert McIntyre, the founder of Nectome, said that those people were early supporters of his research and had not been promised or even offered anything, certainly not silicon-based mental immortality.

        LET US MOVE FURTHER UP the plausibility scale, from cryonics to Aubrey de Grey. With his two-foot-long beard and a matching messianic zeal, de Grey looks the very stereotype of an upper-class English eccentric and has amassed a large cultlike following. He began his career as a computer scientist and, although not a professional mathematician, contributed a major advance toward solving a sixty-year-old mathematics problem. At some point, he met the American fly geneticist Adelaide Carpenter at a party in Cambridge and eventually married her. This sparked his interest in biology—in particular, the mitochondrial free-radical theory of aging. De Grey came to believe that aging was a solvable problem. He asserts that the first humans who will live to be 1,000 years old have already been born. De Grey’s central idea is that if we can improve average life expectancy faster than we age—if, in other words, life expectancy increases by more than a year annually—we can hope to escape death altogether. He calls this “escape velocity.”

        To reach escape velocity, de Grey has a plan. Bucking the conventional wisdom of the biological community, he proposes that we can defeat aging if we crack seven key problems: (1) replenish cells that are lost or damaged over time, (2) remove senescent cells, (3) prevent stiffening of structures around the cell with age, (4) prevent mitochondrial mutations, for example by engineering mitochondria so that they don’t make any proteins themselves using their own genome but import them exclusively from the rest of the cell, (5) restore the elasticity and flexibility of the structural support to cells that stiffen with age, (6) do away with telomere lengthening machinery so that we don’t get cancer, and (7) figure out how to reengineer stem cells so that our cells and tissues don’t atrophy. He calls his program to solve these problems SENS: strategies for engineered negligible senescence.

        De Grey has learned enough biology to pinpoint many of the things that go wrong as we age. But with the characteristic arrogance that many physicists and computer scientists display toward biologists, he is wildly optimistic about the feasibility of addressing them. In response to his claims, twenty-eight leading gerontologists, including many you’ve come across in this book, wrote a scathing rebuttal arguing that many of his ideas were neither sufficiently well formulated nor justified to even provide a basis for debate, let alone research, and that not a single one of de Grey’s proposed strategies has been shown to extend life span. The coauthors included Steven Austad and Jay Olshansky. Other mainstream researchers too dismissed SENS as pseudoscience. One of them, Richard Miller of the University of Michigan, penned a hilarious parody of SENS in a satirical open letter to de Grey in the journal MIT Technology Review. Since the aging problem had been solved, Miller proposed, perhaps we could turn now to the challenge of producing flying pigs; there are a mere seven reasons why pigs, at present, cannot fly, and we could fix all of them easily. De Grey, in response, huffed that the gerontology community was short-sighted, comparing the field to Lord Kelvin, the famous physicist and former president of the Royal Society who once scoffed that heavier-than-air flying machines were impossible.

        Dissatisfied with the lack of support from the academic community and the funding prospects in England, de Grey left for the United States in 2009. He set up the SENS Foundation in well-heeled Mountain View, California, with a private endowment, and initially with the support of some well-known gerontologists. Around this point, he began liaisons with other women, two of whom were forty-five and twenty-four years old. Adelaide Carpenter de Grey, then sixty-five, did not want to move to California to be part of this lifestyle, and they eventually divorced. De Grey remarked that as we solved the aging problem, “There’s going to be much less difference between people of different chronological ages,” and the expectation of living a very long time might very well lead to a reevaluation of the value of permanent monogamy. In 2021 he made the news again after being accused of sexual harassment by two young women, one of whom was only seventeen when she encountered de Grey. He denied the allegations and was suspended by his own foundation initially. But following charges that he’d interfered with an investigation into his conduct, the SENS Foundation fired him. A company report eventually cleared de Grey of being a sexual predator but criticized him over instances of poor judgment and boundary-crossing behavior. De Grey, undaunted, founded the new LEV Foundation, with the letters standing unsurprisingly for Longevity Escape Velocity. His longevity in longevity research is remarkable, as is his ability to continue to obtain funding from rich benefactors.

        Even the more mainstream anti-aging industry has some extreme optimists. Among them is David Sinclair, who, unlike the charlatans of the aging field, is a Harvard professor who has published a number of high-profile papers on aging in top journals, including two recent papers on reprogramming cells that made considerable waves. At the same time, Sinclair is known for excessive self-promotion and highly enthusiastic claims. For example, he has predicted that it will be normal to go to a doctor and take a medicine that will make us a decade younger, and that there is no reason why we couldn’t live to be 200. Such statements cause some of his critics to cringe and even fellow scientists who respect his ability to be embarrassed for him. I discussed the fate of resveratrol and his company Sirtris in chapter 8, but it appears to have had no effect on his ability to raise money to found several new companies—or indeed on his large public following, one that rivals de Grey’s. His recent popular book, which doubles down on his beliefs, shows that he is completely unfazed by any criticisms of his work. I doubt whether he would have been bothered much by a scathing review of the book by Charles Brenner.

        Although resveratrol has long been discounted by the mainstream community, Sinclair still stands by it. In an essay on LinkedIn, he said coyly that he does not give medical advice—then proceeded to say that he takes resveratrol, metformin, and NMN (an NAD precursor) daily. We have come across these compounds in these pages. There is no evidence that any of them improves life span in humans; they haven’t been tested for this purpose in rigorous clinical trials, and, therefore, have not been approved by the FDA. Moreover, the evidence that metformin is beneficial in healthy adults is mixed; as we saw earlier, there are also problems associated with its use. For a Harvard professor to make this sort of statement on social media is essentially advocating their use, which strikes me as both ethically questionable and potentially dangerous. In the piece, Sinclair also bragged that he had a heart rate of 57 despite not being an athlete and that his lungs functioned as though he were multiple decades younger. Oddly, I am seventy-one, and although I’m no athlete either, my resting heart rate has been in the low 50s for much of my adult life—without taking Sinclair’s nutraceutical supplements. Since he is a scientist, at least he ought to compare himself to close relatives who don’t take the supplements, and also see what would happen if he went off his regimen but preserved his general lifestyle.

        Starting a few decades ago, all sorts of dubious commercial enterprises started selling various compounds or procedures purporting to extend health or life. They would often make the most tenuous connection with some genuine research finding to hawk their wares. Respectable scientists founded their own companies—in many cases, several—and some of them gave the impression that the problem of aging would soon be solved. After all, investors are unlikely to fund companies if the payoff is many decades down the road. All of this led to a feeling that the fountain of youth was just around the corner.

        Even back in 2002, fifty-one leading gerontologists were already alarmed enough by the hype to write a position statement laying out their views on what was known and what was fantasy or science fiction. They were particularly anxious to draw a clear distinction between serious anti-aging research and questionable claims about extending health and life. Among their key points:

        Eliminating all aging-related causes of death would not increase life expectancy by more than fifteen years.

        The prospects of humans living forever is as unlikely today as it has ever been.

        Antioxidants may have some health benefits for some people, but there is no evidence that they have any effect on human aging.

        Telomere shortening may play a role in limiting cellular life span, but long-lived species often have shorter telomeres than do short-lived ones, and there is no evidence that telomere shortening plays a role in determining human longevity.

        Hormone supplements sold under the guise of anti-aging medicine should not be used by anyone unless they are prescribed for approved medical uses.

        Caloric restriction might extend longevity in humans, since it does so in many species. But there is no study in humans that has proved it will work, since most people prefer quality of life to quantity of life; but drugs that mimic caloric restriction deserve further study.

        It is not possible for individuals to grow younger, since that would require performing the impossible feat of replacing all of their cells, tissues, and organs as a means of circumventing aging processes.

        While advances in cloning and stem cells may make replacement of tissues and organs possible, replacing and reprogramming the brain is more the subject of science fiction than likely science fact.

        Despite these many reservations, the gerontologists enthusiastically supported research in genetic engineering, stem cells, geriatric medicine, and therapies to slow the rate of aging and postpone age-related diseases.

        Interestingly, Aubrey de Grey was a signatory to this statement. Notable omissions, though, included Leonard Guarente and David Sinclair, both of sirtuin fame, and Cynthia Kenyon, who had discovered the daf-2 mutant in worms. All three of them were involved with various longevity companies at the time and were on record as being highly optimistic about the prospects of major breakthroughs.

        Nevertheless, the explosion in the anti-aging industry has proceeded unabated. Today there are more than 700 biotech companies focused on aging and longevity, with a combined market cap of at least $30 billion. Some of these firms have been around for almost two decades but have yet to produce a single product. Others generate revenue by selling nutraceuticals; these supplements do not require FDA approval, and no randomized clinical trials to assess their safety and effectiveness have been carried out. Many of these companies have highly distinguished scientists on their advisory boards—including some Nobel laureates who have no particular expertise in aging, apart from being old. To the public, the presence of these distinguished scientists lends an air of credibility to the enterprise. How has such an enormous industry flourished for so long with so few actual advances to show for it?

        AGING RESEARCH TAPS INTO OUR primeval fear of death, with many people willing to subscribe to anything that might postpone or banish it. California tech billionaires, especially. Many of them made their money in the software industry, and because they were able to write programs to carry out rapid financial transactions or swap information of various sorts, they believe aging to be just another engineering problem to be solved by hacking the code of life. The pace of success in the software industry has made them impatient. They are used to making major breakthroughs in a couple of years, sometimes even a couple of months, and they underestimate the complexity of aging. They want to “move fast and break things.” We all know how that attitude worked out for social media, with consequences for social cohesion and politics that we could never have imagined twenty years ago. Currently, these same people have prematurely unleashed AI on the world while at the same time warning us of its dangers. One can only shudder at applying that attitude to something as profound as aging and longevity.

        These enthusiastic tech billionaires are mostly middle-aged men (sometimes married to younger women) who made their money very young, enjoy their lifestyles, and don’t want the party to end. When they were young, they wanted to be rich, and now that they’re rich, they want to be young. But youth is the one thing that they cannot instantly buy, so, not surprisingly, many of the celebrity tech billionaires—such as Elon Musk, Peter Thiel, Larry Page, Sergey Brin, Yuri Milner, Jeff Bezos, and Mark Zuckerberg—have all expressed an interest in anti-aging research. And in many cases, they are funding it. One notable exception is Bill Gates, who recognizes realistically that the best way to improve overall life expectancy remains addressing the serious health care inequalities in the world.

        Recently, the company Altos Labs made a big splash, announcing a war chest of several billion dollars of investment money. It was founded by Richard Klausner and Hans Bishop with the active encouragement and financial support of Yuri Milner and several wealthy benefactors, mostly in California, reportedly including Jeff Bezos. Milner, a software billionaire originally from Russia, has had a long-standing interest in science. He founded the Breakthrough Prizes, which are among the most prestigious—and certainly the most lucrative—international awards in science. Recently, he wrote a tract titled Eureka Manifesto: The Mission for Our Civilization, which explains some of his thinking about aging. Some of what he believes seems to be similar to the transhumanists: our evolution of reason, and all the knowledge we humans have accumulated, is precious and should not be lost. Having Earth as our only home could be a huge risk, so we may need to populate other parts of the universe. As I read his essay, I suddenly saw why Milner would want to tackle aging. Outer space is vast, and if we have to travel hundreds if not thousands of years toward a new home, it might be nice to be able to survive the voyage. There is nothing particularly illogical about Milner’s views, but they display the grandiosity—and the optimism bordering on arrogance—typical of this subset of the tech community. In any case, Altos Labs was launched with a big bang in 2022. In one swoop, the company netted some of the biggest stars in anti-aging research, luring them away from their academic positions by offering them huge resources and salaries. Altos now has campuses in both Northern and Southern California (naturally), and also in Cambridge, England, not far from my own lab.

        When news of Altos Labs first leaked in the press, it was touted as a company that wanted to defeat death. Rick Klausner, its chief scientist and cochair, denied this and said that its objective is to improve healthy life span. At the launch of the Cambridge campus, he said, “Our goal is for everyone to die young—after a long time.” Klausner and others also pointed out that Altos Labs offers a highly collaborative way of doing science that allows it to tackle big problems in a way that academic labs dependent on individual grants cannot. Some mentioned to me that the company hoped to be gerontology’s version of Bell Labs, the famous private and commercial laboratory in New Jersey where small groups worked in highly collaborative settings to produce major breakthroughs such as the transistor, information theory, and lasers.

        If tech billionaires are interested in curing aging in a hurry, many scientists are only too happy to enable them. Many truly distinguished scientists now have financial stakes in the industry, either through their own companies or as employees or consultants. This is not at all a bad thing in itself, but when I see some of them constantly touting their findings or their companies’ prospects, I wonder whether they can all really believe what they are saying. Do they not understand the complexities and difficulties ahead? Or, in the words of Upton Sinclair, is it simply that “It is difficult to get a man to understand something when his salary depends on his not understanding it”?

        OF ALL THE LIVING SCIENTISTS I have described in this book, Michael Hall, who led the team that discovered TOR, is one of the most distinguished. Of aging research, he told me, “I went through a period about fifteen years ago when I was thinking a lot about TOR and aging, but was then turned off by the aging meetings I attended. They were three-ring circuses: light science and wackos walking around looking like Father Time. However, I think the field has evolved. It is now on firm ground with rigorous science.”

        What has changed? Mainly, gerontology has gone from being a somewhat disrespectable soft science scorned by mainstream biologists to becoming a major research priority, partly because of the need to deal with aging populations in the developed world and, increasingly, worldwide. The result is that we now have a much better handle on the complicated biological causes of aging. Of these, DNA repair, although fundamental to aging, has been used far more to target cancer than aging. Virtually every other aspect of aging is also the target of therapeutic interventions to slow it down or reverse it. We have discussed many of them in context throughout the book, but some of them seem to be more promising than others—and have certainly attracted more investment.

        One promising approach is to prevent the accumulation of “bad” proteins and other molecules as we age, either by recognizing them and disposing of them, or by slowing down or altering the rate or program of protein production, which allows the body to cope with these changes. Drugs that essentially mimic caloric restriction fall into this class, and the ones that are most actively investigated are those that target TOR, such as rapamycin and similar drugs, and others like the antidiabetic drug metformin, whose mechanism of action is still not well understood. The vitamin-like precursors of NAD and other nutrients that need to be supplemented with age are also an active area of research. Other drugs aim to target senescent cells, which are the source of inflammation and its accompanying problems, while still others seek to identify factors found in young blood that can slow down aging in various ways.

        Some of the biggest excitement today concerns the reprogramming of cells to reverse the effects of aging. You have already read in chapter 10 about how scientists are using transient exposure to Yamanaka factors to try to rejuvenate animals while also trying to minimize the risk of cancer. The early results of this approach have been promising enough that a huge number of start-up companies has sprouted up around this strategy. It is a major focus of Altos Labs, which hired Shinya Yamanaka himself as an adviser. Stem-cell therapy was already a major area of biotechnology because of its potential to regenerate damaged tissue and restore function to organs. Many of these companies already have expertise in reprogramming to generate various kinds of stem cells and have now jumped onto the anti-aging bandwagon. However, patients will be more receptive to stem-cell treatment for serious diseases such as replacing damaged muscle after a heart attack or restoring functional cells in a pancreas to treat diabetes, because the benefits will clearly outweigh the risks. It is not yet clear when this will happen with efforts to tackle aging—clearly the bar for safety and efficacy will be much higher.

        That brings us to another, more fundamental problem with aging research. How can researchers tell if their treatments are working? The customary way for any new treatment in medicine would be to carry out a randomized clinical trial. Patients are divided into two groups, with one given either a placebo or the current standard therapy for a particular condition, and the other the agent being tested, to see if the patients given the experimental medicine fare better, or worse. The equivalent for anti-aging medicine would be to see if the treatment prolongs health and life. But this could take years to assess. This long wait for results makes it more difficult to find volunteers for properly randomized trials.

        In management, as well as in science and technology, there is a well-known saying that you can’t improve what you can’t measure. The fifty-one gerontologists who criticized the hyperbolic statements from the anti-aging industry pointed out that aging was highly variable from individual to individual. They added pointedly: “Despite intensive study, scientists have not been able to discover reliable measures of the processes that contribute to aging. For these reasons, any claim that a person’s biological or ‘real age’ can currently be measured, let alone modified, by any means must be regarded as entertainment, not science.”

        That was true twenty years ago when the authors wrote it. But today, increasingly, there are so-called biomarkers that correlate well with our underlying physiology and the characteristics that arise from it. Some characteristics of age are obvious. Our hair gets thinner and grayer or whiter, our skin becomes more wrinkled and less elastic, our arteries narrow and become more rigid, our brains are— Well, you get the picture. These traits are subjective and tricky to quantify, but if we can come up with measurable biomarkers that are proxies for them, that would be a big step forward. In addition to epigenetic changes to our DNA such as the Horvath clock, explained in chapter 5, there are now a variety of markers that measure inflammation, senescence, hormone levels, and various blood and metabolic markers, as well as the pattern of gene expression in different cell types. So scientists may be able to measure if their treatments are having any effect on aging without having to wait an interminably—or terminably—long time. Although these biomarkers or aging clocks have been rapidly taken up by the industry, their underlying basis is often not clear, and there are few studies that compare them to see how well they agree with one another.

        Anti-aging researchers run into a regulatory problem as well: clinical trials are usually only approved for treatment of disease. In the scientific community, debate rages over whether aging is simply a normal progression of life or a disease. The traditional view is that something that happens to everyone and is inevitable can hardly be termed a disease. Gerontologists who subscribe to this view would argue that aging is the result of molecular changes that occur over time, which make us function less optimally and become more prone to diseases. Aging may be a cause of disease but is not a disease in itself. Another stark difference is that disease is usually subject to a clear definition: whether one has it and when one got it. But there is no clear consensus on when you become old. For these reasons, the latest International Classification of Diseases by the World Health Organization (WHO) omitted aging. While many in the gerontology community were disappointed by this decision, others welcomed it because they worried that classifying aging itself as a disease could lead to inadequate care from physicians: rather than pinpoint the cause of a condition, they would simply dismiss it as an unavoidable consequence of old age.

        Still, the biggest risk factor for many diseases is age. Even during the recent Covid-19 pandemic, the risk of dying from being infected roughly doubled with every seven to eight years of age, so that an eighty-year-old was about 200 times as likely as a twenty-year-old to die if he or she caught Covid. Drawing on this, some gerontologists argue that we should regard aging as a disease, one that manifests itself in various ways such as diabetes, heart disease and dementia, or indeed being more prone to pneumonia or Covid-19. Of course, with billions of investment and research dollars at stake, there is currently fierce lobbying both by elements of the gerontology community and the anti-aging industry to have aging classified as a disease. So far, the FDA has refused, although it approved clinical trials for progeria, a disease in which patients age prematurely, dying around fifteen years of age. More surprisingly, in 2015 it authorized the TAME trial on the use of metformin in a study of aging in healthy adults; perhaps the federal agency was swayed by the fact that metformin was already an approved drug for diabetes, and at least some data on diabetics suggested a beneficial effect. But unless companies invested in longevity succeed in persuading the FDA to allow clinical trials for normal aging, they will face difficulty carrying out rigorous patient studies and will have to resort to other criteria to show the efficacy of their treatments.

        MOST PEOPLE SAY THEY DO not fear death so much as the prolonged debilitation that precedes it. Almost everyone would agree that it is a worthy goal to increase health span, or the number of years of healthy life, by reducing the fraction of years of life that we spend in poor health as a result of age-related diseases. This goal was termed compression of morbidity by James Fries in 1980. Or as Klausner phrased it, we should all die young after a long time. Compression of morbidity rests on two assumptions: that we can alter the process of aging to postpone the onset of the diseases of aging; and that the length of life is fixed. The first, of course, is the goal of much of anti-aging research.

        However, there is some debate about the second assumption. Much of the gain in life expectancy in the last hundred years was by reducing infant mortality. However, in the last few decades, tremendous advances have been made in the treatment of diseases that occur as we age, including diabetes, cardiovascular disease, and cancer. These advances have inevitably increased our life expectancy. Aubrey de Grey has argued convincingly that the gerontology community is hypocritical in rejecting life extension because treating the causes of aging will inevitably extend life and that compressing morbidity will “forever remain quixotic.” Even if we accept that there is currently a natural limit of about 120 years to our life span, the reasons for that limit are not well understood beyond a vague notion that it has to do with a general breakdown of our complex biology that leads to general frailty. As de Grey points out, compression of morbidity would require us to eliminate or slow down various causes of aging, while at the same time deliberately not tackle the causes of frailty that eventually make us die. Even Steven Austad, who is far more in the mainstream of the gerontology community than de Grey, made his famous bet that advances in combating aging would enable someone currently alive to live over 150 years.

        If anything, data from the Office of National Statistics in the UK suggest that rather than compressing morbidity, advances in treatment of age-related diseases have done the opposite: they show that the number of years we spend with four or more morbidities has not declined but actually slightly increased as a fraction of our lives. A United Nations report on the trend worldwide is similar and concludes that both life span and disability-free years increased but the fraction of our lives spent in disability has not decreased. In short, we are living more years and possibly a greater fraction of our lives in poor health.

        Is compression of morbidity even possible? When I first heard the idea, I thought it was absurd: if someone was “young” in Klausner’s sense of being healthy, what would suddenly cause him or her to collapse and die? It would be like a car that was running perfectly suddenly falling apart. In his original 1980 article on compression of morbidity, Fries himself likened the idea to the titular one-hoss-shay of the 1858 Oliver Wendell Holmes poem “The Deacon’s Masterpiece or, the Wonderful ‘One-Hoss Shay’” in which a shay—a horse-drawn carriage for one or two people—was designed so perfectly that all its parts were equally strong and long-lasting. A farmer was merrily riding it when all of a sudden the shay disintegrated under him—“Just as bubbles do when they burst”—and he found himself on the ground in a heap of dust.

        There are animals that live a healthy and vigorous life, reproducing right up to the point of death. In his book Methuselah’s Zoo, Steven Austad describes an albatross that lives many decades in perfect health until it dies. However, the albatross’s demise is not the death we might wish for, as centenarians in the peak of health quietly slipping away in our sleep. In nature, life is brutish and merciless. The bird probably reached a point where it could no longer make the long journey to return to its nest and collapsed after a struggle, or it was killed by a predator. Similarly, our hunter-gatherer ancestors probably did not spend many years with the morbidities of old age; instead, they often starved, died of disease, were eaten by predators, or killed by a fellow human being the moment they were not absolutely healthy and fit. Their morbidity was highly compressed but it’s not exactly what most of us are striving for. If compressing morbidity were the only goal, we could squish it all the way to zero if we chose. In Aldous Huxley’s classic 1932 dystopian novel Brave New World, perfectly healthy people are simply euthanized at their appointed time. It is not clear that many people would opt for such a world especially if the timing of “compression” was not up to us. If we were faced with many years of decrepitude, some of us might well consider it, but if we were perfectly healthy, why would we want to die? I don’t think these examples represent true compression of morbidity, because the death of an otherwise healthy being occurs rather suddenly as the result of some unpleasant external cause.

        If all this sounds bleak, there is some hope that true compression of morbidity is actually possible. Thomas Perls of the New England Centenarian Study points out that although the number of centenarians has grown in recent decades, the numbers of semisupercentenarians and supercentenarians (those that reach 105 and 110 years of age, respectively) have not and remain very small. This is contrary to what we would expect given medical advances and a general population increase in life expectancy. While many centenarians live extraordinarily long lives in good health, about 40 percent of them had age-related diseases prior to 80. By contrast, supercentenarians are healthy nearly their entire lives. As they approached the limit of the human life span at around 120 years, like the one-hoss-shay they experienced a rapid terminal decline in function and died. This would argue in favor of a fixed life span, with supercentenarians managing to compress morbidity as much as possible and pushing close to the maximum life span of the species.

        Perhaps by studying their genetics, metabolism, and lifestyles, we can understand what it would take to achieve a life that is healthy right up to the very end. There may be hundreds of genetic changes that each contribute in a subtle way to longevity, and there may be no magic combination of genes that allows you to live very long. Moreover, although scientists have been able to isolate single genes that extended life in highly artificial situations, we know that those mutants are unable to compete with normal wild-type worms or flies because these genes are detrimental to fitness in other ways. Similarly, a variant of a gene called APOE is overrepresented in centenarians and is thought to protect against Alzheimer’s disease, but this same variant increases the risk of metastatic cancer, and also makes people more likely to die of Covid-19. Findings like these should temper any dreams of using future advances to engineer humans with extremely long lives. Genetic variants that are associated with longevity could make us vulnerable in other unforeseen ways.

        Anyway, even these supercentenarians are hardly as fit as they were in their twenties, nor indeed would you mistake them for a younger person. Something about them has still aged, and they become increasingly frail. As I pointed out earlier, Jeanne Calment was deaf and blind near the end. So the question of what characterizes good health or a lack of morbidity bears closer examination.

        It is conceptually easy to define mortality, but morbidity is much fuzzier. It is defined as a disease, but many chronic illnesses such as diabetes, high-blood pressure, or atherosclerosis can be treated with medication and people can lead perfectly normal and satisfactory lives. I take medication for high cholesterol and high blood pressure, which might be termed chronic diseases, but I can do most things I like, including bicycling and hiking. If you simply count diagnoses for diseases as morbidities, then you are not capturing a true picture of whether the person is living a reasonably healthy life or is decrepit, incapacitated, and suffering. Statistics regarding morbidities in old age must be looked at carefully.

        The efforts to combat aging today span a wide range. At one end are a small and highly vocal minority, including both high-profile scientists and investors, who want to defeat death altogether. They have large, cultlike followings, and I suspect there are many more who want this goal but are too embarrassed to profess it openly. At the other end are those focused strictly on treating specific diseases of old age using what we have learned about their various causes. The broad spectrum in the middle want to tackle aging directly to compress morbidity so that humans might live healthy lives into old age.

        Today there is a vast amount of money invested in aging research, both by governments and by private commercial companies. In a decade or two, we will have a clear idea of whether they will succeed and to what extent. If they succeed even partly, it could have profound and unpredictable consequences for society. Let’s now look at what some of those might be.

        12. Should We Live Forever?

        I am now roughly the age my grandparents were when they died. The physically active lifestyle I lead is something they could not have imagined in their final decade. Today it is increasingly common for people to die in their nineties or later. My personal experience is simply a reflection of demographic changes in the world over the last few decades. Virtually every part of the world is experiencing a growth in the size and proportion of the population over the age of sixty-five. The share of older people is currently almost 20 percent in high-income countries and expected to double between now and 2050 in many regions of the world.

        At the same time, people are having fewer children. We first saw this in developed countries and are increasingly seeing it now across the globe. This means that fewer and fewer workers will support an ever larger population of retirees. In some Asian countries, there may eventually be twice as many retired people as there are workers. Many of the elderly will also require expensive medical care for a decade or even two. In countries with weak social safety nets, they will either be at the mercy of their families or will have to be self-reliant, for which they will need to be mentally and physically fit. Even in countries with more robust state support, an aging population will put tremendous strain on pension and social security programs.

        The social consequences of extending life span are immense. Nearly all state-backed retirement programs assume that people will stop working around age sixty-five. These measures were introduced when people generally lived only a few years past retirement age, but now they can live two decades beyond it. In both social and economic terms, this is a ticking time bomb, and it is no surprise that governments the world over are enthusiastically funding aging research to improve health in old age in the hopes that this segment of the population can be both more productive and independent for a longer time, and in less need of costly care.

        If we increase life span without compressing morbidity, it will simply make our current problems worse. But if researchers manage to combat aging and compress morbidity, we could well see a scenario where people routinely live healthily beyond 100 years, possibly approaching our current natural limit of about 120 years of age. In the context of any one individual that might seem a wonderful outcome, but it will also have profound and unpredictable consequences for society.

        When major, disruptive technologies arrive, we are not always good at understanding their long-term ramifications. For example, not so long ago, people gladly adopted social media while giving scarcely a thought to its potential consequences, such as a loss of privacy, monetization of the individual by large corporations, surveillance by governments, and the spread of misinformation, prejudice, and hatred. We cannot afford to repeat that mistake by blindly adopting new anti-aging technologies and sleepwalking into a world for which we are ill-prepared. What might some of the consequences of life extension be?

        One of them is even greater inequality. There is already a wide gap in life expectancy between the rich and poor. Even in England, which has a national health service providing universal coverage, this disparity is about ten years. However, the difference in the number of healthy years is almost twice that. The poor not only live shorter lives but also spend more of it in poor health. Things are even worse in the United States, where the richest live about fifteen years longer than the poorest, and the disparity actually increased between 2001 and 2014.

        Advances in medicine have always had the potential to increase inequality. Historically, the rich in advanced countries have benefited first. Later, others in these countries may benefit, depending on whether health-care systems and insurance companies view these treatments as necessities. Only then will they eventually spread to the rest of the world, where only those individuals who can afford them will be able to benefit. We already see this in the health and economic status of people from different parts of the world. So any advances in aging research is likely to similarly increase inequality. But unlike other kinds of inequality, an inequality in both the quality and extent of life has the potential to be not just self-sustaining but actually to drive even larger increases in inequality. The economically well off in white-collar jobs will now be able to live and work longer and pass on even more generational wealth to their descendants, thus exacerbating the inequality. Unless treatments become very cheap and generic—such as cholesterol-lowering statins or blood pressure medications—there is a serious risk that we will be creating two permanent classes of humans: those who enjoy much longer lives in good health, and the rest.

        Another concern is overpopulation. Such a large increase in life expectancy could lead to a dramatic increase in the world’s population at a time when there are already too many people on Earth. Our current population, and its predicted increase in the coming decades, is partly why we face so many existential disasters, including climate change, loss of biodiversity, and dwindling access to natural resources like fresh water.

        Past increases in longevity have indeed led to dramatic increases in the population. This is because fertility rates remained high for some decades after life expectancy increased. Similarly, today, Africa has experienced significant increases in life expectancy, but fertility rates remain high at about 4.2, which is why the population of Africa is still increasing rapidly. However, improvements in life expectancy and standard of living are almost inevitably followed by a demographic transition in which the birth rate gradually falls. For example, in the late eighteenth century, European women had about five children on average at a time when life expectancy was low due to high infant mortality, but that fertility rate now ranges from 1.4 to 2.6, depending on the country. Eventually the birth and death rates became roughly equal, and the population has stabilized at some new higher level. Over the course of the nineteenth and twentieth centuries, this happened in much of the West, as well as in many Asian countries such as Japan and South Korea.

        In the past, improvements in infant and childhood mortality meant more people lived to reach reproductive age, which naturally led to rapid population growth. But it is not inevitable that in advanced countries that have already gone through a demographic transition, further increases in life expectancy will necessarily lead to a growth in population. In Japan, people live longer than they did a few decades ago, yet the population of Japan has actually fallen since 2010, because of lower birth rates.

        The fertility rate has dropped and is below replacement level in many countries. The average age of childbearing has also been steadily increasing in developed countries. Currently, it is increasingly common for women to have their first child in their thirties, and sometimes even around forty, which is almost a decade or two later than the norms a century ago. Both of these trends are the result of more security and prosperity, the expectation of a long life, and the emancipation of women and their entry into the workforce. Together these factors have slowed down or stopped population growth in many parts of the world, which has been hugely beneficial in many important ways, not least the effect on our environment and natural world. I am puzzled by economists who talk about it as a problem, especially in reference to China’s decline in population growth. Elon Musk believes that an impending global population collapse is a much bigger problem than climate change, which strikes me as absurd.

        Nevertheless, as people live longer, the population will grow unless one of two things happens: either the fertility rate decreases even more, or the average age of childbearing increases along with life expectancy. However, both of these scenarios have some problems. In many countries, the average age of childbirth has gradually increased until it is pushing up against the realities of biology. Women from their midthirties on have increasing difficulty in conceiving and soon afterward face menopause. If menopause can be delayed as we increase life expectancy, this would solve the problem of delaying childbirth and would be much fairer to women, many of whom face the problem of deciding whether to have children right when their career is taking off. However, menopause is the result of very complex biology, and there is no evidence that we will be able to alter the age of its onset. Of course, there are ways for women to have children even beyond menopause—for example, by freezing eggs for later implantation along with hormone treatment—but these are expensive and cumbersome, and not without considerable risk. The other solution to prevent population growth in the face of increasing longevity is to have even fewer children, which means that an even greater proportion of the population will be elderly, which has its own consequences.

        Let us assume an optimistic scenario: life expectancy surges beyond a hundred years and they are mostly healthy years. The population has stabilized; people are having fewer children and having them as late as possible. If we can’t ask a smaller and smaller fraction of younger people to support an increasing cohort of older people in retirement, there’s really only one solution: careers are going to get longer.

        WORKING INTO YOUR SEVENTIES OR eighties—or even longer—is a rather different prospect depending on what your job is. As Paul Root Wolpe, director of the Emory University Center for Ethics, asks: Would hard laborers or people doing menial jobs at the age of sixty-five relish the prospect of doing this for another fifty years? Large percentages of people dislike their jobs and look forward to retirement. In 2023 more than 1.2 million people marched in France to protest against the government’s proposal to raise the retirement age a mere two years from sixty-two to sixty-four. Reacting to the French protests, some have argued that the United States should actually lower retirement age, pointing out that the people who advocate that Americans should work until they are seventy are typically in cushy, remunerative white-collar jobs that are fun and intellectually engaging for octogenarians, and it is different for people who want to stop changing tires or working a cash register for $11 an hour at age sixty-two. In my own institute, I have found that nonscientists on the staff retire as soon as they qualify, while the scientists try to hang on for as long as they can.

        When I ask some of my scientific colleagues about their retirement plans, especially in America, where it is not uncommon to see academics work well into their eighties or even longer, the typical response is “I’m having far too much fun to retire!” Some of them go on to claim they are doing the best work of their lives. But the evidence says otherwise. We are all willing to accept that we cannot run a hundred-meter race as fast as we could when we were twenty, but we persist in the delusion that we are intellectually just as capable as we were when we were younger. This may be because we identify too closely with our own thoughts—they define who we are. All the evidence suggests that in general, we are no longer as creative and bold as when we were younger.

        One way to assess this is to retrospectively ask how old someone was when they did their best work. In the sciences, Nobel Prize winners nearly always make their key breakthroughs when they are young and not very powerful. Biologists and chemists often achieve their big breakthroughs a decade or so later than physicists and mathematicians, perhaps because it takes time to assimilate a huge body of knowledge, acquire the practical experience, and build up the resources needed. Indeed, the famous mathematician G. H. Hardy wrote in his 1940 book, A Mathematician’s Apology, “No mathematician should ever allow himself to forget that mathematics, more than any other art or science, is a young man’s game. . . . I do not know of an instance of a major mathematical advance initiated by a man past fifty.” In recent times, one of the great achievements of mathematics, the proof of the 350-year-old Fermat’s Last Theorem, was made by Andrew Wiles when he was about forty.

        When they are older, many scientists continue to churn out first-rate work from their labs. However, this is not because they themselves are sharp and innovative. Rather, they have become a brand name, have amassed resources and funding, and can attract first-rate young scientists to do the work. Many, if not all, of the new ideas—and certainly the lion’s share of the work—come from these young scientists. Even so, it is very rare for an older scientist—even one who is doing very good work and has a team of young scientists to help—to truly break new ground. Often they are doing more of the same. For example, I have had the good fortune to attract very talented young people thanks to whom my laboratory continues to publish papers in top journals. But it is also true that in some sense, they are extensions of my previous work. The few really new directions have come not from me but from the young people who work with me. It is true that everyone can point to an exception: the chemist Karl Sharpless won his second Nobel Prize at the age of eighty-one for work he had begun when he was around sixty. But that is remarkable because it is so rare.

        It is not just in science and mathematics that our creative powers peak when we are relatively young. This is also true in business and industry. Thomas Edison was under thirty when he started the Menlo Park laboratory in New Jersey and invented his version of the lightbulb soon afterward. In today’s world, many of the most innovative companies, such as Google, Apple, Microsoft, and the AI company DeepMind, were started by people in their twenties or thirties.

        You might think that things are different in literature, where experience of life and accumulated wisdom would make you more profound as you aged. However, at a Hay Literary Festival event in 2005, the Nobel Prize–winning novelist Kazuo Ishiguro outraged his fellow writers by suggesting that most authors produce their best work when they are young. He said it was hard to find cases where an author’s most renowned work had come after the age of forty-five and pointed out that War and Peace, Ulysses, Bleak House, Pride and Prejudice, Wuthering Heights, and The Trial were all written by writers in their twenties and thirties. Many great writers—Chekhov, Kafka, Jane Austen, the Brontë sisters—died before they reached their midforties. Ishiguro says he is not suggesting that novelists cannot do good work later in life, just that their best work tends to come before their midforties. His main point was actually that authors should not wait until they are older to attempt a great novel. He may have contradicted his own thesis with Klara and the Sun, which he wrote in his midsixties. It was received as one of his finer novels, although only time will tell whether it will rank as highly as his earlier work. Similarly, Margaret Atwood’s recent Booker Prize–winning novel, The Testaments, was published when she was over eighty. It is brilliantly gripping and disturbing, but the novel is really a further exploration of the world she conjured in The Handmaid’s Tale almost forty years before.

        Ishiguro posited a theory for why some types of creativity decline with age. As we grow older, one of the first mental abilities to decline is our short-term memory. Perhaps writing a novel requires holding disparate facts and ideas in our heads while we synthesize something new from them. This may well be true in science and mathematics. The process of creativity may be different in other disciplines. For example, many film directors, conductors, and musicians continue to perform at the highest level well into old age, as do many artists.

        Advances in healthy aging would not necessarily make us as creative and imaginative later in life as we are in our younger years. Young people see the world with fresh eyes, and in new ways. Ishiguro wonders whether in writing, the proximity to childhood and the experiences of growing up—a time of life when one’s perspective changed from year to year, even month to month, because one was oneself changing so profoundly—is central to the creation of satisfying novels. In science and mathematics, younger practitioners may be less biased by a lifetime accumulation of knowledge, and bolder about questioning paradigms.

        So far, we have been talking about big creative breakthroughs declining with age in a variety of fields, but these breakthroughs are outliers and represent a tiny fraction of the whole enterprise. Even in science, the big breakthroughs are built on the vast foundations laid by the majority of scientists productively going about their jobs of gradually advancing our state of knowledge. It would hardly be appropriate to formulate social policy based on these outliers. How would the bulk of white-collar work be affected by age?

        Most studies say our general cognitive abilities also decline with age, but there has been some debate about when exactly that happens, with some arguing that it begins as early as age eighteen, and others arguing that it is significant only after sixty. A ten-year study that followed a large cohort of British civil-service workers showed that cognitive scores on tests of memory, reasoning, and verbal fluency all declined from the age of forty-five, with faster decline in older people. The one category not to show a major decline was vocabulary. Other studies also make a distinction between so-called “crystallized abilities” such as vocabulary and “fluid abilities” such as processing speed. The latter declines steadily from the age of twenty, while the former increases and then remains steady, and only declines gradually from about age sixty. All of this affects our ability to learn new tasks and be as mentally agile. Any adult who doubts these findings should try learning the piano, a new language, or advanced mathematics for the first time.

        It is of course theoretically possible that as we learn to combat the causes of aging, we can also do something about the deterioration of our mental abilities. But so far, the brain has proved the most difficult frontier to conquer. Neurons regenerate very slowly if at all, and many of the processes that lead to deterioration and eventual disease in the brain remain intractable. It is true that at least one approach, inhibiting the integrative stress response in protein synthesis, has been shown to improve memory, but there is no evidence that it reverses general cognitive decline and ability to learn.

        Many argue that any cognitive decline is offset by increased wisdom, a vague and poorly defined trait. It’s true that young people often do lack wisdom and foresight, leading to rash behavior. But there is no evidence that wisdom continues to increase beyond a certain age. In recent elections in both the United States and Great Britain, older age groups have tended to be conservative and swayed by demagoguery and an appeal to their sense of nostalgia. They have acquired a lifetime of biases and prejudices and are generally less open to new ideas. My guess is that we acquire most of our wisdom by our thirties. After that, we become increasingly set in our ways, as likely to be reactionary as wise.

        Today there is an imbalance of power that favors the old. This is partly because they have accumulated a great deal of wealth: in both Britain and American, households where the head is over seventy have about fifteen to twenty times the median wealth of those under thirty-five. But it is also because as people age, they accumulate power and a powerful network of connections. Even if they are no longer as qualified or competent to do their job as their younger peers might be, they may cling to power and authority, using their connections and reputation. It is hard to dislodge them from their positions even if they are no longer on top of their game and could be replaced by many more competent people. More generally, Wolpe argues that the political ramifications of a long life span are huge because the elderly vote at much higher rates than the young, and the highest echelons of power have become the preserve of the over-seventies. The United States is led by President Joe Biden, who will be eighty-one as of the 2024 presidential election; his chief rival, Republican Donald Trump, will be seventy-eight. Elsewhere, Rupert Murdoch, until recently the chair of Fox Corporation and executive chairman of News Corp, retains enormous media influence (and with it, political clout) in several countries at the age of ninety-three. Politically, Wolpe argues, young people will be squeezed out, and the fresh ideas they bring to politics and innovation will be suppressed. By contrast, the vast majority of the great innovations, including social advances such as gay marriage, diversity inclusion movements, and before that civil rights and women’s rights, were driven by young people.

        The imbalance of power is particularly egregious in academia, where the concept of tenure, which was introduced so faculty members could not be fired for expressing unorthodox opinions, is now being wielded by faculty members to remain in their posts for as long as they possibly can. Many universities in the United States and United Kingdom have abolished mandatory retirement age, and those that haven’t, such as Oxford and Cambridge, are facing lawsuits from disgruntled professors. Recently, Oxford lost a tribunal case brought by three professors who accused the university of ageism, claiming, not surprisingly, that they were dismissed “at the peak of their careers.”

        Even if they are not doing groundbreaking work or at the peak of their careers, as long as they are being productive, what harm is there in allowing them to stay on? Some of my academic colleagues argue that established senior scientists have the resources, wisdom, vision, and perspective to provide a great environment to train and mentor the next generation of younger scientists. Not everyone agrees. Fred Sanger, who won two Nobel Prizes, hung up his hat the day he turned sixty-five and spent the rest of his life pursuing hobbies such as building a boat that he sailed around Britain and growing roses. My own mentor, Peter Moore, retired after a long and distinguished career at Yale at the age of seventy. It is not as if he suddenly became intellectually dead. He continues to edit journals, write books, and carry on other intellectual activities that take neither resources nor money from his institution. He had this to say: “I had been telling my colleagues for years that it is an abuse of the privilege of tenure for elderly faculty to hang on to the bitter end, not least because there are no seventy-year-old scientists so wonderful that a thirty-five-year-old scientist who is better cannot be found.”

        In academia, the combination of tenure and a lack of retirement age is particularly problematic. Some senior academics have rightly complained that they are far more productive than some younger faculty who have burned out by the age of forty. But this can be solved by abolishing both tenure and retirement age and having regular assessments of productivity.

        Moore’s comment goes to the heart of intergenerational fairness. The most senior faculty tend to draw very large salaries, which would often be sufficient to hire two young scientists in their stead. Even if they are not drawing a salary, they are taking up precious resources such as laboratory space that could otherwise be used to recruit new young faculty who would go on to make the breakthroughs of the future and open up entirely new areas. Older researchers also have the clout to influence the agenda at their institution and in science more generally, and tend to be conservative and incremental rather than bold and innovative. The same is true broadly in other sectors of work, including corporate careers.

        The problem of intergenerational fairness conflicts with the push for people to work longer as the population ages. So what is to be done?

        Ageism is now considered a sin along with other -isms such as racism and sexism. However, ageism is different because we all actually decline with age. Still, it is important to recognize that the rate at which people’s physical and mental abilities decline is highly variable. We must not use chronological age as a proxy for ability, and a rigid retirement age that applies to everyone is highly inappropriate. Moreover, despite the well-documented decline in people’s ability with age, two surveys of the literature concluded that the relationship between age and productivity is more complex. One concluded that as they aged, people did less well at tasks that required problem-solving, learning, and speed, but maintained high productivity in jobs where experience and verbal abilities are important. The other concluded that 41 percent of the reports showed no differences between younger and older workers, and 28 percent reported that older workers had better productivity than younger workers, citing experience and emotional maturity as possible factors.

        All of this suggests that we need to be flexible in our approach to work and retirement. As we have seen, many professions are physically or mentally demanding, and people may need to retire earlier. They may be able to switch to less demanding jobs and continue working if they are able. Rather than apply a one-size-fits-all approach, we need to bring in objective measures of assessment that can apply to all age groups, which will also ensure fairness to both young and old. Moreover, even after they can no longer do the job they did for much of their career and have to retire, older people can still be useful and productive in many ways for as much of the rest of their lives as possible.

        There is a lot of evidence that having a purpose in life reduces mortality from all causes as well as the incidence of stroke, heart disease, mild cognitive decline, and Alzheimer’s. And elderly professionals do have a wealth of experience and a deep knowledge of their field. They can be unparalleled sources of advice and mentorship; they can participate in civic activities. Peter Moore, whom I mentioned earlier, is a great example of someone who has retired from his professorship but still makes himself extremely valuable to the scientific community.

        Even after they have retired, we need to think of ways that allow older citizens to remain independent for as long as possible. This means paying attention to the way houses are constructed, with bedrooms on ground floors, and communities are planned, with nearby amenities such as shopping and mass transit. Social isolation and loneliness are detrimental for the well-being of all people but especially for the elderly. Currently, many Western societies seem to treat the old as a problem to be hidden away in separate retirement enclaves rather than an integral part of society. Perhaps it is better to integrate them fully into the broader community, where they live interspersed with the rest of the population, and through their social and civic activities, they interact routinely and regularly across the entire generational spectrum of society. Their active participation will also benefit the rest of society.

        These are all problems we may plausibly soon encounter, if biologists succeed in pushing life spans ever closer to a natural limit of roughly 120 years. Yet there is no hard scientific law that necessarily precludes far more drastic increases in life expectancy. After all, we know of species that live many hundreds of years and others that show no signs of biological aging. If, someday, humans breach our current limit and live for several hundred years as Aubrey de Grey prophecies, all of these issues would only be magnified. Advocates for extreme life extension have no real solutions except to say that we will learn to deal with problems as we encounter them. Some have said that if we have a population crisis as a result of extreme longevity, we should be made to leave Earth and settle other planets once we reach a certain age. As always, the answer to problems created by technology seems to be even more far-fetched technology.

        I AM NOT SURE THAT if we lived so much longer, we would be any more satisfied. Now that we live twice as long as we did a century ago, we still aren’t content with that entire extra life. Rather, we seem to be even more obsessed with death. If we live to be 120 or 150 years old, we will fret about why we can’t live to 300. The quest for life extension is like chasing a mirage: nothing will ever be enough short of true immortality. And there is no such thing. Even if we conquer aging, we will die of accidents, wars, viral pandemics, or environmental catastrophes. It may be simpler to accept that our life is limited.

        Moreover, our very mortality may give us the incentive and desire to make the most of our time on Earth. A greatly extended life span would deprive our lives of urgency and meaning, a desire to make each day count. It is not clear that even with an entire extra lifetime, we are accomplishing more than the great writers, composers, artists, and scientists of past eras. We may well end up living a very much longer life bored and lacking in purpose. As I mentioned earlier, it could also lead to a stagnant society, since many of the big social changes have been spearheaded by younger generations.

        This obsession with mortality is probably unique to humans. It is only the accidental evolution of our brain and consciousness, and our development of language to communicate our fears, that has made our species so fixated on the end. The writer and editor Allison Arieff has pointed out the irony that the same Silicon Valley culture that produces gadgets designed to be obsolete and discarded every few years seems to be obsessed with living forever. She quotes the writer Barbara Ehrenreich, “You can think of death bitterly or with resignation and take every possible measure to postpone it. Or, more realistically, you can think of life as an interruption of an eternity of personal nonexistence, and seize it as a brief opportunity to observe and interact with the living, ever-surprising world around us.” Arieff believes that our very humanness is intertwined with the fact of our mortality.

        On a recent trip to India, I met Ganesh Devy, a linguist who works with dozens of rural, forest-dwelling tribes in the country. India has well over a hundred languages, many facing a different kind of death: some of them are now spoken by only a few people and will soon become extinct. He said he himself did not fear death. I was skeptical, but he pointed out that on a field trip once he was bitten by a highly poisonous snake and he felt no fear or panic at the thought of dying. I asked him why. Devy said that we have to regard our individual selves as parts of larger entities like family, community, and society, just as all the cells in our body are part of tissues and organs and us. Millions of our cells die every day. Not only do we not mourn their passing, but we are not even aware of it. So even if we as individuals die, our society and indeed life on Earth will go on. Our own genes will live on through our offspring or other family members. Life has been going on continuously for several billion years while we individuals come and go.

        Still, if someone were to offer a pill that would add ten years of healthy life, hardly anyone would decline it. I view myself as more in the philosophical camp, yet take several anti-aging medicines a day: pills for my blood pressure, a statin for high cholesterol, and a low-dose aspirin to protect against thrombosis. All of these are to prevent heart attacks or strokes and have the effect of prolonging my life. I would be a hypocrite to dismiss attempts to alleviate the problems of aging. Physicians are struck by how many people, even faced with terminal illnesses that inflict appalling pain, want every measure taken to prolong their lives, even if only by a few weeks or even days. The will to live is deeply ingrained in us, even if we are sanguine in our more rational moments.

        About ten years ago, the Pew Research Center explored American attitudes on living much longer. Respondents were optimistic about cures for cancer and artificial limbs, and they viewed advances that prolong life as generally good. However, over half said that slowing the aging process would be bad for society. When asked if they themselves would take treatments to live longer, a majority of them said no, but two-thirds thought that other people would. Most doubted that an average person living to 120 would happen before 2050. A large majority felt that everyone should be able to get these treatments if they wanted, but two-thirds felt that only the wealthy would actually have access. About two-thirds also said that longer lives would strain our natural resources. About six in ten said that medical scientists would offer treatments before they fully understood how doing so could affect people’s health and that such treatments would be fundamentally unnatural. The clear-eyed view of the American public in the face of relentless hype is certainly heartening.

        In this book, I have discussed how advances in molecular biology have shed light on virtually every aspect of aging, often taking a skeptical look at some of the hype. In doing so, I hope that readers acquire not only an appreciation of the underlying causes of aging, but are able to more knowledgeably interpret news reports and PR blurbs about each new “advance” and judge for themselves how realistic various claims are. How long it takes to go from a fundamental discovery to a practical application is hugely variable and unpredictable. It took three centuries for Newton’s laws of motion to be translated into rockets and satellites. It took over a hundred years for Einstein’s theories of relativity to be used in the GPS systems that our phones use to tell us where we are on a map. Neither Newton nor Einstein could have remotely anticipated the use we made of their discoveries. Other advances are much faster: from Alexander Fleming’s discovery of penicillin in 1928 to its use in humans was less than twenty years. With the money and urgency that drive current research on aging, major advances might well come in years rather than decades, but the sheer complexity of aging makes any prediction highly uncertain.

        We are at a crossroads. The revolution in biology continues unabated. Artificial intelligence and computing, physics, chemistry, and engineering are all being brought to bear on what was the domain of traditional biologists. Together they are creating new technologies and increasingly sophisticated tools to manipulate cells and genes to advance every aspect of the life sciences, including aging.

        I have highlighted the relationship between cancer and aging many times throughout this book. Both are rooted in highly complex biology. Just as cancer is not a single disease, aging too has many interconnected causes. It has now been half a century since President Nixon declared a “war on cancer” in 1971. Since then, our biological understanding of cancer has advanced enormously, resulting in a steady stream of new and improved treatments that continues to this day, saving or prolonging millions of lives. Today, the sheer talent and money committed to aging research is reminiscent of our efforts to combat cancer. This means that just as with cancer, we will eventually make breakthroughs, even if it takes time for them to actually improve and extend our lives. It is well to remember that even today, after a half century of intense effort, cancer is not “solved.” It remains one of the largest killers in most societies. Our progress with aging may follow a similar trajectory, given the similar complexity of both problems.

        The American futurist and scientist Roy Amara said that we tend to overestimate the effect of a technology in the short run and underestimate its effect in the long run. This has been true for many things, including the internet and artificial intelligence. If Amara’s law holds, all the hype in the anti-aging industry will lead to considerable disappointment in the short term, but it also means that once we get past the winter of disillusionment and discontent, there will be major advances eventually.

        As a society, it is important for us to think about the possibly profound consequences of these changes. However, this task is not just for governments and citizens alone: the anti-aging industry should not repeat the mistakes of the computer industry and plunge ahead without any thought of where it will all lead and leave the rest of us to try and clean up the mess when it is too late. These companies stand to benefit hugely from any breakthroughs in aging research but do not seem to have put much effort into either the social or ethical consequences of their work. In their blurbs, their work is always portrayed as an unmitigated and universal good for humanity.

        In the meantime, we need not sit around and wait for a long period of decrepitude and decline. Ironically, the very same advances in biology that are the basis of the anti-aging industry also thoroughly validate some age-old advice for living a long and healthy life: diet, exercise, and sleep. In his book In Defense of Food: An Eater’s Manifesto, Michael Pollan advises us, “Eat food. Not too much. Mostly plants.” This advice is entirely consistent with everything we know about caloric restriction pathways. Exercise and sleep, as we discussed earlier, affect a large number of factors in aging, including our insulin sensitivity, muscle mass, mitochondrial function, blood pressure, stress, and the risk of dementia. These remedies currently work better than any anti-aging medicine on the market, cost nothing, and have no side-effects.

        While we wait for the vast gerontology enterprise to solve the problem of death, we can enjoy life in all its beauty. When our time comes, we can go into the sunset with good grace, knowing that we were fortunate to have taken part in that eternal banquet.

        Notes

        Introduction

        Even Carter, a seasoned Egyptologist: Maite Mascort, “Close Call: How Howard Carter Almost Missed King Tut’s Tomb,” National Geographic online, last modified March 4, 2018, https://www.nationalgeographic.com/history/magazine/2018/03-04/findingkingtutstomb.

        We may be tempted to think of it: Nuria Castellano, “The Book of the Dead Was Egyptians’ Inside Guide to the Underworld,” National Geographic online, last modified February 8, 2019; Tom Holland, “The Egyptian Book of the Dead at the British Museum,” Guardian online, last modified November 6, 2019, https://www.theguardian.com/culture/2010/nov/06/egyptian-book-of-dead-tom-holland.

        They recognize when one: For example, see this study of elephants: S. S. Pokharel, N. Sharma, and R. Sukumar, “Viewing the Rare Through Public Lenses: Insights into Dead Calf Carrying and Other Thanatological Responses in Asian Elephants Using YouTube Videos,” Royal Society Open Science 9, no. 5 (May 2022), https://doi.org/10.1098/rsos.211740, described in Elizabeth Preston, “Elephants in Mourning Spotted on YouTube by Scientists,” New York Times online, May 17, 2022, https://www.nytimes.com/2022/05/17/science/elephants-mourning-grief.html.

        But there is no evidence: James R. Anderson, “Responses to Death and Dying: Primates and Other Mammals,” Primates 61 (2020): 1–7; Marc Bekoff, “What Do Animals Know and Feel About Death and Dying?,” Psychology Today online, last modified February 24, 2020, https://www.psychologytoday.com/gb/blog/animal-emotions/202002/what-do-animals-know-and-feel-about-death-and-dying.

        Philosopher Stephen Cave argues: Stephen Cave, Immortality: The Quest to Live Forever and How It Drives Civilization (New York: Crown, 2012).

        The first emperor of a unified China: Ibid.

        Rather, our brains appear: Y. Dor-Ziderman, A. Lutz, and A. Goldstein, “Prediction-Based Neural Mechanisms for Shielding the Self from Existential Threat,” NeuroImage 202 (November 15, 2019): art. 116080, https://doi.org/10.1016/j.neuroimage.2019.116080, cited in Ian Sample, “Doubting Death: How Our Brains Shield Us from Mortal Truth,” Guardian online, last modified October 19, 2019, https://www.theguardian.com/science/2019/oct/19/doubting-death-how-our-brains-shield-us-from-mortal-truth.

        1. The Immortal Gene and the Disposable Body

        But it turns out to be tricky: A group at the Santa Fe Institute led by David Krakauer and Geoffrey West has held several workshops to define both death as it applies to various entities and the definition of the individual.

        The loss of brain function: A meeting about the issue of resuscitation and death was held at the New York Academy of Sciences in 2019. See “What Happens When We Die? Insights from Resuscitation Science” (symposium, New York Academy of Sciences, New York, November 18, 2019), https://www.nyas.org/events/2019/what-happens-when-we-die-insights-from-resuscitation-science/. There is also a movement to make the definition of brain death uniform to prevent legal anomalies such as the one I described.

        Her family petitioned: S. Biel and J. Durrant, “Controversies in Brain Death Declaration: Legal and Ethical Implications in the ICU,” Current Treatment Options in Neurology 22, no. 4 (2020): 12, https://doi.org/10.1007/s11940-020-0618-6.

        After that, there is a multiday window: Two popular books that discuss these early events are Magdalena Zernicka-Goetz and Roger Highfield, The Dance of Life: The New Science of How a Single Cell Becomes a Human Being (New York: Basic Books, 2020), and Daniel M. Davis, The Secret Body: How the New Science of the Human Body Is Changing the Way We Live (London: Bodley Head, 2021).

        Death can occur at every scale: Geoffrey West, Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies (New York: Penguin Press, 2020).

        However, the lecture paved: R. England, “Natural Selection Before the Origin: Public Reactions of Some Naturalists to the Darwin-Wallace Papers,” Journal of the History of Biology 30 (June 1997): 267–90, https://doi.org/10.1023/a:1004287720654.

        Although humans have known: Matthew Cobb, The Egg and Sperm Race: The Seventeenth-Century Scientists Who Unlocked the Secret of Sex, Life and Growth (London: Simon & Schuster, 2007).

        The germ-line cells, protected in the gonads: Today we know that the Weismann barrier is not perfect and that the germ line also ages and is susceptible to changes from the environment, although much more slowly. P. Monaghan and N. B. Metcalfe, “The Deteriorating Soma and the Indispensable Germline: Gamete Senescence and Offspring Fitness,” Proceedings of the Royal Society B (Biological Sciences) 286, no. 1917 (December 18, 2019): art. 20192187, https://doi.org/10.1098/rspb.2019.2187.

        “Nothing in biology makes sense”: T. Dobzhansky, “Nothing in Biology Makes Sense Except in the Light of Evolution,” American Biology Teacher 35, no. 3 (March 1973): 125–29, https://doi.org/10.2307/4444260.

        If an individual had a mutation: T. B. Kirkwood, “Understanding the Odd Science of Aging,” Cell 120, no. 4 (February 25, 2005): 437–47, https://doi.org/10.1016/j.cell.2005.01.027; T. Kirkwood and S. Melov, “On the Programmed/Non-Programmed Nature of Ageing Within the Life History,” Current Biology 21 (September 27, 2011): R701–R707, https://doi.org/10.1016/j.cub.2011.07.020. There are some exceptions to this rule against group selection, but they apply only under very special circumstances and usually involve species where the members of the colonies are all genetically either identical or very closely related, such as insects. J. Maynard Smith, “Group Selection and Kin Selection,” Nature 201 (March 14, 1964): 1145–47, https://doi.org/10.1038/2011145a0.

        Species such as the soil worm: Species that reproduce multiple times in a lifetime are called iteroparous, and those that reproduce only once are semelparous. See T. P. Young, “Semelparity and Iteroparity,” Nature Education Knowledge 3, no. 10 (2010): 2, https://www.nature.com/scitable/knowledge/library/semelparity-and-iteroparity-13260334/.

        He was a socialist: N. W. Pirie, “John Burdon Sanderson Haldane, 1892–1964,” Biographical Memoirs of Fellows of the Royal Society 12 (November 1966): 218–49, https://doi.org/10.1098/rsbm.1966.0010; C. P. Blacker, “JBS Haldane on Eugenics,” Eugenics Review 44, no. 3 October (1952): 146–51, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2973346/.

        A stained glass window: Two opposing views of Fisher can be found in A. Rutherford, “Race, Eugenics, and the Canceling of Great Scientists,” American Journal of Physical Anthropology 175, no. 2 (June 2021): 448–52, https://doi.org/10.1002/ajpa.24192, and W. Bodmer et al., “The Outstanding Scientist, R. A. Fisher: His Views on Eugenics and Race,” Heredity 126 (April 2021): 565–76, https://doi.org/10.1038/s41437-020-00394-6.

        However, the same could not be said: T. Flatt and L. Partridge, “Horizons in the Evolution of Aging,” BMC Biology 16 (2018): art. 93, https://doi.org/10.1186/s12915-018-0562-z.

        That understanding came when British biologist Peter Medawar: N. A. Mitchison, “Peter Brian Medawar, 28 February 1915–2 October 1987,” Biographical Memoirs of Fellows of the Royal Society 35 (March 1990): 281–301, https://doi.org/10.1098/rsbm.1990.0013.

        Similarly, the disposable soma hypothesis: Kirkwood, “Understanding the Odd Science of Aging,” 437–47, https://doi.org/10.1016/j.cell.2005.01.027.

        Exactly as these theories would predict: Flatt and Partridge, “Horizons,” https://doi.org/10.1186/s12915-018-0562-z.

        But an unusual analysis: R. G. Westendorp and T. B. Kirkwood, “Human Longevity at the Cost of Reproductive Success,” Nature 396 (December 24, 1998): 743–46, https://doi.org/10.1038/25519. See also the letter responding to this article: D. E. Promislow, “Longevity and the Barren Aristocrat,” Nature 396 (December 24, 1998): 719–20, https://doi.org/10.1038/25440.

        Menopause may have arisen: G. C. Williams, “Pleiotropy, Natural Selection and the Evolution of Senescence,” Evolution 11, no. 4 (December 1957): 398–411.

        For example, although the fertility of elephants: M. Lahdenperä, K. U. Mar, and V. Lummaa, “Reproductive Cessation and Post-Reproductive Lifespan in Asian Elephants and Pre-Industrial Humans,” Frontiers in Zoology 11 (2014): art. 54, https://doi.org/10.1186/s12983-014-0054-0.

        Similarly, while living beyond: J. G. Herndon et al., “Menopause Occurs Late in Life in the Captive Chimpanzee (Pan Troglodytes),” AGE 34 (October 2012): 1145–56, https://doi.org/10.1007/s11357-011-9351-0.

        The grandmother hypothesis: K. Hawkes, “Grandmothers and the Evolution of Human Longevity,” American Journal of Human Biology 15, no. 3 (May/June 2003): 380–400, https://doi.org/10.1002/ajhb.10156; P. S. Kim, J. S. McQueen, and K. Hawkes, “Why Does Women’s Fertility End in Mid-Life? Grandmothering and Age at Last Birth,” Journal of Theoretical Biology 461 (January 14, 2019): 84–91, https://doi.org/10.1016/j.jtbi.2018.10.035.

        Another idea, based on studying killer whales: D. P. Croft et al., “Reproductive Conflict and the Evolution of Menopause in Killer Whales,” Current Biology 27, no. 2 (January 23, 2017): 298–304, https://doi.org/10.1016/j.cub.2016.12.015.

        It could also simply be that the number of eggs: An idea suggested to me by the population biologist Trudy Mackay of Clemson University.

        So perhaps there has just not been enough time: Steven Austad, Methuselah’s Zoo: What Nature Can Teach Us about Living Longer, Healthier Lives (Cambridge, MA: MIT Press, 2022), 258–59.

        Moreover, scientists have found: R. K. Mortimer and J. R. Johnston, “Life Span of Individual Yeast Cells,” Nature 183, no. 4677 (June 20, 1959): 1751–52, https://doi.org/10.1038/1831751a0; E. J. Stewart et al., “Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division.” PLoS Biology 3, no. 2 (February 2005): e45, https://doi.org/10.1371/journal.pbio.0030045.

        2. Live Fast and Die Young

        A small aquatic animal: T. C. Bosch, “Why Polyps Regenerate and We Don’t: Towards a Cellular and Molecular Framework for Hydra Regeneration,” Developmental Biology 303, no. 2 (March 15, 2007): 421–33, https://doi.org/10.1016/j.ydbio.2006.12.012.

        Still, it is a complex procedure: R. Murad et al., “Coordinated Gene Expression and Chromatin Regulation During Hydra Head Regeneration,” Genome Biology and Evolution 13, no. 12 (December 2021): evab221, https://doi.org/10.1093/gbe/evab221; see also a popular account of this work and hydra in general in Corryn Wetzel, “How Tiny, ‘Immortal’ Hydras Regrow Their Lost Heads,” Smithsonian online, last modified December 13, 2021, https://www.smithsonianmag.com/smart-news/were-closer-to-understanding-how-immortal-hydras-regrow-lost-heads-180979209/.

        It is almost as if an injured butterfly: Y. Matsumoto and M. P. Miglietta, “Cellular Reprogramming and Immortality: Expression Profiling Reveals Putative Genes Involved in Turritopsis dohrnii’s Life Cycle Reversal,” Genome Biology and Evolution 13, no. 7 (July 2021): evab136, https://doi.org/10.1093/gbe/evab136; M. Pascual-Torner et al., “Comparative Genomics of Mortal and Immortal Cnidarians Unveils Novel Keys Behind Rejuvenation,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 119, no. 36 (September 6, 2022): e2118763119, https://doi.org/10.1073/pnas.2118763119; see also a popular account by Veronique Greenwood, “This Jellyfish Can Live Forever. Its Genes May Tell Us How,” New York Times online, September 6, 2022, https://www.nytimes.com/2022/09/06/science/immortal-jellyfish-gene-protein.html.

        Along the way, he explores: West, Scale. Many of the original findings for relationships between longevity, size, and metabolic rates can be found here.

        As a result, biologists do not think: For a biologist’s view of the second law of thermodynamics and the wear-and-tear theory of aging, see Tom Kirkwood, chap. 5, “The Unnecessary Nature of Ageing,” in Time of Our Lives: The Science of Human Aging (New York: Oxford University Press, 1999), 52–62.

        From there, he became interested: See Austad’s academic website: University of Alabama at Birmingham online, College of Arts and Science, Department of Biology, https://www.uab.edu/cas/biology/people/faculty/steven-n-austad; see also a description about him and a podcast interview, https://blog.insidetracker.com/longevity-by-design-steven-austad.

        The LQ is the ratio: S. N. Austad and K. E. Fischer, “Mammalian Aging, Metabolism, and Ecology: Evidence from the Bats and Marsupials,” Journal of Gerontology 46, no. 2 (March 1991): B47–B53, https://doi.org/10.1093/geronj/46.2.b47.

        Over the years, Austad has studied: Austad, Methuselah’s Zoo. There is also a previous short and more technical version of this: S. N. Austad, “Methusaleh’s Zoo: How Nature Provides Us with Clues for Extending Human Health Span,” Journal of Comparative Pathology 142, suppl. 1 (January 2010): S10–S21, https://doi.org/10.1016/j.jcpa.2009.10.024. Much of this section on the life span of various animals is from these two sources.

        Two studies that evaluated survival data: B. A. Reinke et al., “Diverse Aging Rates in Ectothermic Tetrapods Provide Insights for the Evolution of Aging and Longevity,” Science 376, no. 6600 (June 23, 2022): 1459–66, https://doi.org/10.1126/science.abm0151; R. da Silva et al., “Slow and Negligible Senescence Among Testudines Challenges Evolutionary Theories of Senescence,” Science 376, no. 6600 (June 23, 2022): 1466–70, https://doi.org/10.1126/science.abl7811.

        By the time a person: “Actuarial Life Table,” Social Security Administration online, accessed August 7, 2023, https://www.ssa.gov/oact/STATS/table4c6.html.

        Like elderly humans: S. N. Austad and C. E. Finch, “How Ubiquitous Is Aging in Vertebrates?,” Science 376, no. 6600 (June 23, 2022): 1384–85, https://doi.org/10.1126/science.adc9442; Finch is quoted in Jack Tamisiea, “Centenarian Tortoises May Set the Standard for Anti-aging,” New York Times online, June 23, 2022, https://www.nytimes.com/2022/06/23/science/tortoises-turtles-aging.html.

        Bats do not live as long: G. S. Wilkinson and J. M. South, “Life History, Ecology and Longevity in Bats,” Aging Cell 1, no. 2 (December 2002): 124–31, https://doi.org/10.1046/j.1474-9728.2002.00020.x.

        Austad estimates that its LQ: A. J. Podlutsky et al., “A New Field Record for Bat Longevity,” Journals of Gerontology: Series A 60, no. 11 (November 2005): 1366–68, https://doi.org/10.1093/gerona/60.11.1366.

        But even bats that don’t hibernate: Wilkinson and South, “Life History,” 124–31.

        Rather, they may have special mechanisms: Podlutsky et al., “New Field Record,” 1366–68.

        Rochelle Buffenstein, currently at the University of Illinois in Chicago, has done more: R. Buffenstein, “The Naked Mole-Rat: A New Long-Living Model for Human Aging Research,” Journals of Gerontology: Series A 60, no. 11 (November 2005): 1366–77, https://doi.org/10.1093/gerona/60.11.1369.

        Instead of proliferating: S. Liang et al., “Resistance to Experimental Tumorigenesis in Cells of a Long-Lived Mammal, the Naked Mole-Rat (Heterocephalus glaber),” Aging Cell 9, no. 4 (August 2010): 626–35, https://doi.org/10.1111/j.1474-9726.2010.00588.x.

        One of the biggest headlines: J. G. Ruby, M. Smith, and R. Buffenstein, “Naked Mole-Rat Mortality Rates Defy Gompertzian Laws by Not Increasing with Age,” eLife 7 (January 24, 2018): e31157, https://doi.org/10.7554/eLife.31157.

        This was too much for some scientists: S. Braude et al., “Surprisingly Long Survival of Premature Conclusions About Naked Mole-Rat Biology,” Biological Reviews of the Cambridge Philosophical Society 96, no. 2 (April 2021): 376–93, https://doi.org/10.1111/brv.12660.

        As we saw with long-lived tortoises: R. Buffenstein, et al., “The Naked Truth: A Comprehensive Clarification and Classification of Current ‘Myths’ in Naked Mole-Rat Biology,” Biological Reviews of the Cambridge Philosophical Society 97, no. 1 (February 2022): 115–40, https://doi.org/10.1111/brv.12791.

        The science writer Steven Johnson: Steven Johnson, Extra Life: A Short History of Living Longer (New York: Riverhead Books, 2021).

        The ability to chemically capture nitrogen: The dramatic impact of fertilizers on humanity is told in Thomas Hager’s fascinating book The Alchemy of Air: A Jewish Genius, a Doomed Tycoon, and the Scientific Discovery That Fed the World but Fueled the Rise of Hitler (New York: Crown, 2009).

        He and his colleagues contended: S. J. Olshansky, B. A. Carnes, and C. Cassel. “In Search of Methuselah: Estimating the Upper Limits to Human Longevity,” Science 250, no. 4981 (November 2, 1990): 634–40, https://doi.org/10.1126/science.2237414; S. J. Olshansky, B. A. Carnes, and A. Désesquelles, “Prospects for Human Longevity,” Science 291, no. 5508 (February 23, 2001): 1491–92, https://doi.org/10.1126/science.291.5508.1491.

        Moreover, in certain species: A. Baudisch and J. W. Vaupel, “Getting to the Root of Aging: Why Do Patterns of Aging Differ Widely Across the Tree of Life?,” Science 338, no. 6107 (November 2, 2012): 618–19, https://doi.org/10.1126/science.1226467; O. R. Jones and J. W. Vaupel, “Senescence Is Not Inevitable,” Biogerontology 18, no. 6 (December 2017): 965–71, https://doi.org/10.1007/s10522-017-9727-3.

        The disagreements between the two boiled: See J. Couzin-Frankel, “A Pitched Battle over Life Span,” Science 338, no. 6042 (July 29, 2011): 549–50, https://doi.org/10.1126/science.333.6042.549.

        “pernicious belief”: J. Oeppen and J. W. Vaupel, “Demography. Broken Limits to Life Expectancy,” Science 296, no. 5570 (May 10, 2022): 1029–1031, https://doi.org/10.1126/science.1069675.

        In agreement with this: F. Colchero et al., “The Long Lives of Primates and the ‘Invariant Rate of Ageing’ Hypothesis,” Nature Communications 12, no. 1 (June 16, 2021): 3666, https://doi.org/10.1038/s41467-021-23894-3.

        Unlike most people: There is an entertaining account of Parr in Austad, Methuselah’s Zoo, pages 262–63.

        “Until next year, perhaps”: Craig R. Whitney, “Jeanne Calment, World’s Elder, Dies at 122,” New York Times, August 5, 1997, B8.

        Vijg predicted: X. Dong, B. Milholland, and J. Vijg, “Evidence for a Limit to Human Lifespan,” Nature 538, no. 7624 (October 13, 2016): 257–59, https://doi.org/10.1038/nature19793.

        “if any”: E. Barbi et al., “The Plateau of Human Mortality: Demography of Longevity Pioneers,” Science 360, no. 6396 (June 29, 2018): 1459–61, https://doi.org/10.1126/science.aat3119.

        This paper in turn was criticized: Carl Zimmer, “How Long Can We Live? The Limit Hasn’t Been Reached, Study Finds,” New York Times online, June 28, 2018, https://www.nytimes.com/2018/06/28/science/human-age-limit.html.

        Others pointed out: H. Beltrán-Sánchez, S. N. Austad, and C. E. Finch, “The Plateau of Human Mortality: Demography of Longevity Pioneers,” Science 361, no. 6409 (September 28, 2018): eaav1200, https://doi.org/10.1126/science.aav1200.

        After climbing steadily for the last 150 years: C. Cardona and D. Bishai, “The Slowing Pace of Life Expectancy Gains Since 1950,” BMC Public Health 18, no. 1 (January 17, 2018): 151, https://doi.org/10.1186/s12889-018-5058-9; J. Schöley et al., “Life Expectancy Changes Since COVID-19,” Nature Human Behaviour 6, no. 12 (December 2022): 1649–59, https://doi.org/10.1038/s41562-022-01450-3.

        As I write this: “List of the Verified Oldest People,” Wikipedia, last accessed July 10, 2023, https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people.

        In fact, about half of centenarians: J. Evert et al., “Morbidity Profiles of Centenarians: Survivors, Delayers, and Escapers,” Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 58, no. 3 (March 2003): 232–37, https://doi.org/10.1093/gerona/58.3.m232.

        He agrees with Olshansky: Thomas Perls, email messages to the author, November 27, 2021, and January 17, 2022.

        A dozen years later: Described in Austad, Methuselah’s Zoo, 273–74.

        But scientists have homed in: C. López-Otín et al., “The Hallmarks of Aging,” Cell 153, no. 6 (June 6, 2013): 1194–217, https://doi.org/10.1016/j.cell.2013.05.039. This classic paper has recently been updated on the tenth anniversary of the original: C. López-Otín et al. “Hallmarks of Aging: An Expanding Universe,” Cell 186, no. 1 (January 19, 2023): 243–78, https://doi.org/10.1016/j.cell.2022.11.001.

        3. Destroying the Master Controller

        Today we know that our genes: Two very readable accounts of the history of genetics can be found in Matthew Cobb, Life’s Greatest Secret: The Race to Crack the Genetic Code (London: Profile Books, 2015), and Siddhartha Mukherjee, The Gene: An Intimate History (New York: Scribner, 2017).

        How instructions in mRNA are read: The decade-long effort to crack the genetic code and understand how proteins are made is described in Cobb, Life’s Greatest Secret.

        I have spent much of my life: Venki Ramakrishnan, Gene Machine: The Race to Decipher the Secrets of the Ribosome (London: Oneworld, 2018).

        As early as the eighteenth century: H. W. Herr, “Percivall Pott, the Environment and Cancer,” BJU International 108, no. 4 (August 2011): 479–81, https://doi.org/10.1111/j.1464-410x.2011.10487.x.

        Hermann Muller was a third-generation American who grew up in New York City: G. Pontecorvo, “Hermann Joseph Muller, 1890–1967,” Biographical Memoirs of Fellows of the Royal Society 14 (November 1968): 348–89, https://doi.org/10.1098/rsbm.1968.0015; Elof Axel Carlson, Hermann Joseph Muller 1890–1967: A Biographical Memoir (Washington, DC: National Academy of Sciences, 2009), available at http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/muller-hermann.pdf.

        Even a modest application: Errol Friedberg, chap. 1, “In the Beginning,” in Correcting the Blueprint of Life: An Historical Account of the Discovery of DNA Repair Mechanisms (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1997).

        One of Crew’s key collaborators: Geoffrey Beale, “Charlotte Auerbach, 14 May 1899–1917 March 1994,” Biographical Memoirs of Fellows of the Royal Society 41 (November 1995): 20–42, https://doi.org/10.1098/rsbm.1995.0002

        But once Watson and Crick revealed its double-helical nature: A very good historical summary of early work on DNA damage and repair can be found in Friedberg, chap. 1, “In the Beginning,” in Correcting the Blueprint of Life.

        Sunlight could kill bacteria: A. Downes and T. P. Blunt, “The Influence of Light upon the Development of Bacteria,” Nature, 16 (July 12, 1877), 218, https://doi.org/10.1038/016218a0; F. L. Gates, “A Study of the Bactericidal Action of Ultraviolet Light,” Journal of General Physicology, 14, No. 1 (September 20, 1930): 31–42, https://doi.org/10.1085/jgp.14.1.31.

        However, when they tried this: R. B. Setlow and J. K. Setlow, “Evidence That Ultraviolet-Induced Thymine Dimers in DNA Cause Biological Damage,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 48, no. 7 (July 1, 1962): 1250–57, https://doi.org/10.1073/pnas.48.7.1250.

        Dick and his colleagues found: R. B. Setlow, P. A. Swenson, and W. L. Carrier, “Thymine Dimers and Inhibition of DNA Synthesis by Ultraviolet Irradiation of Cells,” Science 142, no. 3698 (December 13, 1963): 1464–66, https://doi.org/10.1126/science.142.3598.1464; R. B. Setlow and W. L. Carrier, “The Disappearance of Thymine Dimers from DNA: An Error-Correcting Mechanism, Proceedings of the National Academy of Sciences (PNAS) of the United States of America 51, no. 2 (April 1964): 226–31, https://doi.org/10.1073/pnas.51.2.226.

        The same year: R. P. Boyce and P. Howard-Flanders, “Release of Ultraviolet Light-Induced Thymine Dimers from DNA in E. coli K-12,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 51, no. 2 (February 1, 1964): 293–300, https://doi.org/10.1073/pnas.51.2.293; D. Pettijohn and P. Hanawalt, “Evidence for Repair-Replication of Ultraviolet Damaged DNA in Bacteria,” Journal of Molecular Biology 9, no. 2 (August 1964): 395–410, https://doi.org/10.1016/s0022-2836(64)80216-3.

        How it worked was something of a mystery: Aziz Sancar, “Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture, December 8, 2015), available at https://www.nobelprize.org/uploads/2018/06/sancar-lecture.pdf.

        That is a very long time: A great account of Thomas Lindahl’s discoveries can be found in his “The Intrinsic Fragility of DNA” (Nobel Lecture, December 8, 2015), available at https://www.nobelprize.org/uploads/2018/06/lindahl-lecture.pdf.

        Lindahl estimated later: Tomas Lindahl, “Instability and Decay of the Primary Structure of DNA,” Nature 362, no. 6422 (April 22, 1993): 709–715.

        Not surprisingly, the cell: Paul Modrich, “Mechanisms in E. coli and Human Mismatch Repair” (Nobel Lecture, December 8, 2015, https://www.nobelprize.org/uploads/2018/06/modrich-lecture.pdf).

        Relying on some very clever experiments: Ibid.

        The prize also cannot be given: As is increasingly the case because of the limitation of the Nobel Prize to three people, the prize for DNA repair was not without its controversy: David Kroll, “This Year’s Nobel Prize in Chemistry Sparks Questions About How Winners Are Selected,” Chemical & Engineering News (C&EN) online, last modified November 11, 2015, https://cen.acs.org/articles/93/i45/Years-Nobel-Prize-Chemistry-Sparks.html.

        One condition he has focused on: B. Schumacher et al., “The Central Role of DNA Damage in the Ageing Process,” Nature 592, no. 7856 (April 2021): 695–703, https://doi.org/10.1038/s41586-021-03307-7.

        In females, defects in how the cell: K. T. Zondervan, “Genomic Analysis Identifies Variants That Can Predict the Timing of Menopause,” Nature 596, no. 7872 (August 2021): 345–46, https://doi.org/10.1038/d41586-021-01710-8; K. S. Ruth et al., “Genetic Insights into Biological Mechanisms Governing Human Ovarian Ageing,” Nature 596, no. 7872 (August 2021): 393–97, https://doi.org/10.1038/s41586-021-03779-7. See also the commentary by H. Ledford, “Genetic Variations Could One Day Help Predict Timing of Menopause,” Nature online, last modified August 4, 2021, https://doi.org/10.1038/d41586-021-02128-y.

        Sometimes the cell: Apoptosis, or programmed cell death, is also a feature of normal development, as specific cells die at precise points during the development of an organism from a single cell into the adult animal. This was first discovered by studying how the worm C. elegans develops from a single fertilized egg into an adult of almost a thousand cells, and resulted in the award of the 2002 Nobel Prize to Sydney Brenner, John Sulston, and Robert Horvitz.

        When the damage is too extensive: A. J. Levine and G. Lozano, eds., The P53 Protein: From Cell Regulation to Cancer, Cold Spring Harbor Perspectives in Medicine (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 2016).

        Humans inherit one copy: L. M. Abegglen et al., “Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans,” Journal of the American Medical Association (JAMA) 314, no. 17 (November 3, 2015): 1850–60, https://doi.org/10.1001/jama.2015.13134; M. Sulak et al., “TP53 Copy Number Expansion Is Associated with the Evolution of Increased Body Size and an Enhanced TP Damage Response in Elephants,” eLife 5 (2016): e11994, https://doi.org/10.7554/eLife.11994.

        Curiously, in studies: M. Shaposhnikov et al., “Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes,” Scientific Reports 5 (October 19, 2015): art. 15299, https://doi.org/10.1038/srep15299.

        Some of the long-lived species: D. Tejada-Martinez, J. P. de Magalhães, and J. C. Opazo, “Positive Selection and Gene Duplications in Tumour Suppressor Genes Reveal Clues About How Cetaceans Resist Cancer,” Proceedings of the Royal Society B (Biological Sciences) 288, no. 1945 (February 24, 2021): art. 20202592, https://doi.org/10.1098/rspb.2020.2592; V. Quesada et al., “Giant Tortoise Genomes Provide Insights into Longevity and Age-Related Disease,” Nature Ecology & Evolution 3 (January 2019): 87–95, https://doi.org/10.1038/s41559-018-0733-x.

        Humans and naked mole rats: S. L. MacRae et al., “DNA Repair in Species with Extreme Lifespan Differences,” Aging 7, no. 12 (December 2015): 1171–84, https://doi.org/10.18632/aging.100866.

        Paradoxically, many new cancer therapies: See, for example, Liam Drew, “PARP Inhibitors: Halting Cancer by Halting DNA Repair,” Cancer Research UK online, last modified September 24, 2020, https://news.cancerresearchuk.org/2020/09/24/parp-inhibitors-halting-cancer-by-halting-dna-repair/.

        4. The Problem with Ends

        “Perhaps the day”: Scientific American, July 1921, quoted in Mark Fischetti, comp., “1921: Immortality for Humans,” Scientific American online, July 2021, 79, https://robinsonlab.cellbio.jhmi.edu/wp-content/uploads/2021/06/SciAm_2021_07.pdf.

        They were not immortal: An engaging history of Hayflick’s discovery and its aftermath is J. W. Shay and W. E. Wright, “Hayflick, His Limit, and Cellular Ageing,” Nature Reviews Molecular Cell Biology 1, no. 1 (October 2000): 72–76, https://doi.org/10.1038/35036093.

        It has since become a classic: L. Hayflick and P. S. Moorhead, “The Serial Cultivation of Human Diploid Cell Strains,” Experimental Cell Research 25, no. 3 (December 1961): 585–621, https://doi.org/10.1016/0014-4827(61)90192-6.

        Some have even suggested: J. Witkowski, “The Myth of Cell Immortality,” Trends in Biochemical Sciences 10, no. 7 (July 1985): 258–60, https://doi.org/10.1016/0968-0004(85)90076-3.

        Given Carrel’s stature: John J. Conley, “The Strange Case of Alexis Carrel, Eugenicist,” in Life and Learning XXIII and XXIV: Proceedings of the Twenty-third (2013) and Twenty-fourth Conferences of the University Faculty for Life Conference at Marquette University, Milwaukee, Wisconsin, vol. 26, ed. Joseph W. Koterski (Milwaukee: University Faculty for Life), 281–88, https://www.uffl.org/pdfs/vol23/UFL_2013_Conley.pdf.

        Titia de Lange: Titia de Lange, conversation with the author, September 10, 2021.

        He realized that the train: This so-called end replication problem was first pointed out by J. D. Watson, “Origin of Concatemeric T7 DNA,” Nature New Biology 239, no. 94 (October 18, 1972): 197–201, https://doi.org/10.1038/newbio239197a0, and A. M. Olovnikov, “Telomeres, Telomerase, and Aging: Origin of the Theory,” Experimental Gerontology 31, no. 4 (July/August 1996): 443–48, https://www.sciencedirect.com/science/article/abs/pii/0531556596000058. For a good description of how it would work, see M. M. Cox, J. Doudna, and M. O’Donnell, Molecular Biology: Principles and Practice (New York: W. H. Freeman, 2012), 398–400. The Wikipedia page “DNA Replication,” last modified June 14, 2023, https://en.wikipedia.org/wiki/DNA_replication, is also quite informative.

        At some point, she discovered: For a long time, McClintock was not believed, but these so-called transposable elements turned out to be a fundamental part of biology, and she was awarded the Nobel Prize for her work in 1983 at the age of eighty-one.

        TTGGGG: E. H. Blackburn and J. G. Gall, “A Tandemly Repeated Sequence at the Termini of the Extrachromosomal Ribosomal RNA Genes in Tetrahymena,” Journal of Molecular Biology 120, no. 1 (March 25, 1978): 33–53, https://doi.org/10.1016/0022-2836(78)90294-2.

        It worked like a charm: J. W. Szostak and E. H. Blackburn, “Cloning Yeast Telomeres on Linear Plasmid Vectors,” Cell 29, no. 1 (May 1982): 245–55, https://doi.org/10.1016/0092-8674(82)90109-x.

        The two of them discovered an enzyme: C. W. Greider and E. H. Blackburn, “Identification of a Specific Telomere Terminal Transferase Activity in Tetrahymena Extracts,” Cell 43, no. 2, pt. 1 (November 1985): 405–13, https://doi.org/10.1016/0092-8674(85)90170-9; C. W. Greider and E. H. Blackburn, “The Telomere Terminal Transferase of Tetrahymena Is a Ribonucleoprotein Enzyme with Two Kinds of Primer Specificity,” Cell 51, no. 6 (December 24, 1987): 887–98, https://doi.org/10.1016/0092-8674(87)90576-9; C. W. Greider and E. H. Blackburn, “A Telomeric Sequence in the RNA of Tetrahymena Telomerase Required for Telomere Repeat Synthesis,” Nature 337, no. 6205 (January 26, 1989): 331–37, https://doi.org/10.1038/337331a0.

        Without telomerase: C. B. Harley, A. B. Futcher, and C. W. Greider, “Telomeres Shorten During Ageing of Human Fibroblasts,” Nature 345, no. 5274 (May 31, 1990): 458–60, https://doi.org/10.1038/345458a0.

        Even introducing telomerase: A. G. Bodnar et al., “Extension of Life-span by Introduction of Telomerase into Normal Human Cells,” Science 279, no. 5349 (January 16, 1998): 349–52, https://doi.org/10.1126/science.279.5349.349.

        It turns out that the telomeric ends: The strand that extends beyond the other is called a 3’ overhang, so the reason for the loss of the ends is not exactly the reason first proposed by Olovnikov and Watson. Aficionados can look at J. Lingner, J. P. Cooper, and T. R. Cech, “Telomerase and DNA End Replication: No Longer a Lagging Strand Problem,” Science 269, no. 5230 (September 15, 1995): 1533–34, https://doi.org/10.1126/science.7545310.

        This longer strand: T. de Lange, “Shelterin: The Protein Complex That Shapes and Safeguards Human Telomeres,” Genes & Development 19, no. 18 (September 15, 2005): 2100–10, https://doi.org/10.1101/gad.1346005; I. Schmutz and T. de Lange, “Shelterin,” Current Biology 26, no. 10 (May 23, 2016): R397–99, https://doi.org/10.1016/j.cub.2016.01.056.

        This crucial structure is why the cell: W. Palm and T. de Lange, “How Shelterin Protects Mammalian Telomeres,” Annual Review of Genetics 42 (2008): 301–34, https://doi.org/10.1146/annurev.genet.41.110306.130350; P. Martínez and M. A. Blasco, “Role of Shelterin in Cancer and Aging,” Aging Cell 9, no. 5 (October 2010): 653–66, https://doi.org/10.1111/j.1474-9726.2010.00596.x.

        The cell then sees: F. d’Adda di Fagagna et al. “A DNA Damage Checkpoint Response in Telomere-Initiated Senescence,” Nature 426, no. 6963 (November 13, 2003): 194–98, https://doi.org/10.1038/nature02118.

        People with defective telomerase: M. Armanios and E. H. Blackburn, “The Telomere Syndromes,” Nature Reviews Genetics 13, no. 10 (October 2012): 693–704, https://doi.org/10.1038/nrg3246.

        When we are stressed: E. S. Epel et al., “Accelerated Telomere Shortening in Response to Life Stress,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 101, no. 49 (December 1, 2004): 17312–15, https://doi.org/10.1073/pnas.0407162101; J. Choi, S. R. Fauce, and R. B. Effros, “Reduced Telomerase Activity in Human T Lymphocytes Exposed to Cortisol,” Brain, Behavior, and Immunity 22, no. 4 (May 2008): 600–605, https://doi.org/10.1016/j.bbi.2007.12.004. See also the following on stress and premature gray hair in mice: B. Zhang et al., “Hyperactivation of Sympathetic Nerves Drives Depletion of Melanocyte Stem Cells,” Nature 577, no. 792 (January 2020): 676–81, https://doi.org/10.1038/s41586-020-1935-3.

        So it may be that the shortening: M. Jaskelioff et al. “Telomerase Reactivation Reverses Tissue Degeneration in Aged Telomerase-Deficient Mice,” Nature 469, no. 7328 (January 6, 2001): 102–6 (2011), https://doi.org/10.1038/nature09603.

        According to a number of studies, mice engineered: M. A. Muñoz-Lorente, A. C. Cano-Martin, and M. A. Blasco, “Mice with Hyper-long Telomeres Show Less Metabolic Aging and Longer Lifespans,” Nature Communications 10, no. 1 (October 17, 2019): 4723, https://doi.org/10.1038/s41467-019-12664-x.

        There seems to be a delicate balance: Titia de Lange, conversations with and email messages to the author, November and December 2021. See also Jalees Rehman, “Aging: Too Much Telomerase Can Be as Bad as Too Little,” Guest Blog, Scientific American online, last modified July 5, 2014, ttps://blogs.scientificamerican.com/guest-blog/aging-too-much-telomerase-can-be-as-bad-as-too-little/.

        On the other hand, those with long telomeres: E. J. McNally, P. J. Luncsford, and M. Armanios, “Long Telomeres and Cancer Risk: The Price of Cellular Immortality,” Journal of Clinical Investigation 129, no. 9 (August 5, 2019): 3474–81, https://doi.org/10.1172/JCI120851.

        5. Resetting the Biological Clock

        “another great Anglo-American partnership”: The official text of the statement on the publication of the draft human genome sequence by the White House and the UK government is here: National Human Genome Research Institute online, “June 2000 White House Event,” news release, June 26, 2000, https://www.genome.gov/10001356/june-2000-white-house-event. A slightly different text was reported by the New York Times: “Text of the White House Statements on the Human Genome Project,” Science, New York Times online, June 27, 2000, https://archive.nytimes.com/www.nytimes.com/library/national/science/062700sci-genome-text.html. The sequence itself was described in two large, coordinated publications: the public consortium was published as International Human Genome Sequencing Consortium et al., “Initial Sequencing and Analysis of the Human Genome,” Nature 409, no. 6822 (February 15, 2001): 860–921, https://doi.org/10.1038/35057062, while the private Celera effort was published as J. C. Venter et al., “The Sequence of the Human Genome,” Science 291, 1304–51, https://doi.org/10.1126/science.1058040.

        “Along with Bach’s music”: Quoted in G. Yamey, “Scientists Unveil First Draft of Human Genome,” BMJ 321, no. 7252 (July 1, 2000): 7, https://doi.org/10.1136/bmj.321.7252.7.

        Venter was something: “Profile: Craig Venter,” BBC News online, last modified May 21, 2010, https://www.bbc.co.uk/news/10138849.

        The decision by NIH: “US Patent Application Stirs Up Gene Hunters,” Nature, 353 (October 10, 1991): 485–86 (1991), https://doi.org/10.1038/353485a0; N. D. Zinder, “Patenting cDNA 1993: Efforts and Happenings” (abstract), Gene 135, nos. 1/2 (December 1993): 295–98, https://www.sciencedirect.com/science/article/abs/pii/037811199390080M.

        Venter said later that he was always against them: Matthew Herper, “Craig Venter Mapped the Genome. Now He’s Trying to Decode Death,” Forbes (online), February 21, 2017, https://www.forbes.com/sites/matthewherper/2017/02/21/can-craig-venter-cheat-death/?sh=8f6fefa16456.

        A particularly passionate advocate: John Sulston and Georgina Ferry, The Common Thread: A Story of Science, Politics, Ethics, and the Human Genome (New York: Random House, 2002).

        In the run-up: “How Diplomacy Helped to End the Race to Sequence the Human Genome,” Nature 582, no. 7813 (June 2020): 460, https://doi.org/10.1038/d41586-020-01849-w.

        The sequence was declared finished: S. Reardon, “A Complete Human Genome Sequence Is Close: How Scientists Filled in the Gaps,” Nature 594, no. 7862 (June 2021): 158–59, https://doi.org/10.1038/d41586-021-01506-w.

        The study of this change: Nessa Carey’s The Epigenetics Revolution: How Modern Biology Is Rewriting Our Understanding of Genetics, Disease, and Inheritance (New York: Columbia University Press, 2012) is a great popular introduction to epigenetics. Mukherjee’s The Gene is more broadly about the nature of the gene but has a significant emphasis on epigenetics.

        They are too far down: R. Briggs and T. J. King, “Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs’ Eggs,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 38, no. 5 (May 1952): 455–63, https://doi.org/10.1073/pnas.38.5.455.

        He studied languages instead: “Sir John B. Gurdon: Biographical,” Nobel Prize online, accessed August 7, 2023, https://www.nobelprize.org/prizes/medicine/2012/gurdon/biographical/.

        The clawed frog became: J. B. Gurdon and N. Hopwood, “The Introduction of Xenopus Laevis into Developmental Biology: Of Empire, Pregnancy Testing and Ribosomal Genes,” International Journal of Developmental Biology 44, no. 1 (2000): 43–50.

        This was the first time: J. B. Gurdon, “The Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles,” Development 10, no. 4 (December 1, 1962): 622–40, https://doi.org/10.1242/dev.10.4.622.

        Eventually other researchers reproduced: I. Wilmut et al., “Viable Offspring Derived from Fetal and Adult Mammalian Cells,” Nature 385, no. 6619 (February 27, 1997): 810–13, https://doi.org/10.1038/385810a0.

        Being able to grow ES cells: M. J. Evans and M. H. Kaufman, “Establishment in Culture of Pluripotential Cells from Mouse Embryos,” Nature 292, no. 5819 (July 9, 1981): 154–56, https://doi.org/10.1038/292154a0; G. R. Martin, “Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 78, no. 12 (December 1, 1981): 7634–38, https://doi.org/10.1073/pnas.78.12.7634.

        By experimenting with transcription factors in various combinations: Shinya Yamanaka, “Shinya Yamanaka: Biographical,” Nobel Prize online, https://www.nobelprize.org/prizes/medicine/2012/yamanaka/biographical/.

        One of the first and simplest: The lac operator and repressor system was discovered in the 1960s by Jacques Monod and Francois Jacob, and its history, along with another genetic switch in a bacteriophage by Andre Lwoff, resulted in the Nobel Prize in 1965. For an insightful history, see M. Lewis, “A Tale of Two Repressors,” Journal of Molecular Biology 409, no. 1 (May 27, 2011): 14–27, https://doi.org/10.1016/j.jmb.2011.02.023.

        You might expect that when cells divide: The British geneticist Adrian Bird showed that the methylation occurs mainly on islands with CG repeats. Because C pairs with a G, if you have a CpG island, the C and G on each strand will be directly across from a G and C on the opposite strand. Each C will then be diagonally across from the C on the other strand. When cells methylate a CpG island, they methylate the Cs on both strands. As soon as the cell divides, you have two molecules of DNA instead of one. Each of them has an original strand where the C is methylated, and a newly made strand in which it isn’t. There are special methyltransferase enzymes that will add a methyl group to a C only if the C diagonally across from it on the other strand already has one. This ensures that both strands end up methylated exactly in the same places they were before.

        It is a striking example: E. W. Tobi et al., “DNA Methylation as a Mediator of the Association Between Prenatal Adversity and Risk Factors for Metabolic Disease in Adulthood,” Science Advances 4, no. 1 (January 31, 2018): eaao4364, https://doi.org/10.1126/sciadv.aao4364; described in Carl Zimmer, “The Famine Ended 70 Years Ago, But Dutch Genes Still Bear Scars,” New York Times online, January 31, 2018, https://www.nytimes.com/2018/01/31/science/dutch-famine-genes.html. See also Mukherjee, The Gene, and Carey, The Epigenetics Revolution.

        When they looked at the methylation: For an expert popular account of Steve Horvath and epigenetic clocks, see Ingrid Wickelgren, “Epigenetic ‘Clocks’ Predict Animals’ True Biological Age,” Quanta, last modified August 17, 2022, https://www.quantamagazine.org/epigenetic-clocks-predict-animals-true-biological-age-20220817/. Some of the background on Horvath is taken from this article.

        He was able to identify 513 sites: M. E. Levine et al., “An Epigenetic Biomarker of Aging for Lifespan and Healthspan,” Aging 10, no. 4 (April 2018): 573–91, https://doi.org/10.18632/aging.101414.

        Methylation patterns are like a biological clock: S. Horvath and K. Raj, “DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing,” Nature Reviews Genetics 19, no. 6 (June 2018): 371–84, https://doi.org/10.1038/s41576-018-0004-3.

        Many other research groups developed: For an example, see G. Hannum et al., “Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates,” Molecular Cell 49, no. 2 (January 24, 2013): 359–67, https://doi.org/10.1016/j.molcel.2012.10.016.

        In fact, its methylation pattern: C. Kerepesi et al., “Epigenetic Clocks Reveal a Rejuvenation Event During Embryogenesis Followed by Aging,” Science Advances 7, no. 26 (June 25, 2021): eabg6082, https://doi.org/10.1126/sciadv.abg6082; C. Kerepesi et al., “Epigenetic Aging of the Demographically Non-Aging Naked Mole-Rat,” Nature Communications 13, no. 1 (January 17, 2022): 355, https://doi.org/10.1038/s41467-022-27959-9.

        Something about her diet: R. Kucharski et al., “Nutritional Control of Reproductive Status in Honeybees Via DNA Methylation,” Science 319, no. 5871 (March 28, 2008): 1827–30, https://doi.org/10.1126/science.1153069; M. Wojciechowski et al., “Phenotypically Distinct Female Castes in Honey Bees Are Defined by Alternative Chromatin States During Larval Development,” Genome Research 28, no. 10 (October 2018): 1532–42, https://doi.org/10.1101/gr.236497.118.

        The first is that germ-line cells: L. Moore et al., “The Mutational Landscape of Human Somatic and Germline Cells,” Nature 597, no. 7876 (September 2021): 381–86, https://doi.org/10.1038/s41586-021-03822-7.

        By puberty, this number: Kirkwood, Time of Our Lives, 167–78.

        And even within an embryo that is developing normally overall: A recent example is A. Lima et al., “Cell Competition Acts as a Purifying Selection to Eliminate Cells with Mitochondrial Defects During Early Mouse Development,” Nature Metabolism 3, no. 8 (August 2021): 1091–108, https://doi.org/10.1038/s42255-021-00422-7, but there are many ways in which the body rejects defective embryos from developing to term.

        This is because the pronuclei: Azim Surani, the scientist in Cambridge who first showed that a fertilized egg needed nuclei from both paternal and maternal germ-line cells to develop normally into a new animal, first suggested the idea of random, environmentally induced, and possibly deleterious epigenetic changes in our genome, which he called “epimutations.” Interview with the author, February 10, 2022.

        There were also the lesser-known: Joanna Klein, “Dolly the Sheep’s Fellow Clones, Enjoying Their Golden Years,” New York Times online, July 26, 2016, https://www.nytimes.com/2016/07/27/science/dolly-the-sheep-clones.html, reports on K. D. Sinclair et al., “Healthy Ageing of Cloned Sheep,” Nature Communications 7 (July 26, 2016): 12359, https://doi.org/10.1038/ncomms12359. An extensive analysis of cloned animals in 2017 showed no systematically lower life span or other problems, suggesting that at least some cloned animals live just as long and healthy lives as naturally conceived ones: J. P. Burgstaller and G. Brem, “Aging of Cloned Animals: A Mini-Review,” Gerontology 63, no. 5 (August 2017): 417–25, https://doi.org/10.1159/000452444.

        This route to rejuvenating: T. A. Rando and H. Y. Chang, “Aging, Rejuvenation, and Epigenetic Reprogramming: Resetting the Aging Clock,” Cell 148, no. 1/2 (January 20, 2012): 46–57, https://doi.org/10.1016/j.cell.2012.01.003; J. M. Freije and C. López-Otín, “Reprogramming Aging and Progeria,” Current Opinion in Cell Biology 24, no. 6 (December 2012): 757–64, https://doi.org/10.1016/j.ceb.2012.08.009.

        6. Recycling the Garbage

        Today more than fifty million people: “Dementia,” World Health Organization online, last modified March 15, 2023, https://www.who.int/news-room/fact-sheets/detail/dementia.

        In England and Wales: “Dementia Now Leading Cause of Death,” BBC News online, last modified November 14, 2016, https://www.bbc.co.uk/news/health-37972141.

        It is estimated: “One-Third of British People Born in 2015 ‘Will Develop Dementia,’” Guardian (US edition) online, last modified September 21, 2015, https://www.theguardian.com/society/2015/sep/21/one-third-of-people-born-in-2015-will-develop-dementia.

        Over half of those with dementia: A very engaging and moving book on Alzheimer’s disease is Joseph Jebelli, In Pursuit of Memory: The Fight Against Alzheimer’s (London: John Murray, 2017). The author grew up with a grandfather who suffered from the disease.

        There are many ways that the folding process: R. J. Ellis, “Assembly Chaperones: A Perspective,” Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 368, no. 1617 (March 25, 2013): 20110398, https://doi.org/10.1098/rstb.2011.0398.

        But as we age: M. Fournet, F. Bonté, and A. Desmoulière, “Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging,” Aging and Disease 9, no. 5 (October 2018): 880–900, https://doi.org/10.14336/AD.2017.1121.

        Cells have an elaborate sensor: For an accessible description of the unfolded protein response, see Evelyn Strauss, “Unfolded Protein Response: 2014 Albert Lasker Basic Medical Research Award,” Lasker Foundation online, accessed July 7, 2023, https://laskerfoundation.org/winners/unfolded-protein-response/#achievement. How exactly the sensor detects that there are too many unfolded proteins is still not entirely clear. I spoke with Dr. David Ron, a scientist at England’s Cambridge Institute for Medical Research, and one of the leaders in this area. One idea is that some chaperones—the proteins that help proteins to fold—are normally abundant and can bind to the sensors, which are then kept in a quiescent state. When the number of unfolded proteins increases, these chaperones are called to action, and they release the sensors, which then go on to trigger the unfolded protein response. S. Preissler and D. Ron, “Early Events in the Endoplasmic Reticulum Unfolded Protein Response,” Cold Spring Harbor Perspectives in Biology 11, no. 4 (April 1, 2019): a033894, https://doi.org/10.1101/cshperspect.a033894.

        In extreme cases: A. Fribley, K. Zhang, and R. J. Kaufman, “Regulation of Apoptosis by the Unfolded Protein Response,” in Apoptosis: Methods and Protocols, ed. P. Erhardt and A. Toth (Totowa, NJ: Humana Press, 2009), 191–204, https://doi.org/10.1007/978-1-60327-017-5_14.

        Eventually researchers discovered: K. D. Wilkinson, “The Discovery of Ubiquitin-Dependent Proteolysis,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 102, no. 43 (October 17, 2005): 15280–82, https://doi.org/10.1073/pnas.0504842102. There is a popular account of the discovery of the proteasome and the award of the Nobel Prize to Avram Hershko, Aaron Ciechanover, and Irwin Rose in “Popular Information: The Nobel Prize in Chemistry 2004,” Nobel Prize online, accessed July 4, 2023, https://www.nobelprize.org/prizes/chemistry/2004/popular-information/.

        Deliberately introducing defects: I. Saez and D. Vilchez, “The Mechanistic Links Between Proteasome Activity, Aging and Age-Related Diseases,” Current Genomics 15, no. 1 (February 15, 2014): 38–51, https://doi.org/10.2174/138920291501140306113344.

        By isolating strains: K. Takeshig et al., “Autophagy in Yeast Demonstrated with Proteinase-Deficient Mutants and Conditions for Its Induction,” Journal of Cell Biology 119, no. 2 (October 1992): 301–11, https://doi.org/10.1083/jcb.119.2.301; M. Tsukada and Y. Ohsumi, “Isolation and Characterization of Autophagy-Defective Mutants of Saccharomyces cerevisiae,” FEBS Letters 333, nos. 1/2 (October 25, 1993): 169–74, https://doi.org/10.1016/0014-5793(93)80398-e.

        It has so many essential functions: For a very reader-friendly description of autophagy, see “The Nobel Prize in Physiology or Medicine 2016: Yoshinori Ohsumi,” press release, Nobel Prize online, October 3, 2016, https://www.nobelprize.org/prizes/medicine/2016/press-release/.

        Integrated stress response or ISR: Two reviews of the integrated stress response are Harding, H. P. et al., “An integrated stress response regulates amino acid metabolism and resistance to oxidative stress,” Molecular Cell 11, no. 3 (March 2003): 619–33, https://doi.org/10.1016/s1097-2765(03)00105-9; and Pakos‐Zebrucka, K. et al. “The integrated stress response,” EMBO Reports 17, no.10 (2016): 1374–95, https://doi.org/10.15252/embr.201642195. Its discovery in amino acid starvation is described in Dever, T. E. et al., “Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast,” Cell 68. no. 3 (February 1992): 585–96, https://doi.org/10.1016/0092-8674(92)90193-g and that in the unfolded protein response in Harding, H. P. et al., “PERK is essential for translational regulation and cell survival during the unfolded protein response,” Molecular Cell 5, no. 5 (May 2000): 897-904, https://doi.org/10.1016/s1097-2765(00)80330-5.

        If you delete the genes: M. Delépine et al., “EIF2AK3, Encoding Translation Initiation Factor 2-Alpha Kinase 3, Is Mutated in Patients with Wolcott-Rallison Syndrome,” Nature Genetics 25, no. 4 (August 2000): 406–9, https://doi.org/10.1038/78085; H. P. Harding et al., “Diabetes Mellitus and Exocrine Pancreatic Dysfunction in Perk-/- Mice Reveals a Role for Translational Control in Secretory Cell Survival,” Molecular Cell 7, no. 6 (June 2001): 1153–63, https://doi.org/10.1016/s1097-2765(01)00264-7.

        They also extend life span: S. J. Marciniak et al., “CHOP Induces Death by Promoting Protein Synthesis and Oxidation in the Stressed Endoplasmic Reticulum,” Genes & Development 18, no. 24 (December 15, 2004): 3066–77, https://doi.org/10.1101/gad.1250704; M. D’Antonio et al., “Resetting Translational Homeostasis Restores Myelination in Charcot-Marie-Tooth Disease Type 1B Mice,” Journal of Experimental Medicine 210, no. 4 (April 8, 2013): 821–38, https://doi.org/10.1084/jem.20122005; P. Tsaytler et al., “Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis,” Science 332, no. 6025 (April 1, 2011): 91–94, https://doi.org/10.1126/science.1201396; H. Q. Jiang et al., “Guanabenz Delays the Onset of Disease Symptoms, Extends Lifespan, Improves Motor Performance and Attenuates Motor Neuron Loss in the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis,” Neuroscience 277 (March 2014): 132–38, https://doi.org/10.1016/j.neuroscience.2014.03.047; I. Das et al., “Preventing Proteostasis Diseases by Selective Inhibition of a Phosphatase Regulatory Subunit,” Science 348, no. 6231 (April 10, 2015): 239–42, https://doi.org/10.1126/science.aaa4484.

        whether they even affected ISR directly: A. Crespillo-Casado et al., “PPP1R15A-Mediated Dephosphorylation of eIF2α Is Unaffected by Sephin1 or Guanabenz,” eLife 6 (April 27, 2017): e26109, https://doi.org/10.7554/eLife.26109.

        According to their studies, deleting the genes: T. Ma et al., “Suppression of eIF2α Kinases Alleviates Alzheimer’s Disease–Related Plasticity and Memory Deficits,” Nature Neuroscience 16, no. 9 (September 2013): 1299–305, https://doi.org/10.1038/nn.3486.

        Even more surprisingly: Adam Piore, “The Miracle Molecule That Could Treat Brain Injuries and Boost Your Fading Memory,” MIT Technology Review 124, no. 5 (September/October 2021): https://www.technologyreview.com/2021/08/25/1031783/isrib-molecule-treat-brain-injuries-memory/; C. Sidrauski et al., “Pharmacological Brake-Release of mRNA Translation Enhances Cognitive Memory,” eLife 2 (2013): e00498,https://doi.org/10.7554/eLife.00498; C. Sidrauski et al., “The Small Molecule ISRIB Reverses the Effects of Eif2α Phosphorylation on Translation and Stress Granule Assembly,” eLife 4 (2015): e05033, https://doi.org/10.7554/eLife.05033; A. Chou et al., “Inhibition of the Integrated Stress Response Reverses Cognitive Deficits After Traumatic Brain Injury,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 114, no. 31 (July 10, 2017): E6420–E6426, https://doi.org/10.1073/pnas.1707661114.

        Nahum Sonenberg: Nahum Sonenberg, email message to the author, January 12, 2023.

        The key person: D. M. Asher with M. A. Oldstone, Carleton Gajdusek, 1923–2008: Biographical Memoirs (Washington, DC: US National Academy of Sciences, 2013), http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/gajdusek-d-carleton.pdf; Caroline Richmond, “Obituary: Carleton Gajdusek,” Guardian (US edition) online, last modified February 25, 2009, https://www.theguardian.com/science/2009/feb/25/carleton-gajdusek-obituary.

        On the strength of this: Frank Macfarlane Burnet studied how the immune system distinguishes between our own cells and foreign invaders and shared the 1960 Nobel Prize with Peter Medawar.

        “had an intelligence quotient”: Jay Ingram, Fatal Flaws: How a Misfolded Protein Baffled Scientists and Changed the Way We Look at the Brain (New Haven, CT: Yale University Press, 2013), as quoted in M. Goedert, “M. Prions and the Like,” Brain 137, no. 1 (January 2014): 301–5, https://doi.org/10.1093/brain/awt179. See also J. Farquhar and D. C. Gajdusek, eds., Early Letters and Field-Notes from the Collection of D. Carleton Gajdusek (New York: Raven Press, 1981).

        This was a recent practice among the Fore: J. Goodfield, “Cannibalism and Kuru,” Nature 387 (June 26, 1997): 841, https://doi.org/10.1038/43043; R. Rhodes, “Gourmet Cannibalism in New Guinea Tribe,” Nature 389 (September 4, 1997): 11, https://doi.org/10.1038/37853.

        He showed no remorse: Ivin Molotsky, “Nobel Scientist Pleads Guilty to Abusing Boy,” New York Times online, February 19, 1997, https://www.nytimes.com/1997/02/19/us/nobel-scientist-pleads -guilty-to-abusing-boy.html. Two articles shed light on the sociology of Gajdusek’s extended family: C. Spark, “Family Man: The Papua New Guinean Children of D. Carleton Gajdusek,” Oceania 77, no. 3 (November 2007): 355–69, and C. Spark, “Carleton’s Kids: The Papua New Guinean Children of D. Carleton Gajdusek,” Journal of Pacific History 44, no. 1 (June 2009): 1–19.

        The result is that the misfolded form: S. B. Prusiner, “Prions,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 95, no. 23 (November 10, 1998): 13363–83, https://doi.org/10.1073/pnas.95.23.13363.

        Alzheimer himself autopsied: A good review of the beta-amyloid hypothesis is R. E. Tanzi and L. Bertram, “Twenty Years of the Alzheimer’s Disease Amyloid Hypothesis: A Genetic Perspective,” Cell 120, no. 4 (February 25, 2005): 545–55, https://doi.org/10.1016/j.cell.2005.02.008.

        In 1984, scientists identified: G. G. Glenner and C. W. Wong, “Alzheimer’s Disease and Down’s Syndrome: Sharing of a Unique Cerebrovascular Amyloid Fibril Protein,” Biochemical and Biophysical Research Communications 122, no. 3 (August 16, 1984): 1131–35, https://doi.org/10.1016/0006-291x(84)91209-9.

        They turn out to have mutations: A. Goate et al., “Segregation of a Missense Mutation in the Amyloid Precursor Protein Gene with Familial Alzheimer’s Disease,” Nature 349, no. 6311 (February 21, 1991): 704–6, https://doi.org/10.1038/349704a0; M. C. Chartier-Harlin et al., “Early-Onset Alzheimer’s Disease Caused by Mutations at Codon 717 of the Beta-amyloid Precursor Protein Gene,” Nature 353, no. 6347 (October 31, 1991): 844–46, https://doi.org/10.1038/353844a0.

        Perhaps these tau filaments: Jebelli, In Pursuit of Memory.

        Although scientists were skeptical at first: P. Poorkaj et al., “Tau Is a Candidate Gene for Chromosome 17 Frontotemporal Dementia,” Annals of Neurology 43, no. 6 (June 1998): 815–25, https://doi.org/10.1002/ana.410430617; M. Hutton et al., “Association of Missense and 5’-splice-site Mutations in Tau with the Inherited Dementia FTDP-17,” Nature 393, no. 6686 (June 18, 1998): 702–5, https://doi.org/10.1038/31508; M. G. Spillantini et al., “Mutation in the Tau Gene in Familial Multiple System Tauopathy with Presenile Dementia,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 95, no. 13 (June 23, 1998): 7737–41, https://doi.org/10.1073/pnas.95.13.7737.

        Rather, the aberrant: S. H. Scheres et al., “M. Cryo-EM Structures of Tau Filaments,” Current Opinion in Structural Biology 64, 17–25 (2020). https://doi.org/10.1016/j.sbi.2020.05.011; M. Schweighauser et al., “Structures of α-synuclein Filaments from Multiple System Atrophy,” Nature 585, no. 7825 (September 2020): 464–69, https://doi.org/10.1038/s41586-020-2317-6; Y. Yang et al., “Cryo-EM Structures of Amyloid-β 42 Filaments from Human Brains,” Science 375, no. 6577 (January 13, 2022): 167–72, https://doi.org/10.1126/science.abm7285.

        We do know that if you delete the genes: H. Zheng et al., “Beta-Amyloid Precursor Protein-Deficient Mice Show Reactive Gliosis and Decreased Locomotor Activity,” Cell 81, no. 4 (May 19, 1995): 525–31, https://doi.org/10.1016/0092-8674(95)90073-x.

        There is a growing feeling: M. Goedert, M. Masuda-Suzukake, and B. Falcon, “Like Prions: The Propagation of Aggregated Tau and α-synuclein in Neurodegeneration,” Brain 140, no. 2 (February 2017): 266–78, https://doi.org/10.1093/brain/aww230; A. Aoyagi et al., “Aβ and Tau Prion-like Activities Decline with Longevity in the Alzheimer’s Disease Human Brain,” Science Translational Medicine 11, no. 490 (May 1, 2019): eaat8462, https://doi.org/10.1126/scitranslmed.aat8462; M. Jucker and L. C. Walker, “Self-propagation of Pathogenic Protein Aggregates in Neurodegenerative Diseases,” Nature 501, no. 7465 (September 5, 2013): 45–51, https://doi.org/10.1038/nature12481.

        Very recently, therapies: C. H. van Dyck et al., “Lecanemab in Early Alzheimer’s Disease,” New England Journal of Medicine 388, no. 1 (January 5, 2023): 9–21, https://doi.org/10.1056/nejmoa2212948; M. A. Mintun et al, “Donanemab in Early Alzheimer’s Disease,” New England Journal of Medicine 384 (May 6, 2021): 1691–1704, https://doi.org/10.1056/NEJMoa2100708. See also the more recent discussion by S. Reardon, “Alzheimer’s Drug Donanemab: What Promising Trial Means for Treatments,” Nature 617 (May 4, 2023): 232–33, https://doi.org/10.1038/d41586-023-01537-5.

        7. Less Is More

        Now, in a time of plenty: J. V. Neel, “Diabetes Mellitus: A ‘Thrifty’ Genotype Rendered Detrimental by ‘Progress,’” American Journal of Human Genetics 14, no. 4 (December 1962): 353–62, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932342/.

        “drifty genes”: J. R. Speakman, “Thrifty Genes for Obesity and the Metabolic Syndrome—Time to Call off the Search?,” Diabetes and Vascular Disease Research 3, no. 1 (May 2006): 7–11, https://doi.org/10.3132/dvdr.2006.010; J. R. Speakman, “Evolutionary Perspectives on the Obesity Epidemic: Adaptive, Maladaptive, and Neutral Viewpoints,” Annual Review of Nutrition 33, no. 1 (July 2013): 289–317, https://doi.org/10.1146/annurev-nutr-071811-150711.

        The first studies to test this: Two surveys of the field from the mid-2000s are E. J. Masoro, “Overview of Caloric Restriction and Ageing,” Mechanisms of Ageing and Development 126, no. 9 (September 2005): 913–22, https://doi.org/10.1016/j.mad.2005.03.012, and B. K. Kennedy, K. K. Steffen, and M. Kaeberlein, “Ruminations on Dietary Restriction and Aging,” Cellular and Molecular Life Sciences 64, no. 11 (June 2007): 1323–28, doi: 10.1007/s00018-007-6470-y.

        Moreover, they appeared to have delayed: R. Weindruch and R. L. Walford, The Retardation of Aging and Disease by Dietary Restriction (Springfield, IL: C. C. Thomas, 1988), as quoted in Kennedy, Steffen, and Kaeberlein, “Ruminations,” 1323–28; L. Fontana and L. Partridge, “Promoting Health and Longevity Through Diet: From Model Organisms to Humans,” Cell 161, no. 1 (March 26, 2015): 106–18, https://doi.org/10.1016/j.cell.2015.02.020.

        In 2009: R. J. Colman et al., “Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys,” Science 325, no. 5937 (July 10, 2009): 201–4, https://doi.org/10.1126/science.1173635.

        But this was contradicted: J. A. Mattison et al., “Impact of Caloric Restriction on Health and Survival in Rhesus Monkeys from the NIA Study,” Nature 489, no. 7415 (September 13, 2012): 318–21, https://doi.org/10.1038/nature11432. See the accompanying commentary by S. N. Austad, “Aging: Mixed Results for Dieting Monkeys,” Nature 489, no. 7415 (September 13, 2012): 210–11, https://doi.org/10.1038/nature11484, and a related news article in the same journal, A. Maxmen, “Calorie Restriction Falters in the Long Run,” Nature 488, no. 7413 (August 30, 2012), 569, https://doi.org/10.1038/488569a.

        Any evidence for the effect of CR: Laura A. Cassiday, “The Curious Case of Caloric Restriction,” Chemical & Engineering News online, last modified August 3, 2009, https://cen.acs.org/articles/87/i31/Curious-Case-Caloric-Restriction.html.

        There is 5:2 fasting: Gideon Meyerowitz-Katz, “Intermittent Fasting Is Incredibly Popular. But Is It Any Better Than Other Diets?,” Guardian (US edition) online, last modified January 1, 2020, https://www.theguardian.com/commentisfree/2020/jan/02/intermittent-fasting-is-incredibly-popular-but-is-it-any-better-than-other-diets.

        They concluded that matching: V. Acosta-Rodríguez et al., “Circadian Alignment of Early Onset Caloric Restriction Promotes Longevity in Male C57BL/6J Mice,” Science 376, no. 6598 (May 5, 2022): 1192–202, https://doi.org/10.1126/science.abk0297. See the accompanying commentary in S. Deota and S. Panda, “Aligning Mealtimes to Live Longer,” Science 376, no. 6598 (May 5, 2022): 1159–60, https://doi.org/10.1126/science.adc8824.

        In particular, sleep deprivation: Matthew Walker, Why We Sleep: The New Science of Sleep and Dreams (New York: Scribner, 2017). See in particular chapter 8 for its effects on aging.

        According to a recent study: A. Vaccaro et al., “Sleep Loss Can Cause Death Through Accumulation of Reactive Oxygen Species in the Gut,” Cell 181, no. 6 (June 11, 2020): 1307–28.e15, https://doi.org/10.1016/j.cell.2020.04.049. See also a popular discussion of this in Veronique Greenwood, “Why Sleep Deprivation Kills,” Quanta, last modified June 4, 2020, https://www.quantamagazine.org/why-sleep-deprivation-kills-20200604/, and Steven Strogatz, “Why Do We Die Without Sleep?,” The Joy of Why (podcast, transcription), March 22, 2022, https://www.quantamagazine.org/why-do-we-die-without-sleep-20220322/.

        In one study: C.-Y Liao et al., “Genetic Variation in Murine Lifespan Response to Dietary Restriction: From Life Extension to Life Shortening,” Aging Cell 9, no. 1 (February 2010): 92–95, https://doi.org/10.1111/j.1474-9726.2009.00533.x.

        He felt that animals: L. Hayflick, “Dietary Restriction: Theory Fails to Satiate,” Science 329, no. 5995 (August 27, 2010): 1014, https://www.science.org/doi/10.1126/science.329.5995.1014; L. Fontana, L. Partridge, and V. Longo, “Dietary Restriction: Theory Fails to Satiate—Response,” Science 329, no. 5995 (August 27, 2010): 1015, https://www.science.org/doi/10.1126/science.329.5995.1015.

        Moreover, when scientists: Saima May Sidik, “Dietary Restriction Works in Lab Animals, But It Might Not Work in the Wild,” Scientific American online, last modified December 20, 2022, https://www.scientificamerican.com/article/dietary-restriction-works-in-lab-animals-but-it-might-not-work-in-the-wild/.

        On a more granular level: Fontana and Partridge, “Promoting Health and Longevity,” 106–18.

        Among its other reported downsides: J. R. Speakman and S. E. Mitchell, “Caloric Restriction,” Molecular Aspects of Medicine 32, no. 3 (June 2011): 159–221, https://doi.org/10.1016/j.mam.2011.07.001.

        In 1964: For an intriguing history of the discovery of rapamycin, see Bethany Halford, “Rapamycin’s Secrets Unearthed,” Chemical & Engineering News online, last modified July 18, 2016, https://cen.acs.org/articles/94/i29/Rapamycins-Secrets-Unearthed.html, which is the basis for the next few paragraphs. See also David Stipp, “A New Path to Longevity,” Scientific American online, last modified January 1, 2012), https://www.scientificamerican.com/article/a-new-path-to-longevity/.

        Here our story shifts to Basel, Switzerland: U. S. Neill, “A Conversation with Michael Hall,” Journal of Clinical Investigation 127, no. 11 (November 1, 2017): 3916–17, https://doi.org/10.1172/jci97760; C. L. Williams, “Talking TOR: A Conversation with Joe Heitman and Rao Movva,” JCI Insight 3, no. 4 (February 22, 2018): e99816, https://doi.org/10.1172/jci.insight.99816.

        How cell size and shape are controlled: M. B. Ginzberg, R. Kafri, and M. Kirschner, “On Being the Right (Cell) Size,” Science 348, no. 6236 (May 15, 2015): 1245075, https://doi.org/10.1126/science.1245075.

        His paper was rejected: N. C. Barbet et al., “TOR Controls Translation Initiation and Early G1 Progression in Yeast,” Molecular Biology of the Cell 7, no. 1 (January 1, 1996): 25–42, https://doi.org/10.1091/mbc.7.1.25. For Hall’s recollections about the early days and the difficulty of getting the scientific community to accept that cell growth was actively controlled, see M. N. Hall, “TOR and Paradigm Change: Cell Growth Is Controlled,” Molecular Biology of the Cell 27, no. 18 (September 15, 2016): 2804–6, https://doi.org/10.1091/mbc.E15-05-0311.

        We can now see: D. Papadopoli et al., “mTOR as a Central Regulator of Lifespan and Aging,” F1000 Research 8 (July 2, 2019): 998, https://doi.org/10.12688/f1000research.17196.1; G. Y. Liu and D. M. Sabatini, “mTOR at the Nexus of Nutrition, Growth, Ageing and Disease,” Nature Reviews Molecular Biology 21, no. 4 (April 2020): 183–203, https://doi.org/10.1038/s41580-019-0199-y.

        It turns out that both a defective TOR: L. Partridge, M. Fuentealba, and B. K. Kennedy, “The Quest to Slow Ageing Through Drug Discovery,” Nature Reviews Drug Discovery 19, no. 8 (August 2020): 513–32, https://doi.org/10.1038/s41573-020-0067-7.

        Strikingly, even short courses: D. E. Harrison et al., “Rapamycin Fed Late in Life Extends Lifespan in Genetically Heterogeneous Mice,” Nature 460, no. 7253 (July 16, 2009): 392–95, https://doi.org/10.1038/nature08221; see the accompanying commentary by M. Kaeberlein and R. K. Kennedy, “Ageing: A Midlife Longevity Drug?,” Nature 460, no. 7253 (July 16, 2009): 331–32, https://doi.org/10.1038/460331a.

        Rapamycin also delayed: F. M. Menzies and D. C. Rubinsztein, “Broadening the Therapeutic Scope for Rapamycin Treatment,” Autophagy 6, no. 2 (February 2010): 286–87, https://doi.org/10.4161/auto.6.2.11078.

        While rapamycin inhibits: K. Araki et al., “mTOR Regulates Memory CD8 T-cell Differentiation,” Nature 460, no. 7251 (July 2, 2009): 108–12, https://doi.org/10.1038/nature08155.

        Another study, from 2009, showed that administering rapamycin: C. Chen et al. “mTOR Regulation and Therapeutic Rejuvenation of Aging Hematopoietic Stem Cells,” Science Signaling 2, no. 98 (November 24, 2009): ra75, https://doi.org/10.1126/scisignal.2000559.

        As one might expect: A. M. Eiden, “Molecular Pathways: Increased Susceptibility to Infection Is a Complication of mTOR Inhibitor Use in Cancer Therapy,” Clinical Cancer Research 22, no. 2 (January 15, 2016): 277–83, https://doi.org/10.1158/1078-0432.ccr-14-3239.

        “warrants caution”: A. J. Pagán et al., “mTOR-Regulated Mitochondrial Metabolism Limits Mycobacterium-Induced Cytotoxicity, Cell 185, no. 20 (September 29, 2022): 3720–38, e13, https://doi.org/10.1016/j.cell.2022.08.018.

        “I suppose the rapamycin advocates”: Michael Hall, email message to the author, September 29, 2022.

        The consortium will analyze: K. E. Creevy et al., “An Open Science Study of Ageing in Companion Dogs,” Nature 602, no. 7895 (February 2022): 51–57, https://doi.org/10.1038/s41586-021-04282-9.

        They go on to suggest: M. V. Blagosklonny and M. N. Hall, “Growth and Aging: A Common Molecular Mechanism,” Aging 1, no. 4 (April 20, 2009): 357–62, https://doi.org/10.18632/aging.100040.

        8. Lessons from a Lowly Worm

        A study of 2,700 Danish twins: A. M. Herskind et al., “The Heritability of Human Longevity: A Population-Based Study of 2,872 Danish Twin Pairs Born 1870–1900,” Human Genetics 97, no. 3 (March 1996): 319–23, https://doi.org/10.1007/BF02185763.

        Once he and Crick: Their views and plans are outlined in a 1971 report by Francis Crick and Sydney Brenner. See F. H. C. Crick and S. Brenner, Report to the Medical Research Council: On the Work of the Division of Molecular Genetics, Now the Division of Cell Biology, from 1961–1971 (Cambridge, UK: MRC Laboratory of Molecular Biology, November 1971), https://profiles.nlm.nih.gov/spotlight/sc/catalog/nlm:nlmuid-101584582X71-doc.

        Scientists went on to identify: For this work, Brenner was awarded the 2002 Nobel Prize in Physiology or Medicine, along with two of his former colleagues, John Sulston and Robert Horvitz. “The Nobel Prize in Physiology or Medicine 2002,” Nobel Prize online, accessed July 22, 2023, https://www.nobelprize.org/prizes/medicine/2002/summary/.

        As Hirsh recalled: David Hirsh, email message to the author, August 1, 2022.

        Instead, it turned out: D. B. Friedman and T. E. Johnson, “A Mutation in the age-1 Gene in Caenorhabditis elegans Lengthens Life and Reduces Hermaphrodite Fertility,” Genetics 118, no. 1 (January 1, 1988): 75–86, https://doi.org/10.1093/genetics/118.1.75.

        Johnson went on to show: T. E. Johnson, “Increased Life-Span of age-1 Mutants in Caenorhabditis elegans and Lower Gompertz Rate of Aging,” Science 249, no. 4971 (August 24, 1990): 908–12, https://doi.org/10.1126/science.2392681.

        Even after it finally appeared in the prestigious journal Science in 1990: David Stipp’s book The Youth Pill: Scientists at the Brink of an Anti-Aging Revolution (New York: Penguin, 2010) contains an engaging and detailed account of the history, personalities, and science behind the discovery of aging mutants.

        she felt inspired: Two firsthand accounts by Kenyon and Johnson of their discoveries are C. Kenyon, “The First Long-Lived Mutants: Discovery of the Insulin/IGF-1 Pathway for Ageing,” Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1561 (January 12, 2001): 9–16, https://doi.org/10.1098/rstb.2010.0276, and T. E. Johnson, “25 Years After age-1: Genes, Interventions and the Revolution in Aging Research,” Experimental Gerontology 48, no. 7 (July 2013): 640–43, https://doi.org/10.1016/j.exger.2013.02.023.

        her 1993 paper: C. Kenyon et al., “A C. elegans Mutant That Lives Twice as Long as Wild Type,” Nature 366, no. 6454 (December 2, 1993): 461–64, https://doi.org/10.1038/366461a0.

        Apart from her stellar academic pedigree: Stipp, Youth Pill.

        “I thought, ‘Oh, gosh’”: Ibid.

        As it turns out, the age-1 gene originally identified: The key papers for the identity of some of the key genes are (daf-2) K. D. Kimura, H. A. Tissenbaum, and G. Ruvkun, “daf-2, an Insulin Receptor-Like Gene That Regulates Longevity and Diapause in Caenorhabditis elegans,” Science 277, no. 5328 (August 15, 1997): 942–46, https://doi.org/10.1126/science.277.5328.942; (age-1, which turned out to be the same as daf-23), J. Z. Morris, H. A. Tissenbaum, and G. Ruvkun, “A Phosphatidylinositol-3-OH Kinase Family Member Regulating Longevity and Diapause in Caenorhabditis elegans, Nature 382, no. 6591 (August 8, 1996): 536–39, https://doi.org/10.1038/382536a0; (daf-16), S. Ogg et al., “The Fork Head Transcription Factor DAF-16 Transduces Insulin-like Metabolic and Longevity Signals in C. elegans,” Nature 389, no. 6654 (October 30, 1997): 994–99, https://doi.org/10.1038/40194, and K. Lin et al., “daf-16: An HNF-3/Forkhead Family Member That Can Function to Double the Life-Span of Caenorhabditis elegans,” Science 278, no. 5341 (November 14, 1997): 1319–22, https://doi.org/10.1126/science.278.5341.1319.

        “constitute a treasure trove”: C. J. Kenyon, “The Genetics of Ageing,” Nature 464, no. 7288 (March 25, 2010): 504–12, https://doi.org/10.1038/nature08980.

        Among the many reasons for this: H. Yan et al., “Insulin Signaling in the Long-Lived Reproductive Caste of Ants,” Science 377, no. 6610 (September 1, 2022): 1092–99, https://doi.org/10.1126/science.abm8767.

        However, if the experiment is repeated—but this time using a strain: E. Cohen et al., “Opposing Activities Protect Against Age-Onset Proteotoxicity,” Science 313, no. 5793 (September 15, 2006): 1604–10, https://doi.org/10.1126/science.1124646.

        Deleting the gene that codes for a protein: D. J. Clancy et al., “Extension of Life-span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein,” Science 292, no. 5514 (April 6, 2001): 104–6, https://doi.org/10.1126/science.1057991.

        The IGF-1 receptor is essential: M. Holzenberger et al., “IGF-1 Receptor Regulates Lifespan and Resistance to Oxidative Stress in Mice,” Nature 421, no. 6919 (January 9, 2003): 182–87, https://doi.org/10.1038/nature01298; G. J. Lithgow and M. S. Gill, “Physiology: Cost-Free Longevity in Mice,” Nature 421, no. 6919 (January 9, 2003): 125–26, https://doi.org/10.1038/421125a.

        An analysis of subjects: D. A. Bulger et al., “Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies,” G3 Genes|Genomes|Genetics 7, no. 1 (January 1, 2017): 257–68, https://doi.org/10.1534/g3.116.037184.

        Mutations known to impair IGF-1: Y. Suh et al., “Functionally Significant Insulin-like Growth Factor I Receptor Mutations in Centenarians,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 105, no. 9 (March 4, 2008): 3438–42, https://doi.org/10.1073/pnas.0705467105; T. Kojima et al., “Association Analysis Between Longevity in the Japanese Population and Polymorphic Variants of Genes Involved in Insulin and Insulin-like Growth Factor 1 Signaling Pathways,” Experimental Gerontology 39, nos. 11/12 (November/December 2004): 1595–98, https://doi.org/10.1016/j.exger.2004.05.007.

        Variants in proteins: See references in Kenyon, “Genetics of Ageing,” 504–12.

        Exactly as you might predict: S. Honjoh et al., “Signalling Through RHEB-1 Mediates Intermittent Fasting-Induced Longevity in C. elegans,” Nature 457, no. 7230 (February 5, 2009): 726–30, https://doi.org/10.1038/nature07583.

        This means that caloric restriction: B. Lakowski and S. Hekimi, “The Genetics of Caloric Restriction in Caenorhabditis elegans,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 95, no. 22 (October 27, 1998): 13091–96, https://doi.org/10.1073/pnas.95.22.13091.

        When worms were subjected: D. W. Walker et al., “Evolution of Lifespan in C. elegans,” Nature 405, no. 6784 (May 18, 2000): 296–97, https://doi.org/10.1038/35012693.

        To understand the difference: Stephen O’Rahilly, conversation with the author, August 11, 2022.

        Because of recent advances: H. R. Bridges et al., “Structural Basis of Mammalian Respiratory Complex I Inhibition by Medicinal Biguanides,” Science 379, no. 6630 (January 26, 2023): 351–57, https://www.science.org/doi/10.1126/science.ade3332.

        Disrupting our ability to utilize glucose: G. Rena, D. G. Hardie, and E. R. Pearson, “The Mechanisms of Action of Metformin,” Diabetologia 60, no. 9 (September 2017): 1577–85, https://doi.org/10.1007/s00125-017-4342-z; T. E. LaMoia and G. I. Shulman, “Cellular and Molecular Mechanisms of Metformin Action,” Endocrine Reviews 42, no. 1 (February 2021): 77–96, https://doi.org/10.1210/endrev/bnaa023.

        Although some studies have claimed: L. C. Gormsen et al., “Metformin Increases Endogenous Glucose Production in Non-Diabetic Individuals and Individuals with Recent-Onset Type 2 Diabetes,” Diabetologia 62, no. 7 (July 2019): 1251–56, https://doi.org/10.1007/s00125-019-4872-7.

        According to another study, the drug alters: H. Wu et al., “Metformin Alters the Gut Microbiome of Individuals with Treatment-Naive Type 2 Diabetes, Contributing to the Therapeutic Effects of the Drug,” Nature Medicine 23, no. 7 (July 2017): 850–58, https://doi.org/10.1038/nm.4345.

        Steve O’Rahilly’s work demonstrates: A. P. Coll et al., “GDF15 Mediates the Effects of Metformin on Body Weight and Energy Balance,” Nature 578, no. 7795 (February 2020): 444–48, https://doi.org/10.1038/s41586-019-1911-y.

        In the first, from the National Institute on Aging, long-term treatment: A. Martin-Montalvo et al., “Metformin Improves Healthspan and Lifespan in Mice,” Nature Communications 4 (2013): 2192, https://doi.org/10.1038/ncomms3192.

        A second study, in humans: C. A. Bannister et al., “Can People with Type 2 Diabetes Live Longer Than Those Without? A Comparison of Mortality in People Initiated with Metformin or Sulphonylurea Monotherapy and Matched, Non-Diabetic Controls,” Diabetes, Obesity and Metabolism 16, no. 11 (November 2014): 1165–73, https://doi.org/10.1111/dom.12354.

        One, from 2016, concluded that metformin: M. Claesen et al., “Mortality in Individuals Treated with Glucose-Lowering Agents: A Large, Controlled Cohort Study,” Journal of Clinical Endocrinology & Metabolism 101, no. 2 (February 1, 2016): 461–69, https://doi.org/10.1210/jc.2015-3184.

        Curiously, some of the toxicity: L. Espada et al., “Loss of Metabolic Plasticity Underlies Metformin Toxicity in Aged Caenorhabditis Elegans,” Nature Metabolism 2, no. 11 (November 2020): 1316–31, https://doi.org/10.1038/s42255-020-00307-1.

        Metformin also undermined: A. R. Konopka et al., “Metformin Inhibits Mitochondrial Adaptations to Aerobic Exercise Training in Older Adults,” Aging Cell 18, no. 1 (February 2019): e12880, https://doi.org/10.1111/acel.12880.

        And one study claimed that diabetics: Y. C. Kuan et al., “Effects of Metformin Exposure on Neurodegenerative Diseases in Elderly Patients with Type 2 Diabetes Mellitus,” Progress in Neuropsychopharmacol and Biological Psychiatry 79, pt. B (October 3, 2017): 1777–83 (2017), https://doi.org/10.1016/j.pnpbp.2017.06.002.

        The study’s goal is to see: “The Tame Trial: Targeting the Biology of Aging: Ushering a New Era of Interventions,” American Federation for Aging Research (AFAR) online, accessed August 1, 2023, https://www.afar.org/tame-trial.

        That was exactly the skepticism: A detailed account of how Guarente became involved in this research and his laboratory’s early discoveries is found in his book, Lenny Guarente, Ageless Quest: One Scientist’s Search for Genes That Prolong Youth (Cold Spring Harbor, NY: Cold Spring Harbor Press, 2003).

        Increasing the amount of Sir2: M. Kaeberlein, M. McVey, and L. Guarente, “The SIR2/3/4 Complex and SIR2 Alone Promote Longevity in Saccharomyces cerevisiae by Two Different Mechanisms,” Genes and Development 13, no. 19, October 1, 1994, 2570–80, https://doi.org/10.1101/gad.13.19.2570.

        They soon found, with mounting excitement: B. Rogina and S. L. Helfand, “Sir2 Mediates Longevity in the Fly Through a Pathway Related to Calorie Restriction,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 101, no. 45 (November 2004): 15998–6003, https://doi.org/10.1073/Pnas.040418410; H. A. Tissenbaum and L. Guarente, “Increased Dosage of a Sir-2 Gene Extends Lifespan in Caenorhabditis Elegans,” Nature 410, no. 6825 (March 8, 2001): 227–30, https://doi.org/10.1038/35065638.

        Sir2 turns out to be a deacetylase: S. Imai et al., “Transcriptional Silencing and Longevity Protein Sir2 Is an NAD-Dependent Histone Deacetylase,” Nature 403, no. 6771 (February 17, 2000): 795–800, https://doi.org/10.1038/35001622; W. Dang et al., “Histone H4 Lysine 16 Acetylation Regulates Cellular Lifespan,” Nature 459, no. 7248 (June 11, 2009): 802–7, https://doi.org/10.1038/nature08085.

        Sure enough, in both flies and yeast: S. J. Lin, P. A. Defossez, and L. Guarente, “Requirement of NAD and SIR2 for Life-span Extension by Calorie Restriction in Saccharomyces cerevisiae,” Science 289, no. 5487 (September 22, 2000): 2126–28, https://doi.org/10.1126/science.289.5487.2126; Rogina and Helfand, “Sir2 Mediates Longevity in the Fly,” 15998–6003.

        “When single genes are changed”: L. Guarente and C. Kenyon, “Genetic Pathways That Regulate Ageing in Model Organisms,” Nature 408, no. 6809 (November 9, 2000): 255–62, https://doi.org/10.1038/35041700.

        Finally, here was scientific evidence: K. T. Howitz. et al., “Small Molecule Activators of Sirtuins Extend Saccharomyces cerevisiae Lifespan,” Nature 425, no. 6809 (November 9, 2000): 191–96, https://doi.org/10.1038/nature01960.

        Although the mice remained overweight: J. A. Baur et al., “Resveratrol Improves Health and Survival of Mice on a High-Calorie Diet,” Nature 444, no. 7117 (November 16, 2006): 337–42, https://doi.org/10.1038/nature05354; M. Lagouge et al., “Resveratrol Improves Mitochondrial Function and Protects Against Metabolic Disease by Activating SIRT1 and PGC-1alpha,” Cell 127, no. 6 (December 15, 2006): 1109–22, https://doi.org/10.1016/j.cell.2006.11.013.

        Among other things: M. Kaeberlein et al., “Sir2-Independent Life Span Extension by Calorie Restriction in Yeast,” PLoS Biology 2, no. 9 (September 2004): E296, https://doi.org/10.1371/journal.pbio.0020296.

        Not only that, but they did not find: M. Kaeberlein et al., “Substrate-Specific Activation of Sirtuins by Resveratrol,” Journal of Biological Chemistry 280, no. 17 (April 2005): 17038–45, https://doi.org/10.1074/jbc.M500655200.

        Pharmaceutical companies do not usually: M. Pacholec et al., “SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1,” Journal of Biological Chemistry 285, no. 11 (March 2010): 8340–51, https://doi.org/10.1074/jbc.M109.088682.

        Five years after the sale: John La Mattina, “Getting the Benefits of Red Wine from a Pill? Not Likely,” Forbes online, last modified March 19, 2013, https://www.forbes.com/sites/johnlamattina/2013/03/19/getting-the-benefits-of-red-wine-from-a-pill-not-likely/.

        This led to another commentary: B. P. Hubbard et al., “Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators,” Science 339, no. 6124 (March 8, 2013): 1216–19, https://doi.org/10.1126/science.1231097; H. Yuan and R. Marmorstein, “Red Wine, Toast of the Town (Again),” Science 339, no. 6124 (March 8, 2013): 1156–57, https://doi.org/10.1126/science.1236463.

        None of them had any significant effect: R. Strong et al., “Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice,” Journals of Gerontology: Series A 68, no. 1 (January 2013): 6–16, https://doi.org/10.1093/gerona/gls070.

        Sir2 activation actually reduces: P. Fabrizio et al., “Sir2 Blocks Extreme Life-span Extension,” Cell 123, no. 4 (November 18, 2005): 655–67, https://doi.org/10.1016/j.cell.2005.08.042; see also commentary by B. K. Kennedy, E. D. Smith, and M. Kaeberlein, “The Enigmatic Role of Sir2 in Aging,” Cell 123, no. 4 (November 18, 2005): 548–50, https://doi.org/10.1016/j.cell.2005.11.002.

        Feeling embattled: C. Burnett et al., “Absence of Effects of Sir2 Overexpression on Lifespan in C. elegans and Drosophila,” Nature 477, no. 7365 (September 21, 2011): 482–85, https://doi.org/10.1038/nature10296; K. Baumann, “Ageing: A Midlife Crisis for Sirtuins,” Nature Reviews Molecular Cell Biology 12, no. 11 (October 21, 2011): 688, https://doi.org/10.1038/nrm3218; D. B. Lombard et al., “Ageing: Longevity Hits a Roadblock,” Nature 477, no. 7365 (September 21, 2011): 410–11, https://doi.org/10.1038/477410a; M. Viswanathan and L. Guarente, “Regulation of Caenorhabditis elegans lifespan by sir-2.1 Transgenes,” Nature 477, no. 7365 (September 21, 2011): E1–2, https://doi.org/10.1038/nature10440.

        The protein is also a histone: R. Mostoslavsky et al., “Genomic Instability and Aging-like Phenotype in the Absence of Mammalian SIRT6,” Cell 124, no. 2 (January 24, 2006): 315–29, https://doi.org/10.1016/j.cell.2005.11.044; E. Michishita et al. “SIRT6 Is a Histone H3 Lysine 9 Deacetylase That Modulates Telomeric Chromatin,” Nature 452, no. 7186 (March 27, 2008): 492–96, https://doi.org/10.1038/nature06736; A. Roichman et al., “SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan,” Journals of Gerontology: Series A 72, no. 5 (May 1, 2017): 603–15, https://doi.org/10.1093/gerona/glw152; X. Tian et al., “SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species,” Cell 177, no. 3 (April 18, 2019): 622–38.e22, https://doi.org/10.1016/j.cell.2019.03.043.

        Many in the gerontology community: C. Brenner, “Sirtuins Are Not Conserved Longevity Genes,” Life Metabolism 1, no. 2 (October 2022), 122–33, https://doi.org/10.1093/lifemeta/loac025.

        It is made by the body: P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ Metabolism in Health and Disease,” Trends in Biochemical Sciences 32, no. 1 (January 2017): 12–19, https://doi.org/10.1016/j.tibs.2006.11.006.

        It can also cause a host: H. Massudi et al., “Age-Associated Changes in Oxidative Stress and NAD+ Metabolism in Human Tissue,” PLoS One 7, no. 7 (2012): e42357, https://doi.org/10.1371/journal.pone.0042357; X. H. Zhu et al., “In Vivo NAD Assay Reveals the Intracellular NAD Contents and Redox State in Healthy Human Brain and Their Age Dependences,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 112, no. 9 (February 17, 2015): 2876–81, https://doi.org/10.1073/pnas.1417921112; A. J. Covarrubias et al., “NAD+ Metabolism and Its Roles in Cellular Processes During Ageing,” Nature Reviews Molecular Cell Biology 22, no. 2 (February 2021): 119–41, https://doi.org/10.1038/s41580-020-00313-x.

        Increasing NAD levels: H. Zhang et al., “NAD+ Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice,” Science 352, no. 6292 (April 28, 2016): 1436–43, https://doi.org/10.1126/science.aaf2693; see also the commentary on this report by L. Guarente, “The Resurgence of NAD+,” Science 352, no. 6292 (April 28, 2016): 1396–97, https://doi.org/10.1126/science.aag1718; K. F. Mills et al., “Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice,” Cell Metabolism 24, no. 6 (December 13, 2016): 795–806, https://doi.org/10.1016/j.cmet.2016.09.013.

        “I expressly tell people”: Charles Brenner, email message to the author, January 22, 2023.

        The results of taking: Partridge, Fuentealba, and Kennedy, “Quest to Slow Ageing,” 513–32.

        Global sales of NMN: Global News Wire, “Nicotinamide Mononucleotide (NMN) Market Will Turn Over USD 251.2 to Revenue to Cross USD 953 Million in 2022 to 2028 Research by Business Opportunities, Top Companies, Opportunities Planning, Market-Specific Challenges,” August 19, 2022, https://www.globenewswire.com/en/news-release/2022/08/19/2501489/0/en/Nicotinamide-Mono nucleotide-NMN-Market-will-Turn-over-USD-251-2-to-Revenue-to-Cross-USD-953-million-in-2022-to-2028-Research-by-Business-Opportunities-Top-Companies-opportunities-p.html.

        9. The Stowaway Within Us

        “I quit my job”: Martin Weil, “Lynn Margulis, Leading Evolutionary Biologist, Dies at 73,” Washington Post online, November 26, 2011, https://www.washingtonpost.com/local/obituaries/lynn-margulis-leading-evolutionary-biologist-dies-at-73/2011/11/26/gIQAQ 5dezN_story.html.

        Margulis wrote an essay: Lynn Margulis, “Two Hit, Three Down—The Biggest Lie: David Ray Griffin’s Work Exposing 9/11,” in Dorion Sagan, ed., Lynn Margulis: The Life and Legacy of a Scientific Rebel (White River Junction, VT: Chelsea Green, 2012), 150–55.

        questioned whether the human immunodeficiency virus (HIV): Joanna Bybee, “No Subject Too Sacred,” in Sagan, ed. Lynn Margulis, 156–62.

        You could think of Margulis’s idea: L. Sagan, “On the Origin of Mitosing Cells,” Journal of Theoretical Biology 14, no. 3 (March 14, 1967): 255–74, https://doi.org/10.1016/0022-5193(67)90079-3.

        In the same way that water: The idea that ATP is made by using a proton gradient across a membrane was proposed by Peter Mitchell and highly controversial initially. He went on to receive the 1978 Nobel Prize. See: Royal Swedish Academy of Sciences, “The Nobel Prize in Chemistry 1978: Peter Mitchell,” press release, October 17, 1978, available at Nobel Prize online, https://www.nobelprize.org/prizes/chemis try/1978/press-release/. Part of the 1997 Chemistry Nobel Prize was awarded to Paul Boyer and John Walker for their work on the molecular turbine that actually makes the ATP. The Nobel press release has an excellent description of it: Royal Swedish Academy of Sciences, “The Nobel Prize in Chemistry 1997: Paul D. Boyer, John E. Walker, Jens C. Skou,” press release, October 15, 1997, available at Nobel Prize online, https://www.nobelprize.org/prizes/chemistry/1997/press-release/.

        The human body has to generate: F. Du et al., “Tightly Coupled Brain Activity and Cerebral ATP Metabolic Rate,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 105, no. 17 (April 29, 2008): 6409–14, https://doi.org/10.1073/pnas.0710766105. For a popular account of this article, see N. Swaminathan, “Why Does the Brain Need So Much Power?,” Scientific American online, April 29, 2008, https://www.scientificamerican.com/article/why-does-the-brain-need-s/.

        The child will carry mostly: Ian Sample, “UK Doctors Select First Women to Have ‘Three-Person Babies,’” Guardian (US edition) online, last modified February 1, 2018, https://www.theguardian.com/science/2018/feb/01/permission-given-to-create-britains-first-three-person-babies.

        Excessive contacts: J. Valades et al, “ER Lipid Defects in Neuropeptidergic Neurons Impair Sleep Patterns in Parkinson’s Diseases,” Neuron 98, no. 6 (June 27, 2018): 1155–69, https://doi.org/10.1016/j.neuron.2018.05.022.

        Perhaps no other structure: N. Sun, R. J. Youle, and T. Finkel, “The Mitochondrial Basis of Aging,” Molecular Cell 61, no. 5 (March 3, 2016): 654–66, https://doi.org/10.1016/j.molcel.2016.01.028.

        In 1954: D. Harman, “Origin and Evolution of the Free Radical Theory of Aging: A Brief Personal History, 1954–2009,” Biogerontology 10, no. 6 (December 2009): 773–81, https://doi.org/10.1007/s10522-009-9234-2.

        Harman’s idea: R. S. Sohal and R. Weindruch, “Oxidative Stress, Caloric Restriction, and Aging,” Science 273, no. 5271 (July 5, 1996): 59–63, https://doi.org/10.1126/science.273.5271.59.

        Over time, they damage: E. R. Stadtman, “Protein Oxidation and Aging,” Free Radical Research 40, no. 12 (December, 2006): 1250–58, https://doi.org/10.1080/10715760600918142.

        Strains of mice that made: S. E. Schriner et al., “Extension of Murine Life Span by Overexpression of Catalase Targeted to Mitochondria,” Science 308, no. 5730 (June 24, 2005): 1909–11, https://doi.org/10.1126/science.1106653.

        As recently as 2022: J. Hartke et al., “What Doesn’t Kill You Makes You Live Longer—Longevity of a Social Host Linked to Parasite Proteins,” bioRxiv (2022): https://doi.org/10.1101/2022.12.23.521666.

        One way they may minimize: A. Rodríguez-Nuevo et al., “Oocytes Maintain ROS-free Mitochondrial Metabolism by Suppressing Complex I,” Nature 607, no. 7920 (July 2022): 756–61, https://doi.org/10.1038/s41586-022-04979-5.

        Alas, although there were isolated reports: G. Bjelakovic et al., “Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention: Systematic Review and Meta-analysis,” Journal of the American Medical Association (JAMA) 297, no. 8 (2007): (February 28, 2007): 842–57, https://doi.org/10.1001/jama.297.8.842.

        But over the last ten to fifteen years: S. Hekimi, J. Lapointe, and Y. Wen, “Taking a ‘Good’ Look at Free Radicals in the Aging Process,” Trends in Cell Biology 21, no. 10 (October 2011): 569–76, https://doi.org/10.1016/j.tcb.2011.06.008. There are also first-rate discussions of the evidence in López-Otín et al., “Hallmarks of Aging,” 1194–217, and A. Bratic and N. G. Larsson, “The Role of Mitochondria in Aging,” Journal of Clinical Investigation 123, no. 3 (March 2013): 951–57, https://doi.org/10.1172/JCI64125.

        Studies with other animals: See the papers cited in Bratic and Larsson, “Role of Mitochondria,” 951–57.

        In fact, contrary to the report: V. I. Pérez et al., “The Overexpression of Major Antioxidant Enzymes Does Not Extend the Lifespan of Mice,” Aging Cell 8, no. 1 (February 2009): 73–75, https://doi.org/10.1111/j.1474-9726.2008.00449.x.

        Giving them a herbicide: W. Yang and S. Hekimi, “A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans,” PLoS Biology 8, no. 12 (December 2010): e1000556, https://doi.org/10.1371/journal.pbio.1000556.

        The naked mole rat lives: B. Andziak et al., “High Oxidative Damage Levels in the Longest-Living Rodent, the Naked Mole-Rat,” Aging Cell 5, no. 6 (December 2006): 463–71, https://doi.org/10.1111/j.1474-9726.2006.00237.x; F. Saldmann et al., “The Naked Mole Rat: A Unique Example of Positive Oxidative Stress,” Oxidative Medicine and Cellular Longevity 2019 (February 7, 2019): 4502819, https://doi.org/10.1155/2019/450281.9.

        This may be an example of something called hormesis: V. Calabrese et al., “Hormesis, Cellular Stress Response and Vitagenes as Critical Determinants in Aging and Longevity,” Molecular Aspects of Medicine 32, nos. 4–6 (August–December 2011): 279–304, https://doi.org/10.1016/j.mam.2011.10.007.

        At the age of about sixty weeks: A. Trifunovic et al., “Premature Ageing in Mice Expressing Defective Mitochondrial DNA Polymerase,” Nature 429, no. 6990 (May 27, 2004): 417–23, https://doi.org/10.1038/nature02517. This and several other papers published the following year are reviewed in L. A. Loeb, D. C. Wallace, and G. M. Martin, “The Mitochondrial Theory of Aging and Its Relationship to Reactive Oxygen Species Damage and Somatic MtDNA Mutations,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 102, no. 52 (December 19, 2005): 18769–70, https://doi.org/10.1073/pnas.0509776102.

        There are reports of a complicated interplay: E. F. Fang et al., “Nuclear DNA Damage Signalling to Mitochondria in Ageing,” Nature Reviews Molecular Cell Biology 17, no. 5 (May 2016): 308–21, https://doi.org/10.1038/nrm.2016.14; R. H. Hämäläinen et al., “Defects in mtDNA Replication Challenge Nuclear Genome Stability Through Nucleotide Depletion and Provide a Unifying Mechanism for Mouse Progerias,” Nature Metabolism 1, no. 10 (October 2019): 958–65, https://doi.org/10.1038/s42255-019-0120-1.

        In these cases, clones: T. E. S. Kauppila, J. H. K. Kauppila, and N. G. Larsson, “Mammalian Mitochondria and Aging: An Update,” Cell Metabolism 25, no. 1 (January 10, 2017): 57–71, https://doi.org/10.1016/j.cmet.2016.09.017.

        The effect is most pronounced: N. Sun, R. J. Youle, and T. Finkel, “The Mitochondrial Basis of Aging,” Molecular Cell 61, no. 5 (March 3, 2016): 654–66, https://doi.org/10.1016/j.molcel.2016.01.028.

        One characteristic of aging: C. Franceschi et al., “Inflamm-aging. An Evolutionary Perspective on Immunosenescence,” Annals of the New York Academy of Sciences 908, no. 1 (June 2000): 244–54, https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.

        Some proteins can sense: N. P. Kandul et al., “Selective Removal of Deletion-Bearing Mitochondrial DNA in Heteroplasmic Drosophila,” Nature Communications 7 (November 14, 2016): art. 13100, https://doi.org/10.1038/ncomms13100.

        The inhibition of TOR: M. Morita et al., “mTORC1 Controls Mitochondrial Activity and Biogenesis Through 4E-BP-Dependent Translational Regulation,” Cell Metabolism 18, no. 5 (November 5, 2013): 698–711, https://doi.org/10.1016/j.cmet.2013.10.001.

        In studies, the increased mitochondrial activity: B. M. Zid et al., “4E-BP Extends Lifespan upon Dietary Restriction by Enhancing Mitochondrial Activity in Drosophila,” Cell 139, no. 1 (October 2, 2009): 149–60, https://doi.org/10.1016/j.cell.2009.07.034.

        Besides TOR, other signals: C. Cantó and J. Auwerx, “PGC-1α, SIRT1 and AMPK, an Energy Sensing Network That Controls Energy Expenditure,” Current Opinion in Lipidology 20, no. 2 (April 2009): 98–105, https://doi.org/10.1097/mol.0b013e328328d0a4.

        Sometimes, though, this effort is futile: C. Cantó and J. Auwerx, “PGC-1α, SIRT1 and AMPK, an Energy Sensing Network That Controls Energy Expenditure,” Current Opinion in Lipidology 20, no. 2 (April 2009): 98–105, https://doi.org/10.1097/mol.0b013e328328d0a4.

        Physical activity turns on: See Sun, Youle, and Finkel, “Mitochondrial Basis of Aging,” 654–66; J. L. Steiner et al., “Exercise Training Increases Mitochondrial Biogenesis in the Brain,” Journal of Applied Physiology 111, no. 4 (October 2011): 1066–71, https://doi.org/10.1152/japplphysiol.00343.2011.

        One way it spurs mitochondrial function: Z. Radak, H. Y. Chung, and S. Goto, “Exercise and Hormesis: Oxidative Stress-Related Adaptation for Successful Aging,” Biogerontology 6, no. 1 (2005): 71–75, https://doi.org/10.1007/s10522-004-7386-7.

        Of course, exercise does far more: G. C. Rowe, A. Safdar, and Z. Arany, “Running Forward: New Frontiers in Endurance Exercise Biology,” Circulation 129, no. 7 (February 18, 2014): 798–810, https://doi.org/10.1161/circulationaha.113.001590.

        But it is better repaired: J. B. Stewart and N. G. Larsson, “Keeping mtDNA in Shape Between Generations,” PLoS Genetics 10, no. 10 (October 9, 2014): e1004670, https://doi.org/10.1371/journal.pgen.1004670.

        Nevertheless, selection is not perfect: Y. Bentov et al., “The Contribution of Mitochondrial Function to Reproductive Aging,” Journal of Assistive Reproduction and Genetics 28, no. 9 (September 2011): 773–83, https://doi.org/10.1007/s10815-011-9588-7.

        10. Aches, Pains, and Vampire Blood

        These tumor suppressor genes: M. Serrano et al., “Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a,” Cell 88, no. 5 (March 7, 1997): 593–602, https://doi.org/10.1016/s0092-8674(00)81902-9; M. Narita and S. W. Lowe, “Senescence Comes of Age,” Nature Medicine 11, no. 9 (September 2005): 920–22, https://doi.org/10.1038/nm0905-920.

        Senescent cells are often produced: M. Demaria et al., “An Essential Role for Senescent Cells in Optimal Wound Healing Through Secretion of PDGF-AA,” Developmental Cell 31, no. 6 (December 22, 2014): 722–33, https://doi.org/10.1016/j.devcel.2014.11.012; M. Serrano, “Senescence Helps Regeneration,” Developmental Cell 31, no. 6 (December 22, 2014): 671–72, https://doi.org/10.1016/j.devcel.2014.12.007.

        As damage to our DNA accumulates: These reviews offer a comprehensive view of senescent cells’ role in aging: J. Campisi and F. d’Adda di Fagagna, “Cellular Senescence: When Bad Things Happen to Good Cells,” Nature Reviews Molecular Cell Biology 8, no. 9 (September 2007): 729–40, https://doi.org/10.1038/nrm2233; J. M. van Deursen, “The Role of Senescent Cells in Ageing,” Nature 509, no. 7501 (May 22, 2014): 439–46, https://doi.org/10.1038/nature13193; J. Gil, “Cellular Senescence Causes Ageing,” Nature Reviews Molecular Cell Biology 20 (July 2019): 388, https://doi.org/10.1038/s41580-019-0128-0.

        They also lived: D. J. Baker et al., “Clearance of p16Ink4a-Positive Senescent Cells Delays Ageing-Associated Disorders,” Nature 479, no. 7372 (November 2, 2011): 232–36, https://doi.org/10.1038/nature10600; D. J. Baker et al., “Naturally Occurring p16(Ink4a)-Positive Cells Shorten Healthy Lifespan,” Nature 530, no. 7589 (February 11, 2016): 184–89, https://doi.org/10.1038/nature16932; see also the commentary by E. Callaway, “Destroying Worn-out Cells Makes Mice Live Longer,” Nature (February 3, 2016): https://doi.org/10.1038/nature.2016.19287.

        When researchers used an oral cocktail: M. Xu et al., “Senolytics Improve Physical Function and Increase Lifespan in Old Age,” Nature Medicine 24, no. 8 (August 2018): 1246–56, https://doi.org/10.1038/s41591-018-0092-9.

        But this isn’t strictly true: Donavyn Coffey, “Does the Human Body Replace Itself Every 7 Years?,” Live Science, last modified July 22, 2022, https://www.livescience.com/33179-does-human-body-replace-cells-seven-years.html; P. Heinke et al., “Diploid Hepatocytes Drive Physiological Liver Renewal in Adult Humans,” Cell Systems 13, no. 6 (June 15, 2022): 499–507.e12, https://doi.org/10.1016/j.cels.2022.05.001; K. L. Spalding et al., “Dynamics of Hippocampal Neurogenesis in Adult Humans,” Cell 153, no. 6 (June 6, 2013): 1219–27, https://doi.org/10.1016/j.cell.2013.05.002; A. Ernst et al., “Neurogenesis in the Striatum of the Adult Human Brain,” Cell 156, no. 5 (February 27, 2014): 1072–83, https://doi.org/10.1016/j.cell.2014.01.044.

        This leads to immune system decline: For a comprehensive discussion of stem cell depletion, see López-Otín et al., “Hallmarks of Aging,” 1194–217, https://doi.org/10.1016/j.cell.2013.05.039.

        After six weeks, the mice: A. Ocampo et al., “In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming,” Cell 167, no. 7 (December 15, 2016): 1719–33.e12, https://doi.org/10.1016/j.cell.2016.11.052.

        Not only did the animals: K. C. Browder et al., “In Vivo Partial Reprogramming Alters Age-Associated Molecular Changes During Physiological Aging in Mice,” Nature Aging 2, no. 3 (March 2022): 243–53, https://doi.org/10.1038/s43587-022-00183-2; D. Chondronasiou et al., “Multi-omic Rejuvenation of Naturally Aged Tissues by a Single Cycle of Transient Reprogramming,” Aging Cell 21, no. 3 (March 2022): e13578, https://doi.org/10.1111/acel.13578; D. Gill et al., “Multi-omic Rejuvenation of Human Cells by Maturation Phase Transient Reprogramming,” eLife 11 (April 8, 2022): e71624, https://doi.org/10.7554/eLife.71624.

        Their DNA methylation: Y. Lu et al., “Reprogramming to Recover Youthful Epigenetic Information and Restore Vision,” Nature 588, no. 7836 (December 2020): 124–29, https://doi.org/10.1038/s41586-020-2975-4; see also the news item K. Servick, “Researchers Restore Lost Sight in Mice, Offering Clues to Reversing Aging,” Science online, last modified December 2, 2020, https://doi.org/10.1126/science.abf9827.

        These effects could be reversed: J.-H. Yang et al., “Loss of Epigenetic Information as a Cause of Mammalian Aging,” Cell 186, no. 2 (January 19, 2023), https://doi.org/10.1016/j.cell.2022.12.027.

        He not only connected two rats: R. B. S. Harris, “Contribution Made by Parabiosis to the Understanding of Energy Balance Regulation,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease 1832, no. 9 (September 2013): 1449–55, https://doi.org/10.1016/j.bbadis.2013.02.021.

        “If two rats are not adjusted”: C. M. McCay, F. Pope, and W. Lunsford, “Experimental Prolongation of the Life Span,” Journal of Chronic Diseases 4, no. 2 (August 1956): 153–58, https://www.sciencedirect.com/science/article/abs/pii/0021968156900157. Quoted in an overview of the field by M. Scudellari, “Ageing Research: Blood to Blood,” Nature 517, no. 7535 (January 22, 2015): 426–29, https://doi.org/10.1038/517426a.

        But for some reason: Scudellari, “Ageing Research,” 426–29.

        By the same criteria: M. J. Conboy, I. M. Conboy, and T. A. Rando, “Heterochronic Parabiosis: Historical Perspective and Methodological Considerations for Studies of Aging and Longevity,” Aging Cell 12, no. 3 (June 2013): 525–30, https://doi.org/10.1111/acel.12065.

        He showed that old blood: S. A. Villeda et al., “The Ageing Systemic Milieu Negatively Regulates Neurogenesis and Cognitive Function,” Nature 477, no. 7362 (August 31, 2011): 90–94, https://doi.org/10.1038/nature10357; S. A. Villeda et al., “Young Blood Reverses Age-Related Impairments in Cognitive Function and Synaptic Plasticity in Mice,” Nature Medicine 20, no. 6 (June 2014): 659–63, https://doi.org/10.1038/nm.3569.

        the Conboys and Rando pointed out: Conboy, Conboy, and Rando, “Heterochronic Parabiosis,” 525–30.

        that were not joined: J. Rebo et al, “A Single Heterochronic Blood Exchange Reveals Rapid Inhibition of Multiple Tissues by Old Blood,” Nature Communications 7, no. 1 (June 10, 2016): art. 13363, https://doi.org/10.1038/ncomms13363.

        Such cautionary views: Rebecca Robbins, “Young-Blood Transfusions Are on the Menu at Society Gala,” Scientific American online, last modified March 2, 2018, https://www.scientificamerican.com/article/young-blood-transfusions-are-on-the-menu-at-society-gala/.

        Alarmed, the US Food and Drug Administration (FDA): Scott Gottlieb, “Statement from FDA Commissioner Scott Gottlieb, M.D., and Director of FDA’s Center for Biologics Evaluation and Research Peter Marks, M.D., Ph.D., Cautioning Consumers Against Receiving Young Donor Plasma Infusions That Are Promoted as Unproven Treatment for Varying Conditions,” U.S. Food and Drug Administration, press release, February 19, 2019, https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-director-fdas-center-biologics-evaluation-and-0.

        “Our patients really want”: Emily Mullin, “Exclusive: Ambrosia, the Young Blood Transfusion Startup, Is Quietly Back in Business,” OneZero, last modified November 8, 2019, https://onezero.medium.com/exclusive-ambrosia-the-young-blood-transfusion-startup-is-quietly-back-in-business-ee2b7494b417.

        As for old blood, they zeroed in: J. M. Castellano et al., “Human Umbilical Cord Plasma Proteins Revitalize Hippocampal Function in Aged Mice,” Nature 544, no. 7651 (April 27, 2017): 488–92, https://doi.org/10.1038/nature22067; H. Yousef et al., “Aged Blood Impairs Hippocampal Neural Precursor Activity and Activates Microglia Via Brain Endothelial Cell VCAM1,” Nature Medicine 25, no. 6 (June 2019): 988–1000, https://doi.org/10.1038/s41591-019-0440-4.

        In a second study: F. S. Loffredo et al., “Growth Differentiation Factor 11 Is a Circulating Factor That Reverses Age-Related Cardiac Hypertrophy,” Cell 153, no. 4 (May 9, 2013): 828–39, https://doi.org/10.1016/j.cell.2013.04.015; M. Sinha et al., “Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle,” Science 344, no. 6184 (May 9, 2014): 649–52, https://doi.org/10.1126/science.1251152; L. Katsimpardi et al., “Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors,” Science 344, no. 6184 (May 9, 2014): 630–34, https://doi.org/10.1126/science.1251141. These findings are described in a very accessible article by Carl Zimmer, “Young Blood May Hold Key to Reversing Aging,” New York Times online, May 4, 2014, https://www.nytimes.com/2014/05/05/science/young-blood-may-hold-key-to-reversing-aging.html.

        Clearing those senescent cells: O. H. Jeon et al., “Systemic Induction of Senescence in Young Mice After Single Heterochronic Blood Exchange,” Nature Metabolism 4, no. 8 (August 2022): 995–1006, https://doi.org/10.1038/s42255-022-00609-6.

        It turns out that blood: A. M. Horowitz et al., “Blood Factors Transfer Beneficial Effects of Exercise on Neurogenesis and Cognition to the Aged Brain,” Science 369, no. 6500 (July 10, 2020): 167–73, https://doi.org/10.1126/science.aaw2622.

        Rando and Wyss-Coray: J. O. Brett et al., “Exercise Rejuvenates Quiescent Skeletal Muscle Stem Cells in Old Mice Through Restoration of Cyclin D1,” Nature Metabolism 2, no. 4 (April 2020): 307–17, https://doi.org/10.1038/s42255-020-0190-0.

        Although they both stimulated: M. T. Buckley et al., “Cell Type–Specific Aging Clocks to Quantify Aging and Rejuvenation in Regenerative Regions of the Brain,” Nature Aging 3 (January 2023): 121–37, https://www.nature.com/articles/s43587-022-00335-4.

        He went to Resurgence Wellness, a Texas outfit: David Averre and Neirin Gray Desai, “Tech Billionaire, 45, Who Spends $2 Million a Year Trying to Reverse His Ageing Reveals Latest Gadget He Uses That Puts His Body Through the Equivalent of 20,000 Sit Ups in 30 Minutes,” Daily Mail (London) online, last modified April 5, 2023, https://www.dailymail.co.uk/news/article-11942581/Tech-billionaire-45-spends-2million-year-trying-reverse-ageing-reveals-latest-gadget.html; Orianna Rosa Royle, “Tech Billionaire Who Spends $2 Million a Year to Look Young Is Now Swapping Blood with His 17-Year-Old Son and 70-Year-Old Father,” Fortune online, last modified May 23, 2023, https://fortune.com/2023/05/23/bryan-johnson-tech-ceo-spends-2-million-year-young-swapping-blood-17-year-old-son-talmage-70-father/; Alexa Mikhail, “Tech CEO Bryan Johnson admits he saw ‘no benefits’ after controversially injecting his son’s plasma into his body to reverse his biological age,” Fortune, July 8, 2023, https://fortune.com/well/2023/07/08/bryan-johnson-plasma-exchange-results-anti-aging/.

        11. Crackpots or Prophets?

        An entire field of biology: S. Bojic et al., “Winter Is Coming: The Future of Cryopreservation,” BMC Biology 19, no. 1 (March 24, 2021): 56, https://doi.org/10.1186/s12915-021-00976-8.

        The idea has been around a long time: Paul Vitello, “Robert C. W. Ettinger, a Proponent of Life After (Deep-Frozen) Death, Is Dead at 92,” New York Times online, July 29, 2011, https://www.nytimes.com/2011/07/30/us/30ettinger.html; Associated Press, “Cryonics Pioneer Robert Ettinger Dies,” Guardian (US edition) online, last modified July 26, 2011, https://www.theguardian.com/science/2011/jul/26/cryonics-pioneer-robert-ettinger-dies.

        One such proponent is Elon Musk: See “Elon Musk on Cryonics,” Elon Musk, interviewed by Zach Latta, YouTube video, 2:09, uploaded by Hack Club on May 4, 2020, https://www.youtube.com/watch?v=MSIjNKssXAc.

        “die on Mars”: Daniel Terdiman, “Elon Musk at SXSW: ‘I’d Like to Die on Mars, Just Not on Impact,’” CNET, last modified March 9, 2013, https://www.cnet.com/culture/elon-musk-at-sxsw-id-like-to-die-on-mars-just-not-on-impact/.

        It would be like trying to deduce the entire state of a country: See a particularly cutting article that deals with this and the general issue of cryonics by the neurobiologist Michael Hendrick, “The False Science of Cryonics,” MIT Technology Review, September 15, 2015, https://www.technologyreview.com/2015/09/15/109906/the-false-science-of-cryonics.

        What would be the point: Albert Cardona, conversation with the author, January 12, 2023.

        She took the matter to court: Owen Bowcott and Amelia Hill, “14-Year-Old Girl Who Died of Cancer Wins Right to Be Cryogenically Frozen,” Guardian (US edition) online, last modified November 18, 2016, https://www.theguardian.com/science/2016/nov/18/teenage-girls-wish-for-preservation-after-death-agreed-to-by-court.

        This elicited an outcry: Alexandra Topping and Hannah Devlin, “Top UK Scientist Calls for Restrictions on Marketing Cryonics,” Guardian (US edition) online, last modified November 18, 2016, https://www.theguardian.com/science/2016/nov/18/top-uk-scientist-calls-for-restrictions-on-marketing-cryonics.

        In almost a mirror image: Tom Verducci, “What Really Happened to Ted Williams?,” Sports Illustrated online, last modified August 18, 2003, https://vault.si.com/vault/2003/08/18/what-really-happened-to-ted-williams-a-year-after-the-jarring-news-that-the-splendid-splinter-was-being-frozen-in-a-cryonics-lab-new-details-including-a-decapitation-suggest-that-one-of-americas-greatest-heroes-may-never-rest-in.

        According to press reports: See sources cited in https://en.wikipedia.org/wiki/List_of_people_who_arranged_for_cryonics; when I wrote to Nick Bostrom, he replied, “It has been thus reported in the media. My general stance however has been not to comment on my funereal or other posthumous arrangements . . .”, email January 11, 2023.

        a San Francisco company called Nectome: Antonio Regalado, “A Startup Is Pitching a Mind-Uploading Service That Is ‘100 Percent Fatal,’” MIT Technology Review online, last modified March 13, 2018, https://www.technologyreview.com/2018/03/13/144721/a-startup-is-pitching-a-mind-uploading-service-that-is-100-percent-fatal/.

        In response, Robert McIntyre, the founder of Nectome said: Sharon Begley, “After Ghoulish Allegations, a Brain-Preservation Company Seeks Redemption,” Stat (online), January 30, 2019, https://www.statnews.com/2019/01/30/nectome-brain-preservation-redemption.

        He began his career: Evelyn Lamb, “Decades-Old Graph Problem Yields to Amateur Mathematician,” Quanta, last modified April 17, 2018, https://www.quantamagazine.org/decades-old-graph-problem-yields-to-amateur-mathematician-20180417/.

        He asserts that the first humans: Aubrey de Grey, “A Roadmap to End Aging,” TED Talk, July 2005, 22:35, https://www.ted.com/talks/aubrey_de_grey_a_roadmap_to_end_aging/.

        if we crack seven key problems: A. D. de Grey et al., “Time to Talk SENS: Critiquing the Immutability of Human Aging,” Annals of the New York Academy of Sciences 959, no. 1 (April 2002): 452–62, discussion 463, https://doi.org/10.1111/j.1749–6632.2002.tb02115.x; A. D. de Grey, “The Foreseeability of Real Anti-Aging Medicine: Focusing the Debate,” Experimental Gerontology 38, no. 9 (September 1, 2013): 927–34, https://doi.org/10.1016/s0531-5565(03)00155-4.

        In response to his claims: H. Warner et al., “Science Fact and the SENS Agenda: What Can We Reasonably Expect from Ageing Research,” EMBO Reports 6, no. 11 (November 2005): 1006–8, https://doi.org/10.1038/sj.embor.7400555.

        Other mainstream researchers: Estep et al., “Life Extension Pseudoscience and the SENS Plan,” MIT Technology Review, 2006, http://www2.technologyreview.com/sens/docs/estepetal.pdf; Sherwin Nuland, “Do You Want to Live Forever?,” MIT Technology Review online, last modified February 1, 2005, https://www.technologyreview.com/2005/02/01/231686/do-you-want-to-live-forever/.

        One of them, Richard Miller: Richard Miller, open letter to Aubrey de Grey, MIT Technology Review online, November 29, 2005, https://www.technologyreview.com/2005/11/29/274243/debating-immortality/.

        “There’s going to be much less difference”: Comments by Aubrey de Grey in The Immortalists, ibid.

        He denied the allegations: Analee Armstrong, “Anti-Aging Foundation SENS Fires de Grey After Allegations He Interfered with Investigation into His Conduct,” Fierce Biotech, last modified August 23, 2021, https://www.fiercebiotech.com/biotech/anti-aging-foundation-sens-turfs-de-grey-after-allegations-he-interfered-investigation-into.

        A company report: SENS Research Foundation, “Announcement from the SRF Board of Directors,” news release, March 23, 2022, https://www.sens.org/announcement-from-the-srf-board-of-directors/.

        De Grey, undaunted: “Meet the Team,” LEV Foundation online, accessed August 7, 2023, https://www.levf.org/team.

        For example, he has predicted: David Sinclair, quoted in Antonio Regalado, “How Scientists Want to Make You Young Again,” MIT Technology Review online, last modified October 25, 2022, https://www.technologyreview.com/2022/10/25/1061644/how-to-be-young-again/.

        Such statements: Catherine Elton, “Has Harvard’s David Sinclair Found the Fountain of Youth,” Boston online, last modified October 29, 2019, https://www.bostonmagazine.com/health/2019/10/29/david-sinclair/.

        I doubt whether: David Sinclair and Matthew LaPlante, Lifespan: Why We Age, and Why We Don’t Have To (New York: Atria Books, 2019). For a sharply critical review of the book, see C. A. Brenner, “A Science-Based Review of the World’s Best-Selling Book on Aging,” Archives of Gerontology and Geriatrics 104 (January 2023): art. 104825, https://doi.org/10.1016/j.archger.2022.104825.

        In an essay on LinkedIn: David Sinclair, “This Is Not an Advice Article,” LinkedIn, last modified June 25, 2018, https://www.linkedin.com/pulse/advice-article-david-sinclair.

        They would often make: As one of hundreds of examples, see this description of companies founded in response to findings on blood transfusions: Rebecca Robbins, “Young-Blood Transfusions Are on the Menu at Society Gala,” Scientific American online, last modified March 2, 2018, https://www.scientificamerican.com/article/young-blood-transfusions-are-on-the-menu-at-society-gala/.

        Even back in 2002: S. J. Olshansky, L. Hayflick, and B. A. Carnes, “Position Statement on Human Aging,” Journals of Gerontology: Series A 57, no. 8 (August 1, 2002): B292–97, https://doi.org/10.1093/gerona/57.8.b292. A total of fifty-one gerontologists cosigned the statement, and the three lead authors also published a popular summary, “Essay: No Truth to the Fountain of Youth,” Scientific American 286, no. 6 (June 2002): 92–95, https://doi.org/10.1038/scientific american0602-92.

        California tech billionaires, especially: See, for example, Todd Friend, “Silicon Valley’s Quest to Live Forever,” New Yorker online, last modified March 27, 2017, https://www.newyorker.com/mag azine/2017/04/03/silicon-valleys-quest-to-live-forever; Anjana Ahuja, “Silicon Valley’s Billionaires Want to Hack the Ageing Process,” Financial Times online, last modified September 7, 2021, https://www.ft.com/content/24849908-ac4a-4a7d-b53c-847963ac1228; Anjana Ahuja, “Can We Defeat Death?,” Financial Times online, last modified October 29, 2021, https://www.ft.com/content/60d9271c-ae0a-4d44-8b11-956cd2e484a9.

        When they were young, they wanted to be rich: This paraphrases an idea expressed previously by Antonio Regalado, “Meet Altos Labs, Silicon Valley’s Latest Wild Bet on Living Forever,” MIT Technology Review online, last modified September 4, 2021, https://www.technologyreview.com/2021/09/04/1034364/altos-labs-silicon-valleys-jeff-bezos-milner-bet-living-forever/.

        Recently, he wrote a tract: Yuri Milner, Eureka Manifesto, available for downloading at https://yurimilnermanifesto.org/.

        When news of Altos Labs: Antonia Regalado, “Meet Altos Labs, Silicon Valley’s Latest Wild Bet on Living Forever,” MIT Technology Review online, last modified September 4, 2021, https://www.technologyreview.com/2021/09/04/1034364/altos-labs-silicon-valleys-jeff-bezos-milner-bet-living-forever/.

        Rick Klausner, its chief scientist: Hannah Kuchler, “Altos Labs Insists Mission Is to Improve Lives Not Cheat Death,” Financial Times online, last modified January 23, 2022, https://www.ft.com/content/f3bceaf2-0d2f-4ec7-b767-693bf01f9630.

        “Our goal is for everyone”: The author was present at the launch of the Cambridge campus of Altos Labs on June 22, 2022.

        “I went through a period”: Michael Hall, email message to the author, September 2, 2021.

        Other drugs aim to target: A more comprehensive list of strategies and drugs that are used to combat aging is found in Partridge, Fuentealba, and Kennedy, “Quest to Slow Ageing,” 513–32.

        Some of the biggest excitement: M. Eisenstein, “Rejuvenation by Controlled Reprogramming Is the Latest Gambit in Anti-Aging,” Nature Biotechnology 40, no. 2 (February 2022): 144–46, https://doi.org/10.1038/d41587-022-00002-4.

        “Despite intensive study”: Olshansky, Hayflick, and Carnes, “Position Statement,” B292–97.

        In addition to epigenetic changes: K. S. Kudryashova et al., “Aging Biomarkers: From Functional Tests to Multi-Omics Approaches,” Proteomics 20, nos. 5/6 (March 2020): art. E1900408, https://doi.org/10.1002/pmic.201900408; Buckley et al., “Cell Type–Specific Aging Clocks.”

        This goal was termed: Kudryashova et al., “Aging Biomarkers: From Functional Tests to Multi-Omics Approaches”; Buckley et al., “Cell Type–Specific Aging Clocks.”

        “forever remain quixotic”: A. D. de Grey, “The Foreseeability of Real Anti-Aging Medicine: Focusing the Debate,” Experimental Gerontology 38, no. 9 (September 1, 2003): 927–34, https://doi.org/10.1016/s0531-5565(03)00155-4.

        If anything, data: “Health State Life Expectancies, UK: 2018 to 2020,” Office of National Statistics (UK) online, last modified March 4, 2022, https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexpectancies/bulletins/health statelifeexpectanciesuk/latest.

        A United Nations report: Jean-Marie Robine, “Aging Populations: We Are Living Longer Lives, But Are We Healthier?,” United Nations Department of Economic and Social Affairs, Population Division, online, September 2021, https://desapublications.un.org/file/653/download.

        A farmer was merrily riding: Oliver Wendell Holmes, The Deacon’s Masterpiece or the Wonderful One-Hoss Shay, Cambridge, MA: Houghton, Mifflin, 1891. With illustrations by Howard Pyle. Reproduced in http://www.ibiblio.org/eldritch/owh/shay.html.

        Thomas Perls: Perls, email, November 27, 2021.

        This would argue in favor: S. L. Andersen et al., “Health Span Approximates Life Span Among Many Supercentenarians: Compression of Morbidity at the Approximate Limit of Life Span,” Journals of Gerontology: Series A 67, no. 4 (April 2012): 395–405 (2012), https://doi.org/10.1093/gerona/glr223.

        Similarly, a variant of a gene: P. Sebastiani et al., “A Serum Protein Signature of APOE Genotypes in Centenarians,” Aging Cell 18, no. 6 (December 2019): e13023, https://doi.org/10.1111/acel.13023; B. N. Ostendorf et al., “Common Germline Variants of the Human APOE Gene Modulate Melanoma Progression and Survival,” Nature Medicine 26, no. 7 (July 2020): 1048–53, https://doi.org/10.1038/s41591-020-0879-3; B. N. Ostendorf et al., “Common Human Genetic Variants of APOE Impact Murine COVID-19 Mortality,” Nature 611, no. 7935 (November 2022): 346–51, https://doi.org/10.1038/s41586-022-05344-2.

        12. Should We Live Forever?

        The share of older people: United Nations Department of Economic and Social Affairs, Population Division, World Population Prospects 2022: Summary of Results (New York: United Nations, 2022), https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf.

        In both social and economic terms: David E. Boom and Leo M. Zucker, “Aging Is the Real Population Bomb,” Finance & Development online, June 2022, 58–61, https://www.imf.org/en/Publications/fandd/issues/Series/Analytical-Series/aging-is-the-real-population-bomb-bloom-zucker.

        The poor not only live: Veena Raleigh, “What Is Happening to Life Expectancy in England?,” King’s Fund online, last modified August 10, 2022, https://www.kingsfund.org.uk/publications/whats-happening-life-expectancy-england.

        Things are even worse in the United States: R. Chetty et al., “The Association Between Income and Life Expectancy in the United States, 2001–2014,” Journal of the American Medical Association (JAMA) 315, no. 16 (April 26, 2016): 1750–66, https://doi.org/10.1001/jama.2016.4226.

        Advances in medicine: V. J. Dzau and C. A. Balatbat, “Health and Societal Implications of Medical and Technological Advances,” Science Translational Medicine 10, no. 463 (October 17, 2018): eaau4778, https://doi.org/10.1126/scitranslmed.aau4778; D. Weiss et al. “Innovative Technologies and Social Inequalities in Health: A Scoping Review of the Literature,” PLoS One 13, no. 4 (April 3, 2018): e0195447 (2018), https://doi.org/10.1371/journal.pone.0195447; Fiona McMillan, “Medical Advances Can Exacerbate Inequality,” Cosmos online, last modified October 21, 2018, https://cosmosmagazine.com/people/medical-advances-can-exacerbate-inequality/.

        This is because fertility: D. R. Gwatkin and S. K. Brandel, “Life Expectancy and Population Growth in the Third World,” Scientific American 246, no. 5 (May 1982): 57–65, https://doi.org/10.1038/scientificamerican0582-57.

        Elon Musk believes: Tweet by Elon Musk, August 26, 2022, https://twitter.com/elonmusk/status/1563020169160851456.

        Nevertheless, as people live longer: J. R. Goldstein and W. Schlag, “Longer Life and Population Growth,” Population and Development Review 25, no. 4 (December 1999): 741–47, https://doi.org/10.1111/j.1728-4457.1999.00741.x.

        Large percentages of people: Paul Root Wolpe, quoted in Jenny Kleeman, “Who Wants to Live Forever? Big Tech and the Quest for Eternal Youth,” New Statesman online, last modified October 13, 2021, https://www.newstatesman.com/long-reads/2022/12/live-forever-big-tech-search-quest-eternal-youth-long-read.

        In 2023: Angelique Chrisafis, “More Than 1.2 Million March in France over Plan to Raise Pension Age to 64,” Guardian (US edition) online, last modified March 7, 2023, https://www.theguardian.com/world/2023/mar/07/nationwide-strikes-in-france-over-plan-to-raise-pension-age-to-64.

        Reacting to the French protests: Annie Lowrey, “The Problem with the Retirement Age Is That It’s Too High,” Atlantic online, last modified April 15, 2023, https://www.theatlantic.com/ideas/archive/2023/04/social-security-benefits-france-pension-protests/673733/.

        However, at a Hay Literary Festival event: Interview on Channel 4 (UK), May 27, 2005.

        Ishiguro posited a theory: Kazuo Ishiguro, email to the author, August 6, 2021.

        Most studies say our general cognitive abilities: T. A. Salthouse, “When Does Age-Related Cognitive Decline Begin?,” Neurobiology of Aging 30, no. 4 (April 2009): 507–14, https://doi.org/10.1016/j.neurobiolaging.2008.09.023; L. G. Nilsson et al., “Challenging the Notion of an Early-Onset of Cognitive Decline,” Neurobiology of Aging 30, no. 4 (April 2009): 521–24, discussion 530, https://doi.org/10.1016/j.neurobiolaging.2008.11.013; T. Hedden and J. D. Gabrieli, “Insights into the Ageing Mind: A View from Cognitive Neuroscience,” Nature Reviews Neuroscience 5, no. 2 (February 2004): 87–96, https://doi.org/10.1038/nrn1323.

        The one category: A. Singh-Manoux et al., “Timing of Onset of Cognitive Decline: Results from Whitehall II Prospective Cohort Study,” BMJ 344, no. 7840 (January 5, 2012): d7622, https://doi.org/10.1136/bmj.d7622.

        The latter declines steadily: D. Murman, “The Impact of Age on Cognition,” Seminars in Hearing 36, no. 3 (2015): 111–21, https://doi.org/10.1055/s-0035-1555115.

        This is partly because: Household total wealth in Great Britain: April 2018 to March 2020, Office of National Statistics, January 7, 2022, https://www.ons.gov.uk/peoplepopulationandcommunity/per sonalandhouseholdfinances/incomeandwealth/bulletins/totalwealth ingreatbritain/april2018tomarch2020; Donald Hays and Briana Sullivan, The Wealth of Households:2020, United States Census Bureau, August 2022, https://www.census.gov/content/dam/Census/library/publications/2022/demo/p70br-181.pdf.

        By contrast, the vast majority: D. Murman, “The Impact of Age on Cognition,” Seminars in Hearing 36, no. 3 (2015): 111–21, https://doi.org/10.1055/s-0035-1555115.

        “at the peak of their careers”: “Tom Williams, “Oxford Professors ‘Forced to Retire’ Win Tribunal Case,” Times Higher Education, March 17, 2023, https://www.timeshighereducation.com/news/oxford-professors-forced-retire-win-tribunal-case.

        “I had been telling”: P. B. Moore, “Neutrons, Magnets, and Photons: A Career in Structural Biology,” Journal of Biological Chemistry 287, no. 2 (January 2012): 805–18, https://doi.org/10.1074/jbc.X111.324509.

        The other concluded: V. Skirbekk, “Age and Individual Productivity: A Literature Survey” (MPIDR working paper WP 2003–028, Max Planck Institute for Demographic Research, Rostock, Ger., August 2003), https://www.demogr.mpg.de/papers/working/wp-2003-028.pdf; C. A. Viviani. et al. “Productivity in Older Versus Younger Workers: A Systematic Literature Review,” Work 68, no. 3 (2021): 577–618, https://doi.org/10.3233/WOR-203396.o.

        There is a lot of evidence: P. A. Boyle et al., “Effect of a Purpose in Life on Risk of Incident Alzheimer Disease and Mild Cognitive Impairment in Community-Dwelling Older Persons,” Archives of General Psychiatry 67, no. 3 (March 2010): 304–10, https://doi.org/10.1001/archgenpsychiatry.2009.208; R. Cohen, C. Bavishi, and A. Rozanski, “Purpose in Life and Its Relationship to All-Cause Mortality and Cardiovascular Events: A Meta-Analysis,” Psychosomatic Medicine 78, no. 2 (February/March 2016): 122–33, https://doi.org/10.1097/PSY.0000000000000274.

        Social isolation and loneliness: A. Steptoe et al., “Social Isolation, Loneliness, and All-Cause Mortality in Older Men and Women,” Proceedings of the National Academy of Sciences (PNAS) of the United States of America 110, no. 15 (March 25, 2013): 5797–801, https://doi.org/10.1073/pnas.1219686110; J. Holt-Lunstad et al., “Loneliness and Social Isolation as Risk Factors for Mortality: A Meta-Analytic Review,” Perspectives on Psychological Science 10, no. 2 (March 2015): 227–37, https://doi.org/10.1177/1745691614568352.

        Arieff believes: Allison Arieff, “Life Is Short. That’s the Point,” New York Times online, August 18, 2018, https://www.nytimes.com/2018/08/18/opinion/life-is-short-thats-the-point.html.

        The clear-eyed view: Report: Living to 120 and Beyond: Americans’ Views on Aging, Medical Advances and Radical Life Extension (Washington, DC: Pew Research Center, August 6, 2013), https://www.pewresearch.org/religion/2013/08/06/living-to-120-and-beyond-americans-views-on-aging-medical-advances-and-radical-life-extension/.

        Index

        A specific form of pagination for this digital edition has been developed to match the print edition from which the index was created. If the application you are reading this on supports this feature, the page references noted in this index should align. At this time, however, not all digital devices support this functionality. Therefore, we encourage you to please use your device’s search capabilities to locate a specific entry.

      1. Stephen Wolfram《What Is ChatGPT Doing…and Why Does It Work》

        前言

        本书试图用第一性原理解释ChatGPT的工作原理, 以及它为何奏 效。 可以说这是一个关于技术的故事, 也可以说这是一个关千科学 的故事、 一个关于哲学的故事。 为了讲述这个故事, 我们必须汇集 数个世纪以来的一系列非凡的想法和发现。
        看到自己长期以来感兴趣的众多事物一起得到突飞猛进的发展, 我 感到非常兴奋。 从简单程序的复杂行为到语言及其含义的核心特 征, 再到大型计算机系统的实用性, 所有这些都是ChatGPT故事 的一部分。
         ChatGPT的基础是人工神经网络(本书中一般简称为神经网络或网 络), 后者最初是在20世纪40年代为了模拟理想化的大脑运作方 式而发明的。 我自己在1983年第一次编写出了一个神经网络, 但 它做不了什么有趣的事情。 然而40年后, 随着计算机的速度提高 上百万倍, 数十亿页文本出现在互联网上, 以及一系列重大的工 程创新, 情况已然大不相同。 出乎所有人意料的是, 一个比我在 1983年构建的神经网络大10亿倍的神经网络能够生成有意义的人 类语言, 而这在之前被认为是人类独有的能力。
        本书包含我在 ChatGPT 问世后不久写的两篇长文。第一篇介绍了ChatGPT,并且解释了它为何拥有像人类一样的生成语言的能力。第二篇则展望了 ChatGPT 的未来,预期它能使用计算工具来做到人类所不能做到的事,特别是能够利用 Wolfram/Alpha 系统对知识进行计算(computational knowledge,在后文中简称为计算知识)的“超能力”。
        虽然距离 ChatGPT 的发布仅过了三个月,我们也才刚刚开始了解它给我们的实际生活和思维能力可能带来的影响,但就目前而言,它的到来提醒我们,即使在已经发明和发现一切之后,仍有收获惊喜的可能。
        斯蒂芬·沃尔弗拉姆  2023 年2 月28日

        目录

        第一篇 ChatGPT 在做什么?它为何能做到这些?
        它只是一次添加一个词/  概率从何而来  /  什么是模型 类人任务 (human-like task) 的模型  /  神经网络  /  机器学习和神经网/络的训练    /神经网络训练的实践和学问  /  “足够大的神经网络当然无所不能! ”    /“嵌入" 的概念 /ChatGPT 的内部原理 /ChatGPT 的训练 /在基础训练之外 / 真正让 ChatGPT 发挥作用的是什么 /意义空间和语义运动定律 / 语义语法和计算语言的力量 /  那么, ChatGPT 到底在做什么?它为什么能做到这些?
        第二篇 利用 WolframlAlpha为ChatGPT 赋予计算知识超能力
         ChatGPT和Wolfram!Alpha / 一个简单的例子 / 再举几个例子 / 前方的路
        相关资源

        第一篇 ChatGPT在做什么?它为何能做到这些?

        它只是一次添加一个词

        ChatGPT 可以自动生成类似于人类书写的文本, 这非常了不起, 也非常令人意外。 它是如何做到的呢?这为什么会奏效呢?我在这里将概述 ChatGPT 内部的工作方式, 然后探讨为什么它能够如此出色地产生我们认为有意义的文本。 必须在开头说明, 我会重点关注宏观的工作方式, 虽然也会提到一些工程细节, 但不会深入探讨。[这里提到的本质不仅适用于 ChatGPT, 也同样适用于当前的其他“大语言模型”(large language model, LLM)。]

        首先需要解释, ChatGPT 从根本上始终要做的是,针对它得到的任何文本产生 “合理的延续"。 这里所说的 “合理” 是指, “人们在看到诸如数十亿个网页上的内容后, 可能期待别人会这样写”。

        假设我们手里的文本是 “The best thing about Al is its ability to” (AI最棒的地方在于它能)。 想象一下浏览人类编写的数十亿页文本(比如在互联网上和电子书中), 找到该文本的所有实例, 然后看看接下来出现的是什么词, 以及这些词出现的概率是多少。ChatGPT 实际上做了类似的事情, 只不过它不是查看字面上的文本, 而是寻找在某种程度上 ”意义匹配" 的事物(稍后将解释)。

        最终的结果是,它会列出随后可能出现的词及其出现的“概率” (按“概率”从高到低排列)。

        The best thing about AI is its ability to

        learn4.5%
         predict3.5%
        make3.2%
         understand3.1%
        do2.9%

        值得注意的是,当ChatGPT做一些事情,比如写一篇文章时,它实质上只是在一遍又一遍地询问“根据目前的文本,下一个词应该 是什么”,并且每次都添加一个词。[正如我将要解释的那样,更准 确地说,它是每次都添加一个“标记”(token),而标记可能只是 词的一部分。这就是它有时可以“造词”的原因。]

        好吧,它在每一步都会得到一个带概率的词列表。但它应该选择 将哪一个词添加到正在写作的文章中呢?有人可能认为应该选择 “排名最高”的词,即分配了最高“概率”的词。然而,这里出现 了一点儿玄学(voodo,巫术)的意味。出于某种原因一也许有一天能用科学解释——如果我们总是选择排名最高的词,通常会得到一篇非常“平淡”的文章,完全显示不出任何“创造力”〔有时甚至会一字不差 地重复前文〕。但是,如果有时(随机)选择排名较低的词,就会 得到一篇“更有趣”的文章。

        这里存在随机性意味着,如果我们多次使用相同的提示(prompt),每次都有可能得到不同的文章。而且,符合玄学思想的是,有一个 所谓的“温度”参数来确定低排名词的使用频率。对于文章生成 来说,“温度”为0.8似乎最好。(值得强调的是,这里没有使用任 何“理论”,“温度”参数只是在实践中被发现有效的一种方法。例 如,之所以采用“温度”的概念,是因为碰巧使用了在统计物理学中很常见的某种指数分布[玻尔兹曼分布],但它与物理学之间并没有任何实际联系,至少就我们目前所知是这样的。)

        在进入下一节之前,需要解释一下,为了方便阐述,我在大多数情 况下不会使用ChatGPT中的完整系统,而是使用更简单的GPT-2 系统,它的优点是足够小,可以在标准的台式计算机上运行。因 此,对于书中展示的所有原理,我都能附上明确的Wolfram语言代码,你可以立即在自己的计算机上运行。

        例如,通过以下方式可以获得前页列出的概率表。首先,需要检索底层的“语言模型”。

        稍后,我们将深入了解这个神经网络,并谈谈它的工作原理。现在,我们可以把这个“网络模型”当作黑盒,应用到之前的文本中,并询问模型哪5个词紧随其后的概率最高。

        in[ ]:= model[“The best thing about Al is its ability to”, {“TopProbabilities”, 5}]

        out[ ]={do → 0.0288508, understand → 0.0307805, make → 0.0319072, predict → 0.0349748, learn → 0.0445305}

        如下获取结果并将其转换为明确格式化的“数据集”。

        in[ ]:=Dataset[ReverseSort[Association[%]], ItemDisplayFunction→(PercentForm[#,2]&)]

        Out[ ]:=

        learn4.5%
         predict3.5%
        make3.2%
         understand3.1%
        do2.9%

        如果反复“应用模型”,在每一步都添加概率最高的词[在此代码 中指定为模型所做的“决策”(decision)],则会发生以下情况。

        in[ ]:=NestList[StringJoin[# , model[# , “Decision”]] &, “The best thing about Al is its ability to”, 7]

        out[ ]= {The best thing about Al is its ability to,
        The best thing about Al is its ability to learn,
        The best thing about Al is its ability to learn from,
        The best thing about Al is its ability to learn from experience,
        The best thing about Al is its ability to learn from experience.,
        The best thing about Al is its ability to learn from experience. It,
        The best thing about Al is its ability to learn from experience. It’s,
        The best thing about Al is its ability to learn from experience. It’s not}

        如果继续下去呢?在此(“零温度”[温度参数为0,即选择按概率排名最高的词])情况下,文本很快就会变得混乱和重复。

        The best thing about Al is its ability to learn from experience.
        It’s not just a matter of learning from experience, it’s learning from the
        world around you. The Al is a very good example of this. It’s a very good example of how to use Al to improve your life. It’s a very good example of
        how to use Al to improve your life. The Al is a very good example of how
        to use Al to improve your life. It’s a very good example of how to use Al to

        但是,如果我们不总是选择“排名最高”的词,而是有时随机选择“非排名最高”的词(通过将“温度”参数从0调高到0.8来获得这种随机性)呢?我们同样可以构建文本:

        {The best thing about Al is its ability to,
        The best thing about Al is its ability to create,
        The best thing about Al is its ability to create worlds,
        The best thing about Al is its ability to create worlds that,
        The best thing about Al is its ability to create worlds that are,
        The best thing about Al is its ability to create worlds that are both,
        The best thing about Al is its ability to create worlds that are both exciting,
        The best thing about Al is its ability to create worlds that are both exciting,}

        每次执行此操作时,都会进行不同的随机选择,文本也会不同,就 像这5个例子一样。

        The best thing about Al is its ability to learn. I’ve always liked the
        The best thing about Al is its ability to really come into your world and just
        The best thing about Al is its ability to examine human behavior and the way it
        The best thing about Al is its ability to do a great job of teaching us
        The best thing about Al is its ability to create real tasks, but you can

        值得指出的是,即使在(温度为0.8的)第一步,也有许多可能的“下一个词”可供选择,尽管它们的概率迅速减小(是的,如下面的对数图所示,点的连线对应于,n-1次幂律衰减,这是语言的一般统计特征)。

        如果再继续下去会发生什么呢?下面是一个随机的例子。虽然比选 择排名最髙的词(零温度)的情况好,但还是有点奇怪。

        The best thing about Al is its ability to see through, and make sense of, the world around us, rather than panicking and ignoring. This is known as Al “doing its job” or Al “run-of-the-mill.” Indeed, taking an infinite number of steps, developing a machine that can be integrated with other systems, or controlling one system that’s truly a machine, is one of the most fundamental processes of Al. Aside from the human -machine interaction, Al was also a big part of creativity

        这是使用最简单的GPT-2模型(发布于2019年)完成的。使用更新更大的GPT-3模型,结果会更好。下面是在提示相同但使用最大的GPT-3模型的情况下生成的零温度文本。

        The best thing about Al is its ability to automate processes and make decisions quickly and accurately. Al can be used to automate mundane tasks, such as data entry, and can also be used to make complex decisions, such as predicting customer behavior or analyzing large datasets. Al can also be used to improve customer service, as it can quickly and accurately respond to customer inquiries. Al can also be used to improve the accuracy of medical diagnoses and to automate the process of drug discovery.

        下面是一个温度为0.8的随机示例。

        The best thing about Al is its ability to learn and develop over time, allowing it to continually improve its performance and be more efficient at tasks. Al can also be used to automate mundane tasks, allowing humans to focus on more important tasks. Al can also be used to make decisions and provide insights that would otherwise be impossible for humans to figure out.

        概率从何而来

        ChatGPT总是根据概率选择下一个词,但是这些概率是从何而来的 呢?让我们从一个更简单的问题开始:考虑逐字母(而非逐词)地 生成英文文本。怎样才能计算出每个字母应当出现的概率呢?

        我们可以做一件很小的事,拿一段英文文本样本,然后计算其中不 同字母的出现次数。例如,下面的例子统计了维基百科上“cats” (猫)的条目中各个字母的出现次数。

        对“dogs”(狗)的条目也做同样的统计。

        结果有些相似,但并不完全一样。(毫无疑问,在”dogs”的条目中,字母o更常见,毕竟dog—词本身就含有o。)不过,如 果我们采集足够大的英文文本样本,最终就可以得到相当一致的结果。

        这是在只根据这些概率生成字母序列时得到的样本。

        我们可以通过添加空格将其分解成“词”,就像这些“词”也是具有一定概率的字母一样。

        还可以通过强制要求“词长”的分布与英文中相符来更好地造“词”。

        ni hilwhuei kjtn isjd erogofnr n rwhwfao rcuw lis fahte uss cpnc nlu oe nusaetat llfo oeme rrhrtn xdses ohm oa tne ebedcon oarvthv ist

        虽然并没有碰巧得到任何“实际的词”,但结果看起来稍好一些了。 不过,要进一步完善,我们需要做的不仅仅是随机地挑选每个字母。举例来说,我们知道,如果句子中有一个字母q,那么紧随其 后的下一个字母几乎一定是u。

        以下是每个字母单独出现的概率图。

        下图则显示了典型英文文本中字母对[二元(2-gram或bigram)字母]的概率。可能出现的第一个字母横向显示,第二个字母纵向显示。

        可以看到,q列中除了u行以外都是空白的(概率为零)。现在不再一次一个字母地生成“词”,而是使用这些二元字母的概率,一 次关注两个字母。下面是可以得到的一个结果,其中恰巧包括几个“实际的词”。

        on inguman men ise forernoft weat iofobato buc ous corew ousesetiv fa lie tinouco ryefo ra the ecederi pasuthrgr cuconom tra tesla will tat pere thi

        有了足够多的英文文本,我们不仅可以对单个字母或字母对(二元字母)得到相当好的估计,而且可以对更长的字母串得到不错的估计。如果使用逐渐变长的n元(n-gram)字母的概率生成“随机的词”,就能发现它们会显得越来越“真实”。

        0on gxeeetowmt tsifhy ah aufnsoc ior oia itlt bnc tu ih uls
        1ri io os ot timumumoi gymyestit ate bshe abol viowr wotybeat mecho
        2wore hi usinallistin Ilia ale warou pothe of premetra beet upo pr
        3qual musin was witherins wil por vie surgedygua was suchinguary outheydays theresist
        4stud made yello adenced through theirs from cent intous wherefo proteined screa
        5special average vocab consumer market prepara injury trade consa usually speci utility

        现在假设——多少像ChatGPT所做的那样——我们正在处理整个词,而不是字母。英语中有大约50000个常用词。通过查看大型的英文语料库(比如几百万本书,总共包含几百亿个词),我们可以估计每个词的常用程度。使用这些信息,就可以开始生成“句子”了,其中的每个词都是独立随机选择的,概率与它们在语料库 中出现的概率相同。以下是我们得到的一个结果。

        of program excessive been by was research rate not here of of other is men were against are show they the different the half the the in any were leaved

        毫不意外,这没有什么意义。那么应该如何做得更好呢?就像处理 字母一样,我们可以不仅考虑单个词的概率,而且考虑词对或更长的n元词的概率。以下是考虑词对后得到的5个结果,它们都是从 单词cat开始的。

        cat through shipping variety is made the aid emergency can the

        cat for the book flip was generally decided to design of

        cat at safety to contain the vicinity coupled between electric public

        cat throughout in a confirmation procedure and two were difficult music

        cat on the theory an already from a representation before a

        结果看起来稍微变得更加“合理”了。可以想象,如果能够使用足 够长的n元词,我们基本上会“得到一个ChatGPT”,也就是说, 我们得到的东西能够生成符合“正确的整体文章概率”且像文章一 样长的词序列。但问题在于:我们根本没有足够的英文文本来推断 出这些概率。

        在网络爬取结果中可能有几千亿个词,在电子书中可能还有另外 几百亿个词。但是,即使只有4万个常用词,可能的二元词的数 量也已经达到了16亿,而可能的三元词的数错则达到了 60万亿。 因此,我们无法根据已有的文本估计所有这些三元词的概率。当 涉及包含20个词的“文章片段”时,可能的20元词的数量会大 于宇宙中的粒子数量,所以从某种意义上说,永远无法把它们全 部写下来。

        我们能做些什么呢?最佳思路是建立一个模型,让我们能够估计序列出现的概率——即使我们从未在已有的文本语料库中明确看到过这些序列。ChatGPT的核心正是所谓的“大语言模型”,后者已经 被构建得能够很好地估计这些概率了。

        什么是模型

        假设你想(像16世纪末的伽利略一样)知道从比萨斜塔各层掉落 的炮弹分别需要多长时间才能落地。当然,你可以在每种情况下 进行测量并将结果制作成表格。不过,你还可以运用理论科学的本 质:建立一个模型,用它提供某种计算答案的程序,而不仅仅是在 每种情况下测量和记录。

        假设有一些(理想化的)数据可以告诉我们炮弹从斜塔各层落地所需的时间。

        如何计算炮弹从一个没有明确数据的楼层落地需要多长时间呢?在这种特定情况下,可以使用已知的物理定律来解决问题。但是,假 设我们只有数据,而不知道支配它的基本定律。那么我们可能会做出数学上的猜测,比如也许应该使用一条直线作为模型。

        虽然我們可以选择不同的直线,但是上图中的这条直线平均而言最 接近我们拥有的数据。根据这条直线,可以估计炮弹从任意一层落 地的时间。

        我们怎么知道要在这里尝试使用直线呢?在某种程度上说,我们并 不知道。它只是在数学上很简单,而且我们已经习惯了许多测量数 据可以用简单的数学模型很好地拟合。还可以尝试更复杂的数学模 型,比如a+bx+cx2,能看到它在这种情况下做得更好。

        不过,这也可能会出大问题。例如,下面是我们使用a+b/x+c·sinx似 能得到的最好结果。

        必须理解,从来没有“无模型的模型”。你使用的任何模型都有某种特定的基本结构,以及用于拟合数据的一定数量的“旋钮”(也就是可以设置的参数)。ChatGPT使用了许多这样的“旋钮”——实际上有1750亿个。

        但是值得注意的是,ChatGPT的基本结构——“仅仅”用这么少的参数一足以生成一个能“足够好”地计算下一个词的概率的模型,从而生成合理的文章。

        类人任务(human-like task)的模型

        上文提到的例子涉及为数值数据建立模型,这些数据基本上来自简 单的物理学——几个世纪以来,我们已经知道可以用一些“简单的数学工具”为其建模。但是对于ChatGPT,我们需要为人脑产生的人类语言文本建立模型。而对于这样的东西,我们(至少目前)还 没有“简单的数学”可用。那么它的模型可能是什么样的呢?

        在讨论语言之前,让我们谈谈另一个类人任务:图像识别。一个简 单的例子是包含数字的图像(这是机器学习中的一个经典例子)。

        我们可以做的一件事是获取每个数字的大量样本图像。

        要确定输入的图像是否对应于特定的数字,可以逐像素地将其与已有的样本进行比较。但是作为人类,我们似乎肯定做得更好:

        因为即使数字是手写的,有各种涂抹和扭曲,我们也仍然能够识别它们。

        当为上一节中的数值数据建立模型时,我们能够在取得给定的数值x之后,针对特定的a和b来计算出a+bx。那么,如果我们将图像中每个像素的灰度值视为变量xi,是否存在涉及所有这些变量 的某个函数,能(在运算后)告诉我们图像中是什么数字?事实证明,构建这样的函数是可能的。不过难度也在意料之中,一个典型 的例子可能涉及大约50万次数学运算。

        最终的结果是,如果我们将一个图像的像素值集合输入这个函数, 那么输出将是一个数,明确指出该图像中是什么数字。稍后,我们将讨论如何构建这样的函数,并了解神经网络的思想。但现在,让我们先将这个函数视为黑盒,输入手写数字的图像(作为像素值的数组),然后得到它们所对应的数字。

        Out[ ]:= {7,0,9,7,8,2,4,1,1,1}

        这里究竟发生了什么?假设我们逐渐模糊一个数字。在一小段时间内,我们的函数仍然能够“识别”它,这里为2。但函数很快就无法准确识别了,开始给出“错误”的结果。

        Out[ ]:= {2, 2, 2,1,1,1,1,1,1}

        为什么说这是“错误”的结果呢?在本例中,我们知道是通过模糊 数字2来得到所有图像的。但是,如果我们的目标是为人类在识别图像方面的能力生成一个模型,真正需要问的问题是:面对一个模 糊的图像,并且不知道其来源,人类会用什么方式来识别它?

        如果函数给出的结果总是与人类的意见相符,那么我们就有了一个“好模型”。一个重大的科学事实是,对于图像识别这样的任务,我们现在基本上已经知道如何构建不错的函数了。

        能“用数学证明”这些函数有效吗?不能。因为要做到这一点,我们必须拥有一个关于人类所做的事情的数学理论。如果改变2的图 像中的一些像素,我们可能会觉得,仍应该认为这是数字2。但是 随着更多像素发生改变,我们又应该能坚持多久呢?这是一个关于 人类视觉感知的问题。没错,对于蜜蜂或章鱼的图像,答案无疑会 有所不同,而对于虚构的外星人的图像,答案则可能会完全不同。

        神经网络

        用于图像识别等任务的典型模型到底是如何工作的呢?目前最受欢迎而且最成功的方法是使用神经网络。神经网络发明于20世纪40 年代——它在当时的形式与今天非常接近——可以视作对大脑工作机制的简单理想化。

        人类大脑有大约1000亿个神经元(神经细胞),每个神经元都能 够产生电脉冲,最高可达每秒约1000次。这些神经元连接成复杂 的网络,每个神经元都有树枝状的分支,从而能够向其他数千个神 经元传递电信号。粗略地说,任意一个神经元在某个时刻是否产生 电脉冲,取决于它从其他神经元接收到的电脉冲,而且神经元不同 的连接方式会有不同的“权重”贡献。

        当我们“看到一个图像”时,来自图像的光子落在我们眼睛后面的 (光感受器)细胞上,它们会在神经细胞中产生电信号。这些神经细胞与其他神经细胞相连,信号最终会通过许多层神经元。在此过 程中,我们“识别”出这个图像,最终“形成”我们“正在看数字 2”的“想法”(也许最终会做一些像大声说出“二”这样的事情)。

        上一节中的“黑盒函数”就是这样一个神经网络的“数学化”版 本。它恰好有11层(只有4个“核心层”)。

        我们对这个神经网络并没打明确的“理论解释”,它只是在1998年 作为一项工程被构述出来的,而且被发现可以奏效。(当然,这与把我们的大脑描述为通过生物进化过程产生并没有太大的区别。)

         好吧,但是这样的神经网络是如何“识别事物”的呢?关键在于吸引子(attractor)的概念。假设我们有手写数字1和2的图像。

        我们希望通过某种方式将所有的1 “吸引到一个地方”,将所有的 2 “吸引到另一个地方”。换句话说,如果一个图像“更有可能是1” 而不是2,我们希望它最终出现在“1的地方”,反之亦然。

        让我们做一个直白的比喻。假设平面上有一些位置,用点表示(在实际生活场景中,它们可能是咖啡店的位置然后我们可以想象,自己从平面上的任意一点出发,并且总是希望最终到达最近的点(即我们总是去最近的咖啡店)。可以通过用理想化的“分水岭”将平面分隔成不同的区域〈“吸引子盆地”〉来表示这一点。

        我们可以将这看成是执行一种“识别任务”,所做的不是识别一个 给定图像“看起来最像”哪个数字,而是相当直接地看出哪个点距 离给定的点最近。[这里展示的沃罗诺伊图将二维欧几里得空间中的点分隔开来。可以将数字识别任务视为在做一种非常类似的操作——只不过是在由每个图像中所有像素的灰度形成的784维空间中。]

        那么如何让神经网络“执行识别任务”呢?让我们考虑下面这个非 常简单的情况。

        我们的目标是接收一个对应于位置{x,y}的输入,然后将其“识别”为最接近它的三个点之一。换句话说,我们希望神经网络能够计算出一个如下图所示的关于{x,y}的函数。

        如何用神经网络实现这一点呢?归根结底,神经网络是由理想化的 “神经元”组成的连接集合——通常是按层排列的。一个简单的例子如下所示。

        每个“神经元”都被有效地设置为计算一个简单的数值函数。为 了“使用”这个网络,我们只需在顶部输入一些数(像我们的坐标x和y),然后让每层神经元“计算它们的函数的值”并在网络中将 结果前馈,最后在底部产生最终结果。

        在传统(受生物学启发)的设置中,每个神经元实际上都有一些来 自前一层神经元的“输入连接”,而且每个连接都被分配了一个特 定的“权重”(可以为正或为负)。给定神经元的值是这样确定的: 先分别将其“前一层神经元”的值乘以相应的权重并将结果相加, 然后加上一个常数,最后应用一个“阈值”(或“激活”)函数。用 数学术语来说,如果一个神经元有输入x={x1,x2,…},那么我们要计算f[w·x+b]。对于权重w和常量b,通常会为网络中的每个 神经元选择不同的值;函数7则通常在所有神经元中保持不变。

        计算w·x+b需要进行矩阵乘法和矩阵加法运算。激活函数f则使用了非线性函数(最终会导致非平凡的行为)。下面是一些常用的激活函数,这里使用的是Ramp(或ReLU)。

        对于我们希望神经网络执行的每个任务〈或者说,对于我们希望它计算的每个整体函数〉,都有不同的权重选择。(正如我们稍后将讨论的那样,这些权重通常是通过利用机器学习根据我们想要的输出的示例“训练”神经网络来确定的。) 最终,每个神经网络都只对应于某个整体的数学函数,尽管写出来 可能很混乱。对于上面的例子,它是

        w511 f(w311f(b11 +xw111 + yw112) + w312f(b12+xw121+yw122) +w313f(b13 +xw131 +yw132) + w314f(b14 +xw141 +yw142) + b31) +w512f(w321f(b11 + xw111 + yw112) + w322f(b12+xw121 +yw122) +w323f(b13+xw131 +yw132) + w324f(b14+xw141+yw142) + b32) +w513f(w331 f(b13+ xw111 +yw112) +w332f(b12+xw121 + yw122) +w333 f(b13+ xw131 + yw132) +w334f(b14 + xw141 + yw142) + b33) +b51

        同样,ChatGPT的神经网络也只对应于一个这样的数学函数——它实际上有数十亿项。

        现在,让我们回头看看单个神经元。下图展示了一个具有两个输入 (代表坐标X和y)的神经元可以通过各种权重和常数(以及激活函数Ramp)计算出的一些示例。

        对于上面提到的更大的网络呢?它的计算结果如下所示。

        虽然不完全“正确”,但它接近上面展示的“最近点”函数。

        再来看看其他的一些神经网络吧。在每种情况下,我们都使用机器学习来找到最佳的权重选择。这里展示了神经网络用这些权重计算出的结果。

        更大的神经网络通常能更好地逼近我们所求的函数。在“每个吸引子盆地的中心”,我们通常能确切地得到想要的答案。但在边界处,也就是神经网络“很难下定决心”的地方,情况可能会更加混乱。

        在这个简单的数学式“识别任务”中,“正确答案”显而易见。但 在识别手写数字的问题上,答案就不那么明显了。如果有人把2写得像7一样怎么办?类似的问题非常常见。尽管如此,我们仍然可 以询问神经网络是如何区分数字的,下面给出了一个答案。

        我们能“从数学上”解释网络是如何做出区分的吗?并不能。它只是在“做神经网络要做的事”。但是事实证明,这通常与我们人类 所做的区分相当吻合。

        让我们更详细地讨论一个例子。假设我们有猫的图像和狗的图像, 以及一个经过训练、能区分它们的神经网络。以下是该神经网络可 能对某些图像所做的事情。

        这里的“正确答案”更加不明显了。穿着猫咪衣服的狗怎么分?等等。无论输入什么,神经网络都会生成一个答案。结果表明,它的做法相当符合人类的思维方式。正如上面所说的,这并不是我们可以“根据第一性原则推导”出来的事实。这只是一些经验性的发 现,至少在某些领域是正确的。但这是神经网络有用的一个关键原因:它们以某种方式捕捉了 “类似人类”的做事方式。

        找一张猫的图片看看,并问自己:“为什么这是一只猫?”你也许会说“我看到了它尖尖的耳朵”,等等。但是很难解释你是如何把这个图像识别为一只猫的。你的大脑就是不知怎么地想明白了。但是(至少目前还)没有办法去大脑“内部”看看它是如何想明白的。那么,对于(人工)神经网络呢?当你展示一张猫的图片时,很容易看到每个“神经元”的作用。不过,即使要对其进行基本的可视化,通常也非常困难。

        在上面用于解决“最近点”问题的最终网络中,有17个神经元; 在用于识别手写数字的网络中,有2190个神经元;而在用于识别猫和狗的网络中,有60650个神经元。通常很难可视化出60 650 维的空间。但由于这是一个用于处理图像的网络,其中的许多神经元层被组织成了数组,就像它查看的像素数组一样。

        下面以一个典型的猫的图像为例。

        我们可以用一组衍生图像来表示第一层神经元的状态,其中的许多可以被轻松地解读为“不带背景的猫”或“猫的轮廓”。

        到第10层,就很难解读这些是什么了。

        但是总的来说,我们可以说神经网络正在“挑选出某些特征”(也许尖尖的耳朵是其中之一),并使用这些特征来确定图像的内容。 但是,这些特征能否用语言描述出来(比如“尖尖的耳朵”)呢? 大多数情况下不能。

        我们的大脑是否使用了类似的特征呢?我们多半并不知道。但值得注意的是,一些神经网络(像上面展示的这个)的前几层似乎会挑 选出图像的某些方面(例如物体的边缘),而这些方面似乎与我们 知道的大脑中负责视觉处理的第一层所挑选出的相似。

        假设我们想得到神经网络中的“猫识别理论”,可以说:“看,这个特定的网络可以做到这一点。”这会立即让我们对“问题的难度” 有一些了解(例如,可能需要多少个神经元或多少层)。但至少到 目前为止,我们没办法对网络正在做什么“给出语言描述”。也许 这是因为它确实是计算不可约的,除了明确跟踪每一步之外,没有 可以找出它做了什么的一般方法。也有可能只是因为我们还没有 “弄懂科学”,也没有发现能总结正在发生的事情的“自然法则”。

        当使用生成语言时,我们会遇到类似的问题,而且目前尚不清楚是否有方法来“总结它所做的事情”。但是,语言的丰富性和细节(以及我们的使用经验)可能会让我们比图像处理取得更多进展。

        机器学习和神经网络的训练

        到目前为止,我们一直在讨论“已经知道”如何执行特定任务的神经网络。但神经网络之所以很有用(人脑中的神经网络大概也如此),原因不仅在于它可以执行各种任务,还在于它可以通过逐步 “根据样例训练”来学习执行这些任务。

        当构建一个神经网络来区分猫和狗的图像时,我们不需要编写一个 程序来(比如)明确地找到胡须,只需要展示很多关于什么是猫和 什么是狗的样例,然后让神经网络从中“机器学习”如何区分它们 即可。

        重点在于,已训练的神经网络能够对所展示的特定例子进行“泛 化”。正如我们之前看到的,神经网络不仅能识别猫图像的样例的 特定像素模式,还能基于我们眼中的某种“猫的典型特征”来区分 图像。 神经网络的训练究竟是如何起效的呢?本质上,我们一直在尝试找 到能使神经网络成功复现给定样例的权重。然后,我们依靠神经网 络在这些样例“之间”进行“合理”的“插值”(或“泛化”)。 让我们看一个比“最近点”问题更简单的问题,只试着让神经网络 学习如下函数。

        对于这个任务,我们需要只有一个输入和一个输出的神经网络。

        但是,应该使用什么样的权重呢?对于每组可能的权重,神经网络都将计算出某个函数。例如,下面是它对于几组随机选择的权重计算出的函数。

        可以清楚地看到,这些函数与我们想要的函数相去甚远。那么,如何才能找到能够复现函数的权重呢?

        基本思想是提供大量的“输入—输出”样例以供“学习”,然后尝 试找到能够复现这些样例的权重。以下是逐渐增加样例后所得的 结果。 在该“训练”的每个阶段,都会逐步调整神经网络的权重,我们会 发现最终得到了一个能成功复现我们想要的函数的神经网络。应该 如何调整权重呢?基本思想是,在每个阶段看一下我们离想要的函 数“有多远”,然后朝更接近该函数的方向更新权重。

        为了明白离目标“有多远”,我们计算“损失函数”(有时也称为 “成本函数”)。这里使用了一个简单的(L2)损失函数,就是我们 得到的值与真实值之间的差异的平方和。随着训练过程不断进行, 我们看到损失函数逐渐减小(遵循特定的“学习曲线”,不同任务的学习曲线不同),直到神经网络成功地复现(或者至少很好地近 似)我们想要的函数。

        最后需要解释的关键是,如何调整权重以减小损失函数。正如我们 所说的,损失函数给出了我们得到的值和真实值之间的“距离”。 但是“我们得到的值”在每个阶段是由神经网络的当前版本和其中 的权重确定的。现在假设权重是变量,比如wi。我们想找出如何调 整这些变量的值,以最小化取决于它们的损失。

        让我们对实践中使用的典型神经网络进行极大的简化,想象只有两 个权重w1和w2。然后,我们可能会有一个损失函数,它作为w1和w2的函数看起来如下所示。

        数值分析提供了各种技术来帮我们找到这种情况下的最小损失。一个典型的方法就是从之前的任意w1和w2开始,逐步沿着最陡的下降路径前进。

        就像水从山上流下来一样,只能保证会到达表面上的某个局部最小 值(“一个山湖”),但不一定能到达最终的全局最小值。

        似乎不太容易在“权重景观”中找到最陡的下降路径,但是微积分可以拯救我们。正如上面提到的,我们总是可以将神经网络视为计 算出一个数学函数一取决于其输入和权重。现在考虑对这些权重 进行微分。结果表明,微积分的链式法则实际上让我们解开了神经 网络中连续各层所做操作的谜团。结果是,我们可以一至少在某 些局部近似中一“反转”神经网络的操作,并逐步找到使与输出 相关的损失最小化的权重。

        上图展示了,在仅有两个权重的情况下可能需要进行的最小化工作。但是事实证明,即使有更多的权重(ChatGPT使用了 1750亿个权重),也仍然可以进行最小化,至少可以在某种程度上进行近似。实际上,“深度学习”在2012年左右的重大突破与如下发现有关:与权重相对较少时相比,在涉及许多权重时,进行最小化(至 少近似)可能会更容易。

        换句话说,有时候用神经网络解决复杂问题比解决简单问题更容易一这似乎有些违反直觉。大致原因在于,当有很多”权重变 量”时,髙维空间中有“很多不同的方向”可以引导我们到达最小值;而当变量较少时,很容易陷入局部最小值的“山湖”,无法找 到“出去的方向”。

        值得指出的是,在典型情况下,有许多不同的权重集合可以使神经 网络具有几乎相同的性能。在实际的神经网络训练中,通常会做出 许多随机选择,导致产生一些“不同但等效”的解决方案,就像下面这些一样。

        但是每个这样的“不同解决方案”都会有略微不同的行为。假如在 我们给出训练样例的区域之外进行“外插”(extrapolation),可能 会得到截然不同的结果。

        哪一个是“正确”的呢?实际上没有办法确定。它们都“与观察到 的数据一致”。但它们都对应着“在已知框架外”进行“思考”的不 同的“固有方式”。只是有些方式对我们人类来说可能“更合理”。

        神经网络训练的实践和学问

        在过去的十年中,神经网络训练的艺术已经有了许多进展。是的, 它基本上是一门艺术。有时,尤其是回顾过去时,人们在训练中至 少可以看到一丝“科学解释”的影子了。但是在大多数情况下,这 些解释是通过试错发现的,并且添加了一些想法和技巧,逐渐针对 如何使用神经网络建立了一门重要的学问。

        这门学问有几个关键部分。首先是针对特定的任务使用何种神经网 络架构的问题。然后是如何获取用于训练神经网络的数据的关键问 题。在越来越多的情况下,人们并不从头开始训练网络:一个新的网络可以直接包含另一个已经训练过的网络,或者至少可以使用该 网络为自己生成更多的训练样例。

        有人可能会认为,每种特定的任务都需要不同的神经网络架构。 但事实上,即使对于看似完全不同的任务,同样的架构通常也 能够起作用。在某种程度上,这让人想起了通用计算(universal computation)的概念和我的计算等价性原理〈Principle of Computational Equivalence〉,但是,正如后面将讨论的那样,我 认为这更多地反映了我们通常试图让神经网络去完成的任务是“类人”任务,而神经网络可以捕捉相当普遍的“类人过程”。

        在神经网络的早期发展阶段,人们倾向于认为应该“让神经网络做尽可能少的事”。例如,在将语音转换为文本时,人们认为应该先 分析语音的音频,再将其分解为音素,等等。但是后来发现,(至 少对于“类人任务”)最好的方法通常是尝试训练神经网络来“解 决端到端的问题”,让它自己“发现”必要的中间特征、编码等。

        还有一种想法是,应该将复杂的独立组件引入神经网络,以便让它有效地“显式实现特定的算法思想”。但结果再次证明,这在大多 数情况下并不值得;相反,最好只处理非常简单的组件,并让它们 “自我组织”〔尽管通常是以我们无法理解的方式〕来实现(可能)等效的算法思想。

        这并不意味着没有与神经网络相关的“结构化思想”。例如,至少 在处理图像的最初阶段,拥有局部连接的神经元二维数组似乎非常 有用。而且,拥有专注于“在序列数据中‘回头看’”的连接模式 在处理人类语言方面,例如在ChatGPT中,似乎很有用(后面我们将看到)。

        神经网络的一个重要特征是,它们说到底只是在处理数据一和计算机一样。目前的神经网络及其训练方法具体处理的是由数值组成 的数组,但在处理过程中,这些数组可以完全重新排列和重塑。例如,前面用于识别数字的网络从一个二维的“类图像”数组开始, 迅速“增厚”为许多通道,但然后会“浓缩”成一个一维数组,最 终包含的元素代表可能输出的不同数字。

        但是,如何确定特定的任务需要多大的神经网络呢?这有点像一门 艺术。在某种程度上,关键是要知道“任务有多难”。但是类人任务的难度通常很难估计。是的,可能有一种系统化的方法可以通过 计算机来非常“机械”地完成任务,但是很难知道是否有一些技巧 或捷径有助于更轻松地以“类人水平”完成任务。可能需要枚举一 棵巨大的对策树才能“机械”地玩某个游戏,但也可能有一种更简 单的(“启发式”)方法来实现“类人的游戏水平”。

        当处理微小的神经网络和简单任务时,有时可以明确地看到“无法从这里到达那里”。例如,下面是在上一节任务中的几个小神经网 络能够得到的最佳结果。

        我们看到的是,如果神经网络太小,它就无法复现我们想要的函 数。但是只要超过某个大小,它就没有问题了 一一前提是至少训 练足够长的时间,提供足够的样例。顺便说一句,这些图片说明了 神经网络学问中的一点:如果中间有一个“挤压”〈squeeze〉,迫 使一切都通过中间较少的神经元,那么通常可以使用较小的网络。 [值得一提的是,“无中间层”(或所谓的“感知机”)网络只能学习 基本线性函数,但是只要有一个中间层(至少有足够的神经元),原则上就始终可以任意好地逼近任何函数,尽管为了使其可行地训 练,通常会做某种规范化或正则化。]

        好吧,假设我们已经确定了一种特定的神经网络架构。现在的问题是如何获取用于训练网络的数据。神经网络(及广义的机器学习)的许多实际挑战集中在获取或准备必要的训练数据上。在许多情况 (“监督学习”)下,需要获取明确的输入样例和期望的输出。例如, 我们可能希望根据图像中的内容或其他属性添加标签,而浏览图像 并添加标签通常需要耗费大量精力。不过很多时候,可以借助已 有的内容或者将其用作所需内容的替代。例如,可以使用互联网 上提供的alt标签。还有可能在不同的领域中使用为视频创建的隐 藏式字幕。对于语言翻译训练,可以使用不同语言的平行网页或平行文档。

        为特定的任务训练神经网络需要多少数据?根据第一性原则很难估 计。使用“迁移学习”可以将已经在另一个神经网络中学习到的重 要特征列表“迁移过来”,从而显著降低对数据规模的要求。但是, 神经网络通常需要“看到很多样例”才能训练好。至少对于某些任 务而言,神经网络学问中很重要的一点是,样例的重复可能超乎想 象。事实上,不断地向神经网络展示所有的样例是一种标准策略。 在每个“训练轮次”〈training round或epoch〉中,神经网络都会 处于至少稍微不同的状态,而且向它“提醒”某个特定的样例对于它“记忆该样例”是有用的。(是的,这或许类似于重复在人类记忆中的有用性。)

        然而,仅仅不断重复相同的样例并不够,还需要向神经网络展示样 例的变化。神经网络学问的一个特点是,这些“数据增强”的变 化并不一定要很复杂才有用。只需使用基本的图像处理方法稍微修改图像,即可使其在神经网络训练中基本上“像新的一样好”。与之类似,当人们在训练自动驾驶汽车时用完了实际的视频等数据, 可以继续在模拟的游戏环境中获取数据,而不需要真实场景的所 有细节。

        那么ChatGPT呢?它有一个很好的特点,就是可以进行“无监督 学习”,这样更容易获取训练样例。回想一下,ChatGPT的基本任 务是弄清楚如何续写一段给定的文本。因此,要获得“训练样例”, 要做的就是取一段文本,并将结尾遮盖起来,然后将其用作“训练 的输入”,而“输出”则是未被遮盖的完整文本。我们稍后会更详 细地讨论这个问题,这里的重点是一(与学习图像内容不同)不 需要“明确的标签”,ChatGPT实际上可以直接从它得到的任何文本样例中学习。

        神经网络的实际学习过程是怎样的呢?归根结底,核心在于确定哪 些权重能够最好地捕捉给定的训练样例。有各种各样的详细选择 和“超参数设置”(之所以这么叫,是因为权重也称为“参数”), 可以用来调整如何进行学习。有不同的损失函数可以选择,如平方和、绝对值和,等等。有不同的损失最小化方法,如每一步在权重 空间中移动多长的距离,等等。然后还有一些问题,比如“批量” (batch)展示多少个样例来获得要最小化的损失的连续估计。是的,我们可以(像在语言中所做的一样)应用机器学习来自动化机器学习,并自动设置超参数等。

        最终,整个训练过程可以通过损失的减小趋势来描述(就像这个经 过小型训练的Wolfram语言进度监视器一样)。

        损失通常会在一段时间内逐渐减小,但最终会趋于某个恒定值。如 果该值足够小,可以认为训练是成功的;否则可能暗示着需要尝试 更改网络的架构。

        能确定“学习曲线”要多久才能趋于平缓吗?似乎也存在—种取决 于神经网络大小和数据量的近似幂律缩放关系。但总的结论是,训练神经网络很难,并且需要大量的计算工作。实际上,绝大部分工 作是在处理数的数组,这正是GPU擅长的一’这也是为什么神经 网络训练通常受限于可用的GPU数量。

        未来,是否会有更好的方法来训练神经网络或者完成神经网络的任 务呢?我认为答案几乎是肯定的。神经网络的基本思想是利用大量 简单(本质上相同)的组件来创建一个灵活的“计算结构”,并使 其能够逐步通过学习样例得到改进。在当前的神经网络中,基本上是利用微积分的思想(应用于实数)来进行这种逐步的改进。但越 来越清楚的是,重点并不是拥有高精度数值,即使使用当前的方法,8位或更少的数也可能已经足够了。

        对于像元胞自动机这样大体是在许多单独的位上进行并行操作的 计算系统,虽然我们一直不明白如何进行这种增量改进,但没有 理由认为这不可能实现。实际上,就像“2012年的深度学习突 破”一样,这种增量改进在复杂情况下可能会比在简单情况下更容易实现。

        神经网络(或许有点像大脑)被设置为具有一个基本固定的神经 元网络,能改进的是它们之间连接的强度(“权重”)。(或许在年轻的大脑中,还可以产生大量全新的连接。)虽然这对生物学来说 可能是一种方便的设置,但并不清楚它是否是实现我们所需功能 的最佳方式。涉及渐进式网络重写的东西(可能类似于我们的物理项目)可能最终会做得更好。

        但即使仅在现有神经网络的框架内,也仍然存在一个关键限制:神 经网络的训练目前基本上是顺序进行的,每批样例的影响都会被反 向传播以更新权重。事实上,就目前的计算机硬件而言,即使考虑 到神经网络的大部分在训练期间的大部分时间里也是“空 闲”的,一次只有一个部分被更新。从某种意义上说,这是因为当 前的计算机往往具有独立于CPU (或GPU)的内存。但大脑中的 情况可能不同一一每个“记忆元素”(即神经元)也是一个潜在的活跃的计算元素。如果我们能够这样设置未来的计算机硬件,就可 能会更高效地进行训练。

        “足够大的神经网络当然无所不能!”

        ChatGPT的能力令人印象深刻,以至于人们可能会想象,如果能够 在此基础上继续努力,训练出越来越大的神经网络,那么它们最终 将“无所不能”。对于那些容易被人类思维理解的事物,这确实很 可能是成立的。但我们从科学在过去几百年间的发展中得出的教训 是,有些事物虽然可以通过形式化的过程来弄清楚,但并不容易立 即为人类思维所理解。

        非平凡的数学就是一个很好的例子,但实际而言一般的例子是计 算。最终的问题是计算不可约性。有些计算虽然可能需要很多步才 能完成,但实际上可以“简化”为相当直接的东西。但计算不可约 性的发现意味着这并不总是有效的。对于一些过程〈可能像下面的例子一样〉,无论如何都必须回溯每个计算步骤才能弄清楚发生了 什么。

        我们通常用大脑做的那类事情,大概是为了避免计算不可约性而特 意选择的。在大脑中进行数学运算需要特殊的努力。而且在实践 中,仅凭大脑几乎无法“想透”任何非平凡程序的操作步骤。

        当然,我们可以用计算机来做这些。有了计算机,就可以轻松地完 成耗时很长、计算不可约的任务。关键是,完成这些任务一般来说 没有捷径可走。

        是的,我们可以记住在某个特定计算系统中发生的事情的许多具体 例子,也许甚至可以看到一些(计算可约的)模式,使我们能够做 一些泛化。但关键是,计算不可约性意味着我们永远不能保证意外 不会发生一一只有通过明确的计算,才能知道在任何特定的情况下 会实际发生什么。

        说到底,可学习性和计算不可约性之间存在根本的矛盾。学习实际 上涉及通过利用规律来压缩数据,但计算不可约性意味着最终对可 能存在的规律有一个限制。

        在实践中,人们可以想象将(像元胞自动机或图灵机这样的)小 型计算设备构建到可训练的神经网络系统中。实际上,这样的设 备可以成为神经网络的好“工具”,就像Wolfram|Alpha可以成为ChatGPT的好工具一样。但是计算不可约性意味着人们不能指望 “进入”这些设备并让它们学习。

        换句话说,能力和可训练性之间存在着一个终极权衡:你越想让一个系统“真正利用”其计算能力,它就越会表现出计算不可约性,从而越不容易被训练;而它在本质上越易于训练,就越不能进行复 杂的计算。
        (对于当前的ChatGPT,情况实际上要极端得多,因为用于生成每 个输出标记的神经网络都是纯“前馈”网络、没有循环,因此无法 使用非平凡“控制流”进行任何计算。)

        当然,你可能会问,能够进行不可约计算是否真的很重要。实际 上,在人类历史的大部分时间里,这并不是特别重要。但我们的现 代技术世界是建立在工程学的基础上的,而工程学利用了数学计算,并且越来越多地利用了更一般的计算。看看自然界,会发现它充满了不可约计算^我们正在慢慢地理解如何模拟和利用它们来 达到我们的技术目的。

        神经网络确实可以注意到自然界中我们通过“无辅助的人类思维” 也能轻易注意到的规律。但是,如果我们想解决数学或计算科学 领域的问题,神经网络将无法完成任务,除非它能有效地使用一个 “普通”的计算系统作为“工具”。

        但是,这一切可能会带来一些潜在的困惑。过去,我们认为计算机 完成很多任务(包括写文章)在“本质上太难了”。现在我们看到像ChatGPT这样的系统能够完成这些任务,会倾向于突然认为计 算机一定变得更加强大了,特别是在它们已经基本能够完成的事情 (比如逐步计算元胞自动机等计算系统的行为)上实现了超越。

        但这并不是正确的结论。计算不可约过程仍然是计算不可约的,对 于计算机来说仍然很困难,即使计算机可以轻松计算其中的每一 步。我们应该得出的结论是,(像写文章这样)人类可以做到但认为计算机无法做到的任务,在某种意义上计算起来实际上比我们想象的更容易。

        换句话说,神经网络能够在写文章的任务中获得成功的原因是,写 文章实际上是一个“计算深度较浅”的问题,比我们想象的简单。 从某种意义上讲,这使我们距离对于人类如何处理类似于写文章的事情(处理语言)“拥有一种理论”更近了一步。

        如果有一个足够大的神经网络,那么你可能能够做到人类可以轻易 做到的任何事情。但是你无法捕捉自然界一般而言可以做到的事 情,或者我们用自然界塑造的工具可以做到的事情。而正是这些工 具的使用,无论是实用性的还是概念性的,近几个世纪以来使我们 超越了“纯粹的无辅助的人类思维”的界限,为人类获取了物理宇 宙和计算宇宙之外的很多东西。

        嵌入”的概念

        神经网络,至少以目前的设置来说,基本上是基于数的。因此,如 果要用它来处理像文本这样的东西,我们需要一种用数表示文本的 方法。当然,我们可以(本质上和ChatGPT 一样)从为字典中的 每个词分配一个数开始。但有一个重要的思想一也是ChatGPT的中心思想一更胜一筹。这就是“嵌入”(embedding)的思想。 可以将嵌入视为一种尝试通过数的数组来表示某些东西“本质”的 方法,其特性是“相近的事物”由相近的数表示。

        例如,我们可以将词嵌入视为试图在一种“意义空间”中布局词, 其中“在意义上相近”的词会出现在相近的位置。实际使用的嵌入(例如在ChatGPT中)往往涉及大量数字列表。但如果将其投影到二维平面上,则可以展示嵌入对词的布局方式。

        可以看到,这确实非常成功地捕捉了我们典型的日常印象。但是如 何才能构建这样的嵌入呢?大致的想法是查看大量的文本〔这里查看了来自互联网的50亿个词〕,然后看看各个词出现的“环境”有 多“相似”。例如,alligator(短吻鳄)和crocodile(鳄鱼)在相似 的句子中经常几乎可以互换,这意味着它们将在嵌入中被放在相近 的位置。但是,turnip(芜菁)和eagle(鹰)一般不会出现在相似的句子中,因此将在嵌入中相距很远。

        如何使用神经网络实际实现这样的机制呢?让我们从讨论图像的嵌 入而非词嵌入开始。我们希望找到一种以数字列表来表征图像的方 法,以便为“我们认为相似的图像”分配相似的数字列表。

        如何判断我们是否应该“认为图像相似”呢?对于手写数字图像, 如果两个图像是同一个数字,我们就可能会认为它们是相似的。前 面,我们讨论了一个被训练用于识别手写数字的神经网络。可以将 这个神经网络看作被设置成在最终输出中将图像放入10个不同的 箱(bin)中,每个箱对应一个数字。

        如果在神经网络做出“这是4”的最终决策之前“拦截”其内部进 程,会发生什么呢?我们可能会期望,神经网络内部有一些数值, 将图像表征为“大部分类似于4但有点类似于2”。想法是获取这 些数值并将其作为嵌入中的元素使用。

        这里的关键概念是,我们不直接尝试表征“哪个图像接近哪个图 像”,而是考虑一个定义良好、可以获取明确的训练数据的任务 (这里是数字识别),然后利用如下事实:在完成这个任务时,神经 网络隐含地必须做出相当于“接近度决策”的决策。因此,我们不 需要明确地谈论“图像的接近度”,而是只谈论图像代表什么数字 的具体问题,然后“让神经网络”隐含地确定这对于“图像的接近度”意味着什么。

        对于数字识别网络来说,这是如何具体操作的呢?我们可以将该网 络想象成由11个连续的层组成,并做如下简化(将激活函数显示为单独的层)。

        在开始,我们将实际图像输入第一层,这些图像由其像素值的二维数组表示。在最后,我们(从最后一层)得到一个包含10个值的数组,可以认为这些值表示网络对图像与数字0到9的对应关系的 确定程度。

        输入图像4,最后一层中神经元的值为

        {1.42071×10-22, 7.69857×10-14,1.9653×10-16, 5.55229×10-21, 1., 8.33841×10-14, 6.89742×10-17,6.52282×10-19, 6.51465×10-12, 1.97509×10-14)

        换句话说,神经网络现在“非常确定”这个图像是一个4——为了得到输出的4,我们只需要找出具有最大值的神经元的位置。

        如果我们再往前看一步呢?网络中的最后一个操作是所谓的softmax,它试图“强制推出确定性”。在此之前,神经元的值是

        {-26.134, -6.02347, -11.994, -22.4684, 24.1717, -5.94363, -13.0411, -17.7021, -1.58528, -7.38389}

        代表数字4的神经元仍然具有最大的数值,但是其他神经元的值中 也有信息。我们可以期望这个数字列表在某种程度上能用来表征图 像的“本质”,从而提供可以用作嵌入的东西。例如,这里的每个 4都具有略微不同的“签名”(或“特征嵌入”),与8完全不同。

        这里,我们基本上是用10个数来描述图像的。但使用更多的数通 常更好。例如,在我们的数字识别网络中,可以通过接入前一层来 获取一个包含500个数的数组。这可能是一个可以用作“图像嵌 入”的合理数组。

        如果想要对手写数字的“图像空间”进行明确的可视化,需要将我 们得到的500维向量投影到(例如)三维空间中来有效地“降维”。

        我们刚刚谈论了为图像创建特征(并嵌入)的方法,它的基础实际 上是通过(根据我们的训练集〉确定一些图像是否对应于同一个手 写数字来识别它们的相似性。如果我们有一个训练集,可以识别每 个图像属于5000种常见物体(如猫、狗、椅子……)中的哪一种, 就可以做更多这样的事情。这样,就能以我们对常见物体的识别 为“锚点”创建一个图像嵌入,然后根据神经网络的行为“围绕它 进行泛化”。关键是,这种行为只要与我们人类感知和解读图像的 方式一致,就将最终成为一种“我们认为正确”且在实践中对执行 “类人判断”的任务有用的嵌入。

        那么如采用相同的方法来找到对词的嵌入呢?关键在于,要从一个我们可以轻松训练的任务开始。一个这样的标准任务是词预测。 想象一下,给定问题“the_cat”。基于一个大型文本语料库,比如互联网上的文本内容,可能用来“填空”的各个词的概率分别是 多少?或者给定“_black_”,不同的“两侧词”的概率分别是多少?

        如何为神经网络设置这个问题呢?最终,我们必须用数来表述一 切。一种方法是为英语中约50000个常用词分别分配一个唯一的数。例如,分配给the的可能是914,分配给cat的的可能是3542。(这些是GPT-2实际使用的数。)因此,对于“the_cat”的问 题,我们的输入可能是丨914, 3542丨。输出应该是什么样的呢? 应该是一个大约包含500000个数的列表,有效地给出了每个可能“填入”的词的概率。为了找到嵌入,我们再次在神经网络“得到 结论”之前“拦截”它的“内部”进程,然后获取此时的数字列 表,可以认为这是“每个词的表征”。

        这些表征是什么样子的呢?在过去10年里,已经出现了一系列不 同的系统(word2vec、G1oVe、BERT、GPT……),每个系统都基 于一种不同的神经网络方法。但最终,所有这些系统都是通过有几 百到几千个数的列表对词进行表征的。

        这些“嵌入向量”在其原始形式下是几乎无信息的。例如,下面是 为三个特定的词生成的原始嵌入向量。

        如果测量这些向量之间的距离,就可以找到词之间的“相似度”。 我们稍后将更详细地讨论这种嵌入的“认知”意义可能是什么,而 现在的要点是,我们有一种有用的方法能将词转化为“对神经网络 友好”的数字集合。

        实际上,比起用一系列数对词进行表征,我们还可以做得更好一 可以对词序列甚至整个文本块进行这样的表征。ChatGPT内部就是这样进行处理的。它会获取到目前为止的所有文本,并生成一个嵌 入向量来表示它。然后,它的目标就是找到下一个可能出现的各个 词的概率。它会将答案表示为一个数字列表,这些数基本上给出了 大约50000个可能出现的词的概率。

        [严格来说,ChatGPT并不处理词,而是处理“标记”(token)——这是一种方便的语言单位,既可以是整个词,也可以只是像pre、ing或ized这样的片段。使用标记使ChatGPT更容易处理罕见词、 复合词和非英语词,并且会发明新单词(不论结果好坏)。]

        ChatGPT的内部原理

        我们终于准备好讨论ChatGPT的内部原理了。从根本上说,ChatGPT是一个庞大的神经网络——GPT-3拥有1750亿个权重。 它在许多方面非常像我们讨论过的其他神经网络,只不过是一个 特别为处理语言而设置的神经网络。它最显著的特点是一个称为Transformer的神经网络架构。

        在前面讨论的神经网络中,任何给定层的每个神经元基本上都与 上一层的每个神经元相连(起码有一些权重)。但是,如果处理的 数据具有特定的已知结构,则这种全连接网络就(可能)大材小用 了。因此,以图像处理的早期阶段为例,通常使用所谓的卷积神经 网络(convolutional neural net或convnet),其中的神经元被有效 地布局在类似于图像像素的网格上,并且仅与在网格上相邻的神经元相连。

        Transformer的思想是,为组成一段文本的标记序列做与此相似的 事情。但是,Transformer不是仅仅定义了序列中可以连接的固定 区域,而是引入了“注意力”的概念一即更多地“关注”序列 的某些部分,而不是其他部分。也许在将来的某一天,可以启动一个通用神经网络并通过训练来完成所有的定制工作。但至少目前来看,在实践中将事物“模块化”似乎是至关重要的——就像Transformer所做的那样,也可能是我们的大脑所做的那样。

        ChatGPT(或者说它基于的GPT-3网络)到底是在做什么呢?它 的总体目标是,根据所接受的训练(查看来自互联网的数十亿页文 本,等等〉,以“合理”的方式续写文本。所以在任意给定时刻, 它都有一定量的文本,而目标是为要添加的下一个标记做出适当的 选择。

        它的操作分为三个基本阶段。第一阶段,它获取与目前的文本相对 应的标记序列,并找到表示这些标记的一个嵌入(即由数组成的数 组兑第二阶段,它以“标准的神经网络的方式”对此嵌入进行操 作,值“像涟漪一样依次通过”网络中的各层,从而产生一个新的嵌入(即一个新的数组第三阶段,它获取此数组的最后一部分, 并据此生成包含约50000个值的数组,这些值就成了各个可能的 下一个标记的概率。(没错,使用的标记数量恰好与英语常用词的 数量相当,尽管其中只有约3000个标记是完整的词,其余的则是片段。)

         关键是,这条流水线的每个部分都由一个神经网络实现,其权重是 通过对神经网络进行端到端的训练确定的。换句话说,除了整体架构,实际上没有任何细节是有“明确设计”的,一切都是从训练数据中“学习”来的。

        然而,架构设置中存在很多细节,反映了各种经验和神经网络的学 问。尽管会变得很复杂,但我认为谈论一些细节是有用的,至少有 助于了解构建需要做多少工作。

        首先是嵌入模块。以下是GPT-2的Wolfram语言示意图。

        输入是一个包含n个〈由整数1到大约50 000表示的〉标记的向 量。每个标记都(通过一个单层神经网络)被转换为一个嵌入向量 (在中长度为768,在ChatGPT-2的GPT-3中长度为12288 同时,还有一条“二级路径”,它接收标记的(整数〉位置序列, 并根据这些整数创建另一个嵌入向量。最后,将标记值和标记位置 的嵌入向量相加,产生嵌入糢块的最终嵌入向量序列。

        为什么只是将标记值和标记位置的嵌入向量相加呢?我不认为有什 么特别的科学依据。只是因为尝试了各种不同的方法,而这种方法 似乎行得通。此外,神经网络的学问告诉我们,(在某种意义上) 只要我们的设置“大致正确”,通常就可以通过足够的训练来确定 细节,而不需要真正“在工程层面上理解”神经网络是如何配置自己的。

        嵌入模块对字符串“hello hello hello hello hello hello hello hello hello hello bye bye bye bye bye bye bye bye bye)所做的操作如下所示。

        (在上图的第一个数组中)每个标记的嵌入向量元素都在图中纵向 显示,而从左往右看,首先是一系列hello嵌入,然后是一系列bye嵌入。上面的第二个数组是位置嵌入,它看起来有些随机的结 构只是(这里是在中〉“碰巧学到”的。

        在嵌入模块之后,就是Transformer的“主要事件”了 :一系列所 谓的“注意力块”〈GPT-2有12个,ChatGPT的GPT-3有96个〉。

        整个过程非常复杂,让人想起难以理解的大型工程系统或者生物系 统。以下是(GPT-2中)单个“注意力块”的示意图。

        在每个这样的注意力块中,都有―组“注意力头”〈GPT-2有12个,ChatGPT的GPT-3有96个〉——每个都独立地在嵌入向量的 不同值块上进行操作。(我们不知道为什么最好将嵌入向量分成不 同的部分,也不知道不同的部分“意味”着什么。这只是那些“被 发现奏效”的事情之一。)

        注意力头是做什么的呢?它们基本上是一种在标记序列(即目前已 经生成的文本〉中进行“回顾”的方式,能以一种有用的形式“打 包过去的内容”,以便找到下一个标记。在“概率从何而来”一节 中,我们介绍了使用二元词的概率来根据上一个词选择下一个词。Transformer中的“注意力”机制所做的是允许“关注”更早的词, 因此可能捕捉到(例如〉动词可以如何被联系到出现在句子中很多 词之前的名词。

        更详细地说,注意力头所做的是,使用一定的权重重新加权组合 与不同标记相关联的嵌入向量中的块。例如,对于上面的“hello,bye”字符串,(GPT-2中)第一个注意力块中的12个注意力头具有以下(“回顾到标记序列开头”的)“权重重组”模式。

        经过注意力头的处理,得到的“重新加权的嵌入向量”(在GPT-2中长度为768,在GPT-3中长度为12288)将被传递通过标准的“全连接”神经网络层。虽然很难掌握这一层的作用, 但是可以看看它(这里是在GPT-2中)使用的768 X 768权重矩阵。

        (对上图进行)4 X 64的滑动平均处理,一些(随机游走式的)结构开始显现。

        是什么决定了这种结构?说到底,可能是对人类语言特征的一些 “神经网络编码”。但是到目前为止,这些特征到底是什么仍是未知 的。实际上,我们正在“打开ChatGPT(或者至少是的GPT-2)大脑”,并发现里面很复杂、难以理解——尽管它最终产生了可识别 的人类语言。

        经过一个注意力块后,我们得到了一个新的嵌入向量,然后让它 依次通过其他的注意力块(GPT-2中共有12个,GPT-3中共有96个)。每个注意力块都有自己特定的“注意力”模式和“全连接” 权重。这里是GPT-2对于“hello,bye”输入的注意力权重序列,用于第一个注意力头。

        全连接层的(移动平均)“矩阵”如下所示。

        奇怪的是,尽管不同注意力块中的“权重矩阵”看起来非常相似, 徂权重大小的分布可能会有所不同〈而且并不总是服从髙斯分布)。

        在经过所有这些注意力块后,Transformer的实际效果是什么?本质上,它将标记序列的原始嵌入集合转换为最终集合。ChatGPT的特定工作方式是,选择此集合中的最后一个嵌入,并对其进行“解 码”,以生成应该出现的下一个标记的概率列表。

        以上就是对ChatGPT内部原理的概述。它虽然(由于许多难免有 些随意的“工程选择”)可能看起来很复杂,但实际上涉及的最终 元素非常简单。因为我们最终处理的只是由“人工神经元”构成的 神经网络,而每个神经元执行的只是将一组数值输入与一定的权重 相结合的简单操作。

        ChatGPT的原始输入是一个由数组成的数组(到目前为止标记的嵌 入向量)。当ChatGPT“运行”以产生新标记时,这些数就会“依次通过”神经网络的各层,而每个神经元都会“做好本职工作”并将结果传递给下一层的神经元。没有循环和“回顾”。—切都是在 网络中“向前馈送”的。

        这是与典型的计算系统(如图灵机)完全不同的设置——在这里, 结果不会被同一个计算元素“反复处理”。至少在生成给定的输出 标记时,每个计算元素(神经元)仅使用了一次。

        但是在某种意义上,即使在ChatGPT中,仍然存在一个重复使用 计算元素的“外部循环”。因为当ChatGPT要生成一个新的标记时,它总是“读取”〈即获取为输入〉之前的整个标记序列,包括ChatGPT自己先前“写入”的标记。我们可以认为这种设置意味着 确实,至少在其最外层,包含一个“反馈循环”,尽管其 中的每次迭代都明确显示为它所生成文本中的一个标记。

        让我们回到ChatGPT的核心:神经网络被反复用于生成每个标记。 在某种程度上,它非常简单:就是完全相同的人工神经元的一个集 合。网络的某些部分仅由(“全连接”的)神经元层组成,其中给 定层的每个神经元都与上一层的每个神经元(以某种权重〉相连。 但是由于特别的架构,ChatGPT的一些部分具有其他的结构,其中仅连接不同层的特定神经元。(当然,仍然可以说 “所有神经元都连接在一起”,但有些连接的权重为零。)

        此外,ChatGPT中神经网络的有些方面并不能被顺理成章地认为 只由“同质”层组成。例如,(正如本节中单个“注意力块”的示 意图所示)在注意力块内有一些对传入的数据“制作多个副本”的 地方,每个副本都会通过不同的“处理路径”,可能涉及不同数量的层,然后才被重新组合。虽然这可能简便地表示了正在发生的事 情,但至少原则上总是可以将事实考虑为“密集填充”各层,只是 有一些权重为零。

        看一下ChatGPT最长的路径,会发现大约有400个(核心)层——在某种程度上看来并不是很多。但是它们包括数百万个神经 元,总共有1750亿个连接,因此有1750亿个权重。需要认识到的 一件事是,ChatGPT每生成一个新的标记,都必须进行一次包括所有这些权重在内的计算。在实现上,这些计算可以“按层”组织成 高度并行的数组操作,方便地在上完成。但是对于每个产生 的标记,仍然需要进行1750亿次计算(并在最后进行一些额外的 计算)——因此,不难理解使用ChatGPT生成一段长文本需要一些时间。

        值得注意的是,所有这些操作——尽管各自都很简单——可以一 起出色地完成生成文本的“类人”工作。必须再次强调,(至少就 我们目前所知〕没有“理论上的终极原因”可以解释为什么类似于 这样的东西能够起作用。事实上,正如我们将讨论的那样,我认为 必须将其视为一项(可能非常惊人的)科学发现:在像ChatGPT这样的神经网络中,能以某种方式捕捉到人类大脑在生成语言时所做事情的本质。

        ChatGPT的训练

        我们已经概述了ChatGPT在设置后的工作方式。但是它是如何设 置的呢?那1750亿个神经元的权重是如何确定的呢?基本上,这 是基于包含人类所写文本的巨型语料库(来自互联网、书籍等〉, 通过大规模训练得出的结果。正如我们所说,即使有所有这些训练 数据,也不能肯定神经网络能够成功地产生“类人”文本。似乎需 要细致的工程设计才能实现这一点。但是,ChatGPT带来的一大惊 喜和发现是,它完全可以做到。实际上,“只有1750亿个权重”的 神经网络就可以构建出人类所写文本的一个“合理模型”。

        现代社会中,人类写的很多文本以数字(digital)形式存在。公共 互联网上至少有数十亿个包含人类所写文本的网页,总词数可能 达到万亿级别。如果包括非公开的网页,词数可能会增加至少100 倍。到目前为止,已经有超过500万本电子书可供阅读(全球发行的图书品种总数为1亿左右〉,提供了另外约1000亿个词的文本。 这还不包括视频中的口述文本等。(就个人而言,我一生中发表的 文字总量不到300万个词,在过去30年中写下了约1500万个词的 电子邮件,总共敲了大约5000万个词一而且仅在过去几年的直播 中,我就说了超过1000万个词。是的,我会从中训练一个机器人。)

        但是,有了所有这些数据,要如何训练神经网络呢?基本过程与 上面讨论的简单示例非常相似:先提供一批样例,然后调整网络 中的权重,以最小化网络在这些样例上的误差(“损失”)。根据误 差“反向传播”的主要问题在于,每次执行此操作时,网络中的每 个权重通常都至少会发生微小的变化,而且有很多权重需要处理。 〈实际的“反向传播”通常只比前向传播难—点儿一一相差一个很 小的常数系数。) 使用现代硬件,可以轻松地从成千上万个样例中并行计算出 结果。但是,当涉及实际更新神经网络中的权重时,当前的方法基 本上会要求逐批进行。(是的,这可能是结合了计算元素和记忆元 素的真实大脑至少在现阶段具有架构优势的地方。) 即使在学习数值函数这样看似简单的案例中,我们通常也需要使用 数百万个样例才能成功地训练网络,至少对于从头开始训练来说是 这样的。那么需要多少样例才能训练出“类人语言”模型呢?似乎 无法通过任何基本的“理论”方法知道。但在实践中,ChatGPT成功地在包含几百亿个词的文本上完成了训练。

        虽然有些文本被输入了多次,有些只输入了一次,但ChatGPT从 它看到的文本中“得到了所需的信息”。考虑到有这么多文本需要学习,它需要多大的网络才能“学得好”呢?目前,我们还没有基 本的理论方法来回答这个问题。最终,就像下面将进一步讨论的那样,对于人类语言和人类通常用它说什么,可能有某种“总体算法 内容”。而下一个问题是:神经网络在基于该算法内容实现模型时 会有多高效?我们还是不知道,尽管ChatGPT的成功表明它是相 当高效的。

        最终,我们只需注意到ChatGPT使用了近2000亿个权重来完成其 工作一数愤与其接受的训练数据中的词(或标记)的总数相当。 在某些方面,运作良好的“网络的规模”与“训练数据的规模”如 此相似或许令人惊讶(在与ChatGPT结构相似的较小网络中实际观察到的情况也丛如此)。毕竟,ChatGPT内部并没有直接存储来自互联网、书籍等的所有文本。因为ChatGP内部实际上是一堆数 (精度不到10位),它们是所有文本的总体结构的某种分布式编码。

        换句话说,我们可以问人类语言的“有效信息”是什么,以及人类 通常用它说些什么。我们有语言样例的原始语料库。在ChatGPT的神经网络中,还有对它们的表示。这些表示很可能远非“算法上最小”的表示,正如下面将讨论的那样。但它们是神经网络可以 轻松使用的表示。在这种表示中,训练数据的“压缩”程度似乎很低。平均而言,似乎只需要不到一个神经网络的权重就可以承载一 个词的训练数据的“信息内容”。

        当我们运行ChatGPT来生成文本时,基本上每个权重都需要使用一次。因此,如果有n个权重,就需要执行约n个计算步骤一尽管在实践中,许多计算步骤通常可以在GPU中并行执行。但是, 如果需要约n个词的训练数据来设置这些权重,那么如上所述,我 们可以得出结论:需要约n2个计算步骤来进行网络的训练。这就是为什么使用当前的方法最终需要耗费数十亿美元来进行训练。

        在基础训练之外

        训练ChatGPT的重头戏是在向其“展示”来自互联网、书籍等的 大量现有文本,但事实证明训练还包括另一个(显然非常重要的) 部分。

        一旦根据被展示的原始文本语料库完成“原始训练”,ChatGPT内部的神经网络就会准备幵始生成自己的文本,根据提示续写,等 等。尽管这些结果通常看起来合理,但它们很容易〈特别是在较长 的文本片段中〉以“非类人”的方式“偏离正轨”。这不是通过对 文本进行传统的统计可以轻易检测到的。但是,实际阅读文本的人 很容易注意到。

        构建ChatGPT的一个关键思想是,在“被动阅读”来自互联网等的内容之后添加一步:让人类积极地与ChatGPT互动,看看它产生了什么,并且在“如何成为一个好的聊天机器人”方面给予实际反馈。 但是神经网络是如何利用这些反馈的呢?首先,仅仅让人类对神 经网络的结果评分。然后,建立另一个神经网络模型来预测这些评分。现在,这个预测模型可以在原始网络上运行一一本质上像损失函数一样一一从而使用人类的反馈对原始网络进行“调优”。实践中的结果似乎对系统能否成功产生“类人”输出有很大的影响。

        总的来说,有趣的是,“原本训练好的网络”似乎只需要很少的“介入”就能在特定方向上有效地进步。有人可能原本认为,为了 让网络表现得好像学到了新东西,就必须为其训练算法、调整权 重,等等。

        但事实并非如此。相反,基本上只需要把东西告诉ChatGPT一次——作为提示的一部分——它就可以成功用其生成文本。再次 强调,我认为这种方法有效的事实是理解ChatGPT“实际上在做什 么”以及它与人类语言和思维结构之间关系的重要线索。

        它确实有些类人:至少在经过所有预训练后,你只需要把东西告诉它一次,它就能“记住”一至少记住足够长的时间来生成一段文本。这里面到底发生了什么事呢?也许“你可能告诉它的一切都已 经在里面的某个地方了”,你只是把它引导到了正确的位置。但这 似乎不太可能。更可能的是,虽然这些元素已经在里面了,但具体 情况是由类似于“这些元素之间的轨迹”所定义的,而你告诉它的就是这条轨迹。

        就像人类一样,如果ChatGPT接收到一些匪夷所思、出乎意料、 完全不符合它已有框架的东西,它就似乎无法成功地“整合”这些 信息。只有在这些信息基本上以一种相对简单的方式依赖于它已有的框架时,它才能够进行“整合”。

        值得再次指出的是,神经网络在捕捉信息方面不可避免地存在“算 法限制”。如果告诉它类似于“从这个到那个”等“浅显”的规则, 神经网络很可能能够不错地表示和重现这些规则,并且它“已经掌 握”的语言知识将为其提供一个立即可用的模式。但是,如果试图 给它实际的“深度”计算规则,涉及许多可能计算不可约的步骤, 那么它就行不通了。(请记住,它在每一步都只是在网络中“向前 馈送数据”,除非生成新的标记,否则它不会循环。〉

        当然,神经网络可以学习特定的“不可约”计算的答案。但是,一 旦存在可能性的组合数,这种“表查找式”的方法就不起作用了。 因此,就像人类一样,神经网络此时需要使用真正的计算工具。 (没错,Wolfram|Alpha和Wolfram语言就非常适用,因为它们正 是被构建用于“谈论世界中的事物”的,就像语言模型神经网络 —样。)

        真正让ChatGPT发挥作用的是什么

        人类语言,及其生成所涉及的思维过程,一直被视为复杂性的巅 峰。人类大脑“仅”有约1000亿个神经元(及约100万亿个连 接〉,却能够做到这一切,确实令人惊叹。人们可能会认为,大脑 中不只有神经元网络,还有某种具有尚未发现的物理特性的新层。 但是有了ChatGPT之后,我们得到了一条重要的新信息:一个连 接数与大脑神经元数量相当的纯粹的人工神经网络,就能够出色地生成人类语言。

        这仍然是一个庞大而复杂的系统,其中的神经网络权重几乎与当前 世界上可用文本中的词一样多。但在某种程度上,似乎仍然很难相 信语言的所有丰富性和它能谈论的事物都可以被封装在这样一个有 限的系统中。这里面的部分原理无疑反映了一个普遍现象[这个现 象最早在规则30(是本书作者在1983年提出的单维二进制元胞自动机规则。这个简 单、已知的规则能够产生复杂且看上去随机的模式)的例子中变得显而易见]:即使基础规则很简单, 计算过程也可以极大地放大系统的表面复杂性。但是,正如上面讨 论的那样,ChatGPT使用的这种神经网络实际上往往是特别构建的,以限制这种现象(以及与之相关的计算不可约性)的影响,从而使它们更易于训练。

        那么,ChatGPT是如何在语言方面获得如此巨大成功的呢?我认为 基本答案是,语言在根本上比它看起来更简单。这意味着,即使是 具有简单的神经网络结构的ChatGPT,也能够成功地捕捉人类语言 的“本质”和背后的思维方式。此外,在训练过程中,ChatGPT已经通过某种方式“隐含地发现” 了使这一切成为可能的语言(和思 维)规律。

        我认为,ChatGPT的成功为一个基础而重要的科学事实向我们提供 了证据:它表明我们仍然可以期待能够发现重大的新“语言法则”, 实际上是“思维法则”。在ChatGPT中,由于它是一个神经网络, 这些法则最多只是隐含的但是,如果我们能够通过某种方式使这些法则变得明确,那么就有可能以更直接、更高效和更透明的方式 做出ChatGPT所做的那些事情。

        这些法则可能是什么样子的呢?最终,它们必须为我们提供某种 关于如何组织语言及其表达方式的指导。我们稍后将讨论“在 ChatGPT内部”可能如何找到一些线索,并根据构建计算语言的经 验探索前进的道路。但首先,让我们讨论两个早已知晓的“语言法 则”的例子,以及它们与ChatGPT的运作有何关系。

        第一个是语言的语法。语言不仅仅是把一些词随机拼凑在一起。相反,不同类型的词之间有相当明确的语法规则。例如,在英语中, 名词的前面可以有形容词、后面可以有动词,但是两个名词通常不 能挨在一起。这样的语法结构可以通过一组规则来(至少大致地)捕捉,这些规则定义了如何组织所谓的“解析树”。

        ChatGPT并不明确地“了解”这些规则。但在训练过程中,它隐 含地发现了这些规则,并且似乎擅长遵守它们。这里的原理是什么 呢?在“宏观”上还不清楚。但是为了获得一些见解,也许可以看 看一个更简单的例子。

        考虑一种由“(”和“)”的序列组成的“语言”,其语法规定括号 应始终保持平衡,就像下面的解析树—样。

        我们能训练神经网络来生成“语法正确”的括号序列吗?在神经 网络中,有各种处理序列的方法,但是这里像ChatGPT一样使用Transformer网络。给定一个简单的Transformer网络,我们可以首 先向它馈送语法正确的括号序列作为训练样例。一个微妙之处(实 际上也出现在ChatGPT的人类语言生成中)是,除了我们的“内 容标记”〔这里是“(”和“)”)之外,还必须包括一个“end”标 记,表示输出不应继续下去了〈即对于ChatGPT来说,已经到达了 “故事的结尾”)。

        如果只使用一个有8个头的注意力块和长度为128的特征向量来设置Transformer网络(ChatGPT也使用长度为128的特征向量,但 有96个注意力块,每个块有96个头),似乎不可能让它学会括号语言。但是使用2个注意力块,学习过程似乎会收敛——至少在给 出1000万个样例之后(并且,与Transformer网络一样,展示更多的样例似乎只会降低其性能)。

        通过这个网络,我们可以做类似于ChatGPT所做的事情,询问括 号序列中下一个符号是什么的概率。

        在第一种情况下,网络“非常确定”序列不能在此结束——这很好,因为如果在此结束,括号将不平衡。在第二种情况下,网络 “正确地识别出”序列可以在此结束,尽管它也“指出”可以“重 新开始下一个标记是“(”,后面可能紧接着一个“)”。但糟糕 的是,即使有大约400 000个经过繁重训练的权重,它仍然说下一 个标记是“)”的概率是15%——这是不正确的,因为这必然会导 致括号不平衡。

        如果要求网络以最高概率补全逐渐变长的“(”序列,结果将如下所示。

        在一定长度内,网络是可以正常工作的。但是一旦超出这个长度, 它就开始出错。这是在神经网络(或广义的机器学习〉等“精确” 情况下经常出现的典型问题。对于人类“一眼就能解决”的问题,

        神经网络也可以解决。但对于需要执行“更算法式”操作的问题(例如明确计算括号是否闭合),神经网络往往会“计算过浅”,难 以可靠地解决。顺便说一句,即使是当前完整的ChatGPT在长序列中也很难正确地匹配括号。

        对于像ChatGPT这样的程序和英语等语言的语法来说,这意味着什么呢?括号语言是“严谨”的,而且是“算法式”的。而在英语中,根据局部选词和其他提示“猜测”语法上合适的内容更为现 实。是的,神经网络在这方面做得要好得多一一尽管它可能会错 过某些“形式上正确”的情况,但这也是人类可能会错过的。重点 是,语肓存在整体的句法结构,而且它蕴含猎规律性。从某种意义上说,这限制了神经网络滿要学习的内容“多少”。一个关键的“类自然科学”观察结果是,神经网络的Transformer架构,就像ChatGPT中的这个,好像成功地学会了似乎在所有人类语言中都存 在(至少在某种程度上是近似的)的嵌套树状的句法结构。

        语法为语言提供了一种约束,但显然还有更多限制。像“Inquisitive electrons eat blue theories for fish”〈好奇的电子为了鱼吃蓝色的理论)这样的句子虽然在语法上是正确的,但不是人们通常会说的 话。ChatGPT即使生成了它,也不会被认为是成功的一因为用 其中的词的正常含义解读的话,它基本上是毫无意义的。

        有没有一种通用的方法来判断一个句子是否有意义呢?这方面没有传统的总体理论。但是可以认为,在用来自互联网等处的数十亿个 (应该有意义的)句子对ChatGPT进行训练后,它已经隐含地“发 展出”了一个这样的“理论”。

        这个理论会是什么样的呢?它的冰山一角基本上已经为人所知了 2000多年,那就是逻辑。在亚里士多德发现的三段论(syllogistic) 形式中,逻辑基本上用来说明遵循一定模式的句子是合理的,而其 他句子则不合理。例如,说“所有X都是Y。这不是Y,所以它不是X”(比如“所有的鱼都是蓝色的。这不是蓝色的,所以它不是 鱼” 是合理的。就像可以异想天开地想象亚里士多德是通过(“机 器学习式”地)研究大量修辞学例子来发现三段论逻辑一样,也可以想象ChatGPT在训练中通过查看来自互联网等的大量文本能够 “发现三段论逻辑”。(虽然可以预期ChatGPT会基于三段论逻辑等产生包含“正确推理”的文本,但是当涉及更复杂的形式逻辑时, 情况就完全不同了。我认为可以预期它在这里失败,原因与它在括 号匹配上失败的原因相同。〉

        除了逻辑的例子之外,关于如何系统地构建(或识别)有合理意义的文本,还有什么其他可说的吗?有,比如像Mad Libs这样使用 非常具体的“短语模板”的东西。但是,ChatGPT似乎有一种更一 般的方法来做到这一点。也许除了“当你拥有1750亿个神经网络 权重时就会这样”,就没有什么别的可以说广。但是我强烈怀疑有 —个更简单、更有力的故事。

        意义空间和语义运动定律

        之前讨论过,在ChatGPT内部,任何文本都可以被有效地表示为 一个由数组成的数组,可以将其视为某种“语言特征空间”中一 个点的坐标。因此,ChatGPT续写一段文本,就相当于在语言特 征空间中追踪一条轨迹。现在我们会问:是什么让这条轨迹与我 们认为有意义的文本相对应呢?是否有某种“语义运动定律”定 义(或至少限制〕了语言特征空间中的点如何在保持“有意义” 的同时到处移动?

        这种语言特征空间是什么样子的呢?以下是一个例子,展示了如果 将这样的特征空间投影到二维平面上,单个词(这里是常见名词) 可能的布局方式。

        我们在介绍嵌入时见过一个包含植物词和动物词的例子。这两个例 子都说明了,“语义上相似的词”会被放在相近的位置。

        再看一个例子,下图展示了不同词性的词是如何布局的。

        当然,一个词通常不只有“一个意思” ^也不一定只有一种词性 通过观察包含一个词的句子在特征空间中的布局,人们通常可以 “分辨出”它们不同的含义,就像如下例子中的crane这个词(指 的是“鹤”还是“起重机”?)。

        看来,至少可以将这个特征空间视为将“意思相近的词”放在这 个空间中的相近位置。但是,我们能够在这个空间中识别出什么 样的额外结构呢?例如,是否存在某种类似于“平行移动”的概 念,反映了空间的“平坦性”?理解这一点的一种方法是看一下相似的词。

        即使投影到二维平面上,也通常仍然有一些“平坦性的迹象”,虽然这并不是普遍存在的。

        那么轨迹呢?我们可以观察ChatGPT的提示在特征空间中遵循的轨迹,然后可以看到ChatGPT是如何延续这条轨迹的。

        这里无疑没有“几何上显而易见”的运动定律。这一点儿也不令人 意外,我们充分预期到了这会相当复杂。例如,即使存在一个“语 义运动定律”,我们也远不淸楚它能以什么样的嵌入(实际上是 “变量”)来最自然地表述。

        在上图中,我们展示了“轨迹”中的几步——在每一步,我们都选择了ChatGPT认为最有可能(“零温度”的情况)出现的词。不过,我们也可以询问在某一点处可能出现的“下一个”词有哪些以及它们出现的概率是多少。

        在这个例子中,我们看到的是由高概率词组成的一个“扇形”,它 似乎在特征空间中朝着一个差不多明确的方向前进。如果继续前进 会发生什么?沿轨迹移动时出现的连续“扇形”如下所示。

        下面是一幅包含40步的三维示意图。

        这看起来很混乱,并且没有特别推动通过实证研究“ChatGPT内部的操作”来识别“类似数学物理”的“语义运动定律”。但也许我 们只是关注了“错的变量”〔或者错的坐标系〉,如果关注对的那 —个,就会立即看到ChatGPT正在做“像数学物理一样简单”的 事情,比如沿测地线前进。但目前,我们还没有准备好从它的“内部行为”中“实证解码”ChatGPT已经“发现”的人类语言的“组织”规律。

        语义语法和计算语言的力量

        产生“有意义的人类语言”需要什么?过去,我们可能认为人类大 脑必不可少。但现在我们知道,ChatGPT的神经网络也可以做得非 常出色。这或许就是我们所能达到的极限,没有比这更简单(或更 易于人类理解〉的方法可以使用了。不过,我强烈怀疑ChatGPT的成功暗示了一个重要的“科学”事实:有意义的人类语言实际上 比我们所知道的更加结构化、更加简单,最终可能以相当简单的规 则来描述如何组织这样的语言。

        正如上面提到的,句法语法为如何组织人类语言中属于不同词性的 词提供了规则。但是为了处理意义,我们需要更进一步。一种方法 是不仅考虑语言的句法语法,还要考虑语义语法。

        对于句法,我们识别出名词和动词,等等。但对于语义,我们需要 “更精细的分级”。例如,我们可以识别出“移动”的概念和一个“不因位置而改变身份”的“对象”的概念。这些“语义概念”的 例子数不胜数。但对于我们要用的语义语法,只需要一些基本的规 则,基本上来说就是“对象”可以“移动”。关于这可能如何工作, 有很多要说的(其中一些之前已经说过但我在这里只会说几句表明一些潜在前进道路的话。

        值得一提的是,即使一句话在语义语法上完全没问题,也不意味着它已经(或者能)在实践中成真。“The elephant traveled to the moon”(大象去了月球)这句话毫无疑问会“通过”我们的语义语法,但 (至少目前)在我们的现实世界中还没有成真,虽然它绝对可以在虚构的世界中成真。 当我们开始谈论“语义语法”时,很快就会问:它的底层是什么? 它假设了什么样的“世界模型”?句法语法实际上只是关于由词构 建语言的。但是语义语法必然涉及某种“世界模型” 一一类似于“骨架”,由实际的词构成的语言可以基于它分层。

        直到不久之前,我们可能还是认为(人类)语言将是描述“世界模型”的唯一通用方式。几个世纪前,人们就已经开始针对特定种类 的事物进行形式化,特别是基于数学。但是现在有了一种更通用的形式化方法:计算语言。

        是的,这是我四十多年来一直在研究的大型项目(现在体现在Wolfram语言中开发一种精确的符号表示,以尽可能广泛地谈论世界上的事物,以及我们关心的抽象事物。例如,我们有城市、 分子、图像和神经网络的符号表示,还有关于如何计算这些事物的内置知识。

        经过几十年的努力,我们已经在许多领域中运用了这种方法。但是过去,我们并没有特别用其处理“日常话语”。在“我买了两斤苹 果”中,我们可以轻松地表示“两斤苹果”(并进行有关的营养和其他计算),但是(还)没有找到“我买了”的符号表示。

        这一切都与语义语法的思想有关一~目标是拥有一个对各种概念通用的符号“构造工具包”,用于对什么可以与什么组合在一起给出规则,从而对可以转化为人类语言的“流”给出规则。

        假设我们有这种“符号话语语言”,我们会用它做什么呢?首先可 以生成“局部有意义的文本”。但最终,我们可能想要更有“全局 意义”的结果一一这意味着“计算”更多实际存在或发生于世界 (或某个与现实一致的虚构世界)中的事情。

        在Wolfram语言中,我们已经拥有了关于许多种事物的大量内置 计算知识。但如果要建立一种完整的符号话语语言,我们还需要纳 入关于世界上一般事物的额外“计算方法”(calculi):如果一个物 体从A移动到B,然后从B移动到C,那么它就从A移动到了C,等等。

        我们不仅可以用符号话语语言来做“独立的陈述”,而且可以用它 来问关于世界的问题,就像对Wolfram|Alpha所做的那样。此外, 也可以用它来陈述我们“想要实现”的事情,这可能需要一些外部 激活机制;还可以用它来做断言一也许是关于实际世界的,也许 是关于某个我们正在考虑的(无论是虚构还是其他的)特定世界的。 人类语言是不精确的,这主要是因为它没有与特定的计算实现相“结合”,其意义基本上只由其使用者之间的“社会契约”定义。 但是,计算语言在本质上具

        有一定的精确性,因为它指定的内容最 终总是可以“在计算机上毫无歧义地执行”。人类语言有一定的模 糊性通常无伤大雅。(当我们说“行星”时,是否包括外行星呢? 等等。但在计算语言中,我们必须对所做的所有区别进行精确和 清晰的说明。

        在计算语言中,利用普通的人类语言来创造名称通常很方便。但是 这些名称在计算语言中的含义必须是精确的,可能涵盖也可能不涵 盖典型人类语言用法中的某些特定内涵。

        如何确定适用于一般符号话语语言的“本体论”以)呢? 这并不容易。也许这就是自亚里士多德2000多年前对本体论做出 原始论述以来,在这些方面几乎没有什么进展的原因。但现在,我 们已经知道了有关如何以计算的方式来思考世界的许多知识,这确 实很有帮助(从我们的Physics Project和ruliad[本书作者创造的概念,即所有可能的计算过程的纠缠上限:以各种可能的方式遵循所有可能的计算规则的结果。详见文章“the concept of the ruliad”]思想中得到“基本 的形而上学”也无妨)。

        所有这些在ChatGPT中意味着什么呢?在训练中,有效 地“拼凑出”了一定数量(相当惊人)的相当于语义语法的东西。 它的成功让我们有理由认为,构建在计算语言形式上更完整的东西 是可行的。与我们迄今为止对ChatGPT内部的理解不同的是,我 们可以期望对计算语言进行设计,使其易于被人类理解。

        当谈到语义语法时,我们可以将其类比于三段论逻辑。最初,三段 论逻辑本质上是关于用人类语言所表达的陈述的一组规则。但是, 当形式逻辑被发展出来时(没错,在2000多年之后〉,三段论逻 辑最初的基本结构也可以用来构建巨大的“形式化高塔”,能用于 解释(比如〉现代数字电路的运作。因此,我们可以期待更通用的 语义语法也会如此。起初,它可能只能处理简单的模式,例如文 本。但是,一旦它的整体计算语言框架被建立起来,我们就可以期 待用它来搭建“广义语义逻辑”的高塔,让我们能够以精确和形式 化的方式处理以前接触不到的各种事物(相比之下,我们现在只能 在“地面层”处理人类语言,而且带有很大的模糊性 我们可以将计算语言一一和语义语法一一的构建看作一种在表示 事物方面的终极压缩。因为它使我们不必(比如)处理存在于普通 人类语言中的所有“措辞”,就能够谈论可能性的本质。可以认为 ChatGPT的巨大优势与之类似:因为它也在某种意义上“钻研”至|』 了,不必考虑可能的不同措辞,就能“以语义上有意义的方式组织 语言”的地步。

        如果我们将ChatGPT应用于底层计算语言,会发生什么呢?计算 语言不仅可以描述可能的事物,而且还可以添加一些“流行”之 感,例如通过阅读互联网上的所有内容做到。但是,在底层,使用 计算语言操作意味着像ChatGPT这样的系统可以立即并基本地访 问能进行潜在不可约计算的终极工具。这使ChatGPT不仅可以生 成合理的文本,而且有望判断文本是否实际上对世界(或其所谈论 的任何其他事物)做出了“正确”的陈述。

        那么ChatGPT到底在做什么? 它为什么能做到这些?

        ChatGPT的基本概念在某种程度上相当简单:首先从互联网、书籍等获取人类创造的海量文本样本,然后训练一个神经网络来生成 “与之类似”的文本。特别是,它能够从“提示”开始,继续生成 “与其训练数据相似的文本”。

        正如我们所见,ChatGPT中的神经网络实际上由非常简单的元素组 成,尽管有数十亿个。神经网络的基本操作也非常简单,本质上是 对于它生成的每个新词(或词的一部分),都将根据目前生成的文 本得到的输入依次传递“给其所有元素一次”〔没有循环等〕。

        值得注意和出乎意料的是,这个过程可以成功地产生与互联网、书 籍等中的内容“相似”的文本。ChatGPT不仅能产生连贯的人类语言,而且能根据“阅读”过的内容来“循着提示说一些话”。它并不总是能说出“在全局上有意义”(或符合正确计算)的话,因为 (如果没有利用Wolffram|Alpha的“计算超能力”〉它只是在根据训 练材料中的内容“听起来像什么”来说出“听起来正确”的话。

        ChatGPT的具体工程非常引人注目。但是,(至少在它能够使用外 部工具之前)ChatGPT“仅仅”是从其积累的“传统智慧的统计 数据”中提取了一些“连贯的文本线索”。但是,结果的类人程度 已经足够令人惊讶了。正如我所讨论的那样,这表明了一些至少 在科学上非常重要的东西:人类语言及其背后的思维模式在结构 上比我们想象的更简单、更“符合规律”。ChatGPT已经隐含地发 现了这一点。但是我们可以用语义语法、计算语言等来明确地揭 开它的面纱。

        在生成文本方面表现得非常出色,结果通常非常类似于人类创作的文本。这是否意味着ChatGPT的工作方式像人类的大脑 一样?它的底层人工神经网络结构说到底是对理想化大脑的建模。 当人类生成语言时,许多方面似乎非常相似。

        当涉及训练(即学习)时,大脑和当前计算机在“硬件”(以及一 些未开发的潜在算法思想)上的不同之处会迫使ChatGPT使用一 种可能与大脑截然不同的策略(在某些方面不太有效率还有一 件事值得一提:甚至与典型的算法计算不同,ChatGPT内部没有 “循环”或“重新计算数据”。这不可避免地限制了其计算能力——即使与当前的计算机相比也是如此,更谈不上与大脑相比了。

        我们尚不清楚如何在“修复”这个问题的同时仍然让系统以合理的 效率进行训练。但这样做可能会使未来ChatGPT能够执行更多“类似大脑的事情”。当然,有许多事情大脑并不擅长,特别是涉及不可约计算的事情。对于这些问题,大脑和像 ChatGPT 这样的东西都必须寻求“外部工具”,比如 Wolfam 语言的帮助。

        但是就目前而言,看到 ChatGPT已经能够做到的事情是非常令人兴奋的。在某种程度上,它是一个极好的例子,说明了大量简单的计算元素可以做出非凡、惊人的事情。它也为我们提供了 2000多年以来的最佳动力,来更好地理解人类条件(human condition)的核心特征——人类语言及其背后的思维过程——的本质和原则。

        第二篇 利用Wolfram|Alpha为ChatGPT赋予计算知识超能力

        ChatGPT和Wolfram|Alpha

        当事物不知怎么突然开始发挥作用时,总是让人惊叹不已。 这在2009年的Wolfram|Alpha上发生过,在2020年的Physics Project上也发生过。现在,它正在ChatGPT上发生。

        我已经研究神经网络技术很长时间了〈实际上已经有43年了〉。即 使目睹了过去几年的发展,我仍然认为ChatGPT的表现非常出色。 最终,突然出现了一个系统,可以成功地生成关于几乎任何东西的 文本,而且非常类似于人类可能编写的文本。这非常令人佩服,也 很有用。而且,正如我讨论过的那样,我认为它的成功可能向我们 揭示了人类思维本质的些基本规律。

        虽然ChatGPT在自动化执行主要的类人任务方面取得了显著的成 就,但并非所有有用的任务都是如此类人的。些任务是更加 形式化、结构化的。实际上,我们的文明在过去几个世纪中取得的 一项伟大成就就是建立了数学、精密科学一最重要的是计算一 的范式,并且创建了座能力高塔,与纯粹的类人思维所能达到的 高度完全不同。

        我自己已经深度参与计算范式的研究多年,追求建立一种计算语 言,以形式化符号的方式来表示世界中尽可能多的事物。在此过程 中,我的目标是建立一个系统,用于“在计算上辅助”和增强人类 想要做的事情。虽然我本人只能用人类的方式来思考事物,但我 也可以随时调用Wolfram语言和Wolfram|Alpha来利用一种独特的 “计算超能力”做各种超越人类的事情。

        这是一种非常强大的工作方式。重点是,它不仅对我们人类很重 要,而且对类人AI 同样(甚至 更)重要——可以直接为其赋予计算知识超能力,利用结构化计算和结构化知识的非类人力跫。

        尽管我们才刚刚开始探索这对ChatGPT意味着什么,但很明显, 惊喜是可能出现的。虽然Wolfram|Alpha和ChatGPT所做的事情 完全不同,做事的方式也完全不同,但它们有一个公共接口:自 然语言。这意味着可以像人类一样与Wolfram|Alpha“交 谈”,而Wolfram|Alpha会将它从ChatGPT获得的自然语言转换为 精确的符号计算语言,从而应用其计算知识能力。

        几十年来,对AI的思考一直存在着两极分化:ChatGPT使用的 “统计方法”,以及实际上是Wolfram|Alpha的起点的“符号方法”。现在,由于有了 ChatGPT的成功以及我们在使Wolfram|Alpha理解自然语言方面所做的所有工作,终于有机会将二者结合起来,发 挥出比单独使用任何一种方法都更强大的力量。

        一个简单的例子

        ChatGPT本质上是一种生成语言输出的系统,其输出遵循来自互联 网和书籍等的训练材料中的“模式”。令人惊奇的是,输出的类人 特征不仅体现在小范围内,而且在整个文章中都很明显。它可以表 达连贯的内容,通常以有趣和出人意料的方式包含它所学的概念 产生的内容始终是“在统计学上合理”的,至少是在语言层面上合 理的。尽管它的表现非常出色,但这并不意味着它自信给出的所有 事实和计算都一定是正确的。

        下面是我刚刚注意到的一个例子(ChatGPT具有内在的随机性,因 此如果你尝试问相同的问题,可能会得到不同的答案)。

        听起来相当有说服力。但是事实证明它是错误的,因为Wolfram|Alpha可以告诉我们如下答案。

        当然,这显得不太公平,因为这个问题正是Wolfram|Alpha擅长的 问题类型:可以基于其结构化、有条理的知识进行精确计算。

        有趣之处是,我们可以想象让Wolfram|Alpha自动帮助ChatGPT。 可以通过编程向Wolfram|Alpha提问(也可以使用Web API等)。

        现在再次向ChatGPT提问,并附上此结果。

        ChatGPT非常礼貌地接受了更正。如果你再次提出该问题,它会给出正确的答案。显然,可以用一种更精简的方式处理与Wolfram|Alpha的交流,但是看到这种非常简单的纯自然语言方法已经基本奏效也 很令人高兴。

        不过,为什ChatGPT一开始会犯这个错误呢?如果它在训练时 从某个地方(例如互联网上)看到了芝加哥和东京之间的具体距 离,它当然可以答对。但在本例中,仅仅依靠神经网络能轻松完成 的泛化(例如对于许多城市之间距离的许多示例的泛化)并不够,还需要一个实际的计算算法。

        Wolfram|Alpha的处理方式则截然不同。它接受自然语言,然后 (假设可能的话)将其转换为精确的计算语言(即Wolfram语言),在本例中如下所示。

        城市的坐标和计算距离的算法是Wolfram语言内置的计算知识的一部分。是的,Wolfram语言拥有大量内置的计算知识——这是我们几十年的工作成果,我们精心梳理了不断更新的海泔数据,实现 (而且经常发明)了各种方法、模型和算法——并且系统地为一切构建了一整套连贯的计箅语言。

        再举几个例子

        ChatGPT和Wolfram|Alpha的工作方式截然不同,各有优势。为了理解ChatGPT可以如何利用Wolfram|Alpha的优势,让我们讨论ChatGPT本身并不能完全回答正确的一些情况。ChatGPT像人类 一样,经常在数学领域遇到困难。

        很有趣的文章式回答,但实际结果是错误的。

        如果让ChatGPT “咨询”Wolfram|Alpha,它当然可以得到正确的答案。

        让我们尝试一些稍微复杂的问题。

        乍一看,这个结果似乎很棒,我很容易相信它。然而,事实证明它是错误的,因为可以告诉我们如下答案。

        因此,使用(不能咨询Wolfram|Alpha的)ChatGPT做数学作业可能不是一个好主意。它可以给你一个看似非常可信的答案。

        但是如果ChatGPT没有“真正理解数学”,就基本上不可能可靠地得出正确答案。所以,答案又是错误的。

        ChatGPT甚至可以为“它得出答案的方式”〈尽管并不是它所“做” 的真正方式)编造一个非常像样的解释。此外,迷人(和有趣)的是,它给出的解释里存在不理解数学的人类可能会犯的错误。

        在各种各样的情况下,“不理解事物的含义”都可能会引起麻烦。

        听起来颇有说服力,但不正确。

        ChatGPT似乎在某处正确地学习了这些基础数据,但它并没有充分 “理解数据的含义”以正确地排列这些数字。

        是的,可以找到一种方法来“修复这个特定的bug”。但问题在于, 像ChatGPT这样基于生成语言的AI系统的基本思想并不适用于需要执行结构化计算任务的情况。换句话说,需要“修复”几乎无穷 多的“bug”,才能追赶上Wolfram|Alpha以其结构化方式所能实现 的几乎无穷小的成就。

        “计算链”越复杂,就越有可能需要调用Wolfram|Alpha以来正确处 理。对于下面的问题,ChatGPT给出了一个相当混乱的答案。

        正如Wolfram|Alpha告诉我们的那样,ChatGPT的结论并不正确(就像它自己在某种程度上“已经知道”的)。

        每当涉及特定的(例如数量)数据时,即使是相当原始的形式,也 往往更适合用Wolfram|Alpha处理。以下这个例子受到了长期以来 最受喜爱的Wolfram|Alpha测试查询“How many turkeys are there in Turkeys?”〈土耳其有多少只火鸡〉的启发。

        这(一开始)看起来完全有道理,甚至引用了相关的来源。然而事 实证明,这些数据基本上只是“捏造”的。

        不过,非常好的一点是,ChatGPT可以轻松地“请求事实来做检查”。

        现在将这些请求通过Wolfram|Alpha API进行馈送。

        现在我们可以注入这些数据,要求ChatGPT修正其原始回答(甚至以粗体显示它所做的修正)。

        当涉及实时(或依赖位置等的)数据或计算时,“注入事实”的能力特别好。ChatGPT不会立即回答下面这个问题。

        下面是一些相关的Wolfram|Alpha API输出。

        如果将其输入ChatGPT,它会生成漂亮的文章式结果。

        有时,计算系统和类人系统之间会有有趣的相互作用。下面是一个向Wolfram|Alpha提出的相当异想天开的问题,而它甚至会询问你是否想要“soft-serve ice cream”(软冰激凌)。

        ChatGPT最开始对于“volume”(体积)的概念有些困惑。

        但后来它似乎“意识到”那么多冰激凌是相当愚蠢的。

        A cubic light year is an extremely large unit of volume. In fact, it is so large that it is not possible to fit any known substance, including ice cream, into a volume of this size.

        For reference, a light year is a unit of distance that is equal to the distance that light travels in one year. The distance that light travels in one year is approximately 5.88 trillion miles (9.46 trillion kilometers).

        Given the size of a light year, it is clear that a cubic light year is an impossibly large unit of volume. Therefore, it is not possible to calculate the number of calculate in a cubic light year of ice cream, as there is simply no way to fit that much ice cream into a single volume.

        前方的路

        机器学习是一种强大的方法,特别是在过去十年中,它取得了一些非凡的成功——ChatGPT是最新的成功案例。除此之外,还有图 像识别、语音转文字、语言翻译……在每个案例中,都会跨越一个门槛一一通常是突然之间。一些任务从“基本不可能”变成了“基本可行”。

        但结果从来不是“完美”的。也许有的东西能够在95%的时间内运作良好。但是不论怎样努力,它的表现在剩下的5%时间内仍然 难以捉摸。对于某些情况来说,这可能被视为失败。但关键在于, 在各种重要的用例中,95%往往就“足够好了”。原因也许是输出 是一种没有“正确答案”的东西,也许是人们只是在试图挖掘一些 可能性供人类(或系统算法)选择或改进。

        拥有数百亿参数的神经网络一次一个标记地生成文本,能够做到ChatGPT所能做的事情,这着实是非同凡响的。鉴于这种戏剧性、 意想不到的成功,人们可能会认为,如果能够“训练一个足够大的网络”,就能够用它来做任何事情。但事实并非如此。关于计算的 基本事实,尤其是计算不可约的概念,表明它最终是无法做到的。

        不过不要紧,重点在于我们在机器学习的实际历史中看到的:会取得(像ChatGPT这样的)重大突破,进步不会停止。更重要的是, 我们会发现能做之事的成功用例,它们并未因不能做之事受阻。

        虽然“原始ChatGPT”可以在许多情况下帮助人们写作、提供建议 或生成对各种文档或交流有用的文本,但是当必须把事情做到完美 时,机器学习并不是解决问题的方法一就像人类也不是一样。

        这正是我们在以上例子中看到的。ChatGPT在“类人的部分”表 现出色,因为其中没有精确的“正确答案”。但当它被“赶鸭子上 架”、需要提供精确的内容时,往往会失畋,这些例子要表达的重 点是,有一种很好的方法可以解决该问题一将ChatGPT连接到Wolfram|Alpha以利用其全部的计算知识”超能力”。

        在Wolfram|Alpha内部,一切都被转换为计算语言,转换为精确的Wolfram语言代码。这些代码在某种程度上必须是“完美”的,才 能可靠地使用。关键是,ChatGPT无须生成这些代码。它可以生成 自己常用的自然语言,然后由Wolfram|Alpha利用其自然语言理解能力转换为精确的Wolfram语言。

        在许多方面,可以说ChatGPT从未“真正理解”过事物,它只 “知道如何产生有用的东西”。但是购丨加咖则完全不同。因 为一旦Wolfram|Alpha将某些东西转换为加Wolfram语言,我们就 拥有了它们完整、精确、形式化的表示,可以用来可靠地计算事 物。不用说,有很多“人类感兴趣”的事物并没有形式化的计算表 示一尽管我们仍然可以用自然语言谈论它们,但是可能不够准 确。对于这些事物,ChatGPT只能靠自己,而且能凭借自己的能力 做得非常出色。

        就像我们人类一样,ChatGPT有时候需要更形式化和精确的“助力”。重点在于,它不必用“形式化和精确”的语言表达自己, 因为Wolfram|Alpha可以用相当于ChatGPT母语的自然语言进行沟通。当把自然语言转换成自己的母语——Wolfram语言时,Wolfram|Alpha会负责“添加形式和精度”。我认为这是一种非常好 的情况,具有很大的实用潜力。

        这种潜力不仅可以用于典型的聊天机器人和文本生成应用,还能扩 展到像数据科学或其他形式的计算工作(或编程)中。从某种意义 上说,这是一种直接把ChatGPT的类人世界和Wolfram语言的精确计算世界结合起来的最佳方式。

        ChatGPT能否直接学习Wolfram语言呢?答案是肯定的,事实上 它已经开始学习了。我十分希望像ChatGPT这样的东西最终能够 直接在Wolfram语言中运行,并且因此变得非常强大。这种有趣而 独特的情况之所以能成真,得益于Wolfram语言的如下特点:它是 一门全面的计算语言,可以用计算术语来广泛地谈论世界上和其他地方的事物。

        Wolfram语言的总体概念就是对我们人类的所思所想进行计算上的 表示和处理。普通的编程语言旨在确切地告诉计算机要做什么,而 作为一门全面的计算语言,Wolfram语言涉及的范围远远超出了这 —点。实际上,它旨在成为一门既能让人类也能让计算机“用计算思维思考”的语言。

        许多世纪以前,当数学符号被发明时,人类第一次有了“用数学思 维思考”事物的一种精简媒介。它的发明很快导致了代数、微积分和最终所有数学科学的出现。Wolfram语言的目标则是为计算思维 做类似的事情,不仅是为了人类,而且是要让计算范式能够开启的 所有“计算XX学”领域成为可能。

        我个人因为使用Wolfram语言作为“思考语言”而受益匪浅。过 去几十年里,看到许多人通过Wolfram语言“以计算的方式思考”而取得了很多进展,真的让我喜出望外。那么ChatGPT呢? 它也可以做到这一点,只是我还不确定一切将如何运作。但可以肯定的是,这不是让ChatGPT学习如何进行Wolfram语言已经掌握的计算,而是让ChatGPT学习像人类一样使Wolfram语言,让ChatGPT用计算语言(而非自然语言)生成“创造性文 章”,等等。

        我在很久之前就讨论过由人类撰写的计算性文章的概念,它们混合 使用了自然语言和计算语言。现在的问题是,ChatGPT能否撰写这些文章,能否使用Wolfram语言作为一种提供对人类和计算机而言都“有意义的交流”的方式。是的,这里存在一个潜在的有趣的反馈循环,涉及对Wolfram语言代码的实际执行。但至关重要的是Wolfram语言代码所代表的“思想”的丰富性和“思想”流——与普通编程语言中的不同,更接近ChatGPT在自然语言中“像魔法 一样”处理的东西。

        换句话说,Wolfram语言是和自然语言一样富有表现力的,足以用 来为ChatGPT编写有意义的“提示”。没错,Wolfram语言代码可 以直接在计算机上执行。但作为ChatGPT的提示,它也可以用来 “表达”一个可以延续的“想法”。它可以描述某个计算结构,让 ChatGPT “即兴续写”人们可能对于该结构的计算上的说法,而且 根据它通过阅读人类写作的大量材料所学到的东西来看,这“对人 类来说将是有趣的”。

        ChatGPT的意外成功突然带来了各种令人兴奋的可能性。就目前而言,我们能马上抓住的机会是,通过Wolfram|Alpha赋予ChatGPT计算知识超能力。这样,ChatGPT不仅可以产生“合理的类人输 出”,而且能保证这些输出利用了封装在Wolfram|Alpha和Wolfram语言内的整座计算和知识高塔。

        相关资源

        文章《ChatGPT在做什么?它为何能做到这些?》(What Is ChatGPT Doing…and Why Does It Work)

        本文作者文章《初中生能看懂的机器学习》:介绍机器学习的基本概念

        图书《机器学习入门》:一本关于现代机器学习的指南,包含可运行的代码

        网站“Wolfram机器学习”:阐释Wolfram语言中的机器学习能力

        Wolfram U上的机器学习课程:交互式的机器学习课程,适合不同层次的学生学习

        文章《如何与AI交流?》(本文作者2015年的一篇短文,探讨了如何使用自然 语言和计算语言与AI交流)

        Wolfram语言

        Wolfram|Alpha

      2. Sora: A Review on Background, Technology, Limitations, and Opportunities of Large Vision Models

        背景

        在分析 Sora 之前,研究者首先盘点了视觉内容生成技术的沿袭。

        在深度学习革命之前,传统的图像生成技术依赖于基于手工创建特征的纹理合成和纹理映射等方法。这些方法在生成复杂而生动的图像方面能力有限。

        如图 3 所示,在过去十年中,视觉类的生成模型经历了多样化的发展路线。

        生成对抗网络(GAN)和变分自动编码器(VAE)的引入标志着一个重要的转折点,因为它在各种应用中都具有非凡的能力。随后的发展,如流模型和扩散模型,进一步增强了图像生成的细节和质量。人工智能生成内容(AIGC)技术的最新进展实现了内容创建的民主化,使用户能够通过简单的文本指令生成所需的内容。

        在 BERT 和 GPT 成功将 Transformer 架构应用于 NLP 之后,研究人员尝试将其迁移到 CV 领域,比如 Transformer 架构与视觉组件相结合,使其能够应用于下游 CV 任务,包括 Vision Transformer (ViT) 和 Swin Transformer ,从而进一步发展了这一概念。在 Transformer 取得成功的同时,扩散模型也在图像和视频生成领域取得了长足进步。扩散模型为利用 U-Nets 将噪声转换成图像提供了一个数学上合理的框架,U-Nets 通过学习在每一步预测和减轻噪声来促进这一过程。

        自 2021 年以来,能够解释人类指令的生成语言和视觉模型,即所谓的多模态模型,成为了人工智能领域的热门议题。

        CLIP 是一种开创性的视觉语言模型,它将 Transformer 架构与视觉元素相结合,便于在大量文本和图像数据集上进行训练。通过从一开始就整合视觉和语言知识,CLIP 可以在多模态生成框架内充当图像编码器。

        另一个值得注意的例子是 Stable Diffusion,它是一种多用途文本到图像人工智能模型,以其适应性和易用性而著称。它采用 Transformer 架构和潜在扩散技术来解码文本输入并生成各种风格的图像,进一步说明了多模态人工智能的进步。

        ChatGPT 2022 年 11 月发布之后,2023 年出现了大量文本到图像的商业化产品,如 Stable Diffusion、Midjourney、DALL-E 3。这些工具能让用户通过简单的文字提示生成高分辨率和高质量的新图像,展示了人工智能在创意图像生成方面的潜力。

        然而,由于视频的时间复杂性,从文本到图像到文本到视频的过渡具有挑战性。尽管工业界和学术界做出了许多努力,但大多数现有的视频生成工具,如 Pika 和 Gen-2 ,都仅限于生成几秒钟的短视频片段。

        在这种情况下,Sora 是一项重大突破,类似于 ChatGPT 在 NLP 领域的影响。Sora 是第一个能够根据人类指令生成长达一分钟视频的模型,同时保持较高的视觉质量和引人注目的视觉连贯性,从第一帧到最后一帧都具有渐进感和视觉连贯性。

        这是一个里程碑,对生成式 AI 的研究和发展产生了深远影响。

        如图 2 所示,Sora 在准确解读和执行复杂的人类指令方面表现出非凡的能力。该模型可以生成包含多个角色的详细场景,这些角色在错综复杂的背景下执行特定的动作。研究人员认为,Sora 不仅能熟练处理用户生成的文本提示,还能辨别场景中各种元素之间复杂的相互作用。

        此外,Sora 的进步还体现在它能够生成具有细微运动和交互描绘的扩展视频序列,克服了早期视频生成模型所特有的短片段和简单视觉渲染的限制。这种能力代表了人工智能驱动的创意工具的飞跃,使用户能够将文字叙述转换成丰富的视觉故事。

        总之,这些进步显示了 Sora 作为世界模拟器的潜力,它可以提供对所描绘场景的物理和背景动态的细微洞察。

        技术推演

        Sora 的核心是一个预训练的扩散 Transformer。事实证明,Transformer 模型在许多自然语言任务中都具有可扩展性和有效性。与 GPT-4 等强大的大型语言模型(LLM)类似,Sora 可以解析文本并理解复杂的用户指令。为了提高视频生成的计算效率,Sora 采用了时空潜在 patch 作为其构建模块。

        具体来说,Sora 会将原始输入视频压缩为潜在时空表示。然后,从压缩视频中提取一系列潜在时空 patch,以囊括短暂时间间隔内的视觉外观和运动动态。这些片段类似于语言模型中的词 token,为 Sora 提供了详细的视觉短语,可用于构建视频。Sora 的文本到视频生成由扩散 Transformer 模型完成。从充满视觉噪音的帧开始,该模型会对图像进行迭代去噪,并根据提供的文本提示引入特定细节。本质上讲,生成的视频是通过多步完善过程产生的,每一步都会对视频进行完善,使其更加符合所需的内容和质量。

        如图 4 所示,Sora 的核心本质是一个具有灵活采样维度的扩散 Transformer。它由三部分组成:(1)时空压缩器首先将原始视频映射到潜在空间。(2) 然后,ViT 处理 token 化的潜在表示,并输出去噪潜在表示。(3) 类似 CLIP 的调节机制接收 LLM 增强的用户指令和潜在的视觉提示,引导扩散模型生成风格化或主题化的视频。经过许多去噪步骤后,生成视频的潜在表示被获取,然后通过相应的解码器映射回像素空间。

        在本节中,研究者对 Sora 所使用的技术进行了逆向工程,并讨论了一系列相关工作。

        数据预处理

        Sora 的一个显著特征是它能够训练、理解和生成原始尺寸的视频和图像,如图 5 所示。而传统方法通常会调整视频大小、裁剪或调整视频的长宽比以适应统一的视频和图像。利用扩散 Transformer 架构,Sora 是第一个拥抱视觉数据多样性的模型,可以以多种视频和图像格式进行采样,范围从宽屏 1920x1080p 视频到垂直 1080x1920p 视频以及介于两者之间的视频,而不影响其原始尺寸。

        如图 6 所示,Sora 生成的视频能够更好的展现主题,从而确保在场景中完全捕捉到拍摄对象,而其他视频有时会导致视图被截断或裁剪,导致拍摄对象脱离画面。

        统一视觉表示。为了有效处理不同持续时间、分辨率和高宽比的图像和视频,关键在于将所有形式的视觉数据转换为统一表示。

        Sora 处理的过程是这样的:首先将视频压缩到低维潜在空间,然后将表示分解为时空 patch 来对视频进行 patch 化(patchifies)。但是回看 Sora 技术报告,他们仅仅提出了一个高层次的想法,这给研究界的复现带来了挑战。在接下来的章节中,本文尝试对 Sora 的技术路径进行逆向工程,并且借鉴现有文献,讨论可以复现 Sora 的可行替代方案。

        首先是视频压缩网络。Sora 的视频压缩网络(或视觉编码器)旨在降低输入数据(尤其是原始视频)的维度,并输出在时间和空间上压缩过的潜在表示,如图 7 所示。根据技术报告中的参考文献, Sora 压缩网络是基于 VAE 或 VQ-VAE 技术的。

        然而,如果不像技术报告中对视频和图像调整大小和裁剪,那么 VAE 将任何大小的视觉数据映射到统一且固定大小的潜在空间挑战巨大。本文总结了两种不同的实现来解决这个问题:

        空间 patch 压缩:涉及将视频帧转换为固定大小的 patch,类似于 ViT 和 MAE 中使用的方法(见图 8),然后将其编码到潜在空间中,这种方法对于适应不同分辨率和宽高比的视频特别有效。随后,将这些空间 token 按时间序列组织在一起,以创建时间 – 空间潜在表征。

        时间 – 空间 patch 压缩:该技术旨在封装视频数据的空间和时间维度,从而提供全面的表示。该技术不仅仅分析静态帧,还考虑帧间的运动和变化,从而捕获视频的动态信息。3D 卷积的利用成为实现这种集成的一种简单而有效的方法。

        图 9 描绘了不同视频压缩方式的比较。与空间 patch 压缩类似,使用具有预定卷积核参数(例如固定内核大小、步幅和输出通道)的时间 – 空间 patch 压缩会导致潜在空间维度也不同。为了缓解这一挑战,空间修补(spatial patchification)所采用的方法在这种情况下同样适用和有效。

        总的来说,本文基于 VAE 或其变体如 VQ-VQE 逆向工程了两种 patch 级压缩方法,因为 patch 对处理不同类型的视频更加灵活。由于 Sora 旨在生成高保真视频,因此使用了较大尺寸的 patch 或内核尺寸以实现高效压缩。这里,本文期望使用固定大小的 patch,以简化操作、扩展性和训练稳定性。但也可以使用不同大小的 patch,以使整个帧或视频在潜在空间中的尺寸保持一致。然而,这可能导致位置编码无效,并且给解码器生成具有不同大小潜在 patch 的视频带来挑战。

        压缩网络部分还有一个关键问题:在将 patch 送入扩散 Transformer 的输入层之前,如何处理潜在空间维度的变化(即不同视频类型的潜在特征块或 patch 的数量)。这里讨论了几种解决方案:

        根据 Sora 的技术报告和相应的参考文献,patch n’ pack(PNP)很可能是一种解决方案。如图 10 所示,PNP 将来自不同图像的多个 patch 打包在一个序列中。这种方法的灵感来源于自然语言处理中使用的样本打包,它通过丢弃 token 来实现对不同长度输入的高效训练。在这里,patch 化和 token 嵌入步骤需要在压缩网络中完成,但 Sora 可能会像 Diffusion Transformer(扩散 Transformer)那样,为 Transformer token 进一步 patch 化。

        无论是否有第二轮修补,都需要解决两个问题:如何以紧凑的方式打包这些 token,以及如何控制哪些 token 应该被丢弃。

        对于第一个问题,研究者采用了简单的「贪心」算法,即在第一个序列中添加足够剩余空间的样本。一旦没有样本可以容纳,序列就会被填充 token 填满,从而产生批处理操作所需的固定序列长度。这种简单的打包算法可能会导致大量填充,这取决于输入长度的分布情况。另一方面,可以控制采样的分辨率和帧数,通过调整序列长度和限制填充来确保高效打包。

        对于第二个问题,直观的方法是丢弃相似的 token,或者像 PNP 一样,使用丢弃率调度器。不过,值得注意的是,三维一致性是 Sora 的优良特性之一。在训练过程中,丢弃 token 可能会忽略细粒度的细节。因此,研究者认为 OpenAI 很可能会使用超长的上下文窗口并打包视频中的所有 token,尽管这样做的计算成本很高,例如,多头注意力算子在序列长度上表现出二次成本。具体来说,一个长时间视频中的时空潜在 patch 可以打包到一个序列中,而多个短时间视频中的时空潜在 patch 则会串联到另一个序列中。

        建模

        • 图像 DiT

        传统的扩散模型主要利用包含下采样和上采样块的卷积 U-Net 作为去噪网络骨干。然而,最近的研究表明,U-Net 架构对扩散模型的良好性能并非至关重要。

        通过采用更灵活的 Transformer 架构,基于 Transformer 的扩散模型可以使用更多的训练数据和更大的模型参数。沿着这一思路,DiT 和 U-ViT 是第一批将视觉 Transformer 用于潜在扩散模型的作品。

        与 ViT 一样,DiT 也采用了多头自注意力层和层范数和缩放层交错的逐点前馈网络。如图 11 所示,DiT 还通过 AdaLN 进行调节,并增加了一个用于零初始化的 MLP 层,将每个残差块初始化为一个恒等函数,从而大大稳定了训练过程。DiT 的可扩展性和灵活性得到了经验验证。

        在 U-ViT 中,如图 11 所示,将包括时间、条件和噪声图像片段在内的所有输入都视为 token,并在浅层和深层 Transformer 层之间提出了长跳跃连接。结果表明,基于 CNN 的 U-Net 中的下采样和升采样算子并非总是必要的,U-ViT 在图像和文本到图像生成方面取得了破纪录的 FID 分数。

        与掩蔽自编码器(MAE)一样,掩蔽扩散 Transformer(MDT)也在扩散过程中加入了掩码潜在模型,以明确增强图像合成中对象语义部分之间的上下文关系学习。

        具体来说,如图 12 所示,MDT 在训练过程中使用边缘插值(side-interpolated)进行额外的掩蔽 token 重建任务,以提高训练效率,并学习强大的上下文感知位置嵌入进行推理。与 DiT 相比,MDT 实现了更好的性能和更快的学习速度。Hatamizadeh et al. 没有使用 AdaLN(即移位和缩放)进行时间条件建模,而是引入了 Diffusion Vision Transformers (DiffiT),它使用与时间相关的自注意力(TMSA)模块对采样时间步长内的动态去噪行为进行建模。此外,DiffiT 采用两种混合分层架构,分别在像素空间和潜在空间进行高效去噪,并在各种生成任务中取得了新的先进成果。总之,这些研究表明,利用视觉 Transformer 进行图像潜在扩散取得了可喜的成果,为面向其他模态的研究铺平了道路。

        • 视频 DiT

        在文本到图像(T2I)扩散模型的基础上,一些近期研究专注于发挥扩散 Transformer 在文本到视频(T2V)生成任务中的潜力。由于视频的时空特性,在视频领域应用 DiT 所面临的主要挑战是:i) 如何将视频从空间和时间上压缩到潜在空间,以实现高效去噪;ii) 如何将压缩潜在空间转换为 patch,并将其输入 Transformer ;iii) 如何处理长序列时空依赖性,并确保内容一致性。

        这里将讨论基于 Transformer 的去噪网络架构(该架构旨在时空压缩的潜在空间中运行)下文详细回顾了 OpenAI Sora 技术报告参考文献列表中介绍的两项重要工作(Imagen Video 和 Video LDM)。

        Imagen Video 是谷歌研究院开发的文本到视频生成系统,它利用级联扩散模型(由 7 个子模型组成,分别执行文本条件视频生成、空间超分辨率和时间超分辨率)将文本提示转化为高清视频。

        如图 13 所示,首先,冻结的 T5 文本编码器会根据输入的文本提示生成上下文嵌入。这些嵌入对于将生成的视频与文本提示对齐至关重要,除了基础模型外,它们还被注入级联中的所有模型。随后,嵌入信息被注入基础模型,用于生成低分辨率视频,然后由级联扩散模型对其进行细化以提高分辨率。基础视频和超分辨率模型采用时空可分离的 3D U-Net 架构。该架构将时间注意力层和卷积层与空间对应层结合在一起,以有效捕捉帧间依赖关系。它采用 v 预测参数化来实现数值稳定性和条件增强,以促进跨模型的并行训练。

        这一过程包括对图像和视频进行联合训练,将每幅图像视为一帧,以利用更大的数据集,并使用无分类器引导来提高提示保真度。渐进式蒸馏法用于简化采样过程,在保持感知质量的同时大大减少了计算负荷。将这些方法和技术相结合,Imagen Video 不仅能生成高保真视频,而且还具有出色的可控性,这体现在它能生成多样化的视频、文本动画和各种艺术风格的内容。

        Blattmann et al. 建议将二维潜在扩散模型转化为视频潜在扩散模型(Video LDM)。为此,他们在 U-Net 主干网和 VAE 解码器的现有空间层中添加了一些临时时间层,以学习如何对齐单个帧。这些时间层在编码视频数据上进行训练,而空间层则保持固定,从而使模型能够利用大型图像数据集进行预训练。LDM 的解码器可进行微调,以实现像素空间的时间一致性和时间对齐扩散模型上采样器,从而提高空间分辨率。

        为了生成超长视频,作者对模型进行了训练,以预测未来帧的上下文帧数,从而在采样过程中实现无分类器引导。为实现高时间分辨率,作者将视频合成过程分为关键帧生成和这些关键帧之间的插值。在级联 LDM 之后,使用 DM 将视频 LDM 输出进一步放大 4 倍,确保高空间分辨率的同时保持时间一致性。这种方法能以高效的计算方式生成全局一致的长视频。此外,作者还展示了将预先训练好的图像 LDM(如稳定扩散)转化为文本到视频模型的能力,只需训练时间对齐层,即可实现分辨率高达 1280 × 2048 的视频合成。

        语言指令跟随

        为了提高文本到视频模型遵循文本指令的能力,Sora 采用了与 DALL・E 3 类似的方法。

        DALL・E 3 中的指令跟随是通过一种描述改进方法来解决的,其假设是模型所训练的文本 – 图像对的质量决定了最终文本 – 图像模型的性能。数据质量差,尤其是普遍存在的噪声数据和省略了大量视觉信息的简短标题,会导致许多问题,如忽略关键词和词序,以及误解用户意图等。描述改进方法通过为现有图像重新添加详细的描述性描述来解决这些问题。该方法首先训练图像描述器(视觉语言模型),以生成精确的描述性图像描述。然后,描述器生成的描述性图像描述将用于微调文本到图像模型。

        具体来说,DALL・E 3 采用对比式描述器(CoCa),联合训练具有 CLIP 架构和语言模型目标的图像描述器。该图像描述器包含一个图像编码器、一个用于提取语言信息的单模态文本编码器和一个多模态文本解码器。它首先在单模态图像和文本嵌入之间采用对比损失,然后对多模态解码器的输出采用描述损失。由此产生的图像描述器将根据对图像的高度详细描述进行进一步微调,其中包括主要对象、周围环境、背景、文本、风格和色彩。通过这一步骤,图像描述器就能为图像生成详细的描述性描述。文本到图像模型的训练数据集由图像描述生成器生成的重新描述数据集和真实人工编写数据混合而成,以确保模型捕捉到用户输入。

        这种图像描述改进方法带来了一个潜在问题:实际用户提示与训练数据中的描述性图像描述不匹配。DALL・E 3 通过上采样解决了这一问题,即使用 LLM 将简短的用户提示改写成详细而冗长的说明。这确保了模型在推理时接收到的文本输入与模型训练时的文本输入保持一致。

        为了提高指令跟踪能力,Sora 采用了类似的描述改进方法。这种方法是通过首先训练一个能够为视频制作详细说明的视频描述器来实现的。然后,将该视频描述器应用于训练数据中的所有视频,生成高质量的(视频、描述性描述)对,用于微调 Sora,以提高其指令跟随能力。

        Sora 的技术报告没有透露视频描述器是如何训练的细节。鉴于视频描述器是一个视频到文本的模型,因此有很多方法来构建它:

        一种直接的方法是利用 CoCa 架构来制作视频描述,方法是获取视频的多个帧,并将每个帧输入图像编码器,即 VideoCoCa。VideoCoCa 以 CoCa 为基础,重新使用图像编码器预训练的权重,并将其独立应用于采样视频帧。由此产生的帧 token 嵌入会被扁平化,并连接成一长串视频表示。然后,生成式池化层和对比池化层会对这些扁平化的帧 token 进行处理,二者是用对比损失和描述损失联合训练的。

        其他可用于构建视频描述的方法包括 mPLUG-2、GIT、FrozenBiLM 等。

        最后,为确保用户提示与训练数据中的描述性描述格式一致,Sora 还执行了额外的提示扩展步骤,即使用 GPT-4V 将用户输入扩展为详细的描述性提示。

        然而,Sora 训练描述器的数据收集过程尚不清楚,而且很可能需要大量人力,因为这可能需要对视频进行详细描述。此外,描述性视频描述可能会对视频的重要细节产生幻觉。本文作者认为,如何改进视频描述器值得进一步研究,这对提高文本到图像模型的指令跟踪能力至关重要。

        提示工程

        • 文本提示

        文本提示工程对于指导文本视频模型制作出既具有视觉冲击力又能精确满足用户规格的视频至关重要。这就需要制作详细的描述来指导模型,以有效弥合人类创造力与人工智能执行能力之间的差距。

        Sora 的提示涵盖了广泛的场景。近期的作品(如 VoP、Make-A-Video 和 Tune-A-Video)展示了提示工程如何利用模型的自然语言理解能力来解码复杂指令,并将其呈现为连贯、生动和高质量的视频叙事。

        如图 15 所示,「一个时髦的女人走在霓虹灯闪烁的东京街头…… 」就是这样一个精心制作的文本提示,它确保 Sora 生成的视频与预期的视觉效果非常吻合。提示工程的质量取决于对词语的精心选择、所提供细节的具体性以及对其对模型输出影响的理解。例如,图 15 中的提示详细说明了动作、设置、角色出场,甚至是所期望的场景情绪和氛围。

        • 图像提示

        图像提示为即将生成的视频内容和其他元素(如人物、场景和情绪)提供了视觉锚点。此外,文字提示还可以指示模型将这些元素动画化,例如,添加动作、互动和叙事进展等层次,使静态图像栩栩如生。通过使用图像提示,Sora 可以利用视觉和文本信息将静态图像转换成动态的、由叙事驱动的视频。

        图 16 展示了人工智能生成的视频:「一只头戴贝雷帽、身穿高领毛衣的柴犬」、「一个独特的怪物家族」、「一朵云组成了 SORA 一词」以及「冲浪者在一座历史悠久的大厅内驾驭潮汐」。这些例子展示了通过 DALL・E 生成的图像提示 Sora 可以实现哪些功能。

        • 视频提示

        视频提示也可用于视频生成。最近的研究(如 Moonshot 和 Fast-Vid2Vid)表明,好的视频提示需要「具体」而「灵活」。这样既能确保模型在特定目标(如特定物体和视觉主题的描绘)上获得明确的指导,又能在最终输出中允许富有想象力的变化。

        例如,在视频扩展任务中,提示可以指定扩展的方向(时间向前或向后)和背景或主题。在图 17 (a) 中,视频提示指示 Sora 向后延伸一段视频,以探索导致原始起点的事件。如图 17(b)所示,在通过视频提示执行视频到视频的编辑时,模型需要清楚地了解所需的转换,例如改变视频的风格、场景或氛围,或改变灯光或情绪等微妙的方面。在图 17 (c) 中,提示指示 Sora 连接视频,同时确保视频中不同场景中的物体之间平滑过渡。

        虽然以前关于提示工程的研究主要集中在 LLM 和 LVM 的文本和图像提示上,但预计研究者们对视频生成模型的视频提示的兴趣会越来越大。

        应用

        随着以 Sora 为代表的视频扩散模型技术取得突破,其在不同研究领域和行业的应用正在迅速加速。

        本文作者指出,这项技术的影响远远超出了单纯的视频创作,为从自动内容生成到复杂决策过程的各种任务提供了变革潜力。

        在论文的第四章中,全面探讨了视频扩散模型的当前应用,希望为实际部署方案提供一个广阔的视角(图 18):

        • 提高模拟能力:对 Sora 进行大规模训练,是因为它能够出色地模拟物理世界的各个方面。尽管没有明确的三维建模,但 Sora 通过动态摄像机运动和远距离连贯性表现出三维一致性,包括物体持久性和模拟与世界的简单交互。此外,Sora 还能模拟类似 Minecraft 的数字环境,在保持视觉保真度的同时由基本策略控制,这一点非常有趣。这些新出现的能力表明,可扩展视频模型可以有效地创建人工智能模型,以模拟物理和数字世界的复杂性。
        • 提高创造力:想象一下,通过文字勾勒出一个概念,无论是一个简单的物体还是一个完整的场景,都能在几秒钟内呈现出逼真或高度风格化的视频。Sora 可以加速设计过程,更快地探索和完善创意,从而大大提高艺术家、电影制作人和设计师的创造力。
        • 推动教育创新:长期以来,视觉辅助工具一直是教育领域理解重要概念不可或缺的工具。有了 Sora,教育工作者可以轻松地将课堂计划从文字变成视频,吸引学生的注意力,提高学习效率。从科学模拟到历史剧,可能性是无限的。
        • 增强可访问性:提高视觉领域的可访问性至关重要。Sora 通过将文字描述转换为可视内容,提供了一种创新的解决方案。这种功能使包括视觉障碍者在内的所有人都能积极参与内容创建,并以更有效的方式与他人互动。因此,它可以创造一个更具包容性的环境,让每个人都有机会通过视频表达自己的想法。
        • 促进新兴应用:Sora 的应用领域非常广泛。例如,营销人员可以用它来制作针对特定受众描述的动态广告。游戏开发商可以利用它根据玩家的叙述生成定制的视觉效果甚至角色动作。

        具体而言,以下几个行业将面临变革:

        影视

        传统上,创作电影是一个艰巨而昂贵的过程,往往需要数十年的努力、尖端的设备和大量的资金投入。先进视频生成技术的出现预示着电影制作进入了一个新时代,从简单的文本输入中自主生成电影的梦想正在成为现实。事实上,研究人员已经涉足电影生成领域,将视频生成模型扩展到电影创作中。

        MovieFactory 应用扩散模型从 ChatGPT 制作的精心脚本中生成电影风格的视频,这是一个重大飞跃。在后续研究中,MobileVidFactory 只需用户提供简单的文本,就能自动生成垂直移动视频。Vlogger 则让用户可以制作长达一分钟的 Vlog。

        Sora 能够毫不费力地生成引人入胜的电影内容,这是这些发展的缩影,标志着电影制作民主化的关键时刻。它们让人们看到了一个人人都能成为电影制作人的未来,大大降低了电影行业的准入门槛,并为电影制作引入了一个新的维度,将传统的故事讲述方式与人工智能驱动的创造力融为一体。这些技术的影响不仅仅是简单化。它们有望重塑电影制作的格局,使其在面对不断变化的观众喜好和发行渠道时,变得更加容易获得,用途更加广泛。

        游戏

        游戏产业一直在寻求突破逼真度和沉浸感界限的方法,但传统游戏开发往往受到预先渲染的环境和脚本事件的限制。通过扩散模型效果实时生成动态、高保真视频内容和逼真音效,有望克服现有的限制,为开发人员提供工具来创建不断变化的游戏环境,对玩家的行为和游戏事件做出有机的反应。这可能包括生成不断变化的天气条件、改变地貌,甚至即时创建全新的设置,从而使游戏世界更加身临其境、反应更加灵敏。一些方法还能从视频输入中合成逼真的冲击声,增强游戏音频体验。

        将 Sora 集成到游戏领域后,就能创造出无与伦比的身临其境的体验,吸引并吸引玩家。游戏的开发、玩耍和体验方式都将得到创新,并为讲故事、互动和沉浸式体验带来新的可能性。

        医疗

        尽管具有生成能力,但视频扩散模型在理解和生成复杂视频序列方面表现出色,因此特别适用于识别人体内的动态异常,如早期细胞凋亡、皮肤病变进展和不规则人体运动,这对早期疾病检测和干预策略至关重要。此外,MedSegDiffV2 等模型利用 Transformer 的强大功能,以前所未有的精度分割医学影像,使临床医生能够在各种成像模式中精确定位感兴趣的区域,提高准确性。

        将 Sora 集成到临床实践中,不仅有望完善诊断流程,还能根据精确的医学影像分析提供量身定制的治疗方案,实现患者护理的个性化。然而,这种技术整合也带来了一系列挑战,包括需要采取强有力的数据隐私措施和解决医疗保健中的伦理问题。

        机器人

        视频扩散模型目前在机器人技术中发挥着重要作用,它展示了一个新时代:机器人可以生成和解释复杂的视频序列,以增强感知和决策。这些模型释放了机器人的新能力,使它们能够与环境互动,以前所未有的复杂度和精确度执行任务。将网络规模扩散模型引入机器人学,展示了利用大规模模型增强机器人视觉和理解能力的潜力。潜在扩散模型被用于语言指导的视频预测,使机器人能够通过预测视频格式的行动结果来理解和执行任务。此外,视频扩散模型能够创建高度逼真的视频序列,创新性地解决了机器人研究依赖模拟环境的问题。这样就能为机器人生成多样化的训练场景,缓解真实世界数据匮乏所带来的限制。

        将 Sora 等技术整合到机器人领域有望取得突破性发展。通过利用 Sora 的强大功能,未来的机器人技术将取得前所未有的进步,机器人可以无缝导航并与周围环境互动。

        局限性

        最后,研究者指出了 Sora 这项新技术存在的风险问题和局限性。

        随着 ChatGPT 、GPT4-V 和 Sora 等复杂模型的快速发展,这些模型的能力得到了显著提高。这些发展为提高工作效率和推动技术进步做出了重大贡献。然而,这些进步也引发了人们对这些技术可能被滥用的担忧,包括假新闻的产生、隐私泄露和道德困境。因此,大模型的可信度问题引起了学术界和工业界的广泛关注,成为当下研究讨论的焦点。

        虽然 Sora 的成就凸显了人工智能的重大进步,但挑战依然存在。在描绘复杂动作或捕捉微妙面部表情方面,该模型还有待改进。此外,减少生成内容中的偏见和防止有害的视觉输出等道德方面的考虑也强调了开发人员、研究人员和更广泛的社区负责任使用的重要性。确保 Sora 的输出始终安全、无偏见是一项主要挑战。

        但伴随着视频生成领域的发展,学术界和工业界的研究团队都取得了长足的进步。文本到视频竞争模式的出现表明,Sora 可能很快就会成为动态生态系统的一部分。这种合作与竞争的环境促进了创新,从而提高了视频质量并开发了新的应用,有助于提高工人的工作效率,使人们的生活更具娱乐性。

      3. 约书亚·S.卢米斯《传染病与人类历史:从文明起源到21世纪》

        Joshua S. Loomis:Epidemics:The Impact of Germs and Their Power Over Humanity

        前言
        第一章 微生物:促变因素
        第二章 鼠疫
        第三章 天花
        第四章 疟疾
        第五章 肺结核
        第六章 斑疹伤寒
        第七章 黄热病
        第八章 霍乱
        第九章 流感
        第十章 脊髓灰质炎
        第十一章 艾滋病
        第十二章 传染病的未来

        前言

        自人类诞生以来,病原体就一直存在。尽管传染病曾以可怕的方式导致了数十亿人死亡,但大多数人对于传染病是什么、它们是如何影响人类的知之甚少。出现这种情况的主要原因是,我们很少有人经历过在人群中如此震惊且不受控制地传播的流行性疾病。值得庆幸的是,在我们所生活的这个时代,良好的卫生设施、抗生素和疫苗可以有效预防或治疗绝大多数严重疾病。因此,人们不太关注暴露于病原体的概率,也不太担心亲人会死于不治之症。虽然这是人类所取得的惊人进步,但不幸的是,这种进步使许多人误以为人类的技术已经可以使我们未来免受新的流行病的威胁。这种假设非常危险,历史上已有人们认为自己做了某些防护却依然被感染的例子。因此,回顾历史上那些对人类影响最深远的传染病,并从中吸取教训,认识自身,认清人类发展进程,是十分重要的。

        本书的主要目的是从流行病发展的视角来解读人类自身的发展历史,理解流行病如何改变人类自我认识、改变历史进程、改变人类之间的互动方式。本书将带领我们走过几千年的人类历史,穿越人类活跃过的数十个国家及其每一片土地;在疾病症状和死亡数字之外,向人们讲述那些致命疾病背后深刻和容易被忘却的故事。

        本书融合了科学、历史、社会学、宗教和其他学科,可为读者提供不同于以往流行病研究的独特视角。我们相信,如果不深入讨论传染病的影响,人们将无法准确地讲述人类历史的进程。

        将哪10种传染病纳入本书是一个艰难的决定。我们首先要做的是建立一套标准,并依据这些标准评价所有疾病。很明显,鉴于本书所描绘的是历史上影响最深远的传染病,被纳入本书的疾病一定导致了大量的死伤。但是,对于具体的人数标准我们并没有设定阈值。不过,低发病率和低死亡率的疾病一定是被排除在外的,因为它们通常不会引起大范围的恐慌。其次,这种疾病必须具有一定的历史意义或促使人类改变了生活、行为方式,包括改变战争结果、颠覆国家政权、引发重大技术飞跃,甚至改变人类基因组序列等。最后,这种疾病的影响范围必须很广,如持续时间较长或被感染人群较多。由于在特定地点暴发的小规模疫情通常不会在全球范围内产生持久的影响,因此不太适合出现在本书中。

        在这些严格的筛选标准下,我们列出了有史以来最严重的10种流行病。虽然麻疹、梅毒、麻风病、伤寒本身都具有很大的影响力,但它们并没有被选入本书中。实际上,用以上4种疾病中的任何一种代替入选的脊髓灰质炎或黄热病,都不会明显削弱本书的内容。但是,基于疾病的影响力和破坏程度,我们最终决定不纳入以上4种疾病。我们选择天花和鼠疫是因为它们对前人产生了深远影响,选择艾滋病和脊髓灰质炎是因为其在塑造现代社会中发挥了作用。总之,所有入选的10种疾病都有一个重要的故事告诉我们它对人类意味着什么。

        在阅读本书时,读者可以很明显地发现,我们并没有详尽介绍每一种已知病原体的历史。在过去的几十年里,出现了许多令人惊叹的学术成果,围绕其中任何一章都可以写出好几本著作。确实,最近有很多出版物都在讲述其中某一种传染病,甚至是某种传染病的某类分支。尽管这类书的内容比本书的某个章节更加深入,但它们在很大程度上并没有揭示流行病与人类之间的关系。因此,我选择扩大本书的视角,让读者对流行病有更全面的认识。

        第一章 微生物:促变因素

        尽管微生物(Microbes)比人类宿主小数万倍,但它们可以对被感染的个体和整个人类种群产生深远而持久的影响。人类一生都会被微生物影响,我们会流鼻涕,醒来时恶心,还会承受支气管炎的痛苦。大多数情况下,我们会去看医生,接受一周的药物治疗,最终免疫系统会战胜感染。由于我们这代人是在抗生素、疫苗和现代医学的时代中长大的,大多数人都没有经历过传播性极强、对人类具有巨大毁灭性的疾病,也没有经历过其带来的恐惧和绝望。然而,在人类历史的大部分时间里(在当今世界许多地方依然是这样),病原体在人类中泛滥成灾,使人类彼此的互动方式发生了重大变化。灾难性的流行病,如14世纪的黑死病或1918年的流感疫情,总是会带来持久的变化,而这种变化在疫情结束后数百年甚至数千年的时间内都能感受到。本书的以下章节将回顾历史上最致命的、最具影响力的10种流行病,并研究它们的起因、传播和对人类的长期影响。

        流行病通常被定义为,在一定时间、一定地点内,某一特定疾病的发病率增加。在某些情况下,某一流行病在某一人群中是完全不存在的,它们可能是第一次出现,也可能绝迹后再次出现。在这种情况下,人群中没有人对这种病原体有天然免疫,因此整个种群都对其易感。1518年,西班牙探险家将天花带入新大陆,当地人因此首次接触这种疾病。一到美洲,天花就迅速在北美和南美蔓延开来,造成数千万人死亡。与此相反,还有一些疾病原本就小范围地存在于人群中,一旦环境发生改变就迅速暴发。例如,疟疾通常流行于强降雨和洪水之后,这是由于过量的水会导致蚊子数量暂时增加,进而导致当地疟疾发病增加(蚊子是疟疾的传播媒介)。

        当一种流行病蔓延到多个大洲时,便被称为大流行病。例如,著名的1918年流感疫情很可能起源于美国,并迅速蔓延到所有有人类居住的大陆,在此过程中变为大流行病。在短短一年多的时间内,它就导致了1亿多人死亡,震惊了全世界。流感季结束后,这种疾病就从人群中消失了。许多流行病都遵循这种“震骇效应”,即在人群中造成严重破坏,而后在短时间内消失。然而,还有一些疾病,如天花和鼠疫,会感染某个群体,造成巨大破坏,然后在很长一段时间内继续小范围感染人群。其中一些长期流行病(如水痘、麻疹)变得司空见惯,几乎每个人在其一生中的某段时间都会接触到这类疾病。像这样的半永久性流行病通常被称为地方病。综上所述:如果流行病在全世界范围内传播,就可能演变成大流行;如果感染人群后不再消失,则会成为地方病。

        在整个人类历史中,绝大多数流行病都是由病毒、细菌或原虫这三种病原体之一引起的。为了全面了解它们所引起的疾病及其影响,先对其特征做简单介绍。

        病毒

        在本书所讨论的三种人类病原体中,病毒(Viruses)是已知最小的,其平均大小约为人体细胞的千分之一。尽管其结构非常简单,但病毒是人类历史上最具破坏性疾病的罪魁祸首,包括天花、流感、麻疹、黄热病和艾滋病。微生物学家通常将病毒定义为专性细胞内寄生物,也就是说它们需要依赖另一种生物才能实现自我复制。病毒的局限性在于缺乏生产自身蛋白质或遗传物质所需的生化机制。没有这些组成成分,就无法组装新的病毒颗粒,感染也就基本上停止了。病毒通过进入宿主细胞并劫持其代谢以生产新病毒的方式来弥补这种缺陷。由于病毒依赖于活的宿主细胞进行复制,因此通常不认为病毒是生命体。

        从结构上讲,病毒只不过是包裹了遗传物质(称为“基因组”)的蛋白质外壳(称为“衣壳”)。它们既不是由细胞构成的,也与细胞无任何相似之处。病毒就像微观传递媒介,其目标是保护基因组并将其成功传递到宿主细胞内部。一旦到达宿主细胞,病毒基因组就会指导宿主细胞生产数百万个新病毒颗粒。细胞中存在的大量病毒颗粒使细胞变得不健康,提前发生细胞死亡。随着宿主细胞的死亡,新产生的病毒就会被释放出来,自由感染邻近细胞。接下来便是病毒在细胞间的系统性扩散和随后发生的组织破坏。

        除了介导细胞死亡外,某些病毒还能通过触发宿主对感染的过度免疫反应来诱导宿主受损。病毒侵入人体后,便会诱导宿主产生剧烈而广泛的炎症反应,损害宿主的自身组织。在这种情况下,通常病毒本身不会直接导致宿主组织损伤。例如,在狂犬病毒感染中,病毒到达中枢神经系统(如大脑)后,会相对无害地位于神经元细胞中。当宿主检测到狂犬病病毒的存在时,便会发动一场持久而有力的炎症反应,以清除感染。但炎症性化学物质的逐渐积累对神经元是有毒的,可以杀死神经元。

        细菌

        细菌(Bacteria)引起了人类历史上最可怕、最具破坏性的流行病,包括鼠疫、肺结核、麻风病和霍乱。由于细菌比病毒大得多,在结构和生化方面比病毒复杂得多,因此细菌使人们生病的方式也更多。细菌不仅仅是包裹了基因组的蛋白质外壳(如病毒),它们还是富有生命的单细胞生物,通常可以独立于其他细胞自行复制,进行正常的新陈代谢。细菌细胞是人体细胞的1/10,结构更简单。人体细胞中存在各种小的、由膜包裹的结构(称为“细胞器”),不同结构起着特定的作用。例如,细胞核存储了DNA,线粒体帮助分解糖,溶酶体帮助消灭外来入侵者。细菌细胞没有这些内部细胞器。相反,它们的结构类似于充满液体的小气球,有一层外膜,被称为细胞质膜。其细胞内部只有一条染色体、水和少量营养物质。包裹着细菌细胞膜的是一种叫作细胞壁的结构。细胞壁为细菌提供了额外的保护层,阻挡来自其他有机体、有毒化学物质或人体免疫细胞的各种攻击。

        就对宿主造成伤害的方式而言,细菌在很大程度上与病毒相似。例如,许多细菌可以通过直接杀死宿主细胞或诱导宿主产生破坏性炎症反应的方式,对宿主造成伤害。然而,细菌和病毒在致病机制上也存在一些关键区别。首先,病毒需要依靠宿主细胞的代谢和营养物质才能实现自我复制。相比之下,细菌通常能自给自足地获取营养。在大多数情况下,细菌会整体入侵宿主,但不一定会进入单个细胞的内部。值得注意的是,有一些细菌除外。例如:某些细菌,如伤寒的病原体,只能在人体细胞内复制;而另一些细菌,如结核分枝杆菌,只是更喜欢在人体细胞内复制。综上所述,病毒通常是由内而外地杀死人体细胞(通过耗尽营养物质并在内部制造有毒环境),而大多数细菌则是从外到内进行破坏。

        细菌通常是通过产生和释放各种化学毒素,来实现在不进入人体细胞的情况下破坏和杀死细胞的。细菌细胞合成的毒素会以各种方式伤害宿主,包括(但不限于)穿透细胞膜、抑制重要酶的活性、阻止蛋白质生成、破坏将组织结合在一起的蛋白质、扰乱离子流、阻断神经冲动的正确传递、引发大量炎症等。例如,霍乱弧菌、肉毒杆菌、炭疽杆菌和葡萄球菌等导致的严重的细菌感染就是通过产生毒素,对宿主造成很大的损害。在大多数情况下,最终结果是宿主细胞死亡并释放出营养物质,被入侵的细菌细胞迅速吸收。

        原虫

        原虫(Protozoa)是单细胞生物,其生长环境和能感染的物种十分多样。在已确定的50000多种原虫中,已知能感染人类的只有极少数,具有一定致病性的就更少了。由原虫引起的一些值得注意的人类疾病包括疟疾、非洲昏睡病、阿米巴痢疾、弓形虫病和利什曼原虫病。尽管原虫像细菌一样由单个细胞组成,但实际上原虫在大小和复杂性上与人类细胞更为相似。此外,与细菌相比,原虫与人类的遗传关系更紧密。

        原虫的致病机制也不同于病毒和细菌。它们通常不产生细胞外毒素,即使产生细胞外毒素,其毒素的效力也比细菌要低得多。另外,由于大多数原虫在宿主细胞外繁殖,因此它们通常不会通过耗尽宿主细胞营养的方式杀死细胞。但是疟疾是一个明显的例外,疟原虫可以直接感染人体的红细胞。在典型的原虫感染中,大多数宿主损伤是由宿主对病原体的免疫反应造成的。原虫的存在通常会引发严重的炎症反应,从而使宿主免疫系统陷入混乱,导致大量的组织损伤。

        在回顾了微生物世界的多样性之后,很明显,我们的免疫系统有它自己的工作。实际上,据估计,人体免疫系统每天都会与数千万个病原体做斗争。在人类历史的大部分时间里(在当今世界的许多地方依然是这样),病原体都是占上风,在人群中肆虐。然而,在过去100多年里,随着卫生设施、疫苗、抗生素和现代诊断工具的出现,我们对自身健康有了更多的主动权,降低了流行病的发病率。尽管有时看起来人类似乎已经战胜了传染病,但我们与艾滋病、肺结核、流感、疟疾和麻疹的持续斗争提醒着我们,下一个疾病大流行可能就在眼前。因此,回顾和吸取以往人类与这些致命疾病做斗争所获取的经验至关重要,只有这样我们才能更好地为将来所面临的传染病暴发做好准备。

        第二章 鼠疫

        没有人为死亡而哭泣,因为所有的人都在等待死亡。太多的人逝去,大家觉得这是世界末日。任何药物或其他防御手段都不起作用。 ——阿格诺罗·迪·图拉·德拉·戈拉索 [1] 写于14世纪,埋葬了他5个孩子之后

        人类历史上最具破坏性与影响力的一些流行病(疫情)是由被称为鼠疫(Plague)的致命疾病引起的。这种传染病传播范围广泛,据说在大约1500年的历史中夺去了2亿人的生命。 [2] 它消灭了一些国家多达一半的人口,让很多人相信世界末日即将来临。在有历史记录的三次主要鼠疫流行中,14世纪中期席卷亚欧大陆的那次,是迄今为止范围最广、历史意义最重大的一次。由于患者发病时的可怕症状,这种疾病也被称为黑死病(Black Death)。它在整个欧亚大陆上传播,夺去了这个大陆近一半的人口。众多人口的丧生让欧洲陷入了政治、经济、文化上的混乱,这种混乱在疾病最严重的时期过去后依旧持续了数十年。令人惊讶的是,大约650年后,黑死病的一些后果仍在影响着现代的人们。

        鼠疫的病原体是一种小细菌——耶尔森氏鼠疫杆菌(Yersinia pestis),其通过两种渠道进入人体内。第一种也可能是最为大家所熟知的方式是,通过被感染的鼠蚤叮咬。当跳蚤叮咬了感染鼠疫杆菌的老鼠或者其他啮齿动物时,细菌进入跳蚤的肠道,并开始大量繁殖。一只被感染的跳蚤叮咬了人类,吸食人类的血,它的胃就会充满细菌和血液,它会吐出一部分内脏里的东西到人体的皮肤上。人抓破被咬伤的地方,就会有微小的伤口,细菌便经伤口透过皮肤,到达体液中。

        一旦进入人体内,细菌就会迅速进入局部淋巴结中,即使那里有免疫细胞存在,它们仍可以毫无约束地大量复制。细菌在淋巴结中的增长会导致炎症和组织死亡,并最终导致淋巴结肿大变黑(这是坏死组织的常见症状)。淋巴结的膨胀、坏死被称为淋巴结炎,它形成的后果被称为淋巴腺鼠疫。细菌通常会溢出到血液中繁殖,引起全身的炎症。这种全身感染,被称为败血症型鼠疫,它会导致休克、四肢组织坏死,死亡率高达90%。 [3] 细菌通过相互连接的血管系统,最终进入肺部,引发被称为肺鼠疫的致命肺炎。侵入肺部是鼠疫发病机制的重要一步,因为这样它就能通过咳嗽,让他人吸入受感染的呼吸道飞沫,进而传播给其他人类宿主。虽然蚤类通常是鼠疫进入新人群的媒介,但在黑死病等大规模流行病中,疾病引发的肺炎是造成高传播率与高死亡率的主要因素。

        查士丁尼鼠疫及其对罗马帝国的影响

        公元540年,拜占庭帝国查士丁尼一世统治期间,查士丁尼鼠疫(The Justinian Plague)第一次大暴发。遗传分析显示,这场鼠疫可能发源于亚洲某地,后来迅速传播到中东、北非与欧洲大部分地区。 [4] 与之后的黑死病一样,第一轮鼠疫的暴发在所传播之处造成了破坏和恐慌。三个大陆上有数千万人死亡,还有数百万人饱受高烧与淋巴结坏死的折磨。据说,有一些地方的乡镇几周内就无人幸存。尽管它发生在现代交通与大规模城市化发展之前,但这次瘟疫仍然是有史以来人类最严重的流行病之一。

        受查士丁尼鼠疫打击最严重的地方是东罗马帝国首都君士坦丁堡。

        罗马帝国于公元330年分裂成东、西罗马帝国,君士坦丁堡迅速成为欧洲最重要的城市之一。 [5] 它是一个人口密集的海滨小城市,是亚洲、北非与欧洲商人的主要贸易港口。每天都有船只从世界各国而来,装载着各种货物,偶尔还有偷渡来的老鼠。公元541年,一艘来自埃及的船上不幸载有感染了致死的耶尔森氏鼠疫杆菌的老鼠。在抵达君士坦丁堡的短短几个月后,鼠疫就在这个拥挤的城市传播开来,夺去了无数人的生命。当时目击者的描述表明,每天有上万人死亡,死亡人数多到幸存者只能被迫拆除教堂和塔楼的屋顶来安放死尸。 [6] 尽管第一场也是威力最大的传染病最终在公元550年结束,但在接下来的200年中,鼠疫一直折磨着人类,直到公元750年最终平息。查士丁尼鼠疫总共夺走了约40%君士坦丁堡人的生命,从世界范围来看,有2500万至1亿人丧命于这场鼠疫。

        这一传染病暴发的早期死了很多人,对欧亚力量的平衡产生了深远

        的影响。尤其是在君士坦丁堡正欲巩固政权并收复前罗马失地的时候,

        这场鼠疫严重削弱了君士坦丁堡的统治。4世纪时,罗马帝国迅速扩

        张,君士坦丁大帝在行政上把土地分成了两部分——西部的一半由罗马

        一位皇帝统治,东部的一半由君士坦丁堡的一位共治皇帝控制。 [7] 分裂

        后,东部经历了扩张与繁荣,而西部渐渐衰弱。一些日耳曼民族(如哥

        特人和汪达尔人)开始入侵西部王朝的大片土地,476年,罗马沦陷。

        没有了西部一半的土地,前罗马帝国的东部(后来成为拜占庭帝国)获

        得了更大的自治权。因此,君士坦丁堡成了整个欧洲名副其实的贸易、

        文化和权力中心。当查士丁尼一世于527年登上权力的宝座时,他的目

        标之一就是组建军队,夺回西部失去的土地,重振罗马帝国昔日的辉

        煌。

        查士丁尼一世首先派他的军队前往北非,以赶走在5世纪占领该地

        的汪达尔人。 [8] 534年,军队很快取得了一系列决定性胜利。查士丁尼

        一世让他的拜占庭军队向北转移到西欧,企图从哥特人手中夺回地中海

        地区。这场战役打了5年时间,流血无数,最终查士丁尼一世胜利了,

        赶走了大部分哥特军队。这样一来,前罗马的大部分土地归拜占庭统治,查士丁尼一世似乎要开启帝国的新纪元。不幸的是,540年,致命的鼠疫在几个月后降临,杀死了大批农民、士兵和匠人。鼠疫大大削弱了生产力,也极大地削弱了查士丁尼一世保卫刚刚征服的土地、养活士兵以及偿还外债的能力。刚刚拥有的一切可能面临着灰飞烟灭,查士丁尼一世不得不雇用外国士兵来重新充实自己的军队。 [9] 他还开始使用更强的武力向他的臣民征税,尽管当时的民众已对致命的鼠疫苦不堪言。这种行为很自然地引起了民众相当程度的怨愤,大家对他在非必需的军事力量上浪费资源表示不满。

        接下来的25年中,拜占庭帝国成功地保持了对意大利、西班牙和北非的控制,然而在565年查士丁尼一世去世后不久,几乎所有的土地又逐渐被夺了回去。 [10] 此外,后来的几代人目睹了波斯和阿拉伯帝国的崛起,并渐渐侵占了拜占庭帝国更多的土地,最后拜占庭帝国的土地所剩无几了。这场鼠疫对拜占庭帝国的经济、军事以及民众的心理造成了负面影响,帝国已经没有力量去保卫自己的领土了。几百年后,罗马/拜占庭帝国几乎不复存在。

        没有人知道如果没有6世纪的这场鼠疫,欧洲、亚洲和非洲会是什么样子。如果认为重新统一的罗马帝国,在外来入侵者的不断攻击下仍能保持对其先前失去土地的控制,那就过于简单化了。5世纪时,帝国的西部因为一系列原因(如土地衰败、食物短缺、政治内斗等)解体,其中许多情况100年后依然未有改善。不过,想象一下如果是一个强大的罗马帝国在抵御伊斯兰教的崛起、盎格鲁-撒克逊人对不列颠群岛的入侵以及各种日耳曼部落的侵扰,那漫漫历史长河又将是什么样子呢?

        黑死病的伊始

        人类历史上最著名的传染病是鼠疫的第二轮暴发,1334年黑死病(Black Death)始于亚洲某地,1347年至1351年达到顶峰,在随后的400年中,导致几百万人死亡。与第一轮鼠疫相似,这轮暴发被认为夺走了7500万至1亿人的生命,消灭了相当于当时欧洲1/3与世界1/5的人口。 [11] 传染病阶段性地传播开来,在欧、亚、北非贸易与船只密集的港口间开始流行。在肆虐了蒙古帝国10年后,疾病向南传到克里米亚,最后到达君士坦丁堡。

        和6世纪的鼠疫一样,君士坦丁堡是一个繁忙的港口城市,也成了

        传染病朝西传向欧洲和北非的集结地。一旦到达一个新陆地,老鼠就会

        跳下船,与本地的老鼠交配,再把疾病传给新的人群。据信,疾病通过

        吸入受感染的呼吸道分泌物(肺鼠疫)在人与人之间迅速传播开来,直

        到没有新的宿主可以传播,其间死亡无数,乔瓦尼·薄伽丘(Giovanni

        Boccaccio)在《十日谈》(Decameron )(1353年)中很传神地描述了

        如此之多的死亡对人们造成的毁灭性社会影响,他写道:“市民互相避

        之不及,无论亲疏远近,不见面或很少见面;在恐惧中,兄弟抛弃兄

        弟,叔叔抛弃侄子,姐妹抛弃兄弟,丈夫也经常被妻子抛弃;更难以置

        信的是,父母会遗弃自己的孩子,不予照顾,就好像是陌生人一样,任

        由他们被命运摆布。”[12] 与800年前一样,黑死病对生活的方方面面造

        成了恶劣影响,改变了人类生活、思考、人际交流的方式。

        大部分关于14世纪黑死病的历史分析主要聚焦在它对欧洲的影响,

        不过,黑死病从亚洲传到欧洲前可能已经杀死几百万人了。有意思的

        是,在14世纪中国人的记载中很少提到黑死病,而印度的记载更少。当

        时(宋元时期)的一些中国医学文献记录着一种疾病,它的特点是淋巴

        结肿大,伴有高烧,在1331年至1351年造成了大量死亡。 [13] 另外,在

        这段时间里进行的一次人口普查报告显示,14世纪后半叶,中国人口几

        乎减少了一半,一些省份的人口锐减近90%。由于当时蒙古人的大规模

        攻城略地,亚洲大部分地区持续受到饥荒、疾病、战乱的威胁,因此,

        我们很难断言,人口骤减是因为鼠疫还是各种因素的综合作用。很有可

        能黑死病在欧洲暴发前,在西亚已经杀死了几百万人,不过,由于历史记录的缺乏,我们很难弄清楚具体有多少人死亡,或者这场鼠疫对人口产生了什么影响。

        对蒙古帝国这场传染病的记载之一来自一位叫加布里尔·德·穆西

        (Gabriele de’ Mussi)的意大利律师,他在1346年写了蒙古人包围了克

        里米亚(现乌克兰)的卡法城的故事。 [14] 卡法城最初是由意大利商人

        建立并使用的,是蒙古国中部一个重要的贸易港口。虽然意大利人与他

        们的东道主之间一开始还礼尚往来,但他们的关系很快恶化了,两者之

        间的争斗导致1343年蒙古人集结大部队攻击了这座城市。当意大利人快

        要落败的时候,德·穆西写道:“整个军队染上了一种疾病,这种疾病在

        鞑靼人(蒙古人)中传播开来,每天有成千上万的人死去。”[15] 他继续

        描述这种疾病,具有典型的鼠疫症状。这场疾病彻底摧毁了攻击者,最

        终蒙古人不得不在卡法城认输。蒙古人意识到败局已定,“垂死挣扎的

        鞑靼人……下令把死尸放在弓弩上,射进城里,希望无法忍受的恶臭会

        杀死城里的所有人。这样一来,堆积如山的死尸被扔进了这座城市”。

        [16]

        这是历史上最早记录的生物武器。德·穆西与其他一些记录者继续

        描述这个战略是多么成功。卡法城的许多居民在接下来几个月里死于鼠

        疫。不幸的是,那些设法逃离这个城市的人把疾病带到了君士坦丁堡和

        欧洲。虽然大多数历史学家认为鼠疫通过其他贸易之路传到了欧洲,但卡法城逃离的居民(和老鼠)很可能加速了鼠疫的传播。

        这个事件是战争史上常常被人们遗忘的转折点。蒙古军队使用一种传染性病原体,以更快速、彻底又不费金钱的方式击败了敌人,这种做法非常高明。在随后的600年中,这个做法断断续续成了一个典范——首先用疾病对付敌人,当敌人的力量被削弱时,再出兵征讨。正如我们将在后续章节中讨论的那样,我们有证据说欧洲人可能使用了天花、麻疹和其他病原体有目的地消灭美洲和非洲的原住民。同样,间接证据表明,英国人用同样的办法杀死澳大利亚的土著。德国人被认为在第一次世界大战中使用炭疽病作为武器,日本人在第二次世界大战中使用了伤寒和鼻疽病作为武器。 [17] 因此,把感染鼠疫的尸体当作武器,尽管残酷又危险,但确实是一个后世竞相模仿的有效战略。

        欧洲封建制度的衰落与革命的根源

        1347年鼠疫传入欧洲,造成欧洲人口急剧减少,短短几年里,欧洲大部分地区的经济发生了巨大变化。由于1315年北欧的大规模饥荒,黑死病暴发前的30年,欧洲就进入衰退状态了。 [18] 几百万农民死于饥饿与疾病,结束了之前几百年人口的爆炸式增长。后来,气候渐渐稳定好转,收成也改善了,不过饥荒造成的损失不可逆地腐蚀着人们的灵魂。人们展现出丑陋的一面,谋杀、强奸、遗弃孩子,甚至吃人肉的现象屡见不鲜。同时,管理土地的封建领主和耕作土地的农民的关系变得紧张起来。

        封建制度是一种组织人口的等级制度,自9世纪以来一直存在于整个中世纪的欧洲。它是土地管理体系下所诞生的等级关系。封建体系的顶端是国王,他拥有所在国家所有的土地。国王把一部分土地分封给贵族/领主,他们必须为国王尽忠,保护国王。领主又把一小部分土地分给骑士,换取骑士对自己的军事保护。骑士于是雇用一大群农奴/农民来耕种土地,而他们付租金给骑士,用辛勤的劳动换取人身保护、食物与住所。经营这些自给自足的庄园所产生的大部分钱财最后以赋税的形式献给了国王。这个体系中大部分负担都压在农民劳动者身上,而他们几乎没有机会向上流动和改善他们的社会经济地位。

        由1315年大饥荒引发的对封建制度的冲击,在黑死病期间达到了顶

        点。 [19] 封建社会的所有阶层都受到了影响,管理土地的人有了空缺,

        更重要的是,没有了耕作土地的劳动者。由于大量的农作物未被收割、

        大部分劳动力流失,幸存下来的农民现在可以争取更大的自由和更高的

        收入(高达他们之前收入的5倍)。骑士和领主,照旧得为国王履行义

        务,他们被迫服从,越来越多的财富最终落在了平民手中。

        一些国家的地方政府对这种向上流动的反应是,通过颁布法律,限

        制劳动者的薪水,以及提高租地的费用。新中产阶级劳动者对此非常不

        满,许多人以反抗当权者作为回应(如1381年农民起义)。 [20] 劳动者

        起义陆续在欧洲很多地方展开,很多劳动者迁移到城镇寻求更好的机

        会。经济逐渐从农业转向工业生产和贸易,这让封建领主与骑士丧失了

        他们对下层阶级的统治权力。接下来的几年中,大部分欧洲国家开始转

        向资本主义经济体系,封建制度将永远消失。虽然黑死病显然不是封建

        制度衰落的唯一原因,但它的确是封建制度走向衰退的一个重要因素。

        上帝的愤怒,教会和迫害

        现代社会中,每当发现一种新疾病,科学家与医生会很快集结到疫

        区,收集病人样本,然后用一系列诊断工具去确定疾病的病因。一旦微

        生物病原体被确认,受感染的病人就能得到适当的治疗,其他民众就会

        得到如何预防疾病进一步传播的指导。疾病暴发通常会消退,人们在短

        时期内可以恢复健康。

        黑死病肆虐而来的时候,生活在14世纪的民众还没有现代技术可

        用。因此,他们对传染病病因的解释往往是基于迷信与恐惧,而非理

        性。他们想要有人或事成为替罪羊,这样他们就可以摆脱自己任何“导

        致”这种流行病的干系。一些人认为是地震或彗星等自然现象把鼠疫带

        到地球上来,或者是行星排列的方式导致了灾难。对病灾降临最广为流

        传的解释是上帝对人类罪孽的惩罚。德·穆西在描述蒙古军队围攻卡法

        城时就清楚地说明了这一信仰:“天堂如下雨般把箭射向人间,射灭了

        鞑靼人的傲气。”[21] 蒙古人企图对信奉基督教的意大利人不利,上帝就

        用黑死病作为武器来制止他们。

        上帝对不义者的惩罚是有意义的,直到鼠疫莫名其妙地把愤怒转向

        基督徒自己。人们来到教会寻求神的指示,神父向他们的羊群提供忏悔

        和预防疾病的指示。大家纷纷去祈祷、举办宗教仪式、在门柱上放十字

        架,朝觐圣人的神龛。一些人甚至用更极端的忏悔形式来安抚上帝,被

        称为“鞭笞者”的人在村子间穿梭,用铁链和带着钉子的鞭子鞭打自己,

        直到流血为止。 [22] 他们会带领公众游行,在游行中惩罚自己,试图亲

        自承担上帝对人类的惩罚(就像人们认为的耶稣所做的那样)。其实,

        鞭笞者并没有让鼠疫停止,反而加速了它的传播,因为感染的跳蚤跟着

        他们游街串巷。因此,尽管有形形色色的忏悔和赎罪的措施,虔诚的基

        督教徒们和他们的神职人员们仍以前所未有的速度死去。

        由于神职人员在照顾病者方面承担重要角色,因此他们在鼠疫中的

        死亡率很高。一位同时代的观察者写道:“在阿维尼翁的英国奥斯汀托

        钵僧中,无一人幸存……在玛格罗那,160个修士中仅7人活了下来……

        在马赛,方济各会的修士无一幸存下来讲述这个故事。”[23] 如果说上帝

        连他所挑选的祭司都不爱惜,那么对其他广大众生而言,又意味着什么

        呢?对很多人而言,这似乎是上帝放弃了人类,没有什么可以减轻他的

        愤怒。在威廉姆·朗格兰(William Langland)的诗句里:“现在的上帝聋

        了,听不到我们的声音,祈祷也无力阻止鼠疫。”[24] 人们普遍的反应是对教会失去了信任,因此离开教会的人数创下了纪录。

        从长远来看,鼠疫对天主教会的影响同样是灾难性的。首先且可能

        最重要的是,神职人员的大量减少导致了高级别教会人员的空缺。为了

        快速填补这个空缺,教会不得不降低标准,雇用比他们的前辈受教育程

        度低、奉献精神脆弱以及训练少的教士。结果是教会内部出现了滥用职

        权和腐败行为的增加。宗教改革者马丁·路德(Martin Luther)揭露了一

        种在接下来的一个世纪里更为常见的滥用权力行为,那就是出售赎罪

        券。赎罪券是一种赎罪的形式,是为了弥补已经被上帝宽恕的罪过。一

        般来说,忏悔可以是长时间的祈祷、斋戒、提供服务或帮助穷人。然

        而,一些腐败的神职人员开始利用这些赎罪券作为一种方式,向教区教

        民勒索大笔钱财,其想法是,让他们立刻为自己的罪孽付钱,不然就有

        下炼狱的可能。可以理解的是,教会中的许多人对鼠疫后神职人员的这

        种腐败行为和其他滥用行为感到厌恶。

        神职人员并没有把民众从鼠疫的危难中解救出来,再加上随后的腐

        败,一些历史学家认为黑死病间接地推动了新教改革。虽然宗教改革是

        由多种因素的复杂相互作用而发起的,但在马丁·路德发表他的《九十

        五条论纲》之前,大家已无法否认鼠疫在显著削弱天主教会的权力和权威方面所起的独特作用。

        黑死病同时还开启了反犹太主义与迫害犹太人的新时代。 [25] 人们

        不顾一切地想要为自己的苦难找到可以怪罪的人,而犹太人就成了完美

        的替罪羊。这不仅因为他们的信仰和习俗与基督教徒截然不同,还因为

        他们倾向于与其他人分开,过自己的日子。1347年黑死病意外袭来的时

        候,很多基督教徒开始怀疑是这群与众不同、与世隔绝的异类把疾病传

        播出来的。随着基督教徒的死亡率不断攀升,这种怀疑上升为指责,指责最后演变成了暴力。

        这场迫害始于1348年春天法国的纳博讷附近,一群犹太人被集中起

        来烧死了。此后不久,西欧的犹太人被公开指认在井水、湖里和河里投

        毒,企图毒死基督教徒。犹太人被捕之后,人们用各种形式的折磨,以

        迫使他们认罪。《日内瓦犹太人阿吉美的忏悔》(The Confession of Agimet the Jew of Geneva )(1348年10月)中有这样一段特别生动的记录:
        犹太人阿吉美,生活于日内瓦,被捕于沙泰勒,在此受了一些刑罚,后来被释放,很长时间之后,再次受刑,他在很多可信的人面前忏悔……阿吉美带着一包满满的毒药,来到威尼斯,然后把一部分毒药洒向日耳曼人府邸旁的水井或蓄水池,想要毒死来蓄水池饮水的人。 [26]所以,在两次被捕和遭受酷刑后,阿吉美“主动”承认,他向威尼斯的供水系统中投入一些未知的毒液和毒药混合物。尽管这是明显的逼供,但这类新闻以及其他秘密投毒的消息在欧洲城镇间传播的速度几乎和黑死病本身的传播一样快。

        公众对这些疑似中毒事件的反应很激烈。犹太人到处被围捕(经常

        是在来访的鞭笞者们的命令下),被火烧死或被刀剑杀害。在一些城市

        里,所有的犹太人在几天内就被消灭了。例如,1349年8月的某天,基

        督教徒在德国美因茨一天内杀死了6000名犹太人。 [27] 类似规模的大屠

        杀也发生在意大利、法国、比利时、瑞士和大部分欧洲国家。在这些大

        屠杀的高潮时期,教皇克雷芒四世 [28] 企图阻止民众的暴力,用一个法

        令来保护犹太人:“把一切归咎于犹太人似乎并不可信……因为几乎是

        普遍的瘟疫和上帝秘密审判一起,已经折磨并继续折磨着犹太人自身,以及世界各地其他和犹太人并无瓜葛的民族。”[29] 不幸的是,天主教会的统治当时处于极度混乱中,有两个教皇号称自己是圣·彼得真正的后继者。最后,神职人员试图阻止杀戮的努力基本上被置若罔闻,而地方上的暴民不受阻碍地将杀戮持续了几十年。没有人知道14世纪大屠杀的具体死亡人数,不过保守估计也有上万人。

        药物的失败及其后果

        在黑死病之前的几年里,医学更多的是一种哲学,而不是临床科

        学。内科医生接受的医学理论教育基本上来自古代希波克拉底与盖伦的

        古老教义。大多数课程并不是通过解剖或检查临床数据而获得的人体解

        剖学与生理学的系统知识,而是基于1000年前对疾病的认知,没有任何

        实验证据支撑。内科医生知道体液失衡如何致病,以及疾病是如何通过

        被称为瘴气的受污染空气传播。他们经常给出现各种症状的病人采取放血、水蛭治疗、提供特殊食谱或新鲜空气的疗法。

        14世纪黑死病到来的时候,黑死病专科医生被征召来,治疗社区中的患病人员,并记录下黑死病的死亡人数。鼠疫医生们穿着很考究的衣服,有时还戴有装满芳香鲜花的鸟喙型面罩(以抵御瘴气),每天探访病人,并对他们进行几世纪以来一直使用的同样的放血和水蛭疗法。不幸的是,不管他们做了什么,鼠疫只会变得越来越糟糕。一个叫马尔基奥内·迪·科博·斯特凡尼(Marchione di Coppo Stefani)的人记录下当时内科医生明显的无助:“几乎没有一个病患活过第四天。无论是内科医生还是药物都没有用。可能这个病是前所未有的,也可能内科医生从来没研究过这个病,它们似乎是无法治愈的。没人知道该怎么办了,这才是可怕的事。”[30] 内科医生和神职人员一样,对鼠疫无计可施,人们开始对他们也丧失了信心。

        尽管不了解鼠疫的病因学,但一些治疗方法和预防措施确实在一定程度上起到了帮助。例如,有人建议离开城市,去寻找“新鲜空气”,避免致病的“瘴气”。虽说难闻的空气明显不是疾病的根源,不过逃离城市的想法却让一些人得以逃离那些传播鼠疫的人。遗憾的是,只有有钱人才有能力离开城市,逃到安全的地方。另一项减缓疾病传播的有效措施是当船只到港后,让船上的人员在港口隔离40天。通过这样做,人们希望有传染性的船员在上岸前隔离的阶段,病情已经暴发出来了,这样船员下船后就不会感染到其他人了。有意思的是,黑死病是人类历史上第一次用隔离的办法来减缓传播的疾病(“隔离”这个词“quarantine”就是意大利语中40天的意思)。 [31] 这项举措很可能在鼠疫或其他病原体的流行中挽救了无数生命。

        内科医生和中世纪医学未能阻止黑死病的传播,这个事实引发了医

        药行业的重大变化。疾病让人们迫切地觉得内科医生需要更好的培训,

        医生这个行业普遍来说需要更严格的监管。 [32] 当时大部分医疗服务提

        供者都没有受过专业教育,既没有执照,也没有监管。很少有人接受过

        某种形式的学校教育,更少有人从经验丰富的从业者处接受过实践培

        训。鼠疫过后,很多城市开始出台法令,要求医学从业者在社会中进行

        医学实践前必须出示接受过培训教育的证明。而且,欧洲各地的医学院

        开始在医学学制中加入更多的解剖课程,一些学校开设了新的课程,使

        用更新的医学教科书。这场鼠疫也导致执业医生在治疗病人的过程中分

        享他们所学知识的方式有了显著的改善。很多医生把他们的实践经验作

        为书面医学论文发表,有点像现今的医学杂志。 [33] 还有一些人将从同

        事处收集的信息整理后,形成预防、治疗与手术的使用手册。总之,黑

        死病帮助医学走出了黑暗时代,从古代哲学家主导的医学走向了更基于

        理性和证据的时代。

        黑死病对中世纪艺术的影响

        一个关于黑死病普遍的误解是,它的高死亡率和彻底的破坏,帮助

        开创了一个以疾病、死亡和毁灭为主题的恐怖艺术的新时代。确实,有

        很多这样的鼠疫图像,不过,在鼠疫暴发的高峰时期(1347~1351年)

        和之后的时段,西欧大部分的艺术作品实际上呈现更多的是关于希望、

        拯救和虔诚的图片。另外,历史艺术学家认为1347年前的几十年,才是

        中世纪欧洲迷恋表达死亡和道德主题的时代。类似但丁(Dante)的

        《神曲》与波拉米欧·布法尔马克(Buonamico Buffalmacco)的壁画

        《死亡的胜利》(Triumph of Death )这样的作品,清晰地表明了14世

        纪早期人们已经开始在他们的艺术中表达关于死亡和来生的新见解。

        [34] 这个转变在很大程度上归功于天主教神学的转变(根据教皇本笃十

        二世在1336年发表的教皇诏书),更强调灵魂、来世和炼狱。 [35] 因

        此,几年以后,袭击欧洲的黑死病,是进一步加深,而非开启当时在欧

        洲文化中已经存在的对死亡的看法。它的影响深远持久,因为绝望和巨

        大希望的图像将贯穿整个文艺复兴时期的欧洲艺术。

        黑死病时期的艺术,常见绘画是受害者走向死亡的不同阶段,其他

        人、圣人或天使企图帮助他们。例如,利弗林克斯(Lieferinxe)的《圣

        塞巴斯蒂安在帕维亚瘟疫期间的调解》(St.Sebastian Intercedes during

        the Plague in Pavia ),描绘了殉道者圣塞巴斯蒂安代表黑死病的受难者

        向上帝祈祷,在绘画的底部,我们能很明显地看到受难者们正经历着痛

        苦的挣扎。 [36] 有趣的是,它既展现了正义的上帝能结束人民苦难的希望,也体现了仍受疾病影响的人们的巨大痛苦和绝望。诸如丁托列托(Tintoretto)的《圣洛克治愈鼠疫》(Saint Roch Curing the Plague),以及《托根堡圣经》(Toggenburg Bible )中著名的黑死病的插图都运用了相同的画风,而另一些作品则倾向于更多地关注上帝的审判和愤怒。后者的艺术表现手法较为典型的是箭从天堂射向人间,或者死神向人类挥舞着刀剑或镰刀。

        黑死病期间出现的其他常见艺术主题集中在鞭笞者的行动和对犹太人的迫害上。前文已提及,鞭笞者游行与犹太人大屠杀是很多年来在整个西欧相当普遍的公开场景。两者都历经巨大的苦难,有很强的宗教色彩,是理想的艺术主题。对鞭笞者尤为生动的描述,来自一本中世纪的手稿《贝里公爵时祷书》(Belles Heures ) [37] 中“鞭笞者的行进”(The Procession of the Flagellants)。画中几个戴着面具的人粗暴地鞭打两个跪在地上的男子,另一些背着十字架参加游行。而关于犹太人的大屠杀,很多画描绘的是巨大的火海吞噬一群面部扭曲的人,旁观者们往火焰中扔木头,或者露出满意的神情。

        可能黑死病艺术中最持久的隐喻被统称为死神之舞。 [38] 大部分死

        神之舞的画作上,画的是不同社会阶层的尸体或骷髅在跳舞(或者丑陋

        地移动),试图表明黑死病对所有的人一视同仁。舞动的动作模仿了黑

        死病病人在患病晚期身体的坏死和剧痛导致的肌肉扭动抽搐的动作。这

        种风格的一个典型例子是伯纳特·诺特克(Bernt Notke)在1466年的画

        作,它被恰如其分地命名为《死神之舞》(Danse Macabre ),在这幅

        画的一个片段中可以清晰地看到,死神演奏着音乐,而其他形态的死神

        在愉快地跳着舞,紧紧抓着教皇和帝王,把他们带向他们的终极命运。

        在黑死病暴发高峰后的几百年中,西欧很多国家出现类似的绘画。这充

        分说明了传染病引起的心理伤害在14世纪中叶后延续了很久。

        人类进化的原因?

