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Abstract

Warning: This is not an official technical report from OpenAI.
Sora is a text-to-video generative AI model, released by OpenAI in February 2024. The model is
trained to generate videos of realistic or imaginative scenes from text instructions and show potential
in simulating the physical world. Based on public technical reports and reverse engineering, this paper
presents a comprehensive review of the model’s background, related technologies, applications, remain-
ing challenges, and future directions of text-to-video AI models. We first trace Sora’s development
and investigate the underlying technologies used to build this “world simulator”. Then, we describe in
detail the applications and potential impact of Sora in multiple industries ranging from film-making
and education to marketing. We discuss the main challenges and limitations that need to be addressed to
widely deploy Sora, such as ensuring safe and unbiased video generation. Lastly, we discuss the future
development of Sora and video generation models in general, and how advancements in the field could
enable new ways of human-AI interaction, boosting productivity and creativity of video generation.

Figure 1: Sora: A Breakthrough in AI-Powered Vision Generation.
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1 Introduction

Since the release of ChatGPT in November 2022, the advent of AI technologies has marked a significant
transformation, reshaping interactions and integrating deeply into various facets of daily life and indus-
try [1, 2]. Building on this momentum, OpenAI released, in February 2024, Sora, a text-to-video gener-
ative AI model that can generate videos of realistic or imaginative scenes from text prompts. Compared
to previous video generation models, Sora is distinguished by its ability to produce up to 1-minute long
videos with high quality while maintaining adherence to user’s text instructions [3]. This progression of
Sora is the embodiment of the long-standing AI research mission of equipping AI systems (or AI Agents)
with the capability of understanding and interacting with the physical world in motion. This involves devel-
oping AI models that are capable of not only interpreting complex user instructions but also applying this
understanding to solve real-world problems through dynamic and contextually rich simulations.

Figure 2: Examples of Sora in text-to-video generation. Text instructions are given to the OpenAI Sora
model, and it generates three videos according to the instructions.

Sora demonstrates a remarkable ability to accurately interpret and execute complex human instructions,
as illustrated in Figure 2. The model can generate detailed scenes that include multiple characters that
perform specific actions against intricate backgrounds. Researchers attribute Sora’s proficiency to not
only processing user-generated textual prompts but also discerning the complicated interplay of elements
within a scenario. One of the most striking aspects of Sora is its capacity for up to a minute-long video
while maintaining high visual quality and compelling visual coherency. Unlike earlier models that can
only generate short video clips, Sora’s minute-long video creation possesses a sense of progression and a
visually consistent journey from its first frame to the last. In addition, Sora’s advancements are evident in its
ability to produce extended video sequences with nuanced depictions of motion and interaction, overcoming
the constraints of shorter clips and simpler visual renderings that characterized earlier video generation
models. This capability represents a leap forward in AI-driven creative tools, allowing users to convert text
narratives to rich visual stories. Overall, these advances show the potential of Sora as a world simulator to
provide nuanced insights into the physical and contextual dynamics of the depicted scenes. [3].

Technology. At the heart of Sora is a pre-trained diffusion transformer [4]. Transformer models have
proven scalable and effective for many natural language tasks. Similar to powerful large language models
(LLMs) such as GPT-4, Sora can parse text and comprehend complex user instructions. To make video
generation computationally efficient, Sora employs spacetime latent patches as its building blocks. Specif-
ically, Sora compresses a raw input video into a latent spacetime representation. Then, a sequence of latent
spacetime patches is extracted from the compressed video to encapsulate both the visual appearance and
motion dynamics over brief intervals. These patches, analogous to word tokens in language models, provide
Sora with detailed visual phrases to be used to construct videos. Sora’s text-to-video generation is per-
formed by a diffusion transformer model. Starting with a frame filled with visual noise, the model iteratively
denoises the image and introduces specific details according to the provided text prompt. In essence, the
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generated video emerges through a multi-step refinement process, with each step refining the video to be
more aligned with the desired content and quality.

Highlights of Sora. Sora’s capabilities have profound implications in various aspects:

• Improving simulation abilities: Training Sora at scale is attributed to its remarkable ability to simu-
late various aspects of the physical world. Despite lacking explicit 3D modeling, Sora exhibits 3D
consistency with dynamic camera motion and long-range coherence that includes object persistence
and simulates simple interactions with the world. Moreover, Sora intriguingly simulates digital
environments like Minecraft, controlled by a basic policy while maintaining visual fidelity. These
emergent abilities suggest that scaling video models is effective in creating AI models to simulate the
complexity of physical and digital worlds.

• Boosting creativity: Imagine outlining a concept through text, whether a simple object or a full scene,
and seeing a realistic or highly stylized video rendered within seconds. Sora allows an accelerated
design process for faster exploration and refinement of ideas, thus significantly boosting the creativity
of artists, filmmakers, and designers.

• Driving educational innovations: Visual aids have long been integral to understanding important
concepts in education. With Sora, educators can easily turn a class plan from text to videos to
captivate students’ attention and improve learning efficiency. From scientific simulations to historical
dramatizations, the possibilities are boundless.

• Enhancing Accessibility: Enhancing accessibility in the visual domain is paramount. Sora offers
an innovative solution by converting textual descriptions to visual content. This capability empowers
all individuals, including those with visual impairments, to actively engage in content creation and
interact with others in more effective ways. Consequently, it allows for a more inclusive environment
where everyone has the opportunity to express his or her ideas through videos.

• Fostering emerging applications: The applications of Sora are vast. For example, marketers might
use it to create dynamic advertisements tailored to specific audience descriptions. Game developers
might use it to generate customized visuals or even character actions from player narratives.

Limitations and Opportunities. While Sora’s achievements highlight significant advancements in AI,
challenges remain. Depicting complex actions or capturing subtle facial expressions are among the areas
where the model could be enhanced. In addition, ethical considerations such as mitigating biases in gen-
erated content and preventing harmful visual outputs underscore the importance of responsible usage by
developers, researchers, and the broader community. Ensuring that Sora’s outputs are consistently safe and
unbiased is a principal challenge. The field of video generation is advancing swiftly, with academic and
industry research teams making relentless strides. The advent of competing text-to-video models suggests
that Sora may soon be part of a dynamic ecosystem. This collaborative and competitive environment fos-
ters innovation, leading to improved video quality and new applications that help improve the productivity
of workers and make people’s lives more entertaining.

Our Contributions. Based on published technical reports and our reverse engineering, this paper presents
the first comprehensive review of Sora’s background, related technologies, emerging applications, current
limitations, and future opportunities.

2 Background
2.1 History
In the realm of computer vision (CV), prior to the deep learning revolution, traditional image generation
techniques relied on methods like texture synthesis [5] and texture mapping [6], based on hand-crafted
features. However, these methods were limited in their capacity to produce complex and vivid images.
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Figure 3: History of Generative AI in Vision Domain.

The introduction of Generative Adversarial Networks (GANs) [7] and Variational Autoencoders (VAEs) [8]
marked a significant turning point due to its remarkable capabilities across various applications. Subsequent
developments, such as flow models [9] and diffusion models [10], further enhanced image generation with
greater detail and quality. The recent progress in Artificial Intelligence Generated Content (AIGC) technolo-
gies has democratized content creation, enabling users to generate desired content through simple textual
instructions [11].