        当一种传染病在某一人群中暴发,人群中一些发生了基因突变的个体对感染具有更强的自然抵抗力。一旦暴露在病原体面前,这群人比正常的、非突变的同类更容易存活下来。如果一种传染病特别严重或者持续时间特别长(如黑死病),那么大量易感人群将会死亡,留下的幸存者在他们的社会重新繁衍。经过很多代人的“优胜劣汰”,存活下来的新人群比传染病发病前的那群人携带突变基因的频率高得多。在基因上,他们更能抵御随时会卷土重来的疾病。因此,传染病是一个选择机制,在一段时间内触发一个群体的遗传结构变化,换句话说,它能促进人类进化。

        过去的20年中,人们关于14世纪黑死病对人类进化有无重要影响有很多种推论。这个问题很难回答,因为黑死病大流行发生在人类发明基因测试之前将近650年。因此,我们必须用已知死于黑死病的那些人的骨头和牙齿残片,对他们的基因进行回顾性分析。那些DNA,虽然由于时间的原因已经部分分解了,但还是可以和现有人群(幸存者的后裔)进行DNA比对,来看看黑死病后有没有更高频的基因突变。换言之,将死于黑死病的人与存活的人进行DNA比对,能让我们识别出可能在14世纪为一些人提供了对耶尔森氏鼠疫杆菌感染的天然抵抗力的突变。

        这些研究明显表明鼠疫帮助触发了人体免疫系统永久性的变化。[39] 我们的免疫细胞表面,有一系列叫Toll样受体(Toll-like receptors,TLRs)的蛋白质,它能侦测到病菌的感染,引发炎症反应。对黑死病幸存的不同人群的基因分析揭示了他们的TLR基因都有相似的突变。独特的TLR基因序列变化的出现,加强了人类对鼠疫杆菌入侵的炎症反应,相比变异前的状态,给了14世纪人更强的战胜细菌感染的能力。中世纪时代,这些倾向于引发炎症的变化帮助了经常被致病菌轰炸的人类,而它们对21世纪生活在相对卫生环境的人们来说却是个问题。例如,临床数据表明,有这种TLR基因突变的人患自身免疫性疾病(如克罗恩病)的概率更高。所以,帮助我们祖先从人类历史上最糟糕的传染病中存活下来的基因突变,从某种程度上,让我们如今产生了混乱的免疫应答。

        很多调查研究也关注一种叫CCR5的基因突变,因为人们发现这种

        叫CCR5 Δ32的突变存在于15%~20%的欧洲人体内,而在非洲和东亚后

        裔中却几乎不存在。这个模式很有趣,因为黑死病肆虐了欧洲大部分地

        区,但没有波及撒哈拉以南的非洲或东亚地区。CCR5 Δ32基因突变和

        黑死病发病地区的重合,可能代表这种突变帮助14世纪的欧洲人抵御黑

        死病。 [40] 他们存活了下来,并繁衍了受保护(基因突变)的后代。随

        着非突变体以更快的速度死亡,这种突变在人群中的频率会增加。因

        此,今天有15%~20%的欧洲人具有这种突变基因,他们可能是当年黑

        死病幸存者的后代。

        如果上述推断正确,那么理论上具有CCR5 Δ32突变基因的动物应比一般动物更有能力抵御耶尔森氏鼠疫杆菌。然而,研究结果表明并不尽然。实验似乎表明,这种突变对大老鼠有抵抗鼠疫杆菌的作用,而对小老鼠却没有。 [41] 由于研究结果的矛盾性,黑死病是不是欧洲人群中CCR5 Δ32基因突变的诱发因素,或者这种突变是否源于天花之类的其他疾病,我们无法得到定论。有趣并巧合的是,CCR5 Δ32的突变可以影响另一个致命的病原体——艾滋病病毒的复制。我们知道,艾滋病病毒不可能是这种独特的基因突变模式的最初原因,因为它对人类的影响还只有仅仅40年(两代人),艾滋病病毒和CCR5 Δ32的关系在本书的后续章节会有论述。

        最后一轮鼠疫

        如果不提及19世纪50年代在中国暴发的第三次大流行,关于鼠疫及其对全人类的影响的讨论将是不完整的。在接下来的100年中,第三次大流行夺去了1200万至1500万人的生命。与前两次不同,第三次大流行主要在亚洲而非欧洲,主要由老鼠传播,而且死亡率较低。死亡率降低的其中一个原因与隔离措施和其他防控措施的结合有关。另外,微生物学在19世纪的时候已经很发达了,1894年发现了鼠疫的病原体(由亚历山大·耶尔森医生发现)。1897年,人类研发出并接种了基础的鼠疫疫苗,并在1898年破译了跳蚤在传播过程中的作用。 [42] 关于这种疫苗的一个有趣的补充说明是,研制这种疫苗的科学家叫瓦尔德马尔·哈夫金(Waldemar Haffkine),他对自己的研发非常有信心,他首先在自己身上试验了疫苗的有效性。当他自己并没有死于活鼠疫细菌后,他又在印度囚犯身上做了下一轮试验。尽管其中有伦理问题,且仅具有部分保护作用,但疫苗的成功大大减缓了鼠疫在亚洲的传播,降低了鼠疫的破坏力。

        第三轮鼠疫暴发引起的一项重要并长期的影响是它进一步恶化了大英帝国和它统辖地区人民的关系,特别是印度人民。为了控制鼠疫在印度的传播,英国军队和地区鼠疫防控特别委员会对民众采取了一系列非常严格的措施。 [43] 这些措施包括强制隔离疑似病例,没收和销毁“受感染”物件,疏散人群,以及摒弃传统治疗手段。可以想象,已经在英国暴虐统治下生活了几十年的受苦受难的人们,并不会遵守越来越严格的防疫措施。这导致越来越多的抗议和暴力行为的发生。1897年发生了一件非常著名的事件,它体现了日益加剧的紧张局势,印度鼠疫防控委员会中有一位恶毒的英国长官叫沃尔特·兰德(Walter Rand),达摩达·哈利(Damodar Hari)、巴克里斯纳·哈利(Balkrishna Hari)和瓦苏德奥·哈利(Vasudeo Hari)三兄弟在兰德从女皇钻石大庆典礼结束回家的路上伏击了他的马车,并残忍地杀死了兰德和他的军队护卫。 [44] 三兄弟很快被捕、定罪,并被处以绞刑。这个故事很快在国际媒体上登出,引起了大家对不稳定的印度次大陆困境的关注。尽管印度在此后50年中没有取得独立,但19世纪的鼠疫暴发让它们反对大英帝国的民族主义抬头,并持续了很多年。

        第三章 天花

        天花始终盘桓,将墓地填满尸体。用无尽的恐惧折磨那些幸免之人,给劫后余生的人留下累累的疮痕。残疾畸形的婴孩,饮泪悲泣的母亲,失去明眸和美貌的待嫁新娘,成了爱人午夜的梦魇。 [1] ——T.B.麦考莱(T.B.Macaulay)于1948年 [2] [3]

        天花(Smallpox)是人类有史以来最严重的灾害之一,在其存在的

        3000年时间里,致使数十亿人死亡和毁容。据统计,天花致死总人数超

        过10亿人,仅在20世纪,它就夺走了3亿~5亿人的生命。而那些从天花

        中幸存的人,约有1/3永久失明,3/4的人脸上和四肢有明显的伤疤。 [4]

        这种疾病对5岁以下儿童的危害性尤其大,在一些地方死亡率高达

        95%,这就导致了一种糟糕的现象:父母通常会等到孩子活过天花后才

        给他们取名。此外,天花与鼠疫不同,鼠疫在迅速夺去了很多人的生命

        之后,随着时间的推移逐渐消失,而天花在第一次暴发时会造成大量人

        口死亡,然后会作为一种地方病永久存活,每年会固定导致大约30%的

        新感染者死亡,年复一年。随着时间的推移,它在人群中变得非常普

        遍,几乎每个人都会在其一生中的某个时刻接触到它。这种模式从古代

        一直延续到20世纪中期,当时全世界疫苗接种的努力带来了可以说是人

        类历史上最伟大的成就之一——人类彻底消除了天花。天花在自然界中

        已经不复存在了,所以在这一章的剩余部分,我们讲的都是过去。

        绝大多数天花病例(超过90%)是由于感染了高传染性的大天花病毒,而少数较轻的天花病例是由小天花病毒引起的。这些病毒最常见的人际传播方式是直接吸入受污染的呼吸道分泌物,较少通过皮肤接触受污染的体液或无生命物体。有一些证据表明,在极少数情况下,它还可能通过眼睛接触受感染的液体而获得,或者通过胎盘从受感染的母亲传

        播给胎儿。重要的是,人类天花病毒从未在任何动物载体中发现,也没

        有出现在水或土壤中,因此天花只能从其他感染者身上获得。

        天花病毒一旦进入体内,就会被一种叫作巨噬细胞的局部免疫细胞

        吞噬,并转移到最近的淋巴结,病毒首先会在那里缓慢复制,有条不紊

        地从一个细胞转移到另一个细胞,然后在感染6~10天后,受感染细胞

        数量会大幅增加。这种病毒进入血液后引起的症状,称为病毒血症,会

        给予病毒进入其他组织和器官的机会。在此期间,感染者会出现类似流

        感的症状,发烧、肌肉疼痛、恶心,以及皮肤和眼睛特有的皮疹,大多

        数人会出现大脓疱,主要出现在面部和四肢,而其他人则会出现扁平的

        出血性皮疹。病毒的进一步复制和传播通常会在感染后16天内导致内出

        血、肺炎、休克和死亡。由于天花病毒在现代分子生物学技术发展之

        前,就已经从人群中被有效地清除,因此它们引起这些症状的机制以及

        感染导致死亡的原因尚不清楚。

        目前尚不清楚天花病毒从何而来,何时进入人类群体,然而遗传学

        研究表明,它们可能是由一种小型啮齿动物或骆驼身上的痘病毒引起

        的。也有观点认为,当人类开始普遍与所养殖的牲畜共同生活之后(约

        公元前10000年),天花病毒第一次侵袭中东的阿拉伯人。 [5] 古代天花

        感染的第一个明确的实物证据是在埃及木乃伊上发现的,比如法老拉美

        西斯五世(Pharaoh Ramses V)的木乃伊,拉美西斯五世死于公元前

        1157年,他的脸上有典型的脓疱。此外,公元前1274年埃及-赫梯战争

        期间刻凿的古代石碑上描述了一种神秘的流行病,它从埃及囚犯传播到

        赫梯军队,并持续了20年,虽然对这种疾病的描述表明它应该是天花,

        但历史记录非常模糊,不排除它可能是由其他传染病引起的。

        在公元纪元最初的几个世纪里有很多很可能是天花的例子。例如,安东尼瘟疫(Antoinine Plague,公元165~180年)和居普良瘟疫(Cyprian Plague,公元251~266年)席卷了罗马帝国,造成1000万人死亡,被描述为引起了与天花相似的皮疹。 [6] 同样,公元310年在中国北方暴发的一场流行病产生了“侵袭头部、面部和躯干的季节性流行病

        疮”,在很短的时间里,它们就遍布全身。它们看起来像红色的疖子,

        都含有一些白质,同时出现的还有脓疱,并在差不多的时间变干。如果

        严重的病例不立即治疗,许多人将会死亡,康复的病人也会留下深紫色

        的伤疤,需要1年多的时间才能褪去。 [7] 在接下来的几个世纪里,亚

        洲、欧洲和中东对天花都有了更明确的描述,正是从这些描述中,我们

        开始看到天花对我们人口的长期影响。

        罗马帝国的衰落和基督教的兴起

        如第二章所述,6世纪中叶,由耶尔森鼠疫杆菌引起的查士丁尼鼠

        疫阻止了罗马帝国东、西两部分的统一,并最终阻止了它重获昔日的辉

        煌。在鼠疫暴发前的几百年里,由于各种原因,包括政治内斗、经济衰

        退、强大的日耳曼部落的崛起以及疾病等因素,罗马帝国一直处于衰落

        状态。结果很明显,查士丁尼鼠疫不是引发罗马帝国衰落的原因,而是

        让已经在恶化的罗马帝国进一步削弱。

        要了解罗马帝国是如何开始衰落的,就必须追溯到查士丁尼鼠疫暴

        发前400年的公元166年。此时罗马帝国取得了前所未有的成功,被当时

        的人们视为世界上最强大、最繁荣、文化最丰富的帝国之一。公元161

        年,马可·奥勒留(Marcus Aurelius)皇帝接管了罗马帝国,并继续加强

        帝国的实力,当时的罗马帝国包括几乎整个西欧、北非、不列颠群岛的

        一部分以及中东的大部分地区。 [8] 健康的自由市场经济、强大的企业精

        神和鼓励贸易的法律,造就了庞大的中产阶级,并允许相对较高的经济

        流动性。帝国的军队是有史以来训练最有素、成本效益最高的军队之

        一,35万多名士兵的军队在维持这个影响深远的帝国的和平方面做得非

        常出色,以至于塔西佗(Tacitus)等一些历史学家抱怨他们没有什么伟

        大的战争可写。当时的普遍和平与繁荣也促进了艺术、医学、法律和科

        学的巨大进步,那是一个令人惊奇的时代,作为罗马帝国的公民,没有

        人想象过这种情况可能会发生改变。

        不幸的是,公元162年爆发的一场小冲突改变了一切,其引发了罗

        马帝国长达一个世纪的衰落,从此再也无法恢复。当一群被称为帕提亚

        人(来自今天的伊朗)的人入侵罗马人控制的叙利亚和伊拉克时,问题

        就开始了。 [9] 这促使马可·奥勒留在他的兄弟同时也是共同皇帝卢修斯·

        维鲁斯(Lucius Verus)的指挥下,派出了罗马军队的全部军事力量。

        经过3年的战斗,罗马人最终占领了帕提亚的首都塞琉西亚,罗马士兵

        洗劫了这座城市和附近的城市,袭击了寺庙,并掠走了各种各样的珍

        宝。除了劫掠,士兵还从帕提亚人那里带回了一种不同的“礼物”——一种新的、特别具有侵略性的流行病。著名的罗马医生盖伦对这种疾病的描述如下:
        在第9天,一个年轻人全身都是皮疹,几乎所有的幸存者都是如此。在他身上涂上干燥药物……第12天,他能从床上起来了。那些能活下来的腹泻者,全身都出现了黑色的突起,大多数情况下,它是溃烂而完全干燥的。皮肤变黑是因为发烧时残留的血在皮肤上起了水泡,就像自然沉积在皮肤上的灰烬一样。其中一些已经溃烂,表面那部分叫作痂的地方脱落了,然后附近的其余部分恢复了健康,一到两天之后疤痕就消失了。[10]

        在第9天出现皮疹、出血热、结痂水泡和疤痕,这让大多数历史学家认为,盖伦描述的是出血性天花的流行,但也有少数人提出,它可能是由斑疹伤寒甚至炭疽引起的。

        天花一进入罗马帝国,就沿着贸易路线迅速传播,不分青红皂白地

        杀死了社会各阶层的人。事实上,有一些证据表明它对马可·奥勒留

        (公元180年)和卢修斯·维鲁斯(公元169年)的死亡负有责任。在接

        下来的100年左右的时间里,这种天花流行病(称为“安东尼瘟疫”或“盖

        伦瘟疫”)可能导致多达700万人死亡。 [11] 有人估计,仅在罗马城,每

        天就有2000人死于这场灾难。

        这么多人的死亡对帝国的生产、安全和士气都产生了巨大而长期的

        影响。 [12] 例如,随着人口开始减少,军队很难找到合格的新兵保卫边

        界,结果,他们开始更多地依赖雇佣军来充实自己的队伍。有趣的是,

        这些雇佣军中的许多人实际上是日耳曼部落的成员,这些部落已经对罗

        马帝国发动了多年的进攻。军队构成发生如此剧烈的变化,导致了军力

        的逐渐削弱而无力保卫帝国的边界。随着时间的推移,当地日耳曼部落

        被授权结盟,他们对帝国西半部的攻击更加频繁而猛烈。逐渐衰弱的罗

        马帝国最终分裂,而帝国的西半部则永远地输给了这些入侵者。

        如此多人死于天花的另一个主要影响是对经济的毁灭性打击。 [13]

        大城市和居住在其中的人们每天都需要大量的食物,这些食物来自帝国

        各地的农场(最著名的是埃及),负责种植、养护和收获农作物的农民

        大量缺失,导致了粮食短缺和大范围的饥饿。此外,死亡的人不再纳

        税,这也影响了罗马支付其大部分民事工程和军事经费的能力。这种流

        行病引发的财政危机十分可怕,以至于马可·奥勒留不得不拍卖帝国珠

        宝来偿还他的债务,其结果导致了一场严重的经济衰退,再次削弱了帝

        国的力量,让其他更加繁荣和强大的军队更容易入侵和掌握控制权。

        安东尼瘟疫流行的一个更有趣的副作用是它对基督教的影响,这个

        宗教在2世纪中期还处于萌芽阶段,对当时仍信奉多神论的罗马人来

        说,基督教被认为是罗马人厌恶的宗教。基督教徒在很多方面都像帝国

        的外来者一样生活,因为他们完全拒绝崇拜罗马诸神,他们既不向诸神祈祷、献祭,也不参加任何其他庆祝诸神的仪式。此外,他们尤其鄙视罗马政治领袖的神化,并强烈拒绝向恺撒效忠。这种对皇帝和罗马宗教的普遍蔑视在新约启示录中得到了说明,许多神学家相信使徒约翰写这句话并不是对末日的预言,而是对罗马的一种讽喻批判,他将罗马描述为“伟大的妓女”,将罗马的统治者[如尼禄(Nero)]描述为迫害上帝的儿女并注定要被毁灭的多头“野兽”。

        在繁荣和崇尚民族主义的罗马帝国,公民通常不喜欢对他们领导人

        和神的任何类型的批评。因此,当公元166年天花疫情暴发时,当地政

        府迅速将其归咎于基督教徒和他们对罗马神灵的侮辱。 [14] 类似于基督

        教徒后来在14世纪黑死病期间迫害犹太人的情形,罗马教徒围捕基督教

        徒并杀害了他们中的许多人,希望以此安抚他们的神,阻止瘟疫的蔓

        延。尽管对这种迫害的通俗描述常常是基督教徒在罗马斗兽场被狮子吃

        掉,但大多数时候它实际上是由无组织的当地暴徒进行的计划外袭击。

        这种暴力持续了许多年,当帝国在公元251年遭受另一场致命的流行病

        (被称为“居普良瘟疫”)时,情况变得更糟。由于目击者对症状的描述

        比较模糊,因此第二次流行的原因尚不清楚,然而,许多人认为它也是

        由天花引起的。

        人们可能会认为,在2世纪和3世纪,针对基督教徒的大规模暴力会

        对基督教产生有害的影响。与直觉相反的是,这段时期经常被历史学家

        提起,因为这是宗教迅速崛起的时期,基督教从一个小的、不为人知的

        邪教变成了罗马帝国的主要力量。人们提出了一些有趣的理论来解释这

        个明显的悖论。 [15] 首先,有充分的证据表明,新的宗教通常是在普遍

        的苦难时期出现的,人们试图弄清楚像流行病或战争这样的悲剧是如何

        以及为什么会降临到他们头上,当他们在目前的宗教中找不到满意的答

        案时,他们往往会去寻找新的答案。其次,他们形成了一种“草总是更

        绿”的心态,并利用一种新的意识形态所提供的希望来从情感上审视他

        们周围的灾难。他们以前崇拜错误的神,信仰错误的思想,进行错误的仪式;然而,由于他们已经纠正了自己的错误,他们将得到回报,从痛苦获得拯救。

        早期基督教是特别吸引罗马人的一个选择,因为它倾向于把苦难看

        作救赎和净化的工具,上帝用它来拉近自己与人类的距离。因此,瘟疫

        并不是罗马神传下来的惩罚,而是基督教神可以用来做好事的东西。此

        外,基督教徒死后仍能在天堂里生活的信仰,也给那些垂死的人或看着

        所爱之人死于疾病的人提供了极大的安慰。当时罗马人的宗教既没有提

        供这样的安慰,也没有令人满意地解释他们受苦的原因,结果大批罗马

        人在这两次瘟疫之后改信了基督教。

        罗马教徒和基督教徒对待病人的方式也有显著不同,罗马教徒和基

        督教徒观察家都注意到,基督教徒愿意将自己置于危险之中来照顾病

        人,而罗马教徒,比如盖伦医生,更有可能逃离这种流行病。罗马皇帝

        朱利安(Julian)曾写道,基督教徒“不仅供养他们的穷人,也供养我们

        的穷人;每个人都可以看到,我们的人民缺乏我们的援助”。 [16] 兰迪·斯塔克(Randy Stark)在他的书《基督教的崛起》(The Rise of Christianity )中指出,早期天花流行期间这种罕见的善行可能在吸引其他人加入这个新宗教中起到了重要作用。 [17] 随着皈依者的不断增加,基督教从一个邪教变成了与罗马教相抗衡的宗教,成为帝国的主导宗教。公元313年,君士坦丁(Constantine)和李锡尼(Licinius)皇帝在《米兰敕令》(Edict of Milan )中正式宣布基督教无罪,仅仅67年后,基督教就被宣布为罗马帝国的官方宗教。

        探险造成流行病

        在1000年的时间里,天花多次流行,到15世纪,天花已经成为欧亚

        大陆大部分地区的地方病。由于天花在人群中广泛传播,人们通常在童

        年的某个时候接触到天花,那些幸运存活下来的人可以享受一生完全的

        保护,免受天花病毒的任何未来感染,他们可以在天花患者之间走动,

        处理被污染的物品,而不用担心再次感染天花。当欧洲人开始探索遥远

        的土地,并与从未接触过天花或没有任何预防措施的土著居民互动时,

        这种免疫力将被证明是很有价值的。

        15世纪,奥斯曼帝国占领了欧亚大陆的几个重要港口城市,这直接

        导致了欧洲人探险时代的开始,第一个是君士坦丁堡,1453年春天被奥

        斯曼帝国的首领苏丹穆罕默德二世(Sultan Mehmed Ⅱ)征服。

        此后不久,奥斯曼人向东移动 [18] ,对威尼斯共和国和热那亚共和

        国发动了一系列代价高昂的战争。 [19] 除了拜占庭(东罗马)帝国的正

        式终结外,世界上最重要的港口城市之一的丧失和其他城市的严重衰

        落,对亚洲和欧洲之间的贸易造成了巨大的破坏。欧洲的君主们为了寻

        找不在奥斯曼帝国控制下的商品和原材料的新来源,资助了一系列海上

        探险,这些探险有的围绕非洲大陆,有的进入开阔的大西洋,以寻找外

        国土地作为他们扩张的殖民地。

        这是一场赌博,最终在接下来的几个世纪里为欧洲人带来了丰厚的

        回报。他们在美洲、加勒比、非洲和澳大利亚的大片土地上定居,获得

        了几乎无穷无尽的宝贵自然资源,并比以往任何时候都更加富有和强

        大。不幸的是,在他们想要殖民的土地上,他们也接触到了长居于此的

        数百万土著人,接下来发生的也许是有史以来最严重的种族灭绝——欧

        洲人用先进武器和流行病的致命结合,系统性地屠杀了整个土著文明。

        特别是天花,对这些人口产生了灾难性的影响。因为土著人以前没有接

        触过天花,与欧洲早期的安东尼瘟疫和居普良瘟疫一样,天花在一些地

        方消灭了90%的土著人口,并在社会各阶层造成了大规模的混乱。

        非洲

        最早、最具影响力的欧洲外探险之一是葡萄牙水手沿非洲西海岸向

        下航行,寻找通往印度的捷径。 [20] 在航海家亨利王子(Prince Henry)

        的鼓励下,葡萄牙水手们驾驶着一种轻型帆船起航了,这种新设计的船

        只可操作性很高。1434年,他们在西撒哈拉北部海岸附近成功到达非洲

        大陆,然后继续向南航行,到达了今天的塞内加尔、冈比亚和几内亚。

        到1480年,葡萄牙人已经探索了非洲西海岸的大部分地区,在一些国家

        建立了半永久性的定居点。这样做可以让他们与当地部落交换货物,以

        换取奴隶、矿产和黄金,从这些交换中获得巨大财富鼓励着葡萄牙进一

        步探索非洲南部和东部海岸。在1488年到达非洲的最南端好望角时,葡

        萄牙人沿着非洲东海岸在莫桑比克、坦桑尼亚和肯尼亚等地建立了一些

        贸易站和殖民地,随着利润的飙升以及对奴隶和黄金需求的增加,商人

        和商队从沿海地区深入非洲内陆。

        尽管葡萄牙人显然对与其交往的非洲部落和文明造成了全面的有害

        影响,但由于15世纪和16世纪早期缺乏可靠的历史记录,很难解释在葡

        萄牙殖民统治早期,天花所造成的具体影响。例如,天花和其他欧洲疾

        病,如流感及麻疹,是否使葡萄牙人更容易超过非洲本土人口?我们确

        实知道,撒哈拉以南非洲人口居住的许多城市与15世纪欧洲的城市一样

        大、人口一样稠密、环境一样复杂,这使它们成为天花这类传染病的绝

        佳传播地。此外,虽然有一些有限的证据表明,天花可能在1100年后的

        某个时候通过穆斯林商人间歇性地穿越撒哈拉沙漠,但大多数历史学家

        认为,在葡萄牙人到达的时候,撒哈拉以南的绝大多数人口从未接触过

        天花。 [21] 作为一个“处女”群体,他们极容易受到大规模流行病的袭

        击,考虑到这一点,天花在15世纪和16世纪在非洲肆虐的唯一确凿证据

        就是,到达新大陆的奴隶船经常被发现携带天花病毒。 [22] 虽然这一点

        能清楚表明,天花一定存在于船只离开的城市,但天花在多大程度上夺

        走了当地非洲人的生命,以及它对当地人口的影响仍是一个谜。

        天花在19世纪对非洲人的影响更大。多位欧洲观察员的详细记录显示,天花在苏丹、乌干达、安哥拉和莫桑比克等国大范围暴发,某些情况下,死亡率高达80%以上。例如,一位1864年安哥拉天花疫情的目击者写道:“到1864年中期,天花疫情达到了疯狂的程度。它随着许多贸易商队向东向内陆传播,通过与港口的船只接触,沿着海岸向南传播……黑人向四面八方逃窜以避免这场流行病……全部居民将从他们的村庄迁移……罗安达处在无政府状态的边缘,大量的人死亡。”[23] 沿海城镇因其在大西洋奴隶贸易和中非奴隶商队路线中扮演的角色而闻名,这些城镇也描述了类似的疫情暴发。总而言之,天花很可能产生巨大影响的方面包括:使非洲易感人群患病、虚弱、被奴役,以及无法对欧洲殖民统治者进行任何抵抗。

        虽然葡萄牙是第一个在撒哈拉以南的非洲进行殖民的国家,并引入

        了各种致命疾病,但其他欧洲强国也在用暴力和疾病征服非洲大陆方面

        产生了重要影响。关于天花的讨论中,值得注意的是1652年荷兰人对南

        非的殖民,开普敦第一次暴发天花是在1713年,当时一艘从印度驶来的

        船载着被天花污染的亚麻织品。 [24] 虽然天花也杀死了大量在南非定居

        的荷兰殖民者,但对居住在该地区易受影响的科伊科伊人和班图人来

        说,它尤其致命。随后,1755年暴发了更严重的疫情,1763年又暴发了

        第三次。这三种情况的累积效应是,南非土著民族几乎被消灭,剩下的

        幸存者也相对容易被奴役。荷兰人最终在1806年将权力割让给了英国

        人,英国人随后带着他们的移民重新殖民了这片土地,并制定了一系列

        歧视性法律,旨在让当地人处于从属地位。尽管这些被屠杀的南非本土

        人口的后代最终逃脱了奴隶制的控制,但他们将继续面临合法的暴力和

        迫害,直到1994年种族隔离正式结束。

        总体来说,如果不是因为天花和其他在殖民统治早期由欧洲人带来

        的疾病,我们今天谈论非洲的方式有可能完全不同。例如,没有被疾病

        毁灭的、更健康的非洲人可能会更有效地抵御欧洲人的入侵,至少减缓

        或阻碍欧洲人对其土地的占领,这可能会降低殖民国家征服当地居民并

        利用他们从非洲窃取大量财富的效率,因而这些财富的大部分可能仍留

        在非洲大陆上,这将大大改善非洲在其后几百年的经济状况。

        美洲

        天花第一次出现在新大陆是在1518年,当时一艘来自西班牙的船在

        伊斯帕尼奥拉岛登陆,船上载有一名受感染的奴隶或西班牙人。 [25] 在

        接下来的几个月里,这种疾病在于金矿工作的非洲奴隶中迅速传播,然

        后传播到整个岛上的土著人口中。据1519~1520年的一些目击者称,这

        场瘟疫是“上天的审判”,让岛上的印第安人“不见人烟”。尽管这些说法

        无疑是夸张的,但在仅仅一年多的时间里,伊斯帕尼奥拉岛就有1/3的

        非欧洲居民死于这场流行病。 [26] 在劳动力减少的情况下,为了继续他

        们利润丰厚的采矿活动,西班牙殖民者从非洲带来更多的奴隶,并强制

        将剩余的土著居民安置到定居营地,以便控制。由于天花病毒容易在拥

        挤的环境中繁殖,这样做只会加剧天花在岛上的传播。到1519年,这种

        流行病已经蔓延到附近的古巴和波多黎各群岛,造成当地50%的土著居

        民死亡,并使他们受到西班牙人的支配。 [27] 在接下来的几百年里,西

        班牙从其加勒比海殖民地提取了价值数百万美元的黄金,并利用其种植

        园种植甘蔗、咖啡和生姜。

        虽然西班牙人从他们在加勒比海的成功征服中获得了巨大的利益,但他们把目光投向了一个更大的目标——墨西哥。为了获得更多关于大陆和居住在大陆上的土著人的信息,古巴总督迭戈·委拉斯奎兹(Diego Velázquez)于1518年委托了两个不同的探险队去探索墨西哥。 [28] 第一个由西班牙征服者弗朗西斯科·埃尔南德斯·德·科尔多瓦(Francisco Hernández de Córdoba)率领,包括100多人和3艘船。1518年3月初,德·科尔多瓦的船队在波涛汹涌的海面上航行了大约3周后,在尤卡坦半岛

        附近登陆。西班牙探险者很快就遇到了大量的玛雅当地人,一开始这些

        人对他们的游客表现得很友好,然而没过几天,西班牙人就遭到了玛雅

        人长矛和石块的伏击,除了在战斗中损失几个士兵外,西班牙人还被迫

        退回到船上,并且面临没有新鲜饮用水的问题。他们围绕尤卡坦半岛又

        航行了几个星期,寻找可能的水源,并再尝试了两次登陆。在今天的尚

        波顿市附近寻找水源的过程中,西班牙人遭到了几千名玛雅战士的袭

        击,几乎被消灭,只有一小部分西班牙士兵安全地回到了他们的船上,

        活着回到古巴的人更少,德·科尔多瓦回家几天后就因伤势过重死亡。

        尽管从很多方面来看,埃尔南德斯·德·科尔多瓦探险队是一次彻底

        的失败,但它确实成功地帮助委拉斯奎兹收集了关于这片新土地及其居

        民的情报。一些幸存者报告说,他们看到了金和铜制成的物品,其中一

        个甚至在他们上岸的短短时间里成功地从一座玛雅神庙偷走了一些珍贵

        的文物。这促使委拉斯奎兹在1518年向墨西哥派遣第二支稍大的远征

        军,在他的侄子胡安·德·格利尔巴(Juan de Grijalba)的带领下,第二

        支远征军取得了比第一支更大的成功。 [29] 他们不仅发现了科苏梅尔

        岛,还成功地绘制出了不同的河流,并进入了墨西哥内陆,在此过程

        中,他们遇到了生活在尤卡坦半岛北部的另一个文明的代表。西班牙人

        和伟大的阿兹特克帝国的第一次会面是友好的,最后双方交换了礼物。

        此后不久,格利尔巴返回古巴,并向他叔叔报告了他在大陆探险期间的

        经历。有趣的是,委拉斯奎兹在听到他侄子的报告后并不满意,他对格

        利尔巴感到尤其愤怒的是,格利尔巴没有抓住机会在墨西哥建立一个正

        式的西班牙殖民地。因此,委拉斯奎兹在1519年开始计划他的第三次墨

        西哥探险时,决定寻找一个更大胆的领导者。

        经过深思熟虑,委拉斯奎兹选择了一位名叫赫尔南·科尔特斯(Hernan Cortes)的当地政客来领导下一次美洲大陆的探险。 [30] 虽然科尔特斯以前没有任何探险或武装冲突的经验,但委拉斯奎兹一开始就非常信任他,也钦佩他的精力和野心。然而,当旅行开始准备时,委拉斯奎兹逐渐怀疑科尔特斯会欺骗他,将墨西哥占为己有,所以他决定解除科尔特斯的指挥权,让一个名叫路易斯·德·麦地那(Luis de Medina)的人代替他。任命麦地那为新船长的文件被截获,并被带给了科尔特

        斯,科尔特斯随即决定立刻起航前往墨西哥,他召集了大约530人,装

        载了11艘船,在没有委拉斯奎兹和西班牙皇室许可的情况下起航前往墨

        西哥。

        科尔特斯于1519年2月抵达墨西哥,并开始驾驶他的船只向北绕过尤卡坦半岛的尖端。 [31] 最终,他于当年4月在今天的维拉克鲁斯州附近永久登陆,建立了一个名为维拉里卡维拉克鲁斯(La Villa Rica de La Vera Cruz)的沿海定居点,并与当地的托托纳克部落结成联盟。之后,科尔特斯与他的军队(现在包括几百名托托纳克战士)向内陆进发,前往阿兹特克人的首都特诺奇蒂特兰。接下来的几个月里,科尔特斯和几个与阿兹特克人为敌的大土著部落结成了联盟,军队不断壮大。为了安

        抚科尔特斯,防止他对自己的人民采取任何侵略行动,阿兹特克统治者

        蒙特祖玛二世(Montezuma Ⅱ)曾多次向科尔特斯赠送黄金和其他珍宝

        作为礼物,尽管蒙特祖玛二世尽了最大的外交努力,科尔特斯还是继续

        向首都进军,并于1519年11月初率领一支由数千名西班牙人和当地士兵

        组成的军队抵达首都。蒙特祖玛二世知道战争很可能爆发,他以盛大的

        场面和更多的黄金礼物欢迎科尔特斯来到特诺奇蒂特兰,试图以此来缓

        和局势。然而,科尔特斯在到达的两周内(1519年11月14日),突袭了

        宫殿并逮捕了蒙特祖玛二世,迫使蒙特祖玛二世向帝国下达命令,使自

        己成为阿兹特克人事实上的统治者。

        这些行动的消息传回古巴总督委拉斯奎兹那里,他派遣了一支庞大

        的部队到墨西哥,以叛国罪逮捕科尔特斯。 [32] 作为回应,科尔特斯带

        领一群士兵与由潘菲洛·德·纳尔瓦埃斯(Pánfilo de Narváez)领导的新

        西班牙分遣队作战,尽管科尔特斯寡不敌众,但他在夜间突袭了潘菲洛

        ·德·纳尔瓦埃斯的部队,赢得了战斗。科尔特斯并没有杀死被俘的西班

        牙士兵,而是说服他们加入自己的战斗队伍。回到特诺奇蒂特兰后,科

        尔特斯了解到阿兹特克人已经暴力地反抗了在科尔特斯不在时掌权的西

        班牙领导人。阿兹特克人在与西班牙人的战斗中取得了胜利,他们将西

        班牙人赶出了这座城市,并对他们进行了追击,直到西班牙人最终在其

        盟友的城市中找到了安全的避难所。虽然从阿兹特克人的角度来看,这

        似乎是一个美好的结局,但实际上,这却是他们帝国真正麻烦的开始。

        一名从古巴来的非洲奴隶感染了天花,在和科尔特斯一起战斗和前

        往特诺奇蒂特兰时,这个奴隶无意中把天花传染给了首都附近的当地居

        民。1520年10月暴发了大规模的天花疫情,重创了特诺奇蒂特兰及其周

        边城市的阿兹特克人。这一切发生时,科尔特斯正在重建他的军队,获

        取给养,为再一次进攻做准备,一位目睹了这场大屠杀的西班牙修士在

        他的《新西班牙印第安人历史》(History of the Indians of New Spain )

        一书中写道:
        当潘菲洛·德·纳尔瓦埃斯船长登陆这个国家时,他的一艘船上有一个患了天花的黑人,这种病在这里从未出现过。这个时候,新西班牙的人口非常多,当天花开始侵袭印第安人的时候,它在印第安人中间成为一场大瘟疫,在大多数省份,死亡人口超过一半,而在其他国家这一比例稍低……因为印第安人不知道疾病的应对办法;并且不论是健康还是生病,他们都有经常洗澡的习惯,即使患有天花也继续这样做。他们像臭虫一样成堆地死亡,其他人则死于饥饿,因为所有人都生病后,他们就无法彼此照顾,没有人给他们面包或其他食物。在许多地方,同一户人家都死了,因为无法埋葬这么多死人,就干脆把房子推倒,让尸体散发出臭味,让房子变成他们的坟墓。 [33]

        这一生动的描述说明了天花对阿兹特克人造成了彻底破坏,以及大

        量的死亡使他们的社会陷入悲哀和混乱。阿兹特克人发现西班牙侵略者

        似乎在很大程度上免受疾病的侵害,这进一步挫伤了阿兹特克人的士

        气,甚至开始质疑自己的宗教传统。更糟糕的是,蒙特祖玛二世的继承

        者和许多领袖、贵族、农民和工匠都死于天花。

        当科尔特斯1521年回到首都的时候,曾经强大而人口众多的特诺奇

        蒂特兰几乎变成了一座空城。由于将近一半的人口死亡,还有相当一部

        分人又病又饿,科尔特斯没有遇到什么困难就打败了阿兹特克人。 [34]

        1521年8月13日,阿兹特克帝国投降,正式成为西班牙帝国的一部分,

        在到达大陆仅仅2年的时间里,西班牙人就接管了这个号称世界第二大

        城市的地方。这样,他们就能获得大量黄金。特诺奇蒂特兰陷落后,天

        花在接下来的100年里继续侵袭着墨西哥的土著居民。一些保守估计认

        为,从1500年到1600年,墨西哥的本土人口从1000万人下降到略高于

        100万人(减少了90%),虽然这种减少很可能是由于其他疾病、战争

        和饥荒,但天花无疑造成了最严重的身体和精神伤害。除了经历巨大的

        人口损失之外,墨西哥的原住民被迫目睹他们的文化、语言、宗教和整

        个生活方式被西班牙人和他们带来的疾病永远摧毁。

        中美洲和南美洲的土著居民对天花的抵抗力也没有强多少。摧毁了

        墨西哥之后,天花迅速穿过中美洲向南传播,并沿着南美洲的西海岸传

        入印加帝国。就像对待阿兹特克人一样,天花对印加人造成了巨大的破

        坏,在相对较短的时间内杀死了20万名印加人, [35] 死亡的人中包括印

        加皇帝和他选择的继承人,这给帝国留下了领袖空缺,引发了各继承人

        之间的残酷内战。大约在这个时候,西班牙人知道了印加帝国的巨大财

        富,于是组织了由弗朗西斯科·皮萨罗(Francisco Pizarro)率领的新探

        险队。战争和天花引起的动荡使得皮萨罗和他的土著盟友在其到达后不

        久就推翻了印加人四分五裂的领导层。经过一些相对较小的冲突,西班

        牙人在1533年8月获得了对印加帝国的完全控制。 [36] 在接下来的几年

        里,天花继续在印加人之间迅速传播,夺去了当地超过60%的生命,由

        于包括斑疹伤寒、麻疹和流感在内的一系列疾病的连续暴发,印加的人

        口数量进一步减少。印加帝国疆域之外的其他国家也将面临类似的命

        运,由西班牙征服者带来的天花会杀死委内瑞拉、智利和哥伦比亚等国

        的大部分土著居民。此外,葡萄牙人将继续在巴西殖民,并通过从非洲

        进口感染天花的奴隶将天花引入巴西。 [37] 1560年的一场流行病以及17

        世纪的几场更大的流行病使居住在巴西的土著人口数量大幅度下降,并

        使葡萄牙人毫无疑问地控制了整个地区。

        天花对今天美国和加拿大地区的土著人民产生了类似的灾难性影

        响;然而,它在整个美洲大陆的传播方式与它在其他新世界地区的传播

        方式大不相同。在伟大的阿兹特克和印加帝国,人们生活在人口密集的

        城市,天花等传染病易于传播,而墨西哥北部的土著美洲人则不同,他

        们通常生活在更小、更孤立的狩猎采集群体中。因此,天花无法像在更

        大的新世界帝国那样迅速传播并带来死亡。在大约两个世纪的时间里,

        它稳定而缓慢地穿越大陆,从一个部落跳到另一个部落。

        虽然缺乏对当地人口死亡率的准确估计,但据欧洲移民中的目击者

        描述,天花消灭了多达2/3的部落或国家,如切诺基人、易洛魁人、卡

        托巴人、奥马哈人和苏人。 [38] 随之而来的是各种其他欧洲疾病、普遍

        的营养不良和多年战争,最终的结果是,北美的土著居民几乎被消灭,

        整个大陆向欧洲人和美国人开放定居。

        对殖民者来说,天花是上帝赐予他们的神圣礼物,是一种“神奇的”工具,用来对付那些令他们讨厌的非基督教徒本地人。科顿·马瑟(Cotton Mather)的父亲、哈佛大学的前校长、清教徒牧师英克里斯·马瑟(Increase Mather)曾经表达过这种观点,他写道:“印第安人开始为他们卖给英国人的土地边界而争吵;但上帝在索格斯的印第安人中传播了天花,结束了这场争论,在此之前,印第安人的数量非常多。他们的整个城镇都被毁掉,有的甚至连一个人都没有幸免。”[39] 马瑟基本上表达了许多美国人在这段时间里已经开始相信的东西,上帝希望“文明”的人定居在墨西哥北部的所有土地上,并且愿意用天花来执行这个计划。然而,当殖民者认为上帝行动不够快时,有一些证据表明,他们可能自己动手,试图故意让附近的土著居民感染上天花。

        其中一个比较著名的疑似天花生物战的案例涉及杰弗里·阿默斯特(Jeffrey Amherst)勋爵,他在庞蒂亚克战争期间指挥驻美英军。1763年7月,他写信给宾夕法尼亚州皮特堡的指挥官,建议说:“难道不能把天花传播给心怀不满的印第安部落吗?在这种情况下,我们必须使用我们力所能及的一切战略来减少他们的数量。”[40] 大约一个星期后,他写道:“你可以试着把携带天花的毯子给印第安人,也可以尝试用其他任何可以消灭这个可恶种族的方法。”谁也不知道收信人亨利·布凯(Henry Bouquet)上校是否执行了其所建议的行动,然而,大约在这个

        时候,一场天花流行病在俄亥俄河谷的部落中暴发,导致多达50万名土

        著居民死亡。在这段时间里,其他人也表达了类似的种族灭绝情绪,也

        被指控故意将天花传染给当地居民。虽然一些历史学家质疑这些说法的

        真实性,但高级军事领导人提出了这个建议,而美洲原住民实际上几乎

        从大陆上消灭,这些事实表明这些指控可能有些道理。

        大洋洲

        由于远离欧洲,澳大利亚、新西兰、巴布亚新几内亚和波利尼西亚

        直到18世纪晚期才接触到天花。因为直到在独立战争中战败,失去对美

        国的统治,英国才寻找新的土地来流放对政府不满者以及罪犯。1768~

        1771年,英国已经对澳大利亚进行了一些初步测绘;20年后,英国派遣

        了两支更大的舰队到这个岛上,目的是在这里建立殖民地。1789年,在

        殖民统治仅仅一年之后,一场大规模的天花暴发了。据报道,这场疾病

        暴发大约消灭了50%的土著居民。 [41] 没有人确切知道天花是如何传到

        这个岛上的。从英国出发的航船要4个月才能抵达澳大利亚,在航程中

        被感染的人,在抵达之前要么已经死亡,要么已经康复,因此不太可能

        是由被感染的旅行者带来的。最可能的解释是,第一批船上的主治医师

        携带了几瓶天花的原材料,为了在必要时用于天花接种(免疫接种的早

        期形式)。这种物质可能是无意中释放到当地居民中的,也可能是故意

        这样做的。不论是什么原因,这种流行病,以及1828年的其他疫情和19

        世纪60年代的几次疫情,都导致土著人口灾难性地减少,而这几次疫情

        对白人入侵者的影响却微乎其微。 [42] 当天花第一次到达新西兰、巴布

        亚新几内亚和太平洋上的一些孤岛时,也发生了类似的灾难。例如,天

        花(连同肺结核)使曾经繁荣的复活节岛减少到只剩110人。

        到18世纪末,天花已经从欧亚大陆传播到了地球上每一个有人居住

        的大陆。无论它走到哪里,在每一个未接触过天花的群体中,天花都造

        成了巨大的破坏,并使侵略性的帝国主义欧洲国家在没有遇到太多抵抗

        的情况下夺取了大量的土地和财富。非洲、南美、北美和澳大利亚等地

        区,尽管在人口统计、文化规范、宗教和环境方面存在很大差异,但在

        殖民者和他们的天花到来后,当地土著居民的遭遇却惊人地相似。有趣

        的是,如果没有天花,这些大陆的历史会有什么不同,西班牙征服者有

        足够的人力或火力(以武器和其他疾病的形式)来征服像阿兹特克和印

        加这样强大的帝国吗?如果不是像易洛魁人和切诺基人这样强大的土著

        部落遭到屠杀,美国军队和殖民者还能在北美大陆的广大土地上定居下

        来吗?如果某些国家不能从美洲和非洲榨取如此巨大的财富,欧洲的权

        力平衡会有什么不同呢?虽然没有人知道这些问题的答案,但有一点是

        很清楚的,军事力量和外交手段需要花很多年才能完成的事情,天花只花了一小部分时间和成本就实现了。

        圣人和神的创造者

        关于天花在全世界范围内彻底影响人类心灵的一个最明显的标志就是,许多宗教都创造了专门针对天花的神、女神和圣人。 [43] 有些神和圣人被认为能治疗受天花折磨的人,或能够保护害怕的人免受天花的侵袭,而另一些则被认为故意将天花传染给邪恶的人。因此,追随者的反应包括祈祷和祭祀,广泛建造寺庙和神龛,并举行仪式吓跑那些特别刻薄或愤怒的神灵。

        最早与天花密切相关的宗教人物是一位名叫尼凯斯(Nicaise)的天主教主教,他生活在5世纪的法国。在被入侵的匈奴人或汪达尔人斩首之前,他曾感染严重的天花,但他奇迹般地从天花中康复,这使他在死后不久成为天花的守护神。害怕天花的欧洲人和那些遭受天花折磨的人在接下来的900年里继续祈祷获得他的保护和治愈(直到黑死病成为一个更大的问题)。有一段被认为写于10世纪且最为常见的向圣·尼凯斯祈祷的祷文,其目的是为修女们祈祷:“以我们主耶稣基督的名义,愿

        主保护这些人,愿这些修女的工作远离天花。”圣·尼凯斯患有天花,他

        请求上帝“保护”那些刻着他名字的人:“啊!圣·尼凯斯!你这杰出的主

        教和殉道者,为我这个罪人祈祷,用你的代祷来保护我,使我远离这疾病。阿门。”[44]

        随着天花在整个亚洲蔓延,最终传播到非洲和新大陆,在各种多神宗教中出现了一些新的神和女神。例如,在18世纪,印度女神湿陀罗·玛塔(Sītalā mata)与天花有着密切的联系。 [45] 她被描绘成一个骑着驴的美丽年轻女子,她可能有些急躁和不可预测,根据她的情绪来施加或治愈疾病。鉴于此,她在全印度既受爱戴,又遭鄙视,人们对她既崇拜又恐惧。同样,几百年来,中国的女神痘神娘娘是中国三大宗教(佛教、道教和儒教)中最受欢迎也最令人敬畏的神之一。传说,痘神娘娘特别喜欢把天花传给漂亮的孩子,为的是在他们身上留下疤痕,因此,孩子们通常会在脸上戴上纸面具来吓跑她。如果孩子得了天花,人们会在家中设立神龛,祭拜这位女神,并劝说她医治他们。如果这些措施不能保护儿童免受天花的毁灭性影响,家庭成员往往会拆除神龛并诅咒女神。在日本,人们经常会把12世纪的英雄镇西八郎(Chinsei Hachiro,本名源为朝)的照片放在天花患者的房间里,为朝(Tametomo)被他的敌人俘虏,并被流放到伊豆大岛,据说在那里他击退了试图入侵该岛的天花恶魔。

        西非的许多部落都为索波纳(Sopona)神建造了神龛,索波纳神为

        世界各地的人们提供食物和其他礼物,并在人们做坏事时用天花惩罚他

        们。 [46] 被称为“拜祭师”的当地牧师会在这些神龛进行祭祀,有时会为

        此收取高昂的费用,为了保持生意兴隆,他们可能会故意让人们感染天

        花。总而言之,大量与天花有关的神被创造出来,这不仅证明了这种疾

        病的严重性和普遍性,也说明了在现代医学出现之前,其为完全无助的人们的主要防御机制。

        从天花到接种疫苗——新的希望

        医学史上最重要的观察之一是天花的幸存者对随后的感染具有免疫

        力。这一事实促使一些人寻找可以模拟天花感染的方法,并在不对接受

        者造成任何严重损害的情况下激发这种免疫力。最早记载的尝试之一是

        15世纪的中国人,他们从患有相对轻微疾病的病人身上取出干痂,把它

        们磨成粉末,然后用吹管吹到接受者的鼻孔里。 [47] 在印度和土耳其,

        人们从天花脓疱中提取脓液或其他物质,将其植入接受者的皮肤中。通

        常情况下,人们会划出一些小的划痕和伤口,然后把脓小心地滴到伤口

        里,以便产生更好的接种效果。在非洲一些地区(例如苏丹),人们会

        拿走患天花后康复的人的衣物,并让健康的人穿上。如预期所想的那

        样,每一种故意让人接触天花病毒的方法,其最终结果都是,接触者会

        发展出天花。不过,由于通常使用的是危害性较小的毒株,而且人们是

        通过皮肤接种,而不是通过自然感染的方式,当时接受这种治疗的人

        中,约98%的人可以存活,并在以后的生活中免受天花的伤害。

        尽管这种被称为天花接种的技术听起来像是天赐之物,并且成功地

        减少了流行病的发病率和持续时间,但它并非没有缺点。首先,接受治

        疗的人具有完全的传染性,如果接触易感人群,可能会引发新的流行

        病。为了防止这种情况发生,接受天花接种的个体通常被隔离,直到所

        有症状消退。其次,这种疗法的接受者存在1%~2%的死亡率,虽然比

        自然感染观察到的30%低得多,但对那些考虑治疗的人来说,仍然是一

        个可怕的问题。 [48] 此外,由于天花接种产生了实际的感染,它有可能

        造成天花幸存者中常常出现的疤痕和失明。许多人选择抓住机会,试图

        避免感染,而许多城市则将隔离作为其减缓天花传播的首选措施。

        到18世纪早期,在欧洲和美国的大部分地区,天花接种已经成为一

        种广为人知但仍存在较多争议的预防性治疗方法。在目睹了土耳其和中

        东地区天花接种的相对成功后,一些著名的欧洲政治家和医生开始倡导

        广泛接种天花,包括查尔斯·梅特兰(Charles Maitland)、萨顿夫妇

        (the Suttons)和爱德华·蒙塔古(Edward Montague)大使。结果,皇

        室的几个孩子都接种了疫苗。在美国,看到天花接种成功治疗了他的一

        个名叫阿尼西姆(Onesimus)的非洲奴隶后,清教徒牧师科顿·马瑟认

        识到了这种疗法的益处,他建议波士顿当地居民接受天花接种,以阻止

        当时席卷全城的疫情(1720年代)。 [49] 这些口口相传的成功故事,加

        上几项科学测试的数据,使得天花接种在18世纪中期在医学界和民众中

        获得了更大的认可。例如,本杰明·富兰克林(Benjamin Franklin)的一

        个儿子死于天花,他在1759年进行了一项统计分析,以评估天花接种在

        预防死亡方面的有效性。 [50] 他的结论是,天花接种确实大大降低了天

        花患者的死亡率,这促使他热情地建议广泛实施天花接种。

        天花接种(以及天花)在塑造历史进程中发挥重要作用的一个特别

        有趣的例子是,天花在美国独立战争期间对大陆军的影响。 [51] 尽管天

        花在战争前一个世纪就被带到北美,但它没有像几个世纪前在欧亚大陆

        那样在人群中广泛流行。结果是,大多数18世纪中期在北美出生和生活

        的殖民者,在孩童时期都没有接触过天花,因此,他们很容易感染天

        花。大量易感染的士兵很快就会住在离那些儿童时期接触过天花的军队

        非常近的地方,并与之作战,因此天花成为大陆军必须考虑的一个重要

        问题。乔治·华盛顿(George Washington)将军和其他开国元勋深知这一点,他们非常担心如果大规模的流行病在军队中暴发会带来什么后果。约翰·亚当斯(John Adams)曾表露过这样的担忧:“天花比英国人、加拿大人和印第安人加在一起还要可怕10倍。”[52]

        1775年,一场流行病在英国控制的波士顿暴发,许多人逃离这座城

        市,到美国后方避难,他们的噩梦成为现实。 [53] 因为这直接使大陆军

        感染了天花,并威胁到整个美国的战争努力。华盛顿对这种威胁的反应

        是,对任何有疾病迹象的士兵或最近接种过天花的人采取非常严格的隔

        离措施。他的行动很成功,大陆军在没有发生任何大的疫情的情况下将

        英国人赶出了波士顿。然而,向北进军魁北克的那个部队就没那么幸运

        了。在1775~1776年的冬天,天花侵袭了他们的营地,消灭了将近一半

        的人,第二年春天,健康的英国人带着新的增援部队击退了美国人,并

        摧毁了将加拿大的一部分并入美国的可能性。

        加拿大的灾难使华盛顿重新考虑将隔离作为保护军队的手段这一选

        择。另一种选择同样危险,他可以通过天花接种的方式给每个士兵接种

        疫苗,但冒着在军队中引发一场大范围的流行病,或者在士兵们两周的

        恢复期里遭到英国人袭击的风险。华盛顿最终选择给每个士兵接种疫

        苗,并在1777年和1778年的胜利期间秘密地进行(在英国人不太可能发

        动进攻的时候)。 [54] 这种强制性的天花接种获得了广泛的成功,因为

        它让华盛顿终于忘记了天花,把他所有的注意力、精力和资源都投入与

        英国人的战斗中。许多历史学家认为,这一决定最终帮助大陆军挽救了

        战争,因为天花在主要作战部队中的流行很可能会不可逆转地削弱大陆

        军的力量,直至战败。 [55]

        尽管接种疫苗是一个巨大的突破,在18世纪的使用过程中很可能拯

        救了数百万人的生命,但由于之前讨论过的缺点,它从未获得人群的广

        泛接受。很多人知道活天花接种会带来2%~3%的死亡风险,因此认为

        这是一种比简单地试图避免天花感染存在更大风险的选择。不幸的是,

        在历史的大部分时间里,预防和隔离措施都未能充分遏制天花。因此,

        它每年继续威胁和杀害全世界数百万人。这一切在19世纪初发生了改

        变,一位名叫爱德华·詹纳(Edward Jenner)的英国乡村医生进行的实

        验永远地改变了预防医学的面貌。詹纳十几岁时在当学徒,后来成为一

        名医生。故事的起源是,他和当地几名挤奶女工交谈,谈到天花时,她

        们告诉他,她们不再需要担心这种疾病,因为她们已经感染了一种叫作

        牛痘的相对温和的疾病,并且已经痊愈。她们告诉他,那些和牛打交道

        的工人都知道,感染牛痘可以终身预防天花。詹纳对开发一种无害而有

        效的接种替代方法很感兴趣,决定进行一项科学试验,以确定这些观察

        结果的有效性。1796年5月,他付给园丁一小笔钱,请求园丁允许他用

        牛痘脓疱的液体给他8岁的健康儿子詹姆斯·菲普斯(James Phipps)接

        种疫苗。牛痘脓疱是从一个名叫萨拉·奈姆斯(Sarah Nelmes)的挤奶女

        工手上取下来的。在接种7~9天后,詹姆斯出现了类似流感的轻微症状,但两周内就完全康复了。如果今天这么做,詹纳很可能会被逮捕。他在6周后用活天花对詹姆斯进行了测试。詹姆斯在超过20次的接触后都没有出现任何症状,并保持了免疫力。詹纳又在另外9个人身上做了同样的实验,结果是一样的。 [56]

        尽管他的发现被著名科学期刊反对,并被警告不要再继续他的实验,但是詹纳自己花钱,在一篇题为“关于牛痘疫苗的原因和影响的调查:一种发现于英国西部郡县,特别是格洛斯特郡,被称为牛痘的疾病”(“An Inquiry into the Causes and Effects of the Variolae Vaccinae,a Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire,and Known by the Name of the Cow Pox”)的文章中公布了他的发现。 [57] 詹纳描述的接种过程后来被称为“接种疫苗”(vaccination),以纪念它的来源——奶牛(vaca在拉丁语中是“奶牛”的意思)。伦敦和英格兰其他地方的医生在这一年开始重复詹纳的实验,不久,医学界开始把疫苗接种看作结束天花灾害的一种方法。托马斯·杰斐逊(Thomas Jefferson)在给詹纳的信中描述了这种情绪:“医学从来没有产生过任何一种如此有用的进步,就好像你从人类苦难的日历上将其中最大的苦难之一抹去了一样。你是一种舒适生活的反映,人类永远不会忘记你曾经生活过;后人只会从历史上知道,可恶的天花曾经存在过,而你消灭了它。”[58]

        詹纳疫苗对天花的历史产生了巨大的影响。到1800年,大多数欧洲

        国家已经接受了将疫苗接种作为预防天花的最佳方法,美国和世界其他

        地区也迅速效仿。到1810年,一些国家和许多地方政府强制所有公民接

        种疫苗。其结果是,死于天花的人数逐渐下降。到20世纪初,天花在大

        多数工业化国家都是罕见的。然而,由于为民众生产和管理天花疫苗的

        成本过高,非洲、拉丁美洲和亚洲的发展中国家继续遭受着天花流行的

        反复侵袭。总体来看,天花疫苗不仅为人类提供了抵御病原微生物的第一件武器,也帮助消除了困扰人类几千年的对天花的恐惧,降低了天花的破坏力量。

        除去与天花有关的原因,詹纳在开发世界上第一种疫苗方面的开创

        性工作,在其他方面也有重大意义。它提供了一个经过验证可以对付所

        有传染病的模型:找到能模拟自然感染的无害物质,并故意将其注射到

        人体中,作为人体免疫系统有可能接触到真正的病原体的一种启动手

        段。牛痘-天花模型的唯一问题是,大多数人类传染病(例如麻疹、流感、炭疽、狂犬病、伤寒、疟疾)都没有无害的动物版本,不能为人类版本的传染病提供交叉保护。因此,在天花疫苗取得成功之后,又过了80年才成功研制出另一种疫苗。之后,路易斯·巴斯德(Louis Pasteur)、亨利·图森特(Henri Toussaint)和埃米尔·鲁(Emile Roux)等科学家发明了人为削弱危险传染因子的方法(称为“减毒”),使它们成为安全又有效的疫苗,这就是下一轮的疫苗进步。他们的创新使得19

        世纪80年代出现了炭疽和狂犬病等疾病的疫苗,在接下来的50年里又出

        现了白喉、破伤风和百日咳等疾病的疫苗。20世纪50年代和60年代见证

        了生化、遗传学和分子生物学技术的重大进步,这为脊髓灰质炎、麻

        疹、腮腺炎和风疹疫苗的开发提供了条件。到了20世纪80年代,疫苗技

        术已经发展到可以只注射一些特定数量的感染病原体的纯化部分,例

        如,乙型肝炎病毒(HBV)疫苗仅由一种蛋白质(HBV表面蛋白)的

        数百万个拷贝组成,而肺炎球菌疫苗仅由少量纯化糖组成。

        18世纪末,一位乡村医生的有趣观察演变成了一场医学革命,每年

        大约能挽救900万至1000万人的生命。詹纳的工作是不朽的,因为他第

        一次展示了阻止这些流行病是有可能的,我们不再完全受传染病的摆

        布,我们可以主动保护自己。事实上,从詹纳第一次给詹姆斯·菲普斯

        注射疫苗开始,不到200年,世界就宣布了天花已经从人类中根除。

        天花根除和冷战

        由于天花疫苗的大规模生产、分配和管理的改进,到1950年,大多

        数工业化国家实际上已经消灭了天花。例如,德国在1922年消灭了天

        花,法国在1936年,美国在1949年。 [59] 这些国家拥有必要的财政和中

        央政府资源,鼓励并在有需要时迫使其人民接种疫苗。相比之下,印

        度、印度尼西亚、巴西和非洲大部分国家每年仍有数万例天花病例,原

        因是缺乏资源,无法向贫困、偏远和人口稀少的地区分发疫苗。类似的

        情况今天同样存在,黑死病、麻疹和小儿麻痹症等疾病仍在较贫穷国家

        出现,而在发达国家几乎闻所未闻。天花在某些地区持续存在的结果是

        世界上其他地区不得不继续他们昂贵的疫苗接种计划,因为国际旅行可

        能会重新引入天花,如果能在世界各地消灭天花,各国每年就能节省数百万美元,这个问题也就一劳永逸地解决了。

        1958年,苏联卫生部部长维克托·日丹诺夫(Viktor Zhdanov)向世界卫生组织(World Health Organization,WHO)大会提出了一项建议,即制订一项根除天花重点优先计划。 [60] 虽然这项计划没有遭遇太多异议就被接受了,但实际上并没有为该计划分配新的资源,而且在接下来的9年里几乎没有取得什么进展。对于根除天花的承诺乏善可陈,这可以从年度预算不足20万美元(美国)和只有少数全职员工从事这项

        工作中看出。这种敷衍态度的原因是,WHO正把大量的资源用于支持

        美国的疟疾根除计划。到1967年,美国和苏联的科学家都意识到疟疾根

        除计划是注定要失败的,必须做更多的工作来消灭天花。因此,WHO

        总干事起草了一份提案,将WHO预算的很大一部分用于天花根除计

        划,该提案以微弱优势在大会上通过。 [61] 这一新的承诺带来了一个大

        胆的目标:进入世界上最偏远、最贫穷和最暴力的地区,并在10年内根

        除天花。

        天花根除计划的首要任务之一,也是最重要的任务,就是确定美国

        和苏联如何合作,如何集中资源,在冷战的高峰时期抗击共同的敌人。

        第二次世界大战结束后,苏联试图扩大其影响力,并将共产主义思想传

        播到东欧、亚洲和拉丁美洲,而美国则尽其所能限制这种扩张。美国的

        遏制政策(被称为“杜鲁门主义”)包括一系列切实措施:大规模制造核

        武器,向饱受战争蹂躏的欧洲弱国提供国家经济援助(马歇尔计划),

        以及向任何积极对抗共产主义的反叛组织或政府提供经济和军事援助

        等。作为回应,苏联建立了自己的核武器库,并向任何积极促进共产主

        义的反叛组织或政府提供经济和军事援助。最终的结果是两个超级大国

        之间长达45年的紧张对峙,这两个超级大国都有能力歼灭对方。尽管它

        们从未向对方发射过一颗子弹,但在20世纪一些最血腥的冲突中(例如

        东南亚、索马里-埃塞俄比亚、危地马拉),它们几乎总是站在对立的

        一方,这两个国家之间的仇恨和恐惧蔓延到了社会和政府的各个阶层。

        当修改后的天花根除计划提案在1967年被提出时,真正的担心是美

        国和苏联的政治紧张局势会蔓延到WHO,天花根除计划也将因此而注

        定失败。在这一点上,WHO的管理面临着许多至关重要的问题。应该

        选择美国或苏联的科学家来领导这个项目吗?每个国家将提供多少资金

        和疫苗?这些国家是否有收集天花样本以供日后用作生物武器的风险?

        如果项目成功了,是谁的荣誉?如果失败了,谁来承担责任?

        在任命该项目主任的时候,一位德高望重的美国科学家唐纳德·亨

        德森(Donald Henderson)被选中担任这一职位。 [62] 苏联最初对这一选

        择感到不满,因为是他们首先提出这个计划,并提供了大部分疫苗(超

        过总数的80%)。然而,在这个项目的实施过程中,苏联科学家们对亨

        德森博士越来越尊重,并且许多人成为他一生的朋友。虽然他们的同胞

        们陷入彼此之间激烈的,有时甚至是暴力的冲突,但这些科学家和许多

        来自其他国家的科学家(最著名的是瑞典)一起,抛开政治,作为一个

        团结的队伍无私地工作,克服了许多有关财政和后勤问题的困难。在大

        多数多余资金都用于国防的情况下,他们面临着要筹集近1亿美元的艰

        难任务,还必须处理生产、质量检测和向30多个不同国家分发数十亿剂

        疫苗的工作。功夫不负有心人,他们的专注、耐心和辛勤工作得到了回

        报。1980年5月8日,世界卫生组织代表正式宣布天花已经从地球上的每

        一个人身上被消灭,我们人类所知的最大灾难,每个世纪都造成亿万人

        死亡的灾难,已经消失了。

        随着天花根除计划接近完成,几个迫在眉睫的问题仍然存在。第一

        个问题是世界各地的实验室和医院的冰箱里都储藏着成千上万的天花样

        本, [63] 这显然对维持根除天花的工作造成了巨大的威胁,因为任何愤

        怒或不称职的实验室技术人员都可以轻易地将天花样本卖给出价最高的

        人,或意外地将其释放到人群中。因此,查明天花样本的所有实验室来

        源并确保天花样本按照WHO已制定的协议予以销毁,这是至关重要

        的。第二个问题是一旦所有的样本都被处理掉了,最后几管天花标本应

        该怎么办?它们应该被保存在一个秘密而安全的地方以备不时之需,还

        是应该被销毁?在此之前,人类从来没有故意造成过一种生物的灭绝,

        因此这对科学家和管理者来说都是一个重大的伦理困境。最后,WHO

        决定在两个机构中保留天花储备,一个是位于佐治亚州亚特兰大的疾病

        预防控制中心(CDC), [64] 另一个是位于莫斯科的病毒制剂研究所

        (这些样本后来被转移到俄罗斯科尔措沃的病媒研究所)。自做出这一

        初步决定以来,WHO定期对病毒学专家进行调查,设定最后期限,并

        举行投票,重新讨论是否销毁所有现存的已知天花样本库存的问题。期

        限不断地过去,却没有任何新的行动发生。天花样本最近的一次被暂缓

        处理的决定发生在2014年,当时WHO官员和科学家们再次未能就最后

        一批已知的天花主要病毒样本储备的未来达成共识。一些人认为,仍需

        要进行研究,以更好地了解其发病机制,并允许生产更新和更有效的抗

        病毒药物。另一些人认为应该摧毁它,因为它的继续存在会给人们带来

        不必要的风险。

        他们的担忧或许是有道理的。20世纪60年代,天花在世界上仍大量

        存在,这很有可能使一些国家或较小的群体在WHO要求消灭天花样本

        之前秘密储存了天花样本,也没有办法确保WHO调查人员在1980年以

        前在世界上每个国家发现所有病毒。更令人担忧的是,现代天花疫苗只

        能起到10~20年的保护作用,而大多数国家在20世纪70年代末就停止了

        疫苗接种。虽然储存了一些疫苗,但远远不够70亿人使用。这将意味

        着,目前世界上几乎所有人口都是易感者,如果天花再次暴发,在当局

        行动和控制它的传播之前,它可能会杀死数百万人。

        我们可以从根除天花计划中学到一些非常重要的教训。首先,由于

        恐怖主义和过去20年来技术的进步,从地球上完全根除一种病原体或许

        是不可能的。只要生物制剂继续被用作武器,只要有钱的人能在黑市上

        买到科学设备,就永远存在致命病原体被储藏在世界某些偏远地区冰柜

        里的风险。其次,从实际意义上讲,根除天花是一个巨大的成功。尽管

        重新引入天花的风险仍然存在,但必须指出,自1977年以来,世界上任

        何地方都没有出现过天花病例。也就是说,在40年的时间里,没有一人

        死于天花病毒,而这种病毒曾经每个世纪都会造成3亿~4亿人死亡。这

        本身就是一项惊人的成就,但它也表明根除是一个可能的终点。天花根

        除计划是WHO第五个此类计划,前四个计划均以失败告终。每个项目

        失败都有各种原因,包括疫苗/抗生素/药剂无效或不稳定、缺乏资金、

        缺乏区域支持以及无法查明或控制感染者(或病媒)。公共卫生领域的一些人开始质疑大规模消灭传染病的可行性。

        其他计划失败了,但天花计划成功了,因为它的疫苗在一次注射后

        就稳定有效,也因为当地卫生官员参与了决策和实施。因此,它提供了

        一个成功的模式,可供未来的根除计划借鉴。在1980年这一里程碑式的

        宣布之后不久,WHO的科学家们开始寻找下一个根除目标,一些可根

        除的疾病包括小儿麻痹症、麦地那龙线虫病、麻疹、腮腺炎、风疹和淋

        巴丝虫病。尽管永久消除世界上每年感染2亿人的疾病是有可能的,但

        WHO或任何其他机构或国家都没有实现这一目标。一些疾病已在区域

        范围内被消灭,而一些像脊髓灰质炎和麦地那龙线虫病的疾病也即将在

        全球范围内被根除。然而,上面提到的这些疾病在许多发展中国家仍然顽固地存在,人们仍然因此而遭受不必要的痛苦。

        第四章 疟疾

        如果你觉得自己太渺小了,不能有所作为,那就试着和蚊子睡在一个封闭的房间里吧。 ——非洲谚语

        当人们被问及世界上最致命的动物是什么时,大多数答案都是那些长相可怕的巨型动物,如鲨鱼、短吻鳄、蛇、狮子等。因此,当人们听到蚊子是世界上最致命的动物这一说法时,通常都会感到震惊,毕竟蚊子的身长只有不到2厘米,体重仅有2.5毫克。迄今为止,由雌性蚊子导致的死亡人数比其他任何动物都要多,而这是因为它能够传播致命传染病,如登革热、黄热病、丝虫病、病毒性脑炎(如西尼罗河病毒),以及最重要的疟疾(Malaria)。实际上,由蚊子致死的病例中超过90%都是疟疾。

        WHO数据显示,疟疾是世界上致死率最高的疾病之一,每年有多达3亿人感染疟疾,其中约43万人死亡。 [1] 大多数病例和死亡(90%以上)发生在撒哈拉以南非洲地区,其中死亡的大多是5岁以下的儿童。此外,疟疾在其他许多温暖的热带地区也很流行,这些地区雨水充沛,是蚊子的滋生地,包括亚洲的大部分地区(中国、印度、东南亚)、中美洲和南美洲的北部。虽然疟疾的死亡率不像鼠疫或天花那样高,但它在贫穷的热带地区几乎无处不在,使劳动力衰弱,大大限制了生产力、经济、个体和社会的发展。疟疾使个人生产力下降,学生从学校辍学,给家庭带来了巨大的经济负担,迫使人们将有限的资源用于医疗保健。许多公共卫生专家认为,疟疾是发展中国家打破无休止的贫困循环最大的障碍之一。 [2]

        疟疾是由四种疟原虫(恶性疟原虫、三日疟原虫、卵形疟原虫和间日疟原虫)之一引起的。疟原虫不是细菌或病毒,而是一种单细胞原生生物,具有复杂的细胞结构(像人类细胞一样),其生命周期既涉及蚊虫病媒,也涉及人类宿主。30~40种蚊子可以传播疟原虫,均属于按蚊属。

        在蚊子叮咬已感染者、吸食血液后,疟原虫便会在蚊子的肠道中进

        行有性生殖,继而入侵肠道细胞。 [3] 疟原虫在肠道细胞中进一步复制

        后,便会产生新的疟原虫,导致肠道细胞破裂,释放疟原虫子孢子。子

        孢子会扩散到蚊子的唾液腺中,等待蚊子去叮咬下一个人。一旦落到新

        宿主身上,蚊子就会把它的下颚和上颚插入皮肤,迅速注入唾液,唾液

        具有强大的抗凝血和促炎特性(促进血液自由流动)。此时,在蚊子唾

        液中的疟原虫子孢子便会进入新宿主的血液,并迅速转移到肝脏,入侵

        宿主肝细胞。

        在许多情况下,子孢子会在肝细胞内休眠数天、数周甚至数月,然

        后才进入其生命周期的下一阶段。 [4] 四种疟原虫的无症状潜伏期不同。

        一旦疟原虫被激活,就会在肝细胞内进行繁殖,导致肝细胞破裂,并释

        放出被称为裂殖子的寄生虫细胞。这些裂殖子会进入宿主的血液,并入

        侵红细胞(RBCs)。一旦进入红细胞,这种寄生虫就会急剧扩大自己

        的体积,吸收红细胞的血红蛋白,并进行多轮繁殖。被感染的红细胞会

        最终爆裂,释放出大量新的裂殖子,这些裂殖子能够感染更多的红细

        胞。这种感染、生长、繁殖和释放的循环每2~3天重复一次(取决于疟

        原虫种类),直到患者死亡或得到治疗。

        红细胞每隔几天就会被大规模消灭的特征,引发了疟疾感染的主要

        症状。 [5] 大多数疟疾患者都有流感样症状,如高烧、肌肉疼痛、疲劳、

        发冷、头痛、恶心和无法控制的颤抖。但是,疟疾的症状具有周期性和

        阵发性,较为独特,即患者开始会觉得很难受,然后会感到明显恢复,

        2~3天后再次觉得难受,如此循环往复。一些感染恶性疟原虫的患者可

        能会出现更严重的并发症,如贫血、呼吸窘迫、肾衰竭、流产和各种中

        枢神经系统问题(如抽搐、癫痫和昏迷)。如果没有得到恰当的治疗,

        症状可能会迁延6个多月,患者会变得虚弱。此外,即使在康复后,患

        者也可能会由于肝脏内潜伏感染,在后续50多年的时间里频繁复发。例

        如,在20世纪60年代末越战期间感染疟疾的美国士兵中,有相当一部分

        人即使在军队医院接受了治疗,也会在此后的近40年中经常突发疟疾。

        更不幸的是,疟原虫感染不会使人产生完全免疫,这使疟疾复发和

        重新感染成为可能。实际上,生活在疟疾流行地区(如非洲)的人们几

        乎每年都会再次感染疟疾。由于人们对疟疾的免疫反应相对较差,因此

        研发有效的疫苗非常困难,彻底根除疟疾的尝试也只能以失败告终。

        近年来,疟疾的起源和全球传播是流行病学中比较有趣和争论较为

        激烈的话题之一。尽管许多人倾向于把蚊子(和疟疾)与炎热潮湿的环

        境(如非洲或南美的丛林)联系在一起,但有些按蚊属也能在温带甚至

        寒冷的气候中茁壮生长。因此,疟疾得以传播到全球各个角落,甚至包

        括靠近北极圈的地区。

        强有力的遗传学证据表明,引发人类疟疾的大部分疟原虫起源于约

        1亿年前非洲撒哈拉以南的某个地方,它们原本是旧世界灵长类动物的

        寄生虫。 [6] 疟原虫寄生到人类身上很可能发生在早期原始人出现后不久

        的时间里。然而,原始人狩猎-采集的低密度生活方式阻止了疾病的广

        泛分布或传播。换句话说,不同群体往往生活在距离彼此很远的地方,

        因此,刚叮咬过感染者的蚊子很难马上再去叮咬其他人。大约1万年

        前,随着新月沃地农业革命(新石器时期)的到来,情况发生了改变。

        [7] 人们不仅开始在人口密度高得多的地方定居,还极大地改变了周围的

        土地环境,促进了昆虫媒介的繁殖和传播。随着农业技术逐渐进入撒哈

        拉以南非洲地区,生活在那里的按蚊得到了爆炸式的增长,使疟原虫能

        够传播到非洲以外的地区。例如,大约在公元前4700年 [8] ,中国的医学

        史料中就记载了疟疾的特征——阵发性发热。随后,在大约公元前3500

        年,埃及、苏美尔和印度的史料中也提到了疟疾。

        在人类历史的早期,疟疾就已经席卷了整个欧亚大陆,但直到16世

        纪,欧洲探险家和非洲奴隶将疟疾带到新大陆后,它才传播到了美洲。

        [9] 有研究者认为,三日疟原虫和间日疟原虫早在欧洲人到达美洲之前就

        已经存在了,这是因为其基因与新大陆猴子身上的疟原虫较为相似。该

        假说认为,人类疟原虫是从新世界猴子身上的疟原虫进化而来,就像之

        前它们在非洲分别进化的一样。然而,对印第安人的基因分析表明,他

        们缺乏长期(数百年或数千年)接触疟疾人群的特征基因标记。 [10] 这

        些“疟疾”特征基因标记的缺失表明,美洲人很可能只是在最近才接触到

        疟疾,是欧洲人在到达美洲时把疟原虫传给了美洲原住民和新大陆的猴

        子。

        尽管疟疾不像本书中讨论的其他疾病那样具有极高的致死性,但不

        可否认的是,疟疾与其他病原体一样,对人类的历史、发展和基因组产

        生了深远而长久的影响。疟疾的破坏力很大程度上在于,它能够在很长

        一段时间内反复感染并使人丧失行动能力。它可以使军队陷入瘫痪,改

        变重大公共工程项目,阻止殖民,使整个大陆处于贫困状态。此外,它

        对人类基因组造成的永久性改变比人类历史上任何病原体都要多。实际

        上,正是由于人类长期接触疟疾,一些致命性遗传疾病如镰状细胞贫血

        和地中海贫血,才在今天仍然存在。

        古老的杀手

        约5000年前,中国、苏美尔和印度的文献中就出现了类似于疟疾发烧症状的记载。约公元前400年,著名的希腊医生希波克拉底就在其著作《论空气、水和环境》(Airs,Waters,and Places )中第一次对疟疾进行了临床描述。 [11] 他清楚描述了疟疾特有的阵发性发热以及每年疟疾最易发的时间。其他的古代作家还将疟疾描述为与潮湿环境(如泥潭和沼泽)相关的发烧,罗马作家马库斯·特伦提乌斯·瓦罗(Marcus Terentius Varro)甚至提出,与潮湿环境相关的微小昆虫可能在疾病传播中发挥了作用。 [12] 虽然古代作家对疟疾的临床表现进行了准确描

        述,并敏锐地确定了疟疾的环境相关因素,但他们对疾病的真正病因并

        不了解。当时流行的理论是,人们是因为吸入了臭沼泽中散发的有毒蒸

        气,而感染了“沼泽热”。在数千年中,这种沼气理论(污染空气)都是

        被普遍接受的疟疾成因。有趣的是,该理论还影响了疟疾的命名。在中

        世纪的意大利语中,疟疾的字面意思就是“空气不好”。

        尽管历史记录清楚地表明,疟疾在古代帝国如罗马、希腊、中国和

        蒙古国非常普遍,但依然很难确定疟疾对这些文明的确切影响。这是由

        于其中一些文明留存下来的记录不全,并且大多无法有效区分出疟疾和

        其他疾病(如伤寒)引起的发热。尽管有这些限制,但一些尚存的记录

        确实表明,疟疾在塑造古代世界历史上发挥了重要作用。例如,罗马帝

        国位于意大利半岛中心的沼泽区域,不得不经常应对疟疾的暴发。疟疾

        导致了诸多人死亡,并迫使其他人逃往更高、更干燥的地区。 [13] 罗马

        暴发疟疾的部分原因是其引水渠系不断将大量淡水供应到罗马主要城市

        的喷泉和浴池中,从而产生了蚊子滋生所需要的积水。同样,土地的清

        理和开垦使该地区积水面积进一步增大。此外,贯穿罗马市的台伯河每

        年都会泛滥成灾,将这座城市的大部分地区变成无法居住的沼泽地。

        罗马官员意识到积水过多会对城市居民的健康造成有害影响,于是

        下令开发了大型地下水道系统,将洪水和废水从罗马排出。这个下水道

        被称为马克西姆下水道(Cloaca Maxima),是当时世界上最具革命性

        和先进性的公共工程项目之一。 [14] 建成后,这座城市立即开始变干,

        疟疾暴发的次数和严重程度也随之下降。

        尽管无法彻底消除疟疾,但罗马人可以更长久地保持健康,城市人

        口也逐渐增加。相反,古意大利等其他人口密集的地区因缺乏这样的排

        水系统(如奥斯蒂亚安提卡和蓬蒂内沼泽),而不得不继续与疟疾做斗

        争。由于沼泽给定居居民带来固有危险,一些城市被废弃了。 [15] 因

        此,可以说,马克西姆下水道至少帮助遏制了罗马的疟疾,使罗马更加

        繁荣。如果没有马克西姆下水道,罗马可能会像其他几个邻国一样,因

        疟疾而永久丧失能力。如此一来,整个罗马帝国的历史可能也会大不相

        同。

        多年后,罗马城将面临一个完全不同的敌人,再次威胁到它的存

        在。匈人王阿提拉(Attila the Hun)被罗马人称为“上帝之鞭”,其于公

        元434年掌权,指挥军队有计划地掠夺并摧毁了整个东欧、高卢(现在

        的法国、比利时、瑞士和卢森堡)和意大利北部的城市。到了公元452

        年,阿提拉到达了意大利中部,将目光聚焦在了罗马帝国的王冠上。当

        教皇利奥一世听说匈人军队正在接近罗马时,他亲自率领一队人与阿提

        拉会晤,讨论和平条约的条件。 [16] 随后举行的会议仍是历史上最有

        趣、最神秘的外交讨论之一。阿提拉令人费解地整理了军队装备,命令

        军队离开了意大利,而不是像以前那样推进进攻计划。教皇对阿提拉说

        了什么或做了什么,我们无从得知。一些学者认为,教皇给了阿提拉一

        大笔钱让他离开,另一些学者则表示,教皇用武力威胁了阿提拉。最

        近,一些学者提出,阿提拉在意大利时可能就已经领教到了疟疾对其军

        队所造成的破坏,并担心长期入侵意大利会导致他丧失全部战斗力量。

        教皇有没有可能警告阿提拉,如果他入侵罗马,上帝便会用这个无形的

        敌人惩罚他的军队?考虑到当时疟疾在意大利中部已经非常普遍,且阿

        提拉的大多数士兵很可能对地中海发现的这种疟原虫易感,这无疑是一

        个可行的理论。

        其他的古代军队和领导人也面临着类似的危机。例如,许多学者认

        为,疟疾在马其顿帝国鼎盛时期(公元前323年),夺走了其指挥官亚

        历山大大帝的性命。古代文献记载,亚历山大死前几周出现了发烧、虚

        弱和疼痛的症状,而这些都是疟疾和当时亚洲流行的其他几种传染病的

        特征。 [17] 虽然没有人知道疟疾是否就是导致亚历山大死亡的真正原

        因,但亚历山大死亡的影响却显而易见。在亚历山大死后的短短20年

        中,其建立的整个帝国就被其他政权摧毁并接管了。学者认为,13世纪

        著名的蒙古皇帝成吉思汗(Genghis Khan),这个开拓了世界历史上最

        大帝国版图的皇帝,也是死于类似的原因。 [18] 尽管成吉思汗在死前数

        月就感染了疟疾,但疟疾是否为其真正死因我们仍不得而知。

        白人的坟墓与非洲争夺战

        回顾15世纪及以后欧洲入侵远方的历史,可以发现一个非常明显的

        特征:直到19世纪后期,非洲绝大多数地区才开始被殖民。实际上,截

        至1870年,广袤的非洲大陆只有约10%的土地受到欧洲的控制(其中大

        多数是被用作奴隶贸易的沿海城市)。 [19] 然而,在19世纪初,几乎所

        有的北美和南美大陆、澳大利亚以及亚洲的大部分地区(例如印度和印

        度尼西亚)就已被法国、英国、葡萄牙和西班牙控制。考虑到商人和探

        险者早在几个世纪以前就发现了非洲大陆,欧洲殖民者毫无理由不染指

        非洲。非洲居民与其他大陆的土著居民一样容易受到欧洲疾病的感染,

        而且非洲还拥有丰富的原材料和财富。因此,很难从逻辑上解释,为什

        么在可攫取许多利益的情况下,欧洲殖民者会故意克制对非洲土地及其

        居民的控制。

        事实上,自15世纪末欧洲探险家登陆非洲后,他们就曾尝试深入非

        洲大陆。阻止他们的主要因素之一就是各种致命疾病的广泛存在,包括

        黄热病、昏睡病、痢疾和最重要的疟疾。一般来说,非洲原住民对疟疾

        具有某种遗传的抵抗力,而入侵的欧洲白人则不同,他们几乎对疟疾完

        全易感(请参阅本章后文)。尤其是在西非地区,西非是冈比亚疟蚊(Anopheles gambiae)和不吉按蚊(Anopheles funestus)极为有利的繁殖地,它们有效传播了由恶性疟原虫引起的最致命的疟疾。蚊子和疟原虫在此地非常普遍,以至于居住在西非的一个人每年可能会被感染的蚊子叮咬100次。也就是说,欧洲人进入撒哈拉以南非洲地区后,其死亡率可接近50%~70%。 [20]

        由于非洲疟疾和其他疾病的致死率如此之高,因此,欧洲人将非洲

        称为“白人的坟墓”。如此高的死亡率排除了欧洲军队或平民大规模入侵

        的可能性,也使探险变得困难。实际上,直到19世纪中叶,非洲的大部

        分内陆地区甚至都没有被绘制成地图。非洲有着如此重的疾病负担(如

        疟疾),因此,殖民者在其他危险程度较低的地区似乎更加有利可图。

        从某种意义上说,尽管疟疾(和黄热病)每年造成了大量非洲原住民死

        亡,但在大约300年的时间里,疟疾帮助了非洲大陆及其人民免受欧洲

        帝国主义的侵害。这种保护在19世纪后期戛然而止,这在很大程度上是因为奎宁这种救命药的大规模生产和销售。

        奎宁是在金鸡纳树(quina quina)树皮中产生的天然生物碱化合物,金鸡纳树是一种常绿植物,最初被发现于安第斯山脉高处。早在16世纪中期,当地一个叫克丘亚(Quechua)的部落就偶然发现了金鸡纳树树皮对治疗疟疾和其他发热疾病的有效性。 [21] 他们把红色树皮烘干,磨成粉,再与含有甜味剂的水混合(掩盖苦味)制成药品。在那个时期,一些耶稣会(天主教)的传教士会前往南美洲进行传教,试图转化当地部落宗教信仰,并学习当地的习俗和草药疗法。这些传教士中有几位观察并记录了金鸡纳树树皮在治疗疟疾中的用途。奥古斯丁修士安东尼奥·德拉·卡兰查(Antonio de la Calancha)最早在其书中记录了金鸡纳树树皮的功效。他在1633年写道:“在洛萨(Loxa)生长着一棵被称为‘发烧树’的植物,其肉桂色的树皮可被制成粉末,两个小银币重量的粉末可以作为饮料饮用,治疗发烧和间日热。它在利马产生了奇迹般的效果。”[22]

        金鸡纳树树皮是如何以及何时进入欧洲的,在学者之间仍是一个争论不休的话题。有些人称,一名耶稣会药剂师安戈斯蒂诺·萨鲁布里诺(Agostino Salumbrin)在17世纪30年代初将金鸡纳树树皮样本运到了罗马。也有些人称,是一名耶稣会传教士伯纳贝·德·科伯(Bernabé de Cobo)在穿越秘鲁时得到了树皮的样本,亲自送到了西班牙,并在1632年运往罗马。 [23] 第三种解释是塞巴斯蒂亚诺·巴多(Sebastiano Bado)军医在其1663年的著作《在秘鲁树皮上的体液逆流或中国防御》(Anastasis Corticis Peruviae seu Chinae China Defensio )中首次提出。书中写道,西班牙秘鲁总督钦琼伯爵的妻子患有严重的疟疾,但是她被神奇的金鸡纳树树皮治愈了。 [24] 据称,她在1638年回到西班牙时,把金鸡纳树树皮带到了欧洲。但是,1930年发现的钦琼伯爵日记显示,后面这个故事的演绎性远大于其真实性。大多数证据表明,金鸡纳树树皮是在17世纪30年代通过耶稣会传教士带到欧洲的。

        这种新的奇迹疗法到达欧洲后,金鸡纳树树皮即被称为“耶稣树皮”、“秘鲁树皮”或“发烧树皮”,并引发了一场引起争议的医学革命,在世界范围内产生了广泛而长期的影响。欧洲最早的金鸡纳树树皮倡导者之一是天主教的红衣主教胡安·德·卢戈(Juan de Lugo)。他在教皇英诺森十世私人医生的帮助下,用金鸡纳树树皮治疗当地一些患有疟疾的罗马人。他们的研究结果令人鼓舞,他们便将有关剂量和给药途径的建议发表在了《罗马药典》(Schedula Romana )上——一本由罗马学院

        药房在1649年发行的说明书。 [25] 德·卢戈确信金鸡纳树树皮具有治疗疟

        疾的能力,因此他从宫殿再到当地的罗马医院,亲自将《罗马药典》分

        发给穷人。他还建议欧洲各地的天主教使团将此书发向欧洲,这一举措大大增加了人们对金鸡纳树树皮的需求。

        不同于天主教世界对“耶稣树皮”疗法的接受性,新教徒统治的国家

        (例如英国)及其医生对其持有怀疑态度。当时,许多新教徒对天主教

        会所支持的任何东西都不信任,他们认为苦味的树皮粉是教皇的潜在阴

        谋。 [26] 此外,新教国家许多接受过经典训练的医师都遵循盖伦疗法的

        医疗规范,要求对疟疾病例进行放血和净化,以平衡体液。在当时,胆

        敢暗示盖伦及其传承1400年的医疗教育是错误的,而天主教徒是正确的行为,无异于亵渎。

        在“耶稣树皮”成功治疗了一些新教贵族,包括英格兰的查理二世国

        王和法国路易十四国王的儿子后,“耶稣树皮”才慢慢被接受,人们的不

        信任感开始逐渐消退。从最初被认为是一种潜在的疟疾治疗方法以来,

        金鸡纳树树皮花了一个多世纪的时间才被整个欧洲普遍接受。

        到了19世纪初,由于疟疾在主要城市中心区的持续存在以及越来越

        多的欧洲人在国外热带环境中生活,人们对金鸡纳树树皮的需求达到了

        历史最高水平。不幸的是,在当时,金鸡纳树仅在安第斯山脉生长,因

        此树皮的供应有限,成本也很高。另外,树皮收割和运输过程既耗时又

        昂贵,西班牙完全垄断了该产品。其他欧洲大国对于这种限制很不满

        意,开始尝试将金鸡纳树种子偷偷带出秘鲁,并在其他地方种植树木获

        取树皮。为了防止这种行为对秘鲁出口利润造成损害,秘鲁当局采取了

        明智措施,禁止外国人进入金鸡纳森林。尽管秘鲁和西班牙做出了最大

        的努力,一位名叫查尔斯·莱杰(Charles Ledger)的英国人仍然成功地

        向荷兰人运送了一磅金鸡纳树种子,他们在爪哇(现代印度尼西亚)的

        人工林上种植出了大量金鸡纳树。因此在1865年后,西班牙和秘鲁最终

        失去了对金鸡纳树树皮的垄断。 [27] 除了金鸡纳树木的增产,化学和工

        业化领域的重大进展也进一步增加了金鸡纳树树皮的市场供应。例如,两名法国药剂师约瑟夫·佩尔蒂埃(Joseph Pelletier)和约瑟夫·佩雷·卡旺图(Joseph Bienaimé Caventou)在1820年成功提纯了树皮的活性抗疟成分,并将其命名为奎宁,以纪念金鸡纳树树皮在秘鲁的本地名称。[28] 他们公布了提纯过程,并拒绝为其申请专利,使得其他人可以开始

        大量生产和销售提纯的奎宁提取物及药丸。此外,19世纪60年代的植物

        学家采用了选择性培育和嫁接方法使树木变得更硬,进一步增加了树皮

        的奎宁产量。19世纪60年代的临床试验证实了奎宁提纯物用于治疗疟疾

        的功效,其他研究也表明了奎宁还可以用于预防疟疾。 [29] 到了19世纪

        70年代和80年代,奎宁提纯物已遍布世界各地,生活在疟疾高发地区的

        人们经常服用奎宁丸预防疾病。奎宁通常以碳酸奎宁水的形式服用,将

        其与糖和酒精混合,以抵消苦味。有趣的是,由于人们经常用饮料来递

        送苦味奎宁,软饮料、杜松子酒和滋补剂等也变得流行起来(如居住在印度的英国人中)。

        在19世纪70年代和80年代,由于奎宁的大规模生产、销售和预防性

        使用,人们对非洲的兴趣大大增加。有了不限量供应的奎宁的保护,欧

        洲领导人意识到,他们现在可以渗透到非洲内部,而不必担心被疟疾消

        灭。他们资助了许多探险活动,以便画出地图,了解当地资源和潜在的

        障碍。大卫·利文斯通博士(Dr.David Livingstone)和亨利·斯坦利爵士(Sir Henry Stanley)等探险家成功进入非洲深处,进一步印证了奎宁已将“白人的坟墓”转变为了富含机遇与财富之地。

        新发现的抗疟疾药物与其他几项重大的政治、经济变革同时发生,创造了世界历史上规模最大、破坏性最强的土地掠夺。首先,8个欧洲国家在非洲大规模殖民,在短短30多年时间里(1881~1914年)占领了大约90%的非洲大陆。造成土地争夺的一个主要因素是欧洲宣布了奴隶贸易非法。几个世纪以来,奴隶贸易都是非常有利可图的产业,宣布奴隶贸易非法导致了严重的经济损失,因此,欧洲国家迫切需要新的市场和原材料。其次,在这个时间段内,几个新的欧洲大国产生了。例如,1871年,德国在普鲁士的控制下得到统一。 [30] 在奥托·冯·俾斯麦(Otto von Bismarck)最初的统治下,德国只是简单地使用权力维持其在欧洲大陆的地位。然而,1890年,威廉二世(Kaiser Wilhelm Ⅱ)解职了俾斯麦,采用了更具侵略性的外交政策(被称为“世界政策”),逐渐掠夺外国领土。同样地,在经历了50多年的内战之后,意大利终于统一为一

        个王国,并于1871年迁都罗马。 [31] 这两个新国家的建立进一步加剧了

        欧洲列强之间日益扩大的权力之争,如英国、法国、西班牙、俄罗斯、

        比利时和葡萄牙。当他们认识到疟疾已经“被征服”时,非洲坐而待取,

        每个人都想冲进去分一杯羹。促成非洲迅速殖民化的第三个主要因素是

        工业革命。更坚硬的钢铁机械、更可靠的船只以及更强大的新武器的出

        现,使欧洲可以派遣大量人员击败非洲原住民。当时,整个欧洲正在研

        发新产品,新产品的爆炸性增长也引发了对原材料需求的暴涨。

        当几个欧洲大国都对永久性占领非洲流露出兴趣时,人们开始担心

        相互争夺的几个国家间爆发世界大战。出于这些担忧,葡萄牙和德国于

        1884~1885年在柏林召集了十四国会议,讨论如何对非洲进行公平划

        分。 [32] 这次会议被称为柏林会议,制定了占领非洲的规则,拉开了“争

        夺非洲”的序幕。柏林会议不仅定义了“占领”的含义(例如,一个国家

        对他们没有涉足的土地没有所有权),还制定了政策,允许殖民地之间

        进行有效贸易,并为每个国家的领土划定了边界。会议的代表们还同意

        在非洲大陆上禁止一切形式的奴隶制。鉴于在随后的30年间,这里发生

        了历史上最严酷的人类剥削,这种禁止颇具讽刺意味。会议结束后,欧洲殖民大国迅速进入非洲,声索自己的领地。

        欧洲入侵和随后的殖民化对非洲大陆来说绝对是灾难性的。随着军

        队进驻、镇压当地抵抗,数百万非洲人被杀害。大量幸存者被迫在恶劣

        的工作条件下劳作,如开矿、清理种植园土地以及收割橡胶和象牙之类

        的产品。那些幸存者也常常因未达到收割标准配额而被致残。学者们认

        为,在比利时控制的刚果自由国中,共有1000万至2000万非洲人被杀,

        在非洲其他地区则有2000万至3000万人被杀。在此期间犯下的暴行,并

        不比纳粹在第二次世界大战或20世纪任何其他大规模种族灭绝的暴行更

        仁慈。

        殖民时期最终在1970年前后结束。由于柏林会议最初建立的国家边

        界相当武断,新独立的非洲国家面临着多年的暴力和内乱。国家大多是

        根据经度和纬度,而不是人们的共同宗教信仰或种族来划分的。结果,

        背景迥异的人被迫在这些人为创造的国家中共存。许多人不能很好地处

        理这些分歧,导致了诸多持久而血腥的内战,使数百万人丧生、伤残,

        父母双亡,流离失所。掠夺自然资源同样对非洲的长期稳定产生了破坏

        性。价值数十亿美元的黄金、钻石、石油和其他原材料被有计划地从非

        洲土地上运送到欧洲。这些国家获得独立后,资源几乎被耗尽,没有什

        么可以出口的,导致了广泛的贫困和经济瘫痪。

        总而言之,可以说奎宁的发展给非洲带来了至今尚未恢复的、充满

        破坏性的连锁反应。一旦疟疾不再对易感的欧洲人产生威胁,非洲便遭

        到残酷对待,被掠夺大部分财富。毫不奇怪,非洲是目前地球上最贫穷

        的大陆,有着最高的婴儿死亡率、最低的预期寿命和最差的生活质量。

        极具讽刺的是,在疟疾造成的死亡人数上,非洲仍居世界首位。实际

        上,一些经济学家认为,疟疾的广泛存在不仅是非洲贫穷的表现,还是

        造成贫困的可衡量原因。疟疾会使人的生产力和收入降低,使儿童无法

        接受教育,消耗大量的国家资源用于预防和治疗。在非洲某些地区,疟

        疾患者占所有住院人数的50%,占公共卫生支出的40%。 [33] 据估计,疟

        疾本身会使国内生产总值(GDP)降低1.3%,使这些国家无法实现经济增长。

        奎宁的发现和生产除了对疟疾和非洲产生影响外,还有其他诸多意

        义。最重要的是,奎宁是第一种用于治疗特定传染病的药物。它证明

        了,人类可以在自然环境中找到、分离并大量生产救命药。这也激发了

        化工产业(例如德国的拜耳公司)尝试合成其他化学药品,杀死细菌等

        其他病原体。 [34] 这项研究直接使人类发现了早期形式的抗生素(例如

        撒尔佛散和磺胺类药物),促进了各种化学染料的研发,这些化学染料

        在组织学和微生物学的早期领域发挥了重要作用。这些发现促使越来越

        多的人继续寻找新药,形成良性循环。因此,可以说奎宁是一系列化学

        发现中的第一环,其最终结果是促使产生了大量安全有效的抗生素和抗病毒药物。

        蚊子和巴拿马运河

        历史上最伟大的公共工程项目之一就是在巴拿马地峡中部修建的一

        条48英里长的运河。运河连接了大西洋和太平洋,当船只在南美洲南端

        行驶时,可节省约8000英里的航程。法国政府曾成功承建过连接红海和

        地中海的苏伊士运河,因此得到了哥伦比亚(当时控制巴拿马)的许

        可,在美洲创建类似的水路。巴拿马运河的建设始于1881年1月,当时

        有数千名员工,预算约为1.2亿美元。 [35] 当时,法国最顶尖的人在从事

        该项目,他们预计这项工程要比苏伊士运河更容易、更便宜,速度也更

        快,但是这项工程从一开始就注定了失败。巴拿马山区多石,难以开

        挖,大量降雨带来了致命的泥石流和洪水。 [36] 此外,痢疾、黄热病和

        疟疾等传染病猖獗肆虐,导致了无数工人生病、死亡。当时居住在巴拿

        马的一位法国人总结了对该项目的看法,他说:“如果您试图建造这条运河,那地峡上将没有足够的树木来为您工人的坟墓做十字架。”[37] 不幸的是,他的预言十分准确。由于泥石流、事故、暴力以及(最主要的)疟疾和黄热病,超过20000名工人丧生。成千上万的人长期患病或受伤,极大减缓了该项目的进度。经过8年的挫败和超过2.5亿美元的支出,法国人仅完成了约40%的挖掘工作就退出了该项目。此后15年,运河项目再没有任何进展。 [38]

        1901年,在西奥多·罗斯福(Theodore Roosevelt)的就职典礼后,美国表达了在巴拿马完成法国未竟事业的兴趣。 [39] 1903年初,美国向

        哥伦比亚提出了一项条约,愿耗资4000万美元购买巴拿马土地和运河的

        使用权。但是,哥伦比亚参议院拒绝接受该条款。作为回应,美国决定

        向巴拿马的武装叛乱分子提供资金和军事支持,并鼓励他们从哥伦比亚

        独立。巴拿马的武装叛乱分子在1903年底成功做到了,并迅速以1000万

        美元的低价将运河控制权卖给了美国。到1904年中,美国已进入巴拿马

        运河区,雇用大量劳动力,改善基础设施,最终恢复建设。但是,该项

        目的早期领导人担心,导致法国失败的原因也同样会使美国的运河项目

        走上相似的道路。所以,当务之急是解决使法国劳动力锐减的传染病问

        题。例如,截至1906年,已有超过85%的工人因疟疾、黄热病或痢疾在

        某个时间住院。在这些疾病中,黄热病由于其高死亡率和严重症状成为

        最令人恐惧的疾病。但是,由于疟疾更加普遍,其对于政府而言是更大的问题。

        为了遏制疾病对整个项目日益增长的威胁,美国高级官员设立了独

        立的卫生部门,专门处理工人的健康问题。新部门的负责人威廉·高加

        斯(William Gorgas)博士是西奥多·罗斯福总统亲自挑选的,因为他成

        功地控制了热带古巴的传染病。 [40] 罗斯福总统的私人医生表示,这一

        决定非常重要:“您正面临着职业生涯中最重要的决定。如果您仍采用

        旧方法,那么您会像法国人一样失败。但如果您支持高加斯,您将会得到一条运河。”[41] 高加斯医生最初因官僚主义的繁文缛节而颇受限制,他在1905年2月终于可以开始处理疟疾问题,之后就出现了历史上最成功的公共卫生案例之一。

        19世纪后期一些非常重要的科学发现,对高加斯在巴拿马运河地区成功控制疾病至关重要。 [42] 第一个发现是蚊子是黄热病的携带者。这是卡洛斯·芬莱(Carlos Finlay)在1882年首次提出的假设,后来在1900年由美国陆军医学博士沃尔特·里德(Walter Reed)领导的科研组确认。1880年,查尔斯·拉韦兰(Charles Laveran)细致观察了疟疾患者的血液样本,总是会发现一种原虫,他将其命名为疟原虫(Oscillaria malariae),这首次证明了原生生物会导致人类患病。然后,在1897年,罗纳德·罗斯(Ronald Ross)博士在4天前吸食过疟疾患者血液的按蚊肠道中发现了疟原虫。他进行了精密的研究,确认了蚊子是疟疾的主要传播媒介,并随后描述了疟原虫的生命周期。罗斯博士还是一位经验丰富的诗人和作家,在发现疟原虫后,他写道:“伴随着泪水和辛劳,我发现了你,你这狡猾的种子,万恶的凶手。”[43]

        毫不夸张地说,这些发现对热带医学领域产生了巨大影响。鉴于其

        对全人类健康的重要意义,一位科学家将其与詹纳(Jenner)研发的天

        花疫苗媲美。人们不再认为疟疾和黄热病是由沼泽散发出的恶臭空气所

        引起。疾病的真正起因终于被描述和刻画出来,这使像高加斯这样的科

        学家终于能以一种明智、科学的方式消灭疾病。如今,通过系统性控制

        蚊子的种群数量来消灭热带环境中的疟疾和黄热病成为可能。

        在巴拿马工作之前,威廉·高加斯曾被派往古巴担任首席卫生官,

        负责控制自18世纪以来肆虐该岛的黄热病和疟疾。在了解到蚊子对黄热

        病和疟疾传播的重要性后,高加斯将他的工作重点放在杀死蚊子、防止

        蚊子繁殖以及用蚊帐隔离被感染者上。他下令排掉不必要的死水,并在

        其他水源的表面上喷油以杀死蚊子幼虫。他甚至对不盖住屋外水桶的当

        地居民处以罚款。最终,他与蚊子的斗争非常有效,成功地从古巴根除

        了黄热病,并在此过程中大大减少了疟疾的发病率。这是流行病学史上

        的分水岭,因为它标志着人类可以通过定向消除昆虫媒介从而成功地从

        环境中消除病原体。这为发现其他病媒昆虫奠定了基础,开启了疾病控

        制的新阶段。在这一阶段,人类更多地关注病媒而不是实际的病原体。例如,1898年我们发现跳蚤是鼠疫的媒介,这使公共卫生人员可以对鼠类及其携带的跳蚤采取措施,进而更有效地减缓鼠疫的流行。

        在古巴获得了成功和赞誉之后,高加斯博士于1904年在巴拿马运河区接受了相似的职位。 [44] 抵达后,高加斯意识到疟疾在当地是比黄热病更为普遍和频发的问题,具有周期性暴发的特点,而不是持续存在。

        在运河区的一些城市中,每周都有多达1/6的人患上疟疾。高加斯表达了对疟疾的担忧,他说:“如果我们能够控制疟疾,那我对其他疾病的担心就会少很多。”[45] 在得到100万美元预算、4000多名员工和总统的全力支持后,高加斯便对蚊子及其繁殖条件进行了多管齐下的攻击。在

        整整1年的时间里,他们排干了所有死水或给其铺上油,割掉了高高的

        草丛和灌木丛,用硫磺和菊花制成的天然杀虫剂反复熏蒸房屋,发放奎

        宁来预防,对房屋和政府建筑物进行排查,喷洒碳酸制成的幼虫杀虫

        剂,杀死在工人帐篷中看到的所有成年蚊子。尽管有些当地人和运河官

        员对他颇具侵略性的战术感到愤怒,但不得不说,高加斯的工作颇有成效。

        到1906年,巴拿马运河区已完全消除了黄热病,疟疾感染也逐渐开

        始减少。尽管疟疾不会从该地区彻底消失,但由于高加斯的卫生政策,

        因疟疾而住院的人数减少到之前的1/10。工人比以往任何时候都更加健

        康,这使他们在挖掘工作上取得了长足的进步。经过18年的建设,巴拿

        马运河于1914年1月7日正式开放。它仍是世界上最重要的船舶运输航域

        之一,每年有超过3亿吨的货物从此处通过。许多人提出,如果没有高

        加斯博士及其对热带蚊子数量一丝不苟的控制,运河是否还会完工?他

        战胜了当时人类已知的两种最致命的疾病,对两大洲未来的经济增长至

        关重要。他的成功还表明了疟疾再也不能阻碍人类进步。有了适当的卫生设施和奎宁,我们可以大幅降低疟疾对我们的影响。

        20世纪军队的瘫痪

        如本章前文所述,通过使军队丧失作战能力、夺取世界主要领导人

        的生命、使欧亚某些国家(如罗马、希腊、印度)不适于外邦侵略者居

        住,疟疾对塑造古代帝国产生了巨大影响。即使是像美国独立战争、南

        北战争和拿破仑战争等更现代的战争,也并没有更加顺利地进行,它们

        同样受到了疟疾暴发的影响。英国军队的一位著名上校目睹了19世纪武

        装冲突中疟疾的影响,并写道:“战争中的疟疾史几乎可以被视为战争

        史本身,当然也可以看作是基督教时代的战争史。”[46] 疟疾是每位军事领导人都担心并必须为此制订计划的事情。例如,新组建的美国国会的第一笔支出之一就是为华盛顿军队购买大量奎宁,以使他们足够健康,可以与英军作战。事实证明,这种远见卓识对于确保美国在疟疾肆虐的南部地区取得胜利至关重要。 [47] 疟疾可能不像伤寒或瘟疫等疾病那样杀死许多士兵,但它仍然可以影响战争结果。

        从逻辑上可以推断,随着19世纪末奎宁的提纯和大量生产,疟疾对

        20世纪以后战争的影响将大大减少。确实,整个欧洲的疟疾感染率都在

        下降。在20世纪初期,疟疾似乎已经被彻底战胜了。但不幸的是,诸如

        疟疾之类的流行病通常不按符合逻辑和预期的方式行事。更可悲的是,

        这一事实在20世纪第一次世界大战开始时便得到了证实。

        战争开始时,竞争最激烈、疟疾最流行的欧洲地区是巴尔干半岛。

        [48] 在德军进驻巴尔干半岛并开始在整个地区迅速推进后,英法联军联

        手支持其塞尔维亚盟友,并于1915年10月在希腊萨洛尼卡建立了基地。

        不幸的是,大量感染疟疾的希腊难民大约在同一时间内移民到那里,为

        那里的按蚊带来了理想的疟原虫来源。随后便爆发了一场军事运动,但

        这场运动被3年来无休止的疟疾感染破坏了。例如,英国约16万名士兵

        中报告了超过16.2万人次因疟疾入院,法国部队中约有80%士兵也被感

        染。这个数字意味着许多士兵不止一次染上疟疾,且有数千人死于疟

        疾。此次战争中有许多因双方都缺乏健康士兵而取消作战的例子。著名

        的英国医生罗纳德·罗斯(Ronald Ross)甚至也被带到了巴尔干地区,

        试图控制那里的疟疾流行。但是,即使他尝试使用奎宁和蚊帐,也未能

        阻止甚至是减缓疟疾感染。第一次世界大战期间,疟疾在其他几个战场

        也造成了类似的问题,包括非洲、意大利和中东。不幸的是,在这段时

        间内许多感染者最终都会在战争结束后回到祖国,疟疾也由此被带了回

        去。这就为第二次世界大战爆发前整个欧洲和亚洲的疟疾大流行奠定了基础。

        第二次世界大战受到了太平洋和非洲等战区持续存在的疟疾的严重

        影响,从而引发了疟疾预防和治疗策略的持久变革。1941年12月珍珠港事件后,大批盟军被派往太平洋岛国(如菲律宾和现在的印度尼西亚),帮助它们摆脱日本的控制。尽管官员们试图为士兵将要面对的疟疾流行做预防计划,但很明显,他们大大低估了疟疾问题,之前的准备并不足以与之抗衡。一些人估计,盟军带来的奎宁数量不到他们保持士兵健康所需数量的一半。太平洋盟军司令道格拉斯·麦克阿瑟(Douglas MacArthur)将军对这种情况感到沮丧,并留下了一句名言:“如果我和敌人对战的每个师都需要依靠因疟疾而入院的另一个师,和正在恢复的第三个师,那这场战争将非常持久。”[49] 使情况如此严峻的是,到1942年,日本控制了世界上90%的金鸡纳树供应(在菲律宾和爪哇岛),而德国则控制了从树皮中提纯奎宁的荷兰工厂。 [50] 这造成了奎宁的灾难性短缺,使整个太平洋地区的部队都有被歼灭的危险。

        美国军方对这种日益增长的威胁有着诸多对策。首先,盟国派遣队

        伍到中美洲和南美洲,购买了大量金鸡纳树皮,并达成了建立新金鸡纳

        树种植园的协议(尤其是在哥斯达黎加)。 [51] 这些努力为盟军生产了

        超过1200万磅的金鸡纳树树皮,但从中提纯奎宁的时间和成本不足以补

        全盟军在太平洋地区的严重短缺。最终,军方被迫依靠其他控制方法,

        包括排干当地水源、喷洒幼虫杀虫剂、为士兵提供蚊帐、提供健康教

        育。士兵学习了蚊子的生活周期以及它们如何繁殖并传播疟疾的相关知

        识。 [52] 士兵必须在一天的特定时间内洗澡、游泳,避免接触任何不必要的死水源。一位特别有艺术气息的陆军上尉西奥多·盖塞尔(Theodor Geisel)制作了一系列关于疟疾的教育性卡通小册子,这些小册子在整个太平洋地区被广泛分发。后来他以化名苏斯(Dr.Suuss)撰写了46本广受欢迎的儿童读物。

        1942年,美国战争部呼吁建立新的公共卫生计划,以控制美国南部和加勒比海军事基地周围的疟疾,使接受训练的士兵免受感染,保持健康,接受军事部署。为此,美国建立了战区疟疾控制(MCWA)计划,该计划在减少疟疾感染方面非常有效,以至于战争结束后,战争部将其目标定为在美国完全消灭疟疾。 [53] MCWA计划于1946年结束,并被一所更永久的公共卫生机构所取代,该机构名为传染病中心(Communicable Diseases Center,CDC),位于佐治亚州亚特兰大。CDC的首要任务是继续完成MCWA的工作,消除国内疟疾。1951年,美国宣布疟疾被彻底消灭,这促使CDC(现称为疾病预防与控制中心)将工作重点转移到其他传染病和健康威胁的监测上。从那时起,疾病预防与控制中心已发展成为世界上主要的公共卫生机构之一,并向美国和其他25个国家派驻了人员。

        在第二次世界大战期间,尽管军事领导人尽了最大努力控制疟疾在

        太平洋和非洲地区的传播,但奎宁的短缺以及无法控制的蚊子数量仍导

        致了6万名美军死亡。如果不是在战争快结束时研发出了一种新型且非

        常有效的杀虫剂DDT,死亡人数将更加惨重。DDT是在19世纪70年代首

        次生产的,但直到1939年,一位名叫保罗·穆勒(Paul Müller)的瑞士化

        学家才意识到它可以抑制蚊子和体虱(携带致命的斑疹伤寒)的潜在活

        性。经过初步的安全性检验,军方下令在战区森林中直接向士兵皮肤喷

        洒DDT。 [54] 因此,疟疾和斑疹伤寒感染率急剧下降。此次成功使得在

        战争结束后很长一段时间内,人们仍继续使用DDT来控制昆虫数量。实

        际上,DDT是世界卫生组织在1955年发起从地球上消灭疟疾运动时使用的主要武器。但是在20世纪60年代初,在蕾切尔·卡森(Rachel Carson)出版《寂静的春天》(Silent Spring )一书后,人们对DDT的主流观点发生了巨大变化。该书详细说明了DDT和其他农药如何破坏环境、杀死大量鸟类并给人类健康带来了巨大风险。政府和环境组织的进一步研究证实了这些担忧,最终在1972年,美国环境保护署宣布DDT非法。除了对生态系统造成破坏外,2014年发表的最新研究还表明DDT暴露可增加迟发性老年痴呆症的患病风险。 [55] 在迟发性老年痴呆症患者的组织内,DDT副产物的含量是未患病人群的4倍。因此,第二次世界大战(及随后的越南战争)控制疟疾的迫切需求,最终对人类健康和环境产生了永久性的负面影响。

        基因组和血液的永久变化

        进入人体并在肝脏中短暂复制后,疟原虫会迅速扩散到血液中,感

        染并杀死大量红细胞。红细胞破坏引发了大多数疟疾相关症状,疟原虫

        在红细胞中可达到最高的复制水平。因此,一个人的红细胞数量及健康

        状况决定了其对疟原虫的易感程度以及发展为疟疾的可能性。具有正常

        功能红细胞的个体因具有可供疟原虫复制的健康靶细胞而容易被疟原虫

        感染。相比之下,有些人的自然基因突变会使其红细胞改变形状、数量

        或生化组分。虽然这些人最初可能被疟原虫感染,但其突变后的红细胞

        却是裂殖子复制的不良宿主,因而使其具有一定程度的疟疾抵抗力,容

        易在大规模疟疾流行中幸存下来。有趣的是,我们已经在不同地区的许

        多人体内发现了各种各样的“抗疟疾”基因突变,这表明疟疾已成为塑造

        人类进化的强大力量。换句话说,疟疾的广泛流行及其毁灭性影响已确

        确实实改变了人类基因组(Genome)的序列。

        产生抗疟疾能力的大多数突变是在编码血红蛋白的基因中被发现

        的。血红蛋白是一种大而丰富的蛋白质,由4个不同的亚基组成——两

        个α链,两个β链。人类红细胞利用血红蛋白将氧气运送到身体的各个细

        胞,使其能够从我们摄入的营养物质中有效地提取能量。当疟原虫裂殖

        子感染红细胞时,它们会分解大量的血红蛋白,然后利用其氨基酸制造

        自己的蛋白质。被感染细胞血红蛋白的损失和含氧量的降低导致了细胞

        形态和生化的显著变化,进而引发了细胞死亡。新产生的疟原虫裂殖子

        从垂死的细胞中释放出来,立即去寻找新的红细胞继续感染。

        在产生抗疟疾能力的血红蛋白突变中,引起β链结构变化的突变是

        最常见的。有一种β链突变被称为血红蛋白S(Hemoglobin S),因其与

        氧的结合能力非常差,红细胞的形状发生了改变。这些红细胞不再是两

        面凹的圆饼状,而是镰刀形,它们无法像正常红细胞一样轻松穿过小血

        管,而是凝结在一起,造成血液循环不良。从父母双方处遗传血红蛋白

        S突变的人(因此携带两个突变体拷贝)携带了大量镰刀形红细胞,进

        而发展为镰刀型细胞贫血症。镰刀型细胞贫血症令人痛苦、衰弱,并常

        常致人死亡,尤其是对那些缺乏基本医疗卫生服务的发展中国家患者而

        言。相比之下,携带一个正常β链和一个S型突变的人,其循环系统问题

        较小,同时还具有疟疾抵抗力。实际上,镰刀形细胞特征基因的携带者

        对致命性疟疾(由恶性疟原虫引起)的抵抗力比具有两个正常β链的人

        群要高90%。 [56] 在恶性疟原虫流行的地区,如非洲大部、中东和印

        度,多达30%的人口具有镰刀形细胞特征。相似的,西非的某些人群携

        带了另一种被称为血红蛋白C的β链突变体,可提供相似水平的抗疟疾能

        力。 [57] 该突变与镰刀型细胞突变有些不同,因为个体需要遗传两个拷

        贝的血红蛋白C才能获得对疟疾的抵抗力。β链的第三种变体是血红蛋白E,在东南亚人群中可见。携带血红蛋白E的人对间日疟原虫的抵抗力较强。鉴于间日疟原虫在该地区已经流行了数千年,这非常有道理。总而言之,尽管血红蛋白β链异常给宿主带来了一些循环问题,但其对个体也提供了巨大的疟疾保护优势。

        有抗疟疾能力的第二组血红蛋白突变是降低两个亚基之一的产量,

        而不是改变其形状。 [58] 例如,当突变使红细胞中的α链数量减少时,血

        红蛋白仅能使用β链进行自我组装。不幸的是,仅由β链组成的血红蛋白

        非常不稳定,在其能够运输氧气之前就被降解了。这种突变导致了一种

        严重的贫血,被称为α地中海贫血。此外,还存在使β链产量下降、α链

        产量增加的突变。正如预期的那样,这种情况下稳定的血红蛋白产量非

        常低,循环的红细胞几乎没有任何用处。这种疾病被称为β地中海贫

        血,非常凶险,如果不进行骨髓移植治疗,通常会导致死亡。在两种类

        型的地中海贫血中,红细胞的畸形程度非常高,任何额外的压力(如疟

        原虫感染)都会触发免疫系统迅速消灭它。因此,疟原虫没有足够的时

        间来完成其生命周期,感染也就被迅速制止了。与具有镰刀形细胞特征

        的情况相似,仅从父母一方遗传地中海贫血基因突变的人具有抗疟疾优

        势,而且仅有轻度贫血症状。从父母双方那里继承地中海贫血突变的人

        经常死于贫血,这使其抗疟疾优势在某种程度上变得没有意义。几乎在

        每个疟疾长期存在的地域中,都会发现地中海贫血患者,其中包括非

        洲、中东、印度、东南亚和地中海大部分地区。实际上,地中海贫血突

        变是人类中最常见的突变,再次说明了疟疾对人类进化的重要影响。

        除了血红蛋白的变化外,红细胞外表面的改变也可以提供一定水平

        的抗疟疾能力。 [59] 我们体内的大多数细胞(包括红细胞)都具有数千

        种嵌入细胞外层的蛋白质,被称为质膜。这些质膜为我们的细胞提供了

        多种功能,如酶、转运通道、黏附蛋白和受体。与疟疾相关的三种蛋白质有两个受体和一个转运通道,分别为达菲(Duffy)抗原、盖比希(Gerbich)抗原和条带3(Band 3)转运通道。这三种蛋白质都存在于红细胞的表面,起着重要作用。达菲抗原通常帮助红细胞与其他血细胞

        传递信息,而条带3转运通道和盖比希抗原分别起到转运营养和维持红

        细胞刚性结构的作用。尽管它们的功能和结构截然不同,但疟原虫在感

        染的附着阶段却可以利用以上三种蛋白。裂殖子一旦进入血液,就需要

        特地寻找、附着并侵入红细胞,以完成其整个生命周期。它们黏附红细

        胞膜的几种主要方式就是与达菲抗原、盖比希抗原或条带 3蛋白结合。

        没有这种附着,这些寄生虫就无法进入红细胞,而是在血液中漂浮直到

        被免疫细胞破坏。有趣的是,科学家们发现,某些人有一个或多个相关

        的自然基因突变,使其对特定形式的疟疾具有抵抗力。例如,很多非洲

        人后裔(在某些地方高达95%)的达菲抗原基因就存在突变,几乎完全

        可以抵抗间日疟原虫感染。同样地,美拉尼西亚血统的人(如巴布亚新

        几内亚)经常携带条带 3基因或盖比希抗原基因突变,这就使他们对恶性疟原虫感染和严重的脑疟疾有一定的抵抗力。

        具有抗疟疾能力的人通常还可能会发生第三类红细胞基因突变——编码酶蛋白的基因突变。我们的细胞中有数以千计的化学反应,每一个反应都需要酶。没有酶,我们的细胞将无法消化营养、生长、分裂、交流或保护自己免受毒素侵害。酶如此重要,以至于单一酶的缺失往往也会带来致命的影响。例如,家族黑蒙性白痴病(Tay-Sachs disease)、苯丙酮尿症、戈谢病(Gaucher’s disease)、肾上腺脑白质营养不良和α-1-抗胰蛋白酶缺乏症都是由单一酶缺失引起的。

        两种酶缺陷对红细胞的生命和健康尤为危险。 [60] 缺少葡萄糖-6-磷

        酸脱氢酶(G6PD)或丙酮酸激酶(PK)的人在遇到任何类型的细胞应

        激时,通常都会发生严重的溶血性贫血。换句话说,由于酶的缺少,红

        细胞更容易受到低氧、各种化学物质和感染等压力的破坏。例如,如果

        一个有上述遗传缺陷的人感染了疟原虫,感染的红细胞就会承受压力,

        以至于其形状发生变化并被宿主脾脏迅速杀死。由于消灭得迅速,裂殖

        子没有足够的时间复制,该人也就不会发展为疟疾患者。如果某人上述

        两种酶中仅有一种是缺陷的,那么他通常会是健康的,同时还会对最严

        重的疟疾(由恶性疟原虫引起)具有一定水平的抵抗力。有趣的是,上

        述两种酶缺乏症是地球上最常见的,影响了地中海、东南亚、非洲和印度的4亿多人。

        疟疾为人类基因组选择的永久性基因突变比历史上其他病原体都多。尽管疟疾没有引起这些突变,但遗传上“正常”个体的死亡率和红细胞缺陷者死亡率的差异,恰恰增加了后者在人群中的比例。由于疟原虫的影响,在很大比例的人群中,红细胞的结构和功能已经发生了永久性改变。人类对疟疾产生抵抗力的故事是一个非凡的例子,它描绘了人类如何能在抗生素、疫苗和现代医学出现之前抵御具有毁灭性的流行病。它显示了人类基因组惊人的可塑性,表明人类像地球上的所有其他生物一样,能够在威胁人类物种生存的环境中进化。

        第五章 肺结核

        如果一种疾病对人类的重要性是用其造成的死亡人数来衡量的话,那么肺结核比诸如鼠疫、疟疾那些最可怕的传染病更严重。1/7的人死于肺结核。如果单从具有生产力的中年群体来看,肺结核夺去了1/3的生命,甚至更多。 ——罗伯特·科赫(Robert Koch)医生于1882年关于发现肺结核(肺痨)病原体演讲时提及 [1]

        肺结核(Tuberculosis,TB)可以说是人类历史中最古老、最可怕、最致命的疾病。肺结核早在至少17000年前就从牛科动物(家牛、野牛等)传到了人类身上, [2] 此后几乎一直是人类的头号杀手之一。肺结核可以从距今9000年前的新石器时代的残留物中找到,也发现于古埃及木乃伊身上。 [3] 《旧约》和神圣的印度教文本《阿闼婆吠陀》中,至少有两个地方提到了肺结核。尽管鼠疫、天花、大流感这些疾病在媒体上更“享有盛名”,因为它们是极具破坏性的周期性传染病,但肺结核是一直持续存在的无情杀手,在历史中杀害了20亿人。从其似乎永无休止的持久性和残酷性来看,唯一能和肺结核匹敌的疾病只有天花(Smallpox)了,不过有些人评估死于肺结核的人数是天花的2倍。

        出人意料的是,目前大约1/3的地球人口(超过20亿人)被认为感染了肺结核的病原体——一种叫作结核分枝杆菌(Mycobacterium tuberculosis)的小细菌。它每年持续杀死100万~200万人,目前是世界上传染病致死的主要原因。20亿被传染的人中,大部分人一开始症状很少,因为防止细菌大肆传播的免疫系统做出了快速应答。这常常被称作肺结核潜伏期。然而,营养不良,或者患有其他削弱免疫系统疾病(如人体免疫缺陷病毒HIV)的人往往会发展成使人衰弱的肺炎和/或慢性消耗性疾病,最终走向死亡。体重和体力会慢慢耗损殆尽,毫不夸张地说,这个疾病从里到外掏空了人类。因此,活动性肺结核(active TB)在历史上被称为肺痨、白死病或白色瘟疫(由于伴随着消瘦的苍白肤色)。它之所以被认为是当今世界上最大的健康威胁之一,在很大程度是因为最近出现了抗药的结核菌株以及结核分枝杆菌和人体免疫缺陷病毒合并感染的流行。

        肺结核是通过吸入感染人员呼吸道分泌物而得的。阳性肺结核患者每次咳嗽、打喷嚏、吐痰甚至讲话的时候能通过微小的气溶胶(也叫作飞沫核)释放出数百万个病原体。奇特的是,有些较小的飞沫在感染者离开房间或飞机后,仍然能在空气中悬浮数小时(而且细菌存活时间更长)。也就是说,一个肺结核患者早上在一个房间里咳嗽,一个不知情者下午走进这个房间,也会吸入细菌。这种在密闭空间“悬浮”的能力特别可怕,因为足以感染肺结核的细菌剂量相对比较小。科学家做出评估,10个病毒细胞就足以感染易感的人。所幸的是,大部分人的免疫系统足够强健,在短时间内接触少量细菌通常不会造成什么实际伤害。然而,当一个人不断地与活动性肺结核病患者接触,加上自身免疫系统薄弱或者肺部有损伤,这类人患病的风险便大大提升了。因此,肺结核常常在家庭成员之间,或者在监狱、流浪汉收容所,甚至医院等封闭场所传播。

        一旦进入人体的肺部后,大部分细菌很快就会被称为肺泡巨噬细胞的免疫细胞吞噬掉,被吞噬后形成一种叫内体或吞噬小体的膜封闭结构。吞噬小体像是一个监狱,把细菌和细胞中营养丰富的部分隔离开来。然后,巨噬细胞把叫溶酶体的膜封闭结构与吞噬小体融合在一起。溶酶体中含有剧毒物质,如强酸、过氧化氢、自由基以及若干不同的消化酶(例如蛋白酶)。这个融合的行为直接把致命的有毒物质送到了病原体处,大部分情况下,能把病原体消灭掉。然后,巨噬细胞把已经死掉的病原体送回细胞表面,把它们释放到外面的体液中。

        当结核分枝杆菌进入人体肺部,它们很快被肺泡巨噬细胞吞噬了,

        并暴露在溶酶体的毒素中。不过,与大多数其他细菌不同,肺结核杆菌

        的表面有一层像蜡一样的物质,叫分枝菌酸,大多数化学物质无法从这

        层表面通过。这样说来,细菌细胞表面有一种蜡状“力场”的保护,能抵

        御溶酶体的强大攻击。肺结核杆菌不仅能存活,它们甚至在吞噬小体中

        就开始复制。被感染的巨噬细胞意识到无法在内部摧毁这种细菌,发出

        化学遇险信号,吸引更多的巨噬细胞和其他免疫细胞(如T细胞和B细

        胞)来到这个感染区域。“增援部队”围绕在被感染的巨噬细胞周围,试

        图遏制感染。大部分情况下,这一过程是有用的,肺结核杆菌被大规模

        的免疫细胞困住了,不会对肺部造成任何明显的损伤。这种大规模的集结可以在X光片上看到,被称为结节或肉芽肿。

        在大约90%的情况下,孤立的结节一直留在人体内,不会有可见的

        疾病征兆。这就是潜伏性肺结核。然而,对于因为其他疾病(如人体免

        疫缺陷病毒)、药物或者营养不良而受到免疫抑制的人来说,结核杆菌

        就会冲破这道免疫屏障,开始不受控制地复制。这种状况可能会发生在

        感染初期,也可能发生在多年后,即潜伏结核病患者经历了一段免疫抑

        制时期。两种情况下,在活跃的细菌复制过程中引发的炎症会引起持续

        的肺炎、咳嗽、盗汗、胸痛和疲惫。一些情况下,复制中的细菌离开了

        肺部,流入了淋巴管或血液中。然后,它们就可以传播到其他较远的器

        官,如肾脏、脾脏、胰腺等,导致全身感染。这种广泛传播的结核病,

        通常被称为粟粒性结核,这种病如果不及时治疗,几乎必死无疑,即使

        前往就医,也有20%的死亡率。粟粒性结核病导致大范围和持续的炎症

        以及组织损伤。患病者生活能力变得越来越差,逐渐消瘦,直到死于肺炎或者器官衰竭。

        肺结核病情发展缓慢,有时候患者从发病到死亡历时几年。其原因一是之前阐述的宿主本身保护性的免疫应答,二是肺结核杆菌本身生长极其缓慢。葡萄球菌或大肠杆菌这样的细菌在有足够营养和空间的前提下,可以每18~20分钟复制一次,而结核分枝杆菌每16~20小时分裂一次。虽然这种缓慢可能看起来是病原体的一个缺点,但实际上是有益的,它在杀死宿主细胞之前,给了自己大量复制和传播到新宿主的时间。不过,对被感染的受害者来讲,疾病进程的缓慢很残酷,延长了以慢性疾病和绝望为特征的生命。几年时间里,在最终结束感染者的痛苦之前,疾病慢慢消耗着他们的身体、情感和精神健康。他们已经知道了自己被判死刑,却对之无能为力。

        工业革命和白色瘟疫

        尽管肺结核病在几千年中感染并杀死了10亿多人,但令人惊讶的是,18世纪以前很少有历史记载提到肺结核。与这本书上介绍的所有其他疾病不同的是,肺结核从未被认为是任何重大历史事件中的一个重要因素,也从未被认为以任何有意义的方式影响了社会,其中一个原因是肺结核在人类中流行了太长时间,以至于大家都把它当成正常生活的一部分了。它持续缓慢地杀害着所有不同阶级和种族的人,人们已经无从追溯。人死于肺结核是很正常的事,几乎没有历史学家认为有必要记录下过多细节。因此,在历史上的大部分时间里,结核病就成了一种被遗忘的瘟疫,躲过了人们的注意。

        18世纪席卷西欧和美国的工业革命是肺结核病的一个重要转折点。

        在这之前,大部分人在乡村地区生活和工作,彼此相对隔绝。自然的隔

        离有助于限制肺结核的传播,因为感染通常需要反复并长时间与病人接

        触。生活在农村的普通人根本没有旅行、工作或与陌生人同居到足以从

        他们那里感染疾病的程度。因此,结核病是一种很少有人患的人群疾

        病。然而,18世纪50年代,这个现象开始转变了。因为炼铁、发电和机

        械化的创新,城市大型工厂中生产商品的利润要比小型手工作坊高得

        多;由于农村地区的工作机会越来越少,大量的劳动人员和他们的家人

        被迫背井离乡,搬迁到紧邻主要制造中心的城市。遗憾的是,在城市中

        工作的工资、公平性并非承诺的那样;这些人要想在日益拥挤和肮脏的

        贫民窟中建造或买得起住房,也并非想象的那么简单。以前在乡下时,

        住在自己家里且挣高薪的人现在别无选择,只能与处境相同的其他家庭

        合租小的单间公寓。有时候,多达20~30人睡在一间简陋的小房间里。1844年,一位英国牧师对他拥挤的教区是这样描述的:“1400栋房子里住着2795户人家,大约有12000个人,而这一庞大群体居住的空间不足400码(1200平方尺)。”[4] 换句话说,大约12000个人住在相当于4个足球场面积的空间中。

        即使在今天,过度拥挤也是很危险的,而在现代卫生系统诞生之前,它的危害尤其严重。这些城市几乎没有采取措施来安全地控制或丢弃每天产生的大量人类排泄物和家庭垃圾。结果,城市的街道经常变成

        可怕的污水坑,堆满了腐烂的垃圾、啮齿动物和恶臭的粪便。除了造成

        极其恶劣的居住环境外,大面积的污染滋生了诸如疟疾和伤寒等水传播

        疾病。在拥挤且通风环境恶劣的公寓大楼和工厂中,不断发生各种呼吸

        道疾病伴随着慢性胃肠道疾病。肺结核尤其擅长在这些建筑中传播,因

        为分枝杆菌能够长时间悬浮在空气中而不会死亡。结果是,一个长期咳

        嗽的人能把肺结核传染给每天碰巧在他附近一起睡觉和工作的人们。非

        常不幸,这是18世纪与19世纪工业化城市中非常普遍发生的状况。

        据保守估计,工业革命期间,肺结核导致的死亡增加了2~3倍,它

        成了城市中的头号杀手,并造成了西欧约1/4的人口死亡。 [5] 肺结核对

        长期营养不良或者患有其他疾病的人尤其致命,因为这两类人的免疫系

        统功能很弱,更容易染上肺结核。事实上,在漫长的历史中,肺结核是

        第一个成为“穷人病”的疾病。有钱人能住在城市外面宽敞的大房子里,

        不太可能与肺结核病人接触。而穷人几乎没有其他选择:要么与其他家

        庭一起缩在拥挤的公寓里,要么睡在政府安排的更拥挤的、监狱似的济

        贫院里。 [6] 罗伯特·科赫(Robert Koch)曾经对城市中穷人的悲惨生活

        感言道:“我们必须把穷人过于拥挤的住所视作肺痨真正的滋生地,发

        病率正是在这群人中居高不下,如果我们要从根源上袪除这恶毒的疾

        病,并用有效的武器与其作战,我们首先必须把注意力集中在废除这种

        生活条件上。”[7] 遗憾的是,几乎没有政府遵照科赫的建议采取措施改

        善穷人在贫民窟的生活条件。最终的结果是,肺结核从一种通常只影响

        农村地区一小部分人的疾病,变成了一种世界上感染最严重的疾病,甚至超越了鼠疫、天花和疟疾。

        浪漫的死亡方式

        18世纪至19世纪,肺结核重新流行的一个有趣副产品是社会对肺结

        核患者的态度发生了重大转变。工业革命以前,肺结核在很大程度上被

        看作一种超自然的惩罚。譬如,在法国,有人认为感染肺结核的人是夜

        间被恶魔袭击了,或者被死后变成吸血鬼回来的家人咬了。 [8] 在大众文

        化中,对吸血鬼的普遍描述是红眼睛,对人血非常渴望的苍白、憔悴形

        象。得了肺结核的人通常体重骤减,面色惨白,眼睛发红,对光很敏

        感,常常咳嗽并咳出很多血。咳血被认为是他们急需要补充新的血液,

        他们会因此去咬其他人。也有一些人认为肺结核源自个人道德的沦丧,

        诸如过度饮酒或卖淫。 [9] 这种近乎清教徒式的信念,认为不健康的灵魂

        更易使人罹患身体上的疾病,如肺结核。肺结核给了这些罪人机会来净

        化自己、为自己的罪行忏悔,从而把他们向上帝拉进一步,而不是直接把人杀死作为惩罚。因此,肺结核患者会被轻视、嘲弄和孤立。

        18世纪晚期,浪漫主义运动的兴起引发了社会对肺结核及其感染者看法的巨大转变。其中一个主要原因是,这一时期许多闻名遐迩的诗人、艺术家、作曲家及作家死于肺结核(很可能因为他们中的大多数人很穷,并住在城市里)。 [10] 其中小部分死于肺结核的人中包括约翰·济慈(John Keats)、伊丽莎白·巴雷特·布朗宁(Elizabeth Barrett Browning)、弗雷德里克·肖邦(Frederic Chopin,可能是)、艾米莉·勃朗特(Emily Bronte)、沃尔特·惠特曼(Walt Whitman)和罗伯特·路易斯·史蒂文森(Robert Louis Stevenson)。因此,肺结核被看作一种只针对真正有艺术天分的天赋异禀者的疾病。染上肺结核代表着患者卓尔不群,是被选中的标志。马克·考德维尔(Mark Caldwell)在《最后的十字军东征:1862~1954年肺痨之战》(The Last Crusade:The War on Consumption ,1862-1954)一书中写道:结核病“是优雅的象征……它使你的朋友们不再为你的英年早逝而感到悲哀,而应该崇拜你的脱颖而出、与众不同”。 [11] 像拜伦(Byron)伯爵、巴西诗人及剧作家卡西米罗·德·阿布鲁(Casimiro de Abreu)这样的人甚至还渴望患上肺结核,如此才能显得自己更有趣、更有艺术感。

        肺结核同时被看作能促使人们更接近自己的情感,摒弃世俗的物质主义,达到创作天才的高度。确实,一些最伟大的文学和音乐作品是自身患有肺结核的创作者,或者看着亲人死于肺结核的创作者成就的。[12] 例如,济慈在他两个兄弟死于肺结核后,自己也患了肺结核,在此期间他写了很多关于病痛和死亡主题的诗。同样地,埃德加·爱伦·坡(Edgar Allan Poe)的父母和爱妻弗吉尼亚(Virginia)死于肺结核,夏洛蒂·勃朗特(Charlotte Bronte)目睹了自己三个姐妹(包括艾米莉)和一个兄弟死于肺结核。这种与肺结核紧密相连的个人经历让很多作家和作曲家把令人同情又有些许英雄色彩的肺结核患者融入自己的故事和作品中,为这种病进一步增添了浪漫主义色彩。例如,《波希米亚人》(La Bohéme )中的咪咪(Mimi),《红磨坊》(Moulin Rouge )中的莎婷(Satine),《茶花女》(La Traviata )、《悲惨世界》(Les Misérables )、《伊甸园之东》(East of Eden )、《魔山》(Magic Mountain )和《呼啸山庄》(Wuthering Heights )中的人物都与肺结核有关。用这种方式把结核病浪漫化的最终结果是,广大群众开始强烈地把肺结核与忧伤和几乎超凡脱俗的状态联结在了一起。

        19世纪,肺结核病变“时髦”的另一个原因与肺结核患者自身的外貌

        有关。当时在欧洲和亚洲大部分地区,理想的美丽是身材苗条,皮肤白

        皙,脸颊红润,以及一双大眼睛。自古罗马开始,浅色皮肤是财富和高

        贵的象征,代表着室内闲适的生活,不用暴露在大太阳的户外。维多利

        亚时代的女性会涂诸如散粉和面霜的化妆品,让自己的肤色变成象牙

        白。大家普遍会穿紧身内衣,让自己显得更瘦,有时候内衣勒得很紧,

        肋骨都快被勒断了。由于在脸颊和嘴唇涂上颜色鲜亮的化妆品,常常会

        与道德败坏和卖淫联系在一起,于是这些女士们会捏自己的脸颊,咬自

        己的嘴唇,以产生自然的红润。肺结核患者被认为是很幸运的,因为这

        种疾病的自然病程为病人带来了这些美丽的特征。由于长期耗损,他们

        身材瘦削,眼睛也因此显得更大了,夜里反复发热让他们脸颊变红了,

        咳血导致了贫血以及苍白的脸色。尽管他们在痛苦中奄奄一息,但许多人认为他们十分美丽,几乎像天使一样。

        19世纪末,现代科学揭示了结核病是由于感染了一种小型杆状细菌而引起的,社会对肺结核的看法再次改变了。一个人染上肺结核是因为他/她接触了微小的病原体,并不是因为此人拥有任何特殊的人格特质、艺术天赋或才智。这一里程碑式的发现使科学和医学取代了19世纪神秘的浪漫主义。曾经一度被认为楚楚动人的病患,再次遭遇了同情和蔑视。其结果是,他们遭到了更大程度的孤立,这使得他们很难获得工作、结婚或者和健康的人接触。这种转变甚至导致整个社会对疾病看法的改变。19世纪与20世纪之交,越来越多的医学和新闻报道用更专业的组织学术语tuberculosis(肺结核),而不是consumption(消耗病)或phthisis(痨病)来称呼。得到科学解释后,上层社会也像看城市里的穷人们一样看待结核病了——一种可怕、痛苦、漫长的死刑判决。

        康复疗法被普及

        综观历史,肺结核病人接受过很多治疗方法,包括特殊食谱、放血、鸦片、汞化合物、水蛭。19世纪30年代早期,一位叫乔治·伯丁顿(George Bodington)的年轻的英国全科医生针对广泛使用的结核病疗法写了几篇犀利的文章,批评这些疗法经常对患者造成伤害。 [13] 他也不赞同在拥挤、卫生条件糟糕、闷热的城市医院医治肺结核的做法。基于他自己的临床观察,他开发了另一种治疗模式:凉爽新鲜的空气、适量的运动、健康的饮食和放松的精神状态。在几年的时间里,他亲自在自己乡下的家中照料了6个肺结核病人,来测试自己的理论。1840年,他企图发表相关的研究文章,介绍自己疗法的部分成功之处,他相信为肺结核病人在气候适宜的地方建设户外设施,对肺结核有治疗作用。遗憾的是,包括著名的《柳叶刀》(Lancet )在内的一些医学杂志的审稿人,不仅退回了他的文章,还直接蔑视他的想法和医学资格。虽然他的文章最终还是被发表了,但是同行们的负面批评让他不得不转了行,开始研究精神疾病。 [14]

        伯丁顿的论文发表约15年以后(1854年),一位叫赫尔曼·布雷默(Hermann Brehmer)的德国医生对这种自然的整体治疗策略很有兴

        趣,他在如今隶属波兰的一个村子里建起了第一座专门治疗肺结核的机

        构。 [15] 这种机构叫作疗养院,相比医院,更偏重健康疗养。它和之前

        伯丁顿文中提议的概念很相似,让病人吸取健康剂量的新鲜空气,做少

        量的运动,多多卧床休息,持有积极的生活态度,摄入有营养的食物。

        几年中,这种疗养院非常受欢迎,数量激增,在欧洲和北美乡村地区开

        设了数千家类似的机构。一些是私人疗养院,专为富人服务,另一些是

        国家运营的,面向穷人和少数族裔。时隔近20年,伯丁顿因在该领域的

        开创性工作而获得了广泛认可,他当时的文章成为医学史上最具有影响力的出版物之一而被流传了下来。

        在疗养院里,人们实际的生活质量很矛盾。一方面,这种地方宣扬放松、心灵的平和与乐观,而另一方面,其中依旧有很高的死亡率、病痛和孤独。 [16] 进入疗养院的人知道他们很可能有一天会躺在棺材里离开。事实上,典型的登记流程中,会有关于如何进行尸体解剖,以及如果尸体要被送回家下葬,需要支付运送尸体回家安葬的运输费的讨论。进入疗养院之后,很大一部分人并没有恢复健康,他们会在疗养院中居住8~10年之久,从未离开。他们长期与外部世界隔离,加上无尽的单调生活,与监狱没什么两样,这些因素敲响了居住者心理情感上的丧钟。虽然在病友逝去时,考虑到对精神的负面影响,工作人员会劝阻病人谈论死亡话题,以避免悲伤外露,但死亡一直存在,遍及整个疗养院。面对他们自己的死亡命运,人们经常从性爱和其他娱乐活动上寻求慰藉,来最大限度地度过自己有限的时间。

        在接近百年的时间里,长期待在疗养院中是肺结核最常见的治疗方法。然而,很多人质疑,这到底是不是有效的救命方法。《英国结核杂志》(British Journal of Tuberculosis )的编辑于1909年总结这两派立场:“关于所谓的‘露天’治疗,已经聚集了各种各样的潮流和幻想,一些经验不足的人不可能对疗养院的神奇疗效言之凿凿。尽管有很多夸张的说法和失败经历,但毫无疑问,保持严格卫生的生活方式是现代医学有效治疗结核病的最佳手段。”[17] 20世纪初的一些研究也得到了同样的结论。 [18] 人们从统计上发现,疗养院的病人仅仅比城市医院的病人存活率高一点点,这个优势仅限于在疾病早期进入疗养院的病人。研究发现,肺结核晚期的病人不管在哪里,无论他们怎么生活,死亡率是一样的。1956年进行的著名的马德拉斯(Madras)试验令人信服地证明了这些发现:健康的饮食、充足的休息、新鲜的空气对已经感染肺结核病的患者的治疗并没有好处。 [19] 这些研究,加上20世纪40年代中期有效抗生素疗法的发明,让疗养院的运动走向下坡。20世纪60年代,全球范围内的昂贵却无效的疗养院开始关闭。这个趋势一致持续到2012年7月2日,当时,位于南佛罗里达州的世界上最后一家肺结核疗养院正式关闭。

        尽管疗养院并没有给肺结核病人带来很多可衡量的健康益处,不过

        它在历史记载中肺结核暴发最糟糕的时代起到一些重要作用。首先,疗

        养院通过把病人隔离起来,有效减缓了疾病在当地人群中的传播。居住

        在与世隔绝的疗养院中,相比住在家里或城市医院中,病人把疾病传染

        给朋友、家人和同事的可能性低得多。因此无数人可以免于面临患上漫

        长的肺结核病和死亡的恐惧。其次,它大大提升了晚期病人的生活质

        量。住在疗养院的人最后没有死在肮脏拥挤的城市医院,而是在平静和平的环境中有尊严地死去。这样说来,它是现代临终关怀概念的先驱,其发生在临终姑息治疗被确认为是一种主动选择的100年前。

        医学微生物学诞生了

        在其历史发展的大部分时间里,肺结核的发病被归咎为吸入了污秽有毒的气体(瘴气),而不是由于接触某种特定的病原体引起的。直到19世纪中期,显微镜与染色技术进步了,德国一位年轻的内科医生罗伯特·科赫推翻了这个陈旧的理论。凭借着韧劲和聪明才智,科赫睿智地指出所谓致死的白色瘟疫——肺痨,实则源自一种生长缓慢的小细菌,而不是瘴气。路易斯·巴斯德(Louis Pasteur)与约翰·斯诺(John Snow)等在自己的文章中对科赫的理论做了补充,这项发现在医学史上掀起了一场无与伦比的科学革命。它永远地改变了传染病的研究方法,最终产生了现在被广泛接受的观点,即微观的细菌能导致人类疾病(被称为疾病的细菌理论)。

        1866年从医学院毕业后,科赫参加了普法战争,最后在德国南部的一个小镇安顿下来做了外科医生。他对微生物有着与生俱来的好奇心,他在自己的医务室里建立起了一个小实验室,里面有一个自制的恒温箱和妻子作为生日礼物送他的显微镜。他的微生物生涯从研究海藻开始;然而,在当地炭疽病暴发后,他开始研究引起人类疾病的微生物。在几乎没有资金支持,也没有得到专业训练的情况下,科赫分毫不差地精确描述了引发炭疽病的细菌(被称为“炭疽杆菌”)的生命周期。 [20] 他开发了在显微镜载玻片上培植和观察细菌的新技术,阐述了细菌细胞如何产生可以在泥土里存活很久的受保护的小孢子,还展示了当把细菌单独注射到实验动物的身上,是如何造成炭疽病的。1876年,他发表了里程碑式的作品,收到了很好的反响,当时一位卓越的病理学家写道:“我认为这是细菌史上最伟大的发现,我相信这不是这位年轻的罗伯特·科赫最后一次让我们惊喜又惊讶的聪敏研究。”[21] 科赫不仅为未来的炭疽研究打下了基础,他的论文也为他赢得了国际认可、新的政府职位以及永久的研究支持。正是在这个时候,科赫把研究目标转向了比炭疽病更可怕的杀手——肺结核。

        当科赫和他的团队决定寻找肺结核的病原体时,他还不知道这项任

        务有多难。如之前提及,肺结核分枝杆菌生长缓慢,它有一层蜡状外

        壳,不仅能保护自己不被免疫细胞伤害,还能抵御几乎一切已知的染色

        剂。一般的细菌(如大肠杆菌、金黄色葡萄球菌)快速复制18~24小

        时,就可以在培养皿中形成可见的细胞堆(称为“菌落”);而肺结核分

        枝杆菌需要一个月才能形成菌落。同样,大部分人类细菌病原体能用常

        规染料染色,并且不需要花费太多的努力或多少次培养,就能看见它

        们;而肺结核分枝杆菌必须用多种染料,经过一系列步骤复杂的染色,

        即使是训练有素的微生物学家也很难掌握这种方法。在科赫之前,所有企图尝试这项看似不可能任务的人都失败了。

        1882年3月24日,罗伯特·科赫站在了柏林生理学会年会的讲台前。[22] 他的演讲从肺结核给社会造成的破坏讲起,接着描述了他和他的团队如何在历史上第一次成功地分离、染色,并肉眼观察到杆状的结核病分枝杆菌。在他精彩的演讲结束后,科赫邀请观众上台通过显微镜亲自观看结果。所有观众都目瞪口呆地坐着。科赫安静地走下讲台的时候,没有人提问,也很少有掌声。后来获得诺贝尔奖的保罗·埃尔利希(Paul Ehrlich)也出席了会议,他后来说:“我认为那个傍晚是我整个科学生涯中最重要的经历。”[23] 科赫的演讲和随后发表的文章被认为是医学史上最具影响力的演讲之一,不仅因其确定了人类最大的杀手,还因其提供了识别其他人类病原体的路径和多种新工具。

        这项工作中一个重要的创新是,在实验室里培养细菌的方法有了巨

        大改进。 [24] 当科赫开始研究炭疽和肺结核时,细菌只能在液体环境里

        培养。大家典型的做法是从受感染的动物和人身上取下样本,放到营养

        丰富的肉汤培养基中。细菌在液体中生长和复制一段固定的时间(通常

        是24~48小时)后,人们可以从培养而成的高密度混合液体中取出一

        些,放在显微镜下观察,或者用它去感染其他动物。虽然这种培养方法

        仍被广泛使用,但它有一个主要的缺陷:从受感染的动物或人类身上取

        出的大多数样本是细菌混合物,即导致疾病的细菌和正常在个体体内生

        长的细菌的混合物。若在肉汤培养基中培养这种样本,多种细菌会一起

        生长,最终成为混合培养。对任何想要证明某一种特定的细菌造成了某

        种特定疾病的人(包括科赫)来说,这都是一个难题。

        科赫和他的团队解决了这个问题,他们将临床标本铺在一个固体培

        养基表面,让细菌生长成独立的菌落。 [25] 这样操作的话,他们就能将

        每一种类型的细菌分离成不同的细胞堆,把研究的细菌挑选出来放入上

        述的肉汤培养基中扩增。该团队一开始的尝试包括在薄土豆片上或试管

        里凝固的血清表面培养菌落。当这两种尝试都不能产生可重复的结果

        时,他们转而尝试向培养基中加入明胶,试图使其凝固(有点像制作细

        菌果冻)。遗憾的是,明胶会在大多数细菌生长所需的温度下熔化,而

        且很多细菌分泌的酶会毁坏明胶。因此他们确定,明胶相对来说不适合此类研究目的。正在这个时候,范妮(Fanny)和沃尔特·黑塞(Walter Hesse)加入了科赫的实验室,改变了医学史的进程。 [26] 范妮告诉科赫,她曾经用一种不同的固化剂来制作果冻和布丁,这种固化剂从海藻中获取,叫作琼脂。经过实验室的测试,它比明胶的熔点高,并且不会

        受细菌消化酶的影响。从这一点出发,固体琼脂培养基成为培养细菌单

        菌落的首选方式。有了这些新型的培养基,科赫就能在临床样本中分离

        不同种类的细菌了。他能确凿地显示,肺结核分枝杆菌是肺结核唯一的病原体。

        这项工作也让科赫描述了他用来证明“结核病分枝杆菌是人类肺结

        核直接原因”的一系列标准。这四个原则,统称为科赫法则,后来成了

        想要“排除合理怀疑”的科学家们常用来证明“X微生物会导致Y疾病”的

        标准。尽管科赫法则有局限性(例如,它们不能用来确认病毒性疾

        病),但被证明是至关重要的,全世界的科学家纷纷利用其来确认其他

        致病细菌。在科赫里程碑式演讲后的15年里,几乎所有其他人类细菌病

        原体都通过科赫的琼脂板和法则被分离出来,并得到确认。

        科赫的工作显示出的另一项重大进展是使用染料染色和在显微镜下

        观察细菌方法的改进。绝大部分的细菌在自然状态下是透明的,若不使

        用染色剂使细菌和显微镜载玻片有颜色上的强烈对比,细菌是很难被观

        察到的。细菌的第一次成功染色是于1871年由卡尔·魏格特(Carl Weigert)意外地操作成功。 [27] 在检查天花病人(天花由一种病毒造成)活检皮肤切片时,他注意到病变组织中有大量细菌聚集。它们吸收和保留所用染料的方式与周边的人体细胞不同,这使得它们很容易与混合组织的其他成分区分开来。熟悉了魏格特的数据后,科赫和他的团队开始有条不紊地测试不同的方案和染料,以对众所周知的耐药结核杆菌进行染色。虽然有内在的困难,但科赫在1882年完成了这项目标,彻底改写了临床微生物学、组织学和病理学的未来。科赫成功地对地球上最难渗透的细胞之一进行了染色,他证明了任何细胞(细菌的或人类的细胞)都可以通过足够的努力和独创的方法来染色。这项成功启发了其他科学家,如保罗·埃尔利希(之前提到的诺贝尔奖得主,同时是魏格特的表亲)、汉斯·克里斯蒂安·革兰(Hans Christian Gram)、弗兰兹·齐尔(Franz Ziehl)、弗里德里希·尼尔森(Friedrich Neelsen)以及魏格特,他们不断完善已有的染色方案,并开发出新的方案,如革兰氏染色法及H&E染色法。

        在19世纪和20世纪,控制肺结核传播的尝试,导致了几种预防和诊

        断工具的实施和普及,这些至今仍被广泛使用。最早的此类措施之一是

        快速地加热与冷却牛奶(巴氏消毒法),以防止食源性结核病的传播。

        [28] 尽管大部分肺结核的病例是吸入了受感染的呼吸道飞沫造成的,不

        过,摄入被感染的食物(如牛奶)也会传播疾病。其实,有三种不同种

        类的分枝杆菌(肺结核分枝杆菌,副结核分枝杆菌,牛分枝杆菌)可以

        引起结核食物中毒。当路易斯·巴斯德(Louis Pasteur)在19世纪60年代

        发展他的巴氏消毒法时,他这么做的初衷是为了拯救当时因细菌广泛污

        染而衰落的法国红酒产业。由于当时肺结核通过食物传播导致很多人生

        病,有人把巴斯德加热的方法运用在牛奶上,让人们喝到更安全的牛

        奶。在19世纪末20世纪初,大多数牛奶生产厂商开始用巴氏消毒法消毒

        他们的牛奶,食源性肺结核的发病率直线下降。此外,肺结核推动了早

        期的牛奶巴氏消毒,同时这个举措也使通过牛奶传播的其他疾病(如伤寒、口蹄疫、炭疽病)的发生率急剧下降。因此,预防肺结核的斗争最终导致了食物安全的广泛进步。

        在此期间实施的第二个预防措施是肺结核疫苗。最早的疫苗出现于19世纪晚期,用与天花疫苗相同的办法制造。一种能导致牛型结核病的细菌(牛分枝杆菌)被注入人体体内,人们认为它对人型结核病起到的交叉保护作用,与注射牛痘预防天花是同样的原理。不幸的是,意大利首批进行临床试验的人并不知道高浓度的牛分枝杆菌几乎和结核分枝杆菌一样能让人患上肺结核。结果,很多接种了这种“疫苗”的人最终得上了肺结核,其中几个人死了。这时,两位法国科学家,阿尔伯特·卡米特(Albert Calmette)与卡米尔·介林(Camille Guérin)在巴斯德研究所一起研究一种新型的弱化版的牛分枝杆菌疫苗。 [29] 他们将致病牛分枝杆菌菌株,在一个不利于细菌生长的培养基中培养很长一段时间。这导致了突变的逐渐积累,使牛分枝杆菌变弱,不能在人体中茁壮生长。这种安全的新型疫苗,被叫作卡介苗(Calmette-Guérin,BCG), [30] 于1921年第一次在人体上使用,它马上成为世界上更广泛接种的疫苗之一。

        到20世纪30年代初期,研究人员开始正式评估卡介苗的长期效果。

        [31] 有趣的是,试验显示出了充满矛盾的数据,这些数据似乎与试验在

        哪里进行以及使用哪些品种的疫苗密切相关。一些案例中,它能为超过

        80%的疫苗接种者提供保护,而另一些试验显示有效性不足10%。同样

        的,一些试验表明疫苗的保护作用能持续50年以上,而也有一些试验显

        示免疫效果只有短短的几年。虽然调查的结果很不一致,但卡介苗在第

        二次世界大战后越来越受欢迎,如今所有高危国家的幼儿都被建议接种

        该疫苗。事实上,只有少数几个国家(包括美国)仍然没有定期给本国

        人民接种这个疫苗。毫无疑问,疫苗的广泛接种挽救了无数生命,并在

        20世纪和21世纪阻止了传染病的进一步蔓延。

        在此期间开发的一些重要的诊断工具也有益于降低肺结核的感染率。大部分病史中,肺结核病的诊断是在出现肺炎、咳出鲜红的血以及持续的减重等症状后诊断的。这种方法是有问题的,因为病人在出现上述严重症状前已经传播了数月的细菌,也就是说,在大家毫不知晓的情况下,病人已经将病菌传播给了他的家人、朋友与同事了。能够在人群中找出谁是肺结核分枝杆菌的携带者是至关重要的,这样就能及早进行医疗干预和治疗。

        其中最早发明的工具之一是听诊器。 [32] 一位名叫雷内·雷奈克(Rene Laënnec)的法国年轻内科医生被叫去看一位可能有心脏问题的女病人。他意识到把耳朵贴在年轻女士的胸部(内科医生通常如此来倾听人体体内的声音)听诊很不合适,他用一张很厚的纸卷成一个空心

        管,一端放在病人的胸部,用另一端听她的心跳。他很震惊地听到空管

        中如此完美的回音,并立刻开始思考如何改进他的新发明。他用了3年

        时间测试不同材质,最终决定用一根固定直径的空心木管,在它的一端

        放一个听筒。有了这个新工具,雷奈克开始研究疾病的不同阶段以及不

        同心肺状况所产生的声音。他特别痴迷于研究肺结核,因为他的母亲、

        兄弟、叔叔和两位导师都死于这个病。他的听诊器让他能够把垂死病人

        的肺部听到的声音与尸体解剖后观察到的肺部组织的病理变化联系起

        来。它提供了一种在疾病早期听到肺结核病人肺功能微妙变化的方法,

        这样的话,就能提前干预,提早治疗。具有讽刺意味的是,雷奈克在发

        明了后来用于诊断肺结核的仪器10年后,自己却死于肺结核。

        有意思的是,用于肺结核诊断的最伟大的工具,来自肺结核研究历

        史中最重大的失败之一。 [33] 1882年分离并鉴定出肺结核细菌之后,罗

        伯特·科赫开始研究这种疾病的治疗方法。他从若干种分枝杆菌(肺结

        核分枝杆菌、牛分枝杆菌、鸟分枝杆菌)中提取了各种蛋白质,然后把

        这种蛋白质注入感染疾病的动物体内,看能不能刺激它们的免疫系统开

        始抵抗这种疾病。根据对他实验室笔记的现代解读,他早期的试验未能

        证明注射提取物有任何可测量的益处。然后在1890年,科赫出人意料地

        宣布,他成功地找到了一种治愈肺结核的方法,他称之为肺结核菌素。

        他声称一旦把肺结核菌素注射到受感染的病人体内,结核菌素的一些成

        分能自动附着在结核肉芽肿上,并启动宿主免疫系统对肉芽肿的破坏。

        在这个过程中,肉芽肿中的结核杆菌也顺便被杀死了。经过大量的庆贺

        和宣传,科赫开始在欧洲和美国营销他的灵丹妙药。遗憾的是,几个月

        之后,医学文献上清楚记载着结核菌素对肺结核带来的已有损伤没有疗

        效,更严重的是,在某些情况下,它还会引起严重的炎症反应。当被要

        求出具原始试验的数据或公布结核菌素的成分时,科赫有所遮掩,他的

        行为接近于欺骗。他最后不得不承认,他一开始的结核菌素提取物对治

        疗无效,后期几个改良版本也是如此。罗伯特·科赫,1905年的诺贝尔

        奖得主,医学史上最辉煌的人物之一,于1910年在有关结核菌素的一片

        争议中去世。一些历史学家甚至质疑科赫是否有意利用自己的名望在医

        药界进行诈骗牟利。对科赫研究记录的调查充分说明他曾经确实相信结

        核菌素有效,他用了10~15年的时间企图去证明这个观点。科赫或许犯有自欺欺人和从事不良科学的罪行,但他不是骗子。

        如果不是20世纪头10年三位内科医生的杰出工作,结核菌素可能成为医药史上又一失败案例,如沙利度胺、芬-芬、万络等一样。结核菌素在人类身上试验的早期,科赫发现被注射结核菌素的结核病感染者比被同样注射结核菌素的健康人(未感染者)更容易产生非常强烈的局部和全身炎症反应。这与1906年克莱门斯·冯·皮尔凯(Clemens von Pirquet)发现常常接种马血清或天花疫苗的人会有不正常的炎症反应很相似。冯·皮尔凯与他的匈牙利同事贝拉·希克(Béla Schick)首先把这种反应称为过敏反应。冯·皮尔凯开始研究结核菌素,想要更好地描述为什么它会导致人的过敏反应,以及确定能否把它作为诊断肺结核感染的某种指标。 [34] 有趣的是,他发现,在皮下注射一点点结核菌素只会让肺结核感染者产生局部的过敏反应,即便这些感染者还没有出现症状。这是很重要的发现,这样内科医生就能在病人发病之前,辨别出体内有结核病菌且可能将其传播给他人的人。接下来的几年中,另外两位科学家,查尔斯·芒图(Charles Mantoux)与菲力克斯·孟德尔(Felix Mendel)在冯·皮尔凯研究成果的基础上,改进了他测试的成分和方法。 [35] 后来这种测试就被称为芒图试验,后来又得到了改善(通过部分提纯结核菌素的提取物),变成了现代的PPD试验(结核菌素试验)。自1907年开始,芒图/PPD试验已在全世界范围内进行,甄别出几百万例肺结核病人,减缓了肺结核的传播,挽救了无数人的生命。因此,在罗伯特·科赫辉煌的职业生涯中曾经被视为最大的失误,却催生了一种有价值的救命诊断工具。

        任何先前接触过结核病分枝杆菌的人进行了PPD皮肤测试后,都会呈阳性反应。测试不仅能检测出那些自然感染结核分枝杆菌的人,而且能检测出之前接种过减毒卡介苗的人。由于世界上大部分国家都要求接种这种有些许效果的疫苗,因此很大一部分人会自动检测出阳性。这意味着在肺结核暴发期间,当地政府很难找到新的肺结核患者。这也是诸如美国和英国这样的国家没有将卡介苗纳入常规免疫接种计划的主要原因。这类问题让大家迫切需要另一种可以完全甄别出肺结核感染者,并将那些由于免疫接种而似乎被感染的人区分开来的诊断方式。

        1895年,德国物理学家,后来的诺贝尔奖得主威廉·伦琴(Wilhelm Röntgen)制造并探测到了一种独特的电磁辐射波长,他称之为X射线。内科医生对这种新形式的强大的能量很感兴趣,因为它能轻易地穿透人的软组织(皮肤、脂肪、内脏),并让密集的内部结构(如骨骼、牙齿)和异物(如炸弹弹片)形成图像。早期的机器很难提供心、肺、胃肠道等内部器官的清晰影像,因此,很少有人相信这些设备能被用作这些部位的疾病检测。20世纪早期,X射线管得到了改进,这使得弗朗西斯·威廉姆斯(Francis Williams)这样的科学家们窥探到肺部潜伏和活动性的结核感染,并检测出特征性的病理异常(如结节、肉芽肿等)。[36]

        到20世纪20年代,国家结核病协会和其他类似组织发起了公共卫生运动,主张对全员进行PPD试验与X光胸片检查,普查范围包括那些没有表现出任何症状的人。后来人们还发明了可移动X光机,便于在城市搬运,为任何感兴趣的人提供免费检查。X光胸片检查变得十分普遍,它们甚至出现在一些著名的文学作品中。例如,托马斯·曼(Thomas Mann)影响深远的作品《魔山》中,主角汉斯·卡斯托普(Hans Castorp)住在一个疗养院中,他生动描述了第一次看到自己身体内部的动人经历:
        汉斯·卡斯托普所看到的,正是他所期待、人们几乎不需要看到而他从未想过自己会看到的:他看到了自己躯体的内部,眼见为实,让科学大放异彩。霍夫拉特人看到肺部新老阴影点。“线”从支气管延伸到器官本身相当远的地方——“线”上有结节。 [37]

        这是历史上首次能同时听到(听诊器)和看到(X光片)得病的肺内部。这些诊断工具,加上芒图试验(PPD试验)以及巴氏消毒、卡介苗等预防措施,大大降低了20世纪肺结核在人群中的传播。然而,对那些已经感染肺结核的人,这些工具和措施几乎没有什么价值。20世纪50年代中期,有效的抗生素发现以前,几乎没有任何办法阻止甚至减缓这种疾病的发病进程,与若干世纪前一样,诊断出肺结核依旧等于宣判了死刑。

        抗生素的探索与失败

        在第四章中我们已提及,在疟疾治疗上,对奎宁的发现与使用证明了微生物疾病可以从已经感染的人身上消除。这个事实让化学家们开始有意地合成新的化合物,他们希望找到一些可能杀死细菌的化合物。1909年,德国化学家保罗·埃尔利希和他的助手羽田佐八城(Sahachiro Hata)发现他们测试的第606个砷类化合物——砷凡纳明,能有效地杀死导致梅毒的病原体(梅毒螺旋体)。 [38] 经历大量动物实验和许多人体临床试验后,埃尔利希发明的神奇的化合物于次年上市了,取名为撒尔佛散(Salvarsan),这个英语词是由“拯救”(salvation)和“砷”(arsenic)两个词合成的。撒尔佛散与比它略好一些的衍生品新砷凡纳明很快在全球流行开来,并在将近40年间,一直是治疗梅毒和非洲昏睡病的首选药物。遗憾的是,撒尔佛散对人类的毒性相对较强,对包括肺结核在内的人类的大部分细菌性疾病无效。这是研究细菌疗法的伟大的第一步,但显然不是最佳的解决之道。

        埃尔利希发明撒尔佛散约20年后,一名叫亚历山大·弗莱明(Alexander Fleming)的苏格兰科学家无意中发现了一种可能是医药史上最好的救命化合物。他把一些葡萄球菌涂在培养皿上,忘了盖盖子,

        时间一长,上面落上了霉菌孢子。几天后,他检查时发现了一些奇怪的

        东西。有一个霉菌菌群污染了他的培养皿,它似乎产生了一种能杀死周

        围葡萄球菌的化学物质。弗莱明用产生它的这种霉菌(青霉菌)的名字

        给这种化合物命名,称之为青霉素,它对人体来说很安全,对很多人体

        细菌病原体都非常有效。化学家霍华德·弗洛里(Howard Florey)与恩

        斯特·钱恩(Ernst Chain)成功地把弗莱明的青霉素提纯,批量生产,并

        投入临床试验。1942年,青霉素上市,很快它被冠以有可能终结一切细

        菌性疾病的“特效药”。这个崇高的目标很快就消失了,因为短短几个月

        以后,就发现了耐青霉素的葡萄球菌及其他细菌。此外,令所有肺结核

        患者大失所望的是,青霉素和其他所有在20世纪30年代到40年代分离出

        来的抗生素(如磺胺类药品)对治疗肺结核全然无效。这个事实刺激了

        全球去探究可以对抗顽固的结核杆菌的自然抗生素。一场抗生素革命开

        始了,而“圣杯”就是一种能够杀死看似无法杀死的结核杆菌的化学物

        质。

        有趣的是,这种难找的化学物质来源于新泽西乡下罗格斯大学附近

        的小片农田。 [39] 赛尔曼·瓦克斯曼(Selman Waksman)教授和他的团队

        长期以来都对泥土里的霉菌,以及霉菌产生的对抗泥土中其他细菌的化

        学物质感兴趣。尤其引起他兴趣的是,他观察到当把结核分枝杆菌植入

        泥土中时,它们死得特别快,这引起了他的兴趣。在美国国家结核病协

        会的资助下,瓦克斯曼开始在不同的泥土中寻找能产生抗生素的霉菌。

        在这个项目最初的10年中,他已经成功地分离出了一些新的霉菌品种,

        甚至发现了一些能产生抗生素的霉菌。事实上,抗生素这个词就是瓦克

        斯曼在这项工作中创造的。遗憾的是,他最先发现的两种抗生素(放线菌素和链霉素)在动物试验中表现出很大的毒性,因此不能用于人类。

        在1943年,瓦克斯曼的实验室录用了一名叫艾伯特·沙茨(Albert Schatz)的年轻研究生,3个月后就实现了突破。仅仅在沙茨的第11个样本中,他就在新泽西乡下罗格斯大学大楼旁的堆肥里分离出一种新型的灰色霉菌品种,叫灰色链霉菌。令他惊喜的是,新发现的这个品种能产生一种化学物质(链霉素),它不仅能抑制他的试验菌大肠杆菌的生长,也能抑制结核分枝杆菌的生长。在妙佑诊所同事们进行了大量的动物和临床试验后,链霉素被证实在人体上使用是安全的,并于1946年获得专利。世界上第一次有了肺结核的治疗方法。讽刺的是,肺结核这个人类历史上最强杀手的克星竟是在农场的堆肥中产生的,而且是被一个刚来实验室三个月的研究生所发现。

        链霉素的发现引发了很多重要事件——一些是科学上的,另一些是法律上的。 [40] 当沙茨和瓦克斯曼共同为链霉素申请专利时,两人都书面同意放弃专利权以及这项发明带来的所有利润,这样世界人民就能以低廉的价格使用这项药物了。当时沙茨不知道的是,瓦克斯曼和罗格斯大学已与一些化学公司(如默克)秘密协定给予他们链霉素销售所得全部利润的20%。在意识到自己被误导后,沙茨把他的前导师和雇主告上了法庭,要求获得科学荣誉和税收。他赢得了诉讼,不过丑陋的法庭程序和对他人格的诽谤使他在某种程度上成为科学界的弃民。赛尔曼·瓦克斯曼于1952年获得诺贝尔奖的演讲中,甚至没有提到沙茨的名字,多年后也拒绝给予他应有的荣誉。1949年瓦克斯曼给沙茨的信中写道:“因此,你必须充分意识到,在链霉素问题的解决过程中,你的贡献只是很小一部分。你仅仅是实验室对抗生素研究的一个大轮子上的一颗螺丝钉。在这项工作中,有很多研究生与助手帮助我完成这项工作,他们是我的工具,我的手,你也是。”[41] 时间最终弥合了这个裂痕。沙茨的科研生涯非常成功,罗格斯大学最终于1994年为他颁发了荣誉奖章,以表彰他对这一历史性的发现所做出的贡献。沙茨与瓦克斯曼的法律诉讼意义重大,因为它头一次提出了学生在资深导师的领导下取得重大发现的知识产权问题。 [42] 从那以后,又发生过一些类似的法律诉讼,而这个问题直到现在,仍在全球的实验中时常发生。

        从科学上讲,链霉素的发现也很重要,因为它证明了对治疗肺结核有效的抗生素能够且确实存在。这促使化学家与土壤微生物学家们掀起了一场寻求其他对抗肺结核的化学物质的热潮。 [43] 第二个被发现的药物是一种名为4-氨基水杨酸的阿司匹林衍生物(也被称为“PAS”),它没有链霉素有效,制造成本也稍高一些。1951年,一种叫异烟肼(INH)的化学物质被证明对肺结核的治疗安全有效,价格低廉,且消除肺结核分枝杆菌的效果相当于链霉素的10倍。1957年发现的抗生素利福霉素有类似的效用。在很短一段时间内,肺结核似乎终于遇到了这些新抗生素对手,并即将成为一种过去的疾病。不幸的是,肺结核分枝杆菌还有另外一招,让全世界的临床医生感到恐惧。

        有趣的是,服用这些不同抗生素“治愈”的患者依然会死于肺结核,尽管死亡率低了很多。原因是结核病细菌的基因产生了随机变异,这使它们能够对每种抗生素产生抗药性。譬如,20世纪50年代中期进行了一项调查估计,多达5%的接受测试的结核菌株对三种主要的结核病药物之一有抗药性。 [44] 结果是医生开始指导病人同时服用多种抗生素,有时达到3种或4种,因为他们认为这些抗生素对细菌有累加作用。 [45] 此外,任何一种结核分枝杆菌能耐多种抗生素的概率在当时都很小,所以开具多种抗生素给病人服用其实是种揣测,而不是探索疗效最好的药。这种“震慑”的肺结核治疗方法似乎在一段时间内有效,死亡人数与新感染人数都创下了新低。一些政府机构,如美国疾病预防控制中心(Centers for Disease Control and Prevention)甚至开始在20世纪70年代的大部分时间里,削减了结核病研究的基金。然而,20世纪80年代中期,医生发现越来越多的人感染了对几种抗生素具有耐药性的结核病分枝杆菌菌株。更令人担忧的是,已有的药物对分离出来的多重耐药结核杆菌都无效。这些发现促使世界卫生组织于1993年宣布肺结核为“全球紧急事件”。2014年公布的报告证实了这些担忧,多重耐药结核杆菌被发现于35%的新发病人员体内与76%的曾接受过抗生素治疗的病人体内。 [46] 这些受试者中,14%的病人产生了广泛的多重耐药结核杆菌(称为广泛耐药肺结核),这意味着他们没有任何可用的治疗办法,几乎没有可能康复。

        到底是什么原因导致耐抗生素结核分枝杆菌增多了?一个因素是过

        去30年里人体免疫缺陷病毒(艾滋病病毒)的迅速传播。 [47] 人体免疫

        缺陷病毒通过攻击和杀死通常保护我们不被细菌感染的细胞(T细胞)

        来削弱人的免疫系统。由于免疫系统受到抑制,艾滋病患者更容易被包

        括肺结核菌在内的各种其他病毒、真菌或细菌病原体感染。如果一个人

        不走运同时患上了结核病和艾滋病,他们的免疫系统就会被削弱到结核

        病细菌能够在他们的全身不受控制地复制的程度。当结核病感染的人服

        用抗生素时,这些药物会杀死身体里大部分细菌,但因为免疫系统不起

        作用而无法消灭干净。细菌躲过了抗生素的攻击,会长时间地存活,产

        生耐药变异,变异的细菌会代代相传。用不了多久,感染艾滋病的患者

        体内会充满抗生素耐药的结核病细菌,并有更大可能会把结核病传染给别人。

        造成这一问题的另一个主要因素是正在接受治疗的人滥用抗生素。对大部分细菌感染的病人而言,他们仅被要求连续5~10天居家服用抗生素药片。而患肺结核的人却必须每天服用抗生素持续数月之久,这样才能杀死生长缓慢且自我保护良好的结核菌细胞。在一些特殊的情况下,病人需要持续服用抗生素长达1年。长期的治疗会带来许多问题,因为长期服用抗生素是非常昂贵的,病人很难严格遵守,尤其是那些贫穷和没有稳定居住环境的人(如流浪汉)。病人会发生几天不吃药或忘记重新配药的情况,结核菌有机可乘地存活了下来,然后产生了耐药的变异。为了解决这个问题,很多医院和公共卫生管理人员要求病人每天到当地的诊所,在医务人员面前服药。这种特殊的治疗方法被称为直接督导下短程化疗(DOTS),该策略已被证明确实在经济欠发达和乡村地区有效地降低了一些多重耐药结核病和广泛耐药结核病的发病率。例如,21世纪初,在秘鲁的利马开展的DOTS项目被发现治愈率超过了80%。 [48]

        尽管现代卫生设施、疫苗、多种诊断工具与若干种抗生素应运而生,肺结核依然是世界上第二大致死的传染病。科学的发展进步在短时间内减缓了肺结核的传播,不过要想消除这种疾病,仍旧任重而道远。事实上,一些研究表明,肺结核病例再度增多,疫情可能只会继续恶化。结核病的故事显然没有结束,而且可能永远也不会结束。它在人类这个物种起源之初就与我们相伴,可能会伴随我们直到人类的终结。

        第六章 斑疹伤寒

        士兵们很少在战争中获胜,他们常常在传染病的肆虐中死去。与恺撒(Caeser)、汉尼拔(Hannibal)、拿破仑(Napoleon)等历史上的将军领袖相比,斑疹伤寒以及它的兄弟姐妹们——鼠疫、霍乱、伤寒和痢疾——更多地决定了战争的胜败。传染病因战争失败而受到指责,而将领们领受获胜的勋章。其实,这一切应该反过来。 ——汉斯·辛瑟尔,1935年,《老鼠、虱子和历史》 [1]

        在超过4个半世纪的时间里,流行性斑疹伤寒(Typhus)几乎对欧洲和亚洲大陆的所有主要战争都产生了重大影响。几乎在每场战争中,都有大量士兵被迫集中到一个特定的地方,在拥挤肮脏的帐篷和军营里居住数月甚至数年。在这种情况下,他们整天穿着从不清洗的脏制服,和别人共用被褥和毛毯,在敌人的攻击下或寒冷的冬天里挤作一团。同样,残酷的战争常常造成大量平民流离失所,他们只能蜷缩在异常拥挤的难民营或集中营里。战地和集中营的食物供应非常有限,造成了普遍的营养不良以及免疫系统减弱。这些因素综合起来,几乎所有战争都会导致拥挤不健康的生活环境,给传染病及携带病菌的寄生虫创造了绝佳的滋生温床。其中一种寄生虫——体虱,特别适应在战区的环境中繁殖。通过身体接触或共用衣服/床具,它能轻易地从一个宿主跳到另一个宿主身上。由于其传播流行性斑疹伤寒的能力巨大,小小的体虱戏剧性地影响了历史上数场战争的成败,折损了很多伟大的军事人物(如拿破仑·波拿巴)。

        流行性斑疹伤寒(Epidemic typhus)是由普氏立克次体细菌感染引起的。不同于其他的人类斑疹伤寒病,如鼠性斑疹伤寒症或丛林性斑疹伤寒(恙虫病),流行性斑疹伤寒具有很高的死亡率,并且它由虱子传染,而不是蜱虫、跳蚤或螨虫。当携带普氏立克次体的体虱叮咬了人类,它常常会在吸血时在人的皮肤上排泄。体虱唾液中的化学物质会引起炎症性瘙痒,人就会去抓挠被叮咬的部位。抓挠给皮肤造成微小擦伤,也给细菌打开了一扇能钻入体内的门。普氏立克次体进入人体后,会迅速到达血流中,并附着在构成血管的细胞上(称作血管内皮细胞)。

        大部分细菌性病原体会在细胞之外对人体产生危害,普氏立克次体不同,它会进入血管内皮细胞内部,在里面进行繁殖。被感染细胞内部充满了细菌,不堪重负,进入病态,最终爆裂。爆裂中释放出来的新普氏立克次体与邻近的血管内皮细胞结合,又感染了它们。不久,大量血管内皮细胞的死亡导致大面积的炎症和血管穿孔。病人会起疹子(由于内部出血),持续高烧,可达105华氏度(约40.5摄氏度),以及血压的急剧下降。血流的减少会导致内部器官损伤和四肢的局部组织坏死。这种高烧是感染引发的最高发热类型之一,会引起精神错乱。如果不进行治疗,流行性斑疹伤寒的死亡率高达40%。

        关于流行性斑疹伤寒的早期描述

        没有人确切地知道流行性斑疹伤寒从何时开始在人类中引发疾病。最早疑似流行性斑疹伤寒的描述是对公元前430年至公元前426年,在雅典人对抗斯巴达的伯罗奔尼撒战争中,袭击希腊人的流行病的描述。 [2]这种疾病被称为雅典瘟疫(Athenian plague),古希腊历史学家修昔底德与古罗马哲学家提图斯·卢克莱修将其描述为能产生传播性脓疱疹的疾病,病人会发高烧,“身体发热,即使是最轻症状的患者也无法穿上任何衣服或者亚麻布”, [3] 还有吐血和血样腹泻。鉴于后者是消化道内出血的症状,并不是现代流行性斑疹伤寒的典型特征,很多传染病学家指出了该疾病的其他可能原因。一些人认为雅典瘟疫实际上是由伤寒引起的,这是一种与斑疹伤寒无关的经水传播疾病,会引发高烧和肠胃不适。爱尔兰移民“伤寒玛丽”(原名玛丽·梅伦)对伤寒的传播十分著名,这种疾病由沙门氏菌感染引起,在水源污染地区(如大多数古代战场)传播迅速。然而,修昔底德观察到小动物也会死于这种疾病,这意味着它可能根本不是伤寒。还有一些人认为病毒性出血热或腺鼠疫可能是雅典瘟疫的原因。

        尽管整个黑暗年代都贯穿着对这种疑似斑疹伤寒的模糊记录,但直到15世纪晚期,我们才看到对这种疾病第一次进行了清晰而明确的描述。对这种传染病的首次记录发生在西班牙南部,当时的西班牙君主试图强行驱逐国内的穆斯林摩尔人、改变他们的信仰或杀光他们(这个过程被称为收复失地运动,The Reconquista)。基督徒十字军与摩尔人之间数百年的战争削弱了摩尔人对西班牙的控制,摩尔人不得不退到西班牙南部的格拉纳达(Granada)寻求庇护。 [4] 摩尔人在那里占据了14座城市,与西班牙北部的基督教统治者达成了不稳定的休战状态。然而,1481年,格拉纳达的摩尔人国王穆利·阿布勒·哈桑(Muley Abul Hassan)突然袭击了附近的基督教城镇扎哈拉,随后拒绝向阿拉贡的西班牙国王费迪南二世(Ferdinand Ⅱ)进贡每年的黄金贡品,费迪南二世发誓要把所有的摩尔人彻底赶出西班牙。他的原话是“他要走进格拉纳达(西班牙语中是‘石榴’的意思),把石榴籽一粒粒挖出来”。 [5]

        1489年,一支约有25000名士兵的基督教军队在格拉纳达的一座城市包围了摩尔人,对他们进行不间断的炮攻。在基督教军队似乎胜利在望的时候,流行性斑疹伤寒在军队里暴发了,在短短几个月之内杀死了17000多名战士。 [6] 这场灾难对西班牙军队集中火力进攻摩尔人最后一个据点的行动产生了巨大的负面影响。结果是,战斗力被削弱的基督教军队用了3年时间才取得这座城市的统治权,而穆斯林的零星抵抗还将持续百年之久。战胜的士兵带着流行性斑疹伤寒回到了他们的故土,导致这个疾病在欧洲的大面积暴发,并成为今后欧亚大陆所有传染病的基础。与1343年黑死病在卡法城的流行(见第二章)相似,基督教徒和穆斯林的一场战争给一种罕见疾病提供了一个进入新人群的绝佳机会,并成为常态化疾病。结果,在随后的500年中,这片大陆上的几乎每场战争都会被流行性斑疹伤寒以某种方式所左右。

        斑疹伤寒与新教改革

        在祖父西班牙国王斐迪南二世和神圣罗马帝国皇帝马克西姆连一世(Maximilian Ⅰ)分别于1516年和1519年去世后,年轻人查理五世(Charles Ⅴ)无可争议地成了西班牙国王与天主教的政治领袖。这些头衔让他掌控了欧洲和美洲的大量土地,以及大批随时可以为其开战的基督教战士。即位后几年里,查理五世展开了一系列的大规模军事行动,对抗他的三个主要对手:法国人、奥斯曼土耳其人以及新成立的新教教徒。伴随着流行性斑疹伤寒的困扰,这些战争最终决定了查理五世的统治,并永久改变了欧亚大陆的历史以及世界几个主要宗教的历史。

        1519年,当查理五世宣布成为神圣罗马帝国皇帝时,他立刻引来了

        无数强大的敌人,这些人认为查理五世越俎代庖了。其中一位劲敌就是

        时任法兰西国王弗朗西斯一世(Francis I)。1521年,弗朗西斯一世与

        威尼斯共和国结盟,在西班牙北部对查理五世的军队展开攻击。战争很

        快蔓延到法国、低地国家(如比利时、荷兰)和意大利,又持续了4年

        时间。 [7] 当法国军队进入意大利北部,朝罗马进军时(1525年),他们

        在一座叫帕维亚的小镇中遭到了查理五世军队的伏击。短短4小时内,

        法国军队就被冲散,被彻底歼灭了。在场的很多法国贵族被杀死,弗朗

        西斯一世也被俘。被迫签署了耻辱的《马德里条约》,交出意大利以及

        其他地方的土地后,弗朗西斯一世被释放了,并于1526年被允许返回法国。

        被西班牙俘虏者释放后的几周内,弗朗西斯一世立刻重组军队,与

        新教皇(克莱芒七世)、英国的亨利八世、许多独立的意大利共和政体

        以及奥斯曼帝国的苏莱曼国王形成联盟。查理五世得知克莱芒七世背叛

        了自己,还和自己最憎恶的死敌(以及奥斯曼土耳其人)联合在一起,

        他派遣了一支军队前往罗马,正式占领了这座城市。 [8] 不幸的是,他的

        军队没有遵守不准掠劫城市的命令,并于1527年3月洗劫了罗马。他们

        偷走了梵蒂冈的大部分宝藏,教皇也被迫逃命了。对西方“圣地”神圣性

        的公然蔑视,让法国联盟再次对意大利城池发起进攻,对抗查理五世。

        法国人带着3万名士兵,以压倒性的优势在那不勒斯包围了1.1万名西班

        牙士兵组成的军队,并且控制了为他们提供补给的港口。同时,腺鼠疫

        袭击了那不勒斯,被包围的大部分西班牙士兵病倒或死亡。当时西班牙军队在那不勒斯的总指挥是奥兰治亲王,他溜出城并给查理五世递信,说他打算放弃意大利了。

        当所有人觉得西班牙输定了,“斑疹伤寒将军”介入并改变了战争的进程。 [9] 仅在约1个月内,就有2万多名法国士兵死于这种病,剩下的病员逃走了。这让西班牙军队重生,轻松战胜了法国人。流行性斑疹伤寒带来了西班牙的枪炮和刀剑都无法取得的成就。它被视作上帝赐予西班牙的礼物,是西班牙和查理五世的救星。这样一来,查理五世保持着对神圣罗马帝国、大部分意大利领土以及教皇克雷芒七世的绝对控制。教皇最终从圣天使堡的监禁中走了出来,并被允许恢复天主教领袖的位置。他的余生都在教皇的宝座上,但始终担忧查理五世随时会杀了自己。

        英格兰国王亨利八世,是另一个受到流行性斑疹伤寒和随之而来的1527年西班牙胜利的巨大影响的人。在意大利战争(1521~1526年)早期,他是查理五世的重要支持者,甚至几次帮助查理五世对抗弗朗西斯一世。1526年,他背叛了查理五世,加入了教皇和从西班牙被释放的弗朗西斯一世的军队。这个背叛很有趣,因为当时亨利八世的妻子阿拉贡的凯瑟琳是查理五世的姨妈。 [10] 1530年7月,亨利八世正式要求教皇克雷芒七世取消他和凯瑟琳的婚姻,情况变得更糟。亨利八世声称这一要求的根据是《旧约全书-利未记》的一段话,其中指出与已故兄弟的妻子结婚是“不洁净”的(凯瑟琳曾经嫁给了亨利的哥哥亚瑟)。但事实上,他这么做是因为凯瑟琳5次怀孕,却没能为他诞下男性继承人,他想和他的情妇安妮·博林结婚。

        教皇进退两难。他到底是冒着激怒凯瑟琳的侄子查理五世的风险,和政治盟友亨利八世站在同一边,还是为了自己的性命安危而拒绝这个请求?经过繁复的程序,教皇决定做安全的选择,他拒绝了亨利八世的请求。这给亨利八世带来了一个大难题。1532年末,他得知安妮怀孕了,如果非婚生子,他的继承人将不合法。面对不断上升的压力,加上感觉自己被教皇的拒绝羞辱了,亨利八世脱离了罗马教廷,并在自己的直接管辖下,建立了一个新教会。 [11] 这样他就能在英国的法律下自由地与凯瑟琳离婚,然后与安妮结婚了。这个新的宗教,英国教会(英国国教),一开始保留了天主教的大部分教义和礼拜形式,但在亨利八世的最终继承人爱德华六世的统治下,越来越贴近新教。如果1527年没有斑疹伤寒帮助查理五世保住王位,教皇很有可能会同意他的盟友亨利八世解除与凯瑟琳的婚姻,英国的宗教改革可能永远不会发生。

        16世纪,新教在欧洲其他国家的崛起同样受到了斑疹伤寒的影响。为了控制这种新宗教的传播,查理五世和他的继承者制定了法律来限制异教徒传教,组建了名为“宗教裁断所”的地方特别法庭来辨别、排除异教徒,并建立了规模化的军队来保卫天主教。例如,在1521年的沃尔姆斯会议上,查理五世公开谴责马丁·路德(Martin Luther),他下令“从现在起,禁止任何人接受、捍卫、认可或支持马丁·路德,无论是口头上还是行动上。相反,我们希望马丁·路德作为臭名昭著的异教徒被逮捕和惩罚”。 [12] 德国、斯堪的纳维亚、东欧国家的新教首领建立起自己的政治军事联盟,来应对查理五世的专制。像托尔高联盟和施马尔卡尔登联盟这样的正式联盟,能让不同的新教团体联合起来,以更加统一的力量对抗强大的天主教军队。

        新教与天主教早期的许多战斗中,看上去天主教似乎能成功地清除新教日益强大的威胁。例如,查理五世的天主教军队于1547年在德国米尔贝格歼灭了新教军队,导致施马尔卡尔登联盟的瓦解。 [13] 这场败仗几乎摧毁了新教改革,德国只剩下两个城市公然反对神圣罗马帝国的统治。5年后,一支强大的天主教军队再次打算在法国梅斯攻击一支新教力量,眼看新教运动就要灰飞烟灭了。 [14] 然而,战斗开始几个月之后,查理五世被迫取消了围攻,因为他的军队中多达3万名士兵死于斑疹伤寒。撤退的记录上描述着死尸成堆以及患病的天主教士兵们排长队撤离的场面。这使得新教在法国梅斯得以继续存在,并且在政治和军事力量都非常薄弱的情况下能够继续在欧洲传播。接下来的65年内,两股势力打打停停,直到欧洲历史上最长、最血腥的战争——三十年战争(1618~1648年)拉开序幕。由此可见,让新教得以留存下来的这场斑疹伤寒的重要性不言而喻。在三十年战争期间(下文将讨论),斑疹伤寒在整个欧洲大陆大肆传播。而让斑疹伤寒得以横行并成为一场“流行噩梦”的,正是近乎病态的“为宗教而战”的信念。

        综上所述,很显然,谈到宗教改革,我们无法忽略斑疹伤寒在这场运动早期的几次关键战役中起到的重要作用。纵然是极有影响力的几位领袖,如查理五世、弗朗西斯一世、亨利八世,以及德国的多名王公们,他们在流行性斑疹伤寒面前也无能为力。他们殚精竭虑地制定策略,却不得不让疾病随机决定了重要战役的胜利者。最终,双方都在不同时期成也斑疹伤寒,败也斑疹伤寒。这是个一视同仁的杀手,它既不信天主教,也不信新教。

        三十年战争

        17世纪早期,神圣罗马帝国由政治上半自治的国家构成,它们享有一定程度的宗教自由。自1555年《奥格斯堡和约》签署以来,德国各省的领袖们被允许接受路德教作为事实上的国家宗教,生活在天主教区域的路德教教民可以自由地信奉路德教,不用担心遭到帝国的报复。 [15]这一切从1617年开始发生变化,斐迪南二世(Ferdinand Ⅱ)——一位忠实虔诚的天主教徒,反新教人士,成为新教地区波希米亚(现在的匈牙利和捷克共和国)的国王。作为反对宗教改革运动以及天主教联盟的领袖,斐迪南二世打算在波希米亚贯彻宗教的统一性,希望把新教从这片土地上铲除。在执政早期,他制定了一系列针对新教徒的限制政策,这在波西米亚人中造成了极大的怨愤与恐惧。 [16] 1618年5月,斐迪南二世派代表们去布拉格(波希米亚)商讨这些政策,新教成员联合起来把几名代表从三楼窗户扔了出去(神奇的是,他们都没死于坠楼)。这次反对斐迪南二世的抗议,被称为“第二次布拉格掷出窗外事件”,标志着三十年战争的开端。

        接下来的一年里发生了若干事件,导致一场相对较小的局部冲突,最终上升为恶性的跨洲战争。 [17] 其中一件重大事件是斐迪南二世于1618年被选为匈牙利国王,随后在1619年他的表兄马蒂亚斯死后,他又成了神圣罗马帝国的皇帝。这使他获得了大量土地、臣民的实际控制权,以及把反对新教的意愿付诸实践的资源。同时,波西米亚的新教贵族结成了联盟,决定断绝与斐迪南二世和神圣罗马帝国的一切关系。1619年8月,他们把新教立为波西米亚的国教,把斐迪南二世驱逐出波希米亚,选举腓特烈五世为新国王。可想而知,斐迪南二世被激怒了,他依靠天主教联盟的军事支持,对波希米亚发动了一系列进攻。斐迪南二世的军队以3∶1的兵力击败了波希米亚人,粉碎了1620年11月的叛乱。然而,他这样的做法引发了全欧洲新教徒的恐慌,他们担心天主教军队会开始进攻其他新教土地。结果,由新教国家组成的联军——新教联盟——直接参与到战争中。接下来的25年里,瑞典、英国、法国、丹麦和萨克森等国向神圣罗马帝国、西班牙、奥地利和匈牙利宣战。尽管大部分战争集中在德国境内,但几乎整个欧洲都卷入了这场战争,这被认为是第一次真正的世界大战。

        三十年战争对中欧的土地和人口造成了破坏。有人估计近1000万人死于战争,其中只有约40万人直接死于战斗。 [18] 士兵在欧洲大规模流动,居民家园被大肆破坏,两者叠加,为斑疹伤寒和腺鼠疫在军队和平民中的蔓延创造了完美的环境。事实上,这场战争是斑疹伤寒第一次从战场和营地转向城镇和住宅传播。斑疹伤寒在这场战争中真正达到了大流行的程度,并在欧洲的普通民众中蔓延。在《老鼠、虱子和历史》(Rats,Lice and History )这本书中,辛瑟尔(Zinsser)优雅地写道:“三十年战争是人类所经历的最大规模的流行病自然实验。”[19] 斑疹伤寒以前所未有的速度传播,成为整个欧洲的监狱、学校以及其他拥挤环境的地方病。这样,在接下来的3个世纪里,它成了更加致命的几种斑疹伤寒的源头。

        拿破仑的一根刺

        法国皇帝拿破仑·波拿巴(Napoleon Bonaparte),他的统治和声誉都被流行性斑疹伤寒所摧毁了,他受到的影响恐怕比现代历史上任何一位领袖都要大。在对大革命之后的法国、意大利和埃及完成了一系列军事征服后,拿破仑于1799年回到法国,推翻执政的督政府,取得了国家的政治掌控权。作为第一执政官,他带领法国取得了对抗奥地利的一系列军事胜利,并对法国政府、法律体系和经济推行改革措施,以恢复国内的秩序。1802年,拿破仑参与修订了宪法,把他自己变成法国的终身领袖,2年后加冕为皇帝。接下来的8年中,他持续发动代价昂贵的战争,震慑着大部分欧洲和俄国地区。1810年,拿破仑帝国到达了巅峰,法国通过直接占领或利用臣服于拿破仑的傀儡政府组成的联盟,控制了欧洲大陆的大部分地区(除了巴尔干半岛)。1812年,当拿破仑决定途经波兰进军俄国时,似乎将要大势所趋地征服欧亚大陆了。

        自1807年7月《提尔西特条约》签订以来,法国和俄国的伙伴关系一直不稳定。 [20] 条约里规定,沙俄只能与大陆体系内的国家(与法国友好的欧洲国家)进行贸易,法国反过来允许沙俄保留其几乎所有的土地。双方还达成协议在军事上互相支持,因为彼时法国还在与英国作战,而俄国在与奥斯曼土耳其作战。然而,几年后,随着法国不断涉足沙俄邻国波兰,而俄罗斯商人持续与法国的敌人英国往来贸易,两国之间的紧张关系加剧。另外,拿破仑觊觎英国所控制的印度。强大的英国

        海军阻止了拿破仑从海上入侵印度,迫使他只能从陆路上想方设法穿越

        俄国。形势很清晰,拿破仑必须出兵攻打沙俄,才能让沙俄为他所用。

        他组建了一支69万人的庞大军队,包含27万名法国士兵,以及其他法国

        控制地区(意大利、波兰、奥地利与今天的德国)的士兵。 [21] 1812年6

        月24日,拿破仑带领他的军队来到尼曼河畔,正式宣布他计划越过边境

        进入沙俄控制的领土。 [22] 他们用几天时间穿越河流,进军波兰,没有受到沙俄军队的抵抗。

        当法国大集团军向波兰内地推进时,他们不得不面临一系列昂贵的后勤问题。 [23] 首先,波兰乡村的路不适宜重型设备或大批军队,大大阻碍了为大集团军供应食物、净水与干净衣物的补给车通行。加上拿破仑坚持骑兵与陆军尽快推进到莫斯科,进一步加剧了这个障碍。结果是,几周内军队完全脱离了可靠的物资供应,各项物资的库存都处于危险的低水平。波兰乡村正逢干旱,几乎找不到救援,军队被命令去当地村庄寻找物资。拿破仑的首席医生多米尼克·让·拉瑞警告大家觅食的时候要减少与当地农民的接触,担心可能从当地人身上染上危险的疾病。遗憾的是,大集团军中大部分从其他国家来的士兵没有以这种方式获取物资供应的经验,而且很多人缺乏对纪律的执行度。很多士兵掠劫了波兰乡村,大肆偷盗,与当地居民发生了短暂却至为重要的接触。这些行为的后果远比多米尼克·让·拉瑞想象得更糟糕。

        当时波兰流行的疾病之一就是斑疹伤寒。从乡村回来的士兵不知晓自己衣服里带回了感染了斑疹伤寒的虱子,虱子传到了军队其他人身上。 [24] 军营里居住条件拥挤肮脏,士兵们不能经常换洗衣服,导致虱子在军队里失控地传播。身上有虱子的士兵日夜不断被叮咬,让他们在劳累、生病和饥饿中无法入睡。在到达波兰的第一个月末,大约80000人(和几千匹马)死亡或病倒,大多是因为斑疹伤寒和痢疾。拿破仑并没有放慢军队的进程,他要求军队继续向沙俄行进,同时安排多米尼克·让·拉瑞建立野战医院。秋天到来,又有几千人死亡,很多人病倒或逃走了。事实上,一些人估计拿破仑到达俄国博罗季诺战场前已经损失了一半的兵力,战争又折损了另外的30000人的军队。 [25]

        法国军队在博罗季诺打了个无意义的胜仗,几乎消耗殆尽的大集团军只剩10万名士兵了,他们继续行进75公里,于9月14日到达莫斯科。[26] 对于军队中尽显病态与疲惫的士兵来说,眼前的景象令人沮丧:莫斯科成了一座被烧毁废弃的城市,食物、水和其他生活物资都荡然无存。这些士兵在几百公里的崎岖地形中连续作战了3个月,必须与无尽的饥渴、疲惫、虱子侵扰和传染病作战,看着数十万战友因斑疹伤寒和痢疾而奄奄一息。他们以胜者的身份站在一座全世界伟大的城市的城门前——这是沙俄帝国皇冠上的宝石,但他们只能感受到挫败。3个月折损了80%的兵力,为的只是征服一座没用的城市,他们仍旧很饿,还生着病。

        大集团军在莫斯科又驻扎了1个月,急切地等待着新物资和军队的到来,徒劳地等着亚历山大正式投降。对拿破仑来说不幸的是,9月、10月新加入的15000名士兵,与那段时间死于斑疹伤寒的军人数量大致相等。 [27] 而亚历山大利用这段时间加强兵力,部署军队,企图阻碍法军的撤退。列夫·托尔斯泰在他的经典著作《战争与和平》中激情昂扬地描述了法国军队在莫斯科遇到的坎坷:“军队像一群狂奔的牛群,践踏着本可使自己免于饥饿的饲料,在莫斯科的每一天都见证着军队的瓦解和死亡。”[28] 10月中旬,拿破仑意识到如果继续留在莫斯科,他将会失去整个军队,便下令全军撤退。1812年10月19日,拿破仑扔下了1万多名感染了斑疹伤寒的士兵,正式放弃了莫斯科,带着残余的大集团军朝西南方向的巴黎踏上归程。 [29]

        法军撤退的时候比进军莫斯科的时候更加糟糕,因为又多了两个敌人:寒冷和重振兵力的俄军。士兵在荒凉且疾病肆虐的沙俄乡村缓慢地行进,数以千计的士兵死去。俄军不断攻击撤退大军的后翼,当地居民拒绝提供帮助。有记录表明,无助垂死的士兵饿到啃食皮革或倒下同伴的肉体。那年冬天晚期,他们终于到达德国边境的时候,只剩下3万~4万名战斗人员了。这些人几个月后一路回到了巴黎,其中能再次作战的健康兵力只有1000人左右。 [30]

        一项关于1812年拿破仑进攻沙俄造成悲剧的全面分析显示,失败的原因是许多不同因素相互作用的结果,而不仅仅是因为斑疹伤寒。糟糕的领导决策、傲慢、干旱、疾病、极度寒冷的冬天、坚韧的沙俄军队,这些因素共同注定了拿破仑向亚洲大陆扩张的美梦破灭。然而,不可否认的是,因为斑疹伤寒死去的约20万人对军队的力量和士气产生了深远影响,比在沙俄子弹和极寒中丧生的人多了不止5倍。大集团军在战场上遭遇到任何重要的军事行动或在冷酷的寒冬里穿越俄国之前,就已经被斑疹伤寒击溃了。这个疾病在6个月内做到了之前20年里任何一位军事领袖都无法完成的任务:它给了拿破仑的军事才能重重一击,毁灭了他战无不胜的神话。1812年这场灾难性的战役几年后,拿破仑逐渐失去了对欧洲的控制,最终于1815年在滑铁卢战败。

        爱尔兰马铃薯饥荒与移民

        爱尔兰大饥荒(也被称为爱尔兰马铃薯饥荒)开始于1845年,持续了7年多时间,它夺取了100万人的生命,迫使150万~200万人离开这个国家。 [31] 饥荒发生的几年前,可耕种土地的所有权从地主手上转移到了土地中间商手上,中间商把土地分成非常小的地块,租给佃农。而农民必须好好耕作这片庄稼,让它的收成不仅能支付田地的租金,还能养家糊口。不幸的是,土地面积过小以及过度耕种导致的土壤营养不良,严重限制了可以耕种的作物种类。到19世纪40年代初,大部分佃农开始依赖单一品种的马铃薯(爱尔兰马铃薯)作为食物和收入来源,因为马铃薯具有很好的营养价值,在相对贫瘠的土地上也能长得不错。1844年,对基因一致的单一作物过度依赖的灾难性显现出来,一种新的植物疾病从美洲传来,开始在整个欧洲大量摧毁马铃薯。这种马铃薯枯萎病的病原体,是一种叫致病疫霉(Phytophthora infestans)的水生真菌,被感染的马铃薯会变黑而无法食用。到1847年,致病疫霉肆虐了爱尔兰的马铃薯产业,使马铃薯年产量骤然减少了80%。

        最主要种植物的几乎颗粒无收,这立刻对爱尔兰人民造成了严重影响。没有了收入来源,大量苦苦挣扎的佃农家庭被无情的地主驱逐。有些人估计,在饥荒的最初几年,大约有50万人被赶出了耕作的土地,很多人只能眼睁睁地看着自己的家被夷为平地。 [32] 大批人流离失所,导致很多家庭不得不挤在很小的房子里,共享有限的资源以避免挨饿。不幸的是,越来越多的贫穷和营养不良的人们簇拥在一起,为斑疹伤寒、痢疾、霍乱等传染病的蔓延提供了完美的条件。大饥荒期间,爱尔兰有大约100万人死去,斑疹伤寒造成了几十万人的死亡,而其他疾病与饥饿共同导致了其余的大部分人死亡。 [33] 事实上,1851年的人口普查数据表明,在饥荒最严重的几年中,疾病导致的人口死亡大约是饿死的人的20倍。

        饥病交加的人们面临的是一个生存问题:在这前所未有的苦难中留下来重建自己的生活,还是离开前往欧洲或美洲的其他地方寻找新的机会?不幸的是,约100万名爱尔兰人决定移民北美,肆虐爱尔兰的疾病跟随着他们踏上了拥挤又肮脏的跨洋航船。

        离开西爱尔兰港口的船只一般有三个目的地:欧洲(如英国)、美国或加拿大。前往美国和大部分欧洲地区的票价刻意高于前往加拿大的船只,这样就能把贫困移民引入英国控制下的加拿大。不幸的是,船费收得少代表着船主一般无视那些保护乘客的法律(如1842年的《乘客法案》),只给乘客提供非常少的食物、水和空间。 [34] 一些船只的乘客数量几乎达到了核定载客量的2倍,大部分船不提供食物,每天只为每位乘客提供2品脱不洁净的水。如此恶劣的条件让斑疹伤寒(“船热”)和痢疾在40天的行程中暴发了。行船记录表明,大饥荒期间乘船去美洲的人,约有30%在海上死于疾病。行程中病死的人常常被无情地丢下甲板,扔给一路跟随的饥饿鲨鱼。一位1847年5月乘船前往魁北克的乘客描述了在这种“棺材船”上的无助:
        我们本以为上了船不会比之前的状况更糟糕,但我们现在痛苦地意识到这是不一样的恶劣境况。当然,我们不上船的话,可能会死于饥饿或疾病,但我们仍有机会去看医生;如果医生帮不了我们,牧师会为我们的灵魂做些什么,然后我们会和我们的同伴葬在一起,在教堂的院子里,青草覆盖着我们。不像现在,仿佛是一只腐烂的羊被扔进坑里,我们吐出最后一口气,然后被扔进海里喂可怕的鲨鱼。 [35]

        人们大举逃离大饥荒的几年中,这样的情绪和故事比比皆是。

        到达美洲后,并不像很多人所希望的那样,从饥饿和斑疹伤寒的恐怖中解放出来。加拿大和美国的港口城市没有准备好应对载着大批感染斑疹伤寒移民的船只。1847年中,格罗斯岛(魁北克)、多伦多、蒙特利尔和纽约这些城市的医院被斑疹伤寒患者淹没了,人们不得不在医院外面撑起临时帐篷来隔离病人。 [36] 大部分“发烧帐篷”拥挤、肮脏、设备不全,和他们刚刚逃离的“棺材船”几乎没有区别。结果是,斑疹伤寒继续以流行病的规模在移民中传播,几个月时间内(1847~1848年)就夺去了成千上万名被隔离的爱尔兰人的生命。

        很多港口城市的情况变得很糟糕,当地政府开始要求移民们下船前至少在受感染的船上待15天,这样斑疹伤寒病例就无从遁形了。对于船上健康的人而言,这意味着继续被污秽和病态的环境包围15天。不难预料,这个政策让很多到达美洲时还健康的人最终感染了斑疹伤寒,并在等待下船时死亡。这种噩梦的一个典型例子是加拿大魁北克格罗斯岛的主要移民港口。 [37] 1847年夏日的某时,40多艘满载生病乘客的船只在圣劳伦斯河排了2英里的队。一些乘客拼命想清除船上的斑疹伤寒,他们开始把死尸扔到河里,另一些人把病人放在小船上,让他们漂向岸边。当地居民描述道:他们看到死尸漫无目的地漂浮在交通繁忙的圣劳伦斯河中,就像没有生命的木头;病人从淤泥与岩石中艰难地爬到岸上。这种恐怖的场面一直延续到格罗斯岛的医务人员决定取消这种无效也不可持续的隔离政策。

        虽然斑疹伤寒并没有直接在爱尔兰造成破坏,但它确实加剧了当地人面临的无法想象的痛苦,也折磨着那些试图逃离疫区并在另一个地方重新开始生活的人。它是一个机会主义杀手,等待着像大饥荒这样的完美事件在无助的人群中暴发。

        第一次世界大战

        1904年至1905年的日俄战争是第一场死于战斗的士兵多于死于疾病的士兵的大规模战争。 [38] 医学科学长足的进步让大家相信,我们现在有足够的知识和技能来帮助抵御战争期间的斑疹伤寒和痢疾等疾病。很多人希望这标志着斑疹伤寒不会再大规模肆虐军队,破坏伟大军事战略家们的军事计划。然而,世界上最大也是死亡人数最多的战争之一即将爆发。第一次世界大战向世界证明了斑疹伤寒的危险程度并没有减弱。事实上,这场战争以及由此引发的政治动荡为人类历史上两次最糟糕的斑疹伤寒大流行提供了完美背景。

        一个塞尔维亚民族主义者暗杀了奥匈帝国的王位继承人,于是,第一次世界大战于1914年7月28日在东欧爆发。奥匈帝国将这一事件作为战争挑衅,大举进攻塞尔维亚。塞尔维亚的政治盟友(如俄罗斯)快速地做出反应,进行军事防御,促使奥匈帝国的盟友(如德国)也加入了战争。不久,来自20多个国家的将近7000万名战士卷入了这场持续4年的残酷战壕战争。这场战争分为两条战线:一条战线在东欧,接近俄罗斯和巴尔干半岛;另一条在西部,靠近意大利、法国和比利时。两个地点的战士都持续数日,甚至数周在潮湿且不卫生的战壕里作战,寒冷和拥挤导致体虱快速传播,体虱传播的疾病(斑疹伤寒和其他战壕热)也很快蔓延起来。

        虽然斑疹伤寒没有对第一次世界大战重要战役的结果产生正式影响,但它对其中某些战争何时发生起了重要作用。在塞尔维亚的东部战线尤其明显,1914年秋天,斑疹伤寒对该地区的影响很严重。 [39] 那年11月,奥匈军队对塞尔维亚发动进攻并随后撤退,流行性斑疹伤寒在6万名奥匈战俘和塞尔维亚的俘获者中暴发。疾病迅速向塞尔维亚军队扩散,并向南扩展到其他周边城市。随着气温的降低,斑疹伤寒疫情越来越糟糕,每天让6000多人病倒,杀死了近1/4的塞尔维亚军队。据估计,本次疫情导致20多万人丧生,称为历史上最严重的一次流行性斑疹伤寒大暴发。

        可参与作战的健康士兵数量骤减,如果奥匈军队和德军同盟在1914~1915年冬天决定再次进攻的话,塞尔维亚人将会束手无策。然而,同盟国的领导人看到斑疹伤寒给塞尔维亚军事力量造成的破坏后,决定不让自己的军队在流行病暴发的高峰去冒险。他们等了6个多月,才于1915年10月穿越多瑙河。进入塞尔维亚的两天后,奥匈德军队控制了贝尔格莱德,迫使塞尔维亚人逃向南方。1周后,保加利亚军队开始攻击塞尔维亚南部,轻而易举地获胜了。同盟国眼看要大获全胜了,但他们等待流行性斑疹伤寒疫情趋缓后再进攻塞尔维亚,后面会证明这一决策会对战争的结果产生重大影响。

        1918年3月初,随着《布列斯特-立托夫斯克和约》的签订,俄罗斯正式向同盟国投降,东线漫长的战争结束了。德国胜利后,开始了把大量兵力转移到西欧的艰难工作,以加强计划在那年春天晚些时候向西线进攻的军事力量。不幸的是,大部分东欧战线的士兵在拥挤肮脏战壕里作战的时候,染上了体虱与斑疹伤寒。结果,来自50多个师的数十万名德国军队在被派往千里之外的法国前,不得不进行严密的驱除体虱工作。德军的西行速度放缓了,给了协约国缓冲时间,等到了来自美国、英国与法国的数百万名援军。后来证明,这批新军队是协约国成功击退西线德国的4次进攻并最终于1918年11月打败同盟国的关键。

        长期以来,历史学家与科学家一直在争论,斑疹伤寒在决定上述战事的结果中所起的作用。一些人推测,如果同盟国能在1914年斑疹伤寒大流行前进军并击败塞尔维亚,那么他们就有能力调遣军队从北面和南面夹击俄军。 [40] 这样的话,他们就能让俄军更早地签订投降协议,然后集中兵力在美国加入战争前攻打西线。然而,事实是,斑疹伤寒延长了东线战争,迫使同盟国长期在两条战线展开代价高昂的战争。尽管斑疹伤寒没有影响一战中任何一场战争的结果,但对斑疹伤寒的恐惧时刻影响着军事领袖,让他们放弃了原本可能会改变整场战争结果的作战计划。

        战后出现了一个有趣的矛盾,尽管西线战争的生活条件也很可怕,东、西线士兵感染体虱的情况相当,但斑疹伤寒在西线几乎不存在。虽然确切的原因仍是个谜,但大多流行病学家认为,西方的士兵具有一定的免疫能力,可能因为之前被体虱携带的一种叫“五日热巴尔通体”(Bartonella quintana)的细菌感染过。 [41] 一开始,它被误认为是立克次体的一种,导致非致命性的回归热(被认为是战壕热),患者伴有皮肤损伤,运动后会出现使人虚弱的腿痛。虽然两条战线的士兵都有可能患上战壕热,但在气候温暖的法国战场,患病概率更高。例如,1915年到1918年,估计有1/4的英国军队得了战壕热。从战壕热中恢复的士兵对之后的“五日热巴尔通体”细菌感染有了免疫反应,神奇的是,这种免疫反应也能对相似的细菌产生反应,包括要命的斑疹伤寒细菌普氏立克次体。因此,“五日热巴尔通体”(战壕热)似乎像天然疫苗一样对普氏立克次体有效,其确切的运作机制至今还有待研究说明。

        俄国革命

        第一次世界大战结束后,几百万名染了体虱的军人回家,斑疹伤寒在东欧快速暴发。战后受打击最严重的地方是俄国,它在一战中遭受巨大损失,1917年经历了两次暴力政治革命,1918年暴发了伤亡惨重的内战以及大流感(见第九章)。总而言之,以上事件导致了现代历史中少见的贫穷、痛苦与混乱,人类历史中最糟糕的流行性斑疹伤寒就在这个“完美”条件下暴发了。

        一战中,650万名俄国士兵死伤。如此惊人的损失使民众对沙皇尼古拉二世(Nicholas Ⅱ)的统治和他无视全国贫穷饥饿的无情愈加不满。1917年,越来越多的士兵开始叛逃,工人(有男有女)走上首都彼得格勒(圣彼得堡)的街头组织大规模抗议,要求增加收入与改善工作环境。 [42] 当这些示威游行在当年2月演变成暴乱时,尼古拉二世集结了10万人的军队,命令他们采取一切必要的手段镇压抗议。由于不想向暴乱的人群开火,军队们离心四散,拒绝执行镇压,躲了起来,甚至加入抗议的队伍。1917年3月,当尼古拉二世回到彼得格勒的时候,他的行政大楼大多被暴乱者毁坏了,他的政府陷入混乱。尼古拉二世遵守了他最高官员的建议,于3月15日退位,想以此保护他和家人的性命。他很快被新的临时政府软禁在家,直到16个月后被处决。

        在俄国正遭遇巨大的经济和社会动荡的时期,君主制的瓦解造成了权力真空。 [43] 尘埃落定后,二月革命中的两个团体共享国家的政治统治权。尼古拉二世退位后第二天成立的临时政府是由温和贵族组成的,他们原本计划重建社会秩序,在当年晚些时候进行民主选举。和他们对立的是由工厂工人和前士兵组成的大型委员会,后来被称为彼得格勒苏维埃。他们一开始像一个政治游说组织,试图给临时政府施压,以实施社会改革,提高贫苦劳动者的生活质量,但他们与临时政府在关于战争与其他内务问题上的意见有重大分歧,他们便想争取更大的决策权。

        从1917年夏天开始,苏维埃和由弗拉基米尔·列宁与列夫·托洛茨基领导的新兴左翼政党布尔什维克党结盟。 [44] 和当时俄国很多受欢迎的左翼团体一样,布尔什维克坚信政府的权力应该掌握在工人和农民的手里,而不是富裕的资产阶级手里。他们看到了君主制解体、与德国战争结束后工农的生活条件没有显著改善,布尔什维克领导的左翼团体于1917年推翻了临时政府。这第二场革命使布尔什维克派控制了所有政府机构,他们的意识形态在整个俄国传播。然而,他们并没有得到大部分人的支持。例如,右翼、中上层阶级、君主制主义者、哥萨克人以及一些不服布尔什维克统治、要求重组政府的左翼团体,联合起来反对布尔什维克,组成了很多所谓的白军(与布尔什维克的红军相对)。接下来的5年发生的是欧亚历史上最血腥的内战之一。

        俄国内战夺去了大约800万人的生命,国家战火纷飞,一片狼藉。

        双方为了镇压他们所认为的国家叛乱,互相折磨、恐吓。

        除了杀戮,还有数百万间房屋被烧毁,数千亩肥沃的农田被毁坏。这些问题导致了大范围的食物短缺与数千万人流离失所,其中包括700多万名儿童成了街头孤儿。大部分俄国人生活在如此恶劣的环境中,患上大流感、痢疾与斑疹伤寒几乎是难以逃脱的命运。

        据估算,1918年到1922年,约有2500万名俄国人(占总人口的1/4)感染了斑疹伤寒,300万人死于这个疾病。 [45] 尽管传染病肆虐的影响无法想象,但大部分历史学家并不认为疾病对内战的结果具有重大影响。很可能是因为斑疹伤寒对双方并没有偏颇。它同时袭击了红军和白军,城市与乡村的人,以及社会的各个阶层。它无处不在,几百万名绝望的人逃离危险的城市,疾病通过拥挤的火车快速传播。尽管两军的领导人都担心斑疹伤寒可能会导致自己输掉战争,但最终都没有。列宁曾经说过一句有名的话:“同志们,请对这个问题引起高度重视。不是虱子打败社会主义,就是社会主义征服虱子!”[46] 斑疹伤寒没有打败社会主义,但其在社会主义制度刚刚诞生的时候给民众造成了无法估量的痛苦。看上去社会主义同样没能打败斑疹伤寒。不过,很多人提出,俄国人认为这个疾病让他们更趋向于接受1922年获胜的布尔什维克(共产主义)政府。俄国人经历了8年连续不断的战争、饥饿、混乱与疾病,他们迫切地想要结束这一切痛苦,远离战争的残暴与病痛的折磨。共产主义政府提供的社会秩序很可能让民众相信,这是终结他们苦难的最佳希望。

        第二次世界大战

        第一次世界大战后制定的一些预防措施限制了斑疹伤寒在第二次世界大战军队中的传播。首先,流行病学家发现了体虱是斑疹伤寒的传播媒介,并于1916年确认普氏立克次体是斑疹伤寒的病原体,这些发现引导了流行病学家控制疾病的方式。 [47] 早期的措施包括除虱或沸水煮有污渍的衣物和被褥,频繁沐浴,防止人群聚集,以及抑制其他导致体虱滋生的条件。这些方式对斑疹伤寒的小规模暴发(如1910年代末期塞尔维亚和北非的暴发)有效;不过这些预防措施昂贵又费时,对大规模人口使用并不实际。很多被除虱的人回到贫困的环境中,与仍有体虱的人接触后很快又被感染。1939年这个局面发生了根本的改变,灭虫剂DDT不仅对杀死体虱有效,使用后几周还能预防再次感染。20世纪40年代初,美国军队发明了一种动力撒粉机,保证了战乱中的军队和难民能有效除虱。

        有效的斑疹伤寒疫苗也有助于抑制二战中斑疹伤寒的传播。20世纪30年代中期,波兰科学家鲁道夫·魏格尔(Rudolf Stefan Weigl)发明了这个疫苗。 [48] 二战开始前,这个疫苗已成功地在中国和埃塞俄比亚这类地方做了试验,并开始大规模生产。魏格尔通过让实验室上百万只活虱感染普氏立克次体,在它们复制普氏立克次体后,从它们身上收集细菌,大批量生产疫苗。在这个非常危险的方案中,受感染的体虱被碾压,释放出细菌,这些细菌在被有毒的苯酚灭活后,被注射到人体内。

        这个疫苗大获成功,所有见证了它奇迹般效果的人都赞扬了它。一位20世纪30年代在中国工作的比利时传教士写道:
        斑疹伤寒是人类最大的敌人之一,当时杀死的受害者比其他所有流行病加起来还多。1908年到1931年,在中国活跃的130个神父,有70%死于斑疹伤寒。当我们得知一位波兰教授发明了疫苗,一开始我们半信半疑,因为我们买过很多“治疗”药物,它们都没有效果。无论如何,我们打算试一试波兰人的疫苗,结果很神奇。从我们开始使用魏格尔的疫苗,在过去的7年里,没有一位传教士或被接种的中国病人死于斑疹伤寒。波兰人的疫苗不仅拯救了传教士,更是拯救了成千上万的中国人。 [49]

        遗憾的是,由于纳粹在1939年入侵并随后占领波兰,大家并没有意

        识到魏格尔疫苗的惊人潜力。纳粹并不想接手魏格尔的生产工作,也不

        想把自己暴露在斑疹伤寒的风险中,纳粹让魏格尔在他们的监视下继续

        进行疫苗研发,前提是要向德国军队提供救命的疫苗。 [50] 魏格尔被允

        许带自己的工人进行大规模的生产,这样就给了他机会招募当地的知识

        分子,让他们免于纳粹的杀害。整个波兰最杰出的数学家、艺术家、科

        学家都曾为魏格尔培育体虱。一盒盒饥饿的体虱(未感染)被放到他们

        的腿上,直到它们肚子里充满了人类的鲜血。魏格尔说服了当地的党卫

        军,说需要更多健康的人来制造疫苗供应给纳粹,于是魏格尔招募了更

        多工人,设计了特定的任务,让这些人免于前往集中营的命运。此外,

        一些目击者表示,他们看见魏格尔偷偷地从实验室中运出成千上万剂斑

        疹伤寒疫苗,给了华沙犹太人区生活的犹太人注射。魏格尔知道,如果

        自己被发现,会因此被捕,甚至被杀害。他依旧冒着生命危险,拯救了不计其数的犹太人。因此,魏格尔医生被以色列大屠杀纪念馆誉为“国际正义”人士。

        当魏格尔秘密地用斑疹伤寒疫苗拯救犹太人之际,他之前的一个学生路德维奇·弗莱克(Ludwig Fleck)在犹太人集中营服刑期间,开始生产一种略微不同的斑疹伤寒疫苗。 [51] 他从暴露在斑疹伤寒细菌的人的

        尿液中纯化抗原,进行生产。这个效果神奇的疫苗很快被当地党卫军发

        现了,他于是被送到了布痕瓦尔德集中营,这样他就能为纳粹大规模地

        生产疫苗了。当弗莱克到达布痕瓦尔德集中营时,他立刻意识到此处处

        理斑疹伤寒的工作人员对微生物或免疫学知之甚少。事实上,当地的工

        人在不知情的情况下用错误的细菌生产疫苗,导致疫苗全然无效。于是

        就发生了现代历史中著名的微生物阴谋,弗莱克故意允许生产上吨的坏

        疫苗,给毫无戒心的纳粹精英们注射。同时,弗莱克生产了小批量的有效疫苗,大部分都给了集中营的俘虏和被送来测试疫苗的人。神奇的是,这件事持续了16个月,并没有被纳粹发现。然而,弗莱克很多年来一直为他战争中的决定备受煎熬,因为他违背了作为医生不伤害“病人”的誓言。最后,他意识到接受假疫苗的纳粹是逮捕他的人,不是他的病人,而他的病人们都没有因此受到伤害。

        尽管有了魏格尔的疫苗和强大的杀虫剂来控制斑疹伤寒的传播,但在第二次世界大战期间,一些人群仍然遭遇了疫情大肆暴发。尤其是犹太人贫民窟、运输列车和集中营中过度拥挤不卫生的环境,给了体虱和斑疹伤寒完美的滋生条件。 [52] 例如,在1943年被纳粹军队消灭之前,仅仅1.2平方英里的华沙大型犹太区里关押了约40万名严重营养不良的犹太人。斑疹伤寒在那里非常普遍,据统计,3年内约10万人死于该病。面对这种紧急公共卫生事件,当地的纳粹医生与行政长官拒绝干预,并射杀企图逃离犹太区去寻找食物与其他物资的人。他们认为在封闭的集中营里,斑疹伤寒消灭犹太人未尝不可,只要对他们自己或周围的人群没有危险就行。

        与犹太人贫民区相似,尽管纳粹官员努力控制疫情,但斑疹伤寒仍在集中营中传播得很快。被监禁的人在进入集中营的时候被扒光了衣服、剃体毛、去虱,集中营也有常规例行检查,以降低斑疹伤寒对在集中营工作的党卫军官员的风险。不过,这些微不足道的措施根本无法抵消集中营恶劣的条件,成千上万名被囚禁的犹太人死于斑疹伤寒,包括安妮·弗兰克和她的姐姐玛格特,她们于1945年死于贝尔根·贝尔森集中营。 [53] 集中营的一些幸存者回忆弗兰克姐妹于2月初出现了明显的斑疹伤寒症状,2周后,她们就病死了。

        当斑疹伤寒在敌对方中肆虐时,纳粹领导人似乎视而不见,但他们非常担忧传染病在德国人口和军队中的传播。除了强迫士兵接受严格的人员筛查与预防措施(如疫苗接种与DDT喷洒)外,纳粹经常利用媒体提醒本国民众保持个人卫生,如出现与斑疹伤寒相似的症状,要立刻就医。另外,纳粹对有疑似疫情暴发的乡镇进行严格隔离。一旦地方卫生官员报告新病例,他们在对附近街区实行隔离之前,就会发送血液样本进行测试与确认。

        一位特别机敏的波兰医生尤金·拉佐夫斯基(Eugene Lazowski)了解了这些政策,打算利用纳粹对斑疹伤寒的恐惧来对付他们。 [54] 他和他的医生朋友斯坦尼斯拉夫·马图列维奇(Stanislaw Matulewicz)一起,把热灭活斑疹伤寒细菌注射到波兰附近洛兹瓦多和兹比特洛贫民区12位居民身上。这些人接种后出现了轻微的斑疹伤寒感染症状,纳粹官员拿他们的血液去测试。测试报告呈现阳性(因为他们被注射了斑疹伤寒蛋白质),纳粹官员害怕斑疹伤寒大暴发,把整个村镇严密地隔离起来。

        这样一来,没有一个居民(包括其中的犹太人)被带去集中营,也没有人被杀死。据说这种假性流行性斑疹伤寒至少拯救了8000名犹太人免于遭受“最终处决”。

        二战中,另一个关于斑疹伤寒有趣的事是,这种疾病及其传播媒介与德国人针对犹太人的纳粹意识形态十分吻合。纳粹早期和晚期的文章显示,他们认为犹太人是向所有国家传播“疾病”的非人寄生虫。这种信念在1944年纳粹的《犹太人:世界的寄生虫》宣传册中写得很明白:
        德国人已经认识到,犹太人像寄生虫一样潜入我们的人群中,也在地球上所有的人群中蔓延,他们想要破坏大家原有的种族特征,以此来毁灭种族和国家,最后统治一切……犹太人是全人类的寄生虫。他们能单一地成为个体的寄生虫,也是整个民族的社会寄生虫,更是全人类的寄生虫。 [55]

        一开始德国人对犹太人问题的控制在于剥夺他们的权利和财产,通过重新安置和驱逐把他们赶出德国社会。当纳粹领导意识到这些措施不能达到他们预期的效果后,他们便开始启用一个更为持久的方法来解决“寄生虫”问题。1941年,希特勒(Hitler)和他的党卫军首领大屠杀策划者海因里希·希姆莱(Heinrich Himmler),设计了一套方案要彻底消灭德国和欧亚大陆的“寄生虫”。新型的集中营被称为死亡集中营,它唯一的目的是大规模杀死犹太人和其他不受欢迎的“寄生虫”(如吉卜赛人、同性恋者、残疾人等)。1943年,海因里希·希姆莱在党卫军大会中做了一个演说,他说“摆脱体虱不是一个意识形态问题。它是一个卫生问题。同样,反对犹太人,对我们而言,也不是意识形态问题,而是卫生问题,必须马上被解决。我们很快就会完成去虱。我们只剩2万只虱子了,然后德国就彻底解决这个问题了。”[56]

        由于在犹太人贫民区和集中营的犹太人患斑疹伤寒的概率很高,纳粹便把体虱和疾病与犹太人等同了起来。于是,纳粹用不同形式的有效宣传让大众相信了这种联结。一张海报上展示出典型的犹太人形状的头骨,旁边是一只爬行的体虱,标题是“犹太人-斑疹伤寒-体虱”,这样宣传的目的是让大家把犹太人和斑疹伤寒等同起来,这样大家会像长久以来害怕斑疹伤寒一样害怕犹太人,大家看到犹太人受到歧视和伤害的同情心就会减弱。鉴于普通公民能面不改色地接受纳粹对他们的犹太人邻居实施暴行,而没有引起公愤,在纳粹看来他们利用斑疹伤寒来激发自然恐惧的战略非常有效。

        第七章 黄热病

        在这里工作的人要冒着生命危险,我难以在这里坚持6个月以上。我的健康状况太糟糕了,能活下来就是万幸。死亡率还在继续上升,空气中弥漫着恐怖的气氛,你可以看到原来估计有26000人的军队,到这个时候只剩下12000人。 ——法国将军查尔斯·勒克莱尔(拿破仑的妹夫)1802年写于海地 [1]

        尽管黄热病(Yellow Fever)导致的死亡人数比本书中讨论的其他疾病要少得多,但由于黄热病会使患者产生特别可怕的症状,它也是历史上最令人恐惧的疾病之一。大多数感染者会在几天内出现严重的流感样症状(发烧、肌肉酸痛、恶心),虽然最终会恢复,但是会存在长期的轻微隐性感染。有15%~20%的人会在病情好转后突然恶化,最常见的是严重的肝衰竭,往往伴随着黄疸(皮肤发黄)、腹部疼痛和肿胀以及高烧。像埃博拉和马尔堡病等其他出血热一样,黄热病通常会发展为内出血,血液会从患者的眼、口、鼻流出;胃部过度出血将导致患者呕出大量黑色的、不完全被消化的血液。这种令人震惊的景象给了黄热病一个最臭名昭著的绰号——“黑色呕吐”。大量失血还会引起低血压,进而引起严重的疲劳、多器官功能衰竭、谵妄,最终导致死亡。这无疑是一种令人十分恐惧和痛苦的死亡方式,给所有目击者带来了巨大恐惧。

        黄热病由一种小病毒引起,这种病毒通过伊蚊属类的雌性蚊子传播给人类。该病毒被命名为黄热病病毒(YFV),是一组病毒(黄病毒属)的成员之一,其中还包括寨卡病毒(Zika)、登革热病毒和西尼罗河病毒。黄病毒通过节肢动物(蚊子或壁虱)在脊椎动物宿主之间传播,常常会引起严重的内出血和脑炎。就YFV而言,其大规模流行期间的主要传播蚊种是埃及伊蚊。

        病毒进入蚊子后,会在其肠道上皮细胞中复制,最终扩散到血液和

        唾液腺。当被感染的蚊子叮咬人类时,病毒便会从蚊子的唾液传播到咬

        伤伤口附近的宿主组织中。该病毒会被局部免疫细胞——树突细胞迅速

        吞噬,然后被转移到最近的淋巴结。YFV并不会被淋巴结中的免疫细胞

        破坏,实际上YFV具有在免疫细胞中自我复制并杀死这些细胞的能力。

        免疫细胞被杀死后,会有大量病毒扩散到血液中,并转移到肝脏、脾

        脏、心脏、肾脏和其他器官。到达这些部位后,YFV会感染局部组织,

        再次开始复制过程。宿主免疫系统检测到这种情况后,会将免疫细胞增

        援部队输送到感染区域。为了阻止或减缓病毒的传播,到达的免疫细胞

        会向被感染的组织释放大量有毒的炎症化学物质,称为细胞因子。尽管

        这种反应通常能对病毒感染起到保护作用,但其释放出的大量炎症介质会给宿主细胞带来毒性环境,意外地杀死宿主细胞。垂死的宿主细胞会释放出更多的炎症化学物质,进一步加强了免疫反应。最终结果是,YFV和宿主免疫反应同时杀死了大量组织中的宿主细胞。这类损害会导致患者发烧、肝脏破坏、休克以及前文提到的其他症状。

        自17世纪40年代人类首次描述黄热病以来,已有数百万人因此丧生。尽管目前采取的蚊虫控制措施和有效的疫苗限制了YFV的传播,但黄热病每年仍可感染20多万人,杀死3万多人。大多数黄热病病例都发生在中非和南美的热带地区,这是由于该地区有大量的降雨和丰富的温水源,是埃及伊蚊的繁殖地。不幸的是,对于生活在这些地区的人们而言,埃及伊蚊在城市和乡村环境中也可以生存下来。

        只要蚊子有足够的开放水源来产卵,黄热病就会在人口稠密的城市中迅速传播。雨水过多或城市服务中断或基础设施破坏,都很容易使蚊子数量剧增并引起黄热病暴发。这样的情况就发生在2016年的安哥拉首都罗安达。 [2] 尽管30多年都没有出现过黄热病病例,但由于该市垃圾收集工作的中断,安哥拉再次出现了这种疾病。过多的垃圾堆和雨水汇集在一起,为埃及伊蚊幼虫的生长提供了理想的环境。在短短几个月内,整座城市有数百人死亡,数千人生病。这提醒人们,黄热病仍然是一种极为危险的疾病,一旦我们忽略过去的经验教训,黄热病就会继续困扰人类。

        美国大瘟疫的到来

        在过去的50年中,黄热病的起源一直是流行病学上最热门的话题之

        一。原因之一是欧洲、亚洲或中东的任何古代记录都没有提到过类似于

        黄热病的疾病。著名的希波克拉底医生和盖伦医生也没有在其文集或古

        希腊其他综合医学文献中提及黄热病。同样,土耳其人、中国人或罗马

        人的历史著作中也没有对黄热病的临床描述。所以,当大家试图创建理

        论模型来解释黄热病是如何产生并传播到世界两端的两片大陆时,几乎

        没有什么可以借鉴的信息。关于黄热病起源的另一个问题是,它怎么能

        在两个大陆板块上同样流行?许多人提出,葡萄牙探险家和奴隶贩子的

        记录中都没有提到过黄热病,而这些人殖民了非洲西海岸的大部,因此这可作为黄热病并非起源于此的证据。此外,还有人认为黄热病起源于美洲,他们指出,到18世纪,黄热病已广泛分布在亚马孙河流域的丛林中,这表明黄热病可能已经在此存在了多个世纪。

        尽管这样的解释听起来完全合乎逻辑,但在21世纪初进行的130多种YFV毒株遗传分析强烈表明,黄热病确实起源于非洲,而后传播到了美洲。 [3] 这些研究比较了来自非洲和南美各YFV毒株的基因组序列,以确定更早出现的毒株。有趣的是,来自东非的毒株似乎更加古老,并且在遗传上不同于从西非或南美分离出的毒株。总体而言,以上数据表明黄热病可能是从东非的其他病毒演变而来,传播到西非,然后随着500年前的跨大西洋奴隶贸易传播到美洲。

        一些人推测,黄热病于1495年3月在美洲首次出现,当时克里斯托弗·哥伦布(Christopher Columbus)袭击并奴役了加勒比海伊斯帕尼奥拉岛上的本土泰诺人。 [4] 对维加战役的模糊描述表明,许多泰诺人和一些西班牙殖民者在战争期间和战争结束后均死于同一种疾病。但是,那些描述都只提到了发烧这一症状,很难根据这些描述来确定其是由黄热病引起的,还是麻疹、天花、流感或许多其他欧洲疾病之一。

        黄热病很可能是由16世纪初穿越大西洋前往美洲的奴隶船传播的。这些船可能携带了感染YFV的埃及伊蚊。由于奴隶营养不良,且都被塞在了通风不良的货仓,这些蚊子可以肆无忌惮地进行繁殖。到达热带的各个加勒比海岛后,蚊子便从船上逃离,发现其气候与西非非常相似。不久之后,埃及伊蚊在加勒比地区建立了自己的据点,并开始定期以当地美洲印第安人和欧洲殖民者的血液为食。这使YFV有了第一个可以在人类中确立自己牢固地位的机会,开始变成大规模流行病。

        对黄热病的第一个确凿描述出现在1647年巴巴多斯岛黄热病暴发期间。 [5] 一位名叫杜特尔特(Detertre)神父的耶稣会牧师是这种新“瘟疫”的目击者,他描述了一种引发极度头痛、肌肉疼痛、发烧和“持续呕吐”的疾病。持续呕吐的呕吐物是黑色的,这与以前提到的所有由欧洲人带到新世界(例如1643年瓜德罗普岛的未知发烧)的发热疾病都不同。他的叙述得到了其他人的佐证,这些人要么亲身经历过,要么收到了殖民者的报告。例如,当时的马萨诸塞州州长约翰·温思罗普(John Winthrop)在1647年的日记中写道,在洗劫附近其他岛屿(如圣·克里斯托弗和瓜德罗普岛)前,一种“致死性死亡”和“致死性发烧”就已经导致了6000多名巴巴多斯人丧生。 [6]

        黄热病迅速在加勒比海的其他岛屿中传播,并于1648年最终进入北美大陆(尤卡坦州)。古巴在1649年暴发了极具破坏性的黄热病。根据历史学家Pezuela的说法,“从美洲大陆传入的未知而可怕的流行病无情袭击了古巴,1/3的人口都被腐败热吞噬了。”[7] 黄热病现在在美洲依然存在。在过去的200多年中,它持续从加勒比海岛屿跃迁到美洲的各个港口城市,所到之处均造成了严重破坏。在那时,黄热病很容易通过货船传播,以至于如果有船员在海上因黄热病病倒,船上就必须悬挂一面特殊的黄旗,随风飞扬。那面旗帜和黄热病很快就被称作了“黄杰克”。尽管黄热病起源于非洲,在整个非洲历史上造成了数百万人死亡,但从历史上看,黄热病一直被认为是“美国瘟疫”。这在很大程度上是因为自17世纪以来,黄热病一直在撒哈拉以南非洲流行。持续暴露于YFV为非洲人提供了足够的免疫力,限制黄热病大规模流行。相反,大多数在美洲殖民的欧洲人却很少接触YFV。他们是未经过病毒选择的种群,极易被病毒消灭。结果,在欧洲对美洲殖民的历史中,黄热病扮演了举足轻重的角色,极大地影响了年轻美国的成长与发展。

        1793年的费城流行病

        费城是18世纪后期美国最重要的城市之一。它曾是1787年制宪会议的所在地,并于1790年12月成为新国家的临时首都。在此期间,这里是许多开国元勋的住所,包括华盛顿、亚当斯、杰斐逊、富兰克林和汉密尔顿,这里也是美国第一届国会、最高法院和造币厂的所在地。作为商业中心,费城拥有该国最活跃的港口之一,与美国、欧洲和西印度群岛的城市进行商品贸易。它具有非同寻常的宗教包容性,接纳恢复自由的奴隶,因此成为难民的热门目的地。到1790年,费城(及其郊区)已成为美国人口最多的城市,这是一个文化多样的繁荣胜地,是未来新美国的光辉典范。然而令人无法想象的是,仅仅一只蚊子就可以使这个新国家的政治、经济中心陷入衰退?但在1793年,悲剧就这样发生了。

        1793年,载有大约2000名殖民地难民和奴隶的船只从加勒比海的圣多明格(海地)岛抵达费城。 [8] 1791年,那里爆发了奴隶起义,随后整个殖民地陷入内战。奴隶为独立而战,而当地的几个殖民大国(如英国、法国、西班牙)则相互为战。这种危险的环境导致许多欧洲白人殖民者逃离到了费城、查尔斯顿和新奥尔良等城市避难。费城人刚开始很欢迎这些难民,甚至筹集了16000美元支持他们。但是,随着出现黄热病流行的新闻传出,他们的热情便减弱了,因为黄热病很可能来自从圣多明各运送难民的船只。

        随着黄热病于8月初开始在整个城市蔓延,由本杰明·拉什(Benjamin Rush)领导的一群著名医师会面了,讨论如何能控制或至少遏制黄热病的传播。 [9] 他们提出了一系列建议措施并在当地报纸上发表,建议有能力的人立即离开城市。到9月初,这一流行病尚未显示出放缓的迹象,恐慌便到来了。数以千计的人逃离了这座城市,其中包括乔治·华盛顿(George Washington)和联邦政府大多数成员。托马斯·杰斐逊(Thomas Jefferson)在1793年9月1日写给詹姆斯·麦迪逊(James Madison)的一封信中,准确描述了这座城市的恐慌,他说:
        水街的污物导致了恶性发热,引起了极大恐慌。两天前,约有70人死于该病,生病的人则更多。现在,它已经渗入了城市的大部分地区,相当具有传染性。起初,有3/4的人死亡,现在则是1/3了。从染病的第2天到第8天,人们会接连出现头痛和胃部不适,有点发冷、发烧,还有黑色呕吐物和粪便,最后便是死亡。有能力的人都逃离这座城市了,农民的恐慌还可能会带来饥荒。尽管死亡率在降低,但它仍在蔓延,炎热的天气条件非常不利。我已经让女儿离开这座城市了,我自己却不得不每天都去。 [10]

        那个夏天,将近2万名费城居民离开了(占人口的40%),有4000多人死于黄热病(约占总人口的10%)。由于秋天的凉爽温度降低了蚊子的数量,该病终于在11月初消退。居民逐渐返回城市,联邦政府恢复了其正常功能。但是,这座城市乃至整个国家的精神都因1793年的黄热病而受了伤。这明显暴露了新国家无力有效应对危机的问题。美国首都在短短几个月内就被抛弃了,领导人逃跑了,卫生官员争吵不休,公民反目。

        1793年黄热病流行的更有趣的另一个长期影响是,它影响了费城的种族关系。在美国独立战争后的几年里,这座城市已成为非裔美国人的目的地。许多人因支持大陆军而赢得了自由,一些人被受革命主义打动的奴隶主释放,还有一些人则逃脱了奴隶制逃往北方。到1793年这一流行病暴发时,费城已有2000多名自由的非裔美国人居住。 [11] 许多人召集起民间组织,为成长中的非裔美国人社区提供社会服务和就业服务。这些组织中最具影响力之一的是自由非洲协会,该协会成立于1787年,由部长理查德·艾伦(Richard Allen)和押沙龙·琼斯(Absalom Jones)领导。他们以小组的形式定期开会,决定如何更好地教育子女,为失业者找到工作,照顾寡妇和孤儿,并赋予社区成员真正独立的权利。几十年来,他们一直是费城非裔美国人社区的核心。

        黄热病流行时,人们普遍认为非裔人对黄热病感染具有“与生俱来”的抵抗力。 [12] 这个想法来自1742年南卡罗来纳州查尔斯顿暴发黄热病时的观察结果,生活在受灾地区的非洲奴隶似乎很少感染这种疾病。这可能由于很多奴隶是在黄热病流行的非洲地区出生、长大,因此,他们很可能早就接触了YFV,并获得了一定程度的免疫力。距此50年后费城的情况则大不相同。那时,大多数居住在美国的非裔美国人都出生在美国。他们很少或根本没有接触过YFV,因此其对YFV的易感性并没有低于其他人。当时医学界认为,所有非裔美国人都对黄热病具有遗传抵抗力,但事实并非如此。这对1793年居住在费城的非裔美国人社区产生了重大影响。

        当城市暴发黄热病时,本杰明·拉什和其他医师公开与非洲自由学会的领导人联系,让其帮忙照顾成千上万的病人。 [13] 押沙龙·琼斯和理查德·艾伦与其他人讨论了此事,最终决定:“尽我们所能,对遭受苦难的人提供一切可能的帮助。我们去看看我们能做什么。”[14] 由于他们错误地相信自己具有黄热病抵抗力,数百名非裔美国人开始在城市各处工作,担任急诊护士,运输病人。尽管该市大多数居民都选择了逃离或与他们认为被感染的患者(包括他们的家人)隔离开,但非裔美国人留了下来,竭力为病人服务。本杰明·拉什曾经观察到:“在你进入的每个房间中,都看不到任何人,只有一个孤独的黑人或妇女在病人身边。”[15]即使越来越多的非裔美国人生病、身故,尽管工作环境令人难以置信地可怕,也几乎得不到什么回报,但他们仍然留下来继续照顾受苦的人。[16] 当流行病结束时,将近250名非裔美国人死于黄热病。这相当于费城非裔人口的10%,与居住在那里的白人的死亡率大致相同。

        有人可能会认为,非裔美国人在1793年黄热病流行期间所做的英勇牺牲可以使他们获得费城白人的接纳。不幸的是,它最终却产生了相反的效果。1793年11月出版的一本非常受欢迎且广泛传播的、名为《恶性热病简介》(A Short Account of the Malignant )的小册子说,非裔美国看护者在经济上占了黄热病受害者的便宜。作者是一位名叫马修·凯里(Mathew Carey)的著名出版商,他在流行病初期就逃离了这座城市。

        他在这本小册子中写道:“对护士的巨大需求为某些人提供了不合理的机会,一些白人和黑人急切地抓住了这个机会,他们竟为一夜的看护服务索取2~4美元,甚至是5美元,而这本可以用1美元来支付。甚至还有些人抢劫了病人的房屋。”[17] 勒索和盗窃的指控引起了公众对自由非洲协会及其在流行病期间所雇用人员的不满。尽管几乎没有实际证据表明非裔美国人从他们的服务中获得了不诚实的利润,但凯里的《恶性热病简介》却给整个群体的声誉造成了无法弥补的损失。这本小册子成功地摧毁了这5个月内种族之间发展起来的所有善意,并使费城的非裔美国人在疫情后受到了更多谴责。

        作为回应,琼斯和艾伦发表了自己对这一流行病的描述,试图驳斥凯里的卑鄙主张。 [18] 在书中,他们对凯里提出了严厉的批评,因为他错误地报道了他从未目睹的事件,甚至暗示,凯里从这场流行病中的获利超过了所有“勒索者”收益的总和。他们有力地继续驳斥了凯里对护士哄抬价格的指责,并说“他们埋葬了数百名穷人和陌生人,但他们从未为此收取或索取补偿”。 [19] 不幸的是,他们充满逻辑性和合理性的解释在很大程度上被置若罔闻,部分原因是在他们的辩解发表前,凯里的书已经出版了4版,伤害已经造成。费城的许多人开始鄙视那些几个月前照料他们的非裔美国人。

        1793年的黄热病流行也引发了关于其起因的广泛辩论。在像本杰明·拉什这样的医疗专业人员中,一种流行的理论是,这种流行病是由随处可见的污物引起的,这种污物污染了城市的空气和水。人们认为,污水和垃圾汇集所产生的恶臭,再加上那个夏天费城因炎热而停滞的空气,产生了有毒的瘴气,导致了疾病暴发。建筑师本杰明·拉特罗布(Benjamin Latrobe)附和了这些观点,他说:“我们有证据表明,城市的供水方式确实催生了非常丰富的疾病源,与狭窄、肮脏小巷里的有害气体无关。”[20] 与城市的不卫生状态相反,费城一些著名的宗教领袖指出,道德污秽是造成这种流行病的主要原因。贵格会等团体认为,宾夕法尼亚州拒绝正式废除奴隶制或禁止“不道德”的戏剧表演,导致这座城市的精神健康被污染,并引发了上帝审判,降下黄热病。蓄奴州或支持法国大革命极端暴力的殖民难民来到费城,则进一步加剧了他们眼中的道德沦丧。黄热病袭击港口城市的速度似乎更快,这一事实进一步强化了这种观念,即黄热病是由道德低下的难民在1793年带到费城的。

        这些理论提出的共同解决措施是在疫情暴发后大力清理费城。由市长马修·克拉克森(Matthew Clarkson)领导的委员会首先呼吁对公共卫生进行重大改善,其中包括从城市外部引入清洁水,改善下水道系统以及为穷人的房屋消毒。由于黄热病是通过蚊子传播的,而不是卫生条件差,此类措施对黄热病暴发没有影响。但是,它们却间接帮助控制了伤寒和霍乱等其他疾病。

        当黄热病于1797年、1798年和1799年重返费城时,市政官员们便开

        始寻找方法来监控大量涌入该市、被认为携带这种疾病的移民。正常的

        船舶检疫显然无法阻止黄热病的发生,因此费城卫生局决定在特拉华河

        沿岸建立10英亩的永久性检疫医院来解决这一问题。 [21] 这家叫作

        Lazaretto的传染病医院由有资质的医务人员经营,医院设有宿舍,可供

        大量人居住。它的设计目的是接待所有进入费城的移民,检查他们本人

        及其货物是否有隐患,仅在确定其“无病”后才将让其进入城市。它是这

        座城市实实在在的看门人,对来自世界各地的数百万名移民进行了多种

        传染病筛查。Lazaretto于1799年开业,是美国的第一家此类机构。它彻

        底改变了美国接待和处理移民的方式,其创建的模式最终被其他更著名

        的检疫医院,如埃利斯岛(纽约)和安吉尔岛(加州)沿用。我们难以

        估计Lazaretto和其他类似的检疫医院避免了多少流行病、挽救了多少生命。尽管Lazaretto是直接针对多种黄热病而建立的,但它也挽救了数以百万计费城和美国其他城市可能丧生于伤寒、霍乱、天花和鼠疫等疾病患者的生命。

        海地革命和路易斯安那购买案

        探险家于17世纪初在圣劳伦斯河沿岸建立了多个城市,从而在美洲

        建立了法国殖民帝国。此后不久,皮草贸易商赶到,与许多已经居住在

        新法国殖民地的土著部落建立了商业伙伴关系。这种关系使法国人可以

        对其人口稀少的加拿大领土保持某种程度的行政控制,同时也为法国人

        提供了西向五大湖区和密西西比河扩展业务的手段。到17世纪80年代,

        法国人已在密西西比河沿岸建立了贸易站和堡垒,并在南部正式建立了

        一个新的殖民地,即路易斯安那州。算上北部的加拿大、纽芬兰和阿卡

        迪亚,新建立的南部殖民地使法国在北美的土地扩张到了300万平方英

        里。在18世纪初期,这个广袤的领土被称为“新法兰西”,其北部延伸到

        了现代加拿大的一半领土以上,西至洛基山脉,南至墨西哥湾。

        像西班牙和英国一样,法国在这段时间内也占领了西印度群岛的几

        个小岛。 [22] 抵达马提尼克岛、瓜德罗普岛、圣基茨岛、圣卢西亚岛和西班牙圣多明各岛之后(在海地),法国定居者奴役或杀害了大多数土

        著居民(例如加勒比人),然后运来了大量非洲奴隶在新建的种植园工

        作。尽管与新法兰西相比规模较小,但这些岛屿殖民地对于法国来说利

        润相当可观。例如,当时整个欧洲大陆售出的近40%的糖和75%的咖

        啡,都是由西印度群岛法属种植园生产的。这些西印度种植园和在北美

        利润丰厚的皮草业,使法国成为17世纪和18世纪世界上最富有的国家之一。

        由于18世纪中叶发生的几次战争,法国在美洲的大多数殖民地都输

        给了英国和西班牙。大约在同一时间,法国人在距离英国人控制的领土

        很近的地方建造据点,与此同时,大量新的英国定居者涌入美洲,法国

        和英国殖民者之间的紧张局势开始加剧。1754年5月,由乔治·华盛顿率

        领的当地英国民兵因惧怕法国人或其美州原住民盟军最终采取军事行

        动,便在宾夕法尼亚州匹兹堡附近伏击了一个法国小营地,引发了法国

        和印第安战争。 [23] 法国当地军队进行了强烈的军事反击,导致华盛顿

        迅速投降。欧洲的英国和法国当局意识到两国可能正处于美洲战争全面

        爆发的边缘,于是不久后便相互联系,讨论了这些边界冲突的潜在和平

        解决方案。双方未能达成协议,便从欧洲派遣了大批部队,为其自认为

        在北美的合法主张而战。这场战争持续了大约9年,直到法国签署《巴黎条约》投降后才结束。这样,法国就放弃了对包括加拿大和路易斯安那州在内的整个新法兰西以及大部分西印度群岛殖民地的领土权利。大不列颠控制了密西西比河以东的大部分土地,而大不列颠的军事同盟西班牙则控制了西部的土地。法国最终通过参与美国独立战争重新夺回了西印度群岛的少量领土。

        在动荡的18世纪期间,法国拥有的最重要的殖民地是位于伊斯帕尼奥拉岛西部的圣多明各岛(海地)。可以说,圣多明各是当时世界上最富有的欧洲殖民地,向美洲、欧洲和亚洲供应了大量的糖和咖啡。在18世纪80年代的鼎盛时期,它拥有大约800个独立的种植园,46.5万名奴隶。 [24] 令人惊讶的是,圣多明各岛和其他两个法属岛屿殖民地(马提尼克岛和瓜德罗普岛)拥有的奴隶数量,与美国最初建国时13个州加在一起(约70万人)的差不多。每年成千上万的西非新奴隶被送到圣多明各岛,每年岛上又有成千上万的奴隶出生。到1789年法国大革命开始时,圣多明各已成为非洲和加勒比裔奴隶、白人殖民者、在山上逃亡的自由生活的奴隶以及2.5万名有色自由人的熔炉。后者主要由法国奴隶主及其女奴的混血后裔所组成。他们通常受过教育,有些还从法国父亲那里继承了巨大的财富。

        法国大革命在圣多明各居民中引起了极大的轰动。 [25] 对于白人种植园主来说,这场革命提供了一个机会,让他们可以逃脱法国政府的行政控制,在与其他国家进行商品贸易时有更多的自治权。他们认为这是提高利润率、增强对奴隶和产品控制的可喜机会。相反,岛上的奴隶和自由的有色人种则阅读了革命性的《人权宣言》及“人生而自由平等”的主张,期望自己的自由和平等。 [26] 他们在新成立的法国大会上得到了许多人的支持,他们看到了奴隶制的恐怖,并认为应该在整个帝国范围内废除奴隶制。几位既富有又自由的有色人种(如朱利安·莱蒙德和文森特·奥热)也从圣多明各前往巴黎,出席大会并代表岛上所有受歧视的人发言。返回圣多明各后,他们发现殖民地总督和种植园主不愿放弃免费的劳动力或拒绝赋予任何可能威胁其在岛上权力的人更多权利。圣多明各岛上有钱的白人少,而有色人种多(10∶1),二者不统一的意见直接导致了美洲历史上最重要的事件之一——海地革命。

        海地革命始于1791年8月,当时该岛北部省份的奴隶对白人种植园主发动了武装起义。他们烧毁了数百个种植园,杀死了数千名白人殖民者,并没收了数百万美元的财产。 [27] 在几个月内,超过10万名奴隶参与了起义,共控制了1/3的殖民地。当奴隶在北部起义时,有色人种开始向西部的白人种植园主发起进攻。为了安抚革命者、平息叛乱,法国(立法)大会在1792年赋予有色人种全部政治权利。尽管伸出了橄榄枝,但暴力在1793年进一步激化了。种植园主与英国建立了同盟,而奴隶则加入了入侵的西班牙人以迫使法国人撤离该岛。这使英国军队几乎控制了圣多明各的大部分地区。由于担心发生多方战争可能会使该岛完全丧失,法国当地行政官员单方面宣布结束圣多明各的奴隶制。结果,在才华横溢的军事将领(前奴隶)杜桑·卢维杜尔(Toussaint L’Ouverture)的带领下,许多新获释的奴隶转而结盟法国。在接下来的5年中,法国、英国、西班牙、获得自由的奴隶以及白人殖民者进行了长期的流血战争,造成数十万人死亡。

        历史记录表明,英方的许多死亡都是由18世纪90年代西印度群岛发生的黄热病暴发造成的。实际上,有人估计在1793年至1798年,近70%的英国军队、约10万名士兵因黄热病而病倒。 [28] 由于慢性病的困扰以及与卢维杜尔军队的不断战斗,英国最终同意于1798年离开圣多明各。在这次胜利之后,卢维杜尔于1800年入侵并征服了西班牙控制的伊斯帕尼奥拉东部。尽管此时卢维杜尔获得了对该岛的政治控制,但他还需从法国处取得该岛的完全主权和完全独立。对卢维杜尔而言,不幸的是,一个名叫拿破仑·波拿巴(Napoleon Bonaparte)的新统治者刚刚在法国上台,并渴望在美洲重新建立一个殖民帝国。

        1802年初,拿破仑向圣多明各派遣了约6万名士兵,以重获对该岛及利润丰厚的糖种植园的行政控制。 [29] 拿破仑不仅计划接管圣多明各的土地,还计划镇压叛乱并恢复奴隶制(他在其他西印度群岛上就是这样做的)。抵达圣多明各后,由拿破仑的妹夫查尔斯·勒克莱尔(Charles Leclerc)率领的庞大的法国部队迅速接管了该岛上的大多数港口城市,并秘密逮捕了首领卢维杜尔,将其驱逐至欧洲(后来他在监狱死于结核病)。卢维杜尔的垮台使许多领导者放弃了反抗,与法国人联合。已经进行了11年之久的奴隶起义似乎已处于彻底崩溃的边缘。那些长期作为自由人生活和战斗的人现在正面临再次被奴役的可能性。当圣多明各的居民看上去一团糟时,天气发生了变化,从根本上挽救了他们,并改变了历史进程。

        1802年的初春,降雨急剧增加,伊蚊数量激增。 [30] 当年5月,该岛黄热病全面暴发。正如以前英国侵略者所遭遇的那样,由于法国人以前几乎从来没有接触过黄热病,黄热病伤害了大量法国人。在接下来1年半的时间里,多达5万名法国士兵死于黄热病,使他们丧失了近80%的战斗力。勒克莱尔及其5名将军也在1802年至1803年这一流行病中丧生。 [31] 由于失去领袖、士兵生病和死亡,当地军队越来越强大、抵抗越来越激烈,大多数剩下的法国士兵开始在1803年秋季撤离该岛。最后一批法国军队在此后不久被卢维杜尔的继任者让-雅克·德萨林(Jean[1]Jacques Dessalines)击败,新的主权国家海地于1804年1月1日正式宣布独立。没有黄热病作为盟友,海地人民本可能会被压倒一切的法国军队击败,然后重返奴隶制。相反,他们成立了历史上唯一由奴隶起义建立起的新主权国家。

        圣多明各奴隶起义的成功在美洲还产生了其他非常重要的长期影响。历史学家们普遍认为,拿破仑派兵到西印度群岛是为了实现对北美大陆的终极入侵。 [32] 1801年,法国秘密地从西班牙那里夺取了因法国[1]印第安战争丧失的全部路易斯安那州领土。拿破仑这样做的目的是使他的军队重获对新奥尔良和利润丰厚的密西西比河谷的控制,这两个地方已经有了越来越多的美国商人。拿破仑在与他的一位国防部长的信件中明确表示,入侵圣多明各只是他恢复北美帝国这一真正目标的掩护。他在这封信中写道:“国防部长,我的意图是以最快的速度占领路易斯安那,这一计划一定要高度保密,让其看起来像是针对圣多明各的。”[33]

        美国政府的托马斯·杰斐逊等人将拿破仑入侵西印度群岛和路易斯安那州视为对自己主权的威胁。根据拿破仑在欧洲的举动,有理由相信他最终会试图将自己的帝国扩展到路易斯安那州以外。对于他来说不幸的是,圣多明各空前的黄热病流行摧毁了其入侵北美的任何可能性。拿破仑需要该岛利润丰厚的糖种植园,以资助其计划中的后续步骤。没有那笔钱,就不可能入侵北美。拿破仑意识到他没有办法胜过、制服或压制黄热病,因此决定减少在美洲的损失。在1803年疫情最严重的时候,拿破仑同意以1500万美元的低价将整个路易斯安那州的土地卖给美国。这样一来,美国的规模大约增加了1倍,而法国则永远退出了美洲。此后不久,托马斯·杰斐逊派遣梅里韦瑟·路易斯(Meriwether Lewis)和威廉·克拉克(William Clark)进行探险,以探索这一新的西方领土。

        美国南部的瘟疫

        随着19世纪初期路易斯安那州领土的开放,发展中的南部城市与西

        印度群岛以及墨西哥湾和密西西比河沿岸港口的贸易显著增加了。尽管

        这种海上贸易对南部经济的增长至关重要,但它却使居民反复遭受黄热

        病的侵袭。如前文所述,由于热带气候和大西洋奴隶贸易的影响,到18

        世纪时黄热病已在整个西印度群岛流行。来自西印度群岛的船只经常载

        有感染黄热病的患者或带有病蚊的货物。结果,密西西比河沿岸、墨西

        哥湾沿岸和南部大西洋沿岸地区几乎每年都会暴发黄热病。与费城和纽

        约等北方城市零星地流行不同,美国南部地区持续温暖潮湿的气候为黄

        热病的流行提供了理想的温床。受灾最严重的城市之一——新奥尔良,

        在美国南北战争之前的几年中经历了12次黄热病流行。据称,1853年的

        黄热病流行感染了该市近40%的人口,并夺走了约7800人的生命。 [34]

        25年后,又一次重大黄热病流行席卷了新奥尔良,并逐渐沿汽船驶向密

        西西比河。1878年,下密西西比河谷的流行病使200多个城市的12万人

        患病,多达20000人丧生。 [35] 同样,在19世纪中叶,破坏性较小的黄热

        病流行也出现在了查尔斯顿、诺曼底、孟菲斯、萨凡纳、加尔维斯顿和

        南部许多其他城市。尽管与本书中讨论的斑疹伤寒、天花和其他疾病相比,这些黄热病流行的死亡率要低得多,但它们却引起了广泛恐慌,并对南部生活的各个方面产生了深远影响。

        在美国南部持续出现的黄热病最有趣的副产物之一就是它影响了社会对该地居民的态度。内战爆发前的几年里,南部暴发了黄热病,而当时美国正在进行关于奴隶制的激烈辩论。与此同时,10年前废除了奴隶制的北部各州黄热病暴发则在持续下降,这使得许多废奴主义者得出结论,黄热病是上帝对南方及其邪恶居民进行惩罚的媒介。对他们来说,广泛传播的黄热病证明了奴隶制是错误的,南方的生活方式是更低等的。当时,在许多南部城市发现的纵情酒色和堕落则加剧了这种罪恶感。黄热病通常被归咎于酒吧、妓院、赌场和狂欢节庆祝活动。南方主教列奥尼达斯·波尔克(Leonidas Polk)在1853年写的祈祷文很好地说明了这种情绪,他说:“我们的罪过正激起您对我们的愤怒和愤慨……并慈悲地赐予……这种父亲般的矫正可以教会我们……谨以此来铭记您的正义审判。”[36] 北方媒体越来越多地把新奥尔良这样的城市描绘成罪恶

        的污水池,充满了疾病、混乱和污秽。全国各地的报纸上也开始出现一

        些耸人听闻的文章和插图,描绘在黄热病中痛苦挣扎的人。这种报道的

        结果是,许多北部人以一种自视正义的愤慨和厌恶来看待这些南方的受害者。

        对于南方白人来说,黄热病的流行加强了他们既定的看法,即非洲

        奴隶比白人更适合在户外工作,因为他们死于这种疾病的概率似乎更

        低。就像1793年的费城疫情一样,当时许多人错误地认为非裔对黄热病

        具有某种天然的抵抗力。尽管黄热病的相关数据表明情况恰恰相反,但

        许多人仍然断言,经过数千年的进化和暴露,非洲人天生就比其他种族

        更能耐受黄热病。 [37] 人们观察到非洲人通常对疟疾具有先天的抵抗

        力,而疟疾和黄热病都是在非洲出现的,因此推断他们对黄热病也一定

        具有抵抗力。这些想法使南方人有正当理由在黄热病频繁暴发的地区

        (也就是南部大部分地区)继续使用非洲奴隶。对于奴隶制拥护者来

        说,在户外工作对白人来说实在是太危险了,因此他们别无选择,只能

        继续使用奴隶。因此,由于黄热病,奴隶制被认为是必要的制度。实际上,奴隶制和黄热病有着相反的关系。黄热病仅因奴隶贸易而存在于美洲。如果停止将奴隶非法进口到西印度群岛和美国,南部地区的黄热病流行将大大减少。

        1853年和1878年的黄热病流行对南部城市的经济也造成了破坏性影

        响,彼时他们正试图将南部建设为商业中心。 [38] 在主要农业地区,劳

        动力的大量丧失和死亡导致了数百万美元的损失,大量农产品和经济作

        物未经收割、出售或腐烂在地里。这造成了严重的粮食短缺,进一步加

        剧了已经耗尽的市政和州预算。在此期间,由于北方人对南方人的负面

        评价越来越多,以及检疫对人们去被感染城市旅游的限制,南方的旅游

        业也出现了急剧下降。尽管检疫在减缓黄热病的传播方面有效果,对南

        方的贸易和商业却造成了毁灭性打击。许多城市迫使当地企业关闭,直

        到流行病消退;商人在将商品卖给未受灾地区时也常常会遇到很大困

        难。结果,检疫常常遭到本地企业及其忠实政客的强烈反对。当城市领

        导人需要团结一致,对抗“美国历史上最严重的城市灾难”时,他们之间

        却产生了不必要的派系紧张。没有人知道19世纪黄热病多次流行对南方造成的真实经济损失。但是,1879年发表的一份报告估计,仅1878年流行病带来的损失就超过了2亿美元(折合到21世纪20年代,约为40亿美元)。鉴于南方经济在13年前就受到了内战的严重打击,对挣扎着进行重建和工业化的南方而言,这一代价更加惊人。

        这些流行病所带来的最重要的长期影响可能就是重新评估谁应该对

        人们的健康负责。到那时为止,所有有关卫生、检疫和公共卫生的决定

        都是由城市官员在地方一级做出的。州和联邦政府几乎无权制定或施行

        与公共卫生相关的政策,对地方应对流行病的方式也没有监管。这使城

        市间有着较大差异,甚至同一城市的不同执政者间也会有较大差异。如

        果一个城市对疫情的应对不好,常常会使黄热病蔓延到附近的城镇,为

        该病在全国的流行创造更多机会。例如,在1878年的流行中,黄热病随

        着一艘来自古巴的船来到美国,船只停靠在新奥尔良,载着一名被感染

        的船员。 [39] 该病迅速蔓延到城市中的其他人群,并在夏季全面暴发。

        尽管市政府采取了检疫措施,但仍有数千人在没有经过任何实际筛查前

        就逃到了周围的密西西比河流域。不幸的是,几名被感染者登上了前往

        密西西比州维克斯堡的拖船,并把疾病传播到了那里。从那里,它又到

        了孟菲斯(另一条船上),并最终通过铁路和内河运输传播到了整个南

        方的200多个城市。一些城市设置了武装路障,以阻止病区的人进入他们的城镇,而其他城市则摧毁了铁路线或阻止船只停靠在其港口。最后,事实证明,这种局部措施极为无效,疾病可以随风传播。更糟的是,很多市政领导人在疾病控制的紧要关头都逃离了城市。这使任何形式的卫生或检疫措施都不可能得到执行。

        在19世纪中叶,由于城市无法有效预防或管理黄热病(和霍乱),许多地区、州和联邦卫生局便诞生了。这些委员会独立于当地企业的利益,负责收集和传播当地疫情相关数据,决定适当的检疫措施。它们还试图阻止城市掩盖黄热病的存在(以免损害其自身的商业利益),并迫使当地的卫生机构相互合作。其中最重要的委员会便是成立于1879年的国家卫生局,它是在1878年灾难后公众呼吁下成立的。 [40] 在谈到需要建立起一个负责监督公共卫生的联邦委员会时,一位议员说,“过去告诉我们,没有一个商业性海港城镇会采用或遵守影响其商业利益的检疫规定”。 [41] 当时的海军医院服务部部长约翰·伍德沃思(John Woodworth)补充道,“应将黄热病视作威胁生命、摧毁工商业的敌人。世界上任何一个伟大的国家都没有像美国这样因黄热病而产生如此灾难性的损失”。 [42]

        经过对细节的仔细推敲后,美国国会于1879年3月3日通过了一项法案,该法案成立了一个由军事和平民专家组成的全国委员会,负责监督和建议当地的卫生委员会,调查公共卫生问题,向经历公共卫生危机的地区分配资金,规范检疫程序。人们希望该委员会能发现1878年流行病期间发生的所有错误,加以纠正以防止未来流行病的暴发。尽管美国国家卫生局仅获得了4年的资助,也从未完全实现其所有目标,但它确实在全国范围内改善了公共卫生条件,从而减少了霍乱和伤寒的暴发。[43] 它还创造了一种模式,后来被更永久性的机构所沿用,如美国公共卫生署。国家卫生局的成立是一个重要的转折点,因为它代表着美国迈出了第一步,在内战之后的几年中,美国开始作为一个国家而不是分散的城市或州与流行病做斗争。从某种意义上说,黄热病使美国团结一致面对同一个敌人,使美国人认识到个体的健康与全人群的健康息息相关。

        确定传播媒介

        19世纪控制黄热病的最主要障碍是不知道其传播途径。当时,大多

        数医生和卫生官员都认为疾病是由不良的卫生条件和由此产生的毒气所

        传播的。由于黄热病、疟疾和登革热等蚊媒疾病相对不受环境污秽的影

        响,卫生委员会通过改善卫生条件来预防或限制YFV传播的努力几乎没

        有效果。因此,在1878年大流行之后,黄热病依旧在美国南部、拉丁美

        洲、加勒比海地区和西非的许多地区泛滥。但是,由于19世纪末微生物

        学方法的改善以及美国卷入了一场被黄热病所阻碍的战争,科学家和政

        界人士重新推动了对黄热病的研究,以明确这种疾病的传播方式。

        在此期间,黄热病的研究中心是加勒比海的古巴岛,该岛距离美国

        仅90英里,是美国糖、烟草、咖啡和其他各种经济作物的主要供应地之

        一。19世纪,美国与古巴之间的关系很复杂。一方面,两国的经济繁荣

        相互依存。 [44] 在19世纪90年代,古巴90%的出口都运到了美国,大约

        38%的进口来自美国。价值约5000万美元的美国资本投资到了古巴,用

        于购买那里失败的矿山和制糖厂并使之现代化,美国工人也正以前所未

        有的速度涌入古巴。尽管这似乎是理想的商业伙伴关系,但由于古巴在

        19世纪仍处于西班牙帝国的政治控制之下,情况变得复杂。西班牙有权

        更改贸易法,征收关税并控制其他国家在古巴开展业务的方式。所以,

        美国人总是不得不像走钢丝一样,一边要让西班牙政客满意,另一边要与被西班牙征服的古巴人保持良好的商业关系。

        美国、古巴和西班牙之间微妙的关系在1895年变得十分紧张,当时

        古巴叛军正在为争取独立而对西班牙政府发动攻击。 [45] 最开始,美国

        担心古巴起义成功可能会为其他没那么友好的欧洲国家铺路,因此美国

        政府最初拒绝援助叛乱分子,甚至使用海军来阻止向该岛非法运送物资

        和武器。但是,随着反叛活动的加剧以及美国媒体对西班牙在古巴暴行

        的不间断报道,美国公众的情绪开始转向支持革命者。许多美国人,包

        括那些商业利益被持续暴力所影响的人,开始敦促美国政府在冲突不能

        迅速解决的情况下进行军事干预。到1898年初,居住在古巴变得越来越

        危险。尽管此时叛军已完全控制了该岛并建立了自治政府,但留在该岛

        的西班牙拥护者仍在继续煽动暴乱、破坏财产。居住在哈瓦那的美国总

        领事看到不断升级的暴力事件,便向华盛顿表示美国公民的生命正处于严重危险之中。这促使美国政府于1898年1月向哈瓦那派出一艘缅因号战舰,以保护其在政局不稳定岛屿上的利益。到达古巴仅3周后,停靠在哈瓦那港口的缅因号就被爆炸击中了,船只沉没,死了268人。尽管美国人不知道爆炸的原因或主导者,但他们仍将其视为军事攻击,并要求报复。

        呼喊着对西班牙开战的最大声音来自两个著名的纽约出版商,他们认为西班牙是缅因号沉没的罪魁祸首。在缅因号事件之前的几年,《纽约世界报》的老板约瑟夫·普利策和《纽约新闻报》的老板威廉·兰道夫·赫斯特就开始发表耸人听闻的,甚至是虚构的西班牙残忍压迫古巴人民的故事。 [46] 这样的宣传和夸张的报道成功激怒了美国公众,并增加了其对日益荒诞的新闻报道的需求。缅因号的沉没为普利策和赫斯特提供了扩充读者群的绝妙机会。他们制作了虚假的插图,虚构地描写了奸诈的西班牙人如何在缅因号上放置地雷、发射鱼雷。他们发表了诸如“记住缅因州!西班牙下地狱!”之类的口号,甚至悬赏5万美元捉拿西班牙凶手。他们的假故事非常令人信服,以至于一些在爆炸中的幸存者和看着船只沉入哈瓦那港口的人都相信西班牙人确实对此负有责任。尽管没有绝对的证据(不管是当时还是现在),但美国总统威廉·麦金莱(William Mckinley)迫于公共压力和政治压力,于1898年4月20日向西班牙发出最后通牒,要求他们立即从古巴撤离。西班牙人拒绝了,这促使美国开始对古巴进行全面的海上封锁,并向西班牙正式宣战。

        美西战争持续了3个月后,美军战死不到400人。 [47] 强大的海军攻击与27万多名地面部队的结合使美军控制了西班牙的众多领土,包括古巴、波多黎各、关岛和菲律宾。有人称其为“精彩的迷你战争”,这几乎是美国军事力量的完美展现,以小牺牲获得了大收益。但是,随着战争在7月下旬开始缓和,黄热病、疟疾和伤寒的暴发对驻古巴的美军主力造成重大打击。在短短的几个月内,成千上万的士兵患病并丧失了行动能力,近2000名士兵死亡。西奥多·罗斯福中校在给美国国防部长的一封信中表达了他的恐惧,他担心:“如果我们继续待在这里,将极有可能发生可怕的灾难。这里的外科医生估计,如果我们在疾病流行季节继续待在这里,那么将会有超过一半的士兵死亡。”[48] 军事领导听取了这些警告,于1898年8月初开始从古巴大规模撤军。但是,为了维持秩序并使古巴政权平稳过渡,需要留下5万名美军无限期驻扎在容易发生黄热病的岛屿上,因此美国政府决定采取积极措施以防止潜在灾难。他们组建了由美国陆军医学研究员沃尔特·里德(Walter Reed)领导的4名微生物学专家组成的专家小组,并将其送到古巴,专门研究黄热病的病因和传播方式。

        里德和他的同事詹姆斯·卡洛尔(James Carroll)在被派往古巴之前,一直在努力验证意大利科学家朱塞佩·萨纳雷利(Giuseppe Sanarelli)最新的一项研究,该研究声称发现了黄热病的病因——一种名为类黄疽杆菌的细菌,据说其通过呼吸道分泌物传播。通过严格的测试,里德他们积累了有力的证据,证明萨纳雷利发现的细菌并不是黄热病的病因,而是猪瘟随机感染了他的一些测试患者。尽管萨纳雷利试图抹黑他们的报告,但里德和卡洛尔很快得到了另一名医生阿里斯蒂德斯·阿格拉蒙特(Aristides Agramonte)的实验支持,他也没有检测到类黄疽杆菌和黄热病之间的关系。 [49]

        在驳斥了萨纳雷利的发现后,由里德、卡洛尔、阿格拉蒙特和年轻医师杰西·拉泽尔(Jesse Lazear)组成的黄热病委员会前往古巴与当地一位名叫卡洛斯·芬莱(Carlos Finlay)的流行病学家会面,后者自1879年以来一直在该岛上研究黄热病。 [50] 在1878年密西西比河流域黄热病大流行之后,芬莱便与美国科学团队紧密合作,并对该病的发病机理发表了重要见解。他在显微镜下检查了感染者的组织样本,发现黄热病似乎针对的是血管的组成细胞(称为血管内皮),而非红细胞本身。据此,他推断:“要染上黄热病,必须从黄热病患者的血管中挑出传染性的物质,然后将其放在被感染者的血管内部。蚊子恰恰可以通过叮咬完美地满足这一条件。”[51] 在沃尔特·里德的黄热病委员会抵达古巴的19年前,芬莱就在1881年8月14日的一次科学会议上发表了这一观点。在同一演讲中,芬莱还描述了一个实验,在该实验中,他让埃及伊蚊(Aedes Aegypti)(当时被称为“库蚊”)吸食黄热病患者的血液,然后再将这些蚊子放在刚抵达古巴的5个人的皮肤上,这些人以前从未接触过黄热病。被这些病蚊叮咬的5个人都出现了某种形式的黄热病。尽管这些发现强有力地支持了芬莱的蚊子传播理论,但古巴和美国科学界的许多人士都认为他是错的。实际上,即使他在接下来的20年里成功地在99人身上复制了相同的接种实验,人们(包括里德)仍然不信服芬莱的方法和数据。 [52]

        1900年,当里德的团队抵达古巴后,他们急切地想与芬莱见面讨论他的实验成果。芬莱也很愿意分享,允许黄热病委员会阅读他的全部笔记,并向他们展示实验是如何进行的,甚至向他们提供了被感染蚊子的样本。获取这些材料后,里德让杰西·拉泽尔负责核实芬莱的研究结果,而自己去了华盛顿特区。

        拉泽尔在接下来几个月中进行的实验为蚊子理论提供了有力的支

        撑。拉泽尔使用了芬莱的方法培养和接种蚊子,设计了实验来测试蚊子

        是否可以传播黄热病,如果可以传播,其传播是否取决于感染者的严重

        程度或蚊子在叮咬下一个人之前病原孵化时间的长短。詹姆斯·卡洛尔

        不支持蚊子理论,他同意成为拉泽尔实验最初的研究对象之一。 [53] 在

        被12天前叮咬过严重黄热病患者血液的蚊子叮咬后,卡洛尔出现了黄热

        病症状,差点儿死于黄热病。还有一部分受试者则是被叮咬过黄热病轻

        症患者的蚊子叮咬,或被12天内吸食过患者血液的蚊子叮咬。这些人均

        未出现黄热病。因此,看来黄热病病原必须在蚊子体内至少孵化12天,

        这样才能在进入第二个宿主时有效致病。这是芬莱早期实验缺失的一个

        重要因素,导致他经常得出令人困惑和矛盾的结果。在得知自己没有从

        任何其他来源感染黄热病后,卡洛尔庆祝道,他是“第一个证实了蚊子传播黄热病的人”。 [54] 不幸的是,这些结果带来的兴奋没有持续多久。拉泽尔在实验过程中也被蚊子叮咬,并在1900年9月26日不幸死于黄热病。拉泽尔的去世是黄热病委员会工作的重要转折点。里德于10月回到

        古巴,做出承诺,致力于进一步推动拉泽尔的研究并建立起更好的实验

        方案。 [55] 里德成为蚊子理论的信徒,他决定在哈瓦那郊外的营地里设

        立严密的对照实验,检验黄热病到底是由蚊子还是被污染的物品和污物

        传播的。这个营地被命名为拉泽尔,以表纪念。里德在营地里建造了两

        座不同的建筑。一座建筑内含有被黄热病死亡患者的血液和呕吐物所污

        染的各种令人恶心的东西;但是,这里完全没有蚊子。另一座建筑干净

        整洁,没有任何可能被黄热病污染的物体;但是,它被网密封住了,里

        面存在吸食过黄热病死者的蚊子。志愿者被安置在两个建筑物中,被要求在那里睡20个晚上。在这些天内,两组志愿者各自被隔离在附近的帐篷内,以控制其在实验过程中所接触的东西。

        这项为期3周的研究结果令人信服且清晰。 [56] 在整个实验过程中,

        所有肮脏建筑物中的人都保持了完全健康的状态,而干净环境中3/4接

        触了病蚊的人都感染了黄热病。随后的实验还表明,如果在黄热病患者

        感染后3天内取其血液,直接注射到健康志愿者的体内,也无法传播疾

        病。这表明黄热病病原不会在自然界中直接发生人与人的传播。综上所

        述,如此严谨的结果最终推翻了长期以来人们认为黄热病是通过接触受

        污染的物体或瘴气而被感染的理论。这样做还解释了为什么改善古巴和

        美洲南部环境卫生所做的努力对黄热病的传播影响很小。此外,这些结果还验证了芬莱及其20年的潜心研究,并最终证明了伊蚊在黄热病传播中的关键作用。

        这些发现有着巨大的短期和长期影响。首先,知道黄热病的传播方式最终使公共卫生官员有了制止未来疾病流行的抓手。例如,古巴首席卫生官威廉·高加斯(William Gorgas)立即着手消除该岛的蚊媒。如第四章(疟疾)所述,高加斯采用了多种灭蚊方法,包括给湖面上油、清空蓄水池、熏蒸房屋以及为居民提供蚊帐。事实证明,这种干预非常成功,古巴在大约1年内便根除了黄热病。随后巴拿马运河区也采取了类似的灭蚊措施消除黄热病,拉丁美洲和美国也采用了此类办法降低黄热病发病率。在里德研究结果发表后的短短5年内,黄热病就从世界上许多地方消失了。

        里德的实验还因其创新设计引起了广泛关注。他是向志愿者提供书

        面知情同意的第一批科学家之一,知情同意概述了参与研究的潜在风

        险。 [57] 之前的实验通常不让志愿者知道他们要面临什么,而里德则完

        全披露了关于黄热病实验的危险信息。他拒绝强迫或诱骗弱势群体参

        加,并为志愿者提供了非常慷慨的补偿。他的伦理性与同时代的大多数

        研究形成了鲜明对比,后者常常将儿童、囚犯和穷人作为可有可无的、

        不知情的受试对象。例如,在塔斯克吉(Tuskegee)梅毒实验中,研究

        人员故意让贫穷、目不识丁的非裔美国佃农感染了梅毒,并任由他们病

        了近40年(1932~1972年),以研究该病的进展。这些人从未被告知患

        有梅毒,即使盘尼西林已被证实可有效治疗梅毒,也从没有人给过他们

        治疗。讽刺的是,这些可怕的长期实验的补偿是免费医疗、一些食物和

        丧葬保险。这种对少数民族和穷人的残酷剥削凸显了美国的医学实验方

        式亟须大规模变革。值得庆幸的是,塔斯克吉研究最终促使美国政府建

        立了人类受试者保护国家委员会,并制定了联邦法规,要求所有对人类

        进行的实验都必须取得受试者的知情同意。令人遗憾的是,医学界未能

        早些效仿沃尔特·里德。沃尔特·里德自发建立了伦理规范,整整80年

        后,法律上才强制要求知情同意。

        确定蚊子为黄热病的传播媒介后,里德和卡洛尔便将注意力转移到

        寻找致病的病原体上。当时,大多数科学家认为黄热病是由细菌或寄生

        虫引起的,因为在此之前人们从来没有将病毒和人类疾病联系在一起。

        为了验证这一理论,他们获取了含有黄热病病原体的患者样本,并使用

        陶瓷过滤器过滤掉细菌和较大的颗粒。然后,他们将通过过滤器的液体

        注入健康志愿者体内。令他们惊讶的是,所有接受注射的人最终都患上

        了黄热病。这表明,引起黄热病的物质必须足够小,才能穿过过滤器的

        孔隙。当时已知的、唯一具有此特征的传染源就是病毒。里德和卡洛尔

        随后在1901年进行的实验证实了黄热病是由病毒导致的,这是人类疾病

        史首次发现的由病毒引起的疾病。 [58] 这是一个巨大的科学发现,因为

        这是原理验证,也就是说,病毒可以感染人类。由于里德的开拓性工

        作,科学家开始研究其他人类疾病是否也可能是由病毒引起的。在接下

        来的10年中,病毒研究激增。麻疹、流感、狂犬病和天花等疾病长期以来一直是医学界的谜,现在也被证实是由病毒引起的。当科学家针对这些疾病研发有效的疫苗和方法时,这项研究成果更显意义重大。

        寻找疫苗

        在发现黄热病传播媒介和病毒之后的几年中,公共卫生官员主要通

        过控制蚊子数量来预防传染病。最初的几年,这项举措非常成功,由国

        际专家组成的黄热病委员会于1915年召开了会议,讨论从地球上消灭这

        种疾病的可能性。该委员会由洛克菲勒基金会资助,由高加斯主持,系

        统性地进入了南美和非洲流行地区,采用了与古巴、巴拿马和美国相同

        的有效灭蚊方法。虽然此方法在某些地区效果良好,但另一些地方即使

        采取了严厉的伊蚊控制措施,仍然间歇性暴发黄热病。这困惑科学家很

        长一段时间,直到20世纪30年代才最终发现YFV还可以感染猴子,并通

        过不同蚊子在猴子之间传播。因此,在城市所进行的伊蚊生命周期破坏

        策略,对丛林深处的猴子和蚊子自然作用不大。结果,黄热病流行的风

        险仍然存在,因为人和猴子的居住地极为接近,不可能阻止病毒在二者

        之间随机转移。由于无法从环境中完全消除YFV,科学家开始研究下一

        个最佳的替代方案——开发一种安全有效的疫苗,给流行病地区的人们接种。

        在20世纪20年代,生产病毒疫苗的标准方法通常是用热或化学方法

        破坏纯化病毒,或使病毒在某些非宿主生物的组织中生长而使其弱化。

        将被破坏的病毒注入人体内,是完全安全的,因为病原体不可能复活,

        引起疾病。但是,这种灭活疫苗通常会诱发相对较差的免疫反应,因为

        接种者的免疫系统仅接触有限数量的病毒碎片,而不能天然、完整地复

        制病毒。相反,用被称为减毒活疫苗的活病毒,虽具有弱毒性,却可诱

        发更好的长期免疫,不过这样做对接种者的风险更大。如果病毒发生了

        某种类型的突变,恢复了活力,或者疫苗接种者的免疫功能较弱,那么减毒活疫苗就可能引起实际的感染。

        生产YFV疫苗的早期尝试包括用福尔马林处理病毒感染的肝组织,以灭活(“杀死”)病毒。不幸的是,这种疫苗未能引起任何类型的保护性免疫反应。因此,科学家们将注意力集中在减毒活疫苗的生产上。YFV减毒最初困难重重,因为它无法在人类宿主(或蚊媒)以外成功生长。如上所述,当发现该病毒可以在野生和实验室饲养的猕猴(如恒河猴)中传播时,研究取得了突破。这使科学家们第一次将YFV研究从危险的医疗诊所中撤出,并转移到更好控制的实验室环境中。YFV在恒河猴中的复制非常成功。但是,其产生的病毒颗粒毒性并没有被充分减弱,无法用于任何类型的疫苗。这促使科学家开始寻找其他能繁殖病毒的非宿主组织来培养病毒。

        1930年,年轻的科学家马克斯·泰勒(Max Theiler)发现YFV可以

        在小鼠的中枢神经系统组织中复制。 [59] 在被允许病毒进行多代复制

        后,泰勒发现从小鼠脑组织中提取出的病毒,在猴子和人类肝脏中致病

        的能力被极大削弱了。换句话说,在小鼠脑组织中生长的YFV似乎是经

        过选择的病毒突变,这种病毒失去了破坏肝脏和血管内皮细胞的能力。

        此外,将这种减毒的YFV注入新宿主中可以为他们提供长期保护,使其

        免受全毒YFV的感染。在20世纪30年代,尽管泰勒看起来成功研发出安

        全有效的YFV疫苗,但他在动物试验阶段发现了新的并发症。小鼠脑中

        持续生长的病毒是随机产出的新YFV变体,这些变体表现出了对神经组

        织的偏爱。 [60] 结果,当向恒河猴注射减毒疫苗时,随着病毒扩散到大

        脑并在脑中复制,许多猴子出现了严重的神经功能障碍。当然,这是整

        个成果的灾难性打击。能预防一种疾病但会引起另一种疾病的疫苗显然并非泰勒所希望的。

        正是在疫苗研发的这个阶段,两个独立的研究团队出现在了大西洋

        的两侧。一个由纽约洛克菲勒学院的威尔伯·索耶和马克斯·泰勒领导,

        另一个由在巴黎巴斯德学院工作的安德鲁·沃森·塞勒兹和让·莱格瑞特领

        导。泰勒的团队继续研究在小鼠大脑中产生的疫苗,发现将其与YFV自

        然康复者的少量抗体共同注射时,可大大降低其扩散到受体神经系统的

        可能。 [61] 虽然这样做可以使接种者产生YFV免疫,但这并不理想,因

        为每次注射疫苗时都必须将一个人的血液衍生物直接注入另一个人体

        内。这样做非常昂贵,而且一旦抗体血清碰巧被其他东西感染了,还会

        有潜在的危险。不幸的是,这种危险在1942年才被意识到,当时有多达

        50000名接受血清疫苗注射的美国陆军新兵染上了黄疸。对疫苗接种方

        案和试剂的分析表明,疫苗本身与这种广泛传播的肝病无关。 [62] 相

        反,他们发现与疫苗一起注射的人血清(以使疫苗更安全)偶然被另一

        种病原性病毒——乙型肝炎病毒(HBV)污染了。这个巨大的错误使洛克菲勒小组重新评估了将人血清纳入疫苗接种方案的做法。

        同期,法国团队也经历着自己的困难。尽管他们的疫苗也来自受感

        染的老鼠大脑,但他们选择不使用人血清。相反,他们接受了神经疾病

        增加的风险,并试图降燥、与蛋黄或油混合或通过划痕而不是注射接种

        来进一步减轻毒性。将其划入皮肤已被证明可在一定程度上减少疫苗的

        嗜神经性,但并未完全消除这种风险。

        两种疫苗的早期工作都表明,它们都不是足够安全的、价格合理的

        长期YFV疫苗。人们需要采取一些措施来消除疫苗的嗜神经性和对人血

        清的依赖性。马克斯·泰勒孜孜不倦的工作很快就得到了答案。在确定

        YFV也可以在鸡胚组织中繁殖后,泰勒开始在缺乏中枢神经系统的鸡胚

        胎组织中培养小鼠脑源性疫苗株。原因是他希望疫苗菌株在没有神经组

        织的情况下复制时能发生突变,从而失去其嗜神经性。泰勒继续感染鸡

        胚组织,测试从中产生的YFV的嗜神经性,如果测试失败,则继续将其

        注射到新鲜的鸡胚组织中。在重复此过程超过100次之后,泰勒终于取

        得了他一直期待的突破。从鸡胚组织中出现了一种名为17D的特殊毒

        株,将其注入活体动物时,无法感染中枢神经系统。 [63] 17D菌株在造

        成肝损害和上皮组织损害方面也处于减毒状态,当给受体动物和人类注

        射时,它能引发巨大的免疫反应。简而言之,泰勒成功地创建了一种真正安全有效的疫苗菌株,无须人血清即可廉价地进行给药。其他科学家对他的17D菌株进行了测试,结果相似。很快,全世界所有的YFV疫苗都使用了17D菌株。

        泰勒用于生产YFV疫苗的充满创新性和革命性的方法使他在1951年获得了诺贝尔生理学或医学奖,也是唯一一次因疫苗开发而颁授诺贝尔奖。 [64] 泰勒为疫苗设计设定了基准,以往粗糙的减毒技术被证实不充分且低效。后来,他的方法被研究人员大量模仿,由此开发出历史上重要的一些病毒疫苗,包括脊髓灰质炎、麻疹、HBV和流感疫苗。此外,他的17D疫苗还为公共卫生官员提供了抵抗未来黄热病疫情的强大武器。连同防蚊措施,1937年YFV疫苗的发展标志着黄热病恐怖笼罩的非正式终结。它不再拥有使城市瘫痪或使成千上万人逃离家园的力量。人类最终破解了这种疾病,并可以通过多种方式加以控制。尽管黄热病每年仍然致死成千上万的人,但它像过去那样造成全球性混乱的威胁已经一去不复返。

        第八章 霍乱

        高山、沙漠、海洋、逆风,任何障碍都无法阻碍它的侵袭。不分阶层、男女、年龄、强弱,所有人都可能受到攻击。即便那些曾经被它拜访过的人,也不总能幸免。然而,与在阳光下恐惧的富人和权贵相比,那些已被生活中各种不幸所压垮的人更容易成为受害者。 ——乔治·伍德(George Wood)博士,在观察到1832年霍乱流行所带来的恐怖后撰写 [1]

        19世纪对霍乱(Cholera)最常见的图形描述之一便是:死亡天使从大洋彼岸来到一座城市,用镰刀大肆屠杀受到惊吓的受害者。这令人想起14世纪黑死病期间所创作的画作,这些画面完美地描绘了当霍乱再次从海上登陆的消息传出后,城市中弥漫着的无处不在的恐惧和无助。不幸的是,这种感觉在19世纪,甚至是20世纪依旧常见,当时全球的7次霍乱大流行共夺走了5000多万人的生命。尽管目前霍乱可以防治,但每年仍有多达400万人感染霍乱,并有10万余人因此死亡。

        一旦食用了被霍乱细菌污染的食物或水,患者便会经历突发而持续

        的水样腹泻,在短短几个小时内就会造成危险的体液流失和电解质流

        失。严重情况下(2%~5%的情况),患者每小时可能会流失1升以上的

        体液。患者腹泻的程度相当严重,以至于许多诊所会把病人放在特殊

        的“霍乱床”上,床上挖一个洞,下面摆一个桶,用来收集几乎连续不断

        流下的液体。随之而来的脱水会导致严重的肌肉痉挛、心律不齐、昏

        睡,甚至血容量和血压下降。除此之外,霍乱患者通常会伴有眼睛塌

        陷、发暗,皮肤干瘪、发青的症状。如果此时不及时进行静脉输液和电

        解质补充治疗,患者会进入休克状态,30%~50%的患者会进而产生昏

        迷,甚至死亡。令人惊讶的是,上述所有临床症状可能在一天内全部发

        生。一个人可能在上午才抱怨有轻微的腹部不适,到了晚上便去世了。

        事实上,霍乱作为与埃博拉和坏死性筋膜炎齐名的流行病,是微生物界中最快的杀手之一。

        霍乱是由一种名为霍乱弧菌的逗号状小细菌感染所引起的。在卫生

        条件差的地区,细菌可自发地在温暖水体中生长和复制。它们既可以在

        水中独立生长,也可以寄居在浮游动物这种小型甲壳类生物中。由于一

        些水生动物(如牡蛎)以浮游动物为食,在人类食用的某些食物中也可

        能聚集高浓度的霍乱弧菌。正常情况下,特定水源中的霍乱弧菌会被噬

        菌体病毒杀死而保持在较低的水平,这些噬菌体可以靶向杀死霍乱弧菌

        (回顾一下,病毒可以感染所有形式的生命,包括细菌)。然而当雨量

        过大时,这些能杀死霍乱弧菌的噬菌体会被稀释,无法有效地杀灭细

        菌。此时,水中细菌的数量会急剧增加,使在此饮水、洗东西或者游泳

        的人更容易被感染。由于霍乱弧菌在外结构方面没有很好的保护层,所

        以只有个体摄入约1亿个细菌细胞时,才能确保有足够的细胞通过恶劣的胃酸环境,而只有那些进入并附着到肠道组织上的细菌才能开始复制。

        有趣的是,由于肠道中的霍乱弧菌自身没有太大的侵袭性,也不会

        引发任何类型的炎症,其本身对宿主身体的伤害很小。而霍乱弧菌之所

        以能成为一种有效的人体病原体,是由于它能产生一种强大的毒素,破

        坏宿主肠道细胞的正常功能。这种毒素,恰如其分地被称为霍乱毒素

        (CT),可附着在宿主细胞表面并进入细胞内。一旦进入细胞内,毒

        素就会引发一系列酶激活连锁反应,最终导致细胞外膜蛋白质通道的打开。特别是,这种毒素可迫使一个叫作CFTR的通道打开并释放大量的氯离子(CI-)到肠道的主要部分。而当氯离子被运输到细胞外时,钠(Na+)离子和水也会随它一起流失。最终的结果就是大量的水和离子(电解质)在肠道内积聚,再被排出体外。随着霍乱弧菌持续产生霍乱毒素,更多的CFTR通道被打开,带来更多的体液流失。如果感染者是在一个没有适当卫生设施的地区发生了这些症状,那么其腹泻物所释放的数十亿个细菌就会污染一个新的水源,整个循环又会重新开始。

        与本书中所讨论的大多数病原体不同,霍乱引起的疾病通常被称为“共源性流行病”,即病原体是通过某个共有的环境源(如湖泊或水井)而传播的,而不是在宿主之间直接传播。在共源性流行病中,暴露于同一污染源的大量个体可能同时被意外感染。例如,如果有一口供1000人饮水的井被霍乱弧菌污染了,那么之后的每个饮水者都可能同时出现病症。与宿主间传播的流行病不同,宿主间的流行病通常会随着传染媒介在人群中逐渐传播而具有一定的滞后性,而共同来源的流行病似

        乎突然出现,甚至在卫生官员还没有时间做出应对之前就夺走数千人的

        生命。由于传播不是通过人与人之间直接进行的,隔离和改善个人卫生

        的尝试通常收效甚微。真正能阻止共源性流行病的唯一方法就是确定污

        染源,去除污染物或阻止人类接触。通过维持水源清洁和实施符合标准的食品安全措施,可以完全防止“共源性流行病”。

        在尝试控制霍乱和其他水源性疾病(如伤寒和痢疾)时出现的核心问题是,感染共源性流行病的人可以去往遥远的地方,并污染当地的水源。其结果就是,可能有成千上万个污染区分布在数百英里之外,而非仅仅处理一个单一污染区即可。例如,如果一个人从一个城市的河流中感染了霍乱,那么当他返程时,不断的腹泻可能会导致他途经的其他10个城市都感染这种细菌。正如你将在本章中看到的,在过去200年中,这种传播方式足以让霍乱成为一种极具杀伤力的流行病。

        七次霍乱大流行的起源和概述

        “霍乱”一词来源于希波克拉底的著作。在公元前5世纪,希波克拉底用希腊语“胆汁”(chole)来描述一些不同的散发性腹泻。 [2] 鉴于他对这些疾病的临床描述有些模糊,很可能希波克拉底本人并没有亲眼看见过霍乱流行。同样,在盖伦或其他任何古代欧洲医学史学家的著作中,也没有对霍乱的明确描述,这表明要么当时霍乱没有在欧洲出现,要么没有造成严重的疫情。

        尽管没有人确切知道霍乱弧菌最初是在何时、何地、以何种方式进入人体的,但大多数流行病学家认为,霍乱弧菌至少在几千年前就在印度次大陆的某个地方出现了。支持这一观点的最有说服力的证据来自一些印度教寺庙中所发现的古代巨石上的碑文。例如,印度西部的一座神殿中有一块巨石,可以追溯到公元前4世纪,上面刻着这样的铭文:“嘴唇发青,脸色憔悴,眼睛塌陷,胃部凹陷,四肢收缩和萎缩,仿佛被火烧过一样,这一切都是大病的征兆,源于牧师的诅咒,他要杀死勇敢的人。”[3] 尽管有人可能会说,这是在描写其他的疾病,但与伤寒或痢疾等其他腹泻相比,皮肤发青、眼睛塌陷、肌肉萎缩等症状更像霍乱的症状。同样,在医学文献尚未提到霍乱之前,在加尔各答附近的一个神龛里,人们就已经朝拜一位专门治疗霍乱的印度教女神(Oladevi)长达数百年了。 [4] 这一点,再加上前6次霍乱大流行都是在印度/孟加拉国的恒河三角洲附近开始的,都强烈表明霍乱弧菌曾在一段时间内是该地温暖水域的地区性疾病。

        关于霍乱的第一次明确书面记载出现在16世纪中叶,当时葡萄牙历史学家加斯帕·科雷亚(Gaspar Correia)记录了1503年和1543年在加尔各答暴发的霍乱。在他1556年《印度传说》(Lendas da India )一书中,科雷亚生动描述了霍乱所引起的许多可怕的病理表现,并将这种致命疾病描述为“腹部持续疼痛,没有人能撑过8个小时”。 [5] 在接下来的250年里,许多来到印度的其他欧洲探险家都描述了在此期间暴发的另外62次霍乱。医学史学家对这些记录进行了研究,根据疾病在印度的传播范围,将其中10种归为疫情。尽管清楚地认识到印度的地方性霍乱是一颗定时炸弹,但从16世纪到18世纪,没有任何统治印度的欧洲殖民者试图努力控制或研究这种疾病。于是,霍乱牢牢地盘踞在恒河的温暖水域中,等待着什么人或什么东西把它带到印度以外的地方。

        第一次真正的霍乱大流行始于1817年,即发生在每隔几年于恒河举

        办的印度大壶节之后。 [6] 为了能在恒河的神圣水域中沐浴并祈求庇护,

        在此期间,数百万名来自世界各地的印度教徒都去那里朝圣。由于前一

        年的反常天气(1816年被称为“无夏之年”),印度在1817年遭遇了特别

        多雨的季风季节。就在节日开始的时候,恒河的细菌数量大幅增加。9

        月,朝圣者中突然出现了大规模的霍乱感染,紧接着细菌又随患者长途

        跋涉到了他们各自的家园。不久后,霍乱就在整个印度次大陆蔓延开

        来,成千上万的当地人和许多生活在他们中间的英国殖民者都因此失去

        了生命。然而,不同于以往小规模暴发和流行,这次疫情并没有止于印

        度境内。相反,因运送货物和军用物资,英国人把细菌带到了亚洲和中东的殖民地。于是,霍乱首次出现在曼谷、马尼拉和巴格达这样的城市,并到处肆虐。在之后的几年里,它一直在全球传播,西至非洲海岸(桑给巴尔岛),北至俄罗斯,东至日本。这种不受限制的传播一直持续到1824年冬天,大部分生活在亚洲水源中的霍乱弧菌因当时异常寒冷的天气而死亡。至此,长达7年的疫情终于结束,但其造成的破坏相当严重。恶劣的卫生条件、宗教朝圣和殖民主义等致命因素的结合,使霍乱从一种地方性疾病变成了全球威胁。这是霍乱在历史上第一次真正走向全球,但不幸的是,这仅仅是开始。

        第二次霍乱大流行发生在5年后(1829年),并且持续了约20年。[7] 和第一次暴发一样,它依旧起源于印度的恒河三角洲,并通过殖民贸易路线迅速传播到亚洲各城市。到19世纪30年代初,霍乱由俄罗斯传入

        东欧,随后第一次传播到西欧。许多欧洲大城市,如伦敦和巴黎,因其

        当时普遍拥挤的环境和糟糕的卫生条件,所受打击尤为严重。1832年6

        月,一些在英国被感染的患者乘船前往美洲,将霍乱带到纽约,并从那

        里又将病菌传播到了费城、波士顿、新奥尔良和墨西哥。在亚洲,在许

        多印度教节日、穆斯林麦加朝圣和麦地那朝圣期间,霍乱病菌又被传播

        到了城市外。有人推测,在1831年的麦加朝圣期间,有多达3万人死于

        霍乱,同时每年都有成千上万的人在朝圣期间死亡。由于受感染的朝圣

        者众多,霍乱又传播到了中东大部分地区,甚至是北非。待这场霍乱大

        流行最终平息时,已有数十万人被夺走了生命。这场霍乱大流行在全球蔓延的速度,只有1918年的流感大流行才能与之匹敌。

        随后的第三次(1852~1860年)、第四次(1863~1875年)、第五

        次(1881~1896年)和第六次(1899~1923年)霍乱大流行皆始于恒

        河,其传播方式也与第二次大暴发类似。然而,就受影响最严重的地区

        而言,每次都略有不同。例如,第三次大暴发对俄国的打击要比亚洲其

        他地方更为严重,造成约100万人死亡,而第四次大流行则在非洲造成

        了大规模的人员伤亡。有趣的是,卫生条件的改善帮助消除了城市供水

        中的霍乱弧菌,第四次大流行也是霍乱最后一次在西欧或美洲造成重大

        影响(请参阅本章后面的内容)。第六次大流行主要发生在亚洲,造成

        印度1000万人死亡及俄国50万人死亡。这些统计数据清楚表明了为什么霍乱被视为19世纪最流行、最令人恐惧的微生物杀手。

        最近的第七次霍乱大流行始于1961年的印度尼西亚。这是霍乱大流行首次在恒河三角洲以外的地区暴发,同时也是首次死亡率较低的一次疫情。卫生设施的重大改善,抗生素、口服补液疗法的使用,以及毒性较小的菌株(如埃尔托型,El Tor)的出现,都有助于控制霍乱对人类的影响。然而,每当自然灾害或战争之后,只要卫生基础设施遭到破坏,霍乱就会再次出现并造成严重破坏。

        社会动荡的根源

        19世纪初,随着工业化和城市化的发展,出现了几个新的社会阶

        级。第一个便是中产阶级,主要由受过教育的专业人士(如医生和律

        师)、店主、工厂主、经理和小地主组成。这些人由于工业革命所带来

        的经济繁荣而获得了巨额财富和政治影响力。除了社会地位的提升之

        外,这些新获得的财富还使他们能够搬离日益危险和拥挤的城市,从而

        改善生活质量。居住在郊区庄园有助于中产阶级远离大多数流行病,并

        使他们能在当地建立属于自己的更优质的学校、医院和休闲活动场所。因此,与过去的几十年相比,他们享有了比以往更长寿、更幸福的生活。

        与中产阶级在当时所取得的成就形成鲜明对比的是,为寻求工作而

        移民到城市的大量农村劳动力和务工人员,他们遭受了现代历史上前所

        未有的贫困和痛苦。大多数人所从事的职业要求他们在危险的环境中长

        时间工作,却几乎没有报酬。城市中工作的穷人几乎挣不到足够的钱养

        活自己,他们不得不生活在环境拥挤、卫生条件差的贫民窟里,那里充

        斥着暴力、绝望和传染病。富裕阶层对穷人的长期虐待和剥削往往在他

        们的痛苦上雪上加霜,他们往往以一种冷漠的蔑视态度看待穷人,而穷

        人也往往不会信任权势显赫的贵族。上层阶级、中层阶级和工人阶级之

        间在生活前景和生活水平上的这种差异,就像一颗滴答作响的定时炸

        弹,只要有适当的火花,就可能随时爆炸。不幸的是,19世纪在各个城市中肆虐的霍乱,恰恰是阶级之间发生重大冲突的导火索。

        当霍乱在第二次流行期间(1830~1832年)首次传播到工业化城市

        时,这种疾病迅速进入贫民窟,夺走大量穷人的生命。例如,在纽约

        市,1832年死于霍乱的3500人中,大多数是住在五点贫民窟里的爱尔兰

        贫民和自由非裔美国人。 [8] 同样的,在圣彼得堡和其他俄罗斯城市的贫

        民窟里,有超过10万人死于霍乱;在巴黎、利物浦和伦敦的贫困地区

        中,也有数千人死亡。 [9] 当霍乱席卷这些城市,并造成大量工人阶级死

        亡时,上层阶级和中产阶级在很大程度上并没有试图减轻他们的痛苦。

        在疫情最严重的时候,一些慈善家确实建立了施粥所和济贫院,但大多

        数人只是袖手旁观,眼睁睁地看着穷人以空前的纪录死亡。造成这种情

        况的一个主要原因是,许多人已经把贫民窟的肮脏与住在那里的人联系

        在一起。越来越多的媒体报道,穷人“选择了”自己的生活方式,他们应

        该对这种流行病负责。 [10] 这种诽谤的结果是,许多城市的社区领导人

        有意拒绝提供人道主义援助,因为他们认为这样做只会使疾病的罪魁祸

        首存活。1832年,纽约市一位重要的公民领袖在一封信中表达了这一观

        点,他写道:“要么治愈那些生病的人,要么让他们死亡。他们主要是纽约市的渣滓,越快把他们送走,疾病才会越快停止。”[11] 根据这种近乎马尔萨斯式的传染病控制模型,阻止流行病的最好方法就是让霍乱杀死疾病的传播“媒介”,即居住在肮脏贫民窟里的可怜的“渣滓”。

        为了防止疫情蔓延到这些地区之外,许多城市实施了严格的隔离措施,阻止人们进出受影响的社区。对于生活在那里的穷人(和垂死之人)来说,这种限制是政府的不必要入侵,是一项残酷的政策,大大加剧了他们的痛苦。随着霍乱致死人数的继续上升,阶级之间日益增长的怨恨和不信任开始沸腾,导致了几次暴力冲突。这些当地的小规模冲突,被统称为“霍乱暴动”,发生在世界各地,造成了重大财产损失和人员死亡。

        第一次霍乱暴动发生在1830~1831年的俄罗斯。 [12] 1823年9月,俄罗斯第一次暴发霍乱,但随着几个月后的寒冬降临,疫情也就消失了,并没有真正造成大量死亡。然而,当它6年后再次重返时,情况就大不相同了。它先从南部抵达奥伦堡,并在1830年迅速传遍全国。当疫情蔓延到莫斯科和圣彼得堡等大城市,给当地带来巨大灾难时,大规模恐慌出现了。为了防止霍乱在主要城市中心进一步传播,由尼古拉一世(Nicholas Ⅰ)所领导的沙皇政府建立了非常严格的隔离和武装检查点,以防止城市内和城市间不必要的人员流动。在一些地方,人们不能出去上班,即使是为了寻求医疗护理也不能离开家。随着疫情恶化,尼古拉一世和其他高级政府官员逃离了首都(圣彼得堡),并切断了与民众的联系。当地卫生官员不分青红皂白地将病人和穷人与死于霍乱的人关在一起,使情况更加恶化了。当时住在圣彼得堡的一位人士指出,警方也好不到哪里去。他写道:“我们的警察一向以傲慢和敲诈勒索而闻名,现在他们变得更加可耻,而不是在这个悲伤的时刻提供帮助。”[13]

        谣言开始满天飞,说医生故意毒死病人,说波兰和德国移民与俄罗斯政府密谋消灭穷人。被隔离区所困,再加上这种被抛弃和被虐待的感觉,圣彼得堡和其他几个俄罗斯城市的穷人开始大肆反抗。

        骚乱始于1831年6月21日的圣彼得堡,示威者聚集在塞纳亚(Sennaya)广场,并开始攻击运送病人的医疗马车。在接下来的几天里,暴徒捣毁了当地几家诊所,并杀死了许多在诊所工作的医生。一个暴徒从战斗中归来,得意地说:“我在一个医生的脖子里放了很多石头,他在很长一段时间内肯定不会忘记我们。”[14] 作为应对,俄罗斯政府派遣了两个兵团进入塞纳亚广场,恢复和平。在暴徒被炮火威胁制止

        后不久,尼古拉一世本人到市中心发表讲话。关于他那天的讲话,说法

        大相径庭;然而,大多数人认为,他命令群众跪在他面前,并脱下帽子

        以示服从。但无论他说了什么,都起了作用,此次暴动止于6月23日。

        尽管1831年的暴动未能彻底改变俄罗斯政府对霍乱疫情的应对方式,但

        这确实提醒了统治者,穷人不会任由宰割、悄无声息地死去。

        在第二次霍乱流行期间,另一个出现大量暴力事件的国家是英国。

        与俄罗斯的暴动不同,俄罗斯的暴动是因为人民不满于政府的限制性隔

        离措施和当权的领导不力,而英国的暴力事件则是由上层阶级虐待穷人

        尸体而激发的民愤所引起的。此事件首次成为全国关注的焦点是在1826

        年10月,《利物浦水星报》发表了一篇文章,称发现了33具正在等待被

        运往苏格兰的尸体。 [15] 这些尸体是从当地的墓地偷来的,放入了盐防

        腐剂,然后偷偷卖给了爱丁堡的一所解剖学校。不到1个月内,在苏格

        兰的利物浦码头就发现了第二批要运往苏格兰的被盗尸体。1827年,又

        一桩案件登上了报纸头条,震惊了利物浦市民。一位颇受尊敬的当地外

        科医生威廉·吉尔(William Gill)被发现家中藏有5具尸体。 [16] 和之前

        的情况一样,他从当地的墓地里窃取了尸体,并计划自己解剖一部分,

        卖掉一部分。向解剖学校出售尸体这桩利润丰厚的生意在1828年变得更糟了,两名男子——威廉·伯克(William Burke)和威廉·黑尔(William Hare)被发现在爱丁堡谋杀了16人,其唯一目的就是出售尸体牟利。 [17]大多数被谋杀的都是贫民、妓女、贫穷的劳工和“其他悲惨的社会弃儿,没有人想念他们,因为没有人希望再见到他们”。 [18] 正如人们所预料的那样,这些罪行引发了工人阶级和其他被上层阶级和政府迫害的人的愤怒。虽然威廉·黑尔因与当局合作而幸免于难,但威廉·伯克因其罪行于1829年1月被绞死。他的尸体被公开解剖,但根据主审法官的判决,他的骨骼得以保留。这起案件是如此令人不安又意义重大,以至于在英语中催生了几个新词。Burking和Burker这两个词成为谋杀穷人获利的代名词。

        这些案件以及其他类似案件(例如1831年毕肖普和威廉姆斯在伦敦制造的谋杀案)促成了1832年《解剖法》的通过,使日益增长的解剖学学校能获得更多合法的尸体。 [19] 虽然在此期间,这项立法确实有助于减少英国的非法尸体交易,但鉴于大部分合法尸体供应都来自死于济贫院或街头的穷人,它依旧受到了下层社会的广泛批评。在大多数情况下,尸体是在未经死者家属同意的情况下被匿名“捐赠”的。结果,对医院和医生的恐惧席卷了工人阶级社区,许多人开始认为穷人是“被过度入院”的目标。

        1831年,当霍乱蔓延到英国时,数以万计的人因此患病,许多人被迫寻求治疗。随着越来越多的人进入霍乱医院后就再也没有离开,谣言开始四处传播,说医生们利用霍乱来杀死贫穷的病人。利物浦的情况尤为紧张,霍乱在贫民窟蔓延失控,人们不断想起近年来在那里发生的许多盗墓和谋杀事件。1832年5月29日晚,利物浦爆发了第一次霍乱暴动,当时一对生病的夫妇被送往当地的霍乱医院,一大群以妇女和男孩为主的人群紧随其后。 [20] 由于不相信这对夫妇病得很厉害,暴徒们开始对医务人员大喊“伯克!”和“凶手!”当他们到达医院时,暴动者已达到约1000人,并且越来越暴力。当时的一位旁观者记录了一些细节:“有人向房子扔石头和砖块,几扇窗户被打破了,甚至在这个奄奄一息的女人躺着的房间里,也有几扇窗户被打破了,看护医生不得不为了安全而逃跑。有些人被暴动者追逐袭击,并因此受伤。医院的巡警们感到惊慌失措,无能为力。”[21]

        尽管当晚暴动者都散去了,但在接下来的3天里,他们依旧在同一家医院门前集合。之后的2周内,全市各医院附近又发生了7起暴动。暴动者毁坏了运送病人的马车,袭击了医生,指责医生“给病人服用了杀死他们的东西,并使他们的脸色发青”。 [22] 暴徒追逐医务人员并大声喊叫“医生们只想把穷人抓入他们的魔掌中,杀死他们”。 [23] 这种暴力每隔几天就会爆发一次,直到1832年6月10日傍晚才结束。大多数人认为是当地的天主教会化解了局势并恢复了城市的和平。在最后一次暴乱后的那个星期天,利物浦的每一位天主教牧师都在布道坛上发表了一份正式声明,恳请教众理性看待这场流行病并依据自己的信仰行事。牧师们还向他们保证,将与当地卫生官员合作,确保霍乱患者得到保护和最受尊重的治疗。这一观点得到了当地几位医生的呼应,他们于同一周内在《利物浦日报》上发表了同样的声明。

        尽管在第二次霍乱大流行期间,俄罗斯和利物浦所发生的暴动持续时间最长,涉及范围最广,但这绝不是偶发事件。例如,1832年,英国曼彻斯特也爆发了一场霍乱暴动,当时一名年轻医生砍下了一名死于霍乱的4岁儿童(约翰·布罗根)的头,并试图卖掉它。 [24] 当男孩的爷爷看到棺材里发生的事时,他召集了2000多名愤怒的邻居,游行到医院。一到那里,他们就放火烧了大楼的几个部分,并猛烈袭击了大楼的工作人员。类似的场景在整个欧洲(如巴黎、英国的埃克塞特)和美国(如纽约的尤蒂卡)的城市都有发生,暴徒袭击了掘墓人、医生和任何他们认为对已故亲友不尊重的人。

        1833年,在霍乱疫情消退后,上述事件变得罕见,破坏力也大大降低了。然而,当霍乱在19世纪后期再次出现时,暴动事件也随之出现在了受疫情影响最大的贫困人群中。1892年,乌克兰工业城市乌佐夫卡(Iuzovka)发生了一次破坏性最强、最致命的霍乱暴动。 [25] 当时,乌佐夫卡作为沙皇俄国的一部分,挤满了2万名穷人,他们在外国商人经

        营的不安全的钢厂和煤矿中工作。夏末,霍乱的到来加剧了已在当地酝

        酿数年的动荡不安的劳动形势。8月2日,一群喝醉了的矿工前来救助一

        名因霍乱而被强制入院治疗的妇女。在把卫生官员赶出她家后,暴动者

        走到外面,开始抢劫和摧毁当地一直占他们便宜的那些商店。暴乱的破

        坏程度非常严重,以至于在暴乱结束时,183家商店中只有3家完好无

        损。第二天,约有1.5万人把注意力转向了乌佐夫卡更富有的犹太人。

        暴动者摧毁了他们的生意,烧毁了他们的家园,并杀害了多达100人。

        最终军队被叫来平息叛乱,几天后终于恢复了和平。尽管1892年的霍乱

        暴动持续时间很短,但它几乎摧毁了整个乌佐夫卡市,严重破坏了当地

        的煤炭工业。圣彼得堡的政客们目睹了令人震惊的暴力事件,并担心如

        果允许工人们组织工会,将会产生更严重的后果。因此,他们加大了对

        所有被指控为“违法”的工人的公开体罚。这种国家支持的暴行进一步激

        化了内乱,并为历史上最重要的工人起义——共产主义革命——奠定了基础。

        宗教自由、帝国主义和公共卫生

        由于恒河中霍乱弧菌的持续存在,印度的孟加拉地区成为19世纪霍乱大流行的中心。当时印度的经济、政治和军事都受到英国的控制。1612年英国首次与印度建立关系,当时莫卧儿帝国的统治者授予英国东印度公司(EIC)许可,“他们可以任意出售、购买和运输商品至他们的国家”。 [26] 在接下来的几十年里,EIC在印度各个城市建立了种植园和工厂,并利用这些种植园和工厂生产茶叶、香料、棉花、鸦片和丝绸等贵重商品。 [27] 到了18世纪中叶,日益强大的EIC将大多数欧洲竞争对手赶出了印度,从而几乎垄断了当时的印度经济。这种扩张创造了巨大的利润,使EIC越来越需要保护其投资免受国内和国际威胁。起初,EIC只雇用了几百名印度士兵作为守卫,看守位于孟买、马德拉斯和加尔各答等印度主要地区的贸易站。然而,随着EIC的业务在18世纪后期大为扩张,EIC雇用的私人军事力量多达6万余人。这些部队被训练为欧式士兵,并被组织成大的兵团,称为总统军。除了拥有骑兵和重型火炮外,总统军还拥有一支规模庞大、实力强大的海军。

        随着印度统治者及其臣民对英国殖民者的不满与日俱增,EIC军方与各印度团体间的武装冲突变得越来越常见。 [28] 1857年,当EIC雇用的一群印度士兵在孟加拉地区发动兵变时,暴力事件达到了顶峰。这场叛乱持续了2年多,双方伤亡惨重。EIC最终成功地镇压了叛乱;然而,这种情况暴露出EIC在管理印度方面有严重缺陷。于是,英国王室解散了EIC,并直接对印度次大陆及其近2.5亿名居民进行殖民统治。之后,英国政府对印度统治了89年,直到1947年圣雄甘地(Mahatma Gandhi)领导的独立运动才结束。

        在英国统治期间,6次霍乱大流行在印度次大陆蔓延,加剧了英国人和印度人之间的紧张关系。正如本章前面所提到的,造成霍乱继续传播的一个主要因素是,在各种印度教节日期间,数以百万计的宗教朝圣者频繁地迁移到恒河。此类活动中规模最大的是大壶节(Kumbh Melas),几个世纪以来该节日活动一直在4个不同的城市轮流举行。 [29]

        沿着恒河举行的两次大壶节(哈里瓦和普拉亚格/阿拉哈巴德)通常会吸引来自印度各地的大量人群。事实上,历史上人数最多的一次集会发生在2013年2月10日,当时有3000万人在普拉亚格的大壶节上聚集。除了主要的大壶节之外,还有一些更加频繁举行的小节日,被统称为“佛浴节”(Magh Melas)或“小壶节”(Ardh Melas)。节日的持续时间不固定,每个人在节日上停留的时间也不固定。有些节日只持续几天,而有一些则会持续好几个月。

        在这些节日中,其中最重要的一个仪式就是在恒河的圣水中沐浴。[30] 圣人(那迦苦行僧)和朝圣者相信圣水可以净化心灵,帮助其从死亡和重生的循环中获得自由(称为“解脱”),便将自己完全浸入河中,以净化罪孽。在很多情况下,参与者还会直接喝水,或者带着盛有水的容器回家。不幸的是,在特定季节和年份里,当霍乱弧菌处于高水平时,以这种方式接触恒河水是极其危险的。除了害死参加节日的人之外,这种细菌还经常随着返回的朝圣者,在印度各地建立新的传染源。从那里,霍乱沿着军事和贸易路线很轻易地传播到了亚洲其他地区、欧洲和美洲。

        1851年,为了控制霍乱在印度内外的传播,来自12个欧洲国家的代表集体召开了第一次国际卫生会议,讨论如何在不影响贸易的情况下尽可能控制霍乱等疾病的国际性传播。 [31] 在这次会议中,虽然他们就大流行病的全球性进行了讨论,但未能达成任何长远的政策共识。1866年,在君士坦丁堡举行的第三届国际卫生会议,重点讨论了霍乱及其传播方式。 [32] 当讨论到印度朝圣者在大规模霍乱流行中的作用时,与会

        代表得出结论,霍乱是由朝圣者传播的,而恒河的大规模聚集则是“导

        致霍乱发展和蔓延的最大原因”。 [33] 这些结论给英国人带来了一个发人

        深思的两难境地:他们是应该选择冒着风险控制朝圣活动,进一步激怒

        已经怨恨他们的数百万人;还是选择冒着未来欧洲霍乱流行的风险,允

        许朝圣活动继续进行?最后,由于大规模隔离和其他措施难以执行、代

        价极为高昂,且会被视为对印度教徒的宗教迫害,英国人走上了对朝圣活动不加干涉的错误道路。

        正如英国人所预料的,一旦他们尝试干预,就会遭到朝圣者的强烈

        抵制和蔑视。例如,1892年在哈德瓦尔(Hardwar)举行的大壶节中暴

        发了霍乱疫情,当局强行驱散了20多万名朝圣者,并阻止新朝圣者通过

        铁路到达该地区。 [34] 尽管没有因此发生暴力事件,但朝圣活动的中断

        激怒了正统的印度教徒(实际上也没能减缓疫情的蔓延)。1906年,英

        国当局试图清理戈达瓦里河附近受污染的圣池,遭到了一群印度教士和

        圣人的阻拦。 [35] 后来的卫生措施,如个人健康检查和接种疫苗,同样

        被印度朝圣者视为对其宗教的侵犯。英国人清楚地意识到,让这些被殖

        民者改变古老的宗教仪式是一场艰苦的战斗,而上述例子则清楚地说明

        了强迫改变的风险。因此,除了少数例外情况,英国人在朝圣活动现场

        控制霍乱时,大多采取了“放任”的政策。于是,霍乱成为与巨大经济利益共存的恶魔。

        由于印度教节日活动往往靠近恒河举行,恒河经常被认为是霍乱疫

        情的中心,但实际上,前往麦加和麦地那的伊斯兰朝圣者才是将疾病传

        播到亚洲以外地区的关键。按照伊斯兰教五大支柱之一所要求的,所有

        健康状况和经济条件允许的穆斯林一生中至少到麦加(沙特阿拉伯境

        内)朝圣一次。这种大规模的迁移,被称为朝觐。来自世界各地的数百

        万人会聚集在一起进行为期5天的仪式和祈祷。许多朝圣者也经常聚集

        在麦地那市,以纪念这个被认为是先知穆罕默德最后埋葬的地方。尽管

        这些朝圣活动在伊斯兰信仰中具有重要意义,但由于前往沙特阿拉伯西

        部的各种高昂开销,历史上大多数穆斯林都未曾去过这两个城市。因

        此,大多数早期的朝圣者往往是中东社会的“上层阶级”——富商、官员

        和学者,他们才有能力前往朝圣。19世纪中叶,由于火车和蒸汽动力船

        的出现,再加上苏伊士运河的开通,普通人也有了更加便宜的朝圣机

        会。在这段时间里,居住在印度次大陆的穆斯林开始更频繁地前往麦加

        和麦地那市。由于霍乱的地方病性质,这些朝圣者和他们的印度邻居一样,也经常感染霍乱。

        霍乱于1831年春天第一次出现在麦加,约有5万名穆斯林朝圣者抵

        达麦加庆祝宰牲节(祭奠节)。 [36] 一场大雨,加上过度拥挤和缺乏干

        净的饮用水,导致霍乱在来访的朝圣者中迅速传播。到6月底,麦加及

        其周边有1万至1.5万人因此丧生,并有数以万计的人受到感染。当朝圣

        者离开并开始长途跋涉回家时,他们又把霍乱带上了轮船和火车。尽管

        几国政府努力隔离归国的朝圣者,但他们所到之处仍会暴发霍乱。亚历

        山大和开罗遭受的打击尤其严重,共造成了4万人死亡。除埃及外,在

        麦加朝圣后的几个月里,叙利亚、巴勒斯坦、突尼斯、土耳其和巴尔干

        半岛也报告了霍乱疫情。相同的传播模式在1846~1848年和1865年反复

        出现。在每次疫情中,都是由前往麦加/麦地那的朝圣者将霍乱从印度

        传播到亚洲其他地区、北非、欧洲以及美洲。

        霍乱对欧洲和奥斯曼帝国的持续威胁引发了对新卫生条例和检疫的

        呼吁。1831年,埃及当局成立了“埃及检疫委员会”,这是第一个针对疟

        疾的国际行动。1839年,苏丹马哈茂德二世(Mahmud Ⅱ)在君士坦丁

        堡也设立了一个卫生委员会,负责监督穆斯林朝圣者在奥斯曼帝国境内

        和港口间的流动。 [37] 由于没有适当的权力对外国人进行隔离,两个委

        员会都任命了其他受霍乱影响国的专家,以便其采取的任何措施都能得

        到整个国际社会的认同。在当时,敌对国家间为对抗传染病进行合作是

        具有革命性的观念,因为在那之前,许多国家在处理传染病时并没有考

        虑其对其他国家的影响。两个委员会在欧洲、亚洲和北非的主要港口城

        市都建立了检疫站,配备了训练有素的医务人员,并允许他们行使军事权力。

        在随后的几十年里(如1865年)又发生了几次霍乱疫情。很明显,

        卫生委员会的管理不力和政治内讧使他们几乎无力控制疫情。正是在此

        时,人们决定每隔几年就召开一系列更广泛的国际卫生会议,以解决影

        响整个国际社会的霍乱和其他传染病。来自世界各国的专家们聚集在一

        起讨论关于霍乱的知识,并提出有事实依据的措施来遏制霍乱的传播。

        虽然每次会议的具体内容各不相同,但大部分基调是一样的,即当局需

        要对穆斯林(和印度教)朝圣者和朝圣活动实施更严格的规定,以阻止

        霍乱的传播。正如巴黎大学一位教授在1873年写道:“欧洲意识到它不能再像现在这样,每年都寄希望于麦加朝圣的仁慈。”[38]

        这些会议最终制定了一系列措施,来阻止进出麦加的交通。检疫站

        有了更大的权力,在认定朝圣者有健康风险的情况下,可以无限期地阻

        止他们继续朝圣。他们仔细检查船只,没收受到污染的材料和货物,并

        向朝圣者征收苛捐杂税以抵消他们的食宿费用。最后一项措施还有一个

        目的,就是“淘汰”那些贫穷、不卫生、无法支付高额税款的朝圣者。卫

        生官员希望这样做可以同时减少朝圣者的总数,提高他们的“质量”。不

        幸的是,他们的努力大多是徒劳的。在19世纪的大部分时间以及20世纪初,霍乱几乎每年都会从印度传播到穆斯林朝圣的地方。

        造成这些策略失败的原因有很多。首先,英国作为抗击霍乱的权威

        代表,却在竭尽全力阻止那些试图管制朝圣者往返麦加和麦地那的策

        略。 [39] 当时,如果英国承认专家所说的,即霍乱是由穆斯林朝圣者从

        印度带往圣地的,那英国的损失会相当严重(伊斯兰教是印度的第二大

        宗教)。英国的大部分财富都源于印度产生的国际贸易,任何尝试隔离

        印度往来者的策略都会严重损害英国的商业利益。事实上,英国卫生委

        员会的官员经常批评隔离是过时的、过分干涉的和不必要的。 [40] 这些

        官员以及出席国际卫生大会的英国代表强烈反对任何形式的国际性强制

        法规或检疫。相反,他们主张在国家层面实施策略——允许每个国家和

        港口自己决定如何最好地控制朝圣者的流动。不幸的是,由于他们在这

        些场合发挥了很大的影响作用,在19世纪的大部分时间里,标准化国际

        规则都未得到实施。直到1894年巴黎卫生会议,英国才最终承认并同意

        遵守与会卫生专家提出的建议。由于英国的蓄意阻挠,50年来,霍乱防控措施一直前后不一、敷衍搪塞,对遏制霍乱的传播几乎没有起到什么作用。

        另一个妨碍朝圣期间霍乱控制的因素是船员和朝圣者谎报船上和火车上的霍乱疫情。任何被发现载有霍乱患者的船只,都需要经过长时间的隔离和昂贵的消毒程序。船员们通常会谎称船上没有霍乱病例,或者把病人藏起来,而不是被耽搁数周,损失大量收入。在许多情况下,他们甚至会把旅途中霍乱死者的尸体扔到海里,以免被抓。这种欺骗是极其危险的,这一点在1865年的疫情中得到了证明。当年2月,两艘载有来自印度、爪哇和马来西亚朝圣者的船只抵达了阿拉伯港口,船上有143人患有霍乱。当港口官员询问时,船上的船员撒谎说,他们是着陆后才染上了这种病。事实上,船上许多人都生病了,船只也“染”上了霍乱。那些被感染但尚未出现症状的人被允许下船继续前往麦加。短短几周内,圣城的霍乱疫情飙升,数千人死亡。当生病的朝圣者沿着同样的旅行路线回家时,也发生了类似的情况。再如,1865年在苏伊士运河进港的大多数船只报告说,他们的乘客健康状况良好。而事实是,船员在船上暴发霍乱后将数百具尸体扔进了红海。那些通过了苏伊士检查点的人登上了拥挤的火车,前往开罗和亚历山大。毫不奇怪,在数周之内,霍乱便失去了控制,在埃及各地蔓延,就像在麦加一样。

        即便法规和检疫措施得到了适当的执行和遵守,由于数百万名穆斯

        林的宗教信仰,霍乱仍有可能在麦加蔓延。鉴于麦加朝圣是伊斯兰教信

        仰的五大支柱之一,不管国际限制有多严格,不管他们是否生病,穆斯

        林每年都极有可能继续朝圣。在此期间,穆斯林开始在泛伊斯兰运动下

        统一起来,旨在保护他们的集体利益免受欧洲殖民主义侵害。那些在英

        国和其他欧洲国家政治控制下的人越来越多地与居住在奥斯曼帝国的穆

        斯林结成联盟。对他们来说,麦加朝圣是穆斯林团结的象征,是必须不

        惜一切代价保护的宗教仪式。这份虔诚使得许多穆斯林即使在饥荒、战

        争和疫情的年代也坚持前往麦加。即使官员试图通过检疫和高额税收来

        限制朝圣,朝圣者还是源源不断地来到这里。许多人甚至在没有钱买吃

        的或支付旅费的情况下每年都完成了麦加朝圣。这些贫穷的朝圣者依靠

        其他富裕朝圣者的施舍生存了下来。如此多的人愿意冒着生命危险完成

        朝圣之旅表明,几乎不可能将朝圣控制在防止霍乱传播所必需的水平。

        这样做很可能会被看作对伊斯兰教信仰的直接攻击,遭到极端的抵抗。

        总之,宗教朝圣对19世纪霍乱传播的影响是一个有趣的案例研究,它体现了流行病学、商业、政治及宗教因素之间的相互作用。穆斯林朝圣的多民族性质以及印度教朝圣在引发霍乱流行中的重要作用迫使国际社会共同努力,团结应对该疾病。 [41] 尽管国际卫生委员会和国际卫生大会未能实现阻止霍乱的目标,但它们确实为促进敌对国家加强合作、对抗全球卫生威胁奠定了基础。多年来,通过制定各种卫生公约、建立多个常设国际卫生机构,这种合作继续扩大。第二次世界大战后联合国的成立,使几个相互竞争的卫生机构在1948年合并成为单一的世界卫生组织。自成立以来,世界卫生组织已包括194个成员国,承担了保护全人类免受传染性和非传染性疾病威胁的使命,其疾病监测活动和疫苗接种计划预防了多种流行病,挽救了数百万人的生命。

        在抗击霍乱的过程中,与卫生行动的合作精神形成鲜明对比的是,与欧洲殖民主义相伴的丑陋的种族主义和贪婪。17~18世纪,几乎每年都有成千上万的印度人因宗教朝圣活动死于霍乱,而英国人却对此置之不理。在1817年的大流行之后,当霍乱开始威胁到英国EIC的经济活动时,他们才第一次在印度认真推动霍乱防控措施。后来,当英国政府阻挠国际卫生大会提出的无数建议,认为预防措施干扰了其自由贸易时,这种模式又再次出现。在殖民者眼中,经济利益往往优先于人类福祉,他们经常指责是被殖民者自己造成了霍乱流行。印度教徒和穆斯林朝圣者通常被描绘为肮脏的人,他们对自己的健康漠不关心,以至于他们宁愿选择疾病,而非被欧洲“文明”教化的机会。正如一位作家在19世纪90年代所描述的,朝圣者是“不干净、极度痛苦、堕落的人类,只知道迁徙的生活,就像他们的骆驼和害虫一样”。 [42] 每当霍乱到达欧洲人自己的海岸,或当他们被迫用纳税人的钱为殖民地的卫生措施买单时,这种情绪就会引起欧洲人的极大不满。

        另外,朝圣者把欧洲人的卫生改革视为对他们的另一种控制,侵犯了他们最私密的生活和宗教隐私。他们不喜欢那些不尊重他们宗教传统的人来告诉他们应该什么时候、如何完成他们的朝圣之旅;他们也不喜欢在欧洲人运营的轮船和检疫站上被虐待,尽管他们已为此支付过很多的税费。对他们来说,欧洲人与霍乱的斗争在许多方面就是欧洲人与他们自己生活方式的斗争。他们认为这是欧洲压迫者带给他们的又一次侮辱。

        卫生革命的开始

        在《英国医学杂志》(British Medical Journal )2007年的一项调查中,专家们将卫生列为过去150年来在健康和医学方面最重要的里程碑,超越了抗生素、疫苗和麻醉的发明。 [43] 卫生之所以被如此重视,是因为它赋予了人类使环境、食物和水保持清洁的能力。卫生可以保护人们免于接触废物中存在的危险毒素和病原体,并限制了可能传播疾病

        的害虫和病媒的繁殖。在19世纪实施有效的卫生措施之前,人们经常因

        喝水或洗澡这样简单的行为而成为霍乱、伤寒、肠寄生虫和脊髓灰质炎

        等致命疾病的受害者。因此,在现代卫生设施出现之前,在伦敦这样的

        城市出生的普通人一般都患有慢性病,很少能活过35岁。如此糟糕的生

        活质量和令人震惊的低预期寿命阻止了人类充分发挥潜力。人类不能将

        时间、精力和创造力集中于开发新技术以改善生活,而是被迫把大部分有限的资源用于生存。

        工业革命前,城市卫生的核心问题是个人要对自己产生的垃圾负

        责。不管是住在繁华的城市还是农村,几乎没有规定来监督人们如何、

        在何地以及何时丢弃粪便和垃圾。几个世纪以来,一种常见的做法就是

        将排泄物收集在夜壶或桶里,然后把它倒在自家附近的院子里、街沟里

        或公共露天坑里(被称为粪池或粪坑)。在某些情况下,好一些的厕所

        会配有出口和管道,可以将排泄物引出屋外,不需要日常维护。一旦流

        出了屋外,这些污水要么会渗入土壤,沿着街道排水沟流入当地的河流

        或湖泊,要么由专业的垃圾处理工人清理,倾倒在城市以外的地方。这

        种做法的最终结果是,水井和河流/湖泊受到了各种危险的胃肠病原体

        的大规模污染,包括霍乱和伤寒细菌。在某些情况下,一个城市的全部饮用水供应都是由人类排泄物组成的死水池。更糟糕的是,屠宰场和城市里其他企业处理垃圾的方式也大体相同。血液和动物组织沿着街道排水沟流入化粪池或当地水源非常常见。

        弗里德里希·恩格斯(Friedrich Engels)在他的《英国工人阶级状况》(The Condition of the Working-Class in England )一书中描述了19世纪中叶伦敦水道的典型景象和气味,“河岸边有一长串最令人作呕的、充满了黑绿色黏液的水池,从那里不断冒出恶臭的气泡,即使在离水面四五十英尺的桥上,也能闻到难闻的臭味”。 [44] 伦敦经常被描绘成19世纪污秽的典型代表,而欧洲、亚洲或美洲等其他城市的情况也好不到哪里去。在一些较大的城市,每到炎热的夏季,恶臭就会令人作呕,以至于大多数城市的办公室都会关闭,所有的有钱人都会逃到乡下。但生活在如此恶劣环境下的人,通常却只是将其视为城市生活中的正常部分。然而,当致命的霍乱和伤寒大流行取代恶臭和反复出现的轻度腹泻时,卫生官员才最终注意到这点,开始采取措施清理城市和供水系统。

        在第二次和第三次霍乱大流行的高峰期间,公共卫生得到了最显著的改善。这场卫生革命的发源地是英国,从1830年至1860年,它见证了霍乱在印度的肆虐,英国本土也有超过75000人死于霍乱。尽管严格隔离了所有来自霍乱暴发地区的船只,但在1831年10月,由于一艘载有被感染水手的船只在萨瑟兰(苏格兰)登陆,英国也成为霍乱的受害者。[45] 疾病迅速蔓延到南方,并最终于1832年2月传播到伦敦。

        尽管几个世纪以来伦敦经历了各种流行病,但那年霍乱的到来,使人们感受了自黑死病以来从未有过的恐惧。一位英国医生指出:“霍乱是一种奇怪的、未知的、可怕的疾病;其巨大的破坏力可被预见、让人恐惧,它难以被解释,在整个大陆上阴险行军,它蔑视所有已知的、常规的流行病预防措施,其神秘和恐怖已彻底揪住了公众的心,似乎让人回想起了中世纪的黑死病大流行。”[46] 不幸的是,当霍乱席卷英国城市肮脏的街道并夺走数千人的生命时,他们的恐惧很快就变成了现实。霍乱在伦敦这种大城市的贫穷地区尤其猖獗,那里过度拥挤,街道狭窄,有着极不卫生的环境。贫穷社区发生的霍乱危机尤为重要,因为它让英国的一些公共卫生官员重新审视政府应如何应对贫困,贫困是如何影响整个城市健康的。

        医生兼部长托马斯·索思伍德·史密斯(Thomas Southwood Smith)是最早在伦敦和其他肮脏的英国城市推行卫生改革的人之一。 [47] 1816年从医学院毕业后,史密斯成为伦敦发热医院的内科医生,在那里他目睹了流行病的破坏力。和当时大多数医生一样,史密斯认为这些疾病是由弥漫在拥挤城市中的有毒瘴气积聚引起的。尽管他同时代的大多数人都认为这种瘴气是由恶劣的气候或超自然的天气变化引起的,但史密斯认为,它们来自伦敦最贫穷社区的污秽。史密斯在1825年为《威斯敏斯特评论》(Westminster Review )撰写的一篇文章中指出:“可以肯定的是,空气中经常充斥着因动植物腐烂而产生的有害气体……这些气体在流行病的产生中发挥着最重要的作用。”[48] 这是一个革命性的想法,原因有几个。其一,它将流行病的部分原因归咎于不良的卫生习惯,即对动物和农业废物的不当处理以及“人体的病态呼气”。尽管他对疾病病因(瘴气)的认定是错误的,但他正确推测出了污秽及其所造成的“环境污染”在疾病传播中的作用。在这种情况下,史密斯认为通过“清理穷人肮脏的住所”,并将环境恢复到原始的、未被污染的状态,许多流行病都可以得到预防。 [49] 换句话说,史密斯认为控制人群健康的关键是控制环境健康。1832年伦敦暴发的霍乱疫情进一步让史密斯相信他的理论是正确的,因为霍乱似乎在城市肮脏的地区造成了更多伤害。在接下来的几年里,他继续积累数据支持他的卫生理念,并将其发现以各种报告的形式提交给政府机构。在1838年至1844年,有3份这样的报告为英国历史上一些最重要的立法奠定了基础。

        1838年,在他的朋友和卫生学同事埃德温·查德威克(Edwin Chadwick)的要求下,他向济贫法委员会提交了第一份报告。 [50] 济贫

        法委员会是一个由国家领导人组成的团体,负责决定如何最好地向英国

        穷人发放救济。查德威克和史密斯一样,认为穷人面临的核心问题之一

        就是在其社区和工作环境中无处不在的污秽。为了推动卫生改革,查德

        威克要求史密斯和另外两位医生朋友(詹姆斯·凯和尼尔·阿诺特)向委

        员会介绍他们在卫生和疾病方面的经验。但不幸的是,查德威克与委员

        会大多数成员关系不好,因此他的想法基本上未被理睬。在第二次霍乱

        大流行仍在肆虐之际,查德威克决定辞去委员会秘书的职务,以便能对

        英国城市的卫生状况展开独立调查。在史密斯和其他几位同事的帮助

        下,查德威克开始了一项任务,即全面而准确地记录贫困和污秽对穷人

        健康和福祉的毁灭性影响。他收集了来自医生的数据,采访了目击者,

        并在英国各个城市与拥有第一手卫生经验的官员交谈。对于那些在改善当地卫生设施的同时提高了居民生活质量的例子,他做了特别记录。

        经过多年的深入研究,查德威克终于在1842年在《劳动人口的卫生状况及其改善方法》报告中发表了他的调查结果。 [51] 查德威克明白这个问题对英国未来的繁荣有多重要,他自费印刷并分发了数千份他的报告。他把它发给了上议院的每一位议员、医生、阅读报纸的人和任何愿意听的人。这份报告的副本甚至到了美国作家马克·吐温(Mark Twain)的手中,尽管他不完全接受查德威克的所有结论,但他称赞了查德威克的研究质量。1842年的报告广受欢迎,引发了一场全国性运动,促成了城镇卫生协会(HTA)的建立,查德威克、史密斯和其他卫生改革倡导者还出版了一系列补充报告。英国各地的人们开始呼吁对公共卫生政策进行切实的改革;然而,保守的首相罗伯特·皮尔(Robert Peel)拒绝在国家层面上发起任何立法。这一切都在1848年发生了变化,当时伦敦暴发了新一轮霍乱,与此同时,更为自由的约翰·罗素(John Russell)当选首相一职。在查德威克和HTA的建议下,罗素推动了具有里程碑意义的1848年《公共卫生法案》(Public Health Act),该法案提供了改善全国卫生状况的法律框架。 [52]

        《公共卫生法案》最重要的成果就是在英国建立了国家卫生委员会和几个城市建立的地方卫生委员会。 [53] 1848~1854年,查德威克和史密斯领导的国家卫生委员会负责监督全国所有的卫生事务;然而,它几乎没有实权来执行《公共卫生法案》中的建议。相反,权力被交给了地方卫生委员会,该委员会负责维护下水道、管理屠宰场、提供饮用水、清洁街道、清除脏物和监督新建住宅的废物处理。这些地方卫生委员会还可以对市政道路和下水道的基础设施进行整修。他们安装了公共浴室,铺设了道路,甚至建造了公园和其他开放的绿地供人们使用。在《公共卫生法案》通过后,共有300多个城镇请愿创建地方卫生委员会,在随后的几十年里又增加了数百个。 [54] 这些城市出现了充满戏剧性的结果。污水不再被允许随意排放到街道上,也不允许汇集到建造不良的小区坑里。公共场所也没有垃圾,这限制了啮齿动物和昆虫的繁殖,每个公民都有可靠的饮用水来源。人们不再那么容易生病,这使他们活得更长、更具有生产力。

        尽管1848年的《公共卫生法案》是公共卫生和医药史上一个里程碑式的转折点,但它也存在一些明显的缺陷。它最明显的缺陷在于地方一级是自愿采用而非强制实施法案的。政府鼓励各城市设立市政卫生委员会来监督卫生改革,但最终联邦政府或国家卫生委员会并没有强迫它们这么做。 [55] 每个城市都可以自主决定是否要实施《公共卫生法案》推荐的政策,或是选择完全退出法案,又或是仅挑选法案中的某些措施来实施。市政当局抓住这个机会让城市变得更健康似乎是合乎逻辑的,但不幸的是,大多数城市却没有这么做。由于地方预算短缺、政治内讧和来自富裕阶层的压力,大多数城市(如伦敦)无法推进卫生改革。市政府要么直接拒绝接受联邦政府的干预,要么认为卫生改革太昂贵或对他们的情况而言不切实际。有趣的是,一些城市还面临来自农民的强烈抵制,因为他们需要收集人类粪便作为农作物廉价的肥料。结果,在《公共卫生法案》通过的多年后,英国的许多城市仍深陷污秽之中,并饱受流行病的困扰。

        在接下来的25年中,英国立法者和卫生倡议者共同努力,扩充《公共卫生法案》,并为整个国家制定了更全面的卫生政策。政策变化的主要原因之一是全国范围内霍乱和伤寒的流行。第三次霍乱大流行于1853年袭击英国,夺去了26000多条生命,仅在伦敦就有10000人死亡。尽管此次疫情流行的致命性远低于1832年或1849年,但它表明,如果城市想要摆脱其威胁,仍有许多工作要做。此外,过去抵制卫生改革的城市终于开始厌倦在各处不断看到、闻到污物。人们开始意识到,卫生条件的适度改善不仅可以提高公民的健康度和幸福感,还可以为城市带来更广泛的经济增长机会。对于伦敦来说,那一刻发生在1858年,当时是一个特别炎热的夏天,高温使泰晤士河的污水散发出不断的恶臭味,充斥着整个城市。 [56] 这一事件被称为“1858年大恶臭”,它促使市政官员最终批准拨款,在整个伦敦建造新的现代化下水道系统[由英国工程师约瑟夫·巴扎格特(Joseph Bazalgette)领导]。其他地方政府也纷纷效仿,很快英国各地的城市都开始改善基础设施,并承担起了执行卫生法规的更大责任。

        1875年,英国议会通过了一项新的《公共卫生法案》,该法案整合

        了以前所有的立法。除了赋予联邦政府更大的权力来强制地方遵守之

        外,这项新立法还将国家划分成特定的卫生区,并要求每个区都建立一

        个卫生委员会,任命一名医务官员来监督政策的实施情况。此外,它还

        规定了一套统一的政策标准,所有城市,无论其规模、财政状况或地方

        政治,都必须遵守这些政策。简而言之,1875年的《公共卫生法案》最

        终将卫生列为国家级优先事项,是一项对地方政府的要求,而非建议。

        这是史密斯和查德威克等不屈不挠的卫生专家经过50年的不懈努力和研

        究取得的成果。因为他们,英国再也不会经历霍乱或伤寒带来的大规模

        恐慌。世界各地的城市都注意到了英国的卫生革命,并逐渐开始效仿那

        里所取得的成就。例如,在19世纪60年代和70年代,巴黎建造了一个巨

        大的地下污水隧道系统,并投入巨资修建沟渠,将淡水引入城市。其他

        欧洲城市,如法兰克福、哥本哈根、罗马和马德里,也在此期间对卫生

        基础设施进行了大幅改善,并通过了新的立法。在1832年、1849年和

        1866年毁灭性的霍乱流行之后,美国也开始了一系列类似的改革。以伦

        敦和巴黎的设计为模型,19世纪50年代末,城市规划者成功地在芝加哥

        和布鲁克林修建了新的下水道。在接下来的几十年里,美国各地的城市也都进行了同样的设计。到19世纪末,美国大部分地区已经成功地实施了卫生改革,水源性疾病不再对美国构成真正的威胁。

        卫生革命的开始在很大程度上是因为霍乱对英国城市贫民造成的毁

        灭性影响。然而,最终卫生革命的影响远不止预防霍乱一种疾病。例

        如:它永久性地改变了我们日常生活中的许多活动,包括如何使用卫生

        间、如何清洁身体、如何丢弃垃圾以及如何准备食物。它还永久性改变

        了地球上几乎每个城市的物理结构,形成了更加智能化的城市设计。市

        政(城市)工程师与建筑师和科学家合作,建立了广泛的、结构健全的

        排水系统以及水处理设施,以便长距离输送清洁饮用水。他们铺设了新

        的道路并安装了排水沟,以便恰当排水。简而言之,卫生革命帮助我们创造了今天所熟知的现代城市。最终,卫生革命帮助我们消除了工业化国家几乎所有水源性疾病的威胁,并降低了黄热病、疟疾和鼠疫等病媒传播疾病的发病率。营养、医学发展和卫生设施是人们比200年前平均寿命延长了40岁的主要原因。

        输液的救命效果

        1831~1832年,第二次霍乱大流行在英国暴发,这是西方医生第一次治疗如此严重腹泻的患者。此时微生物革命还没有发生,所以关于霍乱或如何正确治疗霍乱的信息相对较少。因此,大多数医生别无选择,只能依靠久经检验的古老疗法,即平衡体液或排出体内有害物质。其中包括经常用温水或稀粥加压灌肠以冲洗结肠,诱导呕吐以排出体内有害物质,以及刺穿血管以减少血容量。 [57] 对于极度脱水的霍乱患者来说,这样的治疗只会加重他们的症状,加速其死亡。

        最早反对这种“善意杀人”的声音之一,来自年轻的爱尔兰医生和化学家威廉·布鲁克·奥肖内西(William Brooke O’Shaughnessy)。刚从医学院毕业的奥肖内西在1831年底搬到苏格兰一个霍乱暴发地区,开始研究霍乱。在数周的时间里,他密切观察了患者在不同疾病阶段的快速进展。除了监测他们身体外观的变化外,奥肖内西还仔细测量了患者血液和腹泻的化学成分。 [58] 观察过程中,他多次发现患者的血液中缺乏水和盐分,并且酸碱度(pH值)明显高于健康人的血液。此外,他还发现血液中缺失的化学物质可以从患者的排泄物中检测到。从这些突破性的发现中,奥肖内西得出了革命性的结论,即霍乱是血液的化学失衡。

        憔悴的眼睛、蓝色的皮肤、毫无生气的面容——都是由水和重要电解质的缺失导致的。他接着提出,可以通过给患者“静脉注射与正常血液盐浓度相同的温水”来治疗霍乱。他通过给狗静脉注射缓冲盐水来治疗狗脱水,证明了这一疗法。 [59]

        这是医学史上的一次重大飞跃,因为它代表了人类第一次从化学层面研究传染病,并基于实际的科学分析设计合理的治疗方案。奥肖内西意识到了自己成果的重要性,1832年他成功游说,将他的发现发表在了医学杂志《柳叶刀》(The Lancet )上。 [60] 几个月后,另一位也在萨瑟兰(Sutherland)工作的克兰尼(W.R.Clanny)医生,进行了补充实验,证实了奥肖内西的血液结果。

        考虑到当时霍乱对人类的影响,奥肖内西的霍乱数据并没有像预期那样,引起英国医学界的太多兴奋。然而,它确实引起了一位名叫托马斯·拉塔(Thomas Latta)的苏格兰医生的兴趣,他在1832年决定在濒死的霍乱患者身上复制奥肖内西的狗实验。起初,他试图通过使用灌肠剂和口服补液来恢复血容量和盐度,但都失败了。后来,拉塔使用静脉注射针直接将盐水注入霍乱患者的血液中。通过反复试验,拉塔测试了各种不同的配方、温度、容量和频率,得到的结果甚至连他自己都感到震惊。在1832年给《柳叶刀》的报告中,他如下描述了一位患者的惊人变化:
        显然她已经到了人生的最后时刻,现在已经没有什么能伤害她了——的确,她已经完全衰弱,我甚至担心在她死之前,我还没来得及把仪器准备好。我小心翼翼地、焦急地把一根管子插进她的血管,观察效果;我注射了一盎司又一盎司,但都没有明显的变化。我还在坚持着,但我觉得她的呼吸没那么吃力了。不久,她瘦削的面部、塌陷的眼睛和凹陷的下颚,苍白冰冷、明显留下了死亡印记的身体,又恢复了生气,焕发了光彩;早就停止了的脉搏又出现在了手腕上,起初又微弱又急促,渐渐地,它变得越来越清晰,越来越饱满,越来越慢,越来越有力。在短短的半小时内,在注射了6品脱溶液后,她用坚定的声音说,她不再觉得不舒服了,还打趣说,她现在只需要睡一小觉;她的四肢恢复了温暖,每一处容貌都反映着舒适和健康。 [61]

        通过简单地将血液中的化学成分恢复到正常状态,拉塔能够在几分钟内将这位病人从死亡边缘挽救回来。他继续对其他的霍乱患者重复实验,取得了不同程度的成功。尽管在设计和长期效果上都不完美,但拉塔的研究是引人注目的,因为这是第一次有人成功治疗了处于“恶性”霍乱晚期的人,也是第一次使用静脉输液治疗疾病。拉塔的一位同事罗伯特·列文(Robert Lewins)博士预言,他的方法将“给医学实践带来美妙的变化和改进”。 [62] 不幸的是,拉塔永远不会看到这个预言成真。在发表了他的里程碑式的研究1年多后,拉塔感染了霍乱而去世,享年37岁。

        1832年夏天,当全英国的医生都开始尝试重复拉塔的开创性研究时,使用静脉注射治疗霍乱的研究激增。早期进行的许多试验似乎都支持了拉塔的发现。例如,几位内科医生在6月期的《柳叶刀》上报告说,他们已经成功使用静脉补液疗法治疗了晚期霍乱患者。那期的编辑写了一篇相当浮夸的文章,称其是“医学史上最有趣的记录之一”。 [63]然而,在那个夏天结束的时候,更多的实验出现了,似乎与早期研究的发现相矛盾(包括拉塔的研究)。一项研究报告静脉补液治疗的成功率只有11%(89%的死亡率),另一项研究则描述了静脉注射治疗所导致的继发性血液感染。一些医生甚至认为静脉注射疗法加速了病人身体的衰弱。

        随着抱怨的声音越来越大,许多医生又开始将放血、泻药、鸦片或氯化亚汞作为治疗霍乱的首选方法或药物。到1833年疫情开始消退时,英国大多数医疗机构已完全停止使用静脉补液。令人惊讶的是,在短短几个月的时间里,静脉注射疗法就从奇迹转变成了在浩瀚的医学文献中被遗忘的东西。更不幸的是,它又被埋没了60年,直到19世纪末被研究失血性休克的德国科学家重新发现。在这中间的几十年里,又有3起霍乱大流行在世界各地蔓延,造成数百万人死亡。

        许多因素导致了1832年英国医生对静脉注射疗法的排斥。首先,这一时期的大多数医学研究都设计得很差,实施得也不恰当,他们很少遵循科学的方法或在实验中加入适当的对照组。因此,尽管使用了类似的方法,一项研究得到的数据与另一项研究也有可能完全不同。当医生试

        图重复拉塔的实验时,他们很可能失败,因为他们使用的静脉注射液可

        能化学成分不同,可能注射的时间和容量不同,又有甚者,可能在给病

        人静脉注射治疗的同时进行其他危险的治疗,如频繁放血和诱导呕吐。

        其次,许多研究也可能因选择病人不当而失败。他们通常选择濒于死亡

        的患者接受静脉注射治疗,而那些病情较轻的患者则接受更标准的治

        疗。不出所料,接受静脉注射的人往往有更高的死亡率。最后,最初的

        研究者不是英国医疗机构的医生。拉塔是年轻的苏格兰人,他使用的方

        法挑战了过去2000多年的医疗实践。如果他更出名的话,他的同行们一

        般不会对他或他的科学研究持怀疑态度。尽管当时没有得到赏识,但奥

        肖内西和拉塔的开创性工作最终在医学界获得了普遍认可。静脉补液疗

        法目前被认为是霍乱和许多其他腹泻疾病最有效的治疗方法,在大多数情况下甚至比抗生素更受青睐。此外,静脉注射目前在诊所也被广泛用于增加病人的血容量、输送药物、紧急提供营养、治疗血液疾病和输血。它大大提高了手术、休克和癌症患者的存活率(可有效输送化疗药物)。全面评价静脉注射的话,我们可以认为它是医学技术中最重要的技术之一。

        “瘴气理论”终结的开始

        医学史上最具影响力的认识转变之一就是人们普遍接受传染病是由

        细菌引起的,而非瘴气,细菌成为普遍接受的传染病病因。正如前面几

        章所提到的,瘴气理论认为,传染病是因为接触了“不洁净”、恶臭的空

        气中的有毒物质。几个世纪以来,瘴气的来源变化很大,有些人认为它

        来自死水,还有一些人则认为它是由火山、地震、污水、腐烂的植被或

        腐烂的人类/动物遗骸所释放的。如果感染源来自恶臭,那么就可以合

        理地假设,人们可以通过简单地去除异味或使用香水或鲜花改善空气质

        量来避免生病。由于细菌通常是产生难闻气味的原因,避免接触污染的

        空气有时会意外减少一个人接触致病微生物的机会。例如,如果人们由

        于害怕吸入瘴气,不吃难闻的肉,那他们就可以在不知不觉中避免摄入

        沙门氏菌、大肠杆菌或其他导致食物中毒的细菌。同样的情况也发生在

        罗马和英国。罗马人将城市周围难闻的沼泽排干,从而降低了疟疾的死

        亡率(实际上是阻止了蚊子的繁殖);英国官员清理了散发恶臭的城

        市,阻止了霍乱的传播(实际上是实现饮用水的清洁)。虽然“净化”空气确实在某些非常特殊的情况下有助于减少疾病传播,但它在预防或阻止致命流行病方面往往没有什么效果。

        微生物可作为疾病病原体(也称为细菌理论)的这一发现,在很大

        程度上彻底改变了医学,因为它最终揭开了人们生病的神秘面纱。人们

        不再认为流行病是由幽灵瘴气、自然灾害、道德败坏或恶魔引起的。取

        而代之的是,每种疾病都有一个非常特殊的原因,某些细菌、病毒、真

        菌或寄生虫会导致我们身体的病理变化。了解病因很重要,因为我们可

        以根据微生物的特殊结构和生理特征研发新的治疗方法和预防方法(如疫苗)。这样做有助于减少感染,并大大延长我们的寿命和改善了生活质量。

        许多医学史专家试图确定,医学界是在何时以及如何开始摒弃瘴气理论转而支持微生物理论的。这些分析表明,这种转变并不是由一个科学家、一项实验或一篇研究论文引起的,而是几十年来全部工作的累积成果。话虽这么说,但逐渐接受微生物理论确实需要有一个起始点,比如那些最初引起人们严肃质疑瘴气存在的实验。大多数人认为那个起始点发生在19世纪50年代,当时英国麻醉师约翰·斯诺(John Snow)决定调查伦敦苏荷区暴发的霍乱。

        约翰·斯诺在很小的时候就对医学产生了兴趣,14岁就开始做外科医生兼药剂师的学徒。 [64] 在接下来的5年里,斯诺学到了大量关于手术、合成和给药以及如何护理传染病患者的知识。实际上,在1831年英国霍乱流行期间,斯诺就在诊所工作,治疗过许多霍乱患者。意识到自己想要继续深造并成为一名医生,斯诺于1836年进入医学院,并于1844年获得学位。在对乙醚作为麻醉剂的使用产生兴趣之前,斯诺在伦敦做了几年的全科医生。乙醚于1846年在英国被首次成功使用,但由于剂量和给药问题,其无法广泛应用于外科或产科手术。斯诺利用他作为外科医生和药剂师的背景,研发了一种吸入装置,可以精确地给术中患者一定剂量的乙醚。他的发明效果很好,立即被用于乙醚和新型麻醉剂氯仿的给药。到1848年,可以说斯诺已经成为英国最著名、最受尊敬的麻醉师。他为5000多场医疗手术进行了麻醉,甚至在维多利亚女王生最后两个孩子时给她使用了氯仿麻醉。

        仅作为一名先驱的麻醉师,斯诺的职业生涯就值得受到高度赞扬;

        然而,对霍乱的研究才使他成为历史上最著名的医生之一。当斯诺在

        1848年英国霍乱流行期间开始研究霍乱时,他是从一个麻醉师的角度来

        研究的,他的整个职业生涯都在研究吸入剂的生物学。 [65] 在他1849年

        出版的关于霍乱传播方式的小册子中,斯诺对流行的霍乱理论提出了质

        疑,即霍乱是一种肠道疾病,是由于吸入空气中的有毒瘴气而感染的。

        [66] 首先,他“很难想象”一种通过空气传播的疾病会对吸入相同空气的

        人产生十分不同的影响。他记录了一些例子,在这些例子中,有些人持

        续暴露于有毒的工作场所中,但他们并没有产生霍乱,而另一些暴露在

        有毒瘴气相对较少的环境中的人,霍乱发病率却很高。观察到空气质量

        与霍乱发病率和严重程度间并没有什么联系之后,他又对瘴气提出了另

        一条反对意见,即瘴气不太可能在不对肺部、鼻腔、血液或其他组织造

        成任何病理影响的情况下,从肺部转移至消化道。对他而言,霍乱病原

        体通过摄食,从消化道进入人体,直到肠道才更符合逻辑。在这种情况

        下,斯诺(正确地)预测了霍乱病原体(他称之为“病态物质”)可在感

        染者的肠道中繁殖,并在腹泻发作时从体内排出。由于当时的排泄物仍

        被直接倾倒在当地的水源中,斯诺推断,英国的霍乱暴发是由水污染引起的。

        斯诺认为霍乱是一种水源性疾病,他开始绘制伦敦霍乱死亡病例的分布图,看死亡率和特定社区的水源间是否存在关联。有趣的是,他发现在1848~1849年,由受严重污染的泰晤士河下游供水的伦敦南部,霍乱死亡人数超过了其他所有地区的总和。这是一种有趣的关联,引起了伦敦医学界的兴趣,但这还远远不能证明霍乱是由水传播的。实际上,一些临床医生对霍乱是由粪口传播的这种说法非常反感,他们给《柳叶刀》写了文章,强烈批评了斯诺的分析。

        1849年斯诺理论的发表,标志着第一次有人试图追踪一种疾病在人群中的位置和分布情况。尽管这项研究不能直接把不干净的泰晤士河水和霍乱联系起来,但这项研究使斯诺确信他的想法是正确的,并鼓励他继续探索其理论。1854年伦敦暴发的霍乱为斯诺提供了机会。那年霍乱疫情最严重的地区是伦敦西区的苏荷区。在9月的前两周,600多人死于霍乱,75%的幸存者逃离家园。斯诺在疫情开始时抵达了苏荷区,开始采访那些生病或有亲人死亡的人。他在地图上标出了他们生活和工作的地方,并询问了每个人在患病前几天摄取的水源。

        在完成研究后不久,斯诺给《医学时报》的编辑写了一封信,他在信中描述了在采访过程中了解到的情况。他写道:
        我发现几乎所有的死亡都发生在离(布罗德街)水泵很近的地方。只有10人死在离另一个街道水泵很近的地方。而在其中的五起案件中,死者的家属告诉我,他们总是到布罗德街上的水泵那里喝水,因为相比离家近的水泵,他们更喜欢那条街上的水。在另外三起案件中,死者都是在布罗德街水泵附近上学的孩子。 [67]
        他进一步描述,有些住在布罗德街附近的人从未感染过霍乱。这些看似“被保护”的人具有共同点,即他们都是从当地酿酒厂取水(和啤酒)喝,而不是从井里。这一点之所以重要,是因为在酿造过程中,水必须煮沸,这样啤酒才不会变质。因此,那些在酿酒厂而非布罗德街的井里喝水的人从未接触过霍乱活菌。掌握了这些信息后,斯诺于9月7日去当地的救济理事会,要求把布罗德街道上水井的水泵把手移走。 [68]理事会几乎没有人相信斯诺的理论是正确的。一位当地医生后来评论说,“没有人相信斯诺是正确的——同行不相信,教区里的人也不相信。”[69] 然而,由于他们认为批准斯诺的请求没什么坏处,而且他们也没有更好的选择,就在9月8日把水泵把手移除了。在布罗德街的水泵关闭后的几天内,霍乱流行就消退了,当地的其他居民得以幸免。

        斯诺和他的朋友亨利·怀特黑德(Reverend Henry Whitehead)牧师进一步研究后发现,疫情是在一位母亲将其婴儿尿布上的东西倒入布罗德街水井附近的粪池后开始的。那个婴儿当时已经患了严重的霍乱,脏尿布里的东西不知不觉地渗入了土壤和井里。

        约翰·斯诺在他《霍乱传播方式》一书的第二版中,发表了他对1854年苏荷霍乱流行的里程碑式的发现。 [70] 与第一版类似,斯诺对为伦敦供水的每家自来水公司都进行了详细分析,试图将霍乱病例与这些公司沿泰晤士河取水的地点联系起来。通过分析、汇总大量数据,斯诺完全相信霍乱是由水而非空气中的瘴气传播的。具体来说,他得出结论,霍乱是通过“与饮用水和烹饪用水混合扩散,要么渗透到地面,要么进入水井,要么沿着渠道和下水道流入整个城镇取水的河流”。 [71] 虽然斯诺的想法很有逻辑性,其论点也站得住脚,但并不是每个人都相信斯诺的分析。例如,医疗统计学家威廉·法尔(William Farr)、卫生改革家托马斯·索斯伍德·史密斯(Thomas Southwood Smith)和埃德温·查德威克(Edwin Chadwick)对他的工作尤其持批评态度,他们认为斯诺的数据没有充分排除瘴气或其他传播方式。 [72] 他们指出,斯诺一直无法从被怀疑污染的水中分离或确定任何传染物。此外,他的关键证据——苏荷区疫情——在9月8日布罗德街水泵手柄被拆除前就已经开始缓解了。因此对他们来说,不管水井是否被使用,疫情完全有可能自行消亡。斯诺不为这些批评所动,直到1858年去世,他仍在为自己的传播理论辩护。在那时,他的书的第二版只卖了56本,布罗德街的水泵也完全恢复了使用。

        直到1866年霍乱流行时,医学界才开始接受霍乱就是因为饮用了被

        污染的水而引起的。具有讽刺意味的是,在这个时期,斯诺理论最有力

        的捍卫者不是别人,正是他的早期批评者威廉·法尔。 [73] 法尔当时正在

        调查伦敦东部怀特查佩尔地区暴发的一场霍乱,他在数据中发现了一个

        有趣的异常现象。尽管人口结构和空气质量相似,但怀特查佩尔周边和

        伦敦其他地区的霍乱病例却非常少。事实证明,从上年开始伦敦就安装

        了新的下水道系统,而怀特查佩尔是唯一还没有安装下水道系统且人口

        稠密地区。在那里,未经处理的污水仍被排入街道,漏进了附近保护不

        善的老福特蓄水池。法尔敏锐地发现了这一点,并从数学上确切证明了

        疫情可能仅仅是由摄入了受污染的水而导致的。他在1867年发表的论文为水源性病因学提供了令人信服的案例。《柳叶刀》的编辑称,“法尔博士如此娴熟地阐述了一系列复杂的事实,使人们无法否认供水对流行病成因的影响。”[74] 通过这项研究,法尔基本上否定了霍乱是由瘴气引起的理论。同时,他也为斯诺带来了救赎,斯诺直到去世还认为他的想法被大多数同僚拒绝。

        斯诺和法尔进行的霍乱研究仍被认为是医学史上最重要的研究之一,因为他们建立了一种全新的流行病学研究方法。与大多数前人不同的是,他们都将流行病视为一个整体问题,受大量因素的影响,最好从多个不同角度进行研究。他们不仅关注疾病症状或死亡率,还研究了城市基础设施和地理情况、患者的陈述、天气模式、水流和化学、社会经济问题以及其他可能引起疫情的因素。这样,他们能够全面了解霍乱是如何影响社区以及社区最终是如何影响霍乱传播的。其他研究者看到了他们方法的创新卓越,也开始效仿其做法,开展自己后续的研究。

        随着时间的推移,以整体方式研究流行病的概念逐渐演变成一个全新的医学分支,被称为流行病学。今天的流行病学家负责追踪疾病的发病率、分布和传播。每当新的疾病暴发时,地方、国家(如国家卫生研究院、疾病控制和预防中心)或国际(如世界卫生组织)的流行病学家就会出动,查明病因并制订行动计划。这些专家不仅大部分拥有医学背景,他们还有先进的统计学、数学建模、社会学、土木工程和环境生物学知识。就像前辈斯诺和法尔一样,他们都是医学领域的福尔摩斯,利用不同来源的证据和强大的推理能力来阐明一种疾病为什么会出现或传播。无论是追踪2014年埃博拉在西非丛林中的突然暴发,破译1981年艾滋病毒是如何到达加利福尼亚和纽约的,还是在20世纪70年代中期追踪非洲最后几个天花病例,流行病学家都帮助阻止了现有流行病的传播,并从襁褓中阻止了其他流行病的发生。他们还为我们提供了150年的经验,待我们未来面临新的生存威胁时,可以从中吸取教训。

        另一个受斯诺和法尔影响的医学领域是公共环境卫生。如前所述,19世纪中期英国的霍乱流行推动了卫生运动,并使城市设计和废物处理政策发生了重大变化。由于这些改革与斯诺具有里程碑意义的流行病学研究同时、同地发生,所以认为这两者相辅相成似乎是合乎逻辑的。但不幸的是,起初的情况并非如此。

        早期的卫生改革者,如查德威克和索斯伍德·史密斯,都是瘴气理论的坚定支持者,即使在斯诺的书于1854年出版之后,他们也拒绝接受水传播细菌的想法。他们坚持清理英国的供水系统,更多的是想要清除

        水中产生的有毒气味,而非为了清除水中的危险物质。这种情况一直持

        续到1868年,直到《柳叶刀》发表文章,接受霍乱水传播理论。从那时

        起,卫生政策就远离了瘴气,并牢固扎根于可靠科学的细菌理论之中。

        闻起来、看起来、尝起来都还不错的水不再被认为是安全的。因此,许

        多城市启动了各种新的水处理程序,旨在清除和杀死所有城市饮用水中

        的潜在有害微生物。这包括用一系列的沙过滤器过滤水,用氯处理,并

        加入化学物质来凝结所有杂质。到20世纪初,这些预防措施几乎消除了

        大部分工业化国家的水源性疾病。疫情仍时有发生,特别是在战争期间

        或自然灾害之后;然而,它们再也不会引起19世纪那样常见的大范围流行病。

        知道霍乱是由受污染的水中的某种特殊物质所引起的,我们对这种疾病的理解又有了重大飞跃,即识别出导致这种疾病的特定微生物。霍乱是由细菌引起的最早线索来自意大利解剖学家菲利波·帕西尼(Filippo Pacini)的显微镜。 [75] 帕西尼最著名的发现是在人类皮肤中发现了检测压力和振动的被囊神经末梢(后来以他的名字命名为“帕西尼小体”)。在1854年霍乱进入佛罗伦萨后,他对霍乱的病理学产生了兴趣。他当时在新圣玛丽亚医院工作,能够接触到刚刚死于霍乱的患者尸体。帕西尼用一个简陋的显微镜和他作为解剖学家的高超技巧,检查了这些患者的粪便和肠道组织,并注意到他们都有相似的组织异常,且都存在数百万个逗号状细菌。 [76] 由于这些细菌在水中容易振动,他将其命名为“弧菌”,它们似乎与呈现出最明显病理特征的特定肠段有关。这样反复的观察使他得出结论:细菌是一种“有机的、有生命的物质,具有寄生性质,可以传播、繁殖,引起特殊的疾病”。 [77] 1854年,他在一篇名为《霍乱的显微镜观察和病理推断》的论文中发表了这项开创性的研究。不幸的是,像约翰·斯诺一样,由于意大利医学界对瘴气的教条信仰,帕西尼的“弧菌”微生物理论几乎没有得到任何支持。帕西尼没有被他们的怀疑所吓倒,在接下来30年的职业生涯中,他用毕生积蓄继续研究霍乱的发病机理。尽管在那段时间内,帕西尼发表了另外5篇关于霍乱的研究,但他的大量工作基本上没有被佛罗伦萨以外的人注意到。

        1884年,在帕西尼第一次通过显微镜观察到附着在霍乱患者肠道组织上的“弧菌”近30年后,微生物学家罗伯特·科赫(Robert Koch)发表了一篇报告,声称他刚刚发现了导致霍乱的细菌。 [78] 1883年,作为德国霍乱委员会的领导人,科赫在埃及旅途中首次开始研究霍乱。他的团队对10名霍乱患者进行了尸检,在他们的肠道组织中发现了数以百万计的微小、轻微弯曲的细菌。科赫认为他可能已经发现了霍乱病菌,于是便前往印度的加尔各答,这样他就可以在一个霍乱活跃地区证实并扩大他的发现。在那里的6个月里,科赫和他的团队成功地从纯培养基中分离出了新的细菌,并在受污染的水箱和环境水源中确定了其存在。这使他们首次分析了个体霍乱弧菌的生长特性和生物化学特征。

        类似于他对炭疽的做法,科赫随后试图用纯化的霍乱弧菌感染实验动物,希望能最终证明它是霍乱的病原体。不幸的是,他使用的动物对霍乱弧菌不易感。尽管有这样的挫折,但科赫的研究还是提供了足够的证据来说服他的批评者,即他确实已经成功地识别并分离出了霍乱细菌。科学界完全不知道帕西尼在1854年发表的文章,因此便将霍乱弧菌的发现归功于科赫。然而,这一疏忽最终在1966年得到纠正,当时国际命名委员会正式将这一弧菌属细菌更名为“1854帕西尼弧菌”,以纪念他的成就。

        科赫在1884年对霍乱弧菌的重新发现意义重大,因为它宣告了瘴气理论的消亡。当约翰·斯诺在1849年首次提出水源性传染病的异端观点时,其观点遭到了英国和欧洲其他地方医学界的一致拒绝。然而随着时间的推移,不同疾病的研究数据日益增多,不断证实了微观细菌能够而且确实导致了疾病。例如,在与斯诺第一次调查霍乱的同一时间,另一位名叫伊格纳兹·塞梅尔维斯(Ignaz Semmelweis)的医生发现,医学生在解剖实验室解剖完腐烂尸体后,手上沾有的污垢与致命的分娩热(称为“产褥热”)有关。建立起这一联系后,他建议其所在医院的所有医学生在治疗病人和分娩婴儿之前用含氯石灰溶液洗手。此后产褥热病例急剧下降,数百名妇女的生命因此得到挽救。几年后(1867年),一位名叫约瑟夫·李斯特(Joseph Lister)的外科医生得出了类似结论——不卫生的外科手术可导致伤口感染。和塞梅尔维斯一样,他建议使用化学溶液对所有设备、敷料和皮肤进行消毒,以防止细菌进入暴露的伤口。这一过程非常成功,手术很快就不再是死刑了。巴斯德(Pasteur)和科赫这两个实验室研究专家为塞梅尔维斯和李斯特的开创性临床工作做了良好的补充。在25年的大部分时间里,他们致力于研究传染性疾病,如炭疽热、蚕病、狂犬病、肺结核和霍乱,并证明它们都是由特定微生物所引起的。这些广泛的研究结果使受过教育的人不可能继续支持瘴气理论。到19世纪90年代,微生物理论已经成为传染病的主要解释,医学也因此永远改变了。

        现代霍乱

        尽管人们知道其起因、预防和治疗,霍乱仍是相当一部分人群的主要问题。每年仍有数百万人感染霍乱,其原因就在于近25亿人依旧缺乏卫生设施和可靠的清洁饮用水。 [79] 令人惊讶的是,近10亿人仍然在街道排水沟、树林或离家近的开放水源处露天排便,多达7.5亿人在食用未经处理的、用人类废水灌溉的食物。考虑到现代卫生习惯在150年前就已经发展起来了,而当今地球上近1/3的人口却依旧生活在中世纪一般的条件下,这实在是太悲哀了。

        现代霍乱在缺乏市政基础设施和政府监管的地区流行。这包括撒哈拉以南的大多数非洲贫困国家——其中许多国家人均国内生产总值不到2000美元,以及亚洲和拉丁美洲的大部分农村地区。此外,任何遭受暴力、政治动荡和自然灾害破坏的地区都极易发生严重的霍乱疫情。尽管世界大部分地区普遍贫困,战争、革命和自然灾害数不胜数,但在过去30年里,只有4次大规模霍乱暴发。

        第一次暴发发生在20世纪90年代初的拉丁美洲,当时一种新的霍乱菌株出现在秘鲁海岸,并蔓延到了美洲的21个国家。 [80] 细菌在温暖的热带水域大量繁殖,在6年的时间里感染了超过100万人(导致11875人死亡)。在贫困的农村地区,由于常常没有干净的水和医疗服务,死亡率尤其高。在霍乱袭击拉丁美洲的同时,卢旺达大屠杀之后,它也出现在了东非。 [81] 胡图人对图西人的大规模屠杀以及随后两个群体之间的战争带来了210多万名难民。到1994年8月,大多数人逃到了扎伊尔(现在的刚果民主共和国)、坦桑尼亚和乌干达等邻国,并在那里设立的35个难民营中定居。前所未有的人口流动规模和速度给那些准备不足的难民营管理者带来了噩梦。正如一名西迁到扎伊尔的难民所说,“我们没有水,没有厕所。我们在这里受苦。没有食物。政府没有给我们带来任何东西。没有人帮助我们”。 [82] 不幸的是,这个年轻人如此生动描述的境况正是霍乱和痢疾等疾病的温床。在1994年7月,扎伊尔戈马难民营暴发了致命的霍乱。仅仅几个星期内,霍乱就夺去了大约12000人的生命。 [83] 由于缺乏可用的静脉输液和其他医疗资源,疫情最初几天的死亡率异常高(约20%)。国际救援机构最终开始行动,到8月,新病例数量逐渐减少。

        2008年,非洲再次暴发霍乱。与1994年因战争和流离失所而暴发的疫情不同,2008~2009年在津巴布韦暴发的疫情是由于全国资源的全面崩塌。 [84] 农业衰退和政治管理不善带来的经济危机导致了一系列国内问题,包括普遍的粮食短缺、异常高的艾滋病发病率、国家医疗保健系统的崩溃和城市供水的破坏。人们贫穷、营养不良,没有接受过关于不良卫生条件会带来危险的适当教育。毫不奇怪,8月份霍乱暴发,迅速席卷了整个国家。到2009年6月疫情最终消退时,已有近10万人感染,4288人死亡。

        仅仅1年后,海地发生7.0级地震,导致10万到15万人丧生,300多万人无家可归,霍乱再次在美洲出现。 [85] 地震前,海地就已经是世界上最贫穷的国家之一,现在成了一片废墟。首都太子港的大部分住宅和企业被夷为平地,大多数政府建筑(包括国家宫)也是如此。国家基础设施遭到彻底破坏,以至于无法照顾灾后的大量受害者。结果,大多数幸存者被迫搬到临时搭建的帐篷城市。在那里,妇女和儿童遭受暴力、疾病和饥饿司空见惯。而霍乱,因其历史上从未到达过海地,在最初也就从未被关注。不幸的是,在2010年10月,也就是震后仅仅3个月,情况就发生了变化。

        霍乱在阿蒂博尼特河岸暴发,并迅速蔓延到整个满目疮痍的国家。[86] 尽管联合国维和部队和世界卫生组织努力控制疫情,但仍有75万人感染,9000多人死亡。疫情暴发后不久,许多人开始分析这种疾病是如

        何传播到这个加勒比孤岛上的。多年的流行病学和遗传学研究表明,霍

        乱是由一名来自尼泊尔的联合国维和人员带到海地的。尼泊尔基地的厕

        所被不恰当地清空了,导致未经处理的人类排泄物直接流入了附近的阿

        蒂博尼特河。一旦进入河流的温暖水域,细菌就会大量繁殖,并传播到

        岛上其他大多数天然水源。令人惊讶的是,联合国官员强烈否认了这一

        说法,并拒绝为该流行病承担责任,尽管大量的实证证据证明情况确实

        如此。对海地霍乱弧菌菌株的基因测试表明,它与印度次大陆常见的菌

        株极为相似,而与南美洲(离海地更近)常见的菌株则有很大不同。此

        外,调查人员还披露了对为尼泊尔基地提供服务的环卫公司的采访,他

        们在被采访中承认,曾将垃圾直接倒在了疫情初发地附近的河流中。学

        者菲利普·奥尔斯顿(Philip Alston)在2016年向联合国大会提交的一份

        关于该流行病的报告中,强调了联合国坚决拒绝接受以上确凿证据的顽固态度。在导言中,奥尔斯顿称联合国在霍乱流行时和之后的行为“在道德上是不合理的,在法律上是站不住脚的,在政治上是弄巧成拙的”。 [87] 时任联合国秘书长潘基文在回应这一报告时最终让步并承认,联合国对海地霍乱流行确实负有责任。

        在过去50年里,霍乱发生了重大变化。霍乱曾经是世界上最严重和最令人恐惧的流行病,现在它的死亡率相对较低,主要局限于少数几个地区。在战争和灾难时期,它将永远是一种隐患;然而,霍乱已不再对全球人口构成威胁。这种变化的主要原因在于霍乱所激发的创新(主要是卫生、口服补液疗法和流行病学)最终成功帮助我们控制了它。最近研制的多种有效的霍乱口服疫苗,以及在世界范围内加强的水源性疾病教育,都对上述工作做了良好补充。随着我们在基础设施和卫生设施上投入足够的资金,希望我们的世界终将看到霍乱的终结。

        第九章 流感

        如果这种流行病继续以几何倍数的速度加速发展,那么人类文明很有可能在几周内便从地球上消失。 ——维克多·沃恩(Victor Vaughan)博士,美国陆军卫生局局长,1918[1]

        当提及现代流感(又名流感,Influenza)最常见的症状时,人们可

        能会质疑:在一本描述人类史上10种最严重的流行病的书中,流感竟也

        在列?感染流感的人通常会出现急性上呼吸道症状,并伴有肌肉疼痛、

        咳嗽、全身不适和发烧。这些症状通常在首次暴露后两天开始出现,并

        持续1~2周。尽管流感患者会感觉很糟糕,并且可能在流感患病期间长

        时间卧床不起,但他们通常不需要住院或其他医疗干预就能康复。对大

        多数人来说,流感不过是一种令人讨厌的东西,一种让我们无法工作或

        破坏我们假期的疾病。然而,对于那些已经患有肺部疾病(如慢性阻塞

        性肺病、哮喘)的小孩、老人、孕妇及营养不良或免疫功能低下的人来

        说,流感是极其危险的,甚至是致命的。事实上,每年有超过30万人死

        于流感,其中大多数死于严重的并发症,如肺炎和心力衰竭。虽然有效

        的疫苗和几种抗流感药物(如达菲、金刚烷胺)已经存在一段时间,但

        是流感的死亡率仍然如此之高,令人恐惧。尽管采取了控制措施,许多

        流行病学家依旧认为,流感仍然是对我们人类最大的微生物威胁。正如这一章开头的引语所暗示的那样,历史已经证实他们的恐惧不无道理。

        就致命性和传染性而言,1918年的流感大流行是历史上人类所遭受的最严重的流行病,通常被称为“西班牙流感”。尽管它被称为“西班牙流感”,但1918年的大流行很可能起源于美国(堪萨斯州),并随着第一次世界大战期间美军向法国的大规模迁移而横渡大西洋,传播到了欧洲,在饱受战争蹂躏的欧洲站稳脚跟后,这种疾病又迅速传播到世界其他地方,并在短短几个月内导致数百万人死亡。据说,该病当时感染了世界1/3的人口,仅在1年时间内就夺走约5000万人的生命。后来的一些估算数据表明,该病导致的死亡人数接近1亿人,这比黑死病100年间导致的死亡人数和艾滋病前25年导致的死亡人数还要多。令人难以置信的是,1918年的流感夺去了全球近5%的人口的生命,并使人类的总预期寿命降低了10岁以上。它造成的伤亡人数是同年结束的第一次世界大战造成的伤亡人数的3倍。如果按照现代人口数量进行调整,1918年流感造成的死亡总数相当于当今世界上的约4亿人。更令人震惊的是,这种流行病是在细菌学说、疫苗和现代医学问世之后发生的。

        除了异常高的死亡率之外,1918年的流感大流行在致死方式和感染人群方面与历史上任何一次流感大流行都不同。1918年流感的早期临床报告描述了一种疾病,就其在受害者身上产生的病理变化而言,这种疾病异常凶猛。在标准的流感样症状出现后的几个小时内,许多感染者迅速发展成致命的肺炎、大范围紫绀以及鼻、口、眼、耳和肛门出血。这种疾病的进展异常,在职业生涯中治疗过数千例流感病例的医生们都很难诊断出这种疾病。此前,流感从未如此迅速或如此凶猛地导致死亡。

        有无数报道称,人们早晨醒来感觉很健康,然而却在夜幕降临前死去,肺部充满血腥黏液。一位1918年9月在波士顿工作的医生描述说:
        被带到医院时,人们一开始以为只是感染了普通的拉格里普或流感。但是他们很快发展成有史以来黏性最强的肺炎。2小时后,他们的脸颊上开始出现红色斑点,几个小时后,你可以看到紫绀从他们的耳朵蔓延到整个脸部,直到很难区分是有色人种还是白人。短短几个小时,死亡就会来临,他们会拼命呼吸空气,直到窒息而死。太可怕了。 [2]

        为什么1918年的流感会有如此反常的病理现象,这个问题在接下来的90年里一直是个谜。直到2005年,实验才开始揭示1918年流感的独特之处(这些实验的细节将在本章后面讨论)。 [3] 令人惊讶的是,这些研究发现大多数最严重的损害是由对病原体的暴发性免疫反应引起的,而不是病原体本身。特别是1918年的流感,触发了宿主肺部的免疫细胞释放出大量有毒的炎症性化学物质。细胞因子通常帮助免疫细胞激活并相互沟通;然而,如果在短时间内释放过多的细胞因子(称为“细胞因子风暴”),就会导致大面积的组织死亡和过多的液体积聚。过度的炎症导致了1918年流行病的大部分发病和死亡,因此有理由认为,免疫系统较强的人对感染的反应应该更强烈。有趣的是,这正是我们观察到的。其他季节性流感病毒主要导致的是幼儿、老年人和免疫系统较弱的人死亡,而1918年的流感毒株却夺走了数百万名年轻、健康、没有疾病的成年人的生命。事实上,在1918年死于流感的人中,大约有一半的人年龄在20~40岁之间,而那些年龄在65岁以下的人死于流感的风险比65岁及以上的人要高。这是历史上唯一一次身体和免疫能力强对宿主没有什么好处的流感流行。它是不分青红皂白的致命武器,杀害了年轻人和老年人、健康人和病人,以及各大洲的人民。

        虽然1918年的流感大流行是最著名和最致命的,但它并不是过去几个世纪中唯一袭击人类的。流感第一次成为全球性威胁是在1889年,当时流感在俄罗斯暴发,并通过新建的铁路和金属蒸汽船迅速传遍亚洲、欧洲和美洲。 [4] 与这一时期的其他疾病类似,人口密度的增加和交通的改善为流感这样的传染性呼吸系统疾病在短时间内感染大量人群提供了绝佳的条件。在3年时间里,它连续3次出现,共造成约100万人死亡。世界各地的报纸每天都报道俄罗斯流感的最新动向,以及它如何对所到之处的社区产生负面影响。在许多情况下,这些报道在疾病本身到来的几周前就已经传达给了读者。媒体对1889年流感的报道空前激烈,这在很大程度上是因为全球报业的崛起,以及在流感暴发前几十年电报的发明。 [5]

        历史上第一次,公众可以不受地理位置的影响,实时追踪一种流行病。例如,一个住在佐治亚州萨凡纳的人,可以在流感传播到芝加哥、堪萨斯州甚至巴黎那些遥远的地方几天后,就读到流感的报道。公众渴望得到关于这种流行病的新闻,媒体也非常乐意提供帮助。随之而来的媒体热潮帮助塑造了公众对1889年流感大流行的看法,这反过来又极大地影响了对该疾病未来暴发的描述。

        在1918年西班牙流感之后的许多大流行中,1957年的亚洲流感和1968年的香港流感最为严重和致命。从东南亚开始,1957年的流感大流行在世界范围内迅速蔓延,造成了100万到200万人死亡。 [6] 这是现代医学研究时代第一次大规模流感暴发。由于担心1918年流感大流行的重演,流感专家于1948年合作建立了世界流感研究中心,希望能密切监测人类和动物宿主中的流感。该中心利用了众包的概念:在世界各国建立了国家和地区流感实验室网络,在各自的特定地区独立研究和跟踪流感。通过这样做,科学家们能够迅速分享他们关于任何已出现的新流感病毒的发现,并报告该疾病的任何异常临床表现。几项新的生物技术的发展也让他们在这段时间里对流感的遗传学和发病机理有了更多的了解。

        尽管有了这些新知识和现代流行病学工具,流感还是于1957年在亚洲卷土重来,并在短短6个月内席卷全球。当时在许多人认为流行病将很快被我们的智力和技术所征服的情况下,这可以说是一个惊人的失败。1957年,一位公共卫生官员对所发生的事情表示失望,他写道:“虽然我们有30年的时间来准备应对流感大流行的措施,但我认为我们都在忙着做即兴调查,没有足够的时间来做好这件事。我们只能希望人们能够充分利用他们的机会,最终有可能对所发生的事情做出充分的解释。”[7] 不幸的是,在1968年另一场严重的流行病暴发之前,既没有给出任何解释,也没有取得任何进展。虽然1968年的香港流感的致命性比之前的3次大流行要低一些,但它迅速蔓延到东南亚,并扩散到欧洲和美洲,感染了数千万人。

        1968年流感再次出现后不久,疫苗就被研制出来了;然而,直到大流行在大多数地区(包括美国)达到高峰数月后,疫苗才开始广泛使用。这是对一种疾病的又一次无效应对,这种疾病似乎能够以卫生官员无法控制的速度传播和变异。幸运的是,自20世纪60年代末以来,我们在人群中监控流感、控制流感、治疗流感以及在流感季节前制造疫苗的能力有了显著提高。虽然近年来出现过一些与“禽流感”和“猪流感”有关的恐慌(例如2009年),但没有一次像1968年始于香港的那场流感那样致命。

        病毒和宿主

        人类流感是由三种类型的流感病毒感染引起的。人类甲型流感病毒

        和乙型流感病毒是每年冬季出现的绝大多数季节性流感病例的致病原

        因,而丙型流感病毒只会引致罕见的轻微呼吸道疾病。甲型流感病毒是

        19世纪和20世纪每一次大流行的罪魁祸首,也是每年最受流行病学家关注的类型。

        流感病毒有几个独特的基因特征,使它们成为有效的人类病原体。

        首先,流感病毒的基因组是由RNA而不是DNA组成的。如第一章所

        述,所有生物(如细菌、真菌、人类)都使用DNA作为遗传物质,因为

        DNA化学性质更稳定,更不容易被改变或突变。许多病毒也使用DNA

        作为它们的基因组;然而,有些病毒,如流感病毒,已经进化到使用

        RNA作为它们的遗传物质。使用RNA作为基因组的病毒面临的主要问

        题之一是宿主细胞不包含复制病毒基因组所需的酶。因此,所有的RNA

        病毒都必须制造自己的基因组复制酶。对于流感病毒来说,这种酶很容

        易出错。换句话说,每当流感病毒侵入新细胞并开始复制时,产生的新

        基因组往往包含小的突变。这一点很重要,因为随着流感病毒继续在世

        界各地的宿主中一点一点地变异,这增加了一种全新的致命病毒株出现

        并肆虐人群的可能性。流感病毒因其基因组中积累的小突变而逐渐变异的过程,通常被称为抗原漂移。这是我们每年必须接种流感疫苗的主要原因之一:在一个流感季节出现的流感病毒株可能会在下一年发生足够的变异,以至于我们的免疫系统不再能有效地识别它。

        流感病毒在遗传学上另一个特别危险的方面是,它的基因组是由七

        八个不同的RNA片段共同组成的,而不是由一条连续的RNA链组成

        的。尽管分裂(分段)基因组本身并无害,但当两种不同的病毒株碰巧

        感染同一个细胞时,就会引起严重的问题。当这种情况发生时,两种流

        感病毒都将在细胞内的相同位置复制它们的基因组片段。当这些病毒将

        它们新制造的基因组包装到新的病毒颗粒中时,可能会出错,一些属于

        某种病毒的基因组RNA可能会出现在另一种病毒中。例如,想象一下,

        一种危险的禽流感病毒株碰巧与一种无害的人类病毒株感染同一细胞。

        当新病毒开始聚集在一起时,一些人类流感病毒的RNA片段可能会意外

        地与鸟类病毒的RNA片段在同一个病毒颗粒中。结果将是产生一个全新

        的杂交毒株,它在遗传学上不同于两种“亲代”病毒。换句话说,它可能

        产生一种既危险又能感染人类的毒株。这种基因重组,也就是所谓的抗

        原位移,可以迅速创造出人类免疫系统从未见过的新的大流行毒株。像抗原漂移一样,抗原位移是随机的,无法预测或控制。因此,人类永远在基因突变或重组事件及远离潜在灾难中相向而行。

        甲型和乙型流感病毒感染人类和各种其他动物宿主,包括许多类型

        的鸟类、猪、马、海豹和狗。一般来说,对一个物种有亲和力的流感病

        毒株通常对其他物种的感染性不强。其主要原因与流感病毒附着在宿主

        组织细胞表面的特性有关。附着过程包括一种在所有流感病毒上都发现

        的血凝素(HA)蛋白和一种覆盖在肺细胞和其他几种动物组织表面的

        叫作唾液酸的普通糖之间的相互作用。每种流感病毒都有一种独特的

        HA蛋白,其折叠方式与其他流感病毒上的HA蛋白略有不同。同样,每

        种动物的细胞上都有某种独特形式的唾液酸。因此,你体内可以存在一

        种禽流感病毒株,它的HA蛋白被折叠成只能识别禽类唾液酸的方式。

        这种病毒可能对人类的感染性不强,因为这种病毒不能很好地附着在人

        类细胞上。流感病毒HA蛋白和唾液酸之间的这种看似合理的关系因某

        些动物在它们的细胞上产生多种类型的唾液酸而变得复杂。例如,猪细

        胞表面的唾液酸,跟鸟类和人类的唾液酸都类似。因此,猪可以同时感

        染多种不同的流感毒株,并作为一个活的混合容器,通过抗原位移产生

        新的混合流感毒株。2009年猪流感大流行的起因是,禽流感、人流感和

        猪流感病毒株共同感染了同一只猪,然后重组为一种全新的流感病毒

        株,并具有这三种病毒的三种特性。

        HA并不是唯一与宿主唾液酸残基相互作用的流感蛋白。病毒表面

        还含有一种叫作神经氨酸酶(NA或N)的蛋白质,当新制造的流感病毒

        试图离开它们刚刚复制的细胞时,这种蛋白质可以切断唾液酸。虽然唾

        液酸是流感病毒最初附着在细胞表面时的一个重要靶标,但当病毒试图

        离开这些细胞并传播到新细胞时,它就成了一个障碍。流感病毒NA蛋

        白解决了这个问题,它像一把大砍刀,通过酶解切断任何阻碍新流感病

        毒离开细胞的唾液酸。像HA一样,NA蛋白对它能切割的唾液酸类型,

        也是具有特异性的。某些形式的NA蛋白优先切割鸟类唾液酸,而其他

        形式的NA蛋白则优先切割人或其他动物的唾液酸。因此,如果你有一

        个NA蛋白,能很好地从一个物种(如鸟类)切割唾液酸,并使该病毒

        进入另一个物种(如人类),那么新产生的流感病毒则永远不会脱离细胞表面,感染也将基本停止。HA和NA都必须“匹配”它们所感染的特定物种。因此,科学家在对新的病毒株(如H1N1)进行分类时,通常会关注这两种蛋白质。

        悄无声息的灾难

        任何蔓延到地球每一个角落并导致5000多万人死亡的大流行病,预

        计都会在之后的几十年里对各种社会、政治、健康和经济问题产生巨大

        影响。有趣的是,当人们仔细研究1918年流感大流行和随后的几年时,

        往往很难找到任何形式的关于其存在的持久印迹。几乎没有骚乱、政治

        动荡、替罪羊或长期经济影响。此外,它对第一次世界大战期间的任何

        战斗都没有任何重大影响,也没有明显影响随后的俄国内战。尽管在致

        命的人群疾病面前暴露了公共卫生政策的巨大失败,但1918年的流感大

        流行也没有促使任何城市或国家就如何应对流行病威胁进行任何全面改

        革。似乎这个世界已经厌倦了多年的战争和疾病,以至于它决定抛开所

        有的苦难,继续前进。这样看来,1918年的流感在本书提到的流行病中

        是独一无二的。几乎自相矛盾的是,人类最大的杀手对当时的人类几乎没有产生长期影响。

        为了更好地理解为什么会发生这种情况,我们必须首先考虑政府、

        媒体和公众在大流行发生时是如何应对的。当流感于1918年1月出现

        时,大多数人最初认为这只是又一次季节性流感暴发,对其应对必须按

        部就班地进行。 [8] 然而,到了9月,公共卫生官员清楚地认识到,这次

        流感流行是非常独特和迅猛的,以至于既定的控制措施不起作用。为了

        应对此次的流感大流行,世界各地的城市开始隔离病人,并提议对公共

        集会、个人卫生习惯和商业行为进行限制。这些限制的强制实施程度在

        很大程度上取决于某个城市的当地卫生委员会,以及它对当地企业拥有

        多大的权力。由于担心扰乱当地经济或引发公众恐慌,一些城市在大流

        行期间治疗和干预的变化相对较小。例如,纽约市卫生专员罗亚尔·科普兰(Royal Copeland)就错误地选择了不对公众集会实施任何直接禁令, [9] 而是采取了一些干预性较低的措施,如要求企业错开工作时间以减少人群聚集,增加城市医生的监测和疾病报告,以及教育公众关于在公共场所咳嗽和吐痰的危险。正如科普兰在第二年的一篇论文中所说,“我的目标是防止恐慌、歇斯底里、精神错乱,从而保护公众免受精神疾病的影响,精神疾病本身就容易引发身体疾病。”[10]

        与此相反,在疫情最严重的时候,一些城市几乎停止了所有市政活动。它们关闭了学校、图书馆、电影院、酒吧、体育馆、购物中心、舞厅和任何其他人们聚集的地方。一些城市关闭了教堂,以尽量减少教徒之间的接触,还有许多城市禁止公众葬礼。一些城市,如旧金山和圣地亚哥,甚至要求市民在公共场合出门时戴外科口罩。 [11] 总体来说,这是有史以来最广泛和最全面的公共卫生应对措施。不幸的是,5000万人死于这种疾病的事实表明,这仍然是不够的。

        实行严格的公共卫生管理措施的城市并不一定比那些政策宽松的城市好得多。例如,波士顿、费城和新奥尔良,这些城市都完全禁止公众集会,但它们的死亡率明显高于纽约市和圣路易斯,后者也有类似或不那么严格的管理。流行病学家和医学历史学家花了几十年的时间试图理解这种意想不到的差异。最后,2007年,在著名的《美国国家科学院院刊》(Proceedings of the National Academy of Sciences )上发表的几项研究揭示了这个谜团。 [12] 研究人员确定了两个关键因素,它们可能在决定一座城市在1918年大流行病中的表现方面发挥了重要作用。第一个因素是实施这些措施的时机。那些在大流行暴发前或在第一批病例发生后的头几天内采取行动的城市,其总体死亡率远低于那些推迟实施行动的城市。费城是美国大城市中死亡率最高的城市之一,在流感到来两周多之后,费城才采取了各种方式限制公众集会。事实上,他们甚至在那个时期举行了一次大型游行。相比之下,圣路易斯几乎在流感到来后立即采取了公共卫生应对措施,因此其死亡率只是费城的1/8。

        在这些研究中发现的第二个因素,是城市解除限制的时间。许多城市在大流行刚刚达到顶峰后,而不是疫情结束后,就放松了公共卫生管制措施。在疫情仍在肆虐并造成大批人死亡的时候,解除管制的做法给了人们一种虚假的安全感。这种虚假的安全感增加了危险的“群体”行为(例如,乘坐公共交通工具),这使得流感在第二波暴发时造成了很大的破坏。更糟糕的是,地方卫生委员会,以及更大的(州/地区/国家)委员会经常互相争斗。这造成了不必要的延迟,并造成了人们的混乱,因为人们经常得到混淆的信息。

        许多城市在此期间采取的极端措施得到了公众高度的配合。尽管官

        员、政客和企业主之间确实存在分歧,但大多数公众还是接受了对他们

        的限制。骚乱和大规模抗议并不常见,有组织地颠覆卫生管制规则的事

        件也不常见(除了偶尔有个别非法酒馆)。这是一个有趣的反应,与历

        史上观察到的大多数其他流行病截然不同。第一种可能性是,一些人认

        为,公众看到了1918年流感带来的特殊危险,并接受了需要采取极端措

        施来抗击它的事实。大多数人都在某种程度上受到了这种流行病的负面

        影响,要么是通过每天在报纸上读到它,要么是因为知道某人已经生病

        或死于这种疾病。无论是住在城市、小镇还是相对孤立的地方,每个人

        都知道这种特殊的流感有多可怕。诚然,有些人从来不知道流感大流行的严重程度,但很难想象生活在1918年的人会对流感掉以轻心。

        第二种可能性是,鉴于第一次世界大战所造成的可怕局面,人们已

        经习惯于政府越发严格的控制。“为了更大的利益而牺牲”成为一种常

        态,因为公民被迫按国家要求定量配给食物,去工厂工作,甚至为国家

        献出自己的生命。大多数人认识到形势的特殊性,愿意放弃某些权利,

        以最终赢得战争。当流感在战争接近尾声时到来,各城市开始实行隔离

        和监管,公众很可能认为这些措施只是紧急时期需要的另一种牺牲。这

        是他们因连续4年的战争和死亡而根深蒂固的屈从的条件反射。最终,

        他们服从当局的意愿可能挽救了数百万人的生命,并阻止了疫情进一步升级。

        报纸行业成为地方卫生委员会和公众之间的沟通桥梁,它是有关1918年大流行病和社区如何应对的主要信息来源。报纸不仅每天报道当地感染和死亡的统计数字,而且通常还负责在卫生委员会实施新规定时提醒公众。在许多情况下,报纸会更进一步就这些公告发表社论,给予完全的支持。例如,在北卡罗来纳州夏洛特市严格禁止所有公众集会一天后,《夏洛特观察家报》(Charlotte Observer )的一名作者写道:“阻止流感的唯一途径就是阻止夏洛特市瘫痪的方式,那就是全面隔离……智慧再次指引着夏洛特政府的手。”[13] 在大流行期间,报纸经常充当地方政府的喉舌,以这种方式支持卫生官员的行动。

        虽然这样的报道通常对全市的反应产生有积极的影响,但在许多情

        况下,报纸对1918年流感的报道产生了更有害的影响。例如,在许多地

        方,报纸在早期阶段淡化了大流行的严重性,或者讨论其他地方的情况

        有多糟,从而让公众相信流感在他们的城市已经得到控制。在干预最为

        关键的时期,这样的报道制造了一种虚假的安全感。一些报纸还刊登虚

        假补品和药剂的广告,销售商声称这些药品可以治愈流感。那些眼看着

        家人死去或自己即将死去的绝望受害者被骗,把钱花在无用的治疗上,

        在某些情况下甚至加速了他们的肺损伤。这些广告还产生了危险的副作

        用,误导公众认为存在治疗方法。相比那些不能治愈的疾病,人们往往

        把有治愈方法的疾病看得不那么严重。如果他们的疾病可以通过服用药

        片或用神奇的滋补液漱口来治愈,他们为什么要害怕把它传染给别人

        呢?此外,他们为什么要遵守严苛的公共卫生建议而给自己带来不便

        呢?这是对媒体的不道德滥用,但因为它能产生收益,而被允许这样操

        作。后来一些报纸意识到这是一个错误,并向它们的读者发表道歉声

        明。

        许多报纸也报道了这种流行病,尽量降低疾病对人类造成的真正损

        失。关于第一次世界大战的文章通常都是对苦难和英雄主义的生动描

        述,并以大标题突出显示在头版。这些文章是为了唤起读者的情感反

        应,这将使他们更有可能支持战争。相比之下,早期关于1918年流感的

        文章往往只是关于死亡统计和政策的简短的技术性宣传。文章中很少包

        含关于个人或他们所面临的困难的具体细节。由于这些报道都是表面文

        章,它们通常被隐藏在报纸的中间,标题很小,没有什么“声势”,一些

        人认为这是有意为之,目的是防止公众对大流行反应过度。人们真正担

        心的是,过度渲染、宣传流感可能引发“恐慌、歇斯底里、精神错乱”,

        许多人认为这比流感本身更危险。不幸的是,以这种方式将流感的存在性降到最低,隐藏了流感大流行的真正危险,这最终对高危人群的行为产生了负面影响。

        先前关于1918年流感大流行发生时世界如何应对的讨论提供了一些线索,解释了为什么它未能像其他流行病一样引发同类型的长期变化。首先,流感大流行的时间很特殊。它发生在历史上最致命和最广泛的战争期间,这导致许多人将流感视为战争的副产品,而不是一个有独立因果关系的独立实体。致命的第二波流感大流行在停战协定(1918~1919年冬季)签署的同时达到顶峰并结束,这一事实进一步强化了人们的想法,即流感只是战争的又一次可怕的延续。当战争结束时,人们渴望把它抛在脑后,回到某种正常状态。由于流行病和战争在许多人的心理上是交织在一起的,因此,把战争抛诸脑后从而继续前进就意味着把流感大流行抛诸脑后继续前进。其次,是其持续时间。历史上没有其他重大流行病在如此短的时间内开始和结束。当人们能够处理发生在他们身上的事情时,流感已经消失了。它没有像黑死病或艾滋病那样持续很多年,也没有像黄热病或霍乱那样每隔几年就会偶尔复发,也没有像结核病或天花那样流行。这场大流行只持续了1年多,就再也没有人听说过它(至少在如此强度的情况下)。人们没有被迫永久性地改变他们的生活方式来应对它,因为他们没有不断地被它骚扰。从这个意义上说,1918年的流感更像是一场自然灾害,而不是一场瘟疫。

        也许1918年后最令人惊讶的发现之一是,这种流行病没有给我们对待公共卫生的方式带来任何重大改变。无论从定性还是定量的角度来衡量,1918年的公共卫生应对措施都惨遭失败。不管采取了什么样的控制措施,流感似乎可以随时想去哪儿就去哪儿。掌握传染病学、流行病学和医学知识的公共卫生官员控制1918年的流感大流行的能力,并不比控制14世纪黑死病流行的医生强。这是流感故事中一个有趣的部分,因为公共卫生部门实际上有一个合理且科学全面的计划来阻止这种疾病。事实上,如果今天出现类似的流感,我们很可能也会采取隔离、公共集会禁令和教育措施(流感疫苗和达菲等抗流感药物也会被采用)。

        在1918年流感之后,公共卫生政策并没有太大的改变,因为它们并没有本质上的错误。如上所述,有些城市这些政策实施得过晚,取消得过早,也没有被严格执行。此外,地方、地区和国家卫生委员会无法进行有效沟通也是应对措施的明显失败。事实上,在接下来的几年里,公共卫生规划的这两个方面都得到了改善。然而,在基础层面上,所做工作背后的理论证明了对传染病传播的现代理解。那么,我们在2017年仍然有季节性流感暴发,为什么这些措施不起作用呢?答案在于,流感病毒具有高度传染性,难以控制,因为人们自然会被吸引到拥挤的地方,即使知道其中的危险,也不愿意遵循基本的卫生习惯。出于这个原因,再多的计划或措施也无法完全预防或阻止1918年的流感大流行。

        现实版的侏罗纪公园

        1918年的流感大流行蹂躏了人类超过16个月,直到1919年夏天才基

        本销声匿迹。大流行结束后,世界各地的科学家几乎立即开始研究这种

        疾病,以确定其病因,并探究为什么与其他病毒株相比,它的毒性如此

        之大。不幸的是,当时他们掌握的技术工具有限,并且由于无法妥善储

        存1918年流感患者的样本而研究受阻。流感病毒携带由RNA组成的基因

        组,如果不在超低温(例如-80℃)下储存,该基因组就不稳定且易于

        快速降解。由于现代冷冻保存技术和冷冻箱直到20世纪40年代才得以广

        泛应用,大多数从1918年流感患者身上分离出来的临床样本在储存条件

        不理想的情况下几年后就变得毫无用处了。没有完整的样本或先进的技

        术,科学家们无法确定1918年流感毒株的独特之处。因此,他们没有能

        力生产疫苗,也无法确定世界各地的鸟类或猪群中是否正在发展另一种

        类似的致命病毒。我们就像是坐以待毙的鸭子,完全不了解有史以来袭击人类的最严重的病毒株。

        20世纪60年代和70年代微生物学的分子生物学时代的到来,给科学家们提供了各种各样的新工具,使其可以在基因水平上了解和改变病原体。这一时期发展起来的最重要的技术之一,使我们能够获得病毒、细菌和几乎任何其他生物基因组中每一个核苷酸的特定序列。所有的基因组都由4种核苷酸组成:腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。尽管所有生物的基因组中都有相同的4种核苷酸,但这些核苷酸的具体顺序对每个物种来说都是独一无二的。正是这种次序决

        定了每个个体物种构成了什么样的蛋白质,也是所有生物独一无二的最

        终原因。换句话说,基因组是各种细节的详细蓝图。当科学家试图确定

        某种特定的微生物病原体是如何引起疾病的,或者是什么使一种病原体

        与另一种不同时,了解这个蓝图的每一个组成部分是至关重要的。

        第一批测序的基因组是两种感染细菌的小型病毒的基因组。尽管以

        今天的标准来看,这种小规模的噬菌体病毒基因组测序规模不大,但在

        1976年却是一项里程碑式的成就,因为它证明了获得微生物构建的完整

        图像是可能的。在接下来的几年里,许多其他病毒基因组被测序,包括

        1982年的人类流感病毒。基因组测序在1995年向前迈出了一大步,当时

        基因组研究所的科学家使用一种新的测序方法“鸟枪法”获得了细菌的第

        一个完整序列——一种被称为流感嗜血杆菌的人类病原体。 [14] 它的基

        因组长度超过180万个核苷酸,比以前检测过的任何病毒基因组都要大

        得多,也更复杂。随着鸟枪法测序的快速改进,不久之后,几乎所有其他人类病原体的基因组都被测序。令人惊讶的是,测序技术现在已经发展到可以在几个小时内完成病毒和小细菌的基因组测序。

        尽管在20世纪后半叶基因组测序取得了重大进展,但由于当时缺乏保存完好的样本,1918年流感病毒株的序列仍然难以确定。然而,1997年,美国武装部队病理学研究所(AFIP)的科学家开始研究从保存在福尔马林和石蜡中的组织中提取1918年流感基因组的可能性。在杰弗里·陶本伯格博士(Dr.Jeffrey Taubenberger)的领导下,科学家们从28个不同的组织样本中提纯了遗传物质,并试图对1918年流感基因组的一小部分进行测序,这部分基因组在将近80年后仍然存在。 [15] 通过这样做,他们得到了1918年流感病毒的部分基因组的序列。虽然并没有完全成功,但它表明,如果能找到保存稍好的样本,就有可能获得完整的1918年流感病毒基因组序列。

        就在第二年,一位名叫约翰·胡尔丁(Johan Hultin)的科学家告诉AFIP团队,他在阿拉斯加西部挖掘出一具因纽特妇女的尸体,她在1918年死于流感后被埋在7英尺深的永久冻土下。其肺组织几乎被冷冻了80年,其中含有足够的保存完好的流感病毒,这使得AFIP团队在2005年获得了1918年流感基因组的完整序列。 [16] 尽管这被认为是微生物遗传学历史上最重要的时刻之一,但它并非没有争议。完成这项研究的研究人员在科学杂志《自然》上发表了1918年流感病毒的完整基因组序列。一些公众非常担心,有不良意图的人可能会利用这个序列制造出一种新的能杀死数百万人的生物武器。经过美国国家生物安全科学顾问委员会和疾病控制与预防中心(CDC)成员的广泛讨论,所有人都同意为了适当的科学利益,应该公布该序列。

        有消息称疾病控制与预防中心的科学家们成功地利用这一序列重现了1918年的流感病毒,这一消息加剧了人们对1918年流感病毒基因组测序的担忧。 [17] 他们采用反向遗传学技术,首先从新的核苷酸构建模块(使用它们的序列作为图谱)一点一点地重建1918年流感病毒的基因组,然后他们将新制造的基因组添加到人类细胞中。经过几个额外的步骤,在基因和结构上与导致5000多万人死亡,并在20世纪20年代早期从地球上消失的病毒株相同的流感病毒从细胞中浮现出来。一个由来自几所大学和研究中心的科学家组成的合作小组随后开始在各种动物模型上测试复活的1918年流感菌株,以获得解释它对人类有如此难以置信的致病性的线索。正如所希望的那样,这项工作非常有成效。它不仅确定了1918年流感病毒基因组中导致其对肺部致命影响的确切突变,还使科学家们能够观察到该毒株在细胞水平上是如何工作的。同样重要的是,它使科学家们最终能够生产出一种特定疫苗,在类似的病毒株自然产生或以某种方式被制造成生物恐怖主义制剂的情况下,这种疫苗能够保护人类。在经历了80年对未知的恐惧之后,人类终于能够轻松地休息了。

        尽管为了更好地了解这种已经灭绝的疾病,使其复活具有科学价值和创新性,但并非每个人都会庆幸1918年已灭绝的流感再次出现。 [18]许多人认为制造这种致命病原体所带来的巨大风险远远超过其益处。特别是,人们担心1918年的病毒可能会从藏匿它的安全设施中逃脱,重新进入人群。逃离安全实验室的其他致命病原体的例子包括2003年和2004年亚洲多个实验室意外释放的SARS病毒,以及2001年从实验室非法移除武器化的炭疽(那年在邮件恐怖袭击中被广泛使用)。

        许多人还担心,恐怖分子或敌国可能会利用已发表文章中的信息来重现1918年流感,甚至制造更糟糕的情况(例如,1918年流感和另一种病原体的混合)。两位著名的生物伦理学家阿瑟·卡普兰(Arthur Caplan)和格伦·麦基(Glenn McGee)就这一担忧发表了以下联合声明:“10年前,对致命病毒的操纵可能仅限于高度安全的保险库……然而,如今,致命病毒的超级秘密存储已被简化为一套说明书,在某个时刻,这些说明可能会成为恐怖分子和其他不良分子或业余爱好者的食谱。”[19] 对他们来说,1918年流感项目的危险和不负责任的一面是发布了制造这种致命病毒所需的逐步说明和序列。这是一个路线图,如果在遗传学和一些分子生物学设备方面接受基础训练,其他人可以很容易地效仿。过去40年来,美国、苏联/俄罗斯、日本和许多其他国家的生物武器项目的成功,支持了这种担忧。自1918年流感病毒基因组测序和重建以来,已经过去了将近12年,还没有关于试图将其使用并造成危害的报道。这并不意味着安全问题没有引起争议;然而,保护公众的机制到目前为止还是相当有效的。

        1918年流感病毒的重现,正值科学家们不断地利用技术对微生物和其他更大的物种进行基因改造的时候。在过去的20年里,这种转基因生物,已经成为许多发达国家的热点问题。除了担心转基因生物的安全性和对环境的影响之外,许多人认为,不自然地改变生物的遗传物质并干扰自然的进化过程在伦理上类似于“扮演上帝的角色”。1918年流感病毒成功复制,更进一步,以类似于电影《侏罗纪公园》中虚构的方式将一种已经灭绝的疾病复活,许多人觉得科学家做得太过火了,可能打开了潘多拉的盒子。随着我们的科学能力和理解力以指数级的速度进一步发展,这些问题需要在不久的将来得到解决。

        疫苗项目的新范例

        患流感的人经常会出现由其他细菌和病毒引起的继发性感染。例如,流感病毒复制引起的初始损伤和炎症往往使宿主更容易感染肺炎链球菌、金黄色葡萄球菌或流感嗜血杆菌等细菌性病原体。

        事实上,大量与流感相关的发病和死亡是由其他病原体引起的,而不是由流感病毒本身造成的。因此,尽管抗生素对病毒毫无作用,许多医生还是会给流感患者开抗生素。尽管就产生新的抗生素抗性菌株而言,这是一种危险的做法,但每年预防性地给流感患者使用抗生素确实挽救了无数人的生命。

        对科学家来说,共同感染病原体的高流行率是个问题,他们在20世纪初就开始试图鉴定和纯化流感的病原体。这些研究导致许多人错误地将流感嗜血杆菌确定为流感的病因(因此得名);然而,当应用科赫法则时会发现,纯流感嗜血杆菌并不能让受试者或动物产生流感。 [20] 直到1931年,人们才最终发现流感是由病毒而不是细菌引起的。仅仅2年后,英国科学家首次成功纯化了流感病毒,这使得疫苗的研制成为可能。 [21]

        第一个被测试的流感疫苗是苏联科学家阿纳托利·斯穆洛丁采夫(Anatoly Smoro-dintsev)于1936年发明的减毒活疫苗。 [22] 他将流感病毒在鸡蛋中培养30个不同的复制周期,以选择已经丧失在人体内引起重大疾病能力的病毒的减毒变种病毒。在将他的疫苗注射到人类受试者体内后,他发现那些对疫苗产生抗体的人通常不会被流感感染。然而,对他的研究设计的现代分析显示,这个研究包含了几个重大的缺陷,这表明他的疫苗总体上效果不大。

        大约在同一时间,一位名叫托马斯·弗朗西斯(Thomas Francis)的美国医生也开始与一组极有才华的年轻科学家一起研制流感疫苗,其中包括乔纳斯·索尔克(Jonas Salk),他后来研制了第一种脊髓灰质炎疫苗。弗朗西斯疫苗与斯穆洛丁采夫疫苗的不同之处在于,它用福尔马林处理,以灭活病毒,使其不再致病。 [23] 这种灭活病毒疫苗是完全安全

        的,只要注射足够的量,就能在接受者中引发免疫反应。弗朗西斯团队

        在20世纪40年代早期研究这种疫苗,当时弗朗西斯担任美国陆军流感委

        员会主任。当美国在1941年底加入第二次世界大战时,弗朗西斯负责保

        护数百万名美国士兵,这些士兵将被部署到流感经常造成大规模伤亡的

        地区。美国军方非常担心1918年流感疫情重演,那次疫情夺去了驻扎在

        欧洲的46000多名美国军人的生命。这种担心促使军方放任弗朗西斯和

        他的团队在临床试验中大量使用美国军人。他们大规模临床试验的最终

        结果是研制出了流感疫苗,这种疫苗被科学证明是安全有效的。他们的发现于1943年发表后,该疫苗被大规模生产,并最终广泛分发给公众。[24]

        在寻找理想的流感疫苗的过程中,最重要的发展之一是认识到不同类型的流感病毒可以进一步变异成不同的毒株。1933年分离出的第一种流感是甲型流感病毒,属于甲型H1N1(A/H1N1)亚型。1940年,发现了一种新的流感病毒,名为乙型流感病毒,它与甲型H1N1流感病毒相比有着显著的蛋白质差异。 [25] 研究甲型H1N1流感疫苗的人很快意识到它不能保护受试者免受新型乙型流感病毒的感染。因此,他们不得不研制一种新的疫苗,一种含有灭活甲型H1N1和乙型流感病毒的二价疫苗。 [26]

        这种二价疫苗被大规模使用了十多年,似乎能有效减少与流感相关的感染和死亡。然而,1958年一场致命的流感大流行的再次出现表明,不斗争是无法战胜流感的。导致1958年流感大流行的流感毒株是一种甲型流感,它变异成了一种以前从未在人群中出现过的亚型(H2N2)。有了这些信息,疫苗公司开始生产一种新的二价疫苗,其中只包括甲型H2N2和乙亚型。 [27] 这是大约10年来最常见的流感疫苗。当1968年流感大流行被证明是由另一种新的亚型(H3N2)引起时,疫苗公司再次被迫转向生产不同的二价疫苗。从那时起,H1N1和各种乙型流感病毒的偶尔再次出现导致了每年的流感疫苗成分发生相应的变化。在每种情况下,流感疫苗的开发都是被动的,只是在新的毒株已经出现并开始感染大量人群后才发生变化。事实上,菌株鉴定和疫苗开发之间的滞后时间如此之长,以至于许多流感暴发在疫苗向公众提供之前就已经结束了。这是一种低效和无效的疫苗开发方法,需要进行重大改革。

        1952年世界卫生组织(WHO)流感监测项目的建立为开发更智能的流感疫苗提供了良好契机。 [28] 该项目通过在世界各国建立国家监测中心来监测在当地出现的流感病毒株。从流感“高发地区”实验室的松散集合开始,监测项目已经扩展到106个国家的136个中心。这些当地中心负责定期检测人类和动物的样本,然后将他们的发现报告给世界卫生组织的5个区域中心之一。当来自世界各地的所有数据最终得到处理,人群中最常见的流感毒株在特定年份被确定后,WHO向生产季节性流感疫苗的公司发布其建议。疫苗通常是三价的,这意味着它含有当年3种最严重的流感病毒株(通常是甲型H1N1流感、甲型H3N2流感和乙型流感)。然而,自2012年以来,由于人群中广泛存在多种乙型流感毒株,该疫苗已含有第四种毒株(四价)。 [29] 每年的疫苗都是有根据的猜测,是对哪些流感毒株最有可能在即将到来的流感季节出现并引发问题的明智预测。尽管偶尔会出错,但以这种方式制造流感疫苗比等流感暴发后再开始生产疫苗要有效得多。

        季节性流感疫苗打破了疫苗生产行业可接受的界限。以前从未改变过疫苗的种类,也从未每年将疫苗大规模分发给人群,也从未预测过疫苗的种类。在此之前,制造一种疫苗只保护接种者1年是不可想象的,因为与它的长期利益相比,这样做的成本太高了。然而,考虑到季节性流感仍然导致美国每年20万人住院和870亿美元的经济损失,很明显,每年改变疫苗的组成是必要的,这样才能跟上流感和病毒的变异。如果不这样做,整个人类将面临比1918年更严重的流感大流行风险。

        第十章 脊髓灰质炎

        脊髓灰质炎(Polio)夺走了一代甚至是好几代儿童的希望。科学家记录了很多疾病,与脊髓灰质炎相比,这些疾病更具破坏性,影响了更多儿童,也更加致命。但脊髓灰质炎可以使儿童瘫痪,这是强大的战后国家所无法忍受的形象。我们的许多孩子都坐在轮椅上,靠铁肺生存。在他们童年的最关键时期,他们的生命力和人们对其未来的希望都减弱了。 ——脊髓灰质炎幸存者马克·索尔(Mark Sauer),《瘫痪的恐惧:美国对脊髓灰质炎的胜利》 [1]

        请将自己想象为1932年的一对年轻夫妇。你有一个美丽的小女儿,她是你的骄傲和欢喜。一天早晨,在度假时,你和家人决定去家附近的湖中游泳。水很冷,但对炎热的夏日来说却很凉爽。游完后,你可以回家休息一整天。大约1周后,你的女儿开始觉得不舒服。她有一点发烧,肌肉有些僵硬,而且很酸。你觉得她一定是由于早些时候在寒冷的湖中游泳而感冒了,所以你给她喝了些暖汤,让她早点上床睡觉。第二天早上醒来时,你的女儿在房中尖叫,你吓坏了。你跑了过去,发现她正在哭。令你恐惧的是,她无法移动双腿了,并且难以举起手臂。你立即抱起她死气沉沉的身体,将她送往最近的医院。当医生完成了一些检查进入房间时,她被证实了你已经知道的事实。你的女儿患了脊髓灰质炎。她告诉你,你的女儿会活下去,但她很可能会在轮椅上度过一生。当你意识到这对她来说意味着什么时,你的心沉了下去。她将无法完成学业,不能结婚,无法过正常的生活。

        上述虚构的故事试图说明20世纪可怕的脊髓灰质炎流行情况。尽管它偶尔会影响青少年和成人(占病例的25%~30%),但10岁以下儿童更常成为脊髓灰质炎的目标。它以看似随机的方式传播,在杀死或使一个孩子瘫痪的同时,放过另一个孩子。接触脊髓灰质炎病原体(人类脊髓灰质炎病毒)的绝大多数儿童(约70%)没有任何被感染的迹象或症状。他们的免疫系统击退了感染,没有留下任何不良反应。还有一些儿童(约25%)抵御的情况没那么好,当他们的身体与病毒搏斗时,会出现流感样症状。像无症状群体一样,他们最终会在约1个星期后恢复,也没有长期损害。但不幸的是,约有5%的儿童会因感染而患上更严重的并发症。如上面的故事所示,暴露于脊髓灰质炎病毒后,他们会肌肉僵硬、发烧,进而出现脑膜炎(3%~4%)和肢体松弛性麻痹(1%)。在极端情况下,麻痹还会扩散到呼吸、吞咽和与言语相关的肌肉。这是脊髓灰质炎最致命的形式。仅有少数人能在如此广泛的瘫痪中幸存,通常其余生只能依靠人工呼吸机生存。

        尽管有证据表明脊髓灰质炎自古以来就存在,但它第一次出现在医

        学文献中是1789年,被描述为“儿童下肢残疾”。 [2] 德国骨科医师雅各布·冯·海涅(Jacob von Heine)于1840年发表的重要报告首次描述了脊髓

        灰质炎特殊的临床表现,至此它便与其他类似的麻痹性疾病区分开来

        了, [3] 这也是这种病第一次被称为小儿脊髓麻痹。在接下来的30年中,

        法国的一些研究人员发现了麻痹症状的细胞基础。他们发现感染会侵袭

        中枢神经系统并杀死脊髓和脑干神经细胞的细胞体(灰质)。死亡的运

        动神经元无法把信号从大脑传递到肢体肌肉,从而导致了瘫痪。

        在那时,脊髓灰质炎仍然是一种极为罕见的疾病。它会在美国或欧

        洲偶发,零星感染少数人,然后在短时间内消失。但是,到了19世纪90

        年代,波士顿、佛蒙特州和瑞典等地开始出现聚集性感染。 [4] 直到20世

        纪初,这些地方性脊髓灰质炎才开始大规模暴发并造成严重感染。1905

        年,瑞典乡村暴发了一场流行病,感染了1000多人;1907年,纽约市也

        发生了一场流行病,约2500人感染。脊髓灰质炎首次广泛流行于1916年

        夏天,发生在美国。该病首先出现在纽约布鲁克林的一个意大利社区,

        并呈放射状传播到东北部,感染了2.7万人(主要是儿童),导致6000

        人死亡。这是世界第一次真正注意到鲜为人知的脊髓灰质炎病毒。以儿

        童为目标、极具视觉震撼力的症状和极高的死亡率,使全国各地的父母都竞相保护自己的孩子。

        在接下来的40年中,每年夏天都会出现这种恐惧。在20世纪30年代至50年代,脊髓灰质炎的流行逐年恶化,在1952年达到顶峰,仅在美国就感染了5.8万人。据估计,在整个20世纪,脊髓灰质炎导致约100万人死亡,多达2000万人患有某种形式的身体残疾。尽管它没有本书所描述的其他流行病那样致命,但它令人恐惧并且极具影响力。

        脊髓灰质炎,又称为小儿麻痹症,由人类脊髓灰质炎病毒感染引

        起。人类脊髓灰质炎病毒属于小RNA病毒,小而坚固,以RNA作为遗

        传物质。其他小RNA病毒包括引起普通感冒的病毒(鼻病毒)、甲型肝

        炎病毒和通常感染牲畜的口蹄疫病毒。就脊髓灰质炎病毒而言,暴露通

        常发生于摄入被粪便污染的食物或水。但是,一些证据表明它也可以通

        过唾液在人与人之间直接传播。病毒一旦进入胃肠道,便会在肠道细胞

        中复制约1周,然后转移至淋巴结和扁桃体等局部淋巴组织。它会在此

        处复制,最终溢出到血液中。血液中存在大量脊髓灰质炎病毒(称为病毒血症),这便是大多数感染者出现流感样症状的原因。

        根据宿主的免疫系统和年龄,病毒可能会从血液中转移到脊髓,从

        而引起脑膜炎并损害运动神经元。如果病毒停留在脊髓下部,它最终会

        使四肢出现不同程度的不对称性瘫痪。这种称为脊髓型脊髓灰质炎,约

        占瘫痪病例的80%。在某些人中,病毒会在短时间内离开脊髓下部并向

        上转移至大脑。当病毒杀死脑干中的神经元时,患者便可能出现心跳异

        常、呼吸和吞咽困难。这种最致命的形式被称为延髓型脊髓灰质炎,约

        占瘫痪病例的2%。最后,有时病毒还会同时在脊髓下部和脑干中复

        制,这种被称为脊髓型合并延髓型,其严重程度和发病率(约18%)居

        于上述二者中间。一般而言,年龄较大的孩子、青少年和成年人比小孩

        子更容易发生延髓型和脊髓型合并延髓型,平均而言,其预后要差得

        多。此外,所有瘫痪的人,无论其瘫痪程度,在其康复期间和之后的许多年里还会经历极度的肌肉疼痛和肌无力。在某些极端情况下,幸存者还会发展出一种被称为“后脊髓灰质炎综合征”(PPS)的疾病。在这种疾病中,即便在脊髓灰质炎恢复很多年后,患者还是会出现肌肉疼痛和功能丧失。

        对一代人的心理伤害

        如果按照死亡率或持久性对流行病进行排名的话,那么前50名中可

        能都不会出现脊髓灰质炎。该疾病总共大约50年才蔓延到流行病的程

        度,致死的人数也比许多本书未提及的其他疾病(如麻疹、伤寒、梅

        毒)少得多。尽管脊髓灰质炎在统计数字方面没有其他疾病严重,但由

        于其对人口造成的强烈心理伤害,脊髓灰质炎值得被列入任何破坏性流

        行病的清单。脊髓灰质炎使脆弱的儿童感到恐惧,使他们残疾。它摧毁

        了他们对未来的希望,并将其与所爱的一切隔离开来。它攻击成年人最

        珍视的东西,并且是以比噩梦还可怕的方式进行攻击。脊髓灰质炎可能

        并没有杀死数亿人,但它却好像杀死了数亿人一般,影响了全人群。

        脊髓灰质炎恐慌最重要的副产物之一就是,它从根本上改变了许多

        父母抚养孩子的方式。在脊髓灰质炎之前,孩子们夏季通常都在户外玩

        耍,游泳、骑自行车、和附近的朋友一起运动等。只要孩子们按时回家

        吃饭或在天黑前回家,大多数父母都会毫不犹豫地答应他们出去玩。但当脊髓灰质炎来临时,情况发生了巨大变化。而且很明显,脊髓灰质炎总在孩子们远离父母玩耍的时候,攻击他们。为了应对这种情况,许多父母开始更主观地决定他们的孩子什么时候、在哪里、和谁一起玩。通常,这意味着让孩子被隔离在安全的室内。

        理查德·罗德斯(Richard Rhodes)在《世界上的一个洞》(A Hole in the World )一书中,描写了他在此期间产生的社会孤立感。“城市关闭了游泳池,我们都被关在家里,困在室内,有意避开其他孩子。夏天就像冬天一样。”[5] 数百万名孩子,甚至是那些从未接触过脊髓灰质炎的孩子,其童年的大部分时间都生活在这种不祥的阴影下。此时,社会化让步于安全,自由让步于控制。脊髓灰质炎以前所未有的方式,迫使父母将注意力转移到孩子身上。尽管“直升机式育儿”直到20世纪80年代才开始流行,但我们可以在脊髓灰质炎流行的年代追踪到一丝痕迹。具有讽刺意味的是,由于脊髓灰质炎而备受父母庇护的那一代孩子,最终引导了30年后的“直升机父母”运动。恐惧发生了变化(从脊髓灰质炎转变为儿童掠食者),但反应却极为相似。

        对于那些直接受脊髓灰质炎影响的人而言,其心理影响更为有害且持久。在被诊断患有脊髓灰质炎后,患者通常会被赶到医院的专科病房,在那里待几天、几周甚至是几个月,在此期间,不允许家人和朋友探望。他们的玩具、衣服和其他所有物品会立即被收起来烧掉,以免把疾病传播给兄弟姐妹。当家人最终被允许探视时,时间通常只有几分钟,而且是被玻璃或窗帘隔开的。抛弃所有熟悉的人和事物,会让患者产生强烈的被抛弃感和被孤立感,而死亡或永久瘫痪的可能性则让情况雪上加霜。

        在最初的几周里,患者的亲人也会出现类似的感觉。在许多情况下,他们还必须面对被社区排斥的情况。人们害怕脊髓灰质炎及其相关的任何人,包括患者的家属。他们的房子会被标上很大的黄色隔离标志,并且其被视为危险的人。一名脊髓灰质炎幸存者曾经回忆道:“我母亲说,当她和爸爸去镇上的海滩时,人们会拿起毯子和雨伞躲远。在杂货店里,妈妈说人们总是窃窃私语,盯着他们看。没有人愿意靠近我的家人。”[6] 脊髓灰质炎将他们永远标记为被污染的人;他们被排斥,其存在不断提醒着周围人,脊髓灰质炎在伺机而动,而他们的孩子可能就是下一个猎物。随着20世纪40年代和50年代脊髓灰质炎的持续蔓延,这种不幸的情况变得越来越普遍。

        对于那些面临着漫长康复期和因该病而永久致残的人,大量研究探

        讨了政策如何影响他们的心理健康状况。虽然数据会因研究重点不同而

        有所差异,但大多数研究人员都认为,与没有患过脊髓灰质炎的人相

        比,脊髓灰质炎幸存者更可能抑郁和焦虑。 [7] 幸存者通常会为自己失去

        的生活以及目前面临的不确定性而哀痛。他们将如何养活自己?他们还

        能再走路吗?他们还能结婚吗?当数百万名脊髓灰质炎幸存者努力重新

        适应这个如今对他们有些陌生和敌视的世界时,诸如此类的问题总会渗

        透到他们的心中。其他幸存者还会不断与焦虑做斗争,害怕自己会再生

        病入院。在康复期被医院护工虐待的生动记忆会进一步激发这种感觉。

        许多人记得他们无助地坐在自己的尿液和粪便中长达数小时,或者因无

        法控制自己的身体功能,意外弄湿自己而挨打。一些人甚至说他们遭受

        了看护者的性虐待。不幸的是,在大多数医院都人满为患、人手不足的

        时期,这样的经历并不少见。随着脊髓灰质炎幸存者年龄的不断增长,许多人开始遭受“后脊髓灰质炎综合征”(PPS)的折磨。其症状包括疼痛、肌肉无力和四肢功能丧失等,即使他们的四肢似乎在50年前就已经恢复了运动能力。许多幸存者认为这种可怕的疾病仍会继续伤害他们,因此他们的恐惧重燃,并产生了新的抑郁情绪。这是流行病的可怕余波。

        卫生悖论

        对20世纪脊髓灰质炎的流行病学数据进行仔细研究后,发现了一个有趣的悖论,这个悖论使科学家困惑了很多年。脊髓灰质炎主要是水源性胃肠道疾病,但其出现和流行最严重的时间却是在卫生状况得到大幅改善的时候。当19世纪末实施现代卫生措施时,伤寒、霍乱和其他各种腹泻病的发病率都急剧下降。实际上,一些研究估计在过去的100年中,卫生条件改善使水传播疾病的发病率降低,人类预期寿命提高了12%。然而,脊髓灰质炎似乎在水源清洁、食物处理方式得到改善的地方最为猖獗。例如,美国和西欧富裕地区原本并没有水源性流行病,但脊髓灰质炎却在这些区域发生了最为严重的流行。此外,当城市试图针对脊髓灰质炎采取更严格的卫生措施时,似乎其流行的频率增加了,严重性也更加恶化。看起来就像是,旨在制止脊髓灰质炎的措施恰恰造成了脊髓灰质炎的流行。

        有几种理论可以解释这种明显的悖论。最被普通接受的理论是,19

        世纪末期出现的卫生措施并没有增加人们对脊髓灰质炎病毒的暴露,而

        仅仅是延缓了这种暴露。 [8] 现代研究表明,脊髓灰质炎病毒于19世纪或

        更早的时候在环境水源中普遍存在,由于病毒在那个时间几乎无处不

        在,一个人在刚出生几个月时就有可能感染脊髓灰质炎。尽管似乎听起

        来婴幼儿比成人或较大儿童患脊髓灰质炎更加危险,但实际上并非如

        此。主要原因是幼儿(0~12个月)的血液中仍含有高水平的母体抗

        体,可以保护他们免受各种疾病的侵害。当胎儿在母亲子宫内发育时,

        就获得了这些抗体,被称为母体IgG抗体。在母亲怀孕的最后3个月中,大量的IgG抗体经由胎盘,从母体血液中转移到发育中的胎儿血液中。

        被转移的抗体种类取决于母体此前曾抵御过何种疾病、接种过何种疫苗。如果母体曾暴露于脊髓灰质炎病毒,那她的免疫系统中就会有针对脊髓灰质炎的保护性抗体,并将其传递给胎儿。当婴儿出生并暴露于脊髓灰质炎病毒时,仍在婴儿体内的母体IgG抗体便会攻击脊髓灰质炎病毒并阻止其进入脊髓。结果,婴儿可以在几乎没有症状或并发症的情况下康复。这种情况发生在20世纪以前的大多数儿童中。

        随着现代卫生设施净化了环境水源,孩子不再在刚出生的几个月内,体内还具有高水平母体IgG时,就接触脊髓灰质炎病毒。相反,他们是在出生几年后,体内不再存有任何母体IgG抗体时(母体抗体在1岁时就会逐渐衰减),暴露于脊髓灰质炎病毒下。 [9] 此时,他们没有任何保护,脊髓灰质炎病毒可以大量复制,扩散到脊髓。因此,这并不像当时人们所认为的那样,儿童第一次接触脊髓灰质炎病毒是在20世纪初。实际上,这是暴露减少导致的首次感染时点变更。

        尽管上述解释有助于说明为什么脊髓灰质炎最早出现在20世纪早期,但它却没有解释为什么其在20世纪40年代和50年代流行更甚。科学家们仔细研究了诸如水卫生、季节变化、政府应对等因素是否产生了重要变化,从而加剧了20世纪40年代脊髓灰质炎的流行。50年以来,研究没有任何进展,直到2015年发表在《公共科学图书馆生物学》(PLOS Biology )期刊上的一篇文章指引了一些方向。 [10] 该研究使用了复杂的数学和统计学模型分析了脊髓灰质炎的历史数据。经过各种各样的分析后,他们得出来一个平淡的结论:20世纪40年代和50年代脊髓灰质炎流行仅仅是因为与之前相比,二战后有更多的孩子出生了。战后的“婴儿潮”效应为脊髓灰质炎病毒提供了数以百万计的新宿主。更多的孩子意味着脊髓灰质炎病毒有更大的机会在人群中传播,导致瘫痪和死亡。

        20世纪的脊髓灰质炎流行是传染病史上的反常现象。没有任何一种传染病会因人群变得更健康、经济变得更繁荣而恶化。人们死于脊髓灰质炎病毒,恰恰是因为人们极力追求清洁的环境,而清洁的环境可以使我们远离许多其他水源性疾病。这似乎是一种自我实现的预言,不可避免。对水源性疾病的恐惧改变了我们的行为,而行为的改变则最终导致了恐惧的发生。

        医疗创新的爆炸式增长

        脊髓灰质炎流行使多达2000万人遭受慢性健康问题,如瘫痪、毁容和呼吸困难。脊髓灰质炎幸存者在初次感染后常常需要多年的重症监护,这给医疗健康行业带来了巨大压力。急剧增加的压力表明,医院在护理急性期重症患者和需要长期看护患者时的产能不足。结果是,这导致医院改变了对重症患者的治疗方式。

        晚期脊髓灰质炎患者面临的最直接的一个问题是呼吸肌肉麻痹。为了将空气吸入(吸气)和排出(呼气)肺部,需要肋间肌、腹肌和膈肌一起工作,移动胸腔,改变肺的容积。这些肌肉的麻痹可能导致严重的呼吸困难,如果不及时治疗甚至会导致窒息和死亡。当前对呼吸停止的治疗方法是通过口对口人工呼吸或一些机械设备来进行人工通气。不幸的是,当脊髓灰质炎病例开始在1910年代增加时,并没有这种设备可供呼吸停止的患者使用。由于脊髓灰质炎病毒逐渐削弱了胸肌的能力,许多进入医院喘不过气的孩子常常会死去。在成千上万年幼的脊髓灰质炎患者窒息而死后,医疗卫生专业人员清楚地认识到需要开发一种机械装置作为人工肺,帮助这些孩子存活。他们希望这样做可以给患者足够的时间来恢复自主呼吸。

        菲利普·德林克(Philip Drinker)和路易斯·阿加西兹·肖(Louis Agassiz Shaw)医生于1928年成功发明了第一台机械呼吸机,以应对脊髓灰质炎的流行。 [11] 他们的装置(后来被称为“德林克氏人工呼吸器”或“铁肺”)是由一个大的、密闭的圆柱形金属罐和几个气泵组成,金属罐连接在气泵上。需要呼吸帮助的人进入水箱,只把头留在外面。打开气泵时,水箱内部会产生负压真空,有助于提起胸腔使空气进入肺中。片刻后,气泵使水箱内产生反向压力,从而排空肺中的空气。尽管以上将空气吸入和排出的方式看起来很复杂,但这种人工通气的负压系统与自然通气过程非常相似,可以成功替代瘫痪的胸肌。

        德林克氏人工呼吸器于1928年在临床上首次使用,当时是被用来挽救处于呼吸衰竭边缘的8岁脊髓灰质炎女童患者的生命。 [12] 尽管德林克氏人工呼吸器非常大,嘈杂、笨拙且价格昂贵,但它因具有救命的效果而一夜成名。在20世纪30年代,欧洲和澳大利亚的几个人(如艾默生、亨德森和博特)对铁肺的设计进行了改进,提高了其生产效率。 [13] 通过降低90%的成本、使设计更加人性化和小巧,新的铁肺可供世界各地的医院使用。以前可能会死于脊髓灰质炎的儿童现在已被这项惊人的发明挽救。因此,脊髓灰质炎的死亡率直线下降。

        铁肺仍然是脊髓灰质炎时代最持久的图像之一。在那段时间内生活的人们,将永远不会忘记宽敞的医院病房里令人心碎的景象,那里有数百名小孩子被装在大型的金属管中。对于那些只需要暂时使用铁肺(1~2周)的人,铁肺被视为奇迹般的救命者。正如一个人在回忆短暂使用铁肺时所说的:“我们与铁肺之间有巨大的心理因素在起作用。这个金属呼吸器似乎有生命的特性,成为保护和安全的象征。我们是金属子宫中不完整的胚胎。”[14] 尽管铁肺如此古怪,但它一直是脊髓灰质炎时代中很多人生命和希望的象征。然而,对其他人而言,铁肺更像是一个金属墓,而非金属子宫。有些人瘫痪太严重了,以至于他们不得不在机器里待几个月、几年甚至一生。实际上,有些人在铁肺中待了50多年,有的甚至超过了60年。虽然有些人受到了诸多限制,但他们仍然成功调整了心态,过上了丰富多彩、有理想有抱负的生活。但仍然有许多人由于被永久地局限在金属管中,产生了巨大的心理创伤。对他们来说,铁肺象征着生命的丧失,永远是他们破碎身体的一部分,不断提醒着他们患病的事实。

        铁肺的革命性发明远远超越了脊髓灰质炎疾病本身,因为它永远改变了医学界寻找先进生命维持系统的方式。它是更复杂的人工呼吸器的模型。正压呼吸机是在脊髓灰质炎流行结束后首次出现的,它们可以将空气强制灌入肺部以使其膨胀。它们在补充血氧方面比负压呼吸机(如铁肺)更有效,而且不需要使用者将自己完全固定在任何设备上。不久,它们就取代了以前的负压设备,成为世界上每家医院和急诊诊所都配备的重要设备。那些因颅脑外伤或脊髓损伤、心力衰竭、药物过量、传染性疾病或遗传性疾病(例如帕金森病)而有呼吸暂停风险的患者借此可以存活更长的时间,以便采取其他救命措施。此外,外科手术也能够以更加可控的方式进行,不必再担心由麻醉引起呼吸衰竭。

        尽管机械通气能够显著改善脊髓灰质炎和其他严重疾病的预后,但起初并没有其他先进生命维持系统对其进行必要的补充。在脊髓灰质炎最开始流行的35年中,医院并没有足够的设备处理大量重症患者及其昼夜不断的医疗需求。脊髓灰质炎患者需要不断的血压、呼吸、营养、心率、用药以及许多其他医疗监测。由于医疗照护常常不连续、不足、无组织,很多人奄奄一息。就在这时,丹麦一位名叫比约·易卜生(Bjorn Ibsen)的麻醉师提出了一个更好的护理体系。 [15] 为了应对1952年哥本哈根毁灭性的脊髓灰质炎流行,他帮助在其医院创建了一个专门部门,用于脊髓灰质炎患者的重症监护。每位患者都被分配了专门的护士、一组医生和医学生,全天候监测各项生命特征(包括24小时手动机械通气)。该病房是世界上第一个重症监护病房(ICU),在1953年使该院脊髓灰质炎患者死亡率降低了一半。关于哥本哈根(布莱格丹医院)ICU的新闻迅速传播。很快,ICU的理念被欧洲各大医院效仿,最终传播到了美国。随着时间的流逝,ICU得益于技术改进和资金投入的增加。仅在美国,现代ICU每年就可为400多万名患者提供护理,而这些人如果处在传统的医疗环境中则极有可能死亡。

        除了为现代先进生命维持系统奠定基础之外,脊髓灰质炎流行还彻底改变了因病、伤、手术致残患者的康复方式。在脊髓灰质炎流行的早期阶段,一般都会指导康复患者尽量休息。在许多情况下,医生会将患者瘫痪的肢体固定在夹板、腿部支架或石膏模型中,因为他们错误地认为休息可以防止附近较强壮的肌肉损害弱化的肌肉。在恢复期,儿童经常卧床数月甚至数年。著名导演兼制片人弗朗西斯·福特·科波拉(Francis Ford Coppola)8岁时曾患脊髓灰质炎,他在床上度过了近1年的时间。他回忆道:“当你得了脊髓灰质炎后,没有朋友会过来。我过去经常自己一个人待在房间里,读书,用玩偶、机械玩具和小玩意来消磨时间。我们还有录音机和电视机之类的东西。”[16] 他认为,这段卧床时间激发了他讲故事的兴趣,使他最终专注于写作、导演和制作电影,如其执导的影片《现代启示录》《教父》等。

        这种长期卧床的情况也推动了糖果行业的革命。弗兰克·马尔斯(Frank Mars)小时候得了脊髓灰质炎,在康复期间卧床数月。埃尔瓦·玛尔斯(Elva Mars)看到儿子孤独又沉默寡言,便把他带到厨房,教他如何制作和蘸巧克力。 [17] 多年来,他对巧克力的兴趣不断增长,最终创立了玛氏巧克力公司,生产M&M豆、士力架和银河棒。他从未从脊髓灰质炎中完全康复,一生都拄着拐走路。

        棋盘游戏“糖果乐园”(Candy Land)也是因脊髓灰质炎强迫患者卧床休息而诞生的。 [18] 1948年,一位名叫埃莉诺·阿伯特(Eleanor Abbott)的女性在脊髓灰质炎病房中康复了,当时她想到了一款有趣的游戏,可以让许多躺在她周围的孩子玩。她发明的游戏非常简单,不需要大人太多的帮助,孩子们就可以学会和玩耍。这一点非常重要,因为在漫长的恢复期中,孩子们通常是与成年人隔离开的。有趣的是,她游戏的早期版本带有卡通图案,描绘了孩子们的腿部支架。米尔顿·布拉德利(Milton Bradley)在购买该游戏的版权后,便将这些图案替换掉了。或许他们不希望这款游戏与脊髓灰质炎有关。由于大量儿童因脊髓灰质炎威胁而被迫在室内玩耍,该游戏在20世纪50年代大受欢迎。

        尽管并没有证据支持肢体固定的有效性,但在此期间大多数医生都强烈捍卫这种疗法,认为这是脊髓灰质炎唯一可行的治疗方案。最早挑战这种正统观念的人是一位年轻的澳大利亚女性,名叫伊丽莎白·肯尼(Elizabeth Kenny),她并没有接受过正规的医学培训。 [19] 肯尼小时候摔断了手腕,从当地一位名叫埃涅阿斯·麦克唐纳(Aeneas McDonnell)的医生那里接受治疗后,便对人体着了迷。看到肯尼对医学的兴趣后,麦克唐纳医生便借给她一些解剖学图书,并将其收为学徒。在接受了一些非正式的护理培训后,肯尼开始在澳大利亚昆士兰州的一个偏远地区担任“丛林护士”的工作。正是在这段时间(1911年)内,肯尼第一次见到了脊髓灰质炎的可怕后遗症。由于腿部肌肉的永久性收缩,有个女孩一直处于极度的疼痛中,而当地医生却几乎没有给她任何帮助。肯尼看不到固定肢体的好处,觉得有必要尝试其他疗法来减轻女孩的痛苦。她尝试了热敷,每天轻轻移动孩子的腿,以“提醒”它们如何正确收缩。令人惊讶的是,她的非常规疗法奏效了,孩子可以重新使用双腿了。然后,肯尼在其他5位失去希望的脊髓灰质炎患者身上又尝试了这种新的运动疗法,也成功了。于是她在当地的脊髓灰质炎患者中推广她的疗法,直到第一次世界大战期间以护士的身份加入澳大利亚军队。在服役期间,肯尼晋升至Sister一职——这在英国被普遍称为首席护士。肯尼首席护士结束服务后,最终返回了澳大利亚,继续她的脊髓灰质炎工作。

        她在治疗脊髓灰质炎方面取得了前所未有的成功,您可能会觉得医学界会注意到并接受她的新型治疗方法。不幸的是,事实并非如此。澳大利亚的大多数医生要么完全无视她的新疗法,要么指责她捏造数据欺骗公众。肯尼护士在其自传中总结了医学界的冷淡反应:“我完全没有料到医学界人士的反应是这样的,他们随时准备谴责任何带有改革意味或违背公认做法的行为。”[20] 她对人们教条式地支持原有方法论而感到震惊,即使这种方法从未被证明有效。尽管肯尼护士因无法证明自己的观点而感到沮丧,但她仍继续工作,最终她去了美国,以寻求更多的研究机会。不幸的是,最初美国大多数医生都和澳大利亚同行一样对其新疗法持怀疑态度。国家小儿麻痹症基金会和美国医学会(AMA)等主要资助机构仍不信服,拒绝资助她的研究。尽管有这些阻碍,但她的运动疗法在公众中越来越流行。

        到1941年,肯尼护士获得了明尼苏达州一些医生的支持。他们对她的方法进行了深入研究,最终将结果发表在享有盛名的《美国医学会杂志》(JAMA )上。 [21] 尽管她仍受到医学界的反对,但该文章的发表以及随后在1943年出版的一本书使她一生的工作正当化了。 [22] 从那时起,越来越多的医院意识到,肯尼的疗法在治疗脊髓灰质炎方面远远优于肢体固定疗法。肯尼护士最终将重点转移到培训其他护士和理疗师上,培训他们如何正确锻炼瘫痪的肌肉,并在明尼阿波利斯市新成立的伊丽莎白·肯尼研究所教授课程。随着全国各地的报纸上不断出现治疗成功的案例,肯尼护士的声望一飞冲天,成为世界上最受欢迎的女性之一。实际上,她在1951年被美国公民投票选为世界上最受尊敬的女性,击败了埃莉诺·罗斯福(Eleanor Roosevelt)。对于她来说,这是一个了不起的转变,她职业生涯的大部分时间都在与男性主导的医学权威抗争。

        肯尼护士的开创性工作对脊髓灰质炎以外的医学领域也产生了巨大影响。受伤和患病的肌肉需要经常运动以达到最佳愈合状态这种理念在当时是一种异端想法,但如今这已成为理疗师的护理标准。从中风到脊髓损伤,再到外科手术和神经退行性疾病,曾经因“不活动”这种医嘱而恶化的疾病,如今使用的恢复疗法都与肯尼护士在1911年开创的疗法相似。治疗神经肌肉疾病保守和一刀切的疗法已被更激进和个性化的治疗方案所取代。肯尼护士的工作推动了治疗理念的重大转变,永远改变了理疗的实施方式。她巩固了自己的治疗方案,为了患者利益,不畏艰险,敢于突破界限。这种改进了的治疗方案将继续改善全球数百万人的生活质量。

        脊髓灰质炎和“一毛钱进行曲”运动

        脊髓灰质炎历史上最重要的时刻之一是1921年7月,当时一位富有的政治家兼律师在参观纽约的童子军营地时染上了脊髓灰质炎。两周后,他与家人在加拿大度假时,游泳后感到恶心和发烧。在接下来的三天内,他的病情继续恶化,胸部以下出现了严重的腿痛、麻木、无力和瘫痪。之后还出现了视力模糊和面部瘫痪,不能自主控制膀胱和肠道。在接下来的两周内,一些医生进行了多项检查和测试(如腰椎穿刺),确定他患上了脊髓灰质炎。经过多年在佐治亚州温斯普林斯进行的强化理疗和康复治疗后,他的病情逐步好转。但是,他永远无法使用双腿,一生都只能坐在轮椅上。这个人是美国的未来总统——富兰克林·德拉诺·罗斯福(Franklin Delano Roosevelt,FDR),他成为脊髓灰质炎幸存者的发声者,并永远改变了脊髓灰质炎的历史。 [23]

        罗斯福在1921年患脊髓灰质炎时是政坛上冉冉升起的新星。他出生于著名的罗斯福家族,其中包括他的远亲(五服以内)西奥多·罗斯福(Theodore Roosevelt)和许多非常富有的商人。罗斯福在1911年意外获选纽约州参议院席位后,便开始了他的政治生涯。他在该职位任职了两年多,而后在1913年被伍德罗·威尔逊(Woodrow Wilson)总统任命为海军助理部长(有趣的是,15年前西奥多·罗斯福也担任了这个职位)。罗斯福在整个第一次世界大战期间都在该职位任职,于1920年辞职。随后,他被选为民主党的副总统候选人。尽管民主党在该次选举中大败,但罗斯福似乎注定要追随他堂叔的轨迹。但是仅仅8个月后,当罗斯福前往童子军营地并感染了脊髓灰质炎时,这种轨迹发生了重大变化。一瞬间,他的政治生涯似乎结束了。 [24] 谁会选举一个不能走路甚至不能自己站着的人?谁会选举看上去虚弱和长期患病的人?谁会选举为了康复,近十年都未参政的人?

        在经历了8年脱离公众视野、痛苦的康复期之后,罗斯福做到了不可能的事——他1928年赢得了纽约州州长的职位。他在该职位还不到1年,美国就陷入了经济大萧条。正是在这段艰难时期,他的领导才能和创新的社会工作计划使他最终成为1932年民主党总统候选人。罗斯福继续赢得了选举,并在随后的三场选举中获胜,成为第一位也是唯一一位四次当选的总统。实际上,他战胜脊髓灰质炎的这一事实帮助他提高了知名度,因为这证明了他在逆境中不屈不挠的力量和意志力。 [25] 1932年,大多数美国人可能都与罗斯福感同身受,因为他们也因大萧条面临着前所未有的挑战。在他们看来,罗斯福是一位拒绝被脊髓灰质炎折磨的领导者,象征着他们艰难处境的希望。许多人认为,正是这种因脊髓灰质炎形成的战斗精神使罗斯福拥有了领导美国度过经济大萧条和第二次世界大战的能力。

        罗斯福除了为数百万名脊髓灰质炎幸存者表达心声外,还利用了其总统职位直接与该病做斗争。他最初关注的领域之一是创建一个国家级治疗中心,以便脊髓灰质炎患者离开病房休养。他选择的地点是位于佐治亚州温泉疗养院一个度假胜地,在20世纪20年代他自己便在该地度过了几个月的康复期。他坚信轻松、温暖的矿物质水有疗效,相信它帮助自己恢复了体力。当1926年该度假村由于经济困难陷入困境时,罗斯福购买了该产业,并试图将其改造成全国脊髓灰质炎患者疗养的地方。不幸的是,他和朋友的资金不足以使温泉疗养院继续经营下去。到20世纪30年代初,该疗养院几乎要倒闭了。

        此时,一位名叫亨利·多尔蒂(Henry Doherty)的商人想出了一个办法挽救温泉疗养院(并希望赢得总统的青睐)。在1934年1月30日总统诞辰54周年之际,他在全国各地的城市组织了一系列庆祝舞会。 [26]这600多场总统生日舞会充当了筹款的角色,募集到的所有资金都捐赠给温泉疗养院。令人惊讶的是,在短短一个晚上,这些舞会共筹集到了100多万美元。罗斯福非常感动,他在广播中说道:“作为成千上万残疾儿童的代表,我向大家表示敬意。感谢大家,祝大家晚安,这是我度过的最幸福的生日。”[27] 第一次生日舞会非常成功,于是他们每年都在罗斯福生日那天继续举行舞会。在接下来的几年中,温泉疗养院和当地其他脊髓灰质炎治疗场所共筹集了数百万美元。

        罗斯福意识到,温泉疗养院并没有像他所希望的那样对脊髓灰质炎产生全国性影响,因此他决定建立一个新的国家级组织,其唯一重点就是帮助现有的脊髓灰质炎患者,并防止其他人感染该病。国家小儿麻痹症基金会(NFIP)成立于1938年1月3日,成员包括科学家、医护人员、志愿者和募捐者。最初,NFIP的资金来自总统舞会和富有慈善家及公司的大量捐款。然而,在很短的时间内,NFIP的运行成本就远远超过了这几个渠道带来的资金。因此,罗斯福向他的朋友——广播界的风云人物埃迪·坎特(Eddie Cantor)求助,以提高公众对NFIP的认识。 [28] 坎特随后不久在直播中呼吁公众,把省下来的钱捐赠出去。每一分钱都对脊髓灰质炎战争起着重要作用。坎特开玩笑地说,他希望“一毛钱进行曲一路奔向白宫”。 [29]

        这是首次在全国范围内为抗击疾病而呼吁捐款。公众的反应甚至震

        惊了罗斯福。在广播播出后的几周里,每天都有成千上万封信寄到白

        宫,其中大多数都装着1毛钱。罗斯福在1938年生日那天向全国发表讲

        话:“昨天白宫的邮寄室收到了4万至5万封信。今天,数量更多了,我

        无法确切地告诉你们有多少,因为我们只能通过邮件袋的数量来估计。

        在所有的信封中,都装着1毛钱硬币甚至是1美元,都是大人们和小孩子

        送来的礼物,主要来自想帮助其他孩子康复的孩子。”[30] 最终计算的总

        数显示,公众共给白宫寄出了268万枚1毛钱硬币。这是众筹的一个惊人

        例子。通过让许多人只捐1毛钱,筹款的重担就从少数富人肩上转移到了整个国家。

        1939年及之后的每一年都举行了“一毛钱进行曲”筹款活动。猫王埃维斯·普里斯利(Elvis Presley)和玛丽莲·梦露(Marilyn Monroe)等名人热情地出现在各种筹款活动中,希望借助自身的名声可以帮助治疗脊髓灰质炎。NFIP(后来更名为March of Dimes)收到了很多资金,他们开始资助相关研究,寻找脊髓灰质炎的治愈方法。1955年,乔纳斯·索尔克(Jonas Salk)和NFIP宣布他们已成功测试了脊髓灰质炎疫苗(请参阅下一节)。但不幸的是,罗斯福并没有活着见证这一胜利。他于1945年因大量脑出血去世了。罗斯福去世后,政府和公众都想把他的形象刻在美国货币上,用以纪念。他们最后选择的货币显而易见,1946年1月30日,美国造币厂首次推出了罗斯福1毛钱硬币。

        除了抗击脊髓灰质炎外,国家小儿麻痹症基金会(NFIP/March of Dimes)还资助了不同领域的各种研究项目。 [31] 例如,该组织还资助了8位诺贝尔奖获得者,包括詹姆斯·沃森(James Watson,发现了DNA结构)、马克斯·德尔布里奇(Max Delbrück,描绘了病毒复制过程)、莱纳斯·鲍林(Linus Pauling,表征了蛋白质的基本结构)和约瑟夫·戈德斯坦(Joseph Goldstein,描述了人体如何代谢胆固醇)。此外,由于疫苗在很大程度上控制了脊髓灰质炎,国家小儿麻痹症基金会便将大部分资源用于研究出生缺陷和早产的原因。他们组织了大规模的风疹疫苗接种(风疹会导致严重的先天缺陷),并发起了一系列运动,促进产前检查和产妇健康。这项工作大大降低了儿童死亡率,并为负责照料儿童的人提供了更好的教育。国家小儿麻痹症基金会是一项了不起的遗产,它虽始于一种流行病,但现已覆盖到所有对儿童有危险的疾病。

        可以说,国家小儿麻痹症基金会带来的最重大影响之一与脊髓灰质炎或其他儿童疾病并无关联。在NFIP之前,疾病组织不会通过国家筹款来筹集资金。尽管在第一次世界大战之后的几年中,诸如红十字会和基督教青年会这样的慈善组织蓬勃发展,但医疗慈善事业尚未尝试大规模进行。当国家小儿麻痹症基金会成功募集了足够的资金来治愈目标疾病时,类似的慈善机构注意到了这一点,开始效仿。到20世纪50年代和60年代,致力于其他疾病的非营利组织开始发起自己的年度筹款运动。美国癌症协会、美国心脏协会和肌肉营养不良协会等慈善机构通过大量邮件、电话和电视广告向公众呼吁。许多人举办了全国性的筹款活动,包括社区健步走/跑步(例如心脏散步,Heart Walk)或电视节目直播(如Jerry Lewis MDA电视节目),以提高知名度、募集资金。

        寻找治疗方法不再仅被卫生官员或富裕的慈善家关注。公众参与了这些斗争,结果令人震惊。例如:连续43年每年劳动节都举行的MDA电视节目共带来了24.5亿美元的资金;美国癌症协会仅在2015年就筹集到了惊人的8.12亿美元;美国心脏协会在同一年筹集了6.5亿美元。 [32]尽管有人质疑这些慈善机构每年筹集的资金是否得到了适当使用,但毫无疑问,筹款活动大大改善了我们的健康,拯救了数百万条生命。医疗慈善事业,虽然最初只是装着1毛钱的信封,但如今已永久改变了我们与疾病斗争的方式。它为科学家提供了无穷的资源,以研发新的疫苗和治疗方法。它为医生提供了新的工具,用以更早地诊断疾病,缩短康复时间。最后,它为患者提供了更好的生活质量和治愈的希望。

        残疾人的权利

        脊髓灰质炎和两次世界大战使数千万人的身体永久性残疾。在20世纪中叶,严重的残疾通常意味着一个人无法上学、找工作或进入公共聚会场所。在最严重的情况下,残疾人会被驱逐出家庭和社区,被强制收容,度过余生。这种社会孤立对数百万人的精神和心理健康造成了巨大打击。一位特别有口才的脊髓灰质炎幸存者马克·奥布莱恩(Mark O’Brien)写道:“几个世纪以来,残疾人一直被关在国有或国家补贴的机构中。我们永远不知道该系统荒废了多少生命,浪费了多少智力,谋杀了多少灵魂。开创并运行这个系统的人认为自己是善良的人,他们觉得自己是改革者,帮助了无助的人。”[33] 从加利福尼亚大学伯克利分校毕业后,奥布莱恩出版了几本诗集和一篇文章,奥斯卡金像奖获奖影片《亲密治疗》(The Sessions )即改编自他的真实故事。他在铁肺中待了44年多,在此期间完成了所有工作。

        马克·奥布莱恩等数百万名残疾的脊髓灰质炎幸存者开始要求改善他们的治疗方式。模仿20世纪60年代和70年代的公民权利运动、同性恋权利运动和妇女权利运动,残疾人权利运动围绕残疾人应受到法律的平等保护而展开。具体而言,斗争者希望有更多的独立生活设施,立法禁止在学校或工作场所歧视残疾人,保证残疾人可以进入所有的公共建筑。他们厌倦了世人觉得他们不能自理,厌倦了与世隔离。他们厌倦了因身体残疾或感觉缺陷而被大学拒绝,他们厌倦了被解雇。残疾人只希望能有机会证明自己的价值。

        尽管各种残障人士都参加了这一运动,但最初该运动的大部分核心领导都是由脊髓灰质炎幸存者组成的。小贾斯汀·达特(Justin art)、埃德·罗伯茨(Ed Roberts)和朱迪·休曼(Judy Heumann)等人成立了行动不便组织(Disabled in Action)和世界残疾人研究所(World Institute on Disability)等机构,并组织了基层游说活动,给立法者施加压力,要求其通过新的立法来保护残疾人。他们还代表那些受歧视的人提起诉讼,组织全国游行和静坐活动,要求平等的权利。1973年,美国国会通过了《康复法案》第504条,他们的辛勤工作得到了回报。法案规定:“根据第705(20)条所定义的残疾人标准,任何接受联邦资助的项目或活动,都不得仅因残疾人患有残疾而禁止其参与活动、对其歧视或剥夺其福利。”[34] 法案还规定,接受联邦资助的所有机构都必须为残疾人提供“合理的设施”,他们有权使用所有的公共建筑、交通服务和住房。

        残疾人第一次受到法律的某种保护。但是,该法律未能解决几个关键问题,包括如何执行、何时实施以及如何处理独立于联邦资金的私营企业。这些担忧是有理由的,许多组织和服务机构都试图拖延批准第504条法案。作为应对,1977年,美国残疾人联盟在全国各地的政府大楼中组织了静坐活动。 [35] 数百名各种类型的残疾人涌入了市政建筑,拒绝离开,直到地方政府领导人签署第504条法案。尽管他们在某些城市取得了成功,但在大多数城市却没有成功。关于《康复法案》的执行,静坐、抗议和法律斗争又持续了13年。

        最后,在1990年,美国政府通过了《美国残疾人权利法案》(ADA),该法案在就业、交通、通信、娱乐和教育等方面为公共和私营部门的残疾人提供了全面保护。与《康复法案》不同,该法律提供了具体的实施时间表,并对拒绝进行必要更改的企业和服务机构处以更严厉的处罚。乔治·布什(George H.W.Bush)总统签署法案时说:“让排斥这道可耻的墙彻底倒塌吧。”[36] 对ADA法案涵盖的20多种身心残疾者来说,这是一个期待许久的胜利。对于残疾人来说,这确实是历史的转折点,自那以来,它改善了美国和其他效仿国家(如英国)数百万名残疾人的生活。

        疫苗竞赛

        当人们被问及脊髓灰质炎疫苗时,大多数人都会想起它是在20世纪50年代出现的,由乔纳斯·索尔克和阿尔伯特·沙宾(Albert Sabin)两位科学家发明。那些年龄足够大的人甚至可能还记得在学校接种的情况或诸如“索尔克的疫苗工作”“疫苗战胜了脊髓灰质炎的威胁”“脊髓灰质炎溃不成军”等头条新闻。那是举国欢庆的时刻,也是对过去20年来所取得成就的清醒反思。尽管这些记忆描绘了脊髓灰质炎最终失败的景象,但它并不能准确勾勒出那几年的实际情况。几乎没有人知道疫苗研发过程中的灾难,或是使疫苗成为可能的开创性科学进展,抑或是因疫苗试验引起的全球政治危机。这是疫苗史上无与伦比而又错综复杂的故事。

        在20世纪30年代中期,两个独立的研究小组开始研究脊髓灰质炎疫苗。 [37] 第一个研究小组由纽约大学物理学家莫里斯·布罗迪(Maurice Brodie)领导,试图从猴子组织中提取病毒样本,用福尔马林处理,制作灭活疫苗。为此,布罗迪希望破坏病毒的结构,使其无法引起疾病,但同时不完全破坏病毒,以免免疫系统不再识别。他首先在几只黑猩猩、他本人和少数当地儿童身上测试了新疫苗。在这个小样本中没有观察到不良反应,他便将试验范围扩大到了数千名儿童(其中一些是孤儿)中。不幸的是,1935年数据分析结果显示,布罗迪疫苗对预防脊髓灰质炎几乎没有任何作用。接种疫苗组的脊髓灰质炎患病率与接种安慰剂组的患病率相同。更糟的是,一些孩子对疫苗中的化学物质产生了严重的过敏反应。

        大约在同一时间,第二个研究小组正在开发一种减毒的脊髓灰质炎活疫苗。 [38] 该小组由天普大学的约翰·科尔默(John Kolmer)博士领导,旨在给患者注射可在低水平复制的减毒脊髓灰质炎活病毒,以诱导更强的免疫反应。在一些灵长类动物中测试完后,科尔默给自己的孩子

        和费城地区其他23个孩子注射了减毒活疫苗。结果表明,该疫苗在这一

        小群受试者中并没有产生什么不良反应。受此鼓舞,科尔默又招募了数

        千名儿童参加了更大的临床试验。与布罗迪疫苗没有任何效果不同,科

        尔默的活疫苗对许多受试者造成了损害。该疫苗直接导致9名儿童死于

        脊髓灰质炎,多名儿童瘫痪。后来发现,该结果是由疫苗生产时减毒过

        程有误造成的。科尔默给受试者注射的不是毒性极弱的脊髓灰质炎病

        毒,而是全活的病毒。如此灾难性的早期结果导致科尔默在1935年9月永久停止了使用他的疫苗。

        这两项广为人知的脊髓灰质炎疫苗试验的失败震惊了科研界和公

        众。这种使数千名毫无防备的儿童暴露于有害化学物质和致命病原体的

        草率行为,让人们感到不安。尽管两方研究人员均否认,但种种证据表

        明,许多参加这些试验的儿童都是孤儿,是他们的看护者让他们“自

        愿”参加的。一旦父母在未被完全告知的情况下签署了知情同意书,那

        么参加的儿童便几乎没有拒绝治疗的机会。一些反对动物实验的人士动

        员了大规模的写信活动,旨在说服埃莉诺·罗斯福保护孩子,以免受医

        学实验的伤害。 [39] 他们的努力引起了人们的注意。埃莉诺·罗斯福在收

        到他们的来信后不久,便会见了美国卫生局局长,要求他调查有关此类研究不当利用孤儿的指控。

        尽管没有立即采取法律行动,也没有提起任何诉讼,但公众的强烈

        抗议永远改变了研究人员进行儿童相关临床试验的方式。在试验的初期

        阶段,将儿童用作人类实验对象的日子已经一去不复返了。研究人员再

        也不能凭借其社会地位或其目标具有价值而依赖公众的固有信任。现

        在,他们在纳入儿童进入实验之前,必须证明自己的方法是安全的。不

        幸的是,随后的人体研究(如恐怖的塔斯基吉梅毒实验)表明,这些新

        的制衡手段在没有法律支持的情况下是无效的。作为应对,美国国会通

        过了《国家研究法》(1974年),并设立了人类研究保护办公室,监督和规范所有涉及人类受试者的医学试验。大约在同一时间,大多数西欧国家也制定了类似的法律。总体而言,此类立法有助于保障高危人群(儿童、残障人士、囚犯、贫困者、军事人员)的权益,使他们不再被迫成为可能对其造成伤害的药物的试验对象。这是迫切需要的改变,为人类临床试验开创了一个更负责任的新时代。

        安全、有效的脊髓灰质炎疫苗研发速度减缓的主要原因之一是无法产生大量病毒。人脊髓灰质炎病毒最初只能在灵长类动物(即黑猩猩)中生长。为数以百计的灵长类动物提供住宿、喂养和医疗服务非常昂贵,以至于在20世纪40年代很少有实验室能够负担得起脊髓灰质炎疫苗的研发工作。那些能负担得起的实验室花几个月的时间才能分离出少量病毒。这使得研究人员开始积极寻找其他方法来繁殖病毒,以便分离出足够数量的病毒,更好地进行疫苗研究。

        第一次突破发生在1936年,当时洛克菲勒研究所的两位科学家研发出一种方法,可以在培养皿中的人类胚胎脑组织中培养脊髓灰质炎病毒。 [40] 马克斯·泰勒(Max Theiler,同一年在同一地点研发了黄热病疫苗)的两位同事阿尔伯特·沙宾(Albert Sabin)和彼得·奥利茨基(Peter Olitsky),发现了维持人体细胞在体外长时间存活所需生长介质的确切成分。尽管其他人以前曾在体外培养过病毒,但他们的新方法在效率和生产力上尤其具有开创性。他们能够在短时间内使用相对较少的试剂生成大量脊髓灰质炎病毒。

        尽管他们的方法很有潜力,但沙宾和奥利茨基从未尝试将其用于疫苗研发,因为他们担心在脑组织中生长的脊髓灰质炎病毒会对宿主的神经系统产生影响。换句话说,他们不想重复早期黄热病疫苗试验的灾难性结果。在黄热病疫苗的早期试验中,体外神经组织培养出的病毒会攻击接种者的中枢神经系统(请参阅第七章)。相反,他们在安全性上走上歧途,只使用其了解脊髓灰质炎病毒本身的信息。在1948年,由约翰·恩德斯(John Enders)、托马斯·韦勒(Thomas Weller)和弗雷德里克·罗宾斯(Frederick Robbins)领导的另一个研究小组仅使用皮肤和肌肉组织研发了新的脊髓灰质炎病毒体外生长系统,解决了潜在的嗜神经性问题。 [41] 在这些细胞中生长的脊髓灰质炎病毒可以复制到很高的水平,但致病性并没有增强。这是一个生长脊髓灰质炎病毒的高通量系统,可以帮助人们重新开始寻找安全有效的疫苗。此外,其他病毒的研究人员看到了这种新系统的低成本和惊人效率,很快也开始使用。因此,整个病毒学领域的研究呈指数增长,在随后的几年中研发了数十种针对不同病毒的疫苗。恩德斯、韦勒和罗宾斯因其非凡的创新工作,于1954年共同获得了诺贝尔医学奖。

        脊髓灰质炎疫苗竞赛已正式开始。来自世界各地的科学家开始使用这种新的生长系统研发减毒或灭活脊髓灰质炎疫苗。一位名叫乔纳斯·索尔克的年轻医师就是这样。如前一章所述,索尔克是一名病毒学家,是20世纪40年代首次研发出流感疫苗的团队成员。索尔克于1947年去往匹兹堡大学担任医学系主任,开始在自己的实验室研究脊髓灰质炎疫苗。流感疫苗的相关经验使他更喜欢灭活疫苗而不是减毒活疫苗,因为灭活疫苗具有更高的安全性。在NFIP大量资金的支持下,他在体外培养了全部3种人脊髓灰质炎病毒株,并使用稀释的福尔马林溶液小心地灭活。 [42] 到1952年,他准备在一小群受试者身上测试疫苗的安全性,以及是否可以诱导免疫系统产生病毒抗体(这是布罗迪灭活疫苗没有做到的)。他从匹兹堡地区招募了约15000名成年人和孩子参加初步研究。在积累并分析了数据之后,索尔克在国家广播中宣布他的疫苗可成功诱导出针对多种人类脊髓灰质炎病毒的保护性抗体反应,同时没有毒性。他在新一期《美国医学会杂志》(JAMA )上发表了预试验的结果,并开始计划下一阶段的试验。 [43] 随后发生的是人类历史上最大的临床试验——涉及180万名儿童和32.5万名志愿者的多国双盲研究。 [44] 随着1954年脊髓灰质炎流行季节的临近,恐惧的父母排队让孩子参加试验。

        索尔克的前导师和流感疫苗的研发者托马斯·弗朗西斯(Thomas Francis)博士负责设计和管理这项巨大的工程。他主要选择了以前从未接触过脊髓灰质炎的1~3年级孩子,将他们分为3组:一组接种三剂真正的疫苗,一组接种安慰剂疫苗,另一组则什么都没有接种。在次年一整年,参与者的健康状况和抗体水平都会被监测。对于孩子们来说,他们获得了一枚金属别针和一个证书,以纪念他们是脊髓灰质炎的先锋。

        在最终收集并分析了所有数据后,索尔克团队计划举行一次新闻发布会,以公开宣布其发现。1955年4月12日,即富兰克林·德拉诺·罗斯福逝世10周年之际,托马斯·弗朗西斯站在国际观众面前,简洁地宣称:“这种疫苗起作用了。它安全且有效。”[45] Salk疫苗与安慰剂一样安全,并且在72%的情况下都可以预防脊髓灰质炎。尽管取得了如此令人鼓舞的结果,但在许多新闻发布会上,索尔克显然并不满意。他曾希望他的疫苗能100%有效预防脊髓灰质炎,任何不足都令他感到失望。当他站起来讲话时,他令人震惊地(并且错误地)宣称,他的下一批疫苗将具有绝对的保护性。尽管他从未达到100%的有效性,但他的疫苗立即在国际上引起了轰动。发达国家集体欢欣鼓舞,因为他们孩子的毁灭者被击败了,40年的恐惧终于结束了。这次庆祝活动让人想起第二次世界大战结束后的场面。连续数周,报纸和广播电台一直在播报有关索尔克、脊髓灰质炎疫苗和NFIP出色工作的故事。因此,索尔克立即成为名人和民族英雄。在接下来的几个月中,他多次出现在《时代》(Time)杂志上,甚至于当年4月22日在白宫被艾森豪威尔(Eisenhower)总统授予荣誉。当人们发现他拒绝为该疫苗申请专利以便所有人都可以尽快使用时,他的声望变得更高了。当被问及为什么拒绝从拯救生命的疫苗中获利时,索尔克回答说:“你能给太阳申请专利吗?”[46]

        在新闻发布会后几天内,五家不同公司开始批量生产Salk疫苗。最初,学校建立了脊髓灰质炎疫苗流动接种诊所,无论儿童身在何处、社会经济情况如何,都可以接种该疫苗。NFIP在每个社区都组织了疫苗接种活动。在接下来的几年中,医院和医生办公室逐渐接管了疫苗管理工作。全球有数百万名儿童接种了Salk疫苗,结果令人震惊。1955年,美国有28985例脊髓灰质炎病例;开始接种疫苗后,这一数字在1957年下降到了5894,1961年下降到了161。如此惊人的差距表明,Salk疫苗对任何赞誉都当之无愧。

        尽管取得了惊人的成功,但Salk疫苗也存在一些争议。第一个便是疫苗的安全性问题。从理论上讲,灭活疫苗应该是绝对安全的,因为没有活病毒使受体生病。然而不幸的是,有时错误的操作会使正常的安全疫苗变得危险。这种情况发生在1955年4月,当时两家制药公司卡特(Cutter)和惠氏(Wyeth)用福尔马林灭活Salk疫苗时,操作不正确。[47] 当时,超过10万剂载有活病毒的疫苗被运出了工厂。由于缺乏监督和适当的质量控制,数百人感染了脊髓灰质炎,数人死亡。卫生官员试图向民众说明该疫苗是安全的,但这还是沉重打击了备受欢迎的Salk疫苗的声誉。疫苗接种率暂时发生了下降,州卫生委员会立即发起了新的公关运动来应对,以恢复公众对疫苗的信任。公关起作用了,疫苗接种率回到了丑闻发生前的水平。

        1960年,脊髓灰质炎疫苗接种工作传出了更为广泛且具有潜在危险的安全丑闻。11月,一份报告详细介绍了某种新发现的病毒可能已经污染了30%的脊髓灰质炎疫苗。 [48] 20世纪50年代中期,Salk和其他人(如Sabin)开始使用特殊的猴肾细胞培养脊髓灰质炎病毒,因为它们分裂的速度比人类细胞快,且维护成本较低。不幸的是,研究人员没有意识到他们正在默默培育另一种被称为猿猴病毒40(SV40)的病毒。在从猴细胞中分离出脊髓灰质炎病毒的同时,SV40也会被分离出来。由于当时人们对SV40几乎一无所知,科学家便开始对其进行研究,以了解SV40是否可能对人类造成伤害。他们最担心的事情发生了,几项研究表明,把SV40注射入猴子、小鼠和其他哺乳动物体内时,SV40具有诱发肿瘤形成的倾向。卫生官员意识到,他们在不知不觉中已使1亿多人暴露于可能致癌的病毒中了,他们感到十分恐惧。值得庆幸的是,过去40年来收集到的证据表明,SV40不会诱发人类细胞形成肿瘤。 [49] 此外,早期接种含SV40疫苗的人,发生癌症的概率并没有大于未接种的人。尽管公众对整个事件非常愤慨,但医学界似乎躲开了一颗巨大的子弹。

        有趣的是,科学家们继续研究了SV40是如何引起肿瘤的,并因此了解了很多关于人类癌症的知识。例如,SV40相关研究使我们发现了细胞膜上一种新的蛋白质,其可以保护基因组免受突变影响。这种蛋白质被称为p53,是阻止人类肿瘤形成的最重要因素之一。当p53由于某种原因丢失时,人体细胞就会开始不正常地分裂,发生癌变。p53的相关知识可以使医生更好地筛查癌症风险,并为将来的癌症治疗提供了潜在的靶标。

        除了安全性问题外,Salk疫苗还因其接种方式不佳和长期有效性不足经常遭到科学界的批评。他的疫苗是由灭活的病毒碎片而非活病毒组成,一次注射后所诱导的免疫反应相对较弱。因此,接受者不得不注射3针,以达到足够高的抗体水平预防脊髓灰质炎。尽管这在发达国家似乎没什么,但对于医疗可及性较差的地区,却是一个重大问题。首先,注射疫苗既需要有训练有素的医务人员,还需要昂贵的设备,如针头和注射器。其次,当需要多次注射以加强免疫时,人们通常会由于忘记或没有足够的能力返回诊所而只接种一剂。这样做,他们会误以为疫苗可以保护自己,而实际情况却并非如此。需要注射多针的其他疫苗也存在这种情况(如麻腮风三联疫苗、乙型肝炎疫苗、水痘疫苗和破伤风疫苗)。

        即使多针注射,Salk疫苗的长期免疫保护作用也不佳。疫苗诱导的抗体可在短期内保护儿童免受脊髓灰质炎的影响;然而,在短短的几年内,抗体水平大幅下降,接种者感染脊髓灰质炎的风险与接种前无异。这个问题使研究界许多人批评索尔克过早分发了不完美的疫苗。他们认为索尔克应该等待更好的疫苗研发出来,即仅需单次接种即可,无须打针,那样具有更强的长期免疫效果。索尔克辩护道,尽管他的疫苗并不完美,但它有效缓解了脊髓灰质炎疫情,挽救了成千上万儿童的生命。

        让儿童继续死亡,只为等待更完美的疫苗是荒谬而又不人道的。波兰裔美国研究员兼医师阿尔伯特·沙宾(Albert Sabin)想到了更好的脊髓灰质炎疫苗。沙宾1931年从纽约大学医学院毕业后,去了洛克菲勒研究所,开始深入研究脊髓灰质炎病毒是如何致病的。 [50] 如本章前文所述,他早期致力于在人类神经组织中体外培养脊髓灰质炎病毒。

        在1936年成功实现这一目标后,他开始研究脊髓灰质炎患者的不同组织,以确定病毒感染何处、如何传播。这项工作在1941年获得了回报。当时沙宾和他的同事罗伯特·沃德(Robert Ward)证明了脊髓灰质炎病毒是通过消化道进入人体的,然后扩散到血液中,进而入侵中枢神经系统。 [51] 这一结果不仅可以使流行病学专家通过处理污染的水源来控制脊髓灰质炎传播,还点燃了研发口服疫苗的希望。如果天然的脊髓灰质炎病毒可以在胃和小肠的恶劣环境中生存,那么口服脊髓灰质炎病毒疫苗应该也可以。此外,如果能以某种方式阻止病毒从消化道传播到中枢神经系统,那么就可以制造出安全又有效的疫苗。

        在接下来的几年里,沙宾在美国的海外战争中服役,结束后回到了俄亥俄州辛辛那提儿童医院研究基金会(Children’s Hospital Research Foundation),研究脊髓灰质炎疫苗。 [52] 在接下来的10年中,沙宾一直在努力寻找无法传播到脊髓的天然突变株。他最终成功分离出了这种突变株,为其研制口服活疫苗奠定了基础。到1957年,沙宾已经准备好测

        试新疫苗是否能诱导免疫反应,产生保护性抗体。像索尔克一样,他最初也是在一小部分年轻人(本地的联邦囚犯)、其本人、邻居和家人身上测试疫苗的。这一阶段的测试表明他的疫苗有效且安全,而后沙宾开始为更大的临床试验做准备。他很快就会明白,有几个非常严重的因素可能会破坏他的崇高计划。

        1957年,沙宾面临的最重大障碍之一便是Salk疫苗的广泛使用。在Sabin疫苗准备测试之前,数百万名儿童接种Salk疫苗的时间已有2年多。那时,媒体已经宣布脊髓灰质炎被击败了,索尔克成为英雄,此事已基本结束了。因此,NFIP、美国公共卫生署等资助机构不愿将更多资金投入其认为已经获胜的事业中。此外,大量美国儿童已经接种了Salk疫苗,要找到足够多的未接种儿童来测试新疫苗会非常困难。这些因素,再加上沙宾与索尔克之间的激烈竞争,使沙宾转向别处,寻找机会测试这个他认为更好的疫苗。恰在此时,三名苏联科学家拜访了沙宾,咨询他如何能减缓苏联的脊髓灰质炎流行。

        尽管美国和西欧各地广泛使用Salk疫苗,但疫苗没有有效地分发到欧洲东部的共产主义国家。因此,尽管美国几乎消灭了脊髓灰质炎,但脊髓灰质炎仍在东欧继续肆虐。沙宾是俄罗斯犹太裔,与一位苏联科学家米哈伊尔·丘马科夫(Mikhail P.Chumakov)成为朋友。仅仅6个月后,沙宾就接受了丘马科夫的邀请前往莫斯科,讨论如何用苏联公民进行疫苗试验。 [53] 当丘马科夫向苏联卫生部求助,想要进行一次大规模的临床试验,来检验未经测试的美国疫苗时,苏联卫生部拒绝了。他们信任Salk疫苗,因为美国人已经使用过了。苏联政府中的一些人认为,沙宾试图秘密使用其疫苗伤害苏联人。丘马科夫拒绝接受他们的决定,直接找到了政治局委员。领导人阿纳斯塔斯·米高扬(Anastas Mikoyan)信任丘马科夫,允许他继续进行这项研究。

        苏联对口服脊髓灰质炎减毒活疫苗(OPV)的第一次试验涉及了20000多名儿童,取得了巨大成功。 [54] 在这些发现的鼓舞下,丘马科夫联系了沙宾,告诉他,他正计划将OPV分发给数百万名苏联人,对其有效性进行最后的决定性测试。令人惊讶的是,1959年末,仅仅几个月内就有1000多万名儿童和年轻人接种了疫苗。由于OPV是一种不需要针头的口服疫苗,卫生官员可以直接将其滴入儿童嘴里或抹在糖果上,实现有效给药。研究结果表明,一剂Sabin 疫苗(OPV)便可产生即时和长期的保护性抗体。抗体反应明显高于Salk疫苗,并且持续时间更长。最近的一些研究表明,OPV诱导的抗体在40多年后仍可被观测到。此外,作为一种活疫苗,这种脊髓灰质炎病毒突变株可以从接种者身上复制并传播到未接种者身上,扩大了疫苗对整个人群的有益影响。

        这一惊人的结果使苏联及其盟国几乎为每一个20岁以下的人都接种了疫苗(约1亿人)。 [55] 在短短几年内,脊髓灰质炎流行在苏联和东欧暴跌。由于沙宾挽救了无数儿童的生命,作为一个美国人,他受到了苏联领导人的高度赞扬和感谢。这是在冷战期间,苏联和美国选择外交方式以合作,而非进行政治斗争的为数不多的例子(还有天花根除计划)。

        沙宾回到美国后,感觉自己多年的努力终于得到了回报。他成功地研制出了一种更有效、更便宜、更易于接种且几乎与Salk疫苗同样安全的疫苗。不幸的是,公众和美国政府最初都对他的结果和疫苗持怀疑态度,而非赞扬。他的疫苗被视为“共产主义”疫苗,不可信任,因为苏联人总是散布谎言,宣传其体系更加成功。沙宾意识到西方永远不会相信他的一面之词,便向世界卫生组织(WHO)寻求帮助。 [56] 世界卫生组织派代表前往了俄罗斯,直接观察了实验的进行情况,核实研究结果的真实性。这些报告支持沙宾的说法,世界各地的许多科学家开始接受沙宾的疫苗。到1960年,越来越多的证据支持口服脊髓灰质炎疫苗,最终WHO也批准了这种疫苗。随后,美国在1961年允许沙宾使用他的疫苗。在经过仅仅两年大规模使用后,Sabin疫苗正式取代Salk疫苗,成为美国和世界其他国家的首选疫苗。

        现在,人类已一劳永逸地摆脱了这种可怕的疾病。世界上最早消除脊髓灰质炎的国家是1960年的捷克斯洛伐克和此后不久的古巴。美国在1979年正式消灭了脊髓灰质炎,在此之前已有许多其他发达国家完成了这一壮举。世界卫生组织、美国疾病控制与预防中心、联合国儿童基金会和扶轮国际意识到可以在全球范围内全面根除脊髓灰质炎,便在1988年联合宣布了全球根除脊髓灰质炎行动。 [57] 其目标是使每一个孩子都免受感染,到2000年完全消灭该病毒。尽管该目标并没有实现,但它成功将世界上的感染病例总数减少到了2000年的719例和2016年的不到40例。截至2016年,世界上仅有3个国家(阿富汗、尼日利亚和巴基斯坦)在自然界存在脊髓灰质炎。由于不良的医疗基础设施和塔利班等团体的干预,国际卫生官员无法为偏远地区的儿童接种疫苗,未完全根除脊髓灰质炎。但是,随着盖茨基金会等组织新的资金支持,许多人希望2017年成为消灭脊髓灰质炎的一年。

        第十一章 艾滋病

        我们可以躲避我们的成见,但不能长期躲在那里,因为艾滋病毒对它的攻击对象只有一个问题:你是人类吗?这是一个正确的问题。你是人类吗?因为艾滋病病毒携带者还没有进入某种陌生的状态。他们是人类。他们不应该受到虐待,也不应该受到歧视。被孤立或被视为弃儿对他们没有好处。他们每一个人都是神所造的:他们不是应得到我们审判的魔鬼,也不是我们应为之遗憾的受害者,而是渴望得到支持和同情的人。 ——玛丽·费舍尔(Mary Fisher),HIV阳性患者,一位母亲和活动家,1992年美国共和党全国代表大会上 [1]

        1981年6月5日,加州大学洛杉矶分校和雪松西奈医院的一组医生在《发病率和死亡率周报》(Morbidity and Mortality Weekly Report,MMWR )上发表了一篇论文,描述了洛杉矶5名健康的年轻男性,他们几乎同时患上了一种罕见的肺炎。 [2] 他们的情况特别令人震惊的是除了肺炎,这些人还患上了其他几种通常只在免疫系统严重削弱的人身上才会出现的疾病(例如器官移植接受者、癌症患者、老年人)。这些人除了都是同性恋外,彼此之间没有任何联系,也没有任何共同的朋友。对其中3名男子的血液进行检查后发现,他们的免疫系统中一种重要细胞(T细胞)的数量低得危险。此外,他们体内的T细胞对刺激反应相对迟钝,对抵抗感染毫无用处。该杂志的编辑接着指出,这些男性感染了某种新的传染病,这种疾病削弱了免疫系统,并可能是通过性行为传播。这些医生成为第一批描述一种大流行性疾病的人,尽管他们当时还不知道,这种疾病后来夺去了大约4000万人的生命。这种被称为获得性免疫缺陷综合征(AIDS)的疾病每年持续造成约120万人死亡。与肺结核一样,它仍然是世界上由传染病引起死亡的两大主要原因之一(有些年份肺结核高居榜首,有些年份则是艾滋病)。

        艾滋病是由感染人类免疫缺陷病毒I型(HIV-1)或HIV-2两种病毒

        之一引起的。这两种类型的HIV都可以通过精液、阴道液、肛液、血液

        和母乳等体液的转移在人与人之间直接传播。艾滋病毒在人群中传播的

        最常见方式是性交。尽管HIV在历史上与同性恋者有关,但它更常见于

        通过异性性行为获得。此外,在怀孕、分娩或哺乳期间,它可以从母亲

        传染给孩子。在像南部非洲这样的地方,艾滋病流行率很高,而抗艾滋

        病毒药物的可获得性很低,母乳喂养是病毒传播到下一代的主要方式。

        其他传播途径还包括在静脉注射毒品、输血和接触消毒不当的医疗设备

        时共用针头。在少数情况下,也有报告说,艾滋病毒是在工作场所意外

        接触血液后感染的(例如护士扎针)。由于唾液、汗液、黏液或眼泪中

        几乎没有病毒存在,所以艾滋病毒不会通过偶然接触、接吻或呼吸道分泌物传播。

        一旦病毒进入人体,它首先会感染两种细胞中的一种。第一种是被

        称为辅助性T细胞的特殊类型T细胞,其通常功能是用化学方式帮助刺

        激周围的其他免疫细胞。艾滋病毒感染这些细胞,并在其中非常高效地

        复制,直到它们破裂并释放出新的病毒颗粒。新病毒可以找到并感染更

        多的辅助性T细胞,并开始在全身传播。在杀死T细胞的同时,HIV也会

        开始感染局部组织的巨噬细胞。如肺结核一章中所讨论的那样,巨噬细胞的功能通常是吞食并摧毁任何碰巧靠近它们的异物(如细菌、病毒)。不幸的是,对于人类宿主来说,HIV有进入、接管和灭活强大巨

        噬细胞的机制。与对辅助性T细胞的作用不同,HIV通常不会杀死其巨

        噬细胞宿主。相反,它把它当作一个安全的避难所,在那里它可以长时

        间不被其他免疫系统发现。当宿主积极抵抗血液中或T细胞内漂浮的

        HIV颗粒时,巨噬细胞中的HIV颗粒则会默默地隐藏起来,远离外界正

        在进行的免疫战。因此,巨噬细胞是HIV的一个稳定的储存器,长期保

        存病毒直到它重新出现的时机成熟。除了T细胞和巨噬细胞外,有证据

        表明HIV也能感染骨髓干细胞、神经元和树突细胞。这些其他细胞类型在HIV/AIDS发病机制中的确切作用尚未得到充分解释。

        当患者首次被HIV感染时,大量T细胞的迅速死亡会导致免疫系统

        暂时受到抑制,并在数周内出现类似流感的症状。然而,患者的免疫反

        应最终会恢复并清除血液中的大部分病毒。然后艾滋病毒进入所谓的临

        床潜伏期。在这段时间里,病毒仍在低水平复制,但它并没有杀死足够

        的T细胞,不会产生任何明显的症状。这一阶段可以持续1年到20年以

        上,这取决于艾滋病毒的毒株、受害者的健康状况以及是否服用任何抗

        艾滋病药物。长时间不被注意是使艾滋病毒成为如此成功的人类病原体

        的原因。例如,一个携带病毒的人可能会在被发现之前感染100个人。

        随着时间的推移,病毒继续复制,它逐渐获得变异,使其更有效地

        逃避宿主的免疫反应。最终,艾滋病毒开始赢得战斗,大量的辅助性T

        细胞在短时间内死亡。当这种情况发生时,患者会感染其他各种真菌、

        细菌和病毒性疾病,因为他们的免疫反应会因T细胞的丧失而严重减

        弱。就在这个时候,HIV携带者会被称为艾滋病患者。他们通常会患上

        肺孢子菌肺炎(像1981年的男性一样),口腔酵母菌感染(被称为鹅口疮)和阴道酵母菌感染,疱疹复发和结核感染,以及各种胃肠道疾病。由于免疫系统在杀死人体内形成的癌前细胞方面起着关键作用,艾滋病患者通常会患上一种或多种癌症(如卡波西肉瘤、脑癌、淋巴瘤)。几乎持续不断的生病状态会使人体重骤减,而艾滋病毒在大脑神经元中的复制会导致痴呆症的快速发作。药物会最终不再起作用,患者会死于其中一种机会性感染或癌症。虽然没有一个艾滋病患者患上以上所述的每一种继发性疾病,但他们通常有足够的继发性疾病,使他们生命的最后几年变得越来越痛苦和衰弱。这是充满痛苦的漫长的死亡过程,不断住院治疗,人的外貌和性格都会发生可怕的变化。

        艾滋病毒的起源——通往真相的漫长道路

        自20世纪80年代初首次被描述以来,艾滋病毒作为人类病原体的起源,一直是许多不同阴谋论的主题。最流行的理论是:美国政府在一个军事实验室里把这种病毒当作一种武器,目的是杀死某些特定人群。 [3]共产主义者、同性恋者以及非裔美国人通常被认为是这个秘密军事计划的目标。仔细观察每一组人,指控背后的错误逻辑就变得相当清楚了。

        艾滋病最初是在冷战军备竞赛最激烈的时候出现在美国的,这加剧了长期以来的谣言,即美国政府在这些年里积极参与进攻性生物战研究项目。苏联情报部门抓住这一指控,并以此为契机,对美国及其盟国发动了全面的抹黑。苏联国家安全委员会(Komitet Gosudarstvennoi Bezopasnosti,KGB)雇用的科学家利用假数据构建了一个说法,暗示美国政府在1977年制造了艾滋病毒作为武器。 [4] 这些“报告”中提到,马里兰州德特里克堡的政府科学家将另外两种逆转录病毒结合在一起,设计出了艾滋病病毒,然后将其释放到发展中国家毫无戒备的人群中,以阻止共产主义的传播。这场名为“感染行动”(Operation Infektion)的宣传运动,利用亲苏联国家的“左倾”报纸在80多个不同的国家传播阴谋论。一些较贫穷的国家,如印度和加纳,甚至由苏联出钱在当地报纸上刊登宣传报道。尽管这样的谎言已经受到全世界科学家的普遍谴责,但“感染行动”出奇有效地损害了美国在国内外的信誉。例如,2005年进行的研究表明,25%的美国公民仍然相信艾滋病毒是由美军在实验室里制造的,超过10%的人相信他们是故意将其释放到人群中的。 [5] 这是一种持续了几十年的阴谋论,尽管有强有力的证据表明,艾滋病毒是在20世纪20年代的某个时候在非洲自然产生的(见下文)。

        同性恋群体是另一个此前指责美国政府利用艾滋病毒作为武器来伤害他们的组织。他们的怀疑大多基于流行病学和历史数据,这些数据表明他们是美国第一批携带该病毒的主要群体。20世纪70年代末,随着几项反歧视法令的通过、同性恋骄傲游行和公开同性恋政客的选举,如哈维·米尔克(Harvey Milk),同性恋权利运动开始活跃起来。许多美国人公开反对他们的运动,包括几位情报机构的领导人,他们把他们的自由主义理想与共产主义理想联系起来。因此,有理由相信,政府可能向同性恋社群中释放了艾滋病毒,以削弱他们日益增长的运动。

        一些人推测这是在1978~1981年进行的一项乙肝疫苗试验中发生的。 [6] 在这项研究中,研究人员招募了1083名住在纽约和旧金山等大城市的同性恋男性,并给他们注射安慰剂或新的乙肝疫苗。男性同性恋被招募到这项研究中,是因为在当时,他们感染乙肝病毒的风险比一般人群高很多。相比一般情况下,有一个集中的高危人群使得研究人员可以使用小得多的样本量。发表在《新英格兰医学杂志》(The New England Journal of Medicine )上的研究结果表明,这种疫苗是有效的,减少了96%以上的乙肝病毒的传播。 [7] 尽管疫苗和试验取得了成功,但许多同性恋群体认为这是一个让他们接触艾滋病毒的诡计。然而,随后对乙肝疫苗和接种乙肝疫苗的男性进行的测试显示,支持这一理论的证据几乎没有。该疫苗后来被证明是不含艾滋病毒的,并且1083名参与研究的男性没有比未参与研究的男同性恋艾滋病毒的感染率高。

        与有关同性恋的理论相似,有许多非裔美国人认为艾滋病毒是作为根除黑人社群的一种手段而产生的。事实上,最近的几项研究表明,约50%接受调查的非洲裔美国人仍然相信政府在实验室制造了艾滋病毒,并故意不向民众接种疫苗。 [8] 乍一看,这种广泛的不信任似乎没有现实依据。然而,政府在艾滋病毒到来前10年就在黑人社群不道德地检测一种致命疾病(梅毒),这一事实表明他们有充分的理由怀疑。塔斯基吉梅毒实验非常令人震惊,因为尽管青霉素在实验期间的大概30年里随时可以买到,但实验者让接受测试的穷人和未受过教育的黑人忍受梅毒长达40年之久而未给予治疗,仅仅是为了观察他们会发生什么。对黑人群体来说,这清楚地表明政府和医学界愿意把他们当作人类试验品:如果他们做过一次,那么,认为他们可能会再做一次艾滋病毒的实验也是有道理的。一些人认为这个断言有数据支持——数据显示艾滋病毒在年轻的非裔美国人中比在其他种族更普遍。

        另一个与艾滋病毒有关的常见阴谋论是,它是由生长在黑猩猩细胞中的脊髓灰质炎疫苗受到污染而产生的。与非常真实的猿猴空泡病毒40(SV40)丑闻相似,一些人认为用于制造脊髓灰质炎疫苗的猿猴细胞被猿猴HIV交叉污染。这种病毒被称为猿猴免疫缺陷病毒(SIV),在基因上与艾滋病毒非常相似,被科学家广泛接受为导致艾滋病毒的病毒。事实上,这个想法似乎很合理,这就促使一组科学家分析了脊髓灰质炎疫苗的旧样本,看看它们是否含有SIV或HIV的残余物。他们的研究结果发表在2004年的《自然》(Nature )杂志上,结论性地表明疫苗完全不含任何逆转录病毒的DNA序列,这表明艾滋病毒并不是通过任何疫苗进入人群的。 [9]由于人们对艾滋病毒的起源有如此多的猜测、影射和彻头彻尾的谎言,很明显,科学必须提供有说服力的证据,使人们相信艾滋病毒不是人造武器。20世纪90年代和21世纪初进行的几项关键实验提供了这样的数据,最终使这个问题得以解决。其中最重要的一件事是在一名1959年去世的中非男子的遗骸中发现了艾滋病毒。 [10] 这一点很重要,因为它证明了艾滋病毒在20世纪50年代中期就已经存在了,那时遗传学家还没有在实验室里操纵DNA的能力。事实上,在沃森(Watson)和克里克(Crick)描述DNA是什么样子之前,艾滋病毒很可能就已经存在于这个人的体内了。这最终表明,艾滋病病毒的产生是自然进化过程,而不是美国政府的某种邪恶阴谋。

        当科学家开始分析艾滋病毒和其他逆转录病毒的序列时,这些发现得到了证实。这些病毒进化树的构建表明,HIV-1和HIV-2只是远亲。[11] 人们发现两者与不同的SIV毒株的联系比彼此之间的联系更紧密。艾滋病全球性流行的主要原因——HIV-1,似乎是从感染刚果民主共和国(DRC)黑猩猩的SIV毒株进化而来的,而不那么突出的HIV-2毒株则来自感染乌黑曼加贝的SIV毒株。这是开创性的,因为它表明,HIV在中非和西非多个不同的场合从SIV进化而来。2009年,科学家们发现了一种新的SIV毒株,它与其他SIV毒株有一定的序列相似性,与HIV也有一些相似性。他们认为,这代表了这两种病毒之间长期寻求的进化缺失环节,证明了大流行的HIV-1确实是从SIV进化而来的。大多数遗传学研究表明,这一事件发生在20世纪前20年的某个时候,发生在喀麦隆南部与刚果民主共和国金沙萨地区之间。

        艾滋病毒在非洲和全世界的传播

        围绕艾滋病毒/艾滋病全球性流行的一个核心问题是,这种病毒如何在短短几十年内从非洲一个孤立的小群体传播到全世界8000多万人。当我们追踪到它最初影响到人类并在非洲开始早期传播时,很明显,这种流行病是19世纪末欧洲人对非洲广泛殖民的直接后果。如第四章(疟疾)所述,保护性奎宁的发现和分发使欧洲人能够深入非洲领土,并在那里逗留更长时间,而不必担心死于疟疾。随着越来越多的欧洲人开始探索非洲内陆,他们发现了丰富的自然资源。接下来是历史上最大的一次土地掠夺,在这30年里,欧洲人系统地入侵了非洲的心脏,偷走了非洲的资源,奴役了非洲人民,永远改变了非洲的文化。

        在中非的刚果地区,象牙和橡胶是最受欢迎的两种产品。两者都需要大量的时间和人力来收割和运输。为了实现利润最大化,欧洲人利用数百万名非洲奴隶充当收割机、运输工(被称为搬运工)和修建许多新公路和铁路所需的建筑工人。这种大规模奴役的最终结果是对存在了几个世纪的传统部落制度的彻底破坏。越来越多的非洲人被带出他们与世隔绝的小村庄,而在那里,他们的行为受到当地习俗的强烈影响。他们被迫搬到人口稠密的城市,在那里吸毒、滥交和卖淫变得更为普遍。这种迁移为艾滋病从一种地方性的农村疾病转变成一种有可能在全世界传播的疾病提供了理想的环境。克雷格·蒂姆-伯格(Craig Tim-berg)和丹尼尔·哈尔佩林(Daniel Halperin)在他们2012年出版的《火药桶:西方如何引发艾滋病以及世界如何最终战胜艾滋病》(Tinderbox:How the West Sparked the AIDS Epidemic and How the World Can Finally Overcome It )一书中指出,“为了适应其严峻的命运,艾滋病毒需要在一个中非从未见过的地方出现,而这个地方现在正崛起于该地区的中心地带:一个拥挤的、繁荣的、狂热的地方,那里挤满了人,旧的规则在新的市场混乱中被抛弃”。 [12] 最符合这一描述的地方是比利时人于1881年建立的殖民地大城市金沙萨,它后来发展成为中部非洲最大的城市。艾滋病毒大流行正是在金沙萨诞生的。

        SIV的致病株后来导致了HIV-1的全球性流行,据说它起源于1910年代甚至更早的喀麦隆南部的一只黑猩猩。 [13] 流行病学家认为,猎人杀死感染了SIV的黑猩猩以获取肉食。在殖民时期,由于传统食物来源的丧失,吃灵长类动物的肉变得越来越普遍。在屠宰或消费过程中,SIV感染了猎人,并开始在他们体内复制。被感染的猎人被认为随后沿着贸易路线向南(可能是搬运工)前往金沙萨。正是在那里,病毒获得了额外的突变,并开始以流行病的速度在人类中传播。

        大多数研究人员认为,金沙萨发生的高风险性行为是最初传播的主要方式。然而,一些人认为,在20世纪早期和中期,注射性药物的使用增加也助长了这一现象。殖民当局不仅大规模分发天花、雅司病和脊髓灰质炎疫苗,还定期向民众注射青霉素和抗疟药物。20世纪60年代进行的研究发现,注射在当时的非洲非常普遍,75%的家庭报告说在前两周内接受了一些注射。 [14] 不幸的是,可注射药物的广泛供应和使用导致了共用注射器以节省成本的普遍做法。在某些情况下,一个注射器被用来为整个社区的人接种疫苗。这种糟糕的卫生习惯的最终结果是,艾滋病毒——一种血液传播的病毒,开始在中非人口中迅速传播。在接下来的几十年里,病毒跟随人们沿着贸易路线逐渐迁移,进入整个撒哈拉以南非洲的村庄和城市。1910年代开始的一场小规模的孤立暴发,到了20世纪70年代,慢慢演变成了一场席卷整个大陆的流行病,科学家们认为,正是在这个时候,艾滋病毒迅速蔓延到世界其他地区,演变成了一种全球性流行病。

        具有讽刺意味的是,促成艾滋病毒大规模传播的最重要因素之一是欧洲在非洲殖民统治的结束。第二次世界大战结束后,非洲独立运动正式开始,一直持续到20世纪70年代末,在这一漫长的去殖民化进程中,欧洲行政人员将控制权移交给了58个新独立的国家。不幸的是,几个世纪以来有系统的压迫、暴力和奴役使得大多数地区缺乏受过管理政府训练的领导人。结果是,许多新主权国家向其他国家的专家寻求援助,以帮助它们成功过渡到独立。来自世界各地的经济学家、医生、教师、政治家和其他知识分子涌入非洲。海地是一个特别慷慨支持的国家。1960年,海地向新成立的非洲国家扎伊尔(现为刚果民主共和国)派遣了4500名最聪明优秀的人,帮助该国组建政府,启动经济。 [15]

        据说,一名或多名海地专家在刚果长期逗留期间的某个时候,从当

        地人那里感染了艾滋病毒。 [16] 1966年返回海地后,被感染的携带者将

        病毒传染给伊斯帕尼奥拉岛上的其他人,从而在该岛形成了一个小的感

        染点。贫穷、糟糕的医疗基础设施以及流行重复使用针头的献血中心这

        三个因素提高了艾滋病当时在海地的感染率。病毒在那里迅速传播了几

        年,最终在1969年至1970年传播到美国。虽然没有人确切知道艾滋病毒

        是如何从海地进入美国的,但大多数基因研究都认为这是由单一感染者

        造成的。一些人推测,一名受感染的海地旅行者将病毒带到美国,而另

        一些人则认为,一名美国人在访问海地时参与非法性交易染上了病毒,

        而这在当时的海地已经很普遍。最后,我们只知道,艾滋病毒最早是在

        20世纪70年代初从海地传入纽约市的,它在最初主要感染了同性恋群体

        的成员。从流行病学的角度来看,这种向美国的转移具有重大的流行病

        学意义,因为正是从那里,艾滋病毒最终在20世纪70年代和80年代传播

        到了美洲其他地区。与此同时,艾滋病毒也传播到亚洲,并在发达国家和发展中国家站稳脚跟。

        令人惊讶的是,在短短的一个世纪内,艾滋病毒从不存在到感染了全世界数千万人,全球性流行的迅速发展展现了一种病原体的威力,这种病原体有很长的潜伏期,并通过性接触传播。它还表明,当新的疾病发生时,人类的决定是多么具有破坏性。艾滋病毒不是在实验室里产生的,但它的流行无疑是人造成的。如果没有欧洲帝国主义的入侵和随后对非洲文化的破坏,艾滋病很可能仍然是局限于丛林中的疾病,它会自我消亡。相反,艾滋病毒能够进入新建的城市,在这些城市里,猖獗的性行为和广泛使用的注射性药物使得它能够在相对较短的时间内找到大量的新宿主。殖民主义的暴行点燃了火花,偶然的机会点燃了火焰,造成了一场几乎无法阻挡的灾难。

        “4-H俱乐部”及其对海地的影响

        在1981年6月首次确诊艾滋病之后,在纽约、洛杉矶和旧金山的医院里,越来越多的男同性恋者开始出现艾滋病的症状。到1982年初,卫生官员意识到一种新的传染病已经到来,而且由于某种原因,它只针对同性恋者。因此,一些人把这种新的疾病称为同性恋相关的免疫缺陷症(gay-related immunodeficiency disorder,GRID),还有一些媒体开始将其称为同性恋癌症(由于在受影响的患者身上看到的癌症数量过多)。然而,到1982年中期,人们开始清楚地看到其他群体也可能感染这种新的疾病。尤其是静脉吸毒者和近期接受静脉输血的血友病患者感染这种新疾病的风险很高。此外,在20世纪80年代初从海地移民过来的相当多的人也表现出明显的这种疾病的症状。

        1982年7月,一次由健康专家、同性恋社群领袖和联邦政府官员组成的会议召开,讨论了这种除同性恋以外也明显影响了其他群体的疾病的名字。他们决定采用“获得性免疫缺陷综合征”(AIDS)。从那时起,开始一场激烈的调查以确定新疾病的传播方式,以及哪些危险因素增加了人们感染它的机会。1983年3月,美国疾病控制与预防中心(CDC)在MMWR 上发表了一份声明,总结了哪些是艾滋病的高危人群。他们写道:“基于上述理由,可能被认为是艾滋病高危的人群包括那些有艾滋病症状和体征的人、艾滋病患者的性伴侣、有多个伴侣的性活跃的同性恋或双性恋男子、进入美国的海地人、现在或过去滥用静脉注射毒品的人、血友病患者以及艾滋病高危人群的性伴侣。”[17] 在筛选名单时,有4个群体被确定为艾滋病的主要携带者:同性恋者、血友病患者、海地人和吸食海洛因(IV)者。这些团体,俗称“4-H俱乐部”,很快就成了那些认为他们对国家健康和安全构成重大威胁的人的目标。

        对海地来说,被列入CDC名单对其声誉和经济的影响都是灾难性的。 [18] 海地曾经是加勒比海最赚钱的岛屿之一,也是一个受欢迎的旅游胜地,在20世纪40~70年代一系列的军事政变、独裁统治[例如“医生爸爸”(Papa Doc)杜瓦利埃]之后,海地经历了漫长的衰落时期。然而,到了20世纪70年代中期,旅游业再次兴起,这个岛国似乎准备好了一次小规模的经济复苏。这在1982年就戛然而止,当时艾滋病在美国报纸上被大肆宣传,而海地被称为艾滋病的源头。这种几乎被美国人民普遍恐惧和鄙视的疾病一直到现在也被认为与海地有关。

        被CDC单独挑出来的直接影响是巨大的。1982~1983年,来自美国的游客数量从7万人下降到1万人(下降86%), [19] 人们取消了前往海地许多海滩度假胜地的度假计划,商务旅行和国际会议被转移,而游轮拒绝在海地港口停靠。投资者将他们数百万美元的资金都撤出了,而标有“海地制造”标签的产品常常被退回,没有付款或解释。这对当时失业率已经超过50%的国家来说是一个毁灭性的打击。尽管CDC仅在两年后就将海地从其高风险名单中删除,但灾难已经造成。在随后的几年里,海地的经济急剧崩溃,该国陷入了30年的混乱。海地目前是西半球最贫穷的国家,在世界上最贫穷的国家中排名第20。

        除了对海地这个国家造成损害外,将海地人种列为艾滋病的一个危险因素还导致居住在美国的海地人受到歧视,而不论他们是否携带艾滋病毒。他们经常被炒鱿鱼,被剥夺住房和教育机会,每次旅行都被拒之门外,仅仅因为他们是海地人。1990年2月,美国食品和药物管理局颁布了规定,禁止任何海地后裔向血库或医院献血。 [20] 尽管禁令在几个月后因广泛的抗议而被推翻,但联邦政府采取的行动表明了其对海地人的不信任。这是伴随一代海地裔美国人的耻辱,使许多人对自己的身份感到羞耻。这种情况在21世纪已逐步改善;但是,新形式的歧视有时会重新造成创伤。例如,2015年10月,一则招聘女性护士职位的招聘广告刊登在纽约宾夕法尼亚州的一家报纸上,上面写着“海地人不得申请”。[21] 虽然这则广告中的种族主义色彩可能与艾滋病无关,但海地社群的成员对再次成为公开攻击目标感到义愤填膺。

        一种现代的麻风病

        1993年的电影《费城故事》(Philadelphia )讲述了一位年轻成功的律师安德鲁·贝克特[Andrew Beckett,由汤姆·汉克斯(Tom Hanks)饰演]的故事,他就职于费城一家顶级律师事务所,在被老板发现患有艾滋病后被解雇。贝克特认为自己是因为疾病而被错误地解雇的,于是聘请了一位名叫乔·米勒[Joe Miller,由丹泽尔·华盛顿(Denzel Washington)饰演]的人身伤害律师起诉他的前任雇主歧视。在随后的审判过程中发现,贝克特的公司合伙人是在一场壁球比赛中看到前额典型的卡波西肉瘤病有特征性病变后才发现他患有艾滋病的。他们对贝克特隐瞒自己的同性恋行为感到震惊和厌恶,认为他把艾滋病带进了他们的办公室、更衣室和家里。他们没有直接与他对质,而是秘密合谋,让他在工作中显得无能,这样他们就可以用“正当理由”解雇他。贝克特的律师,他本人在影片开始时也对同性恋和艾滋病感到恐惧,最后他成功地揭露了贝克特公司合伙人的所作所为,赢得了这场官司,并为贝克特赢得了近500万美元的赔偿。令人悲伤的是,这部电影的结尾是贝克特的亲人们在他的法庭胜利几天后参加了他的追悼仪式。

        《费城故事》之所以如此有影响力,是因为它原原本本、准确地描

        绘了艾滋病疫情最严重时期,艾滋病毒感染者所面临的其在现实生活中

        的挣扎。这有助于揭露他们在学校、工作场所、教堂、邻居甚至家中所

        面临的普遍歧视和社会污名。自麻风病流行以来,还没有哪一种疾病如

        此将患者与其他人的身体和社会接触隔离开,让他们觉得自己是被周围

        人永远抛弃的人。在这样做的过程中,艾滋病帮助创造了一个新的社会

        阶层,这个社会阶层不是由收入、种族或教育水平决定,而是仅由艾滋

        病毒感染的状况决定。这是一个被人们恐惧并鄙视的阶级,他们遭受着

        人们无法想象的尴尬局面。这是一个让人感到被抛弃的阶级,本应该保

        护他们的政府却去攻击他们。这是一个对正在慢慢从他们身边溜走的生

        活感到羞愧和悲哀的阶级。从某种意义上说,艾滋病已经成为现代麻风

        病的化身。在受害者实际死亡之前的岁月中,它使受害者在情感上遭受

        挫败,在社会上被疏远,并且极易遭受各种形式的歧视和虐待。

        许多人试图确切地解释为什么艾滋病比其他致命的流行病更容易受

        到污名化。这种分析表明,各种相互关联的因素促成了艾滋病的耻辱感

        的产生。这些因素中最重要的也许是,该疾病最初似乎是针对特定人群

        的。与呼吸道传播疾病、水传播疾病或媒介传播疾病这些往往因偶然接

        触病原体而“随机”传播的疾病不同,艾滋病是在选择性地杀人。这样

        做,就标志着他们与其他人群有着内在的不同,增加了他们被孤立和污

        名化的可能性。当确定美国86%以上被诊断为艾滋病的成年人是同性恋

        者、静脉注射毒品者或妓女时(截至1988年),这种可能性急剧增加。

        由于这些群体的行为被许多人认为是罪恶和不道德的,艾滋病患者往往

        因为他们的“错误决定”而被指责感染了艾滋病。事实上,1987年进行的

        两项独立的盖洛普民意调查发现,超过半数的美国人同意“大多数艾滋病患者只能怪自己”和“一般来说,如果他们得了艾滋病,那是他们自己的错”。 [22]

        因此,他们的艾滋病被看作是他们自己危险生活方式的副产品,是他们对自己的一种惩罚。以这种方式指责受害者帮助社会塑造了如何对待艾滋病患者,即使他们不一定是同性恋或吸毒者。许多人并没有把病人看作是需要同情和支持的受害者,而是认为他们应该被蔑视和鄙视。在20世纪80年代和90年代的大部分时间里,这种态度助长了对艾滋病毒携带者的普遍歧视。

        影响公众对艾滋病认知的另一个重要因素是艾滋病本身固有的严重

        性。艾滋病是一种致命的、可传播的、不可治愈的疾病,它以一种明显

        怪异的方式缓慢地杀死受害者。在我们意识到的第一个十年里(在抗逆

        转录病毒疗法之前),艾滋病的死亡率接近80%。这基本上是一个死刑

        判决,一个人被迫与之生活多年,没有任何缓刑的希望。这种极端的预

        后是可怕的,因为对死亡的根本恐惧折磨着我们。在过去,对于其他疾

        病,这种恐惧可以通过建立严格的隔离措施得以缓解,以便将感染者与

        其他人群暂时隔离开来。不幸的是,由于艾滋病是一种慢性病,可能需

        要10多年的时间才能表现出来,因此除非有人考虑建立麻风病院型设

        施,否则不可能实现这种隔离保护。在20世纪后期,这显然被认为是不

        可接受的选择,因此人们不安地感到艾滋病对其生命构成了持续的威

        胁。这导致一些人齐心协力,以避免任何被迫靠近艾滋病患者的可能。

        当无法避免时,许多人诉诸威胁或暴力,以努力消除社群中的“艾滋病

        威胁”。这是一个骇人听闻的反应,与黑死病时期的犹太人大屠杀和公

        元166年天花流行期间对基督教徒的迫害无异。

        到目前为止,讨论主要集中在哪些因素导致了艾滋病污名的产生。虽然了解其原因很重要,但也必须确定这种污名对艾滋病毒感染者和任何被认为与该疾病有关的群体有何实际影响。这样一来,就有可能最终消除对艾滋病毒群体的污蔑,并消除过去30年来造成的某些损害。

        艾滋病污名最容易被忽视的一个方面是它对受害者心理健康造成的

        破坏性影响。 [23] 伴随着艾滋病毒的诊断,内疚感、羞耻感、无望感和

        孤立感经常油然而生,因此许多人认为,受害者必须在其正常治疗方案

        中增加接受咨询这一项。研究表明,艾滋病毒携带者患抑郁症、创伤后

        应激障碍、药物/酒精滥用和自杀念头的比例明显高于其他人群。事实

        上,在抗逆转录病毒治疗之前的几年里,艾滋病毒携带者比正常人的自

        杀率大约高出3倍,自杀风险高出9倍。当人们学会更好地管理自己的疾

        病,并获得一些咨询服务后,这些数字逐渐下降;然而,这一数字仍然

        远远高于平均水平。除了自杀之外,艾滋病毒感染者对抗逆转录病毒治

        疗方案和其他形式的预防措施的依从性往往较低。这是一个非常严重的

        问题,可能导致这些人的疾病发展得更快,并增加他们将病毒传染给其

        他人的机会。因此,通过对受害者的情感健康的消极影响,艾滋病的污

        名可能对疾病在整个人群中的传播产生更广泛的影响。

        一个人在家庭和当地社群所面临的消极反应往往是艾滋病毒感染者情绪痛苦的主要原因。例如,许多人表示担心,他们的艾滋病毒感染状况会影响目前或未来的人际关系,或者如果他们的艾滋病毒状况被揭露,他们实际上会失去家人和朋友。事实证明,这种恐惧深深扎根于艾滋病毒携带者的现实生活中。他们中的许多人被赶出家门或被家人藏起来,这些家庭成员为他们感到羞耻,羞耻的是他们自己现在已经与一种致命疾病有关,这种疾病又通常与同性恋、吸毒者和滥交者有关。

        不幸的是,许多人通过放弃其家庭成员或完全孤立家庭成员来应对社群拒绝的威胁,这样社群里就没有人发现他们生病了。反过来,艾滋病毒感染者可能会因感受到巨大的压力,而自愿离开或远离公众视线,以挽回家庭的“面子”。他们常常觉得要为损害家庭声誉、社会地位和生计负责。正如一位生活在中国的30岁艾滋病毒阳性妇女所说:
        是我的家人告诉我不要告诉(我弟弟),因为他现在已经30多岁了,还没有结婚,而且他没有一份好工作,也没有成就。他们担心如果我告诉他我的血清状况,会影响他的工作和生活。所以他们叫我不要告诉他。是的,因为他还没结婚。如果他发现了,或者他的一些朋友发现了——如果他想有一个女朋友,我想这肯定会影响到他。 [24]

        这是一个给艾滋病毒感染者带来严重后果的巨大负担。被拒绝、内疚和孤独感通常会导致抑郁,而实际的孤立对大多数人来说无异于社会性死亡。那些生活在更小、更传统的社群的人尤其容易受到这种污名的影响,就像少数民族、同性恋者和变性人等已经被边缘化的群体。

        在工作场所对艾滋病毒携带者的歧视也是一个严重的问题,其表现形式多种多样,而且有许多不同的理由。正如前文在《费城故事》中所描述的,职场歧视中最常见和最具破坏性的一种形式就是终止雇佣关系。21世纪头10年在国外进行的几项研究表明,15%~20%的艾滋病毒阳性员工因其身份而被解雇,约有相同数量的雇主报告说,他们会或已经解雇了艾滋病毒携带者。 [25] 更大比例的雇主(50%~65%)表示,他们永远不会雇用艾滋病毒携带者,因为这会给其他雇员带来健康风险,他们缺勤的可能性更高,保险费成本增加,工作场所和谐受到破坏,以及一旦顾客发现艾滋病毒携带者在那里工作,可能会导致利润损失。

        由于抗逆转录病毒药物使人们能够更有效地向潜在雇主隐瞒自己的身份,因此一些国家和职业开始要求申请人提交全面的健康评估,这是招聘过程的一部分。这为那些希望保持工作场所免受艾滋病毒感染的雇主提供了理想的弹药。成体系地剥夺就业机会,为那些艾滋病毒携带者带来了新的挑战——贫穷。尽管长期以来人们一直认为贫穷是感染艾滋病毒的一个危险因素,但现在有强有力的证据表明,贫穷也可能是由艾滋病毒感染造成的。这是一个严重的问题,因为没有钱买住房、保险或适当的医疗保健(药物),长期失业的艾滋病毒感染者的健康会迅速下降。随着他们病情加重,他们找到新工作的机会也急剧下降。因此,他们陷入疾病和贫困的恶性循环,几乎没有人能够逃脱。

        那些在确诊后仍能继续工作的人,往往在工作场所遭遇其他形式的歧视。例如,联合国艾滋病规划署(UNAIDS)在2009年进行的一项调查中,约有20%的人报告说由于他们感染了艾滋病毒而被迫在公司换工作或放弃晋升的机会。其他许多人由于社交和身体上与害怕被感染的同事隔离而感到焦虑和孤独。在这种情况下,艾滋病毒呈阳性的雇员的唯一手段是自愿辞职或对雇主提起诉讼。由于这两种选择都有可能造成收入的大幅减少,大多数在工作中遭受歧视的人都没有采取任何措施。

        人们最不希望看到歧视艾滋病毒携带者的地方之一是像医院或诊所这样的医疗机构。在那里,病人可能会在他们生命中最困难的时候去寻求同情、治愈和理解;在那里,他们最容易脆弱和暴露。人们认为医疗机构应该是安全的地方,病人可以放松警惕,而不必担心被治疗者以任何方式评判或伤害。这些机构的工作人员应该是知识渊博的专家,了解疾病生物学和流行病学。因此,从理论上讲,当一种新的流行病出现的时候,他们应该不太容易出现在非理性散布恐惧和偏见的普通民众中。但是,医护人员也是人,人类有时会感到恐惧,并根据这种恐惧做出错误的决定。

        当艾滋病患者在20世纪80年代早期和中期首次出现在诊所时,医疗保健专业人员普遍担心治疗艾滋病毒阳性患者。 [26] 在艾滋病流行初期,这种担心是完全可以理解的,特别是考虑到医护人员经常接触受感染的体液,而那时普遍的预防措施还没有广泛实施(处理体液时戴手套和护目镜的普遍预防措施实际上是从1985年开始的,这还是由于艾滋病毒的缘故)。这段时间在美国、加拿大、法国和英国的诊所进行的研究表明,医护人员经常害怕感染,以至于影响到他们对艾滋病毒阳性患者的护理。例如,有些工作人员完全拒绝治疗艾滋病毒阳性患者,或是非常小心地进行治疗。一些病人报告说,工作人员使用不必要的防护装备进行常规检查,而这些检查没有固有的感染风险。此外,还有一些情况是,工作人员在收容艾滋病毒阳性患者的房间门上张贴脱敏的警告通知,让这些病人使用其他人无法进入的专用厕所,或将他们完全隔离。

        尽管在我们不知道艾滋病毒如何传播的最初几年中,这种预防措施似乎是合理的,但在21世纪完全不合适。这些措施不仅使艾滋病毒携带者失去人性,使他们难堪,而且这类措施还常常是导致严重违反保密规定的行为(这会加剧污名带来的伤害)。2017年3月进行的一项研究发现,60%接受调查的欧洲国家在其医疗保健系统中仍然存在严重的艾滋病歧视。 [27] 在美国和世界上许多其他国家也观察到类似的数据。尤其是,同性恋者、妓女和吸毒者等被边缘化的群体报告说,在接受临床治疗时,他们感到的歧视程度最高。最终的结果是对医护人员普遍的不信任,以及病人愿意寻求治疗的可能性降低。

        在向联合国艾滋病规划署报告数据的国家中,有60%以上的国家制定了一些反歧视法律,以保护艾滋病毒携带者/艾滋病患者。 [28] 这些法律旨在确保一个人不会因为艾滋病毒呈阳性而被剥夺就业,获得保健和社会服务、住房或教育的权利。尽管受到保护,但侵犯人权的情况仍然经常发生,对那些触犯法律的人没有任何经济或法律措施。在拥有反歧视法律的国家进行的一项调查显示,平均而言,由于艾滋病毒感染而遭受歧视的人中,只有大约30%曾报告过受到歧视。报告率如此之低的主要原因包括难以获得法律顾问,以及担心诉讼会使其所在社群进一步加剧对其的歧视和虐待行为。这种恐惧在很大程度上是基于一种基本的信念,即政府无力保护他们、不关心他们,或者他们自己是鼓励歧视的同谋。

        艾滋病社群有着悠久的历史,政府机构要么在他们需要帮助时忽视他们,要么因为他们生病而极力迫害他们。例如,在艾滋病流行的早期,当时美国感染艾滋病毒的人主要是同性恋者,政府几乎没有采取任何措施来减缓“同性恋瘟疫”的传播。几乎没有公共卫生警告,也没有增加教育或资助,政客们几乎没有讨论。事实上,里根(Reagan)总统第一次在公开场合提到“艾滋病”一词是在1985年9月17日,也就是艾滋病开始流行4年之后。 [29] 那时,已经有37000人(大部分是同性恋)被诊断出患有艾滋病,16000多人死于艾滋病[包括里根的朋友洛克·哈德森(Rock Hudson)]。似乎总统置之不理的态度还不够糟糕,里根政府的几位高级官员,包括新闻秘书拉里·斯皮克斯(Larry Speakes)和国务卿乔治·舒尔茨(George Shultz),在采访中经常拿同性恋和艾滋病开玩笑。 [30] 当卫生官员建议那些有可能感染这种疾病的人需要更多的资金和保护措施时,里根和他的右翼支持者尽可能地与之抗争。他们反对同性恋的议程实际上已变成反对支持艾滋病相关人员的议程。这种支持在1986年6月23日达到了最低点,当时里根政府(通过司法部)通过了一项裁决,即雇主可以合法解雇艾滋病毒阳性或疑似艾滋病毒阳性的雇员。这是联邦政府在一大批被边缘化和垂死的人需要他们支持的时候做出的可耻的决定。正如一位名叫迈克尔·考尔(Michael Cover)的艾滋病活动家所说:“在艾滋病流行的历史上,里根总统留下的是沉默。成千上万的艾滋病人也保持沉默,他们在他领导下被政府污名化后孤独地死去。”[31]

        不幸的是,美国政府可怕的早期反应并不是唯一的。世界上几乎每个发达国家都在某个时候制定了法律,允许歧视艾滋病毒携带者或将与艾滋病毒传播有关的活动定为犯罪活动。这些法律包括强制向雇主披露自己的艾滋病毒状况的法律,禁止艾滋病毒阳性者国际旅行的法律,以及允许拒绝向其提供社会服务的法律。 [32] 尽管这些法律中的大多数已经被废除,取而代之的是保护免受歧视的法律,但仍有60多个国家明确允许当局起诉不向伴侣透露他们病情的艾滋病毒携带者。在某些情况下,也会对那些通过无保护的性行为使他人可能感染艾滋病毒的人采取法律行动,即使对方没有实际感染该病毒。同样,艾滋病毒呈阳性的人也因在公共场所随地吐痰、咬人,甚至进行安全性行为而受到起诉。

        许多国家和地区还制定了禁止与艾滋病毒传播相关的日常行为的法

        律。 [33] 例如,截至2015年,76个国家仍然将同性恋关系定为犯罪,其

        中一些国家威胁要对同性恋者处以死刑。在许多地方,静脉注射吸毒者

        和妓女被判过于严厉的惩罚,而不是给予康复治疗或获得社会服务的机

        会。这就造成了一种恐惧的气氛,降低了艾滋病毒携带者接受检测或向

        公共卫生部门寻求治疗的可能性。换言之,害怕被监禁的人不太可能寻

        求帮助,这最终阻碍了公众控制疫情的努力。为此,全球艾滋病毒与法

        律委员会向以某种方式将艾滋病毒传播定为犯罪的国家提出了建议,并

        请他们审查其适得其反的法律。自2010年以来,斐济、塞内加尔、圭亚那和多哥等几个国家已经这样做了,并从其法律文本中删除了这些法律。

        医疗隐私

        尽管由于数字革命和互联网的兴起,患者保密问题已经被提到了最前沿,但实际上这个想法已经存在了数千年。关于医疗隐私的参考文献最早的可以在大量古希腊医学文献中找到,这些文献通常被认为是医生希波克拉底的著作。这本70卷的作品,被称为《希波克拉底文集》(Hippocratic Corpus ),是由希波克拉底及其学生和许多追随者在公元前5世纪到公元前3世纪之间写的。文集中最久远的部分之一是《希波克拉底誓言》(“Hippocratic Oath”),这是一种伦理声明,新医师通常在开始行医前就进行背诵。《希波克拉底誓言》原文的一段节选写道:“在我的职业生涯中以及与人交往时,我看到或听到的任何东西,如果它不应该对外发表,我将永远不会泄露,把这些东西视为神圣的秘密。”[34] 这是一个大胆的宣言——他将保护病人的机密信息,就好像这是托付给他的一个神圣信息一样。正文接着详细说明了这种保密是必要的,因为没有它,病人对医生的信心会随着他们的治疗而削弱。换句话说,一个医生,就像牧师或心理健康顾问,如果他们负责帮助的人不信任他们,他们就不能有效地完成他们的工作。因此,对双方关系的方方面面保密是有益的。

        希波克拉底伦理学的概念确实允许例外,如果医生认为披露符合患者或社会或两者的最佳利益,例如,如果医生认为患者从事的行为对他们自己的健康有害,那么他们通常会打破保密原则,与患者的亲人交谈。同样,当病人的健康危及周围人的生命时,例如在流行病时期,医生通常被国家要求向当地卫生委员会披露姓名和其他识别信息。这样做是为了让官员们能够采取适当的措施隔离任何生病的人,并警告他们周围的人远离。正如关于脊髓灰质炎的章节(第十章)中所述,这可能涉及在患病者的房屋上放置醒目的标志,甚至在当地报纸上发布其健康信息。在传染病威胁到更广泛人群的时候,这种违反患者保密规定的行为被视为正常和必要的行为。医生不再受他们的“神圣职责”的约束,病人被期望甚至被要求为了更大的利益牺牲他们的隐私权。因此,保密性是因势利导的,因为在紧急情况下,病人可能不再享有隐私权。由于很少有人呼吁改革,从希波克拉底时代到20世纪末,这一直是医疗隐私的标准。

        接着是艾滋病毒和艾滋病全球性大流行,这是一种不同于以往任何其他的疾病。艾滋病最独特的地方是,它的无症状期对于流行病来说异常得长。个人可能默默地忍受病毒数年,要么不知道自己感染了病毒,要么故意不让别人知道。像天花、鼠疫、脊髓灰质炎和黄热病这样可怕的疾病,人们可以看到谁被感染,并采取行动避免感染。艾滋病毒的情况并非如此,每个人都是可疑的携带者,每个人都有潜在的危险。人们特别害怕那些外表健康、艾滋病毒阳性的人,仅仅是在他身边就可以不知不觉地将病毒传播给家人、朋友、同事和邻居。这种对未知的恐惧渗透了整个人群,导致许多人开始了类似于20世纪50年代麦卡锡主义的政治迫害。每一次咳嗽或皮疹都会受到怀疑,尤其是在CDC认定为携带病毒的高风险群体中(如“4-H俱乐部”)。在许多社群,关心此事的公民组成了地方监督小组,其任务是查明携带艾滋病毒的人,并将他们赶出学校、工作场所和社交群体。这些小型艾滋病毒“盖世太保”常常采取的令人震惊的行动,最终导致公众要求对私人医疗信息提供更多的保护。

        最广为人知的艾滋病毒政治迫害案例之一是印第安纳州一个名叫瑞安·怀特(Ryan White)的青少年,他因接受输血治疗血友病而感染了这种病毒。 [35] 怀特在与肺炎长期斗争后,于1984年12月被确诊为艾滋病。他的健康状况一直在迅速恶化,而且他的T细胞计数非常低,医生认为他只能活6个月的时间。到1985年初春,他的病情恶化到了不得不退学的地步。当怀特一家陷入迷茫时,这名少年开始意外地恢复。在接下来的几个月里,他的健康状况得到了很大的改善,他开始计划在秋天重返学校。不幸的是,当他所在的印第安纳州社区的成员发现一个患有艾滋病的男孩试图和他们的孩子一起入学时,他们发起了一项请愿来阻止他这样做。报道援引反对派组织的一位领导人米齐·约翰逊(Mitzie Johnson)的话说:“大医生和政府官员根本不在乎我们的孩子。我不想让那个男孩受到更严重的伤害,但我女儿永远不会和艾滋病患者一起上学。”[36] 50多名教师和117名家长在请愿书上签名,并将其提交给了西部学校公司的主管。

        尽管有压倒性的证据表明,通过偶然接触感染艾滋病毒几乎是不可

        能的,但校长和管理员还是屈服于不断增加的压力,禁止怀特重返学

        校。接下来长达9个月的煎熬,充满了诉讼、审判、禁令、威胁和恐

        吓。每次怀特赢得重返学校的权利时,某个反对党组织都会发起新一轮

        的诉讼(使用从当地糕饼义卖和拍卖中筹集的资金)来阻止他。这种情

        况一直持续到1986年4月10日,当时巡回法院法官推翻了先前所有下级

        法院的判决,并确定怀特拥有上学的合法权利。对于怀特一家和所有因

        感染艾滋病毒而受到歧视的人来说,这是一次里程碑式的胜利。

        这场艰苦的法律斗争的结束并没有使他们在社群中获得认可。怀特一家几乎每天都面临抗议和威胁。他们耐心地忍受着困难,直到最后有人把一颗子弹射进他们客厅的窗户。谢天谢地,当时没有人在家;然而,暴力事件的升级使这家人非常不安,他们决定搬到30英里外的一个新城市。尽管被迫离开了学校,被迫离开了现在的家,瑞安·怀特仍然勇敢地反对对艾滋病患者的歧视。他经常接受新闻机构的采访,并在全国各地的学校发表演讲,希望能对年轻人进行有关艾滋病毒和艾滋病的教育。1989年,一部以他的生平为原型制作的电视电影在美国广播公司播出,吸引了大约1500万人观看。瑞安·怀特因此而声名鹊起,成为全国关注的焦点和美国艾滋病疫情的事实代言人。这是一个他开始接受,并用来帮助和他一样的人的角色。可悲的是,他活得不够长,看不到他所有辛勤工作的全部影响。瑞安·怀特于1990年4月8日去世,年仅18岁。

        就在瑞安·怀特的案件在晚间新闻中定期播出的同时,佛罗里达州阿卡迪亚的一个小城市也发生了类似的病例。 [37] 三个血友病兄弟,分别叫瑞奇(Ricky)、罗伯特(Robert)和兰迪·雷(Randy Ray),他们都在20世纪80年代初通过输血感染了艾滋病毒(1986年确诊)。与瑞安·怀特相似,他们的艾滋病毒状况在他们的社群中广为人知,随后也被禁止上学。像学校里的“反艾滋病公民组织”这样的仇恨组织动员起来,提起诉讼,阻止他们重新被接纳。经过漫长的法庭斗争,男孩们终于在1987年8月5日赢得了重返学校的权利。阿卡迪亚社群的反应是抵制这所小学,用暴力威胁雷一家,并放火烧了他们的家。出于安全的担心,他们一家在第二年搬到萨拉索塔,并试图重新开始他们的生活。不幸的是,学校里的“反艾滋病公民组织”跟着他们,并继续骚扰了他们好多年。

        瑞安·怀特和雷的案件是反艾滋病歧视斗争中的一个重要转折点。1986年以前,公众普遍认为艾滋病是吸毒者、少数民族(海地人)和同性恋者的疾病。这是因为他们过着不道德的生活,做出了不必要的危及健康的错误决定而感染的疾病。换句话说,人们普遍认为艾滋病患者对

        自身状况负有责任。结果,当许多人看到艾滋病患者在其社群遭到残酷

        的骚扰和歧视时,他们往往在情感上转向另一种方式。这种趋势一直持

        续到人们开始阅读像瑞安·怀特这样无辜的艾滋病毒阳性儿童在学校和

        家庭中受到非理性暴徒的恐吓的故事。以前对艾滋病流行没有多加考虑

        的人们现在对这些弱势儿童受到的不公正待遇表示愤慨。他们要求州和

        联邦当局为受艾滋病影响的儿童和成人提供一定程度的保护。

        特别是,他们争取将艾滋病纳入《美国残疾人法案》的范围,这实

        际上使歧视艾滋病患者成为非法行为,并争取制定新的法律,防止在未

        经本人许可的情况下公布其艾滋病毒感染者的身份。这些保护措施不仅

        可以改善那些已经感染艾滋病毒的人的生活质量,而且可以让那些正在

        考虑接受艾滋病毒检测的人安心。卫生官员通常很难说服有风险的人接

        受检测,因为他们担心自己会被“暴露”出来,然后被社群排斥。当血液

        检测结果公布给他们的雇主、家庭和房东时,许多人目睹了他们朋友的

        生活被毁掉。对一些人来说,不知情的生活总比不断受到骚扰要好。这

        是流行病学家面临的一个主要问题,他们知道控制艾滋病流行的关键是

        首先确定谁感染了艾滋病毒,以便他们能够得到治疗,并采取措施防止

        艾滋病传播给其他人。有了法律保证,他们的艾滋病感染状况将绝对保

        密,卫生官员希望更多的人同意接受检测,这将降低人口中的传播率。

        美国早期试图通过艾滋病毒立法[如1988年的《希望法案》(HOPE Act)],遭到立法者的强烈反对,他们认为反歧视措施不允许公共卫生当局正确追踪谁患有艾滋病。 [38] 他们不希望匿名和保密,而是希望国家机构拥有每个艾滋病毒检测呈阳性的人的名单和医疗信息。艾滋病倡导者和同性恋群体成员强烈反对这样一个数据库,因为他们认为政府可以用它来起诉他们犯下的诸如静脉注射毒品或鸡奸之类的罪行,而这在许多州仍然是非法的。许多同性恋者甚至担心政府有一天会用它来围捕他们,就像纳粹在大屠杀期间所做的那样。正是这种担心促使像美国加州众议员亨利·韦克斯曼(Henry Waxman)这样的立法者继续为艾滋病患者的完全保密而斗争。1990年8月18日,乔治·布什(George H.W.Bush)总统签署了《瑞安-怀特艾滋病综合资源紧急救援法案》[Ryan White Comprehensive AIDS Resources Emergency(CARE) Act](以下简称“CARE法案”),他们的努力最终得到了回报。 [39]

        除了每年提供数百万美元的资金用于改善服务不足的社区的艾滋病毒感染者护理之外,该法律还规定在医疗干预的早期阶段给予病人更高水平的保密。现在,诊所必须向接受检查的人提供咨询,并确切告知他们检测结果将如何被传播。此外,CARE法案允许诊所提供匿名的艾滋病毒检测。虽然这是对希波克拉底隐私概念的重大改进,但实施过程中仍有一些严重的问题。例如,在一些城镇,那些接受艾滋病毒检测或治疗的人必须去外面写着艾滋病字样的诊所或医疗车。任何在这些地方附近看到他们的人都会自动知道他们的病史的详细资料。在随后的几年里,其他更微妙的保密问题也出现了,这表明需要一部更全面的法律。

        就在CARE法案为艾滋病社群建立了一些保护措施之后的6年,联邦政府通过了《健康保险携带和责任法案》(Health Insurance Portability and Accountability Act,HIPAA),努力将隐私权扩大到所有接受医疗保健的人。 [40] 新法律的第二章制定了一套严格的指导方针,根据这套指导方针,个人可识别的医疗信息(医疗记录、支付信息等)将被储存和传播。它要求所有受保护的健康信息(PHI)对任何有权访问它的人绝对保密。除非患者放弃他们合法的隐私权,法院发出命令,怀疑虐待未成年人,或在需要寻找逃犯或失踪人员时,否则不能与雇主、朋友或执法机构共享PHI。在个人或机构违反保密规定的情况下,HIPAA授权政府对其处以高额罚款,并允许投诉人提起民事诉讼。这种保护和惩罚意义重大,因为它们将医疗隐私确立为个人的基本权利,取代了医疗保健提供者的意见。医生和护士不再被允许就是否披露病人信息做出判断。他们现在必须仔细监视他们所说的、所写的,甚至是暗示的内容。这是艾滋病社群的一个重大胜利,因为它最终给了他们某种程度的安全感。这是第一次,他们可以悄悄地控制自己的感染,而不必担心自己会被那些本该用生命去信任的人意外或故意“暴露”出来他们的信息。

        艾滋病的流行永远改变了我们在美国和欧洲对待医疗隐私的方式,因为它生动地暴露了希波克拉底概念的缺陷。它表明,向不理性和无知的人提供关于他们邻居的私人医疗信息,会导致暴力。看似正常的市民变成了暴徒,市民仅仅因为害怕他们的疾病就开枪焚烧了孩子们的家园。这种令人发指的行为在全国各地播出,从而引发了一场关于需要制定法律来保护那些最易受伤害的人的秘密的全国性对话。对话最终到达了国会山和白宫。值得庆幸的是,立法者们看到了希波克拉底医疗隐私概念的内在弱点,并有远见地在1996年将所有医疗状况和信息纳入HIPAA的隐私规则中。这是对病人照护的革命性变革,不仅对艾滋病社区产生了积极影响,也对所有担心自己的医疗信息将以某种方式对其造成不利影响的人产生了积极作用。

        性革命的结束

        性革命是20世纪60年代和70年代的一场激进的主流社会运动,它永远改变了西方世界对性别和性别角色的看法。它一开始是对传统的、维多利亚时代道德观念的压迫的挑战,这些观念在当时仍然主导着西方文化。自第一次世界大战结束和“咆哮的20年代”的文化转型以来,年轻人变得越来越独立,越来越不受保守价值观和角色的束缚。例如,在20世纪20年代,在学院和大学注册的女性人数创下历史新高,许多人选择进入工作岗位,而不是毕业后成为家庭主妇。妇女们也开始在公共场合的着装和行为举止方面行使更大的自由。有些人把头发剪短,穿着露出双腿的短裙,还化了很多妆。这种新一代的自信而张扬的年轻女性,通常被称为“摩登女郎”,她们自豪地享受生活,并不理会困扰了女性几个世纪的社会禁忌。她们不会因像她们的男同事那样对在公共场合喝酒或抽烟而不安,也不会因参加“亲热”派对而害羞。随着越来越多的年轻人开始婚前性行为,同性恋不再是禁忌,与性有关的污名也开始逐渐消失。这样的转变有助于为更广泛的性革命——一场彻底重新定义我们如何看待性的革命——创造条件。

        20世纪60年代和70年代的性革命是在当时发生的其他变革性的社会和科学运动的产物。 [41] 这些运动中最具影响力的运动之一是女权主义的重新兴起,以及女权主义推动妇女从20世纪40年代和50年代强加给她们的传统角色中获得更大的自由。大多数人认为,1963年贝蒂·弗里丹(Betty Friedan)出版的《女性的奥秘》(The Feminine Mystique )是新一代女性活动家组织和重新开始战斗,这是为争取平等权利、免受歧视和骚扰以及控制自己身体而发起的关键号召。该运动的早期斗争之一是围绕着第一个口服避孕药依诺维(Enovid)及其对女性人口的可获得性展开的。避孕药在1960~1961年发行的时候,美国许多州仍然有旧的法律限制分配或拥有避孕措施。虽然这种康斯托克州法律通常被地方官员忽视,但一些较为保守的地区仍有选择性地执行这些法律,这往往会给妇女避孕造成重大障碍,而不论她们的年龄或婚姻状况如何。女权运动对这些过时的法律进行了联合攻击,并最终在最高法院的几起案件[例如,格里斯沃尔德诉康涅狄格州(1965年),艾森斯塔特诉贝尔德(1972年)]的帮助下推翻了这些过时的法律。正如预期的那样,他们在法律上的成功导致了使用某种避孕方法的妇女人数大幅增加。例如,在避孕药问世的短短5年时间里,已经有超过600万名美国妇女服用了避孕药。

        女性节育的完全合法化是女权运动的一个分水岭,因为它赋予了女性控制何时和与谁生孩子的权力。她们再也不用担心意外怀孕和可能因此而牺牲自己未来的大学教育或职业目标。女性现在可以更自由地进行性行为,并且可以像几个世纪以来男性一样享有同样的自主权。对许多女性来说,性行为更多的是为了体验快乐,而不是为了繁衍后代。这是观念上的一个重大转变,为性革命的继续进行、性标准的进一步放松铺平了道路。

        另一个重要的社会运动——同性恋权利运动——与第二波女权运动浪潮和增加避孕措施的使用相辅相成。在1969年的石墙暴动(Stonewall Riots)之后,对同性恋权利的一致推动开始了。6月28日晚,警方突袭了位于格林威治村石墙酒店(Stonewall Inn)的一家同性恋酒吧,开始不分青红皂白地逮捕人们。 [42] 当看到一些顾客被拖出酒吧并在街上挨打时,该地区数百名同性恋者聚集在酒吧旁,反抗他们认为是警察暴行的行为。不久,那群人就变成了暴徒,开始翻车、放火、向警察扔砖头。暴力事件继续升级,直到纽约警察局派出他们的战术巡逻队镇压骚乱。尽管警方最终成功地清除了街头的示威者,但在接下来的几个晚上,暴力抗议活动继续进行。

        石墙暴动是同性恋解放运动的结晶时刻,因为这标志着同性恋群体第一次作为一个统一的团体对抗警察的骚扰。它使他们中的许多人能够走出阴影,开始为更大的公民权利而战。像同性恋活动家联盟(Gay Activists Alliance)和同性恋解放阵线(Gay Liberation Front)这样的组织在暴动发生后的几个月里成立了,第一次同性恋者骄傲游行发生在1970年。 [43] 随着禁止肛交和其他同性恋行为的法律从法律书籍中删除,同性恋作为一种精神疾病被从美国精神病学协会(APA)的诊断和统计手册中删除,同性恋逐渐被接受。这些变化有助于形成同性恋更自由的新时代。他们现在可以公开同性恋关系,而不必担心政府会因为他们在卧室里的隐私行为而将他们关进监狱。

        20世纪60年代,垮掉的一代和嬉皮士反文化运动的兴起也影响了人们对性和性行为的看法。 [44] 这两个群体大多是年轻人,他们广泛拥护自由主义和反对权威,如反对越南战争,主张容忍使用毒品和自然(有机)生活。他们还试图摆脱许多与性有关的社会限制,认为性是所有人都应该不受限制地享受的。他们的“自由恋爱”理念不仅促进了更高层次的性体验,也摒弃了传统婚姻,转而支持更开放、更随意的性关系。对嬉皮士来说,性只是另一种形式的娱乐方式,应该在不受政府或宗教组织干涉的情况下探索。虽然完全归因于反文化生活方式的人数与整个人口相比是很小的,但他们对性的自由观点确实逐渐渗透到了社会的其他部分。在这场运动的高潮时期,年轻人婚前性行为的比例飙升,色情制品的流行和接受度提高、大学男女合住,以及书籍和电视上更多的性内容也是如此。这是一个前所未有的性自由的时代,这从根本上改变了我们对什么是正常和可接受的性行为的看法。

        性革命并不是没有代价的。 [45] 除了引发青少年怀孕、离婚和没有父亲抚养的孩子的显著增加之外,20世纪60年代性活动的增加还导致了许多不同的性传播疾病(STD)的不受控制的传播。例如,报告的淋病病例数在20世纪60年代增加了165%,与梅毒、衣原体、疱疹和生殖器疣的趋势相似。年轻一代由于更喜欢口服避孕药(或不采取避孕措施)而非使用安全套,其发病率甚至更高。虽然有人可能认为性病发病率的急剧上升可能导致更谨慎的性行为,但数据显示,它实际上的影响相对较小。这是因为当时大多数性传播疾病都可以用抗生素治疗。青霉素不仅可以消除因神经梅毒导致死亡的风险,还可以在几天内清除淋病和衣原体感染。虽然像疱疹和生殖器疣这样的病毒性性传播疾病仍然令人讨厌,但它们几乎没有阻止人们发生性行为。抗生素,加上口服避孕药,有效地消除了几个世纪以来与性有关的恐惧。人们再也看不到性生活的任何真正的长期重大后果,因为大多数错误都可以通过吃药或手术来纠正。不幸的是,正如后来艾滋病流行所显示的那样,他们的安全感只不过是一种幻觉。性仍然像以前一样危险,甚至更危险。

        大多数人认为艾滋病毒/艾滋病流行的开始实际上是20世纪60年代性革命的结束。艾滋病不同于20世纪80年代早期存在的任何其他性传播疾病,在艾滋病流行的最初几年,它是不可治愈的,几乎是普遍致命的。“性可以间接杀死你”的想法对人们来说是可怕的,包括许多曾经强烈支持“自由恋爱”运动的人。每一个性伴侣都被视为可能的携带者,每一次性接触都有潜在的危险。这是一种恐惧,随着艾滋病的死亡人数在整个10年中持续上升,这种恐惧愈演愈烈。这一流行病带来的阴影一直存在,导致了社会对性的基本思考方式的逐渐转变。谨慎和安全开始优先于自由和快乐。对许多人来说,性成为一个非常严肃的生死抉择,需要深思熟虑,有时还需要验血。通过强迫我们在做爱前思考,艾滋病从本质上结束了“做任何当时感觉好的事情”的时代。

        除了影响人们对性的态度之外,艾滋病的流行还对性行为的实际实施方式产生了重大影响。由于提倡“安全性行为”的广泛运动,避孕套的使用在20世纪80年代和90年代显著增加。 [46] 1982年一本题为《如何在流行病中发生性行为》(How to Have Sex in an Epidemic )的小册子中首次提到,使用避孕套作为保护自己不受艾滋病毒感染的方法的想法最初在纽约和旧金山地区的同性恋社群流传开来。艾滋病活动家不仅在同性恋酒吧和诊所等地免费发放避孕套,还向社群内的人们宣传无保护性行为的风险。这些基层公共卫生工作的成功最终引起了医学界的兴趣。不久,安全性标语和避孕套广告就成了电视、广告牌、海报和杂志上常见的内容。尽管受到某些宗教团体的反对,安全性行为甚至仍然被纳入公立学校的健康课程。尽管有人担心学校的性教育和避孕套的增加会导致青少年婚前性行为的增加,但当时进行的大量研究表明,事实并非如此。

        到20世纪90年代初,性教育和安全性行为运动已成为全世界学校和公共卫生部门的固定活动,这种干预的结果是令人激动的。避孕套使用的增加已经被发现与艾滋病毒传播率的降低以及其他性传播疾病(如梅毒、淋病和疱疹)的减少呈正相关。此外,在非洲中学实施的性教育计划导致了一些行为上的改变,降低了艾滋病毒传播的风险。在非洲继续遭受其历史上最严重的公共卫生突发事件之际,这一趋势是迫切需要的。

        非洲的另一场悲剧

        艾滋病毒/艾滋病在被发现后仅仅35年的时间里就夺去了非洲2000多万人的生命,并使1500万儿童沦为孤儿。如此多的人在如此短的时间内死亡,导致大多数撒哈拉以南非洲国家在疫情最严重时期的期望寿命降低了20~25岁。 [47] 事实上,非洲南部一些受灾最严重的国家的期望寿命骤降到40岁以下。尽管在过去10年中抗逆转录病毒药物和避孕套的使用增加有助于减缓这一趋势,但非洲每年仍有150万人新感染上艾滋病毒。截至2015年,撒哈拉以南非洲地区估计仍有2550万人感染艾滋病毒。 [48] 考虑到非洲人口只占世界总人口的16%,而感染艾滋病的病例却占全世界的70%,这是一个惊人的数字。在莱索托、斯威士兰和博茨瓦纳等国,成年人中的艾滋病毒感染率继续飙升至20%以上(斯威士兰目前的流行率为29%)。这意味着在这些国家,1/5的成年人携带着这种致命的病毒。就总人数而言,南非目前是世界上艾滋病疫情最严重的国家,2015年有700万人感染,38万名新增病例。虽然这样的统计数字清楚地表明了这一流行病在非洲的严重性,但这未能充分说明它对一个仍在遭受数百年的奴役和殖民主义蹂躏的大陆的经济、教育、技术、社会和政治发展所造成的绝对破坏。

        艾滋病流行对非洲造成的最显著和最持久的影响之一是其经济普遍

        停滞。 [49] 20世纪90年代末和21世纪初进行的研究发现,这种经济衰退

        在很大程度上是由熟练劳动力的规模和生产力的大幅度下降造成的。如

        此多的年轻人死于艾滋病,以及去世前长期的住院治疗造成了劳动力的

        空虚,导致许多私营企业利润下降,而本已紧张的政府税收降低。产出

        下降也导致几个非洲国家的出口总额急剧下降。例如,占全国国内生产

        总值约7%的南非采矿业,在20世纪90年代因艾滋病毒在工人中的传播

        而遭受重创。 [50] 近25%的劳动力感染了艾滋病毒,由于医疗成本飙

        升,产量下降,矿业公司的利润受到重大打击。这种和其他类似行业衰

        退的最终结果是,在疫情高峰期,整个非洲的经济增长率每年下降2%

        ~4%。这是一个巨大的经济缺口,因为许多这些国家已经不得不将其

        预算的很大一部分用于直接防治这一流行病。这些国家没有为建设基础

        设施和开发新技术投入额外资金,而是被迫每年花费数十亿美元在国内

        艾滋病预防、检测和治疗项目上。这是一个使许多非洲经济体尚未复苏就陷入恶性循环的沉重负担。

        与艾滋病对已经生活在贫困地区的个人和家庭的影响相比,艾滋病

        对国民经济的影响相形见绌。非洲贫穷的工人阶级感染艾滋病毒和死于

        艾滋病的比例远远高于那些收入更高、更容易获得教育、避孕套和抗逆

        转录病毒疗法的人。由于穷人的收入来源非常有限,一个家庭中一个成

        员的丧失或衰弱会使整个家庭陷入无休止贫困的恶性循环。如此巨大的

        损失导致了家庭角色的有害转变,留下来的人为生存而挣扎。例如,孤

        儿通常放弃他们的教育,作为童工进入劳动力市场,以帮助支持他们的

        家庭。同样,一无所有的寡妇往往被迫从事报酬极低的工作,并面临被

        虐待的危险。年迈的亲属也受到很大的影响,因为他们被推到照顾他们

        的绝症子女和失去双亲的孙辈的角色。世界卫生组织2002年的一项关于

        艾滋病对津巴布韦老年人的影响研究,发现“大多数非洲社群的老年人

        是一个脆弱的群体,因为他们一生都生活困苦、营养不良、贫穷,而且

        在老年时很容易患慢性病。艾滋病大流行现在给他们带来了额外的负

        担,进一步增加了他们的脆弱性”。 [51]这一负担由所有受艾滋病影响的人分担,加深了撒哈拉以南非洲数百万人的痛苦。它几乎夺走了穷人的一切,并进一步扩大了他们与其他社会经济阶层之间的差距。

        除了阻碍经济增长外,艾滋病还使那些很少或根本没有机会获得先进医疗保健的人的健康状况恶化。除了伴随艾滋病的所有正常疾病外,这一流行病还导致了结核病在非洲的死灰复燃。流行病学家估计,与社会经济背景相似的未受感染者相比,艾滋病毒携带者感染结核病的可能性是其25~30倍。 [52] 在过去10年中,合并感染问题变得越来越普遍,目前占所有艾滋病毒感染者的约12%。结核病/艾滋病合并感染之所以如此危险,是因为如果没有一个功能完善的免疫系统(由于艾滋病毒呈阳性),结核病就能在没有太多限制的情况下扩散到整个人体。事实上,合并感染的人发展成活动性(致命)结核病的概率是那些活动性结核病同时艾滋病毒阴性者的15~20倍。因此,结核病已成为艾滋病毒感染者中最大死亡原因。在非洲,合并感染危机是如此广泛,以至于许多流行病学家现在在双重流行病的背景下谈论这两种疾病。这是一个重要的区别,因为合并感染导致了一种新的甚至更致命的威胁——耐多药(MDR)和广泛耐药(XDR)结核病。

        同时感染艾滋病毒和结核杆菌的人是结核耐药突变株的理想温床,

        因为艾滋病削弱了免疫系统,降低了抗生素的整体疗效。这种情况的潜

        在原因是抗生素永远不能完全消除人体内的致病细菌,因为抗生素的工

        作原理是抑制细菌的生长或减少足够的数量,使宿主免疫系统将其消

        灭。当一个人感染了艾滋病毒,他的免疫系统无法杀死抗生素治疗后最

        后残留的结核杆菌。结果,一些细菌在攻击中幸存下来(包括可能的抗

        性突变体),并开始在人的身体中重新繁殖。在不同的人群中用不同的

        药物重复这种失败的抗生素治疗,最终产生了对已知的每一种药物都有

        耐药性的超级结核病突变体。尽管耐药结核菌株可能独立于艾滋病毒而

        产生,但研究发现,艾滋病毒携带者携带耐多药和广泛耐药结核菌的频

        率是艾滋病毒阴性者的2倍。考虑到非洲感染艾滋病毒的人数和历史上

        死于结核病的人数,这是一个令人难以置信的可怕的统计数字。

        在许多方面,非洲艾滋病毒携带者所面临的社会耻辱与疾病本身一样有害。与20世纪80年代美国同性恋者经历的情况类似,在非洲诊断出艾滋病通常会导致极大的内在羞耻感、社会疏远和有针对性的歧视。在极端贫困的地方尤其如此,因为艾滋病毒阳性而被排斥和拒绝的人几乎没有法律援助或来自公共项目的支持。他们在高失业率、低识字率和高暴力犯罪率的难以想象的困难环境中,经常遭到骚扰。不幸的是,在这些地方,艾滋病毒携带者很容易成为被骚扰目标。

        艾滋病毒/艾滋病的未来

        1984年4月23日,美国卫生及公众服务部秘书玛格丽特·赫克勒(Margaret Heckler)召开了一次记者招待会,她在会上宣布,艾滋病的病原体已经被分离出来,并开发了一种诊断测试方法。她和帮助开创这些早期成就的美国科学家罗伯特·加洛(Robert Gallo)站在一起,继续预测说:“我们希望在大约2年内有一种疫苗可以用于试验。另一种可怕的传染病即将屈服于有耐心、有毅力和彻头彻尾的天才。”[53] 这是一个充满了美国人傲慢的大胆宣言,即我们将以战胜天花和即将战胜脊髓灰质炎的方式战胜艾滋病毒。不幸的是,自发表这一声明以来,几十年过去了,人类在获得一种有效的艾滋病毒疫苗方面并没有比那时更接近。在过去的30年里,我们预防和治疗这种疾病的能力无疑得到了极大的提高;然而,艾滋病毒已经被证明是“有耐心、有毅力和绝对的天才”,是一个值得我们尊敬的对手,这种病毒已经被证明对疫苗的研制相对不敏感,因为它具有使自己的外表面蛋白质发生突变的惊人能力。接种一种艾滋病毒株对预防任何特定时间内可能存在于人群中的成千上万的其他亚型病毒的作用微乎其微。这一突变问题还与其他几个因素有关,包括艾滋病毒杀死了诱导良好免疫反应所需的细胞,而艾滋病毒蛋白质本身并不会引发强烈的免疫反应。

        尽管存在局限性,但一些公司已成功地将艾滋病毒疫苗纳入第二/第三阶段临床试验。这包括1998~2004年在北美和泰国进行的VaxGen AIDSVAX试验 [54] ,以及2003年开始的RV144试验。不幸的是,所有这些试验都以相对失望告终。只有一种RV144联合疫苗在人体试验中显示出一定程度上的保护作用(泰国,2009年)。反复注射疫苗的受试者感染艾滋病的概率比不注射的人少31%。由于弱疫苗比没有疫苗好,科学家们继续研究RV144,希望将来可以对其进行改良,使其更有效。南非2016年开始了一项新的RV144的三期试验,预计将在2020年得出数据。[55]

        当许多科学家致力于研制一种HIV疫苗时,其他科学家则把精力集中在合成能够抑制已经感染艾滋病毒的人身上的化学物质。第一组抗HIV(抗逆转录酶)药物是针对一种称为逆转录酶(RT)的独特病毒酶而开发的。 [56] 之所以选择这种药物,主要是因为正常人类细胞没有RT,而HIV绝对需要它来复制其基因组。因此,抑制RT可以严重损害HIV的复制,但对细胞的自然过程没有显著影响。第一个上市的逆转录酶抑制剂是一种名为叠氮胸苷或AZT的药物。20世纪80年代末进行的研究发现,每天大剂量服用AZT,在短期内对抑制HIV非常有效。然而,当HIV阳性患者长时间服用该药时,病毒开始变异并对新药产生抗药性。经过大约1年的治疗,大多数患者的HIV水平和T细胞计数恢复到服药前的水平。而且,早期的AZT配方对每天服用它的人是有毒的,其副作用包括贫血、中性粒细胞计数低、呕吐和肌肉组织退化。

        这迫使艾滋病毒携带者做出一个艰难的决定,因为得不到治疗或服用一种严重降低了他们剩余生命质量的药物而面临死亡。大多数人选择服用AZT是因为它可以为他们争取一些时间,让科学家开发出更安全、更有效的药物。到1993年,3种新的(但类似的)RT抑制剂已经投放市场。 [57] 虽然它们的毒性比AZT小一些,但在长期使用后,它们也面临同样的病毒耐药性问题。在接下来的几年里,其他的RT抑制剂也得到了同样的结果。单独使用,所有这些RT抑制剂最终无法长期抑制HIV。

        HIV治疗学的新纪元始于联合使用多种药物的想法,以及针对HIV酶而不是RT的新药的开发。联合疗法依赖于协同作用的概念,即药物将相互补充,并具有比其个体效应总和更大的效果。同时给病人2种或3种药物可以产生一种“鸡尾酒”,从不同的角度攻击病毒,并降低产生耐药的HIV突变体的可能性。当使用多种RT抑制剂进行实际测试时,结果表明联合治疗在短期和长期都更有效。然而,由于所使用的药物都针对同一病毒蛋白(RT),在一些患者中仍继续出现耐药HIV突变体。

        当科学家们宣布他们发现了一种针对病毒蛋白酶(PR)的新的HIV

        抑制剂时,联合疗法取得了重大进步。 [58] 蛋白酶抑制剂和RT在HIV生

        命周期的不同阶段阻止了HIV的复制。当这些药物与两种RT抑制剂联合

        给药时,其结果是一种突破性的药物“鸡尾酒”,几乎可以将HIV从人体

        中清除。病毒载量的大规模减少与T细胞计数的增加和免疫抑制的消除

        相一致。这种混合疗法被称为高效抗逆转录病毒疗法(HAART),现

        已发展成为一种新型、安全、有效的药物,包括针对病毒整合酶的药

        物。虽然它并不能真正消除人体内所有的HIV病毒颗粒,但它使病毒颗

        粒的水平保持在很低的水平,以至于一个人现在可以与艾滋病毒一起生

        活几十年,而不会发展成艾滋病。换言之,HAART使我们能够像用胰

        岛素治疗糖尿病或用可注射凝血蛋白治疗血友病一样治疗HIV。

        HAART帮助将艾滋病从死刑转变为一种可以长期控制的慢性病。

        虽然HAART有助于显著降低发达国家HIV的发病率、传播率和死亡率,但在非洲和其他贫困地区却没有那么有效。对造成这种差距的潜在原因的研究表明,主要问题在于贫困社区/国家无力负担和适当分发抗逆转录病毒药物。在美国,HAART疗法的平均花费在每人每月1000~3000美元之间。由于很少有人能负担得起如此高昂的自付费用,大多数人依靠医疗保险、政府项目(如CARE法案)或非营利组织提供必要的资金。不幸的是,非洲,受这一流行病影响最严重的社区,很少能得到这类资源。他们不仅难以支付医药费,而且许多社区缺乏基本的医疗保健基础设施,无法确保人们正确地遵循HAART疗法。

        一个由5个联合国组织(如世界卫生组织、联合国艾滋病规划署)和5家大型制药公司组成的全球联盟认识到了成本上升是全球抗击艾滋病毒的主要障碍,发起了一项旨在向生活在贫困国家的人提供低成本抗逆转录病毒药物的倡议。 [59] 从2000年开始,这项加速获取倡议(AAI)与地方政府合作,确定最需要抗逆转录病毒疗法的人,并提供只有商业价格10%的药物(由联合国资助)。那些从未接触过抗逆转录病毒疗法的人现在活得更长、更健康,并且病毒的传播率也低得多。当该计划开始实施时,全世界2860万名艾滋病毒阳性者中只有约2.5%的人定期接受抗逆转录病毒治疗。到2016年6月,这一数字已经增长到近50%,即3670万名感染者中的1820万名。尽管要实现向所有艾滋病毒感染者提供HAART的最终目标还有很长的路要走,但由艾滋病协会牵头的治疗运动成功地减缓了艾滋病毒在全世界的传播。自抗逆转录病毒药物开始大量向穷人分发以来,新感染率和死亡率都下降了40%以上。考虑到这些药物既不能(像抗生素那样)真正治愈那些已经感染的人,也不能(像疫苗那样)保护未受感染的人,这是一个惊人的趋势。

        我们在如何预防和治疗艾滋病的理解上的另一个突破来自一系列研究,这些研究确定了许多反复接触艾滋病毒但从未感染过的人。这些人来自不同的地方,有不同的种族背景和性活动。这些研究包括从事高风险性行为的同性恋男子、艾滋病毒阳性者的长期异性伴侣以及来自冈比亚的妓女。

        为了弄清楚为什么有些人似乎能抵御HIV,科学家们分离了他们的免疫细胞,并开始寻找一些共同的基因突变或生化特性来解释他们的先天抵抗力。1996年,洛克菲勒大学的研究人员报告说,他们已经发现了导致这种独特性的特殊突变。这种突变是在一种编码CCR5受体的基因中发现的。这种蛋白质位于许多不同类型的宿主免疫细胞(包括T细胞和巨噬细胞)的表面,在免疫细胞在不同组织之间移动的炎症过程中自然发挥作用。正如在此期间发现的那样,当病毒进入人体后第一次附着到巨噬细胞时,CCR5也被HIV用作受体。如果没有CCR5和附着的能力,病毒就不能感染巨噬细胞,这严重阻碍了病毒最终向T细胞的传播。因此,携带这种突变基因(称为CCR5Δ32)的人可以接触艾滋病毒1000次而永远不会被感染,因为病毒永远不会进入自我复制需要的细胞中。

        CCR5Δ32的发现是艾滋病研究的一个惊人的飞跃,因为它为开发治疗药物和其他治疗方法开辟了新的可能性。例如,如果我们能够以某种方式人为地阻断没有这种突变的人的CCR5蛋白,就有可能在那些已经感染了HIV的人的体内模仿这种抵抗特性。这一想法引发了人们对合成化合物的研究,这些化合物可以作为潜在的CCR5阻断剂(拮抗剂)。2007年,一种名为马拉韦洛克的新型CCR5拮抗剂被批准用于治疗艾滋病。 [60] 该药被发现在阻断艾滋病毒附着方面既安全又有效,这使得许多医生现在将其作为标准HAART治疗方案的添加剂。

        另一种使用CCR5Δ32突变作为治疗HIV感染患者的方法是从具有CCR5Δ32突变的人身上提取骨髓细胞,并将其移植到具有正常CCR5受体的人身上。这样做会彻底改变人体的免疫系统,因为骨髓是体内所有T细胞、B细胞和巨噬细胞的来源。如果接受这种治疗的人是HIV阳性的,理论上病毒应该不能感染该骨髓接受者体内产生的任何新的(突变的)免疫细胞,因为他们的新骨髓含有CCR5Δ32突变。

        这种方法的原理验证测试案例于2008年在柏林的一家医院进行。就

        在那里,一个名叫蒂莫西·雷·布朗(Timothy Ray Brown)的病人得知他

        最近患上了一种致命的癌症,叫作成人髓性白血病,需要进行骨髓移植

        才能存活下来。知道布朗也是艾滋病毒阳性,医生们就有机会验证他们

        的理论。他们首先发现了几个与布朗匹配的骨髓样本,并确定其中也携

        带CCR5Δ32突变。在确定了合适的捐赠者后,他们开始用辐射破坏布朗

        现有的骨髓,以杀死有缺陷的致癌细胞。然后将来自健康的CCR5Δ32突

        变的供体的骨髓直接注入布朗的几根长骨中。在短时间后,这些新的骨

        髓细胞开始复制并产生新的T细胞、巨噬细胞和其他免疫细胞。由于这

        些新细胞都有CCR5Δ32突变,他血液中的HIV颗粒无法有效地感染它

        们。结果,他的病毒载量开始急剧下降,他的T细胞数在短短几周内急

        剧上升。他的健康状况大大改善,医生停止了他所有的抗逆转录病毒药

        物的治疗。8年后,尽管布朗没有服用任何抗HIV药物,但他体内的HIV

        水平仍然检测不到。因此,似乎CCR5Δ32移植程序在功能上治愈了他的艾滋病。

        虽然布朗的案例是我们在寻求有效治疗艾滋病毒方面取得的惊人突

        破,但有几个主要问题阻碍了它在更广泛的层面上得到实施。首先,这

        个程序要求找到与HIV感染者相匹配的骨髓。在美国目前需要骨髓移植

        来治疗血液疾病的所有人中,大约70%的人必须依靠找到一个曾在国家

        登记处捐献了骨髓的陌生人。由于只有大约2%的美国人在该登记处登

        记过,所以人们(特别是少数族裔)通常要等很长一段时间,直到找到

        匹配的捐赠者。可悲的是,每年大约有3000人在等待中死去。这些统计

        数字表明,几乎不可能为全世界3670万名艾滋病毒携带者中的每一个人

        找到匹配骨髓。其次,在像美国这样的发达国家,骨髓移植的平均费用

        为50万至80万美元。考虑到大多数艾滋病毒携带者一天的收入不到1美

        元,甚至无法支付基本生活必需品,昂贵的骨髓移植不太可能在全球范

        围内得到应用。再次,骨髓移植极其危险,死亡率高达35%。因此,它

        们通常被认为是致命性血液病患者的最后治疗手段。向艾滋病毒携带者

        提供这种治疗可能会杀死更多的人。最后,CCR5Δ32突变主要存在于北欧血统的白种人以及部分亚洲人和北非人中。虽然大约16%的北欧人的基因组中有CCR5Δ32,但来自撒哈拉以南非洲和亚洲大部分地区的人很少有。 [61] 考虑到世界上大多数艾滋病毒阳性者生活在这两个地区,这是一个令人不安的分布。因此,即使他们能为所有HIV携带者找到种族匹配的骨髓捐献者,他们中也很少有人真的拥有有益的CCR5Δ32突变。

        回顾自艾滋病第一次被描述以来这35年中所取得的成就,我们可以清楚地看到,艾滋病毒和艾滋病的未来显然不像20年前那样暗淡。我们的集体中“有耐心、有毅力和绝对的天才”为那些处于危险中的人带来了无数治疗方法、更好的预防措施和更有效的教育。感染率在下降,人们比以前多活20~30年。发达国家和全球救援机构已经花费数十亿美元,为世界上一些最贫困的人提供挽救生命的药物和预防措施。如果这种投资继续下去,最终我们有可能看到人类以战胜其他传染病的方式控制艾滋病的流行。

        第十二章 传染病的未来

        作为一个物种,我们是否已经在技术上进步到一个大型传染病无法毁灭我们,甚至对我们产生巨大影响的阶段?考虑到以往的传染病让数以十亿计的人丧生或受到重创,并深刻地改变了我们作为人类的存在,这是一个有趣的问题。这些疾病导致朝代更迭、社会变迁,人类基因突变。然而,在过去的150年里,由于细菌理论的兴起以及卫生措施、抗生素和疫苗的引入,它们的影响越来越小。事实上,在世界十大死因中,传染病目前只占其中的3种。现在人们谈论更多的是心脏病和癌症的危险,而不是肺结核和疟疾的致命影响。由于我们控制能力的提高,新出现的传染病很少会引起广泛恐慌或发展成新的流行病。虽然这些趋势似乎表明,我们总体来说正在赢得与这些微观杀手的战斗,但历史告诉我们,人类离全球灾难只差一场传染病的距离。

        传染病的未来会怎样?我们能否摆脱结核病和疟疾等老牌杀手的束缚?有没有什么新的疾病会发展成为致命的传染病?这些问题的答案显然取决于许多不同的因素。首先,而且可能最重要的是,我们是否愿意投入必要的资源来消除发展中国家的传染病。几乎在这本书中讨论的每一种流行病(还有无数未提及的疾病)仍然在穷人中盛行。每年有数百万人死于可以用抗生素治疗,或通过疫苗、基本卫生设施可以预防的疾病。

        正如天花和脊髓灰质炎根除计划所表明的那样,如果我们愿意致力于消除这些致命疾病,我们就有可能完全消灭它们。在此之前,我们将继续受到最古老病原体的困扰,并面临新病原体的风险。在非洲丛林中的某个地方,总是存在另一种“艾滋病毒”正在发展的可能性;而在亚洲的温暖水域中,也总会有另一种“霍乱”在蔓延。疾病的种子将一直存在,直到我们最终变得积极主动,并与流行病最严重的危害做斗争。

        另一个可能影响我们未来与传染病关系的重要因素是我们使用武器对付它们的方式。在过去的1个世纪里,抗生素和疫苗这两种最强大的武器被用来拯救全世界数亿人的生命。然而,与所有好武器一样,它们的成功和安全在很大程度上取决于训练有素的专业人员是否能正确使用它们。把枪交到警察手里,它将被负责任地用来拯救生命。把同样的武器放在一个孩子或精神失常的人手中,它会造成毁灭。后一种情况是在过去20年中出现的,公众长期滥用抗生素和针对疫苗的伪科学宣传已经将我们带到了全球医疗灾难的边缘。在这段时间里,我们看到了抗生素耐药菌株的危险增加,以及曾经得到控制的流行病的重新出现。尽管它们可能不像埃博拉、寨卡或西尼罗河病毒那样流行,但抗生素耐药性和疫苗错误信息对整个人群的长期健康构成了更严重的威胁。出于这个原因,我选择在下面几节中更深入地讨论每一个问题。

        抗生素耐药性——潜在的灾难

        1928年青霉素的发现被广泛认为是医学史上最重要的时刻之一。我们在与鼠疫和斑疹伤寒等致命传染病做斗争中获得了一种新武器,我们不再害怕因分娩、手术或战场上获得的轻微感染而死亡。因全身细菌感染而濒临死亡的人,只要经过几天的抗生素治疗就可以起死回生。这是一个惊人的,几乎是奇迹般的进步,有些人宣称我们终于赢得了长达数个世纪的对抗细菌性疾病的战斗。

        不幸的是,这种乐观情绪很快就消失了,因为世界各地开始出现葡萄球菌、链球菌和其他病原体的抗生素耐药菌株。 [1] 在某些情况下,这些耐药菌株在抗生素进入人群后仅1~2年就出现了。例如,耐甲氧西林金黄色葡萄球菌(MRSA)于1962年在英国的一家诊所首次被观察到,距离开始用甲氧西林治疗葡萄球菌感染仅2年。随着某些细菌菌株对多种抗生素的耐药性越来越高,情况只会变得越来越糟。事实上,2011年一项针对传染病医生的调查显示,他们中超过60%的人在过去一年中曾遇到过对所有已知抗生素都具有耐药性的感染患者。 [2] 这种全抗药性(PDR)菌株对现代医学在过去80年中制造的每种武器都完全不敏感。这是一个绝对令人恐惧的发展,全世界的公共卫生官员都在争先恐后地寻求答案。正如世界卫生组织时任助理总干事福田敬二(Keiji Fukuda)医生曾经说过的那样:“如果许多利益相关者不采取紧急协调行动,世界将走向后抗生素时代,在这个时代里,几十年来一直可以治疗的常见感染和轻伤可能再次致命。”[3]

        仅在美国和欧洲,抗生素耐药性细菌每年就造成数百万人感染和5万多人死亡。 [4] 这比死于艾滋病、帕金森氏症和凶杀案(在美国)的总人数还多。虽然最重要的耐药病原体是MRSA和XDR-TB,但耐药形式的假单胞菌、肠球菌和肺炎链球菌也夺去了数千人的生命。随着这些耐药菌株的流行率逐年上升,死亡人数肯定会增加。一项模拟未来抗生素耐药性的研究预测,到2050年,每年将有超过1000万人死于耐药性感染。 [5] 这是一个惊人的理论统计数字,但这个预测得到了过去20年的趋势支持。除了死亡,治疗抗生素耐药疾病的经济负担预计也是灾难性的。美国每年治疗这些疾病的费用约为200亿美元,而工人的生产力损失达到了350亿美元。如果这种趋势持续下去,估计在未来35年内,耐药细菌将使美国损失超过60万亿美元,全世界损失100万亿美元。全球GDP总和损失如此之多,对全球经济的影响将是灾难性的。有研究认为,人类可能正处于历史上最具影响力的流行病的边缘,但是很少有人意识到这一点,因为抗生素耐药性不如其他如埃博拉或寨卡这样的疾病更具新闻价值。如果不立即对我们使用抗生素的方式做出重大改变,这种流行病很可能在未来几十年内使我们回到医学的黑暗时代。

        当前的危机之所以存在,只是因为我们都不愿以负责任的态度使用抗生素。例如,耐药性增加的最重要的原因之一是普通人群长期滥用抗生素。抗生素被设计成在一定的时间内以一定的剂量给药,以确保所有的致病菌都被药物和病人的免疫系统联合杀死。任何干扰这种完全杀灭的行为都会增加存活细菌产生抗性突变或从其他细菌获得抗性基因的风险。例如,许多病人几天后就会停止服用抗生素,因为他们感觉好多了。以这种方式缩短治疗方案是极其危险的,因为它会在细菌完全清除之前降低血液中的抗生素浓度。同样,当人们开始感到身体不适时,他们通常会服用放在药柜里的旧的、剩下的抗生素。旧的抗生素会部分降解,这意味着它们含有抑制或杀死细菌所需的抗生素数量不足。在这两种情况下,细菌都能在抗生素的冲击下存活下来,并能活到下一天。

        耐药菌流行加剧的第二个原因是人们过度使用抗生素。在美国进行的研究发现,抗生素的错误处方率高达30%~50%。 [6] 现在,每一次流鼻涕、擦伤和喉咙痛都会先用抗生素治疗。它们被用于那些甚至没有生病或有病毒感染的病人(病毒不受抗生素的影响)。此外,给病人开广谱抗生素如阿奇霉素(Z-pack)已经变得越来越普遍,而实际上却不知道他们有什么类型的细菌感染。以这种方式盲目开抗生素是危险的,因为并非所有细菌对同一药物都同样敏感。因此,人们可能会不必要地接触到一种抗生素,这种抗生素对他们感染的特定细菌无效。这一问题在发展中国家更为突出,当地居民通常可以在当地药店买到抗生素。由于没有医生或护士的监管,人们只要感觉不舒服,就会随便购买和服用抗生素。像这样的过度暴露是新的耐药菌株形成的关键因素之一。

        耐药性危机的一个经常被忽视的原因是在农业中滥用抗生素。在美国销售的所有抗生素中,有80%以上用于促进牲畜生长。牛、猪和鸡通常被注射或喂以保持健康的抗生素,以便它们产出更多的肉和其他产品。每天都在预防性地给他们服用抗生素,以预防疾病的发生,而不是等到动物生病再进行治疗。虽然这似乎是为了使利润最大化而采取的一种完全合理的措施,但持续使用抗生素会使生活在这些动物身上的细菌对它们产生极大的耐药性。如果人类食用这些动物的肉、蛋、牛奶,但未能正确地处理食物,则他们可能会遭受致命的耐药菌感染。此外,由于90%给家畜的抗生素都是通过尿液排泄到土壤和水中的,所以这些抗生素可以在更广泛的生态系统中产生耐药性菌株。种植农作物的农民也对农作物滥用了抗生素,来获取最大利润。例如,种果树的农民经常在田间喷洒抗生素,以防止细菌病毁掉他们的庄稼。所有过量的抗生素最终都浸入土壤并渗入当地水源。这些地区的细菌种群不断暴露于稀释的抗生素中,极有可能对其产生耐药性。

        世界各地的卫生官员都在试图想出解决办法来应对日益严重的抗生素耐药性威胁。过去,这个问题主要是通过发现或合成新的抗生素来解决。随着一种抗生素的疗效下降,一种新的抗生素很快被引入市场,取代了它的地位。不幸的是,如此之多的抗生素被耐药细菌淘汰,以至于公司开始把他们的研发资源从发现新的抗生素中转移出去。1980~1984年,美国联邦政府批准了19种新抗生素用于人类。 [7] 仅仅20年后,这个数字降到只有4种新抗生素(2000~2004年)。抗生素的发现由于耐药性而变得无利可图,因此只有少数公司仍在积极寻找。

        随着寻找更好的抗生素的前景越来越渺茫,许多人开始试图说服医生、农民和公众在使用抗生素时要更加谨慎。医生们在职业生涯的早期就被教导抗生素耐药性具有极端危险,希望他们在开抗生素时能更具选择性。欧洲的一些国家已经开始要求医生在开抗生素之前要对感染进行全面诊断,而其他一些国家则从市场上完全淘汰了某些抗生素,以使耐药菌株逐渐消失。与此同时,食品生产中有机运动的兴起也对这一点起到了补充作用,这一运动鼓励农民使用更自然的方法来饲养牲畜,不使用抗生素或生长激素。在教育公众正确使用抗生素的同时,这些干预措施有望扭转我们所看到的一些可怕的趋势,并帮助我们避免另一场致命的全球性大流行。

        伪科学的力量

        1998年2月,一位名叫安德鲁·韦克菲尔德(Andrew Wakefield)的英国外科医生在《柳叶刀》上发表了一篇研究文章,概述了他的观点,即麻疹,腮腺炎和风疹(MMR)疫苗会使儿童易患肠道功能障碍和自闭症谱系障碍。 [8] 这项研究追踪了12名儿童,这些儿童在出现严重结肠炎和自闭症特征性行为症状后被转入儿科胃肠科。韦克菲尔德博士和他的同事们详细记录了每个孩子的病史,并进行了广泛的神经学和组织学检查,以观察他们是否能够找出导致其“突然”行为退化的明显原因。他们在这样做的时候,发现每个孩子在接受MMR疫苗后几天或几周就开始表现出自闭症的早期症状。韦克菲尔德利用这些数据证明MMR疫苗接种实际上引发了自闭症的发展。尽管声明“我们没有证明MMR疫苗与所描述的综合征之间存在关联”, [9] 但文章中其余部分所固有的语气和含义却清楚地表明,他认为两者之间存在因果关系。

        韦克菲尔德那篇文章的发表在医学界掀起了轩然大波。曾经庆祝疫苗拯救生命奇迹的幼儿家长现在拒绝给孩子接种任何儿童疾病疫苗。他们草率地驳回了数百年来证明疫苗有效并拯救生命的流行病学和免疫学证据,转而开始相信没有被证明有效的不良轶事研究,这些研究表明疫苗并没有起作用。在反疫苗接种宣传中,有人声称疫苗防腐剂(如硫柳汞)对发育中的大脑有毒,一次接种太多疫苗会导致大脑发炎,并且疫苗是不必要的,因为卫生条件已经降低了传染病的传播。许多家长甚至开始流传这样的阴谋论:制药公司与美国政府勾结,故意给他们的孩子注射有害的疫苗,只是为了赚取更大的利润。突然间,每个人都成了传染病专家,因为他们在博客或网站上读到了一篇研究的二手报道。正是这种无知的暴发,使得许多儿科医生现在不得不说服家长保护他们的孩子免受传染病的侵袭。尽管在1994年至2014年的20年间,疫苗挽救了73.2万名美国人的生命,但现在医生还不得不说服家长相信。

        对疫苗安全性的日益关注促使世界各地的科学家开始研究疫苗接种与自闭症之间的可能联系。来自美国、英国、加拿大、芬兰和丹麦的专家对几千名儿童进行了独立调查,寻找证据支持韦克菲尔德的说法。一项又一项的研究得出了同样的结论:MMR疫苗或其他疫苗与自闭症的发展之间没有任何联系。CDC在2011年和2013年的后续跟踪研究(同样涉及数千名儿童)取得了相同的结果。 [10] 作为对大量流行病学证据的补充,研究自闭症患者大脑发育的研究人员发现,当孩子在子宫内发育时,自闭症的生物学特征很容易显现。 [11] 换句话说,导致自闭症临床症状的异常大脑发育始于出生前,远在他们接种任何疫苗之前。

        “疫苗引起自闭症”于2011年盖棺定论,当时有人透露,韦克菲尔德为了获得他想要的发现,故意改变了他最初研究中的病史。 [12] 对他研究中的12个儿童的重新评估发现,3个从未患有自闭症,5个在接受MMR疫苗前表现出自闭症症状。他也没有透露,在他发表文章之前,一家准备起诉疫苗生产商的律师事务所向他支付了60多万美元。这种公然的欺诈行为导致《柳叶刀》撤回了他的原始文章,并吊销了他在英国的行医执照。

        自闭症的恐慌除了浪费数百万美元和数千小时的研究时间外,还导致了一些以前通过接种疫苗控制的流行病再次出现,其中最重要的是麻疹。在1963年研制出MMR疫苗之前,麻疹是世界上最致命的疾病之一,每年造成100多万人死亡。但是,随着越来越多的人接种疫苗,麻疹病例和死亡总数开始急剧下降。到20世纪90年代初,麻疹在大多数发达国家已经极为罕见。美国在麻疹疫苗接种工作中处于领先地位,到2000年已在其境内正式消灭了这种疾病。

        然而,这是一次短暂的胜利,因为第二年由于人们拒绝接种MMR疫苗而报告了新的病例。 [13] 2008年暴发了更大范围的疫情,自那时起,仅在美国就有数千人染上了这种致命疾病。例如:2013年,得克萨斯州北部的一个大教堂在牧师公开表达了对疫苗安全性的担忧后暴发了疫情。2014年,美国暴发了23起单独的麻疹疫情,导致667人感染。2015年,一名受感染的旅行者将疾病从海外带到加州一个游乐园后,发生了多州疫情。在那次疫情中,超过80%的感染者拒绝接种MMR疫苗,部分原因是他们认为这种疫苗不安全。

        由于反疫苗接种的努力,其他可通过疫苗预防的疾病包括流行性腮腺炎、风疹、百日咳和白喉,也得以卷土重来。由于对刚上学的孩子进行强制性疫苗接种,这些疾病已经得到控制,并数十年内有所下降。然而,随着一些州允许父母选择不接种疫苗的政策的出台,在过去几年中,越来越多的未接种疫苗的儿童涌入游乐场、营地和其他公共区域。这一结果在美国令人震惊——2010年,加利福尼亚州新增9200例百日咳病例,2006年新增6500例流行性腮腺炎病例,先天性风疹在被消灭了将近10年后再次出现。这种令人恐惧的趋势使公共卫生官员争先恐后地寻求解决方案。

        疫苗错误信息的传播对我们的安全构成了严重威胁,它使得已经杀死了数百万人的流行病继续存在于人群中。上述大多数疾病正在下降到人们开始谈论在全球范围内根除这些疾病的水平。大规模的疫苗接种运动正在奏效,致命的儿童疾病正在从我们的集体记忆中消失。不幸的是,当我们开始削弱对付它们的最有效武器时,情况发生了变化。通过让流行病继续存在,我们给了它们时间和机会,使它们有可能演变成我们无法轻易预防或治疗的疾病。我们是在冒险,如果这些疾病中的任何一种重新全面流行,我们只能责怪自己。

        此外,对疫苗的故意忽视会危害未来的疫苗接种工作。例如,如果我们最终成功地研制出一种有效的艾滋病毒疫苗,那么反疫苗活动可能会阻碍公众的接受,并最终延长艾滋病的流行时间。这种确切的情况出现在抗人乳头瘤病毒(HPV)疫苗发布之后。CDC、美国食品和药物管理局以及美国国家癌症研究所对这些疫苗——佳达修(Gardasil)和卉妍康(Cervarix)——进行了广泛的研究,发现它们既安全又有效。它们可防止感染致癌的HPV菌株,并保护女性人群免受致命的宫颈癌的侵害。实际上,有几项研究发现,在有疫苗的地方,HPV的传播率下降了60%以上。 [14] 此外,从未有任何疫苗造成严重副作用的证明病例。尽管疫苗接种取得了成功,但“反疫苗接种者”仍在使用伪科学和制造恐惧的手段来吓唬人们以不给他们的孩子接种疫苗。这个决定正在使生命处于危险之中。

      4. 卡尔·萨根《宇宙》7-13

        第七章 夜空的脊柱

        他们来到空中的一个圆洞……闪耀着像一团火焰。神鸦说,这是一颗星球。——摘自爱斯基摩人创世神话。

        我宁愿弄懂一个道理,也不愿做波斯的国王。——德漠克利特

        萨摩斯岛的阿里斯塔恰斯写了一本书,照该书的说法,就会得出这样的结论:宇宙比我们想象的要大得多。他推测说,某些星球和太阳是静止不动的,地球以圆形轨道绕太阳运行,而太阳则处于圆形轨道的中心。他还推测说,太阳附近的上述星球,体积十分巨大,以致地球轨道离这些星球的距离,只及这些星球的半径那么大。——阿基米德《繁星》

        假如仔细推敲人们的神学观点,任何人都一定会承认,“诸神”一词是用来表示他目睹的事物的不可知性。每当他看不出自然界中某种事物的根源,而目绞尽脑汁也理不出任何头绪的,他就推出诸神这个词来解决他的难题,结束他的思考……。因此,当他把某种自然现象产生的原因归之于上帝时……,难道不仅仅是用一种阴影来替换自己头脑里的黑暗而已吗?对于上帝的声音,他是习惯于带着敬畏之情去认真聆听的。——迪特里希男爵《自然界》,1770年于伦敦

        我的少年时代是在纽约市度过的。当时我住在布鲁克林区的本森赫斯特街上,我极其熟悉我的左邻右舍,每一幢楼房,每一个鸽棚,每一个前廊后院,每一片空地,每一棵榆树,每一条装饰漂亮的栏杆扶手,每一条运煤斜槽,每一堵玩中国手球的壁墙,上述种种以一座叫做罗佑的斯第尔威尔的砖墙剧场质量最好。我认识许多住在这里的人,例如布鲁诺和迪诺、罗奈德和哈威、桑迪、伯尔尼、丹尼、杰基和米拉。但离我住的地方不远,就在第86街靠近铁路的那个汽车声嘈杂的地方,是一个令人奇怪的、我从未涉足的禁地。当时对我来说,那里就像火星一样神秘莫测。

        “在冬天,每天临睡之前,我经常仰望天空,无数的星星,在遥远的高空向我眨眼。它们是些什么呀?每当我想到这个问题,我就会去问大伙伴和大人们,而他们的回答几乎都是“星星就是天上的灯光呗,傻瓜!”星星会发亮,那还用他们说吗?但是,星星仅仅是悬挂在天上的小灯吗?它们到底有什么用处呢?到底是不是和灯光一样的东西呢?面对群星,一股怅然不禁涌上心头。我那些不爱探奇索隐的伙伴们对司空见惯的群星依然有所不知。其中许多问题还得去探索许多更为深刻的答案。

        待我够岁数时,我的父母给了我第一张借书证。我记得,图书馆就在第85街,对我来说,那是一片陌生的地界。我一踏进图书馆,就急切地向一位女管理员打听星星的事。她递给我一本带有彩色照片的书,满是一些男女电影明星的像片,我嘟嘟嚷嚷地抱怨着。管理员笑了,当时真让我感到莫明其妙。她又给我找来另一本书,这一次她拿对了。我迫不及待地翻开书,就找有关星星的段落。那本书告诉一些令我非常吃惊的东西,告诉我一个伟大的想法。书上说,星星都是太阳,不过是远离我们的太阳。太阳也是一颗星星,只是离我们很近的一颗星星罢了。

        试想,我们抓住太阳,把它推移到遥远的地方,推移到只剩下一个闪烁不定的小亮点的地方,那究竟要把它推移多远呢?对角度大小的概念,我一无所知,对计算光速传播的平方反比定律更是一窍不通。而且,我压根儿就没有机会去计算从地球到星星的距离。但如果说星星就是许许多多的太阳,那我当然知道,它们的距离一定比第85条街,比曼哈顿,也许比新泽西州距离我们还要远。它们实际上何止我想象的那么远呢。宇宙宏大无比,远非我当时所能想象的。

        不久,我了解到另一个令人吃惊的事实:地球–自然也包括布鲁克林区–是一颗行星,而且是一颗围绕太阳运转的行星。还有好多别的行星,也是围绕太阳运行的,有的远离太阳,有的靠近太阳。这些行星与太阳不同,自己不会发光,只是反射太阳光。假如从远处观察,那么,在耀眼的阳光下,这些行星,其中包括地球,只是若明若暗的小点。于是我就想,其他的星星,一定也有行星,这是一些我们尚未测知的行星。在这些行星上,一定也有生命,(为什么不能有呢?)这些行星上的生命形式,也许与我们所了解的布鲁克林区的生命迥然不同。从此,我决定当一名天文学家,去研究星星和行星,如有可能,就去亲自拜访它们。

        使我深感幸运的是,对我的这种异想天开,双亲大人和老师们都十分赞赏。尤其幸运的是,我生活的时代是历史上人类第一次进人太空旅行,对宇宙进行深入探索的时代。假如我先于这个时代出生,那么,不论我的抱负多大,我也不可能认识星星和行星到底是什么,也不可能懂得宇宙间居然还有其他众多的太阳和地球以外的宏大世界。对宇宙间这许多奥秘的认识是经过我们前辈百万年以来耐心观察和勇敢探索才从大自然中获得的。

        星星到底是什么呢?提出这样的问题如同婴儿的笑容一样自然,人类一直提出这样的问题,同前人所不同的是,我们这个时代终于获得了部分答案。书籍和图书馆为我们发现这些答案提供了方便的手段。在生物学中有一种虽不完美但却有很强适应性的原理,叫做重演。这种原理认为,从人类自身的胚胎发育过程中,我们可以回顾人类的进化史。我认为,这种重演性也会体现在人类智力发展的过程中。我们常常不自觉地进行追溯人类远祖的思维。想想几千年以前的情形吧,那时既谈不上科学,也没有图书馆,但当时人类对社会和性别方面的问题也像现在这样精明,这样好奇,这样涉足其中。不过那时并没有科学实验,也没有发明创造,人类这个生物种尚处于童年期。当人类首次发现火时,他们的生活是什么样子呢?我们的祖先,那时是怎样看待星星的呢?有时,我不由浮想联翩,我设想他们当中大概有一个人是这样想的:

        我们吃浆果草根、坚果和树叶,也吃死亡的动物。这些动物有些是我们找到的,有些是我们杀死的。我们知道哪些东西能吃,哪些东西不能吃。假如我们吃了某种东西而倒毙,那是因吃了这些食物而受到惩罚,我们并不想做坏事,但毛地黄或者毒芹会毒死你。我们热爱子女和朋友,我们要警告他们,别去吃这种有毒的东西。

        当我们去打猎时,我们也可能送命,被兽角顶死,被群兽踩死或吃掉。野兽的行为对我们来说意味着生与死,它们的习性如何,足迹怎样,何时交配,何时产仔,何时出游,对这一切我们都必须了解。并把这些知识传给我们的儿女,我们的儿女再传给他们的儿女。

        我们靠猎物为生。我们追逐它们,特别在冬天,没有什么植物好吃时更是如此。我们是流动的猎手和死兽收集者,我们称自己是狩猎族。

        我们大多数人就睡在露天,或睡在树下,或睡在树杈间。我们穿兽皮保暖和遮羞,有时也用兽皮做吊床,兽皮披于身上,我们感受到野兽的威力。我们与羚羊赛跑,与大熊搏斗。我们与野兽结下了不解之缘,我们追逐它们,吃掉它们,它们也追逐我们,吃掉我们,我们彼此相依为命。

        我们学会了制作工具,因而存活下来了。我们当中有些人在找石、凿石和磨石方面是行家。我们用兽筋把石头绑在木棍上,做成斧头。用这样的石斧,我们可以砍树猎兽。我们把一些磨尖的石头绑在长棍上做成长矛。如果我们小心翼翼,怕不作声,有时可以接近猛兽,用石矛刺死它们。

        兽肉发臭了,有时我们饿了,就不去注意它的臭味;有时就加上些野菜,以冲淡臭味。不会发臭的食物,我们就用兽皮或大树叶或大坚果的壳把它包起来留着。把一些食物留起来带着是明智的。假如我们过早地把肉吃了,有些人以后就会挨饿。因此我们应该互相帮助。由于这个原因以及其他许多原因,我们制定了规则,每一个人都必须遵守规则。我们总是有规则,规则是神圣的。

        有一天暴风雨来了,电闪雷鸣,大雨倾盆。孩子们都害怕暴风雨,我自己有时也觉得害怕。我们不知道暴风雨的秘密。雷声深沉震耳,闪电又快又亮,这使我们觉得,也许是某个强大有力的人发怒了。我认为,一定是天上的什么人在发怒。

        雷雨过后,在附近的森林中,发出了劈里啪啦的响声。我们跑去一看,原来是一种散发热气的东西,闪耀着黄色或红色的亮光。这种东西我们从未见过。现在,我们称它为“火焰”。火焰发出一种特殊的味道。从某种意义上说,火焰是活的,它会吞食物。如果你让它吃,它能吃掉植物和树枝,甚至整棵大树。它是有力的,但它不够精明,一旦食物吃完了,它也就死了。而且,假如一路上找不到食物,它也不会从这一棵树跃过不远的距离去吃另一棵树。没有食物,它寸步难行。但只要有足够的食物,它就会长大,而且会生下许多火焰孩子。

        我们当中有一个伙伴,产生了勇敢的想法:去抓住一个火焰,给它一些东西吃,和它交朋友。我们弄来一些木质坚硬的长树条,火焰毫不客气地吃起来,不过吃得很慢。这样,我们就可以拿着没有火的一端而把火焰带走。手里拿着小火焰,如果我们很快地跑起来,它就会死去,它们的孩子太娇嫩了。我们没有跑,我们轻轻地走,好心地喊着:“别死呀。”其他狩猎族的人惊奇地看着我们做这件事。

        从此以后,我们就一直带着火焰,并不断地喂它,以免它饿死①。火焰是一种奇迹,也对我们帮助不小;它很可能是一位强有力的人送给我们的礼物。这个人是不是就是暴风雨中发怒的那同一个人呢?在寒冷的夜晚,火焰给我们温暖,给我们光明。在新月之夜,点点火光戳破茫茫黑夜。如今在夜间,我们也能为明天的打猎准备石矛了。晚间,要是我们还不累,我们也能在黑夜中互相看得见并且交谈了。使我们格外高兴的是,火焰使猛兽不敢靠近。过去,在深夜熟睡之时,我们常受猛兽之害,甚至小动物,如鬣狗和狼,也可能吃掉我们的伙伴。如今有了火,情况就大大不同了。火焰使它们不敢靠近,而只是在夜幕下无望地徘徊,嚎叫着,眼睛在火焰前闪亮闪亮的。它们害怕火焰,但我们不怕火焰。因为火焰是我们的朋友,我们照顾火焰,火焰也就照顾我们。

        天空是重要的。天空覆盖我们,还会对我们说话。在我们发现火以前,每当黑夜来临时,我们常常躺在地上,仰望天空,注视着天上无数的亮点。有时一,许多亮点会走到一起,在天空中形成一幅图画。我们中有一个人的眼力比旁人好些。她就教大家认识空中的图画及各个图画的名字。我们常常围坐在一起,聊到深夜,编织着星空图画的故事,如狮呀,狗呀,熊呀,猎人呀和其他更为奇怪的事情。这些天上的图画是不是就是发怒时制造暴风雨的那强有力的巨人的形象呢?

        天上总是没有什么变化。年复一年,星图一成不变。月亮呢,阴晴圆缺,周而复始。月相变化时,女人们就会流血。有些部落规定,在月亮消长的某些日子禁止性交。有些部落在鹿骨上刻下月亮缺而复圆的天数,或是女人流血的间隔天数。这样,人们就会预先算出时间,遵守规则。规则是神圣不可侵犯的。

        星星远在天边。我们爬上一座山顶或是一棵大树时,并不觉得它们离得近些。云彩飘来,挡住我们观看星星。星星一定是躲到云层后面了。当月亮慢慢往前走动时,会从星星的面前走过。但过后一段,星星仍然安然无恙,月亮并没有吃掉星星。星星一定是在月亮的后面,它们在眨眼。星星是一种奇怪的、寒冷的、清白的、远离我们的光。许许多多这样的光,遍布苍穹,但只有在晚上才看得见。我不明白,星星到底是什么呢?

        我们找到了火以后,有一天我坐在筹火旁遐想星星,一个念头逐渐产生:星星就是火焰。然后我又想到,星星是其他的猎人在夜晚点燃的篝火。星星没有篝火亮,因此,星星一定是离我们很远很远地方的篝火。但我这么一说,附近的人立即问我,“天上怎么会有香火呢?篝火堆和它周围的猎人,为什么不会落到我们面前呢?为什么那些陌生的部落人,不会从天上掉下来呢?

        他们问得好。这些问题困扰着我。有时,我觉得天空像半个大蛋壳,或是半个大坚果壳。我想,远在天际的那些人,正在往下看我们呢(可是对他们来说,都好像是在往上看)。他们会说,我们呆在他们的天上,他们也弄不清楚,我们为什么不掉到他们的地上去。我的这个想法,你们理解吗?但我的伙伴说,“上是上。下是下呀!”这个回答同样很在理。

        有位伙伴的想法不同。他认为,夜空是一大块扔到天上去的黑色的兽皮。兽皮上有很多洞孔。透过洞孔,我们才看到了天上的篝火。他认为并不是我们看到星星的地方才有篝火。他想,篝火布满整个天空,只是被兽皮挡住了,在有洞的地方,我们才看得见。

        有些星星能够走动,就好像我们追逐的动物,也像我们自己会走动一样。不过,星星走得很慢,只有细心地连续观看几个月,你才会发现它们走动了。会走动的星星,只有5颗,和一只手上的手指一样多。它们在群星间缓慢地移动。假如认为天上的星星是等火的想法是对的,那么,这些星星必定是天上的猎人举着火把在移动。但是我不明白,能移动的星星怎么会是兽皮上的洞孔呢。假如在兽皮上钻个洞,洞也不会动呀,洞毕竟是洞。此外,假如天上满是火焰,我也觉得不妙,万一兽皮掉了下来,到处火龙飞舞,夜空就会大刺眼了。我想,烈焰腾腾的天空会把我们都吃掉。看来,天上有两种强有力的巨人,一种好,另一种坏。坏人想用火来吞食我们,好人则用兽皮挡住火。我们必须以某种方式,向好人感恩才对。我不知道,天上的星星是篝火还是兽皮上的洞孔,透过这些洞孔我们看到了火光。我拿不定主意。有时,我觉得是篝火,有时,又觉得是兽皮上的洞孔。有一次,我猜想天上既没有篝火,也没有兽皮洞,而是些别的什么东西,但这对我来说太难理解了。

        把脖子枕在木头上,头向后仰,这时你就只能看到天空,看不到山岗,看不到树林,看不到猎人,也看不到篝火,只看到天空。有时我觉得我可以就这样跌入天空。如果说星星是篝火,我倒乐意去拜访那些升起篝火到处游动的猎人。这时我觉得跌入天空真是件美事,但如果说星星是兽皮上的洞孔,我就担心了。这是因为,我不想跌进洞孔。掉进熊熊烈火中去。

        到底哪种想法对呢?我很想弄清楚,我可不想不明不白的。

        我认为,当时许多狩猎采集部落的成员对星星并不都有上面的想法。也许在长久的岁月中,少数人有这样的想法,但绝不是说所有这些想法都来自一个人。然而,在那些部族里产生各种复杂的想法并不奇怪。例如,博茨瓦纳卡拉哈里沙漠中的昆布须曼人,对银河的说法就别具一格。他们所处的地区,银河常常就在他们的头顶。因此,他们把银河叫做“夜空的脊柱”,好像说天空是某一种巨兽,人们就住在巨兽的腹内。他们这种解释使银河可以被理解,而且非常有用。他们认为,夜空是由银河支撑住的,要不,夜空就会散架,摔到地上来。这是一种奇妙的想法。

        随着岁月的迁移,在大多数人类文化中,这种天上篝火和银河脊柱的比喻性想法逐渐为别的想法所代替。天上的强有力的巨人被升格为天神。他们有名有姓,有男有女,还有亲戚朋友,各自在天上负有专门的职责。人类所关切的每一件事都由一位神祗主管。神祗们主管着世界。没有他们的参与,便将一事无成。他们一高兴,食物充足,人类幸福。但一旦有什么事情激怒了神祗(有时只是一点点小事),灾难就接踵而至,就会发生干旱、暴雨、战争、地震、火山喷发和瘟疫。神祗是要享受香火的。于是,为了让他们不发大怒,庞大的祭司和神使队伍便应运而生。但是神祗的心意难测,凡人很难知道他们的好恶。因而,大千世界神秘莫测,难以理解。

        爱琴海中萨摩斯岛上的赫拉天后庙现在仅有很少一点遗迹。这个庙是古代的一大奇迹,是一座供奉天后赫拉的大庙宇。赫拉最早是司天女神,她是萨摩斯岛的守护神,其作用同雅典城的智慧女神雅典娜一样。后来,赫拉与奥林匹斯山众神之父宙斯结了婚。远古的故事说,他们的蜜月就是在萨摩斯岛上度过的。在希腊神话中,夜空中那光茫四射的光带,是赫拉乳房横空喷射的乳汁。西方人把银河叫做奶汁路(Milky Way),其来源正在于此。也许,这在原初就表示大地靠苍天滋养,如果是这样,这种含义早已在几千年前便被忘却了。

        我们差不多所有人的祖先对于存在的危险都编出了故事,把危险说成是由不可预知的,或者是愤怒的神祗造成的。长期以来,幼儿刚一懂事,就受到了宗教解释的全面包围。例如在古希腊的荷马时代,无论什么都有神祗掌管,有天神、地神、雷神、海神和地狱之神,还有火神、爱神、时间之神和战神等等;就是每一棵树,每一块草坪,都有其森林女神,或是侍奉女神。

        几千年来,人类一直受到一种概念的抑制(正如至今还有一些人受到这种概念的抑制一样),即一个大木偶是由神祗牵线活动的,这些神祗,人们看不见摸不着,具有不可思议的神力。大约 2500年前,在爱奥尼亚②,在东爱琴海繁忙的岛屿和港湾中发展起来的萨摩斯岛及其邻近的希腊殖民地,出现了光辉灿烂的觉醒。他们中有人突然认为,世上的万事万物,都是原子组成的。人也好,动物也罢,都是由较为简单的形态组成的。至于疾病,也不是恶魔或是神抵引起的;地球只是一个围绕太阳运行的行星,天上的星星,则是离我们非常遥远的星体。

        这个革命,使人们对宇宙的认识脱离了混沌时期。古希腊人认为,第一个生命是“混沌”,这一说法同圣经《创世纪》上的“无形”是同一种看法。“混沌”后来与一位叫“夜晚”的女神结了婚,天上的神仙,世上的人,都是由他俩繁衍下来的。从浑饨中开辟出天地,这同希腊人认为的不可预知的自然界是由变幻莫测的众神统治的想法是完全一致的。这种神话一直延续到公元前6世纪,爱奥尼亚产生了一个新概念,一种关于人类的伟大概念。古爱奥尼亚人认为,世界是可知的,因为它展现了一种内在秩序:自然界运行有序,揭示了自然界的秘密,自然界并不是完全不可预知的,因为自然界存在着甚至她本身也无法违背的规律。自然界运行极其有序,这一特征即称为宇宙。

        但是,为什么这种认识会产生于爱奥尼亚,为什么会产生于东地中海上的这些默默无闻的田园牧歌式的偏僻岛屿上呢?为什么不会产生于印度、埃及。巴比伦、中国或中美洲的大城市呢?中国在天文方面的优秀传统有几千年之久,中国发明了造纸及印刷术、火箭、指南针、丝绸、陶瓷,还有闻名的远洋船队。在这样文明的国度里,怎么就没有这种认识呢?有些历史学家认为,那是因为这个国家过分因循守旧,而不愿采纳新生事物的缘故。那么,相当富足、数学发达的印度,为何也没有这种认识呢?有些历史学家又说,那是因为这个国家迷信盛行,人们相信因果报应、生死轮回的说法,他们认为,世上的一切都是无穷的轮回再现,本质上不会有任何新的东西。为什么玛雅人和阿兹台克人也没有这样的认识呢?要知道他们和其他族的印第安人一样深深地迷恋于天文学,而且在这方面也极有造诣啊!历史学家认为,玛雅人和阿兹台克人在机械发明方面缺乏热情又缺乏才能,他们除了孩子们的玩具外,甚至连车轮都没有发明出来。

        我们再来看看爱奥尼亚人,他们有几大优势。爱奥尼亚是个岛国,基本上与外界隔绝,各个岛屿之间风俗习惯常常不同,政治制度也千差万别,没有什么集权统治能使各岛屿的习俗和文化统一起来,这就为思想的自由驰骋敞开了大门。和别的国家不同,爱奥尼亚在政治上没有必要提倡迷信。不同于其他国家,爱奥尼亚并非处于世界文化的中心,其文化尚处于十字路口,进退未定。腓尼基语的字母首先在爱奥尼亚演变的希腊文拼法使文化的普及成为可能,识字断文不再垄断于僧侣和抄写员,各种各样的思想产生了,为人们提供了思考和辩论的内容。政权掌握在商人手中,商人们为了自身的利益,积极提倡新技术。爱奥尼亚位于地中海东部,这是亚非欧的文明,其中包括伟大的埃及和美索不达米亚文化交汇的地方。各种各样的偏见、语言、思想和神祗都在这个地方进行激烈竞争。当几位不同的神祗都争着要霸占同一块土地时,人们会有什么想法呢?古代巴比伦的主神玛杜克和希腊的主神宙斯都被认为是天上的主人和众神之神。这样,人们就会想到玛杜克和宙斯实际上是同一个神。而且他们还会想到,由于他们神的属性相当不同,其中必有一个神是祭司们创造出来的。如果有一个神是祭司创造的,为什么不可能这两个神都是祭司们创造的呢?

        正是在这种条件下,伟大思想产生了,也必定有一种抛开神祗理论认识世界的方法。这种思想还认为,自然界可能存在自然法规、自然规律和自然力,由此出发,人们就不难理解世界上的一切了,无需把每一只麻雀的跌落都归因于宙斯的干预了。

        我认为,中国、印度和中美洲只要再有些时间,也会产生这种科学的想法。科学文化的发展,总是不平衡的,步伐也是不一致的。各个国家和民族的起点都不一样,发展速度也不尽相同。科学的世界观发展得如此之好,解释了如此之多的事物,而又同人类头脑里最先进的成分配合得如此和谐,因此,我认为,世界上所有民族文明的发展,按其本身的意志都必将导致科学的昌明,其区别只不过有早有晚罢了。而爱奥尼亚恰好是最早萌发科学的国度。

        公元前600~400年之间,人类的认识史上发生了上述伟大的变革。促使变革的关键是人们的双手。一些著名的爱奥尼亚思想家都是船员、农夫和织工的儿子。他们与其他民族的教士和文人不同,爱好劳作,习于探索,而后者则好逸恶劳。这些思想家反对迷信,因而创造了许多奇迹。在这方面,我们现在仅能找到零碎的和间接的记录。对他们当时所使用的隐喻,我们现在可能感到晦涩难懂。此后的几个世纪内,几乎可以肯定地说,有人有意识地压制了进一步的探索研究。这场革命中的领袖是具有希腊名字的人物,其中大部分人我们都不熟悉。但是,他们却是人类文明史和人类发展史的真正开拓者。

        第一位爱奥尼亚科学家是米利都城的泰勒斯,这个城市位于亚洲,与萨摩斯岛隔一条狭小的航道相望。泰勒斯游历了埃及,精通巴比伦文化。据说,他预测了一次日食。他还懂得根据金字塔的影长和太阳与地平线的夹角来测量塔高的方法,这与我们今天测定月亮环形山的方法相同。他早于欧几里得300年,论证了不少几何定理,例如,他推论了等腰三角形底角相等。显然,从泰勒斯到欧几里得,再到牛顿于1663年在斯托尔布里奇市场购买《几何原理》一书,他们在科学上的努力是一脉相承的,他们的贡献奠定了现代科学技术的基础。

        泰勒斯竭力不求助于神来理解世界。像巴比伦人一样,他也相信世界上曾是一片汪洋。为了解释陆地的来由,巴比伦人认为,他们的主神玛杜克在水面上丢下了一张席子,然后在席子上堆上泥土,形成了陆地③。泰勒斯也有类似的观点,但并没有巴比伦人的迷信成分,正如本杰明·法林顿所指出的:“让玛杜克滚开!”他认为,地球上确曾到处是水,由于一种自然过程,海中才慢慢冒出了陆地,他觉得这与尼罗河三角洲的淤积过程是近似的。的确,他认为水是万物之本原,正如我们今天宣称电子、质子和中子或者夸克是一切物质的基本粒子一样。他的见解正确与否尚在其次,重要的是,他说明了世界不是由上帝创造的,而是自然界各种物质的力量相互作用的结果。泰勒斯从巴比伦和埃及带回了新兴的天文学和几何学的种子,在爱奥尼亚的沃土中,它们当然要发芽、开花和结果。

        泰勒斯的私人生活情况鲜为人知,亚里士多德在他的著作《政治学》中讲了一些有关的轶事:
        有一则故事说,泰勒斯穷困潦倒,人们为此指责他,并且认为这也说明自然科学毫无用处。可是泰勒斯“上知天文”,在冬天,他就预知第二年橄榄一定大丰收。于是他倾其所有,把基奥斯城和米利都城的所有的榨橄榄油机都低价预租了下来。第二年收获季节到了,大家都需要榨橄榄油机,他就随心所欲地开始出租,从而果真发了大财。他以此向世人说明,只要学者们愿意,是能够轻易致富的。不过,他们的心思和志向在别的事情上。

        泰勒斯还是一位著名的政治家。他成功地促使米利都人反抗里底亚国王克里萨斯的并吞,但在游说爱奥尼亚各岛国,为了反对里底亚的并吞而成立联邦这件事上,却未能成功。

        米利都的阿那克西曼德是泰勒斯的朋友和同事,我们都知道,他是最早做实验来进行论证的人之一。他竖起一根棍子,通过观察移动的棍影,准确地确定了一年及四季的时间。许多年来,人们只知道用棍子来打架争斗,而阿那克西曼德却用它来测量时间。他也是制作日昝,绘制已知世界的地图和有星座图形的天球仪的第一个希腊人。不过,他认为,太阳、月亮和其他星球,都是透过苍穹中移动的洞孔看到的火球,这也许是一种较为古老的想法。他的另一个与众不同的观点是,地球不是悬在天空中,也不是由天空支撑的,而是凭自身的力量,处于宇宙的中心,因为在“天球”中,地球到其他星球的距离都是相同的,没有什么力量能使地球移动。

        他认为,幼婴什么也不会办,因此,假如人类第一次出现的幼儿是自己来到世界上的,他们肯定立即死亡。由此出发,阿那克西曼德得出结论,人类是由那些幼兽生活能力强的动物变来的。他认为生物都是同时在沼泽中出现的,最早的动物是浑身披有荆棘的鱼类。这些鱼的某些后代后来离开了水,转向了陆地,在陆地上,它们逐渐进化演变成了另一种动物。他还认为,宇宙中存在着无数种世界,每个世界都有生命居住,所有的物质都处于分解和再生的循环中。圣奥古斯丁对此痛惜地说:“他把各种各样无休止活动的原因归结为上帝的程度并不比泰勒斯高。”

        大约在公元前540年,萨摩斯岛国出了一个专制君主,名叫波利克拉特斯。据说他发迹于饭馆老板,终而成为国际性海盗。他迫害本国人,也不停地向邻国发动战争,但他却又是艺术、科学和技术的慷慨保护者。为了防备邻国报复,他在京城周围建造了6公里长的高大宽厚的城墙,其遗迹保存至今。为了穿越堡垒取用远山的一处泉水,他命令挖一条2公里长的穿山隧洞。隧洞从山的两侧同时开挖,挖通时几乎分毫不差。这项工程用了约15年的时间才完成。它表明爱奥尼亚人在当时已有高超的工程实践能力。但是这项工程还有另一面更阴暗的部分:该工程部分是由拴上铁链的奴隶们修成的,许多奴隶都是波利克拉斯特的海盗船俘获的。

        西奥多勒斯也是这个时代的人,他是当时希腊的大工程师。他著名的发明有钥匙、尺子、木匠的短尺、水平仪、车床、铸铜和供暖设备。怎么没有为这个人建纪念碑呢?所有幻想和思索自然规律的人都同工艺技术人员商谈,那时的理论和、实践浑然一体。

        大约在这同一时代,附近科斯岛上的希波克拉底正在创立他的著名学派,但由于他的渎神言词,现在人们已不大记得他的医学传统了。那是根据当时的物理和化学研究成果④建立起的一个实用而有效的医学学派,但其自身也有理论贡献。在《论古代医学》一书中,希波克拉底写道:“人们仅仅因为自己不了解羊癫疯的发病原因,便认为这种疾病是神授的。假如人们对于不明白的事都说成是神授的,那么,就会有没完没了的神授的事情了。”

        随着时日的迁移,爱奥尼亚的文化影响和实验方法逐渐传播到希腊大陆,传播到意大利和西西里。曾经有过一个时期,人们差不多都不相信空气的存在。人们当然会呼吸,但人们都认为,风是天神的呼吸造成的。谁也没有想到,空气是一种看不见的稳态物质。据载,公元前450年左右,著名的物理学家恩培多克勒第一次进行了空气实验,⑤有些记载说他自奉为神明。但这可能是由于他绝顶聪明,因此其他人奉其为神。他认为,光的传播速度十分神速,但并非无限地快。他还认为,地球上生物的种类,原先要多得多,但其中许多种类“想必不能繁衍生存下去而消失了。因为原先存在过的每一种生物,自其产生之初,都有赖于生活技能,或勇猛程度,或奔跑速度,以保护自身、繁衍后代”。恩培多克勒对于生物适应环境的解释,与阿那克西曼德和德漠克利特一样,鲜明地预见了达尔文关于生物进化自然选择的伟大思想的某些内容。

        恩培多克勒的实验器具非常普通,就是人们在日常生活中已使用了几百年的漏壶。那是一个铜制的球形物,漏壶的颈部有一开口,底部有一些小洞眼,装水时将壶浸入水中。装满水后如果不按住颈口把壶提出水面,壶中的水就会从底部的小洞喷洒出来。但是,假如用拇指按住颈口,把壶提出水面,不松开拇指,壶中的水就不会流出来。如果堵住颈口,则把壶浸入水中也装不进水。由此看来,一定有某种物质防止了水的进人。人们看不见这种物质,这种物质是什么呢?恩培多克勒认为,这只能是空气。我们看不见的这种物质,能够产生压力,正是这种压力,在我们用手按住颈口时,使水灌不进漏壶。恩培多克勒发现了这种看不见的物质。他还认为,空气之所以看不见,是因为它是一种极其微小的物质。

        据说,恩培多克勒在一场拜神狂中跳进埃特纳火山口的炽热岩浆升天了。但我却觉得,他不是故意的,而是在一次大无畏的地球物理学开拓性考察时,失足掉进去的。

        恩培多克勒关于存在有原子的蒙昧认识得到德漠克利特的进一步发挥。他出生在爱奥尼亚的殖民地,位于希腊北部的阿伯德拉,这是一座充满笑料的城市。公元前430年,假如有人讲阿伯德拉人的故事,你一定会捧腹大笑。当时的阿伯德拉在某种程度上就像现代纽约的布鲁克林区一样。德漠克利特认为,生活的一切都要享受,都要理解。理解和享受本来就是一回事。他说:“没有欢乐的生活好比是没有旅舍的一条漫长的道路。”德漠克利特极可能来自阿伯德拉,但他决非笨伯。他认为,许多星球都是由宇宙的散落物自然形成的,然后发展、死亡。那时,还没有人想到天体互撞形成的坑穴,但德漠克利特想到星球有时会相撞。他还认为,在黑暗的宇宙中有些星球独来独往,有些星球则伴有好几个太阳和月亮;有些星球上有生命,而有些则没有动物,没有植物,甚至没有水;最简单的生命形式,产生于某种原始沼泽地。他教导说,感觉亦即理性,比如说,我觉得我手上有一支笔,这完全是一种物理和机械过程;思维和感情,则是由极其精细、极其复杂地堆置在一起的物质导致的,而不是神赋予物质以某种精神的结果。

        德漠克利特发明了“原子”这一词,在希腊语中,这个词的意思是“不可分割的”。他认为,原子是最小的粒子,永远不可能再往下分割。万事万物,包括人类本身,都是由原子错综复杂地组合成的。他说:“世上存在的只有原子和虚空。”

        德漠克利特说,当我们切苹果时,刀子无疑要从原子间的空隙通过。假如没有这种空隙,就是说没有虚空,刀子就会碰上无法穿透的原子,苹果也就无从切开了。比如说,切开一个锥体,然后比较这两个切开的剖面,它们的截面积会相等吗?德漠克利特认为不会相等。锥体上的斜面使一个剖面的截面积稍小于另一个剖面的截面积。假如二者相等,那就不是锥体,而是圆柱体了。不管刀多么锋利,这两个剖面的截面积都不会相等。为什么呢?因为在极小的尺度上,物质表现出某种不可刨光的粗糙度。德漠克利特把这种小尺度的粗糙度,比之于原子世界。当然,他的观点不同于我们今天的看法,但是却是十分机敏高明的,体现了他对日常生活的精细观察。从本质上来说,他的结论也是正确的。

        在和上述同样的活动中,德漠克利特还想到过计算锥体或金字塔的体积,方法是把许多极小的金属板堆积成一个锥体。他使用的这种方法,在数学上叫做极限论。他已经在敲微积分的大门了,而微积分则是认识世界的基本工具。从现有文献记载来看,在牛顿之前,事实上尚无人涉足这一领域。如果德漠克利特的研究工作没有受到全面的破坏,那也许在耶稣时代,微积分就已经产生了⑥。

        1750年,托马斯·赖特为德漠克利特早就认为银河主要是由低分辨率的星球组成而赞叹不已。我们可以这样说,远在天文学受益于光学的进展之前,微漠克利特早就通过理智的眼睛,和有史以来较优越时代的最能干的天文学一样,全面深入地观察了无限的空间。确实,德漠克利特的思想,早就飞越过“赫拉的乳汁”,飞越过“夜空的脊柱”了。

        作为一个人,德漠克利特似乎有点古怪,女人、孩子和性生活使他局促不安。部分原因是因为这些会占用他思索的时间。但他十分珍惜友谊,认为欢愉是生活的目的,并孜孜于从哲学上探索神秘的灵感的源泉和特性。他启程赴雅典,去拜访苏格拉底,结果,竟腼腆得不敢自荐。他也是希波克拉底的挚友。他震惊于物理世界的千姿百态。他认为,在一种民主制度下过贫穷生活,也比在帝王统治下享受所谓幸福好些。他认为,当时盛行的宗教是有害的,既没有不朽的灵魂,也没有不朽的神祗。他所坚信的是:“世上存在的,只有原子和虚空。”德漠克利特是否因此受到宗教迫害,无案可查。不过,应该知道,他是来自阿伯德拉城的。在他所处的时代,容忍非正统观点的短暂传统,已开始崩溃,进而消失了。人们因为具有特殊的见解,已开始受到处罚。如今,在100德拉克马的希腊钞票上,印有德漠克利特的头像。但是他的见识受到抑制,他对历史的影响受到贬低,神秘主义者们正开始取得胜利。

        在爱奥尼亚,还出了一位注重实验的人,名叫阿那克萨哥拉,住在雅典,公元前450年左右,极其闻名。这个人是位巨富,但他对财富漠不关心,却酷爱科学。每当有人问他人生真谛何在时,他总是回答:“探索太阳,探索月亮,探索天空”,完全是一副地道天文学家腔调。他别出心裁地做了一个实验。实验中,他把一滴白色的液体,例如奶酪液滴人一大瓶深色液体,例如浓酒中。他发现,白色全然不见了。他因此联想到,其中必定发生了某种变化,某种凭感官不能直接察觉的变化。

        阿那克萨哥拉不如德漠克利特那样激进。但同样是彻底的唯物主义者,他们不是珍视财产的物质主义者,⑦而是持有只有物质才构成了世界的基础这种观点的唯物主义者。他们的不同点在于,前者相信特殊的精神物质,而不相信原子的存在。他认为,人之所以比其他动物高明,是因为人类有手,这是典型的爱奥尼亚人的观点。

        阿那克萨哥拉最早阐明月亮的亮光来自反射,并从而提出了月亮盈亏说。这种理论在当时是一种极其危险的理论,因此手稿只能秘密流传。从地球、月亮和自身发光的太阳的相对位置来解释月相盈亏,或是月食的这种理论,与当时根深蒂固的偏见是极不相容的。过了两代人的时间,亚里士多德自信地提出,月相盈亏和月食是由于月亮本身具有盈亏和食的特性造成的,这种说法,只是在玩弄词藻,其实什么也没有加以说明。

        当时盛行的说法是太阳和月亮都是天神,但阿那克萨哥拉则认为,太阳和星星都是燃烧着的石头。我们感觉不到星星的热气,是因为它们离我们太远了。他还认为,月亮上有山脉(这是对的),也有生命(这就说错了)。照他的意见,太阳只是比伯罗奔尼撒半岛大一些,大概有南希腊,即希腊全国的三分之一那么大。他的论敌认为,他这种估计非常荒谬。

        阿那克萨哥拉是伯里克利带到雅典的,后者是希腊鼎盛时期的领袖人物,同时也是伯罗奔尼撒战争的促发者,而这场战争却毁灭了雅典的民主。伯里克利热衷于政治,也爱好科学,阿那克萨哥拉是他的主要知己之一。有人认为,正是由于阿那克萨哥拉的这种地位,使他对雅典的伟大文明做出了卓越的贡献。但是,伯里克利有其政治困难。他的权势极其显赫,政敌往往难以对他直接攻击,因此政敌们就攻击与他亲近的人。阿那克萨哥拉终于被判罪,遭囚禁,罪名就是对上帝不虔诚。因为他曾讲授月亮是由普通物质组成的,是一个普通的地方,而太阳则是天空中燃烧得发红的石头。1638年,约翰·威尔金斯大主教对此评论说:“那些狂热的信徒认为,把他们顶礼膜拜的上帝说成石头,是对上帝的极大亵读。然而,他们却没有注意到,他们崇拜的偶像正是由石头雕刻而成的。”伯里克利为使阿那克萨哥拉获释,使出了浑身解数,但终因为时过晚未能成功。虽然说200年之后爱奥尼亚的传统在亚历山大大帝治下的埃及得以继承,但此时希腊的政治浪潮正在转向。

        在历史著作中,或是在哲学书籍中,通常都把泰勒斯、德漠克利特和阿那克萨哥拉这些大科学家描绘成苏格拉底以前的哲学家,似乎在苏格拉底、柏拉图和亚里士多德降临之前,他们的主要作用只是守住哲学这个摊子而已,或者只是给了苏格拉底他们一点点影响。其实,古爱奥尼亚人代表的是一种不同凡响的、与当时传统极其相背的传统,这种传统与现代科学极其一致。可惜他们的强大影响只延续了两三百年,这对于生活在爱奥尼亚科学昌明时代与意大利文艺复兴时代之间的人来说,是一种无法弥补的损失。

        也许,与萨摩斯岛有关的影响力最大的人物,要算公元前6世纪的毕达哥拉斯了⑧。按照当地传统,他曾在萨摩斯岛科基斯山上的一个洞穴中住了一段时间。他是世界史上第一个推断出地球是一个球体的人。他这种推断,也许是看到月亮和太阳呈圆形联想出来的,也许是在月食时看到了地球对月亮的圆形投影,或是在他观察船只离开萨摩斯岛时桅杆逐渐消失在海平面而推论出来的。他本人或者是他的弟子,发现了毕达哥拉斯定理:直角三角形两直角边之平方和等于斜边的平方。毕达哥拉斯并未举例去证明这个定理,而是采用数学演绎法去全面证明它的。现代数学——所有学科的基础,都离不开演绎法,毕拉哥拉斯对此做出了不可磨灭的贡献。也正是他,首次使用了“宇宙”这个词,以表示那秩序井然、谐和协调的大千世界。他认为,这个世界应当为人们所了解。

        许多爱奥尼亚人认为,宇宙间的谐和协调可以通过观测和实验获得,这正是当代科学普遍采用的方法。然而毕达哥拉斯的方法却全然不同。他认为,自然规律可以完全由思维推断出来。因而他和他的弟子们基本上不注重实验。⑨他们是伟大的数学家,同时又是神秘家。伯特兰·罗素尖刻地说:“毕达哥拉斯”创立了一种宗教,其主要教义就是灵魂与肉体处于无限的轮回之中。他的宗教植根于宗教秩序,教义中不时阐明要控制国家,建立起圣洁的戒律。但凡夫俗子总是渴望享受的,自然迟早要违背他的教义了。”

        毕达哥拉斯学派专注于数学论证的确立。他们认为数学是一个人类才智可以认识的纯净世界,数学是一个宇宙体。其中直角三角形的边的关系,完全符合简单的数学关系式。数学王国同现实中杂乱无章的平凡世界是绝然不同的。他们觉得,通过数学论证,他们已经窥测到一个完美的实体世界,一个神祗的王国,我们生活的这个世界,只不过是这个神祗王国不完整的投影罢了。在柏拉图关于洞穴的著名寓言中,捆着的囚犯只要看见路人的影子,就相信那是路人本身。他们从来没有想到,只要他们能够转过头来,就不难看清复杂现实的真相。看来,柏拉图,还有后来的基督教,都受到了毕达哥拉斯学派的重大影响。他们都不敢把矛盾的论点摊到桌面上来,而是如同所有正统的宗教一样,实行清规戒律,以防止修正自身的错误。西塞罗就此写道:

        毕达哥拉斯学派醉心于正方立体,醉心于各边均为等量正多面体的对称立体。其中最简单的例子就是立方体,立方体的每一个面都是一个正方形。正多边形的数量无穷无尽,但正立方体却只有5种(关于这一点的证明,是数学推论的一个著名例子)。出于某些原因,他们对有12个5角形的、称做12边形的多面体,感到特别可怕。这个问题同宇宙神秘地联系在一起,当时人们认为,世界是由土、火、气、水等4大元素组成的,毕达哥拉斯学派把这4大元素同4种正多面体联系起来。毕达哥拉斯学派认为,第5种正多面体,一定与某种第5类元素有关,这类物质只能来自天上(这就是第5元素quintessence这个词的由来)。他们不让一般的人知道12面体的存在。

        毕达哥拉斯学派对整数尤为钟爱。在他们看来,一切物体,当然也包括其他数字,都可由整数导出。但到后来,这种信条发生了危机,因为他们发现,2的平方根(正方形的对角线与边之比)竟是一个无理数,不能由任何两个整数之比(不管这两个整数多大)准确地表达出来。具有讽刺意味的是,他们正是在应用毕达哥拉斯定理时发现这种怪事的。“无理数”这个词,其本意只是说明一个数不能由比值表示。但对于毕达哥拉斯学派来说,却如同洪水猛兽了;因为这个词意味着他们以往的全部观点都是错误的。这种想法从今天的观点来说才真正是“无理的”。对数学上的这种重要发现,他们不敢拿出来公开,而是捂住2的平方根和12边形的知识,不让外人了解真情⑾。即使在今天,仍然有一些科学家反对科学大众化。他们主张神圣的知识只能在信徒间流传,不能让大众了解。

        毕达哥拉斯学派认为,球体是“完美无缺的”,因为球面上的任何一点离球心的距离都相等。环形圈因而也是完美的。他们始终认为,星球是在环形轨道上作匀速运动。他们觉得,行星在轨道上运行时不可能时快时慢,非圆形运动是不可能的,它们既然不受地球的影响,也一定是“完美无缺”的。

        对毕达哥拉斯学派研究法的褒贬可以从开普勒的毕生研究明显地看出(参见第三章)。毕达哥拉斯学派关于宇宙是不可感知的、神秘而完美的世界这种看法,马上被早期基督教徒接受了,同时成为开普勒早期受教的主要内容。开普勒一方面坚信天地间存在着数学的和谐(他写道:“天体是由和谐的比例装饰起来的。”),从简单的数值关系中,就可以确定星体的运动方式。另一方面,他还追随毕达哥拉斯学派长期坚持认为只有匀速的环形运动才是可以接受的。但是他在观察星体时多次发现,他这种观点解释不了星体运动方式。于是,他又再次观察。与毕达哥拉斯学派的许多学者不同,开普勒信赖实际观测和实验结果。通过对星体运动的仔细的反复观测,他终于抛弃了星球沿环形轨道运行的观点,认识到星体是在作椭圆形运动。毕达哥拉斯的理论既激起了开普勒对行星运行和谐性的探索,又束缚了开普勒,使他的研究推迟了10多年。

        轻视实践的观念甚嚣尘上,这始于古老的世界。柏拉图极力鼓吹天文学家要去研究天体,但不要浪费时间去观测天体。亚里士多德则认为:“下等人在本质上是奴隶,所有的下等人最好应该由一个主人来统治……,奴隶是主人的生命的组成部分;工匠同主人的关系稍疏于奴隶,工匠只有成为奴隶后才能具备相应的优秀品质。中下等的技工具有不同的特殊奴隶身份。”普鲁塔克认为:“没有必要遵循这样的原则:倘若一项工艺品制作精美,令人愉悦,其制作者便值得尊重。”色诺芬的看法是:“人们称为工艺品的一类物品都印有社会的烙印,在我们的都市中当然要受到唾弃。” 出于上述种种认识,爱奥尼亚的充满前途的光辉的实验方法,被人们束之高阁竟达2000年之久。没有实践,则无法在诸多学说中加以抉择,科学也就无从前进。毕达哥拉斯学派反对实践的观点,至今仍有市场,原因究竟何在,这不能不使人深思。这种对实验工作的厌恶究竟从何而来?

        科学史专家本杰明·法林顿认为,古代科学的衰败,究其原因在于经商的传统。这个传统既导致爱奥尼亚科学的发生,也导致奴隶制经济的产生。拥有奴隶,便铺平了通向金玉满堂、权势显赫的大道。毕达哥拉斯的城堡是由奴隶们建造的。在伯里克利、柏拉图和亚里士多德的时代,雅典拥有大量的奴隶。雅典人津津乐道的民主,其实只适用于少数特权者,奴隶不过当牛做马从事体力劳动而已。由于科学实验也是一种体力劳动,因此奴隶对于科学实验是退避三舍的。但反过来说,又只有奴隶主——有些国家里尊称“绅士”——才有闲暇去搞科学。因此,科学几乎无人问津了。古爱奥尼亚人完全有能力造出某些较为高级的机器,但奴隶制的存在使技术进步缺乏经济动力。因此,在公元前600年左右,经商的传统对伟大的爱奥尼亚科学昌明的产生起到重大的作用,而奴隶制却又可能是两个世纪之后科学衰败的原因。这不能不使人啼笑皆非。

        类似的现象在全世界比比皆是。1280年,是中国天文学的鼎盛时期,其代表人物是郭守敬。他以1500年来前人的天文观测为基础,改进了天文观测仪器和计算技术。人们普遍认为,自他以后,中国的天文学便江河日下了。内森·西维因认为,至少有一部分原因是“上层人物对科学越来越僵化、墨守陈规,从而使知识界对技术的探索和兴趣有减无增,也不愿把科学研究当做行之有效的重要进身之阶了。”于是,研究天文学的钦天监成为家传因袭的职衔,这种做法同天文学的进展大相径庭。此外,“天文学研究一直为朝廷所垄断,并在很大程度上听任外国技术人员的摆布。”他们主要是听任耶稣会传教士的摆布,他们介绍了欧几里德和哥白尼的学术观点,中国人对这样的学术思想惊讶不已,但当他们检查过耶稣会教士带来书籍后,自然而然地要竭力隐瞒和压制日心说的观点。在印度、玛雅和阿兹台克文明中,科学之婴死于母腹的原因也许与爱奥尼亚文明衰败的原因相同,都与奴隶经济的发展有关。从政治上来看,当代第三世界国家的一个主要问题,就是受教育者都是富裕家庭的子弟,基于这种现状,他们理所当然地不习惯于体力劳动,同时也不会对传统的知识提出挑战,为此,科学难以扎根。

        公元前7世纪至公元5世纪之间,爱奥尼亚和其他希腊科学家的大致生卒年表。从表中可以看出希腊科学家的衰落,因为在公元前1世纪之后,著名科学家就屈指可数了。

        在奴隶制度下,柏拉图和亚里士多德过着优裕舒适的生活。他们为人压迫人的制度辩护,为专制君主服务,宣扬肉体和精神分开的观点(这是一种在奴隶制社会极其自然的观点),他们把物质同意识分割开,把地球同天体拆离开。他们这种分割统一体的思想,在西方思想界占据了2000多年之久。信奉“神祗无处不在”的柏拉图,实际上是用奴隶制的比喻联结他的政治思想与宇宙学说。据说,他曾经竭力主张烧毁德漠克利特的所有著作(他也曾主张烧毁荷马的所有著作),原因也许在于德漠克利特不承认灵魂与上帝是永恒的,也许是因为他不承认毕达哥拉斯的神秘主义,或者在于他相信存在无数的星体。据传,德漠克利特撰写了73部重要著作,涉及了人类的所有知识,但所有这些著作约已荡然无存。现在我们对德漠克利特的了解,主要来自一鳞半爪的零碎材料,其中主要是记载在伦理学书籍中一些间接的资料。其他古爱奥尼亚科学家的遗著的命运也大批相同。

        毕达哥拉斯和柏拉图承认世界是可知的,而且认为存在一种支持自然界的数学规律。他们这两种认识大大推动了科学的发展。但另一方面,他们压制和掩盖已所不欲的科学发现,主张科学研究应仅限制在少数几个出类拔萃者的圈子内,而且,他们鄙视实验,追求神秘主义,为奴隶制辩护,这些则对人类进步造成了很大损害。在长期神秘地埋没后,部分原因是由于亚历山大图书馆的学者们的传播,爱奥尼亚人开创的事业毕竟还是复苏了。西方世界又苏醒了。注重实验及公开探讨的气氛再次得到尊重。无人问津的书籍及其零星散落的著作再次得到人们的查阅。达·芬奇、哥伦布以及哥白尼所进行的事业,可以说是受到了古希腊这种传统思想的激发,或者说是沿着古希腊的研究传统各自进行了再探索。就是在今天,仍然有不少科学成果带有古爱奥尼亚的烙印,不少科学研究工作也像他们那样自由大胆。但与此同时,也有不可思议的迷信,以及惊人的伦理上的愚昧,现代人仍受到古代思想斗争的影响。

        柏拉图的弟子及其后来的基督教徒们,有一种令人不解的观点,他们认为地球是不干不净的,甚至有点儿污秽,天体才是完美无暇的、神圣的。他们不承认或是忘记了地球是宇宙中的一颗行星,人类是宇宙的居民这一基本思想。首次提出这种思想的是阿里斯塔恰斯,他在毕达哥拉斯逝世300年后出生在萨摩斯岛,是爱奥尼亚最后一批优秀科学家之一。到他的时代,人类文明的中心已经转移到古埃及的亚历山大城图书馆。阿里斯塔恰斯首次阐明行星系的中心是太阳,而不是地球。他认为所有的行星都是绕太阳而不是绕地球运行的。无独有偶,他在这方面的论著也散失了。他通过计算月食时地球对月亮投影的面积得出结论说,太阳不仅离地球非常遥远,而且也比地球要大得多。因此,他当时可能推论过,像太阳那么大的一个星体,竟然绕地球这样渺小的星体运转,这是十分荒唐的。他提出太阳位于宇宙的中心,认为地球绕地轴自转一周需要一天,绕太阳转动一圈则需要一年。

        人们通常把这个观念同哥白尼的名字联系在一起。伽利略在评价哥白尼时说,哥白尼只是日心说的“再现者和证实者”,而不是最早的发现者⑿。尽管有人在公元前280年已经相当清楚地说明了行星的位置,但在阿里斯塔恰斯和哥白尼之间的1800年中,几乎没有人知道这些行星的确切位置。这种观点触怒了阿里斯塔恰斯的某些同代人。如同阿那克萨哥拉、布鲁诺和伽利略的遭遇一样,也有人大喊大叫,阿里斯塔恰斯不信神,该受惩罚。就是在人类文明的今天,反对阿里斯塔恰斯和哥白尼,在日常生活中提倡地球中心说的例子,依然屡见不鲜。我们还在说太阳“升起”了,太阳“降落”了。阿里斯塔恰斯已经逝世2200年了,而我们的语言还在自欺欺人地表示地球并没有转动。

        行星之间并不是连在一起的,例如,地球离金星最近4000万公里,地球离冥王星则有60亿公里之遥。认为太阳只有伯罗奔尼撒半岛那么大,尚且触怒了某些希腊人。上述说法,更会使他们目瞪口呆不知所措了。当然,人们以往认为太阳系的星球都拥挤在一起,且不作运动,这也是不无道理的。假如伸开一个手指放在眼前,然后,首先用左眼,接着用右眼去瞄看这个手指,映衬着遥远的物体,你就会觉得手指在移动。手指离眼睛越近,看起来它就移动得越多。通过计算这种视运动,即视差,就可以估计远处物体同手指的距离。双眼之间相隔愈大,看上去手指就移动得愈多。双眼的基准线越长。视差也就越大,也就能更好地测定远处目标的距离。但是,我们所处的地球本身,每隔6个月就要从轨道的一端运行到另一端,运行距离为3亿公里。因此,假如在6个月后观测同一个不移动的天体,那么,我们测定的距离应是十分可观的。正因为如此,阿里斯塔恰斯怀疑,天上的星星可能是远离地球的太阳。他把太阳同固定不动的星体“归为同类”。当地球在转动时,星际视差不可测出,这表明,星体离地球的距离比太阳还得多。在望远镜发明之前,即使对最近的星体的视差,也小得难以觉察。星球视差到19世纪才首次得到测定。这时,完全根据古希腊的几何学测定,人们才清楚星体离地球的距离大得要以光年计算。

        还有一种方法,可以测定从地球到星体的距离,尽管到现在为止,我们还没有证据说明古爱奥尼亚人确实使用了这种方法,但他们完全有能力做到这一点。众所周知,物体离我们愈远,则显得愈小。物体的实际大小与距离成反比的规律,是用于艺术摄影术中的透视法的基础。正因为如此,太阳离我们愈远,太阳就显得愈小、愈暗。离太阳究竟要多远,它才显得似一颗星星那般小、那般暗呢?换句话说,多大的一个太阳,才能像一颗星星那么亮呢?

        为了回答这个问题。惠更斯作了一个实验,方法与古爱奥尼亚的传统十分相似。他把一个钻有许多小孔的铜盘对着太阳举起来,然后透过小孔观察太阳,以此确定哪一个孔的亮度同他所记得的昨天晚上的天狼星的亮度一样。该孔的大小,和看上去太阳的大小相比,只有其 l/28 000⒀。他于是得出结论,天狼星离我们的距离,是太阳离我们的距离的28000倍,或者说,离我们约半个光年。观察几个小时后,要记住一颗星究竟有多亮是很不容易的,但惠更斯却记得一清二楚。假如他当时知道,天狼星实际上比太阳亮得多,他无疑会得出正确的答案:天狼星距我们8.8光年。当然,阿里斯塔恰斯和惠更斯应用不精确的数字推导出不完整的答案,这个事实本身并无关宏旨。关键在于他们极其明确地阐述了他们的研究方法。因此,假如能够改进观察方法,答案就会准确得多。在阿里斯塔恰斯与惠更斯之间的时代,人们回答的问题使我这个在布鲁克林长大的孩子激动不已,我不禁自问,星星到底是什么呢?答案是,星星就是巨大的太阳,在星光灿烂的宇宙的汪洋大海中,星星离我们有多少个光年那么遥远。

        阿里斯塔恰斯的巨大贡献,在于他说明了无论是我们人类,还是我们的地球,在自然界中都并不占有特殊的地位。从此,他的这种入木三分的观点被上用于星体,下用于人类大家庭的许多课题,赢得了巨大的成功,同时也始终受到反对。他这种观点导致了天文学、物理学、生物学、人类学、经济学和政治学的巨大进展。我想,把这种观点推广应用于社会,恐怕就是它屡屡受到压制的主要原因吧。

        阿里斯塔恰斯的巨大贡献远远超越了星空研究的范畴。18世纪末叶,英王乔治三世时代的音乐家和天文学家威廉·赫歇耳描绘了一幅星空图,他发现在银河系平面图或带状图上,以地球为中心,各方位的星星的数量显然是相等的。由此他自然而然地认为,地球位于银河系的中央⒁。第一次世界大战前,密苏里州的沙普利发明了一种技术,用这种技术测量从地球到球状星团的距离,发现球状星团是可爱的恒星球状集团,就像一群蜜蜂一样。他还发现了一个恒星的标准烛光——颗亮星,星光可见是因为它闪烁不定,但其平均本身亮度却总是一成不变的。把球状星团中发现的这类恒星的亮度和它的本身亮度加以对比,沙普利就能计算出它们离地球的距离。这就像我们在旷野中,通过观察射过来的微弱灯光,就能判断出已知其本身亮度的灯光距我们多远一样。这种方法实质上仍是惠更斯的方法。沙普利发现,这些球状星团并不是以太阳周围的星体为中心,而是以人马星座方向的银河系远区为中心。沙普利认为他调查大约100个球状星团极可能围绕银河系的质量中心运行,向它表示敬意。

        1915年,沙普利大胆地提出太阳是位于银河系的边缘。而不是靠近其核心。赫歇耳之所以搞错了,是因为在人马星座方向上布满了不易看清的宇宙尘,从而使他无法知道远处还存在着许许多多的恒星。我们现在都明白,地球离银河系的核心大概有3万光年之远,处于银河系的旋臂边缘,这里的恒星密度相对要稀疏些。如果在沙普利发现的球状星团中,一个有人居住的行星绕星团的中心恒星运行,或者就位于星团的中心,那么,他们就会可怜我们地球上的人只能看到为数不多的星星。而在他们的天空中却满布灿烂的繁星。仅在银河系的中心附近,就有几百万个灿烂的星球,他们凭肉眼也可以看到它们,而在我们的天空中,却只有微不足道的几千颗恒星。我们的太阳,以及别的太阳都可能有消亡之日,但在球状星团的世界里,漫漫黑夜却永远不会降临。

        公元18世纪时,赖特和康德两人通过望远镜的观察都预言过,那无与伦比的旋涡状发光体,就是另外的银河系。但在进人20世纪很久以后,天文学家竟然还认为,宇宙中只有一个银河系。康德曾明确指出,在仙女星座中的M31 星系,就是另一个银河系,它含有许许多多的恒星,康德给它们取了个令人难以忘怀的奇妙的名字“岛宇宙”。但一些科学家认为,那些旋涡星云并非是遥远的岛宇宙,而是星际气体聚集成的云团,这些气体也许正在形成新的太阳系。为了测定旋涡星云的距离,就需要一组各自不同的、本身亮度又较大的星体,建立一个新的标准烛光。哈布尔1924年认出了这组M31星系的恒星。他发现,看起来这些恒星极其晦暗,从而说明M31星系离我们极其遥远。人们现在估计,它距离我们为200万光年。但如果M31星系真有这么遥远,那它就不可能仅仅是星空中的云雾,那就应该比云雾要大得多,就应该是一个巨大的银河系。其他更加模糊不清的星云(大约有1000亿个),必定离我们更加遥远。它们都透过已知宇宙的边缘黑幕闪闪发光。

        自从人类诞生之日起,我们就一直在探索自己在宇宙中的位置。无论在人类的早期(当时我们的祖先以懒洋洋的目光注视着星星),其中不管在古希腊的爱奥尼亚科学家中,还是在当代的科学家中,人们都为一个问题所苦恼,那就是地球在宇宙的什么地方?地球是处于什么样的一种地位呢?我们发现自己栖息的地球十分平庸。它的恒星也毫不出众,在银河系星群的边缘两个旋臂之间,占着一个可怜的位置。而这个银河系则是那比地球上的人口还多的星系中的一个成员,隐匿在广袤的宇宙中一个小小的角落里。这种观点鼓励我们继续建立和证实天空的心理模式。就是说,太阳是一个炽热的石头,繁星是天上的火焰,银河系则只是夜空的脊柱。

        从阿里斯塔恰斯以来,我们每探求一步都使我们自己更加远离舞台的中心。用于理解探求中的新发现的时间远远不够。沙普利和哈布尔有了巨大的发现,他们的许多同时代人至今仍活在世上。当然,他们当中至今也有不少人暗地里埋怨这些伟大的发现,他们对每一步进展都感到沮丧,在这些人的内心深处,仍然支持着宇宙中心的支点就是地球的观点。但是,我们要评价宇宙,首先就必须要了解宇宙,在了解的过程中,即使事实证实与我们的良好愿望相违背,也应该继续我们的了解。了解我们生活的地球,则是了解邻近星球的重要先决条件。当然,了解邻近星球是什么样子,也对此大有裨益。假如我们渴望着增加地球的重要性,我们就该为此做出努力,大胆地提出问题,精辟地回答这些问题,这无疑就会增加我们这个星球的重要性。

        我们带着一个早在人类发祥期提出的问题,开始了探索宇宙的航行,这个问题人们一代接一代地重复着:星星是什么?探幽索隐是人类的天性。人类开始探索时,完全是两眼一抹黑,即使到现在也仍然是星球世界的门外汉。我们在宇宙海洋的海滩边徘徊不前的时间已经够长了,现在我们终于扬起风帆,准备远航宇宙之海,去探索群星。

        ________
         ①这种把火焰看成是一种有生命的东西,需要保护、需要照看的观念,不能把它当做一种“原始”的观念而不加以认真研究。在许多现代文明的发样期都可以找到这样的观念。古希腊、古罗马以及古印度的婆罗门的各家各户都有一个炉灶,和一整套固定的照看火焰的规矩。晚上,煤火要用炉灰封住,清晨拨开炉灰,添上小树枝,让炉火重新燃起来。炉火的熄灭意味着家破人亡。在上述三种文化中,对炉灶的祭祀同祭祀祖宗是相互关联的。这就是永世不灭的火的来源。在全世界范围内,这种象征至今还广泛应用于宗教、纪念性活动、政治和体育的庆典中。(在中国人的生活中也有于每年春节之前要祭灶王爷的风俗——校者注)

        ②为避免混淆,应指出爱奥尼亚不是指爱奥尼亚海,而是爱奥尼亚海沿岸的殖民者命名的一个地方。

        ③有证据表明,古代苏默人(幼发拉底河流域的人种)的创世纪神话大部分是关于自然界的解释,后来在公元前1000年左右编纂的《天庭之上》这首诗集里才第一次用神祗取代了自然界。这个神话讲的是神学,而不是宇宙学。《天庭之上》使人联想起日本和阿伊努人的神话,他们的神话说宇宙原先是一片沼泽,后来一只大鸟振翅击打沼泽而把陆地和水体分开。斐济人的创世纪神话说:“罗科摩图创造了陆地,他用巨手从海底一捧一捧地把泥土捧出水面,到处堆积,形成了斐济群岛。”对于岛屿和远海的民族来说,从水中筑起陆地是一种极其自然的想法。

        ④星占学也包括在内。星占学在当时被普遍认为是一门科学。在希波克拉底的一段典型文学中写道:“人们也必须密切注意星座的升起,特别是天狼星,其次是大角星,同时也要注意昂星团的降落。”

        ⑤该实验原先的目的是为了证实一种荒谬绝伦的血液循环理论,但我们应该识别,任何一种通过实验探索自然界的想法都是一种重要的改革。

        ⑥欧多克斯(Eudoxus)和阿基米德于德漠克利特之后也是这一领域的先驱。

        ⑦唯物主义与物质主义在英文中都是materialists。——校者注

        ⑧公元前6世纪,是地球上人类智慧和精神上的百家争鸣时代。在这个时期不仅在爱奥尼亚出现了泰勒斯、阿那克西曼德、毕达哥拉斯等许多优秀人物,而且在古埃及,出现了法老尼科二世,他使人类完成了环绕非洲的航行;在古波斯,出现了琐罗亚斯德;在中国,出现了孔子和老子;在以色列,出现了犹太人先知;在印度,出现了释迦牟尼,等等。很难设想,这些优秀人物的出现,相互之间是毫无联系的。

        ⑩但其中也有一些值得欢迎的例外情况。毕达哥拉斯对和声学中整数比的沉醉明显地是基于对弹拨音弦发出声音的考证,甚至是基于实验形成的。恩培多克勒至少在部分上是毕达哥拉斯学派的。人们知道,毕达哥拉斯的一个叫做阿尔克马厄昂的学生是第一个解剖人体的人。他区分了动脉和静脉,而且是第一个发现视神经和耳咽管的人。他还确认头脑是收藏知识的地方(这个论点后来被认为知识来自于心脏的亚里士多德所否认,再往后才得到希罗菲勒斯的恢复),他还创立了胚胎学。但是,阿尔克马厄昂在晚期对“净化”的热情不如他的毕达哥拉斯学派的同事们高。在争论中,更需要的是论据的分量,而不是权威的势力。确实,对那些渴望学习的人来说,教授者的权威性经常是一种极大的障碍。因为学习的人不再自己作出判断,而只是把自认为老师的既定结论作为解决问题的办法。在讲到这个问题时,我实际上并没有把这种传统的教学法归因于华达哥拉斯学派。据说毕达哥拉斯学派在争论中,每当有人问及其论点的根据时,总是答道:“大师这样讲的。”“大师,就是指毕达哥拉斯。一种已有定论的意见是极其有力的,它使权威性无需理智的支持便畅行无阻。

        ⑾有一位叫做希帕苏斯的毕达哥拉斯学派学者著书发表了《具有12个面的球体之秘密》(即12面体)。他后来死于船难,据说他的同学们都认为这是正义的惩罚。他的著作后来也没有发表。⑿哥白尼的日心说思想,可能是他阅读阿里斯塔恰斯的著作时受到启发的。最近发现的古教科书,在意大利大学里引起了轩然大波。当时,哥白尼就读于那儿的一所医科学校。在哥白尼所著书籍的草稿中,提到了阿里斯塔恰斯的先著,但在他的书付印时,他又删掉了引文,在写给教皇保罗三世的一封信中,哥白尼写道:“据西塞罗的著作,尼斯塔斯(Ncetas)想到了地球本身是运动的……。据普鲁塔克的著作(此人探讨了阿里斯塔恰斯的学术思想)……,其他的一些人也具有相同的见解。我在研读他们的著作时,亦与他们颇具同感,也开始考虑到地球运动的可能性。”⒀惠更斯实际上是用一颗玻璃念珠来推导透过小孔的光度的。⒁这种关于地球处于当时已知宇宙中心的具有优越地位的假设,使华莱士在他1903年的著作《人类在宇宙中的位置》中,站到反对阿里斯塔恰斯的立场,认为地球极可能是惟一的有居民的星球。

        第八章 在时空中旅行

        莫寿乎殇子,而彭祖为天。天地与我并生,而万物与我为一。——引自公元前300多年中国庄子所著《齐物论》

        酷爱星辰。岂惧夜幕
        引自两位业余天文学家的碑文
        星星在我们的眼中书写着朦胧的史诗,
        书写着永不消失的空间的闪烁篇章。
        ——引自哈特·克雷恩的《桥》

        波涛的起伏部分是由潮汐造成的。月亮和太阳虽然距我们甚远,但它们对地球的引力作用却是明显的、确确实实存在的。海滩使我们联想到了宇宙。海滩上的细沙粒基本上是大小均匀的,它们是由大石块在波浪长年累月地冲击和摩擦、腐蚀和风化作用下形成的,而这一切又都是在遥远的月亮和太阳的驱动下发生的。海滩还使我们想到了时间,地球本身要比人类古老得多。

        一捧细沙大约有1万粒沙,这比我们在皎洁的夜空中肉眼所能看见的星星还要多。但是我们肉眼能看得见的星星只占星星总数的极小一部分,我们在夜空中所能看见的星星只是离我们最近的星星中很少的一部分,而宇宙之丰富和辽阔是难以度量的,星星的总数比地球上所有海滩的沙粒总数还要多得多。

        尽管古代的天文学家和星占学家竭力描述星空的景象,星座却不过是星星的任意组合。某些本来不太明亮的星星,由于离我们较近而显得很亮,而有些本身较亮的星星却离我们比较遥远。严格地说,地球上的任何一个地方,对任意一颗星星而言距离都是一样的。因此,无论是在苏联的中亚细亚,还是在美国的中西部,观察某个星座时,星星的排列位置都是一样的。从天文学的角度来看,苏联和美国是同一个地方。只要我们局限在地球上,任何星系的星星都距离我们如此遥远,根本无法辨认出它们的立体构像。星星之间的平均距离只有几光年,不过别忘了,一光年就是约10万亿公里的距离。若要观察星座图像的变化,我们必须跨越与星星之间的距离差不多的路程,即跨越光年级的距离,非如此,则无法看到星座中的星移斗转和无穷变幻。

        但是,要实现如此宏伟的星际航行,目前的技术还完全做不到,至少在相当长的一段过渡时期内还做不到。尽管如此,我们却可以用计算机模拟距离我们较近的星星在空间的位置,从而进行某种类似的星际航行。譬如进行环绕由明亮的星体组成的北斗星的旅行,观察星座位置的变化。我们按照一般的天体绘图法–沿点连线,将某个星座的星体用线连结成图,视角不同,所绘制的图形也不相同。遥远的行星上的居民所看到的夜空星座形状,与我们在地球上看到的大不相同。再过若干世纪,人们也许能造出一种宇宙飞船,它速度巨大,能飞越宇宙空间,使人们看到迄今除了用计算机看到以外从未看到的新星座。

        星座形状的变化不仅体现在空间上,而且也表现在时间上。我们不仅通过变换视角可以看到星座的变形,而且只要等待的时间足够长,也可以观察到它们形状的变化。星星有时组成星团,成群结队地一起飞奔。有时某颗恒星独自狂奔,结果脱离原来的那个星座,而跑到另一个新的星座中去。在个别的情况下,双星系的某一成员会发生爆炸,从而摆脱相互间引力的束缚,以其固有的轨道速度冲向宇宙空间。此外,星星也有生死存亡、演化发展的历程。假如我们观测的时间足够长,就会看见新生星体的出现和旧星的泯灭。也就是说,星空中的图像也处在缓慢地消融和变化之中。

        就是在有人类的几百万年中,星座也一直在变化着。以北斗七星或大熊星座的图形为例,借助于计算机我们可以超越时空的界限,把北斗七星拉回到100万年以前的状态。人们可以发现,那时的北斗七星与现在的模样大不相同,不像一把勺子,而颇像一根长矛。如若时间机器猛然把你带回遥远的、未知的过去,你可以根据星座的形状大致判断出所处的年代。如果北斗七星状如长矛,那肯定是在更新世中期。

        上图:100万年前的北斗七星

        中图:50万年前的北斗七星

        下图:现在的北斗七星由计算机模拟的100万年和50万年前从地球上看到的北斗七星。

        我们还可以让计算机把时间往前推移,预测星座未来的图像。以狮星座为例,黄道带由12个星座组成,像一条带子包裹着太阳每年在天空穿行的路径。黄道带(Zodiac)一词的词根与动物园(Zoo)相同,因为黄道带中的星座如同狮星座一样,大都是以动物命名的。再过100万年,狮星座将比现在看到的更不像一头狮子。也许,我们的后代会把它称为射电望远镜星座。不过我猜测,射电望远镜在那时可能比石矛之于现在更加过时了。

        猎户星座(非黄道带)以4颗亮星为界,被3颗星组成的对角线分为两半,这一对角线表示猎人的腰带。根据通用的天文投影方法,悬挂在腰带下的2颗较暗的星组成猎人的剑。剑身中间的那颗星,实际上不是一颗星,而是巨大的气团,叫做猎户座星云,星云中不时地产生出新的恒星。猎户星座中的大多数星体炽热而年轻,而且大都演化迅速,最终在称为超新星的宇宙爆炸中了却残生。它们的生命周期大约为几千万年。假如用计算机进行模拟,把猎户星座未来的情形描述出来,我们就会惊奇地发现,这个星座中多数星体的诞生及其蔚为壮观的混灭,如同夜空中的萤火一般,闪烁明灭、飘忽不定。

        半人马座α星是距太阳最近的恒星系。它实际上是一个3连星,两颗星各自绕对方旋转,而第三颗星(半人马星座的比邻星)则始终以一定的距离环绕前两颗星运行。当第三颗星处于其轨道的某个位置时,它是离太阳最近的恒星,它的名字就是由此而来的。我们在天空中所见到的大多数恒星都是双重或多重的星系。太阳这个星系倒是一个有点奇怪的例外。

        在仙女星座中,第二颗最亮的β星距我们75光年。我们现在所看到的它的光亮,在黑暗的星际空间旅行了75年才到达地球。举一个不大可能的例子,如果仙女座β星上星期二因爆炸而消毁的话,也只有等75年之后我们才能得到这个消息。这是因为,爆炸产生的有趣信息以光速运行也要75年的时间,才能穿过茫茫的宇宙空间到达地球。我们现在所看到的这颗星的星光在它出发的时候,年轻的爱因斯坦还是瑞士专利局的工作人员,刚刚发表了划时代的伟大理论–狭义相对论。

        空间和时间是互相关联的,我们不可能只是遥望太空而无须顾及时间。光的运行速度极快,但空间极其浩瀚,且星体遥遥相隔。在天文数字上,75光年左右的距离是微不足道的,仅举几个例子便可说明这一点。从太阳到银河系中心的距离为3万光年;从地球到位于仙女星座的、离我们最近的旋涡星系M31的距离为200万光年。我们现在所看到的M31的星光向地球出发时,地球上还没有出现进化成现代人的人类祖先;而从地球到最远的类星体需要80~100亿光年,我们现在所看到的是它们在地球凝聚之前、在银河系形成之前的形状。

        这种现象并非仅仅局限于天体,只不过由于天体相距非常遥远,有限的光速才显得如此重要而已。假如你的朋友站在房间里3米外的另一头,你用眼看她时,你所看到的并不是“现在”的她,而是 1/亿秒“以前”的她[(3米)/3 ×108 米/秒=1/(108 /秒)=10-8 秒,即1%微秒。在这类计算中,我们只要用距离除以速度就得到了时间]。你的朋友的“现在”与1/亿秒以前的差别微乎其微。谁也不会去注意这点变化。相反,如果我们观察一个80亿光年以外的类星体,我们所看到的是80亿年前的它,这一事实可能就非常重要了(例如,有人认为类星体可能是只发生在星系早期历史的爆炸事件中。如果真是这样,那么星系离我们越远,我们观测到它的历史就越早,它也就越可能是类星体。当我们遥望50亿光年以上的距离时,类星体的数目确实在增加)。

        两艘“旅行者”号宇宙飞船目前正以光速的万分之一的速度飞行,它们是地球上发射的最快的飞行器。但是,它们可能要用4万年的时间才能到达最近的恒星。那么,难道就没有希望飞离地球,穿过惊人的遥远的旅程到达半人马星座比邻星吗?此外,难道就无法达到光的速度了吗?光速的奥秘究竟何在呢?我们不能飞得比光速更快吗?

        例如你在19世纪90年代里去过意大利迷人的托斯堪乡下,你或许会在通往帕维亚城的大道上碰到一位留着长发的、中途退学的中学生。他的德国老师对他说过,他绝不会有任何成就,他提出的问题破坏了课堂纪律,他最好还是退学。于是,他离开了学校,漫步在乡间的大道上。在意大利北部的自由天地里,他反而能够思索那些与在纪律严明的普鲁士课堂中被强行灌输的、来不及消化的各种课程相差甚远的事情。这个青年学生名叫阿尔伯特·爱因斯坦,正是他的沉思默想改变了整个世界。

        伯恩斯坦的科普著作《自然科学通俗读物》使爱因斯坦爱不释手。书的第一页就描述了电流通过导线以及光通过空间的不可思议的速度。他不禁想到,假如能以光的速度运动,世界将会是什么模样呢?一个10多岁的孩子,走在乡间阳光绮丽的小道上,竟然会想到以光速旅行,这是多么迷人、多么不可思议的想法啊!假如以光的速度旅行,你是不会感到在运动的。如果开始时你从光的波峰上出发,那么在旅行的过程中你会觉得一直在这波峰上,完全不会意识到它是波动的。倘若以光速旅行,就会出现这种怪事。爱因斯坦对这类问题想得越多,就越是摸不着头脑。如果真能以光速旅行,好像到处都会出现矛盾。人们往往不加仔细地推敲,就把某些说法当成真实的。爱因斯坦提出的这些简单问题,早在几个世纪之前就应该想到。例如,我们说两件事情同时发生,究竟指的是什么意思呢?

        让我们设想一下我骑着一辆自行车向你奔去的情景。当我接近一个十字路口时差点撞上一辆马车,为了避免相撞,我赶紧转弯。让我们再把这一事件细细地体会一下,并设想一下马车和自行车都以接近光速的速度行驶的情景。如果你站在路上,马车行驶的方向与你的视线垂直。通过阳光的反射,你看见我向你骑来。难道我的速度不该叠加到光速上,我的影像不是要比马车先到达你的眼睛吗?难道你不是在看到马车之前就看到我转弯吗?从我的角度,而不是从你的角度看,马车和我会同时到达十字路口吗?我会不会几乎和马车相撞?在你看来,我是否无缘无故地转弯,并兴高采烈地朝芬奇城骑去呢?这些都是奇怪而又微妙的问题。它们向一切显而易见的常情提出了挑战。有理由相信,在爱因斯坦之前没有人想到过这类问题。正是从这些基本的问题出发,爱因斯坦才对整个世界进行了彻底的再认识,从而导致了物理学上的一场根本变革。

        要想认识世界,要想在高速运动时避兔上述逻辑上的矛盾,肯定存在某些我们必须遵循的自然规律。在爱因斯坦的狭义相对论中,他总结了这些法则。一个物体发出的光(不管是反射还是发射出来的),不论这个物体是处于运动状态还是处于静止状态,光的运动速度都是相同的。就是说,不能把物体的运动速度叠加到光速上。此外,任何物体的运动速度都小于光速,即不能以光速或大于光速的速度运动。在物理学上,没有任何事物阻碍你以尽可能接近光速的速度运动,即可达到光速的99.9%,但无论人们如何想方设法,都绝对不可能再获得最后的0.1%的速度。既然从逻辑上讲世界是协调一致的,那么就必定存在一个速度极限。否则就可以通过增加运动物体的速度来达到任何想要达到的速度了。

        本世纪初,欧洲人普遍相信存在不受一般法规制约的特殊参照系:德国、法国或英国的文化和政治结构比其他国家好;欧洲人比殖民地国家的人优越,他们受统治是他们的福气。阿里斯塔恰斯和哥白尼思想在社会和政治上的应用遭到反对和藐视。但是年轻的爱因斯坦在物理学上反对特殊的参照系,在政治上同样反对这种优越感。他认为,宇宙中充满了星体,这些星体在各个方向上匆忙地奔驰着,没有任何处于“静止”的地方。在对宇宙的观测上也不存在一处优于另一处的问题。这就是相对论一词的含义。相对论乍看起来很玄乎,其实很简单:就宇宙而言,没有什么地方比其他地方更优越。不论由谁来描述,自然规律都应是一致的。如果自然规律具有不变的一致性,那么认为我们这个小天地在宇宙中有什么特殊之处,就是令人费解的逻辑了。因此可以得出结论,人们不可能以超光速的速度运动。

        我们之所以能听到鞭子抽动的噼啪声,是因为鞭梢以大于声速的速度运动。从而产生一种冲击波,产生一个小小的声响。雷声的道理也与此类似。人们曾经认为飞机的速度不能大于声速,但如今超音速飞行却是极平常的事。但是,光障和声障不同,它不仅仅是一个技术上的问题(像超音速飞机所解决了的技术问题),而是如同万有引力一样)是一个基本的自然规律问题。在人类的历程中,还没有任何现象(包括鞭响和雷声)能在真空中以大于光速的速度运动。相反,人们的普遍经历(包括核子加速器和原子钟)都精确地、定量地符合狭义相对论。

        同时性的问题适用于光,但却不适用于声,因为声音是通过某种物质媒介,通常是空气传播的。当你的朋友在谈话时,到达你耳朵的声波是空气分子的运动,然而光却可以在真空中传播。空气分子要运动需要一定的条件,真空中不具备这样的条件。太阳光能够穿越宇宙空间照射到我们身上,但是无论我们如何仔细地倾听,也不可能听到太阳黑子的爆炸声,或者听到太阳闪光的轰鸣。在相对论学说创立之前,人们一度认为光的传播是通过一种特殊的、充满宇宙空间的介质–以太。但是,著名的迈克尔逊-莫雷实验证明,根本不存在以太这种物质。

        我们有时会听说某种事物能运行得比光还快,特别常提到的是所谓的“思维速度”。这是一种格外愚蠢的说法,因为思维的脉冲通过脑神经细胞的速度并不比一辆驴车快多少。人类聪明到能够提出相对论,这只说明我们有高超的思维能力,但并不能因此吹嘘,说我们的思维速度有多么快。不过,计算机的电子脉冲速度倒确实与光速相差无几。

        20几岁的爱因斯坦创立了完整的狭义相对论学说,经过各种实验的检验证明是正确的。将来,或许有人能提出一种普遍适用的学说,既防止同时性一类的矛盾,避免了特殊参照系,又能允许超光速的运动,但我对此十分怀疑。爱因斯坦提出不可能超过光速运动的见解可能很不符合常识,但在这个问题上,为什么非得要相信常识呢?为什么我们1小时走10公里的经验应当包含1秒钟运动30万公里的自然规律呢?相对论确实限定了人类能力的极限,然而,宇宙并非一定要与人们的愿望相适应。狭义相对论排除了我们的飞船以超光速的速度飞往星球的可能性,但却展示了另一种未曾预料到的诱人的方法。。

        依照乔治·盖莫夫的想法,让我们设想有那么一个地方,在那里光速不是每秒30万公里,而是一个颇为一般的数值,譬如说每小时40公里,并受到严格的强制(打破自然规律并不违法,因为其中毫无犯罪行为:自然界是自我调节的,它只是将一切安排得使你无法逾越它的限制)。想象一下骑着摩托车以接近光速行驰的情景(在相对论著作中,以“设想……”开头的句子比比皆是,爱因斯坦称其为“思维实验”)。随着车速的增加,开始观察附近过往的物体。当你目不斜视地注视前方时,你身后的物体却出现在你前方的视野之内。当你以接近光速的速度奔驰时,世界在你的眼里就会变得十分奇特,最后,你会看到正前方有一个圆形的小洞,世上的一切都被装进了这个小洞。在静止的观察者看来,当你离开时从你身上反射的光呈粉红色,而当你返回时却呈现蓝色。假如你以近于光速的速度驶向观察者时,你就会处于斑斓而奇异的色彩包围之中。通常看不见的红外光就会变成波长较短的可见光。你会在运动的方向上受到压缩,质量增加,而时间却变慢–一种接近光速运动的惊人结果,称为时间膨胀。但是在同行的观察者,譬如摩托车后座上的人看来,上述现象都不会发生。

        狭义相对论这些独特的、初看起来令人困惑的预见是正确的。在最深刻的意义上讲,科学的东西都是正确的,它们都取决于你的相对运动。但是,它们是实实在在的,不是光学上的幻影。可以用数学,大概只要一年级的代数就能简单地表述出来,因此任何受过教育的人都不难理解。此外,许多实验也证明了其真实性。与静止的钟相比,置于飞机上的十分精确的钟会少许变慢。核子加速器都是按照质量随着速度的增加而增大的原理设计的,否则,被加速的粒子就都会撞到加速器的壁上,这样就无法进行核物理实验了。速度等于距离除以时间。由于在接近光速时不能像我们日常所习惯的那样简单地进行速度的叠加,我们熟知的所谓绝对空间和绝对时间的概念,即与你的相对运动无关的概念就必须扬弃了。这就是身体受到压缩的原因,也是产生时间膨胀的原因。。

        以近于光速的速度运动,你会青春常在,而你的朋友和亲属则照例会衰老。因此,当你从这种相对性的旅行返家时,你的朋友和亲属已老了几十岁,而你却一点都未变老,这是多么大的差别啊!由此看来,以近光速旅行倒是一种长生不老之药。因为时间在接近光速时变慢,相对论提供了一种到星球去旅行的方法。但是,从实际的技术角度看来,接近光速的旅行可能吗?能造出这样的星际飞船吗?

        托斯堪不仅仅是年轻的爱因斯坦某些思想的发源地,它也是另一位伟大的天才达·芬奇的故乡。达·芬奇比爱因斯坦早400多年,他很喜欢爬上托斯堪山,从山顶俯瞰大地,就像一只翱翔的鸟。他最早从高空画出了青山绿水、城镇要塞的远景画。达·芬奇兴趣广泛、多才多艺,他爱好绘画、雕刻、解剖学、地质学,也爱好自然史、军事和土木建筑工程,他最喜好的是设计和制造一种能飞的器械。他绘制了草图、制作了许多模型,并造出了实际的样机,但是没有一架能飞起来。当时,功率强、重量轻的发动机尚未问世,他当然不会成功。但他的构思却极为巧妙,给后来的工程师以很大的启迪。一次又一次的挫折使达·芬奇非常沮丧,但那时是15世纪,又怎么能怪他呢?

        1939年发生了另一件类似的事情,英国的一批工程技术人员成立了一个星际学会,他们设计了一艘载人登月的飞船。当然,他们在当时的技术条件下所设计的飞船与30年后完成登月飞行的“阿波罗”飞船无法相提并论,但这件事至少表明,登月飞行总有一天在技术上会成为现实。

        如今,已经初步设计出载人去恒星的星际飞船。所有设想的这类星际飞船都不是直接从地面发射,而是在地球轨道上建造、并从地球轨道上发射的。有一个计划是以猎户星座命名的,称为猎户星计划,意思是飞船的最终目标是猎户星座的恒星。这个计划的设计思想是对着一块惯性极进行氢弹爆炸,通过爆炸产生推动力,像是一艘巨大的空中核摩托艇。从技术上来看,猎户星计划似乎是完全可行的。当然,它会产生大量的放射性碎片,但星际飞行是在广阔无垠的行星或恒星之间进行的。十分遗憾的是,在签订了禁止高空核爆炸的国际条约后,美国放弃了对猎户星计划的认真研究。制造猎户星星际飞船是我所能想到的利用核武器的最好方法。

        最近,英国星际学会提出了戴达罗斯计划。它是以核聚变反应堆为基础的,核聚变反应堆是一种比现有的核电站所采用的核裂变反应堆更安全、更有效得多的反应堆。我们现在尚未造出这种反应堆。但他们深信,再过几十年肯定会制造出来。猎户星计划和戴达罗斯计划的飞船速度只有光速的1/10。 因此,要到达距我们最近的半人马座α星(4.3光年),只需要43年的时间,这比人的一生短,这种飞船的飞行速度与光速的差距还很大,相对论所阐明的时间膨胀原理还不会明显地显示出来。尽管我们希望现在就可以建造猎户星飞船,但根据对技术发展的最乐观估计,在21世纪中期之前,不大可能造出猎户星飞船、戴达罗斯飞船,或者与它们类似的飞船。

        要到最近的恒星以外去旅行,还有其他的问题必须解决。也许,猎户星飞船和戴达罗斯飞船可以作为多代飞船,那些到达另一颗恒星的卫星上的人可能是几世纪前出发的人的遥远后代。也许将会发明一种安全的冬眠方法,将宇航员冷冻起来,使他们处于休眠状态。经过若干世纪后再使他们重新复苏过来。与接近光速的星际飞船相比,这些非相对论性的星际飞船虽然造价可能极其昂贵,但在设计、建造和使用上看起来较为容易。只要进行不懈的努力,人类是可以到达其他恒星世界的。

        进行高速的星际飞行–以接近光速航行,不是经过100年,而是要经过1000年,甚至1万年的努力才能达到的目标,但在原则上它是可能的。R·W·巴萨德提出了一种冲压喷射飞船的设计方案,利用冲压喷射的方法把太空中弥散的物质,主要是飘浮在星体之间的氢原子,聚集到冲压喷射发动机后,再从发动机尾部喷射出去。这些氢原子既用作发动机的燃料,又是聚变反应的物质。但是在宇宙空间的深处,每10立方厘米(相当于一串葡萄的体积)大约只有一个氢原子。要使冲压喷射发动机正常工作,发动机前部的漏斗形接纳口直径需要几百公里之大。当飞船达到相对论原理所需的速度时,氢原子相对于飞船就会以接近光速运动。假如不采取足够的预防措施,宇宙飞船和宇航员就会被所诱发的宇宙射线所焚灭。已经提出的一种解决办法是利用一个激光器把星际间飘浮的原子中的电子剥离出来,并在原子尚未靠近飞船时使它们变成带电的粒子,再用一个极强的磁场使带电粒子直接吸人漏斗形进口,而不与飞船的其他部分接触。不过在技术上人类目前还做不到这一步。我们现在所谈论的还只是小型发动机。

        但是,还是让我们来设想一下这种飞船。我们知道,地球以某种力吸引着我们,当我们从空中下落时,就会受到加速作用。假如我们从一棵树上掉下来–我们的始祖一定有过这种经历,我们的降落速度会越来越快,每秒钟增加大约10米(或约32英尺)。这样的加速度称为1g,它表示地球的吸引力。在一个重力加速度(1g)的情况下,我们不会有任何不适的感觉,因为我们一直就生活在一个重力加速度的环境中。假如我们生活在一艘星际飞船中,飞船的加速度也是1g,那么我们对飞船的环境也会完全适应。实际上,地球的引力与同样加速度的飞船中所感觉到的力是等价的,这正是爱因斯坦后来提出的广义相对论的重要特征。以一个重力加速度的速度不断增加下去,我们在宇宙空间航行一年以后,速度就会接近光速[(0.01公里/秒2×3×107秒)=3×105公里/秒]。

        假定有这样一艘飞船,以1g的加速度加速,越来越接近光速,一直到航程的中点,然后反过来以1g的加速度向预定的目标减速。这样,在飞船的大部分航程中都将以近于光速的速度飞行,因而时间将大大减慢。一个最近的飞行目标是可能有行星的巴纳德恒星,距地球约6光年。那么照飞船上的时钟计算,大约8年的时间就可到达巴纳德恒星;到银河系的中心需要21年;而到达仙女星座的M31星体则需要28年的时间。当然,对地球上的人来说情况是截然不同的。到达银河系中心,对飞船上的人来说只用了21年,但在人世间,时间已经流逝了3万年,因此当我们返家时,前来迎接的将都是些陌生的面孔。原则上,这样一种旅行是以更接近光速的速度进行的,因此只需要大约56年的飞船时间就可以环绕已知的宇宙飞行一圈。返回地球时,人间已过了几百亿年,地球早已变成一片焦土,太阳也已混灭。高度发达的文明能够乘相对论式的飞船进人宇宙,但也只限于参加宇航的人,而且他们无法以超光速的速度发出信息,与地面上的人互相联络。

        达·芬奇的飞机模型不能与现代的超音速飞机同日而语,而人们现在设计的猎户星飞船、戴达罗斯飞船以及巴萨德的冲压喷射飞船更不能与将来实际的星际飞船相提并论。尽管如此,只要我们不自我毁灭,我相信总有一天我们会成功地飞向其他星系。即使我们的太阳系已探索尽了,还有其他星系的行星在向我们召唤。

        空间旅行与时间旅行二者是相互关联的。只有能迅速地进人未来,我们才能快步进人空间旅行。但过去了的时间怎么样呢?我们能够返回过去,并改变它吗?我们能够使历史事件改变其模样吗?我们始终在向着未来迈进,但却是慢吞吞地,一天一天地走向未来。靠相对论式的宇宙飞船,我们可以迅速地飞向未来。不过许多物理学家认为,返回过去的飞行是不可能的事。他们认为,即使有某种飞行器能在时间上向后飞行,那也无济于事。因为假如你能进人过去,而又不与你的父母相遇,那么你自己又是从何而来的呢?这就是一种矛盾了,因为你明明已经在于现世了。就像证明2的平方根是无理数一样,也如同讨论狭义相对论中的同时性一样,这是一个前提有问题的论证,因为其结论显得很荒唐。

        另有一些物理学家则认为,两种互不相容的历史,两种同样实在的事实可以并行不悖。一个是你所了解的,而另一个则是你尚未出生时的。尽管我们只能经历其中的一种历史、一种事实,但时间本身或许是多维的。假如你能退回到过去,并能改变过去,譬如劝说伊莎贝拉女王不要支持哥伦布,那么历史事件的顺序就完全改变了,而随后的发展则难以知晓了。假如这类时间上的倒转旅行是可能的,那么在某种意义上说,任何所能设想的历史变迁就都可能出现。

        历史在很大程度上是各种社会、文化和经济力量错综复杂的交织,不容易-一阐明。不断发生的无数细小而又难以预料的偶然事件,一般说来并没有什么深远的影响,但是在重大关头发生的某些小事件却可能改变历史的面貌。在某些情况下,某些相对很平凡的事件可能会引起深刻的变化。这样的事件距现在越久远,其影响也越加强大有力,因为时间杠杆也就变得越长。

        小儿麻痹症的病毒是一种极小的微生物,我们每天都要接触成千上万个这种微生物。所幸的是,只有极少数的场合,它们才会侵入人体,引起这种可怕的疾病。美国的第32任总统F·O·罗斯福就得过小儿麻痹症。这种疾病会削弱人的意志,也许正因为如此,才使罗斯福比较同情受压迫者,也许正因为这种疾病,才促进他为成功而奋斗。假如罗斯福具有另一种个性,或者如果他从来就没有当总统的欲望,那么30年代大萧条、第二次世界大战和核武器发展的结局可能会大不相同,世界的面貌就可能大大改观,然而,一个病毒是微不足道的,直径只有百万分之一厘米,几乎是可以忽略的。

        另一方面,如果时间可以倒退,我们能够劝说伊莎贝拉女王相信,哥伦布根据埃拉托色尼地球是圆形的估计所提出的地理见解是错误的,哥伦布就永远到不了美洲。同样可以肯定的是,在几十年内会有其他欧洲人向西航行,并发现新大陆。航海技术的进步、香料贸易的诱惑以及欧洲各强国之间的竞争,导致在1500年左右发现美洲成为不可避免的事件。当然,如果不是哥伦布发现了美洲新大陆,就不会有今天的哥伦比亚州或哥伦比亚特区,也不会有俄亥俄州和哥伦比亚大学。但是,即便如此,整个历史的进程仍然会相差无几。要想深刻地影响未来,时间旅行者恐怕要介入一些经过仔细选择的事件中,才能改变历史的面貌。

        探测不曾存在过的世界只是一种可爱的幻想。不过通过这种探测,我们却能更好地了解历史的进程,历史也能变成一门实验科学。假如在历史上,像柏拉图、保罗教皇或彼得大帝这类举足轻重的人物从未出现过,我们的世界可能会是另一番景象。如果古希腊爱奥尼亚的科学传统能保存下来并繁荣兴旺,当今的世界又会变成什么样子呢?那种传统若要幸存,将要求当时的各种社会力量具有不同的观点——包括曾经盛行的、认为奴隶制是自然的、合理的观点。如果在 2500年前照亮地中海东部的曙光没有消逝,世界又将是怎样一种景象呢?假如在工业革命前的2000年中,人们一直尊重科学和实验,崇尚手艺和技艺的传统能得到发扬,世界又会是什么景象呢?如果人们更广泛地采用这种有效的新的思维方式,其结果又如何呢?有时我不由得想到,如果照上述情况发展,我们可能会节省一二十个世纪,达·芬奇的贡献也许要提早1000年,而爱因斯坦的功绩可能提早500年。当然,在那样一个迥然不同的世界中,可能不会出现达·芬奇和爱因斯坦。许许多多事物都可能会极不相同。每次射精总有上亿个精子,但只有一个精子能与卵细胞结合,从而产生人类的一个后代。但究竟是哪一个精子能与卵细胞结合,在内外诸多因素中,却往往取决于最次要、最不显著的因素。2500年前,哪怕是一件不足挂齿的小事,如果其发生的过程不同,也不会有我们的今天,我们的位置很可能会被无数其他的生灵所取代。

        倘若爱奥尼亚人的思想统治了世界,那么我认为,我们——当然是与现在不同的我们——可能早已到达其他的星球了。我们第一艘去半人马座α星、巴纳德星、天狼星和鲸鱼座τ星的探测飞船可能早已返回了地球。在地球的轨道上可能正在建造一支庞大的星际飞船队,其中包括无人探测船、移民船和巨大的商船,这些船都将航行在浩瀚的宇宙大洋之中。这些船上都可能有符号和文字,如果我们仔细辨认,也许能认出那都是希腊文。而且在首批星际飞船的船首符号中,可能会发现一个12面体,上面刻着“来自地球的‘西奥多罗斯’号星际飞船”的字样。

        在我们这个世界的时间表上,事物的进展总是有点慢慢腾腾,我们远未做好到其他星球去的准备。但再过一二个世纪,当人类探测完整个太阳系时,我们也许就做好了这种准备,无论在意志上,还是在资源和技术知识上,都做好了去其他星球的准备。那时,我们将可以去考察千差万别的其他遥远的行星系。我们将会发现,有些行星与我们地球极其相似,而有些行星则完全不同。我们将会知道该到哪些星球去访问。我们的飞船,我们的后代——泰勒斯、阿里斯塔恰斯、达·芬奇和爱因斯坦的后代,将能轻易地跨越若干光年的遥远距离。

        宇宙中究竟有多少行星系我们还不清楚,但为数肯定不少。仅在我们附近就不止一个,至少有4个,即还有木星系。土星系和天王星系。每个行星系都有各自的卫星,这些卫星的大小和跨距都酷似环绕太阳的行星。对质量相差很大的双星的统计外推表明,几乎所有像太阳一样的双星都应该有行星系的伴随。

        其他恒星的行星在各自的太阳的强烈照射下,只是一个个小光点,因而我们不可能直接看到它们。但我们却能探测出一个不能直接看到的行星,对一个已经直接观测到的大星的引力作用。设想有一颗星,具有很大的“自行”力,以更遥远的星座为背景运动几十年,这颗星有一个大行星,质量与木星类似,轨道平面恰巧与我们的视线成直角。在我们看来,当这颗暗行星位于恒星的右边时,恒星会因引力的作用稍许向右偏移。反之则会往左偏移。因此,恒星的运行轨道会改变或受到扰动,不是以直线,而是以波形线运行。可以用引力振动方法确认的最近恒星是巴纳德星,它是一颗最近的单独的恒星。在半人马座α星中,3颗星的相互作用非常复杂,使研究其质量小的伴星变得十分困难,即使对巴纳德星的研究也颇为费力。用望远镜观测数十载得到的照像底片就是用显微镜也难于分辨其位移情况。人类对巴纳德星周围的行星进行过两次这样的研究。从某种意义上说,两次都颇为成功,表明存在两颗或两颗以上的行星,行星的质量与木星差不多,运行在同一轨道上,其轨道半径略比木星和土星与太阳的距离小(根据开普勒第三定律计算)。但遗憾的是,这两组研究的结果看起来似乎相互矛盾。可能我们确实已经发现了巴纳德星的行星系,但确切的证实还有待于今后的研究。

        人们正在研究用其他的方法来探测环绕恒星的行星。其中一种方法是人为地遮掩住其他恒星的微弱的光,即在天文望远镜镜头前安上一个圆形挡盘,或以月亮的黑暗边缘作为挡盘,这样,恒星旁边的行星所发出的光就能显现出来。在以后的几十年中,我们或许就能确切地回答,离我们最近的上百个恒星中,究竟有哪些恒星具有大行星或伴星。

        近年来的红外观测表明,在一些邻近的恒星四周有许多可能是形成行星之前的碟形气尘云。同时,某些理论研究也得出令人振奋的结果,认为行星系统在银河系里是常见的现象。利用计算机研究了被认为是导致恒星和行星形成的扁平、密集。碟形气尘云的演变。盘状体最初凝聚形成的小块状物质,会不时地喷入云中,块状物质在运动过程中不断吸积尘粒,当它们变得足够大时,就会产生引力,吸引云团中的气体,主要是氢。当两块运动中的块状物相碰撞时,计算机使它们吸积在一起。上述过程一直进行到气尘以这种方式全部被结合完为止。结果取决于初始的条件,尤其是气体和尘埃的密度随与云团中心距离远近而分布变化的情况。但在一系列合理的初始条件下,会形成近似于我们太阳系的行星系,即大约10个行星,类地(球)行星靠近恒星,而类木(星)行星在最外圈。在其他情况下,不会形成行星,而仅仅产生弥散的小星状体;或者在恒星附近形成巨大的类本行星;或者一颗类木行星吸积了大量的气体和尘埃而变成一颗恒星,形成一个双星系。似乎在整个银河系中可以发现大量各种各样的行星系,但现在还不能完全肯定,而且我们认为,很可能所有的恒星都来自这样的气尘云。在银河系中可能有上千亿个行星系,等待着我们去探测。

        这些行星中没有一个会与地球相同。看起来大多数行星的条件都是恶劣的,只有少数几个可能是宜人的。其中许多行星的景色将是极其美丽壮观的。在某些行星上,白天会有许多太阳在天空照耀,夜晚则有许多月亮倾泻着银光,或者在地平线上咆哮着巨大的粒子环。一些月亮可能离行星很近,以致它们的卫星高挂在大空,遮住了半边天际。某些行星可能看起来像巨大的气状星云,它们是以前一颗普通恒星毁灭后的残迹。在所有这些世界的天空中充满了遥远的外来星座,其中可能会有一个暗黄色的恒星,一颗用肉眼观察不到的、只有用望远镜才能看到的恒星,它是探测银河系这一小小区域的星际飞船队的发源地。

        如前所述,空间和时间是互相缠结的。行星和恒星也和人一样,有出生、成长和消亡的过程。人的寿命一般只有几十年,而太阳的寿命则比1亿年还长。与一颗恒星的寿命相比,我们就好比蜉蝣一样,朝生暮死,不到一天就结束了生命。在这种短命的生物看来,人类是迟钝的、令人厌倦的、几乎不动的、几乎什么事情也不做的。而在恒星看来,人生不过只是短暂的一瞬,只是亿万短暂生命的一员,虚弱地挣扎在一个由硅酸盐和铁组成的酷寒而又坚硬的、极其遥远的星球表面上。

        在宇宙所有的行星上,无时无刻不在发生着各种事件,它们决定着行星的未来。而在我们这个小小的星球上,此时此刻正处在一个历史的转折关头,不亚于 2500年前古爱奥尼亚科学家所面临的转折。我们今天的所作所为将影响到若干世纪,并在很大程度上决定我们子孙后代的命运。如果星球也有命运的话,也将影响到它们的归宿。

        第九章 恒星的生命

        太阳神睁开双眼,埃及大地撒满阳光,当他闭上眼睛,埃及大地便又陷入黑暗,由此方有白昼和黑夜之分。诸神出于其口,像生出自其眼。万物莫不由他创造。他是金碧辉煌的神童,他的光芒使所有的生命都显得生气勃勃。——引自古埃及托勒密王朝时期的禅语

        上帝创造的物质颗粒的形状和大小各异,……也许密度和引力也不相同。因此,自然规律才会千变方化,宇宙也才会千姿百态。至少我看不出这一切有什么矛盾之处。——牛顿《光学》

        夜空高悬,星光闪闪:我们常常躺在地上,仰望群星,谈论着这些星星究竟是创造出来的还是自然产生的。——马克·吐温《哈克贝利·芬》

        每当我……极需得到……宗教的安慰时,我就到户外去描绘夜空的繁星。——荷兰画家梵·高

        制作苹果馅饼需要小麦和苹果,还要这儿加一点、那儿添一撮,最后用炉子烘烤。馅饼的配料是由分子组成的,比如糖分子或水分子。这些分子又是由碳原子、氧原子、氢原子及少数其他原子组成的。这些原子又来自何方呢?除氢原子外,其他的原子都是星体造就的,一个星球就像一个宇宙灶,能把氢原子烧制成较重的原子。星球是由星际的气体和尘埃凝聚而成的,氢是这些气体和尘埃的主要成分。氢是在宇宙大爆炸中生成的。假如你想从头开始制作苹果馅饼,你就必须首先创造宇宙。

        假如把一个苹果馅饼切成两半,将其中的一半再切成两半,按照德漠克利特的想法这样切下去,要切多少次才能切成原子呢?答案是:大约要连续切90次。这当然是不可能做到的。因为不会有这么锋利的刀,况且馅饼又极易破碎;原子非常小,肉眼无论如何是看不见的。不过,还是有办法做到的。

        在1910年前后的45年中,人们在英格兰剑桥大学首次揭示了原子的本质。这个方法之一是:用原子碎片轰击原子,再观察它们是如何跳出来的。典型的原子外层裹着一层电子云。电子就是带电的粒子,它所带的电荷被随机地规定为负电荷。电子决定原子的化学性质,因此才有光灿灿的金子,冷冰冰的铁和具有晶体结构的钻石。在原子的内部,原子核深深隐藏在电子云里面,它是由带正电荷的质子和中性的中子组成的。原子非常小,1亿个原子首尾相连也只有小指尖那么大。而原子核则更小,只有原子的十万分之一。难怪人们用了这么长的时间才发现原子核①,然而,原子的大部分质量却集中在原子核内。相比之下,电子犹如漂浮的绒毛。由此可见,原子内部充满了空间,物质内部是很空虚的。

        我就是由原子组成的,我放在桌子上的胳膊肘就是由原子组成的,桌子也是由原子所组成的。既然原子如此之小,原子内部又是如此之空虚,原子核甚至更小,那么,为什么桌子能把我撑住?为什么我的胳膊肘的原子核不会轻易地滑进桌子的原子核中去呢?为什么我不会卷成一团或者掉到地球的另一端呢?A·爱丁顿就是经常这样问自己的。

        答案在电子云里。我胳膊肘中的原子外层有负电荷,桌子中每个原子的外层也都有负电荷,这些负电荷相互排斥。我的胳膊肘之所以不会穿透桌子,就是因为原子核周围有电子,这些电子的电力是很强的。日常生活中的一切无不依赖原子的结构。如果去掉原子中的电荷,任何事物都将变成看不见的微尘。没有这种强大的电的作用力,世界上就不会有物体,而只有四处漂游的电子、质子和中子以及基本粒子的引力球——支离破碎的宇宙残骸。

        当我们假定将苹果馅饼切成单一的原子时,我们面临着一个无穷小的问题;当我们抬头仰望夜空时,我们则碰到一个无穷大的问题。这些无穷是时空的无穷回归:在空间上没有尽头,在时间上没有穷尽。如果你站在理发店的两面镜子之间,你会看到你本人的许多映像,每一个映像都是另一个映像的反映。但你不可能看到无穷无尽的映像,因为镜子不可能绝对平整,光传播的速度也不是无穷快,同时,你站在镜子中间阻碍了光的反射。这里所谓的“无穷大”是一个比任何数字都要大的数。

        有一次,名叫E·卡斯纳的美国数学家要他9岁的侄子为一个非常大的数字取个名字,这个数是10的100次方,即1后面跟着100个零。这个孩子称这个数为“Googol”,写出来是10000000……。你也可以自己组成一个非常大的数,再给它起个奇妙的名字。试试看,这是顶有趣的,特别是如果你碰巧也才9岁。“Googol”(10100 )似乎够大的了,再设想一下“Googolplex”(1010 )100 它是10的10100 次方,即1后面跟 10100 个零。人体中原子的总数大约为炉,而在能观察得到的宇宙中,基本粒子——质子、中子和电子——的总数大约是1080 。如果宇宙是由中子填充的实心体②,也就是说,在宇宙中不留任何空间,所需的中子数大约为 10128 。这个数目与“Googol”相比是大得多了,但与“Googolplex”相比就微乎其微了。况且“Googol”和“Googolplex”都谈不上接近无穷大。确切地说,它们同无穷大的距离与1同无穷大的距离是一回事。如果有人试图写出“Googolplex”,这只能是毫无希望的侈想。即使有一张纸大到足以清晰地容纳下“Googolplex”所包含的所有的零,整个已知的宇宙也塞不下这张大纸。幸好“Googolplex”有一个很简单的表示法:(1010 )100 ,无穷大也有相应的表示:“∞”(读作“无穷大”)。

        烧焦的苹果馅饼大部分变成碳。切90次即可得到碳原子。碳原子核中有6个质子和6个中子,外层云中有6个电子。假如我们从原子核中取出一小块,比如说一块带两个质子和两个中子的碎片,它将不再是碳原子核,而是氦原子核。在核武器和普通的核电厂中所进行的正是这种原子核的切割或裂变,只是它们所分裂的不是碳。在你第91次切割苹果馅饼时,或者当你从碳原子核上切下一薄片时,你所得到的不是一小块碳,而是化学性质完全不同的其他原子,这就叫做“元素嬗变”。

        让我们来进一步探索这个问题。我们知道,原于是由质子、中子和电子组成的。那么,我们能分割质子吗?假如我们在高能条件下用其他基本粒子(比如质子)来轰击质子,我们就可以看到隐藏在质子内部更基本的粒子单位。物理学家现在认为,像质子和中子等所谓的基本粒子,实际上是由称为夸克的更基本的粒子组成的。夸克的性质可以说是“色香味俱全”,这样说是为了让人们更好地理解原子核世界。夸克是物质的最小组成单位吗?或者它自身也是由更小更基本的粒子组成的?我们对物质性质的认识是否已经到底了?是否还存在着无限的越来越小的基本粒子呢?这是科学上还没有解决的一个最大的问题。

        在中世纪的实验室中,为了探求炼丹术,人们曾经探索过元素的嬗变。许多炼丹士都相信,所有的物质都是4种基本物质——水、气、土和火——的混合物。这是爱奥尼亚人的一种古老的推测。他们认为,通过改变土和火的比例,铜就可以变成金。这种谎言颇为迷人。卡格里沃斯特洛和圣·杰耳曼伯爵一类的骗于自称不仅可以点铁成金,而且还通晓长生不老的奥秘。他们有时把金子藏在搅棒的一端,然后装模作样地演试一番,最后让金块奇迹般地在坩埚中出现。炼丹士以财富和长生不老作诱饵,从欧洲贵族身上骗走了大量金钱。当然,严肃的炼丹士也还是有的。如巴拉塞尔士,甚至还包括文萨克·牛顿。当然,炼丹士诈骗到的钱并没有完全白费掉,他们发现了磷锑和汞等新的化学元素。事实上,现代化学的兴起可以直接追溯到这些炼丹士的试验。

        天然存在的化学性质不同的原子,共有92种,称为化学元素。直到近代,我们行星上的一切都是由这些元素所组成的,但它们主要以分子的形式存在。水是由氢和氧原子组成的,空气主要由氮(N)、氧(O)、碳(C)、氢(H)和氩(Ar)原子组成,以 N2 、O2 、CO2 、H2 O和Ar,分子形式存在的地球本身就是形形色色的原子的混合物,其中主要是硅、氧、铝、镁和铁的原子。火并不是由化学元素所组成,而是高温下失去电子的原子核构成的热辐射等离子体。从现代观点来看,古代爱奥尼亚人所说的以及炼丹术的所谓4种元素——水、气、土、火,实际上根本不能称为元素,因为其中之一的水是一种化合物,另两种(土和气)是混合物,而火则是一种等离子子体。

        自炼丹士时代以来,越来越多的元素已被发现,越后发现的元素越是稀有的元素。组成地球的元素或成为生命基础的元素是最常见的元素。在室温下有些元素是固态,有些呈气态,而溴和汞二种元素则呈液态。科学家根据元素的复杂程度将它们按次序排列成表。氢是最简单的,为1号元素;最复杂的是铀,为92号元素。还有一些元素是我们不太熟悉的,如铪、饵、镝和镨,这些元素在我们口常生活中极难碰到。大体上说,愈是我们熟悉的元素愈普遍存在。地球含有大量的铁,而钇的含量却相当少。当然,这个规律也有例外。例如金或铀都很贵重,因为它们可以用来制造金币或装饰品,或者因为它们具有极大的实用价值。

        原子由3种基本粒子——质子、中子和电子一——组成。这一事实直到近代才被发现,而中子则迟至1932年才被发现。现代物理学和现代化学的创立,把错综复杂的世界简化到了令人吃惊的程度:千姿百态的物质世界只是由3种粒子以不同式样排列组成的。

        中子,顾名思义,是不带电荷的。质子带正电荷,而电子则带有与质子等量的负电荷。电子与质子所带的不同电荷之间的相互吸引力使原子得以结合在一起。由于每个原子都是中性的,原子核中质子的数目必定与电子云中的电子数目相等。原子的化学性质只取决于电子的数目。电子的数目(也就是质子的数目)称为原子数。毕达哥拉斯一定会赞同如下观点,即化学仅仅是一门数字的科学。具有1个质子的原子必定是氢,2个是氦,3个是锂,4个是铍,5个是硼,6个是碳,7个是氮,8个是氧,以此类推,具有92个质子的原子必定是铀。

        同性电荷互相排斥。这就是我们所说的“同类相克”——犹如隐士碰上了厌世者。电子排斥电子,质子排斥质子。那么,原子核是怎样捏合在一起的呢?为什么不会各飞东西呢?这是因为其中还有另一种自然力的存在,它既不是引力,也不是电力,而是一种近程核力。只有在质子和中子靠得非常近时,这种力才起作用。它像一排排的钩子,将质子和中子互相拉扯在一起,从而克服了质子间的排斥力。中子只产生核吸引力而不产生电排斥力,它像胶水一样把原子核粘在一起。纵使“隐士”性格孤僻,彼此之间仍可以和睦相处。

        氦的原子核里有两个质子和两个中子,它的结构非常稳定。3个氦原子核构成一个碳原子核,4个构成氧原子核,5个构成氖原子核,6个构成镁原子核,7个构成硅原子核,8个构成硫原子核,如此等等。每当我们增加一个或几个质子及足够数目的中子使原子核凝聚在一起时,我们就制造出一种新的化学元素。如果我们从汞中取出一个质子和3个中子,我们就可以得到金——这是古代炼金士们梦寐以求的事情。铀以外还有一些其他的元素。在地球上,这些元素不是天然存在的,而是人工合成的,而且很容易分解。第94号元素叫钚,是已知最毒的一种元素。不幸的是,它的分解速度相当慢。

        天然存在的元素又是来自何方呢?我们不妨详细考察一下各种原子各自形成的过程。整个宇宙几乎到处都存在着氢和氦,这两种最简单的元素占宇宙物质的99%。事实上,人们在地球上发现氦之前就已经在太阳上发现氦的存在,所以才把它命名为“Helium”(取自希腊的太阳神Helios)。其他元素是否可能是从氢和氦演化而来的呢?核物质必须靠得很近才能抵消电斥力,从而使近程核力起作用。但这种情况只有在几千万度的高温下才能发生,因为在这样的高温下,粒子的运动速度极快,以至于斥力来不及起作用。在自然界里,只有星体内部才有这样的高温和因此而产生的高压。

        人类研究了太阳离地球最近的恒星表面发出的各种波的波长,其中包括无线电电波、普通可见光和X射线等。太阳并不像阿那克萨哥拉所设想的那样是一团炽热的石头,它是由氢和氦组成的一个巨大的球体,由于高温而发出灼热的白光,就像火钳在炽热的火炉里发出白光一样。当然阿那萨哥拉的见解并不是完全错误的。猛烈的太阳风暴会使太阳发出明亮的耀斑,严重地干扰地球上的无线电通讯。太阳风暴还会使太阳形成巨大的拱形羽状热气层——日珥。日珥受太阳磁场的控制。与日珥相比,地球显得渺小多了。有时在太阳下山时用肉眼可以看到太阳的黑子,它们实际上是太阳里磁场强度较大、温度较低的区域。所有这些连续的动荡扰动,都发生在相对温度较低的可见表面。我们看到的只是温度约为6000度的太阳表面。太阳内部的温度高达4000万度,太阳光就是从那里发射出来的。

        恒星及其伴随的行星是在星际气体和尘埃发生引力崩塌时产生的。星云中分子间的相互碰撞使温度升高,最后氢开始聚变成氦,即4个氢核结合成一个氢核,并释放出了射线光子。光子被上面的物质交替地吸收和发射,逐渐向恒星表面移动,而且每移动一步都要损失一部分能量。光子这种漫长的迁移过程需要100万年的时间,最后才变成可见光到达恒星表面,并向星际空间发射。结果恒星发亮了,原先的星云引力消失了。恒星外层的重量被内部核反应所产生的高温和高压支撑住。50亿年来,太阳就是处于这样的一种稳定状态之中。像氢弹内的热核反应一样,太阳内不断地发生着抑制性的爆炸。这种爆炸为太阳提供了能量,每秒钟大约有4亿吨(4 × 1014 克)的氢转换成氦。当我们仰望夜空中的繁星时,我们所看到的就是遥远的核聚变发出的光亮。

        在天鹅星座Deneb星(天鹅星座的一等星)方向上,有一个巨大的、由炽热的气体组成的超级发光气团,它可能是气团中心附近发生的超新星大爆炸和旧恒星泯灭产生的。在其外缘,星际物质在超新星冲击波的重压下,触发出新一轮的星云引力崩塌和新星的形成。从这个意义上说,星体也有双亲,双亲之一可能在孩子出生时死亡,正如人类有时也会发生这种情况一样。

        像猎户座星云那样巨大的高度压缩的复合星云,能成批地产生像太阳一样的恒星。从外部看,这样的星云表面似乎暗淡无光,但星云内部却被炽热的新生星体照耀得灿烂辉煌。后来,这些星体离开了它们的生育之地,邀游到银河系去,在那里寻求自己的前程。成长起来的星体周围仍然带有成簇的发光云雾,它们是在引力作用下仍然吸附着的原生气体的残余。金牛座的昂星团是一个最新的例子。像人类的家庭一样,成年后的星体也会离家远走,致使兄弟姊妹之间很少团聚。在银河系的某些地方就有太阳的兄弟姊妹,其数目可能多达几十个,而且是由同一个星云在50亿年前产生的。但是,我们目前还不清楚它们都是哪些星体,只知道这些星体可能位于银河系的另一侧。

        在太阳中心,由氢转化为氦的反应不仅发射出可见光的光子而使太阳光芒四射,而且还产生更神秘的、难以捉摸的辐射:太阳靠中微子发出微弱的光。中微子与光子一样,无重量,以光速传播,但中微子不是光子,它不是一种光。中微子与质子、电子和中子一样,具有固有的角动量,或称为“自旋”,而光子是根本没有自旋的。对中微子来说,物质无所不能穿透。它几乎能毫不费力地穿过地球和太阳,只有极小部分被干涉物质阻滞而不能通过。在我们朝太阳直视一秒钟时,有10亿个中微子穿过我们的眼球。当然,中微子不会像光子那样停留在视网膜上,而是势不可挡地穿过我们的头。奇妙的是,在晚上,我们低头朝着太阳的方向——地面时(就好像我们的脚下没有地球把太阳挡住一样),几乎有等量的太阳中微子穿过我们的眼球。像可见光可以轻易地穿透玻璃那样,中微子可以轻易地穿透地球。

        如果我们对太阳内部的认识能像我们所想象的那么透彻,而且又懂得中微子产生的核物理学,那么我们就可以准确地计算出单位时间内在单位面积上所接收到的太阳中微子数量(譬如在我们的眼球上每秒钟所接收到的中微子数)。然而,要用实验的方法验证计算所得到的数据是相当困难的,因为我们不可能捕捉到穿过地球的中微子。但在大量的中微子中会有一小部分与物质相互作用,在条件适当的情况下还是可以检测到的。中微子偶然间可以将氯原子转变成氩原子,但质子和中子的总数不变。我们需要大量的氯,才能验证所谓的太阳中微子流的预言。为此,美国物理学家把大量洗涤液倒进南达科他州利德地区的霍姆斯特克矿井,采用微量化学的方法,从氯中除去新生的氩。从而可推断:产生的氩愈多,中微子也就愈多。实验表明,太阳的中微子比计算所预计的要少。

        这至今仍然是一个不解之谜。虽然低太阳中微子流不至于危及我们关于星体核合成的理论,但肯定具有某种不可忽视的意义。有的人认为,中微子在从太阳到地球的迁移过程中裂成碎片;有的人认为,太阳内部的核火焰被暂时封闭,缓慢的引力收缩过程是产生现在这种太阳光的原因之一。当然,中微子天文学还是一门非常新的学科。但是,目前我们已经发明了一种奇妙的工具,可以用它直接观察炽热的太阳核心。随着中微子望远镜灵敏度的提高,我们还可能观测邻近星体深处的核聚变反应。

        由于在太阳或者其他星球的核心里的氢燃料是有限的,氢的聚变不可能永远持续下去。一个星体的命运,一个星体的生命周期的完结,在很大程度上取决于它的原始质量。一个星体在太空中消耗了它的部分物质之后,如果它的质量还有太阳的质量的二三倍,那么,它的生命循环方式将与太阳绝然相同。但是太阳的运数已够壮观了。五六十亿年以后,当太阳中心的氢全部转化成氦的时候,氢聚变区将慢慢向外——向热核反应的膨胀壳——迁移,迁移到温度约为1000万度的地方。同时,太阳的自重将迫使其富含氦的核心重新收缩,使内部的温度和压力又进一步升高。氦核将更密集地堆集在一起,以致开始互相渗透。尽管存在着电荷间的斥力,但此时近程核吸引力开始起作用。灰烬又变成燃料,太阳将开始第二轮核聚变反应。

        这个过程将产生元素碳和元素氧,为太阳在一定的时间内的继续发光提供新的能源。星球犹如埃及神话中的凤凰。相传这种鸟每500年自行焚化一次,然后由灰中再生③。在太阳外壳的氢聚变和太阳中心的高温氦聚变的共同作用下,太阳将发生根本的变化:外层膨胀、温度降低,变成一颗红色巨星。它的外表将远离其内核,结果表面引力将变得很微弱。它的大气层将以星球飓风的形式扩散到宇宙空间。当太阳膨胀成一颗红色巨星时,它将把水星和金星——甚至地球——完全吞没。整个内太阳系都将被太阳吃掉。

        再过几十亿年,地球上的美好时期就会结束。以后太阳将慢慢地发红、膨胀。整个地球,包括两极,都将酷热无比。地球北极和南极的冰冠将消融,整个地球会成为一片汪洋。由于高温,更多的海水将蒸发到空中,使天空变得雾气腾腾。因为云雾遮住了阳光,地球的末日可能向后推延。但太阳的演变是无情的。海水终将沸腾,大气层势必蒸发到太空中去,我们这颗行星将遭受到最大的灾难④。到那时,人类肯定会进化成另一副模样。我们的后代也许能控制或调节星体的进化,或者只好卷起铺盖,搬到火星、土卫二或土卫六上去住,或者像R·戈达德所设想的那样,到某个年轻的、充满希望的行星系去寻找尚未开发的新天地。

        利用太阳的星尘做燃料是有一定限度的。总有一天,太阳内部将完全由碳和氧组成,那时的温度和压力将无法继续维持核反应。当太阳中心的氦快用完时,其延缓的崩塌过程将重新开始,温度将再度上升,从而引起最后一轮的核反应,并使大气层相应地有所膨胀。在这最后毁灭的过程中,太阳将发生缓慢的脉动,每隔几千年伸缩一次。最后,大气层中的物质都将被他入宇宙空间,形成一个或几个同轴的气壳。因为太阳炽热的核心已经暴露,它的紫外光会将气壳淹没,还会形成斑斓缤纷的红色和蓝色的荧光,一直延伸到冥王星轨道以远的地方。太阳中的一半物质大概会以这种方式损耗掉。到那时,太阳崩溃所产生的强光将充满整个太阳系。

        当我们从地球这个银河系的角落里举目四望时,我们可以看见许多星体被闪光的球形气团——行星状星云——所包围。这些星体并不是行星,不过其中有些很像在低倍望远镜里所看到的天王星和海王星的蓝绿色圆盘。这些气团乍看起来呈环形,因为它们像肥皂泡一样,边缘比中心看得更清楚。所有行星状星云都是恒星的外层标志。在靠近星体中心的地方可能有一些已经死亡了的天体,它们是曾经充满生机的行星的残骸,现在既无空气也无海洋,笼罩在微弱的亮光之中。太阳的残骸,即裸露的太阳核,最初包裹在行星状星云之中,后来变成一个炽热的小星球。它在空间逐渐变冷、收缩,密度大到空前惊人的程度——一汤匙大小的物质重达1吨以上。再过几十亿年,太阳就会退化成一颗白矮星,像我们所看到的行星状星云中心的亮点。它的表面高温度逐渐冷却,最终成为一颗暗淡无光的、死气沉沉的矮星。

        质量大致相同的两颗恒星的演化速度大抵相同。不过,质量较大的恒星核燃料的消耗速度要快些,变成红巨星的时间也会早些,而且会首先衰退成白矮星。因此,应该有、也确实有许多双星体存在。在这些双星体中,一个是红巨星,另一个是白矮星。有些双星体紧靠在一起,灼热的星气流便直接从膨胀的红巨星流向致密的白矮星,在白矮星表面的某个特定的区域着陆。氢原子在白矮星的强引力作用下、不断地聚集在一起,压力和温度不断地升高,直到来自红巨星的大气物质发生热核反应,使白矮星短暂地闪烁出明亮的光辉。这样的双星体称为新星,其来源与超新星大不相同。新星只能在双星体系内形成,其能量来源于氢原子的核聚变。而超新星则只存在于单星体之中,其能量来源于硅原子的核聚变。

        在星体内部合成的原子通常都要返回到星际气体中去。红巨星会将它们的外大气层喷射到星际空间去,行星状星云就是类太阳恒星不断喷射其外层物质后的最终产物。超新星迅速地将它的大部分物质喷射到星际空间去。返回星际气团的原子自然是星体内部热核反应最易产生的原子:氢原子聚变成氦,氦聚变成碳,碳聚变成氧。在大恒星内,由于氦核不断增加,形成了氖、镁、硅、硫等物质。氦核是逐步增加的,每次增加2个质子和2个中子,一直到生成铁为止。硅原子的聚变也能直接形成铁原子,因为1个硅原子含有28个质子和中子,在几十亿度的高温下,两个硅原子就可以结合成一个含有56个质子和中子的铁原子。

        以上都是我们熟悉的化学元素。这样的星际热核反应并不容易生成铒、铪、镝、镨或钇,却容易生成我们日常生活中常见的元素。这些元素返回星际气团,在随后发生的星云崩塌及恒星和行星形成的过程中散尽。除了氢和部分的氦以外,地球上的所有化学元素都是几十亿年前的星体中的某种星体灶制造出来的。这些星体有一部分已经变成白矮星,默默无闻地呆在银河系的另一侧。人体脱氧核糖核酸中的氮,牙齿中的钙,血液中的铁,以及苹果馅饼中的碳,都是在崩塌的星体内部形成的。因此我们可以说,人体是由星体物质构成的。

        某些稀有元素则是在超新星的爆炸过程中形成的。地球上金和铀的含量之所以比较丰富,就是因为在太阳系形成之前发生过许多超新星的爆炸。其他行星系中稀有元素的含量可能与地球不尽相同。是否存在这样一些行星,它们的居民炫耀着铝制的首饰、钋制的手镯,而金子却是实验室中难得的珍品呢?假如地球上的金和铀也像镨一样鲜为人知,无足轻重,那么我们的生活是否会大大地改观呢?

        生命的起源和进化,在本质上是与星体的起源和演化息息相关的。首先,构成人的物质以及使生命活动成为可能的原子,都是很久以前在遥远的红巨星上形成的。宇宙中发现的化学元素的相对丰度,与恒星中所产生的原子的相对丰度极其吻合,因此,我们有理由相信,红巨星和超新星就是炼制物质的锅和灶。太阳是一个第二代或第三代的星体,太阳中的所有物质以及在我们周围所看到的所有物质,都是星际锅灶在前一轮或前两轮的循环中炼制的。其次,地球上还存在着某些重原子,这一事实表明,在太阳系形成之前不久,可能有一颗较近的超新星发生过爆炸。这次爆炸不大可能是一种偶然的巧合,而可能是由于超新星爆炸所形成的冲击波压缩了星际气体和尘埃,从而导致了太阳系的凝聚。第三,太阳出现之后,它的紫外线大量射入地球大气层,它的热度产生了光照,从而激发了导致生命起源的复杂的有机分子。第四,地球上的生命几乎都离不开阳光。例如,植物吸收光子后将太阳能转化成化学能,动物则以植物为养料。人类的种植活动只不过是利用植物作为媒介来获取太阳光而已。因此我们可以说,我们每个人都是以太阳作为能量来源的。最后,遗传学上的变异为进化提供了原始的材料。变异是大自然选择新生命形式的手段,而宇宙射线——超新星爆炸时以近于光的速度射出的高能粒子——则是产生变异的原因之一。遥远的大恒星的死亡是地球上生命进化的原动力之一。

        假如我们把一个盖格计数器和一块铀矿石带到地下深处,譬如说,放在一个金矿井深处,或放在一个火山熔岩洞——由融化的岩浆流过地球而切开的洞穴——深处,当它们受到γ射线或像质子和氦核这样带电高能粒子的照射时;灵敏的计数器就会检测出来。如果把计数器移近铀矿石,计数速率(即计数器每分钟发出的咔嗒声)就会迅速增加,因为铀矿石在自发的核衰变中能释放出氦核。如果把铀矿石放在一个厚的铅筒内,计数速率就会大大减少,因为铅能吸收铀的辐射。但还是可以听到计数器发出一些咔嗒声,其一部分咔嗒声是由洞壁的天然放射性引起的,一部分是由穿透洞顶的带电高能粒子引起的。我们听到的是很久以前在太空深处产生的宇宙射线的声音。在地球的整个生命史中,这种主要由电子和质子组成的宇宙射线一直在不停地撞击着地面。上万光年以外的星体在消亡过程中所产生的宇宙射线,有一部分经过几百万年才穿过银河系,碰巧撞上地球以及我们的遗传物质。在生命遗传码的形成、寒武纪爆炸或我们祖先进化成两足直立的某些关键阶段,很可能就是由宇宙射线触发的。

        1054年7月4日,中国天文学家在金牛星座发现了一颗他们称为“客星”的金牛星。这是一颗人们在天空中从未见过的最明亮的恒星。绕地球半固,在美洲的西南部,当时有一个富有天文研究传统的高度文明的民族⑤也目睹了这颗明亮的新星⑥。根据我们发现的一个木炭堆残迹里的C14 ,我们可以推断,在11世纪中期,有些安奈萨齐人,即今天的荷皮人(生活在美国亚利桑那州东北部的印第安人)的祖先,曾经在现在的新墨西哥州的一块悬垂的山崖下居住过。似乎是他们当中的一个人在悬崖上留下了一幅未受风化的新星图。这颗新星与新月之间的相对位置可能就是图中所绘的那样。在那儿还发现一个手印——也许是那位画家留下的印记。

        这颗著名的恒星现在称为蟹状超新星,距地球5000光年。之所以如此称呼这颗星,是因为几个世纪以后,一位天文学家用望远镜观察大爆炸的残迹时,偶然想起它的形状像螃蟹。蟹状星云是一个巨大的恒星爆炸的残留物形成的。这次大爆炸经历了3个月,在地面用肉眼都可以看见。在晴朗的白天很容易看到,就是在晚上,也可以借它的光读书看报。每一个星系中,平均每100年出现一颗超新星。一个典型的星系的生命周期大约为100亿年,也就是说,将有1亿个星球发生爆炸。这个数字是够惊人的,但是尽管如此,在1000个星星中不过只有一个星星发生爆炸。银河系在1054年发生爆炸之后,第谷于1572年发现了一个超新星。稍后,在1604年,开普勒⑦又发现了另一颗超新星。但是自从天文望远镜发明以来,竟然在银河系里还没有观察到超新星的爆发。几个世纪以来,天文学家们对此怨叹不已。

        我们现在经常能观察到其他星系中的超新星。1979年12月6日,英国《自然》杂志刊登的D·赫尔方和K·朗的文章足以使20世纪初的天文学家惊讶得目瞪口呆。文章宣称:“1979年3月5日,由9个星际飞行器组成的爆发传感器网络,记录到了极其猛烈的硬X射线与γ射线的爆发。根据飞行时间测定:其位置与大麦哲伦星云中的N49号超新星的残留物位置相一致。”(大麦哲伦星云所以这样命名,是由于在北半球第一个注意到这个星云的人叫麦哲伦。这是银河系的一个小卫星星系,在18万光年以外。既然有大麦哲伦星云,当然也有小麦哲伦星云)但是,同一期杂志还刊登了梅泽兹和他在列宁格勒爱奥弗(Ioffe)学院的同事合写的文章。他们利用装在“联盟11”号和“联盟12”号宇宙飞船上的γ射线爆发探测器,在登上金星的途中,观察到了这个爆发源。他们认为,探测器检测到的是一个发光的脉冲星,离我们只有几百光年。尽管在位置上很接近,赫尔方和朗并没有肯定γ射线的爆发与超新星的残留物有关。他们估计了各种各样的可能性,其中包括如下这样一个令人吃惊的推断:这个爆发源就在太阳系内!也可能是其他星球的飞船在其漫长航行的归途中排出的废弃物。但是,“N49号超新星发生星体爆发”的理论更容易为人们所接受,因为我们已经证实了超新星的存在。

        当太阳变成红巨星时,内太阳系的命运如何是一个严峻的问题。但有一点可以肯定,就是行星决不会被喷发的超新星融化和烤焦。只有比太阳还大的恒星附近的行星才会遭受这种厄运,因为大恒星的温度高、压力大,其核燃料的消耗速度也快,生命周期也就比太阳短得多。在发生异常的核反应之前,一个比太阳大数十倍的恒星将氢转化为氦的过程,最多只能持续几百万年。因此,几乎可以肯定没有足够的时间让任何一个行星出现高级生命形式的进化。其他星球上的生命也不可能知道他们的星球会变成超新星。这是因为,如果他们的生命长到足以使他们能明白超新星是怎么一回事,他们的星球也就不可能变成超新星。

        超新星爆发的主要条件是:硅聚变成大铁核。在巨大的压力下,星体内部的自由电子被迫与铁原子核的质子合并。等量而相反的电荷互相抵消,结果星球内部变成一个巨大的原子核。原子核所占据的体积比原先的电子和铁原子核所占的体积小得多。星球中心会发生猛烈的爆聚,而其外部则产生回弹现象。超新星就是这样爆发起来的。超新星的亮度可能比该星系中所有其他星球加起来的亮度还要大。预计在今后几百万年内,猎户星座中所有最近形成的蓝白色超巨星都会变成超新星。猎户座将出现连续不断的宇宙烟火。

        可怕的超新星爆发会将原来星球中的大部分物质——少量的氢和氦以及数量可观的碳、硅、铁和铀原子——喷射到宇宙空间,剩下的就是由核力束缚在一起的热中子核。这是一个巨大的原子核(原子量达1056 ),一个直径只有30公里的恒星,一个小得可怜的、皱缩的、密集的、没有生气的星体碎片,一个快速旋转的中子星。当巨大的红巨星坍塌成这种中子星时,它的自转速度显著加快。蟹状星云中心的中子星就是一个巨大的原子核,其大小与曼哈顿区差不多,每秒钟自转30圈。这个中子星强大的磁场在红巨星坍塌过程中得到进一步增强,并能俘获带电的粒子,其作用颇像小得多的木星磁场。在旋转磁场中的电子会产生辐射束。不仅会产生无线电频率范围内的射线,还会产生可见光。如果地球碰巧位于这个宇宙灯塔的光程之内,我们就会看到它每旋转一次就发生一次闪光。因此,我们又把它称为脉冲星。脉冲星犹如一个宇宙节拍器,它会定时闪光,定时发出嘀嗒声。它比最准确的时钟还要准时。通过对某些脉冲星的长期无线电脉冲频率的测定,我们可以推断。,这些脉冲星, 例如PSRO329+52号脉冲星,可能有一个或几个小伴星。我们大概可以这样设想:行星能够在恒星演化成脉冲星时免于毁灭,行星有可能推迟被俘获。要是站在这样的行星表面上望天空。我们将会看到怎么样的一番景象呢?

        一匙中子星的质量差不多等于普通的一座山的重量。因此。如果你让一小块的这种物质从手里脱掉(你也只能这么做)、它会像石头从空中落下那样轻而易举地穿过地球。在地球上钻出一个洞,从地球的另一侧——可能从中国——钻出来。那里的人们可能正在外面散步、思考着自己的问题。突然一小块中子星物质从地面冒出来,在空中停留片刻,然后又钻回到地球的下面去。这件事至少可以成为那一天人们拿来消遣的话题。如果一块中子星物质从附近的太空中落下来,当它下落时地球又正好在它的下面转动。那么。它就会反复穿越转动的地球,将地球撞出成千上万个孔。直到它与地球的摩擦所要生的作用力迫使它停止运动为止。在中子星物质停止在地心之前,我们的行星内部早就像一块瑞士乳酪一样千疮百孔了,因此只好等地下的岩石流和金属流来愈合这些创伤。,幸运的是,大块的中子星物质还从来没有在地球上降落过。但小块的这种物质则比比皆是。中子星的这种可怕力量就潜伏在每个原子的原子核中。也就是说。在每只茶杯中,在每只老鼠身上。在每次呼吸之间。以及在每块苹果馅饼中。都存在着这种力量。中子星告诫我们,不要轻视最平凡的事物。

        从上面我们已经了解到,像太阳这样的恒星终将结束它的生命而变为红巨星,然后再变为白矮星。一颗质量比太阳大2 倍的恒星坍塌后将变为一颗超新星,然后再变为一颗中子星。那些更大的恒星(例如在经历超新星阶段之后质量比太阳大5倍的恒星)的命运就更加奇特了。重力会使它转变成黑洞。假定我们有一台魔术重力机,那么就可以通过拨动它的刻度盘来控制地球的引力。开始时将转盘拨到1g⑧(g表示重力加速度),地球上所有东西的行为与我们所预料的完全一样,因为地球上的动植物以及所有的建筑物都是按1g演化和设计的如果重力远远小于1g,所有事物的外形都会变得高而瘦长,动物植物和建筑物都不会因自身的重量而倾倒或粉碎。如果重力大于1g,动物、植物和建筑物都会变得粗壮而结实。但是即使在相当强的重力场中,光仍然是直线传播的。

        物体的重量随着重力的减弱而减少,当重力趋近于零时,轻微的动弹就会使我们的朋友漂浮起来,并在空中直翻筋斗;茶或其他液体一旦溢出来就变成在空中跳动的圆球,因为这时的表面张力超过了重力。当重力盘恢复到1g时。所有的茶球都会变成茶雨降落下来。当重力盘转到3g或4g时,人人都动弹不得。甚至移动一只脚都是很费力的。在我们继续将重力盘往上拨之前。我们还是把我们的朋友送出重力机的作用范围以外为妙。在重力还只有几个g的情况下,提灯的光束仍旧直线传播(就我们的分辨能力而言,可以说几乎是直线),这与重力为零时的情形没有什么两样。当重力达到1000g时,光束仍然是直的,但树木已经被压扁。当重力达到100万g时,石头由于自身的重量而粉碎。最后,除了那只有特殊豁免权的笑猫以外,没有任何东西能够幸存。当重力接近10亿g时,更不可思议的事情发生了:原来笔直射向天空的光束开始弯曲。在极大的重力加速度下,就是光也受到了影响。如果把重力再加大的话,光就会逆转而返回我们附近的地面。此时,任何宇宙间的怪物已不复存在,剩下的只是龇牙咧嘴的引力。

        当重力大到一定程度时,任何东西,哪怕是光,都不能够从中逃逸出来。这样的地方就叫做黑洞。黑洞对周围的一切都是冷酷无情的,它是宇宙中的一种怪物。当密度与重力变得足够大时,黑洞熄灭不见了。之所以称之为黑洞,是因为即使是光也无法从中逃脱出来。由于光被捕捉在黑洞里,所以黑洞到处都被照得明晃晃的。虽然我们从外面看不见黑洞,但它的重力存在却是很明显的。在星际航行中,如果你对黑洞没有给予足够重视,你就可能被黑洞无情地拖进去,你的身体就会被拉成细细的长线。但是,万一你在这样的航行中幸免于难的话,你倒是应该好好地看一看环绕着黑洞所形成的碟形物。

        太阳内的热核反应支撑着太阳的外层,使悲剧性的重力坍塌延迟几十亿年。白矮星是靠从原子核中脱离出来的电子压力来支撑的,而中子星则是靠中子压力来抵消重力影响的。但对于超新星爆发和其他激变之后的残骸所形成的质量比太阳大好几倍的晚期星体来说,目前还没有什么已知的力量能够防止它坍塌。这种星体令人难以置信地收缩、旋转、发红、最后消失、质量比太阳大2O倍的星体则会收缩成美国洛杉矾那个样子。当重力骤增到1010时,这种星体会通过自生的裂缝滑到时空的连续统一体中,最终从我们的宇宙里消失掉。

        黑洞是英国天文学家约翰·米歇尔于1783年首先想到的,但是由于这个想法实在太离奇了。所以长期被忽视。一直到最近,这一想法才开始得到重视。随后,人们竟然找到了黑洞存在于宇宙空间中的证据。这一事实使包括天文学家在内的许多人都感到十分惊奇。X射线是不能透过地球大气层的,因此,如果我们要确定这种波长很短的光是否是天体发出的,我们必须将X射线望远镜带到高空中去。世界上第一个X射线观测站是国际合作的范例,它是美国在1971年从意大利的一个发射台发射的,该发射台位于印度洋肯尼亚沿岸,命名为乌呼鲁(Uhuru斯瓦希里语的“自由”)。1971年,乌呼鲁在天鹅座星系发现了一个非常明亮的X射线源。这个X射线源忽隐忽现,频率为每秒1000次,因此这个被称为“天鹅X-l”的射线源必定很小。不管忽隐忽现的原因是什么,这种隐现的信息穿过“天鹅X-1”的速度不会比光速(30万公里/秒)快,因此,“天鹅 X-1的直径不会大于 30万公里/秒 ×1/1000秒=300公里。一颗与小行星一般大小的天体就是一个明亮的X射线源,即使在星际以外也看得见,它可能是什么东西呢?“天鹅X-l”跟一颗炽热的蓝色超巨星并列在一起,从这颗超巨星的可见光里还可以看到一颗以前没有发现过的靠得很近的大伴星,它不断地改变它的引力方向,质量大约是太阳的10倍,该超巨星不可能是一个X射线源,因此,用X射线光源来验证这颗从可见光里看到的伴星是很理想的,但是,一个质量比太阳大10倍而且已经坍塌成小行星的不可见物体只能是一个黑洞,X射线很可能是由聚集在“天鹅 X-1”周围的气体和尘埃与超巨星摩擦而产生物,天蝎V861、“Gx339-4”“SS433”以及“圆规座X-2”等星体都可能成为黑洞,“仙后A”是一个超新星的残骸,这颗超新星的光在17世纪就已经到达地球了、当时世上已有不少天文学家,但竟然没有一个人记载过这次爆发。像I·S·斯克洛夫斯基所推测的那样,那里可能隐藏着一个黑洞,黑洞吞噬了爆发中的恒星核。熄灭了超新星的火焰。空间望远镜是追踪、搜索神奇的黑洞蛛丝马迹的有效工具。

        为了更好地理解黑洞,我们可以设想一个空间曲面,设想一个平整而又柔软的线性二维平面。如果我们往平面上投下一小团物质。平面就会变形或起皱,一粒弹子围绕这个皱面滚动,滚动的轨迹就像行星绕着太阳运动的轨道,根据这种解释(爱因斯坦的创见),重力就是空间结构的畸变。在这个例子中。我们看到,被物质弄弯曲的2维空间变成了3维的物理空间。设想我们生活在一个3维的宇宙空间里,物质将我们的住地畸变成我们的直观所无法感觉的4维物理空间,物质的质量越大,它的重力就越大;平面越褶皱,空间的畸变或弯曲越厉害,以此类推,黑洞是一种无底的深渊。假如你掉进了黑洞,会发生什么事情呢?跟从外面看到的一样,你会觉得下落的时间无限之长,因为在别人看来,你的钟——不管是机械钟还是生物钟——都停止了。但在你看来,你的钟仍在滴答滴答地走动着。假如你能克服引力潮和辐射流的伤害、而且,假如黑洞正在旋转着(这是很可能的),那么,你可能出现在时空上完全不同的另一部分,即空间上的另外某个地方、时间上的另外某个时刻。有人提出空间有一种蛀洞,这种蛀洞有点像苹果上的蛀洞,尽管这种观点尚未得到证实。重力隧道能够提供一种星际的或星系间的通道,让我们以非凡的速度直抵难以抵达的地方吗?黑洞能作为时间机器为人类服务。,把我们带到遥远的过去和无穷的将来去吗?这些设想正在被认真、严肃、周密地讨论着。这个事实表明,宇宙是多么超现实的啊!

        从根本的意义上来说,我们都是宇宙之子。试想。在炎热的夏天,你仰望万里无云的天空,阳光炙烤着你的面孔,如果你直视太阳。该是一件多么危险的事啊!太阳离地球足足有1.5亿公里远,但是我们尚能感觉到其巨大的威力。如果我们处在太阳炽热而发光的表面,或进入熊熊燃烧的核火炉中心,我们又将感觉到什么呢?太阳给予人类以温暖,养育着人类,使人类得到光明。是它使地球富饶肥沃,它的强大力量是人类的实践活动所远远不可及的。鸟儿欢快地迎接日出,甚至某些单细胞的生物也有趋光的本能。我们的祖先把太阳奉若神明⑨,这是何等的聪明!但在宇宙之中,太阳只不过是一颗普通的、甚至是平凡的星球。如果我们应该崇拜比自身强大的力量的话,难道我们不该去崇敬太阳和其他星体吗?这种敬畏之心,深深地隐藏在每一位天文调查者之中,有时埋藏得如此之深,以致研究者自己常常没有觉察到它的存在。

        银河系还是一个尚未探索的充满神奇的星体的世界。虽然我们对银河系进行过初步的探索,而且正碰到过其中的一些星体,有几个与我们所了解的星体相似,有些则古怪到超出了我们所能想象的程度,但是,我们的探索才刚刚开始。以往的探索航行表明,我们对银河系的许多非常有趣的星体至今仍然一无所知,无法预言。在银河系以外不远的地方,几乎可以肯定存在着行星,它们环绕着麦哲伦星云中的恒星运转,环绕着银河系周围的球状星团中的恒星运转。银河系可能是一个巨大的螺旋形世界,拥有4000亿个星球,此外还有正在坍塌的气体云、正在收缩的行星系、发光的超巨星、稳定的中期恒星、红巨星、白矮星、行星状星云、新星、超新星、中子星和黑洞。我们这个星球上的物质、我们这个星球的形态及其大部分特征,是受生命与宇宙间深刻的内在联系所制约的。这个问题,我们从研究地球本身人手,已经逐步弄清,将来一定会在研究整个银河系行星世界的过程中进一步弄清。

        ________
         ①人们原先认为质子是均匀地分布在电子云中,而不是在原子中心聚集成带正电荷的原子核。原子核是剑桥大学E·卢瑟福发现的,他发现某些撞击的粒子沿着它们入射的方向反弹回来。卢瑟福评述说:“这是我一生中所发生的最不可思议的事件,几乎就像向一张纸发射的一发15英寸的加农炮弹反弹回来打中你自己一样的不可思议。”

        ②作这一计算的想法很古老。阿基米德的《数沙人》是这样开头的“有一些人,像济若王他们认为沙子的数目是无穷的,我所说的沙子不仅是指锡拉立兹周围和西西里其他地方的沙子,还包括任何地方,不论有没有人居住的地方所发现的所有的沙子。还有一些人,他们并不将其看为无穷,而只是认为没有一个已命名的数大到足以超过其值而已。”阿基米德接着不仅命名了这个数,而且估算了它。后来他问到,当时所知的宇宙能容纳多少一粒挨着一粒排列起来的沙子?他的估计是1063 ,这与1087个原子恰巧相当接近。

        ③比太阳重的星体在它们最后的演化阶段会达到更高的中心温度和压力。它们能够不只一次地从灰烬中再生,利用碳和氧作为燃料合成更重的元素。

        ④阿兹台克人(墨西哥印第安人)曾经预言过“当地球变得疲惫不堪……当地球的子孙后代已经完结”的时刻,他们相信,到了那一天,太阳将从天空坠落,星星将从天空中抖落下来。

        ⑤指玛雅人(maya)族,印第安人的一个种族。

        ⑥穆斯林的观测者也注意到这颗新星,但在所有的欧洲纪年史中对此都没有提到过一个字。

        ⑦开普勒在1606年出版的一本书《新星》中,对超新星是宇宙中原子的某种偶然联结表示怀疑。他写道:“……这不是我的看法,而是我妻子的看法:昨天,当我写作疲倦时,被叫去吃晚饭,我要的一盘沙拉已放在我的面前。我说:‘好像只要锡盘、莴苣叶、盐水、醋、油和蛋片永远在空中到处飞翔,最后可能偶然会成为一盘沙拉’。我亲爱的妻子回答:‘是的,但不会像我的这一盘这么可口’。”

        ⑧1g是物体在地球表面下落时所具有的加速度,约为10米/秒2。下落的石块1秒钟后速度将达到10米/秒。2秒后达到20米/秒、如此等等、直到碰到地面或由于空气的摩擦阻力而减慢。在重力大得多的地方,下落物体的速度也将相应增大许多。在加速度为10g的地方,1秒钟后速度达10×10米/秒=100米/秒,2秒后为200米/秒,以此类推。此时稍微绊一下就可能会致命的。由重力引起的加速度通常用小写g表示,以与牛顿的引力常数G相区别。G是宇宙各处引力强度的度量,不单单是指我们所讨论的地球或太阳的某个地方(两个参数的数量关系为F=mg=GMm/r2,g=GM/r2。其中F为重力,M为行星或恒星的质量。m为下落物体的质量,t为下落的物体到行星或恒星中心之间的距离)。

        ⑨古代苏摩人表示神的象形文字就是星号——星星的符号,阿兹台克人(墨西哥印第安人)神一词为Teotl,它的雕刻文字是一颗太阳,天空叫做Teoatl——神海,宇宙之海。

        第十章 永远的尽头

        有物混成,先天地生。寂兮寥兮,独立不改,周行而不殆,可以为天下母。音不知其名,字之曰“道”,强为之名曰“大”。大曰逝,逝曰远,远曰反。(中国,大约公元前600年)——老子(道德经·第二十五章)

        在晴朗的天空中,高悬着一条引人注目的大道,它自身发光,灿烂辉煌,称为银河。沿着这条银河,众天神来到伟大的朱庇特的住所和他的堂皇的宫苑。这里正是声名显赫威力无比的天神之家园,我斗胆称之为伟大的天窗。——(罗马)奥维德《蜕变》(1世纪)

        有些愚人妄称是造物主创造了世界,
        这种信条实不可取,理应不屑一顾。
        倘若是上帝创造了世界,
        那在创世之前,上帝独自栖身何界?
        上帝岂能无米成炊、创世而无需以物凭借?
        倘若你说上帝先备料、后创世,
        那你将永远不能自圆其说,而只能无休止地节节败退。
        须知世界并非某人创造而成,
        而是无始无终,如时间本身无缘无界。
        正是基于这种理论……
        ——(印度)德富《伟大的故事》①(9世纪)

        100亿或200亿年前,一件了不得的事情发生了–宇宙大爆炸,炸出了我们的这个宇宙。大爆炸为什么会发生,这对我们来说是最大的奥秘。毫无疑问,大爆炸确实发生了。现在宇宙中的一切物质和能量也许都以极高的密度——一种令人联想到许多民族文化中关于天地万物的种种神话的宇宙蛋——集结成完全无量纲的数学点。这并不是说把所有的物质和能量硬塞人当今宇宙较小的一隅,而是说,整个宇宙、物质和能量以及它们所充斥的空间、只占很小很小的一点体积,这就没有多少余地可供种种事件在其间发生了。

        在那次巨大的宇宙爆炸中,宇宙开始了一种至今从未停止的膨胀过程。把宇宙爆炸描述为从外部观察到的一种膨胀泡,这容易引起误解。就定义而言、我们所说的外部其实什么也不是,所以最好还是从内部来考虑它。也许可以用想象中依附于空间运动结构且向各个方向均匀膨胀的格线来表示。当空间扩展时。宇宙中的物质和能量随之膨胀并迅速冷缩 那个过去和现在一样充满整个空间的宇宙火球的辐射,通过光谱——从γ射线到X射线再到紫外光,通过可见光谱的虹色,进人红外区和射电区、现在,用射电望远镜可以探测到那个火球的残骸。即从天空各处散发出来的宇宙本底辐射。在早期的宇宙中,太空是灿烂辉煌的。随着时间的流逝,太空的结构继续膨胀。辐射停息了。在普通可见光中。太空第一次变得黑暗起来了。就像今天这个样子。

        早期的宇宙充满了辐射和最初由氢和氦组成的充实的物质团。这些物质团是由原始致密火球中的基本粒子形成的。如果当时附近有人去观察,那是几乎什么也看不见的。然后,少量气囊——不均匀的小囊开始增大。巨大而轻薄的卷须状气态云形成了。一群群发出隆隆响声的。缓慢旋转的物体,平稳地发着光,最后形成了含有亿万个闪光点的各种天体。宇宙中最大的可辨认的结构就这样形成了。我们今天见到了它们,我们自己就居住在它们中一个默默无闻的角落,后来,我们把它们叫做星系。

        在大爆炸发生约10亿年之后,大概是因为大爆炸本身的非均匀性,宇宙中的物质形成了略微凹凸不平的块状分布。物质在这些块状结构中比在其他地方更为稠密。它们的引力把附近大量的气体引向它们,从而增大了必将成为星系团的氢和氦的云。后来,极小的初始的非均匀性又使得物质形成了坚固的凝块。

        当引力坍缩继续时,因为角动量守恒,初生星系的旋转便不断加快。有的变平,在离心力不能抵消重力的地方,沿着自转轴把自己压扁。这些就变成了第一个漩涡星系,即一种在广袤太空中快速旋转着的轮状物质。其他一些引力较弱或自转初速度较小的原始星系只稍微变平,结果变成了第一批椭圆星系。因为万有引力和角动量守恒这些简单的自然定律在整个宇宙都一致不二,所以宇宙中有相类似的星系存在,就好像用同一个模子冲压出来的一样。为地球这个微观世界中的自由落体和花样滑冰尽力提供理论根据的物理学,造就了宇宙这个宏观世界中的种种星系。

        在新生星系里,小得多的云块也经历了引力坍缩,内部温度变得非常高,激发了热核反应,第一批恒星也就开始运行。灼热而巨大的年轻恒星迅速演化,像浪子一样,毫不在意地挥霍其氢燃料资源,很快就在辉煌的超新星爆炸中结束了它们的生命,将热核尘埃——氦、碳、氧和种种较重的元素——还原为不断生成一代代新恒星的星际云。大量早期恒星的超新星爆炸,在紧邻的气体中产生了连续重选的冲击波,挤压着星系间的媒介物质,从而加速星系团的形成。引力是有机必乘的,即使是很小的物质凝块,它也会使之扩大膨胀。超新星爆炸的冲击波也许已经以各种规模促成了物质的增大,宇宙演变的史诗已经开始,即开始了对大爆炸产生的下列气体物质的凝缩进行分类:星系团、星系、恒星、行星,还有最终出现的生命,以及能认识一点导致生命起源奇妙过程的智慧生物——人。

        今天的宇宙充满各种星系团。其中有些只是几十个星系毫无意义的、微不足道的集合体。被亲切地称之为“本星系群”中只包含两个还算大的星系,即两个漩涡星系:银河系和M31。其他星系团则大到含有数以千计的相互吸引旋转的巨大星系群。有线索表明,室女座星系团含有成千上万个星系。

        从宏观着眼,我们居住在一个充满星系的宇宙之中,这些星系是1000亿个宇宙形成和衰变的优美楷模,有的井井有条,有的杂乱无章,二者都一目了然:正常的旋涡形,与我们地球视线成不同角度的旋臂(从正面我们见到的是旋臂,从侧面看还可以看到贯穿旋臂中心的气体,如尘埃所形成的暗带);棒旋星系,有一条气体尘埃和恒星的河,流过中心并连接两头的旋臂;稳定的椭圆巨星系,包含上百万颗恒星,因为它们已吸收或与其他星系汇合,因此变得非常大;许多矮椭圆体,星系中的矮子,每一个包含有千百万无足轻重的太阳;许许多多各种各样的神秘的不规则星系,表明了在星系世界中有许多已出现毛病的地方;而互绕星系如此接近,以致它们的边缘因它们的伴星系引力作用而扭曲,还有这样的情况,引力拉出一条条气体和恒星的长条,成为星系间的桥梁。

        有些星系团中的成员星系是按球面几何体排列起来的,它们主要由椭圆体组成。其中又常以一个巨椭圆体(即假定的银河野人)处于支配地位。其他那些以更无规则的几何体排列的星系团,比较而言,拥有相当多的旋涡形和不规则形的星系。星系碰撞的结果,改变了原始球状星系团的形状,同时可能促进从椭圆形往旋涡形和无规则形演变的过程。星系的形态及其数量足以向我们讲述一个可能是最为壮观的有关古代事件的故事,一个我们刚开始阅读的故事。

        高速计算机的发展,使我们有可能对几十或几万个集体运动点进行数值实验,每一动点代表一颗恒星,每个星都处在其他诸点的引力作用之下。在某些情况下,在已扁化为圆盘的星系中,旋臂完全以其自身的力量而形成。偶尔也有个把旋臂是由两个各自足足含有几十亿颗恒星的星系间的近距引力冲突而造成的。通过这种星系而弥漫扩散开来的气体和尘埃,会互相碰撞而变暖。但是当两个星系碰撞时,由于一个星系主要是空虚的,而且各恒星间的空间距离又很大,所以恒星就像子弹穿过蜂群一样。毫不费力地互相穿越。虽然如此,星系的外观还是会发生严重的变形。一个星系对另一个星系的直接撞击,能使该星系的成员恒星流入星系际空间,这样。一个星系就瓦解了。当一个小星系在正面撞上一个较大的星系时,它能产生一个最壮丽罕见的不规则星系,一个跨度达数千光年宽的环形星系,反衬着星系际空间的天鹅绒背景。它是星系池中一种飞溅、崩裂瓦解后的恒星的一种暂时的外貌。一个被拔除了核心的星系。

        不规则星系的结构不清的黑斑,漩涡星系的旋臂,以及环形星系的环面,在宇宙影中只闪现在不多的几个镜头中,然后就消散了,而后往往又重新形成。我们感觉中的星系是极重的坚固天体,这其实是一种错觉。它们是由1000亿个星状成分组成的流体结构。正如一个人。他是由100万亿个细胞组成的集合体,很有特征地处于合成和衰变间的稳定状态,整个人体大于其各部分的总和。星系也是这样。

        星系中的自杀率很高。强大的X射线源、红外辐射和射电波源就是一些近例。距离约有数千万或几亿光年远。它们有着极度发光的核,在光亮中波动达数星期之久。有些显示出辐射流、1000光年长的羽状物和在混沌中的尘埃盘,这是一些正在炸毁自己的星系。在诸如NGC625和M87一类的巨形椭圆星系的核中、可能存在质量比太阳大几百万倍到几亿万倍的黑洞。在M87里面。有些从比太阳系小的区域来的质量巨大、密度极高而体积又很小的东西,像钟表似地在持续活动,并且呜呜作响。黑洞很复杂,而在数10亿光年之外则是更为混杂的天体——类星体,它们可能是一些年轻星系的大爆炸,即自宇宙大爆炸本身发生以来宇宙史上最大的事件。

        “Quasar”(类星体)这个词是“quasi-stellar radio source”(类—恒星的射电源)的缩略词。在它们并不都是强大的射电源这一事实弄清楚后、它们就被称为QSOs(类恒星天体quasi-stellar object)了。因为它们表面像星,所以人们曾自然而然地认为它们是我们这个星系中的恒星了。但用分光仪对它们的红移现象进行观察表明。它们的距离可能极为遥远。它们似乎朝气蓬勃地参与了宇宙的膨胀,有些正以90%的光速退离我们。如果它们确实非常遥远,那么它们必定本身就极为明亮。才可能在那么远的距离外还能被看见,其中有的就像1000颗同时爆炸的超新星一样亮,正如“天鹅座X—1”一样,它们的迅速波动,表明它们的巨大亮度被封闭在一个很小的容积内。这样它就小于太阳系的体积了。一定有某些巨大的活动使类星体内的能量大量外泄。对此有各种假说,其中包括(1)类星体是巨型的脉冲星、有一个与强磁场相连的迅速自转的超大型的核;(2)类星体是由于密集于星系核心内的数百万颗恒星多次碰撞而撕开了其外层。把巨大恒星内部高达1O亿度的温度暴露在整个视野之下而出现的;(3)一个与此有关连的观点是:类星体也是一种星系,在这种星系内,恒星如此紧密地聚集在一起,以致一个类星体内的超新星爆炸会掀掉另一个类星体的外层而使它变成一颗超新星,从而产生恒星链锁反应;(4)类星体是从始至今日还多少保存于类星体内的物质和反物质相互间的激烈的湮灭中获得动力的;(5)类星体是一种当气体、尘埃及恒星落入该星系核中的巨大黑洞时释放出来的能量,这个星系本身也许就是较小的黑洞长年累月的碰撞和凝聚过程的产物;(6)类星体是作为黑洞的反面的“白洞”,一种使注入宇宙其他部分甚至别的宇宙的大批黑洞中去的物质汇集和显示的过程。

        在考虑类星体时,我们遇到了许多深奥的秘密。不论类星体爆炸的原因何在,有一点似乎是很明显的:这样的极端猛烈的事件必定造成不可言状的大破坏。在每次类星体爆炸过程中,都有几百万个世界——其中有的世界有生命和能够理解所发生的事件的智力存在——可能被彻底毁灭。对星系的研究揭示了宇宙的秩序和宇宙之美,同样也向我们显示了一种至今连做梦也想象不到的剧烈的混乱。我们能生活在允许生命存在的宇宙中,这是非同寻常的;我们生活于其中的是一个毁灭星系,毁灭恒星和毁灭种种世界的宇宙,这也同样是非同寻常的。这个宇宙对诸如我们人类这样的微不足道的生物来说,似乎既无善意,也无恶意,只是漠不关心罢了。

        甚至像银河系那样,看起来彬彬有礼的行星,也自有其激动起舞的时候。射电观察表明,有两片足以制造几百万个太阳的巨大氢云从银心骤然跌落,就好像那儿不时在发生轻度爆炸似的。一个在地球轨道上运行的高能天文台已经发现,银心是某种独特的γ射线谱线的巨大源泉,这完全符合那种认为在银心隐藏着巨大黑洞的观点。像银河系这样的星系也许正处于不断演化进程中的稳重的中年;这种星系,在其激烈的青春期中包含有类星体和爆发星系,因为这些类星体距离如此遥远,以致我们见到的只是它们的青春期,是它们几十亿年前的模样。

        银河系的恒星运动起来优美雅致,自成流派。球状星团冲过银面,并从另一边出来,此后,它们就降低速度,返身冲回。如果我们能够尾随一个个具体的恒星看它们在银面上疾驰的独特运动,就会发现它们像是一锅炒玉米花。我们从未看见某个星系较明显地改变其形式,这是因为这个变化过程需要很长时间。银河每自转一次要2.5亿年。如果我们使之加速自转,我们会见到银河系是一个活动的、几乎是有机的实体,有几分像一个多细胞有机体。星的任何一张天文照片,只不过是它笨重缓慢的运动和演化过程中某一阶段的一张快照而已。②星系内部区域像固体一样自转。但是,此外其外层地区的自转运动逐步变慢,就跟太阳周围的行星遵循开普勒第三定律而自转一样。它的旋臂有缠绕其核的趋向,并且旋涡在不断紧缩,而气体和尘埃则以更大密度的旋涡型式而聚积,它们又成了那年轻、炽热和光亮的恒星的形成场所,这些恒星勾出了其旋臂外形的轮廓。这些恒星照耀1000万年左右,只相当于银河系自转周期的5%。但当那些勾出了旋臂外部轮廓的恒星燃烧殆尽时,新的恒星和相联星云便随后形成,而旋涡型式则持续不变。那些勾勒出旋臂外部轮廓的恒星的生命比银河自转一次的时间短得多,留下的只有旋涡型式。

        绕银心转动的任何一个特定恒星的速度,通常与旋臂中恒星的速度不同。太阳一直以每秒200公里(大约每小时50万公里)的速度绕银河系中心旋转,而它进出旋臂的速度则经常是前者的20倍。平均说来,太阳和它的行星在一个旋臂里要花4000万年时间,在外面要花8000万年时间,进去还要花4000万年,循环往复。旋臂勾勒出最近正在形成的许多新恒星的区域,但并不一定是像太阳一样的中年恒星所在的区域。在这个纪元,我们住在旋臂之间。

        太阳系穿过旋臂的周期也许对我们具有很重要的影响。大约在1000万年前,太阳从猎户旋臂的谷德带中出来。猎户旋臂现在的距离略远于1000光年(猎户臂的内部是人马座臂;而英仙座臂则在猎户座臂之外)。当太阳穿过旋臂时,与现状相比则更能进入气体星云和星际尘埃云、并更可能遇到次星质量的天体。已经有人提出,我们行星上的主要冰川期,也许是由于太阳和地球间星际物质的介入造成的。大概每隔1亿年左右重现一次。W·纳皮尔和S·克拉波已经提出太阳系中的许多卫星、小行星、彗星和绕行星旋转环,曾在星际空间自由徘徊,直到太阳冲过猎户旋臂时,它们才被捕获。虽然这也许不大可能。但却是一种引人入胜的想法,也是能测定的。我们所要做的一切,就是设法得到像火星的内卫星或彗星那样的取样,然后检验其镁同位素。相当丰富的镁同位素,(都有相同数目的质子。但有不同数目的中子)取决于产生了镁的任何特殊标本的恒星核聚变事件的精确结果。其中包括邻近超新星爆炸的时限。在银河系的不同角落,本会出现事件的不同结果,并总会出现不同比率的镁同位素。

        大爆炸的发现和星系的退行,来自一种叫做多普勒效应的常见的自然现象。对于声物理学的多普勒效应,我们是习惯的。从我们身边疾驰而过的汽车,当司机按响喇叭时,司机在车内听到的是一种固定音调的平稳的嘟嘟声;而我们在车外听到的则是音调的特有变化。在我们听来,喇叭声从高频向低频逝去。以每小时200公里的速度行驶的一辆高速汽车,几乎是空气中一高一低、一高一低的连续波,波与波离得越近,音调就越高。如果一辆汽车驶离我们而去,它便拉长了声波,在我们看来,它便使声波降到较低声调,产生了我们所熟悉的特有的声音。如果汽车向我们驶来,声波就会被压缩,其频率就增高,我们就会听到一阵高音调的声音。我们闭上眼睛也能从其音调的变化来推定汽车的速度。

        多普勒效应。一个静止的光源或声源发射出一组圆形波。如果其源从右向左移动。波的中心便由1渐进到6。在B处的观察者看到波拉长了,而在A处的观察者则看到波缩短了。远去的源被看做红移(波长拉长)近来的源被看作蓝移(波长缩短)。多普勒效应是宇宙学的关键。

        光也是一种波。与声音不同的是,光极易穿过真空。多普勒效应在此也起作用。如果汽车由于某种原因向前方发射出一束纯黄色的光,而不是发出声音。那么汽车向我们逼近时,光频就会稍微降低。在通常速度下一这种效应难以觉察。然而,如果设法使汽车以几分之一的光速行驶,我们便能观察到向高频变化的光色,即当汽车逼近我们时,光色接近于蓝色,当汽车退离我们时,这向低频变化的光色就接近于红色。我们能觉察到以非常高的速度向我们逼近的天体具有蓝移的谱线色彩;以极高速度退离我们的天体则具有红移谱线。③在遥远星系谱线中观察并解释为多普勒效应的这种红移,是宇宙学的关键。

        本世纪初,为眺望当时还是晴朗的洛杉矾上空,以便发现遥远的星系的红移现象,在威尔逊山上建造世界上最大的望远镜。望远镜的大部件必须运送到山顶上,这项工作是由骡马队干的。一位名叫弥尔顿·哈马森的年轻骡皮商,帮助把望远镜的机械和光学设备、科学家、工程师以及种种显贵人物运送上山。哈马森经常骑马指挥他的骡马队。马鞍后边站着他的白色小猎犬,它的前爪就搭在他的肩膀上。他是一个刁着烟斗的杂工、一个赌场老手、弹子戏行家,是一个当时被称为好对妇女献殷勤的男子。他受的正规教育不过8年,但他聪明好奇、天生好学,对被自己艰难地运到高山顶上去的设备很感兴趣。哈马森那时与天文台一位工程师的女儿相好,而这位工程师看到自己的女儿看中一个只甘当骡皮商而没有更大抱负的小伙子,便持保留的态度。因此,哈马森在天文台干一些杂活,诸如电工助理、看门、擦地板等。真是无巧不成书,一天夜里,值夜班的望远镜助理身感不适,便问哈马森是否可以暂代他的岗位。哈马森便趁机显露了他对于仪器的精湛技巧,小心照管好仪器,结果很快成为一名固定的望远镜操作员和助理观察员。

        第一次世界大战后,埃德温·哈布尔(扫校者注:即埃温德·哈勃,哈勃定律的提出者)来到威尔逊山,并且很快就出了名。他是一位文雅、善于交际的天才学者,说话带有浓厚的英国腔,在短短一年里就获得牛津大学的罗兹(Rhodes)奖学金。正是这个哈布尔,提出了这样一个确定的论断,即:旋涡星云实际上就是“宇宙岛”,像我们自己的银河系一样,是由无数个恒星组成的集合体。他计算出了用来测量星系距离所需的恒星标准烛光。哈布尔和哈马森合作得很好,是一对难得的和谐共事的望远镜工作者。他们效法洛韦尔天文台天文学家V·M·斯莱弗,开始测量遥远星系的光谱。不久,哈马森就明显地表现出比世界上任何一个职业天文学家更具有才智去测得遥远星系的高质量的光谱。他成了威尔逊天文台的正式工作人员,学会了他工作上所需要的许多科学基础知识。他逝世时颇受天文学界的尊敬。

        来自某个星系的光是该星系内几十亿颗恒星所发射的光的总和。当光离开这些恒星时,恒星最外层的原子就吸收了它的一定频率和某些颜色。最后,这些光谱线向我们表明数百万光年远的恒星含有与我们的太阳及其邻近恒星所含的相同化学元素。哈马森和哈布尔惊奇地发现.所有遥远星系的光谱都有红移,他们更为惊讶的是,星系离我们越远,谱线红移就越多。

        对红移的最明确的解释要依据多普勒效应:星系在远离我们,星系离我们越远,其远离速度就越大。但是,星系为什么会逃离我们呢?难道我们在宇宙中所处的位置有什么特殊,银河在星系社会生活中似乎表现了某种漫不经心而又令人不快的举动吗?似乎更为可能的是,宇宙本身在膨胀,从而影响了星系。逐渐澄清的事实是:哈马森和哈布尔发现了大爆炸——它即使不是宇宙的起源,至少也是宇宙起源的最新化身。

        几乎所有的现代宇宙学——特别是关于膨胀宇宙和大爆炸的观点——都是基于这么一个观点的,即:遥远星系的红移是多普勒效应,并起因于它们的远离速度。但是,自然界中还存在着其他种种红移。例如引力红移,在这种红移中,有一种离开强引力场的光,必须做许多功才能摆脱强引力,这样,它在其行程中便失去能量。这是一个被遥远的观察者理解为逸散光移为较长波长和更红颜色的过程。因为我们认为在某些星系中心可能有一些巨大的黑洞,所以这是对它们红移现象的一种可信的解释。然而,观察到的特殊谱线经常具有非常轻薄的扩散气体的特色。附近黑洞并非一定出现很高的密度。或者,红移也许是多普勒效应,并不是由宇宙的一般膨胀引起的,而是由一个较小和局部的星系爆炸引起的。不过。这么一来,我们就应指望飞向我们的爆炸碎片与飞离我们的一样多,指望蓝移与红移一样多。然而,不管我们把望远镜对准本星系群以外的多么遥远的天体,我们实际上看到的几乎只有红移,别无它物。

        不过,关于从多普勒效应到星系红移以及宇宙在膨胀的推导是否完全正确。一些大文学家对此抱有吹毛求疵的怀疑态度。天文学家霍尔顿·阿尔普发现了种种不可思议的和混乱的情形,即:处在明显自然共生组中的一个星系和一个类星体,——或一对星系,具有极不相同的红移。偶尔似乎有连结它们的气体、尘埃和恒星桥的存在。如果红移是由宇宙的膨胀而引起的。那么极不相同的红移寓示着极不相同的距离。但自然连结着的两个星系几乎不可能又彼此离得很远,有时竟相隔有10亿光年远。持怀疑态度的人说这个共生的说法纯属统计学上的认识。例如。邻近亮星系和遥远得多的类星体只是偶尔沿视线排列。每个都有极不相同的红移和极不将同的远离速度;它们之间并没有真正形体上的联系。这种统计排列一定会不时地偶尔发生。这种争论的中心在于巧合的数目是否大于偶然的数目。阿尔普提到了其他情况,在这些情况下,红移小的星系的两侧有两个具有几乎相同的大红移的类星体。他认为,类星体不在宇宙论距离上,而被处在“前景”的星系或左或右地逐出去。这种红移是某种尚未探明的作用过程的产物。持怀疑态度的人论证了偶然巧合的排列和传统的哈布尔——哈马森对红移的解释。如果阿尔普是正确的,那么,用来解释遥远类星体能源的外来机理——超新星链式反应、超大黑洞等等——就证明是没有必要的了。那么,类星体就不一定是非常遥远的、这就需要某些其他外来机理来解释红移。在任何一种情形中,太空深处都正在发生着一些非常奇怪的事。

        用多普勒效应解释的具有红移的星系视退离,并不是大爆炸的惟一证据。独立而又相当有说服力的证据来源于宇宙黑体背景辐射,即来源于以我们纪元中所期望的强度,相当均匀地来自宇宙中的各方向电波模糊的静电干扰,以及来自现在实际上冷却了的大爆炸的辐射。但在这点上也同样存在着令人困惑的东西。用U—2飞机把敏感的无线电天线送到接近地球大气层顶部所进行的观察已经表明,背景辐射大体上在所有方向都一样强,好像大爆炸火球相当均匀地膨胀一样,具有很准确。很对称的宇宙起源。但背景辐射一经更精确的检查,便证实并非完全对称。如果整个银河系(也许还有本星系群的其他成员)以每小时100多万英里(每秒600公里)的速度朝室女座星系团疾驰,则有一个可能被理解的很小的系统效应。以这种速率。我们将在百亿年内到达室女座星系团,那么研究河外天文学也就会容易得多了。室女星团是已知的最丰富的星系集团,充满了旋涡、椭圆体和不规则体,真是天空中的上个珠宝盒。但为什么我们会朝着它疾驶而去呢?乔治·斯姆特和他的同事们进行了这些高空观察,指出在引力作用下,银河系正被拖向室女座星团的中心,该星团有着比我们以前已探测到的多得多的星系;更令人惊讶的是,这个星系团具有巨大的容积,能跨越10亿或20亿光年远的巨大空间。

        可探测的宇宙本身只有数百亿光年宽,要是室女座群星有一庞大的超星系团,那么在遥远得多的距离中大概还有其他相类似的超星系团存在,相对来说,要探测到这类超星系团就更困难了。在宇宙生命史中,初始引力多相性显然没有足够时间来聚积似乎存在于室女座超星系团中的大量的物质,因此,斯姆特试图得出这么一个结论,即大爆炸的一致性要比他从其他观察中所发现的少得多,宇宙中的原始物质是以多块状播散开来的(某些小块度是在预料之中的,而且甚至确实是了解星系的凝缩时所必需的。但在这个尺度上小块度却是一种意外)。或许只能通过设想有两个或更多个几乎同时发生的大爆炸,才能解答这个难题。

        即使对膨胀宇宙和大爆炸的整个描述是正确的,我们也一定还会遇到更加棘手的难题。大爆炸时的种种情形是怎样的呢?在此之前发生过什么情况呢?是否有一个极小的宇宙,它没有任何物质,然后物质突然从虚无中冒了出来?那一切又是怎样发生的呢?许多民族的文化惯于用上帝从虚无中创造世界来回答这个问题。但这种解释只是暂时成立的。如果我们有勇气打破砂锅问到底的话,当然我们就要接着提出上帝又是从哪儿来的问题,要是我们觉得这是一个无法解答的问题那为什么不直截了当地断定:宇宙的起源同样也是一个无法解答的问题呢?换一句话说,如果我们认为上帝一直就固有存在,那为什么又不直截了当地肯定宇宙也是一直就固有存在的呢?

        每一种民族的文化都有其创世之前和创造世界的神话,这些神话往往又配上神明或安排一个“宇宙蛋”。通常,宇宙又被天真地想象为遵循人或动物的先例。这里列举5个太平洋海盆区的神话,这些神话的复杂程度各不相同:

        最初,一切都在永恒的黑暗中休眠:夜幕就像不能穿越的灌木丛一样笼罩着一切。

        中澳大利亚阿拉达族创世祖神话

        一切都处于悬疑之中,平静而默然;一切都静止不动;天空浩瀚而空荡。

        玛雅族克丘亚人神话

        那·阿里安像一朵在虚无中飘浮的云彩一样,孤独地坐在太空之中。他不睡,因为不知睡为何物;他不饿,因为他不知饿为何感;于是他就这样不吃不睡地过了很长时间,直到一个思想在他脑海中浮现。他自言自语地说:“我要创造出一件东西来。”

        吉尔伯特群岛迈亚纳岛神话

        起先有一个很大的宇宙蛋。蛋内是一团混沌:这混沌中漂浮着发育不全的神圣胚胎盘古。盘古从宇宙蛋中迸发出来。后来,身材比现在任何人大4倍,手握他用来开天辟地的锤子和凿子。

        中国的盘古神话(大约3世纪)

        天空和大地成形之前,一切都含混而无形……那些清澈而轻盈的东西飘扬而上,变为天空;而那些混浊而沉重的东西凝固下来,变为大地。那些纯洁、精细的物质很容易聚集在一起,而那些沉重混浊的物质则极难凝固成形。所以,天空先完整地形成了,而后才形成大地。当天空和大地在虚无中接合起来时,一切都还是原始而朴素。就这样,未经任何创造,事物就出现了。这就是大同。一切事物都出自这个大同,但都变得互不相同了……。

        中国《淮南子》(大约公元前1世纪)

        这些神话歌颂了人类的胆识。这些神话与我们关于大爆炸的现代科学神话之间的主要差别在于,科学是自问自答的,我们能进行实验和观察来验证我们的设想。而那些关于创世的故事只值得我们深深地敬佩。

        人类各种文化都喜欢自然界中的循环现象。但是,有人认为,如果神不授意于它们,那些循环又怎能出现呢?如果在人类漫长的岁月中存在着循环,那么在永恒的神境里就不可以有循环吗?在致力于阐明宇宙本身经历了许多次,实际上无限多次的消亡和再生方面,印度教是世界上惟一享有盛誉的宗教。它是惟一的一种,其时间尺度无疑是偶然地与现代科学宇宙学的时间尺度相一致的宗教。其循环周期是我们平常的一天一夜到婆罗门的一天一夜,86.4亿年,比地球或太阳的年龄还长,大约是大爆炸发生以来的时间的一半,而且还有长久得多的时间尺度。

        有一种十分引人的深奥信念,说宇宙只不过是一种神的梦境,这神在100个婆罗门年后,自己将消失在无梦的睡眠中。宇宙随着神而消失,直到另一个婆罗门世纪时,他动起来,重整旗鼓又开始做伟大的宇宙梦。同时,别处还有无穷多的其他宇宙,各有自己的神在做着各自的宇宙梦。这些伟大的设想被另一个或许更为伟大的想法所冲淡。据说,人不可能成为神梦的对象,相反,神却能成为人梦的对象。

        印度有许多神,并且每个神又都有多种表现形式。11世纪铸造的青铜像就铸有主神湿婆的几种不同化身。这些不同化身中最高雅、最尊贵的就是体现每个宇宙周期之始创造宇宙的一种化身,即称为主神湿婆的宇宙之舞。在这个叫做纳塔拉亚,即舞王的化身中,湿婆神有4只手。其右上手中拿着的是一面其声音就是创世音的鼓;其左上手中拿着的是火舌,暗示新近创造的宇宙会在数十亿年后被彻底摧毁。

        我喜欢把这些深奥而动人的图像想象为现代天文学的前兆。自大爆炸发生以来④,宇宙很可能一直在膨胀,但绝非表明它将长此不懈地膨胀下去。这种膨胀过程可能逐渐减慢,停止下来,然后便自行收缩。如果宇宙中的物质少于某一临界量,退行星系的引力就不足以使膨胀停止下来。这样,宇宙就会永远失去控制。但如果宇宙中的物质比我们所见到的要多,比如说藏在黑洞或藏在星系之间的热而不可见的气体中,那么,宇宙就会因引力作用而保持一体,略带一个印度式的连续周期,膨胀之后出现收缩,宇宙之外还有宇宙,宇宙是无终结的。如果我们生活于其中的是这么一个不断地膨胀、收缩、再膨胀、再收缩的振荡宇宙,那么,大爆炸就不是宇宙的创始,而只是前一个周期的终结,也就是宇宙最新化身的毁灭。

        上述两种现代宇宙学没有一种能让我们十分喜爱。其中一种认为,宇宙是以某种方式在100亿或200亿年之前被创造出来的,永远不停地膨胀,星系互相远离,直到最后一个星系在我们的宇宙地平线上消失为止。那样一来,星系天文学就无事可干了。恒星冷却并且消亡了,物质本身腐烂了,宇宙则成了一缕冷薄的基本粒子的烟雾。另一种学说。即振荡宇宙学说则认为,宇宙既无始也无终。我们处在宇宙死亡和再生的无限循环之中,没有任何信息流过这种振荡的顶峰。宇宙前一化身中演化了的星系、恒星、行星、生命形式或者文明,无一能够徐徐地进入顶峰,颤悠悠地飘过大爆炸而为我们现今的宇宙所知。两种宇宙学说所论的宇宙命运,似乎有点令人失望,但我们可以在有关的时间表中获得安慰。这些事件的发生需要数百亿年或更多的时间,而人类和我们的子孙后代——无论他们是些什么人——在宇宙消亡前的数百亿年里能够完成许多光辉业绩。

        如果宇宙确实振荡,那便产生了更奇怪的问题。一些科学家认为,当膨胀之后收缩的时候,当遥远星系的光谱都发生蓝移的时候,因果就会颠倒,效应会先于起因,就好像先有涟漪从水面一点向四处蔓延,而后我才投石于池塘中;也好像先有出现火把熊熊燃烧而后我才点着它。这种因果倒置意味着什么,对此,我们不能不懂装懂。难道人们能在同一时间中从坟墓中诞生,并从母腹中别世吗?时间会倒退吗?提这些问题有什么意义呢?