Over the past decade, the development of generative CV models has taken various routes, as shown
in Figure 3. This landscape began to shift notably following the successful application of the transformer
architecture [12] in NLP, as demonstrated by BERT [13] and GPT [14]. In CV, researchers take this concept
even further by combining the transformer architecture with visual components, allowing it to be applied to
downstream CV tasks, such as Vision Transformer (ViT) [15] and Swin Transformer [16]. Parallel to the
transformer’s success, diffusion models have also made significant strides in the fields of image and video
generation [10]. Diffusion models offer a mathematically sound framework for converting noise into images
with U-Nets [17], where U-Nets facilitate this process by learning to predict and mitigate noise at each step.
Since 2021, a paramount focus in AI has been on generative language and vision models that are capable
of interpreting human instructions, known as multimodal models. For example, CLIP [18] is a pioneering
vision-language model that combines transformer architecture with visual elements, facilitating its training
on vast datasets of text and images. By integrating visual and linguistic knowledge from the outset, CLIP can
function as an image encoder within multimodal generation frameworks. Another notable example is Stable
Diffusion [19], a versatile text-to-image AI model celebrated for its adaptability and ease of use. It employs
transformer architecture and latent diffusion techniques to decode textual inputs and produce images of a
wide array of styles, further illustrating the advancements in multimodal AI.

Following the release of ChatGPT in November 2022, we have witnessed the emergence of commercial
text-to-image products in 2023, such as Stable Diffusion [19], Midjourney [20], DALL-E 3 [21]. These tools
enable users to generate new images of high resolution and quality with simple text prompts, showcasing the
potential of AI in creative image generation. However, transitioning from text-to-image to text-to-video is
challenging due to the temporal complexity of videos. Despite numerous efforts in industry and academia,
most existing video generation tools, such as Pika [22] and Gen-2 [23], are limited to producing only short
video clips of a few seconds. In this context, Sora represents a significant breakthrough, akin to ChatGPT’s
impact in the NLP domain. Sora is the first model that is capable of generating videos up to one minute
long based on human instructions, marking a milestone that profoundly influences research and development
in generative AI. To facilitate easy access to the latest advancements in vision generation models, the most
recent works have been compiled and provided in the Appendix and our GitHub.
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2.2 Advanced Concepts

Scaling Laws for Vision Models. With scaling laws for LLMs, it is natural to ask whether the devel-
opment of vision models follows similar scaling laws. Recently, Zhai et al. [24] have demonstrated that
the performance-compute frontier for ViT models with enough training data roughly follows a (saturating)
power law. Following them, Google Research [25] presented a recipe for highly efficient and stable train-
ing of a 22B-parameter ViT. Results show that great performance can be achieved using the frozen model to
produce embeddings, and then training thin layers on top. Sora, as a large vision model (LVM), aligns with
these scaling principles, uncovering several emergent abilities in text-to-video generation. This significant
progression underscores the potential for LVMs to achieve advancements like those seen in LLMs.

Emergent Abilities. Emergent abilities in LLMs are sophisticated behaviors or functions that manifest at
certain scales—often linked to the size of the model’s parameters—that were not explicitly programmed
or anticipated by their developers. These abilities are termed "emergent" because they emerge from the
model’s comprehensive training across varied datasets, coupled with its extensive parameter count. This
combination enables the model to form connections and draw inferences that surpass mere pattern recogni-
tion or rote memorization. Typically, the emergence of these abilities cannot be straightforwardly predicted
by extrapolating from the performance of smaller-scale models. While numerous LLMs, such as Chat-
GPT and GPT-4, exhibit emergent abilities, vision models demonstrating comparable capabilities have been
scarce until the advent of Sora. According to Sora’s technical report, it is the first vision model to exhibit
confirmed emergent abilities, marking a significant milestone in the field of computer vision.

In addition to its emergent abilities, Sora exhibits other notable capabilities, including instruction fol-
lowing, visual prompt engineering, and video understanding. These aspects of Sora’s functionality repre-
sent significant advancements in the vision domain and will be explored and discussed in the rest sections.

3 Technology
3.1 Overview of Sora
In the core essence, Sora is a diffusion transformer [4] with flexible sampling dimensions as shown in
Figure 4. It has three parts: (1) A time-space compressor first maps the original video into latent space.
(2) A ViT then processes the tokenized latent representation and outputs the denoised latent representation.
(3) A CLIP-like [26] conditioning mechanism receives LLM-augmented user instructions and potentially
visual prompts to guide the diffusion model to generate styled or themed videos. After many denoising

Figure 4: Reverse Engineering: Overview of Sora framework
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steps, the latent representation of the generated video is obtained and then mapped back to pixel space with
the corresponding decoder. In this section, we aim to reverse engineer the technology used by Sora and
discuss a wide range of related works.

3.2 Data Pre-processing
3.2.1 Variable Durations, Resolutions, Aspect Ratios
One distinguishing feature of Sora is its ability to train on, understand, and generate videos and images at
their native sizes [3] as illustrated in Figure 5. Traditional methods often resize, crop, or adjust the aspect
ratios of videos to fit a uniform standard—typically short clips with square frames at fixed low resolutions
[27][28][29]. Those samples are often generated at a wider temporal stride and rely on separately trained
frame-insertion and resolution-rendering models as the final step, creating inconsistency across the video.
Utilizing the diffusion transformer architecture [4] (see Section 3.2.4), Sora is the first model to embrace the
diversity of visual data and can sample in a wide array of video and image formats, ranging from widescreen
1920x1080p videos to vertical 1080x1920p videos and everything in between without compromising their
original dimensions.

Figure 5: Sora can generate images in flexible sizes or resolutions ranging from 1920x1080p to
1080x1920p and anything in between.

Figure 6: A comparison between Sora (right) and
a modified version of the model (left), which crops
videos to square shapes—a common practice in model
training—highlights the advantages.

Training on data in their native sizes signif-
icantly improves composition and framing in the
generated videos. Empirical findings suggest that
by maintaining the original aspect ratios, Sora
achieves a more natural and coherent visual narra-
tive. The comparison between Sora and a model
trained on uniformly cropped square videos demon-
strates a clear advantage as shown in Figure 6.
Videos produced by Sora exhibit better framing,
ensuring subjects are fully captured in the scene, as
opposed to the sometimes truncated views resulting
from square cropping.

This nuanced understanding and preservation of
original video and image characteristics mark a sig-
nificant advancement in the field of generative mod-
els. Sora’s approach not only showcases the po-
tential for more authentic and engaging video generation but also highlights the importance of diversity in
training data for achieving high-quality results in generative AI. The training approach of Sora aligns with
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the core tenet of Richard Sutton’s THE BITTER LESSON[30], which states that leveraging computation
over human-designed features leads to more effective and flexible AI systems. Just as the original design of
diffusion transformers seeks simplicity and scalability [31], Sora’s strategy of training on data at their native
sizes eschews traditional AI reliance on human-derived abstractions, favoring instead a generalist method
that scales with computational power. In the rest of this section, we try to reverse engineer the architecture
design of Sora and discuss related technologies to achieve this amazing feature.

3.2.2 Unified Visual Representation
To effectively process diverse visual inputs including images and videos with varying durations, resolutions,
and aspect ratios, a crucial approach involves transforming all forms of visual data into a unified represen-
tation, which facilitates the large-scale training of generative models. Specifically, Sora patchifies videos
by initially compressing videos into a lower-dimensional latent space, followed by decomposing the repre-
sentation into spacetime patches. However, Sora’s technical report [3] merely presents a high-level idea,
making reproduction challenging for the research community. In this section, we try to reverse-engineer the
potential ingredients and technical pathways. Additionally, we will discuss viable alternatives that could
replicate Sora’s functionalities, drawing upon insights from existing literature.

Figure 7: At a high level, Sora turns videos into patches by first compressing videos into a lower-
dimensional latent space, and subsequently decomposing the representation into spacetime patches. Source:
Sora’s technical report [3].

3.2.3 Video Compression Network

Figure 8: ViT splits an image into fixed-
size patches, linearly embeds each of them,
adds position embeddings, and feeds the
resulting sequence of vectors to a standard
Transformer encoder.

Sora’s video compression network (or visual encoder) aims
to reduce the dimensionality of input data, especially a raw
video, and output a latent representation that is compressed
both temporally and spatially as shown in Figure 7. According
to the references in the technical report, the compression net-
work is built upon VAE or Vector Quantised-VAE (VQ-VAE)
[32]. However, it is challenging for VAE to map visual data of
any size to a unified and fixed-sized latent space if resizing and
cropping are not used as mentioned in the technical report. We
summarize two distinct implementations to address this issue:

Spatial-patch Compression. This involves transforming
video frames into fixed-size patches, akin to the methodolo-
gies employed in ViT [15] and MAE [33] (see Figure 8), be-
fore encoding them into a latent space. This approach is partic-
ularly effective for accommodating videos of varying resolu-
tions and aspect ratios, as it encodes entire frames through the
processing of individual patches. Subsequently, these spatial tokens are organized in a temporal sequence
to create a spatial-temporal latent representation. This technique highlights several critical considerations:
Temporal dimension variability – given the varying durations of training videos, the temporal dimension
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of the latent space representation cannot be fixed. To address this, one can either sample a specific num-
ber of frames (padding or temporal interpolation [34] may be needed for much shorter videos) or define
a universally extended (super long) input length for subsequent processing (more details are described in
Section 3.2.4); Utilization of pre-trained visual encoders – for processing videos of high resolution, lever-
aging existing pre-trained visual encoders, such as the VAE encoder from Stable Diffusion [19], is advis-
able for most researchers while Sora’s team is expected to train their own compression network with a
decoder (the video generator) from scratch via the manner employed in training latent diffusion models
[19, 35, 36]. These encoders can efficiently compress large-size patches (e.g., 256 × 256), facilitating the
management of large-scale data; Temporal information aggregation – since this method primarily focuses
on spatial patch compression, it necessitates an additional mechanism for aggregating temporal information
within the model. This aspect is crucial for capturing dynamic changes over time and is further elaborated
in subsequent sections (see details in Section 3.3.1 and Figure 14).

Spatial-temporal-patch Compression. This technique is designed to encapsulate both spatial and tem-
poral dimensions of video data, offering a comprehensive representation. This technique extends beyond
merely analyzing static frames by considering the movement and changes across frames, thereby captur-
ing the video’s dynamic aspects. The utilization of 3D convolution emerges as a straightforward and
potent method for achieving this integration [37]. The graphical illustration and the comparison against
pure spatial-pachifying are depicted in Figure 9. Similar to spatial-patch compression, employing spatial-
temporal-patch compression with predetermined convolution kernel parameters – such as fixed kernel sizes,
strides, and output channels – results in variations in the dimensions of the latent space due to the differing
characteristics of video inputs. This variability is primarily driven by the diverse durations and resolutions
of the videos being processed. To mitigate this challenge, the approaches adopted for spatial patchification
are equally applicable and effective in this context.

Figure 9: Comparison between different patchification for video compression. Source: ViViT [38]. (Left)
Spatial patchification simply samples nt frames and embeds each 2D frame independently following
ViT. (Right) Spatial-temporal patchification extracts and linearly embeds non-overlapping or overlapping
tubelets that span the spatiotemporal input volume.

In summary, we reverse engineer the two patch-level compression approaches based on VAE or its vari-
ant like VQ-VQE because operations on patches are more flexible to process different types of videos. Since
Sora aims to generate high-fidelity videos, a large patch size or kernel size is used for efficient compres-
sion. Here, we expect that fixed-size patches are used for simplicity, scalability, and training stability. But
varying-size patches could also be used [39] to make the dimension of the whole frames or videos in latent
space consistent. However, it may result in invalid positional encoding, and cause challenges for the decoder
to generate videos with varying-size latent patches.
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Figure 10: Patch packing enables variable resolution images or videos with preserved aspect ratio.6 Token
dropping somehow could be treated as data augmentation. Source: NaViT [40].

3.2.4 Spacetime Latent Patches
There is a pivotal concern remaining in the compression network part: How to handle the variability in
latent space dimensions (i.e., the number of latent feature chunks or patches from different video types)
before feeding patches into the input layers of the diffusion transformer. Here, we discuss several solutions.

Based on Sora’s technical report and the corresponding references, patch n’ pack (PNP) [40] is likely
the solution. PNP packs multiple patches from different images in a single sequence as shown in Figure 10.
This method is inspired by example packing used in natural language processing [41] that accommodates
efficient training on variable length inputs by dropping tokens. Here the patchification and token embedding
steps need to be completed in the compression network, but Sora may further patchify the latent for trans-
former token as Diffusion Transformer does [4]. Regardless there is a second-round patchification or not,
we need to address two concerns, how to pack those tokens in a compact manner and how to control which
tokens should be dropped. For the first concern, a simple greedy approach is used which adds examples to
the first sequence with enough remaining space. Once no more example can fit, sequences are filled with
padding tokens, yielding the fixed sequence lengths needed for batched operations. Such a simple packing
algorithm can lead to significant padding, depending on the distribution of the length of inputs. On the
other hand, we can control the resolutions and frames we sample to ensure efficient packing by tuning the
sequence length and limiting padding. For the second concern, an intuitive approach is to drop the similar
tokens [42, 43, 33, 44] or, like PNP, apply dropping rate schedulers. However, it is worth noting that 3D
Consistency is one of the nice properties of Sora. Dropping tokens may ignore fine-grained details during
training. Thus, we believe that OpenAI is likely to use a super long context window and pack all tokens
from videos although doing so is computationally expensive e.g., the multi-head attention [45, 46] operator
exhibits quadratic cost in sequence length. Specifically, spacetime latent patches from a long-duration video
can be packed in one sequence while the ones from several short-duration videos are concatenated in the
other sequence.

3.2.5 Discussion
We discuss two technical solutions to data pre-processing that Sora may use. Both solutions are performed
at the patch level due to the characteristics of flexibility and scalability for modeling. Different from previous
approaches where videos are resized, cropped, or trimmed to a standard size, Sora trains on data at its native
size. Although there are several benefits (see detailed analysis in Section 3.2.1), it brings some technical
challenges, among which one of the most significant is that neural networks cannot inherently process
visual data of variable durations, resolutions, and aspect ratios. Through reverse engineering, we believe
that Sora firstly compresses visual patches into low-dimensional latent representations, and arranges such
latent patches or further patchified latent patches in a sequence, then injects noise into these latent patches
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Figure 11: The overall framework of DiT (left) and U-ViT (right)
.

before feeding them to the input layer of diffusion transformer. Spatial-temporal patchification is adopted
by Sora because it is simple to implement, and it can effectively reduce the context length with high-
information-density tokens and decrease the complexity of subsequent modeling of temporal information.

To the research community, we recommend using cost-efficient alternative solutions for video com-
pression and representation, including utilizing pre-trained checkpoints (e.g., compression network) [47],
shortening the context window, using light-weight modeling mechanisms such as (grouped) multi-query
attention [48, 49] or efficient architectures (e.g. Mamba [50]), downsampling data and dropping tokens if
necessary. The trade-off between effectiveness and efficiency for video modeling is an important research
topic to be explored.