        科学家们极想知道的是:从收缩到膨胀的转换过程中,到底振荡着的宇宙在顶峰发生了什么情况?有的认为,那时自然规律任意做了重新安排,管理这个宇宙的物理学和化学只代表范围无穷大的诸多自然法则中的一条法则。不难看出,只有范围有限的几条自然规则与星系以及恒星、行星、生命和智能的实际相一致。如果种种自然规则在顶峰不可预测地进行再分类,那么只有通过最特殊的巧合,宇宙自动售货机才会提供一个与我们相一致的宇宙。⑤

        我们到底是居住在一个永远膨胀的宇宙之中,还是在有一组无限循环周期的宇宙之中呢?有种种方法可以找到这个答案:既可以通过对这个宇宙中的物质的总量进行精确的普查的办法,也可以通过查看宇宙边缘的方法。

        射电望远镜能探测到非常模糊而又非常遥远的天体。当我们遥望九霄云外的空间时,同时也就在追溯远古的时间。离我们最近的类星体大概离我们5亿光年远,最远的可能离我们100亿或120亿甚至更多一些光年。如果我们看到120亿光年远的天体,那实际上我们就是看到了它120亿年前的样子,通过遥望九霄云外的空间,我们就是在追溯遥远的过去,追溯到宇宙的地平线,追溯到大爆炸的纪元。

        正大天线阵(VLA)是在美国新墨西哥州的一个偏远地区上的27个各自独立工作的射电望远镜集合群体。它是一个相控阵,由电子装置把一个个独立工作的望远镜连结起来,就像是一个大小同其最微小的元件一般无二的望远镜,又像是一个几十公里宽的射电望远镜。正大天线阵(VLA)能分辨或识别光谱射电区的细小清晰度,可与地面最大望远镜在电磁波谱中光学区所能做到的相匹敌。

        有时候,这种射电望远镜与地球另一侧的望远镜连结一起,形成了可与地球直径相比的一个基线,在某种意义上说,就是一架像地球这个行星一样大的望远镜。将来,我们也许会有绕向太阳另一端的地球轨道望远镜,效果上相当于一架与内太阳系一样大的射电望远镜。这种望远镜可以揭示类星体的内部结构和本质。也许将得出类星体的标准烛光,并测定类星体的距离确与它们的红移无关。知道了最遥远的类星体的结构和它们的红移,我们也许就能弄清几十亿年以前宇宙膨胀的速度是否更快些,现在是否正在变慢,宇宙是否会在某一天毁灭。

        现代射电望远镜灵敏度很高,遥远的类星体如此模糊不清,以致所探测到的辐射大约相当于千万亿分之一瓦特。地球上所有射电望远镜已经收到的来自太阳系外的总能量,要少于一片雪花落地所产生的能量。在探测宇宙背景辐射,计算类星体数、搜索空间智能信号的过程中,射电天文学家们正在研究处理的,只是少得几乎根本不存在的能量。

        某些物质,特别是恒星中的物质、在可见光中发光,显而易见。其他物质,如星系界外的气体和尘埃,就难以探测到。虽然它好像在发射电波,但它却不发射可见光。正是由于这个原因。我们才需要利用外来仪器以及和我们肉眼敏感的可见光不同的频率,来解释宇宙学之谜。在地球轨道中所进行的观察,已经发现星系间有强X射线辉光。起先认为它是热的星系际氢,以前从未见过如此大量的氢——大概足以闭塞整个宇宙,足以保证使我们陷于振动宇宙的困境。但是吉亚科尼进行的最新观察,已经能够把X射线辉光分辨成许多单个的点,大概是遥远类星体巨群。这也为宇宙提供了前所未知的质量。当宇宙财产目录制成的时候,所有的星系、类星体、黑洞、星系际氢、引力波,还有太空外来居民统统被总结起来时,我便就会知道我们居住在什么样的宇宙之中了。

        在讨论宇宙的大规模结构时,天文学家总喜欢假定空间是弯曲的,或者说宇宙没有中心。或者宇宙是有限而无边际。他们究竟在谈论什么?让我们来设想我们居住在一个奇怪的国家,那里人人都是平展展的。跟随住在维克多利亚时期的英格兰的一个研究莎士比亚的学者艾勃特,我们来到称为“平面国”的一个地方。我们中有些人是正方形,有些是三角形,有些具有更复杂的外形。我们匆忙进出于我们的平面建筑,从事平面公务,荒唐度日。平面国的每一个人只有宽度和长度,却没有一点高度。我们只知道前后左右,但若没有提示,一点儿也不理解什么是”上和下”——只有平面数学家才知道它。他们说:“听着,这事真是非常容易。想象一下左右方向,想象一下前后方向。这样想象不难吧。呃?现在来想象另一种维度,与其他两边成直角。”而我们则莫名奇妙,问:“你们在说些什么呀?‘与其他两边成直角’,是吗?可世上只有两维。要我们指向的那个第三维,可它在哪儿呢?”这些数学家们一听就泄了气,没精打采地走了。谁也不去理睬什么数学家。

        平面国上的每一正方形伙计只看到另一正方形的某条线的一段,即只看到离它最近的那一面。稍微走开点它才能看到正方形的另一面,但正方形的内部却永远是个谜,除非某个意外事件或对它进行解剖而打破它的各个面。使其内部状况暴露出来。

        有一天,一个三维生物——假定外形像个苹果——来到“平面国”’。在其上空盘旋。当它观察到有个特别引人注目并令人赏心说目的正方形正进人它平面房子的时候,这个苹果形的生物便拿定主意要向这个正方形致意——用维际间友好的手势表示问候:“您好!”第三维的访问者说道:“我是来自第三维的访问者。”可怜的正方形环顾了一下它关闭着的房子,什么也没看见。更糟糕的是,在它看来,从上方进来的问候声似乎是从它自身的平面体内发出来的。也许它此刻兴致勃勃细地想到:神经有点错乱正是它这个家族世代相传的通病。

        苹果的问候竟然被正方形误认为是其本身的一种心灵失常,这大大激怒了这个苹果。于是,它降落到“平面国”上来。在“平面国’”上,三维伙计只能部分存在。只有一个截面能被看到,即那些与平地的乎面所接触的点。一个在平地上蜿蜒滑动的苹果,首先总是作为一点出现的,然后逐渐变大,成为近乎环形的薄片。正方形看到了在它的二维世界的紧闭房间中出现了一个点,这个点慢慢变大,逐渐成了一个圆形。一个不断变化形状的陌生伙计蓦地出现了。

        由于对这个平展展的愚笨家伙感到失望和不满、苹果便撞了正方形一下,让它腾空而起,飘飘然旋而进入那个神秘的第三维。起先,正方形对正在发生的一切感到莫名其妙,它从未经历过这种事情。但它终于意识到自己正从一个独特的有利角度上观察平面国,即“居高临下”。它可以透视关闭的房间,透视它的平面伙伴们。它正从一个独特而绝妙的视角上观察着世界。穿过另一维,这一动作的附带利益是使正方形获得了一种X射线视觉。最后,我们的正方形像一片落叶一样慢慢降回到平面上,在它的平面国同胞们看来,这个正方形先是已经莫明其妙地从紧闭的房间中消失,而后又令人费解地蓦然显形了。它们说:“天哪!你到底怎么啦?”“我觉得”,它不由自主地答道:“我在上面来着。”它们轻轻拍打着它的各个边,安慰它。幻觉始终是它的家族病。

        在这些维际设想中,我们不必局限于两维。遵照艾勃特的观点,我们可以设想一个一维世界,在那里每个人只是一条线的切段,或者甚至可以设想一个零维兽,即许多点的奇妙的世界。但多维的问题也许更为有趣。还能有第4维度吗?⑥

        我们可以设想用如下的方法来组成一个立方体:取一定长度的一段线,沿直角以其相同长度移动,这样就得到了一个正方形。然后又以相同的长度把这个正方形移到与其本身成直角的位置,这样就可得到一个立方体。我们认为,这个立方体会有一片投影,我们通常把这片投影画成其各角顶相连结的两个正方形。如果我们以两维来检查立方体的投影,就会看到:并不是所有的线都等长,它们的角也并非都是直角。这个3维体在其两维变体中并未得到完美的体现。这就是在几何投影中失去一维的代价。现在,让我们把这个3维立方体取出来,按与其本身成直角的角度,使之穿过一个第4物理维,既非前后、左右挪动,也非上下升降。而是同时与前后、左右、上下等这些方向成直角。我无法向你表明那到底是什么方向,但我却能想象这种方向确实存在。在这种情况下,我们准能造出一个4维的超正方体来,也叫做四方体的4维模拟。因为我们把自己限死在3维之中,所以我无法让你们看看田形体(四方体的4维模拟)是个啥模样。而我所能给你看的只是田形体的3维投影:它类似于两个套装在一起的立方体,其各角顶以线连结。但是,作为真实的4维田形体,它所有的边应等长,所有的角都为直角。

        设想一个完全像“平面国”那样的宇宙,它们的两维宇宙是随第3物理维而弯曲的,只是不为其居住者所知罢了。当平地居民们作一次短途旅行时,它们的宇宙看起来是很平的。但如果它们中的某个人沿着似乎是一条很直的线走很长很长的一段路,它就会发现一个伟大的奥秘:虽然它并未遇到障碍,也从未走回头路,但它莫明其妙地又回到了它出发的地点。它的二维宇宙一定已经变弯了,随神秘的第3维而变得弯曲了。它无法想象那个第3维是个什么模样,但它能推断它,使本故事中所有各维增加一维,你就会得到与我们相符的情形。

        宇宙的中心在哪里?宇宙是否有边缘?边缘之外又有什么?在两维宇宙里,由于它随第三维而弯曲,所以没有什么中心,至少在球体表面上没有中心。这样的一个宇宙中心并不在那个宇宙里,令人费解的是它处于第3维中,即球体内部。尽管球体表面只有这么多面积,但这个宇宙却没有边缘——它是有限而无边际的。所以,在它之外有些什么的问题是毫无意义的。平面生物不能依靠自身的力量逃离它们的二维世界。

        在所有各维上增加一维,结果就会得到可能与我们相符合的情形:作为宇宙,4维超球体没有中心,也没有边缘,在它之外什么也没有。那么,为什么所有的星系似乎正在远离我们呢?超球体从一点开始膨胀,像一个胀大的4维气球一样,每时每刻都创造更多的宇宙空间。膨胀开始后的某个时候,星系凝缩了,并在超球体表面向外移动。每一星系中有许多天文学家,他们所见到的光也局限在超球体弯曲表面上。由于球面膨胀,任何星系上的某个天文学家都会以为所有的其他星系正在远离它。不存在任何特许的参照系。⑦星系离得越远,退行就越快。星系嵌于空间,附于空间,而空间结构在膨胀,问题是大爆炸曾发生在现在宇宙什么地方?显然答案是:到处发生。

        如果没有充足的物质来阻止宇宙永远膨胀下去,那么它必定会有一个开口形状,像一个弯曲的马鞍,其表面以我们的3维数学比例而无限延伸。如果有足够的物质,那么宇宙就会有一个闭合的形状。像以我们3维模拟那样弯曲的球面。要是宇宙是闭合的,光就会陷于其中。在本世纪20年代,观察家们在与M31相反方向上发现了一对遥远的旋涡星系。他们极想弄清这是否可能是他们从另一方向看到了银河和M31——这像用一种环射宇宙的光看见你自己的后脑一样。现在,我们已经知道,宇宙要比他们在20年代所想象的大得多,光要花费比宇宙的年龄还长的时间才能环航宇宙。而星系则比宇宙年轻。但是,如果宇宙是闭合的,并且光不能从中逃离出来,那么,把宇宙描绘成黑洞可能就完全正确了。如果你想知道黑洞的内幕,那就请你环顾你的四周吧。

        前面我们已经提到过这么一种可能性,即:蛀洞可能穿过黑洞从宇宙的一个地方到另一个地方,而无须走过其间的路程。我们可以把这些蛀洞想象为贯穿第4物理维的管子。我们并不知道有这些蛀洞存在。但是,如果它们确实存在,它们就非得总是与我们宇宙的另一地方挂上钩吗?或者,蛀洞是否完全可能与其他一些宇宙(否则,我们永远到达不了的一些地方)相连结?据我们所知道的一切情况而论,可能还有其他许多宇宙存在。从某种意义上说,它们大概是互相镶套着的。

        有一种十分新奇、令人难以忘怀并令人深省的观点——一种科学上或宗教上的最绝妙的推测——这个观点还根本未经证实,也许永远也无法得到证实。但它却能激起人们的热情。据说,有一个无限大的宇宙层次,所以在我们宇宙中像电子一类的基本粒子,一经穿透,将自我显示为一个完全闭关自守的宇宙。在其内部,数量极大而体积小得多的其他粒子,组成星系和种种结构更小的本地对等物,这些更小的基本粒子本身就是低一级的宇宙。永远以此类推下去——无止境地向低一级退行下去——宇宙中的小宇宙,无穷无尽。反向高一级类推,道理也一样。我们所熟悉的包含有星系、恒星、行星和人的宇宙,则是向另一个方向上的无限退行的第一步——高一级宇宙中的单个基本粒子。

        在我所知道的宗教观点中,只有这个观点超过了印度教宇宙论中无限老的循环宇宙的无穷尽的数目。其他那些宇宙会是什么模样呢?它们是否是基于不同的物理学定律而建立起来的呢?它们是否也有恒星、星系和人类世界或一些完全不同的东西?它有可能与一些不可想象的不同生命形式相一致吗?要进入那些宇宙,我们就得设法穿过第4物理维,那可不是一件轻而易举的事情。不过,黑洞也许会给我们提供一条途径。太阳系周围可能有许多小黑洞。在遥远的尽头保持好平衡,我们就将跳离……

        _____
         ①《伟大的故事,亦译为《故事广记》。印度古代长篇叙事诗。公元11世纪以后失传。——译注

        ②这不完全确实。一个星系的近侧要比其远侧离我们近几万光年,因此我们现在看见的前面事实上要比其后面早几万年。但是银河动力学中的典型事件占据几千万年时间,所以,把某一星系图像想象为一瞬间的冻结图像,其误差是很小的。

        ③天体本身可以有任何颜色,甚至可能是蓝色。红移仅指每一谱线比天体处于静止状态时所发出的波长更长;红移的量分别与速度和天体静止时的谱线波长成正比。

        ④玛雅碑铭的日期既涉及远古的过去也涉及遥远的将来。尽管玛雅学者中对此有争论,但一个碑位涉及到100万年以前,而另一碑铭或许涉及4亿年前发生的事。它所纪念的事件也许是虚构的,但时间表却大得惊人。欧洲人在1000年以前就乐意放弃自己的宇宙只有数千年历史的圣经观,玛雅人却认为有数百万年的历史,而印度人则认为有数十亿年。

        ⑤种种自然规则是不能在顶峰随意转换的。如果宇宙已经经历了多次振荡,那么,许多可能存在的万有引力就只能是非常弱,以至于对某个特定的最早的膨胀来说,宇宙本来就不会连为一体了。宇宙一旦遇到这样一个万有引力,就会飞离,从而失去了经历另一次振荡、另一个顶峰和另一组自然规律的机会。这样,我们就能从事实出发,推断出:宇宙的存在不是在一个有限的年代里,就是在每次振动所允许的自然规则的严格控制之中。如果物理学定律不会随意在顶峰转换,那就一定会有一条规则。一组法则来确定哪些规则是可行的,哪些是不可行的。这样一组法则应包含一门超越现有物理学的新物理学。我们的语言贫乏,似乎找不到一个合适的词来为这种新物理学命名。类物理学(Paraphysics)和玄学(Metaphsic)已被其他相当不同、并很可能是完全无关的活动抢先滥用了,或许可以叫做“超物理学”(Transphysics)。

        ⑥世上要是有一个4维的生物存在,它就能在我们这个3维世界中出现并任意隐形明显地变形,把我们从锁好的房间中弹出去,使我们神出鬼没。它同样能使我们内外翻转。使我们内外翻转的方法有几种:最令人沮丧的结果是我们的五脏六腑将翻到肚子外面来。而整个宇宙——发光的星系际气体、星系、行星和一切东西则翻到我们的肚子里面去。我不清楚自己是否喜欢这个主意。

        ⑦就我们所知,是吉奥尔达诺·布鲁诺首先提出了这个观点:不管我们碰巧在哪里观察宇宙,它看起来都是大体相同的。

        第十一章 给未来的信

        既然天地的命运已定,
        沟壑渠流已各得其道,
        底格里斯和幼发拉底两河的堤岸已筑,
        我们还能有何作为?
        我们还能有何创举?
        啊,阿奴那基,伟大的天神,
        我们还能有何作为?
        ——亚述人关于创世的纪事(公元前800年)

        当他——不论是哪位神明——如此安排就绪、理清了那混乱的物质,并把它化为宇宙的成分时,他就首先把地球造成为一个巨大的球体,面面相似如一……并且,无处不存在自成一格的生气勃勃的生命,星星和神仙占据了天庭;大海沦落为鳞光闪烁的鱼类的家园,地球接纳了各种野兽,而流动的空气则一任百鸟飞翔……接着,人类问世了……尽管所有其他的动物都匍匐爬行,眼脸朝地,他却赐予人类以端庄的面庞、直立的身姿和仰视苍天的双眼。
        ——奥维德:《蜕变》(公元一世纪)

        在巨大的宇宙黑幕中,镶嵌着数不尽的恒星和行星,有的比太阳系年轻,有的比太阳系年老。尽管我们还不能肯定,但导致地球上的生命和智能演化的过程,在整个宇宙中同样一直在起作用。仅银河系大概就有上百万个世界,此刻就住着与我们很不相同、比我们先进得多的生物。博学并不等于聪敏,智能不只是获得信息,还有判断,也就是要有对信息使用和协调的能力。还有,我们所检索的信息量成了我们智能的一项指标。量度信息的单位称作比特(二进位制)。根据二进位制,对一个明确的问题作出明确的回答“是”或者“否”,证明电灯是开还是关,只需要一比特信息。从26个拉丁字母中指出一个字母需要5比特信息(25=2×2×2×2×2=32,大于26)。本书词语信息量略小于1000万比特,即107 。解说一小时之久的电视节目所需信息的比特总数约为1012 。地球上所有图书馆收藏的不同书籍的文字和图片的信息,约有1016 或1017 比特(原注:这样,世界上所有的图书所含的信息与美国一座大城市一年内的广播电视所含的信息一样多。并非所有的比特都等值)。当然,其中大多是多余的。这样一个数字大致能测定人类的智能。但在别处,在一些比较古老的世界上,生命的进化要比地球上早数亿年,也许,他们知道的信息不仅在数量上比我们多1020 比特或1030 比特,而且在内容上也极其不同。

        在那些高级智能居住的数以百万计的星球世界里,拿其中的一个稀有行星来考虑考虑,即考虑一下该行星系内唯一的那个表面分布有海洋的行星。在这个富饶的水生环境中生活着许多有相当智力的生物:其中有些生物长着用来掳抓食物的8个腕足,其他一些生物则通过改变其躯体上明暗斑驳的花纹进行相互联系,甚至还有些来自陆地上的灵巧的小生物,乘坐木船或金属船突如其来地进入海洋。但我们要寻找的是这个行星上硕大无朋的最主要的智能生物(原注:一些美洲杉要比任何鲸鱼都来得大,并且来得重),深海中有知觉的、举止高雅的主人——大鲸。

        它们是地球这个行星上进化得最大的动物,远比恐龙大得多。一头成年鲸可达30米长,150吨重。 许多鲸,特别是须鲸,是安详的草食动物,它们为了摄食小动物而滤饮巨量的海水(扫校者注:此处似乎矛盾,疑翻译用词不当),其他鲸则摄食鱼类和鳞虾。鲸是近代出现的海洋动物。仅在7000万年前,它们的祖先还是肉食哺乳动物,逐步由陆地移居到海洋中。在鲸鱼群中,母鲸哺乳并细心照料其后代,鲸鱼的幼年期很长,在这期间受到成年鲸鱼的教养。游戏是一种典型的娱乐,这些都是哺乳动物的特性,对智能生命的发展意义重大。

        深沉的海洋迷蒙晦暗。长期在陆地上生活得很好的哺乳动物,到了深海,它们的视觉和嗅觉就起不了多大作用了。那些依靠这些感官寻找配偶或幼鲸或食肉动物的鲸的祖先,并未留下许多子孙。于是,另一种途径在进化过程中得到了完善。这种途径效果极佳,是鲸理解的关键,这种途径就是“声感”。某些鲸的声音叫做歌,但对于它的真正本质和含义,我们仍然末获真谛。鲸鱼的音域很宽,其频率远远低于人类的耳朵所能听到的最低频率。一首典型的鲸鱼歌大概持续15分钟之久,最长的大约1小时。 这种歌常常是一拍一拍、一个音符一个音符地重复出现的,一成不变。偶尔会有某一鲸鱼群中断歌声,离开冬季水域,6个月之后返回, 恰恰从中断的那个音符开始把那只歌续唱下去,就象根本没有间断过似的。鲸鱼的记忆力非常好。更常见的是,在返回的路上,它们变换了歌声,新歌成了鲸鱼的流行歌曲。

        鲸鱼群的成员经常合唱同一支歌曲。通过某些相互交感、某种共同的创作,歌曲缓缓而可测地月月更换。这些歌声很复杂。要是把座头鲸唱的歌作为音调语言发表,那么其总信息量——即这些歌曲信息的比特数——大约106 ,大概与《伊里亚特》或《奥德赛》的信息量相同。我们不清楚鲸或其同类——海豚该谈论什么或歌咏什么。它们没有管理机构,也不进行工程建设,但它们却是社会性的生物。它们狩猎、游泳、捕鱼、吃草、嬉耍、交配、做游戏和逃脱掠食性动物的追捕。也许它们有很多话题可谈。

        鲸鱼的主要危险来自海洋的新客,即自称人类的一种自命不凡的动物,他们只是在近代才由于工业技术的发展而成为海洋中的竞争者。自鲸鱼问世至今,在其历史长河的百分之九十九的阶段中,不论海面或海底都不存在人类。在此期间,鲸进化了其特殊的听觉通信系统。例如,长须鲸以20赫兹的频率发出特别响的声音,其音频低到接近钢琴键盘上的最低音阶(1赫兹是一个音频单位,用来表示某个音波每秒钟进入你耳朵的波峰和波谷)。这种低音频的声音几乎无法被海水吸收。美国生物学家罗杰·倍恩已经计算出:使用深海频道,两头鲸鱼以20赫兹的频率在世界任何地方都能互相联络。远在南极洲的罗斯冰障上的一头鲸鱼,可以与在阿留申群岛中另一头鲸进行联系。在鲸鱼问世以来的绝大多数时间里,它们或许已经建立了一个全球性的通讯联络网。大概当相隔1.5万公里时,它们唱的是情歌,满怀希望地把绵绵深情播放入广袤深邃的海洋世界。

        数千万年以来,这些智力发达、富有通讯联络能力的巨型动物,是在基本上没有天敌的情况下进化的。而后,到了十九世纪,轮船的发展给海洋带来了一种不吉利的噪声污染源。由于商船和军舰越来越多,海洋中的本底噪音,特别是20赫兹音频的噪音,成了不可忽视的问题。跨洋通讯的鲸鱼一定经历着与日俱增的困难。它们通讯所能跨越的距离一定在逐渐缩短。 200年前,长须鲸所能通讯的普遍距离大概是1万公里,而现在约为数百公里。鲸鱼能够知道彼此的名字吗?它们只能通过声音彼此识别吗?我们实际上已经把鲸鱼分隔开了。彼此通讯达数千万年之久的动物,现在实际上已经被迫沉默不语了(原注:相应于鲸鱼的故事,人们提出了一种新奇的观点。同其他技术文明进行星际通讯的最佳波道频率接近14.2亿赫兹,以宇宙中最丰足的氢原子——无线电谱线来标记。我们刚开始在这里收听智能生物发出的信号,但频道被地球上日益增多的民用和军用通讯联络所侵占,而且,这种侵占并非仅仅来自大国。我们正在干扰星际频道。地球上无线电技术的不断增长也许要中断我们早已建立的与遥远世界上的智能生物之间的通讯联络。因为我们无意控制我们的无线电频率污染,并且也无意收听,所以,他们的歌声可能得不到回答。)

        而且,比这更糟糕的事我们也干了,因为时至今日猎鲸交易的悲剧还在上演。有人专门从事猎捕、杀戮鲸鱼和出售鲸鱼产品去生产唇膏或工业润滑油。许多国家懂得全面捕杀这种智能动物是荒谬的,但这种交易仍在继续,主要是日本、挪威和苏联等国促进这种交易。作为一种生物,我们人类对与地球外智能生物的通讯感兴趣。难道与地球上的智能生物,与具有不同文化和语言的其他人类,与巨猿,与海豚,特别是与那些深海的智力主人大鲸,改进通讯联络难道不是良好的开端吗?

        一头鲸要活下去,就得知道怎样去办许多事情。这个学问贮存在它的基因和大脑中。这种遗传信息包括怎样把浮游生物转变成鲸脂,或潜到水下1公里的深处时怎样屏气,大脑中的信息——后天学到的信息——包括弄清哪一只是自己的母亲,或刚才听到的歌声的含义是什么这样一些常识。与地球上所有其他动物一样,鲸有一个基因库和大脑库。

        与人类遗传材料一样,鲸的遗传材料也是由核酸组成的,即那些能够从其周围的化学建筑块繁殖其本身,也能够将遗传信息变成行动的特殊分子。例如,一种与你们体内每一细胞中的酶相同的鲸酶,叫做己糖激酶。20多个酶催化步骤的第一步,是要将其饮食时从浮游生物中获取的糖分子转变为少量的能量,这份能量大概能产生鲸鱼音乐中的一个低频音符。

        地球上的每头鲸,或每个人,共他哺乳动物或植物,在DNA双螺旋中贮藏的信息,可以用4个字母——4种不同的核酸组成的一种语言来表示,它们组成了DNA的分子。各种生命形式的遗传材料究竟含有多少比特的信息呢?各种生物问题的肯定或否定的答案究竟有多少?一种病毒大约需要103 比特信息,大致相当于本书两页的信息量。但滤毒信息却很简单,它极为紧密,效率特别高。解读滤毒信息要极为细心。这是一些指令,需要侵染其他有机物而使自身复制繁殖——这是病毒唯一擅长的本事。一个细菌大体使用100万比特的信息,大约相当于100印刷页的信息量。细菌要做的事比病毒多得多。它们不同于病毒,并不是彻头彻尾的寄生虫。细菌要自谋生计,而一个自由游动的单细胞细菌阿米巴虫则复杂得多,在其DNA中,大约有4亿比特信息,大概需要相当于每卷500印刷页共80卷的信息量,来繁殖另一个阿米巴虫。

        一头鲸或一个人需要的信息为50亿比特左右。我们生命百科全书中的5×109 比特的信息量包含在每个细胞核中,如果用英语把这份信息量写出来,就会写满1000卷书。你身上的100万亿细胞中的每一个细胞,都包含一个完整的关于怎样构成身体的每个部分的指令库。你体内的每一个细胞,那是由一个单细胞——即你父母亲生产的受精卵连续分裂生成的。每当分裂时,最早两组遗传因子指令按形成你的胚胎发育步骤,真实地进行复制。因此,你的肝脏细胞具有一些关于怎样组成你的骨细胞的潜在知识,反之亦然。你的身体所知道的该怎样主动去做的一切,遗传因子库部包含了。古代信息以详尽的、仔细的、过多的细节来表述怎样笑,怎样打喷嚏,怎样走路,怎样识别图案,怎样生存,以及怎么消化一个苹果。

        吃苹果是一个极为复杂的过程。事实上,如果一个人非得合成他自己的酶,非得自觉地记忆和指挥需要从食物中获得能量的所有化学价,那他就可能会饿死。但是,甚至细菌也产生厌氧醣酵解,这就是苹果腐烂的原因:细菌的午餐。细菌和我们以及介于其间的所有生物,都有着许多类似的遗传指令。我们各自的遗传因子库有许多相同篇章,即从另一个角度提示了我们共同的变异遗传。我们的技术,仅能复制我们人体所能轻易进行的这种错综复杂的生化过程的极小部分。我们刚开始研究这些过程。然而,进化已有数十亿年的实践,DNA对此是知悟不惑的。

        但是,限定你要做的事非常复杂,纵使有数十亿比特都不够,假定周围环境变化太快,原先编码的遗传百科全书尽管以前能起非常好的作用,那么现在即使有1000卷图书的遗传因子库也不够用了。所以,我们还得有大脑。

        像我们所有的器官一样, 100多万年来,大脑也已经进化,增加了它的复杂性和信息量。大脑的结构反映了它所经历过的所有进程。大脑的进化是由里到外地进行的。最里面的最古老,即脑干,它传导生物的基本机能,其中包括生命的节奏——心跳和呼吸。按照保罗·麦克林提出的一种极有争议的见解,大脑的较高机能按三个连续阶段进化。覆盖在脑干的R-复合物,主管攻击素、仪式、领土占领和社会等级,这些在数亿年前,我们的爬虫类祖先就开始进化了。我们每个人颅骨的深处有一些类似鲜鱼大脑的东西。环绕R-复合物的是边缘系统或哺乳动物的大脑,数千万年以前,在当时仍是哺乳动物,但还未成为灵长类的我们祖先的头颅中就开始进化,它是我们心绪和情感的主要源泉,也是我们对下一代关怀的主要源泉。

        最后,在外部,在更原始的脑的上面,存在着处于不稳定休止状态中的大脑皮层,它的进化始于数百万年前我们的灵长类祖先。大脑皮层是我们所有宇宙航行的起点,是物质变意识的地方。它构成了多于三分之二的脑质,是直觉和判断分析的王国。我们的观点和灵感,我们的读写能力,正是在身体的这个部位形成的,我们演算数学和谱曲等工作,也是在这里进行。这个皮层调节我们的意识生活。它是我们人类有别于其他动物之所在,是我们人性的中心。文明,实际上是大脑皮层的产物。

        大脑的语言并不是遗传因子DNA的语言,说得更确切点,我们知道的一切是用称为神经细胞的细胞——显微电化学转变元素来编码的。神经细胞通常只有几百分之一毫米宽。 我们每个人大概有1000亿个神经细胞,可与银河系中的恒星数相匹敌。许多神经细胞与其邻居有千丝万缕的联系。人类大脑皮层中有大约100万亿(1014 )个这种联系。

        查理斯·谢灵顿在描述觉醒时大脑皮层的活动时这样写道:

        (皮层)现在变成了一个有节奏的闪光点的火花场,这些有节奏的闪光点闪烁着四处乱窜的流动火花。大脑苏醒了,随之而来的是思想的回归,就像银河开始跳起了某种宇宙舞。忽然,(皮层)变为一部着了魔似的织布机,几百万颗闪光的梭子织着一幅忽隐忽现的图案,这图案虽然不是经久不逝,却总是丰富多彩,其中的小图案变幻和谐。当苏醒中的身体奋起时,这幅活动十分和谐的图案中的小图案下伸到下脑的无光轨道中去了。一串串闪烁着的活动火花把它联结起来。这意味着身体起床了,站起来去迎接苏醒的白昼。

        甚至在睡眠时,大脑也随人类生活的复杂工作而有规律脉动、跳动和闪光——做梦、记忆和解决问题。我们的思想、想象力和幻想具有一种自然真实感。一种思想是由几百个电化学脉冲形成的。如果我们自身细小到神经大小,我们就可以目击精巧奇妙、头绪纷繁和飘浮不定的模式,这可能是幼时乡间路上丁香花气味的—个记忆火花,也可能是面面俱到的紧急通报的一部分:“我把钥匙忘在哪儿啦?”

        智慧山中有许多峡谷,即脑回,它大大增加了容量有限的颅骨中贮存信息的大脑皮层的有效表面积。脑神经化学结构在迂回曲折、错综复杂方面,比人类所发明创造的任何机器都更臻于完整、美妙,其工作之繁忙到了惊人的地步。思想王国大体上分为两个脑半球。大脑皮层的右半球主要负责图案识别、直觉、敏感性和创造性的洞察力,左半球则管理理性的、分析性的和判断性的思维。两个脑半球基本上互为对应,同样重要,体现了人类思维的特点。二者相辅相成,既为产生思想又为检查这些思想的有效性提供了手段。通过一大束神经,即胼胝体这座架于创造力和分析力之间的桥梁,两个脑半球间正不断地对话,这两个脑半球都是人类了解世界所必不可少的。

        用比特表示的人脑信息量与神经元中的连接总数目大致相等,大约100万亿(1014 )比特。 如果用英语写出来,估计这些信息会充满2000万卷图书,与世界上最大的图书馆中的信息一样多,相当于2000万册图书的信息储存在我们每个人的大脑中。大脑是个空间非常小的大世界。大脑中的多数藏书就在大脑皮层中。在大脑底部下面,有着我们的远祖主要赖以活动的种种机能:进攻能力、生育能力、恐惧能力、性冲动以及盲从领袖的意愿。阅读、书写和说话等大脑某些较高级机能,似乎集中在大脑皮层中的一些特殊地方。另一方而,记忆功能则丰富地贮存于许多地方。假如心灵感应这个东西确实存在,那么它的伟绩之一就是为我们每个人提供了得以阅读自己亲人大脑皮层中书籍的机会。但是没有令人信服的证据表明心灵感应确实存在,所以,亲人间的信息交流依然靠艺术家和作家来完成。

        大脑的作用远不止于回忆往事,它还能比较、综合、分析,最后形成各种抽象概念。我们知道的事必须比我们的遗传因子多得多。这就是为什么大脑文库要比基因文库大2万倍左右的原因。我们的求知欲望是我们赖以生存的工具,这一点在每个蹒跚学步的幼儿举动中那是很明显的。情感和礼仪的行为型式在我们身上深深扎根,成为人性的组成部分。但是这些禀性并非人类所特有,其他许多动物也有情感。使人类区别于其他动物的特征是思想。大脑皮层使人类从动物性中解放出来。我们不再限于从蜥蜴和狒狒那儿承继下来的遗传行为形式。我们每个人主要对那些得以进入并停留在大脑中的东西负责,对成年人来说,则对极力关心和了解的事情负责,我们可以不再受(爬行动物的)大脑的支配,我们能够改变自身的现状。

        世界上的大多数大城市,为了适应眼前的需要毫无计划地步步扩大了,但为遥远的将来进行规划的城市却很罕见。城市的演变类似于大脑的进化:以一个小中心为基础而发展起来,然后慢慢扩大和变迁,同时让许多古老的部分仍旧起作用。由于其本身不完善,大脑进化无法完全舍弃其古老的内部而创造更现代的东西去取代它。大脑在更新过程中必须起作用,这就是为什么脑干会首先由R-复合体,而后由边缘系统,最后由大脑皮层所环绕的原因。那些古代的部分担负的职能太多,不可能把它们统统淘汰。因此,它们苟延残喘,古老落后,有时还起反作用,但却是我们进化的必然结果。

        在纽约市,许多主要街道的规划可追溯到十七世纪,证券交易所始于十八世纪,供水系统初建于十九世纪,电力系统则是二十世纪的产物。如果所有的城市系统平行建造,并定期更新这就是不幸的火灾——例如伦敦和芝加哥的大火灾——有时倒有助于城市规划的形成,那么,城市的布局可能更为有效(扫校者注:这句话意思不难理解,但译文文句似乎不通)。但是这种缓慢增长的新职能,却允许城市在几个世纪内或多或少地连续发挥作用。十七世纪,人们乘船渡过东河在布鲁克林和曼哈顿之间旅行。十九世纪,工业技术的进步使建造横跨东河的吊桥成为可能。吊桥就建在原来摆渡的地方,这既是因为城市拥有这块土地,又是因为主要通道早已集中在原有的摆渡上。后来,当可能建造河底隧道时,隧道就基于同一理由,也在同一地方建成了。这样做还因为在建桥过程中已经放置了一种叫做沉箱的现已废弃的小小隧道先驱。这种修旧利废建新道的方式,与生物进化的形式极为相似。

        当我们的基因不能存贮生存所必需的全部信息时,我们就慢慢地发明了大脑。但是,后来我们又进而需要知道比大脑所能贮存的更多的信息,这个时间大概是1万年以前,于是我们学会了在人体外储备大量信息的本领。迄今所知,我们是本行星上发明了既不在我们基因里也不在我们大脑中存贮公有记忆办法的唯一动物。这种记忆的仓库就叫做图书馆。

        书籍是由树木制造的。它是在其平直柔顺的部分(亦称做“叶”——页)的一个聚合体。对着书本看上一眼,你就会听到另一个人——或许是某个逝去数千年的人——的声音。跨越了1000年的时间,作者在你的大脑里清楚地、无声地、直接向你说话。写作大概是人类最大的发明,它把在时间纪元上相隔遥远的人们结合在一起,书本打破了时间的桎梏,证明人类能创造奇迹。

        某些最早的作家在粘土上写作。西方字母的远祖——楔形文字大约在5000年前发明于近东,其作用是记录:谷物购买、土地拍卖、国王的凯旋、恒星的位置、僧侣的法规和对神明的祈祷。数千年以来,文字是刻在粘土或石头、蜂蜡、树皮或毛皮上的,也有写在竹简、纸莎草纸或丝绸上的,但总是一次写一本。只有纪念碑的碑铭不在此例,它们永远只有极少数读者。后来,在二世纪和六世纪年间,中国发明了纸张、墨水以及用雕刻过的木块印刷,使一部著作能印刷和分发许多副本。这个新技术1000年后才在远离中国的落后的欧洲流行开来。而后,书本就突然间在全世界印刷开了。在活版印刷发明之前,即1450年前后,整个欧洲总共不过几万册图书,所有的书都是手写的,数量大约相当于中国公元前100年的图书,相当于亚历山大大图书馆藏书的1/10。50年后,到了大约1500年,就有1000万册印刷图书了,任何有阅读能力的人都能读上书了,到处出现了奇迹。

        到了更近代,大量的廉价版本图书得以印刷,特别是平装书。花一餐普通膳食的钱,你就可能仔细读到有关罗马帝国的衰亡、物种起源、圆梦以及物体的自然属性等等书籍。书本就像种子,它们可能蛰伏几个世纪,然后在最瘠薄的土壤上开花结果。

        世界上的大型图书馆收藏了数百万册的书籍,按字计算,大约相当于1014 比特的信息;按图计算,大概是1015 比特。这等于我们基因所存贮的信息的1万倍,大约是大脑中信息的10倍。如果我一星期读一本书,那我一生中只能读数千册书,大约是当代最大图书馆藏书量的千分之一。读书的诀窍在于知道哪些书该读。书本中的信息并不是一成不变的,而是不断变化,随事态的发展而变动,以适应这个世界的需要。 自从亚历山大图书馆建立起来,已经过去2300年了。如果世界上没有书本,没有文字记录,试想一下达2300年的时间将变得多么奇异惊人呀!按每100年四代人计算, 2300年中几乎生活过100代人。 如果只用口头来传递信息,那人类对自己历史的认识会变得何其浅薄,人类进步会变得何其缓慢!万事则只能取决于我们偶尔听到的古代发观,取决于所传说的事情有多大准确性。过去的信息是可以受到尊敬的,但在不断的复述过程中,它会逐渐变得越来越模糊不清,直至最后丧失殆尽。书本则能使我们跨越时代航行,敲开祖先的智慧之门。图书馆把我们与早先出现过的最伟大人物含辛茹苦地从大自然中汲取的洞察力和知识联结起来,把我们与整个行星和从我们全部历史中遴选出来的最好的老师联接起来,并孜孜不倦地教导和鼓励我们为积累人类的共同知识做出自己的贡献。公共图书馆有赖于种种自愿的贡献。我认为,人类文明的健康、对将来的关怀和对我们文化支柱的认识的深度,可以从我们对图书馆的支持程度中得到检验。

        如果地球保留其原有的一切自然特性,重新从头开始进化,那么重新出现与人类极相似的任何生物种类是很不可能的事。这是因为,进化过程有一种很大的随意性。宇宙射线击中不同的基因从而产生不同的变种,这在进化的早期可能后果微小,但在后期后果就巨大了。偶然事件在生物学中可能发挥很大的作用,就像在历史上所起的作用那样。关键的事件发生得越早,对目前的影响就越大。

        以我们的手为例,我们每只手有5个指头,其中包括一个可以反向的大姆指,这些手指为我们起了很好的作用。但我认为,一只有着包括一个大拇指在内的6个手指,或包括一个大拇指的4个手指,或者可能有5个手指和两个大拇指的手,也照样会为我们起很好的作用。我们手指的特殊结构并没有一点内在的特别优点,我们只把它们看作如此自然,如此是此非彼。我们所以一只手有5个指头,那是因为我们是从有5根趾骨或其鳍中有5根骨头的泥盆纪鱼类进化而来。如果我们是从有4个或6个趾骨的鱼类进化而来,那我们每只手就会有4个或6个手指,并且会认为这是非常自然的。我们使用基数为10的算术,只是因为我们每个人有10个指头。(原注:以数5或10为基数的算术是如此显而易见,以至于古希腊语的“to count”(点数)字义上相当于“to five”(用5来计算))。如果我们的手指是另外一种情况,那我们就会使用基数为8或基数12的算术,并把基数10归入新数学之列。我相信,同一观点对解释我们人类的许多更本质的方面也是适用的,我们的遗传物质,我们内部的生化,我们的形体、身材、器官系统,我们的爱憎、热情与失望、温柔的性格与放肆的言行,甚至于我们的解析程序,所有这一切,至少部分地是由我们漫长进化历史中显然是较次要的意外事件所造成的。或许,如果在石炭纪沼泽中少溺死一只蜻蜓,那么现在我们星球上的智能生物就可能会有羽毛,并会在其栖身的巢穴里教育它们的下一代,诱发进化的形式是一张复杂得惊人的网。对于这方面肤浅的认识,使我们显得低劣无能。

        就在6500万年以前,我们的祖先还是最不起眼的哺乳动物——一种具有鼹鼠或树鼩鼱那种大小和智力的动物。只有非常大胆的生物学家才敢推测说,这种动物将逐渐衍生成今天支配地球的动物来。当时,地球上充满了令人惧怕的蜥蜴——恐龙。这是一种获得巨大成功的动物,它们实实在在地充满了每个小的生活环境中。那时,地球上有各类恐龙,有的能游泳,有的能飞翔,有些有现在6层楼那么高,吼叫着横行于地球表面。它们当中有些有着相当大的大脑,直立的姿势和极像我们双手的两条小前肢——它们用以捕捉小而敏捷的哺乳动物,其中可能也把我们遥远的祖先作为食物。假如这些恐龙活了下来,那么,大概今天支配我们行星的智能生物会是皮肤绿色、牙齿尖锐、体高4米的动物,而人类的形态就会被当作蜥蜴类科幻小说的耸人听闻的幻想对象。然而,恐龙并没有幸存下来。在一场毁灭性的灾难中,地球上的所有恐龙和许多——或许绝大多数——其他生物种都被毁灭了。但是树鼩鼱,还有哺乳动物,却安然无羔,它们幸存了下来。

        谁也不知道是什么东西把恐龙灭绝了。一个引人深思的看法是,灭绝恐龙的是一次宇宙性的灾变,是地球邻近的一颗恒星的爆炸——那是一颗像产生蟹状星云的超新星。如果大约6500万年以前,在太阳系十或二十光年之内碰巧有一颗超新星,它就会把强通量的宇宙射线喷射到空间中去,其中进入地球大气层的宇宙射线就会点燃大气层中的氮,由此形成的氮的氧化物排斥了大气层中的臭氧保护层,从而增加其表面的太阳紫外线辐射的通量,使许多遭受强紫外线照射而防护不完善的生物,受到煎熬并发生突变。其个有些生物也许一直是恐龙每餐的主食。

        把恐龙从世界舞台上清除出去的灾难——不管它是什么样的灾难——排除了哺乳动物所受的压力。我们的祖先不必继续生活在贪婪的爬行动物的围剿追捕之中了。我们变得充满活力,并且兴旺起来了。2000万年以前,我们的直接祖先可能还生活在树上。后来,因为大冰川时期森林面积缩小了,为大草原所取代,他们便从树上下来了。如果只有很小的树木存在,那么,对高度适应树上生活的动物是颇为不利的。许多栖于树上的灵长类,大概已随着森林一起消失了。少数极力坚持在地面上过动荡的生活,从而幸存了下来。幸存者中一个种类进化成了现在的人类。谁也不知道气候变化的原因,可能是太阳本身光度稍微变小了,也可能是地球轨道起了小变化;或者可能是大规模的火山爆发把细微尘埃注入同温层,把更多的阳光反射回空间而冷却了地球;或许是由于海洋的环流起了变化;或者,是因为太阳穿过银河尘埃星云的缘故。不管什么原因,我们明白了,我们的生存与偶然的天文和地理事件有着何等密切的联系。

        我们的祖先从树上下来后,进化成直立姿势,手获得了自由,还有两只极好的眼睛,这样,我们就获得了制造工具的许多先决条件。现在,真正的优势在于有一个大脑,能交流复杂的思想。其他事情也同样如此,机敏总要比笨拙好。智能人能更好地解决问题,能活得更长久,能留下更多的后代。在发明核武器之前,智能有力地帮助了人类的生存。在我们的历史长河中,正是一群有毛皮的小哺乳动物,躲过了恐龙的袭击,群栖于树梢,后来又从树上下来,驯服了火,发明了文字,建立了天文台,最后发射了宇宙飞船。如果事物向着稍为不同的方向发展,那可能会有某种其他的生灵其智力和使用工具的能力会导致与人类相匹敌的成就。这种其他的生灵也许是敏捷的双足恐龙,也许是浣熊,也许是水獭,也许是乌贼。能知道其他智能生物可能会是何等不同,那是很有趣的,为此,我们研究鲸鱼和巨猿。为了要稍微了解还可能存在哪种其他的文明,我们可以研究历史和文化人类学。但我们大家——我们的鲸鱼,我们的猿,我们人类——关系都太密切了。只要我们调查局限于单个行星上的一个或两个进化的种类,我们对其他智能和其他文明可能的范围和光辉业绩就会永远一无所知。

        在另一个行星上,由于造成变异遗传的随机过程的不同结果,和选择特殊基因结合的不同环境,发现体格上极相似于人的机会几乎等于零,但发现其他形状的智能的机会却不会没有。它们的大脑也许已彻底进化。它们也许具有类似于我们神经元的接通元件,但它们的神经元可能与我们的很不同。也许它们的神经元不必像有机器件一样只能在常温下工作,而是能在极低温下工作的超导体。在这种情况下,它们思维的速度将比我们快107 倍。或许其他地方相当于神经元的东西大概不会进行肉体上的直接接触,而是通过无线电进行联络,所以单个的智能生命能被分发到许多不同的生物中去,甚至分发到许多不同的行星上去,每个智能都带有整个智能的一部分,而它又通过无线电帮助比其自身大得多的智能(原注:在某种意义上,在不联系的个人无线电集成已经开始在地球这个天体上发生)。也许宇宙中有许多行星上的智能生命和我们一样,具有大约1014 神经元联结。不过,也许有许多地方的智能生命具有总数目为1024 或1034 神经元联结。我很想知道它们会知道些什么,因为我们和它们住在同一个宇宙中,我们和它们必定享有一些共同的实体信息。假如我们能与之联系,它们大脑里的许多东西是我们所感兴趣的,不过,反之亦然。我认为,地球外的智能——甚至那些实际上比我们更为进化了的生命——将会对我们感兴趣,对我们的知识、对我们怎样思维和我们大脑的模样、对我们进化的过程以及我们未来的前景等感兴趣。

        如果在属于十分邻近的恒星的行星上存在着智能生命,那么,它们能了解我们吗?它们可能在某种程度上设法弄明白,在这颗无名行星地球上,已发生的从基因到大脑再到图书馆的漫长的进化过程吗?如果地球外生命呆在家里,那么它们至少有两种可以发现我们的途径。一种方法是用大型射电望远镜收听。数十亿年来,它们应该会收听到由闪电和在地磁场里发啸的俘获电子和质子产生的无线电静电干扰。然后,在数十年以前,射离地球的无线电波会变得更强、声音更大,不太像噪声而更像信号。地球上的居民终于偶然发现了无线电通讯办法。现在已有大量的国际无线电、电视和雷达通讯往来。由于某些无线电频率,地球已变成太阳系中最光亮的天体(比木星亮,也比太阳亮),最大功率的无线电源。监听地球上无线电发射和接收这种信号的地外文明世界,不能不得出这样的结论:最近,地球上发生了有趣的事。

        由于地球的自转,我们功率更大的无线电发射台缓慢地掠过天空,这样环绕另一恒星的某个行星上的射电天文学家就能根据我们的信号从出现到消失之间的时间差,来计算地球上一天的长度。一些最大的功率源是雷达发射器,其中少数用于雷达天文学,用无线电指针来探测附近行星的表面,对天空投射的雷达束的规模要比那些行星大得多。而且,很多信号继续飘送,飘出太阳系,进入星际空间的深处,到达也许正在收听的某个灵敏的接收器。大多数雷达发射器都作军事之用,这些雷达总是“担惊受怕”地对着天空发射雷达讯号,看看是否有大群带有核弹头的导弹发射出来,因为它是人类文明遭毁灭前15分钟的预兆。这些脉冲的信息量很小,只是编码成导弹遥控指令的一系列简单数字型式。

        整体而言,地球上最普遍和最显著的无线电发射源是我们的电视广播节目。因为地球在运转,所以一些电视台会在一个水平线上出现,而其他电视台则在另一水平线上消失。这就会出现节目干扰。属于邻近恒星的某个行星上的高级文明甚至可以把这些节目连结起来。最经常重复的信息是电台的呼叫信号和购买清洁剂、防臭剂、头痛药片以及汽车和石油产品的广告信号。最显著的消息是在许多时区由许多发射机同时播放的,例如,在国际危机时期,美国总统和苏联总理的讲演。商业电视对国际危机的述评和人类大家庭自相残杀的交战这一类没头脑的内容,是我们向宇宙选播的关于地球上生活的主要消息。它们该会怎样看待我们呢?

        那些电视节日是无法呼叫回来的了,也无法发射一个更快的消息去取代它们并修正以前的发射。没有任何东西能传播得比光更快。这个天体上大规模的电视发射仅始于本世纪四十年代后期。这样,一个球状波阵面就在地球上集中形成了,并以光速向外扩大。因为有些消息都是几十年前才广播的,所以它们仅离地球只不过几十光年远,如果离我们近的文明远在几十光年之外,我们就还继续有稍事喘息的机会。不管怎样,我们都可以想象,它们终将发觉这些节目是不可思议的。

        两架“旅行者”号飞船飞向恒星,每个飞船上附有一个有拾音座和记录针的镀金铜唱片,其使用说明在铝制的唱片套上。我们把关于我们的基因、我们的大脑以及我们的图书馆的一些信息,送往也许正在星际空间的大海中航行的其他生命。但我们并不想发送主要的科学情报,只要能在星际空间深处截获其发射机早已失灵的“旅行者”号,任间文明都会掌握比我们懂得多得多的科学。但我们却想把我们独一无二的东西告诉其他生命。对大脑皮层和边缘系统的兴趣就很有代表性,但对R-复合体的兴趣则稍微小些。尽管接收者可能不懂地球上的任何一种语言,但我们还是用60种人类语言播出了问候语,同时还播送了座头鲸的问候。我们把世界各地人种互相关心、开展学习、制造工具、创造艺术以及响应挑战的照片播发出去。还播送了一个半小时的多种民族的优美音乐,其中有的表达了我们的宇宙孤独感,表达了我们切望结束这种孤独和与宇宙中其他生命交往的愿望。而且,我们播送了在我们行星上所能听到的从生命起源前的早期,到人类进化和我们新近萌发的各种技术录音信息。这是一首情歌,就像任何须鲸的声音—样,被投向茫茫天际深处。我们的许多信息,也许是大多数信息,是难以辨认的。但我们还是把它们发送出去了。因为关键问题是想试一试。

        根据这种精神,我们把一个人的思想和情感,以及他(她)的大脑,心脏、眼睛和肌肉的电活动记录携带到“旅行者”号上。这是一个人一个小时活动的记录。把记录改录成声音,再压缩时间,最后灌进唱片。这样我们就在1977年6月, 把地球这个行星上的一个人的这种信息直接录音发射到整个宇宙。大概接收者对此一无所知,或者认为是脉冲星的录音;或者也许比我们的文明更高级得难以想象的文明,将有能力译出这种记录下来的思想和情感,并且十分赞赏我们与它们一起共享我们思想情感的努力。

        我们基因中的信息非常古老,大多数已有数百万年之久,有的长达数十亿年。相反,我们书本中的信息最多不过数千年的历史,而我们大脑中的信息则只有数十年之久。长期存在的信息并非人类信息具有的特性。由于地球上的侵蚀,我们的纪念碑和人工制品,按照物体本身的自然发展过程,不会留存到遥远的将来。但是“旅行者”号上的唱片却正在超越太阳系的途中。星际空间中的侵蚀(主要是宇宙射线和碰撞的尘土粒)是很缓慢的,所以唱片上的信息会持续10亿年。基因、大脑和书本以不同的方式对信息进行编码,存留的时间也各不相同。但是“旅行者”号上压印在金属星际唱片中的人类记忆将持续得长久得多。

        “旅行者”号上的信息传播得十分缓慢。尽管它是人类发射的最快的飞行物体,但它还是得花费几万年的长远跋涉才能到达最近的恒星。任何电视节目会在几小时内走完“旅行者”号已走了多年的距离。刚刚播送完毕的电视发射波仅在几小时内就会赶上和超过处在土星区域的“旅行者”号飞船,急速飞向恒星。如果它按这个速度前进,其信号将在4年多一点的时间内就到达人马座α星。数十年或数百年之后,如果远在那里的任何智能生物听到了我们的电视广播声,我希望它会对我们宇宙进化150亿年后的产物——物质局部变形为有思想意识的生物——产生好感。最近,我们的智能向我们提供了令人敬畏的威力。人类是否具有足够的智慧去避免自我毁灭,这还说不清。但我们许多人正在尽力而为。我们希望,在不远的将来,在可展望的宇宙时代中,我们将完成一项伟业,即把我们行星和平统一为一个珍爱我们天体上每个生灵的机构,进而从容地迈出下一个伟大的步伐,把地球这个行星变为能与所有文明相互联系的银河系社会的一个部分。

        第十二章 银河系百科全书

        “你们是何物?来自何方?我还从未见过任何像你们一样的生灵。”造物主拉温瞅着眼前的人,接着……惊奇地发现这个陌生的新生灵竟然如此地像他自己。——爱斯基摩人创世神话

        天空出现了,
        地球诞生了,
        谁将与天地共存,噢,神灵?
        ——阿兹台克人的记事诗《天国的历史》

        我知道,有的人会说我们关于行星的断言有点过于冒失。我们的断言是基于许多“假设”之上的。如果其中有一个假设碰巧是错误的,并且与我们的推测相矛盾的话,那么,它就会象松软的地基一样使整座大厦倾覆沦为废墟。但是……假如地球只不过是同样崇高而神圣的行星之一,谁敢冒险断言说,别处再也找不到像我们一样欣赏着大自然歌剧奇观的生物?如果还有其他的观众,谁敢说,只有我们才深入地探索过它的奥秘并通晓它了呢?——引自C.惠更斯《关于行星世界及其居民和生产的新猜想》(约1690年)

        大自然的创造者……使我们现时不可能从地球上与宇宙的其他大星球进行任何联络,很可能他同样切断了其他行星间以及不同星系之间的联系,……我们对所有星球的观测足以引起我们的好奇心,但我们却无法使这种好奇心得到满足……,如果认为我们的目光那么远大,好奇心那么强烈,结果只会使自己感到失望,那么,这种认识似乎并不与照耀整个宇宙的智慧之光相吻合。……因此,这就自然地导致我们把人类目前所处的状态看成只是人类生活的曙光或开端,看成是进一步发展的准备或预备阶段。——C.马克劳林(1748年)

        没有一种语言(比数学)更通用、更简单、更少谬误和更不含混……更适合用来表述天然事物之间的各种关系。它用同一种语言解释(所有的现象),似乎就是为了证实宇宙设计的完整性和简单性,进一步表明驾驭一切自然进程的指令是不可变更的。——J.傅立叶《热的分析理论》(1822年)

        我们已经向恒星发射了4艘飞船:“先锋10”号和“先锋11”号(扫校者注:通常译为先驱者而非先锋),“旅行者1”号和“旅行者2”号。与浩瀚的星际距离比较起来,它们是落后而原始的飞船,象梦中的赛跑一样拖拉迟慢。但是,将来我们一定会进步的。我们的飞船将飞得更快些,将会有确定的星际目标,并且我们迟早会有载人的飞船。银河系中肯定有许多比地球年长数百万年的行星,有些要比地球年长数十亿年。难道地球上不曾有过天外来客吗?自从我们的星球形成以来的数十亿年中,难道从来没有来自遥远文明世界的陌生飞船从上面眺望过我们这个世界,并慢慢地降落到我们星球的表面,被五彩缤纷的蜻蜒、懒散的爬虫、啸叫的灵长类或惊讶的人类观察到吗?这种想法是很自然的。每个哪怕是漫不经心地考虑过宇宙中智能生命问题的人,都会有过这种想法。但是,这种事情是否确实发生过呢?关键问题是那些所谓证据的可靠性,我们需要的是经过严密和反复推敲的,而不是似是而非的,也不是一两个自称目击者未经证实的证据。尽管所有关于未探明飞行物及古代太空学家的声言有时似乎使人觉得我们星球充满了不速之客,但根据上述标准,有关天外来客的例子还不能令人信服。我倒希望情况会是另—个样子。有些证据是无可辩驳的,哪怕只发现一件,也许是一块深奥莫测的碑铭,都可成为解开星外文明之谜的好钥匙。这正是人类早就感到迫切需要的东西。

        1801年,一位名叫约瑟夫·傅立叶的物理学家(原注:傅立叶因他对热在固体中的传导以及对波和其他周期性运动的研究而闻名于世。前者,现在用于认识行星的表面特性;后者,称为傅立叶分析,是数学的一个分支),当时是法国伊泽尔省的省长。当他巡视所辖省内的学校时,发现了一个11岁的男孩,他那超群的智慧和对东方语言的天赋已赢得了学者们的赞赏。傅立叶邀请他到家中一叙。那个孩子迷上了傅立叶所收藏的埃及工艺品,那些工艺品是在拿破仑远征期间收集的,当时博立叶正负责为那个古代文明的天文学遗物分类编日。那些楔形文字的碑铭引起了孩子极大的好奇心。“它们究竟是什么意思呢?”孩子问道,他得到的回答却是“谁也不知道”。孩子的名字叫让·弗郎索瓦·商博良。由于受到无人知晓的神奇语言的激励,他后来成了一名杰出的语言学家,热衷于研究古埃及的文字。当时,拿破仑偷来的埃及工艺品充斥整个法国,这些东西后来为西方学者所得。描述拿破仑远征的书出版了,年青的商博良贪婪地阅读它。到了成年,商博良成功地实现了他幼年的抱负,向社会提供了古埃及的象形文字的光辉译本。但直到1828年,在他与傅立叶相识27年之后,商博良才第一次踏上埃及这个他梦寐以求的国土。他沿着尼罗河从开罗逆流而上,对他所致力了解的文化表达了他的崇敬之情。这是一次非常及时的远足,一次对外国文明的拜访:

        16日晚,我们终于来到登德拉。皓月当空,庙宇离我们仅有一小时的路程。世上最冷静的人啊,请你告汗我,此刻,我们怎能够抗拒它的诱惑呢?当时的命令是:用餐后立即出发。我们孤单无援,又无向导,但我们全副武装,越过田野……庙宇终于出现在我们眼前。人们可以很好地把它打量一番,但想得出结论却是不可能的。它是优雅和宏伟的最高度的结合。我们入迷地在那里呆了两个小时,在巨大的房间里穿梭奔跑……并试图在月光下辨认外面的碑铭。直到凌晨3点才回到船上,但7点又返回庙宇……。月光下的庙宇富丽堂皇,阳光下的庙宇宏伟壮观。我们这些欧洲人都感到相形见绌,没有哪个国家——不管是古代的还是现代的——能象古埃及人那样构思出这样一种令人惊奇的、伟大而壮观的建筑艺术。他们是按身高100英尺(1英尺=0.3048米)的人的标准去构制这一切的。

        在卡纳克的石壁和圆柱上,在登德拉,在埃及各地,商博良高兴地发现,他几乎可以毫不费力地阅读那里的碑铭。在他之前,有许多人都尝试过,但都未能破译出那些有趣的象形文字,就连一个意为“神圣的雕刻”的字也译不出。一些学者曾认为,它们是一种图形密码,富含隐晦的比喻,大部分是些近乎眼珠和波纹线、甲虫、土蜂和鸟一类的象形型体,特别是鸟型体,到处令人困惑不解。有一些人推断埃及人是来自古代中国的殖民地开拓者,也有一些人的推论刚好相反。当时出版了大量大开本的、足以乱真的翻译本。有一个译员对着罗塞塔的石头看了一眼,就匆匆宣告他知其含义了;其实石头上的象形文字碑铭尚未被破译!他说,这种快速译法使他得以“避免由于反复琢磨所必将导致的人为的错误”。他争辩说:“你不去考虑过多,结果反而较好。”正如今天在探索地球外生命方面的情况一样,业余爱好者的信口雌黄常常把许多专业研究人员吓得退避三舍。

        商博良反对把象形文字视为图形隐喻。相反,借助于英国物理学家T.杨的卓越见解。他是这样着手研究的:罗塞塔石头是由在尼罗河三角洲拉希德镇要塞上服役的一个法国土兵于1799年发现的,当时的欧洲人大多不懂阿拉伯文,因此把拉希德叫成罗塞塔。它只是古庙的一块石板,上面的雕刻显然是用三种不同的文字来阐述同一件事的:最上面用的是象形文字,中间用的是一种古埃及象形文字的通俗草写体,下面用的是希腊文——这是解开这个谜的关键。商博良通晓古希腊语,他一下就辨认出,这块碑铭是用来纪念托勒密五世于公元前196年春天登基加冕的。在那次加冕典礼上,国王宣扣释放政治犯,减轻赋税,捐款兴建庙宇,饶恕反叛者,加强军备。简而言之,他做了现代统治者为了保住他们的宝座所做的一切。

        希腊原文多次提到托勒密,在象形文字原文中大约相同的位置上,有一组由椭圆或涡形环绕的符号。商博良推论说,这些符号极可能也表示“托勒密”。如果是这样,文字符号就根本不可能是图形文字或是一种隐喻;相反,其中的大多数符号一定代表了字母或音节。商博良还耐心地数了希腊字母数和可以认为是大抵等价的原文中单个象形文字的字数,而前者要少得多,这再次说明象形文字基本上是字母和音节,但哪个象形文字对应哪个字母呢?很幸运,商博良带着一块在菲莱地里挖掘出来的方尖形石碑,石碑上有与克娄巴特拉的希腊文名字相对应的象形文字。本书正文后面附图所示的就是经过重新整理以便都可以从左向右读的“托勒密”(Pto1emy)和克娄巴特拉(C1eopatra)的涡形饰纹。Ptolemy的第一个字母是P,涡形内的第一个符号是一个正方形。Cleopatra的第五个字母也是P,而在Cleopatra涡形内的第五个位置上也同样是个正方形。因此正方形就是字母P。Ptolemy的第四个字母是L,它不正是用狮子表示吗?Cleopatra的第二个字母也是L,而在象形文字中,那里也是一只狮子。鹰表示字母A,它在Cleopatra中出现了两次,正好吻合。这样,一种很明显的格式便显现出来了:古埃及的象形文字大部分是简单的代用记号。但并不是每个象形文字都代表一个字母或一个音节,其中有的是图形文字。Ptolemy涡形的结尾符号念为“敬爱的Ptah神永生”。Cleopatra结尾的半圆和卵形是“爱西斯(生育女神)之女”的惯用表意符号。字母和图形文字的混合使用,导致了一些早期译员的失败。

        现在回顾起来,这一切似乎是轻而易举的事,但人们却花费了许多世纪的时间才解开这个谜,而且,今后会有更多的事情要做,特别是要解译更为远古时期的象形文字。涡形是关键的关键,就好象埃及的法老们故意在他们的名字上画上圆圈,以便2000年后的埃及考古学家们更易于开展他们的工作。商博良到过卡纳克的大型多柱殿,无意中读到了这块使任何其他人都困惑不解的碑铭,解答了他自己在孩提时代曾向傅立叶提过的问题。打开这条与其他文明联络的渠道,使已经沉默了数千年的文化显露出它的历史、巫术、医学、宗教、政治和哲学内容,这在当时该是一件何等令人愉快的事呵!

        今天,我们又在开始寻找古代外来文明的信息。我们这一次所寻找的信息,不仅在时间上,而且在空间上对我们来说都是讳莫如深的。如果我们接收到来自地球以外某一种文明的一个无线电信息,又怎样才能理解它呢?地球以外的智能生命会是文雅、深奥、内在一致的,与我们完全不同。当然,地球以外智能生命还是希望把尽可能易懂的信息发送给我们的。但是,他们如何才能做到这一点呢?是否在某种意义上也存在着一块星际罗塞塔石呢?我们相信会有的。我们相信,不管种种技术文明之间的差异有多大,肯定会有一种通用语言,那就是科学和数学。自然规律是放之四海而皆准的。遥远的恒星和星系的光谱图形,与太阳或在专门的实验室里实验得出的光谱是相同的。宇宙各处不仅存在着相同的化学元素,而且解释原子辐射的吸收和发射的量子力学定律,也是放之四海而皆淮的。遥远的星系互相环绕运行,他们所遵循的定律与苹果落地或“旅行者”号飞船向恒星飞行所遵循的万有引力定律是一样的。大自然的运动格式是无处不同的,旨在为正在崛起的文明所理解的星际信息总该是不难破译的。

        我们并不认为在我们这个太阳系的任何其他行星上存在着高级的技术文明。如果有某种只比我们稍迟一点出现的文明,比如说迟上1万年,那么,它根本就不可能有什么先进的技术。如果那是一种比我们——我们已经在探测太阳系了——早出现的文明,那么,它的代表现在就应该在我们这里了。为了与其他文明进行通信联络,我们不仅需要有足以适用于行星之间的联络方法,而且还应有适用于恒星之间的联络方法。从理论上说,这种方法应是廉价的,这样,大量的信息就能以很小的代价得以发送和接收;这种方法应是快速的,这样,恒星际间的对话才有可能进行。同时,这种方法还应该是显而易见的,以便任何技术文明——不论其进化途径如何——都能尽早发现它。令人惊讶的是,这种方法确实存在,即射电天文学。

        地球这个行星上最大的半可控射电/雷达观测台是阿雷西博天文台,由康奈尔大学代替国家科学基金会经管。它设在波多黎各岛边远的内地,直径305米(约1000英尺),具有抛物形反射面,建在原有的碗形山谷中。它接收来自空间深处的无线电波,使电波聚焦在高出谷地的馈电臂天线上,并通过电路连接,送到控制室,供研究人员进行信号分析。另一方面,当望远镜用作雷达发射机时,馈电臂将信号发送到谷地、并反射到空间去。阿雷西博天文台已经用它来探索太空文明的智能信号,并曾向一个遥远的球状星团M 31播放过信息。我们具有赖以在对话双方之间进行恒星际间通讯的技术能力,这是十分清楚的,至少对我们来说是如此。

        阿雷西博天文台能在为期几个星期的时间内,将全套《大英百科全书》的内容发射到邻近恒星的一颗行星上同类天文台上去。无线电被以光速传播,它比附在我们最快的星际电船上的信息快1万倍。射电望远镜能在很窄的频率范围内发出很强的信号,因此,它们能越过浩瀚的星际距离而得到检测。如果我们有确定的发射目标,那么,阿雷西博天文台就能与一个与地球相距15,000光年远——相当于从地球到银河系中心距离的一半——的行星上的同类射电望远镜进行通讯联络。射电天文学是一门自然科学技术。实际上,任何一种行星的大气层,不论它是由什么组成的,都具有部分透射无线电波的性能。恒星间的气体云对无线电信息的吸收和散射能力并不很强,就象格杉矶人即使在烟雾使光波能见度减少到只有几公里的情况下,也能清晰地收听到旧金山电台的无线电信号一样。有许多天然宇宙无线电源与智能生命毫无关系,如脉冲星和类星体、行星的辐射带,以及恒星的外层大气。在射电天文学的局部发展过程中,很早就发现了来自几乎任何行星的许多活跃的无线电源。此外,无线电反映了很大一部分的电磁波谱。任何一种能检测任意波长辐射的技术,都能很快找到光谱中的无线电部分。

        也许还有其他一些确具优点的有效的通讯方法:星际飞船、可见光或红外激光、脉冲中微子、调制引力波,或其他某种1000年内我们还不可能发现的发射方式。先进文明的通讯手段可能已大大超出了无线电的范围。但是无线电通讯威力大、成本低、速度快,并且简单易行。先进文明该会知道,象我们这样的落后文明,如果有希望接收到太空的信息,就可能首先借助于无线电技术。或许,他们将只得把古代技术博物馆中的射电天文台拿出来使用。如果我们打算接收到一个无线电消息的话,我们就该知道:至少有一件可以谈论的事情,即射电天文学。

        但是,那里会有我们的谈话对象吗?单我们银河系就有3000~5000亿颗恒星,难道就只有我们这一颗有人类居住的行星吗?更有可能的是,种种技术文明的存在是一种常见的宇宙现象,种种先进社会正伴随着银河系在脉动和鸣响。因此,最邻近的技术文明并不会是十分遥远的,也许,就在邻近的某个肉眼可见的行星上所建造的天线正在发射信号呢。也许,当我们在夜晚抬头仰望星空的时候,邻近的那些微弱光点中就别有洞天,那上面与我们人类极不相同的某种生物,正悠闲地对着我们称为太阳的这颗恒星看着,享受着一刹那荒诞臆测的欢乐呢。

        这种假设的正确与否是很难肯定的。那里也许在技术文明进化方面存在着严重的障碍。行星的数量也许比我们所想象的少;那儿的生命起源,或许并不象我们实验室的实验结果所表明的那么容易;也许高级生命形式的进化在那儿是不可能的;那儿的情况也可能是这样的:复杂的生命形式进化迅速,但是各种有智能和技术的社会的形成和出现却有赖于种种不太可能有的偶然巧合,就象人类的进化取决于恐龙的灭亡和冰川期森林的消失一样,我们的祖先不就是在林中的树上尖声啼叫而不知所措吗?或者,文明在银河系中那数不清的天体上不可抗拒地一再出现,但通常是不稳定的,因此,除了极少数外,所有的文明都无法幸免于他们的技术所造成的灾难,并在贪婪与无知、污染和核战争中消亡。

        进一步探讨这个重大的问题,把银河系中高级技术文明的数目粗略地估算为N,这倒是可能办到的。我们给高级文明下的定义是:通晓射电天文学的文明。这个定义即使算得上是个实质性的定义,当然也只是狭义的提法。宇宙中可能存在着无数的世界,那里的居民都是杰出的语言学家或伟大的诗人,可是对射电天文学却一窍不通,我们无望获得来自他们的信息。N能用几个因素的乘积来表达,每一个因素都是一个筛子,每个筛子都必须非常大,因为文明的数量极大:

        N*,银河系中恒星的数目;

        fp,具有行星系的恒星的比率;

        ne,在给定的体系中就生态学而言适合生命生存的行星数;

        fl,确有生命出现而在生态学以外的其他方面又适宜生命生存的行星的比率,

        fi,住有智能生命且发生形式进化的行星比率;

        fc,有智能生命居住,并且发展了通讯联络技术的行星的比率;

        fL,兼备技术文明的行星生命期的比率。

        全部写出来,方程为N=N* fp ne fl fi fc fL,其中所有的f均为分数,取值0~1之间。它们都使N这个大数递减。

        为了导出N,我们必须估算每一个量。前几个因素,即恒星和行星系的数目,我们知道得比较清楚;后面的因素,即关于智能的进化或技术社会的生存期,我们所知甚少。在这些方面,我们的估算只比臆测略胜一筹。如果你不赞同我下面的估算,那就请你自己作出选择,看看你对银河系中高级文明的数目所作的不同估算含义何在。这个方程最初是由康奈尔大学的德雷克提出的,它的一个很大的优点就在于它涉及面很广:从恒星和行星天文学到有机化学、进化生物学、历史、政治和变态心理学等各个学科。宇宙的绝大部分都包罗在德雷克的方程式之内。

        通过对天空中虽然很小但却有代表性的区域的仔细计数,我们对银河系中恒星的数目N*是相当清楚了,有好几千亿颗。一些最新的估算把这个数目定为4×1011 ,其中只有极少数属于巨大的、迅速耗尽热核燃料的短寿命型星体,绝大多数能生存数十亿年或更长的时间,并在此期间稳定地发光,为邻近行星上生命的起源和进化提供适当的能源。

        有证据表明,在恒星形成过程中常常有行星伴随产生,在犹如小型太阳系的木星、土星和天王星的卫星系中,在行星起源的理论中,在对双星体的研究中,在环绕恒星的吸积盘观测中,以及在恒星附近的引力摄动的一些初步调查中,都证实了这种伴随现象。许多恒星,甚至可能是大多数恒星,都有其行星。我们取有行星的恒星的比率fp为1/3,那么,银河系中行星系的总数应为N* fp≈1.3×1011 如果各个行星系都象我们太阳系一样有大约10颗行星,那么银河系中的行星世界总数将超过1万亿,这真是宇宙戏剧的一个广阔的舞台。

        在我们这个太阳系内,有几个天体也许适合某种生命的生存。这当然首先是地球,大概还有火星、土卫六和木星。生命一旦发生,它就具有极强的适应性和持续性。在一个特定的行星系中,肯定有许多适合生存的不同环境,但是我们保守地做出ne=2的结论,这样,银河系中适合生存的行星数就成了N* fp ne≈1.3×1011 。

        实验证明,在最普通的宇宙条件下,生命的分子基础是容易形成的,分子的结构单元能够自我复制。我们现在就不那么肯定了,例如在遗传密码的进化中,也许会有许多障碍,尽管我认为它不可能需要几十亿年的远古神秘变化过程。我们取fl≈1/3,意为在银河系中,生命至少在其间出现过一次的行星总数为N* fp ne fl≈1×1011 即有1000亿个有居民的世界。这个数字本身就是一个惊人的结论。不可,我们的计算还没到达尽头。

        要选挥fi和fc就更困难了。一方面,在生物进化和人类历史进程中,为了把我们的智能和技术发展到今天的水平,就必然出现许多个别看来不太可能出现的阶段。另一方面,要往具有特定本领的高级文明进化,肯定有许多不同的途径。考虑到在寒武纪的大爆炸中所显示出来的大型生物进化中明显的困难,让我们取fi×fc≈1/100,意为在所有有生命出现的行星中,仅有百分之一最后产生了技术文明。这个估算代表了各种科学观点中的一种折衷立场。有人认为,从三叶虫的出现到对火的驯服这样一个阶段,在所有的行星系中都只不过是一瞬间的事情而已。有的则认为,即使让它进化上100亿或150亿年,也不大可能进化到技术文明阶段。只要我们把调查研究局限于一个行星上,那就不可能通过实验来解决这样的课题。将这些因素相乘在一起,我们就可以得到N* fp ne fl fi fe≈1×109 ,即技术文明至少在10亿个行星上出现过一次。但是,这与关于现在存在10亿个具有技术文明的行星的说法是截然不同的。为此,我们还得对fL来一番估算。

        在行星的生命期中,具有技术文明的时间占多大的百分率呢?在地球数十亿年的生命期中,仅仅是最近几十年才出现以射电天文学为特征的技术文明。因此,迄今为止,我们行星的fL小于1/(1×108 )即小于亿分之一。说我们明天可能毁灭自己,那简直是天方夜谭。但是,假定把人类自我毁灭看成是一个典型的情况,而且毁灭起来相当彻底,以致于人类或任何其他类型的文明都不可能在太阳灭亡之前50亿年左右的时间里重斯出现,那么结论就是N=N* fp ne fl fi fc fL≈10。而且,在任何特定的时间内,银河系内只可能有少得可怜的几个技术文明同时存在。当新出现的社会取代了最近自我毁灭的那些社会时,这个稳态数目保持不变。数目N甚至可能小到等于1。如果在进入工业技术阶段后不久,文明趋向于毁灭自己的话,那么我们可能再也没有任何可以和我们进行对话的对象了,只能在我们同类生灵中互相对话。我们也正是这么做的,只是做得并不太好罢了。文明可能要经过数十亿年的痛苦进化才能出现,然后由于不可饶恕的疏忽,又自我毁于一旦。

        但是,让我们来考虑一下另外一种可能、另一种前景吧:至少有某些文明学会了与高度的技术共存;以往大脑进化中难以预测的矛盾得到了有意识的解决,这就不至于导致自我灭亡了,或者,即使确实发生了重大的动乱,但后来几十亿年的生物进化又把它们恢复过来了。这种社会就可能继续兴旺地生存下去,直到晚年,它们的生存期或许可以用地质或星体进化的时间标尺来估算。如果有百分之一的文明能够成功地度过技术的青春期,在这个危急的历史关头,选择适当的道路走向成熟期,那么fL≈1/100,而N≈107 。这样一来,银河系中现存的文明数量将以百万计了。因此,在我们所担心的德雷克方程中前几个因素可能存在的不可靠性——它涉及到天文学、有机化学和进化生物学——中,无法确定的主要还是经济、政治以及在我们地球上称之为人性的问题。如果自我毁灭并非银河系文明命中注定的归宿,那么,似乎很明显,天空中就应该充满着来自各种恒星的信息宜人的嗡鸣声。

        这些估算是鼓舞人心的。它们表明,从空间接收到信息本身就是一个意义深远而充满希望的征兆,哪怕我们否时还无法破译它们。它意味着,某些智能生命已经懂得如何与高度文明共存了,并且度过技术青春期也是可能的。撇开信息的内容不说,单就这一点,就为研究其他文明的必要性提供了充分的理由。

        如果有数百万个文明比较无规律地遍布于整个银河系,那么离我们最近的距离大约为200光年。即使以光速传播,一份无线电信息也需要二个世纪的时间才能从那里传到我们这里。如果我们之间开始对话,那就好象是当时约翰尼斯·开普勒提出的问题,我们今天才听到答案。特别是由于射电天文学还是一门新科学,我们肯定还比较落后,而进行发射的文明比较先进,因此对我们来说,只接收而不发送的做法是更可行的。对于更先进的文明来说,二者的位置当然得倒过来摆。

        我们正处在用射电探索太空其他文明的最初阶段。在一幅密集的恒星场光学照片中,可以看到成千上万颗恒星。根据我们比较乐观的估计,它们当中有一颗正是先进文明之所在。可到底是哪一颗呢?我们的射电望远镜应当朝向哪一颗恒星呢?在可能出现先进文明的数以百万计的恒星中,我们迄今为止用射电望远镜进行研究的才不过几千颗,也就是说,我们所作的努力只是所要求的千分之一左右。不过,认真的精密的系统探索工作很快就将开始。美国和苏联都已进入准备阶段。这种探索工作的费用比较低,据估计,一艘中型现代化海军驱逐舰的成本就足以应付10年之久的探索地外智能生命计划的费用。

        友善的接触历来就不是人类所遵循的常规,不同文化间的接触往往是直接的、有形的;这与接收无线电信号是根本不同的两码事,后者就象接吻那样轻而易举。仔细回顾一下我们过去所做的一两件事,哪怕只是为了看清我们的前程这样做也还是有益的:在美国革命和法国革命这两段时期之间,法国国王路易十六装备了一支赴太平洋的探险队,这是一次以研究地理、经济和民族主义为目标的航行,总指挥官是彼鲁兹伯爵,他是一位在美国独立战争中为美国战斗过的著名探险家。起航后一年左右,他于1786年7月到达阿拉斯加沿岸一个现在称为利图雅湾的地方。他很喜欢那里的港口,挥笔写道:“天地间再也找不到一个能比这里提供更多方便的口岸了。”就在这个典型的地方,彼鲁兹“发现了一些野人,这些野人挥舞着白色的斗篷和各种各样的皮革,以示友好。一些印地安人荡着独木舟,在海湾里捕鱼……这些野人的独木舟不时地向我们靠拢,他们拿出鱼、海獭和其他动物的皮毛,以及他们衣服上各种不同的小装饰品,跟我们交换铁器。使我们大为惊讶的是,他们显得很善于交往,讨价还价相当老练,一点儿也不比哪个商人逊色。”

        美洲的土著人的讨价还价日趋激烈。使彼鲁兹感到烦恼的是,他们还经常行窃,偷的主要是铁制品,有一次还偷制服。有天晚上,他们把在武装的卫兵守护下酣然入睡的一些法国海军军官的制服从枕头底下偷走了,手段之高超堪与著名魔术大师哈里·胡迪尼的技艺相媲美。彼鲁兹遵照王室的命令,表现得很冷静,但他抱怨说,土人“以为我们的忍耐是无限的。”他蔑视他们的社会。但双方都没有给对方造成严重的损害。等到两艘船的食品得到补充之后,彼鲁兹便驶离了利图雅湾,从此再也不到这个鬼地方来了。1788年,探险队在南太平洋遇难,除了一人生还外,彼鲁兹和其余队员都遇难了(原注:彼鲁兹在法国招募船员时,有许多聪明好学的青年报名,但却遭到拒绝,其中就有名叫拿破仑·波拿巴的科西嘉炮兵军官。这是世界历史上一个有趣的转折点。如果彼鲁兹接受了波拿巴的申请,罗塞塔石头可能就不会被发现,商博良也许决不会破译埃及象形文字,而且我们的近代历史在许多重要的方面也将大大改观)。

        恰好一个世纪以后,特休格特族的一个首领考依向加拿大人类学家G.T.埃蒙斯讲述了他的祖先第一次见到白人的故事,这是一个只靠口头流传下来的故事。特林格特人没有文字记载,考依也从未听说过彼鲁兹。下面就是从考依故事演译出来的一篇文字:

        一年的暮春时节,一大帮特林格特人冒险北上,来到雅库托特,从事铜的买卖。当时铁比铜更贵重,只是无法弄到货。一进入利图雅湾,四只独木舟就被波浪吞没了。当幸存的人架起帐篷,哀悼他们失去的伙伴时,两个怪物进入海湾。谁也不知道那是什么玩艺儿,看起来好象长着白色大翅膀的大黑鸟。按照特林格特人的信仰,世界是由经常伪装成乌鸦形状的大鸟创造的,这只鸟把太阳、月亮和星星从禁锢它们的匣子中放了出来。看到这只乌鸦的人全变成石头。特林格特人惊恐地逃到森林里面去躲藏起来。但是,过了一会儿,他们发观大鸟对他们并不伤害,几个胆子较大的人便慢慢爬了出来,用臭菘叶卷成的土望远镜代替肉眼进行观察,他们以为这样就不会变成石头了。透过臭菘,他们看到大鸟似乎正在收起翅膀,从它们的体内冒出成群的黑色小天使,在它们的羽毛上蠕动。

        一个近于瞎眼的老勇士把人们召集在一起,宣布说,为了公众的利益,他将不惜自己的性命,要前去证实一下这只乌鸦是否真会把他的子孙变成石头。他穿上海獭皮外套,跳上独木舟,下海朝那只乌鸦划去。他爬了上去,听到了陌生的声音,他那受过损害的视力使他几乎分辨不出在他眼前活动的许多黑色形体到底是什么,也许是乌鸦吧。当他平安地回到他的同伴中时,人们涌上前去围住他,看到他能活着回来,都感到莫明其妙。他们伸手摸模他,凑上前去闻闻他,看看是否真是原来的那个老人回来了。经过反复思考,老人确信:他所看到的不是神鸟,而是人造的大木舟,那些影子也不是乌鸦,而是不同种族的人罢了。他的话,特林格特人信服了,就去参观了这两艘船,并且拿他们的皮毛去跟大船上的人交换了许多奇怪的货物,其中主要是铁器。

        特林格特人用口头流传的方式保留了完全可信的准确史实,记下了他们第一次几乎以完全平静的方式与外国人当面交往的情景(有关特林格特人的首领考依的介绍说明,即使在没有文字记载的文化中,与先进文明的接触的事例也能几代流传下来。如果在数百或数千年前,地球外的先进文明访问过地球,哪后与之接触的是地球史前的文明,我们也很可以期望有某种可辩认的接触形式遗留下来。但是没有任何一个有案可查的早期技术时代的传说,可以被认为只是记述与地球外文明接触的实例)。要是有一天,我们与地球外更先进的文明遭遇上了,能大体上(哪怕谈不上某种亲善)象特林格特人与法国人的交往那么平静吗?或者,较高级的社会会彻底消灭技术上饺落后的社会吗?16世纪初叶,一种高度文明在墨西哥中部兴盛起来,如阿兹台克人那高超的建筑艺术、巧妙的记录保存法、精湛的艺术以及比欧洲任何一种都更优秀的天文历法。一见到第一批由墨西哥货船载回的阿兹台克工艺品,艺术家A.杜勒尔就于1530年8月写道:“在此之前,我从未见到过今我如此醉心的东西,我见到了……一㖊宽的全金的太阳(实际上是阿兹台克人的天文历书),同样大的全银的月亮,还有满满两舱的各式武器、盔甲和其他令人惊讶的兵器。所有这一切,比任何奇迹都更值得一看。”学者们捧着阿兹台克人的图书,目瞪口呆。有个学者说:“这些书籍简直与埃及人的书籍相差无几。”H.科特斯把阿兹台克人的首都特诺奇蒂特兰描写成“世界上最美丽的城市之一。……那儿,人们的言谈举止简直与西班牙人一样高雅,各种事情也和西班牙人一样被组织得井井有条。考虑到这些人的野蛮习性、他们对于上帝的无知以及与其他文明民族的隔绝状况,再看看他们所拥有的这一切,真是令人意想不到。”就在写下这段话之后两年,科特斯把特诺奇蒂特兰连同阿兹台克的其他文明彻底摧毁了。下面是一份阿兹台克人记载的材料:

        莫克台祖玛(阿兹台克皇帝)对所听到的情况大为震惊和恐惧,对他们的食物大惑不解。而使他几乎昏厥过去的是,听说西班牙人指挥的大朗巴德炮发射炮弹时轰响如雷,使人胆颤心惊,头晕目眩。从火堆和闪光中蹦出石头一样的东西来。乌烟瘴气,臭味熏人。中弹的山头被夷为平地,化为乌有,树木被炸得碎如锯屑,好象被风一吹,就会无影无踪似的……当莫克台祖玛得知这一切时,先是惊恐万分,继而昏迷不醒,最后心力枯竭。

        报告接二连三地传来,告诉莫克台祖玛说,“我们不如他们强大”“我们无法与他们匹敌”。西班牙人开始被称为“来自上天的神明。”但是阿兹台克人对西班牙人不抱任何幻想,他们用下面这样的话来描写他们:

        他们脸上闪着光,像猴子一样掠夺黄金。很明显,他们对黄金贪得无厌;他们如饥似渴,欲壑难填,一心想像饥不择食的饿猪一样,用黄金去填满他们的大肚皮。因此,他们到处乱窜,翻箱倒柜,金条到手,掂量再三,占为已有。中还念念有词,彼此争吵不休。

        但是,他们对西班牙人本性的洞察并没能帮助他们保卫自己,1517年在墨西哥曾出现过一颗大彗星,莫英克台祖玛深信阿兹台克神克察尔科托正以白种人的形象跨越东海回来了,他便立即处决了他的星占学家。因为这些星占学家没有预测到彗星的出现,也没有能解释它的含义。确信灾难即将临头,莫克台祖玛变得冷漠忧郁。1521年,400名武装的欧洲人和他们在当地的同盟者,利用阿兹台克人的迷信,凭借他们在技术上的优势,完全征服并彻底摧毁了100万人的高度文明。阿兹台克人从未见过马匹——在新界里根本没有这种动物,他们没有把炼铁术用于战争,也没有发明火器,但他们和西班牙人之间在技术上的差距并不很大,大概只落后几个世纪。

        我们一定是银河系中最落后的技术社会。任何更落后的社会根本不会有射电天文学。如果地球上不同文化间冲突的可悲经验成了银河系的典型的话,那么我们似乎早应被消灭了,就连对莎士比亚、巴赫和威梅尔的赞赏也许也成了过眼烟云。但是,这一切并未发生。也许外星人极其友善,与其说象彼鲁兹,不如说象科特斯(扫校者注:此句不通,疑说反了)。这很可能是因为我们这个文明还未被外星人发现,尽管有各种有关未探明飞行物和古代宇航员一类的传言。

        一方面,我们主张,哪怕只要有一小部分技术文明学会了与他们自己以及与拥有大规模毁灭性武器的人共处,那么银河系现在就应有无数的先进文明。我们已经进行了慢速的星际飞行,并把快速星际航行定为人类可能达到的目标。另一方面,我们又认为,还没有可信的证据表明目前地球是否被外星人访问过,将来会不会有外星人前来访问。这二者不是相互矛盾吗?比如说靠地球最近的文明远在200光年以外,那么,他们以近于光速的速度航行,则只需200年时间就可以从那里来到地球。即使以百分之一或千分之一光速航行,邻近文明的生灵也应该在地球上开始有人类生存至今的期间到达地球了。可他们为什么还没来过这里呢?答案可能是多种多样的。也许,我们这里正是头一个技术文明的社会呢,虽然这种想法是违背阿里斯塔恰斯和哥白尼的遗言的。在银河系的历史上总得有某一种文明首先问世。我们相信,至少有些文明能避免自我毁灭。也许这种信念是错误的,也许星际宇宙飞行中存在某种无法预料的困难——尽管对于以比光速低得多的速度所进行的飞行来说,要弄清究竟是什么样的障碍并非易事。也许,他们可能就在地球上,只是由于某种银河系的规矩的约束——尊重某种不干涉正在崛起的文明的道德规范,他们隐藏起来了。我们可以设想,他们正好奇地、不带偏见地观察着我们,以确定我们今年是否又能设法避免自我灭亡,就象我们注视一碟琼脂中的细菌培养液一样。

        但是,还有另外一种解释与我们所知道的一切相一致。如果在许多年前,200光年以外的地方出现了高级的星际空间的文明,那么除非他们到过我们这里,否则就毫无理由认为地球有什么特别之处。没有任何人类技术的产物,哪怕是我们的无线电发射,即使以光速传播也还来不及传播到200光年远的地方去。从他们的现点来看,所有邻近的恒星系对于探索和开拓殖民而言都或多或少具有同样的吸引力(也许会有许多到恒星去的推动力。如果我们的太阳或者邻近的恒星即将变成超新星,一个星际飞行的大规划也许会突然变得有吸引力。如果我们非常先进,发现银河系核心即将爆炸的迹象,就可能认真考虑如何进行穿越银河系或星系之间的星际飞行。这种宇宙的激烈变动经常会发生,以至于在空间流动的文明可能不是罕见的事情。即使如此,他们仍是不大可能到达这里)。

        正在崛起的技术文明,在对本行星系进行探测和发展星际飞船技术之后,慢慢地总会对附近的恒星开始试探性的探测。有些恒星可能没有相应的行星,它们大概都是些巨大的气体世界,或者是很小的小行星。其他的恒星可能伴有一定数量的行星,但有的也许已经有生物居住,或者大气有毒,或者气候不佳。在很多情况下,殖民者们可能不得不对世界进行改造——或者如我们从狭义观点所说的进行地形改造——以使它变得暖和、舒适。改建行星是需要时间的。偶尔也可能发现和开拓一个本身已经很适合居住的世界,利用行星资源在当地建造星际飞船,那将是一个缓慢的过程。最后,第二代的探测和开拓飞行将朝着尚无人迹的恒层起飞。这样,文明可以慢慢地行进,就象地球上枝藤植物的蔓延一样。

        可能在将来某个时候,随着第三或更高级殖民开拓阶段对于新世界的开发,将发现独立扩展的文明。很有可能它们已经通过无线电或其他遥感手段彼此进行过接触了。即将来临的可能是不同类型的拓殖社会。可以预料,具有不同行星需求的两个扩展的文明被此将互不干扰,它们以互相交叉的形式扩展,而不互相冲突。他们也许会合作探索银河系的某个边远区域。即使是邻近的文明,也可能要花费数百万年的时间去从事这种独立的或共同的开拓殖民冒险事业,而不会与我们这个无名的太阳系邂逅的。

        除非人口数目有所限制,否则任何文明都不可能维持到星际航行阶段。人口显著膨胀的社会,都非得把所有的能源和技术技能集中用来养活和照顾好本行星上的人口不可。这是一个非常强有力的结论,而且完全不以某个特定文明的个性为转移。在任何行星上,不管它的生物学或社会体系发展到什么程度,人口指数的增长必将耗尽一切资源。反之,从事严肃的星际探险和开拓殖民事业的任何文明,一定已经在许多代人中,把人口增长率控制在零或非常接近于零的范围内。哪怕在成为某种繁荣的乐园,而且对人口迅速增长的严厉批评业已停止之后,人口增长率低的文明也需要很长时间才有可能开拓许多新世界。

        我和我的同事成廉·纽曼计算过,如果在100万年前,人口增长率低的空间游牧文明已出现在300光年远的地方并向外扩张,开拓适宜的殖民世界,那么,他们的勘测星际飞船也差不多只能到现今才进入我们太阳系。但是,100万年可是一段非常漫长的时间啊。如果离我们最近的文明还没有100万年的历史,那他们就还到不了我们这里。一个200光年半径的球体内包含了20万个恒星,以及数目大概与此相当的适宜开拓殖民的世界,按照事物发展的通常进程,只有在20万个其他的世界被开拓殖民之后,我们这个竟然藏有土生土长文明的太阳系才会被偶然发现。

        对于一个文明来说,100万年的历史意味首什么呢?我们的射电望远镜和宇宙飞船已有数十年的历史,我们的技术文明则已有几百年的历史,具有现代计算方式的科学观点已有数千年历史,普通的文明则已有数万年的历史,人类在这个行星上的进化只是在数百万年前才开始的。按类似于我们目前技术的进展速率来看,我们与数百万年之久的高级文明之间的差距,就象非洲森林中的小猿或弥猴与我们之间的差距一样大。我们会认可上述猿猴的存在吗?一个比我们先进100万年的文明会对开拓殖民或星际空间飞行感兴趣吗?由于某种原因,人们的生命期是有限的。生物和医学科学的巨大进步可能会揭示这个原因并找到适当的补救办法。我们对宇宙飞行如此感兴趣,是不是因为这是一条能使我们跨越自己有限的生命期而与世长存的途径呢?基本上由不朽的生命组成的智慧生命,会不会认为进行星际探测从根本上说是十分幼稚的呢?外星文明之所以至今还没有光临地球,也许是因为在浩潮的空间中散布着大量的恒星,从而使邻近的文明到达地球之前就迁情于其他星球,或者它本身已经进化成我们所无法探测的形式了。

        科幻小说和飞碟文学的共同特点是把外星人假设为大体上像我们一样能干。也许他们有某种不同类型的飞船或射线枪,但在战斗中——科幻小说总是喜欢描写文明之间的战斗——我们和他们总是势均力敌的。事实上,两个星系的文明几乎不可能在同一(发展)水平上相互作用。在任何对抗中,总是一个完全支配另一个。 200万年是一个很长的时期,如果某个先进的文明执意前来我们太阳系,那我们是无计可施的。他们的科学和技术一定大大超过我们。有人担心,我们可能接触到的先进文明恐怕是不善的。这种担心是毫无意义的。情况更可能是这样,即他们之所以能生存如此之久,这个事实本身就意味着他们已学会与他们自己以及与其他文明共处。我们如此害怕与外星人接触,大概只不过是我们的落后状态的反映,是我们对自己曾在历史上蹂躏过比我们稍为落后的文明而感到良心上不安的一种表现,我们还记得哥伦布和阿拉瓦克人、科特斯和阿兹台克人,甚至还有在彼鲁兹之后的特林格特人几代人的命运。我们对往事记忆犹新,对未来忧心忡忡。但是,如果星际舰队在我们的上空出现时,我预料我们又会对他们非常殷勤的。

        有一种更为可能的完全不同的接触方式,即一种我们已经讨论过的情况:通过无线电,我们接收来自空间另一种文明的丰富而复杂的信息,这样至少在一段时间之内不与他们发生有形的按触。在这种情况下,发射信息的那个文明就无法知道我们是否已接收到他们的信息。如果我们发现所收信息的内容令人不快或带恫吓性,我们大可不必答复。但是,如果所收信息富有价值,那么,它对我们文明的影响将是不可估量的——它使我们得以洞察外星的科学和技术、艺术、音乐、政治、道德、哲学和宗教,尤其使我们得以深入了解人类生存条件的非地方性。我们将学会别的可能的生存条件。

        因为我们愿意与其他任何的文明共享科学和数学的成果,所以,我相信,理解星际电报是最容易解决的问题之一。但要说服美国国会和苏联部长会议为探测地外文明提供资金,却是一个难题。实际上,文明也许可以分为两大类别:一类文明中,科学家们无法说服非科学家们授权探测地外文明,精力只能用于内部事务,世俗的成见是不可动摇的,社会躇踌不决,并且,重新放弃了探测恒星的努力;另一类文明中,主张与其他文明进行接触的远见卓识受到广泛的理解和支持,大型的研究计划得以实施。

        这是人类所致力的极少数努力之一,这种努力即使失败了,也是一种成功。如果我们打算并进行了对包含有数百万颗恒星的地球外无线电信号的精确研究,即使一无所获,我们也可以断言银河系的文明就是有也是极为稀少的。这是对我们地球在宇宙中地位的一个检验,它可以雄辩地证明,我们行星上的生灵是多么稀少。可以在人类历史上首次标明我们每个人的个人价值。如果我们得以成功了,那么,我们人类和我们行星的历史就将会完全改观。

        外星人不难发出一个清晰的人工星际电报。例如,所用的头10个质数——即只能被它们自己和被1除尽的数字——是1、2、3、5、7、11、13、17、19、23。任何天然的物理过程都能发射只包含质数的无线电信息,这看来是极不可能的。如果我们接收到了这样一种无线电报,我们就可以推断,说那里的文明至少是对质数感兴趣的。但是,情况最可能是这样的:星际通讯用的是某种“羊皮纸”,就象古代作家缺乏纸莎草纸或石头时,就把他们要写的内容重写在原先有字的羊皮纸上。可能在邻近的频率或更快的时标中,会有另外的信息,它传播的其实是一种入门性质的内容,以帮助收听者理解星际演说的语言。进行发射的文明因为无法知道我们何时收听他们的信息,所以他们总是反复重播入门性质的内容。那么,真正的内容是在“羊皮纸”的深层,即写在呼唤信号和入门内容的下面。无线电技术容得下该电报那不可思议的丰富内容。也许,当我们打开接收机时,会发现他们正在播送《银河系百科全书》的第3267卷。

        我们将揭示其他文明的本质。宇宙中总会有许许多多的文明存在,它们由与我们这个行星上任何东西都不同的有机体组成。他们对宇宙的看法也可能多少会有些不同。其艺术和社会职能也与我们的不同。他们感兴趣的东西,我们过去从未想过。通过比较彼此的知识,我们会取得无可估量的进步。通过把我们最近获得的信息分门别类地存入计算机的记忆,我们应能弄清银河系的哪个地方存在着哪种文明。不妨设想一下,有那么一台巨大的银河系计算机,一个多少算是银河系中所有文明的本质和活动信息的最新贮存库,一座宇宙生命的巨大图书馆。也许,在《银河系百科全书》的内容中,既有一整套对这种文明所作的总结。即使我们成功地翻译了这部百科全书,这些文明的信息仍然是莫测高深,令人种往,可望而不可即。

        不管我们准备花多长的时间作准备,我们最终将做出决定,给地外文明发出回音。我们将发射一些有关我们自身的信息——最初只是一些基本的东西——作为长期星际对话的开端。因为星际空间距离如此漫长而光速是有限的,所以这场对话只能从我们开始,而由我们遥远的后裔去继续进行。总有一天,在某个遥远恒星的某个行星上,一个与我们每个人的差别都很大的生命,也许会要求我们向他们发送最新版本的《银河系百科全书》,以获得刚刚加入银河系文明共同体的这个最新社会的一些资料。

        第十三章 为地球呼吁

        整日面对著死,目睹残酷的奴役和压迫,何必自寻烦去探索星体的奥秘呢?——引自蒙塔古著作中阿那克西米尼(公元前600年)向毕达哥拉斯提出的一个问题

        充满星球的太空多么浩瀚,与其他星球相比,我们的地球多么渺小。但是,我们的一切宏伟的计划,一切航行,一切战争,却都是在地球这个小小的舞台上进行的。那些不惜牺牲无数生灵而发动战争的王公贵族真该好好地反省一下,他们的野心充其量不过是成为世界的一个可怜的小角落的主人。——引1690年惠更斯所著《关于星球世界及其居民和生命的新猜想》

        太阳对我们说:“我把光明撒向整个世界;在你们感到寒冷时,我给你们送去了温暖;我使田野肥沃,牛羊成群;每天我都要环统地球一周,为的是更好地了解你们的需要,并满足你们新的需要,以我为榜样吧!”——引自加西拉蒙·德拉贝加1556年所著《王家纪事》中的印加神话

        如果追溯到千百万年前,我们就会看到:具有顽强求生意志的小生物从海洋潮间带泥泽中挣扎出来,它们在残酷的斗争中不断改变形态,增强本领,从爬行进化到自信地行走在大地上,一代又一代地奋斗,终于适应了空气环境,活动在大地那无边的黑暗之中;它们在恶劣的气候和饥馑中改变自己的形态,变得越来越与我们形似;它们朝着难以置信的目标,坚持不懈地努力,不断扩展自己,强化自身,最后变得与我们相差无几。至今,在我们的头脑中、血管里都有着它们的烙印……。那种认为过去的一切只是一个新阶段的起点,现有的一切都只是晨曦的亮光,都可能是正确的。那些认为人们的头脑所想到的一切都不过是临醒前的梦境,也可能是正确的……脱离了我们的门第观念,思想将会产生飞跃,并将反过来影响我们,扩展我们狭隘的眼界,使我们更好地认识自身。在漫漫的时间长河中,这样的一天一定会到来。那时,我们想象中的还孕育在人类肢体中的生命能够屹立在这个星球上,笑着向太空张开双臂,就象我们现在站在小凳子上一样。

        ——H.G.威尔斯1902年所著《发现未来》,见《自然》杂志第65卷,第326页

        人类发现宇宙,犹如近在昨天。百万年来,我们的祖先都只知有大地,不晓得天外有天。只是到了 1000 年前, 尤其是阿里斯塔恰斯时代以后,我们才不得不承认,我们并非位于宇宙的中心,并非是宇宙的主宰,而只是生活在一个无足轻重的脆弱的小天地之上,湮没在广阔无垠、永恒不变的宇宙大海之中,漂游在千亿个星系、上百兆亿个星球之间。我们斗胆检测了一下这“海水”;结果发现宇宙之海竟与我们有不解之缘。我们竟是由星尘演变来的。追本溯源,人类的产生和进化,都与遥远的宇宙中发生的事件有关。因此,我们探测宇宙的航程,实际上是一种自我发现的过程。

        正如古代神话所说的,人类既是天之子,也是地之子。人类在地球生存的过程中,逐步继承了危险的进化包袱:对侵略和陈规陋习的嗜好和媚上仇外的习性,这对人类的生存是很不利的。但是我们也学会了同情别人、热爱子孙后代、渴望从历史中汲取教训,充分发挥自己的聪明才智——这些是我们得以生存和繁荣的有力武器。人类本性中的哪一方占上风尚无定论;尤其是当我们的眼光、理解力和思想境界只局限于地球,甚至只局限于地球上其一个小部分时,就更没有定论了。然而,宇宙的无穷奥秘,还要靠我们去发掘,因为至今尚无迹象表明,地球以外存在更高级的生命。这使我们不由得怀疑,象我们这般的文明是否总是轻率地、不可逆转地走向自我毁灭。从宇宙空间观看地球就无所谓国界了。假如地球是一个脆弱的蓝色发光体,在群星的辉映下正在衰变成一个不显眼的光点,那么种族主义、宗教主义和大国沙文主义就难以维持了。宇宙旅行能使我们的眼界开阔。

        在有些世界中,生命从未产生过,而在另一些世界上生命已经由于意外的宇宙灾祸而焚灭。但我们的世界却格外幸运,我们不仅还很好地生存着,而且还强有力地、牢牢地控制着我们的文明和人类自身。如若我们不为地球呼吁,还有谁来为它呼吁呢?如若我们不为自己的生存承担责任,那么要由谁来承担责任呢?

        人类正在进行着一个巨大的冒险,如果成功,这个冒险既象土地的开拓或从树上迁居地上一样重要。我们正在犹犹豫豫地打破地球的桎梏,隐匿一点地表现在对地球上头脑比较原始的同类的对抗和征服上,显露一些地表现在到其他星球上去旅行及倾听来自遥远星球的信息。这两个方面又是密不可分的。我认为,它们还是相辅相成的。但我们的精力却更多地注重于战争。嗜好互相猜疑,几乎毫不关心人类或地球,这无异于毁灭人类自己。正因为我们所做的事是如此可怕,我们就不愿去多加考虑。但是,如果我们不愿去考虑,又怎能加以纠正呢?

        所有思想健全的人无不为核战争而担心,可是每一个技术先进的国家都在计划着核战争。尽人皆知,进行核战争是发疯的行为,但每一个国家又总有种种借口(发动战争)。世界上存在着一种可怕的连锁反应:第二次世界大战初期,德国人正在研究原子弹,美国人因此赶紧造出了第一颗原子弹。既然美国拥有了原子弹,苏联也就要造原子弹。接着,英国人、法国人、中国人、印度人、巴基斯坦人……就一一起而效尤。到二十世纪末,许多国家都将拥有核武器。要设计核武器并不难,裂变物质可以从核反应堆得到。核武器几乎成了一种家庭手工业。

        第二次世界大战时使用的常规炸弹当时称为巨型炸弹。这种炸弹内装20吨TNT炸药,能摧毁整整一个街区。在第二次世界大战中,所有城市承受的炸弹总共约有 200 万吨,1939~1945年之间投下的这种巨型炸弹达10万枚,200万吨,考文垂(英格兰)、鹿特丹(荷兰)、德累斯顿(德国)和东京(日本)都遭到了狂轰滥炸,造成了无数的伤亡。但到了二十世纪后期,只要爆炸一颗普普通通的热核炸弹,就能释放出 200万吨的能量, 即一颗这样的炸弹,就能产生第二次世界大战中所投炸弹的破坏力。可世界上的核武器数量已何止成千上万!到二十世纪九十年代,美苏两国的战略导弹和轰炸机的弹头将瞄准15 000个以上的预定目标。这样,地球将没有任何安全的绿洲了。死神正在耐心地等待有人去摩擦神灯。这些武器释放的能量将远远超过100亿吨。如此巨大的破坏力不是在6年的时间内,而是在几个小时内释放出来,相当于在地球上的每个家庭头上落下一枚巨型炸弹,等于在一个悠闲的下午每秒钟发生一次第二次世界大战。

        核爆炸的直接杀伤力是冲击波,它能摧毁数公里以内的坚固建筑物。其次是原子爆炸产生的巨大烈焰、伽马射线以及中子流,它们能把路过的人的五腑六腑烧焦。第二次世界大战快结束时,美国在广岛投下了一颗原子弹。一位幸免于难的日本女学生,据其目睹情景写道:

        天昏地暗,我听到了其他同学哭爹喊娘的呼喊。在一座桥基旁以前挖掘的大水池中,我看到一位母亲在恸哭,她高高地托着一个裸体的婴儿,孩子被烧得浑身通红。另一位母亲则一边抽泣着,一边让她的宝宝凑近她那被灼伤的乳房。许多学生站在水池里,只有头露出水面,他们紧握双拳在空中挥舞,凄惨地尖叫着,呼喊着自己的双亲。所有过路者都浑身带伤,无一例外,没有一个人能够伸出援助之手。人们的头发被烤得卷曲起来,变了颜色,沾满了灰烬。人们的模样变得千奇百怪,简直不象是这个世界的生灵。 与稍后的长崎爆炸不同,广岛的原子弹是在远离地面的空中爆炸的,因此它产生的放射性尘埃数量少得多。1954年3月1日,在马绍尔群岛的比基尼基地所进行的核爆炸产生了比预料高得多的放射性尘埃。巨大的云状放射性尘雾降落在 150 公里以外的朗格拉普环礁上。当地的居民把这次爆炸比喻为在西边升起的太阳。若干小时后,放射性尘埃雪片般撒落到朗格拉普环礁上。但人们受到的平均辐射量只有 175 拉德左右,还不到一般人致死量的一半。由于爆炸试验远离人群,死亡的人并不多。但是,人们吸入的放射性锶浓缩在骨头中,放射性碘则渗入了他们的甲状腺,以致事过不久,当地有三分之二的儿童和三分之一的成年人患上了甲状腺异常,以及发育迟缓和恶性肿瘤等疾患。作为补救措施,马绍尔群岛上的居民受到了专门的医护。

        在广岛投下的原子弹的爆炸力只相当于 13000 吨TNT,而比基尼核试验的爆炸力也只有1500万吨TNT。假如爆发全面的热核战争,那么就会有相当于 100 万个广岛那样的原子弹落到世界各地。广岛的原子爆炸杀死了大约10万人。按这样的致死率,全面的热核战争则足以杀死1000亿人。而到二十世纪末,地球上的人口还不足50亿。(扫校者注:事实是60亿) 当然,在这样一场核战争中,不见得人人都会死于冲击波、爆炸烈焰、辐射线和放射性尘埃。不过,过得了初一,过不了十五,因为放射性尘埃会存在相当长一段时间,百分之九十的锶-90衰变要96年,铯-137要 100 年,碘-131要一个月。

        核战争的幸存者将可目睹不可思议的后果。高空中的氮将会烧掉并变成各种氮的氧化物,从而消耗掉高空大气层中的大部分臭氧,使大剂量的太阳紫外线透过大气层(原注:这一过程与烟雾喷射器中的碳氟化合物推进剂对臭氧层的破坏类似,但危险得多。因此许多国家禁止使用烟雾喷射器,这也被用来解释由于几十光年以外超新星的爆炸造成恐龙的灭绝)。这骤然增加的紫外线通量可能要持续若干年,它会导致皮肤癌,对于浅色皮肤的人尤其如此。更为严重的是,还不知会对地球的生态发生什么影响。大大增加的紫外光会毁灭庄稼,杀死大量的微生物。我们还不能确切地预测究竟是哪些生物、有多少种生物会罹难,也不知道其后果有多么严重。我们现在所能知道的,只是被杀死的将是处于巨大生物结构底层的生物,而人类将在这样的生物结构的顶端苟延残喘。

        在一场全面的核战争中,喷入空中的尘埃将会反射太阳光,从而使地球稍许变冷。但是,哪怕轻微地变冷也会在农业上产生灾难性的后果。鸟类比昆虫更易受射线的伤害,虫灾将进一步造成农业的紊乱,这可能是核战争的后果之一。还有另一种值得忧虑的灾祸,全世界的瘟疫都是地区性的,到了20世纪后期,死于瘟疫的人已经不会太多了,这倒不是不存在瘟疫了,而是人的抵抗力增强了,然而,热核战争中产生的辐射至少会削弱人体的免疫系统,从而降低人们抵抗疾病的能力。从更长期的效应来看,由于发生变异,会产生新的微生物和昆虫。这对于任何幸免于核灾难的人都可能会造成更深远的麻烦。经过一段时间,当隐性变异重新组合并且表达出来,可能会产生新的可怕的人种来。隐性变异一旦表达出来,往往是致命的,只有少数不是如此,痛苦将接踵而至,心爱的人不断去世,无数的烧伤患者、瞎子、四肢不全者,惨不忍睹;疾病、瘟疫横行,空气和水体长期滞留着放射性毒素、恶性肿瘤、死胎、畸形儿,比比皆是;缺医少药,文明荡然无存。我们本该避免的一切,却都无可避免地发生了。

        L. F.理查森是一位对战争问题颇有研究的英国气象学家。他想搞清楚触发战争的原因。战争与天气有某种相似之处。两者都很复杂,但却都有规律可循。这就说明,它们并非不可改变,而是可以认识和控制的自然体系。要了解地球的天气,首先就必须搜集大量的气象资料,就必须搞清天气的实际变化。因此,理查森认为,要搞清战争的规律,其研究途径无疑与研究天气相同。因此他搜集了1820年到1945年期间在我们这个可怜的地球上爆发的几百次战争的资料。

        理查森的研究成果发表在一本题名为《直接冲突的统计学》的遗著中。由于他竭力想弄清可能发生造成特定数量伤亡的战争所需的时间,他为一场战争的规模规定了一个指数 M,并用这个指数来度量战争直接造成的死亡人数。假如 M=3, 那就只是一场小规模的战争,死亡人数只不过1000人(103 )。假如 M=5 或 M=6,则说明战争的规模大得多,战争中据有10万人(105 )或100万人(106 ) 死亡。第一次世界大战和第二次世界大战的指数都较大。他从这项研究中发现,一场战争死亡的人越多,这样的战争就越不可能发生。人们等待目睹这场战争的时间就越长,就象猛烈的风暴不如阵雨频繁一样。

        理查森认为,假如不断降低 M 值,直至使M=0, 就可以大致估算出世界的凶杀死亡率,即每隔 5 分钟,就有一人被谋杀。上述情况说明,不仅从次要的角度,而且我认为从最深刻的心理角度来看,战争就是大规模的凶杀。当我们的安宁受到威胁,我们的前程受到挑战时,我们——至少是我们当中的一部分人——会不由得怒火万丈。国家受到类似的威胁时,他们有时也会愤慨万分,但在这种情况下,这种愤怒往往是那些谋求权益和私利的人激起的。但是随着凶杀手段的改善及战争威胁的不断增长,必须使许多人同时进入极端激怒的状态,才能形成一场大战。一般说来,因为宣传工具掌握在国家手中,国家不断作出这样的安排(但核战争的情况是个例外,因为极少数几个人就能触发一场核战争)。

        在这里,我们看到了感情和有时被称之为人的善良本性之间,在古代爬行动物控制发怒的头脑部分——R 复合体,与近代哺乳动物及人类的相应大脑部分——边缘系统和大脑皮层之间的矛盾。当人类小群地生活,当我们的武器较为简陋时,一个愤怒的士兵只能杀死几个人。随着技术的进步,战争的手段也进步了,同时我们自己也进步了。我们学会了控制自己的恼怒、挫折和绝望的感情,而且在世界范围内改善了不公正的状况。但是,我们现有的武器能够杀死几十亿人,难道我们改善的步伐就够快了吗?在理智教育方面就没有问题了吗?对于战争的起因我们做过勇敢的深入的探讨吗?

        人们通常所说的核遏制战赂,最显著的特点就反映了人类远祖的野蛮性。当代的政治家亨利·基辛格说过:“遏制,主要应该是心理上的遏制。为了达到遏制的目的,深谋远虑的威胁比明目张胆的恫吓更有效。”然而真正有效的核威胁,有时还包含非理性的姿态,即对核战争恐怖的无知。这样,当非理性的姿态使得一场全面对抗成为似乎不可避免之时,你的对手便被迫屈服于争端的焦点,而不是进行这场对抗。采取令人置信的非理性姿态的主要危险在于,要想成功,你就得装得十分逼真。而过一段时期之后,你便习惯于此了。于是,你就会弄假成真。

        以美苏为首的全球恐怖均势是以地球上的全体居民作为人质的。两国各自对对方的行为设置一定的容许限度,各自警告对方,一旦超越了这个限度,核战争便会一触即发。不过,这种限度时时在变化。对于变化了的新限度,双方务必心领神会。它们各自都在扩大自己的军事优势,但这种扩大不是以露骨的、使对方深感不安的方式进行的。它们一直在互相试探对方的容忍度。例如,核轰炸机在荒凉的北极上空的飞行、古巴导弹危机、反卫星武器试验、越南战争及阿富汗战争等等。这不过是从一系列的令人担忧的例子中略举一二而已。全球的恐怖均势是一种极其微妙的平衡。这种均势取决于不出岔子、不犯错误、不爆发爬行动物的兽性。

        其实,核武器及其发射系统的不断完善,迟早会把地球推向灾难的深渊。许多美国和来自欧洲的移民科学家,当初研制出了第一代核武器,如今却深为他们放出的这个恶魔而焦虑不安。他们极力呼吁在全世界范围内销毁核武器,但无人理会他们的呼吁。美苏两国都憧景取得战略的优势,开始了核军备竞赛。

        与此同时,国际上大规模破坏力的非核武器贸易正在蓬勃发展,人们诡称之为“常规武器”。在过去的25年中,扣除通货膨胀率后,国际上每年的武器贸易额从3亿美元猛增到200亿美元以上。仅以有完整资料的1950~1968年的情况为例,世界上每年平均发生数次涉及到核武器的意外事件,虽然核爆炸的意外不超过1~2次。苏联、美国和其他一些国家的军火工业规模庞大,强大有力。美国的军火工业包括了一些著名的民间制造公司。根据一份材料估计,同样技术用于军火工业的利润比民用工业要高出百分之三十到五十。另外,在军火工业中费用的超支是许可的,其程度在民用工业中则被认为是无法接受的。在苏联,大量的人力、物力、注意力和精力都投入武器生产之中,这与不太重视消费品生产的情况适成鲜明的对照。据某些人士估计,世界上几乎有一半的科学家和高级工程技术人员完全或部分地为军事工业服务。从事毁灭性武器的研制人员,所获得的工资、享受的特权以及可能拥有的荣誉,都是同行中最高的。对武器研制的保密,在苏联保持得特别长,这意味着研制人员对其工作几乎不承担任何责任。他们受到保护,他们的名字也从不张扬。保守军事秘密的需要使军人在所有社会中成为最难以监察的一部分公民。假如我们不知道他们在做什么,我们就很难阻止他们的行动。由于报酬十分优厚,也由于敌对双方的军火工业在某些可怕的共同点上互相勾结,世界从而会被引向彻底的毁灭。

        每一个大国对于拥有和贮备毁灭性武器都具有可以大肆宣扬的理由。常见的理由包括毫无道理地认为潜在的敌人品质卑劣、修养低下(与可靠的同盟者正相反),或者认为别人,而决不会认为自己有征服世界的野心。每个国家似乎都有一系列的禁区,绝对不许它的人民和追随者越雷他—步。在苏联,这些禁区包括资本主义、上帝和有损国家主权的言行;而在美国,则包括社会主义、无神论和损害国家主权的言行。世界各国,概莫例外。

        对于一个不偏不倚的天外观察者,我们该如何解释全面的军备竞赛呢?对于最近不断研制的卫星武器、粒子束武器、激光武器、中子弹、巡航导弹,以及拟议中在所有盟国建造成千上万个地下发射井、装备洲际弹道导弹,对这一切,我们又如何解释呢?难道一万个瞄准好目标的核弹头是为了改善我们生存的前景吗?我们如何对这个星球的居民交待呢?我们都听到过核超级大国振振有词的理由,我们也知道谁在为本国的利益辩护。但是,谁来为人类辩护呢?又有谁来为地球辩护呢?

        人脑质量的三分之二位于大脑皮层,主管直觉和推理。人类是群体进化而来的,因此喜欢有人作伴,互相体贴。我们互相合作,利他主义根植在我们心间。我们对自然界某些部分已有了出色的认识,有足够的动机携手共事,也有足够的能力找出合适的方法来把事情做好。例如我们确想认真地对待核战争,以避免我们的蒸蒸日上的社会出现全面崩溃,难道我们不该考虑重建我们的社会结构吗?从外星人的角度来看,地球上的文明在最紧迫的问题上正处于毁灭的边缘:无法维持地球居民的生命、安宁和幸福。因此,难道我们还不应该在所有的国家里,尽力探究改变传统的办事方法的途径吗?还不该从根本上重新建立经济的、政治的、社会的和宗教的结构吗?

        在如此令人不安的选择面前,人们总是尽量冲淡问题的严重性,总是认为那些担心世界末日到来的人是杞人忧天。人们还认为,要进行社会结构的重大改变是不切合实际的,或者是违反“人性”的,好象只有核战争才是切实可行的,好象世界上只有一种人性。全面的核战争还没有发生过,人们由此得出结论,大概将来也决不会发生。但是要知道,这种战争我们只能经历一次啊!真到那时,一切都将悔之莫及。

        美国是极少数几个真正支持一个控制军备竞赛机构的政府之一。但从国防部的预算(1980年达1530亿美元)和军备控制及裁军署的预算(每年 180 万美元)来看,人们对这两者的相对重要性就一目了然了。一个有理性的社会难道就不能多花些钱用于互相了解,用于防止而不是用于准备下一次战争吗?要研究战争的起因并不难,在现今的世界上,人们的相互理解是极为可怜的,这很可能就是自从埃凯德的萨根王(校者注:公元前2600年巴比伦闪米特人的埃凯德王国的建立者,在此他或许是某个战略计划的代称)时代以来,裁军预算就始终处于可有可无状态的缘故。细菌学家和医生研究疾病主要是为了给人治病,他们并不仅仅是为了寻找病原体。让我们在研究战争时,象爱因斯坦说过的那样,把它当作给孩子治病来对待。如今,核武器的大量增加以及反对核裁军的势力已威胁到每个人的安全,因此,不存在任何特殊的利益,特别的例外。人类的生存全靠我们用智慧和资源来掌握自己的命运。

        我们——地球上所有的人,作为核武器的人质,都必须大力进行关于反对常规战争和核战争的教育。同时,我们还必须教育我们的政府。必须明白,只有科学技术才是确保我们生存的可靠工具。我们要敢于向传统的社会、政治、经济和宗教挑战。此外,我们还必须真正懂得,全世界的所有民族都一样是人。诚然,要做到这一点并非轻而易举。但是,就象爱因斯坦在他的建议被当作不切实际或不符合“人性”时多次重复回答的那样:我们又有什么其他的抉择呢?

        哺乳动物的天性是喜欢用鼻子、用舌头去触摸和亲吻幼仔,也喜欢把幼仔抱在怀里,对他们百般爱抚和珍爱。而这些行为在爬行动物中是极难见到的。假如在我们的头脑中,R-复合体和边缘系统真的处于一种不稳定的休战状态,且带有其祖先的偏好,我们可以期望充满柔情的父母挚爱能激发哺乳动物的天性,而缺少抚爱则会引起爬行动物的兽性。某些证据表明,情况确实如此。哈里·哈洛和玛格丽持·哈洛通过实验室实验发现,如果把猴子单独养在笼子里,即使它能看到其他的猴子,听见它们的声音,闻到它们的气味,笼子里的猴子也会变得惊恐不安、爱发脾气、撕抓自己以及表现出其他一些反常的性格。在儿童中也观察到同样的现象,尤其是在因为得不到大人的抚爱(通常是在孤儿院里)而受苦受难的孩子们中,这种现象非常明显。

        精神病专家J.W. 普雷斯考特别出心裁地对 400 个工业化前期社会进行过一次国际性的统计分析。结果发现,孩子们得到充足的抚爱会使他们厌恶暴力行为。即使只得到一般抚爱的孩子,只要青春期的某些必要的活动没有受到压抑,成年后也会厌弃暴力行为。普雷斯考特认为,假如在人生的两个关键时期,即婴儿期和青春期,享受不到欢乐,这些人长大成人后就容易嗜好暴力。在人们普遍相亲相爱的地方,盗窃、有组织的宗教活动、对财富仇视以及虐待行为等都不会普遍发生。在虐待孩子盛行的地方,奴役现象,行凶杀人、折磨和残害对手、深信男尊女卑以及崇拜一两种超自然的事物就会屡见不鲜。

        尽管我们可以作出某些推测,但我们对人的行为的认识还不足以确定这些关系的机制。然而人们的相互关系却是至关重要的。普雷斯考特写道:“在一个社会中,假如人们都能爱抚孩子,那么这个社会变为嗜好暴力的可能性就只占百分之二。偶然发生例外的可能性的比例为125 000:1。我找不出任何其他试验性的变数具有如此高的预见性。”孩子盼抚爱,此乃人之常情。如果年青人能按他们的意愿行事,社会发展的结果就会是:成人很难容忍侵略、领土扩张、追求陈规陋习和社会等级制度(当然,在孩子们成长的过程中,他们也许会经历这些卑鄙行为的折磨。假如普雷斯考特的观点是正确的,那么在一个核武器泛滥成灾的时代,虐待儿童就违反人性了。同时,我们每个人都应责无旁贷地为世界的未来作出贡献,方法就是对我们的孩子给以真挚的抚爱。

        如果奴役、种族主义、厌女癖和对暴力的嗜好是彼此互相关联的话,正如对个人的性格、人类的历史以及跨文化的研究所说明的那样,那么就还有乐观的余地。在我们的社会中,近来发生了重大的变化。延续了几千年的奴隶制,在过去的两个世纪内通过震撼世界的革命已近于绝迹。千百年来地位低下的妇女一直毫无政治地位和经济权力,如今,哪怕在最落后的社会里,也都逐渐取得了与男子平等的地位。一些较大的侵略战争在现代史上第一次因侵略国人民的反战而部分地得到了制止。陈旧的民族主义热情和侵略主义的荣誉感已开始失去号召力。另外,也许是因为生活水平的提高,孩子们的待遇普遍地好转起来。仅仅在几十年的时间内,席卷全球的变化开始朝着有利于人类生存的方向发展。人们开始觉悟到,我们都属于一个物种——人类。

        生活在亚历山大图书馆创建时期的西奥菲拉斯塔写道:“在上帝面前,迷信是懦弱的表现。”在我们居住的宇宙里,各种原子在星球的中心孕育;每一秒钟都有上千个恒星诞生,在年青的行星的空气和水中,阳光和闪电使生命大放吴彩;有时一个星体还没走完银河系的一半路程就在太空中爆炸,为生物的进化提供所需的原料;象银河系一样莫明其妙的事物形成过千亿次;这是一个浩瀚的世界,充满了类星体的夸克、雪片和萤火,可能存在着黑洞和其他的世界,外星文明的无线电信息此刻可能正飞向地球。两相对照之下,迷信和伪科学是多么苍白无力,而追求科学、探究科学才是人类所应该致力的事业。

        大自然的一切都深藏着奥秘,令人神往、敬畏。西奥菲拉斯塔说得有道理,那些害怕知道宇宙真面目的人,那些要求不存在的东西、妄称人类是处于宇宙中心的人,总是更沉缅于对迷信一时的满足之中,而不愿面对现实世界。只有那些勇敢地探索宇宙真面目的人,即使发现事实与自己的愿望完全不同也无所畏惧的人,才能洞察宇宙最深刻的奥秘。

        地球上只有人类才从事科学事业,迄今为止,科学还只属于人类。它是由自然选择进化而来的人的大脑皮层的产物,其存在只有一个理由:它确实起作用。但它还不完善,有时也会用错。它毕竟是一种工具,但却是我们的最好的工具,因为它能自我修正错误,不断地运转,运用于一切事情。它有两条基本原则:其一,没有神圣的真理,所有的假说都必须加以严格的检验,权威说的话也不该一味盲从:其二,无论什么假设,一经发现与事实不符,就必须加以修正或者抛弃。我们必须以其本来的面貌去认识宇宙,而不能将它与我们的愿望混为一谈。显而易见的东西有时是假想,而意料之外的事有时却是真的。当范围足够大时,任何人的目标就都一样了。而研究宇宙恰恰提供了最大的范围。世上现有的文化象是一个骄傲的陌生人,经过了四、五十亿年的风风雨雨才来到地球这个舞台上,然而只经过几千年的观察就宣布自己掌提了永恒的真理。在一个如此瞬息万变的世界中,这种宣称预示着不幸,因为所有的民族,所有的宗教,所有的经济体系和知识都不能回答有关人类生存的所有问题。肯定有许多社会制度比现存的任何制度好得多,科学的使命就是去寻找它们。

        在人类历史上,只存在过一次科学和文明繁荣昌盛的景象,那就是古爱奥尼亚灿烂的文明,其明证则是亚历山大图书馆。2000年前,那些最优秀的人物奠定了基础,才使我们后来能系统地研究数学、物理学、生物学、天文学、文学、地理学和医学。亚历山大图书馆的建造得到了历代希腊托勒密王的支持。这些国王所继承的领土是亚历山大帝国的古埃及部分。从公元前三世纪托勒密王朝建立到其崩治的700多年中,它一直是古代文明的灵魂和心脏。00015.jpeg

        本书提到的一些人物、机械和事件的时间表。安提开塞拉(Antikythera)机械是古希腊人发明的一种天文计时装置。亚历山大城的希罗曾做过蒸汽机的实验。图中部1000年的空白代表人类丧失的宝贵时机,实在令人惋惜。

        亚历山大城曾是世界的出版中心。当然,那时还没有印刷术,书籍十分昂贵,因为每一本书都是手抄的。该馆的藏书是世界上最准确的抄本。而且在那里还发明了严格的藏书编目技术。流传下来的旧约圣经大部来自该馆翻译的希腊语译本。历代托勒密王不惜耗费巨资去收集各种希腊书,以及来自非洲、波斯、印度、以色列和世界其他各地的著作。托勒密三世尤俄吉提对索福克勒斯、埃斯库罗斯和欧里庇得斯三位作家的伟大悲剧作品,无论是原稿还是正式版本,他都想从雅典人手中借去。而对雅典人来说,这些作品则是他们的文化珍品,就象英国人对待莎士比亚的手稿和最早的版本那样。他们不愿与其有须臾分离。只是在托勒密王保证归还并付了巨额押金后,他们才同意出借。但托勒密王在把剧本弄到手后,把它们看得比金银还珍贵。他情愿失去作抵押的巨款,也不愿意归还这些剧本,而将其珍藏在亚历山大图书馆中。恼怒的雅典人只好忍气吞声地接受托勒密惭愧地还回的抄本,世上还很少有这样的国家如此热烈地猎求知识。

        托勒密王朝并不仅仅满足于收集已成文字的知识。国王们还鼓励和资助科学研究,以求获取新的知识。这种政策产生了惊人的效果。埃拉托色尼准确地计算出了地球的体积,并绘之戊图。他认为,从西班牙出发一直向西航行,可以到达印度。喜帕恰斯则预言,行星出现和形成后,在漫长的岁月中缓慢地运动,最终消亡。正是他首次对星体的位置和大小进行分类,以便检测它们的变化。欧几里得编纂的几何教程,人们使用了23个世纪。正是这部著作,引起了开普勒、牛顿和爱因斯坦对科学的浓厚兴趣。盖仑撰写的临床治疗和解剖学的著作,在文艺复兴之前一直在医学上占统治地位。正如我们已经提及的,在托勒密时代还产生了许多其他著名的人物。

        亚历山大城曾经是西方世界最伟大的一座城市。各国人士都云集那里,或者移居该城,或者前往经商,或者前往学习。在亚历山大港每天都挤满了商人、学者和旅游者。古希腊人、古埃及人、阿拉伯人、叙利亚人、希伯来人、波斯人、努比亚人、绯尼基人、意大利人、高卢人和伊伯利亚人,都聚集到这座大城市来交换货物,交换思想。也许正是在这里,“世界性”(原注:“世界性”一词是戴奥真尼斯(Diogenes)创造的, 他是一个唯理论哲学家、柏拉图主义批评家)一词才真正表明了它的含义,即地球上的居民不单单只是一个国家的公民,而且是宇宙的公民。大家都来做宇宙的公民……。

        显然,现代世界正是从这里萌发的。那么究竟是什么力量使这些种子不能生根、枝繁叶茂呢?又是什么使西方世界在黑暗中沉睡了1000多年呢?在亚历山大城已经开创的事业为什么要等到哥伦布、哥白尼及其同代人才重新做起呢?对此,我不能简单地回答。但是我们确实知道,在亚历山大图书馆的全部历史中,没有任何一位科学家或学者对他们社会的政治、经济和宗教作出严肃的挑战。他们只对星体的永恒性提出怀疑,但不去探究奴隶制是否合理。而且,一般说来,科学和知识只掌握在少数有特权的人手中。城里的广大居民对于图书馆内的重大发现几乎一无所知。此外,对于这些发现也没有人去进行解释和宣传普及,对居民们也没有带来什么好处。在机械和蒸汽技术方面的发明创造也主要用于改善武器装,怂恿迷信,以及取悦国王。科学家们从未认识到机械在把人从劳动中解放出来方面的潜在作用(原注:阿基米德是一个例外。他在亚历山大图书馆设计的水轮机从那时起一直在埃及被用于灌溉耕地。但是甚至他本人都认为,设计这种机械大大有损于科学的尊严)。此外,古代知识分子的伟大成就几乎没有得到直接的实际应用,而科学也从来没有汲取广大群众的丰富想象力。对于社会的停滞不前、人们的悲观厌世情绪和对神秘主义的可怜崇拜,都无人关心,以致很久以后暴徒烧毁这座著名的图书馆时,完没有人挺身而出加以阻止。

        在这座国书馆工作的最后一位科学家叫希帕蒂亚(Hypatia)。 她是一位数学家、天文学家、物理学家,同时也是新柏拉图哲学学派的领袖。她在许多方面取得了卓越超群的成就。她于公元 370 年出生于亚历山大城。在那个时代,妇女没有任何自由,只被当作玩偶。但希帕蒂亚是个例外。她不自觉地冲破了一直由男子独霸的科学领地。希帕蒂亚还是一位绝世美人,许多男人追求过她,但都遭到拒绝。在希帕蒂亚时期,亚历山大城已由古罗马帝国统治了很长一段时间。全城死气沉沉,奴隶制逐渐销蚀了古文明的活力。日益增长的基督教教会在努力巩固其势力,竭力想根除异教的文化和影响。在这强大的社会势力的进攻中,希帕蒂亚首当其冲。亚历山大城的大主教西利尔,因为她与罗马执政官过从甚密,以及她是知识和科学的象征而藐视她,——早期的教会曾把科学知识视为异教。面对个人生命安全的严重威胁,希帕蒂亚继续从事教学和发表文章,直至公元 415 年,在她去工作的途中,终于遭到了西利尔手下的宗教暴徒的残害。他们把她拖下马车,扒光她的衣服,用鲍鱼壳刮下她的皮肉。她的遗体被焚烧,她的著作被销毁,地的名字被人遗忘了。西利尔也就成了大圣人。

        亚历山大图书馆的兴衰是一部惨痛的回忆史。在希帕蒂亚死后不久,它的最后遗迹也被摧毁了。整个文明就好象经历了一次自我惩罚的脑外科手术,对文明的记忆、发现、思想和激情的绝大部分都无可绝回地灭绝了。这种损失是无法估量的。在某些情况下,我们只知道被毁的著作的引人入胜的标题,而大部分著作我们既无从了解标题,也无法知道作者是谁。我们确实知道,图书馆珍藏的123部索福克勒斯剧本中幸存者只有 7 部,《俄狄浦斯王》是其中之一。埃斯库罗斯和欧里庇得斯剧本的命运也大间小异。打个比方,这种浩劫就好象莎士比亚的著作遗留下来的只有《科里奥拉努斯》和《冬天的故事》,但是,我们知道,他还写过其它一些剧本。这些剧本现在虽然见不到了,但显然当年曾风行一时,其中有《哈姆雷特》、《麦克佩斯》、《尤利乌斯·凯撒》、《李尔王》和《罗密欧与朱丽叶》。

        这座著名图书馆中所有有关物理学方面的著作无一幸存。在当今的亚历山大城,很少有人对亚历山大图书馆,或者是对延续了几千年的古埃及伟大的文明有兴趣,而对它们有详细了解的人就更少了。它们已被更新的事件,被其他文化的强制所取代。全世界的情况也大抵如此,以致我们与过去只有极微弱的联系。但是,在离塞拉皮厄姆遗迹仅仅一掷之遥的地方,就有一些东西能使我们追忆起许多灿烂的古代文明:古埃及法老时期的狮身人面象;古罗马戴克里先皇帝的追随者为他竖大的巨大石柱,因为他没有使亚历山大的居民全部饿死;基督教教堂、伊斯兰教寺院以及现代工业文明的标志:高楼大厦、汽车、电车、城市贫民窟以及微波中继塔。很显然,我们今天的现代社会与过去有着千丝万缕的联系。

        我们今天的成就是建筑在四万代祖先努力的基础之上的,他们中除了极少数人以外都没有留下姓名,并已被遗忘。我们会不时发现一些重要的古代文明,例如古埃伯拉文化,它的兴盛时期距今只有几千年,但我们对它却一无所勿。我们对自己的过去是多么无知啊!古代的碑铭、文献、书籍把人类的历史串接在一起,使我们尚能领略古代兄弟姐妹的音容笑貌。当我们从中发现他们与我们那么相似时,这是多么令人欣慰啊!

        本书对我们的先辈给予极大的重视,他们的名字还未被人忘却;埃拉托色尼、德谟克利特、阿里斯塔恰斯、希帕蒂亚、达·芬奇、开普勒、牛顿、惠更斯、商博良、哈马森、戈达德和爱因斯坦。他们部受惠于西方文化,因为现在地球上的科学文明,主要是西方的文明。但是,所有的文化、包括中国、印度、西非和中美洲的文化,都对人类社会作出了各自的重要贡献,都产生过重要的思想家。由于通讯技术的巨大进步,世界各民族正逐步联结在一起,以飞速的步伐行进在通往建立一个全球社会的最后阶段。徜若我们能在地球上消除种族隔离,而又能保持各自文化上的差异,或者说不去作自我毁灭的蠢事,那么我们将完成一桩伟大的壮举。

        在亚历山大图书馆旧址附近,至今还有一尊无头的狮身人面像,那是在亚历山大皇帝之前1000年的第十八代法老霍伦赫布时期雕塑的。而在离狮身像不太远的地方,耸立着一座现代的微波中继塔。这二者把人类历史紧紧地联系在一起。从狮身人面像到中继塔不过是宇宙时的片刻——宇宙大爆炸后大约 150 亿年中的一瞬。过去的一切都几乎随岁月的流逝而消失了。宇宙演化的一切迹象比亚历山大图书馆中珍藏的文化资料毁坏得更加彻底。尽管如此,凭着勇敢和智慧,人类还是找到了我们的祖先和我们所走过的逶迤历程的一些蛛丝蚂迹:宇宙大爆炸释放出大量的物质和巨大的能量,不知又经历了多少年代,宇宙还未定形,还没有星系和行星,更没有生命;浑沌未开,到处都是一片黑暗,氢原子亦尚在虚空;四处散布的密度较大的气团在不知不觉中慢慢变大,氢聚集成比现代的恒星还要大得多的气团;最后在这些大气团中点燃了核反应的火炬。第一代星体就这样产生了,从而照亮了黑沉沉的宇宙空间。但在那时,还没有任何行星去接受这亮光,也没有任何生命去赞赏星空中的奇景。太空炼金炉深处发生的核裂变产生了重元素,以及氢燃烧后留下的尘埃,而这些正是未来行星和生命形式所需要的原材料。巨大的星体不久就耗尽了它们贮存的核燃料。在后来发生的大爆炸的震撼下,这些星体又将其大部分物质重新送回到原来形成它们的较稀薄的气体之中。然后,在星体间的浓云之中形成了由多种元素组成的新聚结体,从而产生出新一代的星体。附近较小的聚结体虽然也能变大,但其体积太小,不足以激发核裂变,便朝着形成行星的方向发展。其中有一个由岩石和铁组成的小星体,那就是早期的地球。

        早期的地球在不断的熔融和凝结过程中释放出大量的甲烷、氨、水和氢气,它们被地球捕集而形成原始的大气和海洋。在阳光的沐浴下,地球逐渐变暖,并产生了风暴和电闪雷鸣。火山爆发、岩浆奔流。这一切过程使原始大气中的分子碎裂,分子的分裂物重新聚结,逐渐生成日益复杂的物质形式,溶解在原始的海洋中。再经过一段时期后,池水变成温暖而又稀疏的液体。在地表上,发生了分子的组合和复杂的化学反应。有那么一天,偶然出现了一种分子能以其他分子为原料,复制出与它们自身相同的分子来。随着时间的推移,出现了能更加准确精细地进行自我复制的分子。自然的选择有利于那些复制能力最强的分子。哪些分子复制得好,哪些分子便增多。由于分子复制的消耗,以及转化成自我复制的有机分子的复杂缩合,原始的海水逐渐变稀了。生命就这样在不知不觉之中慢慢出现了。

        单细胞植物出现了,而且生命也开始生产出自己的食物。光合作用改变了大气的组成。性别出现了。曾经是自由生活的形态结合在一起,形成了具有特殊功能的复杂细胞。化学感受器进化出来了,味觉和嗅觉也产生了。单细胞生物演化成了多细胞的群体,它们各个部分慢慢发展出特殊的功能。眼和耳也产生了,可以看到和听见来自宇宙的信息。动植物发现陆地上可以维持生命。各种各样的生物嗡嗡作响、匍匐爬行、奔跑追远,扑腾抖动、攀越翱翔。庞大的野兽在浓密的丛林中怒吼。胎生的而不是卵生的小生灵出现了,在它们的血管里奔腾着类似早期海水的原液。它们靠反应迅速和聪明灵巧而生存下来。后来,就在不久以前,某些栖息在树上的小动物离开树木下到地面,它们学会了直立行走,学会了使用工具,开始驯化其他的动植物,掌握了火,发明了语言。宇宙炼丹炉的灰烬现在开始出现意识了。它以前所未有的速度发明了文字、城市、艺术和科学,甚至向行星和恒星发射了宇宙飞船。这一切都是氢原子在150亿年的演化过程小所作的部分贡献。

        上述的一切听起来象是美妙而可信的神话。但是,它确是现代科学所揭示的宇宙进化过程的简单描述。我们是经历了艰难曲折才进化而来的,而且对我们自己来说,我们本身就是一种潜在的危险。宇宙演化的所有迹象都清楚地表明,地球上的所有生命都是宇宙氢气工业的最新产品,那是极其珍贵的。在宇宙的其他地方,也可能存在同样奇异的物质变化,因此我们是多么盼望能听到来自天外的音信啊!

        我们,不管是什么人,都抱有一种奇特的观念,一个人或者一个社会,只要与我们有些差别,我们就觉得有些奇怪或异乎寻常,就觉得难以信任或令人讨嫌。请想想,“外国的”和“稀奇古怪的”这类词所包含的含蓄的贬义。然而,我们文明社会的任何遗迹和文化,只不过代表人类不同的生活方式而已。假如有一位天外来客看到我们,他就会发现他所看到的人类及其社会中的不同与其相似相比是微乎其微的。宇宙中可能存在许许多多有高级生命的世界。但是根据达尔文主义的理论,除地球以外,其他地方不存在人类。只有在这里,只有在地球这颗小小的行星上才存在人。我们是稀罕的受到危及的物种。从宇宙的角度来看,我们每一个人都是极其珍贵的。如果有人与你有隙,让他活下去吧!因为在1000亿个星系中,你找不到第二个这样的人。

        人类的历史是缓慢地认识这样一个真理的过程:我们都是一个更大家族的成员。人类社会的初期。人们只忠实于自己和直系亲属,随后,他们的忠诚也只局限在四处流浪漂泊的狩猎——采集群落;再往后是效忠于自己的部落、小地区、城邦、国家。我们现在已大大扩展了我们所爱的人的范围。我们还组成了简称为超级大国的国家联盟,不同种族、不同文化的人在一起为某种事业一起工作,这显然是更富人性和有利于性格塑造的尝试。但是假如我们要继续生存下去,我们的忠诚还必须进一步扩大、它应该包括全人类,包括整个地球。当然,对那些统治国家的许多人来说,这种观点是令人不快的。他们害怕失去权势,我们将会听到许多有关叛逆和不忠诚的喧嚣。富裕的国家必须同贫穷的国家分享他们的财富。但是正如H.G.威尔斯在另一篇文章中所说的,要么保留人类社会,要么共同毁灭,没有其他的选挥余地。

        几百万年以前,地球上尚无人类。而再过几百万年,谁还会在地球上?在我们这个星球46亿年的整个历史中,尚没有什么东西离开过地球。可现在,无人驾驶的探测飞船正闪烁着银光,矫健地穿行在太阳系中。我们已对20个天外世界进行过初步的探测,包括肉眼可以看得见的行星,它们都是在夜空中遨游的光点,它们曾激励我们的祖先去醉心探索。假如人类能继续生存下去,那么有两点理由会使我们的时代为人永志:在这技术蓬勃发展的危险时刻,我们设法避免了自我毁灭;在我们这个时代,星际航行开始了。

        然而,严酷而颇具讽刺意味的是,用来把探测器送往行星的火箭同样也能用于向别国发射核弹头,“海盗”号和‘旅行者”号飞船采用的核技术又正是用于制造核武器的技术;无线电技术和雷达技术既用于跟踪、制导弹道导弹,以及防御核攻击,也可用于监测和控制宇宙飞船,捕捉地外文明发出的信息。假如用这些技术来毁灭我们自己,无疑就再也不能去探测其他的行星和恒星了。相反也是这样,假如我们继续我们的航天事业,沙文主义将会进一步崩溃,人们就会从宇宙的角度来看待问题。我们将全认识到,我们只能代表整个人类去进行宇宙考察。这样,我们就会全力以赴去争取光明,而不是走向灭亡,去扩大我们对地球和地球上生物的了解以及寻找其他地方的生命。无论是进行载人的还是不载人的空间考察,所采用的科学技术和组织管则,以及所需要的献身精神和勇敢无畏精神,与进行战争的要求是基本相同的。因此,只要在核战争爆发之前实现了真正的裁军,这样的考察就会使主要国家的军事工业去从事一项长远的、无可非议的伟大事业。耗费在准备战争的精力能够比较容易地转变到从事宇宙的开发事业之中。

        要进行一次有限的,甚至是雄心勃勃的不载人的行星考察,开支并不很高昂。美国用于宇航事业的预算并不很高。在苏联,相应的开支要比美国高好几倍。但两国加起来也只相当于2-3艘核潜艇10年的费用,或者许多武器系统中的某一种一年的耗费。1979年第四季度,美国的F/A-18型飞机的费用增加了51亿美元,而F-16型飞机增加了34亿美元。无论是美国还是苏联,从一开始花费在无人行星际飞行计划上的钱,比起他们不光彩地花费在战争中的钱一直少得多。例如,1970~1975年间美国用于轰炸柬埔寨(译注:原文如此,地名恐有误,应为越南)的费用高达70亿美元。而美国用于发射探测火星的“海盗”号或探测太阳系以外太空的“旅行者”号的总费用,还不及苏联在1979~1980年入侵阿富汗所花费的钱多。随着先进技术的采用,以及高级技术的刺激,花在宇宙探测中的钱会加速经济的发展。一项研究认为,在行星探测上每花费 1 美元,国民经济可以回收 7 美元。然而,许多重要而又确实可行的计划却因缺乏资金而无法实施,包括在火星表面行走的巡回车、彗星交会、进入土卫六的探测器和全面探测来自太空其他文明的无线电信号。

        进行较大的空间探测的费用十分高昂,如在月球上建立永久性基地和人到火星上去探险。因此,我认为在最近的将来,不可能筹措到这样的巨款,除非在核裁军和“常规”武器的裁减上取得突破性的进展。即使实现了这样的裁军,那时也许会有更紧迫的事情要做。尽管如此,我仍然坚信,假如人类能避免自我毁灭,我们就迟早能实现上述计划。一个社会不可能停滞不前。人们存在着某种复杂的心理、在探索宇宙过程中哪怕是小小的退缩趋势,也会给许多代人带来明显的退却。相反,哪怕对地球以外的探险给予轻微的资助——我们可以学哥伦布,把它称为“星际事业”,经过几代人的努力,人类就能最终出现在其他世界上,来庆贺我们参加了宇宙的事业。

        大约在 360 万年前,在今天的坦桑尼亚北部发生了一次火山大爆发,火山灰覆盖了周围的大平原。1979年,古人类学家玛丽·李基在火山灰中发现了一些脚印,她认为这是早期人类的脚印,也许是现代地球上所有人的祖先的脚印。在38万公里远的地方,在我们曾经乐观地称之为静海的一片干燥平坦的大平原上,人类也留下了其他天体上最早的脚印。我们已经走过了 360 万年的旅程,走过了46亿年和150亿年的旅程。

        因为我们是产生了自我意识的宇宙局部的化身,我们已经开始考虑自己的渊源了。我们是在深思其他星球的星球物质,是由1028个原子组成的集合体,我们正在探索原子的演化过程,正在追踪意识产生的漫长历程。我们应该忠诚于全人类,忠诚于整个地球。必须由我们来为地球大声疾呼。维持人类的生存不仅是对我们自己负责,也是对宇宙负责,对这个古老的、浩瀚的、孕育了我们的宇宙负责。

        附录1 谬误归约论和2的平方根

        毕达哥拉斯学派关于2的平方根的无理性的原始论证称为谬误归约论。谬误归约论指的是先假设一种说法是真实的,顺理推论,出现矛盾,从而证明该说法是虚假的。兹以现代的实例说明这个理论,即20世纪的一个大物理学家玻尔的一句名言:“一种伟大思想的对立面也是一种伟大的思想。”徜若这个说法是正确的,则推论下去难免要承担一点风险。以黄金定律为例,或者以劝阻撒谎或“你不能杀人”为例,考虑它们的反论,就会明白了。也可以先认定玻尔的名言是一种伟大的思想,那么,这个说法的对立面呢,即“一种伟大思想的对立面并不是一种伟大的思想”也一定成立。这就是谬误归约论的论证过程。徜若反方的说法是虚假的,则这一名言并不会耽误多少功夫,因为这等于自我承认并非伟大的思想。
         

        下面,根据谬误归约论,用现代论证法论证2的平方根的无理性。论证中只要用到简单的代数法,不必要用到毕达哥拉斯学派发明的几何论证法。论证的风格和思维的方式至少和结论一样引人入胜。

        设边长为1个单位(该单位无论是厘米、英寸还是光年都无所谓)的正方形,对角线BC分正方形为两个直角三角形。根据毕达哥拉斯学说,在这样的直角三角形中,12 +12 =x2 。因为12 +12 =1+1=2,由此推及x=2的平方根。假定2的平方根(21/2 )是一个有理数,21/2 =p/q,式中p和q均为整数。p和q可以代表任何整数,也可以无穷大,当然也可以认为p和q没有公因子。设p=14,q=10,得21/2 =14/10,分子分母都除以2,得p=7,q=5,而不再是p=14,q=10。在任何计算中,分子分母的公因子都要先除掉。p和q可以选用任何数。把 21/2 =p/q两边平方,则得2=(p2 )/(q2 )。两边两乘以q2,则得:

        p2 =2q2 (式1)

        据式1,p2 一定是乘以2的某个数,故p2 是一个偶数。但是,奇数的平方一定是奇数(如12 =1,32 =9,52 =25,72 =49)。所以,p本身一定是偶数,可以写作p=2s,式中s为一个整数。把p代入式1,得:
        p2 =(2s)2 =4s2 =2q2

        最后等式的两边都除以2,则得:
        q2 =2s2

        因此,q2 也是一个偶数。证明过程如上,则q本身也是一个偶数。要是p和q都是偶数,都可以除以2,那么这两个数都没有归约到最小公因子,这和论证前的假设是矛盾的。这里谬误得到归约。但是,哪一个假设是谬误的呢?论证过程中并没有规定公因子不可归约,也没有规定14/10可以归约,7/5不可以归约。所以,原始的假设一定是谬误的。p和q不可能是偶数:2的平方根是无理数。事实上21/2 =1.4142135……

        这个结论真是出人意外!证明过程真是奇妙!但是,毕达哥拉斯学派却感到难受,千方百计要掩盖住这个伟大的发现。

        附录2 毕达哥拉斯学派的五面体

        正多边形(多边形的英语在希腊语中是多角体的意思)是一个具有n个等边的二维物体。因此,n=3时,是一个等边三角形;n=4时,是一个正方形;n=5时,是一个五边形如此等等。多面体(希腊语的含义是多边的)是一个三维的物体,组成多面体的各面都是多边形。例如,立方体由六个正方形组成。简单的多面体,或者说正多面体,是没有空洞的。毕达哥拉斯学派和开普勒研究的本质问题是世界上只能有五面体,而且是正五面体。最容易的证明方法是用毕达哥拉斯的后辈笛卡尔和欧拉发现的关系式。该关系式把正多面体的面的个数F,棱的个数E和顶角的个量V联系起来:

        V-E+F=2 (式1)

        所以,立方体有六个面(F=6)和8个项角(V=8);代入式1,得 8-E+6=2,即V14-E=2,E=12。式1计算结果立方体有12个边,立方体果然有12个棱。本书文献目录中列出的Courant and Robbins的著作中用简单几何方法证明了式1。根据式1可以证明世界上只能有正五面体。

        多面体的任何一个棱均为相邻的两个多边形的边所共有。再以立方体为例,立方体的任何一个棱都是两个正方形的共边界。如果把一个多面体的所有面的所有边(nF)都计算一遍,则每一个棱都要两次计算。因此:
        nF=2E (式2)

        以r代表一个顶角的共有边的个数,则在立方体中,r=3。同理,每一个边都具有两个顶角。如果把所有的顶角(rV)都计算一遍,则每一个顶角也都要计算两次。因此:
        rV=2E(式3)
        把式2和式3代入式1,则得: 2E/r-E+2E/n=2
        两边都除以2E,则得: 1/n+1/r=1/2+1/E(式4)

        已知n等于3或大于3,因为最简单的多边形是具有三条边的三角形。已知r等于3或大于3,因为至少要三个面夹一个顶角才能构成最简单的多面体。若n和r同时都大于3,则式4的式边得数则要小于2/3。这样,只要E是正数,式4则不成立。于是,再根据谬误归约论,则只能出现两种情况,即或者n=3,r等于或大于3,或者r=3,n等于或大于3。

        若n=3,式4则变化为(1/3)+(1/r)=(1/2)+(1/E),或下式:
        1/r=1/E+1/6(式5)

        据此,r只能等于3、4或5。如果r(原文为E。根据上下文,应为r。——译者注)等于或大于6,则式5不成立。于是,n=3和r=3是由 3个三角形共有一个项角构成的多面体。根据式5,这个多面体有6个棱;根据式2,这个多面体有4个面;根据式3,这个多面体有4个顶角。显然,这是一个金字塔或四面形。n=3和r=4是一个具有8个面的多面体,其中4个三角形共有一个项角,即八面体。而n=3和r=5是一个具有20个面的多面体,其中5个三角形共有一个顶角,即20面体(参见本书第53页)。

        若r=3,则式4变化为: 1/n=1/E+1/6 ,

        同理可得,r也只能等于3、4或5。若n=3,则又是一个四边形;n=4,则是由六个正方形组成的多面体,即立方体;n=5,则是由12个五边形组成的多面体,即12面体。

        综上所述,除了3、4和5外,n和r不可能是其他整数。因此,世界上只能有正五面体。这就是用抽象而漂亮的数学方式推导出来的结果,而这个结果,正如大家都看到的,对人类社会曾经产生过巨大的影响。

      5. 卡尔·萨根《宇宙》1-6

        引 言
        第一章 宇宙的边疆
        第二章 宇宙的音乐
        第三章 宇宙的和谐
        第四章 天堂与地狱
        第五章 神秘的红色行星
        第六章 旅行者的故事
        第七章 夜空的脊柱
        第八章 在时空中旅行
        第九章 恒星的生命
        第十章 永远的尽头
        第十一章 给未来的信
        第十二章 银河系百科全书
        第十三章 为地球呼吁
        附录1 谬误归约论和2的平方根
        附录2 毕达哥拉斯学派的五面体

        引 言

        长期艰苦的研究工作终将揭示现存的奥秘。但是人的生命是有限的,即使将毕生都贡献给太空,我们也不可能透彻地研究这样巨大的课题……所以,只有经过相当长的历史时期,人们才有可能获得对太空的全面认识。将来有一天,我们的后代会因为我们不懂得那些对他们来说十分浅显的东西而感到吃惊……还有许多东西有待于发现,那时候,我们将被我们的子孙所忘却。如果我们的宇宙不能为每一代人都提供可探索的奥秘,那么,这个宇宙就太渺小,太可悲了……大自然是不肯将其天机一下子全都泄露给我们的。——塞尼卡《大自然的问题》第七卷“第一世纪”

        在古代的日常谈话和生活习惯中,最普通的世事也会跟宇宙间发生的最大事件联系在一起。驱虫咒就是一个很好的例子。公元前1000年的亚述人以为地龙(蚯蚓)是牙痛的病魔,他们的咒语以宇宙的起源为开头,以治愈牙痛为结尾:
        阿努造天空,
        天空造地球,
        地球造江河,
        江河造水流,
        水流造沼泽,
        沼泽造地龙,
        地龙去找沙麦斯和埃,
        哀求哭泣泪涟涟:
        “你何以供我餐,
        你何以供我饮?”
        “是否以你干无花果。”
        “干无花果!于我
        何所用?
        提携我吧,居我于牙缝与齿龈间!……”
        哦,地龙,你出言不逊
        愿埃以其巨掌
        惩治你!
        (治牙痛咒语)
        疗法:将二等啤酒和食油等渗和在一起:默诵三遍以后将该药敷在病牙上。

        我们的祖先渴望了解宇宙,但是他们没有其正找到了解的办法。他们设想了一个既离奇又规则的小宇宙,其中,阿努、埃、沙麦斯诸神掌管着一切。在这个小宇宙里,人类如果不是起着核心作用的话,起码也起着重要的作用。我们人类跟大自然密切地联结在一起;用二等啤酒治牙痛的疗法也与最深奥的宇宙学联系在一起。

        今天,我们已经找到了一种有效和精确地了解宇宙的方法,我们把这种方法称为“科学”。科学已经表明,宇宙是如此浩瀚而古老,因此人间世事往往显得无足轻重。随着人类的成长,人类与宇宙疏远了,宇宙似乎与人类的日常生活无关紧要。可是科学发现,宇宙不但横无际涯、辽阔瑰丽,不但可以为人类所了解,而且,从现实和深远的意义上说,人类的命运和宇宙息息相关。人类大大小小的活动都可以追溯到宇宙及其起源。本书探讨的就是这种宇宙观。

        1976年的夏秋,作为“海盗”号着陆舱模拟飞行队的成员,我跟我的百人科学工作队一起探索了火星。在人类历史上,我们的宇宙飞船首次在另一个星球上着陆了。探索的结果(详见第五章)是引人注目的,这一使命的历史意义是举世公认的。然而,大众对这样伟大的事件却几乎一无所知。报刊采取了漫不经心的态度,电视对此置若罔闻。当他们知道“火星上是否存在着生命”这个问题的答案仍然悬而未决的时候,他们的兴趣更是有减无增。他们不容许有任何似是而非、模棱两可的答案。当我们宣布火星的天空是浅黄色而不象原先所误认为的那样是蓝色的时候,记者们一致报以善意的嘘声——即使在这一点上,他们也希望火星跟地球一个样。他们认为,越是证明火星不像地球,读者和观众的兴趣就越小。然而,火星的气势磅礴、景色宏伟。根据个人经验,我确信、全世界对探索行星及其许多类似的科研课题都怀有极大的兴趣——例如生命的起源、地球、宇宙、地外文明的研究、人类和宇宙的联系等等,我还确信,这种兴趣可以通过电视这个最有力的传播媒介而得到激发。

        “海盗”号资料分析及探索计划处处长 B·金特里·李是一个具有非凡组织能力的人。我们俩的看法是一致的,我们都跃跃欲试,决定就这些问题做点工作。李建议我们组织一个专门的电视制作公司,用生动活泼、通俗易懂的方法传播科学。后来,我们接洽了若干项目,但是其中最有趣味的是KCET(美国公共广播局洛杉矶中心站)提出的要求。最后,我们一致同意制作一部关于天文学的13集电视连续片。这一套电视片要以人类为中心展开,以普通观众为服务对象,既要场面壮观,又要配乐和谐;既要有教育意义,又要给人以美的享受。我们跟担保人进行了洽谈,雇了一名监制人,结果我们承担了一项为期3年的叫作“宇宙”的制片任务。 在写这本书的时候,我们估计这部电视片在世界上的观众有1亿4千万,占地球这个行星的人口的3%。我们相信,大众远比人们普遍所想象的要聪明得多;也相信关于宇宙的性质和起源的最深奥的科学问题能够激发一大批人的兴趣和热情。当前这个时代正处在文明大道的十字路口,也许也正处在人类进化的十字路口。不管今后走哪一条路,我们的命运已经跟科学牢牢地联结在一起。了解科学已经关系到我们的生死存亡。此外,科学是一种乐趣,人类的进化注定我们要乐于了解科学,因为了解科学的人生存的可能性更大。《宇宙》这部电视系列片和本书为如何传播科学的思想、方法和乐趣提供了一个很好的例子。

        本书和电视系列片是同时形成的,从某种意义上说是相辅相成的。本书里的许多插图取自为电视系列片摄制的稀有图片。但是本书的读者和电视观众不尽相同,因此编辑方法也就不一样。书籍的一个最大优点是可以让读者反复阅读那些晦涩难解的部分,而电视只有在录像磁带和录像光盘的新技术出观之后才有可能这样做,书籍的作者可以自由选定一个章节主题的范围和深度,而一个非商业性电视节目则只能限制在58分零30秒钟之内。在许多问题上,本书的讨论比电视系列片更深入。有些题目本书并没有讨论,但在电视片里讨论了。本书模仿坦尼尔关于艾丽斯和她的朋友在高重力和低重力环境中的组画能否通过严格的电视剪辑还是一个问题。今我欣慰的是,画家布朗画的那些优美的插图及其说明在本书里可以说是适得其所的另—方面,电视片里所介绍的“宇宙历”本书没有收录——部分原因是“宇宙历”在我的《伊甸园的飞龙》里已经讨论到了;同样,我在本书里也没有详细讨论罗伯特·戈达德的生平事迹。因为在《布罗卡的脑袋瓜》一书中有一章专门介绍了他的情况。但是电视系列片中的每一集都跟本书相应的章节密切相关。我希望读者观众能够受益于两者,且相得益彰。

        为了明晰起见,我在若干情况下不止一次地介绍了某个概念——先是轻描淡写,然后由浅入深。例如在第一章里,“宇宙物质”这个概念先是简单地介绍一下,后来才进行深入讨论。又如第二章里关于“突变”、“酶”、“核酸”的讨论也是如此。有些概念不是按历史的先后次序阐述的,例如古希腊科学家的思想到第七章才介绍。对约翰尼斯·开普勒的讨论却放在第三章。但是我认为,只有先了解古希腊人因一步之差而没有完成的伟业,我们才能够对他们的成就做出充分的估价。

        科学跟人类的其他活动是不可分割的,所以讨论的时候免不要涉及到社会、政治、宗教和哲学的许多问题。有时候是一带而过,有时候则正面论述。

        即使拍摄科学电视系列片也常常受到世界性军事行动的干扰。当我们在莫哈夫沙漠用与“海盗”号着陆舱一样大小的模型进行探索火星实习时,我们经常受到在附近试验场进行轰炸航线演习的美国空军的阻扰。在埃及的亚历山大,从早晨 9 点到11点,我们的旅馆是埃及空军扫射航线的演习目标。在希腊的萨莫斯,因为北大西洋公约组织军事演习,他们在地下和山坡上构筑大炮、坦克掩体,所以我们迟迟不能获得自由拍摄权。在捷克斯洛伐克,由于在一条农村公路上使用步话机组织拍片的后勤工作,引起了一架捷克斯洛伐克空军战斗机的注意。这架战斗机一直在我们的头顶上盘旋,我们用捷克语向他们再三保证不会对他们的国家安全构成威胁后才离去。在希腊、埃及和捷克斯洛伐克,我们拍摄小组所到之处都有国家保安机关特工人员的陪同。起初,当我们征求在苏联卡卢加拍摄的意见,并建议就俄罗斯宇宙航行学先驱康斯坦廷·齐奥尔科夫斯基举行讨论会时,我们的要求受到了阻拦。后来我们才知道,那是因为那里即将对不同政见者进行审判。我们拍摄小组人员无论到哪一个国家都受到友好款待,但是全世界到处都有军事活动,每一个国家都忧心忡忡。我的经验更使我决心在电视系列片和本书的有关章节探讨社会问题。

        科学的真谛在于其自身日臻完善。新的实验结果和新的学术思想不断地解破旧谜。例如,在第九章里,我们讨论了太阳所产生的难以捕捉的粒子(称为“中微子”)似乎太少这个事实,同时我们还列举了一些不同的见解。在第十章里,我们怀疑宇宙里是否有足够的质量可以最终阻止遥远星系的退行,我们也怀疑宇宙是否能永存不朽。加利福尼亚大学弗里德里克·莱恩斯的实验对这两个问题的认识可能有一定的影响。莱恩斯相信他已有两种发现,其一是中微子以三种不同的状态存在,只有一种可以用观察太阳中微子的望远镜捕捉到,其二是中微子不同于光,是有质量的,因此宇宙空间里所有中微子的引力有助于闭合宇宙而防止它无限膨胀。未来的实验将证实这些观点正确与否,但是这些观点的出现说明了人们勇于不断地对已被普遍接受的基本科学理论进行重新估价。对科学来说这正是最为重要的。

        因为这是一个规模巨大的工程,所以不能对每一个有贡献的人都表达我的谢意。然而,我还要特别感谢 B·金特里·李及《宇宙》电视系列片全体制作人员——包括老一辈制片人杰弗里·海恩斯-斯太尔斯和戴维·凯纳德以及监制人艾德里南·马龙,画家乔恩·龙伯格(他那富有独创性的布景设计与组织能力对《宇宙》的拍摄起了关键性的作用)、约翰·阿利森、阿道夫·沙勒、里克·斯特恩巴赫、唐·戴维斯、布朗和安妮·诺西亚;顾问唐纳德·戈德史密斯、欧文·金杰里奇、保罗·福克斯和黛安妮·阿克曼、卡墨伦·拜克;KCET管理人员,特别是格雷格·安多尔弗(他首先把KCET的建议传达给我们)、丘克·艾伦、威廉·拉姆和詹姆斯·洛珀,《宇宙》电视系列片的担保人和合作制片人,其中包括大西洋里奇菲尔德公司、公共广播公司、阿瑟·维宁·戴维斯基金会、艾尔弗雷德·斯龙基金会、英国广播公司和波利特尔国际组织。其他协助人员的名单列在书后。当然,归根结底,我要对本书的内容负责。我还要感谢蓝灯书屋的全体工作人员,特别是感谢本书编辑安·弗里德古德和设计罗伯特·奥利西诺的卓越的工作和在电视系列片及本书最后限期眼看就要发生冲突的时候所表现出来的耐心。我特别感激我的助理谢利·阿登,她任劳任怨,不但出色地承担了第一稿的打字任务,还出色地承担了几个制作阶段不同稿子的打字任务。当然这只是她对《宇宙》拍摄工作的许多贡献之一。我对下列人员感激不尽:康奈尔大学校方(他们给我两年的假期搞这个项目)和康奈尔大学的同事及学生,还有国家航空和航天局喷气推进实验所及“旅行者”号摄像队的同事们。

        安·德鲁彦和史蒂文·索特都是这部电视系列片的合著者,他们对写成《宇宙》这本书的贡献尤其大、他们对本书的基本思想及其相互间的联系,对全书的内容及其措词,经常提出宝贵的意见。我深切地感激他们对本书进行严格的审阅,对修订初稿所提出的建设性和创造性的意见,以及对本书内容有重大影响的电视片文稿所作的重要贡献。我在跟他们多次的讨沦中所感受到的乐趣是我从事《宇宙》这项工程的主要报偿之一。

        第一章 宇宙的边疆

        人类被创造之前称为致命笑巫、黑夜之巫、蓬头与黑巫……他们生性聪明,洞察一切,对周围的事物一目了然,因而对苍穹和地球图谋不轨……(后来造物主说)“他们无所不知……我们该如何对付他们呢?让他们目光短浅吧,让他们眼界狭窄吧!……我们难道不是要把他们造成头脑简单的动物吗?他们难道也要成为神吗?”

        《凯查马耶族圣经》

        地的广大,你能明透吗?

        光明的居所从何而至?

        黑暗的本位在于何处?

         《圣经·约伯记》

        我索取荣誉的对象不应该是太空,而应该是我的灵魂。假如我拥有一切,我就无所用心。好大喜功则为宇宙汪洋所吞没,开动脑筋则领悟世界。

        布菜斯·始斯卡《感想录》

        已知的事物是有限的,未知的事物是无穷的;我站立在茫茫无边神秘莫测的汪洋中的一个小岛上。继续开拓是我们每一代人的职责。

        T.H.赫胥黎

        宇宙现在是这样,过去是这样,将来也永远是这样。只要一想起宇宙,我们就难以平静——我们心情激动,感叹不己,如同回忆起许久以前的一次悬崖失足那样令人晕眩颤栗。我们知道我们在探索最深奥的秘密。

        宇宙的大小和年龄不是一般人所能理解的。我们的小小行星只不过是无限永恒的时空中的一个有限世界。从宏观来看,大多数人类所关心的问题都可以说是无关紧要的,甚至是微不足道的。但是,我们人类朝气蓬勃、勇敢好学、前途无量。几千年来,我们对宇宙及我们在宇宙中所处的地位作出了最惊人的和出乎意料的发现。人类对宇宙的探索,回想起来是很令人兴奋的。这些探索活动提醒我们:好奇是人类的习性,理解是一种乐趣,知识是生存的先决条件。因为我们在这个宇宙中只不过是晨空中飞扬的一粒尘埃,所以,我们认为,人类的未来取决于我们对这个宇宙的了解程度。

        我们探索宇宙的时候,既要勇于怀疑,又要富于想象。想象经常能够把我们带领到崭新的境界,没有想象,我们就到处碰壁。怀疑可以使我们摆脱幻想,还可以检验我们的推测。宇宙神奥非凡,它有典雅的事实,错综的关系,微妙的机制。

        地球的表面就是宇宙汪洋之滨。我们现有的知识大部分是从地球上获得的。近来,我们已经开始向大海涉足,当然,海水才刚刚没及我们的脚趾,充其量也只不过溅湿我们的踝节。海水是迷人的。大海在向我们召唤。我们的本能告诉我们,我们是在这个大海里诞生的。我们还乡心切。虽然我们的夙望可能会冒犯“天神”,但是我相信我们并不是在做无谓的空想。

        因为宇宙辽阔无垠,所以那些我们所熟悉的适用于地球的量度单位——米、英里等等已经没有意义。我们用光速来量度距离。一束光每秒钟传播18.6万英里,约30万公里,也就是7倍于地球的周长。一束光从太阳传播到地球用8分钟的时间,因此我们可以说,太阳离我们8光分。一束光在一年之内约穿过10万亿公里(相当于6万亿英里)的空间,这个长度单位——光在一年里所通过的距离——称为一光年。光年不是度量时间的单位,而是度量距离的极大单位。

        地球是宇宙中的一个地方,但决不是唯一的地方,也不是一个典型的地方。任何行星、恒星或星系都不可能是典型的,因为宇宙中的大部分是空的。唯一典型的地方在广袤、寒冷的宇宙真空之中,在星际空间永恒的黑夜里。那是一个奇特而荒芜的地方。相比之下,行星、恒星和星系就显得特别稀罕而珍贵。假如我们被随意搁置在宇宙之中,我们附着或旁落在一个行星上的机会只有1033 分之一①。(1033 ,在10之后接33个0)。在日常生活当中,这样的机会是“令人羡慕的”。可见天体是多么宝贵。

        从一个星系际的优越地位上,我们可以看到无数模糊纤细的光须象海水的泡沫一样遍布在空间的浪涛上,这些光须就是星系。其中有些是孤独的徘徊者,大部分则群集在一起,挤作一团,在大宇宙的黑夜里不停地飘荡。展现在我们面前的就是我们所见到的极其宏伟壮观的宇宙。我们隶属于这些星云,我们所见到的星云离地球80亿光年,处在已知宇宙的中心。

        星系是由气体、尘埃和恒星群(上千亿个恒星)组成的,每个恒星对某人来说都可能是一个太阳。在星系里有恒星、行星,也可能有生物、智能生命和宇宙间的文明。但是从远处着眼,星系更多地让人想起一堆动人的发现物——贝壳,或许是珊瑚——大自然在宇宙的汪洋里创造的永恒的产物。

        宇宙间有若干千亿(1011 )个星系。每个星系平均由1000亿个恒星组成。在所有星系里,行星的数量跟恒星的总数大概一样多,即1011 *1011 =1022 。在这样庞大的数量里,难道只有一个普通的恒星——太阳——是被有人居住的行星伴随着吗?为什么我们这些隐藏在宇宙中某个被遗忘角落里的人类就这样幸运呢?我认为,宇宙里很可能到处都充满着生命,只是我们人类尚未发现而已。我们的探索才刚刚开始。80亿光年以外嵌着银河系的星系团催迫着我们去探索。探索太阳和地球就更不用说了。我们确信,有人居住的这个行星只不过是一丁点儿的岩石和金属,它靠着反射太阳光而发出微光。在这样的大距离里,它已经消失得无影无踪。

        但是,这个时候,我们的旅程只到达地球上的天文学所通称的“本星系群”。本星系群宽达数百万光年,大约由20个子星系组成,是一个稀疏、模糊而又实实在在的星系团。其中的一个星系是M31,从地球上看,这个星系位于仙女星座。跟其他旋涡星系一样,它是一个由恒星、气体和尘埃组成的巨大火轮。M31有两个卫星,它通过引力——跟使我呆在坐椅上相同的物理学定律——将矮椭圆星系束缚在一起。整个宇亩中的自然法则都是一样的。我们现在离地球200万光年。

        M31 以外是另一个非常相似的星系,也就是我们自已的星系。它的旋涡臂缓慢地转动着——每2亿5千万年旋转一周。现在,我们离地球4万光年,我们正处于密集的银河中心。但是, 假如我们希望找到地球的话,就必须将方向扭转到银河系的边远地带,扭转到接近遥远的旋涡臂边缘的模糊的地方。

        我们印象最深刻的是,恒星即使在两个旋臂之间,也像流水一样漂浮在我们的四周——气势磅礴的自身发光的星球,有些虽然象肥皂泡一样脆弱,却又大得可以容得下1万个太阳或1万亿个地球;有些小如一座城池,但密度却比铅大100万亿倍。有些恒星跟太阳一样是孤独的;多数恒星有伴侣,通常是成双成对,互相环绕。但是那些星团不断地从三星系逐渐转化成由数十个恒星组成的松散的星团,再转化成由百万个恒星组成的璀璨夺目的大球状星团。有些双星紧靠在一起,星体物质在他们之间川流不息,多数双星都象木星与太阳一样分离开来。有些恒星——超新星——的亮度跟它们所在的整个星系的亮度一样;有些恒星——黑洞——在几公里以外就看不见了。有些恒星的光彩长年不减;有些恒星闪烁不定,或以匀称的节奏闪烁着。有些恒星稳重端庄地转动着,有些恒星狂热地旋转着,弄得自己面貌全非,成了扁圆形。多数恒星主要是以可见光成红外光放出光芒;其他恒星也是X光或射电波的光源。发蓝光的恒星是年青的星,会发热;发黄光的恒星是常见的星,它们已经到了中年;发红光的恒星常常是垂亡的老年星;而发白光或黑光的恒星则已奄奄一息。银河里大约有4千亿个各种各样的恒星,它们的运转既复杂又巧妙。对于所有这些恒星,地球上的居民到目前为止比较了解的却只有一个。

        每个星系都是太空中的一个岛屿,它们与其邻居隔光年之距遥遥相望,我可以想象,在无数星球上的生物对宇宙的模糊认识是如何产生的:他们在开始的时候都以为,除了他们自己小小的行星以及他们周围的那些区区可数的恒星以外,再也没有其他的星星了。我们是在与世隔绝的情况下成长起来的,我们对宇宙的正确认识是逐渐形成的。

        有些恒星可能被数百万个没有生物的由岩石构成的小星球所包围,这些小星球是在它们演化的某个初级阶段冻结而成的行星系。大概许多恒星郡有跟我们类似的行星系:在外围具有由大气环所包围的行星和冰冻卫星,而在接近中心处则有温热的、天蓝色的、覆盖着云的小星球。在一些行星上可能已经有高级动物,他们也许正在从事某种巨大的工程建设来改造他们的行星世界,他们是我们宇宙中的兄弟姐妹。他们跟我们的差别很大吗?他们的形状、生物化学、神经生态、历史、政治、科学、技术、艺术、音乐、宗教、哲学等方面的情况如何?也许有一天我们会知道的。

        我们现在已经回到了我们的后院——离地球1光年的地方。包围着我们的太阳的是一群巨大的雪球,这些雪球由冰块、岩石和有机分子组成:它们就是彗核。每当恒星经过的时候都对它们产生一定的引力作用,最后迫使它们当中的一个雪球倾倒到内太阳系。由于太阳热的作用,冰块被蒸发,于是就出现了美丽的彗尾。

        我们现在来到我们星系的行星上。这些星球相当之大,它们都是太阳的俘获物。由于重力作用,它们被迫作近似圆周运动。它们的热量主要来自太阳。冥王星覆盖着甲烷冰,它唯一的伙伴是它的巨大卫星卡戎。冥王星是被太阳照亮的,因为太阳离它很远,从漆黑的天空中看上去,太阳只不过是一个明亮的光点。巨大的气体星球海王星、天王星、土星——太阳系的宝石——和木星部分别有一个冰冻卫星作伴相随(这些行星近年均被发现有更多的卫星甚至卫星群相伴随。——编著)。在气体行星及其冰冻卫星的内侧就是充满岩石的温暖的内太阳系。例如,在那里有红色行星——火星。在火星上有高耸的火山、巨大的裂谷、席卷火星的大沙暴,并且,完全可能还有一些初级形态的生物。所有太阳系的行星都绕着太阳运转。太阳是离我们最近的一个恒星,它是一个令人恐怖的氢气和氦气的热核反应炉,它的强光照耀着整个太阳系。

        经过一番漫游之后,我们终于回到了我们这个弱小的浅蓝色星球。宇宙汪洋茫无际涯,范围之大,难以想象,而这个星球仅是其中之一,完全淹没于宇宙汪洋之中,它的存在可能仅仅对我们有意义。地球是我们的家,我们的母亲。人类是在这里诞生和成长的,是在这里成熟起来的。正是在这个星球上,我们激发了探索宇亩的热情。也正是在这里,我们正在痛苦和不安之中掌握我们自己的命运。

        人类有幸来到地球这个行星上。这里有充满氮气的蓝天,有碧波荡漾的海洋,有凉爽的森林,还有柔软的草地。这无疑是一个生机勃勃的星球。从整个宇宙来看,它不但景色迷人,天下稀有,而且到目前为止,在我们的行程所经历过的所有时空当中,只有这个行星上的人类开始对宇宙进行探索。必定有许多这样的星球散布在整个宇宙空间里,但是,我们对它们的探索从这里开始。我们有人类百万年来用巨大的代价积累起来的丰富知识。我们这个世界人才济济,人们勤学好问。我们的时代以知识为荣。我们是很幸运的。人类是宇宙的产物,现在暂时居住在叫做“地球”的星球上。人类返回家园的长途旅行已经开始。

        跟许多其他的发现一样,人类发现了地球是一个小星球。那是在古代的近东地区,在被一些人称为公元前三世纪的时代,在当时最大的城市——埃及的亚历山大发现的。在这个城市里住着一个名叫埃拉托斯尼的人,当时一个最羡慕他的人称他“贝塔(β)”——希腊文的第二个字母。这是因为,他说埃拉托斯尼是世界上第一个无所不知的人。但是埃拉托斯尼显然几乎在所有的领城里都是“阿尔法(α)”(希腊文的第一个字母)。他是一个天文学家、历史学家、地理学家、哲学家、诗人,戏剧批评家和数学家。他的著作从《天文学》到《痛解论》,样样都有。他还是亚历山大市图书馆的馆长。有一天,他从该馆的一本手抄本里读到下面—段话:在南部边疆西因前哨靠近尼罗河第一大瀑布的地方,在6月21日正午, 直立的长竿在地面上没有投下阴影。在夏至那天——一年当中白昼最长的一天,接近中午的时候,圣堂圆柱的阴影越来越短,最后在正午消失掉。这时太阳从头顶上直射下来,在一口深井的井水里可以看到太阳的倒影。

        上述的观察是很容易为人们所忽略的。长竿、阴影、井里的倒影、太阳的位置——日常生活中这样简单的事情有什么重要的意义呢?但埃拉托斯尼是一个科学家,他当即想到做一个实验,实地观察一下亚历山大的直立长竿是否在6月21日正午会在地面上投下阴影。结果他们的实验证实;长竿在地面上投下了阴影。

        埃拉托斯尼自我思忖:为什么在西因的长竿不投下阴影,而同一时刻在北边的亚历山大的长竿却投下明显的阴影呢?假设在一幅古埃及的地图上有两根等长的垂竿,一根直立在亚历山大,另一根直立在西因。假定在某一个特定的时刻两根长竿都没有在地面上投下阴影,这一点很容易理解——只要地球是扁平的。这时候,太阳在头顶直射。如果两很长竿在地面上投下等长的阴影的话,在扁平的地球上也说得通:这个时候太阳光线以同样的角度斜射在这两根长竿上。但是在同一时刻,在西因没有阴影,而在亚历山大却有明显的阴影,这究竟是怎么一回事呢?

        他认为唯一可能的答案是:地球的表面是弧形的,而且弧度越大,阴影长度的差别就越大。因为太阳离我们如此之远,所以阳光照射到地球的时候是平行的。长竿与太阳光线的夹角不同,它们在地面上投下阴影的长度也就不同。就投在地而上的阴影长度的差别而言,亚历山大和西因之间的距离必定是它们在地面上的偏差角——约7度。也就是说,假如将长竿插入地心,它们就会在那里相交成7度角。7度相当于整个地球圆周360度的1/50。埃拉托斯尼知道亚历山大和西因之间的距离约800公里,因为他雇人步测过。800公里乘50等于40 000公里:这就是地球的圆周长度(原注:如果改用英里作量度单位,亚历山大和西因之间的距离约等于500英里,那么地球周长即为500英里×50=25 000英里)。

        这个答案是正确的。埃拉托斯尼唯一的工具是长竿、眼睛、脚和头脑,再加上对实验的兴趣。凭着这些东西,他推断出地球的圆周长度,误差只有百分之几,这在2200年前是一个非凡的成就。他是第一个正确地测量出一个行星的大小的人。

        那时的地中海以航海业驰名,亚历山大是当时我们这颗行星上最大的海港。当你知道地球是一个直径不太大的星球时,难道你不想出海去探索吗?难道你不想去探索那些未被发现的国土,甚至去做环球航行吗?比埃拉托斯尼早400年的时候,一支腓尼基舰队受雇于埃及法老尼科,曾经环绕非洲一周。他们从红海启航(很可能是乘没有甲板的敞口船),顺着非洲东岸南下,再从大西洋北上,最后从地中海返航。这次史诗般的旅程花了3年的时间,相当于现代“旅行者”号宇宙飞船从地球飞往土星所需的时间。

        根据亚历山大城阴影的长度,可以测出角A的度数。根据简单的几何公式(“两平行直线被第三条直线所截,内错角相等”),角B等于角A。于是,在测出亚历山大城阴影的长度后,埃拉托尼推算出亚历山大城和西因城在地球表面的距离(偏差角——译注)是:∠A=∠B=7°

        在埃拉托斯尼的发现之后,勇敢而好冒险的水手多次进行过伟大的航海尝试。他们的船只很小,他们的航海仪器很不完善,他们仪根据测程仪和罗盘推算船位,并且尽可能沿着海岸航行。在陌生的大海里,他们虽然能够通过一夜又一夜地观察星座与地平线的相对位置来测定船只的纬度,但却不能够测定船只的经度。熟悉的星座对在陌生大海里的人一定是一个极大的安慰。星星是探索者的朋友,在当时就是地球远洋航船的朋友,而现在则是太空宇宙飞船的朋友。埃拉托斯尼算出地球的圆周长度之后,有些人可能尝试过环球航行,但是在麦哲伦以前,没有人获得成功。勇敢和冒险的故事在早期一定被说成是水手和航海家——世界上最讲究实际的人——拿他们的生命跟亚历山大的一个科学家的数字打赌!

        在埃拉托斯尼时代,人们造出了地球仪,用以表示从空间看到的地球。这种地球仪在他们了如指掌的地中海地区基本上还是切合实际的,但是离开他们家乡越远,这种地球仪就变得越不符合实际。我们现在对宇宙的认识也难免遇到这种不愉快的情况。在第一世纪,亚历山大的地理学家斯特拉博写道:

        “那些试图环球航行的人,返回的时候并没有说他们曾经受到大陆的阻碍,因为大海始终是敞开的。他们之所以返回,是因为信心不足、缺乏粮食……埃拉托斯尼说过,如果广袤的大西洋不是一个障碍的话,我们可以很容易地通过海路从伊比利亚抵达印度……在温带完全有可能有一、两个可居住的陆地……当然,如果(我们星球的另一部分)有人居住的话,住在那里的人跟我们是不同的,所以我们要把那里看成是另一个世界。”

        人类就是这样开始千方百计地探索其他世界的。

        后来对地球的探索是全球性的,有到中国和波利尼西亚去的,也有从中国和波利尼西亚出发的。当然,克里斯托弗·哥伦布发现美洲及随后几个世纪的历程算是达到了高潮,因为到那个时候,从地理上探索地球的任务已告结束。哥伦布的第一次航行与埃拉托斯尼的计算最直接相关。哥伦布对自己的“印度群岛冒险计划”简直着了迷,他不打算顺着非洲海岸航行,然后向东驶抵日本、中国和印度,他决心闯入陌生的西部海洋——即象埃拉托斯尼所大胆预见的那样,“通过海路从伊比利亚抵达印度”。

        哥伦布曾经是旧地图的行商,也是古代地理学家——其中包括埃拉托斯尼、斯特拉博和普图利米——的著作和关于他们的著作的热心读者。但是,为了推行“印度群岛冒险计划”,为了使船只和船员能够在长途航行中生存下来,地球必须比埃拉托斯尼所说的小,所以,哥伦布在计算的时候耍了个花招。正如萨拉罗卡大学的考察人员准确无误地指出的那样,从哥伦布能找到的所有书本上,他采用了最小的地球圆周长度和最大的亚洲东延范围,甚至还再加以夸大。假如哥伦布在旅途中没有遇到美洲的话,他的探险就会彻底失败。

        现在地球已经经过彻底的探索,再也不可能发现什么新大陆或失落的土地。但是,过去我们用来探索并定居住地球最遥远的地区的技术,现在可以用来飞离我们这个行星,去进行宇宙探险,去发现其它星球的秘密。飞离地球我们能够居高临下地对它进行观测,能够看到埃拉托斯尼测量出来的整个地球的球体及其大陆的轮廓,从而证实古代许多制图家有卓越的才华。埃拉托斯尼和亚历山大其他地理学家看到这些该会有多么高兴啊?

        从某种意义上说,人类大约在公元前300年之后的600年时间里,在亚历山大这个城市开始了智力的冒险,这种冒险把我们引导到宇宙的海岸。但是,关于这个大理石般的光荣城市的形状以及人们的感觉,却没有任何记载可查,压制和惧怕已使人们几乎把古亚历山大遗忘得一干净。它的居民形形色色,简直不可思议,既有马其顿和后来的罗马土兵,埃及的祭司,希腊的贵族,腓尼基的水手,犹太商人,也有来自印度和撒哈拉沙漠南部非洲的访问者。在亚历山大兴盛的大部分时期内,除了大量的奴隶以外,人们都和睦相处,互相尊重。

        这座城市是亚历山大大帝创建并由他从前的一个侍卫建成的。亚历山大鼓励重视外来文化,提倡虚心求知。根据传说——这种传说是否真实无关宏旨——他是在红海中世界上第一个钟形潜水器里降生的。他鼓励他的将土们与波斯和印度的女子通婚。他尊重其他国家崇拜的神。他搜集异国的生物(包括替他的老师亚里士多德搜集的—头象)。为了把他的城市建成世界贸易、文化和知识的中心,他不惜工本。这座城市因为有以下这些名胜而光彩夺目:30米宽的林荫大道,优雅的建筑和雕像,亚历山大陵,还有那座大灯塔——古代世界七大奇迹之一。

        然而,亚历山人最大的奇迹是它的图书馆及其附属的博物馆(实际上是—个纪念9位文艺女神的公共场所)。在这个传奇般的图书馆里,至今残存最多的是图书馆附属建筑“塞里皮恩”里的那个一度被人遗忘的阴湿的地下室。它的唯一残物可能就是几个腐朽的书架,但是,这个地方曾经是我们这个行星上最伟大城市的智囊和荣誉,它是世界历史上第一个真正的科学研究所。该图书馆里的学者对整个宇宙进行了研究。“宇宙”(cosmos)这个词来自希腊语,意思是“天地万物,井然有序”,从某种意义上说,它是“混沌”(chaos)的反义词。它暗示了天地万物之间的相互联系,表明了人类对错综微妙的宇宙机制的敬畏。这是一个学者云集的地方,他们在这里研究物理学、文学、医学、天文学、地理学、哲学、数学、生物学和工程学。科学和学识发展了,天才在那里茁壮成长。亚历山大图书馆是我们人类最先系统而认真地搜集世界知识的地方。

        除了埃拉托斯尼之外,还有天文学家希帕恰斯,他绘制了星座图并估算了恒星的亮度;欧几里得,他以卓越的才能将几何学进行系统的分类,并对正在费力地解一道数学难题的国王说:“通往几何学的道路中可没有为皇家铺设的康庄大道”;色雷斯的狄俄尼斯,他给词类作了定义,他对语言学的贡献,就象欧几里得对几何学的贡献一样;赫罗菲勒斯,生理学家,他确证智力活动的中心是在脑部而不是在心脏;亚历山大的赫伦,齿轮火车和蒸汽机的发明者,《自动装置》——第一本论述机器人的专著——的作者;佩尔加的阿波洛尼厄斯,数学家,他论证了圆锥曲线的各种形式(原注:之所以称为圆锥曲线是因为它们是以不同的角度从圆锥体上切割而成的,18个世纪这后,阿波洛尼厄斯论圆锥曲线的著作终于被约翰尼斯·开普勒首次用来理解行星的运动)——椭圆、抛物线和双曲线——(我们现在知道)这些曲线是行星、望星和恒星的运行轨迹;阿基米德,列昂那多·达·芬奇之前最伟大的力学天才;还有天文学家和地理学家托勒密,他编著了我们今天称为假科学的星占学;他的地心说统治了1500年。这个事实说明智慧并不能保证不犯大错误。在那些伟大的男子之外,还有一位伟大的女性——海帕希尔,她是数学家和天文学家,是这所图书馆最后一个名人,她的殉难与该馆建成七个世纪后的毁灭有密切关系。关于这个故事,我们后面还会谈到。

        在亚历山大大帝之后的那些统治埃及的希腊国王们很重视学问,在几个世纪的时间里,他们始终扶植科研工作,并在图书馆里为时代的精萃保持良好的工作环境。该馆有10个研究大楼——分别用于不同学科的研究,许多喷泉和柱廊,几个植物园,一个动物园,几个解剖室,一个天文台,还有一个大餐厅,闲暇的时候,人们在厅里讨论问题。

        这个图书馆的心脏是它的藏书。图书管理员到处搜罗世界各国的文化和文字,他们派人到国外尽可能买进图书资料。停泊在亚历山大的商船受到警察的搜查——搜查的目标不是走私货,而是图书。他们借来古书卷,誊抄之后再还给主人。虽然该馆的精确藏书数难以估计,但是收藏50万卷是完全可能的,而且全部都是纸莎草纸的手抄本。这些书都到哪里去了呢?创造这些书卷的古典文明崩溃了,连图书馆也被蓄意摧毁了。只有一小部分作品幸存下来,剩下的就是一些可怜的零零星星的碎片。这些可望而不可即的残片是多么令人心焦啊!例如,我们知道这个图书馆的书架上有一本萨摩斯天文学家阿里斯塔恰斯的著作,他论证说地球是行星之一,也是绕太阳运转的,他还论证说恒星离我们极为遥远。这些结论都是完全正确的,但是我们却等到将近2000年后才重新发现这些真理。我们对阿里斯塔恰斯这本著作损失的认识要提高10万倍,才能理解古典文明的伟大成就及其毁灭的悲剧性。

        我们今天的科学已经远远地超过了古代科学,但是我们对历史的认识还存在着不可弥补的缺陷。试想一想,多少历史上的谜只要用亚历山大图书馆的一张借书证就可以得到解答。我们知道有一套三卷的世界史现在丢失了,作者是一个名叫彼罗萨斯的巴比伦祭司。该书第一卷论述从“创世”到“大洪水”时期,他认为这个时期是43.2万年,也就是说比《旧约全书》的年代纪还要长100倍。我很想知道书里到底写了些什么。

        古人懂得宇宙的历史已经很长了,他们试图了解它的遥远的过去。我们现在知道宇宙远比我们所想象的要古老得多,我们已经考察了宇宙空间,知道我们住一个模糊星系的最遥远的角落里,住在一粒环绕着一颗平凡的恒星的尘埃上。如果我们是无限的空间里的一小点的话,我们在无限的时间里也占据了一瞬间。我们现在知道我们的宇宙——或者至少它的最近的化身——大约有150亿年或200亿年的历史了。这就是所谓的“大爆炸”以来的时间。在宇宙的开初是不存在星系、恒星或行星的,也没有生命或文明。当时的宇宙只不过是—个充满整个太空的均匀的辐射火球。从大爆炸时的混沌过渡到我们现在开始认识的宇宙,是我们有幸瞥见的物质和能量的最可怕的转化。在我们发现其他更聪明的智能生物之前,我们现在的人类就是最引人注目的转化结果——大爆炸的远代子孙。我们的使命是了解并进一步转化诞生我们的宇宙。

        ________

        ①1个billion(10亿)=1000,000,000=109 ;一个trillion(万亿)=1000,000,000,000=1012 ,等等。指数表示1之后0的个数。

        第二章 宇宙的音乐

        我奉命听任万物之主的摆布。
        你们都是他用泥土造出来的。
        《古兰经》第四十章

        最古老的哲学——进化论——在经院哲学统治的1000年内被捆住了手脚,打入冷宫。但是达尔文恢复了这个古老理论的元气。镣铐碎裂了已经证明,这个复兴的古希腊思想,比任何被轻易接受而又迎合后来70多代人类迷信的占星天象图更能够正确地揭示宇宙万物的规律。——T.H.赫胥黎

        曾经生活在这个地球上的一切生物体很可能都是从某一种原始形态遗传下来的,生命最先被注入到这种形态里……这种生命观是十分动人的。因为,当这个行星遵循着固定的引力定律不停地旋转的时候,极简单的原始形式一直并且继续在演化成无穷无尽的最美妙的形式。——查尔斯·达尔文《物种起源》

        在可见的宇宙范围内,看样子存在着许多类似的物质,因为在那些恒星上也有许多大阳和地球上存在的元素。值得注意的是,在群星上分布最广泛的元素是一些跟我们地球上的生物体联系最密切的元素,其中包括氢、钠、镁和铁。那些比较亮的恒星至少象我们的太阳一样,是适宜生物生长的星系的支柱和能量源泉。这难道不可能冯?——威廉·哈根斯

        在我的一生中,我一直疑惑别的地方是否也可能有生命的存在。它的形式如何?是怎样造成的?我们行星上的一切生物都是由有机分子——碳原子起核心作用的复杂的微型结构——组成的。生命诞生之前,地球曾经是一个荒芜的不毛之地。现在,我们的星球是生机勃勃的。为什么会变成这样呢?在没有生命的情况下,以碳为核心的有机分子是怎样形成的?最初的生物是如何产生的?生物是如何进化到能繁殖象我们这样能够探索自身奥秘的复杂的高级动物的?

        在无数其他环绕别的恒星的卫星上也有生命吗?地球以外的生命——如果存在的话——跟地球上的生命一样也是以有机分子为核心吗?其他星球上的生物跟地球上的生物长得基本相象吗?或者说他们极端不同——不同环境下有不同适应性变化?还有什么其他的可能性?研究地球上生命的性质与探索其他地方的生命是同一问题的两个方面,即探索我是谁。

        在恒星之间茫茫的黑夜里,存在着气体云、尘埃和有机质。通过射电望远镜,我们发现那里有数十种不同的有机分子,这些分子的大量存在,表明生物无所不在。生命的起源和进化很可能是宇宙的必然规律,只是时间迟早不同而已。在银河系的几十亿个行星当中,有些行星可能永远也不会产生生命,有些行星可能有生命的兴亡,或者只是停留在生命的最简单形式而已,但是在一小部分的星球上可能有比我们人类更高级的智慧和文明。

        有时候,有的人会说,真凑巧,地球这个地方完全适宜于生物的生长——气候温和,流水清澈,空气新鲜,等等。但这种看法起码是混淆了因果关系.我们居住在地球上的人对地球的环境非常适应,这是因为我们是在这里成长的,那些不适应的早期生物形态被淘汰了。我们是适应性强的生物体的后代。无疑,在环境完全不同的星球上生长起来的生物体也会自鸣得意。

        地球上的一切生物都是密切相关的,我们有共同的有机化学机制和共同的进化遗传特征。因此,我们的生物学家的知识面就显得十分狭窄。他们只研究一种生物学——生命乐章中单一的主题。在成千上万光年里难道只有这么一个微弱的曲调吗?或者还有一种宇宙赋格曲,一种多主题和多声部,谐和音与不谐和音的共鸣乐曲——亿万种不同的声音鸣奏出银河系生命的旋律。

        让我告诉你们一个关于地球生命乐章中的一个小乐曲的故事吧。1185年,日本天皇是一个名叫安德的7岁男孩,他是平家武土集团的名义领袖。当时该集团跟另一个武士集团——源氏武士集团——正在进行着一场长期的血腥战争。他们都宣称自己是天皇的正统继承人。1185年4月20日,在日本内海坛野里爆发了决定性的海上遭遇战,天皇也在船上。平家一方因寡不敌众,溃不成军,伤亡惨重。幸存者一大批一大批地涌到海里淹死。天皇的祖母丹井皇太妃决意不让敌方将她和安德俘获。后来的情况在《平家物语》①一书里有记载:

        天皇时年7岁,但显得老成。他英姿焕发,讨人喜欢,乌黑的长发松散地垂在背后。他神色惊惶地问丹井皇太妃: “你要把我带住何处?”

        皇太妃转脸望着年幼的君主,老泪纵横……她安慰他,把他的长发扎在他的粉红色的长袍里。小君主泪珠涟链,懒掌双合,先朝东向伊势神道别,然后朝西念佛(念阿弥陀佛)。丹井皇太妃将他紧紧地抱在怀里,嘴里念着“我们的宫殿就在大海的深处”,然后跟他一起沉没到波涛之下。

        平家的舰队全军覆没,只有43个妇女活下来,迫于生活,这些宫廷侍女只好向战场附近的渔民兜卖鲜花成提供其他的服务。平家武士集团几乎从历史上消声匿迹,但是那些前宫廷侍女和渔民们所生的后代纠集在一起,定下了纪念该战役的节日。他们每年4月24日都举行纪念活动,至今依然如此。平家的渔民后裔披麻戴孝,到埋葬天皇的赤万圣陵去观看记述坛野里战役之后的历史事件的演出。几个世纪以来,人们觉得他们似乎清楚地看到罪恶的武士阶级的军队妄图舀干海水,清洗他们的血债、失败和耻辱。

        渔民们说,平家的武士一直到现在仍然在日本内海的海底里漫游,体态如蟹。在这里可以发现背部斑纹古怪的蟹(译注:这种蟹学名为关公蟹,日本俗称武士蟹),其模样和形状都跟武士的面孔惊人地相象,人们捉到这种蟹的时候就把它们放回到海里,以纪念坛野里发生的令人悲哀的事件。

        这个传奇故事提出了一个有趣的问题。为什么武士的脸会被雕刻在蟹壳上呢?答案似乎是,这种脸型是人造成的,蟹壳上的模样是遗传下来的。跟人一样,蟹也有许多不同的血统,假定这种蟹的祖先当中碰巧有一只蟹的模样跟人的面孔相象,哪怕只是稍微相象,即使在坛野里战役之前,渔民们也不会把它吃掉。当他们把它丢回海里的时候,他们就有了一个进化过程:如果你是一只蟹,你的壳是普普通通的,人类就会把你吃掉,你这一血统的后代就会减少,如果你的壳跟人类的面孔稍微相象,他们就会把你扔回海里,你的后代就会增多。蟹壳上的模样是蟹的一大投资。随着世代的推移——人蟹都一样——那些模样最象武士脸型的蟹就得天独厚地生存下来。因此,最终的产物不是一般人的脸型,也不是日本人的脸型,而是武士的严峻面容,所有这一切都与蟹的需求无关。淘汰是外部作用的结果。你的外貌越象武士,你的生存机会就越大,最后就产生了许许多多的武士蟹。

        上述这个过程称为“人工选择”过程。就平家武士蟹而言,这个过程基本上是渔民们不自觉的选择过程。当然,这个过程跟蟹的意愿毫无关系。但是,人类几千年来对动植物的存亡一直在进行着精心的抉择。从婴孩期开始,我们就被熟悉的农场、家畜、水果、树木和蔬菜所包围。这些动植物从何而来?它们是曾经独立生存在野外,后来才被诱引到农场里过比较安逸的生活的吗?不,事实正好相反,它们大多数是我们造就的。

        一万年前,奶牛、猪狗、大穗玉米等是不存在的。当我们驯化这些动植物——有些动植物的模样跟现在完全不同——的时候,我们控制住了它们的繁殖。我们让那些理想的品种优先繁殖。当我们需要用狗来牧羊的时候,我们就挑选那些机敏、驯服并且具有一定放牧天才的品种,因为我们可以利用狗的这种天才来看管成群猎食的动物。奶牛之所以有大乳房,是人类喜欢吃牛奶和乳酪的结果。我们现在吃的既可口又富有营养的玉米,是从它的瘦瘠的祖先开始,经过几万年的培育而成的。事实上,玉米已经变得没有人的干预而不能繁殖了。

        无论是平家蟹、狗、奶牛还是玉米,人工选择的实质在于动植物的许多生理和行为特征被忠实地遗传下来。由于种种理由,人类促进了某些品种的繁殖,阻止了另一些品种的繁殖。被选中的品种竞先繁殖,终于繁盛起来;未被选中的品种日益稀少,甚至灭绝。

        但是,既然人类能够造就动植物的新品种,难道自然就不能够吗?这个相应的过程称为“自然选择”过程。从人类生存在地球上短暂时期内对野生动植物的改造以及化石所提供的证据。我们非常清楚地看到,生物在亿万年里已经发生了根本的变化,化石毫不含糊地向我们表明,过去曾经大量存在的生物现在已经灭绝(原注:虽然西方传统的宗教舆论与这种观点大相径庭。例如,1770年,约翰·韦斯利认为:“死亡绝对不能够毁灭(哪怕是)最微小的物种。”)在地球历史上,已经灭绝的物种远比至今仍然存在的物种要多得多,它们是进化的终端试验品。

        驯化所引起的遗传变化是非常迅速的。野兔一直到中世纪初才开始驯化(是法国修道士饲养的,因为他们把新生的小兔子当作鱼。所以在教会日历的某些天,兔肉不属于禁食的肉类),咖啡驯化于十五世纪,甜菜驯化于十九世纪,水貂现在仍处于驯化前期。在不到一万年的时间里,驯化的结果使绵羊的产毛量从l千克增加到10~20千克,使哺乳期奶牛的产奶量从几百毫升增加到100万毫升。如果人工选择在这么短的时期内能够引起这么大的变化,自然选择在几十亿年里能够引起什么样的变化呢?绚丽多彩的生物界就是答案。进化是事实,而不是理论。

        “自然选择就是进化的机制。”这个伟大的发现是跟查尔斯·达尔文和艾尔弗雷德·华菜士的名字联系在一起的。一个多世纪之前,他们强调指出:自然是多产的、动植物产生的数量比它们可能生存的数量多得多,因此,自然环境选择那些碰巧更适合于生存的品种。突变——遗传特征的突然变化——是遗传的,它们为进化提供了原料。因为自然环境选择那些能够提高存活率的品种,结果引起了一系列生物形态的缓慢变化——新物种的起源②。

        达尔文在《物种起源》这本书里的原话是:
        人类实际上不会引起变异性;人类只是无意识地将生物体暴露在新的生活环境里,然后大自然才对组织发生作用,从而引起变异性。但是人类能够、而且的确选择了大自然所赋予的变异,并以各种理想的方式积累起来。人类就是这样改造动植物使其满足自己的意愿。人类的改造活动可能是系统的,也可能是不自觉的。他们可能只是将对他们最有用的生物保存起来,根本没有想到要改变品种……没有任何理由认为适用于驯化的原理就不适用于大自然……产生的生物比可能生存的生物来得多……在生物竞争的过程当中,不管其年龄或所处的季节如何,一种生物对其他生物的最微弱优势,或者对周围环境那怕是最轻微的较佳适应性,都会定决定性的作用。

        T.H.赫胥黎在十九世纪是进化论最有影响的捍卫者和宣传者,他写道:“达尔文和华莱土的著作是一道闪光,它给在黑夜里迷失方向的人展现了一条道路。不管这条道路是否把他直接带到家里,但是肯定把他引上了正路。当我刚刚理解《物种起源》的精义的时候,我曾经这样想:我们怎么没想到这一点呢?多蠢啊!我猜想哥伦布的朋友也会是这么说的……变异性、生存斗争、环境适应性等是众所周知的事实。但是在达尔文和华莱士驱走黑暗之前,我们谁也没想到它们就是通往解决物种核心问题的道路。”

        当时许多人对进化论和自然选择这两种观点都十分反感(现在有些人仍然如此)。当我们的祖先看到地球上巧妙的生物和生物体的构造如何完美地行使其功能的时候,他们以为一定有一个伟大的设计师。即使最简单的单细胞生物体,也是一部比最精致的袖珍手表还要复杂得多的机器,可是袖珍手表却不会自动组装,也不是自己一步一步地从有摆的落地大座钟演化来的。有手表就说明有表匠。原子和分子似乎不可能自动地结合在一起,形成使地球到处都是生机勃勃的极其复杂和微妙的生物体。“每一个生物体都是特意设计出来的”、“物种不会转化”等观点与我们缺乏史料的祖先对生物的看法是完全一致的,“每一个生物体都是由一个伟大的设计师精心构造出来”的观点使自然界条理化,使人类自命不凡——我们现在依然热中于此。所谓的“设计师”,是对生物界的一种自然的、投人所好的解释。但是,正如达尔文和华莱士所指出的那样,还有另一种同样投人所好而且是令人心悦诚服的解释:自然选择——它使生命的乐曲一代比—代更美妙。

        化石所提供的证据可能与“伟大的设计师”的观点相吻合;也许这个设计师对某些物种不满意的时候就把它们毁掉,然后再试验新的花样。但是这种观点有点令人茫然。每一种动植物都是精心制造的,一个万能的设计师难道不能从一开始就随心所欲地制作吗?化石所提供的证据说明了一个尝试与谬误的过程——对预见未来无能为力,这种特征与万能的伟大设计师是格格不入的(虽然与性格比较温和和内向的设计师并不是格格不入的)。

        五十年代初,我还是大学生的时候,我在H.J.马勒的实验室里做事,这是很幸运的。因为他是一个伟大的遗传学家,他发现辐射能够引起突变,同时也是他首先提请我注意平家蟹是人工选择的一个例子。为了掌握实用遗传学,我花了好几个月的时间做果蝇(Drosophila melanogastes,意思是黑身嗜露者)的实验。这是一种驯良的生物,有两个翅膀,一双大眼睛。我们把它们装在粉红色的奶瓶里,让不同的品种进行杂交,然后观察亲本基因重新组合后会产生什么样的形态,观察自然突变和人工突变会产生什么样的形态。雌蝇总是把卵下在技术员放在瓶里的糖蜜上,瓶子用塞子塞住,两周之后受精卵变成幼虫——蛹,最后蛹又形成果蝇成虫。

        有一天,我正在用一个低倍双筒显微镜观察一批刚到的用醚轻度麻醉的果蝇成虫,并忙着用驼毛刷将不同的品种分开。使我感到惊愕的是,我偶然发现了一个非常不同的东西,这不是一般的小变异,例如白眼睛变成红眼睛,或者没有颈毛变成有颈毛。这是一种机能健全的新品种,翅膀显著得多,羽状触角也长。马勒说过,在一代里绝不可能有重大的进化,可是这个范例却发生在自己的实验室里,因此我断定,这是命运的安排。要向他解释这种现象,我感到有点为难。

        我怀着沉重的心情敲了他的门。“进来!”里面传来了低沉的声音。我进去的时候发现房间的光线都遮住了,只有一盏小灯照着那架他正在使用的显微镜镜台。就是在这样黑暗之中,我结结巴巴地解释说:“我发现了一种怪异的蝇,可以肯定它是由糖蜜里的蛹形成的。”我并没有想惊动马勒,但是他却问道:“是不是更象鳞翅目而不象双翅目?”他的脸渐渐地亮起来,我不知所措,他就追问道:“是不是有大翅膀?是不是有羽状触角?”我莫明其妙地点头,说有。

        马勒打开头顶上的灯,亲切地笑着。原来,这种现象人们早就发观了。有一种蛾,它们已经适应果蝇遗传学实验室的生活环境。它们既不象果蝇,跟果蝇也毫不相干,它们要的是果蝇的糖蜜。就在实验室技术员打开瓶塞和盖上瓶塞的那一瞬间——比如给广口瓶添加果蝇的时候,母蛾便来个俯冲轰炸,将卵产在香甜的糖蜜里。当时我并没有发现什么大突变,我只偶然发现了自然中的另一种有趣的适应性的变化——它本身就是小突变和自然选择的产物。

        进化的奥秘在于死亡和时间——大量对环境不适应的生物体的死亡,以及碰巧有适应性的小突变进行长期演化所需要的时间。抵制达尔文和华莱士进化论的一部分原因是因为我们难以想象千万年的时间是怎么过去的,更不用说想象亿万年时间是怎么过去的。对那些只生存百万分之一年的生物来说,7000万年简直不可思议。我们就像蝴蝶一样,振翅一天便以为那就是一生。

        地球上所发生的一切可能跟许多星球上的生物进化多少有类似的地方,但是就蛋白质的组成和化学性质或脑神经系统这样的细节而言,地球上的生物史在整个银河系里可能是独一无二的。地球是46亿年之前由星际气体和尘埃凝结而成的。根据化石所提供的证据,我们知道,没多久——大概40亿年之前,在原始地球的湖海里就产生了生命,最初的生物还没有单细胞生物体——这已经是一种相当高级的生物形态——那么复杂.最初的活动也简单得多。当时,闪电和太阳辐射的紫外线正在分解原始大气层中氢的成分很高的简单分子,分解的碎片又自动结合成越来越复杂的分子。这种早期的化学物质溶解在海洋里,形成了一种逐渐复杂的有机液。最后,有一天,纯粹是出于偶然,出现了一种能够利用有机液里的其他分子作为预构件粗略地复制自己的分子(关于这个题目,我们以后会再讲的)。

        这就是脱氧核糖核酸(DNA)——地球生命的基本分子——的最早祖先,它的状貌象螺旋状梯子,我们可以在分子的四个不同部位找到它的梯级。这些梯级称为核苷酸,它们构成了遗传密码的四个字母,扼要地发出生殖特定生物体的遗传指令。地球上的每一种生物都有各自不同的遗传指令,但是它们使用的书面语言基本上是一样的。生物体之所以不同是因为它们的核酸指令不同,突变就是核苷酸的变化,它会遗传给下一代,是一种真实遗传。因为突变是核苷酸的随机变化,所以大多数突变是有害的或致死的,它们的遗传密码会指令产生非官能酶。要通过突变改善一种生物体的功能,需要很长的时间,然而,正是因为这种不大可能发生的事情——百万分之十厘米宽的核苷酸的有益的小突变,带动了进化过程。

        40亿年前,地球是一个分子的乐园,当时还没有捕食者。有些分子进行低效繁殖,它们竞争预制构件,粗略地复制自己。随着繁殖、突变和对最低效品系的选择性淘汰,进化不停地进行着,即便是在分子的位级也在不停地进行着。久而久之,分子的繁殖效能改善了,具有特别功能的分子终于结合在一起,形成一种分子集体——初始细胞。现今的植物细胞里含有微型的分子工厂,称为叶绿体,负责光合作用,将阳光、水和二氧化碳转化成碳水化合物和氧。血液里的细胞含有另一种不同的分子工厂,称为线粒体,其作用是使食物跟氧结合在一起,从而使食物释放出有用的能量。这些工厂现在仍然存在于动植物的细胞内,但是它们本身可能曾经是独立生存的细胞。

        到30亿年前,若干单细胞植物已经组合在一起,也许是因为在细胞一分为二之后,突变阻止了它们的分离,初始的多细胞生物体产生了。人体内的每个细胞都是一种公社,由曾经独立生活的社员为了共同的利益而结合在一起,因此人是由100万亿个细胞组成的,我们每个人都是一个群体。

        性大约是20亿年前产生的。在那之前,新的生物体只能从随机突变——逐字逐句对遗传指令变化的选择——的积累过程中产生。进化一定是一个极其缓慢的过程,随着性的产生,两个生物体就能够整段、整页和整本地交换它们的DNA遗传密码,繁殖出可供筛选的新品种。生物体有选择地进行性的活动,那些对性的活动不感兴趣的物体就迅速地绝灭。不仅20亿年前微生物的情况是如此,我们人类现在对DNA遗传密码的交换也有显著的兴趣。

        到10亿年前,由于协作的结果,植物已经深刻地改变了地球的环境。绿色植物会制造分子氧。因为当时的海洋充满了简单的绿色植物,所以氧正在变成地球大气层的主要成分,结果以不可逆转之势改变了原来氢的成分很大的大气层的性质,从而结束了生物是由非生物过程产生的地球历史时代。然而,轻而易举地使有机分子瓦解,虽然我们喜欢它,但从根本上说,氧对没有保护的有机物却是一种毒药。在生命的历史上,大气层的氧化造成了极大的危机,大量的生物体因为适应不了氧而灭亡,少数原始生物,例如肉毒杆菌和破伤风杆菌,即使现在也只能生活在无氧的环境条件下。地球大气层里的氮的化学性质很不活泼,因此氮比氧温和得多,但是氮也使生物付出了巨大的代价。总之,地球大气层的百分之九十九源自生物,我们的天空是用生命换来的。

        在生命起源之后40亿年的大部分时间里,主要的生物体是微小的深绿色的海藻,它们布满了整个海洋。 接着,大约6亿年之前,海藻的垄断地位被打破了,新的生物急剧增加。这个事件称为“寒武纪爆炸”。地球产生之后几乎立即产生了生命,这说明生命在类似地球的行星上可能是一个不可避免的化学过程。但是,在30亿年的时间里,生命并没有从深绿色的海藻进化多少,这说明有特殊器官的大生物是很难形成的,甚至比生命的起源还难。也许现在许多其他的行星存在有大量的微生物,但是没有大的动物和植物。

        寒武纪爆炸之后不久,海洋里充满了许多不同形态的生物。到5亿年以前,已经有大量成群结伙的三叶虫,它们是体态漂亮的动物,有点象大昆虫,有些在海底成群猎食,它们的眼睛里有晶体,可以探测偏振光。但是现在三叶虫已经不复存在了,它们已经于亿年前消失了。地球一度有过的动植物,如今已无活着的迹象。当然,现在地球上的各种生物过去没有存在过。物种就是这样来去匆匆,一闪而过。

        寒武纪爆炸之前,物种的演化似乎相当缓慢,这大概一方面是因为我们越深入审查过去,我们的资料就越不足。在我们行星的早期历史里,很少生物体有硬的部位,而软体生物则很少有化石残余。另一方面是因为寒武纪爆炸之前出现新生物体的节奏确实非常缓慢,细胞结构和细胞生化的艰苦进化过程并没有立即反映在我们从化石所看到的外部形态上。寒武纪爆炸之后,新的适应过程以相对惊人的速度接二连三地发生。在急速演化之中,最初的鱼类和脊椎动物便应运而生;过去只生长在海里的植物开始移居到陆地上,初始昆虫产生了,它们的后代成了动物在陆地上移居的先锋;有翼的昆虫跟两栖动物(有点象肺鱼,能够同时生活在水里和陆地上)同时产生;初始的树和爬行动物出现了;恐龙产生了;哺乳动物出现了,接着又出现了初始的鸟类;初始的花也出现了;恐龙绝灭,初始的鲸目动物(海豚和鲸的祖先)产生了,灵长目(猴、类人猿和人类的祖先)也同时出现了。不到1000万年前,跟人类相当接近的动物产生了,它们的脑体积也惊人地增大。然后,只在几百万年之前,最初的真人出现了。

        人类是在森林里成长起来的,我们与森林有着天然的联系。树木葱笼向上,蔚为壮观!它们的叶子需要捕获阳光来进行光合作用,因而它们用阴影遮蔽近邻,相互竞争。如果仔细观察的话,你经常会见到两棵树无可奈何地推推搡搡。树木是壮美的机器,它们以阳光为动力,以大地的水分和空中的二氧化碳为食粮,同时也向我们提供了食粮。植物用自身制造的碳水化合物作为能源来从事各种活动,我们动物——从根本上说是植物的寄生虫——则靠盗取碳水化合物来从事各种活动。因为我们大量地呼吸空气,我们的血液里含有氧,当我们食用植物的时候,我们就将碳水化合物跟氧结合起来,从中提取人类机器运转所需要的能量。在上述这个过程中,我们呼出二氧化碳,然后这些二氧化碳又被植物回收,用来创造更多的碳水化合物。两者之间协作得多好啊!动植物交互吸入对方的发散物——一种全球性的口对口相互急救法。 整个微妙的循环过程是以1.5亿公里外的一颗恒星为动力的。

        己知的有机分子有好几百亿种,但是大约只有50种被用来进行生命的基本活动。同样的分子模式被稳健而又巧妙地反复用来行使各种不同的职能。控制细胞化学性质的蛋白质和携带遗传指令的核酸是地球生命的核心,我们发现所有动植物里的这些分子基本上是相同的。我和橡树都是由相同的物质组成的,如果你再往回追溯的话。你会发现我们有一个共同的老祖宗。

        跟星系和恒星王国一样,活细胞是一个复杂而又完美的国家。巧妙的细胞机器是经过40亿年的时间精心制成的,它是由食物碎屑演化而成的。今天血液里的白细胞就是昨天的奶油。细胞是如何完成这项工作的呢?原来,细胞内是一个错综复杂的迷宫,它有独特的结构,它能够转化分子,储存能量,还能够为自我复制作准备工作。假如我们能够进入一个细胞的话,我们所能见到的许多细胞微粒就是蛋白质分子,它们有些积极地活动着,有些则消极等待。最重要的蛋白质是酶,即控制细胞化学反应的分子。酶就象装配线上的工人一样,各有各的分子工作,例如第四道工序负责核苷酸鸟苷磷酶的构造,又比如第十一道工序负责分解糖分子并从中提取能量——这是用来支付其他分子工作的货币。但是酶并不是老板,它们接受它者的指令——事实上,它们本身也是由它者构造的,它们按负责者的命令办事。核酸是分子的老板,它们位于细胞核这样的紫禁城里,深居简出。

        假如我们通过一个小孔闯入细胞核的话,我们会发现类似意大利面条厂里的爆炸现象——令人眼花绕乱的面团和面条,它们就是两种不同的核酸:DNA和RNA(它们将DNA发出的指令传递给其他的细胞)。这些核酸是40亿年进化的最佳产品,它们储存着如何指使细胞、树木和人类进行工作的全部信息。如果用一般的语言写出来的话,人类DNA的信息量足足可以写成100卷的巨著。此外,除了极少数例外,DNA分子还懂得如何复制自己。它们的学识不可谓不渊博。

        DNA是一条复合螺旋线,由两条线绞合在一起,象一个螺旋形的梯子。在这两条线上的核苷酸的排列次序就是生命的语言。在繁殖的时候,这两条线借助一种特殊的松解蛋白质而分离,然后分别跟附近的另一条线的复制物(在细胞核沾滞流体里漂浮着的核苷酸预制构件所制造出来的复制物)相结合。松解程序一开始的时候,一种称为DNA聚合酶的特异功能酶就出来协助确保复制工作不出差错。如果出了差错,酶就会迅速加以纠正,用正确的核苷酸取代错误的核苷酸:这些酶是一部功能奇异的分子机器。

        除了精确地复制自己(即遗传)之外,DNA还通过称作“信使RNA”的另一种核酸指挥细胞的活动(即新陈代谢)。RNA会跑到核外,每个RNA在适当的时间和适当的地点控制着一个酶的构造。酶细胞形成之后就开始发号施令。每个酶掌管着细胞生化过程的某一特定环节。

        人类的DNA是由10亿个核苷酸分子串起来的一个梯子,大多数核苷酸的组合形式是没有意义的,它们会使蛋白质合成为无用的东西。只有极少数核酸分子对象人类这样复杂的生物才有用途。即便如此,核酸对生物有用的组合方式还是多得令人目瞪口呆——很可能比宇宙间的电子和质子的总数还要多得多。因此,人类可能出现的个体要比迄今出现过的数量大得多,这说明人类种的潜力是极大的。核酸一定还有许多组合方式可以改善人类。幸好我们还不知道怎样用其他的方法排列核苷酸来制造其他的人类。将来我们完全有可能以任何理想的方式排列核苷酸,创造出具有称心如意特征的人。这是一个既严肃又令人兴奋的设想。

        进化是通过突变和选择来实现的。在复制过程中,如果DNA聚合酶出差错的话,就可能发生突变。但是DNA聚合酶极少发生差错。辐射、太阳紫外线照射、宇宙射线或环境中的化学品等也会引起突变,所有这些东西部能够使核苷酸发生变化,或者使核酸打结。如果突变率过高,我们就不可能有40亿年来在极其缓慢的进化过程中遗传下来的生物。如果突变率过低,适应未来环境变化的新品种就不可能出现。生物的进化要求突变与选择之间保持某种程度的平衡,随着平衡的实现,非凡的适应性也越产生了。

        一个DNA核苷酸分子的变化会引起受该DNA遗传密码控制的蛋白质内一个氨基酸分子的变化,欧洲血统人的血液里的红细胞呈球形,某些非洲血统人的血液里的红细胞则呈镰刀形或新月形。镰刀形细胞携带的氧比较少,结果遗传一种贫血症,但是它们又是抵御疟疾的主要因素。毫无疑问,贫血症总比死亡好。这种对血液功能的重大影响(在红细胞的照片上一目了然)是典型人体细胞的DNA中,上百万个核苷酸分子中有一个核苷酸分子发生变化的结果。我们现在仍然不知道大多数其他核酸的变化会引起什么样的后果。

        我们人类看上去跟树木大不相同。无疑地,我们对世界的认识也跟树木不一样。但是在最深处,在生命的分子核心,树木跟我们本质上是相同的。两者都用核酸进行遗传,两者都用蛋白质为酶来控制细胞的生化过程,最重要的是,两者都用完全相同的电码本将核酸的信息翻译成蛋白质的信息——实际上我们这个行星上的所有其他生物使用的也都是这个电码本③。对这种分子统一性的一般解释是:我们人类,例如树木、人类、鮟鱇鱼、粘液霉和草履虫等,都是在我们行星历史的早期源自一个共同的祖先。那么,关键分子又是如何产生的呢?

        在康奈尔大学,我的实验室里,除了研究其他项目以外,我们还研究生物前有机化学,谱写了一段生命的乐章。我们将原始地球的气体混合在一起,然后用电火花辐照。这些气体包括:氢、水、氨、甲烷、硫化亚氢等,它们碰巧都存在于现代的木星上和整个宇宙里。电火花相当于闪电(在古代的地球和现代的木星上也有)。反应器皿起先是透明的,因为原始气体是看不见的。但是电火花辐照10分钟之后,我们看到一种奇特的棕色的东西顺着器皿壁慢慢地往下淌,器皿逐渐地变得不透明了,盖上了一层厚厚的煤油。假如我是用紫外线照射的话(模仿早期的太阳),其结果会大致相同。这种焦油是复杂有机分子(包括蛋白质的组成部分和核酸)的浓缩。生物竟然是非常容易制造的。

        上述这种实验是五十年代早期斯坦利·米勒最先做的。他当时还是化学究哈罗德·尤里的研究生。尤里有力地论证了地球早期的大气层里充满了氢(就象宇宙中大多数的星球那样);后来氢慢慢地从地球上散发掉,但是没有从巨大的木星上散发掉;生命在氢丧失之前就产生了。当尤里建议用火花辐照这些气体的时候,有人间他想通过这个实验制造什么东西,他回答说:“Beilstien.”Beilstien是德国的一部28卷的巨著,里头罗列了化学家所知道的所有有机分子。

        只要用早期地球存在的最丰富的气体和几乎所有能够解开化学键的能源,我们就能够制造生命的基本领制构件。但是在我们的器皿里出现的只是生命的乐谱,还不是生命的音乐。分子预制构件必须正确地排列在一起。生命绝不仅仅是组成蛋白质的氨基酸和组成核酸的核苷酸。但是即使在将这些预制构件排列成长键分子方面,我们的实验工作已经取得了重大的进展。氨基酸已经在原始地球的条件下被组合成类似蛋白质的分子,共中有些分子象酶一样微弱地控制着有用的化学反应。核苷酸已经被组合成几十个单位长的核酸链。在适当的条件下,短核酸在试管里能够与跟它们相同的复制品结合征一起。

        直到现在,还没有人能将原始地球的气体和水混合在一起并在实验结束的时候让什么东西从试管里爬出来。最小的已知生物,类病毒,是由不到1万个原子组成的。这些病毒能导致栽培植物的若干种不同疾病,而且很可能是最近刚从更复杂(而不是更简单)有机体演化来的。确实很难想象还有更简单的、不管从什么意义上说部是活的生物体。类病毒是单纯出核酸组成的,而病毒却有一层蛋白质膜。类病毒只不过是单一的RNA链条,其几何图形不是一条直线,就是一个闭合圈。不管类病毒多小,它们总是生机勃勃的,因为它们是彻头彻尼的寄生虫。跟病毒一样,它们只是接管一个功能完善的大细胞的分子机器,然后特这个制造细胞的工厂改造成制造类病毒的工厂。

        已知最小的独立生存的生物体是PPLOC类胸膜肺炎生物和类似的小生物,它们大约是由5000万个原子组成的。因为这种生物必须在较大的程度上依赖自己,所以它们比类病毒和病毒更复杂。但是现在地球的环境条件对简单的生物体并不那么十分有利,因为你非得自食其力不可,非得防范敌手不可。然而,在我们行星的早期历史里,当大量的有机分子在充满氢的大气层里由阳光孕育的时候,很简单的非寄生生物都有竞争的机会。最初的生物体可能就象独立生存的类病毒那样,只有几百个核苷酸分子串起来那么长。到本世纪末的时候,我们就可以用实验的方法重新开始创造这种生物。关于生命的起源,我们还有许多东西要了解,其中包括遗传密码的起源。但是这种实验我们才不过做了30年左右,而大自然却已经先行了40亿年。总的来说,我们的成绩还是不错的。

        这样的实验并不是地球上所独有的,最初的气体以及能源在整个宇宙都有。星际空间的有机物和在陨石上发现的氨基酸,可能是由像我们实验器皿里的那类化学反应所引起的,一些类似的化学现象在银河系的10亿个其他星球上一定发生过。生命的分子充满了整个宇宙。

        但是即使另一个星球上的生命跟我们这里的生命都有相同的分子化学现象,我们也没有理由认为那里的生物就一定跟我们所熟悉的生物相类似。试想一下,地球上的生物是多么的繁杂,它们都生活在同一个星球上,都有相同的分子生理。在另一个星球上,动植物很可能跟我们在这里所了解的任何生物体完全不问,那里可能会聚进化(扫校者注:疑为convergence,即趋同进化),因为对某种环境问题可能只有一种最佳解决办法,例如两只眼睛是为了使双目视觉能够适应光频。但是总的来说,进化过程的随机性可能会使地球外的生物跟我们所知道的任何生物都大不相同。

        我说不清楚地外生物会是什么样子,我的知识是非常有限的,我只知道一种生物,即地球上的生物。有些人,例如科幻小说家和艺术家,已经对其他星球上的生物进行了猜测,我对那些地外生物的幻想表示怀疑,因为它们似乎过多地以我们已知的生物体为幻想的依据。任何特定的生物体都是经过一个个意外的步骤长期演变而成的,我想其他任何地方的生物都不会象爬行动物、昆虫或人类那个样子,即使象绿皮、尖耳和触角这样的小化妆也不会一样。但是假如你强迫我的话,我也可以想象出一种颇不相同的东西。

        在一个木星那样巨大的气体星球上,大气层里充满了氢、氦、甲烷、水和氨,星球表面没有可着陆的地方,而是一个密集的云状气层,象我们实验器皿里的生成物那样的有机分子可能不断地从空中降落到这个云层里。但是这样的行星对生命的形成存在着一种特殊的障碍:表层湍急,深处炎热。生物体必须时刻小心,免被拖向受煎熬的深渊。

        为了说明生命在这样极其不同的行星上并不是不可能的,我和我在康奈尔的同事E.E.萨尔彼得做了一些计算。当然,我们不可能准确地了解生命在这种地方会是什么样子,但是我们要弄清楚在生物和化学法则的范畴内这种星球是否可能有生物。

        在这样的条件下,生存的方法之一是在你受煎熬之前就进行繁殖,并指望空气的对流能够把你的一部分后代带到大气层高处较凉爽的地方。这种生物体可能极小,我们把它们叫做坠子。但是你也可以是浮子——抽掉氦和重气体而只留下最轻的气体氢气——的大氢气球,或者是热气球,通过保暖和利用食物等方法维持漂浮状态。就象我们所熟悉的地球上的气球一样,浮子越往下拖,它回弹到高层大气较凉爽的安全地带的浮力就越大。浮子可能会把预制的有机分子吃掉,或者象地球上的植物那样,通过阳光和空气将预制的有机分子化为己用。达到一定高度的时候,浮子越大,它的功效也越越大。我和萨尔彼得设想浮子有几公里宽,比最大的鲸鱼还大。

        浮子可能会象冲压式喷气发动机或火箭那样,用迸发的气流将自己推到行星天气以外。我们设想它们懒散地群集在一起,大得一眼望不到边。在它们的表皮上有花纹,这是一种适应性伪装,同时也说明它们遇到了问题。因为在这样的环境里至少还有一个小的生态环境:狩猎。狩猎者行动迅速,动作灵敏。它们吞食浮子,一方面是为了补充自身的有机分子,一方面是为了储存纯氢。最初的浮子可能是由空坠子演变来的,而最初的狩猎者则可能是由浮子进化来的。狩猎者的数量不可能很多,因为如果它们把浮子都消灭掉的话,它们自己也要毁灭。

        物理和化学容许这样的生物形态存在,艺术则赋予它们一定的魅力,然而自然却不以我们的臆测为转移。但是,如果在银河系里有几千亿个住着生物的星球,恐怕也会有几个住着我们根据物理和化学的法则想象出来的坠子、浮子和狩猎者的星球。

        与其说生物学象物理学,不如说生物学象历史学。你要了解现在,你就得了解过去,并且要极其详细地了解它。正如至今还没有历史学的先验论一样,至今也还没有生物学的先验论,理由是相同的:两个学科对我们来说仍然太复杂。但是我们可以通过了解其他的东西来增进对自身的了解。对地球外某种生物的研究,不管如何粗浅,都会推动生物学的进步。生物学家将会首次弄清楚什么样的其他生物可能存在。当我们说探索其他地方的生物很重要时,我们并没有说很容易找到,我们只是说值得一找。

        迄今为止,我们仅仅听到一个小星球上的生命之声,但是我们终一起开始注意收听宇宙乐曲中的其它声音。

        ________
         ①译注:平家物语,日本镰仓时代初期著名战记小说,相传为13世纪初信浓前司行长所著,共12卷。后经多人增补修订,现有异本多种。描写1132~1213年平代和源代两个封建宗族争夺政权的斗争,最后源代胜利,并掌握政权。

        ②译注:在玛雅的《圣经》里,各种生物形态的产生被说成是神着意创造人类时失败的尝试。由于早期的试验差,结果创造了那些低级动物;由于创造人类之前的那一次试验失之毫厘,结果创造了猴子。在中国的神话里,人类是由盘古神身上的虱子产生的。18世纪,德·布丰认为:地球的年龄比《圣经》上所说的要大得多,生物的形态几千年来缓慢地变化着,但是类人猿却是人类不幸的后代。虽然这种看法与达尔文和华莱士的进化论不完全符合,但它们都是进化论的前身——迪莫克里特斯、恩佩多科斯和其它古代爱奥尼亚科学家的观点也是如此(见第七章)。

        ③译注:但是地球上不同的生物体在不同部位使用的遗传密码不尽相同。至少有几个例子可以证明,将DNA信息翻译成蛋白质信息的时候,线粒体内使用的电码本与同一细胞的细胞核里的基因使用的电码本是不一样的。这表明,线粒体和细胞核遗传码的分离经历了一个长期的进化过程,而且与下述见解是一致的,即线粒体曾经是一种自由生存的生物体,它们是在数十亿年前的共生过程中并入细胞的。它们共生的成熟关系的发展和日趋完善偶然地回答了这样的问题,即在寒武纪爆炸的时候,在细胞的形成和多细胞生物体的剧增之间发生了什么样的进化。

        第三章 宇宙的和谐

        你知道天的定例吗?
        能使地归在天的权下吗?
        《约伯记》

        一切人间祸福来自7行星12宫。按照宗教的说法,黄道12宫掌管光明的一面,7行星则掌管黑暗的一面;7行星压抑方物并将其向死亡(和万恶)过渡:因为黄道12宫和7行星支配着世间的命运。《琐罗 亚斯 德教圣经》(新版)

        告诉我们说万物都有行为和效应的超然特性,等于自诉我们一句空话;但是根据现象推引出二三条运动的原理,然后再告诉我们一切有形物质的特性和行为怎样成为这些浅显原理的必然结果,则会是一个十分重大的进步。 艾萨克·牛顿《光学》

        我们并没有问鸟儿唱歌有什么目的,因为唱歌是它们的乐趣,它们主来就是要唱歌的。同样的道理,我们也不应该问人类为什么要挖空心思去探索天国的秘密……自然现象之所以这样千差分别,天国里的宝藏之所以这样丰富多彩,完全是为了不使人的头脑缺乏新鲜的营养。 约翰尼斯·开普勒《宇宙结构之秘密》

        假如我们居住在一个永无变化的行星上,我们就无所作为,无所用心。假如我们居住在一个变幻莫测的星球上,我们就不可能理解事物,也不可能有科学这样的东西。这里的事物在变化着,它们的变化遵循着一定的模式、规则或所谓的自然法则。如果我们把一根竹竿抛到空中,这根竹竿总是要下落。如果太阳从西边落下,它在第二天早晨总是要从东边升起来。因此我们有可能理解事物,我们可以从事科学研究,并用科学来改善我们的生活。

        人类善于理解世界,我们一向如此。我们会狩猎或生火,因为我们明白了一些事理。在电视、无线电、书籍发明之前,我们经历了一个历史时期,人类存在以来的大部分时间是在这个时期里度过的。在无月光的夜晚,我们围着营火的余烬,注视着天上的星星。

        夜空是饶有趣味的,那里有各式各样的图案。你可以不假思索就想象出不同的图画。例如,在北方的天空上有一个图案(即星座),看上去有点像熊,有些人把它叫做大熊星座,另一些人看到的则是完全不同的形象。当然,夜空里并不是真有这些图画,它们是我们自己安排的。我们是狩猎的民族,我们看到的是猎人、狗、熊和年轻的妇女以及一切引起我们兴趣的东西。当17世纪的欧洲水手第一次见到南方的天空时,他们就把17世纪人们感兴趣的东西放上去,如杜鹃、孔雀、望远镜。显微镜等。如果这些星座是在20世纪命名的话,我想我们就会在空中见到自行车和电冰箱星座,见到摇摆舞星座,甚至见到蘑菇云——人类寄托在群星中的一种新的希望和恐惧。

        我们的祖先偶然间会见到一个非常明亮的带着尾巴的星星从天空中一掠而过,他们把它叫做流星。但是这个名字取得不好,因为流星下落之后,原来的那些星星依然还在那里。在某些季节里有很多流星,在另一些季节里流星就很少。这里同样也有一种规律性。

        跟太阳和月亮一样,星星总是从东边升起来,从西边落下去。如果它们从我们的头顶上经过的话,它们就要用整夜的时间跨过天空。不同的季节有不同的星座。譬如同样的星座总是在初秋出现,新的星座从来不会突然从东方地平线上升起来。星星有它们的规律性、可预测性和永久性,从某种意义上说,它们基本上是靠得住的。

        有些星星比太阳稍早一点升起来或稍迟一点落下去,它们升落的时间和位置随着季节的变化而不同。如果你长年累月地仔细观察并作记录的话,你就会预告季节的变化。你还可以通过观察每天太阳从地平线升起的位置来估量季节。天空是一个大日历,凡是有事业心、有能力、有办法作记录的人都可以使用。

        我们的祖先构筑了测量季节变化的设施。在新墨西哥蔡科峡谷有一个11世纪建造的没有屋顶的大礼堂,6月21日——一年最长的一天,一柱阳光在黎明的时候从一个窗户射进来,最后慢慢地覆盖了一个特设的壁龛。但是这种现象只有在6月21日左右才发生。我猜想那些自豪的阿纳萨齐人(他们自称“古人”)每年6月21日都聚集在大礼堂里,他们披戴着羽毛。拨浪鼓和绿松石,坐在长凳上庆祝太阳的威力。他们还监视月亮的视运动,大礼堂里28个位置更高的壁龛可能表示月亮回到星座原来的位置上所需要的天数。这些人密切地注视着太阳、月亮和星星。根据类似的原理构筑的设施还可以在以下地方找到:柬埔寨的吴哥窟,英国的巨石阵,埃及的阿布西姆贝尔,墨西哥的奇琴伊特萨和北美的大平原。

        有些被认为可以用作日历的设施可能纯属偶然,譬如6月21日那天窗户和壁龛的偶然性。但是有些设施则很奇妙:美国西南部的一个地方直立着三块石板(它们是1000年前从别的地方搬来的),在岩石上刻了一条有点像星系的螺旋线,6月21日(夏至)那一天从两块石板的空隙透射过来的阳光分割这条螺旋线;12月21日(冬至)那一天,有两条光线将这条螺旋线夹在中间,这是利用中午的太阳读认天空历书的杰作。

        为什么世界各地的人都要这样下功夫学天文呢?人们追猎随季节转换而迁徙的瞪羚、羚羊和野牛;水果只有在一定的季节才能采摘;发明农业之后,人们就得按季节种植和收获庄稼,散居游牧部落的年会必须定期召开。看天空历的本事实际上是生死存亡的大事。全世界的人都注意到,新月之后又出现娥眉月,日全食之后太阳又恢复了原状,太阳在夜里令人不安地消失之后早晨又升起来。这些现象向我们的祖先表明,超越死亡是可能的,头顶之天空就有永存的象征。

        风在美国西南部的峡谷里呼啸,只有我们听到这风声,它提醒人们注意那些善于思考的4万代祖先。对于他们,我们几乎一无所知,而我们的文明都建筑在他们的身上。

        随着年代的推移,人们从祖先那里学到了许多东西。对太阳、月亮和星星的位置与运动了解得越精确,人们就能够越准确地预测狩猎。播种和收获的时间以及召开部落会议的时间。随着测量精密度的提高,记录是必不可少的。可见天文学促进了观测,促进了数学,也促进了写作的发展。

        但是相当一段时间之后,出现了一种荒谬的观念,基本上是建立在经验基础上的科学受到了玄学和迷信的冲击。太阳和星星操纵季节、食物和温暖,月亮操纵潮汐和许多动物的生活周期,甚至操纵人类的经期①——这对热心传宗接代的有性动物是极为重要的。在天空中还有另一种东西——我们称作“行星”的游荡者或徘徊者,我们的游牧祖先对行星一定感到很亲切。如果不算太阳和月亮的话,你只能看到5颗行星。它们在远方星星的衬托下运行,如果你连续观察数月,你就会发现它们在星座之间进进出出,有时甚至在空中翻筋斗。空中的其他一切东西对人生都有某种实际的影响。行星的影响究竟是什么呢?

        在当代西方社会里,要购买一本关于星占学的杂志——譬如从报摊上购买——是很容易的,但是要找到一本关于天文学的杂志却难上加难。事实上,美国的每一家报刊上每天都有星占学专栏,而每周刊载一次天文学专栏的报纸则几乎是没有的。美国的星占学家人数足足是天文学家人数的10倍。聚会的时候,一些不知道我是科学家的人有时候问我:“你是双子宫吗?”(黄道12宫之一,指成功的机会),或者“你是哪一宫?”很少有人问我:“你听说黄金是在超新星爆发的时候产生的吗?”或“你认为国会什么时候会批准建造一个火星漫游车?”

        星占学家认为,你诞生时行星所在的星座对你的前途有重大的影响。几千年前就形成了这样的观点:行星的运行决定着国王、王朝和帝国的命运。星占学家研究行星的运动规律,并且,比如说,自问自答:“上次金星在摩揭星座上升的时候发生了什么事情?很可能这次会发生类似的事情。”这样的推理难免玄虚荒唐。星占学家终于成了朝政的专用雇员。在许多国家里,除了官府的星占学家之外,其他任何人研究天象便是犯弥天大罪,因为推翻一个政体的妙法就是预测其垮台的时机。中国宫廷星占学家如果预测不精确就要被处决,因此许多星占学家将天文记录改头换面,使之符合后来发生的事件。星占学成了观测、数学和观点含糊、内容失真的记录的大杂烩。

        但是,假如行星能够决定国家的命运的话,它们为什么就不能影响我明天的命运呢?个人星占学大约是在2000年前从亚历山大大帝时期的埃及发展起来的,然后扩展到希腊和罗马社会。我们今天还可以从某些词汇里辨认出星占学的古风,例如:disater(灾难)这个字在希腊语里的意思是“坏星”;influenza(流感)这个字在意大利语里的意思是“(星的)影响”;mazeltov(运气)这个字原是希伯来语,最后成了巴比伦语,意思是“好星座”,或依地绪语的Shlamazel,用来表示被严酷的不幸所折磨的人,它同样可以上溯到巴比伦的天文学词汇。根据普利尼的记载,有的罗马人遭到Sideratio(“星击”),当时人们普遍认为行星是死亡的直接因素。再考虑一下。consider(考虑)这个字:它的原意是“与行星同在”,显然这是深思熟虑的先决条件。1632年伦敦市的死亡统计数字,在 9 535个死于婴孩病和“升光病”与“国王罪恶病”等怪病的死者当中13个人死于星症,比死于癌症的人还要多。我不知道这种病到底有什么症状。

        个人星占学至今依然存在:让我们看一看同一城市在同一天出版的两种不同报纸的星占学专栏吧。例如,我们可以看一看1979年9月21日的《纽约邮报》和《纽约日报》。假设你是天秤宫,即生于9月23日和10月22日之间,《邮报》的星占学专栏作家认为“让则和”,虽然这句话可能有用,但是却有点含糊。《日报》的星占学家则认为“要严以律己”,这个告诫有所不同,但还是含糊。这些“预示”其实并不是什么预示,它们只不过是劝告罢了——它们说的是该做什么,而不是会发生什么。这样的措辞带有普遍性,对什么人都适用,而它们之间又互相矛盾,为什么它们像运动统计数字和股票市场报告那样被刊载出来而不加任何解释呢?

        星占学可以用孪生子的生命来检验。在许多情况下孪生子中有一个在童年的时候夭折,譬如死于车祸或遭到雷击,而另一个孪生子却活到很大年纪。他们诞生在完全相同的地方,诞生的时间也只不过是几分钟之差,他们诞生的时候在星座里升起来的行星都一样。如果星占学可行的话,为什么这样的一对孪生子会有完全不同的命运呢?其实,星占学家对某一个特定星位的理解并不一致。经过仔细的检验之后,我们发现,如果他们除了诞生的时间和地点以外,对人们一无所知的话,他们是不可能预测人们的性格和前途的。②

        地球这个行星上的国旗有点古怪。美国的国旗有50个星,苏联和以色列各有一个,缅甸14个,格林纳达岛和委内瑞拉7个,中国5个,伊拉克3个,圣多美岛和普林西比岛2个,日本、乌拉圭、马拉维和孟加拉国等都是太阳旗,巴西国旗上有一个大球,澳大利亚、西萨摩亚、新西兰和巴布亚新几内亚都是南十字星座,不丹是龙珠——地球的象征,柬埔寨是吴哥窟天文台,印度、南朝鲜和蒙古人民共和国则是宇宙的象征。许多社会主义国家采用星星,许多穆斯林国家采用新月。我们这个世界上的国旗几乎有一半采用天文符号。这种现象是跨文化的,是无宗教派别的,也是世界性的。这种现象也不仅仅局限于我们的时代,从公元前3000年开始的塞缪里亚的圆筒图章和中国革命前的道家旗帜都采用星座。我毫不怀疑各家都想利用天国的力量和威望。我们都寻求与宇宙的联系,我们野心勃勃。事实证明,我们是跟宇宙联系在一起的,但不是星占学家所声称的那种个人的、小规模的、虚无缥缈的联系,而是最根本的联系,其中包括物质的起源、地球的可居住性、人类的进化与命运等(这些问题我们后面还要谈到)。

        现代流行的星占学来自克劳迪斯·托勒密亚斯,我们叫他托勒密,虽然他跟同姓的国王没有关系。公元二世纪时,他在亚历山大图书馆工作,整理巴比伦星占学传说,所有那些关于行星在种种太阳“宫”、月“宫”或“宝瓶宫龄”里的星位这些神秘的东西都源自托勒密。曾有一张用希腊语写在纸莎草纸上的托勒密时代的典型天宫图,这张天宫图标出了生于150年的一个小女孩的命运:“生于菲洛,安东尼纳斯·凯撒陛下10年,费米诺思15~16日凌晨1点。太阳位于双鱼宫,木星和水星位于白羊宫,土星位于巨蟹宫,火星位于狮子宫,金星和月亮位于宝瓶宫,星占摩揭宫。”十几个世纪以来,计算年月的方法已经发生了很大的变化,而占星术却没有多大变化。托勒密的星占学著作中有这样一段典型的话:“老土星位于东方,其庶民之外表则为黑皮肤、强健、黑发、卷发、粗壮,眼睛大小适中、体格中等、性情非常温静。”托勒密不但相信行为受行星和恒星的影响,而且相信体格、肤色、民族气质、甚至先天畸型等都受恒星的制约。在这一点上,现代星占学家的观点似乎比较谨慎。

        但是现代的星占学家已经把岁差忘掉(托勒密对岁差还是了解的),他们忽略了大气折射(托勒密论述过这个现象),他们几乎不管什么卫星和行星、小行星和彗星、类星体和脉冲星、爆发星系、共生星、激变星以及托勒密时代以来所发现的X射线源。天文学是一门科学——研究客观宇宙;星占学是一门伪科学——没有真凭实据地宣称我们的日常生活受其他行星的影响。在托勒密时代,天文学与星占学之间是没有明显的区别的,今天却是有区别的。

        作为一个天文学家,托勒密给星星命名,制定星星的亮度表,论证地球是一个球体,制定预测日食的规则,但是最重要的也许是研究行星在远方星座的衬托下奇妙地运转的原因。为了研究行星的运动和译解空中的信息,他制定了一个预测模型。对天体的研究给托勒密带来了一种极大的欢乐。“我是凡人”,他写道:“我知道我终有一死,但是当我随着繁星的圆周轨道畅游的时候,我的双脚已经离开了大地……”

        托勒密相信地球是宇宙的中心,相信太阳、月亮、行星和恒星都绕着地球转。这是世界上最自然的一种观点。地球似乎是稳固不动的,而我们却看到天体天天在升落。世界各地的人们迅速地接受了地心说。开普勒写道:“因此,人的理智在未经指点以前不可能不认为地球是一个天穹覆盖着的大房屋;这个房屋静止不动,小小的太阳在屋里往返运动着,就像鸟儿在空中徘徊一样。”但是我们如何解释行星的视运动呢?例如火星,人们在托勒密时代前几千年就已经知道它的运动了(古埃及人给火星的一个称号是 Sekded-ef em Rhetkhet,意思是“倒退者”显然是指它的视逆行或视环行)。

        托勒密制造的行星运动模型可以由一个小机械作为代表,它跟托勒密时代那些作用相似的机械差不多③。问题是要能够测定行星在“屋顶上”的“实际”运动,然后才能够精确地再现行星在“屋内”的视运动。

        托勒密想象行星绕着地球转的时候是附着在完全透明的球体上,但是它们不是直接附在球体上,而是通过一种离心轮间接附在球体上。球体转动的时候带动了小轮子,我们从地球上看到火星的环行就是这个道理。这个模型可以相当准确地预测行星的运动,这在托勒密时代,甚至在后来的几个世纪里,已经是够精确的了。

        因为托勒密在中世纪把天球想象成是由水晶玻璃构成的,我们现在还在谈论球体音乐和七重天(有月亮、水星、金星、太阳、火星、木星和土星的“天”,还有恒星的“天”)。因为地球是宇宙的中心,造物主随地球上的事件而转移,天体被认为完全是根据超自然的原理建造的,因此没有什么必要观测天文。在中世纪欧洲教会的支持下,托勒密的模型妨碍天文学的发展达 1000年之久。最后,在 1543年,波兰天主教教士哥白尼发表了一个完全不同的假说来解释行星的视运动。这个理论最主要的特征是大胆地提出太阳,而非地球,才是宇宙的中心。地球被降级为行星之一,它是靠近太阳的第三个行星,不断地进行着标准的圆周运动(托勒密曾经考虑过日心模型,但立即否定掉了,他认为根据亚里士多德的物理学,所谓地球的激烈旋转运动是不符合实际观察的)。

        在托勒密的地心说中,称为本轮的小球体带着行星,附在转动的大球体上转动。这样,从远方的星球看来,转动过程显然呈逆行状。

        在哥白尼的日心说中,地球和其他的行星沿环形轨道绕太阳公转。在地球运转到火星前方时,从远方的星球看来,火星的转动显然呈逆行状。

        在解释行星的视运动时,这个假说至少跟托勒密的天球说同样有效,但是它触怒了许多人。1616年,天主教会将哥白尼的论著列为禁书,直到最后才被地方教会书刊审查员“纠正”,于1835年解放出来。④马丁·路德说他是“一个星占学暴发户……这个傻瓜想要推翻整个天文学,但是《圣经》告诉我们,耶和华命令太阳静止不动,而不是命令地球静止不动。”有些赞佩哥白尼的人甚至说他并不真正相信日心说,他提出这个理论只是为了计算行星运动的方便。

        两种宇宙观(地心说和日心说)之间的划时代的对抗在16世纪和17世纪的时候达到了高潮,这体现在一个像托勒密那样既是星占学家又是天文学家的人身上,他处在人类的思想被禁铜的时代,处在宗教一二千年前的观点被认为比在当时的技术条件下的发现更为可靠的时代,处在离经叛道——在神秘的神学问题上背离两种主要教派(天主教和新教)——受辱、受罚、受流放、受折磨或受处决的时代。天国里有天使、魔鬼,还有转动透明球体的圣手。科学不认为自然现象受物理法则的支配,但是这个孤军奋战的斗士却为现代科学革命点燃了火把。

        开普勒于1571年生于德国,从小就被送到莫尔布朗镇的新教神学校去学做牧师。那个学校就像新兵集训中心一样,专门训练年轻人用神学作为武器来进攻罗马天主教的堡垒。开普勒顽强,有才智,很有主见。他在荒凉的莫尔布朗呆了两年,没有一个朋友,性格变得孤独、怪僻。他自以为主在上帝的眼里是一个微不足道的人,终日仟悔自己那些并不比旁人更为丑恶的罪过,丧失了超度的希望。

        但是他并没有遭到天罚,上帝也没有要他赎罪。开普勒的上帝就是宇宙的创造力。这个孩子的好奇心使他变得无所畏惧。他希望能够研究世界末日的学说,他勇于想上帝之所想。这种危险的幻想开初只是一种想象,后来成了根深蒂固的顽念。神学校的一个自信的孩子渴望着将欧洲从中世纪思想的修道院里解脱出来。

        古典科学在1000多年前就已经被镇压了,但是在中世纪后期。阿拉伯学者保留下来的东西开始慢慢地潜入欧洲的教程。在莫尔布朗,开普勒知道古典科学已经在复苏。他除了学习神学之外,还学习希腊语和拉丁语,学习音乐和数学。他觉得他从欧几里得的几何学里瞥见了一个完美的形象,悟出了宇宙的荣耀。他后来写道:“几何学存在于创世之前,它与神道永远并存……几何学向上帝提供了创世的模型……几何学就是上帝本人。”

        虽然开普勒过着隐居的生活,并且全神贯注地研究数学,不完美的外界必然影响性格的形成。对那些在饥荒、瘟疫和你死我活的教条冲突中无能为力的人来说,迷信是最方便的灵丹妙药。许多人认为星星是惟一可靠的东西,古星占学的观念就是在充满恐怖的欧洲后院和客栈里发达起来的。开普勒对星占学的态度始终是不明确的,他怀疑在日常生活的表面混乱当中是否隐藏着规律性。如果天地万物是由上帝的能工巧手制作的话,是不是我们就不能够进行仔细的审查呢?难道天地万物不就是神道和谐的表现吗?这本天书在1000多年之后才找到一个读者。

        1589年,开普勒离开莫尔布朗到图宾金的那所名牌大学为牧师搞研究工作,他感到这是一个很大的解脱。在时代才华的激流里,他的天才立即受到老师的赏识。其中一个老师向这个年轻人介绍了哥白尼假说的奥秘。日心说与开普勒的宗教观发生了共鸣,他热情地接受了这种理论。太阳就是上帝的象征,其余的一切都绕着太阳转。在他被委任为牧师之前,有人想聘请他从事非教会的工作。也许是因为他觉得自己不能胜任教会的工作,所以他终于接受了聘请。他被派往奥地利的格拉茨中学教学,没多久他就开始准备编写天文和气象年鉴,并且开始用占星术算命。“上帝为每一只动物提供生计,”他写道,“对天文学家来说,他所提供的生计就是星占学。”

        开普勒是一个卓越的思想家,出色的写作家,但是在课堂上却是一个拙劣的教师。他言词含糊,讲课离题,学生们往往感到莫明其妙。他在格拉茨的第一年只有几个学生听他讲课,第二年就没有人听他的了。联想和猜测在他的内心世界喧嚣不止,占据了他的整个心思。在一个愉快夏天的下午,在那没完没了的讲课过程当中,他突然得到了一个启示,这个启示从根本上改变了未来的天文学。他很可能话讲到一半突然停了下来,他的那些漫不经心的学生正渴望着放学,我想他们是不会注意到这个历史时刻的。

        在开普勒时代,人们只知道6个行星:水星、金星、地球、火星、木星和土星。为什么只有6个?开普勒感到疑惑。为什么不是20个,或者100个呢?为什么这些行星在哥白尼所推断的轨道之间有空隙呢?以前从来没有人提出过这样的问题。当时知道有5种规则的(即理论上的)立体,它们的边是规则的多边形,正如毕达格拉斯时代之后的希腊数学家所知道的那样。开普勒认为这两个数字是有联系的,之所以有6个行星是因为只有5个规则的立体,这些立体相互内接(即一个套一个),表明了各个行星与太阳的距离。通过这些理想的形体,他相信他已经找到了肉眼看不见的支撑这6个行星的结构。他把他所得到的启示称为“宇宙奥秘”。毕达格拉斯的立体与行星的排列位置只能有一个解释:神之手就是几何学家。

        毕达哥拉斯和柏拉图的5种完美的立体

        开普勒以为自己罪孽深重,可是神却让他做出这个伟大的发现,他感到十分惊奇。他向沃尔坦堡的君主提议拨出研究金,并主动要求监督建造他所提出的内接立体模型。他说,这样人们就能够观赏神圣的几何之美妙。他还说,这个模型可以用银和宝石制成,偶尔还可以用作君主的圣餐杯。沃尔坦堡的君主否决了他的建议,请他先用纸造一个比较便宜的模型。他随即开始试制,他说:“我从这个发现所得到的极大乐趣是语言所不能表达的……不管计算多么困难,我决不回避,我夜以继日地演算,直到弄清楚我的假说是否符合哥白尼的轨道为止,或者直到弄清楚我是否空高兴了一场为止。”但是不管他如何努力,立体和行星的轨道总是不太一致。然而,因为这是一个伟大而深刻的理论,他相信一定是观测的错误——这是科学史上许多其他理论家在观测结果不肯帮忙的时候所得出的结论。当时世界上只有一个人能够比较准确地观察到行星的视位,这个人是一个自愿要求流放国外的丹麦贵族,他接受了神圣罗马帝国鲁道夫二世的宫廷帝国数学家的职位,他的名字叫第谷·布拉赫。碰巧这时候他按照鲁道夫的建议邀请了在数学上享有盛名的开普勒到布拉格跟他合作。

        因为第谷是一个出身微贱的小地方的中学教员,除了几个数学家以外谁也不认识,所以开普勒对第谷的邀请犹豫不定。但是形势迫使他下了决心。1598年,即将来临的“30年战争”的预震把他吞没了。当地的天主教大公爵是一个坚定的教徒,他发誓:“宁可让国家荒废也不统治异教徒。”⑤新教徒未能掌握经济和政治的领导权,开普勒的学校被关闭,异教的经书。书籍和圣歌都被查禁。最后居民们被叫来一个一个地查问他们的宗教信仰,凡是不肯表白信奉罗马天主教的人都被罚缴纳收人的十分之一,并且驱逐出格拉茨,放逐国外,永远不得回还,违者格杀勿论。开普勒选择了流放,他说:“我还没有学会虚伪,我对信仰是严肃的,我不能玩弄信仰。”

        离开格拉茨之后,开普勒跟他的妻子和后来的女儿登上了前往布拉格的艰难行程。他的婚姻并不幸福。他的妻子患慢性病,又接连死了两个孩子,人们说她是一个愚蠢、阴沉、孤独和忧郁的女人。她对丈夫的工作一点也不理解,因为他出身于小乡绅,她看不起他那寒酸的职业。他时而劝诫她,时而不理她,“因为我的研究有时候令我无暇顾及别人。但是我汲取了教训,我学会耐心对待她,当我看到她对我的话耿耿于怀的时候,我宁可受点苦头也不再得罪她。”尽管如此,开普勒还是一心想着工作。

        他把第谷的领域想象为一个摆脱时代罪恶的避难所,想象为验证他的“宇宙奥秘”的地方。他渴望成为伟大的第谷的同事,因为后者在望远镜发明之前就致力于测量宇宙这部机器达35年之久,工作进行得有条不紊,测得的数据也很精确。但开普勒的愿望是不可能实现的。第谷本人好高骛远,脸上装着一只金鼻子,原来的鼻子在跟同学决斗相争谁是数学高手的时候被削掉了。他的周围都是一些咋咋呼呼的助手、马屁精、远房亲戚和各式各样的食客。他们无休止地狂欢,他们含沙射影、耍阴谋诡计,他们残忍地愚弄勤学好问的乡下人,所有这一切都使开普勒失望和伤心。他写道;“第谷……富贵无比,但是他不懂得怎么用钱。他的任何一件仪器的价值都比我的仪器和我的全部家产的总价值还高。”

        虽然开普勒急于见到第谷积累的天文资料,但是他所得到的只是点点滴滴的东西。“第谷不让我分享他的经验,他只是在吃饭或空闲的时候顺便提一下某个行星的远地点数字,或另一个行星的交点数据……第谷的观测数据最完善……他也有协作者,他所缺乏的是能够应用这些数据的建筑师。”第谷是当时最伟大的观测天才,开普勒则是最伟大的理论家。他们谁都知道自己一个人要全面地研究精密协调的宇宙系统是不可能的,他们也感到这是刻不容缓的工作。但是第谷还没有打算将自己毕生的研究成果奉送给一个比他年轻得多的潜在对手。由于某种原因,共同编著研究成果是不能接受的。现代科学——理论与观察的后代——的诞生在他们互不信任的悬崖上岌岌可危。在第谷临死前的18个月里,他们两人经常争吵,而后又言归于好。有一次,罗森堡男爵宴请第谷的时候,第谷喝了许多酒,但是他还是“礼貌第一,健康第二”,不愿当着男爵的面离开去解手,哪怕离开那么一会儿。后来因为拒绝接受节制饮食的劝告,第谷的尿道感染恶化了。临死的时候,第谷将他的观测记录遗赠给开普勒。“最后一天晚上,他神志昏迷,像作诗一样用微弱的声音一遍又一遍地说:‘别辜负我的一生……别辜负我的一生。’”

        第谷死后,开普勒——现在已经是新的最大的数学家了——终于想办法将观测记录拿到手,尽管第谷家里的人不肯交出来。哥白尼的数据未能证实他关于行星的轨迹与5种理论上的立体相接的猜想,第谷的数据也同样不能证实他的这个猜想。相当一段时间之后、由于发现了天王星、海王星和冥王星这3颗行星,他的“宇宙奥秘”才被完全推翻——没有新的理论上的立体可以测定这3颗行星跟太阳的距离。互相套接的毕达哥拉斯立体也容不得地球卫星的存在,伽利略发现的4颗木星卫星也使原来的猜想乱了套。但是开普勒非但没有泄气,他还希望发现更多的卫星,他很想知道每一个行星应该有多少卫星。他给伽利略写信说:“我立即开始思考为什么在没有推翻我的‘宇宙奥秘’的情况下会有更多的行星出现,根据‘宇宙奥秘’原理,欧几里得的5个规则立体容不得在太阳的周围有6个以上的行星……我完全相信木星周围的4个行星的存在,因此我希望通过望远镜,如果可能的话,比你更早发现火星周围有两个(按比例似乎应该如此),土星周围有6个或8个,水星和金星周围很可能各有一个。”火星周围的确有两个卫星,为了纪念他的猜测,人们今天把其中较大的那个卫星上的一个主要地质特征称为“开普勒脊”。但是他对土星、水星和金星的猜测完全错了,木星周围的卫星的数量也比伽利略所发现的多许多。我们至今仍然不知道为什么只有9个左右的行星,也不知道为什么它们跟太阳的相对距离是现在这个样子(见第八章)。

        第谷对火星和其他行星穿过星座的视运动观测了许多年,这些观测数据在望远镜发明前的最后几十年里算是最精确的了。开普勒以极大的热情来研究这些数据:地球和火星环绕太阳的什么样的真运动才能最准确地解释火星在空中的视运动(包括穿过背景星座的逆环行运动)?第谷曾经向开普勒介绍过火星,因为火星的视运动似乎是最不正常的,它的运行轨道似乎最不符合圆轨道。(针对那些对他的反复的计算可能感到厌烦的读者,他后来写道:“如果你对这个索然寡味的计算过程感到厌倦的话,请同情我这个至少进行过70次试验的人。”)

        毕达哥拉斯在公元前6世纪就假定行星是在做圆周运动,柏拉图、托勒密以及开普勒之前的所有基督教天文学家也假定行星是在做圆周运动。他们认为运行的轨道是一个“完美的”几何图形,他们还认为,为了免除世俗的“腐蚀”而高高挂在空中的行星在某种神秘的意义上也是“完美的”。伽利略、第谷和哥白尼都认为行星是在做均速圆周运动,哥白尼说过,其他的可能性使人“不寒而栗”,因为“这与用最佳的办法创造出来的东西是不相称的”。所以,开普勒在开始的时候就试图用地球和火星绕太阳做圆周运转的假想来解释观察到的现象。

        经过3年的运算,他以为他找到了火星的一个圆轨道的正确值,这些值与第谷的10个观测数据相匹配,误差不到2弧分。我们知道一度等于60弧分,从视平线到天顶则是一个90度的直角,因此几弧分是难以测量的,特别是在没有望远镜的情况下。这个误差是我们从地球上看到的整个月球的角直径的十五分之一。但是开普勒的狂喜很快就化为乌有,因为第谷的另外两个观测数据与开普勒的轨道不一致,误差达8弧分。开普勒写道:

        上帝赋于我们这样一个勤勉的观测者——第谷·布拉赫,他的观测证实计算误差8分;我们理所当然要从心里感激上帝的恩赐……假如我以为我可以忽视这8分的话,我就可以使我的假设暂时成立。但是,既然不容忽视,这8分向我们指明了彻底改革天文学的道路。

        圆轨道与真轨道之间的差别只能通过准确的测量和勇于承认事实来区分:“宇宙以协调匀称见美,但是调和必须合乎经验。”使开普勒感到震惊的是,他必须放弃圆轨道,怀疑对上帝这个几何学家的信仰。他说,清扫了圆周和螺旋天文学的马厩之后,他所剩下的“只是一车子的粪便”——类似卵形的扁圆。

        开普勒终于意识到他对圆周的迷恋是因为错觉而引起的。地球是一个行星——这一点哥白尼已经说过,现在开普勒十分清楚地认识到,遭到战争、瘟疫、饥荒和不幸所破坏的地球并不完美。开普勒是自古以来第一个提出行星是由像地球这样不完美的东西构成的物体。如果行星是不完美的,为什么它们的轨道就不能是不完美的呢?他尝试了各种卵形曲线,他不停地计算,有时候算错了(开始的时候反而把正确的答案当作错误的答案),几个月之后,正当他濒于绝望的时候,他尝试了椭圆公式(那是珀格的阿波尼厄斯在亚历山大图书馆首次整理的),结果与第谷的观测配合得很好。他后来写道:“我把自然的真理拒之门外,并把它赶走,但是它又偷偷地从后门溜进,装着若无其事的样子……呀,我真是个大傻瓜!”

        开普勒发现火星绕太阳运行的轨道不是圆形,而是椭圆形。其他行星的轨道椭率比火星的轨道椭率要小得多,因此假如第谷叫他研究金星运动的话,他可能永远也发现不了行星的真轨道。在这样的轨道里,太阳不是位于中心,而是偏移到椭圆的焦点上。当某一个行星运转到离太阳最近的位置时,它的速度就加快;当它运转到离太阳最远的位置时,它的速度就减慢。由于这种运动方式,我们说行星永远朝着太阳运动,但又永远到达不了太阳。开普勒的行星运动第一定律就是:行星在椭圆的轨道上运转,太阳位于椭圆的一个焦点上。

        做匀速圆周运动的时候,在相同的时间内所覆盖的圆弧角或圆弧部分相等,例如,在圆周上运行三分之二的距离所需要的时间是运行三分之一的距离所需要的时间的两倍。开普勒发现了椭圆轨道的一些不同之处:当行星沿着它的轨道运转的时候,它扫过了椭圆内的一小块扇形面积;当它接近太阳的时候,它在特定的时间内在轨道上划出一个大弧,但是那个弧所代表的面积并不很大,因为行星这个时候离太阳很近,当行星远离太阳的时候,它在相同的时间内所覆盖的弧就短得多,但是那个弧代表一个比较大的面积,因为行星这个时候离太阳比较远。开普勒发现不管椭率如何,上述这两个面积正好相等:瘦长的面积(表明行星远离太阳)和短阔的面积(此时行星接近太阳)正好相等。这就是开普勒行星运动第二定律:行星在单位时间内扫过的面积相等。

        开普勒第一定律:行星(P)在椭圆的轨道上运转,太阳(S)位于椭圆的一个焦点上开普勒第二定律:行星在单位时间内扫过的面积相等。从B到A、F到E和D到C的运行时间都一样BSA、FSE和DSC等深色部分的面积都相同

        开普勒的头两条定律看起来有点深奥和抽象:行星沿着椭圆轨道运转,在相同的时间内扫过相同的面积,这些定律又有什么用呢?圆周运动倒还容易理解。我们可能会把它当做数学上修修补补的东西,当做脱离现实生活的东西。但是正如我们自己(因为引力作用而附着在地球的表面上)飞越行星际空间一样,我们的行星就是遵循这些定律的。我们是按照开普勒首先发现的自然法则运动的。当我们把宇宙飞船送上行星的时候,当我们观测双星的时候,当我们考察遥远星系的运动的时候,我们发现整个宇宙都遵循开普勒定律。

        许多年之后,开普勒偶然发现了行星运动的第三个,也是他的最后一个定律,这个定律将各个行星的运动联系起来,正确地展示了太阳系的机制。他在一本名为《宇宙的和谐》的书里阐述了这个定律。开普勒是通过《和谐》这个词来理解许多东西的:行星运动的秩序与美妙,解释该运动的数学法则之存在(这种思想可以上溯到毕达哥拉斯),甚至在音乐意义上的和谐——“天球的和声”。其他行星的轨道跟水星和火星的轨道不一样,它们基本上是圆形的,因此我们即使在极精确的曲线图上也很难画出它们的真形。地球是我们的活动站台,我们在这个站台上观测在遥远星座背景上的其他行星的运动。内行星在它们的轨道上快速地运转着——这就是水星得名的原因:水星是天使。金星、地球和火星绕太阳运转的速度依次递减。外行星,譬如木星和土星,步态庄重,有如天王。

        开普勒第三定律(即和谐定律)指出,行星周期(行星绕轨道一周所需时间)的平方与其距离太阳的平均距离的立方成正比;行星离太阳越远,它的运转速度就越慢,但是根据准确的数学定律,p2 =a3 ,这里p代表行星绕太阳的运转周期(单位:年),a代表该行星离太阳的距离(单位:“天文单位”)。一个天文单位等于地球离太阳的距离,例如,木星离太阳是5个天文单位,因此 a3 =5 X 5 X 5=125。什么数自乘等于125呢?不是11吗?很接近。因此木星绕太阳运转一周的周期是11年。上述周期计算方法适用于任何行星、小行星和彗星。

        开普勒并不满足于从大自然推断出行星运动的法则,他努力追求某种更根本的内在原因——太阳对星球运动的影响。行星在接近太阳的时候速度逐渐加快,在离开太阳的时候速度逐渐减慢。遥远的行星仍然感受到太阳的影响,磁力也有一种遥感作用,因此开普勒令人吃惊地预示了万有引力的概念,认为行星运动的内在原因类似于磁力作用:

        我从事这项研究的目的是证明宇宙这部机器,与其说像一个非凡的有机体,不如说像一个类似时钟结构的装置……因为几乎各种形形色色的运动都是由一个非常简单的磁力所带动的,就像类似时钟机构的装置一样,一切运动都是由一个简单的重力引起的。

        开普勒第三定律,又称宇宙谐和律(即“行星公转周期的平方等于轨道半长轴的立方”——译注),准确地建立了行星轨道的体积与其绕太阳公转一周的关系。这个定律完全适用于开普勒身后多年才发现的天王星、海王星和冥王星。

        当然,磁力并不等于重力,但是开普勒这里所指出的创见是惊天动地的。他认为,适用于地球的量子物理原理也是支配宇宙的量子物理原理的基础。这是首次打破用神秘的观点来解释天体运动,这个见解使地球成了宇宙的一个省份。他说:“天文学是物理学的范畴之一。”开普勒处在历史的歧点,最后的一个科学星占学家成了第一个天体物理学家。

        开普勒不是说话谨慎的人,他这样评价他的发现:

        用这种交响乐的声音,人类可以在不到一小时内奏完永恒曲,可以细细地体验上帝——最高艺术家——的欢乐……我非常激动……决心已定。我正在写这本书,让现代人读也好,让后世人读也好,都无所谓。这本书可以等一个世纪才找到一个读者,上帝自已就等了6000年才找到见证人。

        开普勒认为,在这种交响乐里,每个行星的运转速度相当于当时流行的拉丁音阶上的某些音符,即1、2、3、4、5、6、7、i。他说,在天球的谐声里,地球的音符是 4和 3,地球不停地哼唱着4和3,这两个音符正好等于拉丁词“famine”(饥荒)。他还中肯地指出,用这个令人悲哀的词来描绘地球是最恰当不过的了。

        开普勒发现他的第三定律之后整整8天,导致“三十年战争”的事件在布拉格发生了。战争动乱使千百万人家破人亡。开普勒的命运也是如此,他的妻子和儿子死于军队所传染的流行病,他的皇家赞助人被废黜,他也因为在教义问题上固执己见而被开除路德教的教籍——开普勒再次沦为难民。这次冲突——天主教和新教都把它说成是神圣的战争——其实是那些贪婪的人利用宗教狂热争夺土地和权力的战争。过去,当交战双方的君主耗尽资财的时候,战争也就结束了,但现在,有组织的抢劫成了维持作战部队的手段。受蹂躏的欧洲人束手无策地看着一把一把的犁和修校的刀被打成剑和矛⑥。

        在乡下,妖风四起,谣言弥天,无权无势的人受尽了祸害。许多孤身老妇被控行巫,成了替罪羊。开普勒的母亲就是在深更半夜被人从衣柜里拉走的。在开普勒的家乡小镇韦尔德斯塔特,从1615-1629年,每年大约都有3个妇女被当做女巫而加以折磨和杀害。凯瑟琳娜·开普勒是个爱争论的老妇,

        事情的发生是因为开普勒写了一本科学小说来阐述和推广科学,这本书的书名叫做《梦》。他想象了一次月球旅行——那些太空旅行者站立在月球上,观察他们头顶上美丽的地球缓慢地旋转着。通过改变我们的观察角度,我们就可以理解宇宙的机理。在开普勒时代,反对地心说的主要原因之一是人们没有感觉到地球在运动。在《梦》这本书里,他尽力将地球自转的原理阐述得深入浅出,通俗易懂。他写道:“群众是通情达理的,……我要站在群众一边。因此,我十分耐心地向尽可能多的人解释。”(另一次,他在一封信中写道:“请不要让我单纯搞数学计算这种单调的工作,给我时间从事哲理的研究吧,这是我惟一的乐趣。”⑦)

        随着望远镜的发明,开普勒的“月球地理学”的设想正在成为现实。他在《梦》中将月球描绘成布满山峦峡谷和孔洞(即伽利略不久前用第一架天文望远镜发现的月球上的环形山)。他还想象月球上有人居住着,他们已经完全适应了当地的险恶环境。他描述了从月面上观察到的地球缓慢旋转的情形,并想象我们行星上的大陆和海洋会引起像“月球上的人”那样的联想——把在直布罗陀海峡的西班牙南端与北非的相互靠近想象成“一个穿着柔软的衣服的少女正准备跟她的情人接吻”。但是,我觉得他们更像是在“碰鼻子”。

        根据月亮上日夜的长短,开普勒认为月球上气候严酷,温度变化悬殊。事实证明,他的看法是完全正确的。当然;他并不是事事正确。例如,他相信月球周围有大气,月球上有海洋,也有人居住。特别奇怪的是他关于月球上的环形山的起源的猜想。他说,这些环形山使月球看上去“像小孩子出天花的脸”。他认为,环形山是凹下去而不是突出来的。他这个观点也是正确的。他从观察中发现许多环形山四周突出,中心耸立着一个山峰,但是他认为这些规则的环形说明了一种级数,只有智能生物的存在才能解释这种现象。他设想到从空中落下来的大岩石会引起月球的局部爆发,爆发物向四周匀称地散开,结果形成了圆形的坑穴,这就是月球和其他类地行星上许多环形山和坑穴的起源。因此他推断:“月球上存在着某种能够灵巧地建造那些回洞的人类。这些人类为数一定很多,他们一个接一个地建造凹洞以满足需要。‘针对’这样的大建筑工程是不可能的”的观点,开普勒列举埃及的金宇塔和中国的长城(这些东西现在我们可以从环绕地球的轨道上看到)加以反驳。开普勒的思想核心是,几何级数反映了潜在的智能。他对月球环形山的论述预示了一场关于火星运河的论战(第五章)。通过观测的方法搜寻地球外的生命在发明望远镜的年代开始了,这是拥有最伟大的理论家的时代,这是举世瞩目的时代。

        《梦》中有些部分显然是作者的自述,例如,主人公拜访了第谷,他的双亲是卖药的,他的母亲与妖魔鬼怪有交往,其中一个魔鬼最后还向她提供到月球旅行的工具。《梦》向我们清楚地表明(虽然它没有向开普勒同时代的人表明):“应该容许人们在梦中偶然想象到知觉世界所不存在的东西。”科幻小说在“三十年战争”时代还是一种新生事物,因此开普勒的书被当做为指控他母亲为女巫的证据。

        正当开普勒面临着严重的个人问题时,他赶到沃坦堡去看望母亲。他那74岁的老母亲被拘禁在新教区地牢里,还受到严刑的威胁(枷利略在天主教的地牢里也受到了同样的威胁)。作为一个科学家,他很自然地立即就着手调查指控他母亲行巫的原因,其中包括调查沃坦堡人将身体上的小毛病都归咎于她的符咒的事件。他的调查是成功的,跟他的一生一样,他的调查是理性对迷信的胜利。他的母亲被放逐,永远不得返回沃坦堡,否则处以死刑。正是由于开普勒勇于自卫,沃坦堡的君主。才定下了不得在证据不足的情况下任意指控人们行巫的法令。

        战争的动乱使开普勒基本上失去了经济来源,他后来的生活很不安定,到处恳求帮助。他给沃伦斯坦君主算命,就像他曾经给鲁道夫二世算过命那样,最后在沃伦斯坦控制的一个西里西亚的市镇——萨根——度过了晚年。他亲自写下的墓志铭是这样的:“我过去测量天空,现在测量的则是阴影。我的精神跟天空密不可分,我的身体却在地上安息。”但是,“三十年战争”把它的坟墓湮没了,如果今天要为他追求科学的勇气树碑立传的话,碑文可以这样写:“他追求的是严酷的真理而不是美妙的幻想。”

        开普勒相信,总有一天会有“宇宙帆船乘着天风”在空中航行,船上满载“对浩瀚的太空无所畏惧的探索者”。今天,那些探索者无论是人类还是机器人,在广袤无垠的太空中用来准确无误地导航的,正是开普勒经过终身奋斗所发现的行星运动三大定律。

        开普勒为了解行星的运动、为探索宇宙和谐的原理而奋斗终生,他的研究工作在他死后36年由牛顿推向顶点。牛顿生于1642年圣诞节,他母亲后来告诉他,他出生的时候只有一点点大,可以装进一个容量为一夸脱的杯子。牛顿体弱多病,感到缺少家庭的温暖,脾气暴躁,不爱交际,当了一辈子童男,但他却可能是最空前伟大的科学天才。

        牛顿从小就急欲解答虚幻的问题,诸如:光是一种物质还是一种偶然的事情?引力如何越过真空而起作用?等等。他很早就确信,基督教对“三位一体”的传统观念是对《圣经》的一种误解。他的传记作者约翰·梅纳德。凯恩勒写道:

        他其实是梅莫奈兹学派的犹太教—神论者,他之所以得出这个结论,不是根据推理或猜测,而是完全根据对古代权威的理解。他相信天书并没有为伪造的“三位一体”论提供证据,天神只有上帝一个。但这是牛顿终身竭力隐瞒的可怕的秘密。

        和开普勒一样,他免不了要受到当时迷信思想的影响,他也与神秘主义交锋过多次。事实上,牛顿思想的成熟主要归因于理性主义与神秘主义的冲突。1663年,当20岁的时候,出于好奇,他在斯特布里奇市集买了一本星占学的书,他想“看看书里到底说些什么”。当读到书中谈到的幻像时,他就读不下去了,因为他对三角学一无所知。因此,他又买了一本三角学的书。但是没多久,他发现自己不懂几何学,结果又找了一本欧几里得著的《几何学初步》开始读起来。两年之后,他发明了微分学。

        做学生的时候,牛顿就被光迷住了,被太阳吸引住了。他不顾危险,经常目不转睛地看着镜子里太阳的映像:

        几小时之后我的双眼无需望着任何明亮的东西,但是我还是看到太阳在我的面前。我不敢写字,也不敢看书,我把自己关在房间里让眼睛恢复过来,我整整三天呆在黑屋里,想尽一切办法转移我对太阳的想象,因为一想到太阳,我立即就会看到它的图像,虽然我是在黑暗里。

        1666年,牛顿23岁,在剑桥大学读书。这时突然爆发了一场瘟疫,他只好回到与世隔绝的伍尔斯索普村(他出生的地方)闲居,在那里他住了一年。他专心于发明微分学和积分学,对光的性质有重大发现,并为万有引力理论打下了基础。在物理学的历史上,像这样意义重大的一年,只有1905年——爱因斯坦的“奇迹年”可以和它相比。当问他是怎样获得.这些惊人的发现时,牛顿笼统地回答说:“通过思考。”他的成就就是如此之重大,以致他剑桥的老师文萨克·巴罗在这个年轻人回校五年之后辞去了数学教授的职位,让他来接班。

        牛顿45岁左右的时候,他的佣人是这样描述他的:

        我从来没有看到他娱乐或消遣过,他既不乘车出去兜风,也不散步,不玩滚木球游戏或做其他运动,以为凡是不用在学习上的时间都是浪费。他学习抓得很紧,很少离开自己的房间,除非是去讲课……很少有人听他的课,更少有人听得懂,由于听课的人少,他实际上经常是对着墙壁朗读。

        开普勒和牛顿的学生绝没有想到他们的损失会有多大。

        牛顿发现了惯性定律——运动着的物体在没有外力作用的情况下继续做直线运动。牛顿认为,如果没有一种力量不断地改变月球的运动方向,使它的轨道成为近圆形,并把它往地球的方向上拉,那么,月球就会沿着与轨道相切的方向直线飞离轨道。牛顿把这种力量叫做重力,并相信它在远距离的地方起作用。虽然在地球和月球之间没有什么东西把它们联系起来,但是地球却不断地把月球往我们这边拉。牛顿应用开普勒第三定律,从数学的角度推断引力的性质。⑧他证明,将苹果往地球上拉的力就是使月球沿着它的轨道运转的力,也就是使当时刚发现的木星的卫星绕着那个遥远的行星运转的力。

        自从开天辟地以来,物体都是往下掉的。人类有史以来都相信月亮绕着地球转。牛顿首先发现上述这两种现象都是由同一种力引起的,这就是“牛顿万有引力”中“万有”的含意所在。在宇宙中,这个引力定律到处都适用。

        这是一个平方反比法则,即引力与距离的平方成反比。如果两个运动物体之间的距离增加一倍,它们之间的引力则只有原来的四分之一,如果它们之间的距离是原来的10倍,它们之间的引力就比原来的引力小了100倍(102 = 100)。显然,引力必须在某种程度上是逆向的,即随着距离的增加而减少。假如引力是正向的,即随着距离的增加而增加,最遥远的物体就会受到最大的引力。那么我想,宇宙间的所有物质很快就会形成一个大宇宙团。不,引力一定要随着距离的增加而减少。这就是为什么彗星或行星在远离太阳时转得慢,在靠近太阳时转得快的原因——离太阳越远,它们所感受的引力越小。

        开普勒的行星运动三定律都可以从牛顿原理推导出来。开普勒定律是经验的产物,是根据第谷的仔细观测结果推断的,牛顿定律则是理论性的,是很简单的数学概念,根据这种概念,我们最终可以推导出第谷观测的一切数据。牛顿对自己的定律引以为豪,他在《自然哲学的数学原理》一书中写道:“我在此展示了宇宙的机理。”

        后来,牛顿担任了伦敦皇家学会会长(这是一个科学家的团体),还当了造币厂厂长,他将全部精力投入到查禁伪币的工作中。他那忧郁和孤独的性格又开始作怪,他决心放弃驱使他与其他科学家争论的科研工作(争论的重点是优先权的问题)。为此,有人还说他得了相当于17世纪的“精神崩溃”症。然而,牛顿继续他在炼金术与化学之间的边缘科学的毕生研究。最近有证据表明,他当时的疾病与其说是精神病,不如说是重金属中毒——长期吸入微量的砷和汞所引起的金属中毒。当时的化学家以嗅觉为分析手段是司空见惯的。

        但是,他那惊人的智力经久不衰。1696年,瑞士数学家约翰·伯努利要求他的同事们解决一个悬而未决的“捷线问题”:在只受到重力作用的情况下,物体怎样沿着不同高度的两点之间的一条曲线下降最快。伯努利起先规定半年为最后期限,但是后来应莱布尼茨的要求(莱布尼茨是当时的主要学者之一,跟牛顿同时发明了微分学和积分学),将最后期限延长到一年半。1697年1月4日下午4点,牛顿收到这个要求。在他次日早晨上班之前,他又发明了一个崭新的数学分支——变分学。他用变分学的原理解决捷线问题,并将答案寄了出去。他的答案出版了,但是根据牛顿的请求,没有署名。然而,该答案所显示出来的才华和创见却暴露了它的作者。当伯努利见到该答案时,他说:“真是文如其人。”牛顿当年55岁。

        在晚年的时候,他继承了古代历史学家梅内托、斯特拉波和埃拉托斯尼的传统,主要从事校正古文明年代学的工作。在他身后发表的最后一本著作——《古代王国年代学修正本》里,我们发现他对许多历史事件进行了校订,复制了一幅所罗门圣殿建筑图;大胆地提出“北半球星座都是根据希腊故事《伊阿宋》和《亚尔古英雄传》里的人物、人工制品和事件命名的观点;坚持认为一切文明世界的神——只有牛顿自己心目中的神是一个例外——不过是后人加以神化的古代国王和英雄罢了。

        开普勒和牛顿的发现代表了人类历史上的转折——发现十分简单的数学定律渗透到大自然的各个角落;适用于地球上的规则,也同样适用于宇宙;我们的思维方式与宇宙运行方式之间会产生共鸣。他们非常重视观测资料的精确性,他们预测行星运动的准确性雄辩地证明:人类完全能够深刻地了解宇宙。我们地球的现代文明、我们世界观的形成,以及我们现在对宇宙的探索,与他们的洞察力是密不可分的。

        牛顿对自己的发现持谨慎态度,他对科学界的同事们是毫不让步的。在他发现负二次方定律之后,根本没有想等一二十年之后把它发表出来。但是在辽阔无垠、错综复杂的大自然面前,他跟托勒密和开普勒一样,既高兴又谦虚。他在临死之前写道:“我不知道在别人看来我是什么样的。但在我自己看来,我不过像是在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。”

        __________
         ①“月经(menstrual)”这个词的词根意思是“月亮(Moon)”。

        ②对星占学及其有关学说表示怀疑并不是什么新鲜事,也不是西方所独有的。例如,1332年《徒然草》的作者吉田兼好在《懒散论集》中写道:(日本)阴阳说对“红舌日”这个问题说不出个道理来。以往人们并不回避红舌日,但是近来——我不知道这个风俗从何而来——人们开始说什么“红舌日开始的事业是不会有好结果的”,或者“红舌日说的话是白话,做的事是白做:你得而复失,你的计划落空。”简直是胡说八道!假如我们计算一下特意挑选“吉日”开始而又没有结果的事情,恐怕其数量之多不亚于在红舌日开始的事情。

        ③早四个世纪之前,阿基米德就制造了一个这样的装置,并由罗马的西塞罗检查和绘制成图。这是马塞勒斯将军运送到罗马的。在征服赛拉丘斯期间,马塞勒斯的一个士兵违抗命令,无缘无故地将这个年逾古稀的科学家杀死。

        ④在最近一次清查几乎所有哥白尼16世纪的著作时,欧文·金杰里奇发现当时的书刊审查很不认真,只有60%的意大利文版本被“纠正”,伊比利亚版本没有一本被纠正。

        ⑤这样的话在欧洲中世纪或欧洲基督教改革运动的时候决不是最偏激者所言。在包围一个主要是艾伯延塞斯人居住的城市时,有人问多米戈德古斯曼(后来以圣多米尼克闻名)如何区别信徒和异教徒时,据说他回答道:“把他们全部杀光,上帝自有判断,”

        ⑥我们现在还可以在格拉茨的军械库里看到一些展品。结果得罪了地方上的贵族。她卖安眠药,可能还卖幻觉药,就像现代墨西哥江湖医生那样。可怜的开普勒相信,他本人才是母亲被抓走的原因。

        ⑦像开普勒一样,第谷没有敌视星占学,但是他把自己秘密的占星术与当时流行的各种占星术严格地区别开来,他认为后者助长了迷信。他在1598年出版的《天文机理新编》一书中指出,如果星位图能够得到改善的话,星占学“其实比我们所认为的更可靠”。第谷写道:“我从23岁就开始致力于炼金术和天国的研究。”但是他觉得,这两种伪科学里的秘诀对大众来说太危险了(虽然他认为操纵在那些他需要获得其支持的君主和国王的手里是很安全的)。第谷继承了那些相信只有他们和俗、教权才能委以秘诀的科学家长期的、真正危险的传统。他写道:“将这些东西公之于众是没有用的,也是不应该的。”相反地,开普勒则到学校讲授天文学,经常自己掏钱大量出版刊物,撰写科学小说(当然主要不是写给他的同行看的)。用现代的观点看,他不可能成为受人欢迎的科学小说家,但是第谷和开普勒这两个同代人态度的差异却是说明问题的。

        ⑧遗憾的是,牛顿在他的杰作(自然哲学的数学原理》一书中没有提到开普勒。但是在1666年给埃德蒙·哈雷的一封信中,他谈到了他的万有引力定律:“我可以肯定地说,这个定律是我大约20年前根据开普勒的理论推导出来的。”

        第四章 天堂与地狱

        九个世界仍在我的记忆之中。 斯诺尔里·斯特勒逊编纂的《冰岛散文集》

        我——宇宙的破坏者,罪该万死。《神曲》

        天堂和地狱的大门毗连在一起,没有什么两样。 尼克斯·卡赞扎基斯《基督的最后引诱》

        地球是个可爱而又平静(多少可以这么说)的地方,万物在变化,但变化的过程却是缓慢的。我们可能平安地过一辈子而从未经历过比暴风雨更猛烈的自然灾害,因此,我们总是自鸣得意,逍遥自在,漠不关心。但是大自然的历史记载却是很清楚的。宇宙曾经遭到破坏,我们人类甚至还以“善于有意无意地给自己施加灾害”而著称。其他的行星都把自己过去的历史保留下来,有充分的证据表明它们曾经经历过大灾难。一切都只是时间迟早的问题。在100年内不可思议的事情,1亿年之后可能就是不可避免的了。即使在地球上,即使在我们自己的国家里,奇怪的自然现象也发生过。
         

        1908年6月30日清晨,在西伯利亚中部,人们看见一个巨大的火球从天空划过。火球着地的时候,引起了一场大爆炸,这场大爆炸扫平了大约2000平方公里的森林,烧毁了撞击地点附近成千上万的树木,它所引起的大气冲击波环绕地球两圈。两天之后,大气里仍然有大量的尘埃,以至于在1万公里以外的伦敦市街道上,人们可以在晚上靠尘埃的漫反射光看报纸。

        沙俄政府不会为这样的区区小事而去调查的,而且事情毕竟是发生在偏僻落后的西伯利亚通古斯人居住的地方。十月革命10年之后才有一支考察队到那里考察现场和采访目击者,以下是考察队带回来的一些采访记录。

        清晨,当大家还在帐篷里睡觉的时候,整个帐篷连人一起被吹到空中。落地的时候,全家都受了轻伤,而阿库莉娜和伊凡失去了知觉。恢复知觉后,他们听到许多嘈杂的声音,看到森林在他们四周炽烈地燃烧着,大部分森林都毁了。

        早饭时间,我正坐在范诺范拉贸易栈的门廊里,眼睛望着北方。我刚举起斧子要箍桶的时候,突然间……天空劈成两半,北边森林的上空好像燃起了一片烈火。这时,我感到一阵火热,好像我的衬衫已经着火了……我正要把衣服脱掉的时候,天空中轰隆一声炸开了。我从门廊里被抛到约3沙绳(俄丈)远的地方,暂时失去了知觉。我的妻子跑出来把我扶到屋里。接着便听到一声巨响,好像是石头从空中降落的声音,又好像是炮声,整个大地都抖动起来。我躺在地上,把头盖住,因为我怕头被石头打伤。正当天空裂开的时候,一阵热风(犹如大地里吹出来的热风)从北边往我们的屋子吹过来,在地上留下了痕迹……

        当我坐在犁旁吃早饭的时候,我突然听到爆炸声,好像是炮声。我的马跪到地上。北边森林的上空火舌冲天而起……接着,我看到杉树林被风刮得倒向一边,我还以为是飓风。我用双手抓住犁,不让风刮走。风很猛,地上的土都被刮走了。飓风从安格拉里驱起了一道水墙,我看得清清楚楚的,因为我的地在山坡上。

        呼啸声把马吓得狂奔起来,拖着犁到处乱跑,有的马却吓瘫了。

        听到第一声和第二声爆炸之后,木匠们都吓呆了,他们用手在自己胸前划十字。当第三声爆炸传来的时候,他们从屋顶上倒摔到碎木屑上。有几个人惊慌失措,我叫他们冷静下来,并安慰他们。我们都停了工回到村子里去。村民们惊恐万状,一群一群地聚集在街道上,谈论着发生的事情。

        我当时正在田里……刚刚给一匹马套上耙,正要套另一匹时,突然听到右边一声好像爆破的声音。我立即回头,看见一个燃烧着的物体从空中飞过,那物体头部比尾部宽得多,色彩好比白昼里的火光。这个燃烧着的物体比太阳大得多,但是没有太阳那么明亮,所以可以用肉眼去看。火光后面拖着一长串的东西,看上去像尘埃,一阵阵地往外喷,此外,火焰还放出蓝色的流光……火焰一消失就听到比炮声更猛烈的爆炸声,可以感觉到土地在震颤,木屋里的玻璃窗都被震碎了。

        我当时正在卡恩河边洗羊毛,突然听到一声像惊鸟鼓翅的嘈杂声……河水猛涨。随后便是一声巨响,一个工人……摔到河里。

        这个著名的事件叫做通古斯事件。有些科学家认为,这个事件是由一片急剧落下的反物质引起的。反物质与地球的寻常物质接触之后就湮没,变成伽马射线的闪光。但是在撞击地点没有发现任何放射现象可以证实这种解释。另一些科学家认为,一定有一个很小的黑洞由西伯利亚这一端进人并穿透地球,从另一端钻出。但是从大气冲击波的记录里并没有发现当天晚些时候有什么东西从北大西洋里冲出来。这也许是某个难以想象的地球外的高级文明社会的宇宙飞船出了严重的故障,结果撞到一个暗行星的偏僻地区。可是在撞击现场没有找到这些飞船的痕迹。上面这些已经提出来的观点,其中有些还是很有道理的。但是它们都没有足够的证据。通古斯事件的主要事实是:大爆炸,大冲击波,森林大火。可是在现场没有发现撞击环形山。所有这些事实似乎只能有一种解释:1908年一个彗星的一个碎片撞击了地球。

        在行星际广阔的空洞里有许多物体,有些是岩石的,有些是金属的,有些是冰的,有些含有部分的有机分子。这些物体从尘埃颗粒到像尼加拉瓜或不丹那么大的不规则的石块都有。有时候,偶然间在途中出现一个行星。通古斯事件很可能是由一个彗星冰块引起的。这个冰块长约100米(相当于一个足球场那么大),重100万吨,飞行速度约每秒30公里(每小时7万英里)。

        假如这样的撞击事件发生在今天的话,人们可能会以为是核爆炸(特别是在目前的这种惊恐之中)。彗星的撞击和火球就像百万吨级的核爆炸。还带有蘑菇云,但有两个例外,没有伽马射线,也没有放射性微粒回降。一个罕见的但又是自然的事件——一个相当大的彗星碎片的撞击——可能引起一场核战争吗?一个奇怪的剧本:一个小彗星撞击了地球(就像千百万其他彗星已经撞击过地球那样),我们的文明社会的反应则是立即毁灭自己。我们应该进一步研究彗星及其撞击和可能带来的灾难。例如,1979年9月22日,一颗美国维拉卫星在南大西洋和西印度洋附近探测到一种强烈的双闪光,起初以为那是南非或以色列秘密进行的低量(2000万吨,相当于广岛原子弹的能量的六分之一)核武器试验所引起的。当时的国际政治形势正处于紧张状态。但是如果这种闪光是由小行星或彗星碎片的撞击所引起的,那又有什么关系呢?既然在发光地区的空中飞行之中没有发现大气里有异常的放射现象。上述可能性是完全存在的。同时也说明,在核武器时代,不改善我们对来自宇宙空间的撞击的监测系统是很危险的。

        彗星主要是由冰构成的——水(H2 O)冰,还有少量的甲烷(CH4 )冰和一些氨(NH3 )冰。在撞击地球的大气层时,一个中等大小的彗星碎片会产生一个白炽的火球和一种巨大的冲击波。火球会烧毁树木,冲击波会扫平森林,它的声音还会波及全球。但是这样的彗星不太可能在地上撞出一个环形山。彗星上的冰块在进人大气层的时候全部融化了,因此不会留下灵般地出现,这种现象令人不安地向人们关于宇宙是万古不变、井然有序这一观念进行挑战。如果那条天天随着星星起落的壮丽的乳白色光带是无缘无故地出现在那里,与人间世事毫无关系,那简直是不可思议的。因此出现了这样的观点:彗星是灾难的预兆,是神遣的预兆——它们预示了帝王的终日,王国的崩溃。对于彗星,巴比伦人认为是天髯,希腊人认为是垂发,阿拉伯人认为是燃烧的剑。在托勒密时代,人们根据彗星的形状把它们分类为“梁”、“喇叭”。“坛子”等。托勒密认为彗星给人类带来战争、炎热的气候和“动乱”。中世纪的一些彗星图看上去像未探明的飞行的十字架。一个名叫安德烈亚斯·西利奇厄斯的马格迪堡路德教主管人(即主教),在1578年发表了一篇题为“新彗星的科学启示”的文章。他在文章中。提出了一个独特的观点,他说彗星是“人类罪恶的浓烟,每天、每时、每刻都在升腾,它在上帝面前丑态百出、胆战心惊,逐渐地由浓烟形成长着卷发梳着辫子的彗星,最后被天国最高法官的怒火烧着了”。但是另一些人反驳说,如果彗星是罪恶的浓烟的话,天空势必乌烟滚滚。

        关于哈雷彗星(或任何其他彗星)的最古老的记录是在中国的《淮南子》这本书里,该星于公元前1057年武王伐纣时出现。公元66年哈雷彗星向地球靠近,这是约瑟夫关于“耶路撒冷上空整整一年悬挂着一把剑”的记载的最好解释。1066年,诺曼底人又目睹了哈雷彗星,他们认为,既然彗星预兆某个王国的崩溃,这次哈雷彗星的出现,助长并在某种意义上促成了“征服者威廉”对英格兰的侵略。当时的报纸《贝尤克斯绣帷报》对该彗星曾做过及时的报导。1301年,乔托——现代写实主义绘画的创立者之———目击了哈雷彗星再次出现,并且把它画到算命的天宫图里。1466年的大彗星——哈雷彗星星又一次再现——引起了基督教欧洲的恐慌,基督教徒们担心上帝可能站在土耳其人一边(土耳其人刚刚占领了君士坦丁堡),所以才派遣彗星下来。

        16世纪和17世纪的主要天文学家都被彗星迷住了,即使牛顿对彗星也有点茫然。开普勒说彗星在空中飞驰“就像鱼类在海里畅游一样”。但是被阳光驱散了;因为彗尾总是朝着背向太阳的方向、戴维·休漠在许多场合里是一个坚定的理性主义者,但是他的下述观点却不很严肃:彗星是行星系的生殖细胞——卵子或精子。行星是一种星际性交的产物。牛顿读大学的时候(在他发明反射望远镜之前),经常连续数夜不眠,用肉眼搜索空中的彗星,最后终于累倒了。继第谷和开普勒之后,牛顿断定,从地球上看到的彗星不在我们的大气层范围内运行(亚里士多德和其他一些人也是这样认为的),我们看到的彗星其实是在比月球还要远的地方,但是比土星近一些。彗星跟行星一样,是通过反射太阳光发亮的。“那些把彗星调往遥远的恒星的人大错而特错,因为如果是那样的话,彗星就得不到太阳光,就像我们太阳系的行星得不到恒星的光一样。”他证实了彗星的运行轨道跟行星一样也是椭圆形的;“彗星是一种在非常扁圆的轨道上绕着太阳运转的行星。”这种将彗星非神秘化的观点,这种对彗星固定轨道的预言,导致他的朋友埃德蒙·哈雷在1707年计算出:1531年。1607年和1682年出现的彗星是每隔76年出现一次的同一颗彗星,并预言这颗星于1758年再现。这个彗星果然按时到来,他死后人们就用他的名字给这颗彗星命名。哈雷彗星在人类历史上起过有趣的作用,当它1986年再现时,它可能是宇宙飞船首次探索彗星的目标。

        现代的行星科学家有时候试图论证彗星和行星的碰撞对行星大气可能有显著的影响。例如,现在火星大气里的水分都是因为不久前一个小彗星撞击的结果。牛顿指出:彗尾的物质被散落在行星际空间,由于重力作用,它们逐渐地被吸引到附近的行星上,他相信地球上的水在不断地散失,“用于植物的生长和腐烂,转化成干土……如果液体没有从外部得到补充,一定会不断减少,最后完全消失”。牛顿曾经相信:地球上的海洋源自彗星;生命的产生也可能是因为彗星物质降落在我们的行星上。在一篇神秘的幻想曲里,他更是讲得神乎其神:“而且,我认为,灵魂来自彗星,虽然它非常微小,但它却是我们空气中最微妙。最有用的部分,是万物赖以生存的要素。”

        早在1868年,天文学家威廉·惠更斯就发现彗星光谱和天然气光谱的某些特征是一样的。惠更斯发现彗星上有有机物;几年之内又发现彗星里含有氰(即硝酸纤维素,含有一个碳原子和一个氮原子,是形成氰化物的分子碎片)。1910年,当地球即将穿过哈雷彗星的尾巴时,许多人非常恐慌,他们忽略了“彗尾富有扩散性”的事实。彗星的毒性所带来的危险远不如(即使在1910年)大城市工业污染所带来的危险。

        但是几乎没有人感到放心。例如,旧金山1910年5月15日《纪事报》的大标题中有:“跟房子一样大的彗星摄像机”、“彗星来临,丈夫自新”、“彗星晚会在纽约流行”。洛杉矾《考察家报》的气氛比较轻松:“喂!那个彗星毒死你了吗?……全人类该免费洗一洗气体浴了”、“期待‘狂欢作乐’”、“许多人嗅到氰的强烈味道”、“受害者爬树,给彗星挂电话。”1910年,人们举行了许多晚会,他们要在世界遭到气污染的末日来临之前尽情欢乐一番。企业家到处兜售抗彗药和防毒面具(后者令人恐怖地预示了第一次世界大战的战场)。

        即使在我们的时代,对彗星仍然存在着模糊的认识。1957年,我是芝加哥大学叶凯士天文台的研究生。有一天深夜,我独自一个人在天文台里,听到电话铃直响。我接电话时,听到一个人用醉醺醺的声音说:“请让我跟天文学家讲几句话。”“你有什么事就说吧。”“是这样的,我们正在威尔米特举行花园晚会,天上有个东西,奇怪的是,你正视它的时候,它就不在了,但是如果你不看它,它又在那里。”视网膜最敏感的部分不在视界的中心,如果你将视线稍微偏移一点,你就可以看到暗淡的星星和其他的物体。我知道当时天上勉强可见的东西是一个新发现的叫做“阿伦罗兰”的彗星,所以我就告诉他,说他看见的可能是一个彗星。他停顿了好一会儿才问:“什么叫彗星?”“彗星就是直径1英里的雪球。”我回答说。这次,这个打电话的人停顿的时间更长。后来,他请求说:“请找个真正的天文学家跟我谈吧。”1986年哈雷彗星再现时,我不知道什么样的政界领导人会对此感到恐惧,我们不知道我们到时候还会干出别的什么蠢事来。

        虽然行星是在椭圆形的轨道上绕太阳运转,其实它们的轨道的椭率并不很大。乍看起来,它们的轨道倒像是圆形的。彗星——特别是周期长的彗星——才有显著的椭圆形轨道。行星是内太阳系的老前辈,彗星则是新客。为什么行星的轨道基本上是圆形的而且整齐地分隔开来?因为如果行星轨道的椭率很大的话,它们就会交叉在一起,那么行星迟早会相撞。在太阳系的早期历史里,可能有许多行星正处在形成的过程中,那些在椭圆交叉轨道上的行星很容易相互碰撞而毁灭,而在圆形轨道上的行星则容易成长而生存下来。现在这些行星的轨道是在这种碰撞自然选择中幸存者的轨道,我们的太阳系已经由充满灾难性的撞击的少年进人稳定的中年。

        在太阳系的最外层,在行星以远的黑暗空间里,有一个由1万亿个彗核构成的巨大的球云,它绕太阳运转的速度不会比印第安纳波利斯首届500英里车赛的速度更快①。一个典型的彗星看上去像一个直径约1公里的巨大的滚动的雪球。大多数彗星从来没有穿越过冥王星轨道这条边界,但是,偶而会有一颗行星从它们旁边经过,打乱它们的引力关系,使一群彗星进入椭率很大的轨道,向太阳猛冲。当它们的轨道由于木星和土星的引力作用而继续变化时,它们就(大约每100年左右一次)往内太阳系猛冲。在木星和火星轨道之间的某个地方,它们开始发热和蒸发。从太阳的大气层吹出来的物质——太阳风,将尘埃和冰块推向彗星的背部,使它们有了短尾。假如木星的直径是1米的话,我们的彗星就会比尘埃颗粒还要小。但是如果它们发展壮大的话,它们的尾巴会有从一个星球到另一个星球那么长。当它们接近地球的时候,它们会在地球上的人类当中激起迷信的狂热。但是人类最终会懂得,彗星不是生在在他们的大气层里,而是生存在大气层外的行星之间。人类将会计算彗星的轨迹,也许在不久的将来,人类还会发射一个小宇宙飞船,专门用来探测这个来自恒星王国的客人②。

        彗星迟早是要跟行星碰撞的。地球及其伙伴月亮势必受到彗星和小行星——太阳系在形成过程中残余下来的碎片——的轰炸。既然小的物体比大的物体多,受小物体撞击的可能性也就比受大物体撞击的可能性大。彗星碎片撞击地球的事件(例如通古斯事件),每1千年就可能发生一次左右,但是大彗星(例如哈雷彗星,它的核可能有20公里的直径)撞击地球的事件只可能每10亿年左右发生一次。

        当一个小的冰冻物体跟一个行星或一个卫星碰撞时,行星或卫星上还不会有很大的伤痕,但是如果撞击物比较大或撞击物主要是由岩石构成的,那么撞击的时候就会引起爆炸,形成一个半球形的坑,我们把它叫做撞击环形山。如果环形山没有被破坏掉或被填满,它可能几十亿年之后都还会存在。月球上几乎没有侵蚀现象,当我们考察月球的表面时,我们发现它布满了环形山,这些环形山的数量远不是现在太阳系内寥寥无几的彗星碎片和小行星碎片所能解释的,月球的表面雄辩地证明宇宙曾经经历过毁灭性的年代,那是几十亿年前的事了。

        撞击环形山并不只是月球上才有的,我们在整个内太阳系都会发现它们——从最靠近太阳的水星,到云雾迷漫的金星,到火星及其小卫星(火卫一和火卫二)。这些行星叫类地行星,在宇宙中跟我们是一家人,它们的性质可以拿地球作代表。它们的表层是固体,内部主要是岩石和铁。大气层的气压不尽相同,从几乎是真空状态到比地球的气压高叨倍都有。它们像野营者围着营火一样紧紧地围着太阳——光源和热源。所有的行星大约都有46亿年的历史了,跟月球一样,它们都是太阳早期历史的撞击灾变岁月的见证人。

        越过火星之后,我们就来到了一个非常不同的“社会制度”里——木星和其他大行星(即类木行星)的王国。这些行星都是大行星,它们的主要成分是氢和氦,还有少量的富氢气体(例如甲烷、氨气)和水。在这里,我们看不到坚实的表面,看到的只是大气和五彩缤纷的云层。这些行星都是举足轻重的,而不像地球那样是微不足道的。木星可以装得下1000个地球。假如彗星或小行星落到木星的大气层里的话,我们不可能看到环形山,我们只能看到云层暂时断裂的现象。然而,我们知道,外太阳系的碰撞史也已经有几十亿年了,因为木星的体系更庞大,有十几个卫星,“旅行者”宇宙飞船曾经对其中的5个卫星进行过详细的考察。在这里,我们也找到了过去灾变的证据。整个太阳系都探索过之后,我们可能就会找到所有9个星球(从水星到冥王星)和所有小卫星、彗星和小行星都经历过撞击灾变的证据。

        月球正面大约有1万个环形山,在地球上用望远镜可以看得见。大多数环形山是在月球的古代高地上,从月球的行星际碎片最后吸积时期起就有了。在maria(拉丁语“海”)里约有1000个直径超过1公里的环形山。所谓的“海”,是指月球的平原地区,在月球形成后不久,这里可能是个熔岩涌流的地方,先前的环形山都被遮没了。因此,粗略地计算,现在月球上环形山的形成率应该是:109年/104环形山=105年/环形山,即每10万年形成一个环形山。因为行星际碎片在几十亿年前可能比现在多,所以我们可能要等10万年以上才能看到在月球上形成一个环形山。因为地球的面积比月球大,所以我们可能要等大约1万年才能看到我们的行星被撞击出一个1公里宽的环形山。据研究,亚利桑那的陨星坑(大约1公里宽的撞击环形山)已经有2万到3万年的历史了,因此,地球上的观测与上述的估算是一致的。

        彗星或小行星与月球的实际撞击可能会引起瞬息爆炸,我们从地球上可以看到爆炸所发出的光。我们可以想象,在10万年前的某一个晚上,当我们的祖先悠闲地举目望着天空的时候,突然看到一股奇特的白烟从月球的背光部分升起来,并且被太阳光把它照亮了。但是,我们并不认为历史上可能发生过这种事情,因为发生这种事情的可能性是很小的。然而,在地球上用肉眼看到的月球遭受撞击的事实是有案可查的。1178年6月25日夜晚,5个英国修道士报告了一件奇怪的事情,后来这件事情被坎特伯雷的杰维斯收录在他的编年史里。人们普遍认为,该书所记述的关于杰维斯时代的政治和文化事件是可靠的。作者收录这个事件之前曾经采访过目击者,他们都发誓说他们所看到的是事实。杰维斯的编年史里有这么一段话:

        一弯明亮的新月,月相如旧,钩尖朝东。忽然间,上钩一分为二,火焰从分裂处中部腾空而起,将火炬、火焰、火红的煤和火星洒向天空。

        天文学家德罗·马尔霍兰和奥戴尔·卡莱姆认为,月球遭到撞击时,月面上会升起一股尘云,形状很像坎特伯雷的修道士所报告的那样。

        假如撞击是在800年前才发生的话,它所形成的环形山现在应该还看得到。月球上几乎不可能发生侵蚀现象,因为那里没有空气,也没有水。因此,即使是几十亿年前形成的小环形山现在还会比较好地保留下来。根据杰维斯的记载,准确地测定那次月球上的撞击地点是可能的。撞击会产生射线(即爆炸时喷射出来的粉末线迹),这样的射线跟月球上最年轻的环形山是联系在一起的——例如是那些根据阿里斯塔恰斯、哥白尼和开普勒的名字而命名的环形山。但是,虽然环形山可能经受得住月球上的侵蚀,这种非常微弱的射线却不行。随着时间的推移,即使微陨星——宇宙空间微尘——的到来也会搅乱和遮没这些射线,使这些射线慢慢地消失掉。由此可见,射线是新近发生撞击的信号。

        陨星学家杰克·哈通曾经指出,月球上,正好在坎特伯雷修道士所说的那个地区,有一个最近刚刚形成的、样子还很新鲜的小环形山,同时还有很明显的辐射系。这个环形山是根据16世纪罗马天主教的一个学者的名字命名的,叫做“乔达诺·布鲁诺”。布鲁诺认为,宇宙中有无数的星球,而且许多星球上都有生命。由于这个原因和其他“罪行”,他于1600年被烧死在火刑柱上。

        卡拉姆和马尔霍兰提出了跟上述的解释相吻合的另一个证据。当一个物体以很高的速度撞击月球时,它会使月球晃动起来,虽然这种震动最终会消失,但不会在800年这样的短时期内消失。这种震动可以用激光反射技术进行研究。“阿波罗”飞船的宇航员曾经在月球的好几个地方设置了激光反光镜。当地球上发射的激光束照射在镜子上并反射回来的时候,我们可以很准确地测量出往返的时间。用这个时间乘以光速,我们可以准确地算出这个时刻地球与月球之间的距离。用这种方法测量几年之后,我们知道了月球的天平动周期(即颤动周期大约3年)和振幅(大约3米),这个数据跟“乔达诺·布鲁诺环形山形成还不到1000年” 的见解是一致的。

        所有这些证据都是推论的和间接的。我前面已经说过,在历史时期里,发生这种事情的可能性很小,但是这样的证据至少会给我们一些启示。通古斯事件和亚利桑那的陨星坑也使我们注意到,并不是所有的撞击灾变都是在太阳系的早期历史里发生的。但是,月球上只有几个环形山有广延的辐射纹,这个事实同样使我们注意到,即使在月球上多少有一点侵蚀③,只要了解一下那些环形山和地层学的其他迹象,我们就能够设想出撞击事件和遮没事件的序列(布鲁诺环形山的形成可能是这种事件的最近的例子)。

        地球离月球很近,如果月球那么严重地受到过撞击而形成许多环形山,地球怎么可能幸免呢?为什么陨星坑如此罕见?彗星和小行星会以为撞击一个有人居住的星球是不妥当的吗?这种克制的态度是不可能的,惟一可能的解释是,在地球和月球上形成撞击环形山的频率是很接近的,但在没有空气和水的月球上,它们可以长久地保留下来,而在地上,缓慢的侵蚀过程会把它们销蚀掉或遮没掉。流水、风沙和造山运动的过程虽然很缓慢,但是经过几百万年或几十亿年之后,它们甚至会把非常大的撞击伤痕完全消除掉。

        在任何卫星或行星的表面上都会有外作用(譬如来自宇宙空间的撞击)和内作用(譬如地震),都会有急速的灾变(譬如火山爆发)和极度缓慢的作用(譬如微小的空间沙粒使表面凹陷下去)。什么样的作用占主导地位呢?外作用还是内作用?是罕见的而又激烈的事件,还是普通而又不显著的事件?这个问题是不能笼统回答的。在月球上,外灾变作用占主导地位;在地球上,内部的缓慢作用占主导地位。火星的情况则介于两者之间。

        在火星和木星的轨道之间有无数的小行星——微小的类地行星,最大的小行星直径有几百公里。许多小行星呈椭圆形,它们在空中不停地翻滚。有时候在交互轨道上似乎有两个或两个以上的小行星。小行星经常互相碰撞,偶然间其中一个会被削出一片来,偶尔还会拦截地球,最后落到地面上成为陨石。我们博物馆架子上的展品就是遥远行星的碎片。小行星带是一个大磨坊,不断地磨出越来越小的碎片,直至尘埃微粒。比较大的小行星碎片和彗星是形成行星表面新环形山的主要因素。在小行星带里,由于附近的大行星——木星——的引力潮作用,行星的组成可能曾经受到阻碍,小行星带也可能是自我爆炸的行星的残片。这似乎是不可能的,因为地球上的科学家都不知道行星怎么会自我爆炸的,不过这也完全可能。

        土星的光环是几十亿个绕着土星旋转的微小的冰冻小卫星,这跟小行星带有点相似。它们可能就是那些由于土星的引力作用而没有被附近的卫星吸积的碎片,它们也可能是因为靠得太近而被引力潮扯碎的卫星的残片。要不然,它们可能就是土星的某一个卫星(譬如土卫六)所抛射出来的物质和落到行星的大气层里的物质之间稳定的物态平衡。木星和天王星也有光环,是最近才发现的,在地球上几乎看不见。海王星是否也有一个光环?这是行星科学家亟待解决的问题。光环可能是整个宇宙中所有类木行星的一种典型的装饰品。

        1950年,一个叫伊曼纽尔·维利考夫斯基的精神病医生在一本科普读物《在碰撞中的星球》里提到从土星到金星之间最近发生的大碰撞事件。他认为,由于某种原因,在木星系里形成了一个由行星物质组成的物体,他把这个物体称为彗星。大约3500年前,它跑到内太阳系里来,经常跟地球和火星相互碰撞,偶然之中将地球撞裂,形成了红海,使摩西领着以色列人得以逃脱埃及法老的统治,还将地球根据耶和华的命令而进行的旋转运动停止下来。他说,它还引起了大规模的火山爆发和水灾④。维利考夫斯基还想象,这个彗星在打了一场复杂的行星际弹子戏之后,就进入一个近圆形的稳定轨道,最后变成了金星(他认为在这之前金星是不存在的)。

        上述这些观点几乎可以肯定都是错误的,我在别处已经对此进行了比较详细的讨论。天文学家并不反对发生过大碰撞的观点,只是反对在最近发生过大碰撞的观点。在任何太阳系的模型里,我们不可能根据轨道的比例来显示行星的大小,因为如果那样的话,行星就几乎看不见了。如果真的按比例用尘埃微粒来显示行星的话,我们很容易就会发现,在几千年里,某一个特定的彗星与地球相撞的机会是极小的。而且,金星主要是由岩石和金属构成的,氢的含量很少,而木星——维利考夫斯基认为它是金星的发源地——则基本上都是由氢组成的。木星上没有可以用来抛射彗星或行星的能源。如果一个彗星或行星从地球旁边经过的话,它不可能“阻止”地球的旋转,更不可能使它以一天24小时转一圈的速度重新旋转起来。所谓3 500年前火山爆发或水灾十分频繁的论点并没有地质学的证据。美索不达米亚有些图章上刻的文字中提到,发现金星的时间比维利考夫斯基所说的从彗星变成金星的时间还要早⑤。在这种椭率很大的轨道上的物体迅速进人现在金星所在的这种几乎是正圆的轨道是很不可能的。如此等等。

        事实证明,科学家和非科学家提出的许多假设是错误的,但是科学能够自己纠正自己的错误。新理论要得到承认就必须有可靠的证据。维利考夫斯基事件最糟糕的问题不是他的假设是错误的,也不是他的假设跟充分证实了的东西相矛盾,而是有些自称科学家的人企图压制维利考夫斯基的观点。科学是自由探索的产物,科学为自由探索服务。任何假设,不管它们是多么稀奇古怪,都应该受到应有的重视。在宗教界和政界,压制不同的思想可能是司空见惯的事情,但这不是通往知识的边路,也不是探索科学的方法,我们不能预见谁会发现事物的新的基本原理。

        金星的质量⑥、大小和密度跟地球基本上是相同的。由于它是靠地球最近的行星,所以几个世纪以来人们把它看成是地球的姐妹。我们的姐妹究竟是什么样子的呢?也许它是一个温和的夏日行星,因为靠太阳稍近一点,所以会比较暖和?它有撞击环形山吗?或者都已经被侵蚀掉了?有火山吗?有山脉。海洋和生命吗?

        1609年,林利略首先通过望远镜来观察金星,他看到了一个非常平凡的圆面。伽利略注意到,金星跟月球一样,有不同的位相——从娥眉形到圆盘形,由于同样的原因,我们有时候主要是看到金星的夜晚的一面,有时候主要是看到它的白昼的一面。这一发现偶然地进一步证实了“地球绕太阳转而不是太阳绕地球转”的观点是正确的。随着倍数的增大和清晰度(即对细枝末节的分辨率)的提高,光学望远镜就被系统地用来观测金星。但是它们的效果并不比伽利略的望远镜好多少,金星的外围显然包着一层很浓厚的迷雾,当我们在早晨或夜晚观看这个行星的时候,我们看到的是金星外围的云雾所反射的太阳光。虽然我们发现这些云雾已经几个世纪了,我们对它们的成分还是一无所知。

        因为看不到金星上的任何东西,一些科学家就得出了这样奇怪的结论:金星的表面是沼泽地,像石炭纪的地球。这个论点——如果我们可以大言不惭地这么说的话——是这样推导出来的:

        “我看不到金星上的任何东西。”

        “为什么看不到?”

        “因为它的四周云雾弥漫。”

        “云雾的成分是什么?”

        “水,那还用说。”

        “那么,为什么金星的云层比地球的云层厚呢?”

        “因为那里的水比较多。”

        “但是,如果云里的水分比较多的话,星球表面的水分也必定比较多。什么样的表面很湿呢?”  

        “沼泽。”

        如果金星上有沼泽的话,为什么不能有蜻蜓甚至恐龙呢?观察:见不到金星上有什么东西。结论:它一定是一个生机勃勃的地方。金星的毫无特色的云雾反映了我们自己的偏爱。我们自己是生物,所以我们想象别的地方也有生物。但是只有对证据进行耐心的积累和认真的估价之后我们才能断定某一个特定的星球是否有生物。看样子,金星并不赏识我们对它的偏爱。

        我们是通过棱镜首先获得认识金星性质的真正线索,这种棱镜是用玻璃制成的,或者是用一种叫做衍射光栅的扁平面制成的(上面布满了细密而规则的直纹)。当一束强烈的普通白光穿过一个狭缝之后,再穿过一个棱镜或光栅的时候,这束白光散成五颜六色的彩带,我们把它叫做光谱。这种光谱从高频可见光到低频可见光依次排列,即紫、蓝、绿、黄、橙、红。因为我们可以看见这些颜色,所以这个光谱叫做可见光谱。但是光并不仅仅是可见光谱上的那么一小部分。在这种光谱高频区域紫光以外的那部分光线叫紫外线。这是一种地地道道的光,能够杀死微生物。我们看不见这种光,但是用大黄蜂或光电管立即就能够测出来。还有许许多多的光是我们看不到的,在这个光谱的紫外线以外是X射线部分,X射线以外是伽马射线。在这种光谱低频区域红光的另一边是红外线。我们把测量微电流用的温差电偶安培计放置在黑暗的红外区时发现了这种光。经这种光照射,温度上升了,有光照射在安培计上,但我们的肉眼看不到这种光。通过响尾蛇和掺杂半导体能很明显地测出红外辐射光。红外线以外是广阔的无线电波光谱区。从伽马射线到无线电波,所有的光都是不可低估的,它们在天文学上都是有用的。但是,由于我们肉眼观察的局限性,我们对称为可见光谱的这一小段五颜六色的彩带持有一种偏见和偏心。

        1844年,哲学家奥古斯特·孔德曾寻找一种永不可知的知识的例子。他挑选了遥远的恒星和行星的成分作为例子。因为他认为,我们永远不可能实地访问它们。在手头没有标本的情况下,我们似乎永远不可能了解它们的成分。但是孔德死后才3年,人们就发现一种可以用来测定遥远物体的化学成分的光谱。不同的分子和化学元素吸收不同频率(即不同颜色)的光——有时候是可见光谱上的光,有时候则是在光谱之外的部分。在行星大气的光谱上,一条黑线表示一个没有光线的狭缝,表示太阳光在穿过另一个星球的大气层时被吸收了。每一条这样的黑线都是由某种特定的分子或原子形成的,每一种物质都有其典型的光谱特征。我们从地球上可以验明6000万公里以外的金星上的气体,我们可以推测太阳的成分(氦——根据希腊太阳神赫利俄斯的名字而命名的——最先是在太阳里发现的),推测富铕的A磁星的成分(通过对1000亿个小星的集合光的分析),推测遥远星系的成分。天文光谱学简直是一种魔术般的技术,它现在仍然使我惊愕不已。奥古斯特·孔德真是挑选了一个非常不恰当的例子。

        电磁光谱图解:从波长最短的γ射线到波长最长的无线电波。光的波长单位有:埃(A)、微米(μm)、厘米(cm)和米(m)。

        假如金星是湿淋淋的,那么,我们一定会很容易地在它的光谱上看到水蒸气的谱线。但是,大约在1920年,威尔逊山天文台在首次进行的光谱学探索中并没有发现金星的云层上方有任何水蒸气的迹象,这说明金星的表面像沙漠一样干涸,在它上面漂浮着一层层的硅酸盐粉末。后来的研究发现,金星的大气层里含有大量的二氧化碳。有些科学家认为,这种现象说明,这个行星上的所有水分已经跟碳氢化合物结合,所以才形成了二氧化碳。因此,金星的表面是一个全球性的大油田,是一个全球性的石油的海洋。另一些科学家认为,在云层上方之所以没有水蒸气,是因为云层的气温很低,所有的水分都凝结成了液滴,而这些液滴的谱线跟水蒸气的谱线是不同的。因此,他们得出结论:这个星球的表面覆盖着水,也许偶然间会有一个像英国多佛峭壁那样镶满石灰石的岛屿。但是,因为在大气层里有大量的二氧化碳,海里不可能是普通的水,物理化学中要求碳化水。他们认为,金星上有一个大海洋,海里含有大量游离碳酸的塞耳特斯矿水。

        关于金星的真实情况的最初迹象,我们不是通过对光谱可见光部分或近红外部分的研究获得的,而是通过对无线电光谱区的研究获得的。射电望远镜的工作原理与其说像照像机,不如说像光度计。当你把它指向天空中某个广阔的区域时,它会记录下多少能量以某种特殊的无线电频率传送到地球上。我们对各种智能生命——例如那些主持无线电台和电视台的人员——所传送的无线电信号比较习惯。但是由于种种原因,许多自然界的物体也会发射出无线电波,原因之一是它们有热量。1956年,当人们将一台早期的射电望远镜转向金星的时候,人们发现它似乎是一个温度极高的星球,它不断地发射出无线电波。但是真正证实金星的表面处于惊人的高温状态,是在苏联的“金星”系列宇宙飞船首次穿越朦胧的云层,并在这个最近行星的神秘而又难于捉摸的表面着陆的时候。我们现在知道,金星是一个炙热的星球,在那里没有沼泽,没有油田,也没有含大量游离碳酸的塞耳特斯矿水的海洋。在资料不足的情况下,我们很容易出差错。

        当我跟一个朋友打招呼的时候,我是通过可见光(例如太阳光或白炽灯光)的反射看到她的,光线从我的朋友的身上反射到我的眼睛里。但是古人(包括欧几里得这样的人物)相信,我们之所以看见东西,是因为我们的眼睛发射出某种光线,这种光线使我们直接感触到我们要看的东西。这是一种很自然的想法,而且现在还会有人这样想,尽管我们不能用这种观点来解释暗室里看不见物体的原因。今天,我们将激光和光电管结合起来,或将雷达发射机和射电望远镜结合起来,这样,我们就可以让光跟遥远的物体直接接触。根据射电天文学原理,无线电波从地球上的望远镜发射出去,撞击在碰巧面向地球的金星半球,然后再反射回来。许多不同波长的无线电波能够穿透金星上的云层和大气层。金星表面的某些地方会吸收这些电波,或者,如果它的表面很不平坦的话,它们会把这些电波散射开来,结果呈现出一片黑暗。通过观测金星自转时表面特征的变化,我们现在已经能够准确地测定金星一天的长度——金星在它的轴上自转一周所需的时间。事实证明,金星自转一周需要243地球日,但它是逆转的,与内太阳系所有其他行星的旋转方向相反。结果,太阳从西边升起,从东边落下,从日出到日落需要118地球日。而且,当它最接近我们这个行星时,朝向地球的一面几乎是不变的。虽然地球的吸力终于使金星以这种地球锁定的速度自转,但这毕竟是一个漫长的过程。金星不可能才存在几千年,可以肯定地说,它跟内太阳系所有其他天体的年龄相当。

        我们已经获得了关于金星的雷达照片,其中有些是通过地面的射电望远镜拍摄的,有些是通过环绕金星的飞船“金星先驱者”号拍摄的。这些照片向我们提供了关于撞击环形山的令人感兴趣的证据。金星跟月球上的高地一样,有同样数目的不大不小的环形山,数目之多再次向我们说明,金星已经有很长的历史了。但是金星上的环形山特别浅,似乎金星的表面高温使那里的岩石长期处于流动状态,它们像太妃糖或油灰一样,突起部分逐渐软化掉。这里有比西藏高原高一倍的大山,有一个极大的长峡谷,可能还有巨大的火山和一座像珠穆朗玛峰那样的高山。我们现在清楚地看到了一个过去被云雾笼罩着的星球,首次通过射电和宇宙飞船探索了它的特征。

        根据射电天文学原理的推断和宇宙飞船直接测量的结果,我们知道金星的表面温度大约是480摄氏度(即900华氏度),比温度最高的家用烘箱的温度还要高。其相应的表面压力是90个大气压,等于我们在地球上所感受到的大气压的90倍。如果想在金星上长久停留的话,宇宙飞船不但要造得像深水潜水艇那么牢固,还要冷冻起来。

        大约有10来艘苏制和美制的宇宙飞船已经进入浓厚的金星大气层,并且已经穿越过它的云层。其中有几艘实际上已经在它的表面上逗留过1小时左右⑦。苏联“金星”系列宇宙飞船已经有2艘在那里拍摄过照片。让我们继承这些先驱使命,访问另一个世界吧!

        在普普通通的可见光里,金星上的淡黄色的云层是可以辨认得出来的,但是正如伽利略首先指出的那样,这些云层实际上并没有显示出任何特征。然而,如果摄影机是在紫外光里拍摄的话,我们就会看到在大气层高处有一个优美而又复杂的旋涡状天气系统,那里的风速每秒100米左右(每小时220英里左右)。金星的大气层里含有96%的二氧化碳,还有微量的氮、水蒸气、氩、一氧化碳和其他气体,但是那里的碳氢化合物或碳水化合物的含量还不到百万分之零点一。已经查明,金星的云层的主要成分是硫酸的浓缩溶液,此外还有少量的盐酸和氢氟酸。事实证明,金星是一个令人作呕的地方,即使在凉快的高层也是如此。

        在可见的最高云层上方,大约在70公里的高度上,是一片朦胧的微粒。在60公里的高度上,当我们钻人云层的时候,我们发现我们的四周都是浓硫酸液滴。越是往深处走,云粒就越粗。在大气的底层有微量的刺鼻的二氧化硫(SO2 )气体。这种气体环流到云层的上方,被太阳的紫外光分解之后跟那里的水重新组合,形成硫酸,硫酸又凝结成液滴沉降下来在底层又受热分解成地和水,从而完成了一个循环。在整个金星的上空不停地下着硫酸雨,但是从来没有一滴硫酸降落在金星的表面上。

        硫黄色的薄雾一直延伸到离金星的表面约45公里的地方,从那里开始,我们就进人了一个浓密但又是清澈的大气层。然而,因为大气层的气压很高,所以我们看不到金星的表面。太阳光被大气的分子反射到四面八方,使我们无法看见金星表面的任何东西。这里没有尘埃。没有云层,只有越来越浓密的大气。上方的云层将大量的阳光(大约相当于我们在地球上阴天时所看到的那样多的阳光)传送到这里。

        金星上高温、高压,还有毒气,那里的一切都散发着可怕的红光。金星一点也不像爱情女神,倒更像地狱的化身。

        根据我们详细观察,金星表面至少有一些地方是乱七八糟的旷野,到处布满了无规则的软化了的岩石,呈现一幅狰狞。荒凉的面貌,偶尔可以看到来自一个遥远行星的宇宙飞船的残骸,整个行星完全遮蔽于浓密的毒雾中。⑧

        金星的灾难是全球性的。现在已经相当清楚,金星表面的高温是由一个巨大的温室造成的。金星上的大气和云层对可见光具有半穿透性,太阳是通过它们之后到达金星表面的,表面受热之后,又极力将热量反射到空中。但是、因为金星的温度比太阳的温度低得多,所以金星辐射出来的主要是红外线,而不是光谱上的可见光。然而,因为金星大气里的二氧化碳和水蒸气⑨对红外线几乎是不透明的,所以太阳的热量差不多都被捕获下来,表面的温度也就升高了,直到从浓密的大气层里渗透出来的少量的红外线,跟大气底层和金星表面所吸收的太阳光刚好平衡为止。

        事实证明,我们邻近的这个星球是一个令人不快的凄凉的所在。但是我们还是要回到金星上去,它有它迷人的地方。在古希腊和斯堪的纳维亚神话里的许多半神式的英雄毕竟都为朝拜地狱而进行过卓越的努力。关于我们的行星(跟地狱比较起来已经是天堂了),我们还有许多东西需要探索。

        埃及的狮身人面巨像是5 000多年前建造的,它的脸部过去很清晰。几千年来,埃及沙漠的风沙以及偶然间的雨水已经把它软化,它现在已经变得模糊不清了。纽约市有一个古埃及的方尖碑,这个方尖碑搬到该市的中央公园才不过100年左右,它的铭文几乎已经全部消失了,这是烟雾和工业污染——像金星大气层里的那种化学腐蚀——所引起的。地球上的侵蚀慢慢地将信息清洗掉,但因为这是一种逐渐的过程(雨点的拍打,沙粒的冲击),所以这些过程都可以忽略不计。大的结构物(譬如山脉)可以存在几千万年,比较小的环形山也许可以存在10万年⑩,大型的人工制品只能存在几千年。除了上述这种缓慢而又均匀的侵蚀之外,还有大大小小的灾变所引起的破坏。埃及的狮身人面巨像缺了一个鼻子,有人手闲得发痒,开枪把它打掉了。有的人说这是默梅卢克斯的土耳其人干的,有的人说这是拿破仑的士兵干的。

        在太阳系的金星、地球或其他的地方都有毁灭性灾变的证据,它们软化或破坏的过程比较缓慢,比较均匀。例如,在地球上,雨水的流淌可以形成小川,溪河的流水可以形成巨大的冲积盆地;在火星上,我们看到的古河流的残迹很可能是从地下冒出来的;在木卫一上,那些看上去很宽阔的河床是液态硫的冲刷而形成的。地球上有强大的气候系,在金星和木星的高层大气里也有。在地球和火星上有沙暴,在木星、金星和地球上有闪电。地球和木卫一上的火山会将爆发的碎片抛射到大气层里。金星、火星、木卫三、木卫二和地球的内部地质变化,慢慢地改变了它们的外部形态。冰川的活动素以缓慢著称,它们是地球(很可能包括火星)的地形变化的主要原因。上述这些变化过程不一定是连续不断的。欧洲大部分地区过去曾经盖满了冰。几百万年以前,现在的芝加哥是埋在3公里深的厚霜里。在火星和太阳系的其他地方,我们看到了今天不能再生的一些特征,看到了几亿年或几千亿年前当行星的气候可能很不相同的时候所形成的地形。

        还有另一个因素会改变地球的地形和气候:智能生命——他们能够使环境发生重大的变化。像金星一样,地球上的二氧化碳和水蒸气也起到温室的作用。这个温室使地球上有海洋和生命。假如没有这种温室作用,地球的温度就会降到水的冰点以下。有一个小温室是一件好事。跟金星一样,地球也有大约90个二氧化碳的气压,但这个气压存在于像石灰石和其他碳酸盐所组成的地壳里,而不是存在于大气中。假如把地球向太阳移近一点,地球的温度就会有所上升,地球表层岩石里的二氧化碳就会跑出一部分来,使温室的效果更明显,反过来又进一步提高地球的表面温度。地表的温度越高,碳酸盐就会释放出更多的二氧化碳,温室的作用就有可能变得非常显著,结果使地球达到很高的温度。这就是我们想象金星在早期历史里所发生的现象,因为金星离太阳很近。金星的表面环境对我们是一种警告:像我们这样的星球很有可能发生灾难。得在这方面花钱。由于我们的无知,我们现在还在推推搡搡,还在污染大气,还在使大地变得光秃透亮。我们忘记了一个事实,即我们基本上并不懂得我们的行为的长期后果。

        几百万年以前,当人类在地球上刚刚产生的时候,地球已经是一个中年的星球了,从充满灾变和激变的青少年时期到中年时期已经经历了46亿年。但是我们人类现在代表一个新的。也许是决定性的因素。我们的智慧和技术已经使我们有能力影响地球的气候。我们将如何使用这种能力?在那些影响整个人类大家庭问题上,我们是否愿意容忍无知和自满?我们是否把短期利益看得高于地球的福利事业?或者我们要从长远的观点看问题,关心我们的子孙,了解并保护我们行星的复杂的生命维持系统?地球是一个微小而脆弱的星球,它需要得到我们的爱护。

        __________
         ①地球绕太阳的圆周半径 r=1天文单位= 1.5亿公里,因此它的近似圆周轨道的周长 2πr=109 公里。我们的行星每年沿着这个轨道运转一周,因为1年=3X107 秒,所以地球的轨道速度是109 公里/3X107 秒≈30公里/秒。现在考虑一下轨道彗星球壳的情形(许多天文学家相信轨道彗星距离太阳系大约10万天文单位——差不多在离我们最近的恒星的半途中——运转)。根据开普勒第三定律,我们立即可以推算出任何彗星绕太阳运转的轨道周期大约是(105 )3 =107.5 ≈3X107 ,即3000万年。如果你是居住在太阳系的外侧,那么绕太阳一周就需要很长的时间。彗星轨道2πa=2πX105 X1.5X108 公里≈1014 公里,因此它的速度只有1014 公里/1015 秒=0.1公里/秒。每小时220英里。

        ②为了探测哈雷彗星,地球上已经于1985年发射了这样的探测器。——校者注

        ③火星上的侵蚀现象比月球明显得多,虽然那里有许多环形山,却没有我们所预期的那种辐射环形山。

        ④据我所知,最先从本质上用非神秘主义的观点来解释彗星干预历史事件的人是哈雷。他认为,诺亚洪水是地球受到一个彗星偶然冲击的结果。

        ⑤公元前2500年左右的艾达圆筒图章刻有醒目的艾娜娜、维纳斯女神、启明星和巴比伦伊什塔的先驱者。

        ⑥它的质量恰巧比质量最大的已知彗星还要大3000万倍。

        ⑦1978-1979年,美国的“金星先锋”号成功地完成了一次使命,发射了一个轨道飞行器,并进行了4次进人大气层的探索(其中2次在环境险恶的金星表面做了短暂的停留)。在组装用于探索行星的宇宙飞船的过程中,出现了许多意外的现象。以下是其中的一个例子:在“金星先锋”号进人云层的一次探索中,船上安装了一台网状辐射通量测量计,用来同时测量金星大气层各个方位上红外线的上下流量。这台仪器需要一个既坚实又能够让红外线穿透的窗口,因此进口了一个13.5克拉的金钢石,安装在适当的窗口上。然而,承包商按规定付了1.2万美元的进口税。最后,美国海关决定将这笔关税退还给厂家,因为他们认为,在这个金钢石被发射到金星上之后,它在地球上已经失去了贸易价值。

        ⑧在这样令人窒息的旷野里不可能有任何生命,哪怕是跟我们绝然不同的生命。有机分子和其他可以想象得到的生命分子在这里只能粉身碎骨。但是,我们不妨想象一下,在这样的一个星球上曾经有过智能生物。那么。他们也发明科学吗?对恒星和行垦的规律性的探索是地球上科学发展的主要因素。但金星却完全被云雾笼罩着,黑夜又长得可怕——相当于地球上的59天。但是,当你举目遥望金星的夜空时,天文宇宙又是茫茫的一片。即使在白天也看不到太阳,它的光线弥漫在整个空中,就像配戴着水下呼吸器的潜水员在海里只看到均匀的散光那样。假如在金星上建造一台射电望远镜,它就可以用来探测太阳、地球和其他遥远的物体。假如天体物理学发展了,人们最终就可以通过物理学的原理来推断恒星的存在,但是它们只能是理论上的构成物。我有时候这样想,如果有一天,金星上的智能生命学会了飞行,翱翔在浓密的大气里,飞越他们头顶上40公里高空中的神秘的云雾,展望并首次目睹由太阳、行星和恒星组成的壮丽的宇宙,到那时候,不知道他们会有何感想。

        ⑨目前,关于金星上水蒸气的分布量问题,我们仍然有一些疑问。“金星先驱者”进人大气层后的气相层析表明,金星大气底层水分的相对分布量为0.01%。另一方面,苏联“金星”宇宙飞船11号和12号红外测量所得到的相对分布量为百分之零点零一左右。如果前一个数据是正确的,单单二氧化碳和水蒸气就足以将金星表面辐射回来的几乎所有的热量都封闭住,使金星的地面温度保持在480摄氏度。如果后一个数据是正确的(我个人认为这几个估计比较可靠),单单二氧化碳和水蒸气就足以将金星的表面温度保持在380摄氏度左右,因为需要某种其他的大气成分来关闭大气温室里剩余的红外线频率窗。然而似乎少量的二氧化碳、一氧化碳和氯化氢(这些成分在金星的大气层里都已经被检测到)就能够达到这一目的。所以,美国和苏联最近探测金星的使命似乎已经证实,温室效应确实是金星表面温度高的原因。

        ⑩精确地说,直径10公里的撞击环形山在地球上每50万年形成一个。在地质稳定的地区,例如欧洲和北美,这种环形山可以经得起3亿年的侵蚀。较小的环形山比较容易形成,也比较容易破坏,特别是在地质变化比较大的地区。

        第五章 神秘的红色行星

        在众神的果园里,他所注视的是四通八达的水渠 ——依奴马·埃利希,苏默人,约公元前2500年。

        同意哥白尼观点的人认为,我们这个地球是一颗行星,她和其他行星一样,随着太阳在九天邀游,承受着太阳的光辉。他们也和旁人一样,有时不禁会产生这样的遐想……在其他的行星上,同我们这个地方一样也有华美的服装和家具,不仅如此,它们的居民也和我们地球上一样……。但是,我们总是倾向于认为,去探索其他行星上发生的事倩是徒劳无益的,因为一旦真正探索起来,可能就永无尽头了……。对于这件事,我刚刚还认真地思索了一番。[这并不是说,我认为自己比那些(业已逝去的)伟大人物目光更敏锐,而是说,在他们大都故去之后,我仍有幸继续活在世上]。我想,这样的探索并不是那么不切实际的,前进的道路也井不是那么困难重重的,而是存在进行各种猜想的充裕余地的。 ——克里斯蒂安·惠更斯(约1690年著《星际世界及其居民和生产的新猜想》)  

        人类大开眼界的时代将会来到……,他们将会看到与我们的地球相似的其他行星。 ——克里斯托弗·雷恩,1657年在格雷厄姆学院的就职演说。

        有这样一个故事,说的是很久以前,一位知名的报刊发行人向一位著名的天文学家发了一封电报:“请即用500字电复,火星上是否存在生命。”这位天文学家按照要求答曰:“无人知道,无人知道,无人知道……”一直重复了250遍。①尽管这样的否定回答是由一位专家再三坚持作出的,却没有什么人加以理会。相反,从那时以来,我们不断听到两种权威性的意见。一种声称他们已经能推断出火星上有生命,另一种则断言,他们已排除了火星上有生命的可能性。有的人一心希望火星上有生命,另一些人则巴不得火星上没有生命。两大营垒都太过分了,这种强烈的感情色彩已经有点超越了在科学探索中所能容许的观点分歧。看来,许多人只是想得到一个明确的答案而已,他们不想让两种互不相容的可能性同时存在于他们的头脑中。有些科学家认为,火星上有居民,但其根据后来被证明是不足为信的;有的科学家则断言火星上不可能有生命,因为对特定的生命现象的初步研究要么未获成功,要么其结果是含混不清的。神秘的色彩不止一次地笼罩着这颗红色的行星。

        为什么非说是火星人呢?又为何有如此众多的关于火星人的热烈推测和猜想,却没有人想到土星人或者冥王星人呢?这是因为,乍看起来,火星很像地球,它是我们能看见其表面的最近行星。火星上既有极冠、飘荡的白云,又有怒吼的风暴,在它红色的表面上还有随季节而变化的图像,甚至一天也是24小时。因此,认为它是一个有居民的世界是很自然的。火星已成为一座神秘的舞台,寄托着我们地球上人类的希望和担忧。但是,我们心理上赞成或反对火星上存在生命的倾向,绝不应该把我们引入歧途。因为事实胜于雄辩,而事实尚未出现。真正的火星是一个神奇的世界,它的真面目比我们已经了解的要复杂得多。在我们这个时代,已经采集过火星上的砂粒,已经确立了我们在火星上的存在,从而实现了 一个世纪以来的梦想。

        直到19世纪后期还没有人相信,我们这个世界正被像人一样的、而又远比我们聪慧的智能生命以浓厚的兴趣仔细地观察着,也没有人会相信,当人们各自碌碌奔忙时,他们正在被仔细地研究着,其仔细程度也许就像用一架显微镜观察在一滴水中聚集繁殖。朝生暮死的细菌。人们为了区区小事,趾高气扬地在地球上来回奔忙,为能确保对物质的占有而心满意足。显微镜下朝生暮死的细菌的所作所为,与此大概没有什么不同。人们要么从未想到过宇宙中还有更古老的世界,它们是威胁人类的根源;要么在想到这些世界时,只是简单地认为那里根本不可能存在生命。往昔的某些心理习惯是可笑的。在多数情况下,地球上的人最多只是设想,火星上可能存在另一种人,而且也许不如自己优越,因而正准备迎接他们去教诲呢。然而,浩瀚的宇宙大洋彼岸的居民,他们的智力与我们相比,正如我们与野兽相比一样,那些居民智力发达、感情冷漠,正以妒忌的眼光窥视着地球,并在缓慢而又扎实地制定着进攻我们的计划。

        H·G·威尔斯1897年所写的科幻名著《星球大战》中的上述开场白,至今仍常常使人们不寒而栗。②在人类的整个历史上,人们对地球以外还存在生命这件事是又怕又盼。100多年来,这种感情集中在夜空中一颗明亮的红色星星上。在《星球大战》出版之前3年,一位名叫洛韦尔的波士顿人建立了一座重要的天文台,支持火星上有生命的最精细的观点就是在那里提出来的。洛韦尔年轻时就爱好天文学,他曾就读于哈佛大学,后来得到半官方的外交任命,到了朝鲜,否则他也会像芸芸众生一样注重于追求财富。他死于1916年,他对于我们认识自然界及行星的演化,对于探测宇宙,尤其是用非常精确的方法发现冥王星等方面都做出了重大的贡献。冥王星就是用他的名字命名的。

        但是洛韦尔毕生最热衷的却是火星。1877年意大利天文学家斯基帕雷利宣布发现了火星上的水道,使洛韦尔激动万分。斯基帕雷利报告说,当火星运行到距地球最近时,他观察到了一个复杂的网络,该网络由单直线和双直线组成,遍布火星的整个亮区。意大利文的Canali(原意为水道、沟渠)在匆忙中被译成了英文的canal,即“运河”这样一个隐喻着人工设计的字眼。一时在欧洲和美洲掀起了一场火星热,格韦尔也深深地卷人这股热潮中。

        1892年,斯基帕雷利的视力严重衰退,宣布他将放弃对火星的观测。洛韦尔决心继续这项工作。他需要一个理想的观测点,在那儿不受云雾或闹市灯光的干扰,而且具有优良的“天文宁静度”。“宁静度”一词在天文学术语中用来表示透过稳定的大气层去观察天空时,望远镜中天体的图像抖动最小的情况。天文宁静度差是由于望远镜上方的大气产生小尺度的扰动所致,这也是星星会眨眼的原因。洛韦尔把他的天文台设在远离城市的火星山上,该山位于亚利桑那州的弗拉格斯塔夫③。他绘出了火星表面的图像,尤其是画出了使他着迷的运河图形。进行这种观测决非一件易事。试想一下,在寒风凛冽的凌晨长时间盯着望远镜观测的情景吧!天文宁静度常常很低,因而火星图像往往模糊不清,而且变形失真。这样,观测者就必须否定所看到的景象。有时图像会突然固定住,火星的图像奇迹般地瞬间闪现,观测者又必须记住所看到的情景,并准确地记录下来。观测者还必须抛弃成见,客观地对待火星上的奇观。

        在洛韦尔的笔记本中,到处都记载着他认为是自己观测到的结果。诸如亮区和暗区,极冠的痕迹,一颗由运河编结成的星体。洛韦尔认为,他看到了一个布满全火星的巨大灌溉网,正是这些大渠道把极冠融化的水输送到赤道缺水的居民手中。他深信,这个星球上的居民历史更悠久、更聪明,也许与我们迥然不同。他还认为,暗区的季节性变化是由于植物的生长和兴衰造成的。他相信火星与地球极其相似。总而言之,他相信的东西太多了。

        在洛韦尔的笔下,火星是一个历史久远、干涸凋零的荒漠,而且是一个与地球相似的荒漠。洛韦尔所描绘的火星景象,颇像美国的西南部,即洛韦尔天文台所处的那片地区。他推论说,火星上的温度太低了一点,但其舒适程度仍然不亚于“英格兰南部地区”。空气虽然很稀薄,但氧气含量仍然足够呼吸之用。那儿的水很珍贵,但错综复杂的运河网却能把生命不可缺少的这种液体输送到整个星球。

        回顾起来,当代对洛韦尔观点提出的最重大的挑战竟来自一个出乎人们意料之外的人物。l907年,自然选择进化论的共同发现者A.R.华莱士应邀去评述洛韦尔的一本著作。华莱士年轻时是一位工程师,本来对这类超感觉的洞察力多少有点轻信,却令人意外地对火星的可居住性表示怀疑。华莱士指出,洛韦尔对火星平均温度的计算有误,火星不但不像英格兰南部那么温暖,恰恰相反,几乎所有的地方都在冰点之下。因此火星应该有永冻层,即永远处于冰冻状态的次表层。空气也比洛韦尔计算的要稀薄得多。那里的陨石坑数量应该与月球上一样多。至于说到运河中的水,他指出:

        在任何解决缺水问题的计划中,如果想借助运河,令其穿过赤道进入另一半球,穿过那可怕的荒漠地区,而且又曝晒在洛韦尔先生所描述的那种炎炎晴空之下,那么这种计划就将是一群疯子的行为,而绝非智慧生命所为。完全可以断言,甚至流不出100英里,所有的水就会蒸发殆尽,或者渗入地下。

        上述带挖苦味的但却大致正确的物理分析是华莱士在84岁高龄时写下的,他的结论是,从土木工程师的水利观点来看,火星上不可能存在生命。不过,他没有提及微生物问题。

        尽管华莱士提出了批评意见,尽管其他天文学家用了与洛韦尔同样先进的望远镜,他们的观测点位置亦毫不逊色,却未能发现任何运河的痕迹。但是洛韦尔关于火星的观点还是得到广泛的接受。他的学说的神奇力量就像创世说一样古老有力。产生这种吸引力的部分原因是因为19世纪正是技术上取得辉煌成就的时代,其中包括修建了许多巨大的运河。如1869年竣工的苏伊士运河,1893年建成的科林斯运河,1914年完工的巴拿马运河,近一点的则有美洲五大湖水闸,纽约州北部的航运运河,以及美国西南部的灌溉运河。既然欧洲人和美国人能建立这样的丰功伟业,那么为什么火星人就不行呢?难道一个更古老、更聪明的种族就不能做出更卓有成效的努力,去勇敢地战胜那红色星球上的干旱吗?

        如今,我们发射的探测卫星已经进入环绕火星的轨道,已经绘制了整个火星的地图。两个自动实验站也已在火星表面着陆。火星的神秘感(如果有任何神秘的话)自洛韦尔以来一直在加深。我们现在拥有的火星照片比洛韦尔的观察结果要详尽得多,但是我们却没有发现被大肆吹嘘的运河网的任何支流,任何水闸。洛韦尔,斯基帕雷利,还有其他一些人在艰难的观测条件下作出的观测结果之所以失误,部分原因也许是由于他们事先就带着火星上存在生命的框框。

        洛韦尔的观测记录本反映了他在望远镜前多年进行的不懈努力。这些笔记表明,洛韦尔对其他天文学家怀疑运河真实性的情况,心里是很清楚的。这些笔记还表明,洛韦尔相信自己作出了重大的发现,但其意义却得不到别人的理解,因而十分痛苦。例如,他在1905年1月21日写的笔记中有一处这样写道:“两条运河突然显现出来,相信没有弄错。”在拜读洛韦尔的笔记时,我有一种清楚的但却颇为不安的感觉,那就是他确实看到了某些东西。但那究竟是什么呢?

        当我和康奈尔大学的保罗·福克斯对比洛韦尔的火星图和“水手9”号轨道站拍摄的图像时——我们图像的分辨率有时比洛韦尔在地面上用24英寸折射望镜观测到的要高l00倍——发现,二者之间几乎毫无共同之处。这倒不是说洛韦尔的眼睛把火星上不相干的细小部分连成了虚构的直线。在他所说的运河的大部分位置上,既没有深色的颜色,也没有陨石坑群,那些地方根本就没有任何特别之处。既然如此,他怎么会年复一年地画出同样的运河图形呢?其他一些天文学家——其中一些人声称,在他们亲自进行观测之前没有仔细地观看过洛韦尔的图片——怎么也会画出相同的运河呢?向火星发射“水手9”号的一个最重大的发现,就是在火星表面上观测到存在随时间变化的条纹和斑点。许多这样的条纹与陨石坑的外围相连,而且随季节而改变。这类条纹是被风扬起的尘土造成的,因此其图样随不同季节的风而变化。但是,这些条纹没有运河的特征,其位置也与运河的位置不符,况且没有任何一条条纹大到可以在地球上看得见的程度。如果说在本世纪的前几十年中,火星表面上确实存在哪怕一点点像洛韦尔所说的运河特征,那么当飞船进行近距离考察变为现实时,那些运河不可能跑得无影无踪。

        火星上的运河看来是在艰难的观测条件下,人的手、眼和脑在结合上存在着某种毛病所造成的(或者说,至少对某些人是如此。因为许多与洛韦尔同时代以及后来的天文学家,使用同样质量的观测仪器,但却宣称根本没有观测到运河)。不过这几乎不能算是一个令人信服的解释。因此,我有一种不安的怀疑:火星运河这个问题的某些重要的细节还没有发现。洛韦尔一直认为,运河的规则性无可辩驳地表明它们是出自智慧生物之手。这肯定是不会错的,惟一没有解决的问题是,有智能的人究竟位于望远镜的哪一侧?

        洛韦尔的火星人是慈祥的、乐于助人的,甚至有点像神仙,与H·G·威尔斯和O·威尔斯在《星球大战》中描绘的可怕形象大不相同。但是通过星期天副刊和科幻小说,这两种观点都进入了公众的脑海之中。我还记得自己在年少时曾如醉似痴地阅读巴勒斯描写火星的小说。我与高贵的探险家约翰·卡特一起从弗吉尼亚旅行到“巴苏”,因为那里的居民认识火星人。我跟随8条腿的驮兽群,我还赢得了海利恩王国可爱的迪娅·索丽丝公主的垂青,我还能与名叫塔斯·塔卡斯的4米高的绿色武士友好相处。我还在“巴苏”的尖屋顶城市和圆屋顶的抽水站以及绿树成荫的尼罗西提斯河岸和望忧草运河畔漫步。

        果真能在事实上,而不是在想象中和约翰·卡特到火星上的海利思王国去探险吗!我们能够在“巴苏”的两轮急速飞行的明月照耀下,于某个夏夜开始有重大科学意义的探险旅行吗!即使洛韦尔关于火星的结论,包括火星上存在运河的观点,将来被证明是错误的,他关于火星的描述至少有这样的用处:它激发了好几代8岁的孩童,我自己就是其中之一,把探测行星看成是真正可能的,并设想是否将来某一天能亲自到火星上去旅行。约翰·卡特就到达过那里,在一片开阔地上,张开他的双手,发出了祝愿。我还记得,在我的童年时代,曾经长久长久地仁立在旷野上,伸开双手恳求我所相信的火星人把我带走。当然,我的恳求从未奏效。看来得寻找其他的途径。

        如同生物一样,机器也有其进化过程。火箭和最早用来推动火箭的炸药都是中国人发明的。在中国,火箭曾被用于庆典等喜庆的场合。大约在14世纪,火箭传人欧洲,并被用于战争之中。19世纪后期,俄国的中学教师康士坦丁·齐奥尔科夫斯基提出利用火箭作为行星间交通工具的可能性;美国科学家戈达德则将它发展作为高空飞行之用。第二次世界大战中,德国的V—2军用火箭利用了戈达德的几乎全部研究成果,而以1948年发射的V—2/WAC“伍长”号相结合的二级火箭为顶点,这枚火箭达到了当时无与伦比的飞行高度——400公里高。进入50年代后,以苏联的科罗廖夫和美国的布劳恩为首领导了技术上的发展。他们的经费来自大规模毁灭性武器运输系统的研究,但却被用来发射最早的人造卫星。技术进步的势头继续有增无减:载人环球飞行、人工轨道站、登月以及在整个太阳系飞行的无人宇宙飞船,都相继获得成功。其他许多国家现在也已发射了宇宙飞行器,包括英国、法国、加拿大、日本和最早发明火箭的中国。

        齐奥尔科夫斯基和戈达德都是富于想象力的(戈达德年轻时曾读过威尔斯的著作,并且深为洛韦尔的课程所激动)。因此空间火箭应用的早期设想中包括建立一个空间科学站,用于从高空监测地球,并用作研究火星生命的探测器。所有这些梦想如今都已实现了。

        设想一下,你是某一个其他相当遥远的行星的来宾,不带任何成见地飞向地球。距地球越来越近,观察越来越细,你对这个星球的看法也会逐渐改变。这个星球上有居民吗?你根据什么作出判断呢?如果存在智慧生物,他们可能已经建造出在几公里的范围内具有高衬比的工程结构。当我们的光学系统和离地球的距离能提供1公里的分辨率时,这些结构就能被检测出来。但即使达到这样的分辨率,看起来地球仍像是地道的不毛之地。在我们称为华盛顿、纽约、波士顿、莫斯科、伦敦。巴黎、柏林、东京和北京的地方,完全看不出有生命或者叫做智慧生物的迹象。如果说地球上存在着有智慧的生物,那么,他们基本上没有把地球的外观改造成有规则的、具有1公里分辨率的几何形状。

        但是,当我们把分辨率提高10倍,当我们开始能看到小至直径100米的范围时,情况就大大改观了。地球上的许多地方就会突然变得具体、清晰了,就会显现出方形、矩形、直线和圆形的清晰图像。这些图形实际上就是有智慧的生物的工程艺术品:道路、公路、运河、农场、城市街道。这样的图形揭示了人类对欧氏几何和领土主义两种孪生的情感。在这样的分辨率下,就能在波士顿、华盛顿和纽约看到智慧生物的活动。而分辨达到10米时,被加工过的地球表面景象使真正赫然可辨了,人们正在忙忙碌碌之中。不过,上述景象都是摄于白昼、黄昏或者夜晚则又是一番景象:利比亚和波斯湾油田的熊熊烈焰,日本远洋捕鱼船队的深海灯光,大都市明亮的灯光。假如我们能把白天的分辨率进一步提高到1米,那么我们就能分辨出单个机体,像鲸鱼、母牛、火烈鸟和人。

        地球上智慧人类的活动首先通过其建筑物的几何规则性来显现。因此,如果确实存在洛韦尔的运河网,则火星上有智能生物居住的观点就同样是令人叹服的了。这是因为,如果从火星轨道拍摄的火星照片上能发现生命活动,那么它的表面大部分必须被改造过,而技术文明的产物——运河建筑也许是最易于检测到的目标。但从无人驾驶的飞船发回的无数火星照片中,除了一两幅莫名奇妙的图片外,没有发现任何这一类的目标。但是许多其他的可能性还存在,包括从大型的动植物到微生物,到已经灭绝的形态,以至到火星上从古至今从来就不存在任何生命等等各种可能性。与地球相比,火星距太阳较远因此温度要低得多。火星上的空气很稀薄,而且主要由二氧化碳组成,只有一些分子氮和氢,以及极少量的水蒸气、氧气和臭氧。在那里不可能存在敞露的液态水,因为大气压太低,即使冷水也会迅速沸腾而汽化,恐怕只有在土壤的孔隙和毛细管中有极少量的液态水。而氧气含量之少远不够一个人的呼吸所需。臭氧的含量也少得可怜,以致能杀菌的太阳紫外线畅通无阻地照射到火星表面上。在这样险恶的环境下,还能有任何生物能生存下去吗?

        为了回答这个问题,许多年前我和我的同事准备了模拟当时所知道的火星环境的试验舱,把地球上的微生物接种到实验舱内,然后观察是否有任何生物能生存下去。我们把这样的试验舱很自然地叫做火星罐。试验舱的温度保持与典型的火星环境相近,即在正午时略高于0℃,而在破晓前约为—80℃之间循环。舱内气体也主要由CO2和N2组成,保持缺氧的状态,用紫外灯重现太阳光的高通量。除了润湿沙粒表面极薄的一层水外,也不提供任何液态水。只过了一个晚上,有些微生物就冻死了,并且再也没有苏醒过来。由于缺氧,其他微生物也陆续喘息而亡,有的死于干渴,有的则死于紫外线。但是,总有数量可观的一些地球微生物在缺氧条件下也能生存,当温度降得太低时,它们就暂时处于休眠状态。它们能藏在小石下或隐身于薄沙层之下,以躲避紫外光的照射。在另外一些实验中,当供给少量液态水时,微生物又能照常繁殖生长。既然地球上的微生物都能经得住火星环境的考验,那么假如火星上有微生物,它们的适应本领也必定更巧妙。但究竟如何,我们必须亲自去看看才会明白。

        在无人驾驶星际探险方面、苏联一直保持着很活跃的势头。每隔一二年,行星间就会出现最有利的相对位置,根据开普勒和牛顿所阐明的物理学原理,这时向火星或金星发射宇宙飞船能量消耗最少。60年代初以来,苏联几乎没有错过这样的发射机会。苏联人的不懈努力及其工艺技术终于结出了硕果。苏联共有5艘飞船,即“金星8”号至“金星12”号,都先后在金星表面着陆,成功地从金星表面发回了大量资料。这些飞船能穿过如此高温、高密度和有很大腐蚀性的金星大气层,其成就是不可否认的。尽管做过多次尝试,苏联飞船涉足火星却未成功。至少初看起来,火星似乎更友好些,那儿的温度不高,大气层也稀薄得多,气体也较柔和,此外还有极冠。明亮的淡红色天空、巨大的沙丘、古老的河床、陡峭的大山谷,还有我们已经探明的太阳系中最大的火山结构,以及赤道附近温和的夏日。相对金星而言,火星的环境更接近于地球。

        1971年苏联的“火星3”号飞船进入火星大气层。从飞船自动发回的无线电资料判断,它在进入大气层时,成功地打开了着陆系统,且准确地向下调整了防烧蚀护罩,适时地打开了巨型降落伞,并在接近火星表面时成功地点燃了减速火箭。根据“火星3”号发回的资料,它在这颗红色星球上的着陆应该说是成功的。但是在着陆后,飞船却向地球发回20秒钟没有图像的电视片段,随之就神秘地消失了。1973年发射的“火星6”号着陆器也发生了与此十分类似的情况,这次是发生在着陆后不到1秒钟的时间内。这究竟是在哪里出了毛病呢?

        我所见到的第一幅“火星3”号的图片是在一枚苏联邮票上(面额为16戈比)。它描绘了飞船正穿过某种紫色浊流而降落的情景。在我看来,邮票的作者是想说明存在尘流和飓风,因为“火星3”号当时是迎着巨大的尘暴进入火星大气层的。我们从美国的“水手3”号发回的资料证实,火星表面附近的风速超过每秒140米,这比火星上声速的一半还高,正是巨大的尘暴产生了这种高速风。我们和我们的苏联同行都认为。可能正是这种高速风使“火星3”号飞船无法张开其降落伞,结果,虽然它在垂直方向的着陆很和缓,但在水平方向上却具有致命的高速度。飞船在大型降落伞没有张开的情况下降落时,特别易受水平风的伤害。“火星3”号在着陆后可能弹跳了几下,接着撞上了岩块或火星表面的其他凸出物而倾翻,结果,无线电与载波总线失去连结,造成发射机失效。

        然而,“火星3”号为什么会钻进巨大的尘暴中去呢?要知道,“火星3”号的飞行程序在发射前就已经严格地制定好了。在它离开地球之前,它的每一步飞行动作都已存入飞船计算机。因此,即使弄清了1971年发生的那次大尘暴的猛烈情况,也不可能再去改变计算机的程序了(用宇宙探险的行话。“火星3”号的飞行程序是预编程序,而不是自适应程序)。“火星6”号的通讯中断更加神秘莫测。该飞船进入火星大气层时,火星上并没有发生全球性的尘暴,也没有理由怀疑在着陆点发生了局部的尘暴(有时会发生这种局部尘暴的)也许在着陆的一刹那飞船发生了技术故障。但也许是在火星表面上存在某种特别危险的东西。

        苏联飞船在金星着陆成功,但在火星着陆失败这两件事自然使我们对美国的“海盗”号的发射多少有些担心。原来曾非正式地计划要在1976年7月4日,即美国建国200周年纪念日,让“海盗”号的一个着陆器在火星表面软着陆。和苏联飞船—样,“海盗”号的着陆器也包括一个防烧蚀护罩,一个降落伞和几枚减速火箭。由于火星大气层的密度只及地球的百分之一,在“海盗”号进入火星稀薄的大气层时,为了使着陆器减速,使用了一个直径为18米的特大型降落伞。由于火星大气如此稀薄,如果“海盗”号在高处着陆,就没有足够的气体来制动着陆器,结果会使飞船跌得粉碎,因此需要选择一个低洼的着陆点。从“水手9”号飞船发回的资料,以及地面雷达的探测结果来看,我们知道有许多这样的区域。

        为了避免“火星3”号同样的命运,我们把“海盗”号的着陆选在风力最小的地点和时间。会毁灭着陆器的大风可能强到足以把尘土扬离火星表面。因此,如果我们所选择的着陆点经过核实没有活动的浮尘,那么我们至少可以有把握地确保风力不会太大。“海盗”号着陆器在进入火星轨道时,先不与轨道站分离,而等候轨道站对着陆点进行勘察之后才开始降落。我们通过“水手9”号发现,火星表面亮区和暗区图案的变化都发生在大风之际。假如轨道站发回的照片表明发生了那种图案的变化,我们当然不会认为着陆点是安全的。但是我们也不可能有百分之百的把握。例如,假设着陆点的风力非常大,把表面的浮土都刮走了,其后在那里又出现大风,我们就无从知道了。火星比不得地球,详细天气预报的可靠性当然要差得多(诚然,“海盗”号飞行的众多使命之一就是要加强对这两颗行星天气的了解)。

        由于通讯和温度方面的限制,“海盗”’号可能无法在火星的高纬度区着陆。无论在南半球还是在北半球,过于靠近极区(超过45度或50度),飞船与地球之间的有效联络时间以及飞船避免极低点的时间,都十分短暂。

        我们不希望在一个过于粗糙的地方着陆,因为那可能会使飞船倾覆甚至毁坏,至少准备用来采集火星土样的机械手可能被卡死,或者悬离表面1米的高处而无用处。同样,我们也不希望降落点过于松软,倘若飞船的3个着陆架深陷在疏松的泥土中,各种讨厌的后果就会接踵而至,其中包括取样机械手无法转动。但是,我们也不希望着陆点太坚硬,如果降落在一片坚硬的火山岩地面上,没有粉状的表层物质,机械手也无取到对计划中的化学和生物实验至关紧要的样品。

        当时可能得到的最佳火星照片来自“水手9”号轨道站。即使如此,其摄取的图像也未能优于90米(约100码)的范围。“海盗”号轨道站发回的照片也没有多大的改进。在这些照片中,1米(3.281英尺)长的石头是完全无法分辨出来的,而约1米长的石头却能给“海盗”号着陆器造成灾难性的后果。同样,照片也无法检测出又深又软的尘土。幸运的是有一种方法能使我们确定可能的着陆点的粗糙度或松软度,那就是雷达。很粗糙的地方会使来自地球的雷达波束发生散射,因而反射率很低,甚至在雷达屏幕上呈现一片漆黑;而很疏松的地方沙粒间的间隙很大,也会使反射减弱。我们还无法区分粗糙地点或松软地点,但在选择着陆点方面幸好并不需要去区分它们。我们知道,这两种情况都同样是危险的。初步的雷达探测表明,火星表面有四分之一到三分之一的地区对雷达波没有反射,因此都是“海盗”号的禁区。话又说回来,并不是整个火星表面都能用地球上的雷达探测到的,雷达所能探测的只是北纬25度到南纬25度之间的条带,而“海盗”号轨道站自身又没有勘测火星表面的雷达检测系统。

        着陆点的限制条件实在太多了,诸如着陆点的地势不能太高,风力不能太大,地面不能太硬也不能太软或太粗糙,离极地也不能太近。显然,我们不知火星上是否有这样的地点能同时满足所有上述的安全标准,我们也没有能找到令人满意的着陆点。

        一旦把“海盗”号轨道站——着陆器的结合体送上火星轨道,它在火星上着陆的纬度就无法再改变了。如果其近地点是在火星的北纬21度,着陆器就只能在北纬21度着陆,但通过等待在其下方的火星转动,可以在任意的经度上着陆。正因为如此,“海盗”号的科学家选择了好几个有希望的着陆地的纬度。为“海盗1”号选择的是北纬21度,主着陆点是在称为“克雷斯”(希腊语,意为“黄金之地”)的地区,该地区靠近4条蜿蜒的水道交汇处,这些水道被认为是在火星历史前几个世纪由流水冲蚀而成的。看来,“克雷斯”符合上述全部标准。但是,雷达观测的是“克雷斯”附近的区域,而不是“克雷斯”着陆点本身。由于地球与火星几何位置的关系,对“克雷斯”的第一次雷达探测只是在计划的着陆日期前几周才进行的。

        为“海盗2”号选择的着陆点是北纬44度,主着陆点为“赛多尼亚”。之所以选择这个地点,是因为根据理论上的推断,这里极有希望存在少量的液态水,至少在火星一周年中的某些时候是如此。由于预先进行的“海盗”号生物实验的对象是适应液态水环境的生物,一些科学家认为,在“赛多尼亚”着陆会大大增加“海盗”号发现生命的机会。也有人认为,在火星这样一个多风的星球上,如果存在微生物,那就应该到处都有。看起来这两种观点都有道理,难分高低。然而,显然无法对北纬44度进行雷达探测,而且让“海盗2”号进入高纬度区,我们将不得不面对巨大的失败危险。还有人认为,如果“海盗1”号着陆成功,而且运行情况良好,那么“海盗2”号将能承受更大的危险。对于花费超过10亿美元的这种飞行的命运,我本人是十分保守的。我不禁设想到飞船在“赛多尼亚”刚一着陆就不幸发生碰撞,一种关键的仪器因而发生故障。为了增加“海盗”号着陆点选择的余地,我们在南纬4度附近的雷达可探测区,另外选择了几个在地质上与“克雷斯”和“赛多尼亚”大不相同的着陆点。“海盗2”号究竟在高纬度区还是在低纬度区着陆的问题,直到最后一刻才确定下来:选择了与“赛多尼亚”同一纬度,地名本身就是充满希望的地点“乌托邦。

        我们核查轨道站发回的照片,并对雷达数据进行最后分析后发现,“海盗1”号原先选择的着陆点可能是极端危险的。有一阵子我很担心,“海盗1”号可能像传奇中的荷兰飞行员悬在空中一样,永远悬浮在火星上空,永远找不到安全的地方。但我们最后还是找到了一个合适的地点,仍然在“克雷斯”地区,但远离4大古水道的交汇处。这一拖延使我们无法在1976年7月4日按时降落。不过大家都同意,在那一天进行毁灭性的着陆,献给美国建国200周年作纪念,将是令人极为不快的。因此,我们推迟了原定的计划,而在16天后才进入火星大气层。

        经过一年半的时间,绕太阳进行了1000万公里的星际航行后,每个轨道站和着陆器的结合体都进入了预定的环绕火星的轨道,轨道站对可能的着陆点进行了探测。根据无线电的指令,着陆器进入了火星大气层,防烧护罩准确地取向,展开了降落伞,扔掉了覆盖物,点燃了减速火箭。在人类历史上,飞船首次在这颗红色星球的“克雷斯”和“乌托邦”地区成功着陆了。着陆的成功在很大程度上归功于飞船设计、制造和测试中的高超技术,同时也要归功于飞船控制系统非凡的能力。但能在火星这样危险而神秘的星球上成功着陆,至少也包含了一些机缘的因素。

        着陆以后,立即发回了首批图片。我们知道,我们所选择的地点并不十分理想,但我们毕竟充满了希望。“海盗1”号着陆器拍摄的第一幅照片是它自己的一根脚架,其目的是一旦着陆器陷进火星的流沙中,我们希望在飞船消失之前就能够知道。照片是由一条一条的线组合起来的,直到看到脚架在火星表面安全耸立着,我们才松了一口气。不久以后就显示出了其他的照片,每张照片都是用无线电分部分传到地球的。

        我还记得,当我看到着陆器拍摄的第一幅显示火星表面的图像时,曾惊讶得目瞪口呆。因为在我看来,那根本不像是一个外星世界,倒很像我在科罗拉多、亚利桑那和内华达州所看到的情景。也有石头、流沙和远处的山峰,其景观与地球上的任何景色一样自然优美。火星真是一个神奇的地方。当然,如果在一座沙丘后面突然看到满身尘土的探险家,后面还有一头骡子,我会觉得惊异不已的,但同时我又觉得这种想法似乎也不无道理。我在研究“金星9”号和“金星10”号发回的有关金星表面照片的整个过程中,都根本没有产生过这种想法。我深信,这是一个无论如何我们总要到达的世界。

        火星的景观是赤裸裸的、红色的、可爱的;远方的火山口不时蹦出雨点般的石子;此起彼伏的小沙丘;大风扬起满天尘土,不断淹没嶙嶙巨石,又不断从巨石上把尘土刮走;空中漫舞着斑驳的细粒物。这些巨石是从哪里来的呢?有多少沙子被风吹走了呢?该星球的历史究竟是怎样一种情景,才能形成地表这些光秃的巨石、埋在土中的小圆石、以及多边形的孔洞呢?这些岩石是由什么物质组成的?是与沙子相同的物质吗?沙子仅仅是巨石粉碎而成的,还是别的物质呢?那儿的天空又为何是粉红色的?此外,那里的空气是什么成分?风速又有多大?火星上有地震吗?为什么其大气压和地貌随季节而变化?

        对上述所有问题,“海盗”号都作出了确定的或者至少看起来是确定的回答。“海盗”号所揭示的火星引起了人们极大的兴趣,特别是我们还记得,着陆点正是根据它们的暗淡色调而选中的。然而,着陆器上的摄像机并没有发现那里有运河的建设者,也没有巴苏人的飞行车或短剑;没有公主或武士,没有八脚怪兽,没有脚印,甚至没有一株仙人掌或一只袋鼠。就我们的判断力而言,那儿根本不存在生命的迹象。④

        也许,火星上确实有大型的生命形式,只是不在我们两个着陆位置附近。也许在每一块石头和沙粒中、都有较小型的生命形式。在地球的大部分历史进程中,那些没有被水覆盖的区域很像现在的火星:大气饱含二氧化碳;强烈的太阳紫外光透过缺少臭氧的大气层,照射在地球表面上。直到地球历史最近的10%时期之前,大型动植物还不能适应陆地上的生活。然而,地球上到处充满微生物已经有30亿年了。因此,要寻找火星上的生命形式,还必须从微生物入手。

        “海盗”号着陆器扩大了人类到其他星球上活动的能力。从某些标准来看,着陆器像一架侦察机一样能干,但从另一个角度来说,它的智力只相当于一个小小的细菌。我们作这种比喻并没有任何贬意。自然界经历了几亿年的漫长岁月才进化出一个细菌,而经过了几十亿年的时间,才造出第一架侦察机。只要在这类事情上稍有一点经验,对此就会变得相当熟练了。像我们人一样,“海盗”号也有两只眼睛,但“海盗”号的双眼能在红外线之下工作,而我们却不能;“海盗”号的手能推开岩石,挖取土壤;它的手指竖起来能测定风速和风向;它的鼻子和味觉器官的功能也比人类的要灵敏、准确得多,它们能感觉出微量分子的存在;它的不外露的耳朵则能探测出火星内部地震的隆隆声,以及飞船激起的风的嗡嗡声;它还具有探测微生物的手段。飞船有自己独立的放射性能源系统,它能把所获得的所有科学资料通过无线电送回地球,它能接受来自地球的指令。这样,人类就能权衡“海盗”号观测结果的意义,并命令它去执行新的使命。

        在飞船大小、费用和能源消耗受到严格限制的条件下,怎样才是寻找火星微生物的最佳方法呢?我们不能,至少现在还不能把生物学家送到那里去的。我有一位朋友叫沃尔夫·维希尼亚克,他是纽约罗彻斯特大学的一位杰出的微生物学家。在50年代后期,在我们郑重地考虑寻找火星上的生命之际,他参加了一次科学会议。会上,一位天文学家对生物学家没有简单、可靠、自动的仪器去寻找星外微生物感到惊讶。维希尼亚克决定在这方面干出点名堂来。

        他研制了一种能带到行星上去的小型装置,朋友们称之为沃尔夫捕集器。他计划让它带一小瓶有机营养物到火星上,并设法使火星表面的泥土样品与营养物混合,在火星微生物如果有任何生物生长(假定能生长)时观测液体混浊度的变化。沃尔夫捕集器与其他三项微生物实验一起被选择装在“海盗”号着陆器上。其他三项微生物实验中,有两项试验准备给火星生物带去食物。沃尔夫捕集器成功的前提是:火星微生物必须喜好液态水。有些人认为,维希尼亚克的做法会淹死火星上的小生物。但沃尔夫捕集器的优点是,它与火星微生物如何对待这些食物没有任何关系,只要它们能生长就行。而所有其他的试验都基于一个特定的前提:假定微生物能够吸收或排出气体。但这种假定只不过是猜测而已。

        负责美国航天计划的国家宇航局(NASA)面临着经常发生的、无法预料的经费削减。宇航局的科学活动很少得到政府的有力支持,因此当需要从宇航局裁减经费时,科研项目总是被削减的目标。1971年决定取消四项微生物试验中的一项。而沃尔夫捕集器恰恰被从着陆器上撤了下来。这使维希尼亚克沮丧之至,因为他花了12年时间才研制成这台仪器。

        处于他这样的处境,别的人大都会悄悄地放弃参加“海盗”号生物试验。但维希尼亚克是一位勇敢而具有献身精神的科学家,他反而决定到地球上最近似于火星环境的南极干涸山谷去。他认为,这样能更好地服务于寻找火星生命的事业。以前的一些研究人员曾经仔细地检查过南极的土壤,并作出结论:人们在南极干涸的山谷所发现的极少量微生物并不是真正土生土长的,而是从比较温和的环境吹到那里去。回忆起火星罐的实验,维希尼亚克相信,生命是很顽强的,南极是完全适合微生物生存的。他觉得,如果地球上的细菌能在火星上生存,那么南极这个总的来说比较暖和、比较潮湿,且有较多氧气、紫外线少得多的地方,为什么反而不能生存呢?相反,他认为在南极干谷如果能找到生命,,将会相应地增加在火星上找到生命的机会。他还认为,以前用来推论南极没有微生物的实验方法有问题。营养物的设计虽然适应于大学生物实验室的舒适环境,却没有考虑到干燥极地荒漠的特点。

        因此,1973年11月8日,维希尼亚克带上了他的新生物实验装置,乘直升飞机从麦克默多实验站到奥斯加德地区的一条干涸的山谷——巴尔德山附近的地区,同行的还有一位地质学家。他的计划是要在南极一些小生物站进行土壤接种,一个月后再返回去回收实验物,1973年12月见日,他离开营地到巴尔德山去收集实验样品,离开时有人在约3公里外给他拍了照。没想到这竟是人们最后一次见到他生前的容貌。过了18个小时,在一座冰崖底部发现了他的遗体。看来,他走进了一个从未被探测过的地区,而且显然在冰上滑倒过,并向前翻滚了150米远。也许他看到了什么东西,譬如说发现了微生物的可能栖息地,或者是一个按理不应该有的绿色斑点。但他出事的真正原因我们是永远无法知道的了。在他那天带在身边的棕色封皮的小笔记本中,最后有这样的字句:“202号站已回收,1973年12月10日,22时30分。土壤温度:—10°,空气温度:—16°。”这正是火星上典型的夏季温度。

        维希尼亚克建立的生物实验站有相当一部分仍然在南极。从实验站取回的样品已进行过检测,这项工作是由他的同事和朋友采用他用过的方法进行的。几乎在所有的实验点都发现了种类繁多的微生物。用常规的方法是检测不出这些微生物的。他的遗孀维希尼亚克太太在他的实验样品中发现了显然只有在南极才有的酵母菌新种。尹姆里·弗里德曼检验了那次勘探中从南极带回的大岩块,结果发现了令人喜出望外的微生物,它们都藏在石头表面下l-2毫米处,藻类群生在有少量液态水聚集的小天地里。在火星这样的地方,情况将会更加有趣,因为光合作用所需要的可见光能穿透到1-2毫米的深度,而能灭菌的紫外光到达这个深度时至少会部分衰减。

        由于飞船在发射前好几年就已完成设计,同时由于维希尼亚克过早地逝世,他的南极实验成果没有能积极地影响“海盗”号寻找火星生命的设计计划。总的来说,并没有在火星的低温环境下进行微生物的试验,而且在大多数场合没有提供足够的孵化时间。对火星上的新陈代谢作用只做出了比较可靠的推测,而且也无法去寻找石头内部的生命。

        两个“海盗”号着陆器上都安装了取样机械手。机械手从火星表面采集土样后,把土样送到飞船舱内。舱内有像电动火车的料车,把样品颗粒送去进行5种不同的试验:一种是进行无机化学试验,二是在沙粒和尘埃中寻找有机分子,另外三个是寻找微生物。当我们在一个星球上寻找生命时,我们是在做某些假定。虽然我们尽量不假定其他星球上的生命完全像我们身边的生命,但我们所能做的毕竟有限,我们只对地球上的生命有比较详尽的了解。“海盗”号的生物实验是第一次开创性的努力,它们并不代表寻找火星生命的最终结果。分析的结果一直是似是而非、令人烦恼、又令人激动的。此外,至少到目前为止,大体上仍是非绝决性的。

        三种微生物实验的重点虽然各不相同,但有一个共同的课题,就是有关火星上新陈代谢的问题。假如火星土壤中存在微生物,它们必定要摄取食物、排出废气;或者从大气中吸收气体,然后借助阳光把气体转化成有用的物质。所以,我们带了一些食物到火星上去,希望火星生物(如果存在生命)会发现它们挺可口。而后,我们再观察土壤中是否放出令人感兴趣的新气体。另一种办法是带去用放射性标记的气体,然后观察这些气体是否转变成有机物。假如变成了有机物,就可以推断存在火星生命。

        根据发射前制定的标准,在“海盗”号的三种实验中似乎有两种得到了肯定的结果。第一,当火星土样与经过消毒的地球有机溶液相混合时,土样中有东西使有机溶液发生了化学分解,这很像是进行呼吸的微生物代谢了从地球上带去的食物。第二,当把地球上的气体通人火星土样时,气体与土壤发生了化学结合,这种现象,与进行光合作用的微生物从周围气体制备有机物十分相似。进行这些取得肯定结果的火星生物实验所用的土样共有7个,取自相隔50公里的两个地点。

        但情况是复杂的,判断实验是否成功的标准也可能不恰当。为了进行“海盗”号的生物实验,人们做出了巨大的努力,并用了多种微生物进行校验,但却很少做出什么努力去进行实验,对火星表面无机物的可能作用进行校正。火星不是地球,正如洛韦尔的遗训提醒我们的,我们可能被假象所迷惑。在火星土壤中,可能有外来的无机化合物。在没有火星微生物的参与下就能够氧化食物。也许有某种特殊的无机催化剂,它能固定大气中的气体,并使之转化成有机分子。

        最近的实验表明,情况恰恰可能就是如此。1971年火星发生大尘暴时,“水手9”号的红外光谱仪摄取了尘埃的光谱图。我和O·B·图恩及J·B·波拉克在分析这些谱图时发现,谱图的某些特征似乎与蒙脱土及其他种类的粘土矿物完全吻合。“海盗”号着陆器后来进行的火星土壤探测结果也与我们的分析结果相似。A·贝林和J·里希庞发现,如果在实验室的实验中,用这样的粘土代替火星土壤,就能够重现“海盗”号“成功”进行的生物实验的某些关键特征,即重现那些类似光合作用以及像是呼吸作用的特征。粘土具有复杂的活性表面,能吸收和释放气体,还能催化化学反应。但是说无机化学能够解释“海盗”号生物实验的全部结果还为时过早,它只是说明,“海盗”号的实验结果不再是令人吃惊的了。当然,粘土的假说并不能排除火星上存在生命的可能性,但却无疑使我们相信,还没有有力的证据表明火星上存在微生物。

        即便如此,贝林和里希庞的实验结果在生物学上仍具有重大的意义,因为它们说明了,在没有生命存在的情况下,土壤具有某种化学性质,其作用相当于生命活动。在地球上出现生命之前,可能也有类似呼吸和光合作用的化学过程在土壤中循环。生命一产生可能马上就参与了这些过程。此外,我们知道,蒙脱土是一种潜在的催化剂,能促进氨基酸结合成类似蛋白质的长链分子。原始的土壤也许是地球生命的摇篮。现代火星土壤化学也许能为地球生命起源及其早期历史提供重要线索。

        火星表面有许多环形山(陨石坑),它们都是以人的名字,通常是一位科学家的名字来命名。维希尼亚克环形山凑巧位于火星的南极地区。维希尼亚克并没有说过火星上一定有生命,他只是认为火星上可能有生命,而确证火星上是否有生命是一件至关重要的事情。假如火星上真有生命,那么我们将有惟一的机会来检验我们的生命形态的普遍性。如果颇似地球的火星上没有生命,我们也必须弄清其原因,因为如果情况确实如此,正如维希尼亚克所强调指出的,我们经典的实验和控制学就将面临科学上的挑战。

        “海盗”号的生物实验结果可以用粘土来解释,这些结果并不能证明存在生命这样一个事实有助于解开另一个难题,即“海盗”号的有机化学实验在火星土壤中没有找到任何有机物。假如火星上有生命,那么生命的遗骸到哪里去了呢?火星上没有发现有机分子,既没有蛋白质和核酸的构成物,也没有发现简单的碳水化合物,完全没有地球上的那种生命物质。这种情况并不一定是矛盾的,因为“海盗”号的生物实验要比化学实验灵敏1000倍(以等量的碳原子为标准),而生物实验似乎检测到火星土壤中的合成有机物。但这一切并没有留下多少余地,因为地球土壤中含有曾经存活的生物的有机残余物,而在火星土壤中,其有机物的含量比月球表面还要少。如果坚持存在生命的假定,那么我们只能认为生物的遗体被火星表面具有化学反应性的氧化性表面所分解,就像过氧化氢瓶中生物的命运一样。或者认为,火星上存在着生命,但与地球上的生命相比,有机物所起的作用小得多。

        在我看来,后一种可能似乎是一种诡辩。我不得不承认,我是一位固执的“碳至上”主义者。碳存在于宇宙的各个角落,它奇迹般地造出了生命所需要的复杂分子。我也是一个“水至上”主义者,水是有机化学能起作用的理想溶液,它能在很大的温度范围内保持液态。但有时我又感到犹豫,我对碳和水的偏爱难道与我的躯体主要是由它们组成这样的事实没有关系吗?我们之所以主要由碳和水组成,难道不是由于在生命起源之时,地球上这些物质特别丰富吗?难道其他地方的生命,譬如说火星上的生命,就不能由其他物质构成吗?