3.3 Modeling

3.3.1 Diffusion Transformer

Image Diffusion Transformer. Traditional diffusion models [51, 52, 53] mainly leverage convolutional
U-Nets that include downsampling and upsampling blocks for the denoising network backbone. However,
recent studies show that the U-Net architecture is not crucial to the good performance of the diffusion model.
By incorporating a more flexible transformer architecture, the transformer-based diffusion models can use
more training data and larger model parameters. Along this line, DiT [4] and U-ViT [54] are among the first
works to employ vision transformers for latent diffusion models. As in ViT, DiT employs a multi-head self-
attention layer and a pointwise feed-forward network interlaced with some layer norm and scaling layers.
Moreover, as shown in Figure 11, DiT incorporates conditioning via adaptive layer norm (AdaLN) with an
additional MLP layer for zero-initializing, which initializes each residual block as an identity function and
thus greatly stabilizes the training process. The scalability and flexibility of DiT is empirically validated.
DiT becomes the new backbone for diffusion models. In U-ViT, as shown in Figure 11, they treat all inputs,
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including time, condition, and noisy image patches, as tokens and propose long skip connections between the
shallow and deep transformer layers. The results suggest that the downsampling and upsampling operators
in CNN-based U-Net are not always necessary, and U-ViT achieves record-breaking FID scores in image
and text-to-image generation.

Like Masked AutoEncoder (MAE) [33], Masked Diffusion Transformer (MDT) [55] incorporates mask
latent modeling into the diffusion process to explicitly enhance contextual relation learning among object
semantic parts in image synthesis. Specifically, as shown in Figure 12, MDT uses a side-interpolated for an
additional masked token reconstruction task during training to boost the training efficiency and learn pow-
erful context-aware positional embedding for inference. Compared to DiT [4], MDT achieves better perfor-
mance and faster learning speed. Instead of using AdaLN (i.e., shifting and scaling) for time-conditioning
modeling, Hatamizadeh et al. [56] introduce Diffusion Vision Transformers (DiffiT), which uses a time-
dependent self-attention (TMSA) module to model dynamic denoising behavior over sampling time steps.
Besides, DiffiT uses two hybrid hierarchical architectures for efficient denoising in the pixel space and the
latent space, respectively, and achieves new state-of-the-art results across various generation tasks. Overall,
these studies show promising results in employing vision transformers for image latent diffusion, paving the
way for future studies for other modalities.

Figure 12: The overall framework of Masked Diffusion Transformer (MDT). A solid/dotted line indicates
the training/inference process for each time step. Masking and side-interpolater are only used during training
and are removed during inference.

Video Diffusion Transformer. Building upon the foundational works in text-to-image (T2I) diffusion mod-
els, recent research has been focused on realizing the potential of diffusion transformers for text-to-video
(T2V) generation tasks. Due to the temporal nature of videos, key challenges for applying DiTs in the video
domain are: i) how to compress the video spatially and temporally to a latent space for efficient denoising;
ii) how to convert the compressed latent to patches and feed them to the transformer; and iii) how to handle
long-range temporal and spatial dependencies and ensure content consistency. Please refer to Section 3.2.3
for the first challenge. In this Section, we focus our discussion on transformer-based denoising network ar-
chitectures designed to operate in the spatially and temporally compressed latent space. We give a detailed
review of the two important works (Imagen Video [29] and Video LDM [36]) described in the reference list
of the OpenAI Sora technique report.

Imagen Video [29], a text-to-video generation system developed by Google Research, utilizes a cascade
of diffusion models, which consists of 7 sub-models that perform text-conditional video generation, spatial
super-resolution, and temporal super-resolution, to transform textual prompts into high-definition videos.
As shown in Figure 13, firstly, a frozen T5 text encoder generates contextual embeddings from the input
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Figure 13: The overall framework of Imagen Video. Source: Imagen Video [29].

text prompt. These embeddings are critical for aligning the generated video with the text prompt and are
injected into all models in the cascade, in addition to the base model. Subsequently, the embedding is fed to
the base model for low-resolution video generation, which is then refined by cascaded diffusion models to
increase the resolution. The base video and super-resolution models use a 3D U-Net architecture in a space-
time separable fashion. This architecture weaves temporal attention and convolution layers with spatial
counterparts to efficiently capture inter-frame dependencies. It employs v-prediction parameterization for
numerical stability and conditioning augmentation to facilitate parallel training across models. The process
involves joint training on both images and videos, treating each image as a frame to leverage larger datasets,
and using classifier-free guidance [57] to enhance prompt fidelity. Progressive distillation [58] is applied to
streamline the sampling process, significantly reducing the computational load while maintaining perceptual
quality. Combining these methods and techniques allows Imagen Video to generate videos with not only
high fidelity but also remarkable controllability, as demonstrated by its ability to produce diverse videos,
text animations, and content in various artistic styles.

(a) Additional temporal layer. A pre-trained LDM is turned
into a video generator by inserting temporal layers that learn
to align frames into temporally consistent sequences. During
optimization, the image backbone θ remains fixed and only the
parameters ϕ of the temporal layers liϕ are trained.
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(b) Video LDM stack. Video LDM first generates sparse key
frames and then temporally interpolates twice with the same
latent diffusion models to achieve a high frame rate. Finally, the
latent video is decoded to pixel space, and optionally, a video
upsampler diffusion model is applied.

Figure 14: The overall framework of Video LDM. Source: Video LDM [36].

Blattmann et al. [36] propose to turn a 2D Latent Diffusion Model into a Video Latent Diffusion Model
(Video LDM). They achieve this by adding some post-hoc temporal layers among the existing spatial layers
into both the U-Net backbone and the VAE decoder that learns to align individual frames. These tempo-
ral layers are trained on encoded video data, while the spatial layers remain fixed, allowing the model to
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leverage large image datasets for pre-training. The LDM’s decoder is fine-tuned for temporal consistency in
pixel space and temporally aligning diffusion model upsamplers for enhanced spatial resolution. To generate
very long videos, models are trained to predict a future frame given a number of context frames, allowing
for classifier-free guidance during sampling. To achieve high temporal resolution, the video synthesis pro-
cess is divided into key frame generation and interpolation between these key frames. Following cascaded
LDMs, a DM is used to further scale up the Video LDM outputs by 4 times, ensuring high spatial resolution
while maintaining temporal consistency. This approach enables the generation of globally coherent long
videos in a computationally efficient manner. Additionally, the authors demonstrate the ability to transform
pre-trained image LDMs (e.g., Stable Diffusion) into text-to-video models by training only the temporal
alignment layers, achieving video synthesis with resolutions up to 1280 × 2048.

3.3.2 Discussion
Cascade diffusion models for spatial and temporal up-sampling. Sora can generate high-resolution
videos. By reviewing existing works and our reverse engineering, we speculate that Sora also leverages
cascade diffusion model architecture [59] which is composed of a base model and many space-time refiner
models. The attention modules are unlikely to be heavily used in the based diffusion model and low-
resolution diffusion model, considering the high computation cost and limited performance gain of using
attention machines in high-resolution cases. For spatial and temporal scene consistency, as previous works
show that temporal consistency is more important than spatial consistency for video/scene generation, Sora
is likely to leverage an efficient training strategy by using longer video (for temporal consistency) with
lower resolution. Moreover, Sora is likely to use a v-parameterization diffusion model [58], considering
its superior performance compared to other variants that predict the original latent x or the noise ϵ.

On the latent encoder. For training efficiency, most of the existing works leverage the pre-trained VAE
encoder of Stable Diffusions [60, 61], a pre-trained 2D diffusion model, as an initialized model checkpoint.
However, the encoder lacks the temporal compression ability. Even though some works propose to only
fine-tune the decoder for handling temporal information, the decoder’s performance of dealing with video
temporal data in the compressed latent space remains sub-optimal. Based on the technique report, our
reverse engineering shows that, instead of using an existing pre-trained VAE encoder, it is likely that Sora
uses a space-time VAE encoder, trained from scratch on video data, which performs better than existing
ones with a video-orient compressed latent space.

3.4 Language Instruction Following
Users primarily engage with generative AI models through natural language instructions, known as text
prompts [62, 63]. Model instruction tuning aims to enhance AI models’ capability to follow prompts accu-
rately. This improved capability in prompt following enables models to generate output that more closely
resembles human responses to natural language queries. We start our discussion with a review of instruc-
tion following techniques for large language models (LLMs) and text-to-image models such as DALL·E 3.
To enhance the text-to-video model’s ability to follow text instructions, Sora utilizes an approach similar
to that of DALL·E 3. The approach involves training a descriptive captioner and utilizing the captioner’s
generated data for fine-tuning. As a result of instruction tuning, Sora is able to accommodate a wide range
of user requests, ensuring meticulous attention to the details in the instructions and generating videos that
precisely meet users’ needs.

3.4.1 Large Language Models
The capability of LLMs to follow instructions has been extensively explored [64, 65, 66]. This ability al-
lows LLMs to read, understand, and respond appropriately to instructions describing an unseen task without
examples. Prompt following ability is obtained and enhanced by fine-tuning LLMs on a mixture of tasks
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formatted as instructions[64, 66], known as instruction tuning. Wei et al. [65] showed that instruction-tuned
LLMs significantly outperform the untuned ones on unseen tasks. The instruction-following ability trans-
forms LLMs into general-purpose task solvers, marking a paradigm shift in the history of AI development.

3.4.2 Text-to-Image
The instruction following in DALL·E 3 is addressed by a caption improvement method with a hypothesis
that the quality of text-image pairs that the model is trained on determines the performance of the resultant
text-to-image model [67]. The poor quality of data, particularly the prevalence of noisy data and short cap-
tions that omit a large amount of visual information, leads to many issues such as neglecting keywords and
word order, and misunderstanding the user intentions [21]. The caption improvement approach addresses
these issues by re-captioning existing images with detailed, descriptive captions. The approach first trains
an image captioner, which is a vision-language model, to generate precise and descriptive image captions.
The resulting descriptive image captions by the captioner are then used to fine-tune text-to-image models.
Specifically, DALL·E 3 follows contrastive captioners (CoCa) [68] to jointly train an image captioner with
a CLIP [26] architecture and a language model objective. This image captioner incorporates an image en-
coder a unimodal text encoder for extracting language information, and a multimodal text decoder. It first
employs a contrastive loss between unimodal image and text embeddings, followed by a captioning loss for
the multimodal decoder’s outputs. The resulting image captioner is further fine-tuned on a highly detailed
description of images covering main objects, surroundings, backgrounds, texts, styles, and colorations. With
this step, the image captioner is able to generate detailed descriptive captions for the images. The training
dataset for the text-to-image model is a mixture of the re-captioned dataset generated by the image captioner
and ground-truth human-written data to ensure that the model captures user inputs. This image caption im-
provement method introduces a potential issue: a mismatch between the actual user prompts and descriptive
image descriptions from the training data. DALL·E 3 addresses this by upsampling, where LLMs are used to
re-write short user prompts into detailed and lengthy instructions. This ensures that the model’s text inputs
received in inference time are consistent with those in model training.

3.4.3 Text-to-Video

To enhance the ability of instruction following, Sora adopts a similar caption improvement approach.
This method is achieved by first training a video captioner capable of producing detailed descriptions for
videos. Then, this video captioner is applied to all videos in the training data to generate high-quality (video,
descriptive caption) pairs, which are used to fine-tune Sora to improve its instruction following ability.

Sora’s technical report [3] does not reveal the details about how the video captioner is trained. Given
that the video captioner is a video-to-text model, there are many approaches to building it. A straightfor-
ward approach is to utilize CoCa architecture for video captioning by taking multiple frames of a video
and feeding each frame into the image encoder [68], known as VideoCoCa [69]. VideoCoCa builds upon
CoCa and re-uses the image encoder pre-trained weights and applies it independently on sampled video
frames. The resulting frame token embeddings are flattened and concatenated into a long sequence of video
representations. These flattened frame tokens are then processed by a generative pooler and a contrastive
pooler, which are jointly trained with the contrastive loss and captioning loss. Other alternatives to building
video captioners include mPLUG-2 [70], GIT [71], FrozenBiLM [72], and more. Finally, to ensure that user
prompts align with the format of those descriptive captions in training data, Sora performs an additional
prompt extension step, where GPT-4V is used to expand user inputs to detailed descriptive prompts.
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3.4.4 Discussion

The instruction-following ability is critical for Sora to generate one-minute-long videos with intricate
scenes that are faithful to user intents. According to Sora’s technical report [3], this ability is obtained
by developing a captioner that can generate long and detailed captions, which are then used to train the
model. However, the process of collecting data for training such a captioner is unknown and likely labor-
intensive, as it may require detailed descriptions of videos. Moreover, the descriptive video captioner might
hallucinate important details of the videos. We believe that how to improve the video captioner warrants
further investigation and is critical to enhance the instruction-following ability of text-to-image models.

3.5 Prompt Engineering

Prompt engineering refers to the process of designing and refining the input given to an AI system, particu-
larly in the context of generative models, to achieve specific or optimized outputs [73, 74, 75]. The art and
science of prompt engineering involve crafting these inputs in a way that guides the model to produce the
most accurate, relevant, and coherent responses possible.

3.5.1 Text Prompt
Text prompt engineering is vital in directing text-to-video models (e.g., Sora [3]) to produce videos that
are visually striking while precisely meeting user specifications. This involves crafting detailed descrip-
tions to instruct the model to effectively bridge the gap between human creativity and AI’s execution ca-
pabilities [76]. The prompts for Sora cover a wide range of scenarios. Recent works (e.g., VoP [77],
Make-A-Video [28], and Tune-A-Video [78]) have shown how prompt engineering leverages model’s nat-
ural language understanding ability to decode complex instructions and render them into cohesive, lively,
and high-quality video narratives. As shown in Figure 15, “a stylish woman walking down a neon-lit Tokyo
street...” is such a meticulously crafted text prompt that it ensures Sora to generate a video that aligns well
with the expected vision. The quality of prompt engineering depends on the careful selection of words, the
specificity of the details provided, and comprehension of their impact on the model’s output. For example,
the prompt in Figure 15 specifies in detail the actions, settings, character appearances, and even the desired
mood and atmosphere of the scene.

Figure 15: A case study on prompt engineering for text-to-video generation, employing color coding to
delineate the creative process. The text highlighted in blue describes the elements generated by Sora, such
as the depiction of a stylish woman. In contrast, the text in yellow accentuates the model’s interpretation
of actions, settings, and character appearances, demonstrating how a meticulously crafted prompt is trans-
formed into a vivid and dynamic video narrative.
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3.5.2 Image Prompt
An image prompt serves as a visual anchor for the to-be-generated video’s content and other elements
such as characters, setting, and mood [79]. In addition, a text prompt can instruct the model to animate
these elements by e.g., adding layers of movement, interaction, and narrative progression that bring the
static image to life [27, 80, 81]. The use of image prompts allows Sora to convert static images into
dynamic, narrative-driven videos by leveraging both visual and textual information. In Figure 16, we show
AI-generated videos of “a Shiba Inu wearing a beret and turtleneck”, “a unique monster family”, “a cloud
forming the word ‘SORA”’ and “surfers navigating a tidal wave inside a historic hall”. These examples
demonstrate what can be achieved by prompting Sora with DALL·E-generated images.

Figure 16: This example illustrates the image prompts to guide Sora’s text-to-video model to generation.
The red boxes visually anchor the key elements of each scene—monsters of varied designs, a cloud forma-
tion spelling “SORA”, and surfers in an ornate hall facing a massive tidal wave.