        我本身是水、钙和名字称为卡尔·萨根的有机分子的集合体。你也是由与我几乎相同的分子组成的集合体,只是聚集的标记有所不同而已。但仅此而已吗?难道除了分子以外就没有其他东西了吗?有些人会觉得这种观点颇有损于人的尊严。但在我看来,宇宙能允许分子机器进化到人这样复杂、精密的程度,实在是莫大的荣耀。

        但是,生命的本质并不是构成人体的众多原子和简单分子随意地堆集在一起。我们常常看到,构成人体的某种化学物质价值只有97美分、10美元或相差无几的价格,看到我们宝贵的身躯价值如此可怜,真令人有点恼怒。然而,只有当人体变成最简单的可能成分时,才能这样来估价。人体的主要成分是水,而水几乎不值分文;碳则是以煤的形式来估价的;我们骨头中的钙就是白垩;人体蛋白质中的氮则存在于空气中(而空气也是便宜之至的);我们血中的铁在锈钉上就有。如果我们知道的就是这么一点点,我们或许会想把组成我们身体的所有原子装在一个大容器内搅拌。我们可以任意地延长这种可笑的尝试,最后我们只能得到令人乏味的原子混合物。除此之外,我们还能期望得到什么呢?

        哈罗德·莫罗维兹根据人体的准确分子组成,计算了从化工商店购买同样分子组成的化合物所需的费用,答案是大约1000万美元。这个价钱应该会使我们都觉得稍微心安理得些。但即使我们把这些化合物混合在一起,也绝不可能有一个人从罐子里钻出来,因为那已大大超越了我们的能力,而且在相当长的时间内仍然是不可能实现的。幸运的是,还有其他花钱较少但可靠性高的方法能制造人体。

        我认为,总体而言,许多星球上的生命都将由与我们这里相同的原子所组成,甚至基本的分子、如蛋白质和核酸也可能相同只是组合的方式不同而已。漂浮在稠密的星际大气中的生物,其原子组成也将可能与我们极其相似,差别只在于它们可能没有骨骼,因而不需要那么多钙。在其他世界上,也许使用的是水以外的某种溶液。氢氟酸可能就相当不错,尽管宇宙中氟的含量并不多,氢氟酸对构成人体的分子极其有害,但其他的有机分子,例如石蜡分子,在氢氟酸中却极为稳定。液氨可能是一种更好的溶液,因为宇宙中氨的储量非常丰富,但只有在比地球和火星冷得多的世界里,氨才能成为液态。在地球上,氨通常是一种气体,如同水在金星上呈气态一样。还有一种可能,即可能存在根本就不需要任何溶剂系统的生物,也就是固态生命,那里只有到处传播的电信号,没有四处漂游的分子。

        但上述假定并没有解决“海盗”号着陆器的实验所预示的火星生命问题。那个颇似地球的世界,拥有丰富的碳和水,生物理应以有机化合物为基础。70年代后期进行的有机化学实验结果,与飞船拍摄的图像和生物实验都表明,在“克雷斯”和“乌托邦”的细沙堆中没有生命。也许在岩石下几毫米处(如同在南极干谷),或者在火星的别的什么地方,或者在火星早期某个较温暖的时期里存在过生命,但不是在我们寻找的地点和时间。

        “海盗”号对火星的探险具有重大的历史意义。它是人类第一次认真地探索其他可能的生命形式,也是飞船在其他星球上第一次安全地工作了长达一小时(“海盗1”号维持了若干年之久)。它在对另一个世界的地质学、地震学、矿物学、气象学和其他五六门学科的研究方面硕果累累,获得了许多宝贵的数据。在这惊人的进步面前,我们该如何继续前进呢?一些科学家打算发射一个自动装置,能在火星着陆,采集土样,并把土样送回地球。这样,他们就可以在地球上的大型、精密的实验室中(而不是在我们所能送到火星上的小型实验室中),极其详细地检测火星的样品。这样,就可以解开“海盗”号生物实验的大部分疑团。可以测定火星土壤的化学和矿物学,可以劈开石头去寻找次表层的生命。还可以在各种条件下,采取各种方式,包括直接的显微镜观察,进行几百种生物和有机化学的试验。我们甚至还可以采用维希尼亚克的试验方法,尽管很费钱,但这类飞行恐怕并没有超出我们的技术能力。

        然而,这种飞行面临着一个新的危险,那就是后污染问题。假如我们想在地球上检查火星上样中的微生物,当然不能对土样进行消毒处理,探险的目的就是要把它们活着带回来。但如果不消毒,后果会怎样呢?带回到地球的火星微生物会对公众的健康造成危害吗?H·G·威尔斯和O·威尔斯笔下的火星人想尽办法对伯恩默思和泽西城的居民封锁消息,一直不为人所知,直到发现他们的免疫系统对地球上的细菌不起作用,但已经太晚了。与此相反的事情有可能发生吗?这是一个严肃又难以回答的问题。火星上可能并没有微生物,如果有的话,可能我们吞1千克到肚子里去也不会有什么不良反应。但是。我们不敢肯定,所冒的风险实在太大了。因此,要把未经消毒的火星土样带到地球上来,我们必须采取十分可靠的预防措施。有些国家研制并贮存了细菌武器。这些武器似乎偶尔也发生过一些事故,但就我所知,至今并未造成世界性的传染病。因而,或许能把火星土样安全地带回地球来。尽管如此,在考虑进行取回试样的飞行之前,我希望能做到绝对安全可靠。

        还有另外一种途径去研究火星,研究这颗异种的行星对我们所具有的全部奥秘和魅力。在我研究“海盗”号着陆器所拍摄的照片时,使我感触最深的是我们的活动能力所受到的限制。不知不觉中,我竟切望飞船哪怕靠自己的脚尖站立起来也好,但似乎依设计不能动的飞船实验室竟然反常地拒绝设法跳一步似的。我们曾久久地引颈盼望,能用取样机械手拨开那座沙丘,去寻找那块岩石下的生命,仔细地看看那个遥远的山脊是不是一个火山口的砾垒啊!我知道,在其东南方不远处是“克斯雷”地区的4条蜿蜒的水道。从“海盗”号所有那些十分引人人胜的探测结果来看,我已发现上百个比“海盗”号着陆点更有意义的地点。最理想的工具是能进行高级实验,尤其是进行摄影、化学和生物实验的流动车辆。宇航局正在研制这种车子的原型。这种车辆自己知道如何越过岩石,如何避免在山涧翻车,如何离开险境。如果能让这种流动车在火星上着陆;它就能扫描周围的区域,在它的视野范围内发现最有意义的地点,并在第二天的同一时间出现在那里。每天去一个新地方,蜿蜒地横越这颗迷人行星复杂多变的地形。使这种装置登上火星并没有超出我们的能力范围。

        即使火星上没有生命,发射这种车子也具有巨大的科学价值。因为这样一来,我们就可以在古河道中漫步,去攀登一座大火山,沿着冰冻的极地上那奇怪的阶梯,或者抄近路,到达火星上那诱人的金字塔⑤。对于这样的探测飞行,公众肯定也会有广泛的兴趣。在我们家中的电视屏幕上,每天都将看到一组新的景色。我们将能随着巡回车的踪迹,去细细地研究它的发现,提出新的目标。旅程可能是漫长的,但巡回车能遵从地球上的无线电指令。因此,我们会有足够的时间把新的想法编人探测计划中去,成千上万的人也就都能参加到另一个世界的探险中去。

        火星的表面积刚好与地球上的陆地面积相等。显然,对火星的彻底勘察将会使我们忙碌几个世纪之久。但是,总有一天火星会被全面地探测的:利用机器人飞机从高空摄制火星地图,巡回车跑遍整个火星表面,土样被安全地带回地球,甚至人类能在火星的沙地上散步。到了那时候,又该怎么办呢?我们该如何对待火星呢?

        人类滥用地球的事例真是不胜枚举,只要一想到这个问题,我就不寒而栗。假如火星上有生命,那我认为,我们就不应该再去干扰火星了,因为火星理应属于火星人,即使火星人还只是处于微生物阶段也罢。在邻近的星球上存在独自的生物,对我们来说是一桩无法估量的好事。因此,我认为,保护那里的生命的责任远远高于对火星的任何其他可能的利用。但是如果火星上没有生命又该如何呢?火星不大可能成为一个原料供应地,因为在未来的几百年内,要从火星往地球运送东西,运费将是极昂贵的。然而,我们能否在火星上生活?能否在一定程度上使火星变得适于居住呢?

        火星是一个可爱的、迷人的世界,但从我们狭隘的观点看来,它也有许多不足之处:主要是氧气太稀少,没有液态水,紫外线通量太高(从南极的永久性科学考察站的情况看,火星的低温还不是不可逾越的障碍)。只要我们能制造出更多的空气,所有这些问题都会迎刃而解。大气压升高后,液态水就可能形成。氧气增加后,我们就可以在大气中呼吸了,也就会形成臭氧层,保护火星表面不受太阳紫外线的伤害。蜿蜒曲折的水道,层压极状的极区山地,以及其他的证据都表明,火星大气的密度曾经很高,这些气体不大可能会脱离火星。因此,它们肯定存在于火星的某个地方。一部分气体已经与表面岩石发生了化学结合,一部分存在于次表层的冰中,但大部分气体可能存在于现在的极地冰帽之中。

        为了蒸发冰帽,我们就必须对它加热,或许我们可以在冰帽上撒上黑色的粉末,这样冰帽就可以吸收较多的阳光,这是同我们破坏地球的森林和草原恰恰相反的一件事情。但冰帽地域面积很大,为了撒遍黑土,需要1200台“土星5”号火箭推进器,才能从地球上运去所需要的黑土。而且,即使能做到这一点,火星上的风也会将它们吹跑。因此,最好是能研制出某种能自行增殖的黑色物质,这种物质应是一种微小的黑色机体,当我们把它送到火星以后,它就会到处分布,并以这种黑色物质为母体,自行大量繁殖,从而覆盖整个冰冠。这种机体是有的,就是我们称之为植物的生物。某些植物非常耐寒,而且有很强的适应能力。我们知道,地球上至少有某些微生物能在火星上生存。现在需要的是有一个研究计划,对黑色植物进行人工选择和遗传工程研究,也许可以选择苔藓植物,它们也许更能适应火星的严酷环境。如果这类植物在火星上能够繁衍的话,我们可以想象它们一定会在火星极地冰帽的广袤大地上播种、生根、蔓延,使冰冠呈现黑色,从而可以吸收阳光,加热冰层,把古代火星大气从长期的禁锢中解放出来。我们甚至可以想象有火星的阿卜细德(美国18世纪的拓荒者),不管是机器人或者是人类,漫步在冰冻的极地荒原上,他们的活动将会有助于未来的人类。

        这样一个总体的概念被称为“地形改造”,即把地球以外的世界的地形改变成较适于人类生活的环境。几千年来,人类活动造成的温室效应和反照率的变化,只使地球的温度改变了1度左右。当然,如果照目前燃烧矿物燃料的速度,以及森林和绿色植被的毁坏速度来看,只需要一两个世纪,就会使全球气温再升高1度。种种理由表明,要对火星进行卓有成效的地形改造可能需要几百年乃至几千年的时间。在科学技术高度发达的未来,我们不仅可以期望增加火星的总大气压、化出液态水,而且可以期望把极地冰帽融化的液态水输送到较暖和的赤道地区,建造运河就可以做到这一点。

        表层和次表层的冰融化后,可通过大运河网输送出去。但是,在火星上将会发生的这种事情,那岂不正是不到100年前洛韦尔看错了的那种景象吗?洛韦尔和华莱士都认为:火星环境之所以不适合于我们,就是因为那儿缺水。假如真能建成运河网,缺水的问题就会大大改善,在火星上居住就有可能成为现实。洛韦尔是在极其艰难的条件下进行观测的。斯基帕雷利等其他一些人也观测到了类似运河的目标,在洛韦尔开始他对火星的毕生研究之前,这些目标被通称为水道。人类在他们的情感受到刺激时往往会显示出自欺欺人的特殊才能。在这一方面,很少有其他的观念比在邻近的星球上居住着智慧生命的观念更激动人心的了。

        洛韦尔观点的力量可能就在于使这种观点变成一种预言。是他认为火星人建造了运河网。甚至这种观点也有可能成为一种确切的预言:假如要改造火星,那将由人类来完成,火星是人类能永久居住的另一颗行星。火星人将是我们人类自己。

        ______________
         ①英文的“无人知道”为二个字(Nobody Knows)。——译注

        ②1938年由沃生·威勒士(Orson Wells)改编的广播版本,把火星人的入侵从英格兰改变到美国的东部,使对战争神经过敏的成千上万美国人相信火星人确实在发动进攻了。

        ③牛顿断言:“即使制造望远镜的理论得到最充分的利用,望远镜仍然有一定的限度。超过这个限度望远镜就无能为力了。因为我们观察星球时要通过空气,而空气处于不停的震动之中……。惟一的解决办法是需要最晴朗、最宁静的空气,而这样的空气恐怕只有在高耸于云海之上的山巅才能找到。”

        ④当人们在“克雷斯”地区的一块石头上依稀看到一个像大写字母B的图像时,曾认为那是火星人刻下的,这使大家都高兴了一阵子。但后来的分析表明,那不过是光线、阴影以及人类图像识别技术上发生的幻觉。同时,火星人怎么也使用拉丁字母呢,这是不可思议的。有那么一会儿,在我的脑海里出现了我童年时神往的一个字眼“巴苏”。

        ⑤最大的金字塔底部直径3公里,高1公里,这比地球上的埃及和墨西哥的金字塔要大得多。这些金字塔看起来很古老,饱受侵蚀。它们或许只是些小山或长期聚集的沙丘。但是我想,它们是值得仔细勘察一番的。

        第六章 旅行者的故事

        究竟存在着许多世界,还是只有一个世界呢?这是人们研究自然时经常提出的一个最神圣、最令人激动的问题。 圣亚伯特·马格鲁(13世纪)

        混沌初开之际,岛国的土著人或者认为,他们是地球上惟一的居民,或者也认为,即使还有其他居民,他们之间也无法互通往来,因为在他们之间有着当时不可逾越的大海。但随着岁月的流逝,出现了船只……,也许有一天还会出现能把人送上目球的某种其他交通工具……,但是,德雷克和哥伦布尚未降世,没有人能担当得起这种旅行的重任,更没有任何代达罗斯式的人物,能造出上天的工具来。不过。我毫不怀疑,时间老人仍旧会是新知识之父,他曾向我们披露了那么多我们的祖辈一无所知的事实真相,他一定还将向我们的后辈,披露我们今天梦想着,但又不可实现的事情。 约翰·威尔金斯《月球世界之发现》(1638年)

        假若升上地球之巅,从高往下观察,就可以明白,造物主究意把我们这小小寰球变成了什么模样。这样,就像要远足旅行者一样,我们就会更加清楚,出发前该做些什么准备,也就会更准确地估计和评价旅途中的一切。此外,假如我们问得天外有天,还有许多同我们地球相似的星球住有居民,受到崇拜,我们就不会对地球上称之为伟大的东西赞不绝口,也就会藐视大多数凡夫俗子所津津乐道的区区小事。 惠更斯①《宇宙论》(1690年)

        人类开始邀游太空的时代来到了。在星际开普勒轨道上航行的现代飞船都是不载人的,它们都建造得美观,装有探测未知世界的半智能机器人。到太阳系外的这些航行都由设在加州帕萨迪纳的国家宇航局喷气推进实验室(JPL)地面站控制。

        1979年7月9日,“旅行者2”号宇宙飞船经过几乎两年时间的行星际航行到达了木星系。这架飞船由几百万块各带有备件的分装部件组成,因此,若某一部件失灵,其他部件就会取代其功能。飞船重0.9吨,要有一间很大的房屋才能放得下它。飞船的使命要求远离太阳,因此不可能像其他飞船那样用太阳能做动力。“旅行者2”号的动力来自飞船上的一个小型核电厂,利用由一块钚的放射性衰变产生出的几百瓦的电能。船上的3台集成电路计算机以及大多数辅助设备,例如温度控制器,都位于飞船中心。飞船通过一个直径为3.7米的大型天线从地面站接收指令,并将本身的发现送回地面站。在飞船上,大多数科学仪器都安装在一个观测台上,当飞船从木星旁疾驶而过时,这些仪器就会跟踪木星或其卫星。许多科学仪器,如紫外和红外光谱仪等被用来测定木星上的带电粒子、磁场及其发射的电波.但其中最重要的仪器则是两台电视摄影机。这两台电视摄影机按其设计功能拍摄了成千上万张太阳系外行星的照片。

        木星的周围是一层看不见的但却极其危险的高能带电粒子。为了靠近考察木星及其卫星,并继续完成考察土星和更远的星球的使命,飞船必须穿越该辐射区的外端。然而,带电粒子会损害精密仪器,甚至毁坏电子设备。木星周围还有一圈固体碎片,这些碎片是4个月前由“旅行者1”号发现的。一旅行者2”号必须穿越这圈碎片层。与一块小碎片的碰撞就会使飞船颠簸得失去控制,从而使得其天线不能跟踪地面站,所发出的数据也就永远收不到了。就在穿越碎片圈之前,地面控制人员还很担心,因为出现了一些警报及险情,但在地面人员的努力和飞船机器人的配合下,终于避免了一场灾难。

        于1977年8月20日发射后,飞船沿弧形轨道经过火星,穿越小行星区,接近木星系,并终于穿过了木星及其14个左右的卫星。土星的重力将使飞船加速飞向天王星。飞越天王星后,它就会继续向前飞向海王星,飞离太阳系,从而成为星际飞船,永远邀游于浩瀚的星际海洋之中。

        “旅行者”的探索性航行是一系列航行中的最新航行。所有这些航行都为人类历史留下光辉灿烂的标志。在15、16世纪。人们从西班牙旅行到亚速尔群岛要用几天的时间,而今天用同样多的时间,就可从地球飞到月球。当时要横渡大西洋,到达人们称做新大陆的美洲,需用几个月的时间;而今天,用几个月的时间,就可横越太阳系,到达火星或金星,这是两个正等待我们光临的真正的新大陆。在17、18世纪,人们用一两年的时间,可以从荷兰旅行到中国。而如今,用同样多的时间“旅行者”号飞船从地球飞到了木星②。相对来说,一年中的费用当时要比现在多,但在两种情况下,都不到当时国民总产值的1%。现时的机器人飞船是人类将来探索其他星球的先驱和前导。我们以前已经有过这种形式的旅行。

        15到17世纪是人类历史的重要转折点。在此历史时期,人们明确认识到,人类能航行到世界的任何角落。来自6个欧洲国家的船舶勇敢地航行于世界各大洋,但其动机各不相同:野心、贪婪、民族自豪感、宗教狂、赎罪、科学好奇心和冒险欲以及在埃什特雷马杜拉③找不到合适的工作等等。这些航行功过相当。但其基本的功劳是把世界联系到一起,减少了狭隘性,统一了人类,极大地推进了对地球及人类本身的认识。

        新兴的荷兰共和国是17世纪乘船考察和探险时代的典型。当时她刚刚宣布独立于强大的西班牙帝国,比同时代的任何其他国家都更充分地拥有欧洲的启蒙思想,是一个有理智、守秩序、具有创造力的社会。但是,由于西班牙港口对荷兰关闭,船舶禁止与荷兰交往,这个小小的共和国的脆弱经济只好依靠自己的力量来建立和使用一个庞大的商业船队。

        荷兰的东印度公司是一家政府和私人的联营公司,她派船到世界上遥远的角落去搜集珍贵货物,然后运回欧洲渔利。这些航行是荷兰的生命线,航海图和地图被定为国家机密。船上经常带有密封的指令。荷兰人一下子遍布于整个世界,北冰洋的巴伦支海以及澳大利亚的塔斯马尼亚岛都是以荷兰船长的姓氏命名的。这些探险者尽管在很大程度上是为了经济上的利益,但决非仅此而已,它还包括有其他的重要成分,如科学探险,发现新大陆、新植物、新动物及新民族的热情,以及纯粹对知识的追求。

        阿姆斯特丹市政厅表现了17世纪自信而又历史悠久的荷兰的概貌。它是由花岗石修建的。当时的诗人和外交家康斯坦丁·惠更斯评价说:这个市政厅的建设摒除了“哥特式的倾向及其惨景”。直到现在,在市政厅里还有一座撑持苍穹的阿特拉斯神雕像,天空中饰以星座图形。其下是守护神,挥舞着金剑和金盾,站在死神和复仇者之间,并且把贪婪和嫉妒这两个商人之神踩在脚下。以私人经济为基础的荷兰人明白,毫无节制地追求利润会构成对国家灵魂的威胁。

        在阿特拉斯神和守护神下面的市政厅地板上还可找到一些不那么富于寓意的象征。那是一张大型的内嵌图,是17世纪末叶或18世纪初叶从西非到太平洋的一张地图。在当时全世界都是荷兰的活动场所。而且,就在这张图上,以其不可思议的谦恭,荷兰人竟省略了他们自己,对于位于欧洲的本国本土只是使用了古拉丁名称——Belgium(比利时)。

        在当时有代表性的一年中,有许多船要起锚绕地球航行半圈。从非洲西岸,穿过他们称之为埃塞俄比亚海的水域,绕到非洲南岸,进入马达加斯加海峡,然后继续航行到印度的南端,到达他们的兴趣焦点——香料群岛,即现在的印度尼西亚。一些探险队从那儿又航行到一个称为新荷兰的陆地,也就是今天的澳大利亚。有几个探险队更冒险通过马六甲海峡,经菲律宾而到达中国。从17世纪中叶荷兰东印度公司的大使觐见中国皇帝的记载中,我们知道。荷兰人,包括大使和船长在看到北京紫禁城的另一文明景象时,都惊奇得瞪圆了眼睛。④

        在此之前和从此以后荷兰再也没有像当时一样成为一个世界强国。一个小国,被迫以其智慧生存,其外交政策具有强烈的和平主义因素。那时,因为容忍非正统观点,荷兰成为欧洲其他国家因缺乏出版和言论自由而逃亡的知识分子的天堂——这非常像30年代的美国,从纳粹统治下的欧洲大批出逃的知识分子中获益不浅。正因为如此,17世纪的荷兰成为爱因斯坦所崇敬的、伟大的犹太哲学家斯宾诺沙的家乡,也是法国数学和哲学史上的重要人物笛卡尔的家乡,同时也是政治家、科学家约翰·洛克的家乡——他影响了一大批哲学上倾向革命的人士,如潘恩、哈密尔顿、亚当斯、富兰克林和杰斐逊。荷兰当时正空前绝后地因那一群卓越艺术家、科学家、哲学家和数学家而熠熠生辉。那是著名画家伦勃朗、弗美尔、哈尔斯的时代,也是发明显微镜的列文胡克的时代,同时也是国际法鼻祖格劳秀斯和发现光折射定律的斯涅耳的时代。

        在具有提倡思想自由传统的荷兰,莱顿大学为一位名叫伽利略的意大利科学家提供了教职,罗马天主教堂曾威胁并逼迫他放弃他的学说,即地球是绕太阳运转的,而不是相反。⑤伽利略与荷兰有密切的联系,他的第一台天文望远镜就是一种荷兰设计的小望远镜的改进装置。利用它,伽利略发现了太阳黑子、金星位相、月亮上的环形山以及木星的4大卫星,在他逝世后,这些卫星被命名为伽利略卫星。在1615年写给荷兰女君主的信中,伽利略说明了他自己对教会工作的看法:

        若干年以前,正如尊贵的君主阁下所十分了解的,我就在天空中发现了许多我们时代以前从未发现的东西。一这些新奇事物,以及由此而产生的某些与经院哲学家普遍认为的物质概念相矛盾的结果。使我得罪了不少教授(他们中许多人是教徒)——好像是我亲手把这些东西塞入天空,以便扰乱自然界、推翻科学似的。他们似乎忘记了,正是因为人们日益掌握了真理,才促进了艺术的研究、完善和发展⑥。

        作为一个具有强烈探索性的强国的荷兰,与作为一个知识和文化的荷兰之间的联系是非常紧密的。对改进船舶的需要推动了各种工艺的发展。人们喜欢手工劳动。发明创造受到奖励。技术进步需要尽可能地猎取知识,因此,荷兰成为欧洲最权威的出版社和书商,她既翻译用其他文字撰写的著作,也允许其他地方禁止出版的著作在荷兰发行。去外国探险及见到其他陌生社会打破了荷兰人的自大情绪,促使人们重新认识那些传统的定论,而且也说明,千百年来人们所持的观点,例如关于地理的观点是完全错误的。在世界大部分地区由皇帝和国王统治时.荷兰共和国却比其他任何国家更多地由人民治理着。社会的开放及其对脑力活动的鼓励,物质享受以及对别的国家的考察与利用,产生了可喜的对人类事业的信心。⑦

        意大利的伽利略宣布发现了其他天体,布鲁诺则推测有其他的生命形式。他们为此都受到了残酷迫害。然而在荷兰,相信上述两种观点的克里斯蒂安·惠更斯却得到人们的极大的尊敬。其父名叫康斯坦丁·惠更斯是当时一位著名的外交家、作家、诗人、作曲家和音乐家,是英国诗人约翰·堂恩的亲密朋友及其翻译家,同时他也是一个原始大家庭的主人。康斯坦丁赞赏画家鲁本斯的画,并且“发现”了一个名叫伦勃朗的年轻画家,后来在他的好几幅作品中都有康斯坦丁出现。初次与他见面后,笛卡尔就写道:“我不能相信,人的脑袋瓜里竟能装满那么多的东西,而且还装置得那么完美。”惠更斯的家里摆满了世界各地的物品。其他国家的知名思想家是他的常客。在这样的环境下成长,年轻的克里斯蒂安·惠更斯同时精通语言。绘画、法律、科学技术、数学和音乐。他的兴趣和联系是广泛的。他说:“全世界都是我的家,科学就是我的信仰。”

        光是那个时代的一大主题:既是启蒙运动,思想和信仰自由及地理发现的象征,又于当时的绘画中无所不在,尤其是在弗美尔的优美作品中,随处都表现了光;而且,光也是科学研究的课题,例如斯涅耳的光折射研究,列文虎克发明显微镜及惠更斯本人的光的波动学说,都是对光的研究。⑧上述活动都是相互关联的,且其研究人员也是自由组合。弗美尔居室的特点是到处都有航海用具,墙上挂满地图。显微镜则是客厅内的珍品。列文虎克是弗美尔的财产委托人,也是惠更斯在霍夫维克家中的常客。

        列文虎克的显微镜是由布商用来测定布质的放大镜改进而成的。他用显微镜在一滴水中发现了一个微生物世界。他把这些微生物称为“微小动物”,且认为其“精巧玲珑”。惠更斯对设计第一架显微镜做出了许多贡献,并用它发现许多新事物。列文虎克和惠更斯是最早观察到人类精子细胞的人,而这又是理解人类生殖活动的先决条件。为了说明微生物是如何在预先经过高温灭菌的水中的逐渐发展过程,惠更斯认为,微生物小得足以透过空气,并在水中顺利繁殖。因此,他提出了自然繁殖的方案,即在发酵的葡萄液或腐肉中生物也能生长的观点,这种繁殖过程与以前存在的生物完全无关。但是,惠更斯这个正确的观点,直到两个世纪以后的巴斯德时代才得到证明。人们对火星上是否存在生命的研究,可以用不止一种方法追溯到列文虎克以及惠更斯的研究工作上去。这两人也是细菌致病论的鼻祖,因而也是许多现代医学的鼻祖。然而,他们头脑中并没有实用动机,他们只是在一个崇尚技术的社会里做些零修碎补的杂活。

        荷兰于17世纪初期研制成的显微镜和望远镜,大大有助于人类对微观和宏观世界的观察。只有在此时此地,人们才能开始对原子和银河系的观察。惠更斯喜欢研磨和抛光天文望远镜用的镜片,并制成了一台5米长的天文望远镜。仅凭用它做出的发现本身,就足以使他稳坐人类文明史上的一把交椅。他是在埃拉托色尼之后第一个测定另一星球体积的人,是第一个认为金星完全是由云层覆盖的人,是第一个描绘火星表层景象的人(火星表面是一个称为大流沙的黑色的当风大斜面,通过观测火星旋转时这种景象的出现和消失,第一个确定火星和地球差不多一样,自转一圈需24小时的人。是他第一个认识到土星周围有许多环,这些环与土星互不接触。⑨另外,他发现了土星的最大卫星——土卫六,而且,正如我们现在知道的,土卫六,也是太阳系的最大卫星——一个大有希望与前途的星球。这些发现的大部分都是在他20几岁时完成的。同时,他认为星占学完全是一派胡言乱语。

        惠更斯的成就远不止于此。当时,航海上的一个关键问题是测定经度。因纬度易于以星座确定——你向南越远,你看到的南天星座就越多。但是,测经度要求计时精确。一台准确的船上时钟能告诉你离港的时间,太阳和星星的升落可确定船只的当地时间,这二者的差别可用来校正经度。惠更斯发明了摆钟(其原理早就由伽利略发现了)。尽管还不十分完美,但当时已用这种钟来确定船只在无边海洋中的位置。他的发明大大提高了天文学和其他科学观测的准确性,而且促进了航海用钟的日臻完善。他发明了至今仍用在某些手表中的螺旋形平衡弹簧。他对力学,例如对计算离心力,以及通过研究掷骰子对概率论等进行研究,都做出了重大贡献。他改进的气泵在后来引起了采矿业的一场革命。他改进的“神灯”,是幻灯机的始祖。他还发明了一种称为“火药机”的东西,这对蒸汽机的研制大有影响。

        惠更斯1659年出版的《土星星系》的详细插图。图中,惠更斯正确地说明,随着地球和土星几何关系的变化,土星环的外形也发生变化。土星进入B点时,一旦土星成直立状,其薄如纸张的星环就要消失。土星进入A点时,在地球上观察土星的形状最清楚。就是在这一点上,伽利略用极其简陋的望远镜看清这个大行星的形状。

        惠更斯感到高兴的是,哥白尼关于地球是绕太阳运行的行星的观点,为荷兰人所广泛接受。他说,除了那些“智力有点迟钝的人,或迷信权威的人”以外,所有的天文学家都肯定哥白尼。中世纪时,信教的哲学家热衷于辩论,因为天体每天绕地球运行一次,所以,天体的范围几乎不可能是无限的,从而也不可能有无数个世界,甚至不可能有许多世界(或者说不可能再有别的世界)。发现地球绕太阳转而不是相反具有重要意义,它说明了地球的独特性及别的星球也存在生命的可能性。哥白尼认为,不仅太阳系,而且整个宇宙都是以太阳为中心的。开普勒也否认各恒星都有自己的行星系,把确有很多或无数其他的天体绕它们自己的太阳运行的观点说明清楚的第一人,似乎是布鲁诺。但其他人认为,根据哥白尼和开普勒的观点立即会产生世界的多元性的看法,而这是令人奇怪的。17世纪初期,罗伯特·墨尔顿主张,日心说表示了其他星系的众多性,他还认为,这是一种称为归谬法的争论说明了初始条件是错误的。他在一篇曾经看来很有说服力的论文中写道:

        如果太空是那样大得不可比拟,像哥白尼等伟人说的那样……,那样广阔无垠,充满了无数的星体,那么,为什么我们不能假定……、太空中能见到的那无数星体就是如此众多的太阳。围绕特定的中心,同样有其各自的行星,就像太阳仍有行星绕其运行呢?……既然如此,那就会有无数有生命的世界,为什么不能呢?……诸如此类的专断而大胆的假设、惊人的诡辩,必然会产生影响,如果假定……开普勒……和其他人仍然坚持地球运行的观点。

        但是,地球确实在运行。如果墨尔顿活到今天,一定也会得出有“无数有生命的世界”的观点。惠更斯也相信这种观点,他欣然表示说:“跨越宇宙之海,星体就是其他的太阳。”惠更斯以为,以太阳系类推,上述星体应该有其各自的星系,而且其中许多星体可能有居民:“假若我们认为这些星体除了无边的荒漠就一无所有……且排除有高级生物的可能,那么我们就会贬低它们的美观与尊严,认为它们不如地球,而这是非常不合情理的。”⑩

        这种见解是在一本不同凡响的书中提出的,该书冠有一个动听的题目:《天体奇观,关于其他行星上的居民、植物及其世界的猜想》。该著作是在惠更斯于1690年逝世前不久完成的,它受到许多人,包括沙皇彼得大帝的称赞,他使该书成为在俄国出版的第一部西方科技书。书中大部分是论述星球的特性或环境的。在印制精美的第一版插图中,我们可看到一幅按比例绘制的太阳和巨大的木星、土星图,相对来说,它们太小了,地球只是一个很小的圈。

        惠更斯认为,其他星球的环境和居民,大体上与17世纪地球上的情况相同。他想象:“行星人”的全身,包括身体的每一部分,都是颇为奇特的,与我们的身体大不相同……。一个有理念的灵魂绝对不会寄居在非人形的身体中,这种见解是极为狭隘可笑的”。他还认为,外星人即使形状古怪,却可能富有才智。甚至根本就不古怪,也像我们一样,有胳膊有腿,能直立行走,也能写字画图。所以他认为木星系的4颗伽利略卫星,起着航标的作用。当然,惠更斯只是他那个时代的一个公民。我们谁又不是呢?他把科学当做他的宗教来信仰,因此认为太空中一定有居民,否则,卜帝创造那么多星体,就毫无意义了。因为他生活在达尔文之前,他的上述观点自然不符合进化论。但是,他通过观察提出的某些论点,却与现代宇宙观相同:

        “旅行者”号飞船正是早期的航海探险船和惠更斯科学思辨的后代。“旅行者”号飞船探测的星球,也正是惠更斯早就知道,并且深为迷恋的大千世界。

        几个世纪前那些远航所带回来的一个重要产品就是旅行者的故事。⑾那是一些关于陌生国度和珍禽异兽的故事,曾引起人们的好奇感,激发了后来的探险。其中讲到擎天的山峰,海中的龙和海怪,纯金的餐具,以臂为鼻的怪兽,嘲笑墨守教义的基督教、天主教、犹太教和回教的教徒们无谓争吵的人,还谈到了能燃烧的黑石头,嘴长在胸部的无头怪人,以及生活在树上的绵羊。这些故事有真有假,有些具有真理的内核却为探险者所误解,所夸张,在流传中走了样。在伏尔泰和斯威夫特的笔下,这些描述在欧洲引起了新的争论,促使人们重新考虑那奇特的世界。

        现代飞船也带回来许多旅行者的故事。这些故事描述了一个晶体状的世界,描述了一个从南极到北极遍布蛛网状物体的星球,其周围的小卫星状如土豆;这是个拥有地下海洋的世界,又是个状如意大利馅饼,散发着臭鸡蛋味的陆地,拥有充斥融硫的湖泊,火山不断朝空中喷出烟火;这是个叫做木星的行星,在木星面前,地球是如此渺小,以致木星可以容纳得下1000个地球。

        木星的伽利略卫星,也几乎都和水星一样大。我们已能测定出这些卫星的体积和质量,因而可以计算其密度,从而可以推测出它们的内部结构。我们发现,靠里的两颗卫星——木卫一和木卫二,其密度和岩石差不多。外面的两颗卫星——木卫三和木卫四的密度则要小得多,介于岩石和冰块之间。但在这两颗卫星内,却含有放射性物质,这使其周围的物质变热了。这积聚了几十亿年的热量,无法到达卫星的表面,更谈不上向宇宙扩散了,因此,这种热量必定会融化其冰冷的内部物质。在能靠近观察这4颗卫星前,我们曾估计,这些卫星的地下海中的水,可能彼此大不相同。“旅行者”号飞船靠近观察的结果,证实了我们的估计是对的。它们彼此确实大不相同,也与我们见过的任何其他世界不同。

        “旅行者2”号飞船再也不能返回地球了。但是,它的惊人的科学发现,这种真正的旅行者的故事,却返回了地球。例如,1979年7月9日8:04(太平洋标准时间),一个以旧欧洲命名的新世界,即欧罗巴卫星(指土卫二)的首批图像传到了地球。

        飞船远在太阳系之外,如何能使图像传到地球上来呢?土卫二绕木星运行时,阳光照射在它的表面上,又反射到宇宙之中,其中一部分光线反射到飞船的电视摄影机镜头上,从而产生了图像。经过飞船上的计算机处理后,图像变成电波,飞越5亿公里后,传到地面站的射电望远镜上。在西班牙、加州南部的莫哈韦大沙漠,以及澳大利亚(1979年7月那天早上正是在此地的望远镜正对着木星和木卫二),各有一个这样的地面站。然后,再发送到通信卫星上,由通讯卫星把信息传送到加州南部,尔后,通过一系列微波中继站,最后把信息输送到喷气推进实验室的计算机中处理。图像大致像报纸的传真照片,由大约100万个小点组成,每个小点明暗的程度不同,这众多的小点,靠得很近,用肉眼观看离得稍远就无法分辨,只能看到其累积效果。从飞船上传来的信息决定每个小点的明暗程度。经过处理后,这些小点可贮存在磁盘上,与唱片的贮存方式十分相似。一号飞船拍摄的木星系照片,约有1.8万张,都被贮存在这种磁盘上,二号飞船拍摄的照片数,也相差无几。经过这一系列加工后,木星系的图像就出现在一张光滑纸上,从而在人类历史上,第一次看到了木卫二的奇观。

        我们看到的图像是十分令人惊叹的。“旅行者1”号拍摄了木星的另外三个卫星的精彩的照片,但没有拍到木卫二的照片。这项任务是由2号完成的。由于是近距离拍摄的。所以镜头只覆盖了几公里的范围。粗看照片,似乎上面布满运河,正像洛韦尔所想象的赋予火星的运河一样。其实,在木卫二上,根本不存在运河。但我们看到许多扑朔迷离、纵横交错的直线和曲线。它们是隆起的山脊,还是溺沉的河流?它们是如何形成的呢?它们是星球伸缩引起的断裂所产生的吗?与地球的板块结构有联系吗?而且,有什么样的光发射到木星的另外3个卫星上去?神奇的现代科学技术,产生了令人难以置信的结果。但是,要真正理出个头绪来还得靠人的大脑。人们分析证明,尽管木卫二上沟渠纵横,但它像弹子球般光滑。没有盆地,也许是其表面冰层融化流动的缘故。照片所示的线条,只不过是这种冰流处的小槽或裂缝,其成因尚有待于进一步研究。

        假如“旅行者1”号和“旅行者2”号飞船上有宇航员,那么,船长的航行日记上可能这样写:

        第1天。我们彻底检查过食品以及各种仪器后,终于成功地从卡纳维拉尔角发射场起飞,开始了漫长的宇宙旅行。

        第2天。摄影机的活动支架发生故障。假如不排除故障,摄影计划将无法完成,科学数据将无法得到。

        第13天。我们回顾家乡,拍下了第一幅十分清晰的、地球和月亮浑然一体的照片。漂亮的一对。

        第 150天。微型发动机点火,以便修正飞船的轨道。

        第 170天。按计划维护设备。几个月以来,一切顺利。

        第 185天。成功地拍摄了木星的精确照片。

        第207天。活动架故障被排除,但是,无线电发射主机却出了毛病。我们换上了备用发射机。假如它也失灵,我们与地球的联系将再次中断。

        第 215天。我们飞越火星轨道。这时,火星正处于太阳的另一侧。

        第295天。我们进入小行星区。这里有许多翻滚着的大石块,它们是太空的鱼群和礁石,大多数还是陌生的,我们挂上了“小心”的牌子,但愿别碰上它们。

        第475天。我们安全地钻出小行星区,真是万幸。

        第570天。我们接近了木星。与地球上最大的望远镜相比,我们看得清楚多了。

        第615天。木星的瞬息万变、多姿多彩的云层展现在我们面前,使我们眼花缭乱。木星真是巨大无比啊!它比所有其他行星加在一起还要大2倍。在这个世界上,没有高山峡谷,也没有火山河流,在球体与空气之间也没有界限,到处只是一片茫茫无边的流动着的稠密气体和云彩,因此也就无所谓木星的表面,木星上的一切都在它的天空中飘动着。

        第630天。木星上的天气仍然是绚丽壮观的。这个巨大的星球自转一周将近10个小时。正是在自转力的作用下,以及在阳光和它自身散发的热量的作用下,在它的周围才形成了蔚为壮观的、飞快飘动着的云彩。

        第640天。云彩变幻无穷、光辉灿烂。使我们联想起梵高所画的“星空”,以及威廉·布莱克和爱德华·蒙克的作品中所描绘的群星璀璨的夜空。只是他们描绘的景象大为逊色而已,因为所有这些艺术家,都是站在地球上观察夜空的,因而不可能真正描绘出这无比绚丽多彩的星空奇观。

        我们靠近木星观察它的云彩带,白色云带是高空云层,也许是氨晶体所组成;褐色云带的云层要深些,温度要高些,因而大气向下流动。蓝色部分则显然是顶端云层中的空洞,通过这些空隙,我们才看见了晴朗的太空。

        木星的红褐色云彩的成因还不清楚,也许是磷或硫的化学反应所致,也许是太阳的紫外线照射到甲烷和氨气上,又与木星的大气层中的水汽和有机分子相混合后所产生的彩色云层。假如事实确实如此,那么,地球上的最早的生命就是40亿年前木星上的这种化学反应所引起的。

        第647天。我们进入大红斑(GRS)地区。这是一个巨大的气柱,高出邻近的云彩,其浩瀚宽阔足以容纳半打地球。至于红色,可能是其内部的复杂分子形成的。这是个巨大的风暴区,其历史也许已达百万年之久。

        第650天。接近木星。充满奇迹的一天。我们只有一件损坏了的光偏振仪导航,却成功地通过了可怕的木星辐射层。接着,又安全地穿越环形区。在这层新发现的木星环形区内,到处是宇宙尘粒和宇宙石,我们却毫无损伤。我们拍摄了神奇的木卫五的照片,这是一颗椭圆形的呈红色的小星球,位于辐射层的深处。还拍摄了五彩缤纷的木卫一和木卫二的线条,以及木卫三的蛛网特征和木卫四的多环状巨大盆地。然后,我们绕过木卫四,飞经木卫十三——已知的离木星最远的卫星。我们继续朝外飞。

        第662天。飞船中的磁场探测器表明,我们已离开了木星的辐射层。木星的重力,加速了我们飞船的航行。我们终于飞离木星系,重新邀游在太空之中。

        第874天。飞船偏离老人星——用航海术语来说,叫船舵失灵。要在茫茫宇宙之中保持飞船的方向,船舵是至关重要的,否则,我们就会在宇宙大海中迷航。偏离纠正了,飞船偏航的原因,看来是我们的光学传感器错把半人马星座的α和β星当做了老人星。两年以后,我们将到达下一个港口:土星系。

        “旅行者”号飞船发回的所有宇宙故事中,使我最感兴趣的是最靠近木星的木卫一上的发现。在发射“旅行者”之前,我们已经觉得木卫一有些奇怪。尽管我们只能分辨出其表面的几幅照片,但是,我们知道,木卫一是红色的,而且红得耀眼,比火星还红,也许是太阳系中最红的星体。有几年时间,它似乎在发生某种变化,表现在其红外线或雷达的反射特征上。我们还知道,在木卫一运行的轨道上,部分围绕着木星有一圈从木卫一遗落的硫、钠和钾的微粒,遗落原因不明。

        当飞船接近这巨大的卫星时,我们发现它的表面五光十色,这种奇特景色,在太阳系的其他星球上是没有的。木卫一与小行星区相邻,因此,照理说,它一定始终受到小行星区散落物的冲击而变得伤痕累累。但事实上,我们却看不到这种被撞击的迹象。那么,在木卫一上,一定发生了某种变化过程,十分有效地擦去了撞击的小坑,或是填平了小坑。这种过程不可能是大气层引起的。因为木卫一的引力很小,其大气大部分都扩散到了太空之中。也不可能是水蚀作用引起的。因为木卫一表面温度很低,根本就没有流动着的水。有几处地方像是火山口,但也很难确认。

        林达·莫拉比图,“旅行者”号飞行控制组的一名成员,她是负责保持飞船的正确轨道的,她一直命令一架计算机强化木卫一边缘图像,使其后面的恒星显现出来。使她大为惊讶的是,她竟观察到某种物质,在一片黑暗之中,耀眼地从卫星表面喷射出来。不久,她就确定了喷出物的位置正好在一个被推测的火山口上。这样,飞船发现了地球外的第一个活火山。在木卫一上,我们已知有9个大火山,但喷出的是气体和碎石,至于死火山,则恐怕有几百座,甚至有数千座。正是这些火山的碎石,填满了卫星被撞击后形成的洞口。这种新的星球奇观,如若伽利略和惠更斯见了,会怎样地赞叹不已啊!

        在此之前,斯坦顿·皮尔及其助手,通过计算木卫一卫星内部物质的升降情况(这种升降活动是由邻近的木卫二,以及巨大的木星本身的引力所引起的),也早就预见到了火山的存在。他们发现,木卫一内部的岩石之所以融化,不是由放射活动,而是由这种升降活动所产生的。他们还发现,木卫一内部的大部分物质可能是液体状态。木卫一内部的硫磺,在表面附近融化集中后,在火山的作用下,形成了液态硫地下海。当固态硫加热到大约115℃时,就会融化,而且会改变颜色。加热的温度越高,颜色就变得越深。假如融化的硫磺迅速冷却,又会恢复它原来的颜色。我们在木卫一上看到的不同颜色,很像火山口喷出的液态硫:火山顶端的硫呈黑色,温度最高;火山附近形成的河流状态硫,呈红色及桔黄色;遍布在平原部分的硫则呈黄色。木卫一表面的形状几个月改变一次。因此,如同地球上作气象预报一样,也得定期发布木卫一的地形图。未来的木卫一探险者,必须注意这种现象。

        飞船发现,木卫一的非常稀薄的大气层主要成分是二氧化硫。但是,这稀薄的大气层,其作用却不小,因为木卫一处于木星的辐射带。辐射带充满了带电粒子,有了这大气层,就足可保护木卫一的表面不受损害。每当夜幕降临,木卫一的表面温度就迅速下降,二氧化硫凝固,宛若一片白霜;这时,带电粒子就会乘机而入,危害木卫一的表面。这样,在卫星下过夜很可能是明智的做法。

        木卫一上火山喷发时,火山喷柱如此巨大,如此深远,以致它的原子可直接进入木星外的太空中。因而围绕木星的、处于木卫一轨道上的微粒环,其来源可能就是这些火山。这无数的微粒,盘旋着逐渐移向木星方向,覆盖了靠里的木卫五,它之所以呈红色,其原因也可能就在这里。木卫一发出的这些物质,历尽坎坷后,汇入到木星的环形系统也不是不可能的。

        人类要登上木星,是极其难以想象的。当然,从技术上讲,我认为让永久性的大气球悬浮在木星的大气层中,在遥远的未来是可能实现的。正如从木卫一或木卫二近测所看到的那样,这颗巨大的、变幻无穷的星球总是飘浮在空中,其位置一成不变。因为太阳系中几乎所有的卫星,都像月亮对地球那样,总是以其一面朝着行星。对木星系的未来探险者来说,木星将始终是一个令人心驰神往的世界。

        星际间的气体和尘埃,被太阳系所积聚,大部分其他区域的物质,凡是没有落到太阳上的,都为木星所积聚。如果木星的质量比现在大十几倍,木星的内部物质就会发生热核反应,木星也就会开始发光。宇宙中最大的行星不会发光,实在是一件憾事。尽管如此,其内部温度却非常高,以致它发出的能量比从太阳接收的能量几乎要多2倍。从红外光谱的角度来看,完全可以把木星看做一颗恒星。如果木星成为一颗闪亮的恒星,我们今天就会生活在双星系中,在我们的头顶,将有两个太阳同放光辉,夜景将难得一见了。其实,我相信在整个银河系中,在无数的太阳系中,这本来是司空见惯的现象。毫无疑问,这也是自然而又美妙的。

        在木星最下部的云层处,其大气层所产生的压力比地球上任何一处的气压都大得多,以致电子从氢原子中被压了出去,形成一种奇特的物质,液态金属氢——一种在地球上的实验室中从未观察到的物理形态,因为它要有必需的压力,这在地球上从未取得(在适当的温度下,金属氢是一种超导体。假如能在地球上制造出来,将会引起电子学上的一场革命)。在木星的内部,其压力大约是地球表面大气压的300万倍,除了呈黑色的金属氢外,几乎没有别的物质。但是,在木星的核心处,由于巨大压力的作用,却可能如同地球一般,充满岩石和铁矿石,永远埋藏于这颗最大的行星深处。

        木星内部的液态金属氢中的电流,可能是该行星巨大磁场的源泉(该磁场是太阳系中最大的),也可能是其附近的电子和质子带的源泉。这些带电粒子,从太阳发出,随太阳风运行,被木星的磁场所俘获并加速。相当部分的带电粒子被俘获在木星的云层之上,从一极飞到另一极,在巧遇高空大气层中的分子且脱离辐射带后,它们才会停止这种穿梭般的来回飞驰。木卫一运行的轨道离木星太近了,从而当它穿过辐射带时,会产生带电粒子流,这反过来又会产生巨大的辐射能(这些粒子流又会影响到木卫一表面的喷发过程)。通过计算木卫一的位置,就可能预测木星辐射能的爆发,这比地球上预报天气还要准确得多。

        在射电天文学的早期,即在50年代,人们就偶然发现,木星是一个辐射源。两位年轻的美国人,伯纳德·伯克和肯尼斯·富兰克林,用最新研制的、在当时十分先进的射电望远镜观察星空。他们想要探测太阳系外的宇宙射线源。结果,他们意外地发现了一种巨大的不为人知的射线源,它既不像是一恒星,也不像是星云,或是星群所发出的。而且,参照遥远的恒星,它还在逐渐移动,移动得比任何遥远的物体都快得多。⑿他们无法解释其原因,有一天,他们走出天文台,抬头望天,用肉眼观察,希望碰巧能发现某些有趣的现象。使他们困惑的是,就在他们发现放射源的地方,他们竟看到了一种格外明亮的光点,他们很快就搞清了,那就是木星。这尽管是一次偶然的发现,但在科学史上却是很有代表性的。

        在一号飞船掠过木星前,每当夜幕来临,我总是仰望星空,着见木星在对我眨眼。100万年以来,我们的先人对此都深为惊叹。而在飞船掠过木星的那天晚上,当我迈步走向宇航局喷气推进试验室,以便研究飞船发回的资料时,我不由得寻思,木星将再也不是从前的样子了,将再也不是夜空中一个普通的亮点了,从此以后它将成为一个被探索过的已知世界了。在千姿百态、优美壮观的宇宙世界中,木星及其卫星可以说是一种小型太阳系,从中我们可受到不少启迪。

        与木星相比,土星则小得多,但在构造等诸方面,它们彼此十分相似。土星自转一周,需要10小时,在赤道附近,也有一圈彩带,只是不如木星的那样明显。它的磁场和辐射带也比木星的弱,但它的光环却要壮观得多。土星的卫星多达十几个。

        在士星卫星中,最有趣的要算土卫六了,它是太阳系中最大的卫星,也是惟一富有大气的卫星,在“旅行者1”号于1980年11月飞经土卫六之前,我们对它的认识是十分肤浅的。我们有把握的事情只是知道,在土卫六上存在甲烷,这是最早由柯伊伯发现的。太阳的紫外线把甲烷转变成了比较复杂的碳氢化合物,以及氢气。碳氢化合物,似褐色的有机焦泥一般,覆盖着卫星的表面,这种焦泥有点像地球上生命起源实验中产生的物质。

        由于土卫六的引力小,质轻的氢气可能向宇宙中迅速扩散,这种剧烈的扩散过程叫做“气喷”,它同时要带走甲烷,以及大气层中的其他物质。但在实际上,由于土卫六的大气压至少与火星的一样大,因此气喷过程看来并未发生。另外,也许是由于在其大气层中存在某种重要的迄今尚未发现的物质——例如说氮——使得大气中的平均分于重量保持很高,从而防止了气喷的发生。或许,气喷一直在发生,只是扩散到宇宙中的气体由卫星内部释放的气体弥补了。

        土卫六大部分密度很低,因此它上面必定有大量的水和各种冰,而且其中还可能含有甲烷,这些甲烷是在卫星内部的较大的热力的作用下,以我们还不知道的速率,释放到卫星表面的。

        假如用望远镜观察士卫六,我们就会看到一个勉强能辨认的红盘。有些人还说,在盘的上方,还可看到变化无穷的白云——这些白云,很可能是甲烷晶体形成的。但盘的红颜色又是什么形成的呢?大多数研究人员认为,土卫六的这种颜色很可能是复杂有机分子所致。至于其表面温度,以及大气层的厚度,至今尚无定论。有迹象表明,由于大气层的温室效应,会提高其表面温度。

        在土卫六的表面及其大气层中含有极其丰富的有机物分子,因此它是太阳系中一颗绝无仅有、十分突出的星球。

        以往的航天发现意味着“旅行者”号飞船以及其他飞船,对土卫六的探测飞行将使我们对它的认识起到革命性的意义深刻的变化。

        透过土卫六云层的缺口处,可以看见上星和它的光环,而且在其大气层中处处可见淡黄色的斑点。与地球相比,土星系离太阳要远10倍,因此照射到土卫六上的阳光强度只及地球上的百分之一,尽管其温室效应相当大,它表面温度则可能大大低于水的冰点。但是,由于在它的大气层中含有丰富的有机物,加之也有阳光和可能存在的火山热点,土卫六上存在生命的可能性就不能轻易排除。⒀当然,在那种不寻常的环境下,即使存在生命,也无疑与地球上的生命不大相同。不过,士卫六是否存在生命,目前还缺乏有力的证据。在飞船于土卫六表面着陆前,我们不大可能做出定论。

        要确定土星环上的粒子是什么,就必须靠近观察才行,因为这些粒子很小,是一些方圆只有1米左右的雪球和冰块。因为土星环反射阳光的光谱特性与冰反射阳光的光谱特性相似,由此我们知道土星环是由水和冰组成的。为了在宇宙飞船中就近观察这些粒子,我们必须使飞船减速,达到粒子运行的速度。粒子绕土星每小时运行4.5万英里,这就是说,飞船也必须绕土星运行,运行速度也必须与粒子相同。只有这样,我们才能看清单个的粒子。

        为什么土星的周围只有光环而没有一颗大卫星呢?这是因为,土星光环中的粒子,离土星越近,其运行速度就越快(根据开普勒第三定律,粒子的“下降”速度也就越快);另外,内部的粒子可以穿越外部的粒子运行(我们已经知道,“穿越方向”总是向左)。尽管整个粒子层的运行速度每秒约有20公里,但两个相邻粒子的相对运行速度却很低,一分钟大约只移动几厘米。正是这种相对运动,使粒子不会因相互引力而聚合在一起。而一旦相互靠拢时,也会因运行速度不同而相互拉开。假若光环不是离木星这么近,那么,尽管粒子间的运行速度各异,也会聚集在一起,形成小雪球,最终形成卫星。因此,很可能决非巧合,在士星的光环外,还存在一些大小不同的卫星,其直径从几百公里到士卫六那么大,即近于火星,大小不等。其实,所有这些卫星和行星中的物质,都可能来源于光环中的物质,这些物质凝结积聚的结果,形成了今天的行星和卫星。

        像木星一样,土星的磁场能俘获和激化太阳风中的带电粒于。当一带电粒子从一个磁极飞向另一磁极时,它必然要经过土星的赤道面。假如它在途中遇到一光环粒子,该小雪球就会吸收质子和电子。从而使两者的辐射带消失,因为辐射带只存在于粒子环的内部或外部。离木星或土星很近的一颗卫星,也能吞食辐射带中的带电粒子。事实上土星的一颗新卫星,正是这样发现的,一颗先前不为人知的卫星吸收了辐射带中的带电粒子,使辐射带产生了空当,从而“先驱11”号飞船也意外地发现了这颗卫星。

        太阳风把土星轨道远远地抛在后面,进入太阳系外的空间。当“旅行者”号飞船经过天王星,进入海王星和冥王星轨道时,要不是仪器出了故障,肯定会探测到宇宙间的太阳风。这儿是太阳系的终点,离太阳比冥王星离太阳还要远两三倍,星际间的质子和电子的压力比太阳风在此处产生的压力还大。大约在21世纪中叶,“旅行者”号飞船将穿过太阳风的终点,进入茫茫的宇宙。但不会进入另一太阳系,而是最终进入银河系,并且将在银河系中漫游若干亿年。那时我们已经进入了更加伟大、更加壮观的航行时代。

        _________
         ①惠更斯(1629~1695年),荷兰物理学家、天文学家和数学家,1655年3月,用经过改进的望远镜发现了土卫六,由此闻名于世。1655~1656年发现七星光环。逝世三年后出版了《宇宙论》,书中阐明恒星都是宇宙中的太阳,提出别的行星上也有生物。

        ②换一种比较方法,我们可以这样说,一粒受精卵从输卵管运动到并殖入子宫的时间同“阿波罗Ⅱ号从地球飞抵月球的时间一样长,而“海盗”号航抵火星的时间则同这粒受精卵发育成婴儿的时间一样长。人类正常的寿命运长于“旅行者”号飞离冥王星的时间。

        ③葡萄牙航海家麦哲伦的故乡。——校注

        ④我们甚至还知道他们送给朝廷什么样的礼物。他们呈献给皇后的是“六尊潜水员半身像”,呈献给皇帝的则是“两包肉桂”。

        ⑤1979年,罗马教皇保罗二世郑重宣布撤销346年前“神圣法庭”对伽利略的判决。

        ⑥其他人没有伽利略和开普勒提出日心论假说那样的勇气,就连居住在宗教教条不太严格的欧洲其他地方的人也是如此。例如,当时住在荷兰的笛卡尔,在1643年4月的一封信中写道:

        “毫无疑问,你已经知道,伽利略最近受到了教堂法庭的谴责,以及他有关地球运行的观点被判定为异端邪说。我必须告诉你,在我的论文中说明的所有观点,包括地球运行的观点,都是如此地相互关联,从而不难看出,一但我的任何一个观点有误,我所用的全部论点便都站不住脚了。我认为,虽然它们是以十分确切可靠的证据为基础的,但我却无论如何不想对抗教庭的权威而去坚持我的观点。……我想安安静静地过日子,并能继续遵循遁世自好的格言,平安地过我已经开始的生活。”

        ⑦这种考察传统可以说明下述事实,即直到现在,从每人做出的贡献看,荷兰为著名天文学家提供了极大的方便,其中如柯伊伯,在本世纪40和50年代,是世界上惟一专职的行星天体物理学家。当时大多数职业天文学家都认为这个课题至少有点不体面,受了洛韦尔学说的极大影响。荣幸的是,我是柯伊伯的学生。

        ⑧牛顿称赞惠更斯,并认为他是当时“第一流的数学家”,也是过去和现在都极受推崇的古希腊数学传统的最真诚的继承者。牛顿认为,部分地因为阴影有锐边,因此光运行时看来就像一条微粒流。他认为,红光是由最大的粒子组成的,而紫光则是由最小的粒子组成的。但是,惠更斯则认为,光运行时像是真空中传播的一种波,就像海中的海浪波一样,这就是我们要说光的波长、光的频率的原因。光的许多特性,包括衍射性,都能由波动说加以自然解释,惠更斯的光的波动说后来流行了好多年。但在1905年,爱因斯坦宣布,光的粒子论能够解释光电效应,即金属经光束辐照时的电子发射现象。现代量子力学把上述两种观点结合在一起。今天,通常都把光在某些情况下的运行当粒子束,而在另外一些情况下的运行看做波。这种波—粒子论也许不容易符合我们的一般见解,但却与实验所显示的光运行的真实情况极其一致。这两者的结合显得有点奇妙和令人不解,把牛顿和惠更斯这两位单身汉称为当代我们对光的特性的理解的父母是适宜的。

        ⑨伽利略早就发现了这些环,但他不知道环为何物组成。从他初期使用的天文望远镜看来,这些环似乎像紧接着土星的两个对称凸块,他不无困惑地说,像两只耳朵。

        ⑩另外一些人也持有相同的观点。开普勒在《宇宙谐和论》中写道:“第谷的有关论点是,茫茫宇宙并非全是不毛之地,而是住满了居民。”浩瀚的宇宙,竟有如此众多的太阳和地球,这种想法多么诱人、多么奇妙啊……,而且,每一个地球上,都是绿草如茵、森林遍地,动物成群,既有大海,也有高山!而考虑到众多的恒星与其间巨大的距离,我们的惊奇与崇敬又将增大多少倍呀!

        ⑾这类传说是古代人的传统、其中有许多从探险一开始便带有宇宙的主题。例如:15世纪中国明朝对印度尼西亚、斯里兰卡、印度、阿拉伯和非洲一系列探险就被费信,——参加者之一——在一本进呈御览的图书中描绘为“星槎胜览”。可惜的是,图画都遗失了,但其文字版本还在。

        ⑿因为光速仍是有限的。详见第八章。

        ⒀惠更斯在1655年发现了土卫六,他认为:“现在,不管是什么人,只要他观察一下这两个(土星和木星)行星系,并把他们同我们这个小得可怜的地球进行一下比较,那他一定会为这两个行星的广阔疆域和众多高尚的随从(指卫星——译注)而大吃一惊。难道他们现在还会强迫自己认为,睿智的造物主把他所有的动物和植物都安置在地球上,造物主也仅仅刻意装饰和打扮地球这个地方,而让其他的星球(尽管他们也会崇奉祭祀造物主)成为荒无人烟的不毛之地吗?难道他们还会认为.所有这些巨大的星体存在的目的仅为了在空中闪烁星光,仅为了让我们少数几个可怜虫观察研究的吗?”由于土星每30年围绕太阳转一圈,土星及其卫星上的四季远远长于地球上的四季。因此,对于土星卫星上的假设存在的居民,惠更斯写道:“土星卫星的冬季如此漫长,他们的生活方式绝对不可能和我们的十分相同。”

      6. 理查德·道金斯《自私的基因》10-15

        目录
        前言
        第1章 为什么会有人呢?
        第2章 复制因子
        第3章 不朽的双螺旋
        第4章 基因机器
        第5章 进犯行为:稳定性和自私的机器
        第6章 基因种族
        第7章 计划生育
        第8章 代际之战
        第9章 两性战争
        第10章 你为我搔痒,我就骑在你的头上
        第11章 觅母:新的复制因子
        第12章 好人终有好报
        第13章 基因的延伸
        第14章 基因决定论与基因选择论
        第15章 对于完美化的制约

        第10章 你为我搔痒,我就骑在你的头上

        我们已经研究了属于相同物种的生存机器之间的相互作用——亲代的、有性的以及进犯性的相互作用。不过,在动物的相互作用中,似乎还有一些值得注意的方面,显然并未包括在上述三种范围之内。许多动物所具有的群居习性就是其中一个方面。鸟、昆虫、鱼、鲸鱼乃至生活在平原上的哺乳动物,活动总是集结而出,觅食一般成群结队。这些集体中的成员通常属于同一物种,但也有例外情况。斑马和角马就常常混在一起活动,人们有时也可以看到属于不同物种的鸟类聚集成群。

        群居生活可以为一个自私个体带来各种各样的好处。在此,我不打算逐一罗列,只准备讲几个带有启发性的例子。其中我还要重提我曾在第1章里列举过的一些明显的利他行为的例子,因为我说过这些例子要留待以后再做解释,这样就必然要涉及对社会性昆虫的讨论。事实上,如果避而不谈社会性昆虫,对动物利他行为的论述就不可能全面。最后,在本章拉拉杂杂的内容中,我将谈到相互利他行为这个重要的概念,即“于人方便,于己方便”的原则。

        动物之所以要聚居在一起,肯定是因为它们的基因从群居生活的交往中得到的好处多,而为之付出的代价少。鬣狗成群猎食时能够捕捉到比它们单独活动时大得多的野兽,尽管捉到野兽后要分食,但对参加集体猎食的每一个自私个体来说还是划算的。某些蜘蛛齐心协力织造一张巨大的共有的蜘蛛网,大概也是出于类似的原因。帝企鹅紧紧地挤在一起是为了取暖。这是因为相互挤在一起后,每只企鹅暴露在外界的身体表面要比自己独处时小得多。两条鱼在水中游时,如果一条游在另一条后面,同时保持一定的倾斜度,它就可以从前面的一条鱼所激起的湍流中获得流体动力方面的好处。这可能就是鱼类成群结队一起游的理由之一。利用气流来减轻空气阻力也是自行车竞赛者所熟悉的一种窍门。鸟类在飞翔时组成V字形可能也是出于这个缘故。由于飞在最前头的一只鸟处于不利地位,因此这些鸟大概要竞相避免担任这个角色。很可能它们轮流承担这个非自愿的领航员的角色。这是一种延迟的相互利他行为,这种形式的利他行为我们在本章末将加以论述。

        群居生活可能带来的好处有很多与避免被捕食者吃掉有关。汉密尔顿在一篇题为“自私兽群的几何学”的论文里精辟地提出了这种理论。为了不引起误会,我要强调,他所谓的“自私兽群”是指由“自私个体组成的兽群”。

        让我们再一次从一个简单的“模式”讲起。尽管模式是抽象的,却可以帮助我们理解真实的客观世界。试设想有一群某一物种的动物正受到一只捕食者的追捕。最靠近捕食者的那只动物往往最先受到攻击。对捕食者来说,这种策略是合理的,因为这样可以节约精力。但对被捕食的动物而言,这种策略却产生了一种有趣的后果。就是说,这群争相逃命的动物每一只都力图避免处于最靠近捕食者的位置。如果这些动物老远就发现了这只捕食者,它们只要逃走就行了。即使捕食者不露声色地突然出现,像隐藏在茂密草丛中的猛兽那样,每只动物还是能见机行事,尽量避免处于最接近捕食者的位置。我们可以想象,每一只被追捕的动物周围有一个“危险区”。在这个危险区里,从任何一点到这只动物的距离都短于从该点到其他任何一只动物的距离。譬如说,如果一群被追逐的动物在移动时形成一个规则的几何图形,彼此之间有一定间隔,那么,每一只动物(除非它正好处在边缘上)的危险区大体上是个六边形。如果捕食者正好潜伏在个体A的六角形危险区内,个体A就有被吃掉的可能。处于兽群边缘上的个体特别容易受到攻击,因为它们的危险区相对来说不是一个小小的六角形,而是有一个开口端,开口端外一片广阔地域都是它们的危险地带。

        一个头脑清醒的个体显然是会尽量缩小其危险区的。它尤其尽力避免处于兽群的边缘地位。如果它发觉已处于边缘地位,就会立即采取行动,向中心地区移动。不幸的是,边缘上总得有“人”,但就每一个个体而言,这个“人”最好不是它!因此,一群动物在前进时,处于边缘的个体不停地往中心移动。如果这群动物原来是松散的或者是七零八落的,这种向群体中心移动的结果很快就会使它们挤成一团。即使我们所讲的模式开始时没有任何聚拢的倾向,被追捕的动物开始时也是随意分散的,但自私的动机将会促使每一个个体试图挤到其他个体中间以缩小各自的危险区。这样,集群迅即形成,而且会变得越来越稠密。

        在实际生活中,这种聚拢倾向显然受到各种阻力的限制,不然的话,这些动物免不了就要乱作一团,弄得筋疲力尽。但这个模式还是很有意思的,因为它说明了即使是一些极其简单的假说也可以导致动物倾向于聚拢的结论。有人提出一些比较复杂的模式。这些模式虽然具有更大的实际意义,但汉密尔顿提出的比较简单的模式并没有因此而减色。后者有助于我们研究动物聚拢在一起的现象。

        自私的兽群这个模式本身并不容许存在合作性的相互作用。这里没有任何利他行为,有的只是每个个体为了私利而利用其他每一个个体。但在实际生活中常有这样的情况:个体似乎为保护群体里的伙伴免遭捕食者的袭击而积极地做出努力。说到这里,我不禁想起鸟类的警报声。这种警报声使其他个体闻声逃命,确实起到了警告的作用。没有人认为发出警报的个体是“想要把捕食者的火力”引到自己身上,它仅仅让伙伴知道出现了捕食者——也就是向它们报警。但乍看起来,这种行为本身似乎是利他性的,因为它的效果是把捕食者的注意力引到了报警者身上。我们可以根据马勒(P.R.Marler)发现的一个事实得出间接的推论。鸟类的这种警报声似乎具有某种理想的物理特性:捕食者往往难以发现叫声来自何方。如果让一位声学工程师设计一种捕食者难以追踪的声音,这种声音很可能和许多会唱歌的小鸟的天然警报声相似。在自然界里,这种警报声的形成肯定是自然选择的结果。我们知道这意味着什么——这意味着很多个体因为它们的警报声未臻完善而送掉性命。因此,发出警报声似乎总是有危险的。自私基因的理论必须证明,发出警报声具有一种令人信服的优点,足以抵消随之而来的危险。

        事实上这并不是十分困难的。在过去,不断有人指出鸟类的警报声其实与达尔文学说“格格不入”,结果是为解释这种现象而挖空心思,虚构各种理由已成为人们的一种游戏,于是我们今日面对如此之多的言之成理的解释而莫衷一是。显而易见,如果鸟群中有些个体是近亲,促使个体发出警报声的基因在基因库中准能兴旺起来,因为得救的一些个体拥有这个基因的可能性很大。即使发出警报声的个体由于引来了捕食者而为这种利他行为付出高昂的代价,这样做还是值得的。

        如果你认为这种亲属选择的概念不能令人信服,那么,供你挑选的其他理论有的是:一个对其伙伴报警的个体可以通过各种途径获得私利。特里弗斯为此提出5种颇有见识的想法,但下面我要谈的是我自己的两种想法,我认为它们更能使人心悦诚服。

        我把第一个想法称之为凯维(Cave)理论。“凯维”源自拉丁文,意思是“当心”。今天,小学生看见老师走近时还在用这个暗号来警告其他同学。这个理论适用于采取伪装策略的鸟类,这些鸟在面临危险时一动不动地蹲伏在矮树丛里。假设有一群这样的鸟在田野上觅食,这时一只老鹰从远处飞过。老鹰还没有瞥见鸟群,因此没有径直飞过来。但它锐利的目光可能随时发现鸟群,那时它将俯冲而下,发动攻击。如果鸟群中一只小鸟首先发现这只老鹰,而其余的鸟都还没有发现,这只眼尖的小鸟本来可以马上蹲下来不动,躲在草丛中,但这样做对它来说并无好处,因为它的伙伴还在周围活动,既触目,又喧闹。它们当中任何一只都可能引起老鹰的注意,使整个鸟群都陷入危险的境地。从纯粹自私的动机出发,这只发现老鹰的小鸟应当立即对它的伙伴发出嘶嘶的警告声,让它们马上安静下来,以减少它们无意中把老鹰引到它自己附近的可能性。对这只小鸟而言,这是最好的策略。

        我打算谈的另一个想法可称为“绝对不要脱离队伍”的理论。这个理论适用于某些鸟类物种,它们看见捕食者走近时马上飞走,也许是飞到树上。让我们再设想正在觅食的鸟群中有一只鸟首先发觉这只捕食者,它该怎样行动呢?它可以只顾自己飞走,并不警告伙伴。如果是这样的话,它就要成为一只不合群的动物,不再是一个不那么惹人注目的鸟群中的一员。老鹰喜欢攻击离群的鸽子,这是很多人都知道的事实。就算老鹰没有这样的猎食习惯,我们根据推理可以提出很多理由,说明脱离队伍可能是一种自杀性的策略。就算它的伙伴最终还是会跟着它飞走,但第一个飞离地面的个体免不了暂时地扩大了它自己的危险区。不管汉密尔顿的有关理论是否正确,生活在鸟群的集体中总是有一些重要的有利条件,否则鸟类是不会过集体生活的。不论这些有利条件是什么,第一个飞出鸟群的小鸟至少要部分地丧失这些有利条件。如果这只遵守纪律的小鸟不擅离队伍,那它又该怎样办呢?或许它应该依靠集体力量所能提供的掩护,若无其事地继续进行活动。但这样做风险毕竟太大了,无遮无拦很容易遭受袭击,在树上到底安全得多。飞到树上确是上策,但要务必使伙伴们采取一致的行动,只有这样它才不致成为一只脱离鸟群的孤单的小鸟,不致因此丧失集体为它提供的有利条件,同时又能够得到飞到树上躲起来的好处。我们在这里再次看到,发出警报声所得到的是纯粹的自私利益。恰尔诺夫(E.L.Charnov)和克雷布斯提出过一个有点相似的理论,他们直截了当地使用“操纵”这个词来描绘这只发出叫声的小鸟对其他小鸟施加的影响。这种行为已经远远不是纯粹的、无私的利他行为了。

        从表面上看,以上种种理论好像与这样的说法有矛盾:发出警报声的个体把自己置于危险的境地。事实上其中并无矛盾的地方。如果它不报警,反而会使它自己面临更大的危险。有些个体因发出警报声而牺牲了,尤其是容易暴露声源的那些个体。其他一些个体则因为没有报警而死去。鸟类在面临危险时为什么会发出警报声?人们提出过很多解释,凯维理论和“绝对不要脱离队伍”理论不过是其中的两个而已。

        跳跃的汤姆森氏瞪羚又应如何解释呢?我在第1章里曾提到这种现象。瞪羚这种显然是利他性的自杀行为使阿德里感动地断言,只有用类群选择论才能解释这种现象。这个课题向自私基因的理论发起了更严峻的挑战。鸟类的警报声是有效的,但它们发出信号时总是小心翼翼,尽力避免暴露自己的意图。瞪羚的跳跃就不是这样,它们故作姿态甚至达到惹人恼火的程度。看来瞪羚是诚心吸引捕食者的注意的,有时简直像在戏弄这只捕食者。这种现象导致一个既饶有趣味又十分大胆的理论。斯迈思(N.Smythe)最初提出这个理论的轮廓,但最后赋予其逻辑发展的无疑是扎哈维。

        我们可以这样阐明扎哈维的理论。这个理论关键的一点在于,瞪羚的跳跃行为绝不是发给其他瞪羚看的信号,其实是做给捕食者看的。当然,其他的瞪羚看到了这种跳跃,而且它们的行为被它影响了,不过这是附带发生的后果。因为瞪羚的这种跳跃行为被选择,主要是作为发给捕食者的信号。这个信号的大意是:“你看!我能跳这么高!我显然是一只健壮的瞪羚,你抓不到我。你还是放聪明点,抓我的伙伴吧!它们没有我跳的那么高。”用不那么拟人化的语言来讲,促使个体跳得高而又惹人注目的基因不大可能被捕食者吃掉,因为捕食者往往挑选那些看起来容易捕获的动物,不少哺乳类的捕食者尤其喜欢追捕年老体弱的动物。一个猛劲儿跃起的个体动物就是以夸耀的方式显示它的年轻力壮的。根据这个理论,这种夸耀行为绝非利他性的。我们只能说这种行为是自私性的,因为它的目的在于告诉捕食者,应该去追逐其他动物。从某种意义上说,这好比是一场跳高比赛,看谁跳得最高,而失败者就是捕食者选中的目标。

        我说过要进一步探讨的另外一个例子是蜜蜂的自杀行为。它在蜇刺蜂蜜掠夺者时几乎肯定要为此付出生命。蜜蜂不过是社会性很高的昆虫的一种,其他有黄蜂、蚂蚁和白蚁。我想探讨的对象是一般的社会性昆虫,不仅仅是蜜蜂的敢死队。社会性昆虫的业绩是脍炙人口的,尤其是它们那种令人惊讶的相互密切配合的行动以及明显的利他行为。自杀性的蜇刺使命体现了它们自我克制的奇迹。在蜜罐蚁(honey-pot ants)的蚁群中,有一种等级的工蚁不做其他工作,整天吊在巢顶上,一动也不动。它们的腹部隆起,大得惊人,像个电灯泡,里边塞满食物。其他的工蚁把它们当作食品库。在我们人类看来,这种工蚁不再是作为个体而存在,它们的个性显然为了集体利益而受到抑制。蚂蚁、蜜蜂或白蚁的群居生活体现了一种更高水平的个性。食物按极其严格的标准分配,我们甚至可以说它们共有一个集体的胃。它们通过化学信号来互通情报,如果是蜜蜂,就通过人所共知的“舞蹈”。这些手段是如此之有效,以至于整个集体行动起来好像是一个单位,具备自己的神经系统和感觉器官。它们好像能够通过类似身体的免疫反应系统产生的选择性来识别并驱逐外来入侵者。尽管蜜蜂不是恒温动物,但蜂房内相当高的温度几乎像人体那样得到精确的调节。最后,同时也是非常重要的一点,这种类比可以引申到生殖方面。在社会性昆虫的群落里,大多数的个体是不育的职虫。“种系”(germ line)——不朽基因的连续线——贯穿在少数个体,即有生殖能力的个体之内,它们和我们睾丸、卵巢里的生殖细胞相似。不育的职虫和我们的肝脏、肌肉和神经细胞相似。

        只要我们接受了职虫都不能生育这个事实,它们的自杀性行为以及其他形式的利他性或合作性行为就不会那么令人惊讶了。一只正常动物的躯体之所以受到操纵就是为了生育后代以及抚养拥有同样基因的其他个体,以保证其基因得以生存下去。为其他个体的利益而自杀和在今后生育自己的后代两者是不能并存的,因此,自杀性的自我牺牲行为很少进化。但工蜂从不生育自己的后代。它们的全部精力都用于照顾不属于自己后代的亲属,从而保存自己的基因。一只不育工蜂的死亡对它自己基因的影响,宛如秋天一棵树落下一片树叶对树的基因的影响。

        说到社会性昆虫,就会使人情不自禁地要故弄玄虚一番,实际上并无此必要。但研究一下自私基因的理论怎样应用于社会性昆虫还是值得的,尤其是如何用这一理论解释职虫不育性这一不平凡现象的进化起源。因为这种现象似乎引起了一系列问题。

        一个社会性昆虫的群落就是一个大家庭,其所有成员通常都为一母所生。职虫很少或从不繁殖,一般分成若干明显的等级,包括小职虫、大职虫、兵虫以及一些高度专业化的等级如“蜜罐”蚁等。有生殖力的雌虫叫女王,有生殖力的雄虫有时叫雄虫或王。在一些较高级的群落里,从事繁殖的雌虫不做其他任何事情,但在繁殖后代这方面,它们却干得非常出色。职虫为它们提供食物和保护,也负责照管幼虫。在某些蚂蚁或白蚁的物种中,女王简直成了一座庞大的产卵工厂,其躯体比普通的职虫大几百倍,几乎不能动弹,其外形简直不像一只昆虫。女王经常受到职虫的照料,后者满足女王在日常生活中的需要,包括提供食粮并把女王所产的卵源源不断地运到集体托儿所去。这样一只大得异常的女王如果需要离开内室,就得骑在好几队工蚁背上,被它们庄重堂皇地扛出去。

        在第7章里,我谈过生育和抚养之间的区别。我曾说,在一般情况下把生育和抚养结合在一起的策略能够得以进化。在第5章里,我们看到混合的、进化稳定策略可以分成两大类型:要么种群中每一个个体都采取混合策略,这样个体往往能明智地把生育和抚养结合在一起,要么种群分成两种不同类型的个体,即我们最初设想的鹰与鸽之间取得平衡的情况。按照后一种方式取得生育与抚养两者之间在进化上的稳定平衡,这在理论上是说得通的。就是说,种群可以分为生育者和抚养者两部分。但只有在这样的条件下才能保持这种进化上的稳定状态,即被抚养者必须是抚养者的近亲,其亲近程度至少要像抚养者自己的后代——假设它有的话——那样亲。尽管从理论上说,进化可以沿着这个方向进行,但实际上似乎只有在社会性昆虫中才可以看到这种现象。*

        社会性昆虫的个体分为两大类:生育者和抚养者。生育者是有生殖力的雄虫及雌虫。抚养者是职虫——白蚁中的不育雄蚁及雌蚁,其他社会性昆虫中的不育雌虫。这两类昆虫互不干扰,因此能更有效地完成自己的任务。但这里所谓的“有效”是指对谁有效呢?“职虫从中究竟可以得到什么好处?”这个熟悉的问题是对达尔文学说提出的挑战。

        有人回答说:“没有什么好处。”他们认为女王至高无上,平日颐指气使,通过化学过程操纵职虫来满足私欲,驱使它们抚养其众多的子女。我们在第8章看到过亚历山大的“亲代操纵”理论,上面讲的其实就是这种理论的另一种说法。一个与此相反的提法是,职虫“耕耘”有生殖力的母体,驱使母体提高其繁殖力,以复制职虫的基因。女王制造出来的生存机器肯定不是职虫的后代,但它们都是职虫的近亲。汉密尔顿有一个独到的见解,他认为至少在蚂蚁、蜜蜂和黄蜂的群体中,职虫同幼虫的亲缘关系事实上可能比女王同幼虫的关系更密切!汉密尔顿以及后来的特里弗斯和黑尔以这种观点为指导继续前进,终于在自私基因理论方面取得了一项最辉煌的成就。他们的推理过程如下。

        昆虫中的膜翅目包括蚂蚁、蜜蜂和黄蜂,这一群体具有一种十分奇特的性取向体系。白蚁不属于这种群体,因而并没有这种特性。在一个典型的膜翅目昆虫的巢里只有一个成熟的女王。它在年轻时飞出去交配一次,并把精子储存在体内,以备在漫长的余生中——10年或者更长——随时取用。它年复一年地把精子分配给自己的卵子,使卵子在通过输卵管时受精。但并不是所有的卵子都能够受精。没有受精的卵子会变成雄虫。因此雄虫没有父亲,它体内每一个细胞只有一组染色体(全部来自母体)而不是像我们体内那样有两组染色体(一组来自父体,一组来自母体)。按照第3章里的类比说法,一只雄性膜翅目昆虫在它的每个细胞里都只有每一“卷”的一份拷贝,而不是通常的两份。

        在另一方面,膜翅目雌虫却是正常的,因为它有父亲,而且在它的每个体细胞里有两组染色体。一只雌虫成长为职虫还是女王并不取决于它的基因,而是取决于它如何成长。换句话说,每一只雌虫都有一组完整的成为女王的基因和一组完整的成为职虫的基因(或者说,也有好几组分别使之成为各种专职等级的职虫、兵虫等的基因)。到底哪一组基因起决定性作用,取决于它的生活方式,尤其取决于它摄入的食物。

        尽管实际情况复杂得多,但基本情况大致如此。我们不知道这种奇特的有性生殖系统是怎么进化而来的。毫无疑问,这种进化现象必然有其原因。但我们只能暂时把它当作膜翅目昆虫的一种难以解释的现象,不管原来的理由是什么,这种奇特的现象打乱了我们在第6章里提到的计算亲缘关系指数那套简捷的办法。这说明雄虫的精子不像我们人类的精子那样每一条都不相同,而是完全一样的。雄虫的每一个个体细胞仅有一组基因,而不是两组,因此每一条精子必须接受完整的一组基因,而不是一部分——50%,所以就一只具体的雄虫来说,它的全部精子都是完全一样的。现在让我们计算一下这种昆虫母子之间的亲缘关系指数,如果已知一只雄虫体内有基因A,那么它母亲体内也有这个基因的可能性是多少呢?答案肯定是100%,因为雄虫没有父亲,它的全部基因都来自其母亲。现在假定已知一只雌虫体内有基因B,它儿子也有这个基因的可能性是50%,因为它只接受了它母亲一半的基因。这种说法听起来好像自相矛盾,而事实上并没有矛盾。雄虫的所有基因都来自母亲,而母亲仅把自己的一半基因传给儿子。这个看似矛盾的答案在于雄虫体内基因的数量仅有通常的一半。那么它们之间“真正的”亲缘关系指数是还是1呢?我认为没有必要为这个问题去伤脑筋。指数不过是人们为解决问题而设想的计量单位。如果在特殊情况下对它的运用为我们带来困难,我们就干脆放弃它而重新使用基本原则。从雌虫体内基因A的观点来看,它儿子也有这个基因的可能性是,和它女儿一样。因此,从雌虫的观点来看,它同其子女的亲缘关系如同我们人类的子女同母亲的亲缘关系一样密切。

        但当我们谈到姐妹时,情况就变得复杂了。同胞姐妹不仅出自同一父亲,而且使它们母体受孕的两条精子的每一个基因都是完全相同的。因此,就来自父体的基因而言,姐妹和同卵孪生姐妹一样。如果一只雌虫体内有基因A,这个基因必然来自父体或母体。如果这个基因来自母体,那么它的姐妹也有这个基因的可能性是50%。如果这个基因来自父体,那么它的姐妹也有这个基因的可能性是100%。因此,膜翅目昆虫的同胞姐妹之间的亲缘关系指数不是(正常的有性生殖动物都是),而是。

        由于这个缘故,膜翅目雌虫同它的同胞姐妹的亲缘关系比它同自己子女的更密切。*汉密尔顿看到了这一点,尽管他那时并没有如此直截了当地说出来。他认为这种特殊密切的亲缘关系完全可能促使雌虫把它母亲当作一台有效地为它生育姐妹的机器而加以利用。这种为雌虫生育姐妹的基因比直接生育自己子女的基因能更加迅速地复制自己的拷贝。职虫的不育性由此形成。膜翅目昆虫真正的社会性以及随之出现的职虫不育性似乎独立地进化了11次以上,而在动物界的其他种群中,只在白蚁身上进化过1次。想来这并不是偶然。

        不过,这里还有蹊跷。如果职虫要成功地把它们的母亲当作生育姐妹的机器而加以利用,它们就必须遏制其母亲为其生育相同数量的兄弟的自然倾向。从职虫的观点来看,它任何一个兄弟的体内有它某个基因的可能性只有。因此,如果雌虫得以生育同等数量的有生育能力的子女,这未必对职虫有利,因为这样它们就不可能最大限度地繁殖它们的宝贵基因了。

        特里弗斯和黑尔认为,职虫必然会努力影响性比例,使之有利于雌虫。他们把费希尔有关最适性比例的计算方法(我们在前面一章里谈到了这个方法)运用到膜翅目昆虫这种特殊情况上,重新进行了计算。结果表明,就母体而言,最适投资比例跟通常一样是1∶1,但就姐妹而言,最适比例是3∶1,有利于姐妹而不利于兄弟。如果你是一只膜翅目雌虫,你繁殖自己基因的最有效方法是自己不繁殖,而是让母亲为你生育有生殖能力的姐妹和兄弟,两者的比例是3∶1。但如果你一定要繁殖自己的后代,那么你就生育数目相同的有生育能力的儿子和女儿,这样对你的基因最有利。

        我们在上面已经看到,女王和职虫之间的区别不在于遗传因素。对一只雌虫胚胎的基因而言,它既可以成为职虫也可以成为女王,前者“希望”性比例是3∶1,而后者“希望”性比例是1∶1。“希望”到底意味着什么?它意味着如果女王生育同等比例的有生育能力的儿子和女儿,那它体内的基因就能最好地繁殖自己。但存在于职虫体内的同一个基因如果能够影响这个职虫的母亲,使之多生育一些女儿,这个基因就能最好地繁殖自己。要知道这种说法并无矛盾之处,因为基因必须充分利用可供其利用的一切力量。如果这个基因能够影响一个日后肯定要变成女王的个体的成长过程,它利用这种控制力量的最佳策略是一种情况;而如果它能够影响一个职虫个体成长的过程,它利用那种力量的最佳策略却是另外一种情况。

        这意味着如何利用这台生育机器引起了双方的利害冲突。女王“努力”生育同等比例的雄虫和雌虫,职虫则努力影响这些有生育能力的后代的性比例,使之形成3雌1雄的比例。如果我们这个有关职虫利用女王作为生育机器的设想正确的话,职虫应该能够使雌雄比例达到3∶1。不然,如果女王果真拥有无上的权力,而职虫不过是女王的奴隶和唯命是从的王室托儿所的“保姆”,那我们看到的应该是1∶1的比例,因为这是女王“希望”实现的比例。在这样一场世代之间的特殊争斗中,哪一方能取胜呢?这个问题可以用实验来证明。特里弗斯和黑尔两人就用大量的蚂蚁物种进行过这种实验。

        我们感兴趣的性比例是有生殖能力的雄虫同雌虫的比例。它们是一些体形大、有翅膀的蚂蚁。每隔一段时间,它们就成群结队从蚁穴飞出进行交配。之后,年轻的女王可能要另外组织新群落。为了估计性比例,有必要对这些带翅膀的个体进行计数。要知道,在许多物种中,有生殖能力的雄虫和雌虫大小悬殊。这种情况使问题更加复杂。因为我们在上一章里已经看到,费希尔有关最适性比例的计算方法只能严格地应用于对雄虫和雌虫进行的投资额,而不能用来计算雄虫和雌虫的数目。特里弗斯和黑尔考虑到了这种情况,因此在实验时对蚂蚁进行过磅。他们使用了20个不同的蚂蚁物种,并对有生殖能力的雄虫和雌虫的投资额计算性比例。他们发现雌雄比例令人信服地接近于3∶1的比例*,从而证实了职虫为其自身利益而实际上操纵一切的理论。

        这样,在作为研究对象的那几种蚂蚁中,职蚁好像在这种利害冲突中“取胜”了。这种情况原是不足为奇的,因为职虫个体作为幼虫的守护者自然比女王个体享有更多的实权。试图通过女王个体操纵整群的基因敌不过那些通过职虫个体操纵整群的基因。令人饶有兴趣的是,在哪些特殊情况下女王可以享有比职虫更大的实权呢?特里弗斯和黑尔发现可以在某种特殊情况下严格地考验一下这个理论。

        我们知道,某些物种的蚂蚁豢养奴隶。这些役使奴隶的职蚁要么不做任何日常工作,要么就是干起来也笨手笨脚的。它们善于为捕捉奴隶而四处出击。两军对垒、相互厮杀的情况只见于人类和社会性昆虫。在许多蚂蚁物种中有所谓兵蚁的特殊等级,它们具有特别坚硬发达的上下颚作为搏斗的利器,它们专门为自己群体的利益而进攻其他蚁群。这种旨在捕捉奴隶的袭击只不过是它们的战争努力中一种特殊的形式。它们向另一个物种的蚁穴发动攻击,试图杀死对方进行自卫的职蚁或兵蚁,最后掳走对方尚未孵化的幼虫。这些幼虫在掠夺者的蚁穴里被孵化,它们并不“知道”自己已变成奴隶,而是按照固有的神经程序开始工作,完全像在自己的穴里一样履行职责。这些奴隶待在蚁穴里包办了管理蚁穴、清洁卫生、搜集粮食、照料幼虫等各种日常工作,而那些专门捕捉奴隶的职蚁或兵蚁继续出征以掳掠更多的奴隶。

        这些奴隶当然不知道它们同女王以及它们照料的幼虫完全没有亲缘关系,这是件好事。它们不知不觉地抚养着一批又一批新的捕捉来的奴隶兵蚁。自然选择在影响奴隶物种的基因时,无疑有利于各种反奴隶制度的适应能力。不过,这些适应能力显然并不是十分有效的,因为奴隶制度是一种普遍现象。

        从我们目前论题的观点来看,奴隶制度产生了一种有趣的后果。在捕捉奴隶的物种中,女王可以使性比例朝它“喜欢”的方向发展。这是因为它自己所生的子女,即那些专门捕捉奴隶的蚂蚁不再享有管理托儿所的实权,这种实权现在掌握在奴隶手中。这些奴隶“以为”它们在照顾自己的骨肉兄弟或姐妹,它们所做的大抵无异于它们本来在自己穴里也同样要做的一切,以实现它们希望达到的有利于姐妹的3∶1比例。但专门掳掠奴隶的物种的女王能够采取种种反措施,成功地扭转这种趋势。对奴隶起作用的自然选择不能抵消这些反措施,因为这些奴隶同幼虫并无亲缘关系。

        让我们举个例子来说明这种情况。假定在任何一个蚂蚁物种中,女王“试图”把雄性卵子加以伪装,使其闻起来像雌性的卵子。在正常情况下,自然选择对职蚁“识破”这种伪装的任何倾向都是有利的。我们可以设想一场进化上的斗争情景,女王为实现其目的不断“改变其密码”,而职蚁不断进行“破译”。在这场斗争中,谁通过有生殖能力的个体把自己的基因传递到后代体内的数量越多,谁就能取胜。我们在上面已经看到,在正常情况下,职蚁总是获胜的一方。但在一个豢养奴隶的物种中,女王可以改变其密码,而奴隶职蚁却不能发展其破译的任何能力。这是因为奴隶职蚁体内的任何一个“有破译能力”的基因并不存在于任何有生殖能力的个体体内,因此不能遗传下去。有生殖能力的个体全都是属于豢养奴隶的物种,它们同女王而不是同奴隶有亲缘关系。即使奴隶的基因有可能进入任何有生殖能力的个体体内,这些个体也是来自那些被掳掠的奴隶的老家。因此,这些奴隶最多只能忙于对另一套密码进行破译!由于这个缘故,在一个豢养奴隶的物种中,女王因为可以随心所欲地变更其密码而稳操胜券,绝对没有让任何有破译能力的基因进入下一代的风险。

        从上面这段比较复杂的论证中得出的结论是,我们应该估计到在豢养奴隶的物种中,繁殖有生殖能力的雌虫和雄虫的比例是1∶1,而不是3∶1。只有在这种特殊情况下女王才能如愿以偿。这就是特里弗斯和黑尔得出的结论,尽管他们仅仅观察过两个豢养奴隶的物种。

        我必须强调,我在上面是按照理想的方式进行叙述的。实际生活并非如此简单。譬如说,最为人所熟知的社会性昆虫物种——蜜蜂——似乎是完全违反“常情”的。雄蜂的数量大大超过雌蜂,无论从职蜂还是从蜂后的观点来看,这种现象都难以解释。汉密尔顿为了揭开这个谜,提出了一个可能的答案。他指出,当一只女王飞离蜂房时,总要带走一大群作为随从的职蜂,它们帮这只女王建立一个新群体。这些职蜂从此不再返回老家,因此抚养这些职蜂的代价应该算是繁殖成本的一部分。这就是说,从蜂房每飞走一只女王就必须培育许多额外的职蜂来补缺。对这些额外职蜂所进行的投资应算作对有生殖能力的雌蜂投资额的一部分。在计算性比例的时候,这些额外的职蜂也应在天平上称分量,以求出雌蜂和雄蜂的比例。如果我们这样理解问题的话,这个理论就还是站得住脚的。

        这个精巧的理论还有另外一个更加棘手的问题需要解决。在一些物种中,年轻的女王飞出去交配时,与之交配的雄蜂可能不止一只。这意味着女王所生育的女儿之间的亲缘关系平均指数小于,在一些极端的例子里,甚至可能接近。有人把这种现象解释为女王打击职蜂的一种巧妙的手段!不过这种看法似乎不合逻辑。附带说一句,这似乎意味着女王飞出去交配时,职蜂应伴随在侧,只让女王交配一次。但这样做对于这些职蜂本身的基因并没有任何好处——只对下一代职蜂的基因有好处。每一只职蜂所“念念不忘”的是它自身的基因。有些职蜂本来是“愿意”伴随其母亲的,但它们没有这样的机会,因为它们当时还没有出生。一只飞出去交配的年轻女王是这一代职蜂的姐妹,不是它们的母亲。因此,这一代职蜂是站在女王这一边而不是站在下一代职蜂那一边的。下一代的职蜂是它们的侄女辈。好了,就说到这里,我开始感到有点儿晕头转向了,是结束这个话题的时候了。

        我在描述膜翅目职虫对其母亲的行为时使用了“耕耘”的比喻。这块田地就是基因田。职虫利用它们的母亲来生产它们自身的基因的拷贝,因为这样比职虫自己从事这项工作更富有成效。源源不断的基因从这条生产流水线上生产出来,包装这些基因的就是有生殖能力的个体。这个“耕耘”的比喻不应与社会性昆虫的另外一种可以被称为“耕耘”的行为混为一谈。社会性昆虫早就发现,在固定的地方耕种粮食作物比狩猎或搜集粮食有效得多,而人类在很久之后才发现这个真理。

        譬如说,在美洲有好几个蚂蚁物种以及与这些物种完全无关的非洲白蚁都经营菌圃。最有名的是南美洲的阳伞蚁(parasol ants)。这种蚁的繁殖能力特别强,有人发现有的阳伞蚁种群竟有超过200万个成员。它们筑穴于地下,复杂的甬道和回廊四通八达,深达10英尺(约3米)以上,挖出的泥土多达40吨。地下室内设有菌圃,这种蚂蚁有意识地在其中播种一种特殊品种的菌类。它们把树叶嚼碎,作为特殊的混合肥料。这样,它们的职蚁不必直接搜寻粮食,只要搜集制肥用的树叶就行了。这种群体的阳伞蚁“吃”树叶的“胃口”大得惊人,因此它们就成为一种主要的经济作物害虫。但树叶不是它们的食粮,而是它们的菌类食粮的食粮。菌类成熟后它们收获食用,并用以饲养幼虫。菌类比蚂蚁的胃更能有效地消化吸收树叶里的物质,蚂蚁就是通过这样的过程受益的。菌类虽然被吃掉,但它们本身可能也得到好处,因为蚂蚁促使它们增殖,比它们自己的孢子分散机制更有效。而且这些蚂蚁也为菌圃“除草”,悉心照料菌类,不让其他品种的菌类混迹于其间。由于没有其他菌类与之竞争,蚂蚁自己培植的菌类得以繁殖。我们可以说,在蚂蚁和菌类之间存在某种利他行为的相互关系。值得注意的是,在与这些蚂蚁完全无关的一些白蚁物种中,独立地形成了一种非常相似的培植菌类的制度。

        蚂蚁有自己的家畜和自己的农作物。蚜虫——绿蚜虫和类似的昆虫——善于吮吸植物中的汁液。它们非常灵巧地把叶脉中的汁液吮吸干净,但消化这种汁液的效率却远没有吸吮这种汁液的效率高,因此它们会排泄出仍含有部分营养价值的液体。一滴一滴含糖丰富的“蜜汁”从蚜虫的后端泌出,速度非常之快,有时每只蚜虫在1小时内就能分泌出超过其自身体重的蜜汁。在一般情况下,蜜汁像雨点一样洒落在地面上,简直和《旧约全书》里提到的天赐“灵粮”一样。但有好几个物种的蚂蚁会等在那里,准备截获蚜虫排出的食粮。有些蚂蚁会用触角或腿抚摩蚜虫的臀部来“挤奶”,蚜虫也做出积极的反应,有时故意不排出汁液,等到蚂蚁抚摩时才让汁液滴下。如果那只蚂蚁还没有准备好接受它的话,有时蚜虫甚至把一滴汁液缩回体内。有人认为,一些蚜虫为了更好地吸引蚂蚁,其臀部经过演化已取得与蚂蚁脸部相像的外形,抚摩起来的感觉也和抚摩蚂蚁的脸部一样。蚜虫从这种关系中得到的好处显然是安全的保障,不受其天然敌人的攻击。像我们牧场里的乳牛一样,它们过着一种受到庇护的生活。由于蚜虫经常受到蚁群的照料,它已丧失其正常的自卫手段。有的蚂蚁把蚜虫的卵带回地下蚁穴妥善照顾,并饲养蚜虫的幼虫。最终,幼虫长大后蚂蚁又轻轻地把它们送到地面上受到蚁群保护的放牧场地里。

        不同物种成员之间的互利关系叫作互利共生或共生。不同物种的成员往往能相互提供许多帮助,因为它们可以利用各自不同的“技能”为合作关系做出贡献。这种基本不对称性能够导致相互合作的进化稳定策略。蚜虫天生长了一副适宜吮吸植物汁液的口器结构,但这种口器结构不利于自卫。蚂蚁不善于吮吸植物的汁液,但它们善于战斗。照料和庇护蚜虫的蚂蚁基因在基因库中一贯处于有利地位。在蚜虫的基因库中,促进蚜虫与蚂蚁合作的基因也一贯处于有利地位。

        互利的共生关系在动植物界中是一种普遍现象。地衣从表面上看同任何其他植物个体一样,而事实上它却是在菌类和绿海藻之间关系密切的共生体。两者相依为命,分离就不能生存。要是它们之间的共生关系再稍微密切那么一点儿的话,我们就不能再说地衣是由两种有机体组成的了。也许世界上存在一些我们还没有辨认出来的,由两个或多个有机体组成的共生体。说不定我们自己就是吧!

        我们体内的每个细胞里有许多被称为线粒体的微粒。这些线粒体是化学工厂,负责提供我们所需的大部分能量。如果没有了线粒体,要不了几秒钟我们就会死亡。最近有人提出这样的观点,认为线粒体原来是共生微生物,在进化的早期就同我们这种类型的细胞结合在一起。对我们体内细胞中的其他一些微粒,有人也提出了类似的看法。对诸如此类的革命性论点人们需要有一段认识的过程,但现在已到了认真考虑这种论点的时候了。我估计我们终将接受这样一个更加激进的论点:我们的每一个基因都是一个共生单位。我们自己就是庞大的共生基因的群体。当然现在还谈不上证实这种论点的“证据”,但正如我在前几章中已试图说明的那样,我们对有性物种中基因如何活动的看法,其实就支持了这种论点。这个论点的另一个说法是:病毒可能就是脱离了像我们这种“群体”的基因。病毒纯由DNA(或与之相似的自我复制因子)组成,外面裹着一层蛋白质。它们都是寄生的。这种说法认为,病毒是由逃离群体的“叛逆”基因演化而来,它们如今通过空气直接从一个个体转移到另一个个体,而不是借助于更寻常的载运工具——精子和卵子。假设这种论点是正确的,我们完全可以把自己看成病毒的群体!有些病毒是共生的,它们相互合作,通过精子和卵子从一个个体转移到另一个个体,这些都是普通的“基因”。其他一些是寄生的,它们通过一切可能的途径从一个个体转到另一个个体。如果寄生的DNA通过精子和卵子转移到另一个个体,它也许就是我在第3章里提到的那种属于“看似矛盾”的多余的DNA。如果寄生的DNA通过空气或其他直接途径转移到另一个个体,它就是我们通常所说的“病毒”。

        但这些都是我们要在以后思考的问题。目前我们正在探讨的问题是发生在更高一级关系上的共生现象,即多细胞有机体之间的而不是它们内部的共生现象。共生现象这个字眼按照传统用法是指不同物种的个体之间的联系(associations)。不过,我们既然已经避开了“物种利益”的进化观点,就没有理由认为不同物种的个体之间的联系和同一物种的个体之间的联系有什么不同。一般来说,如果各方从联系中获得的东西比付出的东西多,这种互利的联系就是能够进化的。不管我们说的是同一群鬣狗中的个体,还是完全不同的生物如蚂蚁和蚜虫,或者蜜蜂和花朵,这一原则都普遍适用。事实上,要把确实是双向的互利关系和纯粹是单方面的利用区别开来可能是困难的。

        如果联系的双方,如结合成地衣的两方,在提供有利于对方的东西的同时接受对方提供的有利于自身的东西,那我们对于这种互利的联系的进化在理论上就很容易想象了。但如果一方施惠于另一方之后,另一方却迟迟不报答,那就要发生问题。这是因为对方在接受恩惠之后可能会变卦,到时拒不报答。这个问题的解决办法是耐人寻味的,值得我们详细探讨。我认为,用一个假设的例子来说明问题是最好的办法。

        假设有一种非常令人厌恶的蜱寄生在某种小鸟身上,而这种蜱又带有某种危险的病菌,所以必须尽早消灭这些蜱。一般说来,小鸟用嘴梳理自己的羽毛时能够把蜱剔除掉,可是有一个鸟嘴达不到的地方——它的头顶。对我们人类来说这个问题很容易解决。一个个体可能接触不到自己的头顶,但请朋友代劳一下是毫不费事的。如果这个朋友以后也受到寄生虫的折磨,这时你就可以以德报德。事实上,在鸟类和哺乳动物中,相互梳理整饰羽毛的行为是十分普遍的。

        这种情况立刻产生一种直观的意义。个体之间做出相互方便的安排是一种明智的办法。任何具有自觉预见能力的人都能看到这一点。但我们已经学会,要对那些凭直觉看起来明智的现象保持警觉。基因没有预见能力。对于相互帮助行为,或“相互利他行为”中,做好事与报答之间相隔一段时间这种现象,自私基因的理论能够解释吗?威廉斯在他1966年出版的书中扼要地讨论过这个问题,我在前面已经提到。他得出的结论和达尔文的一样,即延迟的相互利他行为在其个体能够相互识别并记忆的物种中是可以进化的。特里弗斯在1971年对这个问题做了进一步的探讨。但当他进行有关这方面的写作时,他还没有看到史密斯提出的有关进化稳定策略的概念。如果他那时已经看到的话,我估计他是会加以利用的,因为这个概念很自然地表达了他的思想。他提到“囚徒窘境”——博弈论中一个人们特别喜爱的难题,这说明他当时的思路和史密斯的已不谋而合。

        假设B头上有一只寄生虫,A为它剔除掉。不久以后,A头上也有了寄生虫,A当然去找B,希望B也为它剔除掉,作为报答。结果B嗤之以鼻,掉头就走。B是个骗子,这种骗子接受了别人的恩惠,但不感恩图报,或者即使有所报答,但做得也不够。和不分青红皂白的利他行为者相比,骗子的收获要大,因为它不花任何代价。当然,别人为我剔除掉危险的寄生虫是件大好事,而我为别人梳理整饰一下头部只不过是小事一桩,但毕竟也要付出一些代价,还是要花费一些宝贵的精力和时间的。

        假设种群中的个体采取两种策略中的任何一种。和史密斯所做的分析一样,我们所说的策略不是指有意识的策略,而是指由基因安排的无意识的行为程序。我们姑且把这两种策略分别称为傻瓜和骗子。傻瓜为所有人梳理整饰头部,不问对象,只要对方需要。骗子接受傻瓜的利他行为,但却不为别人梳理整饰头部,即使别人以前为它整饰过也不报答。像鹰和鸽的例子那样,我们随意决定一些计算得失的分数,至于准确的价值是多少,那是无关紧要的,只要被整饰者得到的好处大于整饰者花费的代价就行。在寄生虫猖獗的情况下,一个傻瓜种群中的任何一个傻瓜都可以指望别人为它整饰的次数和它为别人整饰的次数大约相等。因此,在傻瓜种群中,任何一个傻瓜的平均得分是正数。事实上,这些傻瓜都干得很出色,傻瓜这个称号看来似乎对它们不太适合。现在假设种群中出现了一个骗子。由于它是唯一的骗子,它可以指望别人都为它效劳,而它从不报答别人,它的平均得分因而比任何一个傻瓜都高。骗子基因在种群中开始扩散开来,傻瓜基因很快就要被挤掉。这是因为骗子总归胜过傻瓜,不管它们在种群中的比例如何。譬如说,种群里傻瓜和骗子各占一半,在这样的种群里,傻瓜和骗子的平均得分都低于全部由傻瓜组成的种群里任何一个个体。不过,骗子的境遇还是比傻瓜好些,因为骗子只管捞好处而从不付出任何代价,不同的只是这些好处有时多些,有时少些而已。当种群中骗子所占的比例达到90%时,所有个体的平均得分变得很低:不管骗子也好,傻瓜也好,它们很多都因患蜱所带来的传染病而死亡。即使是这样,骗子还是比傻瓜合算。哪怕整个种群濒于灭绝,傻瓜的情况也永远不会比骗子好。因此,如果我们考虑的只限于这两种策略,没有什么东西能够阻止傻瓜的灭绝,而且整个种群大概也难逃覆灭的厄运。

        现在让我们假设还有第三种被称为斤斤计较者的策略。斤斤计较者愿意为没有打过交道的个体整饰,而且为它整饰过的个体,它更不忘记报答。可是哪个骗了它,它就要牢记在心,以后不肯再为这个骗子服务。在由斤斤计较者和傻瓜组成的种群中,前者和后者混在一起,难以分辨。两者都为别人做好事,两者的平均得分都同样高。在一个骗子占多数的种群中,一个孤单的斤斤计较者不能取得多大的成功。它会花掉很大的精力去为它遇到的大多数个体整饰一番——由于它愿意为从未打过交道的个体服务,它要等到它为每一个个体都服务过一次才能罢休。因为除它以外都是骗子,因此没有谁愿意为它服务,它也不会上第二次当。如果斤斤计较者少于骗子,斤斤计较者的基因就要灭绝。可是,斤斤计较者一旦能够使自己的队伍扩大到一定的比例,它们遇到自己人的机会就越来越大,甚至足以抵消它们为骗子效劳而浪费掉的精力。在达到这个临界比例之后,它们的平均得分就比骗子高,从而加速骗子的灭亡。在骗子尚未全部灭绝之前,它们灭亡的速度会缓慢下来,在一个相当长的时期内成为少数派。因为对已经为数很少的骗子来说,它们再度碰上同一个斤斤计较者的机会很小。因此,这个种群中对某一个骗子怀恨在心的个体是不多的。

        我在描述这几种策略时好像给人以这样的印象:凭直觉就可以预见到情况会如何发展。其实,这一切并不是如此显而易见的。为了避免出差错,我在计算机上模拟了整个事物发展的过程,证实这种直觉是正确的。斤斤计较的策略被证明是一种进化稳定策略,斤斤计较者优越于骗子或傻瓜,因为在斤斤计较者占多数的种群中,骗子或傻瓜都难以逞强。不过骗子也是ESS,因为在骗子占多数的种群中,斤斤计较者或傻瓜也难以逞强。一个种群可以处于这两个ESS中的任何一个状态。在较长的一个时期内,种群中的这两个ESS可能交替取得优势。按照得分的确切价值——用于模拟的假定价值当然是随意决定的——这两种稳定状态中的一种具有一个较大的“引力区”,因此这种稳定状态易于实现。值得注意的是,尽管一个骗子的种群可能比一个斤斤计较者的种群更易于灭绝,但这并不影响前者作为ESS的地位。如果一个种群所处的ESS地位最终还是驱使它走上灭绝的道路,那么抱歉得很,它舍此别无他途。*

        观看计算机进行模拟是很有意思的。模拟开始时傻瓜占大多数,斤斤计较者占少数,但正好在临界频率之上;骗子也属少数,与斤斤计较者的比例相仿。骗子对傻瓜进行的无情剥削首先在傻瓜种群中触发了剧烈的崩溃。骗子激增,随着最后一个傻瓜的死去而达到高峰。但骗子还要应付斤斤计较者。在傻瓜急剧减少时,斤斤计较者在日益取得优势的骗子的打击下也缓慢地减少,但仍能勉强地维持下去。在最后一个傻瓜死去之后,骗子不再能够跟以前一样那么随心所欲地进行自私的剥削。斤斤计较者在抗拒骗子剥削的情况下开始缓慢地增加,并逐渐取得稳步上升的势头。接着斤斤计较者突然激增,骗子从此处于劣势并逐渐接近灭绝的边缘。由于处于少数派的有利地位时受到斤斤计较者怀恨的机会相对地减少,骗子得以苟延残喘。不过,骗子的覆灭是不可挽回的,它们最终将慢慢地相继死去,留下斤斤计较者独占整个种群。说起来似乎有点自相矛盾,在最初阶段,傻瓜的存在实际上威胁到斤斤计较者的生存,因为傻瓜的存在带来了骗子的短暂繁荣。

        附带说一句,我在假设的例子中提到的不相互整饰的危险性并不是虚构的。处于隔离状态的老鼠往往因舌头舔不到头部而长出疮来。有一个试验表明,群居的老鼠没有这种毛病,因为它们相互舔对方的头部。为了证实相互利他行为的理论是正确的,我们可以进行有趣的试验,而老鼠又似乎是适合于这种试验的对象。

        特里弗斯讨论过清洁工鱼(cleaner-fish)奇怪的共生现象。已知有50个物种,其中包括小鱼和小虾,靠为其他物种的大鱼清除身上的寄生虫来维持生活。大鱼显然因为有生物为它们做清洁工作而得到好处,而做清洁工的鱼虾同时可以从中获得大量食物。这样的关系就是共生关系。在许多情况下,大鱼张大嘴巴,让清洁工游入嘴内,为自己剔牙,然后让它们通过鱼鳃游出,顺便把鱼鳃也打扫干净。有人认为,狡猾的大鱼完全可以等清洁工打扫完毕之后把它吞掉。不过在一般情况下,大鱼总是让清洁工游出,碰都不碰它一下。这显然是一种难能可贵的利他行为,因为大鱼平日吞食的小鱼小虾就和清洁工鱼一样大小。

        清洁工鱼具有特殊的条纹和特殊的舞姿作为标记,大鱼往往不吃具有这种条纹的小鱼,也不吃以这样的舞姿接近它们的小鱼。相反,它们一动不动,像进入了昏睡状态一样,让清洁工无拘无束地打扫它们的外部和内部。出于自私基因的禀性,不择手段的骗子总是乘虚而入。有些物种的小鱼活像清洁工,也学会了清洁工的舞姿以便安全地接近大鱼。当大鱼进入它们预期的昏睡状态之后,骗子不是为大鱼清除寄生虫,而是咬掉一大块鱼鳍,掉头溜之大吉。尽管骗子乘机捣乱,清洁工鱼和它们为之服务的大鱼之间的关系一般来说还是融洽、稳定的。清洁工鱼的活动在珊瑚礁群落的日常生活中起着重要的作用。每一条清洁工鱼都有自己的领地,有人看见过一些大鱼像理发店里排队等候理发的顾客一样排着队,等候清洁工鱼依次为它们搞清洁工作。这种坚持在固定地点活动的习性可能就是延迟的相互利他行为形成的原因。大鱼能够一再惠顾同一所“理发店”而不必每次都要寻找新的清洁工鱼,因此,大鱼肯定感觉到这样做要比吃掉清洁工鱼好处大。清洁工鱼本来都是些小鱼,因此这种情况是不难理解的。当然,模仿清洁工鱼的骗子可能间接地危害到真正的清洁工鱼的利益,因为这种欺骗行为迫使大鱼吃掉一些带有条纹的、具有清洁工鱼那种舞姿的小鱼。然而真正的清洁工鱼坚持在固定地点营业,这样,它们的顾客就能找上门来,同时又可以避开骗子。

        人类发展出了良好的长期记忆和个体识别能力。因此,我们可以预期利他主义在人类进化中发挥了重要作用。特里弗斯走得更远,他暗示,嫉妒、内疚、感激、同情心等等人类心理特征是人类为了提高欺骗、反欺骗与避免被视为骗子的能力,通过自然选择而形成的。特别有趣的是有一种狡猾的骗子,他们似乎是互惠利他的,但是他们始终得到更多而付出更少。人类肿胀的大脑和精于理性算计的特征,甚至有可能就是随着越来越精致的欺骗和越来越强大的反欺骗机制进化而来的。

        当我们把相互利他行为的概念运用于我们自己这一物种时,我们对这种概念可能产生的各种后果可以进行无穷无尽的耐人寻味的推测。尽管我也很想谈谈自己的看法,可是我的想象力并不比你们强。还是让读者自己以此自娱吧!

        第11章 觅母:新的复制因子

        行文至此,我还没有对人类做过殊为详尽的论述,尽管我并非故意回避这个论题。我之所以使用“生存机器”这个词,部分原因是“动物”的范围不包括植物,而且在某些人的心目中也不包括人类。我所提出的一些论点应该说确实适用于一切在进化历程中形成的生物。如果有必要把某一物种排除在外,那肯定是因为存在某些充分的具体的理由。我们说我们这个物种是独特的,有没有充分理由呢?我认为是有的。

        总而言之,我们人类的独特之处可以归结为一个词——文化。我是作为一个科学工作者使用这个字眼的,它并不带有通常的那种势利的含义。文化的传播有一点和遗传相类似,即它能导致某种形式的进化,尽管从根本上来说,这种传播是有节制的。乔叟(Geoffrey Chaucer)不能够和一个现代英国人进行交谈,尽管他们之间有大约20代英国人把他们联结在一起,而其中每代人都能和其上一代或下一代的人交谈:就像儿子同父亲说话一样,能够彼此了解。语言看来是通过非遗传途径“进化”的,而且其速率比遗传进化快几个数量级。

        文化传播并非为人类所独有。据我所知,詹金斯(P.F.Jenkins)最近提供的例子最好不过地说明了人类之外的文化传播。新西兰附近一些海岛上栖息着一种叫黑背鸥的鸟,它们善于歌唱。在他工作的那个岛上,这些鸟经常唱的歌包括大约9支曲调完全不同的歌曲。任何一只雄鸟只会唱这些歌曲中的一支或少数几支。这些雄鸟可以按鸟语的不同被分为几个群体。譬如说,由8只相互毗邻的雄鸟组成的一个群体,它们唱的是一首可以被称为CC调的特殊歌曲。其他鸟语群体的鸟唱的是不同的歌曲。有时一个鸟语群体的成员都会唱的歌曲不止一首。詹金斯对父子两代所唱的歌曲进行了比较之后,发现歌的曲式是不遗传的。年轻的雄鸟往往能够通过模仿将邻近地盘的鸟的歌曲学过来。这种情况和我们人类学习语言一样,在詹金斯待在岛上的大部分时间里,岛上的歌曲是固定的几首,它们构成一个“曲库”(song pool)。每一只年轻的雄鸟都可以从这个歌库里选用一两首作为自己演唱的歌曲。詹金斯有时碰巧很走运,他目睹耳闻过这些小鸟是如何“发明”一首新歌的,这种新歌是由于它们模仿老歌时的差错而形成的。他写道:“我通过观察发现,新歌的产生是由于音调高低的改变、音调的重复、一些音调的省略以及其他歌曲的一些片段的组合等各种原因……新曲调的歌是突然出现的,它在几年之内可以稳定不变。而且,若干例子表明,这种新曲调的歌可以准确无误地传给新一代的歌手,从而形成唱相同歌曲的明显一致的新群体。”詹金斯把这种新歌的起源称作“文化突变”(cultural mutations)。

        黑背鸥的歌曲确实是通过非遗传途径进化的。有关鸟类和猴子的文化进化还可以举一些其他的例子,但它们都不过是趣闻而已,只有我们这种物种才能真正表明文化进化的实质。语言仅仅是许多例子中的一个罢了,时装、饮食习惯、仪式和风俗、艺术和建筑、工程和技术等,所有这一切在历史的长河中不断地进化,其方式看起来好像是高速度的遗传进化,但实际上却与遗传进化无关。不过,和遗传进化一样,这种变化可能是渐进的。从某种意义上来说,现代科学事实上比古代科学优越,这是有其道理的。随着时间一个世纪一个世纪地流逝,我们对宇宙的认识不断改变,而且逐步加深。我们应当承认,目前科技不断取得突破的局面只能追溯到文艺复兴时期,在文艺复兴以前人们处在一个蒙昧的停滞不前的时期。在这个时期里,欧洲科学文化静止于希腊人所达到的水平上。但正像我们在第5章里所看到的那样,遗传进化也能因存在于一种稳定状态同另一种稳定状态之间的那一连串的突发现象而取得进展。

        经常有人提到文化进化与遗传进化之间的相似之处,但有时过分渲染,使之带有完全不必要的神秘色彩。波珀爵士(Sir Karl Popper)专门阐明了科学进步与通过自然选择的遗传进化之间的相似之处。我甚至打算对诸如遗传学家卡瓦利-斯福尔泽(L.L.Cavalli-Sforza)、人类学家克洛克(F.T.Cloak)和动物行为学家卡伦(J.M.Cullen)等人正在探讨的各个方面进行更加深入的研究。

        我的一些热心的达尔文主义者同行对人类行为进行了解释,但我作为一个同样热心的达尔文主义者,对他们的解释并不满意。他们试图在人类文明的各种属性中寻找“生物学上的优越性”。例如,部落的宗教信仰一向被认为是旨在巩固群体特征的一种手段,它对成群出猎的物种特别有用,因为这种物种的个体依靠集体力量去捕捉大型的、跑得快的动物。以进化论作为先入之见形成的这些理论常常含有类群选择的性质,不过我们可以根据正统的基因选择观点来重新说明这些理论。在过去的几百万年中,人类很可能大部分时间生活在有亲缘关系的小规模群体中,亲属选择和有利于相互利他行为的选择很可能对人类的基因发生过作用,从而形成了我们的许多基本的心理特征和倾向。这些想法就其本身来说好像是言之成理的,但我总认为它们还不足以解释诸如文化、文化进化以及世界各地人类各种文化之间的巨大差异等这些深刻的、难以解决的问题。它们无法解释特恩布尔(Colin Turnbull)描绘的乌干达的艾克族人(Ik of Uganda)那种极端的自私性或米德(Margaret Mead)的阿拉佩什人(Arapesh)那种温情脉脉的利他主义。我认为,我们必须再度求助于基本原则,重新进行解释。我要提出的论点是,要想了解现代人类的进化,必须首先把基因抛开,不把它作为我们进化理论的唯一根据。前面几章既然出自我的笔下,而现在我又提出这样的论点似乎使人觉得有点意外。我是达尔文主义的热情支持者,但我认为达尔文主义的内容异常广泛,不应局限于基因这样一个狭窄的范畴内。在我的论点里,基因只是起到类比的作用,仅此而已。

        那么基因到底有什么地方是如此异乎寻常呢?我们说,它们是复制因子。在人类可即的宇宙里,物理定律应该是无处不适用的。有没有这样一些生物学的原理,它们可能也具有相似的普遍适用的性质?当宇航员飞到遥远的星球去寻找生命时,他们可能发现一些我们难以想象的令人毛骨悚然的怪物。但在一切形式的生命中——不管这些生命出现在哪里,也不管这些生命的化学基础是什么——有没有任何物质是共同一致的?如果说以硅而不是以碳,或以氨而不是以水为其化学基础的生命形式存在的话,如果说发现一些生物在-100℃就被烫死,如果说发现一种生命形式完全没有化学结构而只有一些电子混响电路的话,那么,还有没有对一切形式的生命普遍适用的原则?显而易见,我是不知道的。不过,如果非要我打赌不可的话,我会将赌注押在这样一条基本原则上,即一切生命都通过复制实体的差别性生存而进化的定律。*基因,即DNA分子,正好就是我们这个星球上普遍存在的复制实体。也可能还有其他实体,如果有的话,只要符合某些其他条件,它们几乎不可避免地要成为一种进化过程的基础。

        但是难道我们一定要到遥远的宇宙去才能找到其他种类的复制因子,以及其他种类的随之而来的进化现象吗?我认为就在我们这个星球上,最近出现了一种新型的复制因子。它就在我们眼前,不过它还在幼年期,还在它的原始汤里笨拙地漂流着。但它正在推动进化的进程,速度之快令原来的因子望尘莫及。

        这种新汤就是人类文化的汤。我们需要为这个新的复制因子取一个名字。这个名字要能表达作为一种文化传播单位或模仿单位的概念。“mimeme”这个词出自一个恰当的希腊词词根,但我希望有一个单音节的词,听上去有点像“gene”(基因)。如果我把“mimeme”这个词缩短为meme(觅母)**,切望我的古典派朋友们多加包涵。我们既可以认为meme与memory(记忆)有关,也可以认为与法语Même(同样的)有关,如果这样能使某些人感到一点慰藉的话。这个词念起来应与“cream”合韵。

        曲调、概念、妙句、时装、制锅或建造拱廊的方式等都是觅母。正如基因通过精子或卵子从一个个体转移到另一个个体,从而在基因库中进行繁殖一样,觅母通过广义上可以称为模仿的过程从一个大脑转移到另一个大脑,从而在觅母库中进行繁殖。一个科学家如果听到或看到一个精彩的观点,会把这一观点传达给他的同事和学生,他写文章或讲学时也提及这个观点。如果这个观点得以传播,我们就可以说这个观点正在进行繁殖,从一些人的大脑散布到另一些人的大脑。正如我的同事汉弗莱(N.K.Humphrey)对本章初稿的内容进行概括时精辟地指出的那样:“觅母应该被看成一种有生命力的结构,这不仅仅是比喻的说法,而是有学术含义的。*当你把一个有生命力的觅母移植到我的心田上时,事实上你把我的大脑变成了这个觅母的宿主,使之成为传播这个觅母的工具,就像病毒寄生于一个宿主细胞的遗传机制一样。这并非凭空说说而已,可以举个具体的例子,‘死后有灵的信念’这一觅母事实上能够变成物质,它作为世界各地人民的神经系统里的一种结构,千百万次地取得物质力量。”

        让我们研究一下“上帝”这个概念。我们不知道它最初是怎样在觅母库中产生的,它大概经过许多次独立“突变”过程才出现。不管怎样,“上帝”这个概念确实是非常古老的。它怎样进行自身复制呢?它通过口头的言语和书面的文字,在伟大的音乐和伟大的艺术的协助下,进行复制传播。它为什么会具有这样高的生存价值呢?你应当记住,这里的“生存价值”不是指基因在基因库里的价值,而是指觅母在觅母库里的价值。这个问题的真正含义是,到底是什么东西赋予了“上帝”这一概念在文化环境中的稳定性和渗透性(penetrance)。上帝觅母在觅母库里的生存价值来自它具有的强大的心理号召力。“上帝”这一概念对于有关生存的一些深奥而又使人苦恼的问题提供了一个表面上好像是言之有理的答案。它暗示今世的种种不公平现象可以在来世中得到改正。上帝伸出了“永恒的双臂”来承受我们人类的种种缺陷,宛如医生为病人开的一味安慰剂,由于精神上的作用也会产生一定的效果。上帝这个偶像之所以为人们所乐于接受,并一代一代地在人们大脑里复制传播,其部分理由即在于此。我们可以说,在人类文化提供的环境中,上帝这个形象是存在于具有很高生存价值或感染力的觅母形式中的。

        我的一些同事对我说,我这种关于上帝觅母的生存价值的说法是以未经证实的假设作为论据的。归根到底,他们总是希望回到“生物学上的优越性”上去。对他们而言,光说上帝这个概念具有“强大的心理号召力”是不够的,他们想知道这个概念为什么会有如此强大的心理号召力。心理号召力是指对大脑的感召力,而大脑意识的形成又是基因库里基因自然选择的结果。他们企图找到这种大脑促进基因生存的途径。

        我对这种态度表示莫大的同情,而且我毫不怀疑,我们现在这个模样的大脑确实具有种种遗传学上的优越性。但我认为,我的这些同事如果仔细地研究一下自己的假设所根据的那些基本原则,就会发现,他们和我一样都在以未经证实的假设作为论据。从根本上说,我们试图以基因的优越性来解释生物现象是可取的做法,因为基因都能复制。原始汤分子一具备能够进行自身复制的条件,复制因子就开始繁盛了起来。30多亿年以来,DNA始终是我们这个世界上唯一值得一提的复制因子,但它不一定要永远享有这种垄断权。新型复制因子能够进行自我复制的条件一旦形成,这些新的复制因子必将开始活动,而且开创自己的崭新类型的进化进程。这种新进化发轫后,完全没有理由要从属于老的进化。原来基因选择的进化过程创造了大脑,从而为第一批觅母的出现准备了“汤”。能够进行自我复制的觅母一问世,它们自己所特有的那种类型的进化就开始了,而且速度要快得多。遗传进化的概念在我们生物学家的大脑里已根深蒂固,因此我们往往会忘记,遗传进化只不过是许多可能发生的进化现象之中的一种而已。

        广义地说,觅母通过模仿的方式进行自我复制。但正如能够自我复制的基因也并不是都善于自我复制一样,觅母库里有些觅母比另外一些觅母能够取得更大的成功。这种过程和自然选择相似。我已具体列举过一些有助于提高觅母生存价值的特性。但一般地说,这些特性必然和我们在第2章里提到过的复制因子的特性是一样的:长寿、生殖力和精确的复制能力。相对而言,任何一个觅母拷贝是否能够长寿可能并不重要,这对某一个基因拷贝来说也一样。《友谊天长地久》(Auld Lang Syne)*这个曲调拷贝萦绕在我的脑际,但我的生命结束之日,也就是我头脑里的这个曲调终了之时,印在我的一本《苏格兰学生歌曲集》里的这同一首曲调的拷贝会存在得久些,但也不会太久。但我可以预期,萦绕于人们脑际或印在其他出版物上的同一曲调的拷贝就是再过几个世纪也不致湮灭。和基因的情况一样,对某些具体的拷贝而言,生殖力比长寿重要得多。如果说觅母这个概念是一个科学概念,那么它的传播将取决于它在一群科学家中受到多大的欢迎。它的生存价值可以根据它在连续几年的科技刊物中出现的次数来估算。**如果它是一个大众喜爱的调子,我们可以从街上用口哨吹这个调子的行人的多寡来估算这个调子在觅母库中扩散的程度;如果它是女鞋式样,我们可以根据鞋店的销售数字来估计。有些觅母和一些基因一样,在觅母库中只能短期内迅猛地扩散,但不能持久,流行歌曲和高跟鞋就属这种类型。至于其他,如犹太人的宗教律法等可以流传几千年历久不衰,这通常是由于见诸文字记载的东西拥有巨大的潜在永久性。

        说到这里,我要谈谈成功的复制因子的第三个普遍的特性:精确的复制能力。关于这一点,我承认我的论据不是十分可靠的。乍看起来,觅母好像完全不是能够精确进行复制的复制因子。每当一个科学家听到一个新的概念并把它转告给其他人的时候,他很可能变更其中的某些内容。我在本书中很坦率地承认特里弗斯的观点对我的影响非常之大,然而,我并没有在本书中逐字逐句地照搬他的观点,而是将其内容重新安排糅合以适应我的需要,有时改变其着重点,或把他的观点和我自己的或其他的想法混合在一起。传给你的觅母已经不是原来的模样。这一点看起来和基因传播所具有的那种颗粒性的(particulate)、全有或全无的遗传特性大不相同。看来觅母传播受到连续发生的突变以及相互混合的影响。

        不过,这种非颗粒性表面现象也可能是一种假象,因此与基因进行类比还是能站得住脚的。如果我们再看一看诸如人的身高或肤色等许多遗传特征,似乎不像是不可分割和不可混合的基因发挥作用的结果。如果一个黑人和一个白人结婚,这对夫妇所生子女的肤色既不是黑色也不是白色,而是介乎两者之间。这并不是说有关的基因不是颗粒性的,事实是,与肤色有关的基因是如此之多,而且每一个基因的影响又是如此之小,以至于看起来它们是混合在一起了。迄今为止,我对觅母的描述可能给人以这样的印象,即一个觅母单位的组成好像是一清二楚的。当然事实上还远远没有弄清楚。我说过一个调子是一个觅母,那么,一部交响乐又是什么呢?它是由多少觅母组成的呢?是不是每一个乐章都是一个觅母,还是每一个可辨认的旋律、每一小节、每一个和音或其他什么都算一个觅母呢?

        在这里,我又要求助于我在第3章里使用过的方法。我当时把“基因复合体”(gene complex)分成大的和小的遗传单位,单位之下再分单位。基因的定义不是严格地按全有或全无的方式制定的,而是为方便起见而划定的单位,即染色体的一段,其复制的精确性足以使之成为自然选择的一个独立存在的单位。如果贝多芬的《第九交响曲》中某一小节具有与众不同的特色,使人听后难以忘怀,因此值得把它从整部交响乐中抽出,作为某个令人厌烦的欧洲广播电台的呼号,那么,从这个意义上说,也可被称为一个觅母。附带说一句,这个呼号已大大削弱了我对原来这部交响乐的欣赏能力。

        同样,当我们说所有的生物学家如今都笃信达尔文学说的时候,我们并不是说每一个生物学家都有一份达尔文本人说过的话的拷贝原封不动地印在他的脑海中,而是每一个人都有解释达尔文学说的方式。他很可能是从比较近的著作里读到达尔文学说的,而并没有读过达尔文本人在这方面的原著。达尔文说过的东西,就其细节而言,有很多是错误的。如果达尔文能看到拙著,或许辨别不出其中哪些是他原来的理论。不过我倒希望他会喜欢我表达他的理论的方式。尽管如此,每一个理解达尔文学说的人的脑海里都存在一些达尔文主义的精髓,不然的话,所谓两个人看法一致的说法似乎也就毫无意义了。我们不妨把一个“概念觅母”看成一个可以从一个大脑传播到另一个大脑的实体。因此,达尔文学说这一觅母就是一切懂得这一学说的人在大脑中所共有的概念的主要基础。按定义说,人们阐述这个学说的不同方式不是觅母的组成部分。如果达尔文学说能够再被分割成小一些的组成部分,有些人相信A部分而不相信B部分,另一些人相信B部分而不相信A部分,这样,A与B两部分应该看成两个独立的觅母。如果相信A部分的人大多数同时相信B部分——用遗传的术语来说,这些觅母是密切连锁在一起的——那么,为了方便起见,可以把它们当作一个觅母。

        让我们把觅母和基因的类比继续进行下去。自始至终,我在这本书中一直强调不能把基因看作自觉的、有目的的行为者,可是,盲目的自然选择使它们的行为好像带有目的性。因此,用带有目的性的语言来描绘基因的活动,正如使用速记一样有其方便之处。例如当我们说“基因试图增加它们在未来基因库中的数量”,我们的真正意思是“凡是由于基因本身的行为而使自己在未来的基因库中的数量增加的,往往就是我们在这个世界上所看到的那些有效基因”。正如我们为了方便把基因看成积极的、为自身生存进行有目的的工作的行为者,我们同样可以把觅母视为具有目的性的行为者。基因也好,觅母也好,都没有任何神秘之处。我们说它们具有目的性不过是一种比喻的说法。我们已经看到,在论述基因的时候,这种比喻的说法是有成效的。我们对基因甚至用了“自私”“无情”这样的词汇。我们清楚地知道,这些说法仅仅是一种修辞方法。我们是否可以本着同样的精神去寻找自私的、无情的觅母呢?

        这里牵涉有关竞争的性质这样一个问题。凡是存在有性生殖的地方,每一个基因都同它的等位基因进行竞争,这些等位基因就是与它们争夺染色体上同一位置的对手。觅母似乎不具备相当于染色体的东西,也不具备相当于等位基因的东西。我认为从某种微不足道的意义上来说,许多概念可以说是具有“对立面”的。但一般来说,觅母和早期的复制因子相似,它们在原始汤中混混沌沌地自由漂荡,而不像现代基因那样,在染色体的队伍里整齐地配对成双。那么这样说来,觅母究竟在如何相互竞争?如果它们没有等位觅母,我们能说它们“自私”或“无情”吗?回答是——我们可以这么说,因为从某种意义上说,觅母之间可能进行着某种类型的竞争。

        任何一个使用数字计算机的人都知道计算机的时间和记忆存储空间是非常宝贵的。在许多的大型计算机中心,这些时间和空间事实上是以金额来计算成本的。或者说,每个计算机使用者可以分配到一段以秒计算的时间和一部分以“字数”计算的空间。觅母存在于人的大脑中,大脑就是计算机。*时间可能是一个比存储空间更重要的限制因素,因此是激烈竞争的对象。人的大脑以及由其控制的躯体只能同时进行一件或少数几件工作。如果一个觅母想要控制人脑的注意力,它必须为此排除其他“对手”觅母的影响。成为觅母竞争对象的其他东西是收听广播和看电视的时间、广告面积、报纸版面以及图书馆里的书架面积。

        我们在第3章中已经看到,基因库里可以产生相互适应的基因复合体。与蝴蝶模拟行为有关的一大组基因在同一条染色体上如此紧密相连,以至于我们可以把它们视为一个基因。在第5章,我们谈到一组在进化上稳定的基因这个较为复杂的概念。在肉食动物的基因库里,相互配合的牙齿、脚爪、肠胃和感觉器官得以形成,而在草食动物的基因库里,出现了另一组不同的稳定特性。在觅母库里会不会出现类似的情况呢?譬如说,上帝觅母是否已同其他的觅母结合在一起,而这种结合的形式是否有助于参加这些结合的各个觅母的生存?也许我们可以把一个有组织的教堂,连同它的建筑、仪式、法律、音乐、艺术以及成文的传统等视为一组相互适应的、稳定的、相辅相成的觅母。

        让我举一个具体的例子来说明问题。教义中有一点对强迫信徒遵守教规是非常有效的,那就是罪人遭受地狱火惩罚的威胁。很多小孩,甚至有些成年人相信,如果他们违抗神父的规定,他们死后要遭受可怕的折磨。这是一种恶劣透顶的骗取信仰的手段,它在整个中世纪,甚至直至今天,为人们带来心理上的极大痛苦。但这种手段非常有效。这种手段可能是一个受过深刻心理学训练,懂得怎样灌输宗教信仰的马基雅维利[1]式的牧师经过深思熟虑的杰作。然而,我怀疑这些牧师是否有这样的聪明才智。更为可能的是,不具自觉意识的觅母由于具有成功基因所表现出的那种虚假的冷酷性而保证了自身的生存。地狱火的概念只不过是由于具有深远的心理影响而取得其固有的永恒性。它和上帝觅母联结在一起,因为两者互为补充,在觅母库中相互促进对方的生存。

        宗教觅母复合体的另一个组成部分被称为信仰。这里指的是盲目的信仰,即在没有确凿证据的情况下,或者甚至在相反的证据面前的信仰。人们讲述多疑的托马斯[2]的故事,并不是为了让我们赞美托马斯,而是让我们通过对比来赞美其他的使徒。托马斯要求看到证据,而对某些种类的觅母来说,没有什么东西比寻求证据的倾向更加危险了。其他使徒并不需要什么证据照样能够笃信无疑,因此这些使徒被捧出来作为值得我们仿效的对象。促使人们盲目信仰的觅母以简单而不自觉的办法阻止人们进行合理的调查研究,从而取得其自身的永恒性。

        盲目信仰的人什么事都干得出来。*如果有人相信另一个上帝,或者即使他也相信同一个上帝,但膜拜的仪式不同,盲目信仰可以驱使人们判处这个人死刑。可以把他钉死在十字架上,可以把他烧死在火刑柱上,可以用十字军战士的利剑刺死他,也可以在贝鲁特的街头枪决他,或者在贝尔法斯特的酒吧间里炸死他。促使人们盲目信仰的觅母有其冷酷无情的繁殖手段。这对爱国主义、政治上的盲目信仰,以及宗教上的盲目信仰都是一样的。

        觅母和基因常常相互支持、相互加强,但它们有时也会发生矛盾。例如独身主义大概是不能遗传的。促使个体实行独身主义的基因在基因库里肯定没有出路,除非在十分特殊的情况下,如在社会性昆虫的种群中。然而,促使个体实行独身主义的觅母在觅母库里却是能够取得成功的。譬如说,假使一个觅母的成功严格地取决于人们需要多少时间才能把这个觅母主动地传播给其他人,那么从觅母的观点来看,把时间花在其他工作上而不是试图传播这个觅母的行为都是在浪费时间。牧师在小伙子尚未决定献身于什么事业的时候就把独身主义的觅母传给他们。传播的媒介是各种人与人之间相互影响的方式,口头的言语、书面的文字、人的榜样等等。现在,为了便于把问题辨明,让我们假定这样的情况:某个牧师结了婚,结婚生活削弱了他影响自己教徒的力量,因为结婚生活占据了他一大部分时间和精力。事实上,人们正是以这种情况作为正式的理由要求做牧师的必须奉行独身主义。如果情况果真是这样,那么促使人们实行独身主义的觅母的生存价值要比促使人们结婚的觅母的生存价值大。当然,对促使人们实行独身主义的基因来说,情况恰恰相反。如果牧师是觅母的生存机器,那么,独身主义是他应拥有的一个有效属性。在一个由相互支持的各种宗教觅母组成的巨大复合体中,独身主义不过是一个小伙伴而已。

        我猜想,相互适应的觅母复合体和相互适应的基因复合体具有同样的进化方式。自然选择有利于那些能够为其自身利益而利用其文化环境的觅母。这个文化环境包括其他的觅母,它们也是被选择的对象。因此,觅母库逐渐取得一组进化上稳定的属性,这使得新的觅母难以入侵。

        我在描述觅母的时候可能消极的一面讲得多些,但它们也有欢乐的一面。我们死后可以遗留给后代的东西有两种:基因和觅母。我们是作为基因机器而存在的,我们与生俱来的任务就是把我们的基因一代一代地传下去,但我们在这个方面的功绩隔了三代就被人忘怀。你的儿女,甚至你的孙子或孙女可能和你相像,也许在脸部特征方面,在音乐才能方面,在头发的颜色方面,等等,但每过一代,你传给后代的基因都要减少一半。这样下去不消多久,它们所占的比例会越来越小,直至达到无足轻重的地步。我们的基因可能是不朽的,但体现在我们每一个人身上的基因集体迟早要消亡。伊丽莎白二世是征服者英王威廉一世的直系后裔,然而在她身上非常可能找不到一个来自老国王的基因。我们不应指望生殖能带来永恒性,但如果你能为世界文明做出贡献,如果你有一个精辟的见解或作了一首曲子、发明了一个火花塞、写了一首诗,所有这些都能完整无损地流传下去。即使你的基因在共有的基因库里全部分解后,这些东西仍能长久存在,永不湮灭。苏格拉底在今天的世界上可能还有一两个活着的基因,也可能早就没有了,但正如威廉斯所说的,谁对此感兴趣呢?苏格拉底、达·芬奇、哥白尼、马可尼等人的觅母复合体在今天仍盛行于世,历久而弥坚。

        不管我提出的觅母理论带有多大的推测性,其中有一点却是非常重要的,在此我想再次强调一下。当我们考虑文化特性的进化以及它们的生存价值时,我们有必要弄清楚,我们所说的生存指的是谁的生存。我们已经看到,生物学家习惯于在基因的水平上(或在个体、群体、物种的水平上,这要看个人的兴趣所在)寻求各种有利条件。我们至今还没有考虑过的一点是,一种文化特性可能是按其特有的方式形成的。理由很简单,因为这种方式对其自身有利。

        我们无须寻求如宗教、音乐、祭神的舞蹈等种种特性在生物学上的一般生存价值,尽管这些价值也可能存在。基因一旦为其生存机器提供了能够进行快速模仿活动的头脑,觅母就会自动地接管过来。我们甚至不必假定模仿活动具有某种遗传上的优越性,尽管这样做肯定会带来方便。必不可少的条件是,大脑应该能够进行模仿活动:那时就会形成充分利用这种能力的觅母。

        现在我就要结束新复制因子这个论题,并以审慎的乐观口吻结束本章。人类的一个非凡的特征——自觉的预见能力——可能归因于觅母的进化,也可能与觅母无关。自私的基因(还有觅母,如果你不反对我在本章所做的推测)没有预见能力,它们都是无意识的、盲目的复制因子。它们进行自我复制,这个事实再加上其他一些条件意味着不管愿意不愿意,它们都将趋向于某些特性的进化过程。这些特性从本书的特殊意义上说,可以称为自私的。

        我们不能指望,一个简单的复制实体,不管是基因还是觅母,会放弃其短期的自私利益,即使从长远观点来看,它这样做也是合算的。我们在有关进犯性行为的一章里已看到这种情况。即使一个“鸽子集团”对每一个个体来说比进化稳定策略来得有利,自然选择还是有利于ESS。

        人类可能还有一种非凡的特征——表现真诚无私的利他行为的能力。我唯愿如此,不过我不准备就这一点进行任何形式的辩论,也不打算对这个特征是否可以归因于觅母的进化妄加猜测。我想要说明的一点是,即使我们着眼于阴暗面而假定人基本上是自私的,我们自觉的预见能力——在想象中模拟未来的能力——能够防止自己纵容盲目的复制因子干出那些最坏的、过分的自私行为。我们至少已经具备了精神上的力量去照顾我们的长期自私利益而不仅仅是短期自私利益。我们可以看到参加“鸽子集团”所能带来的长远利益,而且我们可以坐下来讨论用什么方法能够使这个集团取得成功。我们具备足够的力量去抗拒我们那些与生俱来的自私基因。在必要时,我们也可以抗拒那些灌输到我们头脑里的自私觅母。我们甚至可以讨论如何审慎地培植纯粹的、无私的利他主义——这种利他主义在自然界里是没有立足之地的,在整个世界历史上也是前所未有的。我们是作为基因机器而被建造的,是作为觅母机器而被培养的,但我们具备足够的力量去反对我们的缔造者。在这个世界上,只有我们,我们人类,能够反抗自私的复制因子的暴政。

        第12章 好人终有好报

        “好人垫后。”——这句俗语似乎来自棒球界,不过有些权威人士声称它有其他内涵。美国生物学家加勒特·哈丁(Garrett Hardin)用这句俗语来总结“社会生物学”或者“自私的基因”,其中的贴切不言而喻。在达尔文主义中,“好人”是那些愿意自身付出代价,帮助种群中其他成员个体,以此使他们的基因传到下一代的“人”。这么看来,好人的数目注定要减少,善良在达尔文主义里终将灭亡。这里的“好人”还有另一种专有解释,和俗语中的含义相差并不远。但在这种解释里,好人则能“得好报”。在这一章节里,我将阐释这个相对乐观的结论。

        想想第10章里的斤斤计较者。那些鸟儿显然以利他的方式互相帮助,但对那些曾经拒绝帮助他人的鸟,它们却怀恨在心,以牙还牙地拒绝给予帮助。比起傻瓜(那些无私奉献却遭遇剥削的个体)和骗子(那些互相无情剥削而共同毁灭的个体),斤斤计较者在种群中占优势,因为它们可以将更多基因传递给后代。斤斤计较者的故事表达了一个重要原则,罗伯特·特里弗斯将此称为“互惠利他理论”。在清洁工鱼(第10章)的例子里,互惠利他不仅局限于单个物种,还存在于所有共生关系中。类似的例子还有蚂蚁为它们的“奶牛”蚜虫挤“奶”(第10章)。当第10章写就时,美国政治科学家罗伯特·阿克塞尔罗德将互惠利他的概念延伸至更为激动人心的方向。阿克塞尔罗德曾与威廉·唐纳·汉密尔顿合作,后者的名字在这本书里已经出现无数次了。开篇已经暗示过,正是阿克塞尔罗德赋予了“好人”一个专有含义。

        如同许多其他政治科学家、经济学家、数学家与心理学家一样,阿克塞尔罗德对“囚徒困境”这一简单的博弈游戏很感兴趣。这个游戏极其简单,但我知道许多聪明人完全误解了游戏,以为其复杂无比。不过,它的简单也带有欺骗性。图书馆里关于这个博弈衍生物的书籍多如牛毛。许多有影响力的人认为它是解决战略防御规划问题的钥匙,这个模型需被仔细研究,以阻止第三次世界大战的发生。而作为一个生物学家,我站在阿克塞尔罗德与汉密尔顿一边。许多野生动物和植物正以其演化进程,精确无误地进行着“囚徒困境”的博弈。

        在其原始的人类版本中,“囚徒博弈”是这样的:一个“银行家”判定两位玩家的输赢,并付与赢家报酬。假设我们便是这两位玩家,当我们开始博弈时(虽然我们将看到,“对立”是我们最不应该做的),我们手中各有两张卡,分别为“合作”与“背叛”。我们各自选定一张牌,面朝下摆放在桌子上,这样我们都不知道对方的选择,也不会为对方选择所影响,这便等同于我们同时行动。然后我们等待“银行家”来翻牌。我们的输赢不仅取决于我们出的牌,还取决于对方打出的牌。其悬念在于:虽然我们清楚自己的出牌,却并不知道对方的出牌。我们都只能等“银行家”来揭晓结果。

        我们一共有2×2=4张牌,于是也便有4种可能的结果。为向这个游戏的发源地——北美致敬,我们以美元来表示这4种输赢结果。

        结果1:我们俩都选择了“合作”。“银行家”给我们每个人300美元。这个不菲的总数是对相互合作的奖赏。

        结果2:我们俩都选择了“背叛”。“银行家”对每个人罚款10美元。这是对相互背叛的惩罚。

        结果3:你选择“合作”,我选择“背叛”。“银行家”付给我500美元(这是背叛的诱惑),罚了你(傻瓜)100美元。

        结果4:你选择“背叛”,我选择“合作”。“银行家”将背叛的诱惑付给了你,而罚了我这个傻瓜100美元。

        结果3与4明显互为镜像。一个玩家得到好处,则有另一个玩家将付出代价。在结果1与2里,我们俩得到相同的结果,而结果1对我们俩都有好处。这里金钱的具体数目并不要紧,重要的是这个博弈里“囚徒困境”结果的排列顺序:背叛的诱惑>相互合作的奖赏>相互背叛的惩罚>失败的代价。(严格来说,这个博弈还有另一个条件:背叛的诱惑与失败的代价的平均值不可高于相互合作的奖赏。我们将在后边附加条件里提到这个原因。)这四种结果总结于表12-1里。

        表12-1 我在囚徒困境博弈里各种结果的输赢状况

        那么,为什么这是一个“困境”?看看这张输赢状况的表格,想象一下我在与你博弈时脑海中盘旋着的想法。我知道你只有两张牌,“合作”或者“背叛”。让我们按次序来想想。如果你打出“背叛”(这表示我们将看向表格中的右边一列),我能打出最好的牌也只能是“背叛”。虽然我也将接受相互背叛的惩罚,但我知道,如果选择了“合作”,失败者的代价只会更高。而如果你选择了“合作”(看向左边一列),我最好的结果也只能是选择“背叛”。如果我们合作了,我们都能得到300美元;但如果我选择背叛,我将得到更多——500美元。这里的结论是:无论你选择哪张牌,我最好的选择是永远背叛。

        我已经运用我无懈可击的逻辑算出,无论你如何选择,我都必须“背叛”。而你,也将算出同样的结果。于是当两个理性的对手相对时,他们将同时背叛,也将同时被罚款,获得一个较低的分数。虽然每个人都心知肚明,如果他们彼此选择“合作”,两人都将得到较高的相互合作的奖赏(我们的例子里是300美元)。这就是为什么这个博弈被称为困境,自相矛盾得令人恼火。这也就是为什么人们开始提出必须有一个法律来对付这个问题。

        “囚徒”来自一个特殊的、想象中的例子,上述例子中的现金被监狱的刑罚取代。两个在监狱中的囚徒——姑且称他们为彼得森与莫里亚蒂,有共同犯罪的嫌疑。囚徒们各自被关押在单独的牢房里,并各自被劝诱背叛他的同伙,将所有犯罪证据栽赃对方。他们的判决结果将取决于两个囚徒的行为,而双方都不知道对方的选择。如果彼得森将所有罪过都推向莫里亚蒂,而莫里亚蒂始终保持沉默(与他从前的朋友、现在的叛徒合作),莫里亚蒂将接受重罚,而彼得森得以无罪释放,享受背叛的诱惑。如果两人互相背叛,便都将获罪,但可以因为供认不讳而得到轻判,这便是互相背叛的惩罚。如果两人互相与对方而不是当局合作,闭口不谈过往,所得证据将不足以把两人判以重罪,则两人也都将得到轻判,得到互相合作的奖赏。虽然将牢狱刑罚称为“奖赏”有点儿奇怪,但比起漫长的铁窗生涯,犯人们肯定会将此看作奖赏的。你可以发现,虽然这里的回报不是美元而是牢狱刑罚,博弈的主要特征依然保存着(看看四个结果可取性的排列顺序)。如果你将自己放在任何一个囚徒的位置上,假设两人都以理性的自我利益为动机,你将看到两人都只能背叛对方,而同样接受沉重的刑罚。

        有没有逃离困境的方法呢?双方都知道,无论对方如何选择,他们能做出的最好的选择都是“背叛”。但他们也都知道,如果双方都选择合作,任何一方都可以得到更多的好处。如果……如果……如果能有一个办法让他们达成共识,能有一个办法让双方都坚信对方可以被信任,不至于奔向那个自私的奖赏,能有一个方法来维持双方共识……

        在“囚徒困境”这个简单博弈里,没有任何方法可以达成信任。除非其中一方是一个虔诚的傻瓜,善良得根本不可能适应这个世界,这个博弈注定将以相互背叛、相互损伤告终。然而,这个博弈还有另一个版本:“重复博弈”的“囚徒困境”。这个“重复博弈”更为复杂,但复杂性里孕育着希望。

        “重复博弈”只是简单将上述博弈与同一个对手无限次重复。你我再次在“银行家”面前左右相对,再次拥有手中的两张牌——“合作”与“背叛”,我们再次各自打出一张牌,由“银行家”根据上述规则给出奖赏与惩罚。但这一次对弈不再是博弈的终结,我们捡起手中的牌,准备着下一轮。下一轮的游戏给予我们机会来重新建立信任与怀疑,实施对抗或和解,给予报复或宽恕。在这无限长的博弈里,我们最重要的任务是:赢了“银行家”,而不是对方。

        在10次博弈后,理论上我也许可以获得最多5000美元,但只有在你完全愚不可及,或者大公无私地每次都打出“合作”的时候,我才有可能每次都得到最高奖赏“背叛的诱惑”。在更实际一点儿的情况里,我们各自都在10次对弈中打出“合作”,并各自从“银行家”里得到3000美元。这样,我们并不需要特别大公无私,因为我们彼此都能从对方过往的行为中,知道对方可以信任。我们事实上也在监管着对方的行为。还有另一个也可能发生的结果,我们彼此不信任对方,在10次对弈中都打出了“背叛”,“银行家”则从每个人处得到了100美元。最可能发生的是,我们并不完全信任对方,打出了各种次序的“合作”与“背叛”,双方都得到了并不多的金钱。

        在第10章中,那些互相从对方羽毛中捉出蜱虫的鸟,正是进行一场“囚徒困境”的重复博弈。这怎么进行呢?你应该还记得,对于鸟来说,从自己身上清除蜱虫非常重要,但它无法自己清除头部的蜱虫,只能依靠同伴来帮助它,而让它同样报答对方也是公平的。但这项工作耗费了许多时间精力,鸟类在这方面并不宽裕。如果某只鸟能以欺骗方式从这个小圈子中逃出来,让别人清除自己的蜱虫,而拒绝互惠互利,它则能得到所有实惠,而不需支付任何代价。如果你将这些回报结果排列一下次序,你将发现这正是真实的“囚徒困境”博弈。互相合作以清除彼此的蜱虫固然是好事,但还有着更好的诱惑促使你拒绝支付互惠的代价。互相背叛以拒绝清除蜱虫固然不是好事,但也没有比花精力帮别人除虫而自己无人理睬更不好。表12-2展示了这个回报结果。

        表12-2 鸟类清除蜱虫的博弈:我从各种结果中得到的回报

        但这只是一个例子。如果你继续思考,你更会发现,从人类到动植物,生活中充满了“囚徒困境”的重复博弈。植物?是的。记得我们谈到策略时,我们没有提到有意识的策略(但我们之后可能会提及),但我们提及了“梅纳德·史密斯”的意识,这便是一种预定基因的策略。我们之后还会提到植物、动物甚至细菌,它们都在进行着“囚徒困境”的重复博弈。现在,先让我们详细探索一下,为何重复博弈如此重要。

        在简单博弈里,我们可以预见“背叛”是唯一的理性策略。但重复博弈并不相同,它提供了许多选择范围。简单博弈里只有两种策略,合作或是背叛。但重复博弈可以有很多我们想象得到的策略,并没有任何一个是绝对的最佳方案。比如“大部分时间合作,而在随机的时间里背叛”这个策略,便是成千上万的策略里中的一个。也可以基于过往历史来选择策略,我的“斤斤计较者”正是一个例子。这种鸟对脸部有很好的记忆力,尽管它基本采取合作策略,但它也会背叛那些曾经背叛过它的对手。还有一些其他策略可能更为宽容,或者有更短期的记忆。

        显然,重复博弈里可用的策略之多取决于我们的创造力。但我们能够算出哪个是最佳方案吗?阿克塞尔罗德也这么问自己。他想出了一个很具娱乐性的方案:举行一场竞赛。他广发通知,让博弈论的专家们来提交策略。在这里,策略指的是事先确定的行动规则,所以竞争者可以用计算机语言编程加入博弈。阿克塞尔罗德总共收到了14个策略。为了得到更好的结果,他还加了第15个策略,取名为“随机”。这个策略只是简单地随机出“合作”或“背叛”牌,基本等于“无策略”。如果任何一个其他策略比“随机策略”的结果更坏,这一定是个非常差的策略。

        阿克塞尔罗德将这15个策略翻译成一种常用的计算机语言,在一台大型计算机中设定这些策略互相博弈。每个策略轮流与其他策略(包括它自己)进行重复博弈。15个策略总共组成15×15=225个排列组合,在计算机上轮番进行。每一个组合需要进行200回合的博弈,所有输赢累积计算,以得出最终的赢家。

        这里,我们不关心某一个策略是否优于另一个策略,我们只关心哪个策略在与15个对手博弈后,最终赢得最多的“钱”。在这里,“钱”指的是赢得的分数。相互合作的奖赏为3分,背叛的诱惑为5分,互相背叛的惩罚为1分(相当于我们早先例子中的轻判),失败的代价为0分(等同于之前例子中的重罚)。

        表12-3 阿克塞尔罗德的计算机竞赛:我在各种结果中所得的回报

        无论是哪一种策略,理论上它们能得到的最高总分都是15000分(每一回合5分,15个对手共有200回合),最低分则是0分。不用说,这两个极端都没有实现。实际上,一个策略如果能超过15个对手中的平均水平,最多也只能获得比600分高出一些的分数。因为如果双方决定持续合作,每人在200场博弈中都能得到3分,总共便是600分。我们可以将600分作为基准分,将所有分数表达为600分的百分比。这么算来,理论上面对一个对手的最高分将是166%(1000分)。但事实上,没有任何一个策略的平均分超过600分。

        要知道,竞赛中的博弈者并不是人类,而是计算机事先设定好的程序。而基因在这些程序的作者里事先设定了“程序”,使得它们身体力行地扮演同样的角色(想想第4章中的计算机对弈与“仙女座”超级计算机)。你可以将这些策略想象成这些作者的微型代理。虽然一个作者原本可以提交一个以上的策略,但这其实是作弊,这表示作者将在竞争本身中加入策略,使得其中一个角色从另一个角色的牺牲中得到合作的好处。阿克塞尔罗德应该不会接受这一点。

        有一些交上来的策略很聪明,当然它们远没有其作者聪明。然而,最后胜出的策略却是一个最简单的,而且看起来最不聪明的一个。这个策略被称为“针锋相对”(Tit for Tat),它来自多伦多一位著名心理学家和博弈学家阿纳托尔·拉波波特(Anatol Rapoport)教授。这个策略在第一回合时采取合作行动,然后在接下来的所有步骤里,只是简单复制对手上一步的行动。

        有了“针锋相对”策略的博弈将如何进行呢?一如寻常,下一步的出牌完全取决于对手。假设另一对手也选择了“针锋相对”的策略(每一个策略不止与其他14个对手竞争,也与自己博弈),双方都选择以“合作”开场,第二步中,双方都复制对方上一步的策略,仍然采取“合作”。这样,博弈双方持续合作,直到游戏结束,双方都能获得100%的600分基准分。

        那么,假设“针锋相对”与另一个策略“老实人探测器”(Naive Prober)开始博弈。事实上,“老实人探测器”并没有出现在阿克塞尔罗德的博弈竞赛中,但它依然是一个富有指导性的策略。这个策略基本等同于“针锋相对”,但每隔一会儿,比如在每十步中任意选择一步,这个策略会打出恶意的“背叛”牌,而获得最高的分数“背叛的诱惑”。如果“老实人探测器”不打出其试探的“背叛”牌,博弈双方便是两个“针锋相对”,打出一场漫长且互利的“合作”牌,彼此安稳地获得100%的基准分。但突然间(假设在第8回合),“老实人探测器”出其不意地“背叛”了,“针锋相对”却依然不知情地坚持“合作”,也便只能付出“失败者的代价”,得到0分,而“老实人探测器”能得到最高成绩5分。但在下一步里,“针锋相对”开始报复,复制了对手上一步的行动,打出了“背叛”牌,而“老实人探测器”盲目地继续原本设定的程序,复制对手上一步的“合作”牌,于是它只能获得0分,而“针锋相对”得到5分。再下一步,“老实人探测器”极其不公正地又开始了报复,“背叛”了“针锋相对”。反之亦然。在每一轮交替报复的回合里,双方各自平均获得2.5分(5分与0分的平均值)。这依然低于双方持续双向合作所能轻而易举获得的3分(这也是本章前文中尚未解释的“特殊情况”的原因)。于是,当“老实人探测器”与“针锋相对”开始博弈,双方都未能获得两个“针锋相对”博弈时所得的分数。而如果“老实人探测器”互相对弈,其结果只可能更坏,因为这种以牙还牙的冤冤相报可能开始得更早。

        让我们再来考虑另一个叫“愧疚探测器”(Remorseful Prober)的策略。这个策略有点类似于“老实人探测器”,但它可以主动终止循环于双方间的交互背叛。这便需要一种比“针锋相对”或“老实人探测器”更长的记忆。“愧疚探测器”能记住自己是否刚刚主动“背叛”,或者只是为了报复。如果是后者,它便“愧疚地”让对手得到一次反击的机会,而不加以报复。这便将此循环报复行为终结在萌芽状态。如果你在想象中旁观“愧疚探测器”与“针锋相对”的博弈,你会发现可能的循环报复行动不攻自破。博弈中大部分时间都采取互相合作,使得双方都能获得相应的高分。在与“针锋相对”的博弈中,“愧疚探测器”能获得比“老实人探测器”更高的分数,但依然没有“针锋相对”与自己对弈的分数高。

        阿克塞尔罗德的竞赛里还有一些比“老实人探测器”与“愧疚探测器”更为复杂的策略,但它们平均分都比“针锋相对”低。事实上最失败的策略(除了随机)是最复杂的那一个,作者为“匿名”。这个作者的身份引发了一些饶有兴趣的猜测:五角大楼的高层?中央情报局的首脑?国务卿基辛格?阿克塞尔罗德自己?我们也许永远也不会知道。

        不是每个策略的细节都值得研究,这本书也不谈计算机程序员的创造力,但我们可以给这些策略归类,并检验这些类别的成功率。阿克塞尔罗德认为,最重要的类别是“善良”。“善良”类别指的是那些从不率先“背叛”的策略。“针锋相对”便是其中一个例子。它虽然也采取“背叛”的行动,但它只在报复中这么做。“老实人探测器”与“愧疚探测器”也偶尔采取“背叛”,但这种行为是主动起意挑衅的,属于恶意的策略。这场竞赛中的15个策略中,有8个属于“善良”策略。令人吃惊的是,策略中的前8名也是这8个善意的策略。“针锋相对”的平均分504.5分,达到我们600分基准分的84%,是一个很好的分数。其他“善良”策略所得分数要比“针锋相对”少一些,从83.4%到78.6%不等。排名中接下来的则是由格雷斯卡普(Graaskamp)所获得的66.8%,与高分们有很大差距,而这已经是所有恶意策略中的最高分了。令人信服的结果表明,好人在这个博弈中可以胜出。

        阿克塞尔罗德提出的另一个术语则是“宽容”。一个宽容的策略只有短期记忆。虽然它也采取报复行为,但它会很快遗忘对手的劣迹。“针锋相对”便是一个宽容的策略,面对“背叛”时它毫不手软,但之后则“过去的让它过去”。第10章中的“斤斤计较者”则是一个完全相反的例子,它的记忆持续了整个博弈,永不宽恕曾经背叛过它的对手。在阿克塞尔罗德的竞赛中,有一个策略与“斤斤计较者”完全相同,由一位名叫弗里德曼(Friedman)的选手提供。这一个“善良”而绝不宽恕的策略结果并不算佳,成绩在所有“善良”策略里排倒数第二。即便对手已经有悔改之意,它也不愿意打破相互背叛的恶性循环,因此无法取得很高的分数。

        “针锋相对”并不是最宽容的策略。我们还可以设计一个“两报还一报”(Tit for Two Tats)的策略,允许对手连续两次背叛后才开始报复,这似乎显得过分大度坦荡了。阿克塞尔罗德算出,只要在竞赛中有“两报还一报”策略的存在,它便一定会获得冠军,因为它可以有效避免长期的互相伤害。

        于是,我们算出了赢家策略的两个特点:善良与宽容。这几乎是一个乌托邦式的结论:善良与宽容能得到好报。许多专家曾试图在恶意策略里耍点儿花招,认为这可能得到高分。即使那些提交“善良”策略的专家,也未曾敢如“针锋相对”一般宽容。所有人都对这个结论十分惊讶。

        阿克塞尔罗德又举办了第二次竞赛。这次他收到了62个策略,再加上随机策略,总共便有了63个策略。这一次,博弈中的回合数不再固定为200,而改为开放式的不定数(我之后会解释这么做的理由)。我们依然将得分评判为基准分“永远合作”分数的百分比,不过现在基准分需要更为复杂的计算,并不再是固定的600分。

        第二次竞赛的程序员们都得到了第一次竞赛的结果,还收到了阿克塞尔罗德对“针锋相对”与善良、宽容策略获胜的分析。这么做是为了让参赛者们能从某种方向上了解比赛的背景信息,来权衡自己的判断。事实上,这些参赛者分成两种思路。第一种参赛者认为,已经有足够证据证明善良与宽容确实是获胜因素,他们便随即提交了善良与宽容的策略。参赛者约翰·梅纳德·史密斯提交了一个最为宽容的“三报还一报”(Tit for Three Tats)的策略。另一组参赛者则认为,既然对手们已经读过了阿克塞尔罗德的分析,估计都会提交善良宽容的策略。他们于是便提交了恶意的策略,以期在善意对手中占到便宜。

        然而,恶意再一次没有得到好报。阿纳托尔提交的“针锋相对”策略再一次成为赢家,获得了满分的96%。善意策略再一次赢了恶意策略。前15名中只有一个策略是恶意策略,而倒数15名中只有一个是善意策略。然而,最为宽容的、可以在第一次竞赛中胜出的“两报还一报”策略,这次却没有成功。这是因为本次竞赛中有了一些更为狡猾的恶意策略,它们善于伪装自己,无情地抛弃那些善良的人。

        这揭晓了这些竞赛中非常重要的一点:成功的策略取决于你的对手的策略。这是唯一能解释两次竞赛中的不同结果的理由。然而,就像我之前说过的那样。这本书并不是关于计算机程序员的创造力的,那么,是否有一个广泛客观的标准来让我们判断,哪些是真正好的策略?前几章的读者们估计已经开始准备从生物进化稳定策略理论中寻找答案了。

        当时的我也是阿克塞尔罗德传播早期结果的小圈子中的一员,我也被邀请在第二次竞赛中提交策略。我并没有参赛,但我给阿克塞尔罗德提了一个建议。阿克塞尔罗德已经开始考虑进化稳定策略这个理论了,但我觉得这个想法太重要了,于是写信给他建议,让他与汉密尔顿联系一下。虽然当时阿克塞尔罗德并不认识汉密尔顿,但汉密尔顿正与阿克塞尔罗德在同一所大学——密歇根大学的另一个系里。阿克塞尔罗德迅速联系了汉密尔顿。最终,他们合作的结果是一篇卓越的论文,发表在1981年的《科学》杂志上,也获得了美国科学促进会(AAAS)的纽科姆·克里夫兰奖(Newcomb Cleveland Prize)。阿克塞尔罗德和汉密尔顿除了讨论重复“囚徒困境”在生物学上有趣的例子外,我还觉得他们给予了进化稳定策略方法应有的认可。

        让我们来比较一下进化稳定策略与阿克塞尔罗德两次竞赛中的“循环赛”机制。循环赛好比足球联盟中的比赛,每一个策略都与其他策略对战同等次数。策略的最后得分则是它与所有其他策略对弈后的所得总分。如果一个策略想要在竞争中成功,它必须在所有提交的策略中最富有竞争力。阿克塞尔罗德将胜过其他对手的策略定义为“强劲”。“针锋相对”便是一个强劲的策略。但参与竞赛的策略对手们则相当主观,只取决于参赛者所提交的策略水平,这一点使我们相当头疼。阿克塞尔罗德的第一个竞赛里,刚好参赛的策略基本都是善意策略,所以“针锋相对”赢得了竞赛,而如果“两报还一报”参赛了,则会赢了“针锋相对”。但如果几乎所有参赛策略都为恶意策略,情况就不同了。这个假设发生的概率还是很大的,毕竟人们提交的14个策略中有6个是恶意策略。假如13个策略全为恶意策略,“针锋相对”则不可能成功,因为“环境”太差了。提交策略的不同,决定了策略所赢得的金钱和它们的排名位置。也就是说,竞赛结果将取决于参赛者的心血来潮。那么,我们如何减少竞赛的主观性呢?答案是:进化稳定策略。

        你也许还记得,进化稳定策略在众多的种群策略中占有许多席位,也一直得到不错的结果。如果说“针锋相对”是一种进化稳定策略,这便是说,“针锋相对”策略在充满“针锋相对”策略的大环境下能得到不错的结果。这便是一种特殊的“强劲”。作为进化论者,我们一直很想找到一种唯一的、可以直接决定结果的“强劲”。为什么这很重要呢?因为在达尔文主义的世界里,成功并不是赢得金钱,而是获得后裔。对于一个达尔文主义者,一个成功的策略将是一个在策略种群中数量众多的策略。如果这个策略要保持成功,它必须在同类众多时——也就是充满了自身拷贝的大环境中得到特别好的结果。

        阿克塞尔罗德又模仿自然选择,进行了第三场竞赛来寻找进化稳定策略。事实上,他并没有称之为第三次竞赛,因为他并没有邀请新的参赛者,而只是使用了第二次竞赛中的63个策略。但我觉得称它为第三次竞赛比较合适,因为它和前两次“循环赛”有根本性的不同。

        阿克塞尔罗德将这63个策略再次丢给计算机,来制造进化演替的“第一代”。“第一代”的大环境中由这63个策略组成。结束后,赢家不再得到“金钱”或者“分数”,而是与其完全相同的“后代”。世世代代如此传递,一些策略逐渐变得数目稀少,甚至完全绝迹,另一些策略则数目众多。当环境中策略的比例出现变化,博弈中策略的出牌也在随之变化。

        最终在1000代之后,种群不再变化,环境也没有再改变,稳定的状态已经形成。在此之前,各种策略的命运起伏不定,正如我模拟的“骗子”“傻瓜”和“斤斤计较者”的命运一样。一些策略在博弈开始便已经灭绝,大多数则在200代之后彻底灭绝。在那些恶意策略中,有一两个一开始蓬勃发展,但它们的繁荣正如我的模拟预测一样,只是昙花一现。唯一活过200代的一个策略叫作“哈灵顿”(Harrington),它的数目在前150代中直线上升,而后逐渐减少,在1000代之后终于完全灭绝。“哈灵顿”短期繁荣的原因跟我的“骗子”是一样的。当那些如“两报还一报”之类的老实人(过于宽容)还在世时,它欺负它们以获得发展。但在这些老实人消失之后,“哈灵顿”失去了猎物,也跟随着它们的命运而灭绝。剩下的策略都类似于“针锋相对”,既善良又容易被煽动报复。

        “针锋相对”本身在第三轮竞赛中,6次中有5次得了第一,重复其在第一、二次竞赛时的好运。另外5个虽善良但容易报复的策略则几乎和“针锋相对”一样成功(在种群数目上),还有一个策略甚至赢了第6次博弈。当所有恶意策略都灭绝后,所有的善良策略与“针锋相对”都无法辨认彼此了,因为它们都很善良,只是简单地与所有对手“合作”到底。

        这种“无法辨认”的情况使得“针锋相对”在严格意义上不是一个真正的进化稳定策略,即使它看起来确实很像。一个策略要成为进化稳定策略,意味着当它是常见策略时,它不可被少数变异策略同化。虽然“针锋相对”不会被任何恶意策略同化,但另一个善良策略可能做到。正如我们所看到的,在善意策略的群体里,它们面目模糊,行为相同,始终“合作”。因此,有一些其他善良策略,比如“永远合作”这种选择优势不如“针锋相对”的策略,也可以溜进种群里而不被发现。所以严格地说,“针锋相对”并不是进化稳定策略。

        你也许会认为,如果世界充满善良,我们便可以认为“针锋相对”是一个进化稳定策略了。但即使如此,接下来的故事也并不如意。“永远合作”与“针锋相对”不同,它并不能抵挡一些恶意策略的入侵。比如,“永远背叛”的攻击便可以打败“永远合作”,它可以每次都得到“背叛诱惑”的最高分。类似“永远背叛”这样的恶意策略会减少过分善良策略的数目,比如“永远合作”。

        虽然严格来说,“针锋相对”并不是一个真正的进化稳定策略,但在实际操作中,将这一类基本善意又宽容、与“针锋相对”类似的策略近似看作进化稳定策略,也是可行的。这一类策略里甚至可以包括一小部分恶意策略。阿克塞尔罗德的研究后继有人,罗伯特·博伊德与杰弗里·洛伯鲍姆的研究成果是这些后续研究中最为有趣的。他们将“两报还一报”与另一个“针锋相对多疑版”(Suspicious Tit for Tat)的策略组合到一块儿。“针锋相对多疑版”近似于“针锋相对”,但本质上是一个恶意策略,虽然恶意程度不高。它只在第一回合采取“背叛”行动,之后的所有出牌与“针锋相对”完全相同。在一个“针锋相对”占主要地位的环境中,“针锋相对多疑版”并不走运,因为它的先行背叛导致了互相背叛的恶性循环。但当它遇上了“两报还一报”时,这场冤冤相报因对方的慈爱宽恕化解了,双方都能至少得到满分,而“针锋相对多疑版”还会因为其最初的背叛而获得更高的分数。博伊德和洛伯鲍姆的研究结果表明,“针锋相对”的群体可以被“两报还一报”与“针锋相对多疑版”的组合入侵影响。从进化论角度上说,则是“两报还一报”与“针锋相对多疑版”共生繁荣,进而影响了“针锋相对”的种群。几乎可以肯定,这种组合不仅不会消亡,还会以这种方式入侵相对稳定的种群。事实上,也许还有很多其他稍微恶意与极度圣洁策略的组合可以入侵种群。有人也许可以从这里看到人类生活的对照。

        阿克塞尔罗德意识到“针锋相对”并不是严格意义上的进化稳定策略。于是他又创造了一个术语:集体稳定策略。由于在真正的进化稳定策略中,可以有不止一个策略同时达成集体稳定,另一方面,决定一个策略是否可以控制种群更取决于其运气,因此“永远背叛”的策略也可以和“针锋相对”一样稳定。在一个被“永远背叛”控制了的种群中,没有任何其他策略可以取胜。我们也可以将这种系统称为“双稳态”,而将“永远背叛”作为其中一个稳定点,“针锋相对”(或者其他最善良宽容策略的组合)为另一个稳定点。无论哪一方首先在种群中达到数量优势,都将继续保持稳定。

        然而,这个数量优势如何量化?一个群体中,究竟需要多少“针锋相对”来保证其战胜“永远背叛”?这取决于“银行家”愿意在这场博弈中付出的具体数额。我们可以将此概括为一个决胜点。如果“针锋相对”可以超过这个决胜点,自然选择便会愈加偏爱“针锋相对”。另一方面,如果“永远背叛”超出了这个决胜点,自然选择则会更加偏爱它。你也许还记得,我们在第10章斤斤计较者与骗子的故事里,也曾与这个决胜点相遇过。

        于是,获胜的关键显然取决于哪一方首先超过决胜点,而且我们还需要知道,有时主导种群还会变化,从一方变成另一方。我们假设现有的种群已经由“永远背叛”主导了,少数派的“针锋相对”难以互相碰面以获得共享利益。自然选择于是将该种群推向了“永远背叛”的极致。只有该种群通过随机转换,使主导的一方变为“针锋相对”,它才能继续推进“针锋相对”的发展,使得所有人都能从“银行家”(或者自然)处得到利益。然而,种群没有集体意愿,也没有集体意识或目的,它们不能控制发展走向。主导方的转换只能发生在自然界间接力量的作用下。

        这种情况如何发生呢?一种回答是“运气”。但这个单词只能显示无知。它表示“由一些尚未知道、未能分辨的方式来决定”。我们可以比“运气”做得更好一些。我们可以想象少数派的“针锋相对”个体如何通过一个实际方法来增加其关键数目,探索“针锋相对”个体如何集合成足够的数量,使它们都可以从“银行家”处得到回报。

        这种想法貌似可行,但实际上机会渺茫。这些相似的个体如何在小范围内集合到一起?在自然界中,最明显的方式是因基因关系——亲属而集合。大多数动物喜欢同自己的兄弟姐妹与表亲们,而不是种群中其他成员居住在一起。这并不一定是出于选择,而是自动跟随种群中的“黏性”。这里的“黏性”指的是任何使个体持续居住于出生地的趋势。比如在人类历史上,大部分地区的人都只居住在出生地以外几英里的地方(虽然现代社会已经不再如此)。因此,以亲属关系为线索的小团体逐渐形成。我曾经到访过爱尔兰西海岸一个偏远的岛,令我吃惊的是,那里几乎所有人都拥有巨大的耳朵。其中的原因很难解释为大耳朵适应当地天气(那里岸边的风特别大),这只能是因为岛上大多数居民都是亲缘相近的亲属。

        基因相近的亲属们不仅面部特征相似,其他方面也有相近之处。比如,他们会因其基因趋势而互相模仿着采用(或不采用)“针锋相对”。于是,即使“针锋相对”在种群整体中已经稀少,它依然可能在局部广泛使用。在这个小圈子里,“针锋相对”的个体可以互相博弈,采取互相合作的方式来达到数目繁荣,即使在总体计算里它们依然处于弱势地位。

        由此,最初仅占领小片地区的“针锋相对”个体,将随着小团体的逐渐扩大,逐渐向其他地区分散,甚至包括“永远背叛”群体占主导的地区。如果用区域地理的方式思考,我举的爱尔兰岛的例子则有些误导,因为那里的人被自然地理隔绝了。想象另一个例子:在迁入人口不多的人群中,即使这片地区的人们已经有了广泛持续的亲缘关系,所有人也只复制近邻(而不是远邻)的行为。

        回头看看,“针锋相对”是可以超越决胜点的,它所需的只是这些个体的聚合,这一点在自然选择里可以很自然地发生。这个与生俱来的优点使得“针锋相对”即使在数目稀少的时候,也可以成功跨越决胜点而获得成功。但这个跨越只是单向的。“永远背叛”作为一个真正的进化稳定策略,并不可以使用个体聚合来跨越决胜点。相反的是,“永远背叛”个体的聚合,不仅不能彼此互助而获得群体繁荣,还会使各自的生存环境更加恶劣。它们无法暗自帮助对方获得“银行家”的奖赏,而只能把对方也拖下水。于是与“针锋相对”相反,“永远背叛”在亲属或种群聚合中得不到任何帮助。

        所以,即使“针锋相对”并非真正的进化稳定策略,它却拥有更高的稳定性。这意味着什么?如果我们用长远的目光来看,“永远背叛”可以在相当长的一段时间内抵制其他策略的影响,但如果我们等上很长一段时间,也许是几千年后,“针锋相对”将最终聚集到足够的数目,跨越决胜点,其数量终将反弹。而反方向的发展并不可能,“永远背叛”无法在个体聚集中获得好处,因此也无法得到这种更高的稳定性。

        如我们之前所见,“针锋相对”是一个善良的策略,这表示它永远不会首先背叛。它又是一个宽容的策略,表示它对过往的恩怨只有短期记忆。阿克塞尔罗德对“针锋相对”还有另一个令人回味的定义:不嫉妒。在阿克塞尔罗德的定义中,嫉妒是希望获得比对手更多的金钱,而不是追求从“银行家”手中得到绝对数量较大的收获。“不嫉妒”表示当对手获得与你一样的金钱时,只要大家都能从“银行家”处获得更大收获,你也同样高兴。“针锋相对”从没有“赢得”比赛,它从未从其对手处获得更多的利益,因为它除了报复之外从未背叛。它能得到的最好结果是与对手分享平局,但它尽量争取在每一场对弈中都能获得尽量高的共享分数。当我们考虑“针锋相对”与其他策略时,“对手”一词其实并不准确。然而,令人失望的是,当心理学家在人群中实验重复囚徒困境的博弈时,几乎所有选手都会嫉妒,于是获得的金钱也并不多。这表示许多人在潜意识中更倾向于击败对手,而不是与他人一同合作击败“银行家”。阿克塞尔罗德的实验表明,这是一个多么严重的错误。

        但在所有博弈里并不都是错误。博弈理论家将博弈分为“零和”与“非零和”两种。“零和博弈”指一方的胜出即是对方的损失。棋类游戏便是一种“零和博弈”,因为博弈双方的目标是胜过对方,使对方产生损失。囚徒困境则是一种“非零和博弈”,在这里,“银行家”支付了金钱,博弈双方可以携手合作,一起笑到最后。

        这让我想起了莎士比亚写过的一句精彩的台词:

        “我们要做的第一件事,就是把所有律师都先杀了。”

        ——《亨利六世》

        在所谓“民事争议”中,事实上经常有很大空间可以合作。一个看似“零和博弈”的争议也许只要加入少许善意,便可以转化为双方互利的“非零和博弈”。下面拿离婚作为例子。一段好的婚姻明显是一个“非零和博弈”,充满了互助合作的空间。即使它瓦解,夫妻依然可以继续合作,以“非零和博弈”来看待离婚,并从中得到好处。如果孩子抚养权的判决问题并不是一个足够劝服夫妻合作的理由,双方律师的高昂费用也许更有说服力,因为它将给家庭财政造成巨大创伤。那么,如果一对理性文明的夫妻从一开始便一起雇用同一个律师,这是不是更合理呢?

        答案却是否定的。至少在英格兰,还有今天美国几乎50个州中,法律——或者更严格地说,律师本身的职业规范并不允许他们这么做。律师只能接受夫妻双方中的一位作为客户,而拒绝另一方,迫使对方去寻找另一个律师,或者完全失去法律服务。这便是乐趣的开始。在另一个房间里,律师们开始谈“我们”和“他们”。这里的“我们”指的不是我和我的妻子,而是我和我的律师对抗她与她的律师。法庭上陈述的则是“史密斯诉史密斯”!(英国妻子多用夫姓。)无论夫妻双方是否感觉抗拒对方,或者他们是否愿意和睦解决问题,法庭已经假设他们之间存在对抗关系。谁能在这场“我赢你便输”的游戏里胜出呢?只有律师。

        倒霉的夫妻被拖进了这么一场“零和博弈”中,律师们则可以享有油水肥厚的“非零和博弈”——因为史密斯夫妇提供了回报,而律师们专业剥削顾客的方式已经通过行业合作精细地被规范了。他们合作的一种方式是提出知道对方完全不会接受的提议,这可以激发对方提出另一个明知双方都不会接受的提议,循环往复。这些事实合作的“对手”所发的每一封律师函、每一个电话都在账单上多加一笔数目。运气不好的话,这个过程将持续几个月甚至几年,双方的花费越来越多。律师们并不需要坐在一起计算这些事情,相反,他们严格的独立性正是他们合作的主要方式,以此消耗着顾客的腰包。律师们甚至都没有感觉到他们所做的一切正是一个“非零和博弈”。就像我们有时见到的吸血蝙蝠一样,他们以一种精心设计的仪式进行着这场游戏。这个系统无须任何有意识的计划或者组织,已然自成一体。它逼迫我们走进一场“零和博弈”,顾客们得到了零,律师们得到了丰厚的非零。

        我们该怎么做呢?莎士比亚的方法太过残酷,单单改变法律就简单多了。但大多数国会议员有法律背景,只有“零和博弈”心理。很难想象哪里存在比英国下议院更具对抗性的氛围了。(法庭至少还保持了辩论的斯文,因为律师们可以抱着“我博学的朋友将和我合作而笑到最后”的心理。)也许那些用心良苦的立法者和良心发现的律师需要学一点博弈论。只要律师以完全相反的方式工作,劝说顾客们放弃零和博弈的厮杀,就可以从庭外和解的非零和博弈中得到更多好处。

        那么人类生活中的其他博弈呢?哪些是零和,哪些又是非零和?它们并不相同。我们应该在生活的哪些方面追求零和博弈,又在哪些方面追求非零和博弈呢?生活中哪些方面值得“嫉妒”,哪些又值得合作并打败“银行家”呢?举个例子,当我们和老板对工资讨价还价时,我们是被“嫉妒”驱使,还是通过合作让我们的真实收入最大化呢?在现实生活中,我们是否把“非零和博弈”误会为“零和博弈”,正如我们在那个心理实验中一样呢?我只能简单提出这些复杂的问题,因为他们的答案已经超出本书涵盖的范围了。

        足球就是一场零和博弈。至少它一般是这样。少数情况下它能变成一个非零和博弈(英式橄榄球、澳大利亚橄榄球、美式橄榄球、爱尔兰橄榄球则一直是非零和博弈),这在1977年的英格兰足球联赛中发生过。联赛中的队伍被分为四级。俱乐部在比赛中互相对抗,以积分决定它们的晋级或降级。甲级联赛声名远扬,俱乐部可以趁机从巨大观众群中捞得丰厚利润。在赛季结束时,甲级中排名最后的3个俱乐部降级,进入下一赛季的乙级联赛。降级是一个惨痛的命运,值得不惜一切去避免。

        1977年5月8日是本赛季的最后一天。甲级联赛中3个保级名额中的2个已经被确定,第三个正等待揭晓,它将从桑德兰队、布里斯托队与考文垂队中诞生。如果桑德兰队输了这场比赛,布里斯托与考文垂只要打成平手,便可以共同留在甲级联赛。但如果桑德兰赢了,布里斯托与考文垂比赛中的输家就会被降级。这两场关键比赛理论上是同时进行的。但事实上,布里斯托对考文垂的比赛刚好推迟了5分钟开始。这种情况下,桑德兰队的结果在布里斯托对考文垂的比赛结束前便为两队所知晓了。这便埋下了这个复杂故事的伏笔。

        布里斯托与考文垂间的大部分比赛时间,用当时一份新闻报道来说,是“迅猛激烈”的,激动人心。赛前双方各自定下的2个进球的目标,在比赛80分钟时已经达到。比赛结束前2分钟时,桑德兰输了的消息迅速传了过来。考文垂的经理迅速让场边的巨大电子信息屏放出了这条消息。所有22名队员显然都看到并且意识到无须多事了,一个平局足以让双方都能逃避保级的命运。而如果试图进球会使情况更糟,这意味着把球员从防守转向进攻,将承担战败而降级的风险。我们还是引用那份新闻报道吧。“在唐·吉利斯(Don Gillies)80分钟时的进球帮助球队和布里斯托战成平手时,双方的支持者1秒钟前还是分外眼红的仇人,1秒钟后却迅速加入一场共同的狂欢庆祝中。裁判查利斯(Ron Challis)无奈地看着球员们把球传来传去,于对手完全没有任何威胁。之前的零和博弈在外界新闻的影响下迅速变成一场非零和博弈。在我们早先的讨论情况下,就好比外部的“银行家”奇迹般地出现了,使得布里斯托和考文垂从平局结果中得到好处。

        类似足球这种观赏运动通常是零和博弈,理由是观看双方的剧烈对抗比友好比赛更为激动人心。但现实生活——无论是人类生活或者是植物、动物的生活中——并非为观众所设计。事实上,现实生活中的大部分情况都是非零和博弈,社会扮演了“银行家”的角色,个人则可以从对方的成功中获益。我们可以看到,在自私的基因的基本原理的指导下,即使在自私的人类世界里,合作与互助同样促使社会兴旺发展。我们现在可以从阿克塞尔罗德的定义出发去理解,好人确实有好报。

        但这只能在博弈重复进行下才能发生。博弈者必须清楚这并不是他们之间最后一场博弈。用阿克塞尔罗德艰涩的用语来说,“未来的阴影”还很长。但这需要有多长?它不可以无限长。理论上说,博弈的长度并不重要,重要的是博弈双方必须都不清楚博弈结束的时间。假设你我正在进行一场博弈,我们都知道博弈的重复次数为100回合,那么我们彼此清楚,第100回合将等同于一场简单的一次性“囚徒困境”。这种情况下,最理性的决策是我们双方各自在最后一轮打出“背叛”。自然,我们也彼此能预测对方也会“背叛”,这使得最后一轮的结果毫无悬念。既已如此,第99轮则相当于一次性博弈,而双方能做出的唯一理性决策则是“背叛”。第98轮同理。在两个完全理性并假设对方同样理性的博弈者处,如果他们知道比赛的回合数,他们只能彼此不停“背叛”。于是当博弈理论家谈论“重复囚徒困境”时,他们经常假设博弈的终点不可知,或者只有“银行家”知道。

        即使博弈的重复次数不得而知,在现实生活中,我们经常可以采用统计方法来预测博弈的持续时间长度。这种预测则成了博弈策略中很重要的一部分。如果我注意到“银行家”开始坐立不安,不停地看他的手表,我可以猜到此游戏即将结束,那么我便可以尝试背叛。如果我发现你也注意到银行家的坐立不安,我也会开始担心你背叛的可能性。我也许会过于紧张,而提前让自己先背叛,即使我开始担心你也许会担心我……

        在一次性与重复囚徒困境博弈中,数学家简单的直觉也许太过于简单。每一个选手都可以持续预测博弈进行的长度。他的估计越长,他的选择就会越接近数学家在重复博弈中的预测,更善良,更宽容,更不嫉妒。反之,他的选择就会更接近数学家在一次性博弈中的预测,更恶劣、更不宽容。

        阿克塞尔罗德对“未来的阴影”的重要性的阐述来自第一次世界大战时形成的“自己活,也让别人活”的现象。他的研究资源来自历史学家与社会学家托尼·阿什沃思(Tony Ashworth)。“一战”时的圣诞节,英军与德军有时会友好相处,在无人区一起喝酒。这种现象早已为世人所知。但事实上,更为有趣的是,这种非正式非官方,甚至没有口头协定的友好协议,这种“自己活,也让别人活”的系统,早在1914年便在前线上下流行,持续了至少2年。一个英国高级将领在巡视战壕时,曾提及他看到德国士兵在英军前线来复枪射程内散步时的惊讶:“我们的士兵好像并没有注意。我私下决定当我们接手它时,应该阻止这种事情的发生,决不能允许这种事情出现。这些人似乎并不知道这是一场战争。显然双方都相信‘自己活,也让别人活’的想法。”

        博弈论与囚徒困境在当时还未出现,但如今在事后,我们可以清楚地理解当时的情况。阿克塞尔罗德提供了一个精彩的分析。在当时的壕堑战中,每个野战排的“未来的阴影”都很长。这便表示,每支英军的挖掘队伍都可能需要与同一支德军队伍对峙好几个月。另外,普通士兵永远不知道他们是否,或何时会离开,因为大家都知道军队的决策专断随意,变化无常。在这里“未来的阴影”长而不定,促使了“针锋相对”式合作的开始。这种情况已经类似于一场囚徒困境的博弈了。

        我们还记得,要成为一场真正的“囚徒困境”,回报必须有特定的次序规则。双方必须同时认为共同合作优于互相背叛。在对方合作时背叛则为更佳,在对方背叛时合作为最劣。彼此背叛则是将军们所喜的,他们想看到他们的士兵在机会到来之时将对方捏得粉身碎骨。

        将军们并不愿意看到互助合作的场面,这对于赢得战争毫无帮助。但这对于双方的普通士兵而言却是求之不得的好事,他们并不愿意付出生命的代价。必须承认,他们也许认可将军的观点,希望己方能获得胜利,这便是形成囚徒困境的第二层回报,但获得战争胜利并不是每个普通士兵的选择。战争的最终结果并不太可能从物质上极大地惠于个人。虽然无论是出自爱国主义抑或是遵守纪律,你可能觉得从背叛循环中逃出去也是不错的。但与你穿越无人区后的某些敌军士兵互助合作,则很可能影响你本人的命运,而且这大大优于互相背叛。这便使整个情况形成一个真正的囚徒困境。类似“针锋相对”的行为注定要发生,也确实发生了。

        在任何战壕前线上的局部稳定策略并不一定是“针锋相对”,后者是属于善良,虽报复但宽容的策略家族中的一员。这些策略即使在理论上也并不完全稳定,至少很难在兴起时被改变。比如,根据一份当时的记录,三次“针锋相对”在一个区域同时形成。

        我们走出深夜的战壕……德国人也走了出来,所以出于礼貌,我们不该开枪。最恶劣的事情是枪榴弹……它们如果落入战壕,就会杀死大概9~10个人……但除非德国人特别吵,否则我们不应该使用这些武器。因为他们也可以采取报复,我们也许没有一个人可以回去。

        “针锋相对”家族中这些策略有一个很重要的共同点:背叛的选手将得到惩罚。复仇的威胁必须始终在此。在“自己活,也让别人活”系统中,报复能力的展示通常引人注目。双方不断攻击敌军不远处的虚拟目标——一种如今也在西方电影中使用的技巧,比如射灭蜡烛火焰,而不是敌军本身,以展示其百发百中、极具威胁的攻击。在另一个问题上——为什么美国罔顾顶尖物理学家们的愿望,使用了两颗原子弹来毁灭两座城市,而不是用类似攻击蜡烛的策略——这一机制也能圆满地回答。

        与“针锋相对”类似的策略都有一个重要的特征:它们都很宽容。这有助于减少长期报复恶性循环的产生。这位英国军官再次戏剧化地描述这种平息报复的重要性:

        当我正在与某连的人喝茶时,我们听到许多喊叫声,于是出来查看。我们看见我们的人与德国人各自站在战壕前的矮墙上。突然炮声骤响,却无人受伤。双方很自然地卧倒,我们的人开始咒骂德国人。这时一个勇敢的德国人站起身来大喊:“我们很抱歉,我们希望没有人受伤。我们不是故意的,都是那个该死的普鲁士大炮!”

        阿克塞尔罗德对这个道歉的评价是:“仅将责任推卸给机械,有效阻止了报复。它表达了道德上对于辜负信任的歉意,也表达了对有人可能受伤的关切。这确实是一个令人钦佩的勇敢的德国人。”

        阿克塞尔罗德还也强调,在保持互相信任的稳定状况时,预见性与仪式感十分重要。一个愉快的例子是:一个德国士兵提到,英国大炮每天晚上会根据钟点有规律地在前线一些地方开火:

        七点钟到了,英国人开炮了。他们十分准时,你都可以据此来校正手表……他们永远有着相同的目标,非常准确,从未在前后左右偏移过标志……甚至有一些好奇的同伴……会在七点前一点爬出去看英国人开炮。

        根据英军的记录,德国大炮也在做同样的事情:

        (德国人)选择的目标、射击的时间与回合都十分规律……琼斯上校知道每一炮发出的时间。他的计算十分准确。他甚至敢于做一些初生牛犊式的行为,冒险去到炮击的地点。因为他知道炮击将在他到达前停止。

        阿克塞尔罗德对此的评注是:“这种仪式性的炮击与规律性的开火表达了双重信息。于上级军官,它们表达了抗争,而对于敌军,它们传递了和平。”

        这种“自己活,也让别人活”的系统本可以通过口头沟通获得,由理性的策略家在圆桌上讨价还价得到。事实上它无法这么做。它通过人们回应对方行为的方式传递,在一系列的局部约定中形成。阿克塞尔罗德计算机中的策略完全没有意识。它们的善意或恶意、宽容或记仇、嫉妒或大气,仅由其行为定义。程序员也许有其他的想法,但这并不相关。一个策略是否善良,仅通过行为确认,而并非通过其动机(因为它没有)或作者的性格(当程序运行时这已经成为历史了)。一个计算机程序可以以其策略方式来施为,它并不需要知道自己的策略如何,或者任何其他事情。

        我们当然知道策略家是否有意识并不相关。这本书已经提到许多无意识的策略家。阿克塞尔罗德的程序便是我们在这本书里用以思考动植物,甚至基因的优秀模型。我们现在可以问问,他那些关于宽容善良不嫉妒的成功例子与优化结论是否可以用于自然世界?答案是肯定的,自然界一向如此。唯一条件是自然优势需要设定未来的阴影很长的囚徒困境,而且是非零和博弈。这些条件在生物王国中一直成立。

        没有人会认为细菌是一个有意识的策略家,但寄生菌们天衣无缝地与它们的寄主演绎着囚徒困境。我们没有理由不采用阿克塞尔罗德的理论——善良、宽容、不嫉妒等等,来研究它们的策略。阿克塞尔罗德和汉密尔顿指出,那些无害且有益的细菌可以在人们受伤时,变成有害甚至致命的败血症。医生会说人体的“自然抵抗能力”在受伤时会下降。但也许真实的原因正是囚徒困境的博弈。在人体内,细菌是否有所收获,同时也不停检验其回报呢?在人体和细菌的博弈中,“未来的阴影”通常很长,因为一个普通人可以在任何起始点活上很多年。然而,一个严重伤者则可能给其寄生菌带来较短的未来。“背叛的诱惑”突然比“互相合作的奖赏”更有诱惑力。当然,细菌在它们邪恶的小头脑里可没有计算这些东西!代代细菌的自然选择已经将它们培养成一个无意识的生物,首要任务是以生物化学来维系生命。

        根据阿克塞尔罗德和汉密尔顿的分析,虽然植物明显没有意识,但它们懂得复仇。无花果树和榕小蜂享有紧密合作的关系。我们所吃的无花果其实不是果实,无花果顶端有一个小洞,如果你可以缩小成榕小蜂的尺寸,进入这个小洞(榕小蜂非常小,小得当我们吃无花果时都不会注意到它),就可以看见无花果壁上有许许多多小花。无花果其实是花朵们的阴暗温室与授粉房间,而授粉过程要靠榕小蜂来完成。无花果树为榕小蜂提供栖息地,而榕小蜂在这些小花里产卵。对于榕小蜂来说,“背叛”指的是在无花果内的许多花朵中产卵,使得它们无法互相授粉。无花果树如何“报复”呢?阿克塞尔罗德和汉密尔顿说:“许多情况下,如果榕小蜂进入一棵年轻的无花果,却不为花朵授粉,而是在大部分花朵中产卵,无花果树将除去这颗还处于生长中的无花果,使得所有榕小蜂的后代都走向死亡。”

        艾瑞克·费希尔则在海鲈鱼——一种雌雄同体的鱼身上发现了一个奇怪的现象,正好说明了自然界的“针锋相对”。与我们不同,这种鱼的性别不是由生命孕育时的染色体决定的。每一条鱼都有雄性与雌性的功能,交配时可以选择产生卵子或精子。他们双双缔结一夫一妻的组合,轮流交换性别分饰雌雄角色。我们也许可以推测,由于雄性角色相对方便,海鲈鱼也许更愿意饰演雄性角色,而逃离合作关系。也就是说,如果其中一条鱼可以成功劝服伴侣持续饰演雌性角色,它就可以逃离其对孵卵生产的责任,而将资源投入其他事情,比如和其他鱼交配等。

        事实上,费希尔却发现海鲈鱼以一种严格的轮换机制进行其繁衍过程。这就是我们所预料的“针锋相对”。这个博弈正是一个真正的囚徒博弈,虽然有些复杂,但这说明了鲈鱼们为何采取这个策略。在这里,“合作”表示在轮到其产卵时扮演雌性角色,“背叛”则是在轮到时试图扮演雄性角色。这种“背叛”很容易引起报复,伴侣可能会在下一次拒绝扮演雌性角色,或者“她”可以直接中断伴侣关系。费希尔确实也发现了,那些性别角色担当次数不等的伴侣容易分手。

        社会学家和心理学家会提出一个问题:为什么有人会愿意捐赠血液(在英国等国家,血液捐赠为无偿)?我不觉得这个答案在互惠或伪装的自私下有那么简单。当这些长期血液捐赠者需要输血时,他们并未得到任何优先次序,也没有人给他们颁发金星奖章。也许我过于天真了,但我觉得这是一种真正的、纯粹的无私利他主义。这是因为吸血蝙蝠之间的血液共享刚好符合阿克塞尔罗德的模型。G.S.威尔金森(G.S.Wilkinson)的研究表明了这一点。

        吸血蝙蝠以在夜里吸血为生。它们要得到食物并不容易,但每每得到的都是大餐。当黎明降临,一些不走运的蝙蝠可能会空着肚子回家,另一些则可能找到一个受害者,吸了充足的血液。第二天晚上,同样的故事又在上演。在这种情况下,一个互助的利他主义是可能产生的。威尔金森发现那些在夜里吸饱血液的幸运儿确实会将一些血液返流,捐赠给不走运的同伴。威尔金森观察了110例血液捐赠,其中有77次是母亲喂养孩子,而大部分其他的血液捐赠发生在近亲中。在完全没有血缘的蝙蝠中,一些血液捐赠的例子依然存在,“血浓于水”的说法看来并不完全符合事实。但是,这些共享血液的蝙蝠也经常是室友,它们有许多机会与对方持续打交道,这正是重复囚徒博弈所必须满足的条件。但囚徒博弈的其他条件呢?表12-4的回报表格显示了我们对此的预期。

        表12-4 吸血蝙蝠的血液捐赠:在各种情况下我的回报

        吸血蝙蝠的情况真的和这张表格一样吗?威尔金森对那些饿肚子的蝙蝠的体重下降速率进行计算。通过对饱食、饥肠与处于中间段的蝙蝠饿死速率进行分别计算,他算得血液得以维持生命的时间。他发现了一个并不惊奇的结论:这些速率并不相等,取决于蝙蝠的饥饿程度。比起吃饱喝足的蝙蝠,相同的血液量可以为饥肠辘辘的生命维持更多的时间。也就是说,虽然捐血可以增加捐赠者饿死的速率,但救助濒死生命的意义要大得多。这似乎表示蝙蝠的情况确实符合囚徒困境的规则。将血液捐赠给同伴中的所需者,比留着自用更为珍贵。在雌蝙蝠(吸血蝙蝠的社交范围为雌性)饥肠辘辘的夜里,可以从伙伴的捐赠中获益良多。当然,如果雌蝙蝠选择“背叛”,拒绝给同伴捐赠血液,逃离互助的责任,雌蝙蝠可以受益更多。在这里,“逃离互助责任”只在蝙蝠确实采取“针锋相对”策略时才有意义。那么,“针锋相对”在演化中的其他条件是否能满足呢?

        重要的是,这些蝙蝠是否能够互相辨别呢?威尔金森的实验结果是肯定的。他俘虏了一只蝙蝠,将其与同伴隔离,并饿了雌蝙蝠一夜,其他同伴则得以饱食。当这只不幸的俘虏返回巢穴时,威尔金森就观察是否有任何蝙蝠给予其食物。这个实验重复了许多次,不同的蝙蝠轮流作为饥饿的俘虏又被送返。俘虏的蝙蝠们来自相隔数英里的两个巢穴,两个独立的组织。如果蝙蝠可以辨别它们的朋友,这只饥饿的蝙蝠将可以从也只能从自己的巢穴中获得帮助。

        这正是事实。在观察到的13个血液捐赠者中,12个捐赠者是饥饿者的“老朋友”,来自同一个巢穴。来自不同巢穴的“新朋友”只喂养了1次饥饿的蝙蝠。这也许是个巧合,但当我们计算这个范例时,它发生的概率只小于。我们可以信心十足地总结,蝙蝠确实更偏爱帮助老朋友,而不是另一个巢穴的陌生人。

        吸血蝙蝠是神秘的。对于维多利亚哥特小说的迷恋者来说,它们经常是在夜里恐吓他人、吸食血液、牺牲无辜生命以满足私欲的黑暗力量,再加上其他维多利亚时期的神秘事件,以及蝙蝠天生鲜红的牙齿和爪子,吸血鬼蝙蝠不正是自然界自私基因的最令人恐惧的力量的化身吗?我对于这些神秘事件嗤之以鼻。如果我们想知道一个事件背后的真相,就需要研究。达尔文主义赋予我们的并不是对一个特定生物的详细描述,而是一个更微妙,却更有价值的工具:对原理的理解。如果我们一定要加进一个神秘事件,那便是真相——关于吸血蝙蝠高尚品格的故事。对于蝙蝠自身,血并不浓于水。它们超越亲属关系,在忠诚的朋友间形成它们长久坚实的纽带。吸血蝙蝠可以讲述一个新的神秘故事,一个关于共享、互助、合作的故事。它们昭示这一个善良的思想:即使我们都由自私的基因掌舵,好人终有好报。

        第13章 基因的延伸

        自私基因的理论核心中有个矛盾很令人不安,这个矛盾存在于基因与生命的载体——生命体之间。一方面,我们已经得到一个漂亮的故事:独立的DNA复制因子如羚羊般灵活,它们自由奔放地世代相传,在一次性的生物容器中临时组合,不朽的双螺旋则不停改组演替,在形成终将腐朽的肉体时磨炼,最终走向各自的永恒。另一方面,如果我们只观察生命个体本身,每一个生命都是一台自成一体的仪器,它完美无缺,复杂精密,却又统一结合,组织紧密。生命体并非只是一个松散临时的基因组合所构成的产品。在精子与卵子即将开启一个新的基因混杂过程时,这些“交战”的基因载体并非刚刚认识彼此。生命体凭借专注的大脑协调着肢体与感觉器官进行合作,以完成各种生物目的。作为载体,它的工作已臻极致。

        在本书的一些章节里,我们已经考虑过将个体生物看作一个载体,这个载体的任务是努力扩大传递基因的成功率。我们想象个体动物进行着复杂的思考,计算着各种行为的基因优势。但在另一些章节里,这些基础的理性思维则是从基因角度出发考虑的。如果失去了基因的角度,生命体便失去“关照”其繁衍成功率与亲属的理由,会转而考虑其他因素,比如它自身的寿命。

        这两种对生命的思考方式之间的矛盾如何解决?我曾经在《延伸的表型》一书中尝试回答这个问题。这本书是我职业生涯中最高的成就,是我的骄傲与乐趣。本章节是该书几个主题的简要概括,但我更希望你们合上现在手中这本书,打开《延伸的表型》开始阅读。

        达尔文主义的自然选择一般不直接作用于基因本身。DNA隐藏于蛋白质中,包裹于细胞膜里,与世隔绝,不为自然选择所见。即使自然选择试图直接选择DNA分子,它也找不到任何选择规则。所有基因看似相同,就像所有磁带从外表看都无甚区别一样。它们的不同之处在于其在胚胎发育过程中发挥的作用,还有进而对生物体的不同外表与行为的塑造作用。成功的基因对胚胎有良性影响,即使环境中还有许多其他基因也同时作用于同一个胚胎。这里的良性影响指的是它们让胚胎有可能成功发育为健康的成人,而此成人有可能制造后代,将相同的基因传递给子孙。有一个专业词汇“表型”,专指基因的生物表征,也就是一个基因相对于其等位基因在发育中对生物体的作用。举个例子,一些基因的表型为绿颜色的眼珠。不过事实上,大部分基因都有超过一个以上的表型:比如绿眼和卷发。自然选择会偏爱某一些基因而摈弃另一些基因,这取决于基因的作用结果——表型,而不是基因本身。

        达尔文主义者通常只选择那些表型有助于或有害于生物体生存或繁殖的基因予以讨论,他们倾向于不考虑基因本身的利害,部分原因是这个理论核心的矛盾。比如,某个基因也许有助于提高捕食者的奔跑速度。捕食者的身体——包括所有基因——都会因其较快的奔跑速度而获得成功,它的速度有助于其生存、繁衍后代,更多地传递自身基因,包括那个加快奔跑速度的基因。理论的矛盾迎刃而解,于基因有利者亦有利于整个生命体。

        但如果这个基因的表型只对其有利,却对整个身体的其他基因有害呢?这个问题并非异想天开。有一个意味深长的现象便是既存实例:减数分裂驱动。你也许还记得,减数分裂是一种特殊的细胞分裂,染色体的数目减半,产生精子和卵子。正常的减数分裂是一个绝对公平的抽奖项目。在每一对等位基因中,只有幸运的那个可以进入给定的精子或卵子。但它分配的概率相当平均,如果拿许多精子(或卵子)取平均数以计算一对等位基因的不同数目,你将发现,其中的一半将得到一个等位基因,另一半则得到另一个等位基因,如同掷硬币一般公正。事实上,掷硬币看似随机,也有许多物理因素叠加式地影响着这个过程,比如环境中的风速、掷硬币的力度等等。减数分裂也是一个物理过程,受基因影响。如果存在一个基因,它并不作用于那些类似于眼睛颜色或头发之类明显的形状,而作用于减数分裂本身呢?比如说,这个基因可以促使自身在减数分裂中进入卵子。事实上,这种基因确实存在,名为分离变相因子。它们的工作原理简单而无情:在减数分裂时,分离变相因子广泛取代其等位基因以进入精子(卵子)。这种过程便是减数分裂驱动,甚至在该基因将对整个身体的形状,也就是全部基因产生致命的效果时,减数分裂驱动也可能发生。

        在本书中我们已知道,生物可以用巧妙的方式“欺骗”它的社交同伴。而现在,我们讨论单个基因欺骗与它们共享同一身体的其他基因。遗传学家詹姆斯·克罗(James Crow)称他们为“破坏系统的基因”。有一个著名的分离变相因子为老鼠的t基因。当老鼠有一对t基因时,它们便会幼年夭折,或者胎死腹中。因此t基因在纯合子状态时,对生物体是致命的。如果一只雄性鼠只有一个t基因,可以正常健康地生活。然而,如果你检验一下这只雄鼠的精子,你将发现它有近95%的精子含有t基因,只有5%为正常的等位基因。这比我们通常想象的50%的概率要高出许多。如果在野生群体中,一个t基因由变异产生,它将立即星火燎原般地遍布整个种群。既然这个减数分裂的分配如此不公,t基因又怎能不占尽天机?由于它传播迅速,种群中的大量老鼠会从父母处遗传得一对t基因,使得整个族群很快趋向灭绝。已有证据表明,t基因传染病式的疯狂传播曾使野鼠彻底灭绝。

        并非所有分离变相因子都如t基因一般具有极强的毁灭性,大部分只会导致一些不良的后果(几乎所有基因的副作用都是不良结果,一些新变异只会在优不敌劣时才会传播。如果良性作用与不良作用同时发生于生物体中,其结果依然有助于整个身体。但如果对身体只有不良作用,而基因独享好处,其结果对于生物体则是灾难)。除去这些有害的副作用外,如果变异产生了分离变相因子,它则一定倾向于在种群中传播。自然选择(最终毕竟还是发生于基因层面)偏爱分离变相因子,即使这对于生物体本身可能是灭顶之灾。

        虽然分离变相因子存在于世间,但它们并不常见,可我们要追问:它们为何不常见?这其实也相当于问:为什么减数分裂通常如掷骰子般公平分配可能性?只有我们理解为什么生物存在时,这个答案才会水落石出。

        许多生物学家认为生物的存在理所当然,这可能是因为它的构成部件完整无缺,浑然一体。生命的问题通常集中在生物层面。生物学家不停地问:为什么生物这么做?为什么生物那么做?他们会问:为什么生物聚集成社会群体?却不问(虽然他们更应该问):为什么有生命的物质们最初组成了生物?为什么海洋不能如原始状态一般,自由漂浮着独立的复制因子?为什么古老的复制因子要聚集定居于肉体里?为什么这些肉体——正如你我般的个体生物——如此庞大,又如此复杂?

        许多生物学家甚至很难发现这其实是一个问题,因为他们自然而然地在个体生物层面提出问题。一些生物学家走进微观,将DNA看作生物体用以复制自身的工具,就像眼睛是生物体观察世界的工具一样。这本书的读者们会发现这种错误的荒谬,认识非凡的真相,他们也将会认识到另一种态度:自私基因角度的生命层面也有许多问题。这个问题——几乎与前者完全相反——则是:为什么生物体会存在于世间,如此天然庞大,浑然一体,目的明确,迷惑了生物学家,使他们完全把问题搞错了次序?为了解决我们的问题,我们需要从清除大脑中的旧思想开始,不再把生物作为理所当然的事物。这种用以改变思想的工具,我把它称为“延伸的表型”。在这里,我开始做出改变。

        在传统的定义里,基因的表型可见诸其对身体的作用,但我们将看到,基因的表型需要从其对整个世界的作用这一角度去思考。一个基因也许只能局限于其代代相传的生物体内,但这只是部分事实,不是我们的定义。要记住,基因的表型是用以在下一代中撬动自身的工具。我还要补充,这个工具也许不只限于此生物个体。这是什么意思?生物制造的工具便是一个例子,比如海狸的河坝、鸟巢与石蚕蛾的房子。

        石蚕蛾是一种其貌不扬的棕色昆虫,当它们笨拙地在河面上飞舞时,一般不会引起我们的注意力。在化蛹前,它们需要经历一个很长的幼虫期,在河底闲庭信步。而石蚕蛾的幼虫与成虫截然不同,是地球上最神奇的生物之一。它们在河床上收集各种材料,利用自身制造的黏合剂,技艺精湛地为自己建造了一座管状房屋。这个房屋是可移动的,随着石蚕蛾一同行走。与蜗牛壳和寄居蟹的房子不同的是,石蚕蛾的房子是自己亲手建造的,而不是靠天资生长或觅得的。石蚕蛾会用树枝、枯叶的残片、小蜗牛壳等作为建筑材料。最神奇的要数那些建于石头上的房子。石蚕蛾仔细挑选石头,抛弃那些相较墙缝过大或过小的石头。它甚至会旋转石头,以寻求最合适的拼接角度。

        为什么石蚕蛾的行为让我们如此惊讶?从另一个角度来说,我们应该会更欣赏石蚕蛾的眼睛或肘关节的结构,而不是它相对简单的石头房子。无论如何,眼睛和肘关节要比房子更复杂,更有“设计”感。然而,因为石蚕蛾与我们一样,眼睛与肘关节都是在娘胎中发育而成的,所以虽然听似不合逻辑,但我们对这些房子印象更加深刻。

        虽然我已经越讲越远了,但我还是忍不住要继续讲下去。虽然我们被石蚕蛾的房子吸引,我们却自相矛盾地对那些与我们更接近的动物的类似成就更感兴趣。想象一下,这样的新闻可以很容易成为报纸头条:海洋生物学家发现一种海豚可以编制巨大而复杂、有20条海豚长的渔网!但我们对蜘蛛网却习以为常,视之为屋子里的垃圾而不是世界奇观。再想想珍妮·古道尔从贡贝河带回的那些轰动照片,野猩猩不厌其烦地选择可以粘连上浆的石头,以建造有屋顶、能保暖的房屋。而石蚕蛾也做着同样的事情,却只能吸引昙花一现的注意力。虽然你可以以双重标准的视角说蜘蛛和石蚕蛾只是基于本能去建造建筑,但那又怎样?这表示它们更值得叹服。

        让我们先回到主题吧。没有人会怀疑石蚕蛾的房子是为了适应环境,由达尔文主义的自然选择而进化成的。它一定曾经受自然选择的偏爱,正像自然选择偏爱龙虾的硬壳一般,它们都是身体的保护层。于生物体与其全部基因而言,石蚕蛾的房子都是有益处的。然而,现在我们已经知道,当我们考虑自然选择时,某些对生物体的益处只是附带条件。只有对那些给予外壳保护性能的基因有益的性能,才适应自然选择。这便是龙虾的故事了,因为龙虾的壳确实是身体的一部分。那么石蚕蛾的房子呢?

        自然选择钟爱石蚕蛾体内可以建造好房子的基因。这些基因作用于行为学,大约在胚胎的神经系统发育阶段起作用。实际上,遗传学家还可以看到基因对房子形状与其他性能的作用,他甚至可以辨认出那些作用于房子形状的基因,正如他辨认作用于大腿形状的基因一样。必须承认,没有人实际研究过指导石蚕蛾建房子的基因。如果要这么做,你需要单独饲养石蚕蛾,并仔细记录其家族历史。但养殖石蚕蛾十分困难。然而,你并不需要研究石蚕蛾的基因,便已可以确定基因曾经——至少一次——造就了不同的石蚕蛾的房子。你只需要相信石蚕蛾的房子来自达尔文主义的适者生存,因为如果没有遗传的差异可供选择,自然选择无法产生适者生存,所以,控制石蚕蛾房子差异的基因一定存在。

        于是,我们便可以将基因们称为“控制石头形状的基因”“控制石头尺寸的基因”“控制石头硬度的基因”等等,尽管遗传学家会觉得这也许不是一个好主意。任何反对这种称谓的人,也会反对诸如“控制眼睛颜色的基因”“控制豌豆皱褶的基因”等说法。反对的理由有:石头并非生物,而且基因不直接作用于石头的形状。遗传学家可能会说:“基因直接影响了神经系统,调节石头选择行为,而不是石头本身。”但是,我会叫这个遗传学家来好好研究:基因作用于神经系统究竟是什么意思?所有基因可以直接影响的只有蛋白质合成。说基因作用于神经系统,进而影响眼睛颜色、豌豆皱褶等,都是基因的间接作用。基因决定了蛋白质序列,而后影响了X,进而影响了Y,又接着影响了Z,最终导致豌豆表面出现皱褶,或者说神经系统细胞接线。石蚕蛾的房子只是这种次序的进一步延伸,石头的硬度受石蚕蛾基因的延伸表型的影响。如果我们可以说基因影响了豌豆的皱褶或动物的神经系统(所有遗传学家都认可这一点),那么我们也可以说,基因影响了石蚕蛾房子的石头硬度。这听起来可能有点惊世骇俗,但其推理无懈可击。

        我们可以进一步推理:一个生物体内的基因可以对另一个生物体有延伸表型影响。石蚕蛾的房子帮助我们理解了上一步,下一步我们则需要蜗牛壳来帮忙。蜗牛壳的作用与石蚕蛾的房子很相似,它由蜗牛自身的细胞分泌而成。一个传统的遗传学家应该会高兴地说:“基因控制了蜗牛壳的性能,比如壳的厚度。”但研究发现,被某种吸虫(扁虫)寄生的蜗牛有特别厚的壳。这是什么意思呢?如果被寄生的蜗牛壳特别薄,我们可以解释为蜗牛体质衰弱所致,但厚壳可以更好地保护蜗牛,似乎这些寄生吸虫用增强蜗牛壳来保护宿主。这可能吗?

        我们需要更仔细地想想了。如果厚壳对蜗牛有益,为什么不是所有蜗牛都拥有厚壳呢?答案也许在于成本效益。蜗牛造壳花费巨大,它们需要从难得的食物中吸取钙和其他化学物质来完成这一过程。如果这些资源不用于制造蜗牛壳,则完全可以用于其他用途,比如制造更多的后代等。蜗牛辛苦耗资建造厚壳,只为了让自己安全度日。虽然它可以延年益寿,却付出了繁衍后代减少与无法传递基因的风险代价,这些被淘汰的基因里就有制造厚壳的基因。也就是说,蜗牛壳是可厚可薄(后者原因显而易见)的。如果吸虫使得蜗牛分泌厚壳,它并没有让蜗牛得到好处,除非它承担了制造厚壳的代价。另一方面,我们也可以有把握地说:吸虫不可能如此慷慨。它分泌的一些秘密化学物质作用于蜗牛,使其抛弃进化偏爱的蜗牛壳厚度。这也许有助于蜗牛长寿,但它对蜗牛的基因无甚好处。

        吸虫是怎么做到的呢?它又为什么要这么做?我的猜想是:在其他条件相同的情况下,蜗牛基因与吸虫基因都可从蜗牛的生存中得到好处。但生存并非繁衍,蜗牛基因自然可从蜗牛的繁衍中得到收获,但吸虫的基因不能,因为吸虫无法将其基因转移到蜗牛的后代中,但吸虫的天敌们也许可以。蜗牛的长寿固然将耗费其繁衍的效率,蜗牛的基因不会愿意付出这个代价,因为它们的未来完全寄托于蜗牛的繁衍上。因此,我认为吸虫的基因对蜗牛分泌细胞产生影响,这种影响对双方都有益,而只耗费蜗牛基因。这种理论尚未经过实验,尽管实验结果可以轻易确定这个猜想。

        我们现在可以总结一下石蚕蛾教给我们的事情了。如果我对于吸虫基因的推测是正确的话,我们便可以有把握地说,吸虫基因与蜗牛基因对于蜗牛身体的作用是相似的。基因从其自身身体中逃逸出,操纵着外部世界,而石蚕蛾仅满足于基因作用被限制于其体内。虽然这句话可能会使遗传学家觉得不舒服,但如果仔细研究遗传学家所说的“基因作用”,他们的不舒服只是不在点上。我们需要接受的只是吸虫适应了蜗牛壳的变化。若果真如此,它便是通过吸虫基因的自然选择实现的。表型可以延伸的对象不只是无生命的石头,还有其他生命体。

        蜗牛与吸虫的故事只是个开始。大家都知道,所有寄生虫都对其宿主有巨大而隐秘的影响。有一种原生寄生生物叫微孢子虫,可以侵入面粉甲虫的幼虫体内。研究发现微孢子虫可以制造一种对甲虫特别特殊的化学物质。如同其他昆虫一样,面粉甲虫能产生一种保幼激素,当甲虫幼虫停止分泌保幼激素时,身体内其他要素便被“触发”而发育成成虫。微孢子虫则可以合成这种保幼激素。成千上万的微孢子虫聚集一处,在甲虫幼虫体内产生大量的保幼激素,阻止其变成成虫。幼虫持续发育,体形逐渐长大,体重可以超过正常成虫的两倍。这对甲虫基因的传播没有好处,但却是微孢子虫生长的聚宝盆。甲虫的巨型幼虫便是原生动物基因的一种延伸表型。

        “寄生去势”的故事可能会让你得到更多弗洛伊德式的忧虑,而不是幼虫们彼得·潘式的浪漫。一种叫蟹奴的生物寄居于螃蟹身上,它看起来像是一种寄居生物,但与藤壶亲缘相近。它可以将其细密的足部系统深深扎入螃蟹的组织中,从这只不幸的螃蟹体内吸取营养。也许并非偶然,螃蟹第一个受攻击的地方是其睾丸或卵巢,其他生存所需(而非繁衍所需)的器官则得以暂保安全。螃蟹由此被寄生的蟹奴去势。正如被阉割以育肉的牛犊一样,被去势的螃蟹将能量与资源转向自身身体,以失去繁衍的代价喂肥了寄生生物。这个故事和我之前关于微孢子虫与面粉甲虫、吸虫与蜗牛的故事非常相似。在这三个例子中,如果我们接受寄主的改变是为满足寄生生物利益的达尔文主义的适者生存,它们便可看作寄生生物基因的延伸表型。在这里基因离开某一个体身体,影响了其他个体的表型。

        在很大程度上,寄生生物和宿主的基因利益可能重合。从自私基因的角度看,我们可以认为吸虫基因与蜗牛基因都是蜗牛体内的“寄生虫”。它们都从相同的保护壳中得到益处,尽管它们对具体保护壳厚度有分歧。这种分歧从根本上来自它们离开蜗牛身体的方式、进入另一个身体的方式的不同。对于蜗牛基因而言,离开身体的方式是通过蜗牛的精子或卵子,而吸虫基因非常不同,具体方式非常复杂,我们就不多说细节了,重要的是它们的基因并不通过蜗牛的精子或卵子离开蜗牛的身体。

        我认为对于任何寄生生物而言,最重要的问题是:它将基因传递给后代的方式是否和宿主的基因相同。如果不同,我便认为它通过各种方式损害了宿主。但如果相同,寄生生物可以做的便是帮助其宿主生存并繁衍。随着演化的进行,它将不再是一个寄生生物,而将与宿主合作,甚至最终融入宿主组织,完全无法辨认其原为寄生虫。我在第10章曾提出过,我们的细胞已经走过这种演化过程,我们实际上是所有古代寄生生物合成的遗物。如果寄生生物与宿主的基因共享一种离开方式,会是怎样的情况?有一种细菌寄生于擅长钻木的豚草甲虫(属于Xyleborus ferrugineus一种)中,它不仅居住于宿主体内,还会利用其卵作为交通工具,以寻得另一个新宿主。这种寄生细菌基因的得益方式与其寄宿基因几乎完全相同,可以预料,这两组基因由于相同的原因被绑在一起,正如一个生物体的全部基因一样,哪些是“甲虫基因”,哪些是“细菌基因”已经无关紧要了。两组基因都寄希望于甲虫的生存与甲虫卵的传播,因为甲虫卵是它们共同抵达未来的方式。于是,细菌基因与宿主基因共享一个命运,在我的解释中,我们可以预计细菌将在生活中的各个方面与甲虫共同合作。

        事实上,“合作”一词还不足以形容它们之间的关系,这些细菌与甲虫简直是亲密无间的。这种甲虫和蜜蜂、蚂蚁一样,都是单倍体生物(见第10章),受精卵始终发育为雌性,而未受精卵永远为雄性。这也就是说,雄性昆虫并没有父亲,而是由卵子未经受精发育而成。但和蜜蜂、蚂蚁的卵子不同,豚草甲虫的卵子需要被刺破才能发育为雄性。细菌便应召而到,刺破未受精的卵子,使它们成为雄性甲虫。这些细菌便是我说的那些停止寄生而与宿主共生的“寄生生物”,它们随着宿主的卵子、宿主本身的基因一起传播。最终,它们的身体很有可能消失殆尽,完全融入宿主的身体中。

        这种神奇的现象如今依然能在水螅身上找到。水螅是一种静止不动、有触手的微小动物,是淡水中的海葵,水藻可以寄居于它们的组织中。在两种水螅庶民水螅(Hydra vulgaris)与薄细水螅(Hydra attenuata)中,水藻是真正的寄生生物,可以损害水螅的健康。而在绿色水螅(Chlorohydra viridissima)中,水藻则始终存在于水螅的组织中,并供予其氧气,帮助水螅维持健康。这里开始有趣了,正如我们所预料的,在绿色水螅中,水藻通过水螅卵子将其传递到下一代,而在另两种水螅中,水藻并没有这么做。水藻与绿色水螅的基因利益重合,它们都愿意尽其所能来制造水螅卵子。但另两种水螅的基因与水藻基因不合,它们也许在水螅生存上有共同利益,但由于只有水螅基因关系水螅的繁衍,水藻于是成为有害寄生物,而不是通过合作与水螅一同演化。再重复一次,这里的要点是:寄生生物的基因需要与宿主基因追求共同命运,享有共同利益,这样寄生生物最终会停止寄生行为。

        命运在这里指的是未来的后代。绿色水螅与水藻的基因、甲虫与细菌的基因都只能通过寄主的卵子而拥有未来,因此,无论寄生基因如何“计算”其最佳策略,它们都会精确,或者接近精确地得到与宿主基因计算所得的相同最佳策略。在蜗牛和吸虫寄生中,我们认为它们偏好的蜗牛壳厚度并不一致。在豚草甲虫与细菌的例子中,寄主和寄生动物可能对甲虫翅膀长度等身体的各个特征都有相同的偏好。我们不用具体知道甲虫如何使用其翅膀或者其他身体特征的细节,就能通过推理预测到:甲虫与细菌的基因都会竭尽所能,使甲虫得到相同的宿命——任何有利于传递甲虫卵子的宿命。

        我们可以将这个推理推至一个逻辑性的结论,再用以分析正常的“自体的”基因。我们自己的基因互相合作,这不是因为它们都属于一个身体,而是因为它们共享一条未来的出路——精子或卵子。任何生物(比如人)的基因如果可以找到一条非常规的、不依赖精子或卵子的出路,它们就会选择这个新方向,并表现得不再合作。这是因为它们可以比其他体内的基因得到更好的未来。我们已经发现在一些例子中,基因因其自身利益而偏向减数分裂。也许还有其他基因可以从精子或卵子的“正常通道”中逃逸,另辟蹊径。

        有些DNA片段并不在染色体中,而是在细胞液(特别是细菌细胞)中自由漂浮复制。它们的名字各异,比如类病毒或质粒等。质粒比细菌还要小,它通常只包含少数一些基因。一些质粒可以天衣无缝地将自身拼接为染色体,你甚至都不能发现它是拼接而成的,因为它的拼接极其自然,无法与染色体其他部分分辨开来。质粒还可以将自身分割。这种DNA的分割和拼接、从染色体中进出的能力,是本书第一版出版后发现的最激动人心的科学事实之一。这些近来关于质粒的证据可支持本书第10章的猜想(当时它还被认为有点荒谬)。从某些方面来说,这些片段是否来自入侵的寄生动物或者异己生物,其实并不重要,它们的行为可能是相同的。我会多讨论一点入侵片段,以阐释我的观点。

        想想一个“叛逆”的人类DNA,可以从自身染色体中逃出,自由漂浮于细胞中,甚至可以将其自身复制无数遍,再自己拼接成另一个染色体。这种“叛逆”的复制因子能找到怎样非常规的未来路径呢?我们的皮肤不断失去细胞,房子里的灰尘很多都是我们脱落的细胞,我们又呼吸着别人的细胞。如果你用指甲在嘴里划一圈,数以千计的活细胞将跟着你的指甲离开。情人之间的亲吻和爱抚也交换着无数的细胞。“叛逆”的DNA可以随着任何一个这种细胞搭上便车。如果基因发现进入另一个身体的非常规路径(或者非常规的精子/卵子途径),我们可以预测到,自然选择将促使并推动它们进行机会主义行为。对于一个自私的基因/延伸表型的理论学家而言,它们具体运用的方法则毫无疑义地与任何病毒诡计一模一样。

        当我们感冒咳嗽时,我们通常认为这些惹人心烦的症状是病毒行为的副作用。但在某些情况下,它们更可能是病毒精心策划控制的方法,以帮助其寻得下一个宿主。病毒会使我们打喷嚏或剧烈咳嗽,从而使自己被呼出,进入大气。狂犬病病毒则由动物撕咬时的唾液传播。狂犬病是发生在狗身上的一种症状,它使得原本和善友好的动物变得凶猛,爱咬其他动物,口中始终充满唾液。更令人不安的是,正常的狗只在离家1英里(约1.6千米)的范围内待着,得狂犬病的狗则不眠不休地奔跑,使病毒可以散播得更远。甚至有人认为,狂犬病的恐水症状使病犬不停将唾沫从口中喷出,同时也传播着病毒。我没听说任何直接证据表明性传播疾病可以增加患者性欲,但我觉得这值得研究。有一种叫“西班牙苍蝇水”的春药据说是在让人发痒的时候发挥作用的,而发痒通常是一些病毒的拿手好戏。

        如果比较一下叛逆的人类DNA与入侵的寄生病毒,可以发现它们之间没有什么重要的不同。实际上,病毒很可能是由一些入侵基因的集合演化而成的。如果我们一定要提出一些不同,那便是基因通过常规的精子/卵子途径在人体之间传播,而病毒另辟蹊径地通过非常规手段传播于人体之间。它们都可能包括来自自身染色体的基因,还有来自外来入侵的寄生生物的基因。或者就像我在第10章中推测的那样,也许所有“自身”染色体基因都可以被看成互相共生、寄生于彼此的。这两类基因最重要的不同处是它们的未来。一个感冒病毒基因与一个外来人类染色体基因都“希望”宿主打喷嚏,一个常规的染色体基因和一个性传播病毒都“希望”宿主交配。这样看来,耐人寻味的是,后两个基因也许都会希望宿主有性吸引力。而一个常规的染色体基因与传播进入宿主卵子的病毒,不仅都会希望宿主求欢成功,还会对其生活各个细节寄予厚望,甚至希望其成为忠诚的关爱孩子的父母,甚至祖父母。

        石蚕蛾住在其房子中,而我一直在讨论的寄生动物居住于其宿主体内,这些基因则与它们的延伸表型在地理上非常接近,其接近程度不逊于基因本身的常规表型。但基因可以在一定距离外产生作用,延伸表型可以延伸至很远。我可以想到的最长的距离可以跨越一个湖。正如蜘蛛网和石蚕蛾的房子一样,海狸的河坝是真正的世界奇观之一。它肯定有其达尔文主义的目的,尽管现在尚不清楚。海狸建的“人工湖”可能用以保护海狸的住所不受捕食者侵害,也提供了方便的水路交通用以出行和运输货物。它的方法与加拿大木材公司的河流运输、18世纪煤炭商人的运河运输出于完全相同的理由。无论谁受益,海狸的“人工湖”都是自然环境中引人注目的奇观。它如海狸的牙齿和尾巴一样,是一种表型,受达尔文主义的自然选择影响演化而成。自然选择需要基因差异,这里的差异则是功能优异的“人工湖”和不那么优异的“人工湖”。正如自然选择偏爱的基因能制造锋利的牙齿一样,它偏爱的基因也可以造出适合运输树木的“人工湖”。海狸的“人工湖”是海狸基因的延伸表型,它们可以延伸至上百码。多么长的地理延伸啊!

        寄生动物也不一定要居住在其宿主身体中,它们的基因可以与宿主保持一定距离时发挥作用。布谷鸟的雏鸟并不在知更鸟或苇莺体内,它们并不需要吸血或者吞噬身体组织,但我们也毫不犹豫地将之标注为寄生动物。布谷鸟的自然适应性表现在控制养父母的行为上,这也可以看作布谷鸟基因在一定距离开外的延伸表现行为。

        这些养父母被欺骗而帮助孵化布谷鸟蛋的行为很好解释。即使拾鸟蛋的人类也会被布谷鸟蛋迷惑,它们与草地鹨或苇莺蛋实在太相像了,不同的雌性布谷鸟还有与之对应的不同宿主。但之后,养父母对于成熟的小布谷鸟的态度比较难以理解。布谷鸟通常比其养父母体形都大,有时甚至巨大得十分怪异。我此时正看着成年岩鹨的照片。相比起庞然大物的“养子”,它的体形如此娇小,给养子喂食时只能攀上它的背部才能够得着。我们并不十分同情这些宿主,它们的愚蠢和轻信实在令人轻蔑。任何傻瓜都能轻易看出这种孩子肯定有问题。

        我觉得布谷幼鸟肯定不止在外表上“欺骗”它们的宿主,它们似乎给宿主的神经系统“施了魔法”,作用类似那些容易上瘾的药。即便你对上瘾药物没有经验,也能够理解、同情宿主们的境遇。给一个男人看女性身体的图片,便可以唤起其性冲动,甚至勃起。他并没有被“欺骗”而认为这张图片其实是真实的女人,虽然他知道他只是对着铅墨打印的图片,他的神经系统依然有着和面对真实女性时相同的反应。我们可能会对某位异性无法抗拒,即使理智告诉我们他/她并不可能是长期的约会对象。这种感觉同样适用于对垃圾食品的无法抗拒。岩鹨也许对最佳长期利益并没有意识,它便更容易任其神经系统摆布,无法抗拒某些外界刺激。

        布谷雏鸟的红色大嘴有着挡不住的诱惑力,鸟类学家甚至经常发现宿主鸟给另一只宿主巢内的布谷雏鸟喂食!这只鸟也许正带着喂养自己孩子的食物回家,但当它飞过另一只完全不同的宿主鸟巢边时,布谷雏鸟的红色大嘴突然出现于它的眼底,它便不由自主地停留,将原本留给自己孩子的食物投进布谷鸟的嘴中。这种“不可抗理论”与早期德国鸟类学家的理论不谋而合,这些鸟类学家认为养父母的行为如同“上瘾”,而布谷雏鸟是它们的“软肋”。尽管这种理论在现代实验学家处不是很受欢迎,但毫无疑问,如果我们假设布谷鸟的大嘴是一种超级刺激,类似于容易上瘾的强劲药物,我们就更容易解释事情的经过,也更容易同情这些站在庞大孩子背上的娇小父母了。它们并不愚蠢,“欺骗”也不是一个合适的词汇。它们的神经系统受到控制,正如一个不可救药的瘾君子一般不可抗拒药瘾,布谷鸟则好像一个科学家一样,将“电极”插进养父母的大脑。

        但即使我们对这些受控制的养父母有了更多的同情,我们依然会问:为什么布谷鸟得以逃脱自然选择?为什么这些宿主的神经系统无法演化得更为坚强,从而抵挡住红色大嘴药物的诱惑?也许自然选择还没来得及完成这项工作,也许布谷鸟只是在最近几个世纪才开始寄生于现在这些宿主中的,也会在接下来几个世纪里被迫放弃而加害于其他种类的鸟。这个理论已经有一些证据了,但我还是觉得事情不这么简单。

        在布谷鸟和其宿主们的进化“军备竞赛”中根植着不公,这是因为双方失败的代价并不等同。每一只布谷雏鸟都是经过一连串古代布谷鸟进化而得的后代,其中任何一只古布谷鸟都曾成功操纵了养父母,而那些无法操纵宿主,甚至只是暂时失去控制的布谷鸟都已在繁衍前死亡了。但对于每一只宿主鸟而言,它们的许多祖先都从未见过布谷鸟。那些被布谷鸟寄居的祖先也许短暂屈服了,但下一季依然有机会生养自己的后代。在这里,失败的代价并不等同。知更鸟或岩鹨的“无法抵抗布谷鸟”的基因可以轻易传给下一代,布谷鸟的“无法操纵养父母”的基因则无法传递给自身后代,这就是我所说的“根植不公”和“失败的代价不等同”。《伊索寓言》中有一句话可以概括这个故事:“兔子跑得比狐狸快,因为狐狸奔跑是为了晚餐,而兔子奔跑是为了活命。”我和我的同事约翰·克雷布斯将此概括为“生命与晚餐的原则”。

        由于“生命与晚餐的原则”,动物们有时并不追求其最佳利益,而受到其他动物的操纵。事实上,它们确实是在追求其最佳利益。“生命与晚餐的原则”表示,它们理论上可以抗拒被操纵,但代价巨大。也许你需要更大的眼睛或大脑来抵挡布谷鸟的操纵,这是个不小的代价。因此,这种基因趋势实际上在传递基因时并不成功。

        但我们再一次回到原先的观点:从生物体个体的角度去思考,而不是基因。当我们讨论吸虫和蜗牛时,我们已经习惯于认为,正如动物基因可以在自身身体产生表型影响一样,寄生生物的基因也可以在宿主身体中产生表型影响。我们所谓“自身身体”这个概念只是加重语气的假设。在某种意义上,身体内所有基因都是“寄生”基因,无论我们是否愿意称之为“自身”的基因,或者是其他。布谷鸟基因是作为不居住于寄主身体的一个例子出现在我们的讨论中的,它们操纵宿主的方式正如寄生的动物一样,也如其他体内药物或激素一样强大而不可抗拒。那么正如寄生生物的例子一样,我们现在需要把这个故事以基因和延伸表型的概念再讲一遍。

        在布谷鸟和宿主的进化“军备竞赛”中,双方的进度均以基因变异产生与被自然选择选中的方式来决定。无论布谷鸟的大嘴是以怎样的方式如药物般作用于宿主的神经系统的,它都来自基因变异。这种变异通过其作用表现出来,比如作用于布谷鸟鸟嘴的颜色和形状,但这依然不是其最直接的影响。最直接的影响其实是细胞内肉眼不可见的化学变化,间接影响则是鸟嘴颜色和形状。现在我们来分析最重要的一点,只有一部分间接影响是这些布谷鸟基因作用于被迷惑的宿主。正如我们说布谷鸟基因对鸟嘴颜色和形状有表型作用一样,布谷鸟基因对宿主行为也有(延伸性)表型作用。寄生生物基因对宿主身体产生作用的方式并不限于寄生生物居住于宿主身体中,直接以化学作用操纵宿主,还包括当寄生虫离开宿主身体后,依然在一定距离外操纵着宿主。事实上,我们还将看到,即使化学作用也能在体外进行。

        布谷鸟是一种神奇的、引人深思的生物,但昆虫的成就可以超过任何脊椎动物,它们的优势在于数量。我的同事罗伯特·梅(Robert May)正好有个结论:“可以说所有生物都是昆虫,这是一个生物数量的好的近似。”昆虫中的“布谷鸟”数不胜数。它们数量众多,习性经常改变。我们将看到的一些例子已经超越了我们熟悉的“布谷鸟模式”,而抵达“延伸表型”所能启发的最荒诞的想象。

        布谷鸟将鸟蛋寄居于宿主处,而后消失不见,而一些雌性蚂蚁“布谷鸟”将它们的献身演绎成一场更戏剧性的演出。我不经常在书中给出动物的拉丁名,但这两个拉丁名Bothriomyrmex regicidus(弑君者)和B.decapitans(斩首者)本身已经讲述了一个故事。这两种蚂蚁都是寄居于其他蚂蚁种群中的寄生生物。当然,所有的小蚂蚁通常都由工蚁喂养,而不是父母,工蚁被这些“布谷鸟”操纵愚弄。它们第一步是设法使目标工蚁的母亲产下另一种蚂蚁。这两种蚂蚁的寄生蚁后都可以偷偷进入另一种蚂蚁的巢穴,找到宿主蚁后,爬上其背部,而后的故事且让我直接引用爱德华·威尔逊(Edward Wilson)轻描淡写却令人毛骨悚然的语句:“(它安静地)进行一项它独特而擅长的工作:慢慢砍下受害者的头部。”然后,这个凶手收养了已成孤儿的工蚁们,而后者依然毫不知情地照料凶手的卵和幼虫。其中一些也被培养成工蚁,并逐渐取代巢穴中原来的蚂蚁。其他后代则成长为蚁后,离开巢穴去寻找新的空缺王位。

        但砍头的工作量毕竟不小。如果刚好有替身可以被要挟,寄生生物并不愿意展现自我。在威尔逊的《昆虫社会》一书中,我最喜欢的角色是另一种蚂蚁Monomorium santschii。这种蚂蚁在进化中失去了它们的工蚁。寄主中的工蚁们为其寄生蚂蚁做所有事情,包括最恐怖的任务——谋杀。在入侵的寄生蚁后的命令下,它们可以谋杀自己的母亲。篡位者运用意念控制宿主,根本不需要动用自己的颚。它是怎么做到的?这至今依然是个谜。也许它用了一种化学物质,可以高度控制蚂蚁的神经系统。如果它的武器确实是化学物质,这可是科学至今所知道的最阴险的药物。想想它是怎么完成任务的:它流经工蚁的大脑,紧握住它肌肉的缰绳,驾驶着它偏离其最根深蒂固的责任,使它转而攻击自己的母亲。弑母对于蚂蚁而言,是一种特殊的基因失常。这种如此强大的力量只能来源于药物,使它们不顾一切地走向毁灭。在延伸表型的世界里,不要问动物的行为如何使自己的基因受益,要问的是谁的基因能够受益。

        蚂蚁被寄生动物利用的故事并不奇怪。寄生于蚂蚁的生物除了其他种类的蚂蚁,还有一连串专业的“食客”。工蚁们在各处寻得食物,大量集中囤积,这对于不劳而获者是一个唾手可得的诱惑。但蚂蚁们也有很好的自我保护机制,它们“装备”完善,数目巨大。第10章的蚜虫便用自产的蜜汁来换取蚂蚁保镖。多种蝴蝶在幼虫时都住在蚂蚁的巢穴里,有一些是赤裸裸的掠夺者,另一些则付出代价来换取蚂蚁的保护,后者通常拥有许多操纵保护者的设备。有一种蝴蝶叫Thisbe irenea,它的头部有一个制造声音的器官,用以召唤蚂蚁,尾端还有一对伸缩嘴,用以生产诱惑蚂蚁的蜜汁。它肩膀上的一对喷嘴更可以施展更为微妙的魔法,其分泌的蜜汁并不像是蚂蚁的食物,而是一种挥发性的药水,对蚂蚁的行为影响巨大。受蛊惑的蚂蚁会在空中跳跃,其颚大张,行为也变得更具攻击性,比往常更渴望进攻、撕咬或蜇伤任何运动中的物体——幼虫显然给蚂蚁下了药。更有甚者,被这些幼虫“药贩子”蛊惑的蚂蚁最终进入“结合”(binding)的状态,在很多天内无法离开蝴蝶幼虫。这些幼虫则像蚜虫一般,利用蚂蚁作为保镖。但蚜虫只是利用蚂蚁正常的攻击行为来保护其不被捕食者侵害,而蝴蝶幼虫棋高一着,可以使用药物让蚂蚁变得更具攻击性,还能使蚂蚁对此上瘾,与其“结合”而不离不弃。

        我选择的例子过于极端了,但自然界中动植物控制自身或其他物种的例子比比皆是。在这些例子中,自然选择偏爱于控制他人的基因,我们便可以合情合理地说,这些基因对受控制的生物体有“延伸表型”的作用。这个基因实际存在于哪个身体并不重要,它控制的对象也许是自己的身体,也可以是其他生物。对那些通过控制世界而得以繁衍传播的基因,自然选择并不吝啬其偏爱。这便是我所说的“延伸表型”的中心法则:动物行为倾向于最大化指导此行为的基因的生存,无论这些基因是否在做出此行为的动物体内。这里我讲的是动物行为,但这个中心法则当然可以用在其他方面:颜色、尺寸、形状,所有一切。

        我们终于可以回到最初的问题,来谈谈个体生物与基因在自然选择中竞争中心位置的矛盾关系。在前边的章节里,我假设这里没什么问题,因为个体繁殖等同于基因存活,你可以说“生物体为了传播其基因而工作”或者“基因迫使个体繁衍从而传播基因自身”。它们似乎是一件事情的两种说法,无论你选择哪一个说法,只是个人偏好问题。但这里的矛盾依然存在。

        解决这个问题的一个方法是使用“复制因子”和“载体”。复制因子是自然选择的基础单位,生死存亡的根本个体,联系了代代本质相同或随机变异的复制血脉。DNA分子便是复制因子,它们通常连接一起,形成较大的公共基因存留机器——“载体”,这里的原理我们等会儿再讲。我们了解最多的“载体”便是我们的身体。因此,身体并不是复制因子,而是载体。我必须反复强调一下这一点,因为它经常被误解。载体并不复制其本身,它们只传播复制因子。复制因子并不作为,不观察世界,不捕食也不从捕食者处逃离,它们只让载体来做这些事情。出于许多原因,生物学家只集中所有注意力于载体水平上,因为这更为方便。但出于另一些原因,他们更应该将注意力集中到复制因子上。基因与个体生物在达尔文主义的戏剧里并不主演着对手戏,它们分别以复制因子与载体的角色饰演着不同角色,互相补充,同等重要。

        “复制因子”和“载体”这些术语在许多方面都很有帮助,比如,它帮助清除了那个长久不衰的争议——自然选择在哪一个层次起作用。表面上看,将“个体选择”放在“基因选择”(第3章拥护的理论)之下、“类群选择”(第7章批判的理论)之上的阶梯选择层次里,似乎很符合逻辑。“个体选择”似乎可以模糊地处于两个极端之间,许多生物学家和哲学家因此被引诱上了这条不归路。但我们现在可以看到,事情并不是这么回事。我们可以看到在这个故事里,生物个体与群体是载体角色的真正对手,但两者都根本无法扮演“复制因子”的角色。“个体选择”和“类群选择”之间的争议是两种载体间的争议,而“个体选择”和“基因选择”间根本不存在争议,因为在这个故事里,基因与生物体分饰着复制因子与载体这两个完全不同却又互相补充的角色。

        生物个体与群体在载体角色中的竞争——真正的竞争,也是可以解决的。在我看来,因为其结果是个体生物决定性的胜利,群体作为竞争实体显得软弱无力。鹿群、狮群和狼群都拥有整齐的一致性与共同目标,但与单独一只鹿、狮子或狼身体中的一致性与共同目标相比,前者显得极其微不足道。这个正确观点已被广泛接受,但为什么它是正确的呢?延伸表型与寄生动物在这里可以再次帮助我们。我们看到寄生动物的基因相互合作,与宿主的基因对立(宿主的基因也同时相互合作),这是因为这两组基因离开共同载体——宿主身体的方式确实不同。蜗牛的基因以蜗牛的精子和卵子的形式离开蜗牛身体这一载体,因为它们参与了相同的减数分裂,它们为了共同目标一起奋斗,这便使蜗牛的身体成为一个一致的、有共同目标的载体。寄生的吸虫不被认为是蜗牛身体的一部分,不将其目标和身份与寄主的目标和身份统一,是因为吸虫的基因并不以蜗牛基因的方式离开它们共同的载体,它也不参与蜗牛的减数分裂——它们有自己的减数分裂。因此,两个载体因蜗牛与蜗牛体中的吸虫而保持距离。如果吸虫的基因经过蜗牛的卵子和精子,这两个身体将会演化成为同一个肉躯,我们将不再能够分辨这两个载体。

        生物“个体”——正如你我的身体,是许多这种融合的化身,而生物群体——如鸟群、狼群,则无法融合为一个单独的载体,因为群体中的基因并不共享离开现有载体的共同渠道。更确切地说,母狼可以产出小狼,但父母的基因却不会与子女基因同享一个载体出口。狼群中的基因并不在同一个未来事件得到相同的回报。一个基因可以通过偏爱自身个体,而利用其他狼付出代价,使自身得到未来的好处。个体狼因此只是自身的载体,狼群则不可能是载体。从基因角度上讲,这是因为一只狼身上的细胞(除了性细胞)都有相同的基因,而所有基因都有相同的概率成为性细胞基因的一部分。但狼群中的细胞并不相同,它们也没有相同概率成为后代细胞。它们必须通过与其他狼身体中的细胞竞争来获得未来(虽然事实上狼群更可能作为一个整体来求得生存)。

        个体如果想要成为有效的基因载体,必须具备以下条件:对所有其中的基因提供相同概率的、通往未来的出口通道。这对于个体狼是成立的,这里的通道是由减数分裂制造的精子或卵子,而这对于狼群不成立。基因需要自私地争取其身体的所得,牺牲狼群中其他基因来取得收获。蜂群类似狼群,也是通过大量繁殖得以生存的。但如果我们更仔细地观察,我们会发现,从基因角度看,它们的命运在很大程度上是共享的。蜂群的基因未来至少很大一部分依赖于那唯一一只蜂后的卵巢。这便是为什么蜂群看起来,甚至在行为上表现为一个真正的有机结合的独立载体——这只是表达我们前面章节信息的另一种说法。

        事实上我们处处可以发现,这些独立、有个体追求的载体经常组成群体,个体生命被紧紧捆绑于其中,正如狼群和蜂群一般。但延伸表型的理论告诉我们,这并没有必要。根本上讲,我们从理论中所看到的是复制因子的战场,它们互相摩擦、争夺、战斗,以争取基因的未来。它们用以作战的武器则是表型。基因对细胞有直接的化学作用,从而表现在羽毛、尖牙,甚至其他更遥远的作用。这个现象毫无疑异地表现在以下情景中:当这些表型组成独立的载体时,每一个基因都井然有序地朝着未来前进——千军万马地挤向那个为大家共享的精子或卵子的“瓶颈”通道。但这个情况不可以被想当然地信服,而应该被质问或挑战:为什么基因走到一起组成大型载体,而这些载体都有自身的基因出口?为什么基因选择聚集,为自身制造大型的身体以供居住?在《延伸的表型》里我试图回答这个困难的问题。在这里我只讲讲一部分答案——当然在写作此书7年之后,我现在还可以试着回答得更深入些。

        我要把这个问题分成3个小问题:为什么基因要组成细胞?为什么细胞们要组成多细胞生物?为什么生物采纳“瓶颈”般的生命循环?

        首先,为什么基因要组成细胞?为什么那些原始复制因子放弃在“原始汤”中享受自由自在的骑士生活,而选择在巨大群落里举步维艰地生存?为什么它们选择了合作?我们可以从观察现代DNA分子在活细胞的“化学工厂”里的合作方式找到部分答案。DNA分子制造蛋白质,后者则以酶的作用方式催化特定的化学反应。通常,单独一个化学反应并不足以合成有用的人体最终产品,人体的“制药工厂”需要生产线。最初的化学物质并不直接转化为所需的最终产品,这中间需要经过一系列有严格次序的合成步骤。化学研究者的聪明才智大多花费在为起始化学物质与最终产品间设计合理的中间步骤。同样,活细胞中一个单独的酶也无法凭自身力量将最初给定的化学物质合成为有用的最终产品。这个过程需要一整套蛋白酶,由第一种酶将原材料催化转化为第一个中间产品,第二种酶将第一个中间产品催化转化为第二个中间产品,以此接力继续。

        每种蛋白酶都由一个基因制造而成。如果一个合成过程需要6种系列蛋白酶,则必须有6个基因存在以制造它们。这样就有可能出现两条都可以制得相同产品的不同合成路线,每条路线分别需要6种不同蛋白酶,两条路线之间无法混合选择,这种事情在化学工厂里经常发生。大家可能会因为历史偶然原因而选择某一条路线,或者化学家会对某一条路线有更精心的设计。在自然界的化学工厂中,这种选择从来不会被“精心设计”。相反,它完全由自然选择决定。这两个路线并不混合,每一路线中的基因互相合作,彼此适应。自然选择如何看待这个问题呢?这跟我在第5章做的比喻“德国与英国的桨手”很是类似。最重要的是第一路线的基因可以在其路线中其他基因存在的前提下繁荣生长,而对第二路线的基因视而不见。如第一路线的基因已经占据了群体中的大多数位子,自然选择便会偏向第一路线,而惩罚第二路线的基因,反之亦然。如果说第二路线中的6种蛋白酶是以“群体”而被选择,则大错特错,虽然这种说法很是诱人。每一种蛋白酶都作为一个单独的、自私的基因被选择,但它只能在其他同组基因存在的情况下才能生长繁荣。

        现在这种基因间的合作可以延伸到细胞之间。这一定始于“原始汤”中(或者其他什么原始媒介中)自我复制因子间的基本合作。细胞膜也许是作为保持有效化学物质、防止它们渗漏的介质而出现的。细胞中的许多化学反应事实上发生在细胞膜内,细胞膜起到传输带和试管架的作用。但基因间的合作并不止于细胞生化。细胞们走到一起(或者在结合后无法分离),形成了多细胞生物。

        这便将我们带到第二个问题:为什么细胞们组合到一起?这是合作的另一个问题,这将我们的讨论从分子世界带到一个更大的范围里。多细胞生物已经不适用于显微镜的范围了,我们这里讲的对象甚至可以是大象或蓝鲸。大并不一定是好事,细菌在生物界中的数目比大象要多得多。但当小型生物用尽其所能的生活方式,尺寸大一些的生物可能还有繁荣的空间。比如,体形大的生物可以吃小动物,还可以防止被它们吃。

        细胞结合的好处并不止于体形上的优势。这些细胞结合可以发挥其专有特长,每一个部件在处理其特定任务时就可以更有效率。有专长的细胞在群体里为其他细胞服务,同时也可以从其他有专长的细胞的高工作效率中得益。如果群体中有许多细胞,有一些可以成为感觉器官以发现猎物,一些可以成为神经以传递信息,还有一些可以成为刺细胞以麻醉猎物,成为肌肉细胞移动触须以捕捉猎物,成为分泌细胞消化猎物,还有其他细胞可以吸收汁水。我们不能忘记,至少在像你我这样的现代生物中,细胞其实是克隆所得的,它们都拥有相同的基因。但不同的基因可以成为不同的专长细胞,每一种细胞中的基因都可以从少数专长复制的细胞中得到直接利益,形成不朽的生殖细胞系。

        那么,第三个问题:为什么生物体参与“瓶颈”般的生命循环?

        先解释一下我对“瓶颈”的定义。无论大象体内有多少细胞,大象的生命都始于一个单独的细胞——一个受精卵。这个受精卵便是一条狭窄的“瓶颈”,在胚胎发育中逐渐变宽,成为拥有成千上万细胞的成年大象。而无论成年大象需要多少细胞,或者多少种专长细胞来合作完成极其复杂的生物任务,所有这些细胞的艰苦工作都会汇聚成最终目标——再次制造单细胞:精子或卵子。大象不仅始于受精卵这一单细胞,它的最终目标也是为下一代制造受精卵这一单细胞。这只巨大笨重的大象,生命循环的起始都在于狭窄的“瓶颈”。这个瓶颈是所有多细胞动植物在生命循环中的共同特征。这是为什么呢?它的重要性在哪里?在回答这个问题前,我们必须考虑一下,如果生命没有这个“瓶颈”,会是怎样的情况。

        让我们先想象两种虚拟的海藻,姑且称它们为“瓶藻”和“散藻”。海里的散藻有杂乱无章的枝叶,这些枝叶时不时断落并漂浮离去。这种断落可以发生在植物的任何部位,碎片可大可小。正如我们在花园里剪去植物的枝叶一样,散藻可以像断枝的正常植物一样重新生长。掉落枝叶其实是一种繁殖的方法。你将会注意到,这其实和生长并不是特别不同,只是生长的部位并不与原来的植物相连接而已。

        瓶藻和散藻看起来同样杂乱无章,但却有着一个重要的不同处:它繁殖的方式是释放单细胞孢子,由其在海里漂浮离去并成长为新的植物。这些孢子只是植物的细胞,和其他植物细胞没有区别。瓶藻没有性生活,子女所含的细胞只是父母植物细胞的克隆。这两种海藻的唯一不同是:从散藻处独立的生物有许多细胞,而瓶藻释放的永远是单细胞。

        这两种植物让我们看到“瓶颈”生命循环和非瓶颈循环的根本不同。瓶藻的每一个后代都是通过挤压自己,经过单细胞瓶颈繁殖而成的。散藻则在生长之后分成两截,很难说是传递单独的“后代”,还是其已包含了许多单独的“生物”。而瓶藻呢?我马上会解释,但我们已经可以看到答案的痕迹了。难道感觉上瓶颈不是已经更像一个更独立的生物吗?

        我们已经看到,散藻繁殖与生长的方式是相同的,事实上它基本不繁殖。而瓶藻在生长和繁殖间划分了清晰的界限。我们已经来到了这个不同处了,接下来呢?它的重要性是什么?为什么它很重要?我对这个问题已经想了很长时间,现在我觉得我已经知道答案了。(顺便说一句,提出问题比找到答案要难得多!)这个答案可以分成三个部分,前两个部分和演化与胚胎发育间的关系有关。

        首先想想这个问题:简单器官如何演化为复杂器官?我们不必局限于植物,而且在这个讨论阶段里,转向讨论动物可能更好些,因为它们明显有更复杂的器官。我们也没有必要考虑性。有性和无性繁殖在这里只会造成误解。我们可以想象动物以发送无性孢子的方式繁殖。孢子为单细胞,如果不考虑变异,它们在基因上与体内其他细胞完全相同。

        在类似人或土鳖虫这种高等动物中,复杂的器官是由祖先的简单器官逐渐演化而成的。但祖先的器官并不像刀剑被打成铧一般,它们并不直接转变为后代器官。这不是做不做的问题,我要指出,在大多数情况下,它们根本做不到。“从剑到铧”的直接转化方式只能获得很小的一部分改变。真正彻底的变化只能由“回到绘图板”的方式完成,抛弃之前的设计,重新开始。当工程师们回到绘图板前,重新创造一个新设计时,他们并不需要完全抛弃旧设计的灵感,但他们也不是将旧的物件改造成新的,旧物件承载着太多历史。也许你可以将剑打成铧,但将一个螺旋桨发动机“打成”喷气式发动机呢?你做不到。你必须抛弃螺旋桨发动机,回到绘图板重新再来。

        自然,生物从来不曾在绘图板前设计而成,但它们也愿意回到最初的开始,在每一代有一个干净的起点。每一个新生物由单细胞开始成长,它在DNA程序中遗传祖先设计的灵感,但并不遗传祖先自身的器官。它们并不遗传父母的心脏,并重制为改进过的新心脏。它们只愿意从头以单细胞开始,利用与其父母心脏相同的设计程序,长成一个新的心脏,也许还加入一些改进。你现在可以看到我接下来的结论了。“瓶颈”般的生命循环的重要性在于它使“回到绘图板”成为可能。

        “瓶颈”生命循环还有第二个相关的结果:它为调节胚胎发育过程提供了一个“日历”。在“瓶颈”生命循环中,每一个崭新的世代需经过几乎相同的旅程。生物体以单细胞为始,细胞分裂以生长,传输性细胞以繁殖。它想必会走向死亡,但更重要的是,它看起来更像是不朽的。对我们的讨论而言,只要现存的生物已经繁殖,而新一代的循环再次开始,那么前一次循环也就可以结束了。虽然理论上生物可以在其成长过程中任何时间进行繁殖,但我们可以预料到,繁殖的最佳时间最终将会被发现。生物在过于幼小或老迈时,只能释放少量孢子,这将使其不敌那些积蓄能量以在生命重要时间中释放大量孢子的对手。

        我们的讨论方向已经转向了那些定型的、有规律重复的生命循环,每一个世代的生物都从单细胞的“瓶颈”开始。另外,生物还有相对固定时长的生长期,或者说“童年”。这个固定时长的生长阶段使得胚胎发育可以在特定时间里发生特定变化,正像有一个严格遵守的日历一样。在不同的生物中,发育中的细胞分裂以不同规律的次序进行,这个规律则在生命循环的每一个循环中持续发生。当细胞分裂时,每一个新细胞都有其出现的特定时间与地点。巧合的是有时这个规律如此精确,胚胎学家可以以此给每个细胞命名,而每一个生物体中的细胞都有在另一生物体中相对应的细胞。

        所以,这个定型的成长循环提供了一个时刻表或是日历,定点激发胚胎发育事件。想想我们自己如何轻而易举地运用地球的每日自转与每年围绕太阳公转,以规划与指导我们的日常生活。同样,这些来自“瓶颈”生命无限循环的生长规律也几乎不可避免地被用以规划和指导胚胎发育。特定的基因在特定的时间被打开或关闭,因为“瓶颈”生命循环日历确保了这些事件发生的特定时间。基因这种精确的行为规划是胚胎得以进化形成复杂组织与器官的先决条件。鹰的眼睛、燕子的翅膀,这些精确与复杂的奇观无法在没有时间规则的情况下出现。

        “瓶颈”生命历史的第三个结果关乎基因。在这里,我们可以再次使用瓶藻和散藻的例子。我们再次简单假设两种藻类都是无性繁殖,再想想它们将怎样演化。演化需要基因的变异,而变异可以在任何细胞分裂中产生。与瓶藻相反的是,散藻的细胞生命谱系相当广泛,每一个断裂而漂离的枝条都是多细胞,这便可能使得后代植物体内细胞之间的亲缘较其与母植物细胞间的亲缘关系更远(这里的“亲缘”指的是表亲、孙辈等。细胞有明确的直系后代,这些亲缘关系盘根错节,所以同一个身体里的细胞可以用“第二代表亲”这种词汇来表达)。瓶藻在这一点上和散藻十分不同,一株后代植物的全部细胞都来自同一个孢子,所以一棵植物中所有细胞的亲缘关系都比另一株植物要亲近得多。

        这两种藻类的不同可以产生非常重要的不同基因结果。想想一个刚刚变异的基因在散藻和瓶藻中的命运。在散藻中,植物的任何枝条上的任何细胞都可以产生变异。由于子植物为发芽生长所得,变异细胞的直系后代将和子植物、祖母植物等的无变异基因共享一个身体,而这些无变异基因相对亲缘较远。而在瓶藻中,所有细胞在植物上最近的共同亲属也不会比孢子更老,因为孢子提供了这个生命的开端。如果孢子里包含着变异基因,新植物里的所有细胞都将包含这个变异基因。如果孢子没有变异,则所有细胞都无变异。瓶藻里的细胞比散藻中的在基因上更为统一(即使有偶尔的回复突变)。瓶藻作为单独的植物是一个基因身份的整体,是实际意义上的“独立”。而散藻植物的基因身份相对模糊,“独立”意义较瓶藻弱了许多。

        这不仅是一个术语定义的问题。散藻植物的细胞如果有了突变,便不再从“心底”与其他细胞享有共同的基因兴趣。散藻细胞中的基因可以通过促使细胞繁殖而得到优势,而并不需要促使“独立”植物的繁殖。基因突变使得植物中的细胞不再完全相同,也便使细胞不再全心全意互相合作,来制造器官与后代。自然选择选中了细胞,而不是“植物”。瓶藻则不一样。植物中的所有细胞很有可能拥有相同的基因,只有时间上非常临近的突变才可能使基因不同。因此,这些细胞可以为制造有效的生存“机器”而快乐合作。不同植物上的细胞更倾向于有不同基因,于是,通过不同“瓶颈”的细胞可以有显著不同(除了最近的突变),这便是大多数植物的情况。自然因此选择以对手植物为单位,而不是散藻中的对手细胞。于是我们可以看到植物器官与其策略的演化,都服务于整株植物的利益。

        顺便说一下,单单对那些有专业兴趣的人来说,这里其实可以拿类群选择打个比方。我们可以把一个单独生物看作一“群”细胞。类群选择的理论在这里也可以使用,只要能找到增加群体间差异对群体内差异的比例数目的方法。瓶藻的繁殖正是增加这个比例数目达到的效果,而散藻完全相反。在这里,关于这章里“瓶颈”理论与其他两个理论的相似之处也已经呼之欲出了,但我还是先不揭晓。这两个理论分别是:1.寄生生物与宿主在某种程度合作,已使得它们的基因在相同的繁殖细胞中一同传递到下一代,因为寄生生物和宿主的基因需要经过相同的“瓶颈”。2.有性繁殖生物的细胞只与自身互相合作,因为减数分裂公正得不差毫厘。

        总结一下,我们已经可以看到,“瓶颈”生命历史倾向使生物演化为独立而统一的载体,这个理论的三个支持理由可以分别称为“回到绘图板”“准时的时间循环”和“细胞统一”。是先有“瓶颈”生命循环,还是先有独立的生物体?我倾向于认为它们是一同进化而成的。事实上,我猜想独立生物体不可或缺的、决定性的特点,便是其作为一个整体,以单细胞“瓶颈”开始与结束生命历程。如果生命循环成为“瓶颈状”,有生命的材料会逐渐聚集一起,形成独立与统一的生物体。有越多的生命材料聚集形成独立的生存载体,则有更多的载体细胞凝结其努力,作用于特殊种类的细胞,使得它们可以承载其共同的基因,通过瓶颈走向下一代。瓶颈生命循环与独立的生物体,两种现象密不可分。每一个现象的进化都在加强对方的进化,它们互相增强,正如爱情中的男女不断互相加深的情感一般。

        《延伸的表型》这本书很长,它的理论也无法轻易塞进一个章节。我被迫在这里采用了浓缩版本,直观性与趣味性不免少了许多。我希望无论如何,我已经成功将这个理论的感觉传递给你们了。

        让我以一个简短的宣言,一个自私基因与延伸表型眼中的生命总结来回顾前面的章节。我坚持,这是一个可以用以看待宇宙中任何地方、任何生命的观点。所有生命的基本单位与最初动力都是复制因子,它制造了宇宙中所有的复制。复制因子最终因机缘巧合,由小颗粒随机聚合而形成。当复制因子来到世间,便为自身制造了大量无限的复制品。没有任何复制过程是完美的,复制因子也因此有了许多不同的种类变异。一些变异失去了其自我复制的能力,它们的种类则随着其自身消亡而灰飞烟灭。但许多变异还是在这过程中找到新的窍门:它们逐渐变成更好的自我复制者,比其祖先和同类都要更好地复制着自身。

        它们的后代最终成了大多数。时间流逝,世界逐渐被大多数强大而聪明的复制因子占领。复制因子逐渐发现越来越多巧妙的方法,它们并不只是因其本质性能而生存,而是由其对世界的改变结果而存在。这些改变可以是非常间接的,它们只需要最终反馈并影响复制因子,使其成功复制自己,无论过程多么艰难和曲折。

        复制因子的成功最终取决于其所处的世界——先存条件,其中最重要的条件是其他复制因子与它们已造成的改变。正像英国与德国桨手一般,互相受惠的复制因子可以帮助对方生存。从地球生命演化的某一点开始,这种互相合作的复制因子聚集一处,形成了独立载体——细胞,以及之后形成的多细胞生命。由“瓶颈”生命循环进化而成的载体繁荣发展,逐渐变成愈加独立的载体。

        这种将有生命的材料聚集为单独载体的方法,成为个体生命突出与决定性的特点。当生物学家来到这里,开始询问关于生命的问题,他们的问题大多数是关于载体的。这些个体生命体最初得到生物学家的注意力,而复制因子——我们现在知道它们叫基因,则被看作个体生命中的部分零件。我们需要刻意的脑力劳动来将这种生物的思维方式调个头,并时刻提醒自己,复制因子在历史上来得更早,也更为重要。

        提醒我们的一个方法是:即使在今天,不是所有基因的表型作用都只限制在其所在的个体生物里。在理论上,也在实际中,基因跨越个体生物的界限,操纵体外世界的物体,包括无生命的事物、有生命的生物体、距离遥远的事物。我们只需要一点想象力,就可以看见基因端坐于延伸表型放射网的中心位置。世界上任何一个物体都处于这张影响力网中的节点上,这些影响力来自许多生物体内的许多基因。基因的触及范围没有明显的界线。整个世界是一个十字,是由聚集的基因指向表型作用的因果箭头,或远或近。

        还有另一个现象:这些十字正在逐渐聚集。这个现象事实上非常重要,难以被忽视为附带现象,但在理论上又不足以彻底立足。复制因子不再自由徜徉于海洋,而是聚集成巨大的群体——个体生物。而表型的改变也不再均匀分布于实际中,许多情况下聚合在相同的身体中。我们熟悉地球上的个体生物,但是它们曾经都不存在于地球上。无论在宇宙中哪一个地方,生命出现唯一需要的,只有不朽的复制因子。

        第14章 基因决定论与基因选择论

        阿道夫·希特勒死后很久,仍有一些谣言流传不息,坚持说有人看到他好端端地生活在南美地区或是丹麦。多少年来,还是有不少对希特勒并无热爱之心的人不愿接受这个人已然毙亡的事实,其人数之众令人惊异(Trevor-Roper 1972)。在第一次世界大战期间有一个广为散布的传言,说是有十万俄军士兵已经在苏格兰登陆了,“靴子上还覆盖着雪”。显然,这则传言来自那场难以忘却的大雪留下的鲜活记忆(Taylor 1963)。我们这个时代也有它自己的都市传说,比如有计算机持续不断地给住户发去百万英镑的电子账单(Evans 1979),或是领着救济金的乞丐却衣着光鲜,住着政府救助性质的公租房,房子外面停着两辆价值不菲的汽车。类似这样的传闻已经听得人耳朵起了茧子。有些谎言,或是半真半假的传言,似乎会令我们积极主动地想要去相信并传播它们,哪怕这些消息令我们感到不舒服。而有悖常理之处在于,我们这样去做的原因之一,可能恰恰就是因为这些消息令我们感到不舒服。

        在这类流言之中,有相当高的比例是与计算机和电子“芯片”有关的,或许是因为计算机技术的发展速度真的有如闪电一般。我就认识一位老人,言之凿凿地宣称“芯片”正在越俎代庖,代行人类之职,从“开拖拉机”到“让女人怀孕”,不一而足。正如我后面会向大家展示的那样,基因则是另外一大批流言的源头所在,甚至比计算机相关的流言还要多。想象一下吧,要是我们把基因和计算机这两类影响力巨大的流言结合在一起会怎么样?我觉得我很可能不小心做出了这样的事情,在我前一本书的读者心中完成了这一不幸的组合,而其后果是可笑的误解。好在,这样的误解并未广泛传播,但是仍然值得吸取教训,避免在此再犯同样的错误——这正是写作本章的目的之一。我将会揭穿基因决定论的迷思,并为大家解释:为什么有些说法会被不幸地被误解为基因决定论,可我们还是不得不使用这样的说法。

        曾有一位书评人针对威尔逊1978年出版的《论人的天性》(On Human Nature)评论道:“虽然他并未像理查德·道金斯在《自私的基因》里那般激进,将与性有联系的基因都认为是‘薄情’的,但是威尔逊还是认为人类男性有着遗传而来的一种天性,倾向于实行一夫多妻制,而女性倾向于忠贞的两性关系。他的潜台词无非是:女士们,别责怪你的丈夫出去乱搞了,他们在遗传上就是如此编程设置的,那可不是他们的错。基因决定论一直就徘徊在后门外,想要偷偷潜入进来。”(Rose 1978)。这位书评人的暗示很明确:他批评该书的作者相信存在一些会迫使男人们不可救药地成为玩弄女性的人的基因,别人却还不能因此指责他们婚内出轨。看到这篇书评,读者就会产生这样的印象:那些书的作者在“天性与教化”的争论[1]中支持前者,甚至是彻头彻尾的遗传论者,有着男性沙文主义的倾向。

        实际上,我的书中关于“薄情的雄性”那一段,原本并非是关于人类的。那只不过是一个数学模型,对象不是任何一种确定的动物(我写的时候心里想的是某种鸟,不过也无所谓啦)。很明确的一点是,那不是关于基因的数学模型(下文会谈到这一点),要真是关于基因的模型,那它们就不是与性有联系的了,而是受到性的限制。在梅纳德·史密斯(Maynard Smith 1974)看来,那是关于“策略”的数学模型。之所以设定“薄情”的策略,不是因为这是雄性们的行为方式之一,而是因为它是两种假设出来的可选策略之一——与之相对的是“忠诚”的策略。这个非常简略的模型是为了描绘某些特定条件而存在的:处在一些条件之下,薄情的策略会为自然选择所青睐;而处在另一些条件之下,得到青睐的则是忠诚的策略。在这样的研究中,并没有预先假定雄性会更有可能拈花惹草,而非忠诚。事实上,在我发表的一项模拟运行中,最精彩的就是一个混合型的雄性群体,其中采取忠诚策略的比例还略微占优一些(Dawkins 1976a, p.165,还可以参见Schuster & Sigmund 1981)。罗斯评论中的误解还不止这一处,而是多处混合式的误解,体现了一种毫无节制地急于去误解的冲动。这与覆雪的俄军军靴,或是正渐渐取代男人的角色、夺走拖拉机驾驶员工作的小小黑色芯片本质上是一回事,它们都是某类有着强大影响力的迷思的表现形式。具体到我们要谈的问题上,那就是关于基因的巨大迷思。

        基因的迷思集中体现在了罗斯的评论里插入的那段小幽默中,说女士们不应该责怪丈夫们出去乱搞。这正是关于“基因决定论”的迷思。显然,对于罗斯而言,基因决定论的“决定”有着全然哲学意味上的不可逆转的必然性。他毫无根据地认定,如果存在一个基因以实现目标X为目标,那就意味着X将是不可避免的结果。如另一位“基因决定论”的批评者古尔德[2](Gould 1978, p.238)所说:“要是有什么编好了的程序决定着我们成为什么样的人,那我们的这些特征就是不可抗拒的。我们最多也就能引导这些特征,但绝不可能通过我们的意志、教育或文化来改变它们。”

        若干个世纪以来,哲学家们和神学家们一直都在争论决定论观点是否正确,以及它与一个人为自身行为所需承担的道德责任之间是否有关联性。毫无疑问,这样的争论还将持续若干个世纪。我猜罗斯和古尔德[3]都是决定论者,因为他们都相信我们的所有行为都有着物质的、唯物的基础。我也相信这一点,我们三个人可能也全都认同:人类的神经系统太复杂了,所以在实际处理问题时,我们大可以忘了决定论,就当作是我们真的有自由意志一样。神经元或许能够放大在根本上具有不确定性的物理事件。我唯一希望在此说明的观点是:无论一个人在决定论的问题上持何种立场,前面再多加上“基因”二字并不会导致任何改变。如果你是一个纯粹的决定论者,你会相信你的所有行为都是由之前的物质因素预先决定好的,而且你或许会相信或不相信,你因此不能够为自己肉体上的不忠负责。但是,倘若真是如此,那些物质因素是否是基因的因素,又能导致什么不同呢?为什么基因的决定因素就会被认为比“环境的”因素更加不可抗拒,更能够让我们免于被指责呢?

        有些人虽然没有任何理由,却还是相信:与环境的因素相比,基因才具有超级决定性。这种想法就是一种迷思,并且有着非比寻常的顽固性,还能够带来真实的痛苦情绪。本来,我并没有明确地认识到最后这一点,直到1978年美国科学促进会某次会议上的提问环节,我才因一件事情受到触动,有了这样的认识。当时,一位年轻的女士向演讲者——一位著名的“社会生物学家”——发问:在人类心理学上,有没有任何基因证据支持两性差异?我几乎没太听清演讲者的回答,因为我被这个问题所夹带的强烈情绪震惊了。那位女士似乎认为这个问题的答案非常重要,几乎都要哭出来了。有那么一小会儿,我是真的犯傻了,对她的表现备感迷惑,但是我马上就意识到了她这种表现的原因所在。之前有什么事情或是什么人——当然不会是那位令人尊敬的社会生物学家——误导了她,令她以为基因的决定力是永久性的。她一定是当真相信,如果她提的问题真要有个“肯定”的答案,那么她作为一名女性就注定无法逃避一辈子围着孩子和厨房打转的家庭妇女式生活。但是如果她与我们大多数人不同,是一位特别加尔文主义[4]式的决定论者,那么无论那些决定因素是基因的还是“环境的”,她苦恼的程度应该会是一样的。

        当我们说一样事物决定另一样事物时,到底意味着什么?哲学家更多考虑的是因果关系,可能还会给出证明。但是对于专业的生物学家而言,因果关系只不过是简单的统计学概念而已。从实践上来讲,我们永远不可能证明一个特定的观察到的事件C导致了一个特定的结果R,尽管我们常常会认为这是极有可能发生的。生物学家在工作中往往会从统计角度来证明:R类事件总接着C类事件发生。要得出这样的结论,他们需要这两类事件的若干对实例才行,一则传闻可远远不够。

        即便是观察到事件R很可靠地趋向于发生在事件C之后,并总是间隔一个相对固定的时间,那也只能得出一个可能会成立的假说,认为事件C会导致事件R。在统计学方法的限制之下,只有当事件C由实验者来实现,而非仅仅由观察者记录到,并且仍能可靠地导致随之而来的事件R发生时,这个假说才算是被证实了。并非每个事件C都必须跟着一个事件R,也并非每个事件R都必须接在一个事件C之后。(谁还没面对过这样的争辩——“吸烟不可能导致肺癌,因为我就认识一个不吸烟的人死于肺癌,还认识一个烟瘾很大的人活到九十多岁,身体还很硬朗。”)统计学方法本就是用以帮助我们去评估,在任意确定的概然性置信度水平上,我们所得到的结果是否确实意味着一种因果关系的方法。

        那么,如果拥有一条Y染色体真的能够造成一些因果性的影响,比如音乐能力或者对编织的喜爱,这将意味着什么?那就意味着,在某些确定的人群内,在某些特定的环境下,一个观察者如果掌握了某个人的性别信息,那么相对于不掌握这些信息的观察者,前者就将能够对这个人的音乐能力做出统计学上更为准确的预测。重点在于“统计学上”。另外,为了更便于评价,让我们再加入“其他一些让两者相同的条件”。观察者可能会得到一些附加的信息,比如说这个人的受教育程度,或是家庭教养情况。这些信息可能会让观察者调整甚至反转自己先前基于性别做出的预测。如果女性在统计学意义上比男性更享受编织的乐趣,这并不意味着所有女性都享受编织的乐趣,甚至都不意味着女性中的大多数会享受这种乐趣。

        这样的结论也并不会排斥另一种观点:女性享受编织的乐趣是因为社会教育她们去享受编织。如果社会系统性地训练没有阴茎的孩子去编织和玩娃娃,训练有阴茎的孩子玩枪和士兵模型,那么在喜好问题上,男性与女性之间得出的任何差异严格来讲都是基因决定的差异!它们是通过社会习惯这种介质来决定的,基于是否拥有阴茎这样一个事实。在一个没有精妙的整形手术或激素治疗的正常的社会环境中,上述这种情况就是由性染色体决定的。

        显然,以这种观点来看,如果我们做一个实验,教育一小部分男孩玩娃娃,教育一小部分女孩玩枪,那么我们应该期待这样的结果:正常的兴趣喜好很容易就被反转。这或许是个做起来很有趣的实验,因为它的结果很可能会是:女孩还是喜欢娃娃,而男孩还是喜欢枪。如果的确如此,这或许能让我们对于基因差异面对特定的环境操纵时所体现出来的顽固性多一些了解。但是,所有的基因因素起作用的时候,都要处在某一种环境中。如果一个由基因带来的性别差异通过依据性别区别对待的教育系统而得以体现,那么它仍是一种基因的差异。如果它能通过其他一些体系得以体现,以至于教育系统的操纵不会扰乱它,那么在理论上,它也是一种基因的差异,与之前对于教育体系敏感的情况没什么差别——因为毫无疑问还可以找到能够扰乱它的其他环境因素。

        人类的心理学特性几乎会根据心理学家所能检测的每一方面条件的变化而变化。以下要做的事情在实践上很难操作(Kempthorne 1978),但是在理论上的确可以把这种心理学特性的变化分隔到不同的推定因素上去,比如年龄、身高、教育年限、以多种不同方式划分的教育形式、同胞兄弟姐妹的数量、在兄弟姐妹中的排行、母亲眼睛的颜色、父亲给马打马掌的水平,当然还有性染色体。我们还可以检查这些因素中的两者或多者之间的相互作用。对于当前的目标来说,最重要的是我们想要为之寻找解释的那个变化量有着众多的原因,它们以复杂的方式相互作用着。无疑,对于人群中观察到的很多表型的差异而言,基因的差异是一个重要的原因,但是它的效果可能会被其他原因压制、改变、增强,或是反转。基因可能会改变其他基因的效果,可能会改变环境起的作用。内部以及外部的环境事件可能会改变基因的效果,也可能会改变其他环境事件的效果。

        人们在接受以下观点时似乎没什么困难:“环境”在一个人的成长过程中所发挥的影响作用是可以被改变的。如果一个孩子有过一个糟糕的数学老师,那么人们可以接受这样的场景:由这位糟糕老师所引发的数学知识匮乏可以通过接下来一年好老师的教学加以弥补。可要是说这孩子的数学问题可能有着基因上的根源,那就会让听者的想法向着“没希望了”那个方向发展:如果是基因的原因,“那就是写在基因里的”,是“确定性的”,无论做什么也挽救不了了。你可能还会放弃继续教授这个孩子数学的打算。这根本就是有毒的垃圾思想,恶劣程度几乎与占星术差不多。理论上来讲,基因的原因和环境的原因是彼此没有差别的,两者造成的某些影响都是很难逆转的,而另一些影响很容易逆转。有些影响可能通常是难以逆转的,但只要用对了方法就会变得很容易。重点在于,没有什么一般性的原因令我们可以去期望:基因的影响会比环境的影响更难以逆转。

        基因到底干了些什么,才会有了如此邪恶而又势不可当的名声?为什么我们没有把托儿所教育或是坚信礼课程[5]妖魔化成类似的怪物?为什么相对于电视、修女或是书籍,只有基因被认为有着更确定的效果,更不可抗拒?女士们,不要责怪你们的丈夫出去乱搞,受到了色情文化的刺激可不是他们的错!所谓的耶稣会会士常常自夸:“把你孩子的头七年给我,我就会还给你一个男人。”这话或许有点道理。在某些条件下,教育或是其他一些文化上的影响可能会像基因的影响一样无法改变,难以逆转,而更多的人相信“星辰”才有这样的影响力。

        我猜想,基因之所以变成了决定论的怪物,部分原因在于一个广为人知的事实所造成的混乱,那就是习得性特征的不可遗传性。在这个世纪[6]之前,人们广泛相信一个人一生的经验以及其他知识收获都能够通过某种方式印记在遗传物质上,从而传递给孩子。后来人们抛弃了这一认知,将其替换为魏斯曼关于种质连续性的学说,以及其在分子层面的对应学说“中心法则”,这是现代生物学的伟大成就之一。如果我们置身于魏斯曼遗传学派正统学说的推论之中,那么基因看来似乎的确有些不可改变,难以抗拒。它们一代又一代地流传下去,在形式和行为两方面影响着一代又一代难逃一死的躯体。但是,除了那些罕见的非特异性的突变效应以外,基因从不会受到这具躯体的经验或所处环境的影响[7]。我身体里的基因来自我的四位祖辈。这些基因从他们那里直接流经我的父母,到达了我这里。而我父母所取得、获得、习得或体验到的一切,都不会在这些基因流经他们时对基因本身产生任何影响。关于这一点,或许是有一些邪恶的意味。但是,无论这些基因在它们一代代流传时有多么不可改变和坚定不移,在它们流经的身体上所展现出来的表型的性状却一点都说不上不可改变和坚定不移。如果我是基因G的纯合体,除了突变以外没有什么能够阻挡我把基因G传给我的所有孩子。但是不可改变之处也就这么多了。至于我,或者我的孩子是否能展现出一般来说与拥有基因G相关联的表型特征,往往更多地取决于我们是如何被抚养长大的,吃着什么样的餐食,经历过怎样的教育,以及我们恰好拥有哪些其他基因。所以,在基因的两大效应——制造自身更多的拷贝,以及影响表型——当中,第一个效应的确是不会轻易改变的(如果抛开罕见的突变不谈的话),而另一个效应是高度可变的。我想,将进化与发育混为一谈也对基因决定论的迷思负有部分的责任。

        但是,还有另一个迷思让事情变得更复杂了,而我在本章的开始部分已经提到过它了。在现代人的思想中,关于计算机的迷思几乎与基因的迷思一样根深蒂固。请注意,我在本章开始部分引用的两段表述中都包含“编程”的说法,所以罗斯用讥讽的语调说拈花惹草的男人们应该免于被指责,因为他们在基因上已经编好了程序,古尔德则说如果我们已经被编好了程序去成为怎样的人,那么这些性状就将是必然的结果。的确,我们通常会用“编程”这种说法来表示与思考无关的僵化性,与之相对的是自由行动。计算机和“机器人”一直都是众所周知的僵化的东西,按照一个一个字母去执行指令,哪怕结果明显是荒谬的也要坚持去做。要不然的话,它们怎么会寄出那些广为人知的百万英镑的账单呢?每个人都有个朋友的朋友的表哥的熟人一直都会收到那种账单。我以前忘记了还有伟大的计算机迷思这回事儿,当然也没意识到伟大的基因迷思,否则的话,我写下基因聚集在“庞大的步履蹒跚的‘机器人’体内”,或是写下我们自己就是“生存机器——作为运载工具的机器人,其程序是盲目编制的,为的是永久保存所谓基因这种禀性自私的分子”(Dawkins 1976a)这些话的时候,就会更小心一些了。这些语言已经被成功地引用为偏激的基因决定论的例证,有时还是从二手甚至三手的来源进行的再引用[例如《先知》(Nabi),1981)]。我并不准备为使用了机器人等说法而道歉,我会毫不犹豫地再次使用这样的语言,但是现在我意识到有必要做出更多的解释。

        有了13年教授自然选择理论的经验之后,我已经知道,使用“让自私的基因得以存续的机器”这种方式来看待自然选择的主要问题在于,它存在着特定的被误解的风险。其中最有影响力也最有启发性的一个误解就是,针对基因的拟人手法似乎意味着基因总在算计如何才能最大化地确保自己的存续(Hamilton 1972)。但是,只是让基因自己干活,让假定有着意识和智慧的基因预见性地计划它们的“策略”,这也太省事儿了吧。在十二个有关近亲选择的误解(Dawkins 1979)之中,至少有三个可以归咎于这个基本的错误。一次又一次地,总有非生物学家试图向我证明类群选择的正确性,而他们所用的方式实际上就是赋予基因预见性:“基因的长期利益需要物种的持续存在,因此,你难道不应该期望适应性去阻止物种灭绝的发生吗?就算以短期内的个体生殖成功率为代价也在所不惜。”正是为了试图预先阻止这类错误的发生,我才使用了自动化和机器人这样的说法,并用了“盲目地”这个词来修饰基因编程。但是,基因当然是盲目的,而它们所编程的动物却不是盲目的。神经系统像人造的计算机一样,能够复杂到足以展现出智能和预见性。

        西蒙斯[8](Symons 1979)明确地阐述了计算机迷思的问题:

        我希望指出的是,认为道金斯通过使用像“机器人”和“盲目地”这些词汇来暗示进化论是认同决定论的,是全然没有根据的……一个机器人是没有思想的自动机器。或许有的动物是机器人(我们没有办法确切知晓),但是道金斯所指的不是“某些”动物,而是指全体动物,并在这件事上特指人类。现在,要想解释清楚斯戴宾(Stebbing)的意思,“机器人”可以是“有思想的东西”的对立面,或者也可以用来形象地指称一个看起来像机器一样行动的人类,但就是没有一种日常生活中的语言会赋予“机器人”这个词一种含义,让“所有活着的生命都是机器人”这句话可以成立。(第41页)

        西蒙斯从斯戴宾的观点展开的这段话所阐述的观点是有道理的:只有当非X的事物存在时,X才是一个有用的词汇。如果所有一切都是机器人,那么机器人这个词就没有任何有用的含义了。但是,机器人还有着其他的引申含义,而僵化的不可变通性并不是我使用它时所想到的那个含义。一个机器人是一台编好了程序的机器,而对于编程来说,一件重要的事情就是:它区别于行为本身的实施,而且要在行为实施之前完成。试想有一台计算机被编好程序去执行计算平方根或下国际象棋的任务。这台下象棋的计算机与为它编制程序的人之间的关系并非是显而易见的,实际上很容易令人产生误解。可能有人会认为,编程者关注着棋局的进程,并且对于每一步该如何下都向计算机发出指令。然而实际上,编程是在棋局开始之前就已经完成的。编程者尽量只是作为处理意外情况的后备力量参与到棋局中,并且为计算机编写了有着巨大复杂度的条件性指令,但只要棋局开始,他就得放手不管。在棋局进行过程中,他被禁止给计算机任何新的提示。如果他违反了这些规则,他就不是在编程了,而是在执行,并且他的参赛资格也会被取消。在西蒙斯所评论的那部作品中,我大量使用了关于计算机下国际象棋的类比来解释一个观点:基因不会以干预行为实施过程的方式来直接地控制行为。唯一的控制来自在实施行为之前对机器的编程。与机器人这个词之间的上述这种联系才是我想要引用的,而非与没有思想的僵化性之间的联系。

        至于说与没有思想的僵化性之间的联系,在另一个历史时期可能会找到证明。彼时,最高级的自动化就是用连杆和凸轮控制船只引擎的系统。对此,吉卜林[9]在诗作《麦坎德鲁的赞美诗》(‘McAndrew’s Hymn’)中写道:

        从成对的法兰盘到锥轴导轨,我所见是你的手,我的神!

        在彼处连杆的步伐中是预言。

        约翰·加尔文或许铸造过相同的一切。

        但那是1893年,蒸汽时代的巅峰时期。我们现在则处于电气时代的黄金时期[10]。如果机器曾经与僵化的不变性有关联的话——我承认它们曾经有过这样的关联——现在也正是时候该忘掉这种关联了。现在,编制好的程序能够让计算机的国际象棋水平达到国际大师级(Levy 1978),使用准确的、语法无比复杂的英语进行交流和推理(Winograd 1972),对数学定理给出简洁而优美的证明(Hofstadter 1979),或作曲和诊断疾病。而且,这个领域的前进步伐没有显现出任何减慢的趋势(Evans 1979)。先进的计算机编程领域被称为人工智能,目前正处于信心满满的上升阶段(Boden 1977)。只要是研究这个领域的人,没有谁现在敢打赌说:计算机程序无法在未来10年内战胜国际象棋的特级大师。过去在大众的认知中,“机器人”是弱智、僵硬、呆头呆脑的僵尸的同义词,但它有一天会成为灵巧、敏捷的智能体的代名词。

        糟糕的是,前面引用那段有点跑题了。我写这部分的时候刚刚参加完一个令人目瞪口呆的关于人工智能程序技术水平的会议。当时我心中满怀热情,完全忘记了机器人总是被人们普遍地认为应该是僵硬的呆瓜模样。我还必须要为一件事致歉:在我不知情的情况下,《自私的基因》的德语版封面是一个人偶吊在几根从“基因”这个词下面伸出来的线上;法语版的封面是一群小人,戴着圆顶高帽,背上露着上发条用的钥匙。我曾经用这两个封面做成了幻灯片,用以描述什么是我不想要表达的意思。

        所以,给西蒙斯的回应是:他对于自己自以为是地认定的我想要表达的观点提出了批评,这当然是正确的;但问题在于,我说的根本不是他所以为的那个意思(Ridley 1980)。毫无疑问,这最初的误解中也有我的一部分责任,但我现在只能做如下主张:让我们都把从词语的日常用法中得来的先入为主的理解放到一边(“很多人对于计算机丝毫不理解”——Weizenbaum 1976, p.9),实实在在地去阅读一些时下关于机器人技术和计算机智能的精彩文献(例如:Boden 1977; Evans 1979;Hofstadter 1979)。

        当然,像之前讨论的争议一样,哲学家们或许对于那些通过编程来做出人工智能式的行为的计算机所具备的终极决定性也有争议,但是如果我们要在哲学上走到那一步的话,很多人也会把同样的争论用在人类自己的智能上(Turing 1950)。他们会问:什么才是脑,而不是计算机?什么才是教育,而不是某种形式的编程?如果我们不把脑看作编好程序的、自动控制的机器,那么对于人类的情绪、感觉,以及表象上的自由意志,我们很难找到“超自然”解释之外的其他解释。我们所有的进化生物学家应该如何去看待神经系统?我觉得似乎天文学家弗雷德·霍伊尔爵士(Sir Fred Hoyle 1964)给出了一个无比生动的表述:

        回过头来看(进化论),令我印象极其深刻的是化学逐步让位于电子系统的方式。把最初的生命描述为整体都是化学性的,这并非没有道理。虽然电化学过程在植物中是重要的,但是能够处理数据的有序的电子信号却没有进入植物的世界。不过,当世界上有了到处活动的生物之后,原始的电子信号就开始承担重要职责了。……原始的动物所拥有的最初的电子系统本质上是制导系统,逻辑上讲近似于声呐或雷达。如果我们看看进一步进化出来的动物,就会发现电子系统不仅仅被用于制导,还被用于把动物导向食物。……

        这幅场景类似于制导导弹,它的任务是拦截并摧毁另一枚导弹。正如现代世界的进攻与防御在方式上变得越来越精细一样,动物的处境也如是。精细的程度越来越高,就必须要有越来越好的电子系统。自然界中发生的情况与现代军事应用中电子设备的发展历程近乎一致。……在一个充满尖牙与利爪的丛林中,我们不应该能够拥有我们进行智慧思考的能力,不应该能够探索宇宙的结构,不应该能够欣赏贝多芬的交响乐。我发现这样的想法很令人警醒。……虑及于此,有时总会被问到的一个问题“计算机能思考吗?”就多多少少显得令人啼笑皆非了。我这里说的计算机当然是指我们自己用无机材料制造出来的那种。问这个问题的那些人到底以为他们自己又是什么呢?简单来说就是计算机,但比我们目前的知识所能制造出来的都要复杂得多。要知道,我们的人造计算机工业只有二三十年的历史,而我们自己却是一个进化过程持续操作数亿年的产物。(第24—26页)

        别人或许不赞同这样的结论,然而我怀疑唯一能替代这一结论的就是宗教的解释了。让我们回到基因以及本章的主要论点上来,无论上述争论的结果如何,都不能改变以下这一点:你恰好认同基因是因果性的因素也好,环境性的决定因素也罢,根本就不会对决定论与自由意志的讨论产生任何正面或负面的影响。

        不过,要说世上没有空穴来风的事,这话也有些道理。功能行为学家[11]和“社会生物学家”肯定是说过某些话,活该被贴上基因决定论的标签。或者说,如果这只是误解罢了,那就一定要有一个合理的解释,因为就算有像基因迷思和计算机迷思的邪恶联盟这样强大的文化迷思在旁助阵,一个传播如此广泛的误解也不可能是毫无缘由的。仅代表我自己来说,我认为自己知道其中的原因。这是个有趣的原因,而且会占据本章的剩余部分。这种误解起源于我们讨论另一个不太一样的话题时所采用的方式,这个话题就是自然选择。作为一种表述进化论的方式,基因选择论由于基因决定论而被人们误解了,而基因决定论其实是关于成长发育的一种观点。像我一样的很多人不断地在讨论时首先假定基因是“为了”这个目的或“为了”那个目的而存在的。我们给了别人一种印象,认为我们着迷于基因,以及“由基因编程”的行为。如果把这一点再和两种流行的迷思联系起来,一是基因所具有的加尔文主义式的决定性,二是像迪士尼乐园里标志性木偶一样的“编好程序”的行为,那么别人指责我们是基因决定论者还有什么可奇怪的呢?

        那为什么功能行为学家总是在谈论基因呢?因为我们对于自然选择很感兴趣,而自然选择就是众多基因的差异化存活。如果我们特别想要讨论自然选择所驱动的进化过程中的一种行为模式的可能性,那我们就必须预先假定存在一种基因变化与执行这一行为模式的趋向和能力有关。这并不是说对于任何特定的行为模式都一定要有这样的基因变化,而只是说必须要先有基因的改变,我们才能把行为模式当成一种达尔文主义适应性来加以对待。当然一种行为模式也可能不是达尔文主义适应性,那么此时上述讨论就不再适用了。

        附带地,我应该为自己使用“达尔文主义适应性”来等价表述“通过自然选择产生的适应性”做一番辩护,因为古尔德和莱文廷[12](Gould& Lewontin 1979)近来就强调过,有证据表明,达尔文自己的进化论思想是具有多元化特性的。的确存在的一个事实是:达尔文在批评者的压力之下——这些批评者的观点如今看来都是错误的——向“多元主义”做出了妥协,尤其是在他晚年时期。也就是说,达尔文并不认为自然选择是进化唯一的重要驱动力。正如历史学家R.M.扬[13](R.M.Young 1971)所做的讽刺性评述:“到了第六版的时候,这书[14]的名字大概是印错了,应该叫作‘通过自然选择及其他所有方式实现的物种起源’才合适。”因此,事实证明使用“达尔文主义的进化”来等价表述“通过自然选择实现的进化”是不正确的。但是达尔文主义适应性是另一码事。适应性不可能从随机漂移或是其他任何现实的进化动力之中获得——除了自然选择之外。的确,达尔文的多元主义曾经短暂地允许另一种驱动力或许在理论上可以导致适应性,但是与那种驱动力不可分割的名字是拉马克[15],而非达尔文。“达尔文主义适应性”不可能有“由自然选择产生的适应性”之外的任何其他含义,我使用的也正是这个含义。在本书中的其他几处,我们要解决显而易见的争论时,就要在整体而言的进化与特别而言的适应性进化之间加以区分。比如说,中性突变的固定能够被认为是进化,但不是适应性进化。如果一位研究基因替换的分子遗传学家与一位研究主要趋势的古生物学家,或是一位研究适应性的生态学家发生争论的话,他们很可能发现自己仿佛是鸡同鸭讲,因为他们每个人所强调的都是进化论含义的不同侧面。

        “令人类可以顺从、憎恶外族、具有攻击性的基因都只不过是预先假定出来的,因为理论需要它们的存在,而非有确凿的证据证明它们的存在。”(Lewontin 1979b)。对于爱德华·威尔逊来说,这是一个还算公道的评论,并非十分刻薄。除了可能会导致不幸的政治后果之外,谨慎地推断“憎恶外族”或其他人类性状可能具有的达尔文主义的存续价值,这并没有什么错。然而无论你多么谨慎,如果没有预先假定一项性状发生变化的基因基础,那么你就无法着手推断它的存续价值。对于外族的憎恶当然可能不是基于基因来变化的,而且它也当然可能不是一个达尔文主义适应性,但是如果我们不给它假定一个基因基础,那么我们甚至都无法去讨论它是达尔文主义适应性的一个可能性。莱文廷自己也曾如其他人一样表达过这样的观点:“要让一个性状通过自然选择获得进化,那么种群中就必须要有为了这样一个性状而发生的基因改变。”(Lewontin 1979b)此处所说的为了性状X的“种群中的基因改变”恰恰等同于我们以简洁的方式所谈论的“为了”X而存在的基因。

        把“憎恶外族”视为性状是有争议的,所以让我们来考虑一种没有人会害怕将之视为达尔文主义适应性的行为模式。挖坑对于蚁狮而言显然是一种为了捕捉猎物而存在的适应性。蚁狮是脉翅目昆虫的幼虫,有着如同外太空怪兽一样的外观和行为方式。它们是守株待兔式的捕猎者,会在松软的沙地上挖一个坑,陷住蚂蚁或其他小型的爬行昆虫。这种坑是一个几乎完美的圆锥形,侧壁非常陡,以至于猎物一旦掉进去就不可能爬出来。蚁狮就藏在坑底的沙子下面,向着任何掉进坑里的猎物猛地刺出它的巨颚,这件武器的可怕程度恐怕只有在恐怖电影里才见得到。

        挖坑是一种复杂的行为模式,它要花费时间和能量,并且非常符合可以视之为适应性的确切标准(Williams 1966; Curio 1973)。它肯定是通过自然选择进化而来的,那么又是如何进化而来的呢?这个问题答案之中的细节并不影响我在此想要讨论的深意。可能曾经存在一只蚁狮祖先,它并不挖坑,而只是潜伏在表层的沙子之下,等待倒霉的猎物走到它头顶上。实际上,的确有些种类的蚁狮还在这么干。后来,在沙地上制造一个浅浅洼地的行为可能会为自然选择所青睐,因为这个洼地稍稍地阻碍了猎物的逃脱。通过许多代之后,这种行为逐渐发生了程度上的改变,以至于曾经浅浅的洼地变得越来越深,越来越宽。这不仅仅妨碍了猎物的逃脱,也增加了捕捉行为可以覆盖的面积,让更多的猎物可能在一开始就陷进去。后来挖坑的行为继续发生着改变,以至于得到的坑变成了一个侧壁陡峭的圆锥状,并且铺有一层光滑的细沙,让猎物不可能爬出去。

        上面这个段落中没有任何可争议或值得争议之处。它会被视为关于我们无法直接观察到的历史事件的合乎逻辑的推断,或许还会被认为是有可能成立的。它之所以会被人们视为无争议的历史推断而接受,其中的一个原因是它没有提到基因。但我要说的是,在进化过程的每一步中,要是行为的背后没有基因的改变,那么上述历史或是任何类似的历史都不可能发生。蚁狮的挖坑行为只是可供我选择的成千上万个例子中的一个。除非自然选择有遗传变异的作用,否则就不可能产生进化上的改变。由此可以得出结论:无论你在哪儿找到达尔文主义适应性,那儿就一定会有基因的改变存在于你所考察的那种性状中。

        还没有人做过蚁狮挖坑行为的基因研究(J.Lucas,私人通信)。如果我们想要的只是为了找到行为模式背后有时会存在的基因变化,从而让我们自己感到满意的话,那也没必要去寻找了。只要论证过程能让我们相信这是达尔文主义适应性,那就足够了。要是你对于挖坑行为是这样一种适应性感到无法信服,那就换一个你能信服的例子好了。

        我刚才说的是“有时”会存在的基因变化,这是因为,就算今天有一项关于蚁狮的基因研究,也很有可能无法发现任何与挖坑行为有关的基因变化。一般来说,我们可以预期存在这样一种状况:当存在着青睐某些性状的强烈选择作用时,最初让选择作用施加其上,从而导引这一性状的进化历程的基因变化,也将变得枯竭了。这就是人们熟知的“悖论”(这一点如果仔细去想的话,也并非真的悖论):强选择作用下的性状倾向于有着低的可遗传性(Falconer 1960);“自然选择实现的进化会摧毁滋养它的基因变化。”(Lewontin 1979b)功能性的假说常常考虑表型的性状,例如拥有眼睛已经是种群里全体性的性状了,因此就没有与之同时期的基因改变了。当我们对于一种适应性的进化过程做出推断或建立模型时,我们有必要去谈论还存在着适当的基因改变的时间点。在这样的讨论中,我们就必定要预先假定“为了”所要讨论的适应性而存在的基因,无论是以含蓄的还是明确的方式。

        有些人可能不敢把“在X变化中基因所做的贡献”等价表述为“为了X而存在的基因”,但这是一种常规的遗传学做法,仔细想一想就会发现这是无可避免的。在分子层面上,一个基因能够直接编码一条蛋白质链的生产,但是遗传学家的做法却不一样,他们从不会去统一表型的数量。事实上,他们总是在处理差异。当一位遗传学家谈论果蝇的一个“为了”产生红眼而存在的基因时,他不是在谈论为红色素分子的合成提供模板作用的顺反子,他是在含蓄地说:在这个果蝇种群中有眼睛颜色的变化;在其他性状相同的情况下,拥有这个基因的果蝇比没有这个基因的果蝇更有可能长出红色的眼睛来。这就是我们表述一个“为了”产生红眼而存在的基因时所要讲的意思。这个例子刚好是个形态方面的例子而非行为方面的,但应用于行为方面也是一模一样的。一个“为了”行为X而存在的基因,就是一个“为了”能够产生这种行为所需要的形态方面或生理方面的状态而存在的基因。

        与此相关的一个问题是:使用单基因位点的模型只是为了概念上的简洁方便,对于适应性的假说是如此,对于普通的种群遗传模型也是如此。当我们在讨论适应性假说时使用单基因的说法,并非是要有意表示这是单基因模型,不是多基因模型。我们通常用基因模型来说明论点,是相对于非基因模型而言的,比如说相对于“为了物种的利益”这样的模型。人们应该完全以基因的角度来考虑这些问题,而不是以物种的利益等其他的角度。要说服大家去相信这一点已经是很困难的事情了,实在没有理由一开始就让人们去接触多基因的复杂性,这只会让事情变得更困难。劳埃德[16](Lloyd 1979)所说的OGAM(单基因分析模型)当然不是遗传学精确性方面的什么新创造。我们最终当然应该面对多基因的复杂性。但是OGAM比那些完全抛弃了基因分析出来的适应性模型要可取得多——这才是我在此所要说明的唯一问题。

        与此类似,我们或许会发现有人强烈地质疑我们,要我们拿出证据来证明我们所“声称”的“为了”实现他们感兴趣的某些适应性的基因的确存在。但是,如果这真的就是质疑而已的话,这样的质疑应该被导向整个新达尔文主义“现代综合论”以及整个种群遗传学。用基因的方式来表述一个功能方面的假说,根本就不是做出了一个关于基因的强有力的论断——那只不过是做了个明确的假设,它也是现代综合论不可分割的内在组成部分。不过,它有时的确比较含蓄,不那么明确。

        少数研究者的确已经向整个新达尔文主义的现代综合论抛出了这样的质疑,并声明自己不是新达尔文主义者。古德温[17](Goodwin 1979)在与底波拉·查尔斯沃思[18]和其他一些人的公开论战中说过:“新达尔文主义的内在有着不可自洽之处……在新达尔文主义中没有任何方式能够让我们从基因型得到表型。因而该理论在这个方面是有缺陷的。”当然,古德温有一点是非常正确的,那就是发育是个极其复杂的过程,我们还不太清楚表型是如何产生的。但是,它们的确产生出来了,基因的确对于它们的变化有着重大的贡献,这些都是无可争议的事实。这些事实对于我们而言就足够了,足以让新达尔文主义自洽。依古德温的逻辑,他可能也会说:在霍奇金和赫胥黎[19]研究清楚神经冲动是如何激发的之前,我们就不能够相信神经冲动控制着行为。要是知道表型是如何形成的,那当然好了,但是当胚胎学家还忙着研究这个问题时,我们其他人还是可以利用已知的遗传学事实继续当我们的新达尔文主义者,把胚胎发育看作一个黑箱就好。也没有一个与之竞争的理论中含有什么论断能够算得上是跟“自洽的”沾点边儿。

        之所以会有上述质疑,可能来自以下这样的事实:遗传学家常常在思考的那些表型的差异都不会特别复杂,令我们在预先假定相应基因时不必担心要对应无比复杂的表型效应,或是担心这种表型效应只有在高度复杂的发育条件下才会显现出来。最近,我和约翰·梅纳德·史密斯教授一起参加了一场公开辩论,对手是两位“社会生物学”的激进批评者,而听众是一群学生。辩论过程中的某一时刻,我们竭力想要说明:谈论一个“为了”X的基因时并不是要做出什么神奇的论断,即便X是一个复杂的习得的行为模式也如是。梅纳德·史密斯提及了一个假设性的例子,即一个“与系鞋带的技能相对应的基因”。这个“猖狂的”基因决定论表述一石激起千层浪,让听众立刻喧嚣起来!他们最糟糕的怀疑终于得以证实了!他们为此而发出的鼓噪无疑是兴高采烈的,充斥在空气当中。他们兴奋地喊出心中的怀疑,不仅打破了平静,也淹没了我们的耐心解释。我们只是想告诉他们,当我们预先假定有一个基因是为了让我们具备系鞋带的技能时,那只是一个适度的表述而已。接下来让我通过一个实验来说明这一点吧,而这个实验是一个听起来甚至更为激进,但实际上不会招致反驳的思想实验(Dawkins 1981)。

        阅读是一种后天习得的技能,有着惊人的复杂性。但是这种技能本身并没有给人们以理由去怀疑这样一种可能性,即存在着一个阅读基因。要证明阅读基因的存在,我们所需要做的只是去寻找一个不阅读的基因,也就是说一个会诱发脑损伤,导致特定的阅读障碍的基因。这样的阅读障碍人士可能在所有其他方面都是正常的、有智能的,唯独无法阅读。如果这类阅读障碍表现出孟德尔式的遗传特征,没有任何遗传学家会对此感到特别惊讶。显然,这个例子中的基因将只会在包含有正常教育的环境中才能展现其效应。在史前环境中,这个基因不会有着能被检测到的效应,或者它可能有着一些不同的效应——比如一位穴居人的遗传学家可能会称之为无法分辨动物脚印的基因。在我们存在教育的环境中,它被称为阅读障碍的基因是很合适的,因为阅读障碍是其最为主要的后果。类似的,一个导致全盲的基因也会妨碍阅读,但是要把它视为一个无法阅读的基因,显然是无意义的。原因很简单,因为阻碍阅读并不是它最为显著的,或给人带来最大麻烦的表型效应。

        回到咱们关于特定阅读障碍的基因上来,根据一个关于基因命名的通常惯例,同一基因座上的野生型基因——也就是所有其他人群都有双份的正常基因——应该被称为“阅读基因”才是恰当的。如果你对此表示反对,你肯定也会反对我们说孟德尔的豌豆中有对应于高植株的基因,因为这两件事情上的命名背后的逻辑是完全一致的。在这两个例子中,我们感兴趣的都是差异,而且两个例子中的差异都只能在某些特定的环境下才会显现出来。为什么像一个基因这样简单的东西却能有着如此复杂的效应,比如决定一个人能否学会阅读,或是他会不会系鞋带?其中的原因基本上可以这样解释:这个世界某个给定的状态无论有多么复杂,这个状态与世界的另一个状态之间的差异却可能是由某些极为简单的事物导致的[20]

        我在前文中用蚁狮来说明的观点是一种一般情况。我当然也可以用任何真实的或传说的达尔文主义适应性来进行说明,结果都是一样。为了进一步强调,我要再引用另外一个例子。廷贝亨等人(Tinbergen 1962)曾经研究过红嘴鸥(Larus ridibundus[21])的一种特别行为模式在适应性上的重要意义,那就是移除蛋壳。当一只雏鸟孵化之后不久,它的父母就会把空的蛋壳叼在嘴里,移到远离鸟巢的地方去。廷贝亨和他的同事考虑过若干种可能的假说,来解释这一行为模式对于生存的价值。比如他们提出,空的蛋壳可能会成为滋生有害细菌的温床,或者锐利的蛋壳边缘可能会划伤雏鸟。但是他们最终发现有证据可以证明的一种假说却是:空的蛋壳是一种显眼的视觉标志,会把乌鸦以及其他以雏鸟或蛋为食的捕食者吸引到鸟巢里来。他们做了一些巧妙的实验,人工搭建了一些有空蛋壳或没空蛋壳的鸟巢,结果表明:有空蛋壳在旁的鸟蛋的确比没有空蛋壳的鸟蛋更有可能被乌鸦攻击。他们得出结论:自然选择青睐于具有移除蛋壳行为的成年鸥,是因为以前那些没有这种行为的成年鸥养育成活的后代要相对少一些。

        如同蚁狮挖坑的例子一样,还没有人研究过红嘴鸥移除蛋壳行为背后的基因,也没有直接的证据表明趋向于移除蛋壳的变化是通过交配遗传的。不过显然,假定它是这样的或者曾经是这样的,对于廷贝亨的假说是根本性的重要条件。廷贝亨的假说如果用不带基因的说法来表述的话,不会特别有争议。但是这个假说与其他被廷贝亨排除掉的关于这一行为的假说一样,都是居于一个假设的基础之上。这个假设就是:在久远的过去,一定曾经有一些红嘴鸥具有基因上的去移除蛋壳的倾向,而另一些红嘴鸥有着基因上的不移除蛋壳的倾向,或是不太可能移除的倾向。所以一定有过移除蛋壳的基因。

        在此,我必须要提醒读者注意,假设我们真去研究一下现在的红嘴鸥蛋壳移除行为的背后到底是什么基因,要是能发现一个简单的孟德尔式的突变就会彻底改变行为模式,或许还会完全消除这种行为,那将是一位行为遗传学家梦寐以求的事情。根据前面给出的讨论,这个突变就是一个真正的“为了”不移除蛋壳的基因。而且根据定义,它的野生型等位基因就要被称为“为了”移除蛋壳的基因。但是,这里就是要读者注意的关键点了。非常肯定的一点是,不能由此就得出结论说:这个为了移除蛋壳的基因位点是自然选择在该适应性进化过程中施加选择作用的那些基因之一。实际上,似乎更有可能的情况是:像蛋壳移除这样一个复杂的行为模式肯定是通过对于大量基因位点的选择才建立起来的,其中每一个基因都通过与其他基因的相互作用发挥着一点小的效用。一旦有关于这个行为的复杂体系建立起来之后,不难想象,一个关键性的单点突变就会毁了它。遗传学家们是受限的,只能应用他们所知道的那些基因变化去开展研究。他们还相信,自然选择必定曾经在类似的基因变化上施加过作用,才实现了进化改变。但是他们没有理由相信,那些控制着现代的适应性变化的基因位点,就是最初建立适应性时选择作用施加其上的同一个基因位点。

        让我们来看看单个基因控制复杂行为的最著名的例子——罗森布勒(Rothenbuhler 1964)的卫生蜂。之所以要用这个例子,是因为它很好地阐明了一个高度复杂的行为差异是如何从单个基因的差异中产生的。布朗(Brown)品系的蜜蜂所具有的卫生行为牵涉到一整套的神经肌肉系统,但是根据罗森布勒的模型,之所以它们有这种行为而凡斯哥伊(Van Scoy)品系的蜜蜂没有,仅仅是由于两个基因位点上的差异。其中一个基因位点决定着揭开含有染病幼虫的巢室[22]的行为,另一个位点决定着揭开之后扔幼虫的行为。因此,完全可以想象有一个自然选择的过程青睐于揭开巢室的行为,还有一个自然选择过程青睐于扔幼虫的行为。这就意味着,这两个选择过程是对于上述两个基因与各自相对应的等位基因的选择。不过,我在此想要说明的关键点是,虽然这有可能发生,但可能从进化的意义上来看并没有什么意思。现在的揭开巢室基因和现在的扔幼虫基因,完全有可能并未参与到最初引领进化实现这一复杂行为的自然选择进程中[23]

        罗森布勒观察到,就连凡斯哥伊蜜蜂有时也会出现卫生行为,它们只是在实施行为的次数上远远少于布朗蜜蜂而已。因此,很可能布朗蜜蜂和凡斯哥伊蜜蜂都有着具有卫生行为的祖先,在它们各自的神经系统中都有着揭开巢室行为和扔幼虫行为的机制。只不过,凡斯哥伊蜜蜂具有某些能够阻止这些机制开启的基因。假设我们能够回溯到更为久远的历史中去,我们应该能够发现一位所有现代蜜蜂的祖先,它自己不具备卫生行为,也没有任何具备卫生行为的祖先。一定曾经有过某种进化过程,从零开始建立了揭开巢室和扔幼虫的行为,而这一进化过程包括了对于众多基因的选择,其中就有如今已经固定在布朗蜜蜂和凡斯哥伊蜜蜂身上的基因。所以,虽然布朗蜜蜂的揭开巢室基因和扔幼虫基因的确应该如此指称,但是这样定义它们纯粹只是因为它们恰好有着能够阻止这些行为实施的等位基因。这些等位基因起作用的模式可能会非常无聊,只是粗暴地施行破坏而已——可能只是在神经机制中切断了某个关键环节。我想起了格雷戈里[24](Gregory 1961)有关通过脑的切除实验来推断其机制时可能遭遇的严重误区的一段生动描述:“在一个收音机里移除几个彼此远离的电阻之中的任意一个,都可能造成收音机里发出噪声般的啸叫,但是并不能由此就得出结论说,啸叫是与那些电阻紧密联系在一起的,抑或由此得出那个正确的结论,认为两者之间不可能没有任何因果关系。我们尤其不应该就此认为这些电阻在正常电路中的作用就是抑制啸叫。神经生理学家面对与此具有可比性的情形时,已经假设出了‘抑制区’的概念。”

        对我而言,这一顾虑似乎是个值得注意的问题,却不是拒绝自然选择全部的基因理论的理由!如果现今的遗传学家们研究某个有趣的适应性时无法研究过去导致该适应性进化起源的那个基因位点,你也不要对此感到介意。如果遗传学家们常常被迫关注方便研究的基因位点,而不是具有进化重要性的位点,那就太糟糕了。进化把复杂和有趣的适应性组合到了一起,靠的是对等位基因进行替换,这一点仍是事实。

        以上讨论对于解决另一个时下非常流行的争论也会有侧面的帮助,能让人们以正确的方式来看待这个问题。这个问题目前的争议很大,甚至有点情绪化,那就是人类的各种精神能力的背后是否有着显著的基因变化作为基础。我们之中的某些人是否从基因上就比别人更有脑子呢?我们用“有脑子”这个说法想要表达的意义也有着很大的争议,并且的确应该有这样的争议。不过我主张,无论这个说法在此处取什么样的含义,以下的论点是不能被否认的:(1)曾经的某个时间点上,我们的祖先不如我们有脑子;(2)在所有我们祖先的谱系中,一定有过“有脑子程度”方面的增长;(3)这种增长是通过进化来实现的,可能还是由自然选择推动的;(4)无论是否是自然选择推动的,至少表型方面的部分进化改变反映了深层次的基因改变——发生了等位基因的替换,结果代际的精神能力平均水平提高了;(5)因此根据定义,人类群体一定曾经在“有脑子程度”方面有过显著的基因变化,至少在远古时期是这样的。当时,有的人与同时代的人相比,基因上来讲更聪明一些,另一些人从基因上来讲则相对要傻一些。

        上面最后这一句话可能会引起人们思想上的不安,甚至是恐惧,然而我前面的五条论点中没有一条能够被人们真正质疑,它们的逻辑顺序也无法被质疑。这部分讨论是针对脑子尺寸的,但也同样可以应用于针对聪明程度的任何你想要去研究的行为性状的测量。这并非是基于一种对人类智能的简化认知,把人类智能视为一维可度量的量值,事实是,智能不是一个简单的可以度量的量值。这个事实很重要,但是与我们在此讨论的问题压根儿没有关系。同样的,在实践上对于智能进行测量的困难性也是与我们的讨论无关的。前面一个段落的结论是无可避免的,它只是在说:我们这些进化生物学家认同这样一个论点——很久以前,我们的祖先曾经不如现在的我们聪明(无论以任何标准来考量)。不过,尽管有这一切讨论,我们也无法就此得出结论说:在今天的人类群体中还留存着任何与精神能力相对应的基因变化——那些基因变化可能都被自然选择消耗掉了。从另一方面来看,也可能没有完全消耗掉,很有可能存在着人类精神能力的基因变化。而我的思想实验表明,对于这一可能性的教条的、武断的反对至少是不可取的。不过有必要说明一下,我自己的观点是,就算在现在的人类群体中真有这样的基因变化,任何以之为基础的政策也是不合逻辑、邪恶无耻的。

        存在着一种达尔文主义适应性,就意味着有时存在着产生这种适应性的基因。这一点并非总是很明确的。对于一种行为模式的自然选择,总有两种讨论的方式。一种方式是,我们可以谈谈生物个体倾向于实施某种行为模式,这让它们比没有那么强烈的发展倾向的个体“更适应”。这是当前流行的表述方式,处于“自私的生物”与“社会生物学中心原理”的范式之中。另一种方式是,我们可以等价地直接去谈论实施这种行为模式的基因比其等位基因存续得更好。在任何关于达尔文主义适应性的讨论中,预先假定相应基因的存在总是合理的,而这将是我在这本书中的中心观点之一,因为这会对本书的表述有正向的助益。我曾听到过一种反对声音,反对在功能性行为学的表述中使用“不必要的基因化”的表述,但是这种反对其实暴露了反对者一种最基本的缺陷——他们无法正视达尔文主义选择所蕴含的真实含义。

        对此,请让我用另一件逸事加以说明。我最近听了一位人类学家的一场学术报告。他的工作是试着用一种亲属选择理论去解释不同人类部落中采取一种特别婚姻体系的比率,而这种婚姻体系刚好是一妻多夫制。一位持亲属选择论的专家能够用模型来预测:在何种条件下我们将预期观察到一妻多夫制的出现。因此,在一种应用于绿水鸡的模型中(Maynard Smith & Ridpath 1972),种群中的性别比例需要是雄性偏多的,而且配偶需要是近亲才行,而后生物学家才能预测说可能会出现一妻多夫制。这位人类学家想方设法想要说明他这些一妻多夫的人类部落也生活在这样的条件之下,并且暗示其他采取了更为常见的一夫一妻制或一夫多妻制的部落都生活在不同的条件之下。

        虽然我对他所展示的信息感到着迷,但还是试着提醒他,在他的理论中存在一些棘手的问题。我指出,亲属选择理论从根本上来讲是一种基因理论,而亲属选择所产生的对于当地环境的适应性,必须是通过一代又一代的遗传过程中等位基因替换等位基因来实现的。于是我问:他这些一妻多夫的部落是否曾经生存于他们目前所处的独特环境中,并且在其中存在了足够长的时间,足够多的代际,足以让必要的基因替换得以完成?是否确实有任何理由让我们相信人类婚姻体系的变化真的是由基因来控制的?

        报告人反对我把基因拽到这场讨论中,而他在场的人类学同行们也都对他表示支持。他说,他并不是在谈论基因,而是在谈论一种社会行为模式。他的一些同行似乎对于仅仅是提到“基因”二字就感到很不自在。我试图说服报告人,其实正是他“把基因拽到”这场讨论中,虽然他的确并未在他的报告中提到过基因这个词。而这正是我要说明的观点:你不可能谈论着亲属选择或其他任何形式的达尔文主义选择,却不把基因拽进来,只不过你提到基因的方式可能是明确的也可能是隐含的。仅仅是猜测部落婚姻体系的差异可以由亲属选择来解释,我的人类学家朋友就已经以隐含的形式把基因拽进了这场讨论之中。很遗憾他没有明确指出来,因为如果他那样做了,就会意识到在他的亲属选择假说面前横亘着多么可怕的困难:要么他的一妻多夫部落得在不完全生殖隔离的状态下在那种独特的环境条件中生活成百上千个世纪之久,要么自然选择就必须曾经青睐于普遍产生的某一些基因,它们编程控制着某些复杂的“有条件策略”。讽刺的是,在那场关于一妻多夫制的学术报告会上,是我一直在试图证明我们所讨论的这种行为不应以“基因决定论”的视角来看待。然而因为我坚持要把亲属选择假说的基因本质明确化,我估计自己的形象就是一个着迷于基因的人,一个“典型的基因决定论者”:这个故事很好地说明了本章的主要观点:坦率地面对达尔文主义选择作用最基本的基因本质,这很容易被人误解为一种不健康的、先入为主的观点——用遗传论去解读个体的成长发育过程。

        相同的偏见还会在另一种情况下普遍出现在生物学家心中,那就是:如果本来能够用生物个体这个层级的语言绕过基因的问题,却还是明确地使用带有基因的说法。“实施行为X的基因比不实施行为X的基因更受青睐”,这样一个表述有着近乎幼稚的、不专业的意味。有证据表明存在这样的基因吗?你怎么能只为了方便你的假说而凭空捏造出一个专门的基因来!“实施行为X的生物个体比不实施行为X的个体更适应”,这听起来就体面多了。就算不知道这是不是真的,这种说法可能也会被当作可以容许的推断而被接受,但是这两个句子在意思上是完完全全等价的。第二种说法并未说出什么第一种说法没说清楚的事情。然而,如果我们承认这种等价性,明确地谈论“为了”某种适应性而存在的基因,我们就是以身犯险了——因为“基因决定论”而备受指责的风险。我希望我已经在前文中成功地说明了:这种风险不是别的原因造成的,而纯粹是误解造成的。对于自然选择,一种明智的、无懈可击的方式是把它视为“基因选择论”,但是这个概念却被误解为强烈相信个体生长发育遵循“基因决定论”。任何人,只要能想明白适应性产生的过程细节,几乎一定就会以或明确或隐晦的方式想到基因——不过它们可能只是假设的基因。我们应以明确的方式而非隐晦的方式来表明基因是达尔文主义功能推断的基础,对此有很多值得说的,而这正是我在本书中将要展示的内容。因为这是一种好的表述方式,可以避免一些容易诱人上当的推理错误(Lloyd 1979)。在这么做的过程中,我们可能会给人以一种印象,觉得我们执着于基因,并执着于在当代传媒意识中基因所应背负的迷思包袱——然而这样的错误印象完全是出于人们自身的错误理由。但是,僵化的、按部就班的个体发育所代表的决定论是,或者说应该是离我们的想法十万八千里的。当然,就某一个社会生物学家而言,他可能是,也可能不是基因决定论者。他们可能是拉斯特法里派[25]教徒、震教[26]徒,或是马克思主义者,但是他们个人对于基因决定论的认识就如同他

        们个人对于信仰的认识一样,都与以下这个事实无关,即他们谈论自然选择时使用的是“为了某种行为的基因”这样的表述。

        本章的大部分都建立在一个假设之上,即一位生物学家可能会想要推断某种行为模式在达尔文主义框架内的“功能”。这并不是说所有的行为模式都必须要有一种达尔文主义的功能。可能会有一大类行为模式在选择中对于其生物个体是中性的,甚至有害的,不可能被视为是自然选择的产物。如果的确是这种情况,那么本章中的讨论就不适用于它们。不过,有一种表述是很合理的:“我对适应性很感兴趣。我不必把所有行为模式看作适应性,但我想要去研究那些是适应性的行为模式。”类似地,表达更喜欢研究脊椎动物而不是无脊椎动物,并不代表我们就相信所有动物都是脊椎动物。考虑到我们感兴趣的领域是适应性行为,那么当我们谈论感兴趣的研究对象的达尔文主义进化时,就不可能不预先为之假定一个基因基础。而用“为了X的基因”作为一种简洁的方式来谈论“为了实现X所需要的基因基础”,这是群体遗传学在半个多世纪以来的一种标准操作。

        如果要问能够被认为是适应性的行为模式到底有多少,那就完全是另一个不同的问题了。它将是我们下一章的主题。

        第15章 对于完美化的制约

        无论如何,这本书都会包含大量的以达尔文主义来解释生物功能的逻辑。以前的苦涩经历提醒我,一名醉心于解释功能的生物学家很可能会被指责相信所有动物都是完美优化的结果,也就是被指责为一名“适应论者”(Lewontin 1979a,b; Gould & Lewontin 1979)——有时这种指责还带有一种强烈的情绪,会把那些更习惯科学争论而非观念争论的人吓一大跳(Lewontin 1977)。适应论的定义是“它探讨有关于进化的研究,在没有进一步证据的前提下就假定生物所有方面的形态、生理,以及行为都是通过适应产生的对于问题的最优解决方案”(Lewontin 1979b)。在本章的第一版草稿中,我说我想可能没有人能够真正成为一名极端意义上的适应论者,然而讽刺的是,我最近发现了一段莱文廷自己所说的话:“我认为所有进化论者都会赞同的一点是:实际上,不会有谁比生存在某一环境的生物做得更好。”(Lewontin 1967)似乎莱文廷此后就走上了前往大马士革的旅程[1],所以要让他来做适应论者的代言人恐怕不太公平。实际上,近年来他与古尔德一起成为针对适应论的最有文采的、最强有力的批评者。那么我将选择凯恩作为适应论者的代表,他一直坚持他那篇犀利而又简洁的论文《动物的完美化》中的观点(Cain 1979)。

        作为一名分类学者,凯恩攻击了对于“功能的”性状和“祖传的”性状之间的区分,前者的用词暗示着它不是可靠的分类指标,后者则暗示是可靠的(Cain 1964)。凯恩有力地反驳称:远古“设计图”上的那些性状,比如四足动物长有五指的四肢和两栖动物在水中生活的阶段,之所以会存在是因为它们在功能上是有用处的,而不是因为它们如人们常常所暗示的那样是无可逃避的历史遗迹。如果两组生物中的一组“在任何方面都比另一组更原始,那么它的原始性本身一定是对某种不那么特化的生活模式的适应,而它也的确能够成功地生活在这一模式之下;它不会仅仅只是一个表明效率低下的标志。”(第57页)凯恩对所谓的无用性状也持类似的观点,批评达尔文受到理查德·欧文[2]的影响,总是准备着去承认那些乍见之下感到吃惊的性状的无功能性:“没有人会认为幼狮身上的条纹或年轻黑鸟身上的斑点应该对这些动物有任何用处。”即便对适应论最极端的批评者来说,达尔文的这句评论在今天听起来也一定很是草率。事实上,历史似乎是站在适应论者一边的,因为在一些特定的案例中,他们已经一次又一次地击败了嘲笑者们。凯恩自己有一项与谢沷德[3]和其他选择论者合作的著名研究项目,他们研究了维持一种丛林蜗牛(Cepaea nemoralis)壳上条带形态多样性的选择压力。这项研究的开展,部分原因可能是受到了一件事的刺激:“人们自信满满地断言,对于一只蜗牛而言,壳上有着一条带状条纹还是两条带状条纹是一件无关紧要的事。”(Cain, p.48)“但是,最为引人注目的对于‘无用’性状的功能性解释或许来自曼顿[4]在倍足纲动物土线(Polyxenus)方面所做的工作,她的研究表明一种此前被形容为‘小饰品’(还有比这听起来更没用的吗?)的性状却几乎是这种动物生活的重心所在。”(Cain, p.51)

        作为一种很有用的假说,甚至几乎是一种信仰,适应论无疑鼓舞了一些研究者做出了杰出的科学发现。冯·弗里希[5](von Frisch 1967)对有威望的冯·赫斯[6](von Hess)秉持的正统观念不屑一顾,通过对照实验令人信服地证明了鱼类和蜜蜂的彩色视觉。驱动他去做这些实验的原因,是因为他拒绝相信以下这类观念,比如说花朵的颜色是没有形成原因的,或者它只是为了取悦人们的眼睛。这些研究成果当然不能作为证据来支持适应论信仰的普遍正当性。每一个问题都应该根据其真相来逐一加以解决。

        温纳[7](Wenner 1971)对于冯·弗里希关于蜜蜂舞蹈语言的假说提出了质疑,这是件有价值的事情,因为他激发了J.L.古尔德(J.L.Gould 1976)的灵感,令后者以一种非常聪明的方式确证了冯·弗里希的理论。如果温纳更倾向于适应论者的话,古尔德的研究可能永远也不会进行了,但是温纳也就不会让自己错得如此离谱了。任何一个适应论者或许会承认温纳暴露了冯·弗里希最初实验设计中的缺陷是件很有助益的事情,但是也会如林道尔[8](Lindauer 1971)所指出的那样,立即就想到一个基础性的问题:蜜蜂到底为什么要跳舞?温纳从未否认过蜜蜂会跳舞,也没有否认过这些舞蹈中包含着所有冯·弗里希所宣称的方向与距离方面的信息,他所否认的只是其他蜜蜂懂得去利用舞蹈中的信息。如果有某种动物实施的一种行为是如此消耗时间,如此复杂,纯靠概率几乎不可能实现,但结果却没有任何用处,那么这样的想法会让一名适应论者寝食难安。不过,适应论有利也有弊。我现在感到很高兴的是,古尔德做了他那些一锤定音的实验,至于原因则比较让我丢脸:即便我足够聪明,能够设计出这样的实验(这是件不太可能的事情),但我也会因为太过倾向于适应论,而不会为温纳的问题所困扰。我早就知道温纳肯定是错的(Dawkins 1969)。

        适应论者的那些想法,如果不是盲目确信的话,还是会成为一种有价值的激励,产生在生理学上可以验证的假说的。巴洛[9](Barlow 1961)意识到感官系统对于减少输入冗余的问题有着压倒性的功能需求,这令他对感官生理学中的一大批现象有了一种和谐的独特理解。关于功能的类似推理也可以应用于运动系统,或整体上应用于组织体系的等级系统(Dawkins 1976b; Hailman 1977)。适应论者坚定的信仰并不能告诉我们生理学上的机制是什么,唯有生理实验才能做到这一点。不过谨慎的适应论者的推理能够为我们提供建议,告诉我们在众多可能的生理学假说之中,哪些才是最有可能为真的,最应该优先予以研究。

        前面我一直试着展示适应论有利也有弊,但是这章的主要目的还是要为对完美化的各种制约开列一张清单并予以分类,还要列出学生们在学习适应性的过程中应该谨慎前行的主要原因。在讨论我关于完美化的六大制约之前,先要来说说别人已经提出来的另外三个制约,不过我发现它们不是很有说服力。先说第一个吧,当代生物化学遗传学家当中关于“中性突变”的论战,不断在关于适应论的批评中被引用,但实际上两者毫不相关。如果存在生物化学家所说的中性突变,那就意味着,这些突变所引发的蛋白质结构上的任何改变对于蛋白质的酶活性没有影响。这就意味着,这些中性突变将不会改变胚胎发育的进程,也根本不会有任何表型上的效应——生物学家就生物整体而言所理解的表型效应。对于中性论的生物化学争论主要关心的是一个有趣而重要的问题:是否所有的基因替换都会有表型上的效应。关于适应论的争论则颇为不同,它关心的主要问题是:既然我们所研究的表型效应大到足以被观察到,并且就此提出问题,那么我们应该假设它是自然选择的产物。生物化学家的“中性突变”可不只是中性而已。只要我们这些研究粗陋的形态学、生理学以及行为学的生物学家去考虑这个问题,它们在我们眼中就根本不再是突变了。正是有着这样的思想,梅纳德·史密斯(Maynard Smith 1976)写道:“我把‘进化速率’解释为适应性改变的速率。在这种意义上,对一个中性等位基因的替换不会构成进化。”如果一位研究生物个体的生物学家看到一个由基因决定的表型差异,他就已经知道了自己不可能是在研究一个当代生物化学遗传学家所争论的“中性”。

        然而,这位生物学家可能是在研究一种中性的性状,这在更早的一场论战中曾经被讨论过(Fisher & Ford 1950; Wright 1951)。一个基因差异有可能在表型层面来显露自己,然而在选择问题上仍是中性的。但是像费希尔(Fisher 1930b)和霍尔丹(Haldane 1932a)等人所做的数学计算表明,人类对于某些生物学性状做出的“明显无用”的性质判断是主观的,不可靠的。例如,霍尔丹的研究表明,对于一个典型的种群做出一些合理的假设之后,弱到千分之一的一个选择压力只需几千代就可以让一个最初很罕见的突变被固定下来。这从地质学的标准来看是很短的时间。在前文提到的争论中,莱特[10]被似乎误解了(见下文)。虽然莱特建立了通过遗传漂变实现非适应性性状的进化这一思想,并被称为“休厄尔·莱特效应”,但他感到很尴尬(Wright 1980),“不仅仅因为别人在我之前就提出过一样的想法,还因为我自己最初是强烈拒绝这一想法的(Wright 1929),曾经说纯粹的随机漂变将‘不可避免地导致退化和灭绝’。我曾经把明显的非适应性分类学差异归因于基因多效性,不仅仅只是忽视了适应性上的重要性而已”。事实上,莱特曾经展示了漂变与选择的精巧融合将如何产生更优秀的适应性,超过了仅仅通过选择所产生的适应性。(见第39—40页)

        第二种被提出来的针对完美化的制约,考虑的是异速生长的问题(Huxley 1932):“对于真鹿亚科的鹿来说,鹿角尺寸增长的速度远超身体尺寸增长的速度……以至于更大的鹿就有着大得不成比例的鹿角。于是也就没必要给大鹿头上那极其巨大的鹿角找一个明确的适应性理由了。”(Lewontin 1979b)当然,莱文廷这段话说明了一些问题,不过我更愿意重新来表述一番。按照他这段话来看,异速生长速率应该是个常数,就好像这是上帝指定的不可改变的东西。但是,一个时间尺度上的常数也可能在另一个时间尺度上发生变化。异速生长常数是一个胚胎发育上的参数。与任何其他这样的参数一样,它可能受到基因改变的支配,并因此可能在进化过程中发生改变(Clutton-Brock & Harvey 1979)。这样来看,莱文廷的说法原来跟下面的说法相似:所有的灵长类都有牙,这只不过是个关于灵长类的事实,因此没有必要对于灵长类长着牙这件事给出一个明确的适应性理由。不过,他真正想要表达的可能是类似于下文的某种意思。

        鹿已经进化出了一种发育机制,让鹿角的生长与身体尺寸的生长异速,两者之间有一个特定的异速生长常数。这个发育上的异速生长体系的进化很可能是在与鹿角的社会功能无关的选择压力下形成的:它可能刚好与已经存在的发育过程相协调,其中的方式我们还不清楚,除非我们能够对胚胎学中生物化学和细胞的细节有更多的了解。也许体形大的鹿有超大的鹿角在行为学上的后果施加了一个选择效果,但是这种选择压力很可能会在重要性上被其他尚不知道内在胚胎学细节的选择压力所淹没。

        威廉斯(Williams 1966, p.16)将异速生长用于推断导致人脑容量增加的选择压力。他提出,在这个问题上,选择的首要重点是儿童早期对于他人所传授的相当于小学水平技能和知识的可接受性。“由此导致的选择作用针对的是尽早获得语言的能力,或许就会产生一个有可能诞生达·芬奇的人群,这是一种在脑发育方面的异速生长效应。”不过威廉斯并未把异速生长视为一种对抗适应性解释的武器。有人觉得他有一点是正确的,那就是不太忠诚于他那个关于脑过度生长的理论,而更忠诚于以下这个结论性的设问句中所阐述出来的普遍性原理:“通过了解人类心智被设计出来的目的,能够极大地帮助我们理解人类的心智。对此有所期待难道不是一件合理的事情吗?”

        对于异速生长所说的这些话,对于基因多效性也同样适用,也就是一个基因占据多个表型效应的现象。这是我在讨论我自己的列表之前想要排除在外的第三个关于完美化的制约。这一条在我前面引述莱特的话时已经提到过了。在此导致困扰的一个可能原因是,基因多效性在这场辩论中被双方都拿来当作武器了——如果那的确是一场真正的辩论的话。费希尔(Fisher 1930b)得出结论,一个基因的表型效应当中不可能任何一个都是中性的,所以说,一个基因的所有多效性效应都是中性的就更不可能了。另一方面,莱文廷(Lewontin 1979b)则评论说:“性状的很多改变是多效性基因行为的结果,而不是对于性状本身的选择作用的直接结果。昆虫马尔比基氏小管[11]的黄色本身不可能是自然选择的对象,因为那个颜色永远不可能被任何生物看到。而它实际上是红眼色素代谢的多效性后果,有可能是适应性的。”我对此没有什么实质性的不同意见。费希尔谈论的是对于一个基因突变的选择性效应,而莱文廷谈论的是一个表型性状的选择性效应。实际上,我之前讨论生物化学遗传学家对于中性的观点时所说的也正是这样的区分。

        莱文廷对于基因多效性的观点与另一个问题有关,我应该在此先行讨论一下。这个问题是对于他所谓自然“缝线”——进化的“表型单位”的定义。有时一个基因的双重效应在理论上是无法分割的,它们是同一事物的不同侧面,正如珠穆朗玛峰曾有两个名字[12],取决于你是从哪一侧去看它。一位生物化学家眼中的携氧分子在行为学家眼中可能就是红的生物色。但是也有一种更为有趣的基因多效性,其中的两种表型效应是可以分割开来的。任何基因的表型效应(相对其等位基因而言)并不是这个基因自己的私有物,而是要在它所起作用的胚胎环境共同帮助之下才能显现。这就有了充分的机会让一个突变的表型效应被其他的效应改变,也为一些出色的思想提供了基础,比如费希尔(Fisher 1930a)关于显性进化的理论,梅达沃(Medawar 1952)和威廉斯(Williams 1957)关于衰老的理论,以及汉密尔顿(Hamilton 1967)关于Y染色体嵌入的理论。在这样的联系之下,如果一个突变有一个有利的效应和一个有害的效应,选择作用没有理由不青睐于一个改造者基因,能够把这两个表型效应剥离开来,或者减弱有害的效应,同时增强有益的效应。正如在异速生长的例子中,莱文廷对于基因行为的观点太过静态了,将多效性当作基因自己的私有物来看待,而没有把它看作基因与其可被修改的胚胎环境之间的互动的结果。

        所以,我要对幼稚的适应论做出我自己的评论,列出一个对于完美化的制约条件的列表。它的大部分与已有列表是相同的,包括莱文廷和凯恩的列表,以及梅纳德·史密斯(1978b)的,奥斯特和威尔逊(1978)的,威廉斯(1966)的,库里奥(1973)的,等等。实际上,我们这些观点之间更多的是一致性,而非近来的各种评论之中所显现的争辩意味。我不应该纠结于特定的个案,除非是例证。正如凯恩和莱文廷都强调的,我们总体的兴趣不在于挑战自己的聪明才智,去为动物的某种特定的奇怪特性想象出一种可能的优势来。我们在这件事上的兴趣在于探究一个更加具有普遍性的问题:自然选择的理论能让我们去期待些什么?我的第一个对于完美化的制约是一个很明显的制约,大多数写作过适应性相关问题论文的人都对此有所提及。

        时间滞后

        我们今天所看到的动物很有可能是“过时的”,影响其建立过程的那些基因是在某个更早的时期为了应对与今天不同的条件而被选择出来的。梅纳德·史密斯(1976)对于这种效应给出了一种定量的测量,称为“滞后负荷”。他(1978b)引用了尼尔森的一项研究,证明塘鹅虽然正常情况下只下一个蛋,但当实验中加入额外的一个蛋时,它们仍然有相当的能力去成功地孵化两个蛋并养育这两只雏鸟。显然,对于拉克关于一窝雏鸟最优数量的假说而言,这个案例的出现有些尴尬。而拉克本人(1966)并不迟钝,想到了将“时间滞后”当作自己的出路。他提出,完全合理的一种可能性是:一窝塘鹅只有一只雏鸟的现象是在一个食物没那么充足的时期进化出现的,而至今还没有足够的时间让它们进化到去适应又一次发生了改变的条件。

        对一个出了毛病的假说进行事后诸葛亮式的补救,这样的行为很容易引发别人的指责,被扣上不可证实的罪名,但是我发现这样的指责不仅仅是缺乏建设性的,简直就是虚无主义的。我们不是在国会,也不是在法庭上,不是在为达尔文主义进行辩护以获得针对反对者的辩论积分,或是站在辩论的另一方。除了少数一些真心反对达尔文主义的人以外——他们也不太可能读到这些——我们所有达尔文主义者在此所做的讨论从本质上都是为了探讨,我们应如何去说明当我们必须要解释生命的复杂性时,到底什么才是唯一有用的理论。我们所有人应该是发自内心地想要知道为什么当塘鹅明明可以下两个蛋时却只下一个,而非把这个事实仅仅当成一个争论点。拉克对于“时间滞后”假说的运用可能是事后诸葛亮,但是这仍旧是完全有可能合理的,而且也是可以被检验的。毫无疑问,如果走运的话,或许还有别的可能性也能被检验。梅纳德·史密斯的以下观点肯定是正确的:我们应该不去考虑“失败主义者”(Tinbergen,1965)以及无法检验的“自然选择又一次没把工作做完”这种解释,不能把它们当成最后的救命稻草,当成没有其他选择时的一种简单的研究策略。莱文廷(1979b)说过极为类似的话:“那么在某种意义上,生物学家被迫采用了极端适应论者的论调,因为其他的选择虽然在许多案例中无疑是可操作的,但是在特定的案例中却是无法检验的。”

        回到时间滞后效应上来,由于现代人类已经急剧改变了许多动物和植物所处的环境,改变所用的时间跨度按照通常的进化标准几乎可以忽略不计,所以我们完全能够预期这样一种可能性,即过时的适应性相当常见。刺猬应对捕食者的反应是蜷成一个刺球,然而可悲的是,这种行为在机动车面前只能是螳臂当车。

        外行的批评常常会提到一些现代人类行为中明显的不适应性状,比如收养或避孕,并且扔下一句质疑:“要是你能用你自私基因的理论来解释一下的话,就来解释解释吧。”显然,正如莱文廷、古尔德和其他人已经正确地强调过的那样,要是有足够的创造力的话就完全有可能像变戏法一样搞出一个“社会生物学”的解释、一个“有条理的故事”,但是我同意他们以及凯恩的意见,对于此类质疑的回答是一种无用处的练习,实际上甚至可能是有害的。收养与避孕就像阅读、数学,以及压力诱发的疾病一样,是一种动物的生活环境发生极端改变的产物,这个环境与其基因被自然选择出来的时候所面对的环境已经大不相同。质疑一个人造世界中的某种行为在适应性上的意义,这种问题压根就不应该被提出来。虽然一个傻问题只配得到一个傻答案,但是更明智的方式是根本不予回答,并解释清楚为什么不予回答。

        关于这一点,我从R.D.亚历山大那里听到过一个有用的类比——飞蛾扑火,这对它们的广义适合度都是没有帮助的。但是在蜡烛被发明以前,暗夜之中小而明亮的光源要么是天体从光学意义上的无穷远处发出的光,要么就是在洞穴或其他封闭的空间中,透过小孔或缝隙射入的光线。后者立刻就让人想到了接近光源的一种生存价值,前者也暗示着一种生存价值,但是要间接得多(Fraenkel & Gunn 1940)。许多昆虫利用天体作为导向罗盘。由于这些光线来自光学上的无穷远处,所以是平行光,而一只昆虫只要与之保持一个固定的交角,比如说30º,就能够在一条直线上前进。但如果光线不是从无穷远处发出的,就不是平行光,而一只仍以这样方式行动的昆虫就会飞出一条落向光源的螺旋线(如果飞行方向是锐角的话)或是离开光源的螺旋线(如果飞行方向是钝角的话),或是沿着环形轨道绕圈(如果飞行方向恰好与光线成90º的话)。那么,昆虫在烛火上的自我牺牲行为本身就没有了生存价值,因为根据上述理论,这不过是一个副产品,源自通过“假定”无穷远的光源来保持航向的有用习性。这个建立在假设上的推断曾经是没问题的,但是现在已经有问题了,因为选择作用有可能现在仍在起作用,改变着昆虫的行为。(不过也不是必然的。为了实现必要的改进所要付出的间接成本可能超出它们所能带来的益处。那些为了分辨烛火与星光而付出成本的蛾子,就平均而言可能不如那些从未试图付出成本去分辨的蛾子成功,不过后者也接受了自焚的低风险。)

        但是现在我们已经在面对一个比简单的时间滞后假说更为微妙的问题。这是之前已经提到过的一个问题,即我们应该选择把动物的什么特性看作需要得到解释的单位?如莱文廷(1979b)所说:“进化动态过程中的‘自然’缝线是什么?进化之中表型的拓扑是什么?进化的表型单位是什么?”之所以会有烛火悖论,只不过是由于我们选择去界定蛾子行为特征的方式不同。我们问的是“为什么蛾子飞向了烛火?”于是被难住了。如果我们对这种行为的界定不同,改成问“为什么蛾子要保持与光线之间的固定角度(如果光线恰好不平行的话,就会附带着导致它们以螺旋线飞向光源的习性)?”那么我们就不会被难住了。

        我们可以把人类男性同性恋现象当成一个更严肃的例子。表面来看,确实有少数男人更愿意与他们同性别的人而不是异性发生性关系,这一现象的存在对于任何简单的达尔文主义理论都构成了一个问题。有作者好心寄给了我一本同性恋内部流传的小册子,它那论述式的标题总结了这个问题:“到底为什么会有同性恋?为什么进化没有在几百万年前消灭‘同性恋习性’?”不经意间,那位作者发现这个问题太重要了,它真的动摇了达尔文主义关于生命的整套认识。特里弗斯(1974),威尔逊(1975,1978),特别是温里克[13](1976)已经考虑过不同的可能性,认为同性恋行为可能在历史上的某个时期从功能上讲等同于无法生育的工蜂、工蚁,对他们来说,比个人的生育繁殖更有益处的是照顾别的亲人。我不觉得这个想法特别有可能是合理的(Ridley & Dawkins 1981),至少不会比“鬼祟男性”的假说更有合理的可能。后一种假说是,同性恋代表了一种“可供替代的男性策略”,用于获得与女性交配的机会。在一个居于统治地位的男性会保护他的配偶的社会里,一个被认为是同性恋者的男性将比众所周知的异性恋男性更有可能被居于统治地位的男性容忍,那么得益于此,低级别的男性或许就能够获得与女性秘密交媾的机会。

        不过,我在此提出“鬼祟男性”的假说可不是将它当作一个有合理可能性的观点,而是为了让人印象深刻地意识到,要空想出一个此类解释是多么容易,又多么于事无补[Lewontin 1979b,莱文廷在讨论果蝇(Drosophila)表现的同性恋行为时用过同样的招数]。我想要说明的主要观点与此完全不同,也重要得多。这个观点又是与我们如何界定我们所想要解释的表型性状的特性有关的。

        对于达尔文主义来说,同性恋当然是一个问题,但前提是有着基因元件来对应同性恋与异性恋个体之间的差异。由于这方面的证据还有一定的争议(Weinrich 1976),让我们暂且假设有这样的基因元件,以便我们的讨论。现在问题来了,存在一个基因元件对应于这种差异,或者用更普通说法,有一个基因(或几个基因)是为了同性恋的目的而存在的,那究竟意味着什么?这是一个基础性的老生常谈的问题,更多的在于逻辑层面而非基因层面,即一个基因的表型“效应”是一个概念,它只有在环境的影响被确定之后才能有意义,而此处的环境要理解为包含了基因组中所有的其他基因。在环境X中“为了”A的基因完全可能在环境Y中成为一个“为了”B的基因。谈论一个给定基因与环境无关的绝对化的表型效应,根本就没有意义。

        即便存在这样的基因,在今天的环境之中还能产生同性恋的表型,并不意味着在另一种环境下,比如我们更新世祖先的环境,它们还会有同样的表型效应。在现代环境中对应于同性恋的基因可能是一个在更新世为了实现某些完全不同的目的的基因,所以,我们有可能在这个问题上面对着一类特殊的“时间滞后效应”。一种有可能的情况是,我们试图去解释的这种表型可能在更早期的环境中根本就不存在,虽然这个基因当时是存在的。我们在这一节一开始所讨论的普通的时间滞后效应中,考虑的环境改变表现为选择压力的改变,我们现在加上了更为微妙的一点,即环境的改变有可能改变我们想要解释的那个表型特征的本性。

        历史性制约

        喷气发动机取代螺旋桨发动机的原因在于,前者在多数方面都更优秀。第一台喷气发动机的设计者是从一张干净的绘图板开始设计的。想象一下,如果限制他们要从一台已经存在的螺旋桨发动机上“进化”出喷气发动机来,每次只能更换一个零件,一个螺母一个螺母地换,一个螺钉一个螺钉地换,一个铆钉一个铆钉地换,那他们会搞出一台什么东西来?照此组装出来的一台喷气发动机将肯定是一台古怪的诡异装置。几乎无法想象一架用进化的方法来设计的飞行器有可能飞离地面。然而为了完成生物学意义上的类比,我们还要再加上一条制约条件——不仅仅最终的产品要能飞离地面,过程中的每一个中间状态的产品也必须要能飞起来,而且每一个中间状态都要比它的前一个中间状态更优秀。这样来看的话,别说期待着动物能够成为完美的,我们或许都要怀疑它们身上到底有没有任何东西可以正常工作。

        上面这一段让我们联想到的场景是令人难以相信的,但是动物身上有些特性还要更加令人难以相信,这些特性就像是希思·罗宾逊[14](或是古尔德文中提到的鲁布·戈德堡[15],1978)笔下的那类漫画一样。我特别喜欢的一个例子是由约翰·柯里[16]教授向我提供的,有关喉返神经。对于哺乳动物,特别是长颈鹿而言,从脑到喉的最短距离断然不会绕过主动脉[17]后侧,然而喉返神经走的就是这条路。假设曾经有一个时期,在哺乳动物的远古祖先身上,这条神经起点与终点器官之间的直接路径就是要绕过主动脉的后侧。不久之后,当脖子开始延长的时候,这条神经绕过主动脉后侧的路径也要延长,但是为了绕路而导致的每一次长度延长都只造成了微小的代价。一个重大突变或许能够彻底重新布置这条神经的路径,但是其代价就是早期胚胎发育过程中的巨大动荡。如果回到泥盆纪,能有一位先知,一位像神一样的设计师,或许能够预见到长颈鹿的出现,并且把最初的胚胎中的那条神经设计成不同的路径,但是自然选择没有这样的预见性。正如悉尼·布伦纳[18]所评论的:不可能期望自然选择在寒武纪就青睐于某些无用的突变,只因为“它们可能会在白垩纪很有用处”。

        比目鱼长着一张如同出自毕加索笔下的脸,它通过一种怪诞的方式把两边的眼睛扭转到了头的同一侧,形成一种独特的样貌。这是关于完美化的历史性制约的另一个惊人的证明。这种鱼的进化过程清清楚楚地写在了它们的解剖构造之中,以至于它成了一个绝佳的例子,可以塞到原教旨主义者的喉咙里,噎得他们说不出话来。同样的话也可以用到另一个奇妙的现象上,那就是脊椎动物眼睛里的视网膜似乎都被装反了。对光线敏感的“视细胞”都在视网膜的背面,而光线必须穿过连接“电路”,遭受不可避免的衰减之后才能抵达视细胞。假设有可能写下一段很长的突变序列,最终能够让眼睛的视网膜像头足纲动物[19]那样建构在“翻过来的正确一面”上,那么这种眼睛最终会稍稍有效一些。但是在胚胎期的重大动荡意味着巨大的成本,那么与修修补补得到的毕竟用着还不错的眼睛相比,此中间态阶段的眼睛将会很难得到自然选择的青睐。皮腾德里赫[20](1958)曾经就适应性的生物组织形式评论说它们是“用替代品修修补补拼凑出来的东西,是用可以拿得到的东西拼凑出来的,而当机会来敲门的时候被自然选择后知后觉地接受了,而非先知先觉”(也可见雅各布1977年发表的论文关于“修补”的内容)。

        休厄尔·莱特(1932)对此提出了一个比喻,现在已经被称为“适应性景观”,表达了与前文同样的想法,认为青睐于局部最优的选择作用阻碍了进化向着终极优化或更为整体优化的方向前进。他所强调的一个重点多多少少有些被人误解了(Wright 1980),即遗传漂变起到了一定的作用,从而让物种的种系可以从局部最优的吸引力中逃脱出来,进而实现更为接近人类所认为的“那个”最佳解决方案。有意思的是,这与莱文廷(1979b)将漂变视为“适应性之外的替代方案”恰好相反。至于在多效性的讨论中,就没有这方面的悖论。莱文廷正确的地方在于,“真实种群的有限性导致了基因频率方面的随机变化,以至于有一定的可能性让有着较低繁育适应性的基因的组合也能在种群中被固定下来”。但从另一方面来看,同样正确的是,如果局部最优已经构成了实现完美设计的一个限制,那么这种程度下的漂变就倾向于提供一条逃脱的道路(Lande 1976)。于是,讽刺的结论出现了:一个自然选择中的弱点,理论上可能会增强一个种系实现最优设计的可能性。由于缺乏远见性,真正的自然选择是一种反完美化的机制,只会在莱特的景观之中拥抱那些小山包,而实际上也的确如此。强选择作用中间穿插一些松弛的选择作用以及漂变的时期,这样的混合体可能才是穿越山谷达到高地的正确配置。显然,如果“适应论”会成为一个辩论得分点,那么辩论双方从相反方向上都有得分的机会!

        我自己的体会是,在此可能蕴含着历史性制约这部分真正悖论的解决方案。喷气发动机这个类比暗示着,动物应该是在鞭策之下随便凑合出来的滑稽的庞然大物,不稳定的形体中有着修修补补的老古董所留下的奇形怪状的遗迹。我们如何才能让这合理的推测与以下事实相协调,比如非洲猎豹令人赞叹的优雅体形,雨燕在空气动力学上的优美,以及竹节虫对于欺骗性细节一丝不苟的专注?甚至还有更令人印象深刻的,那就是对于同样的问题,不同的趋同进化给出的解决方案有着细节上的一致性,例如在澳大利亚、南非,以及旧世界上,哺乳动物的辐射进化存在着多重平行性。凯恩(1964)评论道:“到目前为止,达尔文和其他一些人常常会推断认为趋同进化永远不会一致到误导我们的程度。”但是,他接下来就给出了一些称职的分类学家也看走了眼的例证。越来越多目前还被视为应该是单起源的若干生物种类,现在正被怀疑具有多个不同的起源。

        引用正面或反面的例证只不过是无意义地堆砌事实,我们需要的是有建设性的工作,在进化的背景下阐明局部最优与全局最优之间的关系。我们对于自然选择本身的理解需要得到一些补充,这是一项被称为“逃脱特异化”的研究,借由它我们就能使用哈迪[21](1954)的表述了。哈迪曾经提出,幼态延续是一种对于特异化的逃脱。而在这一章中,在引述莱特的观点之后,我曾经强调了漂变在“逃脱特异化”中所扮演的角色。

        在此,蝴蝶的米勒拟态或许是一个有用的案例研究。特纳[22](1977)评论道:“在美洲热带雨林里的长翅蝴蝶当中(包括绡蝶、袖蝶、斑蝶、粉蝶,以及虎蛾),有六种迥异的警示图案。虽然所有带有警示图案的蝴蝶都属于这六种拟态‘环’中的一个,但这些环却是在美洲热带雨林的栖息地中一直共存的,并且始终保持着较大的差异。……一旦两种图案之间的差异太大了,大到靠一个单点突变无法从一个图案变到另一个图案去,那么趋同进化[23]实质上就变得不可能了,于是这些拟态环就会永远共存下去。”这是唯一一个可能在基因细节上已经快要全部研究清楚的“历史性制约”案例。它或许也能为“跨越峡谷”[24]在基因细节上的研究提供一个很有价值的机会。具体到蝴蝶米勒拟态的例子上来,包括一种蝴蝶从一个拟态环中脱离,然后被另一个拟态环的“吸引力”最终“捕捉”到。虽然特纳没有在这个例子中使用漂变作为一种解释,但是他做了一个颇为诱人的暗示:“欧洲南部的九斑蛾[25]Amata phegea)……已经……把厄菲阿尔特[26]斑蛾(Zygenea ephialtes)从斑蛾、同翅目昆虫等等组成的米勒拟态环中抓了出来,而在九斑蛾生活地域之外的欧洲北部地区,厄菲阿尔特斑蛾仍然从属于斑蛾的拟态环。”

        在更为普遍性的理论层面,莱文廷(1978)评论道:“即便自然选择的力量是一样的,基因可能还是常常会有几种不同的稳定平衡状态。一个种群最终在不同基因构成的空间中选择哪一个适应性的峰值,这完全取决于在选择过程一开始的偶然性事件。……比如说印度犀牛只有一只角,而非洲犀牛有两只。角是适应性的结果,是为了对抗捕食者的保护措施,但是并非独角是专门适应印度环境条件的,而两只角是适应非洲平原的。由于起始时的发育系统多多少少有些不同,这两个物种在对同样的选择压力做出响应的时候才会采用些许不同的方式。”这个观点基本上是不错的,不过最好还要补充一点,即莱文廷对于犀牛角功能的重要性有着非典型性的“适应论者”的错误认识,这对于此处的讨论并非无关紧要的问题。如果犀牛角真的是一种对抗捕食者的适应性,那实际上很难想象为什么独角在对付亚洲的捕食者时更有用,而双角在对付非洲的捕食者时更有用。然而,如果犀牛角是一种对于物种内竞争和威吓的适应性,事实似乎也的确如此,那么完全有可能一只独角犀会在一块大陆上处于劣势,而一只双角犀在另一块大陆上遭罪。只要游戏是以威吓之名继续的(或是如费希尔在很久以前教导我们的,称为性吸引),那么无论种群中大多数采取的方式是什么,只需与其一致就能具备优势。具体的威吓展示及其相关的器官可能是任意的,但是任何个体如果由于突变而偏离了已经建立起来的习惯,那就只能承受悲伤了(Maynard Smith & Parker 1976)。

        可用的基因变化

        无论一个潜在的选择压力有多么强大也不一定会导致进化的发生,除非具备一个基因变化让这个选择压力可以发挥作用。“因此,虽然我可以争辩说在胳膊和腿之外再拥有翅膀对于某些脊椎动物来说可能会是一种优势,但是没有什么动物进化出了第三对附肢,大概是因为从来没有可用的基因变化。”(Lewontin 1979b)人们有理由不同意这样的观点,比如说,猪没有翅膀的唯一原因是选择作用从未青睐过这样的进化。当然了,我们在做如下这种建立在以人类为中心的常识基础上的假设时必须要特别小心:对于任何动物而言,长一对翅膀显然挺有用,即便不怎么经常会用到也是如此,所以在一个给定的种系中没有出现翅膀时,原因一定在于缺乏可用的突变。雌性蚂蚁如果恰好被培养为蚁后的话,就会长出翅膀来,但如果被培养成工蚁,它们就不会展现出生长翅膀这种能力来。更为惊人的是,很多昆虫物种的皇后都只会使用一次自己的翅膀,就是在婚飞中,然后就会采取极端的措施,把翅膀从根部咬断或折断,为它们在地下的余生做好准备。这证明,翅膀有成本,也有收益。

        查尔斯·达尔文思想的精妙在他的一段讨论中有着令人印象极为深刻的展现,这段讨论是有关于海岛昆虫的无翅性与有翅成本。他的讨论与我们此处的内容相关的一个观点是,有翅的昆虫或许会有被吹到海上去的风险,于是达尔文(1859,第177页)提出,这就是为什么许多岛屿上的昆虫都有着缩小的翅膀。但是,他也注意到有一些岛屿昆虫却与无翅背道而驰,反而有着超大号的翅膀。

        这与自然选择的作用是相当协调的。因为当一只新的昆虫来到岛屿上的时候,自然选择会让翅膀变大还是变小,这取决于能否有更多的个体在与海风的对抗中成功存活下去,或是通过放弃对抗海风,同时以很少甚至不再飞翔的代价存活下去。这就好像在海岸附近遭遇海难的船员所面临的情况一样:对于很会游泳的船员来说,如果他们有能力游得更远一些,那一定会更好;对于不太会游泳的船员来说,如果他们根本就游不了泳,只能困在遇险船只上,也算是好一些的结果。

        虽然几乎可以听到人们齐声低吼“根本证明不了!同义反复[27]!只是有条理的故事而已!”但是也很难找到更为干净利落的进化推导过程了。

        回到猪是否曾经有可能进化出翅膀这个问题上来,莱文廷无疑正确的一点是,对于适应性感兴趣的生物学家没有余地去忽略突变性变化的可用性这个问题。诚然,事实是我们中的许多人虽然没有梅纳德·史密斯和莱文廷的那些关于遗传学的权威性知识,但与梅纳德·史密斯一样倾向于假设“某种适当类型的基因变化通常是会存在的”。梅纳德·史密斯做此假设的基础在于“除了个别的特例以外,人工选择总被证明是有效的,无论被选择物种是什么,被选择的性状是什么”。为梅纳德·史密斯所彻底接受的一个众所周知的案例是费希尔(1930a)关于性别比例的理论,而这样的案例中似乎常常缺乏最优理论所需要的基因变化。养牛者要培育出高产奶量的、高产肉量的、体形大的、体形小的、无角的、抵抗不同疾病的,以及凶猛的头牛种系,这都是毫无问题的。对于乳品业来说,要是还能培育出有着性别偏差,雌性牛犊比雄性牛犊多的种系,那显然会有巨大的好处。所有就此进行的尝试无一例外都失败了,显然是因为所需要的基因变化并不存在。我知道这个现象时相当吃惊,甚至有些担忧。这大概反映了我自己的生物学直觉已经被误导到了什么程度。我更愿意把这种情况视为一个例外,但是莱文廷认为我们需要更多地去关注可用基因变化造成的限制问题,而这一点当然是对的。从这个观点来看,把人工选择作用在许多不同性状上时所遭遇的顺从或反抗的情况汇编到一起,那一定会很有意思。

        与此同时,还是有一些常识性的东西可以说一说的。首先,利用可用突变的缺乏来解释某种动物为什么没有我们认为合理的某种适应性,这是合理的。但是这种讨论不能反其道而行之,例如,我们或许确实认为猪要是有翅膀的话会更好,并且认为它们没有翅膀只是因为它们的祖先从未产生过必要的突变。但是如果我们看到一种动物有一个的器官,或者有一个复杂而耗时的行为模式,我们似乎会有强烈的理由去猜测这复杂度必定是由自然选择组装出来的。像我们已经讨论过的蜜蜂的舞蹈,或是鸟类“蓄蚁[28]”,竹节虫“摇动[29]”,鸥类移除蛋壳等习性,都是消耗时间、消耗能量的,而且颇为复杂。可行的假说认为它们必定有着达尔文主义的生存价值,这样的假说是极其有力的。在少数案例中,事实证明的确有可能找到其生存价值(Tinbergen,1963)。

        第二个常识性的论点是,“没有可用的突变”这一假说在以下情况下会失去说服力,即当该物种的一个亲缘物种,或是该物种自身处于不同的环境中时,表现出了能够产生必需的基因变化的能力。我会在后面介绍一个案例,案例中一种叫平原爱沙蜂(Ammophila campestris)的掘土蜂的已知能力被用于阐明其亲缘物种大金掘土蜂(Sphex ichneumoneus)类似能力的缺乏。同样的讨论如果更精细的话,就可以用于任何一个物种身上。例如梅纳德·史密斯(1977,也可参见Daly 1979)就总结出了一篇论文,提出了一个很欢乐的问题:为什么雄性哺乳动物不分泌乳汁?我们不必去了解他为什么认为雄性哺乳动物应该有此功能的细节,他有可能是错的,他的模型也有可能建错了,这个问题的真正答案可能只不过是雄性哺乳动物这样做的话没有回报。但这里的关键在于,这个问题与“为什么猪没有翅膀?”不属于同一类问题。我们知道雄性哺乳动物具备分泌乳汁所需要的全部基因,因为一个雌性哺乳动物的全部基因是从雄性祖先那里继承来的,也有可能再传给雄性的后代。基因上是雄性的哺乳动物通过激素处理实际上也能发育成为分泌乳汁的雌性。这就让下面这个论述不太可能成立了:从突变的角度来讲,雄性哺乳动物不分泌乳汁的原因只是在于它们从没“想过要去那么做”。(实际上,我打赌我能够培育出一个能够自发分泌乳汁的雄性品种,只要选择那些对于逐渐减少的激素注射有着越来越强的敏感性的个体就行。这将是对于鲍德温/沃丁顿效应的一次有趣实践。)

        第三个常识性的论点是,如果我们所假定的基因变化主要是一个已经存在的变化的简单数量性扩展,这比一种激进的创新要更有可能成真。假定一只突变的猪有翅膀的残留物不太可能成立,但是如果假定一只突变的猪比现在的猪有着更卷曲的尾巴,这就不是什么不可能成立的事情了。我曾经在别的文章中详细说明过这个问题(Dawkins 1980)。

        无论如何,我们需要一种更精巧的方式来处理这样一个问题:可突变程度上的差异化对进化带来的冲击到底是什么?对于一个给定的选择压力,到底有或没有可用的基因变化来做出回应。这样一个非此即彼的提问方式是不够好的,正如莱文廷(1979a)所做的正确表述:“不仅仅适应性进化的质的改变的可能性受到了可用基因变化的制约,而且不同性状进化的相对速率也与各自基因变化的数量成正比。”我认为这一观点与前一节中所讨论的历史性制约结合在一起,就为我们的想法开启了一个重要的方向。这个观点可以用一个相当有意思的例子加以阐明。

        鸟类用羽毛做的翅膀飞翔,蝙蝠用成片的皮肤做的翅膀飞翔。为什么它们不用同样的方式来生成翅膀呢?哪种方式是“最优的”?一名坚定的适应论者可能会回应说:鸟类必然是用羽毛更好,而蝙蝠用翼膜更好。一名适应论的极端反对者可能会说:对于鸟类和蝙蝠来说,很有可能羽毛的确都是比翼膜更好的,但是蝙蝠从未如此幸运,能够产生正确的突变。但是,还有一种介于两者之间的观点,我发现它比两种极端的观点更有说服力。让我们姑且向适应论者做出让步,承认如果有足够长的时间,蝙蝠的祖先可能也能够产生一系列的基因突变,足以让它们生出羽毛来。这句话的关键之处在于“有足够长的时间”。我们不是在不可能和可能的突变变化中做一个有或无的区分,而只不过是表述一个不可否认的事实:有些突变就数量而言比其他的突变更有可能发生。在这个例子中,哺乳动物的祖先或许已经同时产生了初级羽毛的突变和初级翼膜的突变。但是羽毛雏形的突变体(它们可能必须要经过尺寸较小的中间阶段)要显现出飞行的效应来会比较慢,翼膜的突变体则会相对快一些,于是翼膜翅膀早早就出现了,导致进化最终出现了蝙蝠那种还算有效的翅膀。

        这里体现的普遍性的观点与在适应性景观里已经论述过的很接近。在那个讨论中,我们考虑的问题是:选择作用阻止了种系从局部最优的魔爪中逃脱出来。而在此,我们让一个种系面临着两条可选的进化路径,比如说一条导向羽毛翅膀,另一条导向翼膜翅膀。带羽毛的设计可能不仅仅是全局最优的方案,而且也是目前的局部最优方案。也就是说,这个种系可能恰好就坐在休厄尔·莱特那幅景观中羽毛之峰的山坡下,只要取得必要的突变,它就将轻松爬上山。最终,根据这个有意思的寓言故事,这些突变可能已经出现了,但是也已经晚了——而这才是重点所在。翼膜突变来得比它们更早,而这个种系已经在翼膜适应性的斜坡上向上爬太久了,已经无法回头了。就像河流选择阻力最小的下山路线,因此总是蜿蜒流向大海,但绝对不会走一条直线,一个种系也是如此,其进化的历程总是根据任何一个给定时刻可用的基因变化来选择出某种效应来。一旦一个种系已经开始在一个给定的方向上进化,这本身可能就会关闭此前其他可用的选项,截断了去往全局最优的可能路径。我想要说明的是,缺乏可用的基因变化并不一定要到非常绝对的程度,才会成为完美化的重要制约,只需要数量上的一点阻碍就能产生显著的性质上的效应。那么,我在精神上对于古尔德和凯洛威(Gould & Calloway 1980)以下的表述是赞同的,他们引用了弗尔迈伊[30](Vermeij 1973)一篇令人极其兴奋的关于形态多能性的数学研究论文,称:“有些形态能够被扭曲、弯折,并用不同的方式加以替换,另一些形态则不可能。”不过我更愿意弱化这个“不可能”,把它表述为一种定量的制约,而非绝对性的壁垒。

        麦基奇(McCleery 1978)在用令人愉悦的通俗易懂的方式介绍麦法兰(McFarland)学派的动物行为最优性理论时,提到了司马贺[31]关于“满足最低需求”[32]的概念可以作为优化方案的一种替代方案。如果优化系统的重点在于最大化某件事情,那么满足最低需求的系统只需做够即可。在我们这里,做够意味着做到足够活下去。对于这种“足够性”的概念,麦基奇仅满足于抱怨它并没有产生太多实验性的工作成果。我认为进化论令我们得以对此持更为负面的先验[33]性观点。活着的生命被选择出来,并不只是单纯因为其能够存活的能力,它们是在与其他活着的生命进行的竞争之中存活下来的。作为一个概念,“满足最低需求”的问题在于它完全把竞争因素给排除在外了,而这个因素对于所有生命都是基础性的。用戈尔·维达尔(Gore Vidal)话来说:“成功尚不足够,必要他人失败才可。”

        另一方面,“优化”又是一个不走运的词,因为它暗示其实现了工程师眼中的一种总体上的最优设计。它倾向于无视关于完美化的制约,而这正是本章的主题。从很多角度来讲,“改善化”这个词都表达了一种合理的中间路线,介于优化与满足最低需求之间。在此,优化意味着最好,改善意味着更好。在前文中,关于历史性制约,关于莱特的适应性景观,关于河流沿着最小阻力的路线前进,我们所考虑的那些论点都与一个事实有关,那就是自然选择总是在当前可用的选项中挑选更好的那一个。大自然不具备那样的远见,能够把一系列的突变组合在一起,让一个种系走上通往终极全局最优之路——哪怕它们可能会导致暂时的缺点。大自然无法克制自己不去青睐那些当前能够带来小小优势的可用突变,哪怕能够在以后才会出现的最优突变中获得更大的好处也是如此。就像一条河流,自然选择沿着遭遇最小阻碍的立即可选的连续路线来盲目地改善它向下流的路径。可以想象,由此得到的动物不是最完美的设计,甚至只是勉强度日而已。它是一系列历史改变的产物,每一次改变最多也就是代表着当时恰好是更好的那一个可选项。

        成本与材料的制约

        “如果对于可能性没有任何制约,那么最好的表型就将永远生存下去,对于捕食者而言将会是不可战胜的,在生育方面将会以无限的速率产卵,等等。”(Maynard Smith 1978b)“一位工程师面前的绘图板上如果放着一张白纸,那么他可能会为鸟类设计出一副‘理想的’翅膀,但是他会要求知道自己必须要在什么样的制约下工作。他是否被限制只能用羽毛和骨头?或者他是否可以用钛合金来设计骨架?他被允许在翅膀上花费多少成本?可用的经济投资中有多少必须被花到其他事情上,比如产卵?”(Dawkins & Brockmann 1980)在实际情况下,一位工程师通常会得到一份对于性能最低要求的明确指标,比如“这座桥必须能够承受10吨的负荷。……机翼在比最糟糕的湍流还要严重两倍的气流中也必须不被折断。现在去做你的设计吧,要尽可能节省。”最好的设计是以最低的成本满足指标要求(“满足最低需求”)的方案。任何设计如果能够获得比指定的标准还要“更好”的性能,那它很有可能会被退回,因为那就说明这个指定的标准有可能会以更低的成本来达到。

        特定的指标规格是一种没理由的工作标准。安全裕量为什么是可能出现的最糟条件的三倍?这里面没什么神奇的原理。军用飞机的设计可能会比民用飞机有着更为冒险的安全裕量。事实上,工程师需要优化的事项能够汇总成对于一系列问题的金钱化衡量,包括人身安全、速度、便利性、大气污染等等,对每一个项目投放的资金量都要做出判断,也常常意味着争论。

        在动物和植物的进化设计方面,没有判断,也没有争论,唯有这场演出的人类观察者们会争吵不休。不过,自然选择也必须要有在某种程度上与这些判断相等价的东西:被捕食的风险必须要相对饿肚子的风险以及与额外一个雌性交配的益处来权衡。对于一只鸟来说,用于制造振翅所需的胸肌的资源,也可能本可花在制造蛋上。无论过去还是现在,一个加大的脑都会让行为调控变得更为精细,以应对环境的细微改变,但是付出的代价就是在身体前端增加额外的重量,结果必然需要一条更大的尾巴来保持空气动力学的平衡,结果又……有翼的蚜虫不如同一物种中无翼的蚜虫多产(语出肯尼迪[34]与我的私人通信)。每一种进化的适应性都要有其成本,成本可以体现为失去了完成其他事情的机会。这一点的正确性就如同一句传统的经济学至理名言一样:“天下没有免费的午餐。”

        生物学货币的转化就是以某种像“生殖等价物”一样的通用货币来评估振翅肌肉、歌唱时间、对捕食者的警惕时间等问题的成本。当然,研究这种转化的数学问题可能会是非常复杂的学问。尽管一个工程师所面临的数学问题可以被简化(只要满足了那个无理由选定的最低阈值即可),但是生物学家却没有可能这么轻松。有极少数生物学家试图去努力解决此类问题的细枝末节(例如Oster & Wilson 1978;McFarland &Houston 1981),他们应该得到我们的同情与赞赏。

        另一方面,虽然这其中的数学问题是令人望而却步的,但我们并不需要数学就能推导出最重要的一点:任何对于生物优化的观点,如果否认了成本以及交易的存在,那就必然是错的。一名适应论者只看到了一种动物的身体或是行为的一个方面,比如只看到了翅膀的空气动力学性能,却忘记了翅膀的效率只有通过成本才能换取,而这个成本只有在这种动物的经济的其他某个方面才能感受得到。显然,这样的认识理应受到批评。不得不承认,我们之中有太多人虽然从未实际否认过成本的重要性,却忘记了提及它们,或许甚至还忘了在我们讨论生物功能的时候考虑这些因素。这可能已经招致了一些针对我们的批评。在前面的一节中,我引用了皮腾德里赫的评论,称靠适应性形成的组织体系是“用替代品修修补补拼凑出来的东西”。我们一定也不要忘了,那还是一次又一次妥协之后的玩意儿(Tinbergen 1965)。

        理论上讲,以下过程会是非常有价值、有启发性的:首先假设一种动物要在一组给定的制约条件下优化某样特性,然后努力去搞明白这些制约条件分别是什么。这是麦法兰和他的同事所称的“逆向最优”方法的一个受限制的版本(例如McCleery 1978)。作为一个案例研究,我应该花些工夫来说说我恰好熟悉的例子。

        道金斯和布洛克曼(1980)发现,布洛克曼研究的一种叫作大金掘土蜂的黄蜂有一种行为,连最幼稚的人类经济学家也可能会因此批评它是不适应环境的。掘土蜂个体似乎会犯一种“协和式谬误”,即对于一种资源价值的评估取决于它们已经在上面花了多少成本,而非它们未来能从其中得到多少。简要来说,有如下证据。独居的雌性掘土蜂用螫针挖掘好洞穴,再捕捉蝈蝈使其瘫痪,当作自己幼虫的食物。偶尔,两只雌性会发现它们正在用同一个洞穴做准备,她们通常会打一架来决定洞的归属。每一场战斗都要进行到失败者逃离这个区域,留下获胜者控制着洞穴,并占有双方所抓获的所有蝈蝈为止。我们定义一个洞穴的“真实价值”在于其中所含有的蝈蝈的数量。两只掘土蜂对于这个洞穴各自所做的“前期投资”以其放进去的蝈蝈的数量来做度量。证据表明,每只掘土蜂在一场战斗中持续的时间与其所做的投资成正比,而不是与这个洞的“真实价值”成正比。

        这样的对策在人类心理学上也有很明显的体现。我们也是倾向于为了自己通过巨大努力才收获的私有物进行坚决的斗争。这一谬误的名字来源于一个真实的事件。每当有一个头脑清醒的关照未来前景的经济学家劝告人们放弃对于协和式超音速客机的开发时,一种支持这个完成了一半的项目继续下去的声音就会通过回顾的方式争辩说:“我们已经在这上面花了这么多钱,现在已经无路可退了。”一种更常见的支持继续打仗的争辩给了这个谬误另一个名字——“我们的孩子不应该死得毫无价值”之谬误。

        当布洛克曼博士和我第一次意识到掘土蜂有着类似的行为方式的时候,我必须要坦诚,当时自己有一些不安,可能是因为我自己在过去的一些“投资”努力(Dawkins & Carlisle 1976;Dawkins 1976a)就是为了说服我的同事们相信一件事:心理学上表现出来的协和式谬误本身就是一个谬误!但是接下来,我们就开始更严肃地思考成本制约的问题。如果考虑成本制约的话,这种看似不适应的行为是否就可以成为一种优化从而得到更好的解释呢?于是问题变成了:是否有一种制约能够让掘土蜂的协和式行为成为它们在这种制约之下所能达到的最佳选择?