3.5.3 Video Prompt
Video prompts can also be used for video generation as demonstrated in [82, 83]. Recent works (e.g.,
Moonshot [84] and Fast-Vid2Vid [85]) show that good video prompts need to be specific and flexible. This
ensures that the model receives clear direction on specific objectives, like the portrayal of particular objects
and visual themes, and also allows for imaginative variations in the final output. For example, in the video
extension tasks, a prompt could specify the direction (forward or backward in time) and the context or theme
of the extension. In Figure 17(a), the video prompt instructs Sora to extend a video backward in time to
explore the events leading up to the original starting point. When performing video-to-video editing through
video prompts, as shown in Figure 17(b), the model needs to clearly understand the desired transformation,
such as changing the video’s style, setting or atmosphere, or altering subtle aspects like lighting or mood.
In Figure 17(c), the prompt instructs Sora to connect videos while ensuring smooth transitions between
objects in different scenes across videos.

3.5.4 Discussion
Prompt engineering allows users to guide AI models to generate content that aligns with their intent. As
an example, the combined use of text, image, and video prompts enables Sora to create content that is not
only visually compelling but also aligned well with users’ expectations and intent. While previous studies
on prompt engineering have been focused on text and image prompts for LLMs and LVMs [86, 87, 88], we
expect that there will be a growing interest in video prompts for video generation models.

3.6 Trustworthiness
With the rapid advancement of sophisticated models such as ChatGPT [89], GPT4-V [90], and Sora [3],
the capabilities of these models have seen remarkable enhancements. These developments have made sig-

17



Figure 17: These examples illustrate the video prompt techniques for Sora models: (a) Video Extension,
where the model extrapolates the sequence backward the original footage, (b) Video Editing, where specific
elements like the setting are transformed as per the text prompt, and (c) Video Connection, where two
distinct video prompts are seamlessly blended to create a coherent narrative. Each process is guided by a
visual anchor, marked by a red box, ensuring continuity and precision in the generated video content.

nificant contributions to improving work efficiency and propelling technological progress. However, these
advancements also raise concerns about the potential for misuse of these technologies, including the gener-
ation of fake news [91, 92], privacy breaches [93], and ethical dilemmas [94, 95]. Consequently, the issue
of trustworthiness in large models has garnered extensive attention from both the academic and industrial
spheres, emerging as a focal point of contemporary research discussions.

3.6.1 Safety Concern
One primary area of focus is the model’s safety, specifically its resilience against misuse and so-called
“jailbreak” attacks, where users attempt to exploit vulnerabilities to generate prohibited or harmful content
[96, 97, 98, 99, 100, 101, 102, 103, 104, 105]. For instance, AutoDAN [103], a novel and interpretable
adversarial attack method based on gradient techniques, is introduced to enable system bypass. In a recent
study, researchers explore two reasons why LLMs struggle to resist jailbreak attacks: competing objectives
and mismatched generalization [106]. Besides textual attacks, visual jailbreak also threatens the safety of
multimodal models (e.g., GPT-4V [90], and Sora [3]). A recent study [107] found that large multimodal
models are more vulnerable since the continuous and high-dimensional nature of the additional visual input
makes it weaker against adversarial attacks, representing an expanded attack surface.

3.6.2 Other Exploitation
Due to the large scale of the training dataset and training methodology of large foundation models (e.g.,
ChatGPT [89] and Sora [3]), the truthfulness of these models needs to be enhanced as the related issues
like hallucination have been discussed widely [108]. Hallucination in this context refers to the models’
tendency to generate responses that may appear convincing but are unfounded or false [96]. This phe-
nomenon raises critical questions about the reliability and trustworthiness of model outputs, necessitating
a comprehensive approach to both evaluate and address the issue. Amount of studies have been dedicated
to dissecting the problem of hallucination from various angles. This includes efforts aimed at evaluating
the extent and nature of hallucination across different models and scenarios [109, 96, 110, 111]. These
evaluations provide invaluable insights into how and why hallucinations occur, laying the groundwork for
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developing strategies to mitigate their incidence. Concurrently, a significant body of research is focused on
devising and implementing methods to reduce hallucinations in these large models [112, 113, 114].

Another vital aspect of trustworthiness is fairness and bias. The critical importance of developing models
that do not perpetuate or exacerbate societal biases is a paramount concern. This priority stems from the
recognition that biases encoded within these models can reinforce existing social inequities, leading to
discriminatory outcomes. Studies in this area, as evidenced by the work of Gallegos et al. [115], Zhang
et al. [116], Liang et al. [117], and Friedrich et al. [118], are dedicated to the meticulous identification
and rectification of these inherent biases. The goal is to cultivate models that operate fairly, treating all
individuals equitably without bias towards race, gender, or other sensitive attributes. This involves not
only detecting and mitigating bias in datasets but also designing algorithms that can actively counteract the
propagation of such biases [119, 120].

Privacy preservation emerges as another foundational pillar when these models are deployed. In an era
where data privacy concerns are escalating, the emphasis on protecting user data has never been more crit-
ical. The increasing public awareness and concern over how personal data is handled have prompted more
rigorous evaluations of large models. These evaluations focus on the models’ capacity to protect user data,
ensuring that personal information remains confidential and is not inadvertently disclosed. Research by
Mireshghallah et al. [121], Plant et al. [122], and Li et al. [123] exemplify efforts to advance methodologies
and technologies that safeguard privacy.

3.6.3 Alignment
In addressing these challenges, ensuring the trustworthiness of large models has become one of the primary
concerns for researchers [124, 96, 99, 125]. Among the most important technologies is model alignment
[125, 126], which refers to the process and goal of ensuring that the behavior and outputs of models are
consistent with the intentions and ethical standards of human designers. This concerns the development of
technology, its moral responsibilities, and social values. In the domain of LLMs, the method of Reinforce-
ment Learning with Human Feedback (RLHF) [127, 128] has been widely applied for model alignment.
This method combines Reinforcement Learning (RL) with direct human feedback, allowing models to bet-
ter align with human expectations and standards in understanding and performing tasks.

3.6.4 Discussion
From Sora (specifically its technical report), we summarize some insightful findings that potentially offer
an informative guideline for future work:

(1) Integrated Protection of Model and External Security: As models become more powerful, especially
in generating content, ensuring that they are not misused to produce harmful content (such as hate speech
[129] and false information [92, 91]) has become a serious challenge. In addition to aligning the model itself,
external security protections are equally important. This includes content filtering and review mechanisms,
usage permissions and access control, data privacy protection, as well as enhancements in transparency and
explainability. For instance, OpenAI now uses a detection classifier to tell whether a given video is generated
by Sora [130]. Moreover, a text classifier is deployed to detect the potentially harmful textual input [130].

(2) Security Challenges of Multimodal Models: Multimodal models, such as text-to-video models like Sora
bring additional complexity to security due to their ability to understand and generate various types of
content (text, images, videos, etc.). Multimodal models can produce content in various forms, increasing
the ways and scope of misuse and copyright issues. As the content generated by multimodal models is
more complex and diverse, traditional methods of content verification and authenticity may no longer be
effective. This requires the development of new technologies and methods to identify and filter harmful
content generated by these models, increasing the difficulty of regulation and management.
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Figure 18: Applications of Sora.

(3) The Need for Interdisciplinary Collaboration: Ensuring the safety of models is not just a technical
issue but also requires cross-disciplinary cooperation. To address these challenges, experts from various
fields such as law [131] and psychology [132] need to work together to develop appropriate norms (e.g.,
what’s the safety and what’s unsafe?), policies, and technological solutions. The need for interdisciplinary
collaboration significantly increases the complexity of solving these issues.

4 Applications
As video diffusion models, exemplified by Sora, emerge as a forefront technology, their adoption across
diverse research fields and industries is rapidly accelerating. The implications of this technology extend
far beyond mere video creation, offering transformative potential for tasks ranging from automated content
generation to complex decision-making processes. In this section, we delve into a comprehensive examina-
tion of the current applications of video diffusion models, highlighting key areas where Sora has not only
demonstrated its capabilities but also revolutionized the approach to solving complex problems. We aim to
offer a broad perspective for the practical deployment scenarios (see Figure 18).

4.1 Movie
Traditionally, creating cinematic masterpieces has been an arduous and expensive process, often requir-
ing decades of effort, cutting-edge equipment, and substantial financial investments. However, the advent
of advanced video generation technologies heralds a new era in film-making, one where the dream of au-
tonomously producing movies from simple text inputs is becoming a reality. Researchers have ventured
into the realm of movie generation by extending video generation models into creating movies. MovieFac-
tory [133] applies diffusion models to generate film-style videos from elaborate scripts produced by Chat-
GPT [89], representing a significant leap forward. In the follow-up, MobileVidFactory [134] can automat-
ically generate vertical mobile videos with only simple texts provided by users. Vlogger [135] makes it
feasible for users to compose a minute-long vlog. These developments, epitomized by Sora’s ability to
generate captivating movie content effortlessly, mark a pivotal moment in the democratization of movie
production. They offer a glimpse into a future where anyone can be a filmmaker, significantly lowering
the barriers to entry in the film industry and introducing a novel dimension to movie production that blends
traditional storytelling with AI-driven creativity. The implications of these technologies extend beyond
simplification. They promise to reshape the landscape of film production, making it more accessible and
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versatile in the face of evolving viewer preferences and distribution channels.

4.2 Education
The landscape of educational content has long been dominated by static resources, which, despite their
value, often fall short of catering to the diverse needs and learning styles of today’s students. Video dif-
fusion models stand at the forefront of an educational revolution, offering unprecedented opportunities to
customize and animate educational materials in ways that significantly enhance learner engagement and
understanding. These advanced technologies enable educators to transform text descriptions or curricu-
lum outlines into dynamic, engaging video content tailored to the specific style, and interests of individual
learners [136, 137, 138, 139]. Moreover, image-to-video editing techniques [140, 141, 142] present inno-
vative avenues for converting static educational assets into interactive videos, thereby supporting a range of
learning preferences and potentially increasing student engagement. By integrating these models into edu-
cational content creation, educators can produce videos on a myriad of subjects, making complex concepts
more accessible and captivating for students. The use of Sora in revolutionizing the educational domain
exemplifies the transformative potential of these technologies. This shift towards personalized, dynamic
educational content heralds a new era in education.

4.3 Gaming
The gaming industry constantly seeks ways to push the boundaries of realism and immersion, yet traditional
game development often grapples with the limitations of pre-rendered environments and scripted events.
The generation of dynamic, high-fidelity video content and realistic sound by diffusion models effects in
real-time, promise to overcome existing constraints, offering developers the tools to create evolving game
environments that respond organically to player actions and game events [143, 144]. This could include
generating changing weather conditions, transforming landscapes, or even creating entirely new settings on
the fly, making game worlds more immersive and responsive. Some methods [145, 146] also synthesize
realistic impact sounds from video inputs, enhancing game audio experiences. With the integration of Sora
within the gaming domain, unparalleled immersive experiences that captivate and engage players can be
created. How games are developed, played, and experienced will be innovated, as well as opening new
possibilities for storytelling, interaction, and immersion.

4.4 Healthcare
Despite generative capabilities, video diffusion models excel in understanding and generating complex video
sequences, making them particularly suited for identifying dynamic anomalies within the body, such as
early cellular apoptosis [147], skin lesion progression [148], and irregular human movements [149], which
are crucial for early disease detection and intervention strategies. Additionally, models like MedSegDiff-
V2 [150] and [151] leverage the power of transformers to segment medical images with unprecedented
precision, enabling clinicians to pinpoint areas of interest across various imaging modalities with enhanced
accuracy. The integration of Sora into clinical practice promises not only to refine diagnostic processes but
also to personalize patient care, offering tailored treatment plans based on precise medical imaging analysis.
However, this technological integration comes with its own set of challenges, including the need for robust
data privacy measures and addressing ethical considerations in healthcare.

4.5 Robotics
Video diffusion models now play important roles in robotics, showing a new era where robots can generate
and interpret complex video sequences for enhanced perception [152, 153] and decision-making [154, 155,
156]. These models unlock new capabilities in robots, enabling them to interact with their environment
and execute tasks with unprecedented complexity and precision. The introduction of web-scale diffusion
models to robotics [152] showcases the potential for leveraging large-scale models to enhance robotic vision
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and understanding. Latent diffusion models are employed for language-instructed video prediction [157],
allowing robots to understand and execute tasks by predicting the outcome of actions in video format.
Furthermore, the reliance on simulated environments for robotics research has been innovatively addressed
by video diffusion models capable of creating highly realistic video sequences [158, 159]. This enables the
generation of diverse training scenarios for robots, mitigating the limitations imposed by the scarcity of real-
world data. We believe, the integration of technologies like Sora into the robotics field holds the promise
of groundbreaking developments. By harnessing the power of Sora, the future of robotics is poised for
unprecedented advancements, where robots can seamlessly navigate and interact with their environments.

5 Discussion
Sora shows a remarkable talent for precisely understanding and implementing complex instructions from
humans. This model excels at creating detailed videos with various characters, all set within elaborately
crafted settings. A particularly impressive attribute of Sora is its ability to produce videos up to one
minute in length while ensuring consistent and engaging storytelling. This marks a significant improvement
over previous attempts that focused on shorter video pieces, as Sora’s extended sequences exhibit a clear
narrative flow and maintain visual consistency from start to finish. Furthermore, Sora distinguishes itself
by generating longer video sequences that capture complex movements and interactions, advancing past
the restrictions of earlier models that could only handle short clips and basic images. This advancement
signifies a major step forward in AI-powered creative tools, enabling users to transform written stories into
vivid videos with a level of detail and sophistication that was previously unattainable.

5.1 Limitations
Challenges in Physical Realism. Sora, as a simulation platform, exhibits a range of limitations that under-
mine its effectiveness in accurately depicting complex scenarios. Most important is its inconsistent handling
of physical principles within complex scenes, leading to a failure in accurately copying specific examples
of cause and effect. For instance, consuming a portion of a cookie might not result in a corresponding bite
mark, illustrating the system’s occasional departure from physical plausibility. This issue extends to the
simulation of motion, where Sora generates movements that challenge realistic physical modeling, such
as unnatural transformations of objects or the incorrect simulation of rigid structures like chairs, leading
to unrealistic physical interactions. The challenge further increases when simulating complex interactions
among objects and characters, occasionally producing outcomes that lean towards the humorous.

Spatial and Temporal Complexities. Sora occasionally misunderstands instructions related to the place-
ment or arrangement of objects and characters within a given prompt, leading to confusion about directions
(e.g., confusing left for right). Additionally, it faces challenges in maintaining the temporal accuracy of
events, particularly when it comes to adhering to designated camera movements or sequences. This can
result in deviating from the intended temporal flow of scenes. In complex scenarios that involve a multitude
of characters or elements, Sora has a tendency to insert irrelevant animals or people. Such additions can
significantly change the originally envisioned composition and atmosphere of the scene, moving away from
the planned narrative or visual layout. This issue not only affects the model’s ability to accurately recreate
specific scenes or narratives but also impacts its reliability in generating content that closely aligns with the
user’s expectations and the coherence of the generated output.