        事实上,当时面对的问题远比这个还要复杂,因为还有必要将简单的最优性概念替换成梅纳德·史密斯的进化稳定策略概念,但是原则仍然是:采用逆向最优性方法可能还是有启发性价值的。如果我们能够证明一种动物的行为是一个优化体系在制约条件X下工作时所能产生的,可能我们就能用这种方法来了解动物实际上必须遵从的这种制约了。

        在当前这个案例中,似乎相关的制约条件只有一个——感官能力。如果掘土蜂出于某种原因并不能数清楚洞穴里的蝈蝈数量,但是能够在某些方面给它们自己的捕猎努力进行计数,那么两个竞争对手就有了信息不对等的情况。每一只都只“知道”洞穴里至少包含有b只蝈蝈,其中b是它自己已经捕捉到的数量。它可能会“估计”洞里的实际数目要比b多,但是它并不知道具体多了多少。在这样的条件下,格拉芬证明可期待的ESS大概近似于最初由毕晓普[35]和坎宁斯[36](1978)计算得到的那个所谓的“全面化的消耗战”。这里面的数学细节可以放到一边,就我们目前讨论的目的来说,关键在于一个扩展的消耗战模型所估计的行为,看起来将会非常像掘土蜂实际展示出来的协和式行为。

        如果我们对于检验“动物会优化”这样一个普遍性的假说感兴趣,那么上述这种事后诸葛亮的推理就很值得怀疑了。通过对假说细节方面的事后修正,一个人总能找到一个与事实相符合的假说版本。梅纳德·史密斯(1978)对于这类批评的回应就与此有关:“在测试一个模型时,我们不是在测试‘大自然会优化’这样一个普遍性的观点,而是关于制约条件、优化标准,以及遗传性的特定假说。”在当前这个案例中,我们要做一个普遍性的假设,即大自然的确在制约之下优化,并且对于那些可能的制约条件的相应的特定模型进行测试。

        之前提出的具体的制约条件是,掘土蜂的感官系统没有能力评估洞穴内所容纳的物品。这一点与同一种群的其他独立研究所呈现的证据是一致的(Brockmann,Grafen & Dawkins 1979;Brockmann & Dawkins 1979)。不过也没有理由将之视为一个永远不变、不可反转的固定限制。可能掘土蜂能够进化出来评估巢内所含物品的能力,但是需要付出成本。人们长久以来就知道与大金掘土蜂有亲缘关系的平原爱沙蜂有能力每天对它们的每个巢穴的内含物都做出评估(Baerends 1941)。大金掘土蜂每次只准备一个洞穴,产一枚卵,然后用土壤把洞填好,让幼虫自己去吃洞里准备好的食物。与之不同的是,平原爱沙蜂是一种渐次式的积累者,同时为多个洞穴做准备。一只雌虫要同时照顾两到三只成长中的幼虫,每一只都处于一个彼此分开的洞穴中。它的几只不同幼虫的年龄是错开的,对于食物的需求也是不同的。每天早上,它要在一次特别的“巡视”中查看每个洞穴目前的存货。通过在实验中人为改变洞穴里的存货,巴兰兹[37]的研究表明雌虫会就此调整它一整天为每个洞穴补充食物的量,以应对它在早间巡查中发现的情况。尽管这种补充的行为要持续一整天,但是洞穴中的食物在一天中其他时间内的改变则对雌虫的行为没有影响。所以,雌虫在使用它的评估技能时似乎很吝啬,在早间巡查之后的其他时间里就把这技能给关上了,几乎就像是使用着一台价值不菲又非常耗能的设备。可能与这个有意思的类比一样,这种评估技能无论具体是什么,都有可能需要一定的间接运营成本,即便(据巴兰兹,私人通信)那只涉及了时间方面的消耗而已。

        大金掘土蜂不是一种渐次积累者,倾向于一次准备一个洞穴的食物,那么它似乎应该比平原爱沙蜂要有着更少的洞穴评估需要。如果不去试图搞清楚洞穴里食物的数量,它不仅能节省一些运营成本——平原爱沙蜂似乎需要非常小心去分配这样的运营成本,还能把自己从最初的制造成本中解脱出来,不用去制造那些必要的神经和感官器件。或许,它能够从具备评估洞穴内含物的能力中获得一些微小的优势,但是只有在一种相对罕见的情况下才有用,那就是当它发现自己要与另一只掘土蜂竞争一个洞穴时。很容易想明白的就是,这个成本要大过收益,而选择作用也因此从未青睐过评估器官的进化。我认为,相对于“必要的突变变化从未出现”这样的假说,上面这个假说要更有建设性,也更为有趣。当然,我们得承认,前一类假说也有可能是真实情况,但是我更愿意只把它当成最后的救命稻草。

        在一个层次上由于另一个层次的选择作用所造成的不完美

        这本书所要解决的一个主要问题就是自然选择究竟在哪个层次上发挥作用。选择作用在生物群体的层次上时我们所应看到的适应性,会与选择作用在生物个体的层次上时我们所期待看到的适应性存在相当的差异。由此就可以得出结论,一名个体选择论者视为适应性的东西,可能在另一名类群选择论者看来不完美。这就是我认为古尔德和莱文廷(1979)的下述观点不太公平的主要原因:他们把现代适应论与霍尔丹用伏尔泰笔下的潘格罗士博士[38]命名的幼稚的完美论画上了等号。由于不认同存在对完美化的制约条件,一名适应论者便有了资本去相信一种生物的所有方面都是“通过适应而产生的对于问题的最优解决方案”,或者“对于一种生物在其环境中所做的事情,实际上不可能有谁会做得比它更好”。然而这样一名适应论者会极其在意他所使用的像“最优”和“更好”这样的词汇的含义。实际上有许多种类的适应性解释,的确也有潘格罗士式的,而像大多数类群选择论的适应性已经被现代适应论者彻底抛弃了。

        对于潘格罗士论者来说,证明某事是“有益的”(到底对谁或对什么有益却常常未加指明)就是对其存在性的充分解释。而另一方面,新达尔文主义的适应论者坚持要搞清楚选择进程的确切本质——如果它能导致进化出一种推定的适应性的话,尤其是,他会坚持用精确的语言来说明自然选择应该起作用的层次是什么。潘格罗士论者看到一种一比一的性别比例时,会认为这很好,因为这难道不是对于种群资源浪费的最小化吗?新达尔文主义的适应论者则会从细节上去考虑基因的命运(这些基因在父代身上发挥的作用导致了它们后代的性别比例的偏差),并且会去计算这个种群的进化稳定状态(Fisher 1930a)。潘格罗士理论在一夫多妻制的种群中就不再那么融洽了,在这样的种群中,雄性中的一小部分掌管着“后宫佳丽”,而其他的雄性只能坐在一群单身汉中间,消耗着整个种群几乎一半的食物资源,然而却对种群的繁衍根本做不出任何贡献。新达尔文主义的适应论者自有他的办法来跨过这道难题。这个系统的效率可能从种群的角度来看有着丑陋的低效率,但是从影响性状的基因的角度来看则是和谐融洽的,没有什么突变体可以在这件事上做得更好了。我的观点则是,新达尔文主义的适应论并非全能的、全面的信仰,并非对于所有问题都是最佳的解释,它只是把易于发生在潘格罗士理论中的大多数适应性解释都排除掉了。

        若干年以前,一位同行收到了一位想要读研究生的学生发来的申请,希望能够从事适应性方面的研究。这名学生是作为有神论者成长起来的,当时并不相信进化论。不过他相信适应性,但认为适应性是由上帝设计的,设计目的是为了将益处给予……啊,说不出来了,不过这恰恰就是问题所在!或许人们会认为,这个学生相信适应性是由自然选择的还是由上帝产生的无关紧要,毕竟无论是因为自然选择,还是因为上帝,反正适应性都是“有益的”,难道就不能招收一位有能力的有神论学生来探索生物从中受益的具体方式吗?对此,我的观点是否定的,因为在生命的层级体系中,对于一个实体有益的事情可能对于另一个实体来说是有害的,而创造论没有给我们任何基础让我们可以去假设一个实体会愿意让另一个实体得到繁荣。顺带一说,这位有神论的学生可能会在工作时突然停下来,奇怪上帝为什么花了很大的力气来为捕食者提供优美的适应性以捕捉猎物的同时,还要在另一方面给猎物以优美的适应性来妨碍捕猎行为。或许上帝就是喜欢观看这样的竞赛。回到主题上来,如果适应性是由上帝设计的,他可能是为了让动物个体受益(它的存活或是广义适合度,当然这两者不是一码事)而进行设计的,也可能是为了让物种受益,甚至让其他物种,比如让人类受益(有神论者常见的观点),还可能是为了让“大自然的平衡”受益,或是其他某些只有他自己才清楚的神秘莫测的目的。以上这些目的常常是互不相容的,互为替代关系的。所以适应性究竟对谁有益,这真的是一个至关紧要的问题。那些多配制的哺乳动物中的性别比例偏差现象,在一些特定的假说中是无法解释的,而在另一些假说中可能很好解释。一位适应论者如果在对于自然选择的基因理论有着恰当理解的框架之下工作,那么对于潘格罗士论者或许会认可的可能的功能方面的假说,这位适应论者只会赞同其中非常有限的一部分。

        本书所要传达的一个主要信息是,出于许多目的,最好不要把选择发挥作用的层次认定为生物个体或是群体,或是任何更大的单位,而要选择基因,或是更小的基因片段。这个困难的话题要在后面的章节中进行讨论。在此,只要知道以下这一点就足够了,即在基因层次上的选择,能够产生在个体层次上明显的不完美。一个经典的例子是杂合体优势现象。哪怕一个基因在纯合体中会显示有害的效应,它在杂合体中由于有益的效应也肯定会被选择。作为结果,种群中的生物个体就会有一个可以预测出来的比例,必然会带着纯合体所造成的缺陷。普遍性的关键之处就在于此。在一个有性的种群中,生物个体的基因组是种群中所有基因几乎随机组合的产物。基因相对于其等位基因而接受选择,标准就是基因的表型。基因分布在种群之中的个体的身体里,遍布整个种群,传了一代又一代,而所有个体中的基因也因此被平均化。一个给定基因所具有的效应通常取决于与它共享身体的其他一些基因——杂合体优势只不过是这之中的一个特例。要选择好的基因,那么群体中存在一定比例的糟糕个体似乎是一个几乎无可避免的结果,这里的“好”指的是一个基因在统计学的身体样本中的平均效应,而这个好的基因在这些身体样本中取代了其他的基因。

        只要我们还接受孟德尔式的随机重组作为给定和不可避免的条件,那么上述结果也将是必然的。威廉斯(1979)无法找到证据来证明性别比例是适应性进行精心调制的结果,他对此感到很失望,得出了一个很有洞察力的观点:

        性别只是后代身上许许多多似乎由父母来控制的适应性中的一员。比如说,在受到镰状细胞贫血影响的人类群体中,一个杂合体女性的带有显性A基因的卵子如果能够由带有隐性a基因的精子授精,或者反之,都会是有益处的,甚至终止纯合体胚胎的妊娠也是有益的。然而如果配偶也是杂合体,那么她就肯定要来一场孟德尔式的抽奖,即便这将意味着她一半的孩子会有显著降低的适应性。……在进化之中真正基础的问题可能只有在下述情况下才是可以回答的,那就是把每一个基因都视为与其他每一个基因有着终极的冲突性,甚至是同一个细胞里其他位点上的那些基因。对于自然选择,一个真正合理的理论最终必定还是基于自私的复制单元、基因,以及所有其他有能力偏差性地积累不同的变化形式的实体。

        阿门!

        由环境的不可预测性或“恶意性”造成的错误

        无论一种动物对环境适应得多么好,这些环境条件也必须要看作一种统计意义上的平均水平。我们通常不可能在细节上应对每一个可以想象得到的意外事故,于是任何给定的动物将会因此常常被观察到犯下了“错误”——很容易就是致命的错误。这与已经提到的时间滞后问题不是一回事。时间滞后问题的出现是因为环境统计学特性的不固定性:现在的平均条件与动物的祖先所经历的平均条件是不同的。而这里要说的问题更加无可避免。现代的动物可能是生活在与祖先相一致的平均条件之下,但是两者面对的环境中每时每刻可能发生的事情在每一天中也是不同的,这些情况太复杂了,不可能进行精确的预测。

        这种错误尤其是在行为方面常常会见到。一种动物更为静态的那些特性,比如它的解剖结构,显然是对长期平均条件适应的结果。一个动物个体的体形要么大,要么小,即便有需求也不可能眨眼间就发生改变。行为作为一种快速的肌肉运动,是动物全套适应性本领中的一部分,专门与高速调节有关。动物可以时而在这儿,时而在那儿,一会上树,一会入地,快速响应环境中的意外情况。这类意外情况的数量如果以其细节来界定,将会像国际象棋棋局数量一样,实际上是无穷的。就像下国际象棋的计算机(以及棋手)学会了把棋局分成一些具有普遍性的局面分类,那么这个数字就成为可以处理得了的数目了,那么一名适应论者所能期望的最佳结果就是:一种动物已经被编制好了程序,面对普遍性的意外情况的分类,相应地执行合适的行为,而这个数字将是一个可以处理得了的数目。实际的意外情况只能与这些普遍性的分类大致吻合,因此一定会有明显的错误发生。

        我们看到的上树的动物,可能是来自一个很久以前的树居祖先的种系。那些祖先经历自然选择时所爬的那些树总体来说与今天的树差不多是一样的,那么那些当时有用的普遍性行为准则,比如“永远不要去一根太细的树枝上”仍然是有效的。但是任何单独一棵树在细节上必然与另一棵树不同。树叶的位置稍有不同,树枝折断的应力只能从其直径上做一个大致的预测,诸如此类。无论我们在信仰上是多么坚定的适应论者,我们只能期望动物是统计平均意义上的优化者,永远不可能对所有细节做出完美的预计与准备。

        到此为止,我们已经考虑了环境在统计学意义上的复杂性,并因此而难于预测。我们还没有考虑它从动物的角度来看所具有的主动性的恶意。当猴子们在粗壮的树枝上胡闹的时候,树枝当然不可能突然显露出蓄意的恶意。但是“粗壮的树枝”也可能其实是一条伪装的巨蟒,那么我们的猴子所犯的最后一个错误就不是意外了,而是在某种意义上成为蓄意设计好的“阴谋”。猴子所处的部分环境是死的,或者至少对于猴子是否存在没什么区别,而猴子的错误就可以被归因于统计学上的不可预测性。但是环境的另一部分由活的东西构成,它们自己也适应了从猴子的牺牲中获取利益。猴子所处环境的这一部分就可以被称为有恶意的。

        恶意环境造成的影响本身可能是难以预测的,其原因与前面一样,但是它们还引入了额外的危险,让受害者有更多的机会犯下“错误”。一只知更鸟喂养其巢中的杜鹃时就犯下了错误,这个错误从某种意义上大概可以说是一个不适应的错误。这并非如同环境中的非恶意部分在统计上的不可预测性所导致的那种孤立的、不可预知的事件,这是一种反复出现的错误,折磨着一代又一代的知更鸟,甚至在同一只知更鸟的生命中会发生好几次。这类案例总是让我们感到奇怪,为什么这些生物在进化的时间尺度上仍旧顺从于这些有悖于它们最佳利益的操控?为什么选择作用不干脆抹除掉知更鸟易受杜鹃欺骗的特性?我相信,这类问题以及其他许许多多问题终有一天将会成为基础,从中产生出生物学的一个新的分支——专门研究操控、军备竞赛,以及表型的科学。

      7. 理查德·道金斯《自私的基因》1-9

        目录
        前言
        第1章 为什么会有人呢?
        第2章 复制因子
        第3章 不朽的双螺旋
        第4章 基因机器
        第5章 进犯行为:稳定性和自私的机器
        第6章 基因种族
        第7章 计划生育
        第8章 代际之战
        第9章 两性战争
        第10章 你为我搔痒,我就骑在你的头上
        第11章 觅母:新的复制因子
        第12章 好人终有好报
        第13章 基因的延伸
        第14章 基因决定论与基因选择论
        第15章 对于完美化的制约

        前言

        读者不妨把本书当作科学幻想小说来阅读。笔者构思行文着意于引人深思,唤起遐想。然而,本书绝非杜撰之作。它不是幻想,而是科学。“事实比想象更离奇”,暂不论这句话是否有老生常谈之嫌,它却确切地表达了笔者对客观事实的印象。我们都是生存机器——作为运载工具的机器人,其程序是盲目编制的,为的是永久保存所谓基因这种禀性自私的因子。这一事实直至今天仍使我惊叹不已。我对其中的道理虽已领略多年,但它始终使我感到有点难以置信。我的愿望之一是能够凭此使读者惊叹不已。

        在写作过程中似乎有3位假想的读者一直在我背后不时地观望,我愿将本书奉献给他们。第一位是我们称之为外行的一般读者。为了他,我几乎一概避免使用术语。在不得已使用专门术语的地方,我都一一详加说明。我不明白为什么我们不把一些学术性刊物里的大部分术语也删掉呢?虽然我假定外行人不具备专业知识,但我却并不认为他们愚昧无知。只要能做到深入浅出,就能使科学通俗易懂。我全力以赴,试图用通俗的语言把复杂艰涩的思想通俗化,但又不丧失其精髓。我这样尝试的效果如何尚不得而知。我的另一个抱负是,让这本书成为一本引人入胜、扣人心弦的读物,使其内容无愧于题材。但这方面我能取得多大成功,心中也毫无把握。我一向认为,生物学犹如神话故事那样迷人,因为事实上,生物学的内容就是神话故事。本书的题材理应激发读者产生莫大的兴趣并带来启发,但我所能做到的充其量不过是沧海一粟,再多我也不敢奢望了。

        第二个假想的读者是个行家。他是一个苛刻的评论家,对我所用的一些比拟笔法和修辞手段很不以为然。他总是喜欢用这样的短语:“除此之外……”,“但在另一方面……”,“啧!啧!”我细心地听取了他的意见,纯粹为了满足他的要求,我甚至把书中的一章全部重写了一遍。但归根结底,讲述的方式毕竟还是我的选择。这位专家对我的写作方式恐怕不会完全没有微词吧!但我仍极为热切地希望,即使是他也能在拙作中发现一点新内容,也许是对大家所熟悉的观点的一种新见解,甚至受到启发产生出自己的新观点。如果说我的这种心愿太大,那么,我是否可以希望,这本书至少能为他的旅途消愁解闷?

        我心目中的第三位读者是位从外行向内行过渡的学生。如果他至今还没有抱定目标要在哪一方面成为专家,那么我要奉劝他考虑一下我所从事的专业——动物学。动物学固然自有其“实用价值”,且大部分动物又有其逗人喜爱之处,但除此之外,研究动物学有其更为深远的意义:因为宇宙万物之中,我们这些动物当属最为复杂、设计最为完美的“机器”了。既然如此,弃动物学而选择其他学科就令人费解了!对那些已经献身于动物学研究的学生来说,但愿本书能有一定的教育价值,因为他们在学习过程中孜孜不倦钻研的经典理论著作和专业书籍,正是笔者撰写本书的依据。如果他们发现经典理论著作难以理解,那么我的深入浅出的论述,作为入门或辅助材料之类的读物,也许对他们有所助益。

        显然,要同时迎合3种类型的读者的口味势必要冒一定的风险。我只能说,对此我始终是十分清楚的。不过,考虑到我的这种尝试所能带来的种种益处,我甘愿冒这种风险。

        我是个行为生态学家,所以动物行为是本书的主题。我接受过行为生态学的传统训练,从中获得的教益是不言而喻的。特别值得一提的是,在牛津大学我曾在廷贝亨[1]指导下工作过12个年头。在那些岁月里,他对我的影响之深,恐怕连他自己也想不到。“生存机器”这个词语虽非实际出自他口,但说成是他的首创亦不为过。近年来,行为生态学受新思潮的冲击而生机勃发。从传统观点来说,这股思潮的来源不属行为生态学的范畴。本书在很大程度上即取材于这些异军突起的思想。这些新思想的倡导者主要是威廉斯、史密斯、汉密尔顿和特里弗斯,我将分别在有关章节中提及。

        各方人士为本书的书名提出过许多建议,我已将他们建议的名称分别移作有关各章的题目:“不朽的双螺旋”,来自克雷布斯(John Krebs);“基因机器”,来自莫里斯;“基因种族”,来自克拉顿-布罗克(Tim Clutton-Brock)和简·道金斯,为此我向他们表示谢意,另外,特向斯蒂芬·波特(Stephen Potter)表示歉意。

        尽管假想的读者可以作为寄托虔诚希望的对象,但同现实生活中的读者和批评家相比,毕竟无太大实际意义。笔者有一癖好,文章非改上几遍不肯罢休。为此,玛丽安·道金斯不得不付出艰辛的劳动。对我来说,她对生物学文献中渊博知识的掌握,对理论问题的深刻理解,以及她不断给予我的鼓励和精神上的支持,都是我从事此项工作不可或缺的。克雷布斯也阅读了全书初稿。有关本书的议题,他的造诣比我深,而且他毫不吝惜地提出许多意见和建议。格莱尼丝·汤姆森(Glenys Thomson)和沃尔特·博德默(Walter Bodmer)对我处理遗传学论题的方式提出过既诚恳又严厉的批评,而我所做的修改恐怕还不能完全使他们感到满意,但我希望他们会发现修订后的稿子已有所改进。他们不厌其烦地为我花费了大量时间,对此我尤为感激。约翰·道金斯以其准确无误的眼力指出了一些容易使人误解的术语,并提出了难能可贵的修改意见。我不可能找到比马克斯韦尔·斯坦普(Maxwell Stamp)更适合、更有学问的“外行”了。他敏锐地在初稿中发现了一个反复出现的文体缺陷,这对我完成最后一稿助益匪浅。最后,我还要向牛津大学出版社的罗杰斯表示谢忱。他审阅过我的手稿,所提意见富于助益;此外,在安排本书的出版时,他做了许多分外的工作。

        理查德·道金斯 1976年

        第1章 为什么会有人呢?

        行星上的智慧生物开始思索自身存在的道理时,才算真正成熟。如若宇宙空间的高级生物莅临地球的话,为评估我们的文明水平,他们可能提出的第一个问题是:“他们发现了进化规律没有?”30多亿年来,地球上一直存在着各种生命有机体,但对生命存在的道理,它们始终一无所知。后来,有一个人终于弄懂了事实真相,他就是达尔文(Charles Darwin)。说句公道话,其他人对事实真相也曾有过一些模糊的想法,但对我们存在的道理第一个做了有条理、站得住脚的阐述的却是达尔文。好奇的孩子常会问:“为什么会有人呢?”达尔文使我们能够在面对这个问题时,给出一个切合实际的回答。生命有意义吗?人生目的何在?人是什么?我们在面对这些深刻的问题时,无须再求助于怪力乱神。著名动物学家辛普森(G.G.Simpson)在提出上面最后一个问题之后,曾这样说过:“现在我要讲明的一点是,1859年之前试图回答这一问题的一切尝试都是徒劳无益的,如果我们将其全部置于脑后,我们的境遇会更好些。”*

        今天,人们对进化论产生疑问,犹如怀疑地球绕着太阳转的理论,但达尔文进化论的全部含义仍有待人们去了解。在大学里,动物学仍是少数人研究的课题,即使是那些决定选学这门课的人,往往也没有理解其深刻的哲学意义。哲学以及被称为“人文学科”的课程,现在讲授起来,仍好像不曾有过达尔文此人。毫无疑问,这种状况以后将会改变。不管怎样,本书并无意于全面地宣扬达尔文主义,而着眼于探索进化论对一个特定问题所产生的种种影响。我的目的是研究自私行为和利他行为在生物学上的意义。

        除了学术意义,这个主题对人类的重要性也显而易见。它关乎我们人类生活的各个方面,我们的爱与憎、斗争与合作、馈赠与盗窃、贪婪与慷慨。这些本来是洛伦茨(Lorenz)的《论进犯行为》(On Aggression)、阿德里(Ardrey)的《社会契约》(The Social Contract)和埃布埃尔-埃尔布菲尔特(Eibl-Eibesfeldt)的《爱与憎》(Love and Hate)探讨的主题。这3本书的问题在于它们的作者铸下了大错。他们犯错是因为他们误解了进化论。他们错误地假定进化的关键在于物种(或者种群)的利益,而不是个体(或者基因)的利益。可笑的是,阿什利·蒙塔古(Ashley Montagu)批评洛伦茨,说他是“(相信)‘大自然是残酷无情的’的19世纪思想家的‘嫡系’……”。在我看来,洛伦茨和蒙塔古是半斤八两,二人都拒斥丁尼生这个著名短语的含义。与二人不同,我认为这句话极好地概括了我们对自然选择(理论)的现代理解。

        我在开始论证之前,想先扼要地说明一下这是一种什么样的论点,以及不是什么样的论点。如果有人告诉我们,某人在芝加哥黑社会中长期过着荣华富贵的生活,我们就能够对他是什么样的人做一些猜测。我们可以想见,他的性格粗暴鲁莽,动辄开枪,而且能吸引忠贞不贰的朋友。而推论并非是万无一失的。但如果你知道一个人是在什么情况下生活和发迹的,那你就能够对他的性格做出某些推断了。本书的论点是,我们以及其他一切动物都是各自的基因所创造的机器。在一个具有高度竞争性的世界上,像芝加哥发迹的匪徒一样,我们的基因生存了下来,有的存续长达几百万年。这使我们有理由在我们的基因中发现某些特性。我将要论证,成功基因的一个突出特性就是其无情的自私性。这种基因的自私性通常会导致个体行为的自私性。然而我们也会看到,基因为了更有效地达到其自私的目的,在某些特殊情况下,也会滋长一种有限的利他主义。上句中,“特殊”和“有限”是两个重要的词。尽管我们可能觉得这种情况难以置信,但对整个物种来说,普遍的爱和普遍的利益在进化论上简直是毫无意义的概念。

        因此,现在我要讲一下本书所不准备论证的第一点。我并不提倡以进化论为基础的道德观*,我只是讲事物是如何进化的,而不是讲人类应该怎样行动才符合道德准则。我之所以强调这一点,是因为我知道我有被人误解的危险。有些人不能把阐述对事物的认识同提倡事物这两件事区别开来,此类人实在为数太多。我自己也觉得,生活在一个单纯以基因那种普遍的、无情的自私性法则为基础的人类社会中将会令人厌恶至极。然而我们无论怎样感到惋惜,事实毕竟就是事实。本书的主旨在于引起读者的兴趣,如果你想从中引出某种教益,那么阅读时,可以视之为一种告诫。如果你也和我一样希望为了共同的利益,建立一个人与人之间慷慨大度、相互无私合作的社会,那你就不能指望从生物的本性获得什么助益。让我们设法通过教育把慷慨大度和利他主义灌输到人们头脑中去吧!因为我们生来就是自私的。让我们懂得我们自私的基因居心何在,至少可以有机会去打乱它们的计划,而这是其他物种从来没能做到的。

        上述有关教育的议论,必然表明下面的观点是错误的:从遗传学的角度来看,继承下来的特性是明确固定、不容改变的。这是一种极为常见的谬见。我们的基因可以驱使我们的行为自私,但我们也不必终生屈从。如果我们在遗传上生来就是利他性的,再去学利他主义也许不那么困难。在动物中,只有人类受文化也受后天获得的以及继承下来的影响的支配。有人可能会说,文化是如此之重要,以至于不论基因自私与否,它与我们对人类本性的理解毫不相干。另有一些人也会不同意这种说法,这完全取决于在作为人类特性的决定性因素“是天性还是教养”的辩论中,你站在什么立场上。这就使我要讲一讲本书不准备论证的第二点。在“本性和教养”的争论中,本书不支持这一或那一立场。当然我有自己的观点,但我不打算表达出来,只在第13章中,把我的观点融合到了我阐述的文化观点中。如果确实证明基因同现代人的行为毫不相干,如果在动物界中我们在这方面确实是独一无二的,那么至少探究一下我们在如此短期内成为例外的规律,仍将兴味无穷。而假如我们这一物种并不像我们一厢情愿的那样是个例外的话,研究这一规律就更加重要。

        本书不准备论证的第三点是,不对人类或其他某一种动物的行为细节进行描述。只有在举例说明时,我才使用有事实根据的细节。我不会说:“如果你看一下狒狒的行为,就会发现它们的行为是自私的,所以人类的行为也可能是自私的。”我的关于“芝加哥匪徒”的论证在逻辑上与此迥然不同。真实情况是,人和狒狒都是经由自然选择进化而来的。如果你注意一下自然选择进行的方式,似乎可以得出这样的结论:经由自然选择进化而来的任何东西应该都是自私的。因此我们可以预见到,当我们去观察狒狒、人类和其他一切生物的行为时,一定会发现它们的行为是自私的。如果我们发现自己的预见是错误的,如果我们所观察到的人类行为的确是利他性的,我们就会遇到某些令人迷惑不解的事情,需要进行阐明。

        我们需要有一个定义,然后再进一步探讨。如果一个实体,例如狒狒,其行为的结果是牺牲自己的利益,从而增进了另一同类实体的利益,该实体就被认为是具有利他性的。而自私行为的效果恰好相反。我们所谓的“利益”就是指“生存的机会”,即使行为的效果对事实上的生与死所产生的影响小得微不足道。人们现在体会到,对生存概率的影响,在表面上看来,哪怕是极微小的,也能够对进化发生很大的作用。这是对于达尔文学说最新解释所产生的一个令人吃惊的后果,因为这种影响有大量的时间可供其发挥作用。

        上述有关利他和自私的定义是指行为上的,而不是指主观意识上的,弄清这一点至关重要。在这里我的旨趣不在动机的心理学方面,我不准备去论证人们在做出利他行为时,是否“真的”私下或下意识地抱有自私的动机。他们或许是,或许不是,也许我们永远也不可能知道。但无论怎样,这些都不是本书所要探讨的内容。我的定义只涉及行为的效果,是降低还是提高这个假定的利他主义者生存的可能性,以及这个假定的受益者生存的可能性。

        说明行为对生存所产生的远期影响是一件异常复杂的事情。事实上,在把这一定义运用于实际行为时,我们必须用“明显的”这个词来修饰提到的实际行为。一个明显的是利他性的行为表面看去似乎(不管可能性何其小)使利他主义者有较大的可能死亡,而受益者有较大的可能生存下来。更仔细地观察一下,我们常常会发现明显的利他行为实际上是伪装起来的自私行为。我要再次声明,我绝不是说它们的潜在动机都是自私的。我的意思是,这种行为对生存可能性所产生的实际效果,同我们原来的设想正好相反。

        现在我来举一些明显的自私以及明显的利他行为的例子。每当讨论我们自己这一物种时,要避免思想上的主观性习惯是困难的,因此我将以其他动物为例。先举一些具有代表性的有关个体动物的自私行为的例子。

        黑头鸥集群筑巢,巢与巢之间相距仅几英尺,雏鸥刚出壳,娇嫩幼小无防卫能力,易被吞食。一只黑头鸥等到它的邻居转过身去,或许趁它去捉鱼时,便扑上前去将它邻居的一只雏鸥一口囫囵吞下去,这种情况相当普遍。就这样它吃了一顿营养丰富的大餐,而不必再费神去捉鱼了,也不必离开它的巢,使其失去保护。

        雌螳螂那种喜食同类的可怕习性,更是人们所熟知的。螳螂是食肉的大昆虫,它们一般吞食比它们小的昆虫,如苍蝇等。但它们会袭击几乎一切活的东西。交配时,雄螳螂小心翼翼地爬到雌螳螂背上,骑着进行交配。雌螳螂一有机会就把雄螳螂吃掉,首先把头咬掉,这发生在雄螳螂接近时,或在刚一爬上去之后,或在分开之后。按理说,雌螳螂似乎应等到交配完,再开始吃雄螳螂。但脑袋的丢失,似乎并不会打乱雄螳螂身体其余部分进行交配的进程。的确,由于某些神经抑制中心位于昆虫的头部,把头吃掉可能反而会改善雄性的性活动。*如果是这样的话,那倒不失为一种额外收获。主要的收获是雌螳螂饱餐了一顿。

        虽然这些同类相食的极端例子同我们的定义很契合,但“自私”这个词就未免有点轻描淡写了。对于南极洲帝企鹅的那种所谓胆怯的行为,我们也许更能直接地寄予同情。可以看到它们伫立在水边,由于有被海豹吃掉的危险,在潜入水中之前踌躇犹疑。只要有一只先潜入水中,其余的就会知道水中是否有海豹。自然没有哪一个肯当试验品,所以大家都在等,有时甚至相互往水中推。

        更为常见的自私行为可能只不过是拒绝分享某些珍视的东西,如食物、地盘或配偶等。现在举一些明显的利他性行为的例子。

        工蜂的刺蜇行为是抵御蜂蜜掠夺者的一种十分有效的手段。但执行刺蜇的工蜂是一些敢死队队员。在刺蜇这一行动中,一些生命攸关的内脏通常要被拖出体外,工蜂很快就会因此而死去。它的这种自杀性使命可能把蜂群储存的重要食物保存了下来,而它们自己却不能活着受益了。按照我们的定义,这是一种利他性行为。请记住,我们所议论的不是有意识的动机。在利他性行为以及自私性行为的例子中,这种有意识的动机可能存在,也可能不存在,但这些同我们的定义都不相干。

        为朋友献身显然是一种利他性行为,但为朋友冒点风险也是一种利他性行为。有许多小鸟在看到捕食类飞禽,如鹰飞近时会发出一种特有的警告声,鸟群一听到这种警告声,就采取适当的逃避行动。非直接的证据表明,发出这种警告声的鸟使自己处于特别危险的境地,因为它把捕食者的注意力引到了自己身上。这种额外风险并不算大,然而按照我们的定义,乍看之下至少还称得上是一种利他性行为。

        动物利他行为中最普通、明显的例子,是父母,尤其是母亲对其子女所表现的利他性行为。它们或在巢内,或在体内孕育这些小生命,付出巨大代价去喂养它们,冒很大风险去保护它们免受捕食者伤害。在这里只举一个具体例子,许多在地面筑巢的鸟类,当捕食者,如狐狸等接近时,会上演一出“调虎离山计”。雏鸟的母亲一瘸一拐地离开巢穴,同时把一边的翅膀展开,好像已经折断。捕食者认为猎物就要到口,便舍弃那个有雏鸟安卧其中的鸟巢。在狐狸的爪子就要抓到雌鸟时,它终于放弃伪装,腾空而起。这样,一窝雏鸟就可能安然无恙,但它自己却要冒点风险。

        我不准备以讲故事的方式来阐明一个论点。经过选择的例子对任何有价值的概括来说从来就不是重要的证据。这些故事只不过是用来说明在个体水平上,我所讲的利他性行为以及自私性行为是什么意思。本书将阐明如何用我称之为基因的自私性这一基本法则来解释个体自私性和个体利他性。但我首先需要讲一下人们在解释利他性时常犯的一个特别错误,因为它流传很广,甚至在学校里被广为传授。

        这种错误解释的根源在于我已提到过的,生物之进化是“为其物种谋利益”或者是“为其群体谋利益”这一错误概念。这种错误的概念如何渗入生物学领域是显而易见的。动物的生命中有大量时间是用于繁殖的,我们在自然界所观察到的利他性自我牺牲行为,大部分是父母为其下一代而做的。“使物种永存”通常是繁殖的委婉语,物种永存无疑是繁殖的一个必然结果。只要在逻辑推理时稍微引申过头一点,就可以推断,繁殖的“功能”就是“为了”使物种永存。从这一推断再向前迈出错误的一小步,就可得出结论说,动物的行为方式一般以其物种的永恒性为目的,因而才有对同一物种的其他成员的利他主义行为。

        这种思维方式能够以模糊的达尔文主义的语言表达出来。进化以自然选择为动力,而自然选择是指“适者”的有差别的生存。但我们所谈论的适者是指个体,种属,物种,还是其他什么?从某种意义上说,这并无多大关系,但涉及利他主义时,这显然是至关重要的。如果在达尔文所谓的生存竞争中进行竞争的是物种,那么个体似乎可以恰如其分地被认为是这种竞争中的马前卒。为了整个物种的更大利益,个体就得成为牺牲品。用词稍雅一点,一个群体,如一个物种或一个物种中的一个种群,如果它的个体成员为了本群体的利益准备牺牲自己,这样的一个群体灭绝的可能性要比与之竞争的另一个将自己的自私利益放在首位的群体小。因此,世界多半要为那些具有自我牺牲精神的个体所组成的群体所占据。这就是温-爱德华兹(Wynne-Edwards)在其一本著名的书中公之于世的“类群选择”理论。这一理论后为阿德里在其《社会契约》一书中所普及。另一个正统的理论通常叫作“个体选择”理论,但我个人却偏爱使用“基因选择”这一名词。

        对于刚提出的上述争论,“个体选择”论者可以不假思索地这样回答:几乎可以肯定,即使在利他主义者的群体中也有少数持不同意见者拒绝做出任何牺牲。假如有一个自私的叛逆者准备利用其他成员的利他主义,按照定义,它比其他成员更可能生存下来并繁殖后代。这些后代都有继承其自私特性的倾向。这样的自然选择经过几代之后,利他性的群体将会被自私的个体淹没,就不能同自私性的群体分辨开来了。我们姑且假定开始时存在无叛逆者的纯粹利他性群体,尽管这不大可能,但很难看出又有什么东西能够阻止自私的个体从邻近的自私群体中移居过来,然后由于相互通婚,玷污了利他性群体的纯洁性。

        个体选择论者也会承认群体确实会消亡,也承认一个群体是否会灭绝可能受该群体中个体行为的影响。他们甚至可能承认,只要一个群体中的个体具有远见卓识,就会懂得克制自私贪婪,到头来成为它们的最大利益所在,从而避免整个群体的毁灭。但同个体竞争中那种短兵相接、速战速决的搏斗相比,群体灭绝是一个缓慢的过程,甚至在一个群体缓慢地、不可抗拒地衰亡时,该群体中的一些自私的个体,在损害利他主义者的情况下,仍可获得短期的繁荣。

        尽管类群选择的理论在今天已得不到那些了解进化论的专业生物学家多大的支持,但它仍具有巨大的直观感召力。历届动物学学生在进入大学之后,都惊奇地发现这不是一种正统的观点。这不该责怪他们,因为在为英国高级生物学教师编写的《纳费尔德生物学教师指南》一书中,我们可以找到下面这句话:“在高级动物中,为了确保本物种的生存,会出现个体的自杀行为。”这本指南的不知名作者幸而根本没有意识到他提出了一个有争议的问题。在这方面这位作者和诺贝尔奖得主洛伦茨所见略同。洛伦茨在《论进犯行为》一书中讲到进犯行为在物种保存方面的功能时,认为功能之一是确保只有最适合的个体才有繁殖的权利。这是个典型的循环证明。但这里我要说明的一点是,类群选择的观点竟如此根深蒂固,以至于洛伦茨像《纳费尔德生物学教师指南》的作者一样,显然不曾认识到,他的说法同正统的达尔文学说是相抵触的。

        最近我在英国广播公司电视节目中听到一个有关澳大利亚蜘蛛的报道。节目中提到一个同样性质的、听来使人忍俊不禁的例子,如没有这个例子,那倒是一档相当精彩的节目。主持这一节目的“专家”评论说,大部分蜘蛛幼虫最后为其他物种所吞食。然后她继续说:“这也许就是它们生存的真正目的,因为要保存它们的物种,只需要少数几个个体生存就行。”

        阿德里在《社会契约》中用类群选择的理论解释整个社会的秩序。他明确地认为,人类是从动物这条正路偏离出来的一个物种。阿德里至少是个用功的人,他决定和正统的理论唱反调是经过充分论证的。为此,他应受到赞扬。

        类群选择理论之所以具有巨大的吸引力,原因之一也许是它同我们大部分人的道德和政治观念完全相吻合。作为个人,我们的行为时常是自私的,但在我们以高姿态出现的时刻,我们赞誉那些后天下之乐而乐的人,虽然对“天下”这个词所指的范围如何理解,我们仍莫衷一是。一个群体范围内的利他行为常常同群体之间的自私行为并行不悖。从另一个意义来说,国家是我们利他性自我牺牲的主要受益者。青年人作为个体应为国家整体的更大荣誉而牺牲,令人费解的是,在和平时期号召人们做出一些微小的牺牲,放慢他们提高生活水平的速度,似乎比在战争时期要求他们献出生命的号召更难奏效。

        最近出现了一种同民族主义和爱国主义背道而驰的、代之以全人类的物种作为我们同情的目标的趋势。这种把我们的利他主义目标加以人道主义的拔高,带来一个有趣的必然结果——进化论中的“物种利益”这一概念似乎再次得到了支持。政治上的自由主义者通常是物种道德最笃信不疑的代言人,而现在却对那些稍微扩大一些利他主义范围以包括其他物种的人极尽其嘲笑之能事。如果我说我对保护鲸鱼免受捕杀比对改善人类的居住条件更感兴趣,很可能会使我的某些朋友大为震惊。

        同一物种中的成员同其他物种的成员相比,前者更应得到道义上的特殊考虑,这种情感既古老又根深蒂固。非战时杀人被认为是日常犯罪中最严重的罪行。受到我们文明更加严厉的谴责的唯一一件事是吃人(即使是吃死人),然而我们却津津有味地吃其他物种的成员。我们当中许多人在看到那些哪怕是人类最可怕的罪犯被执行死刑时,也觉得惨不忍睹,但我们却兴高采烈地鼓励射杀那些相当温顺的供观赏的动物。我们确实是以屠杀其他无害物种的成员作为寻欢作乐的手段的。一个人类的胎儿,所具有的人类感情丝毫不比一个阿米巴[1]多,但它所享受的尊严和得到的法律保护却远远超过一只成年的黑猩猩。黑猩猩有感情,有思维,而且最近的试验证明,黑猩猩甚至能够学会某种形式的人类语言。就因为胎儿和我们同属一个物种,就立刻被赋予相应的特殊权利。我不知道能否将“物种主义”的道德[赖德(Richard Ryder)用语]置于一个比“种族主义”更合理的地位上,但我知道,这种“物种主义”在进化生物学上是毫无正当依据的。

        在生物学上,按照进化理论,关于利他主义应该在什么程度上表现出来尚存争论。这种争论正好反映出与之平行的,在人类道德中关于利他主义在什么程度上是可取的——家庭、国家、种族、物种以及一切生物——所存在的争论。对于群体成员之间因竞争而相互交恶的情况,甚至连类群选择论者也会觉得不足为奇。但值得一问的是,类群选择论者如何决定哪一级的水平才是重要的呢?如果说可以选择在同一物种的群体之间以及在不同物种之间进行,那么选择为什么就不能在更高一级的群体之间进行呢?物种组成属,属组成科,科组成目,目组成纲。狮子和羚羊与我们一样,同属哺乳纲。难道我们不应该要求狮子“为了哺乳纲的利益”,不要再去杀害羚羊吗?为了不致使这一纲灭绝,毫无疑问,它们应该去捕食鸟类或爬行动物。可是,照此类推下去,为了使脊椎动物这一门全部永恒地存在下去又该怎样呢?

        运用归谬法进行论证,同时揭示类群选择理论无法自圆其说的困境,当然对我很有利,但明显存在的个体的利他行为仍有待解释。阿德里竟然说,对于像汤姆森氏瞪羚(Thomson’s gazelles)的跳跃这种行为,类群选择是唯一可能的解释。这种在捕食者面前夺目的猛跳同鸟的警告声相似,因为这种跳跃似乎是在向其同伴报警,同时明显地把捕食者的注意力吸引到跳跃者自己身上。我们有责任对这种跳跃行为以及类似现象做出解释,这就是我在后面几章中所要探讨的问题。

        在深入讨论之前,我必须为我的信念辩解几句。我认为,从发生在最最低级的水平上的选择出发是解释进化论的最好方法。我的这一信念深受威廉斯的伟大著作《适应与自然选择》(Adaptation and Natural Selection)的影响。我要运用的中心观点,可以追溯到19世纪末20世纪初基因学说尚未出现的日子,那时魏斯曼[2]的“种质的延续性”(continuity of the germ-plasm)理论已预示出今日的发展。我将论证的选择的基本单位,也就是自我利益的基本单位,既不是物种,也不是群体,严格说来,甚至也不是个体,而是遗传单位基因。*对于某些生物学家来讲,这乍听起来像是一种极端的观点。我希望,在他们理解了我的真正意思时,会同意这种观点实质上是正统的,尽管表达的方式与众不同。进行论证需要时间,而我们必须从头开始,以生命起源为其开端。

        第2章 复制因子

        天地伊始,一切单一纯简。即使是简单的宇宙,要说清楚它是怎样开始形成的又谈何容易?而复杂的生命,或能够创造生命的生物是如何突然出现,而且全部装备齐全的,我想,这无疑是一个更难解答的问题。达尔文的自然选择进化论是令人满意的,因为它说明了由单一纯简变成错综复杂的途径,说明了杂乱无章的原子如何能分类排列,形成越来越复杂的模型,直至最终创造人类。人们一直试图揭开人类生存的奥秘,而迄今为止只有达尔文提供的答案是令人信服的。我打算用更为通俗的语言阐明这个伟大的理论,并从进化还未发生以前的年代谈起。

        达尔文的“适者生存”其实是稳定者生存(survival of the stable)这个普遍法则的广义特殊情况。宇宙为稳定的物质所占据。所谓稳定的物质,是指原子的聚合体,它因具有足够的稳定性或普遍性而被赋予这个名称。它可能是一个独特的原子聚合体,如马特霍恩(Matterhorn)[1],它存在的时间之长值得人们为之命名。稳定的物质也可能是属于某个种类(class)的实体,如雨点,它们出现得如此频繁以至于理应有一个集合名词作为名称,尽管雨点本身存在的时间是短暂的。我们周围看得见的以及我们认为需要解释的物质——岩石、银河、海洋的波涛——虽大小不同,却都是稳定的原子模型。肥皂泡往往是球状的,因为这是薄膜充满气体时的稳定形状。在宇宙飞船上,水也稳定成球形的液滴状,但在地球上,由于地球引力的关系,静止的水的稳定表面是水平的。盐的结晶体一般是立方体,因为这是把钠离子和氯离子聚合在一起的稳定形式。在太阳里,最简单的原子即氢原子不断聚变成氦原子,因为在那样的条件下,氦的结构比较稳定。遍布宇宙各处的星球上,其他各种甚至更为复杂的原子正在形成。依照目前流行的理论,早在宇宙大爆炸之时,这些比较复杂的原子已开始形成。我们地球上的各种元素也来源于此。

        有时候,原子相遇后经化学反应会结合成分子,这些分子具有程度不同的稳定性。它们可能很大。一颗钻石那样的结晶体可以视为一个单一分子,其稳定程度是众所周知的,但同时又是一个十分简单的分子,因为它内部的原子结构是无穷无尽地重复的。在现在的生命有机体中,还有其他高度复杂的大分子中,它们的复杂性在好几个方面表现出来。我们血液中的血红蛋白就是典型的蛋白质分子。它由较小的分子氨基酸的链组成,每个分子包含几十个精确排列的原子。在血红蛋白分子里有574个氨基酸分子,它们排列成4条互相缠绕在一起的链,形成一个立体球形,其结构之错综复杂实在使人眼花缭乱。一个血红蛋白分子的模型看起来像一棵茂密的蒺藜,但和真的蒺藜又不一样,它并不是杂乱的近似模型,而是毫厘不爽的固定结构。这种结构在人体内同样地重复60万亿亿次以上,其结构完全一致。血红蛋白这样的蛋白分子,其酷似蒺藜的形态是稳定的,就是说,它的两对由序列相同的氨基酸构成的链,像两条弹簧一样倾向于形成完全相同的立体盘绕结构。在人体内,血红蛋白蒺藜以每秒约400万亿个的速度形成它们“喜爱”的形状,而同时另外一些血红蛋白以同样的速度被破坏。

        血红蛋白是个现代分子,人们通常用它来说明原子趋向于形成某种稳定结构的原理。我们在这里要谈的是,远在地球还没有生命之前,通过一般的物理或化学过程,分子的某种形式的初步进化现象可能就已存在。没有必要考虑诸如预见性、目的性、方向性等问题。如果一组原子受到能量的影响而形成某种稳定的结构,它们往往倾向于保持这种结构。自然选择的最初形式不过是选择稳定的模式并抛弃不稳定的模式罢了,这里面并没有什么难以理解的地方,事物的发展只能是这样。

        可是,我们自然不能因此认为,这些原理本身就足以解释一些结构复杂的实体,如人类的存在。取一定数量的原子放在一起,在某种外界能量的影响下,不停地摇动,有朝一日它们会碰巧落入正确的模型,于是亚当[2]就会降临!这是绝对办不到的。你可以用这个方法把几十个原子变成一个分子,但一个人体内的原子多得不计其数,如果想制造一个人,你就得摇动你那个生化鸡尾酒混合器,摇动的时间之久,就连宇宙存在的漫长岁月与之相比都好像只是一眨眼的工夫。即使到了那个时候,你也不会如愿以偿。在这里,我们必须求助于达尔文学说的高度概括的理论。有关分子形成的缓慢过程的故事只能讲到这儿,其他的该由达尔文的学说去解释了。

        有关生命的起源,我的叙述只能是纯理论的。事实上当时并无人在场。在这方面存在很多观点对立的学说,但它们也有某些共同的特点。我的概括性叙述大概与事实不会相去太远。*

        生命出现之前,地球上有哪些大量的化学原料,我们不得而知。但很可能有水、二氧化碳、甲烷和氨:它们都是简单的化合物。就我们所知,它们至少存在于我们太阳系的其他一些行星上。一些化学家曾经试图模拟地球在远古时代所具有的化学条件。他们把这些简单的物质放入一个烧瓶中,并提供如紫外线或电火花之类的能源——原始时代闪电现象的模拟。几个星期之后,在瓶内通常可以找到一些有趣的东西——一种稀薄的褐色溶液,里面含有大量的分子,其结构比原来放入瓶内的分子来得复杂。值得一提的是研究人员在里面找到了氨基酸——用以制造蛋白质的构件(building block),蛋白质乃是两大类生物分子中的一类。在进行这种试验之前,人们认为天然的氨基酸是确定生命是否存在的依据——如果人们在火星上发现了氨基酸,那么火星上存在生命似乎是可以确定无疑的了。但在今天,氨基酸的存在可能只是意味着在大气层中存在一些简单的气体,还有一些火山、阳光和发生雷鸣的天气。近年来,在实验室里模拟生命存在之前地球的化学条件,结果获得了被称为嘌呤和嘧啶的有机物质,它们是组成遗传分子脱氧核糖核酸(DNA)的构件。

        “原始汤”的形成想来必然是过程与此类似的结果。生物学家和化学家认为“原始汤”就是大约30亿到40亿年前的海洋。有机物质在某些地方积聚起来,也许在岸边逐渐干燥起来的浮垢上,或者在悬浮的微小水珠中。在受到如太阳紫外线之类的能量的进一步影响后,它们就结合成大一些的分子。现今,大的有机分子存在的时间不会太长,我们甚至觉察不到它们的存在,它们会很快被细菌或其他生物吞噬或破坏。但细菌以及我们人类都是后来者。所以在那些日子里,有机大分子可以在稠浓的汤中平安无事地自由漂浮。

        到了某一时刻,一个非凡的分子偶然形成——我们称之为复制因子(replicator)。它并不见得是那些分子当中最大或最复杂的,但它具有一种特殊的性质——能够复制自己。看起来这种偶然性非常之小。的确是这样,发生这种偶然情况的可能性是微乎其微的。在一个人的一生中,实际上可以把这种千年难得一遇的情况视为不可能,这就是为什么你买的足球彩票永远不会中头等奖的道理。但是我们人类在估计什么可能或什么不可能发生的时候,不习惯于将其放在几亿年这样长久的时间内去考虑。如果你在一亿年中每星期都购买一次彩票,说不定你会中上几次头等奖呢。

        事实上,一个能复制自己的分子并不像我们原来想象的那样难得,这种情况只要发生一次就够了。我们可以把复制因子当作模型或样板,把它想象为由一条复杂的链构成的大分子,链本身是由各种类型的起构件作用的分子组成的。在复制因子周围的汤里,这种小小的构件多得是。现在让我们假定每一块构件都具有吸引其同类的亲和力。来自汤里的这种构件一接触到对之有亲和力的复制因子的另一部分,就往往附着在那儿不动了。按照这个方式附着在一起的构件会自动地仿照复制因子本身的序列排列起来。这时我们就不难设想,这些构件逐个地连接起来,形成一条稳定的链,和原来复制因子的形成过程一模一样。这个一层一层逐步堆叠起来的过程可以继续下去,结晶体就是这样形成的。另一方面,两条链也有一分为二的可能,这样就产生了两个复制因子,而每个复制因子还能继续复制自己。

        一个更为复杂的可能性是,每块构件对其同类并无亲和力,而对其他的某一类构件却有互相吸引的亲和力。如果情况是这样的,复制因子作为样板并不产生完全相似的拷贝,而是某种“反象”,这种“反象”转过来再产生和原来的正象完全相似的拷贝,对我们来说,不管原来复制的过程是从正到反还是从正到正都无足轻重;但有必要指出,现代的第一个复制因子即DNA分子,它所使用的是从正到反的复制过程。值得注意的是,突然间,一种新的“稳定性”产生了。在以前,汤里很可能并不存在非常大量的某种特殊类型的复杂分子,因为每一个分子都要依赖于那些碰巧产生的结构特别稳定的构件。第一个复制因子一旦诞生了,它必然会迅速地在海洋里到处扩散它的拷贝,直至较小的构件分子日渐稀少,而其他较大的分子也越来越难有机会形成。

        这样我们到达了一个具有全都一样的复制品的大种群的阶段。现在,我们必须指出,任何复制过程都具有一个重要的特性:它不可能是完美无缺的。它准会发生差错。我倒希望这本书里没有印刷错误,可是如果你仔细看一下,你可能会发现一两个差错。这些差错也许不至于严重地歪曲书中句子的含义,因为它们只不过是“第一代”的错误。但我们可以想象一下,在印刷术尚未问世之前,如福音之类的各种书籍都是手抄的。以抄写书籍为业的人无论怎样小心谨慎,都不可避免地要发生一些差错,何况有些抄写员还会心血来潮,有意“改进”一下原文。如果所有的抄写员都以同一本原著为蓝本,那么原意还不至于受到太大的歪曲。可是,如果手抄本依据的也是手抄本,而后者也是抄自其他手抄本的话,那么谬误就开始流传、积累,其性质也更趋严重。我们往往认为抄写错误是桩坏事,而且我们也难以想象,在人们抄写的文件中能有什么样的错误可以被认为是胜于原文的。当犹太圣典的编纂人把希伯来文的“年轻妇女”误译成希腊文的“处女”时,我想我们至少可以说他们的误译产生了意想不到的后果,因为圣典中的预言变成“看哪!一个处女将要受孕并且要生养一个儿子……”*不管怎样,我们将要看到,生物学的复制因子在其复制过程中所造成的错误确实能产生改良的效果。对生命进化的进程来说,产生一些差错是必不可少的。原始的复制因子在复制拷贝时其精确程度如何,我们不得而知,不过今天,它们的后代DNA分子和人类所拥有的最精密的复印术相比却准确得惊人。然而,差错最终使进化成为可能。原始的复制因子大概产生过极多的差错。不管怎样,它们出过差错是确定无疑的,而且这些差错是积累性的。

        随着复制错误的产生和扩散,原始汤中充满了由好几个品种的复制因子组成的种群,而不是清一色的全都一样的复制品,但都是同一个祖先的“后裔”。它们当中的一些品种会不会比其他品种拥有更多的成员?几乎可以肯定地说:是的。某些品种由于内在的因素会比其他品种来得稳定。某些分子一旦形成就安于现状,不像其他分子那样易于分裂。在汤里,这种类型的分子会相对地多起来,这不仅仅是“长寿”的直接逻辑后果,而且因为它们有充裕的时间去复制自己。因此,“长寿”的复制因子往往会兴旺起来。如果假定其他条件不变,种群中就会出现一种寿命变得更长的“进化趋向”。

        但其他条件可能是不相等的。对某一品种的复制因子来说,它具有另外一个甚至更为重要的、为了在种群中传布的特性,这就是复制的速度或“生育力”。如果A型复制因子复制自己的平均速度是每星期一次,而B型复制因子是每小时一次,显而易见,不需多久,A型因子的数量就要相形见绌,即使A型因子的“寿命”再长也无济于事。因此,汤里面的因子很可能出现一种“生育力”变得更强的“进化趋向”。复制因子肯定会选择的第三个特性是复制的准确性。假定X型因子与Y型因子的寿命同样长,复制的速度也一样快,但X型因子平均在每10次复制过程中犯一次错误,而Y型只在每100次复制过程中犯一次错误,那么Y型因子肯定要变得多起来。种群中X型因子这支队伍不但要失去它们因错误而养育出来的“子孙”,还要失去它们所有现存或未来的后代。

        如果你对进化论已有所了解的话,你可能会认为上面谈到的最后一点似有自相矛盾之嫌。我们既说复制错误是发生进化的必不可少的先决条件,但又说自然选择有利于高精确度的复制过程,如何能把这两种说法调和起来?我们认为,总的说来,进化在某种含糊的意义上似乎是件“好事”,尤其是因为人类是进化的产物,而事实上没有什么东西“想要”进化。进化是偶然发生的,不管你愿意不愿意,尽管复制因子(以及当今的基因)不遗余力地防止这种情况的发生。莫诺在他纪念斯宾塞[3]的演讲中出色地阐明了这一点。他以幽默的口吻说:“进化论的另一个难以理解的方面是,每一个人都认为他理解进化论!”

        让我们再回到原始汤这个问题上来,现在汤里已存在一些稳定品种。所谓稳定的意思是,那些因子要么本身存在的时间较长,要么能迅速地复制,要么能精确无误地复制。朝着这三种稳定性发展的进化趋向是在下面这个意义上发生的:如果你在两个不同的时间分别从汤中取样,后一次的样品一定含有更大比例的寿命长或生育力强或复制精确性高的品种。生物学家谈到生物的进化时,他所谓的进化实质上就是这个意思,而进化的机制是一样的——自然选择。

        那么,我们是否应该把原始的复制因子分子称为“有生命的”呢?那是无关紧要的。我可以告诉你“达尔文是世界上最伟大的人物”,而你可能会说“不,牛顿才是最伟大的”。我希望我们不要再争论下去了,应该看到,不管我们的争论结果如何,实质上的结论都是不受影响的。我们把牛顿或达尔文称为伟大的人物也好,不把他们称为伟大的人物也好,他们两人的生平事迹和成就都是客观存在的,不会发生任何变化。同样,复制因子分子的情况很可能就像我所讲的那样,不论我们是否要称之为“有生命的”。我们当中有太多的人不理解词汇仅仅是供我们使用的工具,字典里面的“有生命的”这个词并不一定指世上某一样具体的东西。不管我们把原始的复制因子称为有生命的还是无生命的,它们的确是生命的祖先,是我们的缔造者。

        论点的第二个重要环节是竞争。达尔文本人也强调过它的重要性,尽管他那时讲的是动物和植物,不是分子。原始汤是不足以维持无限量的复制因子分子的。其中一个原因是地球的面积有限,但其他一些限制性因素也是非常重要的。在我们的想象当中,那个起着样板或模型作用的复制因子浮游于原始汤之中,周围存在大量复制所必需的小构件分子。但当复制因子变得越来越多时,构件因消耗量大增而供不应求,成为珍贵的资源。不同品种或品系的复制因子必然为了争夺它们而互相搏斗。我们已经研究过是什么因素促进那些条件优越的复制因子的繁殖。我们现在可以看到,条件差一些的品种事实上由于竞争而变得日渐稀少,最后它们中的一些品系难逃绝种的命运。复制因子的各品种之间发生过你死我活的搏斗。它们不知道自己在进行生存斗争,也不会因之而感到烦恼。复制因子在进行这种斗争时不动任何感情,更不用说会引起哪一方的厌恶感了。但从某种意义上来说,它们的确是在进行关乎生死存亡的斗争,因为任何导致产生更高一级稳定性的复制错误,或以新方法削弱对手的稳定性的复制错误,都会自动地延续下来并成倍地增长。改良的过程是积累性的。加强自身的稳定性或削弱对手稳定性的方法变得更巧妙,更富有成效。一些复制因子甚至“发现”了一些方法,通过化学途径分裂对方品种的分子,并利用分裂出来的构件来复制自己。这些原始食肉动物在消灭竞争对手的同时摄取食物。其他的复制因子也许发现了如何用化学方法或把自己裹在一层蛋白质之中来保卫自己。这也许就是第一批生命细胞的成长过程。复制因子的出现不仅仅是为了生存,还是为它们自己制造容器,即赖以生存的运载工具。能够生存下来的复制因子都是那些为自己构造了生存机器以安居其中的复制因子。最原始的生存机器也许仅仅是一层保护衣。后来,新竞争对手陆续出现,它们拥有更优良、更有效的生存机器,因此生存斗争随之逐渐激化。生存机器的体积越来越大,其结构也渐臻复杂。这是一个积累和渐进的过程。

        随着时间的推移,复制因子为了保证自己在世界上存在下去而采用的技巧和计谋也逐渐改进,但这种改进有没有止境呢?用以改良的时间是无穷无尽的。1000年的变化会产生什么样的怪诞的自我保存机器呢?经过40亿年,古代的复制因子又会有怎样的命运呢?它们没有消失,因为它们是掌握生存艺术的老手。但在今日,别以为它们还会浮游于海洋之中。很久以前,它们已经放弃这种自由自在的生活方式了。在今天,它们群集相处,安稳地寄居在庞大的步履蹒跚的“机器人”体内*,与外界隔开,通过迂回曲折的间接途径与外部世界联系,并通过遥控操纵外部世界。它们存在于你和我的躯体内,它们创造了我们,创造了我们的肉体和心灵,而保存它们正是我们存在的终极理由。这些复制因子源远流长。今天,我们称它们为基因,而我们就是它们的生存机器。

        第3章 不朽的双螺旋

        我们是生存机器,但这里的“我们”并不单指人,它包括一切动物、植物、细菌和病毒。地球上生存机器的总数很难计算,甚至物种的总数也不得而知。仅就昆虫来说,据估计,现存的物种大约有300万种,而个体昆虫可能有100亿亿只。

        不同种类的生存机器具有千变万化、种类纷繁的外部形状和内脏器官。章鱼同老鼠毫无共同之处,而这两者又和橡树迥然不同。但它们的基本化学结构却相当一致,尤其是它们所拥有的复制因子,同我们——从大象到细菌——体内的分子基本上同属一种类型。我们都是同一种复制因子——人们称之为DNA的分子——的生存机器,但生存在世上的方式却大不相同,因而复制因子制造了大量各种各样的生存机器供其利用。猴子是基因在树上生活的保存机器,鱼是基因在水中生活的保存机器,甚至还有一种小虫,是基因在德国啤酒杯草垫中生活的保存机器。DNA的活动方式真是神秘莫测。

        为简便起见,我把由DNA构成的现代基因讲得几乎和原始汤中的第一批复制因子一样。这对论证影响不大,但事实可能并非如此。原始复制因子可能是一种同DNA近似的分子,也可能完全不同,如果是后一种情况的话,我们不妨说,复制因子的生存机器是在一个较后的阶段为DNA所夺取的。如果上述情况属实,那么原始复制因子已被彻底消灭,因为在现代生存机器中已毫无它们的踪迹。根据这样的推断,凯恩斯-史密斯(A.G.Cairns-Smith)提出了一个饶有趣味的看法,他认为我们的祖先,即第一批复制因子可能根本不是有机分子,而是无机的结晶体——某些矿物和小块黏土等。且不论DNA是否是掠夺者,它是今日的主宰,这是毋庸争辩的,除非像我在第11章中试图提出来的见解那样,一种新的掠夺力量目前正在兴起。

        一个DNA分子是一条由构件组成的长链,这些构件是被称为“核苷酸”的小分子。如同蛋白质分子是氨基酸链一样,DNA分子是核苷酸链。DNA分子因其太小而不能为肉眼所见,但它的确切形状已被人类用间接的方法巧妙地揭示了出来。它由一对核苷酸链组成,两条链相互交织,呈雅致的螺旋形,这就是“双螺旋”或“不朽的螺旋圈”。核苷酸构件仅有4种,可以把它们简称为A、T、C和G。在所有动物和植物中这4种都是一样的,不同的是它们缠绕交织在一起的顺序。人类的G构件同蜗牛的G构件完全相同,但不仅人类构件的序列同蜗牛的不同,而且人类不同个体之间的序列也不相同,虽然在差别程度上略小一些(同卵双胞胎的特殊情况除外)。

        我们的DNA寄居在我们体内。它不是集中在体内的某一特定的位置,而是分布在所有细胞之中。人体平均大约由1000万亿个细胞组成。除某些特殊情况我们可以不予以考虑外,每个细胞都含有该人体的DNA的一套完整拷贝。这一DNA可以被认为是一组有关如何制造一个人体的指令,以核苷酸的A、T、C、G字母表来表示。这种情况就像在一幢巨大的建筑物中,每间房间里都有一个“书橱”,而“书橱”里存放着建筑师建造整幢建筑物的设计图。每个细胞中的这种“书橱”被称为细胞核。人类建筑师的这种设计图共有46“卷”,我们称它们为染色体。在不同的物种中,其数量也不同。染色体在显微镜下是可见的,形状像一条条长线。基因就沿着这些染色体有次序地排列着。但要判断基因之间首尾相接的地方却是困难的,而且事实上甚至可能是无意义的。幸好,本章就要表明,这点同我们的论题关系不大。

        我将利用建筑师的设计图这一比喻,把比喻性的语言同专业的语言适当地混在一起来进行叙述。“卷”同染色体这两个词将交替使用,“页”则同基因暂且互换使用,尽管基因相互之间的界线不像书页那样分明,但我们将在很长的篇幅中使用这一比喻。待这一比喻不能解决问题时,我将再引用其他比喻。这里顺便提一下,当然是没有“建筑师”这回事的,DNA指令是由自然选择安排的。

        DNA分子做的两件重要事情之一是:它们进行复制,也就是进行自我复制。自有生命以来,这样的复制活动就从未中断过。现在DNA分子对于自我复制确已技巧精湛、驾轻就熟了。一个成年人,全身有1000万亿个细胞,但胚胎最初只是一个单细胞,拥有建筑师蓝图的一个原版拷贝。这个单细胞一分为二,两个细胞各自把自己的那卷蓝图拷贝接受了过来。细胞依次再按4、8、16、32等倍数分裂,直到分裂成几十亿个。每次分裂,DNA的蓝图都毫不走样地拷贝了下来,极少发生差错。

        讲DNA的复制只是一个方面。但如果DNA真的是建造一个人体的一套蓝图的话,又如何按蓝图开展工作呢?它们将如何转变成人体的组织呢?这就是我要讲的DNA做的第二件重要事情:它间接地监督制造了不同种类的分子——蛋白质。在前一章中提到过的血红蛋白就是种类极为繁多的蛋白质分子中的一个。以4个字母构成的核苷酸字母表所表示的DNA密码信息,通过机械的简单形式翻译成另一种字母表。这就是拼写出的蛋白质分子的氨基酸字母表。

        制造蛋白质似乎同制造人体还有一大段距离,但它却是向制造人体这一方向前进的最初一小步。蛋白质不仅是构成人体组织的主要成分,还对细胞内一切化学过程进行灵敏的控制,在准确的时间和准确的地点,有选择地使这种化学过程继续或停止。这一过程最后到底如何发展成为一个婴儿说来话长,胚胎学家要花费几十年,也许几世纪的时间才能研究出来。但这一过程发展的最后结果是个婴儿,却是一个确凿无疑的事实。基因确实间接地控制着人体的制造,其影响全然是单向的:后天获得的特性是不能遗传的。不论你一生获得的聪明才智有多少,绝不会有点滴经由遗传途径传给你的子女。新的一代都是从零开始的,人体只不过是基因保持自己不变的一种手段。

        基因控制胚胎发育这一事实在进化上的重要意义在于:它意味着基因对自身今后的生存至少要负部分责任,因为它们的生存取决于它们寄居其中,并帮助建造的人体的效能。很久以前,自然选择是由自由漂浮在原始汤中复制因子的差别性生存构成的。如今,自然选择有利于能熟练地制造生存机器的复制因子,即能娴熟地控制胚胎发育的基因。在这方面,复制因子和过去一样是没有自觉性和目的性的。相互竞争的分子之间那种凭借各自的寿命、生殖力以及精确复制的能力来进行的自动选择,像在遥远的时代一样,仍在盲目地、不可避免地继续。基因没有先见之明,它们事先并不进行筹划。某些基因只是比其他一些基因能力更强。情况就是这样。但决定基因长寿和生殖力的特性远不像原来那样简单。

        近年来(指过去的6亿年左右),复制因子在建造生存机器的工艺学上取得了显著的成就,如肌肉、心脏和眼睛(经历几次单独的进化过程)。在那以前,作为复制因子,它们生活方式的基本特点已有了根本的改变。如果我们要想将我们的论证继续下去的话,需要对此有所了解。

        关于现代复制因子,要了解的第一件事就是,它具有高度群居性。生存机器是一种运载工具,它包含的不只是一个基因,而是成千上万个基因。制造人体是一种相互配合的、错综复杂的冒险事业,为了共同的事业,某一个基因做出的贡献和另一个基因做出的贡献几乎是分不开的。*一个基因对人体的不同部分会产生许多不同的影响。人体的某一部分会受到许多基因的影响,而任何一个基因所起的作用都依赖于同许多其他基因的相互作用。某些基因充当主基因,控制一组其他基因的活动。用比拟的说法,就是蓝图的任何一页对建筑物的许多不同部分都提供了参考内容,而每一页只有作为和其他许多页相互参照的资料才有意义。

        基因的这种错综复杂的相互依赖性可能会使你感到迷惑不解,我们为什么要用“基因”这个词呢?为什么不用像“基因复合体”(gene complex)这样一个集合名词呢?我们认为,从许多方面来讲,这确实是一个相当好的主意。但如果我们从另一个角度去考虑问题,那么把基因复合体想象为分成若干相互分离的复制因子也是讲得通的。问题的出现是由于性现象的存在。有性生殖具有混合基因的作用,就是说任何一个个体只不过是寿命不长的基因组合体的临时运载工具。任何一个个体基因组合(combination)的生存时间可能是短暂的,但基因本身却能够生存很久。它们的道路相互交叉再交叉,在延续不断的世代中,一个基因可以被视为一个单位,它通过一系列个体的延续生存下去。这就是本章将要展开的中心论题。我所非常尊重的同事中有些人固执地拒绝接受这一论点,因此,如果我在论证时好像有点啰唆,那就请原谅吧!首先我必须就其涉及的一些事实扼要地加以阐明。

        我曾讲过,建造一个人体的蓝图是用46卷写成的。事实上,这是一种过分简单化的说法,真实情况是相当离奇的。46条染色体由23对染色体构成。我们不妨说每个细胞核内都存放着两套23卷的可相互替换的蓝图。我们可以称它们为卷1a卷1b,卷2a卷2b……直至卷23a卷23b。当然我用以识别每一卷以及此后每一页的数字是任意选定的。

        我们从父亲或母亲那里接受每一条完整的染色体,它们分别在睾丸和卵巢内装配而成。比方说卷1a、卷2a、卷3a……来自父亲,卷1b、卷2b、卷3b……来自母亲。尽管实际上难以办到,但理论上你能够用一架显微镜观察你任何一个细胞内的46条染色体,并区别哪23条来自父亲,哪23条来自母亲。

        其实成对的染色体并不终生贴在一起,甚至相互也不接近。那么在什么意义上讲它们是“成对”的呢?说它们是成对是指:可以认为原先来自父亲的每一卷都能够逐页地直接代替原先来自母亲的对应的某一卷。举例说,卷13a的第6页和卷13b的第6页可能都是负责设计眼睛的颜色的,也许其中一页说的是“蓝色”,而另外一页说的是“棕色”。

        有时可供替换的两页是完全相似的,但在其他情况下,如在我们举的眼睛颜色的例子中,它们互不相同。如果它们做出了相互矛盾的“推荐”,人体怎么办呢?有各种不同的结果。有时这一页的影响大于另一页。在刚才所举的眼睛颜色的例子中,这个人实际上可能是生了一双棕色的眼睛,因为制造蓝色眼睛的指令可能在建造人体的过程中被置之不理了。尽管如此,这不会阻止制造蓝眼睛的指令继续传递到后代去。这种被置之不理的基因我们称它为“隐性基因”。与隐性基因相对的是显性基因。棕眼基因与蓝眼基因相比,前者处于优势。只有相关页的两个拷贝都一致推荐蓝眼睛,人才会得到一双蓝眼睛。更常见的情况是,两个可供替换的基因不相同时会达成某种类型的妥协——把人体建成“中间态”或一种完全不同的模样。

        当两个基因,如棕眼基因和蓝眼基因争夺染色体上的同一个位置时,我们把其中一个称为另一个的等位基因。在这里,等位基因同竞争对手是同义词。试把建筑师一卷一卷的蓝图想象成一本本的活页夹,其中的活页能够抽出并能互相交换。每一本卷13必然会有一张第6页,但好几张第6页都能进入活页夹,夹在第5页同第7页之间。一个版本写着“蓝色眼睛”,另一个版本可能写着“棕色眼睛”,整个种群中还可能有其他一些版本写出其他的颜色,如绿色。也许有6个可供替换的等位基因占据着分散于整个种群的第13条染色体的第6页的位置。每人只有两卷卷13染色体,因此,在第6页的位置上最多只能有两个等位基因。如一个蓝眼的人可能有同一个等位基因的两个拷贝,也可能在整个种群里的6个可供替换的等位基因当中任选两个。

        当然你不可能真的到整个种群的基因库里去选择自己的基因。任何时候,全部基因都在个体生存机器内紧密地结合在一起。我们每个人还是胚胎时就接受了全部基因,对此我们无能为力。然而从长远角度来讲,把整个种群的基因统称为基因库还是有意义的。事实上这是遗传学家们运用的一个专门术语。基因库是一个相当有用的抽象概念,因为性活动把基因混合起来,尽管这是一个经过仔细安排的过程。

        类似从活页夹中把一页页、一沓沓活页抽出并相互交换的情况的确在进行,我们很快就会看到。我已经叙述了一个细胞分裂为两个新细胞的正常分裂情况。每个分裂出来的细胞都接受了所有46条染色体的一份完整拷贝,这种正常的细胞分裂被称为有丝分裂。但还有一种细胞分裂叫作减数分裂。减数分裂只发生在性细胞即精子和卵子的产生过程中。精子和卵子在我们的细胞中有其独特的一面,那就是它们只有23条,而不是46条染色体。这个数字当然恰巧是46的一半,这对它们受精或受精之后融合在一起制造一个新个体是何等方便!减数分裂是一种特殊类型的细胞分裂,只发生在睾丸和卵巢里。在这个过程中,一个具有完整的双倍共46条染色体的细胞,分裂成只有单倍共23条染色体的性细胞(皆以人体的染色体数目为例)。

        一个有23条染色体的精子,是由睾丸内具有46条染色体的一个普通细胞进行减数分裂产生的。到底哪23条染色体进入了精子细胞呢?精子不应得到染色体中相同的一组,这点显然很重要,即它不可以有卷13的两个拷贝,而卷17却一个拷贝也没有。一个个体可以把全部来自其母亲的染色体赋予他的一个精子(即卷1b、卷2b、卷3b……卷23b),这在理论上是可能的。在这种不太可能发生的情况中,孩子的一半基因是继承其祖母的,而没有继承其祖父的。但事实上这种全染色体分布是不会发生的。实际情况要复杂得多。请不要忘记,一卷卷的蓝图(染色体)是作为活页夹来看待的。在制造精子期间,某一卷蓝图的许多单页或者说一沓一沓的单页被抽出并和可供替换的另一卷的对应单页相互交换。因此,某一具体精子细胞的卷1的构成方式可能是前面65页取自卷1a,第66页直到最后一页取自卷1b。这一精子细胞的其他22卷以相似的方式组成。因此,即使一个人的所有精子的23条染色体都由同一组的46条染色体的片段构成,他所制造的每一个精子细胞却都是独特的。卵子以类似的方式在卵巢内制造,而且它们也各具特色,都不相同。

        实际生活里的这种混合构成法已为人们所熟知。在精子(或卵子)的制造过程中,每条父体染色体的一些片段分离出来,同完全相应的母体染色体的一些片段相互交换位置(请记住,我们在讲的是最初来自制造这个精子的某个个体的父母的染色体,即由这一精子受精最终所生的儿童的祖父母的染色体)。这种染色体片段的交换过程被称为“交换”(crossover)。这是对本书全部论证至关重要的一点。就是说,如果你用显微镜观察一下你自己的一个精子(如果是女性,即为卵子)的染色体,并试图去辨认哪些染色体本来是父亲的,哪些本来是母亲的,这样做将会是徒劳的(这同一般的体细胞形成鲜明对照)。精子中的任何一条染色体都是一种混杂物,即母亲基因同父亲基因的嵌合体。

        以书页比作基因的比喻从这里开始不能再用了。在活页夹中,可以将完整的一页插进去、拿掉或交换,但不足一页的碎片却办不到。然而,基因复合体只是一长串核苷酸字母,并不明显地分为一些各自独立的书页。当然蛋白质链信息的头和尾都有专门的符号,它们同蛋白质信息本身一样,都以同样4个字母表示。这两个符号之间会有制造一种蛋白质的密码指令。如果愿意,我们可以把一个基因理解为头和尾符号之间的核苷酸字母序列和一条蛋白质链的编码。我们用“顺反子”(cistron)这个词来表示这样的单位。有些人将基因和顺反子当作可以相互通用的两个词来使用。但交换却不遵守顺反子之间的界限。不仅顺反子之间可以发生分裂,顺反子内也可发生分裂。就好像建筑师的蓝图是画在46卷自动收报机的纸条上,而不是分开的一页一页的纸上一样。顺反子无固定的长度,只有凭借纸条上的符号,找到信息头和信息尾的符号才能找到前一个顺反子到何处为止,下一个顺反子在何处开始。交换表现为这样的过程:取出相配的父方同母方的纸条,剪下并交换其相配的部分,不论它们上面画的是什么。

        本书书名中所用的基因这个词不是指单个的顺反子,而是某种更细致复杂的东西。我下的定义不会适合每个人的口味,但对于基因又没有一个普遍让人接受的定义,即使有,定义也不是神圣不可侵犯的东西。如果我们的定义下得明确而不模棱两可,按照我们喜欢的方式给一个词下一个适用于自己的目的的定义也未尝不可。我采用的定义来源于威廉斯。*基因的定义是:染色体物质中能够作为一个自然选择的单位对连续若干代起作用的任何一部分。用前面一章中的话来说,基因就是进行高度精确复制的复制因子。精确复制的能力是通过复制形式取得长寿的另一种说法,我将把它简称为长寿。这一定义的正确性还需要进一步证明。

        无论根据何种定义,基因必须是染色体的一部分。问题是这一部分有多大,即多长的自动收报机用纸条?让我们设想纸条上相邻密码字母的任何一个序列,称这一序列为遗传单位。它也许是一个顺反子内的只有10个字母的序列;它也许是一个有8个顺反子的序列;可能它的头和尾都在顺反子的中段。它一定会同其他遗传单位相互重叠。它会包括更小的遗传单位,也会参与构成更大遗传单位。不论其长短如何,为了便于进行现在的论证,我们就称之为遗传单位。它只不过是染色体的一段,同染色体的其余部分无任何实质性差别。

        下面就到重点了:遗传单位越短,它生存的时间——以世代计——可能就越长,因一次交换而分裂的可能性就越小。假定按平均数计算,减数分裂每产生一个精子或卵子,整条染色体就有可能经历一次交换,这种交换可能发生在染色体的任何一段上。如果我们设想这是一个很大的遗传单位,比如说是染色体的一半长,那么每次发生减数分裂时,这一遗传单位分裂的机会是50%。如果我们所设想的这一遗传单位只有染色体的1%那么长,我们可以认为,在任何一次减数分裂中,它分裂的机会只有1%。这就是说,这一遗传单位能够在该个体的后代中生存许多代。一个顺反子很可能比一条染色体的1%还要短得多,甚至一组相邻的顺反子在为交换所分解之前能够活上很多代。

        遗传单位的平均估计寿命可以很方便地用世代来表示,而世代也可转换为年数。如果我们把整条染色体作为假定的遗传单位,它的生活史也只不过延续一代而已。现在假定8a是你的染色体,是从你父亲那里继承下来的,那么它是在你母亲受孕之前不久,在你父亲的一个睾丸内制造出来的。在此之前,世上从未有过它的存在。这个遗传单位是减数分裂混合过程的产物,即将你祖父和祖母的一些染色体片段撮合在一起。这一遗传单位被置于某一精子个体内,因而它是独特的。这个精子是几百万个精子中的一个,它随这支庞大的微型船船队扬帆航行,驶进你母亲的体内。这个精子(除非你是非同卵的双胞胎)是船队中唯一在你母亲的一个卵子中找到停泊港的一条船。这就是你之所以存在的理由。我们所设想的这一遗传单位,即你的8a染色体,开始同你遗传物质的其他部分一起进行自我复制。现在它以复制品的形式存在于你的全身,但在轮到你生小孩时,就在你制造卵子(或精子)时,这条染色体也随之被破坏。一些片段将同你母亲的8b染色体的一些片段相互交换。在任何一个性细胞中将要产生一条新生的染色体8,它比之前的那条可能“好些”,也可能“坏些”。但除非是一个非常难得的巧合,否则它肯定是与众不同的,是独一无二的。染色体的寿命是一代。

        一个较小的遗传单位,比方说是你染色体8a的1%那么长,它的寿命有多长呢?这个遗传单位也是来自你父亲的,但很可能原来不是在他体内装配的。根据前面的推理,99%的可能性是他从父亲或母亲那里完整无缺地接收过来的。现在我们就假设遗传单位是从他的母亲,也就是你的祖母那里接收来的。同样有99%的可能性她也是从她的父亲或母亲那里完整无缺地接收来的。如果我们追根寻迹地查考一个遗传小单位的祖先,我们最终会找到它的最初创造者。在某一个阶段,这一遗传单位肯定是在你的一个祖先的睾丸或卵巢内首次创造出来的。

        让我再重复讲一遍我用的“创造”这个词所包含的颇为特殊的意义。我们设想的那些构成遗传单位的较小亚单位可能很久以前就已存在了。我们讲遗传单位是在某一特定时刻创造的,意思只是说,构成遗传单位的那种亚单位的特殊排列方式在这一时刻之前不存在。也许这一创造的时间相当近,例如就在你祖父或祖母体内发生。但如果我们设想的是一个非常小的遗传单位,它就可能是由一个非常遥远的祖先第一次装配的,它也许是人类之前的一个类人猿。而且在你体内的遗传小单位今后同样也可以延续很久,完整无缺地一代接一代地传递下去。

        同样不要忘记的是,一个个体的后代不是单线的,而是有分支的。不论“创造”你体内染色体8a中特定一段的是你哪位祖先,除你之外,他或她很可能还有许多其他后代。你的一个遗传单位也可能存在于你的第二重堂(表)兄弟或姐妹体内。它可能存在于我体内,存在于首相体内,也可能存在于你的狗的体内。因为如果我们上溯得足够远的话,我们都有着共同的祖先。就是说这个遗传小单位也可能碰巧经过几次独立的装配:如果这一遗传单位是很小的,那么这种巧合不是十分不可能的。但是即使是一个近亲,也不太可能同你有完全相同的一整条染色体。遗传单位越小,同另外一个个体共有的可能性,即以拷贝的形式在世上出现许多次的可能性就越大。

        一些先前存在的亚单位通过交换偶然聚合在一起是组成一个新遗传单位的一般方式。另外一个方式被称为点突变(point mutation)。这种方式虽然少见,但在进化上具有重大意义。一个点突变就相当于书中单独一个字母的印刷错误。尽管这种情况不多,但显而易见,遗传单位越长,它在某点上为突变所改变的可能性就越大。

        另外一种不常见的,但具有重要远期后果的错误或突变叫作倒位(inversion)。染色体把自身的一段在两端分离出来,头尾颠倒后,按这种颠倒的位置重新连接上去。按照先前的类比方法,有必要对某些页码重新进行编号。有时染色体的某些部分不单单是倒位,而是连接到染色体完全不同的部位上,或者甚至和一条完全不同的染色体结合在一起。这种情形如同将一本活页夹中的一沓活页纸换到了另一本中去。虽然这种类型的错误通常是灾难性的,但它有时能使一些碰巧在一起工作得很好的遗传物质片段紧密地结成连锁,这就是其重要性之所在。也许以倒位方式可以把两个顺反子紧密地结合在一起,而它们只有在一起的时候才能产生有益的效果,即以某种方式互相补充或互相加强。然后,自然选择往往有利于以这种方式构成的新“遗传单位”,因此这种遗传单位将会在今后的种群中扩散开来。基因复合体在过去悠久的年代中可能就是以这种方式全面地进行再排列或“编辑”的。

        这方面最好的一个例子是拟态(mimicry)现象。有些“讨厌的”蝴蝶有一种令人厌恶的怪味,它们的色彩通常鲜艳夺目、华丽异常。鸟类就是凭借它们这种“警戒性”标志学会躲避它们的。于是其他一些并无这种怪味的蝴蝶就乘机利用这种现象,模拟那些味道怪异的蝴蝶。于是它们生下来就具有和那些味道怪异的蝴蝶差不多的颜色和形状,但气味不同。它们时常使人类的博物学家上当,也时常使鸟类上当。一只鸟如果吃过真正有怪异味道的蝴蝶,通常就要避开所有看上去一样的蝴蝶,模拟者也包括在内。因此自然选择有助于促进拟态行为基因的传播。拟态就是这样进化来的。

        “怪味”蝴蝶有许多不同的种类,它们看上去并不都是一样的。一个模拟者不可能像所有的“怪味”蝴蝶,它们必须模拟某一特定的蝴蝶种类。任何具体的模拟者一般都善于专门模仿某种具体的味道怪异的蝴蝶,但有些种类的模拟者却有一种非常奇特的行为。这些种类中的某些个体模仿某种味道怪异的蝴蝶,其他一些个体则模仿另外一种。任何个体,如果它是中间型的或者试图两种都模仿,它就会很快被吃掉。但蝴蝶不会生来就这样。一个个体要么肯定是雄性,要么肯定是雌性,同样,一个蝴蝶个体要么模仿这种味道怪异的蝴蝶,要么模仿另外一种。一只蝴蝶可能模仿种类A,而其“兄弟”可能模仿种类B。

        一个个体是模仿种类A还是模仿种类B,看来似乎只取决于一个基因。但一个基因怎么能决定模拟的各个方面——颜色、形状、花纹的样式、飞行的节奏呢?答案是,一个单一顺反子的基因大概是不可能的,但通过倒位和遗传物质其他偶然性的重新排列所完成的无意识的和自动的“编辑工作”,一大群过去分开的旧基因得以在一条染色体上结合成一个紧密的连锁群。整个连锁群像一个基因一样行动(根据我们的定义,它现在的确是一个单一的基因)。它也有一个“等位基因”,这一等位基因其实是另外一个连锁群。一个连锁群含有模仿种类A的顺反子,另一个连锁群则含有模仿种类B的顺反子。每一连锁群很少因交换而分裂,因此在自然界中人们从未见到中间型的蝴蝶。但如果在实验室内大量繁殖蝴蝶,这种中间型偶尔也会出现。

        我用基因这个词来指代一个遗传单位,单位之小足以延续许多代,而且能以许多拷贝的形式在周围散布。这不是一种要么全对要么全错的死板僵化的定义,而是像“大”或“老”的定义一样,是一种含义逐渐模糊的定义。一段染色体越是容易因交换而分裂,或为各种类型的突变所改变,它同我所谓的基因就越不相符。一个顺反子大概可以称得上是基因,但比顺反子大的单位也应算基因。12个顺反子可能会在一条染色体上相互结合得非常紧密,以至于对我们来说这可以算是一个能长久存在的遗传单位。蝴蝶里的拟态连锁群就是一个很好的例子。当顺反子离开一个个体,乘着精子或卵子进入下一代时,它们可能发现小船还载有它们在前一次航行时的近邻。这些近邻可能还是开始于遥远的祖先体内的漫长航行中的伙伴。同一条染色体上相邻的顺反子组成一队紧密联结在一起的旅行伙伴,减数分裂的时机一到,它们经常能够登上同一条船,分开的情况很少。

        严格地说,本书既不应叫作“自私的顺反子”,也不应叫作“自私的染色体”,而应命名为“染色体有点自私的一大部分以及更为自私的一小部分”。但应该说,这样的书名至少不那么吸引人。既然我把基因描绘成能够延续许多世代的一小段染色体,那么我以“自私的基因”作为本书的书名恰如其分。

        现在我们又回到了第1章结尾的地方。在那里我们已经看到,在任何称得上是自然选择的基本单位的实体中,我们都会发现自私性。我们也已看到,有人认为物种是自然选择单位,而另有一些人认为物种中的种群或群体是自然选择单位,还有的人认为个体是自然选择单位。我曾讲过,我宁可把基因看作自然选择的基本单位,因而也是自我利益的基本单位。我刚才所做的就是要给基因下这样的定义,以便令人信服地证明我的论点的正确性。

        自然选择最普通的形式是指实体的差别性生存。某些实体存在下去,另一些则死亡。但为了使这种选择性死亡能够对世界产生影响,一个附加条件必须得到满足,那就是每个实体必须以许多拷贝的形式存在,而且至少某些实体必须有潜在的能力以拷贝的形式生存一段相当长的进化时间。小的遗传单位有这种特性,而个体、群体和物种却没有。孟德尔证明,遗传单位实际上可以被认为是一种不可分割的独立微粒。这是他的一项伟大成就。现在我们知道,这种说法未免有些过于简单,甚至顺反子偶尔也是可分的,而且同一条染色体上的任何两个基因都不是完全独立的。我刚才所做的就是要把基因描绘为一个这样的遗传单位,它在相当大的程度上接近不可分的颗粒这一典型。基因并不是不可分的,但它们很少分开。基因在任何具体个体中要么肯定存在,要么肯定不存在。一个基因完整无损地从祖父母传到孙辈,径直通过中间世代而不与其他基因相混合。如果基因不断地相互混合,我们现在所理解的自然选择就是不可能存在的了。顺便提一句,这一点在达尔文还在世时就已被证实,而且使达尔文感到莫大的忧虑,因为那时人们认为遗传是一个混合过程。孟德尔的发现在那时已经发表,这本来是可以解除达尔文的焦虑的,但天啊,他却一直不知道这件事。达尔文和孟德尔都去世许多年之后,似乎才有人读到这篇文章。孟德尔也许没有认识到他的发现的重要意义,否则他可能会写信告诉达尔文。

        基因颗粒性的另一个方面是,它不会衰老,即使是活了100万年的基因也不会比它仅活了100年的同伴更有可能死去。它一代一代地从一个个体转到另一个个体,用它自己的方式操纵着一个又一个的个体,达成自己的目的;它在一代接一代的个体陷入衰老死亡之前抛弃这些将要死亡的个体。

        基因是不朽的,或者更确切地说,它们被描绘为接近于值得赋予不朽称号的遗传实体。我们作为这个世界上的个体生存机器,期望能够多活几十年,但世界上的基因可望生存的时间,不是几十年,而是以百万年为单位计算的。

        在有性生殖的物种中,作为遗传单位的个体因为体积太大、寿命太短,而不能成为有意义的自然选择单位。*由个体组成的群体甚至是更大的单位。在遗传学的意义上,个体和群体像天空中的云彩,或者像沙漠中的尘暴,它们是些临时的聚合体或联合体,在进化的过程中是不稳定的。种群可以延续很长的一段时期,但因为它们不断地同其他种群混合,从而失去本身的特性。它们也受到内部演化的影响。一个种群还不足以成为一个自然选择的单位,因为它不是一个有足够独立性的实体。它的稳定性和一致性也不足,不能优先于其他种群而被“选择”。

        一个个体在其持续存在时看起来相当独立,但很可惜,这种状态能维持多久呢?每一个个体都是独特的,在每个实体仅有一个拷贝的情况下,在实体之间进行选择是不可能实现进化的!有性生殖不等于复制。就像一个种群被其他种群玷污的情况一样,一个个体的后代也会被其配偶的后代玷污,你的子女只有一半是你,而你的孙子孙女只是你的。经过几代之后,你所能指望的,最多是一大批后代,他们之中每个人只具有你的极小部分——几个基因而已,即使他们有些还姓你的姓,情况也是如此。

        个体是不稳定的,它们在不停地消失。染色体也像打出去不久的一副牌一样,混合以致被湮没,但牌本身虽经洗牌却仍存在。在这里,牌就是基因。基因不会为交换所破坏,它们只是调换伙伴再继续前进。它们继续前进是理所当然的,这是它们的本性。它们是复制因子,而我们是它们的生存机器。我们完成我们的职责后就被弃于一旁,但基因却是地质时代的居民——基因是永存的。

        基因像钻石一样长存,但同钻石长存的方式又不尽相同。长存的一块块钻石水晶体以不变的原子结构存在,但DNA分子不具备这种永恒性。任何一个具体的DNA分子的生命都相当短促,也许只有几个月的时间,但肯定不会超过一个人一生的时间。但一个DNA分子在理论上能够以自己的拷贝形式生存一亿年。此外,一个具体基因的拷贝就像原始汤中的古代复制因子一样,可以分布到整个世界。不同的是,这些基因拷贝的现代版本都有条不紊地被装入了生存机器的体内。

        我所说的一切都是为了强调,基因以拷贝形式存在几乎是永恒的,这种永恒性表明了基因的特性。将基因解释为一个顺反子适用于某些论题,但运用于进化论,定义就需要扩充,扩充的程度则取决于定义的用途。我们需要找到自然选择的一个切合实际的单位。要做到这点,首先要鉴别出一个成功的自然选择单位必须具备哪些特性。用前一章的话来说,这些特性是长寿、生殖力以及精确复制,那么我们只要直截了当地把“基因”解释为一个至少有可能拥有上述三种特性的最大实体就可以了。基因是一个长久生存的复制因子,它以许多重复拷贝的形式存在着。它并非无限地生存下去。严格地说,甚至钻石也不是永恒的,顺反子甚至也能被交换一分为二。按照定义,基因是染色体的一个片段,它要短得使自己能够延续足够长的时间,以便使它作为一个有意义的自然选择单位发生作用。

        到底多长才算“足够长的时间”呢?这并没有严格的规定,取决于自然选择的“压力”达到多大的严峻程度。就是说,这取决于一个“坏的”遗传单位死亡的可能性比它的“好的”等位基因死亡的可能性大到什么程度。这个问题牵涉到因具体情况不同而各异的定量方面的细节。自然选择最大的切合实际的单位——基因,一般介于顺反子同染色体之间。

        基因之所以成为合适的自然选择基本单位,其原因在于它潜在的永恒性。现在是强调一下“潜在的”这个词的时候了。一个基因能生存100万年,但许多新的基因甚至连第一代也熬不过。少数新基因成功地生存了一代,部分原因是它们运气好,但主要是由于它们具有一套看家本领,就是说它们善于制造生存机器。这些基因对其寄居的一个个连续不断的个体的胚胎发育都产生一定的影响,这样就使得这个个体生存和繁殖的可能性要比其处在竞争基因或等位基因影响下的可能性稍大一些。举例说,一个“好的”基因往往赋予它所寄居的连续不断的个体以长腿,从而保证自己的生存,因为长腿有助于这些个体逃避捕食者。这只是一个特殊的例子,不具有普遍意义,因为长腿毕竟不是对谁都有好处的。对于鼹鼠来说,长腿反而是一种累赘。我们能不能在所有好的(即生存时间长的)基因中找出一些共同的特性,而不要使我们自己纠缠在烦琐的细节中呢?相反,什么是能够立即显示出“坏的”即生存短暂的基因的特性呢?这样的共同特性也许有一些,但有一种特性却与本书尤其相关,即在基因的水平上讲,利他行为必然是坏的,而自私行为必定是好的。这是从我们对利他行为和自私行为的定义中得出的无情结论。基因为争取生存,直接同它们的等位基因竞争,因为在基因库中,它们的等位基因是争夺它们在后代染色体上位置的对手。我再啰唆一句,这种在基因库中牺牲其等位基因而增加自己生存机会的基因,按照我们的定义,往往都会生存下去。因此基因是自私行为的基本单位。

        本章的主要内容已叙述完毕,但我一笔带过了一些复杂的问题以及一些潜在的假设。第一个复杂的问题我已扼要地提到过。不论基因在世世代代的旅程中多么独立和自由,但它们在控制胚胎发育方面并不是非常自由和独立的行为者。它们以极其错综复杂的方式相互配合和相互作用,同时又和外部环境相互配合和相互作用。诸如“长腿基因”或者“利他行为基因”这类表达方式是一种简便的形象化说法,但理解它们的含义是重要的。一个基因,不可能单枪匹马地建造一条腿,不论是长腿或是短腿。构造一条腿是多基因的一种联合行动,外部环境的影响也是不可或缺的,因为腿毕竟是由食物铸造出来的!但很可能有这样的一个基因,它在其他条件不变的情况下,往往使腿生长得比在它的等位基因的影响下生长的腿长一些。

        作为对比,请想象一下硝酸盐这种肥料对小麦生长的影响。施用硝酸盐的小麦要比不施硝酸盐的长得大,这是人尽皆知的事实,但恐怕没有哪个傻瓜会宣称,单靠硝酸盐能让小麦生长。种子、土壤、阳光、水分以及各种矿物质显然同样不可缺少,但如果上述的其他几种因素都是稳定不变的,或者甚至在一定范围内有某些变化,硝酸盐这一附加因素就能使小麦长得更大一些。单个基因在胚胎发育中的作用也是如此。控制胚胎发育的各种关系像蜘蛛网一样交织连锁在一起,非常错综复杂,我们最好不要去问津。任何一个因素,不论是遗传上的或环境上的,都不能认为是婴儿某部分形成的唯一原因。婴儿的所有部分都具有几乎是无穷数量的先前因素(antecedent causes),但这一婴儿同另一婴儿之间的差别,如腿的长短差别,可以很容易地在环境或基因方面追溯到一个或几个先前差别(antecedent differences),就是这些差别真正关系到生存竞争和斗争。对进化而言,起作用的是受遗传控制的差别。

        就一个基因而言,它的许多等位基因是它不共戴天的竞争者,但其余的基因只是它的环境的一个组成部分,就如温度、食物、捕食者或伙伴是它的环境一样。

        基因发挥的作用取决于它的环境,而所谓的环境也包括其余基因。有时,一个基因在一个特定基因在场的情况下发挥的是一种作用,而在另一组伙伴基因在场的情况下发挥的又是一种截然不同的作用。一个个体的全部基因构成一种遗传气候或背景,它会调整和影响任何一个具体基因的作用。

        但现在我的理论似乎出现了矛盾。如果孕育一个婴儿是这样一种复杂的相互配合的冒险事业,如果每一个基因都需要几千个伙伴基因配合才能共同完成它的任务,那么我们又怎么能把这种情况同我刚才对不可分的基因的描述统一起来呢?我曾说,这些不可分的基因像永生的小羚羊一样年复一年、代复一代地从一个个体跳跃到另一个个体:它们是自由自在、不受约束地追求生命的自私行为者,难道这都是一派胡言吗?一点儿也不是。也许我为了追求辞藻绚丽的章句而有点儿神魂颠倒,但我绝不是在胡言乱语,事实上也不存在真正的矛盾。我可以用另外一种类比来加以说明。

        在牛津和剑桥的赛艇对抗赛中单靠一个划桨能手是赢不了的,他还需要8个伙伴。每个桨手都是一个专家,他们总是分别在特定的位置上就座——前桨手或尾桨手或艇长等。这是一项相互配合的冒险行动,然而有些人比另一些人划得好。假使有一位教练需要从一伙儿候选人中挑选他理想的船员,这些船员中有的人必须是优秀的前桨手,其他一些人要善于执行艇长的职务,等等。现在我们假设这位教练是这样挑选的:他把应试的船员集合在一起,随意分成3队,每一队的成员也被随意地安排到各个位置上,然后让这3条艇展开对抗赛。每天都是如此,每天都有新的阵容。几周之后将会出现这样的情况:赢得胜利的赛艇,往往载有相同的那几个人,他们被认为是划桨能手。其他一些人似乎总是在划得较慢的船队里,他们最终被淘汰。但即使是一个出色的桨手有时也可能落入划得慢的船队中。这种情况不是由于其他成员技术差,就是由于运气不好,比如说逆风的风力很强。所谓最好的桨手往往出现在得胜的艇上,不过是一种平均的说法。

        桨手是基因。争夺赛艇上每一位置的对手是等位基因,它们有可能占据染色体上同一个位置。划得快相当于孕育一个能成功地生存的个体,风则相当于外部环境,候选人这个整体是基因库。就任何个体的生存而言,该个体的全部基因都同舟共济。许多“好的”基因发现自己与一群“坏的”基因为伍,也就是同一个致死基因共存于一个个体。这一致死基因把这一尚在幼年时期的个体扼杀,这样,“好的”基因也就和其余基因同归于尽。但这仅仅是一个个体,而这个“好的”基因的许多拷贝却在其他没有致死基因的个体中生存了下来。许多“好的”基因的拷贝由于碰巧与“坏的”基因共处一个个体而受累,还有许多由于其他形式的厄运而消亡,如它们所寄居的个体被雷电击中。但按照我们的定义,运气不论好坏并无规律可循,一个一贯败阵的基因不能怪自己运气不好,因为它本来就是个“坏的”基因。

        好桨手的特点之一是相互配合得好,即具有同其余桨手默契配合的能力。对于赛艇来说,这种相互配合的重要性不亚于强有力的肌肉。我们在有关蝴蝶的例子中已经看到,自然选择可能以倒位的方式或染色体片段的其他活动方式无意识地对一个基因复合体进行“编辑”,这样就把配合得很好的一些基因组成紧密连接在一起的群体。但从另外一个意义上说,一些实际上并不相互接触的基因也能够通过选择的过程来发挥其相容性(mutual compatibility)。一个基因在以后历代的个体中将会与其他基因,即基因库里的其他基因相遇,如果它能和这些基因中的大多数配合得很好,它往往会从中得到好处。

        举例说,生存能力强的食肉动物个体要具备几个特征,其中包括锋利的切齿,适合消化肉类的肠胃,以及其他许多特征。但另一方面,一个生存能力强的食草动物却需要扁平的磨齿,以及一副长得多的肠子,其消化的化学过程也不同。在食草动物的基因库中,任何基因,如果它赋予其“主人”以锋利的食肉牙齿是不大可能取得成功的。这倒不是因为食肉对谁来说都是一种坏习惯,而是因为除非你有合适的肠子,以及一切食肉生活方式的其他特征,否则你就无法有效地吃肉。因此,影响锋利的食肉牙齿形成的基因并非本来就是“坏”基因,只有在食草动物种种特征形成的基因所主宰的基因库中,它们才算是“坏”基因。

        这是个复杂而微妙的概念。它之所以复杂,是因为一个基因的“环境”主要由其他基因组成,而每一个这样的基因本身又因它和它的环境中的其他基因配合的能力而被选择。适合于说明这种微妙概念的类比是存在的,但它并非来自日常生活的经验。它同人类的“竞赛理论”类似,这种类比法将在第5章谈到个体动物间进行的进犯性对抗时加以介绍,因此,我把这点放到第5章的结尾处再进一步讨论。现在我回过头来继续探讨本章的中心要义,这就是:最好不要把自然选择的基本单位看作物种,或者种群,甚至个体;最好把它看作遗传物质的某种小单位。为方便起见,我们把它简称为基因。前面已经讲过,这个论点基于这样一种假设:基因能够永存不朽,而个体以及其他更高级的单位的寿命都是短暂的。这一假设以下面两个事实为依据:有性生殖和染色体交换,个体的消亡。这是两个不容否认的事实,但这不能阻止我们去追问:为什么它们是事实?我们以及大多数其他生存机器为什么要进行有性生殖?为什么我们的染色体要进行交换?而我们又为什么不能永生?我们为什么会老死是一个复杂的问题,其具体细节不在本书的探讨范围之内。除各种特殊原因以外,有人提出了一些比较普遍的原因。例如有一种理论认为,衰老标志着一个个体一生中发生的有害的复制错误以及其他种类的基因损伤的积累。另外一种理论为梅达沃(Peter Medawar)爵士首创*,它是按照基因选择的概念来思考进化问题的典范。他首先摈弃了此类传统的论点:“老的个体的死亡对同物种其他成员而言是一种利他主义行为。因为假如它们衰老得不能再生殖却还留恋尘世,它们就会充塞世界,对大家都无好处。”梅达沃指出,这是一种以假定为论据的狡辩,因为这种论点以它必须证实的情况作为假定,即年老的动物衰老得不能再生殖。这也是一种类似于类群选择或物种选择的天真的解释方法,尽管我们可以把有关部分重新讲得更好听一些。梅达沃自己的理论具有极好的逻辑性,我们可以将其大意综述一下。

        我们已经提出了这样的问题,即哪些是“好的”基因最普遍的特性。我们认为“自私”是其中之一。但成功基因所具有的另一个普遍特性是,它们通常把它们的生存机器的死亡至少推迟至生殖之后。毫无疑问,你有些堂兄弟或伯祖父是早年夭折的,但你的直系祖先中没有一个是幼年夭折的。祖先是不会在年幼时就丧生的。

        促使其个体死亡的基因被称为致死基因。半致死基因具有某种使个体衰弱的作用,这种作用增加了由于其他因素而死亡的可能性。任何基因都在生命的某一特定阶段对个体施加其最大的影响,致死和半致死基因也不例外。大部分基因是在生命的胚胎阶段产生作用的,另有一些是在童年、青年、中年,还有一些则是在老年。请思考一下这样一个事实:一条毛虫和由它变成的蝴蝶具有完全相同的一组基因。很明显,致死基因往往被从基因库中清除掉了。但同样明显的是,基因库中的晚期活动的致死基因要比早期活动的致死基因稳定得多。假如一个年纪较大的个体有足够的时间,至少进行过若干次生殖之后致死基因的作用才表现出来,那么这一致死基因在基因库中仍旧是成功的。例如,使老年个体致癌的基因可以遗传给无数的后代,因为这些个体在患癌之前就已生殖,而另一方面,使青年个体致癌的基因就不会遗传给众多的后代,使幼儿患致死癌症的基因就不会遗传给任何后代。根据这一理论,年老体衰只是基因库中晚期活动致死基因同半致死基因的一种积累的副产品。这些晚期活动的致死和半致死基因之所以有机会穿过了自然选择的网,仅仅是因为它们是在晚期活动的。

        梅达沃本人着重指出的一点是,自然选择有利于这样一些基因生存:它们具有推迟其他致死基因活动的作用,能够促进好的基因发挥其作用。情况可能是,基因活动开始时受遗传控制的种种变化构成了进化内容的许多方面。

        值得重视的是,这一理论不必做出任何事先的假设,即个体必须到达一定的年龄才能生殖。如果我们以假设一切个体都同样能够在任何年龄生殖作为出发点,那么梅达沃的理论立刻就能推断出晚期活动的有害基因在基因库中的积累,以及由此导致的老年生殖活动减少的倾向。

        这里就此说几句离题的话。这一理论有一个很好的特点,它启发我们去做某些相当有趣的推测。譬如根据这一理论,如果我们想要延长人类的寿命,一般可以通过两种方式来实现这个目的。第一,我们可以禁止在一定的年龄之前生殖,如40岁之前。经过几世纪之后,最低年龄限制可提高到50岁,依此类推。可以想见,用这样的方法,人类的寿命可提高到几个世纪。但我很难想象会有人去认真严肃地制定这样一种政策。

        第二,我们可以想办法去“愚弄”基因,让它认为它所寄居的个体比实际的要年轻。如果付诸实践,这意味着需要验明随着年纪的增大,发生在个体内部化学环境里的种种变化。任何这种变化都可能是促使晚期活动的致死基因开始活动的“提示”(cues)。仿效青年个体的表面化学特性有可能防止晚期活动的有害基因接受开始活动的提示。有趣的是,老年的化学信号本身,在任何正常意义上讲,不一定是有害的。比如,我们假设偶然出现了这种情况:一种S物质在老年个体中的浓度比在青年个体中来得高,这种S物质本身可能完全无害,也许是长期以来体内积累起来的食物中的某种物质。如果有这样一个基因,它在S物质存在的情况下碰巧产生了有害的影响,而在没有S物质存在的情况下却是一个好基因,那么这样的基因肯定在基因库中自动地被选择,而且实际上它成了一种“导致”年老死亡的基因。补救的办法是,只要把S物质从体内清除掉就行了。

        这种观点的重大变革性在于,S物质本身仅是一种老年的标志。研究人员可能认为S物质是一种有毒物质,他会绞尽脑汁去寻找S物质同人体机能失常之间直接的、偶然的关系。但按照我们假定的例子来讲,他可能是在浪费时间!

        也可能存在一种Y物质,这种物质在青年个体中要比在老年个体中更集中。从这一意义上讲,Y物质是青春的一种“标志”。同样,那些在有Y物质存在的情况下产生好的效果,而在没有Y物质存在的情况下却是有害的基因会被选择。由于还没有办法知道S物质或Y物质是什么东西——可能存在许多这样的物质——我们只能做这样的一般性的推测:你在一个老年个体中越能模仿或模拟青年个体的特点,不论这些特点看来是多么表面化,那个老年个体应该生存得越久。

        我必须强调一下,这些只是基于梅达沃理论的一些推测。尽管从某种意义上说,梅达沃理论在逻辑上是有些道理的,但并无把它说成是对任何年老体衰实例的正确解释的必要。与我们现在的论题密切相关的是,基因选择的进化观点对于个体年老时要死亡这种趋势,能毫无困难地加以解释。对于个体必然要死亡的假设是本章论证的核心,它是可以在这一理论的范围内得到圆满解释的。

        我一笔带过的另一个假设,即存在有性生殖和交换,更加难以解释清楚。交换并不总是一定要发生,雄果蝇就不会发生交换,雌果蝇体内也有一种具有压抑交换作用的基因。假定我们要饲养一个果蝇种群,而这类基因在该种群中普遍存在的话,“染色体库”中的染色体就会成为不可分割的自然选择基本单位。其实,如果我们遵循我们的定义进行逻辑推理直到得出结论的话,就不得不把整条染色体视作一个“基因”。

        还有,性的替代方式是存在的。雌蚜虫能产出无父的、活的雌性后代。每个这样的后代都具有它母亲的全部基因(顺便提一下,母亲“子宫”内的胎儿的子宫内甚至可能有一个更小的胎儿。因此,一只雌蚜虫可以同时生一个女儿和一个外孙女,它们相当于这只雌蚜虫的双胞胎)。许多植物的繁殖以营养体繁殖的方式进行,形成吸根。这种情况我们宁可称其为生长,也不叫它生殖。然而你如果仔细考虑一下,生长同无性生殖之间几乎无任何区别,因为二者都是细胞简单的有丝分裂。有时以营养体繁殖的方式生长出来的植物同“母体”分离开来,在其他情况下,如以榆树为例,连接根出条可以保持完整无损。事实上,整片榆树林可以被看作一个单一的个体。

        因此,现在的问题是:如果蚜虫和榆树不进行有性生殖,为什么我们要费这样大的周折把我们的基因同其他人的基因混合起来才能生育一个婴儿呢?看上去这样做的确有点古怪。性活动,这种把简单的复制变得反常的行为,当初为什么要出现呢?性到底有什么益处?*

        这是进化论者极难回答的一个问题。为了认真地回答这一问题,大多数尝试都要涉及复杂的数学推理。我将很坦率地避开这个问题,但有一点要在这里谈谈,那就是,理论家们在解释性的进化方面所遇到的困难,至少在某些方面是由于他们习惯于认为个体总是想最大限度地增加其生存下来的基因的数目。根据这样的说法,性活动似乎是一种自相矛盾的现象,因为个体要繁殖自己的基因,性是一种“效率低”的方式:每个胎儿只有这个个体基因的50%,另外50%由配偶提供。要是他能够像蚜虫那样,直接“出芽”(bud off),他就会将自己100%的基因传给下一代的每一个小孩,这些孩子是与他自己丝毫不差的复制品。这一明显的矛盾促使某些理论家接受类群选择论,因为他们比较容易在群体水平上解释性活动的好处。用博德默简单明了的话来说,性“促进了在单个个体内积累那些以往分别出现于不同个体内的有利突变”。

        但如果我们遵循本书的论证,并把个体看作由长寿基因组成的临时同盟所构建的生存机器,这一矛盾看起来就不那么紧要了。从整个个体的角度来看,“有效性”无关紧要。有性生殖与无性生殖相对,可以被视作单基因控制下的一种特性,就同蓝眼和棕眼一样。一个“负责”有性生殖的基因为了它自私的目的而操纵其他全部基因,负责交换的基因也是如此。甚至有一种叫作突变子的基因,它们操纵其他基因中的拷贝错误率。按照定义,拷贝错误对错误地拷贝出来的基因是不利的,但如果这种拷贝错误对诱致这种错误的自私的突变基因有利的话,那么这种突变基因就会在基因库里扩散开。同样,如果交换对负责交换的基因有好处,这就是存在交换现象的充分理由;如果同无性生殖相对的有性生殖有利于负责有性生殖的基因,这也就是存在有性生殖现象的充分理由。有性生殖对个体的其余基因是否有好处,比较而言也就无关紧要了。从自私基因的观点来看,性活动也就不那么难以解释了。

        这种情况非常接近于一种以假定为论据的狡辩,因为性别的存在是整个一系列推论的先决条件,而这一系列推论的最后结果认为基因是自然选择单位。我认为是有办法摆脱这一困境的,但本书宗旨不在于探索这一问题。性毫无疑问是存在的,这一点是真实的,我们之所以能将这种小的遗传单位或基因看作最接近于基本的和独立的进化因素,正是性和染色体交换的结果。

        只要学会按照自私基因的理论去思考问题,性这一明显的矛盾就变得不那么令人迷惑不解了。例如有机体内的DNA数量似乎比建造这些有机体所必需的数量来得大,因为相当一部分DNA从未转译为蛋白质。从个体有机体的观点来看,这似乎又是一个自相矛盾的问题。如果DNA的“目的”是建造有机体,那么,一大批DNA并不这样做实在令人奇怪的。生物学家在苦思冥想,这些显然多余的DNA正在做些什么有益的工作呢?但从自私的基因本身的角度来看,并不存在自相矛盾之处。DNA的真正“目的”仅仅是为了生存。解释多余的DNA最简单的方法是,把它看作一个寄生虫,或者最多是一个无害但也无用的乘客,在其他DNA所创造的生存机器中搭便车而已*。

        有些人反对这种在他们看来过分以基因为中心的进化观点。他们争辩说,实际上生存或死亡的毕竟是包括其全部基因在内的完整个体,我希望我在本章所讲的足以表明在这一点上其实并不存在分歧。就像赛艇比赛中整条船赢或输一样,生存或死亡的确实是个体,自然选择的直接形式几乎总是在个体水平上表现出来。但非随机的个体死亡以及成功生殖的远期后果,表现为基因库中变化着的基因频率。对于现代复制因子,基因库起着原始汤对于原始复制因子所起的同样作用。性活动和染色体交换起着保持原始汤的现代对等物的那种流动性的作用。由于性活动和染色体交换,基因库始终不停地被搅混,使其中的基因部分地混合。所谓进化就是指基因库中的某些基因变得多了,而另一些变得少了的过程。每当我们想要解释某种特性,如利他性行为的演化现象时,最好养成这样一种习惯——只要问问自己:“这种特性对基因库里的基因频率有什么影响?”有时基因语言有点乏味,为简洁和生动起见,我们不免要借助于比喻。不过我们要以怀疑的目光注视着我们的比喻,以便在必要时能把它们还原为基因语言。

        就基因而言,基因库只是基因生活于其中的一种新汤,不同的是,现在基因赖以生存的方式是,在不断地制造必将消亡的生存机器的过程中,同来自基因库的一批批络绎不绝的伙伴进行合作。下面一章我们要论述生存机器本身,以及在某个意义上,我们可以说基因控制其生存机器的行为。

        第4章 基因机器

        生存机器最初是作为基因的贮藏器而存在的。它们的作用是消极的——仅仅是作为保护壁使基因得以抵御其敌手所发动的化学战以及意外的分子攻击。在远古时期,原始汤里大量存在的有机分子是它们赖以为生的“食料”。这些有机食物千百年来在阳光有力的影响下滋生繁殖,但随着这些食物的告罄,生存机器一度逍遥自在的生活也至此终结。这时,它们的一大分支,即现在人们所说的植物,开始利用阳光直接把简单分子组建成复杂分子,并以快得多的速度重新进行过去发生在原始汤里的合成过程。另外一个分支,即现在人们所说的动物,“发现了”如何利用植物通过化学作用取得的劳动果实:动物要么将植物吃掉,要么将其他的动物吃掉。随着时间的推移,生存机器的这两大分支逐步获得了日益巧妙的技能,来提高其生活方式的效能。与此同时,新的生活方式层出不穷,小分支以及小小分支逐渐形成,每一个小分支在某一特殊方面,如在海洋里、陆地上、天空中、地下、树上或其他生命体内,取得高人一等的谋生技能。这种小分支不断形成的过程,最终带来了今日给人类以如此深刻印象的丰富多彩的动植物。

        动物和植物经过进化都发展成为多细胞体,每一个细胞都获得全套基因的完整拷贝。这个进化过程始于何时,为什么会发生,整个过程经过几个独立的阶段才得以完成,这一切我们都无从知道。有人以“群体”(colony)来比喻动植物的躯体,把它们说成是细胞的“群体”。我却宁愿把躯体视为基因的群体,把细胞视为便于基因的化学工业进行活动的工作单位。

        尽管我们可以把躯体称为基因的群体,但就其行为而言,各种躯体确实取得了它自己的独特个性。一只动物是作为一个内部协调的整体,即一个单位来进行活动的,同样,我在主观意识上觉得自己是一个单位而不是一个群体。这是意料中的事情。选择的过程有利于那些能同其他基因合作的基因。为争夺稀有资源,为吞食其他生存机器并避免被对方吃掉,生存机器投身于激烈无情的竞争和斗争。

        为了应对这一切竞争和斗争,在共有的躯体内存在一个中央协调的系统必然比无政府状态有利得多。时至今日,发生于基因之间的交错的共同进化过程已经发展到这一地步,以致个体生存机器所表现的集群性(communal nature)实质上已不可辨认。事实上,很多生物学家都不承认存在这种集群性,因此也不同意我的观点。

        就本书在后面章节中提到的种种论点的“可靠性”(新闻工作者用语)而言,幸而这种分歧在很大程度上是学术性的。如果我们在谈论生存机器的行为时反复提到基因,那未免会使人感到厌烦,事实上也没有必要这样做,正如我们谈论汽车的性能时提到量子和基本粒子反觉不便。实际上,把个体视为一个行为者,它“致力”于在未来的世代中增加基因的总量,这种近似的说法在一般情况下自有其方便之处。而我使用的亦将是简便的语言。除非另做说明,“利他行为”与“自私行为”都是指某一个动物个体对另一个动物个体的行为。

        这一章将论述行为,即生存机器的动物分支广泛利用的那种快速动作。动物已经变成活跃而有进取心的基因运载工具——基因机器。在生物学家的词汇里,行为具有快速的特性。植物也会动,但动得异常缓慢。在电影的快镜头里,攀缘植物看起来像是活跃的动物,但大多数植物的活动其实只限于不可逆转的生长。而另一方面,动物发展出种种活动方式,其速度超过植物数十万倍。而且,动物的动作是可逆转的,可以无数次重复。

        动物进化中用以进行快速动作的部件是肌肉。肌肉就是引擎,它像蒸汽机或内燃机一样,以其贮藏的化学燃料为能量产生机械运动。不同之处在于:肌肉以张力的形式产生直接的机械力,而不是像蒸汽机或内燃机那样产生气压。但肌肉与引擎相似的另外一点是,它们通常凭借绳索和带有铰链的杠杆来发挥力量。在人体内,杠杆就是骨骼,绳索就是肌腱,铰链就是关节。关于肌肉如何通过分子进行活动,人们知之甚多,但我却感到下面的问题更有趣:我们如何控制肌肉收缩的时间和速度?

        你有没有观察过构造复杂的人造机器?譬如说,针织机或缝纫机、纺织机、自动装瓶机或干草打包机。这些机械利用各式各样的原动力,如电动马达或拖拉机,但这些机械在运转时如何控制时间和速度却是一个更为复杂的问题。阀门会依次开启和关闭,捆扎干草的钢抓手会灵巧地打结并在最恰当的时刻伸出割刀来切断细绳。许多人造机器的定时操作是依靠凸轮来完成的。凸轮的发明的确是个辉煌的成就。它利用偏心轮或异形轮把简单的运转转变为复杂的、有节奏性的运转。

        自动演奏乐器的原理与此相仿。其他乐器,如蒸汽风琴,或自动钢琴等利用按一定模式打孔的纸制卷轴或卡片来发出音调。近年来,这些简单的机械定时装置有被电子定时装置取代的趋向,数字计算机就是个例子。它们是大型的多功能电子装置,能够用以产生复杂的定时动作。像计算机这样的现代电子仪器,其主要元件是半导体,我们所熟悉的晶体管便是半导体的一种形式。

        生存机器看起来绕过了凸轮和打孔卡片,它使用的定时装置和电子计算机有更多的相同之处,尽管严格说来,两者的基本操作方式是不同的。生物计算机的基本单位是神经细胞或所谓的神经元,就其内部的工作情况看来,是完全不同于晶体管的。神经元彼此之间通讯用的密码确实有点像计算机的脉冲码,但神经元作为一个数据处理单位比晶体管复杂得多。一个神经元可以通过数以万计的接线与其他单位联系,而不仅仅是3个。神经元工作起来比晶体管慢些,但就微型化程度而言,晶体管大为逊色。因此,过去20年来微型化是主宰电子工业的一种倾向。关于这一点,下面这个事实很能说明问题:在我们的脑袋里大约有100亿个神经元,而一个脑壳最多也只能塞进几百个晶体管。

        植物不需要神经元,因为它们不必移动就能存活。但大多数的动物类群都有神经元。在动物的进化过程中,它们可能老早就“发现”了神经元,后来被所有的种群继承了下来;也有可能是分几次重新发现的。

        从根本上说,神经元不过是一种细胞。和其他细胞一样,有细胞核和染色体,但它的细胞膜却形成拉长了的、薄的线状突出部分。通常一个神经元有一条特别长的“线”,我们称之为轴突。一个轴突的宽度狭小到只有在显微镜下才能辨认,但其长度可能长达好几英尺,有些轴突甚至和长颈鹿的颈部一样长。轴突通常是多股集束在一起的,构成我们称之为神经的多心导线。这些轴突从躯体的一部分通向其他部分,像电话干线一样传递消息。其他种类的神经元具有短的轴突,它们只出现于我们称之为神经节的密集神经组织中。如果是很大的神经元,它们也存在于大脑里。就功能而言,我们可以认为大脑和计算机是相似的*,因为这两种类型的机器在分析了复杂模式的输入信号并参考了存贮的数据之后,都能发出复杂模式的输出信号。

        大脑对生存机器做出实际贡献的主要方式在于控制和协调肌肉的收缩。为了达到这个目的,它们需要有通向各个肌肉的导线,也就是运动神经。但对基因的有效保存来说,只有在肌肉的收缩时间和外界事件发生的时间具有某种关系时才能实现。上下颌肌肉的收缩必须等到嘴巴里有值得咀嚼的东西时才有实际意义。同样,腿部肌肉要在出现值得奔跑过去或必须躲避的东西时,按跑步模式收缩才有实际意义。正因如此,自然选择有利于这样一些动物,它们具备感觉器官,能将外界发生的各种形式的有形事件转化为神经元的脉冲码。大脑通过被称为“感觉神经”的导线与感觉器官——眼、耳、味蕾等一一相连。感觉系统如何发生作用尤其使人感到费解,因为它们识别影像的高度复杂的技巧远胜于最优良、最昂贵的人造机器。如果不是这样的话,打字员都要成为冗员,因为他们的工作完全可以由识别言语或字迹的机器代劳。在未来的数十年中,打字员还是不会失业的。

        从前某个时候,感觉器官可能在某种程度上直接与肌肉联系,实际上,今日的海葵还未完全脱离这种状态,因为对它们的生活方式来说,这样的联系是有效的。但为了在各种外界事件发生的时间与肌肉收缩的时间之间建立起更复杂的间接联系,就需要有大脑的某种功能作为媒介。在进化过程中,一个显著的进展是记忆力的“发明”。借助这种记忆力,肌肉收缩的定时不仅受不久以前而且也受很久以前的种种事件的影响。记忆装置,或贮存器,也是数字计算机的主要部件。计算机的记忆装置比我们的记忆力更为可靠,但它们的容量较小,而且在信息检索的技巧方面远逊于我们的记忆力。

        生存机器的行为有一个最突出的特征,这就是明显的目的性。在这里我指的不仅是生存机器似乎能够深思熟虑去帮助动物的基因生存下去(尽管事实的确是这样),还有生存机器的行为和人类的有目的的行为更为类似这一事实。我们看到动物在“寻找”食物、配偶或迷途的孩子时,总是情不自禁地认为这些动物在那时的感受和我们自己在寻找时所体验到的某些感受一样。这些感受可能包括对某个对象的“欲望”,对这个向往的对象形成的“心象”以及存在于心中的“目的”。我们每一个人出于自身的体验都了解到这一事实:现代生存机器之中至少有一种已经通过进化的历程,使这个目的性逐渐取得我们称之为“意识”的特性。我不通晓哲理,因此无法深入探讨这个事实的含义,但就目前我们所讨论的课题而言,幸而这是无关紧要的。我们把机器的运转说成机器好像受某种目的性驱使,而罔顾其是否真的具有意识,因为这样来得方便些。这些机器基本上是非常简单的,而且无意识地追踪目标状态的原理在工程科学中经常应用。瓦特离心调速器便是其中一个典型的例子。

        它所牵涉到的基本原理就是我们称之为负反馈的原理,而负反馈又有多种多样的形式。一般来说,它是这样发挥作用的:这种运转起来好像带有自觉目的的“目的机器”配有某种度量装置,它能测量出事物的当前状态和“要求达到的”状态之间的差距,机器的这种结构方式使它能在差距越大时运转得越快。这样,机器能够自动地减少差距——负反馈的原理就在于此——在“要求达到的”状态实现时,机器能自动停止运转。瓦特调速器上装有一对球,它们借蒸汽机的推动力而旋转。这两只球分别安装在两条活动连接的杆臂的顶端。随着球的转速增大,离心力逐渐抵消引力的结果,使杆臂越来越接近水平。由于杆臂连接在为机器提供蒸汽的阀门上,当杆臂接近水平时,提供的蒸汽就逐渐减少。因此,如果机器运转得过快,蒸汽的馈给量就会减少,机器运转的速度也就慢下来。反过来,如果机器运转得过慢,阀门会自动地增加蒸汽馈给量,机器运转的速度也随之增快。但由于过调量或时滞的关系,这类机器常常发生振荡现象。为了弥补这种缺陷,工程师总是设法添加某种设备以减少这种振荡的幅度。

        瓦特离心调速器“要求达到的”状态是一定的旋转速度。显然,机器本身并非有意识地要求达到这个速度。一台机器所谓的“目的”不过是指它趋向于恢复的那种状态。近代的目的机器把诸如负反馈这样的基本原理加以发展,从而能够进行复杂得多的“逼真的”动作。比方说,导弹好像能主动地搜索目标,并且在目标进入射程之后进行追踪,与此同时,它还要考虑目标逃避追击的各种迂回曲折的动作,有时甚至能“事先估计”到这些动作或“先发制人”。这些细节这里不拟详谈。简单地说,它们牵涉各式各样的负反馈、“前馈”以及工程师们熟知的一些其他原理。我们现在已经知道,这些原理广泛地应用于生命体的运动中。我们没有必要认为导弹是一种具有任何近似于意识的神经反应的物体,但在普通人眼中,导弹那种显然是深思熟虑的、目的性很强的动作叫人难以相信这枚导弹不是由一名飞行员直接控制的。

        一种常见的误解是,认为导弹之类的机器是有意识的人设计和制造的,那么它必然是处在有意识的人的直接控制下。这种误解的另一个变种是:计算机并不能真的下棋,因为它们只能听命于操纵计算机的人。我们必须懂得这种误解的根源,因为它影响到我们对所谓基因如何“控制”行为的含义的理解。计算机下棋是一个很能说明问题的例子,因此我想扼要地谈一下。

        计算机下棋的水平如今还未能达到象棋大师那样的水平,但它足以与一个优秀的业余棋手媲美。更准确的说法是,计算机的程序足以与一个优秀的业余棋手媲美,因为程序本身对使用具体哪一台计算机来表演其技巧是从不苛求的。那么,程序员的任务是什么呢?第一,他肯定不像一个演木偶戏的牵线人那样每时每刻操纵计算机(这是作弊行为)。他编好程序,把它输入计算机内,接着计算机便独立操作:没有人进行干预,除了让对手把他的一着输入机内。程序员是否预先估计到一切可能出现的棋步,从而编好一份长长的清单,列出针对每一种情况的妙着?当然不是这样。因为在棋局中,可能出现的棋步多如恒河沙数,就是到了世界末日也编不出一份完备的清单来。也是出于同样的理由,我们不可能为计算机编制这样一份程序,使它能在“电脑”里事先走一次所有可能出现的棋步,以及所有可能的应着,以寻求克敌制胜的战略。不同的棋局比银河里的原子还要多。这些仅仅是琐碎的问题,说明为下棋的计算机编制程序时面临的难题。事实上这是一个极难解决的难题,即使是最周密的程序也不能和象棋大师匹敌,这是不足为奇的。

        程序员的作用事实上和一个指点他儿子怎样下棋的父亲差不多。他把主要的走法提纲挚领地告诉计算机,而不是把适用于每一种开局的各种走法都告诉它。他不是用我们日常使用的语言逐字地说,例如“象走田”,而是用数学的语言这样说:“象的新坐标来自老坐标,程序是在老坐标X以及老坐标Y上加上同一个常数,但其符号不必相同。”实际上使用的语言当然更简洁些。接着他可以再把一些“忠告”编入程序内,使用的是同样的数学或逻辑语言,其大意如果用我们日常的语言来表达,不外乎“不要把你的王暴露在敌前”,或一些实用的诀窍,如一马“两用”,同时进攻对方两子。这些具体的走法是耐人寻味的,但讲下去未免离题太远。重要的是,计算机在走了第一步棋之后,就需要独立操作,不能指望它的主人再做任何指点。程序员所能做的一切只是事先竭尽所能把计算机部署好,并在具体知识的提供以及战略战术的提示两者之间取得适当的平衡。

        基因也控制它们所属生存机器的行为,但不是像直接用手指牵动木偶那样,而是像计算机的程序员一样通过间接的途径。基因所能做到的也只限于事先的部署,事后生存机器在独立操作时它们只能袖手旁观。为什么基因如此缺乏主动精神呢?为什么它们不把缰绳紧握在手,随时指挥生存机器的行为呢?这是时滞造成的困难。有一本科幻小说通过比拟的手法非常巧妙地说明了这个问题。这本扣人心弦的小说是霍伊尔(Fred Hoyle)和埃利奥特(John Elliot)合著的《仙女座的A》(A for Andromeda)。像一切有价值的科幻小说一样,它有一些有趣的科学论点作为依据。可是,说也奇怪,这本小说对其中一个最重要的科学论点似乎有意避而不谈,而是让读者自己去想象。如果我在这里把它和盘托出,我想两位作者不会见怪吧。

        离我们200光年之遥的仙女座里有一个文明世界。*那里的人想把他们的文化传播到一些远方的世界去。怎样做才是最好的办法呢?直接派人走一次是不可能的。在宇宙中,你从一个地方到另外一个地方的最大速度,理论上不能超过光速这个上限,何况实际上由于机械功率的限制,最高速度要比光速低得多。此外,在宇宙中,可能并没有那么多的世界值得你去走一趟,你知道朝哪一方向进发才会不虚此行呢?无线电波是和宇宙其余部分联系的较理想的手段,因为如果你有足够的能量把你的无线电信号向四面八方播送而不是定向发射的话,能收到你的电波的世界就非常多(其数目与电波传播的距离的平方成正比)。无线电波以光速传播,也就是说,从仙女座发出的信号要经过200年才能到达地球。这样远的距离使两地之间无法进行通话。就算从地球上发出的每一个信息都会被十二代人一代一代地传达下去,试图和如此遥远的人进行通话无论如何也是劳民伤财的。

        这是个我们不久就要面临的实际问题。地球与火星之间,无线电波要走4分钟左右。毫无疑问,太空人今后必须改变谈话的习惯,说起话来不能再是你一句我一句,而必须使用长长的独白,自言自语。这种通话方式与其说是对话,不如说是通信。作为另外一个例子,佩恩(Roger Payne)指出,海洋的音响效果具有某些奇特的性质,这意味着座头鲸发出的异常响亮的“歌声”在理论上可以传到世界各处,只要它们游在海水的某一特定深度上。座头鲸是否真的彼此进行远距离通话,我们不得而知,如果真有其事的话,它们所处的困境就像火星上的宇航员一样。按照声音在水中传播的速度,座头鲸的歌声传到大西洋彼岸然后等对方的歌声再传回来,前后需要两小时左右。在我看来,座头鲸的独唱往往持续8分钟,其间并无重复之处,然后又从头唱起,这样周而复始地唱上好多遍,每一循环历时8分钟左右,其原因就在于此。

        小说中的仙女座人也是这样做的。他们知道,等候对方的回音是没有实际意义的,因此他们把要讲的话集中在一起,编写成一份完整的长篇电文,然后向空间播送,每次历时数月,以后又不断重复。不过,他们发出的信息和鲸鱼的却大相径庭。仙女座人的信息是用电码写成的,它指导别人如何建造一台巨型计算机并为它编制程序。这份电文使用的当然不是人类的语言,但对熟练的密码员来说,几乎一切密码都是可以破译的,尤其是密码设计者本来的意图就是让它便于破译。这份电文首先被班克(Jodrell Bank)的射电望远镜截获,电文最后也被译出。按照指示,计算机终于建成,其程序亦得以付诸实施,结果却几乎为人类带来灾难,因为仙女座人并非对一切人都怀有利他主义的意图。这台计算机几乎把整个世界置于它的独裁统治之下。最后,主人公在千钧一发之际用利斧砸碎了这台计算机。

        在我们看来,有趣的问题是,在什么意义上我们可以说仙女座人在操纵地球上的事务?他们对计算机的所作所为无法随时直接控制,事实上,他们甚至连计算机已经建成这个事实也无从知道,因为这些情况要经过200年才能传到他们耳中。计算机完全独立地做出决定和采取行动,它甚至不能再向它的主人请教一般的策略性问题。由于200年的障碍难以逾越,一切指示都必须事先纳入程序。原则上,这和计算机下棋所要求的程序大致相同,但对当地情况具有更大的灵活性和适应能力。这是因为这样的程序不仅要针对地球上的情况,还要针对具有先进技术的形形色色的世界,这些世界的具体情况仙女座人是心中无数的。

        正像仙女座人必须在地球上建立一台计算机来为他们逐日做出决定一样,我们的基因必须建立一个大脑。但是基因不仅是发出电码指示的仙女座人,它们也是指示本身,它们不能直接指挥我们这些木偶的理由也是一样的——时滞。基因是通过控制蛋白质的合成来发挥作用的,这本来是操纵世界的一种强有力的手段,但必须假以时日才能见到成效。培养一个胚胎需要花上几个月的时间去耐心地操纵蛋白质。另一方面,关于行为的最重要的一点是行为的快速性,用以测定行为的时间单位不是几个月而是几秒或几分之一秒。在外部世界中某种情况发生了:一只猫头鹰掠过头顶,沙沙作响的草丛暴露了猎物,接着在顷刻之间神经系统猛然行动,肌肉跃起,猎物得以死里逃生,或成为牺牲品。基因并没有这样快的反应时间。和仙女座人一样,基因只能竭尽所能事先部署一切,为它们自己建造一台快速执行的计算机,使之掌握基因能够“预料”到的尽可能多的各种情况的规律,并为此提出“忠告”。但生命和棋局一样是变幻莫测的,事先预见到一切是不现实的。像棋局的程序编制员一样,基因对生存机器的“指令”不可能是具体细微的,它只能是一般的战略以及适用于生计的各种诀窍。*

        正如扬(Young)所指出的,基因必须完成类似对未来做出预测那样的任务。当胚胎生存机器处于建造阶段时,它此后一生中可能遇到的种种危险和问题都是未知数。有谁能预言有什么食肉动物会蹲伏在哪一个树丛里伺机袭击它,或者有什么快腿活物会在它面前突然出现,之字形跑过?对于这些问题人类不能预言,基因也无能为力。但某些带有普遍性的情况是可以预见的。北极熊基因可以有把握地预先知道,它们尚未出生的生存机器将会面对一个寒冷的环境。这种预测并不是基因进行思考的结果。它们从不思考:它们只不过是预先准备好一身厚厚的皮毛,因为在以前的一些躯体内,它们一直是这样做的。这也是为什么它们仍然能存在于基因库的原因。它们也预见到大地将为积雪所覆盖,而这种预见性体现在皮毛的色泽上。基因使皮毛呈白色,从而取得伪装。如果北极的气候急剧变化以致小北极熊发现它们出生在热带的沙漠里,基因的预测就错了,它们将要为此付出代价。小熊会夭折,它们体内的基因也随之死亡。

        在一个复杂的世界中,对未来做出预测是有一定风险的。生存机器的每一个决定都是赌博行为,基因有责任事先为大脑编好程序,以便大脑做出的决定多半能取得积极成果。在进化的赌场中,筹码是生存,严格说来,是基因的生存。但为合乎情理,一般近似的说法也可以是个体的生存。如果你向下走到水坑边去喝水,被守候在水坑边的食肉动物吃掉的风险就会增加。如果你不去的话,最后就免不了要渴死。去也好,不去也好,风险都是存在的。你必须做出决定,以便让基因获得最大的生存下去的机会。也许最好的办法是忍着不喝,直到你非喝不可的时候才走下去喝个痛快,以便可以长时间不需要再喝水。这样,你减少了到水坑边去的次数,但是到了最后不得不喝的时候,你得低下头去长时间地喝水。另外一个冒险的办法是少喝多跑,即奔过去喝上一两口,马上就奔回来,这样多跑几次也能解决问题。到底哪一种冒险的策略最好,要取决于各种复杂的情况,其中食肉动物的猎食习惯也是一个重要的因素。食肉动物为了取得最大的效率,也在不断改进其猎食习惯。因此,有必要对各种可能性的得失进行某种形式的权衡。但我们当然不一定认为这些动物在有意识地权衡得失。我们只要相信,如果那些动物的基因建造了灵敏的大脑,使它们在赌注中往往成为赢家,那么,作为直接的后果,这些动物生存下去的可能性就更大,这些基因从而得到遗传。

        我们可以把打赌这个隐喻稍加引申。一个赌徒必须考虑3个主要的参数:赌注、机会、赢款。如果赢款额巨大的话,赌徒是愿意下大赌注的。一个孤注一掷的赌徒准是有机会博取大量赢款的。他当然也有输掉一切的可能,但平均说来,下大赌注的人和其他下小赌注以博取小额赢款的人比起来占不到什么便宜,也不见得会吃亏。交易所里买空卖空的投机商和稳扎稳打的投资者之间也有类似之处。在某些方面,交易所这个比喻比赌场更贴切,因为赌场里的输赢是受到操纵的,庄家到头来总归是赢家(严格说来,这意味着下大赌注的人比下小赌注的人输得多些,而下小赌注的人要比不打赌的人来得穷些。但在某种意义上对目前的论题来说,不打赌的例子是不怎么合适的)。撇开这个不谈,下大赌注和下小赌注似乎各有理由。动物界里有没有下大赌注的,或者比较保守的动物呢?我们将在第9章中看到,人们通常可以把雄性动物视为下大赌注、冒大风险的赌徒,而把雌性动物视为稳扎稳打的投资者,尤其是在雄性动物为得到配偶而相互争夺的一雄多雌的物种中。阅读本书的博物学家可以想到一些能称为下大赌注、冒大风险的物种,以及其他一些比较保守的物种。这里我要言归正传,谈谈基因如何对未来做预测这个带有更大普遍意义的主题。

        在一些难以预见的环境中,基因如何预测未来是个难题,解决这个难题的一个办法是预先赋予生存机器以一种学习能力。为此,基因可以通过对其生存机器发出如下指示的形式来编制程序:“下面这些会带来好处:口中的甜味、情欲亢进、适中的温度、微笑的小孩等。而下面这些会带来不快:各种痛苦、恶心、空空的肚皮、哭叫的小孩等。如果你碰巧做了某件事情之后便出现了不愉快的情况,切勿再做这种事情;在另一方面,重复做为你带来好处的任何事情。”这样编制的程序有一个好处,就是可以大大削减必须纳入原来程序的那些详尽的规则,同时可以应付事先未能预见到其细节的环境变化。在另一方面,基因仍然有必要做出某些预测。在我们列举的例子中,基因估计吃糖和交配可能对基因的生存有利,在这一意义上,口中的甜味以及情欲亢进是“有益的”。但根据这个例子,它们不能预见到糖精和自慰也可能为它们带来满足。它们也不能预见到,在我们这个糖多得有点反常的环境里,糖吃得过多的危险性。

        学习战略已应用于计算机下棋的某些程序中。计算机和人对弈或和其他计算机对弈时,这些程序确实能不断得到改善。尽管它们备有一个规则和战术库,但它们的决定程序里也带有一个预先纳入的小小的随机趋向。它们把以往的种种决定记录下来,每当赢得一局时,它们就稍微增加为这局棋带来胜利的战术的权重,以便计算机下次再度采用同样战术的可能性增加一些。

        预测未来的一个最有趣的方法是模拟。一位将军如果想知道某一项军事计划是否比其他可供选择的计划来得优越,他就面临做出预测的问题。天气、部队的士气以及敌人可能采取的反制措施都是未知数。如果想知道这个计划是否切实可行,一个办法是把该计划试行一下,看看其效果如何。然而,要把所有想象得出的计划都试行一下是不可取的,因为愿意“为祖国”献身的青年毕竟有限,而各种可能的计划实在多得很。进行与假想敌人交锋的演习也可以考验各种计划的实践性,这要比真刀真枪地干一下好。演习可以采取“北国”与“南国”全面交战的方式,使用的是空炮弹。但即使是这样也要耗费大量时间和物资。比较节约一些的办法是用玩具士兵和坦克在大地图上移来移去进行演习。

        近年来,计算机已肩负起大部分模拟的职能,不仅在军事战略方面,而且在诸如经济学、生态学、社会学等必须对未来做出预测的一切领域。它使用的是这样的技术:在计算机内建立一个世界上某种事物的模型。这并不意味着,如果你揭开计算机的盖子,就可以看到一个和模拟对象相同的微型模仿物。在下棋的计算机里,记忆装置内没有任何看得出是棋盘以及马和卒各就各位的“形象”,有的只是代表棋盘以及各种棋子位置的一行行电子编码。对我们来说,地图是世界某一部分的平面缩影。在计算机里面,地图通常是以一系列城镇和其他地点的名字来代表的。每个地点附有两个数字——它的经度和纬度。计算机实际上如何容纳它这个世界的模型是无关紧要的,重要的是容纳的形式允许它操纵这个模型进行操作和试验,并以计算机操作员能够理解的语言汇报运算的结果。通过模拟技术,以模型进行的战役可以得出胜负,模拟的班机可以飞行或坠毁,经济政策可以带来繁荣或崩溃。无论模拟什么,计算机的整个运算过程只需实际生活中极小的一部分时间。当然,这些反映世界的模型也有好坏之分,而且即使是上好的模型也只能是近似的。不管模拟得如何逼真,计算机也不能预测到将要发生的全部实际情况,但好的模拟肯定远胜于盲目的试验和误差。我们本来可以把模拟称为代替性的“试验和误差”,不幸的是,这个术语早被研究老鼠心理的心理学家占用了。

        如果模拟是这样一个好办法,我们可以设想生存机器本该是首先发现这个办法的,毕竟早在地球上出现人类以前,生存机器就已经发明了人类工程学的许多其他方面的技术:透镜和抛物面反射镜、声波的频谱分析、伺服控制系统、声呐、输入信息的缓冲存储器以及其他不胜枚举的东西。这些技术都有长长的名字,其具体细节这里不必赘述。模拟到底是怎么一回事呢?在我看来,如果你自己要做出一个困难的决定,而这个决定牵涉到一些将来的未知量,你也会进行某种形式的模拟。你设想在你采取各种可供选择的步骤之后将会出现的情况。你在大脑里建立一个模型,这个模型并不是世上万物的缩影,它仅仅反映出依你看来是有关的范围内有限的一组实体。你可以在心目中看到这些事物的生动形象,或者看到并操纵它们已经概念化了的形象。无论怎样,你的大脑里不会出现一个实际上占据空间的、反映你设想的事物的模型。但和计算机一样,你的大脑怎样表现这个模型的细节并不太重要,重要的是你的大脑可以利用这个模型来预测可能发生的事。那些能够模拟未来事物的生存机器,比只会在实际的试验和误差的基础上积累经验的生存机器要棋高一筹。问题是实际的试验既费时又费精力,明显的误差常常带来致命的后果,模拟则既安全又迅速。

        模拟能力的演化似乎最终导致了主观意识的产生,在我看来,这是当代生物学所面临的最不可思议的奥秘。没有理由认为电子计算机在模拟时是具有意识的,尽管我们必须承认,有朝一日它们可能具有意识。意识的产生也许是由于大脑对世界事物的模拟已达到如此完美无缺的程度,以至于把它自己的模型也包括在内。*显然,一个生存机器的肢体必然是构成它所模拟的世界的一个重要部分,可以假定,出于同样的理由,模拟本身也可以视为被模拟的世界的一个组成部分。事实上,“自我意识”可能是另外一种说法,但我总觉得这种说法用以解释意识的演化是不能十分令人满意的,部分原因是它牵涉到一个无穷尽的复归问题——如果一个模型可以有一个模型,那么为什么一个模型的模型不可以有一个模型呢……

        不管意识引起了哪些哲学问题,就本书的论题而言,我们可以把意识视为一个进化趋向的终点,也就是说,生存机器最终从主宰它们的主人即基因那里解放出来,变成有执行能力的决策者。大脑不仅负责管理生存机器的日常事务,它也获得了预测未来并做出相应安排的能力。它甚至有能力拒不服从基因的命令,例如拒绝生育它们的生育能力所容许的全部后代。但就这一点而言,人类的情况是非常特殊的,我们在下面将谈到这个问题。

        这一切和利他行为、自私行为有什么关系呢?我力图阐明的观点是,动物的行为,不管是利他的还是自私的,都在基因控制之下。这种控制尽管只是间接的,但仍然是十分强有力的。基因通过支配生存机器和它们的神经系统的建造方式对行为施加其根本影响。但此后怎么办,则由神经系统随时做出决定。基因是主要的策略制定者,大脑则是执行者。但随着大脑日趋高度发达,它实际上接管了越来越多的决策机能,并在决策过程中运用诸如学习和模拟的技巧。这个趋势在逻辑上的必然结果将会是,基因给予生存机器一个全面的策略性指示:请采取任何你认为是最适当的行动以保证我们的存在。但迄今为止还没有一个物种达到了这样的水平。

        和计算机类比以及和人类如何做出决定进行类比确实很有意思。但我们必须回到现实中来,而且要记住,事实上进化是一步一步通过基因库内基因的差别性生存来实现的。因此,为使某种行为模式——利他的或自私的——能够演化,基因库内“操纵”那种行为的基因必须比“操纵”另外某种行为的、与之匹敌的基因或等位基因有着更大的存活可能性。一个操纵利他行为的基因*指的是对神经系统的发展施加影响,使之有可能表现出利他行为的任何基因。我们有没有通过实验取得证据表明利他行为是可遗传的呢?没有。但这也是不足为奇的,因为到目前为止,很少有人对任何行为进行遗传学方面的研究。还是让我告诉你们一个研究行为模式的实例吧!这个模式碰巧并不带有明显的利他性,但它相当复杂,足以引起人们的兴趣。这是一个说明如何继承利他行为的典型例子。

        蜜蜂中有一种叫腐臭病(foul brood)的传染病。这种传染病会侵袭巢室内的幼虫。养蜂人驯养的品种中有些品种比其他品种更易于感染这种病,而且至少在某些情况下各品系之间的差异证明原因是它们行为上的不同。有些俗称卫生品系的蜜蜂**能够找到受感染的幼虫,把它们从巢室里拉出来并丢出蜂房,从而迅速地扑灭流行病。那些易感染的品系之所以易于染病,正是因为它们没有这种杀害病婴的卫生习惯。实际上这种卫生行为是相当复杂的。工蜂必须找到每一患病幼虫所居住的巢室,把上面的蜡盖揭开,拉出幼虫,把它拖出蜂房门,并弃之于垃圾堆上。

        由于各种理由,用蜜蜂做遗传学实验可以说是一件相当复杂的事情。工蜂自己一般不繁殖,因此你必须以一个品系的蜂后和另外一个品系的雄蜂杂交,然后观察养育出来的子代工蜂的行为。罗森布勒(W.C.Rothenbuhler)所做的实验就是这样进行的。他发现第一代子代杂交种的所有蜂群都是不卫生的:它们亲代的卫生行为似乎已经消失,尽管事实上卫生行为的基因仍然存在,但这些基因已变成隐性基因了,像人类遗传蓝眼基因一样。罗森布勒后来以第一代的杂交种和纯粹的卫生品系进行“回交”(当然也是用蜂后和雄蜂),这一次他得到了绝妙的结果。子代蜂群分成三类:第一类表现出彻底的卫生行为,第二类完全没有卫生行为,而第三类是折中的。第三类蜜蜂能够找到染病的幼虫,揭开它们的蜡蜂巢的盖子,但只到此为止,它们并不扔掉幼虫。据罗森布勒的猜测,蜜蜂的基因库可能存在两种基因,一种是进行揭盖的,另一种是扔幼虫的。正常的卫生品系两者兼备,易受感染的品系则具有这两种基因的等位基因——它们的竞争对手。那些在卫生行为方面表现为折中的杂交种,大概仅仅具有揭盖的基因(其数量是原来的两倍)而不具有扔幼虫的基因。罗森布勒推断,他在实验中培育出来的,显然完全是不卫生的蜂群里可能隐藏着一个具有扔幼虫的基因的亚群,只是由于缺乏揭盖基因而无能为力罢了。他以非常巧妙的方式证实了他的推断:他自己动手把蜂巢的盖子揭开。果然,蜡盖揭开之后,那些看起来是不卫生的蜜蜂中有一半马上表现出完全正常的把幼虫扔掉的行为。

        这段描述说明了前面一章提到的若干重要论点。它表明,即使我们对把基因和行为连接起来的各种胚胎因素中的化学连接一无所知,我们照样可以恰如其分地说“操纵某种行为的基因”。事实上,这一系列化学连接可以证明行为甚至包括学习过程。例如,揭盖基因之所以能发挥作用,可能是因为它首先让蜜蜂尝到受感染的蜂蜡的味道。就是说,蜂群会发觉把遮盖病虫的蜡盖吃掉是有好处的,因此往往一遍又一遍地这样做。即使基因果真是这样发挥作用的,只要具有这种基因的蜜蜂在其他条件不变的情况下进行揭盖活动,而不具有这种基因的蜜蜂不这样做,那么,我们还是可以把这种基因称为“揭盖”的基因。

        其次,这段描述也说明了一个事实,那就是基因在对它们共有的生存机器施加影响时是“合作的”。扔幼虫的基因如果没有揭盖基因的配合是无能为力的,反之亦然。不过遗传学的实验同样清楚地表明,在贯穿世代的旅程中,这两种基因基本上是相互独立的。就它们的有益工作而言,你尽可以把它们视为一个单一的合作单位,但作为复制因子,它们是两个自由的、独立的行为者。

        为了进行论证,我们有必要设想一下“操纵”各种不大可能的行为的基因。譬如我说假设有一种的“操纵向溺水的同伴伸出援手的行为”的基因,而你却认为这是一种荒诞的概念,那就请你回忆一下上面提到的卫生蜜蜂的情况吧。要记住,在援救溺水者所涉及的动作中,如综合了一切复杂的肌肉收缩,感觉整合,甚至有意识的决定,等等,我们并不认为基因是唯一的一个前提因素。关于学习、经验以及环境影响等是否与行为的形成有关这个问题我们没有表达意见。你只要承认这一点就行了:在其他条件不变的情况下,同时在许多其他的主要基因在场,以及各种环境因素发挥作用的情况下,一个基因,凭其本身的力量比它的等位基因有更大的可能促使一个个体援救溺水者。这两种基因的差别归根结底可能只是某种数量变数的差异。有关胚胎发育过程的一些细节尽管有趣,但与进化的种种因素无关。洛伦茨明确地阐明了这一点。

        基因是优秀的程序编写者,它们为自身的存在编写程序。生活为它们的生存机器带来种种艰难险阻,在对付这一切艰难险阻时,这个程序能够取得多大成功就是判定这些基因优劣的根据。这种判断是冷酷无情的,关系到基因的生死存亡。下面我们将要谈到以表面的利他行为促进基因生存的方式。但生存机器最关切的显然是个体的生存和繁殖,为生存机器做出各种决定的大脑也是如此。属同一“群体”的所有基因都会同意将生存和繁殖放在首位,因此各种动物总是竭尽全力去寻找并捕获食物,设法避免自己被抓住或吃掉,避免罹病或遭受意外,在不利的天气条件下保护自己,寻找异性伴侣并说服它们同意交配,并将一些和它们享有的相似的优越条件赋予它们的后代。我不打算列举很多例子——如果你需要一个例证,那就请你下次仔细观察一下你看到的野兽吧,但我却很想在这里提一下一种特殊的行为,因为我们在下面谈到利他行为与自私行为时必须再次涉及这种行为。我们可以把这种行为概括性地称为联络(communication)。*

        我们可以这样说,一个生存机器对另一个生存机器的行为或其神经系统的状态施加影响的时候,前者就是在和后者进行联络。这并不是一个我打算坚持为之辩护的定义,但对我们目前正在探讨的一些问题来说,这个定义是能够说明问题的。我所讲的影响是指直接的、偶然的影响。联络的例子很多:鸟、蛙和蟋蟀的鸣唱,狗的摇动尾巴和竖起长颈毛,黑猩猩的“露齿而笑”,人类的手势和语言等。许许多多生存机器的行动,通过间接影响其他生存机器的行为,来提高其自身基因的利益。各种动物千方百计地使这种联络方式取得成效。鸟儿的鸣唱使人们世世代代感到陶醉和迷惘。我在前面讲过的座头鲸的歌声表达出更为高超的意境,同时也更迷人。它的音量宏大无比,可以传到极其遥远的地方,音域广阔,从人类能够听到的亚音速的、低沉的隆隆声到超音速的、短促的刺耳声。蝼蛄之所以能发出洪亮的歌声,是因为它们在泥土中精心挖成双指数角状扩音器一样的土穴,在里面歌唱,唱出的歌声自然得到放大。在黑暗中翩翩起舞的蜂群能够为其他觅食的蜂群准确地指出前进的方向以及食物在多远的地方可以找到。这种巧妙的联络方法只有人类的语言可以与之媲美。

        动物行为学家的传统说法是,联络信号的逐步完善对发出信号者和接收信号者都有益。譬如说,雏鸡在迷途或受冻时发出的尖叫声可以影响母鸡的行为。母鸡听到这种吱吱啁啁的叫声后通常会应声而来,把小鸡领回鸡群。我们可以说,这种行为的形成是由于它为双方都带来好处:自然选择有利于迷途后会吱吱啁啁叫的雏鸡,也有利于听到这种叫声后随即做出适当反应的母鸡。

        如果我们愿意的话(其实无此必要),我们可以认为雏鸡叫声之类的信号具有某种意义或传达了某种信息。在这个例子里,这种呼唤声相当于“我迷路了!”我在第1章中提到的小鸟发出的报警声传递了“老鹰来了!”这一信息。那些收到这种信息并随即做出反应的动物无疑会得到好处。因此,这个信息可以说是真实的。可是动物会发出假的信息吗?它们会说谎吗?

        动物说谎这种概念可能会令人误解,因此我必须设法防止这种误解的产生。我曾经出席过比阿特丽斯(Beatrice)和加德纳(Allen Gardner)主讲的一次讲座,内容是关于他们所训练的遐迩闻名的“会说话的”黑猩猩华舒(“她”以美国手语表达思想。对学习语言的学者来说,“她”的成就可能引起广泛的兴趣)。听众中有一些哲学家,在讲座结束后举行的讨论会上,对于华舒是否会说谎这个问题他们费了一番脑筋。我猜想,加德纳夫妇一定有些纳闷,为什么不谈谈其他更有趣的问题呢?我也有同感。在本书中,我所使用的“欺骗”“说谎”等字眼只有直截了当的含义,远不如哲学家们使用的那么复杂。他们感兴趣的是有意识的欺骗,而我讲的仅仅是在功能效果上相当于欺骗的行为。如果一只小鸟在没有老鹰出现的情况下使用“鹰来了”这个信号,从而把它的同伴都吓跑,让它有机会留下来把食物全都吃掉,我们可以说它是说了谎的。我们并不是说它有意识地去欺骗,我们所指的只不过是,说谎者在牺牲其同伴的利益的情况下取得食物。其他小鸟之所以飞走,是因为它们在听到说谎者报警时做出在真的有鹰出现的情况下的那种正常反应而已。

        许多可供食用的昆虫,如前一章提到的蝴蝶,为了保护自己而模拟其他味道恶劣的或带刺的昆虫的外貌。我们自己也经常受骗,以为有黄黑相间条纹的食蚜蝇就是胡蜂。有些苍蝇在模拟蜜蜂时更是惟妙惟肖。食肉动物也会说谎,琵琶鱼在海底耐着性子等待,将自己隐蔽在周围环境中,唯一暴露出来的部分是一块像虫一样蠕动着的肌肉,它挂在鱼头上突出的一条长长的“钓鱼竿”末端。小鱼游近时,琵琶鱼会在小鱼面前抖动它那像虫一样的诱饵,把小鱼引到自己隐而不见的嘴巴旁。大嘴突然张开,小鱼被囫囵吞下。琵琶鱼也在说谎,它利用的是小鱼喜欢游近像虫一样蠕动着的东西的习性。它在说,“这里有虫”,任何“受骗上当”的小鱼都难逃被吞掉的命运。

        有些生存机器会利用其他生存机器的性欲。蜂兰花(bee orchid)会引诱蜜蜂去和它的花蕊交配,因为这种兰花活像雌蜂。兰花从这种欺骗行为中得到的好处是花粉得到传播,因为一只分别受到两朵兰花欺骗的蜜蜂必然会把其中一朵兰花的花粉带给另外一朵。萤火虫(实际上是甲虫)向配偶发出闪光来吸引它们。每一物种都有其独特的莫尔斯电码一样的闪光方式,这样,不同萤火虫种群之间不会发生混淆不清的现象,从而避免有害的杂交。正像海员期待发现某些灯塔发出的独特闪光模式一样,萤火虫会寻找同一物种发出的密码闪光模式。Photuris属的萤火虫雌虫“发现”,如果它们模拟Photinus属的萤火虫雌虫的闪光密码,它们就能引来Photinus属的萤火虫雄虫。Photuris属的雌虫就这样做了。当一只Photinus属的雄虫受骗接近时,雌虫就不客气地把它吃掉。说到这里,我们自然会想起与此相似的有关塞壬[1]和洛勒莱[2]的故事,但英国西南部的康沃尔人却会回想起那些为打劫而使船只失事的歹徒,后者用灯笼诱船触礁,然后劫掠从沉船中散落出来的货物。

        每当一个联络系统逐渐形成时,这样的风险总会出现:某些生物利用这个系统来为自己谋私利。由于我们一直受到“物种利益”这个进化观点的影响,因此我们自然首先认为说谎者和欺骗者是属于不同的物种的:捕食的动物、被捕食的动物、寄生虫等等。然而,每当不同个体的基因之间发生利害冲突时,不可避免地会出现说谎、欺骗等行为以及用于自私的目的的联络手段等情况。这包括属于同一物种的不同个体。我们将会看到,甚至子女也会欺骗父母,丈夫也会欺骗妻子,兄弟俩也会相互欺骗。

        有些人相信,动物的联络信号原来是为了促进相互的利益而发展的,只是后来为坏分子所利用。这种想法毕竟是过于天真。实际的情况很可能是:从一开始,一切的动物联络行为就掺有某种欺诈的成分,因为所有的动物在相互交往时至少要牵涉某种利害冲突。我打算在下面一章介绍一个强有力的观点,这个观点是从进化的角度来看待各种利害冲突的。

        第5章 进犯行为:稳定性和自私的机器

        本章所要讨论的主要是关于进犯行为这个在很大程度上被误解了的论题。我们将继续把个体作为一种自私的机器加以论述,这种机器的程序编制就是为了完成对作为一个整体的全部基因来说最有益的任何事情。这种说法是为了叙述的简便。本章结尾时我们将再回到以单个基因为对象的说法。

        对于某个生存机器来说,另一个生存机器(不是前者的子女,也不是其他近亲)是它环境的一部分,就像一块岩石、一条河流或一块面包也属于它的环境一样。这个充当环境的生存机器可以制造麻烦,但也能够被加以利用。它同一块岩石或一条河流的一个重要区别在于:它往往会还击。因为它也是机器,拥有寄托着其未来的不朽基因,而且为了保存这些基因,它也不惜赴汤蹈火。自然选择有利于那些能够控制其生存机器并充分利用环境的基因,包括充分利用相同和不同物种的其他生存机器。

        有时,生存机器似乎不大相互影响对方的生活。举例来说,鼹鼠同乌鸫不相互吞食,不相互交配,也不争夺居住地。即使如此,我们也不能认为它们老死不相往来。它们可能为某种东西而竞争,也许是争夺蚯蚓。这并不等于说你会看到鼹鼠和乌鸫为一条蚯蚓而你争我夺,事实上,一只乌鸫也许终其一生也见不到一只鼹鼠。但是,如果你把鼹鼠种群消灭干净,对乌鸫可能产生明显的影响,尽管对于发生影响的细节,或通过什么曲折迂回的间接途径发生影响,我都不敢妄加猜测。

        不同物种的生存机器以各种各样的方式相互影响。它们可能是食肉动物或被捕食的动物,可能是寄生虫或宿主,也可能是争夺某些稀有资源的对手。它们可以通过各种特殊方式被利用,例如,花利用蜜蜂传播花粉。

        属于同一物种的生存机器往往更加直接地相互影响对方的生活。发生这种情况有许多原因。原因之一是,自己物种的一半成员可能是潜在的配偶,而且对其子女来讲,它们有可能是勤奋和可以利用的双亲;另一个原因是,同一物种的成员非常相似,它们都是在同一类地方保存基因的机器,生活方式又相同,因此它们是一切生活必需资源的更直接的竞争者。对乌鸫来说,鼹鼠可能是它的竞争对手,但其重要性却远不及另一只乌鸫。鼹鼠同乌鸫可能为蚯蚓而进行竞争,但乌鸫同乌鸫不仅为蚯蚓,而且还为其他一切东西而相互争夺。如果它们属于同一性别,还可能争夺配偶。通常是雄性动物为争夺雌性配偶而相互竞争,其中道理我们在后文将会看到。这种情况说明,如果雄性动物对与之竞争的另一只雄性动物造成损害的话,也许会给它自己的基因带来好处。

        因此,对于生存机器来说,合乎逻辑的策略似乎是将其竞争对手杀死,然后最好把它们吃掉。尽管自然界会发生屠杀和同类相食的现象,但认为这种现象普遍存在却是对自私基因理论的一种幼稚的理解。事实上,洛伦茨在《论进犯行为》一书中就强调过,动物间的搏斗具有克制和绅士风度的性质。他认为,动物间的搏斗有一点值得注意:它们的搏斗是一种正常的竞赛活动,像拳击或击剑一样,是按规则进行的。动物间的搏斗是一种手持钝剑或戴着手套进行的搏斗,威胁和虚张声势代替了真刀真枪,胜利者尊重降服的示意,它不会像我们幼稚的理论所能断言的那样,会给投降者以致命的打击或撕咬。

        把动物的进犯行为解释成是有克制的而且是有一定规则的行为,可能会引起争论,尤其是把可怜的历史悠久的人类说成是屠杀自己同类的唯一物种,是该隐印记[1]以及种种耸人听闻的此类指责的唯一继承者,显然都是错误的。一个博物学家是强调动物进犯行为暴力的一面还是克制的一面,部分取决于他通常观察的动物的种类,部分取决于他在进化论方面的偏见,洛伦茨毕竟是一个主张“物种利益”的人。即使对动物搏斗方式的描述有些言过其实,但有关动物文明搏斗的观点至少是有些道理的。表面上看,这种现象似乎是一种利他主义的形式。自私基因的理论必须承担对这种现象做出解释的艰巨任务。为什么动物不利用每一个可能的机会竭尽全力将自己物种的竞争对手杀死呢?

        对这一问题的一般回答是,那种破釜沉舟的好斗精神不但会带来好处,也会造成损失,而且不仅仅是时间和精力方面的明显损失。举例来说,假定B和C都是我的竞争对手,而我又正好同B相遇。作为一个自私的个体,按理讲我应想方设法将B杀死。但先别忙,请听我说下去。C既是我的对手,也是B的对手。如果我将B杀掉,就为C除掉了一个对手,我就无形中为C做了一件好事。我让B活着也许更好些,因为这样B就可能同C进行竞争或搏斗,我也就可以坐收渔翁之利。不分青红皂白地去杀死对手并无明显的好处,这个假设的简单例子的寓意即在于此。在一个庞大而复杂的竞争体系内,除掉一个对手并不见得就是一件好事,其他竞争对手很可能从中得到比你更多的好处。那些负责控制虫害的官员们得到的就是这类严重的教训。你遇到了一场严重的农业虫害,你发现了一种扑灭这场虫害的好办法,于是你高高兴兴地按这个办法去做了。殊不知这种害虫的消灭反而使另外一种害虫受益,其程度甚至超过对人类农业的好处。结果是,你的境遇比以前还要糟。

        另一方面,有区别地把某些特定的竞争对手杀死,或至少与其进行搏斗,似乎是一个好主意。如果B是一只象形海豹(elephant seal),拥有一大群“妻妾”(harem),而我也是一只象形海豹,把它杀死我就能够把它的“妻妾”弄到手,那我这样做可能是明智的。即使在有选择的搏斗中会有损失,也是值得冒风险的。进行还击以保卫其宝贵的财产对B是有利的。如果是我挑起一场搏斗的话,我的下场同它一样,很可能以死亡告终,说不定它存我亡的可能性更大。我想同它进行搏斗是因为它掌握着一种宝贵的资源,但它为什么会拥有这种资源的呢?它也许是在战斗中赢来的。在和我交手以前,它也许已经击退过其他的挑战者,说明可能是一个骁勇善战的斗士。就算是我赢了这场搏斗而且得到了这群“妻妾”,但我可能在搏斗的过程中严重受伤,以致不能够享用得来的好处。而且,搏斗耗尽了时间和精力,把时间和精力暂时积蓄起来说不定更好。如果我一门心思进食,并且在一段时间内不去惹是生非,我会长得更大更强壮。最终我是会为争夺这群“妻妾”而同它进行搏斗的,但如果我等待一下而不是现在就匆促上阵,我获胜的机会可能更大。

        上面这段自我独白完全是为了说明:在决定要不要进行搏斗之前,最好是对“得-失”进行一番可能是无意识的,但却是复杂的权衡。尽管进行搏斗无疑会得到某些好处,但并非百利而无一弊。同样,在一场搏斗的过程中,牵涉让搏斗升级还是缓和下来的每一个策略上的决定都各有其利弊,而且这些利弊在原则上都可以进行分析。个体生态学家对这种情况早已有所了解,尽管这种了解还不太清晰明确,但只有史密斯才能有力和明确地表述这种观点,而人们通常并不认为他是一位生态学家。他同普赖斯(G.R.Price)、帕克(G.A.Parker)合作运用数学分支中被称为博弈论(Game Theory)的工具进行研究。他们独到的见解能够用语言而非数学符号表达出来,尽管其精确程度因此而有些损失。

        进化稳定策略(evolutionarily stable strategy,以下简称ESS)*是史密斯提出的基本概念。他追根溯源,发现最早有这种想法的是汉密尔顿和麦克阿瑟(R.H.MacArthur)。“策略”是一种程序预先编制好的行为方式。例如,“向对手进攻,如果它逃你就追,如果它还击你就逃”就是一种策略。我们所说的策略并不是个体有意识地制订出来的,弄清这一点十分重要。不要忘记,我们把动物描绘成机器人一样的生存机器,它的肌肉由一架程序预先编制好的计算机控制。用文字把策略写成一组简单的指令只是为了便于我们思考。由某种难以具体讲清楚的机制作用产生的动物行为,就好像是以这样的指令为根据的。

        凡是种群的大部分成员采用某种策略,而这种策略的好处是其他策略所不及的,这种策略就是进化稳定策略或称ESS。这一概念既微妙又很重要。换句话讲,对于个体来说,最好的策略取决于种群的大多数成员在做什么。由于种群的其余部分也是由个体组成的,而它们都力图最大限度地扩大其各自的成就,因而能够持续存在的必将是这样一种策略:它一旦形成,任何举止异常的个体的策略都不可能与之比拟。在环境的一次大变动之后,种群内可能出现一个短暂的进化上的不稳定阶段,甚至可能出现波动。但一种ESS一旦确立,就会稳定下来:偏离ESS的行为将受到自然选择的惩罚。

        为将这一观点用于解释进犯行为,我们来研究一下史密斯假设的一个最简单的例子。假定有一个特定的物种叫“鹰和鸽子”(这两个名称系人类的传统用法,但同这两种鸟的习性无关:其实鸽子是一种进攻性相当强的鸟)。在这个物种的某个种群中只存在两种搏斗策略。在我们这个假定的种群中,所有个体不是鹰就是鸽子。鹰搏斗起来总是全力以赴、孤注一掷的,除非身负重伤,否则绝不退却;而鸽子却只是以风度高雅的惯常方式进行威胁恫吓,从不伤害其他动物。如果鹰同鸽子搏斗,鸽子就迅即逃跑,因此鸽子不会受伤。如果是鹰同鹰进行搏斗,它们会一直打到其中一只受重伤或死亡才罢休。如果是鸽子同鸽子相遇,那就谁也不会受伤;它们长时间地摆开对峙的架势,直到它们中的一只感到疲劳了,或者感到厌烦而决定不再对峙下去,从而做出让步为止。我们暂且假定一个个体事先无法知道它的对手是鹰还是鸽子,只有在与之进行搏斗时才能弄清楚,而且它也记不起过去同哪些个体进行过搏斗,因此无从借鉴。

        现在,作为一种纯粹是随意规定的比赛规则,我们规定竞赛者“得分”标准如下:赢一场50分,输一场0分,重伤者-100分,使竞赛拖长而浪费时间者-10分。我们可以把这些分数视为能够直接转化为基因生存的筹码。得分高而平均“盈利”也高的个体就会在基因库中遗留下许多基因。在现实中,实际的数值对分析并无多大意义,但却可以帮助我们去思考这一问题。

        鹰在同鸽子搏斗时,鹰是否有击败鸽子的倾向,对此我们并不感兴趣,这一点是重要的。我们已经知道这个问题的答案了:鹰永远会取胜。我们想要知道的是:究竟鹰和鸽子谁是进化稳定策略型?如果其中一种是ESS型而另一种不是,那么我们认为属于ESS型的那种才会进化。从理论上讲,存在两种ESS型是可能的。不论种群大多数成员所采取的碰巧是什么样的策略——鹰策略也好,鸽子策略也好——对任何个体来说,如果最好的策略是随大流的话,那么,存在两种ESS型是可能的。在这种情况下,种群一般总是保持在自己的两种稳定状态中它首先达到的那一种状态。然而我们将会看到,这两种策略,不论是鹰的策略还是鸽子的策略,事实上单凭其自身不可能在进化上保持稳定性,因此我们不应该指望任何一个会得以进化。为了说明这一点,我们必须计算平均盈利。

        假设有一个全部由鸽子组成的种群。不论它们在什么时候进行搏斗,谁也不会受伤。这种比赛都是一些时间拖得很长、按照仪式进行的竞赛,也许是虎视眈眈地对峙,只有当一个对手让步,这种竞赛才宣告结束。于是得胜者因获取有竞争性的资源而得50分,但因长时间的对峙而浪费时间得-10分,因此净得40分。而败方也因浪费时间得-10分。每只鸽子平均输赢各半。因此每场竞赛的平均盈利是40分和-10分的平均数,即15分。所以,鸽子种群中每只鸽子看来成绩都不错。

        但是现在假设在种群中出现了一个突变型的鹰。由于它是周围唯一的一只鹰,因此它的每一次搏斗都是同鸽子进行的。鹰对鸽子总是保持不败纪录,因此它每场搏斗净得50分,而这个数字也就是它的平均盈利。由于鸽子的盈利只有15分,因此鹰享有巨大的优势。结果鹰的基因在种群内得以迅速散布。但鹰却再也不能指望它以后遇到的对手都是鸽子了。再举一极端例子,如果鹰基因的成功扩散使整个种群都变成了鹰的天下,那么所有的搏斗都变成鹰同鹰之间的搏斗,这时情况就完全不同了。当鹰与鹰相遇时,其中一个受重伤,得-100分,而得胜者得50分。鹰种群中每只鹰在搏斗中可能胜负各半,因此,它在每场搏斗中平均可能得到的盈利是50分和-100分的对半,即-25分。现在让我们设想一下一只生活在鹰种群中孑然一身的鸽子的情景吧。毫无疑问,它每次搏斗都要输掉,但它绝不会受伤。因此,它在鹰种群中的平均盈利为0分,而鹰种群中的鹰平均盈利却是-25分,鸽子的基因就有在种群中散布开来的趋势。

        按照我的这种叙述方式,好像种群中存在一种连续不断的摇摆状态。鹰的基因扶摇直上迅速占据优势;鹰在数量上占据多数的结果是,鸽子基因必然受益,继而数量增加,直到鹰的基因再次开始繁衍,如此等等。然而情况并不一定是这样摇摆动荡。鹰同鸽子之间有一个稳定的比例。你只要按照我们使用的任意规定的评分制度计算一下的话,就能得出其结果是鸽子同鹰的稳定比例为∶。在达到这一稳定比例时,鹰同鸽子的平均盈利完全相等。因此,自然选择不会偏袒甲而亏待乙,而会一视同仁。如果种群中鹰的数目开始上升,不再是,鸽子就会开始获得额外的优势,比例会再回复到稳定状态。如同我们将要看到的性别的稳定比例是50∶50一样,在这一假定的例子中,鹰同鸽子的稳定比例是7∶5。在上述的两种比例中,如果发生偏离稳定点的摇摆,这种摆动的幅度也不一定很大。

        这种情况乍听起来有点像类群选择,但实际上与类群选择毫无共同之处。之所以这种情况听上去像类群选择,是因为它使我们联想到处于一种稳定平衡状态的种群,每当这种平衡被打破,该种群往往能够逐渐恢复这种平衡。但ESS较之类群选择是一种远为精细微妙的概念。它同某些群体比另外一些群体获得更大成功这种情况毫无关系。只要应用我们假定的例子中的任意评分制度就能很好地加以说明。在由的鹰和的鸽子组成的稳定种群中,个体的平均盈利被证明为分。不论该个体是鹰还是鸽子都是如此。分比鸽子种群中每只鸽子的平均盈利(15分)少很多。只要大家都同意成为鸽子,每个个体都会受益。根据单纯的类群选择,任何群体,如其所有个体都一致同意成为鸽子,它所取得的成就比停留在ESS比例上的竞争群体要大得多(事实上,纯粹由鸽子组成的集团并不一定是最能获得成功的群体。由的鹰和的鸽子组成的群体中,每场竞赛的平均盈利分。按这个比例组成的群体才是最有可能获得成功的集团。但就目前的论题而言,我们可以不必考虑这种情况。对每一个个体来说,比较单纯的全部由鸽子组成集团,由于每一个个体的平均盈利为15分,它要比ESS优越得多)。因此,类群选择理论认为向全部由鸽子组成的集团进化是发展的趋势,因为鹰占的群体取得成功的可能性要小些。但问题是,即使是那些从长远来讲能为其每一成员带来好处的集团,仍免不了会出现害群之马。清一色的鸽子群体中每一只鸽子的境遇都比ESS群体中的鸽子好些,这是事实。然而遗憾的是,在鸽子集团中,一只鹰单枪匹马就可干出无与伦比的业绩,任何力量也不能阻止鹰的进化。因此这个集团因出现内部的背叛行为而难逃瓦解的厄运。ESS种群的稳定倒不是由于它特别有利于其中的个体,而仅仅是由于它无内部背叛行为之隐患。

        人类能够结成各种同盟或集团,即使这些同盟或集团在ESS的意义上来说并不稳定,但对每个个体来说却是有利的。这种情况之所以可能发生,仅仅是由于每一个个体都能有意识地运用其预见能力,从而懂得遵守盟约的各项规定是符合其长远利益的。某些个体为有可能在短期内获得大量好处而不惜违犯盟约,这种做法的诱惑力会变得难以抗拒。这种危险甚至在人类缔结的盟约中也是始终存在的。垄断价格也许是最能说明问题的一个例子。将汽油的统一价格定在某种人为的高水平上,是符合所有加油站老板的长远利益的。那些操纵价格的集团,由于对最高的长远利益进行有意识的估计判断,因此能够存在相当长的时期。但时常有个别的人会受到牟取暴利的诱惑而降低价格。这种人附近的同行就会立刻步其后尘,于是降低价格的浪潮就会波及全国。让我们感到遗憾的是,那些加油站老板有意识的预见能力这时重新发挥了作用,并缔结垄断价格的新盟约。所以,甚至在人类这一具有天赋的自觉预见能力的物种中,以最高的长远利益为基础的盟约或集团,由于出现内部的叛逆而摇摇欲坠,经常有土崩瓦解的可能。在野生动物中,由于它们为竞争的基因所控制,群体利益或集团策略能够得以发展的情形就更少见。我们所能见到的情况必然是:进化稳定策略无处不在。

        在上面的例子中,我们简单地假定每一个个体不是鹰就是鸽子。我们得到的最终结果是,鹰同鸽子达到了进化上的稳定比例。事实上,我们说的是鹰的基因同鸽子的基因在基因库中实现了稳定的比例。这种现象在遗传学的术语里被称为稳定的多态性(polymorphism)。就数学而言,可以通过下面这个途径来实现没有多态性的完全相等的ESS。如果在每次具体竞赛中每一个个体都能够表现得不是像鹰就是像鸽子的话,这样一种ESS就能实现:所有的个体表现得像鹰一样的概率完全相等。在我们的具体例子中这个概率就是。实际上这种情况说明,每一个个体在每次参加竞赛时,对于在这次竞赛中究竟要像鹰还是像鸽子那样行动,事先已随意做出了决定,尽管决定是随意做出的,但总是考虑到鹰7鸽5的比例。虽然这些决定偏向于鹰,但必须是任意的,所谓任意是指一个对手无法事先猜出对方在任何具体的竞赛中将采取何种行动,这一点是至关重要的。例如,在连续7次搏斗中充当鹰的角色,然后在连续5次搏斗中充当鸽子的角色如此等等是绝对不可取的。如果任何个体采用如此简单的搏斗序列,它的对手很快就会识破这种策略并加以利用。要对付这种采用简单搏斗序列的战略者,当知道它在搏斗中充当鸽子的角色时,你以鹰的行动去应战就能处于有利地位。

        当然,鹰同鸽子的故事简单得有点幼稚。这是一种“模式”,虽然这种情况在现实自然界中不会发生,但它可以帮助我们去理解自然界实际发生的情况。模式可以非常简单,如我们假设的模式,但对理解一种论点或得出一种概念仍旧是有助益的。简单的模式能够加以丰富扩展,使之逐渐形成更加复杂的模式。如果一切顺利的话,随着模式渐趋复杂,它们也会变得更像实际世界。要发展鹰和鸽子的模式,一个办法就是引进更多的策略。鹰和鸽子并不是唯一的可能性。史密斯和普赖斯介绍的一种更复杂的策略被称为还击策略者(Retaliator)。

        还击策略者在每次搏斗开始时表现得像鸽子,就是说它不像鹰那样,开始进攻就孤注一掷,凶猛异常,而是摆开通常那种威胁恫吓的对峙姿态,但是对方一旦向它进攻,它即还击。换句话说,还击策略者当受到鹰的攻击时,它的行为像鹰;当同鸽子相遇时,它的行为像鸽子;而当它同另一个还击策略者遭遇时,它的表现却像鸽子。还击策略者是一种以条件为转移的策略者,它的行为取决于对方的行为。

        另一种有条件的策略者称为恃强凌弱的策略者(Bully)。它的行为处处像鹰,但一旦受到还击,它就立刻逃之夭夭。还有一种有条件的策略者是试探性还击策略者(Prober-retaliator)。它基本上像还击策略者,但有时也会试探性地使竞赛短暂地升级。如果对方不还击,它坚持像鹰一样行动;如果对方还击,它就回复到鸽子的那种通常的威胁恫吓姿态。如果受到攻击,它就像普通的还击策略者一样进行还击。

        如果将我提到的5种策略都放进一个模拟计算机中去,使之相互较量,结果其中只有一种,即还击策略,在进化上是稳定的。*试探性还击策略近乎稳定。鸽子策略不稳定,因为鹰和恃强凌弱者会侵犯鸽子种群。由于鹰种群会受到鸽子和恃强凌弱者的进犯,因此鹰策略也是不稳定的。由于恃强凌弱者种群会受到鹰的侵犯,恃强凌弱者策略也是不稳定的。在由还击策略者组成的种群中,由于其他任何策略也没有还击策略本身取得的成绩好,因此它不会受其他任何策略的侵犯。然而鸽子策略在纯由还击策略者组成的种群中也能取得相等的好成绩。这就是说,如果其他条件不变,鸽子的数目会缓慢地逐渐上升。如果鸽子的数目上升到相当大的程度,试探性还击策略(而且连同鹰和恃强凌弱者)就开始获得优势,因为在同鸽子的对抗中它们要比还击策略取得更好的成绩。试探性还击策略本身不同于鹰策略和恃强凌弱策略,在试探性还击策略的种群中,只有其他一种策略,即还击策略,比它取得的成绩好些,而且也只是稍微好一些。在这一意义上讲,它几乎是一种ESS。因此我们可以设想,还击策略和试探性还击策略的混合策略可能趋向于占绝对优势,在这两种策略之间也许甚至有幅度不大的摇摆,同时占比例极小的鸽子在数量上也有所增减。我们不必再根据多态性去思考问题,因为根据多态性,每一个个体永远是不采用这种策略,就是采用另一种策略。每一个个体事实上可以采用一种还击策略、试探性还击策略以及鸽子策略三者相混合的复杂策略。

        这一理论的结论同大部分野生动物的实际情况相去不远。从某种意义上说,我们已经阐述了动物进犯行为中“文明”的一面。至于细节,当然取决于赢、受伤和浪费时间等等的实际“得分”。对于象形海豹来说,得胜的奖赏可能是让它几乎独占一大群“妻妾”的权利。因此这种取胜的盈利应该说是很高的。这就难怪它们搏斗起来是那样穷凶极恶,而造成重伤的可能性又是如此之高。把在搏斗中受伤所付出的代价与赢得胜利所得到的好处相比,浪费时间所付出的代价应该说是小的。但另一方面,对一只生活在寒冷的气候中的小鸟来说,浪费时间的代价可能是极大的。喂养雏鸟的大山雀平均每30秒钟就需要捕到一个猎物。白天的每一秒钟都是珍贵的。在鹰同鹰的搏斗中,浪费的时间相对来说是短促的,但比起它们受伤的风险,对时间的浪费也许应该看作一件更为严重的事情。遗憾的是,对于在自然界中各种活动所造成的损失以及带来的利益,目前我们知之甚少,不能够给出实际数字。*我们不能单纯从我们自己任意选定的数字中轻易地得出结论。ESS型往往能够得以进化,它同任何群体性的集团所能实现的最佳条件不是一回事。常识会使人误入歧途,上述这些总的结论是重要的。

        史密斯所思考的另一类战争游戏叫作“消耗战”。我们可以认为,这种“消耗战”发生在从不参加危险战斗的物种中,也许是盔甲齐全的一个物种,它受伤的可能性很小。这类物种中的一切争端都是按传统的方式摆摆架势来求得解决的。竞赛总是以参加竞赛的一方让步而告终。你要是想赢得胜利,只要虎视眈眈地注视着对方,坚持到底毫不动摇,直到对方最终逃走。显然任何动物都不能够无限期地进行威胁恫吓,因为其他地方还有重要的事情要做。它为之竞争的资源诚可宝贵,但其价值也并非无限。它的价值只值得花这么多时间,而且正如拍卖一样,每一个人只准备出那么多钱。时间就是这种只有两个出价人参加的拍卖中使用的筹码。

        我们假定所有这些个体都事先精确估计某一种具体资源(如雌性动物)值得花多长时间,那么一个打算为此稍微多花一点时间的突变性个体就永远是胜利者。因此,出价极限固定不变的策略是不稳定的。即使资源的价值能够被非常精确地估计出来,而且所有个体的出价也都恰如其分,这种策略也是不稳定的。任何两个个体按照极限策略出价,它们会在同一瞬间停止喊价,结果谁也没有得到这一资源!在这种情况下,与其在竞赛中浪费时间,倒不如干脆一开始就弃权来得划算。消耗战同实际拍卖之间的重要区别在于,在消耗战中参加竞赛的双方毕竟都要付出代价,但只有一方得到这项资源。所以,在极限出价者的种群中,竞赛一开始就弃权的策略会获得成功,从而也就在种群中扩散开来。其结果必然是,对于那些没有立刻弃权而是在弃权之前稍等那么几秒钟的个体来说,它们可能得到的某些好处开始增长起来。这是一种用以对付已经在种群中占绝对优势的那些不战而退的个体的有利策略。这样,自然选择促进个体在弃权之前坚持一段时间,使这段时间逐渐延长,直至再次延长到有争议的资源的实际经济价值所容许的极限。

        谈论之际,我们不知不觉又对种群中的摇摆现象进行了描述。然而数学上的分析再次表明,这种摇摆现象并非不可避免。进化稳定策略是存在的,它不仅能够以数学公式表达出来,而且能用语言这样来说明:每一个个体在一段不能预先估计的时间内进行对峙,就是说,在任何具体场合难以预先估计,但按照资源的实际价值可以得出一个平均数。举例说,假如该资源的实际价值是5分钟的对峙,在进化稳定策略中,任何个体都可能持续5分钟以上,或者少于5分钟,或者恰好5分钟。重要的是,对方无法知道在这一具体场合中它到底准备坚持多长时间。

        在消耗战中,个体对于它准备坚持多久不能有任何暗示,这一点显然是极为重要的。对任何个体来说,认输的念头一旦流露,哪怕只是一根胡须抖动了一下,都会立刻使它处于不利地位。如果说胡须抖动一下就是预示在1分钟内就要退却的可靠征兆,赢得胜利的一个非常简单的策略是:“如果你的对手的胡须抖动了一下,不论你事先准备坚持多久,你都要再多等1分钟。如果你的对手是胡须尚未抖动,而这时离你准备认输的时刻已不到1分钟了,那你就立刻弃权,不要再浪费任何时间。绝不要抖动你自己的胡须。”因此,抖动胡须或预示未来行为的任何类似暴露形式都会很快受到自然选择的惩罚。不动声色的面部表情会得到发展。

        为什么要面部表情不动声色,而不是公开说谎呢?其理由还是因为说谎行为是不稳定的。假定情况是这样的:在消耗战中,大部分个体只有在确实想长时期战斗下去时才把颈背毛竖起来,那么,能够发展的将是明显的相反策略:在对手竖起颈背毛时立刻认输。但这时说谎者的队伍有可能开始逐渐形成。那些确实无意长时间战斗下去的个体在每次对峙中都将其颈背毛竖起,于是胜利的果实唾手可得。说谎者基因因此扩散开来。在说谎者成为多数时,自然选择就又会有利于那些能够迫使说谎者摊牌的个体,因而说谎者的数目会再次减少。在消耗战中,说谎和说实话同样都不是进化稳定策略,不动声色的面部表情方是进化稳定策略,即使最终认输,也是突如其来和难以预料的。

        以上我们仅就史密斯称之为“对称性”(symmetric)竞赛的现象进行探讨。意思是说,我们所做的假定是,竞赛参加者除搏斗策略之外,其余一切方面的条件都是相等的。我们把鹰和鸽子假定为力量强弱相同,具有的武器和防护器官相同,而且可能赢得的胜利果实也相同。对于假设一种模式来说,这是简便的,但并不太真实。帕克和史密斯也曾对“不对称”的竞赛进行了探讨。举例说,如果个体在体形大小和搏斗能力方面各不相同,而每一个个体也能够对自己的和对手的休形大小进行比较并做出估计的话,这对形成的ESS是否有影响?肯定是有影响的。

        不对称现象似乎主要有三类。第一类就是我们刚才提到的那种情况:个体在大小或搏斗装备方面可能不同;第二类是个体可能因胜利果实的多寡而有所区别。比如说,衰老的雄性动物,由于其余生不会很长,如果受伤,它的损失较之来日方长的、精力充沛的年轻雄性动物可能要少。

        第三类,纯属随意假定而且明显互不相干的不对称现象能够产生一种ESS,因为这种不对称现象能够使竞赛很快见分晓,这是这种理论的一种异乎寻常的推论。比如说,通常会发生这样的情况,两个竞争者中的一个比另一个早到达竞赛地点,我们就分别称它们为“留驻者”(resident)和“闯入者”(intruder)。为了便于论证,我是这样进行假定的,留驻者和闯入者都不因此而具有任何附加的有利条件。我们将会看到,这一假定在实际生活中可能与事实不符,但这点并不是问题的关键。问题的关键在于,纵令留驻者具有优于闯入者的有利条件这种假定无理可据,基于不对称现象本身的ESS也很可能得以形成。简单地讲,这和人类抛掷硬币,并根据硬币的正反面来迅速而毫无争议地解决争论的情况有类似之处。

        “如果你是留驻者,进攻;如果你是闯入者,退却”这种有条件的策略能够成为ESS。由于不对称现象是任意假定的,因此,“如果是留驻者,退却;如果是闯入者,进攻”这种相反的策略也有可能是稳定的。具体种群中到底采取这两种ESS中的哪一种,这要取决于其中的哪一种ESS首先达到多数。个体的大多数一旦运用这两种有条件的策略中的某一种,所有脱离群众的行为皆会受到惩罚,这种策略就因之成为ESS。

        譬如说,假定所有个体都实行“留驻者赢,闯入者逃”的策略,即它们所进行的搏斗将会是输赢各半,那么它们绝不会受伤,也绝不会浪费时间,因为一切争端都按任意做出的惯例迅速得到解决。现在让我们设想出现一个新的突变型叛逆者。假定它实行的是纯粹的鹰的策略,永远进攻,从不退却,那么它的对手是闯入者时,它就会赢;而当它的对手是留驻者时,它就要冒着受伤的很大风险。平均来说,它比那些按ESS任意规定的准则进行比赛的个体得分要低些。如果叛逆者不顾惯常的策略而试图反其道而行之,采取“如身为留驻者就逃,如身为闯入者就进攻”的策略,那么它的下场会更糟。它不仅时常受伤,而且也极少有机会赢得一场竞赛。然而,假定由于某些偶然的变化,采用同惯例相反的策略的个体竟然成了多数,这样它们的这种策略就会成为一种准则,偏离它就要受到惩罚。可以想见,我们如果连续观察一个种群好几代,就能看到一系列偶然发生的从一种稳定状态跳到另一种稳定状态的现象。

        但是在实际生活中可能并不存在真正的任意不对称现象。如留驻者实际上可能比闯入者享有更有利的条件,因为它们对当地的地形更熟悉。闯入者也许更可能是气喘吁吁的,因为它必须赶到战斗现场,而留驻者却是一直待在那里的。两种稳定状态中,“留驻者赢,闯入者退”这种状态存在于自然界的可能性更大,之所以如此的理由是比较深奥的。这是因为“闯入者赢,留驻者退”这种相反的策略有一种固有的自我毁灭倾向,史密斯把这种策略称为自相矛盾的策略。处于这种自相矛盾中的ESS状态的任何种群中,所有个体总是极力设法避免处于留驻者的地位:无论何时与对手相遇,它们总是千方百计地充当闯入者。为了做到这一点,它们只有不停地四处流窜,居无定所,这是毫无意义的。这种进化趋势,除无疑会招致时间和精力上的损失之外,其本身往往导致“留驻者”这一类型的消亡。在处于另一种稳定状态,即“留驻者赢,闯入者退”的种群中,自然选择偏爱努力成为留驻者的个体。对每一个个体来说,就是要坚守一块具体地盘,尽可能少离开,而且摆出“保卫”它的架势。这种行为如大家所知,在自然界中随处可见,大家把这种行为称为“领土保卫”。

        就我所知,伟大的个体生态学家廷贝亨所做的异常巧妙和一目了然的试验,再精彩不过地展示了这种行为上的不对称性。*他有一个鱼缸,其中放了两条雄性刺鱼。它们在鱼缸的两端各自做了巢,并各自“保卫”其巢穴附近的水域。廷贝亨将这两条刺鱼分别放入两个大的玻璃试管中,再把两个试管并排放一起,只见它们隔着玻璃管试图相互搏斗。于是产生了十分有趣的结果。当他将两个试管移到刺鱼A的巢穴附近时,A就摆出进攻的架势,而刺鱼B就试图退却;但当他将两个试管移到刺鱼B的水域时,因主客易地而形势倒转。廷贝亨只要将两个试管从鱼缸的一端移向另一端,他就能指挥哪条刺鱼进攻,哪条退却。很显然,两条刺鱼实行的都是简单的有条件策略:“凡是留驻者,进攻;凡是闯入者,退却。”

        这种领土行为有什么生物学上的“好处”呢?这是生物学家时常要问的问题,生物学家提出了许多论点,其中有些论点稍后我们将会提及。但是我们现在就可以看出,提出这样的问题可能本来就是不必要的。这种领土“保卫”行为可能仅仅是由于抵达时间的不对称性而形成的一种ESS,而抵达时间的不对称性通常就是两个个体与同一块地盘之间关系的一种特点。

        体形的大小和一般的搏斗能力,被人们认为是非任意性不对称现象中最重要的形式。体形大不一定就是赢得搏斗不可或缺的最重要的特性,但可能是特性之一。在两个个体搏斗时比较大的一个总是赢的情况下,如果每一个个体都能确切知道自己比对手大还是小,只有一种策略是明智的:“如果你的对手比你体形大,赶快逃跑。同比你体形小的进行搏斗。”假使体形的重要性并不那么肯定,情况就随之更复杂些。如果体形大还是具有一点优越性的话,我刚才讲的策略就仍旧是稳定的。如果受伤的风险很大的话,还可能有一种“似非而是的策略”,即“专挑比你大的进行搏斗,见到比你小的就逃”!称其为“似非而是”的原因是不言而喻的。因为这种策略似乎完全违背常识。它之所以能够稳定,原因在于:在全部由似非而是的策略者组成的种群中,绝不会有人受伤,因为每场竞赛中,逃走的总是参加竞赛的较大的一个。一个大小适中的突变体如实行的是“合理”的策略,即专挑比自己体积小的对手,他就要同他所遇见的人中的一半进行逐步加剧的严重搏斗。因为,如果他遇到比自己小的个体,他就进攻;而较小的个体拼命还击,因为后者实行的是似非而是策略;尽管合理策略的实行者比似非而是策略的实行者赢得胜利的可能性更大一些,但他仍旧冒着失败和严重受伤的实际风险。由于种群中大部分个体实行似非而是的策略,因而一个合理策略的实行者比任何一个似非而是策略的实行者受伤的可能性都大。

        即使似非而是的策略可能是稳定的,但它大概只具有学术上的意义。似非而是策略的搏斗者只有在数量上大大超过合理策略的搏斗者的情况下才能获得较高的平均盈利。首先,这样的状况如何能出现实在令人难以想象。即使出现这种情况,合理策略者与似非而是策略者的比例也只要略微向合理策略者一边移动一点,便达到另一种ESS——合理的策略——的“引力区域”(zone of attraction)。所谓引力区域即种群的一组比例,在这个例子里,合理策略者处于这组比例的范围内时是有利的:种群一旦到达这一区域,就不可避免地被引向合理的稳定点。要是在自然界能够找到一个似非而是的ESS实例会是一件令人兴奋的事情,但我怀疑我们能否抱这样的奢望[我话说得太早了。在我写完了上面这句话之后,史密斯教授提醒我注意伯吉斯(Burgess)关于墨西哥群居蜘蛛(Oecobius civitas,拟壁钱属)的行为所做的下述描绘:“如果一只蜘蛛被惊动并被赶出其隐蔽的地方,它就会急匆匆地爬过岩石。如岩石上面无隙缝可藏身,就可能到同一物种的其他蜘蛛的隐蔽地点去避难。如果闯入者进来时,这只蜘蛛正在家里,它并不进攻,而是急匆匆爬出去再为自己去另寻新的避难所。因此,一旦第一只蜘蛛被惊动,从一个蜘蛛网到另一个蜘蛛网的一系列替换过程要持续几秒钟,这种情况往往会使聚居区的大部分蜘蛛从它们本来的隐蔽所迁徙到另一只蜘蛛的隐蔽所。”(《群居蜘蛛》,刊载于《科学美国人》1976年3月号)这就是前文所讲的那种意义上的似非而是的现象]。*

        假如个体对以往搏斗的结果保留某些记忆,情况又会是怎样呢?这要看这种记忆是具体的还是一般的。蟋蟀对以往搏斗的情况具有一般的记忆。一只蟋蟀如果在最近多次搏斗中获胜,它就会变得更具有鹰的特点;而一只最近连遭败北的蟋蟀的特点会更接近鸽子。亚历山大(R.D.Alexander)很巧妙地证实了这种情况,他利用一个模型蟋蟀痛击真正的蟋蟀。吃过这种苦头的蟋蟀再同其他真正的蟋蟀搏斗时多数要失败。我们可以说,每只蟋蟀在同其种群中有平均搏斗能力的成员做比较的同时,对自己的搏斗能力不断做出新的估计。如果把对以往的搏斗情况具有一般记忆的动物,如蟋蟀,集中在一起组成一个与外界不相往来的群体,过一段时间之后,很可能会形成某种类型的优势序位(dominance hierarchy)。**观察者能够把这些个体按级别的顺序排列。在这一顺序中级别低的个体通常要屈从于级别高的个体。这倒没有必要让人认为这些个体相互能够辨认。习惯于赢的个体就越是会赢,习惯于输的个体就越是要输。实际情况就是如此。即使开始时个体的胜利或失败完全是偶然的,它们还是会自动归类形成等级。这种情况附带产生了一个效果:群体中激烈的搏斗逐渐减少。

        我不得不用“某种类型的优势序位”这样一个名称,因为许多人只把“优势序位”这个术语用于个体具有相互辨认能力的情况。在这类例子中,对于以往搏斗的记忆是具体的而不是一般的。作为个体来说,蟋蟀相互辨认不出彼此,但母鸡和猴子都能相互辨认。如果你是一只猴子的话,一只过去曾经打败过你的猴子,今后还可能会打败你。对个体来说,最好的策略是,对先前曾打败过它的个体采取相对带有鸽派味道的态度。如果我们把一群过去从未相见的母鸡放在一起,通常会引起许多搏斗。一段时间之后,搏斗越来越少,但其原因同蟋蟀的情况不同。对母鸡来说,搏斗减少是因为在个体的相互关系中,每一个个体都能“安分守己”。这也给整个群体带来好处,下面的情况足以证明:有人注意到,在已确立的母鸡群体中,很少发生凶猛搏斗的情况,蛋的产量就比较高;相比之下,在其成员不断更换因而搏斗更加频繁的母鸡群体中,蛋的产量就比较低。生物学家常常把这种“优势序位”在生物学上的优越性或“功能”说成是出于减少群体中明显的进犯行为。然而这种说法是错误的。不能说优势序位本身在进化的意义上具有“功能”,因为它是群体而不是个体的一种特性。通过优势序位的形式表现出来的个体行为模式,从群体水平上看,可以说是具有功能的。然而,如果我们根本不提“功能”这个词,而是按照存在个体辨认能力和记忆的不对称竞赛中的各种ESS来考虑这个问题,甚至会更好些。

        迄今我们所考虑的竞争都是指同一物种成员间的竞争。物种间的竞争情况又如何呢?我们上面已经谈过,不同物种的成员之间的竞争,不像同一物种的成员之间那样直接。基于这一理由,我们应该设想它们有关资源的争端是比较少的,我们的预料已得到证实。例如,知更鸟保卫地盘不准其他知更鸟侵犯,但对大山雀却并不戒备。我们可以画一幅不同个体知更鸟在树林中分别占有领地的地图,然后在上面叠上一幅个体大山雀领地地图,可以看到两个物种的领地部分重叠,完全不相互排斥,它们简直像生活在不同的星球上。

        但不同物种的个体之间也会发生尖锐的利害冲突,不过其表现形式不同而已。例如,狮子想吃羚羊的躯体,而羚羊对于自己的躯体却另有截然不同的打算。虽然这种情况不是通常所认为的那种争夺资源的竞争,但从逻辑上说,不算竞争资源,则在道理上难以讲通。在这里,有争议的资源是肉。狮子的基因“想要”肉供其生存机器食用,而羚羊的基因是想把肉作为其生存机器进行工作的肌肉和器官。肉的这两种用途是互不相容的,因此就发生了利害冲突。

        同一物种的成员也是肉做的,但为什么同类相食的情况相对来说这样少呢?这种情况我们在黑头鸥中见到过,成年鸥有时要吃自己物种的幼鸥。但我们从未见到成年的食肉动物为吞食自己物种的其他成年动物而主动去追逐它们。为什么没有这种现象呢?我们仍旧习惯于按照“物种利益”的进化观点去思考问题,以致我们时常忘记这个完全有道理的问题:“为什么狮子不去追捕其他狮子?”还有一个人们很少提出的但很有意义的问题:“羚羊为什么见到狮子就逃,而不进行回击呢?”

        狮子之所以不追捕狮子是因为那样做对它们来说不是一种ESS。同类相食的策略是不稳定的,其原因和前面所举例子中的鹰策略相同,遭到反击的危险性太大了。而在不同物种成员之间的竞争中,这种反击的可能性要小些,这也就是那么多的被捕食的动物要逃走而不反击的道理。这种现象可能源于这样的事实:在不同物种的两只动物的相互作用中存在一种固有的不对称现象,而且其不对称的程度要比同一物种成员之间大。竞争中的不对称现象凡是强烈的,ESS一般是以不对称现象为依据的有条件的策略。“如果你比对手小,就逃走;如果你比对手大,就进攻”,这种类型的策略很可能在不同物种成员之间的竞争中得到发展,因为可以利用的不对称现象非常之多。狮子和羚羊通过进化上的趋异过程形成了一种稳定性,而竞争中本来就有的不对称现象也因此变得日益加强。追逐和逃跑分别变成它们各自的高超技巧。一只突变型羚羊如果采取了“对峙并搏斗”的策略来对付狮子,它的命运同那些逃之夭夭的羚羊相比,可能要不妙得多。

        我总是有一种预感,我们可能最终会承认ESS概念的发明是自达尔文以来进化理论上最重要的发展之一。*凡是有利害冲突的地方,它都适用,这就是说几乎在一切地方都适用。一些研究动物行为的学者沾染了侈谈“社会组织”的习惯。他们动辄把一个物种的社会组织看作一个具备作为实体的条件的单位,它享有生物学上的“有利条件”。我所举的“优势序位”就是一例。我相信,混迹于生物学家有关社会组织的大量论述中的那些隐蔽的类群选择主义的各种假定,是能够被辨认出来的。史密斯的ESS概念使我们第一次能够清楚地看到,一个由许多独立的自私实体构成的集合体,如何最终变得像一个有组织的整体。我认为,这不仅对于物种内的社会组织是正确的,而且对于由许多物种所构成的“生态系统”以及“群落”也是正确的。从长远观点来看,我预期ESS概念将会使生态学发生彻底的变革。

        我们也可以把这一概念运用于曾在第3章搁置下来的一个问题上,即赛艇上的桨手(代表体内的基因)需要很好的集体精神这一类比。基因被选择,不是因为它在孤立状态下的“好”,而是由于它在基因库中的其他基因这一背景下工作得好。好的基因应能够和与之长期共同生活于一系列个体内的其他基因和谐共存,相互补充。磨嚼植物的牙齿基因在食草物种的基因库中是好基因,但在食肉物种的基因库中就是不好的基因。

        我们可以设想一个不矛盾的基因组合,它是作为一个单位被选择在一起的。在第3章蝴蝶模拟的例子中,情况似乎就是如此。但现在ESS概念使我们能够看到,自然选择纯粹在独立基因的水平上如何能够得到相同的结果,这就是ESS概念的力量所在。这些基因并不一定是在同一条染色体上连接在一起的。

        其实,赛艇的类比还没达到说明这一概念的程度,它最多只能说明一个近似的概念。我们假定,一艘赛艇的全体船员要能真正获得成功,重要的是桨手必须用语言协调其动作。我们再进一步假定,在桨手库中教练能够选用的桨手,有些只会讲英语,有些只会讲德语。讲英语的桨手并不始终比操德语的桨手好些,也不总是比讲德语的桨手差些。但由于沟通的重要性,混合组成的桨手队得胜的机会要少些,而纯粹讲英语的或纯粹讲德语的桨手所组成的队伍得胜的机会要多些。

        教练没有认识到这一点,他只是任意地调配他的桨手,认为得胜的船上的个体都是好的,认为失败的船上的个体都是差的。如果在教练的桨手库中,英国人碰巧占压倒性优势,那么,船上只要有一个德国人,很可能就会使这支队伍输掉,因为无法进行沟通;反之,如果在桨手库中凑巧德国人占绝对优势,船上只要有一个英国人,也会使这支队伍失败。因此,最理想的一队船员应处于两种稳定状态中任何一种,即要么全部是英国人,要么全部是德国人,而绝不是混合阵容。表面上看起来,教练似乎选择单一语言小组作为单位,其实不然,他是根据个体桨手的能力来进行选择的。而个体赢得竞赛的趋向要取决于候选桨手库中现有的其他个体。属于少数的候选桨手会自动受到惩罚,这倒并非因为他们是不好的桨手,而仅仅是由于他们是少数而已。同样,基因因能相互和谐共存而被选择在一起,这并不一定说明我们必须要像看待蝴蝶的情况那样,把基因群体也看成是作为单位来进行选择的。在单个基因低水平上的选择能给人以在某种更高水平上选择的印象。

        在这一例子中,自然选择有利于简单的行为一致性。更为有趣的是,基因被选择可能由于它们的相辅相成的行为。以类比法来说明问题,我们可以假定由4个右桨手和4个左桨手组成的赛艇队是力量匀称的理想队;我们再假定教练不懂得这个道理,他根据“功绩”盲目进行挑选。那么如果在候选桨手库中碰巧右桨手占压倒优势的话,任何个别的左桨手往往会成为一种有利因素:他有可能使他所在的任何一条船取得胜利,他因此就显得是一个好桨手。反之,在左桨手占绝对多数的划桨手库中,右桨手就是一个有利因素。这种情况就同一只鹰在鸽子种群中取得良好成绩,以及一只鸽子在鹰种群中取得良好成绩的情况相似。不同的是,在那里我们讲的是关于个体——自私的机器——之间的相互作用,而这里我们用类比法谈论的是关于体内基因之间的相互作用。

        教练盲目挑选“好”桨手的最终结果必然是由4个左桨手和4个右桨手组成的一支理想的队伍。表面看起来他好像把这些桨手作为一个完整的、力量匀称的单位选在一起的。我觉得说他在较低的水平上,即在单独的候选桨手水平上进行选择更加简便省事。4个左桨手和4个右桨手加在一起的这种进化上稳定状态(“策略”一词在这里会引起误解)的形成,只不过是以表面功绩为基础在低水平上进行选择的必然结果。

        基因库是基因的长期环境。“好的”基因是作为在基因库中存活下来的基因盲目地被选择出来的。这不是一种理论,甚至也不是一种被观察到的事实,它不过是一个概念无数次的重复。什么东西使基因成为好基因才是人们感兴趣的问题。我曾讲过,建造高效能的生存机器——躯体——的能力是基因成为好基因的标准,这是一种初步的近似说法。现在我们必须对这种说法加以修正。基因库是由一组进化上稳定的基因形成的,这组基因成为一个不受任何新基因侵犯的基因库。大部分因突变、重新组合或自外部出现的基因很快就受到自然选择的惩罚:这组进化上稳定的基因重新得到恢复。新基因侵入一组稳定的基因偶尔也会获得成功,即成功地在基因库中散布开来。然后出现一个不稳定的过渡阶段,最终又形成新的一组进化上稳定的基因——发生了某种细微程度的进化。按进犯策略类推,一个种群可能有不止一个可选择的稳定点,还可能偶尔从一个稳定点跳向另一个稳定点。渐进的进化过程与其说是一个稳步向上爬的进程,倒不如说是一系列从一个稳定台阶走上另一个稳定台阶的不连续的步伐。*作为一个整体,种群的行为就好像是一个自动进行调节的单位,而这种幻觉是由在单个基因水平上进行的选择造成的。基因是根据其“成绩”被选择的,但对成绩的判断是以基因在一组进化上稳定的基因(即现存基因库)的背景下的表现为基础的。

        史密斯集中地论述了一些完整个体之间进犯性的相互作用,从而把问题阐明。鹰的躯体和鸽子躯体之间的稳定比例易于想象,因为躯体是我们能够看得见的大物体,但寄居于不同躯体中的基因之间的这种相互作用只是冰山的一角。而在一组进化上稳定的基因——基因库——中,基因之间绝大部分的重要相互作用是在个体的躯体内进行的。这些相互作用很难看见,因为它们是在细胞内,主要是在发育中的胚胎细胞里发生的。完整的浑然一体的躯体之所以存在,正是因为它们是一组进化上稳定的自私基因的产物。

        但我必须回到完整动物之间的相互作用的水平上来,因为这是本书的主题。把个体动物视为独立的自私机器便于理解进犯行为。如果有关个体是近亲——兄弟姐妹、堂兄弟姐妹、双亲和子女——这一模式也就失去效用,这是因为近亲体内有很大一部分基因是共有的。因此,每一个自私的基因必须同时忠于不同的个体。这一问题留待下一章再加以阐明。

        第6章 基因种族

        自私的基因是什么?它不仅仅是DNA的一个单一的有形片段,正像在原始汤里的情况一样,它是DNA的某个具体片段的全部复制品,这些复制品分布在整个世界上。如果我们可以认为基因似乎具有自觉的目的,同时我们又有把握在必要时把我们使用的过分通俗的语言还原成正规的术语,那么我们就可以提出这样一个问题:一个自私基因的目的究竟是什么?它的目的就是试图在基因库中扩大自己的队伍。从根本上说,它采用的办法就是帮助那些它所寄居的个体编制它们能够赖以生存下去并进行繁殖的程序。不过我们现在需要强调的是,“它”是一个分布在各处的代理机构,同时存在于许多不同的个体之内。本章的主要内容是,一个基因有可能帮助存在于其他一些个体之内的复制品。如果是这样,这种情况看起来倒像是个体的利他主义,但这样的利他主义出于基因的自私性。

        让我们假定有这样一个基因,它是人体内的一个白化基因(albino)。事实上有好几种基因可能引起白化,但我讲的只是其中一种。它是隐性的,就是说,必须有两个白化基因同时存在才能使个体患白化病。大约在两万人中有一个会发生这种情况,但我们当中,每70个人就有一个体内存在单个的白化基因。这些人并不患白化病。由于白化基因分布于许多个体之中,从理论上说,它能为这些个体编制程序,使之对其他含有白化基因的个体表现出利他行为,以此来提高自身在基因库的存在,因为其他的白化体含有同样的基因。如果白化基因寄居的一些个体死去,而它们的死亡使含有同样基因的一些其他个体得以存活下去,那么,这个白化基因理应感到相当高兴。如果1个白化基因能够使它的1个个体拯救10个白化体的生命,那么,即使这个利他主义者因之死去,它的死亡也由于基因库中白化基因数目的增加而得到充分的补偿。

        我们是否因此可以指望白化体相互特别友好?事实上情况大概不会是这样。为了搞清楚这个问题,我们有必要暂时放弃把基因视为有自觉意识的行为者这个比喻。因为在这里,这种比喻肯定会引起误会。我们必须再度使用正规的、即使是有点冗长的术语。白化基因并不真的“想”生存下去或帮助其他白化基因。但如果这个白化基因碰巧使它的一些个体对其他的一些白化体表现出利他行为,那么不管它情愿与否,这个白化基因往往因此在基因库中自然而然地兴旺起来。但为了促使这种情况发生,这个基因必须对它的一些个体产生两种相互独立的影响。它不但要对它的一些个体赋予通常能产生非常苍白的肤色的影响,还要赋予个体一种倾向,使他们对其他具有非常苍白肤色的个体表现出有选择的利他行为。具有这两种影响力的基因如果存在的话,肯定会在种群中取得很大的成功。

        我在第3章中曾强调过,基因确实能产生多种影响,这是事实。从纯理论的角度上说,出现这样的基因是可能的,它能赋予个体以一种明显可见的外部“标志”,如苍白的皮肤、绿色的胡须,或其他引人注目的东西,以及对其他带有这些标志的个体特别友好的倾向。这样的情况可能发生,尽管可能性不大。绿胡须同样可能与趾甲往肉里长或其他特征的倾向有关,而对绿胡须的偏好同样可能与嗅不出小苍兰的生理缺陷同时存在。同一基因既产生正确的标志又产生正确的利他行为,这种可能性不大。可是,这种我们可以称之为绿胡须利他行为效果的现象在理论上是可能的。

        像绿胡须这种任意选择的标志不过是基因借以在其他个体中“识别”其自身拷贝的一个方法而已。还有没有其他方法呢?下面可能是一个非常直接的方法。单凭个体的利他行为就可以识别出拥有利他基因的个体。如果一个基因能“说”类似“喂!如果A试图援救溺水者而自己快要没顶,就跳下去把A救起来”这样的话,这个基因在基因库中就会兴旺起来,因为A体内多半含有同样的救死扶伤的利他基因。A试图援救其他个体的事实本身就是一个相当于绿胡须的标志。尽管这个标志不像绿胡须那样荒诞不经,但它仍然有点令人难以置信。基因有没有一些比较合乎情理的办法“识别”存在于其他个体中的拷贝呢?

        回答是肯定的。我们很容易证明,近亲多半共有同样的基因。人们一直认为,这显然是亲代对子代的利他行为如此普遍存在的理由,费希尔、霍尔丹[1],尤其是汉密尔顿认为,这种情况同样也适用于其他近亲——兄弟、姐妹、侄子侄女和血缘近的堂(表)兄弟或姐妹。如果1个个体为了拯救10个近亲而牺牲,操纵个体对亲属表现利他行为的基因可能因此失去一个拷贝,但同一基因的大量拷贝却得以保存。

        “大量”这种说法很不明确,“近亲”也是如此。其实我们可以讲得更确切一些,如汉密尔顿所表明的那样。他在1964年发表的两篇有关社会个体生态学的论文属于迄今为止最重要的文献之列。我一直难以理解,为什么一些个体生态学家如此粗心,竟忽略了这两篇论文(两本1970年版的有关个体生态学的主要教科书甚至没有把汉密尔顿的名字列入索引)。*幸而近年来有迹象表明,他的观点又重新引起人们的兴趣。他的论文应用了相当深奥的数理知识,但不难仅凭直觉而不必通过精确的演算去掌握其基本原则,尽管这样做会把一些问题过度简单化。我们需要计算的是概率,亦即两个个体,譬如两姐妹共有同一特定基因的机会。

        为了简便起见,我假定我们讲的是整个基因库中一些稀有的基因。**大多数人都共有“不形成白化体的基因”,不管这些人有没有亲缘关系。这类基因之所以普遍存在,是因为自然界里白化体比非白化体更易于死亡。这是由于,譬如说阳光使它们目眩,以致有白化体可能看不清更大的逐渐接近的捕食者。我们没有必要解释基因库中不形成白化体的这类显然是“好的”基因取得优势的理由,我们感兴趣的是,基因为什么因为表现了利他行为而取得了成功。因此,我们可以假定,至少在这个进化过程的早期,这些基因是稀有的。值得注意的是,在整个种群中稀有的基因,在一个家族中却是常见的。我体内有一些对整个种群来说稀有的基因,你的体内也有一些对整个种群来说稀有的基因。我们两人共有这些同样的稀有基因的机会是微乎其微的,但我的姐妹和我共有某一具体的稀有基因的机会是很大的。同样,你的姐妹和你共有同一稀有基因的机会也是很大的。在这个例子里,机会刚好是50%,原因不难解释的。

        假定你体内有基因G的一个拷贝,这一拷贝必然是从你的父亲或母亲那里继承过来的(为了方便起见,我们不考虑各种不常见的可能性——如G是一个新变种,或你的双亲都有这一基因,或你的父亲或母亲体内有两个拷贝)。假如是你的父亲把这个基因传给你,那么他体内每一个正常的体细胞都含有G的一个拷贝。现在你要记住,一个男人产生一条精子时,他把他的半数的基因给了这一精子。因此,培育你姐姐或妹妹的那条精子获得基因G的机会是50%。在另一方面,如果你的基因G是来自母亲,按照同样的推理,她的卵子中有一半的可能性含有G。同样,你的姐姐或妹妹获得基因G的机会也是50%。这意味着如果你有100个兄弟姐妹,其中大约50个会有你体内的任何一个具体的稀有基因。这也意味着如果你有100个稀有基因,你的兄弟或姐妹中任何一个体内都可能共有大约50个这样的基因。

        你可以通过这样的演算方法计算出任何亲缘关系的等级。亲代与子代之间的亲缘关系是重要的。如果你有基因H的一个拷贝,你的某一个子女体内含有这个基因拷贝的可能性是50%,因为你有一半的性细胞含有H,而任何一个子女都是由一个这样的性细胞培育出来的。如果你有基因J的一个拷贝,那么你父亲体内含有这个基因拷贝的可能性是50%,因为你的基因有一半是来自他的,另一半是来自你母亲的。为了计算的方便,我们采用亲缘关系的指数用来表示两个亲属之间共有同一基因有多大的机会。两兄弟之间的亲缘关系指数是,因为他们之间任何一个的基因有一半为另一个所共有。这是一个平均数:由于减数分裂的机遇,有些兄弟所共有的基因可能大于一半或少于一半。但亲代与子代之间的亲缘关系永远是,不多也不少。

        不过,每次计算都要从头算起就未免太麻烦了,这里有一个简便的方法供你计算任何两个个体A和B的亲缘关系。如果你要立遗嘱或需要解释家族中某些成员之间为何如此相像,你就可能发觉这个方法很有用。在一般情况下,这个方法是行之有效的,但在发生近亲相互交配的情况下就不适用了。某些种类的昆虫也不适用于这个方法,我们在下面会谈到这个问题。

        首先,查明A和B所拥有的共同祖先是谁。譬如说,一对第一代堂兄弟的共同祖先是他们的祖父和祖母。找到一个共同祖先以后,他的所有祖先当然也就是A和B的共同祖先,这当然是合乎逻辑的。不过,对于我们来说,查明最近一代的共同祖先就足够了。从这个意义上说,第一代堂兄弟只有两个共同的祖先。如果B是A的直系亲属,譬如说是A的曾孙,那么我们要找的“共同祖先”就是A本人。

        找到A和B的共同祖先之后,再按下列方法计算代距(generation distance)。从A开始,沿其家谱上溯其历代祖先,直到你找到他和B所共有的那一个祖先为止,然后再从这个共同祖先往下一代一代数到B。这样,在家谱上从A到B的世代总数就是代距。譬如说,A是B的叔叔,那么代距是3,共同的祖先是A的父亲,亦即B的祖父。从A开始,你只要往上追溯一代就能找到共同的祖先,然后从这个共同的祖先往下数两代便是B。因此,代距是1+2=3。

        通过某一个共同的祖先找到A和B之间的代距后,再分别计算A和B与这个共同祖先相关的那部分亲缘关系。方法是这样的,每一个代距是,有几个代距就把几个自乘,所得乘积就是亲缘关系指数。如果代距是3,那么指数是××或()3;如果通过某一个共同祖先算出来的代距是g,同该祖先那部分的亲缘关系指数就是(106-)g

        但这仅仅是A和B之间亲缘关系的部分数值。如果他们的共同祖先不止一个,我们就要把通过每一个祖先的亲缘关系的全部数值加起来。在一般情况下,对一对个体的所有共同祖先来说,代距都是一样的。因此,在算出A和B同任何一个共同祖先的亲缘关系后,事实上你只要乘以祖先的个数就行了。譬如说,第一代堂兄弟有两个共同的祖先,他们同每一个祖先的代距是4,因此他们亲缘关系指数是2×()4=。如果A是B的曾孙,代距是3,共同“祖先”的数目是1(即B本身),因此,指数是1×()3=。就遗传学而言,你的第一代堂兄弟相当于一个曾孙。同样,你“像”你叔父的程度[亲缘关系是2×()3=]和你“像”你祖父的程度[亲缘关系是1×()3=]相等。

        至于远如第三代堂兄弟或姐妹的亲缘关系[2×()8=],那就要接近于最低的概率了,即相当于种群中任何一个个体拥有A体内某个基因的可能性。就一个利他基因而言,一个第三代的堂兄弟姐妹的亲缘关系和一个素昧平生的人差不多。一个第二代的堂兄弟姐妹(亲缘关系指数为)稍微特殊一点,第一代堂兄弟姐妹更为特殊一点(),同胞兄弟姐妹、父母和子女十分特殊(),同卵孪生兄弟姐妹(1)就和自己完全一样。叔(伯)父和叔(伯)母、侄子或外甥和侄女或外甥女、祖父母和孙子孙女、异父或异母兄弟和异父或异母姐妹的亲缘关系是。

        现在我们能够以准确得多的语言谈论那些表现近亲利他行为的基因。一个操纵其个体拯救5个堂兄弟或姐妹,但自己因而牺牲的基因在种群中是不会兴旺起来的,但拯救5个兄弟或10个第一代堂兄弟姐妹的基因却会兴旺起来。一个准备自我牺牲的利他基因如果要取得成功,它至少要拯救两个以上的兄弟姐妹(子女或父母),或4个以上的异父异母兄弟姐妹(或叔父、叔母、伯父、伯母、侄子、侄女、祖父母、孙子孙女)或8个以上的第一代堂兄弟姐妹,等等。按平均计算,这样的基因才有可能在利他主义者所拯救的个体内存在下去,同时这些个体的数目足以补偿利他主义者自身死亡所带来的损失。

        如果一个个体能够肯定某人是他的同卵孪生兄弟或姐妹,他关心这个孪生兄弟或姐妹的福利应当和关心自己的福利完全一样。任何操纵孪生兄弟或姐妹利他行为的基因都同时存在于这一对孪生兄弟或姐妹体内,因此,如果其中一个为援救另外一个的生命而英勇牺牲,这个基因是能够存活下去的。九带犰狳(nine-banded armadillos)是一胎4只的。我从未听说过小犰狳英勇献身的事迹,但有人指出它们肯定有某种强烈的利他行为。如果有人能到南美去一趟,观察一下它们的生活,我认为是值得的。*

        我们现在可以看到,父母之爱不过是近亲利他行为的一种特殊情况。从遗传学的观点来看,一个成年的个体在关心自己父母双亡的幼弟时,应和关心自己的子女一样。对他来说,弟弟和子女的亲缘关系指数是完全一样的,即。按照基因选择的说法,种群中操纵个体表现姐姐利他行为的基因和操纵个体表现父母利他行为的基因应有同等的繁殖机会。事实上,从几个方面来看,这种说法未免过分简单化,而且在自然界里,兄弟姐妹之爱远不及父母之爱来得普遍,我们将在下面进一步说明。但我要在这里阐明的一点是,从遗传学的观点看,父母/子女的关系并没有比兄弟/姐妹关系来得特殊的地方。尽管实际上是父母把基因传给子女,而姐妹之间并不发生这种情况,但这个事实与本问题无关。这是因为姐妹两个都是从同一个父亲和同一个母亲那里继承相同基因的全似复制品。

        有些人用亲属选择(kin selection)这个名词来把这种自然选择区别于类群选择(群体的差别性生存)和个体选择(个体的差别性生存)。亲属选择是家族内部利他行为的起因。关系越密切,选择越强烈。这个名词本身并无不妥之处。但不幸的是,我们可能不得不抛弃它,因为近年来的滥用已产生流弊,会给生物学家在今后的许多年里带来混乱。威尔逊[2]的《社会生物学:新的综合》(Sociobiology: The New Synthesis)一书,在各方面都堪称一本杰出的作品,但它却把亲属选择说成是类群选择的一种特殊表现形式。书中一张图表清楚地表明,他在传统意义上,即我在第1章里所使用的意义上,把亲属选择理解为“个体选择”与“类群选择”之间的中间形式。类群选择,即使按威尔逊自己所下的定义,是指由个体组成的不同群体之间的差别性生存。诚然,从某种意义上说,一个家族是一种特殊类型的群体,但威尔逊论点的全部含义是,家族与非家族之间的分界线不是一成不变的,而是属于数学概率的问题。汉密尔顿的理论并没有认为动物应对其所有“家族成员”都表现出利他行为,而对其他的动物表现出自私行为。家族与非家族之间并不存在着明确的分界线。我们没有必要决定,譬如说,第二代堂兄弟是否应列入家族范围之内,我们只是预计第二代堂兄弟接收到利他行为的概率相当于子女或兄弟的。亲属选择肯定不是类群选择的一个特殊表现形式*,它是基因选择产生的一个特殊后果。

        威尔逊关于亲属选择的定义有一个甚至更为严重的缺陷。他有意识地把子女排除在外:他们竟不算亲属!**他当然十分清楚,子女是他们双亲的骨肉,但他不想引用亲属选择的理论来解释亲代对子代的利他性关怀。他当然有权利按照自己的想法为一个词下定义,但这个定义非常容易把人弄糊涂。我倒希望威尔逊在他那本立论精辟的具有深远影响的著作再版时把定义修订一下。从遗传学的观点看,父母之爱和兄弟/姐妹的利他行为的形成都可以用完全相同的原因来解释:在受益者体内存在这个利他性基因的可能性很大。

        我希望读者谅解上面这个有点出言不逊的评论,而且我要赶快调转笔锋言归正传。到目前为止,我在一定程度上把问题过分简单化了,现在开始,我要把问题说得更具体一些。我在上面用浅显易懂的语言谈到了为援救具有一定亲缘关系的一定数目的近亲而准备自我牺牲的基因。显然,在实际生活中我们不能认为动物真的会清点一下它们正在援救的亲属到底有几个。即使它们有办法确切知道谁是它们的兄弟或堂兄弟,我们也不能认为动物在大脑里进行过汉密尔顿式的演算。在实际生活中,必须以自身以及其他个体死亡的统计学风险(statistical risks)来取代肯定的自杀行为和确定的“拯救”行为。如果你自己冒的风险非常微小的话,即使是第三代的堂兄弟也是值得拯救的。再说,你和你打算拯救的那个亲属有朝一日总归都要死的,每一个个体都有一个保险精算师估算得出的“预期寿命”,尽管这个估算可能有误差。如果你有两个血缘关系同样接近的亲属,其中一个已届风烛残年,另一个却是血气方刚的青年,那么对未来的基因库而言,挽救后者的生命所产生的影响要比挽救前者来得大。

        我们在计算亲缘关系指数时,对那些简洁的对称演算还需要进一步加以调整。就遗传学而言,祖父母和孙子孙女出于同样的理由以利他行为彼此相待,因为他们体内的基因有是共同的。但如果孙辈的预期寿命较长,那么操纵祖父母对孙辈利他行为的基因,比起操纵孙辈对祖父母利他行为的基因,具有更优越的选择条件。由于援助一个年轻的远亲而得到的净收益,很可能超过由于援助一个年老的近亲而得到的净收益(顺便说一句,祖父母的预期寿命当然并不一定比孙辈短。在婴儿死亡率高的物种中,情况可能恰恰相反)。

        把保险统计的类比稍加引申,我们可以把个体看作人寿保险的保险商。一个个体可以把自己拥有的部分财产作为资金对另一个个体的生命进行投资。他考虑了自己和那个个体之间的亲缘关系,以及从预期寿命的角度来看该个体同自己相比是不是一个“好的保险对象”。严格地说,我们应该用“预期生殖能力”这个词,而不是“预期寿命”,或者更严格一些,我们可以用“使自己的基因在可预见的未来获益的一般能力”。那么,为了使利他行为得以发展,利他行为者所承担的风险必须小于受益者得到的净收益和亲缘关系指数的乘积。风险和收益必须采取我所讲的复杂的保险统计方式来计算。

        可是我们怎能指望可怜的生存机器进行这样复杂的运算啊!*尤其是在匆忙间,那就更不用说了。甚至伟大的数学生物学家霍尔丹(在1955年发表的论文里,他在汉密尔顿之前就做出了基因由于援救溺水的近亲而得以繁殖的假设)也曾说:“……我曾两次把可能要淹死的人救起(自己所冒的风险是微乎其微的),在这样做的时候,我根本没有时间去进行演算。”不过霍尔丹也清楚地知道,幸而我们不需要假定生存机器在自己的头脑里有意识地进行这些演算。正像我们使用计算尺时没有意识到我们实际上是在运用对数一样。动物可能生来就是如此,以至于行动起来好像是进行过一番复杂的演算似的。

        这种情况其实是不难想象的。一个人把球投入高空,然后又把球接住,他在完成这个动作时好像事先解了一组预测球的轨道的微分方程。他对微分方程可能一窍不通,也不想知道微分方程是什么玩意儿,但这种情况不影响他投球与接球的技术。在某个下意识的水平上,他进行了某种在功能上相当于数学演算的活动。同样,一个人如要做出某项困难的决定,他首先权衡各种得失,并考虑这个决定可能引起的他想象得到的一切后果。他的决定在功能上相当于一系列加权演算过程,有如计算机进行的那种演算一样。

        如果要为一台计算机编制程序,使之模拟一个典型的生存机器如何做出是否表现利他行为的决定,我们大概要这样进行:开列一份清单,列出这只动物可能做的一切行为,然后为这些行为的每一种模式分别编制一次加权演算程序。各种利益都给以正号,各种风险都给以负号。接着进行加权,即把各项利益和风险分别乘以适当的表示亲缘关系的指数。然后再把得出的数字加起来,为了演算的方便,在开头的时候我们不考虑其他方面如年龄、健康状况之类的权重。由于一个个体对自己的亲缘关系指数是1(就是说,他具有他自己的100%的基因——这是不言自明的),对他的一切风险和利益都不需要打折扣,即在演算时给以全部权重。这样,每一种可能的行为模式的总和大体上是这样的:行为模式的净收益=对自己的收益-对自己的风险+对兄弟的收益-对兄弟的风险+对另一个兄弟的收益-对另一个兄弟的风险+对堂兄弟的收益-对堂兄弟的风险+对子女的收益-对子女的风险+……

        这个总和就是那个行为模式的净收益得分。接着,这个“模式动物”算出清单上每一种可供选择的行为模式的得分。最后,它决定按净收益最大的行为模式采取行动。即使所有的得分都是负数,它还是应该按这个原则进行选择,即择害处最小的一种行为模式。应当记住,任何实际行动必然牵涉精力和时间的消耗,这些精力和时间可以用于做其他事情。如果演算的结果表明不做任何事情的净收益最大,那么,这个模式动物就什么也不做。

        下面是个十分简单的例子,以自我独白的形式而不是以计算机模拟的形式来说明问题。我是一只动物,发现了8只长在一起的蘑菇。我心中首先盘算一下它们的营养价值,同时考虑到它们可能有毒的这个不大的风险,我估计每个蘑菇约值6个单位(像前一章一样,这些单位是任意选定的)。由于蘑菇很大,我最多只能吃3个。我要不要发出“有食物”的喊声,把我的发现告诉其他动物呢?谁能听到我的喊声?兄弟B(它和我的亲缘关系是),堂兄弟C(亲缘关系是)和D(并不算亲戚,它和我的亲缘关系指数是如此之小,以至于事实上可以视作0)。如果我不声张,我能吃掉的每个蘑菇都为我带来净收益6,全部吃掉是18。如发出“有食物”的喊声,那么我还有多少净收益可要盘算一下了。8个蘑菇平分4份,对我而言,我自己吃的一份折合净收益12,但我的兄弟和堂兄弟各吃掉的两个蘑菇也会给我带来好处,因为它们体内有和我一样的基因。事实上的总分是(1×12)+(×12)+(×12)+(0×12)=19.5,而自私行为带来的净收益是18。尽管差别不大,但得失是分明的。因此,我将发出“有食物”的喊声。在这种情况下,我的利他行为会给我的自私基因带来好处。

        在上面这个简化的例子里,我假设个体动物能够盘算它的基因的最大收益是什么。实际的情况是,基因库中充满对个体施加影响的基因,由于这种影响,个体在采取行动时好像事先进行过这种演算。

        无论如何,这种演算的结果仅仅是一种初步的第一近似值,它离理想的答案还有一段距离。这种演算方式忽略了许多东西,其中包括个体的年龄等因素。而且,如果我刚饱餐了一顿,现在最多只能吃一个蘑菇,这时发出“有食物”的喊声为我带来的净收益将比我在饥肠辘辘时大得多。针对各种可能出现的情况,这种演算的质量可以无止境地逐步提高。但动物并非生活在理想的环境里,我们不能指望真正的动物在做出最适宜决定时考虑到每一个具体细节。我们必须在自然界里通过观察和试验去发现,真正的动物在进行有关得失的分析时,能够在多大的程度上接近理想的境界。

        为了不致因为举了一些主观想象的例子而离题太远,让我们暂且再使用一下基因语言。生命体是由存活下来的基因为之编制程序的机器。这些存活下来的基因是在一定的条件下这样做的。一般说来,这些条件,往往构成这个物种以前的环境所具有的特征。因此,有关得失的“估计”是以过去的“经验”为依据的,正像人类做出决定时一样。不过,这里所说的经验具有基因经验的特殊意义,或者说得更具体一些,是以前的基因生存的条件(由于基因也赋予生存机器以学习能力,我们可以说,某些得失的估计也可能是以个体经验为基础的)。只要条件不发生急剧变化,这些估计是可靠的,生存机器一般来说往往能做出正确的决定。如果条件急剧变化,生存机器往往做出错误的决定,它的基因要为此付出代价。人类也是一样,他们的基因根据过时的资料做出的决定多半是错误的。

        对亲缘关系的估计也会出现差错和靠不住的情况。在上面一些简化的计算中,生存机器被认为知道谁跟它们有亲缘关系,而且知道这种关系的密切程度。在实际生活中,确切知道这方面的情况有时是可能的,但一般来说,亲缘关系只能作为一个平均数来估计。譬如说,我们假定A和B可能是异父或异母兄弟,也可能是同胞兄弟。他们之间的亲缘关系指数是或,由于我们不能肯定它们的确切关系,可供运用的有效指数是其平均数,即。如能肯定他们都为一母所生,但为一父所生的可能性只是,那么他们是异父兄弟的可能性是90%,而同胞兄弟的可能性是10%,因而有效指数是×+×=0.275。

        但当我们说可能性是90%时,是谁做出这个估计的?我们指的是一位长期从事实地研究的人类博物学家呢,还是指动物本身?如果碰巧的话,两者所做估计的结果可能出入不大。要了解这一点,我们必须考虑一下,动物在实际生活中是怎样估计谁是它们的近亲的。

        我们知道谁是我们的亲属,这是因为别人会告诉我们,*因为我们为他们取了名字,因为我们有正式结婚的习惯,同时也因为我们有档案和良好的记忆力。很多社会人类学家对于他们所研究的社会里的“亲缘关系”感到关切。他们所指的不是遗传学上的真正的亲缘关系,而是主观上的、教养上的亲属概念。人类的风俗和部落的仪式通常都很强调亲缘关系;膜拜祖先的习惯流传得很广,家族的义务和忠诚在人类生活中占有主导地位。根据汉密尔顿的遗传学说,我们很容易解释氏族之间的仇杀和家族之间的争斗。乱伦的禁忌表明人类具有深刻的亲缘关系意识,尽管乱伦禁忌在遗传上的好处与利他主义无关。它大概与近亲繁殖能产生隐性基因的有害影响有关。(出于某种原因,很多人类学家不喜欢这个解释。)**

        野兽怎能“知道”谁是它们的亲属呢?换言之,它们遵循什么样的行为准则便可以间接地获得似乎是有关亲缘关系的知识呢?提出“对亲属友好”这条准则意味着以未经证明的假定作为论据,因为事实上如何辨认亲属这个问题尚未解决。野兽必须从它们的基因那里取得一条简明的行动准则:这条准则不牵涉对行动的终极目标的全面认识,但它却是切实可行的,至少在一般条件下是如此。我们人类对准则是不会感到陌生的,准则具有的约束力是如此之大,以至于如果我们目光短浅的话,就盲目服从这些准则,即使我们清楚地看到它们对我们或其他任何人都无好处。在正常的情况下,野兽可以遵循什么样的准则以便间接地使它们的近亲受益呢?

        如果动物倾向于对外貌和它们相像的个体表现出利他行为,它们就可能间接地为其亲属做一点好事。当然这在很大程度上要取决于有关物种的具体情况。不管怎样,这样一条准则会导致仅仅是统计学上的“正确的”决定。如果条件发生变化,譬如说,如果一个物种开始在一个大得多的类群中生活,这样的准则就可能导致错误的决定。可以想象,人们有可能把种族偏见理解为是对亲属选择倾向不合理地推而广之的结果,即把外貌和自己相像的个体视为自己人,并歧视外貌和自己不同的个体的倾向。

        在一个其成员不经常迁居或仅在小群体中迁居的物种中,你偶然遇到的任何个体都很可能是与你相当接近的近亲。在这样的情况下,“对你所遇见的这个物种的任何成员一律以礼相待”这条准则可能具有积极的生存价值,因为凡能使其个体倾向于遵循这条准则的基因,可能会在基因库中兴旺起来。经常有人提到猴群和鲸群中的利他行为,道理即在于此。鲸鱼和海豚如果呼吸不到空气是要淹死的。幼鲸以及受伤的鲸鱼有时无力游上水面,为了援救它们,鲸群中的一些同伴就会把它们托出水面。有人曾目睹过这种情景。鲸鱼是否有办法识别它们的近亲,我们无从知道,但这也许无关紧要,情况可能是,鲸群中随便哪一条都可能是你的近亲,这种总的概率是如此之大,使利他行为成为一种合算的行为。顺便提一下,曾经发生过这样一件事:一条野生海豚把一个快要淹死的人救了起来。这个传闻据说非常可靠。这种情况我们可以看作鱼群错误地运用了援救快要淹死的成员这条准则。按照这条准则的“定义”,鱼群里快要淹死的成员可能是这样的:“挣扎在接近水面处一条长长的快要窒息的东西。”

        据说成年的狒狒为了保护它的伙伴免受豹子之类猛兽的袭击而甘冒生命危险。一般说来,一只成年的雄狒狒大概有相当多的基因储存在其他狒狒体内。一个基因如果这样“说”:“喂,如果你碰巧是一只成年的雄狒狒,你就得保卫群体,打退豹子的进攻。”那么它在基因库中就会兴旺起来。许多人喜欢引用这个例子,但在这里,我认为有必要补充一句,至少有一个受人尊敬的权威人士提供的事实与此大相径庭。据她说,一旦豹子出现,成年雄狒狒总是第一个逃之夭夭。

        雏鸡喜欢跟着母鸡在鸡群中觅食。它们的叫声主要有两种,除了我上面提到过的那种尖锐的吱吱声外,它们在啄食时会发出一种悦耳的嘁嘁喳喳声。吱吱声可以唤来母鸡的帮助,但其他雏鸡对这种吱吱声却毫无反应。另一方面,嘁嘁喳喳声能引起其他小鸡的注意。就是说,一只雏鸡找到食物后就会发出嘁嘁喳喳声把其他的雏鸡唤来分享食物。按照前面假设的例子,嘁嘁喳喳声就等于是“有食物”的叫声。像那个例子一样,雏鸡所表现的明显的利他行为可以很容易地在亲属选择的理论里找到答案。在自然界里,这些雏鸡都是同胞兄弟姐妹。操纵雏鸡在发现食物时发出嘁嘁喳喳声的基因会扩散开来,只要这只雏鸡由于发出叫声后承担的风险少于其他雏鸡所得净收益的一半就行了。由于这种净收益由整个鸡群共享,而鸡群的成员在一般情况下不会少于两只,不难想见,其中一只在发现食物时发出叫声总是合算的。当然,在家里或农场里,养鸡的人可以让一只母鸡孵其他母鸡的蛋,甚至火鸡蛋或鸭蛋。这时,这条准则就不灵了,但母鸡和它的雏鸡都不可能发觉其中的底细。它们的行为是在自然界的正常条件影响下形成的,而在自然界里,陌生的个体通常是不会出现在你的窝里的。

        不过,在自然界里,这种错误有时也会发生。在群居的物种中,一只怙恃俱失的幼兽可能被一只陌生的雌兽收养,而这只雌兽很可能是一只失去孩子的母兽。猴子观察家往往把收养小猴的母猴称为“阿姨”。在大多数情况下,我们无法证明它真的是小猴的阿姨还是其他亲属。如果猴子观察家有一点基因常识的话,他们就不会如此漫不经心地使用像阿姨之类这样重要的称呼了。收养幼兽的行为尽管感人至深,但在大多数情况下我们也许应该把它视为一条固有准则的失灵。这是因为这只慷慨收养孤儿的母兽并不给自己的基因带来任何好处。它在浪费时间和精力,而这些时间和精力本来是可以花在它自己的亲属身上,尤其是它自己未来的儿女身上的。这种错误大概比较罕见,因此自然选择也认为不必“操心”去修订一下这条准则,使母性具有更大的选择能力。再说,这种收养行为在大多数情况下并不常见,孤儿往往因得不到照顾而死去。

        有一个有关这种错误的极端例子,也许你可能认为与其把它视为违反常情的例子,倒不如把它视为否定自私基因理论的证据。有人看见过一只失去孩子的母猴偷走另外一只母猴的孩子,并抚养它。在我看来,这是双重的错误,因为收养小猴的母猴不但浪费自己的时间,它也使一只与之竞争的母猴得以卸掉抚养孩子的重担,从而能更快地生育另一只小猴。我认为,这个极端的例子值得我们深入探究。我们需要知道这样的情况具有多大的普遍性,收养小猴的母猴和小猴之间的平均亲缘关系指数是多少,这个小猴的亲生母亲的态度怎样——它的孩子被收养毕竟对它有好处,母猴是不是故意瞒哄憨直的年轻母猴,使之乐于抚养它的孩子。(也有人认为收养或诱拐小猴的母猴可以从中获得可贵的抚养小孩的经验。)

        另外一个蓄意背离母性的例子,是由布谷鸟及其他“寄孵鸟”(broodparasites)——在其他鸟窝生蛋的鸟——提供的。布谷鸟利用鸟类因亲代本能而遵守的一条准则:“对坐在你窝里的任何小鸟以礼相待。”且莫说布谷鸟,这条准则在一般情况下是能够产生其预期效果的,即把利他行为的受益者局限在近亲的范围内。这是因为鸟窝事实上都是孤立的,彼此之间总有一段距离,几乎可以肯定在你自己窝里的是你生育的小鸟。成年的鲭鸥(herring gulls)不能识别自己所生的蛋,它会愉快地伏在其他海鸥的蛋上,有些做试验的人甚至以粗糙的土制假蛋代替真蛋,它也分辨不出,照样坐在上面。在自然界中,对蛋的识别对于海鸥而言并不重要,因为蛋不会滚到几码以外的邻居的鸟窝附近。不过,海鸥还是识别得出它所孵的小海鸥。和蛋不一样,小海鸥会外出溜达,弄不好会可能走到黑头鸥的窝附近,常常因此断送了性命。这种情况在第1章里已经述及。

        另一方面,海鸠却能根据蛋上小斑点的式样来识别自己的蛋。在孵蛋时,它们对其他鸟类的蛋绝不肯一视同仁。这大概是由于它们筑巢于平坦的岩石上,蛋滚来滚去有混在一起的危险。有人可能要问,它们孵蛋时为什么要区别对待呢?如果每一只鸟都不计较这是谁家的蛋,只要有蛋就孵,结果还不是一样吗?这其实就是类群选择论者的论点。设想一下,如果一个把照管小鸟作为集体事业的集团得到发展,结果会怎样呢?海鸠平均每次孵一只蛋,这意味着一个集体照管小鸟的集团如果要顺利发展,那么每一只成年的海鸠都必须平均孵一只蛋。假使其中一只弄虚作假,不肯孵它那只蛋,它可以把原来要花在孵蛋上的时间用于生更多的蛋,这种办法的妙处在于,其他比较倾向于利他行为的海鸠自然会代它照管它的蛋。利他行为者会忠实地继续遵循这条准则:“如果在你的鸟窝附近发现其他鸟蛋,把它拖回来并坐在上面。”这样,欺骗基因得以在种群中兴旺起来,而那些助人为乐的代管小鸟的集团最终要解体。

        有人会说:“如果是这样的话,诚实的鸟可以采取报复行动,拒绝这种敲诈行为,坚决每次只孵一只蛋,绝不通融。这样做应该足以挫败骗子的阴谋,因为它们可以看到自己的蛋依然在岩石上,其他的鸟都不肯代劳孵化。它们很快就会接受教训,以后要老实一些。”可惜的是,事情并不是这样。根据我们所做的假设,孵蛋的母鸟并不计较蛋是谁家生的,如果诚实的鸟把这个旨在抵制骗子的计划付诸实施的话,那些无人照管的蛋既可能是骗子的蛋,但同样也可能是它们自己的蛋。在这种情况下,骗子还是合算的,因为它们能生更多的蛋从而使更多的后代存活下来。诚实的海鸠要打败骗子的唯一办法是:认真区分自己的蛋和其他的鸟蛋,只孵自己的蛋。也就是说,不再做一个利他主义者,仅仅照管自己的利益。

        用史密斯的话来说,利他的收养“策略”不是一种进化稳定策略。这种策略不稳定,因为它比不上那种与之匹敌的自私策略。这种自私策略就是生下比其他鸟更多的蛋,然后拒绝孵化它们。但这种自私的策略本身也是不稳定的,因为它所利用的利他策略是不稳定的,因而最终必将消失。对一只海鸠来说,唯一具有进化意义的稳定策略是识别自己的蛋,只孵自己的蛋,事实正是这样。

        经常受到布谷鸟的寄生行为之害的一些鸣禽种类做出了反击。但它们并不是学会了从外形上识别自己的蛋,而是本能地照顾那些带有其物种特殊斑纹的蛋。由于它们不会受到同一物种其他成员的寄生行为之害*,这种行为是行之有效的。但布谷鸟反过来也采取了报复措施,它们所生的蛋在色泽上、体积上和斑纹各方面越来越和寄主物种的相像。这是个欺诈行为的例子,这种行径经常能取得成效。就布谷鸟所生的蛋而言,这种形式进化上的军备竞赛导致了拟态的完美无缺。我们可以假定,这些布谷鸟的蛋和小布谷鸟当中会有一部分被“识破”,但未被识破的那部分毕竟能存活并生下第二代的布谷鸟蛋。因此,那些操纵更有效的欺诈行为的基因在布谷鸟的基因库中兴旺起来。同样,那些目光敏锐,能够识别布谷鸟蛋的拟态中任何细小漏洞的寄主鸟类就能为它们自己的基因库做出最大的贡献。这样,敏锐的、怀疑的目光就得以传给下一代。这是个很好的例子,它说明自然选择是如何提高敏锐的识别力的,在我们这个例子里,另一个物种的成员正竭尽所能,企图蒙蔽识别者,而自然选择促进了针对这种蒙蔽行为的识别力。

        现在让我们回过头来对两种估计进行一次比较:第一种是一只动物对自己与群体其他成员之间的亲缘关系的“估计”;第二种是一位从事实地研究的内行博物学家对这种亲缘关系的估计。伯特伦(B.Bertram)在塞伦盖蒂国家公园[3]研究狮子生态多年。他以自己在狮子生殖习惯方面的知识为基础,对一个典型狮群中个体之间的平均亲缘关系进行了估计。他是根据如下的事实进行估计的:一个典型的狮群由7只成年母狮和2只成年雄狮组成。母狮是狮群中比较稳定的成员,雄狮是流动的,经常由一个狮群转到另一个狮群。这些母狮中约有一半同时产仔并共同抚育出生的幼狮,因此,很难分清哪一只幼狮是哪一只母狮生的。一窝幼狮通常有3只,狮群中的成年雄狮平均分担做父亲的义务。年轻的母狮留在狮群中,代替死去的或出走的老母狮。年轻的雄狮一到青春期就被逐出家门。它们成长后三三两两结成一伙,到处流浪,从一个狮群转到另外一个狮群,不大可能再回老家。

        以这些事实以及其他假设为依据,你可以看到我们有可能算出一个典型狮群中两个个体之间的亲缘关系的平均指数。伯特伦演算的结果表明,任意挑选的一对雄狮的亲缘关系指数是0.22,一对母狮是0.15。换句话说,属同一狮群的雄狮平均比异父或异母兄弟的关系稍为疏远一些,母狮则比第一代堂姐妹接近一些。

        当然,任何一对个体都可能是同胞兄弟,但伯特伦无从知道这一点,狮子自己大概也不会知道。另一方面,伯特伦估计的平均指数,从某种意义上说,狮子是有办法知道的。如果这些指数对一个普通的狮群来说真的具有代表性,那么,任何基因如能使雄狮自然倾向于以近乎对待其异父或异母兄弟的友好方式对待其他雄狮,它就具有积极的生存价值。任何做得过分的基因,即以更适合于对待其同胞兄弟那样的友好方式对待其他雄狮的话,在一般情况下是要吃亏的,正如那些不够友好的,把其他雄狮当作第二代堂兄弟那样对待的雄狮到头来也要吃亏一样。如果狮子确实像伯特伦所讲的那样生活,而且——这一点也同样重要——它们世世代代一直是这样生活的,那么我们可以认为,自然选择将有利于适应典型狮群的平均亲缘关系那种水平的利他行为。我在上面讲过,动物对亲缘关系的估计和内行博物学家的估计到头来是差不多的,我的意思就在于此。*

        我们因此可以得出这样的结论:就利他行为的演化而言,“真正的”亲缘关系的重要性可能还不如动物对亲缘关系做出的力所能及的估计。懂得这个事实就懂得在自然界中,父母之爱为什么比兄弟/姐妹之间的利他行为普遍得多而且真诚得多,也就懂得为什么对动物而言其自身利益甚至比几个兄弟更为重要。简单地说,我的意思是,除了亲缘关系指数以外,我们还要考虑“肯定性”的指数。尽管父母/子女的关系从遗传学的意义上说,并不比兄弟/姐妹的关系来得密切,它的肯定性却大得多。在一般情况下,要肯定谁是你的兄弟就不如肯定谁是你的子女那么容易。至于你自己是谁,那就更容易肯定了。

        我们已经谈论过海鸠之中的骗子,在以后的几章里,我们将要谈到说谎者、骗子和剥削者。在这个世界上,许多个体为了自身的利益总是伺机利用其他个体的亲属选择利他行为,因此,一个生存机器必须考虑谁可以信赖,谁确实是可靠的。如果B确实是我的弟弟,我照顾他时付出的代价就该相当于我照顾自己时付出的代价的一半,或者相当于我照顾我自己的孩子时付出的代价。但我能够像我肯定我的儿子是谁那样去肯定他是我的弟弟吗?我如何知道他是我的弟弟呢?

        如果C是我的同卵孪生兄弟**,那我照顾他时付出的代价就该相当于我照顾自己的任何一个儿女的两倍,事实上,我该把他的生命看作和我自己的生命一样重要。但我能肯定他是我的同卵孪生兄弟吗?当然他有点像我,但很可能我们碰巧有同样的容貌基因。不,我可不愿为他牺牲,因为他的基因有可能全部和我的相同,但我肯定知道我体内的基因全部是我的。因此,对我来说,我比他重要。我是我体内任何一个基因所能肯定的唯一的一个个体。再说,在理论上,一个操纵个体自私行为的基因可以由一个操纵个体利他行为,援救至少一个同卵孪生兄弟或两个儿女、兄弟,或至少4个孙子孙女等的等位基因代替,但操纵个体自私行为的基因具有一个巨大的优越条件,那就是识别个体的肯定性。与之匹敌的以亲属为对象的利他基因可能会搞错对象,这种错误可能纯粹是偶然的,也可能是由骗子或寄生者蓄意制造的。因此,我们必须把自然界中的个体自私行为视为是不足为奇的,这些自私行为不能单纯用遗传学上的亲缘关系来解释。

        在许多物种中,做母亲的比做父亲的更能识别谁是它们的后代。母亲生下有形的蛋或孩子,它有很好的机会去辨识它自己的基因传给了谁。而可怜的爸爸受骗上当的机会就大得多。因此,父亲不像母亲那样乐于为抚养下一代而操劳,那是很自然的。在第9章《两性战争》里,我们将看到造成这种情况还有其他的原因。同样,外祖母比祖母更能识别谁是它的外孙或外孙女,因此,外祖母比祖母表现出更多的利他行为是合乎情理的。这是因为她能识别她的女儿的儿女。外祖父识别其外孙或外孙女的能力相当于祖母,因为两者都是对其中一代有把握而对另一代没有把握。同样舅舅对外甥或外甥女的利益应比叔叔或伯伯更感关切。在一般情况下,舅舅应该和舅母一样表现出同样程度的利他行为。确实,在不贞行为司空见惯的社会里,舅舅应该比“父亲”表现出更多的利他行为,因为它有更大的理由信赖同这个孩子的亲缘关系。它知道孩子的母亲至少是它的异父或异母姐妹,“合法的”父亲却不明真相。我不知道是否存在任何证据,足以证明我提出的种种臆测。但我希望,这些臆测可以起到抛砖引玉的作用,其他的人可以提供或致力于搜集这方面的证据,特别是社会人类学家或许能够发表一些有趣的议论吧。*

        现在回过头来再谈谈父母的利他行为比兄弟之间的利他行为更普遍这个事实。看来我们从“识别问题”的角度来解释这种现象的确是合理的,但对存在于父母-子女关系本身的根本的不对称性却无法解释。父母爱护子女的程度超过子女爱护父母的程度,尽管双方的遗传关系是对称的,而且亲缘关系的肯定性对双方来说也是一样的。一个理由是父母年龄较大,生活能力较强,事实上处于更有利的地位为其下一代提供帮助。一个婴孩即使愿意侍养其父母,事实上也没有条件这样做。

        在父母-子女关系中还有另一种不对称性,而这种不对称性不适用于兄弟/姐妹的关系。子女永远比父母年轻,这种情况常常,如果不是永远,意味着子女的预期寿命较长。正如我在上面曾强调的那样,预期寿命是个重要的变量。在最最理想的环境里,一只动物在“演算”时应考虑这个变量,以“决定”是否需要表现出利他行为。在儿童的平均预期寿命比父母长的物种里,任何操纵儿童利他行为的基因会处于不利地位,因为这些基因所操纵的利他性自我牺牲行为的受益者都比利他主义者自己的年龄大,更近风烛残年。在另一方面,就方程式中平均寿命这一项而言,操纵父母利他行为的基因则处于相对有利的地位。

        我们有时听到这种说法:亲属选择作为一种理论是无可非议的,但在实际生活中,这样的例子却不多见。只能说持这种批评意见的人对何谓亲属选择一无所知。事实上,诸如保护儿童、父母之爱以及有关的身体器官、乳分泌腺、袋鼠的肚囊等等都是自然界里亲属选择这条原则在起作用的例子。批评家们当然十分清楚父母之爱是普遍存在的现象,但他们不懂得父母之爱和兄弟/姐妹之间的利他行为同样是亲属选择的例子。当他们说自己需要例证的时候,他们所要的不是父母之爱的例证,而是另外的例证。应该承认,这样的例子不是那么普遍的。我也曾提出过发生这种情况的原因。我本来可以把话题转到兄弟/姐妹之间的利他行为上——事实上这种例子并不少,但我不想这样做,因为这可能加深一个错误的概念(我们在上面已经看到,这是威尔逊赞成的概念)——即亲属选择具体地指父母-子女关系以外的亲缘关系。

        这个错误概念之所以形成有其历史根源。父母之爱有利于进化之处显而易见,事实上我们不必等待汉密尔顿指出这一点,自达尔文的时代起,人们就开始理解这个道理。当汉密尔顿证明其他的亲缘关系也具有同样的遗传学上的意义时,他当然要把重点放在这些其他的关系上。特别是以蚂蚁、蜜蜂之类的社会性昆虫为例时。在这些昆虫里,姐妹之间的关系特别重要,我们以后还要谈到这个问题。我甚至听到有些人说,他们以为汉密尔顿的学说仅仅适用于昆虫!

        如果有人不愿意承认父母之爱是亲属选择行为的一个活生生的例子,那就该让他提出一个广义的自然选择学说,这个学说在承认存在父母的利他行为的同时却不承认存在旁系亲属之间的利他行为。我想他是提不出这样的学说的。

        第7章 计划生育

        有人主张把父母的关怀同其他类型的亲属选择利他行为区别开来,这种主张的道理是不难理解的。父母的关怀看起来好像是繁殖的组成部分,而诸如对待侄子的利他行为却并非如此。我认为这里确实隐藏着一种重要的区别,不过人们把这种区别弄错了。他们将繁殖和父母的关怀归在一起,而把其他种类的利他行为另外归在一起。但我却希望这样区分:一类为生育新的个体,另一类为抚养现存的个体。我把这两种活动分别称为生育幼儿和照料幼儿。个体生存机器必须做两类完全不同的决定,即抚养的决定和生育的决定。“决定”这个词用在这里是指无意识的策略上的行动。思考是否做抚养的决定的形式是:“有一个幼儿,它同我在亲缘关系上的接近程度如此这般,如果我不喂养它,它死亡的机会如何如何,那么我要不要喂养它?”另一方面,是否做生育的决定的思考形式是这样的:“我要不要采取一切必要的步骤以便生育一个新的个体?我要不要繁殖?”在一定程度上,抚养和生育必然为占用某个个体的时间和其他资源而相互竞争,这个个体可能不得不做出选择:“我抚养这个幼儿好呢,还是再生一个好?”

        抚养和生育的各种混合策略,如能适应物种生态上的具体情况,在进化上是能够稳定的。单纯的抚养策略在进化上不可能稳定。如果所有个体都付出全部精力去抚养现有的幼儿,以至于连一个新的个体也不生产,这样的种群很快就会受到精于生育的突变个体的入侵。抚养只有作为混合策略的一部分,才能取得进化上的稳定——至少需要进行某种数量的生育活动。

        我们非常熟悉的物种——哺乳动物和鸟类——往往都是抚养的能手。伴随着生育幼儿的决定的通常是抚养它的决定。正是因为生育同抚养这两种活动实际上时常相继发生,因此人们把这两件事情混为一谈。但从自私基因的观点来看,生存机器抚养的幼儿是兄弟或者是儿子,原则上是没有区别的。这一点我们在上面已提到过。两个幼儿同你的亲缘关系是相等的,如果你必须在两个要喂养的幼儿之间做出选择的话,没有任何遗传上的理由非要你选择自己的儿子不可。但另一方面,根据定义,你不可能生育自己的弟弟,你只能在其他人生出他之后抚养他。关于个体生存机器对其他已经存在的个体要不要采取利他行为,怎样才能做出理想的决定,我们在前面一章中已有论述。我们在本章要探讨一下,个体生存机器对于要不要生育新个体应如何做出决定。

        我在第1章中提到过关于类群选择的争论,这种激烈争论主要是围绕着这个问题进行的。这是由于温-爱德华兹根据“种群调节”(population regulation)理论提出其类群选择观点,而他又是这个类群选择论的主要鼓吹者。*他认为,个体动物为了群体的整体利益,有意降低其出生率。

        这是一个非常具有吸引力的假设,因为它十分符合人类个体应该实践的行动。人类的小孩太多了。一国人口的多少取决于4种情况:出生、死亡、入境移民和出境移民。如果我们把世界人口作为一个整体,那就无所谓入境移民和出境移民,只有出生和死亡。只要每对夫妻平均有两个以上的小孩存活下来进行繁殖,以后新生婴儿的数目就会以持续的加速度直线上升。每一代人口不是按固定的数量上升,而更可能是在不断增长的人口已达到的基础上按一个固定比率递增。由于人口本身也在增大,因此人口的递增量也越来越大。如果让这样的增长速度继续下去而不加以制止的话,人口的增加会达到天文数字,速度之快令人惊讶。

        顺便提一下,人口的增长不但取决于人们有多少小孩,也取决于何时生小孩,甚至关心人口问题的人有时也认识不到这一点。因为每代人口往往按某种比率增长,因此,如果你把一代和一代之间的间距拉长,人口每年的增长率就低些。我们完全可以把写在横幅上的口号“只生两个”这几个字改为“以30岁为起点”!但无论如何,人口高速增长会招致严重的问题。

        我们大家也许都已看到过这样计算出来的触目惊心的数字,这些数字能够清楚地说明问题。举例说,拉丁美洲目前的人口大约有3亿,而且其中已有许多人营养不良。但如果人口仍按目前的速度继续增长,要不了500年的时间,人口增长的结果就会出现这样一种情况:人们站着挤在一起,可以形成一条遮盖该大陆全部地区的由人体构成的地毯。即使我们假定他们都瘦骨嶙峋——一个并非不真实的假定——情况依然如此。从现在算起,在1000年之后,他们要立在他人的肩膀上,其高度要超出100万人。待2000年之后,这座由人堆起的山将会以光速向上伸展,达到已知宇宙的边缘。

        无疑你会注意到,这是一种根据假设计算出来的数字!事实上,由于某些非常实际的原因,这种情况绝对不会发生。饥荒、瘟疫和战争,或者,如果我们幸运的话,还有计划生育,这些就是其中的一些原因。寄望农业科学的进展——“绿色革命”之类,是无济于事的。增加粮食生产可以暂时使问题缓和一下,但按照数学上的计算,肯定不可能成为长远之计。实际上,和已使危机加剧的医药上的进展一样,粮食增产很可能由于加快人口膨胀的速度,而使这一问题更趋恶化。如果不用火箭以每秒运载几百万人的速度向宇宙空间大规模移民,不加控制的出生率必然导致死亡率的可怕上升,这是一个简单的逻辑事实。就是这样一个简单的事实,那些禁止其追随者使用有效避孕方法的领导人竟然不理解,实在令人难以置信。他们宁愿采用“自然的”方法限制人口,而他们必将见证这种自然的方法:饥饿。

        这种从长远观点计算得出的结果所引起的不安,当然是出于对我们整个物种未来福利的关心。人类(其中有些人)具有自觉的预见能力,能够预见到人口过剩所带来的灾难性后果。生存机器一般为自私的基因所操纵,完全可以肯定,自私的基因是不能够预见未来的,也不可能把整个物种的福利放在心上,这就是本书的基本假定。而温-爱德华兹也就是在这一点上同正统的进化论理论家们分道扬镳的。他认为,使真正的利他性生育控制行为形成的方式是存在的。

        人们对很大一部分事实是认识一致的,不存在分歧,但在温-爱德华兹的著作中,或在阿德里普及持温-爱德华兹的观点的文章中,这一点都没有得到强调。一个明显的事实是,野生动物的数目并不以天文数字的速度增长,尽管在理论上是可以达到这种速度的。有时野生动物的数目相当稳定,出生率和死亡率大体相当。在许多情况下,它们的数目波动很大,旅鼠(lemmings)就是一个很好的例子,它们时而大量激增,时而濒于灭绝。有时波动的结果是种群的彻底灭绝,至少在局部地区是如此。以加拿大山猫为例,其数目的摇摆波动似乎是有节奏的,这从赫德森海湾公司连续几年出售的皮毛数量就可看得出。有一点可以肯定——野生动物的数目是不会无限制地持续增长的。

        野生动物几乎永远不会因衰老而死亡:远远等不到它们老死,饥饿、疾病或者捕食者都可以使它们丧生。直到前不久人类的情况也是如此。大部分动物在幼年时期就死亡,还有许多尚在卵子阶段就结束了生命。饥饿以及其他死亡因素是野生动物不可能无限制增长的根本原因,但正如我们所看到的,我们的物种没有什么理由一定要沦至这样的地步。只要动物能调节其出生率,就永远不会发生饥荒。温-爱德华兹就认为,动物正是这样做的。但即便在这一点上,学界存在的分歧可能没有像你在读他的书时想象的那样大。拥护自私基因理论的人会欣然同意:动物的确会调节自己的出生率。任何具体物种的窝卵数或胎仔数都相当固定:任何动物都不会无限制地生育后代。分歧不在于出生率是否得到调节,而在于怎么得到调节:计划生育是通过什么样的自然选择过程形成的呢?概括地说,分歧在于:动物控制生育是利他性的,为了群体的整体利益而控制生育,还是自私性的,为了进行繁殖的个体的利益而控制生育?我将对这两种理论逐一进行论述。

        温-爱德华兹认为,个体为了群体的整体利益而限制自己生育小孩的数量。他承认,正常的自然选择不大可能使这种利他主义行为得到进化:对低于平均数的生殖率的自然选择,从表面上看,是一种自相矛盾的说法。因此,像我们在第1章所见到的那样,他寄望于类群选择的理论。根据他的说法,凡其个体成员能约束自己出生率的群体,较之其个体成员繁殖迅速以致危及食物供应的群体,前者灭绝的可能性要小些。因此,世界就会为其个体成员能约束自己出生率的群体所占据。温-爱德华兹所说的自我约束行为大体上就相等于生育控制,但他讲得更加具体,事实上他提出了一个极为重要的概念,认为整个社会生活就是一种人口调节的机制。举例说,许多动物物种的群居生活具有两个主要的特征,即领域性(territoriality)和优势序位,我们在第5章已提到过。

        许多动物显然把很多时间和精力花在“保卫”工作上,它们致力于“保卫”博物学家称之为领地的一块地域。这种现象在动物界十分普遍,不但鸟类、哺乳动物和鱼类有这种行为,而且昆虫类,甚至海葵也是如此。这块领地可能是林间的一大片地方,它主要是进行繁殖的一对动物觅食的天然场地,知更雀就是这样。另一种情况可以以鲭鸥为例,它的地盘可能是一小块没有食物的地方,但中间却有一个窝。温-爱德华兹认为,为领地进行搏斗的动物是为了争夺象征性的目的物,而不是为了争抢像食物这样的实物。在许多情况下,雌性动物因雄性动物不拥有一块领地而拒绝同其交配。有时,雌性动物由于其配偶被击败,领地被占领,而很快就委身于胜利者,这些情况的确时常会发生。甚至在明显是忠诚的单配物种中,雌性动物委身的可能是雄性动物的领地,而不是雄性动物本身。

        如果种群的成员过多,有些个体得不到领地,它们就不能进行繁殖。因此,按照温-爱德华兹的观点,赢得一块领地就像是赢得了一张繁殖的证书或许可证。由于能够得到的领地数量有限,就好像颁发的繁殖许可证有限一样。个体可能为取得这些许可证而进行搏斗,但整个种群所能生育的幼儿总数受到所能得到的领地的数量的限制。有时,一些个体初看上去好像表现出自我约束力,例如红松鸡就是如此,因为那些不能赢得领地的个体不仅不繁殖,而且似乎放弃斗争,不想再去赢得领地。它们好像都接受这样的比赛规则:要是竞争季节结束时你还没有得到一张进行生育的正式许可证,你就要自觉地克制生育,在繁殖季节不去惊扰那些幸运的个体,以便让它们能够为物种传宗接代。

        温-爱德华兹也是以类似的方式阐明优势序位形成的过程。在许多动物群体中,尤其是豢养的动物,但有时也包括野生动物,个体能记住对方的特征,它们也知道在搏斗中自己能够击败谁,以及通常谁能够打败它们。我们在第5章中曾讲到,它们“知道”哪些个体大概能击败它们,因此遇到这些个体时往往不战而降。结果,博物学家就能够把优势序位或“啄食等级”(peck order,因最初用以描述母鸡的情况而得名)形象地描绘出来——在这种等级分明的社会里,每一个个体都清楚自己的地位,因此没有超越自己身份的想法。当然,有时也发生真正的全力以赴的搏斗,而且有时有些个体能够赢得升级,取得超过其顶头上司的地位。但正如我们在第5章中所讲的那样,总的说来,等级低的个体自动让步的后果是,真正持久的搏斗很少发生,重伤情况也很少见。

        许多以某种模糊的类群选择观点来看问题的人,认为这是件“好事”温-爱德华兹的解释就更加大胆:比起等级低的个体,等级高的个体有更多的机会去繁殖,这种情况不是由于它们为雌性个体所偏爱,就是因为它们以暴力阻止等级低的雄性个体接近雌性个体。温-爱德华兹认为社会地位高是表示有权繁殖的另一种票证。因此,个体为社会地位而奋斗,而不是直接去争夺雌性个体,如果最终取得的社会等级不高,它们就接受自己无权生育这个事实。凡直接涉及雌性个体时,它们总是自我克制,但这些个体能不时地试图赢得较高的社会地位,因此可以说是间接地争夺雌性个体。但和涉及领地的行为一样,“自觉接受”这条规定,即只有地位高的雄性个体才能生育,根据温-爱德华兹的观点,其带来的结果是,种群的成员数字不会增长太快。种群不会先是生育了过多的后代,然后在吃过苦头以后才发现这样做是错误的。它们鼓励正式的竞赛,让其成员去争夺地位和领地,以此作为限制种群规模的手段,以便把种群的规模保持在略低于饥饿本身实际造成死亡的水平之下。

        炫耀性行为(epideictic behaviour)也许是温-爱德华兹提出的最令人惊讶的观点,炫耀性这个词是他自己杜撰的。许多动物的群居生活占据了它们的很多时间,它们集结成群,在陆地、空中或水里活动。自然选择为什么会有利于这种集体生活,人们对此给出了各种理由,而这些理由或多或少都属于常识范围。我在第10章会谈到其中的一些。温-爱德华兹的观点却迥然不同。他认为大批的欧椋鸟在晚间集聚,或大群的蠓虫在门柱周围飞舞时,它们是在对自己的种群进行“人口”普查。因为他提出的观点是,个体为了群体的整体利益而约束自己的出生率,即当动物个体的密度高时就少生育一些,所以它们理所当然地应该有某种方法去估计动物个体的密度。恒温器需要有温度计作为其机械装置的一个组成部分,上述的情况也正是如此。在温-爱德华兹看来,炫耀性行为就是经过周密安排的群体聚集,以便对动物的数量做出估计。他并不认为动物对其自身数量的估计是一种有意识的行为,但他认为这是一种把个体对于其种群的个体密度的直觉同它们的繁殖系统联系起来的神经或内分泌自动机制。

        我对温-爱德华兹理论的介绍尽管只有三言两语,但尽力做到公正。如果我做到了这一点,现在你应该感到心悦诚服,这一理论表面看来至少是言之成理的。但你以犹疑的口吻说,尽管温-爱德华兹的理论听起来好像很有道理,它的依据最好再充分一些,否则……你所持的这种怀疑态度,是阅读了本书前面几章的结果。遗憾的是,依据并不充分。构成这一理论的大量例子既能用他的方式去解释,但也完全可以以更加正统的“自私的基因”规律加以阐明。

        虽然拉克(David Lack)从未用过“自私的基因”这一名称,但他却是计划生育的自私基因理论的主要创始人,是一位伟大的生态学家。他曾对野生鸟类窝卵数进行过专门研究,但他的学说和结论却具有普遍适用的价值。每一物种的鸟往往都有典型的窝卵数。例如,塘鹅和海鸠每次孵1只卵,东亚雨燕每次孵3只,而大山雀每次孵6只或更多。每次孵卵数并非一成不变:有些东亚雨燕每次只生2只蛋,大山雀也可能生12只。我们有理由设想,雌鸟产蛋孵卵的数目像其他特性一样,至少是部分受遗传的控制,这就是说,可能存在使雌鸟产2只蛋的基因,产3只的与之竞争的等位基因,还有产4只的等位基因,等等,尽管实际情况可能并不如此简单。现在,自私基因的理论要求我们去探究,这些基因中究竟哪一种会在基因库中越来越多。表面上看,使雌鸟产4只蛋的基因毫无疑问会胜过产3只或2只的基因。然而稍加思索就会发现,“越多越好”的论点绝非事实。以此类推的结果就会是,5只比4只好,10只更加好,100只还要好,数量无限最好。换句话说,这样类推,逻辑上就要陷入荒谬。显然,大量生蛋不仅有所得,也有所失。增加生育必然要以抚养欠佳为代价。拉克的基本论点是,任何一定的物种在任何一定的环境条件下,每窝肯定都有其最适度的孵卵数。他同温-爱德华兹的分歧就在于他如何回答这一问题:“从谁的观点来说是最适度的?”温-爱德华兹认为,这种重要的最适度也是对群体作为一个整体而言的最适度,也就是一切个体应力图实现的最适度。而拉克却认为,每一自私个体对每窝孵卵数的抉择以其能最大限度地抚养的数量为准。如果东亚雨燕每窝最适度的孵卵数是3只的话,照拉克的观点来看,意思就是,凡是试图生育4个子女的个体,较之更加谨慎、只试图生育3个子女的竞争对手,其成年子女可能反而更少。这种情况很明显是由于4个幼儿平均得到的食物太少,以致很少能够活到成年。最初对4只蛋的卵黄配给,以及孵化后食物的配给都同样是造成这种情况的原因。因此,拉克认为,个体之所以调节其窝卵数,绝非出自利他性的动机。它们不会为了避免过多地消耗群体的资源而实行节制生育。它们节制生育是为了最大限度地增加它们现有子女的存活数,它们的目标同我们提倡节制生育的本来目标恰好背道而驰。

        育养雏鸟是一件代价高昂的事情。雌鸟在孕育蛋的过程中必须投入大量的食物和精力。为了保存它生下的蛋,它需要付出大量的劳动去筑巢,这也可能是在其配偶的协助下完成的。雌鸟要花几个星期的工夫耐心地去孵化这些蛋。雏鸟出壳后,雌鸟就要累死累活地为它们找食物,几乎得不到喘息的时间。我们已经知道,雌性大山雀在白天平均每30秒就要往鸟巢衔一次食物。哺乳动物,如我们人类本身,进行的方式稍有不同,但繁殖作为一件代价高昂的事情——对母亲来说尤其如此——其基本概念是相同的。显然,如果母亲将有限的食物和精力资源分给太多的子女,结果育成的子女反而更少,倒不如一开始就谨慎一些不要贪多为好。她必须在生育和抚养之间进行合理的平衡。每个雌性个体或一对配偶所能搜集到的食物和其他资源的总量,是决定它们能够抚养多少子女的限制性因素。按照拉克的理论,自然选择对窝卵数(胎仔数等)进行调节,以便最大限度地利用这些有限的资源。

        生育太多子女的个体要受到惩罚,不是由于整个种群要走向灭绝,而是仅仅由于它们自己的子女能存活下来的越来越少。使之生育太多子女的基因根本不会大量地传递给下一代,因为带有这种基因的幼儿极少能活到成年。对现代文明人而言,家庭规模不再受限于父母所能够提供的有限资源。如果一对夫妻生育了过多子女,超出了其抚养能力,国家,即其他人类成员就会介入,使多出的子女得以健康成长。事实上,一对夫妻即便不具备充足的物质资源,也无法阻止其生育、抚养女性身体极限所能允许的最大子女数量。但是福利国家乃是非同寻常之物。在大自然中,生育了超出其抚养能力的子女的父母不会拥有更多的孙辈,它们的基因不会传递给未来的后代。这里不需要对生育率的利他主义做出限制限制,因为大自然里没有福利国家。任何基因过于放纵都会立刻受到惩罚:携带其基因的后代因饥饿而死。既然我们人类不想继续这种旧时的自私之道,让子女过多的家庭因饥饿而死,于是我们不再把家庭作为经济自足的单位,而代之以国家。但是子女获得抚养保障的权利不应被滥用。

        避孕有时被谴责为“非自然的”。确实如此,它非常“非自然”。可问题是:福利国家也是“非自然的”。我想大多数人都认为福利国家是非常令人向往的。但是你不可能拥有一个非自然的福利国家,除非你也拥有非自然的生育控制,否则最终结果就会比自然状态中的更加悲惨。福利国家也许是动物世界里已知的最伟大的利他主义制度。但是福利制度具有内在的不稳定性,因为它容易被自私的人利用,甚至滥用。拥有超出其抚养能力的子女数量的个体大多数是出于愚昧无知才这么做的,而不能斥之为恶意滥用。在我看来,更应该受到质疑的是那些刻意鼓励这种行径的强大的制度和领导人。

        现在再来讲一讲野生动物。拉克关于窝卵数的论点可以推而广之,用于温-爱德华兹所举的其他例子:领地行为、统治集团等等。我们以他和几个同事对红松鸡进行的研究为例来说明。这种鸟食用石楠属植物,它们把石楠丛生的荒原分成一块块领地,而这些领地显然能为其主人提供超过实际需要量的食物。在发情期的早期,它们就开始为争领地而搏斗,但不久,失败者似乎就已认输,不再进行搏斗了。它们变成了流浪者,永远得不到一块领地,在发情期结束时,它们大部分都要饿死。得到繁殖机会的只有拥有领地的动物。如果一个拥有领地的动物被射杀,它的位置很快就会为先前的一个流浪者所填补,新来的主人就会进行繁殖。这一事实说明,不拥有领地的动物生理上是有繁殖能力的。我们已经看到,温-爱德华兹对这种涉及领地的极端行为的解释是,这些流浪者“承认”自己失败,不能得到繁殖的证明书或许可证,它们也就不想再繁殖。

        表面上看,用自私基因的理论似乎很难解释这个例子。这些流浪者为什么不一而再,再而三地想方设法把领地上的占有者撵走,直到它们筋疲力尽为止呢?毕竟它们这样做不会有任何损失。但且慢,也许它们的确会有所失。我们已经看到,领地的占有者一旦死亡,流浪者就有取而代之的机会,从而也就有了繁殖的机会。如果流浪者用这样的方式继承一块领地,比用搏斗的方式取得这块领地的可能性还要大,那么,作为自私的个体,它宁愿等待,以期某一个个体死亡,而不愿在无益的搏斗中浪费哪怕是一点点精力。以温-爱德华兹的观点来说,为了群体的福利,流浪者的任务就是充当替补,在舞台两侧等待,随时准备接替在群体繁殖舞台上死亡的领地占有者的位置。现在我们可以看到,对纯粹的自私个体来说,这种办法也许是它们的最佳策略。就像我们在第4章中所说的那样,我们可以把动物看作赌徒。对一个赌徒来说,有时最好的策略不是穷凶极恶地主动出击,而是坐等良机。

        同样,其他凡是动物显示出逆来顺受地“接受”不繁殖地位的例子,都可以毫无障碍地用自私基因的理论加以解释。而总的解释模式却永远相同:个体的最好赌注是,暂时自我克制,期望更好的时机来临。海豹不去惊动那些“妻妾”占有者的美梦,并非考虑到群体的利益,而是在等待时机,期待着更加适宜的时刻,即使这个时刻永远也不会到来,最终落得无后。在这场赌博中成为赢家的可能性本来还是有的,尽管事后我们知道,对这只海豹而言,这并非是一场成功的赌博。在数以百万计的旅鼠潮水般地逃离旅鼠泛滥的中心地带时,它们的目的不是为了减少那一地区旅鼠的密度!它们是在寻求一个不太拥挤的安身之处,每只自私的旅鼠都是如此。如果它们当中哪一只可能因找不到这样一个安身之处而死去,这是一个事后才可以看到的事实。它改变不了这样一种可能性——留下不走甚至要冒更大的风险。

        大量文献充分证明,过分拥挤有时会降低出生率。有时这种现象被认为是温-爱德华兹理论的依据,但情况完全不是这样。这种现象不仅符合温-爱德华兹的理论,而且和自私基因的理论也完全一致。例如,在一次实验中,研究人员把老鼠放在一个露天的围场里,同时放进许多食物,让它们自由地繁殖。鼠群的数量增长到某一水平,然后就稳定下来。这种稳定原来是由于老鼠太多而使雌鼠生育能力减退:它们的幼鼠少了。这类结果时常被报道。人们常把造成这种现象的直接原因称为“压力”(stress),尽管起这样一个名称对解释这种现象并无助益。总之,不论其直接原因可能是什么,我们还是需要深究其根本的或进化上的原因。鼠群生活在过分拥挤的环境内,为什么自然选择有利于降低自己产仔率的雌鼠?

        温-爱德华兹的回答清楚明了。在群体中,凡其中的雌性个体能估量自己群体的个体数量并且调节其产仔率,以避免食物供应的负担过重,那么,类群选择便有利于这样的群体。在上述那次实验的条件下,碰巧绝不会出现食物缺乏的情况,但我们不能认为老鼠能够认识到这种情况。它们的程序编制就是为了适应野外生活的,而在自然条件下,过分拥挤可能就是一种将要发生饥荒的可靠预兆。

        自私基因的理论又是怎么解释的呢?几乎完全相同,但仍有一个非常重要的区别。你可能还记得,按照拉克的理论,动物往往从其自私的观点出发繁殖最适量的幼仔。假如它们生育得太少或太多,它们最后抚养的幼仔,会比它们应该生育的最适量来得少。“最适量”在这个物种过分拥挤的年份中可能是个较小的数目,而在这种动物变得稀少的年份中可能是个较大的数目。我们都一致认为,动物的数量过剩可能预示着饥荒。显而易见,如果有可靠的迹象显示出一场饥荒就要临头,那么,降低其出生率是符合发现这些迹象的雌性动物的自私利益的。凡是那些不以这种方式根据预兆相应行事的对手,即使它们实际生育的幼仔比较多,最终存活下来的还是比较少。因此,我们最终得出的结论几乎同温-爱德华兹的完全一致,但我们却是通过一种完全不同的进化上的推理得出这一结论的。

        自私基因的理论甚至也能够解释清楚“炫耀性展示”。你应该还记得温-爱德华兹曾做这样的假设,一些动物故意成群地聚集在一起,以便为对所有的个体进行“人口普查”提供方便,并相应地调节其出生率。没有任何证据证明任何这样的聚集事实上是炫耀性的,但我们可以假定找到了这类证据。这会不会使自私基因的理论处于窘境?丝毫不会。

        欧椋鸟大批群栖在一起。不妨这样假定,它们在冬季数量过剩,来年春季繁殖能力就会降低;而且,欧椋鸟倾听相互的鸣叫声也是导致其降低生殖能力的直接原因。这种情况可以用这样的实验加以证明。给一些欧椋鸟个体分别放送两种录音,一种再现了欧椋鸟稠密聚集的栖息地且鸣叫声非常洪亮,另一种再现了欧椋鸟不太稠密的栖息地且鸣叫声比较小。两相比较,前面一种欧椋鸟的产蛋量要少些。这说明,欧椋鸟的鸣叫声构成一种炫耀性展示。自私基因的理论对这种现象的解释,同它对于老鼠的例子的解释几无差别。

        而且,我们是以这样的假定作为出发点的,即如果有些基因促使你生育你无法抚养的子女,那么这样的基因会自动受到惩罚,在基因库中的数量会越来越少。一个效率高的卵生动物作为自私的个体,它的任务是预见在即将来临的繁殖季节里每窝的最适量是多少。你可能还记得我们在第4章中使用的“预见”这个词所具有的特殊含义。那么雌鸟又是如何预见它每窝的最适量的呢?哪些变量会影响它的预见?许多物种做出的预见也可能是固定的,年复一年地从不变化。因此塘鹅平均每窝的最适量是1只蛋,但在鱼儿特别多的年月,一个个体的真正最适量也许会暂时提高到两只蛋,这种可能性是存在的,如果塘鹅无法事先知道某一年是否将是一个丰收年的话,我们就不能指望雌塘鹅甘冒风险,生两只蛋而浪费它们的资源,因为这有可能损害到它们在一般年景中正常的繁殖成果。

        一般来说,可能还有其他物种——欧椋鸟或许就是其中之一——能在冬季预言某种具体食物资源在来年春天是否会获得丰收。农村的庄稼人有许多古老的谚语,例如说冬青果的丰产可能就是来年春季气候好的吉兆。不管这些说法有没有正确的地方,从逻辑上说预兆是可能存在的,一个好的预言者从理论上讲可以据此年复一年地按照其自身的利益调节其每窝的产蛋量。冬青果可能是可靠的预兆,也可能不是,但像在老鼠例子中的情况一样,动物个体的密度看来很可能是一个正确的预报信号。一般来说,雌欧椋鸟知道它在来年春季终于要喂养自己的雏鸟时,将要和同一物种的对手竞争食物。如果它能够在冬季以某种方式估计出自己物种在当地的密度的话,它就具备了有力的手段,能够预计明年春天为雏鸟搜集食物的困难程度。假如它发现冬天的个体密度特别高的话,出于自私的观点,它很可能采取审慎的策略,生的蛋会相对减少:它对自己的每窝最适量的估计值会随之降低。

        如果动物个体真的会根据对个体密度的估计而降低其窝卵数,那么,每一个自私个体都会立即向对手装出个体密度很高的样子,不管事实是不是这样,这样做对每一个自私的个体都是有好处的。如果欧椋鸟是根据冬天鸟群栖息地声音的大小来判断个体密度的话,每只鸟会尽可能地大声鸣叫,以便听起来像是两只鸟而不是一只鸟在鸣叫,这样做对它们是有利的。一只动物同时装扮成几只动物的做法,克雷布斯在另一个场合提到过,并把这种现象称作“好动作效果”(Beau Geste Effect),这是一本小说的书名,书中讲到法国外籍军团的一支部队曾采用过类似的战术。在我们所举的例子中,这种方法用来诱使周围的欧椋鸟降低它们的窝卵数,降低到比实际的最适量还要少。如果你是一只欧椋鸟而且成功地做到这一点,那是符合你自私的利益的,因为你使不含有你的基因的个体减少了。因此,我的结论是,温-爱德华兹有关炫耀性行为的看法实际上也许是一个很正确的看法:除了理由不对之外,他所讲的始终是正确的。从更广泛的意义上来说,拉克所做的那种类型的假设能够以自私基因的语言,对看上去似乎是支持类群选择理论的任何现象都做出充分有力的解释(如果此类现象出现的话)。

        我们根据本章得出的结论是,亲代个体实行计划生育,为的是使它们的出生率保持在最适度的数值上。他们力图让自己的子女尽可能多地存活,这意味着既不能生育过多,也不能生育过少。让个体生育过多后代的基因难以在基因库中长久存续,因为携带此种基因的后代难以存活到成年。

        对于家庭从成员数量上进行的探讨就讲这些。现在我们开始讲家庭内部的利害冲突。做母亲的对其所有的子女都一视同仁是否总是有利?还是偏爱某个子女更有利?家庭是作为一个单一的合作整体来发挥作用,还是我们不得不面对甚至在家庭内部都存在自私和欺骗这一现实?一个家庭的所有成员是否都为创造相同的最适条件而共同努力?在什么是最适条件这个问题上是否会发生分歧?这些就是我们要在下面一章试图回答的问题。关于配偶之间是否可能有利害冲突这个问题,我们放到第9章去讨论。

        第8章 代际之战

        让我们首先解决上一章结束时提出的第一个问题。做母亲的应该不应该有宠儿?她待子女应该不应该一视同仁,不厚此薄彼?尽管说起来可能使人感到厌烦,但我还是认为有必要再唠叨一下,像往常一样做个声明,做到有言在先,免得产生误会。“宠儿”这个词并不带有主观色彩,“应该”这个词也不带有道义上的要求。我把母亲当作一台生存机器看待,其程序的编制就是为了竭尽所能繁殖存在于体内的基因的拷贝。你我之辈都是人类,知道具有自觉的目的是怎么一回事,因此,我在解释生存机器的行为时使用带有目的性质的语言,作为一种比喻,对我是有其方便之处的。

        我们说母亲有宠儿,这句话实际上是什么意思呢?这意味着她在子女身上投资时,资源的分配往往不均等。母亲能够用来投资的资源包括许多东西,食物是显而易见的一种,还包括为取得食物而消耗的精力,因为必须付出一定的代价才能把食物弄到手。保护子女免受捕食者之害而承担的风险也属资源的一种,她可以“花费”也可以拒绝花费这种资源。此外,料理“家务”以及防止风雨侵袭所消耗的能量和时间,在一些物种中为教养子女而花费的时间,都是宝贵的资源。母亲可以“随意”决定如何在其子女间分配这些资源,或均等,或不均等。

        要设想用一种通货作为亲代用以投资的一切资源的计量单位是困难的。正如人类社会使用货币作为可以随时转换为食物、土地或劳动时间的通货一样,我们需要一种通货来衡量这些资源,即个体生存机器用以在另一个个体,尤其是自己孩子身上投资的资源。某种能量的度量单位,如热量,有其可取之处,一些生态学家已将其用于核算自然界里能量消耗的成本。但这种核算方式是不全面的,因为它不能精确地转换成具有实际意义的通货,即进化的“金本位”——基因生存。1972年,特里弗斯提出“亲代投资”(parental investment)的概念,从而巧妙地解决了这个难题[尽管在阅读他的言简意赅的文章时,我们从字里行间获得的印象是,这个提法与20世纪最伟大的生物学家费希尔爵士在1930年提出的“亲代支出”(parental expenditure)在含义上很相近]。*

        亲代投资的定义是:“亲代对子代个体进行的任何形式的投资,从而增加了该个体生存的机会(因而得以成功繁殖),但以牺牲亲代对子代其他个体进行投资的能力为代价。”特里弗斯提出的亲代投资这个概念的优点在于其计量单位非常接近具有实际意义的单位。一个幼儿消耗母体一定数量的乳汁,其数量不是以热量或品脱来计算的,而是以同一母体所哺育的其他幼儿因此受到的损害为计量单位。比方说,如果一个母体有两个幼儿x和y,x吃掉一品脱母乳,而这一品脱母乳所体现的又是亲代投资中的主要部分,那么其计量单位就是y因没有吃到这一品脱母乳而增加的死亡的可能性。亲代投资是以缩短其他幼儿预期寿命的程度为其计量单位的,包括已出生的或尚未出生的幼儿。

        亲代投资并不是一个尽善尽美的计算方式,因为它过度强调亲代的重要性而相对地贬低其他的遗传关系。最理想的应该是利他行为投资(altruism investment)这个概念化的计量单位。我们说个体A对个体B进行投资,意思是个体A增加了个体B的生存机会,但以牺牲个体A对包括其自身在内的其他个体的投资能力为代价,而所付出的一切代价均需按适当的亲缘关系指数进行加权计算。这样,在计算一个母体对任何一个幼儿的投资额时,最好能以对其他个体的预期寿命所造成的损害为计量单位,所谓其他个体不仅指这个母体的其他子女,而且指侄子、外甥、侄女、外甥女以及母体自身等等。不过,就许多方面而言,这个方法过于烦琐,不能解决实际问题。而特里弗斯的计算方法还是有很高的实用价值的。

        任何一个母体在其一生中能够对子女(以及其他亲属、她自己等,但为了便于论证,我们在这里仅仅考虑子女)进行的亲代投资是有一定总量的。这个亲代投资总额包括她在一生中所能搜集或制造的食物、她准备承担的一切风险以及她为了儿女的福利所能够耗费的一切能量与精力。一个年轻的雌性个体在其成年后应如何利用她的生命资源进行投资?什么样的投资策略才是她应遵循的上策?拉克的理论已经告诉我们,她不应把资源分摊给太多的子女,致使每个子女得到的份额过分微薄。这样做她会失去太多基因:她不会有足够的孙子孙女。另一方面,她也不应把资源集中用在少数几个被宠坏了的儿女身上。她事实上可以确保有一定数量的孙子孙女,但她的一些对手由于对最适量的子女进行投资,结果养育出更多的孙子孙女。有关平均主义的投资策略就讲到这里,我们现在感兴趣的是,对一个母亲来说,在对子女进行投资时如果不是一视同仁,是否会有好处,也就是说,她是否应该有所偏爱。

        我们说,母亲对待子女不一视同仁,在遗传学上是毫无根据的。她同每个子女的亲缘关系指数都一样,都是。对她而言,最理想的策略是,她能够抚养多少子女就抚养多少,但要进行平均投资,直至子女自己开始生男育女时为止。但是,正像我们在上面已看到的那样,有些个体与其他个体相比,是更理想的寿险被保险人。一窝幼畜中,个子矮小、发育不良的和同窝其他发育正常的幼畜一样,体内有同等数量的来自母体的基因,但它的预期寿命可要短些。换句话说,如果它要和它的兄弟们一样长寿,它就需要额外的亲代投资。做母亲的可以根据具体情况做出决定,它可能发现,拒绝饲养一个个子矮小、发育不良的幼畜,将其名下应得的一份亲代投资全部分给它的兄弟姐妹反而合算。事实上母亲有时干脆把它丢给其他幼畜作为食料,或自己把它吃掉作为制造奶水的原料,这样也算上策。母猪有时吞食小猪,但它是否专挑小个子的吃,我却不得而知。

        发育不良的小个子牲畜是个特殊的例子。对幼体的年龄如何影响母体的投资倾向,我们可以做出一些更具普遍性的猜测。如果在两个幼儿中母亲只能拯救其中一个,而另一个最终会死去的话,那么它应拯救其中年龄较大的一个。这是因为,如果死亡的是年龄较大的一个而不是另一个年幼的弟弟,那么,它一生付出的亲代投资中较大的那一部分将要付诸东流。也许这样说能更好地说明这个问题:如果它救弟弟,它仍需要耗费一些代价昂贵的资源才能把这个幼儿抚养到哥哥的年龄。

        另一方面,如果这种抉择并不截然涉及生或死的问题,那么对母亲来说,其上策也许是,宁可将赌注压在较年幼的一个孩子身上。我们可以举这样一个例子:母亲因为不知道该把一些食物给小的吃还是给大的吃而感到左右为难。哥哥更有可能凭自己的力量去寻找食物,因此,如果妈妈不喂养它,它不一定会因此死去。另一方面,弟弟因为还很弱小,没有能力自己去找吃的,如果母亲把食物给了哥哥,弟弟饿死的可能性就更大。在这样的情况下,即使母亲宁愿牺牲弟弟,还是可能把食物喂给弟弟,因为哥哥毕竟不太可能会饿死。这正是哺乳动物使幼儿断乳,而不是喂养它们终生的原因。到了一定时候,母亲就停止喂养一个幼儿,而将其资源留给未来的子女,这样做是明智的。有时母亲可能知道它生下的是最后一个幼儿,它会把自己有生之年的全部资源都花费在这个最小的幼儿身上,也许把这个幼儿奶到成年。不过,它应该“权衡一下”,要是把资源花费在孙辈或侄甥之辈身上是否更为合算,因为尽管后者同它的亲缘关系只及子女的一半,但它们从投资中获益的能力可能比它自己这个幼儿大两倍以上。

        在这里似乎应该提一下人们称之为“停经”的令人费解的现象,也就是人类中年妇女的生殖能力突然消失这个现象。在我们未开化的祖先中,这种情况可能比较少见,因为能够活到绝经这个年龄的妇女并不太多。可是,妇女的生理突变与男子生殖力的逐渐消失显然不同,这种不同说明停经现象大概具有某种遗传学上的“目的性”——就是说,停经是一种“适应”。要说清楚这个问题很不容易。乍看之下,我们很可能认为妇女在死亡之前应该不停地生男育女,即使随着年龄的增长,她生下婴儿的存活率会越来越低。至少,她们总应该尽力而为吧?但我们应当记住,她的孙子孙女也是她的后代,尽管亲缘关系只有子女的一半。

        由于各种原因,也许与梅达沃的衰老学说(第3章所讲)有关,处于自然状态的妇女随着年龄的增长而逐渐丧失抚养子女的能力。因此,老年母亲所产幼儿的预期寿命短于青年母亲所产的幼儿。这意味着,如果一个妇女和她的女儿同一天生产,她孙子的预期寿命大概要比她儿子的预期寿命长。妇女到达一定的年龄后,她所生育的每个孩子活到成年的平均机会比同岁的孙子活到成年的平均机会的一半还要小。在这个时候,选择孙子孙女而不选择子女作为投资对象的基因往往会兴旺起来。4个孙子孙女之中只有1个体内有这样的基因,而两个子女之中就有1个体内有它的等位基因。但孙子孙女享有较长的预期寿命,这个有利因素胜过数量上的不利因素,因此,“孙子孙女利他行为”基因在基因库中占了上风。一个妇女如果自己继续生育子女就不能集中精力对孙子孙女进行投资,因此,使母体在中年丧失生殖能力的基因就越来越多。这是因为孙子孙女体内有这些基因,而祖母的利他行为又促进了孙子孙女的生存。

        这可能就是妇女停经现象形成的原因。男性生殖能力之所以不是突然消失而是逐渐衰退的,其原因大概是,父亲对每个儿女的投资额比不上母亲。甚至对一个年迈的男人来说,只要他还能使年轻妇女生育,那么,对子女而不是对孙子孙女进行投资还是合算的。

        迄今为止,我们在本章和上一章里都是从亲代,主要是从母亲的立场来看待一切问题的。我们提出过这样的问题:父母是否应该有宠儿?一般说来,对父亲或母亲而言,最理想的投资策略是什么?不过,在亲代对子代进行投资时,也许每一个幼儿都能对父母施加影响,从而获得额外的照顾。即使父母不“想”在子女之间显得厚此薄彼,难道做子女的就不能先下手为强,攫取更多的东西吗?他们这样做对自己有好处吗?更严格地说,在基因库中,那些促使子女为自私目的而巧取豪夺的基因是否会越来越多,比那些仅仅使子女接受应得份额的等位基因还要多?特里弗斯在1974年一篇题为“亲代与子代间的冲突”(“ParentOffspring Conflict”)的论文里精辟地分析了这个问题。

        一个母亲同其现有的以及尚未出生的子女的亲缘关系都是一样的。我们已经懂得,从纯粹的遗传观点来看,她不应有任何宠儿。如果她事实上有所偏爱,那也是出于因年龄或其他不同条件所造成的预期寿命的差异。就亲缘关系而言,和任何个体一样,做母亲的对其自身的“亲缘指数”是她对其子女中任何一个的密切程度的两倍,在其他条件不变的情况下。这意味着她理应自私地独享其资源的大部分,但其他条件不是不变的。因此,如果她能将其资源的相当一部分花费在子女身上,那将为她的基因带来更大的好处。这是因为子女较她年轻,更需要帮助,因而她们从每个单位投资额中所能获得的好处,必然要比她自己从中获得的好处大。促使对更需要帮助的个体而不是对自身进行投资的基因,能够在基因库中取得优势,即使受益者体内只有这个个体的部分基因。动物表现出亲代利他行为和任何形式的亲属选择行为,其原因就在于此。

        现在让我们以一个幼儿的观点来看一下这个问题。就亲缘关系而言,他同他的兄弟或姐妹之间任何一个的密切程度和他母亲同其子女之间的密切程度完全一样,亲缘关系指数都是。因此,他“希望”他的母亲用其资源的一部分对他的兄弟或姐妹进行投资。从遗传学的角度上看,他和他母亲都希望为他兄弟姐妹的利益出力,而且他们持这种愿望的程度相等。但是我在上面已经讲过,他与自己的关系比与兄弟姐妹中任何一个的关系密切两倍,因此,如果其他条件不变,他会希望母亲在他身上的投资多一些。如果你和你的兄弟同年,又同样能从一品脱母乳中获得相等的好处,那你就“应该”设法夺取一份大于应得份额的母乳,而你的兄弟也应该设法夺取一份大于应得份额的母乳。母猪躺下准备喂奶时,它的一窝小猪尖声呼叫,争先恐后地赶到母猪身旁的情景你一定见过吧。一群小男孩为争夺最后一块糕饼而搏斗的场面你也见过吧。自私贪婪似乎是幼儿行为的特征。

        但问题并不这样简单。如果我和我的弟弟争夺一口食物,而他又比我年轻得多,这口食物对他的好处肯定比对我大,因此把这口食物让给他吃对我的基因来说可能是合算的。哥哥和父母的利他行为可以具有完全相同的基础,前面我已经讲过,两者的亲缘关系指数都是,而且同年长的相比,年纪较轻的个体总是能够更好地利用这种资源。如果我体内有谦让食物的基因,我的弟弟体内有这种基因的可能性是50%。尽管这种基因在我体内的机会比我弟弟大一倍——100%,因为这个基因肯定存在我体内,但我需要这份食物的迫切性可能不到他的一半。一般说来,一个幼儿“应该”攫取大于其应得份额的亲代投资,但必须适可而止。怎样才算适可而止呢?他现存的以及尚未出生的兄弟或姐妹因他攫取食物而蒙受的净损失不能大于他从中所得利益的两倍。

        让我们考虑一下什么时候断乳最适宜这个问题。母亲为了准备生第二胎而打算让正在吃奶的幼儿断乳。另一方面,这个幼儿却不希望这样快就断乳,因为母乳是一种方便的、不费力气的食物来源,而且他还不想为了生活而外出奔波。说得更确切一些,他最终还是想外出谋生的,但只有在他母亲因他走后得以脱身抚养他的弟妹,从而为他的基因带来更大的好处时才这样做。随着年龄的增大,一个幼儿从每一品脱母乳中得到的相对利益越来越小。这是因为他越长越大,一品脱母乳按他的需要而言,其比例相对地越来越小,而且在必要时他也有更大的能力去独立生活。因此,当一个年龄较大的幼儿吃掉本来可以让给一个年龄较小的幼儿的一品脱母乳时,他消耗的亲代投资,相对来说,要大于一个年龄较小的幼儿吃掉这一品脱母乳所消耗的亲代投资。在每个幼儿成长的过程中,这样的时刻必将来到:他的母亲停止喂养他,而把一个新生的幼儿作为更有利的投资对象。即便不是如此,再过一些时候,年龄较大的幼儿也会自动断乳,以便给自己的基因带来最大的好处。这时,一品脱母乳能为可能存在于他弟妹体内的他的基因的拷贝带来的好处,要大于能为事实上存在于他自己体内的基因带来的好处。

        存在于母子之间的这种矛盾不是绝对的,而是相对的。在这个例子里,矛盾只涉及定时的问题。做母亲的打算继续喂养这个幼儿直至为他支出的投资总额达到他“应得”的份额。这个“应得”份额取决于这个幼儿的预期寿命以及已经为他支出的亲代投资额。到这里为止,矛盾尚未产生,同样,幼儿吃奶的日子不宜过长,到了他的尚未出生的弟妹因他继续吃奶而蒙受的损失超过他从中得到的好处的两倍时,他就不应继续吃下去;就这一点而言,母子双方的看法是一致的。但矛盾发生在中间的一段时期,即在母亲眼中,这个幼儿正在取得多于其应得份额的利益,而其弟妹因此蒙受的损失还没有到达两倍于他的利益的时候。

        断乳时间只不过是母子之间引起矛盾的一个例子。我们也可以把这种情况视为一个个体和他所有尚未出生的但受到母亲袒护的弟妹之间的争执。可是,为了争夺亲代投资,更直接的争执可能发生在同代的对手之间,或同巢的伙伴之间。因此,母亲通常总是力图持公平的态度。

        很多鸟类是在鸟窝里哺育幼儿的。雏鸟嗷嗷啾唧,而雌鸟就把小虫或其他食物丢入一张张大嘴里。按理说,雏鸟叫声的大小和它饥饿的程度是成正比的。如果说雌鸟总是先喂叫得最响的雏鸟的话,那么,每只雏鸟早晚都会得到它应得的份额,因为吃饱了的雏鸟是不会再大喊大叫的。这种情况至少在最理想的环境里是会出现的。在这种环境里,大家都循规蹈矩,不弄虚作假。但根据我们提出的自私基因的概念,我们必须估计到个体是会弄虚作假的,是会装出一副饥不可耐的样子的。这种欺骗行为逐步升级,但显然不会得到预期的效果,因为如果所有的雏鸟都大喊大叫,装出快要饿死的模样,这种大喊大叫就要变成一种常规,因而不会达到说谎的效果。不过升级容易降级难,不管哪一只雏鸟带头降低嗓门,它得到的食物就会减少,很可能真的要被饿死。再说,由于种种原因,小鸟也不会漫无止境地提高嗓门大叫。譬如说,过高的喊声要消耗体力,也会引来捕食者。

        我们知道,一窝幼兽中有时会出现一个小个子,它的个子比其他的幼兽小得多。它争夺食物不像其余幼兽那样力量充沛,因而常常饿死。我们已经考虑过在什么条件下母亲让小个子死掉事实上是合算的。如果单凭直觉判断,我们大概总是认为小个子本身是会挣扎到最后一刻的,但这种推断在理论上未必能站得住脚。一旦小个子瘦弱得使其预期寿命缩短到它从同样数量的亲代投资中获得的利益还不到其他幼儿的一半时,它就该体面而心甘情愿地死去。这样,它的基因反而能够获益。就是说,一个基因发出了这样的指令:“喂,如果你个子比你的骨肉兄弟瘦小得多的话,那你不必死捱活撑,干脆死了吧!”这个基因在基因库中将取得成功,因为它在小个子体内活下去的机会本来就很小,而它却有50%的机会存在于得救的每个兄弟姐妹体内。小个子的生命航程中有一个有去无回的临界点。在达到这一临界点之前,它应当争取活下去,但到了临界点之后,它应停止挣扎,宁可让自己被骨肉兄弟或父母吃掉。

        在我们讨论拉克的有关窝卵数的理论时,我没有谈到上面的情况。但如果雌鸟吃不准今年该孵几个卵才是最适量时可以采取下面这个明智的策略。它在孵卵时可以比它事实上“认为”可能是最适宜的数目再多孵一个,这样,如果今年食物收成比原来估计的好,它就额外多抚养一个幼儿,不然的话,它就放弃这个幼儿以减少损失。雌鸟在喂养它的一窝幼儿时总是有意识地按同一次序进行,譬如说,按雏鸟个子的大小依次喂食。这样,它可以让其中一只,也许就是那个小个子,很快就死掉,而不致除了蛋黄或其对等物这第一笔投资之外,在它身上再浪费过多的食物。从雌鸟的观点来看,这说明了小个子现象存在的理由。小个子的生命就是雌鸟打赌的赌注,雌鸟的这种打赌行为在许多鸟类中很普遍,其性质和交易所里那种买现卖期的策略一样。

        我们把动物比作生存机器,它们的行为好像有“目的”地保存它们自己的基因,这样,我们可以谈论亲代与子代之间的矛盾,即两代之间的争斗。这是一种微妙的争斗,双方全力以赴,不受任何清规戒律的约束。幼儿利用一切机会进行欺骗。它会装成比实际更饥饿的样子,也许装得比实际更年幼或面临比实际更大危难的模样。尽管幼儿幼小羸弱,无力欺负其父母,但它却不惜使用一切可以使用的心理战术武器——说谎、哄骗、欺瞒、利用,甚至滥用亲缘关系做出不利于其亲属的行为。另一方面,父母必须对这种欺骗行为保持警觉,尽力避免受骗上当。要做到这点似乎也并不难。雌鸟如果知道它的雏鸟可能装成很饿的样子,它就可以采取定量喂食的策略来对付,即使这只雏鸟继续大叫大喊也不予以理睬。问题是这只雏鸟很可能并未说谎,而是真的饥饿。如果它因为得不到食物而死去,这只雌鸟就要失去它的一些宝贵的基因。野生鸟类只要饿上几个小时就会死掉。

        扎哈维指出,有一种幼儿的讹诈手段特别可怕:它放声大叫,故意把捕食者引来。它在“说”:“狐狸,狐狸,快来吃我!”父母只好用食物塞住它的嘴巴。这样,它就获得了额外的食物,但自己也要冒一定的风险。这种不择手段的战术和劫持班机的人所使用的战术一样。他威胁说,除非付给他赎金,否则就要炸毁飞机,自己也准备同归于尽。我怀疑这种策略是否有利于进化,倒不是因为它过于冷酷无情,而是我认为这种策略到头来会使进行讹诈的雏鸟得不偿失。如果真的引来了捕食者,它的损失可就大了。如果它碰巧是个独生子,那就更不用说了。扎哈维所讲的就是这种情况。不管它母亲在它身上的投资已经有多大规模,它还是应该比它母亲更珍视自己的生命,因为它母亲只有它的一半基因。即使讹诈者不是独生子,而且跟它生活在一起的兄弟姐妹都是脆弱的幼儿,这种策略亦未必有利,因为这个讹诈者在每个受到威胁的兄弟或姐妹身上都有50%的遗传“赌注”,同时在自己身上有100%的赌注。我想,要是这只予取予求的捕食者仅仅惯于把最大的一只雏鸟从巢里抓走,这种策略或许能够取得成效。在这样的情况下,个子较小的雏鸟耍无赖手段,威胁要把捕食者唤来,可能是合算的,因为它自己所冒的风险不会太大。

        初生的布谷鸟如果因运用这种讹诈策略而得到实惠,也许更加合乎情理。大家知道,雌布谷鸟把蛋分别生在几个“收养者”(foster)的鸟巢里,每巢一个,让属于完全不同物种的被蒙在鼓里的养父养母把小布谷鸟养大。因此,一只小布谷鸟在它的同奶兄弟或姐妹身上没有遗传赌注(出于某种阴险的动机,某些种类的小布谷鸟要把它的同奶兄弟或姐妹全部杀掉。我们在下面将要谈到这种情况。现在先让我假定我们讨论的是那些能够和同胞兄弟或姐妹共同生活的布谷鸟)。如果小布谷鸟大声鸣叫,引来了捕食者,它自己可能要送掉性命,但养母的损失更大——也许是失去4个亲生儿女。因此,养母以多于其份额的食物喂它还是合算的,而小布谷鸟在这方面得到的好处可能超过它所冒的风险。

        到了一定的时候,我们应该重新使用正规的基因语言,以免过多地用主观隐喻导致迷惑。这样做是明智的。我们说,小布谷鸟为了“讹诈”其养父母而大喊大叫“捕食者,捕食者,快来吃我和我所有的小兄弟姐妹吧!”这个假设究竟说明什么问题?现在就让我们使用正规的基因语言来进行论述吧。

        使布谷鸟大喊大叫的基因在基因库中数量越来越多,这是因为高声叫喊提高了养父母喂养小布谷鸟的概率。养父母之所以对高声叫喊做出这种积极反应是因为促使对大喊大叫做出反应的基因在收养者物种的基因库中已经扩散开来。这种基因得以扩散的原因是:个别养父母由于没有把额外的食物喂给小布谷鸟而失去越来越多的亲生子女,而情愿把额外食物喂给小布谷鸟的养父母失去亲生子女的概率却小得多,这是因为小布谷鸟的叫声引来了捕食者。尽管不促使布谷鸟大喊大叫的基因被捕食者吃掉的可能性比促使布谷鸟大叫大喊的基因小些,但不高声叫喊的布谷鸟因为得不到额外的食物而受到更大的损失。因此,大喊大叫的基因得以在基因库中扩散开来。

        按照上面这个比较主观的论点,我们可以进行一系列相似的遗传学推理。这种推理表明,尽管我们可以想象这样一个进行讹诈的基因也许能够在布谷鸟基因库中扩散开来,但在一个普通物种的基因库中它却未必能够扩散,至少不会因为它引来了捕食者而扩散开来。当然,在一个普通的物种中,大喊大叫的基因可能由于其他的原因而扩散开来,这一点我们上面已经谈过,而且这些基因有时也会偶然地产生引来捕食者的后果。不过,就这个问题而言,如果能产生任何影响的话,捕食行为的这种选择性影响往往会有减轻这种叫喊声的倾向。在我们假设的布谷鸟例子里,捕食者所产生的实际影响最终使布谷鸟喊得更响。乍听起来,这种说法似乎有点自相矛盾,但事实确是这样。

        没有任何证据表明布谷鸟或其他有类似“寄孵”习惯的鸟类实际上运用了这种讹诈策略,但它们凶狠无情是肯定无疑的。譬如说,有些指蜜鸟(honeyguides)和布谷鸟一样,会在其他物种的鸟巢里生蛋。初生的指蜜鸟生有一副尖锐的钩喙,它出壳时尽管两眼还没有张开,身上光秃无毛,无依无靠的,但它却会把所有的同奶兄弟姐妹都活生生地啄死。因为死掉的兄弟就不会和它争食了!大家熟悉的英国布谷鸟采用的方法稍有不同,但殊途同归。它的孵化期较短,因此它总是比它的同奶兄弟姐妹早出壳,它一出壳便把其他的蛋都摔到巢外,这是一种盲目的、机械的动作,但其毁灭性的后果是毋庸置疑的。它首先蹲到一只蛋的下面,以背部凹下部分托住这只蛋,然后一步一步往巢的边缘后退,同时用两边翅基使这只蛋保持平衡,直至把蛋顶翻到巢外,摔在地上。接着它如法炮制,把剩下的蛋全部处置掉。从此它得以独占鸟巢,它的养父母也可以专心照顾它了。

        在过去的一年中,我所获悉的最值得注意的事实之一是阿尔瓦雷斯(F.Alvarez)、阿里亚斯·德·雷纳(L.Arias de Reyna)和塞古拉(H.Segura)三人从西班牙发出的报告。他们研究那些有可能成为养父母的鸟类——可能受到布谷鸟愚弄的受害者——识破布谷鸟蛋或初生布谷鸟之类的入侵者的能力。在实验过程中,他们曾将布谷鸟的蛋和幼鸟放入喜鹊巢中,为了进行比较,他们同时将其他物种如燕子的蛋和幼鸟放入喜鹊巢中。有一次,他们把一只乳燕放入喜鹊巢里。第二天,他们发现喜鹊巢下面的地上有一只喜鹊蛋。蛋没有跌破,于是他们把它捡起,重新放入巢中再进行观察。他们看到的景象可奇妙呢!那只乳燕的行为简直和布谷鸟一模一样,它把喜鹊蛋丢到巢外。他们再一次把蛋捡起放入巢里,结果完全一样,乳燕又把它摔到外面。和布谷鸟一样,它用两边翅基使喜鹊蛋保持平衡,托在背上,然后向后倒退,把蛋顶上鸟巢边缘,让它翻滚到外面。

        阿尔瓦雷斯和他的合作者并没有试图说明这种令人惊异不止的景象,这可能是明智的。这种行为在燕子的基因库中是如何形成的?它必定同燕子日常生活中的某种东西相一致。乳燕通常是不会出现在喜鹊巢里的。在正常情况下,除自己的巢之外,它们从不光顾其他鸟巢。这种行为是不是体现了一种经过进化而形成的对抗布谷鸟的适应能力?自然选择是不是促进了燕子基因库中的一种反击策略,即促进了以布谷鸟的武器来反击布谷鸟的基因的发展?燕子巢里通常不会出现寄生的布谷鸟,这好像也是事实。也许道理就在这里。根据这个理论,喜鹊蛋在试验时之所以意外地受到同样的待遇也许是因为它们和布谷鸟蛋一样都比燕子蛋大。如果乳燕能够辨别大蛋和正常的燕子蛋,它的母亲也具有这种辨别力自不待言。在这种情况下,为什么把布谷鸟蛋摔掉的不是乳燕的母亲而是体力差得多的乳燕自己呢?有一种理论认为乳燕具有把臭蛋或其他碎屑从鸟巢里清除掉的正常活动能力,但这种理论同样是站不住脚的,因为老燕子能更好地完成这些任务,事实上也正是如此。既然有人曾经目睹孤弱的乳燕熟练地完成这种复杂的摔蛋动作,而同时成年燕子肯定能毫不费力地完成同样的任务,因此这种情况迫使我得出如下的结论:从老燕子的观点来看,乳燕存心不良。

        我认为,真正的答案可能与布谷鸟毫不相干,这是可以推断出的。乳燕是不是这样对待它的同胞兄弟或姐妹的?这种景象确实令人毛骨悚然。由于最先出壳的乳燕必须和它的尚未出生的弟妹争夺亲代投资,因此它一出生就摔掉其他的蛋是合算的。

        拉克关于窝卵数的理论是从亲代的观点来考虑其最适量的。如果我是一只燕子“妈妈”,在我看来,每窝最适量是孵5只蛋,但如果我是一只乳燕,那我就会认为小于5的数目才是最合适的,只要我是其中一个就行!老燕子拥有一定数量的亲代投资,它“希望”在5只乳燕中平均分配。但每一只乳燕都想得到超过的份额。和布谷鸟不一样,它并不想独吞全部投资,因为它和其他的4只乳燕都有亲缘关系。但它确实很想分到多于的份额。它只要能摔掉一只蛋,就能分到。再摔掉一只就能再分到。用基因语言来说,操纵杀兄弟姐妹行为的基因在基因库中是会扩散开来的,因为它有100%的机会存在于表现这种行为的个体内,而存在于它的受害者体内的机会只有50%。

        人们反对这个理论的主要理由是:如果情况果真是这样,那很难使人相信至今竟还没有人见过这种穷凶极恶的行为。我对此没法提出一个令人信服的解释。世界上不同的地方有不同种类的燕子。我们知道,譬如说,西班牙种的燕子在某些方面不同于英国种的燕子,不过人们对西班牙种的燕子还没有像对英国种的燕子那样进行过非常仔细的观察。我认为,这种把兄弟或姐妹置于死地而后快的行为是可能发生的,不过没有受到注意罢了。

        我之所以在这里提出燕子杀兄弟姐妹这种罕见行为的假设,是因为我想说明一个带有普遍意义的问题。就是说,小布谷鸟的残酷行为只不过是一个极端例子,用以说明任何一个鸟巢里都会发生这种情况。同胞兄弟之间的关系比一只小布谷鸟同它同奶兄弟的关系密切得多,但这种区别仅仅是程度问题。即使我们觉得动物之间的关系竟然会发展到不惜对亲兄弟姐妹下毒手这种程度有点难以置信,但情况没有如此严重的自私行为的例子却是很多的。这些例子说明,一个幼儿从其自私行为中得到的好处可以超过它因损害到兄弟姐妹的利益而蒙受损失的两倍有余。在这种情况下,正如断乳时间的例子一样,亲代与子代之间便会发生真正的冲突。

        在这种世代的争斗中,谁将是胜利者呢?亚历山大写过一篇有趣的论文,他认为这样的问题只能有一个普遍答案。按他的说法,亲代总归占上风。*如果情况果真是这样的,那你阅读这一章就算是白费劲了。如果亚历山大是正确的,那就出现了很多有趣的问题,例如,利他行为之所以能进化,并不是因为有利于该个体本身的基因,而仅仅是有利于亲代的基因。用亚历山大的话来说,亲代操纵变成了利他行为的另外一个进化因素,它和直接的亲属选择无关。为此,我们有必要研究一下亚历山大的推理过程,并使我们自己相信,我们是真的懂得他究竟错在哪儿了。为了证明他的谬误,我们实在应该用数学演算的方法,但在本书中,我们一直避免明显地使用数理,而且事实上通过直觉的理解也能看出亚历山大这篇论文的破绽所在。

        他的基本遗传论点包含在下面这段经过删节的引语里:“假定一个青少年个体……使得亲代利益的分配对自己有利,从而减少了它母亲自身的全面繁殖能力。通过这个方式提高处在青少年时代的个体健康水平的基因,肯定会在该个体成年时更大程度地降低其健康水平,因为这种突变型基因将越来越多地存在于这个突变型个体的后代体内。”亚历山大所说的是一个新近发生突变的基因,这个事实并不是这个论点的关键所在。我们最好还是设想一个从双亲一方继承的稀有基因。在这里,“健康水平”具有一种特殊的学术意义——成功地繁殖后代的能力。亚历山大的基本论点可以归纳如下:一个基因在促使其幼年个体搜取额外食物时确实能增加该个体的存活机会,尽管其亲代养育后代的总能力会因此而受到影响。但当这个个体自己成为父母时就要付出代价,因为其子女往往继承了同样的自私基因,从而影响这个个体养育后代的总能力。这可以说是一种既损人又不利己的行为。这样的基因只能以失败告终,因此亲代必定永远在这种冲突中取得胜利。

        这个论点理应立即引起我们的怀疑,因为论据的假设,即遗传学上的不对称性事实上并不存在。亚历山大使用“亲代”与“子代”这样的字眼时好像它们之间存在着根本的遗传学上的不同。我们在上面已经谈过,尽管亲代与子代之间存在实际上的差异,如父母的年龄总比子女大、子女为父母所生等,但两代之间并不存在根本的遗传学上的不对称现象。不管你从哪一个角度看,亲缘关系都是50%。为了阐明我的论点,我想重复一下亚历山大的原话,但把“亲代”“青少年”以及其他有关字眼颠倒过来使用。“假定一个亲代个体有这样一个基因,它使亲代利益得以平均分配。通过这种方式提高作为亲代个体的健康水平的基因,肯定在这个个体还处于青少年时代时更大程度地降低过它的健康水平。”这样,我们就得出和亚历山大完全相反的结论,即在任何亲代—子代的争斗中,子女必然会胜利!这里显然存在某种错误。这两种论点的提法都过于简单。我之所以要把亚历山大的说法颠倒过来,并不是为了证明和亚历山大相反的论点是正确的。我的目的在于表明我们不能以这种主观认为的不对称性作为论据。亚历山大的论点以及我把它颠倒过来的说法都属于因站在个体的观点上看问题而背离真理。亚历山大是从亲代的观点看问题,而我是从子代的观点看问题。我认为当我们使用“健康水平”这个技术性的字眼时,很容易造成错误。我在本书中一直避免使用这个字眼就是这个缘故。只有站在一个实体的观点上看进化现象才是正确的,这个实体就是自私的基因。青少年个体的基因如有胜过亲代个体的能力就被选择;反之,亲代个体的基因如有胜过青少年个体的能力就被选择。同样是这些基因,它们先后存在于亲代个体及青少年个体之内,这并无自相矛盾之处。基因之所以被选择是因为它们能够发挥它们具备的力量:它们将利用可以利用的一切机会。因此,同一个基因,当它存在于青少年个体之内时,它可以利用的机会将不同于它存在于亲代个体之内的时候。因此,在它的个体生命史中,两个阶段的最优策略是不同的。亚历山大认为,后一阶段的策略必然胜过前一阶段的策略,这样的看法是毫无根据的。

        我们可以通过另外一个方式驳斥亚历山大的论点。他心照不宣地在亲代—子代关系与兄弟—姐妹关系之间假定一种虚妄的不对称性。你应当记得,根据特里弗斯的说法,一个自私的幼儿在攫取额外的食物时必须承担丧失其兄弟或姐妹的风险,而这些兄弟或姐妹体内有它的一半的基因。正因为如此,它在攫取食物时会适可而止。但兄弟或姐妹只是各种亲属中亲缘关系指数是50%的一类亲属。对于一个自私幼儿来说,它自己的未来的子女和它自己的兄弟或姐妹同样“可贵”。因此,它在攫取额外资源时应估算一下为此必须付出的全部代价,不能漫无节制;这种自私行为不仅会使它丧失现存的兄弟或姐妹,而且要使它丧失其未来的子女,因为这些子女必然也会以自私行为彼此相待。亚历山大认为,青少年时期的自私性遗传到子女一代从而减少自己的长期繁殖能力是不利的,这一论点是言之成理的。但这仅仅意味着,我们必须将这种不利因素作为一项代价加在方程式里。对一个幼体来说,只要它从自私行为中得到的净利益至少不小于它的近亲因此受到的净损失的一半,那么这种自私行为还是合算的。但“近亲”应该包括的不仅仅是兄弟或姐妹,还包括它自己的未来的子女。一个个体应该视自己的利益比它兄弟的利益可贵一倍,这就是特里弗斯所做的基本假设。但它同时应该认为自己比自己未来子女当中的一个可贵一倍。亚历山大认为,在利害冲突中亲代享有天然的有利条件,他的这一结论是错误的。

        除了这一基本的遗传论点外,亚历山大还有一些比较切合实际的论点。这些论点来源于亲代—子代关系中不可否认的不对称性。亲代个体是采取积极行动的一方,它实际上从事寻找食物等工作,因此能够发号施令。如果父母决定不再供养其子女,子女是没有什么办法的,因为它们幼小,无力还击。父母因此能够无视子女的愿望而要求子女绝对服从。这个论点显然并不错误,因为在这种情况下,它所假设的不对称性是真实的。父母当然比子女大些,强壮些,而且更老于世故。好牌看来都在父母手中,但子女手中也有一两张王牌,譬如说,父母应该知道它们的每个子女到底饿到什么程度,以便在分配食物时有轻重缓急,这一点很重要。它们当然可以搞平均主义,把完全相等的口粮分给每一个子女。但在最理想的环境里,把略多一些的食物分给事实上最能充分利用这份口粮的孩子是能够收获较大利益的。要是每个孩子都能够自己告诉父母它有多饿,对父母来说倒是个理想的制度。我们在上面已经谈过,这样的制度似乎已经形成。但子女说谎的可能性很大,因为它们确切知道它们自己有多饿,而它们的父母最多只能猜测它们是否老实。做父母的很难拆穿小小的谎言,尽管弥天大谎或许瞒不过父母的眼睛。

        另一方面,父母最好能够知道孩子什么时候高兴,孩子如果在高兴的时候能够告诉父母就好了。某些信号,如咕噜咕噜的叫声和眉开眼笑可能被选择是因为这种信号使父母知道它们怎样做才能为子女带来最大的好处。看见子女眉开眼笑或听见子女发出得意的叫声是对父母的最大安慰,正像食物到肚对一只迷路的老鼠同样是莫大的安慰一样。可是,正是由于甜蜜的笑脸和满意的叫声总会带来好处,孩子就能够利用笑脸或叫声来操纵父母,使自己获取额外的亲代投资。

        因此,在世代之间的争斗中到底哪一方有更大的可能取胜是没有一个普遍答案的。最终的结局往往是子代企求的理想条件与亲代企求的理想条件之间的某种妥协。这种争斗同布谷鸟与养父母之间的争斗相似,尽管实际上的争斗不至于那么激烈可怕,因为双方都有某些共同的遗传利益——双方只是在某种程度内或在某种敏感的时节里成为敌人。无论如何,布谷鸟惯用的策略,如欺骗、利用等,有许多也可能为其同胞兄弟或姐妹所使用,不过它们不至于走得太远,做出布谷鸟那种极端自私的行为。

        这一章以及下面一章(我们将讨论配偶之间的冲突)所讨论的内容似乎是有点可怕的讽刺意味的。身为人类,父母彼此真诚相待,对子女又是如此无微不至地关怀,因此这两章甚至可能为天下父母带来难言的痛苦。在这里,我必须再次声明,我所说的一切并不牵涉有意识的动机。没有人认为子女因为体内有自私的基因而故意地、有意识地欺骗父母。同时我必须重申,当我说“一个幼儿应该利用一切机会进行哄骗……说谎、欺诈、利用……”的时候,我所谓的“应该”具有特殊的含义。我并不认为这种行为是符合道德准则的,是可取的。我只是想说明,自然选择往往有利于表现这种行为的幼儿,因此,当我们观察野生种群的时候,我们不要因为看到家属之间的欺骗和自私行为而感到意外。“幼儿应该欺骗”这样的提法意味着,促使幼儿进行欺骗的基因在基因库里处于优势地位。如果其中有什么寓意深刻的地方可供人类借鉴,那就是我们必须把利他主义的美德灌输到我们子女的头脑中去,因为我们不能指望他们的本性里有利他主义的成分。

        第9章 两性战争

        如果说体内有50%的基因是相同的的亲代同子代之间还有利害冲突的话,那么彼此毫无血缘关系的配偶的利害冲突会激烈到何种程度呢?*他们唯一的共有物就是在他们子女身上的50%的遗传投资。鉴于父亲和母亲都关心他们子女身上各自一半的福利,相互合作共同抚养这些孩子可能对双方都有好处。假如双亲的一方在对每一子女进行昂贵的资源投资时付出的份额比另一方少,他或她的景况就会好一些。这是由于他或她有更多的资源用于同其他性配偶所生的其他子女,从而他或她的基因有更多的繁殖机会。因此,我们可以说,每个配偶都设法利用对方,试图迫使对方多投资一些。就个体来说,称心如意的算盘是,“希望”同尽可能多的异性成员进行交配(我不是指为了生理上的享乐,尽管该个体可能乐于这样做),而让与之交配的配偶把孩子抚养大。我们将会看到,有一些物种的雄性个体已经是这样做的了,但还有一些物种的雄性个体,在抚养子女方面承担着同配偶相等的义务。特里弗斯特别强调,性配偶之间的关系是一种相互不信任和相互利用的关系。这种关于性配偶之间的相互关系的观点,对个体生态学家来说是一种比较新的观点。我们过去通常认为,性行为以及在此之前的追求行为,主要是为了共同的利益,或者甚至是为了物种的利益而相互合作共同进行的冒险事业!

        让我们再直接回到基本原理上来,深入探讨一下雄性和雌性的根本性质。我们在第3章讨论过性的特性,但没有强调其不对称现象。我们只是简单地承认,有些动物是雄性的,另有一些是雌性的,但并没有进一步追究雄和雌这两个字眼到底是什么意思。雄性的本质是什么?雌性的根本定义又是什么?我们作为哺乳动物看到大自然以各种各样的特征为性别下定义,诸如拥有阴茎、生育子女、以特殊的乳腺哺乳、某些染色体方面的特性等等。对于哺乳动物来说,这些判断个体性别的标准是无可厚非的,但对于一般的动物和植物,这样的标准并不比把穿长裤作为判断人类性别的标准更加可靠。例如青蛙,不论雄性还是雌性都没有阴茎。这样说来,雄性和雌性这两个词也许就不具有人们普遍所理解的意义了。它们毕竟不过是两个词而已。如果我们觉得它们对于说明青蛙的性别没有用处,我们完全可以不去使用它们。如果我们高兴的话,可以任意将青蛙分成性1和性2。然而,性别有一个基本特性,可以据此标明一切动物和植物的雄性和雌性。这就是雄性的性细胞或“配子”(gametes)比雌性“配子”要小得多,数量也多得多。不论我们讨论的是动物还是植物,情况都是如此。如果某个群体的个体拥有大的性细胞,为了方便起见,我们可以称之为雌性;如果另一个群体的个体拥有小的性细胞,为了方便起见,我们可以称之为雄性。这种差别在爬行动物以及鸟类中尤为显著。它们的一个卵细胞,其大小和总的营养成分,足以喂养一个正在发育成长的幼儿长达数周。即使是人类,尽管卵子小得在显微镜下才能看见,但仍比精子大许多倍。我们将会看到,根据这一基本差别,我们就能够解释两性之间的所有其他差别。

        某些原始有机体,例如真菌类,并不存在雄性和雌性的问题,尽管它们也发生某种类型的有性生殖。在被称为同配生殖(isogamy)的系统中,个体并不能被区分为两种性别,任何个体都能相互交配,不存在两种不同的配子——精子和卵子,所有的性细胞都一样,都称为同形配子(isogametes)。两个同形配子融合在一起产生新的个体,而每一个同形配子是由减数分裂产生的。如果有3个同形配子A、B和C,那么A可以和B或C融合,B可以同A或C融合。正常的性系统绝不会发生这种情况。如果A是精子,它能够同B或C融合,那么B和C肯定是卵子,而B也就不能和C融合。

        两个同形配子相互融合时,各为新的个体提供数目相等的基因,而贡献的食物储存量也相等。精子同卵子为新的个体贡献的基因数目虽然也相等,但卵子在提供食物储存方面却远远超过精子:实际上,精子并不提供任何食物储存,只是致力于把自己的基因尽快输送给卵子而已。因此,在受孕的时刻,父亲对子代的投资,比他应支付的资源份额(50%)少。由于每个精子都非常微小,一个雄性个体每天能够制造千百万个。这意味着他具有潜在的能力,能够在很短的一段时间内利用不同的雌性个体使一大批幼儿出生。这种情况之所以可能成功,仅仅是因为每个受孕的母体都能为新胎儿提供足够的食物。因此,每一雌性个体能够生育的幼儿数量就有了限制,但雄性个体可以繁殖幼儿的数量实质上是无限的,这就为雌性个体带来了利用这种条件的机会。*

        帕克以及其他人都曾证明,这种不对称现象可能是由同形配子的状态进化而来的。在所有的性细胞还可以相互交换而且体积也大致相同的时候,其中很可能有一些碰巧比其他的略大一点。略大的同形配子可能在某些方面比普通的同形配子占优势,因为它一开始就能为胎儿提供大量的食物,使其有一个良好的开端。因此那时就可能出现了一个形成较大的配子的进化趋势。但道路不会是平坦的。其体积大于实际需要的同形配子,在开始进化后会为自私性的利用行为打开方便之门。那些制造小一些的配子的个体,如果它们有把握使自己的小配子同特大配子融合的话,它们就会从中获得好处。只要使小的配子更加机动灵活,能够积极主动地去寻找大的配子,就能实现这一目的。凡能制造体积小、运动速度快的配子的个体享有一个有利条件:它能够大量制造配子,因此具有繁殖更多幼儿的潜力。自然选择有利于制造小的但能主动找到大的并与之融合的性细胞。因此,我们可以想象,有两种截然相反的性“策略”正在进化中。一种是大量投资或“诚实”策略。这种策略自然而然地为小量投资、具有剥削性质的或“狡猾”的策略开辟了道路。这两种策略的相互背驰现象一旦开始,就犹如脱缰之马势必将继续下去。介乎这两种体积之间的中间体要受到惩罚,因为它们不具有这两种极端策略中任何一种的有利条件。狡猾的配子变得越来越小,越来越灵活机动。诚实的配子却进化得越来越大,以补偿狡猾的配子日趋缩小的投资额,并变得不灵活起来,反正狡猾的配子总是会积极主动去追逐它们的。每一个诚实的配子“宁愿”同另一个诚实的配子进行融合,但是,排斥狡猾配子的自然选择压力同驱使它们钻空子的压力相比,前者较弱:因为狡猾的配子在这场进化的战斗中必须取胜,否则损失很大。于是诚实的配子变成了卵子,而狡猾的配子演变成了精子。

        这样看来,雄性个体是微不足道的家伙,而且根据简单的“物种利益”理论,我们可以预料,雄性个体的数量较之雌性个体会越来越少。因为从理论上讲,1个雄性个体所产生的精子足以满足100个雌性个体的需要,因此,我们可以假定,在动物种群中雌雄两性个体的比例应该是100∶1。换言之,雄性个体更具“低值易耗”的性质,而雌性个体对物种来说,其“价值”较大。当然,从物种的整体观点来看,这种情况完全正确。举一个极端的例子,在一项有关海象的研究中,据观察,4%的雄性海象进行的交配占所有交配的88%。在这一例子以及许多其他例子中,有大批剩余的从未交配过的独身雄性个体,它们可能终生得不到交配机会。但这些多余的雄性个体在其他方面过的是正常生活,它们不遗余力地将种群的食物资源吃光,同其他成熟个体相比,毫不逊色。从“物种利益”的角度来看,这种情况是一种极大的浪费;可以说,这些多余的雄性个体是社会的寄生虫。这种现象只不过是类群选择理论遇到的难题中的又一个例子而已。但另一方面,自私基因的理论能够毫无困难地解释这种现象,即雄性个体和雌性个体的数量趋于相等,即使实际进行繁殖的雄性个体可能只占总数的一小部分。第一个做出这种解释的是费希尔。

        雄性个体和雌性个体各出生多少的问题,是亲代策略中的一个特殊问题。我们曾对力图最大限度地增加其基因存活量的亲代个体最适宜的家庭规模进行讨论。同样,我也可以对最适宜的性比率进行探讨。把你的宝贵基因信托给儿子好呢,还是信托给女儿好?假定一个母亲将自己的所有资源全部投资在儿子身上,因而没有任何剩余用于女儿的投资,一般来说,她对未来基因库的贡献,同另一位将其全部资源用于女儿身上的母亲相比,会不会更大一些?偏向儿子的基因是会比偏向女儿的基因变得多起来,还是越来越少?费希尔证明,在正常情况下,最适宜的性比率是50∶50。为了弄懂这个问题,首先我们必须具备一点有关决定性别的机制的知识。

        在哺乳动物中,遗传上是这样来决定性别的:所有卵子既能发育成雄性个体,也能发育成雌性个体,决定性别的染色体的携带者是精子。男性制造的精子,其中一半生育女性,或称为X精子,一半生育男性,或称为Y精子。两种精子表面看上去没有区别,它们只有一条染色体不同。基因如要一个父亲只生女儿,该基因只要他只制造X精子就行了;而基因如要一个母亲只生女儿,该基因只要让她分泌一种选择性的杀精子剂,或者使男性胎儿流产即可。我们所要寻求的是一种同进化稳定策略相等的东西,尽管在这里,策略在更大的程度上说只是一种比喻的讲法(在《进犯行为》一章中我们已使用过这种比喻)。实际上,个体是不能够随意选择自己子女的性别的。但基因倾向于使个体生育一种性别的子女还是可能的。如果我们假定这样的基因,即倾向于不平均性比率的基因存在的话,它们在基因库中会不会在数量上超过其等位基因,即倾向于平均性比率的基因?

        假定在上面提到的海象中出现了一个突变基因,而该突变基因有使父母所生的孩子大部分是女儿这种趋势。由于种群内不缺少雄性个体,因此不存在女儿寻找配偶的困难,制造女儿的基因从而能够散布开来。这样,种群内的性比率也就开始向雌性个体过剩转变。从物种利益的观点出发,这种情况不会发生问题。我们已经讲过,因为只要有几个雄性个体就足以提供一大批过剩的雌性个体所需要的精子,因此,从表面上看,我们可以认为,制造女儿的基因不断地扩散,直到性比率达到极度不平衡的程度,即剩下的少数几个雄性个体搞得筋疲力尽才能勉强应付。但是,试想那些生儿子的为数不多的父母,它们要享有多么巨大的遗传优势!凡是生育一个儿子的个体,就会有极大的机会成为几百只海象的祖父或祖母。只生女儿的个体能确保几个外孙、外孙女是无疑的,但同那些专事生儿子的个体所拥有的那种遗传上蔚为壮观的前景相比,就要大为相形见绌了。因此,生儿子的基因往往会变得多起来,而性比率的钟摆就又会摆回来。

        为简便起见,我以钟摆的摆动来说明问题。实际上,钟摆绝不会向雌性占绝对优势的方向摆动那样大的幅度。因为性比率一旦出现不平衡,生儿子的这股自然选择压力就会开始把钟摆推回去。生育同等数目的儿女的策略是一种进化稳定策略,就是说,偏离这一策略的基因都要遭受净损失。

        我的论述是以儿子的数目对女儿的数目为根据的,目的是为了使其简单易懂。但严格说来,应该根据亲代投资的理论进行解释,就是说以前面一章我们曾讨论过的方法,按亲代一方必须提供的所有食物和其他资源来进行计算。亲代对儿子和女儿的投资应该均等。在一般情况下,这意味着他们所生的儿子和女儿数目应该相等。但是,假如对儿子和女儿的资源投资额不均等的话,那么性比率出现同样程度的不均衡在进化上可以是稳定的。就海象而言,生女儿同生儿子的比例是3∶1,而对每个儿子投资的食物和其他资源却三倍于每个女儿,借以使每个儿子成为超群的雄性,这种策略可能是稳定的。把更多的食物投资在儿子身上,使他既大又强壮,亲代就可能使之有更多的机会赢得“妻妾”这个最高奖赏。但这是一个特殊的例子。通常的情况是,在每个儿子身上的投资同在每个女儿身上的投资数量大致相等,而性比率从数量上说一般也是1∶1。

        因此,一个普通的基因在世代更迭的漫长旅程中,大约要花一半的时间寄居于雄性个体中,另一半时间则寄居于雌性个体中。基因的某些影响只在一种性别的个体中表现出来,这些影响称为性限制基因影响(sex-limited gene effects)。控制阴茎长度的基因仅在雄性个体中表现出它的影响,但它也存在于雌性个体中,而且可能对雌性个体产生完全不同的影响。认为男性不能从其母体继承形成长阴茎的趋势是毫无道理的。

        不论基因存在于两种个体的哪一种中,我们可以认为它都会充分利用该种个体所提供的一切机会。由于个体的性别有所不同,这些机会可能是很不相同的。作为一种简便的近似说法,我们可以再次假定,每一个个体都是一台自私的机器,都竭尽全力维护自己的全部基因。对这样一台自私的机器来说,其最佳策略往往因为其性别的不同而完全不同。为了简洁起见,我们又要用老办法,把个体的行为当作有目的的。和以前一样,我们要记住这不过是一种比喻的说法。实际上,个体是一台其程序由它自己的自私基因盲目编制出来的机器。

        让我们再来探讨一下在本章开始时我们提到的那一对配偶。作为自私的机器,配偶双方都“希望”儿子和女儿数目均等。在这一点上他们是没有争议的。分歧在于,谁将承担抚养这些子女的主要责任。每一个个体都希望存活的子女越多越好。在任何一个子女身上,他或她投资得越少,他或她能够生育的子女就会越多。显而易见,实现这种愿望的方法是诱使你的性配偶在对每一个子女进行投资时付出比他或她理应付出的更多的资源,以便自己脱身同另外的配偶再生子女。这种策略是一种两性都向往的策略,不过对雌性来讲更难如愿以偿。由于她一开始就以其大而营养丰富的卵子付出了比雄性多的投资额,因此母亲从怀孕的时刻起,就对每个幼儿承担了比父亲更大的“义务”。幼儿一旦死亡,她会比父亲蒙受更大的损失。更确切地讲,为了把另一个新的幼儿抚养到同死去的幼儿同样大小,她今后必须比父亲进行更多的投资。如果她耍花招,让父亲照料幼儿,自己却同另一个雄性个体私奔,父亲也可以将抛弃幼儿作为报复手段,而父亲所蒙受的损失,相对来说要小。因此,至少在幼儿发育的早期,如果有这种抛弃行为发生的话,一般是父亲抛弃母亲和孩子,而不是相反。同样,我们可以推断出雌性个体对子女的投资多于雄性个体,这不仅在一开始,而且在子女整个发育期间都是如此。例如在哺乳动物中,在自己体内孕育胎儿的是雌性个体,幼儿降生之后,制造乳汁喂养幼儿的是雌性个体,抚养并保护幼儿的主要责任也落在雌性个体肩上。雌性个体受剥削,而这种剥削行为在进化上的主要基础是卵子比精子大。

        当然,在许多物种中,做父亲的确实也非常勤奋,而且忠实地照料幼儿。但即使如此,我们必须估计到,在正常情况下,会有某种进化上的压力,迫使雄性个体略微减少一点对每个幼儿的投资,而设法同其他配偶生更多的子女。我这样讲指的仅仅是,基因如果说“喂,如果你是雄性个体,那就早一点离开你的配偶,去另外找一个雌性个体吧,不必等到我的等位基因要你离开时才离开”,那么这样的基因往往在基因库中获得成功。这种进化上的压力在实际生活中随着物种的不同而产生大小悬殊的影响。在许多物种中,例如极乐鸟,雌性个体得不到雄性个体的任何帮助,抚养子女完全靠自己。还有一些物种,诸如三趾鸥,结成一雌一雄的配对,是相互忠诚的楷模,它们相互配合共同承担抚养子女的任务。这里,我们必须设想,某种进化上的对抗压力起了作用:对配偶的自私剥削,不仅能得到好处,一定也会受到惩罚。在三趾鸥中,这种惩罚超过了所得利益。不管怎样,只有在妻子有条件不依赖他人抚养幼儿的前提下,父亲抛弃妻子和幼儿才会有好处。

        特里弗斯对被配偶抛弃的母亲可能采取的各种行动方针进行了探讨。对她来说,最好的策略莫过于欺骗另一个雄性个体,使之收养她的幼儿,“以为”这就是他自己的幼儿。如果幼儿还是个尚未出生的胎儿,要做到这点恐怕并不太困难。当然,幼儿体内有她的一半基因,而上当受骗的父亲的基因一个也没有。自然选择会对雄性个体的这种上当受骗的行为进行严厉的惩戒,而且事实上,自然选择又会帮助那些雄性个体,他们一旦同新妻子结为配偶就采取积极行动杀死任何潜在的继子或继女。这种现象很可能说明了所谓布鲁斯效应(Bruce effect):雄鼠分泌一种化学物质,怀孕的雌鼠一闻到这种化学物质,就能够自行流产。而且只有在这种味道同其先前配偶的不同时,雌鼠才流产。雄鼠就是用这种方式把潜在的继子或继女杀死的,并使它的新妻子可以接受它的性追求。顺便提一句,阿德里竟把布鲁斯效应当成一种控制种群密度的途径!雄狮中也有同样的情况发生,它们新到达一个狮群时,有时会残杀现存的幼狮,可能因为这些幼狮不是它们自己亲生的。

        雄性个体不需要杀死继子继女也能达到同样的目的。他在同雌性个体交配之前,可以把追求的时间拖长,在这期间驱走一切向她接近的雄性个体,并防止她逃跑。用这样的方法,他可以看到在她子宫里有没有藏着任何未成形的继子或继女,如果有,就抛弃她。在后面我们将会讲到,雌性个体在交配之前为什么可能希望“订婚”期要长一些。这里我们谈一下,雄性个体为什么也希望“订婚”期长一些。假定他能够使她同其他雄性个体脱离一切接触,这样有助于避免不知不觉地成为其他雄性个体的子女的保护人。

        假如被遗弃的雌性个体不能够欺骗新的雄性个体使之领养她的幼儿,她还有其他办法吗?这在很大程度上要取决于这个幼儿有多大。如果是刚受孕,事实上她已投资了整个卵子,可能还要多些,但将这个胎儿流产并尽快找一个新的配偶,对她仍旧是有利的。在这种情况下,流产对她未来的新丈夫也是有利的,因为我们已经假定她不愿意使他受骗。这一点可以说明,从雌性个体的角度来看,布鲁斯效应是起作用的。

        被遗弃的雌性个体还有一种选择,即坚持到底,尽力设法自己抚养幼儿。如果幼儿已经相当大,这样做对她尤其有利。幼儿越大,在他身上已经进行的投资也就越多,她为了完成抚养幼儿这项任务所要付出的代价就越少。即使幼儿仍旧很幼小,但试图从她初期的投资中保存一些东西,对她可能仍是有利的,尽管她必须付出加倍的努力才能喂养这个幼儿,因为雄性个体已经离去。幼儿体内也有雄性个体的一半基因,她可以在幼儿身上发泄怨恨并把幼儿抛弃,但这样做对她来讲并不是一件愉快的事情。在幼儿身上泄怨是毫无道理的,因为幼儿的基因有一半是她的,而且只有她自己面对目前的困境。

        听起来似乎自相矛盾,对有被遗弃危险的雌性个体来说,恰当的策略是,不等雄性个体抛弃她,她就先离开他。即使她在幼儿身上的投资已经多于雄性个体,这样做对她仍可能是有利的。在某种情况下,谁首先遗弃对方谁就占便宜,不论是父亲还是母亲,这是一个令人不愉快的事实。正如特里弗斯所说,被抛弃的配偶往往陷入无情的约束。这是一种相当可怕但又非常微妙的论点。父母的一方可能会这样讲:“孩子现在已经长得相当大,完全可以由我们当中的一个抚养。因此,假定我能肯定我的配偶不会也离开的话,我现在离开对我来说是有好处的。假使我现在就离开,我的配偶就可以为她或他的基因的最大利益而努力工作。他或她将要被迫做出比我现在正在做出的还要激烈得多的决定,因为我已经离开。我的配偶‘懂得’,如果他或她也离开的话,幼儿肯定会死亡。所以,假定我的配偶要做的决定,对他或她的自私基因将是最有利的话,我断定,我自己的行动方针是,最好我先离开。因为我的配偶可能也正在‘考虑’采取和我完全相同的方针,而且可能先下手为强,随时抛弃我!因此,我尤其应该先离开。”这样的父亲或母亲是会主动抛弃对方的。这种自我独白,和以前一样,仅仅是为了说明问题。问题的关键是,自然选择有利于首先抛弃对方的一方的基因,这仅仅是因为自然选择对随后抛弃对方的一方的基因不利而已。

        我们已经分析了雌性个体一旦被遗弃,她可能采取的一些行动。但所有这些行动总有一点“亡羊补牢,犹未晚矣”之感。到底雌性个体有没有办法减轻由于其配偶首先对她进行剥削而造成损失呢?她手中握有一张王牌:她可以拒绝交配。她是被追求的对象,她掌握主动权。这是因为她的嫁妆是一个既大又富有营养的卵子。凡是能成功地与之交配的雄性个体就可为其后代获得一份丰富的食物储藏。雌性个体在交配之前,能够据此进行激烈的讨价还价。她一旦进行交配,就失去了手中的王牌——她把自己的卵子信托给了与之交配的雄性个体。激烈的讨价还价可能是一种很好的比喻,但我们都很清楚,实际情况并非如此。有没有任何相当于激烈讨价还价的某种实际形式能够借自然选择得以进化呢?我认为主要有两种可能性,一种为家庭幸福策略(the domestic-bliss strategy),一种为大丈夫策略(the he-man strategy)。

        家庭幸福策略的最简单形式是:雌性个体对雄性个体先打量一番,试图事先发现其忠诚和眷恋家庭生活的迹象。在雄性个体的种群中,成为忠诚的丈夫的倾向必然存在程度上的差异。雌性个体如能预先辨别这种特征,她们可以选择具有这种品质的雄性个体,从而使自己受益。雌性个体要做到这点,方式之一是长时间地摆架子,忸怩作态。凡是没有耐心,等不及雌性个体最终答应与之交配的雄性个体大概不能成为忠诚的丈夫。雌性个体以坚持订婚期要长的方式,剔除了不诚心的求婚者,最后只同预先证明具有忠诚和持久的品质的雄性个体交配。雌性忸怩作态是动物中一种常见的现象,求爱或订婚时间拉得长也很普遍。我们讲过,订婚期长对雄性个体也有利,因为雄性个体有受骗上当、抚养其他雄性个体所生幼儿的危险。

        追求的仪式通常包括雄性个体在交配前所进行的重要投资。雌性个体可以等到雄性个体为其筑巢之后再答应与之交配,或者雄性个体必须喂养雌性个体以相当大量的食物。当然,从雌性个体的角度来讲,这是很好的事,但它同时也使人联想到家庭幸福策略的另一种可能形式。雌性个体先迫使雄性个体对它们的后代进行昂贵的投资,然后再交配,这样雄性个体在交配之后再抛弃对方,也就不会有好处了。会不会是这种情况呢?这种观点颇具说服力。雄性个体等待一个忸怩作态的雌性个体最终与之交配,是要付出一定代价的:它放弃了同其他雌性个体交配的机会,而且向该雌性个体求爱时要消耗它许多的时间和精力。到它终于得以同某一具体雌性个体交配时,它和这个雌性个体的关系已经非常“密切”。假使它知道今后它要接近的任何其他雌性个体也会以同样的方式进行拖延,然后才肯交配,那么,对它来说,遗弃该雌性个体的念头也就没有多大诱惑力了。

        我曾在一篇论文中指出过,这里特里弗斯在推理方面有一个错误。他认为,预先投资本身会使该个体对未来的投资承担义务。这是一种荒谬的经济学思想。商人永远不会说:“我在协和式客机上(举例说)已经投资太多,现在把它丢弃实在不合算。”相反,他总是要问,即使他在这项生意中的投资数目已经很大,但为了减少损失,现在就放弃这项生意,这样做对他的未来是否有好处。同样,雌性个体迫使雄性个体在她身上进行大量投资,指望单单以此来阻止今后雄性个体最终抛弃她,这样做是徒劳的。这种形式的家庭幸福策略还要取决于一种进一步的重要假定:即雌性的大多数个体都愿意采取同样的做法。如果种群中有些雌性个体是放荡的,随时准备欢迎那些遗弃自己妻子的雄性个体,那么对抛弃自己妻子的雄性个体就会有利,不论他对她的子女的投资已经有多大。

        因此,这在很大程度上取决于大多数雌性个体的行为。如果我们可以根据雌性个体组成集团的方式来考虑问题的话,就不会存在问题了。但雌性个体组成的集团,同我们在第5章中讲到的鸽子集团相比较,其进化的可能性也不会更大些。我们必须寻找进化稳定策略。让我们采用史密斯用以分析进犯性对抗赛的方法,把它运用于性的问题上。*这种情况要比鹰和鸽的例子稍微复杂一点。因为我们将有两种雌性策略和两种雄性策略。

        同史密斯的分析一样,“策略”这个词是指一种盲目的、无意识的行为程序。我们把雌性的两种策略分别称为羞怯(coy)和放荡(fast),而雄性的两种策略分别称为忠诚(faithful)和薄情(philanderer),这四种策略在行为上的准则是:羞怯的雌性个体在雄性个体经过长达数周而且代价昂贵的追求阶段之后,才肯与之交配;放荡的雌性个体毫不迟疑地同任何个体进行交配;忠诚的雄性个体准备进行长时间的追求,而且交配之后,仍同雌性个体待在一起,帮助她抚养后代;薄情的雄性个体,如果雌性个体不立即同其进行交配,很快就会失去耐心,他们走开并另寻雌性个体,即使交配之后,他们也不会留下承担起做父亲的责任,而是去另寻新欢。情况同鹰和鸽的例子一样,并不是说只有这几种策略,然而对实行这几种策略会带来什么样的命运进行一番研究是富于启发性的。

        同史密斯一样,我们将采用一些任意假定的数值,表示各种损失和利益。为了更加带有普遍性,也可以用代数符号来表示,但数字更容易理解。我们假定亲代个体每成功地抚养一个幼儿可得15个单位的遗传盈利,而每抚养一个幼儿所付出的代价,包括所有食物、照料幼儿花去的所有时间以及为幼儿承担的风险,是-20个单位。代价用负数表示,因为那是双亲的“支出”。在旷日持久的追求中所花费的时间也是负数,就以-3个单位来代表这种代价。

        现在我们设想有一个种群,其中所有的雌性个体都羞怯忸怩,而所有的雄性个体都忠诚不贰。这是一个一雌一雄配偶制的理想社会。在每一对配偶中,雄性个体和雌性个体所得的平均盈利都相等。每抚养一个幼儿,它们各获得15个单位,并共同承担所付出的代价(-20),平均分摊,每方各为-10。它们共同支付拖长求爱时间的代价(罚分-3)。因此,每抚养一个幼儿的平均盈利是:15-10-3=2。

        现在我们假设有一个放荡的雌性个体溜进了这个种群。它干得很出色。它不必支付因拖延时间而花费的代价,因为它不沉湎于那种旷日持久的卿卿我我的求爱。由于种群内的所有雄性个体都是忠诚的,它不论跟哪一个结合都可以为它的子女找到一个好父亲。因此,它每抚养一个幼儿的盈利是15-10=5。同它羞怯忸怩的对手相比较,它要多收益3个单位。于是放荡的基因开始散布开来。

        如果放荡的雌性个体获得很大成功,致使它们在种群内占据了统治地位,那么,雄性个体的营垒中,情况也会随之开始发生变化。截至目前,种群内忠诚的雄性个体占有垄断地位。但如果现在种群中出现了一个薄情的雄性个体,它的景况会比其他的忠诚的对手好些。在一个雌性个体都放荡不羁的种群内,对一个薄情的雄性个体来讲,这类货色比比皆是,唾手可得。如果能顺利地抚养一个幼儿,它净得盈利15,而对两种代价却分文不付。对雄性个体来说,这种不付任何代价指的主要是,它可以不受约束地离开并同其他雌性个体进行交配。它的每一个不幸的妻子都得独自和幼儿挣扎着生活下去,承担起-20个单位的全部代价,尽管它并没因在求爱期间浪费时间而付出代价。一个放荡的雌性个体结交一个薄情的雄性个体,其净收益为15-20=-5,而薄情的雄性个体的收益却是15。在一个雌性个体都放荡不羁的种群中,薄情的雄性基因就会像野火一样蔓延开来。

        如果薄情的雄性个体数得以大量地迅速增长,以至于在种群的雄性成员中占了绝对优势,放荡的雌性个体就将陷于可怕的困难处境。任何羞怯忸怩的雌性个体都会享有很大的有利条件。如果羞怯忸怩的雌性个体同薄情的雄性个体相遇,它们之间绝不会有什么结果。雌性个体坚持要把求爱的时间拉长,而雄性个体断然拒绝并去寻找另外的雌性个体。双方都没有因浪费时间而付出代价,但双方也各无所得,因为没有幼儿出生。在所有雄性个体都是薄情郎的种群中,羞怯忸怩的雌性个体的净收益是0。0看上去微不足道,但比放荡不羁的雌性个体的平均得分-5要好得多。即使放荡的雌性个体在被薄情郎遗弃之后,决定抛弃它的幼儿,但它的一颗卵子仍旧是它所付出的一笔相当大的代价。因此,羞怯忸怩的基因开始在种群内再次散布开来。

        现在让我们来谈谈这一循环性假设的最后一部分。当羞怯忸怩的雌性个体大量增加并占据统治地位时,那些和放荡的雌性个体本来过着纵欲生活的薄情雄性个体开始感到处境艰难。一个个雌性个体都坚持求爱时间要长,要长期考验对方的忠诚。薄情的雄性个体时而找这个雌性个体,时而又找那个雌性个体,但结果总是到处碰壁。因此,在一切雌性个体都忸怩作态的情况下,薄情雄性个体的净收益是0。如果一旦有一个忠诚的雄性个体出现,它就会成为同羞怯忸怩的雌性个体交配的唯一雄性个体。那么它的净收益是2,比薄情的雄性个体要好。所以,忠诚的基因就开始增长,至此,我们就完成了这一周而复始的循环。

        像分析进犯行为时的情况一样,按我的讲法,这似乎是一种无止境的摇摆现象。但实际上,像那种情况一样,不存在任何摇摆现象,这是能够加以证明的。整个体系能够归到一种稳定状态上。*如果你运算一下,就可证明,凡是羞怯忸怩的雌性个体占全部雌性个体的,忠诚的雄性个体占全部雄性个体的的种群在遗传上是稳定的。当然,这仅仅是根据我们开始时任意假定的那些特定数值计算出来的,但对其他任何随意假定的数值,我们同样可以轻而易举地算出新的稳定比率。

        同史密斯所进行的分析一样,我们没有必要认为存在两种不同种类的雄性个体以及两种不同种类的雌性个体。如果每一个雄性个体能在的时间里保持忠诚,其余的时间去寻花问柳,而每一个雌性个体有的时间羞怯忸怩,的时间纵情放荡,那同样可以实现进化稳定状态。不管你怎样看待ESS,它的含义是:凡一种性别的成员偏离其适中的稳定比率时,这种倾向必然受到另一种性别在策略比率方面相应变化的惩罚,这种变化对原来的偏离行为产生不利的影响。进化稳定策略因此得以保持。

        我们可以得出这样的结论,主要由羞怯忸怩的雌性个体和忠诚的雄性个体组成的种群能够进化是肯定无疑的。在这样的情况下,家庭幸福策略对于雌性个体来说,实际上看来是行之有效的。我们就不必再考虑什么由羞怯忸怩的雌性个体组成的集团了,其实羞怯忸怩对雌性个体的自私基因是有利的。

        雌性个体能够以各种各样的方式将这种形式的策略付诸实践。我已经提到过,雌性个体可能拒绝同还没有为它筑好巢,或至少还没有帮助它筑造一个巢的雄性个体交配。在许多单配偶制的鸟类中,情况的确如此,巢不筑好不交配。这样做的效果是,在受孕的时刻,雄性个体对幼儿已经付出的投资远较廉价的精子多。

        未来的配偶必须为它筑造一个巢,这种要求是雌性个体约束雄性个体的一种有效手段。我们不妨说,只要能够使雄性个体付出昂贵的代价,不论是什么,在理论上几乎都能奏效,即使付出的这种代价对尚未出生的幼儿并没有直接的益处。

        如果一个种群的所有雌性个体都强迫雄性个体去完成某种艰难而代价昂贵的任务,如杀死一条龙或爬过一座山然后才同意交配,在理论上讲,它们能够降低雄性个体在交配后不辞而别的可能性。企图遗弃自己的配偶并要和另外的雌性个体交配以更多地散布自己基因的任何雄性个体,一想到必须还要杀死一条龙,就会打消这种念头。然而事实上雌性个体是不会将杀死一条龙或寻求圣杯[1]这样专横的任务硬派给它们的求婚者的,因为如果有一个雌性个体对手,它指派的任务尽管困难程度相同,但对它以及它的子女却有更大的实用价值,那么它肯定会优越于那些充满浪漫情调、要求对方为爱情付出毫无意义的劳动的雌性个体。杀死一条龙或在达达尼尔海峡(Hellespont[2])中游泳也许比筑造一个巢穴更具浪漫色彩,但却远远没有后者实用。

        我提到过的雄性个体做出的具有求爱性质的喂食行动对于雌性个体也是有用的。鸟类的这种行为通常被认为是雌性个体的某种退化现象,它们恢复了雏鸟时代的幼稚行为。雌鸟向雄鸟要食物,讨食的姿态像雏鸟一样。有人认为这种行为对雄鸟具有天然的诱惑力,这时雌鸟不管能得到什么额外的食物,它都需要,因为雌鸟正在建立储存,以便于制造很大的卵子。雄鸟的这种具有求爱性质的喂食行为,也许是一种对卵子本身的直接投资。因此,这种行为能够缩小双亲在幼儿初期投资的悬殊程度。

        有几种昆虫和蜘蛛也存在这种求爱性质的喂食现象。很显然,有时人们对这种现象完全可以做另外的解释。如我们提到过的螳螂的例子,由于雄螳螂有被较大的雌螳螂吃掉的危险,因此只要能够减少雌螳螂的食欲,随便干什么对它可能都是有利的。我们可以说,不幸的雄螳螂是在这样一种令人毛骨悚然的意义上对其子女进行投资的。雄螳螂被作为食物吃掉,以便帮助制造卵子,而且储存在雄螳螂尸体内的精子随之使吃掉它的雌螳螂的卵子受精。

        采取家庭幸福策略的雌性个体如果仅仅是从表面上观察雄性个体,试图辨认它忠诚的品质会容易受骗。雄性个体只要能够冒充成忠诚的爱好家庭生活的类型,而事实上是把遗弃和不忠诚的强烈倾向掩盖起来,它就具有一种很大的有利条件。只要过去被它遗弃的那些妻子能有机会将一些幼儿抚养大,这个薄情的雄性个体比起一个既是忠诚丈夫又是忠诚父亲的雄性对手,能把更多的基因传给后代。使雄性个体进行有效欺骗的基因在基因库中往往处于有利地位。

        相反,自然选择却往往有利于善于识破这种欺骗行为的雌性个体。要做到这一点,雌性个体在有新的雄性个体追求时,要显得特别可望而难即,但在以后的一些繁殖季节中,一旦去年的配偶有所表示,就要毫不犹豫,立刻接受。这样对那些刚开始第一个繁殖季节的年轻的雄性个体来说,不论它们是骗子与否,都会自动受到惩罚。天真无邪的雌性个体在第一年所生的一窝小动物中,体内往往有相当高比例的来自不忠诚的父亲的基因,但忠诚的父亲在第二年以及以后的几年中却具有优势,因为它有了一个可靠的配偶,不必每年都要重复那种浪费时间、消耗精力、旷日持久的求爱仪式。在一个种群中,如果大部分的个体都是经验丰富而不是天真幼稚的母亲的子女——在任何生存时间长的物种中,这是一个合乎情理的假设——忠诚而具模范父亲性格的基因在基因库中将会取得优势。

        为简便起见,我把雄性个体的性格讲得似乎不是纯粹的忠诚就是彻头彻尾的欺诈。事实上,更有可能的是,所有的雄性个体——其实是所有的个体——多少都有点不老实,它们的程序编制就是会使它们利用机会去占配偶的便宜。由于自然选择增强了每一个配偶发现对方不忠诚行为的能力,因此使重大的欺骗行为降到了相当低的水平。雄性个体比雌性个体更能从不忠诚的行为中得到好处。即使在一些物种中,雄性个体表现出很大程度的亲代利他主义行为,但我们必须看到,它们付出的劳动往往比雌性个体要少些,而且随时潜逃的可能性更大些。鸟类和哺乳类动物中通常存在这种情况,这是肯定无疑的。

        但是也有一些物种,其雄性个体在抚养幼儿方面付出的劳动实际上比雌性个体多。鸟类和哺乳动物中,这种父方的献身精神是极少有的,但在鱼类中却很常见。这是为什么呢?*这种现象是对自私基因理论的挑战,为此我长时间以来感到迷惑不解。最近卡莱尔(T.R.Carlisle)小姐在一个研究班上提出了一种很有独创性的解释。由此,我深受启发。她以上面我们提及的特里弗斯的“无情的约束”概念去阐明下面这种现象。

        许多种类的鱼是不交尾的,它们只是把性细胞射到水里。受精就在广阔的水域里进行,而不是在一方配偶的体内。有性生殖也许就是这样开始的。另一方面,生活在陆地上的动物如鸟类、哺乳动物和爬虫等却无法进行这种体外受精,因为它们的性细胞容易干燥致死。一种性别的配子——雄性个体的,因为其精子是可以流动的,被引入另一种性别个体——雌性个体的湿润的内部。上面所说的只是事实,而下面讲的却是概念性的东西。居住在陆地上的雌性动物交配后就承受胎儿的实体,因为胎儿存在于它体内。即使它把已受精的卵子立即生下来,做父亲的还是有充裕的时间不辞而别,从而把特里弗斯所谓的“无情的约束”强加在这个雌性个体身上。不管怎样,雄性个体总是有机会事先决定遗弃配偶,从而迫使做母亲的做出抉择,要么抛弃这个新生幼儿,让它死去,要么把它带在身边并抚养它。因此,在陆地上的动物当中,照料后代的大多数是母亲。

        但对鱼类及生活在水中的其他动物而言,情况有很大的差别。如果雄性动物并不直接把精子送进雌性体内,我们就不一定可以说,母亲易受骗上当,被迫照管幼儿了。配偶的任何一方都可以有机会逃之夭夭,让对方照管刚受精的卵子。说起来还存在这样一种可能性:倒是雄性个体常常更易于被遗弃。对谁先排出性细胞的问题,看来可能展开一场进化上的争斗。首先排出性细胞的一方享有这样一个有利条件——它能把照管新生胎儿的责任推给对方。另一方面,首先射精或产卵的一方必然要冒一定的风险,因为它未来的配偶不一定跟着就产卵或射精。在这种情况下,雄性个体处于不利地位,因为精子较轻,比卵子更易散失。如果雌性个体产卵过早,就是说,在雄性个体还未准备好射精时就产卵,这关系不大。因为卵子体积较大,也比较重,很可能集结成一团,一时不易散失。所以说,雌性鱼可以冒首先产卵的“风险”。雄性鱼就不敢冒这样的风险,因为它过早射精,精子可能在雌性鱼准备排卵之前就散失殆尽,那时雌性鱼即使再产卵也没有实际意义。鉴于精子易于散失,雄性鱼必须等待到雌性鱼产卵后才在卵子上射精。但这样,雌性鱼就有了难得的几秒钟时间可以趁机溜走,把受精卵丢给雄性鱼照管,使之陷入特里弗斯所说的进退两难的境地。这个理论很好地说明,为什么水中雄性动物照料后代的现象很普遍,而在陆上的动物中却很少见。

        我现在谈谈鱼类以外的另一种雌性动物采取的策略,即大丈夫策略。在采取这种策略的物种中,事实上,雌性动物对得不到孩子们的爸爸的帮助已不再计较,而把全部精力用于培育优质基因,于是它们再次把拒绝交配作为武器。它们不轻易和任何雄性个体交配,总是慎之又慎,精心挑选,然后才同意和选中的雄性个体交配。某些雄性个体确实比其他个体拥有更多的优质基因,这些基因有利于提高生育子女的机会。如果雌性动物能够根据各种外在的迹象判断哪些雄性动物拥有优质基因,它就能够使自己的基因和它们的优质基因相结合而从中获益。以赛艇桨手的例子来类比,一个雌性个体可以最大限度地减少它的基因由于与蹩脚的桨手搭档而受到连累的可能性。它可以为自己的基因精心挑选优秀的桨手作为合作者。

        一般来说,大多数雌性动物对哪些才是最理想的雄性配偶不会产生分歧,因为它们用以判断的依据都是一样的。结果,和雌性个体的大多数交配是由少数这几个幸运的雄性个体进行的。它们是能够愉快胜任的,因为它们给予每一个雌性个体的仅仅是一些廉价的精子而已。海象和极乐鸟大概也是这种情况。雌性动物只允许少数几只雄性动物坐享所有雄性动物都梦寐以求的特权——一种追求私利的策略所产生的特权,但雌性个体总是毫不含糊,成竹在胸,只允许最够格的雄性个体享有这种特权。

        雌性动物试图挑选优质基因并使之和自己的基因相结合,按照它的观点,它孜孜以求的是哪些条件呢?其中之一是具有生存能力的迹象。任何向它求爱的个体已经证明,它至少有能力活到成年,但不一定就能够证明,它能够活得更久些。凡选择年老雄性个体的雌性个体,同挑选在其他方面表明拥有优质基因的年轻个体的雌性个体相比,前者生的后代并不见得就多些。

        其他方面指的是什么?可能性很多。也许是体现着能够捕获食物的强韧的肌肉,也许是体现着能够逃避捕食者的长腿。雌性个体如能将其基因和这些特性结合起来,可能是有好处的,因为这些特性在它的儿女身上或许能发挥很好的作用。因此,我们首先必须设想存在这样的雌性动物,它们选择雄性个体的根据是表明拥有优质基因的万无一失的、可靠迹象,不过,这里牵涉达尔文曾发现的一个非常有趣的问题,费希尔对之也进行过有条理的阐述。在雄性个体相互竞争,希望成为雌性个体心目中的大丈夫的社会里,一个母亲能为其基因所做的最大的一件好事是,生一个日后会成为一个令人刮目相看的大丈夫的儿子。如果母亲能保证它的儿子将成为少数几个走运的雄性个体中的一个,在它长大之后能赢得社会里大多数的交配机会,那么,这个母亲将会有许多孙子孙女。这样说来,一个雄性个体所能拥有的最可贵的特性之一,在雌性个体看来只不过是性感而已。一个雌性个体和一个相貌非凡并具有大丈夫气概的雄性个体交配,很可能养育出对第二代雌性个体具有吸引力的儿子。这些儿子将为其母亲生育许多孙子孙女。我们原来认为雌性个体选择雄性个体是着眼于如发达的肌肉这种显然是有实用价值的特性,但是这种特性一旦在某一物种的雌性个体中普遍被认为是一种具有吸引力的东西时,自然选择就会仅仅因为它具有吸引力而继续有利于这种特性。

        雄极乐鸟的尾巴作为一种过分奢侈的装饰,可能是通过某种不稳定的、失去控制的过程进化而来的。*在开始的时候,雌性个体选中尾巴稍长一些的雄性个体,在它心目中这是雄性个体的一种可取的特性,也许是因为长尾象征着健壮的体魄。雄性个体身上的短尾巴很可能是缺乏某种维生素的象征——说明该个体觅食能力差。短尾巴的雄性动物还可能不善于逃避捕食者,因此尾巴被咬掉一截。请注意,我们不必假定短尾巴本身是能够遗传的,我们只需假定短尾巴可以说明某种遗传上的缺陷。不管怎样,我们可以假定,早期的极乐鸟物种中,雌鸟偏爱尾巴稍微长一些的雄鸟。只要存在某种促进雄鸟尾巴长度发生自然变化的遗传因素,随着时间的推移,这个因素就会促使种群中雄鸟尾巴的平均长度增加。雌鸟遵循的一条简单的准则是:把所有的雄鸟都打量一番,并挑选尾巴最长的一只,如此而已。背离这条准则的雌鸟准会受到惩罚,即使尾巴已经变得如此之长,实际上成了雄鸟的累赘。因为如果一只雌鸟生出的儿子尾巴不长,它的儿子就不可能被认为是有吸引力的。只有在尾巴确实已长到可笑的程度,以至于它们明显的缺点开始抵消性感这方面的优点时,这个趋向才得以终止。

        这是个令人难以接受的论点,自达尔文初次提出这个论点并把这一现象称为“性选择”以来,已有不少人对之表示怀疑。扎哈维就是其中之一,他的“狐狸,狐狸”论点我们已经看过了。他提出截然相反的“不利条件原理”(handicap principle)。*他指出,正是因为雌性个体着眼于选择雄性个体的优质基因,才使雄性弄虚作假有了市场。雌性个体看重的发达肌肉可能真的是一个优点,但有什么可以阻止雄性个体卖弄假肌肉呢?这些假肌肉并不比我们人类的棉花垫肩更具实质内容。如果雄性个体卖弄假肌肉反而比长出真肌肉省事,性选择应有利于促使个体长出假肌肉的基因。可是,要不了多久,逆选择(counter-selection)将促使能够看穿这种欺骗的雌性个体进化。扎哈维的基本前提是,雌性个体终将识破虚假的性卖弄。因此他得出的结论是,真正能够成功的是那些从不故弄玄虚的雄性个体。它们掷地有声地表明它们是老老实实的。如果我们讲的是肌肉,那么,装出肌肉丰满的样子的雄性个体很快就要为雌性个体所识破。反之,以相当于举重等动作显示其肌肉真正发达的雄性个体是能够获得雌性信赖的。换句话说,扎哈维认为,一个大丈夫不仅看上去要像一个健全的雄性个体,而且要真的是一个健全的雄性个体,否则不轻信的雌性个体是会嗤之以鼻的。所以,只有是货真价实的大丈夫的炫耀行为才能进化。

        到现在为止,扎哈维的理论还没有什么问题。下面我们要谈的是他理论中使人难以接受的那一部分。他认为,尽管极乐鸟和孔雀的长尾巴、鹿的巨角以及其他的性选择的特性看起来是这些个体的累赘(不利条件),因而始终是不合理的现象,但这些特征得以进化正是因为它们构成不利条件。一只雄鸟长了一条长长的、笨重的尾巴,为的是要向雌性个体夸耀,说明尽管它有这样一条长尾巴,像他这样一个健壮的大丈夫还是能够活下去的。

        这个理论很难使我信服,尽管我所持的怀疑态度已不像我当初听到这个论点时那么坚决。当时我就指出,根据这种理论可以得出这样的逻辑结论:进化的结果应该使雄性个体只有一条腿和一只眼睛。扎哈维是以色列人,他立即反驳我说:“我们最好的将军中有些是独眼的!”不过问题还是存在的。不利条件的论点似乎带有根本性的矛盾。如果不利条件是真实的——这种论点的实质要求不利条件必须是真实的——不利条件本身正如它可能吸引雌性个体一样,肯定同样对该个体的后代是一种惩罚。因此不管怎样,至关重要的是这个不利条件不能传给女儿。

        如果以基因语言来表达不利条件理论,我们大概可以这样说:使雄性个体长出如长尾巴之类的累赘物(不利条件)的基因在基因库里变得多起来,因为雌性个体选择身负累赘物的雄性个体。这种情况的产生是因为,使雌性个体做出这种选择的基因在基因库里也变得多起来的缘故。这是因为对身负累赘物的雄性个体有特殊感情的雌性个体往往会自动地选择在其他方面拥有优质基因的雄性个体。理由是,尽管身负这种累赘物,但这些雄性个体已活到成年,这些拥有“其他”方面优点的基因将使后代具有健壮的体格。而这些具有健壮体格的后代因此得以存活并繁殖使个体生长累赘物的基因,以及使雌性个体选择身负累赘物的雄性个体的基因。倘若促使生长累赘物的基因仅仅在儿子身上发挥作用,就像促使对累赘物产生性偏爱的基因仅仅影响女儿那样,这个理论也许可以成立。如果我们只是用文字对这个理论进行论证,我们就无从知道这个理论是否正确。如果我们能以数学模型来再现这种理论,就能更清楚地看到它的正确程度。但到目前为止,那些试图以模型来表现不利条件原理的数学遗传学家都失败了。这可能是因为这个原理本身不能成立,也可能是因为这些数学遗传学家水平不足。其中有一位失败者便是史密斯。但我总感觉到前者的可能性较大。

        如果一只雄性动物能以某种方式证明它比其他雄性动物优越,而这种方式又无须故意使自己身负累赘,那么它无疑会以这种方式增加自己在遗传方面取得成功的可能性。因此,海象赢得并确保拥有它们的“妻妾”,靠的不是它对雌性个体具有吸引力的堂堂仪表,而是简单的暴力——把妄图接近其“妻妾”的任何雄性海象撵走。“妻妾”的主人大都能击败这种可能的掠夺者,它们之所以拥有“妻妾”显然是因为它们有这样的能力。掠夺者很少能取胜,因为它们如能取胜,它们早该成为“妻妾”的主人了!因此,凡是只同“妻妾”的主人交配的雌性海象,就能使它的基因和健壮的雄性海象相结合,而这只雄性海象有足够的能力击退一大群过剩的、不顾死活的单身雄性海象发动的一次又一次的挑衅。这只雌性海象的儿子如果走运的话,就能继承父亲的能力,也拥有一群“妻妾”。事实上,一只雌性海象没有很大的选择余地,因为如果它有外遇,它就要遭到“妻妾”主人的痛打。不过,跟能在搏斗中取胜的雄性个体结合的雌性个体能为其基因带来好处,这条原理是站得住脚的。我们已经看到这样一些例子,即一些雌性个体愿意和拥有领地的雄性个体交配,另外一些愿意和在统治集团里地位高的雄性个体交配。

        至此本章的内容可以归结为:动物界中各种不同的繁殖制度——一雌一雄、雌雄乱交、“妻妾”等等——都可以理解为雌雄两性间利害冲突所造成的现象。雌雄两性的个体都“想要”在其一生中最大限度地增加它们的全部繁殖成果。由于精子和卵子在大小和数量方面存在根本差别,雄性个体一般来说大多倾向于雌雄乱交,而缺乏对后代的关注。雌性个体有两种可供利用的对抗策略,我在前面曾称之为大丈夫策略和家庭幸福策略。一个物种的生态环境将决定其雌性个体倾向于采取其中的哪一种策略,同时也决定雄性个体如何做出反应。事实上,在大丈夫策略和家庭幸福策略之间还有许多中间策略。我们已经看到,有时候,做父亲的甚至比做母亲的更关心孩子们的生活。本书不打算描述某些具体动物物种的生活细节,因此我不准备讨论是什么促使一个物种倾向于某种繁殖制度而不倾向于另一种繁殖制度。我要探讨的是普遍地存在于雌雄两性之间的差异,并说明如何解释这些差异。因此我不想强调两性间差异不大的那些物种,因为一般来说,这些物种的雌性个体喜欢采取家庭幸福策略。

        首先,雄性个体往往追求鲜艳的色彩以吸引异性,而雌性个体往往满足于单调的色彩。两性个体都力图避免被捕食者吃掉,因此两性个体都会经受某种进化上的压力,使它们的色彩单调化。鲜艳的色彩吸引捕食者,犹如吸引异性伴侣。用基因语言来说,这意味着使个体色彩变得鲜艳的基因比使个体色彩单调的基因更可能被捕食者吃掉而结束生命。另一方面,促使个体具有单调色彩的基因不像促使个体具有鲜艳色彩的基因那么容易进入下一代的体内,因为色彩单调的个体不吸引异性配偶。这样就存在两种相互矛盾的选择压力:捕食者倾向于消灭基因库里色彩鲜艳的基因,而性配偶倾向于消灭色彩单调的基因。和其他许多情况一样,有效的生存机器可以被认为是两种相互矛盾的选择压力之间的折中物。眼下使我们感兴趣的是,雄性个体的最适折中形式似乎不同于雌性个体的最适折中形式。这种情况当然和我们把雄性个体视为下大赌注以博取巨额赢款的赌徒完全一致,因为雌性个体每生产一个卵子,雄性个体就可以生产数以百万计的精子,因此种群中的精子在数量上远远超过卵子,所以任何一个卵子比任何一个精子实现性融合(sexual fusion)的机会要大得多。相对而言,卵子是有价值的资源。因此,雌性个体不必像雄性个体那样,具有性吸引力就能保证它的卵子有受精的机会。一个雄性个体的生殖能力完全可以使一大群雌性个体受孕,生育出一大批子女。即使一只雄性个体因为有了美丽的长尾巴而引来了捕食者或缠结在丛林中而过早死亡,它在死以前可能已经繁殖了一大群子女。一只没有吸引力的色彩单调的雄性个体,甚至可能和一只雌性个体同样长寿,但它子女却很少,因而它的基因不能世代相传。一个雄性个体如果失去了它不朽的基因,那它即使占有了整个世界又将怎么样呢?

        另一个带有普遍性的性区别是,雌性个体在和谁交配的问题上比雄性个体更爱挑剔。不管是雌性个体还是雄性个体,为了避免和不同物种的成员交配,这种挑剔还是必要的。从各个方面来看,杂交行为是不好的。有时,像人和羊交配一样,这种行为并不产生胚胎,因此损失不大。然而,当比较接近的物种如马和驴杂交时,这种损失至少对雌性配偶来说可能是相当大的——一个骡子胚胎可能由此形成,并在它的子宫里待上11个月。骡子消耗母体全部亲代投资的很大一部分,不仅包括通过胎盘摄取的食物,以及后来吃掉的母乳,而且最重要的是时间,这些时间本来可用于抚养其他子女的。骡子成年以后却是没有繁殖力的。这可能是因为尽管马和驴的染色体很相像,能使它们合作孕育一个健壮的骡子躯体,但它们又不尽相像,以致不能在减数分裂方面进行适当的合作。不管确切的原因是什么,从母体基因的观点来看,母体为抚育这只骡子而花掉的非常多的资源全部浪费了。雌驴应当十分谨慎,和它交配的必须是一头驴子,不是一匹马。任何一头驴子基因如果说“喂,如果你是雌驴,那就不管它是马还是驴,只要它是成年的雄性个体,你都可以和它交配”,这个基因下次就可能跑到骡子的体内,结果将是死路一条。母体花在这只幼骡身上的亲代投资将大大降低它养育有生殖力的驴子的能力。另一方面,如果雄性个体和其他不同物种的成员交配,它的损失不会太大,尽管它从中也得不到什么好处。但我们却可以认为,在选择配偶的问题上,雄性个体不致过分苛求。凡是对这种情况进行过研究的人都会发现情况确实是如此。

        即使在同一物种中,挑剔的情况还是会有的。同一血族之间的交配和杂交一样可能产生不利的遗传后果,因为在这种情况下,致命的或半致命的隐性基因会获得公然活动的机会。这种情况再次使雌性个体的损失比雄性个体大,因为母体花在某一幼儿身上的资源总是要大些。凡是禁忌乱伦的地方,我们都可以认为雌性个体会比雄性个体更严格地遵守这种禁忌。如果我们假定在乱伦关系中,年龄较大的一方相对来说更有可能是主动者的话,那么我们应该看到,雄性个体年龄比雌性个体年龄大的乱伦行为一定较雌性个体年龄比雄性个体年龄大的乱伦行为普遍,譬如说,父-女乱伦应该比母-子乱伦更普遍。兄弟姐妹乱伦行为的普遍性介乎两者之间。

        一般来说,雄性个体比雌性个体往往具有更大的乱交倾向。雌性个体只能以比较慢的速度生产有限的卵子,因此,它和不同的雄性个体进行频繁的交配不会有什么好处。一方面,雄性个体每天能够生产数以百万计的精子,如果它利用一切机会和尽量多的雌性个体交配,它只会从中得到好处而不会有任何损失。过于频繁的交配行为事实上对雌性个体的害处并不很大,但好处肯定也是没有的。另一方面,雄性个体却能乐此不疲,不管它和多少个不同的雌性个体交配。“过度”这个字眼对雄性个体来说没有实际意义。

        我没有明确地提到人类,但当我们思考如本章涉及的一些有关进化的论点时,不可避免地要联想到我们自己的物种和我们自己的经验。雌性个体只有在对方在一定程度上表明能够长期忠贞不渝时才肯与之交配,这种做法对我们来说并不陌生。这可能说明,人类的妇女采取的是家庭幸福策略,而不是大丈夫策略。人类社会事实上大多数实行一夫一妻制。在我们自己的社会里,父母双方对子女的亲代投资都是巨额的,而且没有明显的不平衡现象。母亲直接为孩子们操劳,所做的工作比父亲多。但父亲常常以比较间接的方式辛勤工作,为孩子们提供源源不断的物质资源。另一方面,有些人类社会有杂交习俗,有些则实行妻妾制度。这种令人惊讶的多样性说明人的生活方式在很大程度上取决于文化而不是基因。然而,更大的可能性是,男人大多倾向于杂交,女人大多倾向于一夫一妻。根据进化的理论,我们也可以预见到这两种倾向。在一些具体的社会里,哪一种倾向占上风取决于具体的文化环境,正如在不同的动物物种中,要取决于具体的生态环境一样。

        我们人类自己的社会有一个肯定与众不同的特点,这就是性的炫耀行为。我们已经看到,根据进化的理论,凡有不同性别个体存在的地方,喜欢炫耀的应该是男人,女人则喜欢朴实无华。在这一点上,现代的西方男人无疑是个例外。当然,有些男人衣饰鲜艳,有些女人衣饰朴素,这也是事实。但就大多数情况而言,在我们的社会里,像孔雀展示尾巴一样炫耀自己的毫无疑问是女人而不是男人。

        面对这些事实,生物学家不得不感到疑惑,他观察到的社会是一个女人争夺男人而不是男人争夺女人的社会。在极乐鸟的例子里,我们认为雌鸟的色彩之所以朴素是因为它们不需要争夺雄鸟。雄鸟色彩鲜艳华丽,因为雌鸟供不应求,雌鸟可以对雄鸟百般挑剔,因为卵子这种资源比精子稀少。现代的西方男性到底发生了什么变化?男人果真成了被追求的性对象了吗?他们真的因女人供不应求而能对女人百般挑剔吗?如果情况果真如此,那又是为什么呢?