Limitations in Human-computer Interaction (HCI). Sora, while showing potential in the video gener-
ation domain, faces significant limitations in HCI. These limitations are primarily evident in the coherence
and efficiency of user-system interactions, especially when making detailed modifications or optimizations
to generated content. For instance, users might find it difficult to precisely specify or adjust the presentation
of specific elements within a video, such as action details and scene transitions. Additionally, Sora’s limi-
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tations in understanding complex language instructions or capturing subtle semantic differences could result
in video content that does not fully meet user expectations or needs. These shortcomings restrict Sora’s
potential in video editing and enhancement, also impacting the overall satisfaction of the user experience.

Usage Limitation. Regarding usage limitations, OpenAI has not yet set a specific release date for public
access to Sora, emphasizing a cautious approach towards safety and readiness before broad deployment.
This indicates that further improvements and testing in areas such as security, privacy protection, and con-
tent review may still be necessary for Sora. Moreover, at present, Sora can only generate videos up to
one minute in length, and according to published cases, most generated videos are only a few dozen seconds
long. This limitation restricts its use in applications requiring longer content display, such as detailed in-
structional videos or in-depth storytelling. This limitation reduces Sora’s flexibility in the content creation.

5.2 Opportunities
Academy. (1) The introduction of Sora by OpenAI marks a strategic shift towards encouraging the broader
AI community to delve deeper into the exploration of text-to-video models, leveraging both diffusion and
transformer technologies. This initiative aims to redirect the focus toward the potential of creating highly
sophisticated and nuanced video content directly from textual descriptions, a frontier that promises to rev-
olutionize content creation, storytelling, and information sharing. (2) The innovative approach of training
Sora on data at its native size, as opposed to the traditional methods of resizing or cropping, serves as
a groundbreaking inspiration for the academic community. It opens up new pathways by highlighting the
benefits of utilizing unmodified datasets, which leads to the creation of more advanced generative models.

Industry. (1) The current capabilities of Sora signal a promising path for the advancement of video
simulation technologies, highlighting the potential to significantly enhance realism within both physical and
digital areas. The prospect of Sora enabling the creation of highly realistic environments through textual
descriptions presents a promising future for content creation. This potential extends to revolutionizing
game development, offering a glimpse into a future where immersive-generated worlds can be crafted with
unprecedented ease and accuracy. (2) Companies may leverage Sora to produce advertising videos that
swiftly adapt to market changes and create customized marketing content. This not only reduces production
costs but also enhances the appeal and effectiveness of advertisements. The ability of Sora to generate
highly realistic video content from textual descriptions alone could revolutionize how brands engage with
their audience, allowing for the creation of immersive and compelling videos that capture the essence of
their products or services in unprecedented ways.

Society. (1) While the prospect of utilizing text-to-video technology to replace traditional filmmaking re-
mains distant, Sora and similar platforms hold transformative potential for content creation on social me-
dia. The constraints of current video lengths do not diminish the impact these tools can have in making
high-quality video production accessible to everyone, enabling individuals to produce compelling content
without the need for expensive equipment. It represents a significant shift towards empowering content
creators across platforms like TikTok and Reels, bringing in a new age of creativity and engagement. (2)
Screenwriters and creative professionals can use Sora to transform written scripts into videos, assisting
them in better showing and sharing their creative concepts, and even in producing short films and anima-
tions. The ability to create detailed, vivid videos from scripts can fundamentally change the pre-production
process of filmmaking and animation, offering a glimpse into how future storytellers might pitch, develop,
and refine their narratives. This technology opens up possibilities for a more dynamic and interactive form
of script development, where ideas can be visualized and assessed in real time, providing a powerful tool
for creativity and collaboration. (3) Journalists and news organizations can also utilize Sora to quickly
generate news reports or explanatory videos, making the news content more vivid and engaging. This can
significantly increase the coverage and audience engagement of news reports. By providing a tool that
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can simulate realistic environments and scenarios, Sora offers a powerful solution for visual storytelling,
enabling journalists to convey complex stories through engaging videos that were previously difficult or
expensive to produce. In summary, Sora’s potential to revolutionize content creation across marketing,
journalism, and entertainment is immense.

6 Conclusion
We present a comprehensive review of Sora to help developers and researchers study the capabilities and
related works of Sora. The review is based on our survey of published technical reports and reverse
engineering based on existing literature. We will continue to update the paper when Sora’s API is available
and further details about Sora are revealed. We hope that this review paper will prove a valuable resource
for the open-source research community and lay a foundation for the community to jointly develop an open-
source version of Sora in the near future to democratize video auto-creation in the era of AIGC. To achieve
this goal, we invite discussions, suggestions, and collaborations on all fronts.
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A Related Works

We show some related works about the video generation tasks in Table 1.

Table 1: Summary of Video Generation.

Model name Year Backbone Task Group
Imagen Video[29] 2022 Diffusion Generation Google
Pix2Seq-D[160] 2022 Diffusion Segmentation Google Deepmind
FDM[161] 2022 Diffusion Prediction UBC
MaskViT[162] 2022 Masked Vision Models Prediction Stanford, Salesforce
CogVideo[163] 2022 Auto-regressive Generation THU
Make-a-video[164] 2022 Diffusion Generation Meta
MagicVideo[165] 2022 Diffusion Generation ByteDance
TATS[166] 2022 Auto-regressive Generation University of Maryland, Meta
Phenaki[167] 2022 Masked Vision Models Generation Google Brain
Gen-1[168] 2023 Diffusion Generation, Editing RunwayML
LFDM[140] 2023 Diffusion Generation PSU, UCSD
Text2video-Zero[169] 2023 Diffusion Generation Picsart
Video Fusion[170] 2023 Diffusion Generation USAC, Alibaba
PYoCo[34] 2023 Diffusion Generation Nvidia
Video LDM[36] 2023 Diffusion Generation University of Maryland, Nvidia
RIN[171] 2023 Diffusion Generation Google Brain
LVD[172] 2023 Diffusion Generation UCB
Dreamix[173] 2023 Diffusion Editing Google
MagicEdit[174] 2023 Diffusion Editing ByteDance
Control-A-Video[175] 2023 Diffusion Editing Sun Yat-Sen University
StableVideo[176] 2023 Diffusion Editing ZJU, MSRA
Tune-A-Video[78] 2023 Diffusion Editing NUS
Rerender-A-Video[177] 2023 Diffusion Editing NTU
Pix2Video[178] 2023 Diffusion Editing Adobe, UCL
InstructVid2Vid[179] 2023 Diffusion Editing ZJU
DiffAct[180] 2023 Diffusion Action Detection University of Sydney
DiffPose[181] 2023 Diffusion Pose Estimation Jilin University
MAGVIT[182] 2023 Masked Vision Models Generation Google
AnimateDiff[138] 2023 Diffusion Generation CUHK
MAGVIT V2[47] 2023 Masked Vision Models Generation Google
Generative Dynamics[183] 2023 Diffusion Generation Google
VideoCrafter[81] 2023 Diffusion Generation Tencent
Zeroscope[184] 2023 - Generation EasyWithAI
ModelScope 2023 - Generation Damo
Gen-2[23] 2023 - Generation RunwayML
Pika[22] 2023 - Generation Pika Labs
Emu Video[185] 2023 Diffusion Generation Meta
PixelDance[186] 2023 Diffusion Generation ByteDance
Stable Video Diffusion[27] 2023 Diffusion Generation Stability AI
W.A.L.T[187] 2023 Diffusion Generation Stanford, Google
Fairy[188] 2023 Diffusion Generation, Editing Meta
VideoPoet[189] 2023 Auto-regressive Generation, Editing Google
LGVI[190] 2024 Diffusion Editing PKU, NTU
Lumiere[191] 2024 Diffusion Generation Google
Sora[3] 2024 Diffusion Generation, Editing OpenAI
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