      8. 威廉·伯恩斯坦《群体的疯狂》8-15

        8 天启之牛

        时代论如何兴起

        你要对以色列人说,让他们给你牵来一只没有残疾、未曾负轭的红色母牛。 ——《民数记》19:2

        20世纪,一个曾经不为人所知的新教神学分支,突然出现在美国宗教和政治舞台上,发展了一场不仅在美国而且在全球都有影响力的社会运动。毫不夸张地说,这一神学可被称为宗教性群体疯狂——它已经引发了几起小悲剧,并种下了哈米吉多顿的种子。以色列畜牧业中的一个小事件揭示出了它的末日影响力。

        20世纪90年代中期,以色列北部耶斯列山谷的奶牛场主朱比·吉拉德从瑞士进口了一些公牛精液,从而让他的一头荷斯坦母牛怀孕。1996年8月,这头黑白相间的母牛产下了一只纯红色的小母牛梅洛迪。对世界上的少数犹太人和基督教徒来说,小牛的颜色只意味着一件事:末日即将来临。简言之,梅洛迪就是天启之牛。[1]

        与牛有关的灾难就像一条深红色的羊毛线,蜿蜒穿过人类将近3000年的历史。古以色列人认为,凡与死尸接触过的人或是与死尸在同一屋檐下的人,都是不洁净的,因此不能进入耶路撒冷的圣殿。在那个年代,这意味着除了非常小的孩子,几乎所有人都是不洁净的。这种不洁只有通过一种仪式才能消除,正如上文《民数记》中所提到的那样,要通过一个宗教仪式;祭司们祭献一只纯红色皮毛的母牛(一只从未生育过、从未劳作过、没有瑕疵的小母牛),把它与红毛线、香柏木和牛膝草一起烧在火堆上,在能够俯瞰圣殿的橄榄山上举行仪式。在那里,他们把小母牛的骨灰和从西罗亚池中汲取的泉水混合在一起。只有在人死后的第三天和第七天,把灰水洒在不洁的信徒身上,不洁才得以消除。[2]

        但70年,罗马人摧毁了耶路撒冷第二圣殿,使这一复杂的洁净过程不再可行。1000年后,中世纪伟大的犹太智者迈蒙尼德试图理解这一现在看起来毫无意义的净化仪式。

        迈蒙尼德于1135年左右出生于伊斯兰教占主导的西班牙,他在学业上表现出色,从事医师工作,后来在十字军入侵的动荡时期成为埃及开罗犹太社区的首席拉比。他影响最久远的成就是《律法再述》,一部关于道德和犹太律法的汇编作品。但是,这位伟大学者也对净化仪式的逻辑依据感到困惑,他将其归类为一个谜,“不是由一个人的理解所能决定的事情”[3]。但他愿意提供这一仪式的发展历史:

        第一只(神圣的红母牛)是我们的老师摩西带来的,第二只是以斯拉带来的,第二圣殿被毁之前,还出现了另外的(第三至九只)。第十只将会由君王弥赛亚带来;愿他早日出现。阿门,这是神的旨意。[4]

        对某些犹太人和基督徒来说,梅洛迪的意义如此清晰:她是第十只红色小母牛,预示着弥赛亚的到来。有一小部分人相信,一只完美的红色小母牛的诞生,预示着下列事件将依次发生:信徒们即将“被提”至天堂极乐之处;一场可怕的大灾难,包括与反基督者之间的巨大战争、全球混乱和地狱之火;耶稣复临和他千年的统治;上帝的最后审判;世界末日。

        小红牛梅洛迪的故事之所以引起共鸣,是因为它触及了最著名、最危险的群体幻想的核心——末日叙事,这种叙事像一条红线一样贯穿人类历史。进入现代时期,类似这样的末日叙事已经产生了大量悲剧,从灾难性的再洗礼派的疯狂,到更多相对小范围内的悲剧,例如太阳圣殿教的悲剧。

        在过去的半个世纪里,一种新的、极具特色的末日叙事出现,现在已经被大多数福音派新教徒信奉,即“时代论”。它产生了一种遍布美国的信仰体系,并把美国社会分成世界观截然不同的两个阵营。最令人恐慌的是,在某个将来,一个类似于梅洛迪的故事将成为一个灾难性的自我实现的预言,只不过和犹太人、基督徒以及穆斯林想象的方式不同。

        在梅洛迪出生后不久,一位名叫伊斯拉尔·阿里尔的原教旨主义拉比发现了它。在他宣布小母牛符合要求后,它的故事进入主流媒体的视线;然后随着美国和欧洲主要电视网络的播放,这个有趣的故事传遍全球。

        以色列人不高兴:当地一位记者将梅洛迪称为“四足炸弹……其会让整个地区陷入灾难,威力可与伊朗阿亚图拉手中的非常规性武器相比”[5]。幸运的是,梅洛迪的饲养员在它出生后不久就发现它的乳房上有白毛;在它1岁的时候,尾巴上出现了更多白毛,因此拉比们宣布它不符合要求。(它原本应该长到3岁,成为一只成熟小母牛后才有资格参加献祭仪式。)

        梅洛迪的犹太故事背景,与闵采尔起义、疯狂的再洗礼者、第五君主国派以及米勒主义等基督教末日神学之间有非常明显的相似性。从神学角度,这四个基督教插曲中有三个是“前千禧年主义”——耶稣的回归发生在千禧年之前,而千禧年还没有发生。(第四、第五君主国派既有前千禧年信徒,也有后千禧年信徒。)耶稣复临触发了千禧年,这必然是一个戏剧性的、通常是暴力性的事件。

        相反,现代天主教和大多数主流新教教派则主要继承了早期、更传统的圣奥古斯丁的末日神学,淡化了千禧年的概念:耶稣不会戏剧化地复临并统治千年。因此,这种更传统的“非千禧年主义”是一个更为平静的过程,而且“坏消息比好消息强大”这一心理学准则,让这一过程不那么引人注目。

        19世纪后半叶,末日叙事演变为一个更加充满戏剧性、暴力、扣人心弦的版本。这一信条越来越影响普通美国人的生活:世界腐败不堪,仅靠人类自身的努力无法拯救或改进;只有依靠上帝,以极乐、苦难、决战和最终审判的方式进行干预才足够。

        这种末日序列不符合公认的天主教或传统的新教教义。一个多世纪前,大西洋两岸的大部分主流基督教派都抛弃了《圣经》字面真理的概念,它们逐渐离间了相当一部分信徒;但即使在今天,根据美国两大著名调查机构盖洛普和皮尤的民意调查,约25%的美国人仍然相信圣经是上帝的真言。同样有约25%的人相信耶稣会在他们的有生之年回到地球,61%的美国人认为撒旦存在。这些比例在20世纪早期更高。[6]这些美国信徒不愿意放弃《圣经》字面真理的舒适感,不愿意接受现代科学知识,不愿意接受主流教会在是否承认犹太教、天主教或无神派正统性方面的含糊态度。

        其结果就是时代论的出现,它恢复了《圣经》字面真理的舒适感,同时也恢复了大量的老式摩尼教式思想,将世界在善与恶之间进行了明确的黑白分离,信徒们被安稳地放置在原来的阵营中。[7]

        时代论信仰体系已经深植于美国的政治体系之中。至少有一位美国总统,即罗纳德·里根赞同这一体系,像迈克·彭斯、迪克·阿梅、米歇尔·巴赫曼和迈克·哈克比等政治家也赞同这一体系。事实上,它的信条几乎渗透到国家话语的每一个方面,特别是一些社会争议问题,如堕胎和同性恋权利问题,以及外交政策问题,尤其是与充满冲突的中东有关的问题。

        19世纪中期,大概是威廉·米勒的末日论在美国盛行的时期;在英国,一位名叫约翰·纳尔逊·达比的爱尔兰圣公会教徒点燃了一条神学导火索,其经过缓慢燃烧,最终爆发于一个世纪之后。

        与谦逊而不起眼的米勒不同,达比在才智和社交上都很有天赋。1800年,达比出生在一个富商家庭,他的叔叔因在尼罗河河口海战中跟随英国海军少将霍雷肖·纳尔逊而被封为爵士,他也由此获得了纳尔逊这个中间名。他在都柏林圣三一大学获得文学、拉丁语和希腊语的金奖章,并加入了爱尔兰律师公会。1826年,他发现法律不能令他满意,便加入英国国教爱尔兰圣公会。父亲对于他放弃律师职业非常失望,因此剥夺了他的继承权。

        头脑活跃的达比很快就对僵化和等级森严的英国圣公会不再抱有幻想;受命仅仅一年后,他参加了一个关于《圣经》预言的会议,并得出一个像马丁·路德那样的结论:真正的教派可以是任何一组真正相信基督的人组成的,他们是上帝任命的,将人类从耶稣受难带到耶稣的第二次降临。

        在达比的信仰体系中,关键内容是一系列的五个“时代”或者说历史时期,因此神学家给这一体系起了一个正式的名字:时代论前千禧年主义。在这些时期里,上帝考验人类;但达比的上帝显然是按照一条非常严格的曲线[8]来评分的,因此,人类在通往现代的前四个时代中都不及格。和《启示录》的作者一样,达比很聪明,他的著述甚多但晦涩难懂,留待他人去澄清他的每个时代的确切性质。达比后来的追随者将时代数量扩大到今天所使用的7个:[9]

        1.无罪时代,从亚当和夏娃被创造到被逐出伊甸园。

        2.良知时代,从伊甸园到被驱逐到挪亚方舟。

        3.人治时代,从挪亚方舟到亚伯拉罕。

        4.应许时代,从亚伯拉罕到摩西。

        5.律法时代,从摩西到耶稣。

        6.恩典时代,达比真教会的当前时期,从耶稣受难到耶稣第二次降临。

        7.千禧年时代,最后的耶稣统治时代。

        《圣经》里有很多充满矛盾的章节,而达比的时代体系的绝妙之处就在于,它通过将《圣经》内容分成各个独立的时代,消除了许多混乱,从而减少了章节之间的内部冲突。从解经的晦涩和内部章节矛盾的方面来看,许多神学家认为,达比的这种重新排列把《圣经》组织成一个更加连贯的整体,创造了一个绝妙之作。

        所有有组织的教派,除了其神学或信仰体系之外,还有一个“教会学”,即组织结构。达比的教会学被称为福音集会,即一位有魅力的领袖人物组织的小团体,这位领袖主宰着团体的福音真理。达比有意不给聚会命名,但人们非正式地称之为“上帝的教会”,或者更简单的“兄弟会”,其中最著名的是普利茅斯兄弟会。

        与现代美国基督教原教旨主义热烈的教堂仪式形成鲜明对比的是,兄弟会的集会主要专注于一些知识性活动,其方法论与米勒的方法论相似。米勒的方法论会在《圣经》中追踪某个单词,例如“创造”。由于《圣经》中蕴含强大的智慧,但在表述上有大量的含糊其词,因此这场运动很快就变得非常激烈。但是,所有兄弟会成员都同意该运动的基本宗旨,即把世界分为犹太人、基督徒和其他所有人(异教徒)。他们进一步同意保罗写给帖撒罗尼迦人的第一封信[10]的中心地位。这封书信中有两段关键经文:

        因为主必亲自从天降临,有呼叫的声音和天使长的声音,又有神的号吹响,那在基督里死了的人必先复活。

        以后我们这活着还存留的人必和他们一同被提到云里,在空中与主相遇。这样,我们就要和主永远同在。[11]

        对那些接受《圣经》字面真理的人来说,这两段经文的意思很清楚。最后,耶稣半途降下,让所有真基督徒聚集到云中;去往天堂的半途,首先是复活的死者,然后是活人:这就是“被提”。

        达比的普利茅斯兄弟会随后跳转到《启示录》的幻象叙事,大致的顺序:7年不可言喻的恐怖大灾难;耶稣战胜撒旦和他的军队;1000年的和平以及与撒旦的另一场短暂战斗;生者和死者的最终审判。那些在大灾难期间留在地上的人,凭借他们在混乱中的悔改,也有资格获得救赎。(这种叙事被一个多世纪之后的很多原教旨主义小说利用,例如蒂姆·莱希和杰里·詹金斯的《末世迷踪》系列。)[12]

        在就读圣三一大学期间,达比受到皇家神学教授理查德·格雷夫斯的影响。格雷夫斯当时广受欢迎,他讲授的经典著作和神学启发了一代又一代的学生。根据格雷夫斯的说法,犹太人将回到圣地并接受耶稣,然后带着刚刚皈依的热情,引导其他人找到救世主。犹太人的返乡和皈依会加速末日的到来,所以真正的基督徒有责任帮助犹太人返回圣地。和过去以及之后的千禧年派一样,格雷夫斯寻找能够证实圣经预言的当前事件,而土耳其对巴勒斯坦统治的削弱和英国海军力量的崛起就证实了《圣经》预言。[13]格雷夫斯的这种犹太人和基督徒的“联盟”被称为“基督教犹太复国主义”,并将与“犹太复国主义”配合,在接下来的一个半世纪里获得越来越强大的力量。

        与疯狂的再洗礼派以及第五君主国派起事一样,到了20世纪末,千禧年派成为一个潜在毁灭性的自我实现的预言,原因有二:第一,与格雷夫斯、达比和兄弟会一样,千禧年派的叙事以圣地为中心,而这一地区是现代世界的火药桶;第二,在过去的几十年里,时代论者开始影响美国的外交政策,并控制了军事武器,这些武器可以一举焚毁大部分人类,根本不需要《但以理书》和《启示录》里“猛兽”的帮助。

        时代论在美国获得了最热烈的追随和拥护;但它在发源地——不列颠群岛,或者说所有其他发达国家的影响力要小得多。

        19世纪早期至中期,是西方科学发展的重大转折时期。查尔斯·达尔文的《物种起源》在1859年出版;科学家们逐渐意识到,地球的年龄比《圣经》中所述的6000年要多得多。1779年,法国科学家布丰用加热的球体模拟了地球的冷却过程,估计地球的年龄为75000年;1862年,物理学家威廉·汤姆森——受勋后的名字为开尔文男爵——认为地球的年龄是2000万到4亿年。随着实验室技术的不断进步,估计值不断增加,到20世纪中期,对地球年龄的共识为46亿年;而对宇宙年龄的估计值是过去的3倍。这些事实使许多基督教徒感到不安,例如,兄弟会拒绝接受达尔文的观点,并努力将地质时间概念融入对《创世记》的解释中。[14]

        在这些科学发现之前,著名政治家和科学家经常涉足末日论。最值得注意的是,艾萨克·牛顿刊登了一整套研究成果,在他死后,其被整理成一套文集,以阐述《但以理书》和《启示录》的意义。[15]

        约瑟夫·普里斯特利在18世纪中期所接受的教育,和那时几乎所有的高等教育一样,是神学的;他以牧师的身份开始了他的职业生涯,但很快就对自然科学产生了兴趣。在自然科学中,他在电、气体的性质等方面进行了早期的开创性工作,尤其著名的是他发现了氧气。与牛顿一样,普里斯特利也广泛参与了《圣经》预言,其中包括犹太人返回巴勒斯坦的猜测:

        犹太人目前的分散状态是从摩西开始的一系列预言的主题,如果像预言那样,这个杰出的民族能够重回自己的地区并建造一个繁荣的国家,那么,我想,就很少有人会怀疑预言之灵的真实性。[16]

        普里斯特利于1804年去世,是最后一位将预言与科学相结合的备受关注的自然哲学家;在达尔文进化论和地质学繁荣之后,任何一位把《圣经》作为他们对物理或生物科学信仰的基础的主流科学家都将招致同行的嘲笑。同样,这些新的科学知识还摧毁了许多基督教信徒和神职人员对《圣经》字面真理的信念。

        首先在《圣经》真理无误方面改变立场的是德国神学家,他们把《圣经》的叙事看作寓言而不是事实。这一思想流派被称为“高等批判主义”。19世纪,这一运动蔓延到英格兰,逐渐被等级森严、受过高等教育的圣公会神职人员接受;到19世纪末,字面解经的兄弟会发现自己在本国被边缘化了。此外,像达比这样的时代论智者们,当他们投身于模棱两可的《圣经》文本时,会产生一种固有的离心力,这种离心力使英格兰兄弟会分裂成几十个没有影响力的教派,甚至在某些情况下,这些教派成为人们嘲笑的对象。[17]

        在美国基督教的神学自由中,时代论找到了更肥沃的土壤。美国不仅缺乏英国式的等级制国家教会,而且美国人的性格也截然不同。19世纪,是真正的英国人的世纪,是一个极度乐观的时期,在这一时期,英国人对技术进步有几近绝对的信心,他们能够主导全球趋势。这种心态与时代论对人性的灰暗评价不同。尽管美国最初也认为自己是新耶路撒冷,是全人类的灯塔,但内战粉碎了这一信念,这个伤痕累累的国家更容易接受悲观主义的达比和兄弟会。战后,达比和兄弟会在美国巡演了15年。达比本人每次都要花上几个月的时间访问美国主要城市,并在那里和他的同事们传播时代论信条。

        时代论在美国招募的最重要的新成员是德怀特·穆迪、司可福、加尔布莱恩。其中,穆迪是一位狂热的福音派传教士,他在英国旅游时与兄弟会接触过,后来在美国与达比相遇。起初,出身卑微的穆迪和贵族知识分子达比相处得并不好,但随着时间的推移,穆迪的坚毅赢得了达比的赞赏。[18]此外,穆迪还有达比所缺乏的优势:他在大西洋两岸的教堂、体育场和公园聚集了成千上万的信徒。达比死后4年,也就是1886年,穆迪创立了芝加哥福音社(在他死后更名为穆迪圣经学院)。在接下来的几十年里,其培养了几十名美国著名的时代论者。

        之后,超过50所福音社在美国建立,其主要目标是推动基于《圣经》字面真理的预言,并打击主流新教教派中以科学为中心的“高等批判主义”。1924年,一位名叫刘易斯·斯佩里·蔡弗的奥伯林毕业生,创办了著名的福音神学院。12年后,他将学院更名为达拉斯神学院。[19][20]达拉斯神学院是大多数无宗教信仰的美国人未曾听说过但最重要的教育机构。它培养了许多时代论运动的最高领导人,其在福音圈被称为“达拉斯人”,对其他的时代论者影响很大。

        第二个早期美国时代论的关键人物是司可福。他是美国内战时期南方军队的一名退伍军人,在内战结束后从事法律工作,曾担任过堪萨斯州的立法委员和律师。1879年,受到一位名叫詹姆斯·布鲁克斯的时代论领袖的影响,司可福突然皈依了福音教。詹姆斯·布鲁克斯是尼亚加拉圣经会议的组织者,1876—1897年,尼亚加拉圣经会议每年在安大略省的尼亚加拉湖滨小镇举行。司可福还接触了穆迪和早期美国第三位重要的时代论者加尔布莱恩。

        尼亚加拉圣经会议强调了时代论在美国比英国更为盛行的另一个原因,即美国宪法对宗教的不干涉态度鼓励了各色新教教派的发展。布鲁克斯欢迎他们所有人到尼亚加拉湖滨小镇。这避免了英国运动那样的激烈内讧。至今,合一运动精神广泛存在于美国教会中,他们愿意接纳时代论的末日叙事。

        加尔布莱恩比达比更加具有非凡的才智,1879年,18岁的他从德国移民到美国,之后学习了拉丁语、希腊语,尤其是意第绪语[21],试图改变纽约犹太人的信仰,甚至创办了一家意第绪语报社。他还创办了一家英语报社,其报纸提供给包括蔡弗和司可福在内的美国原教旨主义者阅读。加尔布莱恩的才华打动了蔡弗和司可福,司可福开始编写钦定版《圣经》的注释版本,于1909年首次出版了《司可福串注圣经》,这本书又进一步鼓舞了蔡弗创建后来的达拉斯神学院。

        《司可福串注圣经》非常重要。宗教史学家认为它是最有影响力的、独一无二的时代论出版物,至今仍对现代基督教原教旨主义存在影响。1909年版本的销量为300万册,而1967年版本的销量超过1000万册;在过去的一个世纪里,这两个版本指导了大批美国人了解时代论体系。[22]

        加尔布莱恩、司可福和穆迪,这三个人与布鲁克斯的尼亚加拉圣经会议之间的联系,标志着时代论学说开始与地缘政治纠缠。1878年,布鲁克斯创立了“十四点信条”,其在1890年尼亚加拉圣经会议上被正式采纳。十四点中的最后一点:

        我们相信,在当前的宽免下,世界不会皈依,但将很快成熟并等待审判,同时基督教内部会有可怕的变节;因此,主耶稣将亲自主持千禧年时代,届时以色列人将重新回到自己的土地……主耶稣和千禧年前的降临,是福音中摆在我们面前的蒙福,我们要不断寻祈。[23]

        至此,达比及其追随者对犹太人的重返一直保持严格的不干涉立场。基督教徒认为,他们应该最多是对“被提”和“千禧年”进程感兴趣的观察员,但在“被提”和“千禧年”这两个时代之间的“大灾难”时代,他们应该将行为限制在拯救灵魂上。在任何情况下,他们都不会试图通过鼓励或帮助犹太人返回巴勒斯坦来触发这一进程。但是,这一被动的做法随着罗伯特·安德森、威廉·布莱克斯通、亚瑟·贝尔福、奥德·温盖特等基督教犹太复国主义者的出现而改变了。为了使犹太人重返圣地,他们使用了强大的修辞和政治力量,尤其是温盖特,他以英国军官的身份使用武力,以最暴力的方式违反了达比的不干涉政策。

        和达比一样,安德森出身于爱尔兰贵族阶层,曾在都柏林圣三一大学学习法律,在英国内政部拥有卓越的职业生涯。他后来去往苏格兰场[24],指导“开膛手杰克”案件[25]的调查。在那个时代,他能够置身于两个完全不同的群体(一个是时代论阵营,一个是统治贵族阶层),这是非比寻常的。因此,在当时以及后来土耳其统治巴勒斯坦时期,他在英国对巴勒斯坦的外交政策方面有一定的影响。尽管在英国,兄弟会已经是社会和神学上的弃儿,但安德森还是非常钦佩达比,他还认识司可福和穆迪。此外,他在任职于英国内政部的几十年里,还经常与各届首相接触,其中包括格莱斯顿、阿斯奎斯、索尔兹伯里,以及宿命般的贝尔福。[26]

        安德森被普利茅斯兄弟会一位名叫本杰明·威尔斯·牛顿的人写的书迷住了。这本书名为《十大王国的前景》,出版于1863年,并不出名。书中,牛顿把关注点集中在《但以理书》中的10个脚趾上:当时的基督徒将泥足解释为罗马帝国,牛顿进一步认为泥足的10个脚趾代表了罗马帝国的10个民族或王国。牛顿设想,除了犹太人重返巴勒斯坦的古老预言以外,末日的第二个迹象,就是这10个古老的王国重新组成一个新的罗马帝国:

        最后划分为10个王国,用10个脚趾表示,这是末日之前的事件,并且可能与以色列在自己的土地上建立国家同时发生。[27]

        牛顿认为,拿破仑战争和1815年维也纳会议之后,欧洲各地建立的各个现代民族国家,构成了这个新罗马帝国。这些事件无疑预示着末日即将来临,因为:

        英国、比利时、法国、阿尔及利亚、葡萄牙、西班牙、意大利、奥地利和希腊建立的政府,事实上或实际上是民主君主制的政府。君士坦丁堡[28]、埃及和突尼斯的人们对西欧国家的支持表明了这一时期的到来,即泥与铁的混合将恰如其分地代表整个罗马帝国的政府权力特征。[29]

        由反基督者领导的十国组成了复兴的罗马帝国。这一概念是一个极好的确认偏见的例子。这一预言在时代论者中越来越流行,以至于几乎所有包含数字10的《圣经》经文都被视为古罗马重新组合的预言。例如,达比也对《启示录》中的十角兽[30]印象深刻:

        路易·拿破仑是不是反基督者,这个问题引起了人们极大的兴奋,所以我补充一下。我毫不怀疑目前他是拉丁人[31]或十角兽的伟大代理人,他的行动清楚地标志着最后一幕的临近。上帝保佑![32]

        1881年,安德森在牛顿的启发下出版了《将临的君王》,它是一部大胆而富有挑衅性的预言著作,流传至今(所有时期的时代论者都是激进的;在这一点上,牛顿是一个独立的浸信会教徒,他强烈批评时代论)[33]。安德森的社会地位,使他能够自主地发展一个预言体系,并且这一体系成为20世纪晚期杰瑞·法威尔和哈尔·林赛的可怕预言的基础,而同样以此预言体系为基础的蒂姆·莱希和杰里·詹金斯的小说则更为惊悚,且销量惊人。

        19世纪晚期,安德森对时代论的解释,直接源于《但以理书》9:24-27,对于理解今天美国新教原教旨主义的根源至关重要。《但以理书》中的这四节,描述了犹太人从巴比伦流亡归来到弥赛亚降临这两个事件之间的“七十周”(或译作“七十个七”)。令人困惑的是,书中将这段时间细分为三个阶段,分别是7周、62周和最后一周,最后一周又细分为两个半周。(安德森的书名参考的是《但以理书》9:26中的“将要来的君王”,他是领导10国的反基督者。)

        这让人想起千禧年主义对《但以理书》前一章,也就是第八章的关注。第八章提到了圣经中的2300天,也就是从犹太人自巴比伦的归来到末日之间的时间跨度为2300年,因此可以推算出末日时间是1843年或1844年。[34]与此不同,安德森却把注意力集中在70个“周”,也就是以《但以理书》第九章中的490天或年,作为从巴比伦返回到复临之间的时间跨度。从巴比伦结束对犹太人的囚禁到耶稣复临,安德森和千禧年主义对这一时间跨度的估计相差了1810年,这体现出《圣经》预言所固有的棘手性,具体到这里,就是解经者应该如何处理这将近2000年的认知失调。

        处理安德森估计的1810年的缺失需要一个巨大的谎言——把时间暂停。安德森,在耶稣受难的第六十九周按下了末日进程的时间暂停键,此时弥赛亚被“切断”,当反基督者出现时,弥赛亚重新开始。第七十周末日的重新开始时间:

        将会以另一位君主(反基督者)的到来作为预示,他将与犹太人签订7年契约(或条约);在周中(也就是3年半之后),他将违反条约并打压对方的圣殿朝拜和宗教教义。这一切都是那么简单明了,任何聪明的子民都能理解。(原文在括号里。)[35]

        安德森毫不怀疑,目前已经处于这个序列的早期阶段,这一阶段将涉及:

        未来某些欧洲大危机的后果,就是国家联盟得到发展,因此为可怕存在(指末日)的出现预备好了舞台,人类的伟大领袖即将结束外邦人至上的多事之秋时代。[36]

        时代论者已经确定,有两个事件将标志着时间中断的结束(即时间的重启),以及上帝对犹太人的重新关注,并因此带来末日。这两个事件就是犹太人返回圣地、罗马帝国重新组合成反基督者领导的欧洲十国联盟。虽然达比留下了几十卷书,但由于他的散文晦涩难懂,因此读者群体限制在一小部分有文化且信仰坚定的核心真信徒中。而安德森的散文虽然不像红葡萄酒一样流传下来,但是他在《将临的君王》中准确预言了犹太人将返回巴勒斯坦[37],这令此后20世纪的读者们兴奋不已。

        1881年,《将临的君王》出版,这增强了其预言的真诚性。其出版时间比西奥多·赫茨尔出版《犹太国》进而推动第一届世界犹太复国主义大会召开并开创现代犹太复国主义运动早了10多年;比埃德蒙·艾伦比将军从奥斯曼土耳其人手中夺取耶路撒冷早了1/3个世纪。而在这些事件发生之前,在巴勒斯坦建立一个新的犹太国家这一前景看上去很渺茫,甚至安德森写道:

        在许多人看来,以色列复国的预言就像一个世纪前我们的祖先对现在的电力和蒸汽的胜利所做的预言一样令人难以置信。[38]

        即使到今天,安德森关于在巴勒斯坦地区恢复犹太国家这一预言的实现仍然令人震惊。但是,他的新罗马帝国的预言就没有实现,这使得基督教原教旨主义的预言从此陷入困境。例如,理查德·格雷夫斯将1815年后兴起的欧洲君主立宪制国家认定为新罗马帝国;之后的一个半世纪之后,时代论者同样认定欧盟是那个新罗马帝国,但欧盟至今没有产生那个反基督领导者,也没有和以色列结成战略联盟,更不用说入侵以色列了。[39]

        米勒末日预言的失败使人们“大失望”,原教旨主义基督徒吸取其教训,不再进行预言的日期设定。从达比开始,时代论者就被吸引,试图从时事中进行预言,特别是他们把国家集团列为新罗马,把个人列为反基督者。尽管在当时看来,圣经和时事之间的相似性似乎是合理和令人震惊的,但几十年后就能显示出预言家的预言是愚蠢的。

        似乎是觉得这一切还不够复杂。达比具有丰富的时代论想象力,在返回圣地的犹太民族和新罗马帝国之间的最后一场战斗中,他又增添了一个主要角色:北方之王。《但以理书》中反复提到,北方之王是以色列的侵略者。达比认为北方之王是当时的俄国。(达比的计划还包括身份不明的“东方之王”和“南方之王”,后者很可能是埃及。)[40]

        对像达比这样有才智的人来说,找到支持俄国入侵圣地的《圣经》文本很简单。《创世记》10:2中列出了雅弗六个儿子中的两个,也就是米设(Moscow)和土巴(Tobol’sk);在达比狂热的想象中,他们分别代表莫斯科和托博尔斯克,后者位于乌拉尔山脉以东。[41]

        19世纪中后期,强大的沙皇俄国对衰落的奥斯曼土耳其产生威胁,达比断言俄国将从土耳其窃取歌革的土地,然后入侵重建的犹太地区。在20世纪中后期,达比的追随者们继续渲染这个预言:犹太人会与反基督者领导的新罗马帝国结盟,以应对俄国的威胁,反基督者将在三年半后背叛犹太人,结束这个联盟。[42]

        无论这个19世纪的神学推测在今天看来多么复杂、怪异和荒谬,它在近两个世纪中的演变对于理解美国最近的国内政治和外交政策至关重要。从达比、安德森、穆迪、司可福和加尔布莱恩到梅洛迪那只奶牛,再到最近美国时代论信仰的猛增,这条道路漫长而曲折。而接下来会出现一位关键人物,即一位名叫威廉·布莱克斯通的美国商人。

        布莱克斯通可以被看作美国的罗伯特·安德森,他有很广的人脉,是一个热衷于犹太人返回巴勒斯坦地区的时代论者。尽管布莱克斯通出身卑微,但他从岳父那里继承了一大笔遗产,并通过保险业务、节俭、明智的投资以及图书销售,变得更加富有。[43]和安德森一样,他与政府最高层有联系。

        1841年,布莱克斯通出生于纽约州北部,11岁时皈依宗教,后来成为穆迪的亲密伙伴。1886年,他出版了《耶稣来了》,宣扬的核心内容是犹太人回归巴勒斯坦并皈依基督教;这本书最终卖出了100多万册,并被翻译成43种语言。[44]他非常相信时代论者的末日叙事,以至于在1888年左右的某个时候,他把几千本自己的书连同其他希伯来语、意第绪语和亚拉姆语的预言作品,藏在了今天约旦南部佩特拉的周围,这样,“总有一天,在反基督大屠杀中受到惊吓的幸存者们会乐于接受机会,阅读这些上帝的作品”[45][46]

        布莱克斯通致力于数秘主义和历史事件的结合,例如,7年乘以一年360天等于2520天,这个数字与巴比伦占领的时间即公元前606年相加,得出耶稣复临的时间是1914年;而第一次世界大战正是从1914年开始的。但是,正如他在佩特拉周围藏书所表明的那样,他并不反对亲自推动末日时代的到来。

        《耶稣来了》出版若干年后,西奥多·赫茨尔在瑞士巴塞尔组织了犹太复国主义者大会。随后的几十年中,布莱克斯通通过他的芝加哥希伯来人使团谨慎地与犹太复国主义者合作,甚至在他写完《埋葬在约旦》一书后,召集了一次基督教前千禧年主义者和犹太复国主义者的联合会议。在犹太教和基督教所达成的会议协定的基础上,他起草了一封写给美国总统本杰明·哈里森的信,这封信被历史称为《布莱克斯通请愿书》(以下简称《请愿书》)。信中,他简略提及了以西结和以赛亚,然后重点讲述了大屠杀下俄国犹太人的苦难。解决犹太人的苦难有一个显而易见的办法:“为什么不把巴勒斯坦还给他们?”

        带着天真的乐观,《请愿书》建议奥斯曼人自愿放弃那块有价值的土地,条件是西方国家对他们的债务支持。更令人印象深刻的是《请愿书》的413名签名者,其中包括最高法院首席大法官、众议院议长、众议院外交事务委员会主席、众多其他国会议员、著名神学家、记者和行业领袖(如约翰·洛克菲勒、约翰·摩根)。

        哈里森总统向布莱克斯通承诺,他将调查此事,并将信转给国务卿詹姆斯·布莱恩,后者向美国驻君士坦丁堡大使馆进行了问询。正如美国外交官们在那个时代惯常做的那样,他们忽略了犹太人的问题,《请愿书》随后从公众视野中消失;1903年,布莱克斯通把它重新提交给西奥多·罗斯福总统之后,它再次消失。

        1916年,路易斯·布兰代斯被伍德罗·威尔逊任命,成为美国最高法院的第一位犹太人大法官。被任命后不久,布兰代斯偶然发现了这封信。但那时,已经很少有人知道这封信,以至于当布兰代斯在国务院问询时,其官员否认对此有任何了解。用历史学家保罗·查尔斯·默克利的话说:

        (国务院的官员们声称对《请愿书》一无所知)似乎极不应该。很可能,他们只是不愿意让美国总统甚至美国国会花时间来处理“末日论”者提交的小册子。[47]

        在接下来的几十年里,美国国务院提供了大量的证据,证明在大屠杀之前和期间,根深蒂固的反犹太主义阻碍了犹太难民从德国及其占领的欧洲地区逃离,并夺走了无数的生命。但上面的引文指出了美国国务院故意驳回由该国精英们签署的《请愿书》的另一个原因:

        受过良好教育的人(指决策者)对神学单纯的人(指原教旨主义者)的蔑视。决策者们都是在圣公会、公理会、一位论派,偶尔还有长老会等这些圈子里长大的,在他们眼里,没有什么比末日论者的小册子更令人鄙视的了。只要“犹太命运”的唯一坚定拥护者是原教旨主义者,就没有必要在犹太复国主义上浪费时间。与简单、传统的乡村俱乐部式的反犹太主义者相比,受过良好教育的新教徒更加恐惧和厌恶原教旨主义者。[48]

        美国国务院对《请愿书》的忽视令布兰代斯很震惊,他与布莱克斯通建立起友好的联系。1917年,两人重新向一位虔诚的新教教徒威尔逊总统提交了修改过的《请愿书》。但这时,中东的军事和外交形势已经超出了他们的掌控能力。

        布莱克斯通在临死前已经是一个富翁,他送给布兰代斯(他也很富裕)一大笔钱,其中大部分是石油商米尔顿·斯图尔特捐赠、用以支持犹太复国主义工作的。1935年,94岁的布莱克斯通去世。去世前,他告诉布兰代斯,他把钱藏了起来,就像他在佩特拉藏的书一样,这样在他死后“如果被提真的来了,而你不在其中”,那么这些钱将用来支持未被提的犹太人,随后他们会皈依基督,并改变其他异教徒的信仰。(他还进一步劝告美国最伟大的法学家之一布兰代斯,“显然人类法律并没有为这些事件做准备”。)[49]

        比布兰代斯的犹太复国主义和布莱克斯通的基督教时代论复国主义更令人关注的事件发生在亚瑟·贝尔福身上。从小,贝尔福就继承了父母的虔诚,并痴迷于《旧约》。幸亏如此,否则,他将只是一个典型的慵懒、超然的英国贵族,正如他的传记作者所言,他属于“一种容易辨认的类型,英国和法国的一些政治家将他们的名声归功于他们的才智所创造的印象,而不是任何具体的表现”[50]

        贝尔福的父亲是国会议员,父母都是福音派新教教徒,尤其是母亲。贝尔福也受到了一位兄弟会成员的强烈影响,这位成员名叫威廉·凯利,和达比一样,凯利也毕业于圣三一大学,更重要的是,他编辑了全套的《达比文集》,并且像安德森一样,在保守党圈子里人脉很广。

        贝尔福的舅舅索尔兹伯里勋爵曾三次担任英国首相,几乎是理所当然的,贝尔福在1902年接任了舅舅的职务。通常情况下,在英国,卓越的才智和机敏的辩论技巧有助于升职,却并不意味着拥有从政能力。贝尔福3年后辞职,主要原因是贸易问题。[51]

        在他辞职的同时,他遇到了赫茨尔的一位助手,即年轻的犹太复国主义者查姆·魏兹曼,一位刚刚移居英国的化学教授。魏兹曼后来成为以色列第一任总统。据报道,这位年轻的化学家对犹太家园的憧憬让虔诚的贝尔福“感动到落泪”[52]

        在随后的10年里,贝尔福与犹太复国主义者的关系不断加深,1917年11月2日,时任外交大臣的他给英国犹太社区最重要的人物罗斯柴尔德勋爵写了一封信,信的内容在一周后公开发布:

        英王陛下的政府赞成犹太人在巴勒斯坦地区建立一个民族之家,并会尽力促成此目标的实现,但要清楚明白的是,不得有任何可能会伤害已经存在于巴勒斯坦地区的非犹太社群的宗教权利以及犹太人在其他国家享有的各项权利和政治地位的行为。[53]

        《贝尔福宣言》使全世界的犹太复国主义者兴奋不已,并为30年后以色列国的诞生发挥了不小的作用。尽管贝尔福的宗教信仰明显推动了《贝尔福宣言》和随后的英国外交政策,但他与凯利等时代论者的接触是否直接影响了他对巴勒斯坦地区的政策,这一点是值得怀疑的。从那时开始,圣地的命运将不再由满足于站在一旁观察历史的神学家驱动,而将由那些希望自己塑造历史的人驱动。

        9 圣殿山的争夺

        末日叙事如何影响犹太人建国

        犹太人确实回到了圣地,首先是19世纪末的缓慢迁移,然后在东欧大屠杀[1]后随着犹太复国主义影响力的增强而快速迁移,最后是在纳粹大屠杀之后,汹涌回归。

        1948年,以色列建国。其后的几十年里,只有一小部分以色列公民赞同犹太版的末日叙事。犹太版与时代论版本一样,也是以犹太人回归和重建圣殿为特征。由于圣殿山异常的地区敏感性,这一小部分人不断制造内乱,其随时有可能引发地区冲突,甚至全球冲突。

        充满时代论热情的基督教犹太复国主义者在20世纪后半叶如雨后春笋般出现,他们已经证明并将继续证明,无论是在圣地还是在其他地方,冲突危险都同样存在。

        约翰·纳尔逊·达比和他当时的追随者,满足于从旁观者的角度观察事态发展。但20世纪30年代,在一位杰出的英国军官奥德·温盖特身上,时代论理论和现实政治发生了冲突。英国著名的军事历史学家巴兹尔·利德尔·哈特把温盖特描述为“犹太人的劳伦斯[2][3]

        1920年,国际联盟授予英国对圣地的“委任统治权”。[4]1936—1939年,温盖特在英属巴勒斯坦托管地任职。在那里,他的时代论信仰与他的军事技能以及英国资源相结合,推动了千禧年时代的进程;但是他这样做,严重违反了授权中所规定的阿拉伯人和犹太人的平等待遇问题。

        温盖特的外祖父曾经是一名苏格兰上尉,辞去英国军队的职务后,在当地建立了兄弟会分会。温盖特的父母也是兄弟会成员。温盖特从小听着父亲的时代论教会布道而长大,而母亲则更加教条主义。1921年,温盖特参军,1936年,他被宿命般地任命到巴勒斯坦,《旧约》是他的战地指南。著名以色列将军摩西·达扬描述了他们的第一次会面:

        温盖特身材瘦长,中等个子,有一张坚毅而苍白的脸。他带着一把重型左轮手枪走进来,手里拿着一本小小的《圣经》。他的态度真诚而又令人舒适,目光犀利而又热烈。他说话时会直视你的眼睛,像是要把他的信仰和力量灌输给你。我记得,他是在日落前到达的,渐暗的光线给他的到来增添了一种神秘和激动人心的气氛。[5]

        温盖特抵达巴勒斯坦的时候,正值阿拉伯人对犹太人定居点和英国授权部队发动了一系列暴力袭击。其中英国授权部队的主要任务是阻止阿拉伯人和犹太人相互残杀,但温盖特对犹太人的绝对偏袒很快就扰乱了这项任务所需要的本就脆弱的外交。这激怒了他的指挥官们,他们在感情上更倾向于阿拉伯人。

        温盖特认为犹太定居点在防御阿拉伯人的袭击中过于被动,并力劝犹太人开始进攻。他一生都喜欢在敌后进行突击队式的袭击;尽管最初被指派为情报官员,但他很快组建了夜间特种行动队,队伍大约有200人,其中3/4是犹太人,由英国军官指挥;队伍的任务是保护具有战略意义的从伊拉克通往地中海的石油管道。1938年夏,行动队对阿拉伯军队发动了一系列袭击,大部分都是成功的。

        正如摩西·达扬所暗示的,把温盖特称为怪人未免太轻描淡写了。他习惯于赤身裸体或只戴着浴帽向他的部队讲话,讲话时还偶尔擦洗自己。他还生吃大量洋葱,并反复让自己和部队食用受污染的食物和水,因为他相信这会增强抗病能力。

        温盖特家族的时代论神学推动了他在巴勒斯坦的行动。他曾经告诉他的岳母:“犹太人应该在巴勒斯坦有自己的家园,这样,《圣经》预言就会实现。”[6]温盖特也不反对将他的圣经愿望与世俗愿望结合在一起,他认为军事上强大的犹太民族将成为大英帝国的堡垒。

        他对犹太复国主义的偏袒很快就招致阿拉伯人对他的报复和他的上级的不满。军队上级认为他的“打完就跑”策略以及“把犹太人打扮成英国士兵”是不道德的。最后,军方将他限制在耶路撒冷从事办公室工作,然后在1939年5月将他重新分配到英国的防空部队任职。[7]他在英国待了一小段时间,随后第二次世界大战爆发,他被派往苏丹,然后是埃塞俄比亚,领导“基甸军”游击队袭击当地的意大利占领者。太平洋战争爆发后,他被调往缅甸(日占区),在那里他组建了最著名的敌后作战部队——“钦迪特”部队(也称为“温盖特的突袭队”),这支英国军队(由英国空军提供补给)不断突袭日军,以保护次大陆[8]免遭入侵。1944年3月24日,他在印度的一次飞机失事中丧生。[9]

        温盖特不仅扰乱了英国在巴勒斯坦托管地的中立性,而且他通过建立夜间特种行动队,积极主动地推动末日的到来,这严重违反了时代论禁令。在这个过程中,他的战术才华令他的犹太下属们敬畏。他指导过即将到来的1948年独立战争[10]和1967年六日战争中的几乎所有的以色列高级指挥官,包括摩西·达扬、伊加尔·阿隆、伊盖尔·亚丁和伊扎克·拉宾。他还创造了今天中东政治中的“既成事实”——占领土地并建立定居点。[11]用摩西·达扬的话说:“温盖特是我伟大的老师。他教的知识成为我的一部分,并已融入我的血液。”[12]在以色列,到处都是以温盖特名字命名的街道和公共场所,包括国家运动队的训练中心。

        温盖特曾计划在战争结束时辞去英国陆军委员会的职务并回巴勒斯坦;以色列创始人之一、首任总理戴维·本-古里安认为他是指挥以色列军队的“自然选择”。[13]“如果他还活着”无疑是中东历史上最伟大的假设之一:如果温盖特还活着,那么他领导的以色列军队会在1948年独立战争中坚守耶路撒冷旧城吗?他的领袖魅力是否会让军队在那场战争中取得更彻底的胜利并占领约旦河西岸?还是他臭名昭著又反复无常的个人行为会导致新生犹太国家的失败?

        温盖特的影响一直萦绕中东。2000年9月,在近千名武装防暴警察的保护下,在野党利库德集团[14]领导人阿里尔·沙龙坚持访问耶路撒冷圣殿山,由此破坏了《奥斯陆协议》[15],并引发了第二次巴勒斯坦大起义。沙龙在青少年时代便视温盖特为英雄;此外,温盖特曾经训练并指导过的一名年轻士兵阿夫拉哈姆·约菲,后来成为沙龙的导师。

        沙龙的这次重要访问,突出了圣殿山作为世界上最具争议地区的地位。圣殿山是耶路撒冷错综复杂的220英亩旧城区中一块35英亩的土地,它本身就与末日叙事紧密相连,因此也与基督教、犹太教和伊斯兰教的宗教狂热紧密相连。圣殿山可以说是第三次世界大战最有可能爆发的地方,基督教、犹太教和穆斯林的千禧年主义,正是末日剧中的主角。

        耶路撒冷旧城可以粗略地看作一个正方形,圣殿山在正方形的东南角(见图9-1)。从圣殿山顺时针方向沿着旧城周边绕行,你会依次经过犹太区、亚美尼亚区、基督徒区和穆斯林区,最后回到圣殿山。圣殿山是基督教和犹太教的极端分子都想建造第三圣殿的地方,他们有各自的末日版本。

        图9-1 今天的圣殿山

        第一圣殿由所罗门建造并被巴比伦人摧毁,没有人知道它的确切位置。但最常提到的地点是圣殿山上的岩石圆顶清真寺(甚至在犹太人占领迦南之前,岩石圆顶清真寺很可能已经是耶布斯人的礼拜场所,所罗门的父亲大卫曾征服过耶布斯人)。第二圣殿是在公元前6世纪末犹太人从巴比伦流亡归来后,在马加比家族的领导下重建并扩建的,大希律王将其大规模扩建到现在的圣殿山上。70年,第二圣殿被罗马人摧毁。

        阿拉伯人在637年占领了耶路撒冷,并在692年建成了岩石圆顶清真寺。圣殿山的第二大建筑是阿克萨清真寺,其最初只是一个简陋的棚屋,在地震后重建了几次,直到1035年左右才最终定型。这座山对穆斯林的神圣性源自621年先知穆罕默德的一个梦,在梦中,他在一个夜晚骑着他的长翼坐骑布拉克到访了这座山,并登上了云霄。(第二天,穆罕默德“返回”麦加后,向将信将疑的居民讲述了他这段所谓的旅程。)

        根据对当前圣殿山所持的不同观点,犹太教的学者分为三类。第一类是最大的群体,他们认为犹太人可以访问圣殿山,但不能在那里祈祷。第二类的人数少一些,他们认为应该禁止参观,由于献祭的红母牛还没有找到,约柜(至圣所)的确切位置也不确定,因此访问者是不纯洁的,可能会意外地污染这块方舟,无论它实际位于山内的什么地方。第三类是极右翼的一小部分人,他们想立即建造第三圣殿。[16][17]

        抛开神学因素不谈,绝大多数犹太人不想重建圣殿,原因很实际:这将需要拆除岩石圆顶清真寺,可能还需要拆除阿克萨清真寺,犹太人对这些建筑的蓄意破坏将引发灾难性的地区冲突,甚至可能是全球冲突。理解这一点并不需要多么伟大的地缘政治智慧。

        在这个容易引起争议的话题上,兄弟会和早期的时代论者几乎没有发表什么言论,他们有很好的理由:《圣经》各章节之间经常互相矛盾,《旧约》和《新约》对未来的圣殿,更准确地说,对在圣殿进行祭祀的必要性,有一些相互矛盾的建议。一方面,《以西结书》第40~48章描述了未来的圣殿,以及将在其中进行的祭祀;另一方面,《希伯来书》10:1-18认为弥赛亚的祭品已经足够,动物祭品是没有必要的,因此重建圣殿也是没有必要的。[18]

        漫长而纠缠的历史,使现代耶路撒冷这座城市具有爆炸性的地位。70年,罗马人摧毁圣殿并驱逐了大部分桀骜不驯的犹太人,而其余大部分犹太人在135年西蒙·巴尔·科赫巴领导的第二次起义失败后也被驱逐。随后,罗马帝国、拜占庭帝国、萨珊王朝、穆斯林倭马亚王朝、阿拔斯王朝、法蒂玛王朝相继占领这座城市。1099年,十字军驱逐了法蒂玛人,屠杀了该城的犹太人和穆斯林居民;1187年,十字军向萨拉丁投降。随后的几十年里,基督教和穆斯林交替控制这座城市。13世纪后半叶,穆斯林马穆鲁克为争夺城市的控制权而和蒙古帝国开战,大约1300年后,马穆鲁克获胜,耶路撒冷迎来了长达6个多世纪的穆斯林统治。[19]1516年,奥斯曼帝国从马穆鲁克王朝手中接管耶路撒冷,并一直保持控制权,直到1917年12月,埃德蒙·艾伦比将军率领的英国军队进入圣地(见图9-2)。

        图9-2 今天的耶路撒冷旧城

        1929年左右,即国际联盟授予英国在巴勒斯坦的“委任统治权”生效6年后,犹太人和阿拉伯人开始互相残杀,包括对个人的袭击、大规模暴动和恐怖行动。整个20世纪30年代,从德国纳粹屠杀和迫害中逃离的大批犹太新移民受到阿拉伯人的强烈抵制,因此互相残杀不断。1947年,联合国提出巴勒斯坦地区的分治决议(见图9-3),但当犹太人在1948年5月14日午夜宣布建立以色列国时,周围的阿拉伯邻国与这个新国家之间爆发了全面战争。

        图9-3 1947年联合国提出的巴勒斯坦分治决议

        分治决议不仅将巴勒斯坦地区大致一分为二,还设置了一个“独立主体”——耶路撒冷市,其由联合国管理,约占100平方千米,包括旧城、更现代化的西部商业区以及其他周边地区。

        巴勒斯坦人和邻近的阿拉伯国家拒绝分治,他们想彻底摧毁这个新生的犹太国家。1948年5月14日,以色列宣布独立的那一天,阿拉伯人和犹太人分别从多个方向对耶路撒冷发动了袭击。

        在旧城南部入口锡安门的一场关键战役中,22岁的军官大卫·埃拉扎尔[20]指挥犹太部队深入耶路撒冷犹太区,将犹太平民和受伤的军人救出。但这次行动也耗尽了埃拉扎尔的精锐部队,剩余部队被迫放弃并离开这个祖辈已经连续生活了大约3000年的地方,旧城被约旦人占领。[21]即使在穆斯林的统治下,犹太人也可以进入圣殿山,而西墙(哭墙)更是犹太教最神圣的地方。约旦军队开始夷平犹太区。尽管失去了旧城,但这个新生国家幸存了下来,这令国际社会和许多犹太人深感意外。

        美国基督教徒对以色列建国最初的反应充其量是温和的。例如,美国天主教徒追随梵蒂冈[22]的态度,拒绝犹太人对圣地提出的任何要求。1943年,梵蒂冈国务卿宣布不承认《贝尔福宣言》;而在1948年以色列宣布独立的同一天,梵蒂冈报纸《罗马观察报》声称:“现代以色列不是圣经中以色列的继承者。圣地和那些神圣的地点只属于基督教:真正的以色列。”[23]

        主流新教徒的反应也不热情;他们大致同意梵蒂冈的观点,即代表新以色列的是基督教徒,而不是犹太人。此外,圣公会和长老会教徒支持阿拉伯人而不是犹太人,他们有一些其他理由,他们担心美国对新犹太国家的支持会妨碍他们在阿拉伯世界的传教活动以及教育机构的发展,特别是贝鲁特美国大学和开罗美国大学,那时,这些大学已经成为阿拉伯民族主义的温床。[24]最后一点也同样重要,圣公会和长老会教徒已经进入阿拉伯石油公司的管理层,这些石油业务越来越有利可图,对他们来说,具有重要的战略潜力。[25]

        20世纪初,美国新教刊物《基督教世纪》不断发表反对犹太复国主义的社论意见。例如,1929年,它质疑:

        犹太人在很多地区都受到尊崇,因为在那些地区的工业、商业、政治、艺术和文学等领域,犹太人都展现出他们的能力。他们真的想移民到巴勒斯坦这样一个资源贫乏的地方吗?[26]

        最令人震惊的是,希特勒在1933年掌权时,大多数主流新教徒都无视事实。当彻底的种族灭绝代替纳粹种族立法时,《基督教世纪》一再建议不要急于做出判决;编辑们认为需要更多的数据。10年后,该出版物认为,犹太人不信仰耶稣已经有2000多年了,犹太人必须将耶稣带回他们的犹太教堂,从而表明他们对美国的忠诚,“一个简单的举动就是自愿庆祝耶诞节[27][28]

        1942年,关于放逐、集中营和大规模屠杀的一系列故事首次出现在美国报纸上。当美国犹太复国主义拉比斯蒂芬·怀斯开始全面宣传这些故事时,《基督教世纪》质疑他的指控是否有“任何好的目的”。该出版物尤其对怀斯的“犹太人的尸体偶尔被加工成肥皂”[29]这一断言感到愤怒,但是很悲惨的是这一断言后来被证明是真实的。

        并不是所有主流新教徒都如此无视事实。其中最著名的是伟大的美国神学家雷茵霍尔德·尼布尔,和他的许多政治分析一样,他对犹太国家的早期评论经得住考验,对当前的中东局势很有意义。作为一名自由派新教徒,尼布尔拒绝接受《圣经》字面上的真理,并对犹太复国主义问题持有一种更加明智和务实的态度。早在第二次世界大战时期,他就撰文指出,犹太人应该建国,不是为了实现千禧年,而是为了更现实的原因。首先,“每一个民族都有权最终拥有一个家园,这个民族在这个家园里不是‘有差异’的。在家园里,这个民族既不需要受到所谓善良人的庇护,也不会受到坏人的诽谤”。其次,很明显,没有一个国家能够吸纳纳粹压迫下的所有难民,巴勒斯坦应该对这些溢出的难民进行必要的疏导。[30]

        关键在于,与温盖特以及基督教犹太复国主义者不同,尼布尔认识到忽视阿拉伯人民是愚蠢的:

        (美国和英国是第二次世界大战的最终胜利者,它们)能够确保将巴勒斯坦地区留给犹太人,确保取消目前对移民的限制,并确保对阿拉伯人另有补偿。但犹太复国主义的领导者坚持认为犹太移民给巴勒斯坦带来了新的力量,而不会给阿拉伯人民带来“不公正”,这种想法是不切实际的。期望任何人将对其传统财产的主权限制视为“公正”都是荒谬的,不管这种限制会给他们带来多少好处。[31]

        像大多数时代论者一样,说意第绪语的阿尔诺·盖布兰才华横溢。他将犹太人分为两类,他所崇敬的正统犹太人和他对之持有怀疑态度的更世俗的犹太人[32]。作为一名坚定的反纳粹分子,他深入研究反犹太主义欺诈中最臭名昭著的《锡安长老会纪要》。该书传播了很多犹太人控制全球经济、接管国家政府和杀害基督徒的巨大阴谋(最近,阴谋论在当前全球范围内的极右民族主义者中又卷土重来)[33]

        与此同时,在大多数主流新教徒和天主教徒都避犹不及的时候,盖布兰做出了一些关于大屠杀的评论,其具有很强的预见性。早在1932年,他就谴责希特勒反犹太主义的疯狂,并预言“显然他将走向末日,与《以斯帖记》中的哈曼命运相同”[34]。到1942年,他是最早传达欧洲纳粹大屠杀和希特勒灭绝犹太人新闻的人之一;到了第二年,他正确地估计出,那时德国人已经杀死了200万人。[35]

        1948年以色列建国时,哈里·杜鲁门和他的国务卿乔治·马歇尔之间体现出非常明显的宗教界限。前者是浸信会原教旨主义者,后者是主流新教徒。杜鲁门在12岁时已经读了两遍《圣经》,而马歇尔则是一个圣公会教徒。[36]在英国对巴勒斯坦的托管权结束的前两天,杜鲁门会见了马歇尔,以及副国务卿罗伯特·洛维特和年轻的白宫法律顾问克拉克·克利福德。

        那时,杜鲁门已经向时任犹太复国主义组织主席——魏兹曼做出了美国承认以色列的承诺,他让克利福德将他这样做的理由陈述给马歇尔和洛维特。但杜鲁门还没开始,马歇尔就打断了总统的话:“我甚至不知道克利福德为什么会在这里。他是国内顾问,而(我们讨论的)这是一项政策问题。”杜鲁门回应道:“将军,他在这里,是因为我邀请他来。”洛维特是耶鲁大学骷髅会[37]的成员,他的父亲是美国联合太平洋铁路公司的主席,他补充说,承认以色列“显然是为了赢得犹太人的选票”。杜鲁门和马歇尔互相攻击了一会儿后,马歇尔最后宣布:“如果你听从克利福德的建议,那么我会在选举中投你反对票。”[38]

        最终,马歇尔让步了,并承诺对自己的反对承认以色列的立场保密。杜鲁门的父母都是虔诚的浸信会教徒,杜鲁门小时候经常上主日学校,成年后进行了再浸礼;无论他在哪里,他总会参加周日礼拜。在他的个人文章中,他记录道:“我是一名浸信会教徒,我认为这个教派给了普通人最近、最直接的接近上帝的途径。”[39]

        离开白宫后不久,杜鲁门参观了美国犹太神学院,在那里,一位朋友将他介绍为“帮助建立以色列国家的人”。作为回应,杜鲁门提到了从巴比伦囚禁中将犹太人释放的波斯国王:“你说的‘帮助建立’是什么意思?我是居鲁士,我是居鲁士。”[40]

        1949年的停战协定将旧城和约旦河西岸交给了约旦人;在以色列国土最窄的“腰部”地区,约旦军与海相隔的距离仅为9英里。耶路撒冷较新的西部地区仍在以色列的控制之下,但约旦人控制着拉特伦,其距离新城和以色列其他地区的关键连接处的主要道路仅一箭之遥。独立战争期间,以色列人曾在拉特伦进行了一场激烈的战斗,但以失败告终。随后以色列人在南部几英里处修建了一条新公路,使得连接处的脆弱性略有降低。

        美国的时代论者与主流基督教徒算是表亲,但与后者不同,他们对于以色列的建立欣喜若狂。其中最典型的是司可福,他曾就读于菲利普斯学院和普林斯顿大学,会说希伯来语和亚拉姆语,任费城圣经大学校长,后来花了10多年时间编写1967年版的《司可福串注圣经》。1949年,他宣称“弥赛亚时代即将开始”。此外,他认为以色列和英国之间的“迫在眉睫的联盟”,可以看作犹太人和复兴的罗马帝国之间的时代论契约的开始。司可福似乎忘了,此前犹太人一直在攻击英国士兵,英国人可能并不想与犹太复国主义者结盟。还有其他一些时代论者更进一步,他们认为,上帝有意缩短富兰克林·罗斯福的寿命(他与阿拉伯人建立了密切的关系),这样可以使亲以色列的哈里·杜鲁门成为总统。[41]

        虽然以色列的建国确实触动了学究型时代论者的灵魂,但在他们的核心圈子(司可福就是这个核心圈子里的典型代表)之外,引起的共鸣并不多。此外,尽管以色列的建国使犹太人回到了圣地,但犹太人并没有控制圣殿山,事实上,他们甚至都无法进入圣殿山,这是数千年来没有发生过的。因此,他们没有实现时代论的基本要求:在重建的第三圣殿中恢复礼拜和祭祀。

        19年后,这种情况将会改变。1967年5月,阿拉伯暴徒涌上街头,要求摧毁以色列,埃及总统贾迈勒·阿卜杜勒·纳赛尔封锁了以色列进入红海的通道,并将联合国维和部队赶出西奈半岛。(1956年,通过与法国和英国的短期军事同盟,以色列占领了西奈半岛。根据随后达成的协议,西奈半岛又归入了埃及。并且根据该协议,纳赛尔的两次行动均构成战争行为。)关键是,纳赛尔还向拉特伦派遣了两个突击营,直接针对以色列的西耶路撒冷;5月底,他公开宣称要摧毁这个犹太国家。

        纳赛尔估计,这一挑衅将引发以色列的进攻,最终导致这个小国被更强大的阿拉伯军队清洗。但他只估计对了一半。6月5—10日的六天里,以色列武装部队将尚未起飞的埃及空军摧毁在地面上,并占领了西奈半岛、西岸、戈兰高地以及旧城和圣殿山。

        起初,以色列人并不打算攻占旧城。他们认为自己的国家处于毁灭的边缘,埃及对他们的生存威胁已经牵涉他们所有的精力和资源。因此,以色列国家领导人绝不想让约旦人加入战争,因为约旦人可能会在以色列脆弱的“腰部”将以色列一分为二。以色列在耶路撒冷地区的战略利益,主要集中于斯科普斯山飞地[42]内,该地区有一些小型驻军以及废弃的大学和医院,完全被约旦的领土包围。

        以色列向约旦国王侯赛因传话:如果约旦不采取敌对行动,以色列就不会攻击约旦河两岸的军队。侯赛因却说他的答案将通过“空降”到达,很快,约旦通过战斗机和炮弹袭击了以色列。虽然侯赛因的空袭基本无效,但当约旦人炮击耶路撒冷和特拉维夫郊外的国家国际机场时,以色列人别无选择,只能做出回应。即使在那时,国防部长摩西·达扬为应对危机而刚刚上任三周,依然希望谨慎行事;但内阁鹰派,特别是梅纳赫姆·贝京[43],要求军队占领耶路撒冷;在战争的前两天,达扬的克制政策占据了上风。[44]

        能比摩西·达扬更好地应对旧城不断变化的动态的人几乎没有。这位独眼国防部长在一个农场长大,每天都与阿拉伯人打交道,会说阿拉伯语,与阿拉伯的童年伙伴们建立了友谊,并钦佩于伙伴们的父母安静的性格。独立战争期间,年轻的达扬曾作为一名中校,指挥耶路撒冷地区的犹太军队。在那场最终结束1948年冲突的微妙而漫长的停战谈判中,他与约旦谈判方阿卜杜拉·塔勒进行了广泛而越来越热情的接触。达扬非常信任他,在塔勒的陪同下,达扬穿着阿拉伯服装前往安曼[45],并与侯赛因的父亲阿卜杜拉国王进行了谈判;几年后,当塔勒要求以色列的《巴勒斯坦邮报》(《耶路撒冷邮报》的前身)严厉地批评他,从而提高他在安曼的信誉时,达扬回报了他。[46]

        随着埃及和约旦的外部威胁消除,战争即将停火,以色列内阁最终授权占领耶路撒冷旧城;当地的指挥官乌兹·纳尔基斯曾在1948年的旧城战役中失败,他命令伞兵军官莫迪凯·古尔执行最后一次袭击。

        古尔的预备役部队,最初是计划部署到西奈半岛的,但随后其与约旦军队展开了一系列的血腥战斗,从而确保了旧城北部和东部郊区的安全。这些战争的另一个好处,是建立了一条通往斯科普斯山的通道。旧城的约旦驻军紧急请求了支援,但以色列的飞机驱散了这支西行救援纵队,这使古尔的伞兵在6月7日相对容易地由通道进入了耶路撒冷。达扬铭记世界人民的信仰,没有授权对旧城的空中袭击,炮兵部队从圣殿山绕行,并仅向阿克萨宣礼塔内的狙击手进行零散的小型武器袭击。[47]这是幸运的,因为约旦人在圣殿山附近储存了大量弹药,近距离战斗很可能会点燃这些弹药,带来灾难性的地缘政治后果。[48]

        古尔占领了世界上最神圣的地方,用无线电向纳尔基斯发出:“圣殿山在我们手中!”这也许是现代希伯来语中最著名的一句话。纳尔基斯和什洛莫·戈伦跟着古尔登上了山,其中戈伦是独立之后的以色列的军队首席拉比,他欣喜若狂地登上山顶,高呼《圣经》经文,反复吹响他的羊号角(即朔法尔[49])。

        戈伦是想要重建第三圣殿的少数犹太人之一。他把纳尔基斯拉到一边商量。几十年后,就在戈伦去世之前,纳尔基斯向《国土报》提供了这次谈话内容:

        戈伦:纳尔基斯,现在是向岩石圆顶清真寺投放100公斤炸药的时候了,就这样吧。

        纳尔基斯:拉比,住手。

        戈伦:纳尔基斯,这样做将翻开新的历史篇章。你没有领会这样做的重要意义。现在正是机会。明天,可能就什么都做不了了。

        纳尔基斯:拉比,如果你不停下,我就立刻把你送去监狱。[50]

        戈伦默默地离开了。达扬一听说占领旧城的消息,就立即前往耶路撒冷处理圣殿山事务。当时的圣殿山和现在一样,是中东政治炸弹的导火线。

        正如达扬在他的回忆录中所描述的:

        多年来,阿拉伯人一直禁止犹太人进入他们最神圣的场所,包括耶路撒冷清真寺院内的西墙和希伯伦的列祖之墓[51]。现在我们掌握了控制权,我们应该理解其他那些和曾经的我们一样有相同需求的人,允许各种信仰的人在圣地自由参观和朝拜。[52]

        达扬到达圣殿山后,立即命令将岩石圆顶清真寺上的以色列国旗移走。第二天,他咨询了一位希伯来大学的伊斯兰历史学教授,探讨如何更好地接触管理此地的神职官员,也就是瓦克夫[53]。此后不久,他和工作人员登上圣殿山,前往阿克萨清真寺,进行了一次具有决定性意义的会面:

        当我们继续登上圣殿山到达清真寺大院时,我们似乎……进入一处阴沉的寂静之地。清真寺外接待我们的阿拉伯官员庄严地向我们致意,他们的表情反映出对战败感到悲伤,并恐惧于我可能会做的事情。[54]

        达扬命令士兵们把鞋子和武器放在门口。经过瓦克夫的初步介绍后,达扬让官员们谈论未来,但他们沉默了。于是达扬和随从们盘腿坐在地板上,以阿拉伯的风俗和他们聊天。最终,官员们敞开了心扉:他们最关心的是战争期间的水电中断。达扬承诺将在48小时内恢复水电。

        这时,达扬将他来这里的原因告诉了瓦克夫:他要让他的士兵离开圣殿山,圣殿山还将留在瓦克夫的手中。达扬要求他们恢复相关服务,并告诉他们,以色列人不会像约旦人那样审查传统的星期五礼拜;以色列的部队将从外部保卫这座山,但推土机已经将西墙附近的阿拉伯住宅清除;犹太教最神圣的地方——西墙,将继续掌握在以色列人手中。

        达扬后来记录道:“瓦克夫和官员们并不喜欢我说的最后一句话,但他们知道无法改变我的决定。”[55]达扬是一个惊人的好色之徒和考古窃贼,他不是天使。记者格肖姆·戈伦伯格观察到,“如果上帝真的干预了人类历史,那么他在选择圣徒时很有幽默感”[56]。达扬自己做出了这一安排,几乎没有采纳内阁的建议;因为即使是谨慎和持久的妥协,也通常无法达到各方都满意。

        但这种匆忙的安排依然产生了一系列问题,每个问题都可能带来灾难性的后果。几乎从一开始,拉比戈伦就很能制造麻烦。他首先带领一小群追随者到圣殿山祈祷。起初,瓦克夫并没有反对,但在埃波月[57]九日(这一天是犹太人纪念第一和第二圣殿被摧毁的日子),他做出了超越限度的行为。那天是1967年8月15日,这位惹事的拉比带着50个人和一个便携式方舟来到圣殿山,吹响了他的羊号角并祈祷。

        城内的穆斯林开始焦躁愤怒,瓦克夫封锁了圣殿山的主要入口,并开始向犹太人收取进山费用;而戈伦的回应则是宣布下一个安息日会带来1000名追随者。至此,以色列内阁已经厌烦了戈伦的这些危险行为,并做出决定:犹太人可以参观圣殿山,但不能在山上祈祷。而几乎同时,以色列最高宗教委员会的首席拉比直接禁止了犹太人参观圣殿山。虽然并非所有犹太人都承认拉比的权威,但大部分正统犹太人都承认,而且由于他们往往在意识形态上最为极端,因此这项禁令至少在一段时间内遏制了与圣殿山有关的紧张局势。[58]

        少数犹太人想把穆斯林从圣殿山上赶出去,炸毁岩石圆顶清真寺和阿克萨清真寺,重建第三圣殿。他们感到愤怒,并将达扬称为叛徒(甚至还有更恶劣的称谓)。尽管历史证明达扬是正确的,但重建圣殿的狂热者或瓦克夫都不这样认为。

        几乎从一开始,达扬的妥协就在很大程度上否定了古尔那个著名的感叹句[59];圣殿山事实上在穆斯林社区手中,这种控制正是在自1967年战争以来的半个世纪里才得以巩固的,围绕上帝那一小块35英亩土地的政治动荡也随之加剧。

        下一个圣殿山上的重大事件,由一名精神分裂的澳大利亚基督徒丹尼斯·迈克尔·罗恩引发。他充满了由精神病引发的宗教热情,于1967年8月21日进入阿克萨清真寺,将煤油倒在讲坛的楼梯上,并投掷了火柴。大火烧毁了清真寺的大部分室内装饰,还削弱了柱子的支撑力。

        罗恩是赫伯特·阿姆斯特朗的信徒。阿姆斯特朗是美国原教旨主义上帝广播教会的创始人,也是20世纪30年代初最早利用广播新媒介的传教士之一。阿姆斯特朗并不是时代论者,但他相信英国人和美国人是“10个消失的犹太部落”的后裔。尽管如此,时代论的普通信仰,即只有在重建的圣殿中恢复朝拜和祭祀才能使耶稣复临,激发了具有活跃错觉的罗恩,他采取了合乎逻辑的下一步:阿克萨清真寺是第一圣殿的所在地,它必须被摧毁,以便为新圣殿的重建让路(尽管大多数权威人士认为第一圣殿的遗址在岩石圆顶清真寺,而不是附近的阿克萨清真寺)。

        两天后,当以色列警察终于在东耶路撒冷的小旅馆抓住罗恩时,他高兴地承认:既然上帝想让他建造这座圣殿,他就必须先摧毁阿克萨清真寺。最后,罗恩被审判、定罪,并被关押在精神病院,于1974年被驱逐回澳大利亚,一直在医院里住了20年才去世。

        尽管罗恩和犹太人没有什么关系,但阿拉伯世界还是爆发了;纳赛尔和沙特国王费萨尔都向以色列宣布圣战。在这一特殊情况下,以色列人是幸运的,因为纳赛尔和费萨尔都锁定了最有可能接受号召的激进伊斯兰主义者。[60]

        阿克萨清真寺的大火表明,圣殿山政治有最具爆炸性的两大特点。首先,它无处不在,总是充满偏执;尽管罗恩很明显只是个精神病人,并与犹太复国主义无关,但阿拉伯世界的许多人仍然指责犹太人纵火,并认为事实是以色列的消防队员向其泼汽油。而与此相反,以色列内阁部长则指责穆斯林为了挑衅而放火。其次,如果圣殿山的火药桶会点燃世界,那么它很可能伴随着宗教幻想的火焰,这种幻想可能来自犹太复国主义极端分子、激进的伊斯兰主义者、时代论基督徒或者普通的精神分裂症患者。

        将这一原则应用于世界上所有的伟大信仰,并不算过分笼统。主流的犹太教、基督教和伊斯兰教,在落入受骗的真信徒或明显的精神错乱者手中之前,都是和平的宗教。关于精神错乱者,他们的主要症状是幻听,常常听到来自上帝的声音。[61]

        并不是只有基督教徒才有末日错觉。犹太人在这方面领先了500年。伊斯兰教几乎是从穆罕默德本人开始,就有自己的末日错觉版本,这一版本最近在书店和战场上迅速发展。

        绝望是末日叙事生长的沃土。公元前6世纪,被流放到幼发拉底河沿岸为奴后,古犹太人正需要休整。《以西结书》和《但以理书》记载了压迫犹太人的人被毁灭,但神学家们通常认为首次明确提到犹太弥赛亚的是《以赛亚书》。与《但以理书》相似,《以赛亚书》的写作时间是以赛亚生活的公元前8世纪之后的几个世纪,它可能是由一系列作家在巴比伦流亡期间以及回到犹大之后创作的。书中预言了一位救世主的出现,他将结束世界,在耶路撒冷建立一个上帝的普世王国。

        弥赛亚主义是犹太历史上一个持续的主题,它有时像一条细红丝带,有时则像一块展开的能够蒙蔽理性的深红色布。它可能会带来一场全国性的运动,例如罗马时期,70年,奋锐党[62]策划的起义。起义中分裂出西卡里党,其暗杀了拒绝反叛的犹太人;其中一些西卡里人后来在死海之上的梅察达集体自杀。它还可能是某些虽有才能但被骗、偶尔有精神病的个人的作品,比如沙巴蒂·萨维,一位患有躁狂抑郁双相型障碍的塞法迪[63]拉比,他在1648年的狂躁间歇宣称自己是弥赛亚,并成为小亚细亚士麦那地区大型犹太社区的宗教领袖,然后在东地中海四处穿梭,聚集皈依者和会众。17世纪中期的大屠杀使欧洲大陆的犹太人口大量减少,沙巴蒂·萨维的弥赛亚救世承诺吸引了大批追随者,但当他被奥斯曼帝国监禁而面临死亡威胁时,他选择了皈依伊斯兰教,这一承诺也宣告结束。[64]

        大屠杀后,难以控制的以色列独立运动中再次上演了奋锐党和西卡里党之间的戏剧版本。在独立前的冲突中,两个恐怖组织“伊尔贡”和“莱希”(前者一般不会谋杀犹太人同胞,但后者会),都参与了对阿拉伯人和英国官员的暗杀性袭击,最著名的是1944年在开罗暗杀英国副国务大臣莫恩勋爵,以及1946年炸毁耶路撒冷的大卫王酒店,造成91人死亡。

        第二次世界大战爆发时,伊尔贡要求暂时停止对英国人的袭击,这激怒了更激进的成员,他们在亚伯拉罕·斯特恩的领导下联合成立了莱希(就是在英语世界中更为人所知的“斯特恩帮”)。像伊尔贡一样,莱希的目标也是阿拉伯人和英国公民,它们不仅对莫恩遇刺事件负责,而且对1948年的联合国代表福克·伯纳多特伯爵遇刺事件负责,因为当时它们担心伯纳多特会与阿拉伯人达成对它们不利的停战协议。(战争期间,伯纳多特曾帮助数万人从德国集中营获释,其中约有1600名犹太人。)

        除了第二次世界大战期间与英国的临时停火争议之外,还有两个方面的争论使伊尔贡和莱希分裂。与奋锐党和它的分支西卡里党的区别一样,伊尔贡人一般不会杀害他们的犹太人同胞,而莱希人则会这样做。过去的西卡里人和后来的莱希人都谋杀过犹太人的通敌者,偶尔还谋杀与他们仅仅有意识形态分歧的人。更重要的是,和西卡里人一样,莱希人也是热情的弥赛亚主义者,而伊尔贡人则更世俗化。

        莱希的宣言,即《民族复兴原则》,列出了18条,其中最臭名昭著的是向犹太人承诺《出埃及记》中的土地“从埃及河到大幼发拉底河”,以及第三圣殿的重建。[65]在被纳入以色列武装部队和情报机构之前,伊尔贡和莱希的最后领导人分别是梅纳赫姆·贝京和伊扎克·沙米尔。两人后来都成为以色列总理。

        以色列人对弥赛亚主义团体的支持相对较少。那里的民众消息灵通,他们认为在晚间新闻时间给别人打电话是一件非常粗鲁的事情;他们同样非常清楚,重建圣殿类似于一种自杀行为。尽管这个国家仍然是恐怖袭击的目标,最近尤其是伊朗部队打击的目标,但弥赛亚主义的原推动力——一种与巴比伦人、塞琉西王朝、罗马人、国社党或纳赛尔统治下的埃及人等规模相当的威胁——已不复存在;毕竟,以色列已经与埃及和约旦签署了和平协议,而剩下的威胁来源国叙利亚则陷入内乱。

        即便如此,1967年对旧城的占领确实激励了以色列千禧年主义者中的一小部分人,特别是信仰者同盟(即坚信派),他们将《出埃及记》中的最大领土视为信仰:上帝将加沙、西岸、戈兰高地,甚至荒芜的西奈半岛永远留给了犹太人。1967年独立战争刚刚结束,坚信派就开始在约旦河西岸修建定居点,1974年,他们与新总理伊扎克·拉宾因为那里的修建工程发生了冲突;最终,坚信派通过拉宾的对手、建立定居点的支持者——国防部长西蒙·佩雷斯,迂回挫败了拉宾。3年后,梅纳赫姆·贝京成为以色列的领导人,他打开了西岸扩张的闸门。(1978年的《戴维营协议》[66]规定,将西奈半岛归还埃及。坚信派没能阻止该协议的实施。)

        其他的犹太弥赛亚主义者则专注于圣殿的重建。伊斯拉尔·阿里尔就是这样一位圣殿狂热者,他是一位关注梅洛迪小母牛的拉比。1967年,年轻的阿里尔曾在攻占西墙的伞兵旅服役。对他和一小群极端正统的犹太人来说,弥赛亚(第一个也是迄今为止还没有到临过的)在圣殿建成并使用之前是不可能出现的。1988年,阿里尔协助建立了“圣殿研究所”,该研究所不仅致力于重建第三圣殿,而且致力于完成圣殿最精致的细节,包括亚麻长袍、乐器、古犹太教朝拜所用的仪式。

        完成这些细节只不过是时间、技能和金钱问题,阿里尔和他的同事们根本不缺。更难的是要找到祭司主持弥赛亚回归所需的祭祀仪式,而这代表了神学上的一个两难问题,因为祭祀通常只能由用红色小母牛的骨灰洁净后的祭司主持,这本身就需要屠宰这种稀有的牛。

        约瑟夫·埃尔博伊姆是另一个弥赛亚团体“重建圣殿运动”的拉比,他试图通过创造“从未与死尸在同一屋檐下”的洁净祭司,来克服无法找到合格红色小母牛的困难。他从古代祭司种姓科哈尼姆的后裔中挑选出自愿的孕妇,她们将在一个特殊的院子里分娩,那里高于地面,以避免另一个祭司的禁忌,即“不能错误地踩在一块没有标记的坟墓上”。该项目允许家长探访,但男孩们永远不能走出大院;他们可以在一个升高的庭院玩耍。男孩们将接受包括祭祀技术在内的祭司培训,在成年礼后的某一天,他们将成为转基因红母牛的屠宰者。[67]

        1975年,像8年前戈伦和他的追随者做的那样,一小群犹太弥赛亚主义者进入圣殿山,在一扇禁止他们进入的大门内祈祷。[68]阿以联合警察部队将正在祈祷的这群民族主义者赶走,但以色列法庭做出了有利于这群人的裁决。这引发了骚乱,数名阿拉伯人死亡,几十人受伤。阿拉伯国家在联合国发出了抗议,瓦克夫规定,包括西墙在内的整座圣殿山都属于清真寺。以色列高等法院最终废除了允许犹太人在圣殿山祈祷的决定,但随后利库德集团的3位总理梅纳赫姆·贝京、阿里尔·沙龙和本雅明·内塔尼亚胡发誓要改变这一裁定。但最终没有人兑现这一煽动性的承诺。

        1982年,两个犹太极端主义团体分别试图在圣殿山放置炸药;第一个是由拉比梅厄·卡赫纳领导的反阿拉伯种族主义团体,叫作“卡赫运动”,其试图在岩石圆顶清真寺的墙壁附近引爆炸弹。第二个是名为“利夫塔帮”的神秘团体,其试图炸毁岩石圆顶清真寺和阿克萨清真寺。[69]为此,哈佛大学国际事务中心进行了一次地缘政治模拟,并得出“如果岩石圆顶清真寺真的被摧毁,那么这将触发第三次世界大战”的结论。

        更危险的是另一个团体“犹太地下组织”。到20世纪80年代初,其成员已经杀害了希伯伦的5名阿拉伯学生,并企图暗杀约旦河西岸的市长们,炸毁清真寺和阿拉伯公交车。这些行为非常危险。1984年,他们对岩石圆顶清真寺进行了广泛的侦察,并获得了先进的炸药,但后来计划取消。正如后来的一个极端组织的成员所说,30个成员的行动,可以被称为一个地下组织的行动;300个成员的行动,就是一场运动;3000个成员的行动,那就是一场革命。[70]第二年,一家以色列法院判处了27名地下组织成员监禁,监禁时间从几年至终身不等,罪名是对圣殿山有企图并进行了其他恐怖袭击。然而,到1990年,在以色列右翼团体的压力下,他们全部获释。[71]

        直到1994年去世之前,拉比戈伦一直在制造麻烦。从第一次造访圣殿山,他就开始勘测。在他去世前几年,他公布了那些测量数据,并发表了一篇圣经评论,宣称山的南部有一大块土地不受圣殿的洁净限制,因此其适合修建犹太教堂。该评论文章忽略了一个事实,即该地目前被阿克萨清真寺占据。

        与地上的祈祷一样,在圣殿山土层下进行的考古活动也会激起阿拉伯人的愤怒。尽管当时有大量的历史和考古学证据,但穆斯林通常否认第一和第二圣殿曾经存在过,并将任何挖掘圣殿山土层的行为视为犹太人试图为建立第三圣殿找证据。

        几个世纪以来,人类的居住地积累了连续的沉积层,因此考古学家挖掘得越深,能够追溯到的时间就越早。罗马和耶路撒冷等具有悠久历史的古城中,偶尔会有这方面的生动体现。在这些现代城市的街道下方,12~24英尺的地方发现了可追溯到基督时代的挖掘物。

        这意味着,耶路撒冷的考古学家们在挖掘时首先会遇到奥斯曼帝国时期的文物,然后是更早的穆斯林王国的文物,然后是罗马、希腊、犹太人的文物,如果幸运的话,就还有迦南统治者的文物。1967年以色列占领耶路撒冷后,希伯来大学的考古学家本杰明·马扎尔领导的犹太研究人员首次进入了圣殿山周围的地区。

        马扎尔最重要的发现是希律王第二圣殿晚期的一个大型公共区域,那里有大量的房屋、宽阔的街道和毗邻圣殿山的复杂水利系统,以及通往圣殿山的巨大台阶。这可能是考古学家们发现的证明第二圣殿存在过的决定性证据。

        瓦克夫向联合国教科文组织投诉,认为挖掘破坏了圣殿山的稳定性。联合国教科文组织任命了一系列独立调查人员,但没有发现山结构被破坏的证据,还赞扬了考古结果。只有其中一位与会者批评了挖掘工作没有得到阿拉伯土地所有者的许可。[72]

        更严重的问题来自西墙隧道。以色列从1969年开始,沿着圣殿山的西面从地下挖掘,这毁坏了马穆鲁克时期的多个建筑,令瓦克夫很心烦;联合国大会对挖掘进行了谴责,随后对以色列进行了制裁。但美国及其盟国为了抗议联合国的制裁,不再向联合国教科文组织缴纳会费,这差点儿使该组织破产。

        19世纪,英国考古学家查尔斯·沃伦在圣殿山地上和土层下进行了大量挖掘,众多发现之一是西墙地下的一扇古老大门,它通往地下的隧道,然后是一段台阶,其通往岩石圆顶清真寺附近的地面。后来,沃伦写了一本小册子《应许之地》,建议成立一个“类似于过去东印度公司”的欧洲财团,它可以和犹太人一起殖民巴勒斯坦地区。[73]

        1981年,在拉比耶胡达·盖茨的指导下,西墙隧道的工人再次遇到了“沃伦之门”,并发现了其外的东行隧道,盖茨认为这条隧道将通向至圣所,甚至可能通向丢失的约柜。他的团队开始向东、圣殿山下岩石圆顶清真寺的方向挖掘,这显然是在以色列宗教事务部的合作下进行的。盖茨发现东行隧道几个星期后,瓦克夫的卫兵听到地下挖掘传来的声音,便下到蓄水池查看,他们在那里与犹太人发生了冲突。[74]

        果不其然,戈伦宣称,新隧道比西墙还要神圣。而另一方面,阿拉伯人看到了犹太人想要控制圣殿山的赤裸裸的企图。面对阿拉伯人的强烈敌意,以色列人用一堵厚厚的混凝土墙封锁了隧道,永久性地阻止了进一步的调查。

        20世纪80年代中期,西墙隧道完工后不久,以色列人就将其向游客开放。通道很狭窄,游客们必须从靠近哭墙的南部入口进入,参观完后从同一门口走出,这种往返造成的拥挤严重影响了游客的参观。为了解决这个问题,以色列人在隧道北部终点修建了一个出口,这再次激怒了阿拉伯民众,他们认为新出口企图破坏和摧毁圣殿山;愤怒的人群聚集,工程被迫暂停。

        1996年9月23日午夜,以色列人打通了隧道北部的出口,使隧道与地上街道相通,并迅速在那里安置了一扇铁门。两天后,整个巴勒斯坦地区爆发了骚乱,以色列军队和根据《奥斯陆协议》新组建的巴勒斯坦国家安全部队之间爆发了激烈冲突;双方都有几十人丧生,数百人受伤。[75]局势十分紧张。克林顿总统不得不召开了一次国际首脑会议,但会议没有最终结果。随后,骚乱平息,出口仍然敞开;今天,游客走出隧道出口后会惊奇地发现,以色列警卫在那里迎接他们,并将他们护送回哭墙。

        1967年以色列对旧城和约旦河西岸的占领,不仅改变了中东和阿以关系的政治局面,而且给美国和以色列的政治、宗教和文化带来了越来越大的冲击。其影响力是当年事件中的直接参与者无法预测到的。最令人震惊的是,美国的时代论主角将被一个如此幻想的、脱离现实世界事实的信仰体系驱使,让约翰·纳尔逊·达比都自愧不如。

        10 《启示录》的开创者
        畅销书与美国核武政策

        为了深入了解美国当前的文化两极分化,我们可以观看一部美国B级电影《末世迷踪》,尼古拉斯·凯奇在里面饰演航空公司飞行员雷福德·斯蒂尔。在从纽约飞往伦敦的途中,斯蒂尔飞机上的数十名乘客莫名其妙地失踪,且飞机与一架显然无人驾驶的客机相撞,随后在斯蒂尔女儿的引导下,不可思议地在一段废弃公路上紧急迫降。

        影片在飞机上和地面上的混乱场面之间不断转换镜头,观众们可以分成两组:那些认为情节离奇并后悔观看的人,以及那些认为影片讲述了一个有趣的故事的人,其中的故事就像《十一罗汉》或《卡萨布兰卡》中的故事一样。

        没有什么比时代论更明显地分裂了美国的文化:对其中一方来说,它提供了一种能够从末日苦难和永恒诅咒中被拯救的可能性;而对另一方来说,这似乎只是一个信仰体系,就他们所理解的程度而言,就像《末世迷踪》那样杂乱无章。

        2001年10月7日,美国总统乔治·布什向全国发表讲话,宣布在阿富汗采取军事行动。这次讲话可以很好地说明这一文化分歧。在世俗人看来,这次讲话的风格宽容而温和,几乎不包含任何宗教内容,只是在美国真诚认可并给予其近20亿教徒美好祝愿的时候提到了伊斯兰教。

        而另一方面,福音派听众却从一些话语中听出了相当不同的信息,如“孤独之路”(出自《以赛亚书》)、“杀害无辜者”(出自《马太福音》)和“没有和平”(出自《耶利米书》《以西结书》《历代志》《以赛亚书》),它们暗示了犹太-基督教上帝的愤怒。宗教学者布鲁斯·林肯观察到,“留意到这些话语的人很清楚地听到了,但是缺乏《圣经》知识的人可能听不到”[1]。布什的讲话像是一声响亮刺耳的狗哨;正如布鲁斯·林肯发表那些言论之后《今日基督教》所评论的:“可悲的是,我们再也不能在布什讲话时,偷偷地相互点头和眨眼了。”[2][3](布什本人显然对他的时代论信仰保持沉默;官方显示他是卫理公会教徒,大多数观察家将他归类为主流新教徒。)[4]

        时代论幻想的盛行,是美国与其他发达国家的一个很大不同,并埋下了潜在的不幸。

        以色列只有一小部分人是犹太弥赛亚主义者,其他绝大多数人害怕重建第三圣殿,因为他们非常清楚,重建圣殿必须首先摧毁穆斯林的清真寺,而这么做的后果是灾难性的。但是,对美国福音派教徒来说,情况并非如此。由于达比和他的继承者的影响,美国怀有弥赛亚式梦想的基督教徒比犹太人还多,他们希望在重建的圣殿里恢复祭祀。

        这样做的神学理由并不充分。不知道什么原因,时代论者通常会引用繁杂冗余和模棱两可的《帖撒罗尼迦后书》2:4的内容:

        他抵挡神,抬举自己,高过一切被称为神和受人敬拜的,甚至坐在神的殿中,自称为神。

        《穆迪月刊》是穆迪圣经学院的内刊,1967年六日战争后,该刊物的大部分文章都与占领旧城以及重新获取圣殿山的预言意义有关。在确认偏见的一个典型例子中,该刊物上发表了一篇圆桌式文章,其中一位作者将冲突的意义总结如下:

        《圣经》几乎是中东各种事件的百科全书,现在的中东无疑是人们关注的焦点。对我来说,这些事件证实了《旧约》和《新约》预言的字面解释。[5]

        在同一篇文章中,达拉斯神学院院长约翰·瓦沃德讨论了恢复圣殿的动物祭祀问题,指出“许多人由此预测胜利的以色列国家将尽早恢复圣殿活动”,并且“这肯定是神力所致,表明时代的终结”[6]

        瓦沃德并不是一个家喻户晓的名字,与安德森、司可福和盖布兰一样,尽管他的作品非常有名,但他过着简朴、平静的生活。宿命般地,瓦沃德文章的下一页是哈尔·林赛的文章。林赛是一位更不为人所知的达拉斯神学院的毕业生,1958—1962年曾是瓦沃德的门生。[7]

        短短几个段落的引言之后,林赛开始罗列当时的各种“灾难”:越南战争、美国国内种族暴动、第一次洲际弹道导弹发射失败的核悲剧、共产主义中国的崛起、全球人口过多导致的数十亿人挨饿。

        根据林赛的说法,自由新教对《圣经》字面真理的否定和对上帝已死的传播,同样是灾难性的。在他狂热的想象中,地缘政治中的明星国家与《但以理书》和《启示录》完美契合:复兴的罗马帝国/欧盟,“北方之王”苏联,“南方之王”埃及,最后是“东方之王”中国。根据林赛的说法以及《启示录》9:13-21的预言,一个庞大的东方部落(用林赛粗野的措辞,就是“黄祸”[8])将出现:“最近在红色中国境内拍摄的一部电视纪录片说,目前有2亿中国人处于战备状态。这是一个有趣的巧合吗?”[9]

        实际上,《启示录》的章节并没有提到“东方之王”;它的9:16提到了20万来源不明的骑士,而不是2亿。20世纪70年代,处于鼎盛时期的中国人民解放军大约拥有400万士兵。尽管这些与事实不符的点不断出现,但对林赛而言一切都很清晰,据他所说,那个时代一连串无法抗拒的全球恐怖事件:

        是由一块块巨大的拼图碎片组成的,经过许多模糊之后,拼图终于拼好了。我们正生活在一个神圣拼图中的碎片突然回到它们所属位置的时代。当然,最重要的发展是,在经历了近2000年的全球离散之后,以色列在原来的土地上重建了国家,以及自此之后中东发生的事件。[10]

        林赛的这篇文章,暗示了时代论者从被动观察到积极参与末日序列的过程,这一过程是由大规模虚构的、荒谬的地缘政治主张所推动的。林赛提到了一位“以色列历史学家”,当这位历史学家被问及“如果圣殿重建,那么岩石圆顶清真寺怎么办”时,他含糊其词地回答:“谁知道?也许会发生地震。”[11]听到这句话的以色列人可能会大笑:这位被提问的“以色列历史学家”就是伊斯雷尔·埃勒达德,一位莱希党右翼理论家,他起草了该组织的《民族复兴原则》,该原则宣称犹太人有权拥有尼罗河和幼发拉底河之间的所有土地,并主张立即修建第三圣殿。

        《穆迪月刊》在时代论圈子里很有名,但在美国公众中没有多少读者。尽管如此,但林赛对末日审判情景引人入胜的断奏方式展示出他的散文天赋,他将在未来半个世纪里向数千万美国人传递时代论信息。在此过程中,他将获得财富和世界知名度,并改变美国的宗教格局。更令人难以置信的是,他独特的地缘政治幻想会影响到美国的政治团体。

        林赛于1929年出生在休斯敦,从小接受传统的南方原教旨主义教育,但他似乎并不怎么投入;受洗3次之后,他发现宗教无关紧要并令人失望,“所以我就离开了”[12]。他稀里糊涂地完成了得克萨斯大学的商科学习,然后被安排到海岸警卫队做了一段时间的密西西比河拖船船长,还结束了一段失败的婚姻;这些经历让他对世界感到悲观。当他几乎处于自杀边缘的时候,他读了一本基甸版《圣经》,并受到启发:如果他接受了上帝的真理,他就将获得精神上的重生。

        他被吸引了,但仍不确信,于是他自学了希腊语,并沉浸在《圣经》中,而他曾经以为《圣经》充满了历史错误。不久,他遇到了一位名叫杰克·布莱克韦尔的年轻传教士。这位年轻传教士向他介绍了《圣经》预言:“我心中点燃了一团火,从未熄灭。”[13]

        他的新信仰引领他进入了达拉斯神学院,在那里,他获得了神学硕士学位,并再婚。一毕业,这对新婚夫妇就开始了校园传教士的工作,在动荡的20世纪60年代,他们在美国加利福尼亚大学伯克利分校和旧金山分校等学校传播时代论叙事。向持怀疑态度的左翼校园听众布道的经历,将他的修辞技巧磨砺得像一把神学手术刀;一位观察家记录了他让观众席上挤满符合征兵年龄的年轻人的方法:对这群年轻人来说,哈米吉多顿末日并不是一个抽象概念,英俊、有魅力、表达清晰的林赛用黑板上的绘制的地图快速地呈现时事,这让他们非常着迷。[14]

        后来,他和妻子厌倦了大学城的喧嚣,选择在洛杉矶定居,集中精力在加利福尼亚大学洛杉矶分校工作。受《穆迪月刊》成功的鼓励,他决定写一本书。在著名宗教作家卡罗尔·卡尔森(与比利·葛培理共事过)的指导下,他开始了这项工作:

        写书的时候,我会想象自己坐在一个年轻人(一个愤世嫉俗、不信教的人)的对面——我会试图说服他《圣经》预言是真的。如果你能让一个年轻人理解,那么其他人也会理解。年轻人会为了某件事情毫不犹豫地给你打电话,这会迫使你与那些不属于宗教“俱乐部”的人打交道。[15]

        结果,他的《消失的伟大地球》与任何福音派文学作品都不一样:它延续了1967年《穆迪月刊》中的那篇文章的风格,轻松融合了当前的地缘政治学、令人惊叹的未来主义技术和当前的流行文化,并巧妙地覆盖于时代论框架之上。书店没有把它放在发霉的宗教书的架子上,而是把它放在畅销的新纪元板块的架子上,它与《易经》《超觉冥想》《反射疗法》等作品相邻。

        林赛和卡尔森掌握了文学传播的艺术,他们的作品吸引了读者。不到一年,这本书就卖出了1000万册,到现在至少已经卖出了3500万册。罗纳德·里根总统和他的几位内阁秘书手中都有这本书。随后他们又出版了类似的书,销量也达到了数百万。

        这本书的影响力非常大。美国最受尊敬的神学观察家之一,已故的保罗·博耶说:

        我认为,哈尔·林赛实现了一种突破,他使对《圣经》预言感兴趣的人群超出了真信徒的范围,使《圣经》预言成为一种更广泛的文化现象。而那些从来没有关注过预言的人也听说了这本书,于是他们拿起了平装本。当他们看到林赛将时事编织在一起,而《圣经》文本似乎预示着这些事件时,他们说:“哇,这太神奇了。这里面一定有什么道理。”……(林赛)似乎不仅对公众产生了相当大的影响,对政府的一些最高级别官员也产生了相当大的影响。[16]

        该书于1970年首次出版。在这本书中,林赛将达比、安德森、司可福和加尔布莱恩的作品综合成了轻松、流畅的叙事阐述,而且他更擅长推销《圣经》的无误性。他一次又一次地讲述那些几十年甚至几百年后以不可思议的准确性实现了的耶稣和先知的预言。

        确认偏见不仅包括积极寻找有利的证据(无论这些证据多么模糊),而且包括故意对相悖的数据(存在大量没有实现的《圣经》预言)视而不见。仅举几个例子:《圣经》预言埃及将成为永久的荒地、尼罗河将蒸发(《以西结书》29:8-15和30:12);埃及人将使用迦南语(《以赛亚书》19:18);最著名的是,一个犹太王国将出现,从尼罗河向东延伸几百英里到幼发拉底河(《出埃及记》23:25-31)。

        林赛的影响力,从最谦卑的信徒延伸到美国政治的制高点。罗纳德·里根从小就从虔诚的母亲内莉那里传承了虔诚的宗教信仰;虽然大多数美国人都知道里根毕业于尤里卡学院,但很少有人知道他与基督徒教会的关联,那是里根家族的教会。虽然基督徒教会是一个主流新教教派,但该教会深受社会和经济保守主义的影响。

        到成年时,里根已经成为一名福音派新教教徒。在政治生涯的早期,他热情地宣布自己对基督的忠诚;在担任加利福尼亚州长期间,他成为《消失的伟大地球》的书迷。[17]他还定期会见当时最著名的时代论者和福音派人士,包括杰瑞·法威尔、金·贝克、帕特·罗伯逊和比利·葛培理。这些人都记得曾与这位崭露头角的政治家在末日论方面进行过热烈的讨论。在葛培理和里根之间的末日论对话中,一位目击者对这位州长如何“坚持自己的观点”感到惊讶。[18]

        里根不只和福音传道者探讨末日论。1971年,他对加利福尼亚州参议院民主党临时主席詹姆斯·米尔斯说:“有史以来第一次,哈米吉多顿末日之战和基督复临的一切条件都已经准备就绪。”他提高音调,继续说道:
        很快了。以西结说,上帝子民的敌人将遭受烈火和硫黄。那一定是指他们将被核武器摧毁。以前没有核武器,现在有了。[19]
        里根甚至强行和犹太人讨论这个问题。1981年,这位新当选总统与美国以色列公共事务委员会的托马斯·戴恩探讨了末日论:“我看了你们《旧约》中的古老预言[20],以及预言世界末日的迹象,我想知道,我们这一代人是不是将要看到末日到来的那一代人。”此后不久,他向亚拉巴马州参议员豪厄尔·赫福林重申了这一想法,并补充道:“苏联将卷入其中。”[21]

        里根尤其被林赛的时代论叙事中的苏联角色吸引;并非巧合的是,在1983年他向全国福音派协会发表的著名演讲中,他称苏联为“邪恶的帝国”,“圣经和主耶稣要求我们抵制这种邪恶”,使这些邪恶之物不再挡道,他接着说:

        苏联庞大而空前的军事建设将会被施行核武器冻结。然而,让我们祈祷救赎那些生活在极权主义黑暗中的人,祷告他们能发现认识上帝的欢愉。但是,在他们这样做之前,我们要意识到,尽管他们宣扬国家至高无上,宣扬国家利益高于个人利益,并做出最终将统治地球上的所有民族的预测,但他们是现代世界邪恶的焦点。[22]

        人们不禁要问,对于里根这样一个沉迷于“千禧年”时代辉煌、接待厅里谈论的都是核灾难的人,苏联领导人会有何感想。情报报告也会让苏联领导人知道,里根的任职多年的国防部长兼搭档卡斯帕·温伯格也是虔诚的末日信仰者,是哈尔·林赛的狂热支持者,是一名虔诚的圣公会教徒。温伯格对《圣经》的最后一本书印象深刻:“我读过《启示录》,是的,我相信世界将结束——这是上帝之力,我期待,而且每一天我都觉得时间到了。”[23](除了里根和温伯格,当时的内政部长詹姆斯·瓦特和司法部长埃德温·米斯也是林赛的粉丝。)[24]

        里根的时代论影响是双向的。福音派领袖支持里根的末日信仰,里根也反过来为他的福音派盟友提供信息。1983年,他让国家安全委员会为法威尔准备了一份核武器简报,而法威尔则将这些信息进一步简化到道德多数派[25]赞助的报纸广告中:“我们不能在国防上排名第二!但遗憾的是,这就是我们今天的位置,而且这一排名还有继续下降的趋势!”[26][27]

        1983年之后,里根的末日论和鹰派思想都消失了,这对地球来说是一件幸事。总的来说,这位前总统并不是消息灵通的人;他的传记作者之一卢·坎农说:

        1982年初,比尔·克拉克成为里根的第二任国家安全顾问,他发现总统对世界许多角落发生的事情几乎一无所知。他知道总统会对视觉辅助的展示方式做出反应,并推断最容易让总统接受的形式是电影。于是他带里根去看电影。[28]

        美国广播公司制作了一部电视电影[29]《浩劫后》,电影讲述了堪萨斯州劳伦斯市在一次核战争中汽化,这尤其触动了里根。之后他在日记里写道:

        电影效果很好,让我非常失落。到目前为止,该剧还没有做任何广告,我知道这是为什么。我本人的感触是,我们必须尽己所能去阻止,确保永远不会发生核战争。[30]

        里根没有在日记中提及该电影未做广告的原因:杰瑞·法威尔认为该电影是反核活动家的宣传行为,展开了一种抵制核武器潜在赞助商的威胁活动。里根随后在日记里详细记录了与参谋长联席会议主席小约翰·威廉·维西上将的谈话,维西将核战争规划称为“一次最节制的经历”。[31]

        很明显,里根看的电影和军事简报都低估了热核战争[32]的后果。那时,武器专家们已经知道,热核爆炸所产生的火风暴将比最初的冲击波和随后的放射性沉降物产生更大的杀伤力;《浩劫后》播出几个月内,《科学》杂志上发表了一篇具有里程碑意义的文章,文章指出,火风暴产生的平流层烟尘将持续数年,并导致全球气温急剧下降,这可能导致更多的人死亡,甚至比最初爆炸产生的冲击波、火风暴和放射性沉降物造成的死亡人数还要多。[33]

        1984年,在里根的总统连任竞选中,面对对手沃尔特·蒙代尔,里根的末日信仰成为一个颇具争议的话题。10月21日,在总统辩论中,记者乔吉·安妮·盖耶和马文·卡尔布就这一问题向他施压,里根的回复是建议“一些神学家”信仰世界末日,但他不认为任何国家都能够在核战争中获胜,以此低调处理了自己的末日信仰问题。(据说南希·里根[34]听到卡尔布的问题时咕哝了一声“哦,不”。)[35]

        到了第二任期,里根非常惧怕核战争的后果。他的苏联事务顾问、外交官小杰克·马特洛克怀疑里根是否会对核袭击进行报复:“我认为,在他内心深处,即使美国遭到核袭击,他也不会(用核武器)进行报复。他从没有这样暗示过,但我似乎感觉到了。”[36]里根的摩尼教式反苏立场已经消退,甚至在1986年雷克雅未克峰会上,他向米哈伊尔·戈尔巴乔夫提议全面禁止核武器。尽管两位领导人未能实现这一突破,但美苏紧张局势有所缓和,并且一年后他们签署了影响深远的《中导条约》[37]

        神学家们和出版行业都惊叹于林赛的巨大成功,但对林赛书中不断出现的事实性错误并不关注。[38]在某处显眼的段落中,林赛描述了1942年一支庞大的日本侵略军开足马力向西穿越印度洋、向北非挺进,“没有什么能阻止他们”。但幸运的是,山本五十六大将在最后一刻决定改变舰队的方向,转而入侵美国西海岸。美国海军在珊瑚海拦截了这支特遣舰队,并在那里打败了日本人,从根本上扭转了战争局势。[39]

        在真实的第二次世界大战中,日本人没有试图入侵北非,甚至没有入侵美国西海岸的计划。珊瑚海之战是一场规模相对较小也没有决定性的海军行动,如果按细节评估,那么日本应该是战胜方,更何况从印度洋开往美国西海岸的日本联合舰队根本不会到达该片水域。在另一段落中,林赛描述了希特勒在一场“政变”中夺取政权。他将“政变”这个单词大写,其指的是1923年希特勒在奥佩拉·布菲啤酒馆里那场失败的暴动;事实上,在接下来的近10年时间里,希特勒的民族社会主义者[40]并没能通过合法的议会选举而获得权力。这本书还预测,地热资源将给以色列带来巨大的财富,这进一步说明了林赛经常幻想式地理解日常事件:

        我正在和一位著名的洛杉矶工程师谈话……我们讨论了对廉价能源的需求……他确信,在以色列周围的土地上,有足够多的蒸汽被困在众多的断层之下,可以为运行涡轮机提供动力,从而更经济地发电。他将这一新工艺称为地热能。在不久的将来,以色列将发明一种生产廉价能源的方法,以充分利用这座丰富的金矿。[41]

        “一位著名的洛杉矶工程师”这种模糊的引用,是林赛许多断言的典型来源。(他还常爱引用:“一部电视纪录片”、“科学家告诉我们”、“新闻类杂志上的图表”、“一家大型电视台”,或者,只是简单地说,“它告诉我”。)地热发电已经不是一项新技术;几个世纪以来,人类一直在用地面蒸汽为房屋和建筑物供暖,1904年左右出现了地热发电。另外,以色列并没有多少地热喷口,它的财富的真正来源是它的智力资本,而不是林赛反复错误引用的自然资源。以色列奥玛特科技公司确实是世界上最大的地热设备生产商之一,但该国没有足够的地热潜力来支持该公司的任何工厂。[42]

        更为严重的是,从解读《圣经》的角度,林赛反复提到了《但以理书》中公元前550年左右所谓的成功的预言,即该书正确预言了4个世纪之后马卡比人成功地反抗了塞琉西帝国。然而,如本书第一章所述,圣经学者认为,《但以理书》的成书时间比书中所说的要晚,也就是说,成书时间是在马卡比人成功反抗塞琉西帝国之后,而书中虚构说成书时间是流亡初期,是为了增强其预言的真实性。[43]正如达比所做的那样,林赛将《圣经》中米设的位置确定为莫斯科,但现代历史学家认为莫斯科建立于1174年,比《圣经》编写的时间要晚得多。[44]

        林赛在事实依据和分析方法上缺乏严谨性,因此他的预言经不住考验,这并不令人惊讶。在书的一开始,他就强调,由1948年以色列建国所引发的末日迫在眉睫。他引用了耶稣在《马太福音》24:34中的话:“我实在告诉你们,这世代还没有过去,这些事[45]都要成就。”他尽可能地按字面意思解释这段经文:

        哪个世代?显然,根据《圣经》,这个世代将有预兆——最主要的预兆就是以色列的重生。《圣经》中的一代的时间大约是40年。如果这一推论正确,那么在1948年往后的40年左右,所有这些事情都可能发生。许多一生都在研究《圣经》预言的学者相信事实就是这样。[46]

        达比和他的追随者们对米勒的“大失望”记忆犹新,因此他们永远不会做出时间如此精确的预测。一个多世纪后,随着米勒那场混乱远离时代论者的意识,林赛又将时事和《圣经》解读结合起来,预言末日将不晚于1988年到来。

        在这本书中,林赛还预言了一种世界范围内单一宗教的崛起,这种宗教合成了主流新教和天主教的普世主义以及新纪元运动的“占星术、唯灵论甚至还有毒品”。[47]在地球的第七十个“周”(在时代论日历中是七年)开始时,以色列与具有无上权力的欧洲联盟的强大独裁者(反基督者)结盟,并且犹太人在重建的第三圣殿里恢复了祭祀。由于拥有丰富的自然资源,以色列成为地球上最强大、最繁荣的国家之一,但三年半之后,这位欧洲独裁者/反基督者背叛了以色列人,开始屠杀基督教徒。这时,苏联人与因圣殿山被亵渎而愤怒的阿拉伯联盟一起,分两路入侵以色列,一路穿越伊斯坦布尔海峡和地中海进行攻击,另一路穿越高加索地区和土耳其进行陆路远征攻击。林赛用详细的入侵路线图对叙述进行了有益的修饰。

        然后苏联人背叛了他们的阿拉伯盟友,入侵埃及。欧洲独裁者/反基督者对事件的这一转变感到震惊,呼吁“红色中国人”提供帮助,中国人带领上文中提到的2亿人的强大部落行军穿过亚洲,袭击以色列。(林赛通过一份“印度报告”预言了这次袭击,该报告讲述了1.2万名中国军人修建了一条穿越西藏和巴基斯坦的道路,以便于军队的大规模调动。)苏联军队在入侵埃及的战争中分散了精力,于是返回以色列,但在那里被摧毁(不清楚是被上帝还是被欧洲人)。随后,欧洲人和中国人在美吉多(《圣经》中的哈米吉多顿,位于今天的以色列)展开了最后的激战。世界各地的战争回应了这场激战,地球处于毁灭性的大灾难之中;然后耶稣回归,结束世界。这场大屠杀有一个令人兴奋的亮点,即1/3的犹太人皈依了基督教,因此拯救了自我。唉,剩下的2/3被烧死。[48]

        林赛引人入胜的散文风格以及20世纪60年代末时世界末日般的社会和地缘政治氛围,打开了致富的文学之窗。《消失的伟大地球》如此畅销,以至于纽约的互助保险公司开始售卖某类保单,该保单可以让“被提”者的受益人得到补偿。[49]

        很快,其他人也开始争相参与大灾难这一主题。其中一位是林赛曾经的老师、达拉斯神学院院长约翰·瓦沃德。到林赛的书出版时,他已经担任院长近20年,但在大众市场领域的著作相对较少。受林赛的启发,瓦沃德出版了大量畅销书,其中最著名的是《哈米吉多顿、石油和中东危机》。该书于1980年首次出版,在1991年第一次海湾战争后进行了必要的修改,最终售出200多万册,目前仍在印刷中。[50]

        这本书追溯了与《消失的伟大地球》同样的现代时代论叙事:犹太人重返以色列,反基督者领导的新罗马帝国崛起,苏联人和中国人的接连入侵,随后是被提、大灾难、耶稣复临和最终审判。和林赛一样,瓦沃德热情地将一条时事的粗红线编织进他的叙事。在林赛和瓦沃德这两本书出版间隔的4年间,1973年的赎罪日战争[51]引发了阿拉伯国家的石油禁运,进而使世界财富和权力向欧佩克卡特尔组织,特别是阿拉伯国家和伊朗大规模转移。正如时代论作家们惯常做的那样,瓦沃德抓住了“石油禁运”这一引人注目的时事,以作为即将到来的末日故事的导火索。

        透过时代论的有色眼镜,瓦沃德清楚地看到,由于全球经济实力的转变,美国在世界舞台上的地位不可挽回地下降,取而代之的是拥有至高权力的穆斯林联盟,该联盟由逊尼派沙特阿拉伯和什叶派伊朗联合领导,尽管这两个教派在过去14个世纪里一直互相残杀。反基督者将领导欧洲,而欧洲将受到比美国更大的石油禁运威胁,然后穆斯林和欧洲联盟将促成一项包容各方的中东和平计划,该计划也会得到以色列人和阿拉伯人这两个变得和谐的群体的热烈拥护。

        三年半之后,反基督者见利忘义地废除该计划,并引发了完整的时代论场景:苏联人和2亿“红色中国人”入侵、大灾难、耶稣复临和最终末日。和林赛一样,瓦沃德预言了“世界教会”的崛起,这将是撒旦的工具,是一个更荒谬的泛基督教徒、占星家、其他新纪元运动者甚至穆斯林的融合。

        凭借学术研究方向,瓦沃德比林赛更能把握历史事实。例如,他清楚地认识到,哈米吉多顿的小山谷容纳不了2亿中国战士,因此他将战场扩大了数百英里,这是林赛没有做到的。[52]然而,他对历史和地理的更好的理解并没有提高他的预测准确性,也没有限制他的幻想。

        正如多萝西·马丁和她的飞碟一样,当林赛和瓦沃德的预言与未来不符时,他们加倍努力,修改了自己的叙事。林赛利用《消失的伟大地球》的巨大成功,又出版了几本类似的书。[53]他的《20世纪80年代:世界末日倒计时》首次出版于1980年,包含了世界末日级灾难的常见元素:大范围的革命、战争和饥荒。在林赛夸大其词的某个典型例子中,“以色列最杰出、最具侵略性的将军之一”告诉他,赎罪日战争中最可怕的时刻之一,是摩西·达扬向果尔达·梅厄总理建议:“第三圣殿正在倒塌。请准备发射世界末日武器。”[54]以色列人在1967年和1973年的战争中确实考虑过使用核武器,而达扬可能说出了上文中的第一句话,但没有证据证明他还说出了B级电影般的第二句话,尤其是他的回忆录中没有记载。

        《20世纪80年代:世界末日倒计时》的类似的错误出现的频率甚至比《消失的伟大地球》还要多。林赛告诉读者:“自1950年以来,每10年发生的地震数量比上个10年大约翻一番。”[55]如果这是真的,那么到现在地震发生的频率将是1950年的约100倍。毫无意外,权威的全球地震频率研究显示,在过去的一个世纪里,地震频率没有增加。[56]

        正如那句众所周知的谚语:就算一只表停了,它一天都能准确表示两次时间。林赛偶尔也能打中靶心,例如,在《20世纪80年代:世界末日倒计时》中,他正确预言了埃及领导人安瓦尔·萨达特被暗杀的风险。[57](实际上,中东国家的领导人一直处于高风险的位置。)而接下来几年的事件则全部否定了林赛耸人听闻的预言;虽然全球性灾难事件越来越多,这一基本旋律没有变化,但歌词需要修改。1991年苏联解体,意味着苏联东欧社会主义体系消失,这迫使林赛寻找新的妖怪。《地球——公元2000》适时确认了新的世界末日威胁:上文所提到的什叶派和逊尼派的泛伊斯兰联盟,以及可怕的自然灾难,尤其是艾滋病的蔓延。(其中一章的副标题是《没有人能够安全》。)就连电视节目《星际迷航》也成为林赛的操练对象,他猛烈抨击了“进取号”船长詹姆斯·柯克对世俗哲学概念和诸如“轮回”等东方宗教信仰的喜爱。[58]

        如今,建立泛穆斯林联盟似乎像猫王复出一样不可能实现;自“9·11”事件以来,右翼恐怖分子杀害的美国人的数量是伊斯兰恐怖分子杀害数量的两倍,比雷击和窒息致死的数量少了一个数量级。[59]预防和治疗措施的进步基本可以预防和控制艾滋病。(数据统计显示,艾滋病的死亡率和感染率在1996年该书出版时达到顶峰,此后一直在缓慢下降。)[60]到我写这本书时,90多岁的林赛依旧在互联网视频和几乎无人知晓的有线电视频道上宣扬末日论和时代论。[61]

        林赛支持哪个政治阵营,这很少有争议,但他通常避免直接支持;也许他选择了更多地关注未来世界,而不是当下这个世界。不管原因是什么,将时代论信仰注入日常政治的责任落到了其他人身上。其中,最成功的是时代论传教士杰瑞·法威尔。

        法威尔的家族起源于1669年的弗吉尼亚州。他的父亲是一位成功的、不信教的商人,经营着许多家企业,其中一家是公共汽车公司,汽车上非常有特色地安装着电池动力的电影放映机。不过,他的父亲在55岁时因酗酒而死。法威尔追随着他虔诚的母亲,母亲每个周日一大早就开始播放查尔斯·富勒的《昔日广播》节目,声音响彻全屋。

        法威尔在父母身上看到了善恶之争的缩影,在20岁出头的时候,被任命为牧师。他从富勒的广播剧本中借鉴了一页,创作了自己的《昔日福音》电视节目。该节目于1956年首次亮相后,吸引了大量的追随者。尽管他个人反对民权立法,但他坚守那个时代的福音派信条——拯救灵魂,但远离政治。[62]

        1973年1月22日,在美国联邦最高法院宣布罗诉韦德案[63]的判决后,他改变了:

        我永远不会忘记1973年1月23日的早晨……我不敢相信,法庭上的7位法官竟然对人类生命的尊严如此冷漠。他们得到了错误的信息吗?他们被误导了吗?难道他们把这个国家带入了一个黑暗和羞耻的时代,却连自己在做什么都不知道吗?我知道还有很多事情要做,我越来越相信我必须成为做这件事的人之一。[64]

        几年后,法威尔的政治盟友之一保罗·韦里奇对他说:“法威尔,在美国,道德上的大多数人在这些基本问题上的意见是一致的,但他们没有被组织起来。”于是法威尔和韦里奇建立了“道德多数派”,其以反对堕胎和同性恋权利的姿态出现在全美舞台上,他们决心“整肃”电视和电影市场,并热情支持以色列。

        在1980年的选举中,道德多数派为罗纳德·里根和几十位共和党国会候选人的顺利当选做出了重要的贡献。在1984年共和党大会上,法威尔本人做了开篇祝祷,他称赞里根是“自林肯以来最伟大的总统”。[65]

        不到10年,运动失败,“道德多数派”解散。首先,里根总统在任期内似乎没有改善国家的道德问题,相反,电影和电视节目的内容越来越淫秽,而福音布道者吉米·斯瓦加特和金·贝克则以他们肮脏的性丑闻和财务丑闻羞辱了福音派。该运动失败几年后,参议院对比尔·克林顿的无罪判决促使韦里奇写信给他的支持者:也许根本没有“道德上的大多数人”。[66]

        法威尔和他的时代论同僚们带来的这场政治运动,其最持久、最具危险性的影响,可能就是美国对以色列空前狂热的支持。其中,以美国以色列公共事务委员会为代表的强大的亲以色列团体的游说发挥了很大作用,但基督教福音派对美国中东政策的影响很容易超越美国以色列公共事务委员会。正如加利福尼亚大学洛杉矶分校政治学家史蒂文·施皮格尔在2002年《国会季刊》中简洁指出的那样:“在美国对以色列政策的力量方面,如果你只关注(国会的)犹太成员和犹太团体,你就错了。”[67]

        《国会季刊》的这篇文章还引用了美国众议院原教旨主义基督教成员的话。印第安纳州新当选的代表迈克·彭斯说:

        我对以色列的支持很大程度上源于我个人的信仰。在《圣经》中,上帝向亚伯拉罕承诺:“我会祝福那些祝福你的人,我会诅咒那些诅咒你的人。”所以在某种程度上,我并不完全理解(美国的政策)。我相信,我们自己的安全,与我们愿意和以色列人民站在一起的意愿息息相关。[68]

        代表詹姆斯·英霍夫的话则更简洁。当被问及以色列为什么有权占领加沙和约旦河西岸时,他回答:“上帝是这么说的。”[69]文章最后以法威尔的话结束:

        美国大约有200000名福音派牧师,我们通过电子邮件、传真、信件、电话,要求他们走进讲坛,利用他们的影响力支持以色列和它的总理。[70]

        然而,没有人能像帕特·罗伯逊那样成为典型,他将原教旨主义带入具有潜在灾难性的地缘政治舞台。他被外交官兼记者迈克尔·林德称为“美国政治史上最重要的阴谋论传播者”[71]

        罗伯逊出生于一个保守的南方特权家庭,他的父亲是阿布萨隆·威利斯·罗伯逊。为了推动1965年《民权法案》的顺利通过,伯德夫人到弗吉尼亚州访问,但老罗伯逊冷落了她,这惹怒了总统林登·约翰逊,老罗伯逊20年的参议院职业生涯也宣告结束。他又重新参与1966年的参议院初选,并成功击败了对手。[72]

        从耶鲁法学院毕业后,年轻的罗伯逊未能通过纽约律师资格考试,于是进入商业领域。对曼哈顿灯红酒绿的生活大失所望之后,他回到弗吉尼亚州,借了37000美元,并于1960年创办了后来的基督教广播网。这家媒体公司的成功出乎他的意料,在鼎盛时期,是美国的第三大有线电视集团。[73]

        罗伯逊从事各种职业,从滑稽的信仰治疗表演,到控制年收入1.5亿美元的全球媒体和商业帝国,后者使他拥有数亿美元的净资产。[74]他坚持时代论的基督教犹太复国主义基本叙事,但其中重要的两点除外:他不相信被提;他实行“蒙受神恩的福音传道”(这是一种花哨的说法,表示他拥有治愈疾病的能力,能说外语[75],能与上帝交谈,或者至少能听到上帝的声音)。

        20世纪80年代中期,他决定寻求1988年的共和党总统候选人提名。最初,共和党的当权派视他为边缘候选人并将他排除在外,但很快就发现他的电视传教可以产生数千名“帕特兄弟”的志愿者,并能聚集20个州的领薪职员。1987年,当他控制了当年的密歇根州共和党大会、击败了两位领先者——副总统乔治·布什和魅力四射的自由论者、足球明星杰克·坎普时,他令政治观察家们感到震惊。那年晚些时候,他在艾奥瓦州、南卡罗来纳州和佛罗里达州的党团会议和代表会议上表现出色,并将继续赢得夏威夷州、阿拉斯加州、华盛顿州和内华达州的初选。

        然而,最终,罗伯逊的竞选由于三个政治暗礁而搁浅。作为一个不完全赞同时代论时间表的魅力派,他未能统一原教旨主义右翼。尽管他确实获得了法威尔和吉米·斯瓦加特的支持,但金·贝克对他的支持并不热烈,而另一位坚定的时代论作家蒂姆·莱希则坚决抵制他,而支持杰克·坎普。[76]

        他的福音派同僚们没有做到真正团结,而且世俗政治团体的反应也正在减弱。克里斯托弗·希钦斯在1986年罗伯逊的群众集会上报道说:

        愚蠢有点儿可怕;尤其是有组织的群体愚蠢。把罗伯逊介绍给人群的人是哈拉尔德·布里德森。布里德森将自己定义为“福音派-蒙受神恩的基督徒”,具有五旬节派[77]的能力,能说外语。[78]

        此外,他确实从斯瓦加特和金·贝克那里获得了部分福音派的支持,但后来,当这两个人各自的性丑闻和财务丑闻曝光时,他们的支持反而适得其反。斯瓦加特的丑闻的曝光时间非常糟糕,正好在1988年“超级星期二”初选[79]前夕。(两年前,斯瓦加特曝光了一位牧师同事通奸,这正给他自己惹祸上身,这位牧师同事随后就报复性地用长焦镜头监视了斯瓦加特最喜欢的巴吞鲁日市某旅馆。)

        罗伯逊在“超级星期二”两个月后正式暂停竞选活动。但他的总统竞选至少在短期内增强了他在州和地方层面的影响力。他帮助参议员杰西·赫尔姆斯赢得了1990年的连任竞选。在1993年的阿肯色州副州长选举中,他帮助福音派迈克·哈克比开创了政治事业;这对罗伯逊来说是一次特别甜蜜的胜利,因为他鄙视比尔·克林顿,而比尔·克林顿支持哈克比的对手纳特·库尔特。[80]

        在罗伯逊长寿的一生中,最突出的方面就是他在中东政治中的影响力。20世纪60年代,当他的电视网,特别是广受欢迎的《700俱乐部》新闻节目走进美国人的客厅时,福音派已经对中东事务产生了一定的影响力。1977年,以色列议会选举梅纳赫姆·贝京为总理,受此鼓舞的福音派于1980年成立了耶路撒冷国际基督教徒大使馆,历届利库德集团政府都迎合该大使馆。例如,1982年,勤勉的圣经学者贝京接受了美国达拉斯福音教堂的邀请,打算在这个亲以色列集会上发言,但由于妻子去世,集会在最后一刻取消。

        耶路撒冷国际基督教徒大使馆甚至批评1978年《埃及-以色列和平条约》将西奈半岛归还埃及,认为这违反了《圣经》的承诺:根据《圣经》,迦南的所有土地都属于犹太人;耶路撒冷国际基督教徒大使馆还大力支持1982年以色列对黎巴嫩南部的入侵。[81][82]

        每年从圣诞节到新年,罗伯逊都会沉浸在《圣经》中学习,并祈祷:

        在这期间,我恳求主将任何关于下一年的洞察和趋势赐予我。有时,他对我说的话非常准确,随后将令人惊讶地全部实现。另一些时候,要么是我的灵性感知缺失,要么是其他人随后的祈祷或行动,导致了与我预期不同的结果产生。[83]

        如果中东发生了一场灾难性的战争,很可能就是上帝想把不同的事情告诉不同的人。从这一角度看,罗伯逊一直是十分危险的,因为他经常听错上帝的话。例如,上帝告诉他,世界将在1982年结束,海啸将在2006年袭击太平洋西北部,2007年将发生全球范围内的大规模恐怖主义屠杀,米特·罗姆尼将赢得2012年总统选举。[84](他也从除上帝以外的其他地方听到一些奇怪的信息:1984年,在《700俱乐部》节目上,他提到了一些神秘的消息来源,说美国军队刚刚入侵了黎巴嫩。当主流消息来源反驳他这一说法时,罗伯逊险恶地回应说,显然国务院或中央情报局在隐瞒这件事情;1988年,在他的幻想中,苏联在古巴部署了SS-5和SS-24导弹中队。)[85]

        20世纪八九十年代,是罗伯逊影响力最大的时候。那时他在以色列的影响力与在美国的影响力相当;他还与以色列圣殿活跃分子保持密切联系,特别是“圣殿山忠诚者”组织的领导人格申·萨洛蒙,这一组织主张驱逐穆斯林、拆毁清真寺,并在圣殿山重建第三圣殿。罗伯逊会见过八位以色列前总理中的六位,他与强硬派本雅明·内塔尼亚胡的关系尤其密切。[86]

        罗伯逊的由神学驱动的外交政策产生了地缘政治危险,其影响远远超出了中东地区。例如,当一位极具魅力的基督教徒何塞·埃弗拉因·里奥斯·蒙特通过军事政变成为危地马拉总统时,罗伯逊欣喜若狂。即使在里奥斯·蒙特很明显地开始了一场针对该国原住民的血腥种族清洗运动、杀死了几千人并使数十万人流离失所之后,罗伯逊还是视若无睹:“我了解里奥斯·蒙特,他不会允许他的军队官兵杀害、强奸和折磨4000多名男子、妇女和儿童……有些人希望看到(蒙特)被共产党人取代。但我更偏向基督教徒。”[87]

        时代论在美国具有独特而广泛的影响,一个传统的解释是,美国的宗教性比其他国家更强。2012年,当全国民意研究中心调查世界各地公民的宗教信仰时,81%的美国人完全同意“我现在相信上帝,我永远相信上帝”这一强烈而明确的陈述,而英国人的这一比例只有37%,日本人只有25%,法国人只有29%。[88]

        过去几十年里,即使在美国,宗教信仰也在减少,虽然其不如世界其他地方那么明显;例如,1967年,对于盖洛普调查中的“你相信上帝吗?”这一更简单、稍欠明确性的问题,98%的美国人的答案为“是”;到2017年,这一数字已降至87%。[89]

        新教福音派的热情也是如此;2004—2018年,皮尤调查显示,自我认同的福音派教徒(其中大多数是时代论者)的人口比重从23%下降到15%(见图10-1)。但是,尽管他们的人数有所减少,但他们的选举人数比重已从23%增加到26%,实际上影响力更大了。一个必然的结论是,在人数减少和选举参与率增加的情况下,福音派教徒已经不仅仅是维持政治权力这么简单了。

        图10-1 美国的福音派人口

        尽管发达国家的宗教信仰和参与度有所减少,但发展中国家的情况并非如此。社会学家早就知道,随着社会更加富裕以及人们受教育程度的提高,人们的宗教信仰也会减少,这就是所谓的世俗化假说。由于较贫穷的发展中国家的人口出生率高于富裕的发达国家,因此世界上有强烈宗教信仰的人口的比例正在增加,而不是减少。[90]

        宗教信仰随着社会的富有而减少,其原因有很多,包括生存安全的提升,以及国家对社会福利职能的承担(以前是由宗教组织承担的),但就美国而言,发达国家日益世俗化的最重要的驱动力是科学知识的扩展,这取代了对自然现象进行宗教解释的需求。[91]

        人类对自然界有着永不满足的好奇心,特别是对自然界中最可怕的现象,如暴风骤雨、洪水、干旱、瘟疫和地震,对自然界中最神秘的现象,以及对地球生命的起源。今天,受过良好教育的人几乎不再需要神学来解释这些问题。当然,我们对物质世界的认识还存在不足,而且很可能永远存在不足,但是,随着科学不断缩小认知差距,在解释自然世界方面,宗教越来越落后于科学。

        受教育程度较高的人,宗教信仰较少。乍一看这种影响并没有那么大:根据皮尤论坛2014年的另一项调查,66%的没有受过大学教育的美国人绝对相信上帝;在大学毕业生中,这一比例仅略降至55%。[92]

        然而,在顶层人才中,科学教育的影响要大得多,他们对上帝的信仰已经萎缩到少得可怜的程度。1914—1916年,心理学家詹姆斯·路巴调查了500名美国科学家;他的研究结果提供了一个缩影,展示了当普通民众对上帝的信仰近乎普遍时,美国领先的生物学家、化学家和物理学家的宗教信仰会如何。

        路巴根据科学家们的地位和成就,将他们分为“较低”和“较高”两个级别,并分别研究了物理学家和生物科家(见表10-1)。

        表10-1 1914—1916年美国科学家对上帝的信仰

        数据结果令人印象深刻:最有成就的科学家对上帝的信仰最低,特别是精英生物学家,他们对生命起源和生物多样性的宗教解释需求,可能比化学家和物理学家要少。在任何情况下,所有科学家对上帝的平均信仰肯定远远低于同时代的普通人群。

        1998年,两位美国历史学家在著名的国家科学院的员工中重复了这项研究。这些员工相当于路巴实验中的“较高”科学家。在路巴的研究过去了80年之后,此时生物学家中信仰上帝的仅占5.5%,物理学家中占7.5%,最有趣的是,数学家中占14.3%,可能是因为他们对进化和分子生物学的掌握不如生物学家。[93]2013年,一项针对英国皇家学会研究员的研究的结果几乎与此相同,也出现了生物学家和物理学家之间的这种区别:76%的生物学家强烈认为上帝不存在,只有3%的人强烈认为上帝存在;而物理学家的这一比例分别为51%和7%。[94]

        因此,许多美国人能够包容像林赛和罗伯逊这样的人以及时代论的一般信条,是不是因为比起其他发达国家的公民,他们对事实了解得更少?

        美国人对时代论叙事的敏感性,以及与其他发达国家的人相比的高度宗教性,有其复杂的原因。显然,除了缺乏事实性知识之外,其他因素也推动了他们的虔诚,其中最主要的是他们的社会和家庭环境;社会学家早就注意到,信仰体系尤其可以通过与其他信徒之间紧密的社会关系得到很好的传播。[95]但当考虑到社会因素时,一个人储备的一般性知识越多,这个人越不可能接受充斥着林赛或罗伯逊般赤裸裸事实错误的时代论叙事。

        在经合组织的国际教育评估中,美国的排名一直处于发达国家的末尾;与其他发达国家的公民相比,美国人对自己国家和世界其他地区的了解少得可怜。2015年完成的最新国际教育评估显示,美国学生排名第40位,远远落后于斯洛文尼亚、波兰、越南、俄罗斯、葡萄牙和意大利等国家,更落后于新加坡、中国香港、日本和韩国这些排名靠前的国家或地区。[96]

        一项开始于1994年的研究有助于解释这个问题:对于5个有代表性的世界基本事实,37%的美国人错误地理解了所有5个问题,而德国人的这一比重只有3%。(在西班牙人中,32%的人5个问题都错了;墨西哥人,28%;加拿大人,27%;法国人,23%;英国人,22%;意大利人,18%。)没有上过大学的意大利人和德国人的分数超过了上过大学的美国人。[97][98]

        受访人的分数与接触电视新闻的多少呈负相关。正如这项研究的作者所说:“美国电视因其跳动剪辑、广告和断奏风格而导致显著的认知繁忙[99],而认知繁忙使一些人更难吸收信息。”作者指出,美国研究人员“通常不愿意问太多的事实性问题,因为害怕让受访者尴尬,进而导致他们终止采访或由于过于慌乱而无法回答其他问题”。这或许可以解释为什么德国人的表现如此出色:比起其他6个被研究国,德国人更常阅读报纸。[100]

        2009年,另一项研究广泛调查了美国人、英国人、丹麦人和芬兰人。调查显示,美国人对国内和国际时事,甚至国际流行文化知之甚少。最明显的例子是,只有37%的美国人知道《京都议定书》与气候变化有关,相比之下,英国人、丹麦人和芬兰人的这一比重分别是60%、81%和84%。只有在国内流行文化这一领域,美国人的得分与英国人、丹麦人和芬兰人几乎持平,略低于平均水平。[101]

        这项研究的作者还将这种差异归因于媒体结构的国际差异:在美国,媒体的使命更多地集中于娱乐而不是教育,而斯堪的纳维亚[102]政府则大力支持高质量的新闻和信息节目。英国拥有一个享有盛誉并资源渠道充足的公共新闻机构,即英国广播公司,还拥有繁荣的私人媒体部门,其排名处于美国之前,仅次于斯堪的纳维亚国家。

        这项研究的另一个重要发现,是受教育程度高和受教育程度低的美国人之间的知识差距远远大于其他三个受调查国家:受教育程度低的英国人、丹麦人和芬兰人,比受教育程度低的美国人更了解他们周围的世界(见图10-2)。[103]得出的结论:与其他国家相比,那些受教育程度低的美国人,特别容易受到时代论叙事的影响,而在其他发达国家中,即使是受教育程度最低的人也会抵制这种叙事,因为他们对于日常客观事实有更好的理解。

        图10-2 硬新闻知识了解程度和受教育程度

        记者格肖姆·戈伦伯格提出了一个与此相关的观点。20世纪90年代末,时代论者越来越痴迷于电脑的“千年虫”问题(Y2K);许多人认为,当日历指到2000年时,可能会触发世界末日;与往常一样,哈尔·林赛出版了一本如何在2000年末日时生存的书,书名为《面对千禧年子夜》。[104]戈伦伯格评论道:

        我猜想,未来的历史学家将研究那令人讨厌的一天(2000年1月1日)、电脑没有崩溃时的高潮,那是美国文化史而不是技术史的一部分。问题不在于这一小故障,而在于,与西方其他宗教信仰较少的国家相比,在这个充斥着千禧年信仰的国家里,其言论是多么刺耳。[105]

        具有深刻说教性的时代论末日叙事强加了社会成本。自历史学家理查德·霍夫施塔特[106]出版《美国政治中的偏执风格》(The Paranoid Style of American Politics)一书以来,人们就广泛地意识到,美国明显地倾向于阴谋论。两位政治学家J.埃里克·奥利弗和托马斯·伍德最近的研究表明,两个互为相关的因素最能有效地说明美国对阴谋论的敏感性。第一个是末日叙事信仰。第二个是将人类存在视为一种摩尼教式的善恶斗争的倾向,这是福音派,尤其是时代论者典型的神学特征:他们相信,自己和认同自己的人是善良与光明的典范,而那些不认同自己的人则与魔鬼结盟。奥利弗和伍德指出,右翼倾向于支持关于撒旦和上帝的时代论叙事,但是,左翼则更支持关于看不见的世俗力量的叙事,如“9·11”阴谋论。[107]

        人类不仅是一种盲目模仿、偏爱故事而不是事实和数据的猿类。而且,最黑暗的是,人类还是一种会在道德上谴责他人的猿类。有时人类就像一种摩尼教怪兽,构建一种荒唐的复杂神学,以奉承自己、妖魔化他人。这种摩尼教式思想渗透至极右翼和极左翼的政治派系中,并且一端的真信徒会转向另一端,这并不为奇——“串联真信仰”。阿道夫·希特勒指出,尽管他永远无法将工会会员或社会民主党转变为国社党,但他总是可以将一名德国共产党员转变为国社党员:“我已经……下达命令,要求德国共产党员立即加入国社党。”[108]最近,许多著名的新保守主义者,如欧文·克里斯托尔、内森·格雷泽、阿尔伯特·沃尔斯泰特和西德尼·胡克开始信奉马克思主义。

        进化心理学家认为,摩尼教式的思维方式很可能是从早期狩猎社会对部落凝聚力的需求演变而来的。如果部落成员之间彼此无私,与此同时,却以残忍的方式杀害其他部落的成员,那么本部落就会受益。心理学家将这种群体内/群体外的二分法称为“结群性”,它是由这样一种观念促成的,即自己所在的部落体现了各种美德并受到神灵的青睐,而其他部落则体现了邪恶并与邪恶势力(或在一神教社会中是魔鬼)结盟。[109]

        有一个经典的心理学实验,根据高中生的衬衫或头发颜色将他们分为地位高和地位低两组;很快前者就会对后者进行贬损。[110]1954年,社会学家穆扎弗·谢里夫和他的同事以一种更优雅的方式展示了这一现象:著名的(至少在社会学家中是如此)“罗伯斯山洞”实验。

        这个复杂实验的地点设在俄克拉何马州偏远、树木繁茂的罗伯斯山洞州立公园的一个野外训练营地,集聚了22个11岁左右的男孩。谢里夫已经筛除有心理问题的候选人,而且所有被选中的都来自双亲白人新教家庭。这些精选的男孩的平均智商远高于人类平均水平(112);关键是,在他们聚集在公园营地之前,彼此都不相识。

        实验分三个阶段进行。第一阶段,谢里夫将22人配对,使他们在运动、烹饪和音乐等各个领域的技能能够旗鼓相当。为了使每组都能平等地掌握全套技能,他将每对男孩分开,将其随机分到两组中,每组11人。

        在为期一周的时间里,每组分别参加了夏令营活动——游泳、徒步和其他体育活动,也参加了需要广泛讨论、制定战略并合作的问题解决练习,如烹饪,搭建帐篷和绳桥。每一组都不知道另一组的存在,在这一阶段结束时,这两组人分别为自己的队选择了名字:响尾蛇队和老鹰队。谢里夫随后制作了带有这些图案的衬衫和旗帜。

        在第二阶段,响尾蛇队和老鹰队一起参加了为期几天的多项目比赛(就是许多夏令营老兵所熟悉的“色彩争战”)。与普通色彩争战不同的是,实验中获胜的队伍获得了奖牌、奖杯和精美的小刀,所有这些奖励都将在用餐时间展示在非常突出的位置。败队则一无所获。

        几乎立刻,两队人开始互相嘲弄;最早,老鹰队烧毁了响尾蛇队的队旗,又撕碎了其换上的新队旗,接着是响尾蛇队晚上的报复性暴力袭击。当响尾蛇队威胁要用石头攻击对方时,实验人员进行了干预。这两支队伍都用“禁止进入”的标识牌对自己的领地进行了标注,而且几乎每天晚上都会互相偷袭。

        两支队伍几乎立即形成了典型的“外群体歧视”,将对方称为“臭虫”“吹牛者”“娘娘腔”,并反对在同一个食堂用餐。[111]老鹰队在比赛中获胜后,这两个群体仍互不往来,并明确避免混合。当两队人一起吃饭时,老鹰队通常会让位给响尾蛇队,说“女士优先”。谢里夫广泛地调查了男孩们对彼此的看法,毫不奇怪地发现,他们对队内同伴的评价远远高于队外人员。

        第二阶段的比赛结束后,马上进入第三阶段,谢里夫探索了如何减少第二阶段产生的群内/群外行为。虽然两队人聚在一起吃饭,或参加看电影等被动性娱乐活动,但敌对情绪依然存在。然后,他让两支队伍一起完成关键任务,比如恢复营地的供水。营地的供水被故意切断,营员们口渴时发现食堂没有水。完成一系列这样的任务之后,结群性显著减弱,尽管并没有完全消失。例如,在第二阶段结束时,响尾蛇队的朋友选择中只有6%是鹰队成员;到第三阶段结束时,这一比例上升到36%。[112]

        按照衬衫颜色分组以及罗伯斯山洞实验中的这种分组,都是一种随机和无意义的区分,但它们展现出戏剧性的“外群体歧视”。而时代论神学与其他主流宗教有很大的不同,因此,摩尼教式思维渗透到时代论者的意识中也就不足为奇了。

        虽然最初几代的时代论者有意回避参与政治,但到《贝尔福宣言》时,这一约束已经基本消失。到了20世纪70年代,林赛、法威尔和许多时代论作家将那些左倾的偏离他们的人都视为邪恶,在某些情况下视为反基督;他们进一步把耶稣转变成一个摩尼教式、具有鹰派右翼政治思维以及社会保守主义的完美典范。

        1991年苏联解体后不久,林赛猜出俄罗斯和德国已经签订了一项秘密协议,分割了位于两国之间的欧洲土地。林赛一直在寻找撒旦文化的象征,在他的《地球——公元2000》一书中,他将此认定为海底探险家雅克·库斯托,他认为库斯托温暖而舒心的海洋环境保护主义的背后是“世界一体的社会主义”的中坚核心。(时代论的这种散布恐惧的做法并不新鲜;早在20世纪初,原教旨主义基督徒就将世界语[113]视为撒旦全球主义的工具。)[114]

        《地球——公元2000》甚至还猛烈抨击美国社会安全网和环境保护中最无争议的方面。林赛显然没有意识到信鸽、渡渡鸟和世界鱼类种群的命运,他断言:“私人手中的资源总是可以受到最好的保护。”他将地球臭氧层变薄列为预示末日的众多灾难之一。虽然他承认人造氟氯化碳导致了臭氧层的消耗,但他认为限制全球氟氯化碳生产的《蒙特利尔议定书》是政府对个人自由的一种不必要的侵犯。此外,罪魁祸首是火山活动,而不是氟氯化碳,“可怕的是,我们无法采取任何措施修复受损的臭氧层”[115]

        火山爆发确实会减少臭氧层,但只是暂时的。它们已喷发了数亿年,却没有永久性地使臭氧层变薄。臭氧层变薄是一种更现代的现象;最近的数据表明,《蒙特利尔议定书》确实在缓慢地修复臭氧损害。[116]

        多年来,林赛越来越多地鼓吹自己的影响。在他于1980年写的《20世纪80年代:世界末日倒计时》一书中,他未经证实地宣称,自己曾被一名以色列飞行员邀请到美国空战学院讲授预言,并在那里受到了“热情的欢迎”。一年后,他被邀请回国演讲,他继续写道:“我惊讶地发现房间里竟挤满数百人,外面的人也试图挤进来。所有人都想听听先知们关于人类的命运说了些什么。我讲完后,反响非常热烈。”[117]之后,他又为“一个肩负着可怕责任的精英团体”做了一次演讲,但他无权透露那些成员的身份。再一次,这些高层听众明显地被他的预言“感动了”。“在我们见面的前几天,他们用电脑预测出的事件和结果竟然与《但以理书》相同。不用说,他们对此非常惊讶,但我对此并不惊讶。”[118]

        言归正传,在过去的几十年中,福音派越来越多地渗透到美国各级军队中。虽然军队中自称是福音派或五旬节派的总体比例似乎与普通民众中的比例大致相同——约为22%,但其实际影响力远大于该数字所显示的,尤其是在军队牧师和空军高级指挥部里的影响。[119]

        从20世纪50年代开始,福音派的反共言论得到军方高层的青睐。20世纪六七十年代,福音派对越南战争的支持与主流新教教会的反对形成鲜明对比,军队-福音的契合进一步加强。正如历史学家安妮·洛夫兰所说:“军队曾经对福音派持怀疑态度,但后来,福音派因支持兵役、战争和参战的人而在军队中赢得了尊重和影响力。”[120]

        军队牧师本来应该满足遭遇恐怖战争的青年男女的精神需求,但福音派更多地将其视为帮助他们找到耶稣的人。《美国福音派联盟》杂志上的一篇文章指出,一半的应征士兵没有明显的宗教背景,其余的大部分是主流新教徒、天主教徒或犹太人:“军队牧师工作的地方,是收获的禾场。”[121]

        为了避免出现美国宪法所禁止的国教,军方依靠“支持代理”从宗教派别中选取牧师候选人。1987年以前,军队按教派分配牧师;如果5%的应征者是圣公会教徒,那么5%的牧师也是。1987年,调整后的规则不仅将所有新教徒归为一个类别,还允许福音派和五旬节派的支持代理指定牧师。到2009年,大约80%的现役牧师是福音派或五旬节派教徒。[122]

        另外,在过去的几十年中,美国军方文化的核心一直位于梅森-迪克逊线[123]以下。由于南方白人军官和应征士兵强调的种族优越性越来越不被接受,福音派取代了肤色,成为一种主张优越性的方式。[124]美国所有4个武装部队分支都经历过传教丑闻。首先发生在空军学院,位于政治和宗教保守的科罗拉多州的斯普林斯市。早在21世纪初,该学院就已经爆出过性侵犯丑闻;几年后,福音派教官对于公开的反犹太主义视而不见,并告诫学员们自己是为“耶稣队”效力,并公开授权观看梅尔·吉布森的煽动性电影《耶稣受难记》。它是一部暴力、道德说教式电影,因暗含反犹太主义而受到福音派基督徒的盛赞和世俗观众的批评。[125][126]

        令人欣慰的是,20世纪80年代的美国总统放弃了世界末日的信仰体系,但危险仍然存在于其他领导人中;若某位美国、苏联、以色列或巴基斯坦高级军官像圣殿山纵火犯丹尼斯·迈克尔·罗恩那样精神错乱,挥舞的不是煤油而是核武器,那该怎么办?

        11 时代论的灾难

        大卫教派的悲剧

        1964年,核战争策划者丹尼尔·埃尔斯伯格(不久后,他将因未经授权就发布五角大楼文件而出名)与他的兰德智库老板哈里·罗恩“出于职业原因”,一起观看了电影《奇爱博士》。这部电影是导演斯坦利·库布里克的代表作,讲述了苏联的“末日机器”(装在掩埋的“钴钍G”容器中的几枚热核炸弹,将在遭遇敌方第一枚原子弹攻击时自动引爆);以及一位疯狂的美国空军基地指挥官杰克·里珀,他向苏联启动了战略轰炸机。所有启动的轰炸机都被成功召回,除了其中的一架;电影的结尾是,那架轰炸机的飞行员(由斯利姆·皮肯斯扮演)骑着一枚氢弹,像骑着一匹野马一样,从轰炸机的弹舱里飞下。[1]

        与此同时,彼得·塞勒斯饰演的奇爱博士向美国总统和苏联大使解释了他的后末日时代深矿井生存计划。伴随着核爆炸蘑菇云的腾起,“我们会再见面的”的声音响起。埃尔斯伯格写道:“看完电影后,我们走出放映室,站在下午的阳光下,被光线和电影弄得头晕目眩,我们都认为刚才看到的基本上是一部纪录片。”这部电影真实地描绘出了美国当时的绝密核指挥程序,埃尔斯伯格和罗恩对此印象特别深刻;事实上,这部电影是根据一部小说《红色警戒》改编的,该小说由皇家空军军官彼得·乔治撰写,他后来担任了这部电影的编剧之一。

        那时,埃尔斯伯格早已清楚美国核权力分散的危险性;因为早在几年前,他就参观了美国的军事基地。他清楚地知道,核战争可能意味着人类灭绝,然而他很羞愧地发现,一名上将,甚至在有些情况下只要一名少校,就足以自行发动核袭击。[2]

        埃尔斯伯格和罗恩并不是第一批对《奇爱博士》和《红色警戒》印象深刻的核策划者;在这部电影制作的5年前,他们的同事约翰·鲁贝尔向五角大楼远程导弹科学咨询委员会的每一位成员都发送了一份这部小说的副本。

        即使没有这种宗教狂热式的、精神错乱的指挥官,世界上的核武器指挥系统也极不稳定,容易发生事故。几乎从最初的核时代开始,世界上的核武器,也就是现实世界中的“末日机器”,几次将世界带到玉石俱焚的边缘。艾里克·施洛瑟的名著《指挥与控制》,记录了数十起恐怖的核事故,从携带热核武器的飞机和导弹的丢失,到大规模敌方攻击的错误警报。

        1961年,一架载有两枚400万吨级热核炸弹的B-52轰炸机由于机翼油箱漏油而失去平衡,飞机无法控制地剧烈旋转。飞行员扔掉了两个他以为没有安装炸弹的武器;其中一枚氢弹上的降落伞未能打开,坠入美国北卡罗来纳州法罗附近的潮湿地面下70英尺深。引爆装置和“初级”钚核心被回收,但“次级”铀——核威力的来源——从未找到。另一枚氢弹上的降落伞的确打开了,但当撞击到地面时,氢弹机头传感器发送了一个引爆信号,爆炸前需要通过的几个安全装置中,除了其中一个,其他均已打开。

        如果第二枚氢弹被引爆,那么这将形成“触地爆炸”,产生的放射性沉降物将远远超过广岛和长崎原子弹的“空中爆炸”,后者的威力不到B-52所携带氢弹的1%。如果爆炸时正在刮南风,那么致命的沉降物将覆盖东北部的大部分地区,并使北卡罗来纳州大部分地区不再适合居住。[3]

        更令人震惊的是,1962年古巴导弹危机期间,一名过于心急的美国驱逐舰船长向苏联潜艇B-59投下了深水训练炸弹[4],但他不知道这艘潜艇上装备了核鱼雷。作为反击,苏联潜艇的艇长和政委都想向驱逐舰发射一枚核鱼雷,幸运的是,苏联舰队总指挥官瓦西里·阿尔希波夫也在船上,不同意发射。几十年后,当这段插曲公之于众时,阿尔希波夫被大家称为“拯救世界的人”。[5]总体来说,苏联领导层将其核权力链控制得比美国要短得多。普林斯顿大学的布鲁斯·布莱尔是当今核控制领域的权威,“俄罗斯的核控制和安保体系结构比美国的更令人赞赏”[6]

        好消息是,1981年罗纳德·里根就任美国总统后,他的国家安全机构充斥着防守鹰派,他们有意识地、热情地用几乎连续不断的挑衅来扰乱苏联。美国战略空军司令部每周会派出轰炸机飞越北极,或者派出短程轰炸机威胁华约[7]领空或苏联的亚洲边境。当时负责军事援助的副国务卿小威廉·施耐德回忆道:“苏联人不知道这是什么意思。一个美国空军中队直飞苏联领空,苏联的雷达被点亮,部队进入警戒状态。但是最后一分钟,中队撤离并返回美国。”[8]

        在有些情况下,雷达系统会错误地发出大规模导弹袭击的警报。1980年6月3日凌晨2点30分,正值苏联入侵阿富汗、美国抵制莫斯科奥运会的紧张冷战局势,美国国家安全顾问兹比格涅夫·布热津斯基被他的军事助手比尔·奥多姆叫醒,奥多姆向他报告说有220枚导弹来袭。布热津斯基让奥多姆去确认,战略空军司令部警戒小组是否正在冲向他们的B-52并启动引擎,然后给他回电话;他决定不叫醒他的妻子,这样她将会在睡梦中毫无意识地被核武器汽化。几分钟后,奥多姆打电话给布热津斯基,说现在有2200枚导弹来袭。只剩下几分钟的时间激活国家核武器库,布热津斯基当时正要给卡特总统打电话,奥多姆第三次打电话,报告说其他系统未能确认攻击。事实证明,只差一分钟世界就会被焚毁,因为有人错误地将一盒训练磁带插入了计算机指挥系统。[9]

        随着国家核武器规模的扩大,意外事故风险也在增加。政界领导人面临着与军事指挥官之间的艰苦斗争,因为后者更关心的是确保核武器能够发射,而不是防止意外发射;而确保核武器能够发射,会更有可能导致意外发射。例如,许可操作链接(PAL)的引入,使用8位代码和有限进入功能,从理论上防止了未经授权的核武器启动。然而,为了避免错误代码阻碍核武器发射,战略空军司令部的高级指挥部将所有代码都设置为易于记忆的8位数“00000000”,这就消除了这种保护。[10][11]

        与汽车防抱死制动器一样,系统中引入的安全功能通常会增加用户信心,却降低了系统安全性。正如研究复杂系统中“正常事故”的著名理论家查尔斯·佩罗所指出的那样,这些看似有益的变化“往往只会让操控者更快地启动系统,或者在恶劣天气下启动系统,或者以更大的威力启动系统”[12]

        任何指挥官或领导人都会面临一种情况,即那些最重要的决定都必须在几分钟内根据不完整的数据做出。幸运的是,他们不会因为相信自己的选民会在核爆炸前“被提”而使自己的决定受到影响。《奇爱博士》中的精神病将军里珀,出于对氟化供水的担忧,启动了轰炸机袭击苏联,并发表了电影界最著名的独白之一:“我不能再坐视共产主义的渗透、共产主义的灌输、共产主义的颠覆,以及国际共产主义的阴谋逐渐侵蚀和玷污我们珍贵的体液。”如今,氟化水仍然是时代论右翼的一个禁忌,尤其是金·贝克,他的网站重复了一个可笑的说法:“美国人死于氟化水的数量超过了整个国家的军事死亡人数。”[13]

        除了这种由精神错乱的或宗教狂热式的军事指挥官所带来的非常明显的危险之外,时代论叙事也带来一种更微妙、也许更严重的末日危险。林赛和法威尔等时代论者强烈反对任何军备控制,他们支持膨胀的核武器库,这些武器库的增长纯粹是数量扩张,会增加意外毁灭的可能性。

        这非常强烈地体现在林赛的《20世纪80年代:世界末日倒计时》一书中。在林赛看来,《限制战略武器条约》并没有降低核灾难的风险;相反,它摧毁了美国的军事优势,将美国置于致命危险之中,并将允许苏联“横扫欧洲”。美国政府只不过是阴谋论者大恶魔——三边委员会[14](一个高调的非政府组织,以洛克菲勒家族和兹比格涅夫·布热津斯基为主角)的傀儡。更糟糕的是,美国愚蠢地抛弃了它忠实的盟友,如蒋委员长、伊朗末代国王巴列维和实行种族隔离政策的南非政府。[15]林赛想象出以下场景:

        苏联总理可能很快就会给美国总统打电话。总理会说:“我们可以摧毁你们的导弹发射井,我们可以用激光束拦截和摧毁所有来袭的潜射弹道导弹,我们可以用我们的米格-25战斗机和SS-5地空导弹摧毁你们那些过时的轰炸机。所以,总统先生,你会投降吗?还是让我们摧毁你的国家?你有20秒的时间做出决定。”[16]

        林赛在《地球——公元2000》一书中也敲响了主战之鼓,他将已被遗忘很久、位于旧金山普雷西迪奥[17]的戈尔巴乔夫基金会,看作撒旦世界新秩序摧毁美国影响力的证据。不明飞行物不是外星飞船,而是撒旦的恶魔。[18]

        此外,“常态化”的末日风险可能成为一个自我实现的预言。正如末日神学权威观察家保罗·博耶所说:

        我个人的感觉是,如果平民的预言信仰与核武器政策之间有联系的话,那么这也是隐蔽的和间接的联系。1945年后的预言信徒们,很少有意识地主动推动世界末日。相反,他们相信《圣经》已经预言了末日,并确信信徒们将幸免于难,因此倾向于消极地接受核军备竞赛和冷战对抗。[19]

        20世纪80年代初,小说家格雷丝·穆杰塔巴伊前往得克萨斯州的阿马里洛镇,调查这座宗教信仰浓厚的小镇与附近的潘特克斯核武器工厂之间的关系。潘特克斯工厂负责装配和维护美国所有的核武器。最终,穆杰塔巴伊将她的杂志文章改编为一本书《有福的确据》。她是犹太人,最后定居在了阿马里洛镇。

        她发现,时代论信仰如此彻底地渗透到了这座城镇,即使是镇上报纸的出版商,一位受过良好教育的自由民主党人,也认同其信条。20世纪80年代,该工厂的任务广为人知,阿马里洛人立即明白,整个地区已经成为核攻击的主要目标,将在核战争的最初便从地球上消失。该镇的最大教派第一浸信会,本身并不认同时代论;然而其成员都平静地接受了这种风险,甚至感到有些安慰,因为他们认为被瞬间汽化比其他更痛苦的死亡方式更可取。

        该镇较小的教派禧年礼拜堂的领导者罗伊斯·埃尔姆斯牧师的观点则不同。根据穆杰塔巴伊的记录,埃尔姆斯告诉他的教区居民根本不需要害怕核战争,因为教区居民会在其他人被上帝烧死之前“被提”:

        你们知道,他们在太空计划上花了一大笔钱。一大笔钱!看吧,我的朋友们,他们还不如把这个计划全部关闭,然后等待号角之声,那么他们将进入另一个太空计划中!我甚至从来没有想过让我的名字出现在他们正在做的这个小计划的宇航员名单里。但是我的名字,在上帝的恩典和帮助下,已经出现在另一个宇航员计划中……当火箭起飞时……我们将留下一道圣灵之火的痕迹!

        “再见!再见!”这位牧师向即将被氢弹汽化的阿马里洛、休斯敦、达拉斯和洛杉矶喊道。埃尔姆斯所在教区的一位居民相信自己会乘坐同一艘火箭逃离核末日,她为此而感到欣慰,但也为可能会抛下自己的孩子和孙子而感到痛苦。[20](穆杰塔巴伊所著书的书名《有福的确据》指的是信众们将免于面对恐怖的核灾难。)

        和博耶一样,穆杰塔巴伊只是简单地想到了具有宗教狂热的潘特克斯工人可能会通过获得核武器来推动千禧年进程。而且,和博耶一样,她也担心普通居民会和她已经非常了解的阿马里洛人一样,已经接受了摩尼教式的时代论世界观,并且在核战争的风险中麻痹自己。

        如果世界可以区分绝对的善与恶,可以区分上帝的追随者与撒旦的追随者,那么与敌人之间的妥协或谈判就不可能存在。在一个绝对两极分化的世界里,人类和平是无法实现的,战争不可避免。[21]

        在1982年美国宗教学会上,神学家戈登·考夫曼在主席演讲中进一步指出了时代论对人类的威胁。他指出,人类有史以来第一次拥有灭绝整个物种的能力,因此时代论的末日世界观“最终逃避了我们作为人类的责任,恶魔般地援引神的意志作为逃避的理由”。考夫曼进一步将“被提”描述为“切断人类责任的神经”[22]。也就是说,拯救自己免于被灭绝的能力掌握在上帝手中(即使在很小的程度上),这种信仰削弱了我们阻止它的意愿,从而增加了它发生的风险。

        幸运的是,核武器和时代论的交集所固有的危险,迄今为止仍然停留在推想阶段。但是,有一位具有米勒精神的继承人,他的末日信仰将推动他和大量无辜追随者走向悲惨的结局。自有记载的历史出现以来,弗洛伊德的“微小差异的自恋”已经产生了源源不断的宗教变异[23],基督复临安息日会也会在新教繁茂之树上产生一株有毒的分枝。

        20世纪20年代,一个名叫维克多·豪迪夫的基督复临安息日会教徒开始宣扬他对《圣经》的独特解读。他是一个学历只有三年级的推销员,被《启示录》耸人听闻的叙事吸引,特别是,他和之前的许多人一样,关注《启示录》中第七章的144000名信徒,12个各有12000名信徒的希伯来部落,“在我们上帝的仆人们额上盖上了印”。

        基督复临安息日会教徒认为自己就是那144000名信徒;豪迪夫认为,随着该教派的人数远远超过了这个数字,它已经失去了热情和献身精神,这就是问题所在。作为时代论者的典型,他抨击沉迷于“海滩派对和电影放映”等现代罪恶文化活动的基督复临安息日会的兄弟们。[24]正如异端人士惯常做的那样,他编撰了一份教会“可憎之事”清单;在他看来,自己的使命是将基督复临安息日会的信徒减少至144000名,使之达到必要的纯度。

        豪迪夫并不是要建立自己的教派,而是要改革原来的教会。但随着极具魅力的他开始吸引追随者,他那些过去的“兄弟们”感到惊恐,并在1934年将他逐出了教会(就像1845年罗汉普顿的浸信会将米勒逐出教会那样)。

        最初,他的教派被称为“牧羊人之杖”(豪迪夫宣言的题目),或者简称为“杖”。为了表明对古代圣地大卫王国中心地位的信仰,教派更名为大卫基督复临安息日会(简称大卫教)。1935年,随着成员人数的增加,大卫教徒在美国得克萨斯州韦科的迦密山中心建立了总部。尽管该中心只有37名追随者,但豪迪夫预计,世界末日将在一年内到来,届时他将带领144000名追随者前往巴勒斯坦。

        由于他追求虔诚而纯粹的复临主义,因此他和继任者们的传教活动只针对基督复临安息日会的信徒,而不包括那些无法救赎的普通民众。[25]1955年,豪迪夫去世,此时他已经吸引了数千名信徒,但大卫教并没有前往巴勒斯坦(那时该地区已经在以色列的统治之下)。此时,大卫教已经壮大,它向东迁移了9英里到达得克萨斯州的埃尔克,即“新”迦密山。

        《圣经》是历史上被分析和讨论最多的书,数百年来共有几十亿读者。根据概率论,其中一定有几百万读者具有极高的智商,也一定有几十万读者接受过《圣经》解读方面的学术培训。豪迪夫的学历只有三年级,但是,他认为自己发现了一个以前所有读者都没有发现的《圣经》意思,并将自己选为“东方升起的天使”,以在末日带领144000名信徒前往圣地。从豪迪夫开始,大卫教产生了类似的一系列极端自我主义的领袖,他们将在美国联邦执法机构的推动下,带领该教派走向灾难。

        1955年11月5日,豪迪夫死后不久,他的遗孀弗洛伦丝宣布,她进一步解码了《启示录》的末日时间序列:1260天之后,也就是1959年4月22日,耶稣就要来了。[26]她的预言吸引了900名追随者来到迦密山迎接末日,在那里,怀着期待的信徒们再次上演了米勒“大失望”的小规模版本。和1844年的“大失望”一样,该教派随后分裂为各个相互竞争的团体,其中最大的团体由豪迪夫的助手、一位名叫本·罗登的人领导,他接管了迦密山。[27]

        罗登继承了豪迪夫的自我中心主义,并宣称,按照上帝给他的启示,他就是“分支”(《撒迦利亚书》和《约翰福音》用“分支”这个词来描述上帝的仆人),他将带领这个团体迎接耶稣复临,因此这个团体的新名字就是大卫支教。他规劝真信徒们“离开那根枯树枝,到活分支上来”[28]

        1978年罗登去世后,他的妻子洛伊丝(根据上帝的透露,她就是圣灵)和他们精神反复无常的儿子乔治之间发生了一场权力斗争。最终,洛伊丝在一个名叫弗农·豪厄尔的年轻人的帮助下获胜。在此之前,豪厄尔一直过着混乱的生活;他的妈妈14岁时便未婚生下了他,当他还是个孩子的时候,曾转换于不同的家庭,饱受阅读障碍[29]和孤独之苦,最后在读九年级时辍学。

        豪厄尔笨拙但英俊,他只对三件事物有兴趣:他的吉他、他的《圣经》和性。1981年,他让一位15岁的女孩怀孕了,但是他向基督复临安息日会的兄弟们宣布,上帝打算让他娶另一位年轻女子,她是一位牧师的女儿。他总是有“见证”的癖好,有一次打断了一场仪式,登上讲坛布道,这些活动很快将他驱逐。他曾在迦密山做过木工活儿,1983年,他在那里定居。[30]

        在那里,豪厄尔被洛伊丝·罗登的领导职位和半神地位吸引,他找到了自己的家。他是在基督复临安息日会长大的,被迫阅读《圣经》;而洛伊丝被豪厄尔对《圣经》的敏锐理解和外貌吸引。很快,豪厄尔就和这位当时已经67岁的寡妇共享了大卫支教的领导权,以及她的床。

        在大卫支教内,号称拥有神权的女性不会像主流新教教派中的女性那样引起人们的注意;但豪厄尔崇拜基督复临安息日会的创始人之一艾伦·怀特,后者被认为是一位女先知。《圣经》几乎指导了豪厄尔生活的方方面面;他说,他与洛伊丝结合,希望实现《以赛亚书》8:3中的预言,即他去见女先知,然后女先知怀孕了,并生了一个儿子。后来他半开玩笑地说,如果他“让一个70岁的女人怀孕了,那么他一定是上帝”[31]

        如前文所述,历史学家查尔斯将《启示录》描述为“整套《圣经》中最难读的一卷”,并警告说“不仅略读,即使认真研读,读者也依然会觉得困惑”[32]。直到1983年左右,豪厄尔可能也同意这一评估。1983年,这位高中就辍学的24岁的年轻人认为,他和豪迪夫一样,不同于大众识字时代以来几个世纪里的几十亿《圣经》读者,他能够解开7个封印,从而揭开《启示录》的真正含义。豪厄尔认为,《启示录》是掌控《圣经》其余部分的关键。

        1984年1月,豪厄尔与一个大卫支教成员的14岁女儿结婚,也因此与洛伊丝决裂;那年晚些时候,乔治·罗登已经与母亲和好,用枪口指着豪厄尔和他的支持者们,并将他们赶出了大院,将教名改为罗登维尔。豪厄尔和几名追随者在东边100英里处的得克萨斯州帕勒斯坦市的一个条件恶劣的小屋里定居下来。出于空闲和对更好环境的渴望,他去了以色列。

        在以色列期间,他似乎得了“耶路撒冷综合征”。这是一种在以色列游客中很常见的精神错乱,由于终于能够直接接触到一生都在读和听的圣地和圣殿,因此他们过度兴奋,充满宗教热情,常常把自己想象成《圣经》中的人物。[33]其中一个“耶路撒冷综合征”患者是患有精神分裂症的健身游客,他相信西墙位于错误的位置,并试图移动其中一块巨石,这是“参孙综合征[34]”。阿克萨清真寺的纵火犯丹尼斯·迈克尔·罗恩可能当时也处于类似的状态。

        离圣殿山只有几英里的卡法尔·沙乌勒精神病医院,专门研究这种精神错乱。1980—1993年,那里的精神病医生治疗了470名患者,其中的绝大多数患者之前就存在精神机能障碍,例如那个“参孙综合征”患者和罗恩,但另外42名患者(约占研究样本的9%)没有精神病史。有精神病史的人(占91%)广泛分布于犹太人和主流基督教派中,但42名没有精神病史的人中有多达40名是福音派新教徒。不超过10年,悲剧将展现在韦科镇。[35]

        从以色列回来后,弗农·豪厄尔有了明显的变化。在以色列,上帝已经告诉他,他是上帝的仆人;随后,他的布道变得有活力,他开始更善于将《圣经》的各段落联系并融合在一起。如今,每当他阅读《圣经》经文时,立刻会有上帝的声音告诉他这些经文的真正含义。去以色列之前,他曾告诉别人,他希望能尽快收到上帝的“完整信息”,但这一愿望没有实现。从以色列回来后,很可能是受到耶路撒冷综合征的影响,他终于从上帝那里收到了信息。[36]

        从19世纪40年代末的诞生开始,预言便是基督复临安息日会固有的一部分。在豪迪夫和罗登领导下的大卫教,以及在豪厄尔领导下的大卫教,也是这样。大卫教的人努力使本教派或多或少地持续“处于信息中”——接收来自全能者的一连串预言。他们认为,现代的基督复临安息日会已经放弃了预言,因此已经成为叛徒。

        《启示录》14:6-9中描述了3位预言天使,这尤其吸引了豪厄尔的注意,不管出于什么原因,总之豪厄尔认为实际上有7个预言。前两个是威廉·米勒关于末日和巴比伦已经沦陷的开创性信息。第三个是艾伦·怀特关于以星期六为安息日的信息;第四个是维克多·豪迪夫的预言;第五个是本·罗登的;第六个是洛伊丝·罗登的。上帝告诉豪厄尔,他现在是第七个预言的传递者,是即将到来的末日之前的最后一位天使。

        1987年豪厄尔从以色列返回后,发生了古怪的一幕。当时仍控制着迦密山的乔治·罗登挖了一名追随者的坟墓,这名追随者叫安娜·休斯,25年前被埋葬,享年85岁。乔治向豪厄尔发起挑战,要求他参加让休斯复活的比赛;而豪厄尔和7名追随者则突袭了迦密山大院并给休斯的尸体拍了照,想以此指控乔治虐待尸体。双方发生了45分钟的枪战,但没有造成死亡或重伤。1988年,豪厄尔和他的7名同伙因谋杀未遂而受审,陪审团宣布7名共犯无罪,对豪厄尔的控诉也因证据不足而流审。

        这一判决结果使乔治的精神开始错乱,法庭档案中记录了他对豪厄尔发出的各种怪诞的诅咒和威胁,他因犯藐视法庭罪而入狱。乔治被监禁后,豪厄尔支付了大卫教总部的房产欠税并搬回总部。乔治在1989年获释后又用斧头谋杀了室友,因为他怀疑室友是豪厄尔派来杀他的;他被关进精神病院,并多次逃离;1995年再次逃离后不久便死于医院,死因是心脏病发作。

        在接下来的几年里,豪厄尔根据《以西结书》《但以理书》《马太福音》《启示录》提炼出他的末日路线图。随着世界末日(他尚未确定日期)的临近,他将带领追随者们前往以色列,在那里,他的大卫教徒将使犹太人皈依基督教,从而引发一支从北方而来的美国领导的联合国部队,大卫教徒将支持现在已经皈依的以色列人并与之共战共亡。虽然没有记录表明豪厄尔读过哈尔·林赛的书,但考虑到这一时期林赛的书的普遍性,因此这些牵强的叙事可能并不是豪厄尔自己从《圣经》中提取出来的。后来,豪厄尔将末日大灾难的地点从以色列转移到美国迦密山。

        豪厄尔的“耶路撒冷综合征”所激发的《圣经》光辉让听众深受震撼。在美国和其他国家的传教之旅中,他让大约100名信徒加入了迦密山。尽管收获了来自澳大利亚和英国的皈依者,但以色列人对此更持怀疑态度,并对《圣经》感到厌倦,因此他没能让以色列人皈依。

        这是一个兼收并蓄的多种族团体,其中包括24名英格兰皈依者。1990年,豪厄尔在加利福尼亚州提交了法庭文件,合法地将自己的名字改为大卫·考雷什。其中“大卫”源自他想象的由自己领导的圣经王国,而“考雷什”是“居鲁士”的希伯来语,像500年前的扬·博克尔松那样,他通过让其他男性成员单身、自己享受一夫多妻制,来满足自己日益增长的性欲。他另外“娶”了5位年龄从12岁到20岁不等的女性,为了避免被起诉重婚,他的男性追随者们在名义上娶了这些女性。他在澳大利亚旅行期间,一对夫妇如此敬仰他的神性,在双方都愿意的情况下,妻子和19岁的女儿都与他发生了性关系,这样她们就可以“为上帝生孩子”[37]

        为了迎接末日,他要求大院的已婚成员通过性节制来实现净化,并“取消”新迦密山上所有夫妻的婚姻关系,其中可能包括他的5位侧妻和她们的“丈夫们”。另一方面,与考雷什发生性关系成为一项神圣的仪式,在“前夫们”完全同意的情况下,他和许多“前妻们”发生了关系。

        他预言他所生的孩子(至少有12个)将在耶路撒冷的新王国享有优待地位,这使这些追随者很高兴。其中一位“前夫”解释道:“你根本不明白。作为大卫支教的人,我们对性不感兴趣。性如此具有攻击性,如此具有侵略性。考雷什为我们消除了这一负担。”就考雷什而言,他认为,与追随者们生育是他的一项严肃而神圣的责任。不过有时,他的确向他的性伴侣们坦白了自己的性欲,并羞怯地说是上帝使他这样的。

        他解释说,这种恰当的肉体安排源自《启示录》4:4中的一项特别命令,该节描述了24位戴着金王冠的长老,他们向上帝高呼,“让我们成为国民,做祭司,归于神。让我们在地上执掌王权”(5:10)。考雷什在《圣经》解读方面取得了革命性进展:他认为,“让我们成为国民”这几个字意味着《启示录》预言他要成为24位长老的父亲,这24位长老将在千禧年时代统治世界。因此,被选中怀上这24个孩子的妇女是神圣的容器,这就要求考雷什控制她们生活的方方面面,包括她们的饮食。不用说,从来没有哪位著名的圣经学者能够以如此“宜人而时尚的方式”解释《启示录》的第4章。[38]

        考雷什的魅力在于他的“圣经教学”可以持续几个小时,他能准确地回忆和清晰地解释《圣经》。尽管他九年级就辍学了,但他对《圣经》的精彩解释甚至能够吸引那些受过良好教育的人,包括一位哈佛法学院的毕业生和其他几位硕士期间接受过神学培训的人。

        考雷什认为,《启示录》5:1中所提到的7个封印掌握着末日事件和大卫支教通往救赎之路的钥匙:“我看见坐宝座的人的右手中有书卷,其里外都有字,用7个印封严了。”

        考雷什将这本“书”命名为“上帝之意”,它是上帝迄今为止委托给“羔羊”人类的秘密计划。考雷什此时已经将自己认定为“羔羊”,并根据其他《新约》和《旧约》推断出了打开7个印的线索,因此具有向其追随者们揭示“上帝之意”的独特能力。[39](大卫教认为“基督”是上帝在某项任务中指派的,其有多种动态表现形式:有时是耶稣;有时是羔羊;而根据考雷什的说法,有时是他自己。)[40]

        早在1987年,大卫教就引起了瑞克·罗斯的注意。罗斯是一位高调而又备受争议的“邪教破坏者”,几十年来帮助数百人摆脱了邪教的侵害,并在多个关于邪教的案件中出庭作证。在相关亲属的要求下,罗斯在纽约帮助两名考雷什信徒消除了所受的毒化思想,随后他又接到了其他家庭的求助电话。罗斯列举了“危险性邪教”的6个认定标准:绝对而又不负责任的权威人物、对领导人意愿的满足、对外部信息的过滤、“我们反对他们”的心态、对组织之外的人的诋毁,以及以《圣经》或哲学借口为领导人的财富和性贪婪做辩护。[41]虽然考雷什没有过滤外部信息,但他确实符合其他5个标准。

        从20世纪80年代末开始,考雷什和几位追随者囤积了大量武器,并在一些不需要背景审查的枪支展上交易武器,由此筹集资金。到1991年,一位名叫马克·布劳尔特的澳大利亚追随者,其对考雷什囤积武器、浮夸的神学和对年轻女孩的性剥削的不满,引起了媒体的广泛关注,首先是澳大利亚的媒体,然后是在一个监护权程序中,一名儿童被从迦密山带走引起了美国媒体的关注。布劳尔特和罗斯都向BATF(美国烟酒枪炮及爆炸物管理局)转达了他们的担忧,BATF计划于1993年2月底对该大院进行一次突袭。到那时,BATF至少已获得300件武器,包括60支M16、60支AK-47和30支AR-15突击步枪。[42]

        酷爱枪支的考雷什在这次突袭前曾说过:“如果有人来我家,在我的孩子们面前挥舞枪支,那么他一定会被打爆头。”得克萨斯州的法律允许公民向使用“不正当武力”的警官开枪。[43]

        罗斯还联系了《韦科论坛先驱报》,该报于1993年2月27日发表了《罪恶的弥赛亚》系列的第一篇文章,引发了轰动效应,全国媒体很快对此进行了报道。这些文章控诉考雷什虐待儿童、与未成年女孩发生性关系、对其他男人的妻子拥有神授的权利——他至少有十几个这样的侧妻。[44]

        事实上,得克萨斯州的儿童福利机构在上一年已经调查过该大院,发现孩子们都很快乐,且他们得到了很好的照顾,几乎没有受虐迹象,除了偶尔被用勺子打打屁股,而这在得克萨斯州是可以接受的。但《韦科论坛先驱报》对考雷什性行为的指控基本属实。[45]

        第二天,即2月28日上午9点45分,BATF执行了搜查令,其依据不是《罪恶的弥赛亚》中耸人听闻的指控,而是非法持有枪支。当时,在得克萨斯州拥有和使用自动武器是合法的,但这些武器需要在联邦当局进行合法登记;而考雷什没有登记。[46]

        这时,BATF的无能就体现出来了。它将搜查计划透露给了电视记者,电视记者随后向一名邮递员问路,而这名邮递员正是考雷什的姐夫。BATF通过大院内的一名线人知道,计划已经暴露,因此武装冲突不可避免。但BATF仍决定继续突袭。事先得到风声的考雷什首先下令举行祈祷仪式,然后在各个入口处部署了武装人员。后来,不知道是谁先开的枪,但考雷什在前往其中一个入口时曾经告诉追随者,他要出去和特工谈谈。根据随后的财政部调查,考雷什打开门,问特工们“发生了什么事?”他们回答:“别动!”考雷什砰的一声关上了门,子弹穿透门和窗户从里面射出。另一名从大院外观察的特工报告说,他看到考雷什开了两次枪,这意味着考雷什一定打开了门,但他可能并不是第一个开枪的人,也不是BATF后来声称的对他们进行伏击的人。[47]

        持续的枪战席卷了整个大院,4名特工和6名大卫教徒被杀,其中两名分别是考雷什16个月大的孩子以及另一名教徒的婴孩;几十人受伤。BATF的特工们没有为突袭做充分的准备,以至于大卫教徒的火力和武器补给都超过了他们;弹药不足时,他们便撤退了。[48]

        大多数记录者都认为,如果大卫教徒愿意,那么他们可以杀死更多的BATF特工。后来的政府调查特别指出,大卫教对袭击的反应是一种典型的“防御性暴力”,其特征符合“希望从主流文化中退出的群体”[49]。事实上,那天最引人注目的交流是韦恩·马丁——那位毕业于哈佛法学院的教徒给韦科警局办公室打的一个慌乱的电话。他说:“告诉他们,这里有妇女和儿童,让他们停下来!”——这不像是有人执意于末日暴力。[50]更令人痛心的是,BATF在此之前就经常因一些小型武器违规而进行挑衅性的破门袭击,其知道考雷什经常在附近独自慢跑,想趁这个时候发出逮捕令,以轻易地逮捕他。[51]

        惨败之后,FBI(联邦调查局)解除了BATF的职务。在接下来的51天里,FBI与手腕中弹的考雷什进行了谈判。从一开始,FBI就将围攻原因描述为解救人质,但在BATF突袭后不久,20名儿童在几名成年人的陪同下离开了大院,随后有大量证据表明,剩余的大卫教徒都不想要或不需要联邦政府的解救,而联邦政府则以经典的时代论方式,将这里称为“巴比伦”。

        全国都在关注这次行动;遭到BATF袭击后,考雷什立即通过当地广播电台和CNN(美国有线电视新闻网)与公众直接沟通,沟通中他引用了英王钦定版《圣经》中的长篇大论。虽然他的追随者和基督教神学家对这本《圣经》很熟悉,但对世俗观众来说,他仿佛在讲斯瓦希里语[52]。有一次,他对一位深感困惑的电台采访者说:“我们现在在第五个封印中。”

        神学家詹姆斯·泰伯也听到了这次采访,他在1993年之前并不知道考雷什。2月28日晚,他与几百万美国人一起收听CNN,当时CNN中断了常规广播,报道BATF袭击后的情况。这位年轻的大卫教领袖喋喋不休,泰伯的注意力突然被他提到的7个封印吸引。泰伯不仅知道这是《启示录》里的重要内容,而且还知道“考雷什”是希伯来语中“居鲁士”的意思;泰伯快速地查阅了《以赛亚书》第45章,发现居鲁士已经被上帝认定为弥赛亚,弥赛亚的希伯来语“Mashiach”翻译成希腊语就是“Christos”,也就是“基督”。考雷什称自己为“羔羊”,是基督复临主义的表现——泰伯更加确定,考雷什的信仰基础正是《启示录》。

        随着对峙事态的发展,泰伯很清楚地意识到,FBI对考雷什的末日叙事一无所知。泰伯打电话给另一位神学家菲利普·阿诺德,后者联系了FBI特工,特工们承认,他们已经被考雷什的《圣经》独白弄糊涂了。

        一些特工甚至开始阅读他们酒店房间里的基甸版《圣经》中的末日启示类内容,这是一项甚至让专业神学家都无法承受的任务。正如泰伯所说,特工们疯狂翻阅《圣经》的景象“几乎滑稽可笑,但同时也令人恐惧”。泰伯和阿诺德立即意识到,大卫教徒们认为自己在有7个封印的世界中航行;他们还意识到,第5个封印,即考雷什认为大卫教目前居住其中的封印,是7个封印中最暴力、最危险的一个。

        泰伯和阿诺德认为,要想和平解决对峙事件,就必须在考雷什的信仰基础《启示录》上与他交手。政府允许泰伯和阿诺德接触了一位被监禁的大卫教徒,他叫利文斯通·费根,是考雷什派往迦密山代表其公众形象的。费根证实了泰伯和阿诺德的分析:大卫教徒生活在混乱的第5个封印中,但上帝让他们等待。在4月1日的一个电台脱口秀节目中,这两位神学家出现了,他们详细讨论了《启示录》的末日论,并暗示了和平的结局。他们知道考雷什经常收听这个节目,为了确保考雷什能听到,他们还让考雷什的律师发给考雷什一份录音带。

        4月14日,不管是否由于受到电台节目的影响,上帝终于再次向大卫·考雷什发出了指示,考雷什现在明白了一切。那天,他写了一封信给他的律师们,宣布他正在写一封宗教长信,要向全世界通报“7个封印的解码信息”。写完后,他将公布一份副本。“我会出来,然后轮到你们处置这只野兽。”阿诺德和泰伯很高兴;也许终究可以避免这场即将发生的灾难。然而,这将是全世界从考雷什那里听到的最后一次交流。[53]

        不是只有泰伯和阿诺德理解考雷什的虔诚并希望能够和平解决对峙事件;更多的福音派人士也是如此。在围攻初期,美国全国基督教协进会和浸信会联合委员会的要员们给克林顿总统写了一封信,他们在信的开头衷心地恳求:“请让得克萨斯州韦科的冲突非军事化。”这封信指出“复仇的威胁以及军队和坦克的集结,只会向这群‘忠实的信徒’证明世界的力量都在与他们作对”,并有先见之明地指出“如果政府在这场失败的局面中投入了如此多的资金和信誉,却没能彻底铲除犯罪教派,那就更是一场悲剧”[54]

        然而,在7周多的对峙之后,在司法部长珍妮特·雷诺的支持下,FBI中的强硬派获胜。雷诺批准直接出击。

        虽然泰伯和阿诺德能否让考雷什走上正途还未确定,但是FBI内的强硬派认定考雷什是一个骗子,以“对《圣经》的胡扯”作为拖延战术;对没有经过神学训练、已经听考雷什讲了几个小时的《圣经》的特工们来说,似乎情况确实如此。[55]FBI的人嘲笑考雷什4月14日的那封信,尤其嘲笑这名九年级辍学者要写一封“宗教长信”的狂妄,认为这又是一种拖延战术。考雷什的律师们说他们正在拟一项投降协议,但是FBI的人根本不理睬。[56]FBI没有针对“预言”问题与考雷什沟通——这对考雷什来说很重要——而是直接切断了大院的电源,摧毁了信徒们停放的汽车,还开始放震耳的音乐,用强光探照灯照射院子。

        4月19日,FBI结束对峙,开始行动。从那天早上6点左右开始,特工们用装甲车反复撞击大楼,并使用CS催泪瓦斯(一种类似于麦加大清真寺的围攻者们使用的化学武器)。中午过后不久,大院起火了;大火迅速蔓延,吞没了大院,烧塌了屋顶。76名大卫教徒,其中包括两名孕妇,在大火中丧生,只有9人逃脱。大多数人从大火中逃到地下室,被发现时已经被烧死。至少有20名成员死于枪杀,其中包括考雷什,显然是为了避免被直接烧死。

        尽管随后的多项政府调查都得出结论,认定大卫教徒在FBI突袭之前就纵火企图自杀,但幸存的大卫教徒坚决否认任何自杀的说法,因为他们认为自杀是一种罪行。他们还说,当FBI切断电源时,他们使用油灯照明,但装甲车将油灯撞倒。此外,4月19日,风速高达每小时30英里,大风很快就通过打开的窗户和被FBI车辆撞出的洞,使火势从一个房间蔓延到另一个房间。火灾发生后两周,FBI将现场夷为平地,但这也没能提高FBI的可信度。[57]

        其中一名幸存者随身携带了一张数据盘,上面有考雷什4月14日的信中所提到的未完成的手稿,而FBI曾经认为所谓的手稿只是一个拖延时间的诡计。打印出来的信一共包括13页纸,其中包括对第一个封印的介绍和讨论;这封长信可能还需要几个星期才能写完。[58]

        用詹姆斯·泰伯的话说:

        考雷什是一个具有个人色彩的《圣经》解经大师。从大卫支教的神学角度来理解,他的信息具备系统性、一致性和内在的逻辑性。然而,对一个不了解《圣经》预言细节的人来说,他的信息以一种典型的、没有停顿的方式传递,并引用了钦定版《圣经》的长篇大论,似乎毫无意义。[59]

        我们永远无法知道,考雷什是否会如4月14日信中所承诺的那样和平投降,但很明显,FBI从未试图认真处理他所关心的神学问题。灾难发生后6个月,司法部成员向副司法部长提交了一份长篇报告,该报告的修订版长达489页。其对神学知识缺乏关注在目录中就能体现出来。目录中列出了宗教学者们的咨询内容,仅有4页,除了学者们的身份介绍之外,几乎没有传达任何有用的信息。这4页之后是心理咨询师的分析内容(共28页),几乎所有的咨询师都认为考雷什是个骗子。其中一位是FBI国家学院的行为学专家兼讲师皮特·斯梅里克,他甚至反对神学家参与这次事件。[60]

        随着对峙事件的推进,大部分公众与FBI一样,认为大卫·考雷什是一个自私自利的骗子。然而,真相可能更加微妙。与乔治·哈德森、塞缪尔·英萨尔、威廉·米勒以及几乎所有群体错觉的传播者一样,考雷什真诚地相信自己的叙事,这种自欺欺人使他对追随者进行灾难性误导的能力更加强大。

        在过去500年中,人类的模仿倾向和寻找引人入胜故事的倾向都落脚在末日错觉上——这是所有叙事中最让人着迷的一种。由此产生的神学叙事通常将其信徒限定在和平、繁荣的社区中,但这种叙事也会时不时跳出正常行为的护栏,由此产生诸如闵采尔领导的农民战争、博克尔松的疯狂的再洗礼派的暴动、文纳的第五君主国派的暴动和考雷什的大卫支教引发的大屠杀等灾难性后果。

        与一个半世纪前的威廉·米勒及其追随者一样,考雷什怪诞的神学、强烈的性欲和与未成年人发生的性关系,使他被媒体和公众妖魔化——这一妖魔化反过来导致了过度执法的悲剧。如果BATF最初的反应能够更加灵活,如果FBI能更加熟悉末日叙事的细微差别,那么韦科对峙事件可能不会以悲剧告终。

        正如结局所体现的,相当一部分公众都将责任归咎于联邦政府,大卫支教的悲剧并没有就此结束。电视直播了这场大屠杀,但大火最重要的目击者——一位名叫蒂莫西·麦克维的年轻退伍军人——近距离目睹了这场大屠杀。麦克维早已经愤怒于上一年的政府围困鲁比山事件。与韦科围攻事件类似,鲁比山事件起源于美国特种部队老兵、福音派教徒兰迪·韦弗受到的武器指控;这场对峙导致韦弗的儿子萨米和持有强烈末日信仰的妻子维姬的死亡。韦科对峙期间,麦克维正在那里分发枪支权利小册子。当韦科的火焰升起时,他发誓要为无辜死亡的男人、女人以及孩子们报仇。在韦科袭击两周年之际,他和同伙特里·尼科尔斯使用卡车炸弹对俄克拉何马市的联邦大楼进行了袭击,这导致168名无辜者丧生。麦克维之所以选择这个目标,是因为大楼里既有FBI办公室,也有BATF办公室,此外,还有大量其他部门的联邦雇员。[61]

        12 “被提”类小说

        末日文学为何畅销

        到了新千年初,大卫支教的灾难和林赛不靠谱的预言再次让人们意识到,过于精确的预言和日期设定是有风险的,时代论者也越来越倾向于一种不受质疑的类型:末日类小说。

        早在20世纪初,基督教作家就开始创作正义者“被提”、反基督者崛起、大灾难、世界末日和最终审判等主题的小说。1905年,俄亥俄州一位名叫约瑟夫·伯勒斯的医生出版了已知最早的被提类小说《泰坦,土星之子》。书名中的泰坦是一个现在大家很熟悉的反基督者的人物形象,“一个年轻的希腊人,他将联合激进的社会党人,在世界范围内致力于摧毁基督教会”。伯勒斯在序言中说,这部小说不仅仅是他想象力的产物,而且打开了“一盏探照灯,照耀出教会未来即将发生的一连串事件”[1]

        尽管被提之景象和泰坦/反基督者崛起的故事吸引了读者,但整本书的各个章节都在讲述令人腻烦的《圣经》解读。其销量还不错,一共印刷了10次,10年内的销量超过1万本——也很体面,但不能算是一本畅销书。[2]

        但是,这本书展现出了被提类小说和美国福音主义的一般性特征:仇外心理、仇视伊斯兰教以及意识形态和道德上的恐慌。伯勒斯小说中的民族英雄名叫英格兰,孤身一人对抗由反基督者领导的十国联盟。可悲的是,美国因为“2500万在欧洲出生的美国公民”而无法援助母国。美国的“萨克森人”急于帮助英格兰,但被黑暗联盟的势力压倒,现在又被穆斯林“安拉!安拉!安拉!”的高呼声援助。欧洲的穆斯林势力入侵美国,将“萨克森人”文化溶解于外来的社会主义中。[3]

        随后的几十年里,被提类小说家们从时事中提炼出引人注目的叙事,并将其加入小说中,以此改进他们的作品。[4]到20世纪80年代,最重要的时代论小说家是弗兰克·佩雷蒂,他是一位文学巧匠,最有名的著作《当前的黑暗》销量超过200万册。

        这本书首次出版时,正值苏联解体、东欧剧变,时代论者需要找一个新的敌人。他们被迫选定了另一个末日祸根:新纪元运动,尤其是那些散发出一丝撒旦主义气息的运动。

        故事发生在和平美丽的虚构大学城阿什顿,其中出现了两位英雄,虔诚的牧师汉克·布舍和老练的新闻记者马歇尔·霍根,他们与一位极其富有的城市骗子亚历山大·卡瑟夫对抗,后者出于莫名的原因想要控制这座小城镇。

        卡瑟夫的盟友包括一群红眼睛的、鳞片皮肤的长着翅膀并呼吸硫黄的恶魔,他们吸食普通人的意志,但幸运的是,他们特别容易受到虔诚信徒的攻击,尤其是布舍。但这些生物与当地大学的女权主义教授朱琳·兰斯特拉特的撒旦潜力相比,根本不值一提。兰斯特拉特试图通过“神和女神意识入门”等课程破坏霍根女儿的宗教信仰。卡瑟夫密谋陷害布舍和霍根,把他们关进同一间牢房里,但他们联手打败了卡瑟夫及其下属,不管是人类的还是非人类的。[5]

        佩雷蒂所体现的道德恐慌并不是什么新鲜事物。例如,林赛把达尔文、康德、马克思和弗洛伊德的著作看作毁灭现代社会的“思想炸弹”,并引导了一场文化圣战。在撰写《消失的伟大地球》的前一年,他出版了《撒旦好端端地活在地球上》一书,其中有对洛杉矶一位“警察指挥官”的采访,这位指挥官描述了在圣莫尼卡海滩上的一次“接吻行动”,让林赛想起了“非洲野蛮人的宗教仪式”:

        大约有400人紧紧地挤在一起,像一团人,随着鼓声和诡异的音乐晃动……他们中的一些人开始脱衣服。有些人开始沉浸在公开的性行为中,对周围的人视而不见。我们注意到,他们中的大多数人的脖子上戴着饰物。他们信仰精神世界,会欣然承认魔鬼对他们来说是真实存在的。[6]

        历史上,越是在最糟糕的时期,末日运动就越蓬勃发展:巴比伦流亡时期犹太人的被奴役和流亡;两次犹太人反抗罗马的大屠杀和大规模实体破坏;中世纪欧洲宗教战争和俄国大屠杀的恐怖。生活在繁荣、安全、和平的现代国家中的末日信徒,不得不将他们的义愤发泄在不太明显的社会祸患上:占星术、对进化论和地质科学的认知失调、普世主义、性、毒品、摇滚乐和永远存在的撒旦。

        这种末日恐惧的散播远非无害。20世纪七八十年代,时代论者对新纪元的唯灵论和占星术的厌恶,演变成了经典的“道德恐慌”——这是一种群体错觉——对本不存在的撒旦式儿童性侵和大规模谋杀的群体错觉。大量自称撒旦教专家的人,包括重要的执法官员,在全国出名,他们谈到有数万名儿童成为宗教仪式的受害者。据说,撒旦教徒绑架年轻女性,强迫她们成为“生育者”,以此供应婴儿祭品;新生儿在填写出生证明之前就被从医院抱走,这样“他们就不会被怀念”[7]

        泰德·冈德森就是这样一位“专家”,他曾是FBI的官员,参与玛丽莲·梦露自杀案和约翰·肯尼迪总统暗杀案,并领导FBI的洛杉矶、孟菲斯和达拉斯办事处。冈德森认为,美国每年有4000名儿童死于宗教仪式:

        有人告诉我,这些团体从医院、孤儿院、购物中心和远离街道的地方绑架受害者(通常是婴幼儿),这是很常见的事。据我所知,撒旦主义者已经成功地影响了夏令营的孩子们,近年来,他们通过渗透教练团队以及在美国各地建立幼儿园,集中精力招募少年棒球联盟队员……一位博伊西[8]的警察认为,每年有五六万的美国人失踪,他们成为撒旦团体的人类祭品。大多数受害者被焚烧,因此尸体和证据都没有。我知道加利福尼亚州洛杉矶有一家神秘用品店,其出售便携式火葬设备。我已经向FBI、美国司法部和国会议员报告了这些事实,并建议联邦政府对此进行调查,但我的要求没有得到回应。[9]

        1988年,在全国多家电视台播出的《杰拉尔多·瑞弗拉秀》的节目,推出了一个名为《恶魔崇拜:曝光撒旦的地下活动》的纪录片,其讲述了所谓的大规模谋杀;对这一现象的“调查”甚至出现在主流媒体节目中,如《20/20》和美国国家公共电台的《早间节目》。[10]

        1985年的麦克马丁审判案,是现代社会中最臭名昭著的事件。当时,一位年轻的、患有精神病的母亲(这让人联想到患有精神分裂症的丹尼斯·迈克尔·罗恩)向警方报告,她刚学会走路的孩子在幼儿园被鸡奸。她的故事听上去不像真的:孩子们被引诱到飞机上和隧道里,在那里,马被屠杀,教师装扮成女巫在空中飞行;孩子们在仪式中受到性虐待,其被录制成儿童色情作品。

        幼儿园的经营者是一位很不幸运的女士,名叫佩姬·麦克马丁·巴克利。所谓的撒旦虐待“专家”和社会工作者们聚集到学校,他们很快从孩子们那里提取了关于虐待的描述,但这些孩子年龄太小,根本不能准确表述所发生的事情。这场对巴克利和其他6名幼儿园工作人员的审判耗时7年,耗资1500万美元,并毁掉了被告们的生活:在等待审判的过程中,巴克利在监狱里待了两年,她的儿子待了五年。最终,调查人员没有发现任何隧道或儿童色情制品,孩子们的父母也没有看到过所谓的死马,成为证据的一件黑色长袍最后被证明是巴克利女士的毕业礼服。[11]

        这起审判只是20世纪80年代席卷全美的十几起大规模撒旦主义/托儿道德恐慌事件中的一起,最后判定被告无罪。还有许多其他案例,被告被判重刑,但随后的上诉和调查审判表明了这些控诉的虚假性,也突出了道德恐慌的错觉特征。此后福音派偏执狂又转向了其他领域,各种起诉便消失了。《纽约时报》记者玛格丽特·塔尔博特警告说,“犹豫是一种很难维持的心理状态;人们总是急于用更摩尼教式的愿景取代它”,尤其是当反基督者和末日隐约出现时。[12]

        《当前的黑暗》和佩雷蒂的一系列后续书籍只是一个开始,更大的出版业奇迹还在后面,也就是前文提到的蒂姆·莱希和杰里·詹金斯的《末世迷踪》系列。莱希出生于1926年,就读于南卡罗来纳州格林维尔市的鲍勃·琼斯大学,那里的氛围与他的宗教信仰相符。该校的建校与原教旨主义者强烈反对主流新教教会接受现代科学特别是进化论有很大的关联。在1924年的一次圣经会议上,威廉·詹宁斯·布赖恩俯首向福音传道者鲍勃·琼斯说:“如果学校不停止讲授进化论,那么我们的国家将成为无神论者的国家。”[13]布赖恩非常关注世俗邪恶对美国高等教育机构的影响,而琼斯清晰地听出了布赖恩的担忧,并于1927年创立这所大学。而这一年的布赖恩,作为前国务卿、两届总统候选人、著名演讲家,则继续在臭名昭著的“猿猴诉讼案”[14]中起诉斯科普斯。

        20世纪50年代初,刚刚拿到鲍勃·琼斯大学毕业证的莱希,在全国各地奔波,为各种教堂会众服务,最后在加利福尼亚定居。在加利福尼亚,他为耶稣和养家而奋斗,这种热情可能与他9岁时失去父亲有关。他和妻子一起,参加了电视节目《莱希的家庭生活》,他抨击同性恋、世俗主义和女权主义,成为一名老练的文化战士。多年来,他出版了一系列小说和非虚构类书籍,书中明确警告国家妇女组织、联合国和美国公民自由联盟的危险性。[15]

        20世纪80年代中期,在飞往某个预言研讨会的航班上,莱希注意到航班机长正在和空姐调情。机长戴着结婚戒指,而空姐没有。莱希自言自语道:“如果‘被提’发生了,航班上的上百人就会突然消失;这时飞行员意识到,当他回到家时,他的基督教妻子和儿子也会失踪。那不是很有趣吗?”[16]

        事实上,在莱希的作品之前,已经至少有两个被提类叙事中出现过失踪的乘客和机组人员:塞勒姆·柯班的小说《666》和威廉·詹姆斯的文章《当数百万人消失时》。[17]撇开独创性不谈,历史上最成功的宗教性多类媒体尝试——末世迷踪现象已经诞生。

        莱希最初设想了一部“被提三部曲”,但他知道自己缺乏必要的小说叙事技巧,因此文学经纪人为他联系了一位经验丰富的作家、代笔人——时代论者杰里·詹金斯。后者在其漫长的职业生涯中写了190本书。风度翩翩的莱希在年龄上与詹金斯的母亲相仿,两人立即建立了联系。莱希提供该系列的神学框架,詹金斯撰写书的文本。[18]1995年,两人出版了他们的第一本书,名为《末世迷踪》。

        詹金斯以前的作品,从儿童小说到体育新闻报道,无所不包,他对营利性文学艺术的精通体现于该系列作品的每一页,例如书的开头:

        雷福德·斯蒂尔的心里一直想着那个他从未碰过的女人。当满载747名乘客的飞机在大西洋上空自动驾驶,按照预定路线将于第二天早上6点在伦敦希思罗国际机场降落时,斯蒂尔已经从脑海里抹去了自己还有家庭的事实。春假期间,他将会和妻子以及12岁的儿子在一起,他们的女儿也会从大学回来。但现在,他的副机长正在昏昏欲睡。他正想象着哈蒂·德拉姆的微笑,并期待着快点儿见到她。德拉姆是斯蒂尔航班上的资深空姐。他已经一个多小时没见到她了。[19]

        迄今为止,斯蒂尔一直忠实于他的妻子艾琳。艾琳是一名狂热的宗教信徒,她随时都期待着被提。但现在的斯蒂尔已经鼓起了勇气,将飞行控制装置留给昏昏欲睡的副机长,然后漫步走到飞机上的厨房里与德拉姆幽会。令他失望的是,他发现她正在抽泣且情绪异常激动,她告诉他,数十名乘客失踪,他们的座位空着,只留下了衣服。一个接一个地,醒来的乘客尖叫着,因为他们注意到了消失的同伴和仅剩的衣服。德拉姆请求斯蒂尔做出解释,斯蒂尔假装不知道,但“可怕的是他知道一切。艾琳是对的。他和大多数乘客都在末日前被留在了地球上”[20]

        全世界陷入了混乱,无人驾驶的飞机像被击中的野鸡一样垂直落下,无人驾驶的车辆冲出公路路肩;几百万人失踪,更多的人死亡。虔诚的地铁司机突然失踪,造成了撞车事故。纽约市作为世界无信仰者的中心陷入交通瘫痪。欧洲关闭了空中交通,因此斯蒂尔将他的飞机开回美国芝加哥的一个运转正常的机场(不同于电影版中不太真实的高速公路着陆)。

        电视新闻镜头捕捉到了被提的怪异景象。例如,一位临产妇女的肚子突然瘪了,婴儿直接升入天堂,与此同时,护士的衣服掉到了地板上,护士也与婴儿一起升入了天堂。回到家后,斯蒂尔发现他的妻子和年幼的儿子都离开了,而他的持有不可知论的大学生女儿克洛伊被留下了。当然,艾琳所在教堂的所有会众也都离开了;牧师意味深长地为剩下的人留下了一张“我告诉过你”的DVD,DVD制作得非常用心,它影响了雷福德·斯蒂尔,使他立即皈依并获得重生。

        巧合的是,斯蒂尔航班上的一位乘客名叫巴克·威廉姆斯,是一位著名记者,正在调查被提事件。大约一年前,他去以色列采访了一位生物学家,这位生物学家不仅发现了一种能将沙地变成肥沃农田的化学肥料,还掌握着另一个神秘而极具价值的科学秘密,正是这个秘密使以色列成为地球上最富有的地区。威廉姆斯在以色列期间,俄罗斯人试图对该国进行大规模核袭击,但他们所有的导弹和轰炸机都奇迹般地在半空中爆炸。

        小说中的第三位主角是反基督者,即一位名叫尼古拉·卡帕西亚的罗马尼亚人,他精通九种语言,外表英俊,能力出众,极富魅力。在他还是一名政界新星时,威廉姆斯采访过他。他迅速升迁,很快成为联合国首脑,并将联合国安理会改组为时代论者所熟悉的十国联盟。卡帕西亚现在是世界上最强大的人,他建立了全球货币体系和经济联盟,实现了核军备的全球性裁减,与以色列签订了七年和平协议,并将现在拥有至高权力的联合国迁移到了古巴比伦所在地区。通常情况下决策缓慢的世界组织,却在几个小时内同意了卡帕西亚提出的所有要求。卡帕西亚随后宣布成立一个统一的世界性宗教。

        威廉姆斯发现了卡帕西亚的真实身份,并开始与克洛伊联手。克洛伊母亲所在教堂的会众几乎都被提了,与之形成鲜明对比的是,克洛伊所有斯坦福大学的左翼朋友们都被留下承受灾难;克洛伊和威廉姆斯重获新生后结婚,并与她的父亲联合组建了“灾难之光”,该力量利用技术魔力与卡帕西亚作战。[21]

        书中到处都是国际主义者的阴谋。几十年前,一位全能型生物技术金融家乔纳森·斯托纳加尔对卡帕西亚的母亲人工授精,于是能够迷惑人类的卡帕西亚诞生,斯托纳加尔的邪恶野心得到推进。军方故意无视专业飞行员的不明飞行物报告。斯托纳加尔重新安排了世界的领导者,几乎每天都制造高层“自杀”事件,但他自己最后也为卡帕西亚所杀。卡帕西亚洗脑了所有目击者,使他们相信斯托纳加尔是自杀的,除了受到上帝保护的威廉姆斯。

        这本书充斥着莱希的摩尼教式文化战士风格:那些反对堕胎并投票支持共和党的人会被提,而仅仅过着舒适生活或阅读新纪元书籍的人将被烧死。

        威廉姆斯引人入胜的探索过程,将原本难以理解的时代主义末日论分成了容易理解的小部分。这本书保持了一种高度传神的叙述流,通过交替的段落既描述了威廉姆斯对卡帕西亚真实身份的不懈追查,又阐述了如今重获新生的斯蒂尔对时代论末日计划的探索。

        1995年版的《末世迷踪》出版后,在接下来的12年里,莱希和詹金斯又写了15部续集和前传,它们共同涵盖了整个时代论序列,从邪恶的卡帕西亚在基因工程中出生,到(最终的)王国降临。

        前几部书的每一部都售出了几十万册,到了第四部,由于口口相传,该系列已经在《纽约时报》畅销书排行榜上名列前茅。[22]到了第八部,首印总量已经达到250万册。2001年“9·11”事件之后,第十部销量飙升,取代约翰·格里森姆的《油漆的房子》成为全年最畅销小说,这是格里森姆自1995年以来首次失去此殊荣。更值得注意的是,畅销书排行榜一般都不会将宗教性书店的销量计算在内,而这本书在宗教性书店的销量占总销量的1/3。大约1/10的美国人读过该系列的书,1/4的美国人知道这些书。[23]

        《末世迷踪》系列的总销量超过6500万册。2002年,莱希和詹金斯登上了《时代》杂志(以及2004年《新闻周刊》)的封面;随后,两位作者分别推出了各自的系列,莱希也从宗教导向的廷代尔出版社转到主流的兰登书屋,后者支付了4500万美元向他预约了另一个系列的书。[24]

        如此巨大的成功引起了时代论者对它的批判性审查。尼古拉斯·克里斯托夫在《纽约时报》中写道:

        美国最畅销的小说系列《末世迷踪》,热情地描绘了耶稣复临并杀死所有非基督徒的情景。世界上的印度教徒、穆斯林、犹太人和不可知论者,以及许多天主教徒和一神论者,都被扔进了永恒的火焰中……天哪,多么令人振奋的一幕啊!

        克里斯托夫随后将注意力转移到林赛的各种有缺陷的预言上,并得出结论,“明明是错的,却罕见性地获得了如此巨大的成功”[25]。另一位世俗评论家则轻蔑地认为詹金斯融合了“杰瑞·法威尔和汤姆·克兰西[26]”的风格。[27]其他一些评论家认为,被提类小说普遍缺乏同情心,它们以极大的快乐描述被烧死的数亿人。

        杰里·詹金斯展现出一个随和、不带意识形态的平民作家形象。在接受《新闻周刊》采访时,他提道:

        平庸的文字,单薄的人物形象——我接受批评。我就是给平庸的人写的。我也是一个平庸的人。我尽己所能写作。我知道我永远不会被尊为经典作家。我不会自称C.S.刘易斯[28]。对于那些文学类型的作家,我很佩服他们。你们知道吗?我也希望自己能足够聪明,能写出一本难读懂的书。[29]

        詹金斯对C.S.刘易斯的提及并不是随意的;根据神学家马克·沃德的说法,“基督教出版细则要求,每一本基督教书中至少有其中一章的开头要引述C.S.刘易斯的话”。詹金斯也没有吹嘘他的读者群,他提到,有一次他在沃尔玛山姆会员店遇到一位购物者,她买了一本他写的书还有一瓶威士忌,詹金斯得出结论:不管以哪种方式,那天晚上她一定睡得很好。[30]

        相比之下,在《新闻周刊》的同一篇文章中,莱希则表达了强硬的神学确定性和对国家文化精英们和宗教精英们的强烈不满:“我试图接触的数百万人都从字面上理解《圣经》。但神学家们把我们的想法搞得一团糟,他们认为我们必须找到背后的神学原因。知识分子瞧不起我们这些普通人,这让我很烦。”[31]

        莱希所说的“普通人”主要居住在美国南部和中西部,占《末世迷踪》系列读者的71%,而在东北部的占比仅为6%。[32]莱希的核心读者区域正是反堕胎、反同性恋的社会保守主义大本营,这些保守主义为美国时代论者和福音派人士注入了能量。杰瑞·法威尔和帕特·罗伯逊都来自弗吉尼亚州,哈尔·林赛来自得克萨斯州,吉米·斯瓦加特来自路易斯安那州,金·贝克来自密苏里州。

        越来越多的时代论教区居民,其中有很多是林赛、莱希和詹金斯的书迷,涌向以色列,特别是耶路撒冷,沉湎于他们的千年信仰;2017年,以色列的360万游客中,大概有1/8是福音派教徒。许多以宗教为导向的旅行者预订了时代论旅行路线,其中最精彩的是参观耶路撒冷圣殿研究院的游客中心,那里展示了为重建圣殿而建造的器皿和工具。用学者约西·梅克尔伯格的话说,大多数游客“完全无视故事中的巴勒斯坦一方。这可是涉及宗教的;有友如此,何需敌人?[33][34]

        重建第三圣殿的核心环节是出现一只没有杂色、没有瑕疵且没有负轭的红色小母牛。乳房部位长出的白毛,使梅洛迪小牛失去了作为天启之牛的资格,但它的出生启发了一位更认真的时代论者来到以色列。他名叫克莱德·洛特,是美国密西西比州的一名牧场主,1989年,他读到了《民数记》19章中的相关段落,并思考如何才能繁殖出这样一只完全合格的动物祭品。他认为,这并不难,尽管这种小母牛在欧洲和亚洲很少见,但美国的红色的安格斯牛几乎接近这一要求。

        第二年,他访问了密西西比州农业和商业国际贸易办公室,该办公室向一位国务院贸易专员发送了以下备忘录:

        克莱德·洛特打算提供一种红色的安格斯牛作为《圣经·旧约》中的祭品,它不会有任何瑕疵或浅色毛发,遗传性红色使其有红色的眼睛,黑色的鼻子,一只一岁的小母牛的体重约为700磅。这些牛将很快适应中东气候,而且牛肉质量也很好。[35]

        最终,这份备忘录传到了圣殿研究院的拉比们那里,该研究院院长哈伊姆·里奇曼高兴地注意到,有着《圣经》中著名地点——索多玛[36]之称的地方也饲养了牛。[37]在随后的几年里,洛特和里奇曼在以色列互访。1996年,梅洛迪的出生引起了轰动,这鼓励他们制订一项重大计划:他们要在1997年12月,将500只怀孕的母牛运往危险一触即发的约旦河西岸。该计划可能产生一整群真正的天启之牛,但由于陷入繁文缛节和财政困难而未能启动。洛特哀叹道:

        我内心深处认为,上帝希望我成为以色列的福音,但这很复杂。我们只是还没准备好把红母牛送到那里。如果有一位至高无上的神亲自掌管人类事务,那么这将会发生,而且这将是一个关键性的事件。[38]

        在时代论的计划中,一条细细的红线将“关键性事件”和“灾难性事件”分开。梅洛迪、索多玛和里奇曼,这些关键词概括了一种奇怪的神学戏剧,不同的参与者在同一舞台上表演,并阅读几乎完全相同的剧本。在结束之前,参与者们愉快地支持着彼此的演出,但到结束时,他们的命运完全不同。在犹太教的剧本中,弥赛亚第一次出现,并在耶路撒冷建立了永恒的犹太国家和圣殿;而基督教的剧本中增加了几个场景,上帝再临复仇,使1/3的犹太人放弃旧信仰而改信新信仰,并烧死了另外2/3的犹太人。

        不用说,这出戏涉及大量见利忘义的互相利用。以色列极端分子想获取犹大人和撒马利亚人[39]的《圣经》权利并重建圣殿,但无法获得多数选民对他们的支持,于是他们很乐于接受福音派基督教徒在财政和政治上的帮助,而这些基督教徒则相信,这出戏结束时,一定可以通过犹太人的转皈依或被焚烧而实现对他们的新犹太盟友的清洗。用记者格肖姆·戈伦伯格的话说:

        也许这本无所谓,但有些善意的人认为犹太人重建圣殿将导致世界杀戮,他们有时会插手这些极端分子的事务,因为这些极端分子的行动不是出现在神话领域,而是出现在一个真实的国家,真实的冲突是会夺走真实生命的。[40]

        13 资本主义的慈善家

        从环球电讯、安然公司到互联网泡沫

        在克莱德·洛特和哈伊姆·里奇曼沉溺于各自的基督教和犹太教末日幻想时,美国的投资者们在一场金融投机狂欢中丧失了集体智慧。

        2000年初的一个晚上,在曼哈顿市中心的《财富》杂志办公室工作了一天之后,记者杰森·茨威格乘出租车回家。当出租车驶入车流时,被四位身穿昂贵西装的年轻人拦住,其中一人砰砰地敲着司机的车窗,要求搭车前往只有几个街区远的目的地。当出租车司机告知他已经有乘客时,这位年轻人把一张100美元的钞票扔到司机的脸上,说:“把他赶出去,我们给你100美元。”

        出租车司机关上车窗,正如茨威格先生记录的那样:“我们两个像少女逃离匈人阿提拉[1]的帐篷一样快速逃离了现场。”令茨威格这位老纽约人目瞪口呆的不是那些年轻人用100美元撵他下车,而是他们步行完全可以更快地到达目的地。[2]

        像布朗特、哈德森和英萨尔一样,这些盛气凌人的年轻人也沉醉在暴富所带来的狂妄中,或许也有更世俗的心境。他们很富有,根据物质社会的逻辑,他们聪明而且重要,尽管他们的财富很可能来自狗屎运或者欺诈伎俩,或者两者兼而有之。

        这场让这四位年轻人如此陶醉的金融狂热,大致从20世纪90年代中期持续到2005年,然后在随后的两年半时间里缓慢崩溃,所带来的通货紧缩的时间长度基本上与1929年黑色星期四之后的通货紧缩相同。它带来了广泛的破坏力:总计1亿投资者共损失了5万亿美元(约占股市财富的1/3)。其中最激进的股民是数百万美国人,他们被蒙蔽,认为自己在互联网股票和共同基金中找到了年轻人的财富源泉,就像1929年的埃德加·布朗一样,他们在风暴中失去了大部分积蓄。[3]

        与之前的狂热一样,泡沫的病理生理学基础是海曼·明斯基提出的4个因素——技术替代、信贷宽松、对上一次泡沫的健忘以及放弃旧的估值方法,也适用于本次狂热。

        泡沫的原因是互联网。作为那个时代巨大的技术替代,互联网真的改变了一切。[4]1969年,美国国防部高级研究计划局把加州大学的洛杉矶分校和圣巴巴拉分校,以及犹他大学和斯坦福研究院的4个“节点”联系起来,互联网诞生。这种新的“信息高速公路”刺激了投资者。但由于它不仅速度缓慢而且操作困难,再加上第一代个人电脑的昂贵和笨重,因此在最开始的20年中,互联网对日常生活几乎没有什么影响。最初的常用网络,如美国在线和美联网,一开始甚至没有连接到更广域的互联网,即使后来连接上了,它们的功能也只是像围墙内的花园,不允许直接导航到域外网页。

        这种情况在1990年得以改变。当时,位于瑞士和法国边界、研究高能粒子的欧洲核子研究组织[5]的计算机科学家蒂姆·伯纳斯·李,发明了第一款原始浏览器,他预知性地称之为万维网。那时,他只是试图将该设施中无数台不同的计算机连接起来;但是偶然地,他连接了世界。这轰动了金融市场,也改变了我们的生活方式。[6]

        伯纳斯·李的第一款浏览器在满足普通用途时仍需要很多专业技术,但这个问题很快就被其他程序员改善。1993年,美国伊利诺伊大学的NCSA(国家超级计算应用中心)发布了马赛克浏览器,它是一种基于微软操作系统的、相对容易安装和使用的浏览器。马克·安德森领导了NCSA团队,他当时还只是伊利诺伊大学的学生;毕业后,他搬到了加利福尼亚州,并在那里与持有计算机科学博士学位的吉姆·克拉克一起合作。

        那时的克拉克已经于10年前创立了视算公司,其主要制造高性能计算机。在技术术语上,这种设备是一种“计算机工作站”,是为特定任务设计的一种设备,通常需要运行专有的操作系统和软件。20世纪80年代,工作站制造商赚了几十亿美元。但对大多数公司来说,这种盈利能力只是一个黄金陷阱,因为它们的产品很快就会被功能更强大的个人电脑取代。克拉克预见到了这种结果,但他无法说服公司管理层相信这一点,于是他沮丧地离开了视算公司,因为他不仅对自己一手创建的公司偏离方向而感到愤怒,而且不满于自己的股份仅值2000万美元,用他自己的话说:“在一个创造了巨大个人财富的行业里工作了十几年,相对于付出的创造力、领导力和辛勤工作,以及承担的风险,这一股值较少。”[7]他发誓,下次一定要有更多的控制权,得到更好的回报。

        1994年,克拉克和安德森成立了马赛克通信公司。伊利诺伊大学不满于他们使用马赛克这个名字,要求他们换个新的公司名称;于是他们改名为网景通信公司。和马赛克通信公司一样,网景通信公司的浏览器也是免费提供的,并很快传播开来。到1995年中,数以百万计的用户为电脑屏幕右上角带有字母N的地球图标而兴奋不已,这意味着他们在线且可以从全球任何地方访问网页。

        明斯基的第二个病理生理学因素——信贷宽松,为泡沫提供了原始燃料。在现代社会的部分准备金体系中,一国的中央银行——就美国而言是美联储——扮演着货币供应的看门狗角色。美联储的任务是提供充足的货币供应,进而保持经济繁荣,但美联储还有一个任务,用前任主席威廉·麦克切斯尼·马丁那句著名的话说,就是要“在聚会开始时把大酒杯拿走[8][9]

        大多数情况下,美联储委员会关心两个问题:以GDP增长和失业率衡量的整体经济状况,以及控制通货膨胀。股票价格不太受到关注,而且经常成为前两个问题的“无辜旁观者”。

        到了20世纪中期,美联储的主要工具是联邦基金利率,即成员银行之间的隔夜拆借利率,这一利率事实上成为政府证券的短期利率。当作为安全性证券的政府证券的利率比较高时,这会吸引投资者买入,进而导致资金从股票等风险资产中转移出来,并使股票的价格降低;相反,当美联储降低利率时,寻求更高回报的投资者会购买股票,从而提高股票价格。[10]

        20世纪90年代初,一场相对严重的经济衰退导致了两个事件。首先,它使乔治·布什没能连任;正如胜利者比尔·克林顿的竞选口号所言:“笨蛋,关键是经济!”其次,经济衰退引发了美联储大幅放松信贷,这助长了股市泡沫。

        在艾伦·格林斯潘担任主席期间,美联储通过买进美国国债来应对20世纪90年代初的经济衰退,这使联邦基金利率从1990年1月的8.3%降至1992年底的3%左右,并持续了整整两年。降低的利率助长了初始阶段的股市繁荣,投资者们开始谈论“格林斯潘看跌期权”,即美联储主席积极维持一种高股价状态。[11]

        按理说,美联储应该在1997年左右“把大酒杯拿走”,那时经济运转顺利,通货膨胀率下降到3%左右。似乎格林斯潘正打算这么做,但被一系列事件打断。随后发生的事情与20世纪20年代本杰明·斯特朗通过降低利率来保护英镑、不经意间引发了美国股市狂热非常相似。

        1997年和1998年,一系列全球性事件使美国的大酒杯保持满溢。货币危机和债务危机席卷了全球金融市场,从泰国货币——泰铢的崩溃开始,像多米诺骨牌一样蔓延到马来西亚、印度尼西亚和中国香港。最初,不断演变的传染并没有引起格林斯潘的警戒,因为这些亚洲经济体的规模相对较小。但到1997年底,韩国,一个驻有数万美国军队的富裕国家,也陷入金融危机,格林斯潘被迫做出反应。美联储和财政部强有力地支持美国银行以尽可能低的利率保持向韩国贷款,而且不仅对韩国,对其他亚洲国家也是如此。国外较低的利率降低了这些外币的汇率,使美元升值。早在1997年初的经济繁荣时期,美联储已经开始提高利率,但为了防止美元升值,还是维持了相对稳定的低利率;与20世纪20年代一样,持续相对较低的利率助长了当时本已存在的股市狂热。

        国际金融的多米诺骨牌继续倒下;1998年底,俄罗斯经济状况恶化,导致债务违约和卢布贬值。这直接影响到了美国,因为有一家大型知名美国对冲基金公司——长期资本管理公司[12]在俄罗斯国债上下了很大的赌注。该基金公司持有的大量债券价值蒸发,这威胁到了美国金融体系的其他部分,并重创了世界各地的股价(见图13-1)。

        图13-1 1997—2000年的联邦基金利率

        那时,格林斯潘已经获得近乎神话般的“大师”地位,市场把20世纪90年代的经济繁荣归功于他,正如鲍勃·伍德沃德后来将他的畅销书以这位主席的名字命名一样。格林斯潘认为,长期资本管理公司的倒闭可能带来灾难性的后果,威胁他的良好声誉。他组织私人银行对该公司进行救助,还通过大幅降低联邦基金利率放松信贷,并将其维持在低水平整整一年。这又把股票价格推到了最高点。[13]

        到20世纪末,泡沫的第三个病理生理学因素——金融健忘症——已经发展了几十年。1929—1932年的熊市如此猛烈地侵蚀了家庭和机构的财富、灼伤了国民的心理,以至于在此后的几十年里,股票都被看作不稳健的投资;比如,直到1945年,根据可靠的统计数据,个人投资在股票上的平均金额(主要统计富人的储蓄)仅在30美分左右,而且持有大量股票的主要是少数几家企业养老基金。

        1929—1932年股票熊市发生时,虽然只有约10%的美国人持有股票,但是随后的大萧条影响了所有人。[14]几乎所有特定年龄的美国人身上都有大萧条时期留下的阴影(就本文作者而言,即使他母亲在餐馆里用餐后剩下一点儿芦笋,也要仔细包装并拿回家)。对几百万美国人来说,1929—1932年的残酷记忆仍然历历在目,这在一代人的时间甚至更长的时间里削弱了股票的吸引力。

        不过20世纪50年代末至60年代初,确实发生了一场类似的股票泡沫。围绕几十年前物理学家威廉·肖克利领导的贝尔实验室团队发明的半导体晶体管,越来越微型化、功能越来越强大的电子设备开始爆炸式发展。到1959年,在公司名字后加上“tronics”(英文单词“电子”的后七个字母)有助于激发公众的兴趣,并使股价上涨,就像几十年后在公司名字后加上“.com”的做法一样。美国音乐协会是一家专注于留声机和黑胶唱片的制造商,它只需将名字改为“Space-Tone”,就以7倍的价格上市了。还有一些类似的公司名称,包括“Astron”“Vulcatron”,还有几个以“sonics”结尾的名称,最令人印象深刻的是“Powertron Ultrasonics”。[15]投资银行大量配股给内部人士,同时限制广大公众可购买的数量,这更激发了公众的热情。1962年,像所有以前的泡沫那样,狂热的买主都已耗尽,公众热情崩溃。[16]

        电子狂热只涉及股票市场的一小部分,而且由于那个时代持有股票的美国人相对较少,因此它在公众记忆中几乎没有留下什么持久的印象。[17]到20世纪90年代,对普通美国人来说,1929—1932年的全社会股票泡沫已经过去了两代人的时间。当泡沫再一次来临时,只有三类小群体有能力识别:拥有完整记忆的90多岁的老年投资者;经济史学家;那些阅读了《非同寻常的大众幻想》、吸取并保留了前三章教训的人。

        20世纪90年代,泡沫的第四个病理生理学因素,是放弃传统的股票估值标准。20世纪20年代末,不仅最优秀的股票产生了稳定的利润流,而且除了少数几家“高科技”公司(最著名的是美国无线电公司和雷明顿兰德公司)外,其他所有公司都提供了健康的股息。[18]相反,到20世纪90年代,只有少数几家新技术公司的收入足以承担其人员和设备的巨额支出。至于股息,科技类股票投资者认为,那是遥远的马鞭和马车时代的遗留物。微软于1986年首次向公众发行股票,但直到2003年才宣布派息;截至本书撰写之时,互联网的两大赢家亚马逊和谷歌从来没有派过息。20世纪90年代,不知何故,投资者们认为,收益和股息根本不重要;他们认为,公司股票的真正价值在于一种更模糊的衡量标准,即能否博得数百万眼球的关注,或是否有数十亿次点击量。

        正如20世纪那位伟大的投资者约翰·邓普顿所说:“英语中最昂贵的一句话是‘这次不一样’。”20世纪90年代,新兴的数字世界看起来确实不一样,许多曾经听起来最疯狂的承诺都在那时兑现了:几乎覆盖全球的宽带,无处不在、几乎免费的语音和视频电话,以及吞噬了许多传统实体店的高效的在线购物环境。

        遗憾的是,这些技术的普通投资者却并未获利。在20世纪90年代末上市的数百家公司中,只有少数幸存下来。幸存下来的,只有亚马逊一家成为主导性经济力量,但即使是亚马逊,也尚未显示出投资者对其零售业主导地位所期望的收益。[19]

        和英国铁路泡沫以及20世纪20年代的泡沫一样,20世纪90年代的科技繁荣尽管打击了金融投资者,但也给社会留下了宝贵的基础设施。如上文所述,我们根据盈利能力和社会效益构建了一个三级金字塔式结构,以理解这些泡沫公司(见图13-2)。

        图13-2 不同等级的泡沫公司

        金字塔最顶端的公司不仅造福于社会,也让投资者们更富裕了,比如东印度公司或英格兰银行,到目前为止,还有亚马逊和谷歌。金字塔第二层,或许是最重要的一层,是那些让社会受益却让投资者赔钱的公司,比如乔治·哈德森的铁路帝国和塞缪尔·英萨尔的公用事业投资公司。

        美国环球电讯公司是科技泡沫时代的这种公司的典型代表。当今全球50万英里的海底光缆,大部分铺设于1998—2002年的互联网投资热潮时期,其中的近1/3是由加里·温尼克贡献的。

        温尼克曾是一名债券销售员,是“垃圾债券之王”、被判重罪的迈克尔·米尔肯的门徒。他与商业祖先布朗特、哈德森和英萨尔有着同样的天赋:能通过股票和债券从轻信的投资者那里筹集几十亿美元。

        不幸的是,他没有哈德森和英萨尔那样的商业头脑;在1997年成立环球电讯公司之前,正如一位记者所说,他掌握的电信知识并不比“打推销电话的能力”多很多,此外他也从未经营过大型企业。[20]环球电讯公司的失败是由于他的无能和渎职,还是由于运气不好,这仍然没有定论。虽然温尼克倾向于不参与公司的日常事务,但他和其他高级管理人员确实在公司倒闭前有意识地抛售了数亿美元的股票。民事诉讼和监管行动剥夺了他的大部分非法所得,但最终检察官并没有起诉他。

        温尼克的罪责并不是我们讨论的重点。尽管环球电讯公司严重冲击了投资者的财富,但它为当今互联世界的形成做出了不小的贡献。在围绕环球电讯和其他互联网股票的市场狂热达到顶峰时,环球电讯公司的市值超过400亿美元,其中温尼克拥有60亿美元。(1999年的《福布斯》封面大肆宣扬他的“光速致富”。)[21]

        他的项目既没有欺诈也不缺乏远见,因为他对全球网络带宽重要性的评估是正确的。但是,和商业史上许多有远见的人一样,他低估了两个会导致利润降低的问题,而这两个问题会时刻存在。首先,利润会带来竞争,使供应增加,进而压低价格和随后的利润,这和死亡以及税收一样,是必然存在的。例如,温尼克在1997年完成了两条大容量、跨大西洋的光缆的铺设,但随后6年内又出现了10条竞争性电缆。其次,技术进步也增加了商品的供应,进一步压低了价格。就海底电缆而言,在随后的几十年中,“干设备”(即电缆两端的光发射机和光接收机)的改进使原来铺设的电缆的承载能力增加了7~10倍。尽管2003—2014年没有铺设新的跨大西洋电缆,但现在的全球数据流量大约比2002年大1000倍;平均而言,目前世界海底电缆容量的利用率只有不到1/4。[22]

        像泡沫时期总是会发生的那样,投资热情导致环球电讯公司的投资者为自己的行为付出了巨大的代价。2002年1月28日,该公司申请破产,随后两家亚洲公司用2.5亿美元收购了温尼克公司的控股权,这个价格相当于1便士兑1美元。虽然重组后的该公司最终仍然运营着互联网主干网的一大部分,但最初的股东们只获得了法律和解中的一些碎屑,其他什么也没有得到。

        这场巨大损失的波及范围很广:除了个人投资者,养老金和共同基金池损失了几十亿美元。小学教师琳达·洛奇在股票交易中损失了12万美元,在评论温尼克先生适时卖掉他自己的股票时,她说:“我不知道这家公司的管理层为什么能做得这么好,而小股东们却做得这么差。”[23]环球电讯公司的许多员工在他们的401(k)计划[24]中持有本公司的股票,他们比洛奇更悲惨,不仅失去了储蓄,还失去了工作。[25]

        除了环球电讯公司的高管,还有一些人通过适时出售股票而获利。1999年3月,美国前总统乔治·布什向该公司高管发表了演讲;代替8万美元的演讲费,他持有了该公司的股票,并于几个月后以大约450万美元的价格出售了这些股票,据《华尔街日报》推测,这些股票可能用于支付他在肯纳邦克波特镇[26]上公寓的维护费用。[27]

        虽然环球电讯公司严重损害了像洛奇和公司普通员工这类人的金融利益,但它通过提供超量带宽使世界受益。金字塔的最底层就不是这样了,几百家互联网公司消失得无影无踪,不仅践踏了投资者,也没有留下任何社会价值或经济价值。在这些公司徒劳地追求关注度的过程中,可能最精彩的故事就是韦伯万事件了,它是一种1995年之前所无法想象到的大惨败。

        路易斯·博德斯是一个有着古怪想法的20多岁的技术人员。他先是创立了一家同名连锁书店。1997年,从书店领域退出5年后,他成立了一家投资公司。当时,他从网上订购的稀有香料邮包到达他的家门口(当时网购还是很新奇的事物),他脑中闪过一个想法:能不能说服美国人通过这样的方式购买食品?

        博德斯的理想很大。为了向几百万消费者提供生鲜商品,他需要建立一个新颖而庞大的物流系统。他在奥克兰建立了第一个配送设施,其面积是一个标准超市的20倍,铺设了4.5英里长的传送带,可以运送各种各样的生鲜食品,包括700多种肉类和鱼类。[28]然后他聘请了全国最大的建筑公司柏克德工程,以超过10亿美元的总成本,计划打造一个由26个类似建筑群组成的全国性网络,这对一家在上一年还不存在的公司来说,是一个了不起的成就。

        博德斯曾在麻省理工学院学习数学,他预计,每个配送设施每天能完成825份订单,每年收入将达到10亿美元的1/3;人工“挑拣者”们将被策略性地安置在一组装有食品的旋转传送带中间,他们将把顾客购买的东西放在一起,然后通过几英里长的传送带将食品送到空转的冷藏卡车上,这些食品可以在订购后一小时内送到家。由于规模大,预计韦伯万公司只需要将收入的不到1%用于实体仓库,而即将过时的传统超市的这一比例则为6%。博德斯计划在征服零售食品行业之后,转向视频、消费电子产品和干洗行业。[29]

        韦伯万公司吸引了高盛、甲骨文、惠普、奈特·里德等一系列公司的金融支持,同时也引发了一场公众投资狂热。为了继续煽动这场狂热,其在首次股票发行时,只出售了公司的一小部分股票;如果出售的是全部股票的话,那么总市场估值将达到84亿美元,是西夫韦[30]公司的一半,这对最终建成时将以26个超大型超市为中心的运营来说并不差。[31]

        两个问题注定了这是一次冒险。第一,韦伯万并不是第一个互联网食品销售商;它有几个竞争对手,其中包括规模更大、更成熟的家用杂货公司HOMG,HOMG背后的支持者包括亚马逊的杰夫·贝佐斯。第二,系统不好用;这项未经测试的技术被证明不听使唤,而且即使系统运行顺利,消费者也不相信该公司能为他们挑拣出易腐产品并做到按时交付。韦伯万和HOMG都公布了多月的亏损。[32]

        HOMG管理得更好,但韦伯万激发了更多的热情,因此也吸引了更多的资金,这意味着HOMG首先出现资金枯竭。实力较差但资金较多的韦伯万并购了HOMG,但这更加速了新合并的公司的现金消耗;2001年7月,该公司宣布破产,几十亿财富蒸发,3500名员工失业。[33]

        20世纪90年代的三级泡沫金字塔,坐落在渎职和欺诈的泥潭中,就像安然公司那样。作为美国历史上欺诈金额最大的企业之一,安然导致的投资者损失高达700多亿美元。这一事件充分体现出那个时代一夜暴富的氛围。与讨人喜欢、乐善好施又有远见的温尼克不同,安然的管理层有意识地实施了大量制造金融泡沫的犯罪行为,其主角们扮演了典型的恶棍角色,如道貌岸然、有社会野心的肯尼斯·莱,运动机能亢奋的杰弗里·斯基林,还有阴暗、犯盗窃罪的安德鲁·法斯托。

        与环球电讯和互联网公司不同,安然最初从事的是经济中最不起眼的商品之一——天然气的经营[34]。20世纪中期之前,天然气经常被当作废物烧掉。相比之下,该公司的负责人则很耀眼,用记者彼得·埃尔金德和贝萨尼·麦克莱恩精辟而又令人难忘的话来说,他们是“房间里最聪明的人”[35]

        1942年,肯尼斯·莱出生于阿肯色州极度贫困的农村地区,他在11岁之前都没有住过有卫生间的房子。然而,从11岁起,他的好运来了,他跟随父亲搬到密苏里州哥伦比亚市,在那里,家里的3个孩子都以很低的学费进入公立密苏里大学。莱在那里遇到了经济学家平克尼·沃克,后者给他带来了巨大的好运。

        毕业后,莱开始在埃克森公司的前身——亨伯尔石油公司工作,并通过在夜校学习获得了经济学博士学位。接着,他加入海军服兵役,服兵役期间的1969年,沃克帮他在五角大楼获得了一份武器采购工作。此后不久,尼克松总统任命沃克为联邦能源委员会成员,莱作为沃克的助手一同前往。这位年轻的助手给尼克松留下了如此深刻的印象,尼克松任命他担任内政部主管能源事务的副秘书长。

        公用事业贯穿公共通行权。自19世纪末其诞生以来,各州和联邦政府就对该领域进行严格监管。但到了20世纪70年代初,管制开始放松了。依靠在华盛顿的人脉,莱在得克萨斯州和佛罗里达州的能源公司找到了自己的定位,最终,1984年,作为休斯敦天然气公司的CEO,他策划了与内布拉斯加州奥马哈市的著名管道公司北方内陆公司的合并。莱聘请的咨询公司给合并后的公司命名为恩朗(Enteron);令人尴尬的是,《华尔街日报》指出,这个新名字是“胃肠道”的同义词。于是这个名字被缩短为安然(Enron)。[36]

        莱从管制放松中看到了巨大的利润。可悲的是,他身上的某些特征将会使“安然”这个名字变成公司渎职行为的同义词:他热爱奢华和威望,这一弱点使他无法控制他雇用的那些才华横溢而又傲慢自大的年轻人;他具有一种道德上的盲目性,将自己的私利等同于公司和整个社会的利益。由于需要花费更多的时间与华盛顿特区和曼哈顿的高层们交往,他在公司总部休斯敦的时间越来越少,于是他逐渐退出了公司的日常运营。尽管莱获得了丰厚的薪酬(2001年超过1亿美元,包括股票期权和“贷款”),但他的社会和物质野心推动他陷入债务深渊,到安然破产时他的债务超过1亿美元。[37]

        我们从安然公司的喷气式飞机上可以窥见公司的行为。购买公务机本身并不意味着公司管理不善,更不意味着渎职或过度使用。[38]但安然公司中有六辆车被莱的妻子和孩子视为他们的私有财产,即“家庭出租车”,这支车队在公司内部广为人知。在超级富豪中,飞机的大小、航程和速度代表着飞机所有者的权势等级;在20世纪和21世纪之交,私人航空领域的典范是配有三个引擎的猎鹰900。安然公司有两架猎鹰900,莱的家庭优先使用。例如,1999年的某一次,莱的女儿罗宾打算从法国返回时,公司派了一架猎鹰900专门过去接她。2001年,公司即将崩溃,莱热情地拉住即将成为CEO的杰弗里·斯基林,询问他对另一架新订购飞机的内饰的意见。[39]

        莱的家庭车队影响了其他高管的消费行为。高管中的许多人拥有豪华车队、多套豪华度假住宅和位于曼哈顿的公寓。公司也有一个过度消费文化的例外:冷静而能干的高管理查德·金德,其地位仅次于公司CEO。但莱迫使他以个人原因为由辞职。随着1996年金德离开安然,阻止公司崩溃的最后一道防线也随之而去。(金德随后帮助成立了另一家能源公司金德-摩根。该公司没有私人飞机,当金德需要私人飞机时,作为一个亿万富翁,他就自己掏钱租一架。)[40]

        莱的公司愿景远远超出了国内的管道领域;他希望通过雄心勃勃的海外基础设施项目和进军诱人的能源期货交易新领域,扩大公司的业务空间和范围,一旦成功,他就要从头开始创建一个互联网带宽的期货市场。一旦公司征服了这些行业,他就将继续进军钢铁和造纸等大规模工业,以及货物运输等服务业领域。[41]为了实现这一愿景,公司需要借入大量资金,而这又需要证明其早期盈利的能力;由于公司的新项目实际上都遭受了巨大的损失,因此只要制造表面上的利润就足够了。

        接下来杰弗里·斯基林出场了。他在新泽西州和芝加哥郊区长大,在20世纪70年代初就读于南卫理公会大学,学习电气工程。他很快发现,金钱能使他感到兴奋,而电路却不能。在某节课上,他偶然发现了一篇博士学位论文,该论文描述了如何将期货合约“证券化”并使其成为可以销售的金融产品,这种方式类似于后来的次贷危机中抵押贷款被打包出售给轻信的投资者。斯基林发现了一种从数学抽象中赚钱的方法,而他非常擅长数学抽象。此后不久,他进入哈佛商学院,并于1979年以优异的成绩毕业。

        作为哈佛商学院的顶尖毕业生,斯基林顺利进入了麦肯锡公司。在最近的丑闻之前,麦肯锡公司是全球最负盛名的咨询公司,在那里,冷静的抽象推理比其他所有技能都更受重视。不到10年的时间,斯基林就升职为休斯敦办事处的负责人,经常为安然公司提供咨询服务。1990年,安然公司将他从麦肯锡挖了过来。

        和其他大多数公司一样,安然在天然气销售收入入账时才将其计入财务报表。对斯基林这样的高级咨询行业从业者来说,这种似乎过时的、仅仅从销售一种商品中获利的观念是有问题的。例如,他设想,管道公司与其客户之间的长期合同,可以像其他证券一样在金融市场上买卖。更为关键的是,在收入入账时才计入财务报表,这不符合斯基林的智慧。如果客户签订了未来十年购买天然气的合同,他就认为可以将收入提前计入。

        这种被称为“按市值计价”的会计技术,正处于合法性的边缘,因此在使用之前,他请求美国证券交易委员会许可。令人难以置信的是,1992年,委员会竟然给出了许可。斯基林获得了一种最接近印钞许可证的东西:签署长期合同,一次登记所有收入,从而立即报告可观的收入,根据这些虚假的收入,再去借入资金建设天然气输气管道,凭此管道,就可以签订更多的合同,然后立即计入更多的未来收益,并为进一步扩张借入更多的资金。[42]这就好比洛克希德·马丁公司计划在未来10年内以超过1万亿美元的价格向美国武装部队出售2500架F-35战斗机,签署协议后立即登记收入,根据这些预计收入借入资金生产汽车,然后登记汽车未来销售的预计收入,再建立一个全国范围内的连锁医院。

        安然公司已经借入了大量资金拓展公司业务,其经营范围远远超出了普通的天然气输送。在接下来的10年中,其投资项目还包括:在孟买南部的达博尔建造了一座大型燃气发电厂;成立了阿祖里克斯,即一家遍布全球的水务公司,远至罗马尼亚、秘鲁和摩洛哥;建立了天然气交易平台和电力交易平台,其中最诱人的,是为科技投资者建立互联网容量交易平台(最后一个平台意味着,其与温尼克的环球电讯公司有业务联系)。

        和温尼克一样,安然的员工擅长会计骗术,迷惑了那些粗心的股票分析师和小投资者。也和温尼克一样,安然的员工中很少有人懂得如何经营实体企业。安然的每一个项目几乎都损失了大量资金,其中最引人注目的是达博尔发电厂,其发电成本如此之高,以至于当地供电局拒绝使用,随后该发电厂被搁置了5年。安然水务公司的国际业务拓展,由一位名叫丽贝卡·马克的极具魅力的高管负责,但她对于水务事业几乎没有任何经验,该公司最终以更快的速度走向崩溃。最令人难以置信的是,安然公司签订了向全世界2.8万个地点供应电力的合同,这被休斯敦总部的理智者嘲笑为“见鬼的业务”,由于其在电力方面缺乏经验,因此必须雇用技术和管理专家来完成这项工作。尽管斯基林设想了一个高科技的全球宽带交易平台,但据说他对此一窍不通,甚至必须依赖于秘书为他打印电子邮件并为他打开电脑终端。[43]

        斯基林没有向股东坦白公司的损失和债务负担,而是命令28岁的新员工安德鲁·法斯托隐瞒这些损失和债务。为了借入资金,公司不仅需要证明有能力盈利,还需要证明没有背负已经存在的债务。斯基林此前已经通过“按市值计价”的会计技术“解决”了盈利问题;法斯托将通过隐藏公司的大量已存在债务来解决借款难题。

        法斯托的前雇主是大陆银行,他在那里学到了贷款证券化方面的专业知识。证券化涉及贷款和其他债务的组合,这些组合可以出售给买家和交易员。这些高度复杂和模糊的安排,即所谓的SPE(特殊目的实体[44]),承担了安然迅速增加的债务,因此这些债务在理论上已经从安然的账目中消失了;分析师、机构投资者、小投资者,甚至安然自己的董事会,在公司资产负债表上已经看不到债务,这一骗局让人觉得该公司似乎没有负债累累。

        法斯托建立了3500多个这样的SPE公司,名字诸如马林、皮鞭、勇敢的心、猛禽、绝地武士、楚巴卡(以星球大战中长着毛发的角色楚巴卡命名)以及LJM1、LJM2和LJM3(LJM分别是法斯托的妻子以及两个孩子名字的首字母)。还有许多SPE公司专门将资金从股东、贷款人,甚至公司内的较低级别员工那里,转移到法斯托和其他高管的个人账户。[45]

        斯基林和法斯托的会计骗局,将安然的债务垃圾一脚踢开。这些垃圾形成了一个巨大的垃圾堆,最终无法再隐藏。值得注意的是,为什么股东和分析师花了这么长时间才意识到这件本来应该很快就显现的事情?

        最终第一个意识到并采取措施的人是詹姆斯·查诺斯,他运营着一个对冲基金,专门从事所谓的“卖空”交易。在正常情况下,股票购买者希望他们可以低价买入,然后高价卖出,从而获利。与直觉相反,“卖空”交易者可以做相反的事情:先以高价卖出,然后以较低的价格回购股票以获利。为了做到这一点,其必须首先向其他人借股票;股票出借者收取一定的费用,而借入者独自享有卖空操作的回报以及风险。[46]

        查诺斯并不是第一个意识到安然财务报告有问题的分析师;但他的优势在于更好地处理了社会公认的安然叙事与相反的财务数据之间的认知失调,并采取了行动,即做空安然的股票。[47]安然所取得的贷款取决于其信用评级,这又取决于法斯托能否利用各个SPE公司隐藏安然的债务。这些贷款还取决于安然的股票价值,因为股票是贷款的抵押品;当欺诈的消息最终传出时,公司股价下跌,银行收回贷款,纸牌屋倒塌。2001年10月16日,安然终于坦白了自己的损失;而在6周后公司宣布破产之前,肯尼斯·莱一直对公司的前景保持乐观。当他和助手们根据《美国破产法》第十一章的规定,前往纽约提交申请破产保护的文件时,他们乘坐公司的喷气式飞机飞过去,并入住了奢华的四季酒店。[48]

        和查理·米切尔的纽约城市银行的倒闭一样,安然的倒闭打击了内部普通员工,这些员工被鼓励用401(k)计划账户里的资金购买公司的股票;例如,2005年,2万名前安然员工获得了8500万美元的集体诉讼赔偿金,这相当于1美元的实际损失只能收回几分钱。(这笔钱是保险公司和银行出的,而不是从倒闭的安然公司那里收回的。)[49]

        雪上加霜的是,在股价跌幅最大时,员工们在一个月内都无法出售用退休账户购买的股票,名义上是因为账户在不断发生变化。但另一边,安然的高层在股价崩溃前集体抛售了股票,例如,斯基林卖出了高达7100万美元的安然股票。当另一家公用事业公司德能提出并购安然时,安然的高管们要求它承担总额超过1亿美元的奖金和支出,其中大部分是要支付给莱的,于是德能拒绝了并购。[50]

        与布朗特、哈德森和米切尔不同,这一次,正义得到了伸张:包括斯基林和法斯托在内的多名高管都被判入狱(他俩的刑期分别为11年和6年),而莱在宣判前死于心脏病发作。

        安然事件和那个时代的其他类似丑闻,如丹尼斯·科兹洛夫斯基的泰科国际公司和伯纳德·埃伯斯的世界通信公司的丑闻事件,都处于会计操纵监管调整的转折时期。

        1993年,为了控制过高的高管薪酬,美国国税局将CEO薪酬的公司税扣减额限制在100万美元[51];这推动了CEO的报酬形式转向股票期权,随着股价的上涨,股票期权将更有价值。这项政策的出发点是好的,从理论上讲,期权支付使CEO和股东的利益一致;但这是“意外后果定律”[52]的一个经典案例,期权支付也让CEO为使公司显示出持续而可靠的收益增长而伪造季度收益数字。

        在其他情况相同并给定平均收益水平的条件下,将两个季度的收益进行微小调整,就会使股票更有价值。由于现实中的公司收益波动很大,这种对收益报告进行的别有用心的“管理”,对很多CEO来说太有吸引力了。

        这种做法合法但不正派。通用电气就是一个典型,作为一个正常运营而又经营广泛的企业帝国,会不可避免地产生一些损失,通过将损失从一个季度重新安排到另一个季度,就可以产生平稳、可靠的收益增长流。[53]这种伎俩的发明者是杰克·韦尔奇,他没有做什么不同寻常的事情,更不用说欺诈了;相反,金融界和大众媒体都赞颂他,认为他是第二个托马斯·爱迪生。

        尽管如此,但有一点无论怎么强调都不为过,即19世纪的铁路、20世纪初的无线电和汽车等革命技术所产生的股票泡沫,为推动经济发展和提高社会福祉提供了自由流动的资本。

        20世纪90年代的互联网泡沫也是如此。尽管金字塔底部留下的是没什么价值的公司,如韦伯万,以及欺诈性公司,如安然,但将这些都考虑进去,当今不可估量的在线知识、娱乐、购物和网银交易,依然受益于这场泡沫中对技术进行的投资——其中大部分来自遭受损失的投资者。因此,泡沫投资者为了更大的公共利益而无意识地、悲惨地牺牲了自己的财富,把他们称为资本主义不知情的慈善家,这也不算太牵强。

        到了20世纪末,大型投资银行——为新公司和已存在的公司制造股票和债券的机构——已经成为泡沫的主要发起者。早在美国内战期间,金融家杰伊·古尔德就通过出售政府债券为联邦军队融资,成为行业的开创者。1929年大崩盘后,佩科拉委员会揭发了查理·米切尔的纽约城市银行肮脏的投资银行业务,并制定了1933年的《格拉斯-斯蒂格尔法案》,禁止商业银行发行股票和债券,禁止投资银行从事普通公民的存贷款业务,由此将商业银行和投资银行的业务分离。

        随后的几十年里,投资银行的游说逐渐削弱了《格拉斯-斯蒂格尔法案》的执行力。在菲尔·格拉姆(自由市场空想家)等共和党议员的推动下,在实行“三角策略”[54]的民主党总统比尔·克林顿的默许下,该法案最终在1999年泡沫最严重时被废除。

        在这场科技泡沫中,投资银行加快了对新公司股票发行的速度;而通过网景浏览器,公众第一次欣喜若狂地连接到互联网(虽然比今天的宽带连接速度慢一万倍),不需要被劝说就会主动购买这些股票。当网景创始人马克·安德森和吉姆·克拉克意识到巨人微软也在开发浏览器时,他们迅速采取行动,通过IPO融资。

        20世纪20年代,摩根公司一直没有涉事其中,之后的《格拉斯-斯蒂格尔法案》迫使摩根公司将其投资部门剥离出来,使其成为一家投资银行,即摩根士丹利。到20世纪90年代,摩根士丹利成为美国最大的新股发行商,它发行了网络泡沫中最引人注目的网景的IPO。

        到这时,摩根士丹利已经发生了变化;该公司的一位高管弗兰克·夸特罗内,来自意大利移民家庭,说话仍然带有浓重的口音,在此之前已经为互联网核心硬件的主要生产商思科公司进行了公开募股。随着网景公司在1995年8月9日首次募股,夸特罗内也使自己成为阳光查理(与查理·米切尔一样,夸特罗内在一系列审判中险些入狱,其中有一次因妨碍司法和阻拦证人被定罪,但在后来的上诉中,罪名被推翻)。

        困扰着夸特罗内、克拉克、安德森和刚刚被聘为网景公司CEO的吉姆·巴克斯代尔的一个主要问题:投资者应该为公司的股票支付多少?合理定价IPO是一门艺术。在理想情况下,为了保持热情,一只股票在交易首日应该经历发行价格的大幅“弹”起;如果发行价格过高,股价可能就会在首个交易日下跌,从而打击散户投资者的信心;如果发行价格设置得太低,公司及其创始人就会受损。最后他们4个人决定,每股为28美元(在此价格上,公司估值将约为10亿美元)。当天早上市场开盘时,他们都屏住了呼吸。

        对该股票的需求如此之大,导致当纽约证券交易所上午9:30的开盘钟声响起后,摩根士丹利的交易员无法得出合理的价格;某家经纪公司很快增加了一个新的电话提示音:“如果您的电话内容是关于网景公司的,那么请按1。”太平洋时间上午9点(按东部时间的话,证券交易此时已经开始两个半小时),不知所措的克拉克没有意识到这种疯狂,他看了看他的显示器,发现股价持平在28美元。他打电话给摩根士丹利的一位经纪人,经纪人告诉他存在“交易失衡”。克拉克不能完全理解这意味着什么,他想知道IPO是否失败了。

        “交易失衡”根本无法描述出摩根士丹利的纽约IPO服务桌上震耳欲聋的情景。其中心大约有200个工作站,每个工作站上都有一个交易员,每个交易员都拼命地努力接起几个同时响着的分机,而每个分机的通话内容都是关于如何购买网景股票。

        克拉克打电话后不久,经纪人回电告知他,该股票开盘价为71美元,这意味着他的净资产猛然突破了5亿美元,而公司筹集到的资金则更多,正如《克拉克回忆录》中某一章的标题——《10亿美元是最好的报复》。[55]

        “感恩而死”乐队的杰里·加西亚在当天晚些时候死于严重的心脏病发作。他的最后一句话据说是,“网景是什么时候开盘的?”[56]

        14 数字时代暴富梦的推手

        投资分析师、大众、媒体与政治家

        不是每天早上起床时,我们都认为生意不好。 ——罗杰·艾尔斯[1]

        许多人忽略了泡沫的明显迹象,特别是忽略了安然的财务垃圾堆,主要是因为受到“投资银行家”的影响。过去几十年里,这一职位已成为“赚了一大笔钱的人”的代名词。投资银行发行IPO时,它的佣金是进款的5%~7%。网景IPO的佣金是1.3亿美元,韦伯万IPO的佣金是3.75亿美元;之后其他公司的IPO又为投资银行赚了几十亿美元。投资银行的雇员从这块馅饼上分了一大部分。1998年,弗兰克·夸特罗内从摩根士丹利转到瑞士信贷银行,第二年,他分到的个人份额上涨至约1亿美元。[2]

        20世纪90年代之前,股票分析师在投资公司内部属于默默无闻、辛苦劳作的人,所获报酬一般。而互联网时代的一个很奇怪的特征是,曾经地位低下的股票分析师上升为名流阶层,互联网泡沫将其中一些人推向了超级明星运动员和电影演员那样的知名度,因为,热切的公众关注着他们关于这个或那个网络公司前景的每一个公告。其中最著名的两位,是摩根士丹利的玛丽·米克尔和美林证券公司的亨利·布罗吉特。问题在于,这些“分析”股票和债券的家伙,是由发行股票和债券的公司雇用的。

        金融业是美国经济中的一股强大的力量,占全国GDP和股票市值的近1/5。由于投资银行的业务是这一比重的最大来源,因此,正如美林证券公司的安然股票分析师约翰·奥尔森理解的那样,那些没有给出一系列“买入”建议的分析师,可能会承受压力。

        安然的高管们紧盯着公司股价,尤其是法斯托本人,因为他的项目依赖于公司股价。安然的主要投资银行的兴趣则在于债券发行,而债券发行又推动了安然疯狂的全球扩张。这些发行为投资银行带来了巨额收入,安然不断用此事实提醒其投资银行。一位分析师说,该公司曾向他表示:“我们每年的投资银行业务超过1亿美元。如果你(推荐客户)买了很多,那么你也会得到一些收入。”[3]

        但奥尔森没有遵循那个剧本。与詹姆斯·查诺斯不同(查诺斯在卖空安然股票的事件中被怀疑有欺诈行为),奥尔森并没有过分否定安然,他只是报告说,自己不了解安然的会计核算,并在一次媒体采访中指出:“他们对于如何赚钱不太坦率……我没听说过有哪位称职的分析师能认真分析一下安然。”[4]安然的董事长莱鄙视奥尔森,并给奥尔森的上级唐纳德·桑德斯写了一张便条:“唐,约翰·奥尔森对安然的看法10年来一直是错误的,现在仍然是错误的,但他始终坚持己见。”(桑德斯向奥尔森出示这张便条时,奥尔森注意到,莱可能已经老了,不中用了,但他至少知道如何拼写“坚持己见”这个单词。)[5]最终,两位美林的投资银行家向公司总裁赫伯特·艾利森抱怨,后者向莱道歉。美林开除了奥尔森,并继续跟随安然赚大钱。[6]

        20世纪90年代,几千名演员在几百个舞台上上演了不同版本的美林/安然/奥尔森大戏,尽管每个剧本都不一样,但情节始终如一,股票分析师放弃了自己的职责,成为投行同僚的啦啦队长。1997年,一位研究人员仅用一年时间就汇编了15000多份股票报告;只有不足0.5%的报告建议卖出股票。[7]

        除了发起者,投资大众处于金融狂热的第二个解剖学位置。在互联网泡沫爆发前的几年里,越来越多的美国人成为自己的投资经理,一方面,收入和财富的增加推动了这一现象,但另一方面,他们不得不这样做。

        1929年金融危机后的几十年里,美国的经济和社会结构发生了深刻的变化,其中最主要的是预期寿命逐渐延长,随之而来的是退休时期的延长。1889年,当奥托·冯·俾斯麦在德国建立养老金制度时,欧洲成年人的平均预期寿命只有45岁,比70岁的合格年龄少几十年,而且那时,家庭成员通常都会照顾他们的年老成员。到20世纪末,美国人的预计退休时期已经长达30多年,而且随着日益增加的人员地域流动,家庭护理往往很难实现。这些因素都增加了个人为其日益昂贵的退休时期准备资金的压力。

        有一些最幸运的美国人,他们工作的大公司里提供“养老金固定收益计划”,该计划向雇员提供养老金,直到雇员或他们的配偶去世(假设公司没有在他们有资格领取养老金之前解雇他们,这种做法非常普遍)。汽车制造商斯蒂庞克公司就是这么仁慈的雇主,但1963年,当它关闭了在美国的最后一家工厂时,这引发了国会的一系列调查,最终促使1974年的《雇员退休收入保障法案》产生,该法案至今仍在管理养老金的运营。该法案中有一个较为晦涩的部分,其提出建立个人退休账户,这是第一次允许雇员可以以不缴纳所得税的方式积累储蓄,直至退休时取出;1981年,政府放宽了对个人退休账户使用的最初限制,使其对雇主更具吸引力,并可适应于更多的雇员。

        大约在同一时间,一位名叫特德·本纳的养老金福利顾问,对自己的工作越来越不满意,因为他的雇主总会让他回答以下问题:“我怎样才能在法律上获得最大的税收减免?怎样才能给我的员工最少的工资?”[8]这让虔诚而慷慨的本纳很苦恼,他想寻求一种方法,让公司对员工更加慷慨。

        本纳注意到,1978年的《国内税收法》新增了一条模糊的分项——401(k)条款,允许雇主将工人的工资直接递延到退休储蓄中。本纳认为,如果雇主能够提供与工人贡献相匹配的缴费,那么这可以促使更多的工人建立401(k)个人账户。本纳在国税局有关系,国税局批准了这项计划。401(k)个人账户如雨后春笋般涌现;如今,401(k)资产已有数万亿美元,与个人退休账户资产大致相当。[9]

        这些个人账户允许公司放弃传统的固定收益计划[10];随着地域流动增加所带来的代际联系的减少,工人和小商人突然成为自己的养老金经理。但这项工作需要一定的数字量化技巧、历史常识和情绪自律,连金融专业人士都很少能具备,更不用说普通人了。

        很显然,普通投资者无法胜任这项投资工作,这一点可以从共同基金的经营数据上看出。目前最常见的退休账户投资工具是共同基金,其基本上是固定缴款计划[如公司401(k)计划]中唯一可用的选择。如果投资者能胜任,那么他们在这些投资工具上的“内部收益率”(IRR,即所有基金份额的买卖)应该与基金自身的回报率完全相等。但是,研究人员发现,平均而言,员工购买和销售基金的时间安排非常糟糕,以至于他们的内部收益率几乎总是低于基金自身的回报率。[11]换句话说,小投资者往往高买低卖,没能获得某只基金的全部利润。

        互联网泡沫的第三大解剖学视角——媒体,其典型是CNBC(美国全国广播公司财经频道),CNBC在电视商业和投资信息领域的前身是FNN(财经新闻网)。FNN从1981年开始运营,当时正值漫长而残酷的熊市尾声,是一个错误的时间,是公众投资兴趣的低谷;10年后,FNN破产。1989年,急于提高萎靡收视率的NBC(美国全国广播公司)感受到公众对投资的新兴趣,成立了财经频道。

        这一时机再好不过了,因为市场开始转好,数千万人开始关注股市,既是出于需要,也是出于兴趣。最初,该频道的节目令人昏昏欲睡:主播们在牌桌后面对着摄像机,播放一些如何准备晚餐和如何处理孩子们发脾气的节目。[12]1991年,NBC接管了破产的FNN及其大部分人才,命运略有改善,并将频道名称用首字母缩写表示为CNBC。

        1993年,罗杰·艾尔斯接管了CNBC,媒体之神更加眷顾新生的CNBC,而艾尔斯对电视原生情感力量的传奇掌握和利用也达到了顶峰。艾尔斯出生时患有血友病,还有一个喜欢体罚他的父亲——这是一个特别不幸的组合——频繁受伤使他不得不长时间地被监禁在家,他真正的教室是20世纪50年代的电视机,他花了很多时间分析电视节目。不出所料,他在大学里主修媒体研究,毕业后在当地东海岸电视台从事制作工作。[13]随后,他在《迈克·道格拉斯秀》这一在全国播出的节目里担任道具助理;不到3年,他就成为制作人。晋升后不久,1968年,他在节目演播室里遇到了正值第二次总统竞选的理查德·尼克松,尼克松表达了对“一个人必须使用噱头(比如电视)才能当选”的反感,艾尔斯回应说,“电视不是噱头”。那次会面后不久,尼克松的助手伦纳德·加门特雇用了艾尔斯。[14]由此,艾尔斯开启了他20多年的共和党总统媒体顾问生涯。他使1968的尼克松更受欢迎,并在1988年帮助乔治·布什击败了迈克尔·杜卡基斯。

        成为CNBC的总裁后,艾尔斯保留了原FNN的节目格式做法,特别是屏幕底部实时滚动的股票行情信息,这将成为金融泡沫肥皂剧的隐喻背景。除此之外,他从各个方面彻底改造了CNBC的外观和体验感,后来又将同样的技术应用到为国家政客和商业巨头提供的新服务上。他不再简单地用主题音乐宣告新的节目片段,而是通过增加带有主持人小头像的话外音。关于食谱和孩子们发脾气的节目都没有了;取而代之的是杰拉尔多·瑞弗拉[15]和迷人的政治评论员玛丽·马塔林。艾尔斯亲自指导摄像师恰当地塑造企业高管的形象,并让其看起来更具活力,敦促编剧们想出更吸引观众的“不切换频道”模式,并派主持人在证券交易大厅快速报道价格走势。演播室的嘉宾越美艳越好。正如《纽约客》的约翰·卡西迪所说:

        他们理想的演播室嘉宾曾是一位选美比赛冠军,她报道科技股,用简短的陈述句讲述,并与唐纳德·特朗普约会。由于能找到的这种女性的数量不多,制片人通常只能安排那些尊敬艾伦·格林斯潘并尽力说英语的秃顶中年男性。[16]

        艾尔斯教导他的主播和制作人员:要将金融视为一项群众爱看的体育运动。在股票市场经历了一周的异常残酷之后,他用一段广告剪辑将CNBC与竞争对手相比较:“道琼斯指数在大量交易中暴跌。但请先看今天的天气。CNN告诉你,你的衬衫是否会被淋湿;CNBC告诉你,你是否还能买到一件衬衫。”他还将从CNN挖过来的玛丽亚·巴蒂罗姆提升为主播,她同时满足了他对性和金融的需求;凭借酷似索菲亚·罗兰的长相、浓重的布鲁克林口音和露骨的性感,她很快成为大家熟知的“金钱宝贝”。[17]

        1996年,由于艾尔斯对其他员工的欺凌行为,CNBC迫使他离开,这一事件也将困扰他后来的职业生涯。但那时他对CNBC的改造已经证明是有利可图的。到20世纪90年代中期,CNBC已经在欧洲和亚洲开设了电视网,世界资本市场中真实或虚构的大戏从未落幕。

        艾尔斯凭直觉认为,他的观众更喜欢像棉花糖一样的娱乐性新闻,而不是像菠菜一样的信息和分析性新闻;而最棒的是味道像糖果又能带来无限财富的新闻。在艾尔斯的领导下,CNBC掌握了这种体裁,将乏味的主流金融世界转变为极其成功的娱乐世界,掌握了现代文化炼金术的技艺。互联网成为新的聚集场所,利用互联网,小投资者可以通过电子交易和达泰科等在线经纪公司,根据刚刚在CNBC看到的内容,即时买进或卖出。这种方式受到短线投机者的青睐。

        调查性报道被抛弃;它不仅会耗费大量资金,还会得罪极其重要的投资银行,而投资银行是广告份额的最大购买者。最好是在电视节目时段插入那些热情谈论自己公司的企业高管,以及那些谈论股票走向的权威性“市场策略分析师”的采访。最重要的是,这些高管和分析师都是免费出场的,他们乘坐租用的汽车,穿过哈得孙河,到达新泽西州利堡镇的CNBC工作室。

        在节目中,这些公司高管和大多数分析师的谈论内容都体现出一致的乐观,因此,CNBC的节目缺乏批判性审查。2000年和2001年,CNBC主持人马克·海恩斯分别采访了肯尼斯·莱和杰弗里·斯基林。海恩斯毕业于宾夕法尼亚大学法学院,自称是一个敏锐的审问者,但面对历史上最严重的安然欺诈案的肇事者,他只问了一大堆与赞扬和吹嘘有关的问题。[18]

        当IBM(国际商业机器公司)、Sears(西尔斯)和AT&T(美国电话电报公司)等大公司解雇数万名员工时,CNBC为这些公司上浮的利润欢呼,而忽略了大规模解雇的人力成本。当公司犯下明显重罪时,只要由此产生的丑闻没有出现在报纸头版,CNBC就装作没看见。例如,2012年5月,CNBC对摩根大通向股东隐瞒20亿美元交易损失的报道视而不见。[19]

        CNBC对观众的利益也没产生多大好处。两项代表性学术研究密切关注了按照节目嘉宾名单和推荐目录买入股票的结果;它们的结论并不令人鼓舞。第一项研究是关于股票价格对公司CEO出现在CNBC节目上的反应,第二项研究是关于CNBC目前最受欢迎的节目之一《我为钱狂》的选股表现,其节目主持人是狂热而有活力的詹姆斯·克拉默。如图14-1所示,两项研究的结果几乎相同:相对于整个股票市场,被推荐的股票在节目当天或次日的价格上涨达到峰值,然后下跌。尽管之后的价格下跌令人担忧,但之前的上涨意味着,事先知道节目日程安排的参与者与CNBC的观众就像在玩跷跷板。克拉默虽然外表滑稽,但他并不傻,他很了解这种动态。至少有一次,他卖掉了一家在《巴蒂罗姆秀》中被大肆吹捧的公司的股票,几天后又在价格回落时买回。[20]

        图14-1 CNBC与股票价格

        更能说明问题的是那些选择不来凑热闹的CEO。杰夫·贝佐斯是这一时期最成功的IPO公司亚马逊的董事长兼创始人,他喜欢与见多识广的记者们往来,甚至经常接受小型出版物的采访。不过,他认为在CNBC上露面没什么意义,因为他知道CNBC只关注短期的公司股价,他觉得这毫无价值。他认为,只要能照顾好消费者,无论股价如何波动,公司从长远来看都会兴旺繁荣。[21]

        互联网泡沫的第四大解剖学视角,是政治领导人。在密西西比公司、南海公司和英国铁路泡沫事件期间,包括法国和英国君主在内的最高级别领导人都置身其中。从19世纪末开始,由于公众监督和反腐败立法的增加,很少有政客成为杰出的投机者:20世纪20年代,他们对泡沫传播的直接政治参与程度不超过民主党全国委员会主席约翰·J.拉斯科布[22]

        20世纪90年代,数以千万计的401(k)计划和个人退休账户的参与者,每个人都是自己的小资本家,这一前景吸引了保守派[23];受安·兰德、米尔顿·弗里德曼和弗里德里希·冯·哈耶克理论的影响,保守派在新的“所有权社会”中大放异彩。这场科技泡沫没有产生任何重大的政治性法案——一种彻底的贪污和腐败——政治不作为占据了中心舞台,20世纪30年代佩科拉审判之后的各项监管保障措施,没能很好地得到落实;到20世纪80年代,《格拉斯-斯蒂格尔法案》将商业银行和投资银行业务严格分开的做法,也基本处于失效状态,到1999年,该法案被最终废除。

        CNBC从内容和基调上大肆赞美牛市的意识形态基础。主播劳伦斯·库德洛在《库德洛报道》栏目的开场白中说道:“记住,伙计们,自由市场资本主义是通往繁荣的最佳道路!”[24]保守派记者詹姆斯·格拉斯曼或许比其他任何人都更坚信科技泡沫与自由市场意识形态之间的联系。作为一个著有很多投资类书籍的著名作者,他一直都偏爱保守主义阵营,尤其是《华尔街日报》。20世纪90年代,他热情地提到,市场的迅速崛起仅仅是自由市场资本主义丰饶的序幕。因此,当2000年4月股市开始崩盘时,他指责美国政府扼杀了市场。针对一项支持政府对微软提起反垄断诉讼的裁决,他评论道:

        没有人知道为什么一只股票会在某一天下跌,但我对纳斯达克指数暴跌的解释是,投资者们被关于微软的裁决激怒,他们意识到了政府干预的威胁。如果政府没有干预,他们就会更好。(副总统兼总统候选人)艾伯特·戈尔也是如此。克林顿政府喜欢把过去10年里股市翻了两番归功于自己,但其对纳斯达克指数的崩溃也负有责任。[25]

        乔治·吉尔德曾是理查德·尼克松和纳尔逊·洛克菲勒的演讲稿撰写人,他坚定地相信,20世纪90年代大牛市和自由市场优越性之间的关联,是20世纪90年代持有科技热情的最极端例子。2000年1月1日,他在《华尔街日报》上发表了一篇著名社论,认为互联网不仅改变了一切,而且改变了“全球经济的时空网格”。他运用夸张的比喻,提及了原子内部的广袤空间,“对物质内部结构的操纵”,甚至还在杂志编辑们面前悄悄使用了量子力学和“离心力”的内容。他得出结论:只有广泛运用信念、爱和宗教信仰,人类才能在崭新的新数字时代取得胜利。[26]《铁路时报》的编辑们一定会在天堂为他鼓掌。

        吉尔德、库德洛和格拉斯曼,他们都拥有强大的智力,又有常春藤盟校[27]的教育经历,为什么他们却在20世纪90年代末大错特错?从20世纪起,心理学家开始意识到,人们利用分析能力不是为了分析,而是为了合理化——使观察到的事实符合他们先入为主的偏见。(经济学家早就注意到,“如果你折磨数据足够长的时间,那么它们最终会招供”[28]。)人类的这一倾向有两个主要原因,这两个原因正是理解个人和群体幻想的核心。

        我们所有人——不管是聪明的人、愚笨的人还是普通人——都有这种非理性倾向,原因之一是,真正的理性是很难做到的,很少有人能做到。另外,理性能力和IQ(智商)之间没有什么关联。21世纪初,在相对较新的决策科学领域获得博士学位的谢恩·弗雷德里克,提出了一种著名的范式,证明了绝对的严密分析是多么困难。

        获得博士学位后不久,弗雷德里克写了一篇经典论文,描述了一份简单的问卷调查,心理学家称之为“认知反应测试”,它测量的是理性能力的商,即RQ,而不是IQ。问卷调查只有3个问题,其中最著名的(至少在经济学界)是,假设一个棒球和一根球棒的价格加起来是1.1美元,而球棒的价格比棒球贵1美元,那么这个棒球多少钱?大多数人,即使是非常聪明的人,也会很快回答0.1美元。但这不可能,因为这意味着球棒的价格为1.1美元,因此总价格为1.2美元。正确答案是,棒球的价格必须为0.05美元,球棒的价格为1.05美元,两者的总成本为1.1美元。[29]

        如果你认为棒球/球棒问题以及脚注中的另外两个问题很简单,那么你可以试一下另一个更具挑战性的问题,它已经存在了半个世纪,即沃森的四卡片问题测试。测试中有四张一面是字母、另一面是数字的卡片。第一条规则:“如果卡片的字母面是一个元音,那么它的数字面是一个偶数。”四张卡片现在显示:K、A、8和5。你会翻开哪两张卡片来证明或反驳这条规则?

        绝大多数受试者会凭直觉选择A和8,但正确答案是A和5。沃森是“确认偏见”概念的先驱,他用典型的学术性语言低调地陈述道:“这项任务被证明是非常困难的。”要想得出正确答案,首先必须认识到,这一规则并不排斥偶数卡片的另一面可以有元音或辅音,所以,把8这张卡片翻过来是没有用的。要驳斥这条规则,我们必须翻开5这张卡片,如果它的背面是一个元音,我们就能推断出这个规则是错误的;同样地,很简单,翻开A并找到一个奇数,这也将证明原规则是错误的。[30]

        人们需要付出相当多的努力才能拥有理性思维。几乎所有人都是精神上的懒惰者或“认知吝啬鬼”,用心理学语言来说,即他们凭直觉寻找分析捷径,例如使用卡尼曼和特沃斯基所描述的启发式方法。要做到彻底理性,需要强烈的认知努力,这一点儿都不令人愉快,因此大多数人都不这样做。正如一位学者所说,我们“只有在其他一切方法都失败的时候才开动大脑——甚至通常那时都没有开动”[31]

        因此,IQ和RQ分别测量不同的方面。IQ衡量处理抽象语言和定量技术的能力,特别是算法,而RQ则集中在应用这些算法之前的一些问题:在分析事实之前,有没有仔细列出问题的逻辑,并考虑到了其他的替代性分析方法?在得出答案之后,是否考虑到了该答案可能是错误的,并估计出错误的概率,进而预测出这个错误将会导致的后果?事实证明,高智商并不能防止人们掉入这些陷阱。基思·斯坦诺维奇是RQ测试扩展问卷——CART(理性思维综合评估)的提出者,在他的评估中,“理性和智力经常分离”[32]

        我们倾向于非理性行为的第二个主要原因是,我们常常将智力用于合理化,而不是合理性。一般来说,我们合理化的是我们的道德和情感框架,我们的认知过程包括一个快速移动的系统1——位于大脑深处的边缘系统,即我们的“爬虫脑”,以及一个缓慢的系统2——这一系统主宰着CRT(认知反应测试)和CART所需要的理性分析。

        在人类历史的大部分时间里,这两个大脑系统为我们提供了良好的服务。用心理学家罗伯特·查容克的话来说:“一位明智的设计师为我们的每一个过程分别提供一个系统,而不是为我们提供一个多用途系统,就像既能烤肉又能烤面包的机器一样,最后任何一项功能都执行不好。”[33]

        在后工业世界,尤其是在规划周期延伸到未来几十年的金融事务中,我们所面临的选择和我们的祖先在非洲大草原上所面临的生存性问题(需要使用系统1来解决)越来越不同,反而CRT和CART的扭曲思维问题(需要使用系统2来解决)越来越相同。这个问题由于以下事实而更加复杂:我们经常利用系统2对系统1已经得出的情绪化的结论进行合理化。换句话说,或者用丹尼尔·卡尼曼的话来说,被大肆吹嘘的系统2的主要功能是作为系统1的“新闻秘书”。[34]

        这意味着我们需要付出更多的认知努力。但即使是最优秀和最聪明的人,也无法胜任我们所面临的预测性和决策性社会任务。20世纪70年代,卡尼曼、特沃斯基和其他人已经意识到人类在预测方面做得很差,但直到最近,研究人员才开始衡量我们做得到底有多差。

        从20世纪80年代末开始,心理学家菲利普·泰洛克考察了284名专家(来自政治、经济、国内策略研究等领域)所做的2.8万个预测,并对这些所谓“专家”的预测能力进行量化。首先,也是最重要的,他发现专家们的预测能力非常差——竟然落后于“基准概率”这一简单的统计规则。所谓基准概率就是事件过去的发生频率。

        例如,当投资“专家”被问及来年市场崩溃的可能性(比如将崩溃定义为价格下跌超过20%)时,他可能会讲述美联储政策、工业产出、债务水平等如何影响这种崩溃的可能性。泰洛克认为,最好忽略他的这种叙事性推理,只是简单地查找市场崩溃的历史频率。例如,自1926年以来,每年发生股市月平均价格下跌超过20%的概率是3%,这个简单的方法在预测崩溃概率方面比基于叙事的“专家”分析更准确。

        泰洛克还发现,某些专家的表现尤其糟糕。根据社会和政治理论家以赛亚·伯林在著名论文《刺猬与狐狸》中所描述的内容,[35]泰洛克也将专家大致分为刺猬型和狐狸型两类,刺猬型专家是思想家,他们根据统一的世界理论来解释所看到的一切,而狐狸型专家则会有许多相互冲突的解释。狐狸型专家比刺猬型专家更能容忍模棱两可的情况,也较少被迫得出确定的结论。刺猬型专家对自己的预测更有信心,并且会做出更极端的预测;关键是,当面对相悖的数据时,他们改变观点的频率要比狐狸型专家低,这种低频率会腐蚀预测的准确性。

        刺猬型专家的分析也同样适应于政治右翼和左翼:例如,时至今日,激进的环保主义者依然支持保罗·埃利希在20世纪70年代关于迫在眉睫的全球饥饿和自然资源短缺的著名预测,自由主义者也依然支持著名经济学家马丁·费尔德斯坦对比尔·克林顿的预算和社会政策将破坏经济的高调警告。

        自远古祖先开始信仰萨满以来,人们就试图通过咨询专家,在一个不确定的世界中寻求确定性。泰洛克测试了三类群体的预测能力:大学本科生、预测领域的权威人士,以及在某一领域很有见解但在该领域之外进行预测的“业余爱好者”。毫不奇怪,本科生表现最差。更值得注意的是,专家的表现并不比业余爱好者好;此外,当泰洛克把专家分为狐狸型和刺猬型时,发现拥有某领域的专业知识似乎更有利于狐狸型专家的预测,但使刺猬型专家的预测结果更差。

        也就是说,狐狸型的环境科学专家也许能比刺猬型的军事专家更好地预测军事结果,反之亦然。这个结果的原因似乎是,虽然专家和业余爱好者都倾向于高估极端结果的概率,但专家这样做的次数更多,并使他们的总体预测准确率降低。业余爱好者看起来更像狐狸,至少在他们的专业领域之外。因此,用泰洛克的话来说,知识的最佳点似乎位于“《经济学人》《华尔街日报》《纽约时报》等高质量新闻出版物的读者附近,因为很多业余爱好者都报告说,这些出版物是他们获取专业以外话题有用信息的来源”[36]

        泰洛克有一个惊人的发现,即专家们一般会利用自己的知识来合理化数据,使之符合他们先前持有的世界观。刺猬型专家更严格地坚持他们先前的观点,因此他们更坚决地为自己的错误辩护。例如,泰洛克发现“话唠”,即列举大量支持性论据的能力,是预测不佳的标志。泰洛克提出了一个识别专家类型的简单经验法则:刺猬型专家使用“此外”一词多于“然而”一词,而狐狸型专家则相反。[37]

        大多数人都持有强烈的自我肯定倾向,渴望对自我的赞赏,因此会错误地认为自己的预测比实际更准确;相反,我们错误地认为对手的预测不太准确。不过,刺猬型专家有一种特别明显的倾向,泰洛克列举了一些他们所用的最著名的借口:“一个突如其来的晴天霹雳破坏了我的预测”,“我几乎是对的”,“我没有错,我只是太早了”,最后,当其他一切都失败时,“我的正确性还没有被证明”。泰洛克简明扼要地总结了这一倾向:“当他们认为自己对的时候,我们很难问,他们为什么做错了。”[38]

        最后,泰洛克发现了特别有效的预测死亡之吻:媒体名气。就媒体而言,其寻找的是“繁荣派和末日派”;也就是其喜欢极端预测的刺猬型专家,这类专家比模棱两可的狐狸型专家更能吸引观众。进一步地,媒体的关注会使他们过度自信,而过度自信本身会腐蚀预测的准确性。其结果是出现一个媒体-预测的死亡螺旋,即媒体寻找极端的、糟糕的预测者,媒体曝光又会使该预测者的预测更加不准确。泰洛克说道:“三大主角——听上去像权威的专家、关注收视率的媒体和专注的公众——可能因此被锁定在一个共生的三角关系中。”[39]回顾过去,科技泡沫的意识形态啦啦队员库德洛、吉尔德和格拉斯曼,已经击打出泰洛克的三重奏:喜欢极端预测的媒体的宠儿刺猬型专家。

        互联网时代展现出金融泡沫的所有经典迹象和症状:股票投资话题在日常对话中占据主导地位,放弃有保障的工作转而全职从事投机性工作,真信徒对怀疑论者的蔑视和嘲笑,以及极端预测的盛行。

        在电视屏幕以及越来越多的网站上,人们如此密切地观察并实时记录极端的市场繁荣及随后的灾难。市场繁荣感染了高科技产业的神经中枢——硅谷、华尔街,以及位于利堡镇的CNBC工作室,但日常闲聊中感受到的市场热情在主街、社交聚会和投资俱乐部中最为强烈。

        在马萨诸塞州科德角的丹尼斯镇,有一家理发店是男性工人阶层聚集的堡垒。那里上演了一段由狂热所引发的底层故事,令人心酸。在正常情况下,理发店的聊天内容主要涉及体育和政治,如果店里有电视机,电视就一定会转到播放棒球、足球或篮球比赛的频道。但20世纪末并非正常时期,比尔·弗林拥有的这家理发店——弗林理发店,也并不是一家普通的理发店。

        到2000年,弗林已经当了30多年的理发师,对股票市场并不陌生。他的曾祖父也是一名理发师,给了他极好的建议:把收入的10%存起来,然后投资于股票。事实证明,弗林这方面的智慧运用得并不好,因为他和很多人一样,偏爱彩票式的结果。20世纪80年代中期,椰菜娃娃风靡一时,大量儿童和成人“投资”了它们,不顾及它们可以被随意制造的事实。在狂热的顶峰时期,弗林以保证金形式购买股票,也就是说,用借来的钱购买了制造椰菜娃娃的科尔克公司的股票。

        1988年,科尔克公司破产,弗林的积蓄大大减少,但他继续将剩余收入投入股票市场。10年里,他猛砸了10万美元,将其投资于他认为最具魅力的高科技公司:美国在线、雅虎、亚马逊等。到2000年,他的积蓄已增至60万美元。弗林告诉自己,当投资组合达到百万时,他将退休;考虑到自己做得很好,他认为这个目标很快就会实现。[40]

        如果说狂热是一种流行病,那么“互联网改变了一切,它将使我们所有人变得富有”这句话就是病毒,比尔·弗林是科德角的零号病人。到2000年,理发椅上讨论的话题已经从红袜队、凯尔特人队和爱国者队转向了弗林最喜欢的两只股票——EMC(易安信)和安根尼克斯。电视转到了CNBC频道。

        24小时不间断的金融娱乐和即时在线交易,正是弗林理发店上演的毒性组合。弗林编造了引人入胜的故事,并诱导顾客们购买他推荐的公司的股票。[41]2000年冬天,《华尔街日报》记者苏珊·普利亚姆第一次来到这家理发店,当时正值市场触顶之际,大家谈论的话题一直都围绕科技股。弗林向一位顾客推荐了生物技术公司安根尼克斯的股票,店里其他人则主动说起自己购买了Coyote科技公司的股票和NTAP(企业级网络存储解决方案提供商)的股票,或者更低风险的话,杰纳斯资本集团提供的共同基金也可选择。杰纳斯是一家专注于科技投资组合的投资公司。

        弗林最喜欢的是数据存储公司EMC的股票:“我想我已经介绍了100个客户购买EMC。”弗林并没有通过严格的证券分析,而只是通过另一位理发师的推荐,决定购买这家公司的股票,但顾客们似乎都不在乎。到2000年中,股票遭遇了几次严重下跌,但弗林和他的顾客们仍充满信心。正如一位画家/壁纸设计师所说:“即使股票真的下跌30%,也会马上恢复。”弱者受到嘲笑。弗林指着停车场的一个顾客说:“看到那个家伙了吗?他两年前留了5000美元,我让他买EMC。如果他听了,那些股票现在就值18000美元了。”[42]

        3个月后,当普利亚姆女士再次来到理发店时,科技股刚刚从严重下跌中恢复,但仍比峰值低40%左右。弗林说:“我不是只买生物技术或高科技类股票。”但他仍然坚持他的候补选项EMC。他还购买了更多的安根尼克斯,其股价已经强劲反弹,他的投资组合价值也达到了新高。[43]

        2001年2月,他所钟爱的、以保证金购买的EMC股票,跌到了经纪人不得不给他平仓的地步。该只股票在普利亚姆女士第一次来访后不久达到了145美元的峰值,最终在2002年底跌至4美元以下。弗林的理发店曾经是镇上的社交中心,现在一片寂静,空无一人。一个顾客说:“每个人都知道弗林损失了很多钱。他不想谈论太多。”[44]

        并不是所有顾客都被剪羊毛;例如,有一个顾客用卖掉EMC股票所得的现金购买了一套新房子。但总体而言,损失已经造成;2000—2002年的熊市让弗林意志消沉,直到2007年,在一位股票经纪人的建议下,他才开始再次购买股票,当时他购买了伊士曼柯达公司的股票。5年后,伊士曼柯达公司破产了;2013年,73岁的弗林仍在给别人理发。即使在股票崩盘后,EMC的高管们也会在暑假期间顺便来理发。他们越来越喜欢弗林先生了。[45]

        在大多数情况下,弗林和他的顾客们交易的都是单个公司的股票,这是一种历史悠久的做法,经常采用保证金的形式。但20世纪90年代,越来越多的美国人通过另一种途径持有股票,即共同基金。共同基金是20世纪20年代信托投资基金的直系后裔,不仅可以通过拥有大量不同公司的股票轻松实现风险分散,而且还提供了所谓的资深经理人选择股票的机会。1990—2000年,美国的股票共同基金资产增加了近20倍,从2000亿美元左右增加到3.5万亿美元,也就是说,股票共同基金占股票总市值的比重从7%左右增加到23%左右。[46]

        和弗林理发店的常客们一样,共同基金的投资者也越来越倾向于那些排名靠前的基金。雅各布互联网基金是最受欢迎的基金之一,在1998年暴涨了196%。范·瓦格纳新兴增长基金在1999年暴涨了291%。杰纳斯资本集团运营着一系列以科技股为主的国内和国际基金,其中许多基金在那一年也实现了三位数的回报。

        这些基金的强劲表现吸引了更多的资产,特别是迅速增长的401(k)账户中的资产,其发起人意味深长地向参与者提供了基金业绩统计数据,以便后者能从近期回报率最高的基金中做出选择。

        几股交织的逻辑共同推动了人们对科技类基金的狂热。最明显的逻辑是,表现最好的基金吸引了最大的资产流,这进一步推高了股票的价格,也进而提高了基金的表现。这些共同基金公司对其管理的资产按比例支付报酬,并大量发行新的科技基金。最后,投资者的投资期限越来越短,这推动了基金经理们更加狂热地进行交易。1997年,美国公共电视网著名的《前线》节目拍摄了范·瓦格纳新兴增长基金的经理——加勒特·范·瓦格纳向手机发送的近乎连续的交易流。[47]该节目正好说明了媒体是如何附和的,其中包括著名金融记者约瑟夫·诺切拉对范·瓦格纳的热情洋溢的描述:

        竞争非常激烈,顶级共同基金经理就像现代炼金术士,创造了神奇的市场收益。现在,没有人比这个人——加勒特·范·瓦格纳——更能点石成金了,他在旧金山单独运营着一只基金。[48]

        如果你在1997年1月1日买入了10000美元的范·瓦格纳新兴增长基金,那么到2000年3月,该基金将增长到45000美元(回报率为350%),然后,将在2002年9月跌至接近市场底部的3300美元,即从10000美元下降了67%,从45000美元下降了93%(可参考同时期纳斯达克综合指数的表现,见图14-2)。这些令人沮丧的数字也依然低估了损失。尽管属于“前线”类,但1997年时,该基金刚刚起步,了解该基金的投资者相对较少。仅在1999年,基金规模就从1.89亿美元增至15亿美元。因此,更多的投资者承受了93%的损失,而不是令人兴奋的350%的上涨。最后,诺切拉是对的:范·瓦格纳确实是一位炼金术士,但他是将黄金转化为铅的术士;2008年,他最终辞去了以他名字命名的投资组合的经理职务。在所有积极管理的共同基金中,该投资组合的10年业绩表现是最差的,价值损失了66%,而整个股市的收益率为72%。[49]

        图14-2 1995—2003年纳斯达克综合指数的表现

        英国铁路泡沫、20世纪20年代的泡沫以及之后的互联网泡沫中,有一条引人注目的主线:它们背后的核心技术发挥了作用。依赖于新铺设的铁路,哈德森能够迅捷地从办公室、建筑工地、股东大会到达议会;在20世纪20年代的泡沫期间,即使是远洋班轮上的投机者,也可以通过阅读由无线电信号提供的股票价格收报机及外部信号在船上交易台进行交易。互联网聊天室和在线交易扩大了对互联网公司股票的狂热,这些互联网公司的股票就是通过互联网交易的。

        第二个标志性的泡沫症状——放弃舒适体面的职业转而全职从事投机——也在互联网泡沫期间显现出来。20世纪90年代的交易大部分是日内交易,因此,数以百万计的人(绝大多数是男性)请假,甚至完全辞职,坐在电脑显示器前,每天进行数十次甚至数百次的交易。

        日内交易涉及股票的一连串买卖,目的是获取大量微利。在理想的日内交易中,典型的例子是,以的价格购买1000股股票,并在当天(有时在几分钟内)以的价格卖出,由此产生的毛利润为125美元。事实上,大多数日内交易者的平均回报率接近于零,每笔交易都会被扣佣金,在成百上千笔交易中,即使是稳健成功或幸运的参与者,也会被佣金毁掉。

        在上瘾方面,没有什么能与在线交易相媲美。参与者一直盯着自己的终端。正如一位观察家所说:

        我不知道你们中是否有很多人在拉斯维加斯(或任何其他地方)玩过视频扑克。我玩儿过,这让人上瘾。尽管你输了,例如,在一段合理的时间内(玩儿上一个或两个小时,十次中有九次你都输了),但它仍然让你上瘾。现在,想象一场对你有利的视频扑克。也就是说,所有的小铃铛、按钮和蜂鸣器仍然在那里提供即时反馈和乐趣,但你不会赔钱,而是变得更富有。如果拉斯维加斯是这样的话,你就得用救生钳才能把人们从座位上撬下来。人们会随身携带便盆,这样就不用离开座位了。在这种视频扑克面前,强效可卡因都要让位。在我看来,这正是在线交易的现状。[50]

        1997年以前,只有大型机构从事这种日内快速交易,因为小投资者无法从证券交易所获得必要和准确的定价;1997年出现了“二级报价”,电脑屏幕上可以显示限价挂单[51],以供散户投资者参与和使用。

        与弗林理发店的顾客不同,大多数日内交易者都精通技术,有数字天赋,受过高等教育。问题是,当有人购买股票时,意味着有其他人卖出,反之亦然。换言之,证券交易类似于与隐形伙伴打网球;大多数日内交易者没有意识到的是,网络另一端的几乎都是投资界的威廉姆斯姐妹[52],即精明的机构参与者,对他们来说,公司不仅仅是一个可以压倒人类交易者的符号或计算机算法。

        到20世纪90年代末,大约有100个公司开设了“培训项目”。花几千美元,“受训者”就可以参加三天的入职培训和“新兵训练”,然后是一周的“模拟交易”。“培训师”很乐观:只要遵守这些规则,任何人都可以成功。正如一位培训师所言:“这就像打高尔夫一样。如果你对如何放置双脚、如何举起球杆以及如何持球都很小心,那么你将有更好的机会打直线球而不是曲线球。同样的原则也适用于日内交易。”[53]

        到20世纪90年代末,大约有500万美国人在网上交易,尽管全职交易的人数估计要少得多。[54]只要市场行情上涨,日内交易者就有一半的机会,但就像20世纪20年代和铁路泡沫期间的暴跌一样,当海浪汹涌时,大多数人的财富都会被卷走。

        与弗林理发店的顾客或办公桌上痴狂的日内交易者相比,比尔兹敦镇“女士投资俱乐部”的女士们没有很大的不同,但她们的发展轨迹更为壮观,代表一种典型的淘金热氛围,这种氛围让那些缺乏金融专业知识的人相信,她们在这一领域有着光明的前景。

        在任何其他时代,都不会有人注意到这个传统的投资俱乐部。它由伊利诺伊州比尔兹敦镇的中老年家庭主妇组成,遵循相对保守的传统,已经保持了几十年:聚在一起吃饼干、喝咖啡,研究已存在的、收益可靠的公司,并长期持有这些公司的股票。

        她们甚至并不接受重金:会员首先支付100美元,之后每月支付25美元。当她们开始向全国性组织——全国投资者协会——报告回报率时,问题来了。该协会连续6年向她们颁发了“全明星投资俱乐部”奖。1984—1993年的10年间,她们报告了惊人的23.4%的年化回报率,其比股市的年化回报率还高出4%。

        她们击败华尔街的故事,与20世纪90年代那种随意投资便过上舒适生活的故事不谋而合。该俱乐部的成员摆脱了小镇家庭主妇的身份,成为全职金融大师。她们乘坐喷气式飞机环游世界,经常向比她们家乡人数(5766)还多的观众发表演讲,这些观众有时在雨中等票,而她们可以从投资公司赚取丰厚的顾问费,还卖出了80万册《比尔兹敦镇女士投资俱乐部常识性投资指南》,这是一本她们的“秘诀”概要。其中一个成员感慨道:“我在休斯敦下了飞机,豪华轿车司机向我道歉,因为他必须使用一辆特大型轿车。以前,当豪华轿车经过我身边时,我会说‘我想知道里面坐了谁’。好吧,现在是我坐在里面了。”[55]

        她们突然成了名人。但是有一个问题:23.4%的回报率,已经将她们每月的会费计算在内了。如果一个人一开始只有100美元,那么一分钱也赚不到,但半路上又增加了25美元,这时不能说她获得了25%的回报。大约1998年,也就是该书出版两年多后,出版商注意到了这一错误,然后插入了一条免责声明,即“该回报率可能与共同基金或银行计算的回报率有所不同”。

        在牛市期间,新闻从业技巧退化;直到该书的1998年版上架,《芝加哥》杂志的记者沙恩·特里奇注意到并报道了出版商的免责声明。但该杂志并不是投资类报道的前沿阵地。女士们起初很愤怒,她们的出版商亥伯龙公司的一位高管称特里奇先生是“恶意的”,一心想抹黑“人们遇到的最诚实的群体”[56]

        不管是不是无心之过,在这10年里,这些女士的年化回报率并没有达到23.4%,9%更接近事实。最终,亥伯龙公司召回了这本书,并同意用出版社的任何一本书换回它,从而解决了一场官司,而这些女士则消失在人们的视线中。

        尽管存在以上问题,但实际上这些女士的表现并不算糟糕:审计人员经过正确计算后发现,1983—1997年的整整15年间,她们的账户每年有15.3%的收益,仅比指数基金的收益低2%;她们已经很值得尊敬了,当然也比弗林理发店的人和日内交易者做得好。尽管如此,也只有20世纪90年代才会发生类似的事情,即一个数学错误把一群赚取平庸股市回报的普通女性变成文化偶像。

        到了20世纪90年代末,和比尔兹敦镇的女士们、日内交易者以及弗林理发店的顾客一样,数百万美国人认为自己是股市天才。摩根士丹利有学问又有见解的巴顿·比格斯最能捕捉到这种情绪:

        社会迹象非常糟糕。每个人的儿子都想为摩根士丹利工作。没用的姐夫们打算创立对冲基金。我认识一个50岁的人,他什么都没做过。他打算创立对冲基金。他正在向人们散发宣传册。我在某处找到了一个。[57]

        泡沫的第三个症状,是对怀疑者持有激烈的愤怒情绪,这在20世纪90年代中期变得明显。在罗杰·艾尔斯将CNBC打造成媒体巨头的几十年前,多达3000万观众会在每周五晚上观看《与鲁凯瑟讨论华尔街的一周》,这是美国公共电视网在全国播出的一个小组秀节目,主持人是路易斯·鲁凯瑟,他温文尔雅、机智幽默,是一位受人尊敬的金融记者的儿子。

        鲁凯瑟严格编排节目。节目中最令人向往的角色,是由股票经纪人、分析师和时事通信作者轮换组成的小组成员,他们在节目开始时与鲁凯瑟逗乐,然后询问本周的特邀嘉宾是谁。逊色一点儿的角色是荧幕外的“精灵”小组成员,他们声称可以预测未来的市场方向。鲁凯瑟清楚两点:首先,行情看涨不仅让他的品牌受益,其中包括两个时事通信和路易斯·鲁凯瑟海上巡游投资,而且对他的节目有益;其次,对经纪人和分析师来说,有幸获得一个小组中的固定席位,便是一个无价广告。因此,他严格限制专家组成员,特别是在科技泡沫时期。

        20世纪90年代末,瑞银华宝的投资分析师、鲁凯瑟两个节目小组的常客吉尔·杜达克开始觉得不安。她读过查尔斯·金德尔伯格的书,并意识到他的泡沫标准,特别是“技术替代”和信贷宽松,正符合当前的市场情况。她警告她的客户,但其中一人指责她不爱国,就像她的公司创始人保罗·沃伯格在70年前被诽谤那样。因此,她知道了泡沫期间怀疑者是如何被对待的:“你会被鄙视,被恐吓,当泡沫开始破裂时,公众会非常愤怒。这需要一个替罪羊。”1999年11月,即泡沫破裂前5个月,鲁凯瑟以最具敌意的方式解雇了她——在一个她不再出现的节目的夜晚,她的照片上多了一顶高纸帽。鲁凯瑟用一位迷人的达特茅斯前篮球运动员艾伦·邦德代替了她。4年后,邦德因偷窃养老金而被判入狱12年。[58]

        互联网泡沫对“价值型投资者[59]”的打击最严重,他们购买成熟实体公司和制造业工厂的股票,这些股票定价合理,在股票狂热时期落后于大盘。著名的价值导向型对冲基金经理朱利安·罗伯逊被迫关闭了他的老虎基金,该公司在20世纪90年代中期之前创造了令人羡慕的业绩。罗伯逊先生说:“这种方法行不通,我不明白为什么。我已经67岁了,谁还需要这个公司?”罗伯逊先生宣布公司将于2000年3月30日关闭;以科技股为主的纳斯达克在3周前达到了5060点的峰值,但当时罗伯逊并不知道,这是未来15年内都不会达到的水平。[60]

        最后一个泡沫的识别性特征,是一些极端性预测的产生。正常情况下,专家预测的某一年的市场涨跌幅度很少超过20%。超过这个幅度的预测可能会使预测者被认为是疯子,而且大多数预测都是以个位数的幅度上下波动。但泡沫期间并非如此。1999年,詹姆斯·格拉斯曼和凯文·哈塞特合著了一本书,预测道琼斯工业平均指数在几年内将上涨超过2倍,从目前的约11000点上涨到36000点。其他人也不甘示弱,将估计数值提高到100000点。[61]

        格拉斯曼和哈塞特得出的这个上涨超过2倍的预测,说明将泡沫时期的高价进行合理化的努力已经做了很久。他们通过操纵股票和债券所使用的投资折现率来实现这一点。不严格地说,折现率是投资者在承担持有证券的风险之前所要求的回报率;证券的风险越高,购买证券所要求的回报率(折现率)就越高。例如,2019年中,非常安全的长期国债收益率为2.5%,而持有更高风险的股票所需的回报率约是其3倍,而1990年前约为10%。

        长期资产(如30年期国债或股票)的价格与折现率近似成反比:将折现率减半(例如从6%减至3%),价格就会翻番。(因为股票没有到期日,至少在理论上,它甚至比30年期的国债更“长期”。)相反,当经济或全球地缘政治地位恶化时,投资者要求更高的回报率,即持有股票的折现率,因此其价格暴跌。

        格拉斯曼和哈塞特对道琼斯工业平均指数36000点的预测表明,投资者已经演变成一种新型的理性经济人,他们认为股票从长期来看风险不大,因为其总会从价格下跌中恢复过来。因此,这种新型的理性经济人决定对股票采用类似国债的3%的折现率,而不是历史上大约10%的折现率;这在理论上使股票的价格上升了2倍多(10%/3%)。[62]

        格拉斯曼和哈塞特已经忘记了邓普顿所警告的“这次不一样”这句话的高昂代价。几乎在他们的书出版的同时,2000年,互联网泡沫在突然回归的风险中破灭,标志着有史以来最大的金融狂热结束。在不到两年的时间里,美国股市市值损失了6万亿美元,就好像整个国家7个月的经济产出都消失了一样。1929年,只有10%的家庭持有股票,但到2000年,个人经纪业务和共同基金账户、个人退休账户和基于雇佣关系的401(k)计划的扩张,使持有股票的家庭的比例上升到60%。数千万人原本认为自己在经济上很宽裕,但他们现在发现情况并非如此;另有数百万人认为自己的储蓄足以退休,但他们现在被迫延迟退休。

        一个从金融市场诞生之日起便存在的故事重现,2000—2002年,投资者们再次意识到,自己已经陷入遭受突然经济损失时的难以形容的痛苦之中。用幽默作家弗雷德·施韦德的话说:

        有些事情是无法用文字或图片向没有经历过的人充分解释的。我在这里所能提供的任何描述,都无法接近那种失去曾经拥有的一大笔钱的感觉。[63]

        15 伊斯兰国的兴衰

        马赫迪与哈里发

        互联网泡沫拉开了20世纪流行性狂热剧的舞台帷幕。随着21世纪的到来,世界上最年轻的亚伯拉罕宗教,用现已被熟知的末日叙事,吸引了世界各地的信徒,其能力和暴力程度震惊了世界。

        2014年11月16日,伊斯兰国组织斩首了一个名叫彼得·卡西格的美国人以及18名叙利亚俘虏。卡西格是美国陆军前突击队员,一直从事人道主义工作。肇事者公布的录像中,没有显示卡西格被杀的过程;更确切地说,卡西格的断头就放在“圣战者约翰”的脚下。“圣战者约翰”是一个名叫穆罕默德·埃姆瓦兹的英国公民,他带着英国口音缓慢而庄重地说:“我们正在达比克埋葬第一支美国十字军,并焦急地等待其他部队的来临。”[1]

        在过去的一年里,伊斯兰国用巧妙而有效的社交媒体活动,吸引了数千名战士和其他志愿者,很多人甚至是从繁荣和平的西方来到了世界上最糟糕的地方之一。“圣战者约翰”提到的城市达比克,以及同名的伊斯兰国宣传杂志《达比克》,对理解其招募新兵所取得的巨大成功有很大帮助。[2]

        达比克是叙利亚西北部的一座城镇。1516年,奥斯曼土耳其人在那里打败了埃及马穆鲁克人,进而控制了黎凡特。对现代圣战者来说,这标志着哈里发政权的重生——一个由穆罕默德的继任者领导的国家,统治所有的穆斯林,这将持续4个世纪。尽管该镇看上去并不引人注目,战略地位也不重要,但是,与奥斯曼哈里发帝国之间的联系,使该镇处于伊斯兰教末日叙事的前沿和中心。

        犹太教、基督教和伊斯兰教的末日叙事彼此相似。鉴于它们的起源相同,这并不奇怪。中世纪早期,拜占庭人和穆斯林都根据《但以理书》的同一节内容,预测到了对方的作战计划。[3]达比克由于其军事历史,成为伊斯兰教的末日发生地点,在那里,反基督力量(在伊斯兰教中经常被称为“达加尔”)将与代表正义的军队作战。

        这些末日叙事也是有区别的。基督教的末日叙事主要来源于几个很容易界定的《圣经》文本,特别是《以西结书》《但以理书》《启示录》中的文本,而伊斯兰教的末日叙事却来源于更为分散的、不容易界定的圣训,即先知穆罕默德的言行录(对应阿拉伯语中的“传述”或“报道”)。与基督教末日论不同,穆斯林的根本经典——《古兰经》几乎没有什么预言,并且和圣奥古斯丁以及后来的天主教神学传统一样,特别警告不要计算末日时间。

        但是,和基督教徒一样,穆斯林不可抗拒地被末日时间诱惑,他们的末日叙事就像沙漠野花一样从圣训中蹦出来。[4]由于数量众多,伊斯兰教的末日论甚至比基督教的末日论更混乱。例如,逊尼派的传统与大约1万条圣训有关,而不同的观察家对每一条圣训的报道方式往往不同。仅某位中世纪学者,就列出了3万多条圣训。先知[5]于632年去世,之后的几个世纪里,学者们根据真实性对其言论进行了分级和分类,从“真实的圣训”一直到“捏造的圣训”。

        先知没有留下遗嘱,这使事情复杂化了。他的前四位继任者,也就是哈里发——阿布·巴克尔、奥马尔、奥斯曼和阿里,见证了穆斯林的领土迅速扩张,其远远超出了阿拉伯的西部边界,进入拜占庭和波斯。接下来的几个世纪里,阿拉伯帝国与这两个相邻的异教大国之间展开了战斗。此外,第四任哈里发阿里(先知的堂弟,也是女婿)遇刺,随后阿里的小儿子侯赛因及其追随者在现代伊拉克的卡尔巴拉被杀,从而引发了一场血腥的宗派分裂,一直持续到现在。这场伟大的伊斯兰教冲突,一方是侯赛因的追随者——什叶派,他们将先知的继承权限制在血统上;另一方是卡尔巴拉之战的胜利者,他们演变成逊尼派,不承认领导权的血统限制。

        政治学家塞缪尔·亨廷顿在其极具争议的著作《文明的冲突与世界秩序的重建》中,将伊斯兰国家之间大量的武装冲突以及它们与邻国非伊斯兰之间的冲突列成表格,并得出结论:“伊斯兰的边界是血腥的,其内部也是如此。”[6]批评者指责他“东方主义”[7],并指出伊斯兰世界的现代战争源于西方的统治。虽然西方殖民主义在现代中东问题上确实扮演了重要角色,但亨廷顿这句骇人听闻的名言同样适用于中世纪的伊斯兰世界。中世纪时,伊斯兰是世界上最有智力、最富裕、最强大的文明之一的拥有者,那时的西方依然落后无能,基本不会给它造成什么困扰。

        下面开始讨论伊斯兰教末日论的魅力。美国和欧洲的基督教徒生活在相对繁荣、安全和地缘政治稳定的社会中;此外,他们的宗教在文化上占主导地位。因此,西方基督教末日论者只能被迫在一团乱的道德恐慌中挑选其中一些作为危情时刻(末日)的迹象:普遍的性行为、社会主义,以及撒旦主义(或者至少是占星术)。

        相比之下,自1497年瓦斯科·达伽马首次绕过好望角、击败穆斯林主导的极度繁荣的印度洋贸易,之后的伊斯兰在政治和经济上一直相对衰落。因此,对虔诚的穆斯林来说,末日迹象非常明显并令人痛苦,漫长的屈辱和失败需要末日时刻的正义,仅在20世纪的屈辱就包括:1916年,法国和英国之间的《赛克斯-皮科协定》秘密瓜分了穆斯林核心地带;1948年,以色列成立;1967年,以色列占领约旦河西岸和耶路撒冷旧城及其神圣的圣殿山;1979年,以色列和埃及之间达成了和平协议;1990年,第一次海湾战争尴尬地暴露出西方军队在中东地区的存在,尤其是在沙特阿拉伯(该宗教最神圣的圣地守护者)。与基督教徒和犹太人相比,穆斯林更加渴望一场能够颠覆现有世界秩序的末日大灾难。我们不能忽略穆斯林的末日论者及其追随者所感受到的痛苦和愤怒。其中一人写道:

        因此,犹太人在基督教徒脸上的掌掴仍在继续,但后者显然享受并允许这种羞辱。西方国家的十字军继续像一个被施虐的妓女,直到被殴打和羞辱,尤其是被她的皮条客——基督教欧洲的犹太人——殴打和羞辱,她才能从中获得快乐。他们很快就会因为犹太阴谋而被埋在砖瓦之下。[8]

        和所有的末日追寻者一样,穆斯林的末日论者渴望回到赫西俄德的“黄金种族”时代,也就是他们的萨拉菲时代,即穆斯林的前三代,包括先知的伙伴及其后代,他们是伊斯兰教的开国元勋。因此,今天的穆斯林末日论学者和领导人钻研圣训,想从中寻找灵感,使伊斯兰教恢复作为世界主流神学的合理地位,这就不足为奇了。大量的圣训提到了与拜占庭人之间的战争,特别是其中的君士坦丁堡战争,这些战争发生在先知死后的几个世纪,当时他的言行录被首次记录。这就解释了为什么伊斯兰国对叙利亚北部尘土飞扬的达比克小镇如此痴迷,因为最著名、最受尊敬的末日圣训中提到了达比克:“在拜占庭人袭击阿马克或达比克之前,最后的末日不会到来。”[9]

        圣训学者的主要任务是确定传述的出处,使真实的圣训可以追溯到先知时期。这是一个依靠世代口传的游戏。两位波斯学者,艾布·侯赛因·穆斯林和伊斯玛仪·布哈里,在先知死后200年,出版了最受人尊敬的汇编。据报道,布哈里梦见自己拍打先知周围成群的苍蝇,醒来后决定将自己的一生奉献给对不真实圣训的驱逐。在他严格的筛选标准下,只有1%的传述被认为是真实的圣训。[10]穆斯林和布哈里的圣训集录是公认最权威的,任何伊斯兰教神职人员、政治领袖、军事领袖或评论员的权威在很大程度上取决于其对圣训的掌握,特别是这两位学者编写的圣训。

        不用说,即使是最真实的圣训也要经过几代人的口头传播,用阿拉伯学者威廉·麦坎茨的话说:

        末日预言对杜撰者来说,是一个特别诱人的目标。早期,在那些分裂穆斯林团体并自相残杀的战争中,双方都试图通过预言自己的必然胜利和对方的注定失败,来为自己的政治辩护。借先知的嘴把预言说出来,这是最好的办法……几个世纪以来,新政治将赋予剩余部分新的含义,这一现象是基督教《启示录》的读者所熟悉的。[11]

        伊斯兰教的许多末日叙事,都是由那些对卡尔巴拉之战的胜利者——倭马亚族感到不满的人发展的。倭马亚族建立了第一个强盛的穆斯林王朝,并定都大马士革。因此,能将虔诚的教徒从大马士革日益腐败和专制的统治者手中解救出来的核心人物,就是穆斯林的弥赛亚,在阿拉伯语中就是“马赫迪”,其意思是“正确引导的人”。

        反对倭马亚王朝的阿拉伯人和波斯人散布预言:从呼罗珊(大致位于现代的伊朗东部和阿富汗所在地区)升起黑旗的士兵,将从那个方向横扫过来,打败倭马亚人,“如果你看到呼罗珊地区升起了黑色旗帜,那么即使需要爬过冰面,你也要立即前往,因为其中有哈里发马赫迪”[12]。750年,悬挂黑旗的叛军推翻了倭马亚王朝。叛军领袖是先知的叔父阿拔斯的后裔,他建立了以巴格达为首都的帝国——阿拔斯王朝,其统治将持续500年。

        每一则圣训都和上述胜利的阿拔斯叛军所引用的那一句类似,往往残缺而简短,通常是一句话或一段话的长度,很少出现一两页。正如美国最著名的穆斯林末日文学学者戴维·库克所说:

        由于穆斯林的传统没有明显的文本依据,只有后人提供的冗长背景(基本上由学者们将材料按照可利用的时间顺序排列),因此,末日出现之前的各个事件的发生顺序存在相当大的分歧,这并不奇怪。[13]

        换言之,数量众多且内容简短的圣训,使无限多的末日叙事成为可能;将一天的头条新闻倒入面糊中,并添加大量的确认偏见,聪明的伊斯兰学者比他的基督教时代论表亲更容易写出理想的世界末日叙事。

        然而,源自圣训的穆斯林的末日论,确实与基督教的末日论有共同特征:世界将在某个时刻终结。耶稣是一位先知,而不是上帝之子,他返回地球,通常手扶两位白人天使的肩膀,降落于大马士革倭马亚清真寺的东尖塔。他与达加尔作战。达加尔一般都是犹太人,而且常常是犹太人的弥赛亚。与基督教末日论中迷人的反基督者不同,达加尔具有令人厌恶的个性,长相丑陋,有一个巨大的钩状鼻子,一只畸形、鼓起的眼睛和大小不一的双手——这是解剖学上证明对称美感的最好机会。[14]

        反犹太主义是穆斯林末日论的既定组成部分,它甚至包括最具欺骗性的种族主义谣言。已故沙特国王费萨尔经常向外国政要大谈共产主义-犹太世界的阴谋,会面结束时,他总会问礼宾官:“他们拿到书了吗?”他指的是《锡安长老会纪要》。有一次,美国大使向他指出,假定犹太人密谋统治世界的《锡安长老会纪要》这本书,是沙皇的秘密警察伪造的。费萨尔回答:“胡说。”沙特王国用多种语言印刷了这本书,并扩大其发行量。从过去到现在,费萨尔一直不是唯一的反犹太主义者;事实上,对所有的穆斯林末日论者来说,《锡安长老会纪要》就是犹太人背信弃义的头号展品。[15]

        穆斯林的末日论者也和基督教的时代论者一样,从当前事件中寻找预示末日时刻的迹象。这些迹象主要有两种类型。第一种被称为“较小的迹象”,如性开放等,这正符合林赛和莱希的观点。甚至连歌舞、钱财和男性的丝绸服装也被看作一种末日迹象,汽车也是,因为女性可以驾驶。其他较小的迹象包括地震、洪水、干旱和财务不当行为,特别是收取利息和女性雇用男性(最后一个迹象忽略了一个事实,即年轻时候的先知正是被寡居女商人赫蒂彻雇用的,后来赫蒂彻成为先知的妻子和首位追随者)。

        一则特别著名的圣训说,“最后时刻”将会出现“两个人物打起来”,尽管这两个人物宣讲的是同一件事;当30个假弥赛亚出现时;当所有的宗教知识消失时;当杀戮变得频繁时;当每个人都很富有、没有人会接受施舍时;当坟墓如此壮丽,以至于活着的人都希望自己在里面时。

        穆斯林的末日论者也在寻找“更大的迹象”,即更具体的预言事件。在穆斯林早期阶段,位居榜首的预言是穆斯林征服了信奉基督教的君士坦丁堡(但尚未实现)。历任穆斯林统治者利用圣训为屡次的攻城失败做辩护;1453年,奥斯曼帝国最终取得了胜利,但末日并未随之来临,神学家们于是将预言中的末日之战的地点转移到其他地方,最近的预言是在达比克。

        与基督教犹太复国主义者一样,另一个“更大的迹象”是犹太人重返圣地。从犹太人的角度,基督教版本已经令人不快——要么皈依和改变信仰,要么被摧毁。而穆斯林版本则更残酷:安拉将把犹太人送回巴勒斯坦。用一位穆斯林末日论者的话来说,“通过把他们聚集(到巴勒斯坦),来宣布将临上帝的复仇”:这是穆斯林末日版本的最终审判。[16]

        其他“更大的迹象”包括达加尔的出现和太阳从西方升起。圣训中也出现了歌革和玛各,还有一个被称为苏菲亚尼的伊斯兰教特有的人物(在叙利亚横冲直撞的强大的逊尼派暴君)。作为逊尼派,他受到什叶派穆斯林的斥责;但并不是所有人都斥责逊尼派,例如,在巴格达阿拔斯王朝(倭马亚王朝的对手)的哈里发辖地,他受到崇拜。[17]

        苏菲亚尼的最终目标是杀死世界末日的主角马赫迪,但通常他很快就会被地球吞噬。在大多数圣训下,直到耶稣处理了达加尔,马赫迪才带领伊斯兰军队取得胜利,并建立对世界的正义统治。什叶派相信,10世纪时失踪或“隐藏”的第十二任伊玛目[18]穆罕默德·马赫迪,将如他的名字所示,在世界末日时再次出现。[19]

        1978年,安瓦尔·萨达特和梅纳赫姆·贝京签署了《戴维营协议》,这直接导致了1979年的《埃及-以色列和平条约》的签订。伊斯兰教徒憎恶《埃及-以色列和平条约》,尤其是1987年,一位不出名的埃及记者赛义德·阿尤布写了一本书,名为《反基督者》[20],书中传达了一个简单的信息:犹太人背信弃义,毒害了整个人类历史,他们将在一场末日之战中被伊斯兰教势力击败。

        20世纪80年代之前,穆斯林的末日文学是一种沉睡的文学体裁,侧重写马赫迪和千禧年,较少写歌革和玛各,也较少写耶稣与达加尔之间的战争。《反基督者》在伊斯兰世界的影响与哈尔·林赛的书在基督教世界的影响相同。类似于《消失的伟大地球》带来的基督教末日类文学的转变,阿尤布的书强调恐怖、血腥及最终战胜犹太人,并淡化随后的善良和光明,这种做法为该类型的文学体裁注入了活力。[21]

        根据阿尤布的说法,达加尔在地球上的犹太代理人首先是门徒保罗,其次是君士坦丁一世[22],然后是共济会成员、在美国的犹太人阿塔图尔克[23],再次是美国、北约,最后是以色列。阿尤布写道:“地震、火山爆发和干旱将先于反基督者出现,(而且)气温将明显升高。”接下来是一场最后的大战,其中的幻觉性细节让《启示录》和林赛都甘拜下风。末日时刻,以色列被摧毁,占世界主导地位的伊斯兰教将首都从大马士革迁往耶路撒冷。书中,阿尤布还谴责罗马教皇访问犹太教堂,并否认纳粹大屠杀。

        与基督教时代论小说一样,圣殿山在该书中占据主导地位。根据从丹尼斯·迈克尔·罗恩和拉比戈伦那里得到的提示,阿尤布写道:“达加尔的住所在耶路撒冷的圣殿里。由于这个原因,他们有时试图焚烧阿克萨清真寺,试图进行考古发掘,甚至试图通过美国共济会购买土地。”[24]三大亚伯拉罕宗教的末日叙事有着惊人的相似之处,正如以色列记者格肖姆·戈伦伯格所写:

        末日剧场涉及三方,在所有三方的末日论信徒眼中,一场伟大的戏剧已经上演。声音系统是希望和恐惧;每次其中一个演员讲话,都会引起强烈反响。正在上演的有三个剧本。在基督教剧本中,犹太弥赛亚扮演主角;在穆斯林剧本中,犹太人和基督教徒也有自己的角色。一方认为的繁荣修辞可能正是对另一方的战争提示。[25]

        和林赛的书一样,《反基督者》在阿拉伯世界非常畅销,之后阿尤布又写了一系列类似的书,这催生了一大批模仿者。其中的一些书,把几乎每个人(包括马丁·路德)都看作犹太人;模仿者之一法赫德·萨利姆在书中慷慨地承认萨达姆·侯赛因[26]不是犹太人,但侯赛因的一位亲密伙伴的父亲是犹太人,因此他的政权被玷污了。最著名的模仿者是另一位埃及记者穆罕默德·伊萨·达乌德,他为沙特媒体撰稿。

        达乌德显然认为阿尤布的书对犹太人过于冷静和宽容,1991年,他出版了《当心:反基督者从百慕大三角入侵世界》,其中百慕大三角既是达加尔旅居北美的一个中间地点,也是复仇的伊斯兰空军的飞碟基地。[27]

        流行的末日类文学书籍遍布开罗、利雅得、贝鲁特、巴格达[28]和东耶路撒冷的阿拉伯露天市场,摆满了从摩洛哥到印度尼西亚的书店书架。更重要的是,随着社交媒体的出现,这些书籍更加容易获得,影响力也越来越大,为21世纪的圣战主义提供了有效的背景音乐。[29]伊斯兰教学者让-皮埃尔·菲利于描述了该体裁日益反犹和反西方的基调:

        这种愈演愈烈的谵妄并不是无害的,因为它充满了深深的怨恨和报复……第三个千年的救世主们提炼出了具有末日信仰的人的仇恨胆汁。美国对伊斯兰教持有一成不变的敌意以及马基雅维利主义[30],因此注定要惨死;伊斯兰教是真理、不可抗拒的力量和永恒的胜利。[31]

        几个世纪以来,穆斯林将摆脱羞辱和压迫的希望寄托在救世主马赫迪身上。这种叙事和基督教千禧年主义者一样,都关注整数日期。马赫迪主义总会在穆斯林的新世纪之初爆发。

        穆斯林历法始于先知从麦加迁移到麦地那的622年,即“希吉来”元年,而希吉来历的14世纪始于1882年11月12日。[32]希吉来历13世纪末,相当于公历19世纪70年代末,一位名叫穆罕默德·艾哈迈德的苏丹苏非派[33]神职人员被埃及统治者的宗教异端激怒。这些宗教异端虽然向奥斯曼土耳其上交象征性贡金,但事实上更受惠于英国人。艾哈迈德认为,1882年11月12日是末日的预兆,为了给自己足够的时间在喀土穆[34]建立统治,迎接新世纪的到来,他在1881年宣布自己为马赫迪。[35]

        艾哈迈德的起义最初成功了,如果不是后来英国的查尔斯上将——“中国的戈登”[36]——在艾哈迈德围困喀土穆的时候被杀,那么艾哈迈德的政权可能会幸存下来。戈登在英国国内已经是受欢迎的英雄,他试图保卫整个喀土穆城市,这超越了他帮助埃及军队和政府撤离的这一职权,从而惹恼了英国王室和最高指挥部。

        1898年,民众对戈登之死的愤怒,迫使英国不计成本地派遣了一支由霍雷肖·赫伯特·基奇纳领导的远征队,以收复喀土穆。与此同时,艾哈迈德死于斑疹伤寒;基奇纳在恩图曼战役中击败了艾哈迈德的继任者阿卜杜拉·塔希。在恩图曼战役中,英军动用先进武器,屠杀了1.2万名穆斯林士兵,而自己仅有轻微损失。[37](温斯顿·丘吉尔也参加了这场战斗,当时他还只是一名年轻中尉;这场战争以及19世纪晚期的其他殖民地战争的压倒性胜利,激发了诗人希拉尔·贝洛克的创作灵感:“无论发生什么,我们都有马克沁机枪,而他们还没有。”)[38]

        喀土穆是伊斯兰教历14世纪之初的起义地点,在穆斯林地理上是一个边缘地带。伊斯兰教历15世纪初的骚乱事件则发生在伊斯兰的震中——麦加大清真寺。这座清真寺的历史可以追溯到610年伊斯兰教诞生之前,据说,大天使加布里埃尔在其家乡麦加城外的希拉山上,向先知口述了第一段《古兰经》经文,当时这位激动到颤抖的先知还只是一位成功的商人。

        麦加的财富来源于“克尔白”。后者是一座花岗岩建筑,据说是亚伯拉罕建造的,其中嵌的黑石可能是陨石。早在穆罕默德之前,朝圣者就开始朝觐并绕行克尔白和黑石,此地很可能是伊斯兰教创立之前、阿拉伯人的多神信仰中的主要神——安拉的神殿。[39]

        当时,穆罕默德作为一个出身卑微的小商人,是在未来妻子赫蒂彻的护助下才获得成功的。但实际上,他的血统也来自麦加的统治部落古莱西,只不过他出身于该部落的一个小分支而已。他的宗教热情,特别是他致力于清除克尔白360个异教神灵的偶像崇拜图腾,威胁到了麦加的朝圣交易,因此激怒了古莱西的精英们,他们迫使他于622年逃到了耶斯里卜(就是后来的麦地那),这一年就是伊斯兰教历元年,众所周知的“迁移”。630年,当他最终作为胜利的伊斯兰教势力之首返回麦加后,拒绝非信徒进入这两座城市这一禁令一直持续到今天。[40]

        从那时起,阿拉伯半岛就受到富裕和奢侈的商人精英与虔诚和禁欲的信徒之间紧张关系的间歇搅动。18世纪初,一位名叫穆罕默德·伊本·阿卜杜勒·瓦哈比的法学家开始宣扬一种激进的伊斯兰教,其核心围绕着两条原则:回归先知的原始教义,坚决反对巴格达、大马士革、伊斯坦布尔和开罗的贵族们享受奢侈和财富。舞蹈、珠宝甚至烟草都是“哈拉目”(伊斯兰教禁止的);什叶派也是“哈拉目”,什叶派信徒必须在皈依和死亡之间做出选择。

        伊本·阿卜杜勒·瓦哈比与一位可怕的勇士穆罕默德·本·沙特结盟后,法学家的神学才能和勇士的军事力量实现协同增强,他们将“瓦哈比思想”从其诞生地——地处内陆沙漠深处、受太阳炙烤的阿拉伯空旷地带——向外传播,直到几乎控制整个阿拉伯半岛甚至更远的地区。

        随着奥斯曼帝国在19世纪的衰落,穆罕默德·本·沙特的后裔阿卜杜勒·阿齐兹(在西方被称为伊本·沙特)于1902年占领了位于利雅得的奥斯曼要塞,并建立了至今仍存在的沙特王朝。新政权的突击部队,是极端虔诚的“伊赫万”,其字面意思是“兄弟”,由历经几百年沙漠劫掠和战争流血的贝都因人组成。1924年,围攻麦加的伊赫万军队屠杀了邻近城镇塔伊夫的400名居民,包括孕妇,吓得麦加人不战而降(见图15-1)。

        图15-1 伊赫万和麦加起义

        对伊赫万人来说,很不幸的是,第一次世界大战改变了中东政治格局。英国是一战的胜利者,现在英国基督徒隐隐出现在阿齐兹的北部边境,阿齐兹需要安抚他们。此外,要想成为伊斯兰圣地的合法守护者,他需要得到更广泛的伊斯兰世界的认可,不仅包括叛乱的什叶派,还包括苏非派和不太拥护他的逊尼派。因此,阿齐兹开始远离具有“瓦哈比思想”的伊赫万盟友。

        国王阿卜杜勒·阿齐兹热情地接受现代社会产品,特别是汽车和电话,这伤害了他与瓦哈比信徒之间的关系。瓦哈比信徒打算清除东部的什叶派,结果却被阿齐兹镇压。由于被阿齐兹的异端行为激怒,瓦哈比信徒中最保守的伊赫万人叛变;1927年,他们对科威特发动了一次袭击,却被另一个现代社会产品——英国军用飞机——羞辱。两年后,当时已经受够了伊赫万人的阿齐兹,开着装有机枪的汽车,从利雅得出发,向北驶向内陆绿洲斯巴拉。在那里,他要求伊赫万人投降,但骑着马和骆驼的伊赫万人拒绝投降,招致了阿齐兹的屠杀。[41]

        伊赫万叛乱的火焰被抑制,但并未完全熄灭。穆罕默德·本·赛义夫·乌特比是一位在斯巴拉大屠杀中幸存下来的伊赫万人;屠杀发生多年之后,1936年,他有了一个儿子,这个婴儿长着一张似乎总在愤怒的脸。沙特人喜欢粗俗易懂的名字,于是乌特比给他的儿子起名为朱海曼,其意思是“愤怒的脸”,后来的朱海曼也没有辜负这个名字。[42]

        朱海曼出生两年后,美国石油工人就在宰赫兰地区钻出了第一口喷油井,还参观了这个当时贫穷而虔诚的国家。这是一次伟大的自然经济实验,为阿卜杜勒·阿齐兹的后嗣和追随者带来了难以想象的财富。阿卜杜勒·阿齐兹有6个儿子,他们由其不同的妻子所生,自阿卜杜勒·阿齐兹1953年去世后,这些同父异母的兄弟一个接一个地统治着这个王国。

        这些儿子中第二个担任国王的是费萨尔。1962年,他废除奴隶制;1963年,他允许女孩接受教育;1965年,他将电视引入王国。这些都进一步激怒了瓦哈比信徒。10年后,费萨尔被一名王室成员暗杀,暗杀者的理由是他的亲属在引入电视所带来的暴乱中丧生。

        在沙特王国,精英们的儿子都可以加入陆军和空军,但是,更虔诚的伊赫万人被调往声望较低的国民警卫队。朱海曼成年后,在警卫队服了18年兵役,直到1973年才作为下士被调离。虽然平庸的国民警卫队的服役经历并没有提升他的社会或物质地位,但强烈的宗教倾向驱使他研究更卓越的事物,特别是伊斯兰教的末日论。

        从警卫队退役后,他在麦地那定居,并加入了一个瓦哈比组织:“指挥正确、禁止错误”的萨拉菲组织。该组织尤其受到阿卜杜勒阿齐兹·本·巴兹的影响。本·巴兹是一位才华横溢、魅力四射、有野心的伊斯兰教学者,自8岁起就双目失明,他反对沙特王国一头扎进现代社会。

        当时,王室尤其喜爱法国和西班牙的地中海式奢侈生活,这激怒了本·巴兹;本·巴兹还猛烈地抨击烟草、理发店和公共活动中的鼓掌行为。[43]在本·巴兹和其他伊斯兰教徒的精神指引下,萨拉菲组织直接在弗洛伊德的“微小差异的自恋”中建立了一套神学:信徒们开斋[44]不是因为日落,而是因为所有光明的消失。(不过,其允许通过拉上房间窗帘来加快开斋时间。)其祈祷时可以穿凉鞋,这一差别让其他穆斯林感到恼火。另外,他们的清真寺朝向麦加方向的墙上也未设有传统“圣龛”(即阿拉伯语中的“米哈拉布”)[45]。萨拉菲组织在沙特阿拉伯的大部分主要城市建立了分会,在许多地方有自己的专用建筑,并迅速建立了国际声誉,吸引了来自伊斯兰世界,特别是来自埃及和巴基斯坦的信徒。令萨拉菲组织懊恼的是,沙特君主制逐渐选择了本·巴兹,而本·巴兹不断演变的现实主义政治在他和伊赫万之间制造了一个楔子;尽管失明的本·巴兹严厉批评王室的现代化和自由放荡倾向,但他并没有质疑该政权的合法性。最终,政府任命本·巴兹担任著名而又有影响力的机构“高级学者委员会”的主席,其职责是每周都以该委员会主席的身份与国王一起出现在电视上(尽管电视曾使国王同父异母的兄弟遇刺)。从1993年起,本·巴兹还担任沙特大穆夫提[46],直到1999年去世。

        本·巴兹已经去过沙特君主国的首都利雅得,而此时萨拉菲组织的神学怪癖,尤其是它对王室的敌意,使它与本·巴兹曾经友好的关系恶化。1977年夏天,本·巴兹的副手在麦地那某个屋顶上召集萨拉菲组织开会,要求其放弃异端学说。萨拉菲的大多数成员都是20多岁的人,他们拒绝了这个要求,并在年长一点儿而又有魅力的朱海曼的领导下进行重组,他们以瓦哈比祖先的名字命名,成立了伊赫万组织。[47]

        1977年12月,也许是屋顶会议几个月后,政府逮捕了朱海曼的24名追随者;他们逃跑后,向本·巴兹求助。这位盲人教士接见了他们,并要求政府释放他们。[48]

        朱海曼则选择继续逃亡。几千年来,他的祖先一直靠进入沙漠来躲避拜占庭、奥斯曼、波斯和阿比西尼亚[49]的君主,他们依靠的是一种驯养的动物——骆驼,这种动物能够在险恶、几乎无水的环境中生存。自1977年逃脱后的两年里,朱海曼依靠贝都因人的遗传技能,成功地避免了在空旷的半岛内陆被抓。在这一过程中,他成为一个传奇人物,通常与3~5名追随者一起旅行,并安排与其他人的秘密会议;更多的时候,他只是从精神上参加这些秘密会议。有一次,他要去看望妈妈,最后一刻他收到警示,被告知警察正在监视他的家;另一次,他牙痛了很久,最后才找到一位不会向当局泄密的牙医。[50]

        朱海曼对本·巴兹的妥协很不满,并断绝了与他的联系。游历期间,朱海曼将自己沉浸在圣训中,特别是那些涉及马赫迪和末日的圣训。他从先知最著名的末日类圣训中获得灵感:

        末日不会到来,直到拜占庭人攻击阿马克或达比克。一支由地球上最优秀的人组成的穆斯林军队,将从麦地那前来阻止他们……然后战斗就会开始。1/3的(穆斯林)军队将认输;安拉之神永远不会原谅他们。1/3会战死;在安拉眼中,他们将是优秀的殉道者。还有1/3将战胜:他们将永远不会受到考验,他们将(继续)战胜君士坦丁堡。[51]

        达比克是叙利亚的一个城镇,阿马克是土耳其的一个山谷;伊斯兰国组织以前者命名其杂志,以后者命名其通讯社。在朱海曼的末日论中,麦加和麦地那取代了达比克和阿马克。

        为了触发末日,朱海曼需要一个马赫迪。令他高兴的是,他的沙特追随者之一被证明是马赫迪,这位追随者是一位浅肤色的超凡脱俗的诗人,有一双浅棕色的眼睛,名叫穆罕默德·阿卜杜拉·卡赫塔尼。诗人与朱海曼联手后,诗人的妹妹梦见自己的哥哥在大清真寺的院子里通过克尔白接受了拜伊尔(baya,即效忠的誓言)。在标准的伊斯兰教末日叙事中,这个梦是有意义的:和先知一样,卡赫塔尼是浅肤色的古莱西人,这是成为马赫迪所必须具备的条件。卡赫塔尼的左脸颊上也有一个胎记,这是一个意外收获,因为根据一条广为引用的圣训,马赫迪也有。这群人中的其他人,包括朱海曼本人,很快就做了同样的梦。

        梦在伊斯兰教中有特殊的意义,尤其是当集体经历时,因为安拉通过梦向先知传达了他的许多启示。(正如朱海曼的一位追随者所说:“我们做梦,证明我们更虔诚。”[52])卡赫塔尼与朱海曼越来越亲近,朱海曼甚至与自己的妻子离婚,然后娶了卡赫塔尼那位做梦的妹妹。[53]

        正如哈尔·林赛后来所说,这个巨大的拼图终于拼好了。现在,朱海曼不仅拥有了他的马赫迪,而且他对圣训的解读也确认了马赫迪接受拜伊尔(效忠)的精确地点,即在夏甲和以实玛利(分别是亚伯拉罕的妻子和儿子)的坟墓旁,在大清真寺院内的克尔白外面,这正是卡赫塔尼的妹妹所梦到的那样。朱海曼还揭示了接受拜伊尔的日期:根据逊尼派的传统,他预测,一位被称为“世纪更新者”的学者将出现在每个希吉来世纪的第一天:希吉来历1400年开始于1979年11月20日。因此,朱海曼及其追随者必须占领大清真寺,以便马赫迪在确定的日子、在上述克尔白旁边的地点接受拜伊尔。

        在沙漠流亡期间,朱海曼录制了录音带,并创作了《朱海曼的信》。在这些信中,他阐述了自己的神学思想和末日论。(他只接受过四年级教育;虽然不是文盲,但写作能力很差,因此“信”很可能是口述的。[54])沙特没有出版商会碰这些信,但最终一家科威特左翼出版社印制了两本单独的简编,分别是《七封信》和《四封信》,它们在半岛上广为流传。

        本·巴兹建议释放朱海曼的同伙,这是一个严重的错误;希吉来历1400年的第一天,朱海曼和大约300名追随者在大清真寺壮观地重新出现在公众视线中。[55]在过去的几天里,他们已经用由裹尸布(用来承载对死者最后祝福的一种传统)覆盖的担架私运了武器和供给。占领行动几乎没有带来流血事件,只在最初有两名没有武器的警察和一名助理伊玛目被杀。当朱海曼的手下鸣枪庆祝时,朱海曼从伊玛目手中抓起麦克风并大声喊道:“看,马赫迪!看,是正确的引导者!”[56]

        随后,朱海曼在楼上和宣礼塔上部署了狙击手,并让卡赫塔尼的哥哥赛义德出场。赛义德会说流利的古典阿拉伯语,他向人群宣布了马赫迪的存在。赛义德的演技令人印象深刻,特别是他向卡赫塔尼献上了拜伊尔,使一些战俘也加入他的行列,并使至少一名清真寺保安指挥官相信,那位面色苍白的年轻诗人确实是马赫迪。

        朱海曼释放了许多外国人,特别是那些不会说阿拉伯语的人。但是,由于叛军禁止数万名沙特及其他阿拉伯国家的朝圣者人质离开大清真寺,并指示他们拿起武器协助攻击,因此致命的混乱发生了。政府军和警察接近清真寺时,在距离不到半公里的地方,遭到火力攻击。

        叛军占领初期,有两个原因造成了政府的反应迟钝:首先,尽管全副武装的叛军向所有身穿制服的人开枪,但军队不愿还击,因为先知禁止携带武器进入麦加。其次,大量人质和政府军本身也担心卡赫塔尼可能真的是马赫迪。

        只有一个管理机构能够解决这一僵局,即由本·巴兹领导的乌莱玛(意思是宗教学者)或高级学者委员会。由于对王室的不虔诚、道德败坏和挥霍行为感到愤怒,这一威严的机构故意讨价还价:直到叛军占领的第五天,它才宣布卡赫塔尼为骗子,并为反击战祈福。作为交换,沙特国王哈立德同意重塑社会风气,尤其是禁止酒精和女性出现在电视上,这也是朱海曼呼吁的核心内容。

        在获得神学许可后,可怕的攻击开始了。政府军很快用反坦克导弹击退了尖塔狙击手,但主楼的叛军火力依然在,步兵无法进入清真寺。受伊赫万影响的国民警卫队,拒绝向自己的部落和神学兄弟开火,甚至在某些情况下还向对方提供武器,这使情况更糟。

        正规军取代了国民警卫队,但其在城市游击战方面的训练很少。直到军队将轰鸣的装甲运兵车开进清真寺,事情才有了进展。除了双方的损失之外,数百名甚至数千名朝圣者人质在交火中丧生。由于多次被告知是马赫迪,卡赫塔尼认为自己是无坚不摧的,不知怎的竟然真的在暴露的炮火中幸存了下来;他由此更加确定自己是永生的,开始向军队回掷手榴弹,直到运气最终耗尽——对方的一枚手榴弹几乎把他炸成碎片。叛军慢慢撤退到清真寺地下室,装甲车也进入了地下室,但在狭窄的通道里动弹不得。

        围攻陷入僵局。虽然确切数字从未公布,但袭击发生一周后,政府伤亡人数占全国三万军队和两万国民警卫队人员的很大一部分。哈立德国王需要寻求外国援助。约旦是唯一一个既与沙特关系友好又拥有可靠突击部队的阿拉伯国家,它主动提出援助。

        从沙特的角度看,其不能接受约旦的援助。在1924—1925年的战役中,包括1924年对塔伊夫城的残忍袭击,当时仍与哈立德的父亲阿卜杜勒·阿齐兹结盟的伊赫万军队,将现任约旦君主侯赛因的曾祖父哈希姆驱逐出了汉志王国,该王国包含麦加和麦地那;接受他们曾经鄙视的哈希姆人的援助意味着丢脸,因此他们无法接受。[57]

        因此,沙特王国被迫接受了一个不可思议的援助:在伊斯兰最神圣的地方,接受了来自基督教势力的援助。这将是圣训中提到的异教徒“北方军队”;它最终来了,但只是以微小而短暂的形式出现。德黑兰大使馆人质事件[58]发生后,哈立德认为美国卡特总统和中央情报局无能,因此决定向法国情报局寻求帮助。允许非信徒(更不用说基督教军队)进入麦加,这是极其敏感的,因此法国只派出了3名精英特工,他们携带大量的先进武器,其中包括数百磅先进的麻醉气体。

        20世纪60年代,大清真寺进行了大规模翻修和扩建,其建筑平面图在这次袭击计划中发挥了至关重要的作用。该平面图由负责这一庞大工程的建筑大亨穆罕默德·本·拉登绘制。1967年他去世后,他的儿子塞勒姆接管了公司。塞勒姆带着平面图赶往清真寺,和员工一起在清真寺地板上钻了几个洞,通过这些洞把法国毒气罐扔到了叛军所在的地下室里。但这一战术只是暂时有效,因此沙特人最终被迫对叛军所在的地下室发动了一场由法国人设计并协同的直接进攻,其残忍程度难以想象。[59]

        14天后,也就是12月4日,围攻结束。几千名参战人员和人质死亡。至少有100名军人被俘,包括垂头丧气的朱海曼。医生们检查了这些囚犯;如果肩部疼痛或有瘀伤,这就表明其曾经主动开枪。医生们通过这种方式找出了69名囚犯,他们被公开斩首,名列榜首的是朱海曼。其他一部分人被沙特秘密处决,剩余的被判长期监禁。官方公布的叛军、军队和人质的死亡人数是270,但没人相信这一数字。[60]

        朱海曼的行为,主要是由他的末日幻想驱动的。但是,随后对幸存追随者的采访清楚地表明,许多人并不相信他的末日神学,而只是出于对他的尊重、在口头上表示相信;还有一部分人是因为参加该行动可以推动他们的政治目标。无论如何,在围攻的第三天,当他们认为的无坚不摧的卡赫塔尼被手榴弹炸死时,即使是那些相信朱海曼的末日预言的人也丧失了信心。[61]事实仍然是,如果末日信念不存在,大清真寺围攻事件就不会发生。

        和1927—1930年的伊赫万叛乱被镇压一样,沙特人成功镇压了1979年的这场伊赫万叛乱。但事情并没有结束。在未来几十年中,全球冲突之风将把大清真寺围攻事件的余烬带到王国边界之外。这一次,新技术将使朱海曼的继承人有能力将火焰扇得比1979年更强烈、更明亮。甚至在清除清真寺的血迹和碎片之前,这些余烬就开始燃烧得更亮。在沙特军队处理了朱海曼的最后一批叛军3周后,苏联军队入侵了阿富汗。这不是巧合;从美国对1979年德黑兰大使馆人质事件的反应,以及沙特大清真寺围攻事件和半岛东部的一场什叶派叛乱中,苏联人感觉到了美国和沙特君主国的衰落。

        苏联入侵阿富汗被证明是一个灾难性的错误;阿富汗成为吸引新一代圣战者的磁石。其中许多人是朱海曼的支持者和拥护者,朱海曼在阿富汗圣战者营地中具有传奇性地位。美国放弃了对中东的不干预政策,积极支持伊斯兰世界的武装分子涌入阿富汗。其中一名战士是翻修和扩建大清真寺的建筑大亨的儿子,他就是年轻的奥萨马·本·拉登。他的哥哥提供的建筑图,在夺回大清真寺的过程中发挥了重要作用。

        大清真寺围攻事件后,一名居住在科威特的巴勒斯坦人伊萨姆·巴卡维(后来改名为穆罕默德·迈格迪西)发现了朱海曼的信,并找到了该国的萨拉菲组织分支,该分支为该教派的逃犯提供了避难所。随后,迈格迪西去麦地那进行宗教研究,并在随后的几年里周游了沙特阿拉伯和约旦,然后抵达了巴基斯坦的白沙瓦——这里是进入阿富汗(当时已被苏联占领)的主要门户。在每一站,他都寻找朱海曼的追随者。迈格迪西对朱海曼的传说如此着迷,他模仿朱海曼的外貌,留起了长发和乱胡子,并宣称与这位伊赫万英雄没有血缘关系。[62]

        最终,迈格迪西在约旦定居,并在1995—2014年频繁进出监狱。他为今天的圣战奠定了思想基础。在这方面,任何其他的穆斯林思想家都比不上他。圣战学者们最近的一项研究表明,穆斯林末日文学中引用最多的激进伊斯兰主义者就是迈格迪西,他自成年后就将自己沉浸在《古兰经》和圣训中。[63]

        在1995—1999年第一次进入约旦监狱服刑期间,迈格迪西指导了一个名叫阿布·穆萨布·扎卡维的约旦小罪犯。两人都在1999年被释放,之后在空间和神学上都分开了。迈格迪西留在了约旦,虽然他有时批评极端的同伴,但他确信一件事:虔诚的穆斯林有义务前往叙利亚参加即将来临的与达加尔之间的末日之战,如果不去叙利亚,就去也门。他的学生扎卡维则逃往了阿富汗,并发展出一种偏执而凶残的思想意识,尽管后来扎卡维死了,但这种意识形态一直持续到今天。

        扎卡维有一种诡异的本领,他总是能在美国的军事行动发生之前到达该地区,首先是阿富汗,在他从阿富汗逃出后又是伊拉克。在伊拉克,他几乎独自写下了暴力圣战剧本,包括自杀式袭击、绑架和斩首西方人,他还擅长通过网络招募新兵。

        2004年,扎卡维参加了位于法鲁贾[64]的两次战役,并宣布效忠于奥萨马·本·拉登。到此时,迈格迪西已经拒绝了朱海曼的末日论,但扎卡维没有,而且随着萨达姆·侯赛因军队的迅速战败,扎卡维的宣传越来越采用末日论的基调。在早些时候,他已经认识到末日式的宣传能够吸引新兵。这一经验后来被伊斯兰国采用,从而引发了一个恶性循环:战场形势越糟糕,基调就越末日式,就会吸引更多的新兵,从而产生更多的战场伤亡。

        扎卡维从未忘记他的首要目标,即推翻约旦君主国。约旦君主国于1994年与以色列签订了和平条约。扎卡维将约旦人描述为“犹太复国主义者的奴隶”,经常用预言性术语“腐败的统治者”来形容约旦国王阿卜杜拉二世。扎卡维还鄙视什叶派及其伊朗[65]权力中心,他经常引用一些诋毁什叶派的古老预言,特别是与636年阿拉伯军队在卡迪西亚击败波斯萨珊帝国有关的预言,以及将后来的波斯伊斯兰[66]与可恨的蒙古人联系在一起的预言。很明显,扎卡维并没有把犹太人看作达加尔,对他来说,什叶派是达加尔,美国侵略者也是达加尔;谋杀什叶派和美国侵略者,不仅在神学上是必要的,而且还有额外的收获,即可以引发一场教派战争,加速末日的到来。

        末日类文学中有很多关于早期穆斯林与拜占庭人斗争的内容,扎卡维充分利用了这些文学。扎卡维提到美国军队时,使用了古代表示拜占庭人和西罗马人的一个缩写:rum。(相比之下,基地组织对以美国为首的部队使用了同样指责性的标签:“十字军”。)只要有可能,扎卡维就会把先知的战斗比作自己的战斗。他特别喜欢著名的《苏瓦班圣训》,在这部圣训中,先知告诉他的追随者,“各国将从各个方向蜂拥而至,就像饥饿的人们涌向水壶一样”。他认为伊拉克2005年的民主宪法是一场灾难,为了安慰自己,他引用了布哈里圣训,即使正义被击败,“通过这种方式,信使们也受到了考验,然后他们最终会胜利”[67]

        扎卡维的自杀式爆炸、斩首和对无辜生命的漠视,最终甚至使他的组织成员也疏远了他。组织成员可能泄露了扎卡维的“精神导师”谢赫·阿卜杜勒-拉赫曼的所在地,这使满载炸弹的美国F-16战机在2006年6月7日找到了扎卡维。[68]

        扎卡维还谈到了重建哈里发政权的问题。最后一个哈里发政权已经在1924年被土耳其废除。但扎卡维最终放弃了重建哈里发政权这一目标,因为一个合法的哈里发政权需要领土,以及人民的支持。重建哈里发必须要等待;因此扎卡维和奥萨马分别在伊拉克和阿富汗宣布了一个地位稍逊的实体——“酋长国”。

        酋长国和哈里发之间有很重要的差异;酋长国统治有限的领土,而哈里发不仅统治所有穆斯林,还意味着末日的来临。扎卡维认为世界末日即将到来,但他认为世界末日还没有到来。尽管如此,末日的确切日期和哈里发问题,还是使奥萨马在阿富汗的“基地组织中心”的行动与扎卡维在伊拉克的行动分道扬镳。2006年,扎卡维在空袭中丧生之前,命令追随者宣布成立伊拉克伊斯兰国。他的组织在4个月后的2006年10月15日这样做了,这令基地组织目瞪口呆,基地组织认为没有控制领土而宣布成立一个新国家是愚蠢的。

        基地组织和伊拉克伊斯兰国之间的分裂,在某种程度上类似于主流基督教徒和福音派新教徒之间的分裂。高雅而受过良好教育的圣公会教徒和长老会教徒,看不起他们的同宗——时代论教徒,他们认为时代论的末日猜测是未经洗礼的人的胡言乱语;同样,享有特权的奥萨马也蔑视扎卡维愚昧的末日论,认为他是一个几乎不识字的小流氓。尽管奥萨马是个恐怖分子,但他是个贵族。他的父亲穆罕默德·本·拉登是那个地区特有的族长,来自也门,成年后最初在麦加的港口城市吉达做搬运工,最终成为沙特王室的建筑总承揽商;今天,沙特本拉登集团是世界上最大的建筑承包公司之一。老拉登娶了不少于22个女人,有54个孩子,其中第17个是奥萨马,奥萨马的母亲15岁时生下了他。

        奥萨马出生后不久,他的父母就离婚了。老拉登让奥萨马的母亲嫁给了一位公司高管,这位高管成为奥萨马的继父。尽管奥萨马已不在父亲的屋檐下,但他和父亲保持着松散的联系;更重要的是,这个年轻人享受着父亲的庇护,包括在多个私立机构接受精英式教育,最重要的是吉达著名的塔格学校,该学校当时是阿拉伯民族主义和伊斯兰教意识形态的温床,其中的伊斯兰教意识形态正是年轻的奥萨马所接受的。1967年,奥萨马10岁时,他的父亲死于飞机失事;1979年,他从阿卜杜勒阿齐兹国王大学毕业,之后开始参与家族的建筑生意。同年,苏联入侵阿富汗,去阿富汗从事人道主义工作或与圣战者一起作战,成为沙特年轻人中的一种时尚。最初,奥萨马是被公司派往那里的,后来,他把事业从建筑转到圣战。[69]

        对出身高贵、有工程头脑的奥萨马·本·拉登来说,圣战是一件有条不紊、需要冷静头脑的事情,而不是一件救世主式的事情。仅举一个例子,他后来向持有末日思想的索马里青年党发出警告:气候变化对伊斯兰教干旱家园的威胁不亚于外国军队,并建议他们种植耐热树。阿拉伯学者威廉·麦坎茨说:“如果你不知道他管理着世界上最臭名昭著的恐怖组织,那么你会认为他是美国国际开发署的一名官员。”[70]

        奥萨马还有另一个不相信扎卡维的末日论的理由。1979年他毕业那年,他哥哥塞勒姆凭借大清真寺修缮平面图,参与了夺回大清真寺的行动。[71]奥萨马一家目睹了当考虑不周的末日计划与现实世界的地缘政治力量相碰撞时会发生什么,尤其是当末日计划者对地域既没有政治控制也没有军事控制时。

        基地组织的首要任务是打击“远敌”美国,并将其军队赶出沙特阿拉伯和中东。“9·11”袭击导致了恰恰相反的结果。奥萨马·本·拉登对中东“近敌”的战略是推翻其腐朽的领导,这需要一种“心灵与智慧”的方法,需要避免自杀式炸弹袭击、斩首,以及避免对什叶派的大规模屠杀。而他的更狂热的伊拉克追随者们正在犯这些错误。

        近敌和远敌的概念是由埃及伊斯兰教徒穆罕默德·阿卜杜勒·萨拉姆·法拉杰创造的,他认为“近敌”是埃及政府,“远敌”是以色列。埃及外科医生艾曼·扎瓦希里又引用了这两个术语,他后来成为本·拉登的副手。1982年,法拉杰因参与暗杀萨达特被埃及人处决,而2011年奥萨马·本·拉登被杀后,脾气暴躁、缺乏激情的扎瓦希里继承了基地组织的领导权,并和奥萨马·本·拉登一样,蔑视世界末日论。

        伊拉克伊斯兰国没有建立哈里发政权,但在2006年,其名义上的执政机构“圣战者协商委员会”任命了一位没有名气的人担任“忠诚信徒的指挥官”,他就是阿布·奥马尔·巴格达迪。巴格达迪自称是先知的后裔,因此在技术上有资格成为哈里发,但他所谓的先知血统很可能是假的。他的真名是哈米德·扎维,曾是一名警察、电子修理工,是一个没有什么学识或声望的伊玛目。事实上,扎卡维的埃及弟子阿布·阿尤布·马斯里负责运营伊拉克伊斯兰国的机构。

        同年早些时候,伊拉克伊斯兰国选择了黑色旗帜作为其象征,上面有先知的印章和“除了造物主之外,世上没有别的神灵,穆罕默德是造物主的使者”的铭文。由于末日圣训预言中提到了“来自呼罗珊的黑色旗帜”,伊拉克伊斯兰国旗帜的末日征兆再清楚不过了。[72]

        在因冲突和贫困而四分五裂的伊斯兰世界,伊拉克伊斯兰国出现了一条丰富的矿脉。调查数据显示,世界上期望末日来临的穆斯林甚至比基督教徒还要多。皮尤中心的一项研究发现,51%的中东穆斯林相信马赫迪即将回归,这一比例在被入侵后的伊拉克可能更大。[73](与其他宗教信仰的社会学数据一样,国家越贫困,信仰越强烈;南亚穆斯林的这一比例为60%,而巴尔干穆斯林的这一比例仅为18%。)[74]不管是有意还是无意,伊拉克伊斯兰国采用的末日叙事远比奥萨马·本·拉登陈旧的萨拉菲神学以及奥萨马·本·拉登的继承人、缺乏激情的扎瓦希里的神学更有说服力。

        如果还有人相信马赫迪即将到来,这个人就是伊拉克伊斯兰国的实际领导人马斯里。为了加快马赫迪到来的进程,他让部队修建讲坛,供马赫迪在麦地那、耶路撒冷和大马士革的3座著名清真寺之间穿梭。马斯里还需要征服并控制领土,以加速马赫迪的到来。对于怀疑者,他给出了这样一个简单的回答:“马赫迪随时都会来。”[75]

        马斯里用热情和坚定的宗教信仰,为一系列比扎卡维犯下的暴行更严重的暴行辩解。伊拉克伊斯兰国不仅屠杀什叶派教徒,还屠杀任何拒绝效忠的逊尼派教徒;用妇女和儿童做人盾;炸毁房屋和医院。它广泛实行“哈杜德”[76]:用石头砸死通奸者,给偷窃者截肢,对饮酒者施行鞭刑。有一次,伊拉克伊斯兰国斩首了一名8岁的女孩。

        随着伊拉克伊斯兰国杀戮升级的报道传到阿富汗的基地组织,奥萨马·本·拉登和扎瓦希里试图收回他们在伊拉克的控制权,但对方一直拖延。[77]美国官员惊奇地发现了马斯里严重的战略战术错误,并将取他性命的奖金从500万美元降至10万美元;一些分析人士猜测,他只是一名戏剧演员。或许,他的妻子对丈夫的固执、笨拙的暴行所做出的描述最为简洁:“你说的伊拉克伊斯兰国在哪里?我们生活在沙漠中!”2010年4月18日,伊拉克和美国联军在提克里特(萨达姆·侯赛因的家乡)附近联合袭击了马斯里和巴格达迪,将他们逼到了绝境,最后他们引爆了自己。[78]

        尽管失败了很多次,伊拉克伊斯兰国还是再次发现了一个林赛、莱希和詹金斯所熟知的真理:末日叙事很叫座,而且越血腥越好。到了21世纪,通过网站和社交媒体,伊拉克伊斯兰国可以向全世界宣传世界末日。其中最常见的宣传品是简单的新闻稿:

        一个勇敢无畏的兄弟,伊拉克伊斯兰国的英雄之一,殉难者旅的成员……在迪亚拉省马弗里克区的耶路撒冷十字路口,驾驶一辆装满炸药的汽车冲进了美国十字军的指挥场所。我们这个英勇的兄弟高呼“最伟大的真主”并引爆了汽车……杀死11名士兵,摧毁两辆布拉德利装甲战车。[79]

        互联网不仅可以广泛传播文字材料,还可以传播更引人注目的视频。“十字军”部队遭受袭击的视频片段,在中东和西方的伊拉克伊斯兰国的支持者中受到欢迎,这些视频通常从多个角度拍摄;其中的一段美国卡车被简易爆炸装置炸毁的视频,其标题是“他们的最后时刻”。网上还有一些较长的视频,包括“精选”的袭击汇编、殉道者传略、计划-执行纪录片和充满煽动性的剪辑组合。美国和伊拉克军队也不是唯一的对象,事实表明,以处决什叶派囚犯为主题的视频尤其受到欢迎。[80]

        早在2008年,经奥萨马·本·拉登授权的基地组织也门分支——阿拉伯半岛基地组织就已经通过两个杂志《战争的回声》和《激励》推进伊斯兰教的末日宣传。其中《激励》是一本英语杂志,其经营者是萨米尔·汗,是一个在美国北卡罗来纳州长大的巴基斯坦人,他擅长使用一些吸引人的文章标题,如《在你妈妈的厨房里制作炸弹》;2010年左右,他开始为《激励》写一些末日类的文章。

        汗是一位伊玛目的门徒。这位伊玛目极具魅力和影响力,是一位在美国长大的也门裔美国公民,名叫安瓦尔·奥拉基,他在一篇文章中庄重地写道:

        穆贾姆·卡比尔和其他人从伊本·阿拔斯[81]的传述中得知先知的话:“一支12000人的军队将从亚丁-阿比杨(也门)出现。他们将给安拉和他的使者带来胜利。他们是我们中最好的!”

        关于上面那条圣训,可敬的谢赫·苏莱曼·伊本·纳西尔·乌尔万——愿安拉保佑他早日被释放——说,圣训传述链条很好,传述者是可以被认同的。[82]

        奥拉基没有对上述第一段话进行分析,而是在第二段中引用了一位更权威的学者的观点。他是一位享有盛名的、被监禁的沙特伊斯兰神学家,名叫苏莱曼·伊本·纳西尔·乌尔万,他为圣训传述链条的可信度提供了担保。[83]

        奥拉基充满启示性的末日文章、讲座和视频激励了一系列恐怖袭击。其中一些袭击是由与他有过私人接触的门徒,甚至可能是他亲自指导的门徒发动的,比如“内裤炸弹手”奥马尔·法鲁克·阿卜杜勒穆塔拉布。而其他袭击则是远方的人受到他的鼓舞,比如胡德堡枪击案的罪犯纳达尔·马利克·哈桑,哈桑曾是一位与他发过电子邮件的美国陆军精神科医生;还有时代广场的炸弹手费萨尔·沙赫扎德,其自称只是奥拉基的“粉丝和追随者”[84]

        最终,阿拉伯半岛基地组织走上了一条与伊拉克伊斯兰国相同的、毫无意义的暴力之路;这是阿富汗上级基地组织所反对的。此时奥萨马·本·拉登已经被杀,基地组织的指挥权已经移交给扎瓦希里。最终,阿拉伯半岛基地组织未能保护好辖域内的人民。2011年9月30日,美国在也门发动了一次引发争议的无人机袭击,杀害了萨米尔·汗和奥拉基——两个都是美国公民。可悲的是,另一次无人机袭击造成了奥拉基16岁的儿子阿卜杜拉赫曼的死亡,这可能是个意外;2017年1月29日,一次灾难性的海豹突击队袭击又导致一名突击队员和奥拉基8岁的女儿死亡。[85]

        到2010年,伊拉克伊斯兰国似乎已经岌岌可危。但是,当奥巴马政府初期美国从伊拉克撤军、只留下了小部分骨干训练师和顾问时,情况又有所改变。美国支持的伊拉克总理努里·马利基,是一位高度党派化的什叶派政治家,其镇压性策略甚至将温和的逊尼派也推向了伊拉克伊斯兰国的阵营。

        2010年5月,即马斯里和阿布·奥马尔·巴格达迪死后一个月,一位名叫阿布·巴克尔·巴格达迪的机会主义者和伊斯兰学者,担任了伊拉克伊斯兰国的领导人。[86]关于他,几乎没有什么确切的信息,据说他的直系亲属是先知的后裔,但都已经失踪。他似乎是一个富有书卷气的年轻人,由于视力差而无法加入萨达姆的军队,很早就有“信徒”的绰号。他全身心投入《古兰经》和圣训中,目前尚不确定他有没有在巴格达获得萨达姆大学伊斯兰研究专业的博士学位。该大学由独裁者建立,用于拉拢宗教权势。

        除了伊斯兰教经文,“新巴格达迪”还有另外两个爱好:他擅长的足球和公共道德准则的执行。据说他脾气暴躁,可能是因为射门失败或看到不同信仰的夫妻在婚礼上跳舞。

        2003年美国入侵后不久,巴格达迪由于组织了一个不知名的抵抗性组织,于2004年2月在费卢杰被捕,被关进“布卡营”监狱。那里关押着2.4万名囚犯,被一位观察者称为“事实上的恐怖分子大学”,巴格达迪在狱友中很受欢迎。圣战分子们在布卡营交换思想,建立关系,并在拳击短裤的松紧带上写下彼此的联系方式。被释放后,他们会立即脱掉衣服,从短裤上剪下关键信息,并用其来重整和建立组织。

        巴格达迪迷惑了美国人,使自己提前获释,之后他几乎立即与扎卡维的部队取得了联系。作为一名宗教学者,他对伊拉克伊斯兰国来说很有价值。对于伊拉克伊斯兰国的石头砸死通奸者,窃贼截肢,屠杀什叶派和其他叛徒等残暴运动,他可以为其提供神学掩护。2007年,他不再做这些,前往巴格达参加博士论文答辩。

        2010年4月马斯里和阿布·奥马尔·巴格达迪的死亡,为布卡营的校友们空出了领导人的位置,而阿布·巴克尔·巴格达迪凭借其个人魅力、学术声誉、在布卡营的人脉以及所谓的古莱西血统位居榜首。[87]

        在接下来的几年里,美国在伊拉克的影响力不断减弱,巴格达迪得以在全国扩大影响力,其影响力甚至进入了叙利亚。2013年4月,他宣称拥有基地组织在叙利亚的统治权,这让此时由扎瓦希里控制的基地组织中心大吃一惊,扎瓦希里将伊拉克伊斯兰国踢出了组织。在叙利亚内战如火如荼之际,总统巴沙尔·阿萨德实际上站在伊拉克伊斯兰国一边,有选择地轰炸其对手,让伊拉克伊斯兰国几乎不受影响。

        到6月中旬,伊拉克伊斯兰国已经占领了伊拉克第三大城市摩苏尔。巴格达迪发现,自己现在掌控了一个辖域,这一辖域覆盖了叙利亚和伊拉克之间的边界,这一边界是由臭名昭著的1916年《赛克斯-皮科协定》划分的。[88]伊拉克伊斯兰国命运的转变震惊了西方联盟;就在6个月前,奥巴马总统告诉记者戴维·雷姆尼克,“如果业余队的队员穿上湖人队的队服,那么这并不意味着他们就是科比·布莱恩特”。尽管奥巴马特别提到了基地组织袭击美国领土的能力,但他的时机再糟糕不过了。[89]

        正如哈尔·林赛和朱海曼一样,对伊拉克伊斯兰国来说,“大拼图”几乎已经就位:世界处于道德和政治混乱之中,一个由先知后裔统治的无国界王国——哈里发政权,无疑就在眼前。唯一需要的是哈里发的神学基础。

        一位名叫图尔基·比纳利的圣战学者完成了这项任务。这位来自巴林的神学家如此令人敬畏,足以被看作迈格迪西的继承人。和他的老师一样,他频繁进出监狱。2014年初,当伊拉克伊斯兰国在叙利亚集结力量时,他到达叙利亚,见证了哈里发政权的诞生:“已经到达了一个有着史诗般战役和战争的地点——叙利亚,难道我们还会回去吗?……这里是伊斯兰,这里就是我的家;这里是我的住所,我属于这里。”[90]

        但他的导师迈格迪西肯定不相信哈里发政权即将到来。令迈格迪西懊恼的是,比纳利很快就写了一篇题为《伸出你的手,把拜伊尔交给巴格达迪》的文章。[91]

        2014年6月29日,斋月的第一天,巴格达迪宣布重建哈里发政权,他本人就是哈里发易卜拉欣。5天后,这位从未在公众集会上出现过的哈里发,登上了新占领的摩苏尔努里大清真寺的讲坛,戴黑色头巾,身穿黑色长袍,谦卑地接受了领导权,然后要求全世界穆斯林服从他的领导。除了经典的神职装束外,他还戴着一块高级圣战分子钟爱的、显眼而昂贵的手表,该手表除其他功能外,还每天5次提醒祈祷。[92]

        此后,伊拉克伊斯兰国领导层决定将组织简称为伊斯兰国。几周后,伊斯兰国宣传人员出版了第一期《达比克》,文章标题为《哈里发制度的回归》:哈里发重生。《达比克》最初只在暗网[93]上发布,2014—2016年,一共发布了15期,这些内容现在可以从互联网上免费获得。[94]

        到2015年底,约有3万名来自至少86个国家的外国战士前往伊拉克,加入了伊斯兰国,其中约1/6来自西方国家。[95]与奥萨马·本·拉登冗长、晦涩难懂的阿拉伯语公报形成鲜明对比的是,《达比克》初期的英语、法语和德语版本(目标为潜在的西方新兵,特别是那些对伊斯兰教末日论缺乏深刻理解的新兵)。

        其中充满了与西方之间的即将来临的末日大决战预言性典故,从最著名的末日圣训开始(见图15-2)。其中提到,“直到罗马人在阿马克或达比克登陆,末日才会确定”,并且耶稣将回归,在他面前,敌人“会像盐一样在水中融化”。对于那些仍然不理解预言含义的人,杂志提供了一个缩略版本:

        图15-2 伊斯兰末日地标

        根据圣训,在征服君士坦丁堡和罗马之前的战斗中,达比克及其周围地区会扮演重要角色。目前,达比克由十字军支持的萨赫瓦(逊尼派傀儡)控制,靠近其与哈里发之间的战争前线。[96]

        很快,伊斯兰国将通过占领象征性意义重大、战略上次要的达比克城来实现这一预言。按照伊斯兰国的说法,由来自全球各地的战士组成的伊斯兰国军队将重建哈里发政权,并恢复伊斯兰教在世界上的正确地位:“很快,在真主的允许下,穆斯林将以主人的身份自由行走,享有荣誉,受到尊敬,昂首挺胸,保有尊严。”[97]

        虽然英雄和反派的身份不同,但该杂志的摩尼教式世界观与林赛和莱希几乎相同:

        事实上,今天的世界被分为两大阵营和两条战壕:伊斯兰和信仰者的阵营,库夫尔(不信仰者)和伪善者的阵营。目前没有第三阵营。或者说,穆斯林和圣战者的阵营,犹太人、十字军及其盟友,以及库夫尔的其他国家和宗教阵营。其中第二个阵营由美国和俄罗斯领导,并被犹太人鼓动。[98]

        这个预言之后是逊尼派遭受到暴行和处决什叶派肇事者的残忍画面,前一种画面是为了引起支持者的同情,后一种画面是为了在反对者中制造恐惧。随后是人们对哈里发易卜拉欣的热情洋溢的描述。奇怪的是,杂志中还出现了美国国家安全委员会相貌出众的官员道格拉斯·奥利万特的照片,照片中他站在卡托研究所[99]的讲台后面,旁边还有他对伊斯兰国可怕能力的描述性文字。[100]该杂志随后列出了伊斯兰国通往胜利的五步路线图,从“迁移”(即移民到伊斯兰国领土)到“哈里发政权”。

        奇怪的是,马赫迪在大清真寺围攻事件中扮演了如此重要的角色,现在却基本上不被提及。原因并不确定;也许马赫迪的出现需要一个日期,因此很容易让人失望;也许他在1979年围攻中的灾难性结局使他贬值了。因此,伊斯兰国叙事更多地聚焦于先知耶稣[101]战胜达加尔。[102]

        “迁移”到伊斯兰国领土的西方人,通常不会说阿拉伯语,也没有受过军事训练,因此几乎没有什么用处。但有一种例外:那些有媒体经验的人。伊斯兰国制作的一段13分钟的视频中,有多名来自欧洲和澳大利亚的圣战分子赞美哈里发的辖地:“我们没有边界,我们参加了在叙利亚的战争,一段时间后我们将前往伊拉克,在那里战斗,然后回来。我们甚至将前往约旦和黎巴嫩,这都没问题。”另一段视频显示了一名伊斯兰国战士吹嘘攻击以色列,痛惜“我们在费卢杰的姐妹们”所生的畸形婴儿。还有一段视频则传达了一句妙语——放弃你在西方的“肥差事”,“问问自己,是什么阻止了你?是什么让你落后?是你的财富”[103]

        圣战主义媒体专家巧妙地使用了通往大脑边缘系统的捷径——音乐,就像莱尼·里芬斯塔尔的《意志的胜利》或者美国总统竞选广告中那样。由于虔诚的穆斯林回避乐器,因此伊斯兰曲调以催眠般的无伴奏合唱歌曲《纳希德》,来赞颂即将到来的哈里发政权,并规劝信徒殉道。

        《纳希德》在多起伊斯兰恐怖袭击中扮演了重要角色。例如,2013年,察尔纳耶夫兄弟制造了致命的波士顿马拉松爆炸案后,由于他们的苹果手机无法连接所劫持车辆的立体音箱,无法收听激进纳希德的声音,于是他们冒着风险开车返回丢弃的汽车里,取回他们的CD。安瓦尔·奥拉基对于圣战音乐的魅力印象特别深刻:“一个好的纳希德可以传播得如此之广,可以吸引那些你无法通过演讲或书籍接触到的听众。”[104]

        许多年轻人在西方过着与周围格格不入的、没有目标、似乎毫无意义的生活,他们被这场建立在有着1400年历史的末日叙事基础上的大冒险吸引。最近的圣战新兵中有高比例的欧洲新皈依者,这就是明证。[105]正如一名叙利亚逊尼派叛军对路透社记者所说的那样,“如果你认为所有这些圣战者都是从世界各地来攻打阿萨德的,那你就错了。他们都是按照先知的承诺来到这里的。这是先知承诺的战争,一场伟大的战争[106][107]

        正如心理学家蒂莫西·布罗克和梅拉妮·格林指出的那样,叙事越有力,就越能腐蚀人类的批判性思维。对已经厌倦了西方主导的世界、与西方生活格格不入的新兵来说,伊斯兰国的叙事足够强大,足以在种族大屠杀、强奸和奴役等方面为他们提供神学掩护。

        2014年8月,伊斯兰国占领伊拉克北部后,辛贾尔省的很多伊斯兰教雅兹迪派成员发现自己处于伊斯兰国的统治之下。2014年10月11日出版的第四期《达比克》不仅使迫害该教派合理化,还将此迫害美化为鼓励信徒参与种族驱动的大规模奴役、强奸和谋杀的手段。

        雅兹迪人相信安拉把世界托付给了7位天使,其中最重要的是他们特别尊敬的孔雀王。《达比克》中提到,这样的异端邪说使雅兹迪人成为多神教徒或异教徒:“他们的信条如此离经叛道,连基督教徒都认为他们是魔鬼的崇拜者和撒旦教徒。”《达比克》中提到,关于多神论者,《古兰经》中讲得很清楚:

        那么当禁月过去,无论你们在哪里发现多神教徒,都要杀掉他们,俘获他们,包围他们并在各处埋伏等待着他们。但是如果他们悔悟并立行礼拜和完纳天课(穆斯林缴纳的税款),你们就任他们自由。的确,安拉是宽恕的、仁慈的。

        与基督教徒和犹太人不同,伊斯兰教义认为“有经者”[108]可以通过上缴“人头税”(非穆斯林缴纳的税款)而受到保护。伊斯兰国将雅兹迪人视为异教徒。但伊斯兰国的神学家们争论雅兹迪人究竟一直是异教徒,还是最初是穆斯林,后来成为叛徒。这一区别至关重要,因为叛教的妇女必须得到与叛教男子相同的选择——皈依或死亡,而一直是异教徒的妇女可以被奴役。

        《达比克》中提到,伊斯兰国认定雅兹迪人一直是异教徒,因此他们的妇女应该做奴隶。但安拉是仁慈的,不允许他们的性奴与其孩子分离。更妙的是,根据一条圣训,当“奴隶女孩生下她的主人”,这就是末日的标志。对这句话的解释模棱两可,也许是指主人的孩子成了主人,或者奴隶数量的增加本身就是末日的标志,或者是指末日时男人会放弃婚姻、与妾相处。但无论如何,根据《达比克》的说法,带走非信徒的女性“是由伊斯兰教法所确立的,如果有人拒绝或嘲笑,那么他就相当于否认或嘲笑《古兰经》的经文和先知的叙述,背离伊斯兰教”[109]

        因此,伊斯兰国让雅兹迪人皈依;伊斯兰国的士兵经常在拒绝皈依者的家人面前割断他们的喉咙或砍掉他们的头。4/5的妇女和儿童被分配给伊斯兰国的士兵,其余1/5被送到基地,被关押的妇女经常遭受轮奸。许多雅兹迪人设法逃走了,但结果是被饿死。截至2017年,根据联合国估计,伊斯兰国组织已经杀害了3000名雅兹迪人,劫持了7000人。[110]

        从2014年中开始,伊斯兰国在全世界范围内直接或煽动制造了多场袭击。最引人注目的是,2015年11月13日,巴黎巴塔克兰音乐厅和其他地点的屠杀造成130人死亡,530人受伤;2016年7月14日,法国尼斯地区的国庆日卡车袭击事件造成84人死亡,458人受伤。据估计,截至2019年8月,伊斯兰国在叙利亚和伊拉克境外直接或煽动制造的袭击夺走了3800多人的生命。[111]

        2014年中,巴格达迪升级为哈里发易卜拉欣时,基本是伊斯兰国的巅峰时刻。当时的伊斯兰国有约800万人口、大量武器储备以及油田和炼油厂的收入。之后,它在伊拉克和叙利亚的胜利以及在世界范围内开展恐怖活动的能力,引起了西方的军事反应,再加上伊斯兰国的极端残暴以及伊拉克总理马利基被更具调和倾向的海德尔·阿巴迪[112]取代,伊斯兰国对逊尼派的影响有所减弱。从2016年10月起,越来越强大的伊拉克政府军队,在美国领导的空袭和库尔德武装的协助下,逐渐收复了摩苏尔地区,并在2017年1月下旬以灾难性的方式夺回了摩苏尔城市东段。可能有超过10000名平民和大约1000名联军部队成员在袭击中丧生;仅这一次行动中就有多达16000名伊斯兰国战士被杀,至此,伊斯兰国已经大不如从前了;2019年10月26日,美国特种部队在叙利亚西北部突袭,巴格达迪被逼入绝境,他引爆了一件爆炸背心,将自己和他的两个孩子炸死。[113]

        在与伊拉克伊斯兰国/伊斯兰国的整场冲突中,伊拉克政府军和以美国为首的外国军队可能杀害了多达6万名伊斯兰国战士。伊斯兰国在战场上的形势逆转,削弱了它在欧美地区策划和煽动恐怖袭击的能力,尽管它仍然能够在中东和亚洲地区发起一些骇人行动。《达比克》于2016年停止出版,到2018年初,它的宣传流量已经下降了约2/3。

        正如许多伊斯兰末日论的观察家预测的那样,早在2014年中,伊斯兰国就停止了继续扩张;它已经控制了伊拉克和叙利亚的逊尼派腹地,基本不打算进一步征服土耳其、库尔德人控制的领土以及什叶派地区。由于没有任何持续的征服,哈里发政权失去了正统性和征兵能力。[114]

        此外,伊斯兰国最初的胜利引起了伊拉克什叶派民兵组织的强烈抵制,特别是伊玛目穆克塔达·萨德尔领导的部队。2014年底,通常支持和平的伊拉克什叶派最高神职人员大阿亚图拉·阿里·西斯塔尼呼吁战斗人员“保卫国家和人民,保卫公民荣誉和圣地”,这引发了热情的新兵征募潮。这些什叶派民兵组织得到了由传奇指挥官卡西姆·索莱马尼领导的伊朗精英“圣城部队”的资金、人员和物资的大力支持(索莱马尼于2020年死于美国的无人机袭击)。在残酷的后续报复行动中,数千名无辜的逊尼派教徒被杀害。[115]

        由于不再获取更多的领土以及军事形势的迅速逆转,伊斯兰国的末日叙事前景及物质回报和异教徒性奴都在减少;到2016年中,那些没有被炸成废墟的训练营因缺少新兵而关闭。2017年10月17日,伊斯兰国设在叙利亚拉卡市的“首都”,落入由美国特种部队支持的叙利亚反政府军手中。2019年3月下旬,联军占领了最后一块被伊斯兰国占领的土地。[116]

        目前,伊斯兰国在中东地区仍然是一个重要角色,它在欧美地区的追随者仍然能够发动“孤狼袭击”[117],但那个曾经引导了胜利的、不断扩大的哈里发政权的末日叙事已经消失,伊斯兰国也不像以前那样能够吸引来自发达国家的数万名天真的年轻追随者。

        但是,只要整个社会中存在屈辱和失望,启示性末日论就能也必然将蓬勃发展。今天的伊斯兰世界就是这样,尤其是在它从西方那里收到了真实或想象中的失败的情况下。

        此外,基督教末日论在20世纪末的兴起表明,即使在成功、繁荣的社会中,末日类叙事也可以蓬勃发展,而所有三种亚伯拉罕信仰都可以为末日叙事提供肥沃的土壤。人类对引人入胜的故事的渴望(其中末日类故事最具诱惑力)加剧了另一种不幸的倾向,即我们的“群体内/群体外行为”倾向。相当一部分人总会持有一种极具诱惑性的观点,认为自己是被选中的少数人中的一员,将参与建立一个良性新秩序,而这一新秩序要求焚烧非信徒。这种幻想已经驱动了几个世纪的宗教性群体狂热,从明斯特的扬·博克尔松和他的追随者,到美国的威廉·米勒和杰瑞·法威尔,再到被吸引至伊斯兰国地狱的数万人。

        后记

        我们都是生存机器——作为运载工具的机器人,其程序是盲目编制的,为的是永久保存所谓基因这种禀性自私的分子。 ——理查德·道金斯[1]

        如果查尔斯·麦基能够穿越时空来到今天,那么1844年的大失望、20世纪20年代和20世纪90年代的股市泡沫,以及最近兴起的三种亚伯拉罕宗教的末日幻想都丝毫不会让他惊讶。同时,他会被达尔文关于人类进化的论述吸引(这一论述描述了1841年出版《非同寻常的大众幻想》之后的一代人),并思考如何将进化论用于所写的情节。同样,他也会被20世纪的心理学和社会心理学研究吸引。

        首先,也是最重要的一点,麦基会知道我们石器时代的祖先受本能的驱使,依靠相互合作、交流以及最重要的模仿,在缺乏食物,面对各种有毒浆果、毒蛇以及跑得更快、牙齿更大的食肉动物的环境中生存。

        从石器时代末期到现在,我们只是大概第300代人,仍然被这些古老的生存本能驱使。这300代人不仅没有足够长的时间进化出更多的分析性认知,而且在相对更人性化的工业或后工业世界中,这种心智能力的提高会给人类带来生存性优势是值得怀疑的。换句话说,人类可能注定要带着石器时代的思维,在太空时代的星球上蹒跚而行。

        事实上,我们的许多行为都有更古老的根源。我们的许多和蚯蚓相同的基因已经存在了数亿年之久,例如调节食欲的基因。[2]我们对富含能量的甜食和高脂肪食物的偏好可能起源于我们的脊椎动物祖先,这远在人类物种进化之前。但在一个充斥着廉价糖和脂类的现代世界,这一基因已经变得极度不适应。

        从《非同寻常的大众幻想》角度看,模仿可能是我们最重要的进化特征。除了我们先进的认知和语言能力外,模仿制造新工具的能力——北极的皮艇、北美大平原上猎杀野牛的工具和亚马孙盆地的喷枪——让我们能够在地球上的大多数地方生存。但可悲的是,我们也将模仿倾向运用于一些适应性不良、有时令人憎恶的行为。

        证明适应性不良现象的最著名的实验,可能是斯坦利·米尔格拉姆的“服从”实验和菲利普·津巴多的“斯坦福监狱”实验。在米尔格拉姆的实验中,“实验者”经常说服受试者(“教师”)对回答错误的“学生”进行“致命”电击。[3]同样,斯坦福监狱实验将受试者分为“囚犯”和“看守”。几天之内,两组人都模仿并内化了自己的角色,以至于两组人之间爆发了暴力冲突。[4]

        这两项实验都受到了严肃的批评,但道德和知识腐败的传染性问题基本上不是一个理论或实验问题,因为现实世界中的很多更好的例子能够说明异常性行为如何在显然正常、适应良好的人中传播。[5]例如,20世纪90年代的安然丑闻就表明了非理性和道德腐败的传染性。主人公肯尼斯·莱、杰弗里·斯基林和安德鲁·法斯托都不认为自己不道德;毕竟,周围的每个人都认为他们是很好的、非常聪明的人,且他们正给美国经济带来革命性的变化。此外,与心理学家所罗门·阿希的线条长度实验中实验对象受到同桌的误导一样,安然员工接受了周围同事和记者们几乎一致的意见,但这些意见是不正确的。

        也许最极端的道德失范传染的例子表现在强权社会中,比如波尔布特统治下的红色高棉,“文革”时期的中国,当然还有纳粹时期的德国。历史学家劳伦斯·里斯采访了那些在纳粹集中营里担任过警卫和管理人员的人,他发现,当他们的寿命已经所剩无几的时候,他们已经不像几十年前那样对自己曾经的工作闭口不言。里斯惊讶地发现,这些德国人的男女比例大概是1:1,并不是盲目服从命令的邪恶机器,而是外表正常、聪明的个体,他们都认为自己参与了一项有价值而又合乎道德的事业,即消灭世界上的犹太害虫。就像一家精英公司的初级管理人员一样,他们通过竞争和创新,以最高的效率完成可怕的任务。[6]

        即便如此,这些德国人的这种同行驱动的不人道行为还是有局限性的,尤其在机枪一次性射杀数千名犹太人时,即使在强硬的党卫军中,这种行为也会带来心理困扰。因此,索比堡、贝乌热茨、特雷布林卡和比克瑙(奥斯维辛集中营)等最“高效”的纳粹集中营,都依靠非德国俘虏来完成最肮脏的工作,且只需要相对较少的德国人员,例如,贝乌热茨集中营大约只有20个德国人员,却屠杀了60万人。[7]

        由此得出这样一个黑暗结论:如果我们的同行中有足够多的人认为种族灭绝是可取的,那么我们中的许多人(如果不是大多数的话)都会有这样的想法。如果你仍然认为德国例外主义是大屠杀的主要因素,那么你应该考虑英国官员在德占海峡群岛泽西岛和根西岛[8]上的行为,他们愿意配合德国人,将犹太人居民送到纳粹营地。用一位前纳粹官员的话说:“当今世界的问题是,从未受过考验的人总是对受过考验的人做出评价。”[9]或者,更简洁地说,我们永远不要低估人类模仿的倾向,尤其是平常那些有益的、帮助经济和整个社会顺利运转的群体幻想,可能会迅速变异为欺诈性或种族灭绝性的群体幻想。

        麦基也同意这样的观点,即人类是会讲故事的猿猴——麦基本人就是个叙事能手。当我们的远古祖先需要彼此交流才能生存时,他们并没有使用三段论、数字数据或数学公式来交流。他们交流的主要方式过去是、现在仍然是——叙述:“你从右边,我从左边,我们从两边刺杀这头乳齿象。”人类是叙事性动物,无论叙事多么具有误导性,如果它足够令人信服,那么至少在这些事实造成巨大痛苦或伤害之前,它几乎总是会战胜事实。就像中东的伊斯兰国军队和明斯特的再洗礼派一样,这些事实会毁灭信徒们自己。

        此外,我们听故事不仅因为我们喜欢故事本身,而且因为我们想知道故事的结局;任何故事都不如关于世界最终命运的故事更吸引我们,并让我们身临其境。越能让人们感到身临其境的叙事,越能腐蚀人们的分析能力;一个设计巧妙的末日叙事,可以说服男人们放弃所有的世俗财产,或者愉快地把他们的妻子和女儿都送到故事讲述者的床上。

        我们将塑造事实,使之符合我们先前存在的观点,而不是让后者符合前者;对于这一点,麦基是认同的。无论何时何地,我们都会成为确认偏见的牺牲品,坚持那些与我们的信仰最一致的事实,故意忽略那些与我们的信仰不一致的事实。

        从技术角度讲,如果我们真的理性,就应该按照“贝叶斯推理”这种分析方法来阐述我们对世界的看法。“贝叶斯推理”是由18世纪的英国哲学家托马斯·贝叶斯发明的,是一种面对新数据时会改变预测的数学规则。如果一个人不喜欢某个政客,他认为该政客有50%的概率发生犯罪行为,那么根据贝叶斯推理,当一个新的、强有力的开脱罪责的证据出现时,他应该把对该政客犯罪概率的估计下调到50%以下。

        但人们并不是这样做的;当我们对某个话题持有强烈观点时,我们会有意避开与观点相悖的数据;当这些数据和信息不能再被忽略时,这会引发幻想性信仰的改变,就像多萝西·马丁的飞碟教派那样。人类远非理性的“贝叶斯人”,实际上常常是“反贝叶斯人”,这一事实推动了幻想性信仰的传播。

        毫无疑问,麦基知道,一个引人入胜的叙事可以像传染性病原体那样,在一个特定的群体内以指数级增长的方式迅速传播,其速度和一个新冠肺炎病毒超级传播者传染大批接触者的速度一样。此外,正如阿希博士的实验所表明的那样,如果一个错误的信念足够普遍,它就会获得一个临界质量[10]

        当我们周围越来越多的人持有相同的幻想时,我们就更有可能相信这个幻想,所以我们周围的人也更有可能相信它,这是一个缺乏刹车系统的恶性循环。在存在幻想传染、又没有有效防御措施的情况下,失控的狂热越来越有动力,直到最终撞上现实的砖墙。

        最后,麦基一次又一次地描述了人类倾向于以摩尼教式思想看待生活——一场善与恶之间的赤裸裸的泾渭分明之战。如果达尔文的《物种起源》早一代出版的话,麦基就会理解,这是人类石器时代进化的又一个包袱。麦基会进一步意识到,人类近乎普遍的过度自信倾向既有利于我们的生存,也会让我们认为自己站在道德制高点上:这本书和麦基的书都会被宗教群体排斥,因为他们认为那些不认同他们世界观的人来自地狱(在极端的情况下,应该死)。

        伊斯兰国只是这场摩尼教式幻想展览会上的一辆最新花车;在一段时间里,伊斯兰国掌握着一种叙事,这种叙事使那些遭受贫困、战争和压迫的人信服和满足:受苦难者作为正义之士参与了这场正义和邪恶之战,安拉迟早会让他们战胜邪恶的压迫者,从而获得最终和永久的胜利。因此,这种21世纪伊斯兰教末日叙事与16世纪扬·博克尔松的叙事或20世纪哈尔·林赛的叙事几乎没有什么不同。(尽管林赛的后期对手——社会主义者、撒旦主义者和占星家,与哈布斯堡帝国或以色列和西方军队的实力相比确实是弱者。)

        这本书和麦基的书对幻想性金融狂热的描述,与末日描述只是在类别上不同而已。两种叙事都非常令人愉快:当选者都将免去生命的苦难,在末日描述中,是通过神奇的精神手段,而在金融描述中,是通过神奇的经济手段。在这两种情况下,确认偏见和人类模仿都扮演主角。

        金融幻想和宗教幻想的主要区别在于,前者在很大程度上缺乏摩尼教式元素,而后者的前沿和中心就是摩尼教式思想。此外还有其他区别。回想一下,泡沫的诊断性特征之一是对怀疑论者的强烈反应。在我写这段话的时候,围绕着加密货币(比特币就是其中的一个例子)的兴奋,似乎展现出了早期金融狂热的所有迹象和症状。也许最著名的比特币代言人是“杀毒软件之父”约翰·麦卡菲,他认为比特币的价格在3年内能达到50万美元,任何怀疑比特币价值的人,如果不是恶魔,那么至少是个白痴。[11](比特币在2017年底达到20000美元的价格后,到2020年中,其交易价格为11800美元。)

        麦基除了会被现代心理学和进化论关于群体幻想行为的见解吸引之外,也会从海曼·明斯基和查尔斯·金德尔伯格等经济学家针对金融狂热的最新研究中学到很多东西。这些研究清楚地表明,金融狂热事件总是与激动人心的新技术、放松的信贷、健忘症和放弃久经考验的金融分析方法等有关。同样,比特币等加密货币也很有启发性;虽然似乎很少有人通过直接投资这些工具而致富,但它们背后的所谓区块链技术很可能通过彻底改革银行业和政府金融而使整个社会受益。

        麦基是一个完美的故事讲述者,但由于他的时代缺乏关于人类行为、遗传学和自然选择学说的科学知识,他受到一定的阻碍。他对集体幻想的精彩描述虽然极具启发性,但也仅限于此。尽管麦基不知道这些科学知识(现在我们知道了),但他一定想过,人类注定要反复经历金融和宗教领域的这种摧残。

      9. 威廉·伯恩斯坦《群体的疯狂》1-7

        前言
        1 末日论的起源 约阿希姆的子民们
        2 滥用末日叙事的悲剧 信徒与无赖
        3 短暂的致富 密西西比泡沫与南海泡沫
        4 资本主义的英雄 英国铁路泡沫
        5 米勒运动的“大失望” 数秘主义与确认偏见
        6 弹性货币政策的灾难 泡沫与崩溃的四个前提
        7 致富空想的破灭 1929年大萧条
        8 天启之牛 时代论如何兴起
        9 圣殿山的争夺 末日叙事如何影响犹太人建国
        10 《启示录》的开创者 畅销书与美国核武政策
        11 时代论的灾难 大卫教派的悲剧
        12 “被提”类小说 末日文学为何畅销
        13 资本主义的慈善家 从环球电讯、安然公司到互联网泡沫
        14 数字时代暴富梦的推手 投资分析师、大众、媒体与政治家
        15 伊斯兰国的兴衰 马赫迪与哈里发
        后记

        前言

        近两个世纪之前,一位年轻的名叫查尔斯·麦基的苏格兰人,以令人难忘的方式同时攻击上帝和玛门[1]。他出生于1814年,是一名颇受欢迎的诗人、民谣作家,还担任过美国内战记者和英国报纸的编辑,在文学生涯中享有杰出的声誉。但后人对他最深刻的印象,是他在1841年撰写了《异常流行幻象与群众疯狂》(Memoirs of Extraordinary Popular Delusions)一书,当时他才27岁。该书讲述了多个历史性群体狂热事件,其中一些与宗教和货币有关。[2]从那以后,这本书为读者不断加印。

        麦基记录了公元1000年前笼罩在欧洲的末日幻想,以及十字军东征时期惊人的宗教疯狂。不过,这本书最著名的内容是17世纪30年代荷兰郁金香投机,以及1719—1720年巴黎和伦敦双股市泡沫中的群体性金融狂热。这些情节使这本书一直享有盛誉[3]。在它出版之后,接连发生的金融狂热的频繁性、规律性及其造成的全球性影响,使得即使在写成近两个世纪之后,这本书依然是金融专业人士的必读经典。[4]

        麦基并不是第一个认识到人类的非理性具有传染性的人。例如,希罗多德写过这样一段话:
        (大流士)担任波斯国王的时候,他召见了统治下的一些希腊人,问付给他们多少钱他们才愿意吃掉自己父亲的遗体。他们回答说,无论给多少钱都不可能做这种事情。然后,当着希腊人的面,大流士又把印度卡拉提亚人(他们愿意吃掉自己双亲的遗体)召来,借助翻译问,付给他们多少钱他们才愿意焚烧自己父母的遗体。这些印度人惊恐地大叫起来,不允许大流士提这么可怕的事情。这个故事显示出习俗的意义。在我看来,诗人品达说得对:习俗乃是“万事之主”。[5]

        希腊人毕竟是古代的智者,大流士一定忍不住想要教育他们。他想传递给希腊人未言明的信息:你们也许是人类中最博学的人,但你们和我们一样具有非理性;你们只是更善于进行合理化解释而已,善于解释尽管有各种反面证据,但你们依然是对的。

        虽然古人和麦基非常熟悉人类的非理性和流行性狂热,但无法得知其中精确的生物学、进化论和社会心理原因。例如,麦基一定问过自己,为什么一群人会时不时地去追逐某种价格高得离谱的投资?

        今天,我们对此有了更好的理解。首先,金融经济学家发现,人类会本能地追求回报非常高但是发生概率非常小的结果。比如彩票,平均来说是赔钱的,但用巨额财富幻觉吸引了买家。此外,在过去几十年里,神经系统科学家已经揭示了贪婪和恐惧背后基本的解剖学和心理学机制——“大脑边缘系统”,其位于大脑左右半球中间的垂直面附近,具有对称分布的结构,包括一对伏隔核(大约位于每只眼睛的后面)和一对杏仁核(位于太阳穴下方)。

        研究人员使用功能性磁共振成像技术后发现,伏隔核不仅会因奖励而被激发,而且会因为对奖励的预期而被激发得更加强烈,无论这种预期是关于烹饪、性、社交还是金融;相反,杏仁核会因厌恶、恐惧和退缩而被激发。例如,如果你喜欢芙洛阿姨的烤宽面条,那么在你去往她家的路上,你的一对伏隔核及两核之间的连接会更快地被激发,并且很可能在你闻到菜肴香味时达到激发率的顶峰。但是,一旦你品尝到第一口,伏隔核的激发率就会下降,如果芙洛阿姨在你到达时告诉你她刚刚烤煳了这道菜,你的伏隔核就不再被激发。[6]

        这种活跃的预期传导有很明显的好处:大自然偏爱那些怀有预期并为之努力奋斗的人,而预期一旦被满足,就几乎没什么进化优势了。周围的人毫不费力地变得富有,这会大大刺激我们的伏隔核,正如经济历史学家查尔斯·金德尔伯格观察到的那样,“没有什么比看到朋友发财更干扰一个人的幸福感和判断力的了”[7]

        几个世纪以来,小说家和历史学家都知道,人类并没有运用强大的智力冷静分析世界,而是对事实进行合理化,使其符合情感上的预期。记者戴维·哈伯斯塔姆的权威著作《出类拔萃之辈》[8],使用反讽方式说明了美国“最杰出”的决策者如何在军事介入越南事件中自欺欺人,对事实进行合理化的倾向明显;而我们最近在国外的军事行动也表明我们还没有吸取教训。[9]

        在过去几十年里,心理学家积累了很多实验数据,分析人类对“合理化”胜于“合理性”的偏好。当面对的事实和数据与我们根深蒂固的信仰相矛盾的时候,我们通常不会重新考虑并适当改变这些信仰,而往往会回避这些事实和数据。而当无法回避时,我们有时会更加强硬地继续进行错误评估。令人惊讶的是,我们甚至可能会教化、改变、使其归附或说服对方。简言之,人类的“理性”构成了一个脆弱的盖子,在麦基所说明的自欺欺人的沸腾的大锅上危险地保持平衡。

        麦基本人的行为表明,即使是最理性、信息最灵通的人也容易受到金融狂热的影响。1841年,他出版《非同寻常的大众幻想》一书后不久,英国经历了一场金融狂热,其围绕当时伟大的高科技产业——铁路,甚至比1719—1720年席卷巴黎和伦敦的双股市泡沫还要严重。投资者们贪婪地购买铁路股票,为英格兰的铁路里程从1843年的2000英里[10]增加到1848年的5000英里提供了资金支持;股市最终崩盘时,还有数千英里的铁路已在计划中但从未建成。如果说应该有人预见到这次崩盘,这个人就是麦基。

        但狂热事件发生时,麦基正担任《格拉斯哥的阿格斯》报纸的编辑,他报道了正在进行的铁路建设,却明显缺乏怀疑态度。1852年,他出版了《非同寻常的大众幻想》第二版,对此只做了一个简短的脚注。

        金融狂热可以被看作一场像《哈姆雷特》或《麦克白》一样的悲剧,有着界定清晰的人物、熟悉的叙事和精心排练的台词。四个戏剧人物控制了故事的叙述:有才华但不择手段的项目发起人,轻信并购买股票的公众,大肆渲染的媒体,以及把手伸进钱柜并无视腐败之火的政客。

        发起人走上了一条经典的莎士比亚悲剧式道路,成为最引人入胜的演员。他们大多数一开始都是才华横溢、努力工作而又有远见卓识的人,凭直觉比别人更早地知道某项新技术将给社会带来财富。在实现愿景的过程中,他们变得富有和强大,在一个以财富判断人的资本社会中,他们成为国家的雄狮。当投机活动走到尽头、泡沫破裂时,他们最终落得不光彩和破产的下场,但通常(并不总是)能够侥幸逃脱牢狱之灾。

        事实证明,公众很容易被那些英雄般的、魅力四射的发起人用花言巧语说服。要想胜任投资工作,必须具备一系列能力,包括数学能力、技术专长以及最关键的经济历史类应用知识。唉,比起数据和事实,人们更喜欢故事;当面对复杂的投资任务时,人类默认进入叙事模式,也许最令人愉快的就是那些通过购买新技术不费吹灰之力获得财富的故事。

        媒体和公众一样成为发起人的受害人。写杰出商人的改革性经营事迹,能非常轻易地损害新闻界的名誉。这些发起人以惊人的频率出现在各大杂志封面上,先是被称作英雄,后来又成为被控重罪者。

        最后,金融狂热席卷了相关政客,他们的声誉和人气曾经因过度投机带来的经济短暂繁荣而得到提升,但最后经常因为把手伸进钱柜而被抓。

        各种金融狂热故事的情节变化不大。大多数投机性事件包含两个因素:预示共同富裕的激动人心的新技术,以及宽松的信贷。在今天的美国,只有大约10%的货币供应由实际流通的纸币和硬币组成;其余部分以信贷形式存在。银行系统可以在一定程度内随意创造信贷,信贷的规模取决于银行、抵押贷款公司和其他贷款人对得到偿还的乐观程度。这个过程是如此违反常理和令人震惊,因此值得我们重复这个概念:银行印钞。事实上,银行与其所服务的公众一样容易狂躁或抑郁,当沉浸在泡沫里极度兴奋时,它们放纵的“赚钱”行为通常更能煽动起投机之火,这在2007—2009年金融危机爆发前最为显著。

        泡沫伴随着四个特征。首先,最重要的是,金融投机开始主导除了最普通的社会互动之外的一切;无论何时何地,人们见面时谈论的不是天气、家庭或运动,而是股票或房地产。其次,原本在其他领域很理智的专业人士,却放弃了可靠、高薪的工作,去参与上述资产的投机。再次,对投机持怀疑态度的人往往会遭到激烈的反对;虽然总有一些年纪够大、记忆够长、以前看过这出戏的人知道它的结局,但他们的警告遭到了鄙视和嘲笑,并在过去几十年里通常被冠以五个字:“你就是不懂”。最后,平时稳重的观察家们也开始做出荒诞的金融预测,他们预计资产价格一年内的上涨幅度,不仅仅是10%、20%或30%,而是一倍、两倍或末尾增加一个零。

        除了关于金融狂热的前三章之外,《非同寻常的大众幻想》还包含三章篇幅较长的关于宗教狂热的内容:分别讲述《圣经》预言、十字军东征和猎杀女巫。虽然宗教狂热和金融狂热看上去没有什么共同点,但它们发生的潜在力量是相同的:希望改善自己今生或来世的福祉。而放大金融和宗教群体幻想传染性的因素也很相似:人类固有的模仿、编造和接受引人入胜的叙事以及追求地位的倾向。

        宗教狂热似乎是人类历史不变的特征,最近的一个例子就是太阳圣殿悲剧。1994年10月4日晚,瑞士切伊里村的居民被镇上一座农舍冒出的火焰吓了一跳,消防队员在那里看到了一幅奇异、可怕的景象:22具尸体,其多数身穿红色、黑色或白色斗篷,还有几个妇女穿着金色斗篷。除了其中3名受害者以外,其他人都是被枪杀的。此外,还有10名受害者头上蒙着塑料袋。被发现时,大多数人躺成一个圈,头朝外;弹壳和空香槟酒瓶散落在地板上。

        这仅仅是开始;接下来的两年半时间里,瑞士和加拿大又发现了74名被谋杀或自杀的受害者,其全部为教派成员或者他们的孩子;所有的死亡事件都发生在春分或秋分、夏至或冬至的前后几天内。

        该教派由两个男子领导:一个叫吕克·茹雷,他是神秘、英俊、有吸引力的46岁比利时医生,1993年受到共谋和武器指控,但从加拿大逃脱;还有一个叫约瑟夫·迪·马布罗,是70岁的法裔加拿大人。最终的受害者里包括法国滑雪名将让·维亚尔内的妻子和儿子。维亚尔内是1960年奥运会滑雪金牌获得者,后来他将自己的名字授权给一家国际太阳镜制造商,此后他的名字成为一个著名的商标。在维亚尔内去世之前,小维亚尔内曾经告诉记者:“从生到死这段路程的主题一次又一次地被提到。茹雷解释说没什么可怕的——但恰恰相反,我开始觉得自己快要殉道了。”[11]

        1997年3月24日,最后一批圣殿教受害者被发现;两天后,在美国圣迭戈附近的兰乔圣菲小镇,警察发现了另一个末日组织——天堂之门的39名成员的尸体,他们也死在那个春分前后。他们相信自己死后将被隐藏在海尔-波普彗星尾部的宇宙飞船里运出地球。[12]

        太阳圣殿和天堂之门只是一系列著名末日组织中的两个例子:1978年,吉姆·琼斯领导的人民圣殿教在圭亚那的集体自杀及谋杀事件夺走了918条人命;1993年,大卫支教在得克萨斯州韦科镇与愚蠢的联邦当局对峙,导致86名教徒被杀;残忍的日本奥姆真理教制造了1995年东京地铁神经麻痹毒气袭击。令人震惊的是,这些组织中的许多成员,如茹雷和维亚尔内,都是受过高等教育、有一定成就的人。

        末日论的群体幻想不是现代世界特有的;中世纪的欧洲就有大量精彩故事——如果我们对它们印象不深刻的话,就可以称之为插曲。现代神经心理学研究揭示了为什么一群神志正常、聪明、能很好适应社会的人,会自欺欺人地认为世界将以一种特定的方式终结,而且往往在某个特定的日期终结。人类是通过叙事来理解世界的:无论我们如何吹捧自己的个人理性,一个好的故事,即使分析起来很有欠缺,也会萦绕在我们的脑海中,使我们在情感上产生共鸣,并且比最具决定权的事实或数据更有说服力。

        最近,心理学家开始意识到,这些引人入胜的叙事是多么有效地腐蚀了我们的分析能力。也许所有故事中最引人入胜的就是末日论的叙事;如果认识到自己存在于叙事中,那么我们都想知道叙事的结局。末日论故事深嵌于世界上的许多宗教中,尤其是亚伯拉罕诸教[13],它如此普遍以至于几乎不被看见,但它潜伏在每天的头条新闻和推特背后,它如此古老以至于至少可以追溯到人类文明的起源。

        想要了解“故事的剩余部分”的渴望深深地侵蚀着我们的意识。此外,末日论故事还有另一种不可抗拒的吸引力:它承诺将使人类摆脱一个被托马斯·霍布斯称为“孤独、贫穷、肮脏、野蛮、短见”,充斥着以牺牲正义为代价而偏袒富人和权贵的腐败的人类存在。很少有故事能像承诺救世主的回归那样让人感到欣慰。救世主会扭转局面,拨乱反正。这种对人类新开端的渴望深深地内嵌在《圣经》中,尤其是《以西结书》、《但以理书》和《启示录》。这些书为几次血腥的末日运动提供了蓝图。

        演化心理学的新兴领域为解释群体狂热的传播提供了令人信服的机制。冰河时期末期,第一批部落从西伯利亚进入北美,之后的大约一万年时间里,人类的足迹从亚北极地区到北美大平原,再到热带亚马孙河流域。人类在如此多变的环境中需要掌握生存所需的各项专门技能,生物本来不可能进化得这么快:比如,要进化出一种会在亚北极海岸制造皮艇的基因天赋,还要进化出在北美大平原上猎杀水牛的天赋,然后是进化出在亚马孙地区制造毒气喷枪的天赋,这些进化需要很长时间。(据估计,北欧成年人的乳糖耐受性和吐蕃人的高海拔耐受性的进化用了3000~10000年,这是已知人类适应性进化最快的时间。)[14]

        但人类做到了。在进化过程中,人类并没有将制造皮艇、猎杀水牛或制造毒气喷枪的独特能力硬连接到基因中,而是编码了一项通用技能——模仿能力。例如,当有足够多的人和足够多的试错时,最终会有人想出如何建造一艘可使用的皮艇,而其他人可以准确地模仿这一过程。[15]

        人类比其他物种更喜欢模仿;一旦有人有所创新,其他人很快就会采纳。然而,我们的模仿倾向也增强了适应不良性行为,其中最主要是幻想性信仰。诚然,在现代后工业社会中,模仿能力确实促进了经济发展,但它对人类生存的促进作用远不及前现代时期在亚北极、大平原或亚马孙流域所起的作用。因此,在现代世界,适应性行为和适应不良性行为之间的权衡使得模仿能力对于人类已不如过去那么有利,我们现在陷入晚更新世时期的模仿倾向中,这一倾向在现代时期的成本越来越高,其中最昂贵和最危险的代价就是对世界末日即将到来这一信仰的传播。

        人类不仅对叙事的反应比对事实和数据的反应更加强烈,而且初步研究表明,越引人入胜的故事越能侵蚀人们的批判性思维能力。[16]此外,研究还表明,叙事的提供者和消费者之间是存在内在利益冲突的:前者希望使消费者信服,并设计出最引人入胜的叙事,而后者如果是理性的,就应有意避开这些叙事,并仅仅依赖数据、事实以及分析的方法。

        人类偏好于引人入胜的叙事,与之密切相关的是,人类还具有自欺欺人的倾向。人类本来很善于发现他人撒谎的真相,但是人类用欺骗自己的能力消除了这些真相,这使人类成为更好的骗子。[17]纵观历史,在各种宗教性群体幻想的主角中,作为局外人的骗子相对较少,更多的是一些被自己的幻想欺骗的受害者。

        大约从150年前开始,基督教新教发展出一种信仰,其专业名称为“时代论前千禧年论”(简称“时代论”),其现代倡导者将其打磨成世界上最引人入胜的末日叙事。尽管其确切的内容因不同的神学风格而异,但基本叙事都是预测犹太人将返回以色列、重建耶路撒冷圣殿,并在那里恢复祭祀。然后,罗马帝国以十国联盟的形式重新组合起来,由一个有魅力、才华横溢、英俊潇洒的人领导,这个人是反基督者,是魔鬼在人间的化身,他与犹太人结成了一个七年联盟,但三年半后,这个反基督者背叛了犹太人,从而促成了外国军人对以色列的入侵。入侵者不仅包括俄国人,还包括穿越喜马拉雅山到达那里的2亿中国人。

        一场灾难性的核战争接踵而至:大决战和其他恐怖事件,统称为大灾难。七年大灾难的最后,耶稣复临,击败反基督者,建立千禧年国家。在这个过程中,数十亿人死亡。信仰耶稣的基督教徒被顺利地从大决战和大灾难中提到天堂——这就是“被提”。犹太人的结局差一些:1/3的犹太人改信了基督教,并规劝其他人也改信,从而在大灾难中幸存下来。另外2/3的犹太人就倒霉了。

        不了解上述时代论叙事,就无法充分理解当前美国社会的两极分化现状。大多数受过良好教育、非宗教取向的公民都认为这是极其怪诞的,但是,对相当一部分美国人来说,这一系列的预言事件就像《罗密欧与朱丽叶》或《教父》一样耳熟能详,像杰瑞·法威尔、金·贝克和吉米·斯瓦加特这样的电视福音布道者,他们对公众的吸引力也完全依赖于他们的时代论资质。

        几个原因决定了对时代论叙事的普遍关注。以色列,尤其是重建圣殿在这一信仰体系中的中心地位,深刻地影响了美国的中东政策。美国对以色列扩大在约旦河西岸定居点的不加批判的支持和对巴以“两国方案”的明显放弃[18],可以直接追溯到福音派,也就是所谓的基督教犹太复国主义者的鼓吹,他们现在的影响力远远超过犹太复国主义[19]者。事实上,2018年5月美国驻耶路撒冷新大使馆落成典礼的开幕式和闭幕式是由两位时代论牧师主持的。其中一位是罗伯特·杰夫里斯,曾经声称希特勒帮助过犹太人返回以色列;另一位是约翰·哈吉,他认为卡特里娜飓风是上帝对新奥尔良罪恶[20]的惩罚。[21]

        在核时代,即使是轻微的“世界末日不可避免”的宿命论也是危险的。2010年美国皮尤基金会的一项民意调查发现,超过1/3的美国人相信耶稣会在他们的有生之年回来,而且大多数人相信“被提”。[22]其中一个有此信仰的美国人就是罗纳德·里根[23]。他可以和杰瑞·法威尔这样的人畅所欲言地谈论时代论神学。福音派占据美国军队的近1/4,其中大部分是时代论者;他们的影响在空军学院尤为突出,所服务的部门控制了美国的大部分核武器。[24]1964年,丹尼尔·埃尔斯伯格和他的兰德公司老板审查完美国的核指挥系统后,放映了电影《奇爱博士》,并评论说这部电影很可能成为一部纪实节目。影片中,一位患精神病的美国空军基地指挥官奇爱博士关注于饮用水的氟化[25]——即使到今天仍然有部分时代论者被饮用水氟化问题困扰——影片中这位指挥官触发了第三次世界大战。[26]

        历史上,基督教徒一直给犹太人贴上反基督的标签,这一概念本身就容易引起暴动。即使在今天,对一些极端福音派教徒来说,把这个标签贴在某人或任何团体身上,都可以为他们的谋杀辩护。

        最后,单是时代论这一信仰就能够而且确实已经引发大规模死亡。1993年,在得克萨斯州的韦科镇,痴迷于《启示录》的大卫·考雷什[27]领导的大卫支教与不理解其信仰体系的联邦官员发生了冲突。

        启示性末日论的起源在《新约》和《旧约》中都有,并且可能更早地起源于肥沃新月地带的多神教,因此,以色列犹太人中的极端主义者和伊斯兰教国家的末日剧本,都与基督教时代论者的末日剧本有很多的相似之处,这不足为奇。它们的不同之处在于谁扮演英雄,谁扮演反派人物。今天的穆斯林末日论者几乎一致认为犹太人是反基督者,而“伊斯兰国”之所以能够从世界各地招募新兵到叙利亚和伊拉克这片杀戮之地,很大程度上依赖于从圣训中直接引用的末日论叙事。

        要想理解金融泡沫和暴力性的末日疯狂等社会潮流是如何产生和传播的,可以先理解它们在什么情况下不会发生,这同样具有指导意义。我们对群体决策智慧的现代理解开始于1906年秋天,当时的先驱博学家弗朗西斯·高尔顿(他是查尔斯·达尔文的表弟)参加了在普利茅斯举行的一年一度的英格兰西部肥畜和家禽展览。在那里,他进行了一次群体理性实验。大约800名参赛者以每个人6便士[28]的价格购买一张“公牛体重竞猜”的票,对公牛净重(即屠宰后去掉头和内脏)猜得最准的人将获得奖品。令人惊讶的是,所有猜测值的中位数为1207磅[29],与实际体重1198磅相差不到1%。所有猜测值的平均数为1197磅,几乎准确,尽管高尔顿在他发表在《自然》(Nature)上的第一篇文章中没有提到平均值这个数字,因为他认为中位数,也就是(按顺序排列后)所有数据中居于中间位置的数,在理论上比平均数更具有吸引力。[30]

        高尔顿关于集体决策准确性的结论已经被反复证实。[31]最近,《纽约客》专栏作家詹姆斯·索罗维基在他的畅销书《群体的智慧》中总结了这一概念,他在书中提出,有效的群体智慧有三个要求:个体分析的独立性,个体经验和技能的多样性,以及收集个体意见的有效方式。[32]

        那么,就我们的目的而言,什么才是“群体”——是弗朗西斯·高尔顿和詹姆斯·索罗维基提到的那些理性的人,还是吕克·茹雷、约瑟夫·迪·马布罗和大卫·考雷什这些不理性的人?

        妄想性群体与智者群体之间的区别在于其成员之间的互动程度。高尔顿的约800名参赛者中的所有人,甚至大部分人,是否真的聚集成一个集体,这是值得怀疑的。他的实验有一个关键的、通常被忽略的细节,那就是它涉及牛的净重。在牛被屠宰前,没有人知道结果,参赛者必须在参赛卡上填写自己的地址,这样获胜者才能接到通知,且参赛者为了让自己的预测结果不对外泄露,在填写卡片之前并没有聚集在一起。

        几年前,金融专家乔尔·格林布拉特对高尔顿实验进行了巧妙的改变,他向哈勒姆地区的一个小学生班级展示了一个装有1776颗果冻糖豆的罐子。和之前的实验一样,学生们独立提交的索引卡上所显示的平均估计值非常准确:1771颗果冻糖豆。然后格林布拉特让每个学生当众说出他们的估计值[33],这破坏了他们总体判断的准确性——新的“开放式”估计结果平均只有850颗果冻糖豆。[34]

        因此,一组人的互动越多,其行为就越像一个真正的群体的行为,评估结果就越不准确。有时候,群体互动变得如此紧密、频繁,就产生了疯狂。用弗里德里希·尼采最简洁的话说,“在个体中,疯狂是罕见的;但在群体、政党、民族以及时代中,疯狂是司空见惯的”[35]。麦基也意识到了这一点;也许他的《非同寻常的大众幻想》中最有名的那一句话就是,“据说,人以群体为单位思考;我们可以看到,他们成群结队地发疯,但非常缓慢地逐个恢复意识”[36]

        因此,实现一组人整体判断的准确性,要求参与者不能像群体那样行动。此外,正如索罗维基所指出的,这还要求这组人中个体的多样性:一组人对于某项估计的观点越多,该估计就越准确。

        观点的多样性也有利于个体;正如弗朗西斯·斯科特·菲茨杰拉德所言:“检验一流智力的标准,就是在头脑中同时存在两种相反的想法但仍保持行动能力。”[37]在过去30年中,心理学家菲利普·泰洛克检验了数百位著名专家预测的准确性;他发现,那些综合考虑各种往往相互矛盾的观点的人比那些从单一理论视角看待世界的人表现得更好。[38]简单一句话:无论是在政治、宗教还是金融领域,都要提防空想家和真信徒。

        索罗维基的书描述了群体决策是如何成功的,而我的书将描述群体决策是如何失败的,以及群体决策失败时会发生什么。在最极端的情况下,不仅群体会疯狂,而且正如20世纪发生的几次事件那样,整个国家都会疯狂。

        麦基做得并不完美,他的很多编写内容甚至都不是原创的;他可能从当时四年前出版的一本理查德·达文波特的书《了解假冒、欺骗和轻信》(Sketches of Imposture,Deception,and Credulity)中获得了灵感甚至摘录了部分内容。达文波特的书涵盖了许多相同领域的内容,但没有那么多细节。[39]另外,麦基对郁金香事件进行了耸人听闻的描述,并将“郁金香狂热”这个术语引入现代词典,也为现代评论家们所不屑,他们认为麦基描述的并不是一个全社会范围的现象。[40]

        此外,麦基的章节、主题和时间顺序是混乱的;关于群体行为的章节(如金融泡沫、十字军东征)中穿插着关于时尚(头发长度、胡须和决斗)、健康和科学困境(磁化、炼金术)的章节。[41]

        也就是说,麦基意识到了,我们的社会特性会如此频繁地干扰我们的理性。在这一事实面前,麦基(以及那个时代的任何其他观察者)的错误、混乱和可能缺乏独创性的问题,都可以忽略。

        我第一次阅读《非同寻常的大众幻想》是在25年前,尽管前三章所描述的金融狂热吸引了我,但我当时认为这种狂热与20世纪90年代初期表现相对良好的资本市场是没有关联的。我错了。让我惊讶的是,在接下来的几年里,随着互联网泡沫的发展,麦基描述的金融狂热景象在现实生活中出现。

        20年后,伊斯兰国及其前身格外擅长向世界各地的信徒传教,其吸引了数千人从安全、繁荣的西方国家到伊拉克和叙利亚的杀戮战场。在很大程度上,其这样做相当于兜售了一种末日叙事,这种叙事与大量基督教徒所信仰的末日叙事非常相似。麦基对这一主题也进行了一些详细的论述。

        对深受《非同寻常的大众幻想》这本书影响的人来说,伊斯兰国的崛起敲响了响亮而清晰的警钟。如果说宗教狂热的现代表现是存在的,那么这就是随着神经科学最近取得的快速发展,审视从中世纪至今的群体幻想的时机已经成熟。

        在本书中,我忽略了几个麦基详细阐述的事件,例如时尚和健康狂热;而且,我并不直接报道政治事件。可能一些读者有疑问,在当今紧张的、两极分化的政治氛围中,我为什么选择这么做。我将这本书局限在金融和宗教群体狂热这两个领域,是为了使本书的主要内容保持在可控篇幅之内,也是因为我个人对金融和宗教群体狂热的共鸣。但是,读者会发现,这本书接下来所描述的事件及其心理学基础,可以与所有种类的狂热相联系,尤其是与20世纪的极权主义和21世纪的病毒阴谋论相联系,这不会有太大困难。

        很显然,21世纪最重要的地缘政治事件是2001年9月11日世贸双子塔和五角大楼的遇袭,这场灾难增强了一种已经确立的现代伊斯兰教末日主义,后者被西方政治和文化的主导地位以及1979年苏联入侵阿富汗重新唤醒。可以说,20世纪美国文化和政治生活中最重要的转变是基督新教福音主义的兴起,这给美国的中东政策以及战略武器的指挥和控制带来了巨大的风险。伊斯兰原教旨主义和基督新教福音主义的兴起,都可以很容易地通过以往的宗教狂热来理解。

        更笼统地说,本书将提供一个心理学框架,用来解释为什么人类有时候会出现各种类型的群体性疯狂。显然,人类是一种会模仿、会讲故事、会寻求地位、会道德性谴责他人、会怀念过去美好时光的猿类,所有这些都意味着,人类的未来必将充满宗教和金融群体狂热。

        任何一个写群体幻想的作者都很快会遇到一个非常不方便的社会学事实。就像大流士故事中的希腊人和印度卡拉提亚人一样,我们每个人都是社会规范的产物,有时,一个社会的圣礼是另一个社会的亵渎。例如,世界上有许多神学(如果不是大多数的话)倾向于将他人的信仰体系视为异端,这甚至会发生在密切相关的教派中,也就是弗洛伊德著名的“微小差异的自恋”[42]。正如那个古老的笑话,几百人共有的幻想被称为“邪教”,而数百万人共有的幻想被称为“宗教”。

        相当一部分美国人相信《启示录》的字面真理:世界将很快遭受一场末日大灾难。非原教旨主义基督徒和非基督徒可能会认为,末日叙事只是一种幻想,这种群体性幻想对信徒或世界上的其他人极少产生强烈危害。但是事实恰恰相反,所有成功的群体都在一定程度上依赖于共有的幻想。无论美国社会存在什么缺陷,我们最大的力量在于我们信仰法治和法律面前的平等;同样,我们的经济运行良好,是因为几乎所有人都相信,纸币和更为缥缈的电子交易货币代表着真实的资产和债务。但归根结底,这些有益的共同信仰只不过是全社会的骗局:只有在大多数人都相信的情况下,它们才是正确的——这就是所谓的“仙子效应”[43]。因此,我选择将注意力集中在那些变坏的群体幻想上,如果你愿意的话,那么也可以将其理解为“极其有害的大众幻想和群体疯狂”。

        本书的讲述基本按照年代顺序,从麦基没有提到过的中世纪末日狂热事件开始,到近期末日狂热最壮观的例子——中东伊斯兰国的崛起。在这两者之间,我按照发生顺序向读者介绍过去这段时间里所发生的各种金融和宗教狂热事件,以及相关的神经科学发展历程。

        我们首先从人类群体幻想的黑暗中心——中世纪的欧洲开始。在那里,一位名不见经传的西多会[44]修道士受《圣经》启示类书卷的启发,发展了一种神学,引发了一系列可怕的新教末日叛乱。

        1 末日论的起源

        约阿希姆的子民们

        老虎去打猎了,
        鸟儿开始飞翔;
        男人坐下来想,“为什么,为什么,为什么?”
        老虎睡着了,
        鸟儿降落了;
        男人不得不告诉自己他明白。
        ——库尔特·冯内古特[1]

        12世纪末,欧洲的国王和王后们踏上了艰苦的旅程,来到遥远的卡拉布里亚山上的一座修道院,沐浴在一位几乎被遗忘的西多会修道院院长——菲奥雷的约阿希姆[2]的传奇智慧中。在1190—1191年第三次十字军东征途中,狮心王理查[3]也经过这里,寻找自己的未来景象。[4]

        这位沉默寡言而又有智慧的修道院院长喜欢数字和历史类比,他将人类历史分为三个时代,并预言一个即将到来的黄金时代。这正是欧洲统治者被吸引到修道院的原因。不幸的是,约阿希姆无意中点燃了预言的导火索。他的未来景象对饱受蹂躏的穷人来说是一种雄辩的诉说,在他们心中激起了革命。在接下来的几个世纪里,他最初的和平模式演变成一种血腥的末日神学,席卷欧洲大片土地。

        要想理解这是如何发生的,需要援引《圣经》的三大末日叙事:《旧约》中的《以西结书》和《但以理书》,以及《新约》的最后一本书《启示录》。虽然这三本书对现代非宗教读者来说可能显得晦涩难懂,但它们有助于解释基督教福音派教徒与其他美国人之间的文化分化,这种分化在过去几个选举周期中变得非常明显。基督教福音派教徒对这三本书的内容像对美国独立战争故事和内战故事一样熟悉,但其他美国人并不太了解这些书。此外,即使是福音派教徒也常常不知道这三本书中故事背后的古代近东[5]历史,特别是埃及人、非利士人、亚述人、巴比伦人、波斯人,以及以色列王国和犹大王国这两个犹太王国之间的复杂关系。

        《以西结书》、《但以理书》和《启示录》为一系列宗教群体的末日幻想提供了背景,这些幻想在许多方面与瑞士切伊里村的悲剧相似。幻想是亚伯拉罕宗教[6]自诞生以来一直具有的特征,最突出的体现包括16世纪的德国明斯特镇,19世纪中期的美国米勒运动,以及随着现代以色列国家的建立、对即将到来的末日进行的各种反复和广泛的预测。

        宗教狂热往往发生在最糟糕的年代。在这样的年代,人类希望摆脱困境,回到美好的旧时代,回到一个神话般和平、和谐和繁荣的时代。现存最早的希腊诗歌之一,约公元前700年赫西俄德[7]的《工作与时日》很好地表达了这一点。当时的希腊极度贫困,作者在雅典西北部维奥蒂亚的一个农场艰难度日,他把这个农场描述为“冬天不好,夏天闷热,任何时候都不好”[8]。赫西俄德想象着,这些事情在过去的年代里肯定会好一些。在他所讲述的神话中,首先出现的是奥林匹斯山上的众神,他们创造了一个“人类的黄金种族”,这个种族:

        像诸神一样生活,没有内心的悲痛,没有劳累和忧愁。他们不会悲惨地衰老,四肢永远有力;除了远离所有的不幸,他们还享受筵宴的快乐。他们的死亡就像熟睡一样安详,他们拥有一切美好的东西。肥沃的土地自动慷慨地产出丰盛又足量的果实。他们和平轻松地生活在富有的土地上,羊群随处可见,诸神眷爱着他们。[9]

        然后是第二代种族,“用白银打造的,到目前为止还不那么高贵”。他们仍然受到祝福,但他们犯了罪而且没有向神献祭。随后是第三代种族,他们的盔甲、房屋和工具都是由青铜打造的。出于某种原因,诸神给了第四代种族比第三代种族更好的平局:一半死于战斗,另一半以半神的身份生活。赫西俄德的第五代种族是“一个铁族,人们白天不停地感到劳累和悲伤,夜晚接二连三地死去,诸神给他们设置了很多麻烦”。赫西俄德预言,他们的孩子会更差——唯利是图,口出恶言,最糟糕的是,他们不愿意赡养年迈的父母。[10]生活确实是孤独、贫穷、肮脏、野蛮和短暂的——赫西俄德的描述比托马斯·霍布斯在《利维坦》中的描述早了2000多年。

        赫西俄德时代的苦难生活尽管凄凉,但至少是当地土地和文化的固有特征——土地的贫瘠、人的贪婪和邻近城邦的侵略。但毕竟,敌对邻邦的人和他们有着相同的宗教和文化,尽管战胜方经常奴役战败的邻居,但在伯罗奔尼撒战争[11]之前,通常不会取战败方的性命。

        犹太人是怎样来到圣地定居的,这仍然是一个谜,因为历史学家质疑摩西和《出埃及记》的真实性。毋庸置疑的是,后来以色列人征服了迦南人,比征服随后凶猛的“海上民族”更容易。迦南人是巴勒斯坦地区文化上更先进但侵略性更弱的原住民,而“海上民族”是一个神秘的种族,不仅侵犯了埃及,可能还消灭了包括迈锡尼在内的几个地中海西岸文明。在所谓的“犹太人逃离埃及”后不久,当地的“海上民族”——非利士人在现代加沙地带和特拉维夫之间建立了一个滩头阵地,并开始向内陆推进。

        非利士人的威胁促进了以色列各个部落的联合。扫罗最终被选为以色列的领袖,并开启了希伯来人联盟的时期。扫罗曾经是非利士人的雇佣兵,他击败了以前的雇主。公元前1000年之后,扫罗的副官大卫在扫罗死后接替了他的职位。大卫也曾是非利士人的雇佣兵,是一位更具军事天赋和魅力的领袖,在他的领导下,他们不仅占领了北部的以色列地区和南部的犹大地区,还占领了一座由迦南人控制的、设有重防的城镇耶路撒冷,其作为大卫的私人领地。

        大卫领导下的犹太人地理版图达到最大,向北延伸到大马士革。但我们今天所说的“大卫王国”并不是一个统一的国家,而是由三个独立的部分组成的:犹大王国、以色列王国和耶路撒冷。其中犹大王国和以色列王国具有独立的王权(见图1-1),由大卫分别占有,而耶路撒冷是大卫的私人财产。

        图1-1 大卫王国的犹大王国和以色列王国

        注:书中地图系原文插附地图。

        他的儿子所罗门统一了这个联盟。所罗门像一名雄心勃勃的建筑师,他修建了一系列宫殿、堡垒和朝圣场所,其中最著名的是耶路撒冷第一圣殿。他还积极开展婚姻外交:娶了一位法老的女儿为妻,根据《列王纪上》[12],他至少拥有700个妻子和300个妃嫔。他在美吉多[13]建立的一个堡垒后来因其希腊名称而更为人所知:哈米吉多顿[14]

        所罗门的建筑计划不仅耗费巨资,而且需要众多的劳役,使民生怨愤。公元前931年,所罗门去世,他的儿子罗波安拒绝北上到以色列首都示剑城参加加冕典礼,至此以色列王国退出联邦[15][16]

        当亚述人成为强大的“军事机器”时,南北分裂对犹太人的独立是致命的。公元前9世纪,北方的以色列王国开始向亚述人进贡。公元前745年,提格拉·帕拉萨三世夺取了亚述王位,他挥师西进开始分割以色列王国。公元前721年,他的继任者撒缦以色五世和萨尔贡二世(又译撒珥根二世)征服了以色列王国,萨尔贡二世的史册记录:“我带走了住在这里的27290人,并挑选了50辆战车给我的皇家军队……我修复了那座城市,使它比以前更加伟大;把被我手征服的土地上的人,迁到这里住。”[17]

        萨尔贡将以色列王国中的精英们(包括贵族、富豪、能工巧匠等)驱逐到底格里斯河和幼发拉底河沿岸;他们逐渐消失在历史的迷雾中,很可能是同化融合到当地的美索不达米亚人中了,从而出现了10个“消失的部落”。亚述人随后将目光转向了南部的犹大王国,并在公元前701年发动了一次进攻,但失败了。此后一个世纪,不知何故,亚述人没有再进犯犹大国,也许是想把该地区作为他们和埃及人之间的缓冲区。这拯救了犹大国和犹太人民,使他们免遭北部以色列王国那样湮灭消失的厄运。

        公元前605年左右,亚述被巴比伦人攻陷,犹太人面临着一股更可怕的征服力量。公元前597年,尼布甲尼撒二世带领巴比伦人攻占了耶路撒冷。据《列王纪下》记载:

        ……犹大王约雅斤和他母亲、臣仆、首领、太监一同出城,投降巴比伦王,巴比伦王便拿住他。那时,是巴比伦王第八年。

        巴比伦王将耶和华殿和王宫里的宝物都拿去了,将以色列王所罗门所造耶和华殿里的金器都毁坏了,正如耶和华所说的。

        又将耶路撒冷的众民和众首领,并所有大能的勇士共一万人,连一切木匠、铁匠都掳了去。除了国中极贫穷的人以外,没有剩下的。[18]

        更可怕的事情还在后面。大约公元前587年,巴比伦人在犹大国扶持的傀儡西底家反叛,作为回应,巴比伦人攻破耶路撒冷的城墙,蜂拥而入。国王逃跑,但在杰里科附近被捉,巴比伦人“在西底家眼前杀了他的众子,然后剜了他的眼睛,用铜镣铐把他绑起来,将他掳到巴比伦去”[19]

        鉴于北方邻国“消失”的经历,犹地亚人[20]非常清楚,尼布甲尼撒二世正以灭绝的方式威胁着他们的文化甚至是生存,因此他们寻找一种极端的解决方式:一场奇迹般的大灾难,将他们从即将被湮灭中解救出来。——这是同时期的希腊诗人赫西俄德所不需要的,因为他的文化并没有受到这种被灭亡的威胁。

        公元前597年,与约雅斤一起被虏到幼发拉底河沿岸的流亡者中,有一位受过圣殿教育的祭司,名叫以西结。《以西结书》是他本人或他人以他的名义写的,书中记录的内容开始于五年后,也就是公元前592年。随着天堂的幻象向他打开,一辆载着上帝的战车出现了,这辆战车有四个幻影般的有翅膀的活物,每个活物都有四张脸:人脸、狮脸、牛脸和鹰脸。

        《以西结书》是《圣经》中第一本重要的末日启示类书籍,不管它的作者是谁[21],写作时间一定是在圣地环境恶化的那几十年里。正如《列王纪下》中所描述的,巴比伦人放逐了犹大王国的王室成员、祭司和富人,留下了大量的下层阶级。起初,被虏往巴比伦的这些贵族乐观地认为他们很快就会回到耶路撒冷,但公元前587年,耶路撒冷和第一圣殿被摧毁,这使他们的叙事文学朝着启示末日的方向演变。

        《以西结书》的作者讲述的故事从被征服的原因(即犹大的不敬),转向上帝的回归和犹太国家的重建。他转向了一个在接下来的几千年中越来越引起共鸣的叙事:人类的堕落,上帝的愤怒,他的回归,以及后来他儿子重建王国,并将不虔诚的人罚入地狱。

        《以西结书》依次包括三个部分:第一,以西结被任命为先知(传达上帝讯息的人);第二,重建大卫王国,并摧毁现实中的敌人,以及摧毁神话中的敌人——可怕的玛各和统治者歌革;第三,新圣殿的辉煌,以及一个复兴并扩大的犹太国家的辉煌。(《圣经》后来的书卷混淆了歌革和玛各,因为两者都可以解释为人或地区。)

        以西结还描述了大卫王国重建之后,以色列人将如何遭受这个神话中的掠夺者的入侵,然后击败他。这是《圣经》中首次实际性地提到歌革这个人物,他最终将演变成《新约》中的反基督者,是现代新教徒启示性末日预言中的主要人物之一。[22]以上三个部分的预言应验过程中包括许多奇妙而可怕的幻象,战胜邪恶力量,以及新世界的荣耀,这些成为随后许多末日叙事的基础。

        《圣经》中的第二本重要的末日启示类书籍是《但以理书》,据说写作时代与《以西结书》相同。它的开篇是征服耶路撒冷,流放巴比伦,以及尼布甲尼撒二世提挈四个聪明的希伯来人沙得拉、米煞、亚伯尼歌和但以理,“国王向他们咨询所有智慧和领悟方面的问题,发现他们比王国里所有术士和占卜师好10倍”[23]

        尼布甲尼撒做了一个几乎记不清楚的梦。他只知道这是一个重大预兆,但不知道其他方面的细节。当宫廷占卜师说他们没有能力把梦的细节和梦的讲解告诉他时,尼布甲尼撒下令,不仅要杀死这些占卜师,还要杀死王国里的所有智者,包括四个希伯来人。

        幸运的是,上帝向但以理展示了国王梦的内容:一个可怕的幽灵,有着金色的头、银色的胸膛和手臂、青铜的腰腹和臀股、铁的腿,以及半铁半泥的脚(因此出现了现代短语“泥足”)。一块石头打碎这个野兽的脚;然后石头变得越来越大,先是变成一座山,然后充满整个天下。[24]

        但以理所描述的野兽的金、银、铜、铁恰好与赫西俄德所讲述的时代相匹配;这可能不是巧合,因为同一时期的波斯文本中也描述过根据这四种金属命名的四个历史时代。[25]

        上帝给但以理讲解了这个梦,但以理将解梦转述给尼布甲尼撒二世:野兽的头是尼布甲尼撒本人,银和铜部分代表未来较小的王国,铁和泥足是一个伟大的联合帝国,但由于铁和泥两种元素不相合,联合帝国很容易破裂。最后,上帝接管了统治权:“当那列王在位的时候,天上的神必另立一国,永不败坏,也不归别国的人,却要打碎灭绝那一切国,这国必存到永远。”[26]

        很多学者根据书中的内容推测,《但以理书》的写作时间并不是巴比伦流亡时期,而是在公元前2世纪。如果这个推测正确的话,那么从尼布甲尼撒二世到这本书的实际写作之间的3个多世纪里,发生了很多事情:居鲁士国王征服了巴比伦人,允许犹太人返回巴勒斯坦地区并建造第二圣殿;但是,公元前332年,巴勒斯坦又被亚历山大占领。在被希腊统治期间,任何一个有文化的犹地亚人[27]都知道叙事中的预言是什么:尼布甲尼撒二世梦中野兽的半铁半泥脚代表了希腊托勒密帝国和塞琉西帝国[28]——亚历山大大帝征服地区的继承国——的衰弱及其最终的毁灭。《但以理书》的作者很可能想让书看起来比实际写得早3个世纪,以增强其预言的可信度。

        希腊人给犹太人带来了另一个生存威胁。公元前167年,位于黎凡特地区的希腊塞琉西帝国统治者安条克四世任命墨涅拉俄斯为犹太大祭司。后者主张对宗教习俗进行彻底改革,其计划包括废除祭祀和摩西律法等。安条克四世还将第二圣殿改造成世俗空间,并用宙斯雕像[29]亵渎它。

        改革派祭司、传统犹太人和安条克之间的冲突逐渐失控;公元前167—前164年,安条克的军队抢劫了圣殿,摧毁了神圣的卷轴,并将任何遵守安息日、割礼和献祭仪式的人处以死刑。他还洗劫了耶路撒冷;杀害、奴役和驱逐成千上万的居民;拆毁了耶路撒冷城墙;在城里驻扎希腊军队。

        这还不是全部:犹太人被要求在圣殿敬拜宙斯雕像,并献祭猪。最终在公元前164年,传统主义者马卡比兄弟领导的起义爆发,他们首先消除了这些可憎的行为,之后建立了一个独立的犹太国家,该国家一直持续到公元前63年被罗马征服。

        《但以理书》的上半部分结束时,男主角(指但以理)被送到狮穴敬拜上帝,并在上帝的保护下奇迹般地幸存下来。在书的后半部分,但以理本人梦见了异象,他自称不理解这些异象,但实际上这些异象只是尼布甲尼撒的梦的一个变体。四头幻影般的野兽依次从海里出来,每一头都比上一头更令人敬畏:一头被拔出翅膀的狮子;一头牙齿间咬着肋骨的熊;一头有四头和四翅的豹子;最后一头挑战动物学分类,“可怕又狰狞”,有着铁牙和铁角,在但以理的注视下,铁牙和铁角的数量不断增加,其中一个角长着眼睛和嘴巴,能说“夸大的话”[30]。上帝出现了,宝座上发出火焰,他征服了第四只野兽。就像尼布甲尼撒的梦一样,这只野兽代表塞琉西帝国。在接下来的居鲁士及其接替者大流士和伯沙撒统治期间[31],但以理又看到了异象,异象以寓言的形式讲述了波斯帝国被亚历山大征服以及波斯帝国的最终解体。这本书的最后一章描述了一个神圣的审判,在这个审判中,死者被复活,一些人享受“永生”,而另一些人在上帝的永久统治下被判“耻辱和永远的蔑视”。[32]

        《圣经》中的第三本末日启示类书籍是《启示录》,95年左右由书中被称为“约翰”的人写作,他是上帝讯息的一个谦卑的接收者。作者很有可能不是当时大约90岁的使徒约翰,而是生活在小亚细亚的帕特莫斯岛上的一名囚犯,是一位更为平庸的先知。这部作品最终被大多数基督教教派编纂成《圣经》的最后一本书。

        大多数现代读者,即使有深厚的宗教背景,也会发现《启示录》是一卷难以理解的、晦涩难懂的书。历史学家R.H.查尔斯说:

        从最早的教会时代开始,人们就普遍承认《启示录》是整套《圣经》中最难读的一卷。不仅略读,即使认真研读,读者也依然会觉得困惑。这从《启示录》的解读史中也可以体现出来。[33]

        《启示录》读起来像是一堆杂乱无章的图像,甚至比《但以理书》中的异象更梦幻。它与《但以理书》的异象有很多相似之处,这可能并非巧合。

        因此,对这本书的解读,需要具备东罗马帝国以及马卡比时期的专业历史知识。查尔斯对这本书进行了细致的文学分析,他认为帕特莫斯岛上的约翰很可能在完成这本书之前就去世了,后人对他未完成的原稿进行了不适当的编辑,造成了这本书的难懂。学识渊博的学者们几乎完全缺乏对该书叙事结构的共识。在过去几个世纪,这种解读困难造成了无穷无尽的伤害和混乱。[34]

        《启示录》由22章组成;前三章是约翰写给罗马帝国东部七教堂的信。接下来两章描述了主的宝座,被24位长老和4只可敬的野兽围绕着;出现了用7个封印封严的书卷,只有犹太大卫国王的后裔才能打开;一只被杀过的七角七眼的羔羊(圣经学者认为羔羊代表耶稣)正符合要求,这只羔羊一个接一个地揭开了封印。

        第六章到第八章描述了接下来会发生什么:前四印打开后出现了四匹颜色分别为白色、红色、黑色和灰色的马,分别象征着战争、国际冲突、饥荒和瘟疫。第五印打开后出现了祭坛下的殉道者,象征着迫害;第六印是地震。接下来是一段插曲,144000名犹太人被“封印”(额上有上帝的印记;12个部落各12000人)。第七印,也是最后一个封印,是由8位天使带来的;前面7位吹号,第8位摧毁世界。

        接下来的三章出现了同样令人困惑的画面:天使们吹响了七个号角,带来类似于七印那样的灾难。中间有个插曲,约翰被一位天使命令吃一本小书,然后天使指示他设计新的耶路撒冷和圣殿。

        书的后半部分描述了一条巨大的红龙,有7个头、7顶王冠和10个角。这条龙被认定为撒旦,他试图吞食一个新生儿,但没有成功。那个新生儿是上帝的儿子,因为寓言中的玛丽即将生下他。[35]

        接着是更多的幻象:第二只7头、10角、戴着10顶王冠的野兽,制造出寻常的混乱;第三只有两个角的复合兽,也在制造混乱;“羔羊”(耶稣)归来,指挥144000名原住犹太人;7个碗(或小瓶,取决于解释版本)倾倒在地上,带来类似于封印和号角的灾难;最后,一个可怕的女性形象,巴比伦的大淫妇出现了,被学者解释为罗马帝国或是耶路撒冷的背叛者。

        在第十九章和第二十章中,一位天使将龙/撒旦抛入火湖1000年,殉道者复活。1000年后,撒旦归来,征募了一支庞大的军队,“人数之多犹如大海之沙”,包括来自玛各的歌革,进行最后的战斗,最后撒旦被永远地扔回火湖。最后的审判将正义者与邪恶者分开,后者将和撒旦一起被封进火湖,连同“死亡与地狱”。最后两章描述了规模宏大的新耶路撒冷城的荣耀,“……12000弗隆[36]。长度、宽度和高度都相等”,并且基督应许说他很快就会回来。[37]

        《启示录》的基本叙事是耶稣回到地球与邪恶做斗争,并最终将邪恶抛入火热的永恒,将正义之人提入天堂,宣判其他人,并毁灭世界。至于确切的细节如何,就只是一个解释方面的问题了。此外,几乎可以肯定的是,它与《旧约》的末日叙事有着共同的起源,特别是与它非常相似的《但以理书》。事实上,《但以理书》和《启示录》的结构和内容并非基督教和犹太教所独有;哲学家、神学历史学家米尔恰·伊利亚德的研究显示,世界各地、不同时期的宗教有许多共同的主题;其中最持久的主题是赦免正义的世界末日之火,他推测这起源于波斯教/琐罗亚斯德教[38][39]

        《启示录》中那些极端的模棱两可的内容,可以有无限的解释。最突出的是,如果人类历史上存在千禧年,那么应该如何理解“1000年”,以及为什么末日发生的时间如此精确。在神学术语中,对这些问题的研究被称为“末日论”:末日时代人类的最终结局。

        模棱两可和难解性更扩大了《启示录》的影响力,因为这为世界何时结束以及与之相关的各种解释性寓言开辟了道路。用宗教历史学家罗伯特·赖特的话说:

        模棱两可、选择性保留和误导性的释义结合在一起,使信徒可以对宗教教义产生重大影响。因为他们只需要巧妙地运用隐喻和寓言,便可抹去文本的字面意思,并用完全不同的东西取代它。而如果原始文本的语义非常清晰,那么无论用什么工具都无法达到这种效果。[40]

        根据2010年的一项国际调查,有35%的现代美国人相信《圣经》代表了上帝的字面意思,同样有35%的人认为耶稣会在他们的有生之年回到地球。[41]我们似乎有理由认为,信仰的回溯时间越久,这种信仰就越普遍。

        从基督教早期开始,神学家们就假定了耶稣回归的三种不同的年表。第一种是教会已经建立了千禧年,耶稣将在千禧年结束时回归。这种时间序列在神学术语上被称为“后千禧年主义”,包括现在或未来的1000年时期,然后是最后审判和耶稣回归。第二种是前千禧年主义,意思是耶稣在千禧年之前回来,然后是最后的审判;换句话说,耶稣回归、最后的审判,以及千禧年本身都在未来。最后一种是所谓的“非千禧年主义”,即千禧年只是一个寓言性的概念,在现实中并不存在。[42]在这三种解释中,前千禧年主义的叙事最引人注目。几乎从《启示录》写完那一刻开始,书中模棱两可的语言以及人类对故事结局的渴望就催生了各种源源不断的前千禧年主义末日故事。

        罗马帝国晚期最著名的基督教神学家,希波的奥古斯丁,抵制住了这种诱惑,发誓不去尝试计算末日时间,“真理之口告诉我们,这件事不是我们应该知道的,因此,我们试图预计并设定这个世界的剩余时间是徒劳的”,更通俗地说,“放松你的手指,让它们休息一下”。[43]之后一段时间里,在教会的末日论立场中,奥古斯丁的这种不干预态度一直占据主导地位,直到约阿希姆的神学继承人登上历史舞台。他们迫不及待地期望末日时代的到来。

        人类在很大程度上是通过叙事来理解世界的,虽然末日预言可能是有史以来最引人注目的,但它的预测屡屡失败。预测研究表明,人类在预测未来方面的能力很差。实际上,只要观察历史上预测事件的正确概率,就会比基于叙事的推理更好地预测未来,而显然,到目前为止,对末日时间预测正确的概率一直是零。

        既然末日预测的准确性为零,为什么我们会被这些叙事影响?更一般地说,为什么基于叙事的推理如此站不住脚?心理学家已经证明,人们是“认知吝啬鬼”[44],他们不愿意进行严格的分析,而是倾向于启发法——一种简单的心理捷径。而一个令人信服的叙事就是最有力的启发法。[45]

        20世纪,神经科学家发现人类有两种不同类型的认知过程:第一种是快速的情绪反应,位于我们大脑深处进化古老的边缘系统,即所谓的“爬虫脑”,第二种是一种缓慢得多的有意识推理,产生于进化上比较新的大脑皮质,位于大脑边缘系统的上方。2000年,心理学家基思·斯坦诺维奇和理查德·韦斯特将这两种大脑系统分别标注为系统1和系统2,自此我们就一直沿用这种最普通的分类方法。[46]

        从进化的角度来看,系统1比系统2更占支配地位是有道理的;数亿年来,早在人类进化出系统2之前,快速反应的系统1就驱动着动物们对危险信号做出行为反应,例如蛇的嘶嘶声或捕食性动物的脚步声。而反应速度较慢的系统2,可能进化时间还不到十万年,因此只能在更古老的系统1的束缚下运作。更简单地说,我们更快的情感机器引领着我们,而我们较慢的“理性”跟随着我们。在自然界中,系统1的优势是显而易见的,它使我们甚至能够在危险的感官信息进入意识之前就做出反应;但在一个相对安全、危险持续时间更长的后工业世界,系统1的优势往往会带来巨大的成本。

        因此,我们越多地依赖叙事,越少地依赖硬数据,就越远离现实世界。你是否曾在一本小说中深深迷失自己,以至于忘记了周围的世界?你有没有听过一个令人着迷的电台广播,以至于你停在车道上10分钟,这样就不会错过结尾?在心理学界,这被称为“运送”。心理学家理查德·格里格将叙事定义为一种装置,其可以暂时在精神上将听众或读者从他们周围的环境中“运送”出去;当“运送”结束时,他们会回到原来的环境中,但此时环境在“运送时有所改变”。[47]

        换句话说,一部小说或非小说、电影、舞台表演或绘画作品能够暂时将读者、观众或听众从现实世界中“运送”出去,当他们回来时,现实世界已经有了一点儿改变。正如艾米莉·狄金森[48]所说:

        没有一艘战舰能像一本书一样,

        带着我们在天地之外翱翔,

        也没有任何一匹骏马能像一页诗篇欢腾奔跳。

        最贫穷的人也能从这里通过,

        没有强迫缴费,

        这是多么廉价的马车,

        它承载着人类的全部灵魂。[49]

        在过去几十年里,研究人员已经证明,人们所掌握的事实很容易受到虚构数据的侵蚀,即使这些数据被清楚地标记为虚构。保罗·罗津和他的同事在宾夕法尼亚大学进行了一项经典实验,他们向受试者展示了两个新买的、相同的玻璃瓶,里面装有蔗糖,并且告诉受试者,这两个瓶子都是首次使用;然后向受试者展示了这两个瓶子上贴的新标签,一个写着“蔗糖”,另一个写着“氰化物”;他们坚定地告诉受试者:“记住,两个瓶子里装的都是糖。”

        然后,他们将两个瓶子里的糖分别搅拌到一些盛水的杯子里;要求受试者说出想从每种杯子中喝多少水,然后受试者从两种杯子里分别喝一小口水。最终50名受试者中的41人选择的是那些蔗糖来自标有“蔗糖”的玻璃瓶的杯子。即使让受试者自己贴上标签,实验效果仍然存在。[50]

        这项研究以及其他类似的研究表明,人类无法将虚构世界和真实世界分开,换句话说,他们无法在文学世界和现实世界之间进行清晰的“切换”。1975年,电影《大白鲨》上映。《时代》杂志报道了那个夏天:

        从前那些勇敢的游泳者,现在只敢挤在离岸几码[51]处游泳,被太阳几乎晒晕的他们紧张地踌躇在水边,出现一点点背鳍靠近海滩的迹象就会让他们很紧张。在加利福尼亚州圣莫尼卡市的冲浪场上,一个孩子对另一个孩子喊道:“你想被吃掉吗?”即使是一条卑微的被称为“海洋猎犬”的狗鲨,由于它是鲨鱼,也被怀疑有杀人意图。“杀了它,杀了它,”一位纽约长岛垂钓者对他的同伴说,“在它长大杀死我们所有人之前,”而他同伴的钓竿上挂着一条仅仅两英尺[52]长、几乎没有牙齿的鱼。[53]

        这种效果是故意的:电影制片人故意将影片上映时间推迟到夏季。正如其中一个制片人所说:“一个游泳者,如果他看过或听说过这部电影,那么当他把脚趾伸进海里时,一定会联想到一条大白鲨。”[54]

        20世纪70年代,心理学家克莱顿·刘易斯和约翰·安德森研究了可识别的错误描述对核对确凿事实的影响。在一个简单的例子中,受试者被告知了一些历史上关于乔治·华盛顿的真实描述,他是美国第一任总统,他横渡了特拉华河,他戴着假发。再把一些虚假描述提供给受试者,诸如华盛顿是《汤姆·索亚历险记》的作者,他至今仍活着,等等。这时,受试者核对真实描述所需要的时间更长,而且每增加一个虚假描述,受试者核对时所犯的错误就越多。[55]

        格里格也进行了一些细致而又专业的实验,他的实验表明,小说内容越遵循历史事实,读者接下来就越难将虚构叙事和真实事件区分开。他举的其中一个例子是《夏洛克·福尔摩斯之谜》,这本书中的历史和地理背景通常是真实的。虽然作者阿瑟·柯南·道尔的读者一开始能清晰区分虚构的19世纪伦敦与真实历史上的伦敦,但格里格发现,道尔对19世纪伦敦的描绘是如此逼真,以至于其虚构部分也侵入读者对于这个现实城市的心理图像中。[56]

        换句话说,文学作品、电影和艺术可以使人们难以区分事实和虚构。正如格里格所说:“沉浸在叙事文学中,会导致与事实和现实世界的隔离。”[57]

        其他研究人员进一步发现,引人入胜的虚构叙事能够侵蚀人类的分析过程。俄亥俄州立大学的两位心理学家,梅拉妮·格林和蒂莫西·布罗克,扩展了格里格的研究。他们通过观察首次发现,叙事很明显比辞藻华丽的争辩更能引起公众关注:

        小说、电影、肥皂剧、音乐歌词,以及报纸、杂志、电视和广播中的故事远比广告、布道、社论、广告牌等更能引起人们的注意。叙事改变信仰的力量从来没有被怀疑过,也一直令人恐惧。[58]

        格林和布罗克根据以下几个指标对“运送”进行了量化:读者构思叙事场景并将自身置于其中的能力、心理和情感的参与程度、对相关叙事的感知、想要知道结局的渴望,以及“叙事中的事件改变了我的生活”的感觉,这些能提高“运送分数”。反之,意识到正在发生的事情,注意力的分散,以及叙事随后被遗忘的容易程度,将降低“运送分数”。

        他们让受试者阅读了一个令人伤心的真实故事,故事里一个名叫凯蒂的小女孩被精神病患者刺死。他们将这个“商场刺杀案”故事以两种形式分别呈现给受试者。第一种是两栏的“非虚构”版本,小字体,看起来像报纸上的报道;第二种是类似于文学杂志的“虚构”版本,以粗体警示文字为标题,“商场刺杀事件是一个短篇故事,发表在1993年12月俄亥俄州小说杂志《阿克伦最佳小说》的专题上,其中与真实人物和地点的相似性当然只是巧合。”

        然后,根据上面讨论的“运送分数”,格林和布罗克将受试者分成两组,低分组和高分组,并询问他们对故事的看法。实验结果是,高分组受试者比低分组受试者更有可能同情故事中的小女孩凯蒂,并认为世界是不公正的,那种商场袭击是常见的,以及精神病患者的自由应该受到限制。值得注意的是,明确地将这个故事标记为虚构并没有减少故事对受试者态度的影响:对于非虚构和虚构两种形式,“运送”影响是相同的。

        接下来,他们要求受试者对一些文本内容进行初步分析,例如,识别有关“匹诺曹”以及有关“四年级练习题”的文本。在测试中,他们要求受试者圈出那些不符合“匹诺曹”内容的文本,或圈出那些四年级学生不理解的单词和短语。结果同样引人注目:两种情况下,高分组识别的内容比低分组的一半还要少。这些实验结果与假设一致,用作者的话来说,“被‘运送’的个体更少地倾向于怀疑、质疑或不信任。‘运送’使人更加倾向于将信息识别为真实。”[59]换句话说,高度的叙事性运送损害了一个人的关键能力。

        格林和布罗克注意到,将叙事明确标注为真实或虚构,对它们“运送”读者的程度没有影响,他们评论道:

        一旦读者开始阅读一篇引人入胜的叙事,那么叙事来源(真实或者虚构)的影响力就会减弱。这样一来,不管故事是不是真实的,读者都可能会采纳故事所体现的信仰。因此,当信息的来源可信度较低或者演讲者缺乏有力论据的时候,叙事的这种优势都可以被利用。[60]

        因此,读者或听众越深入了解一个故事,他们就越会停止怀疑,也就越不关注故事的真实性或虚构性。虽然反向因果关系可能是分析能力较低的人更容易被“运送”,但“运送”会减弱分析能力这个逻辑更有意义,而且叙事越有说服力,其读者就越忘乎所以。

        换句话说,一个好故事通常能胜过最铁的事实。2015年9月16日的共和党初选辩论就是一个很好的例子。当被问及疫苗的安全性时,参选者之一、著名神经外科医生本·卡森简要总结了大量存在的数据,证明疫苗接种与孤独症之间缺乏相关性。而唐纳德·特朗普却回应说“孤独症已经成为一种流行病”,然后讲述了一个被他称为“漂亮的孩子”的雇员接种疫苗后患上孤独症的故事。大多数旁听者在这次辩论中支持特朗普;一位记者写道:“特朗普知道他在做什么,因为他讲的故事比仅仅陈述事实更具感染力和说服力。”[61]如果你想说服某人,就用叙事的方式以其大脑系统1为攻击目标,而不是用事实和数据以大脑系统2为攻击目标。

        音乐比叙事更能刺激系统1。听觉信息通过内耳的毛细胞传递到听神经,然后从下脑干传递到上脑干,再从上脑干传递到丘脑,丘脑将有关声音的信息发送给系统1和系统2(见图1-2)。

        图1-2 听觉信息至系统1和系统2的传递示意图

        一对丘脑位于脑干顶部;它们被认为是大脑接收来自下面的感官信息的主要中继站。丘脑直接与系统1相连,特别是伏隔核和杏仁核,它们分别介导愉悦和厌恶。[62]丘脑还向系统2的听觉部分发送声音信息,这些听觉部分包括一部分被称为赫氏回(也称颞横回)的大脑颞叶,及其以外的大脑皮质联合区,它们负责解释声音并使我们有意识地感受到声音。关键在于,听觉与系统2的连接更为间接,因此与系统1相比连接更慢。

        从丘脑到系统1的传导更直接,这意味着,一首令人兴奋的曲调通过系统2到达我们的意识之前,它可以先通过激活伏隔核使我们产生快感;相反,当我们听到电影中的反派或英雄即将到来的厄运所伴随的黑暗小调时,我们的杏仁核几乎立刻燃烧起来。

        因此,音乐可以看作通往人类情绪的一条进化久远的高速公路。由于音乐可以如此有效地绕过我们的系统2而直接作用于系统1,它的说服力自古以来就得到了充分的体现:旋律很可能在句法上早于复杂的人类语言,母亲们会自发地为婴儿唱歌,世界各地几乎所有的宗教仪式和爱国事件都涉及音乐。

        乔治·奥威尔描述了当猪少校用一首《英格兰牲畜之歌》劝诫其追随者反抗农场主琼斯时,音乐对动物农场中的非理性动物的吸引力:

        唱这首歌使动物们激动不已。少校还没唱完,它们就开始自己唱了。即使是最愚笨的动物也已经学会了曲调和一些单词,至于聪明的动物,比如猪和狗,它们在几分钟内就把整首歌记下来了。几次试唱之后,整个农场惊人地爆发出《英格兰牲畜之歌》。牛哞哞地唱,狗哀叫着唱,羊咩咩地唱,马呜呜地唱,鸭子嘎嘎地唱。它们非常喜欢这首歌,连续唱了5遍,如果没有被打断,那么它们可能整晚都在唱。[63][64]

        现实世界中,也许最著名的具有音乐说服力的例子就是莱尼·里芬斯塔尔执导的纪录片《意志的胜利》,影片记录了1934年的纽伦堡国社党代表大会。这部电影巧妙地将理查德·瓦格纳和纳粹作曲家赫伯特·温特的音乐编排到电影中,除了希特勒和其他纳粹领导人的演讲片段外,没有任何其他口头叙述。《意志的胜利》给好莱坞电影制作人留下了深刻的印象。后来,当美国加入二战时,弗兰克·卡普拉在拍摄《我们为何而战》系列电影时进行了模仿。

        到20世纪80年代中期,音乐开始成为一种政治工具。当时美国的政治竞选广告中开始频繁采用旋律:广告中出现候选人时就在主调上采用欢快振奋的曲调,而出现竞争对手时就采用不祥的黑暗小调(或偶尔采用马戏团小丑即兴表演所用的小调)。

        这类题材的经典之作是2004年乔治·W.布什命名为《狼》的总统竞选广告,伴随着黑暗和沉思的音乐,视频中一群狼蜷缩在草地上,一段旁白开始指责国会民主党人在一个危险的世界里反恐行动不力。音乐学家和传播学学者保罗·克里斯蒂安森评论道:

        虽然图像和旁白增添了广告意义,但它们只是音乐的侍女,音乐传达了大部分情感。这不是普通的音乐,是一种人们在恐怖电影里可以找到的音乐:低沉的嗡嗡声、原始鼓声、刺耳的不和谐和弦声、奇怪的音色,以及别的。[65]

        末日叙事引人入胜的另一个原因是,人类热衷于悲剧。路肩上多辆救护车聚集在一辆被撞得变形的汽车周围,这会引起围观并影响交通;而同样位置上一辆完好的废弃汽车则不会。“数十名矿工在爆炸中丧生”这样的标题会使报纸畅销,而“情况逐渐好转”这样的标题则不会。正如托尔斯泰在《安娜·卡列尼娜》的开头所说,“所有幸福的家庭都是相似的,而每个不幸的家庭则各有各的不幸”[66],很少有小说是通过描写幸福的婚姻和和睦的兄弟姐妹而成功的。

        人类更多地关注坏消息,而不是好消息。这似乎是人性的一个明显特征,因此心理学家们进行了很多实验,以验证我们对悲剧和厄运的关注。在一项研究中,受试者对一场足球比赛下注,一周后返回,结清赌注并与研究人员一起回顾比赛。那些输了赌注的人比赢了赌注的人讨论比赛时所花费的时间要长得多。[67]人类对坏消息的关注如此普遍,以至于“坏消息比好消息强大”已成为实验心理学的基本准则之一;从进化的角度,关注负面结果会使人类更加关注环境风险,从而带来遗传优势。[68]

        和许多生物进化所驱动的心理现象一样,坏消息更加受到关注,这证明了数字时代的功能失调。例如,一项研究发现,那些恐怖、耸人听闻的假新闻报道被转发的可能性比真实新闻高70%。研究人员指出,Bots(自动运行木马病毒)并没有加速虚假新闻的传播,而操作键盘和手机的人类却做到了。YouTube(视频共享网站)上的“三度亚历克斯·琼斯”现象已经成为媒体学者们之间的一个冷笑话:只需点击三下,就可以将一个更换割草机火花塞的视频,切换成琼斯先生愤怒地诉说桑迪·胡克学校大屠杀是一场“恶作剧”的视频。[69]

        鉴于负面新闻对人类的吸引力,《启示录》能够具有持久的影响力也就不足为奇了。

        菲奥雷的约阿希姆是最早构建末日之路的基督教神学家之一。他于1135年出生在意大利的脚趾地区卡拉布里亚[70],和他的父亲一样,接受过教育并担任公证人。之后,他在快30岁的时候去圣地朝圣,在那里经历了神灵启示。从圣地回到西西里岛后,他作为隐士在埃特纳火山上生活了一阵子,然后重新穿越墨西拿海峡,在卡拉布里亚地区做了一名漫游布道士。有段时间,他静下心来研究《圣经》,并在科拉佐的一所本笃会[71]修道院担任职位。他一定是个政治老手,因为他得到了教皇路爵三世[72]的鼓励和支持,成为修道院的院长,并成功地将修道院转为西多会。[73]随后,他与另外两位教皇进行了商谈,并获得了他们在思想体系上的认可。

        他被数字迷住了,尤其是7和12:圣奥古斯丁的七国时期,创世的7天,以及《启示录》里的7个封印和7个碗;以色列的十二使徒和十二部落。更妙的是,12可以分为7和5,代表小亚细亚的7个教会和5种感官。他认为,如此强大的数字命理学无疑可以应用于《圣经》解读,不仅可以用来揭示历史或伦理,还可以用来预测未来。

        他也喜欢数字3。他认为,圣三位一体[74]是关键:它将历史分为三个时代:圣父时代,从亚伯拉罕到基督诞生;圣子时代,从基督诞生到约阿希姆时代;最后一个是包括了现在和未来的圣灵时代,这个时代将由一位手持宝剑的天使引领。

        偏好数学的约阿希姆还将经文组织成几何图式,他在图式中将历史排列成各种形状,其中包括与历史“侧枝”相连的圆圈和树木。他在《图像书》(Book of Figures)中对此进行了描述。[75]

        现代读者可能会嘲笑这种不科学的数字命理——也就是数学家埃里克·坦普尔·贝尔所称的“数秘主义”——但中世纪的神学家有一个借口:希腊数学家毕达哥拉斯就是从纯数学中推导出自然界的规律的,其卓越成就在几千年的历史中熠熠生辉,他应该说过“万物皆数字”这样一句话。在弗朗西斯·培根提出以观察为基础的科学方法之前,数字在自然哲学中占据着重要地位,不仅在科学中是这样,在神学中也是。[76]

        用心理学术语来说,我们都是寻求“模式”的灵长类动物。这并不是一个新概念:1620年左右,培根观察到人类“具有自己的本性,倾向于假设世界上存在更多的秩序和规律”[77]。也就是说,我们天生就想寻找各种往往不存在的关联。这种倾向被科学作家迈克尔·舍默称为“模式化”。约阿希姆富有幻想的数字图式就符合人类的这一倾向。[78]

        人类为什么倾向于幻觉模式呢?进化论中的物竞天择提供了现成的解释。在遥远的人类历史中,如果人类错过了危险来临的线索,例如模糊的嘶嘶声或周边视线中黄黑色相间的条纹动物,付出的代价就会非常高昂,而如果出现幻觉,到处都听到蛇或看到老虎,那么人类也需要付出一定的代价,但这种代价与被蛇咬死或被老虎吃掉的代价相比并不高。因此,不仅在人类身上,而且在任何具有正常神经系统的生物体上,进化论都支持过度解释数据。[79]

        《圣经》的内容很多,大概有783000个单词,标准印刷版有2000多页,描述了无数的参与者及其活动事件,为那些寻求模式和关联的人提供了一个宝库,特别是偏爱数学的约阿希姆,他的历史图式结束在欢乐、自由和丰富的第三时代(即圣灵时代),在这个时代,所有信徒都可以直接获得上帝的真理,而不需要以教会为媒介,这种幸福状态将一直持续到最后的审判。[80]

        约阿希姆不会用上帝的信息煽动群众,因此他并不是一个革命性的或号召性的先知,而是一个令人困惑的圣经解释者。他认为第三时代(圣灵时代)中具有完善的人性和原始共产主义,能够战胜人类的一切恶习,特别是拥有物质财富的欲望,但他不愿意提供有关第三时代的细节信息。他的预言显得有些笼统:“每个人都将以这样一种方式被给予:别人所得会比自己所得更令他高兴;比起自己所拥有的,他更在意自己能够给予别人什么”[81]。约阿希姆描述的景象会在地球上逐渐显现,中间不需要插入《启示录》中可怕的异象,因此三任教皇都支持他。约阿希姆认为未来的第三时代最终将修正当前第二时代的缺陷,但是,受第二时代封建社会压迫的群众没有约阿希姆那样的耐心。他们想要采取更积极主动的方式推动第三时代的早日到来。

        约阿希姆的数学既具有公众吸引力,又能够运用于各种圣经派别和数秘主义,因此能够以这样或那样的形式一直持续到今天。例如,在他的继承者中,新近崛起了一个方济各会的属灵派,其被日益成功的教会物质主义排斥。对他们来说,数学很简单:《马太福音》1:17[82]清楚地指出,亚伯拉罕和大卫之间隔了14代人,大卫和巴比伦囚禁之间隔了14代人,巴比伦囚禁与基督诞生之间隔了14代人。因此,第一时代持续了42代,每代持续30年,总共1260年。当前的第二时代同样持续1260年,因此将在公元1260年结束,那时将开始出现持续1000多年的第三时代。

        随着中世纪的发展,衰落的封建主义、逐渐兴起的贸易和货币经济带来了经济的增长,但经济增长又导致了极端的收入不平等。这时产生了大量恶毒的反犹主义末日叙事,其中一个就是与马丁·路德[83]的宗教异端几乎同时出现的德语版本《百章全书》(The Book of a Hundred Chapters)。

        这本书的开始是天使长米迦勒向匿名作者转达来自上帝的讯息:人类激怒了全能者[84],他即将带来可怕的毁灭,但他决定暂缓;上帝希望作者聚集信徒,等待“黑森林皇帝”的到来;“黑森林皇帝”将带来血腥的启示录式的末日时代,以及丰富的食物和酒。信徒大部分来自受苦受难的穷人,他们参与了一系列广泛的谋杀,尤其对贵族和神职人员。这本书的弥赛亚并没有容忍,而是规定在4年半的时间里每天要谋杀2300名神职人员。[85]

        教会的腐败早就引起了人们的厌恶:早在马丁·路德和约阿希姆之前,神职人员,尤其是教皇的肆意挥霍和肉欲之罪早已震惊了基督教世界。路德只是在正确的时间、正确的地点成了正确的人。谷登堡大约在70年前发明的印刷机,将复印小册子或书籍的成本降低至原来的约1/30,而维滕贝格[86]的印刷机处于新技术的前沿,不仅可以打印拉丁字母,还可以打印希腊和希伯来字母。

        路德需要贵族支持他的宗教改革,因此他将宗教分歧严格限制在神学上而避开政治。这位伟大的改革者从《罗马书》和《彼得前书》中得到忠告,恺撒的法律仍然必须遵守:“看在主的分儿上,你们要服从人类的每一条法律。”[87]

        虽然路德反对那些寻求社会改革的人,但那些人确实运用了路德的方法。路德不仅摧毁了教会对《圣经》解释权的强大垄断,而且还向所有人展示了印刷机的强大力量。当被质疑布道很少的时候,他回答:“我们用我们的(印刷)书来做(布道)。”[88]

        16世纪初,歉收的庄稼、贪婪的贵族和狂热的路德教徒共同点燃了血腥的民众起义。据说,1523年6月23日,在路德将他的《九十五条论纲》钉在维滕贝格城堡教堂的门上6年后,在德国施瓦本地区,位于现代瑞士中部的北方,女伯爵卢芬斯特林根命令1200名农民为她收集蜗牛壳,她可能有大量的线需要蜗牛壳做线轴。而这时农民正忙于农收,女伯爵为了蜗牛壳而进行的逼迫激怒了他们,引发了一场席卷欧洲大部分德语区、持续两年的农民起义。[89]

        1524—1525年,农民军队与当地贵族的雇佣兵展开了一系列战争,其统称为德意志农民战争(俗称蜗牛战争),这些缺乏训练和武器的农民叛军遭到大规模屠杀,最终大约有10万农民被杀戮。

        在整个起义过程中,德意志农民叛军主要关注的是社会问题而非宗教问题,而这场起义的血腥结局却与宗教有关,主要发起者是一位名叫托马斯·闵采尔的千禧年传教士以及被他迷惑的疯狂的追随者。

        1525年3月,叛军在施瓦本的梅明根镇上集会,提出了12条要求,也就是《十二条款》,并印刷了至少2.5万份副本。只有第一条要求是明显关于神学的:每个城市都可以选出自己的传教士,他们将“简单地宣讲福音”,这大概是为了排除拉丁天主教的弥撒仪式。接下来的十条要求更是关于经济而非宗教的:包括如何支付传教士的报酬,废除农奴制,降低地租,狩猎和捕鱼的权利,以及归还最近私有化的公共土地等。最后一条要求谦恭地指出,如果上述十一条要求中的任何一条后来被证明与圣经背道而驰,那么它们都是无效的。[90]

        但是,起义后期,闵采尔成了农民军领导人。闵采尔至少阅读并解释过约阿希姆的一篇著作,但人们对他的出身知之甚少。最可接受的猜测是,他生于德意志亚琛城外的施托尔贝格镇,其位于现代比利时、德国和荷兰的交会地带;他是工匠家庭出身,教育背景也很模糊,几乎没有留下学业记录,有人说他父亲就死在一个腐败贵族的绞刑架上,因此他具有反独裁的末日倾向。唯一可以确认的信息是他大约于1514年被任命为农民军领导人,虽然这种任命不需要大学教育背景,但他的文笔表明他接受过先进的学业教育。

        三年后,路德的宗教改革运动在维滕贝格爆发,闵采尔前往那里,在革命的激情中畅饮。他可能见过路德,甚至在他的讲坛上讲过道;他当然遇到过路德的杰出同事菲利普·梅兰希顿。起初,闵采尔与路德派并肩作战,对抗教皇的支持者;1520年,路德推荐他接替约翰内斯·西尔维于斯·伊格拉努斯做茨维考的传教士。当时伊格拉努斯要去进修,和鹿特丹的伊拉斯谟等人文主义学者一起学习。

        在茨维考,闵采尔充分表现出他在神学上偏执的冲动和对建立“千年王国”的狂热。和路德一样,他将天主教神父和修道士称为“庞大的怪物”和“撕裂肉体的女妖”,并开始鼓吹,通过与上帝直接沟通也可以实现救赎,而与圣经无关。[91]这种说法对路德和伊格拉努斯来说都太过分了。伊格拉努斯当时已返回茨维考,并将闵采尔降职到该镇一个较小的教堂。在那里,闵采尔可能受到了茨维考“先知”的影响,这些先知分享给他一些神秘的信仰,包括理想的重要性,以及救赎与圣经的无关性。

        闵采尔进行了煽动性的布道并分发小册子,这导致他被驱逐,先是从茨维考被驱逐,然后是从布拉格和其他多个城市;最后,他落脚在萨克森人居住的阿尔施泰特镇上。在被驱逐的路上,他发展了自己的天启末日主题。1524年,他对萨克森州的约翰公爵进行了一次著名的布道,其主要围绕《但以理书》中的尼布甲尼撒之梦;公爵不可能不理解这个典故,但是他回应说,罗马教堂和那些支持它的贵族已经取代了但以理的希腊塞琉西帝国;闵采尔更加清楚地向公爵指出,有理想的先知们,通常是那些没有受过正规宗教教育的平教徒[92],但是他们在解释《圣经》方面起到了主要作用,他们现在都生活在末日前最后的日子中。最令人震惊的是,闵采尔宣称自己是新的但以理,他的追随者是“被选者”,他们理解末日的紧迫性,他们的出现不仅是为了观察,而且是为了积极实现它。

        闵采尔布道后,公爵愤而不发地离去。闵采尔继续出版了更多的反教权主义小册子,这进一步恶化了他和公爵之间脆弱的关系。最终,公爵受够了,他强制关闭了闵采尔的印刷机,并将闵采尔传唤到他在魏玛的城堡里,使其接受审讯。由于担心自己会被杀,闵采尔离开了阿尔施泰特镇,又在几个动荡的地方逗留后,他成为农民战争的高潮——弗兰肯豪森战役——的叛军领导人之一。

        至此,闵采尔已经说服了自己以及许多追随者,他们相信上帝让闵采尔开启末日。他不仅用自己的“千年王国”理想来说服民众,还引用了多段圣经经文来支持自己。他似乎对《马太福音》第24章印象深刻,这一章讲述了耶稣预言圣殿将被摧毁,随后发生饥荒、瘟疫、战争、地震等全球性灾难。上帝还用基甸之剑武装闵采尔,让他和他的军队战胜处于优势地位的贵族军队,据一位观察者说,他“用他的外套袖子抓住了敌人的所有子弹”[93]

        受此鼓励,1525年5月14日,农民叛军冲向贵族雇佣军(见图1-3)。但雇佣军仅以6人的伤亡为代价,屠杀了90%的叛军部队,约6000人被杀。[94]闵采尔仓皇逃离战场,但很快被抓获并被带到贵族面前,经过长时间的审讯后,他被斩首。[95]

        图1-3 1525年农民战争的地标

        闵采尔及其追随者的悲惨死亡,只是拉开了这场血腥的世界末日论的序幕而已。在繁荣的波罗的海海上贸易航线上,末日论将在接下来的10年里席卷欧洲西北部。

        2 滥用末日叙事的悲剧

        信徒与无赖

        1534年2月,威斯特法伦州的明斯特城的气氛狂热,居民们报告说,看见天空中出现了三个太阳,这在那个时代很容易被认为与尤利乌斯·恺撒死后出现的预兆相同,预示着将出现像屋大维、马克·安东尼和雷必达那样的后三头同盟[1]

        这一愿景尤其激励了一个被称为再洗礼派的新教教派,该教派反对天主教传统的婴儿洗礼做法,而是对新皈依者施行成年再洗礼。有一位名叫赫尔曼·冯·克森布罗克的天主教徒,他小时候目睹了1534年事件,后来他记录到:“天空似乎张开了嘴,出现长长的裂缝,可怕的火焰从裂缝中闪烁……(农民们)看到这座城市似乎着火了,但当他们赶来调查时,发现火焰不仅没有伤害城市,而且完全消失了。”[2]

        年轻的冯·克森布罗克对街头的疯狂事件感到惊讶,并将再洗礼派描述为:

        ……如此错乱,如此失常,如此被疯狂驱使,他们超越了诗歌中描述的愤怒。他们没廉耻地在市场上跑来跑去,有的头发蓬乱,有的衣服松散,有的头巾在风中飞舞。有些人跳起疯狂的舞蹈,仿佛要在狂躁中飞翔。有些人脸朝下趴在地上,伸出手臂,身体摆成十字架的形状……有些人躺在松软的泥浆里,一遍又一遍地翻滚。有些人跪下来大声喊叫。有些人睁着闪光的眼睛号叫。有些人口吐白沫。有些人摇头咬牙地做出威胁的表情,有些人捶胸顿足、招摇过市。有人哭,有人笑。从另一个角度看,与其说我们嘲笑他们的疯狂,不如说是为他们而悲伤。[3]

        托马斯·闵采尔短暂、血腥、笨拙的起义后不到10年,约阿希姆的另一批能力更强的子民在明斯特城企图实现他们狂热的末日愿景,这被称为再洗礼派的疯狂。1533—1535年,他们一度控制了市政当局,后来又在后者的最后攻击下失败。

        德意志农民战争惨败之后,群体疯狂的中心逐渐向北移动,到了今天的德国西部和荷兰所在地(见图2-1)。几十年来,这个地区在汉萨同盟[4]的推动下出现日益繁荣的局面。汉萨同盟是一个松散的贸易联盟,沿波罗的海和北海延伸,大致从今天的爱沙尼亚共和国到比利时的佛兰德。上一章所提到的德意志农民战争主要源于对社会的不满,但这一场德国和荷兰的民间叛乱是由一种新的宗教教义——再洗礼主义——所驱动的。

        图2-1 再洗礼派疯狂事件的地标

        8世纪末,查理曼[5]已经占领了明斯特城,该地区位于今荷兰东部、德国埃姆登城南部。他派了一位名叫卢德格尔的传教士去改变该地区的宗教信仰,并强迫当地居民皈依基督教。卢德格尔在当地某处河岸上建造了一座修道院,该城由此得名[6]。随着明斯特在汉萨同盟经济中日益繁荣,该地区富丽堂皇的主教堂和众多的礼拜教堂使城市景象更加繁荣。

        明斯特城基督教会的繁荣是有代价的:用于支持教会的沉重的什一税落在教徒身上,而神职人员却不需要纳税;修道士们耕种土地,修女们在织布机上工作,他们与当地农民和布料生产商产生了竞争。如此贪婪的教会并不是明斯特城所独有的:在整个欧洲,教会行为点燃了宗教冲突和公众愤怒的火焰。[7]

        再洗礼派本身起源于10年前在瑞士苏黎世开展的一系列晦涩难懂的神学讨论。1519年,一位名叫乌尔里希·茨温利[8]的天主教牧师建立了一座改革宗教堂。茨温利参加了一系列由市议会发起的正式教义辩论,被宣布为获胜者。他们在市议会面前辩论的议题之一就是洗礼时间。从逻辑上讲,只有成年人才能按照自己的自由意志行事,才能有意义地服从于基督,《新约》中的福音书也是这样描述的。但是,婴儿洗礼是从3世纪就已经确立了的,到马丁·路德和茨温利时期,几乎已经是一种普遍的、毫无疑问的教会做法。

        茨温利在这次辩论中的反对者之一,一位名叫康拉德·格列伯的商人,反对婴儿洗礼——“洗孩子”,因为这些神学后裔长大后可能会轻视它。辩论之后,格列伯为他的一个朋友乔治·布劳罗克施行了再洗礼,然后他们两人开始为其他成年人施行再洗礼。

        当时,这并没有引起什么。茨温利本人也评论说,他和格列伯之间只有很少的神学时间,只讨论了一些“不重要的周围事件,比如应该对婴儿还是成人进行洗礼,基督徒是否可以担任地方法官”[9]

        但再洗礼派的导火索已经点燃,或者更准确地说,是两条导火索:一条穿过波罗的海和低地国家(今荷兰、比利时,以及莱茵河、埃姆斯河、斯海尔德河和默兹河的河口),另一条穿过明斯特。这两条导火索分别燃烧,直到1534年,在明斯特合并,点燃了历史上最混乱的群体幻想之一。

        梅尔基奥·霍夫曼是一位德国毛皮贸易商,经常来往于汉萨同盟的城市间(可以带来丰厚利润),他点燃了波罗的海和低地国家的导火索。他比路德小10岁,在1523年左右获得维滕贝格大学的教授职称,并在来往行程中传播主张改革的异端教义。几年后,他对《启示录》念念不忘,开始背离路德的教义,宣扬一场即将来临的末日式善恶大战。

        和之前以及之后的启示性末日论者一样,他热衷于应用自造的末日数学。霍夫曼计算出,基督死于33年,使徒时期[10]持续了100年,直到133年。他认为,由于犹太人的罪行,人类受到了三年半的惩罚;由于巴比伦时期的邪恶,惩罚时间增加了20倍;由于教会对耶稣的疏离堕落,惩罚时间又增加了20倍,总共增加了1400年。因此,世界末日将发生在1533年,这一预言在波罗的海的多个贸易城市引发了暴动和混乱,包括吕贝克、斯德哥尔摩和一些丹麦港口。由于制造了这一系列混乱,霍夫曼被逐出这些城市。[11]

        就其性质而言,再洗礼主义是一种有吸引力但组织分散的神学,其信徒仅仅因为相信成人洗礼而被统一。最终,再洗礼派在整个西欧,尤其是汉萨同盟贸易路线上蓬勃兴起。霍夫曼的启示性再洗礼在低地国家取得了最大的成功,尤其是在东弗里西亚最大的城市埃姆登,其位于德国沿海地区,今荷兰边境以东。

        15世纪末,哈布斯堡人接替勃艮第人开始统治低地国家。此时,这些城市已成为欧洲大陆最繁荣的城市。在路德摧毁教会对《圣经》解释的垄断权以及谷登堡发明的印刷机的支持下,当地居民在一种被称为“秘密集会”的小型非官方组织下聚集。这种“秘密集会”是各种宗教派别的温床。

        1530年左右,霍夫曼经过当时宗教改革活动的密集之地——斯特拉斯堡,这座城市是再洗礼派中比较温和的瑞士版本的发源地,他将其嫁接到他的末日信条中。1531年,与《启示录》相呼应,他将斯特拉斯堡定为《启示录》提到的144000名神圣信使聚集的地方,并将在该城战胜邪恶势力的大规模围困。他向斯特拉斯堡市议会请愿建立自己的教堂,但这再一次导致他被驱逐,于是他回到了低地国家,对大量成年人进行再洗礼,仅在埃姆登主教堂的一次就有300人。[12]

        1531年12月,神圣罗马帝国当局——低地国家实际上的统治者,抓获了扬·沃克茨,他是霍夫曼的一个门徒,曾在阿姆斯特丹对50名皈依者施行了再洗礼。他们邀请他逃跑,但他选择了殉道,并与9名追随者一起被斩首。为了保护教徒,霍夫曼把宗派的教义改为禁止成人洗礼。[13]1533年,霍夫曼返回斯特拉斯堡,这很不明智。在那里,教会判定他犯有异端罪,罪行相对次要,并将他囚禁在一些条件恶劣的牢房中。他平静地接受了阴冷的新环境,因为他认为世界末日即将来临,自己不会在那里待太久。但是,这个很乐观的推测被证明是错误的。他在狱中度过了10年,其间,下面街道的市民偶尔会听到他轻轻地吟唱圣歌,并不断重复:“你们斯特拉斯堡的不敬上帝的经书家们有祸了!”[14]

        霍夫曼入狱后,他的追随者,一位名叫扬·马提斯的面包师来到阿姆斯特丹,宣称自己是先知以诺。令信徒们高兴的是,他又开始了成人洗礼。以诺是《旧约》中在生前就被上帝带到天堂的仅有的两个人物之一,另一个是以利亚,而霍夫曼在此之前已经盗用了以利亚的身份。此外,一些再洗礼派成员以《启示录》11:3~11:12的内容作为证据,证明以诺和以利亚是两个未言明的“被提”见证人。随着时间从1533年进入1534年,世界末日并没有到来,低地国家的信徒被迫将末日时间推迟到1535年,并将地点从斯特拉斯堡北移到宗教上更具宽容性的明斯特。

        1534年3月,至少3000名阿姆斯特丹的再洗礼派教徒试图穿越须得海[15]去往明斯特。哈布斯堡军队阻止了他们,并处决了大约100名异教徒,其余的被当作无辜受骗者放走。在那个时代,哈布斯堡军队的这种做法被认为是温和的。第二天,几个“使徒”激动地挥舞着刀,在阿姆斯特丹的街道上游行,警告说最后的审判将会在复活节前到来;他们被抓住并被杀死。那一年,(荷兰)海牙的哈布斯堡当局已经部署了“飞行纵队”,围捕这些低地国家的再洗礼者,对抓捕到的信徒施行酷刑,让他们在认罪和被处决之间做出选择。[16]

        1535年2月的一个寒冷夜晚,一群再洗礼者赤身裸体地跑过阿姆斯特丹高呼:“对神不敬者有祸了!”公开裸体象征着在上帝面前忠贞不渝,在明斯特也很常见。最后,拒绝穿衣服的男人被处死,拒绝穿衣服的女人被淹死。(刀和裸行者在荷兰语中留下了两个新词:zwaardlopers和naaklopers。)

        荷兰的许多其他城市也出现了再洗礼派暴动,这导致了更多的处决。到1535年中,多达20%的阿姆斯特丹人可能经历过成人洗礼,许多受洗礼者(如果不是大部分)都是无辜的局外人,他们是不断升级的镇压和抵抗(包括几场大规模的激战)下的难民。5月11日,携带武器的再洗礼者占据了该市的一个主要集市,在失败被捕之前,他们大声喊道:“爱上帝的人,加入我们吧!”3天后,当局挖掉了11名头目的心脏。当年夏天,当局割断了一位再洗礼派领袖的舌头,因为他用舌头来布道;然后,当局砍掉了他的右手,因为他用右手洗礼;最后,当局砍了他的头。[17]

        即使对于那个时代,这场对再洗礼者的镇压也显得很残酷,肯定比路德和茨温利的追随者遭受的镇压要残酷。路德和茨温利废除了教会对《圣经》解释权的垄断,这已经够糟糕的了,但至少他们尊重私有财产,尊重世俗化的政府权威。而在大多数情况下,再洗礼派却主张没收集中的财富,特别是集中在教会手中的财富,并否认现有政府的合法性。再洗礼者还在煽动性的言论中掺入了即将来临的末日这种信念;很多时候,行动会加速灭亡。

        尽管荷兰的再洗礼者众多,但由于哈布斯堡家族对荷兰控制得过于严格,他们无法成功;他们需要更温和的政治土壤,这意味着,一个事实上不受哈布斯堡家族控制的城市。他们发现了明斯特,并在那里点燃了再洗礼派疯狂的第二条导火索。

        许多汉萨同盟的城镇,如但泽和吕贝克,都是所谓的“自由城市”,基本上独立于遥远而日益衰落的神圣罗马帝国皇帝,只在名义上效忠。这些几乎独立的城镇大多由当地贵族统治,例如明斯特由一位“亲王主教”统治。被选为“亲王主教”的代价通常非常昂贵,其需要由当地大教堂挑选并必须经过教皇确认,他们更多的是以封建主的身份进行统治,而不是政教合一的身份。

        1525年,明斯特的亲王主教弗雷德里克·冯·维德由于害怕农民战争,将权力下放给一个由24名成员组成的委员会,其中包括两名共同市长。与低地国家政府不同,该委员会基本不受哈布斯堡的影响。近10年后,该委员会将成为再洗礼派实施疯狂暴力破坏的楔子。[18]

        再洗礼派将滩头阵地定在明斯特,大多数历史学家将这归因于贝尔纳德·罗特曼。他于1495年左右出生在一个铁匠家里,与他的祖先一起被指控犯有巫术罪。小罗特曼被描述为具有“变化无常的、小丑的气质”。由于太穷,他没有上学。他叔叔在明斯特圣莫里斯教堂担任教区牧师,在叔叔的指导下,他成为唱诗班男童,后来以唱歌谋生。到青春期结束声乐生涯时,他已经赚得了在美因茨市学习所需要的钱,并在那里获得了硕士学位。1529年,他回到了圣莫里斯教堂。[19]

        1530年左右,罗特曼已经成为一名有说服力的传教士,得到了富有布商贝尔纳德·克尼佩尔多林的资助。克尼佩尔多林还担任协会会长、市议会议员,首先皈依了路德教,后来在罗特曼的影响下成为一名秘密的再洗礼派教徒。克尼佩尔多林印刷了罗特曼的小册子。不仅在明斯特,而且在低地国家,这些作品都点燃了再洗礼的火焰。

        现代社会对疯狂的再洗礼派的了解在很大程度上归功于两位观察者,一位是前面提到的赫尔曼·冯·克森布罗克,另一位是海因里希·格雷斯贝克。后者是一位皈依再洗礼派的木匠,参与了整个过程,并在最后扮演了一个小而关键的角色。冯·克森布罗克和格雷斯贝克都留下了详细的书面记录,他们在记录中所体现出的个人偏见表明,这些记录看上去是可信的。[20]

        根据冯·克森布罗克的描述,最初罗特曼忠实地传授天主教教义,但后来:

        渐渐地,他开始将那些看上去与天主教教条背道而驰的教义融入他的布道中。他开始煽动平民对神职人员的愤怒,这吸引了一些渴望新奇事物的市民。[21]

        他在圣莫里斯教堂的上级决定保护他们的信众不受日益激进的观点的影响,因此借给他20个金弗罗林[22]供他去科隆深造学习。他既没有去也没偿还借款;相反,他直接前往了维滕贝格。路德和梅兰希顿的家就在那里。

        1531年,这位年轻的牧师回到了圣莫里斯教堂。他作为一位坚定的路德宗教徒,陶醉于作为煽动者的快乐之中,非常善于吸引人群到城墙外的小教堂里。根据冯·克森布罗克的记录:

        许多人,特别是那些被债务压得喘不过气来的人,像尊敬上帝一样尊敬他,听信他说的每一句话,并深信他的行为都是奉上帝之灵。即使官方明令禁止,他们还是成群结队地从城里跟着他,因为他们渴望听到他讲话,他们的渴望如此强烈,以至于他们认为除了他之外没有其他传教士了,他们蔑视、谴责和诅咒其他人以及所有的神职人员。[23]

        作为一名忠诚的天主教徒,冯·克森布罗克对罗特曼的布道不屑一顾,“与其说是有确凿的论据,不如说是拙劣的诽谤”。然而,无知的平民们无法区分什么是雄辩,什么是夸夸其谈,他们认为他说得很好。[24]

        此时,罗特曼已被圣莫里斯教堂免去牧师职务,他带领一伙暴徒来到教堂,砸碎了神像,推倒了祭坛,砸碎了一个银杯,焚烧了圣母玛利亚的画像。当局再次驱逐了他,他又一次到了维滕贝格,在那里,他给路德和梅兰希顿留下了深刻的印象,据说他们俩很有先见之明地评论道:“罗特曼要么非常好,要么非常坏。”[25]

        1532年,罗特曼再次回到明斯特,他开始公开支持再洗礼派的观点。这是一把双刃剑。成人洗礼不仅获得了听众的认可,也得到了教会的许可。到那时,对于曾经把再洗礼者绑在木桩上焚烧,以及曾经将石头绑在再洗礼者的脖子上并将他们抛入水中,教会已经表现出一丝内疚。用再洗礼主义学者克里斯托弗·麦基的话说,“有点儿像一个神学笑话”[26]

        此时,亲王主教冯·维德仍然控制着这座城市,并强迫罗特曼停止亵渎神明的行为。罗特曼遵从了几个星期,但随后又不顾一切地给冯·维德写信说:“我问心无愧,因此我毫不怀疑我可以依靠上帝的怜悯。他会保护我,把我从危险中解救出来。”[27]

        1532年2月,罗特曼在该市的一个主要教堂——圣兰伯特教堂的院子里布道,公众被他动摇了,自发地选择以他作为自己的牧师。更重要的是,他在市议会中赢得了足够的支持,他不会再被驱逐。明斯特的宗教热情不仅限于再洗礼;全城的教堂中都有激进的路德派传教士,除罗特曼以外,他们都来自其他城市。

        在使城市皈依方面,罗特曼的成功与低地国家的霍夫曼和马提斯不相上下。罗特曼在圣兰伯特教堂的布道结束后不久,冯·维德在失意中辞职,他的继任者在被祝圣[28]之前就去世了;6月,没有多少基督教会背景的一位伯爵的儿子,弗朗西斯·冯·瓦尔德克,升任亲王主教。下半年,他封锁了这座城市,而作为回应,再洗礼派成功地突袭了城墙外冯·瓦尔德克的总部,这样明斯特就完全处于叛逆的再洗礼者的控制之下了。1533年2月,他们达成了一项妥协:教区教堂可以实行路德教,而大教堂将保持天主教。[29]

        尽管达成了妥协,但明斯特的天主教徒和路德教徒的时间已经不多了。罗特曼的小册子,由富有的布商克尼佩尔多林承销,已经渗透到了低地国家。这些小册子将私有财产列为邪恶的根源:“上帝所造的万物都是共有的,就像今天仍然可以共同享受空气、火、雨和太阳一样,任何东西都不能让某些偷窃者抓在他们自己手里。”罗特曼将明斯特描绘成一座富足的城市,它张开双臂欢迎信徒,数百名来自低地国家的可怜人南行至明斯特——再洗礼者口中所谓的新耶路撒冷城——去朝圣。

        1533年初,天主教徒、传统的路德派教徒和再洗礼派教徒不稳定地混杂在这座城市,其中的再洗礼派不想遵守与亲王主教之间的协议。与此同时,从低地国家涌入很多再洗礼者,引发了3月份的特别委员会选举,选举结果是激进的路德派占多数,相当多的再洗礼者占少数,没有天主教徒。[30]市议会对那些在基督大教堂给婴儿洗礼的家庭处以罚款,标志着新的统治开始。

        与此同时,在低地国家,扬·马提斯为一个来自莱顿市的名叫扬·博克尔松[31]的人施行再洗礼。和霍夫曼一样,马提斯是一个冲动、暴躁的传教士,而扬·博克尔松则利用自己的戏剧表演技巧和精于算计的能力塑造出一股强大的政治力量。

        作为一名镇长和一名农奴妇女的私生子,博克尔松一出生就面临着痛苦和失望,父母安排他接受了初级教育,并让他在裁缝店做学徒,但他并不擅长于此。他的一些其他天赋,很快就在明斯特显现出来:金发碧眼的英俊外表,优雅、狡黠、富有演讲造诣和表演天赋。用千禧年学者诺曼·科恩的话说,他利用这些天赋“将现实生活塑造成一部戏剧,以自己为主角,以整个欧洲为观众”[32]

        1533年末,马提斯派了几名使者前往明斯特,他们于次年1月抵达。其中包括博克尔松,他在前一年夏天来过这座城市。一到那里,他们就发现罗特曼及其追随者已经为城里的大概1/5的成年人施行了再洗礼,该城有多达1/3的人相信世界末日即将来临。马提斯本人于1534年2月9日来到这里。[33]马提斯和博克尔松的到来标志着两位再洗礼者融合在一起:罗特曼具有说服力的土生土长的明斯特再洗礼主义,以及梅尔基奥·霍夫曼从低地地区衍生的催眠般的末日幻觉。对双方来说,他们抵达明斯特的意义非常明确。用学者拉尔夫·克勒策尔的话说:

        先知派遣使者施洗被解读为上帝正在准备世界末日。在此背景下,战争、瘟疫和通货膨胀,以及帝国的改革,突然成为末日的预兆。[34]

        事情从这里开始发展迅速。再洗礼派让使者到邻近的城市传达信息:到1534年复活节,上帝会回来惩罚恶人,很少有人能活下来;只有在新耶路撒冷城明斯特才能获得平安和救赎。世界末日即将来临。

        1534年2月6日,罗特曼为河对岸女修道院的修女们表演了一场滑稽戏剧:

        他发表了一场赞美婚姻的布道,并用他演讲中神奇的击槌声打开了修女们童贞的营房。他似乎在敦促修女们去繁殖人类,而修女们对此并不十分反感。接下来,为了让修女们进一步从愚蠢过渡到彻底疯狂,他告诉她们修道院的塔楼及房屋结构将在第二天午夜倒塌,连同所有住在里面的人。他的神谕带给修女们的与其说是痛苦,不如说是欢乐,因为她们的灵魂充满了欲望,憎恨修女的生活。[35]

        这些年轻的修女无处可去,她们认为罗特曼是上帝派来的人,于是带着自己的财产跑去了他的家。整个城市的市民都无眠,迎接末日的到来。

        但是末日没有到来,为了挽回面子,罗特曼利用了一个正符合时机的圣经例子——约拿的故事,约拿错误地预言了亚述首都尼尼微的沦陷,全能者出于怜悯而没有责罚他。两个早晨后,再洗礼派的其他成员担心罗特曼的预测能力会使教派受损,于是滑稽地冲过街道,用“可怕的喊叫和疯狂的怒吼”大声宣讲,让不信教的人忏悔,试图以此来维护他们的信誉。那天下午,扬·博克尔松和克尼佩尔多林也加入了进来,一次又一次地大喊:“忏悔!忏悔!忏悔!”他们的疯狂感染了其他人,所有人一起以各种各样的姿态跳上跳下,摇着头,还有的扑通一声倒在泥里。一位再洗礼者骑马疾驰而过,宣布结束,并告诉所有人,他看见了成千上万的天使,所有人都将听到天使们的声音。[36]

        这种疯狂激励了再洗礼者,当天晚些时候,500名再洗礼教徒占领了城市市场,后来被主流路德派教徒阻止。但路德教的阻止是短暂的;在2月23日的选举中,再洗礼派最终完全控制了市议会。2月底,武装的再洗礼派向非教徒发出最后通牒:选择接受再洗礼或被驱逐,“从这里滚开,你们这些不虔诚的人!上帝会惩罚你们!”[37]

        再洗礼派摧毁了教堂的祭坛,并花费数天时间掠夺教堂里的金银,还焚烧雕像。他们还收取刻有“DWWF”的铜币,以允许行人通过戒备森严的城门。到了月底,亲王主教的军队开始围攻明斯特城,博克尔松告诉信徒,圣经要求,当末日来临时,上帝准许基督徒不再容忍,并准许他们全副武装去防御。

        第一批被驱逐的天主教徒被允许带走他们的财产,但短缺的食物除外;最后一批离开的人只能带衣服,但衣服上的纽扣和金钩都被没收了。[38]再洗礼派教徒对政变中路德教对他们的反击记忆犹新,他们把愤怒集中在男人身上。而路德教徒和天主教男子预测亲王主教能够夺回这座城市,因此留下他们的女人来守卫他们的房屋和财产。这造成城墙内女人数量过多,很快将产生可怕的后果。[39]

        1月,再洗礼者自愿捐出所有的物质财产——因为世界将会在复活节终结,但是到了3月,市议会开始禁止私人持有财产;罗特曼和博克尔松要求所有的金银和纸币都要上交到市政厅。为了鼓励捐赠,博克尔松宣扬,信徒有三种分类:完全放弃自我的好基督徒;保留部分财产的人,他们需要向上帝祈祷,但是上帝会心存报复;只为了方便而受洗的人,他们什么也指望不上,在末日将会被烧死。

        马提斯和博克尔松把镇上所有人都聚集在大教堂广场上,向他们大声喊道,仁慈之门已经关上,上帝很生气。那些已经受洗的人被聚拢在一边,剩余的人,总共大约300人,被解除武器,被迫俯伏在地,祈求怜悯一个小时,这期间随时都可能被杀死。然后,他们被带进大教堂,被迫跪祈上帝3个多小时。最后,教堂门外的博克尔松戏剧性地打开门宣布:“亲爱的兄弟们,看在上帝的分儿上,我要告诉你们,你们得到了上帝的怜悯,你们将与我们同在,成为圣人。”第二天,他对镇上2000名未受洗礼的妇女重复了这个过程。[40]

        到3月底,这座城市已经经历完一次宗教清洗;大约有2000名天主教徒和未受洗礼的路德教徒被驱逐,人数与从荷兰和东弗里西亚迁移来的再洗礼者人数大致相等,因此人口基本保持不变,约为9000。但是,该镇的宗教结构以及心理结构已经发生变化。不易受到他人影响的天主教徒被更易受到影响的再洗礼者取代,这加剧了已经变得明显的群体幻想行为。此外,对不敬虔者的驱逐和信徒的迁移只会加强“新先知”罗特曼、马提斯和博克尔松所说的“大灾难”的确定性,即末日真的要来了。

        再洗礼者不仅要拥抱未来,还要毁灭过去,因此他们下令销毁所有市政记录,特别是债务分类账簿。狂热者们焚烧路德和阿奎那[41]的书籍;一些家庭和教堂里只剩下《圣经》。最终,博克尔松还对城市的门和街道进行一般性重命名,例如,圣路德门被简称为南门,他还按照字母顺序指派姓名给新生儿。[42]

        这些“新先知”开始残酷地惩罚持不同政见者。一位名叫胡贝特·吕舍的铁匠,在2月份的选举中失去了议会席位,还对市政记录被毁感到不满。于是他被带到博克尔松面前,先是戏剧性地被赦免,然后戏剧性地被释放,他哭着求饶,但是被一把戟刺中背部。这位身体强壮、肌肉结实的铁匠还没有死,于是博克尔松朝他的背部开了一枪;吕舍被痛苦折磨了8天才死去。[43]

        复活节前不久,马提斯参加了一些朋友的婚礼;他预言了自己的死亡,格雷斯贝克对此做了记录:

        他在那里坐了一个小时,拍打着双手,上下点着头,沉重地叹着气,就好像快要死了。最后,他又醒了过来,叹了口气说:“哦,亲爱的父亲,不要照我的意思,只要照你的意思。”他站起来,把一只手伸向每一个人,并亲吻他们的嘴唇。他说:“上帝的平安与你们同在。”然后他和妻子一起走了。(那时,再洗礼者还没有很多妻子。)[44]

        1534年,复活节在4月5日到来,但耶稣没有出现,世界也没有结束。那天,马提斯和十几名追随者离开城门,骑着马走向亲王主教的雇佣兵,后者开始屠杀他们。格雷斯贝克记录说,围城者将马提斯的尸体切成100块,玩耍似的用血淋淋的碎片相互撞击,并用一根长矛挑着他的头,然后向城内喊话:居民们应该找回他们的市长。[45]马提斯可能是想吸引耶稣回来,或者,为了完成《启示录》11章中的一段话,即以诺(他自己)和以利亚(霍夫曼,仍被扔在斯特拉斯堡监狱中)的死亡将标志着耶稣的回归。

        博克尔松在乡村传教多年,还在上一年夏天到过明斯特,传教经历磨炼了他戏剧般的间谍技巧。在附近的舍平根镇,据说他通过洗礼治愈了一个生病的女孩,到1534年初他再回到明斯特时,已经很有名气了。他很可能一直在为这一时刻做准备。在此之前,他在明斯特一直保持着相对低调的姿态,马提斯去世后,他站在教堂的上层窗户处俯瞰人群,身穿白色长袍,沐浴在烛光中,右边是克尼佩尔多林,左边是迪沃——马提斯美丽而神秘的妻子,历史只记载了她的教名。

        博克尔松告诉群众,马提斯应该被处死,因为他虚荣并贪婪,这让群众大为震惊。博克尔松指了指克尼佩尔多林,并告诉人们,当他住在克尼佩尔多林家时,看到了马提斯血淋淋地剖开了一名雇佣兵的肠子。这名雇佣兵告诉博克尔松不要害怕:马提斯将受到上帝的审判,而他,博克尔松,必须迎娶他的遗孀迪沃。之后,博克尔松再次指向克尼佩尔多林,让他证明雇佣兵说这话的时候他也在场。人群对这一神圣景象感到兴奋,不少人脱下衣服跳舞,所有人都知道了,博克尔松继承了马提斯的职位。[46]

        马提斯和罗特曼还遗留了一个问题,那就是为什么耶稣又一次没有出现,博克尔松必须向信徒解释这个问题。他预言,耶稣现在不会回来,直到新耶路撒冷城清除所有不洁的元素。

        博克尔松不仅是一位杰出的煽动家,而且还是一位有能力的军事指挥官。他加强了该市本就很强大的防御警戒线,包括双墙、护城河和石制圆形大门。9000名公民面对的是数量大致相等的雇佣兵,因此不允许有累赘:妇女不仅在火药厂协助男子,而且还将亚麻花环浸入沸腾的沥青和生石灰锅中,从城墙上扔到突袭的雇佣兵身上。晚上,博克尔松的人溜进雇佣兵帐篷,割断他们的喉咙,并给幸存者留下纸条,鼓励他们皈依再洗礼派。

        5月25日,博克尔松的部队轻松击退了亲王主教军队的进攻,其中许多人投奔进城(尽管其中6人不久就因酗酒闹事而被处死)。[47]这场胜利极大地鼓舞了再洗礼者;当然,上帝是站在他们这一边的,亲王主教军队的失败巩固了再洗礼者对城市的控制。

        7月,博克尔松宣布所有以前的婚姻无效,并命令所有成年人再婚。此时,路德教和天主教留下的女性加剧了男女比例失调,女性的数量几乎是男性的三倍。因此再洗礼派鼓励一夫多妻制。起初,再洗礼派中那些富有攻击性的男性疯狂地在城市里四处寻找年轻女性和童女,他们基于一个理论,用格雷斯贝克的话说,“拥有的妻子越多,这样的基督徒就越好。”很快,领导层意识到,由此产生的自由放任的雄性激素已经破坏了城市的稳定。为了遏制这些疯狂男性的行为,他们规定,新娶必须经过主妻的同意,并允许各方当事人都可以提出离婚。但即便如此,第一任妻子也对他们新扩大的家庭感到不满,这是可以理解的,她们经常虐待这些新添的妻子。为了鼓励人们遵守一夫多妻制,领导层将最顽固的妻子监禁起来,并斩首了不少人。[48]

        婚姻法引发了一场暴动。大约120名男人抓获了博克尔松和克尼佩尔多林,并指认他们为刽子手,但是一场反击战将这二人又营救了出来。大多数叛乱者都祈求到了宽恕,但博克尔松枪杀、斩首了47名叛乱者,还有少数叛乱者被砍死。除此之外,博克尔松还处决了更多抵制一夫多妻婚姻的妇女。

        8月,亲王主教又进行了一次袭击,他们几乎冲破了内墙,但最终被击退。袭击者遭受了可怕的损失,因为当他们爬向城墙抬起头的时候,发现迎接他们的死亡形式是煮沸的大锅、木柱和树木,一旦木桩和树木掉落,会立即将他们其中的几个人从爬梯上带下。他们中的幸运儿从破裂的外墙逃了回来。之后,亲王主教的军队几乎解散。[49]

        这场胜利鼓舞了博克尔松的精神和气势;他认为自己是大卫王转世,也是这个星球唯一合法的统治者。他还英明地推断,这样一个惊人的说法最好是出自他人之口。那年夏初,一位名叫扬·杜森舒尔的跛行金匠从附近一个小镇来到明斯特,他自称拥有预言能力。果然不出所料,在亲王主教第二次袭击失败后,他宣布上帝已为博克尔松施了涂油礼,任命他为国王。[50]

        作为君主,博克尔松宣布明斯特的旧宪法不适合新的神圣秩序,废除了市议会和两个市长职位,并以皇家法庭取而代之。“新耶路撒冷”被重新命名为“上帝的子民”。

        在击退亲王主教的第二次进攻后,邻近的亲王加强了封锁,并任命了一名新指挥官。因此,食物和供应品很难偷运到市里;这位新国王的臣民们衣衫褴褛,慢慢被饿死。博克尔松却一点儿也不担心,他对戏剧和戏服的热情开始高涨。格雷斯贝克这样描述博克尔松:

        他为自己做了一件天鹅绒外套,用华丽的丝织布制作成华丽的紧身裤和紧身短上衣,还有华丽的金帽子、一顶带天鹅绒细绳的皇冠、一把配有金鞘的刀、一把配有金鞘的匕首、戴在脖子上的许多金项链……他把世界挂在链子上,就像在他的盾形纹章上挂着的那个金色圆球一样。这像他的盾形纹章一样闪烁着蓝色斑点。[51]

        博克尔松的奢华感还延伸到为他的骑兵装备华丽的衣服,用华丽的丝绸,“制作成半身服装,一只手臂没有袖子,胸部镂空,因此他们在马背上能给人留下深刻印象”,并为他的家仆穿上红色外套,配上灰色或金色戒指,以戒指大小显示仆人等级。[52]

        10月,杜森舒尔将预言中博克尔松的统治权扩展到整个地球,并宣布上帝将吹响三次号角,这标志着该城通往上帝应许之地的旅程开始。1534年10月31日日出前,瘸腿金匠杜森舒尔爬上圣兰伯特教堂的塔楼,吹响了牛角。然后他下楼,继续在街上吹喇叭,其他人则吹奏其他乐器。成千上万的居民费力地走向大教堂广场,男人们扛着武器,女人们抱着小孩和她们最珍贵的财产。更多的号角吹响了,博克尔松骑着一匹白色的种马,全身行头,在20个护卫的簇拥下来到这里;后面跟着的是坐在马车里的迪沃王后,她由仆人侍奉着,还有他的另外15位妻子。

        此时,博克尔松已经把没有到来的末日提升到了高级剧场。他命令一位受尊敬的贵族,格拉赫·冯·武伦,带领自杀式冲锋队冲向围攻部队。然后,这位国王让冯·武伦宣布,这只是一次旨在测试他们意志的演练,他很高兴地通知他们,他们已经通过了。博克尔松脱下他的猩红色长袍,摘下王冠,放下君主权杖,和他的“长老们”一起为饥饿的群众提供了一场盛宴。除了给他们供应食物,博克尔松和长老们还与男人们开了一个轻松的玩笑——谈论他们妻子的数量。格雷斯贝克写道:

        只有一位妻子的市民羞愧地坐着。这样的人还不算信徒,不算一个真正的基督徒……他们坐着吃喝,兴高采烈。在大教堂广场上,这些人看上去并不像马上要死的人,每个兄弟都坐在妻子们旁边,到晚上可以选一位他渴求的人和他一起上床睡觉。[53]

        市民们饱足后,博克尔松站起身来,声泪俱下地宣称,他辜负了人民的期望,将退位。博克尔松刚说完,杜森舒尔就转达了上帝那里传来的消息:上帝命令他和其他26个人一起前往附近的4个城镇传播消息,以加速末日的到来。

        此外,杜森舒尔透露,博克尔松应该恢复其国王的职责,其中最主要的职责就是惩罚明斯特城中的不虔诚行为。然后,这位金匠把王冠重新戴在国王的头上,并把他的猩红色长袍和君主权杖还给了他。

        这戏剧性的一幕也许就是博克尔松本人的杰作;他在27名信使及其134位妻子面前,一举提升了自己的权威,摆脱了潜在的竞争对手。然后,国王和他的妻子以及宫廷人员,吃了一顿丰盛的晚餐;每上一道菜前,他的仆人都会大吹大擂。晚餐结束时,博克尔松沉默地坐了一会儿,然后告诉在场的人,他从上帝那里得到了启示,上帝命令他把刀和一个被俘的雇佣兵带来。他命令俘虏坐下,被拒绝后,他威胁俘虏说要把其腰斩,而不仅仅是斩首,俘虏未反抗。完成了上帝的旨意后,博克尔松结束了这顿饭。[54]

        27名信使离开了;然后26名信使被抓获并被雇佣兵处决了,除了一个名叫海因里希·格拉斯的人,他因会说拉丁语而没有被杀。这也引起了亲王主教的注意,使格拉斯有机会叛变。[55]

        格拉斯回到明斯特,讲述了他戏剧性地从亵渎上帝的人手中逃脱的故事,然后离开了这座城市,将无价的情报送给了亲王主教:食物和武器已经短缺,这座城市已经分裂,一边是曾经忠诚但现在饥肠辘辘、士气低落的民众,另一边是再洗礼派的精英们,他们的特权使他们能够保持精气和幻想。

        格拉斯离开这座城市之前给镇上的人留下一封谴责信:“现在明斯特正在进行的行为都是一场骗局,因此,我谦卑地祈祷你们最终睁开眼睛——是时候了!注意你们的行为,你们显然违背了上帝和他神圣的话语。”[56]尽管信使们已经被杀,但博克尔松安慰信徒们,信使死亡是上帝的意愿,他派遣了更多的信使到更远的低地国家去招募新的再洗礼者来守卫城镇。为了迎接增援部队的到来,他下令制造装甲车,以穿越封锁线回到城镇。

        但增援没有到来,第二批信使也杳无音信。这些持续出现的不幸事件,再加上邻近亲王向亲王主教支援了更多的雇佣兵,使他们没有机会再取得军事胜利。罗特曼告诉市民,虽然他们不能依靠外部世界,但上帝会拯救他们。随着食物和资源的日益匮乏,博克尔松削减了军队,转而专注于神学研究。

        1535年1月1日,博克尔松发表了一份宣言,其中规定,“只有那些以上帝的话语为导向的政府才能得到保护”,“做出法律决定是国王、他的摄政者以及法官的特权”,“一个不受非基督胁迫的政府不应该受到干涉,即使它还没有接受信徒的洗礼”[57]

        一群年仅10岁的儿童因偷窃食物或涉嫌叛国而被处决。一位名叫图尔班·比尔的丹麦贵族离城后不久被发现是间谍,三个知情妇女在大教堂广场被斩首。其中一个是克尼佩尔多林的情妇,她没有被纳为妻子,因为她是妓女。被带到断头台上时,她公然谴责克尼佩尔多林的背叛行为;愤怒的克尼佩尔多林抓起一把刀砍了她的头。[58]

        到了复活节,低地国家的救援部队还没有出现,博克尔松宣称,他一直以来都是从精神意义而不是军事意义上定义“胜利”的。当镇上的流浪猫狗都已经被吃掉的时候,饥饿的市民们才被允许离城。

        博克尔松给予民众三四天的离城期限。离城民众的衣服被交换为破布;那些在期限之外离开明斯特的人被抓获并被处以绞刑。还有少数按照期限离城的民众被城外的雇佣兵屠杀,他们的头被挂在木桩上。格雷斯贝克将此解释为“霍布森选择”[59]:“他们仍然选择从城市叛逃,因为他们在城市里遭受了如此巨大的饥饿。他们宁愿被杀,也不愿在巨大的饥饿中受苦。”[60]

        几周后,为了节省食物,博克尔松允许男人与他们的某些次要妻子以及孩子断绝关系,这样他们就可以离开;博克尔松也和他的妻子以及孩子断绝了关系。格雷斯贝克观察到,“如果有人出一块面包,那么肯定有一些再洗礼者愿意用一位妻子换回一块面包。当没有面包的时候,法庭就没什么存在意义”[61]

        这时,雇佣军每天都要将50名男性逃犯斩首,让逃犯中的妇女和儿童挤在围墙外的一块几百码宽、周长4英里的地狱般的土地上,其在一个多月的时间里都没有食物和住所。后来雇佣军允许其中的外国妇女和儿童回家,明斯特当地人被拘留,一直到城市沦陷。[62]

        大约5月23日,格雷斯贝克和其他几个人也逃离了这座城市。和以前大多数逃离者一样,他们被抓获了,但幸运的是没有被杀;就格雷斯贝克而言,由于他年轻、个性讨人喜欢以及抓获他的雇佣兵心地善良,他只是被判入狱。[63]他的成功逃离鼓励了数百人逃离明斯特,但最后几乎所有人都被杀了。

        格雷斯贝克在牢房的泥土地上为雇佣兵画了一张地图,勾画出军队应该如何进入城市。6月22日晚,一位名叫“朗斯特里特的小汉斯”的人(曾是围攻者,后来叛变到明斯特,然后又和格雷斯贝克一起逃离明斯特)和格雷斯贝克通过一个小型浮动桥游到一个能够穿过护城河的地方,35名雇佣兵从那里迅速穿过护城河,杀死了熟睡的哨兵,用小汉斯的钥匙打开了大门。在防御者最终关闭城门之前,至少还有300多名雇佣兵沿着又短又细的堤道进入(比起格雷斯贝克,围攻者们更信任小汉斯,也许是因为小汉斯最初是他们中的一员,所以小汉斯带领他们进攻,格雷斯贝克则留在桥上)。重新关闭城门后,困在城墙内的入侵者本来几乎就要被博克尔松的部队消灭了,但他们狡猾的指挥官威廉·施特丁用假谈判拖延了一段时间,直到后来亲王主教的主力兵团涌入该城,并在残酷的肉搏战中扫荡剩余的再洗礼者。[64]

        雇佣兵屠杀了600名居民,当他们发现每个人分到的战利品份额为50荷兰盾(相当于今天的1600美元)时,可能存在的任何罪恶感都消失了。再洗礼派护城河首领克里斯蒂安·克尔克林克很快被处决,一起被处决的可能还有迪沃王后。但博克尔松、克尼佩尔多林和另一名副手布伦德·克雷切丁克因各种神学犯罪、盗窃和谋杀的罪名而被慢慢审讯。博克尔松被捕几天后,亲王主教悲伤地问道:“你是国王吗?”博克尔松傲慢地回答:“你是主教吗?”[65]上层领导中可能只有罗特曼逃脱了,而且人们再也没有听说过他的消息。

        1536年1月22日是对博克尔松行刑的日子。按照帝国新刑法规定的程序,两名刽子手用一根木桩附着一个铁圈,圈住博克尔松的脖子使他不能动弹,并用灼热的钳子把他的肉撕下来。根据冯·克森布罗克的记录,“当被灼热的钳子触碰时,肌肉会发出明显的火焰,并因此散发出强烈的恶臭,使旁边的人感到恶心”[66]

        看到这一幕,克尼佩尔多林试图用脖子上的项圈让自己窒息,但刽子手们用绳子把他张大的嘴牢牢地固定住,并把他捆在木桩上,然后又回到博克尔松身边继续钳肉,博克尔松默默地经受着这种折磨。之后克尼佩尔多林和布伦德·克雷切丁克也经历了这种折磨。然后刽子手用刀划开三个人的喉咙,最后刺中心脏。刽子手把他们直立的尸体塞进铁笼里,然后把铁笼挂在圣兰伯特教堂的塔楼上,让所有人都能看到。[67]他们的骨头在那里保存了50年,街上仍然有这三个笼子[68]

        明斯特再洗礼派的继承者从他们的经历中吸取了教训;今天,成人洗礼的教义主要存在于阿米什和门诺派中,它们既安静又和平。

        第三个大规模的中世纪末日事件发生在17世纪中期的英格兰,当时整个英格兰都处于混乱之中。17世纪早期,议会与斯图亚特国王之间存在冲突,后者继续宣称国王的神圣权利;而议会不满于查理一世对安立甘宗[69]的支持,其更亲近天主教。

        不过,他们的冲突主要围绕财政问题。查理一世由于无法筹集到必要的资金支持他的军事行动,试图用一些非法手段结束议会的财政权力,尤其是筹集“船款”的权利。这是一项古老的皇家税,只在战时适用,而且只适用于沿海城镇。查理一世在和平时期收取议会外税收,并将其推广到内陆社区,引发了三场独立的冲突,其统称为英国内战,最终国王于1649年被斩首。奥利弗·克伦威尔建立了短暂的联邦和保护国制。克伦威尔的统治,以及他能力较弱、参与政治较少的儿子理查德的继任,被证明是灾难性的,使查理二世的君主制统治又在1660年得以恢复。

        动荡催生了两大派别:一个是平等派,主张法治、民主改革和宗教宽容;另一个是第五君主国派,是一个千禧年主义团体,其末日论支持“圣徒”统治,自认为是正义的骨干,但是和明斯特的再洗礼派一样,一点儿也不民主、不宽容甚至不谦逊。第五君主国派统治英国后,正义者将无法得到休息,因为它颁布了一项神圣法令,授权随后征服欧洲大陆。尽管这两个派别都没有完整地幸存下来,但第五君主国派在1653年短暂存在的“贝尔朋议会”(以一名成员的名字命名)中几乎掌握了政府大权。“贝尔朋议会”是克伦威尔令人眼花缭乱的一系列议会之一。[70]

        自约阿希姆以来,困难时期就会产生大量的数秘主义和末日论算术。英国外交官约翰·佩尔在1655年写道:

        有些人认为,395年是异教终结的时代,因为当时罗马帝国中不存在任何一座异教徒圣殿。在此年上加上著名的数字1260,也就是1655年,是末日的新纪元。另一些人则认为是1656年,因为他们将《创世记》第五章中先辈们的生活时间进行加总,发现从创世到洪水一共经历了1656年,并由此推断,耶稣一定和挪亚一样,在第二年到来。还有一些人认为应该再等三四年,认为1260这个数字必须从狄奥多西死后、他的儿子们分裂罗马帝国时开始算起。甚至还有一些人认为需要再等11年,我们不必惊讶,这是由数字666推算出来的。(也就是说,末日时间将在1666年。)[71]

        第五君主国派中一个叫阿里塞·埃文斯的人轻易地做出了最愚蠢的估计。《但以理书》中的“小号角”在书中代表希腊塞琉西帝国统治者安条克四世,那么它在当前时期又代表了谁,这是第五君主国派末日论中的关键要素之一。大多数信徒认为当前的小号角是国王查理一世,这让埃文斯很生气,因为他是已故国王及其大主教威廉·劳德的坚定支持者。对埃文斯来说,大主教的名字正标注着世界末日的时间:VVILLIaM LaVD中的罗马数字加起来是1667年[72]

        在另一领域,物理学家艾萨克·牛顿写了大量文章解释《启示录》经文(在他死后,其结集成一本《对但以理预言和圣约翰启示录的考察》),但是他很明智,并没有预测耶稣复临的日期。[73]

        也许最有影响力的末日推算,当属一位名叫亨利·阿彻的传教士了。他在1642年出版了《基督亲临统治全地》,一部仅58页的著作,将但以理梦中被石头打碎的野兽重新解释为四个君主国:亚述/巴比伦、地中海/波斯、希腊和罗马。他认为即将到来的第五个君主国将由耶稣亲临统治,第五君主国派的名称由此而来。阿彻的计算表明,耶稣将会在1666年或1700年复临。这种模式完全属于新教神学范畴。路德认为第四君主国和野兽都是教皇制的隐喻。[74]

        许多第五君主国派成员都是英国内战以及克伦威尔议会和护国政体的主要参与者,他们认为自己是即将到来的基督复临和最后审判事件的被动观察者。在英国内战期间,该派别中最杰出的人物是托马斯·哈里森,他官至少将,表现出极大的勇气和极强的能力。他还担任议会议员,主张进行改革。

        大多数第五君主国教徒都主张通过法律手段寻求变革,例如哈里森。但是也有少数人并不认同,特别是一位名叫克里斯托弗·费克的煽动性传教士,他敦促公众进行一场暴力革命,去迎接一个由“圣徒”——也就是他们这些虔诚的精英——组成的千禧年神权政体。[75]

        第五君主国教徒一开始很顺利,他们(包括哈里森)都参加了战争并在新模范军中担任高级职位,也是1648年克伦威尔清除“长期议会”事件的参与者。但随着时间的推移,克伦威尔要么不愿意,要么无法接受第五君主国教徒的政治和神学要求,他们之间的联盟开始破裂。1653年,第五君主国派在贝尔朋议会中达到了权力的顶峰,但维持时间不长,随着议会的解散和随后独裁护国政体的建立,克伦威尔和第五君主国派之间的关系恶化。克伦威尔断断续续地拘留了包括哈里森在内的许多第五君主国派成员,但他通常会谨慎对待这些老盟友,没有因为他们的千禧年信仰而处决他们。例如,1654年,那时的哈里森可能已被多达8个不同选区选中进入新议会,他提交了一份请愿书,敦促恢复“一个完全自由的国家”。克伦威尔发表了反对意见,拘留了哈里森,然后“温和”警告了他;几天后,又释放了他。[76]

        用历史学家罗杰斯的话说,克伦威尔对待第五君主国派成员“就像对待自己顽皮的、被误导的孩子一样,虽然他们违背了他的意愿,但他不希望他们被监禁的天数太多,哪怕多一天也不行”。[77]

        随着1660年4月查理二世复辟,第五君主国派的幸运终于耗尽。新国王对这群人怀有偏见和仇视。哈里森不仅曾经是查理一世被监禁时的看守,而且在判处查理一世死刑的司法程序中也扮演了重要角色,因此他尤其受到查理二世的仇视。6个月后,国王审判哈里森和他的同僚们(弑君者),其中有一些是第五君主国派的成员。大多数人都被判有罪,而哈里森发现自己是第一个被判有罪的人,并被告知:

        在囚车上被拖到行刑地点;在那里,你将被吊起来,活人剖腹,你的内脏将在活着的你面前燃烧,然后你的头将被砍掉,身体将被肢解为4块,由国王陛下随意处置。[78]

        曾经目睹过查理一世被斩首的日记作者塞缪尔·佩皮斯,记载了10月13日对哈里森的行刑:

        我到查令十字街,去看哈里森少将被拖行、绞死并被肢解为4块;就在那里,观看的人都很高兴。他很快就被砍成块,头和心被展示给人群,这时人群发出巨大的欢呼声。[79]

        在这次事件中,哈里森的头和4块身体在城里被四处展示,这令国王很高兴。两天后,佩皮斯又目睹了另一位著名的第五君主国派弑君者约翰·卡鲁的死刑执行仪式,他“在查令十字街被绞死并被肢解为4块,但是,幸运的是,他的身体各块没有被吊起来展示”[80][81]

        第五君主国派中的一个小派系,其领导者是一位名叫托马斯·文纳的制桶工匠。他们一直幻想自己的民众支持率很高,足以通过武装暴动实现耶稣复临。尽管第五君主国派的其他一些更清醒的成员,如哈里森等人认为他们是鲁莽的,但文纳还是在1657年4月策划了一场暴动,不过暴动还没开始,就被揭发了,这证明他确实鲁莽。

        奥利弗·克伦威尔对文纳及其同伙非常宽容,只是将他们囚禁在伦敦塔;克伦威尔死后,他的儿子理查德释放了这些无能的策划者,他们只被监禁了不到两年。随着查理二世的复辟以及哈里森和其他参与弑君的第五君主国派成员的死亡,刚刚获释的文纳团队感到绝望,决定采取行动。1660年12月,文纳的一个喝醉的同伙向一个名叫霍尔的人吹嘘他即将参加一个“光荣的事业”。霍尔问是什么,他回答:“我们会把查理从王位上拉下来。因为国家应该由圣徒来统治。”霍尔迅速向当局报告了谈话内容,然后被带到国王面前,国王下令逮捕第五君主国派中的其他不满者。

        文纳和他的大约50个同伙没有被逮捕,因此他们继续执行他们的计划。1661年1月6日晚上(选择这个日期是因为他们认为第十二夜狂欢结束时城市的看守人都会喝醉),他们闯入圣保罗大教堂,并在教堂外面派了一个守卫,结果这个卫兵很快开枪打死了一位路人,因为当被问及忠于谁的时候,这位路人宣称自己忠于国王。密谋就这样暴露了,文纳那支可怜的小部队在伦敦的街道上被不断壮大的“火车队”追赶,这些“火车队”由城市民兵构成,后来国王的军队也来增援。在接下来的三天里,文纳的士兵从人数上远逊于对方,他们进行了一系列越来越绝望的殊死反抗。

        塞缪尔·佩皮斯在1月10日的日记中,简洁地描述了这群人:

        这些狂热分子击溃了他们遇到的所有火车队,把国王的近卫兵赶跑,杀死了大约20人,两次闯入城门;而这一切发生在白天,当全城武装起来的时候,他们总共不超过31人。然而我们却认为他们至少有500人(因为他们几乎在全城的每个地方都出现过,而且他们在海格特地区还待了两三天,还在其他几个地方待过)。闻所未闻,如此少的人竟敢做如此多的坏事。他们的口号是“耶稣国王和城门上的头颅”。最终,他们中很少有人会被分尸,因为他们在暴力中很难活下来:期待耶稣降临这里,并在此刻统治世界吧。[82]

        最后,文纳的追随者中大约有一半死在追杀中,其余大部分后来被绞死,但国王对文纳和他的副手执行了全套的半活剖腹刑,就像对之前的哈里森和卡鲁那样。[83]

        16世纪和17世纪,北欧人通过引人入胜的末日叙事,寻求逃离这个世界的苦难,去往一个美好的舒适世界。在施瓦本农民战争中,托马斯·闵采尔只是把末日神学附加在世俗平民起义的基础上,造成了灾难性的后果;而在疯狂的再洗礼派和第五君主国派的暴动中,从一开始到悲惨结束,都是一场末日事件。

        从18世纪开始,随着一系列金融群体幻觉席卷欧洲,整个国家不再寻求上帝的援助,而是开始寻求玛门的援助。从表面上看,宗教和金融事件似乎属于不同现象,但它们是由相同的社会和心理机制驱动的:叙事的诱人力量;人类倾向于幻想本不存在的“模式”;领袖和追随者的过于自负和过度自信;而且最重要的是,人类有一种压倒性的倾向,即模仿周围人的行为,尽管这种行为毫无根据或是一种自我毁灭。

        3 短暂的致富

        密西西比泡沫与南海泡沫

        在这片广阔的土地上,人们的思想都集中于同一个主题。这一主题吞并了政党政治:辉格党和托利党停止了争吵,雅各布斯派也停止了阴谋。在全国各地的每一家旅店、每一条道路上,谈论的内容都是一样的。在阿伯里斯特维斯,在特威德河畔贝里克,在布里斯托尔和圣戴维斯,在哈里奇和朴次茅斯,在切斯特和约克,在埃克塞特和特鲁罗,几乎在陆地的尽头,人们谈论的只是南海公司的股票——只谈论南海公司的股票!

        ——威廉·哈里森·安斯沃思,1868[1]

        18世纪初,聪明的苏格兰金融家约翰·劳留下了一条可怕的金融混乱足迹,这对20世纪90年代那些在互联网泡沫破裂中幸存的人来说非常熟悉。互联网股票只会伤害数百万投资者;但劳损害了整个法国对银行业的信心,这是更严重的打击。

        劳是苏格兰人,出生于一个有着数百年历史的著名的爱丁堡金匠世家,他的父亲、叔叔和三个兄弟都是金匠。到他1671年出生时,古老的“金匠”职业已经演变并伪装成了一个完全不同的东西:银行业。

        劳的直系祖先生活在苏格兰岛,但当时的苏格兰与未来那个雄伟、贸易自由的不列颠岛完全不同(当时,苏格兰仍然独立于英格兰)。17世纪初,英国人口仅为法国的1/3,比1348—1349年黑死病暴发前的人口还要少。劳时代的英格兰弱小、不发达,当时还卷入了一场弑君性国内战争。当时英格兰在公海上的业务不仅涉及商业,还涉及海盗和走私。随着1600年左右大型贸易组织的建立,大规模国际贸易开始缓慢出现,其中最著名的是东印度公司的贸易。

        当东印度公司的船只拉着从新兴香料贸易中赚得的金银驶入伦敦时,商人们遇到了一个后勤问题:英国没有银行系统,因此没有可靠的地方存放财富。金匠们的职业就是对客户的贵重物品进行安全储存,他们提供了最合理的替代物,即证书。商人们将贵重物品交给金匠后,会收到金匠的证书。关键是这张纸质证书可以用来交换商品和服务,换句话说,它起着货币的作用。此外,金匠们意识到,他们可以创造出超过他们所持有金银(铸币)数量的纸币。

        也就是说,金匠可以印钞。

        只有最虚伪、目光最短浅的金匠才会只制作和颁发证书给储户;大部分金匠都制作纸质证书并以高利率借出。即使是借给信用最好的人,借款年利率也常常会超过10%(尤其当英国处于战争状态时),在那10年里,借出证书比发放证书给储户更赚钱,而且只要金匠仍有偿付能力,这种情况就会一直存在。

        只有在证书持有者没有一次性全部赎回的情况下,这条菊花链才能正常运转。假设金匠的保险箱里有10000英镑的金币,他发行了价值30000英镑的证书,1/3的证书颁发给金币的主人,2/3的证书颁发给借款人。如果持有证书的人要求取出价值10001英镑的黄金或白银,那么不管他们是借款人还是最初的储户,金匠都可能被毁掉。更糟糕的是,如果证书持有者怀疑会发生这种情况,那么金匠办公室不断壮大的队伍将足以引发挤兑,从而推翻整个纸牌屋。在本例中,证书与铸币的比率为3:1;该比率越高,运行崩溃的可能性就越大。即使是最谨慎的金匠/银行家也可能陷入崩溃;1674—1688年,发生了四次有记录的“金匠挤兑”;1677—1694年英格兰银行成立期间,伦敦金匠/银行家的数量从44人下降到12人左右。

        实践当中,金匠/银行家们发现2:1的比率——每接收1英镑存款,向借款人发放1英镑贷款——是相当安全的。这一体系的重要性不容低估,因为它预示着弹性货币供应的诞生,而弹性货币供应量可以根据借款人对贷款的渴望和债权人的放贷意愿进行调整。当借贷双方情绪高涨时,货币供应量就会扩大;当他们感到恐惧时,货币供应量就会收缩。这种纸币数量扩张的现代金融术语是“杠杆”,即纸质资产总额与硬资产的比率。[2]

        银行的杠杆推动了现代金融狂热。在欧洲,它产生于17世纪,导致各种过山车般的泡沫和泡沫的破灭。在接下来的4个世纪里,金融创新产生了各种令人眼花缭乱的投资工具,每一种都只是在稍微不同的伪装下进行杠杆操作,并成为接连出现的各种过度投机的导火线。

        作为英国金匠的继承者,约翰·劳从小生活在一种英国式的银行体系中,纸张可以像稀有铸币一样发挥货币的作用。但即使在今天,许多人仍然抵制纸币的概念;在17世纪之交,纸币让很多普通人觉得可笑。

        到了1694年,年轻的劳厌倦了肮脏、贫穷、处于中世纪晚期的爱丁堡,来到伦敦。他改名为博·劳,在城市里尤其是经常在赌桌上游荡。他与一位名叫博·威尔逊的人为了一个他们都感兴趣的年轻女人而展开决斗,最终他杀死了博·威尔逊。经过审判,劳被判绞刑,然后获得缓刑,然后再次被判绞刑后,逃跑了。1695年初的《伦敦公报》写道:

        约翰·劳上尉,苏格兰人,王座法庭囚犯,最近犯有谋杀罪,26岁,瘦高个,皮肤黝黑,身材匀称,身高6英尺以上,脸上长着麻子,大鼻子,声若洪钟,从上述监狱逃跑。无论是谁能够控制并将他送回上述监狱,都将立即获得由王座法庭支付的50英镑。[3]

        17世纪末,囚犯们比今天更容易“逃跑”,而劳的朋友,可能是得到了国王威廉三世的默许,安排了他的逃跑。[4]上述身体特征描述属于故意误导,因为劳的鼻子并不大,肤色白皙。

        最初,他去了法国,在那里,他的数学能力震惊了周围的人,在赌桌上受到欢迎。但是,把劳称为赌徒,对他的能力来说并不公正。即使在今天,定量能力和专注能力在二十一点的牌桌上也很有用。300年前的赌场的效率较低,冷静计算的回报更为丰厚。这吸引了一些欧洲最聪明的数学家参加这种机会主义游戏,其中最著名的是亚伯拉罕·棣莫弗,他的机会学说构成了现代统计学的重要基础。[5]一位熟悉劳的人写道:

        如果你问我劳的消息,那么我只能说他从早到晚只和玩纸牌的人在一起。他赌博时总是很开心,每天都会提议不同的游戏。他向所有能连续投6个6的人出价10000块亮片,但如果他们投不到,那么他们每次都要给他一块亮片。[6]

        由于连续投6个6的概率是1/46656(1/66),劳的出价一定会获胜(在第10000轮6次投球之前,他输球或付款的概率为19%)。此外,只要有机会,劳都会充当纸牌的“银行家”,他可以扮演赌场而不是客户的角色,无论什么样的特定游戏规则,他都能利用一点儿统计方面的优势。[7]

        据经济历史学家安托因·墨菲估计,当劳离开法国时,他从赌场赢来的钱总计几十万英镑,这在当时是一笔巨大的财富。[8]然后他去往荷兰,在那里,他研究了阿姆斯特丹银行和该城市新证券交易所的尖端业务。他还访问了热那亚和威尼斯,熟悉了那里具有数百年历史的银行体系。

        那个时代的法国人不信任国家管理机构,因此法国几乎不存在银行体系。攒下来的里弗尔(法国古代货币)放在床垫下或袜子里,而不是放在银行里,经济急缺资金。[9]劳赞叹于意大利和荷兰的先进金融体系,并努力使之为法国带来好处;在大约10年的欧洲大陆游历中,劳将自己从职业赌徒转变为经济学家。尽管当时经济学家这一术语还没有出现。

        劳直观地认识到以稀缺金银为基础的货币供应不足是如何扼杀欧洲经济的,而充足的货币供应又是如何刺激欧洲经济的。他早已熟悉私人发行纸币的概念,但以他在荷兰银行业的经验,他认为由中央国家银行发行纸币才能解决货币基础不足的问题。

        劳的这种充足的纸币供应能够刺激经济的直觉,可以通过3个世纪后华盛顿特区出现的婴儿合作社的著名故事(至少在经济学家中非常著名)来理解。这种合作社涉及婴儿保育服务的交易。最流行的方案之一是使用“代金券”:一种票证,每张代表半小时的婴儿照顾时间;因此,一对想要看三个小时电影的夫妇需要使用六张票证。

        此类代金券/票证方案的成功在很大程度上依赖于流通中票证的精确数量。20世纪70年代早期,华盛顿特区有一家这样的合作社,由于它印制的票证数量不多,因此家长们就把它们收藏起来。许多人愿意照看孩子以赚取票证,但愿意花票证请人照顾自己孩子的人很少,因此每个人晚上出去的时间都比自己原本想要的少。

        在华盛顿特区,许多父母都是律师,正如律师们惯常做的那样,为了解决问题,他们通过立法强制要求个人花这些票证。但在经济领域,通过立法解决问题往往会失败,本案也是这样。于是一对经济学家夫妇说服合作社印刷并分发更多的票证。家长们有了充足的票证,所以晚上会出去玩儿更长时间。[10]

        同样,劳的金匠/银行业背景和经验告诉他,欧洲经济停滞的原因是铸币短缺,除了其他措施,印刷纸币可以弥补铸币的短缺。劳并不是第一个意识到这一点的人;几乎从17世纪初金匠/银行家发明弹性信贷开始,他们中的一些人就认识到,扩张纸币可以刺激经济。1650年,也就是在约翰·梅纳德·凯恩斯将以黄金为基础的货币体系称为“野蛮遗迹”的3个世纪之前,王室官员威廉·波特就指出,流通中有限的铸币数量意味着:

        尽管世界上的仓库从来没有像现在这样装满商品,但是你将会看到,由于支付能力不足,商人们进货的速度慢于他们为商品找到销路的速度,而接下来,如果人们由于极度贫困而无法从商人手中买走商品,那么贸易的大门将会关上,其结果就是财富的大门会关上……反之,如果所有人手中的货币(或者类似货币的东西)增加,那么(商人们就不需要囤积货币,只要一有货币,他们就会买进商品,并将其摆在货架上),随着货币供应量的增加,人们手中的钱越多,商品贸易就越多;而这种贸易的增加将增加财富……因此,财富的关键在于增加货币,或者类似货币的东西,而不是囤积货币。[11]

        法国以及劳的祖国苏格兰的银行体系远比荷兰和意大利更为原始,因此,法国和苏格兰的经济运行不佳。罗讷河谷纺织业的恶劣状况给劳留下了特别深刻的印象,他制订了一项通过发行纸币为工厂、托儿所、面包房和作坊融资的计划。1703年底,他认识的一位法国驻都灵大使,将他的建议转述给法国财政大臣沙米亚尔侯爵,但后者婉拒了他。

        新年前后的某个时间,劳回到了苏格兰,那里的情况更加变化无常。早些时候,在1695年,苏格兰议会将该国的远洋贸易垄断权授予苏格兰非洲和东西印度群岛贸易公司(更广为人知的名字是“达里恩公司”)。公司计划在巴拿马地峡的达里恩建立一个贸易前哨站,以缩短从欧洲到亚洲的贸易路线。该公司向达里恩派出了两支探险队,第一支探险队由于计划和供应不善而遭遇失败,而第二支探险队的成员则被西班牙人屠杀。

        1699年,该哨站落入西班牙人手中,苏格兰银行不得不暂停营业。银行的经营困难使劳感到悲痛,他进一步完善了他的经济思想,写成了两本作品:《土地银行》和《论货币和贸易》。前者提出发行以土地为担保的纸币;后者是一本详细而精辟的书,为亚当·斯密的《国富论》一书中的许多概念埋下了70年的伏笔。

        劳开始以一种非常现代的方式深入思考货币的本质。他认为,真正的货币应该有7个基本特征:价值的稳定性、同质性(也就是说,它可以以固定单位交易)、易于运输性、各地统一性、易储存而不损失价值性、可分割成更小或组合成更大的货币量,以及拥有一个关于其价值的印章或标识。[12]

        劳认为土地正符合这些标准,与土地挂钩的纸币将优于锚定白银的传统货币。在今天看来,这种以土地为单位的货币概念似乎很奇怪,但在18世纪早期,它是有道理的。大约从1550年开始,白银从秘鲁和墨西哥的巨大矿场涌入欧洲,这导致其价值贬值。相反,表示一块土地的证书可以根据其未来粮食、水果或动物产量的总和进行估价。此外,白银只有少数几个限定用途:货币、珠宝和器皿或工业用途。相比之下,土地在支持纸币的同时,还有各种广泛的农业用途。[13]正如劳所写,“土地产生了一切,但白银只是产品。土地的数量不会增加或减少,白银或其他任何产品的数量可以增加或减少。因此,土地的价值比白银或其他任何产品更为确定”[14]

        劳逐渐将他的货币概念扩展到了土地之外,包括了那个时代最伟大公司的股票,特别是英国和荷兰东印度公司以及英格兰银行,他认为,这些公司的利润应该比白银更稳定。这是一个合理的假设;但劳没有预见到的是,他的体系本身会给那些价格带来致命的不稳定性。

        作为卡尔·马克思的先驱,劳提出了社会发展的三个阶段。在第一个阶段,货币是不存在的,易货是交换的主要形式,这时,大规模的生产制造几乎是不可能的,因为那需要前期大量的货币开支。用劳的话说,“这种易货状态下几乎没有贸易,也很少有手工生产者”。[劳的“贸易”一词具有现代GDP(国内生产总值)的意义:指消费的商品和服务总量。我们现在认为,劳认为货币时代之前是易货阶段,这种说法是不正确的,因为在原始社会,交换是通过互相赠送和积攒记号来完成的,这些做法的经济效率比易货更低。][15]

        在第二个阶段,经济在金属货币的基础上运行,但金属货币太少。虽然从理论上讲,如果货币短缺,人们就可以在较低的工资下工作,但这会妨碍制造业发展:

        人们会问,如果各国的管理良好,那么为什么它们不自己加工羊毛和其他原材料?是因为在货币短缺的地方,工人的工资很低吗?答案是,没有货币就没有人愿意工作;而且,在货币很少的地方,其几乎不能满足国家的其他需要,因为人们不能同时在不同的地方使用同一枚铸币。[16]

        在第三个阶段,当货币和信贷充裕时,国家繁荣。英国就是一个典型的例子,它在10年前刚刚成立了英格兰银行,以发行钞票。[17]银行周期性地增加和减少钞票供应;劳观察到,“随着英国货币的增加,(国民收入的)年均值也增加了;随着货币的减少,年均值也随之减少”[18]

        劳首次描述了一个被称为“循环流动”模型的经济概念(他的理论核心),这在他的《论货币和贸易》中有数页解释。该模型可以想象为两个同心圆,货币从一个所有者向另一个所有者以顺时针方向流动,而商品和服务则逆时针流动。

        劳设想了一个孤岛,它由一位领主拥有,该领主将自己的土地出租给1000名农民,这些农民种植农作物并饲养动物,其产出占岛上产出的100%。但制成品不能在当地生产,而是通过出口多余的谷物以换取制造品进口。

        此外,岛上还有300名没有工作的贫民,他们靠上帝和农民的施舍生存。为解决这种悲哀状况,劳让领主印刷足够多的货币,用于建立工厂并雇用300名贫民,工人的工资将用于购买农民的粮食。这将增加农民交给领主的租金,领主可以继续用租金支付工人工资。

        正如现代任何一个凯恩斯主义者都会做的那样,劳将他的例子做了概括:

        贸易(也就是现代术语中的GDP)和货币相互依赖:当贸易衰退时,货币减少;而当货币减少时,贸易就会衰退。权力和财富依赖于人的数量以及国内外商品的储存数量;而这些又依赖于贸易,贸易又依赖于货币。因此,贸易和货币两者之间会产生直接和必然的影响;损害其中任何一方都将损害双方,权力和财富都将是不稳定的。[19]

        劳提出一个由苏格兰银行发行纸币的方案,但这个方案被苏格兰议会于1705年投票否决了。两年后,苏格兰通过了《联合法案》,根据该法案,苏格兰与英格兰合并,这样劳在苏格兰就面临着生命危险,因为他本应在伦敦被监禁和处决。劳请求安妮女王的赦免,但被拒绝,于是他逃回了欧洲大陆,在荷兰、意大利和法国之间辗转10年,然后于1715年在巴黎定居。[20]

        那时,他又一次被法国财政大臣沙米亚尔拒绝,他的另一个在都灵开设银行的计划也被萨伏依公爵否决。接下来,他大胆地寻求路易十四的支持。到1715年夏天,路易十四已经统治法国72年,这是欧洲君主至今的最高纪录(伊丽莎白女王必须活到98岁,也就是2024年,才能超过路易十四的在位时间)。路易十四正打算批准劳的建议时却患上了坏疽,他明确地告诉摄政王奥尔良公爵:“我的侄子,我让你成为王国的摄政王。你将目睹一个国王在坟墓里,而另一个在摇篮中;你要永远记住前者的记忆和后者的利益。”[21]英俊、迷人和富有的劳获得了摄政王的支持,并最终说服摄政王进行了一次大规模的金融尝试。

        1715年9月路易十四去世时,法国已经因参与西班牙王位继承战争而濒临破产。劳曾试图组建一家大型国有银行,但受到摄政王的限制。1716年,他成立了“私人通用银行”,正如其名所示,这是一家私人企业,总部设在劳的家里,劳成为一位新加入的法国公民。

        当时,只有5个国家——瑞典、热那亚、威尼斯、荷兰和英格兰——发行了纸币,但其不能用于日常小规模交易,因此法国人对私人通用银行的纸币持怀疑态度。[22]新银行成立之初,劳就立即规定,新纸币可以与流通中的黄金和/或白银一对一兑换。由于当时的法国长期资不抵债,经常发行不足值的金属铸币,因此新纸币的价值比当时流通中的金属铸币要高。为了吸引富有的客户并增强信心,他将存款准备金率保持在较低水平,并开展了一些“亏损业务”,包括免费兑换外币和按银行纸币面值兑换铸币业务,而不是按低得多的(高折扣的)普通的政府纸币价格进行兑换。[23]

        由于票面价值得到了保证,劳的银行纸币和服务所具有的优势引起了人们的注意。正如劳预测的那样,纸币供应的增加提振了王国经济。

        劳的下一个目标是密西西比公司。该公司最初于1684年获得特许经营权,后来通过与其他公司合并而获得法属美洲的贸易垄断权,但由于未能成功利用这些垄断权,其经营者安托万·克罗扎于1717年将特许经营权交还给了国王。现在,由于私人通用银行的成功,劳声名鹊起,他承诺通过让密西西比公司买断王室的巨额债务来拯救国家财政。在这个过程中,劳通过投机买卖公司股票,本已惊人的赌博财富更是成倍增加。

        为了使密西西比公司承担起王室的债务,他让王室扩大他的垄断权,垄断与中国、东印度群岛和“南海”(赤道以南的所有海域)的贸易。但几乎所有的相关贸易路线都已在英国、西班牙、葡萄牙的控制之下。[24]因此,密西西比公司对于这些新大陆贸易的“垄断”毫无价值。但是,这一点儿也没有减少劳的新金融体系的魅力。

        密西西比公司承担了王室的巨额债务,主要是以公民国库券的形式,国库券当时的利率为4%。由于王国的财政状况很脆弱,国库券的交易价格大大低于其面值;劳承诺,他的计划将使国库券的交易价格达到面值,这对王室来说是一个不可抗拒的诱惑。1718年12月,劳成功地使他的私人通用银行升级为国家银行,即“皇家银行”,该银行完成了货币流转链条:新银行将发行纸币,以支付密西西比公司的股票;纸币将用于购买国库券,从而减轻国王的战争债务。难以理解的是,国库券也可以直接用于购买公司股票;由于国库券是债务,公民用国库券购买股票意味着国库券的消失,这进一步改善了王室的财政状况。[25]

        劳的权力使他沉溺于与银币的斗争,他将银币视为国家的经济锁链。硬币被抛弃,纸币被引进。早在私人通用银行存续期内,政府就已经允许公众用私人银行发行的纸币支付税款。1719年初,皇家银行在法国各大城市设立分行,在这些城市,高于600里弗尔的白银交易必须用银行纸币或黄金进行;禁止使用银币支付。到1719年底,皇家银行已经买进了大部分的国库券,国家债务的消失进一步鼓舞了这个国家的动物精神。

        随着密西西比公司股价的上涨,银行印制了更多的纸币以满足对股票的需求,这进一步推高了股票价格,从而导致更多的纸币发行。很快,第一个记载翔实的全国性股市泡沫正在形成。冒失的货币扩张并不完全是劳一个人的作品,也受到了摄政王的影响。劳理解螺旋型通货膨胀的特点,但摄政王并不理解这一风险,他只是被该计划的成功鼓舞。

        以所谓的“永久资本”运营的现代公司,这只是一种花哨的说法,实际上就是,如果某个项目需要10亿美元,那么将通过销售股票来筹集大部分资金;如果费用预测准确,那么该项目将随后完成。

        密西西比公司的股票并非如此。该公司的股票不需要以全价直接购买,而是以认购的方式,以现金支付10%的股价。也就是说,为了获得股份,购买者只需支付10%的股价和20个月的分期付款(或“催缴股款”,每笔5%)中的第一笔,即只需要支付股价的15%。催缴机制是金融杠杆的一种早期形式,如果价格上涨15%,投资者的首期付款价值就翻了一番,它会放大收益和损失;如果价格下跌15%,那么投资者将被清出市场。因此,催缴机制可以被认为是保证金债务的祖先,而保证金债务是随后出现许多金融崩溃的原因,最明显的一次是在1929年。[26]

        为了满足对公司股票的需求,劳的银行发行了更多的股票;查尔斯·麦基描述了接下来发生的事情:

        至少有30万人申购这5万份新股,劳在坎康普瓦大街的住宅从早到晚都挤满了热切的申购者。由于不可能满足所有的申请人,新股东名单只能在几周后才公布,在此期间,公众的焦急情绪达到了疯狂的程度。公爵、侯爵、伯爵以及他们的夫人每天都要在劳家门前的街道上等待数小时,以了解结果。最后,成千上万的人挤满了整条大街。为了避免平民人群的推挤,贵族们在邻近的房子里租了公寓,这样他们就可以一直住在这位新财神爷散播财富的神庙附近(见图3-1)。[27]

        图3-1 约翰·劳的巴黎

        人们很少谈论其他事情,几乎所有有幸拥有股票的贵族都忙于买卖股票。坎康普瓦大街的租金上涨了15倍。

        劳对拥挤的人群感到厌倦,于是逃到他在旺多姆更宽敞的住所,但那里也很快挤满了人。这引起了议长的愤怒,因为议长的法庭就在旺多姆广场上。最后,劳搬到了苏瓦松酒店,那里有一个足够大的花园,花园可以容纳几百个帐篷;拥有该房产的幸运贵族以每月500里弗尔的价格出租每一个帐篷。

        麦基回忆说:“如果在某次会面中,摄政王让贵族们等了半个小时,那么他们会被激怒,但他们愿意等6个小时得到一次与劳见面的机会。”[28]一位女士巧妙地利用了劳对女士的殷勤,她故意让马车在劳面前翻车,劳不出所料地过来救助:她很快就承认了这是她的小伎俩,劳被她逗笑,于是给她签发了股票。拘谨的麦基提到了另外一个会让读者“微笑或脸红”的情节,但没有描述它,只是害羞地提到了一封奥尔良公爵夫人写的信:

        劳太忙了,日夜不得休息。一位公爵夫人在众人面前吻了他的手;如果公爵夫人吻了他的手,那么其他女士会如何?[29]

        其他观察者也证实了麦基的描述。1719年9月,英国大使馆的一名办事员向伦敦报告说:

        坎康普瓦大街是他们的交易场所,从清晨到深夜,这里挤满了亲王和王妃,公爵、贵族和他们的夫人等,总之,这里在法国非常有名。他们出售房地产、典当珠宝,以购买密西西比公司的股票。

        一周后,这名办事员又写道:“这个镇上的所有新闻都是关于股票买卖的。目前,法国人的脑子不会转向任何其他事情。”[30]巴黎成为一个繁荣的城市。泡沫期间,人口膨胀,城市不可避免地受到食品、服务和房地产价格飙升的负面影响。这种气氛高涨的环境下产生了“百万富翁”一词,其被普遍用来形容幸运的股东。[31]另一份大使馆报告写道:“昨天有人告诉我,一家商店在不到3周的时间里出售了80万里弗尔的蕾丝和亚麻布,主要是卖给一些以前从未穿过蕾丝的人;诸如此类的报道每天都如此令人意想不到,其他国家的人根本就难以相信。”[32]

        泡沫通常结束于看似很小的扰动,然后迅速崩塌。震动发生在1720年初,当时孔蒂亲王因没有买到足够多的公司股票而被激怒,为此,他派出了三辆马车,去皇家银行(卖出纸币)换取铸币,这些铸币本应是银行发行新纸币的基础。劳当时担任法国财政部长,不能在公众面前拒绝这一糟糕的请求,因此他做了次好选择:他向摄政王抱怨,摄政王强迫孔蒂撤销这一要求。敏锐的投资者意识到亲王所提要求和摄政王默许拒绝背后的含义:银行发行的纸币数量大大超过了其黄金和白银储备。随后发生了对该银行的全面挤兑。

        劳现在面临着一个危急的选择。他可以通过减少印刷纸币来保护货币币值,但这将损害股价;或者他可以通过印制更多的纸币来保护股价,而这将加剧本已猖獗的通胀。前一种做法将保护法国;后一种做法将保护贵族投资者。

        起初,劳选择保护货币,从而保护国家,或者他认为是这样。1720年2月底,陷入绝望的劳和摄政王开始禁止使用铸币进行交易,并将私人拥有的铸币限制在500里弗尔以内;此外,还禁止囤积银制器皿和珠宝,并招募告密者和经纪人来强制执行这些可恶的新规定。随着仆人背叛主人,父亲背叛儿子,国家的社会关系网开始瓦解。

        由于社会如此混乱,两周后,劳转而保护股价,从而保护富人,他提出每股出价9000里弗尔,这意味着需要印刷更多的银行纸币。到那时,里弗尔贬值带来的通货膨胀已经非常明显,到5月份,他通过两个步骤让里弗尔贬值了50%。1720年后期,为了控制通货膨胀,他宣布大面额纸币价值为零,抹去了国家的大部分财富;经济历史学家安托因·墨菲估计,包括密西西比公司股票和纸币在内的整个系统经通胀调整后的价值下降了约87%。对纸币和密西西比公司股票的最后一击是在那年秋天,瘟疫肆虐马赛,并威胁到巴黎,这进一步动摇了金融信心(见图3-2)。[33]

        图3-2 1719—1720年密西西比公司的股票价格

        至此,劳不仅耗尽了银行资本,也耗尽了他的政治资本。为了避免进一步的尴尬,摄政王允许他体面地离开巴黎,即先去巴黎郊区,然后出国。此时,他谋杀博·威尔逊的罪名已经获得王室的赦免。生命的最后几年里,劳在英格兰和欧洲大陆四处奔波,逃避债权人,其中最著名的债权人是伦敦德里勋爵。1719年9月,劳与伦敦德里勋爵下注,他认为密西西比公司将损害英格兰东印度公司股票的价值,因此承诺未来将向伦敦德里交付大量EIC(东印度公司)股票,这有效地“做空”了EIC的股票(“做空”就是押注股价下跌)。但是,南海泡沫(密西西比泡沫的伦敦孪生兄弟)期间,EIC的股价飙升,同时劳的体系又使法国货币相对于英国货币大幅贬值,这个赌注对劳来说成为一个灾难性的赌注。[34]

        尽管劳已经成为奥尔良公爵的政治负担,但这位摄政王仍然珍视他的才华,如果摄政王没有在1723年去世的话,那么可能会将劳重新召回巴黎。最终,劳于1729年在他深爱的威尼斯病逝,遗留下的主要财产是大量艺术收藏品,几乎没有其他东西。但总的来说,他是幸运的;而未来的泡沫主角往往会有更悲惨的结局。[35]

        密西西比公司确实拥有过一片美洲土地,就是后来的路易斯安那州。但在18世纪早期,该地区人口不足,而且流行疟疾病。为了给这片领土招募定居者,为公司的新大陆经营做准备,劳制作了欺骗性的小册子,将该地区描述为人间天堂。广告宣传失败后,劳又开始征募数千名男女白人囚犯以及非洲奴隶。

        违反纪律的士兵、名门中的害群之马、乞丐、妓女以及任何毫无戒心误入巴黎的农民都被强行运到了墨西哥湾沿岸。那些自愿去的人可以得到免费的土地、饮食和前往新领土的免费交通。[36]

        路易斯安那州所谓的“首府”,在现代的比洛克西和莫比尔[37]之间交替,不过是一处仅有几百名定居者的恶臭营地,他们中的大多数人在1721年公司倒闭后逃往新首府新奥尔良。[38]

        两个世纪以来,劳一直被描绘成一个无赖。最典型的是丹尼尔·笛福[39](以“迷雾先生”的笔名写作)写给那些希望获得巨大财富的人的建议:

        迷雾先生说,如果你已经下定决心了,除了这样做,没有什么别的办法,那么你必须做什么?很简单,你必须佩剑,杀一两个花花公子,被关进纽盖特监狱,被判绞刑,然后越狱,假如你能做到的话,记住,顺便去一个陌生的国家,转做股票经纪人,发行一支密西西比公司的股票,搅动一个国家的泡沫,那么你可能很快就会成为一个伟人;如果你有好运气,那么根据一句古老的英国格言——一旦你敢做一个记录在案的流氓,你可能很快就有希望成为一个贵族。[40]

        经济史学家们对他更为宽容。在劳的时代,经济运行中的货币不以黄金和白银为基础,这种想法在当时似乎是革命性的,甚至是可笑的。但今天的绝大多数经济学家认为,将货币供应量建立在矿山或珠宝盒中的金属量的基础上更加愚蠢。例如,金本位制的权威经济历史学家巴里·埃森格林发现,各国从大萧条中复苏的顺序与它们放弃硬通货(指金属硬币)的顺序恰好一致。[41]从本质上说,我们生活在一个叮当仙子[42]的经济中,因为每个人都相信纸币幻觉,所以它运转良好。就像穿越海格力斯之柱[43]航行、死于地中海之外的远古水手一样,劳的体系——一种群体幻想——由于缺乏经验而走向了失败,但也照亮了未来的路。

        密西西比泡沫传染了整个欧洲大陆。狂热时期,顽固的威尼斯人不再反对合股公司[44];有一些合股公司开始热情地发行股票,但后来随着巴黎灾难的消息南下而消失。荷兰也不愿落后于法国,紧随其后,进行了44次股票发行,其中有30次的价格几乎立即翻了一番。在稍欠发达的欧洲地区,贸易公司像野花一样遍地开花,然后迅速消失;18世纪欧洲股票发行中有整整40%的比重发行于1720年。[45]

        法国泡沫在伦敦最响亮的共鸣来自约翰·布朗特爵士,他出生在正确的时代。1689年,他25岁,英国在这一年继1688年光荣革命之后确立了君主立宪制。这一年,荷兰政权持有者威廉三世应英格兰新教势力的邀请进入英格兰,并以国王的身份登上王位,结束了英格兰斯图亚特君主制时代。

        在此之前,英格兰没有“国家债务”,只有国王及其家人的私人债务。1685年查理二世去世时,他和他的兄弟以及侄子欠了伦敦银行家约100万英镑,没有偿还一分钱的利息或本金。[46]由于王室不偿还贷款的风险一直存在,银行家们就理所当然地收取高利率,这压制了英国经济的发展。光荣革命之后,君主立宪制建立,国王放弃了原有的神圣权利,权利不受限制的问题得以解决,这立即使政府债务对银行家来说更具有吸引力。这反过来又更普遍地降低了利率;由于相对安全的债券不能获得高回报,投资者寻找风险更大的投资机会。这引发了未来10年合股公司的繁荣。

        布朗特是一位浸信会鞋匠的儿子,曾当过撰稿人(也就是从事法律和金融文件的写作,是一个传授房地产和金融活动内幕知识的职业)。借着这个职业,他进入一家小型商业企业集团,该集团包括一家亚麻布企业和一家伦敦供水公司。随后,他又受雇于一家最具野心的新合股公司——剑锋公司。

        起初,该公司生产先进的法式剑杆,但很快就将业务扩展到土地投机和政府债务交易。(商业模式的彻底改变,是与泡沫有关的金融诈骗的一个特征;近3个世纪后,安然公司也从一家枯燥沉闷的管道公司和发电厂蜕变为一家期货交易巨头,直至风险暴露。)

        1710年,布朗特的商业头脑引起了英国财政部长罗伯特·哈雷的注意,他请布朗特帮助解决国家巨额债务问题。与法国一样,英国的巨额债务也是从西班牙王位继承战争中遗留下来的。布朗特确实有那么一两个办法。他对债务的解决方案就是利用人们的投机心理,这也将成为他的招牌方法:政府将发行利率为6%的传统债券,债券中含有彩票,奖金从20英镑到高达12000英镑不等。债券的发行非常成功,这推动了一项更具吸引力的计划——“200万人的冒险”:一种复杂的分层彩票,起价100英镑,连续五次抽奖,最高奖金不断增加,分别为1000英镑、3000英镑、4000英镑、5000英镑,最后是20000英镑;每次抽奖,都有可能实现更大的回报,以此让输家留在游戏中。

        这些投机项目的成功使哈雷更加大胆,他于1711年成立了南海公司,目的是接管英格兰的所有巨额债务,他本人担任董事,董事会中有很多剑锋公司的人,包括布朗特。[47]作为承担政府债务的交换条件,南海公司与密西西比公司一样,获得了南美洲贸易的垄断权,但事实上当时西班牙和葡萄牙已经控制了南美洲,而且该公司董事会中没有一个人有与西属美洲贸易的经验。作为获得这项“垄断”权的部分交换条件,该公司承担了1000万英镑的政府债务。

        具有讽刺意味的是,英国南海泡沫正是在对法国体系的恐惧和嫉妒中产生的,它与巴黎泡沫几乎同时发生。但1717年密西西比公司承担法国国债,这种做法实际上是学习了此前南海公司对英国国债的承担。自1711年南海公司获得经营权的8年里,用承担政府债务换取新大陆贸易的“垄断”权,这种交换规模一直很小;但到了1720年,飞速发展的法国密西西比公司以及数千人涌入的坎康普瓦大街,让英国人羡慕不已。当年法国泡沫吹得最大时,丹尼尔·笛福在巴黎街头写道:

        你们,英格兰的迷雾先生们,在伦敦的你们是一群迟钝、冷漠的家伙;而在巴黎的我们喝着勃艮第酒和冒泡的香槟。你们连巴黎人民的一半聪明都没有。我们这里有清新的空气与柔和的火焰。100可以积累到2000,现在的股息为40%。[48]

        由于担心英格兰会被法国波旁家族所设计的金融永动机压倒,南海公司和议会设计了一个类似的体系,由南海公司承担更多的国家债务(约3100万英镑),这些债务的主要形式是年金。有人提议,这些债务的持有人,即年金受益人,应该自愿将这些政府债券转换为公司股票。

        当然,年金主要持有人是英国公民,他们从中获得收入。年金持有人必须得到一个有吸引力的报价才肯卖出,而最简单的方法就是刺激他们的大脑边缘系统,让他们相信公司的股票价格会上涨。

        南海公司出售了各种形式的股票。最典型的一种,是卖出一份票面价值(签发时的价格)为100英镑的股票,从年金持有者那里换取100英镑的年金。股票价格越高,公司越受益,因为这使公司能够为自己保留更多的股票。例如,如果股票价格上涨至200英镑,公司就只需卖出比100英镑价格时少一半的股票,并保留剩余的一半股票;如果价格上涨到1000英镑,公司就将保留90%的股票。随着股价的上涨,股票更受欢迎,这是一个正反馈循环,是所有泡沫的核心特征。

        现在,差不多3个世纪后,布朗特和哈雷对心理学的掌控的本质变得更加清晰。他们偶然发现了一种强大的方法,利用了非常古老的人类现象:人类偏好于“正偏态结果”——概率很低但是回报丰厚,即使所有回报的均值为负。例如,任何一个理性的人都不会买一张价值2美元的彩票,这张彩票的结果是50%的概率获得3美元,50%的概率什么都得不到,即它会产生1.5美元(0美元和3美元的平均数)的回报,平均损失率为25%。然而,许多人会买另一张价值2美元的彩票,它有1/2000000的机会获得3000000美元,这意味着平均赔付额也是1.5美元(3000000/2000000),平均损失率也是25%。[49]

        换句话说,哈雷和布朗特找到了一条通往人类贪婪之地的道路:大脑边缘系统强大的奖励预期电路。这是一种本能,这种本能曾经让远古狩猎者获利,但在金融领域是有害的。

        正如我们所知,在南海的垄断权几乎没有价值,但这并不妨碍该公司散布最捕风捉影的谣言。麦基写道:

        他们提到了英国和西班牙之间的条约,根据这些条约,所有西属殖民地可以自由贸易;从波托西-拉巴斯[50]矿中开采的丰富的白银将被运到英国,英国的白银将几乎与铁一样充足……与南海进行贸易的商业公司将成为有史以来最富有的公司,每投资100英镑,将为股东带来每年数百英镑的收入。[51]

        为了确保议会同意该计划,南海公司向议员们贿赂股票,该计划通过后,这些股票大幅升值。1720年4月14日,首次允许以现金形式出售股票;两周后,首次允许公众用年金换取股票;此时股价已从年初的120英镑上涨至约300英镑;到了6月,达到1000英镑以上的峰值。布朗特设计了极其复杂的细节,将这场200万人参加的冒险活动提升到了一个新的水平:公司部署了不同级别的股票连续认购,旨在吸引公众的注意力。最后,如前所述,股价越高,公司买进政府债务时向持有人提供的股票数量就越少,从而更多股票掌握在布朗特及其同僚们手中。[52]

        与法国泡沫相比,英国泡沫有四个特征。首先,法国泡沫几乎完全围绕一家公司的股票,但英国泡沫中,受当时普遍的乐观情绪所鼓励,还存在很多其他企业的上市股票。麦基列出了不少于86家被称为“泡沫公司”的英国企业,而随后的历史学家们确定的数量更是翻了一番。虽然大多数企业筹资都是为了实体经济,例如修建公路、房屋以及建立进口商品贸易,但也有很多计划是不切实际的:“头发贸易”、“永远转动的车轮”、“热风烘干麦芽”以及“将水银转化为可锻性精炼金属”。当代现存的一些资料列出了各种各样的筹资项目,其中有许多可能是虚构的,比如一个“大脑的空气泵”,或者“抽干红海的水,找到犹太人离开后遗弃在埃及的宝藏”,或者,最著名的是“为了一项大有裨益的事业;但没人知道这项事业是什么”。[53]

        南海泡沫的第二个显著特征是英国泡沫公司的杠杆程度极高。与密西西比公司股票需要15%的首付类似,南海公司股票的首期付款仅为10%~20%,其余部分将在后续催缴中缴纳。而泡沫公司的杠杆率则高于南海公司,也就是说,它们的初始认购价格较低;有时,一先令[54]可以认购一股价值1000英镑的股票(占规定购买价格的0.005%)。因此,泡沫公司的资金非常匮乏,经常会快速破产。但是,仍有少数公司资本充足,管理良好,得以生存,其中包括两家保险公司:伦敦保险公司和皇家交易所。

        股东们的财富疯狂增加,对公众产生了诱惑。麦基写道:“公众的思想处于一种不健康的发酵状态。人们不再满足于谨慎而具有可靠利润的行业,因为这些行业赚钱缓慢。明天将拥有无限财富的希望,使人们今天的行为无所顾忌,挥霍无度。”[55]

        18世纪早期的伦敦可以看作两个独立的部分:西面是威斯敏斯特区,是政府所在地,有议会大厦、圣詹姆斯宫和为白金汉公爵新建的白金汉宫;东部是商业中心,即“伦敦金融城”,其就是皇家交易所,首都的商业精英们也在这里从事各种形式的国内外商业活动:交易羊毛、木材、谷物和无数其他商品(见图3-3)。

        图3-3 南海泡沫时期的伦敦地标

        股票经纪人受到商业人士的鄙视,在皇家交易所大厅里不受欢迎,被赶到一条聚集了很多咖啡馆的狭窄小巷,这条小巷夹在伦巴第街和康希尔街形成的锐角中,被称为“交易巷”。

        通常情况下,“金融家”们在咖啡馆兜售股票,投机者在那里排队。股票的认购价格通常非常低,然后,买到股票的投机者匆忙来到附近的“交易巷”,通过股票经纪人的斡旋,他们把股票卖给更大的傻瓜。1720年春夏之交,这里的景象和巴黎坎康普瓦大街一样疯狂:哈克尼出租车供不应求,人们即使打到了车,也可能被堵在狭窄的街道上。卖咖啡的商人挤在像乔纳森、加洛韦和山姆这样的咖啡馆,小偷们也很猖獗;在巷子里比在王宫里更容易找到国王和他的宫廷人员。一位律师将此过程描述为“更像是所有疯子同时从疯人院逃了出来”[56]

        和巴黎一样,投机助长了普遍的价格膨胀。乔治一世国王举办了全国有史以来最奢华的生日聚会,公司的董事们拆除了豪宅以建造更大的豪宅。在现代金融史的大部分时间里,房地产价格都是年租金的5~20倍;而1720年,伦敦房地产的出售价格是年租金的45倍,这一比例和21世纪初的房地产泡沫期间的比例接近。[57]南海的热情也见证了泡沫的另一个特征的诞生:证券投机成为一种时尚。在投机活动达到高潮时,伦敦的社交场合从圣詹姆斯宫和威斯敏斯特宫(即议会大厦)向东转移到伦敦金融城;在那里,一群贵族女士在“交易巷”附近租了一家商店,“闲暇时间里,当经纪人外出时,她们追捧中国瓷器”[58]。这种兴奋也不仅仅限于贵族:
        还有德鲁里巷的年轻妓女,
        她们通过在豪华马车里的交易,
        通过放荡,
        骗走他们赚得的金子。[59]

        这种氛围不利于理性决策。投机在贵族中最为热烈;6月,接近顶峰时,忧心忡忡的财政大臣约翰·艾斯拉比建议乔治国王将价值8.8万英镑的公司股票兑现为现金,这位粗鲁的国王将艾斯拉比称为懦夫,但艾斯拉比坚持己见,最终国王将其持有的约40%的股票转换为安全资产。[60]

        南海泡沫的第三个显著特征是肇事者越来越狂妄;密西西比事件中的肇事者约翰·劳一直保持了他与生俱来的礼节,但他的英国同行不是这样。虽然我们可以将布朗特或艾斯拉比形容为轻信的或虚伪的人,但这只是一个起点。从一开始,商业社会便将财富等同于智慧和正直;拥有财富的人喜欢听到别人说他们具有卓越的智力和道德品质。伴随着在金融领域内的成功,他们获得的财富和奉承不可避免地让他们产生一种侵蚀自我意识的自负。更糟糕的是,巨额财富往往更多地来源于欺诈,而不是智慧和实体经济。在这种情况下,奉承会腐蚀灵魂,正如布朗特身上所发生的那样,他这时已经演变为现代狂妄自大CEO(首席执行官)的原型。有一本作者不详的小册子,可能是作者在布朗特倒台后不久写的,描述了南海公司崩溃前不久,布朗特去往时尚度假胜地坦布里奇韦尔斯:布朗特去往坦布里奇韦尔斯的装备多么华丽,那里对他有多么尊重,他在那里表现得有多么傲慢,他和他的家人在谈到这个项目时怎样称之为“我们的项目”[61]。小册子的作者描绘了一幅经典画面:

        (布朗特)在他任期的前几个月里,除了他自己,从未允许任何人就(公司交易)做出提议;法庭记录中也没有任何与此有关的会议记录,而只有他口述的内容。他明显地塑造了一个先知的形象,用一种强调和异常激烈的语气说话;他习惯于摆出威严的姿态,斥责那些对他所说的任何话有一点点反对的人,并竭力教导人们。他所说的好像都是出于心血来潮,说的话类似于:“先生们,不要惊慌,你们必须坚定、果断、勇敢地行动。我告诉你们,在你们面前的不是一件普通的事情。世界上最伟大的事情和你们有关。欧洲所有的钱都将集中在你们这里。世界上所有的国家都要向你们缴纳贡金。”[62]

        正如历史学家爱德华·钱塞勒所指出的,从南海泡沫到互联网泡沫,都常常会唤醒其主要人物的狂妄自大:

        伟大金融家所做的计划可能会成为投机狂热的催化剂,金融家自己也会受到影响。其野心变得无限大。一方面,其获得大众面前的成功和普遍的奉承;另一方面,私人事务管理越来越混乱甚至出现欺诈;这两者之间出现鸿沟。[63]

        布朗特策划了对南海公司股票的操纵,包括从认购金中借出部分资金以购买股票。他不仅通过在价格上涨到接近最高值时卖出股票而获利,而且还秘密地向自己、朋友和许多议员增发股票,其中一些是欺诈性的。

        正如通常发生的那样,一个意想不到的事件引发了结局。1720年6月,密西西比公司股价暴跌,布朗特害怕英国其他泡沫公司会抢占南海公司的资金,于是在南海股价达到峰值时推动议会通过了《泡沫法案》。该法案要求新企业必须经过议会批准才能成立,并将新企业的股东数量限制为5名;布朗特还让法院起诉了3家现存的泡沫公司,因为它们违反了公司章程。

        就像在巴黎一样,布朗特的狂妄也蔓延至其他人。如麦基所写的,一位导演,“十分骄傲的无知富人,曾说过要用金子喂他的马”[64]。普通民众也是这样:“通过成功的赌博而暴富的无知的人,他们傲慢专横,让真正有教养和思想的人尴尬,黄金竟然有能力在社会中提拔不值得被提拔的人。”[65]布朗特对其他竞争性泡沫公司采取的行动,使自己反受其害,不仅刺破了泡沫公司,还刺破了南海公司;截至10月底,其股价已从峰值1000英镑跌至210英镑,到1721年底,跌至150英镑以下(见图3-4)。[66]

        图3-4 1719—1721年南海公司股票价格

        第四个特征,也是最后一个特征,就是南海和密西西比泡沫的区别在于它们的格局和范围。约翰·劳不是禁欲主义者,但他并没有只关注自己的私利;他真正希望通过革命性的信贷扩张刺激和推动法国经济的发展。但是,布朗特的计划很狭隘,他想通过南海公司把信贷塞进自己的口袋;当信贷扩张从南海公司扩展到其他企业时,他开始努力限制信贷,目标达到了,但这不仅摧毁了其他企业,也摧毁了南海。但从国家的角度看,布朗特计划的狭隘性使金融部门受到的损害相对短暂,这也成为南海泡沫仅有的优势,区别于法国那样灾难性的银行业崩溃、全国性的通货膨胀以及随后长期持续的对银行的恐惧。[67]

        此外,与密西西比公司不同,南海公司并没有给出一个完全空洞的承诺。即使在18世纪早期,其内在价值也可以做出合理估计。首先,它持有年金受益人(现在是公司股东)提供给它的年金,这些资产的价值大约为每股100英镑,也大约是泡沫破裂后的结算值。

        南海公司的另一个特点是,它继承了1707年西班牙授予安妮女王的西属殖民地(《阿西恩托[68]条约》)奴隶贸易垄断权,这在其假定的业务量中占据了最大份额,而根据与西班牙的条约,授权仅限于一艘装有500吨货物的“年度船舶”,这实际上排除了新大陆产品贸易。然而,新大陆产品贸易几乎对南海公司没有意义,因为公司专门从事于金融,而不是国际商业;可恶的是,其中一名董事为了自己的利益,私自使用公司500吨年限额中的60吨,被当场抓获。到了1714年,也就是泡沫破灭的6年前,由于实际贸易业务没有利润,因此公司退出贸易业务;40年后,该公司以仅仅100000英镑的价格出售了其《阿西恩托条约》的权利。[69]最后,公司的新大陆投资价值已经无关紧要,因为投机者关心的不是奴隶贸易或糖贸易中的利润,而是那些股票买卖的利润,这些股票的价格似乎涨到了天价。

        一位名叫阿奇博尔德·哈奇森的律师兼议员进行了当时最复杂的股价计算,他发表了一系列关于该公司股票的报告。幸运的是,其中一个报告写于1720年6月,正好在繁荣达到顶峰之前;报告建议,股票市值应该是该公司年金资产价值的两倍,也就是200英镑。而当时,股价已经是740英镑;他预言“现在就应该停止当前的这种疯狂”。结果,疯狂又持续了几个月;7月,股价已经达到每股1000英镑,哈奇森以这个价格估算出该公司的总价值几乎已经是英格兰所有土地价值的两倍。[70](20世纪80年代的东京房地产泡沫也是如此,当时东京皇宫的泡沫价格能买下整个美国加州的土地。)[71]

        第二年,在受害选民以及被骗议员的推动下,议会开始调查股价崩溃以及布朗特、他的同僚和政府内部人员积累的巨额财富。财政大臣艾斯拉比成为替罪羊,他被迫辞职,被关进伦敦塔,还有另外6名议员被驱逐。南海公司一直运作到1853年,不是作为贸易公司,只是作为政府债务的持有人。国王成为人们嘲笑的对象,但是没有被制裁。[72]

        一些人提出要监禁甚至绞死南海公司的董事,但董事们在被短暂监禁后勉强避免了这种命运。议会没收了他们的财产,用以补偿项目受害者;布朗特保留了他18.7万英镑资产中的5000英镑,悄悄地退休并到了巴斯[73],在那里建立起一个杰出的后代宗系,其产生了包括主教和维多利亚女王的牧师在内的很多虔诚的后裔。[74]

        《泡沫法案》是在狂热达到顶峰时通过的,该法案不仅阻止了其他公司的进一步投机,而且也无意中导致了南海公司的沉没。该法案存在了一个多世纪。但未来,对狂热及其崩溃的记忆将不可避免地逐渐消失,在激动人心的新技术和宽松信贷的鼓舞下,在发起人、公众、媒体和政客的推动下,市场的动物精神将再次崛起,从而再次产生一波狂热,使这场18世纪初的狂热也相形见绌。

        4 资本主义的英雄

        英国铁路泡沫

        20世纪50年代初,斯沃斯莫尔学院的一位社会心理学家所罗门·阿希进行了一系列开创性的实验,对中世纪群体末日幻想和18世纪金融狂热的传染性进行了研究。

        阿希让大约6个男性参与者围坐在一张长方形的桌子旁,他们正在接受视觉感知测试。他给所有人看了一张卡片,上面有一条固定长度的直线,比如说英寸[1]。然后他给他们看了第二张卡片,上面有三条线,其中一条线的长度也是英寸,另外两条线的长度稍有不同,比如3英寸和英寸(见图4-1)。参与者被要求在第二张卡片上选出与第一张卡片上长度相同的线条。这项任务需要一定的专注力,但也很容易,正常情况下受试者选错的概率是1%,连续参加12组配对实验全部正确的概率是95%。

        图4-1 阿希实验中所用的卡片

        许多(如果不是大多数的话)心理学实验都需要对受试者撒个小谎。这项测试根本不是关于视觉感知的,每组只包含一个真实的受试者。其他参与者实际上是阿希博士的助手;真正的受试者坐在桌子中间附近,这样尽量缩短他与陪试者们的平均距离。

        测试中这个真正的受试者要么最后一个回答,要么倒数第二个回答,因此在回答问题之前,他已经听到来自陪试者们的多个答案。当陪试者们答案正确时,受试者的表现与单独参加测试时相似,所有12组卡片的正确率为95%。但是,当陪试者们故意回答错误时,受试者的表现结果会急剧变差。他们中只有25%的人在12组配对中选择正确,令人难以置信的是,5%的人在12组卡片配对中全部错误。[2]此外,受试者在各组实验中表现一致:如果一个受试者在前6组实验中深受陪试者错误的影响,那么他在后6组实验中也将受到类似的影响。也就是说,其中一些受试者确实比其他人更容易受到影响。

        实验结束后,阿希博士采访了这些受试者,他们的回答发人深省。容易被影响的人担心他们的视力或心理处理能力正在衰退;其中一个受试者说:“我知道这群人不会错。”[3]即使是那些不易被影响的人也对自己与大多数人的分歧感到不安,并感觉到可能别人是对的,其中很少有人能对自己的答案完全确定。

        引人瞩目的社会科学实验往往会成为街谈巷议的话题,阿希博士的例子就是如此。在他的实验之后的几十年里,其结论越来越多地出现在大众媒体、教科书甚至学术文献中,这也恰恰表明了大多数人的随波逐流。[4]

        实际上,这些数据也呈现出一些细微差别。在存在误导性陪试者的情况下,超过一半的受试者的答案是正确的,即非一致性。此外,即使只存在一个答案正确的陪试者,也能显著降低受试者的错误率。对阿希实验的更精准的总结是,一些人比其他人更容易被影响,但25%的受试者没有受到任何影响。那么,很容易想到的是,阿希已经找出了那些最容易受到金融泡沫或世界末日信条影响的人。

        阿希博士的结果尤其显著,因为估计线长这种实验几乎不会受到情感因素的影响。打哈欠也是这样,人们对这种话题往往没有什么情感驱动的想法。当然,正如我们大多数人知道的,并且已经被实验证明,打哈欠是有传染性的。在正常、完全清醒的受试者中,传染性打哈欠不仅可以通过其他人的哈欠诱发,还可以通过打哈欠的视频诱发,即使打哈欠的人的嘴巴已经被遮住。奇怪的是,只显示嘴巴的视频并不能引起打哈欠。[5]

        在情绪饱满的时候,人们的从众性会提高。查尔斯·金德尔伯格发出了一个警告,即目睹别人的变富会产生有害影响,这一警告也适用于阿希博士的实验:在实验室里成功地抵抗了社会压力的人,在现实中却可能无法抵抗充满情绪的群体幻想。

        模仿不仅仅是一种最真诚的恭维,它对我们的生存也至关重要。在人类进化过程中,我们的物种必须要适应各种各样的环境。这种适应有两种形式。第一种是身体上的,一个明显的例子是非洲人的皮肤比北欧人更黑,因为深色皮肤可以保护底层组织免受热带阳光的伤害;相反,浅色皮肤可以在阳光较少的北纬度地区更有效地生成维生素D。

        第二种适应是文化和心理上的,正如进化心理学的先驱罗伯特·博伊德和彼得·理查森指出的那样,在亚马孙河雨林生存所需的技能与在北极生活的人所需的技能大不相同,他们:

        必须知道如何制作几十种基本的工具——皮艇、保暖衣、倒钩鱼叉、油灯、用皮毛和雪搭建的住所、防止雪盲症的护目镜、狗拉雪橇以及制作这些工具的工具……虽然我们是相当聪明的动物,但我们做不到这一点,因为我们还不够聪明。皮艇是一种由各种不同部分组成的高度复杂的物体,设计一艘好的皮艇,意味着需要找到一种极为罕见的各部分组合。[6]

        换句话说,如果你以前从未见过北极人用当地存在的原材料制作皮艇,那么你几乎不可能会制作皮艇。亚马孙本地人所需要的各种其他技能也都是如此。人类从白令海峡迁移到亚马孙河只用了不到1万年的时间,这意味着我们在此之前一定进化出了准确模仿的能力。用博伊德和理查森的话说,能够在如此不同的环境中生存,意味着人类不得不:

        进化(文化上)对当地环境的适应能力——北极的皮艇和亚马孙河流域的喷枪——这是一种适应更新世时期的混乱、快速变化世界的高超能力。然而,创造这种好处的心理机制必然伴随着内在成本。为了获得社会学习的好处,人类必须是轻信的……我们以低廉的价格获得了橡皮艇和喷枪这样奇妙的改编作品。问题在于,对这种容易适应的传统的贪婪,很容易导致不适应的情况以某种方式出现。[7]

        在过去的大概5万年里,人类物种已经从非洲诞生地传播到地球的几乎每一个角落,从北极海岸到热带,再到广阔太平洋中的各个孤岛。晚更新世时期,人类物种从北极之地向麦哲伦海峡迁徙,在这期间能够适应如此多样的环境,这依赖于人类精确模仿的能力。但是,人类在石器时代的许多适应性已经不适合于现代世界,一个经典的例子就是富含能量的脂肪和糖对我们的吸引力,在我们的进化史上,脂肪和糖曾经是稀缺的,可以帮我们维持生命,但现在作为廉价垃圾食品存在,并威胁人类健康。同样地,我们某些古老的模仿倾向也常常不适合于现代,用麦基的名言来说,会给现代社会带来“非同寻常的大众幻想与群众性癫狂”。

        群体幻想的传播还助长了另一种古老的心理冲动,即人类具有压制与日常信仰相矛盾的事实和数据的倾向。1946年,心理学家弗里茨·海德提出了所谓的“平衡状态”范式,以解释人们在日常生活中如何处理大量复杂且往往相互矛盾的数据。想象一下,你认识一个叫鲍勃的人,你和他都对某种能带来一定情感分量的物品有自己的看法,比如说安卓手机与苹果手机相比,哪一款更加高级。

        如果你很欣赏鲍勃,并且你俩都认为苹果手机更好,那么你就会感到很舒服;你现在就处于海德所说的“平衡状态”。类似地,如果你认为苹果手机更好,但是鲍勃喜欢他的安卓手机,并且你认为鲍勃是个无知的浑蛋,那么你也处于“平衡状态”,因为你对鲍勃的负面评价能够使你驳斥他的相反观点。[8]但是,如果你欣赏鲍勃但在手机问题上不同意他的观点,那么你就处于一种让自己不舒服的“不平衡状态”。

        如果你对鲍勃的欣赏只有一点点,或者如果你对手机不太在乎,那么你可以忽略自己的不适。但如果鲍勃是你最亲密的朋友,而你在一些更具情感分量的事情上(比如特朗普的总统任期问题)与他存在强烈分歧,那么你就必须采取行动解决欣赏鲍勃和政治分歧之间的不平衡。神经科学家最近发现,这种不平衡状态会增加背内侧前额叶的活跃性。背内侧前额叶是位于额头中部上方两个脑半球的大脑区域。此外,这种活跃性预示着人们对鲍勃或唐纳德·特朗普的看法将发生变化。换句话说,如果你想让你的背内侧前额叶停止烦扰你,你就必须改变对其中一个人的看法。[9]与此相反,当受试者得知专家同意他的观点,即达到平衡状态时,大脑的另一个部分,腹侧纹状体,位于两个脑半球深处的成对结构,就会被激活。[10]这一区域能接收多巴胺神经元的密集性输入,而多巴胺是一种让我们感到快乐的神经递质。

        在《非同寻常的大众幻想》1841年的初始版本中,麦基写到了南海泡沫:

        企业,像伊卡洛斯一样,飞得太高,融化了翅膀上的蜡;和伊卡洛斯一样,她也掉进了海里,当她在海浪中挣扎时,她认识到她最适合的地方是坚实的地面。从那以后,她没再尝试过这么高的飞行。[11]

        但写下这些话后的几年内,金融市场证明麦基是错的,因为投机的伊卡洛斯将再次飙升,这一次将围绕第一条蒸汽铁路的兴奋和混乱,相应的金融狂热将使1719—1720年的南海泡沫也相形见绌。很少有作家能比历史学家斯蒂芬·安布罗斯更好地描述蒸汽机爆发前的人类状况:

        1801年,一个关键事实是,世界上没有什么能比马的速度更快。没有任何人、制造品、蒲式耳小麦、大块牛肉,信件、信息,以及任何形式的想法、订单或指示能够移动得更快。没有什么能够比马更快了,就杰斐逊[12]的同时代人所知,没有什么将会比马更快。[13]

        1851年,英国历史学家约翰·弗朗西斯的经典记录见证了英国的铁路网建设。他将近代交通状况描述如下:

        用来运送农产品的机器,结构粗陋,既沉重又笨拙。即使道路状况还可以,移动(这些机器)也很困难。如果道路状况不好,那么它们要么被沼泽吞没,要么掉进堤坝中:有时,它们陷入泥泞的道路中太深了,根本无法逃脱,必须要等到温暖的天气和炙热的太阳到来才可以。几个月以来,产品都无法进入市场,水果在产地腐烂,而在几英里之外的市场上却远远供不应求……人们发现,出口到国外要比把农产品从英格兰北部运到南部的成本更低。将商品从伦敦运送到葡萄牙比从诺里奇[14]运送到伦敦更容易。[15]

        用蒸汽动力代替人力、牲畜和水车的想法,可以追溯到2000年前的托勒密希腊人,据说他们用蒸汽动力来打开和关闭一座亚历山大神庙的门。1712年左右,英国发明家托马斯·纽科门制造了第一台蒸汽机,该机体积庞大,效率低下,只能用于煤矿的排水,因为煤矿的燃料非常丰富。因此,詹姆斯·瓦特并没有像人们通常认为的那样在1776年发明蒸汽机,而是完成了一件更巧妙、更有效的事情:通过在纽科门的设计中增加一个外部冷凝器,制造出一种燃料效率高的装置,其可以在远离煤矿的地方使用。这一创新让瓦特的合伙人马修·博尔顿说出了那句名言:“先生,我这里卖的是全世界都渴望拥有的——动力。”[16]

        在接下来的25年里,瓦特首先使用笨重的发动机驱动船桨,然后不断缩小发动机体积,到1801年,发动机已经缩小到足以让理查德·特雷维西克将之安装到陆地马车上;到1808年,他已经在伦敦尤斯顿广场附近提供了价格为5先令的乘车服务。早期的装置由软铁制成,非常脆弱,那时一位技师的妻子不仅必须在凌晨4点醒来给发动机加燃料,还必须用她强壮的肩膀使发动机运转。[17]

        18世纪之交,乔治·斯蒂芬森,诺森伯兰(位于英格兰北部)一个不识字的蒸汽机看管人的儿子,继承了父亲的职业,但与父亲不同,他在夜校学会了阅读、写作和数学技能,而且将自己的天赋用于逐渐提高早期蒸汽装置的效率。拿破仑战争让英国付出了高昂的代价,干草价格的高昂暂时推动了蒸汽动力对马力拉动矿车的代替,但直到1818年,斯蒂芬森才说服纽卡斯尔地区附近达灵顿的矿主,修建了一条通往25英里外的蒂斯河畔斯托克顿的蒸汽轨道线,于1825年9月开始使用。尽管轨道线非常短,但是后来在经济上非常成功。[18]

        新铁路技术震惊了世界:1825—1845年,英格兰经历了至少三次铁路泡沫。第一次泡沫紧随斯托克顿—达灵顿铁路线的建成。斯蒂芬森早期的发动机并不可靠,运营的最初几年,煤炭车和客车经常需要马来牵引。但随着发动机的改进,多达59条铁路线列入修建计划。[19]

        第一批项目在议会中遭到了不小的反对,因为《泡沫法案》(南海事件的遗留法案,此时已经有百年历史)规定,所有的公司组建都必须由议会批准。最积极的反对者是运河和收费公路的经营者,他们认识到铁路运输会对自身利润造成损害。他们及其爪牙告诉公众,发动机的烟雾会杀死鸟类;发动机的重量会使其无法移动;发动机的火花会把货物烧成灰烬;老人们会被碾死;受惊的马会伤害骑马的人;马会灭绝,燕麦和干草种植户将会破产;狐狸会消失;而且,被噪声干扰的奶牛将停止产奶。[20]

        1825年,议会废除了《泡沫法案》,但普遍存在的金融恐慌以及落后的发动机技术,阻碍了更多项目的开展,经过1825—1826年的一番议会波折,斯蒂芬森的利物浦—曼彻斯特铁路花了4年时间才建成,于1830年9月15日正式通车。它长35英里,是当时的工程奇迹,需要建造64座桥梁并挖掘300万立方码[21]的土壤。

        这项非凡的新技术有望改变人们的日常生活,这激起了那些想要先下手为强的人的贪婪。这种刺激在1836—1837年达到顶峰。一位记者写道:“我们的语言开始受到(铁路)影响。人们用‘加蒸汽’表示‘打起精神’,用‘铁路速度’表示‘很快的速度’,并以小时和分钟估计距离。”[22]新闻报道提到,一位商人在早晨坐上从曼彻斯特到利物浦的火车,当天就能运回150吨棉花,并以巨大的利润出售,然后重复这种做法。“不是支持者,而是铁路的反对者被认为是疯子。如果这是一种狂热,那么这种狂热就像我们呼吸的空气一样。”[23]约翰·弗朗西斯写道:“1836—1837年的这几个月将长久地被商业人士铭记。数千人关注并将资本投入计划中的公司。”[24]

        和其他泡沫事件一样,利率下降进一步增强了新技术的吸引力,因为利率下降能使投资资本更加充裕。25年前,拿破仑战争引起的借贷需求提高了利率;1815年利率达到顶峰时,一个富有的英国人通过购买政府债券使其索维林金币[25]的收益率接近6%。在接下来的30年里,利率下降到3.25%。[26]当投资者不满于安全资产的超低利率时,他们就会抬高那些潜在收益更高的风险资产的价格。著名记者(也是《经济学人》的编辑)沃尔特·白芝浩在描绘英国铁路泡沫破裂后的一代人时写道:“约翰·布尔可以忍受很多事情,但他忍受不了2%的利率。”[27]换句话说,低利率是泡沫萌芽的沃土。

        低利率,加上这一时期斯蒂芬森的利物浦—曼彻斯特铁路的成功,重新点燃了铁路投机:“媒体支持这种狂热,政府也做出了许可,而人民为此付出了代价。铁路立刻成为一种时尚和狂热。英格兰规划了各条铁路。”[28]

        每一种泡沫里都有自我毁灭的种子。就这个事件而言,廉价资本催生的重复铁路线过度竞争就是种子。利物浦和曼彻斯特的股东们吃到了牛排,而那些跟随频繁的人则比不频繁的人吃到了更多酸臭的食物。1836年的《爱丁堡评论》指出:“事实上,两个比较大的地方之间(无论距离多么遥远),几乎都会有一条被某个公司占据的可行性铁轨线,通常会同时启动两条、三条或四条竞争性路线。”约翰·弗朗西斯写道:“一个大都会区的某个教区,有16项铁路计划,计划拆除的房屋超过1200栋。”[29]

        这些只是最可信的计划。在达勒姆,某位企业家同时工作于三条平行的铁路线上。第一条是成功的,另外两条,很自然地,失败了。而其他发起人的设想包括:由帆或火箭驱动的火车头,能以每小时数百英里的速度运行;高架木轨线;另外一个,根据弗朗西斯的记录,广告说法是“把残疾人抬到床上去”。[30]

        无论何时何地,免费获得的信贷和轻信的投资者都是无赖发起人的垫脚石。当时一位评论家指出,通常:

        一个穷困潦倒的冒险家突然想到,从A镇到B镇的一条铁路线是一项巨大的公共事业,他从中可以获取巨大的利益。因此,他购买了一份军用地图,布鲁克县的或者是哪个地方的地名词典,以及一份名录。首先,他在两个城镇之间画了一条线,在阴暗的山丘之间的这里或那里画了一些漂亮的曲线,目的是使它有一种真实的感觉,他称此为调查报告,尽管他和他的人根本没有去过这个地方。地名词典、名录以及支付给一个无赖或马车夫的一罐啤酒,构成了他收入来源的所有原材料。幸运的是,年收入从未低于15%、20%或30%。收入经常如此之多,他都不好意思去欺骗更多的人了。[31]

        据说埃德蒙·德·罗斯柴尔德说过,“有三种赔钱的主要方式:葡萄酒、女人和发动机。前两种更令人愉悦,而第三种迄今为止(在赔钱问题上)更为确定。”[32]随着越来越多的铁路轨道进入施工阶段,可聘用的合格工程师和劳动力数量不足,导致工期延误、成本大量超支、无法解决发动机难题等,这最终导致不可避免的破产潮。

        和南海泡沫期间的状况一样,英国的合股公司最初只筹集到所需资本的一小部分。投资者最初只需要支付股票面值的一小部分,对接下来铁路建设所需要筹集的资本承担分期缴纳的义务——这是一种干柴式“杠杆”结构,不可避免地会遇到烈火。

        回应马上就来了。钱变得稀缺;人们已经看清楚了这些人的愚蠢;各种类型的股票都下跌了。然后是可怕的不安,毁灭降临到社区,悲伤使家庭不再温暖。那些曾经因为假想的财富而趾高气扬的男人为他们的鲁莽而悲伤,而女人们则因为无法阻止而哭泣。[33]

        至19世纪30年代的泡沫破灭时,议会已经批准了2285英里的铁路修建计划,但是截至1838年,实际动工还不足1/4。其余的里程通常是不盈利的,还需要几年时间才能完成;正在进行中的则需要投资者追缴大量资金。1836—1837年暴跌之后,股票价格确实又有所回升,因此那些坚持持有股票的人也没有很差;在此之前一直稳定的股票价格,在1836年上涨了约80%,然后又迅速回落到实际上略高于泡沫前的水平。[34]到1841年,从伦敦到纽卡斯尔近300英里的旅程在17个小时内就可以实现:“一个理性的人,还能要求什么呢?”《铁路时报》为此报道。[35]

        事实上,截至1844年,普通股东对前10年的投资回报非常满意。这推动了19世纪40年代后期更大的泡沫,相关代表人物是乔治·哈德森。哈德森出生于1800年,是约克郡一个小农场主的儿子,由于被假定为会继续耕种土地,因此接受了很少的正规教育。在他9岁时,父亲去世,他被送到约克的一家亚麻布店当学徒,他也由此因祸得福。哈德森的精力、魅力和才智很快在布店里显现出来,而这些是在耕犁中无法体现的。他最终通过婚姻关系加入雇主家庭,并接管了布店。1827年,好运继续光顾这个年轻的店主,他从一个叔父那里继承了30000英镑的遗产,叔父临终时,他正好在现场(叔父遗嘱的受益人可能在最后一刻被更改为他)。[36]

        新获得的财富使他得以进入政治和银行业,1833年,他被任命为约克铁路委员会的司库,负责一条通过发行股票筹集建设资金的地方性铁路。哈德森聘请约翰·雷尼爵士勘测路线,但这位著名工程师建议采用马拉系统,这令委员会很失望。幸运的是,在某次参观叔父留给他的不动产时,哈德森遇到了乔治·斯蒂芬森,后者当时已经是一位非常著名的工程师。哈德森充分展示了自己的魅力和远见,斯蒂芬森同意建造约克—北米德兰铁路。该铁路由一家合股公司出资,第一段仅14.5英里长,于1839年开通。

        在接下来的10年里,哈德森成为公众所熟知的“铁路之王”,创建了一个由十几家铁路公司组成的帝国,其中四家是全国最大的铁路公司。他领导几家公司的董事会,经常一会儿出现在这里勘测一条新路线,一会儿又出现在那里指责一家失败公司的股东大会,并四处筹集新资本。他的生活围绕着两个权力中心展开:一个是约克,他在那里担任过几届市长,慷慨而又受人爱戴;另一个是威斯敏斯特,国家的政治中心。

        哈德森能把沙子卖给贝都因人[37]。即使是最坚定的对手,他也能扭转局面。他的标志性胜利是说服了威廉·尤尔特·格莱斯顿。格莱斯顿也许是19世纪最令人敬畏的政治家,他在1832年22岁时进入议会,在1843年成为贸易委员会主席,该委员会是议会的铁路立法部门。他先后担任了四届英国财政大臣,又于1868—1894年四次出任英国首相。

        这两个人简直有天壤之别:哈德森充满活力而未受教育,是约克郡农民的儿子,而格莱斯顿毕业于伊顿公学和牛津大学,是奴隶主的儿子。两人在当时最关键的问题上存在分歧;哈德森是正统的保守党,是一个反对废除《谷物法》的贸易保护主义者;格莱斯顿虽然名义上是保守党,但实际上是一位热诚的自由贸易者。

        不过,假如在今天,哈德森将被称为自由主义者,因为他反对政府干预商业,尤其是他所珍爱的铁路,而格莱斯顿很早就认为技术日益发达的经济领域需要政府监管。比约翰·洛克菲勒降低油价还要早几十年,格莱斯顿就预见到,实力最强的铁路公司可以通过大幅减价将竞争对手赶出市场,垄断市场后,公众将越来越受其摆布——格莱斯顿认为,哈德森的某个公司就是这样。

        1844年3月,哈德森在贸易委员会作证时,老练地强调了他与格莱斯顿的一致意见:为了公众的利益,应该限制对竞争性路线的许可(但没有提到自己的公司)。委员会推迟了这个话题,追问哈德森是如何确定票价的。委员会想知道,议会定期调整票价有什么错?哈德森一如既往地做好了充分准备,他回答说,他不反对由政府规定票价,但要求议会限制竞争性路线的许可证发放。

        委员会对哈德森的回答感到些许宽慰,提出了相对比较温和的铁路立法,规定“议会级”票价为每英里1便士。[38]但该法案使议会能够修改铁路公司的票价,这些铁路公司曾经利润如此丰厚,可以发放超过10%的股息分红;该法案通过后,对于任何已经获得许可并运营超过20年的铁路公司,政府都将有权购买。

        这令哈德森很焦虑,他给格莱斯顿写了一封公开信,信中用最悦耳、最恭维的语气对该法案中降低票价以及政府的购买选择权表示反对。他组织了一个由铁路公司所有权人组成的代表团,他们一起前往唐宁街10号的首相官邸。首相罗伯特·皮尔对此印象深刻,于是在下议院发表了一些对铁路公司有利的意见。

        格莱斯顿接受了公开信的暗示,私下会见了哈德森,会面中,哈德森把坦白直率的魅力发挥到了极致,把这位委员会主席感动了。格莱斯顿评论道:“将哈德森看作一个投机者是一个巨大的误会,他是一个非常有辨别力的人,拥有很大的勇气和很强的进取心——一个非常大胆但非常明智的设计师。”格莱斯顿基本废除了法案:只在法案中保留了低级三等车票的票价限制。[39]

        哈德森意识到,他差点儿忽略了议会的潜在监督职能,他需要更积极地参与政治。假如在今天,强大的实业家可能会为自己雇用一大群说客;但19世纪的英国具有更宽松的道德环境,有一个更直接的办法:哈德森只需要给自己买一个下议院的席位。1845年中,机会出现了。在冷清的沿海小镇森德兰,他接管了当地一条失败的铁路以及码头,作为交换条件,那里的官员们提名他为保守党的席位候选人。他于8月14日正式当选,比较类似于现代社会中同时在美国参议院任职的高盛公司董事长。

        那天晚上,一辆专列将他当选的消息从森德兰送到伦敦,第二天,另一辆专列将伦敦《晨报》对这一事件的报道带回森德兰。在胜利庆典的狂欢中,哈德森将报纸扔进人群,欢呼道:“看,看智慧的进军!”[40]两个月后,在森德兰的一次宴会上,他鼓吹自己码头公司的股票,再次激发了当地人的热情:“我不明白,为什么你们不能让圣彼得斯堡的棉花、中国和世界其他地区的产品运到森德兰港,只要你们提供设施……让我们想象一下,我们将成为世界的利物浦和曼彻斯特。”[41]

        他似乎很少睡觉;例如,1846年5月2日至3日的晚上,他在下议院工作到凌晨2:30,打了个盹儿,然后坐上开往德比(英格兰中部城市)的早班火车,其大约在伦敦、约克以及他的其中一个公司——米德兰铁路公司总部三者中间的位置(见图4-2、图4-3)。在那里,他向股东们解释他的26项提案的精髓,这些提案通过修建一些新的、扩展一些已经存在的铁路和运河,将铁路和运河系统相融合。该计划需要300万英镑的投资资本;他向心存疑惑的人坦率地承认,的确许多新线路将失败,但总的来说,它们将打造一个坚不可摧的地区铁路系统。他已经拥有大量支持者,很轻易地排除掉了那些分散的持反对意见的股东,然后通过了所有26项公司提案。[42]一位当时的评论家写道:

        资料来源:The Railway King,by Richard S.Lambert,London,George Allen & Unwin Ltd,©1964,p.57.Copyright ©1934 HarperCollins Publishers.All rights reserved.

        图4-2 1840年的英国铁路系统(粗体部分是哈德森公司建的铁路)

        资料来源:The Railway King,by Richard S.Lambert,London,George Allen & Unwin Ltd,©1964,p.238.Copyright ©1934 HarperCollins Publishers.All rights reserved.

        图4-3 1849年的英国铁路系统(粗体部分是哈德森公司建的铁路)

        似乎从来没有什么事情能让他烦乱,也没有什么事情会让他疲劳。他在议会委员会中斗争,一天又一天;他以一种认真的态度争辩和恳求,从目的上看几乎没有失败过。他今天在镇上哄骗一个委员会,明天说服一位大主教;早上,在一个不起眼的办公室里说服一些持对立主张的人,下午,以某种大胆的突袭政策震惊了证券交易所。[43]

        他的专注力和计算能力令人敬佩。人们经常看到他把头往后一仰,遮住眼睛,然后准确地预测出尚未建成的铁路线的红利,他还能同时参与两场激烈的对话。商业伙伴们发现,如果他们的分析没有抓住要点,马上就会被他打断,但很容易又会被他原谅,他对员工和陌生人非常宽宏大量。但是,他处理数字和疯狂交易的能力也伴随着一个缺点:他过分依赖口头指令,没有保存交易的账簿或记录,只是简单地认为他的愿望会实现。[44]

        1843年的英格兰铁路线还不到2000英里,但是到1848年底已经超过5000英里;哈德森控制了其中大约1450英里的路线,并对英格兰东北部拥有实际的垄断权。[45]更多的铁路线正在计划中:议会在1844年批准了800英里,在1845年批准了2700英里,在1846年批准了4500英里。以少量首期付款认购股票,然后在很久之后完成全部购买,是哈德森和大多数其他发起人的经营手段。在工程尚未开工、连运营和收入都没有的时候,新股通常就会公布每年接近10%的股息;大多数投资者被高收益吸引,却没有注意到收入的缺失意味着最初投资者的股息必须来自新投资者的资本,这在现在被称为“庞氏骗局”。在庞氏骗局下,后来股东的股息是无法获得支付的。哈德森故意泄露他的铁路项目即将被议会批准的消息,以此推动这种狂热。就像蛋糕上的糖霜,直到泡沫的最后阶段,哈德森稠密的东北部铁路网还在阻碍竞争性路线的股票发行。

        19世纪40年代,除了布朗特和哈德森这样的发起者、公众和政客外,泡沫剧场的第四个主角——媒体出现了。概括来说,那个时代有两类媒体:以《泰晤士报》为代表的“旧媒体”和以《铁路时报》为代表的铁路专报“新媒体”;前者坚持高度正统的怀疑主义,而后者则煽动投机的火焰。在泡沫最严重的时候,市面上至少有20种铁路出版物,铁路公司每周都要慷慨地花费1.2万~1.4万英镑发布广告,这些资金成为媒体的主要收入来源,而这些钱本可以更明智地用于建设。关于新提案的吹嘘文章比比皆是。一位评论家讽刺道:“委员会为绅士和男爵们高兴,下议院通过新提案的前景是肯定的。它的工程师是斯蒂芬森(此时已经是乔治的儿子罗伯特·斯蒂芬森);它的当权者是哈德森;它的银行家是格林。广告还谦虚地补充说,利润不会超过15%。”[46]一篇文章夸张地说,铁路是环绕全球的新世界奇迹:

        不满足于让利物浦成为他们的铁路中心……他们的目标是全球。遥远的印度跨越河海对铁路表示期盼,中国正在倾听这神奇的声音。古希腊被毁坏的山丘和破碎的祭坛将很快与火车头的汽笛声相呼应,或者被转变为商业圣地。通过这些宏伟的工程,河流得以跨越,领土得以穿越,商业得以特许,联邦得以巩固;通过它们,金刚石可以被分割,人类在时间和空间上拥有主宰权。[47]

        直到1843年,英国经济依旧在消化1836—1837年的泡沫,但在1844年秋天,银行的贷款利率已经降为2.5%;更为不祥的是,银行普遍认为铁路证券“像房子一样安全”,并乐于将其作为抵押品。股票认购名单会让21世纪初房地产泡沫中的美国抵押贷款经纪人都脸红:一个年收入54英镑的半薪军官在多个名单上的总收入为41500英镑;两个住在阁楼里的清洁工的儿子,其中一个认购了12500英镑的股票,另一个25000英镑,所包含的追缴金是他们无法承担的;更多的追缴金来自虚构联系方式的股东。[48]

        一位不知姓名的观察者这样描述,英国公众:

        看到整个世界都在为铁路疯狂。铁路在公众集会上受到赞扬;它是公众崇拜的对象;人们在交易所里谈论它;在参议院为它立法;在舞台上暗喻它。它渗透到每一个阶层;渗透到每一个家庭;所有人都被它诱惑。那些说话与契约一样可靠的人,现在也加入追逐铁路的行列,被旋涡带走了。[49]

        商人兼议员詹姆斯·莫里森观察到:

        不易觉察的贪婪之毒在每个阶层蔓延,不仅影响了高贵的大殿主人,也影响了简陋农舍里的合居者。公爵夫人们甚至会在众人面前用凭证弄脏手指,老女仆们会发抖地急切询问股票的价格。年轻的女士们抛弃了婚礼清单而专注于股票行情表,询问她们的爱人有关牛市、熊市操作的问题,这吓到了她们的爱人。时尚人士频繁地出现在经纪人那里,而不是出现在俱乐部。商人不再关注生意而去打理他的股票,但最终,他的股票和生意都将离开他。[50]

        按照贸易委员会的规定,每年11月30日是提交新路线计划的截止日期。1845年11月30日傍晚,当800个铁路计划发起人聚集在白厅(指英国政府)办公室时,一股狂潮席卷了首都:铁路公司允许通过的快递列车以每小时80英里的速度驶向伦敦,但那些运载竞争性路线计划书的列车被铁路公司阻止通过;一位设计师将路线计划书装进一个装饰齐全的灵柩内,然后将其运到列车上,才绕过了铁路公司的障碍。[51]

        如约翰·弗朗西斯所写的,就像南海泡沫期间一样,交易巷里挤满了人,交通堵塞,“几乎无法通行”,周围的街区“像集市一样”。他继续写道:

        谨慎的商人和敏锐的制造商都没有抵制住投机的诱惑。它像麻风病一样在他们中间传播。它不仅毁灭了无辜者,也毁灭了有罪者。它不仅毁坏了很多简陋的农舍,也扰乱了许多亲王的住所。人们急于致富,却被毁灭。他们大量购买;他们踊跃认购;他们抛弃了自己公司的存账室;如果成功了,他们就会继续买入;如果失败了,那么他们往往会自毁,使本已凄凉的家园更加悲惨。[52]

        斯蒂芬森在威斯敏斯特乔治大街的办公室比首相在唐宁街的办公室更受欢迎;铁的价格翻了一番;勘测员的工资很高,特别是那些在军械局工作的人,经常未经许可非法进入私人土地。一份议会报告表明,157名议员的股票认购额超过2000英镑;到1845年夏天,“全国出现了前所未有的对所有生意的忽视;几个月里,柜台上找不到卖货的商人,办公室里也找不到批发商,全国各地都是这样。如果你去拜访商家,那么你肯定会得到‘去城里了’这样的答复”。就连勃朗特[53]一家也参与了:艾米莉和安妮拥有约克和北米德兰的股票,而更脚踏实地的夏洛蒂则持怀疑态度。[54]

        虽然哈德森的许多商业行为,特别是他对公司治理的保密和高压手段,放在今天可能会让他坐牢,但在那时还不是非法的。再过80年,查尔斯·庞兹[55]在初始资本支付股息的操作中不会使用自己的名字;在19世纪40年代早期,这些做法不会引起法律审查(但这种情况很快就会改变)。哈德森的终结不是来自欺诈或欺骗,而只是来自过度建设和监管改革。

        与18世纪的双泡沫不同,这次事件中铁路公司的倒闭过程比较缓慢。到19世纪40年代末,哈德森的铁路网(大致从伦敦延伸到爱丁堡)越来越被东西部的竞争性路线包围。为了进一步延长铁路线来突破包围圈,他冒险性地从个人投资者那里筹集了大量资金;但与此同时,议会于1847年建立了新的监管制度,在此制度下,用新收购的资本支付旧股东的股息,这种类似庞氏骗局的做法被认定为非法。[56]

        1847年初,英格兰银行将贴现率从3.5%提高到5%,这阻碍了股票认购之后所需追缴金的资本流动。1846年的马铃薯歉收和1848年欧洲大陆的革命动乱加剧了英国的经济困境,迫使哈德森和其他铁路经营者降低股息:惊慌失措的投资者开始抛售股票,到1848年10月,股票价格从1845年的峰值下跌了60%(见图4-4)。[57]

        图4-4 英格兰铁路公司的股票价格(1830—1850年)

        虽然股价下跌的绝对数小于南海泡沫时期,甚至小于20世纪的大熊市时期,但认购机制固有的极端杠杆带来了大面积的破坏:

        很多家庭完全被毁。一个不太起眼的英格兰镇上,发生了一些悲惨的自杀事件。原本被精心培育的女儿们现在需要出去寻找面包,儿子们被迫停止学业,很多家庭被分离:房子被法院强制执行。每一个社会纽带都被破坏。那些以前过着舒适独立生活的人突然发现自己欠了大量无力支付的钱。有的放弃了一切,重新开始;有的离开英国去往欧洲大陆的其他国家,蔑视并逃避债权人的追赶。一位绅士收到了400张法院令状。还有一位贵族承受了15000英镑的债务压力,于是他坐上游艇去往美丽的地中海,在那里,他忘却了与自己有关的所有难题。[58]

        此时,即使是哈德森所犯的小过失也会引致仔细审查,而这样的小过失在过去是很容易被原谅的。证券交易所的两个对手仔细检查了买卖记录,发现哈德森的某家公司以高于市场的价格购买了另一家公司的股票,而这另一家公司恰好也归哈德森个人所有;也就是说,他诈骗股东的行为被发现了。很快,他更严重的违规行为也被发现,尽管还没有上升到需要承担刑事责任的高度,但也让他面临严重的民事判决。

        哈德森还有最后一张王牌:森德兰地区的选民依然非常感激他,这使他在议会又待了10年,只要下议院还在开会,他就不会因债务问题而被捕。随后他会以一种滑稽歌剧式的状态往返于英国和欧洲大陆之间:议会开会时,他可以安全地待在英国,并拼命挽回他的财产;休会后,他逃往巴黎。1859年,他在选举中落败,游戏结束了;朋友们离他而去,只有债权人关注他,他剩下的大量财产被没收。最后,他靠仰慕者给他购买的年金维生。[59]

        1863年的一天,查尔斯·狄更斯[60]即将乘坐“福克斯通”号船返回英格兰,遇到了他的朋友查尔斯·曼比。狄更斯写道:

        曼比向一位衣衫褴褛的人告别,我对这个人有印象,但想不起来他是谁。当我们驶离港口时,那人正站在码头边上,凄凉地挥舞着他的帽子。我对曼比说:“我肯定认识那个人。”“我想你认识,”他说,“哈德森!”哈德森住在巴黎,是曼比带过去的。临别时哈德森对曼比说:“在你回来之前,我再也吃不到一顿丰盛的晚餐了。”[61]

        后两轮铁路泡沫毁掉了英国投资者,但为英国提供了必要的基础设施。1838—1848年,铁路里程增加了10倍,直到今天,英国的铁路地图还和1848年非常相似。1848年之后的将近一个世纪里,这个数字才又翻了一番。

        事实上,不幸的铁路投资者们为英格兰提供了宝贵的公共物品——首个高容量、高速度的运输网络。19世纪初之前的英格兰,人均GDP几乎没有增长;而在此之后,它以每年约2%的速度增长——每一代人大约能翻一番,不仅在英格兰,在其他西方发达国家也是如此。这一转变在很大程度上是由蒸汽驱动的陆海运输效率带来的。[62]这种损害了技术投资者但为国家经济增长提供了必要基础设施的例子,还将继续出现。

        1841年,查尔斯·麦基出版了《非同寻常的大众幻想》第一版,正是在铁路狂热达到高潮之前,因此麦基应该会比其他任何人都更清楚地意识到这种狂热。作为一名记者和受欢迎的作家,他完全应该对此提出警告。

        但是他没有,在1852年出版的该书第二版中,他只在一个两句话的脚注中提到了这一事件。[63]19世纪30年代,青年时期的麦基曾为两份伦敦报纸《太阳报》和《晨报》撰稿并编辑;1844年,就在铁路泡沫破裂之前,他开始担任《格拉斯哥的阿格斯》报纸的编辑,并在这个职位上干了3年,这3年正是铁路从繁荣走向萧条的3年。该报纸,特别是“头条”专栏,经常转载其他报纸的文章。这些文章表明,麦基对铁路发展的总体态度是适度热情,这很可能只是对当时经济基调的一种反应。自由放任是当时的经济基调,其核心是废除《谷物法》,因为《谷物法》使地主、贵族受益,导致粮食价格过高,城市贫民挨饿。而铁路只是麦基及其圈子的次要关注点。[64]

        在麦基担任编辑期间,该报的头条确实转载了《泰晤士报》关于泡沫的可怕警告,但该报也转载了其他报纸中对铁路公司有利的文章。尽管在今天,麦基的名字几乎是“狂热”的同义词,但在当时,他似乎完全错过了他正在经历的那场浩劫。在1845年10月的一篇头条文章中,他直言不讳地说,铁路股的热情与南海泡沫没有什么共同点,南海泡沫“没有什么坚实的基础,完全是虚构的”,而铁路热情的基础:

        宽阔而安全。铁路是这个时代的必需品。其本身就是一种不动产和有形资产……沉默的哲学家和活跃的商界人士都能看出,没有什么能比英国资本用于这些项目更高尚、更有利的了。[65]

        虽然没有什么证据表明麦基也在铁路狂热中赔过钱,但作为那个时代最敏锐的观察者,他没有看到人类的金融非理性,这更证明了金融泡沫的诱惑力。到了19世纪,有这样一条旧新闻:一个世纪前,艾萨克·牛顿的例子说明,即使是具有非凡知识和智慧的人,也无法免受投资泡沫的影响。牛顿不是金融新手,南海泡沫时期,他已经担任英国皇家造币厂厂长20多年了。他在1712年购买的南海股票获得了丰厚的回报,1720年初,他以可观的利润卖出了这些股票,但那年晚些时候,他失去了理智,以更高的价格回购了这些股票。他损失了大约20000英镑,并认识到:“我能计算天体的运动,但不能计算人类的疯狂。”[66]

        英国铁路泡沫可以看作一场许诺改变人们日常生活的技术动乱。几乎与此同时,远离欧洲大陆的美国,产生了一种与之截然不同的极端末日狂热。

        5 米勒运动的“大失望”

        数秘主义与确认偏见

        20世纪50年代中期,一位名叫利昂·费斯汀格的心理学家走运了。

        费斯汀格的父亲是一位政治激进的无神论者,也是自苏联移民至美国的刺绣师。在长期杰出的学术生涯中,费斯汀格将自己的才智运用到社会心理学的新兴领域。他幸运地潜伏到美国中西部的一场飞碟狂热事件中,其正好属于他的研究领域。他的研究对象,即“情感”群体,由一位名叫多萝西·马丁的女性领导,她声称已经向人类传达了神灵们有关大地震和洪水的警报:神灵们告诉她,这两个大灾难将于1954年12月21日吞噬北美。[1]

        社会心理学家们都理解所罗门·阿希的线条长度实验,他们早就知道,社会压力通常会磨灭个体之间的观点差异,因此各个小群体和整个社会都会演化出各自的文化、道德和宗教价值观。此外,他们还知道,这些价值观的转变往往是爆炸性的,其快速扩散类似于传染病。

        20世纪20年代以来,流行病学家对疾病传播进行了数学建模,认为疾病传播主要取决于两个关键参数:病原体的传播率或传染性,以及治愈率或死亡率。社会学家发现,他们可以用同样的方法理解思想和信仰的传播。费斯汀格意识到,马丁及其信徒为他提供了一个实验室,让他能够实时观察这一传播过程。更重要的是,马丁团队提供了一个难得的机会,让他可以观察到末日预言不可避免地失败之后会发生什么。

        假如在今天,任何一个机构审查委员会都不会批准费斯汀格的这项研究。在研究中,他的助手“在没有经过马丁团队知情或同意的情况下”潜伏进了马丁的圈子。[2]费斯汀格的项目也违反了实验和伦理规定,即现场研究人员不应干预受试者的决策。当不知情的马丁及其追随者要求费斯汀格的潜伏者们就意见和建议畅所欲言时,他们被迫屡次违反了这项不干预的规定。

        作为早期的山达基[3]信徒,马丁对于“来世”并不陌生,她经历了该组织对她的“审计”过程,能够回忆起自己的受孕、出生和之前的各次转世。她的主要合作者查尔斯·劳赫德博士,则是一位更传统的末日信仰者。他是密歇根州立大学学生健康服务处的一名医生,为一个主流新教团体做国外医药的宣传工作;后来他的妻子患上失能性的神经症,他开始努力为她求医,无意中遇到了一些飞碟狂热者,他们把他介绍给了马丁女士。

        在预言大灾难的大约前一年,马丁成为一名女先知。她醒来时感到右臂一阵刺痛:“我感觉有人在试图引起我的注意。”[4]她拿起一支铅笔,很快发现自己的手非常陌生,不由自主地写字。与《圣经》中的先知们不同,她最初传达的并不是来自上帝的信息,而是来自更亲近的人的信息:当她向肢体的指挥者询问时,对方透露说自己是她去世的父亲。

        她的通灵技巧很快得到了提高;她疼痛的右臂和铅笔开始传递来自地位更高者的信息:一个叫“兄长”的人,向她提供了一些关于她死去父亲的精神需求方面的建议;其次是来自“塞勒斯”号行星和“号角”号行星的生物,其中最重要的是萨南达,他说自己是耶稣本时代的肉体化身。

        萨南达是一位完全现代化的弥赛亚,当时正在美国境内进行高级侦察,并已与马丁女士以及其他人取得了联系。萨南达及其被称为“卫士”的同伴被这个国家的某些东西(后来被德怀特·艾森豪威尔称为军事-工业综合体)激怒;作为报复,他们将把陆地撕成碎片,并在年底前用一场大洪水淹没它。1954年8月1日晚上,卫士们指示马丁及其11名追随者(其中没有费斯汀格的潜伏者)去见他们的飞碟,但马丁一行人什么也没看到,只看到一个相貌平平的男人。马丁给了那个男人果汁和三明治,但他礼貌地拒绝了,然后走开了。

        飞碟没有出现,这给马丁的团队带来了第一次动摇,有7名成员立即离开了她。马丁和其余4名坚持信仰的人没有等很久:两天后,萨南达就通知马丁,那天是他拒绝了茶点,并表示对她和其他同伴的道德品质感到满意;还告诉她,大灾难发生之前,飞碟将拯救少数人,而他们是部分被选中的人。[5]

        像几乎所有的千禧年主义者和启示性末日论者一样,马丁是一个真诚的傻瓜,而不是一个无赖。她将自己的时间和财富奉献给了她的追随者,为信仰付出了沉重的代价。当芝加哥郊区橡树公园的孩子们从父母那里听到即将到来的大灾难后开始做噩梦时,警方指控她“煽动暴乱”,并对她进行精神治疗,随后她逃离了芝加哥的家。劳赫德也因为与这一事件有关而失业。[6]

        1954年底,当救命飞碟和随后的大灾难几乎确定不会出现时,信徒们的信仰体系被证明与事实不一致,即所谓的信仰“失验”,这是费斯汀格研究的主要目标:他想精准地确定,当事实和数据与根深蒂固的观点不一致时人们会如何行动。其研究成果《当预言失败时》成为心理学家、社会学家、经济学家和政治学家公认的经典之作。[7]费斯汀格后来创造了现在人们很熟悉的术语“认知失调”,用来描述信仰和事实之间,或者更微妙地说,叙事和数据之间的情感冲突。当令人信服的叙事和客观事实发生冲突时,叙事往往会幸存下来,这种结果自远古以来就存在于人类社会。

        多萝西·马丁后来的行为体现出很多人处理认知失调的方式。她并没有根据那些与自己信仰不一致的证据修改自己的信仰体系,她和她的团队在此之前对自己的信仰相对保密,但后来他们反而加倍努力,开始就飞碟的到来进行传教。离开芝加哥地区后,她的余生一直从事于通灵研究,先是在南美、北加利福尼亚,最后在亚利桑那州的塞多纳。在1954年的信仰失验事件过去将近半个世纪后,她以德拉修女的化名在塞多纳去世。[8]

        虽然我们很容易将多萝西·马丁的预言讽刺为一种21世纪的胡编乱造,但在某种程度上,我们都是费斯汀格所说的恶魔的奴隶。马丁及其追随者们所表现出的“加倍努力”似乎是人类行为的一个近乎恒定的现象。当明斯特的再洗礼主义者反复看到博克尔松的末日预言被事实推翻时,他们的信仰,至少在一段时间内,变得更加坚定,他们也加倍努力改变周围城镇居民的信仰。同样的情况也将发生在19世纪中期众多福音派新教徒的末日预言事件中。

        这种反常行为具有某种执拗的意义。信仰失验会带来严重的精神痛苦,而缓解这种痛苦的最好方式,就是和新赢得的信徒在一起。正如费斯汀格所说:“如果越来越多的人相信信仰体系是正确的,那么显然,它终究是正确的。”[9]

        从1620年开始,与第五君主国派关系密切的英国清教徒将第一批殖民者送往北美马萨诸塞州。10年后,马萨诸塞海湾殖民地的新领导人约翰·温斯罗普向他的追随者们宣扬,他们即将看到“一个山巅之城”,该城的成功和上帝的宠爱将受到全世界的热切关注。[10]从马萨诸塞殖民地演变而来的美国,没有国教,宗教和意识形态的自由程度前所未有,这为神启性运动的扩散和发展提供了肥沃的土壤。

        18世纪初和19世纪初,分别出现了第一次和第二次“大觉醒”,即席卷美国和英国的宗教复兴;两者都催生了各种各样的非正统神学,就像之前的宗教改革一样,重视个人神灵主义,贬低有组织的宗教等级制度。

        美联储所发行的20美元纸币上那个轮廓分明、眼神锐利的面孔,总统安德鲁·杰克逊,直接促成了第二次大觉醒,这不失为一种历史讽刺。杰克逊反对建立中央银行,并于1837年美国第二合众国银行许可证到期时拒绝了它的延期申请。他这样做的时机非常糟糕:几乎同时,美国经历了一场壮观的泡沫,泡沫事件非常复杂,其特点是大量政府土地被出售、房地产投机以及棉花价格从繁荣到萧条。后来,泡沫破裂,由于没有一家中央银行能够充当救市的最后贷款人,由此造成的货币短缺使美国陷入持续近10年的萧条,并带来约25%的失业率。那个时代并没有留下什么详细的经济数据,但杰克逊的鲁莽行为给美国造成的损失可能与一个世纪后的大萧条一样严重。英国小说家弗雷德里克·马里亚特在1837年恐慌之后访问了纽约,他写道:

        猜疑、恐惧和不幸弥漫了这座城市。如果我不知道原因的话,我就会以为瘟疫正在肆虐。但笛福已经告诉我原因了。来往的人群中,人们脸上没有一丝笑容;匆忙的脚步,疲惫的脸庞,快速打招呼,或者匆忙地交流着在太阳落山之前会发生的预期损失……被解雇的机械师们像饥饿的狼群一样踱来踱去。这种剧烈的震荡像电一样传播开来,传播到数百英里以外的地方。运河、铁路和所有公共工程都已中断,一位爱尔兰移民靠着他的棚屋,手里拿着闲置的铁锹,饥饿着,他想念他的绿宝石岛[11][12]

        第二次大觉醒运动当时已经开始,于1837年恐慌之后加速进行。觉醒运动中的“助产师”们产生了宗教分裂,例如摩门教和各种公然的欺骗性通灵运动。所谓福克斯姐妹与死者沟通的欺骗性,不亚于伟大作家和政治家霍勒斯·格里利[13]的欺骗性。[14]

        最为壮观的是,多达10万的美国人开始相信世界将在1844年10月22日结束,这个集体幻想起源于威廉·米勒,他是一个谦逊、不爱出风头、深思熟虑的人,本来最不可能成为米勒派领导人。

        米勒出生于1782年,是父母的16个孩子中的长子。他们家位于纽约州最东北部的罗汉普顿镇(见图5-1),是一个虔诚的浸信会农业家庭,家中极度贫困,子女几乎无法接受正规教育。像那个时代的许多农家子弟一样,从9岁到14岁,他只在除了收获期和种植期之外的其他3个月里上学。在家里,这个热爱书籍的男孩只能阅读他父亲的《圣经》、《赞美诗》和《诗篇》;慷慨的邻居借给他《鲁滨孙漂流记》等通俗作品的复印本。他的文学兴趣惹恼了父亲,因为父亲注意到,这些兴趣分散了他的注意力,使他无法做农活,所以小米勒会在深夜偷偷溜到壁炉旁,在燃烧着的松树结的昏暗光线下看书。[15]

        图5-1 美国东北部的米勒主义地标

        21岁时,他结婚了,向东进入佛蒙特州几英里,搬到妻子位于波尔特尼附近的家中耕种。波尔特尼镇正是自然神论的温床。自然神论假定一个超然的至高无上的存在,即一个“神圣的钟表匠”只在远处观察他的创造物,自然神论将《圣经》视为一本纯粹的书,而不是神灵的启示——最多只不过是一本关于古代历史的有用手册。

        镇上的大量图书馆藏书反映出这种自由:伏尔泰的,休谟的,潘恩的,以及其他许多人的书,米勒津津有味地读着,并逐渐成为一名自然神论者。在波尔特尼,米勒还受到最著名的市民马修·里昂的影响。马修·里昂是国会议员、美国独立战争的退伍军人、伊桑·艾伦[16]的煽动性伙伴,还是一个臭名昭著的不可知论者。[17]

        米勒读的启蒙哲学的书越多,就越反感《圣经》:为什么上帝创造了一本完全不可理解的书,然后让那些无法正确解读这本书的不幸灵魂遭受死亡、折磨、流放和饥饿?在米勒看来,人类也有错:

        我读得越多,就越发现人类性格中的严重缺陷。我找不到人类过去历史上有什么亮点,那些世界征服者和历史英雄显然都只是人类形态的恶魔。世界上所有的悲伤、痛楚和苦难,似乎都随着他们对同伴的控制权的增强而增加。我开始对所有人都感到不信任。[18]

        波尔特尼镇上打破旧俗的氛围非常适合这位年轻的农民;他终于从家里的令人窒息的宗教氛围中解脱了,他反叛了,当着大家的面,毫不留情地模仿他祖父的华丽布道,滑稽地模仿他们的假虔诚。[19]

        米勒也确实找到了他的家庭值得称赞的地方:他的父亲曾参加过独立战争,因此作为儿子,他在爱国主义和兵役方面得到了庇护。1810年,当与英国之间的战争临近时,佛蒙特州的民兵组织授予他中尉职位;1812年美国对英宣战后,民兵组织将他提升为上尉,第二年他又调任美国正规军中尉。虽然军衔更低了,但这次调任被视为升职。不管怎样,到1814年初,他已经重新获得了上尉军衔。夏末,他来到尚普兰湖畔的普拉茨堡,在那里,人数和武器装备都处于劣势的美国军队,在一场海陆一体战中决定性地击败了英国侵略者。

        这场战争令米勒感到震惊又害怕,9月11日,他写信告诉妻子,一艘美国船只上的300名士兵和水手中,只有25人幸存。“船上的一些官员说,血是及膝深的。”第二天,他再次写信给妻子:

        天哪!到处都是屠杀。我无法向你描述这种普遍的兴奋……日落时分,在一首扬基小调[20]中,我们军营鸣放了礼炮。在一两英里范围内,1.5万~2万人同时参与海陆交战,这超过了以前我见过的任何一场战争。多么宏伟,多么高尚,但又多么可怕![21]

        这场战争不仅摧毁了英国入侵部队,还摧毁了米勒的自然神论:一支在拿破仑战争中身经百战的15000人的精锐英军,却被一支合并了1500人的正规军和4000人的志愿军的杂乱无章的美军打败,除非有一个主动支持美国的上帝,否则还有什么能够解释美军胜利的原因?“在如此困难的情况下,出现如此令人惊讶的结果,在我看来确实像是一个比人类更强大的力量所做的事情。”[22]

        战争结束后不久,他回到了罗汉普顿的农场。在那里,作为一名受人尊敬的退伍军人和小镇官员,他即将在家族的浸信会中扮演更重要的角色。

        战时的经历和回到童年时保守的宗教环境引发了他的信仰冲突,也就是他先前对上帝的不信仰和战争中看到的超自然之力之间的冲突。基于对阅读的热爱,他使用经文来分析解决这种冲突。大约在1816年的某个时候,他开始对《圣经》进行艰难的逐字逐句分析。例如,如果他遇到“野兽”这个词,且这个词在《但以理书》或《启示录》中象征着异教徒帝国,他就会强迫性地在《圣经》的其余书卷中寻找其他的“野兽”。

        经过几年的努力,通过查阅《圣经》,他找到了之前的不信仰和战争经历之间矛盾的解决办法。在《但以理书》中的四个王国中,只有以天主教会为代表的罗马仍然存在。他被《但以理书》8:14打动:“他对我说,到二千三百日,圣所就必洁净。”

        对米勒来说,一切都很清晰了:《以斯拉记》第7章中,波斯皇帝阿尔塔薛西斯在其当政的第七年发布了返回犹大并建造礼拜场所的命令,当时的历史学家估计这一年是公元前457年。根据米勒的末日论,末日时钟从这一年开始倒计时。鉴于圣经学者所假定的圣经日和时间年的等价性,世界将在2300年后,也就是1843年结束。

        米勒继承了悠久的“数字神秘主义”传统。数秘主义曾经为约阿希姆所迷恋,直至今天人们对它的迷恋还有增无减。最引人注目的现代例子是约翰·泰勒和查尔斯·皮亚齐·史密斯在19世纪末的研究成果。他们注意到金字塔结构中的一些数学巧合,例如,金字塔底部周长的两倍与高度之比接近π值,底部周长与框架石长度之比是365,以及从地球到太阳的距离几乎正好是金字塔高度的10亿倍。接着,史密斯写了一本畅销书《伟大金字塔的遗产》(Our Inheritance in the Great Pyramid),详细描述了这些惊人的发现。[23]

        一个世纪后,一位名叫埃里希·冯·丹尼肯的瑞士人在另一本畅销书《众神的战车》中,利用类似的观察结果证明,外星人曾来过地球。[24]近千年来,神学怪人利用类似的数学巧合和圣经年表来预测世界末日。就在2011年,一位名叫哈罗德·坎普的基督教广播名人,预测世界将在10月21日结束。2012年,他承认了自己的错误,谦卑地接受了《马太福音》24:36的告诫:“那日子、那时辰,没有人知道。”[25]

        杰出的数学作家、趣味数学之王、社交网站策划人马丁·加德纳这样评价史密斯的《伟大金字塔的遗产》:“这一类的经典作品就是我们的遗产。很少有一本书,能如此优美地展现出一个对某种理论深信不疑的聪明人(指作者)轻而易举地掌控着整本书的主题,使其精确地契合他的观点。”[26](具有讽刺意味的是,加德纳正是在米勒神学的直系后裔——基督复临安息日会中长大的。)[27]已故“文学坏小子”克里斯托弗·希钦斯针对那些幻想的圣经日期设定,创造了一个更一针见血的术语:“白痴的里程表”[28]

        圣经的数秘主义源于“模式”现象。《圣经》是一部包含大量数字、叙事和各种往往阐述不清的历法的汇编,勤奋的千禧年主义者几乎可以将未来的任何一个日期视为世界末日。米勒并不是第一个运用圣经数秘主义将1843年定为世界末日的人;1946年,一位名叫勒罗伊·埃德温·弗鲁姆的基督复临安息日会牧师出版了《我们祖先的预言信仰》(The Prophetic Faith of our Fathers),它是一本关于末日计算的历史书,包括四卷。其中记录的几十种末日计算时间集中在1843年。但没有任何一个人能像威廉·米勒那样使数秘主义发挥出如此毁灭性的影响。[29]

        数秘主义的影响不可避免地被另一个著名心理现象“确认偏见”放大。在“确认偏见”现象中,人类一旦确定了一个假说或信仰体系,就会只关注支持其信仰的数据,而避免使用与之相悖的数据。

        “确认偏见”这个词与心理学家彼得·沃森有关。在20世纪50年代后期的一个经典实验中,他向受试者展示了一个由三个数字组成的序列,如2-4-6,并要求他们推导出产生该序列的规则,然后让他们用另一个序列对该规则进行测试。[30]

        受试者根据上述序列推出的最明显的规则是“连续偶数”,因此他们最有可能再提出诸如8-10-12这样的序列进行测试,然后他们被告知这一序列与答案规则一致。然后,受试者可能会提出24-26-28这样的序列,然后也被告知这一序列符合规则。

        在多次连续“确认”他们的“连续偶数”规则后,受试者可能会合理地得出结论,认为这就是正确的规则。

        问题是,这三个序列还符合其他多种规则,例如“数字不断增加”或“只有正增长的数字序列”。换句话说,受试者只是试图确认自己的假设,而事实上更有效的策略是测试一些推翻假设的三数字序列,例如5-7-9,如果考官回答说这个序列也符合规则,那么他们就会知道“连续偶数”规则是不正确的,但“数字不断增加”或“每次增加二的数字序列”规则可能仍然成立。

        大多数受试者通常只测试符合其假设规则的三数字,而不是不符合其规则的三数字。这种只寻找支持假设的证据的做法,使得很少人能够推导出正确的规则。

        作为一名科学家,沃森知道,科学方法的核心是试图推翻假设,但作为一名心理学家,他怀疑人类的自然倾向是要确认这些假设。[31]心理学家很快拓展了沃森的研究,并进行了大量的实验,证明人类物种更倾向于寻找和接受确认的证据,而忽视相反的证据。正如那句老话:“一个违背自己意愿被‘说服’的人还会持有不变的看法。”[32][33]

        在20世纪70年代末的一项经典研究中,斯坦福大学的一组研究人员调查了151名大学生对死刑等争议话题的看法,并从中选出48人,其中24人强烈赞成死刑,24人强烈反对死刑(分别被称为支持者/反对者)。然后,他们向两组人展示了两组不同的研究成果,他们说这些研究成果是真实的,但实际上是虚构的。其中一组“研究”表明,死刑州的谋杀率较低,而另一组“研究”则表明,死刑州的谋杀率较高(赞成威慑/反对威慑)。

        支持者们认为,赞成威慑的研究在方法论上比反对威慑的研究更可靠,他们更加相信赞成威慑的研究;而反对者们则认为反对威慑的研究更为合理和令人信服。最具启发性的是,在实验的最后,在参与者阅读并评估了两组相互矛盾的研究结果后,每组都强化了其原来的支持及反对观点。[34]

        威廉·米勒,以及他后来的追随者们,正患上了长期的“确认偏见”病症。计算出1843年这个时间后,米勒专注于寻找确认性的证据,因此他能够说服自己,认为自己的预测是准确的。米勒得出了1843年世界末日的惊人结论:基督将出现在云端,火焰将吞噬大地。正义之人——那些信仰上帝的人——将会被提升天并获得永生,而邪恶之人不仅会被上帝毁灭,而且他们的灵魂将永远被上帝囚禁。[35]

        在近10年的时间里,米勒没有公开这个令人不安的预言,只和周围认识的人讨论。[36]但他的羞怯和内向更加提高了可信度,特别是在卫理公会、浸信会和长老会神职人员中,他们对米勒的这种同时具有学术性和非教派歧视性的方法印象深刻:任何新教派别的成员都有资格获得救赎。米勒的朋友们被他的末日论征服,但不理解他为什么不愿意布道。这其实是因为米勒害怕成为笑柄,这种恐惧可能源于他的社交拘谨和卑微的教育经历。[37]

        1831年夏,他的浸信会妹妹和妹夫邀请他从罗汉普顿去往佛蒙特州的德累斯顿演讲,那里离尚普兰湖只有16英里。虽然他以前读过传教士写的布道,但他从未发表过自己的布道。此时,他已经快50岁了,身体不好。就在普拉茨堡战争之前,他差点儿死于斑点热,此后,他经常受到各种皮肤感染的折磨。

        历史上并没有他那次演讲内容的记录,但他说的话可能与后来的书面布道没有什么太大不同:基督将出现在天空并复活死去的圣徒,正义之人将“在空中遇见主,在那里他们将把自己完全地交给主”。然后基督会把注意力转向有罪之人:

        看哪,天空布满了乌云,太阳蒙上了面纱;月亮苍白而被遗弃,挂在半空中;冰雹降下,七个号角高声吹响;闪电将硫黄火焰的鲜活光芒洒向远方;这个国家的伟大城市将永远不再崛起。[38]

        他的表现让德累斯顿的浸信会教徒们如此着迷,他们一直留他到星期日。在接下来的8年里,他应邀在新英格兰、纽约和加拿大的农村地区演讲。当无法满足远方教徒的演讲邀请时,他给他们提供了书面传单,后来产生了一系列小册子和书籍,而这又引发了更多的演讲邀请。

        有一位目击者似乎对“确认偏见”有直观理解,他对米勒既钦佩又怀疑,他描述了讲坛上的米勒:

        他本人高大魁梧,宽大的脑袋,高高的额头,一双温柔而富有表现力的眼睛,他声音里所有的抑扬顿挫都表明了他最真诚的敬拜。他的想象力相当丰富,从一个有缺陷的前提中得出的结论对他来说就是一个真正的事实。在这种精神状态下,他开始讲课,用大图表说明但以理和约翰的异象。无数的人前来听他演讲,许多心胸开阔的牧师和非宗教人士也乐于接受他的观点,全国东北部的所有地区都弥漫着极大的兴奋。[39]

        米勒所用的圣经数秘主义早已经有数百年历史,同样,他充满活力的布道风格也缺乏独创性。从约1825年开始,一位长老会牧师、第二次大觉醒的主角查尔斯·格兰迪森·芬尼在听众的参与下完善了后来大家都熟悉的“地狱之火和硫黄”的福音讲演。他的布道带来了大量皈依;一位观察家指出,芬尼经过一座城镇后,“宗教情感深深地渗透其中,人们再也无法组织舞会,而马戏团也无利可图”[40]。米勒本人并不赞成这种新的复兴主义布道方式,但是,毫无疑问他已经掌握了芬尼的技巧,而且邀请米勒演讲的许多人都认为他是芬尼技巧的有效实践者。[41]

        和许多早期福音派教徒一样,芬尼是一位坚定的废奴主义者和社会活动家。早期,米勒也有这些信念:罗汉普顿是“地下铁路”运动[42]的一个停靠站,米勒至少庇护过一名奴隶。但1840年,当他参加完一个废奴协会会议时,他确信腐败在人类社会中如此普遍,必须寻求神灵的干预来解决许多弊病,特别是奴隶制:“如果人类是罪魁祸首的话,那么可怜的奴隶的大赦之年还很遥远。但是上帝能够并将释放被俘之人。我们必须也只能向上帝寻求帮助。”[43]

        米勒华丽的演讲风格让普通听众着迷,而且,他对其他新教派别的宽容和对《圣经》文本的熟悉,也让教会的圣职人员着迷。一位持怀疑态度的教会长老想让他难堪:

        我在他房间里见到了他,提出了一大堆为难他的反对意见。令我惊讶的是,他对这些问题几乎都不陌生,而且他回答这些问题的速度和我提出问题的速度一样快。然后他提出了他的异议和问题,这难倒了我,并推翻了我所依赖的那些解释。我回家时已经筋疲力尽,感觉自己有罪,感到卑微,并下定决心要回答这些问题。[44]

        米勒的受欢迎源于他振奋人心的布道,但这是有代价的:让教徒们所感动的远不是米勒的复临主义神学,而是他演讲内容中的地狱之火和硫黄。米勒是为了从地狱之火中救赎灵魂,而邀请他演讲的人则是为了让教堂的长椅上坐满人。当然,到19世纪30年代末,他已经吸引了一大批传播他信息的支持者。例如,1838年,波士顿《每日时报》的编辑发表了一系列米勒的布道;几乎同一时间,一位名叫约西亚·利奇的牧师写了一本名为《午夜呼声!》(The Midnight Cry!)的支持米勒的小册子,其在新英格兰广泛传播;一位名叫查尔斯·菲奇的波士顿牧师,是废奴主义者威廉·劳埃德·加里森的助手之一,连续几次重读了利奇的作品。利奇、菲奇和其他几位米勒的助手将在未来几年内支持米勒运动,并最终鼓励他做出那个最失败的世界末日预测。[45]

        起初,这些支持并没有使米勒受到鼓舞;到1839年,由于年龄增长和健康状况不佳,他已经步履蹒跚;没有几个人相信4年之后的末日,他因此而沮丧并认为自己是个失败者。他不断收到演讲邀请,但他知道,分散在农村的布道只能拯救少数灵魂免遭即将到来的末日大灾难。[46]

        虽然追随者们认为他是先知,但从技术上说,他不是,因为他坚决否认与全能者(上帝)有任何交流。他只是声称自己有能力从《圣经》中领悟未来。不管他如何看待自己,他显然低估了自己富有说服力的安息日神学对美国东北部神职人员的影响力。例如,1838年,他拒绝了波士顿牧师约书亚·海姆斯和加里森的助手菲奇的演讲邀请。

        与米勒的谦虚和不谙世故不同,海姆斯儒雅而圆滑,在波士顿的改革派圈子里人脉很广。第一基督教会对他来说过于保守,因此他建立了自己的教会,并很自然地命名为第二基督教会。在海姆斯的领导下,第二基督教会发展迅速,不得不在波士顿沙登大街另建了一个有500个座位的小教堂。坚强、外向、有号召力的海姆斯丝毫没有因为米勒的羞怯而退缩。1839年秋天的某个时候,他说服米勒向会众布道,而米勒的表现也给他留下了深刻的印象,于是他将自己相当多的精力、组织能力和当时他所掌握的印刷媒介都投入米勒运动中,并有效地接管了这一事业。

        海姆斯不仅将米勒送往冷清的乡村教堂,还送往拥挤的纽约市和奥尔巴尼市大教堂。他重新出版了米勒的小册子和书籍,创办了一份非常成功的报纸《时兆》,它最初是双周报,很快就成了周报。海姆斯还与其他受米勒末日论影响的人建立了广泛的联系,那些人也出版了他们自己的米勒系报纸。其中最著名的是纳撒尼尔·索瑟德,他后来编辑了最著名的复临主义出版物《午夜呼声!》(容易混淆的是,它与利奇的小册子同名)。

        从各种最小的集会到最大的讲座,海姆斯凭直觉领悟到出版物和布道之间的协同增效作用。以引人入胜的复临主义末日叙事为特色的小册子、报纸和书籍引发了对布道的需求,而布道又引发了更多的出版物销量。信徒们到处传播米勒的话语,他们在港口付款,将一捆捆的小册子留在远洋海船和运河驳船上,或者在火车车厢里悬挂海报。[47]

        从1840年开始,海姆斯组织了几次全体大会,汇集并协调米勒的复临运动,不仅包括传统的教堂集会,还涉及大规模的“野营集会”。

        野营集会并不是海姆斯发明的;第一批野营集会在美国建国后不久就产生了,到1840年,已成为一个组织。其成员一部分是奋兴派[48]教徒,一部分是社交俱乐部成员,他们吸引了很多南卡罗来纳州、田纳西州和肯塔基州边境地区原本孤立的农民。这些农民迫切需要社交活动。通常,他们的浸信会和卫理公会组织者会清理出一片森林土地,将砍伐的树木做成粗糙的长凳和小讲坛,作为流动教堂。(另一方面,圣公会教徒和公理会教徒对野营集会及其传教活动嗤之以鼻。[49]

        米勒的追随者于1842年6月下旬举行了前两次野营集会:一次在新罕布什尔州的东金斯顿,另一次在魁北克的哈特利。新罕布什尔州的集会取得了惊人的成功:多达1万名浸信会教徒和卫理公会教徒前来参加,还有少量自然神论者和不信仰耶稣的“异教徒”,其大概是被无宗教派别歧视的伙伴关系吸引而来的。这次集会证明,海姆斯是一位后勤高手:这些聚会地点都很容易通过铁路到达,根据一位历史学家的说法,还有“大量纯净的凉水,高大的铁杉树和凉爽的树荫,以及僻静的小树林来做祈祷和敬拜”[50]。大、中型城市赞助了帐篷用来住宿,铁路建立了临时车站,为信徒们降低了票价,并让传教士免费乘车。最后,每个帐篷的“主人”都提供了一张记录表,记录着从永恒之火中救赎的灵魂。

        新罕布什尔州的集会非常成功,因此海姆斯和他的同事决定购买一个“大帐篷”,它高55英尺,直径为120英尺,可容纳4000人,过道中还可容纳数千人。在天气恶劣时,它可以在室内提供服务,并可以配备炉灶,以便在寒冷天气举行集会;这个帐篷吸引了纽约州罗切斯特市以及西至俄亥俄州的数千人。在随后的两年中,海姆斯和他的同事组织了125次野营集会,约50万人参加。[51]

        每次野营集会结束时,牧师们都会安排一场祈祷或一首告别的歌曲,其中最受欢迎的是歌曲《永不分离》。

        我们正穿过以马内利[52]的地盘,

        我们很快就将听到号角声,

        很快我们将与耶稣一起统治,

        永不,永不分离。

        什么?永不分离?

        是的,永不分离。

        因为我们很快就会和耶稣一起统治,

        永不,永不分离。[53]

        牧师随后带领会众排成一队走出帐篷,队伍螺旋排列,每个人都能与其他人握手。由于世界末日即将来临,信徒们期待着他们在“天堂野营”的下一次会面。[54]

        米勒为自己的成功付出了高昂的个人代价。起初他的身体就不太好,据他估计仅在1841年就做了627次90分钟的激情演讲。[55]在这期间,由于米勒的皮肤疾病和劳累状况,不止一次,健康问题迫使他早早回到罗汉普顿。他的助手们非常热情地接替了他,因此他对运动的影响力有所减弱。[56]

        若得不到精心管理,情绪满满的群众事件很可能会失控,后来的野营集会就发生了这样的事情。由于海姆斯忙于传播米勒的信息,他让副手查尔斯·斯塔克韦瑟负责管理沙登大街小教堂,但事实证明,斯塔克韦瑟特别善于煽动会众进入疯狂状态。由于害怕他的这种影响,海姆斯最终解雇了斯塔克韦瑟,但无法阻止他参加野营集会。在野营集会上,斯塔克韦瑟的布道使信徒相信他是圣灵的宿主,并拥有“天赋”,包括能够停止蒸汽机或在水上行走。此外,在另一次集会上,一位与会者声称读懂了一位信徒的性格和内心,然后号召追随者们联合起来反对他的怀疑者,以消除永恒诅咒的痛苦。当怀疑者们反抗时,他讲着不为人知的语言并连续击打他们,周围的人试图干预,但也被他谴责下地狱。[57]

        更重要的是,米勒和海姆斯开始失去对日益强大的复临主义传播媒介的控制。信徒们开始出版自己的报纸,名称诸如《真理之声》《将临王国的喜讯》《降临纪事》《帐篷通信》《朱比利号角》《西部午夜呼声》等。其中最后一份报纸是由卫理公会牧师乔治·斯托尔斯创办的,他曾经因为废奴活动而被关押在新罕布什尔州,又以同样的热情追求复临事业,最终落得惨痛的结局。

        1842年12月31日,新年前夕,全国各地的复临主义者聚集在沙登大街迎接1843年的到来,这将是世界的最后一年。海姆斯和斯塔克韦瑟(后者那时还没有被解雇)在拥挤的小教堂里布道。日渐虚弱的米勒向信徒们发出了一封信:

        根据我们的信仰,今年是撒旦统治我们地球的最后一年。耶稣基督会来,并打破他的头……地球上的王国将被粉碎。那有权做王的,必夺取国,得为业,直到永远。[58]

        到了2月,米勒已经从疾病中恢复到可以前往费城,在那里,巨大的中国式博物馆大厅被租来进行他的布道。兴奋之情是如此明显,等待在外面的人群也是如此不守规矩,以至于市政府因为担心市民混乱而取消了2月9日的第一次布道。第二天,米勒的布道效果很好,意外事件也没有发生。随后不久,应市长的邀请,他在特伦顿市进行了布道。在回家的路上,米勒生病了,直到那年秋天一直留在罗汉普顿。海姆斯和几位同僚将国家划分为几个区域,并在各地的教堂布道,租用大厅,还将宣传资料分发,西至威斯康星州和密苏里州,南至北卡罗来纳州和南卡罗来纳州。

        这场运动的中心在波士顿的沙登大街,想听海姆斯布道的人的数量大大超过了教堂的座位数,因此他们计划在霍华德街修建一个更大的、能容纳3000人的场地。根据城市法令的要求,这样规模的建筑需要用砖把四面都围起来,而世界末日已近,因此霍华德街地段非常理想——已经有三面墙,只需要在第四面修建一堵12英尺高的墙。

        这场运动早已引起广大公众的怀疑和奚落,此时,收到了公开的敌意。报纸上充满了警告和蔑视,认为这个信仰体系不仅危险而且极度鲁莽:如果世界末日即将来临,那么不仅在波士顿,而且在辛辛那提和克利夫兰建造会堂都毫无用处。尽管公众的反对声越来越大,但信徒们还是在1843年5月4日为霍华德街的会堂举行了落成仪式。

        正如大多数闭关自守的信仰体系那样,米勒利用确认偏见来支持他们的神学;与往常一样,《圣经》再次成为支持性数据的来源宝库:

        第一要紧的,该知道在末世必有好讥诮的人,随从自己的私欲出来讥诮说:主要降临的应许在哪里呢?因为从列祖睡了以来,万物与起初创造的时候仍是一样。(《彼得后书》,第3章,第3—4节)

        为了鼓舞因日益受到公众蔑视而灰心丧气的队伍,《午夜呼声!》开设“骗徒”和“嘲笑者角落”两个固定专栏。[59]

        米勒一直没有指明末日的确切日期。他将《但以理书》8:14中的2300年加在了波斯皇帝阿尔塔薛西斯允许犹太人返回耶路撒冷重建圣殿的那一年(公元前457年)上,这个简单的算术确定了耶稣复临的时间是1843年。随着这一年平淡无奇地过去,米勒开始敷衍:由于《圣经》中的事件是按照犹太拉比的历法计算的,3月或4月才是一年的开始,根据这一计算调整,犹太人的“1843年”直到1844年3月21日才结束,因此时间仍然充足。[60]

        1844年初,米勒重返战场,在波士顿和纽约市向广大听众布道。随着那个重大日期的临近,他与约西亚·利奇和海姆斯一起,在华盛顿特区举行了一次压轴布道。但是,被米勒称为“恺撒之家”的首都似乎更关注当年的总统选举,而不是即将到来的天启末日,这让他烦恼不已:

        我们的统治者和政治家还没有准备好放弃他们的权力,他们正在为下一任总统而进行政治斗争,就好像他们小小的“短暂权力”将永存一样。但是在上帝的话语、圣灵和历史的帮助下,我将向他们展示,一场重要的革命即将发生,这将取代选择总统的必要性。[61]

        到了3月3日,米勒已经在首都发表了19次布道,然后在返回罗汉普顿的路上又发表了几次。回到罗汉普顿的他精疲力竭,等待3月21日的末日。

        这一天,又平安无事地过去。米勒通过私人邮件写给海姆斯一些充满希望的话语,又通过复临主义的报纸将一些信息发给信徒们:他的计算从来都不精确,所以如果计算偏离了一周或一个月或两个月会怎么样?上帝仍会降临。至于海姆斯,他警告读者:“因此,我们只在心中把事件推迟一个小时是不安全的,应该要生活在不断的期待中,随时准备与我们的大法官(指耶稣)见面。有了这样的想法,我们无法为未来做出确定的安排。”[62]

        实际上还有很多回旋余地。例如,海姆斯旗下的一份报纸《时兆》在上一年发表过一篇未署名的文章,其指出了米勒的计算错误:因为基督教历法中没有0年,所以公元前457年和1843年之间仅相隔2999年,而不是3000年。因此,末日应该发生在“犹太年”的1844年,而不是1843年。

        这篇文章进一步对米勒使用的犹太教历法提出了异议。罗马人将犹太人驱逐到各地后,犹太的大麦收割(赎罪节的日期以大麦收割为基础)再也无法观测到,因此几乎所有犹太人都采用了拉比历法,这是一种精确的数学测年系统,以19年为一个周期。然而,这种较新的历法直到4世纪才开始使用。这篇文章的作者认为,更好的做法是观察圣经时代所使用的“卡拉”历法体系,该历法以最接近犹太大麦收割时间的新月出现时间为一年的开始。通过这种方法计算,天启末日将发生在1844年4月29日。[63]

        但是,那一天也安然无恙地过去了。公众的嘲笑声越来越大,米勒很容易从他的邻居那里听到一些类似的话:“什么?!还没升天?我们以为你已经升天了!不是被你妻子丢下等待被烧吧?”[64]

        《圣经》再次被挖掘出来,以解释为什么末日没有到来。《旧约》中最晦涩难懂的《哈巴谷书》2:3中有这样一段话:“因为这默示有一定的日期,快要应验,并不虚谎。虽然迟延,还要等候。因为必然临到,不再迟延。”《圣经》其他地方也出现过“迟延”一词,最重要的是《马太福音》25章中的一个寓言,10个童女等待“新郎”,新郎代表耶稣。第5节和第6节解释说,“新郎迟延的时候,他们都打盹儿睡着了。半夜有人喊着说,新郎来了,你们出来迎接他”(利奇的小册子和最著名的复临报纸《午夜呼声!》即由此得名)。这种解释使失望的信徒安心了:耶稣的工作基本上完成了,他只是在迟延。

        米勒派遵循了多萝西·马丁的追随者在飞碟首次未能出现时的剧本。一些追随者离开了,但那些留下来的人则加倍努力向周围的人传教。野营集会仍在继续,春季失望之后所产生的不信任,在降低信徒人数的同时,也为更热情的信徒带来了机会。狂热的斯塔克韦瑟被逐出沙登大街后,带走了许多追随者。另一个狂热分子卡尔文·弗伦奇宣称,信徒们不仅可以避免地狱之火,还可以实现“圆满”(一种他们所做的任何事情都可以被宽恕和被祝福的状态),包括可以在婚姻界限之外拥有很多“精神妻子”,这是所有时代的末日论领导人经常享有的特权。斯塔克韦瑟也热情地宣扬这一点。

        1844年8月,在新罕布什尔州埃克塞特市举行的野营集会上,失望与狂热交织。在一次枯燥无味的演讲中,演讲者约瑟夫·贝茨中途被米勒的一位助手打断,助手说一位以前不知名的人物塞缪尔·斯诺有紧急消息。

        斯诺告诉人们,他对《旧约》和《新约》进行了详尽的调查,并取得惊人的发现:4个犹太教圣日和4个基督教圣日之间有一对一的一致性。那一年已经庆祝了3个基督教圣日,而第4个对应着犹太赎罪日的基督教圣日还没有庆祝。赎罪日是犹太教中最神圣的节日,发生在犹太历法的第7个月(提市黎月)的第10天。

        对于1844年的赎罪日在9月23日,斯诺不同意这个日期,他觉得使用古代的卡拉历法更准确,这种历法比犹太教历法晚一个月;因此,末日时间将在10月22日。(即使如此“精确”也有一些不确定性。因为在那个时代,耶路撒冷的新月出现在数千英里之外,新大陆无法观测到,有一些信徒认为实际日期可能会延长至10月24日。)[65]

        斯诺的消息震惊了整个营地,甚至连被打断演讲的贝茨也吓了一跳,贝茨写道:

        这个消息开始发酵,传遍了整个营地。集会结束时,新罕布什尔州的花岗岩山上回响着呼喊声:“看,新郎来了,你们出去迎接他。”当满载的马车、舞台和火车驶过新英格兰地区的各个州、城市和村庄时,呼喊声仍然响亮,“看,新郎来了!”基督,我们可称颂的主,将在第7个月的第10天降临!准备好!准备好![66]

        引用的“新郎”一词再次指向《马太福音》25章。模仿海姆斯的做法,斯诺创办了名为《真正的午夜呼声》的新报纸。斯诺的计算并不是原创:早些时候,米勒本人曾有过“第7个月的第10天”的提法。1844年夏天,饱受批评的米勒派因认知失调和确认偏见而变得狂热,正好可以利用斯诺的构想。充满激情的乔治·斯托尔斯也支持这一构想。

        斯诺和斯托尔斯都是适应能力强的人:斯诺一开始自称为“异教徒”,为一家公开的无神论报纸《波士顿调查》撰稿;和那个时期的许多非信徒一样,他在阅读了米勒的著作后皈依了基督复临主义。而斯托尔斯一开始是卫理公会教徒,有一次他应邀在教堂进行废奴主义的布道;为了阻止他,逮捕他的人将他从教堂拖了出来。

        复临主义的高层们,就像所罗门·阿希的线条测试实验中更易受别人影响的受试者一样,一个接一个地,接受了“第7个月的第10天”,也就是当时日历的10月22日这个末日日期。9月下旬,该运动的旗舰报纸《午夜呼声!》的编辑内森·索瑟德在该报上刊登并支持10月22日这个末日日期。海姆斯一直是一个讲究实效的组织者,他察觉到队伍里的日期改变并提醒米勒,因为米勒以前也提过第10天/第7个月的说法;于是两人都于10月6日确认末日日期是10月22日。现在离末日大概只有两周了。[67]

        米勒在《午夜呼声!》中写道:

        我在第7个月看到了我从未见过的荣耀。虽然主在一年半前向我展示了第7个月的特殊担当,但我没有意识到这类担当的力量(《新约》和《旧约》在圣日问题上的一致性)。现在,称颂主的名字,我在《圣经》中看到了美丽、和谐和一致,我一直在为此祈祷,但直到今天才看到。——我的灵魂啊,感谢主。斯诺兄弟、斯托尔斯兄弟和其他人打开了我的眼睛,他们应该受到祝福。我快回家了。荣耀!荣耀!!荣耀!!![68]

        信徒们大致接受了斯诺的计算;10月12日,守旧者中最持怀疑态度的约西亚·利奇也开始与末日步调一致:

        我的困难全都消失了,我现在在《旧约》中上帝话语所闪耀的光芒里感到愉悦……我感到自卑,服在神大能的手下,现在我抬起头,满怀喜悦地期待10天内见到万王之王。[69]

        霍华德街的会堂里挤满了人,《午夜呼声!》和《复临通报》最先进的蒸汽印刷机24小时不停地疯狂运转,试图在耶稣关上救赎之窗前从地狱之火中拯救出尽可能多的灵魂。

        这时,信徒们已经强烈地意识到,世界上的其他人都认为他们疯了,因此他们面临着一个可怕的选择:要么继续他们的日常活动和生意,被贴上伪君子的标签;要么停止所有这些活动,被指责为狂热分子。领导层一直注意运动的公众形象,建议采取前一种做法:信徒们要过正常的生活,直到末日。

        《午夜呼声!》的最后一期报纸,在预期末日之前的10月19日出版。这期报纸包含了很多由衷的信念表达。也许最令人印象深刻的是威廉·尼古拉斯,他刚刚拜访了他的复临派邻居巴克斯特夫人:

        这是她能够吃点儿东西的第29天。但显然她身体很好,看起来很健康,邻居们说她的体力最近有所增强。她说她没有生病,身体很好。昨天和今天早上,她都出了趟门。[70]

        米勒非常谦虚,他估计有5万人相信耶稣将会在1844年复临,而其他人则认为这个数字是美国总人口2000万中的100万;受人尊敬的美国古文物学会将这场运动的信徒人数定为15万~20万。[71]10月22日,他们中的大多数人沉着自信地迎接末日,与家人在家中或教堂静静地聚集,并告别那些他们认为无法避免地狱之火的人。海姆斯从波士顿前往罗汉普顿,与米勒一起迎接救世主。

        米勒和海姆斯劝诫他们的追随者,要按照圣经的指令“你们去做生意,直等我回来”(《路加福音》19:13)进行日常活动。尽管有这样的建议,但1844年春天,许多人并没有播种庄稼,或者有的播种了但没去收割,以此表达他们的信仰。有些人结束了自己的生意,敲响了公共警报,并不再让孩子们去学校。有些人更进一步,把自己商店和面包店的东西都送给了别人。还有一些人把自己的大部分钱和世俗财产都送给了别人。[72]复临主义的报纸报道说,有几十个人在野营集会上供认了自己的罪行;当信徒们试图把钱送人时却没有成功,钞票散落在讲坛上。信徒们放弃了自己数千美元的债权;纽约立法机构宽恕了一名议员,以便他能为世界末日做准备;在罗切斯特,一名妇女供认了几年前在英国犯下的谋杀罪,并要求被送回那里受审。[73]根据一部19世纪的费城综合历史:

        米勒教堂位于伍德和卡洛希尔之间的朱利安娜街上,在那里,米勒的追随者们日夜相聚,望着星星和太阳,祈祷并警告执迷不悟者“审判日就在眼前”。他们中的许多人开始以很低的价格出售土地和房屋。其他人则捐出个人物品,结束生意或腾空房屋。在第五街的一家商店里,栗子树的上方有一块标语牌,上面写着:“这家商店为了致敬王中之王而关闭,他将在10月20日左右出现。准备好,朋友们,给他加冕万王之王!”[74]

        主流米勒派非常平静地等待10月22日的到来,他们对末日神学所产生的狂热感到忧虑:

        随着日期的临近,受骗的人们放弃了所有事情,只给自己安排各种集会,在附近的私人住宅里日日夜夜地集会。他们几乎完全忽略了自己的世俗事务,有些人甚至让幼儿自己照顾自己,或者由那些不那么痴迷于集会的人来照顾。[75]

        预期的复临日对整个社会的影响大大超过了对信徒的影响,因为每一个坚定的米勒派肯定会面对几个不信仰的人,随着10月22日的临近,每当起风或天色变暗时,这些不信仰者就会想,他们是不是不应该下这个赌注。在纽约的伊萨卡,一名男子被“着火”的喊声惊醒,他经过调查发现,起火的源头是一个基督复临派的会议厅,他对于“米勒派圣殿着火了,而不是全世界着火了”表示宽慰。[76]

        这次事件之后,20世纪20年代初,一位名叫克拉拉·恩迪科特·西尔斯的接受私人家庭教育的美国北方贵族,对米勒运动感兴趣,并通过在报纸上发布广告来征求这一事件的第一手资料。她收集了大约160个故事,将其编入一本名为《幻想的日子》(Days of Delusion)的书中,这本书极大地加深了现代人对米勒运动的疯狂的印象,尽管历史学家已经得出结论,其中的许多故事(如果不是大多数的话)通过父母、祖父母、阿姨和叔叔80年的滤化,可能已经被渲染,或者显然是不真实的。

        尽管如此,西尔斯收集的故事中仍有几个主题始终如一:许多米勒信徒在山顶上等待,还有少数信徒在墓地等待。许多故事也确实像是真实的:西尔斯的一位上了年纪的联系人,在1844年时还是一个小女孩,她记得曾向一位邻居女孩求助,这位女孩的父母都是米勒信徒,她想请这位女孩帮忙做饭。这位女孩的父母告诉她,女孩正在为被提做准备,她问:“若这没有发生,她能在一周后过来吗?”她后来回忆说:“尽管我很小,但我永远不会忘记她脸上的恐惧表情,以及她那双蓝色大眼睛里充满的泪水。”

        西尔斯的另一个故事来自一个热心的米勒信徒,他讲述了唯一神教派的牧师西奥多·帕克和诗人拉尔夫·沃尔多·爱默生的对话。爱默生说:“世界末日不会影响我;没有它,我可以继续生活。”帕克回应说:“这与我无关,因为我住在波士顿。”[77]

        西尔斯的书中最令人难忘的一个故事,描述了米勒信徒们穿着白色“升天长袍”等待升天的情景,以及他们从树上跳起后掉下来摔断脖子和四肢,有时还使用了自制翅膀的情景。这些情节虽然看似可信,但很可能是复临派反对者宣传的结果。

        批评家们还指责米勒主义导致精神病院住满了精神病患者,但这也可能是虚构的:宗教思想经常会带一点儿精神分裂症特征,它是一种常见的紊乱症,但新英格兰地区的精神病院记录本上,只在少数情况下提到了米勒主义。[78]此外,一位米勒信徒将自己所有的世俗财产都送给了别人,他的亲人很合理地试图把他关起来。1843年,一个叫普尔的信徒,为了支付从波士顿到西部说服别人皈依和传播圣经的旅费而花掉了自己的财产,他的一个兄弟把他骗到家中并试图将他送进精神病院,但他被他的复临派旅伴救了出来。[79]

        10月22日是个硬目标,10月的失望比春天的失望更强烈地打击了信仰者。他们的集体绝望压倒了一切。据米勒所说:“似乎所有的恶魔都从无底深渊中释放在我们身上。”[80]据该运动的一位长老路易斯·鲍特尔观察:

        10月22日过去了,那些忠实和渴望的信徒感到难以言表的悲伤;那些不信仰的人和恶人却在欢喜。一切都依旧。复临前兆没有了;以前的集会没有了。每个人都感到孤独,几乎不想和任何人说话。大家像是在寒冷的世界里!上帝不会来的!任何语言都无法表达出一个真正的复临派信徒的失望之情。只有那些经历过的人才能加入这个话题。这是一件丢脸的事,我们都有同感。除了询问“我们在哪里”和“下一步怎么办”以外,大家都在沉默。[81]

        救赎失败受到了广泛的鄙视。许多复临派教徒都是废奴主义者威廉·劳埃德·加里森的追随者,而加里森却说他们患有“一种可悲的大脑幻想,现在已经清楚地证明是这样的”,这格外令人感到刺痛。(加里森另有企图,他认为米勒运动抢走了废奴运动的人员和资源。)[82]

        信徒们受到了大大小小的侮辱,从小男孩们嘲讽“你还没有上升吗?”到对海姆斯的严重欺诈指控(波士顿的一家报纸建议他避免在街上露面)。

        在这些指控中,海姆斯是无辜的。他主动提出,如果有人有任何关于他欺诈的证据,那么他将提供4倍的还款(但没有找到任何证据);他找到了一些证人,这些人撤回了之前对他渎职的错误陈述;他还让银行证明他的私人财产很少。[83]随后,海姆斯积极组织对那些在复临中疏忽个人和经济事务的人进行经济救济。“大失望”[84]的直接后果是,暴徒洗劫并烧毁了会堂,闯入集会并挥舞枪支挑衅。1845年1月29日,米勒被罗汉普顿浸信会逐出了教会,这对米勒本人是一种极大的侮辱。

        与多萝西·马丁的追随者一样,复临派教徒对这种强烈的认知失调做出了各种各样的反应。斯诺与马丁女士以及她最忠实的追随者们一样,加倍努力,坚持认为末日即将到来。斯诺的顾问乔治·斯托尔斯则恰恰相反,他否认了自己之前的信仰。

        其他人有两种应对方式。第一种,最终成为最重要的一种,是“灵化”论,由来自纽约州北部的一位名叫海勒姆·埃德森的米勒派人士提出。埃德森声称基督在10月22日采取了行动,不过是以簿记模式,而不是以末日模式。他没有回到地球,而是进入了“至圣所”,正辛苦地将人类分为粗俗和善良两类。最终,他将完成名单设定,然后才回到地球做最后的判决。

        10月22日“大失望”的第二种应对认知失调的方式是“闭门”论。持这种观点的人认为耶稣还没有复临,但已经在10月22日那天,对那些没有看到光明的人关闭了极乐城之门,耶稣只会拯救选民,也就是他们。而且,作为选民,他们的“圆满”赋予他们各种性特权,从“淫乱的洗脚礼”到“圣洁的亲吻”,再到精神婚姻的最终肉体回报。[85]

        米勒,就像他经常做的那样,采取了一种微妙的、界限不清的方式,躲躲闪闪、支支吾吾,最后将责任归咎于现有历史数据不精确;末日肯定会到来,但由于计算的不精确性,它可能发生在长达数年之后。

        此时,他已经精疲力竭、病入膏肓。他徘徊了5年后最终死去。精力充沛、精明强干的约书亚·海姆斯试图将这场运动凝聚起来。10月22日的承诺对他来说只是一个务实事件,而不是神学信仰,因此他很快就改变了立场。他拒绝进一步做任何日期设定,并试图压制他所鄙视的“灵化”论和“闭门”论。这激怒了诸如斯诺那样的“闭门”人,斯诺谴责米勒和海姆斯将会因叛教而下地狱。[86]

        海姆斯不可避免地失败了;米勒派会众萎缩,报纸订阅量急剧下降,运动分裂得无法修复。斯诺的正统派很快就消失了;以海姆斯和米勒为代表的主流群体承认了他们的预测错误,但仍然相信即将发生的耶稣复临。海姆斯本人逐渐远离了这场运动,最终回归到童年时代的信仰——主教制度主义。

        和16世纪的再洗礼派一样,一小部分的“灵化”者幸存下来,并发展出一个和平的现代教派——基督复临安息日会。今天的基督复临安息日会是一个温和的现代主流团体,交际保守,鼓励素食主义,遵守严格的安息日禁令。该教派依然宣扬耶稣复临,但并不确定复临日期,这是可以理解的。[87]

        但幻想的复临派末日论余烬从未熄灭。“大失望”一个半世纪后,一个脱离复临安息日会的小教派,大卫·考雷什的大卫支教,引发了美国宗教史上最悲惨的事件。

        正如心理学家利昂·费斯汀格描述的那样,日期设定会产生一种内在的不稳定动态。预言越精确,就越有说服力;前几次的预言没有实现,由此产生的认知失调鼓励信徒们以更大的活力和精准度宣讲自己的信仰,从而吸引了更多的信徒;最后,一个大胆而精确的预言出现了,这个预言肯定会失败,然后动摇大多数追随者,只留下一小部分顽固的信徒。费斯汀格的研究解释了米勒事件,但他的描述不仅适用于宗教信仰,还适用于政治和文化信仰:

        尽管有一个限度,超过这个限度,信仰的失验将很难被承受,但很明显,引入相反的证据有助于增加信仰者的信念和热情。[88]

        主流基督教派再也不会犯错去进行日期设定了。正如宗教历史学家欧内斯特·桑登所说:

        米勒事件几乎摧毁了整整一代的美国前千禧年主义者……但把注意力集中于1843年时,米勒也引入了一个可能会摧毁这场运动的因素……米勒在1844年之前越成功,就意味着1844年之后的千禧年主义者传道越困难。美国人花了很长时间才忘记威廉·米勒。[89]

        但是,仍有一些人无法抗拒将《圣经》的模糊语言转化为精确预言的冲动。20世纪,米勒的神学继承人学会了对末日发生日期含糊其词,但事实证明他们依然过分地热衷于末日的发生;正如米勒及其追随者忍不住要从《圣经》中推出一个确定日期一样,他的现代追随者们总是尝试做一件事,即将当天的报纸头条事件外推到看似合理的末日叙事中,但不可避免地都失败了。正如多萝西·马丁的飞碟一样,每一次的认知失验都会产生更多的信仰归附和更离奇的叙事。

        令人担忧的是,这些叙事将对那些控制世界末日机器的人[90]产生巨大的影响。

        6 弹性货币政策的灾难

        泡沫与崩溃的四个前提

        人们在最快乐的时候,都是最轻信的;当人们刚刚赚了很多钱,当一些人真的在赚钱,当大多数人认为他们在赚钱,此时就是人们最快乐的时候,也是捏造谎言的最巧妙时机。人们在这样一小段时间里几乎会相信任何事情。 ——沃尔特·白芝浩[1]

        1929年初秋,温斯顿·丘吉尔在加拿大进行了一次悠闲的私人火车旅行。10月24日,黑色星期四,他抵达纽约,正值那个秋天第一次股市大暴跌,他在那里看到,“就在我房间的窗户下,一位绅士从15层纵身跳下,摔得粉身碎骨,引起一场严重混乱,消防队也赶来了”。第二天,丘吉尔被邀请进入纽约证券交易所的访客大厅,他在那里注意到:

        我以为我会看到混乱;但眼前的平静和有序出人意料。(证券经纪人)被最严格的规则约束,不能奔跑或提高说话的音量。于是,他们就在那里,来回走动,就像一段被扰乱的蚂蚁群的慢镜头影像一样,以旧价格的1/3和现值的1/2互相提供大量的证券。凑在一起较长时间后,他们发现没有人能买得起他们被迫卖出的股票。[2]

        此后不久,他乘船回家,没有意识到4年前他在财政上的一窍不通[3]与眼前发生的重大事件之间的联系。不过,这次股票崩盘事件确实影响了丘吉尔,摧毁了他的投机性投资组合,使他负债累累。他个人的不幸却给后世带来了一线希望:为了偿还债主,他开始依赖自己最可靠的饭票——他的笔。在接下来的10年里,他创作了一些优秀的书籍、许多文章,甚至还有一部剧本。

        将丘吉尔1929年之前的政治生涯形容为“起起落落”未免有些轻描淡写。作为第一次世界大战期间的海军大臣,他曾大力支持加利波利之战,之后的惨败导致数千人死亡,他也被降级。10年后,首相斯坦利·鲍德温没有意识到丘吉尔对财政一窍不通,任命他为财政大臣(相当于英国的财政部长)。(丘吉尔是这样描述他与财政部专家的互动的:“如果他们是士兵或将军,我就会理解他们在说什么了。但好像他们说的都是波斯语。”)[4]

        经济学家在讨论金融泡沫时,最常提到的名字是海曼·明斯基。20世纪50—80年代,明斯基在经济学界扮演了一个奇怪的角色——一个长头发的反传统主义者,他认为资本主义从根本上是不稳定的,他是一个现代的、更理智的卡尔·马克思。他比任何一个20世纪的观察家都更好地理解和描述了泡沫及其破灭的病理生理学,认为泡沫及其破灭需要具备两个必要条件:利率下降带来的信贷宽松,以及激动人心的新技术的出现。

        首先是利率。第一次世界大战前,英镑纸币可以以每盎司4.86美元的价格自由兑换成黄金主权硬币,纸币持有人相信有足够数量的黄金满足任何需求。由于英镑似乎坚挺,因此将英镑兑换为黄金的人相对较少;毕竟,持有一大块黄色金属有什么用呢?但是,当英国开动印刷机、用印钞的方式来支付战争费用时,不断增加的纸币数量侵蚀了人们对纸币的信心,持有者越来越希望将纸币兑换成黄金。

        战争结束后,由于英国的黄金数量几乎不足以支付纸币,英国不得不暂停兑换,以免贬值纸币的持有者耗尽国家的黄金储备。但是,1925年,丘吉尔按照旧价格恢复金本位制,这一举措是灾难性的。被高估的英镑使英国国内商品更加昂贵,从而减少了出口;此外,人为的高汇率也使外国商品更便宜,从而鼓励了进口;到1926年,英国的黄金储备下降了惊人的8000万英镑(占其总量的10%)。[5]

        自美国诞生以来,美国和英国的政府官员就建立了密切的私人友谊,而在这个关头,这种关系——世界上两位最重要的央行行长美联储主席本杰明·斯特朗和英格兰银行行长蒙塔古·诺曼之间的友谊,却被证明是特别不幸的。

        提高英镑价值和阻止黄金外流的最可靠方法是降低美国利率,这可以使以英镑计价的资产相对更具吸引力。1927年,斯特朗这样做了,从而帮助诺曼摆脱了困境,但这只是暂时的。当时的美国已经处于经济繁荣时期,在丘吉尔即将结束其北美之行、到达纽约之际,低利率引发了一股投机热。

        到了1929年,发达国家已经习惯了周期性的金融动荡。漫不经心的观察家和历史学家经常将这些繁荣和萧条称为疾病,而医学模式确实有助于了解该类事件中的患者和疾病,不管是个人事件还是社会事件。

        医生从三个基本视角来理解疾病:病理生理学视角,即疾病过程的生物化学和生理学基础;解剖学视角,即受影响的身体部位;症状和体征视角,即病人的感觉和医生看到的情况。

        我们可以用同样的方式理解泡沫和崩溃。例如,它们的病理生理学,涉及人类心理的反复无常和现代银行系统信贷供应的不稳定性。它们的解剖结构由“4P”组成,即发起人(promoters)、公众(public)、政客(politicians)和媒体(press)。最后,它们的症状和体征包括对几乎不劳而获的财富的迷恋——一种具有社会传染性的迷恋,发起人的傲慢,以及公众对他们的崇拜。[6]

        根据海曼·明斯基的理论,泡沫膨胀不仅需要1927年本杰明·斯特朗降低利率所产生的那种信贷宽松,还需要激动人心的新技术的出现。这样的技术进步出现在科学或工程领域,比如19世纪的铁路;或者出现在金融领域,比如17世纪和18世纪的合股公司。[7]新技术或金融产品可以是股票、房地产或者其他工具,投资者为它们的出现而激动,开始向它们投入资金。由于这些资产也可以成为贷款的抵押品,因此资产价格的上涨意味着投机者可以以资产作为抵押品,借更多的钱继续购买这些资产,这进一步抬高了价格,然后他们又能够借更多的钱——这是一个自我强化的“良性循环”,但只限于上升时期。因此,狂热、恐慌和崩溃从1600年左右开始成为西方生活中长期反复出现的一部分,这绝非偶然,因为那个时候首次出现“技术替代”和弹性纸币信贷。

        今天,技术替代可以采取多种形式。令人目眩的科技进步速度似乎是现代生活的一个永恒特征:仅仅在20年前,如果人们被告知世界范围内的个人视频通信将无处不在且几乎免费,那么人们会难以置信。就在20世纪40年代,即使是年富力强的人也经常受到霍乱、伤寒、细菌性肺炎和脑膜炎等常见细菌性疾病肆无忌惮的折磨,这与他们财富的多少和社会阶层的高低无关。但在发达国家,在青霉素等抗生素出现后,这些灾难极其罕见。

        相比之下,在1600年之前,缺乏技术是一个被接受的事实。在印刷机出现之前,许多技术进步都轻易地丢失了,因为手工抄写文档如此费力和昂贵,没有足够的副本流传下来。此外,低识字率意味着工匠们往往无法记录他们的技术,这些技术也随着工匠的消失而消失。例如,罗马人发明了混凝土,但混凝土的使用实际上随着帝国的灭亡而消失;直到1756年,约翰·斯梅顿才重新揭示了波特兰水泥的秘密。

        1450年左右,谷登堡发明了批量生产的可移动式印刷机,消除了技术进步的这一特殊障碍,但其他障碍仍然存在;1600年以前,西方的人均GDP几乎没有增长,东方也是直到很久之后才有增长。

        1620年,哲学家弗朗西斯·培根出版了他的《新工具》[8]一书。在培根之前,科学家被称为“自然哲学家”,他们通过亚里士多德的“演绎”法,从公理出发发展自己的模型,所有进一步的推理是以不可置疑的公理为基础的。在这一体系中,可观察到的事实几乎是事后补充上的。

        《新工具》本身就是一种技术替代,它有双重作用。首先,它认识到旧的亚里士多德式的演绎推理体系压制了人类进步;其次,它提出一个可行的替代方案——一个“归纳”过程,即仔细收集经验性数据,然后将数据与理论相匹配——这才是现代科学方法的本质。接下来几代人的时间里,培根那些有才智的继承者,如胡克、博伊尔和牛顿(仅举几个例子)成立了伦敦皇家自然知识促进学会(现在简称为英国皇家学会)。这催生了整个欧洲的类似群体,科学发现开始惊人地加速。[9]

        17世纪不仅诞生了科学方法,还有第二次社会革命,即弹性货币的出现。大多数美国人误解了一个概念,以为货币就是由政府颁发的绿色纸张,一种“可以支付所有债务,包括公共债务和私人债务的法定货币”,或者,在过去是一种印有字样的金银小圆片。但是,在古代,几乎任何东西都可以是货币:一定标准的小麦、油,或者随着时间的推移,白银出现。一直到公元前7世纪中期,小亚细亚的吕底亚人才铸成第一枚琥珀金币,那是一种金银的混合币。

        今天,我们生活在一个完全不同的世界。在美国,只有1/10的货币是流通纸币和硬币;政府和银行计算机的按键输入创造了其余部分的货币。例如,银行发放抵押贷款时,不会采用运动包里装满印有亚历山大·汉密尔顿、本杰明·富兰克林和各种已故总统照片的绿色亚麻布[10]的形式;相反,它会向贷款公司发送一个电子包。这些支票或电子包肯定没有相应数量的纸币和硬币作为支持,更不用说金、银或牛作为支持了。

        这种信用体系在今天被称为“部分准备金银行体系”,由17世纪的金匠们创立,在之后的几个世纪里变得越来越有弹性。早期银行如果发行远高于2:1的存款准备金率的凭证,就有可能遭到储户挤兑,被要求归还资金。随着银行联盟和政府运营的中央银行的发展,商业银行的这一比率增长到约10:1,投资银行的这一比率可能会更高。存款准备金率上升的幅度取决于消费者和投资者想借多少钱,银行愿意贷多少钱,以及越来越多地取决于政府监管机构允许多少杠杆。[11]扩大准备金率的一个恰当的比喻就是橡皮筋:1913年美国国会立法规定,建立联邦储备银行就是要完成“提供弹性货币”的任务。[12]

        21世纪初的房地产市场是一个完美的海曼·明斯基范式案例。2000年之前,房地产市场相当平静、稳定和沉闷,银行只向最安全的借款人提供抵押贷款,即那些信用记录良好、收入稳定、几乎没有其他债务、所需贷款额远低于房屋市值的借款人。因此,这样的借款人几乎总是能按时还清抵押贷款,违约率很低,银行也获得了适中的利润。

        然而,银行经理们开始注意到,一些竞争性银行机构的贷款要求比较宽松,其可以为更多的借款人提供服务,从而赚更多的钱;最终,几乎所有银行都效仿了这一做法。大约在同一时间,另一种现象开始流行:银行向华尔街公司出售抵押物,这些公司将抵押物打造成越来越冒险的组合,如债务抵押债券。这就是所谓的贷款证券化,它将房主抵押贷款违约的风险从最初比较了解初始借款人情况的银行,转移到容易上当受骗的机构和世界各国政府,而这些机构和政府并不了解最初的借款人情况。

        贷款标准的降低蔓延到整个银行系统,违约率开始上升。起初,抵押品标的房屋的价值上升,银行和抵押贷款证券的持有人基本没有遭受过损失,因为他们可以将违约人的抵押物没收并转售获利。但从约2007年开始,不断增加的被迫出售的房源压低了房价,银行和证券持有人开始亏损;最终,有的破产,有的得到了联邦政府救助。最后,所有银行都收紧了贷款标准。银行贷款的收缩进一步降低了房价,迫使房主抵押贷款违约。

        这一过程不仅发生在美国,而且发生在全球。在房地产泡沫的前五年,大约在2002—2007年,似乎一个人只要活着,就有资格抵押贷款;而泡沫破灭后,银行恨不得数一下贷款申请人有几颗金牙,以确定贷款资格。类似地,消费者、投资者和潜在房主对偿还债务的兴趣比对获得贷款的兴趣大得多,因此信贷供应和货币供应量都下降了。

        明斯基于1996年去世。他告诉我们,上述周期是弹性货币体系的必然结果。在弹性货币体系中,不管是政府的中央银行(例如美联储)还是私人银行,都可以扩张和收缩货币供应。此外,他认为,这种货币扩张和收缩几乎发生在市场经济的所有领域,不仅发生在住房领域,也发生在企业管理以及股票和债券市场。

        明斯基著名的“金融不稳定假说”指出,当金融环境比较安全稳定时,资金必然将逐渐从安全的借款人处转移到风险越来越高的借款人处。最终事情将失去控制,导致上述那样的风险爆发,这使得放款人和投资者更加谨慎,循环重新开始,这一过程大概每十年发生一次。简言之,稳定带来不稳定,不稳定带来稳定,放款人的周期性恐惧和贪婪循环着经济系统。[13]当然,这还要有间歇性贪婪的借款人,否则贪婪的放款人将缺乏客户。

        虽然明斯基没有明确指出,但他的直觉告诉他,除了“技术替代”和信贷宽松之外,另外两个因素也必须满足:对以往繁荣和萧条的遗忘,以及对传统和审慎的投资方法的放弃。

        记忆缺失是金融不稳定假说的隐性因素。金融危机过后,损失惨痛的记忆依然历历在目,银行家和投资者都回避风险;前者只提供最安全的贷款,而后者不愿购买股票。随着市场慢慢复苏,不愉快的记忆逐渐消失,参与者又愿意面对风险,不稳定周期重新开始。

        引发金融狂热的最后一个因素,是放弃头脑冷静的金融计算,转而采用引人入胜的叙事。当人类面临困难或不可能完成的分析任务时——比如评估一家从未产生过利润更不用说股息的公司——他们默认回到更简单的分析方法,也就是心理学家用“启发式”一词所表示的心理捷径。

        当人类面对具有挑战性的或不可能解决的难题时,就会采取“启发式”方法。过去几十年中,心理学家把对这种方法的理解扩展到金融领域,尤其是金融狂热。20世纪40年代,密歇根大学的匈牙利心理学家乔治·卡托纳开始研究经济学和人类心理的交叉领域,开创了与经济(行为)相关的心理学测度。他不仅创立了现在正广泛使用的消费者情绪指数,还取得很多其他方面的成就,密歇根大学也成为心理学研究的温床。

        密歇根大学的另一个开拓性研究领域是决策理论。这引起了以色列研究员阿莫斯·特沃斯基的注意[14],特沃斯基特别聪明,认识他的人喜欢拿他的智力开玩笑:“你越快地意识到特沃斯基比你聪明,你就越聪明。”[15]密歇根大学的研究人员认为,人类是熟练的直觉统计专家——直至今天也有很多经济学家这样认为;就像我们毫不费力就可以掌握语法和句法规则一样,人类也很好地掌握了统计和概率。

        起初,特沃斯基也认为上述说法是合理的,但当他与来自耶路撒冷希伯来大学的院士丹尼尔·卡尼曼辩论时,他被对方说服。1970年前后,两人进行了一系列著名的实验,彻底改变了经济学家和心理学家看待决策的方式。他们证明,不仅普通人具有糟糕的统计直觉,甚至心理学家也是这样。[16]在一项经典研究中,他们这样介绍了他们的目标主体:

        史蒂夫非常害羞和内向,乐于助人,但对人或现实世界不感兴趣。他有一个温顺整洁的灵魂,要求秩序和结构,对细节感兴趣。

        然后,卡尼曼和特沃斯基询问受试者,史蒂夫最有可能是农民、推销员、飞行员、图书管理员还是医生?大多数人选择图书管理员,因为上面的描述最符合人们对图书管理员的刻板印象。然而,现实中农民的人数比图书管理员多20倍,而且有很多害羞的农民,因此史蒂夫更可能成为他们中的一员,而不是图书管理员。[17]

        他们还发现,人类存在广泛的系统性分析错误,有些甚至是由最聪明的人犯的,仅举几个例子:无视基础频率(例如,没有意识到农民比图书管理员多得多);没有意识到大样本比小样本更可靠;对人类从随机数据中感知不存在模式的倾向估计不足;没有理解在连续多次尝试时、任务结果通常都会趋向于一般水平。[18]实验结束时,他们对人类可悲的理性状态深感失望:

        也许令人惊讶的是,人们未能从一生的经验中推断出基本的统计规则,如趋向平均值的回归,或样本大小对抽样变异性的影响。尽管在普通生活里,每个人都会接触到许多可以归纳出这些规则的例子,但很少有人能自己发现抽样和回归的原理。[19]

        他们的实验揭示出人类天生的认知懒惰性。与其停下来严格分析史蒂夫最有可能从事五种职业中的哪一种,不如回到以下捷径:史蒂夫符合图书管理员的刻板形象——这就是故事的结尾。[20]

        很显然,卡尼曼和特沃斯基的发现与金融泡沫相关。1720年的南海公司、1928年的美国无线电公司、1999年的Pets.com[21]或今天的特斯拉,这些公司的投资者没有尝试对高预期未来收益的股票价值进行估计,因为这几乎无法估计,而是默认回到了简单的启发式方法:“南海/美国无线电/Pets.com/特斯拉是一家伟大的公司,它将改变世界,因此人们几乎值得为此支付任何价格。”

        卡尼曼、特沃斯基和其他研究人员还发现,最有力的启发法之一是人类对显著性事件的敏感性,即过分强调引人注目的事件。“9·11”袭击是一个极端例子,它是过去半个世纪中具有决定性意义的美国事件,造成近3000人死亡。“9·11”后,即使是只导致一人死亡的恐怖袭击也会成为头条新闻,但媒体基本上没有注意到普通枪支暴力、类鸦片或车祸导致的个人死亡事件,尽管在美国,这三类事件每年都导致3万多人丧生。[22]美国人死于恐怖袭击的概率远远小于死于雷击的概率,然而,美国在反恐问题上投入的资源远远多于防止因枪支、车祸和毒品造成的十几万人的死亡而投入的资源。(类似地,任何打算去以色列旅游的游客都可能会被朋友或家人问到是否担心恐怖主义,尽管自2005年以来,以色列人死于交通事故的平均概率是死于恐怖袭击的20倍。)[23]

        卡尼曼和特沃斯基将上述的显著性谬误称为“可用性启发式”;人们更有可能在地震或洪水发生后立即购买保险。很自然地,他们将之称为“近因启发式”。

        简言之,人类是显著性事件的俘虏,这以各种不同的形式适用于金融狂热。一项新技术能给人们带来激动人心的新鲜感,比如能够以每小时数百英里的速度环绕地球飞行,或者能够瞬间将娱乐活动或时事带入家庭,这种新鲜感非常显著——直到这种新鲜感消失。

        近因启发式扭曲了投资者对长期事实的看法:如果股票价格在过去几年一直上涨,他们就会认为它会永远上涨;随着股价攀升,股票变得更具吸引力,从而推动股价进一步上涨。这将成为一个自我持续的“良性循环”,可以将股价推向高位。当然,在长期熊市期间,情况正好相反。

        和大多数经济学家一样,明斯基对心理学不太感兴趣,但他清楚地认识到人类对叙事的偏好超过对定量推理的偏好。人们都喜欢好故事;当被泡沫控制时,当面临不愉快或难解的计算时,一个引人入胜的叙事可以轻松地绕过严格缜密的分析。把这些叙事看作导致泡沫疾病扩散至整个社会的病原体,并不算过度简单化。

        我们只需要稍微扩展一下上文中弹性货币的比喻,便很容易理解泡沫是如何破灭的。想象一根直径一英寸、长几百英尺的橡皮筋。橡皮筋周围聚集着数百名观察家,他们中的大多数人只是在闲逛。不过,他们中有几十人正在努力把橡皮筋拽长。继续想象,橡皮筋长度的不断增加给拽动的人带来了财富;随着时间的推移,这吸引了更多闲散的人群。他们中更天真的成员相信橡皮筋可以一直被拽长;但很多人知道它迟早会剧烈收缩,计划在第一次出现收缩迹象时就放手,并相信自己知道什么时候该放手;也就是说,他们已经准备好松开它。

        最终,一些人松手了,这增加了剩下的人的压力。然后,那些准备好放手的人也匆忙放手,很快,橡皮筋不仅恢复到它的自然长度,而且卷曲成一个紧密的线圈。最后,一些聪明的观察家发现,皱巴巴的线圈很容易被再次拉长,于是循环又开始了。

        到20世纪20年代,海曼·明斯基的4个条件都已经确立。

        第一次世界大战后,五项技术进步震撼了人类生活。19世纪末的内燃机是其中第一项发明,并促进了另外两项发明:莱特兄弟发明的飞机和汽车的普及。汽车的普及使人们可以随意长途旅行,到1925年,超过1/3的美国家庭拥有汽车。[24]

        第四项发明是无线电。1895年,古列尔莫·马可尼在意大利农村地区成功将莫尔斯电码字母“s”传输至几公里外。随后20年里,这项昂贵的新技术被私人保留,用于传输私人敏感信息和有价值的信息;在美国,无线电甚至主要用于一个领域——海上通信,因为事实证明,海上通信比在陆地上以及通过海底电缆在大陆之间通信更可靠、更便宜。

        1915年,马可尼电报公司的一名雇员戴维·萨诺夫写了著名的《广播音乐盒备忘录》,建议公司向公众开放广播媒介,“通过无线方式将音乐带入家庭”。萨诺夫做了一些努力才让马可尼将他颇有利润的私人媒介向公众开放。1919年,马可尼电报公司和通用电气公司合并成立美国无线电公司,到1920年,匹兹堡的KDKA和底特律的WWJ这两个最早的无线电台开始运营。音乐会、体育赛事和突发新闻有史以来第一次实现现场直播;毫无疑问,在改变日常生活方式上,无线电所起到的作用与电报和互联网的发明和传播并驾齐驱。

        将乔治·伯恩斯和格雷西·艾伦[25]的表演,或1921年杰克·邓普西和乔治·卡彭蒂耶之间的重量级拳王争霸赛的消息带进美国各个家庭的客厅,这比20世纪90年代初互联网的出现更让人震惊。美国无线电公司开始成为投资者的宠儿,到20世纪20年代末,当有人提到“无线电”这个词时,它最可能指的是股票的昵称,而不是媒介或硬件。

        第五项技术进步涉及电力公司的快速扩张,这些公司越来越多地为美国家庭提供照明,为工厂提供动力。尽管约翰·摩根和他的同事们在一代人之前就已经合并了通用电气公司[26],但通用及其竞争对手们用了几十年的时间才使国家完全通电。

        所有这五项“技术替代”——内燃机、飞机、汽车、无线电和广泛可用的电力——刺激了20世纪20年代经济的蓬勃发展。此外,亨利·福特的批量生产技术和弗雷德里克·温斯洛·泰勒的影响也是如此。泰勒是一位机械工程师,从19世纪末开始,领导了“效率运动”,将秒表转变为工人生产力和企业收益的驱动力[27]。1922—1927年,美国的工人产出以每年3.5%的速度增长,公司股东很高兴;但公司员工的反应不那么热情。[28]由于泰勒带来了很大的影响,“泰勒主义”进入了英语词汇;具有讽刺意味的是,它得到了列宁和斯大林的支持,但在美国并不总是得到称赞,特别是在迅速发展的工会运动中。

        20世纪20年代,美国出现了第二个明斯基因素——信贷宽松。明斯基知道,技术替代不仅可以是技术方面的,也可以是金融方面的。20世纪20年代产生了大量金融杠杆方面的“进步”,如经纪人贷款、投资信托和控股公司,它们都提供了新的、强大的资金来源。这些资金可以被借入,然后被配置到股市。在越来越多的美国人看来,这些资金更像是能喷出财富的源泉。正如经济学家约翰·肯尼斯·加尔布雷思所说:“金融界一遍又一遍地欢呼这一类似于车轮发明的伟大创新,但其版本往往不太经受得起考验。”[29]

        20世纪以前,股票市场杠杆的主要形式是以较少的初始认购金购买股票,之后以追缴金的方式完成剩余资金额的追加。贪婪的投机者认为,他们可以通过出售这些部分持有、正在升值的股票去支付之后的追缴金;少数幸运者做到了,但大多数没有做到,而且许多人破产了。

        相比之下,20世纪20年代的投机者则是全款购买股票,不过是用借入资金购买的,有时借入资金高达股票价值的90%。举个例子,投资于价值为1000美元的股票,需要用100美元的自有资金和900美元的“经纪人贷款”支付。如果这些股票的价值增加10%,现在值1100美元,那么偿还贷款后留给投机者的是200美元,从而使他原来的100美元投资翻了一番。但是,如果股票的价值下降10%至900美元,债权人就会向借款人发出“追加保证金通知”,要求借款人提交更多的资金来保护其900美元的贷款。如果资金不到位,那么贷款合同允许债权人出售头寸,以保护其900美元的贷款。经纪人贷款并不便宜;随着股票价格的上涨,对贷款的需求也随之增加,到1929年,贷款年利率已提高到15%,从而逐渐增加了股票购买者的负担。

        除了最乐观的投机者,其他人都至少隐约意识到了股票投机的风险。但对银行来说,经纪人贷款本身似乎是100%安全的,银行以5%的利率从美联储获得资金,并以该利率的两倍或三倍向投机者发放贷款,这是一种简单且利润丰厚的操作。金融资本的主要功能是将资金有效地从资金过剩的人手中转移到需要资金的人手中,泡沫会扭曲这种流动,从而腐蚀一个国家的经济;20世纪20年代,不少大公司将维持和发展业务所需的资金转移到保证金贷款市场,这正是一种扭曲。[30]

        我们从经纪人贷款的高利率,可以清楚地看出美联储要安全刺破已形成的泡沫有多难。即使在今天也很难。1929年,在理论上,美联储是可以阻止经纪人贷款流动的,只要把再贷款利率提高就可以;但由于银行和企业的贷款利率已经达到两位数,如果美联储将再贷款利率提高到几乎和贷款利率一样高,那么这在经济上将会是灾难性的。即使政府要求经纪人贷款提高利率,这也不会对热情的投机者产生太大影响,因为他们的净资产(至少在账面上)正在以更高的速度增长,在一个自我维持的循环里,昨天的价格上涨推动了明天继续上涨。美联储发现,自己就像从山上飞驰而下无法自控的滑板手,只有两种选择:故意撞到树上,或者继续深蹲向前,然后以更高的速度撞树。美联储选择了后者。(1929年10月的最初崩盘确实抑制了对经纪人贷款的需求,使经纪人贷款利率降至7%。)

        20世纪20年代,金融狂热也感染了当时已经稳定运行的投资信托机构。18世纪末,荷兰商人亚伯拉罕·范·凯特维奇创建了大概是世界上的首个共同基金——“团结创造力量”[31],它是一个可对公众发行的投资集合,汇集了欧洲各地和新大陆种植园的企业股份。[32]在接下来的一个世纪里,投资信托的概念传遍了整个欧洲,特别是苏格兰。到了1893年,随着波士顿个人财产信托的成立,投资信托的概念又传到了美国。这些保守运作的基金通常可以像股票那样交易,按需买进和卖出。在20世纪20年代创立的信托投资公司中,有几个至今仍存在:美国通用投资公司、三角洲公司、亚当斯快递公司和中央证券公司。

        另一个信托公司——高盛交易公司却没能幸存。高盛公司是直到泡沫后期才涉足投资信托业务的,1928年12月,它出资成立了高盛交易公司。最初,交易公司比较谨慎;它直接持有所有的股票和债券,也就是说,没有杠杆;此外,母公司高盛保留了该交易公司90%的股票所有权,只向公众出售了其中的10%。用今天的术语来说,高盛交易公司可以被认为是由先锋或富达[33]建立并持有几乎所有股票的简单的共同基金。

        高盛交易公司很快就不再保守。几个月后,它与高盛旗下的另一个公司——金融实业公司合并。市场如此泡沫化,1929年2月,就在合并后几天,新组建的高盛交易公司的价值就达到其持有证券价值的两倍;相当于将一美元的钞票以两美元的价格向公众出售。

        大多数公司都会对这样的结果感到高兴,但高盛公司还不满足,随后它回购了自己的股票,这进一步提升了其股票价值。此时,高盛公司开始以极度膨胀的价格向公众出售其持有的交易公司股票。接着,交易公司迅速投资成立了一个新的信托公司——谢南多厄公司;而谢南多厄公司在荒谬层上又堆起了一层荒谬,它发起成立了第三级信托公司——蓝山公司。正如加尔布雷思所说:

        该信托公司的优点在于,它使公司发行在外的证券数量与现有公司资产数量几乎完全分离。前者可以是后者的两倍、三倍或任意倍数。[34]

        在著名的高盛大厦内,谢南多厄和蓝山各自发行了普通股和“可转换优先股”,后者本质上与债券相同,每年需要向其持有者支付6%的利息。这两个信托公司事实上利用其可转换优先股为自己提供经纪人贷款,根据加尔布雷思的描述,这种“乘数”放大了普通股的价格波动。

        按照普通标准,杠杆作用并没有那么大:谢南多厄的股票中只有约1/3是债券式可转换优先股,这一比重在蓝山的股票中不到1/2。但这两个公司杠杆的乘数,以及高盛交易公司处于上层所有权结构的乘数,破坏了局势的稳定。谢南多厄控股蓝山,但只有在蓝山的可转换优先股持有人获得6%的利息支付后,谢南多厄才获得支付;同样,交易公司控股谢南多厄,但只有在谢南多厄的可转换优先股持有人获得利息支付后,交易公司才能获得支付。因此,当沿着金字塔向上方的交易公司移动时,价格波动幅度成倍增加。而同时,交易公司也承担着自己的股息债务。例如,谢南多厄只向其普通股股东支付了一小笔股息,到1929年12月便永久停止了支付。

        高盛公司的信托船队是为风平浪静的海洋设计的,只要价格上涨,航行就会顺利。但几乎就在这三个信托公司成立后不久,天就变了,这些公司按照与创建相反的顺序陆续倒闭:首先是蓝山,然后是谢南多厄,最后是交易公司。

        杠杆结构产生了毁灭性的影响。1929年底,道琼斯工业指数已经从10月的崩盘中有所回升,比9月的峰值“仅”下跌了35%。但相比之下,这三个信托公司的股票下跌了75%左右。到1932年中期的市场低点,道琼斯工业指数下跌了89%,信托指数下跌了99%,仅在高盛的这三个信托公司中,公众承担的总损失就约为3亿美元。就在1929年8月和9月,美国各大公司发行了价值超过10亿美元的类似的投资信托基金,这在那个时代是一个惊人的数字,其中大部分基金到1932年已经蒸发。[35]此时大萧条已经开始,并将持续,直到第二次世界大战。第二次世界大战作为一个巨大的公共工程项目,推动了经济活力的恢复。[36]

        到1929年,第三个因素——对上一次泡沫的健忘——也已牢固确立。上一代人确实经历了两次市场下跌。第一次是1907年的恐慌,是一次相当奇怪的事件。它的触发事件其实是一次失败的股票投机,但其规模非常小。两兄弟、铜矿巨头奥托·海因策和奥古斯塔斯·海因策,试图操作一桩复杂的计谋,即尝试对他们的联合铜业公司的股票进行轧空操作,但彻底失败了。[37]

        奥古斯塔斯·海因策还拥有蒙大拿州的一家小银行——比尤特储蓄银行,该银行也随着失败的轧空操作而破产。1837年,安德鲁·杰克逊总统对第二合众国银行实施了“安乐死”[38],使得美国在私人贷款枯竭时没有“最后贷款人”来提供急需的资本。由于各大银行之间相互借贷,其中一个银行的失败会像多米诺骨牌一样蔓延;如果没有央行出面救助,那么温和的衰退可能会演变成全面的恐慌和萧条。19世纪30年代末就发生了这样的金融危机,那是美国历史上最严重的金融危机之一。

        1907年,海因策的银行的倒闭拖垮了规模更大的银行,并最终将股价压低了约40%,直到约翰·摩根“画出一条线”——在这条线之上的银行是他认为有偿付能力的银行,因此值得支持,在这条线之下的是允许倒闭的银行,此时,恐慌才停止。出于历史巧合,摩根生于1837年,也就是美国最后一个中央银行关闭的那一年;1913年,随着重建中央银行的《联邦储备法》通过,摩根去世。在世76年的大部分时间里,他都扮演了美国央行行长的角色。1893年经济萧条耗尽美国财政部黄金储备时,正是他策划挽救了美国的金本位制。

        1929年之前的第二次市场衰退发生在第一次世界大战结束时。这场战争提振了美国股市,但随着农产品价格的下跌,股市投机很快被绝望替代:1919年夏天,股票市场达到顶峰,之后的一年里,股票价格逐渐下降了约1/3,当然这一时期产生的丰厚股息可以抵销一部分的价格下跌损失。[39]因此市场的下跌相对温和。

        在第一次世界大战之前的美国,只有富人才拥有股票,因此1907年恐慌和1919年股价下跌都没有给公众留下太多持久的印象。到1929年,新的投资者被内燃机、飞机、汽车、无线电和电力带来的奇迹吸引,忘记了之前的泡沫。

        产生泡沫的第四个因素是对保守的传统股票估值方法的放弃。美国在第一次世界大战中所需要的资金,部分来源于数十亿美元的自由债券发行,收益率为3.5%~4.5%。在这一过程中,普通的美国人被引入证券市场。自由债券充当了公众投资的“训练轮”,并提供了安全而适度的回报率。

        政府债券可以被视为安全资产的基准,或者说,政府债券的收益率是金融经济学家所谓的“无风险利率”。几个世纪以来,投资者购买股票完全是为了股息,而由于股票有风险,为了吸引买家,股息收益率必须高于相对安全的政府证券的收益率。例如,乔治·哈德森必须向其铁路股票的买家承诺,股息收益率远远高于英国政府债券3%~4%的收益率。与英国同行一样,理性的美国投资者不要求也不期望从股价上涨中获益,但他们希望获得比安全的政府债券更高的平淡但稳定的股息流;第一次世界大战前,美国的平均股票收益率在5%左右。[40]到了20世纪20年代,人们普遍认为,股票应该以年收益的10倍左右卖出,以便轻松地收回成本。

        今天,不管是不是明智的投资者,都认为公司利润和股价的长期上涨是理所当然的,因此可以容忍低得多的股息支付。但在20世纪之前,很少有持续的股价上涨,除非是最成功的公司。即使在最顺利的情况下,股价涨幅也很小。例如,英格兰银行和东印度公司是英国早期最成功的两家合股公司,即使是这两家精心挑选的公司,1709—1823年,其股价平均每年也仅上涨0.7%和0.6%。[41]

        那么,那些最有成就的投资者是如何评价美国无线电公司的?到1929年金融危机时,美国无线电公司还没有产生任何股息,而且,它在1937年之前都没有产生股息。[42]到20世纪20年代末,投资者显然认为该公司前景光明,但他们没有工具为它估计一个合适的价格,以支付该公司未来的预期利润。再过10年,欧文·费雪、约翰·伯尔·威廉姆斯和本杰明·格雷厄姆等金融经济学家就会推导出计算股票或债券内在价值的复杂数学方法,特别是那些具有高度投机前景的股票或债券的内在价值的计算方法。这种估计未来所有股息价值并将其“贴现”到即期的技术,就是所谓的“股利贴现模型”。这种模型即使到今天也很难被普通投资者理解,此外,其准确性也非常有限,甚至连专业人士也经常抵制它。[43]

        20世纪20年代,随着无线电、汽车和飞机的发展,技术环境的不断完善,公众很容易相信旧的证券评估规则不再适用。正如20世纪伟大的投资者约翰·邓普顿所说:“英语中最昂贵的一句话是‘这次不一样’。”[44]

        本杰明·格雷厄姆在记述那段时间时说:
        按照股市繁荣前的标准,股票的销售价格是其平均年收益的10倍;而现在,如果公用事业公司的一只股票的销售价格达到其最高年纪录收益的35倍,那么大家不会认为该价格太高,而会认为仅仅是估值标准提高了……因此,所有的价格上限都消失了,股票的价格不是取决于它能够卖出的价格,而是取决于它值得卖出的价格……这个原则将得出一个诱人的推论:在股票市场中赚钱是现在世界上最容易的事情。[45]

        到了1929年,卡尼曼和特沃斯基的各种启发式,特别是那个时代新技术的显著性、证券价格的飙升以及信贷的宽松,已经压倒了对证券价格的理性分析。

        经济学家马克斯·温克勒说得最简单。股市崩盘后,在提到最新的股利贴现模型时,他敏锐地观察到,20世纪20年代的股市不仅贴现了远期,也贴现了未来。[46]

        7 致富空想的破灭

        1929年大萧条

        和密西西比公司、南海公司和英国铁路泡沫等事件一样,对1929年美国股票崩盘事件的剖析也涉及“4P”:发起人、公众、政客和媒体。

        20世纪早期,塞缪尔·英萨尔继承了约翰·劳和乔治·哈德森的衣钵,创建了一个工业巨人企业,为美国的大型工厂提供动力,为数百万家庭提供照明。

        他出生于1859年的伦敦,父亲是一名中产阶级平教徒传教士和禁酒旅馆店主。英萨尔十几岁时主要忙于文员和速记员的工作,和那个时代许多雄心勃勃的年轻人一样,他崇拜托马斯·爱迪生。在失去一家伦敦拍卖行的工作后,他看到爱迪生旗下的一家英国电话公司的招聘广告,非常高兴,并成功地应聘到那里。

        他的上司很快就发现,英萨尔的办公技能远远超过了速记和簿记。几年后,公司选中英萨尔去美国总部工作,他回应说:“如果能成为爱迪生本人的秘书,我就去。”为了看起来比实际的21岁成熟,他开始留鬓角。1881年初,他横渡大西洋到了爱迪生身边,在那里工作了11年,并在公司的各个职位上一路晋升。

        越来越多地,英萨尔的命运不仅与爱迪生捆绑,还与支持爱迪生的约翰·摩根捆绑。那时,正值摩根在社会影响力和对技术的敏锐性方面达到了个人顶峰,作为一名早期电力爱好者,他在麦迪逊大道219号的家里安装了爱迪生的第一个白炽灯泡。在当时没有电网的情况下,这是一项不小的成就。后来摩根资助建设了曼哈顿第一座大型发电厂和输电线路,弥补了没有电网这一缺陷。

        对爱迪生来说很不幸的是,由于低压直流系统不适合长途传输,爱迪生通用电气公司的市场份额逐渐被汤姆森-休斯敦电气公司占据(其建造了交流高压电网)。汤姆森-休斯敦电气公司由电气工程师伊莱休·汤姆森和埃德温·休斯敦于1882年创建,是爱迪生通用电气公司的竞争对手。从1883年开始,爱迪生通用电气公司逐渐走向终结,因为当时英国发布了一项变压器专利,该变压器能够“降低”住宅用长距离交流输电线路中的高压电流。美国西屋电气公司很快采用了这项专利,并在公司里部署了汤姆森-休斯敦公司的交流电系统。

        1892年,在摩根投资公司的推动下,爱迪生通用电气公司与汤姆森-休斯敦电气公司合并,这巧妙地避免了爱迪生的公司的倒闭。但爱迪生本人从未承认过交流电的优越性;他一气之下卖掉了他在通用电气的股票,后来,当有人提醒他这些股票会值很多钱时,他说:“好吧,都卖没了,但我们花钱时很开心。”[1]

        英萨尔是经营电力设施的天才。在公司被合并前的10年里,他逐渐帮助爱迪生吞并了竞争对手,并取得芝加哥地区的垄断地位。[2]但1892年公司合并之后,他不再经营芝加哥公司,也开始无所事事。第二年,他自己接管了爱迪生在芝加哥孤立的各项业务,在那里,他熟练地收购、管理小型公用事业公司,并将其合并为大型公司。到了1905年,他将业务扩展到芝加哥以外的中西部地区;他游刃有余地经营自己的公司,而且那时是为了公众的利益。不断扩大的规模经济使他能够逐步降低行业价格,并引入非高峰低定价策略。由于电力服务对社会日益重要,他支持政府的法定监管,甚至有一次他还建议,如果他的公司无法为客户提供适当的服务,那么这个工作应该由政府来做。[3]

        如果他将自己的目标仅专注于为工业和城市照明提供电力,那么他仍将被人们铭记。遗憾的是,他对用电客户审慎而正直的关心并没有延伸到公司股东身上。英萨尔早期金融阴谋的典型例子是1912年中西部公用事业公司的上市,其主要目的不是发电,而是为其他业务筹集资金。英萨尔复杂金融阴谋的核心是他以个人身份以360万美元的价格购买了中西部公用事业公司所有的优先股和普通股,然后,转身以360万美元的价格向公众出售了所有优先股和1/6的普通股,这样实际上他自己免费获得了公司5/6的普通股。

        和哈德森一样,英萨尔也热心于公益,工作起来像特洛伊人。也和哈德森一样,他慷慨地资助市政项目和艺术项目,包括芝加哥的市民歌剧院,其被当地人称为“英萨尔的王座”。他在芝加哥北部的利伯蒂维尔建造了一个占地4445英亩[4]的庄园,居民们“在英萨尔的庄园里建房子,将出生在英萨尔医院的孩子们送到英萨尔学校上学,使用英萨尔灯,用英萨尔煤气烹饪,在英萨尔公路上行驶,在英萨尔银行存钱,在英萨尔高尔夫球场上打高尔夫”[5]。该镇代表了他庞大帝国的缩影。在鼎盛时期,该帝国由很多公司组成,这些公司的发电厂雇用了72000名工人,为1000万个客户服务。他是65家公司的董事会主席或成员,并担任11家公司的董事长。[6]

        早在1898年,英萨尔就凭直觉认为,在公用事业领域,国家机构的监管比城市运营的竞争更为可取。到第一次世界大战时,公用事业公司完全在政府监管之下,主要归功于英萨尔本人对该行业的引领。[7]政府监管限制了公司的利润,但就像之前的哈德森一样,英萨尔明白,最大的财富不在于提供商品和服务,而在于为商品和服务提供资金。

        英萨尔控股公司的复杂性超出了大多数观察者的理解能力,甚至可能超过了英萨尔本人的理解能力。他将数百家公司层层叠加,底层公司有时又部分地控股顶层公司。历史学家兼记者弗雷德里克·刘易斯·艾伦的一小段描述可以展现英萨尔的鲁布·戈德堡机械[8]般的复杂结构:

        缅因州的小安德罗斯科金电力公司由安德罗斯科金公司控制;而安德罗斯科金公司由缅因州中部电力公司控制;缅因州中部电力公司由新英格兰公共服务公司控制;新英格兰公共服务公司又由国家电力公司控制,国家电力公司又由中西部公用事业公司控制。[9]

        当时,代表公司所有权和控制权的中西部公用事业公司普通股,由英萨尔的私人公司公用事业投资公司持有,因此共7个层级的公司。于是,杠杆作用呈多倍增加,不仅仅是撇奶油[10],用艾伦的话来说,还有来自多个组织层级的“超级富豪奶油”和“超超级富豪奶油”。[11]到1928年,英萨尔的这种拜占庭式的公司结构几乎已经不是个例,而是规则。当年,在纽约证券交易所上市的573家公司中,92家为纯控股公司,395家为控股和经营性公司,只有86家为纯经营性公司。[12]

        为了以虚高的价格向公众出售公司股票,必须创造盈利的幻觉。英萨尔有一套与布朗特和哈德森相当的金融骗术,其中最著名的就是让他的公司以不断上涨的价格相互购买资产,然后将每笔购买业务的利润都入账。就好像丈夫以1500美元的价格将之前1000美元入手的雪佛兰汽车卖给妻子,而妻子则以同样的方式将她的福特汽车卖给丈夫,这样每人都获得了500美元的收益。

        与之前的布朗特和哈德森,以及之后的互联网巨头一样,英萨尔受到公众和媒体的崇拜。20世纪20年代,他威严的照片两次登上《时代》杂志封面;与他在大陆银行前见一面据说价值100万美元。[13]英萨尔的销售员们推动了这场杠杆式闹剧最后一幕的出现。1929年初,经过专门训练的销售队伍开始首次向公众出售其顶层公司英萨尔的公用事业投资公司的股票,最初的售价是英萨尔为其资产支付的价格的10倍,后来随着人们对该公司的热情高涨,其售价超过了30倍。英萨尔的公司结构就像高盛信托一样,是为繁荣时期设计的。任何经济波动都会削弱电力公司支付债券利息和优先股(对公司收入享有优先权)分红的能力,而这又将严重影响其普通股的股息和价格。普通股股东通常以保证金形式认购股票,他们的净资产也将受到影响。这一过程随着英萨尔控股公司的金字塔结构逐层加速。

        这正是1929年以后发生在英萨尔和他的60万股东中的大部分人身上的故事。与哈德森一样,英萨尔始终对自己的计划坚信不疑,公司股价在漫长而艰难的1929—1932年熊市中缓慢跌落直至崩溃。他借了数百万美元,试图用他的多层公司结构来抬高公司股价,但徒劳无功。1932年4月,就在股市最终触底前的3个月,他的银行家们把他召集到纽约的一家办事处并告诉他,他们将不再支持他。“这意味着公司要进入破产管理吗?”他问道。“是的,英萨尔先生,恐怕是这样。”[14]这对投资大众产生了巨大的损害;一份会计报告估计,到1946年,一场围绕中西部证券公司破产的持久法律争论终于结束时,公众损失数额会达到6.38亿美元。[15]而到那一年,股票市场已基本恢复;因此1932年股市崩盘时,在接近市场最低点的时候,公众遭受的损失肯定达到了数十亿美元。

        英萨尔最后的经历和他的控股公司一样错综复杂,与哈德森的垮台过程遥相呼应。在破产数月后,他因与出售公用事业公司股票有关的邮件欺诈而被起诉,逃往法国,当政府试图将他带回受审时,他又逃往希腊,因为希腊与美国的引渡条约已经商定但尚未签字生效。但雅典当局忽略了这一瑕疵,无论如何还是把他经由土耳其送回了美国。[16]回到美国,他再次出现在《时代》杂志封面上,这一次帽子遮住了他的脸。他被剥夺了大部分财富,但仍然可以组织起强有力的法律辩护团队,对他的多项指控最终被击败了。回到法国时,已是78岁高龄的他痛苦而虚弱,瘦得不成样子。1938年7月16日,在巴黎的一个地铁站,当他把手伸向售票员时,突然心脏病发作而死去,口袋里只有几个法郎。由于他心脏不好,他的妻子曾一再警告他不要乘坐地铁。[17]

        在巨大的债务规模中,英萨尔的控股公司的债务只占相对较小的一块。正如密西西比、南海和铁路事件那样,20世纪20年代末的美国股票狂热以一种极端的乐观情绪感染了民众和商界,导致其过度借贷。[18]1922—1929年,美国的全国总债务增长了68%,但全国总资产仅增长20%,收入仅增长29%。[19]在崩盘之前,债务的增长速度可能一直快于经济的其他方面。私人债务增长尤其迅速;与政府不同的是,个人和公司不能通过征税或印钞来消除债务,而且由于个人和公司是20世纪20年代债务的主要引擎,因此,当事件爆发时,其债务承担带来的负面影响也尤其大。

        20世纪20年代泡沫事件的另一个主要发起人是股票池,它通常是一个由经纪人和金融家组成的特设小组,他们按照精心设计的顺序相互买卖股票,操纵特定公司的股价,旨在引起小投资者的注意。他们聚集在券商大厅的股票报价器和黑板前,得出某只股票已“被控制”的结论,也跟随买入,进一步推高价格。

        股票池的关键人物是股票交易所的场内“专家”:他是在交易所场内为公众买卖股票的经纪人,保存着一本珍贵的客户买卖“订单簿”,这能够预测未来的股票走向。当订单簿上的公开购买订单列表足够庞大时,股票池的参与者就会将自己的股票出售给那些由股价暴涨引来的投资者,并获得数百万美元的利润。

        最臭名昭著的股票池集中在无线电领域,例如众所周知的美国无线电公司,其参与者似乎是美国政界和商界的名人:杜邦和通用汽车公司的财务主管约翰·J.拉斯科布,美国钢铁公司的最高领导者查尔斯·施瓦布,沃尔特·克莱斯勒,佩尔西梅·洛克菲勒,伍德罗·威尔逊总统的前助手约瑟夫·塔马尔蒂。内线交易在20世纪20年代并不违法。对现代读者来说,另一个名字很突出:戴维·萨诺夫夫人,美国无线电公司总裁的妻子。

        然而,有史以来最伟大的股票池经理应该是约瑟夫·P.肯尼迪[20]。经常有一些传说,将肯尼迪家族的财富与私酒交易联系在一起。不过,没有可靠证据支持这一点,而且无论如何,非法制造烈酒对一个哈佛经济学毕业生来说并不是一个理性的职业选择。他的血统更适合华尔街。在那里,他通过传奇般的股票池操作积累了一笔财富,后来又将这笔财富扩展到好莱坞和房地产等领域。

        正如19世纪40年代乔治·哈德森在铁路领域的庞氏骗局式融资——用新股东的资本支付旧股东的股息——在那时是可以接受的,也是合法的,20世纪20年代的股票池行为也是如此,在1933年和1934年的相关证券法[21]通过之前,这种公然操纵股价的行为没有被禁止。

        金融狂热的第三个和第四个解剖位置是政客和媒体,这两个部分巧妙地集中在约翰·J.拉斯科布身上。拉斯科布的父亲是一个雪茄制造商(经营规模中等),于1898年去世。之后的拉斯科布与英萨尔一样好运,成为工业巨头皮埃尔·S.杜邦的私人秘书,并最终成为这家大型化工公司的财务主管。1920年,杜邦拯救陷入困境的通用汽车,拉斯科布接管了通用汽车的财务。20世纪20年代后期,拉斯科布成为股票爱好者,参与了一些最成功的股票池。[22]1928年,民主党任命他为全国委员会主席。

        然而,拉斯科布最让人印象深刻的是一次臭名昭著的采访,采访文章名为《人人都应该富有》,并发表在《女性家庭杂志》1929年8月刊,当时该杂志的订户已超过200万。其中最臭名昭著的一段话正解释了文章标题的主旨:

        假设一个男人23岁结婚,并开始每月定期储蓄15美元——几乎任何一个有工作的人都可以做到,只要他足够努力。如果他投资于优质普通股,并将股息和股权进行再投资,那么20年后他将至少有8万美元,以及每月约400美元的投资收入,这样他会很富有。任何人都能做到这一点,所以我坚信任何人不仅可以富有,而且应该富有。[23]

        拉斯科布的这段话,是泡沫时代媒体对不费吹灰之力的财富的经典赞歌,巧妙地说明了即使是两大著名公司的首席财务官也会采取启发式捷径。如今,我们只要借助资产负债表或财务计算器,并且具备一定的能力就能计算出,20年里将每月15美元的储蓄转化为8万美元需要25%的年平均回报率;但1929年,这一计算更加困难。虽然拉斯科布可能拿出了他的铅笔、纸和复利表,但事实上他没有提到25%这一隐含的长期投资回报率(这一数字即使在1929年也高得离谱),很可能他只是凭空说出了这些数字。

        像拉斯科布这样的政客,在泡沫及其破灭中扮演着双重角色。首先,和其他人一样,他们也陶醉于追求不费吹灰之力的财富,就像1719—1720年的乔治一世国王和奥尔良公爵以及铁路泡沫时期的大部分议会成员一样。之后的几十年,现代政治廉洁和立法遏制了这种腐败,至少在发达的西方国家是如此,这让政治领导人有了更为神圣的责任,即要保证经济基本健康发展:在经济扩张时期,没有过度投机,而在经济收缩时期,国家领导人能够平稳地避免任何担忧或恐慌。

        20世纪20年代时也是如此。在1928年共和党大会上,赫伯特·胡佛在提名演讲中庄严地吟诵道:“今天,我们美国比以往任何时候都更接近于最终战胜贫困。贫困家庭正在从我们中间消失。”[24]经济崩溃后,胡佛和他的财政部长安德鲁·梅隆一再向公众保证经济“基本上是健康的”。胡佛还开创了一种在面临经济危机时的反应,其将成为现代世界各国领导人的标准反应,被约翰·肯尼斯·加尔布雷思称为“无事由会议”:在这种会议上,国家的政治、金融、经济领袖都被召入白宫,“不是因为有事要做,而是因为有必要给人留下正在做事的印象”[25]

        有可能实时发现泡沫吗?

        现代金融的伟大进步之一,是芝加哥大学的尤金·法玛提出的有效市场假说。20世纪60年代,尤金·法玛认识到,金融市场能够快速将新信息——市场变故——转化为价格。但市场变故是无法被预测到的,因为我们也不可能预测到未来的价格方向。

        而且,有效市场假说认为,当前市场价格能够准确反映现有信息,因此狂热不应该出现。正如法玛尖锐地指出:“坦率地说,‘泡沫’这个词让我发疯。”[26]

        有效市场假说的支持者对泡沫的厌恶是可以理解的;现代金融学的核心是构建和测试市场行为模型。艾萨克·牛顿所谓的“我能计算天体的运动,但不能计算人类的疯狂”很容易被理解,但它揭示了一个更深层次的事实:牛顿是有史以来世界上最伟大的数学建模者之一,如果连他都不能用数学术语来描述泡沫,那么也许没有人能做到。

        耶鲁大学的罗伯特·席勒与法玛共同获得了2013年诺贝尔经济学奖。席勒认为,当上涨的价格能够实现自我维持时,泡沫就会出现,用他的话说就是,“当价格也被狂热传染的时候”[27]。尽管所有泡沫都是如此,但仅凭这一现象无法识别泡沫,因为投资者一直在到处追逐当前高回报的资产。然而,像1719—1720年、19世纪40年代和20世纪20年代那样的大规模泡沫是罕见的,因此仅仅靠每天自我维持的价格上涨这一判断标准,会产生很高的误报率。

        最高法院大法官波特·斯图尔特在审理雅各贝利斯诉俄亥俄州案[28]时遇到了同样的难题。虽然它所涉及的领域不是金融业,但他的方法提供了考虑泡沫的另外一种方式:

        根据宪法第一和第十四修正案,这一领域的刑法犯罪仅限于“硬核色情物品”。今天,我将不再试图用寥寥几笔就对我所理解的这类物品做进一步的界定,也许我永远无法成功地做到这一点。但是,当我看到它的时候,我就知道是它。[29]

        正如牛顿无法模拟人类的疯狂一样,也如法玛教授讨厌“泡沫”这个词一样,斯图尔特大法官这段著名的话表明,尽管他无法从语言学角度描述什么是硬核色情物品,但他知道它是什么样子的。这同样适用于金融业:即使我们不能对泡沫进行建模,但现在我们肯定已经知道它们是什么样子了。

        到目前为止,密西西比公司、南海公司、英国铁路和20世纪20年代的美国股票市场都呈现出4个极具特色的特征。第一个特征是,金融投机成为日常对话和社会互动的主要话题,从坎康普瓦大街和交易巷的人群,到20世纪20年代美国券商大厅的人群。据弗雷德里克·刘易斯·艾伦回忆,在20世纪20年代:

        一夜之间发财的故事挂在每个人嘴边。一位金融评论员报告说,他的医生发现病人在谈论股票市场时不关心其他任何事情,他的理发师不止一次地用热毛巾打断客户对蒙哥马利·沃德股票前景的描述。妻子们问她们的丈夫为什么这么慢,为什么他们不参与这一切,结果她们的丈夫在当天早上已经买了100股美国亚麻籽公司的股票。[30]

        泡沫的第二个特征是,相当一部分通常情况下能力强、头脑清醒的人,现在却放弃了安全、高薪的职业,全职从事金融投机。例如,如果没有当时的金融刺激,那么布朗特和哈德森都会继续成为相对成功的亚麻布经销商。艾伦描述过一位女演员,她把自己在公园大道的住所装修成一家小型经纪公司,“周围摆满了表格、图表和财务报告,越来越多地通过电话进行市场操作,而且越来越沉迷于此”,而另一位艺术家“曾经口若悬河地说,只有高更[31]才会一边画画,一边宣扬国家贝拉斯·赫斯(一家现已不复存在的邮购商行)的股票价值”[32]

        泡沫的第三个也是最持久的特征是,信徒对怀疑论者的猛烈抨击。20世纪20年代末,如果说有人能够以血统和历史感来表达怀疑并警告公众的话,这个人就是保罗·莫里茨·沃伯格。沃伯格于1868年出生于一个德国犹太家庭,其家族具有中世纪威尼斯的银行背景。在1911年入籍美国之前,他在欧洲金融机构中迅速崛起;1914年,他作为创始成员宣誓就职美国联邦储备委员会。

        沃伯格在移民之前曾经见过类似的欧洲泡沫,他知道泡沫的结局。1929年3月,在担任国际承兑银行行长期间,他注意到,股票价格已经完全脱离了合理范围内的估值,并惊恐地指出,贷款数量的激增已经导致“无限制的投机狂欢”,这最终不仅会损害投机者,而且“还会导致整个国家的经济萧条”。[33]

        这一惊人准确的预测却遭到了公众的强烈谴责。最温和的方式是批评他“过时”;还有愤怒的观察家指责他“粗暴抨击美国的繁荣”,这些语句几乎与两代人之后抨击互联网泡沫怀疑论者的语句一模一样。[34]

        著名投资顾问罗杰·巴布森也有同样的遭遇。他在10年前创办了巴布森学院,1929年9月5日,在该学院举办的一次人数众多的商业会议上,他发表演讲:“迟早会有一场崩盘,而且它可能会很可怕。”与沃伯格一样,他预测会有一场严重的萧条。正是在那天,市场急剧下跌,即所谓的“巴布森崩盘”。沃伯格很容易受到本土主义和反犹太主义的攻击,而巴布森则更容易成为被攻击的目标,因为他之前已经证明了自己是个怪人:他的作品中有一份名为《重力——我们的头号敌人》的宣言,他还成立了重力研究所,其主要目的是发明一种保护盾来抵御重力的致命力量。

        如果是在正常时期,那么巴布森的预言顶多会受到温和的质疑。但当时并不是正常时期。报纸讽刺地称他为“韦尔斯利[35]的圣人”,并指出他先前预言的不准确之处。一家投资公司警告其客户,“我们不能因为某位著名统计学家对市场的不利预测而仓促抛售股票”[36]

        明斯基的健忘症因素通常揭示了泡沫时期的代沟现象;只有年龄足以回忆起上一次繁荣和萧条的参与者才可能持怀疑态度。而他们更年轻、更热情的伙伴会嘲笑他们是守旧派,与经济和金融市场的新现实脱节。简言之,泡沫主要集中在记忆短暂的年轻人领域。

        无论是由于何种机制,这些激烈反应都可以理解为弗里茨·海德理论中的平衡和不平衡状态。正如末日信徒的期望那样,没有什么信仰能比不劳而获和无限财富的承诺更令人愉快,信徒也不会轻易放弃这样一个令人安慰的概念。对忠实的信徒来说,阻力最小的方法就是给怀疑论者贴上“不理解”的标签,从而达到平衡状态。

        泡沫的第四个也是最后一个特征是极端预测内容的出现,比如南海事件中预测西班牙奇迹般地将其新大陆贸易的垄断权转让给英国、投资100英镑可以获得数百英镑的年度分红,英国铁路事件中预测即将“主宰时空”,美国股票泡沫中拉斯科布隐含预测的25%的市场年回报率。

        1929年,耶鲁大学的欧文·费雪做出了结束所有预言的预言。也许费雪是那个时代最伟大的金融经济学家,他发展了许多现代数理金融学的理论基础,至今仍受到尊敬。但是,人们更记得他于1929年10月15日在曼哈顿采购代理协会说的话,那是在黑色星期四的9天前:“股票价格已经达到了一个看似永久的高峰状态。”[37][38]

        没有“阳光查理”米切尔的故事,1929年的崩盘历史就不完整。英萨尔和哈德森至少为子孙后代提供了重要的基础设施,这些遗产减轻了他们的罪恶。但是,查理·米切尔,这个时代的伟大的金融发起人——和掠夺者——无法得到任何救赎。

        和英萨尔一样,米切尔出身卑微。1907年,他成为总部位于纽约的美国信托公司的总裁奥克利·索恩的助手。米切尔就职时正赶上当年的大恐慌,美国信托公司正处于这场风暴的中心,索恩领导这家公司化解了银行挤兑危机。30岁的米切尔作为助手,在整个危机期间投入了大量的时间,经常晚上不回家,睡在老板办公室的地板上。1911—1916年,他开始经营自己的证券经纪公司,随后被纽约城市银行(花旗银行的前身)聘请,为其管理小型股票和债券销售部门——纽约城市公司。

        商业银行家履行3项近乎神圣的职能,其对任何资本主义社会都至关重要:保护他人的货币;向企业提供营运资本,否则经济将无法运转;创造货币。相比之下,投资银行家却向公众出售股票和债券,这是一种风险更大、在道德层面更模棱两可的行为。

        银行监管机构早就明白它们之间的区别。事实上,监管机构禁止商业银行拥有投资银行。但不能拥有也并不意味着无法控制。通过控制的方式,米切尔和他的银行的律师们设法构建了与纽约城市公司的关系。[39]简言之,查理·米切尔是一名伪装成女王的军官的海盗,在纽约城市银行旗下航行。纽约城市公司收取了大量费用,成为一家投资银行,其主要职能是向公众出售新发行的股票和债券,进而为公司创造资本。不幸的是,该公司出售的许多股票和债券都是不可靠的,这些证券出售给了那些毫无戒心的纽约城市银行的客户,这加剧了银行的渎职行为。之后,纽约城市公司和银行承销了外国政府发行的更加不可靠的债券。

        米切尔在1916年接管纽约城市公司时,该公司在银行总部只占用了一间办公室,只有4名员工。发起人不仅需要公众和客户,还需要媒体。繁荣时期的媒体能带来一大群轻信的新兵。20世纪20年代,杂志专栏作家布鲁斯·巴顿是典型的媒体骗子,他的父亲是一位传教士,曾将耶稣描述为“A-1推销员”。1923年,他写了一篇关于米切尔的吹捧文章,题为《这里有什么其他人做不到的吗?》。在一次采访中,米切尔向巴顿讲述,当他的年轻推销员遇到萧条期时,他会带推销员到银行家俱乐部的顶层去看看下面的人群。“下面有600万人,他们的收入有成千上万美元。他们正在等待有人告诉他们如何使用自己的储蓄。你应该好好看看,吃一顿丰盛的午餐,然后去那里告诉他们。”[40]

        米切尔的魅力和干劲、媒体的热情以及20世纪20年代股市的狂热,这些因素都推动了纽约城市公司不断扩大其经营规模;到1929年,该公司雇用了1400名销售和支持人员,他们分散在58个分支机构中,所有这些人员都通过11000英里的私人电话线与纽约总部相连(因此现代社会将提供全方位服务的证券经纪公司蔑称为“电线屋”)。面对指责,米切尔发出了几乎不间断的规劝:“我们希望能够完全做到,除了童工之外,我们所有的销售人员都是正式员工。”该公司实现了这一抱负,并且实现了更多目标,在20世纪20年代每年承销了超过15亿美元的股票和债券,比任何其他投资银行都多。[41]

        该银行向轻信的客户大力推销纽约城市公司的投资银行“专长”。这些客户得到的建议是,购买具有诱人优惠券的债券,以及价格不断上涨的更诱人的股票,以取代传统的低收益但安全的储蓄。

        米切尔可能不是证券经纪行业销售大赛的最早发起人,但他将此细化为一门艺术,向获胜的“员工”提供高达25000美元的奖金(“员工”这个术语并不讨人喜欢,但仍然很自然地用在金融业中)。米切尔的公司非常成功,其卖光了所有的债券。通常情况下,公司和外国政府会争取由投资银行发行其债券,但纽约城市公司通过主动鼓励公司发行更多债券,扭转了这种局面。更为离奇的是,米切尔将销售人员分散到不稳定的巴尔干和南美洲国家,为那些贫困的政府提供廉价资本。

        尽管销售人员汇报了秘鲁和巴西的米纳斯吉拉斯州等外国政府的无能和数据造假,而且其几乎肯定会违约,但米切尔和纽约城市公司仍继续向银行的轻信客户出售这些外国债券。

        1921年,他从纽约城市公司总裁升任银行总裁,这为他的销售大业扫清了最后一道障碍。文学评论家埃德蒙·威尔逊最好地捕捉到了米切尔的精神,他描述了米切尔派出的推销员,他们“敲开农村各户房屋的门,像那些推销吸尘器或刷子的人一样”;20世纪20年代早期和中期,纽约城市公司主要销售债券;慢慢地,随着市场牛市势头增强,该公司将销售重点从债券转向股票,不仅销售负债的亚纳康达铜业等公司的高风险股票,甚至销售银行自己发行的股票,而如果没有该公司与银行合法分离的遮羞布,那么这样的股票本来就是非法的。[42]

        1958年,威尔逊描述了米切尔:

        在10年的时间里,他向美国公众出售了价值超过150亿美元的证券。他向公众出售汽车公司的股票,这些股票现在打了水漂;他向公众出售濒临破产的南美洲共和国的债券;他向公众出售自己银行的股票。1929年10月后,这些股票的价格在3周内从572美元下跌到220美元,最近它们只值20美元。[43]

        在这次股票崩盘事件中,米切尔让他的客户财富归零。公众对这一事件的印象集中在10月戏剧性的“黑色日子”上。24日,黑色星期四,摩根大通领导的财团上演了戏剧性的救援,到这天中午,恐慌基本消除。但到了黑色星期一和黑色星期二,即28日和29日,曾在24日拯救了股市的财阀们——米切尔、摩根大通的托马斯·拉蒙特和大通国民银行的阿尔伯特·威金——已经耗尽了勇气和资金。连续两天,股市分别下跌13.5%和11.7%。[44]

        到10月29日收盘时,股票价格已从9月的峰值下跌了39.6%:可以肯定的是,价格下跌幅度比1973—1974年、2000—2002年和2007—2009年的价格下跌幅度还要大。此外,到1930年4月中旬,股票市场又挽回了2/5以上的损失。[45]

        在1907年的金融危机期间,只有少数美国人拥有股票,即使到了1929年,也只有10%的美国人拥有股票,因此,1929年的最初下跌对普通民众的直接经济影响相对较小。[46]但在接下来的几年中,腐败蔓延到了商业活动的心脏——银行系统,经济陷入混乱。到1932年中,股票价格从1929年的峰值水平暴跌了近90%。1931年12月11日,距离1932年中最终触底还有6个月(见图7-1)。一位小投资者本杰明·罗思在日记中写到了投资者的贫困:

        图7-1 1925—1935年的道琼斯工业股票平均价格指数

        一位非常保守的年轻已婚男子告诉我,在过去的10年里,他成功偿还了房子的抵押贷款。几周前,他又将房子进行了抵押,获得的5000美元贷款用于投资优质股票,且他打算长期投资。我认为两三年后,他将获得可观的利润。人们普遍认为,现在可以以非常有吸引力的价格购买优质股票和债券。困难在于人们手头没有资金。[47]

        没有资金的公众是愤怒的公众,就像在1720年和1848年那样,公众想要证明自己的成功。金融幽默作家弗雷德·施韦德用最简洁的语言描述:“赔光钱的客户当然更愿意相信自己是被抢了,而不愿意承认自己是在傻瓜的建议下做了傻瓜。”[48]截至1929年,银行拥有23万名客户;目前尚不清楚具体有多少客户开立了纽约城市公司的证券经纪账户,但估计至少有数万人,而且可能会更多。[49]与其他证券经纪人的客户(自愿走进门购买证券)不同,米切尔的客户原本打算找一家安全的商业银行存钱,结果却像是跌跌撞撞地走进了一家妓院。

        一个最不可能的人物命中注定地成为查理·米切尔的复仇天使:一位直言不讳的意大利裔美国律师,名叫费迪南·佩科拉,他的父亲是一名制鞋厂工人,因工伤致残,他的受教育时间也因此被缩短。19世纪90年代末,十几岁的佩科拉从大学辍学,以供养父母和兄弟姐妹,但他设法攻读了法律学位。随后的很长一段时间里,他担任纽约市的地方检察官助理,并成功起诉了许多起金融案件。

        崩盘和随后的熊市促使美国参议院的银行货币委员会展开了对证券业的调查。委员会从1932年开始举行听证会,审问了米切尔和其他许多人。前两名律师的审问毫无效果,于是委员会解雇了他们。

        佩科拉在审问工作中的出色表现引起了班布里奇·科尔比的注意。班布里奇·科尔比是一位杰出的律师,曾在伍德罗·威尔逊时期担任国务卿,他向即将离任的共和党委员会主席彼得·诺贝克推荐了年轻的佩科拉。那时,诺贝克正在拼命寻找人来替代他之前解雇的律师。[50]

        佩科拉从1933年1月24日开始担任首席律师;他必须全力以赴,因为一开始就远远落后于形势。就在他被聘用3周后,他第一次与英萨尔信托公司的人打交道,没占到优势。因此,1933年2月21日,当身材高大、颇有气场、皮肤黝黑、极度自信的米切尔大步走进委员会会议室时,这位新任首席律师看上去不可能是他的对手。

        但佩科拉很快就找到了自信,主导了听证会并彻底摧毁了起诉目标,历史上将这场诉讼称为“佩科拉听证会”。正如我们见过的,巨额财富的拥有者将受到极大的奉承,这反过来腐蚀了他们的自我意识,当涉及犯罪行为时,这是一个致命缺陷。此外,犯罪企业通常会给其员工洗脑,使员工们认为自己的行为是正常的,甚至是值得赞扬的。

        同样的事情也经常发生在金融公司的欺诈行为上。在这些公司里,员工们学着用“符合客户最佳利益”这一借口来合理化自己的行为。有魅力和成功的企业领导者尤其会这样培训员工;正如老话所说,鱼从头开始向下腐烂。打击犯罪的行家佩科拉很快就认识到,米切尔正是这种典型的企业精英,纽约城市公司的作案手法在法律上或道德上没有任何问题,因此,起诉他的最有效方法,是让他解释他是如何领导他的销售人员的。在8天的证词中,佩科拉以礼貌、低调的方式,有条不紊地引导着傲慢的米切尔穿过了纽约城市公司销售机构的道德沼泽,并彻底摧毁了米切尔。

        米切尔需要支付多少钱才能说服他的销售人员将股票和债券出售给客户?米切尔回答说,不多,每年只有大约25000美元——此时一个美国工人的年均收入只有800美元。纽约城市公司如何支付其高管薪酬?根据出售证券的利润,而不是根据这些证券给客户带来的收益。这一体系支付给米切尔多少钱?每年超过100万美元——即使是对于那个时代的最高级的管理者,这也是一个闻所未闻的工资水平。

        更糟糕的是,1929年,米切尔以低于成本的价格将纽约城市公司的股票卖给了自己的妻子,然后立即又从她那里买回,没有缴纳个人所得税;他还对纽约城市银行的股票进行了典型的股票池操纵;向高级管理人员发放奢侈的可免除“贷款”,但粗暴地对待普通员工,强制性地要求普通员工购买银行的股票,以远高于市场的价格抵销员工的未来工资。当他的普通员工最终付清高价购买的股票时,他便解雇了他们。[51]

        当骇人听闻的工资和贷款、逃税把戏和员工受虐充斥着头条新闻时,最初自信的米切尔慢慢意识到自己已经陷入很大的麻烦中。然而,佩科拉的目标更高:他想揭露鼓动客户用借来的钱购买大量风险证券的销售人员(不仅仅是纽约城市公司的销售人员)扭曲的动机,这是让成千上万辛勤工作的美国人破产的原因。他在听证会的第4天开始做这项任务,并展示了该公司如何在有充分的机会接触普通银行存款人名单的情况下,按照销售指导书的措辞,“无情地”向公众出售股票和债券。[52]

        听证会的第六天,即2月28日,佩科拉再次转换关注点,关注对个人投资者造成的损害。在听证会之前,委员会已经收到数百封纽约城市公司的破产客户的来信。他们的共同点是谨慎和节俭,购买了政府债券,生活终于可以较为舒适,然后被纽约城市公司的销售人员说服,反复购买高风险股票和债券,最后陷入贫困。

        佩科拉挑选了其中最让人同情的一位,即来自宾夕法尼亚州波茨维尔的埃德加·布朗。布朗最近卖掉了一家连锁剧院,出于健康原因想搬到加利福尼亚州,他想寻找一家全国性的金融机构,以获得财务和后勤方面的建议和支持。在一家全国性的杂志上,他看到了这则广告:

        您在考虑一次长途旅行吗?如果答案是肯定的,那么我们将支付您与我们机构联系的费用,因为您将不再需要当地银行家的建议,而是将与我们密切联系,我们将指导您的投资。[53]

        关键是,该广告是由纽约城市银行发布的,但是纽约城市公司的弗雷德·拉梅尔联系了布朗,要帮助他投资10万美元。布朗积蓄中的大部分是卖剧院所得,其中的1/4已经购买了债券,主要是美国政府债券。布朗对拉梅尔只提出了一个要求:避开股票。

        在布朗的准许下,拉梅尔为他购买了各种国内外债券,远远超过了布朗10万美元的储蓄,因此布朗又从包括纽约城市银行在内的多家银行贷款,总计18万美元。当他的债券投资组合甚至在市场崩盘之前就暴跌了的时候,布朗抱怨道:

        布朗:然后(拉梅尔)说“好吧,那是你坚持只买债券的错。你为什么不让我卖给你一些股票?”。嗯,股票市场一直在上涨。于是我完全相信了,说“好,那买股票”。

        佩科拉:你告诉他买什么股票了吗?

        布朗:从来没有。

        佩科拉:那他为你买股票了吗?

        布朗:我可以开玩笑地回答一下吗——他买股票了吗?

        听证会的书记员尽职地记录了一句话:“长时间的大笑”。[54]

        布朗随后向听证会出示了一份大量购入股票的记录,佩科拉为了减轻书记员的负担,并没有让其记录。布朗讲述了他如何前往纽约城市公司总部,抱怨拉梅尔的账户交易过于激进,以至于尽管股市不断上涨,但他的投资组合的价值一直在下降。他被告知,公司将调查此事,他将得到答复。

        布朗确实收到了拉梅尔的回信,但他建议布朗购买更多的股票,包括纽约城市银行的股票;到1929年10月4日,他的投资组合的价值进一步下降。布朗前往纽约城市公司的洛杉矶办事处,要求出售自己的所有仓位[55],但接下来,“他们好似把我看作一个想把自己的母亲赶出家门的人,我立刻被那里所有的销售员包围,他们让我知道出售仓位是非常非常愚蠢的”。

        该公司终于在10月29日黑色星期二卖出了布朗的股票,当时布朗的保证金已经用完,他一无所有。此外,该公司以最虚假的方式——远低于市场的价格购买了布朗的证券。

        布朗,两年前的身价为10万美元(约可折合为今天的150万美元),现在成了贫民。令人惊讶的是,布朗此时想再贷款25000美元以进一步投机亚纳康达铜业公司的股票,而银行拒绝了,理由是布朗失业又破产。[56]

        1929年以前,那些成功的商界人士几乎具有被膜拜的地位,成为国家利益的最终仲裁者;但1933年后的一段时间里,佩科拉听证会将华尔街列为头号公敌,还将“银匪”[57]一词引入了美语词汇中。这个词在两代人之后的2007—2009年全球金融危机中又死灰复燃。

        听证会于3月2日结束,也就是富兰克林·罗斯福就职典礼的前两天。现代经济史学家认为罗斯福的竞选口号是银行大规模倒闭的重要原因,特别是他威胁要让美元相对黄金贬值的言论,而他最终也实施了这一政策。[58]公众渴望报复,听证会后的两个月内,米切尔因涉嫌欺诈而受审。与布朗特和哈德森一样,米切尔可能没有做任何违犯证券法的事情,那时的法律比较宽松,因此所有的指控都不成立,他被无罪释放。当然他必须与政府解决补税问题。在接下来的20年里,他甚至重新获得了一些财富以及体面的社会地位;他最后的住所在第五大道,现已成为法国领事馆。

        正如两个世纪前南海股票崩溃后发生的那样,相关法律的修改姗姗来迟。在听证会之后的15个月内,罗斯福签署了一整套受佩科拉委员会启发的证券立法的文件,包括严格区分投资银行和商业银行的《格拉斯-斯蒂格尔法案》;1933年和1934年的相关证券法,分别规范证券的发行和交易;1940年的《投资公司法》,主要监管金融顾问和投资信托(当今共同基金的前身)。

        美国证券交易委员会是根据1934年的《证券交易法》设立其规定的机构。金融界最大的讽刺之一是,美国证券交易委员会的第一任专员正是曾经股票池的完美操纵者约瑟夫·P.肯尼迪。当有人向罗斯福指出肯尼迪不适合担任此职位时,罗斯福调侃道:“只有小偷才能抓住小偷。”[59]

        弗雷德·施韦德以其特有的幽默,从当代视角对此次崩盘事件进行了解释:

        1929年,有一列火车的奢华车厢,每周早上都会到达宾夕法尼亚车站。当火车停下来时,一直在打桥牌、读报纸、攀比财富的百万富翁们从车厢前端走了出来。靠近车厢门的地方放着一个银碗,里面有很多硬币。那些需要5美分换乘市区地铁的人会拿走一枚。他们不需要用任何东西来交换硬币;这根本不算钱,就像羽毛牙签一样免费提供。只是5美分而已。

        1929年10月的突然崩盘有很多解释。我更喜欢的解释是耶和华之眼,愤怒的上帝正好在10月碰到了那个碗,在可以理解的突然恼怒中,耶和华踢翻了美国的金融结构,结果就是碗里的硬币永远消失了。[60]

        阿尔伯特·爱因斯坦有一句名言,复利是宇宙中最强大的力量(实际上这句话并不是爱因斯坦说的)。事实并非如此。健忘才是宇宙中最强大的力量。佩科拉听证会后短短两年,弗雷德里克·刘易斯·艾伦就预见性地观察到了这一点:

        圣乔治攻击巨龙,受到热烈的赞扬[61];但总有一天,圣乔治死了,观众散去,圣乔治的继任者发现龙是一个非常有说服力的家伙,开始怀疑为什么会有屠龙这样的事情发生,时代是否改变了,以及是否有必要让龙受到最温和的约束。[62]

        随着佩科拉委员会逐渐淡出人们的记忆,圣乔治不仅失去了警惕,还躺在路边流血不止,无法保护一群几乎忘记了拉斯科布、英萨尔和米切尔的公众,新的发起者又将诞生。

      10. Hongyang (Bruce) Yang, Xiao-Yang Liu, Christina Dan Wang Hongyang (Bruce) Yang, Xiao-Yang Liu, Christina Dan Wang:金融大语言模型:开源金融大型语言模型

        摘要

        大语言模型(LLM)已经显示出在不同领域革命自然语言处理任务的潜力,引发了人们对金融的极大兴趣。访问高质量的金融数据是金融LLM(FinLLMs)面临的第一个挑战。虽然BloombergGPT等专有模型利用了其独特的数据积累,但这种特权访问需要一种开源的替代方案来实现互联网规模的金融数据民主化。
        在本文中,论文提出了一个用于金融部门的开源大型语言模型FinGPT。与专有模型不同,FinGPT采用以数据为中心的方法,为研究人员和从业者提供可访问和透明的资源来开发他们的FinLLM。论文强调了自动数据管理管道轻量级低秩自适应技术在构建FinGPT中的重要性。此外,论文还展示了一些潜在的应用程序,作为用户的垫脚石,如机器人咨询算法交易低代码开发。通过开源AI4Finance社区内的合作,FinGPT旨在刺激创新,使FinLLM民主化,并释放开放金融的新机遇。

        1 介绍

        人工智能的不断扩展和进化为大型语言模型的扩散提供了肥沃的土壤[Vaswani等人,2017;Radford等人,2018;Devlin等人,2018年;Ethayarajh,2019;Lewis等人,2019;刘易斯等人,2020;Brown等人,2020年;Thoppilan等人,2022],从而实现了跨不同领域的自然语言处理格局的变革。这一全面的变化引起了人们对这些模式在金融领域的潜在应用的浓厚兴趣。然而,很明显,获取高质量、相关和最新的数据是开发有效、高效的开源金融语言模型的关键因素。

        在金融领域使用语言模型揭示了复杂的障碍。这些问题包括获取数据的困难、处理不同的数据格式和类型、管理数据质量的不一致,以及对最新信息的基本要求。特别是,由于网络平台、API、PDF文档和图像等不同的数据介质,历史或专门的金融数据提取被证明是复杂的。

        在专有领域,BloombergGPT[Wu et al.,2023]等模型利用其对专业数据的独家访问来训练特定于金融的语言模型。然而,他们的数据收集和训练协议的可访问性和透明度受到限制,这加剧了对更开放和包容的替代方案的需求。为了回应这一需求,我们正在目睹一种转变趋势,即在开源领域实现互联网规模的金融数据民主化

        在本文中,解决了上述与金融数据相关的挑战,并介绍了金融大型语言模型(FinLLM)的端到端开源框架FinGPT。FinGPT采用以数据为中心的方法,强调了数据采集、清理和预处理在开发开源FinLLM中的关键作用。通过支持数据可访问性,FinGPT渴望加强金融领域的研究、合作和创新,为开放金融实践铺平道路。

        论文的贡献总结如下:
        民主化:FinGPT作为一个开源框架,旨在使金融数据和FinLLM民主化,揭示开放金融中尚未开发的潜力。

        以数据为中心的方法:认识到数据管理的重要性,FinGPT采用以数据为核心的方法,并实施严格的清理和预处理方法来处理各种数据格式和类型,从而确保高质量的数据。

        端到端框架:FinGPT为FinLLM提供了一个全栈框架,共有四层:
        –数据源层:该层确保全面的市场覆盖,通过实时信息捕获解决金融数据的时间敏感性问题。
        –数据工程层:该层主要用于实时NLP数据处理,解决了金融数据中高时间敏感性低信噪比的固有挑战。
        –LLM层:该层专注于一系列微调方法,缓解了财务数据的高度动态性,确保了模型的相关性和准确性。
        –应用层:展示实际应用和演示,该层突出了FinGPT在金融领域的潜在能力。

        对FinGPT的愿景是成为刺激金融领域创新的催化剂。FinGPT不仅限于提供技术贡献,它还为FinLLM培养了一个开源生态系统,促进了实时处理和用户定制适应。通过在开源AI4Finance社区内培育强大的协作生态系统,FinGPT能够重塑我们对FinLLM的理解和应用。

        2 相关工作

        2.1 LLM和ChatGPT

        大语言模型(LLMs)已被公认为自然语言处理的技术突破,如GPT-3和GPT-4[Brown et al.,2020]。它们采用基于Transformer的架构,在各种生成任务中表现出令人印象深刻的性能。

        2.2 金融中的LLMs

        LLMs已被应用于金融部门的各种任务[Dredze et al.,2016;Araci,2019;Bao et al.,2021;DeLucia et al.,2022],从预测建模到从原始金融数据生成富有洞察力的叙述。鉴于这一领域的文本数据丰富,如新闻文章、电话财报会议记录和社交媒体帖子,最近的文献将重点放在使用这些模型进行金融文本分析。

        金融LLMs的第一个例子是BloombergGPT[Wu et al.,2023],它是在金融和一般来源的混合数据集上训练的。尽管其能力令人印象深刻,但访问限制仍然存在,高昂的培训成本促使人们需要低成本的领域适应。

        论文的FinGPT应对了这些挑战,推出了开源金融LLM。它采用从人类反馈中强化学习(RLHF)来理解和适应个人偏好,为个性化财务助理铺平了道路。论文的目标是将ChatGPT等普通LLMs的优势与财务适应相结合,利用LLMs在金融方面的能力。

        2.3 为什么选择开源FinLLM?

        AI4金融基金会是一个非营利的开源组织,集成了人工智能(AI)和金融应用程序,包括金融大型语言模型(FinLLM)。凭借在培育金融科技(FinTech)工具创新生态系统方面的良好记录,如FinRL[Liu et al.,2021]和FinRL-Meta[Liu等人,2022],该基金会准备进一步加速FinLLMs的发展。这是坚定的承诺和前沿的贡献,为人工智能在金融领域的变革性应用铺平了道路。

        通过使FinLLMs民主化来促进平等机会:采用开源方法促进普遍获得最先进的技术,秉承使FinLLMs民主化的精神。

        • 培养透明度和信任:开源FinLLMs全面概述了其基础代码库,增强了透明度和信任。
        • 加速研究和创新:开源模式推动了人工智能领域的研究和开发进展。它使研究人员能够利用现有的模型,从而促进创新和科学发现的更快发展。
        • 加强教育:开源FinLLMs是强大的教育工具,为学生和研究人员提供了通过直接参与全面运作的模型来探索FinLLMs复杂性的前景。
        • 促进社区发展和协作参与:开源促进了全球贡献者社区。这种合作参与增强了该模型的长期耐用性和有效性。

        3 以数据为中心的FinLLM方法

        对于金融大语言模型(FinLLMs),成功的策略不仅基于模型架构的能力,而且同样依赖于训练数据。论文以数据为中心的方法优先考虑收集、准备和处理高质量数据。

        3.1 金融数据和独特特征

        金融数据来源多种多样,具有独特的特点。我们深入研究了不同财务数据来源的细节,如财务新闻、公司档案、社交媒体讨论和公司公告。

        • 金融新闻报道了有关世界经济、特定行业和个别公司的重要信息。此数据源通常具有以下特点:
        • 及时性:金融新闻报道是及时和最新的,经常捕捉金融世界的最新发展。
        • 动态性:金融新闻中包含的信息是动态的,随着经济状况和市场情绪的变化而迅速变化。
        • 影响:金融新闻对金融市场有重大影响,影响交易员的决策,并可能导致市场剧烈波动。

        公司备案和公告是公司提交给监管机构的官方文件,为公司的财务健康和战略方向提供了见解。它们的特点是:

        • 细粒度:这些文档提供了有关公司财务状况的细粒度信息,包括资产、负债、收入和盈利能力。
        • 可靠性:公司填充物包含经监管机构审查的可靠且经过验证的数据。
        • 周期性:公司的填写是定期的,通常每季度或每年提交一次,定期提供公司财务状况的快照。
        • 影响力:公司公告通常对市场产生重大影响,影响股价和投资者情绪。

        与金融相关的社交媒体讨论可以反映公众对特定股票、行业或整体市场的情绪。这些讨论往往表现为:

        • 可变性:社交媒体讨论在语气、内容和质量上差异很大,使其成为丰富但复杂的信息来源。
        • 实时情绪:这些平台经常捕捉实时市场情绪,从而能够检测公众舆论的趋势和变化。
        • 波动性:社交媒体上表达的情绪可能高度波动,随着新闻事件或市场波动而迅速变化。

        趋势通常可以通过Seeking Alpha、Google Trends等网站以及其他以金融为导向的博客和论坛观察到,为市场走势和投资策略提供了重要的见解。它们的特点是:

        • 分析师视角:这些平台提供了经验丰富的金融分析师和专家的市场预测和投资建议。
        • 市场情绪:这些平台上的话语可以反映对特定证券、行业或整个市场的集体情绪,为主流市场情绪提供有价值的见解。
        • 广泛的覆盖范围:趋势数据涵盖不同的证券和细分市场,提供全面的市场覆盖范围。

        这些数据源中的每一个都为金融世界提供了独特的见解。通过集成这些不同的数据类型,像FinGPT这样的金融语言模型可以促进对金融市场的全面理解,并实现有效的金融决策。

        3.2 处理金融数据的挑战

        • 时间敏感性高:金融数据具有时间敏感性。市场动态消息或更新一旦发布,为投资者提供了一个狭窄的机会窗口,使他们的阿尔法(衡量投资相对回报的指标)最大化。
        • 高动态性:金融格局正在不断演变,每天都有新闻、社交媒体帖子和其他与市场相关的信息涌入。频繁地对模型进行再训练以应对这些变化是不切实际的,而且成本高昂。
        • 低信噪比:金融数据通常表现出低信噪比[Liu et al.,2022],这意味着有用的信息通常与大量无关或有噪声的数据相比相形见绌。从信息的海洋中提取有价值的见解需要复杂的技术。

        解决这些挑战对于有效利用财务数据和最大限度地发挥FinLLMs的潜力至关重要。

        4 FinGPT概述:FinLLM的开源框架

        图1:FinGPT框架

        FinGPT代表了一个创新的开源框架,专门为在金融领域应用大语言模型(LLMs)而设计。如图1所示,FinGPT由四个基本组件组成:数据源、数据工程、LLMs和应用程序。这些组件中的每一个都在维护FinGPT在处理动态金融数据和市场条件方面的功能和适应性方面发挥着至关重要的作用。

        数据源层:FinGPT管道的起点是数据源层,它协调从广泛的在线来源获取大量财务数据。该层通过整合新闻网站、社交媒体平台、财务报表、市场趋势等数据,确保全面的市场覆盖。目标是捕捉市场的每一个细微差别,从而解决金融数据固有的时间敏感性。

        数据工程层:该层专注于NLP数据的实时处理,以应对金融数据固有的高时间敏感性和低信噪比的挑战。它结合了最先进的NLP技术来过滤噪声并突出显示最显著的信息。

        LLMs层:它位于核心,包括各种微调方法,优先考虑轻量级自适应,以保持模型的更新和相关性。通过维护更新的模型,FinGPT可以处理金融数据的高度动态性,确保其响应与当前的金融环境同步。

        应用层:FinGPT的最后一个组件是应用层,旨在展示FinGPT在实践中的适用性。它提供金融任务的实践教程和演示应用程序,包括机器人咨询服务、量化交易和低代码开发。这些实践演示不仅为潜在用户提供了指南,还强调了LLM在金融领域的变革潜力。

        4.1 数据来源

        FinGPT管道的第一阶段涉及从广泛的在线来源收集广泛的金融财务数据。这些包括但不限于:

        财经新闻:路透社、CNBC、雅虎财经等网站是财经新闻和市场更新的丰富来源。这些网站提供了有关市场趋势、公司盈利、宏观经济指标和其他金融事件的宝贵信息。

        社交媒体:推特、脸书、Reddit、微博等平台在公众情绪、热门话题以及对金融新闻和事件的即时反应方面提供了丰富的信息。

        备案:美国证券交易委员会等金融监管机构的网站提供公司备案信息。这些文件包括年度报告、季度收益、内幕交易报告和其他重要的公司特定信息。证券交易所的官方网站(纽约证券交易所、纳斯达克、上海证券交易所等)提供有关股价、交易量、公司上市、历史数据和其他相关信息的重要数据。

        趋势:像Seeking Alpha、Google Trends和其他专注于金融的博客和论坛这样的网站可以访问分析师的意见、市场预测、特定证券或细分市场的走势以及投资建议。

        学术数据集:基于研究的数据集,为复杂的财务分析提供精心策划和验证的信息。

        为了利用来自这些不同来源的丰富信息,FinGPT结合了能够抓取结构化和非结构化数据的数据采集工具,包括API、web抓取工具和直接数据库访问(如果可用)。此外,该系统旨在尊重这些平台的服务条款,确保数据收集符合道德和法律。

        数据API:在FinGPT框架中,API不仅用于初始数据收集,还用于实时数据更新,确保模型在最新数据上进行训练。此外,还实施了错误处理和速率限制策略,以遵守API使用限制并避免数据流中断。

        4.2 金融NLP的实时数据工程管道

        金融市场实时运作,对新闻和情绪高度敏感。证券价格可能会因新信息而迅速变化,处理这些信息的延迟可能会导致错失机会或增加风险。因此,实时处理在财务NLP中是必不可少的。

        实时NLP管道的主要挑战是有效地管理和处理连续流入的数据。管道中的第一步是建立一个实时获取数据的系统。这些数据可能来自我们的数据源API。以下是设计用于数据摄取的实时NLP管道的步骤。

        数据清理:实时数据可能有噪声且不一致。因此,实时数据清理包括删除不相关的数据缺失值处理文本规范化(如小写)和错误更正

        标记化(Tokenization):在实时应用程序中,标记化必须动态执行。这涉及到将文本流分解为更小的单元或标记。

        停止词删除和词干/词干化:对于实时处理,可以使用预定义的停止词列表从tokens流中过滤出这些常见的单词。同样,词干和引理化技术可以用于将单词简化为词根形式。

        特征提取和情感分析:特征提取包括将原始数据转换为机器学习模型可以理解的输入。在实时系统中,这通常需要一个快速高效的过程。可以使用诸如TF-IDF、Bag of Words或诸如Word2Vec之类的嵌入向量之类的技术。情感分析也可以对清理后的数据进行(将一段文本分为正面、负面或中性)。

        提示工程:创建有效的提示,引导语言模型的生成过程达到理想的输出。

        警报/决策:一旦输入提示,就需要对结果进行沟通或采取行动。这可能包括根据特定条件触发警报,通知实时决策过程,或将输出输入另一个系统。

        持续学习:在实时系统中,模型应该适应数据的变化。可以实现连续学习系统,其中在新数据上定期对模型进行再训练,或者使用可以用每个新数据点更新模型的在线学习算法。

        监控:实时系统需要持续监控,以确保其正常运行。管道中的任何延误或问题都可能产生直接影响,因此制定强有力的监控和警报非常重要。

        4.3 大语言模型(LLMs)

        一旦数据准备好,就可以与LLMs一起使用,以生成富有洞察力的财务分析。LLM层包括:

        LLM APIs:来自已建立的LLMs的API提供基线语言功能。

        可训练模型:FinGPT提供了可训练模型,用户可以对其私人数据进行微调,为金融应用程序进行定制。

        微调方法:各种微调方法使FinGPT能够适应个性化的机器人顾问。

        为什么要微调LLM而不是从头开始重新训练?

        利用预训练的大型语言模型(LLM)并对其进行金融微调,为从零开始进行昂贵而漫长的模型再训练提供了一种高效、经济高效的替代方案。

        BloombergGPT虽然在金融方面有着非凡的能力,但也有着密集的计算需求。它使用了大约130万GPU小时进行训练,当使用AWS云的2.3美元费率计算时,这意味着每次训练的惊人成本约为300万美元。与BloombergGPT等模型的高计算成本相比,FinGPT通过专注于顶级开源LLMs的轻量级改编,提供了一种更容易访问的解决方案。适应成本大幅下降,估计每次训练不到300美元。

        这种方法确保了及时更新和适应性,这在动态金融领域至关重要。FinGPT是开源的,它不仅提高了透明度,还允许用户定制,以适应个性化金融咨询服务的兴起趋势。最终,FinGPT的成本效益高、灵活的框架有可能使金融语言建模民主化,并促进以用户为中心的金融服务

        通过低秩自适应(LoRA)进行微调

        在FinGPT中,利用一个新的金融数据集对预训练的LLM进行微调。众所周知,高质量的标记数据是包括ChatGPT在内的许多成功LLMs的关键决定因素。然而,获取此类顶级标签数据往往在时间和资源方面代价高昂,而且通常需要金融专业人员的专业知识。

        如果我们的目标是使用LLMs来分析金融相关的文本数据并协助量化交易,那么利用市场固有的标签能力似乎是明智的。因此,论文使用每个新闻项目的相对股价变化百分比作为输出标签。论文建立了阈值,根据新闻项目的情感将这些标签分为积极、消极和中性三类。

        在相应的步骤中,在提示工程过程中,提示模型从正、负和中性输出中选择一个。此策略确保了预训练信息的最佳利用率。通过部署LLMs的低阶自适应(LoRA)[Hu et al.,2021;Dettmers et al.,2023],将可训练参数的数量从61.7亿减少到仅367万

        通过股票价格强化学习进行微调(RLSP)

        同样,可以用股票价格强化学习(RLSP)代替人类反馈强化学习,正如ChatGPT所使用的那样。这种替代背后的原因是,股价提供了一个可量化的客观指标,反映了市场对新闻和事件的反应。这使得它成为训练我们的模型的一个强大的实时反馈机制。

        强化学习(RL)允许模型通过与环境的互动和接收反馈进行学习。在RLSP的情况下,环境是股票市场,反馈以股票价格变化的形式出现。这种方法使FinGPT能够完善其对金融文本的理解和解释,提高其预测市场对各种金融事件反应的能力。

        通过将新闻情绪与相关股票的后续表现联系起来,RLSP提供了一种微调FinGPT的有效方法。从本质上讲,RLSP允许模型推断市场对不同新闻事件的反应,并相应地调整其理解和预测。

        因此,将RLSP集成到FinGPT的微调过程中,为提高模型对金融市场的理解和预测准确性提供了强有力的工具。通过使用实际股价走势作为反馈,直接利用市场的智慧使FinGPT模型更加有效。

        4.4 应用

        FinGPT可以在金融服务中找到广泛的应用,帮助专业人士和个人做出明智的财务决策。潜在应用包括:

        • 智能投顾:提供个性化的财务建议,减少定期面对面咨询的需要。
        • 量化交易:为明智的交易决策产生交易信号。
        • 投资组合优化:利用众多经济指标和投资者档案,构建最佳投资组合。
        • 金融情绪分析:评估不同金融平台的情绪,以获得富有洞察力的投资指导。
        • 风险管理:通过分析各种风险因素制定有效的风险策略。
        • 金融欺诈检测:识别潜在的欺诈交易模式,以增强金融安全。
        • 信用评分:根据金融数据预测信用度,以帮助贷款决策。
        • 破产预测:根据财务和市场数据预测公司的潜在破产或破产。
        • 并购预测:通过分析财务数据和公司简介来预测潜在的并购活动,帮助投资者预测市场走势。
        • ESG(环境、社会、治理)评分:通过分析公开报告和新闻文章来评估公司的ESG评分。
        • 低代码开发:通过用户友好的界面促进软件创建,减少对传统编程的依赖。
        • 金融教育:担任人工智能导师,简化复杂的金融概念,提高金融素养。

        通过将这些不同但相互关联的组件联系起来,FinGPT为在金融领域利用人工智能、促进金融行业的研究、创新和实际应用提供了一个全面且可访问的解决方案。

        5 总结

        总之,大语言模型(LLM)与金融部门的变革性整合带来了独特的复杂性和巨大的机遇。应对高时间敏感性、动态金融环境和金融数据信噪比低等挑战需要高效的解决方案。FinGPT通过利用预先存在的LLMs并根据特定的金融应用对其进行微调,做出了创新性的回应。与BloombergGPT等模型相比,这种方法显著降低了适应成本和计算需求,为金融语言建模提供了一种更易于访问、更灵活、更具成本效益的解决方案。因此,它能够持续更新,以确保模型的准确性和相关性,这是动态和时间敏感的金融世界中的一个关键方面。

        6 未来工作

        FinLLMs,或金融大语言模型,呈现了一个未来的愿景,个性化的机器人顾问或助手触手可及。它旨在使获得高质量财务建议的途径民主化,利用先进的语言建模技术来理解大量的财务数据,并将其转化为可操作的见解。以下蓝图概述了FinLLM的未来方向。

        • 个性化:FinLLM战略的核心是个性化微调的概念。FinLLM使用LoRA和QLoRA等技术,使用户能够根据自己的特定需求定制模型,从而创建个人机器人顾问或助手。这与金融服务定制的更广泛趋势相一致,因为消费者越来越多地需要符合其独特风险状况和财务目标的个性化建议。
        • 开源和低成本适应:FinLLM支持开源价值观,为用户提供所需的工具,以低成本(通常在100美元至300美元之间)将大型语言模型(LLM)适应自己的需求。这不仅使人们能够民主地获得先进的金融建模技术,而且还培养了一个充满活力的开发人员和研究人员社区,共同推动金融人工智能领域的发展。
        • 获得高质量的金融数据:FinLLM不仅提供建模技术,还提供了获得高质量金融数据的机会。这确保了用户拥有有效训练其模型所需的数据,同时也简化了数据管理过程。通过提供带有演示的数据管理管道,用户能够充分利用其财务数据的潜力,进一步增强了这种访问能力。

        附:论文英文版